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1 Linear Transformations

We will study mainly finite-dimensional vector spaces over an arbitrary field
F—i.e. vector spaces with a basis. (Recall that the dimension of a vector
space V (dimV ) is the number of elements in a basis of V .)

DEFINITION 1.1
(Linear transformation)
Given vector spaces U and V , T : U 7→ V is a linear transformation (LT)

if
T (λu+ µv) = λT (u) + µT (v)

for all λ, µ ∈ F , and u, v ∈ U . Then T (u+v) = T (u)+T (v), T (λu) = λT (u)

and

T

(
n∑
k=1

λkuk

)
=

n∑
k=1

λkT (uk).

EXAMPLES 1.1

Consider the linear transformation

T = TA : Vn(F ) 7→ Vm(F )

where A = [aij ] is m× n, defined by TA(X) = AX.

Note that Vn(F ) = the set of all n-dimensional column vectors

 x1
...
xn

 of

F—sometimes written Fn.
Note that if T : Vn(F ) 7→ Vm(F ) is a linear transformation, then T = TA,

where A = [T (E1)| · · · |T (En)] and

E1 =


1
0
...
0

 , . . . , En =


0
...
0
1


Note:

v ∈ Vn(F ), v =

 x1
...
xn

 = x1E1 + · · ·+ xnEn
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If V is a vector space of all infinitely differentiable functions on R, then

T (f) = a0Dnf + a1Dn−1f + · · ·+ an−1Df + anf

defines a linear transformation T : V 7→ V .
The set of f such that T (f) = 0 (i.e. the kernel of T ) is important.

Let T : U 7→ V be a linear transformation. Then we have the following
definition:

DEFINITIONS 1.1

(Kernel of a linear transformation)

KerT = {u ∈ U | T (u) = 0}

(Image of T )

ImT = {v ∈ V | ∃u ∈ U such that T (u) = v}

Note: KerT is a subspace of U . Recall that W is a subspace of U if

1. 0 ∈W ,

2. W is closed under addition, and

3. W is closed under scalar multiplication.

PROOF. that KerT is a subspace of U :

1. T (0) + 0 = T (0) = T (0 + 0) = T (0) + T (0). Thus T (0) = 0, so
0 ∈ KerT .

2. Let u, v ∈ KerT ; then T (u) = 0 and T (v) = 0. So T (u + v) =
T (u) + T (v) = 0 + 0 = 0 and u+ v ∈ KerT .

3. Let u ∈ KerT and λ ∈ F . Then T (λu) = λT (u) = λ0 = 0. So
λu ∈ KerT .

EXAMPLE 1.1

KerTA = N(A), the null space of A

= {X ∈ Vn(F ) | AX = 0}
and ImTA = C(A), the column space of A

= 〈A∗1, . . . , A∗n〉
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Generally, if U = 〈u1, . . . , un〉, then ImT = 〈T (u1), . . . , T (un)〉.
Note: Even if u1, . . . , un form a basis for U , T (u1), . . . , T (un) may not

form a basis for ImT . I.e. it may happen that T (u1), . . . , T (un) are linearly
dependent.

1.1 Rank + Nullity Theorems (for Linear Maps)

THEOREM 1.1 (General rank + nullity theorem)
If T : U 7→ V is a linear transformation then

rankT + nullity T = dimU.

PROOF.

1. KerT = {0}.
Then nullity T = 0.
We first show that the vectors T (u1), . . . , T (un), where u1, . . . , un are
a basis for U , are LI (linearly independent):
Suppose x1T (u1) + · · ·+ xnT (un) = 0 where x1, . . . , xn ∈ F .
Then

T (x1u1 + · · ·+ xnun) = 0 (by linearity)
x1u1 + · · ·+ xnun = 0 (since KerT = {0})
x1 = 0, . . . , xn = 0 (since ui are LI)

Hence ImT = 〈T (u1), . . . , T (un)〉 so

rankT + nullity T = dim ImT + 0 = n = dimV.

2. KerT = U .
So nullity T = dimU .
Hence ImT = {0} ⇒ rankT = 0

⇒ rankT + nullity T = 0 + dimU

= dimU.

3. 0 < nullity T < dimU .
Let u1, . . . , ur be a basis for KerT and n = dimU , so r = nullity T
and r < n.
Extend the basis u1, . . . , ur to form a basis u1, . . . , ur, ur+1, . . . , un of
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U (refer to last year’s notes to show that this can be done).
Then T (ur+1), . . . , T (un) span ImT . For

ImT = 〈T (u1), . . . , T (ur), T (ur+1), . . . , T (un)〉
= 〈0, . . . , 0, T (ur+1), . . . , T (un)〉
= 〈T (ur+1), . . . , T (un)〉

So assume

x1T (ur+1) + · · ·+ xn−rT (un) = 0
⇒ T (x1ur+1 + · · ·+ xn−run) = 0
⇒ x1ur+1 + · · ·+ xn−run ∈ KerT
⇒ x1ur+1 + · · ·+ xn−run = y1u1 + · · ·+ yrur

for some y1, . . . , yr

⇒ (−y1)u1 + · · ·+ (−yr)ur + x1ur+1 + · · ·+ xn−run = 0

and since u1, . . . , un is a basis for U , all coefficients vanish.

Thus

rankT + nullity T = (n− r) + r

= n

= dimU.

We now apply this theorem to prove the following result:

THEOREM 1.2 (Dimension theorem for subspaces)

dim(U ∩ V ) + dim(U + V ) = dimU + dimV

where U and V are subspaces of a vector space W .

(Recall that U + V = {u+ v | u ∈ U, v ∈ V }.)
For the proof we need the following definition:

DEFINITION 1.2
If U and V are any two vector spaces, then the direct sum is

U ⊕ V = {(u, v) | u ∈ U, v ∈ V }

(i.e. the cartesian product of U and V ) made into a vector space by the
component-wise definitions:
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1. (u1, v1) + (u2, v2) = (u1 + u2, v1 + v2),

2. λ(u, v) = (λu, λv), and

3. (0, 0) is an identity for U ⊕ V and (−u,−v) is an additive inverse for
(u, v).

We need the following result:

THEOREM 1.3

dim(U ⊕ V ) = dimU + dimV

PROOF.

Case 1: U = {0}

Case 2: V = {0}
Proof of cases 1 and 2 are left as an exercise.

Case 3: U 6= {0} and V 6= {0}

Let u1, . . . , um be a basis for U , and
v1, . . . , vn be a basis for V .

We assert that (u1, 0), . . . , (um, 0), (0, v1), . . . , (0, vn) form a basis for U ⊕V .
Firstly, spanning:
Let (u, v) ∈ U ⊕V , say u = x1u1 + · · ·+xmum and v = y1v1 + · · ·+ynvn.

Then

(u, v) = (u, 0) + (0, v)
= (x1u1 + · · ·+ xmum, 0) + (0, y1v1 + · · ·+ ynvn)
= x1(u1, 0) + · · ·+ xm(um, 0) + y1(0, v1) + · · ·+ yn(0, vn)

So U ⊕ V = 〈(u1, 0), . . . , (um, 0), (0, v1), . . . , (0, vn)〉

Secondly, independence: assume x1(u1, 0) + · · ·+xm(um, 0) + y1(0, v1) +
· · ·+ yn(0, vn) = (0, 0). Then

(x1u1 + · · ·+ xmum, y1v1 + · · ·+ ynvn) = 0
⇒ x1u1 + · · ·+ xmum = 0

and y1v1 + · · ·+ ynvn = 0
⇒ xi = 0, ∀i
and yi = 0, ∀i
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Hence the assertion is true and the result follows.
PROOF.

Let T : U ⊕ V 7→ U + V where U and V are subspaces of some W , such
that T (u, v) = u+ v.

Thus ImT = U + V , and

KerT = {(u, v) | u ∈ U, v ∈ V, and u+ v = 0}
= {(t,−t) | t ∈ U ∩ V }

Clearly then, dim KerT = dim(U ∩ V )1 and so

rankT + nullity T = dim(U ⊕ V )
⇒ dim(U + V ) + dim(U ∩ V ) = dimU + dimV.

1.2 Matrix of a Linear Transformation

DEFINITION 1.3
Let T : U 7→ V be a LT with bases β : u1, . . . , un and γ : v1, . . . , vm for

U and V respectively.
Then

T (uj) =

a1jv1

+
a2jv2

+
...
+

amjvm

for some

a1j
...

amj

∈ F.

The m× n matrix
A = [aij ]

is called the matrix of T relative to the bases β and γ and is also written

A = [T ]γβ

Note: The j-th column of A is the co-ordinate vector of T (uj), where
uj is the j-th vector of the basis β.

Also if u = x1u1 + · · ·+ xnun, the co-ordinate vector

 x1
...
xn

 is denoted by

[u]β.
1True if U ∩ V = {0}; if not, let S = KerT and u1, . . . , ur be a basis for U ∩ V . Then

(u1,−u1), . . . , (ur,−ur) form a basis for S and hence dim KerT = dimS.
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EXAMPLE 1.2

Let A =
[
a b
c d

]
∈ M2×2(F ) and let T : M2×2(F ) 7→ M2×2(F ) be

defined by
T (X) = AX −XA.

Then T is linear2, and KerT consists of all 2 × 2 matrices A where AX =
XA.

Take β to be the basis E11, E12, E21, and E22, defined by

E11 =
[

1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]
(so we can define a matrix for the transformation, consider these henceforth
to be column vectors of four elements).

Calculate [T ]ββ = B :

T (E11) = AE11 − E11A

=
[
a b
c d

] [
1 0
0 0

]
−
[

1 0
0 0

] [
a b
c d

]
=

[
0 −b
c 0

]
= 0E11 − bE12 + cE21 + 0E22

and similar calculations for the image of other basis vectors show that

B =


0 −c b 0
−b a− d 0 b
c 0 d− a −c
0 c b 0


Exercise: Prove that rankB = 2 if A is not a scalar matrix (i.e. if
A 6= tIn).

Later, we will show that rankB = rankT . Hence

nullity T = 4− 2 = 2
2

T (λX + µY ) = A(λX + µY )− (λX + µY )A

= λ(AX −XA) + µ(AY − Y A)

= λT (X) + µT (Y )
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Note: I2, A ∈ KerT which has dimension 2. Hence if A is not a scalar
matrix, since I2 and A are LI they form a basis for KerT . Hence

AX = XA ⇒ X = αI2 + βA.

DEFINITIONS 1.2

Let T1 and T2 be LT’s mapping U to V.
Then T1 + T2 : U 7→ V is defined by

(T1 + T2)(x) = T1(x) + T2(x) ; ∀x ∈ U

For T a LT and λ ∈ F , define λT : U 7→ V by

(λT )(x) = λT (x) ∀x ∈ U

Now . . .

[T1 + T2]γβ = [T1]γβ + [T2]γβ
[λT ]γβ = λ[T ]γβ

DEFINITION 1.4

Hom (U, V ) = {T |T : U 7→ V is a LT}.

Hom (U, V ) is sometimes written L(U, V ).

The zero transformation 0 : U 7→ V is such that 0(x) = 0, ∀x.
If T ∈ Hom (U, V ), then (−T ) ∈ Hom (U, V ) is defined by

(−T )(x) = −(T (x)) ∀x ∈ U.

Clearly, Hom (U, V ) is a vector space.
Also

[0]γβ = 0

and [−T ]γβ = −[T ]γβ

The following result reduces the computation of T (u) to matrix multi-
plication:

THEOREM 1.4

[T (u)]γ = [T ]γβ[u]β
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PROOF.
Let A = [T ]γβ, where β is the basis u1, . . . , un, γ is the basis v1, . . . , vm,

and

T (uj) =
m∑
i=1

aijvi.

Also let [u]β =

 x1
...
xn

.

Then u =
∑n

j=1 xjuj , so

T (u) =
n∑
j=1

xjT (uj)

=
n∑
j=1

xj

m∑
i=1

aijvi

=
m∑
i=1

 n∑
j=1

aijxj

 vi

⇒ [T (u)]γ =

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn


= A[u]β

DEFINITION 1.5
(Composition of LTs)

If T1 : U 7→ V and T2 : V 7→W are LTs, then T2T1 : U 7→W defined by

(T2T1)(x) = T2(T1(x)) ∀x ∈ U

is a LT.

THEOREM 1.5
If β, γ and δ are bases for U , V and W , then

[T2T1]δβ = [T2]δγ [T1]γβ
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PROOF. Let u ∈ U . Then

[T2T1(u)]δ = [T2T1]δβ[u]β
and = [T2(T1(u))]δ

= [T2]δγ [T1(u)]γ

Hence
[T2T1]δβ[u]β = [T2]δγ [T1]γβ[u]β (1)

(note that we can’t just “cancel off” the [u]β to obtain the desired result!)
Finally, if β is u1, . . . , un, note that [uj ]β = Ej (since uj = 0u1 + · · · +

0uj−1 + 1uj + 0uj+1 + · · ·+ 0un) then for an appropriately sized matrix B,

BEj = B∗j , the jth column of B.

Then (1) shows that the matrices

[T2T1]δβ and [T2]δγ [T1]γβ

have their first, second, . . . , nth columns respectively equal.

EXAMPLE 1.3
If A is m× n and B is n× p, then

TATB = TAB.

DEFINITION 1.6
(the identity transformation)
Let U be a vector space. Then the identity transformation IU : U 7→ U

defined by
IU (x) = x ∀x ∈ U

is a linear transformation, and

[IU ]ββ = In if n = dimU .

Also note that IVn(F ) = TIn .

THEOREM 1.6
Let T : U 7→ V be a LT. Then

IV T = TIU = T.
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Then
TImTA = TImA = TA = TATAIn = TAIn

and consequently we have the familiar result

ImA = A = AIn.

DEFINITION 1.7
(Invertible LTs)

Let T : U 7→ V be a LT.

If ∃S : V 7→ U such that S is linear and satisfies

ST = IU and TS = IV

then we say that T is invertible and that S is an inverse of T .

Such inverses are unique and we thus denote S by T−1.

Explicitly,

S(T (x)) = x ∀x ∈ U and T (S(y)) = y ∀y ∈ V

There is a corresponding definition of an invertible matrix: A ∈Mm×n(F )
is called invertible if ∃B ∈Mn×m(F ) such that

AB = Im and BA = In

Evidently

THEOREM 1.7
TA is invertible iff A is invertible (i.e. if A−1 exists). Then,

(TA)−1 = TA−1

THEOREM 1.8
If u1, . . . , un is a basis for U and v1, . . . , vn are vectors in V , then there

is one and only one linear transformation T : U → V satisfying

T (u1) = v1, . . . , T (un) = vn,

namely T (x1u1 + · · ·+ xnun) = x1v1 + · · ·+ xnvn.

(In words, a linear transformation is determined by its action on a basis.)
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1.3 Isomorphisms

DEFINITION 1.8
A linear map T : U 7→ V is called an isomorphism if T is 1-1 and onto,

i.e.

1. T (x) = T (y)⇒ x = y ∀x, y ∈ U , and

2. ImT = V , that is, if v ∈ V , ∃u ∈ U such that T (u) = v.

Lemma: A linear map T is 1-1 iff KerT = {0}.
Proof:

1. (⇒) Suppose T is 1-1 and let x ∈ KerT .

We have T (x) = 0 = T (0), and so x = 0.

2. (⇐) Assume KerT = {0} and T (x) = T (y) for some x, y ∈ U .

Then

T (x− y) = T (x)− T (y) = 0
⇒ x− y ∈ KerT
⇒ x− y = 0⇒ x = y

THEOREM 1.9
Let A ∈Mm×n(F ). Then TA : Vn(F )→ Vm(F ) is

(a) onto: ⇔ dimC(A) = m⇔ the rows of A are LI;

(b) 1–1: ⇔ dimN(A) = 0⇔ rankA = n⇔ the columns of A are LI.

EXAMPLE 1.4
Let TA : Vn(F ) 7→ Vn(F ) with A invertible; so TA(X) = AX.
We will show this to be an isomorphism.

1. Let X ∈ KerTA, i.e. AX = 0. Then

A−1(AX) = A−10
⇒ InX = 0
⇒ X = 0

⇒ KerT = {0}
⇔ T is 1-1.
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2. Let Y ∈ Vn(F ) : then,

T (A−1Y ) = A(A−1Y )
= InY = Y

so ImTA = Vn(F )

THEOREM 1.10
If T is an isomorphism between U and V , then

dimU = dimV

PROOF.
Let u1, . . . , un be a basis for U . Then

T (u1), . . . , T (un)

is a basis for V (i.e. 〈ui〉 = U and 〈T (ui)〉 = V , with ui, vi independent
families), so

dimU = n = dimV

THEOREM 1.11

Φ : Hom (U, V ) 7→Mm×n(F ) defined by Φ(T ) = [T ]γβ
is an isomorphism.

Here dimU = n, dimV = m, and β and γ are bases for U and V , re-
spectively.

THEOREM 1.12

T : U 7→ V is invertible

⇔ T is an isomorphism between U and V .

PROOF.

⇒ Assume T is invertible. Then

T−1T = IU

and TT−1 = IV

⇒ T−1(T (x)) = x ∀x ∈ U
and T (T−1(y)) = y ∀y ∈ V

13



1. We prove KerT = {0}.
Let T (x) = 0. Then

T−1(T (x)) = T−1(0) = 0 = x

So T is 1-1.

2. We show ImT = V .
Let y ∈ V . Now T (T−1(y)) = y, so taking x = T−1(y) gives

T (x) = y.

Hence ImT = V .

⇐ Assume T is an isomorphism, and let S be the inverse map of T

S : V 7→ U

Then ST = IU and TS = IV . It remains to show that S is linear.

We note that
x = S(y)⇔ y = T (x)

And thus, using linearity of T only, for any y1, y2 ∈ V , x1 = S(y1), and
x2 = S(y2) we obtain

S(λy1 + µy2) = S(λT (x1) + µT (x2))
= S(T (λx1 + µx2))
= λx1 + µx2

= λS(y1) + µS(y2)

COROLLARY 1.1
If A ∈Mm×n(F ) is invertible, then m = n.

PROOF.
Suppose A is invertible. Then TA is invertible and thus an isomorphism

between Vn(F ) and Vm(F ).
Hence dimVn(F ) = dimVm(F ) and hence m = n.

THEOREM 1.13
If dimU = dimV and T : U 7→ V is a LT, then

T is 1-1 (injective) ⇔ T is onto (surjective)

( ⇔ T is an isomorphism )

14



PROOF.

⇒ Suppose T is 1-1.
Then KerT = {0} and we have to show that ImT = V .

rankT + nullity T = dimU

⇒ rankT + 0 = dimV

i.e. dim( ImT ) = dimV

⇒ ImT = V as T ⊆ V .

⇐ Suppose T is onto.
Then ImT = V and we must show that KerT = {0}. The above
argument is reversible:

ImT = V

rankT = dimV

= dimU

= rankT + nullity T
⇒ nullity T = 0

or KerT = {0}

COROLLARY 1.2
Let A,B ∈Mn×n(F ). Then

AB = In ⇒ BA = In.

PROOF Suppose AB = In. Then KerTB = {0}. For

BX = 0 ⇒ A(BX) = A0 = 0
⇒ InX = 0⇒ X = 0.

But dimU = dimV = n, so TB is an isomorphism and hence invertible.
Thus ∃C ∈Mn×n(F ) such that

TBTC = IVn(F ) = TCTB
⇒ BC = In = CB,

noting that IVn(F ) = TIn .

15



Now, knowing AB = In,

⇒ A(BC) = A

(AB)C = A

InC = A

⇒ C = A

⇒ BA = In

DEFINITION 1.9
Another standard isomorphism: Let dimV = m, with basis γ = v1, . . . , vm.

Then φγ : V 7→ Vm(F ) is the isomorphism defined by

φγ(v) = [v]γ

THEOREM 1.14

rankT = rank [T ]γβ

PROOF
U

T−→ V
φβ ↓ ↓ φγ

Vn(F )
−→
TA Vm(F )

With
β : u1, . . . , un
γ : v1, . . . , vm

a basis for
U
V,

let A = [T ]γβ . Then the commutative diagram is an abbreviation for the
equation

φγT = TAφβ . (2)

Equivalently
φγT (u) = TAφβ(u) ∀u ∈ U

or
[T (u)]γ = A[u]β

which we saw in Theorem 1.4.
But rank (ST ) = rankT if S is invertible and rank (TR) = rankT if R

is invertible. Hence, since φβ and φγ are both invertible,

(2) ⇒ rankT = rankTA = rankA

16



and the result is proven.
Note:
Observe that φγ(T (uj)) = A∗j , the jth column of A. So ImT is mapped

under φγ into C(A). Also KerT is mapped by φβ into N(A). Consequently
we get bases for ImT and KerT from bases for C(A) andN(A), respectively.

(u ∈ KerT ⇔ T (u) = 0 ⇔ φγ(T (u)) = 0
⇔ TAφβ(u) = 0
⇔ φβ(u) ∈ N(A).)

THEOREM 1.15
Let β and γ be bases for some vector space V . Then, with n = dimV ,

[IV ]γβ

is non-singular and its inverse{
[IV ]γβ

}−1
= [IV ]βγ .

PROOF

IV IV = IV

⇒ [IV IV ]ββ = [IV ]ββ = In

= [IV ]βγ [IV ]γβ.

The matrix P = [IV ]γβ = [pij ] is called the change of basis matrix. For if
β : u1, . . . , un and γ : v1, . . . , vn then

uj = IV (uj)
= p1jv1 + · · ·+ pnjvn for j = 1, . . . , n.

It is also called the change of co-ordinate matrix, since

[v]γ = [IV (v)]γβ [v]β

i.e. if

v = x1u1 + · · ·+ xnun

= y1v1 + · · ·+ ynvn

17



then  y1
...
yn

 = P

 x1
...
xn

,
or, more explicitly,

y1 = p11x1 + · · ·+ p1nxn
...

yn = pn1x1 + · · ·+ p1nxn.

THEOREM 1.16 (Effect of changing basis on matrices of LTs)
Let T : V 7→ V be a LT with bases β and γ. Then

[T ]ββ = P−1[T ]γγP

where
P = [IV ]γβ

as above.

PROOF

IV T = T = TIV

⇒ [IV T ]γβ = [TIV ]γβ
⇒ [IV ]γβ[T ]ββ = [T ]γγ [IV ]γβ

DEFINITION 1.10
(Similar matrices)
If A and B are two matrices in Mm×n(F ), then if there exists a non-

singular matrix P such that

B = P−1AP

we say that A and B are similar over F .

1.4 Change of Basis Theorem for TA

In the MP274 course we are often proving results about linear transforma-
tions T : V 7→ V which state that a basis β can be found for V so that
[T ]ββ = B, where B has some special property. If we apply the result to
the linear transformation TA : Vn(F ) 7→ Vn(F ), the change of basis theorem
applied to TA tells us that A is similar to B. More explicitly, we have the
following:

18



THEOREM 1.17
Let A ∈Mn×n(F ) and suppose that v1, . . . , vn ∈ Vn(F ) form a basis β

for Vn(F ). Then if P = [v1| · · · |vn] we have

P−1AP = [TA]ββ .

PROOF. Let γ be the standard basis for Vn(F ) consisting of the unit vectors
E1, . . . , En and let β : v1, . . . , vn be a basis for Vn(F ). Then the change of
basis theorem applied to T = TA gives

[TA]ββ = P−1[TA]γγP,

where P = [IV ]γβ is the change of coordinate matrix.
Now the definition of P gives

v1 = IV (v1) = p11E1 + · · ·+ pn1En
...

vn = IV (vn) = p1nE1 + · · ·+ pnnEn,

or, more explicitly,

v1 =

 p11
...
pn1

 , . . . ,

 p1n
...
pnn

 .
In other words, P = [v1| · · · |vn], the matrix whose columns are v1, . . . , vn
respectively.

Finally, we observe that [TA]γγ = A.
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2 Polynomials over a field

A polynomial over a field F is a sequence

(a0, a1, a2, . . . , an, . . .) where ai ∈ F ∀i

with ai = 0 from some point on. ai is called the i–th coefficient of f .
We define three special polynomials. . .

0 = (0, 0, 0, . . .)
1 = (1, 0, 0, . . .)
x = (0, 1, 0, . . .).

