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PREFACE

This book is meant as a present to honor Professor J. Ne¢as on the
occasion of his 70" birthday.

It collects refereed contributions from sixty-one mathematicians from
eleven countries. They cover many different areas of research related
to the work of Professor Neéas, including Navier-Stokes equations,
nonlinear elasticity, non-Newtonian fluids, regularity of solutions of
parabolic and elliptic problems, operator theory and numerical methods.

The realization of this book could not have been made possible
without the generous support of Centro de Matemdtica Aplicada
(CMA/IST) and Fundagao Calouste Gulbenkian.

Special thanks are due to Dr. Oldfich Ulrych for the careful
preparation of the final version of this book.

Last but not least, we wish to express our gratitude to Dr. Sarka
Matusu-Necasova, for her invaluable assistance from the very beginning.
This project could not have been successfully concluded without her
enthusiasm and loving care for her father.

On behalf of the editors

ADELIA SEQUEIRA
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Elasticity by Babugka, Rektorys and Vy¢ichlo. It was mechanics which
naturally directed him to applications of mathematics.

This period ended in 1957 with his defence of the dissertation
Solution of the Biharmonic Problem for Convex Polygons. His interests
gradually shifted to the functional analytic methods of solutions to
partial differential equations. It was again I. Babuska who oriented him
in this direction, introduced him to S. L. Sobolev and arranged his trip
to Italy. His visits to Italy and France, where he got acquainted with the
renowned schools of M. Picone, G. Fichera, E. Magenes and J. L. Lions
deeply influenced the second period of Necas’ career.

Here we can find the fundamental contributions of Ne€as to the linear
theory: Rellich’s identities and inequalities made it possible to prove the
solvability of a wide class of boundary value problems for generalized
data. They are important also for the application of the finite element
method. This period culminated with the monograph Les méthodes
directes en théorie des équations elliptiques. It became a standard
reference book and found its way into the world of mathematical
literature. We have only to regret that it has never been reedited
(and translated into English). Its originality and richness of ideas was
more than sufficient for J. Necas to receive the Doctor of Science degree
in 1966.

Without exaggeration, we can consider him the founder of the
Czechoslovak school of modern methods of investigation of both
boundary and initial value problems for partial differential equations.
An excellent teacher, he influenced many students by his enthusiasm,
never ceasing work in mathematics, organizing lectures and seminars
and supervising many students to their diploma and Ph.D. thesis.
Let us mention here two series of Summer Schools—one devoted to
nonlinear partial differential equations and second interested in the
recent results connected with Navier-Stokes equations. Both of them
have had fundamental significance for the development of these areas.

While giving his monograph the final touch, J. Necasalready worked
on another important research project. He studied and promoted the
methods of solving nonlinear problems, and helped numerous young
Czechoslovak mathematicians to start their careers in this domain.
He also organized many international events and—Ilast but not least—
achieved many important results himself.

Nonlinear differential equations naturally lead to the study of
nonlinear functional analysis and thus the monograph Spectral Analysis
of Nonlinear Operators appeared in 1973. Among the many outstanding
results let us mention the infinite dimensional version of Sard’s theorem
for analytic functionals which makes it possible to prove denumerability
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of the spectrum of a nonlinear operator. Theorems of the type of
Fredholm’s alternative represent another leading topic. The choice of the
subject was extremely well-timed and many successors were appearing
soon after the book had been published. This interest has not ceased
till now and has resulted in deep and exact conditions of solvability of
nonlinear boundary value problems. Svatopluk Fucik, who appeared as
one of the co-authors of the monograph, together with Jan Kadlec, who
worked primarily on problems characteristic for the previous period,
and with younger Rudolf Svarc—were among the most talented and
promising of Necas’ students. It is to be deeply regretted that the
premature death of all three prevented them from gaining the kind of
international fame as that of their teacher.

The period of nonlinearities, describing stationary phenomena,
reached its top in the monograph Introduction to the Theory of Nonlinear
Elliptic Equations. Before giving account of the next period, we must
not omit one direction of his interest, namely, the problem of regularity
of solutions to partial differential equations. If there is a leitmotif that
can be heard through all of Ne€as’ work, then it is exactly this problem,
closely connected to the solution of Hilbert’s nineteenth problem.

In 1967 Necas published his crucial work in this field, solving the
problem of regularity of generalized solutions of elliptic equations of
arbitrarily high order with nonlinear growth in a plane domain. His
results allow a generalization for solutions to elliptic systems. In 1968
E. De Giorgi, E. Giusti and M. Miranda published counterexamples
convincingly demonstrating that analogous theorems on regularity for
systems fail to hold in space dimension greater then two. The series of
papers by Necas devoted to regularity in more dimensional domains can
be divided into two groups. One of them can be characterized by the
effort to find conditions guaranteeing regularity of weak solutions. Here
an important result is an equivalent characterization of elliptic systems
whose weak solutions are regular. This characterization is based on
theorems of Liouville’s type. The fact that Ne€as’ method can be applied
to the study of regularity of solutions of both elliptic and parabolic
systems demonstrates its general character. During this period Neéas
collaborated also with many mathematicians (M. Giaquinta, B. Kawohl,
J. Naumann). The other group of papers consists of those that aim
at a deeper study of singularities of systems. J. Nedas is the author
of numerous examples and counterexamples which help to map the
situation.

In the next period, Necas resumed his study of continuum mechanics.
Again we can distinguish two fundamental groups of his interest.
The former concerns the mechanics of elasto-plastic bodies. J. Necas
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is the co-author of monographs Mathematical Theory of Elastic and
Elasto-plastic bodies: An Introduction (with 1. Hlava&ek), Solutions of
Variational Inequalities in Mechanics (with 1. Hlavaéek, J. Haslinger
a J. Lovisek). Let us also mention the theory of elastoplastic bodies
admitting plastic flow and reinforcement, as well as the theory of contact
problems with friction. It was J. PoldSek who initiated Necas’ interest
in transonic flow where he achieved remarkable results by using the
method of entropic compactification and the method of viscosity. These
results raised deep interest of the mathematical community, Necas
published the monograph Ecoulement de fluide, compacité par entropie.
In 1986 M. Padula presented her proof of the global existence of
non-steady isothermal compressible fluids. This article led Necas and
Silhavy to introduce a model of multipolar fluids satisfying the laws of
thermodynamics. In this model the higher order stress tensor and its
dependence on higher order velocity gradients are taking into account,
the well-posedness of the model, the natural and logical construction of
fundamental laws, and deep existence results were settled.

The most recent considerations are devoted to classical incompressible
fluids, namely, to the Navier-Stokes fluids and to the power-law fluids.
Essentially new existence, uniquenesss and regularity results are given
for space periodic problem and for Dirichlet boundary value problem.
Large time behaviour of solutions is analysed via the concept of short
trajectories. A comprehensive survey of these results can be found
in Weak and Measure Valued Solutions to Evolutionary PDE’s (with
J. Milek, M. Rokyta and M. RuzZickaj.

The central theme in the mathematical theory of the Navier-Stokes
fluids, i.e. the question of global existence of uniquely determined
solution, has also become central in the research activities of J. Necas
in the past five years. Attention has been given to the proof that the
possibility of constructing a singular solution in the self-similar form
proposed by J. Leray in 1934, is excluded for the Cauchy problem,
J. Netas concentrates his energy to find the way of generalization of
this result and to the resolution of the initial problem as well as to the
study of influence of boundary conditions on the behaviour of the fluid
described by Navier-Stokes equations.

A significant feature of Necas’ scientific work is his intensive and
inspiring collaboration with many mathematicians ranging from the
youngest to well-known and experienced colleagues from all over the
world. Among them (without trying to get a complete list) we would like
to mention: H. Bellout, F. Bloom, Ph. Ciarlet, A. Doktor, M. Feistauer,
A. Friedman, M. Giaquinta, K. Groger, Ch.P. Gupta, W. Hao,
[. Hlavicek, R. Kodnar, V. Kondratiev, Y.C. Kwong, A. Lehtonen,



D.M. Lekveishvili, P.L. Lions, J. Lovisek, D. Mayer, M. Miiller,
P. Neittaanmiki, I. Netuka, A. Novotny, O.A, Oleinik, M. Ruzicka,
M. Rokyta., T. Roubi¢ek, M. Silhavy, M.Schonbeck, L. Travnicek.

We tried to collect some of the most important contributions of
J. Ne€as and to display the breadth of his interests and strivings, his
encouragement of young people, his never ending enthusiasm, his deep
and lively interest in mathematics. All these features of his personality
have attracted students everywhere he has been working and have
influenced many mathematicians.

OLDRICH JOHN, JOSEF MALEK, JANA STARA
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JINDRICH NECAS

Jindfich Necas, honored by the Order of Merit of the Czech Republic
by Véclav Havel, President of the Czech Republic, on the October 28,
1998, Professor Emeritus of Mathematics at the Charles University
in Prague, Presidential Research Professor at the Northern Illinois
University and Doctor Honoris Causa at the Technical University of
Dresden, has been enriching the Czech and world mathematics with
his new ideas in the areas of partial differential equations, nonlinear
functional analysis and applications of the both disciplines in continuum
mechanics and hydrodynamics for more than forty years.

Born in Prague in December 14, 1929, Jindfich Necas spent his youth
in the nearby town of Mélnik. He studied mathematics at the Faculty of
Sciences of the Charles University in Prague between 1948-1952. After
a short period at the Faculty of Civil Engineering of the Czech Technical
University he joined the Mathematical Institute of the Czechoslovak
Academy of Sciences where he headed the Department of Partial
Differential Equations. Since 1977 he has been a member of the staff of
the Faculty of Mathematics and Physics of the Charles University being
in 1967-1971 the head of the Department of Mathematical Analysis,
for many years the head of the Department of Mathematical Modelling
and an active and distinguished member of the Scientific Council of the
Faculty.

Let us go back to Ne&as’ first steps in mathematical research. He was
the first PhD. student of . Babuska, whom he still recalls with gratitude.
As one of his first serious tasks he cooperated in the preparation of the
pioneering monograph Mathematical Methods of the Theory of Plane
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ON THE REGULARITY AND DECAY OF
THE WEAK SOLUTIONS TO THE STEADY-
STATE NAVIER-STOKES EQUATIONS IN
EXTERIOR DOMAINS

Frédéric Alliot, Cherif Amrouche

Abstract: In this article, we study the regularity properties of the weak solutions to
the steady-state Navier-Stokes equations in exterior domains of R®. Our
approach is based on a combination of the properties of Stokes problems
in R*and in bounded domains. We obtain in particular a decomposition
result for the pressure and some sufficient conditions for the velocity to
vanish at infinity.

Keywords: Exterior flows, Navier-Stokes, weak solutions, regularity, behaviour at
infinity.

This paper is devoted to some mathematical questions related to the
steady-state motion of an incompressible viscous fluid past a bounded
body €. In the three-dimensional space R3, let us denote by ) the
exterior of £/, which is filled by the fluid. Then, the velocity field u and
the pressure 7 in the fluid satisfy the Navier-Stokes system:

-vAu+uVu+Vr=f in Q,
(NS) divu =0 in €,
ujpq =0,

where f is a given external force-field and v > 0 stands for the kinematic
viscosity of the fluid. The last equation of the system states that the
fluid adheres at the surface of the body, which is the common no-slip
condition. We shall moreover assume that the fluid is at rest at infinity
and thus consider the additional condition:

lim u(z)=0. (0.1)

|z]++o00

Applied Nonlinear Analysis, edited by Sequcira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 1
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Our purpose is to study some regularity properties of weak solutions
to the problem (NS) (see Definition 1.1 below), keeping in mind that
we wish the decay condition (0.1) to be fulfilled.

The paper is organized as follows: In Section 1, we recall a well-known
result about existence of weak solutions for the problem (NS). The
data and solutions will be chosen in weighted Sobolev spaces, in which
distributions are well controlled at infinity. The second section is devoted
to some regularity properties of the weak solutions u and the associated
pressure 7. We first obtain, with no additional assumption, the
regularity of 7, that leads to a “natural” decomposition of this term into
a “viscous pressure” and a “convective pressure” (see Proposition 2.3
and Remark 2.4 below). Then, our main result establishes the L?
regularity of Vu and 7 under some rather weak assumptions. Moreover,
we deduce from this result some sufficient conditions on f such that
each weak solution satisfies (0.1). The proof relies on the combination
of the regularity properties of the Stokes problem in bounded domains
and in R®. With similar arguments, we study the LP regularity of
higher-order derivatives of # and 7 and their decay at infinity. The
last section is devoted to the regularity, in the Hardy space H!,of the
second derivatives of the pressure in the whole space R®, and is based
on sharp properties of the non-linear term.

We now conclude this introduction by giving some definitions and
notation that we shall use throughout the paper.

Let us first settle the geometry of . Let £'be a bounded open region
of R3, not necessarily connected, with _a Lipschitz-continuous boundary
and let the fluid fill the complement of ¥, denoted by 2. We assume that
¥ has a finite number of connected components and that each connected
component has a connected boundary, so that §2is connected. In the
sequel, such a set 2 will be referred to as an exterior domain.

We shall also denote by Bg the open ball of radius R > 0 centered at

the origin. In particular, since €’ is bounded, we can find some Ry > 0
such that ' C Bpg, and we introduce, for any R > Ry,the sets

Qr=0QNBg and Q=0 - Q5.

Let O be an open region of R3. As usual, D(Q) denotes the space
of indefinitely differentiable functions with compact support in O and
D'(O) denotes its dual space which is the space of distributions. For each
p €]1, +o00|, the conjugate exponent p' is given by the relation %+#,- = 1.
We recall that LP(O) is the space of measurable functions such that
Jo lulPdz < co. With its natural norm: ||ul|Ls(o) = (f, [u[Pdz)'/?, it is
a Banach space whose dual space is L? (0). When 1 < p < 3, we shall
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also use the Sobolev exponent of p that is p* = 3p/(3 — p). Recall that
the space W1P(©) stands for the Sobolev space of functions u € LP(Q)
with distributional derivatives in LP(Q), endowed with its natural norm.

Moreover., I;/L”(O) is the closure of D(O) in WLP(®) and W19 (0) is

the dual space of I/%’”’(O]. When p = 2, we shall also use the standard
notation

HY(0) =W'3(0), H}O)=W'¥0), H'(0)=W*0).

Finally, we use bold type characters to denote vector distributions
or spaces of vector distributions with 3 components. For instance,
f € LX(O) means (fy, f, f3) € (LP(0))*.

1. EXISTENCE OF WEAK SOLUTIONS IN
WEIGHTED SOBOLEV SPACES

The study of the steady-state Navier-Stokes problem in general
domains was initiated by the fundamental works of J. Leray [13] who
introduced the concept of weak solution:

Definition 1.1. A weak solution to the problem (NS)is a field
u € H! (€) vanishing on 89, with Vu € L?(€) and such that for all

loc

p € V(Q) = {veDH),dive =0}:

u/ VuVepdz +/ uVu.pdz =< f,p > . (1.1)
2 0

When (2 is an exterior domain, a weak solution « is only constrained
at infinity by the condition Vu € L?(2). But such a condition is not
sufficient to ensure that u satisfies (0.1), or even that u vanishes in
a weaker sense at infinity. Hence, the general class of fields » € H,,(Q?)
vanishing on 89, with Vu € L?(f) is too large for our purpose. It is
more appropriate to control both Vu and w itself at infinity, which can
be achieved in a natural way in some weighted Sobolev spaces. Define
the weight function p(z) = (2 4 |]?)!/2, then we can state the

Definition 1.2. Let Q be either an exterior domain or = R3 and
let p and o be real numbers with 1 < p < +4oo. Then, we set
LA(Q) = {u € D'(Q), p*u € LP(Q)} and

WoP(Q) = {u e D'(), p* lu € LP(Q), p°Vu e LP(Q)}, if3/p+a# 1,
o—1

WLIPQ) = {u € D'(Q), ‘;np u € LP(), p°Vu € LP(Q)}, if 3/p+a = 1.
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Each of these spaces is a reflexive Banach space when endowed with the
norm:

Nullzz @) = Il %2 e @),

[| w ”ijﬁ(ﬂ) =(lp*'u “ip{n] + || p*Vu “i”(ﬂ))l/p if3/p+a+#l,
a—1
Tno * ”LP(Q + || p*Vu ”Lp(g) I/p if3/p+ta=1

I u“W;vP(Q) = (Il =— Inp

In the definition above, the powers of the weight function p and
the introduction of the logarithmic weight when 3/p + a = 1 are
not anecdotal. Indeed, this definition allows to prove some weighted
Poincaré inequalities which are the main interest of the spaces WaP (see
Theorem 1.1 below).

[e]

Define now the space W &P(Q) as the closure of D() for the norm
- liwrp(qy- Then, the dual space of W &P(Q), which we denote by
W:;‘p'(Q), is a space of distributions. When € is an exterior domain,

and since each function of W (©2) locally belongs to the classical
Sobolev space WP, it is standard to check that

W1P(Q) = {v € WEP(Q),yv = 0}, (1.2)

where v stands for the trace operator on the Lipschitz- continuous

boundary 8. However, when = R®, we have WaP(R®) = W LP(R3)
(see [3], Th. 7.2).

We now recall a fundamental property of the spaces 11%4

Theorem 1.1. (Amrouche-Girault-Giroire [3, 4]) Let « € R and
1 <p< +oo.

i) Let  be an exterior domain. There exists a constant C =
C(p,a,?) > 0 such that

Vue WEPQ), llullyiem < Cll Yl .
ii) There exists a constant C = C(p,a) > 0 such that
Vi€ WIP(R), [lelyirms < Cll Vullamey, #3/p+a>1,
K IIW;"(RB)/PO < C||VullLz(ray, otherwise,

where Py stands for the subspace of constant functions in We (R3) when
3/p+a<l.
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Remark 1.2. Theorem 1.1 for instance states that the semi-norm

o]
IV | 2(q) defines a norm on W(l]’Q(Q) which is equivalent to the natural
norm of this space.

We now turn to the question of existence of weak solutions to the
exterior problem (NS). The key idea for proving existence, which has
also been pointed out by J. Leray, is to find approximate solutions u,
that satisfy a uniform estimate:

| Vun |20 < M,

and then to pass to the limit. Following this idea, we state and prove
the

Theorem 1.3. Let Q2 C l_R3 be a Lipschitz exterior domain or {} = R,
Given a force .f € W, l’Z(Q), the problem (NS) has a weak solution

u € Wé’z(ﬂ) such that:
V|| Vu ”L'Z(Q) <If ”wo-l»'-’(n)-

Besides, there exists a function © € L*(Qg) for all R > Ry, unique
up to a constant, such that (u,m) solves problem (NS) in the sense of
distributions.

Proof. Let (Rn)nzg be an increasing sequence of real numbers with
Ry > 0 fixed in the introduction and such that lim R, = 4+o0o. We
n—o0

approximate problem (NS) by the following sequence of problems on
the bounded domains Qg :
Find u, € Hy(2R,) such that

v Vu,Vedr + / un. .Vup. ode =< f, >, (1.3)
Q

QRn An

Ve € D(Qg,), dive =0.

First remark that each function of V0V[1)’2(Q) with support in Qg also
belongs to H)(Qg, ). Then, since f € Wo_l"z(Q), its restriction to Qp,_
satisfies

I f la-1(0g,) < I f ”wal'Z(Q)- (1.4)

Therefore, we know from [17](Th. 1.2, p. 164) that for each n > 0,
problem (1.3) has a solution 4, such that

v Vup 20,y < I f lH-Y (R, )- (1.5)
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We extend u, by zero in QR‘", and still denote u, the extended function

o]
that belongs to W §'*(€). In view of (1.4) and (1.5), we thus have:

VI Vua llz) < IHf w2y (1.6)

Hence, Theorem 1.1 (with p = 2, a« = 0) and (1.6) yield that

o
. . 1,2 . . . .
up is bounded in Wy“(Q), which is reflexive. Therefore, extracting
subsequences if necessary, we have:

Un — uin W§*(Q) and

9 (1.7)
V|| VUHLz(Q) < Ilmmfu||Vun||L2(Q) < ”fHW[{l‘Z(Q)'

Let us now check that u is a weak solution. Let ¢ € V(2) and N > 0
be an integer such that supp ¢ C Qg,. Then, we deduce from (1.3)
that

Vn > N, 1// Vup,Vpdz +/ un.Vup.pdz =< f,o > . (1.8)
Q 9]

In view of (1.7), we can pass to limit in the first integral. Moreover,
extracting a subsequence if necessary, we know that wu, converges
strongly to u in L?(§2g,) since the imbedding H'(Qg,) C L*(Qg,)
is compact. Hence, this convergence together with (1.7) ensures the

convergence of the second integral of (1.8) and therefore u &€ W(l)’2(Q)
satisfies (1.1).

Finally, existence of a pressure m € D'(2) such that (u, ) satisfies
system (NS) in the sense of distributions follows from (1.1) and from
a well-known consequence of a very general theorem of G. de Rham.

Moreover, 7 is unique up to a constant because 2is connected. Besides,
the local regularity of # can be deduced from standard local properties
of the distribution f — u.Vu + vAu and from a result of L. Tartar [16]
(lemma 9, p. 30) and Girault-Raviart [10]. ¢

Remark 1.4. In this paper, we only focus on the regularity and
decay of weak solutions in three-dimensional exterior domains. Let
us nevertheless mention that many problems remain open for weak
solutions that satisfy (0.1). For instance, it is not known whether such
solutions are unique for “small” data, while such a property is established
in bounded domains (See Temam [17], Ch. II and Girault-Raviart [10]
for the case of bounded domains and Galdi [8], Ch. IX, for partial
uniqueness properties in exterior domains).
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The study of weak solutions in two-dimensional exterior domains
is even more difficult. Although some existence results are known,
the arguments developed in the proofs of our results below fail in
two dimensions. As a matter of fact, the existence of weak solutions
satisfying (0.1) for a large class of data is not established so far. We
shall however give a positive answer to this problem for some particular
data in a further work.

2. THE REGULARITY OF WEAK
SOLUTIONS

Our approach relies on a localization argument which we develop in
the paragraph below. This argument enables us to study on the one
hand the regularity of a solution near infinity and on the other hand the
regularity near the boundary.

2.1. Separating the regularity near infinity and
near the boundary

Let Q be an exterior domain. We introduce the following partition
of unity: Let R; and Ry be real numbers such that Ry > R; > Ry and
choose some functions ¥; and s such that:

1 € C¥(R?), 1(z) =0 if |z| < Ry, +i(z) =1 if |z| > Ry, (2.1)
Vz €RY,  41(x) +tha(z) = 1. (2.2)

Consider now a solution (u, ) to problem (NS) such that u € W[l,’2(Q)
and w belongs to L?(Qg) for all R > Ry (think of a solution given by
Theorem 1.3). Then, define (ul,n!) as follows:

(ul,7") = (upr, 1) in Q, (ul,7')=(0,0) in T,

and set (u2,72) = (utbq, m4hy) in Q.
It is easy to check that (ul,7') € Wy?(R®) x L2 (R®) (compute the
weak derivatives of u! and use the fact that u! vanishes at the boundary

0Q). We also note that (u?,n?) clearly belongs to H3(Qgr,) x L%(Qg,).
Moreover, further elementary calculations in the sense of distributions
enable us to establish the equalities (respectively in D'(R3) if i = 1 and
in D/(Qpg,) if ¢ = 2):

—vAY + Vrt = dive® = ¢, (2.3)
where

fr = fhi=20VuVh—vulp+nVh—(u. V), ¢ = —u. Vi (2.4)
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Since 1 is C* on R3 with supp ¥ C 2, we have naturally denoted by
fyn the distribution on R® given by:

Vo e D(R®), < [o1,¢ >pe=<f, 091 >a.

This notation also applies to each other term in the definition (2.4) with
i=1.

Finally, considering (2.3) and (2.4) with ¢ = 2, the regularity of u and
7 near the boundary depends on the regularity of (f2,g2) and on the
properties of the Stokes problem in the bounded domain {2g,. Similarly,
the regularity of v and n near infinity depends on the regularity of
(f!,¢") and on the properties of the Stokes problem in R3.

Regularity properties for the Stokes problem in bounded domains have
been first studied by L. Cattabriga [6] but we shall use more general
results from [2] (see pp. 134-136).

Theorem 2.1. (Amrouche-Girault [2]) Let O C R? be a bounded
domain with CY' boundary. Let f € W~19(0),g € LI(O) with
1 < g < +00 and assume that fo g(z)dr = 0. Then, the problem:
Find (w,7) € WH9(©) x LI(O) such that

—vAw+Vr=f, divw=g in 0O, wpo=0,

has a unique solution such that f(’) Tdr = 0. Iff and Vg moreover belong
to L(0O), then V2w and V1 also belong to LI(O).

The Stokes problem in the whole space has been recently much studied
in various functional spaces (see for instance Borchers-Miyakawa [5],
Girault-Sequeira [9], Kozono-Sohr [11, 12] or Specovius Neugebauer
[15]). The authors have also provided a rather complete study of this
problem in weighted Sobolev spaces in [1]. For instance, as a particular
case of the results established in the latter reference (section 3), we can
state the:

Theorem 2.2. (Alliot-Amrouche [1]) Ler | < 0 be an integer and
1 < p < +o00 such that 3/p is not an integer smaller than or equal to
—l. For each (f,g) € Wl_l’p (R3) x LI(R®), the Stokes problem:

(S) —Av+Vn=f, dive =¢ in R,

has a solution such that (v,m) € W,;P(R®) x LI(R®). Iff and Vg

moreover belong to L}, (R*) then V*v and V' also belong to LY | (R3).
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2.2, A decomposition result for the pressure

We have seen in Theorem 1.3 that we can associate with each weak
solution u a pressure 7 that locally belongs to L?. But, we do not have
yet any information concerning the integrability at infinity of w. Our
first result is dedicated to this question.

Proposition 2.3. Let Q) C R® be an exterior domain or Q@ = R3
and let f € W, Y2(Q). The pressure © obtained in Theorem 1.3 has
a representative such that

r=7'+72 with e WA Q), 2 e L}(9).

Proof. Let u € Wé’Q(Q) be a weak solution to the problem (NS) given
by Theorem 1.3 and let # € L%(QR), VR > Ry be the associated pressure.
First recall the decomposition # = 7! + 72 introduced in paragraph 2.1.
Since 7 € L?(Qg,), we obtain that 7% = my, belongs to L2(£2). Thus,
the main part of the proof deals with the properties of ! and therefore
of (f', ")

i) We first consider the term (u.Vu)i; of f1. Prom Sobolev’s imbedding
theorem, we know that Wy*(€2) C L%(Q). Then, we have Vu € L%(Q)
and u € L5(f). Since 4, is bounded and supported in 2, Holder’s

inequality yields:
(u.Vu)ih, € LY2(R?). (2.5)

But we have: L¥%(R%) ¢ W"*/*(R®) which is the dual imbedding
of W11’3(]R3) C L3(R®) (the latter is obvious from the definition of
Wll‘a(R:*)). Hence, in view of Theorem 2.2 (with p = 3/2,l = —1),
there exists (v!,n!) € Wl_’::/z(]l@) X Li/f(R3) such that

—vAv' + V! = —(u.Vu)y,, dive! =0, in R (2.6)

Considering (2.5), Theorem 2.2 yields besides that Vn! € L3/2(R3) and

so we get that n! € WDI‘S/Q(]R:’).

il) We consider now the other terms of f 1. Since 11 is bounded and
has bounded derivatives with compact support, it is easy to check
that the terms fi,, VuV,, uAy; and 7V, belong to Wal’2(R3).
Proving that ¢! = —u.V¢, € L?*R3) is even simpler. Then,
applying Theorem 2.2 (with p = 2,1 = 0), we get the existence of
(v2,7?) € W (R3) x L2(R®) such that

—vAv?+Vn? = fy - 2uVuVi — vuly) + 7V,

divu? = —u.Viy, inR3. (2.7)
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iii) Let us finally set w = u' — o' —v? and 7 = 7' —n! — 2. Subtracting

(2.6) and (2.7) from (2.3) yields the relations:
—VvAw+Vr =0, divw=0, inR3. (2.8)

Then, computing the divergence of the first equation yields that 7 is
harmonic. Therefore, considering (2.8), Aw is also harmonic. Thus,
w is a tempered biharmonic distribution on R3, and thus a polynomial.
But this polynomial moreover belongs to Wé’Q(R3)+W1_’?/2(R3)so that
it has to be constant (a complete proof of this statement relies on some
estimates of the LP-mean on the sphere of radius R of the functions
of W},’p(R:}) when R tends to infinity ; see [1], Lemma 1.1). Since w
is constant, we deduce from (2.8) that V7 = 0 and by the way the
existence of a constant ¢ such that 7! = 171 + 7)2 + c¢. Hence, we have the
equality # = 7' + 72 = ! + (9% + 7%) + ¢ in Q and the proposition is
proved setting 7! = ! and 72 = + 7. O

Remark 2.4. The decomposition of the pressure established in Propo-
sition 2.3 allows to rewrite the first equation of the system (NS) as

follows:
(—vAu+ V72 + (w.Vu+ Vr!l) = f.

Here, the first term belongs to W, Y2 The second term is more regular
since it belongs to L3/2. In a certain sense, the pressure 7!is associated
with the viscosity term vAw while 7! is associated with the convection
term u.Vu.

2.3. First L? regularity results

Prom now on, we assume that the force f is more regular than needed
in Theorem 1.3 and prove that weak solutions are also more regular. As
in the previous paragraph, we consider separately the regularity near
the boundary and near infinity. Let us begin with a few properties of
the non-linear term.

Lemma 2.5. Let Q C R® be an exterior domain or Q = R3.

i) Let ve Wy*(Q), then (v.Vv) € L3/2(Q) ﬂWJl’a(Q).

ii) Let v € WyA(Q) N WP(Q), then (v.Vv) € L*Y(Q) N W5 *3(Q), if
3/2$s1<3and iszZ?L

Proof. The proof relies on the Sobolev’s imbedding theorem which
implies that if p < 3 then Wol’p(Q) C LP*(Q), and therefore by duality

that Lpr
Vp<3, LP() C W, " (Q). (2.9)
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i Ifve W(1,’2(Q), then v belongs to L8(Q) and Vv € L?(2). Therefore,
Holder’s inequality yields that v.Vv € L3/2(Q) which space is imbedded
into Wo_l’s(ﬂ) in view of (2.9).

ii) Let v € Wé'z(Q)ﬂWE,’a(Q). Since Vv € L2(Q)N L3(Q), we also have
Vv € L™(R), 2 < r < 3. Since v also belongs to L({2), the Gagliardo-
Nirenberg inequalities (see for instance, Nirenberg [14], p. 125, with
r=3,¢q=6,5=0 and m = 1) imply that v € L%(Q2) provided that
6 < s < 4+o00. Hence, Holder’s inequality yields that (v.Vv) € L*(Q)
for all s; such that 3/2 < s; < 3. o

We now prove the

Theorem 2.6. LetQ C R? be an exterior domain with C*' boundary or
Q=R Givenp>3andf € W61'2(Q)ﬂWal’p(Q), each weak solution
u € W(],’Q(Q) to the problem (NS) also satisfies uw € WP (§2). Moreover,
the associated pressure w has a representative in L*(2) N LP(£2).

Proof. We use once again the auxiliary problems introduced in
paragraph 2.1. We first prove the case p = 3 and then consider the
case p > 3.

i) The case p = 3: In view of Lemma 2.5, we know that
w.Vu € Wy'9(Q) and therefore (u.Vu)ih € Wal’a(R:’). Moreover,
since u € Hj, (), 7 € L?(Qg,) and since the derivatives of #; have
compact support, we deduce from Sobolev injections theorem that

— 20V UV, — vulAg + 7V € Wy P3(R3), — w.Vyy € L3(R?).

Hence, the pair (f',g!) (see (2.4)) belongs to Wﬂ_l’3(R3) x L3(R%).
Then, there exists (Theorem 2.2 with p = 3, | = 0) some functions
(v,m) € W[1)’3(]R3) x L3(R%) such that:

—vAv+Vnp=fl, dive=¢' inR.
Subtracting these equalities from (2.3), we get:
VA —v)+ V(r' —=9) =0, div(z'-v)=0 inR. (2.10)

Therefore, following the proof of Proposition 2.3 (iii), we prove
that u! — v is a polynomial. Since this polynomial belongs to
WEAHR3) + W(ll’3 (R3)., it must be a constant polynomial c. But constant
polynomials belong to Wé’a(IR3) (because of the logarithmic weight), so
that

w'=v+ce W(l)'3(R3). (2.11)



12 Alliot F., Amrouche C.

Besides, since u! — v is constant, it follows from (2.10) that V(r!—n) = 0
in R3. Therefore, there exists a constant function d such that

' =n+d, neL3R). (2.12)

Let us now come to the regularity near the boundary. Recall
that the auxiliary functions (u?,m?) € H}(Qg,) x L*(Qg,) satisfy
(2.3) with ¢ = 2.  Moreover, we can prove -as we proved that
(f4,9") € W, B3 (R®) x L*(R3), but applying local Sobolev’s imbedding
results- that (f%,¢%) € W~13(Qpg,) x L3(Qg,). With such data, and
since §2g, has chl boundary, we can deduce from Theorem 2.1 that
(u?,m2) € WH3(Qpg,) x L3(Qg,),, which immediately imply that

(u?,72) € Wy () x L3(Q). (2.13)

Finally, since u = ul+uletm=nl+ 7(2, our claim results from (2.11),
(2.12) and (2.13). Note that we can also prove that the representative of
7 in L3(Q2) is nothing but the representative obtained in Proposition 2.3.
ii) The case p > 3: Let f € WJI’Q(Q) nt"P(Q). Owing to an
interpolation argument, we can prove that f € W 1'3((2) and since
we have proved the theorem for p = 3, we know that u € W‘l]’z(Q) N
W, () and we can choose 7 € L3(f2). Then, Lemma 2.5 (ii) implies
that (.Vu) € Wy "P(2) and therefore that (u.Vu)y; € Wy "P(R).
Besides, Sobolev’s imbedding theorem yields that u € LP({2g,)and so,
as in the case p = 3, we prove that

(f',9") € Wy "P(R®) x LP(R®) and (f?% ¢%) € W IP(QpR,) x LP(Qg,).

Starting with this regularity, each argument used in the point (i) can be
restated replacing the exponent 3 with p and so the proofis complete. ¢

Now, the existence of weak solutions to the problem (NS) that satisfy
the decay condition (0.1) is a rather simple consequence of Theorem 2.6.

Corollary 2.7. Assume that f € WO_I'Z(Q) N ng’p(Q), p > 3. Then,
each weak solution u € W[I)’Z(Q) to the problem (NS) satisfies

u € L®(Q) and |xl|i—r+noo u(z) = 0. (2.14)

Proof. We know from Theorem 2.6 that u € W(l]’z(Q) N Wé’p(Q) and

therefore
we L) and Vue ILP(Q), p>3,

which property is known to imply (2.14).
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Remark 2.8. Let us mention a different version of Theorem 2.6 which
focuses only on the properties at infinity of the solution. Owing to
the partition of unit (2.1),(2.2), we have seen that the behaviour of the
solution near the boundary and near infinity can be obtained separately.
In fact, looking more carefully, we see that the properties of (u!,z!)only
depend on the regularity of the restrictions of f and g to f. Therefore,
if we only assume that f € w2k n W;l‘p(QRl) with p > 3,
we can still prove that each weak solution v € W(I]’z(ﬂ) also satisfies
u € W(I)’p (2f2) and that the associated pressure m has a representative
such that 7 € LP(Q%2). The main interest of this version is that it
requires no smoothness assumption on the boundary 92 and therefore
applies to a wider class of domains.

2.4. More regularity and decay
In this paragraph, we are interested in the L” regularity of V?u and

V. In particular we shall need the following imbedding results:

Lemma 2.9. Ler Q C R® be an exterior domain or Q@ = R3. Assume
thata,F € R and 1 < p < ¢ < 400 satisfy 3/qg+ 3 > 3/p+ a. Then,
the following relations hold

LI(Q) CLA(Q),  Wg'(Q) C WP (Q),
with continuous imbeddings.
Proof. i) Let v € L§(€2), Theassumption 3/q+ 3 > 3/p + a yields that

1 1

Since 1 < p < g, there exists a real number r such that 1 < r < +ooand
1/r = 1/p — 1/q. Then, the inequality (2.15) implies that p>~# € L™(Q)
and Holder’s inequality yields that

I p%v 2oy < 16° 2@l AP0 lLagey,s
which proves the first imbedding.

it) The second imbedding is a straightforward consequence of the first
one if 3/q + B # 1 (there is no logarithmic weight in W[}’Q(Q)). When
3/q + B = 1, we remark that (2.15) also implies that p®flnp €
L™(Q). Hence, Holder’s inequality yields the result because p® v =

(0*#Inp).(p*w/Inp). ¢

We now prove the following theorem:
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Theorem 2.10. Let Q C R3 be an exterior domain with CY' boundary
or Q=R and let f € W5 ?(9).

i) Assume that f € LP(Q) N W3 (Q),q > p > 3. Then, each
weak solution u € W) to the problem (NS) satisfies Vu €

L(Q), V%u € LP(Q) and the pressure  has a representative such that
m € LYQ) and V7 € LP(Q).

ii)y Assume that f € LP(Q) with 3/2 < p < 3. Then, each weak solution
u € W(l,’g(Q) to the problem (NS) satisfies Vu € LP*(), V2u € LP(Q)
and the pressure w has a representative such that m € LP*(Q) and
Vr e LP(Q).

Proof. We first prove the first part of the theorem: Since f € W, ()
with g > 3, we know from Theorem 2.6 that

uwe W(Q) nWh(Q), =eL¥Q)nLiQ). (2.16)

In particular, we have Vu,n € LI(f2) and we now have to prove
the regularity of V?u and V. But, (2.16) and obvious interpolation
arguments imply that,

wu€Wp'(Q),2<r<qg and 7€L’(Q), 3<s<q. (2.17)

In particular, we have Vu € LP(?). Besides, Corollary 2.7 yields that
u € L°°(Q) so that we obtain

u.Vu € LP(Q). (2.18)
Since ¢ > p, we can easily deduce from (2.16) and from (2.18) that:

(f,¢") e LP(R®) x Wy P(R®) and  (f%,¢°) € LP(Qg,) x WP (Qp,).

(2.19)

Then, the regularity properties of the Stokes problem in bounded
domains (Theorem 2.1) and the equalities (2.3) with ¢ = 2 yield that

Viu? € LP(QRr,), Vr?e LP(Qg,). (2.20)

On the other hand, we can choose » = s > p in (2.17) so that we
have 3/r > 0 > 3/p — 1. Then, Lemma 2.9 yields that (u,m) €
W) x LP | (Q), which implies that

(u!,7!) € WHP(R3) x LP | (R®). (2.21)

In view of (2.19) and (2.21), we can apply the regularity statement of
Theorem 2.2 with { = —1. This yields that

V2! e LP(R?), Vx! e LP(R3), (2.22)
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which, together with (2.20), completes the proof, since u = u! + u? and
T =n!+ 72

ii) We now turn to the second point of the theorem. First remark
that since f € LP(Q), with p < 3, then the imbedding (2.9) implies
that f € ng”’*(Q),p* > 3. In particular, all the arguments of the
latter proof can be restated with p* instead of g, except the proofs of
(2.18) and (2.21) where some modifications occur. Indeed, in this case
the relation (2.18) follows from Lemma 2.5 since we can set r = 3 in
(2.17). The modified proof of (2.21) involves two cases. If p > 3/2,we
can choose 3 < r = s < pxin (2.17) and then conclude with Lemma
2.9. In the remaining case p = 3/2, we use on the one hand the fact
that W(l)'2 Q) C Wl_?/ 2(Q) in view of Lemma 2.9. Therefore, we obtain
that u! € Wl_’f/z(]R:"). On the other hand, we recall that © = 71 + 72
with 71 € WOI’3/2(Q) and 72 € L%*(Q) (Proposition 2.3). Then, the
imbedding Wol S2Q) L:i/f (Q) is obvious, and Lemma 2.9 proves that

LX) c L*2(Q), sothat «' € L¥2(R3). ¢
The following is an easy consequence of Theorem 2.10.

Corollary 2.11. Let 2 C ]R."3 be an exterior domain with CY! boundary
or Q=T and let f € W, 4(Q).
i) Assume that f € LP(Q)N'W, (), ¢ > p > 3. Then, each weak
solution u € Wé’2(Q) to the problem (NS) satisfies (0.1). Moreover,
Vu,n € L*(§?) and
lim Vu(z)=0, lim =#(z)=0.

|z|— 400 |z}—=+o00
ily Assume that f € LP(Q?), 3/2 < p < 3. Then, each weak solution
u € W(l)’2(Q) to the problem (NS) satisfies (0.1).

Proof. i) If f € L"(Q)HW‘TI"’(Q), q > p > 3, then Corollary 2.7 applies
and so (0.1) holds. Besides, Theorem 2.10 yields that 7, Vu € L9(€2) and
that Vi, V2u € LP(Q) with p > 3, which properties imply the result.

i) If f € LP(R), 3/2 < p < 3, then (2.9) implies that f € W " ()
with p* > 3 and thus Corollary 2.7 applies. <

Remark 2.12. i) The statement (i) in Theorem 2.10 still holds if
q > p = 3. The adaptations of the proof to this case are straightforward.
In contrast, the proof does not extend if ¢ = p = 3. Indeed, we would
have to apply Theorem 2.2 with p = 3 and ! = —1,which case is excluded
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(we insist on the fact that the conclusions of Theorem 2.2 are false if 3/p
is an integer smaller than or equal to —I).

if) The method we used in this section also allows to prove more
regularity properties. Assume for instance that the boundary 9Q is C%!.
Then, if f € Wal"‘)(ﬂ) and if one of the following conditions holds:

(a) f€WpP(Q), 6/5<p<3/2

(b) fe Whe(Q), 3/2<p<3,
then we can prove that each weak solution u € Wfl\’z(Q) satisfies
V3u € LP(2). We obtain simultaneously that V21 € LP(Q). Besides,
when assumption (6) holds, then we can establish that both V2%u and
V7 are bounded and vanish at infinity.

2.5. Improved regularity for the pressure in R?

This last section is devoted to some sharp regularity properties of the
pressure m when the domain € is the whole space R3. It is based on a
result of R. Coifman, P.L.Lions, Y.Meyer and S. Semmes ([7], Th. IL.1)
that deals with the regularity of various non-linear quantities. This
result is of particular interest to our problem since it establishes that

if ueWy*(R®) then div(u.Vu)e H(R®). (2.23)

Here, the Hardy space H!{R®) stands for the following subspace of
L'(R3):

HYR®) = {u € L'(R®), Rjue LY(R®), Vj =1,2,3},

where the three-dimensional Riesz transforms R; are given by :

5 ]
Ri(f)=cp.v. (f * ETE), j=1,...,3.

Therefore, we prove the following:
Theorem 2.13. Let f € W, 2 (R?) and let u € Wy(R®) be a weak
solution to the problem (NS). If divf € H'(R?), then the associated
pressure ™ has a representative such that:
e WM RY) and Vir e HI(R®).

Proof.

i) Let us assume in view of Proposition 2.3 that 7 € W01’3/2(1R3)+L2(]R3).
Since divu = 0, we obtain by computing the divergence of the first
equation of the problem (N S) that

Arm = divf — div(v.Vu) in RS, (2.24)
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In particular, if div f € H!(R%) and in view of (2.23), we have
divf — div (u.Vu) € H'(R3). (2.25)

i) We shall now obtain the regularity of m considering some regularity
properties of the Laplacian in R3.  First note that HY(R3) C

W0_1’3/2(1R3)J_’P0 where
Wo PR 1Py = {p e Wo AR, <1510, ppa= 0}

Now, we know from [3](Th. 5.1) that the Laplacian is an isomorphism
from Wy *'*(R®) onto Wy (R) LPy.  Therefore, there exists
nE Wol e 2(]R3) such that

An = divf — div(u.Vu) in RS, (2.26)

Moreover, since the Riesz transforms R;, 7 = 1, 2,3 are continuous from
HY(R®) into H!(R3), the following identity

0%
Orj0zy

= —R;Rx(An),

yields together with (2.23) that V2p € #*(R3).

iii)y Finally, we are going to prove that m = %, which completes
the proof. Indeed, we obtain by subtracting (2.26) from (2.24) that
7 —n € LX(R¥) + WS */*(R3) is an harmonic function. Then, 7 — 7 is
a polynomial that moreover belongs to LZ(R3) + L3(R3) ; and so it must
be identically zero. ¢

Remark 2.14. We are not able to prove a similar result when §2 is
an exterior domain. If we assume that, near infinity, div f is the
restriction of a function belonging to H!(R3), it seems difficult to
establish that V*r enjoys the same regularity. For instance, we cannot
use efficiently the cut-off procedure of Section 2. Indeed, it is easy to
check that =! satisfies

Ar' = divf! + vAg!,

but we cannot even prove that div f' + vAg! belongs to L'(R3).
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A NOTE ON TURBULENCE MODELING

G. Q. Chen, K. R. Rajagopal, Luoyi Tao

Abstract: The main thrust of this work is developing the basis for a mixed
formulation of turbulence modeling, combining analytical theories
and engineering modeling, which includes second order two-point
correlations of velocity and pressure. Related issues such as the different
outcomes that stem from differently chosen sets of ensemble averaging,
the approximate nature and the advantages and disadvantages of such
a formulation, and the choices of closure schemes are addressed.

Keywords: Closure, averaging Reynolds stress, dissipation.

1. INTRODUCTION

Analytical theories of turbulence, on the one side, deal with multi-
point correlations of velocity restricting themselves to homogeneous
turbulence (Orszag [11], Proudman and Reid [12], Tatsumi [17]). On the
other side, engineering turbulence modeling deals with general turbulent
flows restricting itself to single-point correlations of velocity and pressure
(Launder [7], Rodi [13]). It seems worthwhile to develop a mixed
formulation, combining these two methods, to obtain information on
multi-point correlations of fluctuating velocity and pressure to general
turbulent flows, a formulation that we discuss here.

The importance of multi-point correlations in turbulence, especially
the two-point correlation of fluctuating velocity (Uyj~), lies in that
they provide some information on the basic structure of turbulent
motions, such as the various scales of length (dissipative, integral), the
direct interaction between the fluctuations of different positions and
the distribution (transfer) of fluctuation energy on (between) different
eddies (Batchelor [1], Hinze [6]). The mixed formulation contains
the equations governing Uy v, and Py ju, the two-point correlation of
fluctuating velocity and pressure. In such a formulation, some difficulties
arise, compared with single-point correlation models, which include (i)
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how to model a two-point correlation of three fluctuating velocities
(Uygrjn), (ii) how to prescribe physically sound initial and boundary
conditions for Uy;» and boundary condition for Fyj», and (iii) how to
solve the equation in the seven-dimensions space (six for space and
one for time) in which the equations are formulated. Despite these
difficulties, the formulation has great advantages: (i) Uy;~ is obtained
whose importance was mentioned above; (ii) only one quantity, Us 3y
needs to be modeled; and (iii) the need to prescribe the initial and the
boundary conditions for Uy j» and Py j» implies that the formulation may
have wider applicability than single-point correlation modeling since the
latter cannot account for such information.

This formulation is based on ensemble averaging the solutions of
the Navier-Stokes equations under proper conditions to be discussed.
Various sets of solutions can be employed, depending on which pattern
of turbulent flows is to be modeled. For example, a proper subset of
the solutions can be chosen to get a large eddy simulation type model,
or the whole set of solutions can be used to formulate a model without
any fluctuations. In the case of the former, if the filtering scale is very
small, the multi-point correlations may not be necessary and a lower
level model of closure will yield reasonable results like the Smagorinsky
eddy viscosity model for some flows (Smagorinsky [16]). However, in the
latter example, the multi-point correlations are quite important since all
scales of fluctuations are filtered out and the interaction among these
fluctuations need to be taken into account by the correlations.

We will demonstrate that the present formulation is not simply an
extension of analytical theories of homogeneous turbulence. As only
Uipjn and Py;n are included to simplify the modeling, some function
may need to be introduced to ensure the divergence-free condition for
Py j» due to the incompressibility of the fluid. We will discuss the
approximate nature of such a formulation, with the implication that
an averaged model of general applicability may be out of reach and
models appropriate to different classes of turbulent flows should be
pursued. It will also be self-evident that the present formulation is
not a simple extension of single-point correlation modeling since the
former cannot reduce to the latter without the assumption to handle the
reduction of the dimension of the space where the former is constructed.
We will show that there are several schemes for modeling Uj« ¢, and
the choice of the scheme depends on whether we emphasize simplicity
or comprehensiveness. Other issues are also to be discussed such as
the consequences of the symmetries of the Navier-Stokes equations,
realizability and molecular dissipation.
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Our main concemn at this moment is the basis for the formulation.
A great deal of effort has to be expended yet to construct concrete
models to solve problems.

2. FORMULATION

Suppose that the Navier-Stokes equations can describe the turbulent
motion of incompressible Newtonian fluids in a flow domain D, (here it
is tacitly assumed whether a physical fluid is a Newtonian fluid or not
is determined by its behavior in laminar states), that is, the velocity u
and the pressure pg are determined by, together with proper initial and
boundary conditions,

Umym = 0, (2.1)
6u,;

E + (uzum) ym = TG +Vuismm ) (22)

where p and v are, respectively, the mass density and the kinetic viscosity
of the fluid. Following the standard practice in turbulence modeling of
averaging, we consider the ensemble of solutions I/ to (2.1) and (2.2)
under “the same flow conditions” which are identified with some global
(or large scale) quantities characterizing the flows (Monin and Yaglom
[9]). Next, instead of carrying out the ensemble averaging on U, we
choose a suitable subset & of U, which is to be discussed later, and
introduce the ensemble averaging { ) := ( ) on S to define

Uii={w), P:={q), (2.3)
and the decomposition,
wu=U+v, g=P+p, (v;) =0, (p)=0, (2.4)

where v is the fluctuating velocity relative to U; and pp the fluctuating
pressure relative to pP. Consequently, equations (2.1) and (2.2) result
in (Hinze [6])

Umﬂn = 0, (2'5)
oU;
ot + UmUiam = _P:’i +VUi,mm - ('Ui'vm>sm ) (26)
'Um,m = 01 (2.7)
Bvi
- + ('L’i'Um + Uivy +v;Up, — ('Ui"-’m»am = —Dyi +VV,mm , (2-8)

at

and
Pn = — ('Umvn + vUpn + v Uy — (vmvn>) ymn - (2'9)
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We now introduce the multi-point correlations such as
Uiy := U,;J(x x” ,t) <’U,van) Vit 1= ’Ui(x’,t),
Usejngm = Ui (¥, x ", x",t) = (vgvjmopm)
Py i= Poi(x',x", 1) := (pyvn), po = p(x',t), (2.10)
which have the following symmetry properties (Proudman and Reid [12])

Uilj!l = Ujliil, Ui'j"k”' = Uj"i'k'" = Uilkllljll, (2.11)

and 9
—Uprjmpm =0, etc. 2.12
637; ik ( )

Then, equations (2.7) and (2.8) yield (Hinze [6], Proudman and
Reid [12])

7] .

2 Py =0, (2.13)
1
0

537Ui'ju =0, (2.14)

0 0 0
(55 + Un i + U U+ U Ui
0 7]
+Ujr s Upmne + 5 oz}, Ujoesr + oz HU"k"]‘" (2.15)
0 0 d? &
= 8 ,PO' " — gy ,,PO"l’ + U(a ") + 8)("2)(]1'/1117

with Uy := Ui x ,t) and Uj" = Uj(xn,t).

If we take U;, Uy, P and Py, as the primary field quantities and
model Ujgnjn in terms of these primary fields appropriately, we will
find out that there are 14 equations consisting of (2.5), (2.6) and (2.13)
through (2.15), but there are only 13 primary quantities. Therefore, we
may need to introduce a scalar function S with S(x’,x",t) = S(x”",x/, )
in to the formulation through equation (2.15), say, according to

17, 0 o
( + U + Ut —— oz ) o + Uil’ml Umr]-u

ot ™ og,
0 0
E)—;Ujllklil + @Uﬂku‘ju {216)

o F;] 32 32
_8—1:ijl]'j'l — éz—"_P 725t + U(‘axT + W) Uilju + S‘Si'j"-
t 2

Here 6y ;» is the Kronecker delta. We may associate this introduction
of S with the constraint (2.13) in the sense that S is not needed if
(2.13) is not enforced, since we have 13 equations for the 13 primary

-f—an ! Ui’m” +
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quantities. Therefore S could be considered physically as a force-like
quantity resulting from the constraint (2.13) or a force-like quantity
imposing (2.13) on the averaged field Py;». Next, we justify the term §
in (2.16) with the following argument. Assume that

0 o .
gy ” Ullkn o= _S(x x” t)&z, " 6:1:;"; Uilklljll
and F:) 9
a , Ilkl - —S(x x t)‘s]"z' + — B ' U"'k'i'

where §(x/,x" ,t) is due to (2.13) and Ui:kuju ( Jnk/z') is to be modeled
in terms of those primary fields chosen previously. This treatment
is analogous to the introduction of the hydrodynamic pressure to the
Cauchy stress tensor of an incompressible material. One reason for
modeling %Ui,knjn instead of Uy g j» is to avoid the need for prescribing

boundary conditions for S(x',x"t) := §(x'x",t) + §(x" x',t) and also
for keeping the form simple. Now we have

(,3, Ujpsr + dak Uppnjn = a%ujnw aa,,Ufkn = Sijn.

Substituting this relation into (2.15) and dropping the hat °, we obtain

(2.16). This replacement of U,;fkujn (0juklil) with Uilklljn (Ujllkli') should

not cause any confusion based on the fact that (i) both of the quantities

have to be modeled; and (ii) in case that 0i’k“j” is constructed under

(2.12), S = 0 results from (2.17) below and we can take f/',-rkuju = Usrgnjn.
It is easy to verify that (2.13), (2.14) and (2.16) yield

0?8 o2 0 0
axkaz = a;l:;ax;’ (61:’0[]11,5/1/ -|- a o Ikll 11) (2.17)
and
0? aS 0
VI A— —-——2 ’ I_U 1400 218
paeall oz, Untom gr U (2.18)

0 7] 0
— a (6 TUjnprn + o2 kUn/k/;ju> .

Equation (2.17) shows that S can be solved in terms of a—gllz'Ui'k“j" and

S = 0 can occur when the model of Uy« meets the constraint (2.12).
This also implies that the introduction of S can be considered as part
of the modeling of Uygnju.

Thus, we have a determinate set of equations for U;, Uy, P, Py
(and S) consisting of (2.5), (2.6), (2.13), (2.14) and (2.16), provided
that Uygnjn is appropriately modeled in terms of these primary field
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quantities. The approximate nature of this truncation scheme is easily
understood as follows. Ujyn e, together with S, though the latter is
determined by the former, ‘is supposed to account for the interaction
between the lower order correlations (the primary fields chosen above)
and the higher order correlations. Here, the modeling of Ujgn;»
essentially serves to characterize this interaction through some specific
structure in terms of the lower order correlations, and consequently it
restricts the interaction to some special form, and some information
related to the higher order correlations is left out. For example, a specific
structure of Uygrj» cannot accommodate all the possible initial and
boundary conditions of itself and the higher order correlations because
the structure is assumed to be fixed in terms of those lower order
correlations. And thus the motion is completely determined from the
model as long as proper initial and boundary conditions of the lower
order correlations are prescribed, disregarding any initial and boundary
conditions for the higher order correlations. A possible implication of
this argument is that there may be no one general structure for Uygj»
which can model optimally all turbulentflows.

Another limitation of the scheme, or any scheme based on averaging in
fact, needs to be addressed, namely what is the class of turbulent flows
for which an averaging scheme can be applied to produce physically
meaningful results. We should restrict the model to flows where the
fluctuation is relatively small, for instance,

Use < UyU, for large |Uy|;  Ugqq small for small |U,]. (2.19)

(Here, we adopt the convention that the summation rule is suspended
if Greek subscripts are used.) This restriction is physically essential,
otherwise the large fluctuation will make the averaged velocity field
practically useless.

