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Preface to the Second English Edition

If a textbook originally dates back 20 years, as the German edition of this book, it is
obvious that there are many new developments that could not yet be covered.
Therefore we decided to take up the enterprise to describe some of the essential
achievements of the last decades. On the one hand, we did not alter the inductive,
but rigorous character of the existing parts of the book, on the other hand with more
than 300 new pages the amendments are so extensive that this edition actually is a
new book. Taking into account that the new sections and chapters belong to the
more advanced part of the subject, our style became slightly less detailed, but
hopefully still clear. In the centre of our exposition there is still the scalar linear
elliptic and parabolic differential equation, but in addition to the diffusive term it
always includes a convective and a reactive part and is always supplemented by
general linear boundary conditions that allow flow, Dirichlet and mixed conditions
to be treated. Its dual (mixed) formulation, the Darcy equation, extends the scope to
non-coercive saddle point formulations. Thus we found it natural also to include
some aspects of the (Navier—)Stokes equations, without being exhaustive in this
respect. Also in a different way than in other, excellent textbooks, we do not restrict
ourselves to the stationary elliptic case, but also have treated the time-dependent
case for most of spatial discretizations considered. So in summary, many new
developments to the best of our knowledge are treated for the first time in a text-
book. Conceming the extensions described above of the “Poisson equation with
Dirichlet conditions” prototype, again to the best of our knowledge, several of the
added results are original and published for the first time.

In more detail, the changes and amendments are following: In the more ele-
mentary classical core of Chapters 0 to 3, hardly any changes have been made,
apart from some outlooks to the new chapters to come and slight additions in
Sections 2.5 and 3.4. The first section of Chapter 4 has been essentially rewritten,
and a third section about convergence of adaptive methods has been added. In
Chapter 5 the more advanced Sections 5.4 and 5.5 have been enlarged and a new
section about space decomposition methods added.
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For the remaining chapters a reordering was necessary as seen from the fol-
lowing table:

first edition second edition
6 8
7 9
8 11
9 10

The new Chapter 6 provides the general framework to deal with nonconforming
(beyond the results of Section 3.6) and nonconsistent methods, and with
non-coercive saddle point formulations. In the new Chapter 7 mixed discretizations
both for the Darcy and the Stokes equations are investigated, as well as various
discontinuous Galerkin methods as nonconforming methods, prepared by the
treatment of Crouzeix—Raviart elements. In Sections 7.5 and 7.6 we deal with
hybridization as a tool to improve the properties of the discrete problem and its
approximation quality, especially to ensure local mass conservation by proper
postprocessing. In Finite Volume Chapter 8, Sections 8.1 and 8.2 have been revised
and new Sections 8.3 to 8.6 added, including cell-oriented methods and the
(Navier—)Stokes equation. In the time-dependence Chapter 9, Section 9.2 needed a
considerable enlargement to include most of the new spatial discretization methods.
The new Sections 9.5 and 9.6 discuss higher order methods. In Chapter 10, Sections
10.5 and 10.6 about stabilization by limiting have been added, and finally in
Chapter 11, Sections 11.5 to 11.7 are new, extending the still non-comprehensive
treatment of nonlinear problems beyond semilinear versions. Correspondingly also
the Appendices have been modified, in particular, Appendix A.1 on the notation has
been significantly expanded. Also a large amount of new exercise problems have
been added, which are now more uniformly distributed across the text. Moreover,
compared to the previous editions, we included programming tasks, too. We have
intentionally formulated them neutrally with respect to the programming languages
and integrated development environments (IDEs) that can be used, since a corre-
sponding specification of these tasks depends on many aspects such as the audi-
torium, the curriculum (existing previous knowledge) but also the software and
hardware equipment of the facility, etc. In our courses, most of the tasks were
actually worked on by students with various programming languages/IDEs (e.g.,
C/C++, GNU Octave/MATLAB, Python) over the course of time. The choice of the
programming language/IDE can be left to more experienced students, and for less
experienced students it can be helpful to specify them, possibly even to point out
helpful built-in functionalities, or to give links to suitable software packages,
including grid generation, visualization tools, etc.
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Several of these amendments benefited crucially from the collaboration with
Dr. Andreas Rupp. In particular he has contributed the first versions of Sections
74, 10.5, and 10.6 and participated intensively in the improvement of the whole
text. We are grateful to Tobias Elbinger for providing basic versions of most of the
programming projects (and also to many other (former) members of our working
groups who contributed), and also the exposition of the general order of conver-
gence estimate in Section 9.2 and its application to mixed problems are coined by
results in his thesis [132]. We thank Sebastian Czop and Xingyu Xu for their
support in transferring handwritten notes into I4IgX, and express our gratitude to
Donna Chermyk from Springer Science Business Media for her efficient handling
of the publishing process. As a final acknowledgement, we would like to express
our appreciation to the anonymous experts who kindly reviewed the manuscript
and provided insightful suggestions and constructive criticisms.

Remarks for the Reader and the Use in Lectures

The size of the text corresponds roughly to four hours of lectures per week over
two to three terms. If the course lasts only one term, then a selection is necessary,
which should be oriented to the audience. We recommend the following “cuts™:

For an introductory course:

Chapter 0 may be skipped if the partial differential equations treated therein are
familiar. Section 0.5 should be consulted because of the notation collected there.
The same is true for Chapter 1; possibly Section 1.4 may be integrated into
Chapter 3 if one wants to deal with Section 3.9 or with Section 9.7.

Chapters 2 and 3 are the core of the book. The inductive presentation that we
preferred for some theoretical aspects may be shortened for students of mathe-
matics. To the lecturer's taste and depending on the knowledge of the audience in
numerical mathematics Section 2.5 may be skipped. This might impede the treat-
ment of the ILU preconditioning in Section 5.3. Observe that in Sections 2.1-2.3
the treatment of the model problem is merged with basic abstract statements.
Skipping the treatment of the model problem, in turn, requires an integration
of these statements into Chapter 3. In doing so Section 2.4 may be easily combined
with Section 3.5. In Chapter 3 the theoretical kernel consists of Sections 3.1, 3.2.1,
33-34.

Chapter 4 presents an overview of its subject, not a detailed development,
and is an extension of the classical subjects. The classical parts of Chapter 9 are
Sections 9.1, 9.3 to 9.4, and the corresponding parts of Sections 9.2 and 9.8. If time
permits, Sections 10.1, 10.2 (and 10.4) are recommended. In the extensive Chapter
5 one might focus on special subjects or just consider Sections 5.2, 5.3 (and 5.4) in
order to present at least one practically relevant and modern iterative method.

Section 11.2 and the first part of Section 11.3 contain basic knowledge of
numerical mathematics and, depending on the audience, may be omitted.
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For an advanced course:

After Chapter 6 as basis, Chapters 7 and 8 provide various aspects of mixed or
nonconforming finite element methods and of finite volume methods, with various
possibilities to select. The time-dependent versions require the parts of Sections
9.2 and 9.8, and possibly Sections 9.5, 9.6, and 9.7, further amended by Sections
10.3 and 10.4 and possibly 10.5 and 10.6.

The appendices are meant only for consultation and may complete the basic
lectures, such as in analysis, linear algebra, and advanced mathematics for
engineers.

Concemning related textbooks for supplementary use, to the best of our
knowledge there is none covering approximately the same topics. Quite a few deal
with finite element methods, and the closest one in spirit probably is [40], but also
[9] or [10] or [24] has a certain overlap, and also offers additional material not
covered here. From the books specialized in finite difference methods, we mention
[58] as an example. The (node-oriented) finite volume method is popular in
engineering, in particular, in fluid dynamics, but to the best of our knowledge there
is no presentation similar to ours in a mathematical textbook. References to
textbooks specialized in the topics of Chapters 4, 5, and 11 are given there.

Remarks on the Notation

Printing in italics emphasizes definitions of notation, even if this is not carried out
as a numbered definition.

Vectors appear in different forms: Besides the “short” space vectors x € R there
are “long” representation vectors u € R™, which describe, in general, the degrees of
freedom of a finite element (or volume) approximation or represent the values on
grid points of a finite difference method. Here we choose bold type, also in order to
have a distinctive feature from the generated functions, which frequently have the
same notation, or from the grid functions.

We deviate from this rule in Chapters 0, 6, 7, and 8 and the related parts of
Chapters 9 and 10, where formulations and discretization methods are treated,
where in addition to scalar quantities also vectorial ones (in R?) appear. For clearer
differentiation, also these are printed in bold type, and then consequently also
x€R? orneR? (for the normal vector). There are also deviations in Chapters 5,
where the unknowns of linear and nonlinear systems of equations, which are treated
in a general manner there, are denoted by x € R™.
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Components of vectors will be designated by a subindex, creating a double
index for indexed quantities. Sequences of vectors will be supplied with a
superindex (in parentheses); only in an abstract setting do we use subindices.

Erlangen, Germany Peter Knabner
Clausthal-Zellerfeld, Germany Lutz Angermann
December 2020



From the Preface to the First English Edition

Shortly after the appearance of the German edition we were asked by Springer to
create an English version of our book, and we gratefully accepted. We took this
opportunity not only to correct some misprints and mistakes that have come to our
knowledge but also to extend the text at various places. This mainly concemns the
role of the finite difference and the finite volume methods, which have gained more
attention by a slight extension of Chapters 1 and 8 and by a considerable extension
of Chapter 9. Time-dependent problems are now treated with all three approaches
(finite differences, finite elements, and finite volumes), doing this in a uniform way
as far as possible. This also made a reordering of Chapters 8—11 necessary. Also,
the index has been enlarged. To improve the direct usability in courses, exercises
now follow each section and should provide enough material for homework.
This new version of the book would not have come into existence without our
already mentioned team of helpers, who also carried out first versions of trans-
lations of parts of the book. Beyond those already mentioned, the team was
enforced by Cecilia David, Basca Jadamba, Dr. Serge Kriutle, Dr. Wilhelm Merz,
and Peter Mirsch. Alexander Prechtel now took charge of the difficult modification
process. Prof. Paul DuChateau suggested improvements. We want to extend our
gratitude to all of them. Finally, we thank Senior Editor Achi Dosanjh, from
Springer-Verlag New York, Inc., for her constant encouragement.

Erlangen, Germany Peter Knabner
Clausthal-Zellerfeld, Germany Lutz Angermann
January 2002

X1
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This book resulted from lectures given at the University of Erlangen—Nuremberg
and at the University of Magdeburg. On these occasions we often had to deal with
the problem of a heterogeneous audience composed of students of mathematics
and of different natural or engineering sciences. Thus the expectations of the
students concerning the mathematical accuracy and the applicability of the results
were widely spread. On the other hand, neither relevant models of partial differ-
ential equations nor some knowledge of the (modern) theory of partial differential
equations could be assumed among the whole audience. Consequently, in order to
overcome the given situation, we have chosen a selection of models and methods
relevant for applications (which might be extended) and attempted to illuminate
the whole spectrum, extending from the theory to the implementation, without
assuming advanced mathematical background. Most of the theoretical obstacles,
difficult for nonmathematicians, will be treated in an “inductive” manner. In
general, we use an explanatory style without (hopefully) compromising the
mathematical accuracy.

We hope to supply especially students of mathematics with the information
necessary for the comprehension and implementation of finite element/finite vol-
ume methods. For students of the various natural or engineering sciences the text
offers, beyond the possibly already existing knowledge concerning the application
of the methods in special fields, an introduction into the mathematical foundations,
which should facilitate the transformation of specific knowledge to other fields of
applications.

We want to express our gratitude, for the valuable help that we received during
the writing of this book, to Dr. Markus Bause, Sandro Bitterlich, Dr. Christof Eck,
Alexander Prechtel, Joachim Rang, and Dr. Eckhard Schneid who did the proof-
reading and suggested important improvements. From the anonymous referees we
received useful comments. Very special thanks go to Mrs. Magdalena Thle and
Dr. Gerhard Summ. Mrs. Thle transposed the text quickly and precisely into TgX.
Dr. Summ not only worked on the original script and on the TgX-form, but he also
organized the complex and distributed rewriting and extension procedure.

Xiil
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The elimination of many inconsistencies is due to him. Additionally he influenced
parts of Sections 3.4 and 3.8 by his outstanding diploma thesis. We also want to
thank Dr. Chistoph Tapp for the preparation of the graphic of the title and for
providing other graphics from his doctoral thesis [221].

Of course, hints concerning (typing) mistakes and general improvements are
always welcome.

We thank Springer-Verlag for their constructive collaboration.

Last, but not least, we want to express our gratitude to our families for their
understanding and forbearance, which were necessary for us especially during the
last months of writing.

Erlangen, Germany Peter Knabner
Magdeburg, Germany Lutz Angermann
February 2000
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Chapter 0

For Example: Modelling Processes in =i
Porous Media with Differential Equations

This chapter illustrates the scientific context in which differential equation models
may occur, in general, and also in a specific example. Section 0.1 reviews the
fundamental equations, for some of them discretization techniques will be developed
and investigated in this book. In Sections 0.2-0.4 we focus on reaction and transport
processes in porous media. These sections are independent of the remaining parts
and may be skipped by the reader. Section 0.5, however, should be consulted because
it fixes some notation to be used later on.

0.1 The Basic Partial Differential Equation Models

Partial differential equations, often abbreviated as PDE(s), are equations involving
some partial derivatives of an unknown function « in several independent variables.
Partial differential equations which arise fromthe modelling of spatial (and temporal)
processes in nature or technology are of particular interest. Therefore, we assume
that the variables of u are x = {(xy, ..., x4)F € R? ford > 1, representing a spatial
point, and possibly ¢ € R, representing time. Thus the minimal set of variables
is (x1, x} or {xy,¢), otherwise we have ordinary differential equations (ODE(s) for
short). We will assume that x € & where {2 is a bounded domain, e.g., a metal
workpiece, or a groundwater aquifer, and ¢ € (0, 7] for some (time horizon) T > 0.
Nevertheless also processes acting in the whole R? x R, or in unbounded subsets
of it, are of interest. One may consult the Appendix A.1 for notations from analysis
etc. used here. Often the function « represents, or is related to, the volume density of
an extensive quantity like mass, energy, or momentum, which is conserved. In their
original form all quantities have dimensions that we denote in accordance with the
International System of Units (S} and write in square brackets []. Let abe a symbol
for the unit of the extensive quantity, then its volume density is assumed to have the
form S = S{u), i.e., the unit of ${«)} is a/m*. For example, for mass conservation a
= kg, and S{«)} is a concentration. For describing the conservation we consider an
arbitrary “not too bad” subset & C Q, the control volume. The time variation of the

© Springer Nature Switzerland AG 2021 1
P. Knabner and L. Angermann, Numerical Methods for Elliptic and Parabolic

Partial Differential Equations, Texts In Applied Mathematlcs 44,
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total extensive quantity in Q is then

O / Su(x, 1))dx . 0.1)

Q
If this function does not vanish, only two reasons are possible due to conservation:

+ There is an internally distributed source density Q = Q(x,¢,u) [a/m®/s], being
positive if S(u) is produced, and negative if it is destroyed, i.e., one term to
balance (0.1) is fQ Qx, t,u(x, t))dx.

+ There is a net flux of the extensive quantity over the boundary 8 of Q. Let
J=Jx0) [a/mz/s] denote the flux density, i.e., J; is the amount, that passes a
unit square perpendicular to the ith axis in one second in the direction of the ith
axis (if positive), and in the opposite direction otherwise. Then another term to
balance (0.1) is given by

- / J(x, ) -n(x)do,
129}

where 1t denotes the outer unit normal on 9.

Summarizing the conservation reads

O | Su(,))dx=— | Jx ) n(x)do+ [ O, t,ulxt)dx. 0.2)
e

The integral theorem of Gauss (see (2.3)) and an exchange of time derivative and
integral leads to

/[6,S(u(x, 0N+ V-Jx, ) - 0, t,u(x,1)))dx =0,

Q
and, as Q is arbitrary, also to
O Sw(x, ) +V - J(x, 1) = Q(x, t,u(x,t)) forxeQ te(0T]. 0.3)

All manipulations here are formal assuming that the functions involved have the
necessary properties. The partial differential equation (0.3) is the basic pointwise
conservation equation, (0.2) its corresponding integral form. Equation (0.3) is one
requirement for the two unknowns u and J, thus it has to be closed by a (phenomeno-
logical) constitutive law, postulating a relation between J and u.

Assume Q is a container filled with a fluid in which a substance is dissolved. If u
is the concentration of this substance, then S(#) = # and a = kg. The description of
J depends on the processes involved. If the fluid is at rest, then flux is only possible
due to molecular diffusion, i.e., a flux from high to low concentrations due to random
motion of the dissolved particles. Experimental evidence leads to
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JU = —KVu 04)

with a parameter K > 0 [m%/s], the molecular diffusivity. Equation (0.4) is called
Fick’s law.

In other situations, like heat conduction in a solid, a similar model occurs. Here, «
represents the temperature, and the underlying principle is energy conservation. The
constitutive law is Fourier’s law, which also has the form (0.4), but as K is a material
parameter, it may vary with space or, for anisotropic materials, be a matrix-valued
function K : Q — R%“ instead of a scalar function K : Q — R.

Thus we obtain the diffusion equation

Ou—V-(KVu)=0. 0.5)

If the coefficient is scalar and constant, it can be chosen—possibly after a scaling— as
K := I, where I ¢ R%9 is the identity matrix. If, in addition, f := @ is independent
of u, the equation simplifies further to

0tu—Au=f,

where Au := V - (Vu) . We mentioned already that this equation also occurs in the
modelling of heat conduction, therefore this equation or (0.5) is also called the heat
equation.

If the fluid is in motion with a (given) velocity ¢ then (forced) convection of the
particles takes place, being described by

J? =uc, 0.6)

i.e., taking both processes into account, the model takes the form of the convection—
diffusion equation
Ou—V-(KVu—-cu)=0. 0.7)

The relative strength of the two processes is measured by the Péclet number (defined
in Section 0.4). If convection is dominating one may ignore diffusion and only
consider the transport equation

Ou+V-(cu)y=0. (0.8)

The different nature of the two processes has to be reflected in the models, therefore,
adapted discretization techniques will be necessary. In this book we will consider
models like (0.7), usually with a significant contribution of diffusion, and the case of
dominating convection is studied in Chapter 10. The pure convective case like (0.8)
will not be treated.

In more general versions of (0.7) 8;u is replaced by 8,S(x), where S depends
linearly or nonlinearly on u. In the case of heat conduction S is the internal energy
density, which is related to the temperature u via the factors mass density and specific
heat. For some materials the specific heat depends on the temperature, then S is a
nonlinear function of u.

Further aspects come into play by the source term Q if it depends linearly or
nonlinearly on u, in particular due to (chemical) reactions. Examples for these cases
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will be developed in the following sections. Since equation (0.3) and its examples
describe conservation in general, it still has to be adapted to a concrete situation to
ensure a unique solution «. This is done by the specification of an initial condition

Su(x,0)) = So(x) forx e Q,

and by boundary conditions. In the example of the water filled container no mass
flux will occur across its walls, therefore, the following boundary condition

J-u(x,t)=0 forxedQ te(07) (0.9)

is appropriate, which—depending on the definition of J— prescribes the normal deriva-
tive of u, or a linear combination of it and «. In Section 0.5 additional situations are
depicted.

If a process is stationary, i.e., time-independent, then equation (0.3) reduces to

V- Jx)=Qxulx) forxeQ,
which in the case of diffusion and convection is specified to
-V - (KVu—-cu)=0.

For a scalar and constant diffusion coefficient—Ilet K := I by scaling—, ¢ := 0, and
f := 0O, being independent of «, this equation reduces to

-Au=f inQ,

the Poisson equation.
Instead of the boundary condition (0.9), one can prescribe the values of the
function u at the boundary:

u(x)=gx) forxedQ.

For models, where u is a concentration or temperature, the physical realization of
such a boundary condition may raise questions, but in mechanical models, where
u is to interpreted as a displacement, such a boundary condition seems reasonable.
The last boundary value problem will be the first model, whose discretization will
be discussed in Chapters 1 and 2.

Finally it should be noted that it is advisable to non-dimensionalize the final
model before numerical methods are applied. This means that both the independent
variables x; (and ¢), and the dependent one u, are replaced by X; /X; ref, ¢/, and
U/ Uref, WhETe X; ref, tef, and upr are fixed reference values of the same dimension as
x;, ¢, and u, respectively. These reference values are considered to be of typical size
for the problems under investigation. This procedure has two advantages: On the one
hand, the typical size is now 1, such that there is an absolute scale for (an error in)
a quantity to be small or large. On the other hand, if the reference values are chosen
appropriately a reduction in the number of equation parameters like K and ¢ in (0.7)
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might be possible, having only fewer algebraic expressions of the original material
parameters in the equation. This facilitates numerical parameter studies.

0.2 Reactions and Transport in Porous Media

A porous medium is a heterogeneous material consisting of a solid matrix and a pore
space contained therein. We consider the pore space (of the porous medium) as
connected; otherwise, the transport of fluids in the pore space would not be possible.
Porous media occur in nature and manufactured materials. Soils and aquifers are
examples in geosciences; porous catalysts, chromatographic columns, and ceramic
foams play important roles in chemical engineering. Even the human skin can be
considered a porous medium. In the following we focus on applications in the
geosciences. Thus we use a terminology referring to the natural soil as a porous
medium. On the micro or pore scale of a single grain or pore, i.e., in a range of um to
mm, the fluids constitute different phases in the thermodynamic sense. Thus we name
this system in the case of & fluids including the solid matrix as (k + 1)-phase system
or we speak of k-phase flow.

We distinguish three classes of fluids with different affinities to the solid matrix.
These are an aqueous phase, marked with the index “w” for water, a nonaqueous
phase liquid (like oil or gasoline as natural resources or contaminants), marked
with the index “o,” and a gaseous phase, marked with the index “g” (e.g., soil air).
Locally, at least one of these phases has always to be present; during a transient
process phases can locally disappear or be generated. These fluid phases are in turn
mixtures of several components. In applications of the earth sciences, for example,
we do not deal with pure water but encounter different species in true or colloidal
solution in the solvent water. The wide range of chemical components includes plant
nutrients, mineral nutrients from salt domes, organic decomposition products, and
various organic and inorganic chemicals. These substances are normally not inert but
are subject to reactions and transformation processes. Along with diffusion, forced
convection induced by the motion of the fluid is the essential driving mechanism for
the transport of solutes. But we also encounter natural convection by the coupling of
the dynamics of the substance to the fluid flow. The description level at the microscale
that we have used so far is not suitable for processes at the laboratory or technical
scale, which take place in ranges of cm to m, or even for processes in a catchment
area with units of km. For those macroscales new models have to be developed,
which emerge from averaging procedures of the models on the microscale. There
may also exist principal differences among the various macroscales that let us expect
different models, which arise from each other by upscaling. But this aspect will not be
investigated here further. For the transition of micro to macro scales the engineering
sciences provide the heuristic method of volume averaging, and mathematics the
rigorous (but of only limited use) approach of homogenization (see [65] or [37]).
None of the two possibilities can be depicted here completely. Where necessary we
will refer to volume averaging for (heuristic) motivation.
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Let Q ¢ R? be the domain of interest. All subsequent considerations are formal
in the sense that the admissibility of the analytic manipulations is supposed. This
can be achieved by the assumption of sufficient smoothness for the corresponding
functions and domains.

Let V C Q be an admissible representative elementary volume in the sense of
volume averaging around a point x € Q. Typically the shape and the size of a
representative elementary volume are selected in such a manner that the averaged
values of all geometric characteristics of the microstructure of the pore space are
independent of the size of V but depend on the location of the point x. Then we
obtain for a given variable w, in the phase o (after continuation of w, with O outside
of @) the corresponding macroscopic quantities, assigned to the location x, as the

extrinsic phase average
1
)= 57 J, o

or as the intrinsic phase average

7l
Wy )% 1= — Wy -
(o)™ = gy [, @

Here V, denotes the subset of V corresponding to . Let ¢ € (0, T) be the time at
which the process is observed. The notation x € Q means the vector in Cartesian
coordinates, whose coordinates are referred to by x, y, and z € R. Despite this
ambiguity the meaning can always be clearly derived from the context.

Let the index “s” (for solid) stand for the solid phase; then

¢(x):=[V\V| [ IVI>0
denotes the porosity, and for every liquid phase «,
Sa(x, 1) := Vol [ [V\Vi| 20

is the saturafion of the phase «. Here we suppose that the solid phase is stable and
immobile. Thus
(Wa) = pSalwa)®

for a fluid phase & and

Z S, =1. (0.10)

a:fluid

So if the fluid phases are immiscible on the micro scale, they may be miscible on the
macro scale, and the immiscibility on the macro scale is an additional assumption
for the model.

As in other disciplines the differential equation models are derived here from con-
servation laws for the extensive quantities mass, impulse, and energy, supplemented
by constitutive relationships, where we want to focus on the mass.
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0.3 Fluid Flow in Porous Media

Consider a liquid phase a on the micro scale. In this chapter, for clarity, we write
“short” vectors in R¥ also in bold with the exception of the coordinate vector x.

Let 3, [kg/m3] be the (microscopic) density, §, := (Z,, On f’n) / 0o [m/s] the mass
average mixture velocity based on the particle velocity ¥,, of a component n and its

concentration in solution &, [kg /m3]. The transport theorem of Reynolds (see, for
example, [15, Sect. 1.1]) leads to the mass conservation law

0:6a + YV (Balls) = fa (0.11)

with a distributed mass source density f,. By averaging we obtain from here the
mass conservation law

8:(#Sa0a) + V- (0ala) = fa 0.12)

with o4, the density of phase «, as the intrinsic phase average of g, and gq,, the
volumetric fluid velocity or Darcy velocity of the phase «, as the extrinsic phase
average of g ,. Correspondingly, f, is an average mass source density.

Before we proceed in the general discussion, we want to consider some specific
situations: The area between the groundwater table and the impermeable body of an
aquifer is characterized by the fact that the whole pore space is occupied by a fluid
phase, the soil water. The corresponding saturation thus equals 1 everywhere, and
with omission of the index equation (0.12) takes the form

8i(p0) +V - (0q) = f- 0.13)

If the density of water is assumed to be constant, due to neglecting the mass
of solutes and compressibility of water, equation (0.13) simplifies further to the
stationary equation

V-qg=f, 0.14)

where f has been replaced by the volume source density f/o, keeping the same
notation. This equation will be completed by a relationship that can be interpreted as
the macroscopic analogue of the conservation of momentum, but should be accounted
here only as an experimentally derived constitutive relationship. This relationship is
called Darcy’s law, which reads as

q=-K(Vp+oge;) 0.15)

and can be applied in the range of laminar flow. Here p [N/m?] is the intrinsic average
of the water pressure, g [m/s?] the gravitational acceleration, e, the unit vector in
the z-direction oriented against the gravitation,

K=k/yu, 0.16)
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a quantity, which is given by the permeability k determined by the solid phase, and
the viscosity u determined by the fluid phase. For an anisotropic solid, the matrix
k = k(x) is a symmetric positive definite matrix.

Inserting (0.15) in (0.14) and replacing K by K og, known as hydraulic conductiv-
ity in the literature, and keeping the same notation gives the following linear equation
for

h(x, 1) = Q—lgp(x,t) +z,

the piezometric head h [m]:
-V -(KVh)= f. 0.17)

The resulting equation is stationary and linear. We call a differential equation model
stationary if it depends only on the location x and not on the time ¢, and instationary
otherwise. A differential equation and corresponding boundary conditions (cf. Sec-
tion 0.5) are called linear if the sum or a scalar multiple of a solution again forms a
solution for the sum, respectively, the scalar multiple, of the sources.

If we deal with an isotropic solid matrix, we have K = KI with a scalar function
K : Q — R. Equation (0.17) in this case reads

-V (KVh) =f. (0.18)

Finally if the solid matrix is homogeneous, i.e., K is constant, we get from division
by K and maintaining the notation f the Poisson equation

—Ah = f, 0.19)

which is termed the Laplace equation for f = 0. This model and its more general
formulations occur in various contexts. If, contrary to the above assumption, the solid
matrix is compressible under the pressure of the water, and if we suppose (0.13) to
be valid, then we can establish a relationship

¢ = ¢(x,1) = do(x)$5(p)

with ¢o(x) > 0 and a monotone increasing ¢ such that with S(p) := ¢} (p) we get
the equation

¢oSp)op+V-q=f

and the instationary equations corresponding to (0.17)—(0.19), respectively. For con-
stant S(p) > 0 this yields the following linear equation:

$0S8h -V - (KVh) = f, (0.20)

which also represents a common model in many contexts and is known from corre-
sponding fields of application as the heat conduction equation.

We consider single phase flow further, but now we will consider gas as fluid phase.
Because of the compressibility, the density is a function of the pressure, which is
invertible due to its strict monotonicity to
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p="Plo).

Together with (0.13) and (0.15) we get a nonlinear variant of the heat conduction
equation in the unknown p:

6:(90) - V - (K(eVP(o) + o’ge2)) = £, 0.21)

which also contains derivatives of first order in space. If P(o) = In(ag) holds for a
constant @ > 0, then oV P(p) simplifies to aVo. Thus for horizontal flow we again
encounter the heat conduction equation. For the relationship P(¢) = a ¢ suggested
by the universal gas law, @oVo = %aVo® remains nonlinear. The choice of the
variable u := 0% would result in #!/2 in the time derivative as the only nonlinearity.
Thus in the formulation in o the coefficient of Vo disappears in the divergence of
o = 0. Correspondingly, the coefficient S(u) = 3¢u~1/2 of du in the formulation
in u becomes unbounded for # = 0. In both versions the equations are degenerate,
whose treatment is beyond the scope of this book. A variant of this equation has
gained much attention as the porous medium equation (with convection) in the field
of analysis (see, for example, [85], [62]).

Returning to the general framework, the following generalization of Darcy’s law
can be justified experimentally for several liquid phases:

k
9o =~ “k (Vpa + age:) -
Ha

Here the relative permeability k,, of the phase o depends upon the saturations of
the present phases and takes values in [0, 1].

At the interface of two liquid phases o) and o we observe a difference of the
pressures, the so-called capillary pressure, that turns out experimentally to be a
function of the saturations:

Pcajay = Par — Pay = Faya,(Sw, S0, Sg) - 0.22)

A general model for multiphase flow, formulated for the moment in terms of the
variables pg, S, is thus given by the equations

0:(#Sa0a) — V - (0adak(Vpa + 0ager)) = fa 0.23)

with the mobilities Ao := kya /e, and the equations (0.22) and (0.10), where one
of the S,’s can be eliminated. For two liquid phases w and g, e.g., water and air,
equations (0.22) and (0.10) for & = w, gread pc = pg — pw = F(Sy)and §; = 1 - Sy,.
Apparently, this is a time-dependent, nonlinear model in the variables py, pg, Sw,
where one of the variables can be eliminated. Assuming constant densities o,
further formulations based on

V- (aw+45) = fulow + fyles 0.24)
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can be given as consequences of (0.10). These equations consist of a stationary equa-
tion for a new quantity, the global pressure, based on (0.24), and a time-dependent
equation for one of the saturations (see Problem 0.2). In many situations it is justified
to assume a gaseous phase with constant pressure in the whole domain and to scale
this pressure to p; = 0. Thus for § := py = —pc we have

$0:SW) =V - (AW (VY + 0gez)) = fu/ow 0.25)

with constant pressure ¢ := oy, and S(¥) := F~1(—y) as a strictly monotone
increasing nonlinearity as well as 2.

With the convention to set the value of the air pressure to O, the pressure in the
aqueous phase is in the unsaturated state, where the gaseous phase is also present,
and represented by negative values. The water pressure ¥ = 0 marks the transition
from the unsaturated to the samurated zone. Thus in the unsaturated zone, equation
(0.25) represents a nonlinear variant of the heat conduction equation for ¢ < 0, the
Richards equation. As most functional relationships have the property $'(0) = O,
the equation degenerates in the absence of a gaseous phase, namely, to a stationary
equation in a way that is different from above.

Equation (0.25) with S() := 1 and A(¥) := 2(0) can be continued in a consistent
way with (0.14) and (0.15) also for ¢ > 0, i.e., for the case of a sole aqueous phase.
The resulting equation is also called Richards equation or a model of saturated—
unsaturated flow.

0.4 Reactive Solute Transport in Porous Media

In this chapter we will discuss the transport of a single component in a liquid phase
and some selected reactions. We will always refer to water as liquid phase explicitly.
Although we treat inhomogeneous reactions in terms of surface reactions with the
solid phase, we want to ignore exchange processes between the fluid phases. On
the microscopic scale the mass conservation law for a single component 7 is, in the
notation of (0.11) by omitting the phase index w,

8t£~7n+v'(éI7Q)+V'-’r7:Q~q7

where
Jy =8y (¥ — §) [kg/m*/s] (0.26)

represents the diffusive mass flux of the component n and Qn [kg/m?/s] is its volu-
metric production rate. For a description of reactions via the mass action law it is
appropriate to choose the mole as the unit of mass. The diffusive mass flux requires
a phenomenological description. The assumption that solely binary molecular diffu-
sion, described by Fick’s law, acts between the component 7 and the solvent, means
that

Jy =-8D,Y (8,/8) ©.27)
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with a molecular diffusivity D;, > 0 [m?/s]. The averaging procedure applied on
(0.26), (0.27) leads to

8 @cy) + V- (gey) + V- JV + V. J@ = o1 4 oD

for the solute concentration of the component %, ¢, [kg/m3], as intrinsic phase
average of g,. Here, we have J) as the average of J,, and J@, the mass flux
due to mechanical dispersion, a newly emerging term at the macroscopic scale.
Analogously, Qg) is the intrinsic phase average of @,,, and Q£72) is a newly emerging
term describing the exchange between the liquid and solid phases.

The volumetric water content is given by ® := ¢Sy, with the water saturation Sy,
Experimentally, the following phenomenological descriptions are suggested:

JY = -@rD, V¢,
with a tormosity factor T € (0, 1],
J@ = @D pecnVe,, (0.28)

and a symmetric positive definite matrix of mechanical dispersion Dgecn, Which
depends on g/®. Consequently, the resulting differential equation reads

8:@cy)+V - (gc, —ODVey) = 0, 0.29)

with D := 7D,, + Dmech, @y := 0% + Q7.

Because the mass flux consists of gc,, a part due to forced convection, and of
JU + J@ apart that corresponds to a generalized Fick’s law, an equation like (0.29)
is called a convection—diffusion equation. Accordingly, for the part with first spatial
derivatives like V- (g ¢, ) the term convective part is used, and for the part with second
spatial derivatives like —V - (@DVc,,) the term diffusive part is used. If the first term
determines the character of the solution, the equation is called convection-dominated.
The occurrence of such a situation is measured by the quantity Pe, the global Péclet
number, that has the form Pe = ||q||L/||®D|| [ - ]. Here L is a characteristic length
of the domain Q. The extreme case of purely convective transport results in a
conservation equation of first order. Since the common models for the dispersion
matrix lead to a bound for Pe, the reduction to the purely convective transport
is not reasonable. However, we have to take convection-dominated problems into
consideration.

Likewise, we speak of diffusive parts in (0.17) and (0.20) and of (nonlinear)
diffusive and convective parts in (0.21) and (0.25). Also, the multiphase transport
equation can be formulated as a nonlinear convection—diffusion equation by use of
(0.24) (see Problem 0.2), where convection often dominates. If the production rate
0, is independent of ¢, equation (0.29) is linear.

In general, in case of a surface reaction of the component 7, the kinetics of the
reaction have to be described. If this component is not in competition with the other
components, one speaks of adsorption. The kinetic equation thus takes the general
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form
OrSp (X, 1) = ky fro(x, cpy(x, 1), 5, (x, 1)) (0.30)

with a rate parameter k;, for the sorbed concentration s, [kg/kg], which is given in
reference to the mass of the solid matrix. Here, the components in sorbed form are
considered spatially immobile. The conservation of the total mass of the component
undergoing sorption gives

2

D= —opdisy 0.31)

with the bulk density op = 05(1 — @), where o5 denotes the density of the solid phase.
With (0.30), (0.31) we have a system consisting of an instationary partial and an
ordinary differential equation (with x € Q as parameter). A widespread model by
Langmuir reads

fo = kacy(Sy — 8) — kasy

with constants k,, k; that depend upon the temperature (among other factors), and a
saturation concentration 5, (cf. for example [44]). If we assume f;, = f,(x, ¢,) for
simplicity, we get a scalar nonlinear equation in ¢,

8(@cy) + V- (qey — ODVCy) + opky f (5 ) = O, 0.32)

and s, is decoupled and extracted from (0.30). If the time scales of transport and
reaction differ greatly, and the limit case k; — oo is reasonable, then (0.30) is
replaced by

Jo(x, ¢p(x, 1), 57(x, 1)) = 0.

If this equation is solvable for s,, i.e.,

Sp(x, 1) = @p(x, cp(x, 1)),

the following scalar equation for ¢;, with a nonlinearity in the time derivative emerges:

8:(Oc, + 0ben(> ) + V- (ge, — ODVCy) = 0.

If the component 7 is in competition with other components in the surfacereaction,
as, e.g., in ion exchange, then f; has to be replaced by a nonlinearity that depends
on the concentrations of all involved components ¢y, .. ., ¢y, 1, - -, Sy. Thus we
obtain a coupled system in these variables. Finally, if we encounter homogeneous
reactions that take place solely in the fluid phase, an analogous statement is true for
the source term Qg).

Exercises

Problem 0.1 Give a geometric interpretation for the matrix condition of & in (0.16)
and Dpech in (0.28).
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Problem 0.2 Consider the two-phase flow (with constant oo, @ € {W, g})

0:(¢Sa)+V - q4 = fa,
go = —Aak (Vpa + 0agey) ,
Sw+ 8 =1,

Pg — Pw = Dc

with coefficient functions

Pc =Pc(Sw)s  Aa = 2a(Sw), ac{wg}
Starting from equation (0.23), perform a transformation to the new variables

q=9y+4q, “total flow”,

(Pw+pg) + 5 —— d¢ “global pressure”,

- 1/523—ﬂwdpc
p= 2 s, g+ Ay dE

1
2

and the water saturation Sy. Derive a representation of the phase flows in the new
variables.

Problem 0.3 A frequently employed model for mechanical dispersion is
Dmech = AL|v[2Py + AT|v[2(1 = Py)

with parameters A, > A1, where v = /@ and P, = vv! /|y I%. Here A, and At are the
longitudinal and transversal dispersion lengths. Give a geometrical interpretation.

0.5 Boundary and Initial Value Problems

The differential equations that we derived in Sections 0.3 and 0.4 have the common
form
0:S(u)+V - (C(u)— K(Vu)) = Q(u) (0.33)

with a storage term S, a convective part C, a diffusive part K, i.e., a total flux C - K
and a source term (), which depend linearly or nonlinearly on the unknown u. For
simplification, we assume u to be a scalar. The nonlinearities S, C, K, and Q may
also depend on x and ¢, which shall be suppressed in the notation in the following.
Such an equation is said to be in divergence form or in conservative form; a more
general formulation is obtained by differentiating V- C(u) = EQJC @) - Vu+(V-C)u)
or by introducing a generalized “source term” Q = Q(u, Vu). Up to now we have
considered differential equations pointwise in x € Q (and ¢+ € (0,7)) under the
assumption that all occurring functions are well defined. Due to the applicability
of the integral theorem of Gauss on Q c Q (cf. (3.11)), the integral form of the
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conservation equation follows straightforwardly from the above:

[ 3 S(u) dx + / (Cw) - K(Vu)-ndo = / Q(u, Vi) dx 0.34)
Q (719} Q

with the outer unit normal 1 (see Theorem 3.9) for a fixed time ¢ or also in ¢
integrated over (0, T'). Indeed, this equation (on the microscopic scale) is the primary
description of the conservation of an extensive quantity: Changes in time through
storage and sources in { are compensated by the normal flux over Q. Moreover,
for 8,8, V - (C - K), and Q continuous on the closure of {, (0.33) follows from
(0.34). If, on the other hand, F is a hyperplane in { where the material properties
may rapidly change, the jump condition

[(Cw) - K(Vu)) - 4] =0 (0.35)

for a fixed unit normal # on F follows from (0.34), where [ - | denotes the difference
of the one-sided limits (see Problem 0.4).

Since the differential equation describes conservation only in general, it has to
be supplemented by initial and boundary conditions in order to specify a particular
situation where a unique solution is expected. Boundary conditions are specifications
on 4, where 1 denotes the outer unit normal

+ of the normal component of the flux (inwards):
- (Cu)-K(Vu)) - n=g; onlj (0.36)

{flux boundary condition),
» of alinear combination of the normal flux and the unknown itself:

—-(Cu)-K(Vuw) n+au=g only 0.37)

(mixed boundary condition),
+ of the unknown itself:
u=g3 on F3 (0.38)

(Dirichlet boundary condition).

Here I'1, I, I'3 form a disjoint decomposition of 9€2:
N=0Q=TI1uUlhurls, (0.39)

where I is supposed to be a relatively closed subset of dQ (i.e., closed in the
induced topology of d€2). The inhomogeneities g; and the factor « in general depend
on x € Q, and for nonstationary problems (where S(u) # 0 holds) on ¢ € (0, 7).
The boundary conditions are linear if the g; do not depend (nonlinearly) on u (see
below). If the g; are zero, we speak of homogeneous, otherwise of inhomogeneous,
boundary conditions.

Thus the pointwise formulation of a nonstationary equation (where §
does not vanish) requires the validity of the equation in the space-time cylinder
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Or :=Qx{0,T)
and the boundary conditions on the lateral surface of the space-time cylinder
Sr=a0x0T).

Different types of boundary conditions are possible with decompositions of the type
(0.39). Additionally, an iritial condition on the bottom of the space-time cylinder is
necessary:

Su(x,0)) = Sp(x) forx e Q. (0.40)

These are so-called initial boundary value problems; for stationary problems we
speak of boundary value problems. As shown in (0.34) and (0.35) flux boundary
conditions have a natural relationship with the differential equation (0.33). For a
linear diffusive part K (Vi) = K Vu alternatively we may require

Ongt :=KVu-n=g; onljy, (0.41)

and an analogous mixed boundary condition. This boundary condition is the so-
called Neumann boundary condition. Since K is symmetric, On,# = Vu - K0 holds;
i.e., Ongu is the derivative in direction of the conormal Kn. For the special case
K = I the normal derivative is given.

In contrast to ordinary differential equations, there is hardly any general theory
of partial differential equations. In fact, we have to distinguish different types of
differential equations according to the various described physical phenomena. These
determine, as discussed, different (initial) boundary value specifications to render
the problem well posed. Well-posedness means that the problem possesses a unique
solution (with certain properties yet to be defined) that depends continuously (in
appropriate norms) on the data of the problem, in particular on the (initial and)
boundary values. There exist also ill-posed boundary value problems for partial
differential equations, which correspond to physical and technical applications. They
require special techniques and shall not be treated here.

The classification into different types is simple if the problem is linear and the
differential equation is of second order as in (0.33). By order we mean the highest
order of the derivative with respect to the variables (xy, . . ., Xg, ¢) that appears, where
the time derivative is considered to be like a spatial derivative. Almost all differential
equations treated in this book will be of second order, although important models in
elasticity theory are of fourth order or certain transport phenomena are modelled by
systems of first order.

The differential equation (0.33) is generally nonlinear due to the nonlinear rela-
tionships S, C, K, and Q. Such an equation is called guasilinear if all derivatives of
the highest order are linear, i.e., we have

K(Vu) = KVu (0.42)
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with a matrix K, which may also depend (nonlinearly) on x, ¢, and ». Furthermore,
(0.33) is called semilinear if nonlinearities are present only in #, but not in the
derivatives, i.e., if in addition to (0.42) with K being independent of u, we have

Sw)=Su, Cu)=uc 0.43)

with scalar and vectorial functions S and ¢, respectively, which may depend on x and
t. Such variable factors standing before u or differential terms are called coefficients
in general.

Finally, the differential equation is linear if we have, in addition to the above
requirements,

Q) =-ru+f

with functions r and f of x and ¢.

In the case f = O the linear differential equation is termed homogeneous, oth-
erwise inhomogeneous. A linear differential equation obeys the superposition prin-
ciple: Suppose u; and uy are solutions of (0.33) with the source terms f; and £
and otherwise identical coefficient functions. Then u; + yuy is a solution of the
same differential equation with the source term f; + y f, for arbitrary ¥ € R. The
same holds for linear boundary conditions. The term solution of an (initial) bound-
ary value problem is used here in a classical sense, yet to be specified, where all
the quantities occurring should satisfy pointwise certain regularity conditions (see
Definition 1.1 for the Poisson equation). However, for variational solutions (see Def-
inition 2.2), which are appropriate in the framework of finite element methods, the
above statements are also valid.

Linear differential equations of second order in two variables (x, y) (including
possibly the time variable) can be classified in different fypes as follows:

To the homogeneous differential equation

8 8*
axay” + c(x, y)a—yzu

62
Lu=a(x, y)—u+ b(x,y)
ox?
0.44)
e y) 2w+ e(n )Lt £y =0
Yax Y5y » Y=

the following quadratic form is assigned:

&) — a(x, y)E* + b(x, y)én + c(x, y)n*. (0.45)

According to its eigenvalues, i.e., the eigenvalues of the matrix

( a(x, y) %b(x,y))

(0.46)
b(xy) cxy)

we classify the types. In analogy with the classification of conic sections, which are
described by (0.45) (for fixed (x, y)), the differential equation (0.44) is called at the

point (x, y)
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* elliptic if the eigenvalues of (0.46) are not 0 and have the same sign,
* hyperbolic if one eigenvalue is positive and the other is negative,
» parabolic if exactly one eigenvalue is equal to 0.

For the corresponding generalization of the terms for d + 1 variables and arbitrary
order, the stationary boundary value problems we treat in this book will be elliptic,
of second order, and—except in Chapter 11—also linear; the nonstationary initial
boundary value problems will be parabolic.

Systems of hyperbolic differential equations of first order require particular
approaches, which are beyond the scope of this book. Nevertheless, we dedicate
Chapter 10 to convection-dominated problems, i.e., elliptic or parabolic problems
close to the hyperbolic limit case.

The different discretization strategies are based on various formulations of the
(initial) boundary value problems: The finite difference method, which is presented
in Section 1, and further outlined for nonstationary problems in Chapter 9, has the
pointwise formulation of (0.33), (0.36)—(0.38) (and (0.40)) as a starting point. The
finite element method, which lies in the focus of our book (Chapters 2, 3, and 9),
is based on an integral formulation of (0.33) (which we still have to depict) that
incorporates (0.36) and (0.37). The conditions (0.38) and (0.40) have to be enforced
additionally. Finally, the finite volume method (Chapters 8 and 9) will be derived
from the integral formulation (0.34), where also initial and boundary conditions
come along as in the finite element approach.

Exercises

Problem 0.4 Derive (formally) (0.35) from (0.34).

Problem 0.5 Derive the orders of the given differential operators and differential
equations, and decide in every case whether the operator is linear or nonlinear, and
whether the linear equation is homogeneous or inhomogeneous:

a) Lu := uxx + xuy,

b) Lu := ux +uuy,

©) Lu := V1 + x2(cos y)ux + Uyxy — (arctan %) u = In(x* + y?),
d) Lu:=ts + thxxxx + V1 +u =0,

€) Uy —Upy + X2 =0.

Problem 0.6 a) Determine the type of the given differential operator:

1) Lu := txx — txy + 2y + Uyy — 3utyx +4u,
2) Lu = Quxy + Olixy, + 1y, + 1ty

b) Determine the parts of the plane where the differential operator Lu := yuy, —
2uxy + X1y, is elliptic, hyperbolic, or parabolic.
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¢) 1) Determine the type of Lu := 3uy, + uxy.
2) Compute the general solution of Lu = 0.

Problem 0.7 Consider the equation Lu = f with a linear differential operator of
second order, defined for functions in d variables (d € N)in x € Q c R The
transformation ® : Q@ — Q' ¢ R< has a continuously differentiable, nonsingular
Jacobi matrix D® := ‘;—f.

Show that the partial differential equation does not change its type if it is written

in the new coordinates & = ®(x).



Chapter 1

For the Beginning: The Finite Difference %=
Method for the Poisson Equation

1.1 The Dirichlet Problem for the Poisson Equation

In this section we want to introduce the finite difference method, frequently abbre-
viated as FDM, using the Poisson equation on a rectangle as an example. By means
of this example and generalizations of the problem, advantages and limitations of
the approach will be elucidated. Also, in the following section the Poisson equation
will be the main topic, but then on an arbitrary domain. For the spatial basic set
of the differential equation &2 ¢ R we assume as minimal requirement that Q is a
domain, where a domain is a nonempty, open, and connected set. The boundary of
this domain will be denoted by 9%, the closure 2 U 98 by Q (see Appendix A.2).
The Dirichlet problem for the Poisson equation is then defined as follows: Given
functions g : 9 — Rand f: & — R, we are looking for a function « : O-R
such that

@ 42
—Z a—u:f inQ, (1.1)
u=g ondQ. (1.2

This differential equation model has already appeared in (0.19) and (0.38) and
beyond this application has an importance in a wide spectrum of disciplines. The
unknown function « can be interpreted as an electromagnetic potential, a displace-
ment of an elastic membrane, or a temperature. Similar to the multi-index notation
to be introduced in (2.17) (but with indices at the top) from now on for partial
derivatives we use the following notation:

Foru: & c R? — R we set
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o = iu fori=1,...,d,
Bx,-
2
Oiju 1= 0x,-c')x,-u fori,j=1,---,d,

A= (O +...+ Oaq)u.

The expression Au is called the Laplace operator. By means of this, (1.1) can be
written in abbreviated form as

-Au=f inQ. (13)
We could also define the Laplace operator by
Au=V-(Vu),

where Vu = (d11, . . .,c’)du)T denotes the gradient of a function u, and V - v =
O1v1+- - +0qvq the divergence of a vector field v. Therefore, an alternative notation
exists, which will not be used in the following: Au = V2u. The incorporation of the
minus sign in the left-hand side of (1.3), which looks strange at first glance, is related
to the monotonicity and definiteness properties of —A (see Sections 1.4 and 2.1,
respectively).

The notion of a solution for (1.1), (1.2) still has to be specified more precisely.
Considering the equations in a pointwise sense, which will be pursued in this chapter,
the functions in (1.1), (1.2) have to exist, and the equations have to be satisfied
pointwise. Since (1.1) is an equation on an open set €, there are no implications for
the behaviour of u up to the boundary 9Q2. To have a real requirement due to the
boundary condition,  has to be at least continuous up to the boundary, that is, on Q.
These requirements can be formulated in a compact way by means of corresponding
function spaces. The function spaces are introduced more precisely in Appendix
A.5. Some examples are

C(Q) = {u : Q—R |u continuous in Q},
ClQ):={u: Q= Rlue CQ), duexistsin Q,
dueCQ)forali=1,...,d}.

The spaces CX(Q) for k € N, C(Q), and C*(Q), as well as C(dQ), are defined
analogously. In general, the requirements related to the (continuous) existence of
derivatives are called, a little bit vaguely, smoothness requirements.

In the following, in view of the finite difference method, f and g will also be
assumed continuous in Q and 4Q, respectively.

Definition 1.1 Assume f € C(Q)and g € C(8Q). A function u is called a (classical)
solution of (1.1), (1.2) if u € C2(Q)N C(Q), (1.1) holds for all x € €, and (1.2) holds
for all x € 0Q.
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1.2 The Finite Difference Method

The finite difference method is based on the following approach: We are looking for
an approximation to the solution of a boundary value problem at a finite number
of points in Q (the grid points). For this reason we substitute the derivatives in
(1.1) by difference quotients, which involve only function values at grid points in
Q and require (1.2) only at grid points. By this we obtain algebraic equations for
the approximating values at grid points. In general, such a procedure is called the
discretization of the boundary value problem. Since the boundary value problem is
linear, the system of equations for the approximate values is also linear. In general,
for other (differential equation) problems and other discretization approaches we
also speak of the discrete problem as an approximation of the continuous problem.
The aim of further investigations will be to estimate the resulting error and thus to
judge the quality of the approximative solution.

Generation of Grid Points

In the following, for the beginning, we will restrict our attention to problems in two
space dimensions (d = 2). For simplification we consider the case of a constant
step size (or grid width) h > 0 in both space directions. The quantity % here is
the discretization parameter, which in particular determines the dimension of the
discrete problem.

Ao @ < 4 © g A4 € .:nh
[ e o o & o $ o 9o
1=8 o e e e e o ® ¢ o: 00y
m=5 O e o o o o @ o O o : far from bound
6 e o o o o o o O

e o6 6 06 o o ¢ ¢ : close to boundary

Fig. 1.1: Grid points in a square domain.

For the time being, let Q be a rectangle, which represents the simplest case for
the finite difference method (see Figure 1.1). By translation of the coordinate system
the situation can be reduced to Q := (0, a) X (0, b) with a, b > 0. We assume that the
lengths a, b, and & are such that

a=1h, b=mh forcertainl,me N. (14)

We define
Qp={Ghjh)|i=1..,01-1j=1...,m-1}

(1.5)
={xy)eQ|x=ih, y=jhwithi, j e Z}
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as a set of grid points in Q in which an approximation of the differential equation
has to be satisfied. In the same way,

8y, = {(h, jhy|i € (0,1}, je{0,...,m}ori € {0,...,1}, j e {O,m}}
={(xy) €dQ|x=ih y=jhwithi,jeZ}

defines the grid points on 3€2 in which an approximation of the boundary condition
has to be satisfied. The union of grid points will be denoted by

Qp 1= Qp U 0Qy,.
Setup of the System of Equations

Lemma 1.2 Let Q := (x — h,x + h) for x € R, h > 0. Then there exists a quantity R,
depending on u and h, the absolute value of which can be bounded independently of
h and such that

1) for u e C*H(Q):

_ u(x + h) —u(x)

1
u'(x) +hR and |R| < allu”lloo,

h
2) for ue C*HQ):
u’(x) = W + hR and |R| < %”u””ooa

3) for u e C3(Q):

:u(x+h)—u(x—h)

u'(x) 7

1
+h*R and |R|sg||u”’||oo,

4) for u e CHQ):

_u(x + h)—2u(x) +u(x — h)
= 3

Here the maximum norm || - ||« (See Appendix A.5) has to be taken over the interval
of the involved points (x,x + h), (x — h,x), or (x — h, x + h).