The polynomial (a0, . . .) is called a constant and is written simply as a0.
Let F [x] denote the set of all polynomials in x.
If f 6= 0, then the degree of f , written deg f , is the greatest n such
that an 6= 0. Note that the polynomial 0 has no degree.
an is called the ‘leading coefficient’ of f .
F [x] forms a vector space over F if we define

λ(a0, a1, . . .) = (λa0, λa1, . . .), λ ∈ F.

DEFINITION 2.1
(Multiplication of polynomials)
Let f = (a0, a1, . . .) and g = (b0, b1, . . .). Then fg = (c0, c1, . . .) where

cn = a0bn + a1bn−1 + · · ·+ anb0

=
n∑
i=0

aibn−i

=
∑

0≤i,0≤j
i+j=n

aibj .

EXAMPLE 2.1

x2 = (0, 0, 1, 0, . . .), x3 = (0, 0, 0, 1, 0, . . .).

More generally, an induction shows that xn = (a0, . . .), where an = 1 and
all other ai are zero.

If deg f = n, we have f = a01 + a1x+ · · ·+ anx
n.
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THEOREM 2.1 (Associative Law)
f(gh) = (fg)h

PROOF Take f, g as above and h = (c0, c1, . . .). Then f(gh) = (d0, d1, . . .),
where

dn =
∑
i+j=n

(fg)ihj

=
∑
i+j=n

( ∑
u+v=i

fugv

)
hj

=
∑

u+v+j=n

fugvhj .

Likewise (fg)h = (e0, e1, . . .), where

en =
∑

u+v+j=n

fugvhj

Some properties of polynomial arithmetic:

fg = gf

0f = 0
1f = f

f(g + h) = fg + fh

f 6= 0 and g 6= 0 ⇒ fg 6= 0
and deg(fg) = deg f + deg g.

The last statement is equivalent to

fg = 0⇒ f = 0 or g = 0.

The we deduce that

fh = fg and f 6= 0⇒ h = g.

2.1 Lagrange Interpolation Polynomials

Let Pn[F ] denote the set of polynomials a0 + a1x + · · · + anx
n, where

a0, . . . , an ∈ F . Then a0 + a1x+ · · ·+ anx
n = 0 implies that a0 = 0, . . . , an = 0.

Pn[F ] is a subspace of F [x] and 1, x, x2, . . . , xn form the ‘standard’ basis
for Pn[F ].
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If f ∈ Pn[F ] and c ∈ F , we write

f(c) = a0 + a1c+ · · ·+ anc
n.

This is the“value of f at c”. This symbol has the following properties:

(f + g)(c) = f(c) + g(c)
(λf)(c) = λ(f(c))
(fg)(c) = f(c)g(c)

DEFINITION 2.2
Let c1, . . . , cn+1 be distinct members of F . Then the Lagrange inter-

polation polynomials p1, . . . , pn+1 are polynomials of degree n defined
by

pi =
n+1∏
j=1
j 6=i

(
x− cj
ci − cj

)
, 1 ≤ i ≤ n+ 1.

EXAMPLE 2.2

p1 =
(
x− c2
c1 − c2

) (
x− c3
c1 − c3

)
· · ·

(
x− cn+1
c1 − cn+1

)
p2 =

(
x− c1
c2 − c1

)
×

(
x− c3
c2 − c3

)
· · ·

(
x− cn+1
c2 − cn+1

)
etc. . .

We now show that the Lagrange polynomials also form a basis for Pn[F ].
PROOF Noting that there are n+ 1 elements in the ‘standard’ basis, above,
we see that dimPn[F ] = n+ 1 and so it suffices to show that p1, . . . , pn+1

are LI.
We use the following property of the polynomials pi:

pi(cj) = δij =
{

1 if i = j
0 if i 6= j.

Assume that
a1p1 + · · ·+ an+1pn+1 = 0

where ai ∈ F, 1 ≤ i ≤ n+ 1. Evaluating both sides at c1, . . . , cn+1 gives

a1p1(c1) + · · ·+ an+1pn+1(c1) = 0
...

a1p1(cn+1) + · · ·+ an+1pn+1(cn+1) = 0
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⇒

a1 × 1 + a2 × 0 + · · ·+ an+1 × 0 = 0
a1 × 0 + a2 × 1 + · · ·+ an+1 × 0 = 0

...
a1 × 0 + a2 × 0 + · · ·+ an+1 × 1 = 0

Hence ai = 0 ∀i as required.

COROLLARY 2.1
If f ∈ Pn[F ] then

f = f(c1)p1 + · · ·+ f(cn+1)pn+1.

Proof: We know that

f = λ1p1 + · · ·+ λn+1pn+1 for some λi ∈ F .

Evaluating both sides at c1, . . . , cn+1 then, gives

f(c1) = λ1,

...

f(cn+1) = λn+1

as required.

COROLLARY 2.2
If f ∈ Pn[F ] and f(c1) = 0, . . . , f(cn+1) = 0 where c1, . . . , cn+1 are dis-

tinct, then f = 0. (I.e. a non-zero polynomial of degree n can have at most
n roots.)

COROLLARY 2.3
If b1, . . . , bn+1 are any scalars in F , and c1, . . . , cn+1 are again distinct,

then there exists a unique polynomial f ∈ Pn[F ] such that

f(c1) = b1, . . . , f(cn+1) = bn+1 ;

namely

f = b1p1 + · · ·+ bn+1pn+1.
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EXAMPLE 2.3
Find the quadratic polynomial

f = a0 + a1x+ a2x
2 ∈ P2[R]

such that
f(1) = 8, f(2) = 5, f(3) = 4.

Solution: f = 8p1 + 5p2 + 4p3 where

p1 =
(x− 2)(x− 3)
(1− 2)(1− 3)

p2 =
(x− 1)(x− 3)
(2− 1)(2− 3)

p3 =
(x− 1)(x− 2)
(3− 1)(3− 2)

2.2 Division of polynomials

DEFINITION 2.3
If f, g ∈ F [x], we say f divides g if ∃h ∈ F [x] such that

g = fh.

For this we write “f | g”, and “f 6 | g” denotes the negation “f does not di-
vide g”.
Some properties:

f | g and g 6= 0⇒ deg f ≤ deg g

and thus of course
f | 1⇒ deg f = 0.

2.2.1 Euclid’s Division Theorem

Let f, g ∈ F [x] and g 6= 0.
Then ∃q, r ∈ F [x] such that

f = qg + r, (3)

where r = 0 or deg r < deg g. Moreover q and r are unique.
Outline of Proof:
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If f = 0 or deg f < deg g, (3) is trivially true (taking q = 0 and r = f).
So assume deg f ≥ deg g, where

f = amx
m + am−1x

m−1 + · · · a0,

g = bnx
n + · · ·+ b0

and we have a long division process, viz:

amb
−1
n xm−n + · · ·

bnx
n + · · ·+ b0 amx

m + am−1x
m−1 + · · · + a0

amx
m

etc. . .

(See S. Perlis, Theory of Matrices, p.111.)

2.2.2 Euclid’s Division Algorithm

f = q1g + r1 with deg r1 < deg g
g = q2r1 + r2 with deg r2 < deg r1

r1 = q3r2 + r3 with deg r3 < deg r2

. . . .
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rn−2 = qnrn−1 + rn with deg rn < deg rn−1

rn−1 = qn+1rn

Then rn = gcd(f, g), the greatest common divisor of f and g—i.e.
rn is a polynomial d with the property that

1. d | f and d | g, and

2. ∀e ∈ F [x], e | f and e | g ⇒ e | d.

(This defines gcd(f, g) uniquely up to a constant multiple.)
We select the monic (i.e. leading coefficient = 1) gcd as “the” gcd.
Also, ∃u, v ∈ F [x] such that

rn = gcd(f, g)
= uf + vg

—find u and v by ‘forward substitution’ in Euclid’s algorithm; viz.

r1 = f + (−q1)g
r2 = g + (−q2)r1
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= g + (−q2)(f + (−q1)g)
= g + (−q2)f + (q1q2)g
= (−q2)f + (1 + q1q2)g

...
rn = (. . .)︸︷︷︸

u

f + (. . .)︸︷︷︸
v

g.

In general, rk = skf + tkg for −1 ≤ k ≤ n, where

r−1 = f, r0 = g, s−1 = 1, s0 = 0, t−1 = 0, t0 = 1

and
sk = −qksk−1 + sk−2, tk = −qktk−1 + tk−2

for 1 ≤ k ≤ n. (Proof by induction.)
The special case gcd(f, g) = 1 (i.e. f and g are relatively prime) is of

great importance: here ∃u, v ∈ F [x] such that

uf + vg = 1.

EXERCISE 2.1
Find gcd(3x2 + 2x + 4, 2x4 + 5x + 1) in Q[x] and express it as uf + vg

for two polynomials u and v.

2.3 Irreducible Polynomials

DEFINITION 2.4
Let f be a non-constant polynomial. Then, if

g | f ⇒ g is a constant
or g = constant× f

we call f an irreducible polynomial.

Note: (Remainder theorem)
f = (x− a)q + f(a) where a ∈ F . So f(a) = 0 iff (x− a) | f .

EXAMPLE 2.4
f(x) = x2 + x+ 1 ∈ Z2[x] is irreducible, for f(0) = f(1) = 1 6= 0, and

hence there are no polynomials of degree 1 which divide f .
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THEOREM 2.2
Let f be irreducible. Then if f 6 | g, gcd(f, g) = 1 and ∃u, v ∈ F [x] such

that

uf + vg = 1.

PROOF Suppose f is irreducible and f 6 | g. Let d = gcd(f, g) so

d | f and d | g.

Then either d = cf for some constant c, or d = 1. But if d = cf then

f | d and d | g
⇒ f | g —a contradiction.

So d = 1 as required.

COROLLARY 2.4
If f is irreducible and f | gh, then f | g or f | h.

Proof: Suppose f is irreducible and f | gh, f 6 | g. We show that f | h.

By the above theorem, ∃u, v such that

uf + vg = 1
⇒ ufh+ vgh = h

⇒ f | h

THEOREM 2.3
Any non-constant polynomial is expressible as a product of irreducible

polynomials where representation is unique up to the order of the irreducible
factors.

Some examples:

(x+ 1)2 = x2 + 2x+ 1
= x2 + 1 inZ2[x]

(x2 + x+ 1)2 = x4 + x2 + 1 in Z2[x]
(2x2 + x+ 1)(2x+ 1) = x3 + x2 + 1 inZ3[x]

= (x2 + 2x+ 2)(x+ 2) inZ3[x].

PROOF
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Existence of factorization: If f ∈ F [x] is not a constant polynomial, then
f being irreducible implies the result.

Otherwise, f = f1F1, with 0 < deg f1,degF1 < deg f . If f1 and F1 are
irreducible, stop. Otherwise, keep going.

Eventually we end with a decomposition of f into irreducible poly-
nomials.

Uniqueness: Let
cf1f2 · · · fm = dg1g2 · · · gn

be two decompositions into products of constants (c and d) and monic
irreducibles (fi, gj). Now

f1 | f1f2 · · · fm =⇒ f1 | g1g2 · · · gn

and since fi, gi are irreducible we can cancel f1 and some gj .

Repeating this for f2, . . . , fm, we eventually obtain m = n and c = d—
in other words, each expression is simply a rearrangement of the factors
of the other, as required.

THEOREM 2.4
Let Fq be a field with q elements. Then if n ∈ N, there exists an irred-

ucible polynomial of degree n in F [x].

PROOF First we introduce the idea of the Riemann zeta function:

ζ(s) =
∞∑
n=1

1
ns

=
∏

p prime

1

1− 1
ps
.

To see the equality of the latter expressions note that

1
1− x

=
∞∑
i=0

xi = 1 + x+ x2 + · · ·

and so

R.H.S. =
∏

p prime

( ∞∑
i=0

1
pis

)

=
(

1 +
1
2s

+
1

22s
+ · · ·

)(
1 +

1
3s

+
1

32s
+ · · ·

)
= 1 +

1
2s

+
1
3s

+
1
4s

+ · · ·
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—note for the last step that terms will be of form(
1

pa1
1 · · · p

aR
R

)s
up to some prime pR, with ai ≥ 0 ∀i = 1, . . . , R. and as R→∞, the prime
factorizations

pa1
1 · · · p

aR
R

map onto the natural numbers, N.
We let Nm denote the number of monic irreducibles of degree m in Fq[x].

For example, N1 = q since x+ a, a ∈ Fq are the irreducible polynomials of
degree 1.

Now let |f | = qdeg f , and |0| = 0. Then we have

|fg| = |f | |g| since deg fg = deg f + deg g

and, because of the uniqueness of factorization theorem,∑
f monic

1
|f |s

=
∏

f monic and
irreducible

1

1− 1
|f |s

.

Now the left hand side is

∞∑
n=0

∑
f monic and
deg f = n

1
|f |s

=
∞∑
n=0

qn

qns

(there are qn monic polynomials of degree n)

=
∞∑
n=0

1
qn(s−1)

=
1

1− 1
qs−1

and R.H.S. =
∞∏
n=1

1(
1− 1

qns
)Nn .
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Equating the two, we have

1

1− 1
qs−1

=
∞∏
n=1

1(
1− 1

qns
)Nn . (4)

We now take logs of both sides, and then use the fact that

log
(

1
1− x

)
=
∞∑
n=1

xn

n
if |x| < 1;

so (4) becomes

log
1

1− q−(s−1)
=

∞∏
n=1

1(
1− 1

qns
)Nn

⇒
∞∑
k=1

1
kq(s−1)k

= −
∞∑
n=1

Nn log
(

1− 1
qns

)

=
∞∑
n=1

Nn

∞∑
m=1

1
mqmns

so
∞∑
k=1

qk

kqsk
=

∞∑
n=1

Nn

∞∑
m=1

n

mnqmns

=
∞∑
k=1

∑
mn=k

nNn

kqks
.

Putting x = qs, we have
∞∑
k=1

qkxk

k
=
∞∑
k=1

xk ×
∑
mn=k

nNn,

and since both sides are power series, we may equate coefficients of xk to
obtain

qk =
∑
mn=k

nNn =
∑
n|k

nNn. (5)

We can deduce from this that Nn > 0 as n→∞ (see Berlekamp’s “Algebraic
Coding Theory”).

Now note that N1 = q, so if k is a prime—say k = p, (5) gives

qp = N1 + pNp = q + pNp

⇒ Np =
qp − q
p

> 0 as q > 1 and p ≥ 2.
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This proves the theorem for n = p, a prime.
But what if k is not prime? Equation (5) also tells us that

qk ≥ kNk.

Now let k ≥ 2. Then

qk = kNk +
∑
n|k
n6=k

nNn

≤ kNk +
∑
n|k
n6=k

qn (as nNn ≤ qn)

≤ kNk +
bk/2c∑
n=1

qn

< kNk +
bk/2c∑
n=0

qn (adding 1)

= kNk +
qbk/2c+1 − 1

q − 1
(sum of geometric series).

But
qt+1 − 1
q − 1

< qt+1 if q ≥ 2,

so

qk < kNk + qbk/2c+1

⇒ Nk >
qk − qbk/2c+1

k

≥ 0 if qk ≥ qbk/2c+1.

Since q > 1 (we cannot have a field with a single element, since the additive
and multiplicative identities cannot be equal by one of the axioms), the
latter condition is equivalent to

k ≥ bk/2c+ 1

which is true and the theorem is proven.
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2.4 Minimum Polynomial of a (Square) Matrix

Let A ∈Mn×n(F ), and g = chA . Then g(A) = 0 by the Cayley–Hamilton
theorem.

DEFINITION 2.5
Any non–zero polynomial g of minimum degree and satisfying g(A) = 0

is called a minimum polynomial of A.

Note: If f is a minimum polynomial of A, then f cannot be a constant
polynomial. For if f = c, a constant, then 0 = f(A) = cIn implies c = 0.

THEOREM 2.5
If f is a minimum polynomial of A and g(A) = 0, then f | g. (In partic-

ular, f | chA.)

PROOF Let g(A) = 0 and f be a minimum polynomial. Then

g = qf + r,

where r = 0 or deg r < deg f . Hence

g(A) = q(A)× 0 + r(A)
0 = r(A).

So if r 6= 0, the inequality deg r < deg f would give a contradict the defini-
tion of f . Consequently r = 0 and f | g.
Note: It follows that if f and g are minimum polynomials of A, then f |g
and g|f and consequently f = cg, where c is a scalar. Hence there is a
unique monic minimum polynomial and we denote it by mA.

EXAMPLES (of minimum polynomials):

1. A = 0⇔ mA = x

2. A = In ⇔ mA = x− 1

3. A = cIn ⇔ mA = x− c

4. A2 = A and A 6= 0 and A 6= In ⇔ mA = x2 − x.

EXAMPLE 2.5
F = Q and

A =

 5 −6 −6
−1 4 2

3 −6 −4

 .
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Now

A 6= c0I3, c0 ∈ Q, so mA 6= x− c0,

A2 = 3A− 2I3

⇒ mA = x2 − 3x+ 2

This is an special case of a general algorithm:

(Minimum polynomial algorithm) Let A ∈Mn×n(F ). Then we find the
least positive integer r such that Ar is expressible as a linear combination
of the matrices

In, A, . . . , A
r−1,

say
Ar = c0 + c1A+ · · ·+ cr−1A

r−1.

(Such an integer must exist as In, A, . . . , An
2

form a linearly dependent
family in the vector space Mn×n(F ) and this latter space has dimension
equal to n2.)

Then mA = xr − cr−1x
r−1 − · · · − c1x− c0.

THEOREM 2.6
If f = xn + an−1x

n−1 + · · ·+ a1x+ a0 ∈ F [x], then mC(f) = f , where

C(f) =


0 0 0 −a0

1 0 · · · 0 −a1

0 1 0 −a2
...

. . .
...

0 0 · · · 1 −an−1


.

PROOF For brevity denote C(f) by A. Then post-multiplying A by the
respective unit column vectors E1, . . . , En gives

AE1 = E2

AE2 = E3 ⇒ A2E1 = E3

...
AEn−1 = En ⇒ An−1E1 = En

AEn = −a0E1 − a2E2 − · · · − an−1En

= −a0E1 − a2AE1 − · · · − an−1A
n−1E1 = AnE1,
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so
⇒ f(A)E1 = 0⇒ first column of f(A) zero

Now although matrix multiplication is not commutative, multiplication of
two matrices, each of which is a polynomial in a given square matrix A, is
commutative. Hence f(A)g(A) = g(A)f(A) if f, g ∈ F [x]. Taking g = x
gives

f(A)A = Af(A).

Thus
f(A)E2 = f(A)AE1 = Af(A)E1 = 0

and so the second column of A is zero. Repeating this for E3, . . . , En, we
see that

f(A) = 0

and thus mA|f .
To show mA = f , we assume degmA = t < n; say

mA = xt + bt−1x
t−1 + · · ·+ b0.

Now

mA(A) = 0
⇒ At + bt−1A

t−1 + · · ·+ b0In = 0
⇒ (At + bt−1A

t−1 + · · ·+ b0In)E1 = 0,

and recalling that AE1 = E2 etc., and t < n, we have

Et+1 + bt−1Et + · · ·+ b1E2 + b0E1 = 0

which is a contradiction—since the Ei are independent, the coefficient of
Et+1 cannot be 1.

Hence mA = f .
Note: It follows that chA = f . Because both chA and mA have degree n
and moreover mA divides chA .

EXERCISE 2.2
If A = Jn(a) for a ∈ F , an elementary Jordan matrix of size n, show
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that mA = (x− a)n where

A = Jn(a) =



a 0 0
1 a · · ·
0 1

...
. . .

...
0 0 · · · a 0
0 0 1 a


(i.e. A is an n× n matrix with a’s on the diagonal and 1’s on the subdiag-
onal).
Note: Again, the minimum polynomial happens to equal the characteristic
polynomial here.

DEFINITION 2.6
(Direct Sum of Matrices)
Let A1, . . . , At be matrices over F . Then the direct sum of these matrices

is defined as follows:

A1 ⊕A2 ⊕ · · · ⊕At =


A1 0 . . .

0 A2
...

. . .
...

· · · 0 At

 .
Properties:

1.

(A1 ⊕ · · · ⊕At) + (B1 ⊕ · · · ⊕Bt) = (A1 +B1)⊕ · · · ⊕ (At +Bt)

2. If λ ∈ F ,
λ(A1 ⊕ · · · ⊕At) = (λA1)⊕ · · · ⊕ (λAt)

3.
(A1 ⊕ · · · ⊕At)(B1 ⊕ · · · ⊕Bt) = (A1B1)⊕ · · · ⊕ (AtBt)

4. If f ∈ F [x] and A1, . . . , At are square,

f(A1 ⊕ · · · ⊕At) = f(A1)⊕ · · · ⊕ f(At)

DEFINITION 2.7
If f1, . . . , ft ∈ F [x], we call f ∈ F [x] a least common multiple ( lcm ) of

f1, . . . , ft if
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1. f1 | f, . . . ft | f , and

2. f1 | e, . . . ft | e⇒ f | e.

This uniquely defines the lcm up to a constant multiple and so we set “the”
lcm to be the monic lcm .

EXAMPLES 2.1

If fg 6= 0, lcm (f, g) | fg .

(Recursive property)

lcm (f1, . . . , ft+1) = lcm ( lcm (f1, . . . , ft), ft+1).

THEOREM 2.7

mA1⊕···⊕At = lcm (mA1 , . . . ,mAt),

Also

chA1⊕···⊕At =
t∏
i=1

chAi .

PROOF Let f = L.H.S. and g = R.H.S. Then

f(A1 ⊕ · · · ⊕At) = 0
⇒ f(A1)⊕ · · · ⊕ f(At) = 0⊕ · · · ⊕ 0
⇒ f(A1) = 0, . . . , f(At) = 0
⇒ mA1 | f, . . . ,mAt | f
⇒ g | f.

Conversely,

mA1 | g, . . . ,mAt | g
⇒ g(A1) = 0, . . . , g(At) = 0
⇒ g(A1)⊕ · · · ⊕ g(At) = 0⊕ · · · ⊕ 0
⇒ g(A1 ⊕ · · · ⊕At) = 0
⇒ f = mA1⊕···⊕At | g.

Thus f = g.

EXAMPLE 2.6
Let A = C(f) and B = C(g).
Then mA⊕B = lcm (f, g).
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Note: If

f = cpa1
1 . . . patt

g = dpb11 . . . pbtt

where c, d 6= 0 are in F and p1, . . . , pt are distinct monic irreducibles, then

gcd(f, g) = p
min(a1,b1)
1 . . . p

min(at,bt)
t ,

lcm (f, g) = p
max(a1,b1)
1 . . . p

max(at,bt)
t

Note

min(ai, bi) + max(ai, bi) = ai + bi.

so

gcd(f, g) lcm (f, g) = fg.

EXAMPLE 2.7
If A = diag (λ1, . . . , λn), then mA = (x− c1) · · · (x− ct), where c1, . . . , ct

are the distinct members of the sequence λ1, . . . , λn.

PROOF. For A is the direct sum of the 1 × 1 matrices λ1, . . . , λn having
minimum polynomials x− λ1, . . . , λn. Hence

mA = lcm (x− λ1, . . . , x− λn) = (x− c1) · · · (x− ct).

We know that mA | chA . Hence if

chA = pa1
1 . . . patt

where a1 > 0, . . . , at > 0, and p1, . . . , pt are distinct monic irreducibles, then

mA = pb11 . . . pbtt

where 0 ≤ bi ≤ ai, ∀i = 1, . . . , t.
We soon show that each bi > 0, i.e. if p | chA and p is irreducible then

p | mA.
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2.5 Construction of a field of pn elements

(where p is prime and n ∈ N)

Let f be a monic irreducible polynomial of degree n in Zp[x]—that is,
Fq = Zp here.
For instance,

n = 2, p = 2 ⇒ x2 + x+ 1 = f

n = 3, p = 2 ⇒ x3 + x+ 1 = f or x3 + x2 + 1 = f.

