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1 Linear Transformations

We will study mainly finite-dimensional vector spaces over an arbitrary field
F—i.e. vector spaces with a basis. (Recall that the dimension of a vector
space V (dim V') is the number of elements in a basis of V.)

DEFINITION 1.1
(Linear transformation)
Given vector spaces U and V', T': U + V is a linear transformation (LT)
if
T(Au+ pv) = AT (u) + pT'(v)
forall \, p € F, and u,v € U. Then T'(u+v) = T(u)+T(v), T(Au) = AT (u)

and
T (Z )\kuk> = Z)\kT(uk).
k=1 k=1

EXAMPLES 1.1

Consider the linear transformation
T=T4s:V,(F)+— Vyu(F)

where A = [a;;] is m x n, defined by T4 (X) = AX.

Note that V,,(F') = the set of all n-dimensional column vectors : of
Tn
F—sometimes written F™.
Note that if T : V,,(F') +— V,,(F) is a linear transformation, then 7" = T}y,
where A = [T'(E1)|---|T(Ey)] and

1 0
0 :
El_ . ) -‘7En_ )
: 0
0 1
Note:
T
v e Vu(F), v=| | =m B4+ z,E,
Tn



If V is a vector space of all infinitely differentiable functions on R, then
T(f) =aoD"f +aD" ' f+ -+ an1Df +anf

defines a linear transformation 7': V — V.
The set of f such that T'(f) = 0 (i.e. the kernel of T") is important.

Let T : U — V be a linear transformation. Then we have the following
definition:

DEFINITIONS 1.1

(Kernel of a linear transformation)
KerT ={ueU|T(u)=0}
(Image of T)
Im7T ={v eV |3JuecU such that T'(u) = v}

Note: KerT is a subspace of U. Recall that W is a subspace of U if

1. 0e W,

2. W is closed under addition, and

3. W is closed under scalar multiplication.

PROOQOF. that KerT is a subspace of U:

1. T(0) + 0 = T(0) = T(0+0) = T(0) + T(0). Thus 7T(0) = 0, so
0¢c KerT.

2. Let u,v € KerT; then T(u) = 0 and T(v) = 0. So T(u + v) =
T(u)+T(v)=0+0=0and u+v e KerT.

3. Let w € KerT and A € F. Then T(Au) = AXT(u) = X0 = 0. So
Au € KerT.

EXAMPLE 1.1

KerTy = N(A), the null space of A
= {X eV, (F)| AX =0}
and InTy = C(A), the column space of A
= (A, ., Aw)



Generally, if U = (u1,...,up), then ImT = (T'(u1),...,T(un))-

Note: Even if uy,...,u, form a basis for U, T'(uy),...,T(u,) may not
form a basis for Im 7. I.e. it may happen that T'(u1),...,T(u,) are linearly
dependent.

1.1 Rank + Nullity Theorems (for Linear Maps)

THEOREM 1.1 (General rank + nullity theorem)
If T : U+ V is a linear transformation then

rank 7"+ nullity 7' = dim U.

PROOF.
1. KerT = {0}.
Then nullity T" = 0.
We first show that the vectors T'(uq),...,T (uy), where uy, ..., u, are

a basis for U, are LI (linearly independent):
Suppose 21T (u1) + - - - + 2, T (up,) = 0 where z1,...,2, € F.

Then
T(xiui + - +xpu,) = 0 (by linearity)
riur+ -+ xpu, = 0 (since KerT = {0})
x1=0,...,2, =0 (since u; are LI)

Hence ImT = (T'(u1),...,T(uy)) so

rank T 4 nullity 7 = dim Im7T +0=n =dim V.

2. KerT =U.
So nullity 7' = dim U..
Hence Im7T = {0} = rank7 =0

= rank T + nullityT’ = 04dimU
= dimU.

3. 0 < nullityT < dimU.
Let u1,...,u, be a basis for KerT and n = dimU, so r = nullity T’
and r < n.
Extend the basis u1,...,u, to form a basis u, ..., Upr, Upy1, ..., Uy Of



U (refer to last year’s notes to show that this can be done).
Then T(up41),-..,T(uy,) span ImT'. For
ImT = (T(u1),...,T(ur), T(tys1),...,T(upn))
= (0,...,0,T(ups1),.--,T(un))
- <T(ur+1)7 s 7T(un)>

So assume

21T (upg1) + -+ Ty T(un) =0
T(x1tpy1 + -+ Tp_ptn) =0
T1Upt1 + -+ Tp—pun € Ker T

R

T1Up41 + o+ Tp—plUn = Y1us + -+ Yrity
for some y1,...,y,

= (—y)ur+ -+ (=yr)ur + T1Upg1 + -+ Ty, =0

and since uq, ..., Uy is a basis for U, all coefficients vanish.
Thus
rank T + nullity T’ = (n—7r)+r
= n
= dimU.

We now apply this theorem to prove the following result:

THEOREM 1.2 (Dimension theorem for subspaces)

dim(UNV)+dimU +V) =dimU + dimV

where U and V are subspaces of a vector space W.

(Recall that U+ V ={u+v|ueUwveV})

For the proof we need the following definition:

DEFINITION 1.2
If U and V' are any two vector spaces, then the direct sum is

UaV={(u,v)|ueUwveV}

(i.e. the cartesian product of U and V') made into a vector space by the
component-wise definitions:



1. (u1,v1) + (u2,v2) = (u1 + ug, vy + v2),
2. Mu,v) = (Au, \v), and
3. (0,0) is an identity for U @& V and (—u, —v) is an additive inverse for
(u,v).
We need the following result:
THEOREM 1.3

dm(Ua V) =dimU 4 dimV
PROOF.
Case 1: U = {0}
Case 2: V = {0}
Proof of cases 1 and 2 are left as an exercise.

Case 3: U # {0} and V # {0}

Let uq,...,u, be a basis for U, and
v1,...,V, be a basis for V.

We assert that (ug,0),..., (tm,0),(0,v1),...,(0,v,) form a basis for U V.
Firstly, spanning:
Let (u,v) e UV, say u = x1u1 + -+ - + Ty and v = y1v1 + -+ - -+ YnUp.
Then
(u,v) = (u,0)+(0,v)
= (1w + -+ Tpum, 0) + (0,101 + -+ - + Ynvn)
= 21(u1,0) + - + Ty (Um, 0) + y1(0,v1) + - - - + yn(0,vp)
So UV = ((u1,0),...,(tn,0),(0,v1),...,(0,v,))
Secondly, independence: assume z1(u1,0) + - -+ Ty (U, 0) + 31 (0, v1) +
<+ +yn(0,v,) = (0,0). Then
(T1u1 + -+ + TypUm, Y101 + -+ Ypn) =
= 21U+ Uy =

0

0

and y1v1 + -+ ypvp, = 0
= x; = 0

0

and y; =



Hence the assertion is true and the result follows.
PROOF.
Let T:U®V +— U+ V where U and V are subspaces of some W, such
that T'(u,v) = u + v.
Thus ImT =U +V, and
KerT = {(u,v)|ueUwveV, and u+v =0}
= {(t,—t)|teUNV}

Clearly then, dim Ker T = dim(U N V)! and so

rank 7 + nullity T’ = dim(U & V)
= dmU+V)+dm@UNV) = dimU +dimV.

1.2 Matrix of a Linear Transformation

DEFINITION 1.3
Let T : U — V be a LT with bases 3 : ui,...,u, and 7y : vi,..., Uy, for
U and V respectively.

Then
a1;v1
+
ag;4v2 aij
T(u;)= + for some . €F.
amj
_l’_
amjvm
The m X n matrix
A = lag]
is called the matrix of T relative to the bases 3 and ~ and is also written
_ Y
A =T 3

Note: The j-th column of A is the co-ordinate vector of T'(u;), where
u; Is the j-th vector of the basis 3.

x1
Also if u = xqu1 + - - - + Tpuy, the co-ordinate vector : is denoted by
L,
[u] 8*
True if UNV = {0}; if not, let S = KerT and uz, ..., u, be a basis for UNV. Then
(u1, —u1), ..., (ur, —u,) form a basis for S and hence dim Ker 7' = dim S.



EXAMPLE 1.2

Let A = |: (CI b :| S M2><2(F) and let T : M2><2(F) — M2><2(F) be

d
defined by
T(X)=AX — XA.

Then T is linear?, and Ker T consists of all 2 x 2 matrices A where AX =
XA.
Take 3 to be the basis E11, F1s, Fo1, and Fao, defined by

1 0 0 1 0 0 0 0
E11—{0 0]7E12—{0 0},1*721—[1 0],E22—[0 1]

(so we can define a matrix for the transformation, consider these henceforth
to be column vectors of four elements).

Calculate [T]g =B:

T(Ewn) = AEn—EnA
a b 1 0 1 0 a b
- [c dHo 0}_[0 oHc d]
0 -b
- [0 7]
= 0E1 —bE12 + cE2 + 0E2

and similar calculations for the image of other basis vectors show that

0 —c b 0
—b a—d 0 b
c 0 d—a —c
0 c b 0

B:

EXERCISE: Prove that rank B = 2 if A is not a scalar matrix (i.e. if
A #tly).

Later, we will show that rank B = rankT. Hence

nullity ' =4—-2=2

TOX +pY) = AQXX +puY)— (AX +pY)A
AMAX — XA) + p(AY — Y A)
= AT(X)+ uT(Y)



Note: I5, A € KerT which has dimension 2. Hence if A is not a scalar
matrix, since Iy and A are LI they form a basis for KerT. Hence

AX=XA = X =al+p3A.

DEFINITIONS 1.2

Let T1 and Ty be L'T’s mapping U to V.
Then Ty + T : U — V is defined by

(Th + o) () = Th(z) + Ta(x) Vo eU
ForT a LT and X € F, define XT : U — V by
(ANT)(z) = NT'(z) Ve € U
Now ...

[T+ Do)y = [T+ [T}
AT, = AT

DEFINITION 1.4
Hom (U, V) = {T|T: U + V is a LT}.
Hom (U, V) is sometimes written L(U, V).

The zero transformation 0 : U — V is such that 0(z) = 0, Vz.
If T'e Hom (U,V), then (=T') € Hom (U, V) is defined by

(-T)(z) = —(T(z)) VaeU.

Clearly, Hom (U, V) is a vector space.

Also
03 = 0
and [—T]g = —[T]g

The following result reduces the computation of 7'(u) to matrix multi-
plication:

THEOREM 1.4



PROOF.

Let A = [T]g, where 3 is the basis uq,...,u,, v is the basis vy, ...

and

m
UJ): E CLijUi.
=1

T
Also let [u] 5 =
In
Then u = >7%_; vju;, so
n
T(u) = Z@T
7j=1
n m
= Z% Z‘W’Z
7j=1 =1
m n
= > Z%% Ue
=1 7j=1
1171 + - + a1ny
= [T(u)], =

Am1T1 + - + AmnTn

DEFINITION 1.5
(Composition of LTs)

IfTy:U—Vand 1y : V — W are LTs, then 1517 : U — W defined by

(TQTl)(x) = TQ(Tl (.1‘)) Ve e U

isa LT.

THEOREM 1.5
If 8, v and § are bases for U, V and W, then

[Ty = [T 1])



PROOF. Let v € U. Then

[LTi(w)]s = [Ty,
and = [T3(T1(u))]s

= (D11 (u)],

Hence
[Ty [u] g = [T2))[T1]3[u] (1)

(note that we can’t just “cancel off” the [u]; to obtain the desired result!)
Finally, if 3 is uq, ..., uy,, note that [uj]ﬂ = Fj (since u; = Oug + --- +
Ouj—1 + luj + Oujqq + - - - + Ouy,) then for an appropriately sized matrix B,

BE; = B,j, the jth column of B.
Then (1) shows that the matrices
1) 0
[TQ Tl]g and [TQ],Y [TI]Z;
have their first, second, ..., nth columns respectively equal.

EXAMPLE 1.3
If Aism xn and B isn X p, then

TaTp = Tap.

DEFINITION 1.6
(the identity transformation)
Let U be a vector space. Then the identity transformation Iy : U — U
defined by
Iy(x)=x VxeU

is a linear transformation, and
[Iv)f =1 ifn=dimU.
Also note that Iy, gy =T, .

THEOREM 1.6
LetT :U — V be aLT. Then

IvT =TIy =T.

10



Then
T1,,Ta=Tr,4a=Tas=TaTar, =Tay,

and consequently we have the familiar result
I,A= A= Al,.

DEFINITION 1.7
(Invertible LTs)
LetT :U +— V bea LT.
If 35 : V +— U such that S is linear and satisfies

ST:[U and TS:IV

then we say that 1" is invertible and that S is an inverse of T'.
Such inverses are unique and we thus denote S by T~
Explicitly,

S(T(x))=xzVxeU and T(S(y)=yVyeV

There is a corresponding definition of an invertible matrix: A € M, x,(F)
is called invertible if 3B € My, xm(F') such that

AB =1, and BA=1I,
Evidently

THEOREM 1.7
Ty is invertible iff A is invertible (i.e. if A~ exists). Then,

(Ta) ™" =Tp

THEOREM 1.8
If uy,...,u, is a basis for U and v1,...,v, are vectors in V, then there
is one and only one linear transformation T' : U — V satisfying

T(ul) =V1y... ,T(un) = Un,
namely T(xiuy + -+ + Tpuy) = 101 + -+ + Tpop.

(In words, a linear transformation is determined by its action on a basis.)

11



1.3 Isomorphisms

DEFINITION 1.8
A linear map T : U — V is called an isomorphism if T" is 1-1 and onto,
ie.

1. T(z) =T(y) = =y Vz,y € U, and
2. ImT =V, that is, if v € V, Ju € U such that T'(u) = v.

Lemma: A linear map 7 is 1-1 iff KerT = {0}.
PROOF:

1. (=) Suppose T'is 1-1 and let x € KerT.
We have T'(x) = 0 =T(0), and so x = 0.

2. (<) Assume KerT = {0} and T'(z) = T'(y) for some z,y € U.

Then
Tx—-y) = T(x)-T(y)=0
=z—y € KerT
=x—y = 0=>zx=y

THEOREM 1.9
Let A € Myyn(F). Then Ty : Vo(F) — Vi (F) is

(a) onto: < dim C(A) = m < the rows of A are LI;

(b) 1-1: & dim N(A) =0 < rank A = n < the columns of A are LI

EXAMPLE 1.4
Let Ty : Vo (F) — Vi (F) with A invertible; so Ta(X) = AX.
We will show this to be an isomorphism.

1. Let X € KerTy, i.e. AX =0. Then

ATHAX) = A7h

S I,X = 0

=X =0

= KerT = {0}
& T is 1-1.

12



2. Let Y € V,,(F) : then,
T(ATlY) = AA7Y)
= LY =Y
Va(F)

so ImTy

THEOREM 1.10
If T is an isomorphism between U and V', then

dimU =dimV

PROOF.
Let uq,...,u, be a basis for U. Then

T(u1),...,T(up)

is a basis for V' (i.e. (u;) =U and (T'(u;)) =V, with u;, v; independent
families), so
dimU =n=dimV

THEOREM 1.11

®: Hom (U, V) = Mpxn(F) defined by &(T) = [T]}

is an isomorphism.
Here dimU =n, dimV =m, and § and v are bases for U and V, re-
spectively.

THEOREM 1.12

T :U w— V is invertible
& T is an isomorphism between U and V.
PROOF.
= Assume T is invertible. Then
T'T = Iy
and TT ! = Iy
=T HT(x)) = aVxeU
and T(T7(y)) = yVyeV

13



1. We prove KerT = {0}.
Let T'(x) = 0. Then

So T'is 1-1.

2. We show ImT =V.
Let y € V. Now T(T~(y)) = y, so taking z = T~ (y) gives

T(z)=y.
Hence Im7T' =V.
< Assume T is an isomorphism, and let S be the inverse map of T
S: VU

Then ST = Iy and T'S = I. It remains to show that S is linear.

‘We note that
r=>5(y) ey="T(z)

And thus, using linearity of T" only, for any y1,y2 € V, 1 = S(y1), and

x92 = S(y2) we obtain
SAyr+py2) = SAT(21) 4 pT(22))
= S(T(A\z1 + px2))
= Ar1 4+ pxo
= AS(y1) + S (y2)

COROLLARY 1.1
If A € My,xn(F) is invertible, then m = n.

PROOF.

Suppose A is invertible. Then T4 is invertible and thus an isomorphism

between V,,(F) and V,,(F).
Hence dim V,,(F') = dim V,,,(F') and hence m = n.

THEOREM 1.13
If dimU =dimV and T : U — V is a LT, then

T is 1-1 (injective) < T is onto (surjective)

( & T is an isomorphism )

14



PROOF.

= Suppose T is 1-1.
Then KerT = {0} and we have to show that Im7 = V.

rank T + nullity 7 = dimU
= rankT +0 = dimV
ie. dim(Im7) = dimV

= ImT =V asTCV.

< Suppose T is onto.
Then Im7T =V and we must show that KerT = {0}. The above
argument is reversible:

ImT =V
rankT = dimV
= dimU
= rankT + nullity T’
= nullity T’ = 0

or KerT = {0}

COROLLARY 1.2
Let A, B € Myxn(F'). Then

AB =1, = BA=1,.
PROOF Suppose AB = I,,. Then KerTp = {0}. For

BX =0 = ABX)=A40=0
= LLX=0=X=0.

But dimU = dimV = n, so T is an isomorphism and hence invertible.
Thus 3C € M,,«,,(F) such that

IsTc = Iy,r) = TcTB

noting that Iy, (py = T7,.

15



Now, knowing AB = I,

= A(BC) = A
(AB)C = A
,C = A

=C A

= BA = 1,

DEFINITION 1.9
Another standard isomorphism: Let dim V = m, with basisy = v1, ..., Un.
Then ¢ : V +— Vp,(F) is the isomorphism defined by

THEOREM 1.14

rank 7' = rank [T}

B
PROOF
v 5 v
¢ L L &
Va(F) Ta Vi(F)
With
5 2611: : " .' ”;: a basis for V.
let A= [T ]g Then the commutative diagram is an abbreviation for the
equation
O, T = Tagp. (2)
Equivalently
6, T(u) = Tads(u) Yu € U
or

which we saw in Theorem 1.4.
But rank (ST) = rank T if S is invertible and rank (T'R) = rank T if R
is invertible. Hence, since ¢g and ¢, are both invertible,

(2) = rankT = rankT4 = rank 4

16



and the result is proven.

Note:

Observe that ¢~ (T'(u;)) = Asj, the jth column of A. So Im T is mapped
under ¢, into C'(A). Also KerT is mapped by ¢3 into N(A). Consequently
we get bases for Im 7" and Ker 7" from bases for C(A) and N (A), respectively.

(ue KerT < T(u) =0 < ¢y(T(u) =0
= TA(bg(u) =0
& ¢p(u) € N(A).)

THEOREM 1.15
Let 3 and v be bases for some vector space V. Then, with n = dimV/,

e

is non-singular and its inverse

{3} =l

PROOF
Ivly = Iy
= [IvIv]j = [IV)j=1In
= [Iv]»ﬁy[fv]g-
The matrix P = [Iv]g = [pij] is called the change of basis matriz. For if
B :ut,...,uy and 7y : vy,...,v, then
uj = Iv(uj)

= p1jv1+ -+ Pnjvn forj=1,...,n.
It is also called the change of co-ordinate matriz, since
0], = V)]
ie. if

v = x21U1+ -+ TpUun

= NV + -+ Ynlp

17



then

Y1 x1
. — P ,
Yn Tn
or, more explicitly,
Y1 = PpPrxi+ -+ Pinln
Yn = Pn1lZ1+ -+ Pinln.

THEOREM 1.16 (Effect of changing basis on matrices of LTs)
Let T : V +— V be a LT with bases 8 and ~y. Then

(115 = PTTIP

-
where
P= [Iv]g
as above.
PROOF
IvT = T=TIy
= [VT)y = [TIv])
= [T = [TV

DEFINITION 1.10

(Similar matrices)

If A and B are two matrices in M,,x,(F), then if there exists a non-
singular matrix P such that

B=P'AP

we say that A and B are similar over F'.

1.4 Change of Basis Theorem for 74

In the MP274 course we are often proving results about linear transforma-
tions T : V +— V which state that a basis # can be found for V so that
[T]g = B, where B has some special property. If we apply the result to
the linear transformation T4 : V,,(F') — V,,(F), the change of basis theorem
applied to T4 tells us that A is similar to B. More explicitly, we have the
following:

18



THEOREM 1.17
Let A € My, x,(F) and suppose that vy,...,v, € V,(F) form a basis 3
for V,,(F'). Then if P = [v1]- - |vy] we have

PLAP = [T4)}.