1
u”(x) + R and |R|5E||u(‘”||oo.

Proof The proof follows immediately by Taylor expansion. As an example we con-
sider statement 3): From

2 3
u(x + h) = u(x) + hu'(x) + %u”(x) + %u”’(x + &) forcertain &, € (0, 4)

the assertion follows by linear combination. m]
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Notation

The quotient in statement 1) is called the forward difference quotient, and it is denoted
by 8 u(x). The quotient in statement 2) is called the backward difference quotient
(8 u(x)), and the one in statement 3) the symmetric difference quotient (8°u(x)).
The quotient appearing in statement 4) can be written as -8 u(x) by means of the
above notation.

In order to use statement 4) in every space direction for the approximation of d;;u
and dxu in a grid point (4, jh), in addition to the conditions of Definition 1.1, the
further smoothness properties 8%, 4%y ¢ C (5) and analogously for the second
coordinate are necessary. Here we use, e.g., the notation 839 := 9% /axi’ (see
2.17).

Using these approximations for the boundary value problem (1.1), (1.2), at each
grid point (ih, jh) € Q) we get

B (u (G + Db, jh) — 2uGh, jB) +u (G - 1)k, jh)
h2

1k G+ D)h) — 2u(ih, jh) +u b (G~ Dh)
h2

) = f(ih, jh)+ R(h, jh)h*.
(1.6)

Here R is as described in statement 4) of Lemma 1.2, a function depending on the
solution u and on the step size A, but the absolute value of which can be bounded
independently of 4. In cases where we have less smoothness of the solution u, we
can nevertheless formulate the approximation (1.6) for —Au, but the size of the error
in the equation is unclear at the moment.

For the grid points (ih, jh) € 0, no approximation of the boundary condition is
necessary:

u(ih, jh) = glih, jh).

If we neglect the term Rh? in (1.6), we get a system of linear equations for the
approximating values u;; for u(x, y) at points (x, y) = (ih, jh) € Q. They have the
form

1
ﬁ( — Ui jo1 — W1 j + A — i1 — Wijer) = fij (3.7
fori=1,..,1-1,j=1...,m-1,

wij=g;; ifie{0,l}, j=0,...,morje{0,m},i=0,...,1 (1.8)
Here we used the abbreviations
fij = fGh, jh), g :=gGh, jh). (1.9

Therefore, for each unknown grid value u;; we get an equation. The grid points
(ih, jh) and the approximating values u;; located at these have a natural two-
dimensional indexing.
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In equation (1.7) for a grid point (7, j) only the neighbours at the four cardinal
points of the compass appear, as it is displayed in Figure 1.2. This interconnection
is also called the five-point stencil of the difference method and the method the
Sfive-point stencil discretization.

Ya .j+1)
[ ]

@-1.5) (i.7)  (+L))
. . .

@¢.J-1)
.

Fig. 1.2: Five-point stencil.

At the interior grid points (x, y) = (ih, jh) € Qy, two cases can be distinguished:

1. (i, j) has a position such that its all neighbouring grid points lie in Qy, (far from
the boundary).

2. (i, j) has a position such that at least one neighbouring grid point (r, s) lies on
0Qy, (close to the boundary). Then in equation (1.7) the value u, is known due
to (1.8) (u,s = grs), and (1.7) can be modified in the following way:

Remove the values u, with (r#, sh) € 3€y, in the equations for (i, j) close to
the boundary and add the value g, /A to the right-hand side of (1.7). The set
of equations that arises by this elimination of boundary unknowns by means of
Dirichlet boundary conditions we call (1.7)%, it is equivalent to (1.7), (1.8).

Instead of considering the values u;;,i = 1,...,1-1,j =1,...,m~-1, one
also speaks of the grid function wy, : Q) — R, where uy(ih, jh) = u;; fori =
L,...,1-1, j=1,...,m—1.Grid functions on 6, 01'01‘15;Z are defined analogously.

Thus we can formulate the finite difference method (FDM) in the following way:

Find a grid function u; on Q such that equations (1.7), (1.8) hold, or,
equivalently find a grid function u;, on €, such that equations (1.7)* hold.

Structure of the System of Equations

After choosing an ordering of the u;; fori = 0,...,1, j =0, ..., m, the system of
equations (1.7)* takes the following form:

Apup = qy (1.10)

with A, € RMvMi and uy, q, € RM where My = (I - 1)(m - 1).
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This means that nearly identical notations for the grid function and its representing
vector are chosen for a fixed numbering of the grid points. The only difference is
that the representing vector is printed in bold. The ordering of the grid points may
be arbitrary, with the restriction that the points in Q, are enumerated by the first
M, indices, and the points in 3¢y, are labelled with the subsequent M, = 2(I + m)
indices. The structure of Ay is not influenced by this restriction.

Because of the described elimination process, the right-hand side g, has the
following form:

an = —-Ang +f, (1.11)
where g € RM2 and f € RM! are the vectors representing the grid functions
thQh—>R and thBQh—>R

according to the chosen numbering with the values defined in (1.9). The matrix
Ap, € RM1-M2 hag the following form:

_iz if the node i is close to the boundary and
(Anij = J is a neighbour in the five-point stencil, (1.12)

0 otherwise .

For any ordering, only the diagonal element and at most four further entries in arow
of Ay, defined by (1.7), are different from 0; that is, the matrix is sparse in a strict
sense, as is assumed in Chapter 5.

An obvious ordering is the rowwise numbering of Q according to the following
scheme:

(h, b—h) (Qhb-hy (a—h,b—h)
(I-1)(m-2)+1 (I-1)(m-2)+2 (I-1)m-1)
(hb-2n)  (2hb-2n) (a—h,b—2h)
(I-1)(m=3)+1 (I-1)(m—3)+2 (1-1)m-2)
: : : (1.13)
(h,2h) (2h,2h) (a—h,2h)
1 I+1 2-2
(h,h) (2h,h) (a—h,h)
1 2 -1

Another name of the above scheme is lexicographic ordering. (However, this
name is better suited to the columnwise numbering.)

In this case the matrix Ap has the following form of an (m — 1) x (m — 1) block
tridiagonal matrix:
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T -1
-1 T -1 0
Ay =h7? (1.14)
0 -1 T -1
-1T
with the identity matrix / € R*-51 and
4 -1
-1 4 -1 0
T-= e RFVEL
0 -1 4 -1
-1 4

We return to the consideration of an arbitrary numbering. In the following we collect
several properties of the matrix A, ¢ RM-Mi and the extended matrix

Ah = (Ah | Ah) € RMI’M,

Ehere M := M; + M,. The matrix A takes into account all the grid points in
Q. It has no relevance with the resolution of (1.10), but with the stability of the
discretization, which will be investigated in Section 1.4.

o (A4;),, >0 forallr=1,...,M,
o (Ap)ys <0 forallr=1,...,My, s=1,..., M suchthatr # s,

M >0forallr =1,..., M,
. Z (An)ys o if 7 belongs to a grid point close to the (1.15)
s=1 boundary,
M
. Z(Ah),s =0 forallr=1,..., M,
s=1

e Ay isirreducible,

o A isregular.

Therefore, the matrix A is weakly row diagonally dominant (see Appendix A.3
for definitions from linear algebra). The irreducibility follows from the fact that
two arbitrary grid points may be connected by a path consisting of corresponding
neighbours in the five-point stencil. The regularity follows from the irreducible
diagonal dominance. Fromthis we can conclude that (1.10) can be solved by Gaussian
elimination without pivot search. In particular, if the matrix has a band structure,
this will be preserved. This fact will be explained in more detail in Section 2.5.
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The matrix Ay, has the following further properties:

* Ay is symmetric,
* Ay is positive definite.

It is sufficient to verify these properties for a fixed ordering, for example, the rowwise
one, since by a change of the ordering matrix, Ay, is transformed to PAy, PT withsome
regular matrix P, by which neither symmetry nor positive definiteness is destroyed.
Nevertheless, the second assertion is not obvious. One way to verify it is to compute
eigenvalues and eigenvectors explicitly, but we refer to Chapter 2, where the assertion
follows naturally from Lemma 2.13 and (2.40). The eigenvalues and eigenvectors
are specified in (5.24) for the special case = m = n and also in (9.71). Therefore,
(1.10) can be resolved by Cholesky’s method, taking into account the band structure.

Quality of the Approximation by the Finite Difference Method

We now address the following question: To what accuracy does the grid function u;,
corresponding to the solution &, of (1.10) approximate the solution « of (1.1), (1.2)?
To this end we consider the grid function U : Qj — R, which is defined by

Uih, jh) := u(ih, jh). (1.16)

To measure the size of U — uy,, we need a norm (see Appendix A.4 and also A.5 for
the subsequently used definitions). Examples are the maximum norm

[l — Ulloo := max |(un — U) @h, jh)| .17
j=1 m-1

and the discrete L*-norm

-1 m-1 1/2

i = Ullan = b| D" (aen - U)i, jh)? (1.18)

i=1 j=

Both norms can be conceived as the application of the continuous norms || - ||, of
the function space L () or ||- |/o of the function space L?(£2) to piecewise constant
prolongations of the grid functions (with a special treatment of the area close to the
boundary). Obviously, we have

vellor < Vab [[ville

for a grid function vy, but the reverse estimate does not hold uniformly in 4, so that
|| - |l is a stronger norm. In general, we are looking for a norm || - ||, in the space of
grid functions in which the method converges in the sense

llup, = Ullp, =0 forh —0
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or even has an order of convergence p > 0, by which we mean the existence of a
constant C > 0 independent of £ such that

llep, — Ulln < ChP.
Due to the construction of the method, for a solution # € C4(§) we have
AU =g, + h°R,

where U and R € RM! are the representations of the grid functions U and R according
to (1.6) in the selected ordering. Therefore, we have

Ap(up, -U) = ~h’R

and thus
|Ap(un = U)l,, = B*|Reo = Ch?

with a constant C(= |R|,) > 0 independent of A.
From Lemma 1.2, 4) we conclude that

1
- — (151 Q4
C=% (llB Ulloo + [0 ulloo) :

That is, for a solution ¥ € C*(Q) the method is asymptotically consistent with the
boundary value problem with an order of consistency 2. More generally, the notion
takes the following form:

Definition 1.3 Let (1.10) be the system of equations that corresponds to a (finite
difference) approximation on the grid points Qj with a discretization parameter 4.
Let U be the representation of the grid function that corresponds to the solution u of
the boundary value problem according to (1.16). Furthermore, let || - ||, be a norm in
the space of grid functions on Qy, and let | - |, be the corresponding vector norm in
the space RMi», where M}, is the number of grid points in €y,. The approximation
is called asymptotically consistent with respect to || - || if

|AnU —gpln =0 for h—0.
The approximation has the order of consistency p > 0 if
|ARU — gqpln < CH?
with a constant C > 0 independent of A.

Thus the consistency or truncation error AU — g, measures the quality of how
the exact solution satisfies the approximating equations. As we have seen, in general it
can be determined easily by Taylor expansion, but at the expense of unnaturally high
smoothness assumptions. But one has to be careful in expecting the error |uy — U
to behave like the consistency error. We have
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s -0, = 4 tatan - ), < |47, - 00, 019)

where the matrix norm || - ||, has to be chosen to be compatible with the vector norm
| - |n. The error behaves like the consistency error asymptotically in 4 if ||A;1 || , can
be bounded independently of 4; that is, if the method is szable in the following sense:

Definition 1.4 In the situation of Definition 1.3, the approximation is called stable
with respect to || - ||, if there exists a constant C > 0 independent of % such that

4zl < €

From the above definition we can obviously conclude, with (1.19), the following
result:

Theorem 1.5 An asymptotically consistent and stable method is convergent, and the
order of convergence is at least equal to the order of consistency.

Therefore, specifically for the five-point stencil discretization of (1.1), (1.2) on
a rectangle, stability with respect to || - ||« is desirable. In fact, it follows from the
structure of Ay: Namely, we have

4., < 1i6(a2 +b?). (1.20)

This follows from more general considerations in Section 1.4 (Theorem 1.15). Putting
the results together we have the following theorem:

Theorem 1.6 Let the solution u of (1.1), (1.2) on a rectangle Q be in C4(5). Then
the five-point stencil discretization has an order of convergence 2 with respect to
|| - |lso, more precisely,

1 o5 (4,0) Q4 2
[h = Ul < 755(@ + 8 (1104l + 16 Vulls) .

Exercises

Problem 1.1 Complete the proof of Lemma 1.2 and also investigate the error of the
respective difference quotients, assuming only # € C2[x — h, x + h].

Problem 1.2 Generalize the discussion concerning the five-point stencil discretiza-
tion (including the order of convergence) of (1.1), (1.2) on a rectangle for 4; > 0 in
the x; direction and 4; > 0 in the x; direction.

Problem 1.3 Show that an irreducible weakly row diagonally dominant matrix can-
not have vanishing diagonal elements.
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Programming project 1.1 Consider the one-dimensional Poisson equation with
inhomogeneous Dirichlet boundary conditions

-u"'=f inQ:=(01),

u0) =g, u(l)=g,

on an equidistant grid with grid size A := 1/m, m € N, and

a) g1 := g :=0and f := 7% sin(xx) with the exact solution u(x) = sin(zx),

b) g1:=0, g, := 1 and f := —2 with the exact solution u(x) = x2.

Write a function that solves the problem numerically for a given m using the finite
difference method. The input data are the right-hand side f, the boundary data g;, g,
the exact solution u, and the number of intervals m. The output data are uy € R™-1
and the maximum norm of the error, i.e., |U — #p|c.

Implement a method of your choice to solve the resulting system of linear equa-
tions.

Perform a series of experiments for different values of m (e.g., m = 10, 20, 50, 100)
and analyse the asymptotic behaviour of the computed error w.r.t. A.

Programming project 1.2 Consider the boundary value problem
~Au=4 inQ:= (0,17
u=x*+y> ondQ.

Let h := 1/32, and Qp, := {(x,y) = (ih, jh)|1 < i,j < 31}. Use the five-point-
stencil to discretize —A and

a) a lexicographical ordering of the unknowns,
b) a red-black ordering of the unknowns:

Q = {(x,y) € Qn|(x +y)/his odd},
QF = {(x,y) € Qu | (x + y)/h is even}.

First number the “red” nodes (x,y) € Qf lexicographically, then the “black”
nodes (x, y) € Q.

Derive the matrix Ay, of the red-black ordering.

1.3 Generalizations and Limitations of the Finite Difference
Method

We continue to consider the boundary value problem (1.1), (1.2) on a rectangle Q.
The five-point stencil discretization developed may be interpreted as a mapping —Ap,
from functions on y, into grid functions on €y, which is defined by
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1
~Anv(x, %2) = Y cipvn(xn + ik, xg + jh), (1.21)

Lj=-

where cqo = 4/h% cq1 = c10 = co-1 = c-10 = —1/h%, and ¢;; = O for all other
(@, j). For the description of such a difference stencil as defined in (1.21) the points
of the compass (in two space dimensions) may also be involved. In the five-point
stencil only the main points of the compass appear.

The question of whether the weights ¢;; can be chosen differently such that we
gain an approximation of —Ax with higher order in % has to be answered negatively
(see Problem 1.7). In this respect the five-point stencil is optimal. This does not
exclude that other difference stencils with more entries, but of the same order of
convergence, might be worthwhile to consider. An example, which will be derived
in Problem 3.11 by means of the finite element method, has the following form:

8

REYvE for all otheri, j € {-1,0,1}. (1.22)

1
C Cij = ——=
0,0 ij 3 h2
This nine-point stencil can be interpreted as a linear combination of the five-point

stencil and a five-point stencil for a coordinate system rotated by § (with step size

V2 k), using the weights % and -32- in this linear combination. Using a general nine-
point stencil a method with order of consistency greater than 2 can be constructed
only if the right-hand side f at the point (x1, x2) is approximated not by the eval-
uation f(x1, x2), but by applying a more general stencil. The mehrstellen method
(“Mehrstellenverfahren”) defined by Collatz is such an example (see, for example,
[32, Sect. 4.6]).

Methods of higher order can be achieved by larger stencils, meaning that the
summation indices in (1.21) have to be replaced by k and -k, respectively, for
k € N. But already for k¥ = 2 such difference stencils cannot be used for grid points
close to the boundary, so that there one has to return to approximations of lower
order.

If we consider the five-point stencil to be a suitable discretization for the Poisson
equation, the high smoothness assumption for the solution in Theorem 1.6 should
be noted. This requirement cannot be ignored, since in general it does not hold true.
On the one hand, for a smoothly bounded domain (see Appendix A.5 for a definition
of a domain with C*-boundary) the smoothness of the solution is determined only
by the smoothness of the data f and g (see, for example, [28, Theorem 6.19]), but
on the other hand, corners in the domain reduce this smoothness the more, the more
reentrant the corners are. Let us consider the following examples:

For the boundary value problem (1.1), (1.2) on arectangle (0, a) x (0, b) we choose
f = 1 and g = 0; this means arbitrarily smooth functions. Nevertheless, for the
solution , the statement # € C2(Q) cannot hold, because otherwise, —Au(0,0) = 1
would be true, but on the other hand, we have 8 ju(x, 0) = 0 because of the boundary
condition and hence also 8 1u4(0,0) = 0 and 822u4(0, y) = 0 analogously. Therefore,
d22u(0,0) = 0. Consequently, —Au(0,0) = 0, which contradicts the assumption
above. Therefore, Theorem 1.6 is not applicable here.
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In the second example we consider the domain with reentrant corner (see Figure
1.3)
Q={(xyeR*|x*+y* <1, x<0ory>0}.

In general, if we identify R? and C, this means (x,y) € R?and z = x + iy € C,
we have that if w : C — C is analytic (holomorphic), then both the real and the

imaginary parts Rew,Imw : C — R are harmonic, which means that they solve
-Au =0.

Fig. 1.3: Domain 2 with reentrant corner.

We choose w(z) := z%/>. Then the function u(x, y) := Im ((x +iy)*?) solves the
equation
-Au=0 in Q.

In polar coordinates, x = r cos ¢, y = r sin ¢, the function u takes the form

u(x,y) =Im ((rei"’)ZB) = r¥3 sin(%go) .

Therefore, u satisfies the boundary conditions

. 2 3n

iv) _ginl= hadd
u(e ) sm(3cp) forO < ¢ < 7 (1.23)
u(x,y) =0 otherwise on Q.

But note that w’(z) = %2‘1/ 3 jsunbounded for z — 0, so that d;4, d,u are unbounded
for (x, y) — 0. Therefore, in this case we do not even have u € C1(Q).

The examples do not show that the five-point stencil discretization is not suitable
for the boundary value problems considered, but they show the necessity of a theory
of convergence, which requires only as much smoothness as was to be expected.

In the following we discuss some generalizations of the boundary value problems
considered so far.
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General Domains Q

We continue to consider (1.1), (1.2) but on a general domain in R2, for which the
parts of the boundary are not necessarily aligned to the coordinate axes. Therefore
we can keep the second equation in (1.5) as the definition of ;, but have to redefine
the set of boundary grid points 8€;,.

For example, if for some point (x, y) € ) we have

(x-hy)eQ,
then there exists a number s € (0, 1] such that
(x—%hy)eQ forallde[0,5) and (x-shy)¢Q.
Then (x — sh, y) € 09Q, and therefore we define
(x —sh,y) e 0Qy,.

The other main points of the compass are treated analogously. In this way the grid
spacing in the vicinity of the boundary becomes variable; in particular, it can be
smaller than 4.

For the quality of the approximation we have the following result:

Lemma 1.7 Let Q = (x — hy, x + hp) for x € R, hy, hy > 0.
1) Then for u € C3(Q),

u'(x) =

2 (u(x +hy) —u(x)  u(x)-ulx-h)

s T " ) + max {h1, h2} R,

where R is bounded independently of hy, h;.
2) There are no a, B, y € R such that

w’(x) = au(x — h1) + Bu(x) + yu(x + ha) + Rih3 + Robi
for all polynomials u of degree 3 if hy # hy.
Proof Problems 1.4 and 1.5. m]

This leads to a discretization that is difficult to set up and for which the order of
consistency and order of convergence are not easily determined.

Other Boundary Conditions

We want to consider the following example. Let dQ2 = I'; U I's be divided into two
disjoint subsets. We are looking for a function # such that

-Au=f inQ,
Onu:=Vu-n=g only, (1.24)
u=0 onlj,
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where 11 : 9Q — R is the outer unit normal, and thus & is the normal derivative
of u.

For a part of the boundary oriented in a coordinate direction, dyu is just a positive
or negative partial derivative. But if only grid points in Qy, are to be used, only
+8%u and +0~u respectively (in the coordinates orthogonal to the direction of the
boundary) are available directly from the above approximations with a corresponding
reduction of the order of consistency. For a boundary point without these restrictions
the question of how to approximate dnu appropriately is open.

As an example we consider (1.24) for a rectangle Q := (0, a) X (0, &), where

N1:={@y)|ye©b}, T3:=T\Iy. (1.25)

At the boundary grid points (q, j#), j = 1,...,m — 1, u = Vu - 1t is prescribed,
which can be approximated directly only by d " u. Due to Lemma 1.2, 2 this leads
to a reduction in the consistency order (see Problem 1.8). The resulting system of
equations may include the Neumann boundary grid points in the set of unknowns, for
which an equation with the entries 1/4 in the diagonal and —1/4 in an off-diagonal
corresponding to the eastern neighbour (a — 4, jA) has to be added. Alternatively,
those boundary points can be eliminated, leading for the eastern neighbour to a
modified difference stencil (multiplied by A?)

-1
-1 3 (1.26)
-1

for the right-hand side 4% f(a — h, jh) + hg(a, jh). In both cases the matrix properties
of the system of equations as collected in (1.15) still hold, with the exception of
Zg‘l (An)rs = 0, both for the Neumann boundary points and their neighbours, if
no Dirichlet boundary point is involved in their stencil. Thus the term “close to the
boundary” has to be interpreted as “close to the Dirichlet boundary.”

If one wants to take advantage of the symmetric difference quotient %, then
“artificial” values at new external grid points (a + &, j&) appear.

To keep the balance of unknowns and equations, it can be assumed that the
differential equation also holds at (g, j#), and thus it is discretized with the five-point
stencil there. If one attributes the discrete boundary condition to the external grid
point, then again the properties (1.15) hold with the above-mentioned interpretation.
Alternatively, the external grid points can be eliminated, leading to a modified
difference stencil (multiplied by 4?) at (a, jh):

-1
-2 4 1.27)
-1

for the right-hand side A2f(a, jh) + 2hg(a, jh), with the same interpretation of
properties (1.15).
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More General Differential Equations

As an example we consider the differential equation
-V-(kVu)y=f onQ (1.28)

with a continuous coefficient function k : Q — R, which is bounded from below by a
positive constant on Q. This equation states the conservation of an extensive quantity
u whose flux density is —kVu (see Section 0.5). This should be respected by the dis-
cretization, and therefore the form of (1.28) obtained by working out the derivatives
is not recommended as a basis for the discretization. The differential expression in
(1.28) can be discretized by a successive application of central difference quotients,
but then again the order of consistency has to be investigated.

In addition, one has to take into account the fact that the smoothness of « depends
on the smoothness of k. If processes in heterogeneous materials have to be described,
then k is often discontinuous. In the simplest example k is assumed to take two
different values: Let Q = Q; U Q; and

k|Q1 =k >0, k|Q2:k2>0

with constants k; # k7. L
As worked out in Section 0.5, on the interior boundary S := Q1NQ9 a transmission
condition has to be imposed:

¢ u is continuous,
* (kVu) - n is continuous, where 1 is the outer normal on 8€Q, for example.

This leads to the following conditions on u;, being the restrictions of » on ﬁ,- for
i=12:

—kiAuy = f inQq, (1.29)
—koAuy = f inQa,
uy =uy ong, (1.30)

klanul = kz@nuz onS.

In this case the question of an appropriate discretization is also open.

Summarizing, we have the following catalogue of requirements: We are looking
for a notion of solution for (general) boundary value problems with nonsmooth
coefficients and right-hand sides such that, for example, the transmission condition
is fulfilled automatically.

We are looking for a discretization on general domains such that, for example,
the (order of) convergence can also be assured for less smooth solutions and also
Neumann boundary conditions as in (1.24) can be treated easily.

The finite element method (FEM) in the subsequent chapters will fulfil these
requirements to a large extent. To prepare the transition to FEM let us reconsider
the (order of) convergence results obtained so far. Theorem 1.6 indicates that an
asymptotically consistent FDM, which is stable, is also convergent. Such a statement,
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also called the Lax equivalence theorem (in the form: Convergence and stability are
equivalent for an asymptotically consistent scheme), or the Lax—Richtmyer theorem,
is typical for FDM, as here only grid functions are compared. A FDM does not
provide an approximating function on the domain €, but a suitable postprocessing
is possible.

We consider for simplicity as in Section 1.2 the case Q := (0,a) X (0,b) and a
grid with stepsize A > 0. A grid function u, : £ — R can be attributed to a
function I, (up) := Up : Q — R, which is piecewise bilinear interpolated, i.e., for
(x,y) € Ky :=[ih, @ + Dh] x [jh (j + 1)h] we set

Un (5, 3) = o (G + DR =) + DB = 3) + 21506 = )G + DA~ )

+ o1 (x — i)y = B) + 51 (G + DB - )0 - jB)].

The function Uy, is affine-linear at each straight piece of K;; and thus affine-linear
across such inter-element boundaries, i.e., U, € C (ﬁ) (_s_ee Lemma 2.10). Thus I,
is a linear mapping from the set of grid functions to C(£2) and—understood as the
composition with the canonical restriction (1.16)—also from C(Q) to C(Q2). Because
of

Un(x,y)| < i+1], |15

|Un(x, y)I l,kngfg,(l}{luﬁll |u]+k|}

we have
(12 (et oo = 2t lloo

and thus
lleer, = Ulloo = |15 () = In (@)oo -

To get an order of convergence estimate, in addition the approximation error
llee = In (W)l

has to be estimated. To this end, it is sufficient to estimate the contribution of each

K;;, for which an estimate on K := Ky; = [0,4] x [0, h] with Iz denoting the

bilinear interpolant is representative. This is possible thanks to the following error
representation.

Lemma 1.8 For v € C%(K) it holds

V(5 ) = (g 0)( ) + 1 f 9OV, )dr - f 90Dy, 1dr

1—- f f Dy, t)dsdt—— / f dVy(s, r)dsdr

- (1 - Z) £ s8@0y (s, y)ds - Z./x (h — $)0@Ov(s, y)ds .
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Proof For f € C?[0, h], integration by parts yields
10 =50+ [ s =50 +150 - [ s s,
h h
@)= fh)- ft f(s)ds = f(h) - (h—0)f'(1) - [ (h—s)f"(s)ds.

Setting (Ion(f))(#) := f0)&L + f(h)E for the linear interpolant, the convex
combination of the above equations gives

— t h
70 = om0 -2 [Csr@as=1 [T-95"0as s

h— t h
- o) O + 5= [ rrwas-1 [ ps. (1.32)
Applying (1.31) to u(,, y) for fixed y, we obtain
u(x’ y) = (I[O,h](u('v y)))(x)

o h 1.33
_h hx f 58@9y(s, y)d —; / (h - $)8%Oy(s, y)ds, (139
0 x

and again applying (1.32) to (£jo )((;, ¥)))(x) with respect to y for fixed x gives

(Ko ((, ))) (%) = (O, WEE i, y)
h—x
h

— y h

N f 8OV (0, rydt - 2 f dODY(©, 1)t
nJo R Jy

y y
+ulh )7
— y h

s hoy j 8OVy(h, 1)dr — 2 f Oy (h, 1)dt
nJo hJ,

(Ig @))(x, y)
—y [ "
N hhy/ 6(0,1)1,(0’,)[1,_2/ a0y (0, )dr
0 h y

x(h y) f f oDy (s, 1ydsdt

—ﬁ / f Dy (s, r)dsds .
y 0

Inserting this relationship into (1.33) concludes the proof. o

2
u(0, 0) ; A u(0, h)h
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This representation shows (the single integrals in the representation are the critical
ones) that even for smooth solutions u we can only expect

lle = In(@)llo < Ch,
which gives only first order of convergence for
llee = Unlleo -
If we consider the discrete L2-norm (1.18) instead, we have to investigate
llse = Ln(llo,n
thus gaining the missing power of A, and we obtain for smooth solutions « that
lle — Upllon < Ch®.

The same holds true for ||u — Up|lo, as the quadrature error is of the same order.

To return to the discussion of asymptotic consistency and stability, stability may
be viewed as a property which allows to relate the error of the numerical solution to
an approximation theoretic error and a consistency error. The latter always reflects
the formulation of the discrete approximation. As the FDM is based on a pointwise
classical formulation, we may speak of PDE consistency. It is also conceivable
that the consistency error vanishes (exact consistency, see (2.43) for the FEM).
Here this is the case for collocation methods, where the exact fulfilment of the
PDE (including the boundary conditions) at certain collocation points is required.
This needs sufficient regularity at the collocation points. We will not discuss such
approaches in the following.

To summarize, for an approximation scheme three ingredients have to be consid-
ered:

* stability,
* consistency error,
* (space) approximation error.

In the (classical) FEM, which will be dealt with in the next two chapters, the focus
is concentrated on the last aspect.

Exercises

Problem 1.4 Prove Lemma 1.7, 1).

Problem 1.5 Under the assumption that # : Q ¢ R — R is a sufficiently smooth
function, determine in the ansatz

au(x — hy) + Bu(x) + yu(x + h2), hy, hy >0,
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the coefficients @ = a(hy, h2), B = B(h1, h2), ¥ = y(h1, k), such that

a) for x € Q, v’ (x) will be approximated with the order as high as possible,
b) for x € Q, u”’(x) will be approximated with the order as high as possible,

and in particular, prove 1.7, 2).
Hint: Determine the coefficients such that the formula is exact for polynomials with
the degree as high as possible.

Problem 1.6 Let Q ¢ R? be a bounded domain. For a sufficiently smooth function
u : Q — R determine the difference formula with an order as high as possible to
approximate dyju(xy, x2), using the 9 values u(x; + y14, x2 + y2h), where y1,v2 €
{-1,0,1}.

Problem 1.7 Let Q c RZ be a bounded domain. Show that in (1.21) there exists no
choice of ¢;; such that for an arbitrary smooth function# : Q — R,

|Au(x) — Apu(x)| < Ch?
is valid with a constant C independent of 4.

Problem 1.8 For the example (1.24), (1.25), investigate the order of consistency both
for the discretization (1.26) and (1.27) in the maximum norm. Are there improve-
ments possible considering the discrete L2-norm (see (1.18))?

Problem 1.9 Consider example (1.24) with

I1:={(@y)ye0b}u{lxb)]|xeall
;=T\,

and discuss the applicability of the one-sided and the symmetric difference quotients
for the approximation of the Neumann boundary condition, in particular with respect
to properties (1.15). In which way does the boundary condition at (g, &), where no
unique normal exists, have to be interpreted?

Problem 1.10 Generalize the discussion concerning the five-point stencil discretiza-
tion (including the order of convergence) to the boundary value problem

“Au+ru=f inQ
u=g ondQ

forr > 0and Q := (0, a) x (0, b). To approximate the reactive term r, the following
schemes in the notation of (1.21) are to be used:

a) co0 =1, ¢;; = 0otherwise,
b) a0 >0, ¢o1,¢10,0-1,¢-1,0 = 0, ¢ij = 0otherwise, and ¥}

ij=16 =1
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Programming project 1.3 Consider the two-dimensional Poisson equation with
Dirichlet and Neumann boundary conditions

~Au=f inQ:=(01)7?
Oau =g only:=(0,1)x {01},
u=g onlz:=0Q\I;.

Write a function that solves this problem numerically by means of a second-order
finite difference scheme on a quadratic grid with grid size 4 := 1/m, m € N. The
input data are the right-hand side f, the boundary data g1, g3, the exact solution
u, and the number of intervals m in one coordinate direction. The output data are
uy € R L7+l and the maximum norm of the error, i.e., |U — #4|oo.

Determine the functions f, g1, g3 from the exact solutions

a) u = sin(zrx) cos(wy),
b) u = cos(7x) cos(7y),

and perform a series of experiments for m = 10, 20, 50, 100.
Hints:

+ Start by implementing Dirichlet boundary conditions on the whole boundary.
Once this works, include the Neumann boundary conditions.

* The resulting system matrix is sparse and you should not store the complete
matrix.

Programming project 1.4 Write a function that solves the problem

“Au=f inQ:=(01)?,
Onue=g1 onTy:={0} x(0,1),
u=g3 onlz:=0Q\TIy,

with a finite difference schema on a quadratic grid with grid size 4 := 1/m, m € N.
The input data are the right-hand side f, the boundary data g, g3, the exact solution
u, and the number of intervals m in one coordinate direction. The output data are
uy, € R™™1 and the maximum norm of the error, i.e., U = oo

Use the following methods to implement the Neumann boundary condition:

a) Use a one-sided difference quotient.
b) Use the central difference formula as described in the discussion of the model
problem (1.24).

Test your implementation for the data f, g1, g3 such thatu(x, y) := cos (7rx) cos (7y)+
sin (7rx) sin (7ry) is the exact solution.

Hint: If you wish to visualize the error, use a double logarithmic plot and 4 = 277,
i=4,...,7
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1.4 Maximum Principles and Stability

In this section the proof of the stability estimate (1.20), which is still missing, will
be given. For this reason we develop a more general framework, in which we will
then also discuss the finite element method (see Section 3.9) and the time-dependent
problems (see Section 9.7). The boundary value problem (1.1), (1.2) satisfies a
(weak) maximum principle in the following sense: If f is continuous and f(x) < 0
for all x € Q (for short f < 0), then

max u(x) < max u(x).

x€Q) xX€0Q
This maximum principle is also strong in the following sense: the maximum of # on
Q can be attained in Q only if u is constant (see, for example, [28, Thm. 3.5], also
for the following assertions). By exchanging , f, g by —u, — f, —g, respectively, we
see that there is an analogous (strong) minimum principle. The same holds for more
general linear differential equations as in (1.28), which may also contain convective
parts (this means first-order derivatives). But if the equation contains a reactive part
(this means without derivatives), as in the example

-Au+ru=f inQ

with a continuous function r : Q — R such that r(x) > 0 for x € Q, there is a weak
maximum principle only in the following form: If f <0, then

max #(x) < max {max u(x), 0} .
xeQr xX€0Q
The weak maximum principle directly implies assertions about the dependence of
the solution u of the boundary value problem on the data f and g; this means stability
properties. One can also follow this method in investigating the discretization. For
the basic example we have

Theorem 1.9 Let uy, be a grid function on Q, defined by (1.7), (1.8) and suppose
fij<Oforali=1,...,1-1,j=1,...,m— 1. Then if uy attains its maximum on
Qy, U 0Q, at a point (ioh, joh) € Qp, then the following holds:

uy, is constant on Qy U QY .

Here
0%y, =0 \ {(0,0), (4, 0),(0,5), (¢, b)} .

In particular, we have

max wup(x,y)< max up(x,y).
(x,y)eQn () (x,y)€8%y, (%)
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Proof Let% := up(ioh, joh). Then because of (1.7) and f;; < O we have

4i< Y unlkhlh) <44,
(k’l)eN(iOJO)

since in particular uy (kh, 1h) < % for (k, 1) € Ny, ;,)- Here we used the notation

Niio,joy = {(Go — 1), jo) (Go + 1), jo), (o, (o + 1)), Go, (o — 1))}

for the set of indices of neighbours of (g4, jo#) in the five-point stencil. From these
inequalities we conclude that

up(khlh)y =7 for (k1) € Nqjo) -

If we apply this argument to the neighbours in Qj of the grid points (kk, 14) for
(k,1) € N, o) and then continue in the same way to the sets of neighbours in
arising in every such step, then finally, for each grid point (i, jh) € Qn U 0Q, the
claimed identity uy (ih, jh) = % is achieved. O

The exceptional set of vertices 9Qy, \ 9€;, does not participate in any difference
stencil, so that the values there are of no relevance for u;,.
We want to generalize this result and therefore consider a system of equations as
in (1.10), (1.11):
Anttn = g, = ~Anin + f, (1.34)

where A, € RMMi 45 in (1.10), A, € RMM2 55 in (1.11), up, f € RM1, and
i, € RM2_ This may be interpreted as the discretization of a boundary value prob-
lem obtained by the finite difference method or any other approach and without
restrictions on the dimensionality of the domain. At least on one part of the bound-
ary Dirichlet boundary conditions are required. Then the entries of the vector #j can
be interpreted as the unknown values at the grid points in Qj U 80, where 692)
correspond to a part of Q2 (with flux or mixed boundary condition). Analogously,
the vector & (indexed from M; + 1 to M; + M>) corresponds to the values fixed by
the Dirichlet boundary conditions on 6922). Again let M = M + M, and

Ah = (Ah | Ah) € RMI’M .

This means in particular that the dimensions M; and M- are not fixed but are in
general unbounded for 2 — 0.

Oriented on (1.15) we require the following general assumptions for the rest of
the section:
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(1) (Ap)yr >0 forallr=1,...,M;,
(2) (Ap)rs <0 forallr,s =1,...,M; suchthatr # s,

M,
@) @ D (Ars=0 forallr=1,..,M,,
s=1

(ii) for at least one index r the strict inequality holds,

(4) Ap isirreducible, (1.35)
(5) (Ap)ys <0 forallr=1,.... My, s=My+1,.... M,

M
6) (Ap)ys =0 forallr=1,..., M,

s=1

(7) foreverys=»M; +1,...,Mthereexistsr € {1,..., M}
such that (Ah Yrs 0.

Generalizing the notation above forr € {1, ..., M}, the indices s € {1,..., M} \{r}
are called neighbours, for which (Ap)ys # 0, and they are assembled to form the set
N,. Therefore, the irreducibility of A, means that arbitrary r,s € {1,..., M;} can
be connected by neighbourhood relationships.

The condition (7) is not a restriction: It only avoids the inclusion of known values
(&iy,)s that do not influence the solution of (1.34) at all. For the five-point stencil on
the rectangle, these are the values at the corner points. Because of the condition (7),
every index r € {M; + 1,..., M} is connected to every index s € {1,...,M;} by
means of neighbourhood relationships.

The conditions (2) and (3) imply the weak diagonal dominance of Aj,. Note that
the conditions are formulated redundantly: The condition (3) also follows from (5)
through (7).

To simplify the notation we will use the following conventions, where u, v and
A, B are vectors and matrices, respectively, of suitable dimensions:

u>0 ifandonlyif (u); >0 forallindicesi,
u>v ifandonlyif u-v =0,

A>0 ifandonlyif (A); =0 forallindices (i),
A>B ifandonlyif A-B>0.

(1.36)

Theorem 1.10 We consider (1.34) under the assumptions (1.35). Furthermore, let
f < 0. Then astrong maximum principle holds [f the components of it = (3*) attain
a nonnegative maximum for some indexr € {1,..., My}, then all the components
are equal. In particular, a weak maximum principle is fulfilled:

o . |
e @), < max {o {Mrgag__’m(uh»} 1.37)
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Proof Letu = maxseq1,.. my(#n)s, and & = (up ), wherer € {1,..., My}. Because
of (1.35) (2), (5), (6) the rth row of (1.34) implies

(Ah)ri’u <- Z (Ah)rs(ah)s = Z |(Ah)rs|(ah)s

s€EN, SEN,
o r (1.38)
< 3 17 < B
SEN,

where the assumption # > 0 is used in the last estimate. Therefore, everywhere
equality has to hold. Since the second inequality is valid also for every single term
and (Ap),s # 0 by the definition of &,, we finally conclude that

(fip)s =u foralls € N, .

This allows us to apply this argument to all § € N, N {1,..., M}, then to the
corresponding sets of neighbours, and so on, until the assertion is proven. O

The requirement of irreducibility can be weakened if instead of (1.35) (6) we have
M

© ) (An),, =0 forallr=1,...,M.
s=1
Then condition (1.35) (4) can be replaced by the requirement
4 Foreveryr € {1,..., M} suchthat

M
Z(Ah)ns =0 (1.39)
s=1

there are indices r, . .., 1141 such that

(An)rry #0 fori=1,...,1
and

M
D (Ars > 0. (1.40)
s=1

This collection of modified conditions (1.35) (1)-(3), (4)*, (1.35) (5), (6)* will be
denoted by (1.35)*

Motivated by the example above we call a point r € {1,..., M} far from the
boundary if (1.39) holds, and close to the boundary if (1.40) holds, and the points
re{M +1,..., M} are called boundary points.

Theorem 1.11 We consider (1.34) under the assumption (1.35)".
Iff <0, then

it < il . 1.41
re{III,l.Z?.),(M}(uh)r b re{MrlIlai,)f..,M}(uh)r ( )
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Proof We use the same notation and the same arguments as in the proof of Theo-
rem 1.10. In (1.38) in the last estimate equality holds, so that no sign conditions for &
are necessary. Because of (4)* the maximum will also be attained at a point close to
the boundary and therefore also at its neighbours. Because of (6)* a boundary point
also belongs to these neighbours, which proves the assertion. m]

From the maximum principles we immediately conclude a comparison principle:

Lemma 1.12 We assume (1.35) or (1.35)*.
Let upy, upy € RM! be solutions of

Apup; = —Aplip; + f; fori=12
1
for given f1, f2 € RM\ iy, fipo € RM2, which satisfy f1 < fo, 8in1 < fin. Then
Up < Upy.

Proof From Ap(upy — upy) = —Ap(8p; — ) + f1 — f, we can conclude with
Theorem 1.10 or 1.11 that

max (#p1 —up2)r <0.
re{l,..,.Mp}

m}

This implies in particular the uniqueness of a solution of (1.34) for arbitrary &,
and f and also the regularity of Ay.

In the following we denote by 0 and O the zero vector and the zero matrix,
respectively, where all components are equal to 0. An immediate consequence of
Lemma 1.12 is the following

Theorem 1.13 Ler A, € RMYMi pe g matrix with the properties (1.35) (1)-(3)(i),
4), and uy, € RM_ Then

Apup >0 implies up >0. (1.42)

Proof To be able to apply Lemma 1.12, one has to construct a matrix A, ¢ RM»M2
such that (1.35)* holds. Obviously, this is possible. Then one can choose

Upy = uy, fp:=Aptpy, 2 := 0,
up =0, f1:=0, ity =0

to conclude the assertion. Because of &; := 0 fori = 1, 2 the specific definition of
Ay, plays no role. m}

A matrix with the property (1.42) is called inverse monotone. An equivalent
requirement is
vhz0 = Ay, >0,
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and therefore by choosing the unit vectors as vy,
-1
A" =20.

Inverse monotone matrices that also satisfy (1.35) (1), (2) are called M-matrices.
Finally, we can weaken the assumptions for the validity of the comparison prin-
ciple.

Corollary 1.14 Suppose that A, ¢ RM>M1 is inverse monotone and (1.35) (5) holds.
Let upy, upy € RMt be solutions of

Aptp; = —Aplip + f; fori=1,2
Jor given f, f1 € RM 1y, fipy € RM2 that satisfy f1 < fo, 8n1 < 8o Then
Upl < Up2.
Proof Multiplying the equation

Ap(up — up2) = —Ap(m — ) + f1 - £2

from the left by the matrix A;!, we get

Upl —Upr = — A;l A}, (Bp1 — @po)+ A}:l (f1-f)<0.
—— e N— e/ —— —
>0 <0 <0 >0 <0

m]

The importance of Corollary 1.14 lies in the fact that there exist discretization
methods, for which the matrix A; does not satisfy, e.g., condition (1.35) (6), or
(6)" but A};I > 0. A typical example of such a method is the finite volume method
described in Chapter 8.

In the following we denote by 1 a vector (of suitable dimension) whose compo-
nents are all equal to 1.

Theorem 1.15 We assume (1.35) (1)-(3), (4)", (5). Furthermore, let w", w'? ¢
RM: be given such that

awl =1, Aw? = -4l (1.43)

Then a solution of Apuy = —Ah @y, + f satisfies
1 ~ 2 1 A 2
D=(1flow) + @nloow'?) < up < |flawl + |0nleow”,
1 2 N
2) |#nleo < WPl IF leo + WP 0 Lo -

Under the assumptions (1.35) (1)-(3), (4)*, and (1.43) the matrix norm || ||, induced
by | | satisfies

|00

14511, < s

|oo‘
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Proof Since —|f|e1 < f < |f|w1 and the analogous statement for @, is valid, the
. LR 2 _ ;
vector vy, 1= |flow)’ + |8nlow,’ — up satisfies

Apvy 2 | flol = f = Ay (@tpleol — 2) = 0,

where we have also used —Ay, > 0 in the last estimate. Therefore, the right inequality
of 1) implies from Theorem 1.13 that the left inequality can be proven analogously.
The further assertions follow immediately from 1). ]

Because of the inverse monotonicity and from (1.35) (5) the vectors postulated
in Theorem 1.15 have to satisfy wg) > 0 necessarily for i = 1, 2. Thus stability with
respect to || - |l of the method defined by (1.34) assuming (1.35) (1)-(3), (4)* is
guaranteed if a vector 0 < wjy, € RM! and a constant C > 0 independent of 4 can be

found such that
Apwp >1 and |wple < C. (1.44)

Finally, this will be proven for the five-point stencil discretization (1.1), (1.2) on the
rectangle Q = (0, a) x (0, b) for C = {x(a® + b?).
For this reason we define polynomials of second degree wi, wy by

M) =7 aa-x) and wa):= 7 yb-). (1.45)

It is clear that wi(x) > O for all x € [0,a] and wy(y) > O for all y € [0, &].
Furthermore, we have w1(0) = 0 = wy (a) and w2(0) = 0 = wy(d), and

1 1 1 ]'
wi(x) = -3 and wy(y) = 5

Therefore w; and w, are strictly concave and attain their maximum in -‘21 and %,
respectively. Thus the function w(x, y) := wi(x) + wa(x) satisfies

-Aw =1 inQ,

w>0 onodQ. (1.46)

Now let wy, € RM be, for a fixed ordering, the representation of the grid function
wy, defined by

(wr)G@h, jh):=w(h jh) fori=1,...,1-1,j=1,...,m-1.

Analogously, let #, € RM2 be the representation of the function wj, defined on
892. As can be seen from the error representation in Lemma 1.2, 4 ), the difference
quotient 8~ 8*u(x) is exact for polynomials of second degree. Therefore, we conclude
from (1.46) that

Apwp = —Aptp +1>1,

which finally implies

Whlos = Il < Il = wa(3) +w2(3) = =@ + ).
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This example motivates the following general procedure to construct wy, € RM! and
a constant C such that (1.44) is fulfilled.
Assume that the boundary value problem under consideration reads in an abstract

form (Lu)(x) = f(x) for x € Q,

(Ru)(x) = g(x) for x € Q2. (1.47)

Similar to (1.46) we can consider — in case of existence — a solution w of (1.47) for
some f, g, such that f(x) > 1 forall x € Q, g(x) > 0 for all x € Q. If w is bounded
on £, then

(Wh),' = W()Ci), i= 1, ey Ml,

for the (non-Dirichlet) grid points x;, is a candidate for wj,. Obviously,
Whloo < [[Wlleo -
Correspondingly, we set
Wp)i=wx;) =20, i=M +1,...,M,,

for the Dirichlet-boundary grid points.

The exact fulfilment of the discrete equations by w}, cannot be expected anymore,
but in case of consistency the residual can be made arbitrarily small for small 4. This
leads to

Theorem 1.16 Assume that a solution w € C(Q) of (1.47) exists for data f > 1 and
g > 0. If the discretization of the form (1.34) is asymptotically consistent with (1.47)
(for these data), and there exists H > 0 so that for some & > 0 :

—Apwp+f>a1 for h<H, (1.48)
then for every 0 < a < @ there exists H > 0, so that
Apwp > al for h<H.

Proof Set
Ty = Apwp + Apwp — f

for the consistency error, then
|Thlee — 0 for h—0.

Thus

Apwp = Th— Ay + f
> —|tplel +a&1 for h<H
> al for h<H

Y

and some appropriate H > 0. |
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Thus a proper choice in (1.44) is
1 1
—wp and C:= =||wl - (1.49)
a a

The condition (1.48) is not critical: In case of Dirichlet boundary conditions and
(1.35) (5) (for corresponding rows i of Ay,) then, due to (f)i = 1, we can even choose
& = 1. The discussion of Neumann boundary conditions following (1.24) shows that
the same can be expected.

Theorem 1.16 shows that for a discretization with an inverse monotone system
matrix consistency already implies stability.

To conclude this section let us discuss the various ingredients of (1.35) or (1.35)*
that are sufficient for a range of properties from the inverse monotonicity up to a
strong maximum principle: For the five-point stencil on a rectangle all the properties
are valid for Dirichlet boundary conditions. If partly Neumann boundary conditions
appear, the situation is the same, but now close and far from the boundary refers
to its Dirichlet part. In the interpretation of the implications one has to take into
account that the heterogeneities of the Neumann boundary condition are now part
of the right-hand side f, as seen, e.g., in (1.26). If mixed boundary conditions are
applied, as

Owu+tau=g onl, (1.50)

for some I'; ¢ T and @ = a(x) > 0, then the situation is the same again if au is
approximated just by evaluation, at the cost that (4)* no longer holds. The situation
is similar if reaction terms appear in the differential equation (see Problem 1.10).

Exercises

Problem 1.11 Give an example of a matrix A, € RM»M2 that can be used in the
proof of Theorem 1.13.

Problem 1.12 Show that the transposition of an M-matrix is again an M-matrix.

Problem 1.13 In the assumptions of Theorem 1.10 substitute (1.35) (4) by (4)* and
amend (6) to

(6)* Condition (1.35) (6) is valid and

M
Z(Ah Jrs > 0 = there exists s € {Mj, ..., M} such that (Ah),s < 0.
=1
Under these i:onditions prove a weak maximum principle as in Theorem 1.10.

Problem 1.14 Assuming the existence of wy € RM guch that Apwy > 1 and
[Wplo < C for some constant C independent of A, show directly (without The-
orem 1.15) a refined order of convergence estimate on the basis of an order of
consistency estimate in which also the shape of wj, appears.



Chapter 2 L))

The Finite Element Method for the Poisson &
Equation

The finite element method, frequently abbreviated by FEM, was developed in the
fifties in the aircraft industry, after the concept had been independently outlined by
mathematicians at an eatlier time. Even today, the terminology used reflects that one
origin of the development lies in structural mechanics. Shortly after this beginning,
the finite element method was applied to problems of heat conduction and fluid
mechanics, which form the application background of this book.

An intensive mathematical analysis and further development was started in the
later sixties. The basics of this mathematical description and analysis are to be
developed in this and the following chapter. The homogeneous Dirichlet boundary
value problem for the Poisson equation forms the paradigm of this chapter, but more
generally valid considerations will be emphasized. In this way the abstract foundation
for the treatment of more general problems in Chapter 3 is provided. In spite of the
importance of the finite element method for structural mechanics, the treatment of
the linear elasticity equations will be omitted. But we note that only a small expense
is necessary for the application of the considerations to these equations. We refer to
[19], where this is realized with a very similar notation.

2.1 Variational Formulation for the Model Problem

We will develop a new solution concept for the boundary value problem (1.1), (1.2)
as a theoretical foundation for the finite element method. For such a solution, the
validity of the differential equation (1.1) is no longer required pointwise but in
the sense of some integral average with “arbitrary” weighting functions ¢. In the
same way, the boundary condition (1.2) will be weakened by the renunciation of its
pointwise validity.

For the present, we want to confine the considerations to the case of homogeneous
boundary conditions (i.e., g = 0), and so we consider the following homogeneous
Dirichlet problem for the Poisson equation:

Given a function f : Q@ — R, find a function « : @ — R such that
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-Au=f inQ, 2.1)
u=0 ondQ. (2.2)

In the following let Q be a domain such that the integral thegem of Gauss is valid,
i.e., for any vector field g : Q — R? with components in C(Q) N C1(Q) it holds

/V -q(x)dx :j n(x) - g(x)do. (23)
Q o)

Let the function  : Q — R be a classical solution of (2.1), (2.2) in the sense of
Definition 1.1, which additionally satisfies « € C!(Q)to facilitate the reasoning. Next
we consider arbitrary v € C;° () as so-called test functions. The smoothness of these
functions allows all operations of differentiation, and furthermore, all derivatives of
a function v € G’ (Q) vanish on the boundary Q. We multiply equation (2.1) by v,
integrate the result over Q, and obtain

o= [ famede = = [0 @ v ds
= / Vu(x)- Vv(x)dx - / Vu(x) -n(x)v(x)do 24)
Q 0
= f Vu(x) - Vv(x)dx.
Q
The equality sign at the beginning of the second line of (2.4) is obtained by integration
by parts using the integral theorem of Gauss with ¢ = vVu . The boundary integral

vanishes because v = 0 holds on Q.
If we define, for u € C1(Q), v € Cy’ (@), a real-valued mapping a by

a(u,v) = ] Vu(x) - Vv(x) dx,
Q
then the classical solution of the boundary value problem satisfies the identity
a(u,v) = (f,v)o forallv e C;(Q). (2.5)

The mapping a defines a scalar product on C;°(€2) that induces the norm

1/2
Vlla := valv,v) = (4/£;|V'v|2 dx) (2.6)

(see Appendix A.4 for these notions). Most of the properties of a scalar product are
obvious. Only the definiteness (A4.7) requires further considerations. Namely, we
have to show that

a(v,v):/f;(VwVv)(x)dx:O — v=0.
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To prove this assertion, first we show that a(v,v) = 0 implies Vv(x) = 0 for all
x € Q. To do this, we suppose that there exists some point ¥ € Q such that
Vv(X) # 0. Then (Vv - Vv) (X) = |Vv|2(%) > 0. Because of the continuity of Vv, a
small neighbourhood G of X exists with a positive measure |G| and |Vv|(x) > a > 0
for all x € G. Since |Vv|?(x) > 0 for all x € Q, it follows that

f |Vv|? (x)dx > o? |G| > 0,
Q

which is in contradiction to a(v, v) = 0. Consequently, Vy(x) = Oholds for all x € Q;
i.e., v is constant in Q. Since v(x) = 0 for all x € 9Q, the assertion follows.

