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Preface

Origin of This Text

This text has evolved from mathematics courses in the Master of Science in
Computational Finance (MSCF') program at Carnegie Mellon University. The
content of this book has been used successfully with students whose math-
ematics background consists of calculus and calculus-based probability. The
text gives precise statements of results, plausibility arguments, and even some
proofs, but more importantly, intuitive explanations developed and refined
through classroom experience with this material are provided. Exercises con-
clude every chapter. Some of these extend the theory and others are drawn
from practical problems in quantitative finance.

The first three chapters of Volume I have been used in a half-semester
course in the MSCF program. The full Volume I has been used in a full-
semester course in the Carnegie Mellon Bachelor’s program in Computational
Finance. Volume II was developed to support three half-semester courses in
the MSCF program.

Dedication

Since its inception in 1994, the Carnegie Mellon Master’s program in Compu-
tational Finance has graduated hundreds of students. These people, who have
come from a variety of educational and professional backgrounds, have been
a joy to teach. They have been eager to learn, asking questions that stimu-
lated thinking, working hard to understand the material both theoretically
and practically, and often requesting the inclusion of additional topics. Many
came from the finance industry, and were gracious in sharing their knowledge
in ways that enhanced the classroom experience for all.

This text and my own store of knowledge have benefited greatly from
interactions with the MSCF students, and I continue to learn from the MSCF
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alumni. I take this opportunity to express gratitude to these students and
former students by dedicating this work to them.
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Introduction

Background

By awarding Harry Markowitz, William Sharpe, and Merton Miller the 1990
Nobel Prize in Economics, the Nobel Prize Committee brought to worldwide
attention the fact that the previous forty years had seen the emergence of
a new scientific discipline, the “theory of finance.” This theory attempts to
understand how financial markets work, how to make them more efficient, and
how they should be regulated. It explains and enhances the important role
these markets play in capital allocation and risk reduction to facilitate eco-
nomic activity. Without losing its application to practical aspects of trading
and regulation, the theory of finance has become increasingly mathematical,
to the point that problems in finance are now driving research in mathematics.

Harry Markowitz’s 1952 Ph.D. thesis Portfolio Selection laid the ground-
work for the mathematical theory of finance. Markowitz developed a notion
of mean return and covariances for common stocks that allowed him to quan-
tify the concept of “diversification” in a market. He showed how to compute
the mean return and variance for a given portfolio and argued that investors
should hold only those portfolios whose variance is minimal among all portfo-
lios with a given mean return. Although the language of finance now involves
stochastic (It6) calculus, management of risk in a quantifiable manner is the
underlying theme of the modern theory and practice of quantitative finance.

In 1969, Robert Merton introduced stochastic calculus into the study of
finance. Merton was motivated by the desire to understand how prices are
set in financial markets, which is the classical economics question of “equi-
librium,” and in later papers he used the machinery of stochastic calculus to
begin investigation of this issue.

At the same time as Merton’s work and with Merton’s assistance, Fis-
cher Black and Myron Scholes were developing their celebrated option pricing
formula. This work won the 1997 Nobel Prize in Economics. It provided a
satisfying solution to an important practical problem, that of finding a fair
price for a European call option (i.e., the right to buy one share of a given
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stock at a specified price and time). In the period 1979-1983, Harrison, Kreps,
and Pliska used the general theory of continuous-time stochastic processes to
put the Black-Scholes option-pricing formula on a solid theoretical basis, and,
as a result, showed how to price numerous other “derivative” securities.

Many of the theoretical developments in finance have found immediate
application in financial markets. To understand how they are applied, we
digress for a moment on the role of financial institutions. A principal function
of a nation’s financial institutions is to act as a risk-reducing intermediary
among customers engaged in production. For example, the insurance industry
pools premiums of many customers and must pay off only the few who actually
incur losses. But risk arises in situations for which pooled-premium insurance
is unavailable. For instance, as a hedge against higher fuel costs, an airline
may want to buy a security whose value will rise if oil prices rise. But who
wants to sell such a security? The role of a financial institution is to design
such a security, determine a “fair” price for it, and sell it to airlines. The
security thus sold is usually “derivative” (i.e., its value is based on the value
of other, identified securities). “Fair” in this context means that the financial
institution earns just enough from selling the security to enable it to trade
in other securities whose relation with oil prices is such that, if oil prices do
indeed rise, the firm can pay off its increased obligation to the airlines. An
“efficient” market is one in which risk-hedging securities are widely available
at “fair” prices.

The Black-Scholes option pricing formula provided, for the first time, a
theoretical method of fairly pricing a risk-hedging security. If an investment
bank offers a derivative security at a price that is higher than “fair,” it may be
underbid. If it offers the security at less than the “fair” price, it runs the risk of
substantial loss. This makes the bank reluctant to offer many of the derivative
securities that would contribute to market efficiency. In particular, the bank
only wants to offer derivative securities whose “fair” price can be determined
in advance. Furthermore, if the bank sells such a security, it must then address
the hedging problem: how should it manage the risk associated with its new
position? The mathematical theory growing out of the Black-Scholes option
pricing formula provides solutions for both the pricing and hedging problems.
It thus has enabled the creation of a host of specialized derivative securities.
This theory is the subject of this text.

Relationship between Volumes I and II

Volume II treats the continuous-time theory of stochastic calculus within the
context of finance applications. The presentation of this theory is the raison
d’étre of this work. Volume II includes a self-contained treatment of the prob-
ability theory needed for stochastic calculus, including Brownian motion and
its properties.
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Volume I presents many of the same finance applications, but within the
simpler context of the discrete-time binomial model. It prepares the reader
for Volume II by treating several fundamental concepts, including martin-
gales, Markov processes, change of measure and risk-neutral pricing in this
less technical setting. However, Volume II has a self-contained treatment of
these topics, and strictly speaking, it is not necessary to read Volume I before
reading Volume II. It is helpful in that the difficult concepts of Volume II are
first seen in a simpler context in Volume I.

In the Carnegie Mellon Master’s program in Computational Finance, the
course based on Volume I is a prerequisite for the courses based on Volume
II. However, graduate students in computer science, finance, mathematics,
physics and statistics frequently take the courses based on Volume II without
first taking the course based on Volume I.

The reader who begins with Volume IT may use Volume I as a reference. As
several concepts are presented in Volume II, reference is made to the analogous
concepts in Volume I. The reader can at that point choose to read only Volume
II or to refer to Volume I for a discussion of the concept at hand in a more
transparent setting.

Summary of Volume I

Volume I presents the binomial asset pricing model. Although this model is
interesting in its own right, and is often the paradigm of practice, here it is
used primarily as a vehicle for introducing in a simple setting the concepts
needed for the continuous-time theory of Volume II.

Chapter 1, The Binomial No-Arbitrage Pricing Model, presents the no-
arbitrage method of option pricing in a binomial model. The mathematics is
simple, but the profound concept of risk-neutral pricing introduced here is
not. Chapter 2, Probability Theory on Coin Toss Space, formalizes the results
of Chapter 1, using the notions of martingales and Markov processes. This
chapter culminates with the risk-neutral pricing formula for European deriva-
tive securities. The tools used to derive this formula are not really required for
the derivation in the binomial model, but we need these concepts in Volume II
and therefore develop them in the simpler discrete-time setting of Volume I.
Chapter 3, State Prices, discusses the change of measure associated with risk-
neutral pricing of European derivative securities, again as a warm-up exercise
for change of measure in continuous-time models. An interesting application
developed here is to solve the problem of optimal (in the sense of expected
utility maximization) investment in a binomial model. The ideas of Chapters
1 to 3 are essential to understanding the methodology of modern quantitative
finance. They are developed again in Chapters 4 and 5 of Volume II.

The remaining three chapters of Volume I treat more specialized con-
cepts. Chapter 4, American Derivative Securities, considers derivative secu-
rities whose owner can choose the exercise time. This topic is revisited in
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a continuous-time context in Chapter 8 of Volume II. Chapter 5, Random
Walk, explains the reflection principle for random walk. The analogous reflec-
tion principle for Brownian motion plays a prominent role in the derivation of
pricing formulas for exotic options in Chapter 7 of Volume II. Finally, Chap-
ter 6, Interest-Rate-Dependent Assets, considers models with random interest
rates, examining the difference between forward and futures prices and intro-
ducing the concept of a forward measure. Forward and futures prices reappear
at the end of Chapter 5 of Volume II. Forward measures for continuous-time
models are developed in Chapter 9 of Volume II and used to create forward
LIBOR models for interest rate movements in Chapter 10 of Volume II.

Summary of Volume II

Chapter 1, General Probability Theory, and Chapter 2, Information and Con-
ditioning, of Volume II lay the measure-theoretic foundation for probability
theory required for a treatment of continuous-time models. Chapter 1 presents
probability spaces, Lebesgue integrals, and change of measure. Independence,
conditional expectations, and properties of conditional expectations are intro-
duced in Chapter 2. These chapters are used extensively throughout the text,
but some readers, especially those with exposure to probability theory, may
choose to skip this material at the outset, referring to it as needed.

Chapter 3, Brownian Motion, introduces Brownian motion and its proper-
ties. The most important of these for stochastic calculus is quadratic variation,
presented in Section 3.4. All of this material is needed in order to proceed,
except Sections 3.6 and 3.7, which are used only in Chapter 7, Ezotic Options
and Chapter 8, Farly Ezxercise.

The core of Volume II is Chapter 4, Stochastic Calculus. Here the It6
integral is constructed and It6’s formula (called the It6-Doeblin formula in
this text) is developed. Several consequences of the It6-Doeblin formula are
worked out. One of these is the characterization of Brownian motion in terms
of its quadratic variation (Lévy’s theorem) and another is the Black-Scholes
equation for a European call price (called the Black-Scholes-Merton equation
in this text). The only material which the reader may omit is Section 4.7,
Brownian Bridge. This topic is included because of its importance in Monte
Carlo simulation, but it is not used elsewhere in the text.

Chapter 5, Risk-Neutral Pricing, states and proves Girsanov’s Theorem,
which underlies change of measure. This permits a systematic treatment of
risk-neutral pricing and the Fundamental Theorems of Asset Pricing (Section
5.4). Section 5.5, Dividend-Paying Stocks, is not used elsewhere in the text.
Section 5.6, Forwards and Futures, appears later in Section 9.4 and in some
exercises.

Chapter 6, Connections with Partial Differential Equations, develops the
connection between stochastic calculus and partial differential equations. This
is used frequently in later chapters.
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With the exceptions noted above, the material in Chapters 1-6 is fun-
damental for quantitative finance is essential for reading the later chapters.
After Chapter 6, the reader has choices.

Chapter 7, Ezotic Options, is not used in subsequent chapters, nor is Chap-
ter 8, Early Fzercise. Chapter 9, Change of Numéraire, plays an important
role in Section 10.4, Forward LIBOR model, but is not otherwise used. Chapter
10, Term Structure Models, and Chapter 11, Introduction to Jump Processes,
are not used elsewhere in the text.
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1

General Probability Theory

1.1 Infinite Probability Spaces

An infinite probability space is used to model a situation in which a random
experiment with infinitely many possible outcomes is conducted. For purposes
of the following discussion, there are two such experiments to keep in mind:

(i) choose a number from the unit interval [0,1], and
(ii) toss a coin infinitely many times.

In each case, we need a sample space of possible outcomes. For (i), our
sample space will be simply the unit interval [0, 1]. A generic element of [0, 1]
will be denoted by w, rather than the more natural choice z, because these
elements are the possible outcomes of a random experiment.

For case (ii), we define

20 = the set of infinite sequences of Hs and Ts. (1.1.1)

A generic element of (2., will be denoted w = wywy..., where w, indicates
the result of the nth coin toss.

The samples spaces listed above are not only infinite but are uncountably
infinite (i.e., it is not possible to list their elements in a sequence). The first
problem we face with an uncountably infinite sample space is that, for most
interesting experiments, the probability of any particular outcome is zero.
Consequently, we cannot determine the probability of a subset A of the sample
space, a so-called event, by summing up the probabilities of the elements in
A, as we did in equation (2.1.5) of Chapter 2 of Volume 1. We must instead
define the probabilities of events directly. But in infinite sample spaces there
are infinitely many events. Even though we may understand well what random
experiment we want to model, some of the events may have such complicated
descriptions that it is not obvious what their probabilities should be. It would
be hopeless to try to give a formula that determines the probability for every
subset of an uncountably infinite sample space. We instead give a formula for
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the probability of certain simple events and then appeal to the properties of
probability measures to determine the probability of more complicated events.
This prompts the following definitions, after which we describe the process of
setting up the uniform probability measure on [0, 1].

Definition 1.1.1. Let 2 be a nonempty set, and let F be a collection of sub-
sets of 2. We say that F is a o-algebra (called a o-field by some authors)
provided that:

(i) the empty set O belongs to F,

(ii) whenever a set A belongs to F, its complement A€ also belongs to F, and

(#i) whenever a sequence of sets A1, Ag, ... belongs to F, their union U3 A,
also belongs to F.

If we have a og-algebra of sets, then all the operations we might want to
do to the sets will give us other sets in the o-algebra. If we have two sets A
and B in a o-algebra, then by considering the sequence A, B,0,0,0,..., we
can conclude from (i) and (iii) that AU B must also be in the g-algebra. The
same argument shows that if A;, As,..., Ax are finitely many sets in a o-
algebra, then their union must also be in the o-algebra. Finally, if A;, As,...
is a sequence of sets in a o-algebra, then because

oo oo ¢
) An = (U A;) ,
n=1 n=1

properties (ii) and (iii) applied to the right-hand side show that N2, A, is
also in the o-algebra. Similarly, the intersection of a finite number of sets in
a o-algebra results in a set in the o-algebra. Of course, if F is a o-algebra,
then the whole space {2 must be one of the sets in F because 2 = 0¢.

Definition 1.1.2. Let £2 be a nonempty set, and let F be a o-algebra of sub-
sets of §2. A probability measure P is a function that, to every set A € F,
assigns a number in [0,1], called the probability of A and written P(A). We
require:

(i) P(2) =1, and
(ii) (countable additivity) whenever A, Aa,... is a sequence of disjoint sets

in F, then
P (U An) = _P(4y). (1.1.2)
n=1 n=1

The triple (12, F,P) is called a probability space.

If £2 is a finite set and F is the collection of all subsets of §2, then F is a
o-algebra and Definition 1.1.2 boils down to Definition 2.1.1 of Chapter 2 of
Volume I. In the context of infinite probability spaces, we must take care that
the definition of probability measure just given is consistent with our intuition.
The countable additivity condition (ii) in Definition 1.1.2 is designed to take
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care of this. For example, we should be sure that P(@) = 0. That follows from
taking
A=Ay =Ag=---=0
in (1.1.2), for then this equation becomes P(@) = 3~ | P(). The only number
in [0, 1] that () could be is
P(0) = 0. (1.1.3)

We also still want (2.1.7) of Chapter 2 of Volume I to hold: if A and B are
disjoint sets in JF, we want to have

P(AU B) = P(A) + P(B). (1.1.4)

Not only does Definition 1.1.2(ii) guarantee this, it guarantees the finite ad-
ditivity condition that if A;, Ag, ..., Ax are finitely many disjoint sets in F,

then
N N
P (U A,,) = P(4,). (1.1.5)

To see this, apply (1.1.2) with
Any1 = Anyo = Angz=---=0.

In the special case that N = 2 and A; = A, A; = B, we get (1.1.4). From
part (i) of Definition 1.1.2 and (1.1.4) with B = A°, we get

P(A°) = 1 — P(A). (1.1.6)

In summary, from Definition 1.1.2, we conclude that a probability measure
must satisfy (1.1.3)-(1.1.6).

We now describe by example the process of construction of probability
measures on uncountable sample spaces. We do this here for the spaces [0, 1]
and 2., with which we began this section.

Ezample 1.1.8 (Uniform (Lebesgue) measure on [0, 1]). We construct a math-
ematical model for choosing a number at random from the unit interval [0, 1]
80 that the probability is distributed uniformly over the interval. We define
the probability of closed intervals [a,b] by the formula

Pla,bj=b—a, 0<a<b<1, (1.1.7)

(i.e., the probability that the number chosen is between a and b is b — a).
(This particular probability measure on [0, 1] is called Lebesque measure and
in this text is sometimes denoted £. The Lebesgue measure of a subset of R
is its “length.”) If b = a, then [a, b] is the set containing only the number a,
and (1.1.7) says that the probability of this set is zero (i.e., the probability is
zero that the number we choose is exactly equal to a). Because single points
have zero probability, the probability of an open interval (a,b) is the same as
the probability of the closed interval [a, b]; we have
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P(a,b)=b—a, 0<a<b<1 (1.1.8)

There are many other subsets of [0, 1] whose probability is determined by the
formula (1.1.7) and the properties of probability measures. For example, the
set [0, %] U [%, 1] is not an interval, but we know from (1.1.7) and (1.1.4) that
its probability is %

It is natural to ask if there is some way to describe the collection of all
sets whose probability is determined by formula (1.1.7) and the properties of
probability measures. It turns out that this collection of sets is the o-algebra
we get starting with the closed intervals and putting in everything else required
in order to have a o-algebra. Since an open interval can be written as a union

of a sequence of closed intervals,

oo

(@.b)=J [a+%,b—%],

n=1

this o-algebra contains all open intervals. It must also contain the set [0, %] U
%, 1], mentioned at the end of the preceding paragraph, and many other sets.
The o-algebra obtained by beginning with closed intervals and adding
everything else necessary in order to have a o-algebra is called the Borel o-
algebra of subsets of [0,1] and is denoted B0, 1]. The sets in this o-algebra
are called Borel sets. These are the subsets of [0,1], the so-called events,
whose probability is determined once we specify the probability of the closed
intervals. Every subset of [0, 1] we encounter in this text is a Borel set, and this
can be verified if desired by writing the set in terms of unions, intersections,
and complements of sequences of closed intervals.! O

Ezxample 1.1.4 (Infinite, independent coin-toss space). We toss a coin infinitely
many times and let 2o, of (1.1.1) denote the set of possible outcomes. We
assume the probability of head on each toss is p > 0, the probability of tail is
q=1—-p >0, and the different tosses are independent, a concept we define
precisely in the next chapter. We want to construct a probability measure
corresponding to this random experiment.

We first define P(§) = 0 and P(f2) = 1. These 2(2°) = 2 sets form a
o-algebra, which we call Fo:

Fo =1{0,02}. (1.1.9)
We next define P for the two sets

Ap = the set of all sequences beginning with H = {w;w; = H},
Ar = the set of all sequences beginning with T' = {w;w; = T},

! See Appendix A, Section A.1 for the construction of the Cantor set, which gives
some indication of how complicated sets in B[0, 1] can be.
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by setting P(Ax) = p, P(Ar) = q. We have now defined PP for 2(2") =4 sets,
and these four sets form a o-algebra; since A}, = Ar we do not need to add
anything else in order to have a o-algebra. We call this o-algebra Fi:

'7:1 = {@’ Q’ AH’AT}- (1110)
We next define PP for the four sets

Agy = The set of all sequences beginning with HH
= {w;w) = H,wp = H},

ApgTt = The set of all sequences beginning with HT
={w;w = Hyws =T},

The set of all sequences beginning with TH
= {w;w; =T,ws = H},

Arr = The set of all sequences beginning with T'T'
={w;w; =T,wa =T}

Aty

by setting
P(Axn) = p?, P(Aur) = pg, P(Arw) = pg, P(Arr) = ¢°. (1.1.11)

Because of (1.1.6), this determines the probability of the complements A%,
ASry Ay, AZp. Using (1.1.5), we see that the probabilities of the unions
ApgUAry, Agg U Arr, Agr U A7y, and Agr U Apr are also determined.
We have already defined the probabilities of the two other pairwise unions
Apy U Apgr = A and Arg U Arr = Ar. We have already noted that the
probability of the triple unions is determined since these are complements of
the sets in (1.1.11), e.g.,

AggUAgr U Ary = A%T'

At this point, we have determined the probability of 2(?°) = 16 sets, and these
sets form a o-algebra, which we call F;:

]_‘2 — { @ 2 AH7 AT7 AHH7 AHT7 ATH7 ATT, AHH7 AHT; ATH; ATT7
AU Ary, Agg U Arr, AgrU Atg, Agr U ATt
(1.1.12)

We next define the probability of every set that can be described in terms
of the outcome of the first three coin tosses. Counting the sets we already
have, this will give us 2(2°) = 256 sets, and these will form a o-algebra, which
we call F;.

By continuing this process, we can define the probability of every set that
can be described in terms of finitely many tosses. Once the probabilities of
all these sets are specified, there are other sets, not describable in terms of
finitely many coin tosses, whose probabilities are determined. For example,
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the set containing only the single sequence HHHH ... cannot be described
in terms of finitely many coin tosses, but it is a subset of Ay, Agy, Ay,
etc. Furthermore,

P(An) =p, P(Agn) =p°, P(Apun) =1°,...,
and since these probabilities converge to zero, we must have
P(Every toss results in head) = 0.

Similarly, the single sequence HTHTHT ..., being the intersection of the sets
Ay, Agyr, AyTH, etc. must have probability less than or equal to each of

P(An) = p, P(Aut) = pg, P(AuTH) =P%g,.. .,

and hence must have probability zero. The same argument shows that every
individual sequence in 2., has probability zero.

We create a o-algebra, called F,, by putting in every set that can be
described in terms of finitely many coin tosses and then adding all other sets
required in order to have a o-algebra. It turns out that once we specify the
probability of every set that can be described in terms of finitely many coin
tosses, the probability of every set in F, is determined. There are sets in F,
whose probability, although determined, is not easily computed. For example,
consider the set A of sequences w = wjws ... for which

i Pn@r-wn) 1 (1.1.13)

n—oo n 2 ’

where H,(w; ...wy) denotes the number of Hs in the first n tosses. In other

words, A is the set of sequences of heads and tails for which the long-run
average number of heads is % Because its description involves all the coin

tosses, it was not defined directly at any stage of the process outlined above.
On the other hand, it is in F,, and that means its probability is somehow
determined by this process and the properties of probability measures. To see
that A is in Fo, we fix positive integers m and n and define the set

Hp(w:...wn) 1‘ 1}.

<
n 2|~

m

Anm = {w;

This set is in Fy, and once n and m are known, its probability is defined by
the process outlined above. By the definition of limit, a coin-toss sequence
w = wyws ... satisfies (1.1.13) if and only if for every positive integer m there
exists a positive integer N such that for all n > N we have w € Ay, .. In other
words, the set of w for which (1.1.13) holds is

e o)

() Anm-

1n=N

A=

DY
T8

1
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The set A is in F, because it is described in terms of unions and intersections
of sequences of sets that are in F.,. This does not immediately tell us how to
compute P(A), but it tells us that P(A) is somehow determined. As it turns
out, the Strong Law of Large Numbers asserts that P(A) = 1 if p = 3 and
P(A) =0if p# §.

Every subset of {2, we shall encounter will be in Fo,. Indeed, it is ex-
tremely difficult to produce a set not in F,, although such sets exist. O

The observation in Example 1.1.4 that every individual sequence has prob-
ability zero highlights a paradox in uncountable probability spaces. We would
like to say that something that has probability zero cannot happen. In par-
ticular, we would like to say that if we toss a coin infinitely many times, it
cannot happen that we get a head on every toss (we are assuming here that
the probability for head on each toss is p > 0 and ¢ = 1 — p > 0). It would
be satisfying if events that have probability zero are sure not to happen and
events that have probability one are sure to happen. In particular, we would
like to say that we are sure to get at least one tail. However, because the
sequence that is all heads is in our sample space, and is no less likely to hap-
pen than any other particular sequence (every single sequence has probability
zero), mathematicians have created a terminology that equivocates. We say
that we will get at least one tail almost surely. Whenever an event is said to be
almost sure, we mean it has probability one, even though it may not include
every possible outcome. The outcome or set of outcomes not included, taken
all together, has probability zero.

Definition 1.1.5. Let (£2, F,P) be a probability space. If a set A € F satisfies
P(A) = 1, we say that the event A occurs almost surely.

1.2 Random Variables and Distributions

Definition 1.2.1. Let (12, F,P) be a probability space. A random variable is
a real-valued function X defined on §2 with the property that for every Borel
subset B of R, the subset of 12 given by

{XeB}={we 2;X(w) € B} (1.2.1)

is in the o-algebra F. (We sometimes also permit a random variable to take
the values +0o0 and —c0.)

To get the Borel subsets of R, one begins with the closed intervals [a,b] C R
and adds all other sets that are necessary in order to have a o-algebra. This
means that unions of sequences of closed intervals are Borel sets. In particular,
every open interval is a Borel set, because an open interval can be written
as the union of a sequence of closed intervals. Furthermore, every open set
(whether or not an interval) is a Borel set because every open set is the union
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of a sequence of open intervals. Every closed set is a Borel set because it is
the complement of an open set. We denote the collection of Borel subsets of R
by B(R) and call it the Borel o-algebra of R. Every subset of R we encounter
in this text is in this o-algebra.

A random variable X is a numerical quantity whose value is determined
by the random experiment of choosing w € 2. We shall be interested in the
probability that X takes various values. It is often the case that the probability
that X takes a particular value is zero, and hence we shall mostly talk about
the probability that X takes a value in some set rather than the probability
that X takes a particular value. In other words, we will want to speak of
P{X € B}. Definition 1.2.1 requires that {X € B} be in F for all B € B(R),
so that we are sure the probability of this set is defined.

Ezample 1.2.2 (Stock prices). Recall the independent, infinite coin-toss space
(200, Foo, P) of Example 1.1.4. Let us define stock prices by the formulas

So(w) = 4 for all w € 2,

_ [8ifw; =H,
Sl(“’)‘{zifw1=T,
16 if w; =wy; = H,
So(w) =< 4 if wy # wy,
1l ifwy =we =T,

and, in general,
[ 25, (w) if w41 = H,
Sn1(w) = { 3Sn(w) if wppr =T.
All of these are random variables. They assign a numerical value to each pos-
sible sequence of coin tosses. Furthermore, we can compute the probabilities
that these random variables take various values. For example, in the notation
of Example 1.1.4,

P{Sz = 4} = P(AHT U ATH) = 2pgq. O

In the previous example, the random variables Sy, S1, S2, etc., have dis-
tributions. Indeed, Sy = 4 with probability one, so we can regard this random
variable as putting a unit of mass on the number 4. On the other hand,
P{S; = 16} = p?, P{S; = 4} = 2pg, and P{S2 = 1} = ¢2. We can think of
the distribution of this random variable as three lumps of mass, one of size p?
located at the number 16, another of size 2pq located at the number 4, and a
third of size g2 located at the number 1. We need to allow for the possibility
that the random variables we consider don’t assign any lumps of mass but
rather spread a unit of mass “continuously” over the real line. To do this, we
should think of the distribution of a random variable as telling us how much
mass is in a set rather than how much mass is at a point. In other words, the
distribution of a random variable is itself a probability measure, but it is a
measure on subsets of R rather than subsets of (2.
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X

P{X € B} = ux(B)

Fig. 1.2.1. Distribution measure of X.

Definition 1.2.3. Let X be a random variable on a probability space (12, F,P).
The distribution measure of X is the probability measure px that assigns to
each Borel subset B of R the mass pux(B) = P{X € B} (see Figure 1.2.1).

In this definition, the set B could contain a single number. For example,
if B = {4}, then in Example 1.2.2 we would have ug,(B) = 2pg. If B =
[2,5], we still have ug,(B) = 2pq, because the only mass that Sy puts in the
interval [2,5] is the lump of mass placed at the number 4. Definition 1.2.3
for the distribution measure of a random variable makes sense for discrete
random variables as well as for random variables that spread a unit of mass
“continuously” over the real line.

Random variables have distributions, but distributions and random vari-
ables are different concepts. Two different random variables can have the same
distribution. A single random variable can have two different distributions.
Consider the following example.

Ezample 1.2.4. Let P be the uniform measure on [0, 1] described in Exam-
ple 1.1.3. Define X(w) = w and Y(w) = 1 —w for all w € [0,1]. Then the
distribution measure of X is uniform, i.e.,

pxla,b) =P{w;a < X(w) < b} =Pla,b)j]=b—a, 0<a<b<]1,

by the definition of P. Although the random variable Y is different from the
random variable X (if X takes the value %, Y takes the value %), Y has the
same distribution as X:

byla,b) =P{w;a <Y(w) <b}=P{w;a<1-w < b} =P[1-b,1—aq]
=(1-a)—-(1-b)=b—a=upxla,b], 0<a<b<L
) Now suppose we define another probability measure P on [0,1] by specify-
ing

- b
]P[a,b]=/ 2wdw=10b%-a%, 0<a<b<l. (1.2.2)

a
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Equation (1.2.2) and the properties of probability measures determine P(B)
for every Borel subset B of R. Note that ]P[O 1] =1, s0 P is in fact a prob-
ability measure. Under ]P, the random variable X no longer has the uniform
distribution. Denoting the distribution measure of X under P by fix, we have

jix[a,b] = P{w;a < X(w) < b} =Pla,b) =0>—a?, 0<a<b<1

Under ]F, the distribution of Y no longer agrees with the distribution of X.
We have
fy[a,b] = ]T’{w;a <Y(w)<b}= ﬁ"{w;a <l-w<b}= ]F[l —b,1-aq]
=(1-a)?-(1-b)?2 0<a<b<l. m]

There are other ways to record the distribution of a random variable rather
than specifying the distribution measure px. We can describe the distribution
of a random variable in terms of its cumulative distribution function (cdf)

F(z)=P{X <z}, z€R. (1.2.3)

If we know the distribution measure uy, then we know the cdf F' because
F(z) = px(—o00,z]. On the other hand, if we know the cdf F, then we can
compute px(z,y] = F(y) — F(z) for z < y. For a < b, we have

oo

[a,b] = n (a—19],
n=1
and so we can compute?
pxla,b) = Jim px (a— 1,0 =F(b) - Jim F(a-1). (1.2.4)

Once the distribution measure px [a, b] is known for every interval [a,b] C R, it
is determined for every Borel subset of R. Therefore, in principle, knowing the
cdf F for a random variable is the same as knowing its distribution measure
bx-

In two special cases, the distribution of a random variable can be recorded
in more detail. The first of these is when there is a density function f(z), a
nonnegative function defined for x € R such that

b
pxla, b =P{a < X 5b}=/ f(z)dr, —oco<a<b<oo. (1.2.5)

In particular, because the closed intervals [—n, n] have union R, we must have®

2 See Appendix A, Theorem A.1.1(ii) for more detail.
3 See Appendix A, Theorem A.1.1(i) for more detail.
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2 f(@) dz = limp o0 [, f(2) dz = limp 0o P{—n < X < n}
—P{X eR} =P(2) = 1. (1.2.6)

(For purposes of this discussion, we are not considering random variables that
can take the value to00.)

The second special case is that of a probability mass function, in which
case there is either a finite sequence of numbers z,,z2,...,ZxN or an infinite
sequence Ij1,Z2,... such that with probability one the random variable X
takes one of the values in the sequence. We then define p; = P{X = z;}. Each
pi is nonnegative, and ), p; = 1. The mass assigned to a Borel set B C R by
the distribution measure of X is

px(B)= > pi, BEeBR). (1.2.7)
{i;z:€B}

The distribution of some random variables can be described via a density,
as in (1.2.5). For other random variables, the distribution must be described in
terms of a probability mass function, as in (1.2.7). There are random variables
whose distribution is given by a mixture of a density and a probability mass
function, and there are random variables whose distribution has no lumps of
mass but neither does it have a density. Random variables of this last type
have applications in finance but only at a level more advanced than this part
of the text.

