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In considering complex ions with a large number of
electrons (

 

N

 

 

 

�
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), the electron motion can be described
in terms of the quasiclassic theory, because, in this case,
the characteristic quantum numbers 

 

n

 

 ~ 
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1/3

 

 are large.
In this approach, ionization and recombination can be
regarded as the processes of pair electron collisions and
the atomic electrons can be treated as an electron gas.
In this case, electron collisions can be described in the
Born approximation, because 
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 (where 

 

v

 

is the relative electron velocity). However, both the
Born approximation and the quasiclassical approach
yield the same cross section for Coulomb collisions [7],
namely the Rutherford cross section, which will further
be used in our calculations.

The relative accuracy of this approach is determined
by the accuracy of the quasiclassical approach, in
which the spectrum of energy levels is considered con-
tinuous and the distance between levels, 
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, is
ignored as compared to the energies of the levels, 
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(i.e., the accuracy is 

 

~1/

 

n

 

 ~ 

 

N

 

–1/3

 

).

2. IONIZATION AND RECOMBINATION 
CHANNELS

Let us consider an ion with the charge 

 

z

 

 in a plasma
with the temperature 

 

T

 

. Let the number of electrons in
this ion be sufficiently large for they could be described
statistically but, at the same time, be smaller than the
nuclear charge number 

 

Z

 

. In this case, the electrons
move in a nearly Coulomb potential and the potential
energy of an electron is approximately equal to 

 

–

 

U

 

(

 

r

 

) =

 

, where 

 

r

 

 is the distance from the electron to the

nucleus.
When a bound electron is knocked out of an ion by

a free electron, a hole forms at the place previously
occupied by the bound electron and the interacting
electrons pass into the continuum or occupy empty ion
levels, depending on the redistribution of their energies
in the collision event. This leads to the ionization,
dielectronic recombination, or excitation of the ion. Let
us consider channels leading to ionization and recom-
bination. We denote by 1 the range of positive electron
energies and by 2, 3, and 4 the energy ranges 
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, 0),
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 and (
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, –2
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), respectively, where 

 

I

 

 is the ion-
ization energy (see Fig. 1).

Direct ionization corresponds to a situation in which
both electrons after a collision event pass into the con-
tinuum. If, before such a collision, the bound electron
was in range 4 (the 1 + 

 

4  1

 

 + 1 channel), then the
energy of the formed hole is sufficient for secondary
ionization due to the Auger effect, in which one of the
electrons from range 3 fills the hole, while the other one
passes into the continuum. If the hole forms at a suffi-
ciently large depth (the hole energy is lower than 

 

−

 

3

 

I

 

),
then, after the Auger ionization and the transition of an
electron from the higher level to the hole, the newly
produced hole can again occur in range 4. In this case,

Z
r
---–

 

the secondary Auger process can results in triple ioniza-
tion. For even deeper hole positions, higher order Auger
effects and, therefore, multiple ionization can take
place. Since the probability of forming holes at a such
deep levels is very small, we will further ignore the sec-
ondary and higher order Auger effects in our calcula-
tions.

Let us now assume that, after a free electron collides
with an electron in range 3, one of them falls into the
continuum, while the other one passes into an excited
state, i.e., to range 2. At the place previously occupied
by the electron in range 3, a hole forms. If the energy
difference between the second electron and the hole is
smaller than 

 

I

 

, then the excited state can be quenched
only via radiative relaxation. This means that, in this
case, only an inelastic collision between the electron
and the ion occurs, without changing the charge state of
the ion. If the energy difference between this electron
and the hole is larger than I, then the Auger process can
occur with a high probability. In this case, after a colli-
sion of a highly excited electron with a bound one, one
of them fills the hole, while the other passes into the
continuum. Indeed, the estimate of the probability of
the Auger effect per unit time in the interaction between
an electron with an energy of –E and a hole with an
energy of –ε gives the value ΓAA ~ E3/2/Z3 (in atomic
units). On the other hand, the radiative relaxation prob-
ability Γr can be estimated as the ratio of the energy
radiated by the electron per unit time, ~w2/c3 (where
w ~ Z/r2 ~ E2/Z is the electron acceleration in the Cou-
lomb field and c ≅ 137 is the speed of light in atomic
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Fig. 1. Schematic diagram of the energy ranges.
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the vectors p1 and p2 (0 ≤ α ≤ π). As a result, expres-
sion (3) takes the form