PROOF. Let 7 be the standard basis for V,,(F') consisting of the unit vectors
Ey,...,E, and let §:v1,...,v, be a basis for V,,(F). Then the change of
basis theorem applied to T' = T4 gives

[Ta]} = P~ TA]1P,

where P = [Iy]} is the change of coordinate matrix.
Now the definition of P gives

v =1Iy(vi)) = puEi+---+pmkE,

Un = IV(Un) = plnEl + - +pnnEn7

or, more explicitly,

b1 Pin
v = s e
Pn1 Pnn
In other words, P = [v1]---|v,], the matrix whose columns are vy,...,v,

respectively.
Finally, we observe that [T4]7 = A.

19



2 Polynomials over a field
A polynomial over a field F' is a sequence
(ag,a1,az2,...,ay,...) where a; € FVi

with a; = 0 from some point on. a; is called the i—th coefficient of f.
We define three special polynomials. . .

0 = (0,0,0,...)
= (1,0,0,...)
x = (0,1,0,...).

The polynomial (ag, ...) is called a constant and is written simply as ag.
Let F[z]| denote the set of all polynomials in x.
If f#£ 0, then the degree of f, written deg f, is the greatest n such
that a, # 0. Note that the polynomial 0 has no degree.
an is called the ‘leading coefficient’ of f.
F[z] forms a vector space over F' if we define

)\(CLQ, al,...) = ()\a(), Aag, .. .), AeF.

DEFINITION 2.1
(Multiplication of polynomials)
Let f = (ap,a1,...) and g = (bg,b1,...). Then fg = (co,c1,...) where

¢n = aoby +aib,—1+ -+ anboy

n

= Z a;bp—;

1=0

= Z aibj.

0<i,0<5
i+j=n

EXAMPLE 2.1
2 =1(0,0,1,0,...), 22=(0,0,0,1,0,...).

More generally, an induction shows that " = (ay,...), where a,, = 1 and
all other a; are zero.

If deg f = n, we have f = agl + a1z + - -+ + apx™.
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THEOREM 2.1 (Associative Law)
fgh) = (fg)h
PROOF Take f,g as above and h = (cg, c1,...). Then f(gh) = (do,ds,...),

where

dn = > (f9)ih

i+j=n

v (z fugv> h

i+j=n \utv=t

= Z fugvhj-

utv+j=n
Likewise (fg)h = (eg, €1, ...), where
€n = Z fugvhj
utv+j=n

Some properties of polynomial arithmetic:

fg = gf

0of = 0

1f = f
flg+h) = fg+fh

f#0and g#0 = fg#0
and deg(fg) =deg f + degg.

The last statement is equivalent to
fg=0=f=00rg=0.
The we deduce that

fh=fgand f £A0=h=g.

2.1 Lagrange Interpolation Polynomials

Let P,[F| denote the set of polynomials ag + a1z + -+ + apa™, where
ag,...,an € F. Thenag + a1x + - - - + apz™ = 0 implies that ag =0, ..., a, = 0.
P,|F] is a subspace of F[z] and 1,z,22,...,2" form the ‘standard’ basis

for P,[F].
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If f e P,[F] and ¢ € F, we write
fle) =ap+aic+ -+ apc".
This is the“value of f at ¢”. This symbol has the following properties:

(f+9)c) = [flc)+yg(c)
(Af)e) = A(f(e)
(f9)(c) = fle)glc)

DEFINITION 2.2

Let ¢y, ...,cp+1 be distinct members of F. Then the Lagrange inter-
polation polynomials pi,...,pn+1 are polynomials of degree n defined
by

n+1 T — s
pi=1]] <—J> 1<i<n+1.
3 Ci —C§
J=1
J#i

EXAMPLE 2.2

p o= (:L‘—@) T —c3 T — Cpyl

1 c1 — C2 €1 —¢c3 €1 — Cnt1

_ T — C1 xr —C3 T — Cp+tl

— e S X o TN P f o

P2 <C2—Cl> Cy —C3 C2 — Cn+t1
etc. ..

We now show that the Lagrange polynomials also form a basis for P,[F].
PROOF Noting that there are n + 1 elements in the ‘standard’ basis, above,
we see that dim P,[F] =n + 1 and so it suffices to show that p1,...,pni1
are LI.

We use the following property of the polynomials p;:

1 ifi=j
pilej) = bij = { 0 ifi#j.

Assume that
aip1+ -+ ant1pnt1 =0

where a; € F, 1 < ¢ < n+ 1. Evaluating both sides at ci,...,cy41 gives
aipi(cr) + -+ any1pny1(ci) = 0
aipi(cnt1) + -+ anp1Png1(cny1) = 0
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ap X1+arsx04+---+ap41 x0 = 0
CL1X0+CL2X1+-~~+an+1XO =0
a1 X0+ax2x04+---+ap1 x1 = 0

Hence a; = 0 Vi as required.

COROLLARY 2.1
If f € P,|F)] then

f=fle)pr+-+ f(cnt1)Pnt1-
Proor: We know that
f =\p1+---+ )\n+1pn+1 for some \; € F.

Evaluating both sides at cy,...,cn+1 then, gives

fle) = A,

flenr1) = Aasr

as required.

COROLLARY 2.2

If f € P,[F] and f(c1) =0,..., f(cnt1) =0 where ¢y, ..., chy1 are dis-
tinct, then f = 0. (Le. a non-zero polynomial of degree n can have at most
n roots.)

COROLLARY 2.3
If by,...,bys1 are any scalars in F', and c1,...,cnq1 are again distinct,
then there exists a unique polynomial f € P,[F] such that

f(Cl) = bl?"‘?f(cn-i-l) = bn+1 ;

namely
J=bip1+- + bnt1pnt1.
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EXAMPLE 2.3
Find the quadratic polynomial

f=ao+aiz+axx® € P[R]

such that
f(1)=38,f(2)=5,f(3) =4

Solution: f = 8p; + 5ps + 4p3 where

B (x —2)(x — 3)
S ) )
B (x —1)(x — 3)
2T erne-3
 (z=1)(z—-2)
= 3-nB-2

2.2 Division of polynomials

DEFINITION 2.3
If f,g € Flx|, we say f divides g if 3h € F[z] such that

g=rh.

For this we write “f | g”, and “f)g” denotes the negation “f does not di-
vide g”.
Some properties:

flgand g#0=degf <degg

and thus of course
fl1=degf=0.

2.2.1 Euclid’s Division Theorem

Let f,g € Fx] and g # 0.
Then g, r € Flx] such that

f=aqg9+m, (3)

where 7 = 0 or degr < degg. Moreover g and r are unique.
Outline of Proof:
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If f=0o0rdegf < degg, (3) is trivially true (taking ¢ = 0 and r = f).
So assume deg f > deg g, where

f = amxm"i_am—lxm_l + - - - ao,
g = bua™ + - + by

and we have a long division process, viz:

ambglxm—n +
bpa™ 4+ -+ bo amx™ + amz™l + o+ ag
amx™

ete. ..

(See S. Perlis, Theory of Matrices, p.111.)

2.2.2 Euclid’s Division Algorithm

f = qg+n with degr; < degg
g = @qar1+ 712 with  degre < degr;
L = @g3r2+73 with  degrs < degrs
Tn—2 = Qnrn—1+7rn with degr, <degr,_i
n—1 = {4n+1Tn

Then r, = gcd(f, g), the greatest common divisor of f and g—i.e.
Ty, is a polynomial d with the property that

1. d| fand d | g, and
2. Vee Flx],e| fande|g=e]d.

(This defines ged(f, g) uniquely up to a constant multiple.)
We select the monic (i.e. leading coefficient = 1) ged as “the” ged.
Also, Ju,v € F[z] such that

'n = ng(fag)
= uf+uvg

—find v and v by ‘forward substitution’ in Euclid’s algorithm; viz.

o= f+(-a)g
re = g+ (—q2)m
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9+ (—a2)(f+ (—a1)g)
= g+ (—@)f + (q1a2)g9
= (—@)f+(1+aqage)g

rm = (.)f+(.)g
- =~

u v
In general, i, = sif + tpg for =1 < k < n, where
’r*l:fv o=, 871:17 80:07 t,1:0, to=1
and
Sk = —QkSk—1 + Sk—2, tk = —qrtr—1 + tk—2

for 1 < k <n. (Proof by induction.)
The special case ged(f,g) =1 (i.e. f and g are relatively prime) is of
great importance: here Ju,v € F[x] such that

uf +vg=1.

EXERCISE 2.1
Find ged (322 + 22 + 4,22* 4+ 52 + 1) in Q[x] and express it as uf + vg
for two polynomials u and v.

2.3 Irreducible Polynomials

DEFINITION 2.4
Let f be a non-constant polynomial. Then, if

g is a constant
or ¢ = constant x f

glf=

we call f an irreducible polynomial.

Note: (Remainder theorem)
f=(x—a)q+ f(a) where a € F. So f(a) =0iff (x —a) | f.

EXAMPLE 2.4

f(x) =22+ 2 +1 € Zy[z] is irreducible, for f(0) = f(1) =1# 0, and
hence there are no polynomials of degree 1 which divide f.
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THEOREM 2.2
Let f be irreducible. Then if flg, ged(f,g9) =1 and Ju,v € Flz| such
that

uf +vg=1.
PROOF Suppose f is irreducible and f}g. Let d = ged(f, g) so
d|f and d]g.
Then either d = c¢f for some constant ¢, or d = 1. But if d = ¢f then

fld and dlg
= f|g —a contradiction.

So d =1 as required.

COROLLARY 2.4
If f is irreducible and f | gh, then f | g or f | h.

PROOF: Suppose f is irreducible and f | gh, f|g. We show that f | h.
By the above theorem, Ju, v such that

uf +vg = 1
= ufh+vgh = h
=f | h
THEOREM 2.3
Any non-constant polynomial is expressible as a product of irreducible

polynomials where representation is unique up to the order of the irreducible
factors.

Some examples:

(41?2 = 2?2+2x+1
= 2241 inZylx|
(x2—|—ac+1)2 = 2"+ 22+ 1 in Zy[x]
e +x+1)2x+1) = 23 +22+1 inZs[z]

= (@®+20+2)(x+2) inZsz].

PROOF
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Existence of factorization: If f € F[x]is not a constant polynomial, then
f being irreducible implies the result.

Otherwise, f = f1F1, with 0 < deg f1,deg F}| < deg f. If f; and F} are
irreducible, stop. Otherwise, keep going.

Eventually we end with a decomposition of f into irreducible poly-

nomials.

Uniqueness: Let
cfifor  fm =dgi192- - gn

be two decompositions into products of constants (¢ and d) and monic
irreducibles (f;, gj). Now

filfifar fm= filg192- gn
and since f;, g; are irreducible we can cancel f; and some g;.

Repeating this for fa, ..., fi,, we eventually obtain m = n and ¢ = d—
in other words, each expression is simply a rearrangement of the factors
of the other, as required.

THEOREM 2.4
Let F, be a field with q elements. Then if n € N, there exists an irred-
ucible polynomial of degree n in F[z].

PROOF First we introduce the idea of the Riemann zeta function:

21 1
((s) = s = H 1
n=1 p prime = p°¥
To see the equality of the latter expressions note that
1 = i 2
= r=14+z+2°+- -
-z =

and so

RHS. = J] (ii>

1S
p prime \i=0 P

1 1 1 1
= 1+§+ﬁ+... 1+§+@+...

111
= lh g+t
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—mnote for the last step that terms will be of form

1 S
(pi“ - -p‘éR>

up to some prime pg, with a; > 0Vi=1,..., R. and as R — oo, the prime
factorizations
pi"l P paRR
map onto the natural numbers, N.
We let Ny, denote the number of monic irreducibles of degree m in Fy[x].

For example, N1 = ¢ since = + a,a € Fy are the irreducible polynomials of
degree 1.

Now let |f| = ¢%&/, and |0| = 0. Then we have

|fgl = fllgl since deg fg = deg f+degg
and, because of the uniqueness of factorization theorem,
1 1
Z I7I° - H 1

f monic f monic and 1fI°

irreducible

Now the left hand side is

> Y

n=0" f monic and

degf=n
o0 qn
= an

(there are ¢" monic polynomials of degree n)
o0

-y 1
- n(s—1
—~q (s—1)
_ 1
=
1 —
qs—l
ad 1
and R.H.S. = H ﬁ.
=)
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Equating the two, we have

ﬁ . (4)
q— i (1 q—)

We now take logs of both sides, and then use the fact that

1 ooxn
og (—— ) =% iffa] < 1;
0g<1_x> - it el <1

n=1

so (4) becomes

1
log 1— q—(s—l) - H

— 1 . 1

n=1
oo oo 1
= D N},
mns
n=1 m=1 mq
oo qk oo oo n
SO Z kqsk = Z Nn Z mnqmns
k=1 n=1 m=1
o 2, niNp
_ Z mn==k
ks
k=1 kq
Putting x = ¢°®, we have
0k ok oo
T
qT = zF x niNy,
k=1 k=1 mn=~k

and since both sides are power series, we may equate coefficients of z* to

obtain
= > nN,=) nN,. (5)

mn=k nlk

We can deduce from this that V,, > 0 as n — oo (see Berlekamp’s “Algebraic
Coding Theory”).
Now note that N; = g, so if k is a prime—say k = p, (5) gives
¢" = Ni+pNp=q+pN,
=N, = qp—q>0 as ¢ >1and p > 2.
» =
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This proves the theorem for n = p, a prime.
But what if &k is not prime? Equation (5) also tells us that

q" > kNy.
Now let £ > 2. Then
¢ = kN,+ ) nN,
nlk
n#k
< kNp+ Zq" (as nN, < ¢")
nlk
n#k
Lk/2]
< kNet+ Yo q"
n=1
[k/2]
< kNp+ > ¢"  (adding 1)
n=0
gF/2+1
= kNp+ — g (sum of geometric series).
q —
But
t+1
¢ -1 ¢t ifg>2,
q—1
SO

qk < ka +qu/2J+1

qk _qu/2J+1
k

=Ny >

Since ¢ > 1 (we cannot have a field with a single element, since the additive
and multiplicative identities cannot be equal by one of the axioms), the
latter condition is equivalent to

k> |k/2]+1

which is true and the theorem is proven.
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2.4 Minimum Polynomial of a (Square) Matrix

Let A € Myxn(F), and g = cha. Then g(A) = 0 by the Cayley-Hamilton
theorem.

DEFINITION 2.5
Any non—zero polynomial g of minimum degree and satisfying g(A) =0
is called a minimum polynomial of A.

Note: If f is a minimum polynomial of A, then f cannot be a constant
polynomial. For if f = ¢, a constant, then 0 = f(A) = cI,, implies ¢ = 0.

THEOREM 2.5
If f is a minimum polynomial of A and g(A) = 0, then f | g. (In partic-
ular, f | cha.)

PROOF Let g(A) =0 and f be a minimum polynomial. Then

g=af +r,
where 7 = 0 or degr < deg f. Hence
9(4) = q(A)x0+r(A)
0 = r(A).

So if r # 0, the inequality degr < deg f would give a contradict the defini-
tion of f. Consequently r =0 and f | g.
Note: It follows that if f and g are minimum polynomials of A, then f|g
and g|f and consequently f = cg, where c is a scalar. Hence there is a
unique monic minimum polynomial and we denote it by ma.

EXAMPLES (of minimum polynomials):

1. A=0smyu==x

2. A=, myg=a—1

3. A=cl, &mag=x—c

4. A2=Aand A#0and A# I, & my = 2> — 2.

EXAMPLE 2.5

F =Q and
5 —6 —6
A= -1 4 2
3 -6 —4
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Now

A ;é 60137 €0 6@7 S0 mA#.’L'—CQ,
A? = 3A-2I3
=ms = 2> —3z+2

This is an special case of a general algorithm:

(Minimum polynomial algorithm) Let A € M,,,,(F"). Then we find the
least positive integer r such that A" is expressible as a linear combination
of the matrices

I, A,... AL
say
A" =cg+ A+ + CTflAT_l.
(Such an integer must exist as I,, A,... ,A"2 form a linearly dependent

family in the vector space M, «,(F') and this latter space has dimension
equal to n?.)

Then my = 2" — ¢p_qz" !

— - —c1x — Cp.

THEOREM 2.6
If f=a2"4ap12" '+ + a1z + ag € Flz], then me(yp) = f, where

00 0 —ag

1 0 —aq

c(fy=10 1 0 —ao
L0 0 -+ 1T —ap1 |

PROOF For brevity denote C'(f) by A. Then post-multiplying A by the
respective unit column vectors Fn, ..., E, gives

AFE, = E»

AEy = E3= A2E1 = Fj5

AE,_, = E,=A"'E,=E,
AEn = —a0E1 — a2E2 — s — an_lEn
= —apbh — aAE] — - — an_lAn_lEl = A"Fq,
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S0
= f(A)E; =0 = first column of f(A) zero

Now although matrix multiplication is not commutative, multiplication of
two matrices, each of which is a polynomial in a given square matrix A, is
commutative. Hence f(A)g(A) =g(A)f(A) if f, g € Flz]. Taking g ==z

gives

F(A)A = AF(A).

Thus

f(A)Ey = f(A)AE, = Af(A)E1 =0
and so the second column of A is zero. Repeating this for Fjs,..., E,, we
see that

f(A)=0

and thus ma|f.
To show m4 = f, we assume degm g =t < n; say

ma = xt + bt_lﬂjt_l + -+ bo.

Now
ma(A) = 0
= A+ b AT 4 b, = 0
= (A" 4+ b AT D) By = 0,

and recalling that AE; = F» etc., and t < n, we have
Eip1 +bi B+ +b1Es+bgE1 =0

which is a contradiction—since the F; are independent, the coefficient of
FE1 cannot be 1.

Hence m4 = f.
Note: It follows that chy = f. Because both chy and my4 have degree n
and moreover m4 divides chy .

EXERCISE 2.2
If A = J,(a) for a € F, an elementary Jordan matrix of size n, show
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that ma = (x — a)™ where

a 0 0
1 a
0 1
A= Jy(a) =
00 --- a O
| 0 0 1 a |

(i.e. A is an n X n matrix with a’s on the diagonal and 1’s on the subdiag-
onal).

Note: Again, the minimum polynomial happens to equal the characteristic
polynomial here.

DEFINITION 2.6

(Direct Sum of Matrices)

Let Ay, ..., A; be matrices over F'. Then the direct sum of these matrices
is defined as follows:

A 0
0 A
AP A B DA =

Properties:

1.
(A1® DA+ (B1®--®B)=(A1+B1) @ & (A + By)
2. If\€F,
MA@ - @A) = (MDD - D (VA
(A1@- ®A)BL@- ®By) = (A1B1) & & (A4 By)
4. If f € Flz] and Ay, ..., A; are square,
fAT® - @A) = f(A) D @ f(Ar)

DEFINITION 2.7
If fi,..., ft € Flz|, we call f € F|x] a least common multiple (lcm ) of

fl?"'aft if
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L fulf... . fel f, and
2 file,...file=f]e.

This uniquely defines the lem up to a constant multiple and so we set “the”
lem to be the monic lem .

EXAMPLES 2.1

If fg #0, lem (f,9) | fg -
(Recursive property)

lcm(fla"'7ft+1) = lcm(lcm(flv'--aft)aft—i-l)'
THEOREM 2.7
MA@--sA, = lem (ma,,...,ma,),
Also

t
ChAlEB"'@At = H ChAi .
=1

PROOF Let f = L.H.S. and g = R.H.S. Then
f(AL® - dA) =0

= f(A)®---Df(A) =0 ---d0
= f(A1>:0a7f(At):0
= ma, | f,...,ma, | f
= gl
Conversely,
mA1|g""’mAt’g
= g(A1)=0,...,9(A) =0
= gA)®--®g(A4) =080
= g(A41®---®A)=0
= f:mANB"-@At‘g'
Thus f =g.

EXAMPLE 2.6
Let A= C(f) and B = C(g).
Then magp = lem (f, g).
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Note: If

[ = epi...pf
b
g = dpi ...pi’t
where ¢,d # 0 are in F' and py, ..., p: are distinct monic irreducibles, then
ged(f,g) = pflnin(ahbl) B 'p;nin(at,bt%
lem (f, g) _ pllnax(al,ln) N ‘pinax(a,t,bt)
Note
min(ai, bz) + max(ai, bz) =a; + b;.
SO

ged(f, g)lem (f, g) = fg.
EXAMPLE 2.7
If A= diag (A1,...,\n), thenmy = (x —¢1) -+ (v —¢), where ¢q, ..., ¢

are the distinct members of the sequence A1, ..., An.

PROOF. For A is the direct sum of the 1 x 1 matrices Ay,..., A, having
minimum polynomials z — A1, ..., \,. Hence

mag=lem(z—A1,...,2—=XAp) =(x—c1) - (& — ).

We know that m4 | chy . Hence if
chy =pi*...pf"
where a; > 0,...,a; > 0, and p1, ..., p; are distinct monic irreducibles, then
ma :plil...pft
where 0 < b; <a;, Vi=1,...,t.
We soon show that each b; > 0, i.e. if p | chy and p is irreducible then

p|ma.
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2.5 Construction of a field of p™ elements

(where p is prime and n € N)

Let f be a monic irreducible polynomial of degree n in Zy[z]—that is,
F, = Z, here.
For instance,

n=2,p=2 = x2+x+1:f
n=3p=2 = B4z +l=forad+z>+1=7/.