On selecting S, a set of solutions from U, on which the averaging ( )
operates, we have two cases in mind. One is § = Y, the assumption in
standard engineering turbulence modeling, which supposedly smoothes
out the fluctuation of all scales so that the resultant averaged equations
are not of a chaotic nature. The other deals with a proper subset of U.
For the sake of demonstration, let us choose a length scale /, much
smaller than the characteristic length of D, and a subset U; of U, whose
members display almost the same flow structures on the scales larger
than /. Then, the ensemble averaging ( ) of relation (2.3) on Y is to filter
out the fluctuations on the length scales smaller than /, under the premise
that U, contains enough members so that the operation { ) caneffectively
smooth the flow details on the scales smaller than /. Therefore we
can, based on this argument, relate this case of averaging to large eddy
simulation (LES) (Ferziger [3], [4]). This formulation has the advantage
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that both the commutativity of the averaging and differentiation and
(2.4)34 hold and it is clearly connected to the standard turbulence
modeling of averaging (different subsets of ¢/). Its disadvantage may
be that the fields do not seem to be defined as concretely as those
of LES. In both cases of § = Y and S = U, each motion {u;, q}
is decomposed into a main flow field {U,, P} and a fluctuating part
{vi, p}; the former varies relatively slowly in time and space and the
latter changes rather randomly and rapidly in time and space. The
averaging formulation seeks to reformulate the equations of motion
within the frame of the characteristic time-space scale of the main
flow field. The direct interaction between the fluctuations of different
positions is described by the two-point correlations.

Now we present some justifications for introducing the above two-
point correlation formulation. Firstly, this formulation is an extension
of both the standard engineering turbulence modeling of single-point
correlations and the analytic theory of homogeneous turbulence of multi-
point correlations. Secondly, the model can be closed provided that
the quantity Ujgnjr is formulated properly, while s is introduced. The
interaction among fluctuations of different positions and the averaged
velocity field can be characterized through Uy ,». (The field {U;, P} is
affected by {Uyj», Py j»} through U;;, but a nontrivial U; will influence
{Uyjn, Py} directly.) Finally, this two-point correlation model is
much simpler than any formulation involved in higher order correlation
quantities. For example, it follows from (2.7) and (2.8) that

0 0 0 0
( + U + U + Uy )Ui’j”k’”

at a / 8 II a "
—|-U1,1 ! Uml]'llklll “+ U]rr »m! Ul ! + Uk”’ - Ui’j“m’“
0 J
= ——POI "Ik”/ _—— (U'/ ! A1 1 — UI IU'II /Il)
7 7 7 i'm'j"k Ym' YUk
3:1:1- 61'1"
0 3}
a ” P()”l/k“' ~ ax_” (Uiljllmllklll — Uj"m“ Ui'k'”)
m
3 0
8 ”, PO”' i — W (Ui’j”k”'m’“ - Uk'“rn’“ U,l‘ljll)
m
0? 0? o2
+v (axﬂ + 5oz + 5o | U, (2.20)

where

.— / " "
Uij’lc”l"' = Uijkl(xy X,x,X t (vtv]’vk”'vl’”) ) (2 21)

PO’i”j”’ = Pm’j(xl,x”,x’”,t) ' <p0"U1NJ”l) Polllljlll = PO’j“’i"°
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We now have an extended model consisting of equations (2.5), (2.6),
(212) to (214), (216) and (220) for U,;, Uiljﬂ, Uiljﬂkm, P, Pglin and
Py jugm provided that Uy jugn is properly modeled. We notice that the
divergence-free condition F:?Pg; 4% = 0 may not be enforced generally

here unless the model of Uy jugm meets some symmetry constraints
or a vectoral function is introduced in (2.20), similar to the previous
introduction of to handle (2.16). This treatment is not needed under
some special form for Uy jug like, in the case of § = U,

Uij'k"l"’ = Uzj’UIc”l“' -+ Uik"Uj'l"' + Uil'"Uj’k”’ (2.22)

as suggested in the scheme of quasi-normal approximation (Proudman
and Reid [12], Tatsumi [17])." The advantage of this extended
formulation is that (2.11), and (2.12) will be satisfied, which has the
following consequences: (i) S = 0 can be achieved (see equation (2.17));
(ii) In the case of S = U, in homogeneous turbulence we have from (2.16)

d 52 ‘
50kt (Ukym +Umok ) Umk — ZVB?UM: =0, (2.23)

r=0
with r := x” —x’, which reflects the fact that in homogeneous turbulence
the mean turbulent kinetic energy is conserved by the non-linear terms
of the Navier-Stokes equations (due to the absence of the correlation
of three velocity components from the equation) and dissipated by
molecular viscosity (Lesieur [8]); (iii) We have from (2.6) and (2.16),

o 1 1
A / = (UpUy + Ugg) dv + / = (UpUk + Ur) UnNnda
at Jy 2 ay 2

1 1
= [ |=PUn = Pun ~ Ulion = 50kt + 30 (Ui + Vi) s | N

) dv, (2.24)
X' =x'=x

with V being an arbitrary control volume in D and N the normal to
V. This equation shows that the direct effect of Uygnj» on the kinetic
energy of the fluid in V can be absorbed into a surface integral term.
The disadvantages, however, include that (i) many more equations,
(2.12) and (2.20), need to be solved which are involved in a high
dimensional space; (i1) the initial and boundary conditions for Uj jupm
and the boundary condition for Py g need to be specified. These
disadvantages will not only cause difficulties to the application of the
model but also cause problems in calibrating the model in the first
place. Certainly, similar disadvantages are also inherent in the two-
point correlation formulation proposed in the present work, compared

32
—V/;) (Ukam Ukym + Upryr

! "
ox!, 0z
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with any one-point correlation model. In the case of S = Uj,one-point
correlation models may be appropriate if the scale / is very small, but
the case of S = U is involved in eliminating all scales of disturbance and
the two-point correlations Uy;» and Py are needed to account for the
interaction among different scales of fluctuations, and it is expected that
this two-point correlation formulation is more general and appropriate
than one-point correlation models.

There is no clear scheme for formulating Uy g » corresponding to S
= U or § = U, though the former is supposedly free from any chaotic
behavior and the latter has a characteristic length 1. In both cases Uy g jr
should be formulated so that (i) the solutions U+ and Fyj» of the
model satisfy, from their definitions (2.10) and the Schwartz inequality
(Schumann [14]),

Uy 20, UnarUgigr — (Uagn)® >0, (2.25)

which guarantees the positive (semi)-definiteness of U;; to yield non-
negative fluctuation energy and an estimate of the fluctuation around
Ui, and
Pyiyy =0, under Uy = 0; (2.26)
and (ii) the model is dissipative, that is, the source term in the equation
on (UpUix + Ukk)/2 has to be a sink due to the molecular dissipation,
which reduces to 52
ox!, 0z
in case that (2.11), and (2.12) are met. Next, the structure of U n
has to meet two invariance requirements. One is related to Galilean
invariance: Though Uygwj» is frame indifferent since v can be viewed
as a velocity difference based on the ensemble averaging, whether
such a restriction should be imposed on its modeling is another issue.
Obviously, if we resort to the restriction, we would get a differential
equation on Uy, (2.16), which is not frame indifferent, while Ui:jn
is frame indifferent due to the same reason as that for which Us g jn
is frame indifferent. To avoid such a dilemma, we will merely require
that the model for Uygr;» satisfy the principle of relativity of Galilei
and Newton (Frisch [5], Sedov [15]), which is the very symmetry
possessed by the original equations (2.1) and (2.2); Another invariance
to consider is the scaling invariance possessed by equations (2.1) and
2.2): {x,tv,u,ql = {dx, A7, My Ma, A2}, A > 0, h € R;
that is, if {u, g}(x, t) is a solution to (2.1) and (2.2) with the viscosity
v, then {\u, A?*q}(Ax, A1~"t) is a solution with the viscosity A'**v
(Carbone and Aubry [2], Frisch [5]). This same scaling invariance should
also hold for the quantities from the ensemble averaging. Consequently

Ugrpr >0

x''=x'
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we should not introduce any new dimensional constant, except vand {,
to model Uy g j». Finally, in both cases chaotic motions up to some scale
need to be smoothed out. One way to achieve this is through adopting
a gradient structure for Upgrjv, which is motivated by the diffusive
terms of molecular viscosity in the equations; an artificial viscosity
is introduced both to simulate the intensified momentum transfer in
turbulence and to dampen the fluctuation as intended by the averaging.
This scheme has been widely used in turbulence modeling, such as
the Smagorinsky eddy viscosity model in LES (Smagorinsky [16]), the
Boussinesq assumption concerning the Reynolds stress in zero-equation
models and two-equation models and the flux form in Reynolds stress
equation models in engineering turbulence modeling (Rodi [13]). This
treatment, however, is flawed in that the exact Uy g corresponding to
the choice & = U just plays the role of redistributing the fluctuation
kinetic energy Uyx among its components U;;, Uz and Usz and so
conserves Uy, in homogeneous turbulence (see equation (2.23)). To
remedy this flaw, the model for Uyg»;» has to meet both symmetry
conditions of (2.11), and (2.12), which will result in too complicated
a structure for Uy v that can be demonstrated by considering the
modeling of Uy jugm as follows. Let by jugm := hyjp(x’,x"”,x™,t) be a non-
zero basic form and H,'/jnkm = hiljﬂklll + hi’k’”j”- Then

— i'j”k"' ~ H’i'j”k”’ + Hj"i'k”' -|— Hklllju,y
meets (2.11),. Next, to satisfy (2.12), we propose

—Uyjomgn = Hi’j”k"'+aix§R0’j”k’"+Hj”i’k”’+8 7 Bt o
0
+ Hyjeo + o ”,RO”'z’J" (2.27)
with
Ry jugm = Ry, Rorjgm = RO]k(x x", x" 1), (2.28)

in order that we have six equations (2.12) with six undetermined
functions Ry jigm. The following special solution of Ry jugm can be
obtained under trivial boundary condition,

Rolj;;klrrzl[G(ﬁ’ x’) X
" n 63
X [E)x"ax”’/ G(x,x")G(x,x )W(anln+ =i, ) X dX

o?
a I’ / G leax (H[klllm + H" kllll + Hkllllm)dx
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a III / G ”,)axla (H +H- "l + H uln)dx

3 .
+ 25‘%_‘ ('Hij”k"’ + Hj”ik'” + Hk,,,j,,i)}dx, (2.29)
and G is the Green’s function from, under some homogeneous boundary

condition on D, )

%2
Then a relation for Ujgwjn can be derived from (2.27). One major
problem with this relation is the explicit presence of the Green’s function
G which can be quite difficult to find if the flow domain is not simple
enough. Also, it is not clear what homogeneous boundary conditions for
G need to be adopted. The other problem is that multiple integrations
and differentiations are involved. Thus we have to keep a balance
between the simplicity and the comprehensiveness of the model for
Upgnjn. To achieve the simplicity, we may need to allow the presence of
dissipation caused by the artificial viscosity by relaxing the symmetry
constraints, say, by removing (2.11);. This relaxation is formally
allowable by observing that the term

G(%,x') = —§(x — x'). (2.30)

W’z’j” = i’j" + ‘/j”i" V;'.’j” = %Uilkﬂjﬂ,

k
instead of Uygrjr, is present in (2.16), Wyn = Wiy always holds
regardless of whether the symmetry condition (2.11), is satisfied by
Ugpgnjn or not, since in Vyju the symmetry of Ujpgnjn with respect
to k" and j" is suppressed by the divergence operation, and the
appropriate modeling of V;;» should be the primary concern in order
to get reasonable flow fields of {U;, P, Uy n}.

Let us consider a possible model of Vs~ guided by the constraints

mentioned above. The simple ones are

"
-iwwi—a(” o awﬁ (2.31)

da:'k' Bz;C’ \/|57| ’“"‘a:c;;,,
for § = U and
0 —
aT;:Ui’k”j" == (l K" kma " 1] ) (232)

for § = Y; with

2
w_ 0

"
= U, €= ———U
’ "33
9z, 0z

xI :xll
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and both ¥” and ®” are dimensionless, positive (semi-)definite tensor

92
'l - — l a ‘ } .y . — ___‘ J- .
=T U, U 0z, 0z, i

functions as
2.
xI:xll
QH = Q(Um,”n”y 5" v, l) .

The specific forms of ¥ and ® have to be fixed either directly or
indirectly with the help of the experimental data, under the constraints
of (2.25) and (2.26), the closed model being dissipative. If the data on
{Virjm, Us, Upjn} or {V;flj,,, U,-d, Ui‘,tj,,} can be obtained directly, either by
experimental measurement or by direct numerical simulation, the form
on ¥ or ® may be found by correlating Vifijn and Ul-‘,‘j,, according to (2.31)
or (2.32). Though it bypasses solving the equations as well as prescribing
the initial and boundary conditions, this procedure does not necessarily
guarantee a proper model for {U;, U j#} due to the approximate nature
of the model; for instance, if ¥ or ® depends on Ujjn, then S # 0
and the closed set of equations may not yield solutions for {U;, Uy n

compatible with that directly obtained for {UZ, Ugj,,}. To remedy this
flaw, we may propose a form for Vj;~» according to the criterion for
producing reasonable solutions for {U;, Uy ~} from the closed model,
instead of focusing on the matching of V;:;» and Viiij,,. This scheme can

be used even if Viflj,, is not available. It remains to be resolved how to
evaluate the appropriateness of the model.

3. SUMMARY

We have presented a mixed formulation for turbulence modeling,
a combined version of analytical theories and engineering modeling. The
equations for the two-point correlations Uyj» and Pyj» are discussed,
and the related issues are addressed which include the necessity for
introducing the function S, the approximate nature of any specific
turbulence model of averaging, the different outcomes from differently
chosen set of solutions on which the ensemble averaging is based, and
the constraints on modeling Uy g~ j» to make the equations determinate
such as realizability and the symmetry properties of the Navier-
Stokes equations. We have delineated the appealing side of such
a formulation, and moreover, its disadvantages with regard to simplicity
when compared with models of single-point correlations, like that
involved in working in a higher dimensional space and the difficulty
associated with prescribing initial and boundary conditions for Uy~
and the boundary conditions for Fy;». Future work has to resolve
these problems and computational schemes have to be devised to help
modeling.
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Notes

1. This relation might be derived simply from (i) the properties of Uj,rgs g, such as,
its symmetry with respect to its indices, formally linear in v;, (Uijegryn )ym = Ui myjegn i
and so on; and (ii) the assumptions that v is of normal distribution at one point and that
Uijr gy depends on Uyjr, Uyjrgn and the like. This relation unfortunately has the flaw of
yielding negative energy spectra in isotropic turbulence at high Reynolds number Re) =

V{v-v)A/v with X being the dissipation length (Ogura [10], Orszag [11]). One reason for
this failure might be explained by observing that
(vjvjvpue) = (vjv; N vpop) + 2(vjop )(vjopr)

from (2.22) where the left-hand side is physically expected to be small for large |x — x'[,
but the right-hand side can be quite great under large fluctuations especially in homogeneous
turbulence. Based on this observation, we may modify (2.22) to eliminate this flaw.
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L?** - REGULARITY FOR NONLINEAR
ELLIPTIC SYSTEMS OF SECOND ORDER

Josef Danécek, Eugen Viszus

Abstract:  There is shown the L?* - regularity of the gradient of weak solutions of
nonlinear elliptic systems.

Keywords: Nonlinear equations, regularity, Morrey spaces.

1. INTRODUCTION

In this paper we consider the problem of the regularity of the first
derivatives of weak solutions to the nonlinear elliptic system

—Dgyal(z,u, Du) = a;(z,u,Du), i=1,...,Na=1,...,n (1.1)

where af(x, u, z), ai(z,u, z) are Caratheodorian mappings from (z,u,z) €
Q x RY x R™" into R. A function u € Wli’f(Q,RN) is called a weak
solution of (1.1) in € if

/a?(:v,u,Du)D,,goidz=/ai(m,u,Du)cpidz, V(pECS"(Q,RN).
Q Q

As it is known, in case of a general system (1.1) only partial regularity
can be expected for n > 2 (see e.g.[2], [4], [7]). Under the assumptions
below we will prove L2 - regularity (0 < A < n) of gradient of weak
solutions for the system (1.1) whose coefficients af'(z,u, Du) have the
form .

a®(z,u, Du) = A;’jﬂ(ac)DﬂuJ + g%(z, u, Du). (1.2)
Here A;’jﬁ is a matrix of functions, the following condition of strong
ellipticity

AP (2)EL) > Vg, ae.ze® VEER™y>0  (L3)

holds and g¢%(z,u, z) are smooth functions with sublinear growth in z.
In what follows, we formulate the conditions on the smoothness and the
growth of the functions Agﬂ(z), 9%(z,u,2) and ai(z,u, z) precisely.

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 33
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Such result may open a way to prove BMO-regularity of gradient.
In [3] the first author has proved L2?* - regularity of gradient of
weak solutions to (1.1) in the situation when the coefficients .A%ﬂ are

continuous. In this paper the coefficients Afjﬁ are discontinuous in
general.

If we want to sketch our method of proof, we have to say that its
crucial point is the assumption on Aaﬂ. Ao‘lj € L>(92) N Lo(2) (for
the definition see below). Taking into account higher integrability of
gradient Du we obtain L2 - regularity of gradient.

2. NOTATIONS AND DEFINITIONS

We consider bounded open set 2 C R™ with points z = (z1,...Zn),
n>3,uQ->RN N>1, uz) = (u'(z),...,uN(z)) is a vector-valued
function, Du = (Dyu,...,Dpu), Dy = 0/0z,; we use the summation
convention over repeated indices. The meaning of Qo CC € is that the
closure of £y is contained in £2,i.e. { C Q. For the sake of simplicity we
denote by |-[and (.,.) the norm and scalar product in R"as well as in R¥
and R*N. Ifz€ R®and ris a positive real number, we denote B,(z) =
{yeR"” |y—z|< T} ie., the open ball in R, Q(z, r) = B,(z) N Q.
Denote by uz, = |z, |n fﬂ(a: y)dy = fn(z ry u(y)dy the mean
value of the function u € L'((, RN) over the set (z,r), where |Q(z,7)|n
is the n-dimensional Lebesgue measure of §2(z,r). Beside the usually

used space Cg° (Q,RN ), Holder spaces C*® (Q RV ), Ccle (ﬁ, RV )
and Sobolev spaces W*? (Q,RN ) werp (Q RV ) wee (Q,RN ) (see,
e.g., [6]) we use the following Morrey spaces.

Definition 1. Ler A € [0,n), ¢ € [1,00). A function u € LY(Q,RV) is
said to belong to LI9*(Q,RN) if

el vy = P {r-* fo ey € > o} <o

’

Remark. u € L8 (Q,RV) iff u € L9 (Q, RV) foreach @y cC Q.
For more details see [2], [4], [6] and [7].
The generalization of Campanato spaces £L9*(, R") are the classes
Lg introduced by Spanne [8].
Definition 2. A function u € L*(Q,RN) is said to belong to L&(2, RY)
if

1/2
[u}¢,o=—sup {<I>(r)‘1 (]{!?(y)) — ug |2 dy) rz € Q,r € (0, diamﬂ]} <00
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and by l$(Q, RN) we denote subspace of all u € Lo(Q,RY) such that

[u]‘P,QJ‘o =

1/2
sup {q)(r)_l (ﬂ}i(gr/)) —ug,)? dy) cx e Qe (0, ro]} = o(1)

as ro \y 0, where ®(r) = (1 + [Inr|)~L.
Some basic properties of above mentioned spaces are formulated in
the following proposition (for the proofs see [1], [2], [6] and [8]).

Proposition 1. For a domain @ C R™ of the class C%' we have the
following

(i) LI (Q,RN) is isomorphic to the L®(Q, RN).

(i) u € W2, RY) and Du € L2XNQ,R™), n —2 < A < n then

loc loe

ue CHe(QRY), a=(A+2—-n)/2.

(iii) La(Q,RN) is a Banach space with norm
““"c.,(Q,RN) = ||““L2(Q,RN) + [ulzo(0,RrY)-

(iv) CO, RV Lo(Q,RN) and (L®(Q, RV)Nle(Q, RN\ CY(Q, RY)
are not empty.

(v) Forp € [1,00), ' CC Q, g € (0,dist(Y,00)) and u € L:(Q,RY)
set

Np(u; o, Q’a TU) =

1/p
= sup {@(r)_l ( Ju(y) — uz,rlpdy) z e, re (0, 7‘0]} .

x,r
Then we have for each u € Lo(Q,RN)
Nl (U, éa Qla "'0) S Np(u; (I)v 0,1 7'0) S c(p, n)[u]d),ﬂ,ro-

3. MAIN RESULTS

Suppose that for all {z,u,z) € QxRN x R™N the following conditions
hold:

lai(z,u,2)] < fi(z) + Llz|™ (3.1)
g7 (2, u,2)| < fi¥(z) + Lz]” (3.2)
oz, u,2)zk > |2t — fA(x) (3.3)
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where L, vy are positive constants, 1 < vq < (n +2)/n, 0 < v < 1, f,
freL°MRQ),0>2,0< A< n, f, € L7P2(Q), g = n/(n+2). We
put A= (A7), 9= (¢2), a = (@), f = (), F = ().

Theorem. Let u € Wllo’f(Q,RN ) be a weak solution to the system

(1.1) and the conditions (1.2), (1.3), (3.1), (3.2) and (3.3) be satisfied.
Suppose further that .A%ﬂ € L®Q) N Ls(V), 4, 7 = L,...,N, q,
B =1,...,n. Then Du € Li;i‘(Q,R"N) for A < n and in the case
A=n Due LY (Q,R™) where X' < n is an arbitrary.

Corollary. Let the assumptions of Theorem be satisfied.

Ifn — 2 < A < n, then u € COA-"+2/2(Q RV).

Proof. It follows from Proposition 1(ii).

4. SOME LEMMAS

In this section we present the results needed for the proof of Theorem.
In B(x,7) C R™ we consider a linear elliptic system
~ Do (A Dgu?) = 0 (4.1)
with constant coefficients for which (1.3) holds.

Lemma 1. ([2] pp. 54-55) Letu € W12(B(z,r),RN) be a weak solution
to the system (4-1)- Then for each t € [0,1]

[ ipuwidy <ctn [ Du@)dy
Bir B"

holds.

Lemma 2. ([4]) Let ¥ = ¥(R), R € (0,d], d > 0 be a nonnegative
function and let A, B, C, a, b be nonnegative constants. Suppose that
for all t € (0,1] and all R € (0,d]

¥(tR) < (At® + B)¥(R) + CR®

holds. Further, let K € (0,1) be such that € = AK*® + BK~% < 1.
Then
¥(R) <cR’, Re€(0,d
where ¢ = max{C/K (1 —¢€), sUppe(xa,q Y(R)/R"}.
The following Lemma is the special case of Lemma 34 from the
paper [3].

Lemma 3. ([3], pp.757-758) Let u € W13(Q2, RN), Du € L7 (Q, R™Y),
0 <7 <n and (3.1) and (3.2) are satisfied with f; € L?320(Q),
fEe L), 0< A< n.
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(i) Then a; € L2902(Q) and for each ball Br(z) C Q we have

/ lai(z, u, Du)|2 dy < ¢ R* (4.2)
Bp(x)

where ¢ = c(n,L,yy, diamf, Hf"quo,xqo(g,RN), | Dull 20 mnv))
and Ao = min{Ago,n — (n — T)goYo}.

(ii) For each € € (0,1) and all Br(z) C Q

/ g% (, u, Du)|* dy < ¢(L) s/ |Du|?dy + ¢ RN (4.3)
Bg(z) Bp(z)

Here ¢ = c(L,¢,, diam 3, || f|| L2 (q,rnn ) 1 Dull 2(,reny)s AL = A
forA <n and M\ < mn is an arbitrary for A = n.

Proof. For the proof (i) see [2], pp. 106-107. According to (3.2) it
follows that

/ lgz y)u Du)|2 y<c(|'f||L2A(QRnfv)R +/
Br(z) B

By Young inequality we obtain

| Du|?Y dy> .

r(x)

/ | Du)*" dy < s/ |Du)® dy + ¢(n,e,7)R™
Bpr(z) Br(z)

for each ¢ € (0,1) and (4.3) easily follows.
In the following considerations we will use a result about higher
integrability of gradient of weak solution of the system (1.1).

Proposition 4. ([4], p.138) Suppose that (1.2), (1.3), (3.1)~3.3) are
fulfilled and let u € W,L’Z(Q,RN ) be a weak solutions of (1.1). Then
there exists an exponent v > 2 such that u € W&,’:(Q,RN ). Moreover

there exists constant ¢ = c(v,11, L, ||A||le0) and R > 0 such that for all
balls Br(z) C 2, R < R the following inequality is satisfied

(hpare)” < < (fipap)”
~ 1/r _ 1/rqo
r R 40 d .
4 ( (1 +171) ) + (]lBle) y) }
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S. PROOF OF THEOREM

Let Bg/o(xg) C Br(zo) C Q be an arbitrary ball and let
wE WOl’Z(BR/z(a:g),RN) be a solution of the following system

/ (A1] )IO.RDﬁwJD 14 diL‘

Bpr/2(z0)

= ((Agp)mo,n - Af‘]ﬂ(x)) D! Dot dx (5.1)
Bpya(zo)

- / 95 (¢, u, Du) Do’ dz + ai(z,u, Du)y' dz
BRrya2(z0)

Brya(zo)

for all ¢ € W[}’Z(BR/2(.TO),RN). It is known that under the assumption
of theorem such solution exists and it is unique for all R < R’ (R'is
sufficiently small).

We can put ¢ = w in (5.1) and using ellipticity, Holder and Sobolev
inequalities we get

1// | Dw|? dzx
Bpa(zo0)

<ec (/ |Azo.R — A(z))*|Du|? dz + / (.’L',’U.,DU)|2 dz
Bpya(zo) Bp/a{zo)

1/g0
+ ( / la(z, u, Du)|?® da:) = c(I + II + III).
Bprj2(z0)

Taking into account the properties of matrix A = (A;ﬂ ), Proposition
1(v), Proposition 4 withr > 2 and Holder inequality (' = r/(r —2)) we
obtain

1/7 2/r
I< (/ |A(z) — Azo,Rlzr’ d.’L‘) (/ | Dul” d.’l,‘)
Bprya(za) Bgr/2(zo)

n/r' /7
< _CcRYT (1 +{ln R)|) ( iA(m) R 2|2"’ dx X
~ 1+4|In R)| Bryz(zo) Azo.n/

2/r
X (/ | Du| d:::)
Bprya(zo)

Rn/r' 2/r
< Now(A; @, By (7o), R/Q)m (/B (s0) | Du|” di")
ry2(To

Rn/r 2/r
< o Mlanr ) T (o o241 %)
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To the estimate the last integral in above inequality we use Proposition
4 and we get

2/r
( / |\Duf" da:)
Bg/o(2a)

2/r
1 ~
el T e ([ s

2/rqo
+R0-217 ( [ e dy)
Bg(2)
1 2 /1 | pAr—24N)/r)
sc (Rn.(l—?/r) /1;3}1@) |Duf"dy + R +R

where ¢ = ¢(r, ||f||LM(Q)7 "f”L"’)‘(Q)a “f”uqo«\qo(n))-

c " '
I< ———— Dul*dz + ¢ (R*" + RAT=24X/)) pr/r.
~ 14 |InR| JBg(zo) Dl ( )

We can estimate II and III by means of Lemma 3 (with 7 = 0) and we
have

V2 / |Dw|? dz (5.2)
Bpr2(z0)

1
< P / Dul?dz + R¥
‘c{(E 1+|lnR|) BR(Io)l ul"dz }

where g = min{(2X+n(r—2))/r, 2A+ (n+2)(r—2))/r, A\, n+2~nvy} =
min{A,n + 2 — nyy} because r > 2.

The function v = u — w € W1’2(BR/2(2:0),RN) is the solution of the
system

[ (A%)epr2Dpv Dot dz =0 (53)
Bry2(z0)
for all p € W(;’Q(BR/z(a:o), R¥). Prom Lemma 1 we have for ¢ € (0, 1]
[ ipswPay<ce [ |Duy)Py.
Bigr/2(%0) Bry2(zo)

By means of (5.2) and (5.3) we obtain for ¢ € (0,1] and € € (0,1)

1
Dul’dz < ¢ (t"+6+—)/ Dqum+R“}.
/Bm,z(zo) Dl { L+ {InR|/ JBg(zo) [Dul
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For t € [1,2] the above inequality is trivial and we obtain for all ¢ € [0, 1]

1
|Dul?dz < ¢ (t"+5+—)/ Du|?dz + ¢y R*
/Bm(zn) : 1+ |InR|/ JBg(xo) D 2

where the constants c¢; and ¢z depends only above mentioned parameters.

Now from Lemma 2 we get the result of the following manner. If we
put Y(R) = [, (z0) |Du|?dz, A = ¢, B = ci(e + 1/(1 + |InR])) and
C = ¢ we can choose 0 < K < 1 such that AK™ * < 1/2(in the case
A =n we have AK®™M < 1/2, where \; is from Lemma 3(ii)). It is
obvious that the constants g9 > 0, Ry > 0 exist such that BK~* < 1/2
(B = g9+ 1/(1 + |InRy|)) and then for all t € (0,1), R < Ry the
assumptions of Lemma 2 are satisfied and therefore

/ \Duf? dz < ¢ R*
Bg(zo)

If 4 = A Theorem is proved. If 4 < A the previous procedure can be
repeated with 7 = g in Lemma 3. It is clear that after a finite number
of steps (since p increases in each step as it follows from Lemma 3) we
obtain p = A.
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ON THE FREDHOLM ALTERNATIVE

FOR NONLINEAR HOMOGENEOUS
OPERATORS

Pavel Drabek

Abstract: In this paper we discuss some issues concerning the generalization
of the Fredholm alternative for nonlinear operators. We deal with
both nonresonant and resonant cases which makes the situation fairly
subtle. That is why we restrict ourselves on the case of one dimensional
p-Laplacian.

Keywords: Nonlinear Fredholm alternative, p-Laplacian, eigenvalues, solvability,
resonance.

1. INTRODUCTION

In this paper we want to discuss some aspects of the generalization
of the Fredholm alternative for nonlinear operators. One of the first
attempts to give a systematic treatment of this issue was done by
Jindfich Necas and his pupils and collaborators Svatopluk Fuéik, Jifi
Souéek and Vladimir Souéek in their book [FNSS] in early seventies. It
follows from their very general results that if we drop the linear structure
of the operator a lot of properties connected with the geometry of its
range (and also the spaces considered) are lost or modified. The situation
appears to be so complicated that in order to illustrate some of these
phenomena we have to restrict our attention to a very special class of
nonlinear operators.

Namely, we restrict ourselves to the second order o.d.e. operator
u — (Ju'|P~2u'), where p > 1 is a real number. This is one dimensional
analogue of the p-Laplacianu — div(|Vul[P7*Vu) which is frequently
mentioned in many nonlinear mathematical models arising in various
applications. From the theoretical point of view this (in general non
additive for p # 2) operator plays a special role because it preserves
homogeneity of order p — 1. This is very important because even if we

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 41
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loose linear structure of the operator for p # 2, we “stay not too far”
from it for p “close to” 2.
The purpose of this paper is to illustrate that on one hand the operator
u > (Ju'|P~%u') has very similar properties for p = 2 and p # 2 but on
the other hand to show that the case p = 2 is singular in some sense.
The former case concerns the structure of the spectrum of nonlinear
eigenvalue problem

—([P=2Y = MulP~%u = 0 in (0, 1),

u(0) = u(1) = 0. (EP)

It was proved that the set of all eigenvalues of (EP) and the properties
of the corresponding eigenfunctions are very similar for any p > 1.

The latter case concerns the fact that the structure of the right hand
sides f of the problem

~(lu'[P~*) — AjulP~?u = f in (0,1),

w(0) = u(1) =0, (RP)

where A > 0 (X being an eigenvalue or not), as well as the number of
solutions to (RP), depend strongly on the fact whether p = 2 or not.

This paper is organized as follows. In section 2 we summarize the
properties of all eigenvalues and eigenfunctions of the eigenvalue problem
(EP). In section 3 we discuss existence and multiplicity of solutions to
the problem (RP) for A not an eigenvalue of (EP). We also point out
some geometrical properties of the energy functional

1 7l N fl 1
J’\:ur—)——/ u"’——/ u”—/ u
p p0| | p0|| 0f

associated with (RP). The last section 4 is devoted exclusively to the

case A = A1 (the principal eigenvalue of (EP)). In this case the striking
difference between p = 2 and p # 2 is shown. This difference concerns
not only the structure of all right hand sides f for which (RP) is solvable,
but it clarifies also the role of the conditions p > 2 and p < 2in

apriori estimates of the solutions as well as in the geometry of the energy
functional J }‘1 .

This is a survey paper where the author was intended to summarize
the research motivated by Professor J. Nefas more than twenty years
ago. The author would like to express his gratitude to all his
collaborators (Y. X. Huang, P. A. Binding, P. Takd¢, M. del Pino,
R. Manésevich) and to the following grants for the support during the
work on this issue: the Grant Agency of the Czech Republic, grant
# 201/97/03595, the Ministery of Education of the Czech Republic,
grant # VS97156, NATO Collaborative Research Grant OUTR. CRG
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961190, FONDAP de Matemadticas Aplicadas (Chile), the University of
Calgary and the University of Rostock.

2. NONLINEAR HOMOGENEOUS
EIGENVALUE PROBLEM

Let us consider eigenvalue problem

(Iw'P~2u'y + MufP~2u = 0 in (0,1),

w(0) = u(1) = 0 (2.1)

with a spectral parameter A € R. Define
L ds 27

Ty =2 = —_— .
i 0 (1_519)% PSID%

Then w9 = 7w and it was shown for instance in [DEM] that the set of all
eigenvalues of (2.1) (i.e. the set of all values of A for which (2.1) has
a nonzero solution) is given by the sequence

Ak = (p— 1)(kmp)? for k =1,2,...

The set of eigenfunctions associated with A = A corresponds precisely
to that of constant multiples of the function sin,(m,t), where sin,  is the
solution of the initial value problem

([w'/P~2u)’ + (p =~ D]ulP*u =0 in R,
u(0) = 0,4'(0) = 1,

whichfor t € [0, 7—;3] can be described implicitly by the formula

sinp ¢
t=/ i_ds (2.2)
0 (1—sP)s

Furthermore, this function satisfies

sing(t) = siny(m, — t) for t € [22, mp),
sinp(t) = —sinp(—t) for t € [—mp, 0]

and can be uniquely extended as a 2w, periodic function on the whole R.
The set of eigenfunctions associated with A = A,k = 2,3,..., are
then constant multiples of the function sinp(k7yt).
For t € [0, %) and s € [0,1) setting

d . sinp ¢
Cosp t:= —sinyt, tanyt:=

. . -1
—P_ arcsin, s: =sin; ' s
dt cosp t’ P £
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we have the validity of formulas

sinbt + cosht =1, cos,t = —tanh~!tcos,t,
, - - gin’ g = — 1 (2.3)
tan,t =1+ tanht = cosTqr Aresimg s = ——.

(1-s?)?P
These formulas fit with corresponding well known formulas for p = 2.

1/p
Also the properties of eigenvalues (/\—’57,% = ’%‘, A — 00 as k — oo,

k
A1 > 0, etc.)

and eigenfunctions (sinp(kmpt) has k — 1 equidistant nodes in (0,1),
validity of formulas (2.3), etc.) for general p > 1are similar to those
already known before for p = 2.

Let us conclude this section by mentioning the paper of Necas [N],
where the eigenvalue problem of the type (2.1) was studied. Actually,
the problem considered in [N] is more general (non autonomous) and so
the results concerning the structure of the eigenvalues and associated
eigenfunctions are not so accurate. The problem (2.1) was then studied
by Drabek [DI], [D2] and Otani [O] where more accurate results were
proved using autonomy of the equation in (2.1). The work of del
Pino, Elgueta and Manéasevich [DEM] provided then a very nice and
transparent description of the eigenvalue problem (2.1) based on the
generalization of “sin” function given implicitly by (2.2).

3. NONRESONANCE FOR THE
P-LAPLACIAN

In this section we study the nonlinear boundary value problem

—(Ju'[P~2u') = MulP~?u = f in (0,1),

u(0) =u(l) =0 (3.1)

and associated energy functional Wo1 ?(0,1) - R,

A\ o l 1 , B é 1 B 1
OTE /0 WP -2 /e /0 fu, (3.2)

where X is not and eigenvalue of (2.1) (i.e. A # Ag,k=1,2...).

For simplicity we shall deal with f € C[0, 1] and the solution of (3.1)
will be such a function v € C[0,1] for which |v'[P~2u' € C'[0,1] and
u satisfies the equation and the boundary conditions. It is not difficult
to show that the critical points of J}\ are in one to one correspondence
with the solutions of (3.1).

Due to the variational characterization of A;:

fol ')

Al = min i
fo |U|p,

(3.3)
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where minimum is taken over all nonzero elements of Wol’p (0,1), and due
to the monotonicity of the operators A4, B : W;?(0,1) — (W,*(0,1))’
defined by

1 1
< Au,v >= / |u'|P~%u'y!, < Bu,v >= / lulP~ 2uv
0 0

(here < -, > is the duality pairing between (Wol"’(O, 1))* and Wol’p((l, 1))
it is easy to prove that for A < 0 the energy functional J}‘ has unique
minimizer in Wol’p(O, 1) for arbitrary f € (W,?(0,1))*. In particular, it
follows from here that given arbitrary f € C[0, 1], the problem (3.1) has
unique solution. So from this point of view, the situation is the same for
p=2andp#2

The case A > 0 is different. It is well known that for p = 2
and A # A,k = 1,2,..., for any f € C[0,n] the problem (3.1) has
unique solution, which follows e.g. from the Fredholm alternative.
Let us consider now p # 2 and 0 < A < M. Due to the variational
characterization of A\; given by (3.3) the energy functional is still coercive
but the monotone operators A and B “compete” because of the positive
sign of \. While in the linear case (p = 2) this fact does not affect
uniqueness, for p # 2 the following interesting phenomenon is observed.
There exist functions f € C[0,n] such that J}‘ has at least two critical

points. One of them corresponds to the global minimizer of J}\ on

Wﬂl’p(O, 1) (which does exist due to A < \;) and the other is a critical
point of “saddle” type. As an immediate consequence we obtain that
for certain f € C[0, 1] the problem (3.1) has at least two solutions.

The examples which illustrate these facts were given by Fleckinger,
Herndndez, Taki¢ and deThélin [FHTT] for 1 < p < 2 and del Pino,
Elgueta and Manasevich [DEM] for p > 2. The result was generalized
for general A > 0 by Drébek and Takaé¢ [DT].

As a summary of this section we point out that in the nonresonant
case for the p—Laplacian we observe a lack of uniqueness for (3.1) with
certain f when p # 2. This makes the nonlinear case qualitatively very
different from the linear one.

4. RESONANCE FOR THE P-LAPLACIAN

The case A = A, K = 1,2,..., in (3.1) is even more interesting and
challenging. We shall restrict ourselves to k = 1, i.e. we study the
nonlinear boundary value problem

—(l'|P~2') — A1|ufP~2u = f in (0, 1)

u(0) = u(1) =0, (4.1)
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where: A\; = (p — 1)x} is the principal eigenvalue of (2.1).
For p = 2 this problem reduces to the simple linear problem

—u" ~ 7%y = f in (0,1),

u(0) = u(1) =0, (4.2)

whose solvability is fully described for instance by the linear Fredholm
alternative. Namely, (4.2) is solvable if and only if

/0 ' f(t) sintdt = 0. (4.3)

In such case, the solution set is a continuum constituted by a one—
dimensional linear manifold. Needless to say, such a nice characterization
uses the underlying linear structure of the problem (4.2) in essential way.

It is natural to ask what is the role, if any, of the corresponding
analogue of (4.3) for general p > 1, i.e.

/l f(t) sing mptdt = 0. (4.4)
0

In fact, for instance it is shown in del Pino and Manasevich [DM] that
no solution to (4.1) exists in the case f = constant # 0, case in which
of course condition (4.4) is violated. However, in Binding, Drabek and
Huang [BDH] an example is constructed which shows that (4.4) is not
necessary for the existence of the solution to (4.1). This observation was
refined by delPino, Drabek and Mandasevich [DDM] in the following way.

Theorem 4.1. Let p # 2. Then there exists an open cone C C C[0,1
such that for all f € C problem (4.1) has at least two solutions.
Moreover,

/01 f(t) sin, mptdt # 0
for all f €C.

So, if p # 2 the situation is completely different from the linear case.

On the other hand, as it follows from [DDM], if f € C*[0,1] satisfies
the orthogonality condition (4.4), linear in nature, then it is sufficient for
solvability of (4.1) for any p > 1. In other words, the set of f’s for which
(4.1) is solvable contains at least the linear space of all C! functions
satisfying (4.4). More precisely we have

Theorem 4.2. Let us assume that f € C0,1], f # 0, satisfies
condition (4.4). Then the problem (4.1) has at least one solution.
Moreover, if p # 2, then the set of all possible solutions is bounded
in C*0,1].
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We observe that also Theorem 4.2 reveals a striking difference between
the cases p # 2 and p = 2, since in the latter case the solution set is an
unbounded continuum.

A by product of the proof of Theorem 2 is the fact that the degree
of the associated fixed—-point operator with respect to a large ball in
C10,T] becomes +1 if p > 2 while it equals —1if p < 2.

Let us consider on Wy(0,1) the energy functional

1 r! )‘1 1 1
JAI :_/ u'l’__/ P__/ u
Po= [ -t e [

associated with (4.1). Assume that (4.4) holds. In case p = 2 this
functional is bounded from below and it achieves its minimum in every
solution of (4.1). The set of all solutions to (4.1) forms linear unbounded
continuum in WOI”’(O, 1). In case p # 2 the situation is completely
different. The following result is also proved in [DDM].

Theorem 4.3. Assume that f € C0,1], f #0 and f satisfies (4.4).
Then

(i) forl < p <2 the functional J}\‘ is unbounded from below. The set
of its critical points is nonempty and bounded;

(ii) forp > 2 the functional J }“ is bounded from below and has a global

minimizer. The set of its critical points is bounded, however J3*
does not satisfy the Palais — Smale condition at the level 0.

Let us emphasize that changing p from p < 2 to p > 2 the following
qualitative change of JM occurs. The structure of J}\‘ shifts from
a saddle—point geometry to a global minima geometry for its level
sets. The “singular value” p = 2 corresponds to a convex functional
with a whole ray of minimizers. These facts open an interesting issue
concerning the geometry of LP-spaces and the structure of Poincaré-
type inequalities.
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EXISTENCE OF SOLUTIONS

TO A NONLINEAR COUPLED
THERMO-VISCOELASTIC CONTACT
PROBLEM WITH SMALL

COULOMB FRICTION

Christof Eck, Jifi Jarusek

Abstract: The solvability of a coupled thermoviscoelastic contact problem with
Coulomb friction is investigated. The heat generated by friction is
described by a boundary term of quadratic order. The tensor of thermal
conductivity is dependent on the temperature gradient and satisfies
a certain growth condition.

Keywords: Dynamic contact problems, Signorini contact condition, nonlinear heat
equation, viscoelasticity, Coulomb law of friction, existence of solutions.

1. INTRODUCTION

The investigation of contact problems with Coulomb friction started
from an idea of Nedas to prove the existence of its solutions via the
regularity of the solution of some approximate problem, [9]. This idea
was also employed in the first existence results in dynamic contact
problems derived for a viscoelastic body and a rigid undeformable
support with a Signorini condition formulated in velocities, [5], [6].
As the friction represents an important heat source, the aspect of
heat conduction and heat deformation must be included into the
investigation. In [3] the linearized system of equations was treated.
The linear character of the heat conduction equation forced us to
limit there the growth of the heat generated by friction by a linear
term. In the present paper the existence of a solution for a frictional
thermoviscoelastic contact problem including the full quadratic growth
of the heat generated by friction is proved for the first time. For

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 49
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the viscoelastic material we employed the nonlinear constitutive law
investigated in Ne€as works [8], [10] and [11].

In the paper we use the standard notation Wlf, H* = W2k, H* and
H* = H* for isotropic Sobolev-Slobodeckii spaces with & > 0 and
p > 1. If k € R?, the first and second index corresponds to the time
and the space variables, respectively. The spaces with range in RV are
denoted by bold letters.

2. DESCRIPTION OF THE PROBLEM

We consider a body occupying in some reference configuration the
domain  C RY of dimension N = 2 or N = 3 with a Lipschitz boundary
I" composed of the three measurable, mutually disjoint parts I'yy, I'r and
I'c. Let IT :=[0,7] be the considered time interval of the problem, let
Q1 = I7 x @ denote the time-space domain and let Sy := I+ x I’
be its lateral boundary consisting of the parts Sx 7 := It x I'x for
X =U,F,C. For r > 0 we shall denote I, := [0, 7] and analogously Q,
Sr etc. The problem studied here consists of a dynamic contact problem
with Coulomb friction coupled with a heat conduction equation. The
contact problem is given by the set of relations

‘i),i - oij’j(u) = f,', 1= 1, - ,N, in QT (21)
u=U on Syr, (2.2)
")(u) =h on Srgr, (2.3)

Up <0, 0, <0, oOntty =0,

=0 = |o¢ < Flonls . on Scr, (2.4)
. u ’
w#0 = o= —3|0nlﬁ

u(0,z) = uo(z), u(0,z) =wu;(z) for z €. (2.5)

Here and in the sequel, the summation convention is employed. By v; we
denote the derivative of a function v with respect to the space variable
z;. The respective time derivatives are denoted by dots. By u and ©
we denote the displacement field and the temperature, respectively. The
strain—stress relation is given by a linear thermoviscoelastic law of the
Kelvin—Voight type,

@

oi; = 0i(u) = aqkeekﬂ(“) + a,‘;}deu(u) -b;0, 4,j=1,... N,

with e;;(u) := %(ui'j + u;3). The tensors {amke} and { Uke}
assumed to depend Lipschitz—continuously on the space variable and

shall be symmetric, i.e. aEJLe a%ce = afce)”, as well as bounded and
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elliptic, i.e.
We ¢ (1) ¢ (g ¢

Qg fz_yfz;) < aijkgfzjfkt < Ao ﬁmgu (2'6)
for all symmetric tensors {&;;} € RMY with constants 0 < a(L) A(L)
= 0,1. The tensor {b;;} of thermal expansion shall be symmetrlc
Lipschitz with respect to the space variable and globally bounded.
Moreover, n denotes the outer normal vector of the boundary, C’i(") =
oijn; the components of the boundary traction; the subscripts , and
; denote the normal and tangential components of the corresponding
vectors. In particular, we have o, = oynin; and oy = o™ — gyn.
Observe that the Signorini condition (the first row of (2.4)) is formulated

in velocities.

The temperature field © satisfies the heat conduction problem

—(€ij9,4); +4:;0u8,; = 0 in @7, (2.7)

0 =0 on Sy T, (2.8)

c;O,n; = K (T-0) on Sg1, (2.9)

¢i;O jni = Flopllu] + K(Y -0O) on S¢r, (2.10)

00,z) = 0 forz € Q. (2.11)

The tensor of thermal conductivity c¢;; is assumed to be symmetric and

to depend locally Lipschitz—continuously on the temperature gradient
such that it satisfies the growth condition

& (1+|VOPR) &i&i < ¢ij(VO)&E; < & (1 +|VO?) &, € € RY (2.12)
the strong monotonicity
(cij(VO)O ; — ¢ij (VE)E;,0, — E,z’)QT
> &|V(0 - DL yon + C4IIV(@ -9ty  (213)
for each ©,E € L4 (I'7; W{(£)), and the continuity relation
ci;(VO®)W - ¢;;(vO)0, in Ls(Qr), i=1,... ,N, (214)

for @F) — @ strongly in Ly (I1; W} (Q)) An example for such a matrix-

valued function is ¢;;(z; Z) = &;;(do(z) + d1(z)|E|*) with the Kronecker
symbol §;; and measurable functions dg and d;such that d; € [q1, o], ¢ =
0,1, for some positive real constants q;,gz. In equation (2.7), the
quadratic term describing the generation of heat by the viscosity (cf. [13])
has been neglected. Both the heat generated by friction and the heat
exchange of the contact surface with the foundation is included into
(2.10).
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The variational formulation of the problem is given as follows. The
sets of admissible functions for the viscoelastic equation of motion and
the heat equation, respectively, are given by

f o= {v € H%'I(QT); v =U on Sy, and v, <0 on SC;;-}, (2.15)

U= {v € Ly(Ir; HY(Q)); v =00n Syt}, (2.16)
U= {ve Li(I;Wi(Q);v=00nSyr}. (2.17)

A weak solution of the thermoviscoelastic contact problem is a pair of
functions (u,©) with & € &, 4 € Hz(I1; L2(Q))*, © € W, © € B* which
satisfy the initial conditions u(0,-) = ug, ¢(0,:) = u; and ©(0,-) = 0
such that the variational inequality of the contact problem and the
variational equation of the heat conduction problem are simultaneously
satisfied. For a measurable set S let (-,-)s denote the generalized Lo(S)-
scalar product. Then the variational inequality of the thermoviscoelastic
contact problem is given by

(ii,v — ) g, + a®(u,v — &) + 'V (4,0 — 0) — (b0, e55(v — @)
+ (Slon()], lvel = |iel)s,, , 2 L0 — 1) = (fi,vi}Qr + (hi, vi)spr (2.18)

for all v € & with the bilinear forms of elastic and viscoelastic energy

a(L) (’U.,’U) = <a1(;;3g[6ke(u)s €1 (v)>0‘r y L= 0’ L.

The variational equation of the heat conduction problem is defined by

(0:0),,

for all p € V.

The existence of solutions is proved in two steps: Using the penalty
method, the contact problem (2.18) is replaced by an approximate
variational inequality of the normal-compliance type. The existence
of solutions to this problem is proved via a fixed point approach. In the
second step we verify the convergence of solutions of the approximate
problem to a solution of the original thermoviscoelastic contact problem.

+ (ai(VO)O,5,0i)g, + (bijO i 0)g +
+ (K(©—=T1),0) s, ;us0, = (Blonlliel, 0}, ,  (2.19)

3. APPROXIMATE CONTACT PROBLEM

Replacing the contact condition in (2.4) by the nonlinear boundary
condition

on(u) = ——%[11,,]+ with [-]4 := max{-,0} and § > 0,
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we arrive at the following variational inequality: )
Find a function u with u(0,-) = up, 4(0,-) = uy and u € U + U such
that for all v € U + 4 there holds

. o (0) . (1) . Y B (0) o o
(G, v — ), +a" (u,v —u) +a"(a,v - 1) <bU@ y€ij(v u)>QT

+ (3[ttn] 4, vn — "‘ﬂ>sm+ (F3n)+, |vel — i"‘t|>sc, > L(v—1u). (3.1)

Here, the temperature field © has been replaced by some given
temperature ©©). In the heat equation only the definition of the
term describing the generation of heat by friction is changed; instead
of Flon|[te| there appears Fi[tin]4[t:l. A solution of the coupled
problem consisting both of the contact problem (3.1) and of the modified
heat conduction problem (2.19) can be constructed as a fixed point:
Let ©® ¢ 9 be a fixed temperature field. Then the solution of
problem (3.1) with ©(©) defines a displacement field u = u(@(o)) with
e (U+wn H%’I(QT). Solving the heat conduction problem with
u = u(0©), we obtain a function © = O(u (0®)). If the problems
(3.1) and (2.19) are uniquely solvable, then by this procedure an operator

3:00 50 (3.2)

is defined and a solution of the approximate thermoviscoelastic contact
problem is given by a fixed point of this operator and the corresponding
solution u of the contact problem. In order to prove the existence of such
a fixed point, we apply the fixed point theorem of Schauder, cf. [15]:

Theorem 3.1. Let X be a Banach space, C C X be a bounded, convex,
closed subset and ® : C = C be a completely continuous mapping from
C into C. Then there exists at least one fixed point of ® in C.

Let us start with the investigation of the solvability of the approximate
contact problem. In this section, all constants ¢, ¢ = 5,6,... may
depend on the geometry of the domain €2, on the given tensors {al(;.)kl},
{bij} and {ci;}, and on the given data £, U, T, K, uy, u1, §, but neither
on the function ©® nor on the solution (u, ®) of the problems to be
solved. Some of the constants may also depend on the penalty parameter
4, this is then explicitly indicated by é = &(8).

Proposition 1. Let 0 ¢ H %(IT; Ly(R2)) be a fixed temperature field.
In addition to the assumptions concerning the regularity of the domain

and the coefficients of the tensors agll and b;j, let L€ H i (I H l(Q)"),
ug, uy € Hg(ﬂ) and U € Hr,

W, = {v € H(Q,) N Hi(I; H'(Q)); vls,, = o} , 7> 0.
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Let the compatibility conditions U(0,-) = ug and U(0,-) = u; on Q be
satisfied. Let the coefficient of friction § be bounded and nonnegative.
Then the approximate contact problem (3.1) has a unique solution which
satisfies the a—priori estimates

IA

. . - 2 -
||UII2L°°(1T;L2(Q)) + (alf HEYQr) c5||e(0)||L2(Q7-) + e, (3.3)

| < &l

Hi(rH(Q) H%(IT;Lz(Q))+Cs(5). (3.4)

The solution u depends continuously on the temperature: if uV) and u®
are two solutions with corresponding temperature fields @(10] and 6(0),
then

i =] g, < SIS -

HT'Qr) = (3:5)

0}

2 ”Lz(QT)'
Proof. All of the assertions have been proved in [3], see Proposition 1,
except the boundedness of ||d”H7}(I—r;H'(Q))' This is proved by the
standard shift technique with respect to the time variable. For simplicity
let us assume that variational inequality (3.1) is defined on the whole
time axis Iy = R.  This can be achieved by a suitable localization
technique, see. e.g. [6]. For a function g(t,x), let g—, (¢, z) := g(t + ¢, z)
denote the shift with respect to the time variable and Agzg :=g_4—g
the corresponding difference. We put the test function v = %_g into the
variational inequality, then we shift the inequality into the direction ¢
and put the test function v_, = = into the shifted inequality. Then we

add both inequalities, multiply the result with |ql"% and integrate with
respect to q. Using the technique described in [6], the inequality

is obtained. This and the localization technique yield estimate (3.4). O
For the heat conduction problem (2.19) the following existence result
is valid:

Proposition 2. Ler & € (U + %) N H%’I(QT) NnHi (I7; HY(Q)) be
a fixed displacement velocity and let the assumptions mentioned above
concerning the regularity of the domain and the properties of the tensor
of heat conduction {ci;} be valid. In addition, the Dirichlet part of
the boundary for the heat equation shall have positive measure. Let
the tensor of thermal expansion b;; be bounded and symmetric. Let,
moreover, the coefficient of heat exchange K and the coefficient of
friction be bounded and non-negative. Finally, let T € Lo(ST). Then
problem (2.19) (with |on(u)| replaced by % [tin] ) has a unique solution

G (0)}2 <
Hi(RH’(Q)) < éuollu “ YrH () +éufje HH*(R;M(Q)) + &12(9)
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which satisfies the a—priori estimate
1©lle1(2r) + 101 vy < a2y, +214()  (36)

for each a < % The mapping 4 — © is strongly continuous from

(U + 1) N HL(Q7) to La(I; WHQ)) N Hi (Ir; Ly(Q)).