Unfortunately, the space C$°(€2) is too small to play the part of the basic space
because the solution u does not belong to Ci°(2) in general. The identity (2.4) is to
be satisfied for a larger class of functions, which include, as an example for v, the
solution « and the finite element approximation to u to be defined later.

Preliminary, insufficient definition of the basic space

For the present we define as the basic space V,

Vi={v: Q—R|veC(Q) dv exists and is piecewise an
continuous for alli = 1,...,d, v = 0 on 8Q}. ‘

To say that ;v is piecewise continuous means that the domain Q2 can be decomposed

as follows: _ _
a=J9,
J

with a finite number of open sets Q;, with Q; N Qx = @ for j # k, and g;v is
continuous on Q; and it can continuously be extended on Q;.
Then the following properties hold:

¢ aisa scalar product alsoon V,
s CP(Q) VY,

» C3°(Q) is dense in V with respect to || - ||g; ie., forany v € V (2.8)
a sequence (Vy)nen in C3°(Q) exists such that [[v, — vl — O for
n — oo,

o C5°(Q) is dense in V with respect to || - [|o. 29

The first and second statements are obvious. The two others require a certain technical
effort. A more general statement will be formulated in Theorem 3.8.
With that, we obtain from (2.5) the following result:

Lemma 2.1 Let u be a classical solution of (2.1), (2.2) and let u € C! (_ﬁ). Then
au,v)=(f,v)o forallveV. (2.10)

Equation (2.10) is also called a variational equation.
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Proof Letv € V. Then v, € C;° () exist with v, — v with respect to || - [|o and also
to || - |lq. Therefore, it follows from the continuity of the bilinear form with respect
to || - ||, (see (A4.24)) and the continuity of the functional defined by the right-hand
side v — (f, v)o with respect to || - [lo (because of the Cauchy—Schwarz inequality
in L2(Q)) that

(fovn)o = (fLv)o and  a(wvy) — a(u,v) forn — .

Since a(u, vi,) = {f, vu)o, we get a(u, v) = (f, v)o. o

The space V in the identity (2.10) can be further enlarged as long as (2.8) and
(2.9) will remain valid. This fact will be used later to give a correct definition.

Definition 2.2 A function u € V is called a weak (or variational) solution of (2.1),
(2.2) if the following variational equation holds:

au,v) = (f,v)o forallveV.

If # models, e.g., the displacement of a membrane, this relation is called the
principle of virtual work.

Lemma 2.1 guarantees that a classical solution « is a weak solution.

The weak formulation has the following properties:

» It requires less smoothness: d;u has to be only piecewise continuous.
* The validity of the boundary condition is guaranteed by the definition of the
function space V.

We now show that the variational equation (2.10) has exactly the same solution(s)
as a minimization problem:

Lemma 2.3 The variational equation (2.10) has the same solutions u € V as the

minimization problem
Fv)—min forallveV, 2.11)

where

FO) = gan) = (Fvla. (= gvIE = (£vk)

Proof (2.10) = (2.11):

Let u be a solution of (2.10) and let v € V be chosen arbitrarily. We define
w = v —u € V (because V is a vector space), i.e., v = u + w. Then, using the
bilinearity and symmetry, we have

FQ) = %a(u +w,u+w) - (fiu+w)
= %a(u, u)+alu,w)+ %a(w, w) = (fiuyg — (fiw)o (2.12)
=F(u)+ %a(w, w) = F(u),

where the last inequality follows from the positivity of a; i.e., (2.11) holds.
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(2.10) = (2.11):
Let u be a solution of (2.11) and let v € V, € € R be chosen arbitrarily. We define
g(e) := F(u + ev) for ¢ € R. Then

gle)=Fu+ev)>Fu)=g0) foralle € R,

because u + ev € V; i.e, g has a global minimum at ¢ = 0.
It follows analogously to (2.12):

&2
gle) = %a(u, u) = (fiu)o + & (a(u,v) — (f,v)o) + Ta(v, V).

Hence the function g is a quadratic polynomial in €, and in particular, g € C'(R) is
valid. Therefore we obtain the necessary condition

0=g'(e) =alm,v) - (fiv)o

for the existence of a minimum at ¢ = 0. Thus « solves (2.10), because v € V has
been chosen arbitrarily. m}

For applications, e.g., in structural mechanics as above, the minimization problem
is called the principle of minimal potential energy.

Remark 2.4 Lemma 2.3 holds for general vector spaces V if a is a symmetric, positive
bilinear form and the right-hand side (f, v) is replaced by £(v), where £ : V — R
is a linear mapping, a linear functional. Then the variational equation reads as

Findu e V with a(u,v)=4(v) forallveV, (2.13)

and the minimization problem as

FindueV with F(u)= mi‘l} F(), (2.14)
ve

1
where F(v):= -ia(v, v)—£(v).
To incorporate inhomogeneous (Dirichlet) boundary conditions, the variational
equation has to be changed to

Findu eV with a(w,v)=>b() forallveV, (2.15)
where V := V + {u} is an affine space to V. Then (2.15) is equivalent to
Findie V with a(v) = b(v):= b(v) - alug,v) forallv eV

and thus (2.15) is equivalent to a minimization problem of the form (2.14), but over
space V.

Lemma 2.5 The weak solution according to (2.10) (or (2.11)) is unique.
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Proof Let uy, uz be two weak solutions, i.e.,

a(u,v) = (f,v)o
a(uz,v) = {f,v)o

By subtraction, it follows that

forallv e V.

a(uy —ug,v) =0 forallveV.

Choosing v := u; — up implies a(u; — up, u; — u2) = 0 and consequently u; = ug,
because a is definite. |

Remark 2.6 Lemma 2.5 is generally valid if a is a definite bilinear form and ¢ is a
linear form.

So far, we have defined two different norms on V, namely || - ||, and | - |lp.
The difference between these norms is essential because they are not equivalent
on the vector space V defined by (2.7), and consequently, they generate different
convergence concepts, as will be shown by the following example.

Example 2.7 Ler Q = (0, 1), i.e,,

1
a(u, v) ::/ w'v' dx,
0

and let v, : Q — R for n > 2 be defined by (cf. Figure 2.1)

nx, Jfor Ost%,
Vu(X) = 1, for f<x<1-4,
n-nx, for 1—%3)631.

""" | P ->
n—
21

bl

Fig. 2.1: The function v,,.

Then
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1/2

1
allo < (jo 1dx) -1

1

1/2
L 1
||vn||a:(/ nzdx+/1n2dx) =V2n — coforn — co.
0 1-1

Therefore, there exists no constant C > 0 such that ||v||, < C||v|joforallv e V.

However, as we will show in Theorem 2.18, there exists a constant C > 0 such
that the estimate
Ivllo < Clivlle forallv eV

holds; i.e., || - ||4 is the stronger norm.

It is possible to enlarge the basic space V without violating the previous statements.
The enlargement is also necessary because, for instance, the proof of the existence
of a solution of the variational equation (2.13) or the minimization problem (2.14)
requires in general the completeness of V. However, the actual definition of V does
not imply the completeness, as the following example shows.

Example 2.8 Let Q = (0, 1) again and therefore
1
alu,v) := / u'v'dx.
0

Foru(x):=x%(1 -x)® witha ¢ (-%-, 1) we consider the sequence of functions

u(x) for xeln1-1],
Up(x):= nu(%)x for xe¢ 0,% ,
nu(l-LyQ-x)for xe(1-11].

Then

ey, — tmlla — O forn,m — oo,

llsn —ulla =0 forn— oo,
butu ¢ V, where V is defined analogously to (2.7) with d = 1.

In Section 3.1 we will see that a vector space V normed with || - ||, exists such that
u € VandV c V.Therefore, V is not complete withrespect to || - ||, ; otherwise, u € V
must be valid. In fact, there exists a (unique) completion of V with respect to || - ||,
(see Appendix A .4, especially (A4.28)), but we have to describe the new “functions”
added by this process. Besides, integration by parts must be valid such that a classical
solution continues to be also a weak solution (compare with Lemma 2.1). Therefore,
the following idea is unsuitable.
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Attempt of a correct definition of V:

Let V be the set of all v with the property that ;v exists for all x € Q without any
requirements on g;v in the sense of a function.

For instance, there exists Cantor’s function with the following properties:
f:[0,1] =R, feC(0,1]), f #0, f is not constant, f’'(x) exists with f'(x) =0
for all x € [0, 1].

Here the fundamental theorem of calculus, f(x) = fox f'(s)ds + £(0), and thus
the principle of integration by parts, are no longer valid.

Consequently, additional conditions for g;v are necessary.

To prepare an adequate definition of the space V, we extend the definition of
derivatives by means of their action on averaging procedures. In order to do this, we
introduce the multi-index notation.

A d-tuple @ = (ay, ..., aq) of nonnegative integers a; € No := {0,1,2,...} is
called a rmulti-index. The number || := Zle a; denotes the order (or length) of a.
For x € R¥ let

x®=at X (2.16)

A shorthand notation for the differential operations can be adopted by this: For an
appropriately differentiable function v let

8% =" -85, (2.17)
We can obtain this definition from (2.16) by replacing x by the symbolic vector
Vi=0,...,00)"

of the first partial derivatives.
For example, if d = 2 and o = (1, 2), then |e| = 3 and

a3y

0°v = 613221) = W .
2

Now let a € N& be a multi-index of length & and let u € C¥(Q). We then obtain
for arbitrary test functions ¢ € C°(Q2) by integration by parts

/8°ucpdx:(—1)k[u8"cpdx.
Q Q

The boundary integrals vanish because 3°¢ = 0 on Q for all multi-indices 8. This
motivates the following definition.

Definition 2.9 v € L%(Q) is called the weak (or generalized) derivative §%u of
u € L*(Q) for the multi-index o € N§ if

/vgadx = (—1)""]u8“¢dx for all ¢ € C5°(Q).
Q Q
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The weak derivative is well defined because it is unique: Let v1, v» € L2(Q) be two
weak derivatives of u. It follows that

/ (vi—v2)pdx =0 forall ¢ € C3(Q).
Q

Since C;°(Q) is dense in L%(Q), we can furthermore conclude that

/ (vi —w)edx =0 forall p € L(Q).
Q

If we now choose specifically ¢ := v; — vy, we obtain
v = li3 = _/Q(Vl —v2) (v —vp) dx =0,

and vy = v; (a.e.) follows immediately. In particular, ¥ € C* (5) has weak derivatives
0%u for o with |a| < k, and the weak derivatives are identical to the classical
(pointwise) derivatives.

Also the differential operators of vector calculus can be given a weak definition
analogous to Definition 2.9. For example, for a vector field g with components in
LY(Q), v € L*(Q) is the weak divergence v =V - g if for all ¢ € C*(Q)

/v¢dx:—fq~V¢dx. (2.18)
Q Q

The correct choice of the space V is the space H(l) (©), which will be defined
below. First we define

HI(Q) = {v : Q—R |v e LY(Q), v has weak derivatives

2.19
dv e LXQ)foralli = 1,...,d}. @19
A scalar product on H'(Q) is defined by
(u, vy = f u(x)v(x)dx + / Vu(x) - Vv(x) dx (2.20)
Q Q

with the norm

1/2
vl == (v, v); = (le(x)lzdx+'[1|Vv(x)|2dx) (2.21)

induced by this scalar product.

The above “temporary” definition (2.7) of V takes care of the boundary condition
v = 0 on dQ by conditions for the functions. For instance, we want to choose the
basic space V analogously as

Hy©@:={ve H'(Q)|v=0 onsQ}. (2.22)

Here H'(Q) and Hé (Q) are special cases of so-called Sobolev spaces.
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ForQc R4 d>2H 1(Q) may contain unbounded functions. In particular, we
have to examine carefully the meaning of v|50 (A€ has the d-dimensional measure
0) and, in particular, v = 0 on dQ. This will be described in Section 3.1.

Exercises

Problem 2.1

a) Considerthe interval (-1, 1); prove that the function #(x) := |x| has the generalized
derivative u’(x) = sign(x).
b) Does sign(x) have a generalized derivative?

Problem 2.2 Let Q := (a, ) C R, a < b, be an open and bounded interval.

a) Let v € L2(Q) have the weak derivative v, € L%(Q) and the classical derivative
v, in Q. Prove that v}, = v almost everywhere.

b) Assuming that f € L%(Q) with a weak derivative f’ ¢ L1(Q), show that for
almost every xj, x2 € Q the fundamental theorem of calculus holds, i.e.,

f) - f) = [ oo 2.23)

¢) Conclude from (2.23) that there is a function g € C(Q) such that f = g almost
everywhere, and that f € L®(Q).

d) If f e L2(Q), with a weak derivative f € LP(Q), 1 < p < oo, show that g from
c) is @-Holder continuous witha =1 — 1/p.

e)Let f e Hé (). Use (2.23) to show that

l fllo < 18— al [l f"llo-

Problem 2.3 Let Q = U ZI\; 1 51, N ¢ N, where the bounded subdomains Q; C R? are
pairwise disjoint and possess piecewise smooth boundaries. Show that a function
u € C(Q) with ulg, € Cl(Q), 1 <1 < N, has a weak derivative 8;u € L*(Q),
i = 1,2, that coincides in |}, € with the classical one.

Problem 2.4 Let V be the set of functions that are continuous and piecewise
continuously differentiable on [0,1] and that satisfy the additional conditions
v(0) = v(1) = 0. Show that there exist infinitely many elements in V that mini-

mizes the functional .
2
F):= f (1—[v'(x)]2) dx.
0
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2.2 The Finite Element Method with Linear Elements

The weak formulation of the boundary value problem (2.1), (2.2) leads to particular
cases of the following general, here equivalent, problems:

Let V be a real vector space, let a : V xV — R be a bilinear form, and let
¢: V — R be a linear form.

Variational equation:
Findu € V suchthat a(w,v)=4(v) forallveV. (2.24)
Minimization problem:

Findu ¢ V suchthat F(u) = mi‘r} F),
Ve

1 (2.25)
where F(v) := 5a(v, v)—£).

The discretization approach consists in the following procedure: Replace the space
V by a finite-dimensional subspace Vj; i.e., solve instead of (2.24) the finite-
dimensional variational equation:

Findu, € V), suchthat a(uy,,v)=4(v) forallveV,. (2.26)

This approach is called the Galerkin method. Or solve instead of (2.25) the finite-
dimensional minimization problem:

Findu, €V}, suchthat F(u,) = m%p F(v). (2.27)
VEV,

This approach is called the Ritz method.

It is clear from Lemma 2.3 and Remark 2.4 that the Galerkin method and the
Ritz method are equivalent for a positive and symmetric bilinear form. The finite-
dimensional subspace V}, is called an ansatz space.

The finite element method can be interpreted as a Galerkin method (and in our
example as a Ritz method, too) for an ansatz space with special properties. In the
following, these properties will be extracted by means of the simplest example.

Let V be defined by (2.7) or let V = H}(Q).

The weak formulation of the boundary value problem (2.1), (2.2) corresponds to the
choice

a(u,v)::fQVu-Vvdx, f(v)::'lzfvdx.

Let Q ¢ R? be a domain with a polygonal boundary; i.e., the boundary I’ of Q
consists of a finite number of straight-line segments as shown in Figure 2.2.

Let 75, be a partition of Q into closed triangles K (i.e., including the boundary
0K with the following properties:

1) Q=Uges K;
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Fig. 2.2: Domain with a polygonal boundary.

2) ForK,K' € T, K £ K,
int (K) Nint (K') = 0, (2.28)

where int (K) denotes the open triangle (without the boundary dK).
3) IfK # K’ but KN K’ # 0, then K N K’ is either a common point or a common
edge of K and K’ (cf. Figure 2.3).

not
allowed: allowed:

Fig. 2.3: Partitions.

A partition of Q into triangles with the properties 1), 2) is called a simplicial
partition or a triangulation of Q. If, in addition, a triangulation of Q satisfies property
3), it is called consistent (or conforming) (cf. Figure 2.4).

The triangles of a triangulation will be numbered Kj, . .., Ky. The subscript A
indicates the fineness of the triangulation, e.g.,

h := max diam (K),
KeT;,

where diam (K) := sup {Ix -y l x,yeK } denotes the diameter of K. Thus here A
is the maximum length of the edges of all the triangles. Sometimes, K € 7 is also
called a (geometric) element of the partition.

The vertices of the triangles are called the nodes, and they will be numbered

al’a27"'7aM7
ie,a; =(x;,y)i=1...,M, where M = M; + M, and

ai,...,apm € Q,

ap +1,- - Gm € 0Q. (2.29)
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This kind of arrangement of the nodes is chosen only for the sake of simplicity of
the notation and is not essential for the following considerations.

Fig. 2.4: A consistent triangulation with N = 12, M = 11, My = 3, M, = 8.

An approximation of the boundary value problem (2.1), (2.2) with linear finite
elements on a given triangulation 7, of Q is obtained if the ansatz space V}, is defined
as follows:

Vi 1= {v e C@) | vik € P1(K) forall K € 75, v =0 on aQ} . (2.30)

Here #1(K) denotes the set of polynomials of first degree (in 2 variables) on K; i.e.,
pePiK)= plx,y)=a+Bx+yyforall (x,y) € K and for fixed e, B,y € R.
Since p € #1(K) is also defined on the space R XR, we use the short but inaccurate
notation #; = #1(K); according to the context, the domain of definition will be given
as R x R or as a subset of it.
We have
Vh cV.

This is clear for the case of definition of V by (2.7) because dxv|x = const, dyv|g =
const for K € 7, forallv e V. If V = H& (€2), then this inclusion is not so obvious.
A proof will be given in Theorem 3.21 below.

Anelement v € Vy is determined uniquely by the values v(a;),i = 1, ..., M (the
nodal values).

In particular, the givennodal values already enforce the continuity of the piecewise
linear composed functions. Correspondingly, the homogeneous Dirichlet boundary
condition is satisfied if the nodal values at the boundary nodes are set to zero.

In the following, we will demonstrate these properties by an unnecessarily
involved proof. The reason is that this proof will introduce all of the considerations
that will lead to analogous statements for the more general problems of Section 3.4.

Let X; be the larger ansatz space consisting of continuous, piecewise linear
functions but regardless of any boundary conditions, i.e.,
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Xy 1= {v € C(Q)| vk € P1(K) forallK e 77,} . (2.31)

Lemma 2.10 For given values at the nodes ay, . . ., apy, the interpolation problem in
Xy, is uniquely solvable. That is, if the values vy, . .., var are given, then there exists
a uniquely determined element

velX, suchthat v(a;)=vi;, i=1..,M.
Ifvi=0for j=My+1,...,M, then it is even true that
veV,.
Proof Step 1: For any arbitrary K € 7, we consider the local interpolation problem:
Findp = px € 1 suchthat p(a;)=v;, i=1723, (2.32)

where a;, i = 1,2, 3, denote the vertices of K, and the values v;,i = 1,2, 3, are given.
First we show that problem (2.32) is uniquely solvable for a particular triangle.

Y

1

- x
0! 1
Fig. 2.5: Reference element K.

A solution of (2.32) for the so-called reference element K (cf. Figure 2.5) with
the vertices 4; = (0,0), & = (1,0), 43 = (0, 1) is given by

p(x, y) = viN1(x, y) + vaNa(x, y) + v3N3(x, y)

with the shape functions
Nl(xvy) =1 - X-Yy,
Na(x, y) = x, (2.33)
N3(x,y):=y.
Evidently, N; € 1, and furthermore,
1 fori=j

N; (8;) = 65 := { for i,j=123,

0 fori#j
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and thus

3
p (&) =) wili (&) =v; forall j=1,23.
i=1
The uniqueness of the solution can be seen in the following way: If py, p2 satisfy

the interpolation problem (2.32) for the reference element, then for p := pyj —p2 € ¥
we have

p(8)=0, i=123.

Here p is given in the form p(x, y) = a + Bx + yy. If we fix the second variable
y = 0, we obtain a polynomial function of one variable

px,0)=a+ Bx =:g(x) e P1(R).

The polynomial g satisfies g(0) = 0 = g(1), and g = 0 follows by the uniqueness
of the polynomial interpolation in one variable; i.e., @ = 8 = 0. Analogously, we
consider

q(y):=p0,y)=a+yy =1y,

and we obtain from g(1) = 0 that y = 0 and consequently p = 0.

In fact, this additional proof of uniqueness is not necessary, because the unique-
ness already follows from the solvability of the interpolation problem because of
dim #; = 3 (compare with Section 3.3).

Now we turn to the case of a general triangle X. A general triangle X is mapped
onto K by an affine transformation (cf. Figure 2.6)

F:R —-K, F@®) =Bf+d, (2.34)

where B € R%2, d < R? are such that F (&) = a;.
B = (b1, bp) and d are determined by the vertices a; of K as follows:

a=F(@)=F0)=d,
a2=F(ﬁ2)=b1+d=b1+a1,
a3:F(d3):b2+d:b2+a1;

ie, by = a2 — a1 and by = a3 — a;. The matrix B is regular because a; — a; and

as — aj are linearly independent, ensuring F(4;) = a;.
Since

3 3
K =conv {aj,ay, a3} := {Zliai | 0<A <1, Z,l,- = 1}
i=1 i=1

and especially K = conv {4y, 4y, 43}, F [K] = K follows from the fact that the
affine-linear mapping F satisfies
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for0<a <1, %2, 4 =1
In particular, the edges (where one 2; is equal to 0) of K are mapped onto the
edges of XK.

Fig. 2.6: Affine-linear transformation.

Analogously, the considerations can be applied to the space R word for word by
replacing the set of indices {1,2,3} by {1, . .., d+1}. This will be done in Section 3.3.
The polynomial space #; does not change under the affine transformation F.

Step 2: We now prove that the local functions v|g can be composed continuously:

For every K € 7y, let px € 71 be the unique solution of (2.32), where the values
V1, v, v3 are the values vy, viy, viy (i1,42, i3 € {1,..., M?}) that have to be interpolated
at these nodes.

Let K,K’ € 7y be two different elements that have a common edge E. Then
Pk = pg- on E is to be shown. This is valid because E can be mapped onto
[0, 1] X {0} by an affine transformation (cf. Figure 2.7). Then g; (x) = px(x,0) and
q2(x) = pg(x,0) are elements of #;(R), and they solve the same interpolation
problem at the points x = 0 and x = 1; thus g; = g».

Therefore, the definition of v by means of

v(ix)=prg(x) forxeKeT, (2.35)

is unique, and this function satisfies v € C(Q) and v € X;,.

Step 3: Finally, we will show that v = 0 on 4Q for v defined by (2.35) if v; = 0,
i=M;+1,...,M, for the boundary nodes.
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R S

Fig. 2.7: Affine-linear transformation of E on the reference element [0, 1].

The boundary dQ consists of edges of elements K € 7. Let E be such an edge;
i.e., E has the vertices a;,, a;, withi; € {M1+1,..., M}. The given boundary values
yield v(a;;) = 0 for j = 1,2. By means of an affine transformation analogously to
the above one we obtain that v|g is a polynomial of first degree in one variable and
that v|g vanishes at two points. So v|g = 0, and the assertion follows. (m}

The following statement is an important consequence of the unique solvability
of the interpolation problem in X irrespective of its particular definition: The
interpolation conditions

wila;)=6ij, j=1....M, (2.36)
uniquely determine functions ¢; € Xp, fori = 1,..., M. For any v € X}, we have
M
v(x) = Y va)pi(x) for xeQ, (2.37)

i=1

because both the left-hand side and the right-hand side functions belong to X, and
are equal to v(a;) at x = a;.

The representation v = 33;; a;¢; is unique, too, for otherwise, a function w € X,
w # 0, such that w(a;) = O foralli = 1,..., M would exist. Thus {¢y, ..., ¢ar} is
a basis of Xj, especially dim X, = M. This basis is called a nodal basis because of
(2.37). For the particular case of a piecewise linear ansatz space on triangles, the
basis functions are called pyramidal functions because of their shape. If the set of
indices is restricted to {1,..., M1 }; i.e., we omit the basis functions corresponding
to the boundary nodes, then a basis of V;, will be obtained and dim V,, = M.

Summary: the function values v(a;) at the nodes ay, .. ., ays are the degrees of
freedom of v € X, and the values at the interior points 4y, . . ., apr, are the degrees
of freedom of v € Vj,.

The following consideration is valid for an arbitrary ansatz space Vj, with a basis
{1, .., ¢m}. The Galerkin method (2.26) reads as follows:

M
Find uy, = Zi:l & € Vi, such that a(up, v) = £(v) for allv € V.
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Since v = ZZI nip; for n; € R, this is equivalent to

a(up, ¢i) = L(p;) forali=1.... M <

M
a(Z§j¢j,¢,-):z(¢,-) foralli=1,...,.M —

j=1

R

Za @i i) & =4(@i) foralli=1,.... M
j=1

A = qp (2.38)

with Ay = (a(pj, ¢:));; € RMM, £ = (&,...,&m)" and gy, = (€(¢1)); - Therefore,
the Galerkin method is equlvalent to the system of equations (2.38).

The considerations for deriving (2.38) show that, in the case of equivalence of the
Galerkin method with the Ritz method, the system of equations (2.38) is equivalent
to the minimization problem

Fy(§) = min Fy(n), (2.39)
neR

where 1
Fn(n) = zﬂTAh'l -q5n.

Because of the symmetry and positive definiteness, the equivalence of (2.38) and
(2.39) can be easily proven, and it forms the basis for the CG methods that will be
discussed in Section 5.2.

Usually, Ay, is called stiffness matrix, and g, is called the load vector. These
names originated from mechanics. For our model problem, we have

(Ah)ij = a((ﬁj, (p,) = AV¢] . V‘Pl dx’
(gn); = (i) = Lf«p,- dx .

By applying the finite element method, we thus have to perform the following steps:

1. Determination of Ay, q,,. This step is called assembling.
2. Solution of Ap & = q5,.

If the basis functions ¢; have the property ¢;(a;) = &;;, then the solution of system
(2.38) satisfies the relation &; = up(a;), i.e., we obtain the vector of the nodal values
of the finite element approximation.

Using only the properties of the bilinear form a, we obtain the following properties
of Ap:

* Ay is symmetric for an arbitrary basis {¢;} because a is symmetric.
» A, is positive definite for an arbitrary basis {;} because for ¥ = Zg 1 &0
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§TARE = T gales )6 = T &a (%'v I §i<Pi)
(2.40)

=a (Z%I &ep Tt §i<ﬁi) =a,u)>0
for & # 0 and therefore u # 0.
Here we have used only the positive definiteness of a.

Thus we have proven the following lemma.

Lemma 2.11 The Galerkin method (2.26) has a unique solution if a is a symmetric,
positive definite bilinear form and if € is a linear form.

In fact, as we will see in Theorem 3.1, the symmetry of a is not necessary.

» For a special basis (i.e., for a specific finite element method), Ay is a sparse
matrix, i.e., only a few entries (Ay);; do not vanish. Evidently,

(Ap);; #0 = Ve: Ve, dx #0.
J o J

This can happen only if supp ¢; Nsupp ¢; # @, as this property is again necessary
for supp V; N supp Vg; # 0 because of

(supp Vi Nsupp Vo) C (supp ¢; Nsupp ¢;) -

The basis function ¢; vanishes on an element that does not contain the node
a; because of the uniqueness of the solution of the local interpolation problem.
Therefore,

suppgi = | J K,
KeT,
a; €K
cf. Figure 2.8, and thus
(Ah),-j #0 = g,q;cKforsomeK € 7; (2.41)

i.e., a;, aj are neighbouring nodes.

If we use the piecewise linear ansatz space on triangles and if a; is an interior node
in which L elements meet, then there exist at most L nondiagonal entries in the ith
row of Ay. This number is determined only by the type of the triangulation, and it
is independent of the fineness 4, i.e., of the number of unknowns of the system of
equations.

Example 2.12 We consider again the boundary value problem (2.1), (2.2) on Q =
0,a) x (0, b) again, i.e.,

-Au=f inQ,
u=0 onoQ,
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Supp ¢

Fig. 2.8: Support of the nodal basis function.

under the condition (1.4). The triangulation on which the method is based is created
by a partition of Q into squares with edges of length h and by a subsequent uniform
division of each square into two triangles according to a fixed rule (Friedrichs—Keller
triangulation). In order to do this, two possibilities a) and b) (see Figures 2.9 and
2.10) exist.

a) b)

Fig. 2.9: Possibilities of Friedrichs—Keller triangulation.

In both cases, a node az belongs to six elements, and consequently, it has at most
six neighbours:

Case a) becomes case b) by the transformation x — a — x,y — y. This trans-
Jormation leaves the differential equation or the weak formulation, respectively,
unchanged. Thus the Galerkin method with the ansatz space Vy, according to (2.30)
does not change, because P, is invariant with respect to the above transformation.
Therefore, the discretization matrices Ay, according to (2.38) are seen to be identical
by taking into account the renumbering of the nodes by the transformation.

Thus it is sufficient to consider only one case, say b). A node which is far away
from the boundary has 6 neighbouring nodes in {ay, ..., am,}, a node close to
the boundary has less. The entries of the matrix in the row corresponding to az
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For a): For b):

asg

Fig. 2.10: Support of the basis function.

depend on the derivatives of the basis function @z as well as on the derivatives of the
basis functions corresponding to the neighbouring nodes. The values of the partial
derivatives of @z in elements having the common vertex az, are listed in Table 2.1,
where these elements are numbered according to Figure 2.10.

| 1] |mfiv|v]vi
0|41 0

—

R
0

ovz|—%

Sz

1

Sl S

I3
0

S|

L
2

Table 2.1: Derivatives of the basis functions.

Thus for the entries of the matrix in the row corresponding to az we have

Vg l? dx =2 / [ Gre2)? + (Bapz)? ] dx,
TuIuIl

(An)zz = alpz, ¢z) = /

Iu...uVI

because the integrands are equal on I and IV, on Il and V, and on Ill and VI. Therefore
(An)zz =2 / (Brpz)* dx +2 f (Baz)* dx = 2h72h? + 207202 = 4,
TUIII Il
(An)zn = alen, ¢z) = [11 Von - Veozdx
)

=/ 32‘PN32‘Pde:/ (—h_l)h‘ldxz—l,
V1T TUIT

because 019z =0 on Il and 19N = O on L. The element I for px corresponds to the
element V for ¢z; i.e., d1on = O on I, analogously, it follows that drn = hlonl
U IL In the same way we get

(Ar)ze = (An)zw = (An)zs = -1

as well as
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(An)znw = a (oNw, ¢z) = O1onw G197 + O2pNw Oppz dx = 0.
TuIn
The last identity is due to d1onw = O on I and denw = O on I, because the
elements V and VI for @z agree with the elements Il and II for onw, respectively.
Analogously, we obtain for the remaining value

(An)zse = 0,

such that only 5 (instead of the maximum 7) nonzero entries per row exist.

The way of assembling the stiffness matrix described above is called node-based
assembling. However, most of the computer programs implementing the finite element
method use an element-based assembling, which will be considered in Section 2.4.

If the nodes are numbered rowwise analogously to (1.13) and if the equations are
divided by h?, then h™% Ay, coincides with the discretization matrix (1.14), which is
known from the finite difference method. But here the right-hand side is given by

h2(qp); = h_2ff¢i dx = h? foidx
0 Iu...UVI

Jor az = a; and thus it is not identical to f(a;), the right-hand side of the finite
difference method.

However, if the trapezoidal rule, which is exact for g € P1, is applied to approxi-
mate the right-hand side according to

3
1
f g(x)dx ~ Zvol (K)Z 2(a;) (2.42)
K i=1
for a triangle K with the vertices a;, i = 1,2,3 and with the area vol (K), then

[fonds = 3382 (e 1+ ao) -0 + fax) -0) = g flaz).

Analogous results are obtained for the other triangles, and thus

h? feidx ~ f(az).
VI

Iu...v

In summary, we have the following result.

Lemma 2.13 The finite element method with linear finite elements on a triangulation
according to Figure 2.9 and with the trapezoidal rule to approximate the right-hand
side yields the same discretization as the finite difference method from (1.7), (1.8).

We now return to the general formulation (2.24)—(2.27). The approach of the Ritz
method (2.27), instead of the Galerkin method (2.26), yields an identical approxi-
mation because of the following result.



2.2 Linear Elements 73

Lemma 2.14 If a is a symmetric and positive bilinear form and ¢ is a linear form,
then the Galerkin method (2.26) and the Ritz method (2.27) have identical solutions.

Proof Apply Lemma 2.3 with V}, instead of V. =]

Hence the finite element method is the Galerkin method (and in our problem the
Ritz method, too) for an ansatz space Vj, with the following properties:

» The coeflicients have a local interpretation (here as nodal values).
The basis functions have a small support such that:

+ the discretization matrix is sparse,
« the entries of the matrix can be assembled locally.

Finally, for the boundary value problem (2.1), (2.2) with the corresponding weak
formulation, we consider other ansatz spaces, which to some extent do not have these
properties:

1) In Section 3.2.1, (3.29), we will show that mixed boundary conditions need
not be included in the ansatz space. Then we can choose the finite dimensional
polynomial space V, = span {1, x, y, xy, x% y% ...} for it. But in this case, Ay,
is a dense matrix and ill-conditioned. Such ansatz spaces yield the classical
Ritz—Galerkin methods.

2) Let Vi, = span{¢y, ..., N} and let ¢; # O satisfy, for some 2;,

a(pi,v) = A; (pi,v)y forallveV,
i.e., the weak formulation of the eigenvalue problem

-Au=Au inQ,
u=0 on 0%},

for which eigenvalues 0 < 1; < A3 < ... and corresponding eigenfunctions ¢;
exist such that (cp,-, (pj)o = 6;; (e.g., see [25, Sect. 6.5, Thm. 1]). For special
domains €, (;, ¢;) can be determined explicitly, and

(An)ij = algy, @) = 5 () i) = ;i

is obtained. Thus Ay, is a diagonal matrix, and the system of equations Ap¢ = g,
can be solved without too great expense. But this kind of assembling is possible
with acceptable costs for special cases only.

3) Specific collocation methods (on simple domains) can be interpreted as Galerkin
methods on finite element spaces, but with modified (bi)linear forms. Such non-
conforming FEM will be considered from Section 3.6 on.

The above examples describe Galerkin methods without having the typical properties
of a finite element method.
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Exercises

Problem 2.5 Consider the one-dimensional Poisson problem —u”" = f on the inter-
val Q := (a, b), a < b, with the following boundary conditions:
a) u(a) = u(b) = 0.
b)u'(a) =0, u(d) =0.
c) —u'(a) + au(a) =0, u(b) =0, where @ > 0.
Let an equidistant partition of Q be given asa =xy) < X <...< Xy = b, and
X;—X-1:=h:=(b-a)/mfori=1,..

Calculate the stiffness matrix A = (a(<p], <p,)) that results from a conforming
finite element discretization with piecewise linear ansatz functions, i.e.,

Vi —{veC(a,b | Vixox] €PL,i=1.. m,v(a):v(b)=0}

defined on a nodal basis. Compare it to the corresponding matrix resulting from a
classical finite difference approximation.

Problem 2.6 Consider a square domain Q ¢ R? subdivided into square elements
with edge length k. A finite difference approximation of

-Au=f inQ

is given in the interior by the 9-point stencil

111
-1 +8 -1
302\ 1

A finite element method on the same grid can be constructed using bilinear basis
functions. On the reference element K := (0, 1) x (0, 1) they are given by

Ni(%9):= (1=-£)(A=3), Nao(£, 9) := 21 =9), N3(£,9) := £9, Na(%, 9) := (1-£)3.

a) Assemble the local stiffness matrix for one element.

b) Consider a patch of four elements sharing a node and assemble the row of the
global system matrix corresponding to this node.

c) Approximate the right-hand side by the two-dimensional versions of

+ the trapezoidal rule / ’ FO0)dx ~ (b — a) fla) + f (b)’

+ the midpoint rule / fx)dx ~(b-a)f (a * b)

which of the two resulting finite element discretizations is equivalent to above
finite difference method?
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Problem 2.7 Show that the following version of the trapezoidal rule on a triangle K
with vertices a;,i = 1, 2,3, is exact for g € #;:

3
'/Kg(x)dx Y %vol (K);g(a,-).

For integrands g = fq with f € C%(K), g € P1(K), derive an order of convergence
estimate.

Problem 2.8 a) Compute the local stiffness matrix of a finite element discretization
of the Poisson equation for the triangle with vertices a; := (0,0), a3 := (3, -1),
a3 := (2, 1), and the triangle with vertices a; := (0,0), az := (3, 1), a3 := (2, 1).
b) Estimate the asymptotic behaviour of ||B||2||B~!||» for A — O for both triangle
shapes (you may use some software to perform the computations), with B accord-
ing to (2.34). For the estimate of # — 0 you may assume that all coordinates are
multiplied by 4, scaling the triangles.

2,1) 2,1

(0’0) /

0,0

G.D

(3>_1)

2.3 Stability and Convergence of the Finite Element Method

We consider the general case of a variational equation of the form (2.24) and the
Galerkin method (2.26). Here let a be a bilinear form, which is not necessarily
symmetric, and let £ be a linear form.
Then, if
e:=u—up(eV)

denotes the error, the important error equation
ale,v) =0 forallveV, (2.43)
is satisfied. The reason is the exact consistency of the FEM in the sense

a(u,v) =£(v) forallveV,
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so to obtain (2.43) it is sufficient to consider equation (2.24) only forv e V,, ¢ V
and then to subtract from the result the Galerkin equation (2.26).
If, in addition, a is symmetric and positive definite, i.e.,

au,v) = alv,u), av,v)=0, ay,v)=0<v=0 foralluveV

(i.e., a is a scalar product), then the error is orthogonal to the space Vj, with respect
to the scalar product a.

Therefore, the relation (2.43) is often called the orthogonality of the error (to the
ansatz space). In general, the element iy, € Vj, with minimal distance to ¥ € V with
respect to the induced norm || - ||, is characterized by (2.43):

Lemma 2.15 Let V;, C V be a subspace, let a be a scalar product on V, and let
lullq := a(u,u)'/? be the norm induced by a. Then for uy, € Vi, it follows that

au—up,v)=0 forallveV, — (2.44)
llee — unlle = min [lu - vlla - (2.45)
vevy,

Proof For arbitrary but fixed u € V, let £(v) := a(w, v) for v € V},. Then ¢ is a linear
form on Vj, so (2.44) is a variational formulation on V},. According to Lemma 2.14
or Lemma 2.3, this variational formulation has the same solutions as

F(up) = min F(v)
with F(v):= %a(v, v)—£(v) = %a(v, v)—a(,v).

Furthermore, F has the same minima as the functional
1/2 1/2
(2F(v) + a(u, u)) = (a(v, v) —2a(u,v) + a(y, u))

12
= (a(u -V, u- v)) = |lu = vlla,

because the additional term a(u, ) is a constant. Therefore, F has the same minima
as (2.45). (]

If an approximation uy, of u is to be sought exclusively in V4, then the element u,,
determined by the Galerkin method, is the optimal choice with respect to || - ||4-
A general, not necessarily symmetric, bilinear form a is assumed to satisfy the

following conditions, where || - || := || - ||y denotes a norm on V:
* a is continuous with respect to || - ||; i.e., there exists M > 0 such that
la(u, v)| < M|ullllv]| forallu,v eV, (2.46)

* ais V-coercive; i.e., there exists @ > 0 such that

a(v,v) > a||v||* forallveV. (2.47)
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If a is a scalar product, then (2.46) with M = 1 and (2.47) (as equality) witha = 1
are valid for the induced norm || - || := || - || due to the Cauchy—Schwarz inequality.

The V-coercivity is an essential condition for the unique existence of a solution
of the variational equation (2.24) and of the boundary value problem described by
it, which will be presented in more detail in Sections 3.1 and 3.2. It also implies—
without further conditions—the stability of the Galerkin approximation.

Lemma 2.16 The Galerkin solution uy, according to (2.26) is stable in the following
sense:

1
llunl| < —||€]| independently of h, (2.48)
a
where 3 1)
€] := .
vevvioy VIl

Proof In the case uy, = 0, there is nothing to prove. Otherwise, from a(up, v) = £(v)
for all v € Vj, it follows that

1€ (un)|
allun|* < alun, un) = €(un) < mﬂuhﬂ < (1€l -
Dividing this relation by ||y ||, we get the assertion. |

Moreover, the approximation property (2.45) holds up to a constant:

Theorem 2.17 (Céa’s lemma) Assume (2.46), (2.47). Then the following error esti-
mate for the Galerkin solution holds:

M
Il = unl| < — min [fue = v[|. (249)

Proof If |lu — u|| = 0, then there is nothing to prove. Otherwise, let v € Vj, be
arbitrary. Because of the error equation (2.43) anduy, — v € V,

a(u —up,up —v)=0.
Therefore, using (2.47) we have

alle —up > < alu— up,u —uy) = alu — up, u —v) - alu — uy, uy, = v)

=alu—upu—v).
Furthermore, by means of (2.46) we obtain
allu—ul)? < a(u —up,u—v) < M||lu—up|| ||lu—v| for arbitrary v € V, .
Thus the assertion follows by division by a||u — up||. |

Therefore also in general, in order to get an asymptotic error estimate in 4, it is
sufficient to estimate the best approximation error of Vy, i.e.,
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min |ju —v||.
vevy,

An approximation u, fulfilling

llee = up|| < C min [z — v]|
veV),

with a constant C > 0 independent of 4, is called quasi-optimal. If
On: V=V, u—uy

then @y, is also called quasi-optimal.

However, this consideration is meaningful only in those cases where M/« is not
too large. Section 3.2 shows that this condition is no longer satisfied for convection-
dominated problems. Therefore, the Galerkin approach has to be modified, which
will be described in Chapter 10.

We want to apply the theory developed up to now to the weak formulation of
the boundary value problem (2.1), (2.2) with V according to (2.7) or (2.22) and V,
according to (2.30). According to (2.4) the bilinear form a and the linear form ¢ read
as

a(u,v)::fVu~Vvdx, £(v) ::/fvdx.
Q Q
In order to guarantee that the linear form ¢ is well defined on V, it is sufficient to

assume that the right-hand side f of the boundary value problem belongs to L2(Q).
Since a is a scalar product on V,

1/2
Wl = [Ivlla = (f |w|2dx)
Q

is an appropriate norm. Alternatively, the norm introduced in (2.21) for V = H(l) Q)

can be taken as
1/2
vl = ( [heras [ |Vv<x>|2dx)
(9] (9}

In the latter case, the question arises whether the conditions (2.46) and (2.47) are
still satisfied. Indeed,

la(u v)I < llullalVlla < ||Vl foralluveV.

The first inequality follows from the Cauchy—Schwarz inequality for the scalar prod-
uct a, and the second inequality follows from the trivial estimate

1/2
Ivllg = (/ |Vv(x)|2dx) <|v|l; forallveV.
Q

Thus a is continuous with respect to || - ||} with M = 1.
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The V-coercivity of g, i.e., the property
aw,v) = |||z = allvll% for somea >0andallv eV,

isnot valid in general for V = H(Q). However, in the present situation of V = Hcl) Q)
it is valid because of the incorporation of the boundary condition into the definition
of V:

Theorem 2.18 (Poincaré) Let Q C R” be open and bounded. Then a constant C > 0
exists (depending on Q) such that

1/2
Ivllo < C (/ |Vv(x)|2dx) forallv e HY(Q).
Q

Proof Cf. [28, Sect. 7.8]. For a special case, see Problem 2.10. ]

Thus (2.47) is satisfied, for instance, with

1
Q= —,
1+ C?

(see also (3.27) below) and thus in particular
alvlif <a@,v)=vI2 < |lvI} forallveV, (2.50)

i.e., the norms || - ||; and || - || are equivalent on V = Hé(Q) and therefore they
generate the same convergence concept:

vy — v withrespectto || - || < |lvu — vl = 0
S |lvp = v||lg = 0 < vy, — v withrespect to || - || -

In summary the estimate (2.49) holds for || - || = || - ||; with the constant 1/a.
Because of the Cauchy-Schwarz inequality for the scalar product on L2(Q) and

t) = [Q Fv(x)dx,

e, 6O < Iflolvllo < ll£llo v, and thus [[€]] < ||flo, the stability estimate
(2.48) for a right-hand side f € L2(Q) takes the particular form

1
llunlly < =1 £llo -
07

Up to now, our considerations have been independent of the special form of V;,. Now
we make use of the choice of V}, according to (2.30). In order to obtain an estimate
of the approximation error of V4, it is sufficient to estimate the term || — V|| for some
special element v € Vj,. For this element v € V},, we choose the interpolant I, (x),
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where

I : {ue C(ﬁ)lu:OOHBQ} — W,
u — Ip(w) with I, (u)(a;) := u(a;) .

.51)

This interpolant exists and is unique (Lemma 2.10). Obviously,

min [l = vy < - L@y foru C(Q) and u =0 on 8Q.
VEVL

If the weak solution u possesses weak derivatives of second order, then for certain
sufficiently fine triangulations 7z, ie.,0 < A < T for some # > 0, an estimate of the

type
e ~ Iu@)lly < Ch 2.52)

holds, where C depends on « but is independent of 4 (cf. (3.101)). The proof of this
estimate will be explained in Section 3.4, where also sufficient conditions on the
family of triangulations (75 ), will be specified.

Exercises

Problem 2.9 Let a(u,v) := /0 xu'v'dx for arbitrary u,v € H} (0, 1).
a) Show that there is no constant C; > 0 such that the inequality

1
a(v,v) = le (') dx forallve H(I)(O, 1)
0

is valid.
b) Now let 7 := {(x;-1, %)} ﬁl, N € N, be an equidistant partition of (0, 1) with the
parameter 2 = 1/N and V}, := span {cp,-}ﬁ]l , Where

(= xi—1)/him1 I (o1, %],
@i(x) 1= { e —X) /b in (X, Xi00),
0 otherwise .

Does there exist a constant C, > 0 with

1
a(vp, vi) = sz (v,’,)2 dx forallvy € V7
0

Problem 2.10

a) For Q := (a, B) X (¥, §) and V according to (2.7), prove the inequality of Poincaré:
There exists a positive constant C with



2.3 Stability and Convergence 81

Ivllo < Cllvll, forally e V.

Hint: Start with the relation v(x, y) = [Z  8v(s, y) ds .
b) For Q := (o, B) and v € C([e, B]) with a piecewise continuous derivative v’ and
v(y) = 0 for some vy € [a, 8], show that

vllo < (8= a)llv'llo-

Problem 2.11 Let Q := (0, 1)x(0, 1). Given f € C(Q), discretize the boundary value
problem —Au = f in Q, u = 0 on 3, by means of the usual five-point difference
stencil as well as by means of the finite element method with linear elements. A
quadratic grid as well as the corresponding Friedrichs—Keller triangulation will be
used.

Prove the following stability estimates for the matrix of the linear system of
equations:

1 1
-1 -1 -1
A, o <5, DA 2=, 4, o<1,
8 16
where || - ||s, || - ||2 denote the maximum row sum norm and the spectral norm of a
matrix, respectively, and
[Ivn 11§

=1y, ._
145 o := 0
v €V \{0} vl

with  |jvp2 ::/|vVh|2dx,
Q

Comment: The constant in c) is not optimal.

Problem 2.12 Let Q be a domain with polygonal boundary and let 7; be a consistent
triangulation of Q. The nodes a; of the triangulation are enumerated from 1to M.

Let the triangulation satisfy the following assumption: There exist constants
C1, C3 > O such that for all triangles K € 73, the relation

C1h? < vol(K) < Coh?

is satisfied. 2 denotes the maximum of the diameters of all elements of 7.

a) Show the equivalence of the following norms for up € V) in the space Vj of
continuous, piecewise linear functions over Q :

M

1/2 1/2
il ::( i |uh|2dx) + lnllo o= h(Zu,%(ai))

i=1

b) Consider the special case Q := (0, 1) x (0, 1) with the Friedrichs—Keller triangula-
tion as well as the subspace Vj, N Hé (Q) and find “as good as possible” constants
in the corresponding equivalence estimate.
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2.4 The Implementation of the Finite Element Method: Part 1

In this section we will consider some aspects of the implementation of the finite
element method using linear ansatz functions on triangles for the model boundary
value problem (1.1), (1.2) on a polygonally bounded domain Q ¢ R2. The case of
inhomogeneous Dirichlet boundary conditions will be treated also to a certain extent
as far as it is possible up to now.

2.4.1 Preprocessor

The main task of the preprocessor is to create a partition of the domain Q.

An input file might have the following format:

Let the number of variables (including also the boundary nodes for Dirichlet
boundary conditions) be M . We generate the following list (nodal coordinate matrix):

x-coordinate of node 1 y-coordinate of node 1

x-coordinate of node M y-coordinate of node M

Let the number of (triangular) elements be N. These elements will be listed in the
element-node table or element connectivity matrix. Here, every element is charac-
terized by the indices of the nodes corresponding to this element in a well-defined
order (e.g., counterclockwise); cf. Figure 2.11.

11

7

4
Fig. 2.11: Element no. 10 with nodes nos. 4, 11, 7.

For example, the 10th row of the element-node table contains the entry
4 11 7.

Usually, a partition is generated by a grid generation algorithm that performs the
following steps: 1. Geometrical description of the domain; often this is a CAD output.
2. Boundary grid generation. Some grid generation algorithms require, as an initial
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step, a partition of the boundary 92 of the domain. 3. Domain grid generation,
i.e., the generation of a partition 7, of Q. A short overview on methods for the
grid generation will be given in Section 4.1. One of the simplest versions of a grid
generation algorithm has the following structure (cf. Figure 2.12):

Fig. 2.12: Refinement by quartering.

Prescribe a coarse triangulation (according to the above format) and refine this
triangulation (repeatedly) by subdividing a triangle into 4 congruent triangles by
connecting the midpoints of the edges with straight lines.

If this uniform refinement (quadrisection) is done globally, i.e., for all triangles
of the coarse grid, then triangles are created that have the same interior angles as the
elements of the coarse triangulation. Thus the quality of the triangulation, indicated,
for example, by the ratios of the diameters of an element and of its inscribed circle
(see Definition 3.31), does not change. However, if the subdivision is performed
only locally, the resulting triangulation is no longer consistent, in general. Such
an inconsistent triangulation can be corrected by bisection of the corresponding
neighbouring (unrefined) triangles. But this implies that some of the interior angles
are bisected and consequently, the quality of the triangulation becomes poorer if
the bisection step is performed too frequently. The following algorithm, which was
implemented in the PLTMG package already at the end of the 1970s [91], circumvents
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the described problem (although now (after version 8.0) it has been replaced by the
so-called longest edge bisection (see Subsection 4.1.5 later) in conjunction with a
modified data structure [5]).

A Possible Refinement Algorithm

Let a (uniform) triangulation 7~ be given (e.g., by repeated uniform refinement of a
coarse triangulation). The edges of this triangulation are called red edges.

L.

2.

Subdivide the edges according to a certain local refinement criterion (introduction
of new nodes) by successive bisection (cf. Figure 2.13).

If atriangle K € 7 has on its edges in addition to the vertices two or more nodes,
then subdivide X into four congruent triangles.

Iterate over step 2 (cf. Figure 2.14).

Subdivide the triangles with nodes at the midpoints of the edges into 2 triangles
by bisection. This step introduces the so-called green edges.

If the refinement is to be continued, first remove the green edges.

/~//"

Fig. 2.13: New nodes on edges.

2.4.2 Assembling

Denote by ¢, . . ., ¢ar the global basis functions. Then the stiffness matrix Ap has
the following entries:

N
(Ah)ij = Lv¢j Ve dx = Z Agn)

m=1

with

A = /K Vg, - Vi dx .

Let ay, . . ., apr denote the nodes of the triangulation. Because of the implication

Ag.");to = a;,a; € Kin
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: green edges

Fig. 2.14: Two refinement sequences.

(cf. (2.41)), the element K, yields nonzero contributions for AE'.") onlyifa;, a; € K,
at best. Such nonzero contributions are called element entries of Ay . They add up to
the entries of Ap.

In Example 2.12 we explained a node-based assembling of the stiffness matrix.
In contrast to this and on the basis of the above observations, in the following we
will perform an element-based assembling of the stiffness matrix.

To assemble the entries of A7, we will start from a local numbering (cf. Figure
2.15) of the nodes by assigning the local numbers 1, 2, 3 to the global node numbers
r1, 2, r3 (numbered counterclockwise). In contrast to the usual notation adopted in
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this book, here indices of vectors according to the local numbering are included in
parentheses and written as superscripts.

r3 3

s 1

n 2

Fig. 2.15: Global (left) and local numbering.