Ezample 1.2.5. (Another random variable uniformly distributed on [0,1].) We
construct a uniformly distributed random variable taking values in [0, 1] and
defined on infinite coin-toss space f2.,. Suppose in the independent coin-toss
space of Example 1.1.4 that the probability for head on each toss is p = %
Forn=1,2,..., we define

_Jlifw, =H,
Yo(w) = {0 for = T. (1.2.8)

We set
= Z o

If Y1 = 0, which happens with probablhty 3,then0 < X < l .IfY; =1, which
also happens with probability 1 2 then <X<1Ifyh=0 and Y; = 0, which
happens with probability 1, then 0 < X < 1 .IfY; = 0and Y; = 1, which also
happens with probablhty 41 , then 1 15X < . This pattern continues; indeed
for any interval [2,” o Bt ¢ [0 1], the probablhty that the interval contains X
is 5. In terms of the distribution measure ux of X, we write this fact as
[k k+ 1] 1

o [T whenever k and n are integers and 0 < k < 2™ — 1.

4 See Appendix A, Section A.3.
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Taking unions of intervals of this form and using the finite additivity of
probability measures, we see that whenever k, m, and n are integers and
0<k<m<2" we have

k m

w[hm]-mok 029

From (1.2.9), one can show that
/‘I‘X[a"b]=b_a, OSaSbSI,
in other words, the distribution measure of X is uniform on [0, 1].

Ezample 1.2.6 (Standard normal random variable). Let

z2

(@)= o=e ¥
v 2m
be the standard normal density, and define the cumulative normal distribution
function .

N@) = [ el

—00

The function N(z) is strictly increasing, mapping R onto (0, 1), and so has a
strictly increasing inverse function N~!(y). In other words, N(N~1(y)) = y
for all y € (0,1). Now let Y be a uniformly distributed random variable,
defined on some probability space (§2,F,P) (two possibilities for (2, F,P)
and Y are presented in Examples 1.2.4 and 1.2.5), and set X = N~1(Y).
Whenever —oo < a < b < 00, we have

pxla,b] = P{w € 2;a < X(w) < b}
=P{we e <N (Y(w)) < b}
=P{w € 2;N(a) < N(N"}(Y(w))) < N(b)}
=P{w € 2;N(a) <Y(w) < N(b)}
= N(b) — N(a)

= /ab o(z) dz.

The measure pux on R given by this formula is called the standard normal
distribution. Any random variable that has this distribution, regardless of the
probability space ({2, F,P) on which it is defined, is called a standard normal
random variable. The method used here for generating a standard normal
random variable from a uniformly distributed random variable is called the
probability integral transform and is widely used in Monte Carlo simulation.
Another way to construct a standard normal random variable is to take
2 =R, F = B(R), take IP to be the probability measure on R that satisfies
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b
Pla,b] = / ¢(z) dz whenever — 0o < a < b < 00,
a

and take X (w) = w for all w € R. O

The second construction of a standard normal random variable in Example
1.2.6 is economical, and this method can be used to construct a random vari-
able with any desired distribution. However, it is not useful when we want to
have multiple random variables, each with a specified distribution and with
certain dependencies among the random variables. For such cases, we con-
struct (or at least assume there exists) a single probability space (12, F,P) on
which all the random variables of interest are defined. This point of view may
seem overly abstract at the outset, but in the end it pays off handsomely in
conceptual simplicity.

1.3 Expectations

Let X be a random variable defined on a probability space (£2, F,P). We would
like to compute an “average value” of X, where we take the probabilities into
account when doing the averaging. If {2 is finite, we simply define this average
value by
EX =) X(w)Pw).
wEeN

If 2 is countably infinite, its elements can be listed in a sequence wy, wg, ws, . . .,
and we can define EX as an infinite sum:

EX =) X(we)P(ws).
k=1

Difficulty arises, however, if £2 is uncountably infinite. Uncountable sums can-
not be defined. Instead, we must think in terms of integrals.

To see how to go about this, we first review the Riemann integral. If f(z) is
a continuous function defined for all z in the closed interval [a, b], we define the
Riemann integral f: f(z)dz as follows. First partition [a, b] into subintervals
[x0, z1], [21, 23], ..., [Tn_1,Zn], where a = Zg < T, < -+ < T, = b. We denote

II = {zg,z1,...,z,} the set of partition points and by

171l = max (zx — zk-1)

the length of the longest subinterval in the partition. For each subinterval
[-Tk_l,xk], we set My = maxg, ,<s<z, f(Z) and my = ming, ,<z<z, f(2)-
The upper Riemann sum is

RSH(f) = ) Mi(zk — zx_1),
k=1
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and the lower Riemann sum (see Figure 1.3.1) is

n

RS7(f) = Y mu(z — zx-1).

k=1

As || IT|| converges to zero (i.e., as we put in more and more partition points,
and the subintervals in the partition become shorter and shorter), the upper
Riemann sum RS}(f) and the lower Riemann sum RSy (f) converge to the

same limit, which we call fab f(z)dz. This is the Riemann integral.

N %

a =X Ty T r3=b T

Fig. 1.3.1. Lower Riemann sum.

The problem we have with imitating this procedure to define expectation is
that the random variable X, unlike the function f in the previous paragraph,
is a function of w € {2, and 2 is often not a subset of R. In Figure 1.3.2
the “z-axis” is not the real numbers but some abstract space (2. There is no
natural way to partition the set {2 as we partitioned [a, b] above. Therefore, we
partition instead the y-axis in Figure 1.3.2. To see how this goes, assume for
the moment that 0 < X (w) < oo for every w € £2, and let IT = {yo,¥1,¥2,--- },
where 0 = yo < y1 < Y2 < .... For each subinterval [y, yr+1], we set

Ax = {w € 2y < X(w) < yk+1}.

We define the lower Lebesgue sum to be (see Figure 1.3.2)

LS7(X) = 3 we P(4)).
k=1
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This lower sum converges as ||II||, the maximal distance between the y; par-
tition points, approaches zero, and we define this limit to be the Lebesgue
integral [, X (w) dP(w), or simply [, X dP. The Lebesgue integral might be
00, because we have not made any assumptions about how large the values of
X can be.
We assumed a moment ago that 0 < X (w) < oo for every w € 2. If the
set of w that violates this condition has zero probability, there is no effect on
the integral we just defined. If ]P{w, X(w) > 0} =1 but P{w; X (w) = 00} >0,
then we define [, X (w)dP(w) =

N
// /4
N

N\
Y2 4+ —-- -§//¢ yalP(A4) 4

VN7
N N7

y3P(As) y2P(Az2)

Yo=0 +

Fig. 1.3.2. Lower Lebesgue sum.

Finally, we need to consider random variables X that can take both pos-
itive and negative values. For such a random variable, we define the positive
and negative parts of X by

X*(w) = max{X (w),0}, X (w)=max{—X(w),0}. (1.3.1)

Both X* and X~ are nonnegative random variables, X = X+ — X~, and
|X| = X* 4+ X~. Both [, X*(w)dP(w) and [, X~ (w) dP(w) are defined by
the procedure described above, and provided they are not both co, we can
define

/ X (w) dP(w) = / X+ (w) dP(w) — / X~ (w) dP(w). (1.3.2)

I [, X*(w)dP(w) and Jo X~ (w) dP(w) are both finite, we say that X is
integrable, and [, X (w)dP(w) is also finite. If [, X*(w)dP(w) = oo and
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fn ~(w) dP(w) is ﬁmte, then [, X(w)dP(w) = oo. If [, X*(w)dP(w)
is finite and [, X~ (w)dP(w) = oo, then [, X(w)dP(w) = —oo. If both
Jo Xt (w)dP(w) = oo and Jo X~ (w) dP(w) = oo, then an “co — o0” situa-
tion arises in (1.3.2), and [, X (w) dP(w) is not defined.

The Lebesgue integral has the following basic properties.

Theorem 1.3.1. Let X be a random variable on a probability space (12, F,P).
(i) If X takes only finitely many values yo,Y1,Y2, - - -,Yn, then

[ X(0) @) = S uP(x =}
2 k=0

(i) (Integrability) The random variable X is integrable if and only if

/ | X (w)|dP(w) < oo
2

Now let Y be another random variable on (2, F,P).

(i) (Comparison) If X <Y almost surely (i.e, P{X <Y} =1), and if
Jo X(w)dP(w) and [, Y (w)dP(w) are defined, then

/me /Y

In particular, if X =Y almost surely and one of the integrals is defined,
then they are both defined and

| x@ @) = [ v @)

(iv) (Linearity) If a and 8 are real constants and X andY are integrable, or
if a and B are nonnegative constants and X andY are nonnegative, then

/ (aX (w) + BY (w)) dP(w) = a/ X (w)dP(w) + ﬂ/ Y (w) dP(w).
o) o) fo)

PARTIAL PROOF: For (i), we consider only the case when X is almost surely
nonnegative. If zero is not among the yxs, we may add yo = 0 to the list and
then relabel the ys if necessary so that 0 = yo < y1 < y2 < -+ < yp. Using
these as our partition points, we have Ay = {yr < X < yp41} = {X = yk}
and the lower Lebesgue sum is

LS;(X Z yelP{X = y}.

If we put in more partition points, the lower Lebesgue sum does not change,
and hence this is also the Lebesgue integral.
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We next consider part (iii). If X < Y almost surely, then X+ < Y+ and
X~ > Y~ almost surely. Because X+ < Yt almost surely, for every partition
11, the lower Lebesgue sums satisfy LS (X+) < LS;(Y*), so

/ X+ (w) dP(w) < / ¥+ (w) dP(w). (1.3.3)
o} fo}
Because X~ > Y~ almost surely, we also have
/ X~ (w) dP(w) > / Y~ (w) dP(w). (1.3.4)
N n

Subtracting (1.3.4) from (1.3.3) and recalling the definition (1.3.2), we obtain
the comparison property (iii).

The linearity property (iv) requires a more detailed analysis of the con-
struction of Lebesgue integrals. We do not provide that here.

We can use the comparison property (iii) and the linearity property (iv)
to prove (ii) as follows. Because |X| = X* + X~, we have X+ < |X| and
X~ < |X|. If [,|X(w)|dP(w) < oo, then the comparison property implies
Jo Xt (w)dP(w) < oo and [, X~ (w)dP(w) < oo, and X is integrable by
definition. On the other hand, if X is integrable, then [, X*(w)dP(w) < oo
and [, X~ (w)dP(w) < co. Adding these two quantities and using (iv), we see
that [, | X (w)|dP(w) < oo. O

Remark 1.8.2. We often want to integrate a random variable X over a subset
A of 2 rather than over all of £2. For this reason, we define

/ X(w)dP(w) = / I4(w)X(w) dP(w) for all A € F,
A Q

where I 4 is the indicator function (random variable) given by

lifwe A,
La(w) = {Oifw¢A.

If A and B are disjoint sets in F, then I4 + Ig = I4up and the linearity
property (iv) of Theorem 1.3.1 implies that

X (w) dP(w) = /AX(w) dP(w) + /B X (w) dP(w).

AUB

Definition 1.3.3. Let X be a random variable on a probability space (12, F,P).
The expectation (or expected value) of X is defined to be

EX = /n X () dP(w).

This definition makes sense if X is integrable, i.e.; if
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E|X| = / |X ()| dP(w) < o0
o}

or if X > 0 almost surely. In the latter case, EX might be oo.

We have thus managed to define EX when X is a random variable on an
abstract probability space (£2, F,P). We restate in terms of expected values
the basic properties of Theorem 1.3.1 and add an additional one.

Theorem 1.3.4. Let X be a random variable on a probability space (12, F,P).
(i) If X takes only finitely many values xo,z1,...,Zn, then
EX =) zP{X = z;}.
k=0

In particular, if 2 is finite, then

EX = ) X(w)Pw).

wEN
(ii) (Integrability) The random variable X is integrable if and only if
E|X]| < oco.
Now let Y be another random variable on (12, F,P).

(i) (Comparison) If X <Y almost surely and X and Y are integrable or
almost surely nonnegative, then

EX <EY.

In particular, if X =Y almost surely and one of the random variables is
integrable or almost surely nonnegative, then they are both integrable or
almost surely nonnegative, respectively, and

EX =EY.

(iv) (Linearity) If o and 3 are real constants and X and Y are integrable or
if a and B are nonnegative constants and X and Y are nonnegative, then

E(aX + BY) = oEX + SEY.

(v) (Jensen’s inequality) If ¢ is a convez, real-valued function defined on
R, and if E|X| < oo, then

P(EX) < Ep(X).

PROOF: The only new claim is Jensen’s inequality, and the proof of that is
the same as the proof given for Theorem 2.2.5 of Chapter 2 of Volume I. O
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Ezample 1.3.5. Consider the infinite independent coin-toss space 2, of Ex-
ample 1.1.4 with the probability measure P that corresponds to probability %
for head on each toss. Let

_J1ifw, =H,
Ya(w) = {Oifwn ~T.

Even though the probability space 2., is uncountable, this random variable
takes only two values, and we can compute its expectation using Theorem
1.3.4(i):
1
EY, =1-P{Y, =1}+0-P{Y, =0} = 3

Ezample 1.3.6. Let 2 = [0,1], and let P be the Lebesgue measure on [0, 1]
(see Example 1.1.3). Consider the random variable

X(w) = 1 if w is irrational,

7 1 0if w is rational.
Again the random variable takes only two values, and we can compute its
expectation using Theorem 1.3.4(i):

EX =1-P{w € [0,1];w is irrational} + 0 - P{w € [0, 1]; w is rational}.

There are only countably many rational numbers in [0, 1] (i.e., they can all
be listed in a sequence x1,T2,Z3,...). Each number in the sequence has
probability zero, and because of the countable additivity property (ii) of
Definition 1.1.2, the whole sequence must have probability zero. Therefore,
P{w € [0, 1];w is rational} = 0. Since P[0, 1] = 1, the probability of the set of
irrational numbers in [0, 1] must be 1. We conclude that EX = 1.

The idea behind this example is that if we choose a number from [0,1]
according to the uniform distribution, then with probability one the number
chosen will be irrational. Therefore, the random variable X is almost surely
equal to 1, and hence its expected value equals 1. As a practical matter,
of course, almost any algorithm we devise for generating a random number
in [0,1] will generate a rational number. The uniform distribution is often
a reasonable idealization of the output of algorithms that generate random
numbers in [0, 1], but if we push the model too far it can depart from reality.

If we had been working with Riemann rather than Lebesgue integrals, we
would have gotten a different result. To make the notation more familiar, we
write z rather than w and f(z) rather than X(w), thus defining

1 if z is irrational,
0 if  is rational.

flx) = { (1.3.5)

?’Ve have just seen that the Lebesgue integral of this function over the interval
0,1] is 1.
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To construct the Riemann integral, we choose partition points 0 = zg <
T < Tg < -+ < Tp, =1. We define
M, = max T mE =  min x).
k Tp—1Sz<T) f( ), k Tp-1T<Tg f( )
But each interval [zx_1, k] contains both rational and irrational numbers, so
M;, = 1 and my, = 0. Therefore, for this partition IT = {z¢,z1,...,Zs}, the
upper Riemann sum is 1,

n

RSH(f) =D Mi(zk — zk-1) = Y_(Tk — Tk-1) = 1,

k=1 k=1

whereas the lower Riemann sum is zero,
RS;(f) = mu(zk — z—1) = 0.
k=1

This happens no matter how small we take the subintervals in the partition.
Since the upper Riemann sum is always 1 and the lower Riemann sum is
always 0, the upper and lower Riemann sums do not converge to the same
limit and the Riemann integral is not defined. For the Riemann integral, which
discretizes the z-axis rather than the y-axis, this function is too discontinuous
to handle. The Lebesgue integral, however, which discretizes the y-axis, sees
this as a simple function taking only two values. O

We constructed the Lebesgue integral because we wanted to integrate over
abstract probability spaces (2, F,[P), but as Example 1.3.6 shows, after this
construction we can take {2 to be a subset of the real numbers and then
compare Lebesgue and Riemann integrals. This example further shows that
these two integrals can give different results. Fortunately, the behavior in
Example 1.3.6 is the worst that can happen. To make this statement precise,
we first extend the construction of the Lebesgue integral to all of R, rather
than just [0, 1].

Definition 1.3.7. Let B(R) be the o-algebra of Borel subsets of R (i.e., the
smallest o-algebra containing all the closed intervals [a,b]).5 The Lebesgue
measure on R, which we denote by L, assigns to each set B € B(R) a number
in [0,00) or the value oo so that

(i) L[a,b] = b — a whenever a < b, and
(i) if By, B2, Bs, ... is a sequence of disjoint sets in B(R), then we have the
countable additivity property

c (D B,,) = ic(B,,).

® This concept is discussed in more detail in Appendix A, Section A.2.
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Definition 1.3.7 is similar to Definition 1.1.2, except that now some sets
have measure greater than 1. The Lebesgue measure of every interval is its
length, so that R and half-lines [a,00) and (—o0,b] have infinite Lebesgue
measure, single points have Lebesgue measure zero, and the Lebesgue measure
of the empty set is zero. Lebesgue measure has the finite additivity property

(see (1.1.5))
N N
c (U Bn) = L(Bn)

whenever By, Bs, ..., By are disjoint Borel subsets of R.

Now let f(z) be a real-valued function defined on R. For the following
construction, we need to assume that for every Borel subset B of R, the
set {z; f(z) € B} is also a Borel subset of R. A function f with this prop-
erty is said to be Borel measurable. Every continuous and piecewise contin-
uvous function is Borel measurable. Indeed, it is extremely difficult to find a
function that is not Borel measurable. We wish to define the Lebesgue inte-
gral [p f(z)dL(z) of f over R. To do this, we assume for the moment that
0 < f(z) < oo for every € R. We choose a partition IT = {yo,y1,¥2,-.-},
where 0 = yo < y1 < y2 < .... For each subinterval [yk, Yx+1), we define

By = {z € Ryyx < f(z) < Yk+1}-

Because of the assumption that f is Borel measurable, even though these
sets By can be quite complicated, they are Borel subsets of R and so their
Lebesgue measures are defined. We define the lower Lebesgue sum

LS;(f) = ukL(Bx).

k=1

As ||IT|| converges to zero, these lower Lebesgue sums will converge to a limit,
which we define to be [ f(x)dL(x). It is possible that this integral gives the
value oo.

We assumed a moment ago that 0 < f(x) < oo for every = € R. If the set
of z where the condition is violated has zero Lebesgue measure, the integral
of f is not affected. If L{z € R; f(x) < 0} = 0 and L{z € R; f(z) = 00} > 0,
we define [ f(x)dL(x) = oo.

We next consider the possibility that f(z) takes both positive and negative
values. In this case, we define

ft(z) = max{f(z),0}, f (z)= max{—f(z),0}.

Because f+ and f~ are nonnegative, Jr T (x)dL(z) and [ f~(x)dL(x) are
defined by the procedure described above. We then define

/R f(z)dL(z) = /R fH(z) de(z) - /R 1 (2) dL(z),
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provided this is not co — co. In the case where both [ f*(x)dL(x) and
Jr (z)dL(x) are infinite, [; f(x)dL(z) is not defined. If f; f*(x)dL(z)
and [, f~(z) d(x) are finite, we say that f is integrable. This is equivalent to
the condition [; | f(x)| dL(x) < co. The Lebesgue integral just constructed has
the comparison and linearity properties described in Theorem 1.3.1. Moreover,
if f takes only finitely many values yo,y1, Y2, ..., Yn, then

[ 1@ @ = S tia e Rifa) = w,
k=0

provided the computation of the right-hand side does not require that oo — oo
be assigned a value.

Finally, sometimes we have a function f(z) defined for every z € R but
want to compute its Lebesgue integral over only part of R, say over some set
B € B(R). We do this by multiplying f(z) by the indicator function of B:

lifz € B,
Ip(z) = {OifzgéB.

The product f(x)lg(z) agrees with f(z) when z € B and is zero when z ¢ B.
We define

/ f(z) de(z) = / Ip(2) () dC(z).
B R

The following theorem, whose proof is beyond the scope of this book,
relates Riemann and Lebesgue integrals on R.

Theorem 1.3.8. (Comparison of Riemann and Lebesgue integrals).
Let f be a bounded function defined on R, and let a < b be numbers.

(i) The Riemann integral f: f(z)dz is defined (i.e., the lower and upper Rie-
mann sums converge to the same limit) if and only if the set of points x
in [a,b] where f(z) is not continuous has Lebesgue measure zero.

(ii) If the Riemann integral [ : f(z)dz is defined, then f is Borel measurable
(so the Lebesgue integral f[a o f(z)dL(zx) is also defined), and the Rie-
mann and Lebesgue integrals agree.

A single point in R has Lebesgue measure zero, and so any finite set of
points has Lebesgue measure zero. Theorem 1.3.8 guarantees that if we have a
real-valued function f on R that is continuous except at finitely many points,
then there will be no difference between Riemann and Lebesgue integrals of
this function.

Definition 1.3.9. If the set of numbers in R that fail to have some property
is a set with Lebesgue measure zero, we say that the property holds almost
everywhere.

Theorem 1.3.8(i) may be restated as:
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The Riemann integral [, : f(z)dz exists if and only if f(z) is almost
everywhere continuous on |a, b).

Because the Riemann and Lebesgue integrals agree whenever the Riemann
integral is defined, we shall use the more familiar notation f: f(z) dz to denote
the Lebesgue integral rather than f[a, ) f(z)dL(z). If the set B over which we
wish to integrate is not an interval, we shall write [ f(z)dr. When we are
developing theory, we shall understand [, f(z) dz to be a Lebesgue integral;
when we need to compute, we will use techniques learned in calculus for
computing Riemann integrals.

1.4 Convergence of Integrals

There are several ways a sequence of random variables can converge. In this
section, we consider the case of convergence almost surely, defined as follows.

Definition 1.4.1. Let X, X3, X3,... be a sequence of random variables, all
defined on the same probability space (£2,F,P). Let X be another random
variable defined on this space. We say that X, X2, X3,... converges to X
almost surely and write

le Xn = X almost surely
if the set of w € £2 for which the sequence of numbers X, (w), X2(w), X3(w), ...
has limit X (w) is a set with probability one. Equivalently, the set of w € 2 for
which the sequence of numbers X, (w), X2(w), X3(w), ... does not converge to
X(w) is a set with probability zero.

Ezxample 1.4.2 (Strong Law of Large Numbers). An intuitively appealing case
of almost sure convergence is the Strong Law of Large Numbers. On the infi-
nite independent coin-toss space §2,, with the probability measure chosen to
correspond to probability p = % of head on each toss, we define

_ 1ifwk=H,
Yi(w) = {Oifwk =T,

and

H, = zn: Yk,
k=1

so that H, is the number of heads obtained in the first n tosses. The Strong
Law of Large Numbers is a theorem that asserts that

H, 1
lim —= = — almost surely.
n—ooo T 2
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In other words, the ratio of the number of heads to the number of tosses

approaches % almost surely. The “almost surely” in this assertion acknowl-

edges the fact that there are sequences of tosses, such as the sequence of all
heads, for which the ratio does not converge to % We shall ultimately see
that there are in fact uncountably many such sequences. However, under our
assumptions that the probability of head on each toss is % and the tosses are

independent, the probability of all these sequences taken together is zero. O

Definition 1.4.3. Let fi, fo, f3,. - - be a sequence of real-valued, Borel-measur-
able functions defined on R. Let f be another real-valued, Borel-measurable
function defined on R. We say that fy, f2, f3,... converges to f almost every-
where and write

lim f, = f almost everywhere

n—o0

if the set of x € R for which the sequence of numbers fy(z), fa(x), f3(x),...
does not have limit f(x) is a set with Lebesque measure zero.

It is clear from these definitions that convergence almost surely and con-
vergence almost everywhere are really the same concept in different notation.

Ezample 1.4.4. Consider a sequence of normal densities, each with mean zero
and the nth having variance % (see Figure 1.4.1):

falz) = \/%e_#-

If z # 0, then lim, o fn(z) = 0, but

lim f,(0) = lim 2~ .
n—oo n—o00 T

Therefore, the sequence fi, fa, f3,... converges everywhere to the function

oy JO ifx#0,
f=) = {ooif:c=0,
and converges almost everywhere to the identically zero function f(z) = 0 for
all z € R. The set of £ where the convergence to f(z) does not take place
contains only the number 0, and this set has zero Lebesgue measure. O

Often when random variables converge almost surely, their expected values
converge to the expected value of the limiting random variable. Likewise,
when functions converge almost everywhere, it is often the case that their
Lebesgue integrals converge to the Lebesgue integral of the limiting function.
This is not always the case, however. In Example 1.4.4, we have a sequence
of normal densities for which ff; fa(z)dz = 1 for every n but the almost
everywhere limit function f is identically zero. It would not help matters to
use the everywhere limit function f*(z) because any two functions that differ
only on a set of zero Lebesgue measure must have the same Lebesgue integral.
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f20
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f

Fig. 1.4.1. Almost everywhere convergence.

Therefore, [*_ f*(z)dz = [*_ f(x)dz = 0. It cannot be otherwise because
2f*(x) = f*(z) for every z € R, and so

2/_:f*(w)dw=/:2f*(x)=/_:f*(w)dx-

This equation implies that ff; f*(z)dz = 0. It would also not help matters
to replace the functions f, by the functions

_ [ f@) iz #0,
9n(@) = {0 if z=0.

The sequence g;,g2,... converges to 0 everywhere, whereas the integrals
I °°°° gn(z) dz agree with the integrals ff; fn(z) dz, and these converge to

1, not 0. The inescapable conclusion is that in this example

o] o o]
lim / fn(z)dx 76/ lim f,(x)dz;
n—oo J_ oo M0
the left-hand side is 1 and the right-hand side is 0.

Incidentally, matters are even worse with the Riemann integral, which is
not defined for f*; upper Riemann sums for f* are infinite, and lower Riemann
sums are zero.

To get the integrals of a sequence of functions to converge to the integral of
the limiting function, we need to impose some condition. One condition that
guarantees this is that all the functions are nonnegative and they converge to
their limit from below. If we think of an integral as the area under a curve, the
assumption is that as we go farther out in the sequence of functions, we keep
adding area and never taking it away. If we do this, then the area under the
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limiting function is the limit of the areas under the functions in the sequence.
The precise statement of this result is given in the following theorem.

Theorem 1.4.5 (Monotone convergence). Let Xy, X3, X3,... be a se-
quence of random variables converging almost surely to another random vari-
able X. If

0< X; < X3< X3<... almost surely,

then
lim EX, = EX.
n—»oo
Let f1, f2, f3,-.. be a sequence of Borel-measurable functions on R converging

almost everywhere to a function f. If
0< fi1 < f2 £ f3 <... almost everywhere,

then

lim /_0; falz)dz = /—0; f(z) dz.

n—o00

The following corollary to the Monotone Convergence Theorem extends
Theorem 1.3.4(i).

Corollary 1.4.6. Suppose the nonnegative random variable X takes countably
many values xg,T1,Z2,.... Then

EX = isz{X = Z'k}. (1.4.1)
k=0

PROOF: Let Ay = {X = z}, so that X can be written as

o0
X =) xila,.
k=0

Define X, =) ;_oTkla,. Then 0 < X; < X5 < X3 < ... and limy 00 Xp =
X almost surely (“surely,” actually). Theorem 1.3.4(i) implies that

n
EX, =) zxP{X = z}.
k=0
Taking the limit on both sides as n — oo and using the Monotone Convergence
Theorem to justify the first equality below, we obtain

n o
EX = lim EX, = lim kX(:)a:klP’{X =z} = kzoxklP’{X =z}, O

Remark 1.4.7. If X can take negative as well as positive values, we can apply
Corollary 1.4.6 to X* and X~ separately and then subtract the resulting
equations to again get formula (1.4.1), provided the subtraction does not
create an “oo — 0o” situation.
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Ezample 1.4.8 (St. Petersburg paradoz). On the infinite independent coin-
toss space {2, with the probability of a head on each toss equal to %, define

a random variable X by

'2 ifw1=H,
4 fw, =T,wy =H,
8 ifwy =wy;=T,ws =H,

2% ifw =wp =+ =wg_y =T,wr = H.

\

This defines X (w) for every sequence of coin tosses except the sequence that
is all tails. For this sequence, we define X(TTT...) = oo. The probability
that X = oo is then the probability of this sequence, which is zero. Therefore,
X is finite almost surely. According to Corollary 1.4.6,

EX =2 P{X =2} +4-P{X =4} +8-P{X =8} +...

1 1 1
=2 -4+4-=48 - +...
2-5+4-7+8- o+
=1+1+1+-- = oo.

The point is that EX can be infinite, even though X is finite almost surely.
O

The following theorem provides another common situation in which we are
assured that the limit of the integrals of a sequence of functions is the integral
of the limiting function.

Theorem 1.4.9 (Dominated convergence). Let X, Xa,... be a sequence
of random variables converging almost surely to a random variable X . If there
i8 another random variable Y such that EY < oo and | X,| <Y almost surely
Jor every n, then

lim EX, = EX.
n—00
Let fi, f2,... be a sequence of Borel-measurable functions on R converging

almost everywhere to a function f. If there is another function g such that

ffooo 9(z)dz < 0o and |f,| < g almost everywhere for every n, then

nli_{rgo/;: fa(z)dz = /;: f(z) dz.

1.5 Computation of Expectations

Let X be a random variable on some probability space ({2, F,P). We have
defined the expectation of X to be the Lebesgue integral
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EX =/ X (w) dP(w),
(o}

the idea being to average the values of X (w) over 2, taking the probabilities
into account. This level of abstraction is sometimes helpful. For example, the
equality

E(X+Y)=EX +EY

follows directly from the linearity of integrals. By contrast, if we were to
derive this fact using a joint density for X and Y, it would be a tedious,
unenlightening computation.

On the other hand, the abstract space 2 is not a pleasant environment in
which to actually compute integrals. For computations, we often need to rely
on densities of the random variables under consideration, and we integrate
these over the real numbers rather than over 2. In this section, we develop
the relationship between integrals over {2 and integrals over R.

Recall that the distribution measure of X is the probability measure px
defined on R by

ux(B) =P{X € B} for every Borel subset B of R. (1.5.1)

Because px is a probability measure on R, we can use it to integrate functions
over R. We have the following fundamental theorem relating integrals over R
to integrals over f2.

Theorem 1.5.1. Let X be a random variable on a probability space (12, F,P)
and let g be a Borel-measurable function on R. Then

Elo(x)| = [ lo(a)|dix (o) (15.2)
and if this quantity is finite, then
Bo(X) = [ o(e) dux(z). (15.3)

PROOF: The proof proceeds by several steps, which collectively are called the
standard machine.

Step 1. Indicator functions. Suppose the function g(z) = Ig(z) is the indicator

of a Borel subset of R. Since this function is nonnegative, (1.5.2) and (1.5.3)
reduce to the same equation, namely

EHB(X)=AHB(z)dux($). (1.5.4)

Since the random variable Ig(X) takes only the two values one and zero, its
expectation is
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Elg(X)=1-P{X € B} +0-P{X ¢ B} =P{X € B}.
Similarly, the function I g(z) of the dummy (not random!) variable z takes only

the two values one and zero, so according to Theorem 1.3.1(i) with 2 = R,
X =1p, and P = pyx, its integral is

/R]IB(:E) dux(z) =1-px{z;Ig(z) =1} + 0 ux{z;1p(z) =0} = pux(B).

In light of (1.5.1), we have gotten the same result in both cases, and (1.5.4)
is proved.

Step 2. Nonnegative simple functions. A simple function is a finite sum of
indicator functions times constants. In this step, we assume that

g(x) = Z ak][Bk (x)’
k=1

where a3, ag,. .., a, are nonnegative constants and B, By, ..., B, are Borel
subsets of R. Because of linearity of integrals,

Eg(X) = ]EZak]IBk(X) Zak]E]IBk Zak/][}gk(a: dux(z),

where we have used (1.5.4) in the last step. But the linearity of integrals also
implies that

n
Zak / I, (z) dpx(z) = / (Z alp, (w)) dpux (x) = / 9(x) dpx (z),
k=1 R
and we conclude that
Eg(X) = [ o(e) dux(z)
when g is a nonnegative simple function.