Proof. The existence of solutions is proved by the usual Galerkin

method. Set V = {v € W}(Q); v =0o0n I'y},let {V,,}be an increasing
+00

sequence of m—dimensional subspaces such that |J V,, is dense in V
m=1

(its existence is ensured by the separability of V) and

‘sz{w:QT—)R;EICiELOO(IT),i=1,...,m: m
w(t,z) = Zc,»(tmm(m)}
=1

for an Lo(€2)-orthogonal basis {viym}™, of Vp,. Then, via the standard

proof of the density of M := {w : Ir = V; card (w(I1)) < +oo} in

0 and the easy approximability of functions from 97t by elements from
+o0

Vo = |J DV, we can see that Yy is dense in Y. A Galerkin solution O,
m=1

of the heat conduction problem is a function from 2, which satisfies

for all test functions ¢ € V,, and almost every 7 € I5 the Galerkin

equations
<6ma(P>Q + (€ij(VOm)Om j, 9,i)q+ (bijOmti j, ©) o +
+ (K Om = 1),0) rpory = (Flimlthinl o), (3.7)

and the initial condition ©,,(0) = 0. Equation (3.7) is equivalent to
a system of ordinary differential equations. According to the well-known
existence theorem about the Carathéodory solutions, this system has
a solution. If we integrate the Galerkin equation (3.7) in time over
[0,7] with any 7 € T and the test function ¢ = ©n,(7), employ the
monotonicity (2.13) of the tensor ¢;; as well as the equivalence of the
norms || - ||W“Q) and v = ||VvljL,q) on V, we derive the estimate

||9m||‘im(17;1,,(n)) + |Om ‘},4(17;w41(n)) < &sllill gy ry s () ”6771“3,4((27)

+E16/|FN| oo (1) § ||ﬂ||§,§(sc‘r) 1€mllz (567 + 17N LI, (55

Due to the trace theorem and continuous embedding theorems there

holds for dimension N < 3 ||it||L§(SCT] < élglli‘“ﬂi‘(Q ) and
’ B
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119’"||L4(Sc,7) < é19 ne’"an(lr;wl-“(ﬂ)) . With the help of suitable Holder
inequalities we obtain

2 4 , 13 ,
“(')m”LOO(IT;Lz(Q)) + ”6771"1,4(17-;W41(Q)) < C20(5)HUH;{&'1(QT) + E21(6),

hence

1©mllzorwycay < e @lillyy g, +es(d) (3.8)

with ¢;(d), ¢ = 20,...,23, independent of m, ®,, and . Consequently,
there exists a sequence {my} converging to +oco and a corresponding
sequence ©O,,, of solutions to the Galerkin equations such that @mk -0
in La(IT; W{(Q)) and ¢;j(VOp, )Om, ; — C; in L4(QT) i=1,...,N,
with certain limits C; € L%(QT)' Moreover, f10m (3.7) and (3 8)

it follows that {||@mllm;n;m € N} is bounded. Hence by a standard
diagonal method we obtain a functional A and a subsequence indexed
by my again such that for any ¢ € U, there holds <®mk,cp> — A{yp).
Clearly, |A(p)| < éaua(d)|l¢llm, ¢ € Vo and A is linear there. Hence
A € T* and its norm in B* is bounded by é4(d). It is standard to
show that A = ©. Passing to the limit m; — +oc we prove that © is
a solution of the equation

(easo)QT + (C’iy <p,i)QT + <b1]®ul,_71 <P)Q’T + (K(e - T)a ‘p>SF,TUSC.T
(83ltn] 4|l 0)g, .+ # €. (3.9)
It remains to prove C; = ¢;;(VO)© ;. Therefore we first investigate
the regularity of ©,, and © with respect to the time variable. For 0 <
s1, 82 < T, s1 # so, we put the test function ¢ = ©,(s2) — O, (s1) into
the Galerkin equations at time 7, we multiply the result by |so—s;|~172@
with a parameter a € (0, 2) and integrate the result both with respect

to 7 from s; to s and with respect to s = (sy,s2) over 12 Then we
obtain the equatlon

2 (0 Om(s2) — Om(s1))a _
/12/ |32—31ll+2" drds =

_ /I j I — sl|—1—2a( (¢i(VOm(7))Om ;i (7), Omi(52) — Omi(s1))q,
+(bi;Om ()i 5(T), Om(52) — Om(51))q + (K(Om — T)(1), Opn(s2)
_em(sl)>r\r,, — (§5ltn (7)) 4| (1), Om(s2) — @m(sl)>rn) dr ds.

After performing the integration with respect to 7 one observes that
the left hand side of this equation is equivalent to the square of the
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seminorm of ©,, in the space H*(Iy; L2()). On the right hand side
there are expressions of the type

/ /” £ (7)llg(s2) — g(s1)| drds, f € Ly(IT), g € Lo(Ir),
12

|32 _ slll+2a

1,1 _

» + 7= 1.
Such expressions are bounded by &s|| fll,(r)lI9llz,(z;) With a constant
¢95 independent of f and g if o < % Hence we obtain the estimate

||9m”H°(lT'L2(Q)) < C2ﬁ (lle"'||14(IT,W}(Q))+
+||67n||L4(QT)"ﬂ"LQ(IT;Hl(Q)) + ”em"%Q(IT;HI(Q)) + ||T"%2(ST) +
+“3’%[ﬂn]+|1}'t|”L4(Sc T)”G)m”[q(Sc‘T)) + 6‘27- (310)
3 \

This implies that ©,, is bounded uniformly with respect to m in H*(Ir;
La(Q)) for all @ < }. Interpolation with ©p € Lo(Ir; H'(R)) gives
O,, € H*U=&) (I HE(Q)), € € (0,1). This space is compactly embedded
into L4(I1; Lo(2)) for a suitable choice of €, a. As a consequence, the
sequence ©,,, mentioned above has an appropriate subsequence, denoted
by ©, again, which converges also strongly in L4 (I7; L2(£2)) to the limit
©. From the inequality

1Omy — OllTsiqry < E8lOm — OlIF (1ysLee @) 1Oms — O 417 L)

there follows ©p,, — © strongly in L4(Q7). With this strong conver-
gence we are able to verify C; = ¢;;(VO)© ;. In fact, from the mono-

tonicity condition (2.13) we derive liril’irnofo (cij (VOm,) (E)m,“j,@mk,,-)QT >

(Ci,0,;)q,- Employing both the Galerkin equation for ©,, and the
equation (3.9) for © we obtain limsup{cij (VO,,) Omn, 3’6""“‘)627 <

k—+o00 -

(Ci,®:)q,. Therefore we have Jim (cij (VOm,) Omy.j» Omy i)
—00

(Ci,© )0, and from the limit in the monotonicity equation

Qr ~

0 1Om, = OllL,(1rwiay <
< (€ (VOm,) Omy i — €i5(VO)B,;,0m,i — 0,i)

there follows that the convergence ©,, — © is in fact strong in
La(I7;W}(£)). As a consequence

¢ij (VOm,) Om, ; — ¢;5(VO)O ;

strongly in L%(QT) and C; = ¢;;(VO)®© ;. The a priori estimates (3.8)
and (3.10) are also valid for the limit © what proves estimate (3.6).
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In order to prove uniqueness, we assume that there are two solutions
0, ©@ of the heat equation with the same velocity field %. Let
Z := M) — 0@ denote the difference and let a test function 9 be
definedby 9 = E for 7 < 79 and ¥ = 0 for 7 > 7y. Putting 9 into the
equation with solution ©{1) putting —4 into the equation with solution
0?2 and adding the results we arrive at the inequality

T0
20 ) + I g ey < o [ [ [Vl dodr
. T0 . - 1 3
< e [ IVl ) 21, 1Bl o

To
< 5'31(5)/0 ||Vﬁ||12(Q;RN2)”E"%Q(Q) d7'+5||5||%,2(0,70;[,6(n)),

valid for any parameter ¢ > 0. For dimension N < 3 the space
Hi(Ir; HY(Q)) is embedded into Ls(I7; H}()) and H'(Q) is embedded
into Lg(£2), hence from the previous equation there follows with the
application of the Gronwall lemma the equation ||Z(7o)||1,(q) = 0 for all
T0 _>_ 0.

The continuity of the mapping v — © is seen as follows: Let u(k)
be a sequence of displacement velocities converging to  strongly in the
space H %’I(QT) and let ©) be the sequence of corresponding solutions
of the heat conduction problem. Since these solutions are uniformly
bounded in Ls(I7; W} (Q2))NH*(I7; L2()), a < 1 ,there exists a weakly
convergent subsequence with limit ©. As in the proof of the convergence
of the Galerkin solutions above it is seen that ©is a solution to the heat
equation with corresponding displacement velocity field % and that the
convergence ©) = © is in fact strong in Lg(Ir; WL(R)). The solution
© is unique, hence every convergent subsequence of ©*) has this limit.
Due to the interpolation inequality

9 =0l st sy = 2210 =€ 1

.
4o

L2(Q71)

IA

dox ”@(k) -
He(Ir;L2())

valid for 41 <a< % the strong convergence in H%(IT; Lo (2)) follows. O

With the help of Propositions 1 and 2 the existence of solutions to
the approximate thermoviscoelastic contact problem can be formulated
as follows:

Proposition 3. Let the assumptions of Propositions 1 and 2 be valid.
Then the thermoviscoelastic contact problem (3.1), (2.19) has a solution
(1u,0©) which satisfies for all o < % the a-priori estimate

”u”H’l‘"(Qr) + 18llgar(@r) + 1Ol Lyrrwi ey < €33(6).  (3.11)
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Proof. We must verify that the mapping ® defined in (3.2) satisfies the
assumptions of Theorem 3.1. Let A := Hi(Ifr; L2(92)) and let

f— — . 2

with R > 0 be the convex closed subset. If ©©) € C(R)then, according
to the estimates (3.3) and (3.6), the image © = @(6(0)) satisfies the
inequality

¢ <¢é ¢ .
L2(@7) + 635((5) < (,35(6)12 + 037(5)

Moreover, due to inequality (3.10) there holds

1012 s 1rwa ey < s4(6) ||o

2 <
[ 1Lty wiiay) + €39(8 )||u|| gy T80

with the solution u of the approximate contact problem (3.1) to the
temperature field ©(9. From the previous estimates and inequality (3.3)
we derive

S]]

with constants é41(8) and ¢42(8) independent of ©, O and R. Hence
there exists a value R > 0 such that @ maps C(R) into itself. Due to the
continuity results of Propositions 1 and 2 the mapping & is continuous
in X. Moreover, combining the a priori estimates of Propositions 1 and
2 we see that ® maps bounded subsets of H i (I7; L2(82)) into bounded
subsets of H*(Q7), } < a < %, hence @ is completely continuous.
According to Theorem 3.1 ® possesses a fixed point in Cg. The a priori
estimate (3.11) follows from the inequalities (3.12), (3.3) and (3.6). 0O

+ 11012 gy < En1(O)RE + Eaa(9) (3.12)

HY(I7;L2(0))

4. EXISTENCE OF THE SOLUTION TO THE
THERMOVISCOELASTIC CONTACT
PROBLEM

The existence of solutions to the original contact problem is proved by
the investigation of the limit § — 0 of the penalty parameter. Therefore
it is necessary to have a priori estimates uniform with respect to the
penalty parameter. For the contact problem such an estimate has been
derived in [3]:

Proposition 4. In addition to the assertions of Proposition 1 we
*

assume I'c € Cip, © € H%'%(QT) and f € LZ(IT;H%(Q)) N

Hi (IT; H 1(Q)*). The coefficient of friction shall depend on the space

59
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variable © € I'c such that supp § C I'cy := {z € Ic; dist(z,0I¢) > n}
for some > 0. Moreover, § shall be uniformly bounded by the constant
C3 given in [6], Proposition 3.1 and formula (4-23) for anisotropic
material and in [4] for isotropic material in two dimensions.! Then the
solution to the approximate contact problem (3.1) satisfies the inequality

”d”H%'1(QT)+”1)'”H5*I(S o ”J[U"]“L”Lz Scm.T) 643”@“Hi§ +é44
(4.1)

with Scqa7 = It X I'c,, and constants 43, €44 independent of u, ©
and 6.

With the help of this Proposition it is possible to derive uniform esti-
mates for the pair of solutions (u,®) of the coupled thermoviscoelastic
contact problem.

Proposition 5. Let the assumptions of Propositions 2 and 4 and
I' € Ci,1 be valid. Then the temperature field © of the solution
of the coupled approximate contact problem (3.1), (2.19) satisfies the
inequality

1Ol Ha (17520 + 1OU L 1wy + 1Ol (s7) < €as (4.2)

for all a < % and all p < 6 with ¢45 dependent on the given data but

neither on the solution nor on the penalty parameter 4.
Proof. The usual a priori estimate of the heat equation (2.19) yields

4 . 17, .
"6"1,4(17—;W41(Q)) < G ”K[un]v““m(sc,ﬂ) Nl s, (1riLatre))

NOW Lapey rriLoo(Te)) + EallEll Locrr @ 1O @ry + Eas

with g9 = g2(g1) such that e2 — Ofor ¢y — 0. The constants &,
= 46,... employed here and in the sequel are independent both of
the investigated solutions and of the penalty parameter 4. The estimate

'For anisotropic material this constant is given by

- a(()l) < z/ ((1+\/§)(z+1]), z > 1,
A\ 240 \/ﬁ/ (20 + vB2), ;<1

T a.()I)A“)

53 ),where cd_l(%) =2 [ sin? 89 ds fga-2(1 + |s|? ]’5ds and a“) A(l)
1

the constants of ellipticity and boundedness of the viscous part from formula (2.6).

with z =
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(3.10) can be easily modified to

”6”%7“(17;[:2(9)) < Ca9 (”ellh(l’r;wi(ﬂ))_'-
+O117 o) el Lorribr @y + 1O 5,y +
+“%BLJ+”LﬂSQmTﬂh”hM—q(HﬂLﬂPCD“e”L+n2UT$mJnﬂ)4_1)‘

The previous two estimates together with (3.3) lead after some
calculation to the inequality

2 . .
k ”@” a(Lr;L2(0)) + ”ellh([ﬁw}(n» < cSO”’“’”LA—gl(’T;LQ([‘C))
. ||%[ﬂn]+||l'2(30.n.’r) ”9”[,4.,.52(17-;[,00([‘)) +é51"6"%4(17-;w41(9)) + Cs2, (43)

valid for an appropriate k& > 0 independent of the penalty parameter.

From the trace estimate [|@|lL,(ry) < éS?’HdIIH“‘S( - valid for all

€3 > 0 and from the interpolation estimate ”ﬁ”H}ﬂa(Q 4||u||;2_(i;)

||u|| Hl (Q) it is possible to derive

. nde—g . L 2-61
N2, (hripaery) < C65 /, Iz, iy Nl ) A
T

< el LM(IT,LQ(Q))||u||%2(17;H1(Q))' (4.4)

This together with the a priori estimate (3.3) of the contact problem
yields .
el La_e, (trsL2(re)) < E7l1@N Ly + Ess-
The norm [|©||1,,.,(I;;Le(rc)) can be estimated with the help of
suitable embedding theorems by

4+€9 - d4€9
1Ny tritery) < 59 /,T 18llyze ()
for any ap 2> l. Now we use the interpolation inequality
”(p“WO‘O(M) < cﬁOll(p"Wal(M)”‘pl QQ(M) (45)

valid for all ag,a;,az >0, By, B1,02 > 1with ap = Ay + (1 — A)agand
1

%o = Br +1—[;—’\ This inequality is proved in [14], Theorem 1(d) in Section
2.4.2, relation (7) in Definition 1(d) on page 169 and Remark 2 on page
185 for arbitrary ¢ for M = RY, its generalization for M with Cuo—

boundary is included into that book, too. The validity can be extended
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both to M = 2 and to its boundary M = I' by the usual localization
technique and straightening of the boundary, provided I' € Cj,; and
ap. a1, < 1. Employing this interpolation result for fy = 4 + €9,
a; =3, 61 =4, a2 =0 and B2 = 6 — ¥ with an arbitrarily small ¥ > 0
and the usual trace theorem, we obtain

- A4 1-2){(4+e
IOIEL rritatry < G [ NGO dr
Ir

Ala+ep) +s (‘"‘%L‘zl
< Ge2 (/I ||@||‘11zv;(n) dT) (/ ”@”Ls o(I) )
T

The parameter A is the solution of the equation ﬁs_z = %)\ + 6—_11;(1 —A)
and ag = %/\. It holds A = 1 — e4(e2,¥) with e4 — 0 for 9,62 — 0.
Hence we obtain

l-€4

II®“L4+52(IT,LQO(P)) < 663”9”1,4 IT Wl(Q))Ilel Le_ 19 ST) (4'6)

The estimate of ||©|[,,_,(s,) is more complicated. The embedding
theorem and the trace theorem for Sobolev spaces yield for arbitrary

v € Ly(ST)

<eé ag- < e
lpllz,(s7) < cﬁ4"‘"”wgo(fr;w,,g Yhoryy = “H(p”WE{,Ur,Wa(?(Q))’

: 11 1
ify > B " p and (ao ﬂo) > ‘3—0—5 This gives

, 1©(s1) — B(s2)ljpeo o
0 > (1]
”@“Lp(g_’_) < 066(/1% ds

|51 —_ 32I1+B07

Bo
+f 1001z dsl)

with s = (s1,82), Now, we use the interpolation inequality (4.5) with
ar =1, 6 =4, ar =0, 62 =2 and )\ = ao and the Holder inequality
with ¢ = —7?_ and q m Here - + —, = 1shall be valid; this is

equivalent to By = 3=5-. Then we obtam
“@” < & ”6(51) - 6(32)”“}1(9) ds “@!rl a
Ly(St) = DT\ [, |s1 — 52|17 Lalmwita)
T

1
o

) / ”e(s ) - @(3‘2)”“/0(9) ds + ”6”2 q
7 [s1 — 52|27 L2(Q7)
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with n = ﬂofy = [ ( —5) which must be positive. Choosing
the values =25 =3 and some 1y € (0, 3) it follows

1
"6”LP(ST) < cﬁS”ellL4(1T WI(Q))" ” gi- (Ly1La(€)) (4.7)
for all p < 6 with 77 = 7j(p) > 0 and the estimate is done. We insert this
estimate into (4.6) and then both (4.6) and (4.4) into (4.3) and then,
after use of the interpolation

”%[i""hHLg(Sc,,,,—r) < 669”@”{{*-5(()7—) + ¢0
< 11 (101 rrstatan 1OEsar) + 18N La(irstri ey +1)
which is valid for A = 1/(4e), we arrive at the estimate

k “6”%“(113[/2(9)) + 1Ot wpco
+ < <
< EnllOlF 2 IO i oy + EsllONL 1y aws ey + ra-(48)
Here, €5 > 0 can be arbitrarily small, therefore an easy Holder inequality
yields

||8HL4(IT wi@y) < C75”@”L4”T'W}(Q)) + &6, € > 0 arbitrarily small.

Hence, ”@”%"(IT;M(Q)) + ||®||‘}J4(IT;W41(Q)) < &7 and then using (4.7) we
obtain (4.2). Therefore the proposition is proved. a

From the inequalities (4.1) and (4.2) we can derive that there exist
sequences {d}, {u®} and {©®} such that &®) — 4 in H2(Qr)
and strongly both in La(Sc) and in Li(Sc,7) for any p < 4,

on(u®) = —4 [o <")]+ ~ on(u) in Ly(Scyr) and ©®) = @ in

lc
L4(Ir; WEH(S)) and strongly both in Ls(Q7) and in Ly(Sc,,,7) for p < 6.
Regarding these convergence properties we can prove the convergence in
the energy term {c;j(V©)0 j, )@, like in the proof of Proposition 2
and, in particular, the strong convergence of 0k in L4(I7-; W41(Q))
Passing to the limit kK — +oo in the variational inequality (3.1) with
test function v € & and in the penalized version of variational equation
(2.19) for test functions ¢ € Coo(Q7) NV therefore shows that the limit
functions (u, ®) solve the original non-smoothed problem (2.18), (2.19)
for all test functions v € & and ¢ € Coo(Q7) NB. The estimates (4.1)
and (4.2) remain valid for the limit functions u and ©. Using appropriate
embedding theorems it is possible to verify that the linear functionals
o+ (Flon(w)|leel, ) sc .+ and @ = (bi;© s j, )@, are bounded in the
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dual space of L4(IT; W) (Q)) Since Coo(@7) NV is dense in BV we see
that variatiorial equation (2.19) is satisfied for all test functions ¢ € Q.
Let us collect the assumptions for the final result derived above:

Assumptions: 2 is a bounded domain with a boundary I’ of the
class Cy, consisting of the measurable parts [y, I and [ with
(mes [y - mesI'¢c) > 0. The time interval is given by I := [0, 7] with
0 < T < 4o0o. The given data satisfy the properties ug € H %(Q),
u; € H%(Q), U € Hy, UO,:) = up, U(O) = u; on Q, f €
LQ(IT;H%(Q)') NHi(I7; H' (R)*), h € Hi (IT;H%(FF)*),, and T €

Ly(S7). The coefficients ag.)d, t = 0,1, ¢;; and b;; are symmetric, depend
Lipschitz—continuously on the space variable, are globally bounded and
satisfy the conditions (2.6), (2.12), (2.13) and (2.14). The coefficient of
friction is nonnegative, bounded by the constant Cz and vanishes outside
the set I'c, for some 1 > 0 as in Proposition 4. The coefficient K in the
heat exchange is non-negative and belongs to Lo ().

Theorem 4.1. Let the assumptions collected above be valid. Then the
thermoviscoelastic contact problem with Coulomb friction (2.18), (2.19)
has at least one solution.

Remark. The assumptions of vanishing initial conditions ©(0,z) = 0
and Dirichlet—conditions © = 0 on Sy,7 is not essential here. The result
is also true for non-vanishing data ©(0,z) = ©y(z) and © = O 0n Sy,1
with O € Ly(Q) and 8, € H2Y(Qr) N Ly(Ir; WH(SY)). The changes
in the proofs are not substantial. For simplicity of the presentation we
have omitted this case.
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ON SOME GLOBAL EXISTENCE
THEOREMS FOR A SEMILINEAR
PARABOLIC PROBLEM

Yuri Vladimirovich Egorov, Vladimir Alexandrovich Kondratiev

Abstract: Some conditions are obtained sufficient for solutions to a non-linear
parabolic equation of second order with non-linear boundary conditions
to be bounded or to tend to infinity at a finite time.

Keywords: Parabolic equations, semilinear boundary value problem, blow-up.

Let 2 be a bounded domain in JR™ with a smooth boundary I'. Set
Qr =]0,T[xQ,Sr =]0,T[x,Q = @x]0,00[,S = I'x]0,00[. Consider
the boundary value problem

20) _ fu—a(@fw) i Qn, (1)
ou
AN b(z)g(u) =0 on Sr, (2)
u(0,z) = ug(z) in Q, (3)
where
n n
Lu= Y ai(t, D)z, + 3. ailt, D)uz, + elt, 2)u + d(t, ),
1,7=1 i=1
= ou L Ou
Z aij(t,z)&i€; >0 forf e R"; —— = Z cos(v, z;)aqj(t, z) —,
i,j=1 ON i,j=1 Oz

v is the outer normal unit vector, ¢(u), f(u), g(u) are increasing smooth
non-linear functions, positive for positive u, tending to +ooas © — 400,
f(0) =0,g(0) = 0. We suppose that the coefficients are smooth enough
and the solution to the problem (1)-(3) can be extended for all £ > 0 or
until the moment 7 when sup o u(¢, z) becomes equal to oo. In particular,
we assume that dug/ON — b(x)g(ug) = 0on I'. We are interested in the

Applied Nonlinear Analysis, cdited by Sequeira et al.
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study of the asymptotic behavior of the classical solution uas t — oo or
as ¢ — T in the case of explosion.

A function u = u(t, z) is said to be a classical solution in Q7 if u is
bounded and uniformly continuous in QT, the functions us, Vzu, ViV,u
are continuous in Q7. A global solution is a function, denned in @, whose
restriction to @}y is a classical solution for any T > Q. The existence of
the solution to the considered problems can be usually proved locally,
on a finite interval of 7. We use in this paper the term “blowup” as
a pseudonym for “global nonexistence”, i.e. ‘“a solution blowups” means
that the maximal interval of its existence is bounded.

The following theorems generalize the results of H.A. Levine,
L.E. Payne [3], W. Walter [4], J. Esher [5], J.L. Gémez, V. Marquez,
N. Wolanski [8], M. Chipot, M. Fila, P. Quittner [9], P. Quittner [10],
authors [11] and others.

Theorem 1. Suppose that b(z) > by > 0,0 < a(z) < ag. Let p(z), f(2),
9(2), ¢'(z), ¢'(2)/¢'(2) be continuous, positive functions for z > 0. Let
the funcrions (z),9(2),9' (2)/¢'(z) be increasing for z > 0. Assume
that there exists a unit vector vy € IR" and two positive constants 9, A
such that

Yiimia(t D)y 26, Yinailt, o)y > ~A, inQ

c(t,z) > —A, d(t,z) > -A ’
" Oz;

Let € > 0 be so small that € ; W% <bg on T.Letfor z>c

—9(2)g'(2) > Aleg(z) + 2 + 1) + aof(2), — == < oco. (4)
2 9(2)g'(2)
Then there exist a Ty and a positive function v(t, ), continuous in Q
for0 <t < Ty and tending to infinity as t = To, T — To € Qsuch that
for any classical solution u of the problem (1) — (3) in  Qr,—patisfying
u(0,z) > v(to, z) we have u(t,z) > v(t + tg,z) in Q and

5e? /’°° dp(2)

lim maxu(t,z) = oo.
t—To—to— TEN

Proof. It suffices to prove that there exists a positive function (¢, z),
satisfying the conditions

Jp(v)
ot

—Lv+a(z)flv)<0 in Q for t>0,

ov
A >
N b(z)g(v) <0 on I for t>0,
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continuous in [0, T] x  and tending to infinity as ¢t = Ty, £ — 2o € Q.
The function v constructed in below depends only on ay, by, ¥, f, ¢ and
the diameter of .

We are looking for the function v in the form

n
v=oar), wherer =h(t)+c+e Z'yixi,
1=1

where ¢ is such that ¢ +¢> 7, viz; > 0in Q, ais a solution to the

equation
o' () = gla(t)), «a(0) = co,
where ¢p is a positive constant.
Assume at first that f°dz/g(z) = co. Then a(t) is defined for all
t >0 and «(t) = 400 as t = +o0c.
Let h satisfy the relation

d¢e?
¢ (ah()R'(t) = 79'(0(/1(?*))), h(0) = 0.
Then A(?) is defined for all t > 0, A'(t) > 0 for ¢ > 0. We have

2P0) L ta(@)f(e) = ¢ (alr)ol (M (1) - 2ol M 3 aylbayn

< ¢/(a(r) (o
b Tgalh(®) | gedn)
¢ et | G ~ wae) <°

in Qry, the value Ty will be indicated in below.
On the other hand,

aa_;\)r — b(;l;)g('u) = a’(T)E ; ')’i% - b(:l:)g(a(T))

i Bm
Z ’)‘z - bg <0 on STo-

Remark that the above qtated 1nequa11t1es are valid for the functions
a(h(t + to) + ¢+ Y 1q vizi) if 0 < to < Tp. By the maximum principle,
the condition u(0,z) > v(tp,z) implies the relation

u(t,z) >v(t+to,z) in Q, for t<Ty—to.
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On the other hand, the function 4 is such that
et — / " 2¢' (ely))g(e(y))dy _ /“"” 2dip(s)
o g(a(y))g (a(y)) cw  g(s)g(s)

Here we have used the substitution s = a(y). Now we obtain the result,
since the last integral converges as h — co. We can put

_ 2 [ dels) |
=37, J)e(s) "

where ¢; = supq(c + €Y vizi).

If the integral [;°dz/g(z) is convergent, then the function «(t) is
defined for 0 < ¢t < T' and o(T’) = oo. The function a(h(t)) is defined
for 0 <t < Ty = To+ ¢ and a(h(Ty)) = co. Therefore, the function
h(?) is defined for 0 < ¢t < T, h(Tp) = T’, the function v(t, ) is defined
for 0 <t < Ty —c¢; =Tp and limy_,7, supq v(t, z) = oo.

Then the rest of the above proof goes through. =
Corollary 1. Let L = A, a{z) = a = const > 0, b(z) = b = const > 0,

p(u) = u, f(u) = uP,g(u) =u? and 1 < p < 29— 1. Then there exists
a constant by > 0 such that all solutions of the problem

ou .
Frie Au—av? in  Qr, (5)
Ou
L bt = ,
% bu’=0 on Sr, (6)
u(0,z) =ug(z) in £, (7)

blow-up if up(z) > by.

Theorem 2. Let by > b(z) > 0,a(z) > ag > 0. Let ¢(2),¢'(2), f(z),
g(z), ¢'(z) be continuous, positive functions for z > 0. Suppose that
there exists A > 0 such that

laij| < A, |a;] <A, e< A, d<A.

Suppose also that there exists a function %(z) € C?%(Q) such that
0 > ¢(z) > —c; in Q@ and OY/ON > by on T'. Suppose that there
exists cg > 0 such that

/coo dz/g(z) > c;.

Let

n P! '
Z Ua’d)a;/) <A’ ZU'UB Z J in €.

1,3=1 1,j=1
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Put ®(v) = [g(v)g’ (v) + g(v) + v — apf (v)/A]+, where z, = maz(z,0).

If the function .
¢ (v)g(v)/(@(v) + 1)
is decreasing for v >0, and
® d
o) _ o
1 ®(v)+1
then the solution u to the problem (1) — (3) can be defined for all_t > 0.
Moreover, there exists a function w(t,z), continuous in [0,00[xQ, such

that for any classical solution w of the problem (1) — (3) satisfying
u(0,z) < w(ty,z) with ty > 0 the relation

u(t,z) < w(t+to, )

holds in Q. The function w depends only on f, g,  and Q.
If there exists vg > 0 such that

9(v)g'(v) +9(v) +v+1<agf(v)/A for v 2>y, (8)
then all solutions of the problem (1) — (3) are bounded.
Proof. Let the function «(7) be the solution to the problem
o/ (1) = gle(7)), (0) =

where cp is a positive constant.

Let at first f>°dz/g(z) = oo. Then the function af(s)is defined for
0 < s < 0o and grows monotonically at infinity. Moreover, o'(s) is also
monotone. Put now

w(t,z) = or), T = h(t) + (),
where h(0) = ¢; and h'(t) > 0. Then

gN b(z)g(w) > y(w)(?% —b)>0 on S
Moreover,
6 n 62
20) _ L+ a(@)f(w) = plla(r)e (DH(D) — o'(7) ,JZI " sz;pmj
~e(r) 3. ot 3% ~oletr) Lo e)gh ~eltsletr)-

—d(¢,z) + a(x)f( (1)) >
> @' (a(7))ol (T)B'(t) — Agla(7))g' (a(T)) — Agle(T))—
—Aa(r) — A+ aof(o(7)) 2 ¢'(a(7))d (1)K (t) — A®(a(r)) — A

in Q.
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Let the function 4 be the solution to the Cauchy problem
¢ (a(h(t)))gla(h())H' () = AD(a(h(t) + 4, h(0) = c1.

Q‘# — Lw + a(z) f(w)

oMoy [ 2RO T B(a(n) +1

> AN | S amEe@®®) ~ am)aem)
in § for t > 0. Now if ¢y is determined for a given solution wu in such
a way that

Then

u(0,7) < a(p(z) + h(to)) in €,
then by the maximum principle the function a(¥(z) + h(t + t)) is an
upper bound for u. Therefore, the function w(t,z) = a(y(z) + h(t)) has
the properties stated in Theorem 2.

If {2°dz/g(z) = T < oo then the function a(s) is defined for0 < s < T
and grows monotonically to infinity as ¢ — Tp. The function 4 is defined
as above and ¢; < h(t) < Ty for t > 0. Then 0 < w(t,z) < a(h(t)) for
t > 0 and the first statement of Theorem 2 is proved.

Let the condition (8) be fulfilled. Let supu(0,z) = by. Then

20) L +-afa) fw) > @' (alr))el (DK (1)

for t > t; where t; is such that a(t;) > vg. Set

b= ;1215 ¢ (a(7))gla(r)), m; = . sup A[®(a(T)) +1].

<1<vp

Now put

h(t):%t+bo+1

for 0 <t < t; and m
h(t) = Ttl +by+1
fort > t;.

Then

3908(;”) —Lw+a(z)f(w) >0

for all ¢ > 0 and the rest of the above proof goes through. =

Corollary 2. Let L = A, a(z) = a = const > 0, b(z) = b = const > 0,
pu) =u, f(u) =uP,gu) =u? andp>2¢g—1>10rp=2¢q—1 and
a > b. Then all solutions of the problem (5) — (7) are defined for all
t >0 and are bounded.

Theorem 3. Let u be a positive solution to the problem

o . & 8, Ju
E = Lu — a(t’ :L‘)f(U) n QT, Lu = ijZ:l a—fL‘,’(aU(t’ -’L')aTj)a
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ou

AN b(t,z)g(u) =0 on Sr,

u(0,z2) = up(z) >0 Q.
f'(u) > 0,9(u) > kf(u) foru>0,

000fd_3<00 and/ [/btmdS’ —/ a(t, z)dz]dt =

Then there exists To > 0 such that

lim supu(t,z) = oo.
t—To eQ

Proof. Put

Then F(u) < 0, limy o F(u) =0 and F'(u) > 0. We have

ov = f'(u) Ou 0 .
___L +Z ijf;_,—éi)é-g—la—;—a(t,x) in Qrp,

dv g(u)
AN = b(t, z )f(u) > kb(t,z) on Sp,
v(0,z) = F(up(z)) <0 in K.
Put
W(t) = /Q v(t, z)d.
Then
W'(t) > k /F b(t, z)dS, — /Q a(t, z)dz, W(0) < 0.

Therefore,

W(t) > W(0) + /0 'k /r b(s, 7)dS, — /Q a(s, z)dz]ds.
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The function in the right-hand side tends to +oo, when t — oo.
Therefore, there exists Ty > 0 such that W(Ty) = 0. Then there exists

z' € Q such that v(Tp,z') = 0 and therefore u(Ty,z') = oo.

Corollary 3. Let L = A, a(z) = a = const > 0, b(z) = b = const > 0,
p(u) =u, f(u) =vP,g(u) =u? and p > q> 1 or p=q and bT'| > a|Q|.
Then all positive solutions of the problem (5) —(7) blow-up at some finite

moment of t.
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Consider now the boundary value problem (5)-(7). As we saw before,
all solutions u satisfying the condition

up(z) > H (9)

with a sufficiently large constant H > 0 are blowing-up at a finite
moment Tg if p < 2¢ — 1. At the same time, if p = ¢, then by Theorem 3
all solutions are blowing-up if just ug(z) > 0,b|I'| > a|2|. Now we can
precise this result:

Theorem 4. [f2g—1 > p > q > 1 and the constant b/a is large enough,
then all solutions of the problem (6) — (8) are blowing-up if ug(z) > 0.
This theorem generalizes the results of W. Walter [4], M.Chipot,
M.Fila, P.Quittner [9], P.Quittner [10], and some others in the spirit
of H.Fujita, see [1], [2], [7].
In particular, in [9] it is shown that for small values of the constant
b/a the stationary problem

. o
Au=av? in Q, & _bput=0 onT
ov
admits non-trivial positive solutions, so that the solution of the problem
(5)-(7)with positive initial data ug can tend to one of them as ¢ = oo

Our proof is based on the following lemma of S.Kamin, L.A.Peletier,
J.L.Vazquez ( see [6], Lemma 3.1, p.608).

Lemma 2. Let u be a positive solution of the equation (5) bounded in
Q. Then there exists a positive constant C such that

u(t, z) < C(d(z)2/(1-P) 4 ¢1/(1-p)y,

where d(x) is the distance of the point x from T.
Therefore, for any o €]0,(p —1)/2[ 0 € (0,(p — 1)/2) and t > 1 we
have
/Q u(t,z)’dz < C1,

where the constant C) depends on p, n and 2.

Proof of Theorem 4. Consider the integral

0= / (@- — Au+ auP)u"%dz
q Ot

__1 0 1-q |Vyl? P—q
_T——qﬁ/nu dm—qﬂuq+1d:1:+b|I’|——a/Qu dz.

Since 0 < p—q < (p —1)/2, we have by Lemma 2 that
/ uwPdr < Cy
Q
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and therefore,

1 I—q 1 / 1-q /T [Vl
- = dt
— J 0.2 e = = [ ulla) ot [ | Toids

T
T—a / / wP~ldzdt > (BT| — aCs)T
0 Q

and we have a contradiction as T — oo if b|I'| > aCs. .

Other our result is concerning the solutions of the equation

0
a—;‘ =Au—-a(z)f(u) in Qr, (10)
satisfying the boundary condition
Ju
= _ = ) 11
- —b(z)gw) =0 on St (1

We suppose that a(z) > 0,b(z) > by > 0, the functions f and g are
positive increasing.

As we showed before, the solutions of the problem (10), (11), (7) are
blowing-up at a finite time, if

9(s)g'(s) — cf(s) >0/ _cf() < 00, (12)

We show that this condition is sufflclent for explosion even if the
boundary condition (11) is fulfilled on a part of I only.

Theorem 5. Let T'y be a part of I' having positive Hausdorff
(n — 1)-measure which is a smooth connected (n — 1)-dimensional
manifold and u be a positive classical solution of (10) satisfying the
boundary condition

g—:j —b(z)g(u) =0 on Tr=1[0,T] xTy.

Let the function g(w)/u be increasing and tending to 00 as u — 00,

(0) =0 /°°~d—3—<oo M >0
g - b2 }\lgs) 1) .

Let also
f(s) < Bs fors>M, and sli}ngo f(s)/ag(s) =

Ifu(0,z) > H and H is large enough, then there exists a positive Ty

such that .
lim supu(t,z) = oo.
t-To— O

Moreover, for any 1y > 0 there exists a constant H such that the
explosion happens before Ty if uo(z) > H.
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Let 'y cC Ty, measn_I'y > 0. Let I'y be a smooth (n— 1)-
dimensional manifold containing in £ such that I'gUI"y serves as a smooth
boundary of a domain §2; C 2. Our proof uses the following lemmas.

Lemma 3. There exists a positive constant k and a positive in §y
function ®(x)satisfying the equation

Ad = aa(z)®(z) forz € O

such that ®(z) =0 on Ty, 08/0v — k*® =0 on I'; and 0®/0v = 0 on
Lo\ T'y. This function is larger than a positive constant on I';.

Proof. Put
Ja, |Vw|?dz + a fq, a(z) Yw?dz — k? Jr, w?

1mn
weH(Q)),w=0 onr, fQ1 w2dz

Ak) =

Evidently, A(0) > 0 andA(k) < 0 if k is large, because the functional

takes negative values if afunction w is fixed and k is big. By continuity,

there exists a k such that A(k) = 0. Obviously there exists a positive

function w = ® on which the functional takes its minimal value. This

function satisfies the equation A® = aa(z)®(z) and by the maximum

principle cannot vanish on [g. L]
We can assume that 0 < ®(z) <1in Q;, ®(z) > ¢y > 0on ;.

Lemma 4. Let u be a function satisfying the conditions of Theorem 5 in
Q for0 <t <T. Let m be a constant such that 0 < m < M, g(s)/s > k?
for s > m, where k is the constant found in Lemma 3. If u > mon T'}
for 0 <t < T, then u(t,z) > M®(z)in Q for 0 <t <T.

Proof. We have

%;TM(}L)—A(u—M‘I)) —a(z)f(u)+a(z)M®(z) in Q, = [0, T] X,
u—M®>0 on [0,7T] %o,
u— Mo
%>0 on [O,T]XFOCFl,
d(u—;fléﬂ = b(z)[g(u) — k®] > b(z)k(u — MP®) >0 on [0,T]xTI.
Therefore, u > M® in [0,T] x Q. .

Lemma 5. Let u be a function satisfying the conditions of Theorem 5 in
Q fort >0 and m be the constant defined in Lemma 3. Let ccM > m.
Then u>m on T'yfor 0 <t < T and therefore, u(t,z) > M®(z)in
for 0 <t <T.

Proof. We have u > M > m on I'y at ¢t = 0. Let u(t,z}) > m on I'}

for 0 < t < to but utp,z9) = m and zg € I';. By Lemma 4 we have
u(to, o) > M®(zg) > cgM > m, a contradiction. =
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Proof of Theorem 5. Let ' be a subdomain of §2; and the part I'' of
its boundary common with I' contains I'; and is contained in Tg. Let
be a positive function minimizing the functional
fﬂ' 'V'U:Pdl'
fQ/ Uzdﬂl

in the class of functions from H!(Q'), vanishing on ' = 9’ \ I''. Then
OY/Ov=00onT', ¥ >0in ¥, and Ay + Ap =0,1 > 0.

Let G be such a function that G'(u) = —1/¢(u),G(u) > 0 and G — 0

as u — 00o.
Consider the integral

0_/ / —-—Au+a( )f(u))((—)d dt

—/ ¥(z)G(u)(0, z)dx —/ P(z)G(u)(T, z)dz—

P(z)|Vul’g'( f( )
_ / _—(u) ) dodt + /0 /Q a(z)(z) e )dmdt+

N
v [, TN [T [ semwiesa

_ / D()G(w)(0, c)dz — / ()G (w)(T, z)dz—

/ u%ggl(ﬂd dt + / / AY(z) G (u)dzdt—

o
/ / , gy CludSdt - / /b(w)w(x)det
+ / / [u d:cdt<A
/ / b{z)y(x)dSdt— / / (u)dSdt+ f / f)f/)(x)—((—))d dt,

where A is a constant mdependent of . We have used here the fact
that Ay(z) <0
By Lemma 5, u(t,z) > ;M on ', where ¢; = infg ®(z). We have

/0 ’ /F b(z)p(z)dSdt > C1T,
T g
/0 /, a_'fa(u)dszzt < CTG(eoM),

r f(u)
1) [ atewie) 2 dadt] < CiTy(01),
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where the constants Cy,Cy,Cy are independent of T and M, v(M) =
maxy>pm f(u)/g(uw). It implies that

CoTG(coM) + C3Ty(M) > C1T — A.

This leads to contradiction if M and T are large enough. Therefore, the
solution u(t, x) cannot exist for big ¢ L]
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BIFURCATION OF SOLUTIONS
TO REACTION-DIFFUSION SYSTEMS
WITH JUMPING NONLINEARITIES

Jan Eisner, Milan Kudera

Abstract: Bifurcation of stationary solutions to reaction-diffusion systems of acti-
vator-inhibitor type with jumping nonlinearities are located. The result
can be understood as a certain destabilizing effect of jumping terms.

Keywords: Jumping nonlinearities, bifurcation, reaction-diffusion systems, spatial
patterns.

1. INTRODUCTION

Let us consider a boundary value problem

diAu + b11+(:c)u+ - b11_(:c)u_ + bi2v + ny (u, ’U) =0, (1.1)
doAv + bg1u + byg (z)vT — bog_(x)v™ + no(u,v) =0 in €,
u=v=0 ondf, (1.2)

where 2 is a bounded domain in R® with a lipschitzian boundary 912,
biiy, b, booy, baa— € L®(Q), by, bgy are given reals, ut,vt and
u~,v” denote respectively the positive and negative parts of u,v (i.e.,
u=ut —u",v=0vt—v7), n;(€n) = o(l] + [n]), di, d2 are positive
parameters. QOur aim is to locate bifurcation points under certain
assumptions.

The problem (1.1) can be written as
diAu + byyu + b1ov — by (z)ut + by (z)u” + ny(u,v) =0, (1.3)
doAv + boyu + bagv — boy (2)vt + bo_(z)v™ + n2(u,v) =0 in Q

with b;; = max{esssup,cq b;j1.(T), esssup,cq bji—(z)}, bj+(z) = bj; —
bjj+(x), bj_(z) = bj; — bjj—(x), = 1,2. We will suppose that

b1 >0, bja <0, by; >0, bagga <0, by; + byo <0, det bi; >0 (1.4)

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 79
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and consider afixed p € N such that the following condition holds: there
is an eigenfunction e, corresponding to the p-th eigenvalue s, of the
Laplacian with (1.2) such that

biy >0 ae. in ij, by =0ae. in Q,

bi- >0ae inQ., b~ =0ae in Q;;,

be+ >0ae inQ, byy =0ae in Qg;, (1.5)
by— > 0 ae. in Qg;, bp- =0ae inQ,,

meas{2\ (ij uQe;)) =0

where Q) = {z € Q; ep(z) > 0}, O = {z € Q; ep(z) < 0}. (The last
condition in (1.5) is automatically fulfilled in reasonable situations.)

As a consequence of our general result, we will obtain the following
assertion:

Let dy = dy be fixed and let d\ be the bifurcation parameter. Then
there exists a bifurcation point d, of (1.1) greater than the largest
bifurcation point of the stationary problem corresponding to (1.7), (1.8)
below. Precisely, for any § small enough there exist dS, ug, vs € WO1 ’2(9)
satisfying (1.1), (1.2), |lusll? + |lvs]|? = &, &2 — d; for 6§ — 0.

All solutions are understood in a weak sense. In fact, we will consider
(1.1) with dy,ds changing along a given general curve o described by
a parameter s € R and s will be a bifurcation parameter.

Notice that in the case p = 1, the eigenvalue x; is simple, the
corresponding eigenfunctions do not change their sign and if bj;4, b;;—
are constant then the validity of the condition (1.5) with by, bag, b1,
b1, boy, by defined as above is ensured if

either b11+ > by, bog— > booy oOr by > b11+, 5224_ > boo_. (1.6)

(The first and the second possibility corresponds respectively to the
choice of the negative and positive eigenfunction ey in (1.5)).

The assumption (1.4) ensures that the diffusion driven instability
occurs for the problem

ug = d)Au + byyju + bpav + ny(u, v), (1.7)
vy = dpAv + bou + boov + ng(u,v) in [0, 400) x £,
u=v=0 on [0,+00) x I (1.8)

as well as for (1.7) with the Neumann boundary conditions. More
precisely, the trivial solution is stable as a solution of the ordinary
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differential equations u; = by1u + biov + ny(u,v), v, = boyu + byv +
no(u,v) but as a solution of (1.7), (1.8), the trivial solution is stable
only for some parameters dj, d2 (the domain of stability) and unstable
for the other dj, dy (the domain of instability) — see Proposition 2.4,
Fig. 1. Spatially nonhomogeneous stationary solutions (spatial patterns)
of (1.7), (1.8) bifurcate from the trivial solutions at the boundary of the
domain of stability, bifurcation is excluded in the domain of stability.
The same holds for (1.7) with the Neumann boundary conditions. See,
e.g.,[15].

The bifurcation point of (1.1), (1.2) we obtain can lie in the domain of
stability of the problem (1.7), (1.8) where bifurcation for (1.7), (1.8) is
excluded. This can be understood as a destabilizing effect of the terms
with positive and negative parts in (1.3) (Remark 2.7).

Our system can correspond to a reaction which changes by a jump,
or it can describe an additional source which is switched on (off) if the
concentration crosses the value of the basic steady state (which need not
be trivial in general — see a note below).

If bj;4, b;;— are constant and (1.4), (1.6) hold then the bifurcation
point of (1.1), (1.2) can be located in an elementary way — see Remark
3.12. In the general case of the assumption (1.5), the method is
the same as in the papers [11] and [3] where a destabilizing effect
(with respect to spatial patterning) of unilateral boundary conditions
described respectively by variational inequalities and inclusions was
proved. The main idea is taken from [7]. Notice that P. Quittner found
a simpler method for the proof of existence of bifurcations for unilateral
problems (see [18]). Unfortunately, it is not clear how to use it in our
situation or in the situation of [11], [3] where unilateral conditions are
prescribed for both u and v.

In fact, our bifurcation result remains valid if the assumption (1.4) is
replaced by

b1y >0, bia <0, bey >0, det bij > 0. (19)

In the proof, only this weaker condition will be used. In this case the
picture of hyperbolas in the first quadrant described below (Fig. 1)
and the domains of stability and instability can be more complicated.
Diffusion driven instability does not occur in general.

We consider here bifurcation from the branch of trivial solutions. In
fact, from the point of view of applications, rather the situation when
a fixed constant positive solution [Z,T] loses the stability for a para-
meter crossing a critical value is of interest and bifurcation of spatially
nonconstant solutions is considered. Of course, in this case it is possible
to transfer the basic constant solution to the trivial one and consider
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bifurcation from the trivial solutions again. Hence, our results can be
reformulated for bifurcation from a constant positive solution.

2. MAIN RESULT

Notation 2.1. Define the inner product on the space WOI’Z(Q) (the
space of functions from the usual Sobolev space with zero traces) by

(u, ) =/ Vu -V dz.
Q

Then the corresponding norm || - || is equivalent to the usual Sobolev
norm. Set V.= Wy(Q) x Wy'3(Q). The symbols (-,-) and || - || will be
used also for the inner product and the norm in V, respectively, i.e.,

(U, W) = (u,w) + (v,2), UI* = [lull® + [lo])?

for U = [u,v], W = [w, z] € V. We will always suppose that there is ¢ > 0
such that |n;(&,n)] < (1 + €771 + |n|?7!) for all £,7 € R with some

g>1lforn<2and1<g¢< 1—12_“—2 for n > 2. Then it follows from the
compactness of the embedding W12(Q) C LI(2) and from the Nemytskij
theorem (see, e.g., [5]) that the operators A : W01’2(Q) — Wol'z(Q),

N; : v — Wy2(Q), 5 = 1,2, defined by
(Au) = [ wpds, (Ny(,0),0) = [ nju,v)p do

for all u,v, ¢ € WOl ’Q(Q) have the following properties:

A is linear, symmetric, positive and completely continuous, 2.1
. . N;(U
N; are completely continuous, lim —-—” (W) =0
Wwi—o  ||U||

(see Appendix in [12] for the detailed proof of the last condition). Set
AU = [Au, Av], N(U) = [Ny(u), No(v)] for all U = [u,v] €V,

di 0 ) ( bui b2 ) . ( by b )
D(d) = , B= , B* = .
(@) ( 0 do bar ba /'’ bia b2
We will denote by — and — the strong convergence and the weak
convergence, respectively.

A weak solution of the stationary problem corresponding to (1.7),
(1.8) is a solution of the system of operator equations

diyu — by Au — b Av — Ni(u,v) =0,
d2’0 - bglA‘u, - b22A’U - Ng(u, ’U) =0
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which can be written in the vector form as

D(d)U — BAU — N(U) = 0. (2.2)

Notation 2.2. Let us define operators (3,02 : Wol’z(ﬂ) — WOI‘Q(Q) by

(Bru, ) = /Q (bryu™ —bu"]pda
for all u,v,p € W01’2(Q).
(Bav, ) = /Q (boyvT — by v7] 0 dz

Set BU = [Bru, Bav].

A weak solution of the problem (1.1), (1.2), (i.e., of (1.3), (1.2)) can
be introduced as a solution of the equation

D()U — BAU - N(U) + U = 0. (2.3)

We will need also the “linearized” equation
D(d)U — BAU + BU =0. (2.4)

Of course (2.4) is nonlinear again. Our problem cannot be approximated
by a linear equation and therefore standard methods of the bifurcation
theory cannot be used.

Notation 2.3. R, — the set of all positive reals, R2 =Ry x Ry;
Kj, €5, § = 1,2,... — the eigenvalues and orthogonal eigenfunctions
of —Au = Au with (1.2);
biaba /x?

Cj={d = [di,dy] €R}3dy = g7t + 2}, j = 1,2,3,... (Fig.1);

Dg —— domain of stability of the problem (1.7), (1.8) — the set of all
d € RZ lying to the right from all C}, j =1,2,3,... (see Fig. 1);

Dy — domain of instability of the problem (1.7), (1.8) — the set of all
de R'j’r lying to the left from Cj for at least one j (see Fig. 1);

bifurcation point of (2.7) or (2.8) — a parameter s; € R such that in
any neighbourhood of [s1,0] in R x V there is [s,U] = [s, u,v], ||U|| # 0,
satisfying (2.7) or (2.8), respectively.

Recall that if Re A < —¢ < 0 for all eigenvalues of the problem

di1Au + bpu +bov = Au, (2.5)
doAv + bo1u + bagv = Av in Q2
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with the boundary conditions (1.2) then the trivial solution of (1.7),
(1.8) is stable (e.g. with respect to the L%norm) and if there is an
eigenvalue of (2.5), (1.2) satisfying Re A > 0 then the trivial solution
of (1.7), (1.8) is unstable (see, e.g., [6], [20]). Hence, our definition of

the domain of stability and instability in Notation 2.3 is justified by the
following statement.

Proposition 2.4. Let the assumption (1.4) be fulfilled. Then U;Z; C;
is the set of all d € R2 such that A = 0 is an eigenvalue of (2.5), (1.2).
Further, for any d € Dg there is € > 0 such that all eigenvalues of (2.5),
(1.2) satisfy Re A < —e < 0 and for any d € Dy there exists at least one
positive (real) eigenvalue of (2.5), (1.2).

Proof. See e.g. [14], [16] for Neumann boundaryconditions, n = 1, or
[2] for the general case.

Consider a differentiable curve o : R — R%, o = [0}, 02],such that

o intersects transversally C, at a point o(so) = d° € Cp,

o intersects the line d; = l—:{l;'- at a point a(3), 5> sp,

o(s) lies to the right from Cp and o1(s) < %L for all s € (s, 3), (2.6)
a(s) > %‘-11- for s € (3,3 + {p) with some (g > 0 small.
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(Note that the line d; = %L is the asymptote to Cj — see Fig. 1.) We will
study the problems (2.2), (2.3) only on the curve o, i.e., the problems

D(o(s))U — BAU — N(U) =0, (2.7)

D(o(s))U — BAU - N(U)+pU =0 (2.8)
with the single bifurcation parameter s € R.

Consequence 2.5. If o(s) € Dg for s € (so,3) then there is no
bifurcation point of (2.7) in the interval (39,84 o). This follows directly
from Proposition 2.4 and the fact that Ker(D(o(s))I — BA) # {0} for
any bifurcation point s of (2.7).

Note that sg is a bifurcation point of (2.7) under reasonable assumptions
(cf. [14], [16]).

Theorem 2.6. Let us suppose that (1.4) holds and there exists an
eigenfunction e, corresponding to the eigenvalue &y of the Laplacian
such that (1.5) is fulfilled. Consider a differentiable curve o satisfying
(2.6). Then there is a bifurcation point sy € (sg, 3| of (2.8). For any
d € (0,d9) (60 > O small) there exist s5, ug, vs satisfying (2.8) (i.e., (1.1),
(1.2) with d| = 01(s5), d2 = 09(85) in the weak sense), ||us||*+||vs||* = 4,
s —> 81 ford — 04

Note that the assumption (1.5) can be generalized — see the end of
Remark 3.7.

Remark 2.7. Consider the case when d° from (2.6) is in the part of
Cp lying to the right from all Cj, C; # C, (i.e., on the boundary of
the domain of stability of (1.7), (1.8)). Then Theorem 2.6 asserts that
bifurcation of nontrivial solutions to (2.8) (i.e., nontrivial weak solutions
to (1.1), (1.2)) occurs in the domain where bifurcation for the problem
(2.7) (i.e., that of stationary solutions of (1.7), (1.8)) is excluded by
Consequence 2.5. This means that spatial patterns for (1.1), (1.2) arise
in a certain sense sooner than for (1.7), (1.8) (see [8] — Introduction,
or [12] — Interpretation). This can be understood as a destabilizing
effect of the “jumping terms” in (1.3) — cf. e.g. [8], [9], [11], [3] where a
destabilizing effect of unilateral boundary conditions was proved. Notice
that also a stabilizing effect of unilateral conditions can be shown in some
cases (see e.g. [10], [12]).

3. PROOF OF THE MAIN RESULT

In the sequel we will always suppose that the eigenvalues «; and the
eigenfunctions e; of the Laplacian with (1.2) are numbered so thatep
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is the eigenfunction from the assumption (1.5), ky = ... = Kpyk—1, k is
the multiplicity of &y.
Let us consider the eigenvalue problem

Do (s))BAU — U = pU. (3.1

Proposition 3.1. Let o be a curve satisfying (2.6). 1/ d&° € C,,
Cp=...=Cpik-1, k is the multiplicity of k,, d® & C, for all Cy # C,
then there is an eigenvalue pip(s) = ... = ppir—1(s) of (3.1) (depending
continuously on s) losing positiveness as s crosses so in the following
sense: there exists g > 0 such that pp(8) is positive in one of the one-
sided neighbourhoods {sg — 1o, 50), (0,80 +70) and is either negative or
complex in the other one. For any s € (g — N, 8o + 10), this eigenvalue
has multiplicity k and the corresponding eigenvectors have the form

i —bao + pj s)K;j .
Ui(s) = [02(3)“1 22b21/‘1(3)0‘2( )5 ej,ej] L j=p...ptrk—1

We have
Ker(D™'(d®)BA — I) = Lin{Uo, Up41(s0), - - -, Upsk-1(s0)}  (3.2)

where we denote Uy = [ug,vo] = Up(so) to emphasize the importance of
this vector for our considerations.