Let A = C(f), the companion matrix of f. Then we know f(A) = 0.
We assert that the set of all matrices of the form g(A), where g € Zy[z],
forms a field consisting of precisely p™ elements. The typical element is

bol, + b1 A+ -+ b Al

where by, ...,b; € Z,.

We need only show existence of a multiplicative inverse for each element
except 0 (the additive identity), as the remaining axioms clearly hold.

So let g € Zy[z] such that g(A) # 0. We have to find h € Z,[x] satisfying

Note that g(A) # 0 = f)g, since

flg=g9="rh
and hence
9(A) = f(A) f1(A) = 0f1(A) = 0.
Then since f is irreducible and f)g, there exist u, v € Z,[x] such that
uf +vg=1.

Hence u(A)f(A) +v(A)g(A) = I, and v(A)g(A) = I, as required.
We now show that our new field is a Z,~vector space with basis consisting

of the matrices
I,, A,... A"

Firstly the spanning property: By Euclid’s division theorem,
g=Trfa+r
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where ¢,r € Zp[z] and degr < degg. So let

r=ro+rzet+rpazt

where rq,...,7,-1 € Zp. Then
g(4) = f(A)q(A) +r
= 0g(A) +r(4)
= r(4)
= ol +1m A+ Fr, AV
Secondly, linear independence over Z,: Suppose that
roly, + 1A+ -+ Tn_lAn_l =0,

where 79, 71,...,7—1 € Zp. Then r(A) = 0, where

r=ro+rie+-+rp_gz"

Hence my = f divides r. Consequently » = 0, as deg f = n whereas
degr < n if r # 0.

Consequently, there are p"™ such matrices g(A) in the field we have con-
structed.

Numerical Examples

EXAMPLE 2.8
Letp=2,n=2, f=x?>+x+1¢€ Zs[x], and A= C(f). Then

=10 ]=0 1]

Fy = {a012+a1A|a0,a1€Z2}
= {O,IQ,A,IQ+A}.

and

We construct addition and multiplication tables for this field, with B =
I; + A (as an exercise, check these):

(efo[L[A[B] [«]0]L]A]B]
0J0|L|A[B] [0]0]o]0]0
L L0 |[B|4A| [L|0|L A|B
AlA[B|0|L| [A|0[A|B|L
B|B|A|L|0| [B|0|B|L|A

39



EXAMPLE 2.9
Letp=2,n=3, f=a+x+1¢& Zs]x]. Then

00 —1 00 1
A=C(f)=|10 -1 |=|10 1],
01 0 010

and our eight-member field Fy (usually denoted by GF'(8) [“GF” corresponds
to “Galois Field”, in honour of Galois]) is

Fy = {aols+a1A+axA* | ag,a1,a2 € Zy }
= {0,13,A,A* I3+ A, I3+ A, A+ A* I3+ A+ A%}

Now find (A% + A) ™"
Solution: use Euclid’s algorithm.

B rr+l=(+1)(2®+2)+ 1
Hence

B rr+l+@+)(a?+z) = 1
B+ A+ L+ (A+13)(A2+A) = I3
(A+I)(A2+4) = I

Hence (A2 + A)~! = A+ I3.

THEOREM 2.8
Every finite field has precisely p"™ elements for some prime p—the least
positive integer with the property that

I+1+1+---+1=0.
p

p is then called the characteristic of the field.

Also, if x € F, a field of ¢ elements, then it can be shown that if x #£ 0,
then
zi~t =1.

In the special case F' = Z,, this reduces to Fermat’s Little Theorem:
P1=1 (mod p),

if p is prime not dividing x.

40



2.6 Characteristic and Minimum Polynomial of a Transform-
ation

DEFINITION 2.8
(Characteristic polynomial of T : V +— V')

Let 3 be a basis for V and A = [T]g
Then we define chp = ch4 . This polynomial is independent of the basis

0:

PROOF (chr is independent of the basis.)

If v is another basis for V and B = [T]}, then we know A= P 'BP
where P is the change of basis matrix [Iv]g.

Then

chy = chpipp

det(zI, — P"'BP) where n = dimV/
det(P~*(xI,)P — P"'BP)
det(P~*(z1I, — B)P)

det P~1 chp det P

= chp.

DEFINITION 2.9
If f =ag+ -+ a;x’, where ag,...,a; € F, we define

f(T) = agly + --- + a/T".
Then the usual properties hold:
fr9 € Fla] = (f+9)(T) = f(T)+9(T) and (fg)(T) = f(T)g(T) = g(T)f(T).
LEMMA 2.1
f € Fla] = (7)) = £ (IT15) -

Note: The Cayley-Hamilton theorem for matrices says that chy (A) = 0.
Then if A = [T]g, we have by the lemma

[chy (7)) = chy (A) = chy (A) =0,
so chp (T) = Oy.
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DEFINITION 2.10
Let T : V — V be a linear transformation over F. Then any polynomial
of least positive degree such that

f(T) =0y
is called a minimum polynomial of T

We have corresponding results for polynomials in a transformation T" to
those for polynomials in a square matrix A:

g=af+r=9(T)=qT)f(T)+r(T).

Again, there is a unique monic minimum polynomial of 7" is denoted by m
and called “the” minimum polynomial of T'.
Also note that because of the lemma,

mr = m[T]g

For (with A = [T]7)

(a) ma(A) =0, so ma(T) = 0y. Hence my|ma.
(b) mp(T) = Oy, so [mT(T)]g = 0. Hence mp(A) = 0 and so ma|mr.
EXAMPLES 2.2
T=0y < mr=ux.
T=Iy<mr=x—1.
T=cly &mpr=x—c.
T? =T andT # 0y and T # Iy < mp = 2> — 2.

2.6.1 M, «,(F[z]—Ring of Polynomial Matrices

EXAMPLE:

22 +2 2°+5x+1
[ z+3 1 ] € Max>(Qlz])

_ o0 ] e[ 0], [0 5] [2 1
N 0 0 0 0 1 0 3 1
—we see that any element of M, ., (F[x]) is expressible as

2" A+ 2™ A+ A

where A; € My,x,(F). We write the coefficient of z° after 2%, to distinguish
these entities from corresponding objects of the following ring.
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2.6.2 M, «,(F)y—Ring of Matrix Polynomials

This consists of all polynomials in y with coefficients in M,y (F).
EXAMPLE:

[8 (1)]y5+[(1) 8}y2+[? g}zﬂr[g HGMQXQ(F)[Z/].

THEOREM 2.9
The mapping
D : Mysn(F)[y] — Mysen(Flz])

given by
P(Ag+ A1y + -+ Any™) = Aotz + -+ 2T A,

where A; € Myxn(F), is a 1-1 correspondence and has the following prop-
erties:

P(X+Y) = ¢X)+(Y)
P(XY) = d(X)P(Y)
O(tX) = t®(X) VteF.

Also
O(lLyy—A)=xl, — A VAE Myun(F).

THEOREM 2.10 ((Left) Remainder theorem for matrix polynomials)

Let Byy™ + -+ 4+ By € Myxn(F)y] and A € Myyn(F).

Then
Bpy™ +---+Bo= Iy —A)Q+ R
where
R = A"B,,+---+ABy + By
and Q = Chpy™ '+ +Co
where Cy,—1, ..., Cy are computed recursively:
Bn = Cpn
Bn1 = —ACp 1+ Chpo
B = —-AC; + .
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PROOF. First we verify that By = —ACy + R:

R:AmBm = AmCm—l

+Amile—1 _AmCm—l + Amilc’m—2
+ -+
+AB; —A%Cy + ACy
+By By
= By + AC,.

Then

(Iyy—AQ+R = (Liy)(Cp_1y™ '+ +C)
— A(Crp1y™ -+ Co) + A™ By, + - + Bo
= Co 19" + (Cg — ACy 1)y 4+ + (Co — ACY)y +
—ACy+ R
= Bny™ + Bp1y™ '+ + Biy + By.

Remark. There is a similar “right” remainder theorem.

THEOREM 2.11
If p is an irreducible polynomial dividing cha, then p | ma.

PROOF (From Burton Jones, ”Linear Algebra”).
Let ma = 2t + as_12™' + -+ + ap and consider the matrix polynomial
iny

(I)_l(mAIn) = Ly + (at—ljn)yt_l + -+ (aolyn)
= (lhy—A)Q+ AtIn + At_l(atflln) +- - taoly
= (Iny — A)Q +mp(A)
= (lny — A)Q.

Now take ® of both sides to give
mal, = (xI, — A)P(Q)
and taking determinants of both sides yields

{ma}" = cha x det ®(Q).
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So letting p be an irreducible polynomial dividing ch4, we have p | {m}"
and hence p | m4.

Alternative simpler proof (MacDuffee):

ma(x) —ma(y) = (x — y)k(z,y), where k(x,y) € F[z,y]. Hence

ma(x)l, = ma(xl,) —ma(A) = (I, — A)k(z1,, A).
Now take determinants to get
ma(z)" = cha(x)det k(zl,, A).

Exercise: If A(z) is the ged of the elements of adj(zl, — A), use the
equation (z1, —a)adj(xI, — A) = cha(x)I, and an above equation to deduce
that ma(x) = cha(z)/A(x).

EXAMPLES 2.3
With A =0 € M,xn(F), we have chy = 2™ and my = x.
A = diag(1,1,2,2,2) € M545(Q). Here

chy = (x—-1)*(x—-2)3 and my=(z—1)(z—2).

DEFINITION 2.11
A matrix A € Myuxn(F) is called diagonable over F if there exists a
non—singular matrix P € M, ., (F') such that

P71AP = diag (\1,..., \n),
where A1,..., A, belong to F'.

THEOREM 2.12
If A is diagonable, then m 4 is a product of distinct linear factors.

PROOF
If P7'AP = diag (\1,...,\n) (With Af,..., A\, € F) then

ma = Mp-1ap = Mdijag (\1,..., \p)

= (z—a)(zr—c)...(z — &)

where c1, ..., ¢ are the distinct members of the sequence Aq,..., A,.
The converse is also true, and will (fairly) soon be proved.
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EXAMPLE 2.10

A = Jp(a).

We saw earlier that my = (z —a)” so if n > 2 we see that A is not diago-
nable.

DEFINITION 2.12
(Diagonable LT's)

T :V — V is called diagonable over F' if there exists a basis 8 for V
such that [T]g is diagonal.

THEOREM 2.13
A is diagonable < Ty is diagonable.

PROOF (Sketch)

= Suppose P~'AP = diag (\1,...,A\,). Now pre-multiplying by P and
letting P = [Py|---|P,] we see that

Ta(P) = AP =M\P)

Ta(P,) = AP,=M\DP,
and we let 3 be the basis Py,..., P, over V,(F). Then

A1

An
< Reverse the argument and use Theorem 1.17.
THEOREM 2.14

Let A € My xn(F). Then if X is an eigenvalue of A with multiplicity m,
(that is (x — X\)™ is the exact power of x — X\ which divides chy ), we have

nullity (A — M\,) < m.
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REMARKS. (1) If m = 1, we deduce that nullity (A — A\I,,) = 1. For the
inequality
1 < nullity (A — A\I,)

always holds.
(2) The integer nullity (A — AI,,) is called the geometric multiplicity of
the eigenvalue A\, while m is referred to as the algebraic multiplicity of A.

PROOF. Let vy,...,v, be a basis for N(A — AI,,), where X is an eigenvalue
of A having multiplicity m. Extend this linearly independent family to a
basis v1, ..., Vp, Upt1,..., 0, of Vi (F). Then the following equations hold:

Av1 = )\Ul
Av, = v,
Avppr = buivr+ -+ bpivy
Avy, = bip—rv1 + -+ bpp—rUp.

These equations can be combined into a single matrix equation:

Alvr] - |vplvpga| - o] = [Avi|- - [Avp|Avpgq] - - - | Avy]
= [Av1] - |Avplbrivr + - -+ bpivg| - [bip—rv1 +

= [o1] - |vn] [%’%] ,

Hence if P = [vq|- - |v,], we have

M, | B
—1 o r 1
PmAP = [ﬂ?} :

chy = chp-1yp = chyy, - chp, = (x — \)"chp,

Then

and because (z — A)™ is the exact power of x — A\ dividing chy , it follows
that
nullity (A — A\I,,) =r < m.

THEOREM 2.15
Suppose that chy = (x —¢1)* -+ (x — ¢;)*. Then T is diagonable if

nullity (7' — ¢;1,) = a; for 1 <i <t.
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PROOF. We first prove that the subspaces Ker (T — ¢;Iy/) are independent.
(Subspaces Vi, ..., V; are called independent if

v+t =0veV,i=1,...t,=v;=0,...,v, =0.

Then dim (Vi +--- 4+ V;) =dim (V1) + - - - +dim V}).)
Assume that
vt =0,

where v; € Ker (T — ¢;1,,) for 1 <i <t. Then

T +-+v) = T(0)

cauvi+---+cvy = 0.
Similarly we deduce that

2 2
civi+---+cvy = 0

t—1 t—1
Cq ’U1+"'+Ct V¢ = 0.

We can combine these ¢ equations into a single matrix equation

1 - 1
1 o
Cl DY Ct
-1 -1 Ut 0
1 Ct

However the coefficient matrix is the Vandermonde matrix, which is non—
singular as ¢; # ¢; if ¢ # j, so we deduce that vi = 0,---,v; = 0. Hence with
Vi = Ker (T — ¢;Iy), we have

t t
dim (Vi +---4+ V) = ZdimVi = Zai =dimV.
i=1 i=1

Hence
V=Vi+--+V.

Then if 3; is a basis for V; for i <i <t and 0 = 1 U---U S, it follows that
0 is a basis for V. Moreover



and T is diagonable.
EXAMPLE. Let

5 2 =2
A= 2 5 -2
-2 -2 5

(a) We find that chy = (z — 3)%(z — 9). Next we find bases for each of the
eigenspaces N (A — 913) and N(A — 31I3):
First we solve (A — 3I3)X = 0. We have

2 2 =2 11 -1
A-3I3= 2 2 =2]1—-100 0
-2 -2 2 00 O
Hence the eigenspace consists of vectors X = [z, y, 2] satisfying x = —y+2z,
with y and z arbitrary. Hence
—Yy+z -1 1
X = Y =y 1 {+2z| 0|,
z 0 1
so X131 = [-1,1,0]" and X12 = [1, 0, 1]* form a basis for the eigenspace
corresponding to the eigenvalue 3.
Next we solve (A — 913)X = 0. We have
-4 2 =2 1 01
A—-9I3= 2 4 -2 | —-]1011
-2 -2 -4 0 00
Hence the eigenspace consists of vectors X = [z, y, 2|' satisfying 2 = —z
and y = —z, with z arbitrary. Hence
—z -1
X=| -2 |=2z]| -1
z 1
and we can take Xo; = [—1, —1, 1]* as a basis for the eigenspace correspond-

ing to the eigenvalue 9.
Then P = [X11|X12|X21] is non—singular and

300
P'AP=1]0 3 0
009
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THEOREM 2.16

If
mr=(x—ci)...(x —c)
for c1,...,¢ distinct in F', then T is diagonable and conversely. Moreover
there exist unique linear transformations 11, ...,T; satisfying

Iy, = Th+---+1Ti
T = T+ + ',
TT; = Oy ifi#j,

T2 = T, 1<i<t.

Also rankT; = a;, where chp = (x — ¢1)™ -+ (x — ¢;)*.

Remarks.

1. T1,...,T; are called the principal idempotents of T.

2. If g € Flx], then g(T) = g(c1)Th + - - - + g(ct)T;. For example

T" =c'Ty + - - + ¢"T;.
3. If ¢1,...,¢ are non—zero (that is the eigenvalues of T are non-zero),
the T—! is given by
T ="+ + ¢

Formulae 2 and 3 are useful in the corresponding matrix formulation. PROOF
Suppose mp = (x — ¢1)---(x — ¢), where c1,...,¢; are distinct. Then

chy = (x — )™ -+ (x — ¢)*. To prove T is diagonable, we have to prove
that nullity (T — ¢;Iy) =a;, 1 <i <t

Let p1,...,p; be the Lagrange interpolation polynomials based on ¢y, . . ., ¢,
ie.
gy
pi:H< ”>, l<i<t.

. Ci —Cj

Jj=1

J#i
Then

g€ Flz]=g=g(ci)pr+---+g(c)pe.

In particular,
g=1l=1=pi+--+p
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and
g=x=x=c1p1+- -+ cps-

Hence with T; = p;(T),

Iy = Th+--+T;
T = 01T1+"‘+CtTt.

Next

mr = (x—c1)...(x —c) | pipj ifi#j
= (pipj)(T) = OV if ¢ 75]
= pi(T)pj(T) =0y or T;T; =0y ifi#j
Then T? = Ty(T1 + - -- + T) = Tily = T;.

Next
OV = mT(T) = (T — 01[\/) s (T — CtI\/).

Hence

¢ ¢
dim V' = nullity Oy < Z nullity (7' — ¢;Iy) < Z a; = dim V.
i=1 i=1

Consequently nullity (7" — ¢;Iy) = a;, 1 <1 <t and T is therefore diago-
nable.
Next we prove that rankT; = a;. From the definition of p;, we have

~

¢
nullity p; (T') < nullity (T — ¢;Iy) = Z aj =dimV —q;.

J=1
J#i

<SS

Sl
E

Also pi(T)(T — ¢;ily) =0, so Im (T — ¢;Iy) C Ker p;(T). Hence
dimV — a; < nullity p;(T)

and consequently nullity p;(T") = dim (V') — a;, so rank p;(T) = a;.
We next prove the uniqueness of 11, ..., T;. Suppose that Sy, ..., S also
satisfy the same conditions as 17,...,7;. Then

TT = TT; =T,
SjT = TSj = Cij
T(TSj) = Ti(¢;S;) = ¢TiS; = (IiT)S; = ¢iTiS;
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SO (Cj — CZ)TzS] = 0\/ and TZSJ = OV if 4 7é j Hence

t
T, = Ty =T.()_S;) =TS
j=1

¢
Si = IySi= (> _T)Si =TS
j=1

Hence T; = S;.

Conversely, suppose that T is diagonable and let 8 be a basis of V' such
that

A =T} = diag (A1, ..., \n).

Then mp = myq = (x —c1) -+ (¢ — ¢), where ¢q,...,¢ are the distinct
members of the sequence A1, ..., \,.

COROLLARY 2.5
If
chy =(x—c1)...(x—¢)

with ¢; distinct members of F', then T is diagonable.
PRrROOF: Here myr = chp and we use theorem 3.3.

EXAMPLE 2.11
Let

A:H g] a,beF, ab#0, 1+1+#0.

Then A is diagonable if and only if ab = y? for some y € F.

For chy = 2% — ab, so if ab = 2,

chay = 2% -y = (z +y)(z —y)

which is a product of distinct linear factors, as y # —y here.

Conversely suppose that A is diagonable. Then as A is not a scalar
matrix, it follows that m 4 is not linear and hence

ma = (x —c1)(x — c2),

where ¢1 # ¢o. Also chy =my, so cha (c1) = 0. Hence

i —ab=0, or ab=ci.

For example, take F = Z7 and let a = 1 and b = 3. Then ab # y? and
consequently A is not diagonable.
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3 Invariant subspaces

DEFINITIONS 3.1
Subspaces Vi,...,V; of V are called independent if

U1+---+Ut:0:>'l)1:0,.--,'1)t:0
Yo € Vi,...,v € Vi

We say that V' is the (internal) direct sum of the subspaces Vi, ...,V if
(a) Vi,...,V; are independent and
by V=Vi+-+V.

Le. every element v € V is uniquely expressible as

V=01 + -+

with v; € V;.
Then V' is isomorphic to the (external) direct sum Vi @ --- @V, under
the isomorphism v +— (v1,...,v¢) and we write V=V, & --- @ V,.

THEOREM 3.1
IfV =V, &---®V, (an internal direct sum) and (31, ..., [3; are bases for
Vi,..., V4 respectively, then

f=pU---Up,

the sequence formed by juxtaposing the separate bases, is a basis for V.
Also
dimV =dimV; +--- + dim V.

Proof: Left as an exercise.
DEFINITION. Let T : V — V be a LT and W a subspace of V. Then if

weW=T(w)eW,

we say W is a T-invariant subspace of V. We can then consider the linear
transformation Ty : W — W defined by

Tw (w) = T(w) Yw e W.



If 3" is a basis for W, {0} C W C V, and (8 is an extension to a basis of
V', then
[Tw], | B

8 _
Tls=1— B

B

A situation of great interest is when we have T-invariant subspaces
Wi,.... Weand V=W ®---®&W;. For if 6 =01 U---Up;, where 3; is
a basis for W;, we see that

(715 = [Tl @ - @ [Tw ]

There are two important examples of T—invariant subspaces that arise in
our study of Jordan and rational canonical forms - Ker p'(T) and T—cyclic
subspaces.