Let A = C(f), the companion matrix of f . Then we know f(A) = 0.
We assert that the set of all matrices of the form g(A), where g ∈ Zp[x],

forms a field consisting of precisely pn elements. The typical element is

b0In + b1A+ · · ·+ btA
t

where b0, . . . , bt ∈ Zp.
We need only show existence of a multiplicative inverse for each element

except 0 (the additive identity), as the remaining axioms clearly hold.
So let g ∈ Zp[x] such that g(A) 6= 0. We have to find h ∈ Zp[x] satisfying

g(A)h(A) = In.

Note that g(A) 6= 0⇒ f 6 | g, since

f | g ⇒ g = ff1

and hence
g(A) = f(A)f1(A) = 0f1(A) = 0.

Then since f is irreducible and f 6 | g, there exist u, v ∈ Zp[x] such that

uf + vg = 1.

Hence u(A)f(A) + v(A)g(A) = In and v(A)g(A) = In, as required.
We now show that our new field is a Zp–vector space with basis consisting

of the matrices
In, A, . . . , A

n−1.

Firstly the spanning property: By Euclid’s division theorem,

g = fq + r
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where q, r ∈ Zp[x] and deg r < deg g. So let

r = r0 + r1x+ · · ·+ rn−1x
n−1

where r0, . . . , rn−1 ∈ Zp. Then

g(A) = f(A)q(A) + r(A)
= 0q(A) + r(A)
= r(A)
= r0In + r1A+ · · ·+ rn−1A

n−1

Secondly, linear independence over Zp: Suppose that

r0In + r1A+ · · ·+ rn−1A
n−1 = 0,

where r0, r1, . . . , rn−1 ∈ Zp. Then r(A) = 0, where

r = r0 + r1x+ · · ·+ rn−1x
n−1.

Hence mA = f divides r. Consequently r = 0, as deg f = n whereas
deg r < n if r 6= 0.

Consequently, there are pn such matrices g(A) in the field we have con-
structed.

Numerical Examples

EXAMPLE 2.8
Let p = 2, n = 2, f = x2 + x+ 1 ∈ Z2[x], and A = C(f). Then

A =
[

0 −1
1 −1

]
=
[

0 1
1 1

]
,

and

F4 = { a0I2 + a1A | a0, a1 ∈ Z2 }
= { 0, I2, A, I2 +A }.

We construct addition and multiplication tables for this field, with B =
I2 +A (as an exercise, check these):

⊕ 0 I2 A B

0 0 I2 A B

I2 I2 0 B A

A A B 0 I2

B B A I2 0

⊗ 0 I2 A B

0 0 0 0 0
I2 0 I2 A B

A 0 A B I2

B 0 B I2 A
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EXAMPLE 2.9
Let p = 2, n = 3, f = x3 + x+ 1 ∈ Z2[x]. Then

A = C(f) =

 0 0 −1
1 0 −1
0 1 0

 =

 0 0 1
1 0 1
0 1 0

 ,
and our eight-member field F8 (usually denoted byGF (8) [“GF” corresponds
to “Galois Field”, in honour of Galois]) is

F8 = { a0I3 + a1A+ a2A
2 | a0, a1, a2 ∈ Z2 }

= { 0, I3, A,A
2, I3 +A, I3 +A2, A+A2, I3 +A+A2 }.

Now find (A2 +A)−1
.

Solution: use Euclid’s algorithm.

x3 + x+ 1 = (x+ 1)(x2 + x) + 1.

Hence

x3 + x+ 1 + (x+ 1)(x2 + x) = 1
A3 +A+ I3 + (A+ I3)(A2 +A) = I3

(A+ I3)(A2 +A) = I3.

Hence (A2 +A)−1 = A+ I3.

THEOREM 2.8
Every finite field has precisely pn elements for some prime p—the least

positive integer with the property that

1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p

= 0.

p is then called the characteristic of the field.

Also, if x ∈ F , a field of q elements, then it can be shown that if x 6= 0,
then

xq−1 = 1.

In the special case F = Zp, this reduces to Fermat’s Little Theorem:

xp−1 ≡ 1 (mod p),

if p is prime not dividing x.
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2.6 Characteristic and Minimum Polynomial of a Transform-
ation

DEFINITION 2.8
(Characteristic polynomial of T : V 7→ V )

Let β be a basis for V and A = [T ]ββ.
Then we define chT = chA . This polynomial is independent of the basis

β:

PROOF ( chT is independent of the basis.)
If γ is another basis for V and B = [T ]γγ , then we know A = P−1BP

where P is the change of basis matrix [IV ]γβ .
Then

chA = chP−1BP

= det(xIn − P−1BP ) where n = dimV

= det(P−1(xIn)P − P−1BP )
= det(P−1(xIn −B)P )
= detP−1 chB detP
= chB .

DEFINITION 2.9
If f = a0 + · · ·+ atx

t, where a0, . . . , at ∈ F , we define

f(T ) = a0IV + · · ·+ atT
t.

Then the usual properties hold:

f, g ∈ F [x]⇒ (f+g)(T ) = f(T )+g(T ) and (fg)(T ) = f(T )g(T ) = g(T )f(T ).

LEMMA 2.1

f ∈ F [x]⇒ [f(T )]ββ = f
(

[T ]ββ
)
.

Note: The Cayley-Hamilton theorem for matrices says that chA (A) = 0.
Then if A = [T ]ββ, we have by the lemma

[ chT (T )]ββ = chT (A) = chA (A) = 0,

so chT (T ) = 0V .
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DEFINITION 2.10
Let T : V → V be a linear transformation over F . Then any polynomial

of least positive degree such that

f(T ) = 0V

is called a minimum polynomial of T .

We have corresponding results for polynomials in a transformation T to
those for polynomials in a square matrix A:

g = qf + r ⇒ g(T ) = q(T )f(T ) + r(T ).

Again, there is a unique monic minimum polynomial of T is denoted by mT

and called “the” minimum polynomial of T .
Also note that because of the lemma,

mT = m
[T ]ββ

.

For (with A = [T ]ββ)

(a) mA(A) = 0, so mA(T ) = 0V . Hence mT |mA.

(b) mT (T ) = 0V , so [mT (T )]ββ = 0. Hence mT (A) = 0 and so mA|mT .

EXAMPLES 2.2

T = 0V ⇔ mT = x.

T = IV ⇔ mT = x− 1.

T = cIV ⇔ mT = x− c.
T 2 = T and T 6= 0V and T 6= IV ⇔ mT = x2 − x.

2.6.1 Mn×n(F [x])—Ring of Polynomial Matrices

Example: [
x2 + 2 x5 + 5x+ 1
x+ 3 1

]
∈M2×2(Q[x])

= x5

[
0 1
0 0

]
+ x2

[
1 0
0 0

]
+ x

[
0 5
1 0

]
+
[

2 1
3 1

]
—we see that any element of Mn×n(F [x]) is expressible as

xmAm + xm−1Am−1 + · · ·+A0

where Ai ∈Mn×n(F ). We write the coefficient of xi after xi, to distinguish
these entities from corresponding objects of the following ring.
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2.6.2 Mn×n(F )[y]—Ring of Matrix Polynomials

This consists of all polynomials in y with coefficients in Mn×n(F ).
Example:[

0 1
0 0

]
y5 +

[
1 0
0 0

]
y2 +

[
0 5
1 0

]
y +

[
2 1
3 1

]
∈M2×2(F )[y].

THEOREM 2.9
The mapping

Φ : Mn×n(F )[y] 7→Mn×n(F [x])

given by

Φ(A0 +A1y + · · ·+Amy
m) = A0 + xA1 + · · ·+ xmAm

where Ai ∈Mn×n(F ), is a 1–1 correspondence and has the following prop-
erties:

Φ(X + Y ) = Φ(X) + Φ(Y )
Φ(XY ) = Φ(X)Φ(Y )
Φ(tX) = tΦ(X) ∀t ∈ F.

Also
Φ(Iny −A) = xIn −A ∀A ∈Mn×n(F ).

THEOREM 2.10 ((Left) Remainder theorem for matrix polynomials)

Let Bmy
m + · · ·+B0 ∈Mn×n(F )[y] and A ∈Mn×n(F ).

Then
Bmy

m + · · ·+B0 = (Iny −A)Q+R

where

R = AmBm + · · ·+AB1 +B0

and Q = Cm−1y
m−1 + · · ·+ C0

where Cm−1, . . . , C0 are computed recursively:

Bm = Cm−1

Bm−1 = −ACm−1 + Cm−2

...

B1 = −AC1 + C0.
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PROOF. First we verify that B0 = −AC0 +R:

R = AmBm = AmCm−1

+Am−1Bm−1 −AmCm−1 +Am−1Cm−2

+ +
...

...
+AB1 −A2C1 +AC0

+B0 B0

= B0 +AC0.

Then

(Iny −A)Q+R = (Iny)(Cm−1y
m−1 + · · ·+ C0)

−A(Cm−1y
m−1 + · · ·+ C0) +AmBm + · · ·+B0

= Cm−1y
m + (Cm−2 −ACm−1)ym−1 + · · ·+ (C0 −AC1)y +

−AC0 +R

= Bmy
m +Bm−1y

m−1 + · · ·+B1y +B0.

Remark. There is a similar “right” remainder theorem.

THEOREM 2.11
If p is an irreducible polynomial dividing chA , then p | mA.

PROOF (From Burton Jones, ”Linear Algebra”).
Let mA = xt + at−1x

t−1 + · · ·+ a0 and consider the matrix polynomial
in y

Φ−1(mAIn) = Iny
t + (at−1In)yt−1 + · · ·+ (a0In)

= (Iny −A)Q+AtIn +At−1(at−1In) + · · ·+ a0In

= (Iny −A)Q+mT (A)
= (Iny −A)Q.

Now take Φ of both sides to give

mAIn = (xIn −A)Φ(Q)

and taking determinants of both sides yields

{mA}n = chA × det Φ(Q).
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So letting p be an irreducible polynomial dividing chA , we have p | {mA}n
and hence p | mA.

Alternative simpler proof (MacDuffee):
mA(x)−mA(y) = (x− y)k(x, y), where k(x, y) ∈ F [x, y]. Hence

mA(x)In = mA(xIn)−mA(A) = (xIn −A)k(xIn, A).

Now take determinants to get

mA(x)n = chA(x) det k(xIn, A).

Exercise: If ∆(x) is the gcd of the elements of adj(xIn − A), use the
equation (xIn−a)adj(xIn−A) = chA(x)In and an above equation to deduce
that mA(x) = chA(x)/∆(x).

EXAMPLES 2.3

With A = 0 ∈Mn×n(F ), we have chA = xn and mA = x.

A = diag (1, 1, 2, 2, 2) ∈M5×5(Q). Here

chA = (x− 1)2(x− 2)3 and mA = (x− 1)(x− 2).

DEFINITION 2.11
A matrix A ∈ Mn×n(F ) is called diagonable over F if there exists a

non–singular matrix P ∈Mn×n(F ) such that

P−1AP = diag (λ1, . . . , λn),

where λ1, . . . , λn belong to F .

THEOREM 2.12
If A is diagonable, then mA is a product of distinct linear factors.

PROOF
If P−1AP = diag (λ1, . . . , λn) (with λ1, . . . , λn ∈ F ) then

mA = mP−1AP = mdiag (λ1, . . . , λn)

= (x− c1)(x− c2) . . . (x− ct)

where c1, . . . , ct are the distinct members of the sequence λ1, . . . , λn.
The converse is also true, and will (fairly) soon be proved.
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EXAMPLE 2.10

A = Jn(a).

We saw earlier that mA = (x− a)n so if n ≥ 2 we see that A is not diago-
nable.

DEFINITION 2.12
(Diagonable LTs)

T : V 7→ V is called diagonable over F if there exists a basis β for V
such that [T ]ββ is diagonal.

THEOREM 2.13
A is diagonable ⇔ TA is diagonable.

PROOF (Sketch)

⇒ Suppose P−1AP = diag (λ1, . . . , λn). Now pre-multiplying by P and
letting P = [P1| · · · |Pn] we see that

TA(P1) = AP1 = λ1P1

...
TA(Pn) = APn = λnPn

and we let β be the basis P1, . . . , Pn over Vn(F ). Then

[TA]ββ =


λ1

λ2

. . .
λn

 .

⇐ Reverse the argument and use Theorem 1.17.

THEOREM 2.14
Let A ∈ Mn×n(F ). Then if λ is an eigenvalue of A with multiplicity m,

(that is (x− λ)m is the exact power of x− λ which divides chA ), we have

nullity (A− λIn) ≤ m.
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REMARKS. (1) If m = 1, we deduce that nullity (A − λIn) = 1. For the
inequality

1 ≤ nullity (A− λIn)

always holds.
(2) The integer nullity (A − λIn) is called the geometric multiplicity of

the eigenvalue λ, while m is referred to as the algebraic multiplicity of λ.

PROOF. Let v1, . . . , vr be a basis for N(A− λIn), where λ is an eigenvalue
of A having multiplicity m. Extend this linearly independent family to a
basis v1, . . . , vr, vr+1, . . . , vn of Vn(F ). Then the following equations hold:

Av1 = λv1

...
Avr = λvr

Avr+1 = b11v1 + · · ·+ bn1vn
...

Avn = b1n−rv1 + · · ·+ bnn−rvn.

These equations can be combined into a single matrix equation:

A[v1| · · · |vr|vr+1| · · · |vn] = [Av1| · · · |Avr|Avr+1| · · · |Avn]
= [λv1| · · · |λvr|b11v1 + · · ·+ bn1vn| · · · |b1n−rv1 + · · ·+ bnn−rvn]

= [v1| · · · |vn]
[
λIr B1

0 B2

]
.

Hence if P = [v1| · · · |vn], we have

P−1AP =
[
λIr B1

0 B2

]
.

Then
chA = chP−1AP = chλIr · chB2 = (x− λ)r chB2

and because (x − λ)m is the exact power of x − λ dividing chA , it follows
that

nullity (A− λIn) = r ≤ m.

THEOREM 2.15
Suppose that chT = (x− c1)a1 · · · (x− ct)at . Then T is diagonable if

nullity (T − ciIv) = ai for 1 ≤ i ≤ t.
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PROOF. We first prove that the subspaces Ker (T − ciIV ) are independent.
(Subspaces V1, . . . , Vt are called independent if

v1 + · · ·+ vt = 0, vi ∈ Vi, i = 1, . . . t,⇒ v1 = 0, . . . , vt = 0.

Then dim (V1 + · · ·+ Vt) = dim (V1) + · · ·+ dimVt).)
Assume that

v1 + · · ·+ vt = 0,

where vi ∈ Ker (T − ciIv) for 1 ≤ i ≤ t. Then

T (v1 + · · ·+ vt) = T (0)
c1v1 + · · ·+ ctvt = 0.

Similarly we deduce that

c2
1v1 + · · ·+ c2

t vt = 0
...

ct−1
1 v1 + · · ·+ ct−1

t vt = 0.

We can combine these t equations into a single matrix equation
1 · · · 1
c1 · · · ct

...
ct−1

1 · · · ct−1
t


 v1

...
vt

 =

 o
...
0

 .
However the coefficient matrix is the Vandermonde matrix, which is non–
singular as ci 6= cj if i 6= j, so we deduce that v1 = 0, · · · , vt = 0. Hence with
Vi = Ker (T − ciIV ), we have

dim (V1 + · · ·+ Vt) =
t∑
i=1

dimVi =
t∑
i=1

ai = dimV.

Hence
V = V1 + · · ·+ Vt.

Then if βi is a basis for Vi for i ≤ i ≤ t and β = β1 ∪ · · · ∪ βt, it follows that
β is a basis for V . Moreover

[T ]ββ =
t⊕
i=1

(ciIai)
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and T is diagonable.

EXAMPLE. Let

A =

 5 2 −2
2 5 −2
−2 −2 5

 .
(a) We find that chA = (x− 3)2(x− 9). Next we find bases for each of the
eigenspaces N(A− 9I3) and N(A− 3I3):

First we solve (A− 3I3)X = 0. We have

A− 3I3 =

 2 2 −2
2 2 −2
−2 −2 2

→
 1 1 −1

0 0 0
0 0 0

 .
Hence the eigenspace consists of vectors X = [x, y, z]t satisfying x = −y+z,
with y and z arbitrary. Hence

X =

 −y + z
y
z

 = y

 −1
1
0

+ z

 1
0
1

 ,
so X11 = [−1, 1, 0]t and X12 = [1, 0, 1]t form a basis for the eigenspace
corresponding to the eigenvalue 3.

Next we solve (A− 9I3)X = 0. We have

A− 9I3 =

 −4 2 −2
2 −4 −2
−2 −2 −4

→
 1 0 1

0 1 1
0 0 0

 .
Hence the eigenspace consists of vectors X = [x, y, z]t satisfying x = −z
and y = −z, with z arbitrary. Hence

X =

 −z−z
z

 = z

 −1
−1

1


and we can take X21 = [−1, −1, 1]t as a basis for the eigenspace correspond-
ing to the eigenvalue 9.

Then P = [X11|X12|X21] is non–singular and

P−1AP =

 3 0 0
0 3 0
0 0 9

 .
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THEOREM 2.16
If

mT = (x− c1) . . . (x− ct)

for c1, . . . , ct distinct in F , then T is diagonable and conversely. Moreover
there exist unique linear transformations T1, . . . , Tt satisfying

IV = T1 + · · ·+ Tt,

T = c1T1 + · · ·+ ctTt,

TiTj = 0V if i 6= j,

T 2
i = Ti, 1 ≤ i ≤ t.

Also rankTi = ai, where chT = (x− c1)a1 · · · (x− ct)at .

Remarks.

1. T1, . . . , Tt are called the principal idempotents of T .

2. If g ∈ F [x], then g(T ) = g(c1)T1 + · · ·+ g(ct)Tt. For example

Tm = cm1 T1 + · · ·+ cmt Tt.

3. If c1, . . . , ct are non–zero (that is the eigenvalues of T are non–zero),
the T−1 is given by

T−1 = c−1
1 T1 + · · ·+ c−1

t Tt.

Formulae 2 and 3 are useful in the corresponding matrix formulation. PROOF
Suppose mT = (x − c1) · · · (x − ct), where c1, . . . , ct are distinct. Then
chT = (x − c1)a1 · · · (x − ct)at . To prove T is diagonable, we have to prove
that nullity (T − ciIV ) = ai, 1 ≤ i ≤ t

Let p1, . . . , pt be the Lagrange interpolation polynomials based on c1, . . . , ct,
i.e.

pi =
t∏

j=1
j 6=i

(
x− cj
ci − cj

)
, 1 ≤ i ≤ t.

Then
g ∈ F [x]⇒ g = g(c1)p1 + · · ·+ g(ct)pt.

In particular,
g = 1⇒ 1 = p1 + · · ·+ pt
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and
g = x⇒ x = c1p1 + · · ·+ ctpt.

Hence with Ti = pi(T ),

IV = T1 + · · ·+ Tt

T = c1T1 + · · ·+ ctTt.

Next

mT = (x− c1) . . . (x− ct) | pipj if i 6= j

⇒ (pipj)(T ) = 0V if i 6= j

⇒ pi(T )pj(T ) = 0V or TiTj = 0V if i 6= j.

Then T 2
i = Ti(T1 + · · ·+ Tt) = TiIV = Ti.

Next
0V = mT (T ) = (T − c1IV ) · · · (T − ctIV ).

Hence

dimV = nullity 0V ≤
t∑
i=1

nullity (T − ciIV ) ≤
t∑
i=1

ai = dimV.

Consequently nullity (T − ciIV ) = ai, 1 ≤ i ≤ t and T is therefore diago-
nable.

Next we prove that rankTi = ai. From the definition of pi, we have

nullity pi(T ) ≤
t∑

j=1
j 6=i

nullity (T − cjIV ) =
t∑

j=1
j 6=i

aj = dimV − ai.

Also pi(T )(T − ciIV ) = 0, so Im (T − ciIV ) ⊆ Ker pi(T ). Hence

dimV − ai ≤ nullity pi(T )

and consequently nullity pi(T ) = dim (V )− ai, so rank pi(T ) = ai.
We next prove the uniqueness of T1, . . . , Tt. Suppose that S1, . . . , St also

satisfy the same conditions as T1, . . . , Tt. Then

TiT = TTi = ciTi

SjT = TSj = cjSj

Ti(TSj) = Ti(cjSj) = cjTiSj = (TiT )Sj = ciTiSj
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so (cj − ci)TiSj = 0V and TiSj = 0V if i 6= j. Hence

Ti = TiIV = Ti(
t∑

j=1

Sj) = TiSi

Si = IV Si = (
t∑

j=1

Tj)Si = TiSi.

Hence Ti = Si.
Conversely, suppose that T is diagonable and let β be a basis of V such

that
A = [T ]ββ = diag (λ1, . . . , λn).

Then mT = mA = (x − c1) · · · (x − ct), where c1, . . . , ct are the distinct
members of the sequence λ1, . . . , λn.

COROLLARY 2.5
If

chT = (x− c1) . . . (x− ct)
with ci distinct members of F , then T is diagonable.
Proof: Here mT = chT and we use theorem 3.3.

EXAMPLE 2.11
Let

A =
[

0 a
b 0

]
a, b ∈ F, ab 6= 0, 1 + 1 6= 0.

Then A is diagonable if and only if ab = y2 for some y ∈ F .
For chA = x2 − ab, so if ab = y2,

chA = x2 − y2 = (x+ y)(x− y)

which is a product of distinct linear factors, as y 6= −y here.
Conversely suppose that A is diagonable. Then as A is not a scalar

matrix, it follows that mA is not linear and hence

mA = (x− c1)(x− c2),

where c1 6= c2. Also chA = mA, so chA (c1) = 0. Hence

c2
1 − ab = 0, or ab = c2

1.

For example, take F = Z7 and let a = 1 and b = 3. Then ab 6= y2 and
consequently A is not diagonable.
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3 Invariant subspaces

DEFINITIONS 3.1

Subspaces V1, . . . , Vt of V are called independent if

v1 + · · ·+ vt = 0⇒ v1 = 0, . . . , vt = 0
∀v1 ∈ V1, . . . , vt ∈ Vt.

We say that V is the (internal) direct sum of the subspaces V1, . . . , Vt if

(a) V1, . . . , Vt are independent and

(b) V = V1 + · · ·+ Vt.

I.e. every element v ∈ V is uniquely expressible as

v = v1 + · · ·+ vt

with vi ∈ Vi.
Then V is isomorphic to the (external) direct sum V1 ⊕ · · · ⊕ Vt under

the isomorphism v 7→ (v1, . . . , vt) and we write V = V1 ⊕ · · · ⊕ Vt.

THEOREM 3.1
If V = V1 ⊕ · · · ⊕ Vt (an internal direct sum) and β1, . . . , βt are bases for

V1, . . . , Vt respectively, then

β = β1 ∪ · · · ∪ βt,

the sequence formed by juxtaposing the separate bases, is a basis for V .
Also

dimV = dimV1 + · · ·+ dimVt.

Proof: Left as an exercise.
DEFINITION. Let T : V 7→ V be a LT and W a subspace of V . Then if

w ∈W ⇒ T (w) ∈W,

we say W is a T -invariant subspace of V . We can then consider the linear
transformation TW : W →W defined by

TW (w) = T (w) ∀w ∈W.
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If β′ is a basis for W , {0} ⊂W ⊂ V , and β is an extension to a basis of
V , then

[T ]ββ =

[
[TW ]β

′

β′ B1

0 B2

]
.

A situation of great interest is when we have T -invariant subspaces
W1, . . . ,Wt and V = W1 ⊕ · · · ⊕Wt. For if β = β1 ∪ · · · ∪ βt, where βi is
a basis for Wi, we see that

[T ]ββ = [TW1 ]β1

β1
⊕ · · · ⊕ [TWt ]

βt
βt
.

There are two important examples of T–invariant subspaces that arise in
our study of Jordan and rational canonical forms - Ker pt(T ) and T–cyclic
subspaces.

3.1 T–cyclic subspaces

DEFINITION 3.1
The unique monic polynomial f in F [x] of least degree satisfying

f(T )(v) = 0

is called the minimum polynomial of the vector v ∈ V relative to the
transformation T : V 7→ V and is denoted mT,v.

Then f(T )(v) = 0⇒ mT,v | f , so mT,v | mT . Also mT,v = 1⇔ v = 0 and
so if v 6= 0, degmT,v ≥ 1.

EXAMPLE. Let T = TA, where A =
[

0 0
1 0

]
. Also let

v1 =
[

1
0

]
and v2 =

[
0
1

]
.