Thus in fact, we generate

A(f").) as (A(.'.")) .
( TS i =1,23 U Jij=1,23

To do this, we first perform a transformation of K,,, onto some reference element and
then we evaluate the integral on this element exactly.
Hence the entry of the element stiffness matrix reads as

Ag."):/;{ Yy, - Ve, dx.

The reference element K is transformed onto the global element K,,, by means of the
relation F(®) = B% + d, therefore

Dzu(F (%)) = Dxu(F (%)) Dz F (%) = Dxu(F (%)) B,
where D,u denotes the row vector (0yu, dou), i.e., the corresponding differential

operator. Using the more standard notation in terms of gradients and taking into
consideration the relation B~7 := (B~1)T, we obtain

Vit (F(£)) = BT V5 (u (F(£)) (2.53)

and thus
AP = [ Vg, (@) Vi (F2) | det(DF @)
= [ BTV (o, D) - BTV (0 (F ) B a2
= [ BTV, () BT Va0 () ldei®)| 2 @2.54)

_ /K BTVN;(2)- BTVLN,(8) |det(B)] d,
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where the transformed basis functions @,,, §(£) := ¢(F (%)) coincide with the local
basis functions on K, i.e., with the shape functions N;:

&, (2) = N;(®) fortek.

The shape functions N; have been defined in (2.33) (where (x, y) there must be
replaced by (%1, £;) here) for the standard reference element defined there.

Introducing the matrix C := (B71) (B‘I)T = (BTB)™", we can write
AT = ]K CViN;(R) - VeNi(2) |det(B)| d2. (2.55)

Denoting the matrix B by B = (b!), b}, then it follows that

PO p0 p .y 7! 1 b2 . p2D _p) . p2
1. @ @@ = det(B)? (_b(l) B2 . b(l))

because det(B? B) = det(B)2. The previous considerations can be easily extended to
the computation of the stiffness matrices of more general differential operators like

[ @@ - Vawar

(cf. Section 3.5). For the standard reference element, which we use from now on, we
have b1 = g@ — g p2 = 43— g1V Here a®,i = 1, 2, 3, are the locally numbered
nodes of K interpreted as vectors of R2.

From now on we make also use of the special form of the stiffness matrix and
obtain

Afjm) =N ./I; ¢, Nj 03, N; d&

+')/2/I;6)31Nj 0%, Ni + 03, N; 0z, N; dR (2.56)
+73,4%Nj 6g2N,-d)?
with
1
- _ 3 _ Y. {3 _ 0
7 = ol det(B)| = g (a® - a) - (a9 - a0},

y2 := c12| det(B)| = -

@ _ (1)).( @)Y _ (1)
TGet(B)] (a a a a ),

(am _ a<1>) . (am _ a(l)) _

1
= det(B)| =
y3 := 2| det(B)| T3t (B))
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In the implementation it is advisable to compute the values v; just once from the
local geometrical information given in the form of the vertices a® = a,, and to store
them permanently.

Thus we obtain for the local stiffness matrix

A™ = 3181 + 128 + 1353 (2.57)

with

S = (/ Oz N; 03 N; d)?) s
R ij

S = ( /K a,?lea@J\/,-wgzNjaﬁN,.d)e) ,

S5 = (f 0z, N; 02, N; dﬁ) .
R ij

ij
An explicit computation of the matrices S§; is possible because the integrands are
constant, and also these matrices can be stored permanently:

1 1-1 0 1 2-1-1 1 1 0-1
81:—2—-1 ]_ 0,S2:§_]- 0 1’S3:5 0 00
00O -1 10 -1 01

The right-hand side (g;,); = /;z J(x)gi(x) dx can be treated in a similar manner:

(an); = Z (q(m))i

m=1
with
@)= [ F0adr 0 = a K.
K

Again, we transform the global numbering (qﬁt"))i:l’23 for the triangle K,, =

conv {a,l, Qryy a,3} into the local numbering (q,(.m))i:l 23~ Analogously to the deter-
mination of the entries of the stiffness matrix, we have

" = [ D) g (F) | ce®)] ds
- [ N e ds,
where f(£) := f(F(&)) for £ € K.
In general, this integral cannot be evaluated exactly. Therefore, it has to be approx-

imated by a quadrature rule.
A quadrature rule for [, g(£) d% is of the type
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R
2 oxsE)
k=1

with certain weights wy and quadramure points £®. As an example, we take the
trapezoidal rule (cf. (2.42)), where

W =4,=0,0), ?=a=(010), ®=4=(01),

1
wk:g, k=123.

Thus for arbitrary but fixed quadrature rules, we have
R
g ~ Z wi F(E%) N; (£%) | det(B)| . (2.58)
k=1

Of course, the application of different quadrature rules on different elements is
possible, too. The values N; (2(")), i=1,23k=1,...,R, should be evaluated just
once and should be stored. The discussion on the use of quadrature rules will be
continued in Sections 3.5.2 and 3.6.

In summary, the following algorithm provides the assembling of the stiffness
matrix and the right-hand side:

Loop over allelements m = 1,...,N:

1. Allocating a local numbering to the nodes based on the element-node table:
l—r, 2—~nr, 3—rns.

2. Assembling of the element stiffness matrix A" according to (2.55) or (2.57).
Assembling of the right-hand side according to (2.58).

3. Loopoveri,j=1,273:

. A0m)
(Ah)rirj T (Ah)r,-rj + Ajj ’
(Qh)ri = (Qh)ri + ql(m) N
For the sake of efficiency of this algorithm, it is necessary to adjust the memory
structure to the particular situation; we will see how this can be done in Section 2.5.

2.4.3 Realization of Dirichlet Boundary Conditions: Part 1

Nodes where a Dirichlet boundary condition is prescribed must be labelled specially,
here, for instance, by the convention M = M; + M,, where the nodes numbered from
M; + 1 to M correspond to the Dirichlet boundary nodes. In more general cases,
other realizations are to be preferred.

In the first step of assembling of stiffness matrix and the load vector, the Dirichlet
nodes are treated like all the other ones. After this, the Dirichlet nodes are considered
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separately. If such a node has the number j, the boundary condition is included by
the following procedure:

Replace the jthrow of Ay, by the jthunit vector and (gy); by g(a;), if u(x) = g(x)
is prescribed for x € Q. To conserve the symmetry of the matrix Aj, modify the
right-hand side (gr); for i # j to (gn); — (An)ijg(a;), and after that replace the jth
column of Ay, by the jth unit vector. In other words, the contributions caused by the
Dirichlet boundary condition are included into the right-hand side. This is exactly
the elimination that led to the form (1.10), (1.11) in Chapter 1.

2.4.4 Notes on Software

Based on the above information, it is possible to develop a (very basic) finite element
code on one’s own. This is the way we suggest learning finite element program-
ming (and later finite volume programming) and continuing this through various
programming projects that will follow. As indicated in the introduction, this is in
principle independent of the IDE chosen. It may be tedious or restricting to develop
appropriate tools for geometric partitioning (in particular, in three space dimensions)
or for the efficient solution of the systems of linear algebraic equations (for specific
algorithms see Section 2.5 and Chapter 5). Here the chosen IDE may already provide
tools (e.g., the backslash operator in GNU Octave/MATLAB or NumPy [147], a core
package of SciPy [224], using Python).

If the solver of the systems of linear algebraic equations is the bottleneck, the usage
of one of the many linear algebra packages my be advisable (if not included in the used
IDE). For an overview see [227]. If the focus is more on the scientific/technological
application, and this is complex, it may be advisable to use a toolbox dedicated to the
(finite element) approximation of the respective class of PDE problems. Partitioning
tools are typically also provided here, and various element types are available.

Most open-source simulation tools for approximating the solutions of PDEs have
been implemented in C++ with the most prominent examples currently being deal.ii
[82], DUNE [96], FEniCS [74], MFEM [75]. However, there are significant differ-
ences between the several packages.

While deal.IT describes itself as a state-of-the-art finite element library focused
on generality, dimension-independent programming, parallelism, and extensibility,
its overall strength lies in a thorough documentation (including written and video
tutorials) and a diverse worldwide community contributing to the library. The latter
aspects helping users to get along with the library quite easily. As opposed to this,
deal.ii is a very large software package and, therefore, not a lightweight package. The
sheer amount of aspects and components of the software easily overwhelms users
that are not used to work with large software packages.

DUNE takes a different approach: it maintains a clear structure providing all the
tools to solve numerical problems while using heavy template magic to both, gain
optimal performance as well as separating data structures from algorithms. By this
approach, DUNE is split up into different modules (such as common, geometry,
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grid, fem, pdelab, dumux, ...), which provide application specific functionalities.
This overall structure makes DUNE a very general and highly performant simulation
software, while making it tough for beginners to get along with the software (due to
the use of very advanced C++ techniques).

The FeniCS Project consists of a collection of interoperable software components
and provides high-level Python and C++ interfaces to facilitate the use its components
to beginners. Thus, it vastly tries to automate the solution of PDEs (see also the title
of the FeniCS book [180]). However, the online tutorials and documentation are not
very detailed as compared to other FE software packages.

MEFEM tries to be a lightweight, flexible, and scalable C++ library. Thus, it
also has a very modular structure and heavily relies on the library HYPRE [151] to
provide the interfaces for a heavily parallel linear algebra (including several algebraic
multigrid approaches). Its tutorials are very colourful, but they do not really enable
a starter to use the software.

If only a specific field of applications is of relevance, there is a variety of closed-
source (commercial) and open-source tools, in which the numerical methods are
not necessarily clearly visible anymore (“black boxes”). An open-source tool for
fluid flow problems (computational fluid dynamics, CFD) is openFOAM [199],
which also includes finite volume discretization schemes. As a commercial tool,
which tries to cover features of various application fields and a PDE software, we
mention COMSOL Multiphysics [128]. Since COMSOL Multiphysics emerged from
FEMLAB and the latter in turn from a MATLAB toolbox, it is not surprising that it
offers a well-functioning bidirectional interface to MATLAB and Simulink.

2.4.5 Testing Numerical Methods and Software

To test numerical software, problems with a known, easily computable to sufficient
accuracy solution have to be available. For PDE problems as treated here this is
only the case for very specific boundary value problems (or, in Chapter 9, initial
boundary value problems). Typically such solutions are smooth, i.e., the order of
convergence can be tested but not the necessary regularity of the solution. In principle
any appropriately regular function can be made a solution of the PDE problem
under consideration by inserting it into the defining equations (pointwise or in
the variational form) and the essential (Dirichlet) boundary conditions to form the
corresponding right-hand sides (source terms). This method is sometimes called the
method of manufactured solutions. The disadvantage of such a procedure lies in the
fact that even “atypical” solutions can be chosen leading, for instance, to strong and
sign changing source terms to compensate for this, so that the problems generated
are often not representative of real-world problems.

Finally we want to briefly comment the practical determination of the asymptotic
convergence rate. If the exact solution is known, we can perform some computational
experiments to obtain a sequence of pairs (k;, e(;))7, where ho > ... > h; >
his1 > ... > hy, are (grid) parameters and e(4;) is the computed error corresponding



92 2 Finite Element Method for Poisson Equation

to the parameter 4;, e.g., e(h;) := |[up, —ullon, as in Programming project 2.4. Based
upon the theoretical investigations of the numerical method, an error model of the
form e(h) ~ ChP with two unknown parameters C, p > 0 is assumed.

Now the following sequence (p)) can be computed:

) ._ ln(e(hi+l)/e(hi)) -0 m—1

' In(hisr /Bi) .
If the error model fits, the sequence (p')) converges to p, and § := p™ U is a
sufficiently accurate approximation to p.

In case of an unknown exact solution, we can estimate the convergence rate at
least pointwise as follows. We perform a sequence of computational experiments
using the parameters h; := o'ho, i =0,...,m, m > 2, for some hg > 0, o € (0, 1).
Assuming the error model up(x) — u(x) ~ ChP at some fixed point of continuity

x € Q, the relationship up,,,(x) — up,(x) ~ ChP,| — ChP = C(oP — 1)(¢'ho)?

i+l
motivates to compute the sequence (p®) as follows:

p(l) - 1 ln (uhi+2(x) - uhi+1 (x)

Tne \ g, () - un,(x)

), i=0,...,m-2,

and p := p2 is taken as an approximation to p.

2.5 Solving Sparse Systems of Linear Equations by Direct
Methods

Let Abe an M X M matrix. Given a vector q € RM, we consider the system of linear
equations

A =q.

The matrices arising from the finite element discretization are sparse; i.e., they
have a bounded number of nonzero entries per row independent of the dimension
of the system of equations. For the simple example of Section 2.2, this bound is
determined by the number of neighbouring nodes (see (2.41)). Methods for solving
systems of equations should take advantage of the sparse structure. For iterative
methods, which will be examined in Chapter 5, this is easier to reach than for direct
methods. Therefore, the importance of direct methods has decreased. Nevertheless,
in adapted form and for small or medium size problems, they are still the method of
choice.

Elimination without Pivoting using Band Structure

In the general case, where the matrix A is assumed only to be nonsingular, there exist
matrices P, L, U € RMM guch that
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PA=LU.

Here P is a permutation matrix, L is a scaled lower triangular matrix, and U is an
upper triangular matrix; i.e., they have the form

1 0 Uil Uij

L = T . s U =

l,‘j 1 0 UMM
This factorization corresponds to the Gaussian elimination method with pivoting.
The method is very easy and has favourable properties with respect to the sparse
structure, if pivoting is not necessary (i.e., P = I, A = LU). Then the matrix A is

called LU factorizable.
Denote by A the leading principal submatrix of A of dimension k X k, i.e.,

ap - A
A= 0 0t ],
ar1 * - Akk

and suppose that it already has been factorized as Ay = LiUy. This is obviously
possible for k = 1: A = (a11) = (1)(@11). The matrix Ax,; can be represented in the

form of a block matrix
Ax|b
Apy1 =
* cT'\d

Lk 0 Uk u
Liy1 = 1| U1 =
1 0ls

with unknown vectors &, [ € R* and s < R, it follows that

with b,c € R¥, d ¢ R.
Using the ansatz

A1 = LinUnn = Lu=b, Ull=c, Tu+s=4d. (2.59)
From this, we have the following result:

Let A be nonsingular. Then lower and upper triangular matrices
L, U exist with A = LU if and only if A is nonsingular for all
1 < k < M.For this case, L andU are determined uniquely. (2.60)

Furthermore, from (2.59) we have the following important consequences:
If the first / components of the vector b are equal to zero, then this is valid for the
vector u, too:
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Ifb= (%), then u also has the structure u = (9) .
1%

Similarly,

0y . 0
¢ = |—] implies the structure I = [ =] .
v A
For example, if the matrix A has a structure as shown in Figure 2.16, then the zeros
outside of the surrounded entries are preserved after the LU factorization. Before we
introduce appropriate definitions to generalize these results, we want to consider the
special case of symmetric matrices.

[—2% i|:;

*ﬁ#*'|

Fig. 2.16: Profile of a matrix.

If A is as before nonsingular and LU factorizable, then U = DLT with a diagonal
matrix D = diag (d;), and therefore

A=LDLT.

This is true because A has the form A = LDU, where the upper triangular matrix
U satisfies the scaling condition #;; = 1 for alli = 1,..., M. Such a factorization is
unique, and thus

A = AT implies LT = U, therefore A = LDLT .

If in particular A is symmetric and positive definite, then also d; > 0 is valid. Thus
exactly one matrix L of the form

i 0
L= L with I;; >0 foralli
lij  lum
exists such that

A=LIT theso-called Cholesky factorization.

We have 3
Lchol = LGauss\/B, where VD := diag (\/Z)
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This shows that the Cholesky method for the determination of the Cholesky factor
L also preserves certain zeros of A in the same way as the Gaussian elimination
without pivoting.

In what follows, we want to specify the set of zeros that is preserved by Gaussian
elimination without pivoting. We will not consider a symmetric matrix; but for the
sake of simplicity we will consider a matrix with a symmetric distribution of its
entries.

Definition 2.19 Let A €¢ RMM be 3 matrix such that g;; # 0 fori = 1,..., M and
a;; #0 ifandonlyif a;#0 foralli,j=1,...,M. (2.61)
We define, fori =1,..., M,
fi(A) =min{j|a; #0, 1 <j <i}.

Then
mi(A) :=i - fi(4)

is called the ith (left-hand side) row bandwidth of A.
The bandwidth of a matrix A that satisfies (2.61) is the number

m(A) := lgz;me,-(A)zmax{z—] |a; #0, 1 <j<i<M}.
The band of the matrix A is
BA) :={G@ /). () |[i-mA)<j<i, 1<i<M}.

The set
Bnv (4) := {G, /), G,i) | f4) <j<i, 1 <i<M}

is called the hull or envelope of A. The number

M
p(A) := M +2) mi(A)
i=1

is called the profile of A.

The profile is the number of elements of Env(A).

For the matrix A in Figure 2.16 we have (m;(4A),...,ms(4)) = (0,0,2 1,3),
m(A) =3, and p(A) = 17.

Summarizing the above considerations, we have proved the following theorem:

Theorem 2.20 Let A be a matrix with the symmetric structure (2.61). Then the
Cholesky method or the Gaussian elimination without pivoting preserves the hull
and in particular the bandwidth.
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The hull may contain zeros that will be replaced by (nonzero) entries during the
factorization process. Therefore, in order to keep this fill-in small, the profile should
be as small as possible.

Furthermore, in order to exploit the matrix structure for an efficient assembling
and storage, this structure (or some estimate of it) should be known in advance,
before the computation of the matrix entries is started.

For example, if A is a stiffness matrix with the entries

aij = a(gj, ¢i) = '/g;V(,Dj - V; dx,
then the property
a;; #0 = g, a; are neighbouring nodes

can be used for the definition of an (eventually too large) symmetric matrix structure.
This is also valid for the case of a nonsymmetric bilinear form and thus a nonsym-
metric stiffness matrix. Also in this case, the definition of f;(A) can be replaced
by

fi(A):=min{j|1 < j<i, jisaneighbouring node of i} .

Since the characterization (2.60) of the possibility of the Gaussian elimination with-
out pivoting cannot be checked directly, we have to specify sufficient conditions.
Examples for such conditions are the following (see [61]):

* A is symmetric and positive definite,

* Ais an M-matrix.
Sufficient conditions for this property were given in (1.35) and (1.35)". In Section
3.9, geometrical conditions for the family of triangulations (7 ), will be derived
that guarantee that the finite element discretization considered here creates an
M-matrix.

Data Structures

For sparse matrices, it is appropriate to store only the components within the band
or the hull. A symmetric matrix A € R™M with bandwidth m can be stored in
M(m + 1) memory positions. By means of the index conversion a;x ~> b; g—i+m+1
for k < i, the matrix
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a a2 a1, m+1
azy azn . 0
_ M.M
A= Am+1,1 Am+1,2 *°° Gm+l,m+1 €R
0
aM,M-m - AMM-1 AMM

is mapped to the matrix

0 .. PR 0 all
0 0 a1 azn
0 a PR a
B — m1 m,m c RM,m+1
am+1,1 o AGmyl,m Am+l,m+l )
aM,M-m " AM,M-1 aMM

The unused elements of B, i.e., (B);; fori = 1,...,m,j=1,...,m+ 1 -1, are here
filled with zeros.

For a general band matrix, the matrix B € RM-2"*1 obtained by the above
conversion has the following form:

0 0 a;l  ap aLm+1
0 ayy axp - a3 m+2
0 am,1 Am,2m
Am+1,1 T Qn+l,2m+1
B =
aAM-m,M-2m aM-mM
AM-m+1,M-2m+1 " o AM-milL,M 0
aM,M-m aym O 0

Here, in the right lower part of the matrix, a further sector of unused elements arose,
which is also filled with zeros.

If the storage is based on the hull, additionally a pointer field is needed, which
points to the diagonal elements, for example. If the matrix is symmetric, again the
storage of the lower triangular matrix is sufficient. For the matrix A from Figure 2.16
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under the assumption that A is symmetric, the pointer field could act as shown in
Figure 2.17.

ap an as) as as3 as3 (7% asz ass ass ass

o~ | S _—

1 2 5 7 1

Fig. 2.17: Linear storage of the hull.

Coupled Assembling and Factorization

A formerly popular method, the so-called frontal method, performs simultaneously
assembling and the Cholesky factorization.

We consider this method for the example of the stiffness matrix A, = (a;;) €
RM-M with bandwidth m (with the original numbering).

The method is based on the kth step of the Gaussian or Cholesky method (cf. Fig-
ure 2.18).

Fig. 2.18: kth step of the Cholesky method.

Only the entries of By are to be changed, i.e., only those elements a;; with
k <1i,j <k + m. The corresponding formula is
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g*D _ 0 (k) (k)

+

4 =4y (k)akl
Dk

Lj=k+1,..k+m. (2.62)

Here, the upper indices indicate the steps of the elimination method, which we store
in a;;. The entries 4;; are generated by summation of entries of the element stiffness
matrix of those elements K that contain nodes with the indices i, j

Furthermore, to perform the elimination step (2.62), only a;, )

( ) fori,j =
k,...,k + m must be completely assembled; al ,z j=k+1,. k + m, can be

replaced by a(k) if a(kH) is later defined by a(’”l) a%™h a(k) a®. That is,
for the present a;j needs to consist of only a few contributions of elements K with
nodes i, j in K.

From these observations, the following algorithm is obtained. The kth step for
k=1,..., M reads as follows:

1. Assemble all of the missing contributions of elements X that contain the node
with index k.

2. Compute A%**1) by modification of the entries of By according to (2.62).

3. Store the kth row of A**D, also out of the main memory.

4. Define By (by a south-east shift).

Here the assembling is node-based and not element-based.

The advantage of this method is that A; need not be completely assembled and
stored in the main memory, but only a matrix B, € R™*L™+1_Of course, if M is not
too large, there may be no advantage.

Bandwidth Reduction

The complexity, i.e., the number of operations, is crucial for the application of a
particular method:

The Cholesky method, applied to a symmetric matrix A € RM-™ with bandwidth
m, requires O(m*M) operations in order to compute L.

However, the bandwidth m of the stiffness matrix depends on the numbering of
the nodes. Therefore, a numbering is to be found where the number m is as small as
possible.

We want to consider this again for the example of the Poisson equation on the
rectangle with the discretization according to Figure 2.9. Let the interior nodes have
the coordinates (i%, jA) withi = 1,...k -1, j = 1,...,1 — 1. The discretization
corresponds to the finite difference method introduced beginning with (1.10); i.e.,
the bandwidth is equal to k — 1 for a rowwise numbering or ! — 1 for a columnwise
numbering.

For k < I or k > I, this fact results in a large difference of the bandwidth m
or of the profile (of the left triangle), which is of size (k — 1){{ — 1)(m + 1) except
for a term of m?. Therefore, the columnwise numbering is preferred for k > I; the
rowwise numbering is preferred for k << [.
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For a general domain 2, a numbering algorithm based on a given partition 7, and
on a basis {¢;} of V}, is necessary with the following properties:

The structure of A resulting from the numbering must be such that the band or the
profile of A is as small as possible. Furthermore, the numbering algorithm should
yield the numbers m(A) or f;(A), m;(A) such that the matrix A can also be assembled
using the element matrices A%,

Given a partition 7, and a corresponding basis {(,a,- | I1<i<M } of Vi, we start
with the assignment of some graph G to this partition as follows:

The nodes of G coincide with the nodes {aj,...,apm} of the partition. The
definition of its edges is

a;a; is an edge of G
——
there exists a K € 7y, such that ¢;|x # 0, ¢;|x 0.

In Figure 2.19 some examples are given, where the example 2) will be introduced in
Section 3.3.

Partition:

1) 2)

linear ansatz on triangle (bi-)linear ansatz on quadrilateral

Fig. 2.19: Partitions and assigned graphs.

If several degrees of freedom are assigned to some node of the partition 7y, then
also in G several nodes are assigned to it. This is the case, for example, if so-called
Hermite elements are considered, which will be introduced in Section 3.3. The costs
of administration are small if the same number of degrees of freedom is assigned to
all nodes of the partition.

An often used numbering algorithm isthe Cuthill-McKee method. This algorithm
operates on the graph G just defined. Two nodes g;, a; of G are called neighbouring
if a;a; is an edge of G.
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The degree of a node a; of G is defined as the number of neighbours of a;.
The kth step of the algorithm for k = 1, .. ., M has the following form:

1. k = 1: Choose a starting node, which gets the number 1. This starting node
forms the level 1.

2. k > 1:If all nodes are already numbered, the algorithm is terminated. Other-
wise, the level k is formed by taking all the nodes that are not numbered yet
and that are neighbours of a node of level k — 1. The nodes of level k will be
consecutively numbered.

Within a level, we can sort, for example, by the degree, where the node with the
smallest degree is numbered first.

The reverse Cuthill-McKee method consists of the above method and the inver-
sion of the numbering at the end; i.e.,

new node number = M + 1 — old node number .

This corresponds to a reflection of the matrix at the counter diagonal. The bandwidth
does not change by the inversion, but the profile may diminish drastically for many
examples (cf. Figure 2.20).

kL kX Gk ok ok k]
® l Rk kD k)
E | K ok ki Ik

E I I kD
i * K ki e
E: * % k| ik k kK|

Fig. 2.20: Change of the hull by reflection at the counterdiagonal.

The following estimate holds for the bandwidth m of the numbering created by
the Cuthill-McKee algorithm:

D+i

<m< max (N1 + N -1).
2sksl(k1 k= 1)

Here D is the maximum degree of a node of G, [ is the number of levels, and N, is
the number of nodes of level k. The number i is equal to O if D is even, and i is equal
to 1 if D is odd. The left-hand side of the above inequality is easy to understand by
means of the following argument: To reach a minimal bandwidth, all nodes that are
neighbours of a; in the graph G should also be neighbours of a; in the numbering.
Then the best situation is given if the neighbouring nodes would appear uniformly
immediately before and after a;. If D is odd, then one side has one node more than
the other.
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To verify the right-hand side, consider a node g; that belongs to level k — 1 as well
as a node q; that is a neighbour of g; in the graph G and that is not yet numbered in
level k — 1. Therefore, a; will get a number in the kth step. The largest bandwidth
is obtained if 4; is the first node of the numbering of level k — 1 and if 4; is the last
node of level k. Hence exactly (Ny_1 — 1) + (N — 1) nodes lie between both of these;
i.e., their distance in the numbering is Ny_; + Ny — 1.

It is favourable if the number [ of levels is as large as possible and if all the
numbers Ny are of the same size, if possible. Therefore, the starting node should
be chosen “at one end” of the graph G if possible; if all the starting nodes are to
be checked, the expense will be O(M M), where M is the number of edges of G.
One possibility consists in choosing a node with minimum degree for the starting
node. Another possibility is to let the algorithm run once and then to choose the
last-numbered node as the starting node.

If a numbering is created by the (reverse) Cuthill-McKee algorithm, we can try
to improve it “locally”, i.e., by exchanging particular nodes.

Direct Methods for General Sparse Matrices

Tterative methods based on matrix-vector multiplications avoid the fill-in problem and
have been considered to be preferable for some decades, as they also do not require
to store the full matrix. Therefore we give these methods a broad consideration in
Chapter 5. Nevertheless developments both in computer hardware and in algorithms
have led to a renaissance of direct methods. We will only sketch a few aspects of
this development. Although computer memory meanwhile is hardly a restriction,
cache locality of algorithms has become an important issue for efficiency, besides
parallelizability. Dealing with (sparse) matrices (in the formats described above), a
row- or column-oriented storage should be reflected in a corresponding data access
of the algorithm. For the same reason the concentration of the computation load
to small, densely populated matrices is advisable. Basic operations are preferably
vector operations (on contiguously stored data) in the form of an AXPY (scalar times
vector plus vector) operation ax + y € RM, scalar product xTy ¢ R, or an outer
product xyT € RM-M _Considering the LU factorization with its three loops k, i, j, by
reordering of the loops different equivalent algorithms with different data access and
vector operations are possible. In the following we will concentrate for simplicity on
a symmetric, positive definite A and on the Cholesky method. The Cholesky method
in the kji-form is depicted in the Table 2.2, assuming that the lower half of A is
stored in L initially and overwritten with the correct L.

The update is here by adding a lower triangular (M — k) x (M — k) outer product
and corresponds in the first step to

T 1 0
_fan vy T
A—.(v B)_Ll (OB— IIWT)LI (2.63)

al
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k=1,...,M:

Ik = lllc/13

s=k+1,....,M:
Isp = lsk/lkk
j=k+1,...,M:
[=j,....,M:
Lij =l — ludje

Table 2.2: Cholesky method £ ji-formulation.

g 0

/1-;1/ Im-1f
right lower submatrix leads to L = Lj...Lp—1, where the ith column (from the
diagonal on) is just the first column of Z;. For the Cholesky method the fill-in can be
determined exactly by means of a symbolic Cholesky factorization. In the following
algorithm in Table 2.3 we also determine the elimination tree T(A). This is an acyclic
undirected graph with the nodes {1, ..., M}, where node M is the root and a parent
function n (and by this the full graph) is defined by

with B ¢ RM-LM-1 1, .- B = ai{z. Repeated application to the

#(j) = min{i > j|I; # 0}.

To assure that this graph is connected, i.e., a tree, we assume from now on that A is
irreducible.

Let A;, £; € {i,..., M} bethe set of indices of the column a¥, I, respectively,
of nonzero entries, 7 the parent function.

i=1...,M:#n({):=0
i=1,...,.M:
Ly = A,
forje{l,...,M} suchthatx(j)=1i:
Lii= (LU L)\ 1)
n(€) ;= min L; \ {£}

Table 2.3: Nonzero pattern of L and elimination tree.

Based on #, we will also speak of children i of j (n(i) = j) and of descendants
i of j (n*(@i) = j for some k). Every subgraph consisting of a node j and its
descendants will also be a tree and denoted by T[/], i.e,, T(A) = T[M]. Based on
the elimination tree (or similar graphs), multdifrontal algorithms can be developed,
which reduce updates to the manipulation of small dense matrices (and also detect
possible parallelization). We will develop only the basic idea.
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The Multifrontal Cholesky Method

‘We need the following result.

Lemma 2.21 1) Ifnode k is a descendant of j in T(A), then Ly C L;.
2)Iflix # 0and k < j, then k is a descendant of j in T(A).

Proof See [177]. |

Consider the jth column !V) of L and £; := {io, ...,i,} withip := j. For a vector
v € RM=/*1 indexed from j to M, denote by v* € R”*!

Vir
We define the subtree update matrix of column j by
V== Y g =T (2.64)
keT[N{G})

According to Lemma 2.21, U; contains all outer-product updates of all descendant
columns of j.
The jth frontal matrix F; for A is defined by
4jj 4jiy - Ajiy
i j
Fp=| . +Uj. (2.65)

ai"]

As the first row/column of F; result from the full update process of aY), we have
(compare (2.63)) ]

’ £ (197 0) (1 0) (10T ) 66

7 LJ\0U; 0 I (2.66)

with the update matrix U; from column j. Comparing this equation with (2.65) leads
to

Lemma 2.22
li] k

U~:Z ke Bk)-

keT[j] li, X
Proof Problem 2.17. o

We define a sparse addition of (dense) matrices A € R””, B ¢ R®® with indices
i1,...,4 and jy, ..., js as a matrix C € R%?, where the indices are {k,..., k;} =
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{it, .. »ir} U {j1,. .-, Js}, L., t < r + s, by extending A, B with zero entries to
matrices A, B € R*?, and

C:=A+ex B:=A+B.

Lemma 2.23 Let ¢y, . . ., ¢s be the children of node j in the elimination tree, then

ajj @iyj o Giyj
iy j
F:j = : text Uq Fext Uc_,- (2‘67)

Qi j
Proof Problem 2.18. O

Thus the Cholesky method reads as in Table 2.4.

j=1L..,n:
LetLj = {j7i19~~-7ir}-
Letcy, ..., cg be the children of j in the elimination tree.

Define Fj asin (2.67).
Factor Fj as in (2.66).

Table 2.4: Cholesky method via frontal and update matrices.

Remark 2.24 1) In this presentation we followed closely [177].

2) Update matrices may not be used immediately after their generation, no temporary
storage is necessary.

3) A reordering of the nodes may achieve that only few Uy have to be stored only
for a few steps. Such a reordering should preserve the elimination tree (up to
renaming of the nodes). Strategies are discussed in [177].

Exercises

Problem 2.13 Investigate the fill-in for an LU factorization without pivoting of the
following “arrow” matrices



106 2 Finite Element Method for Poisson Equation

Problem 2.14 Show that the number of arithmetic operations for the Cholesky
method for an M x M matrix with bandwidth m has order Mm?/2; additionally,
M square roots have to be calculated.

Problem 2.15 Find other forms of the Cholesky method (e.g., a jki and aijk form)
and discuss data access and vector operations.

Problem 2.16 Verify the algorithm in Table 2.3.
Problem 2.17 Show (2.66) and Lemma 2.22.
Problem 2.18 Show Lemma 2.23.

Programming project 2.1 Consider the one-dimensional Poisson equation with
inhomogeneous Dirichlet boundary conditions

-u"=f inQ:=(01)
u©) =g, u(l)=gr.

Write a function that solves the problem numerically for a given N, N € N, using
the finite element method. The input data are the right-hand side f, the boundary
data g;, g,, the exact solution #, and the number of intervals N. The output data are
£ € RN~1 and the maximum norm of the error, i.e., ||# — /e

Proceed step by step according to the following scheme:

1. Derive the variational formulation for the problem.
2. Choose a partition 7, := {(x;_1, Jc,-)},-l\;1 of the interval (0, 1) into &V intervals,
where 0 =: xg < x1 <...<xy:=1land

i i= Xiv1 — X; 1= {

Let X, := {v € C[0,1] | Vlxyx) € Pr@®i—n %), i = 1,...,N} and V}, :=
{veXn | vixo)=v(xn) =0}
Replace the variational formulation by a sequence of finite-dimensional prob-
lems of the form

Find uy, € X}, such that uy, (%) = g, un,(xy) = g» and

+ Flf if i is even,

2]~ 2]~

— a7 ifiisodd.

a(up, vu) = (f,vnyo forallvy € ¥ (2.68)
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3. Choose “hat functions” as a basis for Xj,:

(x = x;-1)/hi—1 in (i1, X,
@i(x) 1= (xi+1 = X) /b in (X, Xit1),
0 otherwise,

and assemble problem (2.68) into a linear system of equations (using an elemen-
twise approach)

An = qy,
N N
with unknowns & = (uo, . .., un)! such that u,(x) = 3, u;¢;(x).
i=0

Use the trapezoidal rule
i Xitl = Xi
g(Ndx = ———(g(xis1) + 8(x:))
Xi

to evaluate (f, vy )o and use sparse data structures where applicable.

4. Apply the Dirichlet boundary conditions (either by elimination or modification
of the appropriate equations).

5. Solve the resulting linear system with respect to & := (uy, ..., un—1)! using a
method of your choice.

Test the convergence order of your method for
f(x):= atsin(zx), g:=g =0
(i.e., u(x) = sin(zrx)) and N = 10, 20, 40, 80, 160.

Programming project 2.2 Implement a finite element method for the two-dimensional
Poisson problem

—Au=f inQ:=(0,1)?

u=0 onaoQ.

Use the same steps as given in Project 2.1, where the partition of {2 consists of m xm
rectangles K;; := [X; j, Xis1,7] X [Xij, Xi j41), 4, j =0,...,m—1, m € N, where

1 1 sps
ot e = m if i is even,
PTRITAL oL fidsodd

m W ’

and

Ly L if jiseven,
Xij+l —Xij =T ...

it if jisodd.

Form the basis of V;, as a tensor product of the univariate hat functions given in
Project 2.1.
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Test your implementation for £(x) := 2z sin(zx;) sin(zx2) and compare it to the
exact solution u.

Programming project 2.3 Consider the Dirchlet boundary value problem for the
two-dimensional Poisson problem

-Au=f inQ,
u=g onoQ,

where Q ¢ R? is a polygonally bounded domain given by I € N vertices in mathe-
matically positive order (that is, counterclockwise).

a) Write a function that refines a given (coarse) triangulation of Q by subdividing

each triangle into four congruent triangles. For the grids use the data structure
described in Section 2.4.1, i.e., a nodal coordinate matrix, the number of rows
is equal to the number of nodes and whose two columns contain the x- and y-
coordinates of the nodes, and an element connectivity matrix, the number of rows
is equal to the number of triangles and whose three colums contain the (ordered)
indices of the nodes corresponding to the triangles.
The input data are the nodal coordinate and element connectivity tables of a coarse
initial triangulation of Q and a grid parameter 4 > 0. The output data are the nodal
coordinate and element connectivity tables of the refined triangulation such that
the diameters of all triangles are less than 4.

b) Based on the grid refinement function from a) and the test and ansatz spaces
according to (2.30) and (2.31), respectively, follow the scheme given in Project 2.1
to create a function that solves the boundary value problem by means of the finite
element method. Apply the method described in Section 2.4.3 for realizing the
Dirichlet boundary conditions. The input data are the right-hand side f, the
boundary function g, the exact solution «, a coarse initial triangulation of Q and
a grid parameter 2 > 0. The output data are ¢ € RM and the maximum norm of
the error, i.e., ||# — up||oo-

¢) Consider the case Q := (0, 1) and a simple square Friedrichs—Keller triangulation
as an initial triangulation, i.e., divide Q into two triangles. You may select among
the following exact solutions to test certain aspects of your implementation:

Dulx,y):=x+y (zeroright-hand side),
2) u(x, y) := sin(zx) sin(zy) (zero boundary values),
3 u(x, y):=cos(7x)cos(7y) (nonzero right-hand side and boundary values).

Programming project 2.4 Use the finite element solver of Project 2.3 to solve the
equation
-Au=0 inQ

with Dirichlet boundary conditions (given in polar coordinates, x = rcos¢,y =
rsing, ¢ € [0,27))
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2
u(r cos @, r sing) = r*/> sin (3 go)
on the following domain with a reentrant corner (the thin lines indicate the initial
triangulation):

-1,1) (L1

(1,0

-1,-1) 0,-1)
The exact solution is u(r cos ¢, r sin ¢) = r?3sin ( %(p)

a) Solve this problem on 2...5 times uniformly refined grids and compute the 12-

€rrors
M

1 ) 1/2
[l — upllon = (ﬁ Z (uh(ai) - u(ai)) )

i=1

b) Compute the numerical convergence rate, i.e., the slope of the straight line that
fits the logarithms of the /2-errors to the logarithms of the corresponding step
sizes in a least squares sense. Comment on which order of convergence you are
getting and why order two cannot be expected.

Programming project 2.5 Extend your implementation from Project 2.3 to a sce-
nario with homogeneous Neumann boundary conditions:

-Au=f inQ,
ohu=0 only,
u=g3 onlz:=8Q\I;.

a) Extend the grid refinement function of Project 2.3 to a function that can addi-
tionally handle boundary conditions. Add a data structure which represents the
boundary conditions, for instance, a matrix which has three columns. Every row
should contain a label (or a flag) for the type of boundary condition (say 1 for
Neumann and 3 for Dirichlet boundary conditions) and the indices of the end-
points of one edge. In every refinement step the edges on the boundary have to be
refined.

b) Based on the grid refinement function from a) modify the assembling proce-
dure from Project 2.3 b) in order to take the homogeneous Neumann boundary
conditions into account.

c) Test your implementation for the case Q := (0, 1), T := (0, 1) x {0} and the exact
solution u(x, y) := sin(zx) cos(xy).



Chapter 3

The Finite Element Method for Linear Cehte
Elliptic Boundary Value Problems
of Second Order

g

3.1 Variational Equations and Sobolev Spaces

We now continue the definition and analysis of the “correct” function spaces that we
began in (2.19)-(2.22). An essential assumption ensuring the existence of a solution
of the variational equation (2.13) is the completeness of the basic space (V, || - ||}
In the concrete case of the Poisson equation the “preliminary” function space V
according to (2.7) can be equipped with the norm || - ||, defined in (2.21), which
has been shown to be equivalent to the norm || - ||, given in (2.6) (see (2.50)). If
we consider the minimization problem (2.14), which is equivalent to the variational
equation, the functional F is bounded from below such that the infimum assumes a
finite value and there exists a minimal sequence (vy,), in V, that is, a sequence with
the property

lim F(v,)= inf F{v).

n—00 veV

The form of F also implies that (v, }, is a Cauchy sequence. If this sequence converges
to an element v € V, then, due to the continuity of F with respectto || - ||, it follows
that v is a solution of the minimization problem. This completeness of V with respect
to || - |l, and hence with respect to || - ||1, is not satisfied in the definition (2.7), as
Example 2.8 has shown. Therefore, an extension of the basic space V, as formulated
in (2.22), is necessary. This space will turn out to be “correct”, since it is complete
with respect to || - [|1.

In what follows we use the following general assumption:

V is areal vector space with scalar product (-, -} and the norm || - ||

induced by (., -} (for this, ||[v|| = (v, W2 forall v € V is satisfied) ;

V is complete with respect to || - ||, i.e., a Hilbert space ; 3.1)
a :V XV — Ris a (not necessarily symmetric) bilinear form;

¢ :V — Risalinear form.

© Springer Nature Switzerland AG 2021 111
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The following theorem generalizes the above consideration to nonsymmetric
bilinear forms:

Theorem 3.1 (Lax-Milgram) Suppose the following conditions are satisfied:
1) The bilinear form a is continuous (cf. (2.46)), that is, there exists some constant
M > 0 such that
la(u, v)| < M|lu||||lv]l forallu,veV; 3.2)

2) The bilinear form a is V-coercive (cf. (2.47)), that is, there exists some constant
a > 0 such that
a(v,v) = a|v||* forallveV; (3.3)

3) The linear form ¢ is continuous, that is, there exists some constant C > 0 such
that
W) < Cllv|| forallveV. 3.4)

Then the variational equation (2.24), namely,
findu € V such that a(m,v) =4€(v) forallveV, (3.5)
has one and only one solution.
The solution u is stable in the sense that
C

Izl <

Here, one cannot avoid assumptions (3.1) and (3.2)3.4) in general.

Proof See, for example, [51]; for an alternative proof see Problem 3.1. ]

Now returning to the example above, assumptions (3.2) and (3.3) are obviously
satisfied for || - || = || ||o. However, the “preliminary” definition of the function space
V of (2.7) with norm || - ||, defined in (2.21) is insufficient, since (V, || - ||,) is not
complete. Therefore, the space V must be extended. Indeed, it is not the norm on V
that has been chosen incorrectly, since V is also not complete with respect to another
norm || - || that satisfies (3.2) and (3.3). In this case the norms || - || and || - ||, would
be equivalent (cf. (2.50)), and consequently

V.|l - llo) complete <= (V,|| - ||) complete.
Now we extend the space V and thereby generalize definition (2.19).

Definition 3.2 Suppose Q ¢ R is a (bounded) domain.
The Sobolev space H*(Q) is defined by

H*Q) := {vi @—=Rlve L*(Q) and the weak derivatives §%v exist

in L*(Q) for all multi-indices o € Ng with |e] < k} .
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A scalar product (-, ), and the resulting norm || - ||, in H*(€2) are defined as follows:

(v,w}k:=/ Z 8%v a%wdx, (3.6)

aeNg: |a|<k

1/2
VIl == (v, V};c/z = (/Q Z |8"v|2 dx) 3.7

aeNg: |a|<k

1/2 1/2
:( D /Q |8"v|2dx) =( > ||8"v||(2)) (3.8)

a€eNg: |a|<k aeNg: ja| <k

Greater flexibility with respect to the smoothness properties of the functions that
are contained in the definition is obtained by requiring that v and its weak derivatives
should belong not to L2(Q) but to L? (). In the norm denoted by || - ||x, p the LY(Q)
and ¢, norms (for the vector of the derivative norms) have to be replaced by the
LP(Q) and ¢, norms, respectively (see Appendices A.3 and A.5). However, the
resulting space, denoted by W;,‘ (), can no longer be equipped with a scalar product
for p # 2. Although these spaces offer greater flexibility, we will not use them except
in Sections 3.6, 8.2, and 10.3.

Besides the norms || - ||, there are seminorms | - |; for 0 < I < k in H*(Q),

defined by
1/2
lvlz:=( )y llf?“vllé) :

d.
aeNg: |a|<l

k 1/2
VIl = (Z |v|,2)
1=0

In particular, these definitions are compatible with those in (2.20),

such that

(v, wi ::fvw+Vv~dex,
Q

and with the notation || - ||o for the L2(Q) norm, giving a meaning to this one.
The above definition contains some assertions that are formulated in the following
theorem.

Theorem 3.3 The bilinear form (., ), is a scalar product on H*(Q), that is, || - ||t is
a normon H(Q).
HX(Q) is complete with respect to || - ||, and is thus a Hilbert space.

Proof See, for example, [66]. m}

Obviously,
H*Q)c H(Q) fork =1,
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and the embedding is continuous, since
vl < Vil for ally € H¥(€). (39
In the one-dimensional case (d = 1) v € H*(Q) is necessarily continuous:

Lemma 34
H(a b) c Cla, b],

and the embedding is continuous, where C|a, b] is equipped with the norm || - ||c0,
that is, there exists some constant C > 0 such that

Wlleo < Clivlly forallv e H'(a,b). (3.10)

Proof See Problem 3.2. m]

Since the elements of H*(Q) are first of all only square integrable functions,
they are determined only up to points of a set of (d-dimensional) measure zero.
Therefore, a result as in Lemma 3.4 means that the function is allowed to have
removable discontinuities at points of such a set of measure zero that vanish by
modifying the function values.

However, in general, H(Q) ¢ C (5).

As an example for this, we consider a circular domain in dimension d = 2:

Q=Br(0)={xeR*||x| <R}, R<l.

Then the function
1
v(x):=|log|x|[* for some y < 3

is in H(Q), but not in C (5) (see Problem 3.3).

The following problem now arises: In general, one cannot speak of a value v(x)
for some x € Q because a set of one point {x} has (Lebesgue) measure zero. How
do we then have to interpret the Dirichlet boundary conditions? A way out is to
consider the boundary (pieces of the boundary, respectively) not as arbitrary points
but as (d — 1)-dimensional “spaces” (manifolds).

The above question can therefore be reformulated as follows: Is it possible to
interpret v on 8Q as a function of L2(8Q) (4Q “c” R4 1)?

It is indeed possible if we have some minimal regularity of 9Q in the following
sense: It has to be possible to choose locally, for some boundary point x € 4%, a
coordinate system in such a way that the boundary is locally a hyperplane in this
coordinate system and the domain lies on one side. Depending on the smoothness of
the parametrization of the hypersurface we then speak of Lipschitz, C*- (for k € N),
and C*- domains (for an exact definition see Appendix A.5).

Example3.5 1) A circle Q := {x e R?||x - xo| <R} is a C*-domain for all
k € N, and hence a C*-domain.
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2) A rectangle Q := {x ¢ R? | 0<x <ai=1,...,d} is a Lipschirz domain,
but not a C'-domain.

3) Acircle witha cut Q := {x e R? | [x —xo| <R, x # xo+ Aey for0 < A <R} is
not a Lipschitz domain, since Q does not lie on one side of 02 (see Figure 3.1).

Circle Rectangle Circle with cut

Fig. 3.1: Domains of different smoothness.

Hence, suppose Q is a Lipschitz domain. Since only a finite number of overlapping
coordinate systems are sufficient for the description of €2, using these, it is possible
to introduce a (d — 1)-dimensional measure on dQ and define the space L*(3Q)
of square integrable functions with respect to this measure (see Appendix A.5 or
[66] for an extensive description). In the following, let Q2 be equipped with this
(d—1)-dimensional measure do-, and integrals over the boundary are to be interpreted
accordingly. This also holds for Lipschitz subdomains of €, as they are given by the
finite element partition, for example.

Theorem 3.6 (Trace Theorem) Suppose Q is a bounded Lipschitz domain. We

define
C®RY)q :={v: Q— R |vcan be extended tov : R — R and
7 e C®RY)}.
Then, C*(R%)|q is dense in HY(Q), that is, with respect to || - ||, an arbitrary

w € HY(Q) can be approximated arbitrarily well by some v € C*(R%)|q.
The mapping that restricts v to 4,

i (C*®Da I+ In) = (L2021 ), v~ vlaa,

is continuous.
Thus there exists a unique, linear, and continuous extension

voi (H'@I1- 1) = (L9, 11 - o) -
Proof See, for example, [66]. (m}

Therefore, in short form, yo(v) € L2(8Q), and there exists some constant C > 0
such that



116 3 TFinite Element Method for Linear Elliptic Problems

llyo®)llo < Clivlly forall v € HY(Q).
Here yo(v) € L*(Q) is called the trace of v ¢ HI(Q).

The mapping yo is not surjective, that is, {yo(v) | veH! (Q)} is a real subset of
L%(8%). For all v € C®(RY)|q, we have

yo(v) = vlaq -

In the following we will use again v|gq or “v on dQ” for yp(v), but in the sense of
Theorem 3.6. According to this theorem, definition (2.22) is well defined with the
interpretation of u on 92 as the trace:

Definition 3.7 H}(Q) := {v € HY(Q) | yo(v) = 0 (as a function on 4Q)}.

Theorem 3.8 Suppose Q c R is a bounded Lipschitz domain. Then C3(Q) is dense
in H}(Q).

Proof See [66]. (]

The assertion of Theorem 3.6, that C*(R%)|q is dense in H(Q), has severe
consequences for the treatment of functions in H!(Q) which are in general not very
smooth. It is possible to consider them as smooth functions if at the end only relations
involving continuous expressions in || - ||; (and not requiring something like ||d;v||c)
arise. Then, by some “density argument” the result can be transferred to H!(Q) or,
as for the trace term, new terms can be defined for functions in H! (). Thus, for the
proof of Lemma 3.4 it is necessary simply to verify estimate (3.10), for example, for
v € C![a, b]. By virtue of Theorem 3.8, analogous results hold for H}(Q).

Hence, for v € H(Q) integration by parts is possible.

Theorem 3.9 Suppose Q c R%is a bounded Lipschitz domain. The outer unit normal
vector w = (0 )i=1,.. 4 : 9Q — R? is defined almost everywhere and n; € L®(8Q).
Forvywe H\(Q)andi=1,...,d,

f@ivwdx:—fvﬁiwdx+f vwn; do .
Q Q oQ

Proof See, for example, [29] or [66]. O

If v € HXQ), then due to the above theorem, v|sn := yo(v) € L%(8Q) and
Bivlaa 1= Yo(B;v) € L2(8Q), since also d;v € H(Q). Hence, the normal derivative

d
Onvlpa = Z Oivlaa
=1

is well defined and belongs to L2(8Q).
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Thus, the trace mapping
y: HAQ) = L}(99Q) x L}(9Q), v — (vlan, dnvla)

is well defined and continuous. The continuity of this mapping follows from the fact
that it is a composition of continuous mappings:

v e HAQ) B g ¢ HY(Q) " 950 € L2(09Q)
continuous

o Ovlgan; € LAH(9Q).

Corollary 3.10 Suppose Q c R? is a bounded Lipschirz domain.
1)Letw e HY(Q), g; « HY(Q),i=1,...,d. Then

/q-dex:—/V~qwdx+/ g -nwwdo. (3.11)
Q Q 179

2) Letv € HXQ), w € H(Q). Then
/Vv~dex:—fAvwdx+ Ohvwdo .
Q Q Q

The integration by parts formulas also hold more generally if only it is ensured
that the function whose trace has to be formed belongs to H!(Q). For example, if
K = (k,-j)ij, where k;; € WL(Q) and v € HX(Q), w € H'(Q), it follows that

/KVv-dex:—/V~(KVv)wdx+/ KVv -nwwdo (3.12)
Q Q o0

with conormal derivative (see (0.41))
d
Ongv:=KVv-n=Vv -KTn= Z kijd;vn;.
ij=1

Here it is important that the components of KVv belong to H' (), using the fact
that for v € L2(Q), k € L®(Q),

kve L2Q) and [lkvio < [IKlleslVllo-
Theorem 3.11 Suppose Q C R? is a bounded Lipschitz domain.

Ifk > d/2, then
H*Q) c C(Q),

and the embedding is continuous.

Proof See, for example, [66]. O
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For dimension d = 2 thisrequires k > 1, and for dimension d = 3 weneed k > %
Therefore, in both cases k = 2 satisfies the assumption of the above theorem.

Exercises

Problem 3.1 Prove the Lax—Milgram theorem in the following way:

a) Show, by using the Riesz representation theorem, the equivalence of (3.5) with
the operator equation
Au=f
forAe L[V,V]and f € V.
b) Show, for T, : V — V, Ty := v — e(Av — f) and ¢ > 0, that for some ¢ > 0,
the operator T, is a contraction on V. Then conclude the assertion by Banach’s
fixed-point theorem (in the Banach space setting, cf. Remark 11.5).

Problem 3.2 Prove estimate (3.10) by showing that even for v € H(a, b),
v(x) = v(y)| < vlilx - y|V* forallx,y € (a, b).

Problem 3.3 Suppose Q ¢ R? is the open disc with radius % and centre 0. Prove that
for the function u(x) := |ln |x||a, x € Q\ {0}, @ € (0, %) we have u € H'(Q), but
cannot be extended continuously to x = 0.

Problem 3.4 Suppose Q C R? is the open unit disc. Prove that each « € H'(Q) has
atrace u|yqn € L2(9Q) satisfying [lullg aq < %Ilulll,g.