3.1 T—cyclic subspaces

DEFINITION 3.1
The unique monic polynomial f in F[z] of least degree satisfying

f(T)(v) =0

is called the minimum polynomial of the vector v € V relative to the
transformation T : V +— V and is denoted mr,,.

Then f(T)(v) =0 = mp, | f,somr, | mp. Alsomg, =1 v =0and
so if v # 0, deg mr, > 1.

EXAMPLE. Let T' = T4, where A = [ 00

1 0

w= 2] e 0]

} # CoU1, SO M7,y # T — cg. Next A2y = [ 0 ], SO

] . Also let

Then Av, = [ (1)

mr, v, = 2. Also Avg = [ 0

0 ], SO M, py = T.

DEFINITION 3.2

(T-cyclic subspace generated by v.)

If v € V, the set of all vectors of the form f(T')(v), f € F|[z], forms a
subspace of V' called the T-cyclic subspace generated by v. It is denoted by
Croy.
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PROOF. Exercise.
Also, Cr,, is a T-invariant subspace of V. For

welr, = w=f(T)(v)
= T(w) =T(f(T)(v)) = (THT))(v) = ((z/)(T))(v) € Cro-
We see that v = 0 if and only if Cr, = {0}.

THEOREM 3.2
Let v# 0, v € V. Then Cr, has the basis [3

v, T(v), T?*(v),..., T 1(v)

where k = degmr,,. (8 is called the T-cyclic basis generated by v. ) Note
that dim Cr,, = degmr,,.
Finally,

[TCT,u]g = C(mrp),
the companion matrix of the minimum polynomial of v.
PROOQOF.
1. The T-cyclic basis is a basis for Cr:

Spanning:
Let w € (v, T(v),...,T*(v)), so

w = wov+wTw)+ -+ w1 T 1(v)
= (U)QIV + -+ wk_lTk_l)(’U)
= 9(T)(v),

where g = wg + -+ - + wg_qzF1

, 80 w € Cr,. Hence
(v, T(v),...,T* Y(v)) C Cr,.

Conversely, suppose that w € Cr,, so

w = f(T)(v)
and
f=amry+r
where r = ag + a1z + - - + a1z 1 and ayg, ...,a5_1 € F. So

(M) = q(T)ymry(T)(v) +r(T)(v)
= ¢(T)m7r(T)(v) +apv+arT(v) + -+ ap—1TF1(v)
= agv+arT(v) + -+ a1 TF v
e (u,T(),...,T" 1 (v)).
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Independence:
Assume
apv + a1 T(v) + -+ + ak_lkal(v) =0,

where ag,...,ax_1 € F; that is, f(T)(v) = 0 where
f=ay+aiz+- -+ ap_12"71.
Hence mr,, | f and since
deg f =k — 1<k =degmr,,,

we have f = 0 and thus a; = 0 Vi.

2. [Te,, 15 = C(mry):
Let L = T¢,.,, the restriction of T' to Cry.

We want to find [L]g So
L(v) = T()=0v+1T(v)+0T?*w) +--- + 07" (v)
L(T(v)) = T?%w)=0v+0T(v)+1T%w) + - + 07" 1(v)
L(T*%(v)) : TF () = 0v + 0T (v) + 0T2(v) + - -- + 1T* (v)

Finally, to calculate L(T*~1(v)) = T*(v), we let

mr, =ag+arr+---+ ak_lxk_l + 2"
Then mz,(T)(v) = 0 and hence
L(T* Y (v) = TF(v) = —agv — a1 T(v) — - — ap_1 TF 1 (v).
Hence
0 0 . 0 —ap
G
00 - 1 —apy

as required.
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THEOREM 3.3
Suppose that mr,, = (x — ¢)*. Then the vectors

v, (T —cIy)(v),...,(T —cly) 1(v)

form a basis 3 for W = Cr,,, which we call the elementary Jordan basis.
Also

[Ty} = Ji(c).

More generally suppose mr,, = p*, where p is a monic irreducible polynomial
in F[x], with n = degp. Then the vectors

v, T(v), cee T (v)
PO,  TpTw), ... T pT))
T ), T UT)), ..., TP (T)(w),

form a basis for W = Cr,, which reduces to the elementary Jordan basis
when p = x — c. Also

[Tl = H(p"),

where H (pk) is a hypercompanion matrix, which reduces to the elemen-
tary Jordan matrix Ji(c) when p =z — c:

Clp) 0 - 0
N Cp) - 0

HpH)y=| 0 N - 0 |,

0 . N ) |

where there are k blocks on the diagonal and N is a square matrix of same
size as C(p) which is everywhere zero, except in the top right—hand corner,
where there is a 1. The overall effect is an unbroken subdiagonal of 1’s.

3.1.1 A nice proof of the Cayley-Hamilton theorem

(From Insel, Friedberg and Spence.)

Let f = chy, for some T : V +— V. We must show that f(T") = Oy—i.e.
that f(T)(v) =0VYv e V.

This is immediate if v =0, so assume v # 0 and let W = Cr,. Let §’
be a basis of W and 3 be an extension of 3’ to a basis of V. Then

[Tw]ﬁ; B
0 By
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and chy = chpy, - chp,. So chyp, | chy and since we know that
chr,, = mry,

we have mp, | chr.
Hence chr = gmr, and

chr (T')(v) = (9(T)m1,,(T))(v) = g(T)(mr,,(T)(v)) = g(T)(0) = 0.

3.2 An Algorithm for Finding my

We use the factorization of chy into monic irreducibles.

THEOREM 3.4
Suppose T : V — V,
mr :plil .. .pi’t
where by,...,by > 1, and py, ..., ps are distinct monic irreducibles.
Then fori=1,...,t we have

(a)
VS Imp(T) 55 TmplH(T) S Impli(T) = -+

(b)
{0} € Kerp;(T) C--- C Kerp?iil(T) C Kerpfi(T) =,

Note: In terms of nullities, conclusion (b) says that
0 <v(p(T)) < < wlpy™ (7)) <w(py(T) = -+

so this gives us a method of calculating b;.
Presently we’ll show that if chy = p{*...p}", then

nullity (pfl (T)) = a; deg p;.
Hence b; is also characterised as the smallest integer A such that
nullity (p}'(T)) = a; deg p;.

Also note that (a) and (b) are equivalent, and it is the latter that we
prove.

A notational simplification—the left F'[x]-module notation.

If f e Flz] and v € V, we define

It is easy to verify that
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(f+gv=fo+gv VfgeFlzl,veV;

2.
flv+w)= fu+ fw Vf € Flx],v,w € V;
3.
(fg)v=f(gv)  Vf,g€e FlalveV;
4.

lv=v Yo e V.

These axioms, together with the four axioms for addition on V, turn V into
what is called a “left F[x]-module”. (So there are deeper considerations
lurking in the background—ideas of greater generality which make the algo-
rithm we unravel for the rational canonical form also apply to other things
such as the theorem that any finite abelian group is a direct product of cyclic
prime power subgroups.)

(i) We first prove that {0} C Kerp;(T). We write p=p;, b=1"b; for
brevity; no confusion should arise since 7 is fixed.

PROOF. my = pf, f € Flz] and f(T) # Oy. Hence Jv € V such that
fv#0. Then

p(fv) = (pf)v =mrv =0,
so fv € Kerp(T).

(ii) We next prove that
Ker p’(T) = Ker p®*}(T).

The containment
Ker p’(T') C Ker p"}(T)

is obvious, so we need only show that

Ker p?(T) 2 Ker p® (7).

Let w € Kerp®*(T),i.e. pPTlw = 0. Now if my = pq, then gcd(p®, ¢) = 1.
So Ju,v € Flx] such that 1 = up® + vq. Hence

pb = upr +vmr.
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Hence

P(T) = (up®)(T)+o(T)mr(T)
= (up®)(T)

and thus
pPw= (") (P w) =p"r0 =0

and w € Kerp?, as required.
(iii)
Ker p"(T) = Ker p"*(T) = Kerp"™|(T) = Ker p"+*(T),
ie. Ker p"(T) D Kerp"™{(T) = Kerp"t(T) D Kerp"*2(T).

PROOF. Suppose that Kerp"(T) D Kerp"*+(T). Then

ve Kerp"™(T) = p'2u=0
= p"pw) = 0= pv € Kerp"t(T)
= pve Kerp"(T) = ph(pv) =0
= Pl =0=ve Kerp" (1.

So it follows by induction from (ii) that

Kerp?i (T) = Kerp?”l(T) =

Ker p*~(T") ¢ Kerp®(T)

and this forces a chain of proper inclusions:
{0} € Kerp(T) C --- C Kerp® Y(T) € Kerp®(T) =---

which is the desired result. For

p*~1q(T) # Oy, so Fv such that p?~1qv # 0. Then
qv & Kerp" (T,
but qu € Kerp®(T) as

pbqv =mpv = 0.
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3.3 Primary Decomposition Theorem

THEOREM 3.5 (Primary Decomposition)
IfT:Vw— YV isa LT with mp :pl{1 ...pgt, where p1,...,p; are monic
irreducibles, then

V = Kerp} (T) @ - - - ® Kerp*(T),
a direct sum of T-invariant subspaces. Moreover for 1 <1 <t,
v(pi(T)") = a; deg p;,
where chp = p{* - - py*.

REMARK. The same proof gives a slightly more general result:
Ifp= plfl ---pft, then

Ker p(T) = Kerp? (T) & - - - Ker p?*(T).

We subsequently give an application of the decomposition theorem in
this form to the solution of the n—th order linear differential equations with
constant coefficients. (See Hoffman and Kunze, pages 184-185.)

PROOF. Let mp = p?iqi Vi=1,...,t. Then

(qig;)(T) =0y ifi#jas mr|qq ifi#j.
Now ged(q1,--.,q:) =1, s0 3f1,..., f € Flz] such that

1= fig+-+ figs

and with T; = (f;¢;)(T") we have

Iy =T+ --+1T;. (6)
Also
TT; = (fig)(T)(fa5)(T)
= (fifi)(T)(aig;)(T)
= Oy if i # 7,
Then

t
V:@ Im7T;.
=1
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For T? = Ty(Th +---+1T;) = T;Iy = T;. Next, V = ImT} +---+ ImT;. For
veV=ov=Iyw)=Ti(v)+--+Ti(v) € ImT1 + -+ ImT;.

Next assume v1 + -+ v, =0, v; € ImT;, 1 <4 <t. Then v; = T;(u;) and

Ti(ur) +---+Ti(uw) = 0
T(Ti(ur) + - + Tt(ut)) = T(0)=0

( 1) =0

v; = T( i) = 0.

We now show that
Im T; = Kerpli(T).

“C” Let v € ImT;. Then

v = figw
=plv = plfigw
= £} a)w
= 0.

“277 Suppose pfzv e O
Now if j # i, we have p? | f;q;, so
Tj(v) = figjv = 0.
So
v = Iv(’U) :TI('U)"_—i_E(U) :E(U)
S Im Tia
as required.

Finally, let V; = Ker p?i (T') and L; = Ty,. Then because Vi, ..., V; are
T—invariant subspaces of V', we have

ChT = ChL1 st Cth.

Now p?"(T)(v) =0ifv eV, so pfi(Li) = 0Oy;. Hence my, has the form
my, = p;'. Hence chp, has the form chy, = pfi. Hence

at

d
ChT:piL iy —p1 epgt
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and consequently d; = a;.
Finally,
dimV; = degchy, = degp}* = a; degp;.
(Incidentally, we mention that mp = lem (myg,,...,mz,). Hence
mT :p?l pgt :pil pft
and consequently e; = b;. Hence mp, = pi.’i.)

THEOREM 3.6 (Commuting diagonable linear transformations)
If1Ty,...,T, : V — V are commuting diagonable linear transformations,
then there exists a basis 3 for V such that each of [Tl]g, e [Tm]g are each
diagonal.
(Matrix version) If Ay, . .., Ay, are commuting diagonable matrices of the
same size, then there exists a non-singular matrix P such that the matrices

P'AP,...P'A,,P
are simultaneously diagonal.

PROOF. (From Samelson page 158). We prove the result when m = 2, the
general case follows by an easy iteration. Suppose T} and T are commuting
diagonable linear transformations on V. Because mq, splits as a product
of distinct linear factors, the primary decomposition theorem gives a direct
sum decomposition as a sum of the T7—eigenspaces:

V=U® --0U.

It turns out that not only are the subspaces U; Tj—-invariant, they are 75—
invariant. For if U; = Ker (11 — cly ), then
velU;, = Ti(v)=cv
= TQ(Tl(U)) = CTQ(U)
= Tl(TQ(U)) = CTQ(’U)
= Ty (U) e U,.

Now because T5 is diagonable, V has a basis consisting of Th—eigenvectors
and it is an easy exercise to show that in a direct sum of Th—invariant
subspaces, each non-zero ”component” of a Thr—eigenvector is itself a Th—
eigenvector; moreover each non—zero component is a 11— eigenvector. Hence

V is spanned by a family of vectors which are simultaneously T} —eigenvectors
and Tho—eigenvectors. If 3 is a subfamily which forms a basis for V', then [T’ 1]g

and [Tg]g are diagonal.

63



THEOREM 3.7 (Fitting’s lemma)
Suppose T : V' — V is a linear transformation over T' and

Ker ¢ KerT? C - KerT" = Ker T = ...
Then V = ImT" & KerT™.

COROLLARY 3.1

If T :V — V is an indecomposable linear transformation (that is the
only T—invariant subspaces of V are {0} and V'), then T is either nilpotent
(that is T™ = Oy for some n > 1) or T' is an isomorphism.
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4 The Jordan Canonical Form

The following subspaces are central for our treatment of the Jordan and
rational canonical forms of a linear transformation 7' : V — V.

DEFINITION 4.1
With mp = plil .. .pi’t as before and p = p;, b = b; for brevity, we define

Npp = Imp"1(T) N Kerp(T).

REMARK. In numerical examples, we will need to find a spanning family
for Ny, ,. This is provided by Problem Sheet 1, Question 11(a): we saw
that if T: U — V and S : V — W are linear transformations, then If
Ker p"(T) = (uy, ..., u,), then

1

Nh,p = (ph_lub' .. aph_ Un>,

where we have taken U = V = W and replaced S and T by p(T) and
p"~Y(T) respectively, so that ST = p"(T). Also

dim(Im 7' N Ker S) = v(ST) — v(T).
Hence

Vhp = dim Nh,p
dim(Im p"~}(T) N Ker p(T))
v(p"(T)) = v(p" (1))

THEOREM 4.1
Nip 2 Nop 2o D Npp #{0} = Npp1p=---
PROOF. Successive containment follows from
Im L'~ O Tm L"

with L = p(T).
The fact that Ny, # {0} and that Ny;q, = {0} follows directly from
the formula
dim Ny, = v(p"(T)) — v(p" 1 (T)).

For simplicity, assume that p is linear, that is that p = x — ¢. The general
story (when degp > 1) is similar, but more complicated; it is delayed until
the next section.

Telescopic cancellation then gives

65



THEOREM 4.2

Vip T Vop+ -t lhp= V(pb(T)) =a,
where p® is the exact power of p dividing chr.
Consequently we have the decreasing sequence

Vip > 2p > 2 Ybp > 1.

EXAMPLE 4.1
Suppose T : V + V is a LT such that p*||mr, p = x — ¢ and

v(p(T)) =3,  v(p*(T)) =6,
8, = 10.

So
Kerp(T) C Kerp*(T) C Kerp*(T) € Kerp*(T) = Kerp®(T) = - -
Then

vip =3, vop=6—3=3,
V3p=8—06=2, vy,=10—8=2

SO
Nip = Nap D N3p = Ny # {0}

4.1 The Matthews’ dot diagram

We would represent the previous example as follows:

v4p Dots represent dimension:
V3p

V2 3+3+2+2=10
Vip =10=4+4+2

The conjugate partition of 10 is 4+4+2 (sum of column heights of diagram),
and this will soon tell us that there is a corresponding contribution to the
Jordan canonical form of this transformation, namely

J4(C) D J4(C) D JQ(C).
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In general,

Vb,p

height b

Vip

~—~
7 columns

and we label the conjugate partition by

€] = €3 2> -t 2 €.

Finally, note that the total number of dots in the dot diagram is v(p®(T)),
by Theorem 4.2.
THEOREM 4.3

Jvy,...,v, € V such that

e1—1

eo—1
b V1,P V2,...,P

ey _11]7
form a basis for Kerp(T).

PROOF. Special case, but the construction is quite general.

choose a basis p3uvy, pvy for Nyp

extend to a basis p3vi, pPus, pvs for No

Then p3v1, pPve, pus is a basis for Ny, = Kerp(T).
THEOREM 4.4 (Secondary decomposition)

() |
mT,’Ui = pEZ

(ii)
Kerpb(T) =Crp @+ ® Crp,

PROOF.
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(i) We have p¥~1v; € Kerp(T), so p¥v; = 0 and hence mr,, | p®. Hence
MT .y, = pf, where 0 < f < e;.

But p%~lu; # 0, as it is part of a basis. Hence f > e; and f = ¢; as
required.

(i) (a)
Cr.0; C Kerp®(T).

For p®wv; = 0 and so p®(fv;) =0 Vf € F[z]. Hence as e¢; < b,
we have

p*(fui) = p* % (p% foi) = p"0 =0
and fv; € Kerp®(T). Consequently Cr,, C Kerp®(T) and hence

Crp, + -+ Crp, C Kerpb(T).

(b) We presently show that the subspaces Cry,, j = 1,...,7 are in-
dependent, so
v
dim(C’Tﬂ,l + -+ CT,U’y) = Z dim CT,vj
j=1
v v
= Zdeng’Uj = Zej
j=1 J=1
= v(p"(T))
= dim Kerp®(T).
Hence

Kerp®(T) = Cra +---+ Crv,
= CT,Ul B---P CT,’U»Y'

The independence of the Cr,, is stated as a lemma:
Lemma: Let vy,...,v, €V, e1>--->e, > 1;
mry, =p9 1<j<y;p=z—¢

Also pel’lful, o ,pew’lv7 are LI. Then

fivi+- -+ fruoy =05 fi,..., fy € Fla]
= pf; 1<j<n.

PROOF: (induction on eq)
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Firstly, consider e; = 1. Then
e =ey=--=ey, =1

Now mrp,; = p% and

p6171v17 e Jpe“/ilv’y
are LI, so v1,...,v, are LI. So assume
flvl+"’+f'yv'y:0 flv"')f’YEF[x]‘ (7)

and by the remainder theorem

fi=(z—c)gj + fi(c). (8)
Thus
fivi = qj(x —c)vj + fi(c)v;
fi(e)v;.
So (7) implies
filevr+--+ fy()vy(c) = 0
= filec) = 0 Vi=1,...,y

and (8) implies
(@—c) [ f;j  Vj
which is the result.
Now let e; > 1 and assume the lemma, is true for ey — 1. If

MTw; = P
pr o, ,10‘3”’11)7 are LI,
and fivi+---+ fyuoy =0 9)
as before, we have
filpvr) + -+ + fy(pvy) =0 (10)
ej—l.

where M7 po; =P
Now let § be the greatest positive integer such that es > 1; i.e.
es+1 = 1, but es > 1. Applying the induction hypothesis to (10),
in the form

filpv) + -+ fs(pvs) =0
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we obtain
pEj_1|fj ijl,...,é,

SO we may write

f] = pEj_lgj7
(where if g; = f; if j > ). Now substituting in (9),
glpel_lvl +ot 97p67_17}7 =0. (11)

But
Mo =1y, = P
so (11) and the case e; = 1 give
plg; Vi,
as required.
A summary:

Ifmp=(x—c)?... (x—c)bt = plfl ...pY, then there exist vectors v;;
and positive integers e;; (1 <i<t, 1<j<7;), where 5 = v(T — ¢ily),
satisfying

bi = €1 2 tet Z ei’yia mT,’UZ’j = pfl]
and
t v
V=B Per,
i=1 j=1
We choose the elementary Jordan bases
ﬁi]’ * Vij, (T — Cilv)(vij), ceey (T — Cifv)eij_l(vij)
for CT,vij- Then if

t v
s=JU 8y

i=1j=1
(3 is a basis for V and we have
t Y
= @D =1
i=1 j=1

A direct sum of elementary Jordan matrices such as J is called a Jordan
canonical form of 7.
T =T4and P=[vyy]...... |Uty, ], then

PlAP=J

and .J is called a Jordan canonical form of A.