Then Av1 =
[

0
1

]
6= c0v1, so mT, v1 6= x − c0. Next A2v1 =

[
0
0

]
, so

mT, v1 = x2. Also Av2 =
[

0
0

]
, so mT, v2 = x.

DEFINITION 3.2
(T -cyclic subspace generated by v.)
If v ∈ V , the set of all vectors of the form f(T )(v), f ∈ F [x], forms a

subspace of V called the T -cyclic subspace generated by v. It is denoted by
CT,v.
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PROOF. Exercise.
Also, CT,v is a T -invariant subspace of V . For

w ∈ CT,v ⇒ w = f(T )(v)
⇒ T (w) = T (f(T )(v)) = (Tf(T ))(v) = ((xf)(T ))(v) ∈ CT,v.

We see that v = 0 if and only if CT,v = {0}.
THEOREM 3.2

Let v 6= 0, v ∈ V . Then CT,v has the basis β

v, T (v), T 2(v), . . . , T k−1(v)

where k = degmT,v. (β is called the T -cyclic basis generated by v. ) Note
that dimCT,v = degmT,v.

Finally, [
TCT,v

]β
β

= C(mT,v),

the companion matrix of the minimum polynomial of v.

PROOF.

1. The T -cyclic basis is a basis for CT,v:

Spanning:
Let w ∈ 〈v, T (v), . . . , T k−1(v)〉, so

w = w0v + w1T (v) + · · ·+ wk−1T
k−1(v)

= (w0IV + · · ·+ wk−1T
k−1)(v)

= g(T )(v),

where g = w0 + · · ·+ wk−1x
k−1, so w ∈ CT,v. Hence

〈v, T (v), . . . , T k−1(v)〉 ⊆ CT,v.

Conversely, suppose that w ∈ CT,v so

w = f(T )(v)

and
f = qmT,v + r

where r = a0 + a1x+ · · ·+ ak−1x
k−1 and a0, . . . , ak−1 ∈ F . So

f(T )(v) = q(T )mT,v(T )(v) + r(T )(v)
= q(T )mT,v(T )(v) + a0v + a1T (v) + · · ·+ ak−1T

k−1(v)
= a0v + a1T (v) + · · ·+ ak−1T

k−1(v)
∈ 〈v, T (v), . . . , T k−1(v)〉.
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Independence:
Assume

a0v + a1T (v) + · · ·+ ak−1T
k−1(v) = 0,

where a0, . . . , ak−1 ∈ F ; that is, f(T )(v) = 0 where

f = a0 + a1x+ · · ·+ ak−1x
k−1.

Hence mT,v | f and since

deg f = k − 1 < k = degmT, v,

we have f = 0 and thus ai = 0 ∀i.

2. [TCT,v ]
β
β = C(mT,v):

Let L = TCT,v , the restriction of T to CT,v.

We want to find [L]ββ. So

L(v) = T (v) = 0v + 1T (v) + 0T 2(v) + · · ·+ 0T k−1(v)
L(T (v)) = T 2(v) = 0v + 0T (v) + 1T 2(v) + · · ·+ 0T k−1(v)

...
L(T k−2(v)) = T k−1(v) = 0v + 0T (v) + 0T 2(v) + · · ·+ 1T k−1(v)

Finally, to calculate L(T k−1(v)) = T k(v), we let

mT,v = a0 + a1x+ · · ·+ ak−1x
k−1 + xk.

Then mT,v(T )(v) = 0 and hence

L(T k−1(v)) = T k(v) = −a0v − a1T (v)− · · · − ak−1T
k−1(v).

Hence

[L]ββ =


0 0 . . . 0 −a0

1 0 −a1
...

. . .
...

0 0 · · · 1 −ak−1

 = C(mT,v),

as required.
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THEOREM 3.3
Suppose that mT, v = (x− c)k. Then the vectors

v, (T − cIV )(v), . . . , (T − cIV )k−1(v)

form a basis β for W = CT, v which we call the elementary Jordan basis.
Also

[TW ]ββ = Jk(c).

More generally suppose mT,v = pk, where p is a monic irreducible polynomial
in F [x], with n = deg p. Then the vectors

v, T (v), . . . , Tn−1(v)
p(T )(v), Tp(T )(v), . . . , Tn−1p(T )(v)

...
...

...
...

pk−1(T )(v), Tpk−1(T )(v), . . . , Tn−1pk−1(T )(v),

form a basis for W = CT,v, which reduces to the elementary Jordan basis
when p = x− c. Also

[TW ]ββ = H(pk),

where H(pk) is a hypercompanion matrix, which reduces to the elemen-
tary Jordan matrix Jk(c) when p = x− c:

H(pk) =


C(p) 0 · · · 0
N C(p) · · · 0
0 N · · · 0
...

...
...

...
0 · · · N C(p)

 ,
where there are k blocks on the diagonal and N is a square matrix of same
size as C(p) which is everywhere zero, except in the top right–hand corner,
where there is a 1. The overall effect is an unbroken subdiagonal of 1′s.

3.1.1 A nice proof of the Cayley-Hamilton theorem

(From Insel, Friedberg and Spence.)
Let f = chT , for some T : V 7→ V . We must show that f(T ) = 0V —i.e.

that f(T )(v) = 0 ∀v ∈ V .
This is immediate if v = 0, so assume v 6= 0 and let W = CT,v. Let β′

be a basis of W and β be an extension of β′ to a basis of V . Then

[T ]ββ =

[
[TW ]β

′

β′ B1

0 B2

]
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and chT = chTW · chB2 . So chTW | chT and since we know that

chTW = mT,v,

we have mT,v | chT .
Hence chT = gmT,v and

chT (T )(v) = (g(T )mT,v(T ))(v) = g(T )(mT, v(T )(v)) = g(T )(0) = 0.

3.2 An Algorithm for Finding mT

We use the factorization of chT into monic irreducibles.

THEOREM 3.4
Suppose T : V 7→ V ,

mT = pb11 . . . pbtt

where b1, . . . , bt ≥ 1, and p1, . . . , pt are distinct monic irreducibles.
Then for i = 1, . . . , t we have

(a)
V ⊃ Im pi(T ) ⊃ · · · ⊃ Im pbi−1

i (T ) ⊃ Im pbii (T ) = · · ·

(b)
{0} ⊂ Ker pi(T ) ⊂ · · · ⊂ Ker pbi−1

i (T ) ⊂ Ker pbii (T ) = · · · .

Note: In terms of nullities, conclusion (b) says that

0 < ν(pi(T )) < · · · < ν(pbi−1
i (T )) < ν(pbii (T )) = · · ·

so this gives us a method of calculating bi.
Presently we’ll show that if chT = pa1

1 . . . patt , then

nullity (pbii (T )) = ai deg pi.

Hence bi is also characterised as the smallest integer h such that

nullity (phi (T )) = ai deg pi.

Also note that (a) and (b) are equivalent, and it is the latter that we
prove.

A notational simplification—the left F [x]-module notation.
If f ∈ F [x] and v ∈ V , we define

fv = f(T )(v).

It is easy to verify that
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1.
(f + g)v = fv + gv ∀f, g ∈ F [x], v ∈ V ;

2.
f(v + w) = fv + fw ∀f ∈ F [x], v, w ∈ V ;

3.
(fg)v = f(gv) ∀f, g ∈ F [x], v ∈ V ;

4.
1v = v ∀v ∈ V.

These axioms, together with the four axioms for addition on V , turn V into
what is called a “left F [x]-module”. (So there are deeper considerations
lurking in the background—ideas of greater generality which make the algo-
rithm we unravel for the rational canonical form also apply to other things
such as the theorem that any finite abelian group is a direct product of cyclic
prime power subgroups.)

(i) We first prove that {0} ⊂ Ker pi(T ). We write p = pi, b = bi for
brevity; no confusion should arise since i is fixed.

PROOF. mT = pf, f ∈ F [x] and f(T ) 6= 0V . Hence ∃v ∈ V such that
fv 6= 0. Then

p(fv) = (pf)v = mT v = 0,

so fv ∈ Ker p(T ).

(ii) We next prove that

Ker pb(T ) = Ker pb+1(T ).

The containment
Ker pb(T ) ⊆ Ker pb+1(T )

is obvious, so we need only show that

Ker pb(T ) ⊇ Ker pb+1(T ).

Let w ∈ Ker pb+1(T ), i.e. pb+1w = 0. Now ifmT = pbq, then gcd(pb, q) = 1.
So ∃u, v ∈ F [x] such that 1 = upb + vq. Hence

pb = up2b + vmT .
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Hence

pb(T ) = (up2b)(T ) + v(T )mT (T )
= (up2b)(T )

and thus
pbw = (pb−1)(pb+1w) = pb−10 = 0

and w ∈ Ker pb, as required.

(iii)

Ker ph(T ) = Ker ph+1(T )⇒ Ker ph+1(T ) = Ker ph+2(T ),
i.e. Ker ph(T ) ⊇ Ker ph+1(T )⇒ Ker ph+1(T ) ⊇ Ker ph+2(T ).

PROOF. Suppose that Ker ph(T ) ⊇ Ker ph+1(T ). Then

v ∈ Ker ph+2(T ) ⇒ ph+2v = 0
⇒ ph+1(pv) = 0⇒ pv ∈ Ker ph+1(T )
⇒ pv ∈ Ker ph(T )⇒ ph(pv) = 0
⇒ ph+1v = 0⇒ v ∈ Ker ph+1(T ).

So it follows by induction from (ii) that

Ker pbii (T ) = Ker pbi+1

i (T ) = · · · .

(iv)
Ker pb−1(T ) ⊂ Ker pb(T )

and this forces a chain of proper inclusions:

{0} ⊂ Ker p(T ) ⊂ · · · ⊂ Ker pb−1(T ) ⊂ Ker pb(T ) = · · ·

which is the desired result. For

pb−1q(T ) 6= 0V , so ∃v such that pb−1qv 6= 0. Then

qv 6∈ Ker pb−1(T ),

but qv ∈ Ker pb(T ) as

pbqv = mT v = 0.

60



3.3 Primary Decomposition Theorem

THEOREM 3.5 (Primary Decomposition)
If T : V 7→ V is a LT with mT = pb11 . . . pbtt , where p1, . . . , pt are monic

irreducibles, then

V = Ker pb11 (T )⊕ · · · ⊕ Ker pbtt (T ),

a direct sum of T -invariant subspaces. Moreover for 1 ≤ i ≤ t,

ν(pi(T )bi) = ai deg pi,

where chT = pa1
1 · · · p

at
t .

REMARK. The same proof gives a slightly more general result:
If p = pb11 · · · p

bt
t , then

Ker p(T ) = Ker pb11 (T )⊕ · · · Ker pbtt (T ).

We subsequently give an application of the decomposition theorem in
this form to the solution of the n–th order linear differential equations with
constant coefficients. (See Hoffman and Kunze, pages 184–185.)
PROOF. Let mT = pbii qi ∀i = 1, . . . , t. Then

(qiqj)(T ) = 0V if i 6= j as mT | qiqj if i 6= j.

Now gcd(q1, . . . , qt) = 1, so ∃f1, . . . , ft ∈ F [x] such that

1 = f1q1 + · · ·+ ftqt

and with Ti = (fiqi)(T ) we have

IV = T1 + · · ·+ Tt. (6)

Also

TiTj = (fiqi)(T )(fjqj)(T )
= (fifj)(T )(qiqj)(T )
= 0V if i 6= j,

Then

V =
t⊕
i=1

ImTi.
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For T 2
i = Ti(T1 + · · ·+Tt) = TiIV = Ti. Next, V = ImT1 + · · ·+ ImTt. For

v ∈ V ⇒ v = IV (v) = T1(v) + · · ·+ Tt(v) ∈ ImT1 + · · ·+ ImTt.

Next assume v1 + · · ·+ vt = 0, vi ∈ ImTi, 1 ≤ i ≤ t. Then vi = Ti(ui) and

T1(u1) + · · ·+ Tt(ut) = 0
Ti(T1(u1) + · · ·+ Tt(ut)) = T (0) = 0

TiTi(ui) = 0
vi = Ti(ui) = 0.

We now show that
ImTi = Ker pbii (T ).

“⊆” Let v ∈ ImTi. Then

v = fiqiw

⇒ pbii v = pbii fiqiw

= fi(pbii qi)w
= 0.

“⊇” Suppose pbii v = 0.

Now if j 6= i, we have pbii | fjqj , so

Tj(v) = fjqjv = 0.

So

v = IV (v) = T1(v) + · · ·+ Tt(v) = Ti(v)
∈ ImTi,

as required.

Finally, let Vi = Ker pbii (T ) and Li = TVi . Then because V1, . . . , Vt are
T–invariant subspaces of V , we have

chT = chL1 · · · chLt .

Now pbii (T )(v) = 0 if v ∈ Vi, so pbii (Li) = 0Vi . Hence mLi has the form
mLi = peii . Hence chLi has the form chLi = pdii . Hence

chT = pa1
1 · · · p

at
t = pd1

1 · · · p
dt
t
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and consequently di = ai.
Finally,

dimVi = deg chLi = deg paii = ai deg pi.

(Incidentally, we mention that mT = lcm (mL1 , . . . ,mLt). Hence

mT = pb11 · · · p
bt
t = pe11 · · · p

et
t

and consequently ei = bi. Hence mLi = pbii .)

THEOREM 3.6 (Commuting diagonable linear transformations)
If T1, . . . , Tn : V → V are commuting diagonable linear transformations,

then there exists a basis β for V such that each of [T1]ββ, . . . [Tm]ββ are each
diagonal.

(Matrix version) If A1, . . . , Am are commuting diagonable matrices of the
same size, then there exists a non-singular matrix P such that the matrices

P−1A1P, . . . P
−1AmP

are simultaneously diagonal.

PROOF. (From Samelson page 158). We prove the result when m = 2, the
general case follows by an easy iteration. Suppose T1 and T2 are commuting
diagonable linear transformations on V . Because mT1 splits as a product
of distinct linear factors, the primary decomposition theorem gives a direct
sum decomposition as a sum of the T1–eigenspaces:

V = U1 ⊕ · · · ⊕ Ut.

It turns out that not only are the subspaces Ui T1–invariant, they are T2–
invariant. For if Ui = Ker (T1 − cIV ), then

v ∈ Ui ⇒ T1(v) = cv

⇒ T2(T1(v)) = cT2(v)
⇒ T1(T2(v)) = cT2(v)
⇒ T2(v) ∈ Ui.

Now because T2 is diagonable, V has a basis consisting of T2–eigenvectors
and it is an easy exercise to show that in a direct sum of T2–invariant
subspaces, each non-zero ”component” of a T2–eigenvector is itself a T2–
eigenvector; moreover each non–zero component is a T1– eigenvector. Hence
V is spanned by a family of vectors which are simultaneously T1–eigenvectors
and T2–eigenvectors. If β is a subfamily which forms a basis for V , then [T1]ββ
and [T2]ββ are diagonal.
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THEOREM 3.7 (Fitting’s lemma)
Suppose T : V → V is a linear transformation over T and

Ker ⊂ KerT 2 ⊂ · · · KerTn = KerTn+1 = · · ·

Then V = ImTn ⊕ KerTn.

COROLLARY 3.1
If T : V → V is an indecomposable linear transformation (that is the

only T–invariant subspaces of V are {0} and V ), then T is either nilpotent
(that is Tn = 0V for some n ≥ 1) or T is an isomorphism.
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4 The Jordan Canonical Form

The following subspaces are central for our treatment of the Jordan and
rational canonical forms of a linear transformation T : V → V .

DEFINITION 4.1
With mT = pb11 . . . pbtt as before and p = pi, b = bi for brevity, we define

Nh,p = Im ph−1(T ) ∩ Ker p(T ).

REMARK. In numerical examples, we will need to find a spanning family
for Nh, p. This is provided by Problem Sheet 1, Question 11(a): we saw
that if T : U → V and S : V → W are linear transformations, then If
Ker ph(T ) = 〈u1, . . . , un〉, then

Nh, p = 〈ph−1u1, . . . , p
h−1un〉,

where we have taken U = V = W and replaced S and T by p(T ) and
ph−1(T ) respectively, so that ST = ph(T ). Also

dim( ImT ∩ KerS) = ν(ST )− ν(T ).

Hence

νh,p = dimNh,p

= dim( Im ph−1(T ) ∩ Ker p(T ))
= ν(ph(T ))− ν(ph−1(T )).

THEOREM 4.1

N1,p ⊇ N2,p ⊇ · · · ⊇ Nb,p 6= {0} = Nb+1,p = · · · .

PROOF. Successive containment follows from

ImLh−1 ⊇ ImLh

with L = p(T ).
The fact that Nb,p 6= {0} and that Nb+1,p = {0} follows directly from

the formula
dimNh,p = ν(ph(T ))− ν(ph−1(T )).

For simplicity, assume that p is linear, that is that p = x− c. The general
story (when deg p > 1) is similar, but more complicated; it is delayed until
the next section.

Telescopic cancellation then gives
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THEOREM 4.2

ν1,p + ν2,p + · · ·+ νb,p = ν(pb(T )) = a,

where pa is the exact power of p dividing chT .

Consequently we have the decreasing sequence

ν1,p ≥ ν2,p ≥ · · · ≥ νb,p ≥ 1.

EXAMPLE 4.1
Suppose T : V 7→ V is a LT such that p4||mT , p = x− c and

ν(p(T )) = 3, ν(p2(T )) = 6,
ν(p3(T )) = 8, ν(p4(T )) = 10.

So

Ker p(T ) ⊂ Ker p2(T ) ⊂ Ker p3(T ) ⊂ Ker p4(T ) = Ker p5(T ) = · · · .

Then
ν1,p = 3, ν2,p = 6− 3 = 3,
ν3,p = 8− 6 = 2, ν4,p = 10− 8 = 2

so

N1,p = N2,p ⊃ N3,p = N4,p 6= {0}.

4.1 The Matthews’ dot diagram

We would represent the previous example as follows:

· · ν4,p

· · ν3,p

· · · ν2,p

· · · ν1,p

Dots represent dimension:

3 + 3 + 2 + 2 = 10
⇒ 10 = 4 + 4 + 2

The conjugate partition of 10 is 4+4+2 (sum of column heights of diagram),
and this will soon tell us that there is a corresponding contribution to the
Jordan canonical form of this transformation, namely

J4(c)⊕ J4(c)⊕ J2(c).
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In general,

height b



· · νb,p

· · ν1,p︸︷︷︸
γ columns

and we label the conjugate partition by

e1 ≥ e2 ≥ · · · ≥ eγ .

Finally, note that the total number of dots in the dot diagram is ν(pb(T )),
by Theorem 4.2.

THEOREM 4.3
∃v1, . . . , vγ ∈ V such that

pe1−1v1, p
e2−1v2, . . . , p

eγ−1vγ

form a basis for Ker p(T ).

PROOF. Special case, but the construction is quite general.

· · choose a basis p3v1, p
3v2 for N4,p

· ·
· · · extend to a basis p3v1, p

3v2, pv3 for N2,p

· · ·

Then p3v1, p
3v2, pv3 is a basis for N1,p = Ker p(T ).

THEOREM 4.4 (Secondary decomposition)

(i)
mT,vi = pei

(ii)
Ker pb(T ) = CT,v1 ⊕ · · · ⊕ CT,vγ

PROOF.
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(i) We have pei−1vi ∈ Ker p(T ), so peivi = 0 and hence mT,vi | pei . Hence
mT,vi = pf , where 0 ≤ f ≤ ei.
But pei−1vi 6= 0, as it is part of a basis. Hence f ≥ ei and f = ei as
required.

(ii) (a)
CT,vi ⊆ Ker pb(T ).

For peivi = 0 and so pei(fvi) = 0 ∀f ∈ F [x]. Hence as ei ≤ b,
we have

pb(fvi) = pb−ei(peifvi) = pb−ei0 = 0

and fvi ∈ Ker pb(T ). Consequently CT,vi ⊆ Ker pb(T ) and hence

CT,v1 + · · ·+ CT,vγ ⊆ Ker pb(T ).

(b) We presently show that the subspaces CT,vj , j = 1, . . . , γ are in-
dependent, so

dim(CT,v1 + · · ·+ CT,vγ ) =
γ∑
j=1

dimCT,vj

=
γ∑
j=1

degmT, vj =
γ∑
j=1

ej

= ν(pb(T ))
= dim Ker pb(T ).

Hence

Ker pb(T ) = CT,v1 + · · ·+ CT,vγ

= CT,v1 ⊕ · · · ⊕ CT,vγ .

The independence of the CT,vi is stated as a lemma:
Lemma: Let v1, . . . , vγ ∈ V , e1 ≥ · · · ≥ eγ ≥ 1;
mT,vj = pej 1 ≤ j ≤ γ; p = x− c;
Also pe1−1v1, . . . , p

eγ−1vγ are LI. Then

f1v1 + · · ·+ fγvγ = 0 ; f1, . . . , fγ ∈ F [x]
⇒ pej | fj 1 ≤ j ≤ γ.

Proof: (induction on e1)
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Firstly, consider e1 = 1. Then

e1 = e2 = · · · = eγ = 1.

Now mT,vj = pej and

pe1−1v1, . . . , p
eγ−1vγ

are LI, so v1, . . . , vγ are LI. So assume

f1v1 + · · ·+ fγvγ = 0 f1, . . . , fγ ∈ F [x]. (7)

and by the remainder theorem

fj = (x− c)qj + fj(c). (8)

Thus

fjvj = qj(x− c)vj + fj(c)vj
= fj(c)vj .

So (7) implies

f1(c)v1 + · · ·+ fγ(c)vγ(c) = 0
⇒ fj(c) = 0 ∀j = 1, . . . , γ

and (8) implies
(x− c) | fj ∀j

which is the result.
Now let e1 > 1 and assume the lemma is true for e1 − 1. If

mT,vj = pej ;
pe1−1v1, . . . , p

eγ−1vγ are LI,
and f1v1 + · · ·+ fγvγ = 0 (9)

as before, we have

f1(pv1) + · · ·+ fγ(pvγ) = 0 (10)

where mT,pvj = pej−1.
Now let δ be the greatest positive integer such that eδ > 1; i.e.
eδ+1 = 1, but eδ > 1. Applying the induction hypothesis to (10),
in the form

f1(pv1) + · · ·+ fδ(pvδ) = 0
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we obtain
pej−1 | fj ∀j = 1, . . . , δ,

so we may write
fj = pej−1gj ,

(where if gj = fj if j > δ). Now substituting in (9),

g1p
e1−1v1 + · · ·+ gγp

eγ−1vγ = 0. (11)

But
m
T,pej−1vj

= p

so (11) and the case e1 = 1 give

p | gj ∀j,

as required.

A summary:

If mT = (x− c1)b1 . . . (x− ct)bt = pb11 . . . pbtt , then there exist vectors vij
and positive integers eij (1 ≤ i ≤ t, 1 ≤ j ≤ γi), where γi = ν(T − ciIV ),
satisfying

bi = ei1 ≥ · · · ≥ eiγi , mT,vij = p
eij
i

and

V =
t⊕
i=1

γi⊕
j=1

CT,vij .

We choose the elementary Jordan bases

βij : vij , (T − ciIV )(vij), . . . , (T − ciIV )eij−1(vij)

for CT,vij . Then if

β =
t⋃
i=1

γi⋃
j=1

βij ,

β is a basis for V and we have

[T ]ββ =
t⊕
i=1

γi⊕
j=1

Jeij (ci) = J.

A direct sum of elementary Jordan matrices such as J is called a Jordan
canonical form of T .

If T = TA and P = [v11| . . . . . . |vtγt ], then

P−1AP = J

and J is called a Jordan canonical form of A.
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4.2 Two Jordan Canonical Form Examples

4.2.1 Example (a):

Let A =


4 0 1 0
2 2 3 0
−1 0 2 0
4 0 1 2

 ∈M4×4(Q).

We find chT = (x− 2)2(x− 3)2 = p2
1p

2
2, where p1 = x− 2, p2 = x− 3.