Further, let d° € CpoNCy for some Cy # Cp, Cq = ... = Cyyy_1 where
kg has multiplicity 1. If o only touches (but does not intersect) Cy at
d® then the same assertion as above remains valid. If ¢ really crosses
also Cy at d® then there exist precisely two different eigenvalues pp(s) =
oo = ppyk—1(8), pe(8) = ... = pgy1-1(s) losing positiveness in the sense
explained above. (In fact, in this case these eigenvalues are always real
and change their sign as s crosses sy.) For s = sg, pp(50) = pq(s0) =0
has multiplicity k + 1. The eigenvectors corresponding to pip(s), fiq(s)
are

Us(s) = [02(3)"%’ - b22b:-1 pi(s)oa(s)k;
Uj(s) = [02(8)"1 - b”b:‘l pi(s)o2(s)x;

ei'leil, t=p,...,p+k—1L

ej,ej] y J=¢q,...,¢g+1 -1
Setting Uy = Up(so) again, we have
Ker (D™(d) BA — I) = Lin{Us, Uj(50)}j=p+1...p+k-14,.g41-1- (3.3)

Proof. See [3], Observations 4.1, 4.2.



Bifurcation to R-D systems with jumping nonlinearities 87

Remark 3.2, Set
ba; o2(s0)kp — boo
Ug = [ug,vp] = [ U, U 0] [—bp—ep’ep
12 12
where Up = [ug, vg] is introduced in Proposition 3.1. Clearly

D(d®)U; — B*AUj = 0. (3.4)

A jump of the Leray-Schauder degree of a certain mapping will be
essential for our considerations (see Proof of Theorem 2.6 for details).
If dimKer(D~'(d°)BA — I) = 1 then there is only one eigenvalue losing
positiveness in the sense of Proposition 3.1 and the jump of the degree
follows — see Proof of Theorem 2.6. Inthe general case, the number of the
eigenvalues losing positiveness can be greater than one (see Proposition
3.1) and we must consider a suitable perturbation of (3.1) such that the
assertion of Lemma 3.5 below holds. This is the reason for introducing
the operator L below.

Notation 3.3. Set I(d%) = {i # p; d® € C;}. Note that I(d) = 0if
dim Ker(D~!(d°)BA — I) = 1. Let 79 be from Proposition 3.1. Let us
choose 1 € (0, min{no, 3 — sg}). Hence, o1(s) < & for s € (s9, 50 +7) by
(2.6). Let x be a continuous function such that x(so) =1, x(s) € (0,1)
for s € (so —n,80)U(s0,80+1n) and x(s) = 0 for s ¢ (so —n,so+n). Set

(Ui(s),U)
L(s)U = x(s)- .
X 2 TP

= 0 fors ¢ (so—ms0+n)

Ui(s) for s € (so —n,%0+n)

(cf. [3]). For any s € Rfixed, L(s) : V = Vis a linear completely
continuous operator.

Remark 3.4. We have L(s) = 0 for s € R if I(d°) = 0,
i.e.,if dimKer (D~!(d")BA—I) = 1. Further, it follows from the
orthogonality of e; and the form of U;(s), Uj (see Proposition 3.1 and
Remark 3.2) that (U;(s),U;(s)) =0forall j # i, s €R and
L(s)Uy =0, L(s)U;(s) = x(s)Ui(s) for any i € I(d°), s €R (3.5)
(D(o(s))L(s)U,Up) = (D(o(s))L(s)U,U;) =0 for any s €R, U € V.
Lemma 3.5. We can choose go > 0 and n € (0,5 — sg) (see Notation
3.3) such that for any o € (0, go) we have

Ker(D™!(o(sp))BA — pL(sg) — I) = Lin{Uy}. (3.6)

Further, v(sg —€) —v(so +¢€) = £1 for all € € (0,m) where v(s) is the
sum of algebraic multiplicities of all positive eigenvalues of the operator
“Yo(s))BA — oL(s) — I
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Proof. follows from Proposition 3.1 and the properties of L — see [3],
Lemma 4.1.

Notation 3.6. Set K; = {¢p € Wol'z(ﬂ); Bjp =0}, 1 =1,2, K =
K, x K3. Clearly

K1:{¢€W01'2(Q)<p<0ae in QF @ =0ae in },
Ky = {p € W32 (Q);90 > 0 ae. in er,cpSOa.e. in 2, }

by (1.5). The set K is a closed convex cone in V with its vertex at the
origin.

Remark 3.7. Let Uy = [ug,vo] and U} = [uf, v§] be from Proposition
3.1 and Remark 3.2. It follows from (1.4) that Ut € K and Uy ¢ K
(see Notation 3.6). Moreover, let us show that W ¢ K for any
W = [w,z] = Yi_;a;Uiso), ai € R, 7 €N, |[W| #0. If W e K is
of the form considered then w = ¥._, a;ase; < O ae. in Q;*p, w>0
ae. in €, ,and z =377_ ae; > 0 ae. in Q;’;, z <0 ae. in Q, , with

o = 512‘2—1!’2—2 > 0 (see Proposition 3.1). Multiplying w by z, integrating
over  and using the Lz-orthogonality of e; and the last condition in

(1.5) we obtain

0> ,/(fr w(z)z(z)dz —I-/_ w(z)z(z)dz = / w(z)z(z)dz =

Cp

_/ (Zala; ) (Za, x)) dx—za a,/ (z)dz.

This is possible only for a; = 0,i = 1,2,...,r, which is a contradiction
with ||[W]| # 0.

Note that Theorem 2.6 remains valid if we replace the positiveness
of b1, by ,bd,b5 in (1.5) by the positiveness only on some subsets 2} C
QF, 9y CQ., 07 CQ,, Oy CQF such that meas(Qf UQ[) > 0
meas(QF UQ;) > 0, Ker(D(d®)I — BAYN K = {0}. In fact, only this is
used in our proof.

Observation 3.8. The operator (3 has the following properties:

B 1s completely continuous, 3.7
BU =0 if and only if U € K;(BU,U) >0 for allU ¢ K, (3.8)
B(U) = tBU for allt > 0,U €V, (3.9)
(BU — BV,U = V) >0 for all U,V €V, (3.10)

(BV,U) <0 for all V € V,U € K. (3.11)
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Observation 3.9. We will show that (W,Ug) < Ofor all W ¢ K. In
particular, if (BW,U§) =0 for some W € V then W € K«o£., fW = 0.
A special choice W = +Uy gives {BUp,U§) < 0 and (B(—Uh),U§) < 0
by Remark 3.7. Indeed, W = |w, z] ¢ K means that there is a set E C §)
such that measE > 0 and one of the following four cases occurs:

ECQ:{pandw>0a.e. n B, ECQ;pandw<0a.e. m K,
ECQZP and z <0 a.e. in E, ECQ, and z>0 a.e. in E.

Hence, we obtain by using (1.4), (1.5), Notation 2.2 and Remark 3.2
that

(BW,U3) = (Brw, ul) + (Brz, v]) = %wlw,u[» + (Boz, vo) =

. 2—21—b1+w+u0 —bo_z"vgy dx +/ :—zz—lbl_’w_w) + b2+z+v0 dr < 0.
af, 012 Q., 012
Lemma 3.10. (Cf. [4].) Let (1.4) and (1.5) hold. If d = [d1,ds] €
Ri, d; > %f (i.e., ifd € Zy in the notation of[4]), £ € [0,+00) then

the only solution of
D(d)U — BAU +£8U =0 (3.12)

is trivial. (Let us recall that the line d| = %Lll is the asymptote to Cy -
see Fig. 1.)

Proof. Let d = [d;,ds] be fixed, d; > %L We can write (3.12) in the
form

diu — b1 Au — b Av + £Byu = 0, (3.13)
dov — by Au — by Av + £Byv = 0.
We have
1 A
4 1 sup (Ap, p) (3.14)

bit T KL ezo Nell?
and it follows by using (3.10) that
(dip — b1 Ap + EB1p — ditp + b A — 81, 0 — ) > ¢« o — ||?

for all ¢,y € WOI’Q(Q) with ¢ = d; — %11 > 0. It follows that
(diI — by A + £B;)7 ! is well-defined (see, e.g., [13]). From the first
equation of (3.13), we can express

u = bio(dif — b1 A +£61) " Av (3.15)
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and put it into the second equation to obtain
dov — byrbip A(di T — b1 A+ €B1) 1 Av — bog Av + v = 0. (3.16)

It follows from (2.1), (3.14), (3.8) that (A(diI —b;1 A+£61) "L Av,v) > 0.
Hence, multiplying (3.16) by v we obtain by using (1.4), (2.1), (3.8) that

(dav — bar b2 A(d ] — by A+ £61) ™1 Av — by Av + £Bav,v) > 0
provided [[v]| # 0. This implies v = 0 and (3.15) gives also u = 0.

Similarly as in [11] and [3], for the proof of Theorem 2.6 we will choose
a small p > 0 and consider a penalty equation

T D(o(s)) T _
together with the norm condition
or
2 ) 1
Iwi® =5 = (3.18)

Here 4 > 0 is a given small number, 7 is an additional parameter. The
equation (3.17) can be understood as a homotopy joining the linea-
rization of (2.7) perturbed by the operator gD(o(s))L(s) (obtained for
7 = 0) with our equation with the jumping nonlinearity (2.8) (obtained
for 7 — +o00). The common idea of the papers mentioned is to prove
the existence of a branch of [s, U, 7] satisfying (3.17), (3.18) starting at
(s0,0,0] which is unbounded in 7. The limiting process T — +oo along
this branch gives a solution Us of (2.8) with some s, ||Usl|> = 6. Any
accumulation point of ss for § = 04 is a bifurcation point of (2.8).

Lemma 3.11. (Cf. [4]-) Let p be from the assumption (2.6). For any
¢ € (0,¢o) there exists 8y > 0 such that there is no nontrivial solution U
of 3.17) with s =3+ ¢, 7 € [0, +00) and |U||* < &.

Proof. Suppose by contradiction that there exist {; € (0,¢p) and
Un = 0, g2y = W, 132 = € € [0,1] such that Up, 7, satisfy (3.17)
with s = §+ (1. Note that L(s+ (;) = 0 (see (2.6) and Notation 3.3).
Multiplying (3.17) by ||Uyn||~! and passing to the limit we obtain by using
(2.1), (3.7), (3.9) that ”[—Lj:ﬂ — W, W is a nontrivial solution of (3.12)
with d = [dy,d2] = 0(5+(1), i > %‘- (see (2.6)). This is a contradiction
with Lemma 3.10.

Proof of Theorem 2.6. Let us choose p and n small enough so that

the assertion of Lemma 3.5 holds. Let ¢ € (0,{p) be fixed where (g is
from the assumption (2.6). Let §g > 0 be the corresponding number
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from Lemma 3.11. Consider § € (0,dp) fixed. The equations (3.17),
(3.18) are equivalent to
z—-T(s)x+ G(s,z) =0 (3.19)

in the space X = V x R (with points z = [U,7] and the norm |zf} =
U]l + |7|) where

T(s)z = [D“l(a(s))BAU — oL(s)U, 0] forall s €R,z=[U,7] €X
G(s,2)=| =D (0(s)) (- N(U) + BU) o1 L

= L(s)U, - U]
forallse R,z =[U,7] € X.

1+7

The operators 7, G have the following properties:

T:RxX—X, G:RxX— X are completely continuous,  (3.20)

T(s) : X — X is linear for any fixed s € R, (3.21)
lim HIG(S—,z)m = 0 uniformly on bounded s-intervals. (3.22)
I=li»o =]

If T is a compact linear operator in a Banach space, Ker (I — T) = {0}
then ind(I — T) = (—=1)*T) where ind denotes the Leray-Schauder
index, v(T) is the sum of the algebraic multiplicities of all positive
eigenvalues of T — I (see, e.g., [17]). It is easy to see that A is an
eigenvalue of multiplicity k of T(s) (for some s € R) and z = [U, 7] is the
corresponding eigenvector if and only if A is an eigenvalue of multiplicity
k of D~Y(o(s))BA—pL(s) and U is the corresponding eigenvector, 7 = 0.
Thus, it follows from Lemma 3.5 that

Ker(I — T(sp)) = Lin{zo} with z¢ = [Up, 0] (3.23)
and there is g > 0 such that
ind(I —T(sp —€)) #ind(I —T(sp +¢€)) for all € € (0,gp). (3.24)
(Recall that the vector Uy is from Proposition 3.1.) Set
C = {[s,z] ERxX|lz| #0, (3.19) holds}
={[s,U,7];7 #0, (3.17), (3.18) hold}

and let Cy be the component of C containing [sg,0,0]. Analogously as
in [1] we can define subcontinua C and Cy of Cy starting at [sp,0,0] in
the direction z¢ and —zg, respectively, with zo = [Up, 0]. See [1], [7] for
details. In particular, C{f and Cy contain [sg,0,0] and

Un U,
there are (sp, Uy, Tn] € CSL, [$n, Un, Tn] = [50,0,0], HTH - HTEH, (3.25)
n
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Un Us
001 el

Under the assumptions (3.20)—(3.24), considerations from the proof of
the global Dancer’s bifurcation theorem ([1], Theorem 2) can be used
and an analogue of this theorem for the equation (3.19) can be proved
(cf. [7], Theorem 4.1). That means

either Cf NCy # {[50,0,0]} or both Cf and C; are unbounded (3.27)

(cf. [1] or [7] for details in the classical case or in our situation,
respectively).

We will write CJ,CJ’(],C;:O,CEU instead of C,Cy,Cq ,Cy in order to
emphasize the role of d from the norm condition (3.18). We shall
prove successively that d9 > 0 could be chosen such that the following
statements hold if § € (0, d):

if [Sn, UnaTn] € Cg:(), [Sn> Un, Tn] — [30, 0, 0]> "%ﬂ“ﬂ - ﬂ%g‘n

there are [s,, Upn,Tn]€ Cy, [sn, Un, 7Tn] = [0, 0,0], (3.26)

then lim—“'—""l < 0, (3.28)
if [sp, Un, 7n] € CJO,[Sn,Un,Tn] — [s0,0, 0], i ﬂ%gﬂ (3.29)

then lim iﬂ;Ts‘l >0
(the branch CIO starts downwards from sg, Cg o Starts upwards from sg),
(50, U, 7| €Cs0=T7=0 (3.30)
(CIO, Cs, cannot intersect the level sp with the exception of the starting
point),
[s,U, 7] € Cs0 = s <5+ (3.31)
(where s is from (2.6)). Suppose for a moment that (3.28) — (3.31) hold.
It follows from (3.28), (3.29), (3.30) and the definition of C}O and Cj,
(see [1], [7] for details) that Cgo and Cj, remain below and above s,
respectively, with the exception of [sg,0,0] and therefore C}O NCso =
{[50,0,0]}. Hence (3.27) implies that C;O,Cgo are unbounded. However,
(3.31) together with (3.18) imply the boundedness of C; in s and 1U1l
and therefore Cy is unbounded in 7. It is easy to see that 7 > 0 for all
[s,U,7] € Csp. In particular, there exists a sequence [sn,Un,7s] € Csy
satisfying (3.17), (3.18) with s, € (s0,8 + (], 7 = +o00. We can
suppose s, — 85, Un — Us with some s € [sg, 5 + (], Usand it follows
from (3.17) by using the compactness of the operators A, L and 3 that

Un — Us, ||Usl|2 = 6, Us is a solution of (2.8) with s = s5. We would
like to know that

85 > sp + € for all § > 0 small enough with some ¢ > 0. (3.32)
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Suppose by contradiction that there are d, — 0 and s5, — so,

Usp
1Usll = 0, g —= W
D(o(s5,))Us, — BAUs, — N(Us,) + 8Us, = 0. (333)

Dividing (3.33) by ||Us,|| and using (2.1), (3.7), (3.9) we obtain
"—'Lr — W and W is a solution of (2.4) with d = dy. Multiply (2.4)

(with U = W and d = d°) by U}, (3.4) by W and subtract. We
obtain (BW, U§) = 0. Observation 3.9 implies SW = 0and consequently,
W € K by (3.8). It follows from (2.4) with U = W and d = d’ that
W € Ker (D(d°)I — BA). Simultaneously, we obtain from Remark 3.7
and (3.2) or (3.3) in Proposition 3.1 that W ¢ K. This is a contradiction
and (3.32) is proved. Moreover, ¢ could be chosen arbitrarily small
and therefore, any accumulation point sy of ss for § — 04 (which is
simultaneously a bifurcation point of (2.8)) satisfies sy € [sg + €, 3].

To complete the proofit is sufficient to show that (3.28) — (3.31) hold.

Proof of (3.28): Multiply the equation

Tn

D(0(5n))Un = BAUn = T2=N(Un) + (3.34)
D(o(sn))
+ 9_1_+TL(S")U" + 1 n nﬂUn =0

by ”%5”, (3.4) by ﬁ%::ﬂ and subtract. A simple calculus using (2.1), (3.9),
(3.5) yields

Ry (sn — s0) + —2 <N(U)

- +IB >=01
147, ”Un” ”Un“
R, =} (3 <u—",u'>+a'§ <—,v*>
n = 1) () + o) g8

with some 3p,3, between sg, sn where U, = [up,vn),Ups = [uo,vo]-
Further, it follows from the formula for ug, ug, vg, v (see Proposition 3.1
and Remark 3.2), the equation defining C, and the assumption (2.6)
(the transversality and orientation of ¢) that

R, » R = 0'1(30)<”Z—(;”au5> (°)<||U0||’ 0>

(02(30)"% - 1722)2 / ' “'UO “2
50) + O . < 0.
[ by 100 o) g

Hence, it follows by using (2.1) and Observation 3.9 that

(,BU[), Uo) <0.

i Spn — S0
1im =
noo T, RllU ||
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Proof of (3.29) is the same but we have Wgﬁﬂ — —"%g" and R > 0.

Proof of (3.30) for § small enough: suppose by contradiction that
there are &, — 0 and {sg, Un, 7] € Cs, 0,70 > 0. Then ||Uy]] = 0, (3.34)
holds with s, = sg. We can suppose without loss of generality that
H_LLH =W, =7 €l0,+o0] and 2~ — £ €[0,1]. We obtain from
(3 34) (withs, = sg) divided by [|Uy|| (by using (2.1), (3.7), (3.9)) that

oy = W

D(o(30))W — BAW + o2 L(50)W + €W =0 if 7 < 400,
D(o(s0))W — BAW +£BW =0, £€=1 ifT = +oo0.

Multiply (3.35) by Uj, (3.4) by W and subtract. We get (W, U;) =0
by using (3.5). If £ # 0 then W € K by Observation 3.9. Hence,
(3.35) gives W € Ker(D~'(o(s0))BA — +&L(so) — I) if 7 < ocoor
W € Ker(D '(o(sg))BA — I) if 7 = oc. One of the possibilities (3.6),
(3.2), (3.3) holds (see Proposition 3.1, Lemma 3.5) and it follows from
Remark 3.7 that W ¢ K, which is a contradlctlon Thus £ = 0, i.e.,

Tn — 0. Multiply (3.34) (with s, = sg) by “—Dﬂ (3.4) by “Qm" and
subtract. We obtain

-7, N(U,) D(d") Un Tn Un N
+ L(s + Ug)=0.
<l+7'n "Un“ gl‘l‘Tn ( O)IIUn” 1+Tnﬁ”Un”, 0

(3.35)

Using (2.1), (3.5), dividing by 7,, and letting n — oo we get (W, U;) =0
and this leads to a contradiction as above.

Proof of (3.31) follows directly from the conectedness of Cs, the fact
that [sg,0,0] € Cs0, Lemma 3.11 and the choice of &y at the beginning
of the proof.

Remark 3.12. Consider the particular case when bj;,, bj;_ are
constants, (1.4) and the first condition from (1.6) are fulfilled. The
problem (1.1) can be written as (1.3) with by = b114, b2 = boo_,
bi- = by — b, by = byp — by, by = by = 0. We have
boav — bgy vt = bogyv — boyv™ and therefore, all positive solutions of

d1Au + byju + biav + ny(u,v) =0, (3.36)
doAv + boru + boopv +no(u,v) =0 inQ

are simultaneously solutions of (1.3) (i.e., also of (1.1)). Define 6'1 in the
same way as C but with the coefficient byg replaced by bgo, . The first
part of Proposition 2.4 and the formulas (3.2), (3.3) in Proposition 3.1
remain valid if we replace the assumption (1.4) by (1.9) (see the proof
in [2]). It follows that the linearization of (3.36), (1.2) (i.e., (3.36),
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(1.2) with n; = 0) has a nontrivial solution (70 = %61,61]
where e) is the principal eigenfunction of the Laplacian which does not
change its sign. If we take e; positive then clearly Uj is simultaneously
a solution of (1.3), (1.2) (i.e., (1.1), (1.2)) without the terms n;. If o is

a curve intersecting Cy at d = o(s,) then it follows from the classical
bifurcation results ([19] or [1]) that there is a global bifurcation branch of
solutions to (3.36), (1.2) starting at s; in the direction (70. It is not hard
to show by using a regularity argument that the positiveness of both
components of bifurcating solutions lying on this branch is preserved
in a neighbourhood of s;. Hence, these solutions are simultaneously
solutions of (1.3), (1.2). Similarly, in the case of the second condition

in (1.6), we obtain a nontrivial solution Uy = [%el,el] of the

linearization of (3.36) with bea4 replaced by bos_ for d € él defined
in the same way as C)| but with the coefficient byo replaced now by
boo—. If we choose e; negative then Up is simultaneously a solution of
(1.3), (1.2) (i.e., (1.1), (1.2)) without the terms n;. The solutions of
(3.36), (1.2) with bggy replaced by bea_ lying in the bifurcation branch
starting in the direction Uy are negative near s; and are simultaneously
solutions of our original problem (1.1), (1.2). Hence, in the particular
case under consideration, some bifurcation points of our problem with
jumping nonlinearities can be obtained elementarily as a bifurcation of
a modified classical problem. Note that in both cases C; lies below
C| and if o is the curve from the assumptions of Theorem 2.6 then its
assertion is an easy consequence of our considerations.
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COUPLED PROBLEMS FOR VISCOUS
INCOMPRESSIBLE FLOW IN EXTERIOR
DOMAINS

Miloslav Feistauer, Christoph Schwab

Abstract:  The formulation of the fluid flow in an unbounded exterior domain Qis
not always convenient for computations and, therefore, the problem is
often truncated to a bounded domain Q= C € with an artificial exterior
boundary I'. Then the problem of the choice of suitable “transparent”
boundary conditions on I' appears. Another possibility is to simulate
the presence of the fluid in the domain Q7 exterior to I’ with the use of
a suitable (preferably linear) approximation of the equations describing
the flow. The interior and exterior problems are coupled with the aid
of transmission conditions on the interface T

Here we briefly describe the formulation and analysis of the coupling
of the interior Navier—Stokes problem and the exterior Stokes problem
and Oseen problem. At the end we give the reformulation of the coupled
problems with the aid of integral equations on the artificial interface.

Keywords: Stokes problem, Oseen problem, Navier-Stokes equations, coupled
procedures, boundary integral equations.

1. COUPLING OF INTERIOR
NAVIER-STOKES PROBLEM WITH
EXTERIOR STOKES PROBLEM

Let © C IR3 be an unbounded domain which is the complement of the
closure of a bounded open set (representing, e. g., a body emerged into
a moving fluid). We set 'y = 9Q and introduce an artificial interface
I dividing §2 into two subdomains, a bounded interior domain 2~ with
boundary 90~ =g UT and an unbounded domain Q* with dQ*t =T.

Classical formulation of the coupled problem: Find the velocity
ut = (uli, uf, uf) : 0" 5 R3 and the pressure p* : Q" - R such

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 97
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that
+ 2/t o + 1ot )
a) ul €C7), i=1,23, pTelC(Q),
3 - 3 - _
0D;j(u™) _0Ou; | Op

1=1,2,3, in Q7
¢) divum =0 inQ7,
d) ’u.—lr0 =0,
e) —vAut+Vpt =0 inQ",
f) divet =0 in Q¥
g) lim|z|-—>oo ut (Z) = oo,
h) w~ =u* onT,

1
i) (p_ +5 |u_|2)n +2vD(u”)n =o,(ut,pt)on T,

i) au(ut, pt) = alut, ptln, ofu, p| = —pl + 2w0D(u). |

s (1.1)

olu, p] denotes the hydrostatic stress tensor for the Stokes problem.

We prescribe the following data: » > 0 — constant viscosity,
f = (f1, f2, f3) volume force with support supp,f C Q7, ue € R3 -
the free-stream velocity at co. By n we denote the unit outer normal to
90~ on T (pointing from Q~ into 21). ID(u) is the velocity deformation
tensor with components ID;;(u) = (Qu;/0z; + du;/0z;)/2.

In the domain 2~ and Q% the Navier—Stokes system and the Stokes
system are considered, respectively. The coupling conditions on T’
representing the continuity of the velocity and the normal stress,
augmented in 2~ by the kinetic energy, were chosen in accordance with

[16],[1].

1.1. Weak formulation

In order to reformulate the above problem in a weak sense, we
introduce the following function spaces ([4], [6], [10], [12], [13]): H'(Q27)
— the Sobolev space equipped with the standard norm || - ||; o-, H'/%(I)
— Sobolev—Slobodetskii space of traces vou on I of functions u €
H'(Q7) equipped with norm || - ||;/or, H™Y3(T) - dual of HY2(T),
W1(Q*) — weighted Sobolev space = {u;(1 + |z|?)"1/2u € L%(Q*),
Ou/oz; € L*(QF), i =1, 2, 3}, equipped with the norm

_ 1/2
lullas = { [ @+ 1) @) do + s }
N+
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where the seminorm

is a norm equivalent to the norm || -

uhar = ([ 1Vuldz)

o+

99

We set WS(Q"h) =

{ve WHQH); yov =0 onT'}. The space H/2(I") can be interpreted as

the space of traces you of all u € W!(Q*) on I'. By (.,

-} we denote the

duality between H~'/%(T') and H'/?(T') induced by the L%(T') — scalar

product.

If X is a Banach space with a norm || - ||, then we define the space
X = X x X x X equipped with the norm

lus]) = (Zuuzu )"

Now we set

{ve H'(Q7);
{vew ()
{v e W!(Q*);
{ve W),
{v e HY/X(T);

u =

v|r, =0, dive =

Yov = 0 on I'},
dive =0in Q1},
Yov =0 on I'},
/v"nds:O}.
r

We have yyv € H(l)/2(I‘) forve V(Q27).

It is possible to show that for any uwp € H

1/2(

extension Rug € W (1) such that yo(IRug) = ug.
For the weak formulation we introduce the following forms:

ag(u,v)

a1 (u, w, v)

G'Z(ua ’UJ,‘U)

a(u,v)

at(z,v)

3" Dyfu

Q— 1J 1

(v) dz,

/ z uJB vzdz

Q..z]l

= —3 /(u-w)(v«n)ds,
r

(uy,u2,u3) € X.

0in 27},

aO(uiv) + al(u,uav) + aZ(uauvv)a

u, v, w € H(Q7),

Qt 3,j=1

5 5 Ow
amj 3.’12]‘

dz,

z,ve WHQH).

I') there exists its

(1.2)
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Let us assume that f € V*(27) (= dual of V(7)) and denote by
(,)a- the duality between V*(27) and V(27)

Starting from the classical formulation (1.1), using suitable (smooth)
test functions (with compact supports) and Green’s theorem, we arrive
at the following weak formulations:

Weak formulation in 1~. Assumethat o,(ut,pt) € H1/%(Q) is
given. Find ©~ € V(27) such that

a(u™,v) = {on(u",p"), Hv) = {f, v)a- Vv EV(QT). (13)

Weak formulation in Qt. Assume that ug € H (l)/ 2(I) is given.
Find u™ satisfying the following conditions:

a) (Ut — ue) — R(ug ~ us) € Vo(27),

b) at(ut —ux, v) =0 Yve Vy(Qh).

Using the Lax-Milgram lemma and results from [4] and [10], it is
possible to establish

(1.4)

Theorem 1.1. There exists a unique solution u* of problem (1.4).
This solution is independent of the choice of the extension R(up—uso) €
W(Q") of ug — ue fromD onto Q. The velocity u™ can be associated
with a uniquely determined pressure pt € L*(Q%) such that

ot ('t — e, v)—/ prdivedz =0 Yuoe W)Q).  (L5)
Q-+
n
Assuming that it is possible to define a generalization o, (ut,pt) €
H"I/Q(F) of the normal stress for 4%, p* from Theorem 1.1, we arrive

at the weak formulation of the coupled problem:
Find u *, u* satisfying (1.3) and (1.4) with

up=yu  onl. (1.6)

1.2. Abstract problem

Let us assume for now that «~ is known. Then we solve problem
(1.4) with the Dirichlet boundary condition (1.6). If the solution u™
and the pressure p* associated with uwt by Theorem 1.1 allow to
express on(ut,pt) € H-Y*(T'), we see that o,(u*,p™) is a function
of up =ypu~:

on(u™,pt) = —A(up). (1.7)
The operator A : H(l)/z(f‘) — H Y2(TI') converting Dirichlet data
into “Neumann” data via the solution of the exterior Stokes problem
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(1.4), is called the Steklov-Poincaré operator. It allows us to
reformulate the coupled problem as the abstract problem: Given

A: H(l)/z(l‘) — H™Y2(T") and f € V*(Q7), find u~ such that
a) u” € V(Q),
b)  a(u”,v)+ (Alvo,u7), vov) + (f,v)o- Vv EV(QT).

The investigation of problem (1.8) yields the following result:

(1.8)

Theorem 1.2. Let theoperator A be weakly sequentially contin-
uous and weakly noncoercive, i. e.,

2", z€ H(],'/2(F), 2" — z weakly in HY*(T') as n — co =

(1.9)
= (A(z"),w) — (A(z),w) Vwe HY?() asn - oo,
and there exist constants c3 € IR, ¢4 > 0 such that
(A(2),2) > e3 — callz]lyjor Yz € HYA(D), (1.10)

respectively. Then problem (1.8) has at least one solution.

Proof. of this theorem is carried out by the Galerkin method, similarly
as, e.g., in [6, Par. 8.4.20] or [12, Theorem 1.2, page 280]_ with the aid

of the compact imbeddings H! (™) —— L2(Q7), HY{(Q™) << L3(T),
Korn’s inequality and the relation ay(w,v,v) + as(v,v,u) = 0 valid for
all u, v e V(Q27). n

1.3. Properties of the Steklov-Poincaré
operator A

It remains to establish the existence of the operator A and its
properties (1.9) and (1.10):

Theorem 1.3. Let ut be the solution of the exterior problem (1.4)
and p* be the associated pressure by relation (1.5). Then, for all
w e HYAT) and v € WYQ) such that yov = w, the formula

3
(on(u™,p?), w) = —21// Z Dij(ut) Dyj(v)dz + / pTdivedz
q+ BI=l1 o+

(1.11)
determines a unique element on(u™,pt) € H™Y2(T). If ut and p* are
sufficiently regular, then this element can be identified with the function
on(ut,p™) defined in (1.1, ). Further, the Steklov-Poincaré operator A
defined by (1.7) has properties (1.9) and (1.10). ]
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The results of Theorem 1.1-1.3 imply the existence of a weak solution
of the coupled problem (1.1). All details can be found in [8].

2. COUPLING OF INTERIOR
NAVIER-STOKES PROBLEM WITH
EXTERIOR OSEEN PROBLEM

In this section we are concerned with the modelling of viscous
incompressible flow in an unbounded exterior domain with the aid of
the coupling of the nonlinear Navier-Stokes equations considered in
a bounded domain with the linear Oseen system in an exterior domain.

Similarly as in the case of the coupling of the Navier-Stokes problem
with the Stokes problem, an important question is the choice of
transmission conditions on the artificial interface I'.  The transmission
condition used in Section 1 is not suitable in the case of the exterior
Oseen problem and, therefore, we propose its modification resembling
a “natural” boundary condition from [3]. We arrive then at the
following classical formulation of the coupled problem: Find
ut = (uft,,uﬁ) -0t 5 RN, pt: 0% - R such that

a) uf € CA@Y), i=1,...,N, p* e CY@),
b) —vAu  +(u”-V)u  +Vp =f inQ",
¢) divu™ =0 inQ7,

d) u‘lp(,:O,

e) —vAut+(ux-V)ut+Vpt =0 in QF, [ (2.1)
f) divet =0 in QF,

g) lim|x|—>oo ut (T) = Yoo,

i) w =utonT,
. _ ou- 1, _ _ + 4
i) -p n+1/%—§(u ‘n)u zon('u.,p)onl".J

Here, and throughout we understand o,(u, p) in the context of the Oseen
problem as

T

on(ut, pt) :=out, p*In where ofu, p] := —pl + 2vD(u) — % uu,

denotes the hydrostatic stress tensor for the Oseen problem.
Other than that, we use the same notation as in Section 1.

Remark 2.1. For simplicity we consider the terms du®/dn in (2.1,j),
corresponding naturally to equations (2.1,b) and e). If we use the
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relations

- _1 Ou;  Ou;
Ditw) =5 (5o + )

Z BD,] (u)

oz; ’
valid for u € C?(Q*) with div u = 0, then du*/dn can be replaced by
Z;-V:l Dyj(u*) nj as in Section 1.
2.1. Weak formulation

In what follows we will assume that 02~ = I'g U I'is Lipschitz-
continuous. If @ C Qis a domain, then by LP(Q) and W*?(2)we denote
the Lebesgue and Sobolev spaces, respectively, defined over (ct., [13]).
For a bounded domain © we set WO () = {v e Wh2(Q); ); vlsg = the

trace of v on 8Q = 0}. In Wy*(f2) we can use two equivalent norms

1/2
lolypagy = ([ (vl +190/%) da)
Q
and

ol /|Vv|2dx

It is well-known that
W,2(2) = closure of C°(€) in W'2(Q),

where CZ°(€2) is the space of all infinitely continuously differentiable
functions with compact supports in € : supp v C  for v € C°().

For the unbounded domain {2 we define the weighted Sobolev space
du
ax,
where on(z) = 1 for N = 3 and on(z) = |In(1 + |z|)|7! for N = 2,
equipped with the norm

_ 1/2
lullwey = { [10 + o)~ 0% [ul? + Ve da} ",
Q

wWHQ) = {u; (1 + |22 onu € LA(Q), o € LA(Q) },

which is equivalent to the seminorm
1/2
lulwi) = {/ |Vuf? dl‘} :
Q

(See, e.g., [4, Theorem 1, page 118] or [10, Vol. I, page 60].)
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Further, we put
W3 (Q) = closure of C$°(Q) in W(RQ).
Then
W3 (@) = {v e W (Q);vlr, =0}

We write v € Wlo P(Q), if vl = WEP(Q) for every bounded domain

Qca
Let us define subspaces of W!(Q):

V) = {velCyP(N);divev=0inQ},
V() = closure of V() in W(f).

For functions v from subspaces of Sobolev spaces, the restrictions
v|r, v|r, etc. will be understood in the sense of traces.

For v € V (), the limit at oo is zero and »|r, = 0. In order to realize
condition (2.1,g) in the weak formulation, we introduce a function ¢,
defined in the following way. Let B be a sufficiently large ball with centre
at the origin such that @~ C B. Then Q* := (BN Q) - Q C QF and
o =T'UI*, where T and I'™ is the interior and exterior component of
oQ, respectively. Since [, #oo - ndS =0, in virtue of [12, Lemma 2.2,
page 24], there exists afunction ¢* such that

O e W), @'Ir=0, ¢*|r =us, dive* =0in Q"
Now we define ¢, : Q@ — RM:
0 in Q,
¢oo = ¢* in Q*,
Uy in QY — Q.

Obviously, ¢, € W,OC(Q) and divg,, = 0 a.e. (= almost everywhere)
in Q.

Let us assume that u®, pi form a classical solution of the coupled
problem (2.1). Let v € V(). Multiplying equation (2.1,b) by
v|g- and (2.1,e) by v|g+, integrating over Q= and Q%, respectively,
summing these integrals, applying Green’s theorem and using the fact
that divv = 0in © and v|r, = 0, and putting

w = u” in Q,
ut in Q.
we obtain the identity
dui dvi / N o i / N b
T+ u; — v;dx
Q[ ;1 oz; 0 j 2;1 0z; BmJ 3 i,j2=1 J Oz, t
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/ Z uoojgu v;dr — /[(u—uoo)'n][u"v]ds=/ f-vdz.
r Q-

Q+ 1,j=1

Let us introduce the forms

N )
du; dv1
aolw,v) = / Z Oz; Bz]
a1 {u,w,v) / ZuJa : v; dz,
Q— 1,5=1
az(u,w,v) = —3 /[u—uoo)-n][w~v]ds,
ou; 311,
bo(u,v) = / Zl 9, 3, 07 b (22)
Q+ " =
Ou;
bi(u,v) = / Z Uooj 7 3z, 'v,d:r
Q+ 1,j=1
L(v) = / - vds,
a(u,u,v) = ap(u,v)+a(u,u,v) + a2y, u,v)
b(u,v) = bO(uvv)+bl(uav)>
foru, v:Q — RN, u,we W 2(Q), veCF). )

On the basis of the above considerations we come to the following
concept:

Definition 2.2. We call a vector valued function u : @ — R a weak
solution of the coupled problem (2.1), if the following conditions are
satisfied:

a) u— P € V(D)

(2.3)
b)  a(u,u,v) +b(u,v) = L(v) Vv e V(Q).

Remark 2.3. Prom above it follows that the classical solution yields
the weak solution. In (2.2, a), conditions (2.1, ¢, d, f, g) are hidden and
u € Wloc(Q). Since v € V() has compact support, all integrals over £
in (2.2) have sense. Moreover, also the form az is well defined as follows
from the trace theorem for functions from Wl’z(fl), where Q C Qis

a bounded domain with ' C 8. However, it is not possible to use
v € V() as test functions in (2.3, b), because the form b;(u,v) is not

defined for u € W,Oc () and v € V() in general (cf. [10]). This is the
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reason that we cannot carry out the existence treatment as in Section 1.
We apply now a completely different approach for proving the existence
of a solution of problem (2.3). In fact, this new technique can also be
applied to the coupling of the interior Navier—Stokes problem with the
exterior Stokes problem. (Details will appear in [9].)

Remark 2.4. On the basis of results from [10], Chap. VII, the
weak solution u of problem (2.3) can be associated with the pressure
p € L} () such that

a(u,v) — (p,dive) = L(v) Vv € C3°(R). (2.4)

2.2. Existence of a weak solution

First we prove some important properties of the forms ag, ai, a9
defined in (2.2). These forms have sense, of course, also for functions
from the space W12(Q), as follows from the continuous imbedding
W123(Q7) & LYQ) and the continuity of the trace operator from the
space WH2(Q ™) into L3(T'). (We simply write W1H2(Q~) — L3(I').)

Let us set

V()

{v e WH(Q 7 );v|r, =0,divo =0 ae. in Q"} ,

Vo(Q) = {veC°°(Q );suppv C @~ UT, dive =0 in(r},

1
a(u,v) = —= [ (u-n)|v|?ds, u,veWH3Q").
2
r

Lemma 2.5. ag is a continuous bilinear form on WL2(Q™). Further,
ay and ay are continuous trilinear forms on WH2(Q™).
Foru, v, w € V(Q7) we have

a1 (u,v,w) = —a;(u,w,v) — a(u,v + w) + a(u,v) +a(u,w) . (2.5)
Let us define the form
d(u,v,w) = a1 (u,v,w) + as(u,v,w), u,v,weWwWhH3(Q7). (2.6)
Then it holds: Ifz, v, zn € Vo(27), n=1,2,..., and if
a)  |zalwize-)<C, n=12,...,
b)  z, — z strongly in L*(Q7) (2.7)
¢)  zn|lr — z|r strongly in L*(T) asn — oo,

then
d(zp, 2n,v) — d(2,2z,v) asn — oco. (2.8)
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The solvability of the coupled problem in the unbounded domain Qis
established with the aid of coupled problems considered on a monotone
sequence of bounded subdomains. For any positive integer n we denote
by Bn the ball with radius n and centre at the origin. We will consider
n > ng with fixed ng such that B C B,, (C B,), where B is the
ball used in the definition of the function ¢,. Hence, 8B, C Q* and
DooloB, = U for n > ng. Weset , = QN B, and QY = Ot N B,.
Then for n > ng, wehave 2~ C Q,, Q, = Q- UTUQY, 9Q, =TUT,
and 9% =T UT,.Moreover, €, C Q,4and U:":no Q, = Q. I',is the
exterior component of 92, and 9.

For n > ng we define the forms

N

n Gui ov;

B (u,v) = u/ S o S dg,
J J

oF 1,5=1

N
Ou;
W, v) = / Y. doos 5 vida, (2.9)
ar i,7=1 J
a™(u,v) = ao(u,v) + a1(u,u,v) + a2(u, u,v) + b3 (u, v) + b} (u,v),
u, v € W3 (Q,).
For every n > ng we introduce the spaces
V() = {veCF(Q);dive=0in Q,},
V(Q,) = closure of V(Q,) in W1%(Q,)
= {veWy*(Qu); dive =0in Q,},

and consider the following auxiliary problem in Q,: Find w,, : Q, —
RN such that

a’) Up — ¢oo|ﬂn € V(Qﬂ)a

b)  a™up,v)=L(v) VveV(Q,)
(the form L(v) has sense for v € V() extended by zero on §).
Conditions (2.10) represent the weak formulation of a coupled “Navier—

Stokes — Oseen” problem in the bounded domainQ, = Q- UT UQ;.
The solution of problem (2.3) can be written in the form

(2.10)

u=y+z, z€VEQ). (2.11)
Hence, (2.3) is equivalent to finding z : @ — IR" such that
a z € V(Q),
) ( (2.12)

b)  a(¢y + 2z,v)=L(v) Vve V).
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Similarly we can reformulate problem (2.10): Find z, : 2, — RN such
that

a) zn € V(Q,),

b) a" (o + 2n,v) = L(v) YvEV(Q).
Then u,, = ¢, + 2. From the definition of ¢, it follows that u, = z,
in Q.

The solvability of the above auxiliary problems is proved with the aid

of the following results:

(2.13)

Lemma 2.6. Foreach z € V() we have

a1(z,2,2) + ax(2,z,2) + b} (P + 2,2) = / E oogad)wlzi dz

Qf £,7=1

Theorem 2.7. For each n > mng problem (2.13) has at least one
solution z,. There exists a constant K > 0 independent of n such
that

iznlwm(nn) <K, n>np (2.14)

Proof. is carried out with the aid of the Galerkin method in a standard
way as, e.g., in [12], Theorem 1.2, page 280, [17], Chap. II, or [6],
Par. 8.4.20. -

The main result of this section reads:

Theorem 2.8. There exists at least one solution w of problem (2.3)
This wis a weak solution of the coupled problem (2.1).

Proof. As was stated above, problem (2.3) is equivalent to problem
(2.12). In order to prove the solvability of problem (2.12), we extend the
solution z, of problem (2.13) (n > ng)by zero from the domain Q,onto

2. For simplicity, we will denote this extension again by z,. Hence, we
have a sequence {zn}52,, such that

z, € V(‘Q)‘ n Z 70,4
(2.15)
lznlwi(e) = l2nlwrz,) < K, n2no

Since the space V() is reflexive and the sequence {zn}5,,is bounded
in V(2), there exists z € V(£2) and a subsequence of {z,}3%, (let us
denote it again by {z,}) such that

=ny

zn — z  weakly in V(Q2) as n = oo. (2.16)
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Our goal is to show that z is a solution of problem (2.12).

Let v € V(2). Then there exists n* > ng such that suppv C -
and, in virtue of (2.13), (2.2) and (2.9) we have v|q, € V(2,)for n > n*
and
(Do + 2Zn, V) = @™ (Poo + 20, V) = @™ (Pog + 20, v) = L(v), n>n'.

(2.17)
Taking into account that |2,|wt2¢q,.) < |2Znlwi(q), from (2.15) we see

that the sequence {zp|n,.} is bounded in W12(Q,-). Thus, we can
suppose that

Zala,. — z|q,. weakly in WH4(Q,.) asn — oo (2.18)

This and the compact imbeddings WhH2(Q,.) =< L*(Q,-) and
Wl2(,.) << L3(T) imply that
z'n.lQnt — Z|Qn, Strongly in Lz(ﬂn')y (2 19)
Zn|r — z|r strongly in L*(T'), asn — oo. ‘
Now we are ready to carry out the limit process in (2.17) for n —
co. Linearity and continuity of the forms ag(¢o + -, v) = ao(-,v),
bo(@oo + -, v) and b} (P + -, v) (let us remind that ¢, = 0 in Q7)
imply that

a0(¢oo + zn,'v) = a0(2n>”) — a’D(z"v) = 0’0(¢'oo + Z,’U),
0 (Do +2n,0) —> B (Do + 2,0), (2-20)
WY (Do + 2n,0) — b (oo + 2,) as n — 00.

From (2.15) and (2.19) we see that the sequence {z}5>,, satisfies
conditions (2.7,a—c). This and Lemma 2.5 imply that
a1(2zpn, 20, 0) + a2(2y, 25, 9) — a1(2, 2,v) + a2(2,2,v) asn — oo.
(2.21)

Now, from (2.17), (2.20) and (2.21) we conclude that the function
z € V() satisfies the identity

a(Ps + z,v) = L(v) for all v € V(2),

which means that z is a solution of problem (2.12) and u = ¢, + z1is
a solution of problem (2.3), which we wanted to prove. u

3. FORMULATION OF THE COUPLED
PROBLEMS WITH THE AID OF
BOUNDARY INTEGRAL EQUATIONS

The fact that the Stokes equations as well as the Oseen equations
possess fundamental solutions allows us to reformulate the exterior
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Stokes and Oseen problem as integral equation on the coupling interface
I". This may be used to reduce the coupled problems on the unbounded
domain analyzed above to equivalent problems in the bounded domain
2~ which are equipped with nonlocal boundary conditions on [. In
this section, we derive explicit representations of the nonlocal boundary
operators in terms of the Calderén Projector of the linear exterior
problem which describes the far-field. The nonlocal boundary operators
for the Navier-Stokes equations coupled with the exterior Stokes and
Oseen problems will turn out to be strongly elliptic boundary integral
operators which can be discretized by Galerkin boundary element
methods. This approach was used for the solution of a number of elliptic
problems in exterior domains in e.g., [2, 7, 11, 16].

As it is well-known, there are generally many possible approaches
to reformulate exterior boundary value problems in terms of boundary
integral equations. Correspondingly there are many ways to represent
the Poincaré-Steklov operators. For the exterior Stokes problem of
Section 1, we present a formulation in terms of single layer potentials
based on indirect boundary reduction by potentials. The resulting
representation of the Poincaré Steklov operator requires the inversion
of a coercive, self-adjoint boundary integral operator of order —1 on I.

For the Oseen problem, there is an analogous formulation; however,
the coercivity of the first kind boundary operator to be inverted is open
— only a weaker Garding-Inequality can be established then. Therefore,
we present a different formulation based on a pure double layer ansatz
for the exterior velocity field ut in the Oseen problem [5]. Contrary
to the Stokes problem, this is admissible in the Oseen case due to the
different decay behaviour of the Oseen fundamental solution as |z| — oo.
Here, the boundary reduction is direct, via the Faxén-formulas on T'.

3.1. Exterior Stokes Problem

For the integral equation of the exterior Stokes problem, we
shall require hydrodynamic potentials that are defined in terms of
fundamental solutions of the Stokes operator (1.1,e). We shall in
particular require the velocity fundamental tensor E(z) given by

Eii(z) = (6;; A — 8,0;) ®(z), z € R*\{0} (3.1)
where 1 <1,j < 3 and &(z) = Pgsi(2) 1= |2|/(8nv).
Further, we shall also use the pressure fundamental vector e(z)
given by
1

1
ei(z) = “an ai(m)

1

24 .
= — — h 1<:<3. 3.2
e where 1 <3¢ <3 (3.2)
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To obtain an expression of A in (1.8) in terms of boundary integral
operators, we require a certain factor space of H ™Y/ 2(I): we set

T .= HV2(I)/R (3.3)
where R denotes the equivalence relation
t~t=t=t +in (3.4)

for some A € IR (recall that n denotes the exterior unit normal to 7,
pointing into Q). Then there holds

Theorem 3.1. Assume that the coupling boundary T is smooth. The
solution of the exterior Stokes Problem (1.1,e)-(1.1,h) in QF can be
represented in the form of the Odqvist hydrodynamic potentials

+(z)_um,,+z / Eri(o—y)te(y) dsy, z€QF, i=1,2,3, (3.5)

k=1 yer
3
Pt =Y [ al-vuwds,, st (30
k=1 yer

for some boundary densities t € H~'/?(I') which are the unique solutions
of the first kind boundary integral equations:

ucm+2 / tk(y) Bri(z — y)dsy = uf (2), i=1,2,3, z €T, (3.7)
k=1 yer

or, more precisely, in variational form: find t € T such that
bt t) = (t' ut —ue) YVt ET (3.8)
where the bilinear form b(t,t'), given by

bt t') = Z / [ Eyj(z - y)t(y)dsydsz,  (3.9)

5,j=1
is symmetric and coercive on T: there exists 3 > 0 such that
> 2 . :
b(t,t) > ﬁ”t”H—%(r) vteT (3.10)

For the proof, we refer to [4], Chap. VI, Theorem 1. We remark that
the symmetry and coercivity of the bilinear form b(:, -) in (3.9) gives,
upon discretization with a Galerkin boundary element method on T,
a symmetric and positive-definite stiffness matrix corresponding to the
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hydrodynamic single layer operator S on the left hand side of (3.7). The
operator § is continuous from H‘1/2(I‘) — HI/Q(I‘). Using (3.7) and
(1.6), we get the nonlocal boundary condition

teT: (',St)=({,vu —uw) VET (3.11)

where (-,-) denotes the H~/2(I") x H'Y2(I") duality pairing. By (3.10),
S is invertible on T and we get that

t=S"1u" —uy). (3.12)

Having obtained ¢ by (3.8), the exterior Stokes flow (u*,p™) is given
by (3.5). In particular, we get with normal stress operator o, (u™*,pt),
applied to (3.5), (3.6), for a point zp € I" with the jump relations of the
Odqvist potentials that

on(ut,pt)(zg) = lim o,(u™,pt)(zo + en)
e—0t

= % t(zo) + p.v. / n(zo) oz [E, e](zo — y) t(y) dsy (3.13)
yel

- ((% I+K')t)(a0)

where the integral over [' has to be understood in the Cauchy principal
value sense and the subscript xg indicates that the differentiations are
with respect to xg. The expression nn o[E, et is interpreted as the vector
with components Z,k (1 Ok bk, 1 =1, 2, 3, where 045, 1, j =1, 2, 3,

are components of the tensor o(Ey, ex), using the notation Eg and e
for the k—th row of E and the k—th component of e, respectively.

We therefore obtain with the weak formulation (1.3) in 7 the
following, nonlocal boundary problem in @~ U I' which is equivalent
to the weak formulation of the coupled problem (1.8):

Find u~ € V(Q7), t € T such that

a(u‘,v)—((%I+K')t,70v> = (f,v)q- YweV(Q) (3.14)
—(t'vou —ux)+(t,St) = 0 Vt'eT .

With (3.12) and (3.13) we obtain the representation of the Steklov—
Poincaré operator in terms of boundary integral operators

Au) = —op(ut,pt) = —(% [+K)S (u —uy).  (3.15)

Naturally, in a numerical implementation of the nonlocal boundary
condition (1.1,i) in (1.3), the discrete inverse of S should not be
explicitly calculated, but rather realized numerically by a fast algorithm.
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3.2. Exterior Oseen Problem

We consider now the exterior Oseen Problem (2.1,e) - (2.1,j). We
will use once again the Odqvist hydrodynamic potentials to reduce
the coupled problem (2.1) to a nonlocal boundary value problem in
Q- UT'. We shall now, however, not use a single layer ansatz (the so-
called “indirect” method of boundary reduction), but rather the “direct”
method based on the Faxén representation formula on I', leading to the
“one integral equation” approach of [11].

To do so, we require once more for the exterior Oseen problem the
velocity fundamental tensor E(z) and the pressure fundamental vector
e(z). To define them, we assume without loss of generality that

= (tee,0,0) " . (3.16)
Then E and e are once more defined by (3.1), (3.2), however now with
®(z) given by [15]
Uoo §(2)/2V

! (1—e%a tda, ;s(z):=|2| — 2. (3.17)

4T U0

Dos(z) 1=

We recall further that for the Oseen problem the hydrostatic stress is
given by 1
olu,p) ;== —p1 +2v D(u) — 3 uu) . (3.18)

We shall also require the adjoint stress operator
1
0%[v,q] :=q1+2v D(v) + 3 vul . (3.19)

Then there holds the Faxén representation formula:
Any (ut —u,pt) € HE (QF) x HL (QF)solving (2.1,e) - (2.1,j) can
be represented in the form: for any =z € Q%

w(2) — oo = [ {(4"(y) = tic) 751, (@ — ) -
er
B - poylut — e, pn)}dsy,

= [ {(u* ~uw) 5jfe, ")(e—y) n—ela—y) oy fu* ~ttco,p] )},

yer

(3.20)

(3.21)
where p (x) is determined only mod IR, ay,cr; are as in (3.18), (3.19),
with the subscript y indicating that the differentiations are with respect
to y and where

e (z) = &= dl(l |) = —ug er(2) (3.22)
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is the pressure corresponding to the velocity field e (z). The expression
(ut —uy) o*[E,e]n is interpreted in an analogous way as no[E,e|t
in Par. 3.1.

We observe that the leading singularities of E (z) and of e (z) at
|z| = 0 in the Oseen and the Stokes case are identical. More precisely,
for small |2|

) 1
E(z) = (JijA - 6@(’3‘) ‘I)OS(Z) = 81r_1/ (JijA - 8,6,-) ]ZI + 0(1) . (3.23)
The hydrodynamic potentials admit therefore the same jump relations
in the Stokes and the Oseen case. We reduce the exterior Oseen
problem to I' by passing with x in (3.20) to zg € I': For any z¢ =
lilgl+ zo + en(zg) € I, the jump relations give
£—r

lim u*(zg+en) — v = ut(z0) — oo =

e—0t
— [ Bz - on(u” — o, p)5)dsy — 5 (07 (20) ~ o)
yel’
—Pp.v. ] {(u*(y) — u) - ;[ E, €](zo — y) n(y) }ds,
yel

or, symbolically,

0T (20) oo = ~(8 0" —thoe, p*))(w0)+ (5 T+K) (u* ~uee)(z0)

2

(3.24)

where K denotes the hydrodynamic double layer operator, or, equiva-
lently

1 +

(5 I-K)(u" - ) =-S0,. (3.25)

We emphasize that now § is neither symmetric nor coercive, generally.

Using the continuity of the velocities (1.6), and casting (3.25) in weak

form, we find the integral equation for the hydrodynamic normal stress

op corresponding to the exterior Oseen problem due to the velocity w™
on I';

o€ H™VXD) : (1, Som) + (T, (% I-K)@u -uw)=0 (3.26)

for all 7 € H™Y*(D).

The hydrodynamic single layer potential § : H~Y%(I') » HY?*(I)
is continuous and satisfies, in virtue of (3.23) and (3.10), the Garding
inequality: there is ¢ > 0 such that

vr € H™VA(T)  (r,87) 2 clirf-izpy — k(T,7)
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where k(-, -) is a compact form onH'1/2(I"). Equation (3.26) gives now,
together with the (formal) weak form (1.3) of the Navier-Stokes system

in 2~ the desired nonlocal boundary value problem in Q= UI': Find

u~ € V(Q), o, € HV(I') such that

a(u”,v) — (oa,00) = (f,v)o- Vv e V(Q7),

(r, (% I— K)(u = o) )+ (7, S00) = 0 vr € H-V2(I) .
(3.27)
Here the nonlinear form a(-, -) is as in (1.2).

Whereas the nonlocal problem (3.14) and the corresponding one (3.27)
for the exterior Stokes equation are mathematically on solid ground due
to Theorem 1.3 and 3.1, in the Oseen case research is in progress on the
following questions:

a) Existence of solutions to the nonlocal problems (3.14), (3.27) in
the exterior Oseen case,

b) Coercivity of § in the Oseen case,

¢) Convergence of Galerkin-discretizations of (3.14), (3.27) in the
Stokes and Oseen case (note that the nonlinearity is not of the
type treated in [11]).
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REMARKS ON THE DETERMINANT

IN NONLINEAR ELASTICITY
AND FRACTURE MECHANICS

Irene Fonseca, Jan Maly

Abstract: The role of the determinant in ensuring local invertibility of Sobolev
functions in W' (Q; RV) is studied. Weak continuity of minors of
gradients of functions in W1P(Q; RN )for p < Nis fully characterized.
Properties of the determinant are addressed within the framework of
functions of bounded variation, and a change of variables formula
is obtained. These results are relevant in the study of equilibria,
cavitation, and fracture of nonlinear elastic materials.