70



4.2 Two Jordan Canonical Form Examples

4.2.1 Example (a):

4 010
2 2 30
Let A= 10 2 0 € Myx4(Q).
4 0 1 2
We find chy = (v — 2)%(z — 3)? = p?p3, where p =z — 2, py =z — 3.
CASE 1, p; =z — 2
2 010 1 000
2030 0010
A =A=2L=1 1 909 = looo ol
4 010 00 0O

so v(p1(A)) =1 = 2. Hence by = 1 and the corresponding dot diagram has
height 1, width 2, with associated Jordan blocks J;(2) & J1(2):

L1] Mie-

0 0
1 0 .

We find v;; = 0 and vig = 0 form a basis for Kerp(Ta) =
0 1

N(A —21Iy) and mp, v, = M7, 0, =T — 2. Also

Ker (plil (TA)) = N(pl (A)) = N(A - 214) = CTA,UM D CTA,Ulz'

Note that Cr, .,, and Cr, 4, have Jordan bases (311 : vi1 and B2 : vi2
respectively.

CASE 2, ps =2 — 3:

1 0 1 0 1 00 —%
-1 3 0 010 1

p(d)=A-3L=\ | 4 | - 001 § ’
4 0 1 -1 000 O

so v(p2(A)) = 1 = 79; also v(p3(A)) = 2. Hence by = 2 and we get a
corresponding dot diagram consisting of two vertical dots, with associated
Jordan block J2(3):

No z—3

)

Nl r—3

)
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We have to find a basis of the form pa(T4)(v21) = (A—314)ve; for Kerpa(Ts) =
N(A—-31L).
To find vg1 we first get a basis for N(A4 — 314)2. We have

00 0 0 10 -2 -1
-3 1 -4 0 01 —-10 -3
2 _ _ 2 _

p2(4) = (A =3L) oo ool 00 0 0
-1 0 2 1 0 0 0 0

2 1

10 3| . .
and we find X; = 1 and Xy = 0 is such a basis. Then we have
0 1
Nopy = (p2X1, p2X2)

= (p2(A4)X1, p2(A4)X2) = ((A — 311) X1, (A —314)X2)
3 1 3
_ -3 -1 _ -3
- 3l -1|/7\]| -3
9 3 9
Hence we can take vo; = X;. Then myp, 4, = (z — 3)2. Also
Kerplf (TA>) = N(p%(A)) = N(A - 314)2 = CTA7’U21'
Moreover Cr, .,, has Jordan basis 821 : va1, (A — 314)vo;1.

Finally we have VZ;(Q) = CTA,UH @CTA’@12 @CTA,vzl and ﬁ = ﬁll Uﬁlg U
(21 is a basis for V4(Q). Then with

00 2 3
P = [vi1|vizfvar|(A — 314)va1] = (1) 8 1(1) :3
0 1 9
we have
2 000
PUAP =L} = n@ o n@er®=| 0 200
001 3
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4.2.2 Example (b):

Let A € Mgyg(F) have the property that chy = 2%, ma = 23 and
v(A) =3, v(A?) =5, (v(A3) =6).

Next, with vy, , = dimp N}, we have

Vi = V(A):3:71;
vae = V(A —v(A)=5-3=2
v3.p = V(A% —v(A?)=6-5=

Hence the dot diagram corresponding to the (only) monic irreducible factor
x of my is

Hence we read off that 3 a non-singular P € Mgxg(F) such that P~1AP =
J3(0) ® J2(0) @ J1(0). To find such a matrix P we proceed as follows:

(i) First find a basis for N3 ;. We do this by first finding a basis for
N(A3): X1, X2, X3, X4, X5, X¢. Then

N3, = (A%X,, A%X,y, A%X3, A%Xy, A%X5, A%XG).

We now apply the LRA (left-to-right algorithm) to the above spanning
family to get a basis A%vq; for N3 ., where A%y is the first non—zero vector
in the spanning family.

(ii) Now extend the linearly independent family A?v;; to a basis for No 4.
We do this by first finding a basis Y1, Y, Y3, Y4, Y5 for N(A?). Then

NZ,.Z = <AY17 AY27 A}/}n AY4> AY5>
We now attach A?vi; to the head of this spanning family:
Ny, = (A%v11, AY1, AYs, AY;, AYy, AYs)

and apply the LRA to find a basis for N , which includes A2X,. This
will have the form A2%vi;, Avia, where Avis is the first vector in the list
AY7, ..., AY;s which is not a linear combination of A%vq;.

(iii) Now extend the linearly independent family A%v11, Avis to a basis
for Ny, = N(A). We do this by first finding a basis Z;, Z3, Z3 for N(A).
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Then place the linearly independent family A%v;q, Avio at the head of this
spanning family:

Nl,x = <A2U117 AUle Zla Z27 Z3>

The LRA is then applies to the above spanning family selects a basis of the
form A%vi1, Avig, v13, where vi3 is the first vector among Z;, Z», Z3 which
is not a linear combination of A%v;; and Avis.

Then mr, v, = 3, MT, 10 = z2, MT,, vy = T. Also

Kerp?l (TA) = N(AS) = CTA,vn S CTA,U12 S CTA,U13'

Finally, if we take Jordan bases

. 2, .
Bir v, Avir, A%vigg
B2 1 v, Avi;
Bz ¢ i3

for the three T-cyclic subspaces Cr, v1, CTy, 0125 CTa, 015, Tespectively, we
then get the basis

B = B11UpPB12UpPr3

= w1, Aviy, A%vi1; v1g, Avig; v
for V4(F). Then if

P = [vy1|Av11|A%v11|v12] Avio|vs3]
we have

PTYAP =[T4]) = J5(0)

[=lelalal e
O O OO oo
OO O O OO
O O O O oo
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4.3 Uniqueness of the Jordan form
Let 8 be a basis for V' for which [T ]g is in Jordan canonical form
J=Jdeg (A1) @+ e, (Ng).

If we change the order of the basis vectors in 3, we produce a corresponding
change in the order of the elementary Jordan matrices. It is customary to
assume our Jordan forms arranged so as to group together into a block those
elementary Jordan matrices having the same eigenvalue ¢;:

J=L @ D Jy

where .
Ji = @ Jeij (Cl)
j=1

Moreover within this i-th block J;, we assume the sizes e;1,. .., e, of the
elementary Jordan matrices decrease monotonically:

€1 > ...> €iry; -

We prove that with this convention, the above sequence is uniquely deter-
mined by 71" and the eigenvalue c;.
We next observe that
¢

13 t v
chy = chy = [Jehy, = [T [(x =) = ][ (@ — eyt tem.

i=1 i=1j=1 i=1
Hence cq, ..., ¢ are determined as the distinct eigenvalues of T.

DEFINITION 4.2

The numbers e;1, ..., e, 1 < i <t, are called the Segre characteristic
of T', while the numbers vy, z—¢;, ..., Vb, a—c;» 1 <1 <t are called the Weyr
characteristic of T'.

The polynomials (z — ¢;)¢ are called the elementary divisors of T'.

LEMMA 4.1
Let ) )
0 0 0
10
0 1
A=J.(0)=
0 0 0 0
| 0 0 1 0 |
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Then
h ifl<h<e-—1
hy __ = = )
V(A)_{e ife < h.

Proof. A" has 1 on the h-th sub-diagonal, 0 elsewhere, if 1 < h < e — 1,
whereas A" =0 if h > e.
Consequently

h_ h—1y __ 1 lf].ghS@,
v(4%) —v(4 )_{o if e < h.

We now can prove that the sequence e;1 > ... e;,, is determined uniquely
by T and the eigenvalue c;.
Let p. =2 — ¢ and

A=[T;=6P EB Jei; (ci)-
i=1 j=1

Then
v(pi(T)) = v(pi(A))

= A DD DLy ()

i=1 j=1
t v
= I/(@ @ Jgij (Ci - Ck))
i=1 j=1
t v
= ZZV(JQj(Ci - ck))a
i=1 j=1

where we have used the fact that
pk(‘]eij (Cl)) = Jeij (Cl) —cpln = Jeij (Ci - Ck)'

However Je,(¢; — cx) is a non-singular matrix if i # &, so

if i # k. Hence



Hence

Tk
Uhamen = VOL(D)) = v HT) = Y (v (0) = (I (0))
j=1

Yk
Dt
j=1
hgek]’

Consequently vh z—¢;, — Vnh41,2—¢, is the number of e;; which are equal to
h. Hence by taking h = 1,..., we see that the sequence ey, ...,ep,, is
determined by T and ¢ and is in fact the contribution of the eigenvalue c
to the Segre characteristic of T .

REMARK. If A and B are similar matrices over F, then B = P~'AP say.
Also A and B have the same characteristic polynomials. Then if ¢ is an
eigenvalue of A and B and py = z — ¢, we have

Pi(Tp) = pi(B) = PTp(A)P = P~'pi(Ta) P

and hence
v(pp(Ts)) = v(pi(Ta))

for all h > 1.

Consequently the Weyr characteristics of T4 and Tp will be identical.
Hence the corresponding dot diagrams and so the Segre characteristics will
also be identical. Hence T4 and Tg have the same Jordan form.

EXAMPLE 4.2
Let A = JQ(O) D JQ(O) and B = JQ(O) D Jl(()) D Jl(O). Then

4 2

chp=chg =12 and m4q=mp=2z".

However A is not similar to B. For both matrices are in Jordan form and
the Segre characteristics for T4 and Tp are 2, 2 and 2, 1, 1, respectively.

EXERCISE List all possible Jordan canonical forms of 2 x 2 and 3 x 3
matrices and deduce that if A and B have the same characteristic and same
minimum polynomials, then A and B are similar if A and B are 2 x 2 or
3 X 3.

REMARK. Of course if A and B have the same Jordan canonical form, then
A and B are similar.
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We now present some interesting applications of the Jordan canonical
form.

4.4 Non—derogatory matrices and transformations

If chy = ma, we say that the matrix A is non-derogatory.

THEOREM 4.5
Suppose that chp splits completely in Flx]. Then chy =mr < 3 a
basis (8 for V such that

115 = Ty (c1) & ... & Ty, (cr),
where c1,...,c; are distinct elements of F.

PROOF.

=
t

t
chr = H Cthi(Ci) = H(I‘ - Ci)bia
1=1

i=1

by

mp = lem((z—c)?, ..., (z—c)")=(x—c1))” ... (x —¢)” = chy.

= Suppose that chy =mr = (z —c1)™ -+ (x — ¢)*.

We deduce that the dot diagram for each p; = (z — ¢;) consists of a
single column of b; dots, where pf"||mT; that is,

dimFNh,pqz =1 fOI‘th,Q,...,bi.

Then, for each i = 1,2, ..., ¢ we have the following sequence of positive
integers:

1< w(p(T)) <v(pi(T)) < - <v(p](T)) = ai.

But a; = b; here, as we are assuming that chy = myp. In particular,
it follows that v(pl(T)) = h for h =1,2,...,b; and h = 1 gives

v(pi(T)) = 1 = 7.

So the bottom row of the i-th dot diagram has only one element; it
looks like this: .

bZ-
H
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and we get the secondary decomposition
b;
Kerp/ (T) = Crp,, -

Further, if 6 = 811 U---U By, where §;1 is the elementary Jordan basis
for Cr,,, then

t i
15 = PEP e, (@)

i=1 j=1
t
- @ Jbi (Ci)a
=1

as required.

4.5 Calculating A™, where A € M, ,,(C).

THEOREM 4.6
Letce F.

(a)

c™m 0 0
(Z) cm*; N cm ) 0
( 2 )Cm_ ( 1 ) e 0
TO=| ;
0 () 0
0 (1) e (Pemt e |

ifl<m<n-—1;

(b)

cm 0 0 0

(”f) cm—1 cm 0O O

T () = (3)em? (T)em=t 0 0
| ()en T ()enid e (menet om |
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if n —1 < m, where (') is the binomial coefficient

<m>_ m_mm—1)(m-n+1)

k) Kl(m—k) k!

PROOF. J,(c) = cI,, + N, where N has the special property that N* has 1
on the k—th sub—diagonal and 0 elsewhere, for 0 < k <n — 1.
Then because clI,, and N commute, we can use the binomial theorem:

JMe) = (Il +N)"

_ ki_o (Z’;) (cI,)™ *N*

=y (Z‘) ek Nk,

k=0

(a). Let 1 <m < n—1. Then in the above summation, the variable k£ must
satisfy 0 < k <n — 1. Hence JJ'(c) is an n x n matrix having (7}')¢™ % on
the k—th sub-diagonal, 0 < k < m and 0 elsewhere.

(b). Let n — 1 < m. Then

n—1

J(e) = Z <ﬂ]z> RN = Z <n]§> mENE
k=0 k=0

as N* = 0if n < k. Hence JJ'(c) is an n X n matrix having (7}')¢™* on the
k—th sub—diagonal,0 < k < n — 1 and 0 elsewhere.

COROLLARY 4.1
Let F' = C. Then

lim J'(c) =0 if || <1

m—0o0
PROOF. Suppose that |¢| < 1. Let n — 1 < m. Then

n—1

JM(c) = ;;o <”k”‘> kN

But for fixed k, 0 < k<n—1, ¢ % — 0 as m — co. For

<m>:an—n~«m—k+n

k k!
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is a polynomial in m of degree k and
|mjcm—k’ _ |mje(m—k) logc| _ mje(m—k) logle| _, 0 as m — oo,

as log ¢ = log |c| + iargc and log |c| < 0.
The last corollary gives a more general result:

COROLLARY 4.2
Let A € M,,«,,(C) and suppose that all the eigenvalues of A are less than
1 in absolute value. Then
lim A™ =0.

m—00

PROOF. Suppose chgy = (x — ¢1)™ -+ (z — ¢;)*, where ¢i,...,¢ are the
distinct eigenvalues of A and |c1| < 1,...,|e] < 1.

Then if J is the Jordan canonical form of A, there exists a non—singular
matrix P € M, x,(C), such that

t 7
PAP =T =P P Je,; ().

i=1 j=1
Hence
PIA™P = (Pt AP)™ @ e (
=1 j=1

Hence P~1!A™P — (0 as m — 0o, because Jer (i) — 0.

4.6 Calculating e, where A € M, ., (C).

We first show that the matrix limit

M—o0

: L o L v
exists. We denote this limit by e and write
AL r Ay la L gm _5 L
m=

To justify this definition, we let A™ = [ag-n)]. We have to show that

1 2, M 2 ey o)
(I”AWA 3 )i].— 9+ gyl + -+ 3708
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tends to a limit as M — oo; in other words, we have to show that the series

o

1
Z m) ij
m=0 :

converges. To do this, suppose that
laij| < p, Vi,
Then it is an easy induction to prove that
\az(»;n)| <n™pmoif om > 1.
Then the above series converges by comparison with the series

[eS)
1 m—1_m
> Lamoigm

m=0

4.7 Properties of the exponential of a complex matrix
THEOREM 4.7
(i) € = Iy;
(ii) ediag (. n) — diag (et ..., eM);
(iii) P AP = p~leAPp;
(iv) @ h = @i e

(v) if A is diagonable and has principal idempotent (spectral) decomposi-
tion:
A261E1+"'+CtEt,

then

et = eTEL + -+ e By

(vi)
d

—-— €

tA — AetA
dt ’

if A is a constant matrix;

(vii) e? = p(A), where p € C[z];
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(viii) e is non-singular and
(eA)—l _ C_A;

(ix) edeP = AP if AB = BA;
(x)

e 0 0 0 1
ec/1! e‘ 0 0
€/2! ¢/1! ¢ 0
wo_ | ¢! ¢/ ‘
e : .
e‘/(n—2)! ooef/1l e 0
| ef/(n—=1)! e/(n—=2)! --- /2! e°/1! e© |
(xi)
[ et 0 0 0
tete/1! ete 0 e 0
t2 te /91 te /11 tc . 0
etJn(c) — c / c / ¢
t"=2et¢/(n — 2)! L tet/1! ete 0
| e/ (n— 1)1 "2t/ (n—2)! - tPel/20 tele/1l e
(xii) If
[
PAP =T =P P I, ().
i=1 j=1
then
t v
PleAP=J =P
i=1 j=1
PROOF.




(ii) Let A= diag(A1,...,An). Then

A™ = diag (A", ... A
00 1 o  \m 0o A
m o __ 1 n
Z %A = dlag <Z - y Z W)
m=0 m=0 m=0
= dlag (8)\17 9y e)\")
(iii)
pP-tAp  _ o 1 -1 m
e = E:OE(P AP)
[e%¢) 1 .
= Y —(P'A™P)
= m)!
= p! iiAm P
N Om!
= P lefP

(iv) and (v) are left as exercises.

(vi) Using the earlier notation, A™ = [a(-m

i )], we have

6tA _ Z i(tA)m




tm
_ Z WAMJA

m=0
= A4
(vii) Let degm = r. Then the matrices I,,, A4,..., A""! are linearly inde-
pendent over C, as if
ma=1"—a,_12" " — - — aq,

then
mA(A) =0=> A" =apl, +a1A+ -+ ar_lAril.

Consequently for each m > 1, we can express A™ as a linear combina-
tion over C of I,, A, ..., A"

A" = a(()m)In + agm)A + et a(m%APl

r—

and hence
M M (m) M (m) (m)
- Qg I a, A a._1 Ar—l
PP Dl R Ui D D
m=0 m=0 m=0 m=0
or u
[t,(j ] = sonln + st A+ 4 s AT
say.

Now [tEJM)] — e as M — oo.

Also the above matrix equation can be regarded as n? equations in
SOM s S1M -+ Sr—1, M-

Also the linear independence of I,,, A, ..., A"~!implies that this sytem
has a unique solution. Consequently we can express soar, 105 .-, Sr—1, M
as linear combinations with coefficients independent of M of the se-
quences tz(-?/[). Hence, because each of the latter sequences converges,

it follows that each of the sequences soas, S, - .., Sp—1, M converges
to sg, $1,...,8-—1, respectively. Consequently

r—1 r—1
Z SkMAk — Z SkAk
k=0 k=0

and
e = sol, + 51 A+ 5,1 AT

a polynomial in A.
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(viii) — (ix) Suppose that AB = BA. Then e'? is a polynomial in B and
hence A commutes with e*B. Similarly, A and B commute with e4*5.
Now let

CO(t) = AP tBe—tA 4 c R,

Then C(0) = I,,. Also

C/(t) _ (A + B)et(A—‘rB)e—tBe—tA
4 MA+B) (L BytBtA
+ et(A—l-B)e—tB(_A)e—tA

= 0.

Hence C(t) is a constant matrix and C'(0) = C(1). That is

I, = e Be B4, (12)

for any matrices A and B which commute.

The special case B = —A then gives

thereby proving that e is non-singular and (e4)™! = e=4.

Then multiplying both sides of equation (12) on the left by e4e? gives
the equation e?ef = eA1B,

In §4.8 we give an application to the solution of a system of differential
equations.

(x) Let Jp(c) =cl,, + N, where N = J,(0). Then

eJn(c) — fntN _

C - 1 m
= (eIn) Y —N
m=0 ’

ecln €N

(xi) Similar to above.
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4.8 Systems of differential equations

THEOREM 4.8
If X = X (t) satisfies the system of differential equations

X = AX,
for t > tg, where A is a constant matrix, then
X = 04X (1).

PROOF. Suppose X = AX for t > t;. Then

SEix) =

g Ae7MX 4 eAX

Ae ™M X + e (AX)
AeTMX + (A7 X
= Ae M 4+ Ae7t X

= 0X =0.

(—
(_
= (_
(—
Hence the vector e 4 X is constant for ¢ > to. Thus

e X = e 70X (1)

and
X = ete 04X (tg) = e TAX (1),

EXAMPLE 4.3
Solve X = AX, where

0 4 -2
A=| -1 -5 3
-1 -4 2

Solution: 3P with

PT'AP = Jy(-1)@ Ji(-1)

-1 0 0
= 1 -1 0
0 0 —1
and )
-t 0 0
PtAP=| t —t 0
0 0 -t



Thus

P*letAP _ etJQ(—].)@Jl(—].)

So e!4 = PK(t)P~'. Now

X = et X,

where for brevity we have set

et 0 0
te™t et 0
0 0 |e?
1 0
= etP|t 1
1 0 0
[ a
= e 'P| at+b
| c
a
b :PilX().
c
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4.9 Markov matrices

DEFINITION 4.3
A real n x n matrix A = |[a;;] is called a Markov matrix, or row—
stochastic matrix if

(i) a;; >0 for1 <14, j <n;
n

(ii) > aiyj=1forl<i<n.
=1

Remark: (ii) is equivalent to A.J, = J,, where J, = [1,...,1]®. So 1 is
always an eigenvalue of a Markov matrix.

EXERCISE 4.1
If A and B are n x n Markov matrices, prove that AB is also a Markov
matrix.

THEOREM 4.9
Every eigenvalue X of a Markov matrix satisfies |\| < 1.