CASE 1, p1 = x− 2:

p1(A) = A− 2I4 =


2 0 1 0
2 0 3 0
−1 0 0 0

4 0 1 0

 →


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,
so ν(p1(A)) = γ1 = 2. Hence b1 = 1 and the corresponding dot diagram has
height 1, width 2, with associated Jordan blocks J1(2)⊕ J1(2):

· · N1, x−2

We find v11 =


0
1
0
0

 and v12 =


0
0
0
1

 form a basis for Ker p1(TA) =

N(A− 2I4) and mTA, v11 = mTA, v12 = x− 2. Also

Ker (pb11 (TA)) = N(p1(A)) = N(A− 2I4) = CTA, v11 ⊕ CTA, v12 .

Note that CTA, v11 and CTA, v12 have Jordan bases β11 : v11 and β12 : v12

respectively.

CASE 2, p2 = x− 3:

p2(A) = A− 3I4 =


1 0 1 0
2 −1 3 0
−1 0 −1 0

4 0 1 −1

 →


1 0 0 −1

3
0 1 0 1

3
0 0 1 1

3
0 0 0 0

 ,
so ν(p2(A)) = 1 = γ2; also ν(p2

2(A)) = 2. Hence b2 = 2 and we get a
corresponding dot diagram consisting of two vertical dots, with associated
Jordan block J2(3):

· N2, x−3

· N1, x−3
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We have to find a basis of the form p2(TA)(v21) = (A−3I4)v21 for Ker p2(TA) =
N(A− 3I4).

To find v21 we first get a basis for N(A− 3I4)2. We have

p2
2(A) = (A− 3I4)2 =


0 0 0 0
−3 1 −4 0

0 0 0 0
−1 0 2 1

 →


1 0 −2 −1
0 1 −10 −3
0 0 0 0
0 0 0 0



and we find X1 =


2
10
1
0

 and X2 =


1
3
0
1

 is such a basis. Then we have

N2, p2 = 〈p2X1, p2X2〉
= 〈p2(A)X1, p2(A)X2〉 = 〈(A− 3I4)X1, (A− 3I4)X2〉

=

〈
3
−3
−3

9

 ,


1
−1
−1

3


〉

=

〈
3
−3
−3

9


〉
.

Hence we can take v21 = X1. Then mTA, v21 = (x− 3)2. Also

Ker pb22 (TA)) = N(p2
2(A)) = N(A− 3I4)2 = CTA, v21 .

Moreover CTA, v21 has Jordan basis β21 : v21, (A− 3I4)v21.
Finally we have V4(Q) = CTA, v11⊕CTA, v12⊕CTA, v21 and β = β11∪β12∪

β21 is a basis for V4(Q). Then with

P = [v11|v12|v21|(A− 3I4)v21] =


0 0 2 3
1 0 10 −3
0 0 1 −3
0 1 0 9


we have

P−1AP = [TA]ββ = J1(2)⊕ J1(2)⊕ J2(3) =


2 0 0 0
0 2 0 0
0 0 3 0
0 0 1 3

 .
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4.2.2 Example (b):

Let A ∈M6×6(F ) have the property that chA = x6, mA = x3 and

ν(A) = 3, ν(A2) = 5, (ν(A3) = 6).

Next, with νh, x = dimF Nh, x we have

ν1, x = ν(A) = 3 = γ1;
ν2, x = ν(A2)− ν(A) = 5− 3 = 2;
ν3, x = ν(A3)− ν(A2) = 6− 5 = 1.

Hence the dot diagram corresponding to the (only) monic irreducible factor
x of mA is

· N3,x

· · N2,x

· · · N1,x

Hence we read off that ∃ a non-singular P ∈M6×6(F ) such that P−1AP =
J3(0)⊕ J2(0)⊕ J1(0). To find such a matrix P we proceed as follows:

(i) First find a basis for N3, x. We do this by first finding a basis for
N(A3): X1, X2, X3, X4, X5, X6. Then

N3, x = 〈A2X1, A
2X2, A

2X3, A
2X4, A

2X5, A
2X6〉.

We now apply the LRA (left–to–right algorithm) to the above spanning
family to get a basis A2v11 for N3, x, where A2v11 is the first non–zero vector
in the spanning family.

(ii) Now extend the linearly independent family A2v11 to a basis for N2, x.
We do this by first finding a basis Y1, Y2, Y3, Y4, Y5 for N(A2). Then

N2, x = 〈AY1, AY2, AY3, AY4, AY5〉.

We now attach A2v11 to the head of this spanning family:

N2, x = 〈A2v11, AY1, AY2, AY3, AY4, AY5〉

and apply the LRA to find a basis for N2, x which includes A2X1. This
will have the form A2v11, Av12, where Av12 is the first vector in the list
AY1, . . . , AY5 which is not a linear combination of A2v11.

(iii) Now extend the linearly independent family A2v11, Av12 to a basis
for N1, x = N(A). We do this by first finding a basis Z1, Z2, Z3 for N(A).
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Then place the linearly independent family A2v11, Av12 at the head of this
spanning family:

N1, x = 〈A2v11, Av12, Z1, Z2, Z3〉.

The LRA is then applies to the above spanning family selects a basis of the
form A2v11, Av12, v13, where v13 is the first vector among Z1, Z2, Z3 which
is not a linear combination of A2v11 and Av12.

Then mTA, v11 = x3, mTA, v12 = x2, mTA, v13 = x. Also

Ker pb11 (TA) = N(A3) = CTA, v11 ⊕ CTA, v12 ⊕ CTA, v13 .

Finally, if we take Jordan bases

β11 : v11, Av11, A
2v11;

β12 : v12, Av12;
β13 : v13

for the three T–cyclic subspaces CTA, v11 , CTA, v12 , CTA, v13 , respectively, we
then get the basis

β = β11 ∪ β12 ∪ β13

= v11, Av11, A
2v11; v12, Av12; v13

for V6(F ). Then if

P = [v11|Av11|A2v11|v12|Av12|v13]

we have

P−1AP = [TA]ββ = J3(0)⊕ J2(0)⊕ J1(0)

=



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

 .
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4.3 Uniqueness of the Jordan form

Let β be a basis for V for which [T ]ββ is in Jordan canonical form

J = Je1(λ1)⊕ · · ·Jes(λs).

If we change the order of the basis vectors in β, we produce a corresponding
change in the order of the elementary Jordan matrices. It is customary to
assume our Jordan forms arranged so as to group together into a block those
elementary Jordan matrices having the same eigenvalue ci:

J = J1 ⊕ · · · ⊕ Jt,

where

Ji =
γi⊕
j=1

Jeij (ci).

Moreover within this i–th block Ji, we assume the sizes ei1, . . . , eiγi of the
elementary Jordan matrices decrease monotonically:

ei1 ≥ . . . ≥ eiγi .

We prove that with this convention, the above sequence is uniquely deter-
mined by T and the eigenvalue ci.

We next observe that

chT = chJ =
t∏
i=1

chJi =
t∏
i=1

γi∏
j=1

(x− ci)eij =
t∏
i=1

(x− ci)ei1+···+eiγi .

Hence c1, . . . , ct are determined as the distinct eigenvalues of T .

DEFINITION 4.2
The numbers ei1, . . . , eiγi , 1 ≤ i ≤ t, are called the Segre characteristic

of T , while the numbers ν1, x−ci , . . . , νbi, x−ci , 1 ≤ i ≤ t are called the Weyr
characteristic of T .

The polynomials (x− ci)eij are called the elementary divisors of T .

LEMMA 4.1
Let

A = Je(0) =



0 0 0
1 0 · · ·
0 1

...
. . .

...
0 0 · · · 0 0
0 0 1 0


.
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Then

ν(Ah) =
{
h if 1 ≤ h ≤ e− 1,
e if e ≤ h.

Proof. Ah has 1 on the h–th sub–diagonal, 0 elsewhere, if 1 ≤ h ≤ e − 1,
whereas Ah = 0 if h ≥ e.

Consequently

ν(Ah)− ν(Ah−1) =
{

1 if 1 ≤ h ≤ e,
0 if e < h.

We now can prove that the sequence ei1 ≥ . . . eiγi is determined uniquely
by T and the eigenvalue ci.

Let pk = x− ck and

A = [T ]ββ =
t⊕
i=1

γi⊕
j=1

Jeij (ci).

Then

ν(phk(T )) = ν(phk(A))

= ν(
t⊕
i=1

γi⊕
j=1

phk(Jeij (ci)))

= ν(
t⊕
i=1

γi⊕
j=1

Jheij (ci − ck))

=
t∑
i=1

γi∑
j=1

ν(Jheij (ci − ck)),

where we have used the fact that

pk(Jeij (ci)) = Jeij (ci)− ckIn = Jeij (ci − ck).

However Jeij (ci − ck) is a non–singular matrix if i 6= k, so

ν(Jheij (ci − ck)) = 0

if i 6= k. Hence

ν(phk(T )) =
γk∑
j=1

ν(Jhekj (0)).
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Hence

νh, x−ck = ν(phk(T ))− ν(ph−1
k (T )) =

γk∑
j=1

(
ν(Jhekj (0))− ν(Jh−1

ekj
(0))

)
=

γk∑
j = 1
h ≤ ekj

1.

Consequently νh, x−ck − νh+1, x−ck is the number of ekj which are equal to
h. Hence by taking h = 1, . . . , we see that the sequence ek1, . . . , ekγk is
determined by T and ck and is in fact the contribution of the eigenvalue ck
to the Segre characteristic of T .

REMARK. If A and B are similar matrices over F , then B = P−1AP say.
Also A and B have the same characteristic polynomials. Then if ck is an
eigenvalue of A and B and pk = x− ck, we have

phk(TB) = phk(B) = P−1phk(A)P = P−1phk(TA)P

and hence
ν(phk(TB)) = ν(phk(TA))

for all h ≥ 1.
Consequently the Weyr characteristics of TA and TB will be identical.

Hence the corresponding dot diagrams and so the Segre characteristics will
also be identical. Hence TA and TB have the same Jordan form.

EXAMPLE 4.2
Let A = J2(0)⊕ J2(0) and B = J2(0)⊕ J1(0)⊕ J1(0). Then

chA = chB = x4 and mA = mB = x2.

However A is not similar to B. For both matrices are in Jordan form and
the Segre characteristics for TA and TB are 2, 2 and 2, 1, 1, respectively.

EXERCISE List all possible Jordan canonical forms of 2 × 2 and 3 × 3
matrices and deduce that if A and B have the same characteristic and same
minimum polynomials, then A and B are similar if A and B are 2 × 2 or
3× 3.
REMARK. Of course if A and B have the same Jordan canonical form, then
A and B are similar.
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We now present some interesting applications of the Jordan canonical
form.

4.4 Non–derogatory matrices and transformations

If chA = mA, we say that the matrix A is non-derogatory.

THEOREM 4.5
Suppose that chT splits completely in F [x]. Then chT = mT ⇔ ∃ a

basis β for V such that

[T ]ββ = Jb1(c1)⊕ . . .⊕ Jbt(ct),

where c1, . . . , ct are distinct elements of F .

PROOF.

⇐

chT =
t∏
i=1

chJbi (ci) =
t∏
i=1

(x− ci)bi ,

mT = lcm ((x− c1)b1 , . . . , (x− ct)bt) = (x− c1)b1 . . . (x− ct)bt = chT .

⇒ Suppose that chT = mT = (x− c1)a1 · · · (x− ct)at .
We deduce that the dot diagram for each pi = (x − ci) consists of a
single column of bi dots, where pbii ||mT ; that is,

dimF Nh,pi = 1 for h = 1, 2, . . . , bi.

Then, for each i = 1, 2, . . . , t we have the following sequence of positive
integers:

1 ≤ ν(pi(T )) < ν(p2
i (T )) < · · · < ν(pbii (T )) = ai.

But ai = bi here, as we are assuming that chT = mT . In particular,
it follows that ν(phi (T )) = h for h = 1, 2, . . . , bi and h = 1 gives

ν(pi(T )) = 1 = γi.

So the bottom row of the i-th dot diagram has only one element; it
looks like this:

bi


·
...
·
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and we get the secondary decomposition

Ker pbii (T ) = CT,vi1 .

Further, if β = β11∪· · ·∪βt1, where βi1 is the elementary Jordan basis
for CT,vi1 , then

[T ]ββ =
t⊕
i=1

γi⊕
j=1

Jeij (ci))

=
t⊕
i=1

Jbi(ci),

as required.

4.5 Calculating Am, where A ∈Mn×n(C).

THEOREM 4.6
Let c ∈ F .

(a)

Jmn (c) =



cm 0 · · · · · · 0(
m
1

)
cm−1 cm · · · · · · 0(

m
2

)
cm−2

(
m
1

)
cm−1 · · · · · · 0

...
...

...
...

...
...(

m
m

)
· · · · · · 0

0
(
m
m

)
· · · · · · 0

...
...

...
...

...
...

0 · · ·
(
m
m

)
· · ·

(
m
1

)
cm−1 cm


if 1 ≤ m ≤ n− 1;

(b)

Jmn (c) =


cm 0 · · · 0 0(

m
1

)
cm−1 cm · · · 0 0(

m
2

)
cm−2

(
m
1

)
cm−1 · · · 0 0

...
...

...
...(

m
n−1

)
cm−n+1

(
m
n−2

)
cm−n+2 · · ·

(
m
1

)
cm−1 cm


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if n− 1 ≤ m, where
(
m
k

)
is the binomial coefficient(

m

k

)
=

m!
k!(m− k)!

=
m(m− 1) · · · (m− n+ 1)

k!
.

PROOF. Jn(c) = cIn +N , where N has the special property that Nk has 1
on the k–th sub–diagonal and 0 elsewhere, for 0 ≤ k ≤ n− 1.

Then because cIn and N commute, we can use the binomial theorem:

Jmn (c) = (cIn +N)m

=
m∑
k=0

(
m

k

)
(cIn)m−kNk

=
m∑
k=0

(
m

k

)
cm−kNk.

(a). Let 1 ≤ m ≤ n− 1. Then in the above summation, the variable k must
satisfy 0 ≤ k ≤ n− 1. Hence Jmn (c) is an n× n matrix having

(
m
k

)
cm−k on

the k–th sub–diagonal, 0 ≤ k ≤ m and 0 elsewhere.
(b). Let n− 1 ≤ m. Then

Jmn (c) =
m∑
k=0

(
m

k

)
cm−kNk =

n−1∑
k=0

(
m

k

)
cm−kNk,

as Nk = 0 if n ≤ k. Hence Jmn (c) is an n×n matrix having
(
m
k

)
cm−k on the

k–th sub–diagonal, 0 ≤ k ≤ n− 1 and 0 elsewhere.

COROLLARY 4.1
Let F = C. Then

lim
m→∞

Jmn (c) = 0 if |c| < 1.

PROOF. Suppose that |c| < 1. Let n− 1 ≤ m. Then

Jmn (c) =
n−1∑
k=0

(
m

k

)
cm−kNk.

But for fixed k, 0 ≤ k ≤ n− 1, cm−k → 0 as m→∞. For(
m

k

)
=
m(m− 1) · · · (m− k + 1)

k!
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is a polynomial in m of degree k and

|mjcm−k| = |mje(m−k) log c| = mje(m−k) log |c| → 0 as m→∞,

as log c = log |c|+ i arg c and log |c| < 0.
The last corollary gives a more general result:

COROLLARY 4.2
Let A ∈Mn×n(C) and suppose that all the eigenvalues of A are less than

1 in absolute value. Then
lim
m→∞

Am = 0.

PROOF. Suppose chA = (x − c1)a1 · · · (x − ct)at , where c1, . . . , ct are the
distinct eigenvalues of A and |c1| < 1, . . . , |ct| < 1.

Then if J is the Jordan canonical form of A, there exists a non–singular
matrix P ∈Mn×n(C), such that

P−1AP = J =
t⊕
i=1

γi⊕
j=1

Jeij (ci).

Hence

P−1AmP = (P−1AP )m = Jm =
t⊕
i=1

γi⊕
j=1

Jmeij (ci).

Hence P−1AmP → 0 as m→∞, because Jmeij (ci)→ 0.

4.6 Calculating eA, where A ∈Mn×n(C).

We first show that the matrix limit

lim
M→∞

(
In +A+

1
2!
A2 + · · ·+ 1

M !
AM

)
exists. We denote this limit by eA and write

eA = In +A+
1
2!
A2 + · · ·+ 1

m!
Am + · · · =

∞∑
m=0

1
m!
Am.

To justify this definition, we let Am = [a(m)
ij ]. We have to show that(

In +A+
1
2!
A2 + · · ·+ 1

M !
AM

)
ij

= a
(0)
ij +

1
1!
a

(1)
ij + · · ·+ 1

M !
a

(M)
ij
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tends to a limit as M →∞; in other words, we have to show that the series

∞∑
m=0

1
m!
a

(m)
ij

converges. To do this, suppose that

|aij | ≤ ρ, ∀ i, j.

Then it is an easy induction to prove that

|a(m)
ij | ≤ n

m−1ρm if m ≥ 1.

Then the above series converges by comparison with the series

∞∑
m=0

1
m!
nm−1ρm.

4.7 Properties of the exponential of a complex matrix

THEOREM 4.7

(i) e0 = In;

(ii) ediag (λ1,...,λn) = diag (eλ1 , . . . , eλn);

(iii) eP
−1AP = P−1eAP ;

(iv) e
⊕t
i=1 Ai =

⊕t
i=1 e

Ai ;

(v) if A is diagonable and has principal idempotent (spectral) decomposi-
tion:

A = c1E1 + · · ·+ ctEt,

then
eA = ec1E1 + · · ·+ ectEt;

(vi)

d

dt
etA = AetA,

if A is a constant matrix;

(vii) eA = p(A), where p ∈ C[x];
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(viii) eA is non–singular and

(eA)−1 = e−A;

(ix) eAeB = eA+B if AB = BA;

(x)

eJn(c) =



ec 0 0 · · · 0
ec/1! ec 0 · · · 0
ec/2! ec/1! ec · · · 0

...
. . .

. . .
. . .

...

ec/(n− 2)!
. . . ec/1! ec 0

ec/(n− 1)! ec/(n− 2)! · · · ec/2! ec/1! ec


.

(xi)

etJn(c) =



etc 0 0 · · · 0
tetc/1! etc 0 · · · 0
t2etc/2! etc/1! etc · · · 0

...
. . .

. . .
. . .

...

tn−2etc/(n− 2)!
. . . tetc/1! etc 0

tn−1etc/(n− 1)! tn−2etc/(n− 2)! · · · t2etc/2! tetc/1! ec


.

(xii) If

P−1AP = J =
t⊕
i=1

γi⊕
j=1

Jeij (ci).

then

P−1eAP = J =
t⊕
i=1

γi⊕
j=1

eJeij (ci).

PROOF.

(i)

e0 =
∞∑
m=0

1
m!

0k = In;
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(ii) Let A = diag (λ1, . . . , λn). Then

Am = diag (λm1 , . . . , λ
m
n )

∞∑
m=0

1
m!
Am = diag

( ∞∑
m=0

λm1
m!

, . . . ,

∞∑
m=0

λmn
m!

)
= diag (eλ1 , . . . , eλn).

(iii)

eP
−1AP =

∞∑
m=0

1
m!

(P−1AP )m

=
∞∑
m=0

1
m!

(P−1AmP )

= P−1

( ∞∑
m=0

1
m!
Am

)
P

= P−1eAP.

(iv) and (v) are left as exercises.

(vi) Using the earlier notation, Am = [a(m)
ij ], we have

etA =
∞∑
m=0

1
m!

(tA)m

=
∞∑
m=0

tm

m!
Am

=

[ ∞∑
m=0

tma
(m)
ij

m!

]
d

dt
etA =

[
d

dt

∞∑
m=0

tma
(m)
ij

m!

]

=

[ ∞∑
m=1

tm−1a
(m)
ij

(m− 1)!

]

=

[ ∞∑
m=0

tma
(m+1)
ij

(m)!

]
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=
∞∑
m=0

tm

m!
Am+1

= AetA.

(vii) Let degmA = r. Then the matrices In, A, . . . , Ar−1 are linearly inde-
pendent over C, as if

mA = xr − ar−1x
r−1 − · · · − a0,

then
mA(A) = 0⇒ Ar = a0In + a1A+ · · ·+ ar−1A

r−1.

Consequently for each m ≥ 1, we can express Am as a linear combina-
tion over C of In, A, . . . , Ar−1:

Am = a
(m)
0 In + a

(m)
1 A+ · · ·+ a

(m)
r−1A

r−1

and hence
M∑
m=0

1
m!
Am =

M∑
m=0

a
(m)
0

m!
In +

M∑
m=0

a
(m)
1

m!
A+ · · ·+

M∑
m=0

a
(m)
r−1

m!
Ar−1,

or
[t(M)
ij ] = s0MIn + s1MA+ · · ·+ sr−1MA

r−1,

say.

Now [t(M)
ij ] → eA as M →∞.

Also the above matrix equation can be regarded as n2 equations in

s0M , s1M , . . . , sr−1,M .

Also the linear independence of In, A, . . . , Ar−1 implies that this sytem
has a unique solution. Consequently we can express s0M , s1M , . . . , sr−1,M

as linear combinations with coefficients independent of M of the se-
quences t(M)

ij . Hence, because each of the latter sequences converges,
it follows that each of the sequences s0M , s1M , . . . , sr−1,M converges
to s0, s1, . . . , sr−1, respectively. Consequently

r−1∑
k=0

skMA
k →

r−1∑
k=0

skA
k

and
eA = s0In + s1A+ · · · sr−1A

r−1,

a polynomial in A.
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(viii) – (ix) Suppose that AB = BA. Then etB is a polynomial in B and
hence A commutes with etB. Similarly, A and B commute with eA+B.
Now let

C(t) = et(A+B)e−tBe−tA, t ∈ R.

Then C(0) = In. Also

C ′(t) = (A+B)et(A+B)e−tBe−tA

+ et(A+B)(−B)e−tBe−tA

+ et(A+B)e−tB(−A)e−tA

= 0.

Hence C(t) is a constant matrix and C(0) = C(1). That is

In = eA+Be−Be−A, (12)

for any matrices A and B which commute.

The special case B = −A then gives

In = e0eAe−A = eAe−A,

thereby proving that eA is non–singular and (eA)−1 = e−A.

Then multiplying both sides of equation (12) on the left by eAeB gives
the equation eAeB = eA+B.

In §4.8 we give an application to the solution of a system of differential
equations.

(x) Let Jn(c) = cIn +N , where N = Jn(0). Then

eJn(c) = ecIn+N = ecIneN

= (ecIn)
∞∑
m=0

1
m!
Nm

=
n−1∑
m=0

ec

m!
Nm.

(xi) Similar to above.
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4.8 Systems of differential equations

THEOREM 4.8
If X = X(t) satisfies the system of differential equations

Ẋ = AX,

for t ≥ t0, where A is a constant matrix, then

X = e(t−t0)AX(t0).

PROOF. Suppose Ẋ = AX for t ≥ t0. Then

d

dt
(e−tAX) = (−Ae−tA)X + e−tAẊ

= (−Ae−tA)X + e−tA(AX)
= (−Ae−tA)X + (Ae−tA)X
= (−Ae−tA +Ae−tA)X
= 0X = 0.

Hence the vector e−tAX is constant for t ≥ t0. Thus

e−tAX = e−t0AX(t0)

and
X = etAe−t0AX(t0) = e(t−t0)AX(t0).

EXAMPLE 4.3
Solve Ẋ = AX, where

A =

 0 4 −2
−1 −5 3
−1 −4 2

 .
Solution: ∃P with

P−1AP = J2(−1)⊕ J1(−1)

=

 −1 0 0
1 −1 0
0 0 −1


and

P−1(tA)P =

 −t 0 0
t −t 0
0 0 −t

 .
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Thus

P−1etAP = etJ2(−1)⊕ J1(−1)

= etJ2(−1) ⊕ etJ1(−1)

=

 e−t 0 0
te−t e−t 0

0 0 e−t

 = K(t), say.

So etA = PK(t)P−1. Now

X = etAX0 = e−tP

 1 0 0
t 1 0
0 0 1

 a
b
c


= e−tP

 a
at+ b
c

 ,

where for brevity we have set

 a
b
c

 = P−1X0.
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4.9 Markov matrices

DEFINITION 4.3
A real n × n matrix A = [aij ] is called a Markov matrix, or row–

stochastic matrix if

(i) aij ≥ 0 for 1 ≤ i, j ≤ n;

(ii)
n∑
j=1

aij = 1 for 1 ≤ i ≤ n.