3.2 Elliptic Boundary Value Problems of Second Order

In this section we integrate boundary value problems for the linear, stationary case

of the differential equation (0.33) into the general theory of Section 3.1.
Concerning the domain we will assume that Q is a bounded Lipschitz domain.
We consider the equation

(Lu)(x) := =V - (K(xX)Vu(x)) + c¢(x) - Vu(x) + r(x)u(x) = f(x) forx € Q@ (3.13)
with the data

K: Q—-R% ¢: Q—RY rf: Q=R
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Assumptions about the Coefficients and the Right-Hand Side

For an interpretation of (3.13) in the classical sense, we need
Sikij cior, feCQ), i,je{l,...,d}, (3.14)

and for an interpretation in the sense of L?(Q) with weak derivatives, and hence for
a solution in H*(Q),

Bikij civr € L2(Q), fe LXQ), i, je{l,....d}. (3.15)

Once we have obtained the variational formulation, weaker assumptions about the
smoothness of the coefficients will be sufficient for the verification of the properties
(3.2)-(3.4), which are required by the Lax—Milgram theorem, namely,

kij,ci,V-c,r e L*(Q), fe L*Q), i je{l,...,d},

(3.16)
andif T1 UT|g-1 >0, n-cel®IUly).

Here we refer to a definition of the boundary conditions as in (0.36)-(0.39) (see
also below). Furthermore, the uniform coercivity of L is assumed: There exists some
constant ko > 0 such that for (almost) every x € Q,

d
Z kij(X)&&; = kolé|? forall £ € RY 3.17)
i,j=1

(that is, the coefficient matrix K is positive definite uniformly in x). Moreover, K
should be symmetric.

If K is a diagonal matrix, that is, k;; (x) = k;(x)é;; (this is, in particular, the case
if k;(x) = k(x) withk : Q — R, i € {l,...,d}, where KVu becomes kVu), this
means that

(317 < ki(x) = ko for (almost) every x € Q, ie{l,...,d}.

Finally, there exists a constant ry > O such that

rix) - %V -¢(x) = rg for (almost) every x € Q. (3.18)

Boundary Conditions

As in Section 0.5, suppose I', I'z, I3 is a disjoint decomposition of the boundary 42
(cf. (0.39)):
Q=T uluTls,
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where I3 is a relatively closed subset of the boundary (i.e., closed in the induced
topology of 8Q). For given functions g; : I; =R, j=1,2,3,anda: I — Rwe
assume on Q2

* Neumann boundary condition (cf. (0.41) or (0.36))
KVu =0y, u=g only, (3.19)
+ mixed boundary condition (cf. (0.37))
KVu -nw+aou=0u+au=g, only, (3.20)
+ Dirichlet boundary condition (cf. (0.38))
u=g onlz. (3.21)

Concerning the boundary data the following is assumed: For the classical approach
we need _ _
& €Cly), j=123, aelly), (3.22)

whereas for the variational interpretation,
g e LXT), j=1,23, ael®Iy) (3.23)

is sufficient.

3.2.1 Variational Formulation of Special Cases

The basic strategy for the derivation of the variational formulation of boundary
value problems (3.13) has already been demonstrated in Section 2.1. Assuming
the existence of a classical solution of (3.13) the following steps are performed in
general:

Step 1:  Multiplication of the differential equation by test functions that are chosen
compatible with the type of boundary condition and subsequent integration over
the domain Q.

Step 2: Integration by parts under incorporation of the boundary conditions in
order to derive a suitable bilinear form.

Step 3:  Verification of the required properties like coercivity and continuity.

In the following the above steps will be described for some important special cases.
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(I) Homogeneous Dirichlet Boundary Conditions: 9Q :=T73, g3 := 0,
V:= Hg(ﬂ)

Suppose u is a solution of (3.13), (3.21), that is, in the sense of classical solutions
let u € C1(Q) N C(Q) and the differential equation (3.13) be satisfied pointwise in
Q under assumptions (3.14) as well as u = 0 pointwise on §Q. However, the weaker
case in which u € H*(Q) NV and the differential equation is satisfied in the sense of
L%(2), now under the assumptions (3.15), can also be considered.

Multiplying (3.13) by v € () (in the classical case) or by v € V, respectively,
then integrating by parts according to (3.12) and taking into account that v = 0 on
0Q by virtue of the definition of Cg’(€2) and Hé (Q), respectively, we obtain

a(u,v)::f{KVu-Vv+c-Vuv+ruv}dx
Q

(3.24)
=4{v) = /fvdx forallve Cy(Q)orveV.
Q
The bilinear form a is symmetric if ¢ vanishes (almost everywhere).
For f e L*(Q),
¢ is continuous on (V, || - ||1) - (3.25)
This follows directly from the Cauchy—Schwarz inequality, since
ko)l < Llfl ldx <l flolvllo < IfllolvllL forveV.
Further, by (3.16),
a is continuous on (V, || - |l1) . (3.26)
Proof First, we obtain
)l < [ (KTl 1991+ lel 19l + ]l 1) .
Q
Here | - | denotes the absolute value of a real number or the Euclidean norm of a

vector. Using also || - || for the (associated) spectral norm, and || - ||o, for the L= (Q)
norm of a function, we further introduce the following notation:

¢ = max {JIIK o]l e} < 00, €2 o= lel]l, < oo

By virtue of
IK(x)Vu(x)| < [[K)ll2 [Vu(x)l,

we continue to estimate as follows:
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G, )| < €y f{|Vu| 9] + lu] |V|}dx+C2/ 194l o] dx .
(9] (9}

=i1A1 =:A)

The integrand of the first addend is estimated by the Cauchy—Schwarz inequality for
R?, and then the Cauchy-Schwarz inequality for L2(Q) is applied:

172 12
Al SC1/(|Vu|2+|u|2) (17 +1v2) " ax
Q

1/2 1/2
scl(fg|u|2+|vm2dx) (fg|v|2+|vw2dx) = Cylully W]l -

Dealing with Az, we can employ the Cauchy—-Schwarz inequality for L2(Q) directly:

1/2 1/2
Ay <Oy (/ |Vu|2dx) (/ lv|? dx)
Q Q

< Collulllvilo < Collully vl forallu,v e V.
Thus, the assertion follows. |

Remark 3.12 In the proof of propositions (3.25) and (3.26) it has not been used that
the functions u, v satisfy homogeneous Dirichlet boundary conditions. Therefore,
under the assumptions (3.16) these properties hold for every subspace V ¢ H(Q).

Conditions for the V-Coercivity of a

(A) a is symmetric, that is, ¢ = 0 (a.e.): Condition (3.18) then has the simple form
r(x) > ro for almost all x € Q.
Al) ¢=0, ro>0:

Because of (3.17) we directly get

alv,v) = f{k0|Vv|2 +rolv|?} dx > C3||v||f forallv e V,
Q

where C3 := min{ko, ro}. This also holds for every subspace V ¢ H! ().

A2) ¢=0, rp=0:

According to the Poincaré inequality (Theorem 2.18), there exists some constant
Cp > 0, independent of v, such that

1/2
Ivllo < Cp (/ |Vy|? dx) forallv e Hé(Q).
Q
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ki
Taking into account (3.17) and using the simple decomposition ko = ﬁ +
+
C2 F
L ko we can further conclude that
1+C4
a(v,v) = fk0|Vv|2 dx (3.27)
Q
k Cc2 1
> — / Vv [?dx + —2 k0—2[ v|*dx = CallvlIf,
1+Cp Ja 1+Cp Cp Ja
where Cy4 := ko > > 0.
1+Cp

For this estimate it is essential that v satisfies the homogeneous Dirichlet boundary
condition.
@) [icl||,, > 0:
First of all, we consider a smooth function v € C5°(2). From vVy = -%-Vv2 we get by
integrating by parts

1 1
fc-Vvvdx=—/c~Vv2dx=——/V-cv2dx.
Q 2 (o) 2 Q

Since according to Theorem 3.8 the space C°(€2) is dense in V, the above relation
also holds for v € V. Consequently, by virtue of (3.17) and (3.18) we obtain

alv,v) = L{KVV-VV+ (r—%Vw') v2}dx

(3.28)
> f{k0|Vv|2+r0|v|2}dx forallveV.
Q

Hence, a distinction concerning ro as in (A) with the same results (constants) is
possible.

Summarizing, we have therefore proven the following application of the Lax—
Milgram theorem (Theorem 3.1).

Theorem 3.13 Suppose Q C R? is a bounded Lipschitz domain. Under the assump-
tions (3.16)—(3.18) the homogeneous Dirichlet problem has one and only one weak
solution u € Hé Q).

(IT) Mixed Boundary Conditions: 9Q := I, V := H(Q)

Suppose u is a solution of (3.13), (3.20), that is, in the classical sense let u €
C%(Q) N CY(Q) and the differential equation (3.13) be satisfied pointwise in Q and
(3.20) pointwise on @2 under assumptions (3.14), (3.22). However, the weaker case
can again be considered, now under the assumptions (3.15), (3.23), that u € H*(Q)
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and the differential equation is satisfied in the sense of L2(2) as well as the boundary
condition (3.20) in the sense of L2(Q).
As in (I), according to (3.12),

a(u,v):zj{KVu~Vv+c~Vuv+ruv}dx+f auvdo
@ o (3.29)

=t’(v)::/fvdx+/ gvdo forallveV.
Q o)

Under the assumptions (3.16), (3.23) the continuity of £ and a, respectively, ((3.25)
and (3.26)) can easily be shown. The additional new terms can be estimated, for
instance, under assumptions (3.16), (3.23), by the Cauchy-Schwarz inequality and
the Trace Theorem 3.6 as follows:

/ gvdor
aQ
‘/ auvdo
aQ

where C > 0 denotes the constant appearing in the Trace theorem.

< llg2llo.6allvisallosa < Clig2lloeallvlly  forallv e V

and

< l@lloo, all#lacallo, 611 VIaallo, 00

< C*lalles,pallulli V]l forallw v e V,

Conditions for the V-Coercivity of a

For the proof of the V-coercivity we proceed similarly to (I)(B), but now taking into
account the mixed boundary conditions. For the convective term we have

1 1 1
/c-Vvvdx:—fc-szdx:——/V~cv2dx+—/ n-cvido,
Q 2 Ja 2 Jq 2 Joa

and thus

a(v,v)=f{KVv-Vv+(r—%V-c)v2}dx+j (a'+%n'c)v2d0'.
Q o0

This shows that o + %n -¢ > 0 on 3Q should additionally be assumed. If 7o > 0 in
(3.18), then the V-coercivity of a follows directly. However, if only rp > 0 is valid,
then the so-called Friedrichs’ inequality, a refined version of the Poincaré inequality,
helps (see [46, Theorem 1.9]).

Theorem 3.14 Suppose Q C R? is a bounded Lipschitz domain and let the set
I' ¢ 3Q have a positive (d — 1)-dimensional measure. Then there exists some
constant Cr > 0 such that
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1/2
vl < Cr (/_v2 do + f |VV|2dx) forallv € H'(Q). (3.30)
T Q

It a+%n-c > ap > Oforx € T c I'; and T has a positive (d—1)-dimensional measure,

then rp > 0 is already sufficient for the V-coercivity. Indeed, using Theorem 3.14,
we have

av,v) = kolv|? +aO/_v2 do > min{ko, ao} (|v|§ +'/~V2 do-) > Cs|lvI?
r r

with Cs := C;.z min{ ko, ap}. Therefore, we obtain the existence and uniqueness of a
solution analogously to Theorem 3.13.

(ITT) The General Case

First, we consider the case of a homogeneous Dirichlet boundary condition onI';
with |I's|g-1 > 0. For this, we define

Vi={veH(Q)|y()=00nT3}. (3.31)

Here V is a closed subspace of H' (Q), since the trace mapping yo : H/(Q) — L2(8Q)
and the restriction of a function from L2(8Q) to L%(I'3) are continuous.

Suppose u is a solution of (3.13), (3.19)—(3.21), that is, in the sense of classical
solutions let # € CXHQ) N Cl(ﬁ) and the differential equation (3.13) be satisfied
pointwise in Q and the boundary conditions (3.19)—(3.21) pointwise on their respec-
tive parts of Q2 under assumptions (3.14), (3.22). However, the weaker case that
u € H*(Q) and the differential equation is satisfied in the sense of L2(Q) and the
boundary conditions (3.19)—(3.21) are satisfied in the sense of L2(Fj), Jj=123
under assumptions (3.15), (3.23) can also be considered here.

As in (I), according to (3.12),

a(u,v)::f{KVu-Vv+c-Vuv+ruv}dx+f auvdo
e Iz (3.32)

:€(v):=/fvdx+/g1vd0'+/ggvda forallyv e V.
Q T )

Under assumptions (3.16), (3.23) the continuity of a and ¢, (3.26)) and ((3.25) can
be proven analogously to (II).
Conditions for V-Coercivity of a

For the verification of the V-coercivity we again proceed similarly to (II), but now
the boundary conditions are more complicated. Here we have for the convective term
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1 1
/c-Vvvdx:——/V-cv2dx+—f n-cvido, (3.33)
fe) 2 Jo 2 LU,

and therefore

a(v,v)=/{KVv~Vv+(r——1—V-c)v2}dx
Q 2
1 ) 1 )
+= [ n-cvido+ a+=n-c|vido.
2 Jr, T 2

In order to ensure the V-coercivity of a we need, besides the obvious conditions

1
n-¢c>0 onl; and a+§n~c20 only, (3.34)

the following corollary from Theorem 3.14.

Corollary 3.15 Suppose Q c R? is a bounded Lipschitz domain and T c 8Q has a
positive (d — 1)-dimensional measure. Then there exists some constant Cg > 0 such
that

1/2
vllo < Cr (f |vv|2dx) = Crlvly forallv e H(Q) with vl = 0.
Q

This corollary yields the same results as in the case of homogeneous Dirichlet
boundary conditions on the whole of 4Q.

If |T3|4-1 = O, then by tightening conditions (3.34) for ¢ and «, the application
of Theorem 3.14 as done in (II) may be successful.

Summary

We will now present a summary of our considerations for the case of homogeneous
Dirichlet boundary conditions.

Theorem 3.16 Suppose Q C R? is a bounded Lipschitz domain. Under assumptions
(3.16), (3.17), (3.23) with g3 = O, the boundary value problem (3.13), (3.19)—(3.21)
has one and only one weak solution u € V, if

Dr-iv.c>0inQ.

2)n-¢c>00nTly.

3a+in-c>00nT,.

4) Additionally, one of the following conditions is satisfied:

a) [T3]g-1 > 0. 3 3

b) There exists some Q C Q with |Q|g > 0 and ro > O such thatr — -%V - =1
on Q. _

c) There exists some I'y C 'y with |Ty|g-1 > 0 and co > O such thatn - ¢ > co
onTjy.
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d) There exists some T, c Ty with li:2|d—1 > 0andag > Osuch th,ata+%n'c > a9
only.

Remark 3.17 We point out that by using different techniques in the proof, it is possible
to weaken conditions 4)b)—d) in such a way that only the following has to be assumed:

a)|[{xeQ: r-3vV-c>0},>0,
b)[{xel1: n-c>0}|,, >0,
)[{xel: e+in-c>0}|,, >0.

However, we stress that the conditions of Theorem 3.16 are only sufficient, since
concerning the V-coercivity, it might also be possible to balance an indefinite addend
by some “particular definite” addend. But this would require conditions in which the
constants Cp and Cr are involved.

As one of the many examples we mention: Assume there is a number & > 0 such
that

&Ilvllf <a(,v) - / ¢-Vvvdx forallveV.
Q

Then V-coercivity holds if o := &— %HC”OO > 0 or, based on (3.33), similar smallness
requirements for V - ¢ can be postulated.
Note that the pure Neumann problem for the Poisson equation

-Au=f inQ,

3.3
Onu=g ondQ (3-33)

is excluded by the conditions of Theorem 3.16. This is consistent with the fact that
not always a solution of (3.35) exists, and if a solution exists, it obviously is not
unique (see Problem 3.8).

Before we investigate inhomogeneous Dirichlet boundary conditions, we intro-
duce an alternative formulation that comes closer to a natural situation described in
Chapter 0.

The linear stationary case of the differential equation (0.33) is in the form

-V-(KVu-cu)+ifu=f. (3.36)

Such a formulation is called of divergence form. Considering the total flux density

P = —KVu + cu as the relevant physical quantity, we assume boundary conditions
of the form

(KVu—-cu)-n=g only, (3.37)

(KVu—cu) w+au=3 onl,, (3.38)

u=3 onls. (3.39)

Here Tl, i:g, f3 is a subdivision of 4Q with the same properties as those given by
I'1, Ty, I'3. The variational formulations take the form
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A, v) =2() forallu,veV

with V as in (3.31) ('3 substituted by T3), £ as € in (3.32) (with I;, g; substituted by
I, &i,1 = 1, 2). The bilinear form reads as

au,v) = f [KVqu +ué-Vv+ ruv]dx + /~ auvdo, (3.40)
Q I
where ¢ := —c. The relationship between both formulations can be investigated for

classical solutions, the same relationship holds in the variational context. We obtain,
by differentiating and rearranging the convective term,

-V - KVu)+c-Vu+(V-c+Fu=f,

which gives the form (3.13) with » := V - ¢ + 7. The boundary conditions on I
correspond to the mixed boundary conditions (3.20), i.e., F1 C I, @ := —n-c, those
on I'; also have the form of (3.20) withe := -1 - ¢ + &, ie., T2 has to be subdivided
into Ty := {x e T2 | a(x) =0}, T332 := {x € T2 | @(x) # 0} and then

I, = Fl U Fz)z, In = I‘:2>1. (3.41)

The same holds true in the variational formulations as follows:

/uZ--Vvdx=/uV-(Ev)dx—fV-Z'uvdx
Q Q Q

=—/~‘ ~n~cuvdo-+/‘c~Vuvd)c+/\V-cuvdx.
U, Q o}

In summary, conditions 1)-3) of Theorem 3.16 for the divergence form (3.36),
(3.37)—(3.39) read as follows:

(3.42)

1)1’+%V-020 inQ,
21n-¢c=>0 onle ={xelpla@) =n-c},

3)&—%n~020 onl2\T21, m-¢<0 only.
(3.43)
Let us consider the following typical example. The boundary 6€2 consists only of
two parts I'; and T. Therein, T is an outflow boundary and I an inflow boundary,
that is, the conditions

n-c<0 onfl and n-¢>0 oni:z
hold. Frequently prescribed boundary conditions are

—(cu—KVu) -n =g onTy,

~(cu-KVu)-n=-n-cu only.
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That is, on I'; we have & = 1 - ¢. They are based on the following assumptions:
On the inflow boundary T the normal component of the total (mass) flux density is
prescribed, but on the outflow boundary fg, on which in the extreme case K = 0 the
boundary conditions would drop out, only the following is required:

+ the normal component of the total (mass) flux density is continuous over fg,

* the ambient mass flux density that is outside €2 consists only of a convective part,

+ the extensive variable (for example, the concentration) is continuous over I'y, that
is, the ambient concentration in x is also equal to u(x).

Therefore, as indicated, we get I} = i:z, I, = Fl, and the Neumann boundary
condition (3.19), and the mixed boundary condition (3.20),

KVu - n=0 onljy,
KVu~n+au:gz only,

where a = —1t - ¢.

Now the conditions of Theorem 3.16 can be checked:

We have r — -%V c=F+ %V - ¢ ; therefore, for the latter term the inequalities in
1) and 4)b) have to be satisfied. Further, the condition 1t - ¢ > 0 on I'; holds due to
the characterization of the outflow boundary. Because of o + %n C = —%n - ¢, the
condition 3) is satisfied due to the definition of the inflow boundary.

Now we address the case of inhomogeneous Dirichlet boundary conditions
(T3lay > 0).

This situation can be reduced to the case of homogeneous Dirichlet boundary
conditions, if we are able to choose some (fixed) element w € H!(Q) in such a way
that (in the sense of traces) we have

yo(w) =g3 onl3. (3.44)

The existence of such an element w is a necessary assumption for the existence of
a solution # € H'(Q). On the other hand, such an element w can exist only if g3
belongs to the range of the mapping

HY(Q)3v — yo()lr, € LXT3).

However, this is not valid for all g3 € L%(I'3), since the range of the trace operator of
H'(Q) is a proper subset of L%(dQ) (for more details see Subsection 6.2.1).

Therefore, we assume the existence of such an element w € H'(Q). To facilitate
the relationship between the two formulations above and the adjoint problem later
(Definition 3.39), we also assume that

Yow) =0 onTjUT,. (3.45)

Since only the homogeneity of the Dirichlet boundary conditions of the test functions
plays a role in derivation (3.32) of the bilinear form a and the linear form ¢, we first
obtain with the space V, defined in (3.31), and
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V= {veHl(Q)|7o(v):g3onF3} = {veHl(Q)|v—w€V}

the following variational formulation:

Find & € V such that
a(@,v)=4(v) forallveV.

However, this formulation does not fit into the theoretical concept of Section 3.1
since the set V is not a linear space.
However, if we put & := « + w, then this is equivalent to the following problem:

Find u € V such that
a(u,v) = €(v) —aw,v) = €(v) forallveV. (3.46)

Now we have a variational formulation for the case of inhomogeneous Dirich-
let boundary conditions that has the form required in the theory. The relationship
between the formulations (3.13), (3.19)-(3.21) and (3.35), (3.37)—(3.39) remains
as above, as the term —d(w, v) transforms according to (3.42) to —a(w,v) (for
r:=F+V-c) as f ¢ -t wvdo vanishes due to the boundary condition of v on T3
and ofwon Iy UIy from (3.45).

Remark 3.18 In the existence result of Theorem 3.1, the only assumption is that €
has to be a continuous linear form on V.

Ford :=1 and Q := (g, b) this is also satisfied, for instance, for the special linear
form

8y(v) :=v(y) forve H(a,b),

where y € (a, b) is arbitrary but fixed, since by Lemma 3.4 the space H!(ag, b) is
continuously embedded in the space Cla, b]. Thus, for d = 1 point sources (£ = §,)
are also allowed. However, for d > 2 this does not hold since H(Q) ¢ C(Q).

Finally, we will once again state the general assumptions under which the variational
formulation of the boundary value problem (3.13), (3.19)-(3.21) in the space (3.31),

V={ve H(Q)]y(v) = 0Oon I3}

has properties that satisfy the conditions of the Lax—Milgram theorem (Theorem 3.1):

» Q c R9is a bounded Lipschitz domain.

* ki, Veoe,r e L°(Q), f € LYXQ), i,j € {1,...,d}, and, if Ty U Tlg—; > O,
1t-c e LT UTIy) (ie., (3.16)).

* There exists some constant ko > O such that a.e. in Q we have £ - K(x)¢ >
kol£|?  forall £ € R? (ie., (3.17)),

o g € L¥Ty), j=123 ac L) (e, (3.23)).

* The following hold:
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r-1iv.c>0inQ.
2)n-c>0o0nly.
3)a+in-c>00nl;.
4) Additionally, one of the following conditions is satisfied:
a) [3]a-1 > 0. 3 3
b) There exists some  C Q with ||z > 0 and rg > 0 such that r — %V € =1
on Q.
c) There exists some I c Iy with |F1 la—1 > 0and cp > O suchthatn-¢c > ¢p
onT7.
d) There existssome I'; ¢ T with|T;|4—1 > Oand ap > Osuchthat a+%n'c > ap
onI;.

* If T3], > O, then there exists some w € H!(Q) with yo(w) = g3 on I3 (i.e.,
(3.44)).

3.2.2 An Example of a Boundary Value Problem of Fourth Order

The Dirichlet problem for the biharmonic equation reads as follows:

Find u € C*(Q) N C1(Q) such that

Au=f inQ,

Ou=u=00n0Q, (3.47)
where
d
A%u = A(Au) = Z 8,-2 (0]-2u) .
ij=1

In the case d = 1 this collapses to A%u = u®.
For u, v € H*(Q) it follows from Corollary 3.10 that

f(uAv—Auv) dx:f {u v — Buuvido
Q 29

and hence for u € H4(Q), v € H*(Q) (by replacing u with A in the above equation),

fAuAvdx:fAzuvdx—f 8nAuvd0'+f Audyvdo.
Q Q a0 Q

For a Lipschitz domain Q we define
H3(Q):= {v e HH(Q)| v = 8v = 0 on 0Q}

and obtain the variational formulation of (3.47) in the space V := Hg(Q):

Find u € V, such that
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a(mv)::/AuAvdx:Z(v):szvdx forallv e V.
Q Q

More general, for a boundary value problem of order 2m in conservative form,
we obtain a variational formulation in H™(Q) or Hj"(£2).

3.2.3 Regularity of Boundary Value Problems

In Section 3.2.1 we stated conditions under which the linear elliptic boundary value
problem admits a unique solution u (#, respectively) in some subspace V of H' ().
In many cases, for instance, for the interpolation of the solution or in the context of
error estimates (also in norms other than the || - ||y norm) it is not sufficient that «
(i, respectively) have only first weak derivatives in L2(Q).

Therefore, within the framework of the so-called regularity theory, the question
of the assumptions under which the weak solution belongs to H*(Q), for instance,
has to be answered. These additional conditions contain conditions about

+ the smoothness of the boundary of the domain,

+ the shape of the domain,

» the smoothness of the coefficients and the right-hand side of the differential
equation and the boundary conditions,

+ the kind of the transition of boundary conditions in those points, where the type
is changing,

which can be quite restrictive as a whole. Therefore, in what follows we often assume
only the required smoothness. Here we cite as an example one regularity result ([28,
Theorem 8.12]).

Theorem 3.19 Suppose Q is a bounded C2-domain and T's = Q. Further, assume
that kij € CY(Q), ci,r € L®(Q), f € L3Q), i,j € {1,...,d}, as well as (3.17).
Suppose there exists some function w € HX(Q) with yo(w) = gz on 3. Letii = u+w
and let u be a solution of (3.46). Then ii ¢ H*(Q) and

lllla < C{llullo + 1I.fllo + [Iwliz2}

with a constant C > 0 independent of u, f, and w.

One drawback of the above result is that it excludes polyhedral domains. If the
convexity of Q is additionally assumed, then it can be transferred to this case.
Simple examples of boundary value problems in domains with reentrant corners
show that one cannot avoid such additional assumptions (see Problem 3.5).
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Exercises

Problem 3.5 Consider the boundary value problem (1.1), (1.2) for f = 0 in the
sector Q := {(x,y) € R? | x =rcosg, y = rsinpwith0 <r < 1, 0 < ¢ < a} for
some 0 < a < 2, thus with the interior angle «. Derive as in (1.23), by using the
ansatz w(z) := z!/?, a solution u(x, y) = Imw(x +iy) for an appropriate boundary
function g. Then check the regularity of u, that is, # € H*(Q), in dependence of a.

Problem 3.6 Consider the problem (1.29) with the transmission condition (1.30)
and, for example, Dirichlet boundary conditions and derive a variational formulation
for this.

Problem 3.7 Consider the variational formulation:

Find # € H'(Q) such that

/Vu~Vvdx:/fvdx+/ gvdo forally e H(Q), (3.48)
Q Q [2:9)

where Q is a bounded Lipschitz domain, f € L*(Q) and g € L2(8Q).

a) Let u € H(Q) be a solution of this problem. Show that —Au exists in the weak
sense in L2(Q) and
-Au=f.

b) If additionally € H*(Q), then dq|sq exists in the sense of trace in L2(3Q2) and
Onut = 8

where this equality is to be understood as

/(Bnu—g)vdJ:O for all v € H'(Q).
179

Problem 3.8 Consider the variational equation (3.48) for the Neumann problem for
the Poisson equation as in Problem 3.7.

a) If a solution # € H(Q) exists, then the compatibility condition

jfdx+/ gdo =0 (3.49)
Q o0
has to be fulfilled.

b) Consider the following bilinear form on H!(Q) :

ﬁ(u,v)::[)Vu~Vvdx+(/ﬂudx)([)vdx).
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Show that 4 is V-coercive on H'(Q).
Hint: Do it by contradiction using the fact that a bounded sequence in H!(Q)

possesses a subsequence converging in L*(Q) (see, e.g., [66]).
¢) Consider the unique solution & € H' () of

d(mv):[)fvdx+/00gvdv for allv € H{(Q).

|Q|/12dx:/fdx+f gdo.
Q Q 0

Furthermore, if (3.49) is valid, then # is a solution of (3.48) (with fQ idx =0).

Then:

Problem 3.9 Show analogously to Problem 3.7: A weak solutionu € V ¢ H'(Q) of
(3.32), where V is defined in (3.31), with data satisfying (3.15) and (3.23), fulfills a
differential equation in L%(2). The boundary conditions are fulfilled in the following
sense:

B“Kuvd0'+/(8“Ku+a'u)vdo'=/glvd0'+/ggvdo' forallve V.
I Iy 1-‘1 n

3.3 Element Types and Affine Equivalent Partitions

In order to be able to exploit the theory developed in Sections 3.1 and 3.2 we make
the assumption that Q is a Lipschitz domain.

The finite element discretization of the boundary value problem (3.13) with the
boundary conditions (3.19)-(3.21) corresponds to performing a Galerkin approxi-
mation (cf. (2.26)) of the variational equation (3.46) with the bilinear form a and
the linear form ¢, supposed to be defined as in (3.32), and some w € H(Q) with
the property w = gz on I'3. The solution of the weak formulation of the boundary
value problem is then given by # := u + w, if u denotes the solution of the variational
equation (3.46).

Since the bilinear form a is, in general, not symmetric, (2.24) and (2.26), respec-
tively (the variational equation), are no longer equivalent to (2.25) and (2.27), respec-
tively (the minimization problem), so that in the following we pursue only the first,
more general, ansatz.

The Galerkin approximation of the variational equation (3.46) reads as follows:

Find some u € V}, such that
a(up,v) =€) —alw,v) =: £(v) forallve V. (3.50)

The space Vj, that is to be defined has to satisfy V, ¢ V. Therefore, we speak of a
conforming finite element discretization, whereas for a nonconforming discretization
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this property, for instance, can be violated. The ansatz space is defined piecewise
with respect to a partition 75 of Q with the goal of getting small supports for the
basis functions. A partition in two space dimensions consisting of triangles (i.e., a
triangulation) has already been defined in definition (2.28). The generalization to d
space dimensions reads as follows:

Definition 3.20 A partition 7y, of a set Q ¢ R consists of a finite number of subsets
K of Q with the following properties:

(T1) Every K € 7}, is closed.

(T2) For every K € 7}, its nonempty interior int (K) is a Lipschitz domain.

(T3) Q = Ugeq;, K.

(T4) For different Ky and K, of 7y the intersection of int (K;) and int (K>) is
empty.

The sets K € 7y, which are called somewhat inaccurately elements in the following,
form a nonoverlapping decomposition of Q. Here the formulation is chosen in such
a general way, since in Section 3.8 elements with curved boundaries will also be
considered. In Definition 3.20 some condition, which corresponds to the property
3) of definition (2.28), is still missing. In the following this will be formulated
specifically for each element type. The parameter 4 is a measure for the size of all
elements and mostly chosen as

h := max diam (K),
Ke7,

that is, for instance, for triangles 4 is the length of the triangle’s longest edge.
For a given vector space V}, let

Pr:={vlg|lveV} forKe7y, (3.51)
that is,

Vic{v:Q—R|vx € Px forallK e 7} .

In the example of “linear triangles” in (2.30) we have Px = %, the set of poly-
nomials of first order. In the following definitions the space Px will always consist
of polynomials or of smooth “polynomial-like” functions, such that we can assume
Px ¢ HY(K) n C(K). Here, H'(K) is an abbreviation for H!(int(K)). The same
holds for similar notation.

As the following theorem shows, elements v € Vj, of a conforming ansatz space
V), € V have therefore to be continuous:

Theorem 3.21 Suppose Px ¢ H'(K) N C(K) for all K € 7y,. Then
Vi CCQ) = WV, c H(Q)
and, respectively, for Vo, := {v € V;, | v =0 0n 8Q},

Vo;, C C(ﬁ) — Vo}, C Hcl)(Q).
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Proof See, for example, [16, Theorem 5.1 (p. 62)] or also Problem 3.10. m|

If V, ¢ C(Q), then we also speak of C%-elements. Hence with this notion we
do not mean only the K € 7, but these provided with the local ansatz space Px
(and the degrees of freedom still to be introduced). For a boundary value problem of
fourth order, ¥, ¢ H*(Q) and hence the requirement V, ¢ C1(Q) are necessary for
a conforming finite element ansatz. Therefore, this requires, analogously to Theo-
rem 3.21, so-called C!-elements. By degrees of freedom we denote a finite number of
values that are obtained for some v € Px from evaluating linear functionals on Pk .
The set of these functionals is denoted by Xg. In the following, these will basically
be the function values in fixed points of the element X, as in the example of (2.30).
We refer to these points as nodes. (Sometimes, this term is used only for the vertices
of the elements, which at least in our examples are always nodes.) If the degrees of
freedom are only function values, then we speak of Lagrange elements and specify
X by the corresponding nodes of the element. Other possible degrees of freedom
are values of derivatives in fixed nodes or also integrals. Values of derivatives are
necessary if we want to obtain C!-elements.

As in the example of (2.30) (cf. Lemma 2.10), V}, is defined by specifying Px
and the degrees of freedom on K for K € 7;. These have to be chosen such that,
on the one hand, they enforce the continuity of v € Vj, and, on the other hand, the
satisfaction of the homogeneous Dirichlet boundary conditions at the nodes. For this
purpose, compatibility between the Dirichlet boundary condition and the partition
is necessary, as it will be required in (T6).

As can be seen from the proof of Lemma 2.10, it is essential

that the interpolation problem, locally defined on K € 7, by the
degrees of freedom, is uniquely solvable in Pk,
that this also holds on the (d — 1)-dimensional boundary surfaces

F of K € 7y, for the degrees of freedom from F and the functions
(F2) v|r where v € Pg; this then ensures the continuity of v € Vp, if (3.53)
Py and Pk match in the sense of Px|r = Pg/|r for K,K' € 7,

intersecting in F (see Figure 3.2).

FD (3.52)

Pr=Py Prlr =P,

Fig. 3.2: Compatibility of the ansatz space on the boundary surface and the degrees
of freedom there.
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The following finite elements defined by their basic domain K(e 7;), the local
ansatz space Pk, and the degrees of freedom Xx satisfy these properties.
For this, let P (K) be the set of mappings p : K — R of the following form:

PO) =Pt %) = D Yar.aa¥y'Ket = D Yax®, (3.54)

lo|<k lo]<k

hence the polynomials of order k in d variables. The set #%(K) forms a vector
space, and since p € %, (K) is differentiable arbitrarily often, %, (K) is a subset of
all function spaces introduced so far (provided that the boundary conditions do not
belong to their definition).

For both, K € 7, and K = R? we have

(3.55)

dim Py (K) = dim P (RY) = (d N k) :

k

as even P (R%)|x = Pr(K) (see Problem 3.12). Therefore, for short we will use the
notation P = P1(K) if the dimension of the basic space is fixed.

We start with simplicial finite elements, that is, elements whose basic domain is a
regular d-simplex of R4. By this we mean the following:

Definition 322 A set K ¢ R is called a regular d-simplex if there exist d + 1
distinct points ay, . . ., ag+1 € R4, the vertices of K, such that

a;—ag,...,a4+1 — 41 are linearly independent (3.56)
(that is, ay, . . ., ag+1 donot lie in a hyperplane) and

K = conv {al,...,ad+1}

d+1 d+1
= {x:Z/I,-a,- |05/1,-(s 1), ) 4= 1} (3.57)
i=1 i=1
d+1 d+1
= {x:al +Z/I,-(a,-—a1)|/l,- >0, Z/li < 1}
i=2 i=2

A face of K is a (d — 1)-simplex defined by d points of {ay,..., ag+1}. The
particular d-simplex

R := conv {G1,...,8q41} Withd; =0, 441 =e€;,i=1,...,d (3.58)
is called the standard simplicial reference element.
From (3.136) we conclude in particular
vol (R) =1/d!.

In the case d = 2 we get a triangle with dim #; = 3 (cf. Lemma 2.10). The faces
are the three edges of the triangle. In the case d = 3 we get a tetrahedron with



138 3 Finite Element Method for Linear Elliptic Problems

dim #; = 4, the faces are the four triangle surfaces, and finally, in the case d = 1, it
is a line segment with dim #; = 2 and the two boundary points as faces.

More precisely, a face is not interpreted as a subset of R%, but of a (d — 1)-dimen-
sional space that, for instance, is spanned by the vectors az — 4y, .. ., @z — a; in the
case of the defining points ay, . . ., a4.

Sometimes, we also consider degenerate d-simplices, where assumption (3.56)
of linear independence is dropped. We consider, for instance, a line segment in
the two-dimensional space as it arises as an edge of a triangular element. In the
one-dimensional parametrization it is a regular 1-simplex, but in R? a degenerate
2-simplex.

The unique coefficients A; = 2;(x),i = 1,...,d +1,in (3.57), are called barycen-
tric coordinates of x. This defines mappings 3, : K = R, i=1,...,d+ 1.

We consider a; as a column of a matrix, that is, for j = 1,...,d + 1, g; =
(@if);—1... 4 The defining conditions for A; = 2;(x) canbe written as a (d+1)x(d+1)
system of equations:

d+1
= aij/lj =X X
Jj= —
ol — B = ( X ) (3.59)
»A=1
j=1
for
aipl - ald+l
B=| - (3.60)
aql © - Add+l
1 1

The matrix B is nonsingular due to assumption (3.56), that is, A(x) = B! (’1‘), and

hence
d

Ai(x) = Zc,-jxj +Cige1 forall i=1...,d+1,
j=1

where C = (cij);; == B~

Consequently, the ; are affine-linear, and hence A; € #;. The level surfaces
{x ek | Ai(x) = p} correspond to intersections of hyperplanes with the simplex K
(see Figure 3.3). The level surfaces for distinct p; and py are parallel to each other,
that is, in particular, to the level surface for ¢ = 0, which corresponds to the triangle
face spanned by all the vertices apart of a;.

By (3.59), the barycentric coordinates can be defined for arbitrary x € R? (with
respect to some fixed d-simplex K). Then

xeK = 0<;(x)<1 foralli=1,...,d+1.

Applying Cramer’s rule to the system Bl = ()1‘), we get for the ith barycentric
coordinate
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Fig. 3.3: Barycentric coordinates and hyperplanes.

apy - X1 o0 ard+l

det
adl - Xd © - Ad,d+1
1 -1 - 1

Here, in the ith column a; has been replaced with x. Since, in general,

A = B

vol (K) = vol (R) | det(B)] (3.61)

for the reference simplex R defined by (3.58) (cf. (2.54)), we have for the volume of
the d-simplex K := conv {ay,...,aq+1},

ai - aid+l
vol(K):i' det| @ - ,
d! aql * - Add+l
1 -+ 1
and from this,
1 B A
A(x) = + vol (conv {ay, ..., X, ...,a4+1}) (3.62)

“vol (conv {ay,...,a,--.,0451})
The sign is determined by the arrangement of the coordinates.
In the case d = 2, for example, we have

vol (K) = det(B)/2
<= aj, ay, a3 are ordered positively (that is, counterclockwise).
Here, conv {ay,..., X, ...,aq4+1} is the d-simplex that is generated by replacing a;

with x and is possibly degenerate if x lies on a face of K (then 2;(x) = 0). Hence, in
the case d = 2wehave for x € K thatthe barycentric coordinates A, (x) are the relative
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areas of the triangles that are spanned by x and the vertices other than g;. Therefore,
we also speak of area coordinates (see Figure 3.4). Analogous interpretations hold
for d = 3. Using the barycentric coordinates, we can now easily specify points
that admit a geometric characterization. The midpoint a;; := % (a; + a;) of a line
segment that is given by 4; and a; satisfies, for instance,

210x) = A;(x) = %

By the barycentre of a d-simplex we mean

d+1
1 1
= E T | i = — ni=1,... . .
as d+1,-=1a“ hus  A;(as) 71 foralli=1,...,d +1 (3.63)

A geometric interpretation follows directly from the above considerations.

conv{x, az, a3}

Fig. 3.4: Barycentric coordinates as area coordinates.

In the following suppose conv {ajy, . . ., @441 } to be a regular d-simplex. We make
the following definition:

Finite Element: Linear Ansatz on the Simplex

K =conv {ay,...,a4+1},
P =P (K), (3.64)
X={p(@),i=1...,d+1}.

The local interpolation problem in P, given by the degrees of freedom X, namely,

find some p € P for uy, . .., ug+1 € R such that

pla))=w; foralli=1,...,d+1,
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can be interpreted as the question of finding the inverse image of a linear mapping
from P to RI*!. By virtue of (3.55),

I/ =d+1=dmP.

Since both vector spaces have the same dimension, the solvability of the interpola-
tion problem is equivalent to the uniqueness of the solution. This consideration holds
independently of the type of the degrees of freedom (as far as they are linear func-
tionals on P). Therefore, we need only to ensure the solvability of the interpolation
problem. This is obtained by specifying

Ny, ...,Ngp € P WithIVi(aj) =gy foralli,j=1,...,d+1,

the so-called shape functions (see (2.33) for d = 2). Then the solution of the
interpolation problem is given by

d+1

px) = ) wilNy(x) (3.65)

i=1

and analogously in the following, that is, the shape functions form a basis of P and
the coefficients in the representation of the interpolating function are exactly the
degrees of freedom uy, .. ., ug+1.
Due to the above considerations, the specification of the shape functions can
easily be done by choosing
Ni =2

Finite Element: Quadratic Ansatz on the Simplex

Here, we have

K =conv {ay,...,a40},
P = P,(K), (3.66)
T={pa).play), i=1....d+1i<j<d+1},

where the g;; denote the midpoints of the edges (see Figure 3.5).
Since here we have

(d+1)(d+2) _

Z:
= -

dim P,

it also suffices to specify the shape functions. They are given by

/1,‘(2/1,‘—1), i=1,...,d+1,
41,‘/1‘,', i,j=1,...,d+1,i<j.
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Fig. 3.5: Quadratic simplicial elements.

If we want to have polynomials of higher degree as local ansatz functions, but
still Lagrange elements, then degrees of freedom also arise in the interior of K:

Finite Element: Cubic Ansatz on the Simplex

K =conv{ay,...,aa+1},
P = P5(K), (3.67)
Z = {p(a), p(aiij) p(aijr)},

where
2 1 . .
Giij = ga,-+§aj for i,j=1,...,d+1,i#],
1 . .
aijk==(@i+aj+ar) for i,j,k=1...,d+1,i<j<k.

3
Since here |X| = dim P also holds, it is sufficient to specify the shape functions,
which is possible by

1

5/1,-(3/1,- -DBA-2), i=1...,d+1,

%/11'/1]'(3/11'—1), i,j=1,...,d+1,i¢j,
272; 2 2, Ljk=1...,d+1,i<j<k.

Thus for d = 2 the value at the barycentre arises as a degree of freedom. This, and
in general the a; jx,i < j < k, can be dropped if the ansatz space P is reduced (see
[16, p. 70]).

All finite elements discussed so far have degrees of freedom that are defined in
convex combinations of the vertices. On the other hand, two regular d-simplices can
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be mapped bijectively onto each other by a unique affine-linear F, that is, F € #;
such that as defining condition, the vertices of the simplices should be mapped onto
each other. If we choose, besides the general simplex K, the standard reference
element K defined by (3.58), then F = Fx : K — K is defined by

F(%) = B% +ay, (3.68)

where B = (a3 — ay, . .., ag41 — a1)-
Since for F we have

d+1 d+l d+1
F(Z /lid,-) = Y A4F@) for 420, Y 4=1,
i=1 i=1 i=1

F is indeed a bijection that maps the degrees of freedom onto each other as well as
the faces of the simplices. Since the ansatz spaces P and P remain invariant under
the transformation Fg, the finite elements introduced so far are (in their respective
classes) affine equivalent to each other and to the reference element.

Definition 3.23 Two Lagrange elements (K, P, ), (K, P, £) are called equivalent if
there exists a bijective F : K — K such that

{F(a)| & R generates a degree of freedom on K }

= {a| a € K generates a degree of freedom on K }
. (3.69)

P={p:K—-R|poFebh}.
They are called affine equivalent if F is affine-linear.

Here we have formulated the definition in a more general way, since in Section 3.8
elements with more general F will be introduced: For isoparametric elements the
same functions F as in the ansatz space are admissible for the transformation. From
the elements discussed so far only the simplex with linear ansatz is thus isoparametric.
Hence, inthe (affine) equivalent case a transformation not only of the points is defined
by

£ =F ),

but also of the mappings, defined on K and K, (not only of P and P) is given by
p: K —R, PR :=vFR)

for v : K — R and vice versa.

We can also use the techniques developed so far in such a way that only the
reference element is defined, and then a general element is obtained from this by an
affine-linear transformation. As an example of this, we consider elements on a cube.

Suppose K :=[0,1]¢ = {x c R4 |O <x<1li=1,.. .,d} is the unit cube. The
faces of K are defined by setting a coordinate to O or 1; thus, for instance,
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1
i_[01 ><{0}xﬂ01
i=1 j+l

Let @ (K) denote the set of polynomials on X that are of the form

px) = Z Yar, gk X0

0<o; <k
i=l,....d

Hence, we have £, ¢ Q; C Pax.
Therefore, we define a reference element generally for k € N as follows:

Finite Element: d-polynomial Ansatz on the Cuboid

R =1[0,1]¢,
P =K, (3.70)

:{p(ﬁ)|)’é=(%,..,,%), i {0,,..,k},j=1,.,,,d},

which is depicted in Figure 3.6. Again, we have || = dim P, such that for the
unique solvability of the local interpolation problem we have only to specify the
shape functions. They are obtained on K as the product of the corresponding shape
functions for the case d = 1, thus of the Lagrange basis polynomials

Ak ki
piia® = [ [ =) (3.71)
7y

j=1

Interior degrees of freedom arise from k = 2 onward. Hence the ansatz space on the
general element K is, according to the definition above,

P={poFg'|pe®)}.

In the case of a general rectangular cuboid, that is, if B in (3.68) is a diagonal
matrix, then P = @ (K) holds, analogously to the simplices. However, for a general
B additional polynomial terms arise that do not belong to Qi (see Problem 3.14).

An affine-linear transformation does not generate general cuboids but only d-
epipeds, thus for d = 3 parallelepipeds and for d = 2 only parallelograms. To
map the unit square to an arbitrary general convex quadrilateral, we need some
transformation of @, that is, isoparametric elements (see (3.161)).

Let 7, be a partition of d-simplices or of affinely transformed d-unit cubes. In
particular, Q = int(Ugeg;, K) is polygonally bounded. Condition (F1) in (3.52) is



3.3 Element Types and Affine Equivalent Partitions 145
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I
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|
|
d=2 | dim=8
I
dim=4 | d=13
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bilinear ansatz trilinear ansatz
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. | [
dim=9 | d=3
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biquadratic ansatz triquadratic ansatz

Fig. 3.6: Quadratic and cubic elements on the cube.

always satisfied. In order to be able to satisfy the condition (F2) in (3.53) as well, a
further assumption in addition to (T1)—(T4) has to be made about the partition:

(T5) Every face of some K € 7, is either a subset of the boundary I" of Q or
identical to a face of another K € 7.

In order to ensure the validity of the homogeneous Dirichlet boundary condition on
I'3 for the v, € Vj, that have to be defined, we additionally assume the following:

(T6) The boundary sets Tl, Tz, I's decompose into faces of elements K € 7.

A face F of K € 7y, that is lying on dQ is therefore only allowed to contain a point
from the intersection T'; N Tj fori # j, if and only if the point is a boundary point of
F. We recall that the set I's has been defined as being closed in Q.

In the following, we suppose that these conditions are always satisfied. A partition
that also satisfies (T5) and (T6) is called consistent (or conforming).

Then, for all of the above finite elements,
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e If K, K’ € 7, have a common face F, then the degrees of freedom (3.72)
of K and K’ coincide on F.

¢ F itself becomes a finite element (that is, the local interpolation  (3.73)
problem is uniquely solvable) with the ansatz space Pg|r and the

degrees of freedom on F.
We now choose V}, as follows:

V= {v: Q—>R|v|K€PKforallKe Tn and

(3.74)
v is uniquely determined by the degrees of freedom}.

Analogously to the proof of Lemma 2.10, we can see that v € V}, is continuous
over the face of an element; thus V;, ¢ C(Q), that is, V, ¢ H'(Q) according to
Theorem 3.21.

Further, | = 0if F isaface of K € 7, with F C AQ and the specifications in the
degrees of freedom of F are zero (Dirichlet boundary conditions only in the nodes),
that is, the homogeneous Dirichlet boundary conditions are satisfied by enforcing
them in the degrees of freedom. Due to assumption (T6), the boundary set I3 is fully
taken into account in this way.

Consequently, we have the following theorem:

Theorem 3.24 Suppose 7y, is a consistent partition of d-simplices or d-epipeds of
a domain Q C R%. The elements are defined as in one of Examples (3.64), (3.66),
(3.67), (3.70).

Let the degrees of freedom be given in the nodes ay, .. ., ap. Suppose they are
numbered in such a way that ay, .. .,ap, € QUL U T and apg 41, .., am € I3,
If the ansatz space Vy, is defined by (3.74), then an element v € V}, is determined
uniquely by specifying v(a;),i = 1,..., M, and

ve H(Q).
Ifv(a;))=0fori=M; +1,..., M, then we also have
v=0 onlj.

Exactly as in Section 2.2 (see (2.36)), functions ¢; € Vj, are uniquely determined
by the interpolation condition

vilaj) =65, 1L,j=1,....M.

By the same consideration as there and as for the shape functions (see (3.65)) we
observe that the ¢; form a basis of V,, the nodal basis, since each v € Vj, has aunique
representation

S

V() = ) vae). (3.75)

i=1
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If for Dirichlet boundary conditions, the values in the boundary nodes a;,i = M; +
1,..., M, are given as zero, then the index has to run only up to M;.

The support supp ¢; of the basis functions thus consists of all elements that
contain the node a;, since in all other elements ¢; assumes the value O in the degrees
of freedom and hence vanishes identically. In particular, for an interior degree of
freedom, that is, for some a; with a; € int (K) for an element K € 7, we have
supp¢; = K.

Different element types can also be combined (see Figure 3.7) if only (3.72) is
satisfied, thus, for instance, for d = 2 (3.70), k = 1, can be combined with (3.64) or
(3.70), k = 2, with (3.66).

Fig. 3.7: Conforming combination of different element types.

For d = 3 a combination of simplices and parallelepipeds is not possible, since
they have different types of faces. Tetrahedra can be combined with prisms at their
two triangular surfaces, whereas their three quadrilateral surfaces (see Problem 3.17)
allow for a combination of prisms with parallelepipeds. Possibly also pyramids are
necessary as transition elements (see [162]).

So far, the degrees of freedom have always been function values (Lagrange
elements). If, additionally, derivative values are specified, then we speak of Hermite
elements. As an example, we present the following:

Finite Element: Cubic Hermite Ansatz on the Simplex

K =conv{ay,...,az:1},

P = P3(K),

Y= {p(a,-), i=1...,d+1, plaij) i, jyk=1...,d+1,i<j<k
Vplai) (a;—a) i,j=1,...,d+1,i#j}.

(3.76)
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Instead of the directional derivatives we could also have chosen the partial derivatives
as degrees of freedom, but would not have generated affine equivalent elements in
that way. In order to ensure that directional derivatives in the directions & and é\ are
mapped onto each other by the transformation, the directions have to satisfy

£ =BE,

where B isthe linear part of the transformation F according to (3.68). This is satisfied
for (3.76), but would be violated for the partial derivatives, that is, & = é = ¢
(Fig.3.8). This has also to be taken into account for the question of which degrees
of freedom have to be chosen for Dirichlet boundary conditions (see Problem 3.19).
Thus, the desired property that the degrees of freedom be defined “globally” is lost
here. Nevertheless, we do not have a C!-element: The ansatz (3.76) ensures only the
continuity of the tangential, not of the normal derivative over a face.

Fig. 3.8: Affine transformation of the reference triangle and an inner normal accord-
ingtoéy — &1,6 +&— &

Finite Element: Bogner-Fox-Schmit Rectangle

The simplest C!-element is ford = 2 :

R =001,
P =aR), (3.7
2 = {pa), dip(a), dp(a), dop(a) for all vertices a},

that is, the element has 16 degrees of freedom.

In the case of Hermite elements, the above propositions concerning the nodal
basis hold analogously with an appropriate extension of the identity (3.75).

Further, all considerations of Section 2.2 concerning the determination of the
Galerkin approximation as a solution of a system of equations (2.38) also hold, since
there only the (bi)linearity of the forms is supposed. Therefore using the nodal basis,
the quantity a(gj, ¢;) has to be computed as the (i, j)th matrix entry of the system of
equations that has to be set up for the bilinear form a. The form of the bilinear form
(3.32) shows that the consideration of Section 2.2, concerning that there is at most a
nonzero entry at position (i, j) if,
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supp ¢; N supp @; # 0, (3.78)

still holds.

Since in the examples discussed, supp ¢; consists of at most of those elements
containing the node a; (see Figure 3.11), the nodes have to be adjacent, for the
validity of (3.78), that is, they should belong to some common element. In particular,
an interior degree of freedom of some element is connected only with the nodes of
the same element: This can be used to eliminate such nodes from the beginning
(static condensation).

The following consideration can be helpful for the choice of the element type:
An increase in the size of polynomial ansatz spaces increases the (computational)
cost by an increase in the number of nodes and an increase in the population of the
matrix.

As an example for d = 2 we consider triangles with linear a) and quadratic b)
ansatz (see Figure 3.9).

triangle with Py triangle with P,
a) b)

Fig. 3.9: Comparison between linear and quadratic triangles.

In order to have the same number of nodes we compare b) with the discretiza-
tion parameter & with a) with the discretization parameter 4/2 (one step of “red
refinement”) (see Figure 3.10).

Fig. 3.10: Generation of the same number of nodes.

However, this shows that we have a denser population in b) than in a).