Step 3. Nonnegative Borel-measurable functions. Let g(x) be an arbitrary non-
negative Borel-measurable function defined on R. For each positive integer n,
define the sets

1
Bk,n={ ; <g(x) < k+ } k=0,1,2,...4" — 1.

For each fixed n, the sets Bon,Bin,--.,Ban_1, correspond to the partition

1 2 4n
0<2—n<2—n <2—n=2".
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At the next stage n + 1, the partition points include all those at stage n and
new partition points at the midpoints between the old ones. Because of this
fact, the simple functions

-1
k

9n(z) = Z 2n]IBkn(x)

k=0

satisfy 0 < g1 < g2 < --- < g. Furthermore, these functions become
more and more accurate approximations of g as n becomes larger; indeed,
limy, 00 gn(z) = g() for every z € R. From Step 2, we know that

Egn(X) = /R () dpix (z)

for every n. Letting n — oo and using the Monotone Convergence Theorem,
Theorem 1.4.5, on both sides of the equation, we obtain

Eg(X) = lim Eg,(X) = lim /R gn(z) dpx(z) = /R 9(z) dpx(x).
This proves (1.5.3) when g is a nonnegative Borel-measurable function.

Step 4. General Borel-measurable function. Let g(z) be a general Borel-
measurable function, which can take both positive and negative values. The
functions

9" (z) = max{g(z),0} and g~ (z) = max{~g(z), 0}

are both nonnegative, and from Step 3 we have
Eg*(X) = [ 4" @) dux(@). Bo"(0) = [ 4@ dux (o).

Adding these two equations, we obtain (1.5.2). If the quantity in (1.5.2) is
finite, then

Eg*(X) = [g* () dux(z) < oo,

Eg~(X) = Jp 9~ (z) dux(z) < oo,
and we can subtract these two equations because this is not an co — oo situ-
ation. The result of this subtraction is (1.5.3). O

Theorem 1.5.1 tells us that in order to compute the Lebesgue integral

X (w) dP(w) over the abstract space §2, it suffices to compute the

mtegral ?R g(z) dux(x) over the set of real numbers. This is still a Lebesgue
integral, and the integrator is the distribution measure px rather than the
Lebesgue measure. To actually perform a computation, we need to reduce
this to something more familiar. Depending on the nature of the random
variable X, the distribution measure pux on the right-hand side of (1.5.3) can
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have different forms. In the simplest case, X takes only finitely many values
Z0,T1,%L2, - -, Zn, and then px places a mass of size py = P{X = x4} at each
number zk. In this case, formula (1.5.3) becomes

Eg(X) = / 9(z)px (de) Zy k)P,

The most common case for continuous-time models in finance is when
X has a density. This means that there is a nonnegative, Borel-measurable
function f defined on R such that

ux(B) = / f(z) dz for every Borel subset B of R. (1.5.5)
B

This density allows us to compute the measure ux of a set B by computing
an integral over B. In most cases, the density function f is bounded and
continuous or almost everywhere continuous, so that the integral on the right-
hand side of (1.5.5) can be computed as a Riemann integral.

If X has a density, we can use this density to compute expectations, as
shown by the following theorem.

Theorem 1.5.2. Let X be a random variable on a probability space (12, F,P),
and let g be a Borel-measurable function on R. Suppose that X has a density
f (i-e., f is a function satisfying (1.5.5)). Then

Elo(x) = [ " lo(@)I () d. (1.5.6)

If this quantity is finite, then
o]
Eg(X) = / o(2)f(z) dz. (1.5.7)

PROOF: The proof proceeds again by the standard machine.

Step 1. Indicator functions. If g(x) = Ig(z), then because g is nonnegative,
equations (1.5.6) and (1.5.7) are the same and reduce to

]EIB(X)=/Bf(:c)da:.

The left-hand side is P{X € B} = px(B), and (1.5.5) shows that the two
sides are equal.

Step 2. Simple functions. If g(z) = Y} r_, axlp,(z), then
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Eg(X) = (Zakﬂgk X)) Zak]E]IBk
—Zak/ Ig (z x)da:—/ Zak]IBk(x)f(x)dz

—O0 k=1

=[wamﬂ@m.

Step 8. Nonnegative Borel-measurable functions. Just as in the proof of The-
orem 1.5.1 we construct a sequence of nonnegative simple functions 0 < ¢; <
g2 < --- < g such that lim, o gn(z) = g(z) for every x € R. We have already
shown that

Eg.(X) = /_ ” gn(2)f(z) dz

for every n. We let n — oo, using the Monotone Convergence Theorem, The-
orem 1.4.5, on both sides of the equation, to obtain (1.5.7).

Step 4. General Borel-measurable functions. Let g be a general Borel-measur-
able function, which can take positive and negative values. We have just
proved that

(e o]

o o]
Bt = [ o @feds B (0= [ @@
—00 —00
Adding these equations, we obtain (1.5.6). If the expression in (1.5.6) is finite,
we can also subtract these equations to obtain (1.5.7). |

1.6 Change of Measure

‘We pick up the thread of Section 3.1 of Volume I, in which we used a positive
random variable Z to change probability measures on a space {2. We need
to do this when we change from the actual probability measure P to the
risk-neutral probability measure IP in models of financial markets. When {2
is uncountably infinite and P(w) = P(w) = 0 for every w € {2, it no longer
makes sense to write (3.1.1) of Chapter 3 of Volume I,

_ Pw)
because division by zero is undefined. We could rewrite this equation as
Z(w)P(w) = P(w), (1.6.2)

and now we have a meaningful equation, with both sides equal to zero, but the
equation tells us nothing about the relationship among P, P, and Z. Because
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P(w) = P(w) = 0, the value of Z(w) could be anything and (1.6.2) would still
hold.

However, (1.6.2) does capture the spirit of what we would like to accom-
plish. To change from P to ]F’, we need to reassign probabilities in {2 using Z to
tell us where in {2 we should revise the probability upward (where Z > 1) and
where we should revise the probability downward (where Z < 1). However,
we should do this set-by-set, rather than w-by-w. The process is described by
the following theorem.

Theorem 1.6.1. Let (12, F,P) be a probability space and let Z be an almost
surely nonnegative random variable with EZ = 1. For A € F, define

B(A) = /A Z(w) dP(w). (1.6.3)

Then P is a probability measure. Furthermore, if X is a nonnegative random
variable, then

EX = E[X Z]. (1.6.4)
If Z is almost surely strictly positive, we also have
~[Y
EY =E|—= .6.
Y] w6

for every nonnegative random variable Y.

5 The~]E appearing in £1.6.4) is expectation under the probability measure
P (ie., EX = [, X(w) dP(w)).

Remark 1.6.2. Suppose X is a random variable that can take both positive
and negative values. We may apply (1.6.4) to its positive and negative parts
X* = max{X,0} and X~ = max{—X,0}, and then subtract the resulting
equations to see that (1.6.4) holds for this X as well, provided the subtraction
does not result in an oo — oo situation. The same remark applies to (1.6.5).

PROOF OF THEOREM 1.6.1: According to Definition 1.1.2, to check that Pis
a probability measure, we must verify that P(£2) = 1 and that P is countably
additive. We have by assumption

P(2) = /QZ(w) dP(w) =EZ =1.

For countable additivity, let A;, Az,... be a sequence of disjoint sets in F,
and define B, = Up_, Ax, Boo = U3, Ak. Because

Ig, <Ip, <Ip, <...

and lim,_,o Ip, = Ip_, we may use the Monotone Convergence Theorem,
Theorem 1.4.5, to write
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B(Boy) = / Ip_ (0)Z(w) dP(w) = lim / Is, (w) Z(w) dP(w).
n n—00 n

But Ip, (w) = Y ;-; 14, (w), and so

/n Ip, (w)Z(w) dP(w) = ; /.Q I4,(w)Z(w) dP(w) = ;P(Ak).

Putting these two equations together, we obtain the countable additivity prop-

erty - . -
P (U Ak) - tim 3B = 3 B4,

Now suppose X is a nonnegative random variable. If X is an indicator
function X =14, then

EX =P(A) = /ﬂ I4(w)Z(w) dP(w) =E[I4Z) = E[X Z],

which is (1.6.4). We finish the proof of (1.6.4) using the standard machine
developed in Theorem 1.5.1. When Z > 0 almost surely, % is defined and we

may replace X in (1.6.4) by % to obtain (1.6.5). O

Definition 1.6.3. Let {2 be a nonempty set and F a o-algebra of subsets of
2. Two probability measures P and P on (12, F) are said to be equivalent if
they agree which sets in F have probability zero.

Under the assumptions of Theorem 1.6.1, including the assumption that
Z > 0 almost surely, IP and P are equivalent. Suppose A € F is given and
P(A) = 0. Then the random variable [4Z is P almost surely zero, which
implies

P(A) = /n 14(w)Z(w) dP(w) = 0.

On the other hand, suppose B € F satisfies ﬁ(B) = 0. Then %IIB = 0 almost
surely under ]F, so
E [1113] =0.

Z

Equation (1.6.5) implies P(B) = Elg = 0. This shows that P and P agree
which sets have probability zero. Because the sets with probability one are
complements of the sets with probability zero, P and P agree which sets have
probability one as well. Because P and P are equivalent, we do not need to
specify which measure we have in mind when we say an event occurs almost
surely.

In financial models, we will first set up a sample space {2, which one
can regard as the set of possible scenarios for the future. We imagine this
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set of possible scenarios has an actual probability measure P. However, for
purposes of pricing derivative securities, we will use a risk-neutral measure P.
We will insist that these two measures are equivalent. They must agree on
what is possible and what is impossible; they may disagree on how probable
the possibilities are. This is the same situation we had in the binomial model; P
and P assigned different probabilities to the stock price paths, but they agreed
which stock price paths were possible. In the continuous-time model, after we
have P and IP, we shall determine prices of derivative securities that allow us to
set up hedges that work with P-probability one. These hedges then also work
with P-probability one. Although we have used the risk-neutral probability to
compute prices, we will have obtained hedges that work with probability one
under the actual (and the risk-neutral) probability measure.

It is common to refer to computations done under the actual measure
as computations in the real world and computations done under the risk-
neutral measure as computations in the risk-neutral world. This unfortunate
terminology raises the question whether prices computed in the “risk-neutral
world” are appropriate for the “real world” in which we live and have our
profits and losses. Our answer to this question is that there is only one world
in the models. There is a single sample space {2 representing all possible future
states of the financial markets, and there is a single set of asset prices, modeled
by random variables (i.e., functions of these future states of the market). We
sometimes work in this world assuming that probabilities are given by an
empirically estimated actual probability measure and sometimes assuming
that they are given by risk-neutral probabilities, but we do not change our
view of the world of possibilities. A hedge that works almost surely under one
assumption of probabilities works almost surely under the other assumption
as well, since the probability measures agree which events have probability
one.

The change of measure discussed in Section 3.1 of Volume I is the spe-
cial case of Theorem 1.6.1 for finite probability spaces, and Example 3.1.2 of
Chapter 3 of Volume I provides a case with explicit formulas for P, P, and Z
when the expectations are sums. We give here two examples on uncountable
probability spaces.

Ezample 1.6.4. Recall Example 1.2.4 in which 2 = [0,1], P is the uniform
(i.e., Lebesgue) measure, and

b
]P’[a,b]=/ 2wdw=>5b"—-a%, 0<a<b< 1 (1.2.2)
a
We may use the fact that P(dw) = dw to rewrite (1.2.2) as
Pla,b] = / 2w dP(w). (1.2.2)

)

Because B0, 1] is the o-algebra generated by the closed intervals (i.e., begin
with the closed intervals and put in all other sets necessary in order to have a
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o-algebra), the validity of (1.2.2)’ for all closed intervals [a,b] C [0, 1] implies
its validity for all Borel subsets of [0, 1]:
P(B) = / 2w dP(w) for every Borel set B C R.
B

This is (1.6.3) with Z(w) = 2w.
Note that Z(w) = 2w is strictly positive almost surely (P{0} = 0), and

1
]EZ=/ 2wdw = 1.
0

According to (1.6.4), for every nonnegative random variable X (w), we have
the equation

/01 X (w)dP(w) = /01 X (W) - 2w dw.
This suggests the notation
dP(w) = 2w dw = 2w dP(w). (1.6.6)
O

In general, when P, l‘l‘"’, and Z are related as in Theorem 1.6.1, we may
rewrite the two equations (1.6.4) and (1.6.5) as

/ X (w) dP(w) = / X(w)Z(w) dP(w),
2 0

/n Y (w) dP(w) = /n 70 W

A good way to remember these equations is to formally write Z(w) = %}ﬂ%

Equation (1.6.6) is a special case of this notation that captures the idea behind
the nonsensical equation (1.6.1) that Z is somehow a “ratio of probabilities.”
In Example 1.6.4, Z(w) = 2w is in fact a ratio of densities, with the denomi-
nator being the uniform density 1 for all w € [0, 1].

Definition 1.6.5. Let (12, F,P) be a probability space, let P be another proba-
bility measure on (£2,F) that is equivalent to P, and let Z be an almost surely
positive random variable that relates P and P via (1.6.3). Then Z is called the
Radon-Nikodym derivative of P with respect to P, and we write

Z=".
dP

Ezample 1.6.6 (Change of measure for a normal random variable). Let X be a
standard normal random variable defined on some probability space (2, F,P).
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Two ways of constructing X and (2, F,P) were described in Example 1.2.6.
For purposes of this example, we do not need to know the details about
the probability space (2, F,P), except we note that the set §2 is necessarily
uncountably infinite and P(w) = 0 for every w € (2.

When we say X is a standard normal random variable, we mean that

ux(B) =P{X € B} = / ¢(z) dz for every Borel subset B of R, (1.6.7)
B

where
1 x 2

)= —e 2

P(z) = 7=

is the standard normal density. If we take B = (—o0,b|, this reduces to the
more familiar condition

P{X <b} = / (z)dz for every b € R. (1.6.8)

In fact, (1.6.8) is equivalent to the apparently stronger statement (1.6.7). Note
that EX = 0 and variance Var(X) = E(X — EX)? = 1.

Let 6 be a constant and define Y = X + 0, so that under P, the random
variable Y is normal with EY = § and variance Var(Y) = E(Y — EY)? = 1.
Although it is not required by the formulas, we will assume 6 is positive for
the discussion below. We want to change to a new probability measure P on {2
under which Y is a standard normal random variable. In other words, we want
EY =0and Var(Y) E(Y —EY)? = 1. We want to do this not by subtracting
0 away from Y, but rather by assigning less probability to those w for which
Y (w) is sufficiently positive and more probability to those w for which Y (w)
is negative. We want to change the distribution of Y without changing the
random variable Y. In finance, the change from the actual to the risk-neutral
probability measure changes the distribution of asset prices without changing
the asset prices themselves, and this example is a step in understanding that
procedure.

We first define the random variable

Z(w) = exp {—OX(w) - %02} for all w € £2.

This random variable has two important properties that allow it to serve as a
Radon-Nikodym derivative for obtaining a probability measure P equivalent
to P:

((i) Z(w) > 0 for all w € 2 (Z > 0 almost surely would be good enough), and
i) EZ = 1.

Property (i) is obvious because Z is defined as an exponential. Property (ii)
follows from the integration
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o0 1
EZ = / exp {—0:1: - —02} p(x)dx
—oo 2

1 > 1
=\/T/ exp{—i(z2+20z+02)}dx
T J-00

_ \/%—W/w exp{—l(x+o)2}dx

-=/. e"p{“y }dy’

where we have made the change of dummy variable y = z + 6 in the last
step. But 1 ffo exp{—%y"’}dy, being the integral of the standard normal
density, is equal to one.

We use the random variable Z to create a new probability measure P by
adjusting the probabilities of the events in 2. We do this by defining

B(A) = /A Z(w) dP(w) for all A € F. (1.6.9)

The random variable Z has the property that if X (w) is positive, then
Z(w) < 1 (we are still thinking of @ as a positive constant). This shows that
P assigns less probability than P to sets on which X is positive, a step in the
right direction of statistically recentering Y. We claim not only that EY =0
but also that, under P, Y is a standard normal random variable. To see this,
we compute

P{Y < b} = / Z(w) dP(w)

{wiY (w)<b}

= /rlH{Y(w)gb}Z(w) dP(w)
1
= A ]I{X(w)Sb—o} exp {—GX(UJ) - 502} d]P’(w)

At this point, we have managed to write ]F{Y < b} in terms of a function of
the random variable X, integrated with respect to the probability measure P
under which X is standard normal. According to Theorem 1.5.2,

1
/Q I x (w)<b-6} €XP {—0X (w) - 502} dP(w)

* —6z—162
= Iiz<b-6ye™ "7 2" p(z)dz
— o0

z2
0o~ dg

m/bo
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— 1 b9 e—%(.1!:+(9)2d‘,B
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1 [° e
v

where we have made the change of dummy variable y = z + 6 in the last step.

We conclude that R
~ 1 1,2
P{Y <b} = — e”2¥ dy,
rep=—=[ ¥

which shows that Y is a standard normal random variable under the proba-
bility measure P. ]

Following Corollary 2.4.6 of Chapter 2 of Volume I, we discussed how
the existence of a risk-neutral measure guarantees that a financial model is
free of arbitrage, the so-called First Fundamental Theorem of Asset Pricing.
The same argument applies in continuous-time models and in fact underlies
the Heath-Jarrow-Morton no-arbitrage condition for term-structure models.
Consequently, we are interested in the existence of risk-neutral measures. As
discussed earlier in this section, these must be equivalent to the actual proba-
bility measure. How can such probability measures P arise? In Theorem 1.6.1,
we began with the probability measure P and an almost surely positive ran-
dom variable Z and constructed the equivalent probability measure IP. It turns
out that this is the only way to obtain a probability measure P equivalent to
P. The proof of the following profound theorem is beyond the scope of this
text.

Theorem 1.6.7 (Radon-Nikodym). Let P and P be equivalent probabil-
ity measures defined on (2,F). Then there exists an almost surely positive
random variable Z such that EZ =1 and

P(A) = /A Z(w) dP(w) for every A € F.

1.7 Summary

Probability theory begins with a probability space (12, F,P) (Definition 1.1.2).
Here (2 is the set of all possible outcomes of a random experiment, F is the
collection of subsets of 2 whose probability is defined, and P is a function
mapping F to [0, 1]. The two axioms of probability spaces are P(£2) = 1 and
countable additivity: the probability of a union of disjoint sets is the sum of
the probabilities of the individual sets.

The collection of sets F in the preceding paragraph is a o-algebra, which
means that () belongs to F, the complement of every set in F is also in F, and
the union of any sequence of sets in F is also in F. The Borel o-algebra in R,
denoted B(R), is the smallest o-algebra that contains all the closed interval
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[a,b] in R. Every set encountered in practice is a Borel set (i.e., belongs to
B(R)).

A random variable X is a mapping from 2 to R (Definition 1.2.1). By def-
inition, it has the property that, for every B € B(R), the set {w € 2; X (w) €
B} is in the o-algebra F. A random variable X together with the probability
measure [P on 2 determines a distribution on R. This distribution is not the
random variable. Different random variables can have the same distribution,
and the same random variable can have different distributions. We describe
the distribution as a measure px that assigns to each Borel subset B of R the
mass px(B) = P{X € B} (Definition 1.2.3). If X has a density f(z), then
px(B) = [p f(z)dz. If X is a discrete random variable, which means that it
takes one of countably many values 21, Zs, . .., then we define p; = P{X = z;}
and have pux(B) = Z{imeB} Di-

The ezpectation of a random variable X is EX = [, X (w) dP(w), where
the right-hand side is a Lebesgue integral over {2. Lebesgue integrals are dis-
cussed in Section 1.3. They differ from Riemann integrals, which form approx-
imating sums to the integral by partitioning the “z” (horizontal)-axis, because
Lebesgue integrals form approximating sums to the integral by partitioning
the “y”(vertical)-axis. Lebesgue integrals have the properties one would ex-
pect (Theorem 1.3.4):

Comparison. If X <Y almost surely, then EX < EY;

Linearity. E(aX + 8Y) = aEX + SEY.

In addition, if ¢ is a convex function, we have Jensen’s inequality: p(EX) <
Ep(X).

If the random variable X has a density f(z), then EX = f_°°°° zf(x)dz and,
more generally, Eg(X) = f °°°° g9(z) f(x) dz (Theorem 1.5.2). If the random

variable is discrete with p; =_1P’{X =x;}, then Eg(X) =Y, g(z:)p;.
Suppose we have a sequence of random variables X;, X5, X3,... converg-

ing almost surely to a random variable X. It is not always true that

EX = lim EX,,. (1.7.1)
n—00

However, if 0 < X; < Xz < X3 < ... almost surely, then (1.7.1) holds
(Monotone Convergence Theorem, Theorem 1.4.5). Alternatively, if there ex-
ists a random variable Y such that EY < oo and |X,| < Y almost surely for
every n, then again (1.7.1) holds (Dominated Convergence Theorem, Theorem
1.4.9).

We may start with a probability space ({2, F,P) and change to a different
measure P. Our motivation for considering two measures is that in finance
there is both an actual probability measure and a risk-neutral probability

measure. If P is a probability measure and Z is a nonnegative random variable
satisfying EZ = 1, then P defined by

P(A) = /A Z(w) dP(w) for all A e F
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is also a probability measure (Theorem 1.6.1). If Z is strictly positive almost
surely, the two measures are equivalent: they agree about which sets have
probability zero. For a random variable X, we have the change-of-expectation
formula E[X] = E[XZ]. If Z is strictly positive almost surely, there is a
change-of-expectation formula in the other direction. Namely, if Y is a random
variable, then EY = E[%].

1.8 Notes

Probability theory is usually learned in two stages. In the first stage, one
learns that a discrete random variable has a probability mass function and
a continuous random variable has a density. These can be used to compute
expectations and variances, and even conditional expectations, which are dis-
cussed in Chapter 2. Furthermore, one learns how transformations of contin-
uous random variables change densities. A well-written book that contains all
these things is DeGroot [48].

The second stage of probability theory, which is treated in this chapter,
is measure-theoretic. In this stage, one views a random variable as a function
from a sample space §2 to the set of real numbers R. Certain subsets of 2
are called events, and the collection of all events forms a o-algebra F. Each
set A in F has a probability P(A). This point of view handles both discrete
and continuous random variables within the same unifying framework. It is
necessary to adopt this point of view in order to understand the change from
the actual to the risk-neutral measure in finance.

The measure-theoretic view of probability theory was begun by Kol-
mogorov [104]. A comprehensive book on measure-theoretic probability is
Billingsley [10]. A succinct book on measure-theoretic probability and mar-
tingales is Williams [161]. A more detailed book is Chung [35]. All of these
are at the level of a Ph.D. course in mathematics.

1.9 Exercises

Exercise 1.1. Using the properties of Definition 1.1.2 for a probability mea-
sure P, show the following.

(i) If Ae F, Be F, and A C B, then P(A) < P(B).

(ii) If A € F and {Ar}32, is a sequence of sets in F with lim, o P(An) =0
and A C A, for every n, then P(A) = 0. (This property was used implicitly
in Example 1.1.4 when we argued that the sequence of all heads, and
indeed any particular sequence, must have probability zero.)

Exercise 1.2. The infinite coin-toss space 2 of Example 1.1.4 is uncount-
ably infinite. In other words, we cannot list all its elements in a sequence.
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To see that this is impossible, suppose there were such a sequential list of all
elements of 2o0:

w® = wgl)wél)wgl)wfll) vy
w® = wgz)wgz)wgz)wg‘}) ces
w® = PP

An element that does not appear in this list is the sequence whose first com-
ponent is H if wgl) is T and is T if w§1) is H, whose second component is H
if wéz) is T and is T if wéz) is H, whose third component is H if w:(,s) is T and
is T if w:(;e') is H, etc. Thus, the list does not include every element of 2.
Now consider the set of sequences of coin tosses in which the outcome on
each even-numbered toss matches the outcome of the toss preceding it, i.e.,

A = {w = wwowswaws . . . ;W) = W2, W3 = Wy, .. }.

(i) Show that A is uncountably infinite.
(ii) Show that, when 0 < p < 1, we have P(4) = 0.

Uncountably infinite sets can have any probability between zero and one,
including zero and one. The uncountability of the set does not help determine
its probability.

Exercise 1.3. Consider the set function P defined for every subset of [0, 1] by
the formula that P(A) = 0 if A is a finite set and P(A) = oo if A is an infinite
set. Show that PP satisfies (1.1.3)—(1.1.5), but P does not have the countable
additivity property (1.1.2). We see then that the finite additivity property
(1.1.5) does not imply the countable additivity property (1.1.2).

Exercise 1.4. (i) Construct a standard normal random variable Z on the
probability space (£24,Fso,P) of Example 1.1.4 under the assumption
that the probability for head is p = % (Hint: Consider Examples 1.2.5
and 1.2.6.)

(ii) Define a sequence of random variables {Z,}32; on 2 such that

lim Z,(w) = Z(w) for every w € 2

n—oo
and, for each n, Z, depends only on the first n coin tosses. (This gives
us a procedure for approximating a standard normal random variable by
random variables generated by a finite number of coin tosses, a useful
algorithm for Monte Carlo simulation.)

Exercise 1.5. When dealing with double Lebesgue integrals, just as with
double Riemann integrals, the order of integration can be reversed. The only
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assumption required is that the function being integrated be either nonnega-
tive or integrable. Here is an application of this fact.

Let X be a nonnegative random variable with cumulative distribution
function F(z) = P{X < z}. Show that

o0
EX =/ (1- F()) do
0
by showing that -
/ / Ijo,x (w)) (%) dz dP(w)
JO

is equal to both EX and [;°(1 — F(x)) dz.

Exercise 1.6. Let u be a fixed number in R, and define the convex function
o(x) = e*® for all z € R. Let X be a normal random variable with mean

p = EX and standard deviation o = []E(X — u)z] %, i.e., with density

f@) = =

ovV2r

(i) Verify that
Ee*X — euu+%uza'2.

(ii) Verify that Jensen’s inequality holds (as it must):

Ep(X) > ¢(EX).
Exercise 1.7. For each positive integer n, define f,, to be the normal density
with mean zero and variance n, i.e.,

1 _z2
= 2n
(i) What is the function f(z) = lim,_,00 fn(z)?
(i) What is limp_,co ffzo fn(z)dz?
(iii)) Note that

lim /_Z fulz)dz # /j: f(x)dz.

n—oo

Explain why this does not violate the Monotone Convergence Theorem,
Theorem 1.4.5.

Exercise 1.8 (Moment-generating function). Let X be a nonnegative
random variable, and assume that

o(t) = Ee'X
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is finite for every t € R. Assume further that E [Xe'X]| < oo for every t €
R. The purpose of this exercise is to show that ¢/(t) = E[Xe'X] and, in
particular, ¢’(0) = EX.

We recall the definition of derivative:

1) — E tX —E sX tX _ sX
J(t) = tim ED = e6) _ Be” —Ee” [#] _
st t—s st t—s s—t t—s

The limit above is taken over a continuous variable s, but we can choose a
sequence of numbers {s,}32; converging to ¢ and compute

tX _ _spX
lim E [f—e] ,

Sp—t t— sy

where now we are taking a limit of the expectations of the sequence of random

variables

etX _ es,.X

Y, =
" t— Sn

If this limit turns out to be the same, regardless of how we choose the
sequence {s,}32, that converges to ¢, then this limit is also the same as
etx_eaX . /

] and is ¢'(t).
The Mean Value Theorem from calculus states that if f(t) is a differen-

tiable function, then for any two numbers s and ¢, there is a number 8 between
s and ¢ such that

lims , E | $5=¢5

f() = f(s) = f'(O)(t - 9).
If we fix w € £2 and define f(t) = e**(“), then this becomes
etX W) _ g3 X(W) — (¢ — 5) X (w)ef@XW) (1.9.1)
where 6(w) is a number depending on w (i.e., a random variable lying between
t and s).

(i) Use the Dominated Convergence Theorem (Theorem 1.4.9) and equation
(1.9.1) to show that

lim EY, =E | lim Ya| = E [Xet*]. (1.9.2)

n—00 [n——)oo

This establishes the desired formula ¢'(t) = E [XetX].

(i) Suppose the random variable X can take both positive and negative values
and EetX < oo and E [|X|e'X] < oo for every t € R. Show that once again
¢'(t) = E [Xe*X]. (Hint: Use the notation (1.3.1) to write X = X*+—X".)

Exercise 1.9. Suppose X is a random variable on some probability space
(2, F,P), Ais aset in F, and for every Borel subset B of R, we have

/A In(X (w)) dP(w) = P(A) - P{X € B}. (1.9.3)
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Then we say that X is independent of the event A.
Show that if X is independent of an event A, then

/A 0(X () dP(w) = P(A) - Eg(X)

for every nonnegative, Borel-measurable function g.

Exercise 1.10. Let P be the uniform (Lebesgue) measure on {2 = [0, 1]. De-

fine 0if0 .
_ i §w<§,
Z(w)_{2if%§w§1.

For A € BJ0,1], define
P(A) = /A Z(w) dP(w).

(i) Show that P is a probability measure.

(ii) Show that if P(A) = 0, then P(A) = 0. We say that P is absolutely
continuous with respect to IP. _

(iii) Show that there is a set A for which P(A) = 0 but P(A) > 0. In other

words, P and PP are not equivalent.

Exercise 1.11. In Example 1.6.6, we began with a standard normal random
variable X under a measure IP. According to Exercise 1.6, this random variable
has the moment-generating function

Ee*X = 3% for all u € R.

The moment-generating function of a random variable determines its distribu-
ti?nz. In particular, any random variable that has moment-generating function
ez¥ must be standard normal.

In Example 1.6.6, we also defined Y = X + 0, where § is a constant, we
set Z = e~9X=3%° and we defined P by the formula (1.6.9):

B(A) = /A Z(w) dP(w) for all A € F.

We showed by considering its cumulative distribution function that Y is a
standard normal random variable under P. Give another proof that Y is stan-
dard normal under P by verifying the moment-generating function formula

Ee*Y = e3*” for all u € R.

Exercise 1.12. In Example 1.6.6, we began with a standard normal random
variable X on a probability space (2, F,P) and defined the random variable
Y = X +0, where 6 is a constant. We also defined Z = e~9X~%%" and used Z
as the Radon-Nikodym derivative to construct the probability measure P by
the formula (1.6.9):
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B(A) = / Z(w) dP(w) for all A € F.
A

Under ﬁ, the random variable Y was shown to be standard normal.

We now have a standard normal random variable Y on the probability
space (§2,F,P), and X is related to Y by X = Y — 6. By what we have
just stated, with X replaced by Y and 6 replaced by —8, we could define
7 = Y59 and then use 7 as a Radon-Nikodym derivative to construct a
probability measure P by the formula

B(4) = /A Z(w) dP(w) for all A € F,

so that, under ]’15, the random variable X is standard normal. Show that Z = %
and P=P.

Exercise 1.13 (Change of measure for a normal random variable). A
nonrigorous but informative derivation of the formula for the Radon-Nikodym
derivative Z(w) in Example 1.6.6 is provided by this exercise. As in that
example, let X be a standard normal random variable on some probability
space (£2, F,P), and let Y = X + 6. Our goal is to define a strictly positive
random variable Z(w) so that when we set

B(A) = /A Z(w) dP(w) for all A € F, (1.9.4)

the random variable Y under P is standard normal. If we fix @ € £2 and choose
a set A that contains @ and is “small,” then (1.9.4) gives

P(A) ~ Z@)P(A),

where the symbol ~ means “is approximately equal to.” Dividing by P(A),

we see that ~
P(A)
—— =~ 7@
for “small” sets A containing @. We use this observation to identify Z(@).
With @ fixed, let £ = X (@). For € > 0, we define B(z,¢) = [z -5,zT+ %]
to be the closed interval centered at x and having length €. Let y = 2 + 6 and
B(y,e)=[y—5.y+35]
(i) Show that

2w
%]P’{X € B(z,e)} = # exp {—XT()} .

(ii) In order for Y to be a standard normal random variable under P, show
that we must have

%Iﬁ{Y € B(y,€)} ¥ — exp {——
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(iii) Show that {X € B(z,¢)} and {Y € B(y,¢)} are the same set, which we
call A(w, ). This set contains @ and is “small” when ¢ > 0 is small.
(iv) Show that

P(4) S
m—)fve}(p{ GX(W) 20 }.
The right-hand side is the value we obtained for Z(@) in Example 1.6.6.