PROOF Suppose A € C is an eigenvalue of A and X € V,,(C) is a corre-
sponding eigenvector. Then

AX = A\X. (13)

Let k be such that |z;| < |xg|, Vj, 1 < j < n. Then equating the k-th
component of each side of equation (13) gives

n

Zaqu:j = \zg. (14)

=1
Hence
n n
Mokl = okl = 1D argzs] <) arla| (15)
=1 j=1
n
< ) aggla] = Janl. (16)
j=1
Hence |A| < 1.
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DEFINITION 4.4
A positive Markov matrix is one with all positive elements (i.e.
strictly greater than zero). For such a matrix A we may write “A > 07.

THEOREM 4.10
If A is a positive Markov matrix, then 1 is the only eigenvalue of modulus
1. Moreover nullity (A — I,,) = 1.

PROOF Suppose |A| =1, AX =)\X, X € V,,(C), X #0.
Then inequalities (15) and (16) reduce to

n n n
k| = ’Zaijj) < agjlrsl < anglak] = Jaxl. (17)
j=1 j=1 j=1

Then inequalities (17) and a sandwich principle, give
|zj| = |zg| for 1< j<n. (18)

Also, as equality holds in the triangle inequality section of inequalities (17),
this forces all the complex numbers ayjx; to lie in the same direction:

agjr; = tjagprg, ,t; >0, 1 <7 <n,

l’j = TjIL‘k,

where Tj = (tjakk)/akj > 0.
Then equation (18) implies 7; = 1 and hence z; = zj, for 1 < j < n.
Consequently X = xy.J,, thereby proving that N(A — I,) = (J,,).
Finally, equation (14) implies

n n
E Ap;Tj = )\xk = E AT = Tk,
j=1 J=1

soA=1.

COROLLARY 4.3
If A is a positive Markov matrix, then A® has 1 as the only eigenvalue
of modulus 1. Also nullity (A! — I,) = 1.

PROOF The eigenvalues of A? are precisely the same as those of A, even up
to multiplicities. For

chye = det (21, — AY) = det (zI,, — A)' = det (I, — A) = chy.
Alsov(A' - L) =v(A-1,) =v(A-1I,) = 1.

90



THEOREM 4.11

If A is a positive Markov matrix, then

(i) (z = 1)[[ma;
Xt
(i) A™ — B, where B = : is a positive Markov matrix and where
Xt
X is uniquely defined as the (positive) vector satisfying A'X = X
whose components sum to 1.

Remark: In view of part (i) and the equation v(A—I,,) = 1, it follows that

(x —1)||cha.

PROOF As v(A — I,) = 1, the Jordan form of A has the form J;(1) &

K, where (z — 1)°|[ma. Here K is the direct sum of all Jordan blocks

corresponding to all the eigenvalues of A other than 1 and hence K™ — 0.
Now suppose that b > 1; then J,(1) has size b > 1. Then 3P such that

PlAP = J,(1)®K,
PlA™P = JM1)® K™

Hence the 2 x 1 element of J;"(1) equals (') — oo as m — oo.

However the elements of A™ are < 1, as A™ is a Markov matrix. Con-
sequently the elements of P~'A™P are bounded as m — oo. This contra-
diction proves that b = 1.

Hence P~1A™P — I ®0 and A™ — P(I[; ®0)P~! = B.

We see that rank B = rank (I; ©0) = 1.

Finally it is easy to prove that B is a Markov matrix. So

t1 Xt
B = :
tn X?
for some non—negative column vector X and where t1,...,t, are positive.

We can assume that the entries of X sum to 1. It then follows that t; =
.-+ =1, =1 and hence
Xt
B=| : |. (19)
Xt
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Now A™ — B, so A™tl = A™. A — BA. Hence B = BA and
A'B' = B (20)
Then equations (19) and (20) imply
AX]- - 1X] = X ] X

and hence A'X = X.
However X >0 and A® >0, s0 X = A'X > 0.

DEFINITION 4.5

We have thus proved that there is a positive eigenvector X of A' corre-
sponding to the eigenvalue 1, where the components of X sum to 1. Then
because we know that the eigenspace N(A' — I,,) is one-dimensional, it
follows that this vector is unique.

This vector is called the stationary vector of the Markov matrix A.

EXAMPLE 4.4

Let
1/2 1/4 1/4
A=|1/6 1/6 2/3
1/3 1/3 1/3
Then
1 0 —4/9
A" — I3 row-reduces to | 0 1 —2/3
0 0 0
4/9 C 4/19
HenceN(At—Ig)—< 2/3 >—< 6/19 >and
1 | 9/19
1 [4 6 9
lim A"=— |4 6 9
e 9146 9

We remark that chy = (z — 1)(2? — 1/24).
DEFINITION 4.6

A Markov Matrix is called regular or primitive if 3k > 1 such that
AF > 0.
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THEOREM 4.12
If A is a primitive Markov matrix, then A satisfies the same properties
enunciated in the last two theorems for positive Markov matrices.

PROOF Suppose A¥ > 0. Then (z — 1)||ch4x and hence (x — 1)||chy, as
chy = (@ —c))¥ - (z—c)® = chyr = (z— )W - (z — ). (21)

and consequently (x — 1)||m4.
Also as 1 is the only eigenvalue of A* with modulus 1, it follows from
equation (21) that 1 is the only eigenvalue of A with modulus 1.

The proof of the second theorem goes through, with the difference that
to prove the positivity of X we observe that A*X = X implies (A*)!X = X.

EXAMPLE 4.5
The following Markov matrix is primitive (its fourth power is positive)
and is related to the bx + 1 problem:

0 0 1 0
1/2 0 1/2 0
0 0 1/2 1/2
0 1/2 1/2 0

Its stationary vector is [%, 12—5, %, %]t.

We remark that chy = (z — 1)(x + 1/2)(z% + 1/4).
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4.10 The Real Jordan Form
4.10.1 Motivation

If A is a real n x n matrix, the characteristic polynomial of A will in general
have real roots and complex roots, the latter occurring in complex pairs.
In this section we show how to derive a canonical form B for A which has
real entries. It turns out that there is a simple formula for e? and this is
useful in solving X = AX, as it allows one to directly express the complete
solution of the system of differential equations in terms of real exponentials
and sines and cosines.

We first introduce a real analogue of .J,, (a+ib). It’s the matrix K, (a, b) €
Moy xon(R) defined as follows:

Let D = [ _cg 2 } = aly + bJ where J? = —1I, (J is a matrix version
of i = v/—1, while D corresponds to the complex number a + ib) then
€D — ea[g-i—b]
— ea[z ebJ
bJ  (bJ)?
— L0 - .
= 612[124-1!4- 51

b2 b b v
= ea[{12—512"‘][24‘"'}4-{FJ—3—J+"'}:|

= ¢*[(cosb)Is + (sinb)J]
_ o cosb sinb
N —sinb cosb |’

Replacing a and b by ta and tb, where t € R, gives

oD _ pat [ cosbt sinbt ] '

—sinbt cos bt

DEFINITION 4.7
Let a and b be real numbers and K, (a, b) € Ma,x2,(R) be defined by

D0
LD
Kp(a,b)=| 0 |2
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where D = { _Z 2 ] . Then it is easy to prove that
[ eP 0 T
el /1! el
eKn(a,b) = 6D/2! 6D/1!
P11 eP/11 €D |
EXAMPLE 4.6
01 00
-1 0 00
B0 D=1 g o1
01 -1 0
and
cost  sint 0 0
etKQ(oyl) . —sint cost 0 0

tcost tsint cost sint
—tsint tcost —sint cost

4.10.2 Determining the real Jordan form

If A =[a;j] is a complex matrix, let A = [a;;]. Then
1.

A+B=A+B, cA=¢AceC, AB=A-B.

2. If A€ Mpxn(R) and ayg,...,a, € C, then

aply, +---a, A" =agl, + -+ a,. A"

3. If W is a subspace of V,,(C), then so is W = {w|w € W}.

Moreover if W = (wy, ..., w,), then

W = (wy,...,W,).

4. If wy,...,w, are linearly independent vectors in V,(C), then so are
w1, ..., w,. Hence if wq,...,w, form a basis for a subspace W, then
w1, ..., w, form a basis for W.
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5. Let A be a real n x n matrix and ¢ € C. Then
(a)
W =N((A-cl,)") =W = N((A -zcl,)").
(b)

W=W, & - oW, =W=W,o---&W,.

W = CTA,v =W = CTA,E~

W = @CTAJH =W = @CTAﬁz"

i=1 i=1
(e)
mr,,o = (x—c¢)° = mp, 5 = (r —¢)°.

Let A € Myxn(R). Then my € R[z] and so any complex roots will occur in
conjugate pairs.

Suppose that ¢y, .. ., ¢, are the distinct real eigenvalues and ¢, 41, . . ., Crys,
Cr+1, - --,Cr+s are the distinct non-real roots and
b by b by
ma = (x—c)?...(x—c)"(@—cry1) oo (T —Crgs) T

X(JZ — Er+1)br+1 . (.CU — ET+S)bT+S.

For each complex eigenvalue ¢;, r+1 < ¢ < r+s, there exists a secondary
decomposition

Vi
N(A - Ci]n>bi - @ Clywiys  MTa0; = (T — )
j=1

Hence we have a corresponding secondary decomposition for the eigenvalue
G;:

Vi
N(A- éi[n)bi = @CTA@J‘? My, v = (x —e)™.
j=1
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For brevity, let ¢ = ¢;, v = v;;, e = ;5. Let
P1 = U,PQ = (A - CIn)Pl, e ,Pe = (A - CIn)Pe,1

and

P=X1+iY1, Pbb=Xs+1iYs, ..., P.=X,+1Y,;, c=a+1b.

Then we have the following equations, posed in two different ways:

AP, = c¢cPi+ P | AXy = aX7 -1 +X5
AYT = bXi+aY1+Ys

AP, = cP, AX, = aX.-0bY,
AY, = bX,+aY..

In matrix terms we have

AXq V1| Xo|Ya| -+ | XelYe] =

a b

—b a

1 0} a b
[X1|Y1| Xo|Ya| -+ | Xe|Ye] | O L[=D a

a b
. 0 —b a |

The large “real jordan form” matrix is the 2e x 2e matrix K, (a, b).
Note: If e = 1, no Iy block is present in this matrix.

The spaces Cr,,, and Cr, 3 are independent and have bases P, . ..

and P, ..., P, respectively.
Consequently the vectors

p,...,P., P,... P.

form a basis for Cr, ,+Cr, 5. It is then an easy exercise to deduce that the
real vectors X1, Y1,..., X, Y, form a basis 3 for the T—invariant subspace

W =Cry,0+ Cry, 0

Writing T' = T4 for brevity, the above right hand batch of equations tells
us that [Tw]g = K¢(a, b). There will be s such real bases corresponding to

each of the complex eigenvalues ¢;41 ..., Cris.
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Joining together these bases with the real elementary Jordan bases aris-
ing from any real eigenvalues ci, ..., ¢, gives a basis 3 for V,(C) such that
if P is the non—singular real matrix formed by these basis vectors, then

PAP=[Tu)j=J& K

where
T r+s 7
J = @@Jeij(ci)? K = @ @Keij(ai7 bi):
i=1 j=1 i=r+1 j=1

where ¢; = a; +ib; forr +1 < i <r+s.

The matrix J @ K is said to be in real Jordan canonical form.

EXAMPLE 4.7

1 1 0 O

A= -2 010 so ma = (z2+1)?2
2 0 0 1 — (2 — i)z + )2
9 1 -1 —1 r—1)*(x+i

Thus with p; = x — ¢, we have the dot diagram

N27p1
Nip, = N(A—ily).

Thus we find an elementary Jordan basis for Ny, :
X1+ Y, (A—ily)( X1 +iY11) = Xi2 + Y12

yielding
AX11=-Yn + X2
AY11 = X1 + Yo

Now we know

MTy,X1+iYir = (z — i)Z
= (A—il)*(X11 +iY11) =0
= (A—ily)(X12+1iY12) =0
= AXi9 = Yo
AYip = X
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Writing the four real equations (22) and (23) in matrix form, with
P = [X11|Y11]| X12|Y12],

then P is non-singular and

01‘00
-1 0] 0 0
14D
PAP_IO 0 1
0 1/-1 0

The numerical determination of P is left as a tutorial problem.
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4.10.3 A real algorithm for finding the real Jordan form

Referring to the last example, if we write Z = [ f} {211 ], then
—14
X1 | [ X1o
Z = ,
[ Y11 | | Yo ]
Y1 | [ Y19
Z =
[ X1 | | X2 ] ’
X1 To
Z [ Yio | _ﬂ !
Yo | [0
Z [ X | _ﬂ

Then the vectors
Xn —Yu Xn —Yu
) ) Z ) Z
[Yn] {Xn] |:Y11:| [Xn}
actually form an R-basis for N(Z). This leads to a method for finding the
real Jordan canonical form using real matrices. (I am indebted to Dr. B.D.

Jones for introducing me to the Z matrix approach.)
More generally, we observe that a collection of equations of the form

AXiji = aiXij — biYij1 + Xijo
AYiji = biXij1 +a;Yij1 + Yijo

AXijey; = @iXije;; — biYije,
AYije,; = biXijey; + aiYije,;
can be written concisely in real matrix form, giving rise to an elementary

Jordan basis corresponding to an elementary divisor x4 for the following
real matrix: Let

7. — A— aiIn bzIn
L —blfn A— aiIn ’
Then
Z. [Xijl— _ _Xij2:|
Yij1 | | Yijo
Z, [Xijeu_ _ -9:| )
Yijeij J 10
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LEMMA 4.2
IfV is a C—vector space with basis vy, ..., vy, then V is also an R—vector
space with basis
U1, LU, ..., Un, LUn.

Hence
dimg V = 2dim¢ V.

DEFINITION 4.8
Let A € Mpxn(R) and ¢ = a + ib be a complex eigenvalue of A with
b#0. Let Z € Maypxo,(R) be defined by

Z_[A—aln bIn}

bl A—al | mA—a)@ L L@ (b))

Also let p=1x — c.

LEMMA 4.3
Let @ : Vo, (R) — V,,(C) be the mapping defined by

@([é]) = X +1iY, X,Y €V,(R).

Then

(i) ® is an R isomorphism;

(i) @ ([x]) = i(X +iY);
(iii) @ (z" [$]) = p"(A)(X +iY);
(iv) @ (2" [F]) = ip"(A)(X +4Y);
(v) ® maps N(Z") onto N(p"(A);

COROLLARY 4.4
If
PO HA) (X 4 iY3), .., p T AN (X, +iYS)

form a C—basis for N(p(A)), then

Z6171 & Zelfl _}/1 Ze»yfl & Zewfl _Y’Y
}/1 ) Xl ) ) Y'y ) )(’Y

form an R-basis for N(Z) and conversely.
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Remark: Consequently the dot diagram for the eigenvalue 0 for the matrix
Z has the same height as that for the eigenvalue ¢ of A, with each row
expanded to twice the length.

To find suitable vectors X1, Y1,...,X,, Y,, we employ the usual algo-
rithm for finding the Jordan blocks corresponding to the eigenvalue 0 of the
matrix Z, with the extra proviso that we always ensure that the basis for
Nj, o is chosen to have the form

1 [ X 1 |—N e p.e 1| Y
Zh 1 I:_:| Zh 1 I: :| o Zh 1 |:_:| Zh 1 |:_:|
Y, ) X, ) ) Yr ) )

where r = (nullity Z" — nullity Z"~1)/2.
This can be ensured by extending a spanning family for N(Z"):

SR

Y1 ’ YV(Zh)

to the form
[ﬁ] |:Y1:| Xozmy | | Yoz
Y: ’ X1 ’ ’ Yl/(Zh) ’ Xz/(Zh)

EXAMPLE 4.8

1 1 0 0
-2 0 1 O 9 9 1
A= s 0 o 11|E My 4(R) hasmy = (x*+1)“. Find a real
-2 -1 -1 -1
non-singular matrix P such that P~ AP is in real Jordan form.
Solution:
1 1 0 0 1 0 0 07
-2 0 1 0 o0 1 0 o0
2 0 o0 1 o0 0 1 o0
7 -2 -1 -1 -1 0 0 0 1
-1 0 0 o0 1 10 0
O -1 0 0 -2 0 1 0
o o0o-1 o0 2 0 0 1
. 0 0 0 -1 -2 -1 -1 -1 |
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basis for N(Z?) :

blown-up basis for N(Z?) :

Tl -1
-2 0
2 0
-2 0
11

0 —2

0 2
0 -2

— left-to-right basis for N(Z?) :

Tl

—2

2

-2

1

0

0

L0

1 0
/2 -1
1/2 0
—3/2 0
0 1

1 —1/2

0 1/2
0 —3/2

1 1/2  1/2

~1/2 0 —1/2

1/2 1 3/2

—3/2 -2 —3/2

0 0 0

1 0 0

0 1 0

0 0 1
1/2 0 1/2
0 0 —1/2
1 -1 3/2
—2 0 -3/2
0 1/2 0
0 0 0
11 0
0 —2 1

Tl -1 1

—2 0 -1/2

2 0 1/2

—2 0 -3/2

11 0

0 —2 1

0 2 0

0 -2 0

We then derive a spanning family for No ;:

Z % basis matrix =

OO oo oo oo

1/2
~1/2
1/2
~1/2
0
1/2
~1/2
1/2

SO O OO o oo
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0
~1/2
1/2
~1/2
1/2
~1/2
1/2

~1/2 |

0
-1

1
—1/2

1/2
—3/2

—  basis for Np ; :



o 1/2 0]
~1/2 —1/2
/2 1/2
~1/2 —1/2

0 1/2
1/2 —1/2
~1/2  1/2
1/2 —1/2 |

Consequently we read off that Z [%} = [%} is a basis for Ny 5 = N1, =
N(Z). where

10 1/2 0
-1/2 1 —-1/2 1/2
P = [X11|Y11]|X12[Y12] = 1?2 0 1?2 1?2
“3/2 0 —1/2  1/2
Then
01 00
o -1 0 00
pPAP = 10 0 1]
01 -1 0

which is in real Jordan form.
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5 The Rational Canonical Form

Here p is a monic irreducible factor of the minimum polynomial my and is
not necessarily of degree one.

Let F}, denote the field constructed earlier in the course, consisting of
all matrices of the form f(B), f € F[z]|, where B = C(p), the companion
matrix of p. (We saw that if degp = n, then

F, ={aolp +--- —l—an_lB"*l]ao,...,an_l € F}.

Let } = f(B), where f € F[x]. Then this new symbol has the following
properties:

Q) f+g=f+g fg="T9;

(i) f=06p|f;

1
(iv) f exists < p does not divide f.

Note: If p =z — ¢, then F}, = F.

THEOREM 5.1
Np,p becomes a vector space over I, if we define

Fo=fv=f(T)).

First we must verify that the above definition is well-defined, that is,
independent of the particular polynomial f used to define the field element
f. So suppose f =g. Then f =g+ kp, k € F[x]. Hence

fv=(g+kp)v=gv+k(pv) = gv+ k0 = gv,

as v € Imp"~Y(T) N Ker p(T) and consequently pv = 0.

The four addition axioms hold as V is already a vector space over F;
The remaining vector space axioms then follow from the left F[z]-module
axioms:

(i)

(i) f(v+w)=flo+w)=fo+ fw=fo+ fu;

F+9) = +gv=(f+gv=fo+gv=fo+gu;

—~
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(iii) fgv) = f(gv) = fgv) = (fg)v = (fg)v;

(iv) lv =1v =w.

Remark: An F-basis for IV}, , will be an F,,~spanning family for N}, ,, but
will not, in general, be an F},~basis for N}, ,. The precise connection between
F-independence and Fj,-independence is given by the following theorem:

THEOREM 5.2

Vectors vy, ...,v, form an F,~basis for Ny, ,, if and only if the vectors
U1, T(Ul), ceey Tn_l(vl)
V2, T(’Ug), ceey Tnil(vg)
vey, T(ve), ..., T l(v,)

form an F-basis for Ny, .

COROLLARY 5.1

v(p"(T)) —v(p"1(T))
degp '

. [
Vh,p = dlme Nh,p = ng dlmF Nh,p =

The exposition for p = x — ¢ now goes over to general p, with small
changes. We again have the decreasing sequence of dimensions:

Vip 2 2 Vhp 2> 1,

where v, = dimpg, Kerp(T) = Véi(gj;o))‘
Also
v(p?(T
VLPJF...HMZ%, (24)

where p® || mp.

There is a corresponding dot diagram where the number of dots in the
h—th row from the bottom represents the integer v, ,. We also have a similar
theorem to an earlier one, in terms of the conjugate partition

er > >ey>1

v(p(1))
degp -

of the partition (24) above, where v = vy , = dimpg, Kerp(T) =
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THEOREM 5.3
Vectors v1,...,vy € V can be found with the property that

1

e1—1 ey —
Viyeooy D7 Uy

b

form an F),~basis for Kerp(T). Moreover
(1) mr,v; = Pej;

(ii) Kerp®(T) = Cr 0, @ -+ ® Cr 0.