To have still an advantage by using the higher polynomial order, the ansatz b)
has to have a higher convergence rate. In Theorem 3.32 we will prove the following
estimate for a shape-regular family of partitions 75 (see Definition 3.31):
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Fig. 3.11: Supports of the basis functions.

» Ifu € H*(Q), then for a) and b) we have the estimate

llu = wunlly < Crh. (3.79)
» Ifu € H*(Q), then for b) but not for a) we have the estimate

llu = upll < C2h*. (3.80)

For the constants we may, in general, expect C; > Cj.

In order to be able to make a comparison between the variants a) and b), we
consider in the following the case of a rectangle Q = (0, a) x (0, b). The number
of the nodes is then proportional to 1/A? if the elements are all “essentially” of the
same size.

However, if we consider the number of nodes M as given, then 4 is proportional

to1/VM.

Using this in the estimate (3.79), we get for a solution u € H*(Q),

inthe case a)for h/2: |lu—unpli < Gy

1
2NM'
= 1
inthe case b) for 4 : [l —upll; < C1—.

If both constants are the same, this means an advantage for the variant a).
On the other hand, if the solution is smoother and satisfies # € H>(Q), then the
estimate (3.80), which can be applied only to the variant b), yields

inthe case a) for 2/2 :  |lu —upsolh < Cy

1
WM’
1
in the case b) for 4 : [l — uply < CQM.

By an elementary reformulation, we get
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2

C ! < (<)C L = M>(>)4C2
2_ ] _7
M VM c;

which gives an advantage for b) if the number of variables M is chosen, depending
on C,/Cy, sufficiently large. However, the denser population of the matrix in b) has
to be confronted with this.

Hence, a higher order polynomial ansatz has an advantage only if the smoothness
of the solution leads to a higher convergence rate. Especially for nonlinear problems
with less-smooth solutions, a possible advantage of the higher order ansatz has to be
examined critically.

For further usage we can give an abstract notion of a finite element.

Definition 3.25 A finite element is a triple (K, P, T), such that

1) K ¢ R is compact, connected, and with a Lipschitz boundary, with nonempty
interior.

2) P is a linear space of functions p : K — RM.

3)Z ={¢1, -, M} C P’ such that the mapping from P to RM defined by

P (1), em(®)
is bijective.

Remark 3.26 1) For a finite element, if dim P = M is known, either injectivity
(pilp) =0fori =1,---,M = p = 0) or surjectivity has to be checked.
This can be done by specifying local shape function p; € P with the property
ei(pj) = 6ijyij=1,---, M.

2) For a finite element, local shape functions exist uniquely and form a basis of P.

3) The linear functionals ¢, - - - , @ar are linear independent for a finite element, i.e.,

a basis of span (X), the dual basis to the basis p1, - - -, par.

Later we will call such a “H"-based” finite element approach also the primal finite
element method, as opposed to approaches based on a dual formulation, in particular,
the dual mixed approaches of Sections 7.2, 7.3, or a continuous finite element method,
as opposed to discontinuous Galerkin approaches discussed in Section 7.4.

Exercises

Problem 3.10 Prove the implication “=" in Theorem 3.21.
Hint: For v € V, define a function w; by w;lmx) := 0;v,i = 1,..., d, and show that
w; is the ith partial derivative of v.

Problem 3.11 Construct the element stiffness matrix for the Poisson equation on a
rectangle with quadratic bilinear rectangular elements. Verify that this finite element
discretization of the Laplace operator can be interpreted as a finite difference method
with the difference stencil according to (1.22).
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Problem 3.12 Prove that:

a) dim P(RY) = (“4%).
b) PRk = Pr(K) if int (K) # 0.

Problem 3.13 Prove for given vectors ay, .. ., ag.1 € R that ay — ay, .. ., g4 — a3
are linear independent if and only if a1 — a;,...,4i-1 — @i, Gi41 — Gy - - -, Qa+1 — Qi
are linearly independent for some i € {2,...,d}.

Problem 3.14 Determine for the polynomial ansatz on the cuboid as reference ele-
ment (3.70) the ansatz space P that is obtained by an affine-linear transformation to
a d-epiped.

Problem 3.15 Suppose K is a rectangle with the (counterclockwise numbered) ver-
tices ay, . . ., a4 and the corresponding edge midpoints aj2, a3, @34, a41. Show that
the elements f of @;(K) are not determined uniquely by the degrees of freedom

f(an), f(ax), f(aza), f(aa).
Problem 3.16 Check the given shape functions for (3.66) and (3.67).

Problem 3.17 Define a reference element in R? by

0 1 0
R := conv {41, 82,43} x [0, 1] with &; := (0), 4y = ( ), 83 = ( ),

P = {pi(x, ) () | p1 € PL(RY), p2 € PI(R)},
Le={p@®)|£=,)),i=012, j=01}.

Show the unique solvability of the local interpolation problem and describe the
elements obtained by affine-linear transformation.

Problem 3.18 Suppose 4 + 1 points a@;, j = 1,...,d + 1, in R? are given with
the property as in Problem 3.13. Additionally, we define as in (3.59), (3.60) the
barycentric coordinates A; = A;(x; ) of x with respect to the d-simplex S generated
by the points a;. Show that for each bijective affine-linear mapping £ : RY —
R, A;(x; 8) = A;(L(x); L(8)), which means that the barycentric coordinates are
invariant under such transformations.

Problem 3.19 Discuss for the cubic Hermite ansatz (3.76) and Dirichlet boundary
conditions the choice of the degrees of freedom with regard to the angle between
two edges of boundary elements that is either o # 27 or o = 2.

Problem 3.20 Construct a nodal basis for the Bogner—Fox—Schmit element in (3.77).
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3.4 Convergence Rate Estimates

In this section we consider further a finite element approximation in the framework
described in the previous section: The bounded basic domain Q ¢ R of the boundary
value problem is decomposed into consistent partitions 75, which may also consist
of different types of elements. Here, by an element we mean not only the set K € 7,
but this equipped with some ansatz space Pg and degrees of freedom Xg. However,
the elements are supposed to decompose into a fixed number of subsets, independent
of h, each consisting of elements that are affine equivalent to each other. Different
elements have to be compatible with each other such that the ansatz space Vj,
introduced in (3.74), is well defined. The smoothness of the functions arising in this
way has to be consistent with the boundary value problem, inso faras V, ¢ Vis
guaranteed. In the following we consider only one element type; the generalization
to the more general situation will be obvious. The goal is to prove a priori estimates
of the form

[l — up|| < Clulh® (3.81)

with constants C > 0, @ > 0, and norms and seminorms || - || and | - |, respectively.

We do not attempt to give the constant C explicitly, although, in principle, this
is possible (with other techniques of proof). In particular, in the following C has
to be understood generically, that is, by C we denote at different places different
values, which, however, are independent of A. Therefore, estimate (3.81) does not
serve only to estimate numerically the error for a fixed partition 75, . It is rather useful
for estimating what gain in accuracy can be expected by increasing the effort, which
then corresponds to the reduction of 4 by some refinement (see the discussion around
(3.79)). Independently of the convergence rate , (3.81) provides the certainty that
an arbitrary accuracy in the desired norm || - || can be obtained at all. In the following,
we will impose some geometric conditions on the family (7;)y, which have always
to be understood uniformly in 4. For a fixed partition these conditions are always
trivially satisfied, since here we have a finite number of elements. For a family (73)p,
with A — 0, thus for increasing refinement, this number becomes unbounded. In the
following estimates we have therefore to distinguish between “variable” values like
the number of nodes M = M (k) of 7y, and “fixed” values like the dimension d or
the dimension of Px or equivalence constants in the renorming of Px, which can all
be included in the generic constant C.

3.4.1 Energy Norm Estimates

If we want to derive estimates in the norm of the Hilbert space V underlying the
variational equation for the boundary value problem, concretely, in the norm of
Sobolev spaces, then Céa’s lemma (Theorem 2.17) shows that for this purpose it is
necessary only to specify a comparison element vy € V3, for which the inequality
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ll — vrll < Clu|h® (3.82)

holds. For || - || = || - |l1, these estimates are called energy norm estimates due to
the equivalence of || - ||; and || - || (cf. (2.50)) in the symmetric case. Therefore, the
comparison element vy has to approximate u as well as possible, and, in general, it
is specified as the image of a linear operator Ij:

Vp = Ih(u) .

The classical approach consists in choosing for I, the interpolation operator with
respect to the degrees of freedom. To simplify the notation, we restrict ourselves in
the following to Lagrange elements, the generalization to Hermite elements is also
easily possible.

We suppose that the partition 7, has its degrees of freedom inthenodes ay, . . ., apr
with the corresponding nodal basis ¢, . . ., ¢ar. Then let

M

L) = ) u(a)er V. (3.83)

i=1

For the sake of I (u) being well defined, # € C(Q) has to be assumed in order
to ensure that # can be evaluated in the nodes. This requires a certain smoothness
assumption about the solution #, which we formulate as

u e H*Y(Q).

Thus, if we assume again d < 3 for the sake of simplicity, the embedding theorem
(Theorem 3.11) ensures that I, is well defined on H**1(Q) for k > 1. For the con-
sidered C?-elements, we have I (1) € H'(Q) by virtue of Theorem 3.21. Therefore,
we can substantiate the desired estimate (3.82) to

lle = In(@)lly < Ch®|ulk41 - (3.84)

Sobolev (semi) norms can be decomposed into expressions over subsets of 3, thus,
for instance, the elements of 7y,

i [ S 3 [ s 3

Q= Ee7, YK |aj=t KeTy,

and, correspondingly,

2
lellf = > Ml

Ke7;,

where, if Q is not basic domain, this will be included in the indices of the norm.
Since the elements K are considered as being closed, K should more precisely be
replaced by int (K). By virtue of this decomposition, it is sufficient to prove the
estimate (3.84) for the elements K. This has some analogy to the (elementwise)
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assembling described in Section 2.4.2, which is also to be seen in the following. On
K, the operator I, reduces to the analogously defined local interpolation operator.
Suppose the nodes of the degrees of freedom on X are a;, . .., a;,, where L € N is
the same for all X € 75 due to the equivalence of elements. Then

Lwk = Ix@lx) forue CQ),

L
&W%:ZP@Q% foru e C(K), (3.85)

j=1
since both functions of Pk solve the same interpolation problem on K (cf. Lemma
2.10). Since we have an (affine) equivalent partition, the proof of the local estimate

o — Ix @)l x < Ch®|uli+1,k (3.86)

is generally done in three steps:

+ Transformation to some reference element K ,
¢ Proof of (3.86) on X,
¢ Back-transformation to the element K.

To be precise, estimate (3.86) will even be proved with sk instead of 4, where
hg :=diam (K) forK € 7y,

and in the second step, the fixed value Ap is incorporated in the constant. The powers
of hg are due to the transformation steps.

Therefore, let some reference element K with the nodes 4y, ..., 4; be chosen as
fixed. By assumption, there exists some bijective, affine-linear mapping

F=F¢: K—K,

F(%)=B£+d, (3.87)

(cf. (2.34) and (3.68)). By this transformation, functions v : K — R are mapped to
functions 9 : K — R by
P(R) 1= v(F(R)). (3.88)

This transformation is also compatible with the local interpolation operator in the
following sense:

Ixk(v) =Ip(¥) forv e CK). (3.89)
This follows from the fact that the nodes of the elements as well as the shape functions
are mapped onto each other by F.

For a classically differentiable function the chain rule (see (2.53)) implies

V. (F(®) = BTV (%), (3.90)

and corresponding formulas for higher order derivatives, for instance,
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2 -T 24 -1
Div(F(%)) = B~ Dg¥(%)B™,

where D2v(x) denotes the matrix of the second-order derivatives. These chain rules
hold also for corresponding v € H*(K) (Problem 3.21).

The situation becomes particularly simple in one space dimension (d = 1). The
considered elements reduce to a polynomial ansatz on intervals. Thus

F: K= [0,1] = K :=[a;4,a3], £— hgf+a;,
where hg := a;, — a; denotes the length of the element. Hence, for/ € N,
V(F () = hgakv(2).

By the substitution rule for integrals (cf. (2.54)) an additional factor | det(B)| = hg
arises such that, for v € H'(K), we have

121

2 A2
Vg = 7, .
| LK (hK ) |1,K

Hence, for 0 < m < k + 1 it follows by (3.89) that

1 2m-1 A 2
lv - Ik x = (K) [~ 1e @),z -

Thus, what is missing is an estimate of the type
[0~ g9, g < ClPlisrr (3.91)

for € H**1(R). In specific cases this can partly be proven directly but in the
following a general proof, which is also independent of d = 1, will be sketched. For
this, the mapping

G: H*YR) — H™R), D+ p - Lp (D) (3.92)
is considered. The mapping is linear but also continuous, since
L

Z V(di)@i

i=1

Izl & <

k+1,K (3.93)

Noly

< ) M@illesrg Wlleo g < Cllllsr2 5

1

Il
—

where the continuity of the embedding of H**1(R) in H™(R) (see (3.9)) and of
H*"'(R) in C(K) (Theorem 3.11) is used, and the norm contribution from the fixed
basis functions ¢; is included in the constant.
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If the ansatz space P is chosen in such a way that £ C P, then G has the
additional property
Gp)=0 forpe 4,

since these polynomials are interpolated then exactly. Such mappings satisfy the
Bramble-Hilbert lemma, which will directly be formulated, for further use, in a
more general way.

Theorem 3.27 (Bramble-Hilbert lemma)
Suppose K < R? is open, k € No, | < p < o0, and G : W;,‘”(K) — Risa
continuous linear functional that satisfies

G(@)=0 foralge Fr. (3.94)
Then there exists some constant C > Qindependent of G such that for allv € WI’§+1 (K)

IG)| < ClIGI| [VIx+1,p,k -

Proof See [16, Theorem 28.1]. |

Here ||G|| denotes the operator norm of G (see (A4.27)). The estimate with the
full norm || - |lk+1,p,x on the right-hand side (and C = 1) would hence only be
the operator norm’s definition. Condition (3.94) allows the reduction to the highest
seminorm.

For the application of the Bramble-Hilbert lemma (Theorem 3.27), which was
formulated only for functionals, to the operator G according to (3.92) an additional
argument is required (alternatively, Theorem 3.27 could be generalized):

Generally, for w € H™(K) (as in every normed space) we have

Wl = sup W), 3.95)
pe(H™(R)Y
lell<1

where the norm applying to ¢ is the operator norm defined in (A4.27).
For any fixed ¢ € (H™(K)Y the linear functional on H**1(K) is defined by

G®) = o(G®)) for P e HY(R). (3.96)
According to (3.93), G is continuous and it follows that
IGIl < llell 1G]l
Theorem 3.27 is applicable to G and yields
IGO) < Cllgll 1G] [Dlsr g -
By means of (3.95) it follows that

IGON g < CIGI Plesyg -
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The same proof can also be used in the proof of Theorem 3.34 (3.112).

Applied to G defined in (3.92), the estimate (3.93) shows that the operator norm
||Id -1 K” can be estimated independently from m (but dependent on & and the ¢;)
and can be incorporated in the constant that gives (3.91), in general, independent of
the one-dimensional case.

Therefore, in the one-dimensional case, we can continue with the estimation and
get

2m-1
1 . _ _
v = Ikl x < (E) CRIZ,, ¢ < Clag)! 22D e

Since due to I (v) € H'(Q) we have for m = 0, 1

D VIO = v - L)

Ke,

we have proven the following Theorem:

Theorem 3.28 Consider in one space dimension Q = (a, b) the polynomial Lagrange
ansatz on elements with maximum length h and suppose that for the respective local
ansatz spaces P, the inclusion P, C P is satisfied for some k € Ny. Then there exists
some constant C > O such that for all v € H**\(Q) and 0 <m < k + 1,

12
( Z lv— IK(V)|,2,,,K) < CH Myl

Ke7,

If the solution u of the boundary value problem (3.13), (3.19)—(3.21) belongs to
H**(Q), then we have for the finite element approximation uy, according to (3.50),

ot — uplly < CH¥|ulsr -

Note that for d = 1 a direct proof is also possible (see Problem 3.22).
Now we address to the general d-dimensional situation: The seminorm | - |; is
transformed, for instance, as follows (cf. (2.53)):

|v|§K=/ |va|2dx:/};B‘TVfﬁ~B‘TV;1‘1|det(B)|di. (3.97)
? K

From this, it follows for $ ¢ H(K) that
-1 1/2 4
ik < CIIB7H| | det(B)[V? 191, ¢ -
Since d is one of the mentioned “fixed” quantities and all norms on R%< are equiva-
lent, the matrix norm || - || can be chosen arbitrarily, and it is also possible to change

between such norms. In the above considerations K and K had equal rights; thus
similarly for v € H'(K), we have
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91,2 < CIIBIl | det(B)™* |v]1k -
In general, we have the following theorem:

Theorem 3.29 Suppose K and K are bounded domains in R? that are mapped onto
each other by an affine bijective linear mapping F, defined in (3.87). If v € Wé (K)
forl e Nand p € [1, ), then we have for ¥ (defined in (3.88)), ¥ € W;(K), and for
some constant C > 0 independent of v,

91,2 < CIIBII [det(B) ™7 V|1 pk (3.98)
Vlpx < CIB | det(B)'/P |9, , ¢ - (3.99)
Proof See [16, Theorem 15.1]. m}

For further use, also this theorem has been formulated in a more general way than
would be necessary here. Here, only the case p = 2 is relevant.

Hence, if we use the estimate of Theorem 3.27, then the value ||B|| (for some
matrix norm) has to be related to the geometry of K. For this, let for K € 7,

ok = sup {diam ()| SisaballinR? and § c K} .

Hence, in the case of a triangle, Ax denotes the longest edge and ox the diameter of
the inscribed circle. Similarly, the reference element has its (fixed) parameters h and
0. For example, for the reference triangle with the vertices 4; = (0,0), 4, = (1,0),
43 = (0,1) we have that i = 21/2 and § = 2 - 21/2,

Theorem 3.30 For F = Fx according to (3.87), in the spectral norm || - ||2, we have

a

h _ h
Bl < = and ||BY|p< —.
o OK

Proof Since K and K have equal rights in the assertion, it suffices to prove one of
the statements: We have (cf. (A4.27))

IBll2 = sup
€=

1 1
B(Tf)‘ = — sup |Bé[;.
@ Jl2 @ gp=

For every £ € R? with ||, = § there exist some points §,% € K suchthat § — 2 = £.
Since B¢ = F(3)— F(2) and F($), F(2) € K, wehave |B£|; < hg. Consequently, by
the above identity we get the first inequality. ]

If we combine the local estimates of (3.91), Theorem 3.29, and Theorem 3.30,
we obtain for v € H**''(K)and0 < m < k + 1,

A \™ _
Vv —Ik(W)|mk < C(@—i) A (3.100)
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where ¢ and % are included in the constant C. In order to obtain some convergence
rate result, we have to control the term Ag /og. If this term is bounded (uniformly
for all partitions), we get the same estimate as in the one-dimensional case (where
even hx /ox = 1). Conditions of the form

1+
ok = ochg @

forsome o >0and0 < a < k—;’l — 1 for m > 1 would also lead to convergence rate

results. Here we pursue only the case o = 0.

Definition 3.31 A family of partitions (7 ), is called shape-regular if there exists
some o > 0 such that for all 2 > 0 and all X € 73,

oK > ochg .
From estimate (3.100) we conclude directly the following theorem:

Theorem 3.32 Consider a family of Lagrange finite element discretizations in R?
for d < 3 on a shape-regular family of partitions (7)), in the generality described
at the very beginning. For the respective local ansatz spaces P suppose Py C P for
some k € No.

Then there exists some constant C > O such that for all v € H*'1(Q) and
O0<m<k+1,

1/2
|v—1h<v)|m,ﬂ:(z |v—IK<v)|3,,,K) <CH My (301
Ke,

If the solution u of the boundary value problem (3.13), (3.19)—(3.21) belongs to
H*Y(Q), then for the finite element approximation uy, defined in (3.50), it follows
that

e —uplly < CH*|ulgsr - (3.102)

Here we used the broken Sobolev seminorm

1/p
Vhp7i = (Z lvlfp,K)

KeT,

for i e Nand p € [1, ) or p = oo (correspondingly modified), and analogously
[Ivllz, p, 77 - For p = 2, this index is omitted.

Remark 3.33 1) Indeed, here and also in Theorem 3.28 a sharper estimate has been
shown, which, for instance, for (3.102), has the following form:

1/2
e = wl < c( > h%é‘|u|,%+l,,{) < Wl (3.103)
Ke7,

and only u € H*(Q) N H**1(7;) is required.
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The discussion of solution and data regularity necessary will be put more in the
focus of Chapters 7 and 10.
2) Analysing the above proofs, we see that actually the following general result can
be shown.
Let K c R be a bounded domain, such that the embedding

1 A
W) — WZ(R)
is continuous, for o, B € [1, ], p,m > 0.

Let II be a continuous linear mapping from W2 +1(IE' ) to W[;‘(K) such that

M9 =9 ford e Pr(K). (3.104)
Set K = F(K), with F from (3.87),
Mgv(x) :=IH(F1(x)) forxe K
forv e Wg“(K ): Then there exists a constant C = C(I1, K) such that form < p+1

119 — 9| < C|9| ,
mp.K ptiak (3.105)

1/5-1 1 -
v = Mg Vlmp x < CIKIMP~YRE 0™ V]pat 0 k-

In particular, v € H**1(Q) can be substituted by v € H**1(7;).
From this local estimate (3.101) can be regained for IT = Ip, assuming shape
regularity, @« = B8 = 2,0 < m <! < k + 1. The continuity is shown in (3.93),
condition (3.104) is obvious.

3) Another choice of IT is the L2-orthogonal projection

/x A1) — P)wdx =0 for w € Pr(R) (3.106)

such that (3.104) is clear and the continuity follows, as for each orthogonal
projection

Il < Bllog < 19psr 0k
and on fI[L?(R)], being finite-dimensional, all norms are equivalent. Tl is the
L*-orthogonal projection on #4(K) and the global mapping IT (corresponding
the transition from I to I) is then the L2-orthogonal projection on

Pr(Th) := {wn € LXQ) | walg € Pu(K) forall K € 7} (3.107)

to be used in Section 7.4 for the Discontinuous Galerkin Methods.
The analogue of Theorem 3.28 (now including k£ = 0) reads

v = TWV|lmgs, < CH 1™ |V]ksr, 5. (3.108)



162 3 Finite Element Method for Linear Elliptic Problems

For k = 0 we have

1
11 v=—/vdx.
KPR Jk

4) The type and position of the degrees of freedom induce certain regularity condi-
tions to the global ansatz space Vj, according to (3.74), and thus decide whether
V, € V holds or not. The latter, nonconforming case, will be considered from
Section 6.1 on.

5) On aregular d-simplex K or on a d-parallelepiped K|, the following is also a finite
element:

P =% X := {p(ﬁ)} or X:= {/p(x)dx},
K
where @ € K isarbitrary but fixed. However, the global space has only the property
Vi ¢ L®(Q).

In the following we will discuss what the regularity assumption means in the two
simplest cases.

For a rectangle and the cuboid K, whose edge lengths can be assumed, without
any loss of generality, to be of order 41 < h[< h3], we have

1/2
= L)
oK h M
This term is uniformly bounded if and only if there exists some constant (> 1) such
that

hy < hy < ahy,

hy < hs < ahy. (3.109)

In order to satisfy this condition, a refinement in one space direction has to imply a
corresponding one in the other directions, although in certain anisotropic situations
only the refinement in one space direction is recommendable. If, for instance, the
boundary value problem (3.13), (3.19)-(3.21) with ¢ = r = 0, but space-dependent
conductivity K, is interpreted as the simplest ground water model (see (0.18)), then
it is typical that K varies discontinuously due to some layering or more complex
geological structures (see Figure 3.12).

If thin layers arise in such a case, on the one hand, they have to be resolved, that is,
the partition has to be compatible with the layering and there have to be sufficiently
many elements in this layer. On the other hand, the solution often changes less
strongly in the direction of the layering than over the boundaries of the layer, which
suggests an anisotropic partition, that is, a strongly varying dimensioning of the
elements. The restriction (3.109) is not compatible with this, but in the case of
rectangles this is due only to the techniques of proof. In this simple situation, the
local interpolation error estimate can be performed directly, at least for P = Q;(K),
without any transformation such that the estimate (3.102) (for £ = 1) is obtained
without any restrictions like (3.109).
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K>

K

Fig. 3.12: Layering and anisotropic partition.

The next simple example is a triangle K: The smallest angle amin = @min(K)
includes the longest edge g, and without loss of generality, the situation is as
illustrated in Figure 3.13.

Fig. 3.13: Triangle with the longest edge and the height as parameters.

For the 2 x 2 matrix B = (a2 — a1, as — a1), in the Frobenius norm || - ||r (see
(A3.5)) we have
1
BYr = ———||BlIF,
L
and further, with the height Ay over Ag,
det(B) = hxha, (3.110)

since det(B)/2 is the area of the triangle, as well as
IBII7 =laz - a1} + las — a1l > h,

such that
IBlIFIIBIF > hx/h2,
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and thus by virtue of cot amin < Ak /k2,

|Bllzl1B~" |l > cot amin -
Since we get by analogous estimates

IBllz|IB7|F < 4 cot amin,

it follows that cot i describes the asymptotic behaviour of || B||||B~1|| for a fixed
chosen arbitrary matrix norm. Therefore, from Theorem 3.30 we get the existence
of some constant C > 0 independent of 4 such that for all K € 7,

L - amin(K) . (3.111)
oK

Consequently, a family of partitions (7 ), of triangles can only be shape-regular if all
angles of the triangles are uniformly bounded from below by some positive constant.
This condition sometimes is called the minimum angle condition. In the situation
of Figure 3.12 it would thus not be allowed to decompose the flat rectangles in the
thin layer by means of a Friedrichs—Keller partition. Obviously, using directly the
estimates of Theorem 3.29 we see that the minimum angle condition is sufficient for
the estimates of Theorem 3.32. This still leaves the possibility open that less severe
conditions are also sufficient.

3.4.2 The Maximum Angle Condition on Triangles

In what follows we show that condition (3.111) is due only to the techniques of
proof, and at least in the case of the linear ansatz, it has indeed only to be ensured
that the largest angle is uniformly bounded away from z. Therefore, this allows the
application of the described approach in the layer example of Figure 3.12.

Estimate (3.100) shows that for m = 0 the crucial part does not arise; hence only
for m = k = 1 do the estimates have to be investigated. It turns out to be useful to
prove the following sharper form of the estimate (3.91):

Theorem 3.34 For the reference triangle K with linear ansatz functions there exists
some constant C > 0 such that for all 9 € H*(R) and j=12

3
a%;

A

v

<C
(174

0

= (0 - Ie(®) :
H 9% ( ) LR
Proof In order to simplify the notation, we drop the hat " in the notation of the
reference situation in the proof. Hence, we have K = conv {ay, az, a3} with a; =
0,007, a3 = (1,07, and a3 = (0,1)T. We consider the following linear mappings:
Fi : HY(K) — L*(K) is defined by
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1
Fiw) ::_/0- w(s,0)ds,

and, analogously, F, as the integral over the boundary part conv {aj, a3 }. The image
is taken as constant function on K. By virtue of the Trace Theorem 3.6, and the
continuous embedding of L2(0, 1) in L1(0, 1), the F; are well defined and continuous.
Since we have for w € Pyp(K),

Fi(w) =w,

the Bramble—Hilbert lemma (Theorem 3.27) implies the existence of some constant
C > 0 such that forw € H'(K),

IFi(w) - wllox < Clwlik - (3.112)

This can be seen in the following way: Let v € H'(K) be arbitrary but fixed, and for
this, consider on H!(K) the functional

Gw):= (F;(w)—w, F;(v) -v) forw e H(K).
We have G(w) =0 for w € Po(K) and
IGW)I < [IFiw) - wllok I1F:(v) = vilox < ClIIF;(v) - vllox lwll,x
by the above consideration. Thus by Theorem 3.27,
IGw)| < ClIF () - vllok WLk -
For v = w this implies (3.112). On the other hand, for w := ;v it follows that

F1(81v) = v(1,0) = v(0,0) = (I (v))(1,0) — (Ix(v))(0,0)
= O (Ix (V) (3, %2)

for (x1, x2) € K and, analogously, F2(6hv) = dh(Ix (v))(x1, x2). This, substituted into
(3.112), gives the assertion. O

Compared with estimate (3.91), for example, in the case j = 1 the term 3‘9;71“) does
2

not arise on the right-hand side: The derivatives and thus the space directions are
therefore treated “more separately”.

Next, the effect of the transformation will be estimated more precisely. For this,
let apmax = amax(K) be the largest angle arising in K € 7y, supposed to include the
vertex ay, and let Ay = hyg := |ay — ayly, by = Mok := |as — a;| (see Figure 3.14).

As a variant of (3.99) (for I = 1) we have the following:

Theorem 3.35 Suppose K is a general triangle. With the above notation for v €
HY(K) and the transformed $ ¢ H'(K),
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a

P

hy

as
az

Fig. 3.14: A general triangle.

PRTE 5 IR 1/2
Wik < V2| detB) V2[R | =3 +h}||=—D
9%1 llgr a%2 llo g
Proof We have
by b2
B = - ) - =
(a2 —ay, a3 —ay) (b21 bzz)
and hence , .
11 12
= hi, =h. 3.113
(b21) ! (bgg) 2 ( )
From

gT__L by -bny
det(B) \ b1,  by;

and (3.97) it thus follows that
—b21 a .
—9
by ) ox

M = g e e
b=t o)

and from this the assertion. |

In modification of the estimate (3.98) (for I = 2) we prove the following result:

Theorem 3.36 Suppose K is a general triangle with diameter hx = diam (K). With
the above notation for ¥ € H*(R) and the transformed v € HXK),

< 4| det(B) V2 hihg|vhx fori=1,2.

o
—9
MoLR
Proof According to (3.97) we get by exchanging K and K,
|W|12K = / BTV,w - BTV, wdx|det(B)| ™
’ K

and, consequently, for w B—A 9, thus by (3.90) for w = (BT V,v);,
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Ll () ) st

According to (3.113), the norm of the ith row vector of BT is equal to &;, which
implies the assertion. ]

2,
0%

Instead of the shape regularity of the family of partitions and hence the uniform
bound for cot ayin(K) (see (3.111)) we require the following definition.

Definition 3.37 A family of plane triangulations (7)), satisfies the maximum angle
condition if there exists some constant @ < z such that for all # > 0 and K € 7, the
maximum angle apa(K) of K satisfies

aomax(K) < @.

Since amax (K) > 7/3 is always satisfied, the maximum angle condition is equiv-
alent to the existence of some constant § > 0, such that

sin(amax(K)) > § forallK € 7pand 2 > 0. (3.114)
The relation of this condition to the above estimates is given by (cf. (3.110))
det(B) = hyhp sin oax - (3.115)

Inserting the estimates of Theorem 3.35 (for v — Ig(v)), Theorem 3.34, and Theo-
rem 3.36 into each other and recalling (3.114), (3.115), the following theorem follows
from Céa’s lemma (Theorem 2.17).

Theorem 3.38 Consider the linear ansatz (3.64) on a family of plane triangulations
(Tn)n that satisfies the maximum angle condition. Then there exists some constant
C > 0 such that for v € H*(Q),

v =L <Chlvly.

If the solution u of the boundary value problem (3.13), (3.19)—(3.21) belongs to
H*(Q), then for the finite element approximation uy, defined in (3.50) we have the
estimate

lle — uplly < Chluls . (3.116)

Problem 3.27 shows the necessity of the maximum angle condition. Again, a
remark analogous to Remark 3.33 holds. For an analogous investigation of tetrahedra
we refer to [167].

With a modification of the above considerations and an additional condition
anisotropic error estimates of the form

d
V=B < C ) Al
Z
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can be proven for v € H?(Q), where the k; denote length parameter depending on
the element type. In the case of triangles, these are the longest edge (A; = Ag) and
the height on it as shown in Figure 3.13 (see [81]).

3.4.3 L? Error Estimates

The error estimate (3.102) also contains a result about the approximation of the
gradient (and hence of the flux density), but it is linear only for k£ = 1, in contrast to the
error estimate of Chapter 1 (Theorem 1.6). The question is whether an improvement
of the convergence rate is possible if we strive only for an estimate of the function
values. The duality argument of Aubin and Nitsche shows that this is correct, if the
adjoint boundary value problem is regular, where we have the following definition.

Definition 3.39 The adjoint boundary value problem for (3.13), (3.19)-(3.21) is
defined by the bilinear form

u,v) — alvu) foru,veV

with V from (3.31). It is called regular if for every f € L?(Q) there exists a unique
solution u = uy € V of the adjoint boundary value problem

avu)= {f,v)o forallveV

and even us € H*(Q) is satisfied, and for some constant C > 0 a stability estimate
of the form
lugly < Cl|fllo  for given f € LA(Q)

is satisfied.

The V-coercivity and the continuity of the bilinear form (3.2), (3.3) directly carry
over from (3.32) to the adjoint boundary value problem, so that in this case the
unique existence of #y € V is ensured. More precisely, the adjoint boundary value
problem is obtained by an exchange of the arguments in the bilinear form, which
does not effect any change in its symmetric parts. The nonsymmetric part of (3.32)
is fQ ¢ - Vuv dx, which becomes fQ ¢ -Vvudx.

Therefore the adjoint problem to a problem that is not in divergence form ((3.13),
(3.19)-(3.21)) is a problem in divergence form ((3.36)—(3.39)), for ¢ := —¢ and
ﬁ =T}, i =1, 2,3 (but note the different meaning of the boundary conditions) (and
vice versa).

In general an adjoint problem has the same solvability conditions as the original
one, with the same stability as due to the Closed Range Theorem (see Appendix A.4)
we have

AT exists < A7 exists and ||A7T|| = ||A7Y)).

This has two consequences:
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+ Comparing a problem and its adjoint one, different regularity of solutions is only
due to different regularity of the right-hand sides.

» Solvability and stability of the formulation in divergence form and not in diver-
gence form transform to each other, as one is the adjoint of the other.

For a regular adjoint problem we get an improvement of the convergence rate in
Il Mlo:

Theorem 3.40 (Aubin and Nitsche) Consider the situation of Theorem 3.32 or
Theorem 3.38 and suppose the adjoint boundary value problem is regular. Then
there exists some constant C > 0 such that for the solution u of the boundary value
problem (3.13), (3.19)—(3.21) and its finite element approximation uy defined by
(3.50),

1) lu—upllo < Chllu —upll1,
2)  lu—wupllo < Chllully,
3)  llu—wupllo < CH* ulgyr, ifu € HY(Q).

Proof Assertions 2) and 3) follow directly from 1). On the one hand, by using
[le—uplli < |lulli +||ugll1 and the stability estimate (2.48), on the other hand directly
from (3.102) and (3.116), respectively.

For the proof of 1), we consider the solution uy of the adjoint problem with the
right-hand side f = u —u, € V ¢ L*(Q). Choosing the test function u — 1, and
using the error equation (2.43) gives

ll — I = (4 — up, 1 — un)o = alu — up,us) = au — up,us — vy)

for all v, € Vj,. If we choose specifically vy, := I(uys), then from the continuity of
the bilinear form, Theorem 3.32, and Theorem 3.38, and the regularity assumption
it follows that

e — uplld < Cllu = wpllllug — I (ug)lh
< Cllu — upllyhluglz < Cllu — upllyhllu — upllo -

Division by |lu — wupllo gives the assertion, which is trivial in the case
llee — upllo = 0. =

Thus, if arough right-hand side in (3.13) prevents convergence from being ensured
by Theorem 3.32 or Theorem 3.38, then the estimate 2) can still be used to get a
convergence estimate (of lower order).

In the light of the considerations from Section 1.2, the result of Theorem 3.40 is
surprising, since we have only (pointwise) consistency of first order. On the other
hand, Theorem 1.6 also raises the question of convergence rate results in || - ||co Which
then would give a result stronger, in many respects, than Theorem 1.6. Although the
considerations described here (as in Section 3.9) can be the starting point of such
L* estimates, we get the most far-reaching results with the weighted norm technique
(see [16, pp. 155]), whose description is not presented here.
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The above theorems contain convergence rate results under regularity assump-
tions that may often, even though only locally, be violated. In fact, there also exist
(weaker) results with less regularity assumptions. However, the following observa-
tion seems to be meaningful: Estimate (3.103) indicates that on subdomains, where
the solution has less regularity, on which the (semi) norms of the solutions thus
become large, local refinement is advantageous (without improving the convergence
rate by this). Adaptive grid refinement strategies on the basis of a posteriori error
estimates described in Chapter 4 provide a systematical approach in this direction.

Exercises

Problem 3.21 Prove the chain rule (3.90) for v € H'(K).

Problem 3.22 a) Consider for d := 1 the linear finite element ansatz (3.64) and
prove that for K € 7}, the following estimate holds:

v - Ixk(W)Lk < hg|vlox forallv e HXK).

Hint: Rolle’s theorem and Problem 2.10 b) (Poincaré inequality).
b) Generalize the considerations to an arbitrary (one-dimensional) polynomial ansatz
P = P, (K) by proving

lv - Ik(W|x < B Viksrx  forallv e H¥1(K).

Problem 3.23 For k € N show that the following definition provides a stronger norm
on H**1(R) for the reference simplex K ¢ R%, d < 3,

1Vllls1 = Vg + D 1o,

PENR

where ) p are the degrees of freedom of a finite element with P O % (K). Substitute
the usage of the Bramble-Hilbert lemma by this result.
Hint: Use the compact embedding H**!(K) — H*(K).

Problem 3.24 Show for linear elements, the reference triangle K ¢ R? and v «

HX(R):

5
lv—1Igvliig < Elvlzg,
||v~IKv||QK < \/1_0|V|zk'
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Problem 3.25 Show for bilinear elements, the reference square RcRandv e

H*(K):
1
Iv - IkV|1,K < ﬁlle,K .
Hint: Start from the identity of Lemma 1.8.

Problem 3.26 Let a triangle K with the vertices ay, a, a3 and a function v € C2(K)
be given. Show that if v is interpolated by a linear polynomial Ix(v) with
(Ixk(W)(@;) = v(a;), i = 1,2,3, then the error the estimate

2

W = e )l + HIVO = Ie)lloo ke < 2M s

holds, where 4 denotes the diameter, « the size of the largest interior angle of K, and
M an upper bound for the maximum of the norm of the Hessian matrix of v on K.

Problem 3.27 Consider a triangle K with the vertices a1 := (-4,0), a2 := (h,0),
az := (0, ¢), and h, € > 0. Suppose that the function v(x) := x12 is linearly interpo-
lated on K such that (I (v))(a;) = v(a;) fori = 1,2, 3.
Determine [|82(I, (v) — v)|l2 x as well as ||32(I,(v) — v)||e,x and discuss the conse-
quences for different orders of magnitude of # and ¢.

Problem 3.28 Suppose that no further regularity properties are known for the solu-
tion u € V of the boundary value problem (3.13). Show under the assumptions of
Section 3.4 that for the finite element approximation uy, € Vj,

llu —upli =0 forh —0.

Problem 3.29 Derive analogously to Theorem 3.32 a convergence rate result for the
Hermite elements (3.76) and (3.77) (Bogner—Fox—Schmit element) and the boundary
value problem (3.13) with Dirichlet boundary conditions.

Problem 3.30 Derive analogously to Theorem 3.32 a convergence rate result for the
Bogner-Fox—Schmit element (3.77) and the boundary value problem (3.47).

3.5 The Implementation of the Finite Element Method: Part 2
3.5.1 Incorporation of Dirichlet Boundary Conditions: Part 2

In the theoretical analysis of boundary value problems with inhomogeneous Dirichlet
boundary conditions # = g3 on I3, the existence of a function w € H(Q) with
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w = g3 on I3 has been assumed so far. The solution u € V (with homogeneous
Dirichlet boundary conditions) is then defined according to (3.32) such that & = u+w
satisfies the variational equation with test functions in V:

alu+w,v)=£€(v) forallveV. 3.117)

For the Galerkin approximation uy, which has been analysed in Section 3.4, this
means that the parts —a(w, ;) with nodal basis functions ¢;, i = 1, ..., Mj, go into
the right-hand side of the system of equations (2.38), and then 4, := u + w has to
be considered as the solution of the inhomogeneous problem

a(up, +w,v) =£€(v) forallveV,. (3.118)

If we complete the basis of Vj, by the basis functions @az, +1 - - ., ¢ar for the Dirichlet
boundary nodes aas,+1, - - -, ap and denote the generated space by Xj,

Xp :=span {@1,.. ., oa;, @M+, - - oM} (3.119)

that is, the ansatz space without taking into account boundary conditions, then, in
particular, @, € X, does not hold in general. This approach does not correspond to
the practice described in Section 2.4.3. That practice, applied to a general variational
equation, reads as follows.

For all degrees of freedom 1, ..., My, M1 + 1,..., M the system of equations is
built with the components

alej, i), Lj=1...,M, (3.120)
for the stiffness matrix and
i), i=1,....M, (3.121)
for the load vector. The vector of unknowns is therefore
% g . M ¢ M,
E=1,] with &eR™, &R
&
For Dirichlet boundary conditions the equations My + 1, .. ., M are replaced by
E=gila), i=M+1,...,M,
and the concerned variables are eliminated in equations 1, ..., M;. Of course, it is

assumed here that g3 € C(I'3). This procedure can also be interpreted in the following
way: If we set

Ap = (alyy, ‘Pi))i,j=1,...,M1’ Ay = (aley, ‘Pi))i=1,,,.,M1, j=Myi+1,. M

then the first M; equations of the generated system of equations are
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A€ + Ayé = qy,

where g, € RM consists of the first M; components according to (3.121). Hence
the elimination leads to

Ané = q5, - Ané (3.122)
with § = (83(a:))i=pt,+1,..., M, - SUppose
M
whi= ) 83(ai) i€ X (3.123)
i=M+1

is the ansatz function that satisfies the boundary conditions in the Dirichlet nodes
and assumes the value 0 in all other nodes. The system of equations (3.122) is then
equivalent to

a(ly +wp,v) =€(v) forallveV, (3.124)

for &, = ng‘l &ip; € Vy (that is, the “real” solution), in contrast to the variational
equation (3.118) was used in the analysis. This consideration also holds if another
h-dependent bilinear form a5 and analogously a linear form ¢, instead of the linear
form ¢ is used for assembling. In the following we assume that there exists some
function w € C(Q) that satisfies the boundary condition on I's. Instead of (3.124),
we consider the finite-dimensional auxiliary problem of finding some &), € Vj, such
that

a(tip + In(w),v) = €(v) forallve V. (3.125)

Here Tj, : C(Q) — X), is the interpolation operator with respect to all degrees of

freedom,
Mi+M;

Ty:= ), vae,
i=1
whereas in Section 3.4 we considered the interpolation operator I, for functions that
vanish on I's. In the following, when analysing the effect of quadrature, we will show
that —also for some approximation of a and {—

fp =ty + Inw) € Xy, (3.126)

is an approximation of u + w of the quality established in Theorem 3.32 (see Theo-
rem 3.45). We have wy, — I,(w) € Vj, and hence also ity +wy, — In(w) € V. If (3.125)
is uniquely solvable, which follows from the general assumption of the V-coercivity
of a (3.3), we have

ﬁh + wp, —Th(w) = lih

and hence for 7y, according to (3.126),
Up =y +wy . (3.127)

In this way the described implementation practice for Dirichlet boundary conditions
is justified.
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3.5.2 Numerical Quadrature

We consider again a boundary value problem in the variational formulation (3.32)
and a finite element discretization in the general form described in Sections 3.3 and
3.4. If we step through Section 2.4.2 describing the assembling within a finite element
code, we notice that the general element-to-element approach with transformation to
the reference element is here also possible, with the exception that due to the general
coefficient functions X, ¢, r, and f, the arising integrals cannot be evaluated exactly
in general. If K,, is a general element with degrees of freedom in a,,, ..., a,,, then
the components of the element stiffness matrix fori, j = 1,..., L are

Af,;") = /I; KVg, Vo, +¢ Vo, ¢ + 19, 0 dx + ./K @@y, prdo

[Q)))
=: / v,-,-(x) dx + / w,-j(a) do
K,, K,,NI

/K py;(%)d% | det(B)| + fK ’w,-,-(&)damh det(BT B)| . -

Here, K,, is affine equivalent to the reference element K by the mapping F(£) =
B2# + d. By virtue of the conformity of the partition (T6), the boundary part K,, " T,
consists of none, one, or more complete faces of K,,. For every face of K,, there is
a parametrization in R%~! given by a mapping F from R4~! to R?. For simplicity,
we restrict ourselves to the case of one face that is affine equivalent to the reference
element K’ by some mapping F (&) = B6 + d (cf. (3.53)). The generalization to the
other cases is obvious. The functions ¥;; and analogously W;; are the transformed
functions defined in (3.88).

Correspondingly, we get as components for the right-hand side of the system of
equations, that is, for the load vector,

(g™), = /K FEN(8) ds | det(B)

v [ 2@ dorldadl+ [ aEN©) dor | derBa),
1

’ (3.129)
i=1...,L Here, the N;,i = 1,..., L, are the shape functions, that is, the local
nodal basis functions on K.

If the transformed integrands contain derivatives with respect to x, they can be
transformed into derivatives with respect to X. For instance, for the first addend in
AEJ'.") we get, as an extension of (2.54),

fK K(F(£)BTVeN;(8)- BTV Ni(£)d2 | det(B)| .
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The shape functions, their derivatives, and their integrals over K are known which
has been used in (2.56) for the exact integration. Since general coefficient functions
arise, this is in general, but also in the remaining special cases no longer possible, for
example, for polynomial K(x) it is also not recommendable due to the corresponding
effort. Instead, one should approximate these integrals (and, analogously, also the
boundary integrals) by using some quadrature formula.

A quadrature formula on K for the approximation of fK $(£) d% has the form

R
Za),- () (3.130)
i=1

with weights &; and quadrature or integration points b; ¢ K. Hence, applying
(3.130) assumes the evaluability of 9 in b;, which is in the following ensured by the
continuity of v. This implies the same assumption for the coeflicients, since the shape
functions N; and their derivatives are continuous. In order to ensure the numerical
stability of a quadrature formula, it is usually required that

@; >0 forall i=1,..,R, (3.131)

which we will also do. Since all the considered finite elements are such that their faces
with the enclosed degrees of freedom represent again a finite element (in R%1) (see
(3.53)), the boundary integrals are included in a general discussion. In principle,
different quadrature formulas can be applied for each of the above integrals, but
here we will disregard this possibility (with the exception of distinguishing between
volume and boundary integrals because of their different dimensions).

A quadrature formula on K generates a quadrature formula on a general element
K, recalling

/K v(x)dx = /x D(%) d% | det(B)|
by

R
Dok vibik),
i=1

where w; = w;x = @;| det(B)| and b; = b; g := F(b;) are dependent on K. The
positivity of the weights is preserved. Here, again F(£) = BX + d denotes the
affine-linear transformation from K to K. The errors of the quadrature formulas

R
E) = /K 5(8)d - Z}oia(@o,
(3.132)

TS

Ex(v):= /I;v(x) dx - Za)i v(b;)
i=1

are related to each other by
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Ex(v) = |det(B)|E®). (3.133)

The accuracy of a quadrature formula will be defined by the requirement that for I
as large as possible,
E(Pp)=0 forpe PiK)

is satisfied, which transfers directly to the integration over K. A quadrature formula
should further provide the desired accuracy by using quadrature nodes as less as
possible, since the evaluation of the coefficient functions is often expensive. In
contrast, for the shape functions and their derivatives a single evaluation is sufficient.
In the following we discuss some examples of quadrature formulas for the elements
that have been introduced in Section 3.3.

The most obvious approach consists in using nodal quadrature formulas, which
have the nodes 4j, .. ., 4y, of the reference element (K, P, £) as quadrature nodes.
The requirement of exactness in P is then equivalent to

& = /K Ni(%)d%, (3.134)

so that the question of the validity of (3.131) remains.

We start with the unit simplex K defined in (3.58). Here, the weights of the
quadrature formulas can be given directly on a general simplex K: If the shape
functions are expressed by their barycentric coordinates 2;, the integrals can be
computed by

aylag! - ager! vol (K)
(a1 + a2+ + g +d)! vol (K)

/K AT A% (1) dx = (3.135)

(see Problem 3.31).
If P = P1(K) and thus the quadrature nodes are the vertices, it follows that

1
a),-://li(x)dx = vol(K) foralli=1,...,d+1. (3.136)
K d+1

For P = $»(K) and d = 2 we get, by the shape functions 2;(24; — 1), the weights 0
for the nodes a; and, by the shape functions 44;1;, the weights

1
w; = §V01(K) for bi=ay,i,j=1,...,3,i>],

so that we have obtained here a quadrature formula that is superior to (3.136) (for
d = 2). However, for d > 3 this ansatz leads to negative weights and is thus useless.
We can also get the exactness in 1 (K) by asingle quadrature node, by the barycentre
(see (3.63)):

wy =vol(K) and by =as =

a, (3.137)

which is obvious due to (3.135).
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As a formula that is exact for P2 (K) and d = 3 (see [145]) we present
R=4 0w, = % vol (K), and the b; are obtained by cyclic exchange of the barycentric

coordinates:
5- v’ 5-45 5-v5 5+3%3 )

20 20 7 20 7 20

On the uanit cuboid K we obtain nodal quadrature formulas, which are exact for
Q. (K), from the Newton—Cdtes formulas in the one-dimensional situation by

~ . ~ i i
Ojy.iy = Qiy -0, Tor by i, = (;1, ey f) (3.138)

for ije{0,...,k} and j=1,...,4d.

Here the @;; are the weights of the Newton—Cétes formula for /01 f(x)dx (see [56,
p. 148]). Asin (3.136), for k = 1 we have here a generalization of the trapezoidal rule
(cf. (2.42), (11.43)) with the weights 274 in the 24 vertices. From k = 8 on, negative
weights arise. This can be avoided and the accuracy for a given number of points
increased if the Newton—Cbtes integration is replaced by the Gauss—(Legendre)
integration: In (3.138), i;/k has to be replaced by the jth node of the kth Gauss—
Legendre formula (see [56, p. 178] there on [-1, 1]) and analogously @;;. In this
way, by (k + 1)@ quadrature nodes the exactness in Qu.+1(K), not only in @ (K), is
obtained.

Now the question as to which quadrature formula should be chosen arises. For
this, different criteria can be considered (see also (11.41)). Here, we require that the
convergence rate result that was proved in Theorem 3.32 should not be deteriorated.
In order to investigate this question we have to clarify which problem is solved by the
approximation # € Vj, based on quadrature. To simplify the notation, from now on
we do not consider boundary integrals, that is, only Dirichlet and homogeneous
Neumann boundary conditions are allowed. However, the generalization should
be clear. Replacing the integrals in (3.128) and (3.129) by quadrature formulas
Zf 1 Di (b;) leads to some approximation Ay, of the stiffness matrix and g, , of the
load vector in the form

An = (an(ep @)y, Tn = (o)),

fori,j = 1,..., M. Here the ¢; are the basis functions of X;, (see (3.119)) without
taking into account the Dirichlet boundary condition and
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R
ap(v,w) := Z Zwl,K(KVV'VW)(bLK)

KeTy, 1=1
R
+ 30N wkle - Pwitir) + Y D ek rvw)big), G139
Ke7, 1=1 Ke7, 1=1
)= Y Zw, k(f)big)  forallvwe X,.
Ke7;, 1=1

The above-given mappings a, and £, are well defined on X, X Xj, and X, , respectively,
if the coefficient functions can be evaluated in the quadrature nodes. Here we take
into account that for some element K, Vv for v € X}, can have jump discontinuities
on K. Thus, for the quadrature nodes b; ¢ € 8K in Vv(b; ) we have to choose the
value “belonging to b; x” that corresponds to the limit of sequences in the interior of
K. Werecall that, in general, aj and ¢}, are not defined for functions of V. Obviously,
ap is bilinear and ¢}, is linear. If we take into account the analysis of incorporating
the Dirichlet boundary conditions in (3.117)-(3.124), we get a system of equations
for the degrees of freedom {;’ = (&, ...,é&u)T, which is equivalent to the variational
equation on V;, foruy, = Zl lé‘, @i €V

ap(up,v) = (v) —ap(wp,v) forallve V (3.140)

with wy, according to (3.123). As has been shown in (3.127), (3.140) is equivalent,
in the sense of the total approximation &y + wy, of # + w, to the variational equation
foruy, € Vy,

an(@ip, v) = Cu(v) := €,(v) — ap(Tp(w),v) forally e Vy, (3.141)

if this system of equations is uniquely solvable.

Exercises

Problem 3.31 Prove Equation (3.135) by first proving the equation for K = K and
then deducing from this the assertion for the general simplex by Problem 3.18.

Problem 3.32 Let X be a nondegenerate triangle with vertices aj, as, az. Further, let
a2, a13, azs denote the corresponding edge midpoints, a;23 the barycentre and |K|
the area of K. Check that the quadrature formula

|§0| Z V(@) + 8 Z v(ai;) + 27v(a123)

i<j

computes the integral fK v dx exactly for polynomials of third degree.
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Programming project 3.1 Extend the finite element solver of Project 2.5 to the
boundary value problem

-V - (KVu)+c-Vu+ru=f inQ,
KVu-n=g; onlty,
u=g:3 onI‘3:=c‘)Q\I“1.

a) Start with the case of a homogeneous boundary condition on I'y, i.e., g1 = 0.
Assemble the stiffness matrix Ay, for this more general boundary problem by the
help of a quadrature formula approach as described in Section 3.5.2, where the
parameters of the one-point quadrature formula on the reference triangle K are
b:=(1/3,1/3), d := 1/2.