Remark: (ii) is equivalent to AJn = Jn, where Jn = [1, . . . , 1]t. So 1 is
always an eigenvalue of a Markov matrix.

EXERCISE 4.1
If A and B are n× n Markov matrices, prove that AB is also a Markov

matrix.

THEOREM 4.9
Every eigenvalue λ of a Markov matrix satisfies |λ| ≤ 1.

PROOF Suppose λ ∈ C is an eigenvalue of A and X ∈ Vn(C) is a corre-
sponding eigenvector. Then

AX = λX. (13)

Let k be such that |xj | ≤ |xk|, ∀j, 1 ≤ j ≤ n. Then equating the k–th
component of each side of equation (13) gives

n∑
j=1

akjxj = λxk. (14)

Hence

|λxk| = |λ| · |xk| = |
n∑
j=1

akjxj | ≤
n∑
j=1

akj |xj | (15)

≤
n∑
j=1

akj |xk| = |xk|. (16)

Hence |λ| ≤ 1.
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DEFINITION 4.4
A positive Markov matrix is one with all positive elements (i.e.

strictly greater than zero). For such a matrix A we may write “A > 0”.

THEOREM 4.10
If A is a positive Markov matrix, then 1 is the only eigenvalue of modulus

1. Moreover nullity (A− In) = 1.

PROOF Suppose |λ| = 1, AX = λX, X ∈ Vn(C), X 6= 0.
Then inequalities (15) and (16) reduce to

|xk| =
∣∣∣ n∑
j=1

akjxj

∣∣∣ ≤ n∑
j=1

akj |xj | ≤
n∑
j=1

akj |xk| = |xk|. (17)

Then inequalities (17) and a sandwich principle, give

|xj | = |xk| for 1 ≤ j ≤ n. (18)

Also, as equality holds in the triangle inequality section of inequalities (17),
this forces all the complex numbers akjxj to lie in the same direction:

akjxj = tjakkxk, , tj > 0, 1 ≤ j ≤ n,
xj = τjxk,

where τj = (tjakk)/akj > 0.
Then equation (18) implies τj = 1 and hence xj = xk for 1 ≤ j ≤ n.
Consequently X = xkJn, thereby proving that N(A− In) = 〈Jn〉.
Finally, equation (14) implies

n∑
j=1

akjxj = λxk =
n∑
j=1

akjxk = xk,

so λ = 1.

COROLLARY 4.3
If A is a positive Markov matrix, then At has 1 as the only eigenvalue

of modulus 1. Also nullity (At − In) = 1.

PROOF The eigenvalues of At are precisely the same as those of A, even up
to multiplicities. For

chAt = det (xIn −At) = det (xIn −A)t = det (xIn −A) = chA .

Also ν(At − In) = ν(A− In)t = ν(A− In) = 1.
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THEOREM 4.11
If A is a positive Markov matrix, then

(i) (x− 1)||mA;

(ii) Am → B, where B =

 Xt

...

Xt

 is a positive Markov matrix and where

X is uniquely defined as the (positive) vector satisfying AtX = X
whose components sum to 1.

Remark: In view of part (i) and the equation ν(A−In) = 1, it follows that
(x− 1)|| chA .
PROOF As ν(A − In) = 1, the Jordan form of A has the form Jb(1) ⊕
K, where (x − 1)b||mA. Here K is the direct sum of all Jordan blocks
corresponding to all the eigenvalues of A other than 1 and hence Km → 0.

Now suppose that b > 1; then Jb(1) has size b > 1. Then ∃P such that

P−1AP = Jb(1)⊕K,
P−1AmP = Jmb (1)⊕Km.

Hence the 2× 1 element of Jmb (1) equals
(
m
1

)
→∞ as m→∞.

However the elements of Am are ≤ 1, as Am is a Markov matrix. Con-
sequently the elements of P−1AmP are bounded as m → ∞. This contra-
diction proves that b = 1.

Hence P−1AmP → I1 ⊕ 0 and Am → P (I1 ⊕ 0)P−1 = B.
We see that rankB = rank (I1 ⊕ 0) = 1.
Finally it is easy to prove that B is a Markov matrix. So

B =

 t1X
t

...
tnX

t


for some non–negative column vector X and where t1, . . . , tn are positive.
We can assume that the entries of X sum to 1. It then follows that t1 =
· · · = tn = 1 and hence

B =

 Xt

...
Xt

 . (19)
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Now Am → B, so Am+1 = Am ·A→ BA. Hence B = BA and

AtBt = Bt. (20)

Then equations (19) and (20) imply

At[X| · · · |X] = [X| · · · |X]

and hence AtX = X.
However X ≥ 0 and At > 0, so X = AtX > 0.

DEFINITION 4.5
We have thus proved that there is a positive eigenvector X of At corre-

sponding to the eigenvalue 1, where the components of X sum to 1. Then
because we know that the eigenspace N(At − In) is one–dimensional, it
follows that this vector is unique.

This vector is called the stationary vector of the Markov matrix A.

EXAMPLE 4.4
Let

A =

 1/2 1/4 1/4
1/6 1/6 2/3
1/3 1/3 1/3

 .
Then

At − I3 row–reduces to

 1 0 −4/9
0 1 −2/3
0 0 0

 .
Hence N(At − I3) =

〈 4/9
2/3
1

〉 =

〈 4/19
6/19
9/19

〉 and

lim
m→∞

Am =
1
19

 4 6 9
4 6 9
4 6 9

 .
We remark that chA = (x− 1)(x2 − 1/24).

DEFINITION 4.6
A Markov Matrix is called regular or primitive if ∃k ≥ 1 such that

Ak > 0.
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THEOREM 4.12
If A is a primitive Markov matrix, then A satisfies the same properties

enunciated in the last two theorems for positive Markov matrices.

PROOF Suppose Ak > 0. Then (x− 1)|| chAk and hence (x− 1)|| chA , as

chA = (x− c1)a1 · · · (x− ct)at ⇒ chAk = (x− ck1)a1 · · · (x− ckt )at . (21)

and consequently (x− 1)||mA.
Also as 1 is the only eigenvalue of Ak with modulus 1, it follows from

equation (21) that 1 is the only eigenvalue of A with modulus 1.

The proof of the second theorem goes through, with the difference that
to prove the positivity of X we observe that AtX = X implies (Ak)tX = X.

EXAMPLE 4.5
The following Markov matrix is primitive (its fourth power is positive)

and is related to the 5x+ 1 problem:
0 0 1 0

1/2 0 1/2 0
0 0 1/2 1/2
0 1/2 1/2 0

 .
Its stationary vector is [ 1

15 ,
2
15 ,

8
15 ,

4
15 ]t.

We remark that chA = (x− 1)(x+ 1/2)(x2 + 1/4).
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4.10 The Real Jordan Form

4.10.1 Motivation

If A is a real n×n matrix, the characteristic polynomial of A will in general
have real roots and complex roots, the latter occurring in complex pairs.
In this section we show how to derive a canonical form B for A which has
real entries. It turns out that there is a simple formula for eB and this is
useful in solving Ẋ = AX, as it allows one to directly express the complete
solution of the system of differential equations in terms of real exponentials
and sines and cosines.

We first introduce a real analogue of Jn(a+ib). It’s the matrixKn(a, b) ∈
M2n×2n(R) defined as follows:

Let D =
[

a b
−b a

]
= aI2 + bJ where J2 = −I2 (J is a matrix version

of i =
√
−1, while D corresponds to the complex number a+ ib) then

eD = eaI2+bJ

= eaI2ebJ

= eaI2

[
I2 +

bJ

1!
+

(bJ)2

2!
+ · · ·

]
= ea

[{
I2 −

b2

2!
I2 +

b4

4!
I2 + · · ·

}
+
{
b

1!
J − b3

3!
J + · · ·

}]
= ea [(cos b)I2 + (sin b)J ]

= ea
[

cos b sin b
− sin b cos b

]
.

Replacing a and b by ta and tb, where t ∈ R, gives

etD = eat
[

cos bt sin bt
− sin bt cos bt

]
.

DEFINITION 4.7
Let a and b be real numbers and Kn(a, b) ∈M2n×2n(R) be defined by

Kn(a, b) =


D 0 . . .
I2 D
0 I2

. . .

D


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where D =
[

a b
−b a

]
. Then it is easy to prove that

eKn(a, b) =



eD 0 . . .

eD/1! eD

eD/2! eD/1!
. . .

...
. . .

. . .

eD/(n− 1) ! · · · · · · eD/1! eD


.

EXAMPLE 4.6

K2(0, 1) =


0 1 0 0
−1 0 0 0

1 0 0 1
0 1 −1 0


and

etK2(0, 1) =


cos t sin t 0 0
− sin t cos t 0 0
t cos t t sin t cos t sin t
−t sin t t cos t − sin t cos t

 .
4.10.2 Determining the real Jordan form

If A = [aij ] is a complex matrix, let A = [aij ]. Then

1.

A±B = A±B, cA = cA c ∈ C, AB = A ·B.

2. If A ∈Mn×n(R) and a0, . . . , ar ∈ C, then

a0In + · · · arAr = a0In + · · ·+ arA
r.

3. If W is a subspace of Vn(C), then so is W = {w|w ∈W}.
Moreover if W = 〈w1, . . . , wr〉, then

W = 〈w1, . . . , wr〉.

4. If w1, . . . , wr are linearly independent vectors in Vn(C), then so are
w1, . . . , wr. Hence if w1, . . . , wr form a basis for a subspace W , then
w1, . . . , wr form a basis for W .
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5. Let A be a real n× n matrix and c ∈ C. Then

(a)

W = N((A− cIn)h)⇒W = N((A− cIn)h).

(b)

W = W1 ⊕ · · · ⊕Wr ⇒W = W 1 ⊕ · · · ⊕W r.

(c)

W = CTA, v ⇒W = CTA, v.

(d)

W =
r⊕
i=1

CTA, vi ⇒W =
r⊕
i=1

CTA, vi .

(e)

mTA, v = (x− c)e ⇒ mTA, v = (x− c)e.

Let A ∈Mn×n(R). Then mA ∈ R[x] and so any complex roots will occur in
conjugate pairs.

Suppose that c1, . . . , cr are the distinct real eigenvalues and cr+1, . . . , cr+s,
c̄r+1, . . . , c̄r+s are the distinct non-real roots and

mA = (x− c1)b1 . . . (x− cr)br(x− cr+1)br+1 . . . (x− cr+s)br+s

×(x− c̄r+1)br+1 . . . (x− c̄r+s)br+s .

For each complex eigenvalue ci, r+1 ≤ i ≤ r+s, there exists a secondary
decomposition

N(A− ciIn)bi =
γi⊕
j=1

CTA,vij , mTA, vij = (x− ci)eij

Hence we have a corresponding secondary decomposition for the eigenvalue
c̄i:

N(A− c̄iIn)bi =
γi⊕
j=1

CTA,v̄ij , mTA, v̄ij = (x− c̄i)eij .
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For brevity, let c = ci, v = vij , e = eij . Let

P1 = v, P2 = (A− cIn)P1, . . . , Pe = (A− cIn)Pe−1

and

P1 = X1 + iY1, P2 = X2 + iY2, . . . , Pe = Xe + iYe; c = a+ ib.

Then we have the following equations, posed in two different ways:

AP1 = cP1 + P2 AX1 = aX1 − bY1 +X2

AY1 = bX1 + aY1 + Y2
...

...
APe = cPe AXe = aXe − bYe

AYe = bXe + aYe.

In matrix terms we have

A[X1|Y1|X2|Y2| · · · |Xe|Ye] =

[X1|Y1|X2|Y2| · · · |Xe|Ye]



a b
−b a · · ·

1 0 a b
0 1 −b a
...

. . .
a b

0 −b a


.

The large “real jordan form” matrix is the 2e× 2e matrix Ke(a, b).
Note: If e = 1, no I2 block is present in this matrix.

The spaces CTA, v and CTA, v̄ are independent and have bases P1, . . . , Pe
and P̄1, . . . , P̄e, respectively.

Consequently the vectors

P1, . . . , Pe, P̄1, . . . , P̄e

form a basis for CTA, v+CTA, v̄. It is then an easy exercise to deduce that the
real vectors X1, Y1, . . . , Xe, Ye form a basis β for the T–invariant subspace

W = CTA, v + CTA, v̄.

Writing T = TA for brevity, the above right hand batch of equations tells
us that [TW ]ββ = Ke(a, b). There will be s such real bases corresponding to
each of the complex eigenvalues cr+1 . . . , cr+s.
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Joining together these bases with the real elementary Jordan bases aris-
ing from any real eigenvalues c1, . . . , cr gives a basis β for Vn(C) such that
if P is the non–singular real matrix formed by these basis vectors, then

P−1AP = [TA]ββ = J ⊕K,

where

J =
r⊕
i=1

γi⊕
j=1

Jeij (ci), K =
r+s⊕
i=r+1

γi⊕
j=1

Keij (ai, bi),

where ci = ai + ibi for r + 1 ≤ i ≤ r + s.

The matrix J ⊕K is said to be in real Jordan canonical form.

EXAMPLE 4.7

A =


1 1 0 0
−2 0 1 0

2 0 0 1
−2 −1 −1 −1

 so mA = (x2 + 1)2

= (x− i)2(x+ i)2.

Thus with p1 = x− i, we have the dot diagram

· N2,p1

· N1,p1 = N(A− iI4).

Thus we find an elementary Jordan basis for N1,p1 :

X11 + iY11, (A− iI4)(X11 + iY11) = X12 + iY12

yielding

AX11 = −Y11 +X12

AY11 = X11 + Y12.
(22)

Now we know

mTA,X11+iY11 = (x− i)2

⇒ (A− iI4)2(X11 + iY11) = 0
⇒ (A− iI4)(X12 + iY12) = 0
⇒ AX12 = −Y12

AY12 = X12.
(23)
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Writing the four real equations (22) and (23) in matrix form, with

P = [X11|Y11|X12|Y12],

then P is non-singular and

P−1AP =


0 1 0 0
−1 0 0 0

1 0 0 1
0 1 −1 0

 .
The numerical determination of P is left as a tutorial problem.
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4.10.3 A real algorithm for finding the real Jordan form

Referring to the last example, if we write Z =
[

A I4

−I4 A

]
, then

Z

[
X11

Y11

]
=

[
X12

Y12

]
,

Z

[
−Y11

X11

]
=

[
−Y12

X12

]
,

Z

[
X12

Y12

]
=

[
0
0

]
,

Z

[
−Y12

X12

]
=

[
0
0

]
.

Then the vectors[
X11

Y11

]
,

[
−Y11

X11

]
, Z

[
X11

Y11

]
, Z

[
−Y11

X11

]
actually form an R–basis for N(Z). This leads to a method for finding the
real Jordan canonical form using real matrices. (I am indebted to Dr. B.D.
Jones for introducing me to the Z matrix approach.)

More generally, we observe that a collection of equations of the form

AXij1 = aiXij1 − biYij1 +Xij2

AYij1 = biXij1 + aiYij1 + Yij2
...

AXijeij = aiXijeij − biYijeij
AYijeij = biXijeij + aiYijeij

can be written concisely in real matrix form, giving rise to an elementary
Jordan basis corresponding to an elementary divisor xeij for the following
real matrix: Let

Zi =
[
A− aiIn biIn
−biIn A− aiIn

]
.

Then

Zi

[
Xij1

Yij1

]
=

[
Xij2

Yij2

]
...

Zi

[
Xijeij

Yijeij

]
=

[
0
0

]
.
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LEMMA 4.2
If V is a C–vector space with basis v1, . . . , vn, then V is also an R–vector

space with basis
v1, iv1, . . . , vn, ivn.

Hence
dimR V = 2 dimC V.

DEFINITION 4.8
Let A ∈ Mn×n(R) and c = a + ib be a complex eigenvalue of A with

b 6= 0. Let Z ∈M2n×2n(R) be defined by

Z =
[
A− aIn bIn
−bIn A− aIn

]
= (A− aIn)⊗ In − In ⊗ (bJ).

Also let p = x− c.

LEMMA 4.3
Let Φ : V2n(R)→ Vn(C) be the mapping defined by

Φ
([

X

Y

])
= X + iY, X, Y ∈ Vn(R).

Then

(i) Φ is an R– isomorphism;

(ii) Φ
([−Y

X

])
= i(X + iY );

(iii) Φ
(
Zh
[
X
Y

])
= ph(A)(X + iY );

(iv) Φ
(
Zh
[−Y
X

])
= iph(A)(X + iY );

(v) Φ maps N(Zh) onto N(ph(A);

COROLLARY 4.4
If

pe1−1(A)(X1 + iY1), . . . , peγ−1(A)(Xγ + iYγ)

form a C–basis for N(p(A)), then

Ze1−1

[
X1

Y1

]
, Ze1−1

[
−Y1

X1

]
, . . . , Zeγ−1

[
Xγ

Yγ

]
, Zeγ−1

[
−Yγ
Xγ

]
form an R–basis for N(Z) and conversely.
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Remark: Consequently the dot diagram for the eigenvalue 0 for the matrix
Z has the same height as that for the eigenvalue c of A, with each row
expanded to twice the length.

To find suitable vectors X1, Y1, . . . , Xγ , Yγ , we employ the usual algo-
rithm for finding the Jordan blocks corresponding to the eigenvalue 0 of the
matrix Z, with the extra proviso that we always ensure that the basis for
Nh, x is chosen to have the form

Zh−1

[
X1

Y1

]
, Zh−1

[
−Y1

X1

]
, . . . , Zh−1

[
Xr

Yr

]
, Zh−1

[
−Yr
Xr

]
,

where r = ( nullityZh − nullityZh−1)/2.
This can be ensured by extending a spanning family for N(Zh):

[
X1

Y1

]
, . . . ,

[
Xν(Zh)

Yν(Zh)

]

to the form

[
X1

Y1

]
,

[
−Y1

X1

]
, . . . ,

[
Xν(Zh)

Yν(Zh)

]
,

[
−Yν(Zh)

Xν(Zh)

]
.

EXAMPLE 4.8

A =


1 1 0 0
−2 0 1 0

2 0 0 1
−2 −1 −1 −1

 ∈M4×4(R) has mA = (x2 +1)2. Find a real

non–singular matrix P such that P−1AP is in real Jordan form.

Solution:

Z =



1 1 0 0 1 0 0 0
−2 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0
−2 −1 −1 −1 0 0 0 1
−1 0 0 0 1 1 0 0

0 −1 0 0 −2 0 1 0
0 0 −1 0 2 0 0 1
0 0 0 −1 −2 −1 −1 −1


102



basis for N(Z2) :



1 1 1/2 1/2
−2 −1/2 0 −1/2

2 1/2 1 3/2
−2 −3/2 −2 −3/2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



blown–up basis for N(Z2) :

1 −1 1 0 1/2 0 1/2 0
−2 0 −1/2 −1 0 0 −1/2 0

2 0 1/2 0 1 −1 3/2 0
−2 0 −3/2 0 −2 0 −3/2 −1

1 1 0 1 0 1/2 0 1/2
0 −2 1 −1/2 0 0 0 −1/2
0 2 0 1/2 1 1 0 3/2
0 −2 0 −3/2 0 −2 1 −3/2



→ left–to–right basis for N(Z2) :



1 −1 1 0
−2 0 −1/2 −1

2 0 1/2 0
−2 0 −3/2 0

1 1 0 1
0 −2 1 −1/2
0 2 0 1/2
0 −2 0 −3/2


We then derive a spanning family for N2, x:

Z × basis matrix =



0 0 1/2 0
0 0 −1/2 −1/2
0 0 1/2 1/2
0 0 −1/2 −1/2
0 0 0 1/2
0 0 1/2 −1/2
0 0 −1/2 1/2
0 0 1/2 −1/2


→ basis forN2, x :
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

1/2 0
−1/2 −1/2

1/2 1/2
−1/2 −1/2

0 1/2
1/2 −1/2
−1/2 1/2

1/2 −1/2


Consequently we read off that Z

[
X11
Y11

]
=
[
X12
Y12

]
is a basis for N2, x = N1, x =

N(Z). where

P = [X11|Y11|X12|Y12] =


1 0 1/2 0

−1/2 1 −1/2 1/2
1/2 0 1/2 −1/2
−3/2 0 −1/2 1/2

 .
Then

P−1AP =


0 1 0 0
−1 0 0 0

1 0 0 1
0 1 −1 0

 ,
which is in real Jordan form.
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5 The Rational Canonical Form

Here p is a monic irreducible factor of the minimum polynomial mT and is
not necessarily of degree one.

Let Fp denote the field constructed earlier in the course, consisting of
all matrices of the form f(B), f ∈ F [x], where B = C(p), the companion
matrix of p. (We saw that if deg p = n, then

Fp = {a0In + · · ·+ an−1B
n−1| a0, . . . , an−1 ∈ F}.

Let f = f(B), where f ∈ F [x]. Then this new symbol has the following
properties:

(i) f + g = f + g; f g = fg;

(ii) f = 0⇔ p | f ;

(iii) f = g ⇔ p | (f − g);

(iv) f
−1

exists ⇔ p does not divide f .

Note: If p = x− c, then Fp = F .

THEOREM 5.1
Nh, p becomes a vector space over Fp if we define

fv = fv = f(T )(v).

First we must verify that the above definition is well–defined, that is,
independent of the particular polynomial f used to define the field element
f . So suppose f = g. Then f = g + kp, k ∈ F [x]. Hence

fv = (g + kp)v = gv + k(pv) = gv + k0 = gv,

as v ∈ Im ph−1(T ) ∩ Ker p(T ) and consequently pv = 0.
The four addition axioms hold as V is already a vector space over F ;

The remaining vector space axioms then follow from the left F [x]–module
axioms:

(i) (f + g) = (f + g)v = (f + g)v = fv + gv = fv + gv;

(ii) f(v + w) = f(v + w) = fv + fw = fv + fw;
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(iii) f(gv) = f(gv) = f(gv) = (fg)v = (fg)v;

(iv) 1v = 1v = v.

Remark: An F–basis for Nh, p will be an Fp–spanning family for Nh, p, but
will not, in general, be an Fp–basis for Nh, p. The precise connection between
F–independence and Fp–independence is given by the following theorem:

THEOREM 5.2
Vectors v1, . . . , vr form an Fp–basis for Nh, p if and only if the vectors

v1, T (v1), . . . , Tn−1(v1)
v2, T (v2), . . . , Tn−1(v2)
...

...
...

...
vr, T (vr), . . . , Tn−1(vr)

form an F–basis for Nh, p.

COROLLARY 5.1

νh, p = dimFp Nh, p =
1

deg p
dimF Nh, p =

ν(ph(T ))− ν(ph−1(T ))
deg p

.

The exposition for p = x − c now goes over to general p, with small
changes. We again have the decreasing sequence of dimensions:

ν1, p ≥ · · · ≥ νb, p ≥ 1,

where ν1, p = dimFp Ker p(T ) = ν(p(T ))
deg p .

Also

ν1, p + · · ·+ νb, p =
ν(pb(T ))

deg p
, (24)

where pb ‖mT .
There is a corresponding dot diagram where the number of dots in the

h–th row from the bottom represents the integer νh, p. We also have a similar
theorem to an earlier one, in terms of the conjugate partition

e1 ≥ · · · ≥ eγ ≥ 1

of the partition (24) above, where γ = ν1, p = dimFp Ker p(T ) = ν(p(T ))
deg p .
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THEOREM 5.3
Vectors v1, . . . , vγ ∈ V can be found with the property that

pe1−1v1, . . . , p
eγ−1vγ

form an Fp–basis for Ker p(T ). Moreover

(i) mT, vj = pej ;

(ii) Ker pb(T ) = CT, v1 ⊕ · · · ⊕ CT, vγ .

In conclusion, if mT = pb11 · · · p
bt
t , we now have the direct sum decompo-

sition

V =
t⊕
i=1

γi⊕
j=1

CT, vij ,

where mT, vij = p
eij
i and

ei1 = bi ≥ . . . ≥ eiγi

form the conjugate partition for the dot diagram corresponding to pi. Here

γi =
ν(pi(T ))

deg pi
.