Exercise 1.14 (Change of measure for an exponential random vari-
able). Let X be a nonnegative random variable defined on a probability space
(12, F, P) with the ezponential distribution, which is

]P’{XSa}=1—e_’\“, a>0,

where ) is a positive constant. Let A be another positive constant, and define

)\ -
Z = Xe_()‘_)‘)x.

Define P by
B(A) =/ ZdP forall A€ F.
A

(i) Show that P(£2) = 1.
(if) Compute the cumulative distribution function

P{X <a} fora>0
for the random variable X under the probability measure P.

Exercise 1.15 (Provided by Alexander Ng). Let X be a random variable
on a probability space (2, F,P), and assume X has a density function f(z)
that is positive for every z € R. Let g be a strictly increasing, differentiable
function satisfying

lim g(y) = —oo, lim g(y) = oo,

y——00 y—o00

and define the random variable Y = g(X).

Let h(y) be an arbitrary nonnegative function satisfying ffzo h(y)dy = 1.
We want to change the probability measure so that h(y) is the density function
for the random variable Y. To do this, we define

7 - Me(X)g'(X)
f(X)
(i) Show that Z is nonnegative and EZ = 1.
Now define P by
P(A) = /AZle’ for all A € F.

(ii) Show that Y has density & under P.
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2

Information and Conditioning

2.1 Information and o-algebras

The no-arbitrage theory of derivative security pricing is based on contingency
plans. In order to price a derivative security, we determine the initial wealth
we would need to set up a hedge of a short position in the derivative security.
The hedge must specify what position we will take in the underlying security
at each future time contingent on how the uncertainty between the present
time and that future time is resolved. In order to make these contingency
plans, we need a way to mathematically model the information on which our
future decisions can be based. In the binomial model, that information was
knowledge of the coin tosses between the initial time and the future time. For
the continuous-time model, we need to develop somewhat more sophisticated
machinery to capture this concept of information.

We imagine as always that some random experiment is performed, and the
outcome is a particular w in the set of all possible outcomes 2. We might then
be given some information—not enough to know the precise value of w but
enough to narrow down the possibilities. For example, the true w might be
the result of three coin tosses, and we are told only the first one. Or perhaps
we are told the stock price at time two without being told any of the coin
tosses. In such a situation, although we do not know the true w precisely, we
can make a list of sets that are sure to contain it and other sets that are sure
not to contain it. These are the sets that are resolved by the information.

Indeed, suppose {2 is the set of eight possible outcomes of three coin tosses.
If we are told the outcome of the first coin toss only, the sets

Ay ={HHH,HHT,HTH,HTT}, Ar={THH,THT,TTH,TTT}
(2.1.1)
are resolved. For each of these sets, once we are told the first coin toss, we
know if the true w is a member. The empty set @ and the whole space {2 are
always resolved, even without any information; the true w does not belong to
@ and does belong to £2. The four sets that are resolved by the first coin toss



50 2 Information and Conditioning

form the o-algebra

]:l = {Q,Q,AH’AT}-

We shall think of this o-algebra as containing the information learned by
observing the first coin toss. More precisely, if instead of being told the first
coin toss, we are told, for each set in F;, whether or not the true w belongs
to the set, we know the outcome of the first coin toss and nothing more.

If we are told the first two coin tosses, we obtain a finer resolution. In
particular, the four sets

Apyy = {HHH,HHT}, Ayr = {HTH,HTT},

Ary = {THH,THT}, Arr = {TTH,TTT}, (212)

are resolved. Of course, the sets in J; are still resolved. Whenever a set is
resolved, so is its complement, which means that A%y, A47, A7y, and ASp
are resolved. Whenever two sets are resolved, so is their union, which means
that AHH UATH, AHH UATT, AHTUATH, and AHTUATT are resolved. We
have already noted that the two other pairwise unions, Ay = Ayy U Agyr
and Ar = Arg U Arr, are resolved. The triple unions are also resolved, and
these are the complements already mentioned, e.g.,

AggUAgr UAry = A;‘T'
In all, we have 16 resolved sets that together form a o-algebra we call F3; i.e.,

]_-2 — { 0) 'Q’ AH’ AT’ AHHy AHTv ATHv ATTy A?{H’ A?{T’ A%Hy A’g‘T’
AggUAry, Agg U Arr, AnrU Are, ART U AT
(2.1.3)

We shall think of this o-algebra as containing the information learned by
observing the first two coin tosses.

If we are told all three coin tosses, we know the true w and every subset
of {2 is resolved. There are 256 subsets of {2 and, taken all together, they
constitute the o-algebra Fj:

F3 = The set of all subsets of f2.

If we are told nothing about the coin tosses, the only resolved sets are 0
and {2. We form the so-called trivial o-field Fo with these two sets:

Fo={0,02}.

We have then four g-algebras, Fy, F1, F2, and F3, indexed by time. As
time moves forward, we obtain finer resolution. In other words, if n < m, then
Fm contains every set in F, and even more. This means that F,, contains
more information than F,,. The collection of o-algebras Fy, Fy, Fa, F3 is
an example of a filtration. We give the continuous-time formulation of this
situation in the following definition.
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Definition 2.1.1. Let 2 be a nonempty set. Let T be a fized positive number,
and assume that for each t € [0,T] there is a o-algebra F(t). Assume further
that if s < t, then every set in F(s) is also in F(t). Then we call the collection
of o-algebras F(t), 0 <t < T, a filtration.

A filtration tells us the information we will have at future times. More
precisely, when we get to time ¢, we will know for each set in F(t) whether
the true w lies in that set.

Ezample 2.1.2. Suppose our sample space is {2 = Cp[0, T, the set of continu-
ous functions defined on [0, T'| taking the value zero at time zero. Suppose one
of these functions @ is chosen at random and we get to observe it up to time
t, where 0 < t < T. That is to say, we know the value of @(s) for 0 < s < ¢,
but we do not know the value of @(s) for t < s < T. Certain subsets of {2 are
resolved. For example, the set {w € 2; maxo<s<:w(s) < 1} is resolved. We
would put this in the o-algebra F(t). Other subsets of {2 are not resolved by
time ¢. For example, if t < T, the set {w € 2;w(T) > 0} is not resolved by
time t. Indeed, the sets that are resolved by time ¢ are just those sets that
can be described in terms of the path of w up to time ¢.! Every reasonable?
subset of 2 = Cy[0, T is resolved by time T. By contrast, at time zero we see
only the value of @(0), which is equal to zero by the definition of 2. We learn
nothing about the outcome of the random experiment of choosing @ by ob-
serving this. The only sets resolved at time zero are @ and 2, and consequently

F(0) = {0,2}. O

Example 2.1.2 provides the simplest setting in which we may construct a
Brownian motion. It remains only to assign probability to the sets in F =
F(T), and then the paths w € Cp[0,T] will be the paths of the Brownian
motion.

The discussion preceding Definition 2.1.1 suggests that the o-algebras in
a filtration can be built by taking unions and complements of certain funda-
mental sets in the way F; was constructed from the four sets Agypy, Ay,
Arpg, and Arr. If this were the case, it would be enough to work with these
so-called atoms (indivisible sets in the o-algebra) and not consider all the
other sets. In uncountable sample spaces, however, there are sets that cannot
be constructed as countable unions of atoms (and uncountable unions are for-
bidden because we cannot add up probabilities of such unions). For example,
let us fix ¢t € (0,7) in Example 2.1.2. Now choose a continuous function f(u),
defined only for 0 < u < t and satisfying f(0) = 0. The set of continuous
functions w € Cy[0, T] that agree with f on [0,¢] and that are free to take any
values on (¢, T] form an atom in ;. In symbols, this atom is

! For technical reasons, we would not include in F(t) sets such as {w €
£2; maxo<s<t w(s) € B} if B is a subset of R that is not Borel measurable. This
technical issue can safely be ignored.

2 Once again, there are pathological sets such as {w € 2;w(T) € B}, where B is
a subset of R that is not Borel measurable. These are not included in F(T), but
that shall not concern us.
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{w € Co[0, T);w(u) = f(u) for all u € [0,t]}.

Each time we choose a new function f(u), defined for 0 < u < ¢, we get a new
atom. However, there is no way to obtain the important set {w € £2;w(t) > 0}
by taking countable unions of these atoms. Moreover, it is usually the case
that the atoms have zero probability. Consequently, in what follows we work
with all the sets of F(t), especially those with positive probability, not with
just the atoms.

Besides observing the evolution of an economy over time, which is the idea
behind Example 2.1.2, there is a second way we might acquire information
about the value of w. Let X be a random variable. We assume throughout
that there is a “formula” for X, and we know this formula even before the
random experiment is performed. Because we already know this formula, we
are waiting only to learn the value of w to substitute into the formula so we
can evaluate X (w). But suppose that rather than being told the value of w
we are told only the value of X (w). This resolves certain sets. For example,
if we know the value of X (w), then we know if w is in the set {X < 1} (yes
if X(w) <1 and no if X(w) > 1). Indeed, every set of the form {X € B},
where B is a subset of R, is resolved. Again, for technical reasons, we restrict
attention to subsets B that are Borel measurable.

Definition 2.1.3. Let X be a random variable defined on a nonempty sample
space §2. The o-algebra generated by X, denoted o(X), is the collection of all
subsets of 2 of the form {X € B},® where B ranges over the Borel subsets of
R.

Ezample 2.1.4. We return to the three-period model of Example 1.2.1 of Chap-
ter 1. In that model, {2 is the set of eight possible outcomes of three coin tosses,
and

So(HHH) = Sy(HHT) = 16,
So(HTH) = Sy(HTT) = So(THH) = Sy(THT) = 4,
So(TTH) = Sy(TTT) = 1.

In Example 1.2.2 of Chapter 1, we wrote S2 as a function of the first two coin
tosses alone, but now we include the irrelevant third toss in the argument to
get the full picture. If we take B to be the set containing the single number 16,
then {S; € B} = {HHH,HHT} = App, where we are using the notation
of (2.1.2). It follows that Ayy belongs to the o-algebra o(S2). Similarly, we
can take B to contain the single number 4 and conclude that Agr U Aty
belongs to o(S2), and we can take B to contain the single number 1 to see
that Arr belongs to o(S2). Taking B = 0, we obtain @. Taking B = R, we
obtain {2. Taking B = [4, 16|, we obtain the set Agy U Agr U Arg. In short,
as B ranges over the Borel subsets of R, we will obtain the list of sets

3 We recall that {X € B} is shorthand notation for the subset {w € £2; X (w) € B}
of 2.
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0,02,Agn, AgT U ArH, ATT

and all unions and complements of these. This is the o-algebra o(S2).

Every set in ¢(S2) is in the o-algebra F» of (2.1.3), the information con-
tained in the first two coin tosses. On the other hand, AyT and Ary appear
separately in F, and only their union appears in ¢(S2). This is because seeing
the first two coin tosses allows us to distinguish an initial head followed by
a tail from an initial tail followed by a head, but knowing only the value of
So does not permit this. There is enough information in F» to determine the
value of S, and even more. We say that Sy is F2-measurable. O

Definition 2.1.5. Let X be a random variable defined on a nonempty sample
space 2. Let G be a o-algebra of subsets of £2. If every set in o(X) is also in
G, we say that X is G-measurable.

A random variable X is G-measurable if and only if the information in G
is sufficient to determine the value of X. If X is G-measurable, then f(X) is
also G-measurable for any Borel-measurable function f; if the information in
G is sufficient to determine the value of X, it will also determine the value of
f(X). If X and Y are G-measurable, then f(X,Y) is G-measurable for any
Borel-measurable function f(x,y) of two variables. In particular, X + Y and
XY are G-measurable.

A portfolio position A(t) taken at time ¢ must be F(t)-measurable (i.e.,
must depend only on information available to the investor at time ). We
revisit a concept first encountered in Definition 2.4.1 of Chapter 2 of Volume
L

Definition 2.1.6. Let {2 be a nonempty sample space equipped with a filtra-
tion F(t), 0 <t <T. Let X(t) be a collection of random variables indexed by
t € [0,T]. We say this collection of random variables is an adapted stochastic
process if, for each t, the random variable X (t) is F(t)-measurable.

In the continuous-time models of this text, asset prices, portfolio processes
(i.e., positions), and wealth processes (i.e., values of portfolio processes) will
all be adapted to a filtration that we regard as a model of the flow of public
information.

2.2 Independence

When a random variable is measurable with respect to a o-algebra G, the
information contained in G is sufficient to determine the value of the random
variable. The other extreme is when a random variable is independent of a
o-algebra. In this case, the information contained in the o-algebra gives no
clue about the value of the random variable. Independence is the subject of
the present section. In the morc common casc, when we have a o-algebra G
and a random variable X that is neither measurable with respect to G nor
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independent of G, the information in G is not sufficient to evaluate X, but we
can estimate X based on the information in G. We take up this case in the
next section.

In contrast to the concept of measurability, we need a probability mea-
sure in order to talk about independence. Consequently, independence can be
affected by changes of probability measure; measurability is not.

Let (2, F,P) be a probability space. We say that two sets A and B in F
are independent if

P(A N B) =P(A)-P(B).
For example, in 2 = {HH,HT,TH,TT} with0<p<1,¢g=1-p, and
P(HH) = p*, P(HT) = pg, P(TH) = pg, P(TT) = ¢,

the sets
A = {head on first toss} = {HH,HT}

and
B = {head on the second toss} = {HH,TH}

are independent. Indeed,
P(AN B) = P(HH) = p* and P(A)P(B) = (p* + pq)(p* + pg) = p°.

Independence of sets A and B means that knowing that the outcome w of a
random experiment is in A does not change our estimation of the probability
that it is in B. If we know the first toss results in head, we still have probability
p for a head on the second toss.

In a similar way, we want to define independence of two random variables
X and Y to mean that if w occurs and we know the value of X (w) (without
actually knowing w), then our estimation of the distribution of Y is the same
as when we did not know the value of X (w). The formal definitions are the
following.

Definition 2.2.1. Let (£2, F,P) be a probability space, and let G and H be
sub-o-algebras of F (i.e., the sets in G and the sets in H are also in F). We
say these two o-algebras are independent if

P(ANB)=P(A)-P(B) forall Ac G, BeH.

Let X and Y be random variables on (£2,F,P). We say these two random
variables are independent if the o-algebras they generate, 0(X) and o(Y),
are independent. We say that the random variable X is independent of the
o-algebra G if 0(X) and G are independent.

Recall that o(X) is the collection of all sets of the form {X € C}, where C
ranges over the Borel subsets of R. Similarly, every set in o(Y) is of the form
{Y € D}. Definition 2.2.1 says that X and Y are independent if and only if

P{XeCandY € D} =P{X € C}-P{Y € D}
for all Borel subsets C and D of R.
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Ezample 2.2.2. Recall the space {2 of three independent coin tosses on which
the stock price random variables of Figure 1.2.2 of Chapter 1 are constructed.
Let the probability measure P be given by

P(HHH) = p°, P(HHT) = p’q, P(HTH) = p*q, P(HTT) = pg?,
P(THH) = p°q, P(THT) = pg®, P(TTH) = pg®, P(TTT) = ¢°.

Intuitively, the random variables Ss and S3 are not independent because if we
know that S takes the value 16, then we know that S3 is either 8 or 32 and
is not 2 or .50. To formalize this, we consider the sets {S3 = 32} = {HHH}
and {S; = 16} = {HHH, HHT}, whose probabilities are P{S; = 32} = p3
and P{S; = 16} = p?. In order to have independence, we must have

P{S; = 16 and S3 = 32} = P{S; = 16} - P{S3 = 32} = p°.

But P{S; = 16 and S3 = 32} = P{HHH} = p?, so independence requires
p=1or p=0. Indeed, if p = 1, then after learning that S; = 16, we do not
revise our estimate of the distribution of S3; we already knew it would be 32.
If p = 0, then S; cannot be 16, and we do not have to worry about revising
our estimate of the distribution of Sj if this occurs because it will not occur.

As the previous discussion shows, in the interesting cases of 0 < p < 1,
the random variables S, and S3 are not independent. However, the random
variables Sy and %} are independent. Intuitively, this is because S, depends

on the first two tosses, and % depends on the third toss only. The o-algebra
generated by Sy comprises @, {23, the atoms (fundamental sets)
{S2 =16} = {HHH,HHT},
{S2 =4} ={HTH,HTT,THH,THT},
{Sy =1} = {TTH,TTT},

and their unions. The o-algebra generated by %’: comprises @, 23, and the
atoms

{% - 2} — (HHH,HTH,THH,TTH},
2

{% _ %} — (HHT, HTT,THT, TTT).
2

To verify independence, we can conduct a series of checks of the form

P{52=16and§=2}=P{32=16}-1P §=2}.
Sg S2

The left-hand side of this equality is

S3
P =
{Sg 16 and S

SR 2} =P{HHH} = p,
2
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and the right-hand side is

P(S; = 16} ~]P’{g—z =2}

=P{HHH,HHT} -P{HHH,HTH,THH, TTH}
2
=p*-p.

Indeed, for every A € o(S;) and every B € ¢ (%), we have
P(AN B) =P(A) - P(B). O

We shall often need independence of more than two random variables. We
make the following definition.

Definition 2.2.3. Let (2, F,P) be a probability space and let Gy1,G2,Gs, ...
be a sequence of sub-o-algebras of F. For a fized positive integer n, we say
that the n o-algebras Gy, Gs,...,G, are independent if

P(A;NA2N---NA,) =P(A;)-P(Ag)----- P(A,)
forall Ay € G1,A2 € Ga,...,An € Gy

Let X1, X2, X3,... be a sequence of random variables on (12, F,P). We say the
n random variables X1, X», ..., X, are independent if the o-algebras o(X,),
g(X2),...,0(X,) are independent. We say the full sequence of o-algebras
G1,G2,Gs, ... is independent if, for every positive integer n, the n o-algebras
G1,Gs,...,Gn are independent. We say the full sequence of random variables
X1,X2,X3,... is independent if, for every positive integer n, the n random
variables X1, Xa,..., X, are independent.

Ezample 2.2.4. The infinite independent coin-toss space ({25, F,P) of Exam-
ple 1.1.4 of Chapter 1 exhibits the kind of independence described in Definition
2.2.3. Let Gi be the o-algebra of information associated with the kth toss. In
other words, G, comprises the sets @, {2, and the atoms

{w € Roo;wr =H} and {w- - € Roo;wi =T}

Note that Gy, is different from Fj, in Example 1.1.4 of Chapter 1, the o-algebra
associated with the first k tosses. Under the probability measure constructed
in Example 1.1.4 of Chapter 1, the full sequence of o-algebras G, Go,Gs, ...
is independent. Now recall the sequence of the random variables of (1.2.8) of
Chapter 1:

_ 1if W = H N
Yi(w) = {0 if w = T.
The full sequence of random variables Y;,Y3,Ys,... is likewise independent.

O
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The definition of independence of random variables, which was given in
terms of independence of o-algebras that they generate, is a strong condition
that is conceptually useful but difficult to check in practice. We illustrate the
first point with the following theorem and thereafter give a second theorem
that simplifies the verification that two random variables are independent.
Although this and the next section treat only the case of a pair of random
variables, there are analogues of these results for n random variables.

Theorem 2.2.5. Let X andY be independent random variables, and let f and
g be Borel-measurable functions on R. Then f(X) and g(Y) are independent
random variables.

PROOF: Let A be in the o-algebra generated by f(X). This o-algebra is a
sub-o-algebra of o(X). To see this, recall that, by definition, every set A in
o(f(X)) is of the form {w € £2; f(X(w)) € C}, where C is a Borel subset of
R. We define D = {z € R; f(z) € C} and then have

A={we 2;f(X(w)) € C}={we 2,X(w) € D}. (2.2.1)

The set on the right-hand side of (2.2.1) is in o(X), so A € (X).

Let B be in the o-algebra generated by g(Y). This o-algebra is a sub-
o-algebra of o(Y), so B € o(Y). Since X and Y are independent, we have
P(AN B) =P(A) -P(B). O

Definition 2.2.6. Let X and Y be random variables. The pair of random
variables (X,Y) takes values in the plane R2, and the joint distribution mea-
sure of (X,Y) is given by*

px,y(C) =P{(X,Y) € C} for all Borel sets C C R?. (2.2.2)

This is a probability measure (i.e., a way of assigning measure between 0 and
1 to subsets of R? so that p x,y(Rz) =1 and the countable additivity property
is satisfied). The joint cumulative distribution function of (X,Y) is

Fxy(a,b) = px,y ((—00,a] x (—00,b]) =P{X <a,Y <b}, a€R,bER.
(2.2.3)
We say that a nonnegative, Borel-measurable function fx y(z,y) is a joint
density for the pair of random variables (X,Y) if

ux,y(C)= / / Ic(z,y)fx,y(x,y) dydz for all Borel sets C C R2.
B (2.2.4)

* One way to generate the o-algebra of Borel subsets of R? is to start with the
collection of closed rectangles [a1, b1] X [a2, b2] and then add all other sets necessary
in order to have a o-algebra. Any set in this resulting o-algebra is called a Borel
subset of R2. All subsets of R? normally encountered belong to this o-algebra.
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Condition (2.2.4) holds if and only if

a b
Fx,y(a,b) = / / fx,y(z,y)dydz for all a € R,b € R. (2.2.5)
—o0 J —00

The distribution measures (generally called the marginal distribution mea-
sures in this context) of X and Y are

px(A) =P{X € A} = px,y(A xR) for all Borel subsets A C R,
py(B) =P{Y € B} = px,y(R x B) for all Borel subsets B C R.

The (marginal) cumulative distribution functions are

Fx(a) = ux(—00,a] = P{X <a} for all a € R,
Fy(b) = py(—o0,b] = P{Y < b} for all b € R.

If the joint density fx,y exists, then the marginal densities exist and are given
by

fx(iv):/_ fx,y(z,y)dy and fY(y)=/_ fx,y(z,y)dz.

The marginal densities, if they exist, are nonnegative, Borel-measurable func-
tions that satisfy

ux(A) = / fx(z) dz for all Borel subsets A C R,
A
py (B) = / fy (y) dy for all Borel subsets B C R.
B
These last conditions hold if and only if

Fx(a) = /a fx(z)dz for all a € R, (2.2.6)

b
Fy(b) = / fr(y)dy for all b € R. (2.2.7)

Theorem 2.2.7. Let X and Y be random variables. The following conditions
are equivalent.

(i) X and Y are independent.
(ii) The joint distribution measure factors:

px,y (A x B) = ux(A) - py (B) for all Borel subsets A C R,B C R.
(2.2.8)
(#ii) The joint cumulative distribution function factors:

Fxy(a,b) = Fx(a) - Fy(b) for alla € R,b € R. (2.2.9)
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(iv) The joint moment-generating function factors:
Ee*X+vY = Ee¥X . Ee¥Y (2.2.10)

for all u € R, v € R for which the expectations are finite.

If there is a joint density, each of the conditions above is equivalent to the
following.

(v) The joint density factors:

fxy(z,y) = fx(x) - fy(y) for almost every z € R,y e R.  (2.2.11)

The conditions above imply but are not equivalent to the following.

(vi) The expectation factors:
E[XY] =EX -EY, (2.2.12)

provided E|XY| < oo.

OUTLINE OF PROOF: We sketch the various steps that constitute the proof
of this theorem.
(i)=(ii) Assume that X and Y are independent. Then

puxy(AxB)=P{X € Aand Y € B}
=P({X € A}n{Y € B})
=P{X € A} -P{Y € B}
= ux(A) - py (B).

(ii)=(i) A typical set in g(X) is of the form {X € A}, and a typical set in
o(Y) is of the form {Y € B}. Assume (ii). Then

P({X e A}n{Y €B})=P{X € Aand Y € B}
= px,y(A x B)
= px(A) - py(B)
=P{X € A} -P{Y € B}.

This shows that every set in o(X) is independent of every set in o(Y).
(ii)=(iii) Assume (2.2.8). Then

Fx,y(a,b) = px,y ((—00,a] x (00, b])
= px(—00,a] - py (—00,b]
= Fx(a) - Fy(b).

(iii)=(ii) Equation (2.2.9) implies that (2.2.8) holds whenever A is of the
form A = (—o0,a] and B is of the form B = (—oo,b]. This is enough to
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establish (2.2.8) for all Borel sets A and B, but the details of this are beyond
the scope of the text.
(iii)=(v) If there is a joint density, then (iii) implies

[ [ swevai=[" x@i [ row

Differentiating first with respect to a and then with respect to b, we obtain

fxy(a,b) = fx(a)- fy(b),

which is just (2.2.11) with different dummy variables.
(v)=(iii) Assume there is a joint density. If we also assume (2.2.11), we can
integrate both sides to get

Fx,y(a,b)=/al /b Ixy(z,y)dydz
-/ / ix(@)- fyr (W) dyds

/ fx(z)dz- / fr(v)d

= Fx(a) - Fy(b).

(i)=(iv) We first use the “standard machine” as in the proof of Theorem
1.5.1 of Chapter 1, starting with the case when h is the indicator function of
a Borel subset of R?, to show that, for every real-valued, Borel-measurable
function h(z,y) on R?, we have

EIWY) = [ @)l ducy (@.0),
and if this quantity is finite, then
EW(X,Y) = [ he,9) duxy(z0) (2:213)
R

This is true for any pair of random variables X and Y, whether or not they
are independent. If X and Y are independent, then the joint distribution px,y
is a product of marginal distributions, and this permits us to rewrite (2.2.13)
as

Bnx, ) = [ / " h(o,y) duy (v) dux (). (2.2.14)

We now fix numbers u and v and take h(z,y) = e**+*¥. Equation (2.2.14)
reduces to
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oo o o]
Ee" XY = / / "= duy (y) dpx (z)
— 00 J —00
o0 o o]
= / e“ dpx(z) - / e"¥ duy (y)
—00

— o0
X Y
= Ee*" - Ee”",

where we have used Theorem 1.5.1 of Chapter 1 for the last step. The proof
(iv)=-(i) is beyond the scope of this text.
(i)=(vi) In the special case when h(z,y) = zy, (2.2.14) reduces to

(o o] oo
EXY] = [ adux@)- [ ydur(y) =EXEY,

—oo -0
where again we have used Theorem 1.5.1 of Chapter 1 for the last step. O

Ezample 2.2.8 (Independent normal random variables). Random variables X
and Y are independent and standard normal if they have the joint density

1
v(z,y) =—e 2 Ty orallz e R,y € R.
X, o 3@+) porallz € R,y € R

This is the product of the marginal densities

Fx(=) = \/%e_%x2 and fy(y) = #e-%yz.

‘We use the notation

N(a) (2.2.15)

1 / ¢ 12
= — e 2
V2T J oo
for the standard normal cumulative distribution function. The joint cumula-
tive distribution function for (X,Y’) factors:

Fx.y(a,b) = / / fx(@)fy () dyda

/ fx(z)dz- / fr(v)dy

The joint distribution px is the probability measure on R? that assigns a
measure to each Borel set C C R? equal to the integral of fx y(z,y) over C.
If C = A x B, where A € B(R) and B € B(R), then px,y factors:

pxy(Ax B) = /A /B fx(@) v (v) dy dz

=/Afx(:c)d:c-/BfY(y)dy

= px(A) - py(B). O
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We give an example to show that property (vi) of Theorem 2.2.7 does not
imply independence. We precede this with a definition.

Definition 2.2.9. Let X be a random variable whose expected value is defined.
The variance of X, denoted Var(X), is

Var(X) =E [(X - EX)?].

Because (X — EX)? is nonnegative, Var(X) is always defined, although it
may be infinite. The standard deviation of X is \/Var(X). The linearity of
expectations shows that

Var(X) =E [X?] - (EX)2.

Let Y be another random variable and assume that EX, Var(X), EY and
Var(Y') are all finite. The covariance of X and Y is

Cov(X,Y)=E[(X - EX)(Y —EY)].
The linearity of expectations shows that
Cov(X,Y)=E[XY]-EX .-EY.

In particular, E[XY] = EX - EY if and only if Cov(X,Y) = 0. Assume, in
addition to the finiteness of expectations and variances, that Var(X) > 0 and
Var(Y) > 0. The correlation coefficient of X and Y is

Cov(X,Y)
VVar(X)Var(Y)

If p(X,Y) = 0 (or equivalently, Cov(X,Y) = 0), we say that X and Y are
uncorrelated.

p(X,Y) =

Property (vi) of Theorem 2.2.7 implies that independent random variables
are uncorrelated. The converse is not true, even for normal random variables,
although it is true of jointly normal random variables (see Definition 2.2.11
below).

Ezample 2.2.10 (Uncorrelated, dependent normal random variables). Let X
be a standard normal random variable and let Z be independent of X and
satisfy®

% To construct such random variables, we can choose 2 = {(w1,w2);0 < w; <
1, 0 < w2 < 1} to be the unit square and choose P to be the two-dimensional
Lebesgue measure according to which P(A) is equal to the area of A for every
Borel subset of 2. We then set X (w1,wz2) = N~!(w1), which is a standard normal
random variable under P (see Example 1.2.6 for a discussion of this probability
integral transform). We set Z(w1,w2) to be —1 if 0 < w2 < 1 and to be 1 if
I<wa<l.
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1
P{Z=1} = % and P{Z =1} = 3. (2.2.16)
Define Y = ZX. We show below that, like X, the random variable Y is
standard normal. Furthermore, X and Y are uncorrelated, but they are not
independent. The pair (X,Y’) does not have a joint density.
Let us first determine the distribution of Y. We compute

Fy (3) = P{Y < b}
=P{Y <band Z=1}+P{Y <band Z = —1}
=P{X <band Z=1}+P{-X <band Z =-1}.

Because X and Z are independent, we have
P{X <band Z=1}+P{-X <band Z=-1}
=P{Z=1} P{X <b}+P{Z=-1} - P{—X < b}
=%-]P’{X sb}+%-]P{—X <b}.
Because X is a standard normal random variable, so is — X . Therefore, P{X <
b} = P{—X < b} = N(b). It follows that Fy(b) = N(b); in other words, Y is

a standard normal random variable.
Since EX = EY =0, the covariance of X and Y is

Cov(X,Y) =E[XY] =E[ZX?].

Because Z and X are independent, so are Z and X?, and we may use Theorem
2.2.7(vi) to write

E[ZX?| =EZ-E[X?]=0-1=0.

Therefore, X and Y are uncorrelated.

The random variables X and Y cannot be independent for if they were,
then | X| and |Y| would also be independent (Theorem 2.2.5). But |X| = |Y|.
In particular,

P{X| < L|Y]| <1} =P{|X| <1} = N(1) - N(-1),

and )
P{IX| < 1}-P{]Y| < 1} = (N(1) - N(-1))".

These two expressions are not equal, as they would be for independent random
variables.

Finally, we want to examine the joint distribution measure px y of (X,Y).
Since | X| = |Y|, the pair (X,Y) takes values only in the set

C = {(&,9);z = %y}.
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In other words, px,y(C) = 1 and px,y(C¢) = 0. But C has zero area. It
follows that for any nonnegative function f, we must have

/j: /_Zﬂc(x,y)f(x,y) dydz = 0.

One way of thinking about this is to observe that if we want to integrate a
function I¢(z,y)f(z,y) over the plane R%, we could first fix x and integrate
out the y-variable, but since f(z,y)Ilc(z,y) is zero except when y = z and
y = —z, we will get zero. When we next integrate out the z-variable, we will
be integrating the zero function, and the end result will be zero. There cannot
be a joint density for (X,Y’) because with this choice of the set C, the left-
hand side of (2.2.4) is one but the right-hand side is zero. Of course, X and
Y have marginal densities because they are both standard normal. Moreover,
the joint cumulative distribution function exists (as it always does). In this
case, it is

Fx’y(a, b)
=P{X <aand Y < b}
=P{X<a,X<b and Z=1}+P{X <a,-X <b, and Z = -1}
=P{Z =1} -P{X < min(a,b)} + P{Z = -1} - P{-b< X <a}
1
= - N(min(a,b)) + % max{N(a) — N(=b),0}.