(4)

The particle momenta are related to their energies by

the relationships E =  – U and –ε =  – U. The

Rutherford scattering cross section has the form [9]

where χ is the scattering angle and o is the solid angle.
Let us find the possible values of the scattering angle

in a collision of two electrons with energies E and –ε.
We represent the electron energies after the collision,

 and , as  = (E – ε) + ε' and  = (E – ε) –

ε', respectively, where ε' takes values within an energy
range whose boundaries depend on the channel under
consideration. The electron momenta after the collision

are  =  + 2ε' and  =  – 2ε', where p0 is the
electron momentum at the energy level 1/2(E – ε). This
momentum can be determined from the relationship

(E – ε) =  – U.

The vector diagram of an electron collision is shown
in Fig. 2. The vectors p1 and p2 determine the plane of
the initial electron motion, while the vectors  and 
determine the plane in which the electrons move after
the collision. We denote by ϕ the angle between these
planes and by β and γ the angles between the relative
electron velocity and the velocity of their center of
mass before and after the collision, respectively. From
the vector diagram, we find the relationships between
the angles β and γ and the electron momenta,

In order to find the scattering angle χ, which is equal
to the rotation angle of the relative velocity, we con-
sider the trihedral angle formed by the vectors p1 + p2,
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p1 – p2, and  – . If we know two planar angles β
and γ of this trihedral angle and the angle ϕ between the
planes in which β and γ lie, then the third planar angle
χ can be found from the relationship

We introduce a spherical coordinate system with the
axis z directed along the velocity vector of the center of
mass of the electrons, p1 + p2, and assume the angles γ
and ϕ to be the azimuthal and the polar angles, respec-
tively. In this case, the expression for the scattering
solid angle takes the form do = sinγdγdϕ. The range of
the possible values of the scattering angle χ is deter-
mined by the ranges of the angles γ and ϕ. The angle ϕ
takes values from 0 to 2π, while the range of the possi-
ble values of γ is determined by the range of ε'.

3.2. Direct Ionization Rate

Let us find the collision frequencies corresponding
to each of the above channels. First, we consider the
direct ionization channels, 1 + 3  1 + 1 and 1 +
4  1 + 1. In this case, ε' can take values in the range
(– , ), whose boundaries are determined by the

conditions that  and  are positive:  = (E – ε).

The dashed domain in Fig. 3 shows the energy range
corresponding to the electron energies  and  after
the collision.
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Fig. 2. Vector diagram of electron collisions.
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Therefore, in calculations, instead of I (which corre-
sponds to the ejection of an outer electron), it is reason-
able to use the energy I2 (which corresponds to the ejec-
tion of an electron from the next inner subshell) as the
ionization energy. In the quasiclassical limit (at large
quantum numbers n0), when the distances between
neighboring energy levels are small, it is not necessary
to distinguish between I and I2, because I ≈ I2 and,
therefore, in the framework of our approach, such a
replacement is quite justified. However, if the number
of electrons and levels is relatively small and the dis-
tances between neighboring levels are fairly large, then
the accuracy of calculating the ionization rate for this
channel should increase when I is replaced with I2.

3.4. Ionization Rate in the 1 + 4  1 + 2 Channel

Let us now consider the 1 + 4  1 + 2 ionization
channel, in which a free electron collides with an elec-
tron from range 4, as a result of which one of them
passes into range 2, while the other one falls into the
continuum.

Figure 5 shows the energy ranges in which the elec-
trons occur after the collision. It can be seen that ε'

takes values in the range (– , – ) ∪ ( , ),
whose boundaries are

εm2' εm1' εm1' εm2'

εm2' 1
2
--- E ε–( ) I ,+=

Integration over the energy E is performed from the
lowest possible energy of the free electron in this chan-
nel, E = ε – I, to infinity. By analogy with calculations
of the direct ionization rate, we ignore multiple ioniza-
tion and integrate over the energy ε from 2I to infinity.
As a result, we obtain

At s � 1, we have

The total ionization rate is given by the expression

(7)
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Fig. 5. Ranges of possible final electron energies  and  in the 1 + 4  1 + 2 ionization channel for (a) E > ε and (b) for E < ε.ε1' ε2'












































































































































































































































































































































































































































































































































































































































































































































