Test your implementation for the following particular boundary value problem:
Q:=(0,2)x(0,1), I :=(0,2) x {0, 1},

0.1 forx <1,

=0.1, 1), r:=0, f:=0,
1 otherwise, ¢i={ o f

K :=kI with k(x,y)::{

0 forx =0,
and g3(x7y) = {eO.l _ e*l forx =2.
ex—l — e_l forx < 1

The exact solutionis  u(x, y) =
Y) 011 _ =1 otherwise.

b) Extend the code from part a) to inhomogeneous Neumann boundary conditions,
i.e., implement an approximation of the boundary integral

/ givy do
I

on the right-hand side of the discretization. Do the assembling as described in
Section 3.5.2 and use the trapezoidal rule on the reference element K’ := (0, 1),
ie by :=0,b):=1,0]:=d):=05.

Test your implementation for the following particular boundary value problem:

Q:=(0,2) x (0, 1), T5 := {0} x [0,1],

0.1 for (0.875 < x < 1.125) A (y > 0.125),

K :=kI with k(x,y):=
) {1 otherwise,

y forx=2
c:=0,r:=0, f:=0, g3:=0,and X,y) =
! & g1(%) 0 otherwiseon Iy .

Visualize the numerical solution of this problem.
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3.6 Convergence Rate Results in the Case of Quadrature
and Interpolation

The purpose of this section is to analyse the approximation quality of a solution

Ty + In(w) according to (3.141) and thus of %, + wy, according to (3.140) of the
boundary value problem (3.13), (3.19)-(3.21).

Hence, we have left the field of Galerkin methods, and we have to investigate the
influence of the errors

a-an, £-aw,-) -4, +a(In(w),-).

To this end, we consider, in general, the variational equation in a normed space

WVl
u €V satisfies a(u,v)=£€(v) forallyveV, (3.142)

and the approximation in subspaces V, c V for & > 0,
uy, €V, satisfies an(up,v) = &(v) forallv e V. (3.143)

Here a and ay, are bilinear forms on V x V and V;, x V},, respectively, and £ &, are
linear forms on V and V}, respectively. Then we have the following theorem

Theorem 3.41 (First Lemma of Strang)
Suppose there exists some o > 0 such that for all h > 0 and v € Vj,

alvl? < ap(v,v), (3.144)

and let a be continuous on V X V.
Then, there exists a constant C > 0 independent of h such that

e = wp| < c{ inf {Ilu —v|l+ sup |alv, w) — ax (v, W)I}
VeV wev, \ {0} [lwl|

Iw) -4
+ sup [€w) — €, (w)| }
weVi\{0) [Iwll

(3.145)

Proof Let v € V,, be arbitrary. Then it follows from (3.142)—(3.144) that

allun = vII* < ap(un — v, up —v)
= a(u—v,up —v)+ (@, up —v) — an (v, up — v))
+ (fh(uh - V) - f(uh - V))

and moreover, by the continuity of a (cf. (3.2)),

la(v,w) — ap (v, w)|

allup —vl| < M|lu-v||+ sup
weVi\ {0} [lwl|
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+ sup M forallveVy,.

weVi,\ {0} [lwl|

By means of ||u —up|| < || —v|| + ||up — v|| and taking the infimum over all v € Vj,,
the assertion follows. O

For ap, = a and &, = € the assertion reduces to Céa’s lemma (Theorem 2.17), which
was the initial point for the analysis of the convergence rate in Section 3.4. Here we
can proceed analogously. For that purpose, the following conditions must be fulfilled
additionally:

* The uniform Vy-coercivity of aj, according to (3.144) must be ensured.
» For the consistency errors

A0 = sup 120w 3 w))
weV,\ {0} [lwl|

(3.146)

for an arbitrarily chosen comparison function v € ¥}, and for

Ew) -4
sup [Ew) — Lp(w)|
weV,\ {0} [lwl|

the behaviour in 4 has to be analysed.

The first requirement is not crucial if only a itself is V-coercive and Ay, tends suitably
toOforh —0:

Lemma 3.42 Suppose the bilinear form a is V-coercive and there exists some non-
negative function C = C(h) with C(h) — 0 for h — O such that

Ap(v) < C(h)|v|| forallveVy.
Then there exists some h > O such that ay, is uniformly Vy-coercive for h < .
Proof By assumption, there exists some o > O such that for v € Vj,,

el < an(v,v) + a(v,v) — an(v, v)
and

(v, v) = an(v, V)| < AWVl < CW)IIv]I1>.

Therefore, for instance, choose & such that C(h) < /2 for h < h. m|
We concretely address the analysis of the influence of numerical quadrature, that is,
ay, is defined as in (3.139) and £, corresponds to £, in (3.141) with the approximate
linear form ¢, according to (3.139). Since this is an extension of the convergence
results (in || - ||;) given in Section 3.4, the assumptions about the finite element
discretization are as summarized there at the beginning. In particular, the partitions

7n consist of elements that are affine equivalent to each other. Furthermore, for
a simplification of the notation, let again d < 3 and only Lagrange elements are
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considered. In particular, let the general assumptions about the boundary value
problems which are specified at the end of Section 3.2.1 be satisfied.

According to Theorem 3.41, the uniform Vj,-coercivity of aj, must be ensured and
the consistency errors (for an appropriate comparison element v € V},) must have the
correct convergence behaviour. If the step size 4 is small enough, the first proposition
is implied by the second proposition by virtue of Lemma 3.42. Now, simple criteria
that are independent of this restriction will be presented. The quadrature formulas
satisfy the properties (3.130), (3.131) introduced in Section 3.5, in particular, the
weights are positive.

Lemma 3.43 Suppose the coefficient function K satisfies (3.17) and let ¢ = 0in Q,
let |T3|g-1 > 0, and let r > 0in Q. If P C Pr(K) for the ansatz space and if the
quadrature formula is exact for Por_o(K), then ay, is uniformly Vy,-coercive.

Proof Let a > 0 be the constant of the uniform positive definiteness of K (x). Then
we have for v € Vj:

R
ap(v,v) = a Z Zwu{ |Vv2 (b k) = a/ [Vv|2(x)dx = alvllz,
Ke7y, I=1 Q

since |Vv|4|,, € Pox—2(K). The assertion follows from Corollary 3.15. O

I
Further results of this type can be found in [16, pp. 194]. To investigate the consis-
tency error we can proceed similarly to the estimation of the interpolation error in
Section 3.4: The error is split into the sum of the errors over the elements K € 7,
and there transformed by means of (3.133) into the error over the reference element
K. The derivatives (in £) arising in the error estimation over K are back-transformed
by using Theorem 3.29 and Theorem 3.30, which leads to the desired Ag-factors.
But note that powers of |[B~}|| or similar terms do not arise. If the powers of det(B)
arising in both transformation steps cancel each other (which will happen), in this
way no condition about the geometric quality of the family of partitions arises. Of
course, these results must be combined with estimates for the approximation error of
Vi, for which, in particular, both approaches of Section 3.4 (either shape regularity
or maximum angle condition) are admissible.

For the sake of simplicity, we restrict our attention in the following to the case
of the polynomial ansatz space P = %5 (K). More general results of similar type,
in particular, for partitions with the cuboid element and P = Qi (K) as reference
element, are summarized in [16, p. 207].

‘We recall the notation and the relations introduced in (3.132), (3.133) for the local
errors. In the following theorems we make use of the Sobolev spaces W’ on Q and
on K with the norms || - |30 and || - || 0.k, Tespectively, and the seminorms | - |z 0
and | - ;0 & respectively. The essential local assertion is the following:

Theorem 3.44 Suppose k € N and P = P (R) and the quadrature formula is exact
Jor Pu2(K): .
E®) =0 forallde Pu_oK). (3.147)



3.6 Convergence Rate Results in the Case of Quadrature and Interpolation 183

Then there exist some constant C > 0 independent of h > 0 and K € Ty, such that
forl € {1, k} the following estimates are given:

1) |Ek(apg)l < Chillalleoxlpli-1xqllox
foralla e WE(K), p,q € Pr1(K),

2) |Ek(cpg)l < Chllcllkeokllpli-1xIqlIx
forallc e WEK), p e Pr1(K), g € Pr(K),

3) |Ex(rpg)l < Chkllrlle k1Pl xl1gllLx
for allr e WE(K), p,q € Pr(K),

4)  |Ex(f@)l < Chgl| £l o0, vol (K)/*IqllLx
forall f e WE(K), q € Pr(K).

The (unnecessarily varied) notation of the coefficients already indicates the field
of application of the respective estimate. The smoothness assumption concerning
the coefficients in 1)-3) can be weakened to some extent. We prove only assertion
1). However, a direct application of this proof to assertions 2)-4) leads to a loss of
convergence rate (or higher exactness conditions for the quadrature are needed). Here,
quite technical considerations including the insertion of projections are necessary,
which can be found to some extent in [16, pp. 201-203]. In the following proof
we intensively make use of the fact that all norms are equivalent on the “fixed”
finite-dimensional ansatz space Px(K). The assumption (3.147) is equivalent to the
same condition on a general element. However, the formulation already indicates an
assumption that is also sufficient in more general cases.

Proof(of Theorem3.44, 1)) We consider a general element K € 7, and mappings a €
WX (K), p, g € Pr_1(K) on it and, moreover, mappings & € WX (K), p, 4 € Pr_1(K)
defined according to (3.88). First, the proof is done for ! = k. On the reference
element K, for ¢ W&(K) and § € P_1(K)), we have

R
/Kﬁ@dﬁ —Za‘)z PP < ClIVgllog < ClVlleo g 11Glle >
1=1

where the continuity of the embedding of WX (K) in C(K) is used (see [11, p. 181]).
Therefore, by the equivalence of || - [|,, g and [| - [lo g on Pr_1(K), it follows that

|EGQ)| < ClI9lloo g Nallgz -

If a fixed § € Py_1(K) is chosen, then a linear continuous functional G is defined on
W (K) by 9 — E(99) that has the following properties:

IGIl < Cllgllazg and G(H)=0 for ¥ e Pr1(K)

by virtue of (3.147).
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The Bramble-Hilbert lemma (Theorem 3.27) implies
|EGQ)| < C 9l lllgz -
According to the assertion we now choose
s an A koo Py p p
V=ap for ae W7 (K), pe Fra(X),

and we have to estimate |4pl; g (thanks to the Bramble-Hilbert lemma not
14Plly, 0, g)- The Leibniz rule for the differentiation of products implies the esti-
mate

k
18Pl ook < C D18l j o0 g 1Bly0 - (3.148)
=0

Here the constant C depends only on k, but not on the domain K.
Since p € Pk_l(K ), the last term of the sum in (3.148) can be omitted. Therefore,
we have obtained the following estimate holding for 4 € WX (K), p, § € Pr-1(K):

k-1
|E(@pg)| < C( |8lx_j co R Iﬁlj,oo,g) 141lo, 2

=0
i1 (3.149)
< C( 181k, c0 8 |ﬁ|j,K) 14llg & -
=0

The last estimate uses the equivalence of || - |l and || - [lo on Pe_1(K).

We suppose that the transformation F of K to the general element K has, as
usual, the linear part B. The first transformation step yields the factor | det(B)]
according to (3.133), and for the back-transformation it follows from Theorem 3.29
and Theorem 3.30 that

Idlk—j,oo,K <C hl]c(—j Ialk—j,oo,K )
|Bl; 2 < C k| detB)| ™ |pl; ., (3.150)

13llgg < Cldet(B)™*lgllox

for0 < j < k- 1. Here a, p, g are the mappings 4, p, § (back)transformed according
to (3.88). Substituting these estimates into (3.149) therefore yields

k

-1
|Ex(apq)| < Ch’,z( altmgonk |p|j,K) lalox
g

J

and from this, assertion 1) follows for I = k.
If I = 1, we modify the proof as follows. Again, in (3.149) we estimate by using
the equivalence of norms:
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k-1

|E@pg)| < C(Z |8lyj 0.8 ||ﬁnj,oo,g) 121l 2
7=0
k-1

< C(Z |a|k_j,w,g) 1Bl 112llz -
=0

The first and the third estimates of (3.150) remain applicable; the second estimate is
replaced with the third such that we have

k-1
|Ex(apg)| < Chg (Z Ialk-j,oo,K) lpllo,x llgllo,x
=)

since the lowest hg -power arises for j = k — 1. This estimate yields the assertion 1)
forl =1. ]

Finally, we can now verify the assumptions of Theorem 3.41 with the following
result.

Theorem 3.45 Consider a family of affine equivalent Lagrange finite element dis-
cretizations in R%, d < 3, with P = P for some k € N as local ansarz space.
Suppose that the family of partitions is shape-regular or satisfies the maximum angle
condition in the case of triangles with k = 1. Suppose that the applied quadrature
formulas are exact for Pop—2. Let the function w satisfying the Dirichlet boundary
condition and let the solution u of the boundary value problem (3.13), (3.19)—(3.21)
(with g3 := 0) belong to H**1(Q). _

Then there exist some constants C > 0, h > 0 independent of u and w such that
Jor the finite element approximation up +wy, according to (3.123), (3.140), it follows
for h < 1 that

lle +w — @ +wa)||, < CH* {|u|k+1 + Wit

d d
+ ( D Ikl es + Z‘ il oo + ||r||zgoo)(nuuk+l + i) + ||f||k,oo} :
=

ij=1

Proof According to (3.126), we aim at estimating ||u +w - (ap + I (w))"l, where

Ty, satisfies (3.141).
By virtue of Theorem 3.32 or Theorem 3.38 (set formally I's := @) we have

w =T w)lli < CH [wlis - (3.151)

For the bilinear form a;, defined in (3.139), it follows from Theorem 3.44 for v,w € Vj,
and ! € {0, k} that
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|a(v, w) — an (v, w)|

d d

<> ( D 1Bk (k0 01)a: wli))| + D |Exc (o 0l )w)] + |EK<rvw>|)

KeT, \ij=1 i=1
d

d
1
<C ZhK( D Mkijllgoox + ) lcilhoon x + ||r||k,oo,K)||v||z,K||w||1,K

KeTy, i,j=1 i=1

d d 1/2
<CH ( D kijlle + D lleill oo + ||r||k,oo) ( > ||v||,%K) Wi,
i=1

ij=1 Ke7;

(3.152)
by estimating the || - ||k, k-norms in terms of norms on the domain Q and then
applying the Cauchy-Schwarz inequality with “index” K € 7.

From this we obtain for / = 1 an estimate of the form

la(v, w) = an(, w)| < Chllvlillwl

such that the estimate required in Lemma 3.42 holds (with C(h) = C - h). Therefore,
there exists some 4 > 0 such that aj is uniformly Vj,-coercive for 2 < k. Hence,
estimate (3.145) is applicable, and the first addend, the approximation error, behaves
as asserted according to Theorem 3.32 or Theorem 3.38 (again, choose v := I (1)
for the comparison element).

In order to estimate the consistency error of ay, a comparison element v € Vj, has
to be found for which the corresponding part of the norm in (3.152) is uniformly
bounded. This is satisfied for v := I, (i), since

172 1/2
( D ||1h(u)||,%,K) < [l +( > ||u—1h(u>||,%,K)

Ke7, KeT,
< llulle + Chlulisr < [lullea

due to Theorem 3.32 or Theorem 3.38.
Hence, the consistency error in a behaves as asserted according to (3.152), so
that only the consistency error of ! has to be investigated: We have

Z— Zh ={ _Zh —a(W, ) + ah(Th(W), '),

where £}, is defined in (3.139).
If v € V3, then

|latw, v) = an(Tn(w), v)| < law, v) = alluw), v)| + [an(w), v) = anTn(w), v)|-
For the first addend the continuity of a implies

|la(w, v) — aTn(w), v)| < C|w = Tuw)||; I1vIl1,
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so that the corresponding consistency error part behaves like ||w - T (w)“l, which
has already been estimated in (3.151). The second addend just corresponds to the
estimate used for the consistency error in a (here, the difference between I, and 7;, is
irrelevant), so that the same contribution to the convergence rate, now with ||z|[g+1
replaced by ||w||x+1, arises. Finally, Theorem 3.44, 4) yields for v € Vj,,

o) =€l < Y 1Eg () <€ " b vol (K)2 1 flheo i VI, x

Ke7p, Ke7,
< BIQM2 (| £llkeo VI

by proceeding as in (3.152). This implies the last part of the asserted estimate. O

If the uniform Vj-coercivity of a; is ensured in a different way (perhaps by
Lemma 3.43), one can dispense with the smallness assumption about 4. If estimates
as given in Theorem 3.44 are also available for other types of elements, then partitions
consisting of combinations of various elements can also be considered.

Exercises

Programming project 3.2 Extend the finite element solver of Project 3.1 to more
general quadrature rules. The code shall work for Newton—Cotes quadrature rules
of accuracy ! = 0, 1, 2. In the implementation of the right-hand side, the quadrature
rules for triangles and the quadrature rules for edges should have equal accuracy.
The corresponding parameters are

[order 7o T 1 ] 2 |
weights (triangle) 0.5 ] 2,22 2, 50 %
quadrature points (triangle) (%, % vertices |edge midpoints
weights (interval) 1 0.5, 0.5 %, 43 1

' 5
quadrature points (interval)|| 0.5 0,1 0, 0.5, 1

Test your implementation for Q := (0,2) x (0, 1), I'; := {2} x (0, 1),

0.1 forx<1,

c:=(0.1,1 T, r:=0, f:=0,
1 otherwise, ¢ ) !

K=kl with k(x,y):= {

el el ifx <1,

and  gi(x,y):= —0'160'1()(_1)» &% y) = 0 1(x-1) _ p-1

otherwise.
The Dirichlet boundary value coincides with the restriction of the exact solution u
to I3.
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Programming project 3.3 Extend the finite element solver of Project 3.2 to quadratic
finite elements. The main difference to linear elements is that additional degrees of
freedoms have to be taken into account, namely, the function values in the edge
midpoints of the triangles. To this end the element-node table should be a matrix
with six columns where every row contains the indices of the nodes of one triangle.
Use the following local numbering for the nodes of one triangle:

as

as ¢ as

a) ay az

Accordingly, boundary nodes are not only the endpoints of the respective edge.
For the reference triangle, the shape functions of a quadratic triangular element

are
M£ P =1-2-9)(1-22-29), Na(£,9) =421 -2-79)

M 9) = 222 - 1), N5(%, 9) = 4%3,
N3(£,9) = 9(29 - 1), Ne(£,9) = 49(1 - £ - 9).

Apply the trapezoidal rule for numerical integration.
To test your implementation, consider the Poisson equation on the unit square
with T} := {0, 1} x (0, 1) and the exact solution u(x, y) = cos(zx) sin(ry).

3.7 The Condition Number of Finite Element Matrices

The stability of solution algorithms for linear systems of equations as described
in Section 2.5 depends on the condition number of the system matrix (see [54,
Sect. 1.13]). The condition number also plays an important role for the convergence
behaviour of iterative methods, which will be discussed in Chapter 5. Therefore, in
this section we shall estimate the spectral condition number (see Appendix A.3) of
the stiffness matrix

A= (a((,aj, wi))i,j:l)"',M (3.153)
and also of the mass matrix (see (9.51))
B = ({5 i)0); jor. (3.154)

which is of importance for time-dependent problems. Again, we consider a finite
element discretization in the general form of Section 3.4 restricted to Lagrange
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elements. In order to simplify the notation, we assume the affine equivalence of all
elements. Further we suppose that

+ the family (73 )y of partitions is shape-regular.

We assume that the variational formulation of the boundary value problem leads to
a bilinear form a that is V-coercive and continuous on V ¢ H(Q).

As a modification of definition (1.18), let the following norm (which is also
induced by a scalar product) be defined on the ansatz space Vj, = span{¢y, ..., ¢m}:

1/2
vllok <= ( Z he Z |V(ai)|2) (3.155)
Ke7, a; €K

Here, ajy, ..., ap denote the nodes of the degrees of freedom, where in order to
simplify the notation, M instead of M is used for the number of degrees of freedom.
The norm properties follow directly from the corresponding properties of | - |2
except for the definiteness. But the definiteness follows from the uniqueness of the
interpolation problem in V}, with respect to degrees of freedom a;.

Theorem 3.46 1) There exist constants Cy, Cy > 0 independent of h such that
Glivllo € [Vllor < Collvilo forallv e Vi .

2) There exists a constant C > 0 independent of h such that

-1
<C|min & i |/
lIvilx (1?2(2 K) vllo forallveVy

Proof As already known from Sections 3.4 and 3.6, the proof is done locally in
K € 75, and there transformed to the reference element K by means of F(£) = B +d.
1): All norms are equivalent on the local ansatz space P, thus also || - llo, g and the

Euclidean norm in the degrees of freedom. Hence, there exist some (fl, C‘z > 0 such
that for ¥ € P,

19 1/2
il g < (Z w(a»P) < Olvllgz -
i=1
Here, 4y, . . ., 4y are the degrees of freedom in K. Due to (3.61) we have
vol (K) = vol (R) | det(B)|,

and according to the definition of Ag and the shape regularity of the family (7; ),
there exist constants C; > 0 independent of 4 such that

Cr g < G5 0% < |det(B)] < G &

By the transformation rule we thus obtain for v € Pk, the ansatz space on K, that
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I 1/2

A A N ~ 1/2 ArA

Cilvlia = G [det(B) 2 191l ¢ < (Cr )" (Z|v(a,-)|2)
i=1

. 1/2 i 12 L
2‘“(2 h;'élv(aoP) = (Cang) (Zmaoﬂ)
i=1

a; €K

172

~ 1/2 ~ /2
< (Cngd) " Callvligg = (Cont) " Coldet(BY 2 Il

~1/2 A ~A-1/2
<G llk.

This implies assertion 1).

2): Arguing as before, now using the equivalence of || - ||, g and [ - |y ¢ in P, it
follows by virtue of (3.99) for v € Pk (with the generic constant C) that

Vg < CldetB)2 1B R 9oz < ClIB™ 2 IVllok < C kg [Iviok
by Theorem 3.30 and the shape regularity of (7 ), and from this, the assertion 2).0

An estimate as in Theorem 3.46, 2), where on a finite-dimensional space a higher
order norm is estimated by a lower order norm to the expense of a negative power of
h, is called an inverse estimate.

In order to make the norm || - ||o,j, comparable with the (weighted) Euclidean norm
we assume in the following:

o There exists a constant C4 > O independent of 4 such that for every (3.156)
node of 7, the number of elements to which this node belongs is
bounded by Cy.

This condition is (partly) redundant: For d = 2 and triangular elements, the condition
follows from the uniform lower bound (3.111) for the smallest angle as an implication
of the shape regularity. Note that the condition need not be satisfied if only the
maximum angle condition is required.

In general, if C € RM:M g 2 matrix with real eigenvalues 1; < --- < Apr and
an orthonormal basis of eigenvectors &, . . ., & 3¢, for instance, a symmetric matrix,
then it follows for § € RM \ {0} that

§rce
A < ng < M, (3.157)

and the bounds are assumed for £ = &; and € = &,4.

Theorem 3.47 There exists a constant C > O independent of h such that we have

d
min 4 )
KeT;, K

k(B) < C(

Jor the spectral condition number of the mass matrix B according to (3.154).
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Proof «(B) = Apr /A1 must be determined. For arbitrary € € RM \ {0} we have

&8¢ _ ¢7B¢ VG,
e i, &€

’

where v := Zf';’l &@;i € V. By virtue of ¢ BE = (v, v)o, the first factor on the right-
hand side is uniformly bounded from above and below according to Theorem 3.46.
Further, by (3.156) and & = (v(ay), . . ., v(ay))T it follows that

s rd g2 2 d g2
min A <|v <Cuh ,
i 1 1€7 < bR, < Cah €]

and thus the second factor is estimated from above and below. This leads to estimates
of the type
22 C min kS, Ay <G R4,
KeT,

and from this, the assertion follows. O

Therefore, if the family of partitions (73 )y, is quasi-uniform in the sense that there
exists a constant C > 0 independent of % such that

h<Chg forallK e 7, (3.158)

then x(B) is uniformly bounded (Fig. 3.15).

N |

Fig. 3.15: A shape-regular triangulation, which is not quasi-uniform (in the limit).

In order to be able to argue analogously for the stiffness matrix, we assume that
we stay close to the symmetric case:

Theorem 3.48 Suppose the stiffness matrix A (3.153) admits real eigenvalues and a
basis of eigenvectors. Then there exists a constant C > 0 independent of h such that
the following estimates for the spectral condition number k hold:
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-2
k(B'A) < c(}%}' hK) ,
)
x(A) < C (}(1‘1;% hK) k(B).

Proof With the notation of (3.157), we proceed analogously to the proof of Theo-

rem 3.47. Since
§TA¢ AL ETBE
£ €BE £T¢]
it suffices to bound the first factor on the right-hand side from above and below.

This also yields a result for the eigenvalues of B~ A, since we have for the variable
n = B2,

fTAg B ﬂTB_1/2AB_1/2I]
gT Bg ”T”
and the matrix B~1/2AB71/2 possesses the same eigenvalues as B~1A by virtue
of B~Y/2(B~1/2ABV/2)BY? = B~1A. Here, B'/? is the symmetric positive definite
matrix that satisfies B1/2BY/2 = B, and B~1/2 is its inverse.
Since £7 A£/£TBE = a(v,v)/ (v, v)o and

a(,v) = alvll} = ellvIig,

-2 (3.159)
av,v) < Cvlff < € (;?‘é%, hK) VI3

with a generic constant C > 0 (the last estimate is due to Theorem 3.46, 2)), it
follows that

T -2
bl A 2 .
o< 2uv) _£AE o) C(mln hK) : (3.160)
<V, V>0 f Btf <V’ V>0 Ke,
and from this the assertion. o

The analysis of the eigenvalues of the model problem in Example 2.12 shows that
the above-given estimates are not too pessimistic.

Exercises

Problem 3.33 Let G  R? be abounded domain, set # := diam(G), G := {h™'x|x €
G} and $(%) := v(h%) for £ € G. Show for k € Ng, 1 < r < oo, and v € WX(G):

|1‘>|k,r,G = hk_d/rlvlk,r,G .

Problem 3.34 Under the assumptions of Problem 3.33, let 2 < 1 and P be a finite-
dimensional subspace ofWIl,(G)ﬂWI’}‘(G), ImeNom<Il,1<p<oo,1<g<oco.



3.8 General Domains and Isoparametric Elements 193

Prove that there is a constant C > 0, independent of A, such that the following local
inverse estimate holds:

Ivllypc < CR™1+P=dla ||y, . forallv e P.

Problem 3.35 Under the parameter setting of Problem 3.34, let (7;), be a quasi-
uniform partition of a polyhedral domain Q C R, affine equivalent to the reference
element (K, Pg, > z) such that Pg C W;(K )N WZ(K). Consider the broken ansatz
space

P(7;):={we LNQ) | wlk € Pg forallK € 7} .

Show that there exists a constant C > 0, independent of 4, such that the following
global inverse estimate holds:

Vil p,7; < Chm1rminiOd/p=d/a} ) o forallv e P(T).

3.8 General Domains and Isoparametric Elements

All elements considered so far are bounded by straight lines or plane surfaces.
Therefore, only polyhedral domains can be decomposed exactly by means of a
partition. Depending on the application, domains with a curved boundary may appear.
With the available elements the obvious way of dealing with such domains is the
following (in the two-dimensional case): for elements X that are close to the boundary
put only the nodes of one edge on the boundary d€Q. This implies an approximation
error for the domain, for Qp := | Jgeg; K, there holds, in general, neither 2 C Qy
nor €, C Q (see Figure 3.16).

Fig. 3.16: Q and Q.

As the simplest example, we consider homogeneous Dirichlet boundary condi-
tions, thus V = H(l) (Q), on a convex domain for which therefore ;, C Q is satisfied.
If an ansatz space V}, is introduced as in Section 3.3, then functions defined on
are generated. Therefore, these functions must be extended to Q in such a way that
they vanish on 4€2, and, consequently, for the generated function space Y, Vi, C V.
This is supposed to be done by adding the domains B whose boundary consists of a
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boundary part of some element K € 7 close to the boundary and a subset of 9S2 to
the set of elements with the ansatz space P(B) = {0}. Céa’s lemma (Theorem 2.17)
can still be applied, so that for an error estimate in || - ||; the question of how to
choose a comparison element v € Vj, arises. The ansatz v = I, («), where I, (1)
denotes the interpolation on €, extended by 0 on the domains B, is admissible only
for the (multi-)linear ansatz: Only in this case are all nodes of an edge “close to
the boundary” located on 9d€2 and therefore have homogeneous degrees of freedom,
so that the continuity on these edges is ensured. For the present, let us restrict our
attention to this case, so that ||u — I, ()||; has to be estimated where « is the solution
of the boundary value problem.

The techniques of Section 3.4 can be applied to all K € 7, and by the conditions
assumed there about the partition, this yields

llw —unlly < Cllu — I (@)l + llullLoes,)
< C(hlulya, + llulho\q,)-

If Q € CZ, then we have the estimate

el o, < Chllullza

for the new error part due to the approximation of the domain, and thus the con-
vergence rate is preserved. Already for a quadratic ansatz this is no longer satisfied,
where only
e =l < CH¥2 lulls

holds instead of the order O(h?) of Theorem 3.32 (see [57, Sect. 4.4]). One may
expect that this decrease of the approximation quality arises only locally close to the
boundary; however, one may also try to obtain a better approximation of the domain
by using curved elements. Such elements can be defined on the basis of the reference
elements (K, P, %) of Lagrange type introduced in Section 3.3 if a general element
is obtained from this one by an isoparametric transformation, that is, choose an

Fep? (3.161)
that is injective and then
K:=FK), P:={poF'|pecP}, z:={F@)|act}.

Since the bijectivity of F : K — K is ensured by requirement, a finite element is thus
defined in terms of (3.69). By virtue of the unique solvability of the interpolation
problem, F can be defined by prescribing ay,...,ar, L = Ifll, and requiring

F(&,-):a,-, i=1,...,L.

However, this does not, in general, ensure the injectivity. Since, on the other hand,
in the grid generation process elements are created by defining the nodes (see Sec-
tion 4.1), geometric conditions about their positions that characterize the injectivity
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of F are desirable. A typical curved element that can be used for the approximation
of the boundary can be generated on the basis of the unit simplex with 2 = P5(K)
(see Figure 3.17).

as as
. a3
a axs A
ap F € P,(K)? az
— >
a
a ap az a2 @

Fig. 3.17: Isoparametric element: quadratic ansatz on triangle.

Elements with, in general, one curved edge and otherwise straight edges thus
are suggested for the problem of boundary approximation. They are combined with
affine “quadratic triangles” in the interior of the domain. Subparametric elements can
be generated analogously to the isoparametric elements if (the components of) the
transformations in (3.161) are restricted to some subspace ﬁT c B.If ﬁT =P (K' ),
we again obtain the affine equivalent elements.

However, isoparametric elements are also important if, for instance, the unit
square or cube is supposed to be the reference element. Only the isoparametric
transformation allows for “general” quadrilaterals and hexahedra, respectively, which
are preferable in anisotropic cases (for instance, in generalization of Figure 3.12) to
simplices due to their adaptability to local coordinates. In what follows, let K :=
[0,114, P := @(R).

In general, since also a finite element (in R41) is defined for every face § of K
with P| gand i ¢, the “faces” of K, that is, F/ (8], are already uniquely defined by the
related nodes.

Consequently, if d = 2, the edges of the general quadrilateral are straight lines
(see Figure 3.18), but if d = 3, we have to expect curved surfaces (hyperbolic
paraboloids) for a general hexahedron.

A geometric characterization of the injectivity of F is still unknown (to our
knowledge) for d = 3, but it can be easily derived for d = 2: Letthenodes ay, ay, a3, a4
be numbered counterclockwise and suppose that they are not on a straight line, and
thus (by rearranging) T' = conv (ay, az, a4) forms a triangle such that

2vol (T) = det(B) > 0.

Here Fr(X®) = BX + d is the affine-linear mapping that maps the reference triangle
conv (@1, 42, 44) bijectively to T If 43 := Fy!(a3), then the quadrilateral K with the
vertices 4y, 4y, @3, 44 is mapped bijectively to K by Fr.

The transformation F' can be decomposed into

F=FroPFp,
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a3

F € Q;(R)?

~ A

aa ay a) az

Fig. 3.18: Isoparametric element: bilinear ansatz on rectangle.

where Fp ¢ Q1(R)* denotes the mapping defined by
FQ(@,-) =4;, i=1724, FQ(@3) =43

(see Figure 3.19).

&
>

as

az

Fig. 3.19: Decomposition of the bilinear isoparametric mapping.

Therefore, the bijectivity of F is equivalent to the bijectivity of Fy.
We characterize a “uniform” bijectivity which is defined by det (DF (£, £2)) # 0
for the functional matrix DF (%, X2):

Theorem 3.49 Suppose Q is a quadrilateral with the vertices ay,. . .,a4 (numbered
counterclockwise). Then,
det (DF (%1, %)) #0  for all (%1, %) < [0, 1]
—= det(DF (%1, %)) >0 for all (%1, %) € [0,1]*

= Q is convex and does not degenerate into a triangle or straight line.
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Proof By virtue of
det (DF (%1, £2)) = det(B) det (DFg (%1, £2))

and det(B) > 0, F can be replaced with Fp in the assertion. Since
F(j\: A)_ j1 + d3,1_]- P
Q 17x2 - fz ﬁ3’2 _ 1 1x27
it follows by some simple calculations that

det (DFQ()?], )22)) =1+ (63’2 -1 + (53’1 -1x,

is an affine-linear mapping because the quadratic parts just cancel each other. This
mapping assumes its extrema on [0, 1]2 at the 4 vertices, where we have the following
values:

(0, 0) 01, (1, 0) 1 a3, (0, 1) tds, (1, 1) tdsy + a3 — 1.

A uniform sign is thus obtained if and only if the function is everywhere positive.
This is the case if and only if

a1, 432, @31 +a2—-1> 0,

which just characterizes the convexity and the nondegeneration of K. By the trans-
formation Fr this also holds for K. (m}

According to this theorem it is not allowed that a quadrilateral degenerates into a
triangle (now with linear ansatz). But a more careful analysis [156] shows that this
does not affect negatively the quality of the approximation.

In general, for isoparametric elements we have the following:

From the point of view of implementation, only slight modifications have to be
made: In the integrals (3.128), (3.129) transformed to the reference element or their
approximation by quadrature (3.139), | det B| has to be replaced with |det (DF(£))|
(in the integrand).

The analysis of the order of convergence can be done along the same lines as
in Section 3.4 (and 3.6); however, the transformation rules for the integrals become
more complex (see [16, pp. 237]).

Exercises

Problem 3.36 Determine Fx < le with Fx (R) = K, det(DFx) > 0, and K, K from
the following figure, where the origin is mapped to the point (0, 24). Is there any
restriction for # > 07
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27 y
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Programming project 3.4 Consider the Dirichlet boundary value problem for the
two-dimensional Poisson problem

—-Au=finQ,
u=gondQ,

where Q c R? is a piecewise parabolically bounded domain:
b1z

by b3

b1z

This domain is the biquadratic image of (1, 1)%, where

| bu bia b1z by by by by bxn b
bi;1]-1.25 0 075 -075 0 075-075 0 125
byj2|-075-075-125 0 0 O 125075075

a) Write a function that generates a logically quadrilateral partition of Q2 by subdi-
viding Qinto a quadratic “reference partition” with m x m squares and mapping
it onto Q. The number m € N is determined by the requirement that all elements
of the resulting partition of Q should have a diameter less than 4 > 0. The input
data are the coordinates of by, .. ., b33 and the grid parameter 4. The output data
are the nodal coordinate and element connectivity tables (defined analogously to
the triangular case, see Programming project 2.3 or Section 2.4.1) of the obtained
partition.
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b) Making use of a), write a function that solves the boundary value problem
by means of isoparametric biquadratic elements. The input data are the right-
hand side f, the boundary function g, the exact solution u, the coordinates of
b11, - - ., b33, and the fineness %. The output data are § € RM and the maximum
norm of the error, i.e., ||u — up||co-

c) Test your implementation for the following cases:

D u(x,y) == x2 +y?,
2) u(x, y) := cos(7x) cos(7y).

3.9 The Maximum Principle for Finite Element Methods

In this section maximum and comparison principles that have been introduced for
the finite difference method are outlined for the finite element method.

In the case of two-dimensional domains €2 the situation has been well investigated
for linear elliptic boundary value problems of second-order and linear elements.
For higher dimensional problems (d > 2) as well as other types of elements, the
corresponding assumptions are much more complex, or there does not necessarily
exist any maximum principle.

From now on, let Q ¢ R? be a polygonally bounded domain and let X, denote
the finite element space of continuous, piecewise linear functions for a consistent
triangulation 7y of Q where the function values in the nodes on the Dirichlet boundary
I'; are included in the degrees of freedom. First, we consider the discretization
developed for the Poisson equation —Au = f with f € L%(Q). The algebraization of
the method is done according to the scheme described in Section 2.4.3. According
to this, first all nodes inside Q and on I'; and I'; are numbered consecutively from
1 to a number M;. The nodal values uy(a,) forr = 1,..., M; are arranged in the
vector uy. Then, the nodes that belong to the Dirichlet boundary are numbered
from M; + 1 to some number M; + Mo, the corresponding nodal values generate
the vector &;,. The combination of u, and &, gives the vector of all nodal values
ip = (3") e RM, M = My + M,.

This leads to a linear system of equations of the form (1.34) described in Sec-
tion 1.4:

Ahuh = —Ahﬁh +f

with A, € RMvMi 4, ¢ RMuMz gy, £ ¢ RM1 and @1, € RM2.
Recalling the support properties of the basis functions ¢;, ¢; € X, we obtain for

a general element of the (extended) stiffness matrix Zh = (Ah | Ah) € RMuM he

relation
(Ah)ij = / V‘P] . V(,O, dx = f V‘P] . V/.p, dx.
Q Supp ¢; NSUpp@;
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Therefore, ifi # j, the actual domain of integration consists of at most two triangles.
Hence, for the present it is reasonable to consider only one triangle as the domain of
integration.

Lemma 3.50 Suppose 7y, is a consistent triangulation of Q. Then for an arbitrary
triangle K € Ty, with the vertices a;, a; (i # J), the following relation holds:
1 K
KV(pj -Veidx = ~3 cotey; ,
where ailj(. denotes the interior angle of K that is opposite to the edge with the

boundary points a;, a;.

Proof Suppose the triangle K has the vertices g;, a;, ax (see Figure 3.20). On the
edge opposite to the point a;, we have

(PJEO.

Therefore, V¢; has the direction of a normal vector to this edge and—by considering
in which direction ¢; increases—the orientation opposite to the outward normal
vector 1;, that is,

V(pj = 7|V(pj|nki Wlth |nki| = ].- (3162)

it

ai
Nki

Fig. 3.20: Notation for the proof of Lemma 3.50.

In order to calculate |ch j| we use the following: From (3.162) we obtain
|V‘Pj| = -Vo; 1y,
that is, we have to compute a directional derivative. By virtue of ¢;(a;) = 1, we have

0-1 1
V(P""k': = ——
Ty h
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where h; denotes the height of K with respect to the edge opposite a;. Thus we have
obtained the relation

1
Ve = —— .
@j hj ki
Hence we have X
Vo . Vo — MMk _ Cosay
$ T Ty h; by
Since
21K| = hjlax - a;| = by la; — ax| = |ax — ail |a; — ax| sinay},
we obtain
5 1 1
V; -V = ———= |ar — a;| |a; — ar| = —= cot X —,
Pj @i 4|K|2 |ar il | i xl 3 i K|
so that the assertion follows by integration. m]

Corollary 351 If K and K’ are two triangles of Ty, which have a common edge
spanned by the nodes a;, a;, then
) J 1 Sin(aiIJ(. + al.IJ(.’)
An ..:f Vo Vgdx = —= —Ft—> .
YoJke T 2 (sinafy )(sinef)

Proof The formula follows from the addition theorem for the cotangent function. O

Lemma 3.50 and Corollary 3.51 are the basis for the proof of the assumption (1.35)"
in the case of the extended system matrix Ay. Indeed, additional assumptions about
the triangulation 7 are necessary:

Angle condition:  For any two triangles of 75 with a common edge, the sum of the
interior angles opposite to this edge does not exceed the value n. If a triangle has
an edge on the boundary part I'y or I';, then the angle opposite this edge must not
be obtuse.

Connectivity condition:  For every pair of nodes both belonging to QU I'; U T
there exists a polygonal line between these two nodes such that the polygonal line
consists only of triangle edges whose boundary points also belong to QU It UT,
(see Figure 3.21).

Discussion of assumption (1.35)*: The proof of (1), (2), (5), (6)* is rather ele-
mentary. For the “diagonal elements”,

(Ah),,:/|V<p,|2dx: > f|V¢,|2dx>0, r=1...,M,
Q K csuppey

which already is (1). Checking the sign conditions (2) and (5) for the “nondiagonal
elements” of Ay, requires the analysis of two cases:
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Fig. 3.21: Example of a nonconnected triangulation (I's = 9€).

1. Forr=1,...,Myands = 1,..., M with r # s, there exist two triangles that have
the common vertices a,, a;.
2. There exists only one triangle that has a, as well as a; as vertices.

In case 1, Corollary 3.51 can be applied, since if K, K’ just denote the two triangles
with a common edge spanned by a,, as, then 0 < a,{i + af; < mr and thus (Xh),s <0,
r # 5. In case 2, Lemma 3.50, due to the part of the angle condition that refers to the
boundary triangles, can be applied directly yielding the assertion.

Further, since Z?ﬁ 1 ¥s = 1in Q, we obtain

M _ M M
SZ::‘(Ah)rszg'/g;v‘)os'vwrdx:./g;v(z‘)os)'V‘Prdx:()-

s=1

This is (6)*.
The sign condition in (3) now follows from (6)* and (5), since we have

M M _ M
DA = D (Badrs = Y (s 2 0. (3.163)
s=1 s=1 s=Mj+1
——
=0

The difficult part of the proof of (3) consists in showing that at least one of these
inequalities (3.163) is satisfied strictly. This is equivalent to the fact that at least one
element (Ah),s, r=1...,M and s = My +1,..., M, is negative, which can be
shown in terms of an indirect proof by using Lemma 3.50 and Corollary 3.51, but
is not done here in order to save space. Simultaneously, this also proves condition
.

The remaining condition (4)* is proved similarly. First, due to the connectivity
condition, the existence of geometric connections between pairs of nodes by polyg-
onal lines consisting of edges is obvious. It is more difficult to prove that under all
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possible connections there exists one along which the corresponding matrix elements
do not vanish. This can be done by the same technique of proof as used in the second
part of (3), which, however, is not presented here.

If the angle condition given above is replaced with a stronger angle condition in
which stretched and right angles are excluded, then the proof of (3) and (4)* becomes
trivial.

Recalling the relations

maxup(x)= max (&
< eh h() re{l,...M}( h)r

and
(ﬁh )r ’

which hold for linear elements, the following result can be derived from Theo-
rem 1.11.

max uy (x) = max
x€l3 re{Mj+1,....M}

Theorem 3.52 If the triangulation Ty, satisfies the angle condition and the connec-
tivity condition, then we have the following estimate for the finite element solution uy,
of the Poisson equation in the space of linear elements for a nonpositive right-hand
side f € L*(Q):

maxuy (x) < maxup(x).

xeQ) x€l3
Finally, we make two remarks concerning the case of more general differential
equations.

If anequation with a variable scalar diffusion coefficient k£ : © — Ris considered
instead of the Poisson equation, then the relation in Corollary 3.51 loses its purely
geometric character. Even if the diffusion coefficient is supposed to be elementwise
constant, the data-dependent relation

—~ 1 )
(Ap)ij = -3 {kK cot ag + kg cot ag}

would arise, where kg and kg denote the constant restriction of k to the triangles K
and K’, respectively. The case of matrix-valued coefficients K : Q — R%9 is even
more problematic.

The second remark concerns differential expressions that also contain lower order
terms, that is, convective and reactive parts. If the diffusive term -V - (KVu) can
be discretized in such a way that a maximum principle holds, then this maximum
principle is preserved if the discretization of the other terms leads to matrices
whose “diagonal elements” are nonnegative and whose “nondiagonal elements” are
nonpositive. These matrix properties are much simpler than conditions (1.35) and
(1.35)*. However, satisfying these properties causes difficulties in special cases, e.g.,
for convection-dominated equations (see Chapter 10), unless additional restrictive
assumptions are made or special discretization schemes are used.
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Exercise

Problem 3.37 Investigate the validity of a weak maximum principle (in the sense of
Theorem 3.52) for quadratic elements and the cases

a) of a Friedrichs—Keller triangulation,
b) of a triangulation consisting only of isosceles triangles.

What is to be expected in general under the assumptions of Theorem 3.527



Chapter 4

Grid Generation and A Posteriori Error Choghor
Estimation

4.1 Grid Generation

An essential step in the implementation of the finite element method (and also of the
finite volume method as described in Chapter 8) is to create an initial “geometric
discretization” of the domain Q2.

This part of a finite element code is usually included in the so-called preproces-
sor (see also Section 2.4.1). In general, a stand-alone finite element code consists
further of the intrinsic kernel (assembling of the finite-dimensional system of alge-
braic equations, rearrangement of data (if necessary), and solution of the algebraic
problem) and the postprocessor (editing of the results, extraction of intermediate
results, preparation for graphic output, and a posteriori error estimation). Adaptive
finite element codes have an additional feedback control between the postprocessor
and the preprocessor.

4.1.1 Classification of Grids

Grids can be categorized according to different criteria: One criterion considers the
geometric shape of the elements (triangles, quadrilaterals, tetrahedra, hexahedra,
prisms/wedges (pentahedra), and pyramids; possibly with curved boundaries). A
further criterion distinguishes the logical structure of the grid (structured or unstruc-
tured grids). Besides these rough classes, in practice one can find a large number of
variants combining grids of different classes (combined grids).

A structured grid in the strict sense is characterized by a regular arrangement of
the grid points (nodes), that is, the connectivity pattern between neighbouring nodes
(the node-adjacency structure) is identical everywhere in the interior of the grid.
The only exceptions to that pattern may occur near the boundary of the domain 2.
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Typical examples of structured grids are rectangular Cartesian two- or three-
dimensional grids as they are also used within the framework of the finite difference
methods described in Chapter 1 (see, e.g., Figure 1.1).

A structured grid in the wider sense is obtained by the application of a piecewise
smooth bijective transformation to some “reference grid”, which is a structured grid
in the strict sense. Grids of this type are also called logically structured, because
only the logical structure of the connectivity pattern is fixed in the interior of the
grid. However, the edges or faces of the geometric elements of a logically structured
grid are not necessarily straight or plain, respectively.

Logically structured grids have the advantage of simple implementation, because
the pattern already defines the neighbours of a given node. Furthermore, there
exist efficient methods for the solution of the algebraic system resulting from the
discretization, including parallelized resolution algorithms.

In contrast to structured grids, unstructured grids do not have a self-repeating
node pattern. Moreover, elements of different geometric types can be combined in
unstructured grids. Unstructured grids are suitable tools for the modelling of complex
geometries of Q and for the adjustment of the grid to the numerical solution (local
grid adaptation).

Although “the mesh generation methodology is becoming increasingly recog-
nized as a subject in its own right” [43, p. xvii], a detailed explanation is out of
the scope of this book. Nevertheless we want to give a brief overview on a few
methods for creating and modifying unstructured grids in the subsequent sections.
More comprehensive descriptions can be found, for instance, in the books [26], [43],
or [8].

4.1.2 Generation of Simplicial Grids

A simplicial grid consists of triangles (in two dimensions) or tetrahedra (in three
dimensions). To generate simplicial grids, the following three fundamentally distinc-
tive types of methods are widely used, often even in combination:

* tree-based methods,
+ Delaunay triangulation methods, and
+ advancing front methods.

Tree-based Methods

The so-called quadtree (in two dimensions) or octree methods (in three dimensions)
start from a rectangular or hexahedral set (the bounding box or root cell) that covers
the domain and is partitioned by a structured grid (the overlay or background grid),
typically a comparatively coarse rectangular Cartesian two- or three-dimensional
grid.
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The substantial part of the algorithm consists of fitting routines for those parts of
the initial grid that are located near the boundary, and of simplicial subdivisions of the
obtained geometric elements. The fitting procedures perform recursive subdivisions
of the near-boundary rectangles or rectangular parallelepipeds in such a way that at
the end every geometric element contains at most one geometry defining point (i.e., a
vertex of Q or a point of 4, where the type of boundary conditions changes). After
that, the resulting rectangles or rectangular parallelepipeds are split into simplices
according to a set of refinement templates. Finally, a so-called smoothing step, which
optimizes the grid with respect to certain regularity criteria, can be supplemented;
see Section 4.1.4.

The method is named after the tree data structure for managing the recursive
subdivisions. Typically, grids generated by tree-based methods are close to structured
grids in the interior of the domain. Near the boundary, they lose the structure. Further
details can be found in the references [228], [216], and [174].

Delaunay Triangulation Methods

The core algorithm of these methods generates, for a given cloud of isolated points
(nodes), a triangulation of their convex hull. Therefore, a grid generator based on this
principle has to include a procedure for the generation of this point set (for example,
the points resulting from a tree-based method) as well as certain fitting procedures
(to cover, for example, nonconvex domains, too). A pretty comprehensive book about
this topic is [14].

The Delaunay triangulation of the convex hull of a given point set in R is
characterized by the following property (the empty sphere criterion, Figure 4.1): Any
open d-ball, the boundary of which contains d + 1 points from the given set, does
not contain any other points from that set. The triangulation can be generated from
the so-called Voronoi tessellation of R? for the given point set. In two dimensions,
this procedure is described in Chapter 8, which deals with finite volume methods
(Section 8.2.1). However, practical algorithms ([111], [226]) apply the empty sphere
criterion more directly.

The interesting theoretical properties of Delaunay triangulations are one of the
reasons for the “popularity” of this method. In two dimensions, the so-called max-
min-angle property is valid: Among all triangulations of the convex hull G of a
given point set in the plane, the Delaunay triangulation maximizes the minimal
interior angle over all triangles. No generalization of this fact is known for higher
dimensions, at least in terms of some angular measures of simplices. In contrast to
the case d = 2, even poorly shaped elements (the so-called sliver elements) may
occur. Since a Delaunay triangulation possesses many optimality properties in two
dimensions, geometers longly suspected that it should optimize something in three
dimensions. Rajan [204, 205] discovered the first such result (which is true even for
arbitrary dimensions). A further important property of a two-dimensional Delaunay
triangulation is that the sum of two angles opposite to an interior edge is not more
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Fig. 4.1: Empty sphere criterion in two dimensions (d = 2).

than n. For example, such a requirement is a part of the angle condition formulated
in Section 3.9.

Advancing Front Methods

The basic idea of these methods is to build a triangulation incrementally starting from
a discretization of the current boundary (see, e.g., [120], [157], [194], and [203]).
In particular, the methods require an already existing partition of the boundary of
Go := Q. For d = 2, this “initial front” is made up of patches of curves, whereas
in d = 3 it consists of patches of curved surfaces (the so-called “2.5-dimensional
partition”). Typically these boundary curves or surfaces are represented by means
of B-splines or nonuniform rational B-splines (NURBS) (see, e.g., [26]), in the
simplest cases by polygonal lines or triangular facets. However we will not explain
the details of 2.5-dimensional partitioning here. Many techniques developed for
planar grid generation are also principally suitable for surface grid generation, but
additional difficulties on curved surfaces may appear that require modifications of
the algorithms.

The advancing front method consists of an iteration of the following general
step (Figure 4.2): An element of the current front (i.e., a straight-line segment or a
triangle) is taken and then, either generating a new inner point or taking an already
existing point, a new simplex K; that belongs to Ej_l is defined. After the data of
the new simplex are stored, the simplex is deleted from 51-_1. In this way, a smaller
domain G; with a new boundary dG; (a new “current front”) results. The general
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step is repeated until the current front is empty. Often, the grid generation process is
supplemented by a smoothing step; see Section 4.1.4.

4.1.3 Generation of Quadrilateral and Hexahedral Grids

Grids consisting of quadrilaterals or hexahedra can also be generated by means of
tree-based methods (e.g., [153], [86]), where—roughly speaking in terms of the
description given in Section 4.1.2—the final steps of simplicial splitting are omitted,
or advancing front methods (e.g., [107], [108]). However, especially the automatic
generation of high-quality, fully hexahedral grids remains an unsatisfactorily solved
and therefore still intense research task.

An interesting application of simplicial advancing front methods in the two-
dimensional case is given in the paper [231]. The method, which belongs to the
class of so-called indirect methods, is based on the simple fact that any two triangles
sharing a common edge form a quadrilateral. Obviously, a necessary condition for
the success of the method is that the underlying triangulation should consist of an
even number of triangles. Unfortunately, the generalization of the method to the
three-dimensional situation is difficult, because a comparatively large number of
adjacent tetrahedra should be merged to form a hexahedron. However, this idea can
be successfully used to create grids that are predominantly composed of hexahedra;
see the subsequent paragraph about mixed grids.

Multiblock Methods

The basic idea of these methods is to partition the domain into a small number
of subdomains (“blocks”) of simple shape (quadrilaterals, hexahedra, as well as
triangles, tetrahedra, prisms, pyramids, etc.) and then generate structured or logically
structured grids in the individual subdomains (e.g., [60], [201]).

b ~

Fig. 4.2: Step j of the advancing front method: The new simplex K] is deleted from
the domain G;_;.
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In multiblock grids, special attention has to be devoted to the treatment of com-
mon boundaries of adjacent blocks. Unless special discretization methods such as,
for example, the so-called mortar finite element method (cf. [102]) are used in this
situation, there may be a conflict between certain compatibility conditions at the
common block interfaces (to ensure, e.g., the continuity of the finite element func-
tions across the interfaces) on the one hand and the output directives of an error
estimation procedure that may advise to refine a block-internal grid locally on the
other hand.