There is no joint density fx y(z,y) that permits us to write this function in
the form (2.2.5). O

Definition 2.2.11. Two random vartables X and Y are said to be jointly
normal if they have the joint density

fX,Y(x’y)
_ 1 1 [E=m)® _ 2e(x—p)y— p)
N 2#0102\/1—p28xp{ 2(1-p?) [ o? 0102

+%] } : (2.2.17)

where 01 > 0, 02 > 0, |p| < 1, and p1, p2 are real numbers. More generally, a
random column vector X = (Xy,...,Xn)", where the superscript tr denotes
transpose, is jointly normal if it has joint density

1 1
X)= —————exp —=(x—p)CH(x - "}. 2.2.18
0 = e {5 = WO e (2218)
In equation (2.2.18), x = (x1,...,%,) is a Tow vector of dummy variables,
w=(i1,...,n) is the row vector of expectations, and C is the positive definite

matriz of covariances.
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In the case of (2.2.17), X is normal with expectation p; and variance o?,

Y is normal with expectation 2 and variance o2, and the correlation between
X and Y is p. The density factors (equivalently, X and Y are independent)
if and only if p = 0. In the case (2.2.18), the density factors into the product
of n normal densities (equivalently, the components of X are independent) if
and only if C is a diagonal matrix (all the covariances are zero).

Linear combinations of jointly normal random variables (i.e., sums of con-
stants times the random variables) are jointly normal. Since independent nor-
mal random variables are jointly normal, a general method for creating jointly
normal random variables is to begin with a set of independent normal random
variables and take linear combinations. Conversely, any set of jointly normal
random variables can be reduced to linear combinations of independent nor-
mal random variables. We do this reduction for a pair of correlated normal
random variables in Example 2.2.12 below.

Since the distribution of jointly normal random variables is characterized in
terms of means and covariances, and joint normality is preserved under linear
combinations, it is not necessary to deal directly with the density when making
linear changes of variables. The following example illustrates this point.

Ezample 2.2.12. Let (X,Y) be jointly normal with the density (2.2.17). Define
W =Y —£22X. Then X and W are independent. To verify this, it suffices to
show that X and W have covariance zero since they are jointly normal. We
compute

Cov(X, W) = E[(X — EX)(W — EW)]
=E[(X - EX)(Y —EY)] - [”"2 (X —EX) ]
= Cov(X,Y) — P72 o?
o1
=0.
The expectation of W is pu3 = pp — 27254, and the variance is
o3 =E[(W —EW)?]

= E[(Y -EY)?] - 2”"2

lE[X EX)(Y — 1EY]+—21E[(X EX)?]
= (1 - p?)o3.

The joint density of X and W is

_ (x—m)?®  (w—ps)?
fxw(@w) = 2105 { 20% 202 '
Note finally that we have decomposed Y into the linear combination
Y = p""’X +W (2.2.19)

of a pair of independent normal random variables X and W. O
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2.3 General Conditional Expectations

We consider a random variable X defined on a probability space (£2,F,P)
and a sub-o-algebra G of F. If X is G-measurable, then the information in G
is sufficient to determine the value of X. If X is independent of G, then the
information in G provides no help in determining the value of X. In the inter-
mediate case, we can use the information in G to estimate but not precisely
evaluate X. The conditional expectation of X given G is such an estimate.
We have already discussed conditional expectations in the binomial model.
Let {2 be the set of all possible outcomes of N coin tosses, and assume these
coin tosses are independent with probability p for head and probability ¢ =
1 — p for tail on each toss. Let P(w) denote the probability of a sequence of
coin tosses under these assumptions. Let n be an integer, 1 <n < N —1, and
let X be a random variable. Then the conditional expectation of X under P,
based on the information at time n, is (see Definition 2.3.1 of Chapter 2)

En[X](wi...wn)
= Z p#H(“’""""""”)q#T(“’"+""“’”)X(w1 e WnWnel.--wWN). (2.3.1)
Wni.--WN

In the special cases n =0 and n = N, we define

]EO.X — Z p#H(wo...wN)q#T(wO...wN)X(wo e wN) = ]EX’ (2,3,2)

wg...wN

EN[X|(wo...wN) = X(wp .. -wN). (2.3.3)

In (2.3.2), we have the estimate of X based on no information, and in (2.3.3)
we have the estimate based on full information.

We need to generalize (2.3.1)—(2.3.3) in a way suitable for a continuous-
time model. Toward that end, we examine (2.3.1) within the context of a
three-period example. Consider the general three-period model of Figure 2.3.1.
We assume the probability of head on each toss is p and the probability of
tail is ¢ = 1 — p, and we compute

Eo[Ss|(HH) = pSs(HHH) + ¢Ss(HHT), (2.3.4)
Es[Ss](HT) = pSs(HTH) + qSs(HTT), (2.3.5)
E,[Ss)(TH) = pS3(THH) + ¢S5(THT), (2.3.6)
E,[Ss](TT) = pSs(TTH) + qSs(TTT). (2.3.7)

Recall the g-algebra F; of (2.1.3), which is built up from the four fundamental
sets (we call them atoms because they are indivisible within the o-algebra)
Ayy, Ayr, ArH, and Arr of (2.1.2). We multiply (234) by P(Agny) = p2,
multiply (2.3.5) by P(Ayr) = pg, multiply (2.3.6) by P(Ary) = pq, and
multiply (2.3.7) by P(A7r) = ¢2. The resulting equations may be written as
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Ss(HHH) = u*So

So(HH) = u?

Ss(HHT) = Ss(HTH)

S1(H) = uSo —Sg(THH)=u2dS()

\/\

So So(HT) = So(TH) = udSo

Ss(HTT) = Ss(THT)
= S3(TTH) = ud®So

I
ISH

/
/N S
/

S1(T)

\

S2(TT) = d>Sg

/

S3(TTT) = d3So

Fig. 2.3.1. General three-period model.

Ey[Ss(HH)P(Anm) = ) Sa(w)P(w), (2.3.8)
wWEAHH

Ex[Ss|(HT)P(Apr) = ) S3(w)P(w), (2.3.9)
wEAHT

B[Ss)(TH)P(Arh) = ) S3(w)P(w (2.3.10)
wE€ATH

Ey[Ss|(TT)P(Arr) = ) S3(w)P(w). (2.3.11)
wEATT

We could divide each of these equations by the probability of the atom appear-
ing as the second factor on the left-hand sides and thereby recover the formulas
(2.3.4)-(2.3.7) for the conditional expectations. However, in the continuous-
time model, atoms typically have probability zero, and such a step cannot be
performed. We therefore take an alternate route here to lay the groundwork
for the continuous-time model.

On each of the atoms of F;, the conditional expectation E3[S3] is con-
stant because the conditional expectation does not depend on the third
toss and the atom is created by holding the first two tosses fixed. It fol-
lows that the left-hand sides of (2.3.8)—(2.3.11) may be written as integrals
of the integrand E;[S3] over the atom. For this purpose, we shall write
E;[S;3])(w) = E3[S3](wiwaws), including the third toss in the argument, even
though it is irrelevant. The right-hand sides of these equations are sums, which
are Lebesgue integrals on a finite probability space. Using Lebesgue integral
notation, we rewrite (2.3.8)—(2.3.11) as
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E[Ss](w) dP(w) = / Sa(w) dP(w), (2.3.12)
Ann Aun
[ Bisi@ @@= [ siw)drw), (2:3.13)
Aur Aur
/ E3[Ss)(w) dP(w) = / Sa(w) dP(w), (2.3.14)
Ary ArH
/ E3[Ss)(w) dP(w) = / S3(w) dP(w). (2.3.15)
ArT ArT

In other words, on each of the atoms the value of the conditional expectation
has been chosen to be that constant that yields the same average over the
atom as the random variable S3 being estimated.

We turn our attention now to the other sets in F3. The full list appears
in (2.1.3), and every set on the list, except for the empty set, is a finite union
of atoms. If we add equations (2.3.12) and (2.3.13), we obtain

/ E;[S3)(w) dP(w) = / S3(w) dP(w).
AH AH
Similarly, but adding various combinations of (2.3.12)—(2.3.15), we see that

/M%MWM=/MMMW (23.16)
A A

for every set A € F;, except possibly for A = (. However, if A = 0, equa-
tion (2.3.16) still holds, with both sides equal to zero. We call (2.3.16) the
partial-averaging property of conditional expectations because it says that the
conditional expectation and the random variable being estimated give the
same value when averaged over “parts” of {2 (those “parts” that are sets in
the conditioning o-algebra F).

We take (2.3.16) as the defining property of conditional expectations. The
precise definition is the following.

Definition 2.3.1. Let (2, F,P) be a probability space, let G be a sub-o-algebra
of F, and let X be a random variable that is either nonnegative or integrable.
The conditional expectation of X given G, denoted E[X|G], is any random
variable that satisfies

(i) (Measurability) E[X|G] is G-measurable, and
(ii) (Partial averaging)

/ E[X|G](w) dP(w) = / X(w)dPW) forall ACG.  (2.3.17)
A A

If G is the o-algebra generated by some other random variable W (i.e., G =
o(W)), we generally write E[X|W] rather than E[X|a(W)].
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Property (i) in Definition 2.3.1 guarantees that, although the estimate of
X based on the information in G is itself a random variable, the value of the
estimate E[X|G] can be determined from the information in G. Property (i)
captures the fact that the estimate E[X|G] of X is based on the information in
G. Note in (2.3.4)—(2.3.7) that the conditional expectation Ez[S3] is constant
on the atoms of F3; this is property (i) for this case.

The second property ensures that E[X|G] is indeed an estimate of X. It
gives the same averages as X over all the sets in G. If G has many sets,
which provide a fine resolution of the uncertainty inherent in w, then this
partial-averaging property over the “small” sets in G says that E[X|G] is a
good estimator of X. If G has only a few sets, this partial-averaging property
guarantees only that E[X|G] is a crude estimate of X.

Definition 2.3.1 raises two immediate questions. First, does there always
exist a random variable E[X|G] satisfying properties (i} and (ii)? Second, if
there is a random variable satisfying these properties, is it unique? The answer
to the first question is yes, and the proof of the existence of E[X|G] is based on
the Radon-Nikodym Theorem, Theorem 1.6.7 (see Appendix B). The answer
to the second question is a qualified yes, as we now explain. Suppose Y and
Z both satisfy conditions (i) and (ii) of Definition 2.3.1. Because both Y
and Z are G-measurable, their difference Y — Z is as well, and thus the set
A={Y - Z >0} isinG. From (2.3.17), we have

[ Y@ e = [ x@ e = [ 2w dpw),

and thus

/A (Y(w) - Z(w)) dP(w) = .

The integrand is strictly positive on the set A, so the only way this equation
can hold is for A to have probability zero (i.e., Y < Z almost surely). We
can reverse the roles of Y and Z in this argument and conclude that Z <Y
almost surely. Hence Y = Z almost surely. This means that although differ-
ent procedures might result in different random variables when determining
E[X|G], these different random variables will agree almost surely. The set of
w for which the random variables are different has zero probability.

In this more general context, conditional expectations still have the five
fundamental properties developed in Theorem 2.3.2 of Chapter 2 of Volume
I. We restate them in the present context.

Theorem 2.3.2. Let (2, F,P) be a probability space and let G be a sub-o-
algebra of F.

(i) (Linearity of conditional expectations) If X and Y are integrable
random variables and ¢, and cp are constants, then

Elc1 X + c2Y|G] = a1 E[X|G] + c2E[Y|G]. (2.3.18)
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This equation also holds if we assume that X and Y are nonnegative
(rather than integrable) and ¢, and c2 are positive, although both sides
may be +o00.

(ii) (Taking out what is known) If X and Y are integrable random vari-
ables, Y and XY are integrable, and X is G-measurable, then

E[XY|G] = XE[Y]|G]. (2.3.19)

This equation also holds if we assume that X is positive and Y is nonneg-
ative (rather than integrable), although both sides may be +oo.

(i) (Iterated conditioning) If H is a sub-o algebra of G (H contains less
information than G) and X is an integrable random variable, then

E[E[X|G]|H] = E[X|H]. (2.3.20)

This equation also holds if we assume that X is nonnegative (rather than
integrable), although both sides may be +oo.
(iv) (Independence) If X is integrable and independent of G, then

E[X|G] = EX. (2.3.21)

This equation also holds if we assume that X is nonnegative (rather than
integrable), although both sides may be +oo.

(v) (Conditional Jensen’s inequality) If o(z) is a convez function of a
dummy variable x and X is integrable, then

E[p(X)|g] > o (E[X|G]). (2.3.22)

DISCUSSION AND SKETCH OF PROOF: We take each of these properties in
turn.

(i) Linearity allows us to separate the estimation of random variables into
estimation of separate pieces and then add the estimates of the pieces to
estimate the whole. To verify that E[c; X + c2Y|G] is given by the right-
hand side of (2.3.18), we observe that the right-hand side is G-measurable
because E[X|G] and E[Y'|G] are G-measurable and then must check the partial-
averaging property (ii) of Definition 2.3.1. Using the fact that E[X|G] and
E[Y|G] themselves satisfy the partial-averaging property, we have for every
A € G that

[ (@EIXIG(0) + caBIY 1)) dP(e)

— e / E[X|0](w) dP(w) + ¢ / E[Y|G](w) dP(w)
A A

—e / X () dP(w) + ¢ / Y (w) dP(w)
A A

= /A (a X (w) + c2Y (w)) dP(w),



2.3 General Conditional Expectations 71

which shows that ¢ E[X|G] + c2E[Y|G] satisfies the partial-averaging property
that characterizes E[c; X + coY|G] and hence is E[c; X + ¢2Y|G].
(ii) Taking out what is known permits us to remove X from the estimation
problem if its value can be determined from the information in G. To estimate
XY, it suffices to estimate Y alone and then multiply the estimate by X. To
prove (2.3.19), we observe first that XE[Y'|G] is G-measurable because both X
and E[Y|G] are G-measurable. We must check the partial-averaging property.
Let us first consider the case when X is a G-measurable indicator random
variable (i.e., X = Ig, where B is a set in G). Using the fact that E[Y'|G] itself
satisfies the partial-averaging property, we have for every set A € G that

/X(W)E[Ylg](w)dﬂ”(w)=/ E[Y|G](w) dP(w)
A ANB
- / Y (w) dP(w)
ANB
- /A X (W)Y (w) dP(w). (2.3.23)

Having proved (2.3.23) for G-measurable indicator random variables X, we
may use the standard machine developed in the proof of Theorem 1.5.1 of
Chapter 1 to obtain this equation for all G-measurable random variables X
for which XY is integrable. This shows that XE[Y|G] satisfies the partial-
averaging condition that characterizes E[XY'|G], and hence XE[Y|G] is the
conditional expectation E[XY|G].

(iii) If we estimate X based on the information in G and then estimate the
estimate based on the smaller amount of information in H, we obtain the
random variable we would have gotten by estimating X directly based on
the smaller amount of information in H. To prove this, we observe first that
E[X|H] is H-measurable by definition. The partial-averaging property that
characterizes E[E[X|G]|#] is

/ E[E[X|G]|H](w) dP(w) = / E[X|G](w) P(w) for all A € H.
A A

In order to prove (2.3.20), we must show that we can replace E[E[X|G]|#] on
the left-hand side of this equation by E[X|H]. But when A € H, it is also in
G, and the partial-averaging properties for E[X|H] and E[X|G] imply

/A E[X|#](w) dP(w) = /A X (w) dP(w) = /A E[X|G](w) dP(w).

This shows that E[X|H] satisfies the partial-averaging property that charac-
terizes E[E[X|G]|#], and hence E[X|H] is E[E[X|G]|H].

(iv) If X is independent of the information in G, then the best estimate we can
give of X is its expected value. This is also the estimate we would give based
on no information. To prove this, we observe first that EX is G-measurable.



72 2 Information and Conditioning

Indeed, EX is not random and so is measurable with respect to every o-
algebra. We need to verify that EX satisfies the partial-averaging property
that characterizes E[X|G]; i.e.,

/ EX dP(w) = / X (w) dP(w) for all A€ G. (2.3.24)
A A

Let us consider first the case when X is an indicator random variable indepen-
dent of G (i.e., X = [, where the set B is independent of G). For all A € G,
we have then

/ X(w) dP(w) = P(AN B) = P(A) - P(B) = P(A)EX = / EX dP(w),
A A

and (2.3.24) holds. We complete the proof using the standard machine devel-
oped in the proof of Theorem 1.5.1 of Chapter 1.

(v) Using the linearity of conditional expectations, we can repeat the proof
of Theorem 2.2.5 of Chapter 2 to prove the conditional Jensen’s inequality. O

We note that E[X|G] is an unbiased estimator of X:
E(E[X|G]) = EX. (2.3.25)
This equality is just the partial-averaging property (2.3.17) with A = £2.

Ezample 2.3.3. Let X and Y be a pair of jointly normal random variables
with joint density (2.2.17). As in Example 2.2.12, define W =Y — £2X so
that X and W are independent and (2.2.19) holds:

y=2x4+w (2.2.19)

o1

In Example 2.2.12, we saw that W is normal with mean pz = pp — 2251
and variance 0% = (1 — p?)o2. Let us take the conditioning o-algebra to be
G = 0(X). (When G is generated by a random variable X, it is customary to
write E[ - - | X] rather than E[---|o(X)].) We estimate Y, based on X, using
(2.2.19) above and properties (i) (Linearity) and (iv) (Independence) from
Theorem 2.3.2 to get the linear regression equation

E[Y|X] = ?X +EW = ?(X — 1) + pa- (2.3.26)

1 1

Note that the right-hand side of (2.3.26) is random but is o(X)-measurable
(i.e., if we know the information in ¢(X), which is the same as knowing the
value of X, then we can evaluate E[Y|X]). Subtracting (2.3.26) from (2.2.19),
we see that the error made by the estimator is

Y —E[Y|X] =W —EW.
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The error is random, with expected value zero (the estimator is unbiased), and
is independent of the estimate E[Y|X] (because E[Y|X] is o(X)-measurable
and W is independent of o(X)). The independence between the error and the
conditioning random variable X is a consequence of the joint normality in
the example. In general, the error and the conditioning random variable are
uncorrelated, but not necessarily independent; see Exercise 2.8. a

The Independence Lemma, Lemma 2.5.3 of Chapter 2 of Volume I, now
takes the following more general form.

Lemma 2.3.4 (Independence). Let (2, F,P) be a probability space, and
let G be a sub-o-algebra of F. Suppose the random variables X;,...,Xg are
G-measurable and the random variables Y1,...,YL are independent of G. Let
f(z1,..-, Tk, y1,...,YL) be a function of the dummy variables 1, ...,k and

Y1,---,YL, and define
g(z1,...,zx) =Ef(zy,...,zK,Y1,...,YL). (2.3.27)
Then
E[f(X1,..., Xk, Y1,...,Y1)|G] = 9(Xy,..., XK). (2.3.28)

As with Lemma 2.5.3 of Volume I, the idea here is that since the informa-
tion in G is sufficient to determine the values of X3,..., X g, we should hold
these random variables constant when estimating f(X;,..., Xk, Y1,...,Yk).
The other random variables, Y;,...,Yr, are independent of G, and so we
should integrate them out without regard to the information in G. These two
steps, holding X,,..., Xk constant and integrating out Y3,...,Yr, are ac-
complished by (2.3.27). We get an estimate that depends on the values of
X1,..., Xk and, to capture this fact, we replaced the dummy (nonrandom)
variables x;,...,zx by the random variables Xi,..., Xk at the last step. Al-
though Lemma 2.5.3 of Volume I has a relatively simple proof, the proof of
Lemma 2.3.4 requires some measure-theoretic ideas beyond the scope of this
text, and will not be given.

Ezample 2.3.8 continued. Continuing with the notation of Example 2.3.3,
suppose we want to estimate some function f(z,y) of the random variables
X and Y based on knowledge of X. We cannot use the Independence Lemina
directly because X and Y are not independent. However, we can write Y as
Y = %X + W. Because X is o(X)-measurable, W is independent of o(X)
and W is normal with mean 3 and variance o2, the Independence Lemma tells
us how to compute E[f(X,Y’)| X]. We should first replace the random variable
X by a dummy variable z and then take the expectation (i.e., integrate with
respect to the distribution of W). Thus, we define

g(z) =Ef (x ’;"lx+w>

)
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Then
E[f(X,Y)|X] = g(X).

Our final answer is random but ¢(X)-measurable, as it should be. O

We have all the tools required to introduce martingales and Markov pro-
cesses in a continuous-time framework. The definitions are provided below.
Examples will be given after we construct Brownian motion and Ito integrals
in the next chapters.

Definition 2.3.5. Let (12, F,P) be a probability space, let T be a fized positive
number, and let F(t), 0 < t < T, be a filtration of sub-o-algebras of F.
Consider an adapted stochastic process M(t), 0 <t <T.

() If
E[M(t)|F(s)] = M(s) forall0<s<t<T,

we say this process is a martingale. It has no tendency to rise or fall.
(i) If
E[M(t)|F(s)] > M(s) forall0<s<t<T,
we say this process is a submartingale. It has no tendency to fall; it may
have a tendency to rise.
(i) If
E[M(t)|F(s)] < M(s) for all0 < s<t<T,
we say this process is a supermartingale. It has no tendency to rise; it
may have a tendency to fall.

Definition 2.3.6. Let (12, F,P) be a probability space, let T be a fized positive
number, and let F(t), 0 < t < T, be a filtration of sub-o-algebras of F.
Consider an adapted stochastic process X (t), 0 < t < T. Assume that for all
0 < s <t <T and for every nonnegative, Borel-measurable function f, there
is another Borel-measurable function g such that

E[f(X(£)IF(s)] = g(X(s)). (2.3.29)
Then we say that the X is a Markov process.

Remark 2.3.7. In Definition 2.3.6, the function f is permitted to depend on
t, and the function g will depend on s. These dependencies are not indicated
in (2.3.29) because we wish there to emphasize how the dependence on the
sample point w works (i.e., the right-hand side depends on w only through
the random variable X (s)). If we indicate the dependence on time by writing
f(t,z) rather than f(z), we can write f(s, ) rather than g(z) (we do not need
different symbols f and g because the time variables ¢t and s indicate we are
dealing with different functions of = at the different times) and can rewrite
(2.3.29) as
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E[f(t, X (t))|F(s)] = f(5,X(s), 0< s <t<T. (2.3.30)

Ultimately, we shall see that when we regard f(¢,z) as a function of two
variables this way, (2.3.30) implies that it satisfies a partial differential equa-
tion. This partial differential equation gives us a way to determine f(s,x) if
we know f(t,z). The Black-Scholes-Merton partial differential equation is a
special case of this. O

2.4 Summary

In measure-theoretic probability, information is modeled using o-algebras. The
information associated with a o-algebra G can be thought of as follows. A
random experiment is performed and an outcome w is determined, but the
value of w is not revealed. Instead, for each set in the o-algebra G, we are told
whether w is in the set. The more sets there are on G, the more information this
provides. If G is the trivial g-algebra containing only @ and f2, this provides
no information.

A random variable X is G-measurable if and only if the set {X € B} =
{w € 2;X(w) € B} is in G for every Borel subset of R. In this case, the
information in G is enough to determine the value of the random variable
X(w), even though it may not be enough to determine the value w of the
outcome of the random experiment.

At the other extreme, the information in a o-algebra G may be irrelevant
to the determination of the value of X. In this case, we say that G and X are
independent. This idea is captured mathematically by Definition 2.2.3, which
says that X and G are independent if, for every set A € G and every Borel
subset B of R, we have

P{w € 2;w € A and X (w) € B} =P(A) - P{w € 2; X(w) € B}.

Two random variables X and Y are independent if and only if the o algebra
generated by X, defined to be the collection of sets of the form {X € B}, is
independent of the o-algebra generated by Y. In other words, X and Y are
independent if and only if

P{X € Band Y € C} =P{X € B}-P{X € C} for all B € B(R),C € B(R),

where B(R) denotes the o-algebra of Borel subsets of R. There are several
equivalent ways to describe independence between two random variables hav-
ing to do with factoring the joint cumulative distribution function, factoring
the joint moment-generating function, and factoring the joint density (if there
is a joint density). These are set out in Theorem 2.2.7. Independence implies
uncorrelatedness, but uncorrelated random variables do not need to be in-
dependent. Jointly normally distributed random variables (Definition 2.2.11)
are uncorrelated if and only if they are independent, but normally distributed
random variables do not need to be jointly normal.
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Often we find ourselves between the two extremes of random variables X
that are G-measurable and random variables X that are independent of G. In
such a case, the information in G is relevant to the determination of the value
of X but is not sufficient to completely determine it. We then want to use the
information in G to estimate X. We denote our estimate by E[X|G] and call
this the conditional expectation of X given G. This is itself a random variable,
but one that is G-measurable (i.e., one that we can evaluate using only the
information in G). To be sure this is a good estimate of X, we require that it
satisfy the partial-averaging property (see Definition 2.3.1(ii)):

/ E[X|G](w) dP(w) = / X (w) dP(w) for every A € G.
A A

Conditional expectations behave in many ways like expectations, except that
expectations do not depend on w and conditional expectations do. The princi-
pal properties of conditional expectations are provided in Theorem 2.3.2, and
these are reported briefly here.

Linearity: E[c; X + c2Y|G] = a1 E[X|G] + c2E[Y|G].

Taking out what is known: E[XY|G] = XE[Y|G] if X is G-measurable.
Iterated conditioning: E[E[X|G]|H] = E[X|#] if H is a sub-c-algebra of
g.

Independence: E[X|G] = EX if X is independent of G.

Jensen’s inequality: E[p(X)|G] > ¢(E[X|G]) if ¢ is convex.

In continuous-time finance, we work within the framework of a probabil-
ity space (2, F,P). We normally have a fixed final time T and then have a
filtration, which is a collection of g-algebras {F(t);0 < t < T'} indexed by the
time variable ¢. We interpret F(t) as the information available at time ¢. For
0<s<t<T,every set in F(s) is also in F(t). In other words, information
increases over time. Within this context, an adapted stochastic process is a
collection of random variables {X(t);0 < t < T} also indexed by time such
that, for every t, X(t) is F(t)-measurable; the information at time ¢ is suffi-
cient to evaluate the random variable X (¢). We think of X (t) as the price of
some asset at time ¢ and F(t) as the information obtained by watching all the
prices in the market up to time ¢t.

Two important classes of adapted stochastic processes are martingales and
Markov processes. These are defined in Definitions 2.3.5 and 2.3.6, respectively.
A martingale has the property that

E[M(t)|F(s)|=M(s) forall0< s <t<T.

If E[M(t)|F(s)] > M(s) when 0 < s <t < T, we have a submartingale. If the
inequality is reversed, we have a supermartingale. A Markov process has the
property that whenever 0 < s <t < T and we are given a function f, there is
another function g such that

E[f(X()IF(s)] = g(X(s))-
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The important feature here is that the estimate of f(X(t)) made at time s
depends only on the process value X (s) at time s and not on the path of the
process before time s.

A useful tool for establishing that a process is Markov is the Independence
Lemma, Lemma 2.3.4. The simplest version of this says that if X is a G-
measurable random variable and Y is independent of G, then

E[f(X,Y)|g] = g(X),
where g(z) = Ef(z,Y).

2.5 Notes

In the measure-theoretic view of probability theory, a conditional expectation
is itself a random variable, measurable with respect to the conditioning o-
algebra. This point of view is indispensable for treating the rather complicated
conditional expectations that arise in martingale theory. It was invented by
Kolmogorov [104]. The term martingale was apparently first used by Ville
[158], who assigned the name to a betting strategy. The concept dates back to
1934 work of Lévy. The first systematic treatment of martingales was provided
by Doob [53].

2.6 Exercises

Exercise 2.1. Let (2, F,P) be a general probability space, and suppose a
random variable X on this space is measurable with respect to the trivial
o-algebra Fo = {0, 2}. Show that X is not random (i.e., there is a constant ¢
such that X (w) = cfor allw € £2). Such a random variable is called degenerate.

Exercise 2.2. Independence of random variables can be affected by changes
of measure. To illustrate this point, consider the space of two coin tosses
{29 ={HH,HT,TH,TT}, and let stock prices be given by

So =4, S,(H) =8, Si(T) = 2,
So(HH) = 16, Sy(HT) = Sy(TH) =4, So(TT) = 1.

Consider two probability measures given by
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(i) List all the sets in o(X).

(ii) List all the sets in o(S1).

(iii) Show that o(X) and o(.S;) are independent under the probability measure
P.

(iv) Show that o(X) and o(S;) are not independent under the probability
measure P.

(v) Under P, we have P{S; = 8} = % and P{S; = 2} = 1. Explain intuitively
why, if you are told that X = 1, you would want to revise your estimate
of the distribution of S;.

Exercise 2.3 (Rotating the axes). Let X and Y be independent standard
normal random variables. Let 8 be a constant, and define random variables

V=Xcosf@+Ysinf and W =—-Xsinf + Y cosé.
Show that V and W are independent standard normal random variables.

Exercise 2.4. In Example 2.2.8, X is a standard normal random variable and
Z is an independent random variable satisfying

P{Z=1}=P{Z =1} = %

We defined Y = X Z and showed that Y is standard normal. We established
that although X and Y are uncorrelated, they are not independent. In this
exercise, we use moment-generating functions to show that Y is standard
normal and X and Y are not independent.

(i) Establish the joint moment-generating function formula

uv —uv
]Ee'u.X+vY — e%(u2+v2) X e +e

(ii) Use the formula above to show that Ee*Y = v, This is the moment-
generating function for a standard normal random variable, and thus Y
must be a standard normal random variable.

(iii) Use the formula in (i) and Theorem 2.2.7(iv) to show that X and Y are
not independent.

Exercise 2.5. Let (X,Y) be a pair of random variables with joint density
function

T 2 .
fxy(z,y) = { 2;%1] exP{_QU#L} ify > —|af,
) ’ 0

if y < —|z|.

Show that X and Y are standard normal random variables and that they are
uncorrelated but not independent.
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Exercise 2.6. Consider a probability space {2 with four elements, which we
call a, b, ¢, and d (i.e., 2 = {a,b,c,d}). The o-algebra F is the collection of
all subsets of (2; i.e., the sets in F are

2, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d},
{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d},
{a}, {8}, {c}, {d}, 0.

We define a probability measure [P by specifying that
P{a} = mm P@L-,M@=i

and, as usual, the probability of every other set in F is the sum of the prob-
abilities of the elements in the set, e.g., P{a,b,c} = P{a} + P{b} + P{c} = 3.
We next define two random variables, X and Y, by the formulas

X(a)=1,X(b) =1,X(c) = -1, X(d) = —
Y(@) =1,Y(b) =-1,Y(c) = 1,Y(d) = -

We then define Z2 =X +Y.

(i) List the sets in o(X).
(ii) Determine E[Y|X] (i.e., specify the values of this random variable for a,
b, ¢, and d). Verify that the partial-averaging property is satisfied.
(iii) Determine E[Z|X]. Again, verify the partial-averaging property.
(iv) Compute E[Z|X] — E[Y|X]. Citing the appropriate properties of condi-
tional expectation from Theorem 2.3.2, explain why you get X.

Exercise 2.7. Let Y be an integrable random variable on a probability space
(2, F,P) and let G be a sub-o-algebra of F. Based on the information in G,
we can form the estimate E[Y|G] of Y and define the error of the estimation
Err =Y — E[Y|G]. This is a random variable with expectation zero and some
variance Var(Err). Let X be some other G-measurable random variable, which
we can regard as another estimate of Y. Show that

Var(Err) < Var(Y — X).

In other words, the estimate E[Y |G] minimizes the variance of the error among
all estimates based on the information in G. (Hint: Let 4 = E(Y —X). Compute
the variance of Y — X as

E[(Y - X — p)? E[ ((Y - E[Y|G)) + (E[Y|G] - X — u))]

Multiply out the right-hand side and use iterated conditioning to show the
cross-term is zero.)
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Exercise 2.8. Let X and Y be integrable random variables on a probability
space (£2,F,P). Then Y =Y, + Y2, where Y; = E[Y|X] is o(X)-measurable
and Y2 =Y — E[Y|X]. Show that Y2 and X are uncorrelated. More generally,
show that Y2 is uncorrelated with every o(X )-measurable random variable.