In conclusion, if mp = p?l e pi’t, we now have the direct sum decompo-

sition ,
Vi
V= @ @ C’T7 Vijo

i=1 j=1

o
where mr, vij = p.*

;7 and

el =0b; > ... > €y,

form the conjugate partition for the dot diagram corresponding to p;. Here
_ v(pi(T))
= .

deg p;

Taking T—cyclic bases 3;; for Cr 4,;, then gives a basis

t Y
5=UUﬁz‘j

i=1j=1
for V.. Moreover .
Vi
715 = DD Cr)
i=1 j=1

The matrix on the right is said to be in rational canonical form.
If instead, we take the following basis @Ij for Cr, v,

Vij, T(’Uij), ceey Tn_l(vij)
o pi(T)(vig), Tpi(T)(vig), .., T 'pi(T)(vi)
i (D) vig), Tpi () (vyg), .y T pi T (T (),
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(with n = degp;) which reduces to the Jordan basis when p; = = — ¢;, it is
not difficult to verify that we get a corresponding matrix H(p;”) called a
hypercompanion matrix, which reduces to the elementary Jordan matrix

Jey; (ci) when p; = x — ¢;:
[ C(pi)) 0 0
N  Clp) -+ 0
Hp)y=| 0 N - 0
. 0 N C(pi) |

where there are e;; blocks on the diagonal and N is a square matrix of same

size as C'(p;) which is everywhere zero, except in the top right—hand corner,

where there is a 1. The overall effect is an unbroken subdiagonal of 1's.
We then get the corresponding rational canonical form:

t v
115 = D P HE®).
i=1 j=1

COMPUTATIONAL REMARK:
We can do our computations completely over F', without going into F,

as follows. Suppose v1,...,v, form an F-spanning family for N}, ,. Then
we could, in principle, perform the LRA over F}, on this spanning family
and find an Fj,-basis v, ..., v¢y. A little thought reveals that if we had

instead applied the LRA algorithm over F' to the expanded sequence:
U1, T(U1)7 s 7Tn_1(vl); cees Upy T(Ur)a s 7Tn_1(UT)7
we would have obtained the F'-basis for N, ,:

Veyy T(Vey)s ooy T (W) 5 Ve T(Wep)s oo, T Hvey)

from which we select the desired Fj,~basis v, ..., Vep-
(1 0 0 0 0 27
10 00 2 1
0100 2 2
Let A= 27010 1 2 S M6><6(Zg).
000111
|1 0 0 0 0 1 |

Here ma =p?, p=a®>+x+2¢€ Fla], F =Z3.
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[0 0000 0]
020210
o1 2201 _ _ v(p(A) _
PA=10 71101 2| vEA)=41,="g3"=2
001222
00000 O]
v(p?(A)) — v(p(A 6—4
P(A) = 0, v((A)) = 6, vy = (P*(A)) —v(p(4)) _ _1

degp 2

Hence we have a corresponding F}, dot diagram:

Ny p
. | Nl,p

We have to find an F),~basis p(A)v1; for Ny ,, and extend this to an F),~basis

p(A)UH, V12 for N(p(A))
An F-basis for N(p?(A)) is Ey, ..., Es. Then

Na,p = (p(A)Ex, ..., p(A)Eg)

and the LRA give p(A)Es as an F,-basis for Na , so we can take vi; = F.
We find the columns of the following matrix form an F-basis for N (p(A)):

0

SO OO O
O O = = DN O
S = O = =
—_ o O = O O

We place p(A)E; in front and then pad the resulting matrix to get

001100O0O0O02
2001201201
120012101 2
1102110200
0100011101
10001000011 |

The first four columns p(A)E2, Ap(A)Es, E1, AE; of this matrix form a LR
F-basis for N(p(A)) and hence p(A)E>, Ey form an F,-basis for N(p(A)).
So we can take v1s = F.
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Then Vg(Z3) = N(pZ(A)) = Cry,01 ® Oy, 01
Then joining hypercompanion bases for Cr, ., and Cr, 4,,:

vi1, Avit, p(A)vir, Ap(A)vir and v, Avig

gives a basis v11, Avir, p(A)vi1, Ap(A)vii;vie, Avyy for Vg(Zs). Finally if
P is the non—singular matrix whose columns are these vectors, we transform
A into direct sum of hypercompanion matrices:

PAP=H(p*) ® H(p) =

OO = O OO
_ o O o oo
N = O O OO

[lelolNell =
O OO =N =
OO N = OO

Explicitly, we have

O~~~ N OO

OO OO = O
OO O = OO
OO~ K~ NO
SO OO OO
— o N O = =

5.1 Uniqueness of the Rational Canonical Form

Suppose that T': V — V is a linear transformation over F' and that 3 is a
basis for V' such that

t v
15 =P P ow). (25)
i=1 j=1
where
eilz...zele (26)
and pq,...,p are distinct monic irreducible polynomials.

We show that the polynomials p; and the sequences (26) are determined
by the transformation 7.

First, it is not difficult to show that

t v
s=JU B

i=1j=1
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where
ﬁij . 'Uij7 T(’Uij), e ,Tnij_l(vij)

and n;; = deg p?“ and mr, vi; = pf“ . Then we have the direct sum decom-
position

t v
v-Ddor.,
i=1 j=1

Also if we write b; = e;1, we have
b I
Kerpii (T) = @ (;’T7 Vij
j=1

and hence
t
V= @ Kerp?i (7).
i=1

Then from equation (25) above, it follows that
mp = lcmpfij = p?l ...pft,

thereby determining p1,...,p; up to order.

Then it can be shown that if 1 < h < b;, then Ny, has F),, basis

L — €5 -1
p?l 1Ui17 Ry 2 o Vigy

where €;1, ..., e, are the integers not less than h.

There are consequently dimp, Np, p, = vp, p, such integers and hence the
number of integers e;1,. .., e, equal to h is equal to vy ,, — Vp41,p;, Which

depends only on T'. In other words, for each i, the sequence e;1,..., e,
depends only on T

5.2 Deductions from the Rational Canonical Form
THEOREM 5.4

v(p} (1))

= Q,
degp; ‘

(¢

where p}*|| chr , and pf’HmT
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Note that this determines b,—we may evaluate
v(p!(T))
deg p;

for h =1,2,... until we get a value of a;. Then that h = b;.
PROOF 3 a basis for V such that

t v
A=[1T5=BPHCcw”).
i=1 j=1
So

t v
ChT = H H Cth.

i=1j=1
where, for brevity, we write B; ; = C(p;”). Hence

t

i
aw = T4

i=1j=1

i
e
t Z Y
j=1
= [I»
i=1

v(p(T))

t

deg p;

- II» gD
i=1

as required.

THEOREM 5.5
chr = myp < 3 a basis 3 for V such that

115 =CE)@...eCHp)
where p1, ..., ps are distinct monic irreducibles and by > ...b; > 1.
Note that if chy =m4 (i.e. T =T, in the above), we say that the

matrix A is non-derogatory.
PROOF
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t t
b;
ChT = H Chc(pl_’i) = sz )
i=1 ! i=1
by __

b b b
my = lem(py',....,p") =pi'...pt = chy.

= Suppose that chpr = mr.
We deduce that the dot diagram for each p; consists of a single column
of b; dots, where pfiHmT; that is,
dimeNh,pi =1 fOI‘hzl,Q,...,bi.

Observe that .
v(p; (1))

e N,
deg p;

for it may be written

v(pl(T)) — v(p]”'(T))
deg p;

M-

<
I
—

dime Nj,Pi e N.

<
Il
-

|
AM}

Then, for each i = 1,2, ..., t we have the following sequence of positive
integers:

v(pi(T)) _ v(p(T)) v(pi(T))
b= deg p; < deg p; S s deg p;

But a; = b; here, as we are assuming that chy = my. In particular,
it follows that

= q;.

h
T
M:h fOI‘h:l,Q,..-,bi
degp;
and h = 1 gives
deg p; "

So the bottom row of the i-th dot diagram has only one element; it
looks like this: .

bi
H
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and we get the secondary decomposition
Kerpi-’i (T) = Cr,, -

Further, if 8 = B11U---U B, where 351 is the T—cyclic basis for Cr,,,,
then

T = D@CE)

i=1 j=1

= D)

= Cp)@...eC/")
as required.

THEOREM 5.6
mp = p1p2 . .. pt, a product of distinct monic irreducibles, if and only if
3 a basis § for V such that

715 = Clp)®...aCMH)S......

v times

& Clp)®...oC(pr) - (27)

~—
~v¢ times

Note: This is a generalization of an earlier result, namely that a trans-
formation is diagonable if and only if its minimum polynomial splits into a
product of distinct linear factors.

PROOF

< Assume 30 such that (27) holds. Then

mr = lcm(p17"‘7p17’"7pt7“'7pt)
—_—— —_——
Y1 Tt
= lem (p1,...,pt)
= pip2-..-pPt-

= Assume mp =py...p;. Then b; =1 fori=1,...,t (i.e. the i-th dot
diagram has height 1) and 33 such that

T8 = DD ).

i=1 j=1

as €;; = 1 VZ,]
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5.3 Elementary divisors and invariant factors
5.3.1 Elementary Divisors

DEFINITION 5.1

The polynomials pf“ occurring in the rational canonical form of T are
called the elementary divisors of T'. Similarly the elementary divisors of
a matrix A € My, (F) are the polynomials p;” occurring in the rational
canonical form of A.

THEOREM 5.7
Linear transformations 11, T> : V' — V have the same elementary divi-
sors if and only if there exists an isomorphism L : V — V such that

T, =L 'TL.

PROOF
“only if”. Suppose that T7 and 75> have the same elementary divisors.
Then dbases 3, v for V such that

[11)5 = (1)) = A.
Then we have the equations

¢gTy = Tadg

O3 To = Tady.
Hence
daTid5" = Ta = ¢, Tog ",
S0
¢ ' 6pTios by = T,
or

L'T\L =Ty,

where L = ¢51¢7 is an isomorphism.
“f”. Suppose that L~'T1L = T,. Then

b b .
mp, = mrp, = pll o 'pttv say,
also for all ¢ and h, because

pH(Tp) = p(L'TYL) = L™'pl(Th)L,
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we have
v(pi(T2)) = v(p}(Th)).

Hence for each p;, the corresponding dot diagrams for T and 75 are identical
and consequently the elementary divisors for 77 and 75 are identical.

COROLLARY 5.2
Let A, B € Myxn(F). Then A is similar to B if and only if A and B
have the same elementary divisors.

PROOF

A is similar to B < 3 Pnon-singular, with P"'AP = B
& 3 Pnon-singular, withTp'TuTp = Tp
< 3 Lan isomorphism, with L™ 'T4L = Tg.

5.3.2 Invariant Factors

THEOREM 5.8
Let T : V — V be a linear transformation over F'. Then there exist
non—constant monic polynomials di, .. .,ds € F|x], such that

(i) dy divides djyq1 for 1 <k <s—1;

(ii) vectors vy,...,vs € V exist such that

V= @ CT,Uk7
k=1

where mr, y, = dj.

REMARK: If G is the basis for V' obtained by stringing together the T—cyclic
bases for each Cr ,,, we obtain the matrix direct sum

715 = P Cdy).
k=1

This matrix is also said to be in rational canonical form.

PROOF
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Let s = max(y1,...,%) and if 1 < i < t and v < j < s, define
e;; = 0 and v;; = 0, the zero vector of V. Now arrange the polynomials
p;?,1<i<t;1<j<sasatx s rectangular array:

p?s . piu
P I
Let
dl :pils "'pft87~--7ds :pill ...pftl
be the products along columns of the array, from left to right. Then
di,...,ds are monic non—constant polynomials and
dy|dg| - - |ds.

Also Cr,y,; = {0} if v;;j = 0, so V is the direct sum of the following ¢s
T—cyclic subspaces:

CT, vis | T CT, v11

CT: vis | 1 CT7 Vi1

Then by Problem Sheet 5, Question 15(b), if we let

VUl =Vls + Vs, ..., Vs = V11 + * - V41,
we have mr ,, =d1,...,m7,,, =ds and
Crop = Cru, @ @01,
CT7US = CT7U11 @"'@CT,UM'

Consequently
V=Cry® - ®Cr,o,.

DEFINITION 5.2

Polynomials dy, . . ., ds satisfying the conditions of the above theorem are
called invariant factors of T.

There is a similar definition for matrices: if A € My xy(F) is similar to

a direct sum .
P o),
k=1
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where dy,...,ds are non—constant monic polynomials in F[z] such that dj,
divides dyy1 for 1 <k < s—1, thendjy,...,ds are called invariant factors
of A. So the invariant factors of A are the invariant factors of Ty.

THEOREM 5.9
The invariant factors of a linear transformation T : V — V are uniquely
defined by T.

PROOF

Reverse the construction in the proof of the above theorem using Ques-
tion 15(a) of Problem Sheet 5, thereby recapturing the rectangular array of
elementary divisors, which in turn is uniquely determined by 7.

EXAMPLE 5.1
Suppose T': V — V' has elementary divisors

P, Py, Y P2, D3, D3, D3; 3, D3, D3, DY, Da-

Form the rectangular array

1] 1 ]pl]pl|p}
1 | p2| P3| P3| ps
4 5 5

b3 | P3| P3| P3| P3

Then the invariant factors of T are obtained by respectively multiplying
along columns:

di = p3

dy = paps3
ds = pip3ps
di = pip3p}
ds = pipsps.

THEOREM 5.10
If dy,...,ds are the invariant factors of T : V — V| then

(i) mr = ds;

(ﬁ) ChT = d1 s ds.
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PROOF
Suppose B = [T’ }g = @;_; C(dg) is the canonical form corresponding to
the invariant factors dy,...,ds of T. Then

mr =mp = lcm(mc(dl),...,mc(ds))
= lem(dy,...,ds) = ds.

Also

S S
ChT = ChB = H ChC(dk) = Hdk
k=1 k=1
We shall soon see that the invariant factors of a linear transformation or
matrix are of independent interest. For example the invariant factors allow
us to calculate the dimension of the vector space Z;, )/ consisting of all linear
transformations N : U — V which satisfy the equation M N = NL, where
L:U —Uand M:V — V are given linear transformations over F'.

It turns out that there is a more direct way of finding the invariant
factors of T'. To introduce this algorithm, we need to discuss an interesting
equivalence relation on M, x,(F[z]), which in turn leads to the so-called
Smith canonical form of a matrix over F[z].
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6 The Smith Canonical Form

6.1 Equivalence of Polynomial Matrices

DEFINITION 6.1
A matrix P € Myxn(F[z]) is called a unit in M, ., (F[z]) if 3 Q €
M, «n(Fx]) such that
PQ = 1I,.

Clearly if P and @) are units, so is PQ.

THEOREM 6.1
A matrix P € My xn(F[z]) is a unit in M, x,(F[z]) if and only if det P =
¢, where ¢ € F and ¢ # 0.

proof
“only if”. Suppose P is a unit. Then PQ = I,, and

det PQ = det P det Q@ = det I, = 1.

However det P and det @ belong to F'[x], so both are in fact non—zero ele-
ments of F.

“if”. Suppose P € My xn(F[z]) satisfies det P = ¢, where ¢ € F and
¢ # 0. Then

Padj P = (det P)I,, = cI,.
Hence PQ = I,,, where Q = ¢ !adj P € My,,x,(F[z]). Hence P is a unit in
EXAMPLE 6.1
1+ —2x

P = [ ] € Myyo(F[z]) is a unit, as det P = 1.
T 1-2z

THEOREM 6.2
Elementary row matrices in My, x,(F[x]) are units:

(i) E;j: interchange rows i and j of I,;
(ii)) E;(t): multiply row i of I, by t € F, t # 0;
(iii) E;;(f): add f times row j of I, to row i, f € F[z].

In fact det E;; = —1; det E;(t) = t; det Ey;(f) = 1.
Similarly for elementary column matrices in My, (F[x]):

Fij, Fi(t), Fi;(f).

120



REMARK: It follows that a product of elementary matrices in M, (F[z])
is a unit. Later we will be able to prove that the converse is also true.

DEFINITION 6.2
Let A, B € Myxn(F[z]). Then A is equivalent to B over F[z] if units
P € Mpxm(F[z]) and Q € Myx,(F[z]) exist such that

PAQ = B.

THEOREM 6.3
Equivalence of matrices over F[z] defines an equivalence relation on

6.1.1 Determinantal Divisors

DEFINITIONS 6.1

Let A € My,xn(F[z]). Then for 1 < k < min (m, n), let dy(A) denote the
gcd of all k x k minors of A.

d(A) is sometimes called the k'" determinantal divisor of A.
Note: ged (fi,..., fn) # 0« at least one of fi,..., f, is non—zero.

p(A), the determinantal rank of A, is defined to be the largest integer r
for which there exists a non—zero r X r minor of A.

THEOREM 6.4
For 1 < k < p(A), we have di(A) # 0. Also di(A) divides dy1(A) for
1<k<p(A)-1.

proof

Let r = p(A). Then there exists an 7 X r non—zero minor and hence
d,(A) # 0. Then because each r X r minor is a linear combination over F'[z]
of (r—1) x (r—1) minors of A, it follows that some (r —1) x (r — 1) minor of
A is also non-zero and hence d,_1(A) # 0; also d,_1(A) divides each minor
of size r — 1 and consequently divides each minor of size r; hence d,_1(A)
divides d,(A), the ged of all minors of size r. This argument can be repeated
with r replaced by r — 1 and so on.

THEOREM 6.5
Let A, B € Myxn(F[z]). Then if A is equivalent to B over F|x|, we
have

(i) p(A) = p(B) =r;
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proof

Suppose PAQ = B, where P and @) are units. First consider PA. The
rows of PA are linear combinations over F'[z] of the rows of A, so it follows
that each k£ x k minor of PA is a linear combination of the k x k£ minors of
A. Similarly each column of (PA)Q is a linear combinations over F|x] of
the columns of PA, so it follows that each k x k minor of B = (PA)Q is a
linear combination over F[z] of the k x k minors of PA and consequently of
the k x k minors of A.

It follows that all minors of B with size k& > p(A) must be zero and hence
p(B) < p(A). However B is equivalent to A, so we deduce that p(A) < p(B)
and hence p(A) = p(B).

Also di(B) is a linear combination over F[z] of all k£ X k minors of B
and hence of all k£ x k minors of A. Hence di(A)|d(B) and by symmetry,
dk(B)‘dk(A) Hence dk(A) = dk(B) if 1 < k <r.

6.2 Smith Canonical Form

THEOREM 6.6 (Smith canonical form)
Every non—zero matrix A € Mp,xn(F[z]) with r = p(A) is equivalent to
a matrix of the form

0 - 0 -0
0 fo -+ 0 -+ 0

D= 0 0 - f -0 = PAQ
0 0 -~ 0 - 0]

where f1, ..., f, € Flz] are monic, fi|fr+1 for 1 < k <r—1, P is a product of
elementary row matrices, and Q is a product of elementary column matrices.

DEFINITION 6.3
The matrix D is said to be in Smith canonical form.

proof

This is presented in the form of an algorithm which is in fact used by
CMAT to find unit matrices P and @ such that PAQ is in Smith canonical
form.
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Our account is based on that in the book “Rings, Modules and Linear
Algebra,” by B. Hartley and T.O. Hawkes.

We describe a sequence of elementary row and column operations over
F[x], which when applied to a matrix A with a1; # 0 either yields a matrix

C of the form
fi 0---0

where f1 is monic and divides every element of C*, or else yields a matrix
B in which b1; # 0 and

deg by < degaq;. (28)

Assuming this, we start with our non—zero matrix A. By performing suitable
row and column interchanges, we can assume that a1 # 0. Now repeatedly
perform the algorithm mentioned above. Eventually we must reach a ma-
trix of type C, otherwise we would produce an infinite strictly decreasing
sequence of non—negative integers by virtue of inequalities of type (28).

On reaching a matrix of type C, we stop if C* = 0. Otherwise we perform
the above argument on C* and so on, leaving a trail of diagonal elements as
we go.

Two points must be made:

(i) Any elementary row or column operation on C* corresponds to an
elementary operation on C, which does not affect the first row or
column of C.

(ii) Any elementary operation on C* gives a new C* whose new entries
are linear combinations over F'[z| of the old ones; consequently these
new entries will still be divisible by f;.

Hence in due course we will reach a matrix D which is in Smith canonical
form.

We now detail the sequence of elementary operations mentioned above.
Case 1. 3 a1 in row 1 with a;; not dividing a;;. Then

aj; = a11q + b,

by Euclid’s division theorem, where b # 0 and degb < degaj1. Subtract ¢
times column 1 from column j and then interchange columns 1 and j. This
yields a matrix of type B mentioned above.
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Case 2. d a;1 in column 1 with a1; not dividing a;1. Proceed as in Case 1,
operating on rows rather than columns, again reaching a matrix of type B.
Case 3. Here aq; divides every element in the first row and first column.
Then by subtracting suitable multiples of column 1 from the other columns,
we can replace all the entries in the first row other than a1; by 0. Similarly
for the first column. We then have a matrix of the form

eyy 0---0

If e1; divides every element of E*, we have reached a matrix of type C.
Otherwise 3 e;; not divisible by ej;. We then add row ¢ to row 1, thereby
reaching Case 1.