Keywords: Topological degree, weak lower semicontinuity, functions of bounded
variation.

1. INTRODUCTION

Remarkable advances in industry and technology have motivated
the study of instabilities in certain advanced materials. The need to
understand and predict macroscopic behavior from microscopic and
mesoscopic data, as well and the analysis of questions related to phase
transformations, defectiveness, the onset of microstructures in smart
materials, and other issues related to optimal design and homogenization
of composite materials and very thin films, have opened new areas
of mathematics virtually unexplored until recently. As it turns out,
mathematical models for equilibria and dynamical evolution of phase
boundaries for these materials fall outside the scope of classical theories,
mostly due to the facts that the underlying energies are nonconvex, or
that the admissible fields may exhibit discontinuities. Indeed, spaces
of discontinuous mappings have proven to be useful in the modeling of
deformations of continua which may undergo fracture or develop defects
(see e.g. [13], [14], [15], [27]). A natural space for the underlying
deformations is that of functions of bounded variation, BV, or its

Applied Nonlinear Analysis, edited by Sequeira et al.
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subclass introduced by De Giorgi and Ambrosio [24] of functions of
special bounded variation, SBV.

It is well known that in nonlinear elasticity interpenetration of matter
is prevented by assuming that energy densities blow up as the jacobian
of the deformation gradient approaches zero. Precisely, if @ C RV
represents the reference configuration of an elastic body, and if the bulk
energy of an admissible deformation u : Q — RY is given by

E(u) :=/QW(Vu)d:c,

where W : RY x RV*N 5 [0,400) is the energy density, then it is
commonly assumed that detVu > 0 ae. in Q, and W(£) = +oo
as deté — 0%. Under this degeneracy hypothesis, a question that
has challenged mathematicians for several years concerns the search for
physically reasonable hypotheses on W and on the class of admissible
fields u ;guaranteeing weak lower semicontinuity of the energy E.
Ciarlet and Necas [18] introduced a “local invertibility condition”

/ det Vudz < LN (u())
Q

where £V stands for the Lebesgue measure in RV, which, together with
the condition det Vu > 0 a.e. in 2, ensures local invertibility of u in
appropriate Sobolev spaces.

In this paper, we start by recalling a local inverse function theorem
obtained by Fonseca and Gangbo [28] for mappings « in WLN(Q; RY)
such that det Vu(z) > 0 for a.e. z € Q.

If we require less regularity of the admissible fields, as it happens in
the study of cavitation in rubber-like materials, then weak continuity
properties of minors become very challenging. To this end, we fully
characterize weak convergence of det in Sobolev spaces W1P(; RN ) for
p < N. This analysis was carried out in Fonseca and Maly [32].

Finally, and drawing on the work of Choksi and Fonseca [17], we
show how properties of det Vu may ensure a change of variables formula
for functions of bounded variation, where Vu denotes the part of the
distributional derivative Du which is absolutely continuous with respect
to CV.

In what follows, if £ is a d X N matrix then MI§) stands for the
list of all minors of &, and My (£) denotes all minors of order k, with
k < min{d, N}. If d = N then adj £ is the adjugate of £, i.e. the matrix
of minors of order N — 1 so that

det¢ 1= (adj&)Te.
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If 4 is a Radon measure in 2 and if B C Q is a Borel set, then u|B
stands for the restriction of u to B, i.e. u|B(X) := u(X N B) for all
Borel set X C €.

2. LOCAL INVERTIBILITY IN SOBOLEV
SPACES

The study of equilibria for defective crystals has motivated the
introduction of variational problems where the domain of integration
is varying as well as its deformations. In particular, Fonseca and Parry
[35] proposed a model where the underlying energy is given by

E(u,v) := W(V(uov))dz,
v(Q2)
where u denotes a deformation of € and v represents the slip or plastic
deformation, with det Vv = 1. Invertibility of v will guarantee that the
energy may be reformulated as

E(u,v) := /Q W(Vu(Vo)~ 1) dz

where now the domain of integration is held fixed.
The theorem below provides sufficient conditions under which we may
ensure local invertibility (see [28]).

Theorem 2.1. Let  be a bounded, open subset of RN, and let u €
WULN(QRN) be such that det Vu(z) > 0 for a.e. = € Q. Then for
LN almost every To € Q the function w is locally almost invertible
in a neighborhood of xg, ie., there exist r = r(zg) > 0, an open set
D = D(z¢) CC Q, and a function w : Byop;r) = D, with yg := u(zo),

such that
uvow(y) =y a.e. y € B(yg,7), ‘

and )
Vu(y) = (Vi) " (w(y)) a.e.y € Blyo,r).
. 3
If, in addition, :—2{% det Vu € LY(Q) for some 1 < s < 400, then

w € WY(B(yo,7); D).

The latter part of this result was independently obtained by
Sversk [59).

If u is more regular, precisely if u € WP (Q; RV ) with p > N(N —1),
then u : D — u(D) and w : u(D) — D are homeomorphisms, and there
exists a set N C Q with LN(N) = 0 such that u : Q\ N — RV
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is an open mapping (see also [44], where a stronger version of this
result was established). Also, Heinonen and Koskela [43] showed that if
u € WLP(Q;RY) with p > N(N — 1), detVu >0 ae. in 2, and N > 3,
then u is open and discrete.

We note that there are Lipschitz homeomorphisms which do not
satisfy det Vu # 0 ae. in . Indeed, Martio and Ziemer [50] proved
that for every bounded, open set Q C RV, there exist a measurable set
A C Q with £N(A) > 0, and a homeomorphism u € W1®(Q; RY ) such
that det Vu = 0 forevery z € A.

The proof of Theorem 2.1 uses properties of degree theory, and
departs considerably from earlier work on this subject (see e.g. [8],
[18], [59], [60]). We remark that we cannot expect to prove this result
by approximating u by a sequence of smooth functions with positive
determinant, since Ball [9] has provided an example of a mapping
v € WHe(Q; R?) with det Vv = 1 a.e. in , and for which there is no
sequence {v,} € C1(Q;R?) such that v, — u uniformly and det Vu, > 0
in Q.

Theorem 2.1 illustrates how in WLV (Q;RV) the determinant still
behaves, essentially, as the Jacobian of a smooth deformation. There
are situations, however, where we are led to the study of properties of
minors for deformations in W1P(Q;RY) for p < N. This question is
addressed in the next section.

3. WEAK CONTINUITY OF THE JACOBIAN
INTEGRAL

In [32] we search for minimal conditions ensuring weak convergence
of minors in Sobolev spaces.
Certain energies for nonlinear elastic materials may be represented as

E(u) =/QW(VU) dzx

where W is a polyconvex integrand, i.e. W is a convex function of M(Vu).
It follows that E is W"P.sequentially weakly lower semicontinuous, i.e.

up = u in WWP(Q; RY) = E(u) < liminf E(u,), (3.1)
n—00
if
typ — uwin WYP(Q;RY) = M(Vu,) = M(Vu) in the sense of measures.

We recall that if g, g € L'(€), then we say that gn — g in the sense of

measures if
/ gnpdz — / gpdz
1) 0
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for all ¢ € C(Q).

Weak continuity of minors has been studied in depth by Murat and
Tartar (see [56], [61]) within the framework of compensated compactness,
and lower semicontinuity for polyconvex functions was undertaken by
several authors (e.g. see [2], [7], [8], [10], [16], [20], [21], [23], [30], [36],
[371, [38], [45], [51], [52], [55], [61]).

Here, and for simplicity, we are going to restrict the study to the
higher order minor, det, and when d = N, although most of the results
may be extended to lower order minors. As it is usual, the admissible
fields are assumed to be in WLV (Q; RY) because in this space we may

integrate by parts and write the determinant as a divergence operator.
Precisely, if u € WL (Q; RV ) then

det Vu = DetVu, (3.2)

where 1
DetVu := Ndiv((adjVu)Tu).

The relation (3.2) may fail if u is not sufficiently regular. As an example,
consider

T
|z’

Then u© € WIP(B(0,1); RV) for all p < N, det Vu = 1 a.e. in B(0,1),
but

u(z) = Y/aV + ||V Q:= B(0,1).

DetVu = LY|B(0,1) + wya™dy,  wn = LY(B(0,1))

Moreover, it was proven by Miiller [54] (see also [53]) that if S is
a closed set with Hausdorff dimension a € (0, N), then there exists
u € WIP(B(0,1); R¥) N C°(Q) forall p < N, such that

DetVu = det Vu LY | B(0,1) + s, (3.3)

where ps is a positive Radon measure, singular with respect to the
Lebesgue measure £V, and such that supp g, = S.

Further results by Miiller, Tang and Yan [55] established that if
u € WH(Q;RV) with ¢ > N2/(N + 1) then (3.3) holds, and ps = 0
if

ue WHV-L(Q;RY), adjVue LVWV-D,

The exploitation of spaces such as BMO and Hardy spaces allows one
to refine these results along the lines of the work of Miiller [52], [53],
[54], and Coifman, Lions, Meyers and Semmes [19], and, in particular,
it can be shown that if u € WHN-1(Q; RV ) is such that det Vu > 0and
adjVu € L¥/(N=1 then

det Vu In(2 + det Vu) € L}, .
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In earlier works, Ball [8], Dal Maso and Celada [16], Dacorogna and
Murat [22], Dal Maso and Sbordone [23], Giaquinta, Modica and Souéek
[38], [39], [40], (see also [41]), and Reshetnyak [57] established that

Uy — uwin WHY(Q;RY) = det Vi, > det Vu,

where the convergence — is in the sense of measures. Moreover, if
. . 2

Un,u € WEY(Q;RY) and 4, — u in WWP(Q; RY) with p > ,—\,A{‘_—l, then

we still have

det Vu,, = det V& in the sense of distributions. (3.4)

Also, if p > N — 1 and if sup, ||un|lec < +o0, with {det Vu,} equi-
integrable, then (3.4) is still valid (see [21]).

A complete characterization of weak convergence of the determinant
has been obtained by Fonseca and Maly in [32], where the results below
may be found.

Theorem 3.1. If the sequence {u,} C wLN (Q; RN ) converges to u in

LY RYY, of {M(Vurn)} is bounded in L, and if {detVun} is equi-
integrable, then
det Vu,, — det Vu in L.

Remarks 3.2. (i) This result was proven earlier by Giaquinta, Modica
and Soucek, see [41], Theorem I11.3.2.1, under the additional assumption
that all minors of all orders are equi-integrable. Their proof relies of
tools from Geometric Measure Theory. The proof presented in [32] is
entirely analytical.

(ii) Note that from the hypotheses of Theorem 3.1, one can only
guarantee apriori that v € BV, so Vu must be understood as the Radon
Nikodym derivative of the distributional derivative Du with respect to
the Lebesgue measure £V,

(iii) In Theorem 3.1 equi-integrability is necessary. Indeed, it is possible
to construct a sequence u, € WLN(Q; RY) such that up, — u weakly in
WLN-1 y isaffine, {det Vu,} is bounded in L!, and still

det Vu, — det Vu + Hs,

where pu, is a nonzero Radon measure singular with respect to £V, Let
us consider a nonincreasing smooth function % : [0,00) — Rsuch that

T for0<r<1,
Y(r) =

—Z forr>2,
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and set
(un)1(2) = "”‘p“ cos (kp),
(up)a(z) = “"2—;3 cos Y (kp),

(un)3(z) == z3 sinyp(kp),

where p = \/:ril +z2§. Then un, — u, where u(z) = (0,0,z3), and the
weak* limit of {det Vu,} is equal to detVul®™|B(0,1) + ps, where the
density of the singular measure g is supported on the z3-axis.

Theorem 3.3. If the sequence {u,} C WLV (Q;RN) converges to u in
LY (RN, if {un) is bounded in WHN=V(Q:RY), and if det Vu, > p
for some Radon measure ., then
dp
achy
The two theorems above are sharp, in that they are complemented by
the following result.

=detVu a.e.z€ Q.

Theorem 3.4. Let u € WLV(Q; RV).
(i) Let p be a Radon measure on_ Q,and let 1 < p < N —1. Then
there exists a sequence {un} C CYQ;RY) such that

uy = uin WP RY)  and det Vu, = p.

(ii) Let f_ € LI R), 1 < g < +0o. Then there exists a sequence
{un} € CHO;RY) such that

up, = uin WHP(Q;RY)  and det Vu, — f in LY.

Finally, we notice that the argument of the proof of Theorem 3.1
may be used to provide an alternative proof for the following lower
semicontinuity result of Dal Maso and Sbordone [23] and Celada and
Dal Maso [16] (see [32], and also the paper by Fusco and Hutchinson
[36] for analytical proofs which do not need Geometric Measure Theory
tools such as currents).

Theorem 3.5. Let u, € WHN(Q;RY), u, = u in LY(Q;RY), and let
{M(Vuy)} be bounded in L. If g is a nonnegative, convex function,
then

/ g(det Vu) dz < liminf / g(det Vu,) dz.
Q n—oo )

We end this section with a brief overview of some recently obtained
relaxation results for quasiconvex and polyconvex energies (see [1], [12],
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[30], [33], [31], [46], [49]). Iff: @ x R™*N¥ — R is a Carathéodory
function, then the effective (or relaxed) energy is defined as

Fpq(u; ) :== {1;1f}{hnn_l){)l.}f/Q f(z,Vup)dz : u, € W:ﬁf, Up—u in Wl’p}

First we consider the case where

f(z,§) == g(det ),

g : R — [0,+00) is a convex function. We have shown that (see [32])
Fo,n(u; ) > / g(detVu)dz ifp>N —1,
Q
and if p > N — 1 then (see [12], [31])

Fyn(u Q) = / g(det V) di + 1o (9)
9]

for some Radon measure p, singular with respect to the Lebesgue
measure £V . For a general f, and under the growth condition

0< fz, &) < C(1+[€]%)

and

>0 -
p N q,

we have N
Fpq(u; ) = hy L7 [Q + s,

where (see [1])

hy < Qf(z, Vu)

and p, is a singular measure. In the case where f = f(£), we have

hy = Qf(Vu), (3.5)
where Qf stands for the quasiconvexification of f, precisely,

Qr(e) = inf{f(D )

)

S E+Ve@)de: e C2W; R”).}

This may no longer be valid when f depends also on x and p < q.
Indeed, Gangbo [37] has constructed an example where

f(z,€) = xk(z)|det £,
and h,, = f if and only if LY (8K) = 0. Hence, in general, (3.5) fails and
[z, Vu) < hy

is the only known lower estimate.
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4. A CHANGE OF VARIABLES FORMULA
IN BV

In the previous two sections we dealt with properties of det Vu for
u € WHP(Q;RY) and for certain ranges of p. Here we go outside the
Sobolev spaces framework to handle situations relevant to the study
of phase transitions of incoherent phase deformations, to the analysis
of fracture, or to tackle problems where the growth of bulk energy
densities is at most linear. In the latter case minimizing sequences may
convergence to macroscopic states which are only in BV (see [6], [34]).

Given u € BV (§;RY), its distributional derivative may be written as

Dp=Vu LVN|Q+ (ut —u") @ vHN " S(u) + Clu),
where HV-1 denotes the (N — 1)-dimensional Hausdorff measure, S(u)
is the jump set of u, which differs from the complement of the set of
Lebesgue points, I'(u), by a set of H¥~! measure zero, C(u) is the
Cantor part, 4t and u™~ are the traces of uon S(u) at x, v(x) is the unit
normal vector to S(u) pointing towards the side of u™ (see [25], [62]).
Here, and in the sequel, we assume that u is appropriately represented,
namely that
u(z) = lim LN(B(z,7))” / udy
B(z,r)

r—0+

whenever the limit on the right exists.

We remark that Vu does not have the structure of a gradient, i.e. it is
not necessarily curl-free. Indeed, according to a result by Alberti [3] Vu
may be any L! function. In spite of this degeneracy, the usual change
of variables formula still holds (see [29]).

It is well known that the change of variables formula

/ 2)|Ju(z)] = / > ul@)dy (4.1)

TEANGNu~L(y)

holds for a set G of full measure in €2, provided u is an almost everywhere
approximately differentiable function (hence, if u € BV, u has the
N-property on G, and v is a measurable function on £ such that
v|Ju| € L1(2). Here Ju is the Jacobian computed from the approximate
derivative, which, in turn, coincides a.e. with the absolutely continuous
part Vu of Du. We recall that u is said to have the N-property on G if
LN(u(E)) = 0 for each set E C G with LY(E) = 0.

In the case where v = 1, equation (4.1) is often called the area formula.

Federer (see [26], 3.2.1) showed that u has the N-property on G if

GcC {m :ap limsuplu(yﬁ@i)—| < oo}
Yoz ly — |
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In [17] another class of admissible domains was proposed. We denote
by M({Du)(z), the Hardy-Littlewood maximal function of the total
variation measure |Du| computed using the balls contained in Q. As
it is usual, it p is a finite, positive Radon measure on 3, we define the
maximal function of pas (see [58])

M(p)(z) := sup {—%

and it can be shown that (see [4])
[ZN({x € Q: M(p)(z) = +00}) =0.
Theorem 4.1. Let u € BV(Q;RY) and let
G C {z : M(|Du|)(z) < oo}

be a measurable set with LN (G) = LN(Q). Then the change of variables
(4.1) holds on G for any measurable function v such that v|Ju| € L'(Q).

Proof.  Set

0<r< dist(m,aﬂ)} ,

(W, = EN(B(a:,r))_1 / udy.

B(z,r)
By Poincaré’s inequality,

(Warj2 — Wae| < CLY(B(z,r))™! / lu(y) — (w)ar] dy

B(z,r

<creBen) [ 1oy (42)
B(e.r)

< CrM(|Du|)(z).

Iterating this inequality for r, 1/2, r/4,..., we obtain
lu(z) — (u)z,r| < CrM(|Dul)(z)
for all z € G. Using Poincaré’s inequality once again on a ball B(x, R),
where R = 2dist (x,y) and B(x, R) is contained in £, we obtain the
Bojarski-Hajlasz inequality (see [11])
[u(y) — u(z)| < Cly — z|(M(|Dul)(z) + M(|Dul)(y)).

Hence the graph of |G can be covered by a countable union of graphs of
Lipschitz functions and thus from the N-property of Lipschitz functions
we conclude the N-property of © on G. L

A consequence of the above theorem results in conservation of volume.

Corollary 4.2. Let v € BV(S:;RN) be such that \det Vu(z)| = 1 for
a.e. z €, and let

G C {z : M(|Du|)(z) < oo}
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be a measurable set such that
£V (w(G)) = £¥(6) = LV (@),
Then for any measurable set A C G we have
LY (u(A)) = LN (A).

Next we present another another version of change of variable formula
for BV functions. Namely, we show that if the absolutely continuous
part of Vu is in LY, we may essentially enlarge the set G for which (4.1)
is valid. This is a generalization of change of variable formula for W1V
functions by Maly and Martio [48] and Maly [46], following some ideas
from the above mentioned works (see also [43], [44], [47], [50]).

If a function u € BV (Q; RY) then we write

Gi(u) = {z€Q:M(|(Du)|)(z) < 0},
Go(u) = {a: € Q0 : there exists a € (0,1) such that

lim sup r_N_"/ lu(y) — u(z)|dy < oo}
B(z,r)

r—0+

We recall that for £N ae. z € Q

tim [ o Ju0) () = Vute) - (=)l dy = 0,

=0t

therefore for all & € (0, 1)

lim sup r_N_a/ |u(y) — u(z)|dy = 0;

r—0+ B(z,r)

hence
LN (G1(u) N Ga(u)) = LY (D).

Theorem 4.3. Let u € BV(Q;RV) be such that Vu € LN (Q). Let
G C G1(u) N Ga(u)

be a measurable set with LN(G) = LN(Q). Let v be a measurable
function on  such that v|Ju| € LY(QY). Then the change of variables
formula (4.1) holds on G.

Proof. We will verify the N-property of uon G. Let E C G be a set of
measure zero, and choose an open set U C 2 containing E. For z € E

write
TE 1= 27"1'0, By := B(z, 1), with B(z,r) C U.
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Fix a point z € E, and find an « € (0,1) according to the definition of
G2. With each £ = 1,2,... we associate a value pg = pg(z) > 0such
that

1Be N {y : luy) —ulz)] < pe}] > LY(Bk)/2,

Ben {y: lul) —u@)| > o} = VB2 Y
Notice that, by Chebychev’s inequality and the definition of Go,
or < Cla)rg (4.4)
for some C(z) > 0. We write
Vi = {y€ Br:luly) —u(=)| < pil},

be = / (1 + |Vul¥) dy,

I

and set
I, = {k::b;c Zrk""},
I, = {k : 2rk_N°‘bk > suprj_Nabj},
Jzk
I=Iz) = LIUDL.

If I; is finite, then the sequence {rk_N“bk} is bounded and thus Iy is
infinite. It follows that I} U Iy is infinite. We claim that

kel = pY < K(x)/ (1 + |Vu|") da, (4.5)
Vi

where K = K(z) is a positive constant which may depend on x and u
but not on k. Let 7 be an auxiliary smooth function with values

T = {(Plc ~pe41)T on (=00, pri1), (4.6)

B 0 on (Pk, +OO))
and satisfying

0<m<(pr—prs1)", 0<—m <2
Set
uk(y) = i (Ju(y) — u(z)|).
By the chain rule (see Ambrosio and Dal Maso [5]), u € BV (By;RV)
and
[Dug| < 2|(Du)s| + 2|Vulxv,- (4.7)

In order to estimate (px — pr+1)T, without loss of generality we may
assume that px > pr+1. We have

{y : ue(y) = pe — pr1 } = 27V 1LV (By),
[{y : uk(y) = 0} > 271 LN(By),
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and thus by a Poincaré type inequality and (4.7) we obtain

Pk — Pe+1 < CT;N-H/ | Dug| <
B (4.8)
< CriM(|(Du),|)(z) + Crk‘N‘H/ |Vu|dy < KbV,
Vi

where we have used the fact that M(|(Du)s|)(z) < +oo and that
b > LN(By)/2. Now, if k € I, then by (4.4) we have

ot < Kri® < Kby,

and this asserts (4.5). If k € I, then by (4.8)

N N
pe < S (o — i)t <K S 0N <K S (rifmen/™ < KbV,
>k ik ik

which yields (4.5) as well. We conclude the proof using Vitali’s covering
argument. We write the set E as

oo
E= ) En En:={z€E:K(z)<m}
m=1

It is enough to show that LN (u(Ep)) = 0 for a fixed m € {1,2,...}.
We cover u(Ep,) with balls B(u(z), px + i) where z € FE and k € I(z)
Notice that we add 7 to pi only to avoid degeneracy when pr = 0. We
have

ri < 0L (By) <20LN (V). (4.9)

Since I(x) is infinite, by virtue of (4.4) we obtain a fine covering of E;
hence; hence we may extract a disjoint subcover {B(n)} of u(E) up to
a set of measure zero. If B(n) = B(u(z),px + rx) is one of selected
balls, then the corresponding radius pg + 7 is denoted by p(n), and the
corresponding set Vi by V(n). Notice that the sets V(n) are disjoint.
By (4.5) and (4.9) we obtain

M) SCY ot <Om Y [ (141l dy

<Cm / (1+ |Vul™) dy.
U

A suitable choice of the set U allows us to deduce that the right hand
side on the above set of inequalities may be rendered as small as we

want. Hence the N-property is verified, which, in turn, implies that the
(4.1) holds as well.
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ON MODELLING

OF CZOCHRALSKI FLOW,

THE CASE

OF NON PLANE FREE SURFACE

Jan Francii

Abstract: The flow of the melt during the industrial production of single crystal
from melt by Czochralski method is called Czochralski flow. The
mathematical description of the flow consists of a coupled system of
six P.D.E. in cylindrical coordinates containing Navier-Stokes equations
(with the stream function vorticity and swirl), heat convection-
conduction equation, convection-diffusion equation for oxygen impurity
and an equation describing magnetic field effect.

The paper deals with analysis of the system in the form used for
numerical simulation. Weak formulation and existence of the weak
solution to stationary and evolution problem is studied. The results
from paper [J. Franci: Modelling of Czochralski flow, Abstract and
Applied Analysis, 3 (1998) No.1-2, pp. 1-39] are extended to the case
of non-plane free surface of the melt.

Keywords: Navier-Stokes equations, Czochralski method, single crystal growth,
operator equation, existence theorem, weighted Sobolev spaces, Rothe
method.

1. INTRODUCTION

Czochralski method is one of the most important methods for
industrial production of silicon single crystals. It consists in pulling up
the single crystal from silicon melt in a device called Czochralski device.
Since impurities in the melt (mostly oxygen atoms from the silica (SiO5)
walls of the pot) build in the single crystal, the producers are interested
in character of the melt flow. The flow is not visible, it is very hard
to measure during the procedure, therefore producers are interested in
mathematical modelling of the flow on computers.

Applied Nonlinear Analysis, edited by Sequeira et al.
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134 Francd J.

We shall call the flow of the melt in the Czochralski device during
the single crystal growth Czochralski flow. Mathematical model of
the flow used for numerical simulation is represented by a system of
six coupled partial differential equations (2.1)—(2.6) with boundary and
initial conditions.

A brief derivation of the system, weak formulation and proof of
existence to stationary (4.3) and evolution problem (4.4) is introduced in
[3]. In this paper we extend the result in the following way. We remove
the assumption of plane free surface of the melt, in this paper we assume
that the free surface of the melt is known and axially symmetric. (Let
us remark that free surface does not mean free boundary, the problem
is not “free boundary problem” since the shape of the free surface of the
melt is considered to be known.) This is a non-trivial generalization.
We derive conditions on free surface [y for swirl £2 and vorticity S. In
later we neglect a term corresponding to curvature. On the other hand
the curvature was not taken into account in (2.8). In weak formulation
due to special type of boundary conditions (2.22) on the free surface
I's we must change bilinear form for 2 to (3.7) to enable application of
existence result for weakly continuous operators [2] and to follow Rothe
method in evolution problem [4].

This research was initiated by professor Necas. In a small group leaded
by professor Litzman at Masaryk University in Brno we were developing
numerical simulations of the Czochralski flow for Tesla RoZnov company.
In 1990 in a conference I referred on the model and its numerical
computation. In discussion professor Nedas proclaimed that he thought
that it was possible to prove existence of the weak solution to this
problem.

He was true but it took several years to overcome many troubles
connected with the problem. The existence results were first proved
only for small material constants or,ac,Br, Bc, see [1] in 1992.
A discussion with Dr. Knobloch inspired me to find a way of removing
these restrictions. In 1996 professor Tobiska inspired me to try to
generalize the result to the case of non-plane free surface of the melt.

Most paper dealing with modelling of Czochralski flow were devoted
to numerical experiments and schemes for numerical computations. On
the other hand there is an extensive bibliography dealing with the
Navier-Stokes system and its analysis, e.g. [4]. But the Navier-Stokes
system is usually uncoupled, formulated in terms of velocity vector
(not in terms of the flow function) in Cartesian coordinates (not in
the cylindrical coordinates) and mostly with homogeneous Dirichlet
boundary conditions. Only in [6] there is a mathematical analysis
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including existence proof and numerical experiments to the model of
Czochralski flow formulated in Cartesian coordinates.

In the paper we give a precise weak formulation of the problem and
prove existence of the weak solution. We investigate the system in the
form which is used for numerical simulation. Thus we use cylindrical
coordinates, Navier-Stokes equations with the flow function and derived
variables Svanberg vorticity S, swirl {2 etc.

The problem is rather complicated. Special difficulties arise from
the so-called “wet axis”, in the cylindrical coordinates the coefficients
have singularities, which involves use of weighted Sobolev spaces, see [5].
The Navier-Stokes equations are formulated in terms of stream function,
vorticity and swirl. They are coupled with heat convection-conduction
equation and oxygen concentration convection-diffusion equation. The
last equation in the system describes the effect of the axial magnetic
field. The system is evolutionary but not in all unknowns, it is elliptic
in x.

In this short paper we follow notation of [3]. The parts formulated in
details in [3] are only mentioned. More space is devoted only to parts
which differ from the comprehensive paper [3].

2. MATHEMATICAL MODEL

We shall deal with modelling of melt flow during single crystal growth
by the Czochralski method in a device called crystal puller or Czochralski
device.

2.1. Czochralski device

The heart of the device consists of a melting pot (crucible) set on
a turning base. Polycrystalline silicon is put into the pot (crucible) and
heated by electric heaters around the pot. When the silicon is melted,
a single crystal nucleus tightened in a turning hanger touches the surface
of the melt. The single crystal starts “growing” as the silicon melt
contacts the silicon solid. Both the pot and the hanger rotate around
the common vertical axis to obtain the axially symmetric single crystal.
It grows in a protective inert atmosphere and often in an axial magnetic
field produced by an electromagnetic coil.

Our modelling is confined to the region V of the melt in the melting
pot. We assume axial symmetry of the problem. Derivation of the
system of partial differential equations with corresponding boundary
conditions is in [3].
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rotating single crystal
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cooling by flow of a gas
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silicon melt

electromagnetic coil

C
1

Fig. 1. Czochralski device

2.2, Geometry of the problem

We assume that the region occupied by the melt is constant and
known. It is denoted by V in Cartesian coordinates. In the cylindrical
coordinates (7, ¢, z) the region V corresponds (up to a zero measure set)
to G x (0,27). Thus the domain G represents a radial cross-section of
V in the r, z-half plane (r > 0).

Due to axial symmetry of the problem all variables are independent
of ¢. The problem is considered in the domain G. Boundary I' of the
domain G is divided into four parts, see Fig. 2:

Iy, — contact with the bottom and wall of the melting pot,

I's — free surface of the melt,

I'. — contact with the crystal and

I'y — axis of the symmetry.
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In [3] we assumed that the free surface of the melt has a plane shape,
in this paper we admit non-plane but known and axially symmetric free
surface of the melt.

z
I, I
.
I, G I
Tr——>
Fig. 2. Domain G and its boundary
2.3. System of differential equations

The mathematical model of Czochralski flow usually used in the
literature dealing with its numeric computations consists of the following
coupled system of differential equations:

S 190 6 d (2?
2% T oo (ruS) ur (wS) + £ (r_4> = (2.1)
S [L2 110 g +8ZS e LT 100 1Yy
ror [ror 02| T Trar T Cror TOmig
o 190 0
5 g, )+ -(wh) = (2:2)
_(rta[50 (02 0% dx
N rc’)r[ Br( )]+~?:|—a,n—8;,
or 10 d 19 (oT\ K 07T
B + ;E(TUT) + EE(U)T) =vr [;5 (T 31‘) + 32| (2.3)
oCc 190 19 ¢ oC oC
B + —8—( uC) + 92 (wC) Ve [;E (r6_1) + W} ) (2.4)
8 (loy\ 10% _
or (7‘ d'r) rdzr S, (25)

or
dg(lax> 1% _ 100 (26)

r Or r 822 ;E
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for unknown functions S,$2,T,C,%,x, where u = u(y),w = w(y),
see (2.7).

24. Comments to the equations

Derivation of the system can be found in [3]. In this paper we give
brief comments only.

The first equations (2.1), (2.2) with (2.5) represent the system of
Navier-Stokes equations for incompressible viscous flow in the cylindrical
coordinates r, ¢, z with the corresponding components of velocity vector
u,v,w. The system is formulated in terms of Stokes stream function %,
Svanberg vorticity S and swirl §2 instead of velocity components u, v, w.
The unknown {2 = rv called swirl is angular moment. The equation
(2.2) represents the equation for ¢-component of velocity v rewrittenfor
2. Variable S called Svanberg vorticity is a negative 1/r multiple of the
(p-component of vorticity w

5=-= Z_=

re=rlor oz

1 1[0w 3u]

The equation (2.1) represents equations for r, z components of velocity

u, w rewritten for S. Continuity equation enabled to introduce the

Stokes stream function % replacing the velocity components u, w by
10y 10y

Combining the last two equalities we obtain (2.5) — the relation between
5,9.

The equation (2.3) is heat conduction and convection equation for
the unknown temperature 7. The equation (2.4) models diffusion
and convection of oxygen in the melt; the unknown C is oxygen
concentration. The last equation (2.6) describes the effect of magnetic
field. The unknown x is the stream function for induced electric current
in the melt.

The equations are coupled: convection term with the stream function
1 appears in (2.1), (2.2), (2.3) and (2.4), stream function y is in (2.2).
Variables T, C in (2.1) describe natural convection caused by buoyance
due to density gradient of the melt in gravitational field.

In the equations two types of operators appear: a generalized Laplace
operator and a convection operator. Denoting the former by Ag and the
latter by B

_ kof 9 ¥ 1 (8 8f Oy of
Ak(f)——;g—m—@, B(’ﬁ;f)—;(gg—ﬁg) (2.8)
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and inserting from (2.7) we can rewrite the system as follows:

as 10 /.,
5 +vA(S) + By, S)+Fa(!) )= (2.9)
g 19T 19C 1%
ST o Ty T M2 g2
N _ Ix
5t A + B, D) = —an 5, (2.10)
oT
57 AT + B,T) =0, (2.11)
%% +vcAL(C) + By, C) =0, (2.12)
Aa(y) =18, (2.13)
N
Al =-5_- (2.14)

2.5. Boundary conditions

The system of differential equations is completed with boundary
conditions:
— at the melting pot wall I}:

R=r?0,, T=T,, C=Cp, %»=0, Vyp=0, x=0, (2.15)

— at the crystal interface I:

oC
N=r%0., T=T, 5, =0, ¥=0, Vy=0, x=0, (2.16)
— at the free surface I:
10T 10C a1 2
S—ﬁ'[‘;'—‘—ar +ﬂc;“—ar , _(9'n - ;-Qnr = 0’ (217)

orT oc
— =gr~vwT, — =gc—7cC =0 =0
o =97 ~nT, Z-=gc-C, ¢$=0, x=0,
— and at the symmetry axis [j:
oT aC
0 —

2=0, F-=0, 2==

0, v=0, V=0, x=0. (2.18)
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2.6. Comments to the boundary conditions

The forced convection is caused by rotation of the melting pot and by
rotation or counter-rotation of the crystal. Denoting the angular velocity
of the pot by o, and of the crystal by o, we obtained nonslip conditions
for u, v, w on I, UI, which yield the conditions for £2 on I, and I,. On
I'; and I, the normal component of the velocity vector equals to zero.
Thus the stream function % has zero tangent derivatives on the whole
boundary and we put ¢ = 0 on I'. Moreover V4 = 0on I, U I, UIj.
Similarly, due to insulating boundary the stream function for induced
electric current satisfies x = 0 on I'.

We assume that the temperature 7T is known at the pot walls and
crystal interface. At the free surface we consider a linearized law for heat
flow. At the axis I, the symmetry conditions are assumed. Concerning
oxygen concentration C we assume that it is known at the pot walls, is
symmetric at the axis and no segregation occurs at the crystal interface.
On the free surface we consider a linearized law for oxygen flow due to
evaporating. This condition is often replaced by C = 0.

2.7. The surface tension on the free surface

In contrast to [3] we assume the non-plane free surface of the melt.
We shall deal with the conditions in details.

On the free surface of the melt the surface tension variations occur
due to temperature and concentration gradients. This surface tension
variations produce shear stress which generates a surface flow — the
so-called Marangoni effect.

We assume linear dependence of the surface tension A on T and C

A = A[1 — constp(T — T,) — conste(C — Cy)). (2.19)

The shear stress is given by the surface gradient of A and it represents
the only tangential surface force acting on the free surface. Denoting
the stress tensor by 7 we have

t-VA=t-7n (2.20)

for any tangential t and the normal vector n = (n,,0,n;) to the
surface.  Between the stress tensor 7 and the stretching tensor
e(v) = (Vv + (Vv)T)/2 we assume linear dependence (Newton law)
T = 2vpe(v). Combining these relations we obtain

t-VA=vpt [Vv+ (Vv)T]n (2.21)



On modelling of Czochralski flow 141

In our case of axially symmetric free surface the curve Is can be
described by functions o,, o, satisfying (o%)? + (0%)2 = 1as follows

Fy={(r,z)| r=0r(s),2 =0:(s) s€(84,)}-
In cylindric coordinates we have
n = (n,,ny,n;) = (0;,0,~0;).

We choose a tangent vector, transform the relation (2.21) into cylindric
coordinates and rewrite it for our unknowns.

First in (2.21) we take the tangent vector t,in cylindrical coordinates
t, = (0,1,0). Since A, u, w are independent of ¢ on the plane surface
after some computation we obtain

v ov 1
0=—-vp (Enr+$nz—;vm)

which rewritten for 2 yields the condition

—%—;Qnr=0, onFS. (222)

Then in (2.21) we take the tangent vector t, in the r, z plane, in
cylindrical coordinates to = (0.,0,0.,) = (-n,,0,n,). After some
computation we obtain

- (22 )
as P or 0z Tor T2 8z Or z T/

Since normal component of velocity is zero, its tangent derivative is
zero, too. Neglecting the second derivatives of o,,0, the condition
0/0s(un,; + wn,) = 0 yields

Jw Ou ou o 0w ,
2(5—-37)’"‘,-712'}'25;”1. Enz—().

Combining these relations we obtain

du Ow _ 0A

0z or  0s

The left hand side equals to —Sr. Inserting for A we obtain the condition
for S in (2.17) with material constants 8y and G¢.
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2.8. Summary of the data

The material constants used in the system are:

v > () — silicon melt viscosity,

vy > 0 — thermal diffusivity of the silicon melt,

ve > 0 — oxygen diffusion coefficient in the silicon melt,

ar,ac — coefficient of buoyance caused by thermal and oxygen
volume expansion in the gravitation field.
The other “data” in the system are:

Br,Bc — coefficients of condition describing the surface flow in the
free surface,

yr = 0, g7, 7¢ > 0, go — data in conditions describing the linearized
heat and oxygen flow on the free surface. They depend also on the
surrounding walls and on the flow of cooling gas.

3. INTEGRAL IDENTITIES

The integral identities are the base for weak formulation of the
problems. Since the identities except for (3.2) are same as in [3] their
derivation will be only outlined.

Lemma. Let the functions S,02,T,C,v,x satisfy the system of
equations (2.9)—(2.14) with the boundary conditions (2.15)—(2.18). Then
they satisfy the following integral identities

o (9) +0 @@ -0 (4T AW ) +

190 2\ = 1oy 10y
+/(;-135;(.Q)¢dG+am( Bz’raz) (3:1)
(el D)o a2, ) |

oR 02 - 2\ _ x 180
(dtr ) T)-i—ua (.Q,.Q)+b(¢,!2,;§) —am( az) , (3.2)
or -~ ~ ~ ~
(50 T) +ora@ D +0@ T D) = vr [ rlgr—mDTar, (33
I,

(@ , é) +vear(C,8)+b(,C; 0) = ve /F r(9c—1cC)E A, (3.4)

ot
~ 100 ¥
a—l(X’X) = (_ Y] %) (35)

r 0z
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with test functions z; f),f’, C, X satisfying
=0 onT,
2=0 onl- Iy,
T=0 onl,UTl, (3.6)
C=0 on Iy,
x=0 onrl.

In the identities (u,v) means the scalar product with weight T

(u,v) :/ ruvdG,
G

the bilinear forms corresponding to operators Ay are defined by

. kfOudv Ouodv 1
ak(u,'v)—/cr (6r6r+azd)dG k=1,-1,

. ~ 20 (R\ 8 (R 18000
a_I(Q,Q)—/l 37'( )31‘ (r2)+rdz (')z]dG (3.7)
(e, ) =
B 18y 18y 1 0% 1 0%  10%18%
= J.r [ar(rar)ar(rar)+2?araz?araz+7ﬁiﬁ a6
(u,v)pa=_/ruv dar

and the trilinear form corresponding to operator B(u,v)is given by

On the other hand if the functions 1,82, T,C,x_satisfy the derived
integral identities for all smooth test functions 1,82, T,C,x satisfying
(3.6) and the functions 1,82, T,C,x are sufficiently smooth, then
they also satisfy the system of differential equations (2.9)—-(2.14) with
boundary conditions (2.15)—(2.18) where S is given by (2.13).

3.1. Comment to derivation of the identities

All identities are derived in usual way. Each equation of (2.10), (2.11),
(2.12), (2.14) is multiplied with a test function satisfying the conditions
(3.6) and the weight r in case of (3.3), (3.4). In the other equations the
weight is 1/r. The second order operators Ag (k = 1,—1) are converted
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using integration by parts in the plane to the corresponding bilinear form

ag:
/ * Ap(u)v dG = ag(u,v) — / rk @vd['.
G r On
In the curve integral we use boundary condition for the unknowns and
the test functions.

The equations (2.9) and (2.13) are “processed” together since on
boundary I'—I’s the second order equation (2.13) for ¢ has two boundary
conditions ¥ = 0, 91/On = 0 while equation (2.9) for S has no boundary
condition. Thus we express S by 3 using equation (2.13)

S=85@)=r""A.1(¥)

and insert it into equation (2.9) to obtain a fourth order equation for
which has two boundary conditions along the whole I'.

The equation (2.9) is multiplied by 7 and integrated over domain G.
The first integral can be rewritten to the form of bilinear form a_;{u,v).
The second integral with operator Aj (r‘QAﬁ 1(z))) is transformed to the
bilinear form @ by double “integration by parts” and conversion of two
“mixed” terms with integrand of type ab to the form c¢. In the integrals
over ['s the boundary conditions are used.

3.2. Identity for swirl Q

As in the other cases we multiplied the equation (2.10) by 2/r and
integrated over G. The problem was with the integral containing A;(§2).
In case of plane free surface the Newton condition on Iy reduces to
Neuman condition and one can use the bilinear form «aj(%,v). In our
case of non plane free surface the condition (2.17) is not convenient since
T has opposite sign and it would cause troubles in proof of coercivity.

Thus we shall use other integration by parts

1 ~ 11830 (02 oM~
-/;;;A‘I(Q)Qdc———-/c;\i;g [T E(r—z)}'l'gz?jl 124G =

~ g (2 2 100 =~
_ % _ 3 sl o -
=a*(§2,12) /F[r 5 (rz)nr + . anl dr,

r2
where we obtained other bilinear form a* | ({2, £2) defined by (3.7). Since
a (12 on 2
7‘25 (ﬁ) Ny = Enr - ;.Qn,

we can use the boundary condition to eliminate the boundary integral.
The other terms are converted in usual way.
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4. SOLVABILITY OF THE PROBLEMS

The following weak formulations and solvability of the problems
are similar to those in [3]. We choose convenient function spaces,
the problem is reformulated into an operator equation with a vector
of unknowns.  We shift the problem to homogeneous boundary
conditions. In the stationary problem existence proof consists in
verifying assumption of an abstract existence theorem. In the evolution
problem we follow Rothe method.

4.1. Function spaces

For the unknowns we introduce weighted Sobolev spaces with weight
r or 1/r such that the bilinear forms are continuous. Thus the forms
a1 (u,v), a_y(u,v), a*,(u,v) and A(u,v) define weighted Sobolev spaces
wl(G), Wll/r(G'), Wll/*r(G) and Wf/*r (G) respectively. Namely

1/T(G) {u| a’(u,u) < oo, / lu2 dG < oo} .
GT

The weighted Sobolev spaces are studied in [5].
Then according to various boundary conditions for the test functions
we introduce function spaces denoted by subscript of the unknown

Vy = {$e€WZ(G)|¥=0 onl, V$=0onI-TI},
Vo {R2€ 1/T(G)|-Q=0 on I' — I},

Vi = [TEWHG)|T=0 onl,Url.},

Ve = {CeEWHG)|C=0 onl,},

Vv = {xe€ l/r(G'X 0 onl}.

The bilinear forms define equivalent norms on these subspaces.

Since £2,T,C have nonhomogeneous boundary conditions we
introduce auxiliary functions 2,7}, Cp satisfying these boundary
conditions. We assume

2 e Wi (G), TheWHG), CreW}(G). (4.1)

v, vy, ve > 0’ YTy YC, Om > Oa gr, 9Cc € LQ(PS) . (42)
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4.2. Vector formulation

We gather all the unknowns into a vector U of unknown functions and
all the test functions into a vector V of test functions

U=@RT.Cx), V=027T07%.
We introduce a basic space W for the vector functions U and V
W =W,(G) x W(G) x W (G) x W, (G) x W, (G),

its subspace V of functions with prescribed zero traces for the test vector
V by
V=V, xVopxVrxVexV,

and a vector of functions determining the nonhomogeneous boundary

conditions Uy = (0, £2,, T}, C, 0).

4.3. Stationary problem

We take the integral identities (3.1), (3.2), (3.3), (3.4), (3.5) without
the first evolution terms with time derivative. We multiply them with
positive constants ky, ko, kT, kc, ky, respectively and sum them up. We
choose ky = ko = 1, the constants kr, k¢, ky will be chosen later such
that they ensure coerciveness of the operator.

Summing the identities we obtain an identity containing 17 terms,
we associate them into four groups, the first three represent defining
formulae for operators &, %8.€ : W — V*:

— the first principal linear operator & contains all scalar product
type terms,

— the second convective nonlinear operator .2 consists of all trilinear
forms,

— the third coupling operator ¥ contains remaining bilinear terms,

— the remaining terms form a functional %y on V, [3].

Thus the problem is converted into an operator equation

A(U)+BU)+€U)=F,, U-UyeV.

Finally we get rid of nonhomogeneous boundary conditions. In the
equation we replace the unknown U by U + U, with U € V and rewrite
the equation & (U + Uy) + B(U + Up) + € (U) = & to the form

#(U) + B(U) +€(U) + (V) = Z, (43)

where the operator Z contains all the new terms linear in the unknown
U and #; the other terms. Now we formulate the stationary problem:
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Stationary problem. The function U+U, is called the weak solution
to the stationary problem iff U € V and the operator equation (4.3)
holds on V*

Theorem 4.1. Let the assumption (4.1) and (4.2) be satisfied. Then
the Stationary problem is well defined and admits a weak solution.

The proof of existence of the solution consists in verifying assumptions
of the following existence theorem, see [2]:

The operator equation T(u) = b on a separable reflexive Banach space
V with coercive and weakly continuous (un — u implies T (upn) — T(u))
operator T : V = V* and b € V* admits a solution.

Weak continuity of the operator can be proved using linearity in the
highest derivatives and compact imbedding which makes lower order
terms converging strongly. Coerciveness is ensured by the first term
with &. The second term (#(U),U) = 0 and the other terms can be
made arbitrary small by a special choice of auxiliary functions in Uy with
a cut off function when the convective operator & is estimated and by
a special choice of constants kr, k¢, ky, when the coupling operator € is
estimated. For detailed proof see [3].

4.4. Evolution problem

Using the same vector and operator formulation starting from integral
identities including their evolution terms which forms another operator &
we obtain the operator equation

LEUE) + (1) + B+ E(t) + D)) (U(t)) = Folt). (4.4)

We complete it with initial conditions.

The problem admits a solution. The proof follows the Rothe method,
see [4]. The evolution problem is semidiscretized to a sequence of
stationary problems whose solvability is ensured in previous paragraph.
Using the corresponding sequence of solutions we construct the Rothe
piecewise constant function and the continuous piecewise linear function.
A priori estimates yield existence of a weakly converging subsequence.
Justification of the limit procedure ensures that the limit solves the
evolution problem and completes the proof.
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SYMMETRIC STATIONARY SOLUTIONS
TO THE PLANE EXTERIOR NAVIER-
STOKES PROBLEM FOR ARBITRARY
LARGE REYNOLDS NUMBER

Giovanni Paolo Galdi

Abstract: We show that the two-dimensional stationary exterior Navier-Stokes
problem is solvable for arbitrary large Reynolds number, in the class of
symmetric solutions, provided the corresponding homogeneous problem
has only the zero solution.

Keywords: Navier-Stokes equations, existence, stationary solution, two-dimensional
exterior problem.

1. INTRODUCTION

In his celebrated paper of 1933, J.Leray studied the solvability of an
exterior boundary-value problem related to the Navier-Stokes equations.
In a suitable dimensionless form, the problem can be written as follows

Av=v-Vv+Vp
in 2
V-v=0

(1.1)
v=0 at £ =090
along with the condition at infinity
lim v(z) = Veo. (1.2)

|z|—00

As is known, these equations describe the steady motion of a viscous
liquid F around a body B, translating with a prescribed constant velocity
—¥s, When the motion is viewed from a frame attached to B. In our
dimensionless form, the magnitude of vy can be identified with the
“Reynolds number” of the problem. The vector field v and the scalar
field p are velocity and pressure, respectively, associated with the flow of
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F. Q1 is the complement of B and represents the relevant region occupied
by F, and it can be a domain of IR? or of IR3, according to whether the
motion of F may be considered plane or fully threedimensional.

Undoubtedly, the most significative contribution of Leray to problem
(1.1), (1.2) was to show that, for any prescribed nonzero v there is at
least one solution to (1.1). Moreover, in the case @ C IR?, he also showed
the validity of (1.2), in a suitable generalized sense. D" Therefore, in the
threedimensional case, Leray proved the solvability of (1.1), (1.2) for
arbitrary Reynolds number. However, for  C R?, namely, in the case
of plane flow, he was not able to get the same type of result, since he
could not establish (1.2), in any sense.

The question of whether Leray’s solution satisfies (1.2), and, more
generally, the question of the solvability of (1.1), (1.2) for §2 C IR? has
become the object of deep researches by many authors. Among others,
D.Gilbarg and H.Weinberger [9], [10] have shown that the solution
constructed by Leray is always bounded and that it converges at large
distances, in the mean square over the angle, to a certain vector vg. More
detailed information about convergence can be given if the solution is
symmetric. Specifically, a pair v = (u,w), p is said symmetric if u and p
are even in z2 and w is odd in z9. If B is symmetric around the zj-axis,
and ve, = Ae, with e unit vector along z;, Leray’s construction leads
to a symmetric solution. In such a case, C.Amick [1] has shown that v
tends to vy uniformly pointwise. However, it is not known whether or
not v, = vy (vp may be even zero!) and, consequently, the question of
whether Leray’s solution satisfies (1.2) remains open.

Solvability of problem (1.1), (1-2), with methods completely different
than Leray’s, was considered by R.Finn and D.R.Smith [4], [5], [13], and,
more recently, by me [6], [7]. In these papers it is shown that the problem
has one solution, at least for Reynolds number of restricted size (small
translational velocity). Moreover, the solution is physically reasonable
in the sense of Finn [13], and it is locally unique.

In view of all the above considerations, the fundamental question that
remains still open is whether or not (1.1), (1.2) is solvable for arbitrary
large Reynolds number.

The objective of this note is to give a contribution along this direction.
We shall limit ourselves to give the main ideas of proofs, referring the
reader to a forthcoming full detailed paper, that will appear elsewhere.
Denote by (NS)p the problem (1.1), (1.2) with B = 0, where (1.2)
is understood in the sense of pointwise, uniform convergence. Clearly,

MThe validity of (1.2), pointwise and uniformly, was first proved by R.Finn [3].
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the zero solution v = 0, p=const is a solution to (NS)g. Furthermore,
assume B symmetric around the z;-axis (say) and denote by C the class
of symmetric pairs v, p with v having a finite Dirichlet integral. Our
result states that if the zero solution is the only solution to (NS)g in
the class C, then problem (1.1), (1.2) is solvable in C, for arbitrary
large Reynolds numbers and the corresponding solutions are physically
reasonable. In particular, denoting by M the set of A for which (1.1),
(1.2) has at least one symmetric solution associated to a given ve = Ae,
we show that M contains an unbounded set of the positive real axis. @

Stated in a different way, for our result to be true it is sufficient
that every symmetric solution to the homogeneous problem (NS)g with
v having a finite Dirichlet integral is identically zero. We wish to
emphasize that the problem here is not related to local regularity of
solutions to (NS)g (they are real-analytic in Q) but to their behavior at
large distances.

The paper is organized as follows. In section 2 we collect some
known results concerning Leray’s solutions. Section 3 is devoted to
sketch the proof of a result which is crucial for the proof of our main
theorem. The result shows, in particular, that the velocity field of
any symmetric solution constructed by Leray’s method is bounded from
below by a constant (depending only on ¥) times a suitable power of A
(see Theorem 3.1). To our knowledge, this is the first explicit relation
between these two quantities. Finally, in Section 4, we give a proof of
our main theorem.

Throughout the paper we shall use standard notations for function
spaces. So, for instance, LI(A), W™%(A), etc., will denote the usual
Lebesgue and Sobolev spaces on the domain A, with norms || - |44 and
I| - lm,q,.4, respectively. Whenever confusion will not arise, we shall omit
the subscript A. Moreover, we represent a function, say u, at a point in
) by either u{z;,z2) or u(r,8) in polar coordinates. This latter is used
as a notation for u(r cos8,rsin8).

2. SYMMETRIC LERAY SOLUTIONS AND
RELATED PROPERTIES

In this section we shall consider Leray solutions and recall some related
properties that we shall use later in the paper. Even though several of
the results we shall state continue to hold for more general situations, we
shall restrict our attention to the class of symmetric solutions. To this
end, we denote by B a smooth compact, connected set of R?, symmetric

@Without loss of generality, we may take A > 0.
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around the zj-axis. We also denote by % its boundary, and by  its
complement. We take the origin of coordinates in the interior of B and
assume, without loss, B C {|z]| < 1}. Finally, we set

Qr={z€Q: |z| <R, R>1}

Let A > 0 and let e be the unit vector (1,0). Then, by a symmetric
solution to the exterior Navier-Stokes problem in §2 corresponding to A,
we mean a pair constituted by a vector field v = (u,w)and a scalar field
p, where u and p even in T2 and w odd in x9, satisfying the following

equations
Av=v-Vv+ Vp
in 2
V.ov=0 (2.1)
v=0 at ¥
along with the condition at infinity
lim v(z) = Xe. (2.2)

|z]—=o00

A solution to (2.1)-(2.2) was sought by Leray [12] by means of the
following procedure of “invading domains”. Let {Rg}renw be an
unbounded, increasing sequence of positive numbers, with R > 2. For
each k, consider the sequence of problems:

Avg = vy - Vug + Vg
in Qpg,
V-v, =0 (2.3)
ve=0 at %, '
ve = Ae at [z| = Ry.

Combining the work of Leray with classical regularity theory (see,
e.g., [7]) we obtain the following result.

Lemma 2.1. There exist a subsequence of {vk,px} ~that we still denote
by {vk, pr}- and two fields v = (u,w) and p such that

@) / |Vue|? < M, for some M depending only on & and X;
Qr,
(i) v € C®()N CHY), p € C®(Q) NCYY), for all bounded
subdomains SV ;
(i) vk — vligary + 1P —Pllcr@y — 0 as k — oo;

(iv) wv,p is symmetric and satisfies (2.1),
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(v) Vv e L*(Q) and the following energy inequality holds

[1vol < =xe- [ Twp) n, (2.4)
Q x
where T(v,p) = Vv + (Vv)T - pl.

Throughout this paper, solutions v,p to (2.1)-(2.2) described in
Lemma 2.1 will be referred to as symmetric Leray solutions.

As is well-known, Leray’s result recalled in Lemma 2.1 does not
establish the validity of (2.2) for v. In fact, it does not even ensure
the boundedness of v or of the approximating velocity field wvg. These
issues were later considered by several authors. We will collect the results
we need in the following lemma, where part (i) is due to Gilbarg and
Weinberger [9], [10], part (ii) is due to Amick [1], and part (iii) is proved
by Amick [2] in conjunction with a result of Smith [13]; for part (iii), see
also [7], Section X.6, and [8].

Lemma 2.2. (i) There exists a positive constantCy depending only on
A and ¥ such that

I'Uk(l')l <Cy, forallze Q3Rk/4‘

Thus, as a consequence of Lemma 2.1 (iii), v is bounded.
(ii) There is voo € IR? such that

lim v(2) = Voo, uniformly.
|z| o0

(iil) Ifvee # 0, we have, for all sufficiently large |z
[v(@) ~voo| < clz| ™2, |Vu(x)| < clz] " log? |z], Ip(x)| < x|~ log|al,

with ¢ independent of x.