Exercise 2.9. Let X be a random variable.

(i) Give an example of a probability space (2, F,P), a random variable X
defined on this probability space, and a function f so that the o-algebra
generated by f(X) is not the trivial o-algebra {0, £2} but is strictly smaller
than the o-algebra generated by X.

(ii) Can the o-algebra generated by f(X) ever be strictly larger than the
o-algebra generated by X7

Exercise 2.10. Let X and Y be random variables (on some unspecified prob-
ability space (2, F,P)), assume they have a joint density fx y(z,y), and as-
sume E|Y| < oco. In particular, for every Borel subset C of R?, we have

P{(X,Y) € C} = /C fxy (@) dzdy.

In elementary probability, one learns to compute E[Y|X = z], which is a
nonrandom function of the dummy variable z, by the formula

(o o]

E[Y|X =] = / yfyix(vl)dy, (26.1)

—00

where fy|x(y|z) is the conditional density defined by

fxy(z,y)
T) = —1=2,
The denominator in this expression, fx(z) = ffooo fx,v(z,n)dn, is the marginal
density of X, and we must assume it is strictly positive for every z. We intro-
duce the symbol g(z) for the function E[Y|X = z] defined by (2.6.1); i.e.,

g(x) = /°° yfyix(ylz)dy = /_oo W’;XY—((;)vy) dy.

In measure-theoretic probability, conditional expectation is a random vari-
able E[Y|X]. This exercise is to show that when there is a joint density for
(X,Y), this random variable can be obtained by substituting the random vari-
able X in place of the dummy variable z in the function g(z). In other words,
this exercise is to show that

E[Y|X] = g(X).

(We introduced the symbol g(z) in order to avoid the mathematically confus-
ing expression E[Y|X = X].)
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Since g(X) is obviously o(X)-measurable, to verify that E[Y|X] = g(X),
we need only check that the partial-averaging property is satisfied. For every
Borel-measurable function A mapping R to R and satisfying E|h(X)| < oo, we
have o

Eh(X) =/ h(z) fx(z)dz. (2.6.2)
—00
This is Theorem 1.5.2 in Chapter 1. Similarly, if & is a function of both z and
y, then

Eh(X,Y) = /_00 /_00 h(z,y) fx,y (z,y)dzdy (2.6.3)

whenever (X,Y’) has a joint density fx, y(z,y). You may use both (2.6.2) and
(2.6.3) in your solution to this problem.

Let A be a set in o(X). By the definition of o(X), there is a Borel subset
B of R such that A = {w € 2; X(w) € B} or, more simply, A = {X € B}.
Show the partial-averaging property

/A 9(X)dP = /A YdP.

Exercise 2.11. (i) Let X be a random variable on a probability space
(£2, F,P), and let W be a nonnegative o (X )-measurable random variable.
Show there exists a function g such that W = ¢g(X). (Hint: Recall that
every set in (X)) is of the form {X € B} for some Borel set B C R. Sup-
pose first that W is the indicator of such a set, and then use the standard
machine.)

(ii) Let X be a random variable on a probability space (§2, F,P), and let Y be
a nonnegative random variable on this space. We do not assume that X
and Y have a joint density. Nonetheless, show there is a function g such
that E[Y|X] = ¢g(X).
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3

Brownian Motion

3.1 Introduction

In this chapter, we define Brownian motion and develop its basic properties.
The definition of Brownian motion is provided in Section 3.3. Section 3.2
precedes it to give some intuition. For us, the most important properties of
Brownian motion are that it is a martingale (Theorem 3.3.4) and that it
accumulates quadratic variation at rate one per unit time (Theorem 3.4.3).
The notion of quadratic variation is profound. It makes stochastic calculus
different from ordinary calculus. For this reason, we begin already in Section
3.2 to talk about it.

Sections 3.5-3.7 develop properties of Brownian motion we shall need later
but not in the development of stochastic calculus in Chapter 4. Therefore,
the reader can go to Chapter 4 after completing Section 3.4. The Markov
property is the concept used to relate stochastic calculus to partial differential
equations. For Brownian motion, this property is presented in Section 3.5. The
first passage time of Brownian motion to a level is presented in Section 3.6
and used in Chapter 8 to analyze a perpetual American put on a geometric
Brownian motion. This is in the spirit of the perpetual American put analysis
for the binomial model, which is given in Section 5.4 of Volume I. The reflection
principle for Brownian motion developed in Section 3.7 is used in Chapter 7
to price exotic options.

3.2 Scaled Random Walks

3.2.1 Symmetric Random Walk

To create a Brownian motion, we begin with a symmetric random walk, one
path of which is shown in Figure 3.2.1. To construct a symmetric random
walk, we repeatedly toss a fair coin (p, the probability of H on each toss, and
¢ =1 — p, the probability of T' on each toss, are both equal to ). We denote
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3

Fig. 3.2.1. Five steps of a random walk.

the successive outcomes of the tosses by w = wiwsws . ... In other words, w is
the infinite sequence of tosses, and w,, is the outcome of the nth toss. Let
_J1 fwj=H,
X;= { lifw, =T, (3.2.1)
and define My = 0,
k
M=) X;, k=12,.... (3.2.2)
j=1

The process My, k=0,1,2,... is a symmetric random walk. With each toss,
it either steps up one unit or down one unit, and each of the two possibilities
is equally likely.

3.2.2 Increments of the Symmetric Random Walk

A random walk has independent increments. This means that if we choose
nonnegative integers 0 = kg < k; < - < ky, the random variables

Mkl = (Mkl — Mko), (Mk2 — Mkl)) ey (Mkm — Mkm—l)
are independent. Each of these random variables,

kipy

Mki+1 - Mki = Z Xj, (323)
J=ki+1

is called an increment of the random walk. It is the change in the position of
the random walk between times k; and k;,1. Increments over nonoverlapping
time intervals are independent because they depend on different coin tosses.
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Moreover, each increment My, , — My, has expected value 0 and variance
ki+1—k;. It is easy to see that the expected value is zero because the expected
value of each X; appearing on the right-hand side of (3.2.3) is zero. We also
have Var(X;) = EX f = 1, and since the different X; are independent, we
have from (3.2.3) that

ki+l ki+l
Var(My,,, - My) = > Var(X;)= Y l=kip—k. (324
j=ki+1 J=ki+1

The variance of the symmetric random walk accumulates at rate one per unit
time, so that the variance of the increment over any time interval k to ¢ for
nonnegative integers k < £ is £ — k.

3.2.3 Martingale Property for the Symmetric Random Walk

To see that the symmetric random walk is a martingale, we choose nonnegative
integers k < ¢ and compute

E[M|Fi] = E[(Me — M) + M| Fi]
= E[M¢ — M| Fi] + E[ M| Fi]
= E[M, — My|Fi] + My
=E[M; — My} + My = M;. (3.2.5)

Here we have used the notation E[---|Fk] of Chapter 2 to denote the con-
ditional expectation based on the information at time k, which in this case
is knowledge of the first k£ coin tosses. The second equality is a result of the
linearity of conditional expectations (Theorem 2.3.2(i)). The third equality
is because M} depends only on the first k& coin tosses (it is Fi-measurable,
where, in the language of Definition 2.1.5, Fj is the o-algebra of information
corresponding to the first k& coin tosses). The fourth equality follows from
independence (Theorem 2.3.2(iv)).

3.2.4 Quadratic Variation of the Symmetric Random Walk

Finally, we consider the quadratic variation of the symmetric random walk.
The quadratic variation up to time k is defined to be

k
MM =" (M, - M; )" = k. (3.2.6)

j=1

Note that this is computed path-by-path. The quadratic variation up to time
k along a path is computed by taking all the one-step increments M; — M;_;
along that path (these are equal to X, which is either 1 or —1, depending on
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the path), squaring these increments, and then summing them. Since (M; —
M;_1)? =1, regardless of whether M; — M;_; is 1 or —1, the sum in (3.2.6)
is equal to E;;l 1 = k, as reported in that equation.

We note that [M, M|y is the same as Var(Mj) (set k;+1 = k and k; =0
in (3.2.4)), but the computations of these two quantities are quite different.
Var(Mj) is computed by taking an average over all paths, taking their prob-
abilities into account. If the random walk were not symmetric (i.e., if p were
different from q), this would affect Var(My). By contrast, [M, M]; is com-
puted along a single path, and the probabilities of up and down steps do not
enter the computation. One can compute the variance of a random walk only
theoretically because it requires an average over all paths, realized and unre-
alized. However, from tick-by-tick price data, one can compute the quadratic
variation along the realized path rather explicitly. For a random walk, there is
the somewhat unusual feature that [M, M|, does not depend on the particular
path chosen, but we shall see later that the quadratic variation for a random
process generally does depend on the path along which it is computed.

3.2.5 Scaled Symmetric Random Walk

To approximate a Brownian motion, we speed up time and scale down the step
size of a symmetric random walk. More precisely, we fix a positive integer n
and define the scaled symmetric random walk

W () = % » (3.2.7)

provided nt is itself an integer. If nt is not an integer, we define W (™ (t) by
linear interpolation between its values at the nearest points s and u to the left
and right of ¢ for which ns and nu are integers. We shall obtain a Brownian
motion in the limit as n — co. Figure 3.2.2 shows a simulated path of W (100)
up to time 4; this was generated by 400 coin tosses with a step up or down of
size % on each coin toss.

Like the random walk, the scaled random walk has independent incre-
ments. If 0 = ¢y < t; < --- < t,, are such that each nt; is an integer, then

(W(t) - W™ (kg)), (WP (ta) — W™ (t1)),..., (W (tm) - W (tm_1))

are independent. These random variables depend on different coin tosses. For
example, W(109)(0.20) — W00 (0) depends on the first 20 coin tosses and
W (100)(0.70) — W(190)(0.20) depends on the next 50 tosses. Furthermore, if
0 < s <t are such that ns and nt are integers, then

EW®™@) - w™(s)) =0, Va(Wm(t)-wm(s)=t—s.  (3.2.8)

This is because W™ (t) — W(™)(s) is the sum of n(t — s) independent
random variables, each with expected value zero and variance ,{ For ex-
ample, W(100)(0,70) — W(100)(0.20) is the sum of 50 independent random
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Fig. 3.2.2. A sample path of W(%),

variables, each of which takes the value 11_0 or _E Each of these ran-
dom variables has expected value zero and variance ﬁ so the variance of
w100)(0.70) — w190)(0.20) is 50 - 7&5 = 0.50.

Let 0 < s < t be given, and decompose W (™ (t) as

wm(t) = (W™ () — wm(s)) + W (s).

If s and t are chosen so that ns and nt are integers, then the first term on the
right-hand side is independent of F(s), the o-algebra of information available
at time s (which is knowledge of the first ns coin tosses), and W™ (s) is F(s)-
measurable (i.e., it depends only on the first ns coin tosses). We may prove
the martingale property for the scaled random walk as we did for the random
walk in (3.2.5):

E[W®™ (t)|F(s)] = W) (s) (3.2.9)

for 0 < s < t such that ns and nt are integers.
Finally, we consider the quadratic variation of the scaled random walk. For
W(100) " the quadratic variation up to a time, say 1.37, is defined to be

137 . 2
(100) yy/(100) _ (100) _waoo) (J =1
(w100, w(100)](1.37) =) [W (100> w ( 0o )]

j=1

1 137
~Zs10 ] Z100 = 137,
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In general, for ¢t > 0 such that nt is an integer,

oWl =3 [we (1) -we (L)

Jj=1

nt 2 nt
= [ix,-] S (3.2.10)

If we go from time 0 to time ¢ along the path of the scaled random walk,
evaluating the increment over each time step and squaring these increments
before summing them, we obtain ¢, the length of the time interval over which
we are doing the computation. This is a path-by-path computation, not an
average over all possible paths, and could in principle depend on the particular
path along which we do the computation. However, along each path we get
the same answer t. Note that Var W(™)(t) is also ¢ (the second equation in
(3.2.8) with s = 0), but this latter quantity is an average over all possible
paths.

3.2.6 Limiting Distribution of the Scaled Random Walk

In Figure 3.2.2 we see a single sample path of the scaled random walk. In
other words, we have fixed a sequence of coin tosses w = wyws ... and drawn
the path of the resulting process as time ¢ varies. Another way to think about
the scaled random walk is to fix the time t and consider the set of all possible
paths evaluated at that time ¢. In other words, we can fix ¢ and think about
the scaled random walk corresponding to different values of w, the sequence of
coin tosses. For example, set ¢ = 0.25 and consider the set of possible values of
W(100)(0.25) = J-M,s. This random variable is generated by 25 coin tosses,
and since the unscaled random walk My can take the value of any odd integer
between —25 and 25, the scaled random walk W(190)(0.25) can take any of
the values

-2.5, -23, -21,...,-03, -0.1,0.1,03, ..., 2.1, 2.3, 2.5.

In order for W(190)(0.25) to take the value 0.1, we must get 13 heads and 12
tails in the 25 tosses. The probability of this is

250 (1\%
P{w19)(0.25) = 0.1} = CERDI (5) = 0.1555. (3.2.11)

We plot this information in Figure 3.2.3 by drawing a histogram bar centered
at 0.1 with area 0.1555. Since this bar has width 0.2, its height must be

% = 0.7775. Figure 3.2.3 shows similar histogram bars for all possible

values of W(190)(0.25) between —1.5 and 1.5.
The random variable W(190)(0.25) has expected value zero and variance
0.25. Superimposed on the histogram in Figure 3.2.3 is the normal density
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Fig. 3.2.3. Distribution of W(%9(0.25) and normal curve y = \/%6_212

with this mean and variance. We see that the distribution of W (190)(0.25) is
nearly normal. If we were given a continuous bounded function g(z) and asked
to compute Eg(W(199)(0.25)), a good approximation would be obtained by
multiplying g(x) by the normal density shown in Figure 3.2.3 and integrating:

Eg(W<‘°°>(0.25))z% / 9(z)e>" dz. (3.2.12)
T J—o00

The Central Limit Theorem asserts that the approximation in (3.2.12) is
valid. We provide the version of it that applies to our context.

Theorem 3.2.1 (Central limit). Fizt > 0. Asn — oo, the distribution of
the scaled random walk W™ (t) evaluated at time t converges to the normal
distribution with mean zero and variance t.

OUTLINE OF PROOF: One can identify distributions by identifying their
moment-generating functions. For the normal density

N

1 2
e
Vant

2t
with mean zero and variance ¢, the moment-generating function is

f(z) =
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o = | ” e f(z)do

-0
1 o z?
= — expeuxr — — ¢ dr
Vv 27t ~/;oo P { 2t }
1.2 1 /°° { (z - ut)2}
—e¥t. —— exp{ ——— b dz
Vamt J_oo P 2t
= 't (3.2.13)
T —u 2

because ﬁe_g_Lzet is a normal density with mean ut and variance ¢ and

hence integrates to 1.
If ¢ is such that nt is an integer, then the moment-generating function for
W™ (t) is

on(u) = Ee*W™®) — E exp {%Mm}

nt nt
= Eexp —;—HZXj = ]EHexp{%Xj}. (3.2.14)
Jj=1 Jj=1

Because the random variables are independent, the right-hand side of (3.2.14)
may be written as

nt u Mol w1 1 » 1 _w\™
II Z x. L II et e ) =(Zem rZe HA) .
j=1Eexp{x/ﬁX’} (26 T3 ) (26 T3 )

i=1
)nt

converges to the moment-generating function ¢(u) = e3*** in (3.2.13). To do
this, it suffices to consider the logarithm of ¢, (u) and show that

We need to show that, as n — oo,

1 w 1
pn(v) = | 5eV" + 3e

Sk

2

1 u_ ]. __u_
108<Pn(u)=ntlog Eeﬁ+§e 7n

converges to log p(u) = Ju?t.
For this final computation, we make the change of variable z = ﬁ so that

log (%e“z + %e‘“z)

x2

Jim logn(u) = tlim

If we were to substitute z = 0 into the expression on the right-hand side,
we would obtain g, and in this situation, we may use L’Hépital’s rule. The
derivative of the numerator with respect to z is
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0 1 uzx 1 —uz %CUI — %e—ux
6_.’1,‘ lOg (56 + Ee = —%Cum T %e_uz ’

and the derivative of the denominator is

2

—x° =2zx.
oz
Therefore,
Youzr _ U,—ux t Louzr _ U,—ux
lim lo u) = t lim —2 = ~lim 2
n—00 g on(u) 210 2z (Seus + le—ux)  2ai0 z ’

where we have used the fact that limgo (3€** + Je7%) = 1. If we were to
substitute £ = 0 into the expression on the right-hand side, we would again
obtain g. In this situation, we apply L’Hépital’s rule again. The derivative of
the numerator is

8
2 (gem _ ge_uz) e Y s

and the derivative of the denominator is %x = 1. Hence,

. t. (u? .. ur .. 1,
Jim log pn(u) = g lim (7e +5e = Su*t,

as desired. 0

3.2.7 Log-Normal Distribution as the Limit of the Binomial Model

The Central Limit Theorem, Theorem 3.2.1, can be used to show that the
limit of a properly scaled binomial asset-pricing model leads to a stock price
with a log-normal distribution. We present this limiting argument here under
the assumption that the interest rate r is zero. The case of a nonzero interest
rate is outlined in Exercise 3.8. These results show that the binomial model
is a discrete-time version of the geometric Brownian motion model, which is
the basis for the Black-Scholes-Merton option-pricing formula.

Let us build a model for a stock price on the time interval from 0 to ¢ by
choosing an integer n and constructing a binomial model for the stock price
that takes n steps per unit time. We assume that n and t are chosen so that
nt is an integer. We take the up factor to be u, = 1+ % and the down factor
tobed,=1-— —"; Here o is a positive constant that will turn out to be the
volatility of the limiting stock price process. The risk-neutral probabilities are
then (see (1.1.8) of Chapter 1 of Volume I)

. l+r—d, o/y/n 1 _ up—1-r o/yn 1
p= Up —dn  20/\/m 2 9% Up—dn  20/yn 2
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The stock price at time ¢ is determined by the initial stock price S(0) and
the result of the first nt coin tosses. The sum of the number of heads H,; and
number of tails T;,; in the first nt coin tosses is nt, a fact that we write as

nt = Hpy + The.

The random walk M,; is the number of heads minus the number of tails in

these nt coin tosses:
Myt = Hpy — T

Adding these two equations and dividing by 2, we see that
1
H,: = §(nt + Mnt)-
Subtracting them and dividing by 2, we see further that
1
Tnt = E(nt - Mnt)-

In the model with up factor u,, and down factor d,,, the stock price at time ¢
is
)‘%(nt"'Mﬂ.t) ( o %(nt—Mnt)

Sn(t) = S(0)ul»dT = 5(0) (1 + \/iﬁ 1- 7
(3.2.15)

We wish to identify the distribution of this random variable as n — oo.

Theorem 3.2.2. As n — oo, the distribution of Sp(t) in (8.2.15) converges
to the distribution of

S(t) = S(0) exp {aW(t) - %a%} , (3.2.16)

where W (t) is a normal random variable with mean zero and variance t.

The distribution of S(t) in (3.2.16) is called log-normal. More generally,
any random variable of the form ceX, where ¢ is a constant and X is normally
distributed, is said to have a log-normal distribution. In the case at hand,
X =oW(t) — %azt is normal with mean —%a2t and variance o2t.

PrOOF OF THEOREM 3.2.2: It suffices to show that the distribution of
log Sn(t)

= log S(0) + %(nt + Mp) log (1 + %) + %(nt — My¢) log (1 - %)
(3.2.17)

converges to the distribution of



3.3 Brownian Motion 93
log S(t) = log S(0) + oW (t) — %azt,

where W (t) is a normal random variable with mean zero and variance ¢. To do
this, we need the Taylor series expansion of f(z) = log(1l + ). We compute
fi(z) = (1 +x)7! and f’(x) = —(1 + )2 and evaluate them to obtain
f'(0) =1 and f”(0) = —1. According to Taylor’s Theorem,

log(1 + ) = £(0) + f'(0)z + % F(0)z2 +0(z%) =z — %aﬁ +0(2®),

where O(z?) indicates a term of order z3. We apply this to (3.2.17) first with
T = % and then with z = —%. Our intention is to then let n — oo, and
so we need to keep track of which terms have powers of n in the denominator
and which terms do not. The former ones will have limit zero and the latter
ones will not. We use the O(-) notation to do this. Not every term of the form
O(n‘%) in the following equation is the same; their only common feature is

that they have n# in their denominators. In particular, from (3.2.17) we have

1 o o? _3
log S(t) = log S(0) + E(nt + Mpe) (\/—7_1 ~ o +0(n )

+%(nt — Myy) (—% - % + O(n‘%)>

= log S(0) + nt (—% + O(n_%)) + My (% + O(n_%))

~ 1og 5(0) - 30% + O(n~1) + W™ (1) + O(n~ )W)

The term W™(t) = % nt appears in two places in the last line. By the
Central Limit Theorem, Theorem 3.2.1, its distribution converges to the distri-
bution of a normal random variable with mean zero and variance ¢, a random
variable we call W (t). However, in one of its appearances, W (")(t) is multiplied
by a term that has n in the denominator, and this will have limit zero. The
term O(n_%) also has limit zero as n — 0o. We conclude that as n — oo the
distribution of log S(t) approaches the distribution of log S(0) — 3%t +oW(t),
which is what we set out to prove. O

3.3 Brownian Motion

3.3.1 Definition of Brownian Motion

We obtain Brownian motion as the limit of the scaled random walks W (™)(t)
of (3.2.7) as n — oo. The Brownian motion inherits properties from these
random walks. This leads to the following definition.
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Definition 3.3.1. Let (2, F,P) be a probability space. For each w € 2, sup-
pose there is a continuous function W(t) of t > 0 that satisfies W(0) = 0
and that depends on w. Then W(t), t > 0, is a Brownian motion if for all
0=tg <ty <--+ <ty the increments

W(t1) =W(t1) — W(to), W(t2) — W(t1), ..., W(tm) — W(tm—1) (3.3.1)
are independent and each of these increments is normally distributed with

E[W(tit1) - W(t:)] =0, (3.3.2)
Var[W (tiy1) — W(ti)] = tiy1 — ti. (3.3.3)

One difference between Brownian motion W (t) and a scaled random walk,
say W(190)(2), is that the scaled random walk has a natural time step 135 and
is linear between these time steps, whereas the Brownian motion has no linear
pieces. The other difference is that, while the scaled random walk W (100)(¢)
is only approximately normal for each ¢ (see Figure 3.2.3), the Brownian
motion is exactly normal. This is a consequence of the Central Limit Theorem,
Theorem 3.2.1. Not only is W (t) = W (t) — W (0) normally distributed for each
t, but the increments W (t) — W (s) are normally distributed for all 0 < s < &.

There are two ways to think of w in Definition 3.3.1. One is to think of
w as the Brownian motion path. A random experiment is performed, and its
outcome is the path of the Brownian motion. Then W (t) is the value of this
path at time ¢, and this value of course depends on which path resulted from
the random experiment. Alternatively, one can think of w as something more
primitive than the path itself, akin to the outcome of a sequence of coin tosses,
although now the coin is being tossed “infinitely fast.” Once the sequence of
coin tosses has been performed and the result w obtained, then the path of the
Brownian motion can be drawn. If the tossing is done again and a different w
is obtained, then a different path will be drawn.

In either case, the sample space {2 is the set of all possible outcomes of
a random experiment, F is the o-algebra of subsets of {2 whose probabilities
are defined, and P is a probability measure. For each A € F, the probability
of A is a number P(A) between zero and one. The distributional statements
about Brownian motion pertain to P.

For example, we might wish to determine the probability of the set A
containing all w € {2 that result in a Brownian motion path satisfying 0 <
W(0.25) < 0.2. Let us first consider this matter for the scaled random walk
W (100) | If we were asked to determine the set {w : 0 < W(109)(0.25) < 0.2},
we would note that in order for the scaled random walk W99 to fall between
0 and 0.2 at time 0.25, the unscaled random walk Mys = 10W (190)(0.25) must
fall between 0 and 2 after 25 tosses. Since Mss can only be an odd number,
it falls between 0 and 2 if and only if it is equal to 1 or, equivalently, if and
only if W(109)(0.25) = 0.1. To achieve this, the coin tossing must result in 13
heads and 12 tails in the first 25 tosses. Therefore, A is the set of all infinite
sequences of coin tosses with the property that in the first 25 tosses there
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are 13 heads and 12 tails. The probability that one of these sequences occurs,
given by (3.2.11), is P(A) = 0.1555.

For the Brownian motion W, there is also a set of outcomes w to the
random experiment that results in a Brownian motion path satisfying 0 <
W (0.25) < 0.2. We choose not to describe this set as concretely as we just did
for the scaled random walk W(1%0) Nonetheless, there is such a set of w € £2,
and the probability of this set is

2 0.2
P{0 < W(0.25) < 0.2} = s / e 2% dg.
T Jo

In place of the area in the histogram bar centered at 0.1 in Figure 3.2.3, which
is 0.1555, we now have the area under the normal curve between 0 and 0.2 in
that figure. These two areas are nearly the same.

3.3.2 Distribution of Brownian Motion

Because the increments
W(tl) = W(tl) — W(to), W(tz) — W(tl), ceny W(tm) - W(tm_l)

of (3.3.1) are independent and normally distributed, the random variables
W(t1), W(ta),...,W(tm) are jointly normally distributed. The joint distri-
bution of jointly normal random variables is determined by their means and
covariances. Each of the random variables W (¢;) has mean zero. For any two
times, 0 < s < t, the covariance of W (s) and W (t) is

E[W(s)W(t)] = E[W(s)(W(t) — W(s)) + W?(s)]
=E[W(s)] -E[W(t) — W(s)] + E[W?(s)]
=0+ Var[W(s)] =5,
where we have used the independence of W (s) and W (t) — W (s) in the second

equality. Hence, the covariance matriz for Brownian motion (i.e., for the m-
dimensional random vector (W (t1), W (t2),...,W (tm))) is

]E[W2(t1)] E[W(tl)W(tZ)] - E W(tl)W(tm)] t1 ty -+ tl
E[W(t)W(t)] E[W(ts)] - E[W(t2)W (tm) t by by
E[W (t)W (t2)] E[W (tm)W (82)] - E[W2(tm)] NP

(3.3.4)

The moment-generating function of this random vector can be computed
using the moment-generating function (3.2.13) for a zero-mean normal random
variable with variance ¢ and the independence of the increments in (3.3.1). To
assist in this computation, we note first that
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qu(t;;) + 'u.zW(tz) + u1W(t1)
= ug (W(ta) — W(tz)) + (u2 + u3) (W(tz) — W(tl))
+(’U,1 + uz + 'U.3)W(t1)

and more generally

UnW (tm) + Um 1 W (Em=1) + Um—2W (tm—2) + - + w1 W (t1)

= Um (W(tm) - W(tm—l)) + (um-1+ “m)(W(tm—l) - W(tm—2))
+(Um—2 + Um-1 + Um) (W(tm-2) — W(tm-3)) +...
coot (ug Fug 4+ um)Wi(th).

We use these facts to compute the moment-generating function of the random
vector (W (t1), W(tz2),..., W(tm)):

(U1, u2, .-« Um)
= Eexp {umW ({tm) + um—1W(tm-1) + - + u1aW(t)}
=Eexp {tum(W(tm) — W(tm-1)) + (Um-1 + tm) (W (tm-1) — W(tm-2))+
oot (up tug 4 un)Wi(t)}
= Eexp {um (W (tm) — W(tm-1)) }
‘Eexp {(um—l + Um) (W(tm—l) - W(tm—2))}
- Eexp{(uy +uz + -+ +um)W(t1)}

1 1
= exp {Euzn(tm - tm—l)} * exp {i(um—l + Um)?(tm—-1 — tm—z)}

1 2
"'EXP{E(M +ug + -+ Um) t1}-

In conclusion, the moment-generating function for Brownian motion (i.e., for
the m-dimensional random vector (W (t,), W (t2),...,W(ty))) is

e(ui, ug, .-, Um)
= Eexp {umW(tm) +um aW(tm-1) +--- + Ulw(tl)}

1 1
= exp{i(ul +uz+ e+ um)t + §(u2+u3+~--+um)2(t2 —t)+

1 1
oot §(um—1 + Um)?(tm-1 — tm—2) + 5“?71(% - tm—l)} - (33.5)

The distribution of the Brownian increments in (3.3.1) can be specified
by specifying the joint density or the joint moment-generating function of
the random variables W(ty), W(tz),...,W(ty). This leads to the following
theorem.

Theorem 3.3.2 (Alternative characterizations of Brownian motion).
Let (2, F,P) be a probability space. For each w € 2, suppose there is a
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continuous function W (t) of t > 0 that satisfies W(0) = 0 and that depends
on w. The following three properties are equivalent.

(i) For all0 =ty < t; < :++ < t, the increments
W(tl) = W(tl) - W(to), W(tz) - W(tl), ceay W(tm) - W(tm_l)

are independent and each of these increments is normally distributed with
mean and variance given by (3.3.2) and (3.3.3).

(ii) For all 0 = to < t; < --- < ty, the random variables W(t,), W(t2),...,
W (ty) are jointly normally distributed with means equal to zero and co-
variance matriz (3.3.4).

(#ii) For all0 = tg < t; < --- < ty, the random variables W (t,), W (t2),...,
W (t,,) have the joint moment-generating function (3.3.5).

If any of (i), (ii), or (#i) holds (and hence they all hold), then W (t), t > 0,
s a Brownian motion.

3.3.3 Filtration for Brownian Motion

In addition to the Brownian motion itself, we will need some notation for the
amount of information available at each time. We do that with a filtration.

Definition 3.3.3. Let (12, F,P) be a probability space on which is defined a
Brownian motion W(t), t > 0. A filtration for the Brownian motion is a
collection of o-algebras F(t), t > 0, satisfying:

(i) (Information accumulates) For 0 < s < t, every set in F(s) is also in
F(t). In other words, there is at least as much information available at
the later time F(t) as there is at the earlier time F(s).

(ii) (Adaptivity) For each t > 0, the Brownian motion W (t) at time t is
F(t)-measurable. In other words, the information available at time t is
sufficient to evaluate the Brownian motion W (t) at that time.

(#i) (Independence of future increments) For 0 < t < u, the increment
W (u)—W (t) is independent of F(t). In other words, any increment of the
Brownian motion after time t is independent of the information available
at time t.

Let A(t), t > 0, be a stochastic process. We say that A(t) is adapted to the
filtration F(t) if for each t > 0 the random variable A(t) is F(t)-measurable.’

Properties (i) and (ii) in the definition above guarantee that the infor-
mation available at each time ¢t is at least as much as one would learn from
observing the Brownian motion up to time ¢. Property (iii) says that this

! The adapted processes we encounter will serve as integrands, and for this one
needs them to be jointly measurable in ¢ and w so that their integrals are defined
and are themselves adapted processes. This is a technical requirement that we
shall ignore in this text.
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information is of no use in predicting future movements of the Brownian mo-
tion. In the asset-pricing models we build, property (iii) leads to the efficient
market hypothesis.

There are two possibilities for the filtration F(¢) for a Brownian motion.
One is to let F(t) contain only the information obtained by observing the
Brownian motion itself up to time ¢. The other is to include in F(t) information
obtained by observing the Brownian motion and one or more other processes.
However, if the information in F(t) includes observations of processes other
than the Brownian motion W, this additional information is not allowed to
give clues about the future increments of W because of property (iii).

3.3.4 Martingale Property for Brownian Motion

Theorem 3.3.4. Brownian motion is a martingale.
PROOF: Let 0 < s <t be given. Then
E[W (t)|F(s)] = E[(W(t) — W(s)) + W(s)|F(s)]
=E[W(t) - W(s)|F(s)] + E[W(s)|F(s)]
=E[W(t) - W(s)] + W(s)
= W(s).