Mixed Grids

Especially in three-dimensional situations, the generation of “purely” hexahedral
(all-hexahedral) grids may be very difficult for complicated geometries of the
domain. Therefore, the so-called mixed (or combined or hexahedral-dominant) grids
that consist of hexahedral grids in geometrically simple subdomains and tetrahedral,
prismatic, pyramidal, etc. grids in more critical subregions are used (e.g., [200]).
In this context indirect methods that combine tetrahedra to hexahedra are attractive
(e.g., [188], [202]).

Chimera Grids

These grids are also called overset grids (see, e.g.,[121]). In contrast to the multiblock
grids described above, here the domain is covered by a comparatively small number
of domains of simple shape, and then structured or logically structured grids are
generated on the individual domains. That is, a certain overlapping of the blocks and
thus of the subgrids is admitted.

4.1.4 Grid Optimization

Many grid generation codes include “smoothing algorithms” that optimize the grid
with respect to certain grid quality measures or regularity criteria. In the so-called
r-method (relocation method) the nodes are slightly moved, keeping the logical
structure (the connectivity) of the grid fixed (see, e. g., [83]). Another approach is to
improve the node-adjacency structure of the grid itself. In principle, optimization-
based smoothing algorithms differ in the type of grid being smoothed, the so-called
distortion metric selected to construct an appropriate objective function, and the
optimization method used. However, grid optimization on its own in terms of grid
quality may not be very useful if, for instance, the underlying (initial-)boundary
value problem is of anisotropic nature.

A typical example for r-methods is given by the so-called Laplacian smoothing
(or barycentric smoothing), where any inner grid point is moved into the barycentre
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of its neighbours (e.g., [120]). A local weighting of selected neighbours can also be
used (weighted barycentric smoothing). From a formal point of view, the application
of the Laplacian smoothing corresponds to the solution of a system of linear algebraic
equations that is obtained from the equations of the arithmetic (or weighted) average
of the nodes. The matrix of this system is large but sparse. The structure of this
matrix is very similar to the one that results from a finite volume discretization of the
Poisson equation as described in Section 8.2 (see the corresponding special case of
(8.11)). In general, there is no need to solve this system exactly. Typically, only one
to three steps of a simple iterative solver (as presented in Section 5.1) are performed.
‘When the domain is almost convex, Laplacian smoothing will produce good results.
It is also clear that for strongly nonconvex domains or other special situations, the
method may produce invalid grids (see, e.g., [152]).

Among the methods to optimize the grid connectivities, the so-called 2:1-rule
and, in the two-dimensional case, the edge swap (or diagonal swap, [173]) are
well known. The 2:1-rule is used within the quadtree or octree method to reduce the
difference of the refinement levels between neighbouring quadrilaterals or hexahedra
to one by means of additional refinement steps; see Figure 4.3.

N ™~

\

Fig. 4.3: Illustration of the 2:1-rule.

\ \

In the edge swap method, a triangular grid is improved. Since any two triangles
sharing an edge form a convex quadrilateral, the method decides which of the two
diagonals of the quadrilateral optimizes a given criterion. If the optimal diagonal
does not coincide with the common edge, the other configuration will be taken; i.e.,
the edge will be swapped.

Finally, it should be mentioned that there exist grid optimization methods that
delete nodes or even complete elements from the grid.

4.1.5 Grid Refinement

A typical grid refinement algorithm for a triangular grid, the so-called red/green
refinement, has previously been introduced in Section 2.4.1. This refinement method
was successfully extended to tetrahedral grids, see, for instance, [229] (red refine-
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ments only), [104], [110], and [105], and to simplicial grids of any dimension d > 2
in [143]. It consists of three components—the red and the green refinement rules,
and a global refinement step, which coordinates the application of the two local
refinement rules [104].

The red refinement of a tetrahedron K (see Figure 4.4) yields a partition of K
into eight subtetrahedra (a so-called octasection) with the following properties: All
vertices of the subtetrahedra coincide either with vertices or with edge midpoints of
K. At all the faces of K, the two-dimensional red refinement scheme can be observed.

Fig. 4.4: The red refinement of a tetrahedron.

A further class of methods is based on bisection, that is, a simplex is cut by a
hyperplane passing through the midpoint of an edge and through the vertices that do
not belong to this edge (see Figure 4.5).

Fig. 4.5: A multiply bisected tetrahedron.
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Bisection methods are based on simplicial grids and are characterized by the
number of bisections used within one refinement step (the stage number of the
method) as well as by the criterion of how to select the edge where the new node is
to be located. Among the bisection methods, the longest edge bisection [209] and
the newest vertex bisection [190], [192] are well developed. Both bisection methods
have been extended to the multi-dimensional case. The generalization of the longest
edge bisection method to three dimensions was made by Rivara herself [210]. A first
paper on the general case d > 2 is [90].

The first three-dimensional versions of Mitchell’s method can be found in [89],
[184], [165], and [178]/[179]. In [185], [223], and [84] generalizations to arbitrary
dimensions d > 2 were given; for an overview we refer to [193].

In the (conventional) longest edge bisection method, the general (recursive) refine-
ment step for some simplex K is of the following form:

1. Find a longest edge E in K.
2. Bisect the simplex K by a hyperplane passing through the midpoint of £ and the
vertices of K that do not belong to E.

However, this type of refinement may generate nonconsistent triangulations. There
exists also a consistent version of longest edge bisection method [192], [163], where
the general (recursive) refinement step is of the following form:

1. Find a longest edge E in a given consistent triangulation 7~ (or in a subset
M cCT).

2. Bisect each simplex X € 7 sharing this edge by a hyperplane passing through
the midpoint of E and the vertices of K that do not belong to E.

In this version, all generated triangulations are consistent.

A step of the newest vertex bisection method always starts from a labelled (or
marked) triangulation, that is, for each simplex one vertex is labelled as the so-called
newest vertex. In the two-dimensional case, this vertex uniquely defines an edge
opposite to this vertex, and this edge is called the refinement edge. In dimensions
greater than 2, there is not a unique edge opposite to the newest vertex. Therefore
the algorithm has to select a refinement edge, too, and this is the reason why some
authors prefer to call methods of this type in the higher dimensional case d > 3
rather recursive bisection. The existing newest vertex bisection methods differ in the
way how this edge selection is achieved. The general refinement step includes the
following:

1. A simplex is bisected by creating a new vertex at the midpoint of the refinement
edge and cutting the simplex by a hyperplane that passes through the new vertex
and through the vertices that do not belong to this edge.

2. The new vertex created at the midpoint of the refinement edge is assigned to be
the newest vertex of both of the resulting simplices.

Thanks to the second rule, the subsequent triangulations inherit the label and the
bisection process can be continued.
In general, there are two main aspects in designing a good refinement method:

1) Consistency (or conformity; see the conditions (T5) and (T6) in Subsection 3.3),
2) Shape regularity of the generated family of triangulations (see Definition 3.31).
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In what follows we briefly comment on some of these aspects.

In special cases, e. g. for the so-called uniform refinement of a complete consistent
triangulation 7, the resulting refined triangulation 7’ is consistent, too. Examples
are the global uniform refinement by quadrisection mentioned in Subsection 2.4.1
or [218, Thm. 4.3]. A further example is the consistent longest edge bisection
method mentioned above. In general, however, nonconsistent refined partitions arise.
Furthermore, in adaptive finite element methods only certain proper subsets M c 7~
are to be refined, and the sole refinement of the elements of A leads to nonconsistent
partitions. Therefore, in order to restore the consistency of a refined partition 7,
so-called completion (or closure) rules are applied. That is, the set M is enlarged to
aset of elements R > M, the refinement of which yields a consistent grid. Since the
refinement of an element K € 7" means that X is split into at least two and at most
Cson = 2 smaller elements (children), it holds that

M| <1771 =17 < (Cson = DIT-

In addition to the regularity problem already mentioned above, the completion
process causes additional problems, namely its termination after a limited number
of completion steps and the nestedness of the refined partition. Under the latter, the
following is understood.

Definition 4.1 Given two partitions 7,7~ with corresponding node sets N, N
The partition 7' is called a grid-nested refinement of the partition 7~ if each element
K’ € 77 is covered by exactly one element K € 7~ and the following strong inclusion
holds: N ¢ T/'/, N #N.

The two bisection methods, along with their completion rules, produce grid-nested
refinements, while the red/green refinement does not. An example of the latter can
be found in [142, Fig. 3.2].

The consistency of the red/green refinement has already been discussed in Section
2.4.1 for d = 2. The rollback step 4 in refinement algorithm given there shows that
the minimum angle in a refined triangulation is not less than half the minimum
angle of the initial triangulation. In the three-dimensional case, the completion of a
refined tetrahedron can be done in a similar way as for d = 2 (see Section 2.4.1).
If all four edges of the tetrahedron are marked, a red refinement (octasection) can
take place. However, in dependence on whether one, two, or three edges are marked,
three different types of green completions (see e. g. [110, Figs. 6-8]) are required.
The paper [168] ventilates the shape regularity in the three-dimensional case. In the
general case d > 2, the green refinement rule described in [143] yields a consistent
triangulation (see [143, Thm. 3.15]), introduces no additional vertices, and is able
to handle every possible refinement pattern. It produces only a finite number of
similarity classes of simplices. [143, Thm. 4.6] shows that there is no avalanche or
domino effect which inevitably spreads out the red refinement over the grid.

For the longest edge bisection method in the case d = 2, a consistency and
shape regularity result was demonstrated in [210, Thm. 11]. The termination of
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the completion process has been shown in [208]. The shape regularity of the two-
dimensional consistent longest edge bisection method has been investigated in [163].
The properties of consistency and finite termination of a three-dimensional local
longest edge bisection refinement have been demonstrated in [179]. The verification
of the shape regularity of longest edge bisection method for 4 > 3 is a difficult
problem, although there are many computer experiments that show that this type of
local refinement can possess this property for both triangular and tetrahedral grids;
for an overview see [164].

The consistency and shape regularity of the newest vertex bisection method in
the case d = 2 have already been demonstrated in [191]. Bansch [89] considered the
consistency and shape regularity for the dimensions d = 2, 3. They also showed that
the completion process will terminate. First consistency and shape regularity results
in the general case d > 2 can be found in [185], [223], and in [218] a result from
[106] has been generalized to d > 2 dimensions: The total number of d-simplices in
the partition at termination of the method can be bounded by some absolute multiple
of the number of d-simplices that were marked for refinement in all iterations. For
more information, we refer to [73].

Regarding the consistent refinement of quadrilateral and hexahedral grids, the
algorithms and their theoretical properties are not as well developed and understood
as in the simplicial case. We mention only a few works. In [230], an adaptive
quadrilateral grid refinement procedure without hanging nodes has been proposed.
It can be regarded as an extension of the usual red/green refinement to quadrilateral
grids. Especially in the case d = 3, refinement templates or transition elements are
often used; see, e. g., [220], [43, Sections 5.8.14/15].

As a final remark and without going into more details we mention that there are
also algorithms that deal with the problem of grid de-refinement. For instance, in
time-dependent problems, those regions of the grid may also vary in which refine-
ment is required. Then, an efficient coarsening of grid patches that no longer have to
be fine can reduce the overall computational effort. An example of an efficient imple-
mentation of a de-refinement algorithm using the newest vertex bisection method in
R? can be found in [122].

Exercises

Problem 4.1 For a given triangle K, the circumcentre can be computed by finding the
intersection of the perpendicular bisectors associated with two edges of K. This can
be achieved by solving a linear system of equations with respect to the coordinates
of the circumcentre.

a) Formulate such a system.
b) How can the radius of the circumcircle be obtained from this solution?
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Problem 4.2 Given a triangle X, denote by 4; the length of edge i, i € {1,2 3}.
Prove that the following expression equals the radius of the circumcircle (without
using the circumcentre!):
hihahs
4K

Problem 4.3 Let Kj, K7 be two triangles sharing an edge.

a) Show the equivalence of the following edge swap criteria:
Angle criterion: Select the diagonal of the so-formed quadrilateral that maximizes
the minimum of the six interior angles among the two configurations.
Circle criterion: Choose the diagonal of the quadrilateral for which the open
circumcircle disks to the resulting triangles do not contain any of the remaining
vertices.

b) If @1, ap denote the two interior angles that are located opposite to the common
edge of the triangles K; and K3, respectively, then the circle criterion states that
an edge swap is to be performed if

a)] tag > m.

Prove this assertion.
c) The criterion in b) is numerically expensive. Show that the following test is
equivalent:

[(a1,1 — a31)(az1 — a31) + (a2 — a32)(az2 — a3.2)]
x[(az1 — asq1)(ay,2 — a42) — (a11 — as1)(az2 — a42))

< [(az1 - aa1)(a11 — aa1) + (a2 — as2)(ay,2 — a42))
X[(az1 — as1)(a1,2 — a32) — (@11 — az1)(az2 — a32)] .

Here a; = (a;1,a;2)7, i € {1,2,3}, denote the vertices of a triangle ordered
clockwise, and a4 = (a4, a42)T is the remaining vertex of the quadrilateral, the
position of which is tested in relation to the circumcircle defined by aj, as, as.
Hint: Addition theorems for the sin function.

4.2 A Posteriori Error Estimates

In the practical application of discretization methods to partial differential equations,
ideally an approximation should have been calculated, the error of which is known
or even within prescribed bounds. The error estimates described in the previous
chapters cannot be used to achieve these goals because they contain information
about the unknown weak solution u and indefinite constants (such as the seminorm
|u|x+1 and the constant C in (3.102)). Such estimates only yield information on the
asymptotic error behaviour and require regularity conditions to the weak solution
which may be not satisfied, for instance, in the presence of singularities.
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Therefore, methods are needed for estimating and quantifying the occurring error,
which allow to extract the required information a posteriori from the computed
numerical solution and the given data of the problem. To achieve a guaranteed
accuracy, an additional adaptive control of the parameters of the numerical process,
for instance, a grid control, is required. The latter will be the topic of the next section.

For elliptic or parabolic differential equations of order two, a typical norm to
quantify the error u# — uy, is the energy norm (respectively an equivalent norm) or
the L?-norm. Some practically important problems involve the approximation of
so-called derived quantities which can be mathematically interpreted in terms of
values of certain linear functionals u — J(u) (goal functionals) of the solution u. In
such a case, an estimate of the corresponding error is also of interest.

Example 4.2 (goal functionals)
J(u) = / n-Vudo: Jlux of u through a part of the boundary Ty C 8%,
To
Ju) = / udx: integral mean of u on some subdomain Qo C Q.
Qo

In the following we will consider some estimates for a norm ||-|| of the error u—uy, and
explain the corresponding terminology. Similar statements remain true if ||u — u||
is replaced by |J(u) — J(up)|.

The error estimates given in the previous chapters are characterized by the fact
that they do not require any information about the computed solution uy,. Estimates
of this type are called a priori error estimates.

For example, consider a variational equation with a bilinear form that satisfies
(for some space V such that Hcl) Q) cVcHY \Qand|-| :=| - |) the assumptions
(2.46), (2.47) and use numerically piecewise linear, continuous finite elements.
Then Céa’s lemma (Theorem 2.17) together with the interpolation error estimate
from Theorem 3.32 implies the estimate

M M
e = el < = llu = Il < =Ch, @

where the constant C depends on the weak solution « of the variational equation.
Here C has the special form

c :C( /Q Z |0“u|2dx)1/2 4.2)

la|=2

with C > 0 independent of u. Unfortunately, as mentioned above, the structure of
the bound (4.2) does not allow the immediate numerical application of (4.1).

But even if the constant C could be estimated and (4.1) could be used to determine
the discretization parameter 4 (maximum diameter of the triangles in 7) for a
prescribed tolerance, in general this would lead to a grid that is too fine. This
corresponds to an algebraic problem that is too large. The reason is that the described
approach determines a global parameter, whereas the true error measure may have
different magnitudes in different regions of the domain Q.
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So we should aim at error estimates of type
e — unll < G (4.3)

or
Cerrnp < llu —upll < Garm, 4.4

where the constants Cr, Cof > 0 do not depend on the discretization parameters
and

1/2
n = ( > n%) 4.5)
Ke

Here the quantities nx should be computable using only the data—including possibly
uy|x —which are known on the particular element K.

If the bounds 7 (or the terms ng, respectively) in (4.3) (respectively (4.4)) depend
on uy, i.e., they can be evaluated only if uy is known, then they are called (local) a
posteriori error estimators in the wider sense.

Often the bounds also depend on the weak solution « of the variational equation,
so in fact, they cannot be evaluated immediately. In such a case they should be
replaced by computable quantities that do not depend on « in a direct way. So, if
the bounds can be evaluated without knowing u but using possibly uy, then they are
called (local) a posteriori error estimators in the strict sense.

Inequalities of the form (4.3) guarantee, for a given tolerance £ > 0, that the
inequality n < ¢ implies that the error measure does not exceed ¢ up to a multi-
plicative constant. In this sense the error estimator 7 is called reliable. Now, if the
computed approximative solution u;, is sufficiently precise in the described sense,
then the computation can be finished. If uy, is such that n > ¢, then the question of
how to modify the discretization in order to achieve the tolerance or, if the computer
resources are nearly exhausted, how to minimize the overshooting of 5 arises. That
is, the information given by the evaluation of the bounds has to be used to adapt
the discretization and then to perform a new run of the solution process. A typical
modification is to refine or to de-refine the grid.

Error estimators may overestimate the real error measure significantly; thus a grid
adaptation procedure based on such an error estimate generates a grid that is too
fine, and consequently, the corresponding algebraic problem is too large.

This effect can be reduced or even avoided if the error estimator satisfies a two-
sided inequality like (4.4). Then the ratio Cre1/Cegr is a measure of the efficiency of
the error estimator.

An error estimator 7 is called asymptotically exact if for an arbitrary convergent
sequence of approximations (uy) with ||u — up || — O the following limit is valid:

n

—_— 1.
llu — en|

Usually, a posteriori error estimators are designed for a well-defined class of bound-
ary or initial boundary value problems. Within a given class of problems, the question
regarding the sensitivity of the constants Cefr, Crep in (4.3)/(4.4), with respect to the
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particular data of the problem (e.g., coefficients, inhomogeneities, geometry of the
domain, grid geometry, ... ), arises. If this dependence of the data is not crucial,
then the error estimator is called robust within this class.

Design of A Posteriori Error Estimators

In the following, three basic principles of the design of a posteriori error estimators
will be described. In order to illustrate the underlying ideas and to avoid unnecessary
technical difficulties, a model problem will be treated: Consider a diffusion-reaction
equation on a polygonally bounded domain Q ¢ R? with homogeneous Dirichlet
boundary conditions
-Au+ru=f inQ,

u=0 ondQ, (46)
where f € L%(Q) and r ¢ C(Q) with r(x) > 0 for all x ¢ Q. The problem is
discretized using piecewise linear, continuous finite element functions as described
in Section 2.2.

Setting a(w, v) := fQ(Vu - Vv +ruv)dx for u,v € V := H(I)(Q), we have the
following variational (weak) formulation:

Find u € V such that a(u, v) = (f,v)o forallv e V. 4.7
The corresponding finite element method reads as follows:

Find up, € Vj, such that a(up, viy) = (f, vi)o for all vy, € V. (4.8)

Residual Error Estimators

Similar to the derivation of the a priori error estimate in the proof of Céa’s lemma
(Theorem 2.17), the V-coercivity of a (2.47) implies that

allu —uhlll2 <alu—upu—uy).

Without loss of generality we may suppose u — iy, € V' \ {0}, hence

1 alu—up,u—u 1 a(u—uy,v
= uply < & 28—t —w) 1 a1, v) 49)
@ |lu—uplh @ ey Vil
‘We observe that the term
a(w —up,v) = a(, v) — a(up, v) = (f,v)o — alun, v) 4.10)

is the residual of the variational equation; i.e., the right-hand side of inequality (4.9)
can be interpreted as a certain norm of the variational residual.
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In a next step, the variational residual will be split into local terms according to
the given grid, and these terms are transformed by means of integration by parts. For
arbitrary v € V, from (4.10) it follows that

alu —up,v) = Z ('/I;fvdx—'/l;(Vuhon+ruhv)dx)

Ke7,

= Z (L[f—(—Auh +ruh)]vdx—/;K11K'Vuhvd0')»

Ke7;,

where 1 g denotes the outer unit normal on dK. The first factor in the integrals over
the elements KX is the classical elementwise residual of the differential equation:

rx(un) = [f = (~Duy, + rup)]| -

All quantities entering rx (4p,) are known. In the case considered here we even have
~Aup, = 0 on K, hence rg(up) = [f — rup)|g-

The integrals over the boundary of the elements X are further split into a sum
over the integrals along the element edges F' C K:

/ ng - Vupvdo = Z an~Vuhvd0.
oK F

FcoK
Since v = 0 on 9€2, only the integrals along edges lying in Q contribute to the sum.
Denoting by 7, the set of all interior edges of all elements K € 73, we see that in the
summation of the split boundary integrals over all K € 7, there occur exactly two
integrals along one and the same edge F = K N K’ € F,. This observation results in

the relation
>, [ o Vuwdo = Y [ [l vdo,
oK F

Ke7y, Fefn
where, in general for a piecewise continuous vector field g : Q — R, the term

lq] :=[q]F := 9k - n& + gl Mk “.11)

denotes the jump of the normal components of g across the edge F common to the
elements K, K’ € 73,.
In summary, we have the following relation:

alu —up,v) = Kg;h /K rr(up)vdx — F;i fF [Vup]pvdo.

Using the error equation (2.43), we obtain for an arbitrary element v, € V), the
fundamental identity
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a(u —up,v) = alu —up,v—vp)

= 3 [ e -

Ke7y,

- Z/I;ﬂVuh]]F(V—Vh)dO',

Fem

which is the starting point for the construction of further estimates.
First we see that the Cauchy-Schwarz inequality immediately implies

a(u—up,v-v) < Y lrkllogllv = vilok

Ket 412
+ Z ”[[Vuh]]”qp”v - Vh||0,F~ ¢ )

Fer,

To get this bound as small as possible, the function v, € V}, is chosen such that the
element v € V is approximated adequately in both spaces L?(K) and L%(F). One
suggestion is the use of an interpolating function according to (2.51). However, since
V ¢ C(Q), this interpolant is not defined. Therefore other approximation procedures
have to be applied. Roughly speaking, suitable approximation principles, due to
Clément [125] or Scott and Zhang [214], are based on taking certain local integral
means. However, at this place we cannot go further into these details and refer to the
cited literature. In fact, for our purposes it is important only that such approximations
exist. Their particular design is of minor interest.

We will formulate the relevant facts as a lemma. To do so, we need some additional
notations (see Figure 4.6):

triangular neighbourhood of a triangle X :  A(K) := U K, 413
K" K'NK#0

triangular neighbourhood of an edge F : A(F) := U K. (4.14)
K': K'NF#0

Fig. 4.6: The triangular neighbourhoods A(K) (left) and A(F) (right).

Thus A(K) consists of the union of the supports of those nodal basis functions
that are associated with the vertices of K, whereas A(F) is formed by the union
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of those nodal basis functions that are associated with the boundary points of F.
Furthermore, the length of the edge F is denoted by hg := |F|.

Lemma 4.3 Let a shape-regular family (7y) of triangulations of the domain Q be
given. Then for any v € V there exists an element Qnv € Vy, such that for all triangles
K € 7, and all edges F € F, the following estimates are valid:

lv - Qnvllox < ChglvlLak),

v - Qnvllar < CVREIVILAE),

where the constant C > O depends only on the family of triangulations.

Now, setting vy, = Qv in (4.12), the discrete Cauchy—Schwarz inequality yields

a(u —up,v) < C Z b lrg (up)llo g [V]1,a¢k)
Ke7,

+C Z \/E”[[V”h]]”QFWh,A(F)

Fesy,

1/2 1/2
< C( > h%<||rK<uh>||3,K) ( > Ivlim)

KeT;, Ke7p
) 1/2 1/2
co( 3 ellmuntlee) {3 hae)
F€ﬁ Feﬁ

A detailed investigation of the two second factors shows that we can decompose the
integrals over A(K), A(F), according to

/A(K> K'CA(K) '/K ' '/MF ) K'CA(F) /’-‘ '

This leads to a repeated summation of the integrals over the single elements X.
However, due to the shape regularity of the family of triangulations, the multiplicity
of these summations is bounded independently of the particular triangulation (see
(3.111)). So we arrive at the estimates

D gy <CE DT IRy < CE .15
KeT, FeF,

Using the inequality @ + b < +/2(a? + b?) for a, b € R, we get
a(u — up, v)

1/2
< C( PIRATIOIEDD hpn[[wh]]Fn&F) vl -

Ke7, Fes,
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Finally, (4.9) yields

le—wplly < Dy with 7%= > ng (4.16)
Ke7;,
and 1
2
Mk = hgllf —rwnlGg +5 > he{| Vel p @.17)
F cK\oQ

Here we have taken into account that in the transformation of the edge sum

Z . into the double sum ..
FeFy, K€%, FcoK\oQ

the latter sums up every interior edge twice.

In summary, we have obtained an a posteriori error estimate of the form (4.3).
Unfortunately, the estimate (4.16) may considerably overestimate the quantity ||u —
uy|l; in many cases, for instance, if the two constants in the estimates from (4.15)
significantly differ. Such overestimations were actually observed in numerical tests,
e. g, [115]. Regardless, in practice the quantities nx are often used, but not to
calculate a guaranteed upper bound of the global error, but as error indicators that
give a feeling for the distribution of the local errors in Q.

By means of refined arguments it is also possible to derive lower bounds for
|| — up||1. For details, we refer to the literature, for example, [63].

Error Estimation by Gradient Recovery

If we are interested in an estimate of the erroru —u, € V = Hé () measured in the
H'- or energy norm || - ||, this problem can be simplified by means of the fact that
both norms are equivalent on V to the H!-seminorm

1/2
lu —upl; = (f|Vu—Vuh|2dx) = ||V = Vuyllo .
Q

This is a simple consequence of the definitions and the Poincaré inequality (see
Theorem 2.18). That is, there exist constants Cy, C; > 0 independent of 4 such that

Cilu —uply < [lu—wun|l < Colu —unly (4.18)

(cf. Problem 4.7). Consequently, Vu remains the only unknown quantity in the error
bound.

The idea of error estimation by means of gradient recovery is to replace the
unknown gradient of the weak solution u by a suitable quantity Ryu;, that is com-
putable from the approximative solution ; at moderate expense. A popular example
of such a technique is the so-called Z 2estimate. Here we will describe a simple
version of it. Further applications can be found in the original papers by Zienkiewicz
and Zhu, e.g., [232].
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Similar to the notation introduced in the preceding subsection, for a given node a
the set
ray= | ) K 4.19)
K': ac9K’

denotes the triangular neighbourhood of a (see Figure 4.7).

e

Fig. 4.7: The triangular neighbourhood A(a).

This set coincides with the support of the piecewise linear, continuous basis
function associated with that node.

The gradient Vuy, of a piecewise linear, continuous finite element function u, is
constant on every triangle K. This suggests that at any node a of the triangulation
7r we define the average Ryup(a) of the values of the gradients on those triangles
sharing the vertex a:

1
Rpun(a) = 0= Vup|g K]
|Aa)l KCZA;a) K

Interpolating the two components of these nodal values of Ryuy, separately in Vj,, we
get a recovery operator Ry, : Vi, — Vi, X Vj,.

Now alocal error estimator can be defined by the simple restriction of the quantity
7 := ||Ryun — Vuy||p onto a single element K:

7k = ||[Rnun — Vupllox -

A nice insight into the properties of this local estimator was given by Rodriguez
([211], see also [116]), who compared it with the corresponding residual estimator
(4.17). Namely, neglecting in the residual estimator just the residual part, i.e., setting

. 1 2 . .
77%( = ‘2' Z hF”[[Vuh]]llo’p and 772 = Z 7712(»
FcoK\oQ Kev;,
then the following result is true:

Theorem 4.4 There exist two constants c1,cy > 0 depending only on the family of
triangulations such that
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af<p<aomf.

The motivation for the method of gradient recovery is to be seen in the fact that
Ry uy, possesses special convergence properties. Namely, under certain assumptions
the recovered gradient Ryu;, converges asymptotically to Vu faster than Vi, does.
In such a case Ry uy, is said to be a superconvergent approximation to Vu.

If superconvergence holds, the simple decomposition

Vu — Vuy, = Ryuy, — Vuy, + Vu — Ryuy,

demonstrates that the first difference on the right-hand side represents the asymptot-
ically dominating, computable part of the gradient error Vi — Viy,. In other words,
if we could define, for the class of problems under consideration, a superconvergent
gradient recovery Rpuy, that is computable with moderate expense, then the quantities
g and 77 defined above may serve as a tool for a posteriori error estimation.

Although such superconvergence properties are valid only under rather restrictive
assumptions (especially with respect to the grid and to the regularity of the weak
solution), it can theoretically and numerically be justified (see, e.g., [116]) that
averaging techniques are far more robust with respect to local grid asymmetry and
lack of superconvergence.

The following example, which is due to Repin [206], shows that a recovered
gradient does not necessarily reflect the actual behaviour of the error.

Example 4.5 Consider the following boundary value problem for d = 1 and Q =
© 1)
-u'=f inQ, u0)=u(l)-1=0.

If f # 0 is constant, the exact solution reads u(x) = x(2 + (1 — x)f)/2. Suppose
we have found the function vy (x) = x as an approximate solution. For an arbitrary
partition of Q into subintervals, this function is piecewise linear and it satisfies
the boundary conditions formulated above. Now let Ry be an arbitrary gradient
recovery operator that is able to reproduce at least constants. Since v, = 1, we have
v, — Ryvp = O, whereas the real error is v, —u’ = (x — %)f.

An interpretation of this effect is that the function v, from the example does not
satisfy the corresponding discrete (Galerkin) equations. But such a property is used
for the proof of superconvergence. This property also plays an important role in the
derivation of the residual error estimates, because the error equation is used therein.

Dual-Weighted Residual Error Estimators

The aforementioned a posteriori error estimates have two disadvantages: On the one
hand, certain global constants, which are not known in general, are part of the bounds.
Typical examples are ! in (4.9) and the constants Cj, C, in the equivalence relation
(4.18). On the other hand, we obtained scaling factors like 2x and vAg simply by
using a particular approximation operator.
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In the following, we will outline a method that attempts to circumvent these
drawbacks. It is especially appropriate for the estimation of errors of functionals
depending linearly on the solution.

So let J : V — R denote a linear, continuous functional. We are interested in
an estimate of |J(u) — J(up)|. Therefore, the following auxiliary dual problem is
considered:

Findw € Vsuch thata(v,w) = J(v)forally € V.

Taking v = u — uy,, we get immediately
Jw)—Jup) =Ju—up) =alu—up,w).
If wy € Vj is an arbitrary element, the error equation (2.43) yields
J@) — J(up) = alu — up, w —wy).

Obviously, the right-hand side is of the same structure as in the derivation of the
estimate (4.12). Consequently, by using the same arguments it follows that

@)~ Jwn)l < D lirg @n)llaklw - wallox
Ke7;,

* Z ”[[V”h]]”o,F”W—WhHo,F.

Feqy,

In contrast to the previous approaches, here the norms of w —wy, will not be theoreti-
cally analysed but numerically approximated. This can be done by an approximation
of the dual solution w. There are several (more or less heuristic) ways to do this.

1) Estimation of the approximation error: Here, the norms of w—wy, are estimated as
in the case of residual error estimators. Since the result depends on the unknown
H!-seminorm of w, which is equivalent to the L?-norm of Vw, the finite element
solution wy, € Vj, of the auxiliary problem is used to approximate Vw. It is a
great disadvantage of this approach that again global constants enter in the final
estimate through the estimation of the approximation error. Furthermore, the
discrete auxiliary problem is of similar complexity to that of the original discrete
problem.

2) Higher order discretizations of the auxiliary problem: The auxiliary problem is
solved numerically by using a method that is more accurate than the original
method to determine a solution in Vj,. Then w is replaced by that solution and
wr € Vj by an interpolant of that solution. Unfortunately, since the discrete
auxiliary problem is of comparatively large dimension, this approach is rather
expensive.

3) Approximation by means of higher order recovery: This method works similarly
to the approach described in the previous subsection; w is replaced by an element
thatisrecovered from the finite element solution wy, € V;, of the auxiliary problem.
The recovered element approximates w with higher order in both norms than wy,



Exercises 227

does. This method exhibits two problems: On the one hand, the auxiliary problem
has to be solved numerically, and on the other hand, ensuring the corresponding
superconvergence properties may be difficult.

At the end of this section we want to mention how the method could be used to
estimate certain norms of the error. In the case where the norms are induced by
particular scalar products, there is a simple, formal way. For example, for the L2-
norm we have

(U — up,u —up o

lloe — upllo =
Il — unllo

Keeping u and uy, fixed, we get with the definition

(v, u — upho

Jv) =
®) = Tl

a linear, continuous functional J : H'(Q) — R such that J(x) — J(up,) = || — un]lo-

The practical difficulty of this approach consists in the fact that to be able to find
the solution w of the auxiliary problem we have to know the values of J, but they
depend on the unknown element « — up,. The idea of approximating these values
immediately implies two problems: There is additional expense, and the influence of
the approximation quality on the accuracy of the obtained bounds has to be analysed.

Exercises

Problem 4.4 Let Q ¢ R? be a bounded domain with a polygonal, Lipschitz contin-
uous boundary and V := H(I) (Q). Now consider a V-coercive, continuous bilinear
form a and a continuous linear form b. The problem

ueV: a(wv)=>b(y) forallveV

is discretized using piecewise linear, continuous finite elements. If E; denotes the
support of the nodal basis functions of V}, associated with the vertex a;, show that
the abstract local error indicators

ale,v)

7= sup
veHME:) vl

can be estimated by means of the solutions e; € Hé (E;) of the local boundary value
problems

e € H(} (Ei):  ale,v)=b(v)—a(up,v) forallve Hé (Ey)

as follows (M and o denote the constants appearing in the continuity and coercivity
conditions on a):
alleill <ni < Mllesl| .

If necessary, the elements of Hé (E;) are extended by zero to the whole domain Q.
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Problem 4.5 A linear polynomial on some triangle is uniquely defined either by its
values at the vertices or by its values at the edge midpoints. For a fixed triangulation
of a polygonally bounded, simply connected domain Q ¢ R?, there can be defined
two finite element spaces by identifying common degrees of freedom of adjacent
triangles.

a) Show that the dimension of the space defined by the degrees of freedom located
at the vertices is less than the dimension of the other space (provided that the
triangulation consists of more than one triangle).

b) How can one explain this “loss of degrees of freedom”?

Problem 4.6 Let a shape-regular family of triangulations (7 ) of a domain Q ¢ R?
be given. Show that there exist constants C > 0 that depend only on the family (73)
such that
Z |v|§,A(K) < CIIng for all v € L3(Q),
Ke7;
Z Vg < CIVIZ forallv e LA(Q).
FeF,

Problem4.7 Let @ ¢ R9 be a bounded domain. Show that there are constants
C1,Cy > 0 such that for all v € H}(Q),

Civly < vl £ Calvlr .

Problem 4.8 Formulate the Galerkin equations for the problem in Example 4.5 and
show that the function vy (x) = x does not satisfy them except that f = 0.

4.3 Convergence of Adaptive Methods

In the previous subsection we have described examples of computable error estima-
tors, depending on the discrete solution and the data, that can be used to evaluate
the accuracy of the discrete solution. These quantities were used over a quite long
period (about 25 years) in rather heuristic algorithms to balance the accuracy and
the computational effort.

For instance, let us assume that the local error estimators ngx composing an
efficient error estimator 5 for an approximate solution u; on some grid 7 really
reflect the error on the element X and that this local error can be improved by a
refinement of K (e.g., following the principles of Section 4.1.5). Then the following
grid adaptation strategies can be applied until the given tolerance ¢ is reached or the
computer resources are exhausted.
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Equidistribution strategy: ~ The objective of the grid adaptation (refinement of ele-
ments or de-refinement of element patches) is to get a new grid 7;“""” such that
the local error estimators n%" for this new grid take one and the same value for
all elements K € 7,"¥; that is, (cf. (4.5))

mEY ~ ————  forall Ke 7™V,
17,1

Since the number of elements of the new grid enters the right-hand side of this
criterion, the strategy is an implicit method. In practical use, it is approximated
iteratively.

Cut-off strategy:  Given a parameter « € (0, 1), a threshold value «n is defined.
Then the elements K with nx > x5 will be refined.

Reduction strategy: ~ Given a parameter « € (0, 1), an auxiliary tolerance &, := «7
is defined. Then a couple of steps following the equidistribution strategy with the
tolerance &,, are performed.

Among all three strategies, the reduction strategy has demonstrated to be a good
compromise in many situations. However, it is not clear right off that the resulting
sequence of discrete solutions converges to the weak solution u. Despite their prac-
tical success, it has been shown only in the past years that adaptive methods of this
kind converge and even possess certain optimality properties. We therefore want to
outline these considerations in what follows.

In this subsection, based on the paper [118], the main aspects of adaptive finite
element methods (AFEM) will be explained, whereby we will restrict ourselves to
the diffusion-reaction problem with Dirichlet boundary conditions (4.6) as in the
previous subsection.

We start with the observation that, in adaptive methods, the previously used
concept of convergence, in which a family of partitions (7;), with & — 0 as in
Section 3.4 was considered, is not appropriate. Already in the work [87, Rem. 6.1]
it was emphasized that the convergence of finite element solutions can be achieved
without the assumption that the maximum size 4 of the partition elements approaches
0. Therefore we consider a shape-regular family (or sequence) of partitions (7x )k en,
generated by the adaptive method, where the corresponding grid parameters Ay :=
max {diam (K) | K e Tk} do not necessarily tend to 0. Typically (7x )k en, consists of
consecutive partitions such that 7z is a nested refinement of 7 (cf. Def. 4.1).

The discussion of convergence requires some generalizations in the notation. For
a general partition 7~ in the sense of Def. 3.20, we define the finite element space
Vo in analogy to (3.74). For simplicity, we assume that V- C V, and the space Vi~
is equipped with the induced norm || - || := || - ||y of V. By us € Vi we denote
the solution of the finite-dimensional variational equation (4.8). Finally, in order to
clearly express the dependence on the concrete partition 7 and the solution us € Vi,
the global and local error estimators 5k, 7 in formula (4.5) are replaced by - x (us)
and ns-(us), respectively.
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A general adaptive algorithm has loops of the following form:
Solve — Estimate — Mark — Refine/De-refine.

Here we will give a formulation based on local grid refinement only (Table 4.1).

Input: Data of the boundary value problem, tolerance £, adaptivity parameter 8 € (0, 1], relative
cardinality threshold Cpip, 2 1.

Core:
1. Construct an initial consistent partition 75 which resolves the geometry and the data of the

problem.
2. Fork=0,1,...do the following loop:

S:  Solve the discrete problem (4.8) corresponding to 7%.
El: For K € 7x do the following loop:
Compute an estimate 779, x (ug;) of the error on K.

12
E2: Compute the global estimate 15; (u7;) = (xze:'r n%.x (uq;)z) .
k

E3: If 5; (ug;) < & then terminate the loop (desired accuracy attained).
M: Based on (7y;, x (45;))xc7; . select among all subsets Ky C 7x satisfying the condition

Onm(up) < ), nn.x(up) 4.20)
KeXy

a set M; such that | Mg | < Cpin | K |.
R: Based on My determine a consistent refinement Jx.1 of Jx .

Output: Approximate solution to the boundary value problem with error less than &.

Table 4.1: Adaptive algorithm.

Remark 4.6 1) Nowadays the condition (4.20) is often called Dérfler’s marking cri-
terion [130].

2) The parameter Cpin > 1 controls a possible deviation of the cardinality of the set
My from the minimal cardinality of all sets satisfying (4.20).

3) The adaptivity parameter 8 allows to vary between only a few marked elements
to be refined (0 < 8 < 1) and nearly all marked elements (8 = 1).

Next we describe a set of axioms that are sufficient for the convergence of the
sequence of estimators (n¢; (#7; )ken, computed by means of the above algorithm,
provided the step E3 is skipped. In this description, we partially omit the subscript
k and consider the discrete solution us € Vi for any given grid 7. The constants
occurring in the subsequently listed axioms satisfy Cgap, Cred, Crel = 1 as well as
0 < preg < 1 and depend solely on

T:={7T | 7 is a consistent refinement of 75} .

For reasons of space we simplify the original setting of [118] by omitting two of
the four axioms because they are easy to satisfy for the model problem (4.6). The
omitted axioms are generalizations of an orthogonality identity (see (4.23) later in
the proof) and the reliability property (4.3) of the estimator.
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(Al) Stability on non-refined element domains: For all refinements 7" € T of a
partition 7 € T, for all subsets K ¢ 7" N 7 of non-refined element domains,
and for all corresponding discrete functions vq € Vo and ve € Vo (not
necessarily the approximations to the weak solution), it holds that

1/2 1/2
( Z 7727~/,K(V7")) - ( Z ﬂng(W))

Kex Kex

< CstabHV‘T’ - V‘7””~

(A2) Reduction property on refined element domains: Any refinement 7’ € T
of a partition 7~ € T satisfies

D Mrr) <pea D nhxur) + Gedllur - urll®
KeT\T KeT\7"

The main result of this section states the convergence of the adaptive algorithm
in the sense that the sequence of error estimators converges, which implies a con-
vergence result for the corresponding norm of the error # — ug; , where u € V is the
solution of the variational equation (4.7).

Theorem 4.7 Suppose (Al) and (A2). Then, for all 8 € (0, 1] there exist constants
Peonv € (0,1) and Ceony > 0 such that the adaptive algorithm (with skipped step E3)
generates a sequence of estimators (g, (U, ) keN, Satisfying

7737{”- (u77c+j) < Cconvpgonvﬂg;(u%) Jor all k, j € No.

In particular,

Y2 k2

Il = ug; || < CoonvconvCrel N5 (uss)  for all k € No.

The constants pconv, Ceonv depend only on pred, Caab, Cred, Crel, and 6.

Proof Step 1 (Perturbed contraction of the error estimator): We start from the fol-
lowing elementwise decomposition of 7)3;‘ p (g, )

2 2 2
77‘7k+1 (u?i“] ) = Z 77‘7.1}-9»1:]((uv;”l) + Z nﬁd»l’K(u?;“"l ) (421)
K€7ir+1\7ir KG?Z”O?];

Using the elementary inequality ab < ea® + £ 1b? for arbitrary a,b € Rand & > 0,

the second sum can be estimated by means of (A1) as follows:

2
>k k)

Keﬁd»lmﬁ
2

1/2
< (( Z 77527;“1((“77()) +Cstab||u77¢+1 —uﬁ”

KeTh1NTg

<+e) Yk glug) + 1L+ e )Clug, —uz .
KeTNTk



232 4 Grid Generation and A Posteriori Error Estimation
Applying (A2) to the first term in (4.21), we obtain

2
n7;t+1 (u7;“‘1 )

2 2 2
< Pred E 777;“1{(“7}) +(1+¢) E 7]7;“1{(“‘77;) + Cestllug,, —ugn Il
KeTi\Tkes1 KeT,+1NTk

where Cog 1= Creg + (1 + s‘l)Cszmb. Using a similar decomposition as (4.21) for
5, (ug;,), we see that
My (U75r)

<1+ 3)’7%("7},) + (Pred -1+ 9)) Z 77%;‘,1{(”‘7;‘) + Cest””?;m - "7}”2-
K€7‘l—c\7‘l—c§1

Since preq — (1 + &) < (1 + €)(orea — 1), it follows that
77%“1 (uﬁﬂ )

<1+ 3)(713;,('47;) = (1 = prea) Z U%;,,K(“?i,)) + Cestlltgy,, — ey |I?
Keﬁ\ﬁﬂ

<+ 8)(n2¢,,(u7;) S ) Y na,K<uﬁ>) + Calur, — s,
KeMy

where we have used the inclusion My C 7% \ 7x+1 in the last step. It remains to apply
Dorfler’s marking criterion (4.20):

Mo (Ug31) < pesy; (U ) + Cestllt,, —uz |I% 4.22)

where pegt 1= (1 + &)(1 — (1 — prea)d) > 0. Selecting a sufficiently small & > 0, we
can also get pegt < 1.

Step 2 (Uniform summability of the error estimator): It is not difficult to demon-
strate (Problem 4.23) that under the conditions of the model problem (4.6) the
following orthogonality identity (Pythagoras theorem) holds:

e = ugy, 1> + llugg,, —us | = |lu —ug||* forall k € No. @.23)
The application of this relation to the last term on the right-hand side of (4.22) yields

2
I

2 2 2
M W) < psy () + Cost I = g P = e = w12

Summing up this estimate from k + 1 to some N > k, we have that
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N N
k) < Y (et (i ) + Cost (e = sy |12 = 1w = |2))
I=k+1 I=k+1
N

2 2 2
= pes Y 1 ) + Cost (Il — g I =l — sy 1)
I=k+1
N

< Pest Z 7]%_1 (ufﬁq) + Cegtllu — Uy, ”2
I=k+1

Now we let N — oo and see that
0 o0
2 < 2 C _ 2
777;(”7i) < Pest U (i) + Cestllt — ugz ||°.
1=k+1 I=k+1

The reliability of the error estimator (4.3) implies

2 2
E N5 (7)< pest E ;. (ugi 1) + CentClay o (i)
I=k+1 I=k+1

< Pes ), 13;(u7) + (et + CenCl)nr (),
I=k+1

and this results in

D nZ(ug) < Cus g (usg ) (4.24)
I=k+1

with CUS = (Pest + CeS[Cl?el)/(l - Pesl)'

Step 3 (Uniform R-linear convergence on any level j € Np): Dividing the above
estimate (4.24) by Cys and adding to both sides of the result the term 33,2, 17% (ug;),
we obtain the relation

(1+ Cu_sl) D ) < ) nk ().
1=k

I=k+1

Then the repeated application of (4.24) leads to

o0 _1 [ee]
2 2 -1 2
nh, W) < D k) < 1+ G Y nhun)
I=k+j I=k+j-1

- = -
<0< (14 C;SI) Zn%(uq;) <(1+ Cus)(l + C;SI) 7, (g, )2
1=k

This proves the first statement of the theorem with Ceony = 1 + Cys and peony 1=

-1
(1+ C,ISI) . The second statement follows from the reliability of the error estimator
(4.3) in conjunction with the above estimate, where k := 0 and j is replaced by k:

2 2 k 2 2
”u - uﬁ” < Crel 7771’( (uf?','() < CCOanconvCrel 7]75 (u%) (]
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In order to complete the discussion of the model problem (4.6), we mention that
the verification of the axioms (A1)-(A2) for the newest vertex bisection refinement
(see Section 4.1.5) can be found in the proof of [119, Corollary 3.4].

We conclude this chapter with some final comments about further aspects. Most
of the contributions to the mathematical understanding of adaptive algorithms have
so far been mainly in the context of conforming finite element methods. The theoret-
ically founded development of a posteriori error estimates and adaptive algorithms
for finite volume methods (see Chapter 8) and discontinuous Galerkin methods (see
Section 7.4) has been slower, with significant progress only in recent years. For
orientation, only a few works will be mentioned.

Results about a posteriori error estimates for finite volume methods and adaptive
algorithms can be found, e. g., in [76], [80] and [133], [134]. In [158], the current the-
ory of a posteriori error estimation for discontinuous Galerkin methods is reviewed,
in particular some results from [117] are improved.

A last remark concerns the error measures with respect to which adaptive meth-
ods can be investigated. Especially in the case when lower bounds or questions of
optimality are to be included in the investigation, an estimate like (4.4) is difficult
to obtain. This led to theories where the so-called quasi-error (which is a weighted
sum of the error plus the error estimator, e. g. [119]) or the fotal error (which is a
weighted sum of the error plus an oscillation term, e. g. [187]) are estimated. The
fact of unavoidable appearance of oscillation terms in a posteriori error estimates
for finite element methods has already been observed in [88]. Data approximation
terms, nowadays falling under the concept of oscillation terms, already appeared in
[76] in the context of finite volume methods.

Exercise

Problem 4.9 Verify the orthogonality identity (4.23) for the model problem (4.6)
under consideration.



Chapter 5

Iterative Methods for Systems of Linear et
Equations

We consider again the system of linear equations
Ax =5 (5.1)

with nonsingular matrix A € R™™ right-hand side b € R™, and solution x € R™.
As shown in Chapters 2 and 3, such systems of equations arise from finite element
discretizations of elliptic boundary value problems. The matrix A is the stiffness
matrix and thus sparse, as can be seen from (2.41). A sparse matrix is vaguely a
matrix with so many vanishing elements that using this structure in the solution of
(5.1) is advantageous. Taking advantage of a band or hull structure was discussed
in Section 2.5. More precisely, if (5.1) represents a finite element discretization,
then it is not sufficient to know the properties of the solution method for a fixed
m. It is on the contrary necessary to study a sequence of problems with increasing
dimension m, as it appears by the refinement of a triangulation. In the strict sense,
we understand by the notion sparse matrices a sequence of matrices in which the
number of nonzero elements per row is bounded independently of the dimension.
This is the case for the stiffness matrices due to (2.41) if the underlying sequence of
triangulations is shape-regular in the sense of Definition 3.31, for example. In finite
element discretizations of time-dependent problems (Chapter 9) as well as in finite
volume discretizations (Chapter 8) systems of equations of equal properties arise, so
that the following considerations can be also applied there.

The described matrix structure is best applied in iterative methods that have the
operation matrix X vector as an essential module, where either the system matrix A
or a matrix of similar structure derived from it is concerned. If the matrix is sparse
in the strict sense, then O(m) elementary operations are necessary. In particular,
list-oriented storage schemes can be of use, as pointed out in Section 2.5.

The effort for the approximative solution of (5.1) by an iterative method is deter-
mined by the number of elementary operations per iteration step and the number of
iterations k that are necessary in order to reach the desired relative error level € > 0,
i.e., to meet the requirement
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[ = x|| < el|x@ - x]|. (52)

Here (x(k)) « is the sequence of iterates for the initial value x| -1 a fixed norm in
R™, and x = A~1b the exact solution of (5.1).
For all methods to be discussed we will have linear convergence of the kind

[~ < & ] 63

with a contraction number ¢ € (0, 1), which in general depends on the dimension m.
To satisfy (5.2), k iterations are thus sufficient, with

- (o) /(L) s

The computational effort of a method obviously depends on the size of ¢, although
this will be seen as fixed and only the dependence on the dimension m is considered:
often ¢ will be omitted in the corresponding Landau’s symbols. The methods differ
therefore by their convergence behaviour, described by the contraction number o and
especially by its dependence on m (for specific classes of matrices and boundary
value problems). A method is (asymptotically) optimal if the contraction numbers
are bounded independently of m:

olm)j<o<l1. (5.5)

In this case the total effort for a sparse matrix is O(m) elementary operations, as
for a matrix x vector step. Of course, for a more exact comparison, the correspond-
ing constants, which also reflect the effort of an iteration step, have to be exactly
estimated.

While direct methods solve the system of equations (5.1) with machine precision,
provided it is solvable in a stable manner, one can freely choose the accuracy
with iterative methods. If (5.1) is generated by the discretization of a boundary
value problem, it is recommended to solve it only with that accuracy with which
(5.1) approximates the boundary value problem. Asymptotic statements hereto have,
among others, been developed in (3.102), (9.199) and give an estimation of the
approximation error by Ch®, with constants C, @ > 0, whereby # is the grid size of
the corresponding triangulation. Since the constants in these estimates are usually
unknown, the error level can be adapted only asymptotically in m, in order to gain
an algorithmic error of equal asymptotics compared to the error of approximation.
Although this contradicts the above-described point of view of a constant error level,
it does not alter anything in the comparison of the methods: The respective effort
always has to be multiplied by a factor O(Inm) if in d space dimensions m ~ A~ is
valid, and the relations between the methods compared remain the same.

Furthermore, the choice of the error level ¢ will be influenced by the quality of
the initial iterate. Generally, statements about the initial iterate are only possible for
special situations: For parabolic initial boundary value problems (Chapter 9) and a
one-step time discretization, it is recommended to use the approximation of the old
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time level as initial iterate. In the case of a hierarchy of space discretizations, a nested
iteration is possible (Section 5.6), where the initial iterates will naturally result.

5.1 Linear Stationary Iterative Methods
5.1.1 General Theory

We begin with the study of the following class of affine-linear iteration functions,
P(x) := Mx + Nb, (5.6)

with matrices M, N € R™™ tobe specified later. By means of ¢ an iteration sequence
xO xM x@ s defined through a fixed-point iteration

X p(x®), k=0,1,..., (5.7

from an initial approximation x(%). Methods of this kind are called linear stationary,
because of their form (5.6) with a fixed iteration matrix M. The function @ : R —
R™ is continuous, so that in case of convergence of x%*) for k — oo, for the limit x
we have

x=0x)=Mx+Nb.

In order to achieve that the fixed-point iteration defined by (5.6) is consistent with
Ax = b, i.e., each solution of (5.1) is also a fixed point, we must require

A'b = MA™'b+ Nb for arbitrary b ¢ R™,
ie, Al = MA™! + N, and thus
I=M+NA. (5.8)

On the other hand, if N is nonsingular, which will always be the case in the following,
then (5.8) also implies that a fixed point of (5.6) solves the system of equations.
Assuming the validity of (5.8), the fixed-point iteration for (5.6) can also be