Taking T–cyclic bases βij for CT, vij , then gives a basis

β =
t⋃
i=1

γi⋃
j=1

βij

for V . Moreover

[T ]ββ =
t⊕
i=1

γi⊕
j=1

C(peiji ).

The matrix on the right is said to be in rational canonical form.
If instead, we take the following basis β′ij for CT, vij

β′ij :


vij , T (vij), . . . , Tn−1(vij)

pi(T )(vij), Tpi(T )(vij), . . . , Tn−1pi(T )(vij)
...

...
...

...
p
eij−1
i (T )(vij), Tp

eij−1
i (T )(vij), . . . , Tn−1p

eij−1
i (T )(vij),
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(with n = deg pi) which reduces to the Jordan basis when pi = x − ci, it is
not difficult to verify that we get a corresponding matrix H(peiji ) called a
hypercompanion matrix, which reduces to the elementary Jordan matrix
Jeij (ci) when pi = x− ci:

H(peiji ) =


C(pi) 0 · · · 0
N C(pi) · · · 0
0 N · · · 0
...

...
...

...
0 · · · N C(pi)

 ,
where there are eij blocks on the diagonal and N is a square matrix of same
size as C(pi) which is everywhere zero, except in the top right–hand corner,
where there is a 1. The overall effect is an unbroken subdiagonal of 1′s.

We then get the corresponding rational canonical form:

[T ]β
′

β′ =
t⊕
i=1

γi⊕
j=1

H(peiji ).

Computational Remark:

We can do our computations completely over F , without going into Fp,
as follows. Suppose v1, . . . , vr form an F–spanning family for Nh, p. Then
we could, in principle, perform the LRA over Fp on this spanning family
and find an Fp–basis vc1 , . . . , vcR . A little thought reveals that if we had
instead applied the LRA algorithm over F to the expanded sequence:

v1, T (v1), . . . , Tn−1(v1); . . . ; vr, T (vr), . . . , Tn−1(vr),

we would have obtained the F–basis for Nh, p:

vc1 , T (vc1), . . . , Tn−1(vc1); . . . ; vcR , T (vcR), . . . , Tn−1(vcR)

from which we select the desired Fp–basis vc1 , . . . , vcR .

Let A =



1 0 0 0 0 2
1 0 0 0 2 1
0 1 0 0 2 2
2 0 1 0 1 2
0 0 0 1 1 1
1 0 0 0 0 1

 ∈M6×6(Z3).

Here mA = p2, p = x2 + x+ 2 ∈ F [x], F = Z3.
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p(A) =



0 0 0 0 0 0
0 2 0 2 1 0
0 1 2 2 0 1
0 1 1 0 1 2
0 0 1 2 2 2
0 0 0 0 0 0

 , ν(p(A)) = 4, ν1, p = ν(p(A))
deg p = 2.

p2(A) = 0, ν(p2(A)) = 6, ν2, p =
ν(p2(A))− ν(p(A))

deg p
=

6− 4
2

= 1.

Hence we have a corresponding Fp dot diagram:

· N2, p

· · N1, p

We have to find an Fp–basis p(A)v11 for N2, p and extend this to an Fp–basis
p(A)v11, v12 for N(p(A)).

An F–basis for N(p2(A)) is E1, . . . , E6. Then

N2, p = 〈p(A)E1, . . . , p(A)E6〉

and the LRA give p(A)E2 as an Fp–basis for N2, p so we can take v11 = E2.
We find the columns of the following matrix form an F–basis forN(p(A)):

1 0 0 0
0 2 1 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

We place p(A)E2 in front and then pad the resulting matrix to get

0 0 1 1 0 0 0 0 0 2
2 0 0 1 2 0 1 2 0 1
1 2 0 0 1 2 1 0 1 2
1 1 0 2 1 1 0 2 0 0
0 1 0 0 0 1 1 1 0 1
0 0 0 1 0 0 0 0 1 1

 .

The first four columns p(A)E2, Ap(A)E2, E1, AE1 of this matrix form a LR
F–basis for N(p(A)) and hence p(A)E2, E1 form an Fp–basis for N(p(A)).
So we can take v12 = E1.
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Then V6(Z3) = N(p2(A)) = CTA, v11 ⊕ CTA, v12 .
Then joining hypercompanion bases for CTA, v11 and CTA, v12 :

v11, Av11, p(A)v11, Ap(A)v11 and v12, Av11

gives a basis v11, Av11, p(A)v11, Ap(A)v11; v12, Av11 for V6(Z3). Finally if
P is the non–singular matrix whose columns are these vectors, we transform
A into direct sum of hypercompanion matrices:

P−1AP = H(p2)⊕H(p) =



0 1 0 0 0 0
1 2 0 0 0 0
0 1 0 1 0 0
0 0 1 2 0 0
0 0 0 0 0 1
0 0 0 0 1 2


Explicitly, we have

P =



0 0 0 0 1 1
1 0 2 0 0 1
0 1 1 2 0 0
0 0 1 1 0 2
0 0 0 1 0 0
0 0 0 0 0 1

 .

5.1 Uniqueness of the Rational Canonical Form

Suppose that T : V → V is a linear transformation over F and that β is a
basis for V such that

[T ]ββ =
t⊕
i=1

γi⊕
j=1

C(peiji ). (25)

where
ei1 ≥ . . . ≥ eiγi ≥ 1 (26)

and p1, . . . , pt are distinct monic irreducible polynomials.

We show that the polynomials pi and the sequences (26) are determined
by the transformation T .

First, it is not difficult to show that

β =
t⋃
i=1

γi⋃
j=1

βij ,
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where
βij : vij , T (vij), . . . , Tnij−1(vij)

and nij = deg peiji and mT, vij = p
eij
i . Then we have the direct sum decom-

position

V =
t⊕
i=1

γi⊕
j=1

CT, vij .

Also if we write bi = ei1, we have

Ker pbii (T ) =
γi⊕
j=1

CT, vij

and hence

V =
t⊕
i=1

Ker pbii (T ).

Then from equation (25) above, it follows that

mT = lcm p
eij
i = pb11 · · · p

bt
t ,

thereby determining p1, . . . , pt up to order.
Then it can be shown that if 1 ≤ h ≤ bi, then Nh, pi has Fpi basis

pei1−1
i vi1, . . . , p

eijh−1

i vijh ,

where ei1, . . . , eijh are the integers not less than h.
There are consequently dimFpi

Nh, pi = νh, pi such integers and hence the
number of integers ei1, . . . , eiγi equal to h is equal to νh, pi − νh+1, pi , which
depends only on T . In other words, for each i, the sequence ei1, . . . , eiγi
depends only on T .

5.2 Deductions from the Rational Canonical Form

THEOREM 5.4

ν(pbii (T ))
deg pi

= ai

where paii || chT , and pbii ||mT .
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Note that this determines bi—we may evaluate

ν(phi (T ))
deg pi

for h = 1, 2, . . . until we get a value of ai. Then that h = bi.
PROOF ∃ a basis for V such that

A = [T ]ββ =
t⊕
i=1

γi⊕
j=1

C(peiji ).

So

chT =
t∏
i=1

γi∏
j=1

chBi,j

where, for brevity, we write Bi,j = C(peiji ). Hence

chT =
t∏
i=1

γi∏
j=1

p
eij
i

=
t∏
i=1

p

γi∑
j=1

eij

i

=
t∏
i=1

p

ν(pbii (T ))
deg pi

i

as required.

THEOREM 5.5
chT = mT ⇔ ∃ a basis β for V such that

[T ]ββ = C(pb11 )⊕ . . .⊕ C(pbtt )

where p1, . . . , pt are distinct monic irreducibles and b1 ≥ . . . bt ≥ 1.

Note that if chA = mA (i.e. T = TA in the above), we say that the
matrix A is non-derogatory.
PROOF
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⇐

chT =
t∏
i=1

ch
C(p

bi
i )

=
t∏
i=1

pbii ,

mT = lcm (pb11 , . . . , p
bt
t ) = pb11 . . . pbtt = chT .

⇒ Suppose that chT = mT .

We deduce that the dot diagram for each pi consists of a single column
of bi dots, where pbii ||mT ; that is,

dimFp Nh,pi = 1 for h = 1, 2, . . . , bi.

Observe that
ν(phi (T ))

deg pi
∈ N,

for it may be written

h∑
j=1

ν(pji (T ))− ν(pj−1
i (T ))

deg pi

=
h∑
j=1

dimFp Nj,pi ∈ N.

Then, for each i = 1, 2, . . . , t we have the following sequence of positive
integers:

1 ≤ ν(pi(T ))
deg pi

<
ν(p2

i (T ))
deg pi

< . . . <
ν(pbii (T ))

deg pi
= ai.

But ai = bi here, as we are assuming that chT = mT . In particular,
it follows that

ν(phi (T ))
deg pi

= h for h = 1, 2, . . . , bi

and h = 1 gives
ν(pi(T ))

deg pi
= 1 = γi.

So the bottom row of the i-th dot diagram has only one element; it
looks like this:

bi


·
...
·
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and we get the secondary decomposition

Ker pbii (T ) = CT,vi1 .

Further, if β = β11∪· · ·∪βt1, where βi1 is the T–cyclic basis for CT,vi1 ,
then

[T ]ββ =
t⊕
i=1

γi⊕
j=1

C(peiji )

=
t⊕
i=1

C(pbii )

= C(pb11 )⊕ . . .⊕ C(pbtt )

as required.

THEOREM 5.6
mT = p1p2 . . . pt, a product of distinct monic irreducibles, if and only if

∃ a basis β for V such that

[T ]ββ = C(p1)⊕ . . .⊕ C(p1)︸ ︷︷ ︸
γ1 times

⊕ . . . . . .

⊕ C(pt)⊕ . . .⊕ C(pt)︸ ︷︷ ︸
γt times

. (27)

Note: This is a generalization of an earlier result, namely that a trans-
formation is diagonable if and only if its minimum polynomial splits into a
product of distinct linear factors.
PROOF

⇐ Assume ∃β such that (27) holds. Then

mT = lcm (p1, . . . , p1︸ ︷︷ ︸
γ1

, . . . , pt, . . . , pt︸ ︷︷ ︸
γt

)

= lcm (p1, . . . , pt)
= p1p2 . . . pt.

⇒ Assume mT = p1 . . . pt. Then bi = 1 for i = 1, . . . , t (i.e. the i-th dot
diagram has height 1) and ∃β such that

[T ]ββ =
t⊕
i=1

γi⊕
j=1

C(pi),

as eij = 1 ∀i, j.
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5.3 Elementary divisors and invariant factors

5.3.1 Elementary Divisors

DEFINITION 5.1
The polynomials p

eij
i occurring in the rational canonical form of T are

called the elementary divisors of T . Similarly the elementary divisors of
a matrix A ∈ Mn×n(F ) are the polynomials p

eij
i occurring in the rational

canonical form of A.

THEOREM 5.7
Linear transformations T1, T2 : V → V have the same elementary divi-

sors if and only if there exists an isomorphism L : V → V such that

T2 = L−1T1L.

PROOF
“only if”. Suppose that T1 and T2 have the same elementary divisors.

Then ∃basesβ, γ for V such that

[T1]ββ = [T2]γγ = A.

Then we have the equations

φβT1 = TAφβ

φγT2 = TAφγ .

Hence
φβT1φ

−1
β = TA = φγT2φ

−1
γ ,

so
φ−1
γ φβT1φ

−1
β φγ = T2,

or
L−1T1L = T2,

where L = φ−1
β φγ is an isomorphism.

“if”. Suppose that L−1T1L = T2. Then

mT1 = mT2 = pb11 · · · p
bt
t , say;

also for all i and h, because

phi (T2) = phi (L−1T1L) = L−1phi (T1)L,
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we have
ν(phi (T2)) = ν(phi (T1)).

Hence for each pi, the corresponding dot diagrams for T1 and T2 are identical
and consequently the elementary divisors for T1 and T2 are identical.

COROLLARY 5.2
Let A, B ∈ Mn×n(F ). Then A is similar to B if and only if A and B

have the same elementary divisors.

PROOF

A is similar to B ⇔ ∃ P non–singular, withP−1AP = B

⇔ ∃ P non–singular, withT−1
P TATP = TB

⇔ ∃ L an isomorphism, withL−1TAL = TB.

5.3.2 Invariant Factors

THEOREM 5.8
Let T : V → V be a linear transformation over F . Then there exist

non–constant monic polynomials d1, . . . , ds ∈ F [x], such that

(i) dk divides dk+1 for 1 ≤ k ≤ s− 1;

(ii) vectors v1, . . . , vs ∈ V exist such that

V =
s⊕

k=1

CT, vk ,

where mT, vk = dk.

Remark: If β is the basis for V obtained by stringing together the T–cyclic
bases for each CT, vk , we obtain the matrix direct sum

[T ]ββ =
s⊕

k=1

C(dk).

This matrix is also said to be in rational canonical form.
PROOF
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Let s = max (γ1, . . . , γt) and if 1 ≤ i ≤ t and γi < j ≤ s, define
eij = 0 and vij = 0, the zero vector of V . Now arrange the polynomials
p
eij
i , 1 ≤ i ≤ t; 1 ≤ j ≤ s as a t× s rectangular array:

pe1s1 · · · pe11
1

...
...

...
petst · · · pet1t

Let
d1 = pe1s1 · · · p

ets
t , . . . , ds = pe11

1 · · · p
et1
t

be the products along columns of the array, from left to right. Then
d1, . . . , ds are monic non–constant polynomials and

d1|d2| · · · |ds.

Also CT, vij = {0} if vij = 0, so V is the direct sum of the following ts
T–cyclic subspaces:

CT, v1s · · · CT, v11

...
...

...
CT, vts · · · CT, vt1

Then by Problem Sheet 5, Question 15(b), if we let

v1 = v1s + · · · vts, . . . , vs = v11 + · · · vt1,

we have mT, v1 = d1, . . . ,mT, vs = ds and

CT, v1 = CT, v1s ⊕ · · · ⊕ CT, vts
...

...
CT, vs = CT, v11 ⊕ · · · ⊕ CT, vt1 .

Consequently
V = CT, v1 ⊕ · · · ⊕ CT, vs .

DEFINITION 5.2
Polynomials d1, . . . , ds satisfying the conditions of the above theorem are

called invariant factors of T .
There is a similar definition for matrices: if A ∈ Mn×n(F ) is similar to

a direct sum
s⊕

k=1

C(dk),
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where d1, . . . , ds are non–constant monic polynomials in F [x] such that dk
divides dk+1 for 1 ≤ k ≤ s− 1, then d1, . . . , ds are called invariant factors
of A. So the invariant factors of A are the invariant factors of TA.

THEOREM 5.9
The invariant factors of a linear transformation T : V → V are uniquely

defined by T .

PROOF
Reverse the construction in the proof of the above theorem using Ques-

tion 15(a) of Problem Sheet 5, thereby recapturing the rectangular array of
elementary divisors, which in turn is uniquely determined by T .

EXAMPLE 5.1
Suppose T : V → V has elementary divisors

p2
1, p

3
1, p

3
1; p2, p

2
2, p

2
2, p

4
2; p3, p3, p

4
3, p

5
3, p

5
3.

Form the rectangular array

1 1 p2
1 p3

1 p3
1

1 p2 p2
2 p2

2 p4
2

p3 p3 p4
3 p5

3 p5
3

Then the invariant factors of T are obtained by respectively multiplying
along columns:

d1 = p3

d2 = p2p3

d3 = p2
1p

2
2p

4
3

d4 = p3
1p

2
2p

5
3

d5 = p3
1p

4
2p

5
3.

THEOREM 5.10
If d1, . . . , ds are the invariant factors of T : V → V , then

(i) mT = ds;

(ii) chT = d1 · · · ds.
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PROOF
Suppose B = [T ]ββ =

⊕s
k=1C(dk) is the canonical form corresponding to

the invariant factors d1, . . . , ds of T . Then

mT = mB = lcm (mC(d1), . . . ,mC(ds))
= lcm (d1, . . . , ds) = ds.

Also

chT = chB =
s∏

k=1

chC(dk) =
s∏

k=1

dk.

We shall soon see that the invariant factors of a linear transformation or
matrix are of independent interest. For example the invariant factors allow
us to calculate the dimension of the vector space ZL,M consisting of all linear
transformations N : U → V which satisfy the equation MN = NL, where
L : U → U and M : V → V are given linear transformations over F .

It turns out that there is a more direct way of finding the invariant
factors of T . To introduce this algorithm, we need to discuss an interesting
equivalence relation on Mm×n(F [x]), which in turn leads to the so-called
Smith canonical form of a matrix over F [x].
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6 The Smith Canonical Form

6.1 Equivalence of Polynomial Matrices

DEFINITION 6.1
A matrix P ∈ Mn×n(F [x]) is called a unit in Mn×n(F [x]) if ∃ Q ∈

Mn×n(F [x]) such that
PQ = In.

Clearly if P and Q are units, so is PQ.

THEOREM 6.1
A matrix P ∈Mn×n(F [x]) is a unit in Mn×n(F [x]) if and only if detP =

c, where c ∈ F and c 6= 0.

proof
“only if”. Suppose P is a unit. Then PQ = In and

detPQ = detP detQ = det In = 1.

However detP and detQ belong to F [x], so both are in fact non–zero ele-
ments of F .

“if”. Suppose P ∈ Mn×n(F [x]) satisfies detP = c, where c ∈ F and
c 6= 0. Then

P adjP = (detP )In = cIn.

Hence PQ = In, where Q = c−1 adjP ∈ Mn×n(F [x]). Hence P is a unit in
Mn×n(F [x]).

EXAMPLE 6.1

P =
[

1 + x −x
x 1− x

]
∈M2×2(F [x]) is a unit, as detP = 1.

THEOREM 6.2
Elementary row matrices in Mn×n(F [x]) are units:

(i) Eij : interchange rows i and j of In;

(ii) Ei(t): multiply row i of In by t ∈ F, t 6= 0;

(iii) Eij(f): add f times row j of In to row i, f ∈ F [x].

In fact detEij = −1; detEi(t) = t; detEij(f) = 1.
Similarly for elementary column matrices in Mn×n(F [x]):

Fij , Fi(t), Fij(f).

120



Remark: It follows that a product of elementary matrices in Mn×n(F [x])
is a unit. Later we will be able to prove that the converse is also true.

DEFINITION 6.2
Let A, B ∈ Mm×n(F [x]). Then A is equivalent to B over F [x] if units

P ∈Mm×m(F [x]) and Q ∈Mn×n(F [x]) exist such that

PAQ = B.

THEOREM 6.3
Equivalence of matrices over F [x] defines an equivalence relation on
Mm×n(F [x]).

6.1.1 Determinantal Divisors

DEFINITIONS 6.1

Let A ∈ Mm×n(F [x]). Then for 1 ≤ k ≤ min (m, n), let dk(A) denote the
gcd of all k × k minors of A.

dk(A) is sometimes called the kth determinantal divisor of A.
Note: gcd (f1, . . . , fn) 6= 0⇔ at least one of f1, . . . , fn is non–zero.

ρ(A), the determinantal rank of A, is defined to be the largest integer r
for which there exists a non–zero r × r minor of A.

THEOREM 6.4
For 1 ≤ k ≤ ρ(A), we have dk(A) 6= 0. Also dk(A) divides dk+1(A) for

1 ≤ k ≤ ρ(A)− 1.

proof
Let r = ρ(A). Then there exists an r × r non–zero minor and hence

dr(A) 6= 0. Then because each r× r minor is a linear combination over F [x]
of (r−1)× (r−1) minors of A, it follows that some (r−1)× (r−1) minor of
A is also non–zero and hence dr−1(A) 6= 0; also dr−1(A) divides each minor
of size r − 1 and consequently divides each minor of size r; hence dr−1(A)
divides dr(A), the gcd of all minors of size r. This argument can be repeated
with r replaced by r − 1 and so on.

THEOREM 6.5
Let A, B ∈ Mm×n(F [x]). Then if A is equivalent to B over F [x], we

have

(i) ρ(A) = ρ(B) = r;
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(ii) dk(A) = dk(B) for 1 ≤ k ≤ r.

proof
Suppose PAQ = B, where P and Q are units. First consider PA. The

rows of PA are linear combinations over F [x] of the rows of A, so it follows
that each k × k minor of PA is a linear combination of the k × k minors of
A. Similarly each column of (PA)Q is a linear combinations over F [x] of
the columns of PA, so it follows that each k × k minor of B = (PA)Q is a
linear combination over F [x] of the k× k minors of PA and consequently of
the k × k minors of A.

It follows that all minors of B with size k > ρ(A) must be zero and hence
ρ(B) ≤ ρ(A). However B is equivalent to A, so we deduce that ρ(A) ≤ ρ(B)
and hence ρ(A) = ρ(B).

Also dk(B) is a linear combination over F [x] of all k × k minors of B
and hence of all k × k minors of A. Hence dk(A)|dk(B) and by symmetry,
dk(B)|dk(A). Hence dk(A) = dk(B) if 1 ≤ k ≤ r.

6.2 Smith Canonical Form

THEOREM 6.6 (Smith canonical form)
Every non–zero matrix A ∈Mm×n(F [x]) with r = ρ(A) is equivalent to

a matrix of the form

D =



f1 0 · · · 0 · · · 0
0 f2 · · · 0 · · · 0
...

...
...

...
...

...
0 0 · · · fr · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 · · · 0


= PAQ

where f1, . . . , fr ∈ F [x] are monic, fk|fk+1 for 1 ≤ k ≤ r−1, P is a product of
elementary row matrices, and Q is a product of elementary column matrices.

DEFINITION 6.3
The matrix D is said to be in Smith canonical form.

proof
This is presented in the form of an algorithm which is in fact used by

Cmat to find unit matrices P and Q such that PAQ is in Smith canonical
form.
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Our account is based on that in the book “Rings, Modules and Linear
Algebra,” by B. Hartley and T.O. Hawkes.

We describe a sequence of elementary row and column operations over
F [x], which when applied to a matrix A with a11 6= 0 either yields a matrix
C of the form

C =


f1 0 · · · 0
0
...
0

C∗


where f1 is monic and divides every element of C∗, or else yields a matrix
B in which b11 6= 0 and

deg b11 < deg a11. (28)

Assuming this, we start with our non–zero matrix A. By performing suitable
row and column interchanges, we can assume that a11 6= 0. Now repeatedly
perform the algorithm mentioned above. Eventually we must reach a ma-
trix of type C, otherwise we would produce an infinite strictly decreasing
sequence of non–negative integers by virtue of inequalities of type (28).

On reaching a matrix of type C, we stop if C∗ = 0. Otherwise we perform
the above argument on C∗ and so on, leaving a trail of diagonal elements as
we go.

Two points must be made:

(i) Any elementary row or column operation on C∗ corresponds to an
elementary operation on C, which does not affect the first row or
column of C.

(ii) Any elementary operation on C∗ gives a new C∗ whose new entries
are linear combinations over F [x] of the old ones; consequently these
new entries will still be divisible by f1.

Hence in due course we will reach a matrix D which is in Smith canonical
form.

We now detail the sequence of elementary operations mentioned above.
Case 1. ∃ a1j in row 1 with a11 not dividing a1j . Then

a1j = a11q + b,

by Euclid’s division theorem, where b 6= 0 and deg b < deg a11. Subtract q
times column 1 from column j and then interchange columns 1 and j. This
yields a matrix of type B mentioned above.
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Case 2. ∃ ai1 in column 1 with a11 not dividing ai1. Proceed as in Case 1,
operating on rows rather than columns, again reaching a matrix of type B.
Case 3. Here a11 divides every element in the first row and first column.
Then by subtracting suitable multiples of column 1 from the other columns,
we can replace all the entries in the first row other than a11 by 0. Similarly
for the first column. We then have a matrix of the form

E =


e11 0 · · · 0
0
...
0

E∗

 .
If e11 divides every element of E∗, we have reached a matrix of type C.
Otherwise ∃ eij not divisible by e11. We then add row i to row 1, thereby
reaching Case 1.