The justifications for the steps in this equality are the same as the justifications
for (3.2.5). O

3.4 Quadratic Variation

We computed the quadratic variation of the scaled random walk W™ up
to time T in (3.2.10), and this quadratic variation turned out to be T'. This
was computed by taking each of the steps of the scaled random walk between
times 0 and T, squaring them, and summing them.

For Brownian motion, there is no natural step size. If we are given T > 0,
we could simply choose a step size, say % for some large n, and compute the
quadratic variation up to time T with this step size. In other words, we could

compute
[ (U207 (7] 4

j=0
We are interested in this quantity for small step sizes, and so as a last step we
could evaluate the limit as n — oo. If we do this, we will get T, the same final
answer as for the scaled random walk in (3.2.10). This is proved in Theorem
3.4.3 below.

The paths of Brownian motion are unusual in that their quadratic variation
is not zero. This makes stochastic calculus different from ordinary calculus
and is the source of the volatility term in the Black-Scholes-Merton partial
differential equation. These matters will be discussed in the next chapter.
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3.4.1 First-Order Variation

Before proving that Brownian motion accumulates T' units of quadratic varia-
tion between times 0 and T', we digress slightly to discuss first-order variation
(as opposed to gquadratic variation, which is second-order variation). Consider
the function f(¢) in Figure 3.4.1. We wish to compute the amount of up and
down oscillation undergone by this function between times 0 and 7', with the
down moves adding to rather than subtracting from the up moves. We call
this the first-order variation FVr(f). For the function f shown, it is

FVr(f) = [f(t2) — £(0)] — [f(t2) — f(t2)] + [F(T) — f(t2)]
t1 123 T
- [Croas [Ccrovas [ roa
0 12

T "
= /0 |£/(2)] dt. (3.4.2)

The middle term
=[f(t2) = f(t1)] = f(ta) — f(t2)

is included in a way that guarantees that the magnitude of the down move of
the function f(t) between times ¢; and t; is added to rather than subtracted
from the total.

ONN |

ta A
T

t1 :
|
|
|
|

Fig. 3.4.1. Computing the first-order variation.

In general, to compute the first-order variation of a function up to time T,
we first choose a partition IT = {to,t1,...,tn} of [0, T], which is a set of times

O=tg<t) < -+ <t,=T.
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These will serve to determine the step size. We do not require the parti-
tion points tg = 0,¢),t2,...,t, = T to be equally spaced, although they
are allowed to be. The maximum step size of the partition will be denoted
|| I7|| = max;j=o,... n—1(tj+1 — t;). We then define

n—

FVr(f) = lim ) |f(tj+1) = f(25)]- (3.4.3)

Imli—o0 =

The limit in (3.4.3) is taken as the number n of partition points goes to infinity
and the length of the longest subinterval ¢;,; — t; goes to zero.

Our first task is to verify that the definition (3.4.3) is consistent with the
formula (3.4.2) for the function shown in Figure 3.4.1. To do this, we use
the Mean Value Theorem, which applies to any function f(t) whose deriva-
tive f’(t) is defined everywhere. The Mean Value Theorem says that in each
subinterval [t;,t;+1] there is a point ¢} such that

f(tie1) = F(t5) _

tiv1 —t; f(E). (3.4.4)

In other words, somewhere between t; and t;.1, the tangent line is parallel
to the chord connecting the points (¢;, f(t;)) and (tj41, f(tj+1)) (see Figure
3.4.2).

ONN | Slope f'(t])

S

t2

e e e - ————

q.k

Fig. 3.4.2. Mean Value Theorem.

Multiplying (3.4.4) by t;4+1 —t;, we obtain
f(tir1) = f(t5) = /() (tj41 — t5)-
The sum on the right-hand side of (3.4.3) may thus be written as
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n—1
Z | DIt = t5),

j=0

which is a Riemann sum for the integral of the function |f’(t)|. Therefore,

IT—0 5

-1 T
RV = m Sl -6 = [ ol
=0
and we have rederived (3.4.2).

3.4.2 Quadratic Variation
Definition 3.4.1. Let f(t) be a function defined for 0 <t < T. The quadratic

variation of f up to time T is

[, T Z[f(tHl) - f(t;)3, (3.4.5)

IIITII 0

where IT = {tg,t1,...,tpn} and0=tg <ty <--- <t, =T.

Remark 38.4.2. Suppose the function f has a continuous derivative. Then
n—1 n—1

D ) = FEP = DI EDP i —t3)® < |- Z|f DI (841 = 1),
j=0 j=0

and thus

[, /I(T) < lim || - Zlf )2 (i1 — t5)

7] —0

= lim |- Z|f EP(tiar = t5)

I|17II—>0 IUII —0

= 1im |- /0 IR = o.

7] —0

In the last step of this argument, we use the fact that f’(t) is continuous to
ensure that fOT |F/(t)|%dt is finite. If fOT |£/(¢)|?dt is infinite, then

IHII o ["H” Z|f )P (t541 — t5 )]

=0

leads to a 0 - co situation, which can be anything between 0 and co. d
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Most functions have continuous derivatives, and hence their quadratic vari-
ations are zero. For this reason, one never considers quadratic variation in
ordinary calculus. The paths of Brownian motion, on the other hand, can-
not be differentiated with respect to the time variable. For functions that do
not have derivatives, the Mean Value Theorem can fail and Remark 3.4.2 no
longer applies. Consider, for example, the absolute value function f(t) = |¢| in
Figure 3.4.3. The chord connecting (t1, f(t1)) and (t2, f(t2)) has slope ¢, but
nowhere between ¢; and t; does the derivative of f(t) = |¢| equal {. Indeed,
this derivative is always —1 for ¢t < 0, is always 1 for ¢ > 0, and is undefined
at t = 0, where the the graph of the function f(t) = |¢| has a “point.” Figure
3.2.2 suggests correctly that the paths of Brownian motion are very “pointy.”
Indeed, for a Brownian motion path W(t), there is no value of ¢ for which
%W(t) is defined.

Fig. 3.4.3. Absolute value function.

Theorem 3.4.3. Let W be a Brownian motion. Then [W,W])(T) =T for all
T > 0 almost surely.

We recall that the terminology almost surely means that there can be some
paths of the Brownian motion for which the assertion [W, W](T) = T is not
true. However, the set of all such paths has zero probability. The set of paths
for which the assertion of the theorem is true has probability one.

PROOF OF THEOREM 3.4.3: Let IT = {to,t1,...,t,} be a partition of [0, T.
Define the sampled quadratic variation corresponding to this partition to be

n—1

Qn =) (W(tjn) - W(t;))".

j=0

We must show that this sampled quadratic variation, which is a random vari-
able (i.e., it depends on the path of the Brownian motion along which it is
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computed) converges to T as ||II|| — 0. We shall show that it has expected
value T, and its variance converges to zero. Hence, it converges to its expected
value T, regardless of the path along which we are doing the computation.?

The sampled quadratic variation is the sum of independent random vari-
ables. Therefore, its mean and variance are the sums of the means and vari-
ances of these random variables. We have

E[(W(ti+1) ~ W(t)"] = Var W (t00) - Wt = tisn = ts,  (3.46)

which implies

n—1

EQn =Y E[(W(ts1) - W(t:)"] = Z(t1+1—t)—

j=0

as desired. Moreover,
Var [(W (t541) - W(t5))°]
— & [(W(tss) - W) = 1 -1)'|

=E[(W(ts1) = W(t)"] - 2(t51 = t)E [ (W (ts41) - W)
+(tj41 — t5)°

The fourth moment of a normal random variable with zero mean is three times
its variance squared (see Exercise 3.3). Therefore,

E[(W(ti+1) - W(t:)*] = 3(ts41 — 1;)",

Var [(W(t:‘+1) - W(tj))2] = 3(tj1 — t5)° = 2(tje1 — £)° + (841 — t5)
= 2(tj41 — t;)3, (3.4.7)

and

Var(Qn)—ZVar[ tiv1) — W(t;) ] Zz(tﬁl—t

n—1

<> 2 |\(tj1 — t;) = 2H|T.
=0

In particular, lim) o Var(Qm) = 0, and we conclude that limy )0 Qn =
EQn=T

2 The convergence we prove is actually convergence in mean square, also called
L?-convergence. When this convergence takes place, there is a subsequence along
which the convergence is almost sure (i.e., the convergence takes place for all
paths except for a set of paths having probability zero). We shall not dwell on
subtle differences among types of convergence of random variables.
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Remark 3.4.4. In the proof above, we derived the equations (3.4.6) and (3.4.7):

E[(W(tj+1) — W(t})*] = tis1 —t;

and
2
Va.r[(W(t_,-+1) - W(t])) ] = 2(tj+1 — tj)2.
It is tempting to argue that when t;41 —t; is small, (tj+1 —t;)? is very small,
and therefore (W (tj41) — W (t j))z, although random, is with high probability
near its mean t;;; —t;. We could therefore claim that

(W (tj1) = W(t)* = tign —t;. (3.4.8)

This approximation is trivially true because, when t;,.; — t; is small, both
sides are near zero. It would also be true if we squared the right-hand side,
multiplied the right-hand side by 2, or made any of several other significant
changes to the right-hand side. In other words, (3.4.8) really has no content.
A better way to try to capture what we think is going on is to write

(W (tj41) — W(t;)*

ti+1 — 1

(3.4.9)

instead of (3.4.8). However,

(W (tj41) — W(t)))

tiv1 — 1

is in fact not near 1, regardless of how small we make ¢;,; —t;. It is the square
of the standard normal random variable

W(tjr1) — Wit5)
V-t
and its distribution is the same, no matter how small we make t;; — ¢;.

To understand better the idea behind Theorem 3.4.3, we choose a large
value of n and take t; = ,]—01 .,n. Then tj ; —¢; ——fora.ll]and

Y1 =

2 . YA
(W(tj2) - W ()" =T =

Since the random variables Y7,Y53,...,Y,, are independent and identically dis-
tributed, the Law of Large Numbers implies that E" 1% —Jn— converges to the
common mean EY?, ; as n — oco. This mean is 1, and hence P (W(t_,+1) -

Wt j)) converges to T. Each of the terms (W (t;4+1) — (t])) in this sum

can be quite different from its mean t;; —t; = %, but when we sum many
terms like this, the differences average out to zero.
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We write informally
dW (t)dW(t) = dt, (3.4.10)

but this should not be interpreted to mean either (3.4.8) or (3.4.9). It is only
when we sum both sides of (3.4.9) and call upon the Law of Large Numbers
to cancel errors that we get a correct statement. The statement is that on an
interval [0, T'], Brownian motion accumulates T' units of quadratic variation.

If we compute the quadratic variation of Brownian motion over the time
interval [0, T1], we get [W, W|(T1) = T:. If we compute the quadratic variation
over [0,T3], where 0 < T} < T3, we get [W,W](Tz2) = T,. Therefore, if we
partition the interval [T}, T5], square the increments of Brownian motion for
each of the subintervals in the partition, sum the squared increments, and
take the limit as the maximal step size approaches zero, we will get the limit
(W, W|(T2) — [W,W](T1) = T> — T1. Brownian motion accumulates T — T}
units of quadratic variation over the interval [T}, T5]. Since this is true for
every interval of time, we conclude that

Brownian motion accumulates quadratic variation at rate one per unit
time.

We write (3.4.10) to record this fact. In particular, the dt on the right-hand
side of (3.4.10) is multiplied by an understood 1.

As mentioned earlier, the quadratic variation of Brownian motion is the
source of volatility in asset prices driven by Brownian motion. We shall even-
tually scale Brownian motion, sometimes in time- and path-dependent ways,
in order to vary the rate at which volatility enters these asset prices. O

Remark 8.4.5. Let II = {to,t1,...,t,} be a partition of [0,7] (i.e., 0 = to <
t1 < --- < t, = T). In addition to computing the quadratic variation of
Brownian motion

n-—1
2
lim W(tjs1) —W(t;)) =T, 34.11
i X (7 (6) = W(t) (3411)
we can compute the cross variation of W (t) with ¢ and the quadratic variation
of t with itself, which are

n—1
"11]1"11_1)0 Z: (W (t41) = W(t5)) (tj+1 — t5) = 0, (34.12)
n—1
. ) .2 —
| Iljlun_l)OZ(t]H tj)2 = 0. (3.4.13)

To see that 0 is the limit in (3.4.12), we observe that

|(W(tj+1) —W(t;))(tj+1 — tj)| < Jhax |W (tk+1) — W(K)|(ti+1 — t;),
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and so

|Z W (tjr1) — W(t5)) (i _t1)|

Jj=

O<k< . |W(tk+1) - W(tk)l -T.

Since W is continuous, maxg<k<n—1 |W(tk+1) - W(k)l has limit zero as ||II]|,
the length of the longest subinterval, goes to zero. To see that 0 is the limit
in (3.4.13), we observe that

n—1 n-1
jz_(:)(tj+l —-t)2 < oPax | (tk+1 — t&) - ]Z_:o(tjﬂ —t;) = 1| - T,

which obviously has limit zero as ||II|| — 0.
Just as we capture (3.4.11) by writing (3.4.10), we capture (3.4.12) and
(3.4.13) by writing
dW(t)dt =0, dtdt=0. (3.4.14)

a

3.4.3 Volatility of Geometric Brownian Motion

Let o and o > 0 be constants, and define the geometric Brownian motion

S(t) = S(0) exp {aW(t) + (a - %02) t} )

This is the asset-price model used in the Black-Scholes-Merton option-pricing
formula. Here we show how to use the quadratic variation of Brownian motion
to identify the volatility o from a path of this process.

Let 0 < Ty < T; be given, and suppose we observe the geometric Brownian
motion S(t) for T1 <t < T,. We may then choose a partition of this interval,
Th =ty <ty <--+ <ty =T, and observe “log returns”

S(tjv1)
o8 5ty =

over each of the subintervals [t;,t;+1]. The sum of the squares of the log
returns, sometimes called the realized volatility, is

m—1 S(t ) 2
> (10s ")

j=0

m—1 2 m—1
= 0'2 Z (W(tj+1) - W(tj))2 + (a - —0 ) Z(t]+1 - t]

=0

m—1
+20 (a - %U2> Z (W(tj.H) — W(t]'))(tj+1 —t]'). (3.4.15)

Jj=0

O'(W(tj.H) - W(tj)) + (a - %(72) (tj+1 —t;)
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When the maximum step size || IT|| = max;j=o, .. m-1(tj+1 — t;) is small,
then the first term on the right-hand side of (3.4.15) is approximately equal to
its limit, which is o2 times the amount of quadratic variation accumulated by
Brownian motion on the interval [T}, T3], which is T — T;. The second term
on the right-hand side of (3.4.15) is (o — %a"’)2 times the quadratic variation
of t, which was shown in Remark 3.4.5 to be zero. The third term on the
right-hand side of (3.4.15) is 20 (& — 30?) times the cross variation of W(t)
and t, which was also shown in Remark 3.4.5 to be zero. We conclude that
when the maximum step size ||II|| is small, the right-hand side of (3.4.15) is
approximately equal to 0?(T; — T} ), and hence

m—1 2
1 S(t; 1))
1 Ehs ~ 2. 3.4.16
-1 j;, (og S5(t;) y ( )

If the asset price S(t) really is a geometric Brownian motion with constant
volatility o, then o can be identified from price observations by computing the
left-hand side of (3.4.16) and taking the square root. In theory, we can make
this approximation as accurate as we like by decreasing the step size. In prac-
tice, there is a limit to how small the step size can be. Between trades, there
is no information about prices, and when a trade takes place, it is sometimes
at the bid price and sometimes at the ask price. On small time intervals, the
difference in prices due to the bid-ask spread can be as large as the difference
due to price fluctuations during the time interval.

3.5 Markov Property
In this section, we show that Brownian motion is a Markov process and discuss
its transition density.

Theorem 3.5.1. Let W(t), t > 0, be a Brownian motion and let F(t), t > 0,
be a filtration for this Brownian motion (see Definition 3.3.8). Then W(t),
t >0, is a Markov process.

PROOF: According to Definition 2.3.6, we must show that whenever 0 < s <
t and f is a Borel-measurable function, there is another Borel-measurable
function g such that

E[f(W(¢))|F(s)] = g(W(s)). (3.5.1)
To do this, we write
]E[f(W(t))I}‘(s)] =E[f((W(t) - W(s)) + W(s)) |.7-'(s)]. (3.5.2)

The random variable W (t) — W (s) is independent of F(s), and the random
variable W (s) is F(s)-measurable. This permits us to apply the Independence
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Lemma, Lemma 2.3.4. In order to compute the expectation on the right-hand
side of (3.5.2), we replace W(s) by a dummy variable = to hold it constant
and then take the unconditional expectation of the remaining random variable
(i.e., we define g(z) = Ef (W (t) — W(s) + z)). But W(t) — W(s) is normally
distributed with mean zero and variance ¢t — s. Therefore,

w2
e 2=3) dw. (3.5.3)

1 oo
z) = ———— w4z
9o) = s [ 1w+o)
The Independence Lemma states that if we now take the function g(z) defined
by (3.5.3) and replace the dummy variable z by the random variable W (s),
then equation (3.5.1) holds. O
We may make the change of variable 7 =t — s and y = w+ z in (3.5.3) to

obtain ) o ,
_y—=)°

= — 2T d .

g9(x) Wor= /_ . f(ye Yy

We define the transition density p(7,z,y) for Brownian motion to be

1 _y-=)?
2T

p(T,iL‘,y) = \/27!'—7'6 )

so that we may further rewrite (3.5.3) as

o) = [ ” f@)pir ) dy (35.4)

and (3.5.1) as

E[f(W(®))|F(s)] = /_ ~ fwplr, W(s),y) dy. (3.5.5)

This equation has the following interpretation. Conditioned on the informa-
tion in F(s) (which contains all the information obtained by observing the
Brownian motion up to and including time s), the conditional density of W (t)
is p(T, W(s),y). This is a density in the variable y. This density is normal with
mean W(s) and variance 7 = t — s. In particular, the only information from
F(s) that is relevant is the value of W(s). The fact that only W (s) is relevant
is the essence of the Markov property.

3.6 First Passage Time Distribution
In Chapter 5 of Volume I, we studied the first passage time for a random walk,

first using the optional sampling theorem for martingales to obtain the distri-
bution in Section 5.2 and then rederiving the distribution using the reflection
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principle in Section 5.3. Here we develop the first approach; the second is pre-
sented in the next section. In Sections 5.2 and 5.3 of Volume I, we observed
after deriving the distribution of the first passage time for the symmetric
random walk that our answer could easily be modified to obtain the first pas-
sage distribution for an asymmetric random walk. In this section, we work
only with Brownian motion, the continuous-time counterpart of the symmet-
ric random walk. The case of Brownian motion with drift, the continuous-time
counterpart of an asymmetric random walk, is treated in Exercise 3.7. We re-
visit this problem in Chapter 7, where it is solved using Girsanov’s Theorem.
The resulting formulas often provide explicit pricing and hedging formulas for
exotic options. Examples of the application of these formulas to such options
are given in Chapter 7.

Just as we began in Section 5.2 of Volume I with a martingale that had
the random walk in the exponential function, we must begin here with a
martingale containing Brownian motion in the exponential function. We fix a
constant o. The so-called exponential martingale corresponding to o, which is

Z(t) = exp {aW(t) - %ojt} , (3.6.1)

plays a key role in much of the remainder of this text.

Theorem 3.6.1 (Exponential martingale). Let W(t), t > 0, be a Brow-
nian motion with a filtration F(t), t > 0, and let o be a constant. The process
Z(t), t >0, of (3.6.1) is a martingale.

PROOF: For 0 < s < t, we have
E[Z(t)|F(5)]
=E [exp {aW(t) - —;—02t}‘ .7-'(3)]
_E [exp {o(W(t) - W(s))} - exp {UW(S) - %a%}‘ .7-'(3)]
= exp {aW(s) - %a%} -E [exp {a(W(t) — W(s)) }| F(s)], (3.6.2)

where we have used “taking out what is known” (Theorem 2.3.2(ii)) for the
last step. We next use “independence” (Theorem 2.3.2(iv)) to write

E [exp {a(W(t) — W(s))}| F(s)] =E [exp {o(W(t) — W(s))}].
Because W(t) — W(s) is normally distributed with mean zero and variance

t — s, this expected value is exp {102(t — 5)} (see (3.2.13)). Substituting this
into (3.6.2), we obtain the martingale property

E[Z(t)|F(s)] = exp {aW(s) - %azs} = Z(s). O
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Let m be a real number, and define the first passage time to level m
Tm = min{t > 0; W(t) = m}. (3.6.3)

This is the first time the Brownian motion W reaches the level m. If the
Brownian motion never reaches the level m, we set 7,,, = 0co. A martingale
that is stopped (“frozen” would be a more apt description) at a stopping
time is still a martingale and thus must have constant expectation. (The text
following Theorem 4.3.2 of Volume I discusses this in more detail.) Because
of this fact,

=Z(0)=EZ(tATm) =E [exp {aW(t ATm) — %az(t A ‘Tm)}] , (3.6.4)

where the notation ¢ A 7, denotes the minimum of ¢ and 7,,.
For the next step, we assume that 0 > 0 and m > 0. In this case, the
Brownian motion is always at or below level m for ¢ < 7,,, and so

0<exp{oW({tATRm)} <e’™. (3.6.5)

If 7m < 00, the term exp {—20%(t A7) } is equal to exp {— 3027, } for large
enough ¢. On the other hand, if 7,,, = 0o, then the term exp {——a (tA Tm)}
is equal to exp {—-ozt} and as t — oo, this converges to zero. We capture
these two cases by writing

, 1, 1,
tllgloexp{—§o (t/\Tm)} = I{r, <0} exp{—ga Tm},

where the notation I, <} is used to indicate the random variable that takes
the value 1 if 7, < oo and otherwise takes the value zero. If 7,,, < oo, then
exp{oW(t A Tm)} = exp{oW (7m)} = €™ when t becomes large enough. If
'm = 00, then we do not know what happens to exp{oW (t A 7,,)} as t — oo,
but we at least know that this term is bounded because of (3.6.5). That is
enough to ensure that the product of exp{oW (t A 7,,)} and exp {—3c 2}
has limit zero in this case. In conclusion, we have

. 1, 1,
tllfﬁlo exp {o’W(t ATm) — 3¢ (tA Tm)} = I{r,, <00} €XP {om - 50 Tm} .
We can now take the limit in (3.6.4)3 to obtain

1=E []I{,.m<°o} exp {am - %az'rm}]

or, equivalently,

3 The interchange of limit and expectation implicit in this step is justified by the
Dominated Convergence Theorem, Theorem 1.4.9.



3.7 Reflection Principle 111

1
E [n{,m<oo} exp {—Eaz‘rm}] =e ™, (3.6.6)

Equation (3.6.6) holds when m and o are positive. We may not substitute
o = 0 into this equation, but since it holds for every positive o, we may take
the limit on both sides as ¢ | 0. This yields* E [I[{,.m<°°}] =1 or, equivalently,

P{rm < 0o} = 1. (3.6.7)

Because T, is finite with probability one (we say 7, is finite almost surely),
we may drop the indicator of this event in (3.6.6) to obtain

E [exp {—%0’27}"}] =e ™, (3.6.8)

We have done the hard work in the proof of the following theorem.
Theorem 3.6.2. For m € R, the first passage time of Brownian motion to
level m is finite almost surely, and the Laplace transform of its distribution is
given by

Eeo™m = ¢~ ImlIV2e for alla > 0. (3.6.9)
PROOF: We consider first the case when m is positive. Let a be a positive
constant, and set 6 = v/2a, so that 202 = a. Then (3.6.8) becomes (3.6.9). If
m is negative, then because Brownian motion is symmetric, the first passage
times 7, and 7, have the same distribution. Equation (3.6.9) for negative
m follows. O

Remark 3.6.3. Differentiation of (3.6.9) with respect to a results in
Im|
V2a
Letting o | 0, we obtain [E7,,, = oo so long as m # 0.

]E[Tme_"‘r"‘] = e~ ImIV2a for ol o > 0.

3.7 Reflection Principle
3.7.1 Reflection Equality

In this section, we repeat for Brownian motion the reflection principle argu-
ment of Section 5.3 of Volume I for the random walk. The reader may wish
to review that section before reading this one.

We fix a positive level m and a positive time ¢t. We wish to “count” the
Brownian motion paths that reach level m at or before time ¢ (i.e., those paths
for which the first passage time 7,,, to level m is less than or equal to t). There
are two types of such paths: those that reach level m prior to ¢ but at time ¢
are at some level w below m, and those that exceed level m at time t. There
are also Brownian motion paths that are exactly at level m at time ¢, but
unlike the case of the random walk in Section 5.3 of Volume I, the probability
of this for Brownian motion is zero. We may thus iznore this possibility.

4 Here we use the Monotone Convergence Theorem, Theorem 1.4.5.
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Fig. 3.7.1. Brownian path and reflected path.

As Figure 3.7.1 illustrates, for each Brownian motion path that reaches
level m prior to time ¢ but is at a level w below m at time ¢, there is a
“reflected path” that is at level 2m — w at time t. This reflected path is
constructed by switching the up and down moves of the Brownian motion
from time 7, onward. Of course, the probability that a Brownian motion
path ends at exactly w or at exactly 2m — w is zero. In order to have nonzero
probabilities, we consider the paths that reach level m prior to time ¢ and are
at or below level w at time ¢, and we consider their reflections, which are at
or above 2m — w at time ¢t. This leads to the key reflection equality

P{rm <t,W(t) <w}=P{W({Et)>2m-w}, w<m,m>0  (3.7.1)

3.7.2 First Passage Time Distribution

We draw two conclusions from (3.7.1). The first is the distribution for the
random variable 7,,.

Theorem 3.7.1. For all m # 0, the random variable 1, has cumulative dis-
tribution function
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2 [ _2
P{r, <t} = E /IﬂL e~ zdy, t>0, (3.7.2)
Vi

and density

fo (t) = LP{rn <t} = Iml_-22 ;5o (3.7.3)
Tm _dt m = t‘/ﬁ ) = U. o

PROOF: We first consider the case m > 0. We substitute w = m into the
reflection formula (3.7.1) to obtain

P{rm, <t,W(t) <m} =P{W(t) > m}.

On the other hand, if W(t) > m, then we are guaranteed that 7, < ¢. In
other words,

P{rm <t,W(t) > m} = P{W(t) 2 m}.
Adding these two equations, we obtain the cumulative distribution function
for ,:

P{rm <t} =P{rm <t,W(t) < m} +P{r, <1t W(t) > m}

=2P{W(t) > m} = e % dz.

vl

We make the change of variable y = % in the integral, and this leads to

(3.7.2) when m is positive. If m is negative, then 7, and 7),,| have the same
distribution, and (3.7.2) provides the cumulative distribution function of the
latter. Finally, (3.7.3) is obtained by differentiating (3.7.2) with respect to ¢.

Remark 8.7.2. From (3.7.3), we see that

o0 oo
_ _ M| _am-=?
Ee ™ = e *mf, tdt=/ ———e ™ dtforalla>0
| et [T .

Theorem 3.6.2 provides the apparently different Laplace transform formula
(3.6.9). These two formulas are in fact the same, and the steps needed to
verify this are provided in Exercise 3.9. O

3.7.3 Distribution of Brownian Motion and Its Maximum

We define the mazimum to date for Brownian motion to be

M(t) = max W(s). (3.7.5)

0<s<t

This stochastic process is used in pricing barrier options. For the value of ¢ in
Figure 3.7.1, the random variable M(t) is indicated. For positive m, we have
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M(t) > m if and only if 7, < t. This observation permits us to rewrite the

reflection equality (3.7.1) as

P{M(t) >m,W(t) <w}=P{W(t) >2m—-w}, w<m,m>0.

From this, we can obtain the joint distribution of W (t) and M(t).
Theorem 3.7.3. For t > 0, the joint density of (M(t), W (t)) is

2(2m — w) _(@m-w)?
m,w) = ———e =, w<m,m>0.
fM(t),W(t)( ) t\/ﬁ

PROOF: Because
{o o] w
P{M(t) > m, W(t) < w} = / / Fatcowie (@) dy do
m -0

and

1 ot z
P{W(t) > 2m —w} = \/2?/2 e F dz,

we have from (3.7.6) that

o0 w 1 {o o] ‘2
fm), z,y)dydz = / e % dz.
/1; /_oo M), w() (T, Y) 3 Jom

We differentiate first with respect to m to obtain

/ X (m,y) dy = — e~ R
- M)W\ Yy)ay = \/2_71't .

We next differentiate with respect to w to see that

~f (m,w) = _—2(2m —w) e 5" -
M(t),W(t) ) t\/% .

This is (3.7.7).

(3.7.6)

(3.7.7)

O

When simulating Brownian motion to price exotic options, it is often con-
venient to first simulate the value of the Brownian motion at some time 7" > 0
and then simulate the maximum of the Brownian motion between times 0 and
t. This second step requires that we know the distribution of the maximum
of the Brownian motion M (t) on [0, t] conditioned on the value of W (t). This

conditional distribution is provided by the following corollary.

Corollary 3.7.4. The conditional distribution of M(t) given W(t) =

2(2m — w) _2m(m-w)
fM(t)IW(t)(m|'w) = %6 t , w<m,m>0.

w 8
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PROOF: The conditional density is the joint density divided by the marginal
density of the conditioning random variable. The conditional density we seek
here is

Fmeey,we (m, w)
fwzy (w)
2(2m — w) o _em-w)? 2
=’ .\2rte 2t +5¢
tv2nt i
_2(2m - w) TG
=== .

@ w e (mw) =

3.8 Summary

Brownian motion is a continuous stochastic process W (t), ¢t > 0, that has
independent, normally distributed increments. In this text, we adopt the con-
vention that Brownian motion starts at zero at time zero, although one could
add a constant a to our Brownian motion and obtain a “Brownian motion
starting at a”. For either Brownian motion starting at 0 or Brownian motion
starting at a, if 0 =9 < t; < --+ < t;,, then the increments

Wit) = Wito), Wlt2) =W(ts),..., Wltm) = W (tm-)
are independent and normally distributed with
]E[W(t,;+1) - W(t,)] = 0, Var[W(tiH) - W(t,)] = t¢+1 — ti.

This is Definition 3.3.1. Associated with Brownian motion there is a filtration
F(t), t > 0, such that for each ¢t > 0 and u > ¢, W(t) is F(t)-measurable and
W (u) — W(t) is independent of F(t).

Brownian motion is both a martingale and a Markov process. Its transition
density is

1 _w=e?
p(T,x7y) = —F—=F¢€ 2r *
2rT
This is the density in the variable y for the random variable W (s + 7) given
that W(s) = z.

A profound property of Brownian motion is that it accumulates quadratic
variation at rate one per unit time (Theorem 3.4.3). If we choose a time
interval [T, T3], choose partition points 71 = tg < t; < -+ < ty = T,
and compute Z;":_Ol (W(tjs) — W(tj))z, we get an answer that depends
on the path along which the computation is done. However, if we let the
number of partition points approach infinity and the length of the longest
subinterval ¢, —t; approach zero, this quantity has limit T — T, the length
of the interval over which the quadratic variation is being computed. We
write dW (¢) dW (t) = dt to symbolize the fact that the amount of quadratic
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variation Brownian motion accumulates in an interval is equal to the length
of the interval, regardless of the path along which we do the computation.

If we compute Z;":—Ol (W(tjs1) — W(t;))(tj41 — t;) or Z;-":—ll(tjﬂ —t;)?
and pass to the limit, we get zero (Remark 3.4.5). We symbolize this by writing
dW(t)dt =dtdt = 0.

The first passage time of Brownian motion,

Tm = min{t > 0; W(t) = m},

is the first time the Brownian motion reaches the level m. For m # 0, we
have P{7, < oo} = 1 (equation (3.6.7)) (i.e., the Brownian motion eventually
reaches every nonzero level), but Er,, = oo (Remark 3.6.3). The random
variable 7,,, is a stopping time, has density (Theorem 3.7.1)

_ _Iml
f.,.m(t)— t\/%,

and this density has Laplace transform (Theorem 3.6.2; see also Exercise 3.9)

Ee @™ — ¢~ImIV2a for all o > 0.