This lemma does not ensure that v« = Ae. However, one can prove
the following result.

Lemma 2.3. Let vy be as in Lemma 2.2(ii). Then, vo = pe, where
w = aX, for some a € [0,1].

3. A KEY RESULT

Throughout this section, we denote by {vy = {ug,wy), px} a symmet-
ric solution to (2.3) and by wy = duy /09 — Qwy /Ox; the corresponding

vorticity. We also set
— 2
Dk =/ |V’Uk| .
Qr,
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and 1/4

= (] )"

where v,p is a symmetric Leray solution. Furthermore, we put

oo §(a)

[flm = £ llom ) = max 023" 9z

0<ai+az<m

Finally, we indicate by ¢ a constant depending at most on ¥, and whose
numerical value is not essential to our aims. In particular, ¢ may have
several different values in a single computation. For example, we may
have, in the same line, 2¢ < c.

The main objective of this section is to sketch a proof of the following
key result.

Theorem 3.1. Let v, p be a symmetric Leray solution corresponding to
a given . Then, there exists a homogeneous polynomial P = P(8) with
coefficients depending only on ¥, such that

A2 < P(6).

Remark 3.1. The proof of this theorem is a consequence of several
intermediate steps. Before doing this, however, we wish to point
out a particular, immediate consequence of our result, namely, that
a symmetric Leray solution corresponding to A > 0can never be trivial,
i.e, v = 0, p=const. This was proved for the first time by Amick [1],
Theorem 29. It is not known if the same result is true for non-symmetric
solutions.

Lemma 3.1. The following inequality holds, forall py € (Ry/2,3Ry/4)

2n
2 <e(Det [ ioior, 0)2ds)
0

We recall that the vorticity wy satisfies the following equation
Awg — v Vwg = 0. (3.1)

By using suitable “cut-off ” and “energy” arguments, from (3.1) and
(2.3) we can show the following lemmas.

Lemma 3.2. The following inequality holds
[ IVl < e (fonl + Boely + R M(Co + 1) = A,
D3, /4

where M and Cy are the constants introduced in Lemma 2.1(i) and
Lemma 2.2(i), respectively.
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Lemma 3.3. There exists Ry € (Ry /2,3Ry /4) such that
27 .
(i) / vk (Ry, 0)12d6 < c|v(Zk)|* + Ak + Dy), for all T with |Z| =
Jo
Ry;
27
o

(i) max|v(Ry,6)] < A+ (A + Dy)'7?,

6Pk (ﬁk’ 0)

2
50 ‘ df < c(1+ mgle(ﬁ, 0)[?)(Ax + Dy);

where the quantity Ay is defined in Lemma 3.2.

Lemma 3.4. Let Rk be the number defined in Lemma 3.3. The
following inequality holds

mglx|Pk(Rk,9)| <c ((1 + X)(Ak + D)2 + [pely + Ak + ch)

Using a result of Amick [1], §4.2, we can show the following one.
Lemma 3.5. The following inequality holds

M <e((L+A)(Ax + D)2 + Ak + De + Ioelo + [wely) - (3:2)
The following two results are based on energy estimates for (2.3), and
on classical local estimates for the Stokes problem, respectively.

Lemma 3.6. Let v,p be a symmetric Leray solution corresponding to
A. Then, the following inequality holds

A2$c(83+82+53/2+5),

where
S =[ply + Ivl,-

Lemma 3.7. Let v,p be as in Lemma 3.6. Then,

Iplo + 1o, < ¢ (G2 +x)* + x> +x)

where )
x = [[Vullg, + IVvllas-

We are now in a position to give a proof of Theorem 3.1. In fact, it is
an immediate consequence of Lemma 3.6 and Lemma 3.7.
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4. EXISTENCE OF SYMMETRIC
SOLUTIONS FOR ARBITRARY LARGE
REYNOLDS NUMBER

We begin to introduce a suitable regularity class. Specifically we
denote by C the class of pairs constituted by a vector field v = (u;, us)
and scalar field ¢ such that:

(i) Symmetry:
u1(z1, 22) = w) (21, —22), u2(T1,T2) = —ug(z1, —z2)

¢($1,.’E2) = ¢(.’L‘1, —$2),
(i1) Finite Dirichlet Integral: /IV’u|2 < 00.
Q

The objective of this section is to prove the following result.

Theorem 4.1. Let B be symmetric around the xy-axis. Assume that
the following problem

Au=u-Vu+Ve¢
inQ
V-u=0

u=0 at X, I llim u(z) =0, uniformly
|—00

(4.1)

has only the zero solution in the class C . Then, there is a set M with
the following properties:

(i) M C[0,00);
(i) M D [0,c) for some c = c(X) > 0;
(ii1) M is unbounded;
(iv) For any p € M, the problem
Av=v-Vv+Vp }
in Q
V-v=0 (4'2)

v=0 at X, lim v(z) = pe
|z| 200

has at least one solution in the class C.

Before we give the proofof Theorem 4.1, we wish to make the following
remarks.

Remark 4.1. In the case when B = @ (an unrealistic assumption in our
present situation) the uniqueness of the zero solution to (4.1) is a simple
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consequence of the maximum principle applied to the vorticity equation;
see [10], Theorem 2.

Remark 4.2. All possible solutions to (4.1) in the class C are smooth
and satisfy the following asymptotic conditions ([7], Theorem X.3.2,
Theorem X.3.3)

lim D™u(z) = lim D™¢(z) =0,

|z}]—>00 |z| =00
where D™ represents a derivative of arbitrary order m > 0. Further-
more, denoting by w the vorticity field associated to u#, we have ([10],

Theorem 6) a4
lw(z)| < e(|z] + 1)7*1.

Let us now come back to the proof of Theorem 4.1. To this end, we
need the following auxiliary result, that can be obtained by means of
a suitable variation of the classical Hopf extension method.

Lemma 4.1. Let py > 0and let v,p beasolution to (4.2) corresponding
to p € (0,p0]. Then, there exists a positive constant &, depending only

on ¥ and pg, such that
/ |Vol]? < &
Ja

We are now in a position to give the proof of Theorem 4.1. Let
us denote by M the set of those u > 0 for which problem (4.2) has
a corresponding solution v, p. From the work of Finn and Smith [5] and
Galdi [6], we know that.M D [0, ¢], for some positive ¢ = ¢(X). We shall
now show that M D My where M, enjoys the properties:

(iy Mo C (0, 00);
(ii) My is unbounded.

Actually, let Mg be defined as follows:
p € My ifand only if lim v(z) = pe, uniformly

|z] =00

where v, p is a symmetric Leray solution corresponding to a given A>0.
Clearly, My C M. Also, by Lemma 2.2, My # 0. Furthermore,
My C (0,00). In fact, by Lemma 2.3, My C [0,00). However, 0 ¢ My,
because, otherwise, v, p satisfy the homogeneous equation (4.1), and
this, by assumption, would imply v = 0. So, by Theorem 3.1, we would
conclude A = 0, which leads to a contradiction. This proves property (i)
of My. Let us show (ii). Assuming My bounded means 0 < p < py < oc,
for some pg > 0. Thus, from Lemma 4.1, we have

[ 190 < (o), (43)
Q
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for all symmetric Leray solutions corresponding to arbitrary A > 0.
Using (4.3) into Theorem 3.1, we obtain

A < ci(po),

for arbitrary A > 0, which gives a contradiction. The theorem is,
therefore, completely proved.
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A FICTITIOUS-DOMAIN METHOD WITH
DISTRIBUTED MULTIPLIER FOR THE
STOKES PROBLEM

Vivette Girault, Roland Glowinski, T.W. Pan

Abstract: This article is devoted to the numerical analysis of a fictitious domain
method for the Stokes problem, where the boundary condition is
enforced weakly by means of a multiplier defined in a portion of the
domain. In practice, this is applied for example to the sedimentation of
many particles in a fluid. It is found that the multiplier is divergence-
free. We present here sufficient conditions on the relative mesh sizes for
convergence of the discrete method. Also, we show how the constraint
on the divergence of the discrete multiplier can be relaxed when such
a sedimentation problem is discretized.

Keywords: Fictitious domain, distributed multiplier, particle sedimentation.

The fictitious-domain method presented here is motivated by the
numerical simulation of an incompressible flow around moving rigid
bodies, when the rigid-body motions are caused by hydrodynamical
forces and for example, gravity. One example is the problem of
sedimentation of particles. Our method consists in filling the moving
bodies by the surrounding fluid and imposing weakly the rigid-body
motions, in this region, by means of a distributed Lagrange multiplier.
This leads to a modified flow problem in the entire region. The advantage
of this approach is that a single uniform mesh is used for the entire region
and the particles are meshed independently, once and for all. On the
other hand, as we shall see here, the corresponding scheme has a low
order of convergence. The numerical analysis of this problem is difficult,
and to simplify, we shall mostly consider the case of a single particle
with a known rigid-body motion, immersed in a fluid whose equation of
motion is a steady Stokes system of equations in two dimensions.

In the next section, we shall state the fictitious-domain formulation of
an exterior Stokes problem with a non-homogeneous Dirichlet boundary

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999, 159



160 Girault V., Glowinski R., Pan T.W.

condition, interpret the new problem and show that it is well-posed. We
shall see that the Lagrange multiplier is determined by a divergence-free
condition. Section 2 is devoted to the numerical discretization of this
problem, characterized by the fact that the fluid mesh and the Lagrange
multiplier mesh are unrelated, up to a mesh-length ratio. Particular
emphasis is placed on the proof of a discrete uniform inf-sup condition.
Section 3 studies briefly the particular case where the Dirichlet boundary
condition is given by a rigid-body motion. In this case, the discrete
divergence-free constraint on the multiplier can be relaxed.

The fictitious-domain method discussed in this article has been
generalized to the solution of the full time-dependent Navier-Stokes
equations modelling incompressible viscous flow in regions with moving
boundaries. The corresponding computational methods are described
in [9], [10], [11]. In [10], the motion of the moving boundary is known
in advance, while [9] and [11] discuss the simulation of particulate flow,
with up to 500 particles. Simulations involving 103 (resp. 10%) particles
in two dimensions (resp. three dimensions) have become routines for
Newtonian viscous fluids. In articles to appear or in preparation, one
describes further applications to particulate flow with more than 103
particles in three dimensions (for Newtonian fluids) and of the order of
10 particles in two dimensions for visco-elastic liquids of the Oldroyd-B
type. Via parallel computing, one expects being able to simulate in
a near future particulate flow with more than 103 particles in three
dimensions for visco-elastic liquids.

1. A FICTITIOUS-DOMAIN FORMULATION
OF THE STOKES PROBLEM

We consider the case of a single particle occupying a bounded plane
domain B, immersed in a fluid contained in a rectangular domain 2,
so that the original domain of interest is €2\ B. We assume that the
boundary 0B of B is Lipschitz-continuous, that §is large enough so that
OB is far enough from the boundary I' of 2, and I' has sides parallel
to the axes. We do not suppose from the onset that particle B has
a rigid-body motion, but we assume that the given velocity on 3B is
the trace of a known function defined in B, with zero divergence. If this
function were not known, and a lifting had been explicitly constructed,
the method discussed here would lose much interest. We introduce the
spaces, on a domain O

W(0) = {ve H(0)?; divv =0 in O},
I§(0) = {a € I(0); [ adx=0},
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(we refer the reader to [15] or [1] for the properties of Sobolev spaces).
Then, for f given in L2(Q2\ B)? and g given in W(B), we want to derive
an equivalent variational formulation for the following Stokes problem:
Find u in H'(2\ B)? and p in L3(Q2\ B), solution of

-vAu+Vp=f inQ\B, (1.1)
divu=0 inQ\B, (1.2)
u=0 onI',u=g ondB, (1.3)

where v > 0 is the given viscosity constant. Since by assumption,
g belongs to W(B), it satisfies the compatibility condition

/ g -ndo =0,
oB

where n denotes the unit normal to dB, directed inside B. This Stokes
problem has a unique solution. Note that the boundary condition (1.3)
on I is chosen according to convenience and can be replaced by another
one.

As explained in the introduction, we propose to impose weakly (1.3)
on 0B by means of a Lagrange multiplier A defined in B, and to set
our problem in the whole domain Q. The reader will see below that
it is reasonable to take A with H! regularity. Since the pressure p is
the multiplier associated with the divergence constraint, we consider the
following bilinear form

b(v,()\,p))=—/pdivvdx—/V)\:Vvdx—/)\~vdx. (1.4)
Q B B

The next lemma shows that we must impose on the volume multiplier
a zero divergence constraint, because otherwise it is not determined.

Lemma 1.1. If div A = 0, the equation: Find (\,p) in H'(B)? x L3(?)
such that

Vv € Hy (), b(v,(\,p)) =0, (1.5)
has the only solution (A,p) = (0,0). If div X # 0, then (1.5) has an

infinity of nontrivial solutions.

Thus, we choose W(B) as space for the volume multiplier. Then, we
extend f in B by a function f € L?(2)? (for instance, f = 0 in B),
and we propose the following fictitious-domain variational formulation
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of (1.1)—(1.3): Find (u,p, ) in H}(2)? x L3(Q) x W(B), solution of
Vv € H} (Q)? /Vu Vvdx — /pdivvdx:/f-vdx
Q 0

+/V)\:Vvdx+//\-vdx,
B B
(1.6)

Vg € L) , /qdivudeO, (1.7)
Q

VpEW(B),/BV(u—g):Vudx+/B(u—g)-p.dx=0. (1.8)

To interpret this problem, let (u,p, A) be a solution of (1.6)—(1.8). We
easily derive that:

u=g inB, (1.9)
divu=0 inQQ, ~
—vAu+Vp=f inQ\B, -vAu+Vp=f+A-A)X inB,
[b;("“ ~A)—pnjsp =0,
where
[vles = (vlo\s — vIB)loB

denotes the jump of v across OB and A is extended by zero in '\ B
in order to define the jump of %. Hence, the restriction of (u,p) is
a solution of the original Stokes problem (1.1)-(1.3), wu satisfies (1.9),

and the pair (v g — A,p) is the solution of a Stokes problem in B with
a Neumann boundary condition:

~A(vg-)N)+vg—-A+Vp=Ff+vg inB, (1.10)

divirg—A) =0 inB, (1.11)
9 A o0B. 2
nr8—A) - pn—(V —pn)lg\s on (1.12)

This problem has a unique solution because (u,p) is known in Q\ B.
Note also that it simplifies when A g belongs to L?(B)2, and this always
holds in the applications we have in mind.

Conversely, if (u,p) is a solution of (1.1)-(1.3), then extending u by
g in B, f by f in B and defining the pair (\,p) in B by (1.10)—(1.12),
the triple (u,p, A) satisfies (1.6)—(1.8), except that the mean-value of p
is generally not zero in 2.
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Problem (1.6)—(1.8) is a mixed variational problem. Since the bilinear
form v [, Vu : Vvdx is elliptic on [H}(2)?% to show that this
problem is well-posed, we must establish the following inf-sup condition

(cf. [12], [6]).

Theorem 1.2. There exists a constant 3 > 0 such that, for all (\,p)
in W(B) x L3(),

1 p b
sup ————b(v,(A\,p)) = B(lpl}a(q) + M3 (5) "% (113)
vEH}(Q)? vl (@)

Proof. For an arbitrary p € L3(f), we first construct z in H'(B)?
satisfying
divz=p inB,

Yw € W(B) , /

B
that depends continously on p:

lzll g8y < CillpllL2(a) -

/pdx=—/ z-ndo,
B aB

we extend z in 2\ B by constructing z in H(Q\ B)? such that
divg=p inQ\B,
zZz=2 ondB.,.zZ=0 onT,
2l 51 o\my < Colllpll L2y + 12l inr2(08)) -
By construction, the extended function z belongs to H&(Q)2, divz =p
in Q, z satisfies(1.14) and depends continuously on p:

lzll a1 ) < Callpliz2(o) - (1.15)
Finally, we extend A to 2 so that the extended function A belongs to
H}()?, has zero divergence and

IMa ) < Call Ml gr(s) - (1.16)
The choice v = —(z + ) verifies
(v, (A, p)) = llpliz2q) + A5 5y »
Wiy < (CF -+ COY2(Ipl2a 0 + [INIZ1 ) 2.

Vz:dex+/z~wdx=0, (1.14)
B

Next, as

Remark 1. As a consequence, problem (1.6)—(1.8) has a unique solution
(u,p, A) in H}(Q2)? x L3(Q) x W(B) that depends continuously on the
data f and g. However, even if g is smooth (which is the case in
practice), it is unlikely that globally (u, p) have a stronger regularity
than H32-¢(Q)? x H'/2-¢(Q), because of the jump of ¥3% — pn across
dB (cf. [13]). In contrast, it is possible that A belongs to H?(B)%.
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2. DISCRETIZATION

To simplify the discussion, we assume from now on that the boundary
OB is a polygon. The case of a curved boundary is more technical
but brings no essential difficulty. Since the mesh of the fictitious
domain  and the particle B are unrelated, we choose two independent
discretization parameters, h > 0 and 9 > 0, that will tend to zero. Let
7, be a uniform triangulation of 2, composed of squares divided into
two triangles along the same diagonal, let S; be a regular triangulation
of B (cf. [7]) and define the two finite-element spaces

X ={vh €C*(Q)*; VT € Th, valr € P}, vpr =0} C 33(9)2(,
2.1)

My, = {qn € L3(Q); YT € Ty, qulr € Po} C LA(Q), (2.2)

where the step-size of M}, is sufficiently large with respect to the step-
size of X}, so that this pair satisfies a uniform discrete inf-sup condition
(cf. [12]): there exists a constant 4* > 0, independent of 4, such that

 div v, d
inf  sup fQ an IV Vh £X >06". (2.3)
ameMn vy ex, llanllz)vrlm o)

Here we shall impose this condition by asking that the support of the
basis functions of M} be spread over an adequate number of triangles
of Ty, so that the mesh-size of M}, say hy, is for instance the double of
that of X,. To be precise, we should use a different index & for X} and
M,,, but for the sake of simplicity, we only make this distinction when
it is necessary.

Let A, be a standard discretization of H'(B)?*:

Ay = {ug €CO(B)2; VS € Sy, myls € P2} C HY(B)?. (2.4)

In order to approximate W(B), we observe that in (1.10) and (1.11),
the restriction of p to B is the Lagrange multiplier associated with the
divergence constraint on A. This suggests to retain the same structure
at the discrete level. But, we cannot ask that [pgpdivu,dx = Ofor
gn in My without considering the intersection of the support of g, with
B. If this support is too small, we run the risk of imposing too many
conditions on A;. Hence we discretize W(B) by

Wy, = {ug € Ay / gn div p, dx = 0 for all basis functions (2.5)
B .

qn € Mywith |T N B| > 4|T|, where T is the support of g},



A fictitious-domain method with distributed multiplier ... 165

where vy € (0,1/2) is an adequate parameter. Then we approximate
(1.6)—(1.8) by: Find (un,pn, Ay) € Xp x My x W, solution of

Vvp € Xy, V/Vuh:Vvhdx—/phdivvhdxsz'-vhdx
Q Q Q (26)

+/VA,,:Vvhdx+/A,,-vhdx,
B B

Vg, € My, , / grpdivu, dx =0, (27)
Q

Yun, € Wy, /BV(uhwg):Vu,,dx+/B(uh—g)-,u,,dx=0. (2.8)

Again, this is a mixed problem and since the bilinear form
v fﬂ Vuy, @ Vv dxis elliptic on X x X, we must check that the bilinear
form b satisfies a uniform discrete inf-sup condition. It is convenient to
split it as follows: for each (A,,pr) € W, x My, there exists zp € Xp,
such that

b(zn, (Mg 1)) 2 B (198132 + [Pl () (2.9)

1Zn ) < Ba(llPrllz)y + 1Al H1(my) s (2.10)

where #f > 0 and 5 > 0 are two constants independent of A, n and
()\n:ph)‘

Theorem 2.1. Assume (2.3) and suppose Sy is uniformly regular.
There exists a constant k > 1, independent of h and 1, such that, if

% > K, (2.11)

(Boyae s [ 2T (212)
ul 1—v

then there exist two constants 37 > 0 and (5 > 0, independent of h, n
and vy such that (2.9) and (2.10) are satisfied for all (A, pr) € Wy X M.

and if

Proof. Let (X,,pn) € Wy x Mj be arbitrary. First, we extend Ay to
Q\ B, so that the extended function v satisfies for all supports T of the
basis functions g in Mp:

/ divvdx =0.
T
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Let {T;}!_, be the set of supports of the basis functions g, € M, for
which

0<|Tin Bl <1ITy], (2.13)

set I -

and define a piecewise constant function d, in \ B by

1 _
T i~ Byl i dx, in T; \ (T} 1<i<1I
TN@ D) Jrg ™ 2B MTANTOB) 1S3,

d, = 0 elsewhere.

dy =

In view of (2.5), we have

/ d,,dx=—/ div/\,,dx=/ Ap - ndo.
T\(TiNB) s oB

Furthermore, d, belongs to H/27¢(Q\ B) and A, belongs in particular
to H*~¢(8B)?. Therefore, we choose v = K(dy,\y), where K is the
operator defined by Theorem 7.1 of [2]; more precisely, we have

I
/Q\Bd,,dxzz

i=1

divv = d, inQ\B, v|sB :/\1;|BB , Vlp=0.

Thus, v belongs to H3/27¢(2\ B)? and, with the same constant C}, we
have

IVl @8y < CrlllAallgr2amy + lldoll L2¢a\ 8y}
VIl 3r2-< 8y < CrfllAnllar-com)y + lldull g1/2- 0\ 5y } -
On one hand, (2.13) implies that

/ 2y [ 24
“dv"LQ(Q\B) < 1 _,YI’\flIHl(Ds) where i_——_’}’ < \/i

2y
¥z o5 < C2(1 + (‘1“_—7)1/2)||/\n||f11(3) : (2.14)

Hence

On the other hand, since d, belongs to .H/27¢(Q\ B) and vanishes on
all elements except on the sets T; \ (T; N B), whose measure is bounded
below by (1 — 7)|T;| > %lTJ, and since Sy is uniformly regular, we can
apply the following inverse inequality (cf. [4]):

Cs
ldoll g1r2-e oy 5y < PRVER" ldollL2\5) » (2.15)
P
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where the constant Cj is independent of hp and 7. Therefore,

2y 1
[Vl r32-c (v By < Calll Ml a2 () + (1 — 7)1/2h

1/2—¢ |A"|HI(D3)) :
14
(2.16)

Then, we set v = ), in B. By construction, v belongs to H}(2)? and
to H3/2=¢(Q)?; it satisfies

Van € My , /qhdivvdx:(), (2.17)
Q

and it satisfies in £ inequalities similar to (2.14) and (2.16).

Next, we construct an approximation of v in X that preserves (2.17).
For this, we choose an approximation operator 7, € L(Hg(2)?; X)such
that (cf. [8], [3], [16]):

Vv e Hy(Q)?, [ra(W)la () < CslVlm(e)
Vv e (H2(Q) N Hy (), Ira(v) — vl (q) < Csh|Vg2(q) -
Then, by virtue of the inf-sup condition (2.3), there exists an operator
I, € L(H}(R)?; X4) satisfying for all v € HJ ()2, (cf. [12]):

Van € My, [ andiv(Tu(v) - V) dx =0, (2.18)
9]
3
Ta(v) = Vg < (1 + 5—,,)|7’n(v) = v]|aya)- (2.19)

Finally, owing again to (2.3), there exists wp € X}, such that

1
2 .
Iprllz2 0y = /QPh divwpdx , |wilie) < 5rllenllez) -
Then we consider the linear combination, for an adequate parameter

£>0:
Zp = —{wh — I'Ih(v) € Xy .

By construction, and using (2.17) and (2.18), we obtain

- /Q prdivey dx = € [pal22) - (2.20)

Now, on one hand, for any o > 0, we can write
1 1
/ VA : thdx+/ M- whdx] < 2(l Mgl + Il )
B B a

1 9 1+P%2 5
< (@l + W”ph”L?(Q)): (2.21)
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where P is the constant of Poincare’s inequality. On the other hand, we
derive from the definition of v:

/V’\" + VIIa(v) dx +/ Ay (V) dx = [ \gll3 sy
B B
+ /B VA, : V(IIi(v) — v)dx + /B Ay - (Tx(v) — v) dx (2.22)

> Il sy — Il sy ITa(v) = Vil sy -

By using (2.19), the above approximation properties of 7 and
interpolation between spaces (cf. [14]), we obtain

V2.1
ITn(v) = vilg sy < C2(1 + 6_*)h1/2 vl grarz-e(qy -

Owing to (2.16) and applying again the inverse inequality (2.15), we
obtain

h 19
I, (v) = Vil sy < Cs((Z) 2 Ml sy +
n
2y 1/2 h 1/2 (2.23)
—€
+i— _7) (h—,,) IAalei(py)) -

Collecting (2.20)—(2.23), we derive the lower bound:

2
blan, ) 2 (1= 52 g’f)gmphn

5 1/2—¢ 27 h 1/2— 2
+(1_7_CB((;I-) + l—v(hp)/ E)"’\"”H‘(B)'

Let us choose for example

1+ P? e- L
(6 7" 5a’

o=
This choice and (2.12) imply

blan, (A, 1)) > 5 lInlEage, + (

9 hirjo- 2
M —208(;) E)”An”Hl(B)‘

Thus, by choosing s such that
5
Kkl/2E = 5Cs. (2.24)

we derive (2.9) with 8] = min(l0 %) The proof of the estimate (2.10)
is straightforward. |

Remark 2. Let Vj, denote the set of all wy, € X}, satisfying

Vg, € My, /qhdivwhdx:O,
Q
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Yu, € Wy, / Vg : thdx+/ Ky Whdx =0.
B B
Then, the inf-sup condition (2.9), (2.10) implies in particular:

£ ju— <C inf |u- , 2.25
Jnf |u= Vil <C Inf u—valiq (2.25)

with a constant C independent of u, A4, 7 and 7.

It remains to lift the constraint on the functions of W,. For this, it
suffices to find a constant 33, independent of hy and 7,such that for all
qn in M}, satisfying

gr =0 on all T for which |T'N B| <4|T|, (2.26)
we have
1 ) .
sup = [ qudivrde2 Bl - (220)
aeh, 1Anlleisy /B

Lemma 2.2. There exists a constant C > 0, independent of hy, 1 and
v, such that if
(h_p)l/ 2-e 5 _g_ )
=V
then the inf-sup condition (2.27) holds, with a constant B3 that is
proportional to \/v, for all q, € My, satisfying (2.26).

(2.28)

Proof. Let us choose once and for all a domain O C Q with smooth
boundary 80, that contains the support of all g, € M}, satisfying(2.26).
(Here we assume that §2 is large enough with respect to B). We take
gr € M), satisfying (2.26) and in O, we solve the problem:

Ap=gq,in O, 3 Y —0on 0.

As O contains the support of g, then [, qndx = 0 and this problem has
a unique solution ¢ € HY(O) N L3(O). Since O is smooth, ¢ belongs
to H%(0),

el 20y < ChllgnllL2(o)
The smoothness of 8O also implies that

(O]
Nl gsr2-e0) < Collgnllgi/2-c(0) < F”%”lﬂ(op (2.29)

where we have applied again the inverse inequality (2.15). In addition,
in view of (2.26),

1
NanllLzoy < —=llgnllz2(s) - (2.30)

vl



170 Girault V., Glowinski R., Pan T.W.

Next, we set v .= Vi and we choose A, = rp(v) € A,, where
rq € L(H'(B)% A,) is the analogue of the approximation operator ry.
Thus

: 1/2—¢ Cs
ldiv(ra(v)=V)llL2(y < Can/ "IVl y3s2-c(py < —=(

1)
N4

1/2—
hy / 5||<Ih||L2(B)-

Therefore,

/qh div A, dx = / qhdivvdx+/ gn div(ry(v) — v) dx
B B B

Cs 0 \1/2- 2
> (1= =) ) lanllap) -
V3 by L)
If we choose for example
hy 12— 9 Cs
— >-—, 2.31
S (231)
then [ qa div Ag dx > llgnll3agy and llr(V) i (s) < Sllanllzapy, so
that (2.27) holds with 5 = 2. u

Remark 3. Summing up, with the choices (2.31) and (2.12), we obtain

the condition
h .
T2y o max(y /20 3 55y
n l—v 4.y

Note that the largest bound is likely to be the second one. However,
(2.24) and (2.28) are both theoretical bounds and are usually ignored
in practice: 7 is often taken slightly larger than & and h, is often the
double of A. Nevertheless, there are cases where this simple choice leads
to an unstable solution in some elements near the boundary 9B.

Remark 4. The inf-sup condition (2.27) implies in particular

in

V2
f |IN— <(14 —) inf - 2.32
ol IA = tgllgrsy < (1 + ﬂg)uigAn A= ol sy s (2.32)

and observe that the constant of (2.32) is large if \/7 is small.

As the inf-sup condition (2.9), (2.10) is satisfied, problem (2.6)-
(2.8) has a unique solution and standard results on mixed methods
(cf. [12], [6], [5]), together with (2.25) and (2.32) yield the following
error estimate.
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Theorem 2.3. Assume that Sy is uniformly regular and that (2.11),
(2.12) and (2.28) hold. Then we have the following error bounds

2
_ <2C inf |u- + Y2 inf p—
lu — up|pr(e) < v,.lgx,,l Valai(q) o o f I — anll2(e)

1 \/§ 221/2 -
+ -1+ =)1+PHY2 inf |A— ,
U( B ) ) ,u,,g/\,, I ﬂ'n”Hl(B)
(2.33)

V2 .
lp = pall2)y + IIA = Al sy < VFCv,fg)frh lu = valm1(a)
2
1+ —) inf —
+(1+ ﬂ*)théth lp — anll L2

\/5(1;*732)1/2)(1+ V2

+(1+ inf [|A ~ pyllg1esy
7

ﬁi ) Bn€A
(2.34)

y , . _ B}
where C is the constant of (2.25) and 3 _L—s/fﬁg .

This theorem states that the accuracy of (2.6)—(2.8) depends on the
global regularity of u, p and A. But we have mentioned in Remark 1
that this regularity is not high. Thus, we have the following corollary.

Corollary 2.4. Under the assumptions of Theorem 2.3 and if
ue HY2-¢(Q)?2, p € HY/?7¢(Q), A € H*(B)?, then there exists a con-
stant C, such that

|u B uth!(Q) " "P —Ph||L2(Q) + ”,\ - )\n"Hl(B) < C(h1/2—5||ll”H3/2—E[Q]
+ by el rira-e ) + MM 2(ay) -

3. THE CASE OF A RIGID BODY

Here, we retain the setting and assumptions of the preceding section.
When g is a rigid-body motion:

g=(a+bzo,c+dzy), a,bc,de R, (3.1)
the constraint (2.5) on W, can be relaxed. For this, we first construct

an adequate lifting of g.

Lemma 3.1. Assume that Q is large enough and Ty is such that there
exists a rectangle R containing B and strictly contained in $ such that
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the support T of any basis function g, € My, satisfies either T C R or
T C Q\ R. Then, for any g of the form (3.1), there exists wp € Xp
satisfying

Vg, € My, , / grdivwp,dx =0, (3.2)
Q

Vi € Ay s [ (T(0n=8): Vi (w =) prddx =0 (33

Proof. Since g € P% and divg = 0, it suffices to correct g so that it
vanishes on I". First note that g = curly, where ¢ = ax2+%b T3—cxT—
%d x2. Next, we choose once and for all a smooth truncating function 6
such that # =1 in R, # has compact support in 2, and we set

G = curl(6y).
Let I, be the standard Lagrange interpolation operator in Xj. Then

In(G) € X4, and the assumption on R implies that Iz(G) = g in R,
because Ij, preserves Pf in each triangle. Consequently,

div I,(G) dx = /

Ih(G)-nda=/ g -ndo =90,
AR

O\R R

where n is the unit normal to JR, pointing inside R. The above
assumption on R and the imbedding of the mesh of X into that of
M}, imply that the inf-sup condition (2.3) also holds for the restrictions
of Xp and My to Q\ R. Thus there exists a function z, € X} that
vanishes in R, such that

Vg, € My, / grdivz, dx = / gr div I, (G) dx.
Q\R O\R

The desired lifting is wy, = In(G) — 2z, € X},. [ |

As a consequence, we consider the following version without constraint
of (2.6)—(2.8): Find (u;l,p;l,/\;,) € Xp x My, x Ay, such that

Vvp € Xp, , v/Vu;l:Vvhdx—/pkdivvhdx:/f-vhdx
1] Q Q

+/V/\;I:Vvhdx+//\;’-vhdx,
B B
(3.4)

Vg, € M, , / gndivuy, dx =0, (3.5)
Q
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Vin € g, [ Vit~ 8)i Vandx+ [ (dh—8) pix=0. (36)
B B

Theorem 3.2. Let T, be as in Lemma 3.1. Then problem (3.4)-(3.6)
has at least one solution. The multipliers p), and Aﬁ, are not necessarily
unique, but ) = uy, the unique solution of (2.6)-(2.8).

Proof. Prom the existence of a lifting wy, satisfying (3.2) and (3.3), it
is easy to prove that (3.4)~(3.6) has at least one solution (uj,pj, ;).
In addition, the inf-sup condition (2.9), (2.10) allows us to construct
pr € M) and A;) € W), such that

Vv € Xpy b(Vi, (AgsPr)) = b(Va, (A, P)) -

In view of (3.4), we find that (u},pn, A,) is a solution of (2.6)—(2.8) and
the uniqueness of this solution shows that uj = up. In particular, this
means that uy satisfies

Vi€ hr . [ V(=) Vindx+ [ (n—g)pdx=0, ()

and hence (2.8) holds for all u, € Ay, [ ]

It is well-known that in this situation, even if the multipliers are not

unique, we can use a gradient algorithm to solve efficiently the systems
(3.4)-(3.6).
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RELIABLE SOLUTION OF A UNILATERAL
CONTACT PROBLEM WITH FRICTION,
CONSIDERING UNCERTAIN INPUT DATA

Ivan Hlavaéek

Abstract: A Signorini contact problem with an approximate model of friction is
analyzed, when Lamé’s coefficients, body forces and friction coefficients
are uncertain, being prescribed in a given set of admissible functions.
Three kinds of criteria, characterizing the stress intensity, are chosen
to define three maximization problems. Approximate problems are
proposed on the basis of a mixed finite element method. Some
theoretical convergence analysis is presented.

Keywords: Uncertain data, unilateral contact, Coulomb friction.

Introduction

Mathematical models involve data (coefficients, right-hand side,
boundary values), which cannot be sometimes determined uniquely, but
only in some intervals, which result from experimental measurements
and inverse (identification) problems.

Assume that the main aim of the computations is to find maximal
value of certain functional, which depends on the solution of the mathe-
matical model. Then we can formulate a corresponding maximization
problem and employ methods of Optimal Design. Such a general
approach has been proposed in [6] and applied to nonlinear elliptic
problems in heat conduction [7], elasto-plasticity [8] - [10] and to
parabolic problems [11].

The aim of the present paper is to apply the general approach to
a unilateral contact problem for an elastic body, with an approximate
Coulomb friction. Problems of this kind with uncertain input data occur
e.g. in modelling of plate tectonics, based on the global geodynamics. If
a litospheric plate is obducting with time onto the oceanic litospheric
plate, the model can be represented by a Signorini problem with
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uncertain Lamé’s coefficients, body forces and a coefficient of the friction
— see, e.g., [14]. Another example is a model of interaction between
a tunnel wall and the rock [13], where the Lamé’s coefficients of the rock
and the friction coefficients are uncertain.

In the first Section we introduce a unilateral Signorini problem with
approximate friction and define a set of admissible uncertain data. Then
Maximization Problems are formulated for three kinds of the criterion:
(i) the intensity of shear stresses, (ii) the normal component of the
surface traction or (iii) a norm of the surface traction. The existence of
a maximizing data is proved in Section 2 on the basis of the continuous
dependence of the solution of the contact problem on the data.

We introduce approximate maximization problems in Section 3, using
a mixed finite element method to solve the contact problem [1, 3, 4]
and prove the solvability of the approximate problems. In Section 4 we
show the existence of sequences of approximate solutions, which tend to
a solution of the original Maximization Problem, when the mesh-sizes of
the discretizations tend to zero and that the approximate maxima tend
to the maximum of the original problem.

1. SETTING OF MAXIMIZATION
PROBLEMS

Let an elastic piecewise homogeneous isotropic body occupy a bounded
domain © C R? with Lipschitz boundary 8. We assume that

80 =TkUT,UT,

is a disjoint decomposition, meas I'y, > 0, meas ' > 0. We introduce
the bilinear form

a(A;u,v) = /ﬂ(/\ div u div v + 2pe;j(u)e;; (v))dz,
where
divue = 0u;/0x;,
ei(u) = 2(0ui/ds; +0u;/0m),  i=1.2
and the virtual work of external forces

L(A;v) / Fudz + Pvzd.s

The Coulomb friction will be approximated by the functional

i(A0) = / glvelds,
|47
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(ve = v;t; is the tangential component of the displacement).
Here the repeated index implies a summation within {1,2}. The input
data are

AE(Aap'aFlaFQag)eUad=UadXU UQXUBXde,

where the sets of admissible data will be defined as follows.
Let

Q = s Ny =0 for j#k, (1.1)

fat
2|

<
Il
—

Tk =

Ceo
!

¢ [pNT,=0 for p#gq

S
I
—_

be a given partition of the domain € and of T, respectively.
We define

Us = {AeL®(Q): Amm < Mg, = const. < My, 1 <5 < J}

Upg = {peL®Q): #mm < #ln = const. < umx 1<j<J}
1=1,2

USy = {9€L®Tk):gl, € CO'(Tq); 0< g(s) < gl
|dg/ds| < Cg ae. inTy, 1<q<@Q},

0< ,\.I,Illll < ’\'Znax’ 0<po < l‘rr,mn < /"ﬁnax’
Ft)mm — Fg,ma.x’ ql(ga?.x > 0 a'nd C > 0
are given constants.
Furthermore, let P; € L?(['p) be a given surface load and let a function
u € [H'(2)]? be given, such that @, = w;»; = 0 on [k, where v denotes
the unit outward normal to the boundary.
We introduce the set

K={ve[HQ)P?:v=% on [y v,<0 on Ik} (1.2)
and the following (state) problem for any given A € Uyy:

find u(A) € K such that
a(A;u(A),v —u(A)) + 7(4;v) — j(A;u(4)) > L(A4;v —u(4))  (1.3)
holds for all v € K.
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Proposition 1.1. There exists a unique solution u(A)of the problem
(1.3) for any A € Uyg.

Proof is based on the equivalence of the variational inequality (1.3)
with the minimization of the following functional

L(u) = -a(4;u,u) + j(A;u) — L(4;u)

N —

over the set K. u

Let us choose a finite number of (small) subdomains G j C Q (adjacent
to I'g, for example), 3 =1,..., N and define

i(A;u) = (meas G;)™" /G B(r(A;u))dz, (1.4)

where I3(7) denotes the “intensity of shear stress”, i.e., an invariant of
the stress tensor deviator 7. We have the formulae

B(r) = ] =
2 . ,
= 5[7121 + 73y + Tay — (TraTaz + 11733 + T22733) + 37y
T,‘j(A;U) = )\5,‘]' div u + 2pe;; (u), i,7 =1,2,
T33(A;u) = A div u,

corresponding to the plane strain elasticity.
Let us consider the functional

®(A;u) = [ max, ¥;(A; u) (1.5)
and the following Maximization Problem: find
A% = ®(4; . 1.
arg max &(4;u(4)) (1.6)

If 'k is polygonal and the friction can be neglected (as in [14]), we
set ¢ = 0 and define (instead of (1.4)) for instance

,(A;u) = (meas G;)™! /G (—mij(Asu)vivy)da. (L7)

If a norm of the surface traction vector
Ti = TijVj (18)
on a part I'g of the boundary is the most important aim of computations,

we can extend the formula (1.8), which holds for enough smooth stress
tensors only, to cover the general case, when

75 € L*(Q) and 0r;/0z; € L*(Q), ij=1,2
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is the only assumed regularity of the stress field. To this end, we find
a solution z(A; u) of an auxiliary elliptic boundary value problem — see,
e.g., [1], [5]. Then we define

O(A; ) = a(A; u, 2(A;u)) - /Q Fizi(A, u)dz, (1.9)

since this functional equals to the square of a norm of the surface traction
Vector.

2. EXISTENCE OF A SOLUTION TO
MAXIMIZATION PROBLEMS

To prove the solvability of the problem (1.6), we have to verify
a continuity of the mapping A — u{A) on the set U,q. We introduce the
space _
U =[R]* x N2, C(T,)
and prove the crucial
Proposition 2.1. Let A, € Uyy, A, = A in U as n — oo. Then

u(Ay) = u(4) in [HY(Q)

Proof is based on the following observation: if A, € U,q, A, = Ain
U and u, — u (weakly) in [H(€2)]?, then

a(An;tn,v) = a(A;u,v) forall ve[HYQ)?,
L(Aniun) = L(A;u),  j(An;ua) = j(Aju).

First, we show that the sequence u(Ap) is bounded, so that a weak
cluster point w exists. Second, we verify that w = u(A) and the
uniqueness (Proposition 1.1) implies that the whole sequence {u(A4,)}
tends to u(A) weakly. Third, we prove the strong convergence. For
detailed proof— see the paper [12].

Lemma 2.2. Let the criterion-functional ® be defined either by (1.5)
(with (1.4) or (1.7)), or by (1.9). Let Ap € Upg, An = Ain U and
un = u in [HY())?, as n = .
Then
D(An;un) = P(A4;u).

Theorem 2.3. There exists at least one solution of the Maximization
Problem (1.6).

Proof. By Lemma 2.2 and Proposition 2.1, the functional A —
®(A;u(A)) is continuous on the set Uyq. Since the set Uyy is compact in
U, the existence of a maximizer follows.
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3. APPROXIMATE MAXIMIZATION
PROBLEMS

Assume that §is  a polygonal domain and that Tx NT,, consists of
a finite number of points. Let M > 1 be an integer and let every I'y be

partitioned into M equal segments A%), m=1....M;¢q=1,...,Q.

Denote the above partition of IN% by Ths. We define
US = {ge Ul gf? e P(AY), 1<q<Q, 1<m< M},

a

(i.e., piecewise linear functions) and denote
M _ 1 i Fy Fy gM M
Uad - Uad x Uad x Uad X Uad X Uad ’ (Uad c Uad)‘

The state problem (1.3) can be solved by various methods — see, e.g.,
[1-4]. Here we choose a mixed finite element method, which removes the
unpleasant presence of the nondifferentiable term j(v).

Let T, be a triangulation of the domain 2, consistent with the
partitions (1.1), with the decomposition of the boundary and with the
boundaries 0G j from (1.4), (1.7). Let h denote the length of the maximal
side of all triangles in Tj. We introduce a finite-dimensional subspace
V), of piecewise linear vector functions

Vi = {vn € [CQ) :vnlr € [P(T)]? VT €Ty, va=0 on Iy}
and a subset
Ky, = {’Uh €V, 1)hjl/j(a,') <0 for all nodes a; € FK \Fu}

The nodes a; need not coincide with those of the partition Tyys.
Let any segment I'y be divided into equal subsegments e,. We define

H = max (meas e,),
er€lK
Ap = {”H€L2(FK)577H|er € Poler), Inul £1, Ve,€r[(},

(i.e., a set of bounded piecewise constant functions) and denote the above
partition of ['x by Tx.

By a mixed finite element approximation of the problem (1.3) we call
the problem of finding a saddle-point of the following Lagrangian

LAAv,n) = %a(A;v,v) — L(4;v) +/ gnueds
Ck

on the set (T+ Kgp) x Ag, ie., a couple (wp(A), xg(A)), satisfying the
inequalities

AA;wn(A),nH) < LA;wn(A), xu(A)) < AA v, xua(4)  (3.1)
for all vy, € U+ Ko, and ny € Ay
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The problem (3.1) has a solution for all A € U,q. The first component
wy, (A) is uniquely determined. For the proof— see [3 - §2.5.41, Theorem
5.5] or [4 - Theorem 9.2].

Proposition 3.1. IfA,, € Uy, Apn = A in U, then
wp(Am) = wa(A), as m — co.

Proof—see [12].
We introduce the following Approximate Maximization Problem:

given a triangulation T}y, a partition Tq and the set Uﬂ ,find

Ay (h, H) = arg_max &(Aas;wn(An)). (3:2)

m-Yad

In case of the criterion (1.9) we define a finite element approximation
zp{A;wp) of z(A; u), the functional

Bn(A;w) = a(A; w, 24 (A; w)) — /Q Fozni(A; w)de (3.3)

and replace the functional ® in (3.2) by ®,,.

Lemma 3.2. If A, € Upy, A — Ain U and w™ — w in [HY(Q))?, as

m — 00, then
Ph(Am;w™) = Bp(4;w).

Theorem 3.3. The Approximate Maximization Problem (3.2) has at
least one solution for any Ty, Ty and Uﬁ .

Proof follows from the compactness of the set UM in U and the
continuity of the mapping A — ®(A;w,(A4)), which is a consequence
of Proposition 3.1 and Lemma 2.2 or Lemma 3.2.

4. SOME CONVERGENCE ANALYSIS

We will study the behavior of AS,(h,H), wn(A4%,(h,H)) and
®(AS, (h, H); wy(AS(h, H))), when the mesh-sizes h, H tend to zero and
M tends to infinity. To this end, we need the following result (see [3 -
§2.5.41, Theorems 5.7, 5.4]).

Proposition 4.1. Let {Tp}, h — 0+, be a regular family of
triangulations, let H — 0+ and A € Uyq be fixed. Then

wi(4) > u(A) in [H'(Q)P,
where u(A) is the solution of the state problem (1.3).

Lemma 4.2. For any A € U,g there exists a sequence {Apm}, M — o0,
such that Ay € Uﬁ and Ay — A in U.
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Proof is based on the Lagrange linear interpolate of any g € Ugd on
the partition Thy.

Theorem 4.3. Let {Tp}, h — 0+, be a regular family of triangulations.
Let {AS;(h,H)}, h = 0+, H = 0+, M > &(h,H) be a sequence
of solutions of the Approximate Maximization Problem (3.2), where
£: (R*)%2 = R* is some function, such that

limé(h,H) - +00, as h—0+4+ and H->0+.

Then there exists a subsequence {A(}wn(hn,Hn)}, such that

Ay (hn, Hy) & A° in U, (4.1)
wh, (A, (hn, Hn)) = w(A%) in [H'(Q), (4.2)
®(Ady, (hn, Hp); wh, (AYy, (hn, Hp))) — @(A%u(4%)), (4.3)
where A% is a solution of the Maximization Problem (1.6) for the
functional (1.5) with (1.4) or (1.7).
Proof. Let A € Uyy be arbitrary. By Lemma 4.2, there is a sequence
{Am}, Am € Ulf"{, Ay = Ain U, as M — oo. By definition, we have
®(AY (h, H); wn (A (hy H))) > ®(Am; wn(Anr)) (4.4)

for all triples (2, H; M) under consideration. Since U‘i“’{ C Upq and Uyy is
compact, there exists A’ € Uyq and a subsequence {AL,’M"(hn,Hn)} such
that (4.1) holds. Using Proposition 3.1 and 4.1, we obtain that (4.2)
holds provided € is “sufficiently fast growing” function. In the same
way, we deduce that

wh, (Am,) = u(A) in [HY(Q))2 (4.5)

Let us consider (4.4) for triples (hn, Hp; My) and pass to the limit with
n — oo. Using (4.1), (4.2), (4.5) and Lemma 2.2, we arrive at (4.3) and

P(A%u(A%) > ®(A;u(A)),
so that A° is a solution of the problem (1.6). o

Remark 4.4. The most important result is the convergence (4.3). In
fact, whereas the “most dangerous” data A® are not required in practice,
the maximal stress intensity is the main aim of computations.

Remark 4.5. An analogous convergence result can be derived for the
case of the criterion (1.9) and (3.3) (see [12 - Theorem 4.2]).
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DOMAIN DECOMPOSITION ALGORITHM
FOR COMPUTER AIDED DESIGN

Frédéric Hecht, Jacques-Louis Lions, Olivier Pironneau

Abstract: We present a decomposition algorithm similar to Schwarz for the
numerical solution of partial differential equations in complex domains.
The method is well suited to domains described by Constructive Solid
Geometry (CSG), i.e. by set operations on simple shapes, a data
structure often used in image synthesis and Virtual Reality. This work
extends the algorithms presented in [1], [2], [3] which were based on
“virtual controls”, whereas here compactness is used for convergence
proofs.

Keywords: Partial differential equations, domain decomposition, virtual reality,
finite element method, chimera.

1. INTRODUCTION

In many areas, such as architecture, style departments, image
synthesis, one has to solve Partial Differential Equations (PDE) in
domains Q of IR? or of IR® which are described by set operations on
simple shapes, but the number of elementary shapes is large.

For such situations, which are referred to as Constructive Solid
Geometry (CSG), and which are often used in image synthesis and
Virtual Reality (VR) (cf [8] for instance), it is difficult to construct
a global triangulation of the domain while it is simple to triangulate
each individual domains.

Thus DDM (Domain Decomposition Methods) is certainly a very
natural approach for such problems.

In a series of notes, two of the authors (cf. [1],[2],[3]) have introduced
a systematic method to address DDM, based on the idea of Virtual
Control. In the third note [3], our motivation is explained at length,
namely

Applied Nonlinear Analysis, edited by Sequeira et al.
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1. To compute with the data structures of VR without having to
translate CSG data.

2. But also to extend and improve on the Chimera method [4].

In this paper we do not use virtual control but rather an alternative,
based on a fixed-point algorithm. It is less flexible and less general than
the “virtual control” approach, but as in the classical Schwarz algorithm
—to which the method presented here is an alternative —it has the
advantage of not requiring the computation of boundary integrals. It is
even better than Schwarz’ in that it does not require the computation
of interpolations on boundaries.

In each elementary shape §2; of 2 we compute, iteratively, a function
u; of the solution u# of the PDE (in fact the boundary value problem
we want to solve). In order to proceed with the iterations (cf. (3.3),
Section 3 below) each u; may have to be interpolated on any Q;, j(# 1),
of course at a reasonable cost. We present here such an interpolator
(explained in [4] with more details) which is efficient even on multiply
connected domains.

We consider four geometrical cases, the general case immediately
following. The convergence proof (presented in Section 3) is general.
The error estimates are presented in a partly formal fashion in Section 3,
the method being rigorous for other geometrical cases.

2. THE MODEL PROBLEM

Let © be a bounded open set of RY. We wish to solve the following:
find
weV =Hy(Q) : a(u,a) = (f,4) Vaev, (2.1)
where a is a bilinear coercive form on V and (f,.) is a continuous linear
form on V, for instance, with a;; € L*®(Q):

d Ou dv
a(“?”) zig_;l./ﬂaija_fl‘iaTj, (fa'v) :/va (2'2)

The domain 2 is obtained by sets operations on a family of bounded
open sets k. The sets operations are:

- Union: ; UQ;

- Difference: 2;\Q}; provided that £; C ;

- Extrusion: €;\(Q; N Q).

- Intersection: €; N £2;.

We analyze the four cases independently, then the general case will
be straightforward.
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There are also other cases which ought to receive a separate treatment
but which we will not investigate here, such as the case of two tangent
objects, for example a book on a table.

3. THE DOMAIN IS THE UNION OF TWO

OVERLAPPING SETS

Assume that Q@ = Q; U Qy and that Q; N Qy # 0; denote by
S =00, N and S = 9Ny NN and set

Vi={veL}Q): v, € H}), vla_q, =0} (3.1)

Note that the Schwarz domain decomposition algorithm can be used

here:

Figure 1.

)

3.1 Algorithm 1. (Schwarz)
Choose ul € V;, set n = 0.
Begin loop
Find u?“ such that u?“ —uj €V, 4,j=1,2,5 # ibysolving

a(ulth ) = (f,i) Vi €V (3.2)
End loop

The convergence has been analyzed by P.L. Lions [6]. In search for
precision, we present the following alternative

3.2 Algorithm 2. (fixed-point)
Let b(,) be an equivalent scalar product on L?(Q), for instance b(u,v) =
(Bu,v) for some positive scalar 3, and choose two arbitrary functions u?
in V;.
Once u? € V; are chosen, set n = 0.
Begin loop
Find u?*! € V; by solving
but! —ul, i) + a(u'lﬂ'1 +uy,dy) = (f,4)) Vi, eV
bluft! —ud i) + a(u] +udt aip) = (f,d) Wiz € Va (3.3)

End loop
Remark 1. When 8 = 0 Algorithm 2 is identical to Algorithm 1 with
n+l n+1

u?™" replaced by ui™ —u, 4,5 =1,2, j #i.

1
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Let A be the second order operator associated with a, i.e.
a(u,v) = (Au,v) Yu,v € V.
Theorem 1. When a(-,-) is symmetric, Algorithm 2 converges in the

sense that ul — u} weakly in H}(Q) with w} + u} = u solution of (2.1)
and the decomposition is uniquely defined in Q; Ny by

1
(B + A)ur = S(B+ A)(u + u} =), wils, =0, wils, =, (3.4)

1
(ﬂ + A)“’? = E(ﬁ + A)(’U. +ug - 'U.?), u?lSQ = 0, ’U.2|51 = Uu., uilaﬂ.‘ =0

Proof. Assume for the moment that the algorithm converges: u! — u;
weakly in V;. Note that the decomposition

V=Vi+Vo, (te. VueV,uieV), up€Va : u=u; +up) (3.5

is not unique and so it is natural that the limits u; depend on the initial
guesses u?. By passing to the limit in (3.3) we obtain

a(u; + ug, 4;) = (f, 4;), Vi,; € V;, (3.6)

and since any ¢ € V can be decomposed into #@; + 49, U; € Vi,
equation (2.1) follows by summing the two equations of (3.6). It remains
to see (assuming that weak convergence holds) towards which of the
decomposition (3.5) convergence takes place.

Let ¢ be given in D(2; N §2y) (the set of C* functions with compact
support in 3 N3). We can take 4; = ¢ in (3.3). Subtracting, we
obtain

b(uft! —ul — (uf™! ~up), @) +a(uit —ul — (Wit —uf),0) = 0. (3.7)

Summing (3.7) with respect to n, we obtain

b(u'llﬂ—l_ug-*-la‘p)+a(u111+l—u721+1"'p)_b(ul u2,<p)+a( _u27 ) (38)

Hence letting n — oc,

by —ug, @) +a(uy—ug, @) = blu)—ud, p)+a(ud—ud, @), Vo € D(2,N0Q,).
(3.9)

This is equivalent to (8 + A)(u; —ug) = (8 + A)(u — 1)) in Q; N Ny
Since we already know that (3.5) holds true, it is equivalent to

1 .
B+Ayu; = 3(ﬂ+A)(u+u?—ug) in QNQ, uilsg, =0, uils, =u,

(3.10)
which defines uniquely u; (hence ug) in 2;NQy. Therefore, if Algorithm 2
converges, it converges to the unique decomposition (3.5), (3.9).
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Let us prove weak convergence in the symmetric case ai; = aj;, ¥i,5.
To simplify we take b(u,v) = f, u.v. Moreover we will show that

2™ el o+ g™ - o) <o, (3.11)
where | - | is the L2(€2) norm (recall that the functions with subscript i

are extended by O outside €3;).
For the proof let us consider an arbitrary decomposition

u=w; +wy, w; €V (3.12)
We introduce
w; = ul — Wi (3.13)
One has
Bl ™! —wi, i) +a(w T+ wh, i) =0
Blwi™t — wh ds) + a(wht! + wi, dz) =0 (3.14)
Taking U = w; "+1 and writing a{@) for a(%, @) we obtain
O et — w2+ w12 — (g — w2 4 g~ (]
+a(w"+l) + a(wy, with) + a(w}, with) + a(wit') = 0. (3.15)

Owing to the symmetry of a, one has a(w,w) < (a(w) + a(w))/2and it
follows from (3.15) that

| n+1|2+|wn+ll2+|wn+l l2+lwn+l wng (3.16}

+5la(wl*) + a(wd*)) < upf? + w3 + Zlaw]) + el (317)

Summmg up in n it follows that

n
Wit P+ P4 Y (fwrt — wf? o fwgt ! - wf?)
k=0
. 1
+3 [a(w"“) +a(wy )] < Jwf? + | + B[a(w?) +a(wy)]. (3.18)

Together with the coercivity of a, and the uniqueness of the limit, this
proves that the whole sequence u* converges weakly in V;. Furthermore
(3.11) follows from (3.18).