EXAMPLE 6.2
(of the Smith Canonical Form)

A =
[

1 + x2 x
x 1 + x

]
We wantD = PAQ in Smith canonical form. So we construct the augmented
matrix

work on rows work on columns
↓ ↓

1 0 1 + x2 x 1 0
0 1 x 1 + x 0 1

R1 → R1 − xR2 ⇒ 1 −x 1 −x2 1 0
0 1 x 1 + x 0 1

C2 → C2 + x2C1 ⇒ 1 −x 1 0 1 x2

0 1 x 1 + x+ x3 0 1
R2 → R2 − xR1 ⇒ 1 −x 1 0 1 x2

−x 1 + x2 0 1 + x+ x3 0 1
↑ ↑ ↑
P D Q

Invariants are f1 = 1, f2 = 1 + x+ x3. Note also

f1 = d1(A), f2 =
d2(A)
d1(A)

.
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6.2.1 Uniqueness of the Smith Canonical Form

THEOREM 6.7
Every matrix A ∈Mm×n(F [x]) is equivalent to precisely one matrix is

Smith canonical form.

proof Suppose A is equivalent to a matrix B in Smith canonical form.
That is,

B =


f1

. . .
fr

0

0 0

 and f1 | f2 | · · · | fr.

Then r = ρ(A), the determinantal rank of A. But if 1 ≤ k ≤ r,

dk(A) = dk(B) = f1f2 . . . fk

and so the fi are uniquely determined by

f1 = d1(A)

f2 =
d2(A)
d1(A)

...

fr =
dr(A)
dr−1(A)

.

6.3 Invariant factors of a polynomial matrix

DEFINITION 6.4
The polynomials f1, . . . , fr in the Smith canonical form of A are called

the invariant factors of A.3

Note: Cmat calls the invariant factors of xI −B, where B ∈Mn×n(F ), the
“similarity invariants” of B.

We next find these similarity invariants. They are

1, 1, . . . , 1︸ ︷︷ ︸
n−s

, d1, . . . , ds

where d1, . . . , ds are what earlier called the invariant factors of TB.
3NB. This is a slightly different, though similar, form of “invariant factor” to that we

met a short while ago.
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LEMMA 6.1
The Smith canonical form of xIn − C(d) where d is a monic polynomial

of degree n is

diag (1, . . . , 1︸ ︷︷ ︸
n−1

, d).

proof Let d = xn + an−1x
n−1 + · · ·+ a0 ∈ F [x], so

xIn − C(d) =



x 0 a0

−1 x · · · a1

0 −1 a2
...

. . .
...

x an−2

0 · · · −1 x+ an−1


.

Now use the row operation

R1 → R1 + xR2 + x2R3 + · · ·+ xn−1Rn

to obtain 

0 0 d
−1 x · · · a1

0 −1 a2
...

. . .
...

x an−2

0 · · · −1 x+ an−1


(think about it!) and then column operations

C2 → C2 + xC1, . . . , Cn−1 → Cn−1 + xCn−2

and then

Cn → Cn + a1C1 + a2C2 + · · ·+ an−2Cn−2 + (x+ an−1)Cn−1

yielding 
0 0 . . . 0 d
−1 0 0
0 −1

. . .
...

0 · · · −1 0

 .
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Trivially, elementary operations now form the matrix

diag (1, . . . , 1︸ ︷︷ ︸
n−1

, d).

THEOREM 6.8
Let B ∈Mn×n(F ). Then if the invariant factors of B are d1, . . . , ds, then

the invariant factors of xIn −B are

1, . . . , 1︸ ︷︷ ︸
n−s

, d1, d2, . . . , ds.

proof There exists non-singular P ∈Mn×n(F ) such that

P−1BP =
s⊕

k=1

C(dk).

Then

P−1(xIn −B)P = xIn −
s⊕

k=1

C(dk)

=
s⊕

k=1

(xImk − C(dk)) where mk = deg dk.

But by the lemma, each xImk − C(dk) is equivalent over F [x] to
diag (1, . . . , 1, dk) and hence xIn −B is equivalent to

s⊕
k=1

diag (1, . . . , 1, dk) ∼



1
. . .

1
d1

. . .
ds


.

EXAMPLE 6.3
Find the invariant factors of

B =


2 0 0 0
−1 1 0 0

0 −1 0 −1
1 1 1 2

 ∈M4×4(Q)
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by finding the Smith canonical form of xI4 −B.
Solution:

xI4 −B =


x− 2 0 0 0

1 x− 1 0 0
0 1 x 1
−1 −1 −1 x− 2


We start off with the row operations

R1 → R1 − (x− 2)R2

R1 ↔ R2

R4 → R4 +R1

and get 
1 x− 1 0 0
0 −(x− 1)(x− 2) 0 0
0 1 x 1
0 x− 2 −1 x− 2



(column ops.) ⇒


1 0 0 0
0 −(x− 1)(x− 2) 0 0
0 1 x 1
0 x− 2 −1 x− 2



⇒


1 0 0 0
0 1 x 1
0 −(x− 1)(x− 2) 0 0
0 x− 2 −1 x− 2



⇒


1 0 0 0
0 1 x 1
0 0 x(x− 1)(x− 2) (x− 1)(x− 2)
0 0 −1− x(x− 2)

{= −(x− 1)2}
0



⇒


1 0 0 0
0 1 0 0
0 0 x(x− 1)(x− 2) (x− 1)(x− 2)
0 0 −(x− 1)2 0

 .
Now, for brevity, we work just on the 2×2 block in the bottom right corner:

⇒
[

(x− 1)(x− 2) x(x− 1)(x− 2)
0 −(x− 1)2

]
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C2 → C2 − xC1 ⇒
[

(x− 1)(x− 2) 0
0 −(x− 1)2

]
R1 → R1 +R2 ⇒

[
(x− 1)(x− 2) (x− 1)2

0 −(x− 1)2

]
C2 → C2 − C1 ⇒

[
(x− 1)(x− 2) x− 1

0 −(x− 1)2

]
C1 ↔ C2 ⇒

[
x− 1 (x− 1)(x− 2)
−(x− 1)2 0

]
C2 → C2 − (x− 2)C1 ⇒

[
x− 1 0
−(x− 1)2 (x− 2)(x− 1)2

]
R2 → R2 + (x− 1)R1 ⇒

[
x− 1 0

0 (x− 2)(x− 1)2

]
and here we stop, as we have a matrix in Smith canonical form. Thus

xI4 −B ∼


1

1
x− 1

(x− 1)2(x− 2)


so the invariant factors of B are the non-trivial ones of xI4 −B, i.e.

(x− 1) and (x− 1)2(x− 2).

Also, the elementary divisors of B are

(x− 1), (x− 1)2 and (x− 2)

so the Jordan canonical form of B is

J2(1)⊕ J1(1)⊕ J1(2).

THEOREM 6.9
Let A,B ∈Mn×n(F ). Then A is similar to B

⇔ xIn −A is equivalent to xIn −B
⇔ xIn −A and xIn −B have the same

Smith canonical form.

proof
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⇒ Obvious. If P−1AP = B, P ∈Mn×n(F ) then

P−1(xIn −A)P = xIn − P−1AP

= xIn −B.

⇐ If xIn −A and xIn −B are equivalent over F [x], then they have the
same invariant factors and so have the same non-trivial invariant fac-
tors. That is, A and B have the same invariant factors and hence are
similar.

Note: It is possible to start from xIn −A and find P ∈Mn×n(F ) such that

P−1AP =
s⊕

k=1

C(dk)

where
P1(xIn −B)Q1 = diag (1, . . . , 1, d1, . . . , ds).

(See Perlis, Theory of matrices, p. 144, Corollary 8–1 and p. 137, Theorem
7–9.)

THEOREM 6.10
Every unit in Mn×n(F [x]) is a product of elementary row and column

matrices.

Proof: Problem sheet 7, Question 12.
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7 Various Applications of Rational Canonical Forms

7.1 An Application to commuting transformations

THEOREM 7.1 (Cecioni 1908, Frobenius 1910)
Let L : U 7→ U and M : V 7→ V be given LTs. Then the vector space

ZL,M of all LTs N : U 7→ V satisfying

MN = NL

has dimension
s∑

k=1

t∑
l=1

deg gcd(dk, Dl),

where d1, . . . , ds and D1, . . . , Dt are the invariant factors of L and M re-
spectively.

COROLLARY 7.1
Now take U = V and L = M . Then ZL,L the vector space of LTs satis-

fying

NL = LN,

has dimension
s∑

k=1

(2s− 2k + 1) deg dk.

proof Omitted, but here’s a hint:

gcd(dk, dl) =
{
dk if k ≤ l ; i.e. if dk | dl
dl if k > l ; i.e. if dl | dk.

N.B. Let PL be the vector space of all LTs of the form

f(L) : U 7→ U f ∈ F [x].

Then PL ⊆ ZL,L and we have the following. . .

THEOREM 7.2

PL = ZL,L ⇔ mL = chL .

131



proof First note that dimPL = degmL as

IV , L, . . . , L
degmL−1

form a basis for PL. So, since PL ⊆ ZL,L we have

PL = ZL,L ⇔ dimPL = dimZL,L

⇔ degmL =
s∑

k=1

(2s− 2k + 1) deg dk

⇔ s = 1
⇔ chL = mL.

proof (a sketch) of Cecioni-Frobenius theorem.
We start with the invariant factor decompositions

U =
s⊕

k=1

CL,uk and V =
t⊕
l=1

CM,vl

where mL,uk = dk for k = 1, . . . , s, and mM,vl = Dl for l = 1, . . . , t.
Let MN = NL . . .

⇒ MnN = NLn ∀n ≥ 1
⇒ f(M)N = Nf(L) ∀f ∈ F [x].

Define vectors w1, . . . , ws ∈ V by wk = N(uk), and observe

dk(M)(wk) = dk(M)(N(uk))
= N(dk(L)(uk))
= N(0) = 0.

Then we have the
Definition: Let W be the set of all (w1, . . . , ws) such that w1, . . . , ws ∈ V
and

dk(M)(wk) = 0 ∀k = 1, . . . , s.

We assert that W is a vector space and the mapping

N 7→ (w1, . . . , ws)

is an isomorphism between ZL,M and W ; proof is left as an exercise.
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Now let

wk =
t∑
l=1

ckl(M)(vl) k = 1, . . . , s and ckl ∈ F [x].

N.B.

f(M)(vl) = g(M)(vl) say
⇔ Dl | f − g.

So, if we restrict ckl by the condition

deg ckl < degDl if ckl 6= 0 (29)

then the ckl are uniquely defined for each k.
Exercise: Now let

gkl = gcd(dk, Dl).

Then from the condition dk(M)(wk) = 0, show that

Dl

gkl
| ckl (30)

i.e. that
ckl = bkl

Dl

gkl
bkl ∈ F [x]. (31)

Then the matrices [ckl], where ckl satisfy (30), form a vector space (call
it X) which is isomorphic to W .

Then in (31),

(29) ⇐⇒ deg bkl < deg gkl if bkl 6= 0.

Clearly then,

dimX = dimZL,M =
s∑

k=1

t∑
l=1

deg gkl

as required.

EXAMPLE 7.1
(of the vector space X, when s = t = 2)
Say

[deg gkl] =
[

2 0
1 3

]
.
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Then X consists of all matrices of the form

[ckl] =

[
(a0 + a1x) · D1

g11
0 · D2

g12

b0 · D1
g21

(c0 + c1x+ c2x
2) · D2

g22

]

= a0

[ D1
g11

0
0 0

]
+ a1

[ xD1
g11

0
0 0

]
+ b0

[
0 0
D1
g21

0

]
+ · · ·

. . . and so on.

EXAMPLE 7.2

The most general 3× 3 matrix which commutes with others.

Let A ∈M3×3(Q) such that there exists non-singular P ∈M3×3(Q) with

P−1AP = C(x− 1)⊕ C((x− 1)2)

=

 1 0 0
0 0 −1
0 1 2

 = J, say,

where C(p) denotes the companion matrix of p, as usual.
Then P = [u1 | u2 | T (u2)] where T = TA and

mT,u1 = x− 1, mT,u2 = (x− 1)2.

Also V3(Q) = CT,u1 ⊕ CT,u2 .
Note that the invariant factors of T are (x− a) and (x− 1)2.
We find all 3× 3 matrices B such that

BA = AB,

i.e. TBTA = TATB.

Let N = TB. Then N must satisfy

N(u1) = Bu1 = c11u1 + c12u2 and
N(u2) = Bu2 = c21u1 + c22u2 where ckl ∈ Q[x].

(32)

Now

[deg gcd(dk, dl)] =
[

1 1
1 2

]
so

[ckl] =
[
a0 b0(x− 1)
c0 d0 + d1x

]
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where a0 etc. ∈ Q, so (32) gives

Bu1 = a0u1 + b0(x− 1)u2

= a0u1 − b0u2 + b0T (u2) (33)
Bu2 = c0u1 + (d0 + d1x)u2

= c0u1 + d0u2 + d1T (u2). (34)

Noting that

mT,u1 = x− 1⇒ T (u1) = u1

and mT,u2 = (x− 1)2 = x2 − 2x+ 1⇒ T 2(u2) = 2T (u2)− u2,

we have from (34) that

T (Bu2) = c0T (u1) + d0T (u2) + d1T
2(u2)

= c0u1 − d1u2 + (d0 + 2d1)T (u2).

In terms of matrices,

B[u1|u2|T (u2)] = [u1|u2|T (u2)]

 a0 c0 c0

−b0 d0 −d1

b0 d1 d0 + 2d1


i.e. BP = PK, say
or B = PKP−1.

This gives the most general matrix B such that

BA = AB.

Note: BA = AB becomes

PKP−1 PJP−1 = PJP−1 PKP−1

⇔ KJ = JK.

7.2 Tensor products and the Byrnes-Gauger theorem

We next apply the Cecioni-Frobenius theorem to derive a third criterion for
deciding whether or not two matrices are similar.

DEFINITION 7.1
(Tensor or Kronecker product)
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If A ∈Mm1×n1(F ) and B ∈Mm2×n2(F ) we define

A⊗B =

 a11B a12B · · ·
a21B a22B · · ·

...
...

. . .

 ∈Mm1m2×n1n2(F ).

In terms of elements,

(A⊗B)(i,j),(k,l) = aijbkl

—the element at the intersection of the i-th row block, k-th row sub-block,
and the j-th column block, l-th column sub-block.4

EXAMPLE 7.3

A⊗ Ip =



a11

. . .

a11

· · ·

a21

. . .

a21

· · ·

...
. . .


,

Ip ⊗A =

 A 0 · · ·
0 A · · ·
...

...
. . .

 .
(Tensor-product-taking is obviously far from commutative!)

7.2.1 Properties of the tensor product of matrices

(i) (tA)⊗B = A⊗ (tB) = t(A⊗B), t ∈ F ;

(ii) A⊗B = 0⇔ A = 0 or B = 0;

(iii) A⊗ (B ⊗ C) = (A⊗B)⊗ C;

(iv) A⊗ (B + C) = (A⊗B) + (A⊗ C);

(v) (B + C)⊗D = (B ⊗D) + (C ⊗D);
4That is, the ((i− 1)m2 + k, (j − 1)n2 + l)-th element in the tensor product is aijbkl.
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(vi) (A⊗B)(C ⊗D) = (AC)⊗ (BD);

(vii) (B ⊕ C)⊗D = (B ⊗D)⊕ (C ⊗D);

(viii) P (A⊗(B⊕C))P−1 = (A⊗B)⊕(A⊗C) for a suitable row permutation
matrix P ;

(ix) det (A⊗B) = (detA)n(detB)m if A is m×m and B is n× n;

(x) Let f(x, y) =
m∑
i=0

n∑
j=0

cijx
iyj ∈ F [x, y] be a polynomial in x and y over

F and define

f(A;B) =
m∑
i=0

n∑
j=0

cij(Ai ⊗Bj).

Then if chA =
s∏

k=1

(x− λk) and chB =
t∏
l=1

(x− µl), we have

chf(A;B) =
s∏

k=1

t∏
l=1

(x− f(λk, µl));

(xi) Taking f(x, y) = xy gives

chA⊗B =
s∏

k=1

t∏
l=1

(x− λkµl);

(xii) Taking f(x, y) = x− y gives

ch(A⊗In−Im⊗B) =
s∏

k=1

t∏
l=1

(x− (λk − µl));

Remark: (ix) can be proved using the uniqueness theorem for alternating
m–linear functions met in MP174; (x) follows from the the equations

P−1AP = J1 and Q−1BQ = J2,

where J1 and J2 are the Jordan forms of A and B, respectively. Then J1

and J2 are lower triangular matrices with the eigenvalues λk, 1 ≤ k ≤ m
and µl, 1 ≤ l ≤ n of A and B as diagonal elements.

Then
P−1AiP = J i1 and Q−1BjQ = J j2
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and more generally

(P ⊗Q)−1
s∑
i=0

t∑
j=0

cij(Ai ⊗Bj)(P ⊗Q) =
s∑
i=0

t∑
j=0

cij(J i1 ⊗ J
j
2).

The matrix on the right–hand side is lower triangular and has diagonal
elements

f(λk, µl), 1 ≤ k ≤ m, 1 ≤ l ≤ n.

THEOREM 7.3
Let β be the standard basis for Mm×n(F )—i.e. the basis consisting of

the matrices
E11, . . . . . . , Emn

and γ be the standard basis for Mp×n(F ).
Let A be p×m, and

T1 : Mm×n(F ) 7→Mp×n(F )

be defined by T1(X) = AX. Then

[T1]γβ = A⊗ In.

Similarly if B is n× p, and

T2 : Mm×n(F ) 7→Mm×p(F )

is defined by T2(Y ) = Y B, then

[T2]δβ = A⊗ In

(where δ is the standard basis for Mm×p(F )).

proof Left for the intrepid reader. A hint:

EijEkl =
{

0 if j 6= k,
Eil if j = k

COROLLARY 7.2

Let A be m×m,
B be n× n,
X be m× n, and
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T : Mm×n(F ) 7→Mm×n(F )

be defined by T (X) = AX −XB.
Then

[T ]ββ = A⊗ In − Im ⊗Bt,

where β is the standard basis for Mm×n(F ).

DEFINITION 7.2
For brevity in the coming theorems, we define

νA,B = ν(A⊗ In − Im ⊗Bt)

where A is m×m and B is n× n.

THEOREM 7.4

νA,B = ν(A⊗ In − Im ⊗Bt)

=
s∑

k=1

t∑
l=1

deg gcd(dk, Dl)

where

d1 | d2 | · · · | ds and
D1 | D2 | · · · | Dt

are the invariant factors of A and B respectively.

proof With the transformation T from corollary 7.2 above, we note that

νA,B = nullity T
= dim{X ∈Mm×n(F ) | AX = XB }
= dim{N ∈ Hom (Vn(F ), Vm(F )) | TAN = NTB }

and the Cecioni-Frobenius theorem gives the result.

LEMMA 7.1 (Byrnes-Gauger)
(This is needed in the proof of the Byrnes-Gauger theorem following.)
Suppose we have two monotonic increasing integer sequences:{

m1 ≤ m2 ≤ · · · ≤ ms and
n1 ≤ n2 ≤ · · · ≤ ns
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Then

s∑
k=1

s∑
l=1

{min(mk,ml) + min(nk, nl)− 2 min(mk, nl)} ≥ 0.

Further, equality occurs iff the sequences are identical.

proof
Case 1: k = l.

The terms to consider here are of the form

mk + nk − 2 min(mk, nk)

which is obviously ≥ 0. Also, the term is equal to zero iff mk = n+ k.
Case 2: k 6= l; without loss of generality take k < l.

Here we pair the off-diagonal terms (k, l) and l, k.

{min(mk,ml) + min(nk, nl)− 2 min(mk, nl)}
+{min(ml,mk) + min(nl, nk)− 2 min(ml, nk)}

= {mk + nl − 2 min(mk, nl)}+ {ml + nk − 2 min(ml, nk)}
≥ 0, obviously.

Since the sum of the diagonal terms and the sum of the pairs of sums
of off-diagonal terms are non-negative, the sum is non-negative. Also, if the
sum is zero, so must be the sum along the diagonal terms, making

mk = nk ∀k.

THEOREM 7.5 (Byrnes-Gauger)
If A is m×m and B is n× n then

νA,A + νB,B ≥ 2νA,B

with equality if and only if m = n and A and B are similar.

proof

νA,A + νB,B − 2νA,B

=
s∑

k1=1

s∑
k2=1

deg gcd(dk1 , dk2) +
t∑

l1=1

t∑
l2=1

deg gcd(Dl1 , Dl2)

−2
s∑

k=1

t∑
l=1

deg gcd(dk, Dl).
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We now extend the definitions of d1, . . . , ds and D1, . . . , Dt by renaming
them as follows, with N = max(s, t):

1, . . . , 1,︸ ︷︷ ︸
N−s

d1, . . . , ds 7→ f1, . . . , fN

and 1, . . . , 1,︸ ︷︷ ︸
N−t

D1, . . . , Dt 7→ F1, . . . , FN .

This is so we may rewrite the above sum of three sums as a single sum, viz:

νA,A + νB,B − 2νA,B =
N∑
k=1

N∑
l=1

{deg gcd(fk, fl) + deg gcd(Fk, Fl)

−2 deg gcd(fk, Fl)}. (35)

We now let p1, . . . , pr be the distinct monic irreducibles in mAmB and write

fk = pak1
1 pak2

2 . . . pakrr

Fk = pbk1
1 pbk2

2 . . . pbkrr

}
1 ≤ k ≤ N

where the sequences {aki}ri=1, {bki}ri=1 are monotonic increasing non-negative
integers. Then

gcd(fk, Fl) =
r∏
i=1

p
min(aki, bli)
i

⇒ deg gcd(fk, Fl) =
r∑
i=1

deg pi min(aki, bli)

and deg gcd(fk, fl) =
r∑
i=1

deg pi min(aki, ali)

and deg gcd(Fk, Fl) =
r∑
i=1

deg pi min(bki, bli).

Then equation (35) may be rewritten as

νA,A + νB,B − 2νA,B

=
N∑
k=1

N∑
l=1

r∑
i=1

deg pi{min(aki, ali) + min(bki, bli)

−2 min(aki, bli)}

=
r∑
i=1

deg pi
N∑
k=1

N∑
l=1

{min(aki, ali) + min(bki, bli)

−2 min(aki, bli)}.
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The latter double sum is of the form in lemma 7.1 and so, since deg pi > 0,
we have

νA,A + νB,B − 2νA,B ≥ 0,

proving the first part of the theorem.
Next we show that equality to zero in the above is equivalent to similarity

of the matrices:

νA,A + νB,B − 2νA,B = 0

⇔
r∑
i=1

deg pi
N∑
k=1

N∑
l=1

{min(aki, ali) + min(bki, bli)

−2 min(aki, bli)} = 0
⇔ sequences {aki}, {bki} identical (by lemma 7.1)
⇔ A and B have same invariant factors
⇔ A and B are similar (⇒ m = n).

EXERCISE 7.1
Show if if

P−1A1P = A2 and Q−1B1Q = B2

then

(P−1 ⊗Q−1)(A1 ⊗ Im − In ⊗Bt
1)(P ⊗Q)

= A2 ⊗ In − Im ⊗Bt
2.

(This is another way of showing that if A and B are similar then

νA,A + νB,B − 2νA,B = 0.)
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8 Further directions in linear algebra

1. Dual space of a vector space; Tensor products of vector spaces; exte-
rior algebra of a vector space. See C.W. Curtis, Linear Algebra, an
introductory approach and T.S. Blyth, Module theory .

2. Quadratic forms, positive definite matrices (see L. Mirsky, Introduc-
tion to linear Algebra), singular value decomposition (see G. Strang,
Linear Algebra).

3. Iterative methods for finding inverses and solving linear systems. See
D.R. Hill and C.B. Moler, Experiments in Computational Matrix Al-
gebra.

4. Positive matrices and Markov matrices are important in economics and
statistics. For further reading on the structure of Markov matrices
and more generally, non–negative matrices, the following books are
recommended:

[1] N.J. Pullman. Matrix Theory and its Applications, 1976. Marcel
Dekker Inc. New York.

[2] M. Pearl. Matrix Theory and Finite Mathematics, 1973. McGraw–
Hill Book Company, New York.

[3] H. Minc. Nonnegative Matrices, 1988. John Wiley and Sons,
New York.

5. There are at least two research journals devoted to linear and multilin-
ear algebra in our Physical Sciences Library: Linear and Multilinear
Algebra and Linear Algebra and its applications.
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