EXAMPLE 6.2
(of the Smith Canonical Form)

2
A:[l—i-x x ]
T 1+zx

We want D = PAQ) in Smith canonical form. So we construct the augmented
matrix

work on rows work on columns
! !
1 0 1+ 2?2 x 1 0
0 1 T 1+x 0 1
R — Ry — 2Ry = 1 —T 1 —z? 1 0
0 1 T 1+=x 0 1
Co — Co+2%2C; = 1 — 1 0 1 22
0 1 x 1+z+22|0 1
Ry — Ry — xRy = 1 —x 1 0 1 2?2
—x 1+ 22 0 l+z+22|0 1
7 7 7
P D Q

124



6.2.1 Uniqueness of the Smith Canonical Form

THEOREM 6.7
Every matrix A € My,xn(F[z]) is equivalent to precisely one matrix is
Smith canonical form.

proof Suppose A is equivalent to a matrix B in Smith canonical form.
That is,
fi

B= ) Ol and Alfalolfe

0 0
Then r = p(A), the determinantal rank of A. Butif 1 <k <r,

di(A) = di(B) = fif2. . fx

and so the f; are uniquely determined by

fi = di(A)
£ = dy(A)
2 di(A)
_d(A)
fr = R

6.3 Invariant factors of a polynomial matrix

DEFINITION 6.4

The polynomials f1,..., fr in the Smith canonical form of A are called
the invariant factors of A.3
Note: CMAT calls the invariant factors of xI — B, where B € M« (F), the
“similarity invariants” of B.

We next find these similarity invariants. They are

1,1,...,1,dy,...,ds
——
n—s
where dy,...,ds are what earlier called the invariant factors of 1.

3SNB. This is a slightly different, though similar, form of “invariant factor” to that we
met a short while ago.
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LEMMA 6.1
The Smith canonical form of x1I, — C(d) where d is a monic polynomial
of degree n is
diag (1,...,1,d).
——

n—1

proof Let d = 2" + ap_12" "' + -+ ag € F[z], so

T 0 ag
1 z ... a
0 -1 a9
xl, — C(d) = . )
€ an—2
| 0 o =1 x+ap—1 |

Now use the row operation

Ry — Ry 4+ xRy + 2’R3 + -- -+ 2" 'R,

to obtain ) i
0 0 d
-1 z ... a
0 —1 a9
x Gp—2
| 0 o =1 x4+ap—1 |

(think about it!) and then column operations
Cy - Coy+zCq,...,Ch_1 — Cph_1 +2C,_9
and then

C,—C,+a1C1 +a2Co 4+ +a,_9C,_2 + ((E + an_l)Cn_l

yielding
[0 0 0 d]
-1 0 0
0 -1
| 0 -1 0 |
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Trivially, elementary operations now form the matrix
diag (1,...,1,d).
1
n—

THEOREM 6.8
Let B € Myxn(F). Then if the invariant factors of B are dy, ... ,ds, then

the invariant factors of xI, — B are
1,...,1,dy,do,...,ds.
——
n—s

proof There exists non-singular P € M, «,(F') such that

P7'BP = D C(dy).
k=1

Then

P~ (zl, — B)P = xl,— P C(dy)
k=1

= @ (xIp, — C(dy)) where my, = deg d.
k=1

But by the lemma, each xI,,, — C(dy) is equivalent over F'[z] to
diag (1,...,1,dy) and hence zI, — B is equivalent to

1
i 1
P diag(1,...,1,di) ~
dq
k=1
- ds -
EXAMPLE 6.3
Find the invariant factors of
2 0 0 0
-1 10 0
B = 0 -1 0 —1 S M4><4(Q)
1 1 1 2



by finding the Smith canonical form of x14 — B.

Solution:
T —2 0 0 0

1 z—1 0 0
0 1 T 1
-1 -1 -1 z-2

zly — B =

We start off with the row operations

R — Ri—(x—-2)Ry
Ri < Ry
Ry, — R4+ Ry

and get
[ 1 x—1 0 0
0 —(z—1)(x—-2) 0 0
0 1 T 1
| 0 x—2 -1 -2 |
[ 1 0 0 0
0Ol —(z—1D(x—-2) 0 0
(column ops.) = 0 1 2 1
| 0 r—2 -1 x—-2 |
[ 1 0 0 0
N 0 1 z 1
0 —(z—1(x—-2) 0 0
| 0 Tz —2 -1 z-2
(1 0 0 0
0 1 x 1
= 00 z(z—1)(z—-2) (z—1)(z—2)
00 —-1-2z(z-2) 0
! = (- 1?)
(1 0 0 0
N 0 1 0 0
0 0 z(z—1)(x—2) (x—1)(x—2)
[0 0 —(z —1)? 0

Now, for brevity, we work just on the 2 x 2 block in the bottom right corner:

(z—1(x—-2) z(x—1)(z—2)
0 —(z —1)?
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Co — Cy— 20y = :(x_l)o(x_2) —(xo_l)Q:

Ri — R +Ry = :(x_l)o(x_2) _(Ecx_—li;_

ChmCo—C = '(x—1)0(:c—2) _(2111)2:

G [ 2L, CTe ]

G Com@=2C > | "7 o0 ]
Ry = Ryt (x—1)R1 = _‘rgl (:c—2)(()x—1>2}

and here we stop, as we have a matrix in Smith canonical form. Thus

1

xzly — B~ 1

(2= 1)2(x —2)
so the invariant factors of B are the non-trivial ones of xI4 — B, i.e.
(z—1) and (z—1)%z—2).
Also, the elementary divisors of B are
(x—1), (z—1)? and (z — 2)
so the Jordan canonical form of B is
Jo(1) & J1(1) @ J1(2).

THEOREM 6.9
Let A, B € Myxn(F). Then A is similar to B

& xl, — A is equivalent to xI, — B
& xl, — A and z1,, — B have the same

Smith canonical form.

proof

129



= Obvious. If P"'AP = B, P € M,»,(F) then

P YzI, - A)P = =zI,— P 'AP
= zl, — B.
< If zI, — A and zI,, — B are equivalent over F'[z], then they have the
same invariant factors and so have the same non-trivial invariant fac-

tors. That is, A and B have the same invariant factors and hence are
similar.

Note: It is possible to start from xI,, — A and find P € M,,«,(F') such that

P'AP = C(dy)
k=1

where

Pl(ﬂfln — B)Ql = dlag(l, SN 1,d1, PN ,ds).

(See Perlis, Theory of matrices, p. 144, Corollary 81 and p. 137, Theorem
7-9.)

THEOREM 6.10
Every unit in M, x,(F[z]) is a product of elementary row and column
matrices.

PROOF: Problem sheet 7, Question 12.
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7 Various Applications of Rational Canonical Forms

7.1 An Application to commuting transformations

THEOREM 7.1 (Cecioni 1908, Frobenius 1910)
Let L :Uw— U and M :V +— V be given LTs. Then the vector space
Zim of all LTs N : U +— V satisfying

MN =NL

has dimension
S

> degged(dy, Dy),
k=1 1=1

where dy,...,ds and D1,...,D; are the invariant factors of L and M re-
spectively.

COROLLARY 7.1
Now take U =V and L = M. Then Zj, 1, the vector space of LTs satis-

fying
NL = LN,

has dimension
S

2(25 — 2k + 1) deg d.
k=1
proof Omitted, but here’s a hint:

ged(d di) _{ d ifk>1;ie. if dy | dy.

N.B. Let P, be the vector space of all LTs of the form
f(L):U—U f € Flx].
Then Pp, C Zy, 1, and we have the following. ..

THEOREM 7.2

Py, :ZL,L<:>TTLL = ChL.
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proof First note that dim Py, = degmy, as
Iy, L,... Ldeme—1
form a basis for Pr. So, since Pr, C Zr, 1, we have

PL:ZL,L = dimPL:dimZLJ;
S
< degmyp = 2(28 — 2k + 1) degdy,
k=1
& s=1

< chyp =mp.

proof (a sketch) of Cecioni-Frobenius theorem.
We start with the invariant factor decompositions

s t
U=@PCru and  V=E5Cuy
k=1 =1

where mp,,, =d for k=1,...,s, and mys, = Dy for l =1,... 1.
Let MN = NL ...

= M"N=NL" Vn >1
= f(M)N=Nf(L) Vf € Flx].

Define vectors wy, ..., ws € V by wy = N(ug), and observe

dp(M)(wg) = dp(M)(N(ug))
~ N(dy
— N(0)=o.

Then we have the

Definition: Let W be the set of all (wy,...,ws) such that wy,...,ws € V
and

dk(M)(wk):O Vk:L...,S.

We assert that W is a vector space and the mapping
N — (Wl,...,ws)

is an isomorphism between Z7, 5y and W; proof is left as an exercise.
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Now let

t
wk:chl(M)(vl) kE=1,...,s and ¢y € F[z].
=1

f(M)(vy) = g(M)(v;) say
& Di|f-g

So, if we restrict ¢j; by the condition
degcy < deg D; if ¢y 75 0 (29)

then the cg; are uniquely defined for each k.
EXERCISE: Now let

gk = ged(dk, Dy).
Then from the condition di(M)(wy) = 0, show that

D
— e 30
gk (30)
i.e. that
D
ol =bu— by € Flzl. (31)
Gkl

Then the matrices [cx;], where ¢y satisfy (30), form a vector space (call
it X') which is isomorphic to W.
Then in (31),

(29) <= degby; < deggp if by, # 0.

Clearly then,
s t

dimX =dimZyp =Y Y deg gy
k=11=1

as required.

EXAMPLE 7.1
(of the vector space X, when s =t =2)
Say

degaul = | 1 3]
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Then X consists of all matrices of the form

[ ] (a0+a1:c)'gDTi OgDTzl
Crll = D 2y D
bo-g2—11 (Co+61x+62$)-972
Dy D1 0 0
Zao[g(l)l 0}4_@1[9(1)1 0:|+b0[&0]+"'
921
...and so on.

EXAMPLE 7.2
The most general 3 x 3 matrix which commutes with others.
Let A € M343(Q) such that there exists non-singular P € M3, 3(Q) with

P'AP = Cxz—1)®C((x—-1)?)

10 0
= 0 0 -1 | =J, say,
01 2

where C(p) denotes the companion matrix of p, as usual.
Then P = [uy | ug | T'(ug)] where T'= T4 and

Mru, = —1, My, = (T — 1)2.

Also Vg(@) = CT7u1 D CT7u2.
Note that the invariant factors of T are (xz — a) and (z — 1)2.
We find all 3 x 3 matrices B such that

BA = AB,
i.e. TBTA = TATB.

Let N =Tpg. Then N must satisfy

N(u1) = Buj = c11u1 + cious and

N(uz) = Buy = ca1u1 + coous where ¢ € Q|x]. (32)

Now
1 1
[deg ged(dy, dp)] = [ 1 o ]

el = [ 20 WY

SO

co do+dix
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where ag etc. € Q, so (32) gives

Bui = apui + bo(.%' — 1>UQ
apul — boUQ + boT(Uz)
cour + (do + di1x)uz

BUQ

= couy + doug + le(UQ)

Noting that

mry, =2 —1=T(u) =u

and  mry, = (x—1)% =22 — 20+ 1 = T?(ug) = 2T (u2) — u,

we have from (34) that

T(B’LLQ) = CoT(ul) + doT(Ug) + d1T2(U2)

= couy — dyug + (do + 2d,)T

In terms of matrices,

ag Co
Blug|ug|T(u2)] = [ui|uz|T(u2)] | —bo do
by di

ie. BP = PK, say

or B=PKP
This gives the most general matrix B such that
BA = AB.

Note: BA = AB becomes

(u2).

Co

do + 2d;

PKpP'pjp~' = pJjP ' PKP!

< KJ = JK.

7.2 Tensor products and the Byrnes-Gauger theorem

(33)

(34)

We next apply the Cecioni-Frobenius theorem to derive a third criterion for

deciding whether or not two matrices are similar.

DEFINITION 7.1
(Tensor or Kronecker product)
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If A € My, xny (F) and B € My, xn, (F) we define
(IHB algB s
A@B=| aaB|anB - | e M, i (F).

In terms of elements,
(A® B)(; j), k1) = %ijbri

—the element at the intersection of the i-th row block, k-th row sub-block,
and the j-th column block, I-th column sub-block.*

EXAMPLE 7.3

ail

ail

a21
A®I - M .« e ’

a21

(Tensor-product-taking is obviously far from commutative!)

7.2.1 Properties of the tensor product of matrices
(i) tA)@ B=A® (tB) =t(A® B), t € F}
(i) AB=0< A=0o0r B=0;

(iii) A (BC)=(A® B)®C;

(iv) A(B+C)=(A®B)+ (AR C);

(v) (B+C)®D=(B®D)+(C®D);

“That is, the ((i — 1)mz + k, (j — 1)n2 + I)-th element in the tensor product is a;;b;.
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(vi) (A® B)(C® D) = (AC) ® (BD);
(vii) (B&C)®@ D =(B® D)& (C® D);
(vili) P(A®(BaC))P™! = (A®B)®(A®C) for a suitable row permutation

matrix P;
(ix) det (A ® B) = (det A)"(det B)™ if Ais m x m and B is n X n;

m n L.
(x) Let f(z,y) = > > cijz'y? € Flx, y] be a polynomial in  and y over
i=0j=0

F and define
m n
-3 e B
=0 j=0

S t
Then if chy = [[ (z — Ax) and chp = [](x — ), we have
k=1 =1

t

chyap) = HH (@ = f( Ak )3

k=11=1

(xi) Taking f(x, y) = zy gives

s t
chagp = [ [1(= = Mnsm);

k=11=1

(xii) Taking f(x, y) =z — y gives

s t
chiagr,—1,,08) = H H (x — (A — ));

Remark: (ix) can be proved using the uniqueness theorem for alternating
m-linear functions met in MP174; (x) follows from the the equations

P'AP=J, and Q7 'BQ = .,

where Ji and Jo are the Jordan forms of A and B, respectively. Then Jy
and Jy are lower triangular matrices with the eigenvalues Mg, 1 < k < m
and p;, 1 <1 <nof Aand B as diagonal elements.
Then ‘
P'AP=J and Q'BQ=J]
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and more generally
S
(PRQ)” ZZ% ‘9B (P®Q) = ZZ% (Ji @ J).
1=0 j=0 i=0 j=0

The matrix on the right-hand side is lower triangular and has diagonal
elements

THEOREM 7.3
Let 3 be the standard basis for M,,.,(F)—i.e. the basis consisting of
the matrices

and 7y be the standard basis for My, (F').
Let A be p x m, and

be defined by T1(X) = AX. Then
Similarly if B isn X p, and
is defined by T5(Y) = Y B, then
1)y =A® I,
(where § is the standard basis for Mp,x,(F')).

proof Left for the intrepid reader. A hint:

[0 ifj#k,
&ﬁW{Edﬁj:k

COROLLARY 7.2
Let A be m x m,

B be n x n,
X bem x n, and
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T : Mysn(F) — Mpxn(F)

be defined by T(X) = AX — XB.
Then
115 =A® I, — I, ® B,

where (3 is the standard basis for My, xn(F).

DEFINITION 7.2
For brevity in the coming theorems, we define

vap=v(A® I, — I, ® BY)
where A ism x m and B is n X n.

THEOREM 7.4

vap = v(A®I,—1I,® B
S

= > deggcd(dy, Dy)
=11=1

o

where

dl‘dgl---‘ds and
Dl‘D2""‘Dt

are the invariant factors of A and B respectively.
proof With the transformation 7" from corollary 7.2 above, we note that

vap = nullityT
dim{ X € My,xn(F) | AX =XB}
= dim{ N € Hom (V,,(F),Vin(F)) | TAN = NTp }

and the Cecioni-Frobenius theorem gives the result.

LEMMA 7.1 (Byrnes-Gauger)
(This is needed in the proof of the Byrnes-Gauger theorem following.)
Suppose we have two monotonic increasing integer sequences:
mi Mg and
ni Ns

m2
na

IAIA
IAIA
IAIA
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Then

{min(myg, m;) + min(ng, n;) — 2min(mg,n;)} > 0.
k=1 1=1

Further, equality occurs iff the sequences are identical.
proof

Case 1: k= 1.
The terms to consider here are of the form

my, -+ ng — 2min(my, ny)

which is obviously > 0. Also, the term is equal to zero iff my = n + k.
Case 2: k # [; without loss of generality take k < [.
Here we pair the off-diagonal terms (k,[) and [, k.

{min(mg, m;) + min(ng, n;) — 2min(mg, n;)}
+{min(my, my) + min(ny, ng) — 2 min(my, ng)}
= {mg +n; — 2min(my, n;)} + {my + ny — 2min(my, ng)}
> 0, obviously.
Since the sum of the diagonal terms and the sum of the pairs of sums

of off-diagonal terms are non-negative, the sum is non-negative. Also, if the
sum is zero, so must be the sum along the diagonal terms, making

mE = ng Vk.

THEOREM 7.5 (Byrnes-Gauger)
If A ism x m and B is n X n then

VAA+VBB 2> 2VARB
with equality if and only if m = n and A and B are similar.
proof

VA A+ VBB —2VAB
S t

s t
= Z Z deg ged(dy, , di,) + Z Z degged(Dyy, Dy,)

k1=1ko=1 l1=112=1
s t
-2 Z Z deg ged(dg, Dy).
k=1 =1
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We now extend the definitions of di,...,ds and D1,...,D; by renaming
them as follows, with N = max(s,t):

]-a"'a]-adl?"'?ds = fla"’va
~——
N-—s
and 1,...,1,D1,...,Dt — Fl,...,FN.
~——
N—t

This is so we may rewrite the above sum of three sums as a single sum, viz:

N N
vaatvep—2wap = Y 3 {degged(f, fi) + degged(Fy, F})
k=11=1
—2deg ged(fi, F1)} (35)
We now let pq,...,p, be the distinct monic irreducibles in m gmp and write
— Akl a2 A
A N SR A B B S
Fp,= p; Doy ce. PoET

where the sequences {ag; };_;, {bxi}|_; are monotonic increasing non-negative
integers. Then

min(a;, bi;)

ng(fk7 -Fl) = sz

=1
= deg ged(f, Fi) = »_ deg p; min(axs, bi;)
=1
and  degged(fr, fi) = Y degp; min(ag;, ay)
=1
and degged(Fy, Fy) =Y _ degp; min(by;, by;).-
=1

Then equation (35) may be rewritten as
VAA+VBB—2VARB
N N r
= Y ) ) degpi{min(ag;, ai;) + min(bg, bis)

k=1 1=1 i=1
—2min(ag;, by;) }

T N N
= > degp; > > {min(a;, ai) + min(be;, bi;)
=1 k=1 1=1

—2min(ag;, by;) }-

141



The latter double sum is of the form in lemma 7.1 and so, since degp; > 0,
we have
vaA+vB—2vap >0,

proving the first part of the theorem.
Next we show that equality to zero in the above is equivalent to similarity
of the matrices:

vAaA+vBB—2vaB=0

T N N
& Y degp;y Y {min(ag;, ai;) + min(by, bi;)
i=1 k=1 =1
—2min(ag;, b))} = 0
< sequences {ay;}, {br;} identical (by lemma 7.1)
< A and B have same invariant factors

< A and B are similar (= m = n).

EXERCISE 7.1
Show if if

P 1A P = A and  Q 'BiQ = B
then

P'eoQ ") (A4 ®lL,—I,®B)(P®Q)
= Ay®l,—I,® B

(This is another way of showing that if A and B are similar then

vaA+vep—2vap=0.)
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8 Further directions in linear algebra

1.

5.

Dual space of a vector space; Tensor products of vector spaces; exte-
rior algebra of a vector space. See C.W. Curtis, Linear Algebra, an
introductory approach and T.S. Blyth, Module theory.

. Quadratic forms, positive definite matrices (see L. Mirsky, Introduc-

tion to linear Algebra), singular value decomposition (see G. Strang,
Linear Algebra).

. Iterative methods for finding inverses and solving linear systems. See

D.R. Hill and C.B. Moler, Experiments in Computational Matrix Al-
gebra.

. Positive matrices and Markov matrices are important in economics and

statistics. For further reading on the structure of Markov matrices
and more generally, non—negative matrices, the following books are
recommended:

[1] N.J. Pullman. Matrix Theory and its Applications, 1976. Marcel
Dekker Inc. New York.

[2] M. Pearl. Matrix Theory and Finite Mathematics, 1973. McGraw—
Hill Book Company, New York.

[3] H. Minc. Nonnegative Matrices, 1988. John Wiley and Sons,
New York.

There are at least two research journals devoted to linear and multilin-

ear algebra in our Physical Sciences Library: Linear and Multilinear
Algebra and Linear Algebra and its applications.
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