4. DISCRETIZATION

For clarity we assume that the €2; are polygonal and that a;; = ;.
Let Vi and Vo, be two Lagrange conforming continuous finite element
approximation spaces of order p of Vi = H}(f2;) and Vo = H}($s).
Then the discrete version of Algorithm 2 is:
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Find uy! € Vi, such that

/ﬁ(u'l‘,fl—-u?h)vlh+/ VUT{,TIV’U]};‘F/ VughV'vl;F/ f'v]h, V‘Ulh S Vlh
.Q) Q] Ql Q1

(4.1)
Find ul' € Vay, such that

/ﬁ(ug,:rl—ugh)vgh-f-/Vu'z’,flegh-i-/Vu'{thgh = / fuop, Yugp € Vap.
Q9 Qy Q9 (¢ ) (4 2)

S. ERROR ESTIMATE

We state the result with p > 1 but when it comes to quadrature errors
we will control the error for linear elements only (p = 1).

Theorem 2. Assume that the solution of (2.2) is in HPYY(Q) for some
p > 1. Assume that every element u of HPYQ) can be decomposed in

u=u; +u (5.1)

where u; restricted to € is in HPYY () and u; = 0 outside €.
Ifup, = hm(u}y, + u3,) is computed with Lagrange conforming finite
elements of order p, then

llue — upllio < CAP(Jluyllp+1,0, + llu2lp+1,0.)- (5.2)

Proof. The proof of convergence is the same as for the continuous case,
so there exists u;p € Vip such that

/QV(ulh+u2h)V(v1h+v2h) = /Qf('vlh'Hth), Yuip € Vip,1=1,2 (5.3)
or equivalently

/Qv(ulh —uy + Ugp — u2)V(vip +van) =0, Vuju € Vip,i =1,2 (5.4)
This means that u;, also solves

min /Q |V (ug + up — urp — ugn)|?. (5.5)

u;n €V
Hence if II;; denotes the finite element interpolator from V;to Vj
1 1
(/Q |V (u1 +u2 — uip — ugn)|?)? < (/ﬂ [V (u1 + ug — Mypuy — anug)[?)2

5.6}
< C(llullay p+1 + lluzlle, p+1)h? 25~7
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Remark 2. Let us comment on the decomposition u; + ug. Assume
that @ € HPT1(Q; N Q) is one on (92;) Ny and zero on () N Qy),
and has 8%0/0n* = 0,k = 1,..,p on 8(R:NQy). Then it can be extended
in ©; U Q2 by one and zero and

up = ubin

ug = u(l—46)inQy
has the desired property.
If  is decomposed into slices then such functions @ exist.
5.1. Quadratures

As such the scheme is too costly to implement because it requires the
intersection of triangulations. Integrals of piecewise constant functions
g are computed exactly by

| 9=3Imilo(e) (5.8)
Q k=1

where n; is the number of triangles of the triangulation of £2; and ffc is
the chosen quadrature point in triangle T,g (its center for instance).

To compute integrals involving products of functions on two triangula-
tions like [ Vu,, Vg, we propose the following formula

1 1
/ g~z . |Tklgl) + 3 ST 1TReed)  (5.9)
Nz {k:€leQinQz) {k:€2€9,00,}

This can be summarized by saying that when u € V;, and v € Vj3, i # j,
then a(-,-) is replaced by ax(-,-) with

o~ (|| Vu - Vo A (T2 Vu - Vo
e =2 (PR e 2 (T e 520

and ap(u,v) = a(u,v) when u,v € V.

Applied to g = Vuy, Vugy this formula requires the computation of Vau,p,
on the mesh of 2; and then its computation at £}, which in turn requires
to identify the position of this point in the mesh of Q;, 7 # 4.
With such definitions we propose to solve the discrete problems:
- Find u;‘hﬂ € Vi, such that Vv, € Vi,
b(ulFt — ulty, tn) + an(ulft + uBy, d1n) = (f, thn) Vi, € Vip (5.11)
blul! — uly, o) + an(uly + uf ' don) = (f,@2n) Vion € Vay (5.12)
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Clearly these equations define u?h“ uniquely. At convergence the
problem solved is

- Find u;, € Vi, such that Vi, € Vi

ap(urn + von, Gy + Gon) = (f, Gan + dop). (5.13)

The bilinear form is symmetric but this discrete problem may not have
a solution because the form may not be coercive. For this there is
clearly a compatibility condition between the triangulation which we
haven’t found yet but which will be investigate in the future; if it is too
restrictive the same idea can be used with more quadrature points. So
we state only a partial result below, but it circumscribes the difficulty.

5.1.1. Quadrature error. We prove here a partial result which
has the merit of showing were lies the difficulty, and hope to solve it
later.

Proposition. Assume that the triangulations of Q) and §lp are
compatible in the sense that they give a coercive bilinear form. Then
the error between the approximate problem (5.13) and the continuous
problem is

lw — un|l < Ch(lluill2,n, + lluall2,0,
Proof. Recall Strang’s Lemma (see Ciarlet, [9,pl86])

a(ITpu, wp) — ap(Mpu, wy)

lu — upll < |lu = Hpull + sup
wpEV) “wh“

where by II,u we mean the interpolation of %) on Vh1 plus that of uz on
V,? for some decomposition of u into u! + u2.
Here, with linear elements on triangles and a(,) defined from the Laplace
equation, quadrature errors are only on mixed integrals.
For a decomposition of # into u! + w2, another way of writing
an (Hhu,w,ll + w,%) is
ap(u! + Mho?, w) +wh) = a(llu', wy) + a(Tlfu?, wh)

+ U:(Hhu ,wh)

— ap(I2u! — O}t wd)

+ a(TThu?,wh)

— ap(Thu® — Mu?, wy)

= a(Il}u! +H%u2,w}l + w?)
~ (an — a)(ut ~ Tihut, wd) — (ap — @) (Tu? — T2, w})
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because a(Il2u!,w?) is equal to ah(l'[hu ,w?). Hence

(a—ap)(Mpu, wy) = (ap—a)(Iiu' ~Iiul, wE)+(ap—a) (M} u? —1T2u?, w))

Now IIhu —Hlul can be bounded like an interpolation error by rewriting
it as

M2y! — Mhu! = M2a! —u! 4+ u! — !
So
(o — ap)(Myu, wp) = (a— ah)(H)ilu; - u;, w}f;)—
—(a—ap)(Bu! —ulwd) 4+ (a-— ah)(l'[gu2 - u2,w,11)—
— (a2 —ap)(ITju" — u®,wy)
Each four pieces are bounded independently; the parts that involve a(,)

are easy to bound, the parts that involve a(,) are treated as follows.
By definition

E T | V(T u! — u!) (&) Vwi (65)
cnnhu —ul|lwi| < Chllw}|

ah((nhu - ul)a u)lzz)

IA

This proves that
(@ — an)(Mau, wh)| < Ch(lJwyll + llwj )

Since |jw} ||+ ||wd]| is an equivalent H! norm in V}, the quadrature error
is bounded by A.

6. OTHER CASES

6.1. The domain is the difference of two sets

Now assume that @ = Q' \C where C C £V
We take a larger set €25 containing C and inside §¥'. For €; we choose
a set ] containing C but inside £:
ccc,cq (6.1)
Then we take
Q='\0), Q=%\C (6.2)
Obviously we have © = £;US22, 21N # 0 so we can apply Algorithm 1.

Remark 4. This idea is borrowed from the Chimera method except
that the latter is framed in the context of Schwarz algorithm.

Remark 5. In the discrete case, the domains €; are found automatically
by finding first all the triangles of §2;5 which are touching C then taking
one or two layers of triangles around it; this determines the boundary
S1. Then surrounding C with a boundary Sy of the same type as 0C
which contains S in its interior and is contained in €. This may not
be possible if the triangles of ' are too large.
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Figure 2.

6.2. The domain is obtained by extrusion

Consider the case where a portion of volume, (7, is extruded from the
primary volume '

Q=M\CnY (6.3)

As before we construct an auxiliary domain 29 which is around C and
an auxiliary domain 2; which is exterior to C but intersect Q5. Let S
be the part of Q' in Q9 ans S the part of Q5 in 2y The boundary
conditions on u**! in Algorithm 1 will be

u?' =0 on S, U, ultl =0 on S;UY (6.4)

Note that a condition on ug is on a boundary strictly inside 9. If this
causes a difficulty then the fictitious domain method may be used to
impose this condition.

6.3. The domain is the intersection of two sets

Extending the idea used for the extrusion we simply compute the u;‘“

in Q; with homogeneous Dirichlet conditions on both boundaries 0€2;,
i.e. on 9N U 0. Again the fictitious domain method will avoid the
need for intersecting both domains.

Y

Figure 3.
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7. A FAST FINITE ELEMENT
INTERPOLATOR

In practice one may discretize the variational equations by the Finite
Element method. Then there will be one mesh for §2; and another one
for 9. The computation of integrals of products of functions defined
on different meshes is difficult. Quadrature formulae and interpolations
from one mesh to another at quadrature points are needed. We present
below the interpolation operator which we have used and which is new,
to the best of our knowledge.

Let 7‘2 = UkT,?,T,ll = UkaI be two triangulations of a domain 2. Let

V(ﬂz) = {CO(Q;L) : flT,: € P1}7 1=0,1 (71)

be the spaces of continuous piecewise affine functions on each triangula-
tion.
Let f € V(TY). The problem is to find g € V(T}) such that

glq) = f(g) Vg vertex of T} (7.2)

Although this is a seemingly simple problem, finding an efficient
algorithm is difficult in practice. We propose an algorithm which is
of complexity N'log N°, where N?is the number of vertices of 77,and
which is very fast for most practical 2D applications.

Algorithm 4. The method has 5 steps. First a quadtree is built
containing all the vertices of mesh 79 such that in each terminal cell
there are at least one, and at most 4, vertices of 7'?1 .

For each ¢!, vertex of 7} do:

Step 1 Find the terminal cell of the quadtree containing g'.
Step 2 Find the the nearest vertex g7 to ¢! in that cell.

Step 3 Choose one triangle Ty € T} which has g9 for vertex.

Step 4 Compute the barycentric coordinates {);}j=123 of ¢! in T?.
— if all barycentric coordinates are positive, go to Step 5

— else if one barycentric coordinate  Ais negative replace Ty the
adjacent triangle opposite ¢¥ and go to Step 4.

—else two barycentric coordinates are negative so take one of the
two randomly and replace T,? by the adjacent triangle as above.

Step 5 compute g(g') on TP by linear interpolation of f:
9d ) = D Nf(@)) (7.3)

j=1,23
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End
Two problems need to be solved:

» What ifq* is not in Qg ? Then Step 5 will stop with a boundary
triangle. So we add a step which tests the distance of ¢! to the
two adjacent boundary edges and select the nearest, and so on till
the distance grows.

o What if Qg is not convex and the marching process of Step 4
locks on a boundary?

By construction Delaunay-Voronoi mesh generators always triangulate
the convex hull of the vertices of the domain. So we make sure that this
information is not lost when 7%, 7} are constructed and we keep the
triangles which are outside the domain in a special list. Hence in step 5
we can use that list to step over holes if needed.

Figure 4. To interpolate a function at ¢° the knowledge of the triangle
which contains q° is needed. The algorithm may start at q' € T? and
stall on the boundary (thick line) because the line ¢°¢' is not inside .
But if the holes are triangulated too (doted line) then the problem does
not arise.

Remark. Step 3 requires an array of pointers such that each vertex
points to one triangle of the triangulation.

8. NUMERICAL EXAMPLES

The test case is geared to reproduce the situation of scientific computing
with CAD data. The temperature equation is solved for an object, a
stylized spanner, described by set operations on 4 elementary shapes,
A,B,C,D. A is a rectangle, B is a circle, C is a trapezoidal quadrangle
and D is a circle. The spanner is the union of B and C with A extruded
and D removed.

We do not have yet the software to treat extrusions so A is intersected
with B first so as to reduce the case to a set difference rather than an
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extrusion. Then A and D are surrounded by artificial domains, some
elements of B and C are removed so that the final domain becomes the
union of 4 sets feasible for Schwarz algorithm.

7

Z
Figure 5. The top picture shows the temperature level lines in the
spanner as computed by standard FEM. The other pictures show the
same lines but computed by domain decomposition after 26 iterations.
Note that the spanner is reconstructed by sliding horizontally A into B,
and vertically C into B and D.

The geometry is prepared with the software “freefem+” (see [5] for more
details).

The PDE is a simple Laplacian with non-homogeneous Dirichlet data:
the temperature is 100° in the mouth of the spanner and in the hole in
the handle and zero in the remaining boundaries.

Freefem contains also a PDE solver capable of handling several meshes
within one program and which uses triangular conforming finite elements
of degree 1 and Gauss factorizations to solve the linear systems. Mixed
integrals are computed with quadrature points on the mid-edges of the
triangles, which is similar to formula (3.9) when the function is piecewise
constant. Naturally the interpolation operator for the computation of
integrals is the one presented above.

We have tested the method for different values of (3 and for two cases:

- L. In the first case the boundaries of the subdomains are edges of the
triangulations of the other domains.

- II. In the second case the triangulations are completely independent
from one another.

Figure 5 shows the convergence behavior for these two cases (I on the
left, II on the right) for # =0,1,5 and 10. (recall that 8 = 0is Schwarz'
algorithm).
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Figure 6 shows the solution with the standard finite element method
(top) compared with the solution on each domain.

104, ' + + 1 + t
-3 (Schwar-)
~8-10 2.0 (3ciaarz)
1000 l: . % —e-t-1c
. PRI | - 3-8
. \ : '::-_rtual Control 000 B ! ce-Bal 1
N »
.Gl)r .\ 1
setefoscsssonoqeseand
X . N 1m0
10 L. "..?-4 -—e ?—0-“
[ \..:"r,_,.-._.-..{..,u
+ i
1 N - " " n
L3 T T i3 ? 4 it 1 + n

iterations Veres iare

Figure 8. Convergence history of the L? error in log-log plots for two
cases. Case I. on the left and case II. on the right. These show that the
classical Schwarz algorithm (3 = 0) and the algorithm presented here
have similar performances ezcept if B is too large and if the meshes
match. Comparison with the method of “virtual controls” described in
[1] is also made and shows that the latter is faster but gives a less perfect
matching in this case.
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SOLUTION OF CONVECTION-DIFFUSION
PROBLEMS WITH THE MEMORY TERMS

Jozef Kacdur

Abstract: A new numerical scheme is proposed for solving a contaminant transport
problem with adsorption.  Both, equilibrium and nonequilibrium
sorption modes with Freundlich and langmiur type isotherms are
included in the considered mathematical model. The approximation
scheme is based on a relaxation scheme and on the method of
characteristics. The convergence of approximation scheme is proved
and some numerical experiments are presented.

Keywords: Method of characteristics, convection-diffusion, contaminant transport,
memory cffects.

1. INTRODUCTION

In this paper an approximation solution of the following convection
diffusion problem is discussed
Ob(u) + div(F(t, z,u) — k(t,z,u)Vu) = f(t,z,1u,s),

s(t,x) fo (t, 2)(u(z,z))dz n(0,7) x %,

(1.1)
where @ C RY is a bounded domain with a Lipschitz continuous
boundary 92, T' < oo.

We consider the mixed boundary conditions
u=0 onlxTIy,
—k(t,z,u)Vu-v=g(t,z,u) onlI xTI,
where I =(0,T), I'1, Iy C 0N, I'1N'y = @ and mesy_;I'1+mesy_ 'y =
mesy_10€2. Together with (1.1), (1.2) we consider the initial condition

b(u(0,z)) = b(up(z)) in Q. (1.3)

We assume that b(s) is strictly increasing in s, F‘(t,z,s) is Lipschitz
continuous in x, s and f, g, are sublinear in u. Problem (1.1)-(1.3) has

(1.2)
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Kluwer Academic / Plenum Publishers, New York, 1999. 199



200 Kacur J.

been studied in [9] for a special case when f = f(t,z,u), i.e., without
memory term.

As an example we present a model of contaminant transport in porous
media intensively studied in the last years, see [1, 3, 4, 5, 10, 11, 12]

8(6C + pS) + div(s5C — DVC) = 0

03,8 = d((C) - 5) (E)

where C is the concentration of the contaminant, ¥ is (Darcy) velocity
field of water, D is diffusion tensor, p is bulkdensity, 1) is sorption
isotherm of the porous media with porosity 8. Here S is the mass of
contaminant adsorbed by unit mass of porous medium. Coefficient d
describes the rate of adsorption. If d = oo then equilibrium sorption
process occurs and consequently S = %(C). Then b(s) = s + py(s)
generates the parabolic term in (1.1) with f = 0. Moreover, when
P(s) = ¢sP, 0 < p (so called Freundlich isotherm) then 4'(0) = oo for
p < 1 which occurs in most practical situations. In that case (1.1) is of
porous media type with convective term and the support of contaminant
develops with the finite speed. In the nonequilibrium case (d < oo) we
can eliminate S from ODE and we obtain

b(z) =z, f(t,z,u,8) = s —dy(u)

and
.t d
s=da / e Ylu(z s witha=" (S(©0)=0).
0

In the case of Freundlich isotherm with p < 1 the function % is not
Lipschitz continuous.

Numerical analysis of the model with the equilibrium sorption process
(i.e. s = 0) is included in our previous paper [9]. The contribution of
the present paper is the numerical analysis of the mathematical model
(1) which includes both equilibrium and nonequilibrium sorption process
in (E). The degeneracy b = 0,00 in some points is included and thus
convective term can be strongly dominant. Numerical solution of (1.1)-
(1.3) thus represents a delicate problem. We extend our concept of
approximation introduced in [9] for the case s = 0. We prove the
convergence of the approximate solution. The existence and uniqueness
of the variational solution is discussed in [12] where F(¢,x,u) = 9(z)u.

Our concept of approximation is based on the relaxation schemes
developed by W. Jiger and J. Kaéur in [6, 7] and on the method
of characteristics initiated by O. Pironneau [14] and J. Douglas and
T. Russel [2].
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2. APPROXIMATION SCHEME

The transport part of (1.1) is of the form
Bib(u) + divF(t,z,u) =0

which formally we can rewrite into the form

Fl(t,z,u) div . F(t,z,u)
ik Sk Bt A v PPl b Ak Bt
b (u) b (u)

and hence the corresponding velocity field o = ﬂ,}fff}ﬂ is depending on
the unknown u and cannot be expected to be smooth. Thus we regularize
b by b, with the properties listed below. The transport part with the
velocity field o can be realized by means of characteristics X(s,t,x)
governed by ODE

at'l.l. +

dX

ds
Their Euler backwards type approximation between time levels t = ;,
t = t;4 is givenby ¢*t!(z) = z—(t;+1—%;)0(z, t;+1). Then concentration
profile wu;(z) at ¢ = t¢; after the transport along approximated
characteristics prolonging ;4| — t; became u; o ¢**!. The transport can
be realized if characteristics X or their approximations ¢ do not intersect
each other which requires the boundedness of |V¥|,, < cand small time
step 7 = tiy1 — t;. In our case we cannot guarantee it. As it was proven
in [9] a smoothing (or averaging) of velocity field can guarantee that the
corresponding characteristic will not intersect provided the time step
T = t;41 —t; is small. Applying the method of characteristics the points
@'t1(z) can cross the boundary 8 and in such case we understand by
u; 0 @' := @; 0 @ where 4; is an extension of u; € W (Q) to 4; € W3 (Q*)
with Q* D Q so that ||ﬂi||w21(9.) < ”“i”WZ}(Qy

We realize smoothing of # by convolution wp * ¥ where wy is

standard mollifier with wy(z) = Flp‘wl(%) where wy(z) = nexp(gﬁt-l),
fRN wldx =1.

We consider nonstandard time discretization of (1.1) with time step
r=71,=T/n (n €N) and vu; is an approximation of u(z,%;) at time
level t; = 7.4, © = 1,...,n. We have to determine u; from linear elliptic
equation coupled with a relaxation parameter 0 < A; € L (§2)

=9(X,s); X(tt,z)==zx.

)\i(ui — U;—]© (pi“) - div(kiVui) = THi + ’Tf(ti,(l,', ’U,,;_]Si) (21)

;=0 onTy, —kVu;-v=g; =g(tiui—1) only,



202 Kacur J.

where

._ N
si = s cigth(ug)T, o =1 i, K(ti, s)ds,

H;:= diV;cF(.'L‘, ti, ui—l),
‘P:’;(-’E) =T — Twp * (_n_(F' t"i’"“‘!)

with0 < v € Lo(R), h=1¥, we (0,1)

and the following “convergence conditions” (2.2), (2.3) have to be
satisfied

s — Gi(pi)llg < 7%, a€(0,1) (2.2)

where

bn(ui-1) — bn(u;_10 ‘PL)
Uj—] — Ui—1 O @},

1 .
Gi(v) = /0 by (ui—y + 8(ui~1 09}, —u;—1))ds =
(]l - llois Lz norm and by, is a regularization of 6) and

bp(u;) — bp(ui—1 © (pjlg)

;
‘ <7, Be(o1). 2.3
Ui — Ui O P}, ©.1) 23)

0

A —

The scheme is implicit and to guarantee (2.2), (2.3) we propose the
iterations

)\i,k—l(ui,k —Uj_y 0 (’O:ls‘) — Tdiv(k¢Vui,k) =7H,+7f; (2.4k)

ux=0o0onTy, —kVu;-v=g;0onTls fi:=f(ti,z,ui1,s:)

bn("i,k)_bn(ui—l°¢:4~) ]
Mk 1= Uy k—Ui— 100}, 0 Aio =g (uin) -
’ L]

These iterations are not coupled with (2.2). If
[ Miko — Miko—1llg < 77

then we put Ui 1= Uj kg, A= /\i,ko—l-
To obtain %! we propose fixed point type iterations

Puivs
pig=Gip(pig—1), 1=1,... (2.5:)

and when ||p; 1, — tigo—1ll, < 7 then we put pitq := pigo—1 and obtain
(2.2) (with 2 + 1 in the place of i{). Then we continue (2.1) on the next
time level £ = ¢;41.
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3.  ASSUMPTIONS AND CONVERGENCE
OF (2.5)

By ¢ we denote generic positive constants. We shall assume

(H;) b is increasing, absolutely continuous function satisfying &(0) = 0.
We assume that there exist b, € C'(R), b,(0) =0 (r = 7, = T/n)
with b/ (s) locally Lipschitz continuous such that:

(i) bn(s) — b(s) locally uniformly;
(iiyecn ¢ < b(s) <en? VseR; d,y € (0,1);
(iii) sup|, < i |bn(2)] < ¢(K) <00 0< K < oo;
(iv) min{d'(s),e} < cbl (s) for some ¢ > 0;
) [ (s)] < en?, p € (0,1);
(Hy) k(t,z,8): I x Q@ x R = RV*N s continuous and
c1lél < (k(t,z,5)€,€) < ealé]? ;
(H3) F(t,z,s), F! = 0;F(t,x,s): I x QxR — RY are continuous and

|0sF| < ¢, |0?F| < ¢, |0:F(t,z,8)| + |0 F.(t,z,5)| < c(L(t, ) + |s])
forae. (t,z) €eQr=1IxQ, seR.

We also assume that F(t,z,s) can be extended to Q* D Q so that
the estimates hold true for z € Q* and L € Lo(2* x I);

(Hy) f(t,z,s,n), g(t,z,s) are continuous in their variables and
£ (&2, 8,m)| < c(1+[s] +Inl), 9(t, 2, 8)] < e(1 +|s])

¥(s) : R — R is continuous and |¥(s)| < ¢(1 + |s]); K(t,s) €
Loo(I % I) .

(Hs) up € W () N Loo(92) .

We denote the standard functional spaces by La = L2(£2), Loo(€2),
V = {vewW;(Q);v=0o0nT}, Ly(I,V) -see [13]. By |l - llos Il - lloos
Il -1l, Il - lir, we denote the norms in Lo, Leo(f2), W3(82), Lo(T2),
respectively. We denote by (u,v) = [quvdx, (u,v)r, = Jp, uvdz and
V* the dual space to V. In the sequel we drop the variable x in the
terms k, f, g, F, A, pu.

We use the concept of variational solution. Let < u,v > represents
the duality between V* and V.

Definition 3.1. v € Lo(I,V) is a variational solution of (1.1)-(1.3) iff
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(i) b(w) € Loo(I, L1(), 8b(x) € La(I,V*);
(i) f; < Ob(u),v > + [{(divF(t,u),v > + [;(k(t,u)Vu, Vv)+
+ fi{g(t,u),v)r, = [ (f(t,u,8),v) Vv € Ly(I, V),
s(z,t) = [EK(t, s)(u(z, s))ds a.e.(t,s) € I x§;

(1ii) [, < Ob(u),v >= f;(b(u)—b(uog), Bv) Vv € Ly(I,V)NLeo(I %),
O € Lo(Qr), v(T) =

Also u; € V in (2.1) is a variational solution of (2.1)

(Ai(wi — ui—1 0 9L,),v) + 7(ki Vi, Vo) + 7(g4,0)r,

= r(Hyyv) + 7(f(tiy i1, 5) VO EV (3.1)

Ifui—1, w109, € Lo then the existence of u; € V'in (3.1) is guaranteed
by Lax-Milgram lemma. To obtain the a priori estimates for u; and to
prove that u;_; o @' € Lq the crucial role place the estimate (see [9]
Lemma 11)

312 =4 <18k, (2) — el )] < 21z~ (3:2)

uniformly for ¢ = 1,...,n, provided p; = G;(v) for any 0 < v € Ly ()
and w+d <1, 7 <79. Then u;_; Otp:h € L, provided u;—| € Ly. Hence
{u;}i=, € V satisfying (3.1) is guaranteed.

In the following we shall assume that

(luillo < ¢ uniformly forn, i=1,...,n (3.3)

without any structural restrictions on b, F, g, f. If f = f(¢,z,u) is not
dependent on s (i.e. the memory term is not considered in (1.1)) then
(3.3) has been proved in [9], Lemma 15 under the following structural
restrictions:

(i) f,g,div;F(t,z,s) =0; or
(i) g=0, \; > q¢>0, L€ Lyo(I xQ)inHj); or
(i) f(t,z,8)s >0, g(t,z,c)s >0, H(t,z,5)5>0

(in the case (ii1) f; = f(ti, x,u;), ¢ = g(ti, z,u;), H; = H(ti,z,u;) in
(3.1)).
In our situation the result (3.3) hold true in the case (ii). Indeed as
in [9] we obtain estimate
st I51L)
Ai oo

fi

e < Nosieall + 7 -
]

|
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where we estimate H;, f; in terms of ||u;l|, using (Hs), (H4). Then we
obtain
i—1
lilloy < tim1lloq + €7 (lltim1llo + 521 llugllg 7 + 1)
Huilloo < (14 em) luiztllog + 7 X3] lusll, 7 + 67 <

< (1+ecr) (61 +c2 23‘;11 Nl oo T)

since (1 + CT)i < eT, Gronwall argument implies the estimate (3.3).
The convergence of iterations (2.5;) has been proved in [9] under the
assumptions:

N
Vuillp <¢, Vn, i=1,...,nand p+d+ Z W <, 7<mn
where N =dim (2.

Remark 3.2. The convergence of iterations in (2.4 ) has been analyzed

in [8].

Remark 3.3. Theregularization b,(s) of b(s) in (H,) is not so much
restrictive with respect to asymptotic behaviour of b, bl.. For example,
let us consider b(s) = |s|Psgn s, p € (0,1). We can take for bn(s)

é -4

(s + n_d)p —npé for sy > s >0,
bn(s)= s1=351(n) =n"-n

p
—|s—n_’5| +nPo for —s1<s<0,

and bp(s) = by(s1) +b.,(s1)(s — 81) for s > s1 and similarly for s < —s.
Then we have exn~(1"P)8 < bl (s) < cont1=PY f(i.e. d =~ = (1 — p)é for
any § > 0) and bli(s) < en? with p = (2 — p)6. We can verify easily
(i)-(v) in (Hy).

4. CONVERGENCE OF THE METHOD

To obtain a priori estimates for {u;}?; we follow [9] and only sketch
the additional terms on R.H.S. in (3.1) concerning memory. We obtain

Lemma 4.1. Under the assumptions (Hy)-(Hs), (3.3) and w+d < 1,
v+ 2d+ p < w, a > d the following a priori estimates hold true

n
p)
1msz,a\.xS" A Bp(uj)dz < ¢, ;_1 llwi]]” <e

uniformly for u, where By(s) := bp(s)s — f; b(z)dz.
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Sketch of the proof. We put v = w; into (3.1) and sum it up for
t=1,...,j. Similarly as in [9] we obtain

max,<j<i fo Bn(uj)dz + Yl Jlug]* 7 <

s T T
<efe+ e =42) O gl 7 + ¢ + e Sy Tho luell3 7,

where the last term arises in estimation of memory terms. Since
luillg € clluill, < ¢ we estimate the last term by a constant. Then
we take ¢ sufficiently small and consequently 7 < 79(¢) we obtain the
required a priori estimate.

By means of {u;}}; we construct Rothe’s functions

a™(t) ;= u;
' fort € (ti_,t; >, 1=1,...,n

u™(t) = w1 + H%(U; —Ui_1)

with @*(0) = ug.

Lemma 4.2. {@"} is compact in Lg(I x Q) Vs > 1,ie. there exists
u € Loo(I x Q) and {n} C {n} such that @™ — u in L,(I x Q).

The proof is based on the a priori estimate

n—k
> (baluisk) — bp(ue), tivk — ui)T < ckr

=1

which can be obtained in the same way as in [9] estimating the memory
terms using (3.3). This a priori estimates can be rewritten in the form

T—z
/0 (b (@ (¢ + 2) — ba(8™(2)), (¢ + 2) — a™(8))dt < 2

uniformly for z € (0, zg). Prom this and the estimate Mlarm)’dt < c
(see Lemma 4.1) we deduce that a"(¢,z) — u(¢,z) a.e. in I x  because
b is strictly increasing and because of the regularization properties of by,
— see [7]. Then (3.3) implies L, convergence.
As a consequence we obtain u € La(I, V) and 4™ — u in Lo(I, V).
Now we can prove our main result.

Theorem 4.3. Let the assumptions (Hy)-(Hs), (3.3) and a > d,
v+ 2d + p < w be satisfied. Then @* — u in .Ly(I x Q) Vs > 1 and
@ = wu in Ly(I,V) where @™ is from (2.1)-(2.3) and u is a variational
solution of (1.1). If the variational solution u is unique then the original
sequence {u"} is convergent.
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Sketch of the proof. We rewrite (3.1) in the form

(bn(ui) — bn(ui1),v) = —(ba(ti-1) — buluio1 0 @},,), v)+
+70 (ki(ui = ui-1 0 9, ),v) ~ 7(ki Vi, Vo) — 7(gi, v)r, + (4.1)
+7(Hi,v) + 7(fi,v) YveV
where ||#;llo < 1. Then we consider v € Lo(I, V) N CHI,C*®(Q)) with
v(z,t) = 0 for ¢ in a neighbourhood of T and put it into (4.1). Then we
integrate it over I and denote the corresponding terms by Jin — J7n.
Similarly as in [9] we obtain
Jin = —(b(uo), v(0)) — f;(b(u), Bv)dt for n = oo
Jon = [{(Fi(t,u) - Vu,v)dt for n — oo

where we have rearranged

; b (ui—1)~bn(ui—100%,) ;
iy b . i
bn(ui-1) — bnlui—1 0 ‘P#,) = Ui 1 —ui_ 109}, . (uz-l U;—1 © ‘PM)

wisy — i1 0 94, = fy Vui_1(z + s(@" — 2))ds [F; + (wn + Fi — Fi)]

with F; := E-'-("’“—‘Q Here we use also I® — 1, M™ — 0 in Ly(I x Q)
for n = oo where

Uu; ba(ui_10¢%.) 1 -
gy < ) Z0nle109) 10 gy s -
Ui—1 — Ui—1 O P}, Hi
for t € (ti_1,t), 1 = 1,...,n. Similarly we obtain
J3n—0 for n — oo .

Easily we deduce

Jin — /(k(t, u)Vu, Vu)dt for n = oo
I

and
Jsn = [1(g(t, U) v)r,dt ,

Jon ~ [;(divgF(t,z,u),v)dt

For the last term we have to use the following facts

forn —» o0 .

" s u ae inlIxQ, ||@*|,<c,

§(z,t) = JiTT K(t, s)p(al(s))ds — [ K(t,s)i(u(s))ds
ae. in (t,z) € I xQand ||5")|,<c Vn.
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Hence as a special case we obtain
t
Mo s= ] K(t, 2)p(u(z))dz  in Lo(I x Q)
0

and consequently
T [ (Fltu,s), 00t
I
Then we take the limit n = 00 in
Jl,n = —Jz,n + J3,n - J4,n - JS,n + Js,n + J7,n

and obtain

- f[(b(u)?atv)dt - (b(UO),’U(O)) = - fI(divF(t,x, u)av)dt_
— Ji(k(t,u)Vu, Vo)dt + [;(g(t,u),v)r dt + [,(f (¢ u, ), v)dt

where we have added together terms J2 and Js. Hence we deduce that
there exists dib(u) € Lo(I,V*) similarly as in [9]. Then we conclude
that « is a variational solution of (1.1)-(1.3).

The uniqueness of variational solution has been studied in [12].

The more strong convergence results we obtain under the regularity
assumptions on b.

Theorem 4.4. Let the assumptions of Theorem 4.3 be satisfied. Sup-
pose that (2.2), (2.3) are satisfied with the norm ||.\|e in the place of
|flo and let 0 < e < b/ (s) < M < o0 a.e. in Rand d =~ =0in (Hy).
Then @™ — w in Ly(I,V).

The proof of Theorem 4.4 is the same as that one in [9] (Theorem 48) and
the presence of the memory term represents no substantial difficulties.

S. NUMERICAL IMPLEMENTATION

The numerical implementation of (2.1)-(2.3) is rather costly also
without the presence of memory term - see [9]. The additional difficulties
arise including the memory terms since at the time level ¢ = ¢; we need
for evaluation of s; the values of u; for all § = 0,...,2 — 1. In the
numerical realization of (2.1) we project it into finite dimensional space
VA C V using FEM. We assume that V) — V for A — 0 in canonical
sense (A being the discretization parameter). Then instead of u; € V
we obtain u? € V) as a solution of projected equation (2.1). Then by
means of {u}}™., we construct Rothe’s function u, (o = (7,)) as our
approximate solution. For the convergence u, — ufor a — 0 we obtain
the same results as in Theorems 4.3, 4.4. In the projected problem
(2.1) we assume that ué is a projection of uy € W21 into V) and that
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ud — wp in L2(€2). The evaluation of u;_jopis the most costly from the
numerical point of view. As an alternative to the standard back tracing
we can use the following procedure. On each time level ¢; we construct
a new basis {1/)1} _“ which we obtain by shifting along characteristics

of the basis {1,b' l} A1 corresponding to ¢ = t;—;. The new basis
elements are locally completed by new elements or locally reduced with
respect to the density of the grid points which is changing by means of
characteristics. This process is simply realizable when, e.g., piecewise
linear elements are used. Then, in the place of back tracing in u;-y ocpf“
we obtain immediately the values in nodal points for the new basis on
time level ;. Additional treatment needs the extension of u;—; outside 2
(using boundary conditions).

We shall discuss now the treatment of memory terms. For realistic
contaminant transport problem (E) with sorption isotherms %(C) (e.g.
(C) = k,CP for Freunlich type, %(C) = k—ffk—i—éfor Langmuir type etc.)
We can express

50 =50 ¢ +a [ eI yconas  (a=5)

and when we insert ;S into transport equation we obtain a memory
term with f(¢,z,u,s) = s — 1(u) and

s = ad/ at=9) (C(s))ds, (K(t,s) =e %)) provided S(0) =0 .

In that case we can verify that a;1; = e ¥ a,; since a;; =
Lty —a(ti-s) 4,
7l e ds and

Siv1 =€ st oip,ip(w) fori=1,...,n.

As a consequence we do not need to store the values of u; (j =
1,...,i— 1) for evaluation of s;.
Example 1. We apply the proposed method in numerical solution for
the problem (E) with equilibrium sorption isotherm i.e. d — ocowhich
implies S = ¢(C) = kCP. Then (E) with specific data (in 1D) reduces
to

O (%u + 1.5up) + 0;(3u — 0.050;u) =0 .

We shall consider p = 1.2, 0.8, 0.6, 0.4, Q@ = (0,100), T = 30and the
Dirichlet boundary condition

(1) u(O,t) =1
(11) u(0,t) =0
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with the corresponding initial conditions
(i) u(z,0) = uy(z)
(it) u(z,0) = uf(z) .

12 14

18 20

Figure 3

Here uj(z) (i = 1,2) are piecewise linear functions of the following
form: up(z) = 1 for z € (0,0.1), ©#4(0.2) = 0,u}(z) = O for z > 0.2;
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ud(z) = 0 for z € (0,100)\(0.1,0.5), u3(0.2) = u3(04) = 1. The
solutions are drawn in three time moments for various p (p = 1.2 -
dash-dash-dotted line, p = 1.0 - full line, p = 0.8 - dash-dotted line,
p = 0.6 - dashed line, p = 0.4 - dotted line) in Figure 1 for £ = 2, in
Figure 2 for ¢ = 4 and in Figure 3 for ¢ = 6 in the case (i). The case (ii)
is drawn in Figure 4 for ¢ = 1, in Figure 5 for ¢t = 2 and in Figure 6 for
t = 6.

o.sr

10

Figure 6
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ON GLOBAL EXISTENCE OF SMOOTH
TWO-DIMENSIONAL STEADY FLOWS

FOR A CLASS OF NON-NEWTONIAN
FLUIDS UNDER VARIOUS BOUNDARY
CONDITIONS

Petr Kaplicky, Josef Mdlek, Jana Stard

Abstract: We study steady two-dimensional flows of shear dependent fluids in

a bounded domain subjected to three kinds of boundary conditions:
(i) general nonhomogeneous Dirichlet, (ii) nonhomogeneous Dirichlet
with zero normal component at the boundary (fixed wall) and (iii) free-
stick (slippery boundary). The existence of a C'*-solution is proved:
while condition (i) requires smallness of a given function at boundary,
conditions (ii) provide smooth solutions for all choice of data. Some
results regarding a special construction of an extension operator are
interesting on their own.

Keywords: Non Newtonian fluids, shear dependent viscosity, regularity, Holder
continuity of gradients, non homogeneous Dirichlet boundary condition,
free stick boundary condition.

1. INTRODUCTION

Non-newtonian fluid mechanics involves all problems described by the
system of equations where the constitutive relation between the stress
tensor T and the symmetric part of the velocity gradient D (v) is not
linear. One of the simplest examples of a nonlinear relation between T
and D(v) is given by the form

T = 2v(|D(v)|*) D(v), (1.1)
where v : ]R{," — ]R(']F is a nonlinear, typically monotone function of the
modulus of D(v).

Model (1.1) has the ability to shear thicken (when the generalized
viscosity function v is increasing) or to shear thin (when v is decreasing),

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 213
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however it cannot capture further phenomena of nonlinear fluids as
normal stress differences, stress relaxation, nonlinear creep or yield
stress. On the other hand, the ability to shear thin is exhibited by
a significant amount of materials, as polymers, dyes, chemical solutions,
glaciers, geological materials, blood, etc. (See [17] for explanations of
the notions, and [10], [11] and [17] for further references.)

When restricted to isothermal process of incompressible materials in
a bounded set £ C IR?, then governing equations read!

dive =0

P%!t" +m)kaa—ka_divT:V7r+pf_ (1.2)
Here, v = (v1, -, vq) is the unknown velocity field, 7 is the unknown
pressure, p is a given positive constant expressing the density of the fluid

and f = (f1,---, fa) stands for the vector of external body forces.

Although (1.2) together with (1.1) represents the simplest deviation
from the Navier-Stokes system (that can be obtained by setting
u(|D(v)|2) = 19, Yp being a positive constant), the mathematical analysis
of (1.2) with (1.1) differs from the analysis of the Navier-Stokes equations
tremendously. We are going to illustrate it discussing the question
of full regularity in two space dimensions, when equations (1.2) are
supplemented by the Dirichlet boundary condition, and by the initial
condition vy, i.e.,

v(0,z) = vo(z) for all z € Q,
{ v(t,z) =0 for all t € (0,¢*) and z € Q.

Here, divvg = 0 on © and vy = 0 at 99.

Set f = 0 for simplicity in the following exposition.

It is nowadays well-known that the Navier-Stokes equations in two
dimensions possess global uniquely defined weak solution provided that
vois L*-integrable. It is also standard to observe that if data (v and
2) are smooth then the solution is also smooth.

Completely different situation concerns the system (1.2) with (1.1)
even in the case when v is bounded (but nonconstant) function of
|D(v)|?: while the global-in-time existence of weak solution is available,
and also L%-integrability of the second derivatives is known, the question
of higher regularity (up to the boundary) is completely open. The
essential step is how to pass from L2-integrability of the second spatial
derivatives and first time derivatives to the boundedness of the first
gradient. To our knowledge, except for the paper of Seregin [18], who
proved recently interior Cl'a—regularity of solution to (1.1), (1.2) with v

'The summation convention is used throughout the whole paper.
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bounded, there are no other results. Closely related is a paper by Netas,
Sverdk [16], where the nonlinear parabolic systems are studied and local
Cle_regularity is proved.

In order to understand better both the passage from "W?22(Q) re-
gularity to CH®(2) regularity" and the analysis near the boundary,
we have started to treat the steady case first. The presented paper
is a continuation of our previous studies, where we treated the space
periodic case (see [8]) and the homogeneous Dirichlet problem (see

In this paper, we deal with steady problem in two dimensions and we
consider three kinds of boundary conditions:

1. nonhomogeneous Dirichlet boundary conditions with two types of
restrictions on boundary data

(a) v =y at O with ¢ sufficiently small; (1.3)

(b) v=¢p, @-v=0 at o (1.4)

(where v denotes the outer normal vector to 0€2) without any
restrictions on smallness of ¢ in tangential direction.

2. free-stick boundary conditions
v-v=0 and Ti(|Dv|)y;r; =0 at 69 (1.5)

(where 7 denotes a tangent vector to d€2). See [3] for more details
on this condition.

2. DEFINITION OF THE PROBLEM AND
MAIN RESULTS

We investigate the following problem: to construct v = (vi,v2) : @ —
R? and 7 : Q@ — R solving

v ~div(T(D())) +Vr=f inQ,

divv=0 inQ (2.1)

together with one of the boundary conditions (1.3)-(1.5) and satisfying
for a certain € > 0

v € W22 (Q), we whiteQq).

Note that higher regularity of v and w (corresponding to the smoothness
of data) is a consequence of linear theory, see [8] for more details if
needed.

Let S be the set of symmetric matrices of the type 2 x 2. Recall
that D(v) € S denotes the symmetrized gradient of » with components

. ov; ..
582+ 3),5,5 = 1,2.
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Throughout the whole paper we suppose that:
(A1) @ ¢ R? is a bounded open set with the boundary 9<;
(A3) function T : S — S satisfies for a given p € (1,00):2

s there exists F : Ry = (0,00) — Ry such that F € C? (]RGL) and
for all 4,7 = 1,2

Tii(n) = 85 F(In|>) = 2F (Inl)mij,  Vn €S,
F(0) = ;;F(0) = 0;

s there exist Cq1,Cs > 0 such that
-2
By O F(In)isért 2 Cr(1+ ) *7 €%, VneeS;  (23)
and (for all ¢,3,k,0 =1,2)

(2.2)

p-2
dy0uF ()| < (1+1nP) T, wnes.  (24)

(A3) f = (f1, f2) : @ = R? is given: f e L (Q), p' = p/(p — 1), for
p € (1,2) and f € L?T°(Q) with a certain gy > 0 for p > 2.

Now, we are going to give an overview of our main results stated
in Theorems 2.1, 2.2, 2.3 and 2.4; proofs of Theorems 2.1 and 2.2
treating the nonhomogeneous Dirichlet boundary condition will be given
in Section 2, proofs of Theorems 2.3 and 2.4 dealing with free-stick
boundary conditions are contained in Section 3.

Theorem 2.1. Letp > 3, Q € C® and (A1)-(A3) hold. Suppose that
@ is a trace of ® € W39(Q), ¢ > 2, (shortly ¢ =Tr(®)) (2.5)
p-v=0 at . (2.6)
Then there exist € > 0 and at least one solution v € W?22t¢(Q),

e WLZ—H(Q), fgﬂ'dm =0, satisfying (2.1) and (1.4).

Theorem 2.2. Let p > %, Q € C? and (A1)-(A3) hold. Then there
exists a constant § (6 may depend on f) so that for any boundary
conditiony satisfying (2.5) and

®llsq <6, (g>2)

there exist € > 0 and v € W2(Q), m € WH2H(Q), [ywdr = 0,
satisfying (2.1) and (1.3). Moreover, if p > g, then for sufficiently

*Notation: if Z: 8 -» R (or S), then 8;; Z(n) = ae’i(n), i,7 = 1,2,denotes partial derivative

i

of Z with respect to the independent variable n;; at the point 7.
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small ® there exist a positive € and v € WHP(Q) N ,i’fﬂ(ﬂ), mE
LP () N W2H(Q) satisfying (2.1) and (1.3).

oc

Theorem 2.3. Let p > %, Q be a non circular C* domain and
(Ay)-(A3) hold. Then there exist a positive € and v € W22T<(Q),
T € Whte(Q), [qmdz = 0, satisfying (2.1) and (1.5). Moreover, if
p > g, then there exist a positive € and v € WIP(Q) N Wli’cz+£(9),
me L”'(Q)ﬂwl’“e(ﬂ) satisfying (2.1) and (1.5).

loc

Theorem 2.4. Let p > %, Q be a circle and (Ay)-(A3) hold. Then
there exist a positive € and v € W?*T¢(Q), 1 € W2¢(Q), [, mdr =0,
satisfying (2.1), (1.5) and

dvy  Ou
/Q (5o~ o) = =0.
Moreover, ifp > %, then there exist a positive € and v € wiep (@) n
W22t (Q), m € LP () N WL2T(Q) satisfying (2.1) and (1.5).

loc oc

The idea of the proof of Theorems 2.1 - 2.4 has similar structure’:

s First we show that forp = 2 there exists at least one weak solution
of the problem and that all such solutions are smooth.

s Then we approximate function 7 with a growth p — 1(# 1) by
functions T with linear growth defining for A € (0, 1)

TAE) = (1 + A |€[)) T T(€) forall £ €8, (2.7)

Thus T satisfies assumptions (1.2)-(1.4) above with p = 2. It
means that we can use previous step and obtain existence of apro-
ximating regular solutions.

m The last step consists in finding estimates for approximating
solutions in W1P(Q) and in W22+¢(Q) uniform with respect to
A. It is easy to see that T satisfies (for p € (1,2))

0yTH(E)| <Cy, forallées  (28)
8 TA(MEi&r = Co(1+ In|*) T €7, forallé,ne S (29)

with constants C; and Cs that do not depend on A. It allows
us to obtain the above mentioned uniform estimates and then

)i

31t is worth remarking that we work only with divergence-free test functions to gain estimates
for the velocity field. The properties of the pressure are obtained only at the final stage by
a variant of the De Rham theorem.
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choose a sequence denoted v, converging weakly to a function v
in W22+€(Q)). The final passage from the approximating problems
to the original problem for A — 0 is then easy.

This structure of the proof is successfully applied and explained in
[9] in detail, where homogeneous Dirichlet boundary conditions are
considered. The scheme carry on the method developed by Neéas and
Stard to prove regularity of weak solutions to nonlinear elliptic equations
and systems of an arbitrary growth p € (1,00) in two dimensions, see
[13],[14] and [20].

Here we extend the results from [9] to boundary conditions (1.3)-
(1.5). Using the paper [9] as a reference, we concentrate on and present
only those parts of the proofs that are different or new. Thus the most
difficult step 3 is not discussed here at all, as it follows [9] line by line.

A final remark concerns interior regularity. As stated in above
Theorems 2.2, 2.3 and 2.4, CYregularity of v holds for larger range
of p, namely p > %. As the introduction of A-approximating problems
differs from case to case we prefer not to formulate one general theorem
on interior regularity for all kinds of boundary condition. In fact, the
method of the proof of Theorem 2.1 does not allow to show interior
regularity for p < % On the other hand, when the existence of
approximations is achieved, the regularity procedure coincides with
homogeneous Dirichlet problem performed in [9] in detail. This is why
we completely skip this part here.

3. PROOFS OF THEOREMS 2.1 AND 2.2

Before starting with the proofs we give two auxiliary lemmas on the
properties of an extension of boundary conditions.

Lemma 3.1. Let Q € C? bounded and o be a trace of ® € WH2(Q) on
IQ andn > 0. Then there exists a prolongation ®" € WY2(Q) such that
@ is a trace of ®" on OX) and

n
<nllll,, Yo W), (3.1)

J
v;—=v; dr
o Oz 7

Proof. A construction following Hopf can be found in [21] or [5]. =
The following lemma generalizes this result for p # 2 and gives
estimates of ®7 in W1P(9).

Lemma 3.2. Letp€ (1,2),n > 0,2 € C3,p = Tr(®),® € W3(Q) for
some q > 2, and @ satisfy (1.4). Then there exists ®" € WH*(Q) such
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that
divd?’"=0 in 2 and Tr(®")=¢p atdf, (3.2)
n
3 —Ly;dz| < n o ||v|| Vv € Wol’p(Q), (3.3)
o
1271l; < C”__l Vg € (1,00). (3.4)
[87[ly,4 < Cne

Proof. An analogous lemma for p = 2 (following Miranville and Wang)
is sketched in [22]. We use the same construction here, what differs are
the estimates.

Since © is bounded and regular enough, there exists dp > 0 such that
the interior normals to 9§ do not intersect in the neighborhood of 9%
of width 2dp. We denote this neighborhood of 92 located inside 2 by
O35, Moreover, due to regularity of 9, for every z = (z1,x2) € Oy,
there exists a unique point b(z,z2) € I such that

d(z) := dist((z1, z2), 0Q) = dist((z1, z2), b(z1, 22))-

Let Ty(z, z,) = (71,72) denote the clockwise tangent vector to J§2 at
the point b(xy,z2). Then v = vy, 4,y = (=72, 71) represents the outer
normal to 9.

We consider a smooth function p : (0,00) — (—1,1) such that

1
p(0) =1, p(s)=0Oforalls>1, and / p(s)ds =0,
0

and we set (n < &)

dist(z)
I (z) = { o(b(x)) - Tb(mhﬂ)/o p(s/myds if (z1,x2) € Oy,
0, elsewhere.
We finally set
o " — rot¥" —%\p—(fﬂl,ﬂﬂz) 35
(z1,72) = (21, 72) = 10t ¥ (21, 22) = ( ?,‘::’(:rl,x ) ) (3.5)

Thus in O, we can compute

®(z) - vy =
P(b(z)) - Tyayp (L2) £ (d(2)) + £ ((b()) - To(a) J3D(E) d
and
®(z) - To(z) =

— @(b(z)) - Tmyp (22) £ (d(2)) — S (P(b(@)) - o)) fo B(E) ds.
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Since %(d(w)) = -1, (%(d(:c)) = 0 and 6—6;(9;)(1)(9:)) - Tp(g)) = 0, these
relations reduce to

2(0) ey = FO0E@) ) o3 ds |
®(z) - To(z) =Lp(b(q;)).¢b(x)p(i(n£l), bor  (3.6)

from which we can easily observe that at the boundary, where d(z) = 0
and b(z) = z, we have

®(z) v, =0 and P(z) 7 =p(z) 7z = p(z) because of (1.4).

Thus (3.2) holds.

Next, as &7 = (®" - v)v + (®"- 7)7, and v and 7 depend smoothly on
(z1,z2) € Og,, one can obtain (3.4) looking at the values of ® - v, ® - 71
and their tangential and normal derivatives.

Indeed, as ®-v, ®-7 are bounded uniformly with respect to 7 and they
have the support in an n-neighbourhood of the boundary, we get (3.4);.

Computing tangential and normal derivatives of ®-v and ® - 7 we see
that all of them are bounded uniformly with respect to n except for

0 1,d(z), 0
b;((l)(:c) o)) = P(0()) - Th(r) EPI(T)E;(d(x)) + bounded
which implies c
VT < o for all z € Oy, (3.7)

which is (3.4)2.
Finally, with help of (3.7) we also have

( [ e )
(')x Q
’ dz)? X > (3.8)
4 4
<Cpv ! |‘U x)!, dz | = Cn7_111 ,

d(z)?
where constant C does not depend on 7.
Using Holder inequality with § = 1 — 4/(p'p) we estimate I, as

;4f .2 4 p ;‘I‘; 2-4/p’ 6
/m F’d:cg(/ da:) (/ lu| 3 da:)
Q Q

Since (2 — 4/p )/6 = 2p/(2 — p) we can use imbedding theorems to the
second integral and the Hardy inequality to the first integral at the right
hand side to obtain

d(z)

i 2~ 2
I < || Vol [IVollp © <1Vl (3.9)
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Inserting (3.9) into (3.8) leads to (3.3) (realizing that ]% -1= 3’2;—4).
The proof is complete. =

Now, we come to the proofs of Theorems 2.1, 2.2. They follow
the scheme sketched above and detailed in [9] with two important
modifications clarified in the following two lemmas. The first one
concerns the coerciveness needed for the existence of solutions in case
p = 2, for which the Hopf construction of prolongation of the boundary
value ¢ (see Lemma 3.1) is used. It then allows us to show that all
solutions of the quadratic problem (2.7) are smooth as stated in the
following lemma.

Lemma 3.3. Let p = 2,9 > 2, f € LI(Q), Q € C3, ¢ = Tr(¢),
¢ € W29, Then every solution v,m of (2.1) and (1.4) satisfies v €
W22+¢(Q), 1 € WH2+€(Q) for some € > 0.

Proof. Proof of this Lemma with ¢ = 0 can be found in [9], Section 3.
Here we proceed analogously. The only difference is that for the use of
Leray - Lions theorem as well as for the first apriori estimate we have to
apply Lemma 3.1 in order to obtain a bound of [|v||, , depending only
on the data. The rest of the proof follows closely [9]. =

The second modification is needed in order to show that approximat-
ing problems parametrized by A are uniformly bounded in W'?({2). For
this purpose we use two ingredients (as explained in Lemma 2.4 be-
low): (i) the generalized estimates with p # 2 for the prolongation of
¢ constructed in Lemma 3.2 (recall that it requires the restriction to
assumption (1.4)); (ii) the procedure of Blavier and Mikelic' (see [2]) to
obtain uniform bounds in W1?(Q).

Once the uniform estimates in W'P(Q) are achieved, one can derive
the uniform estimates in W22+¢(Q) as in [9].

Lemma 3.4. Let the assumptions of Theorem A hold. Then for every
X\ € (0,1) there exists at least one solution v*, ™ of the approximated

system \ _
'“kaT —div(TH D)) +Vr=f inQ,

dive=0 nQ
with T* given by (2.7) and a constant C independent of X such that

[, <e =, <c
L,p 4

(3.10)

Proof. We will construct solutions via Galerkin approx1matlon§

Let {1}, be basis of smooth functions of V, = {1 € WyP(Q),
divey = 0}. Let ®" € V, be a function with trace qp Wthh is a suitable
prolongation of ¢ (the existence of ®7 is ensured by Lemma 3.2) with
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small 7, specified precisely later. We look for ¥ € RY such that
oV := "+ TN | Nyt solve the following system of algebraic equations

N
/{T)‘(D(UN))D(W) + o v ag = / foide, Vie{l,...,N
Q 3:I:k J Q
(3.11)
The existence of at least one solution ¢¥ € RY of (3.11) can be shown
by Brouwer Fixed Point Theorem.
Let us define a continuous mapping on ]RN :

PMcN) = [o{TND ) D) + vl i si — fy'hde,i=1,2,...,N,
e \ln(thcw)

If we show that there exists K > 0 such that
(P(cM),c¥) >0 forall ||cV|gy = K, (3.12)

then we obtain the existence of a solution ¢V such that ||c¥|[gy < K
by Brouwer Fixed Point Theorem. We shall prove that K can be found
independent of A and N. By standard monotone operator theory we can
then pass to the limit and obtain the existence of a solution v* to (3.10)

with ”v’\”1 uniformly bounded, which then implies the statement of
P

Lemma 3.4.

Let us now prove (3.12). First we write some estimates. (Note that
constants C’s do not depend on X in what follows.) (v := vV,v' :=
oV — o)

fn T'\ ))D(v )dz
> Cfn (1+ )" |D)? dz — C||D(@")}3
> C [o|D)|P dz - C |9 - C||D(@7)]5 )
> C21P D'} - C || DRI — C Q| ~ C | D(®M)]l3
|fQ “kam v dzl
&7
< lfﬂ ”kBZf“;' dz| + | [, <I>"<I>"3—J- dz
3p—4
<Cn 7 IVl + 8]9I + C(6) 12715,
Jo v dz < S|[VVIE+CEO) £ -
Here, we used the fact that |a + b|? > 2!~?(|a|” — [b|?), the Holder, Korn,

Young inequalities and properties of function $** from Lemma 3.2.
All together we obtain (c := ¢N)

(P(c),¢) > al|D'|P — b DV'|2 e, (3.13)
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where a = C127? (choice of 4), b = 027) > and e = Co(|] + “(I)"||

ID@7|[2 + |V ®?|[2 + [| f1I%,). Denoting g(z) = az? — bz — e, we want to
show that g(K) > 0 for a positive K.

1
The function g attains its maximum at the point Z = (2") -2 and

~_21);5 _E o= @p _p i’f;;_e
o) = ()50t - B e = (32) a1 By

B
Denoting (27(;;2) P~? (1 — &) by A and realizing that e < By~ forn < 1
due to (3.4) we see that
3p—14
9(&) 2 A7 - By-1.
As %%‘ < —1for p > 3/2 we see that it is possible to choose 7 so small
that g(z) > 0 holds.
The lemma is proved. =

Corollary 3.5. Let v*,7* be the solution from Lemma 3.4. Then
v} € W22t¢(Q) and n* € WH2H<(Q) for some € > 0. Moreover, there
exists a constant C that does not depend on X so that

[, <=, <e
1p P

The uniform apriori estimates of v* in W22+¢(Q) needed for the proof
of the Theorem 2.1 can the be proved as in [9].

Regarding the proof of Theorem 2.2 it is enough to notice that to
achieve the positive maximum of function g in Lemma 3.4 we can use
sufficiently small norm of @ in estimates of convective term instead of
Lemma 3.2. The rest of the proof is analogous.

4. PROOFS OF THEOREMS 2.3 AND 2.4
In this part we mean by V,, the space
Vo={ueW'P(Q), u-v=0 atdQ, divu=0on}.

A function v € V, is a weak solution of (2.1), (1.5) iff for any test function
p € V,, the equality

/Q(T(D('U))D(cp) +vk%¢i) dr = /Qf-wdx (4.1)

holds. We introduce the operator A: V, — Vp’ given by the main part
of (4.1), i.e.,

(Av,0) = [ (T(D@)D() + e 5 Ov ) de.
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Let us start with smoothness of solutions for quadratically approx-
imated systems (3.10) with T given by (2.7). Then A is continuous

and
(4,0 = [ T(DEN)DE) > 1D
Q

As 0f2 is not a circle, we can use the Korn inequality (see [7]) and
get coerciveness of A (i.e. Vvt € L?()). As the first part of A is
strongly monotone, we can obtain by Leray-Lions argument the existence
of a weak solution v* € V,. Moreover, for any A € (0,1) there is a Cy

such that "v}\"LQ " “,rxn2 <Ol -

Now, we are going to prove that for any A the corresponding solution
{v*, 7} belongs to CL*(Q) x C%*(R) (in fact, we will discuss in detail
the step “from W12 to W22”) and in the second step we find estimates of
{v*, 7} in W2t62(Q) x W1+62(Q) that do not depend on approximation
parameter A.

Let A be fixed. We want to show that any solution v* € W1P(Q)
belongs to W22+¢(Q). As interior regularity is same as in the case of
the homogeneous Dirichlet problem (see [9], Section 3) we prove here
the estimates near the boundary only.

We shall use the local description of the boundary 9% related to
the domain € € C?. This means that OQ is locally described by C2-
maps a1, s, ...,ak, k € IN. In the corresponding #-th coordinate system
(£=1,2,...,k), we suppose that for a fixed positive « and z; € (—a, @)

(£) (z1,z2) € O if and only if zp = ap(z,),
(#8) U} = {(z1,22); 71 € (—a, @), z2 € (ag(z1),ae(z1) + @)} C Q,
(#3) Uy = {(z1,22); 21 € (o, @), _
T2 € (ap(31) — o, ap(z1))} C R2\ Q.
We also assume that Ba,(0)

=0.
3x1

Further, we denote
Up = {(z1,22); 21 € (—o, @), 72 € (ag(z1) — 0, a0(21) + )}

and choose an open smooth set Uy so that

k
UUeoa.
=0

In this description the tangent derivative on U is defined by

o_ 9
01_3:151
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and the outer normal vector (up to a multiplicative constant) is given
b
g v = (~(a),1).
In what follows we shall omit indices £ (counting coverings of d€?) and
A (approximation parameter).
We shall test (4.1) by

0
B(p) = (=50 + (0,a"p1)) + 9 (4.2)
where @ € V3, £ is a cut-off function in C§°(U) and ¥ is chosen so that
div®(,) = 0.
Function %¥ is defined as a solution of
divy? = div(€(§2 - (0,a"¢1))) in U (4.3)
Y? =0 at oU. ‘

By Amrouche, Girault (see [1]) we know that for any s € (1,00) there
exists a ¥¥

19%0l,, < C(s) llelly,s  and  [[9%llg s < C(s) llepllo,s -

As p € Vo wehave ¢ -v =0 at dQ and also z%(tp-u) = 0 at 9. Thus

Qf-u—a"cple at Q2.
or

Finally we obtain
P = - % " Y.py= 0
(0) V= 637’ v+éapin+yYP-r=0 at 0.
Let us denote v
U= f(—a—T +(0,a"v1)) + 97,

where %' is defined by (4.3). After integration by parts and
rearrangement, we see that u solves the equation:

Joy 8 Tet(D(v)) Diy (u) Dy () d = iy
Ja Pz;,%%" + Pipidz + [, Qija_ﬁ‘;"‘ (4.4)
Qif — vk §h (B(y))ide, VYoeV,
with @,y and 9% given by (4.2) and (4.3). The terms Pj;, PB;, Qij, Q;

that are not written explicitly here can be estimated by C(|f| + |Vv]).
Inserting ¢ = wu in (4.4) we obtain (using ellipticity condition (2.4))

v
2dr < / — .
| 1Duf dz < CIDul, (Iflo + 1) +] [ 0z @uydal  (45)
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The last term in (4.5) can be estimated by C(e) + € ||V?v|, for an
arbitrarily small £ > 0.

The Korn inequality ([7]) implies that we can estimate symmetric
gradient by gradient in (4.5) and for all € > 0 there exists K(g) such
that

ve=1, ..k || %, SK(5)+6|V20 . (4.6)
a’r 1,2;,U, I ||2
Using condition (2.4) we realize easily that to estimate normal
derivatives of Vw, it is enough to estimate g—i‘%. As divv = 0 we
2
obtain %5} = —3%2"9’;; and it is controlled by (4.6) for a sufficiently

. . 2 .
fine covering {Up}5_,. The estimate of %’-} can be extracted directly
2

from (4.1). Taking curl of (4.1)* (in distributional sense) we get (the
empty brackets () abbreviates (|D(v)|?))

-0 F() + 500 F() - 3?,3—3111”‘() 72 =012 F ()

= curl(vka—-) —curlf. (4.7)

Set G = z22-812F(|D(v)[?). Then clearly (¢ =1,2,...,k)

[€eGll-1,2 < Cl|dr12F()|2 < ClIDvll2 < C.
Next, by (2.4),

0
[ @), < [mranrol, <0+ 3 [52m ],
Finally, from (4.7), we have
52 (&G H“1 2
< C (|| a1 F + 8naF — 0P|, + oz, + |£], + 1)
<C+¥h |25,

Now, we can apply the Nedas’ theorem on negative norms (cf. [15] or
[10] for a formulation of theorem) to obtain

l€eGllz < C(I€GII-12 + IVEG] 12 < C + Z [ prvrs IECE)
From the definition of G, we observe
v, G 1 0D (v) 3D22(U)
012012 F () D12(8$2) =5 2311312F() i 32 02 F() ——+= ( |
4.9

4 . _ 8 8 . 2
Recall that curlz = ﬁxz - :2 for z : @ = R2,
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. 2 32
Using the fact that 2% = —3‘2—1:’;%2 for the last term, and the facts that
2

D12(3%) —g- + 25 61: 6;:2 and 812012 F(|D(v)[?) > C; by (2.3), we can
conclude from (4.9) and (4.8) that

"&8 V] ” <C+ Z ” Bxlaz, (4.10)
Then (4.10) together with (4.1)-(4.6) lead to
o2 ov e o?
el <e 15l e g 152 Sl
(4.11)
If « is chosen so that
- da(zy) 1
cma.xmes(lilc)!,a) f’);:; ’ < 3"

the last term in (4.11) can be moved to the left-hand side and

> e

Adding these estimates and choosing ¢ sufficiently small we obtain

‘ < Kl(e +e||v2 ” for8=1,... k.

62
5. <

which means that v € W22(Q2). Remind that we omitted index X so
that by this way we proved v* € W22(Q)

It implies that the right-hand side in (4.4) belongs certainly to L7(2)
for ¢ > 2. We can thus complete the first part of the proof combining
the scheme from [9] with LP-theory for the Stokes system with the
boundary conditions of the type (1.5) proved in [19]. (They can be
also deduced from the results of Grubb [6] studying the evolutionary
Stokes system.) The first part of the proof (dealing with A fixed) of
Theorem C is complete.

To obtain estimates uniform with respect to A we repeat this
procedure again using the estimates (2.8), (2.9) (uniform with respect
to A) instead of (2.3) and (2.4). Testing equation (2.1) by v and using
the p-version of the Korn inequality (see [12]), we obtain

3¢ VA€(©,1) Iy <C.

The rest of the proof is analogous to [9]. The only substantial changes
are in using the LP-theory for Stokes problem for boundary conditions
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(1.5) (performed in [19]) instead for homogeneous Dirichlet problem.
Theorem 2.3 is proved.

In order to prove Theorem 2.4, it is possible to proceed as in the
proof above provided that the Korn inequality holds. As 2 is a circle we
modify the definition of the space V, and set

Vo = {u € WHP(Q);
u-v =0 at 09, divu=0inQ,fQ(%?;—%) dz = 0}.

Then, by [7] and [12], we see that the Korn inequality || Vull, < c||D(u)]|,
holds for all u € Vp. The rest of the proof follows lines of the proof
above. =
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VISCOSITY SOLUTIONS FOR
DEGENERATE AND NONMONOTONE
ELLIPTIC EQUATIONS

Bernd Kawohl, Nikolay Kutev

Abstract: Motivated by the theory of viscosity solutions we suggest and discuss
criteria to choose a particular solution from possibly many solutions
in situations where there is nonuniqueness or discontinuity. Particular
examples include the Cahn-Hilliard equation.

Keywords: Viscosity solution, Perron method, Cahn Hilliard equation, gradient
blow-up, discontinuity.

1. INTRODUCTION AND MOTIVATION

The aim of this paper is to extend the notion of continuous viscosity
solutions of M.Crandall and P.L.Lions [8], [21] to a wide class of
degenerate nonlinear elliptic equations which are not proper, i.e.
equations without the fundamental monotonicity condition with respect
to the solution u(z). Originally viscosity solutions were introduced for
first order equations by the method of vanishing viscosity. Later on
for second order fully nonlinear elliptic and parabolic equations the
existence of viscosity solutions was proved by means of the Perron
method. That is why the unique viscosity solution obtained by Perron’s
procedure is automatically a continuous function. However there are
many examples of equations which have either discontinuous solutions
or more than one continuous viscosity solution. This is our motivation
to introduce a notion of discontinuous solutions which are stable under
small perturbations and are still unique in the class of discontinuous
solutions, and which we will call later on limit solutions. This new
definition is a natural extension of the classical one of M.Crandall and
P.L.Lions. In fact, if the problem has a unique continuous viscosity

Applied Nonlinear Analysis, edited by Sequeira et al.
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solution, then this solution is also the unique limit solution of the
problem according to the new definition.

The most important example which motivates such considerations
is the Cahn-Hilliard equation. It is well known from the abundant
literature that this problem has discontinuous solutions. The reason for
this phenomenon is the fact that the equation is not proper, combined
with the high degeneracy of the equation. One can see from the analysis
of the solutions of the regularized problem

—e2u"(z) + ud(z) —u(z) =0 in (0,b) (1.1)

that in some sense the discontinuity of the solution as € — 0 is

a consequence of ‘“an interior gradient blow up” of the perturbed
solutions u*(z)

A ¥()

oY

-1

Figure 1. Solutions of (1.1) for different ¢

This is more clear in the problem considered by M.Bertsch and
R.dal Passo [4], arising in the theory of phase transitions where the
corresponding free-energy functional has a linear growth rate with
respect to the gradient, i.e.

ue = [p(u)(us)], inR xRy, u(z,0) =u(z) inR (1.2)

where @, are smooth, ¢ > 0, ' >0, ¥ is odd and % has the following
asymptotic behaviour at infinity:

Ay(P)

Yoo

_\I;OO

Figure 2. Shape of ¢

Since the equation, in general, is nonmonotone and highly degenerate,
the gradient of the solution blows up after a finite time and then the
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solution becomes discontinuous, where the discontinuity is only as in
Figure 3a) but not as in Figure 3b).

The paper of Angenent and Fila [2] treats strictly parabolic nonmono-
tone equations, a typical example of which is the problem

up = Ugg + ulug ™ Tug in (-1,1) x R,
'll(:L',O) = (,0((11) in (—’la l)v (13)
u(x1,t) = Ay fort >0

for m > 2, for constants A_ < 0 < A, and for sufficiently large Ay —A_.

At(z, to) / Au(;t0)
J

:
1
' b b
0 T £ 0 Zo £

Figure 3a. Possible Discontinuity =~ 3b. Impossible Discontinuity

The authors prove that after a finite time the gradient of the solution
will blow up at some interior nodal point of u, provided the oscillation
of the data, A, — A_, is large enough. They did not investigate the
behaviour of the solution after the blow up time but one can prove
that the solution will be discontinuous as in Figure 3a). The reason for
the interior gradient blow up and the discontinuity of the solution is the
supergrowth of the gradient term (m > 2)and the large oscillation of the
data. Boundary gradient blow up can be excluded due to the concavity
(or convexity) of the solution « on the boundary (1, ¢) (or (—1,%)), see
[2]. In this case the nodal line of the solution, where the gradient blows
up, is called interior boundary of the equation, see [11], and it should not
be confused with the topological boundary of the domain. If we interpret
the lower order term |uz|™ 'ug - u as a zero order term with coefficient
|uz|™ 'ug of the wrong sign, we see that the maximum principle does
not apply when |u,| — oco. In some sense this equation can be considered
as an implicit degenerate parabolic equation, because if we divide the
equation by (1 +u§)ﬂ, B > 0, the new equation will be a degenerate one.

A more sophisticated problem was considered by Y.Giga [12], the
typical example is the following equation

Urz .
up — W =u(l+u2)’?  in(a,b) x Ry (14
u(x,0) = up(z) € C**, wufa,t) =ulb,t) =0
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where a > 1/2. This type of nonuniformly, nonmonotone parabolic
equation appears in some geometric problems with the mean curvature
flow. In this case interior gradient blow up (with discontinuity of the
solution after the blow up time) is due to the choice of special initial
data and to the fact that o > 1/2 implies superquadratic growth in u;.
Since the solution is equal to zero on the boundary, boundary gradient
blow up is eliminated.

In all these examples (1.1)-(1.4) the gradient of the solution blows
up in an interior point and after the blow up time the solution is
a discontinuous function. Note that in (1.1)-(1.4) the equation is
not monotone with respect to u and implicitly degenerate. On the
contrary, if the equation is uniformly proper (see (2.3) below), i.e.
uniformly monotone in u, viscosity solutions are known to be unique
and continuous in the interior, see [9]. The inbetween case, that the
equation is proper but not uniformly proper, can lead to blow up of the
gradient or the second derivatives and to subsequent discontinuity on
the boundary as in [19], or even to nonuniqueness of viscosity solutions.

Let us discuss uniqueness and nonuniqueness of viscosity solutions
in more detail. A simple example of nonuniqueness of the viscosity
solutions was considered by H.Ishii and N.Ramaswany [16] for first order
Hamilton-Jacobi equations, namely

|[Du(z)|=|z]| mnB={z€eR", |z <1}, u=0on dB. (1.5)
This problem has infinitely many continuous viscosity solutions

2uc:min{1—|a:|2,c+|:1:|2} for —1<c<1

Uc

Uy = 1—|:l7|2

u_y = —1+|z|?

Figure 4. A family of viscosity solutions, vary ¢
The authors explain the nonuniqueness of the viscosity solutions with the
degeneracy of the right-hand side of the equation. Indeed, considering

the new equation [Du(z)||z|™! = 1 with singular coefficients, they
“naturally” regularized it to |{Du(z)] (Jz|+€)™' = 1,s0 that the
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perturbed problem has a unique viscosity solution u*(z) forevery € > 0
and u(z) tends to the maximal solution u; = 1 — |z|? when € — 0.
However, as we will see in Theorems 1 and 2 below, the comparison
principle and the uniqueness result for viscosity solutions of degenerate
elliptic equations is true provided the equation is strictly proper, see
(2.11). Note that (nonstrict) properness, as in (1.5) does not suffice.

2. DEFINITION AND COMPARISON
RESULTS

Let us recall the definition of viscosity solutions. For simplicity we
will illustrate the definitions only in the one dimensional case for the
equation

F(u,u’,v") =0 in (a,b) (2.1)
which is independent of z.
Definition 1. i) An upper-semicontinuous function u(x ) is a viscosity
subsolution of (2.1) if for every zq € (a,b) and for every ¢ €
C? such that o(z) > wu(z) and ¢(rg) = wu(zo) the inequality
F(p(z0), ¢'(20), ¢" (20)) < 0 holds.
ii) A lower-semicontinuous function v(z) is a viscosity supersolution of
(2.1) ifforevery x; € (a,b) and forevery 1 € C2such that ¥(z) < v(z),
Y(z1) = v(z1) the inequality F((z1),v'(z1),¥"(z1)) > 0 holds.
iii) A continuous function u(x) is a viscosity solution of (2.1) if u(x) is
a viscosity sub- and supersolution

a 350 -Tll b
Figure 5. Illustration of Definition 1

The main assumptions under which the theory of the viscosity solutions
works are
* Degenerate ellipticity

F(r,p,X) < F(r,p,Y) whenever Y < X, and (2.2)
¢ Uniform proper operator (uniform monotonicity w.r.t. u(zx))
Jdy>0 8.t y(r—s) < F(r,p,X) — F(s,p, X) whenever r>s. (2.3)
Note that (2.2) is weaker than ellipticity,
F(r,p,X) < F(r,p,Y) whenever X >Y
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in which the inequality signs are strict. Under the above conditions
(2.2) and (2.3) the classical Dirichlet problem has a unique continuous
viscosity solution. The uniqueness follows from the comparison principle
for USC subsolutions and LSC supersolutions while the existence results
are based on Perron’s method.

However, in the case of degenerate elliptic equations in general the
classical Dirichlet problem does not have a solution. To understand this
phenomenon, recall that viscosity solutions are stable in the sense that
viscosity solutions u® of regularized problems converge (in a suitable
sense) to a viscosity solution of the limit problem. Sometimes this limit
solution violates the Dirichlet condition in the classical sense. A typical
example is the elliptic problem

Eugy + Uggy — Ug = f in (a,b) x (0,T) (2.4)

with Dirichlet data © = g on the entire boundary. In the limit
€ = 0 we obtain a degenerate elliptic equation, whose solution satisfies
ugy — Uy = f also for ¢ = T, but not necessarily u = gfor t =T.

For linear degenerate elliptic equations of type

0 (2)uz, z, + b (2Yuz, +c(@)u = f(z) inQ, (@) >0 (25)
it is still possible to define the right boundary value problem by means of

n
the so-called Fichera function 3(z) = E( Hz) — E a’J( ))vt, where v
&

is the exterior unit normal to the boundary of 2, such that the classical
Dirichlet problem has a solution (see [10, 24]). The Dirichlet data are
prescribed only on the part of the boundary where the elliptic equation
is nondegenerate in normal direction, i.e. where a(z)v*? > 0,and on
the characteristic one, i.e. where a*(z)v*J = 0, only in those points
where the Fichera function B(z) is positive. Now, if we want to define the
right Dirichlet problem for nonlinear degenerate elliptic equations and to
find a solution of the problem we have to know a priori the value of the
Fichera function which is impossible. In fact, 8(z) will depend on the
unknown solution u{z) by means of the coefficients of the equation and,
in general, we will not know the sign of 8(z). A suitable definition which
overcomes all these difficulties and is stable under small perturbations
of the domain and data was suggested in [9]. In contrast to equation
(2.1) we speak now about the Dirichlet problem (2.6):

F(u,v',4") =0 in (a,b) u(a) = A, u(b) =B. (2.6)
Definition 2. i) An upper semicontinuous function u(z) is a viscosity

subsolution of the Dirichlet problem (2.6) if u(z) is a viscosity
subsolution of (2.1) in (a,b) and if it satisfies the inequalities
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min(F (p(a), ¢'(a), ¥"(a)),u(a) — A) <0
min(F(¢(b), ¢ (b), " (b)), u(b) — B) <0

for every o, ¢ € C%¢(x) > u(z),d(z) > u(z), ¢(a) = u(a) and
¢(b) = u(b).

ii) A lower semicontinuous function v(z) is a viscosity supersolution of
the Dirichlet problem (2.6) if v(z) is a viscosity supersolution of (2.1) in
(a, b) and if it satisfies the inequalities

max(F(y(a),¥'(a), ¥"(a)), v(a) ~ A)
max(F(2(b), ¥'(5), ¥ (b)), v(b) — B)

for every 1, ¥ € C?, ¥(z) < v(z), ¥(z) < v(z)
P (b) = v(b).

iii) A continuous function w(z) € C([a,b]) is a viscosity solution of the
Dirichlet problem (2.6) if w(z) is both a viscosity sub- and supersolution.

(2.7)

(2.8)

¥(a) = v(a) and

-

OF == = = — =

Y

Figure 6. Illustration of Definition 2

Loosely speaking, Definition 2 says that either the solution satisfies the
Dirichlet data in a classical sense, or it satisfies the equation on the
boundary in the viscosity sense. Let us note, however, that if the solution
u(z) satisfies the equation in a classical sense at the boundary, then
Definition 2 is not automatically satisfied. In fact, if u € C([a,b]) is
a viscosity solution of (2.6) and u(a) > A, then according to (2.7) the
inequality

F(p(a), ¢'(a),¢"(a)) <0 (2.9)

holds for every ¢ € C?,p(x) > u(z), ¢(a) = u(a). These are more
admissible functions ¢ than described in Definition 1, because for interior
points zg and u € C! wehave u'(xg) = ¢'(zo) as an additional constraint
in Definition 1. If ¢ is an admissible test function at a, then so is
@+ Az —a) + p(z — a)?/2 for any A > 0, u € R. Hence (2.9) implies

F(p(a),¢'(a) + X, ¢"(a) + 1) <0
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for any A > 0, p, and if F is nondegenerate elliptic as in (2.11) we would
reach a contradiction by varying u. Hence F must be degenerate on the
boundary, if u violates Dirichlet data in the classical sense.

Remark 1. A similar situations occurs in several space dimensions. In

fact, if u(z) is a smooth solution of the degenerate linear elliptic problem
a'j(x)um,rj + bi(a:)uz, +c(z)u = f(z) inQ,

u(z) = g(z) on 99,

if u(zg) > g(zo) at some zg € I, and if ¢ is a test function at zg, then
for any A >0 and g € R the function

(2.10)

(&) = v, — 30) + (v ® vz — 20), T — 70) /2

is also an admissible test function at xg. Here v is the exterior normal
to 02 at zg. (Equivalently, if we work with the upper superjet, we have
that when (p, X) € J>% u(zg), then (p — A, X + puv ® v) € J>Tu(xy),
too, see [20]. Thus condition (2.7) boils down to

— " (2o)'v? + A (zo)' <0

forevery A > 0, p € R, but this can only happen if a¥(z¢)v'v? = 0
and bi(zg)v* < 0. The same condition holds if we consider the
corresponding inequality for the supersolutions. In this way we naturally
obtain Fichera’s formulation (see [10]) of the “right” Dirichlet problem
assuming, so to speak, that some part of Q2 belongs to the interior of
the domain. In fact the Fichera function S(z) = [b*(z) — afé (z)]v* was
originally introduced for the solvability of the Dirichlet problem in LP{£2)
by means of the energy method and “naturally” appears if one rewrites
equation (2.5) in divergence form

_(aij(fl‘)uxi):tg - [bi(x) - a‘g (@)|ue, — c(z)u + f(z) = 0.

However, in the necessary condition of D.Gilbarg and N.Trudinger [13]
for the classical solvability of (2.10) in C?(Q2) N C(Q) the important
function on the boundary instead of the Fichera function B(z) is the

1777
and k, are the principal curvatures of 92 at the point z € dQ. In general,
the Fichera function and the Gilbarg-Trudinger function are different
and coincide when the matrix {a*(z)} € C?(fY’) is a nonnegative one
in a larger domain ' D Q and the set of the chracteristic points of the
boundary,i.e. {zg € 8§ a*(z¢)v'v’ = 0}, has a nonempty interior.

. .onl
function b*(z)v' — 3 a¥(z)keAEXE, where A are the principal directions
=1

Now, going back to our original problem (2.6), let us first understand
why the notion of viscosity solution, i.e. Definition 2, is useful in
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the context of the Dirichlet problem. Since uniqueness and existence
theorems are based on a comparison principle we will first focus on this
question. In [9, Thm. 7.9] it was proved that a comparison principle
holds for continuous viscosity sub- and supersolutions of problem (2.6),
provided that the operator F is degenerate elliptic (2.2) and uniform
proper (2.3) and that it satisfies an additional technical assumption,
namely [9, (7.15)]. This condition (7.15) is, in general, hard to check for
nonlinear equations. We will show in Theorem 1 that this condition is
not necessary, at least when the function F is independent of z. In this
case even the uniform monotonicity condition (2.3) can be weakened to
the strict monotonicity condition (2.11)

0< F(r,p,X)— F(s,p,X) whenever r >s. (2.11)

However, if the strict monotonicity condition (2.11) is replaced by the
weak monotonicity condition (2.12)

0L F(r,p,X) — F(s,p,X) whenever r >s. (2.12)

then even for uniformly elliptic equations the comparison principle fails.
Uniform ellipticity is characterized by

308t (X -Y) L F(r,p,Y) — F(r,p,X) whenever X >Y,
(2.13)
while locally uniform ellipticity means

3’nr\'>l] S't'VXZY, [X[+]Y[+]p|l< K Yr (X — Y) < F('r,p,Y) - F(""P,(;?‘l)
In fact, we show in Theorem 2 that when the operator F satisfies (2.12)
and (2.14), then the comparison principle for problem (2.6) is true,
aside for some special cases of so-called extremal solutions. Those are
characterized by a gradient blow up or a blow up of the second derivatives
on the whole boundary of the domain, and then viscosity solutions are
unique modulo additive constants.

Theorem 1. Suppose F(r,p, X) € C(R x R x R) satisfies the degene-
rate ellipticity condition (2.2) and the strict monotonicity condition
2.11). Ifu and v € C([a,b]) are viscosity sub- and supersolutions of
problem (2.6), then u < v in [a,b].

The proof of this and the following theorem are given in Section 4.

Theorem 2.  Suppose F(r,p,X) € C(R x R x R) satisfies the lo-
cally uniform ellipticity condition (2.14) and the weak monotonicity
condition (2.12). Furthermore suppose that F(r,p,X) is locally
Lipschitz continuous in p. If u,v € Cla,b] are viscosity sub- and
supersolutions of the Dirichlet problem (2.6) then either
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s )u<winlab], or

B i) u=v+c in [a, 6] for some positive constant ¢ > 0.

In fact, case ii) in Theorem 2 appears iff either the gradient of the
solution blows up or the second derivatives of the solution blow up on
the whole boundary. These types of solution were mentioned in passing
only for the mean curvature equation as so-called extremal solutions, see
[14]. They are the unique classical solutions of the equation without any
boundary conditions. Depending on the mean curvature of 9§ they are
unbounded or bounded with infinite gradient. Here we will not give the
precise conditions which guarantee either gradient or Hessian blow up of
the solution on the boundary. Let us just illustrate part ii) of Theorem 2
with the following two typical Examples 1 and 2.

Example 1. Consider first the problem

—u" — (1+u?)%? =0 in (-1,1),

u(—1) =u(l) =0, (2.15)

or its multidimensional analogue for n > 1

Vu
—div | ——= ) —n =0 in B, = {z € R", |z| < 1},
IV( 1+|Vu|> n in B) = {z |z] < 1}

u =0 on dBj.

This Dirichlet problem (2.15) has infinitely many continuous viscosity

solutions
uc(x) = /1 — |z|> + ¢ for every ¢ > 0,

but only one of them, ug(z), is a classical solution of (2.15).

Since the solution u.(z) is C1/? A te
Holder continuous up to the bound-
ary it is clear from Figure 7 that the 4
set of the test functions from above
at the boundary points (|| = 1) is
empty, so that according to (2.7)
U, is automatically a subsolution
of (2.15). Moreover, u.(x) satisfies
(2.8) and is a supersolution of (2.15)
even in the classical sense. There-
fore problem (2.15) has infinitely -1 0 1
many continuous viscosity solutions
uc(x)-

Ue

Uo

>
T

Figure 7. Two solutions of (2.15)



Viscosity solutions for degenerate and nonmonotone elliptic equations 241

Example 2.

U”

———m +f(ul) =0 in (071)

u(0) =u(l) =0

where f(p) = —/(2 - p?)/(3 — 3p? + p*) for |p| <1 and f(p) = —1 for
Ip| > 1is a C!! function depicted in Figure 8.

(2.16)

Problem (2.16) has infinitely many viscosity solutions
2 . 2
uc(z) = -3 [x3/2 +(1 - x)3/2] +3 +c

for every ¢ > 0 and u.(z) € C%2[0,1] N C*(0,1), but only one of them,
ug(x) is a classical one.

According to Definition 2, trivially u.(z) are viscosity supersolutions
because they are classical supersolutions. As for the proof that wu.(z)
are viscosity subsolutions, it follows from |u,(zo)| = 1in the boundary
points £ = 0 and zp = 1, that every test function ¢ € C? from above
satisfies the inequality |¢'(zg)| > 1 (see Figure 9) and hence that the
inequality

1t
z
2 (i) €0
1+ ¢"%(z0)
holds because f(¢'(xg)) = —1.
-1 el I |
[ —/2/3 : P :
| | c+z |
: { uc(a:) |
| | |
| , [
' | uo(x) NJ .
________ - 5 >
Figure 8. Shape of f from (2.16) Figure 9.

Two solutions of (2.16)

Let us comment that in some sense the results in Theorems 1 and 2
can be considered as an extension of the comparison result of R. Jensen
in [17 , Thm. 3.1]. The result of R. Jensen is for viscosity solutions
in C(Q) N Whe(Q) of equations satisfying (2.13), so that case ii) of
Theorem 2 cannot occur.

Remark 2. Inthe multidimensional case the results in Theorems 1 and
2 hold under the additional C! smoothness of the solution on the "free
boundary”, i.e. the part of 9€2 where the solution satisfies the equation
but not the boundary data.
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3. LIMIT OF VISCOSITY SOLUTIONS U*
FOR NONMONOTONE EQUATIONS

The discontinuous solutions which appear in Section 1, namely (1.1)-
(1.5), are not viscosity solutions in the sense of Definition 1 or 2 because
of their lack of regularity. And the last two examples (2.15) and (2.16)
are not compatible with the basic concept of viscosity solutions, namely
that problem (2.6) should have a unique viscosity solutions in the class
C([a,b]). In fact, the Dirichlet problem (2.6) in these examples has
a unique classical solution, but also infinitely many continuous viscosity
solutions. It is therefore clear that for equations satisfying (2.12) a major
feature (uniqueness) from the theory of viscosity solutions breaks down
and that in this case new concepts must be developed.

Motivated by the stability properties of viscosity solutions for
monotone problems [8], we suggest selection criteria that may lead
to a new concept of a solution. Like viscosity solutions, this vague
concept of a new solution should be stable under small perturbations
of the coefficients, in particular under vanishing viscosity. Roughly
speaking, we regularize a possibly (explicitly or implicitly) degenerate
equation by means of small viscosity depending on € so that the
new equation is no longer explicitly or implicitly degenerate. If the
regularized problem has a unique viscosity solution uf(z) for every
small ¢ > 0, then the pointwise limit of u®(z) as ¢ — 0 may or may
not exist, but its upper semicontinuous enveloppe u* and its lower
semicontinuous enveloppe u, defined in [9, (6.1), (6.4)] do exist, as
long as u® are bounded. If they coincide, they define a continuous
viscosity solution. Otherwise the setvalued map = — [u.(z),u*(z)]
will be called a limit solution of the original problem. This notion
allows for an extension of comparison principles and stability properties
for discontinuous solutions. Uniqueness of u® could follow from weak
monotonicity (2.12), for instance, but if (2.12) is violated, we give cases
below where the u¢ are not unique, so that we have many limit solutions.
If the limit solution is not single valued (i.e. discontinuous) only on the
boundary, it may be modified to be continuous up to the boundary.

In some sense the concept of a limit solution can be considered as an
equivalent of the existence of a global minimizer for variational problems,
for example for the Cahn-Hilliard equation. However our concept has
the potential to be applicable to nonvariational problems as well. As we
shall see in Examples 4 and 5 below, our limit solutions have certain
Perron properties, i.e. their minimal and maximal elements u. and
u* are infima of continuous supersolutions or suprema of continuous
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subsolutions. This gives an idea how to prove existence for nonmonotone
equations.

This intuitive notion of limit solutions is an extension of the concept
of viscosity solutions to degenerate and nonmonotone equations. Indeed,
if the classical Dirichlet problem has a unique viscosity solution, then as
is well known, the limit solution will coincide with the unique viscosity
solution. If problem (2.6), however, has a unique viscosity solution, then
the limit solution obtained by means of a pointwise limit procedure will
coincide with the viscosity solution, in general, only in the interior of
the domain. On the boundary, there can be nonuniqueness, but loosely
speaking by continuous continuation one can get uniqueness. In fact the
special upper or lower star limits yield the maximal or minimal viscosity
solution which coincide if the viscosity solution is unique. Otherwise one
can identify a maximal and minimal viscosity solution.

In the light of these considerations recall that (1.1)-(1.5) have
discontinuous solutions and the regularized problems have a unique
solution uf, which becomes discontinuous in a special point as £ — 0,
see Figures 1,2 and 3. After the onset of discontinuity nothing seemed
to be known for the time dependent problems (1.2) (1.3) (1.4).

It is interesting to note that in the example (1.5) of H. Ishii and
N. Ramaswamy [16] the limit solution of the regularized equation

—eAu+ |Du| - |z] =0

under zero boundary darta in 1 is unique and coincides with the
maximal solution 1 — |z|? which was obtained in [16] by regularization of
the equation with singular coefficients to |Du|/(Jz| +€) =1 and € — 0.
Incidentally the limit solution for —eAu — |Du| + |z| = 0 is the minimal
one |z|2 — 1 of (1.5).

As for the nonuniqueness part ii) of Theorem 2, one can easily
see (e.g. from Examples 1,2 and 3 below) that in the class of limit
solutions the second statement ii) of Theorem 2 simply disappears. Thus
Theorems 1 and 2 can be considered as a standard comparison principle
for continuous limit solutions of (2.6).

Let us illustrate the above phenomena of degeneracy of the equation
on the boundary with a more general example.

Example 3. Consider
F(z,u,Du,D?u)=0inQ, u=0o0n o, (3.1)

where F is a smooth function which satisfies the uniform monotonicity
condition (2.3), the equation is uniformly elliptic, F' is a convex function
w.r.t. the D?u variables, and all “natural” structure conditions of
N.Trudinger (see [26] are fulfilled so that (3.1) has a unique classical
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C?(Q) solution. If ¢(z) € C®(R™) is a smooth function such that
¢%(z) > 0in R®\ OQ and ¢(z) = 0 on 0N, then let us look at the
modified problem

¢ (x)F(z,u,Du,D*u) =0in Q, u =0 on O (3.2)

This equation is degenerate elliptic on the boundary with Fichera
function S(z) = 0 on 9. According to Fichera’s notion (see line below
(2.5)) of the right boundary value problem (at least for linear equations)
the whole boundary should be free from boundary data. One can easily
check that every classical solution of (3.1) with arbitrary Dirichlet data
u =g € C® on 09, g # 0, will be a viscosity solution of (3.2).
Thus (3.2) has infinitely many viscosity solutions. However, (3.2) has
a unique limit solution u(x) which is the unique classical solution of (3.1)
with prescribed zero Dirichlet data. In fact, after the regularization of
equation (3.2), i.e,

$*(z)F(z,u, Du,D*u) —eAu=0in§, = =0 on 9%, (3.3)

the perturbed problem (3.3) has a unique classical solution u®(z). One
can easily prove global a priori estimates for v*(z) in €2, for instance

sup |u* ()| < sup|F(z,0,0,0)|/7,
Q Q

and global boundary gradient estimates, such as
+uf(z) < N(2d(z)dy! — d*(z)d5?)

with d(z) = dist(z,0), N sufficiently large and 0 < d(z) < dp, do
sufficiently small, which are uniform w.r.t. the small parameter £ > 0.
Using the interior gradient and C? a priori estimates (see [26]) after
the limit ¢ — 0 we obtain the unique limit solution of (3.2). Note
that problems (3.1) and (3.2) are not equivalent in the class of viscosity
solutions but they are equivalent in the class of limit solutions.

The remaining examples illustrate the situation when the limit
problem has more than one viscosity solution. This happens when the
weak monotonicity condition (2.12), which was satisfied in Examples 1,2
and 3, fails.

Example 4. Cahn Hilliard

v —u =0in(0,b), u(0)=A
—e%u" +u —u =0in (0,b), u(0)=A, u(b) =

Example 5. Quasilinear Cahn Hilliard
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—(W)u" +ud—u =0in (0,b), u(0)=A, u(d)=B, (3.5)
—@?+ M +u¥ —u =0in (0,8), u(0) =4, ud)=B, (3.5)
—|W[Pu" +ud —u =0in (0,b), u(0)=A4, u(d)=B, (3.6)

for p > 0. Notice that (3.5) is a special case (p=2) of (3.6), and that
(3.4) is a limiting case p = 0 of (3.6). For p = n (space dimension)
problem (3.6) was suggested in [5].

There is no difference in the qualitative properties of the solutions of
(3.5) and (3.6), except the regularity of solutions so that we will consider

only (3.5).
The Dirichlet problem for the simplest Cahn-Hillard equation (3.4)
has three (even continuous) viscosity solutions uy = 0, uy; = =*1,

independently of the choice of boundary data. Checking this is a simple
exercise using Definition 2, and we omit it. Moreover, it has infinitely
many discontinuous viscosity solutions in the sense of Definition 2,
namely the set of functions u(z) taking values in {—1,0,1}.

AUS B AUS B
| I
A I I
I I
|
1 ] 1 |
I I
I I
I I
|
) B
0 b~ 0 b~

Figure 10. Solutions of (3.4), and limit solution of (3.4)

Note that in Examples 4 and 5 the uniform monotonicity condition
(2.3) holds only if |u(z)] > 1+ «, v = const > 0, however, Figure 10
indicates that for small € this cannot be expected. Consequently
uniqueness of the viscosity solutions cannot be expected either. Let
us now look for limit solutions in some special, but typical cases. For
A >1 and B > 1 problem (3.4) has a unique limit solution u; = 1 (see
left part of Figure 10).

In this case the pointwise and upper star limit ¢ — 0 is U(x) 1
for z € (0,b), U(0) = A, U(b) = B, but the lower star limit is u; = 1
on [0,b], and because it has maximal smoothness, we pick this one as
limit solution. When A > 1, —1 < B < 0, for instance, the pointwise
limit solution U(x) is neither upper nor lower semicontinuos and the
unique limit solution U(x) is a discontinuous function on the boundary,
U(0) =A,U(b)=B,U(z) =1 in (a,b) (see right half of Figure 11). In
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this case again w; = 1 on [0, »] has maximal continuity and will be the
unique limit solution.

£ €
A u (l’) ; A u (I) ;
1 : 1 '
I 1
| |
] 1 1 «
0 5 0 IN\i4
i B B

[
-1 . -1 1
|
I
Figure 11. Solutions of (3.4), and limit solution of (3.4)

In contrast, when A > 1 and B < —1 we have an interior discontinuity
of the limit solution at the center /2 of the domain (0,b) (see Figure 12).

If, forexample, A = 1, B = —1, the pointwise limit solution U(z) =1

for z € [0,b/2), U (b/2) =0, U(z) = —1for z € (b/2,b] is neither upper
nor lower semicontinuos. In this case we shall speak of the upper and
lower semicontious envelope of U as (two) limit solutions, because they
have maximal smoothness.

It is interesting to point out that these limit solutions of (3.4) are not
limit solutions on a subinterval any more, e.g2. on the subinterval (b/3, b)
with boundary data u(b/3) = 1 and u(b) = —1. In fact limit solutions on
(b/3, b) are discontinuos in 2b/3. This distinguishes them from classical
solutions and is due to the degeneracy of the equation. In other words,
the union of the unique limit solution on (0,b/3) with boundary data
u(0) = u(b/3) =1 and of a limit solution on (b/3,b) with boundary data
u(b/3) =1 and u(b) = —1 is not a limit solution of (3.4).

A u(z) '
1 i
I
i

b2 1 .

0 b: ‘x
I
I
I

-1

|

Figure 12. Solutions of (3.4), and discontinuous limit solution of (3.4)
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To better understand this nonlocal phenomenon of the limit solutions
let us consider problem (3.5) in the interval (0,2n) with data A =1,
B = —1. (3.5) has infinitely many continuous viscosity solutions.

The unique limit solution of problem (3.5) is the function U € Cb?
defined by U(z) = 1 in [0,#/2], U(z) = sinz in [7/2,37/2] and
U(z) = —1 in [3wx/2,2n]. Any horizontal shift of U(z) by at most of
/2 is again a viscosity solution of (3.5). Note that the limit solution
is not the maximal viscosity solution V € C!! defined by V(z) = lin
[0,7] and V(z) = — cosz in [m, 27).

N@ Ve Ne-a+d |
sinz \—COS.’I:: :
\
\ ' \
\ [ " |
| \ ! b 1 a+‘§. ! ~
0f & =\ 3z 24 ‘x 0] & 2m ‘T
2 2 \ ] |
\\ ! 1
L |
. | ]
-1 ol -1 |
| |

Figure 13. Viscosity solutions and unique limit solution of (3.5)

If we divide now the interval [0,27] into two subintervals I; = (0,c¢),
I = (c,2m) with 7/2 < ¢ < 3w/2 then the union of the two unique limit
solutions in I; and Is coincides with the unique limit solution on the
whole interval [0,2r]. However, if 0 < ¢ < 7/2 or 3n/2 < ¢ < m,then
we have the same nonlocal effects as in (3.4), see right part of Figure
13. It is due to the fact that both boundary points of the subinterval
are characteristic in the sense of Remark 1, iff |u{c)| = 1 when the
nonlocal effect occurs. On the other hand, ¢ is noncharacteristic when
u(c) € (~1,1), and then the nonlocal phenomenon does not occur.

We will finish these examples with the case [A|] < 1, |B| < 1. Let
us first consider the simplest subcase A = B = 0. Now solutions u°
of (3.4), have three pointwise limits ux (k = 0,=%1) which take values
+1, 0 or —1. Moreover, for (3.5). and they can have many pointwise
limits ug, £ € N, which are periodic functions. To see this is left as an
exercise to the reader. Note that the three limit solutions of (3.4) have
Perron properties from above (infimum of supersolutions) or from below
(supremum of subsolutions). The unique classical solution up = 0 of
(3.4) has both Perron properties from below and from above in a trivial
way, because both the set of supersolutions and the set of subsolutions
contain only one function, namely the solution wug itself. This explains
the unstable character of the trivial solution ug = 0.
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There are various selection criteria in the literature that lead to
uniqueness results for nonmonotone problems. Some of them consider
the unique positive solution, the unique convex solution or the unique
maximal solution depending on the equations under consideration. We
focus on solutions with maximal regularity. Our Examples show that
those have Perron properties, and that they are sometimes convex,
sometimes positive, sometimes maximal, but not always. In some sense
Perron properties of the solutions correspond to being global minimizers
of the variational problems.

It remains to discuss the typical cases A € [0,1), B € (0,1), or
A €[0,1), B € (—1,0). These lead like in the case of zero boundary data
to one or two limit functions ug. If A and B have different sign, —u;
can also be a limit solution, but ug = 0 is not a limit solution, because
it is not a pointwise limit a.e. of uf, see Figure 14. What happens with
problem (3.5) when A € (0,1) and B € (—1,0) ? Also in this case there
exist two limit solutions U and V with Perron properties, and many
periodic limits in C1! of uf without Perron properties (see Figure 15).

u®(x) ‘ A u(2) )
1 1 '
| )
B |
| i
A | A !
| . ! Ny,
0 b’z 0 bz
! '
|
! i B
-1 | -1 |
I I
Figure 14. Structure of solutions to (3.4),
\ U(I ' \ V(.’E) '
1 ' 1 |
( I !
| ;
| |
:bf T :b3 T
0 I T 0 : T
| 1
| i

Figure 15. Limit solutions of (3.5)

The cause for such a difference in regularity of the solutions of (3.4) and
(3.5) is the high degeneracy of equation (3.4) compared to (3.5). The
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limit solution U(z) in Figure 15 is an infimum of viscosity supersolutions
of (3.5) while the limit solution V(z) in Figure 15 is a supremum of
viscosity subsolutions of (3.5).

Let us note that a comparison principle holds for all limit solutions
which have the same Perron properties as sub- or supersolutions.
The comparison theorem fails for limit solutions with different Perron
properties (see Figure 16 below). In fact, in Figure 16

U0) = A, > Ay = V(0), U(b) = By > By = V(b),
but it is not true that U(z) > V(z) in [0, d].
A U2 A V(z)

A}\ i A:ﬁ \
:b 7

* Bz
-1 -1 ]
|
Figure 16. Comparison prmciple violated for limit solutions of (3.5)

b

™

wYv

>
>
T

A similar phenomenon of periodic structure and infinitely many
solutions of the problem was noticed by St.Miiller [23] in some variational
problems, i.e.,

I (u) / [e ul, + (W2 — 1) + u?)dz
u(0) =u(1)=0
which appear in solid-solid phase transitions in crystals.

The results mentioned in examples 4 and 5 are true also for more
general degenerate elliptic equations

F(u',u")+u* —u=0 in (0,b)
for which F(0,X) = 0 for every X.

4. PROOF OF THEOREMS 1 AND 2

Proof of Theorem 1: If Theorem 1 is not true then u(z) — v(z)
has a positive maximum in [a, b] at some point zg and u(z) — v(z) <
u(zg) —v(xzo) = M > 0. Let us first consider the case that u—v # const,
i.e, there exists z € {a,b) such that u(z) — v(z) < M. Without loss of
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generality we will consider the interval [z, b] and assume zo € (z2,b].
If u(b) — v(b) = M then either u(b) > B or v(b) < B or both. For
simplicity suppose that u(b) > B. Let ¢ € (0,v2M) and consider
h(z,y) = ulc) — v(y) — la(@ — y) — /2 in (2,6] x [2,8]. (1£v() < B,
similar considerations apply to g(z,y) = u(z) —v(y) — |a(z —y) +€[*/2.)
Since h{zo,zo) = M —€/2 > 0, h(z,y) attains its positive maximum
M, at some points T, Yo € [2,b). It is clear that z, — y, — 0 as
a — oo. Moreover, the inequality h(Zq,¥ya) > h(xo,To — €/a) holds for
all large «, i.e.,

lo(Ta — Ya) — €] < 2u(za) — 20(¥a) — 2u(zo) + 20(z0 — £/a)-
From the continuity of v we conclude that
o(Za —Yo) —€—0 as a — 00, (4.1)

so that lima_y0o M = u(z1) — v(z1) = M whenever z; € [2,b] is a limit
point of z, as & = oc.

a) If z; € (z,b), then z4,y, are interior points for large a. From
maximizing A it follows [9, Thm. 3.2] that the set of test fuctions for u,
v at z4, Yo is not empty. More precisely, there exist constants X, Y,
X <Y and C?-functions ¢ and % with the properties: ¢(zq) = u(zs),
¢(z) 2 u(z), ¥(¥a) = v(¥a) ¥(y) < v(y), ¢(za) = Y'(va) =
a(To — Ya) — €, ¢"(2a) = X and 9" (yo) = Y. According to Definition
1 and (2.2), (2.11) we get the chain of inequalities

F(u(za), 0‘2(130 ~Ya) — €0, X} <0 < F(v(ya), az(xa —Ya) —€q,Y)
S F(v(ya),a2($a - ya) - EaaX)
< F(’U.(.’Ea), a2(ma - ya) - 5a,X)a

an obvious contradiction.
b) Since by construction z cannot be an accumulation point of Zg,¥Yq,
we have to check only the remaining case that z; = b. As long as x4
and y, are interior points of (z,b), the same contradiction as in a) can
be reached. Hence either £, = b or Y, = b or both as « is large enough.
Suppose that y, = b. Noting that a(za —Ya) — € = a(za—b) - = 0 <
—e < 0 as a = oo we get a contradiction to (4.1). Finally, if zo, = band
Ya < b, we can use Definition 2 and the fact that u(b) > Bto derive from
(2.7): F(u(b), ¢'(b),#" (b)) < 0 for every test function ¢ € C?satisfying
¢(z) > u(z) and ¢(b) = u(b). Choosing ¢ = ¢ from a) we can reach
again a contradiction.

To complete the proof of Theorem 1, we still have to bring the
assumption u(z) — v(z) = M > 0 to a contradiction. In this case
we will show that in a given small subintervall [¢,s] C (a,b), in which
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oscv(z) < M, the function » is either convex (or concave) on [z,s].
For every p,q € [t,s] with p < ¢ we will show that v(z),z € (p,q),
lies either entirely below (or above) the line segment [ (x) connecting
(p,v(p)) with (q,v(q). Otherwise there exist linear functions {;(z) and
l3(x) parallel to I(x) which are tangent to v(x) from below at a point z;
and to u(zx) = v(z)+M at a point 2 from above, see Figure 17. Without
loss of generality (otherwise vary p, g) we may assume p,Z2 € (p,q).

(+M b

! u(z

¢ v(z)

£

/

|
|
|
!
|
1
|
v

- [P

. !
* p ) Al

Figure 17. An impossible situation
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Using !)(z) and lp(z) as test functions in Definition 1 and the strict
monotonicity (2.11) of F with respect to u, as well as the fact that by
choice of [¢, s] we have inf u(z) > sup v(z) in [7,s], we arrive at

F('U(xl)al; (.’171),0) >02> F(U($2)’ll2(m2)a 0)
= F(u(z2),11(z1),0) > F(v(z1),l(1),0),

another contradiction. Therefore v is either convex or concave in every
subinterval [z, s] such that osc{v(z) |z € [s,t]} < M. But as is well
known, see e.g. [9, Thm.A2], continuous convex (or concave) functions
are almost everywhere twice differentiable.

Let z¢ € (t,s) be a point where u (and thus v = v — M) is twice
differentiable. Then there exist constants r, X such that
u(z) = u(zo) + r(z — zo) + X(z ~ 20)2/2 + o(|z — zo|*)  as z — =o.
Hence for every € > 0 we have test functions in the sense of Definition 1

Y(z) =v(z0) +r(z — o) + (X — €)(z — 20)*/2 < v(z),
$(z) = u(zo) +r(z — z0) + (X +€)(z — 20)*/2 2 u(z).
Definition 1 implies now F(u(zo),r,X +¢) < 0 < F(v(zo),r, X —¢€)
for every € > 0, and by continuity of F also for € = 0. Hence, using
the strict monotonicity (2.11) we reach another contradiction, namely
F(u(zo),n, X) < 0 < F(v(zo),7, X) < F(u(zo),r, X). This completes
the proof of Theorem 1.
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Proof of Theorem 2: Suppose that max{u(z) — v(z) | z € [a,b]} =
u(z) ~v(z) = M > 0. If u—v = M on [a,b] then statement ii)
of Theorem 2 holds and there is nothing to prove. Otherwise there
exists a point ag € (a,b) such that u(ag) — v(ap) < M. Without loss
of generality z € (ag,b]. The following two subcases can occur: a)
u(b) ~ v(b) < M or b) u(b) — v(b) = M. In case b) either u(b) > B or
v(b) < B or both. We will cover only the case u(b) > B, since the other
one is symmetric, see proof of Theorem 1.

Independent from case a) or b) choose € € (0, voM yand consider the
function

h(z,y) = u(z) — v(y) — la(z —y) —€*/2 - 572 ePla—2)

in [a, b] for all positive parameters a and 8. As in the proof of Theorem 1
we can show for the maximum points (Zq, Yo ) of 2 On [ag, b] X [ag, b] (With
h(za,ya) = My > 0) that

Ta—Ya— 0, a(Zg—ya)—e—20 and M, M asa,f— co.

(4.2)
From [9, Thm. 3.2] there exist test functions ¢, € C? such that
P(z) 2 u(z), #(za) = u(za), V() < v(z), Y(Ta) = v(Za), ¢'(Ta) =
0} (2q —ya) —ca— B! Plo7%) i (y,) = o (Tq —Ya) —€a, ¢"(za) = X
and ¥"(y,) = Y, where X, Y satisfy the inequalities [9, (3.8) with
e=1/a]

1 1 1721 11 o0
_ 2 1 _fBla—za) 4 il 2B8(a—za)
[2a 2° (a 4:‘e ) ] (0 1)

X 0
< 3a? — 3ePla2a) 4 o=2¢2hla—2a) —30? + fla2a)
= ~3a? + ePlo—2a) 3a?

From the right inequality of (4.3) we have
X - Y < efla-2a)[—1 4 q2ePla—2a)]) (4.4)

because we can multiply the matrix inequality (4.3) with the vector (1,1)
from the right and from the left.

In case a) all accumulation points of £, and y, are in the open interval
(ag, b), while in case b) they can also accumulate in b. However, even in
this case as in the proof of Theorem 1 it follows from (4.2) that either
Ta,Ya € (ag,b) or o = b for large o and y, < b. This means that in any
case we can apply (2.7), (2.8) and, using (2.2), (2.13) and (4.4), arrive
at the following absurd chain of inequalities
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0< F(U(ya)v az(xa - Ya) — Ea,Y]

—F(u(ma),a2(xa — Yo) — EQ — ﬂ_leﬁ(“_%), X)

< Flu(za), az(xa — Ya) — €0, X)
—F(u(za),az(:na - ya) —Ex — ﬁ—leﬂ(a—xa),x) - 'YK(Y - X)

(a~za} 1 _
< eﬂT / Fp(“(xa); 012(1'0 — Ya) — €+ 1t
0

+yi Plam%a)[ 1 4 a2efla=20)]

< Plmm) [/ + yxefl) — | <0,

sup

ePla=za) x) dtl

where

1-14

1
C= sup / Fp(u(xa)7az($a - ya) —Ea+
0

efla=za) x) dt],

and vk is the ellipticity constant from (2.14) corresponding to
K = o?|zq — yo| + ea + g 1eP07%) 11 X| 4+ |Y).

In fact, to see the last strict inequality, note that for fixed and large a the
numbers K, yx and C are independent of 8 > By >> 1. Hence 8 — oo
provides the contradiction and completes the proof of Theorem 2.
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