The reflection principle used to determine the density f,, (t) can also be
used to determine the joint density of W (t) and its maximum to date M (t) =
maxo<s<t W(s). This joint density is (Theorem 3.7.3)

2(2m — w) JCL T

m,w) = 2z, w<<m, m>0.
Fmee),wey(m, w) ot

3.9 Notes

In 1828, Robert Brown observed irregular movement of pollen suspended in
water. This motion is now known to be caused by the buffeting of the pollen
by water molecules, as explained by Einstein [62]. Bachelier [6] used Brown-
ian motion (not geometric Brownian motion) as a model of stock prices, even
though Brownian motion can take negative values. Lévy [107], [108] discovered
many of the nonintuitive properties of Brownian motion. The first mathemat-
ically rigorous construction of Brownian motion is credited to Wiener [159],
[160], and Brownian motion is sometimes called the Wiener process.

Brownian motion and its properties are presented in numerous texts, in-
cluding Billingsley [10]. The development in these notes is a summary of that
found in Karatzas and Shreve [101]. The properties of Brownian motion and
many formulas useful for pricing exotic options are developed in Borodin and
Salminen [18].

Convergence of discrete-time and/or discrete-state models to continuous-
time models, a topic touched upon in Section 3.2.7, is treated by Amin and
Khanna [3], Cox, Ross and Rubinstein [42], Duffie and Protter [60], and Will-
inger and Taqqu [162], among others.
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3.10 Exercises

Exercise 3.1. According to Definition 3.3.3(iii), for 0 < ¢t < u, the Brownian
motion increment W (u) — W (t) is independent of the o-algebra F(t). Use this
property and property (i) of that definition to show that, for 0 <t < u; < ug,
the increment W (uz) — W(u,) is also independent of F(t).

Exercise 3.2. Let W (t), t > 0, be a Brownian motion, and let F(t), ¢t > 0,
be a filtration for this Brownian motion. Show that W?2(t) —t is a martingale.
(Hint: For 0 < s < t, write W2(t) as (W (t) — W(s))? + 2W (t)W (s) — W2(s).)

Exercise 3.3 (Normal kurtosis). The kurtosis of a random variable is de-
fined to be the ratio of its fourth central moment to the square of its variance.
For a normal random variable, the kurtosis is 3. This fact was used to obtain
(3.4.7). This exercise verifies this fact.

Let X be a normal random variable with mean u, so that X — p has
mean zero. Let the variance of X, which is also the variance of X — u, be
o2. In (3.2.13), we computed the moment-generating function of X — u to be
po(u) = Ee*(X-#) = e2v’* where u is a real variable. Differentiating this
function with respect to u, we obtain

@) =E[(X — wetX~0] = guete™s’

and, in particular, ¢'(0) = E(X — u) = 0. Differentiating again, we obtain

2

#'u) =E [(X B ”)2eu(X—u)] = (0% + o'u?) e3o’u

and, in particular, ¢”(0) = E [(X — p)?] = o2. Differentiate two more times
and obtain the normal kurtosis formula E [(X — p)*] = 30%.

Exercise 3.4 (Other variations of Brownian motion). Theorem 3.4.3
asserts that if T is a positive number and we choose a partition IT with points
0=ty <t; <ty <---<t, =T, then as the number n of partition points
approaches infinity and the length of the longest subinterval ||II|| approaches
zero, the sample quadratic variation

n—1

> (W(tj) - w(t;))”

7=0

approaches T for almost every path of the Brownian motion W. In Re-
mark 3.4.5, we further showed that Z;—:Ol (W(tjs1) — W(t;))(tj+1 — t;) and

;-:01 (tj+1 — tj)? have limit zero. We summarize these facts by the multipli-

cation rules

dW(t)dW(t) =dt, dW(t)dt=0, dtdt=0. (3.10.1)



118 3 Brownian Motion

(i) Show that as the number m of partition points approaches infinity and
the length of the longest subinterval approaches zero, the sample first
variation

n—1
D |Wtin) - W(t;)|
=0

approaches oo for almost every path of the Brownian motion W. (Hint:

z_: (W(tin) — W(t5))?
i=0
< max |W(ten) = W] - 3 [Witsn) - W)
sks =0

(ii) Show that as the number n of partition points approaches infinity and
the length of the longest subinterval approaches zero, the sample cubic
variation

n—1
3 Witser) - w(t)|°

7=0

approaches zero for almost every path of the Brownian motion W.

Exercise 3.5 (Black-Scholes-Merton formula). Let the interest rate r
and the volatility o > 0 be constant. Let

5(t) = S(0)elr= oMW
be a geometric Brownian motion with mean rate of return r, where the initial
stock price S(0) is positive. Let K be a positive constant. Show that, for
T >0,

E [ (S() - K)*] = SON(d4(T,50))) - ke TN (d_(T. S(0),

where S(O) 9
1 o
T,5(0 + ( + —) T] ,
4s(7,5(0) = —= log 5+ (r£ 5
and N is the cumulative standard normal distribution function
W=k [ e L [T
= — 2
y 2w 21 J -y

Exercise 3.6. Let W(¢) be a Brownian motion and let F(¢), ¢ > 0, be an
associated filtration.
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(i) For p € R, consider the Brownian motion with drift pu:
X(t) = ut + W(t).

Show that for any Borel-measurable function f(y), and for any 0 < s < ¢,
the function

) {_w—z-pt—s)?
g(x)_—W/ e e e S

satisfies E[f (X (¢))|F(s)] = g(X(s)), and hence X has the Markov prop-
erty. We may rewrite g(z) as g(z) = [°o f(y)p(7,,y) dy, where T =t —s

and . ( 2
- oz R
p(1,2,y) = —o==exp { o7 }

is the transition density for Brownian motion with drift p.
(ii) For v € R and o > 0, consider the geometric Brownian motion

S(t) = S(0)e”W B+t

Set =1t — s and

( ) 1 (log & — I/T)2

T,L,Yy) = ————expy ———=—" 3.

P y oyV22nT P 2027

Show that for any Borel-measurable function f(y) and for any 0 < s <t
the function g(z) = f0°° h(y)p(T,z,y) dy satisfies E[f(S(t)) | F (s)]
g(.S'(s)) and hence S has the Markov property and p(7,z,y) is its transi-
tion density.

Exercise 3.7. Theorem 3.6.2 provides the Laplace transform of the density
of the first passage time for Brownian motion. This problem derives the anal-
ogous formula for Brownian motions with drift. Let W be a Brownian motion.
Fix m > 0 and p € R. For 0 < t < 00, define

X(t) = ut + W(t),
Tm = min{t > 0; X (t) = m}.

As usual, we set 7, = oo if X (t) never reaches the level m. Let o be a positive
number and set

Z(t) = exp {aX(t) - (au + %a’*’) t} .

(i) Show that Z(t), t > 0, is a martingale.
(ii) Use (i) to conclude that

E [exp {aX(t ATm) — (au + %ai’) (tA rm)}] =1, t>0.
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(iii) Now suppose p > 0. Show that, for o > 0,

E [exp {am - (au + _;_0_2) Tm} ]I{Tm<°°}] =1.

Use this fact to show P{r,, < oo} = 1 and to obtain the Laplace transform
Ee~™m = ¢™#~mV2et4% for a]l o > 0.

(iv) Show that if u > 0, then E7,, < oo. Obtain a formula for E7,,. (Hint:
Differentiate the formula in (iii) with respect to a.)
(v) Now suppose u < 0. Show that, for ¢ > —2u,

E [exp {am - (au + %02> Tm} ]I{,.m<oo}] =1.

Use this fact to show that P{7, < oo} = e~22Il_ which is strictly less
than one, and to obtain the Laplace transform

Ee~@™m = e™A~mV 20442 g1 a]] o > 0.

Exercise 3.8. This problem presents the convergence of the distribution of
stock prices in a sequence of binomial models to the distribution of geometric
Brownian motion. In contrast to the analysis of Subsection 3.2.7, here we
allow the interest rate to be different from zero.

Let 0 > 0 and r > 0 be given. For each positive integer n, we consider
a binomial model taking n steps per unit time. In this model, the interest
rate per period is -, the up factor is u, = e?/V™_ and the down factor is

d,, = e~9/V"_ The risk-neutral probabilities are then

_£+1—e“’/‘/'_‘ . e?/Vr 1

Pn= oTvm el 0= T el

Let ¢ be an arbitrary positive rational number, and for each positive integer
n for which nt is an integer, define

nt
Mn.t,n. = ZXk,n,
k=1
where X n,...,Xnn are independent, identically distributed random vari-
ables with
P{Xkn =1} =, P{Xin=—-1}=Gn, k=1,...,n.

The stock price at time ¢ in this binomial model, which is the result of ni
steps from the initial time, is given by (see (3.2.15) for a similar equation)
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S = 3 (nt+M, 1
1 (t) S(O)ufl("t n!,n)d'zl(nt Ma:q)

= S(0) exp { ﬁ(nt + M,.T_,,)} exp {—ﬁ(nt - Mnt,n)}

ag

= 5(0) exp { \/ﬁMm,n} .

This problem shows that as n — oo, the distribution of the sequence of random

variables % nt,n appearing in the exponent above converges to the normal

distribution with mean (r — 10?)t and variance o®t. Therefore, the limiting
distribution of Sy (t) is the same as the distribution of the geometric Brownian
motion S(0) exp {oW (t) + (r — 10)t} at time ¢.

(i) Show that the moment-generating function ¢, (u) of ﬁMnt,n is given by

o L — e 9/Vn . [T _o/va \ 1™
on(u) = e atl-e™Vh) -~ (atl-e’V" )
oIV — g=olVn oIV — g=alVn
(ii) We want to compute
dim on(u) =lime .y, (u),

where we have made the change of variable z = =. To do this, we will
compute log ¢ (u) and then take the limit as z | 0. Show that

S

(rz? + 1) sinh uz + sinh(o — u)x]

i
log P (u) = 2 log [ sinh oz

(the definitions are sinh z = €52 coshz = £££"), and use the formula

sinh(A — B) = sinh A cosh B — cosh Asinh B

to rewrite this as

(rz? + 1 — cosh oz) sinh uz
sinhox '

t
lo u) = —1 hw
gcpﬁ( ) -2 log [cos z +
(iii) Use the Taylor series expansions

1
coshz =1+ §z2 + O(z%), sinhz = z 4+ O(2%),
to show that

(rz? + 1 — coshoz) sinh uz
sinh oz

cosh uxr +

1 2
=14 §u2:1;2 + TUT:L‘ — §u:c20 + 0(1'4) (3102)

The notation O(z?) is used to represent terms of the order 7.
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(iv) Use the Taylor series expansion log(l + z) = z + O(z?) to compute
limg o log ¢ 2 (u). Now explain how you know that the limiting distri-
bution for %=Mns,n is normal with mean (r — 30?)t and variance ot.

Exercise 3.9 (Laplace transform of first passage density). The so-

lution to this problem is long and technical. It is included for the sake of

completeness, but the reader may safely skip it.
Let m > 0 be given, and define

m m2
f(t,m) = mexp {—E} .

According to (3.7.3) in Theorem 3.7.1, f(t,m) is the density in the variable ¢
of the first passage time 7, = min{t > 0; W (t) = m}, where W is a Brownian
motion without drift. Let

{0 o)
g(a,m) =/ e~ f(t,m)dt, a>0,
0

be the Laplace transform of the density f(t,m). This problem verifies that
g(a,m) = e~™V2e which is the formula derived in Theorem 3.6.2.

(i) For k > 1, define

so g(a, m) = maz(m). Show that

9m(a,m) = az(m) — m?as(m),
gmm(a, m) = —3mas(m) + m3az(m).
(ii) Use integration by parts to show that
2

az(m) + m?a-,(m).

_2a

as(m) = 3

(iii) Use (i) and (ii) to show that g satisfies the second-order ordinary differ-

ential equation

gmm(a, m) = 2ag(a, m).

(iv) The general solution to a second-order ordinary differential equation of

the form

ay”(m) + by'(m) + cy(m) = 0
is
y(m) = A eM™ + Age™™,

where \; and )2 are roots of the characteristic equation
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aX? +bA+c=0.

Here we are assuming that these roots are distinct. Find the general so-
lution of the equation in (iii) when & > 0. This solution has two undeter-
mined parameters A; and As, and these may depend on a.

(v) Derive the bound

m [™ [m m?2 1 o
a,m) < — ‘/—t_s/zex {——} dt+—/ et dt
9 )< \/27r/0 t P 2t Vorm Jm

and use it to show that, for every a > 0,
Jim g(a,m) =0.

Use this fact to determine one of the parameters in the general solution
to the equation in (iii).
(vi) Using first the change of variable s = t/m? and then the change of variable
y = 1/4/s, show that
lim g(a,m) = 1.
m|0

Use this fact to determine the other parameter in the general solution to
the equation in (iii).
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4

Stochastic Calculus

4.1 Introduction

This chapter defines It6 integrals and develops their properties. These are
used to model the value of a portfolio that results from trading assets in
continuous time. The calculus used to manipulate these integrals is based
on the It6-Doeblin formula of Section 4.4 and differs from ordinary calcu-
lus. This difference can be traced to the fact that Brownian motion has a
nonzero quadratic variation and is the source of the volatility term in the
Black-Scholes-Merton partial differential equation. The Black-Scholes-Merton
equation is presented in Section 4.5. This is in the spirit of Sections 1.1 and
1.2 of Volume I in which we priced options by determining the portfolio that
would hedge a short position. In particular, there is no discussion of risk-
neutral pricing in this chapter. That topic is taken up in Chapter 5.

Section 4.6 extends stochastic calculus to multiple processes. Section 4.7
discusses the Brownian bridge, which plays a useful role in Monte Carlo meth-
ods for pricing. We do not treat Monte Carlo methods in this text; we include
the Brownian bridge only because it is a natural application of the stochastic
calculus developed in the earlier sections.

4.2 Ito’s Integral for Simple Integrands

We fix a positive number T and seek to make sense of

/ " A aw(t). (4.2.1)

The basic ingredients here are a Brownian motion W (¢), t > 0, together with
a filtration F(t), t > 0, for this Brownian motion. We will let the integrand
A(t) be an adapted stochastic process. Our reason for doing this is that A(t)
will eventually be the position we take in an asset at time t, and this typically
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depends on the price path of the asset up to time ¢. Anything that depends on
the path of a random process is itself random. Requiring A(t) to be adapted
means that we require A(t) to be F(t)-measurable for each ¢ > 0. In other
words, the information available at time t is sufficient to evaluate A(t) at
that time. When we are standing at time 0 and ¢ is strictly positive, A(t)
is unknown to us. It is a random variable. When we get to time ¢, we have
sufficient information to evaluate A(t); its randomness has been resolved.

Recall that increments of the Brownian motion after time ¢ are indepen-
dent of F(t), and since A(t) is F(t)-measurable, it must also be independent
of these future Brownian increments. Positions we take in assets may depend
on the price history of those assets, but they must be independent of the
future increments of the Brownian motion that drives those prices.

The problem we face when trying to assign meaning to the Itd integral
(4.2.1) is that Brownian motion paths cannot be differentiated with respect
to time. If g(¢) is a differentiable function, then we can define

T T
| awde0 - [ awgoa
0 0

where the right-hand side is an ordinary (Lebesgue) integral with respect to
time. This will not work for Brownian motion.

4.2.1 Construction of the Integral

To define the integral (4.2.1), It6 devised the following way around the nondif-
ferentiability of the Brownian paths. We first define the It6 integral for simple
integrands A(t) and then extend it to nonsimple integrands as a limit of the
integral of simple integrands. We describe this procedure.

Let IT = {to,t1,...,tn} be a partition of [0, T]; i.e.,

O0=to<t1 <---<tp=T.

Assume that A(t) is constant in ¢ on each subinterval [¢;,t;4+1). Such a process
A(t) is a simple process.

Figure 4.2.1 shows a single path of a simple process A(t). We shall always
choose these simple processes, as shown in this figure, to take a value at a
partition time ¢; and then hold it up to but not including the next partition
time t;,;. Although it is not apparent from Figure 4.2.1, the path shown
depends on the same w on which the path of the Brownian motion W (¢) (not
shown) depends. If one were to choose a different w, there would be a different
path of the Brownian motion and possibly a different path of A(t). However,
the value of A(t) can depend only on the information available at time t.
Since there is no information at time 0, the value of A(0) must be the same
for all paths, and hence the first piece of A(t), for 0 < t < t;, does not really
depend on w. The value of A(t) on the second interval, [t1,t2), can depend on
observations made during the first time interval [0, ¢;).
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Fig. 4.2.1. A path of a simple process.

We shall think of the interplay between the simple process A(t) and the
Brownian motion W (t) in (4.2.1) in the following way. Regard W (t) as the
price per share of an asset at time ¢. (Since Brownian motion can take negative
as well as positive values, it is not a good model of the price of a limited-
liability asset such as a stock. For the sake of this illustration, we ignore that
issue.) Think of tg,t1,...,tn—1 as the trading dates in the asset, and think
of A(to), A(t1), .. (tn 1) as the position (number of shares) taken in the
asset at each tradmg date and held to the next trading date. The gain from
trading at each time ¢t is given by

I(t) = A(to)[W(t) - W(to)] = AQW(t), 0<t<t,
I(t) = AO)W(t1) + At)[W(t) —W(t1)], t1<t<t,
I(t) = AQ)W (t1) + A(t1)[W (t2) — W (t1)] + A(t2)[W (t) — W (t2)],

to <t <3,

and so on. In general, if tx <t < tx41, then

k—1

Iit) =Y AW (i) - W) + AW (E) - Wt (422)
j=0

The process I(t) in (4.2.2) is the It6 integral of the simple process A(t), a fact
that we write as
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I(t) = /O Alu) dW (u).

In particular, we can take t = t, = T, and (4.2.2) provides a definition for
the It6 integral (4.2.1). We have managed to define this integral not only for
the upper limit of integration T but also for every upper limit of integration
t between 0 and T

4.2.2 Properties of the Integral

The It6 integral (4.2.2) is defined as the gain from trading in the martingale
W (t). A martingale has no tendency to rise or fall, and hence it is to be
expected that I(t), thought of as a process in its upper limit of integration ¢,
also has no tendency to rise or fall. We formalize this observation by the next
theorem and proof.

Theorem 4.2.1. The Ité integral defined by (4.2.2) is a martingale.

PROOF: Let 0 < s <t < T be given. We shall assume that s and ¢ are in
different subintervals of the partition IT (i.e., there are partition points ¢, and
tr such that t, < tk, s € [te,te+1), and t € [tk,tk+1)). If s and ¢t are in the same
subinterval, the following proof simplifies. Equation (4.2.2) may be rewritten
as

-1
I(t) = Z At) [W(tj41) — W(t5)] + Alte) [W (tes1) — W (te)]
=0
k—1
+ Y AW [W(tje1) — W(E)] + Alte) [W (1) — W(t)]. (4.2.3)
j=t+1

We must show that E[I(t)|F(s)] = I(s). We take the conditional expecta-
tion of each of the four terms on the right-hand side of (4.2.3). Every random

variable in the first sum E;;(l) A(t]-)[W(t]-H) — W(t;)] is F(s)-measurable
because the latest time appearing in this sum is t¢; and ¢, < s. Therefore,

-1
E A(t;) [W (t41) — W(25)]
=0

-1 i
7(8)] =) A [Wti41) — W(E5)]-
j=0
(4.2.4)
For the second term on the right-hand side of (4.2.3), we “take out what is
known” (Theorem 2.3.2(ii)) and use the martingale property of W to write

E[A(te) (W (tes1) — W(te)) | F(s)] = A(te) (E[W (te41)|F(s)] — W (te))
= A(te) (W (s) — W(te))- (4.2.5)

Adding (4.2.4) and (4.2.5), we obtain I(s).
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It remains to show that the conditional expectations of the third and
fourth terms on the right-hand side of (4.2.3) are zero. We will then have
E[I(t)|F(s)] = I(s).

The summands in the third term are of the form A(t;) [W (t;41) — W(t;)],
where t; > tg;1 > s. This permits us to use the following iterated conditioning
trick, which is based on properties (iii) (iterated conditioning) and (ii) (taking
out what is known) of Theorem 2.3.2:

E{ A(t;) (W (tj41) - W(t,-))|f(s)}
= ]E{]E[A(t_,-)(W(tj+1) - W(t;))|F(t;)] |}'(8)}
= E{ A) (E[W (t541)| F(t5)] - W(t1) | F(5)}
= E{A(t)(W(t) - W(t)|[F)} = 0.

At the end, we have used the fact that W is a martingale. Because the condi-
tional expectation of each of the summands in the third term on the right-hand
side of (4.2.3) is zero, the conditional expectation of the whole term is zero:

.7-'(3)} =0.

The fourth term on the right-hand side of (4.2.3) is treated like the summands
in the third term, with the result that

k-1
E{ Z At;) [W(tj41) — W(t;)]

E{ At) (W () - W (t)) | F() }
= ]E{]E[A(tk)(W(t) — W (te)) | F ()] |.7~'(s)}
= ]E{A(tk)(]E[W(t)|}'(tk)] — W (t)) ‘.7:(3)}
= ]E{A(tk)(W(tk) - W(tk))‘}'(s)} = 0.
This concludes the proof. O

Because I(t) is a martingale and I(0) = 0, we have EI(t) =0 for all ¢t > 0.
It follows that VarI(t) = EI?(t), a quantity that can be evaluated by the
formula in the next theorem.

Theorem 4.2.2 (Itb isometry). The Ité integral defined by (4.2.2) satisfies

EI*(t)=E / t A%(u) du. (4.2.6)
0
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PROOF: To simplify the notation, we set D; = W(t;41) — W(t;) for j =
0,...,k—1and Dy = W(t) — W(t) so that (4.2.2) may be written as I(t) =
>¥-0 A(t;)D; and

k
P(t)=Y"A%t;)Di+2 Y. A(t:)A(t;)DiD;.
j=0 0<i<j<k
We first show that the expected value of each of the cross terms is zero. For i <

7, the random variable A(t;)A(t;)D; is F(t;)-measurable, while the Brownian
increment D; is independent of F(t;). Furthermore, ED; = 0. Therefore,

]E[A A(t VD;D; ] [A(t,)A(tJ)Dl] . ]EDJ' = ]E[A(ti)A(tj)Di] -0=0.

We next consider the square terms A%(t;) D2. The random variable A%(t;) is
F(t;)-measurable, and the squared Brownian increment D]2- is independent of
F(t;). Furthermore, ED? = t;41 —t; for j =0,...,k — 1 and ED} =t — t.
Therefore,

k
EI*(t) = Y E[A%(t;)D}] = Z]EA"’ ) - ED?
j_
= Z]EA (tj+1 — t5) + EA(te)(t — ti). (4.2.7)
But A(t;) is constant on the interval [t;,¢;4+1), and hence A%(t;)(tj41—t;) =

f;’“ A?(u) du. Similarly, A%(t)(t—tx) = fttk A?(u) du. We may thus continue
(4.2.7) to obtain

k-1 ty+1 t
EI%(t) = Z A%(uw)du+E [ A%(u)du
j=0 te
ti+1
=E A%(u) du + 42 (w)du| = / A%(u) du. O
0 t

Finally, we turn to the quadratic variation of the Itd integral I(t) thought
of as a process in its upper limit of integration ¢. Brownian motion accumulates
quadratic variation at rate one per unit time. However, Brownian motion is
scaled in a time- and path-dependent way by the integrand A(u) as it enters
the Ito integral I(t) = fot A(u) dB(u). Because increments are squared in
the computation of quadratic variation, the quadratic variation of Brownian
motion will be scaled by A%(u) as it enters the Itd integral. The following
theorem gives the precise statement.
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Theorem 4.2.3. The quadratic variation accumulated up to time t by the Ité
integral (4.2.2) is

[I,I](t) = /0 t A%(u) du. (4.2.8)

PROOF: We first compute the quadratic variation accumulated by the It6
integral on one of the subintervals [t;,t;+1] on which A(u) is constant. For
this, we choose partition points

tj =80 <81 <-<8m=tjp

and consider

Z [I(s:41) — I(s:)]* Z [At) (W (si41) - W(s:)]*

i=0 =0

= Az(tj) 2_: (W(SH.]) - W(Si))2. (429)

=0

As m — oo and the step size max;—o,... m—1(si+1 — s;) approaches zero, the
term Yot (W(siz1) — W(s,-))2 converges to the quadratic variation accu-
mulated by Brownian motion between times ¢; and t;1, which is ¢;,; —¢;.
Therefore, the limit of (4.2.9), which is the quadratic variation accumulated
by the It6 integral between times ¢; and ¢, is

2 bt
A%(t5) (b1 — t5) = A*(u) du,

tj

where again we have used the fact that A(u) is constant for t; < u < tj41.
Analogously, the quadratlc variation accumulated by the It mtegral between
times tx and t is ft A?%(u) du. Adding up all these pieces, we obtain (4.2.8).
|

In Theorems 4.2.2 and 4.2.3, we finally see how the quadratic variation
and the variance of a process can differ. The quadratic variation is computed
path-by-path, and the result can depend on the path. If along one path of the
Brownian motion we choose large positions A(u), the Itd integral will have
a large quadratic variation. Along a different path, we could choose small
positions A(u) and the It6 integral would have a small quadratic variation.
The quadratic variation can be regarded as a measure of risk, and it depends
on the size of the positions we take. The variance of I(t) is an average over
all possible paths of the quadratic variation. Because it is the expectation of
something, it cannot be random. As an average over all possible paths, real-
ized and unrealized, it is a more theoretical concept than quadratic variation.
We emphasize here that what we are calling variance is not the empirical vari-
ance. Empirical (or sample) variance is computed from a realized path and
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is an estimator of the theoretical variance we are discussing. The empirical
variance is sometimes carelessly called variance, which creates the possibility
of confusion.

Finally, we recall the equation (3.4.10), dW(t)dW (t) = dt, of Remark
3.4.4. We interpret this equation as the statement that Brownian motion ac-
cumulates quadratic variation at rate one per unit time. It is another way of
writing [W, W]|(t) = t, t > 0. The It6 integral formula I(t) = f(:' A(u) dW (u)
can be written in differential form as dI(t) = A(t) dW (t), and we can then
use (3.4.10) to square dI(t):

dI(t) dI(t) = A%(t) dW (t) dW (t) = A2(t) dt. (4.2.10)

This equation says that the It6 integral I(t) accumulates quadratic variation
at rate A%(t) per unit time. The rate of accumulation is typically both time-
and path-dependent. Equation (4.2.10) is another way of reporting the result
of Theorem 4.2.3.

Remark 4.2.4 (on notation). The notations

I(t) = /0 Alw) dW (u) (4.2.11)

and
dI(t) = A(t) dW(2) (4.2.12)

mean almost the same thing, although the second is probably more intuitive.
Equation (4.2.11) has the precise meaning given by (4.2.2). Equation (4.2.12)
has the imprecise meaning that when we move forward a little bit in time
from time ¢, the change in the It6 integral I is A(t) times the change in the
Brownian motion W. It also has a precise meaning, which one obtains by
integrating both sides, remembering to put in a constant of integration I(0):

I(t) = 100) + /0 * Aw) dW (). (4.2.13)

We say that (4.2.12) is the differential form of (4.2.13) and that (4.2.13) is the
integral form of (4.2.12). These two equations mean exactly the same thing.
The only difference between (4.2.11) and (4.2.13), and hence the only dif-
ference between (4.2.11) and (4.2.12), is that (4.2.11) specifies the initial con-
dition I(0) = 0, whereas (4.2.12) and (4.2.13) permit 7(0) to be any arbitrary
constant. O

4.3 Itd’s Integral for General Integrands
In this section, we define the It6 integral fOT A(t) dW(t) for integrands A(t)

that are allowed to vary continuously with time and also to jump. In partic-
ular, we no longer assume that A(t) is a simple process as shown in Figure
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4.2.1. We do assume that A(t), t > 0, is adapted to the filtration F(¢), t > 0.
We also assume the square-integrability condition

E/OT A%(t) dt < oo. (4.3.1)

In order to define foT A(t) dW (t), we approximate A(t) by simple pro-
cesses. Figure 4.3.1 suggests how this can be done. In that figure, the continu-
ously varying A(t) is shown as a solid line and the approximating simple inte-
grand is dashed. Notice that A(t) is allowed to jump. The approximating sim-
ple integrand is constructed by choosing a partition 0 =ty < t; < t2 < t3 < 14,
setting the approximating simple process equal to A(t;) at each t;, and then
holding the simple process constant over the subinterval [t;,t;.1). As the max-
imal step size of the partition approaches zero, the approximating integrand
will become a better and better approximation of the continuously varying
one.

A(t)

T lL®

t

Fig. 4.3.1. Approximating a continuously varying integrand.

In general, then, it is possible to choose a sequence Ay, (t) of simple pro-
cesses such that as n — oo these processes converge to the continuously
varying A(t). By “converge,” we mean that

T
lim E |An(t) — A(t)|?dt = 0. (4.3.2)
n oo 0
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For each A, (t), the It6 integral fo u) dW (u) has already been defined for
0 <t < T. We define the Ito mtegral for the continuously varying integrand
A(t) by the formula!

/ " Aw) dW () = lim | Ag(w)dW(w), 0<t<T. (4.3.3)
0

n—00
0
This integral inherits the properties of It integrals of simple processes. We
summarize these in the next theorem.

Theorem 4.3.1. Let T' be a positive constant and let A(t), 0 <t < T, be an
adapted stochastic process that satisfies (4.3.1). Then I(t) = fot A(u) dW (u)
defined by (4.3.3) has the following properties.

(i) (Continuity) As a function of the upper limit of integration t, the paths
of I(t) are continuous.

(i) (Adaptivity) For each t, I(t) is F(t)-measurable.

(#i) (Linearity) If I(t) = fg A(u)dW (u) and J(t) = fot I'(u) dW (u), then
It)£J(@) = fot (A(u) £ I'(u)) dW (u); furthermore, for every constant c,
c(t) = f(;' cA(u) dW (u).

(iv) (Martingale) I(t) is a martingale.

(v) (It6 isometry) EI%(t) = E f; A%(u) du.

(vi) (Quadratic variation) [I, I](t) = fot A?(u) du

Ezample 4.3.2. We compute fOT W (t)dW (t). To do that, we choose a large

integer n and approximate the integrand A(t) = W (t) by the simple process

(W(O)=0 fo<t<Z,

w (L) ifL<t< 2L

-

An(t)

(n=1)T\ :¢ (n=1)T
(W (e0T) i 2T < v o,

as shown in Figure 4.3.2. Then limn oo E [ |An(t) — W(t)[2 dt = 0. By defi-
nition,
T T
/ W) aw(e) = lim [ Au)dw(e)
0 0

= Am ZW (f) [W (WTI)ZF) -w (%)] . (4.3.4)

! For each t, the limit in (4.3.3) exists because I (t) = fot An(u) dW (u) is a Cauchy
sequence in L2(£2, F,P). This is because of Itd’s isometry (Theorem 4.2.2), which
yields E(In(t) — Im(t))* = E [ |An(u) - Am(u)|? du. As a consequence of (4.3.2),
the right-hand side has limit zero as n and m approach infinity.
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Fig. 4.3.2. Simple process approximating Brownian motion.

To simplify notation, we denote W; = W ( ];T) As a precursor to evaluating
the limit in (4.3.4), we work out equation (4.3.5) below. The second equality
in (4.3.5) is obtained by making the change of index k¥ = j + 1 in the first
sum. The third equality uses the fact that Wy = W(0) = 0. We have

1 n—1
) Z(Wj+l - W)t =
j=0

1 n—1 n-—1 1 n—1

2 ; Wi — Z W;iWji1 + 3 Z w;

FD WS Wi+ 2w2
k=1 3=0

1 n—1 n—1
—W2+2 W,? ZWWJ+1+2ZW2
k=0 =0 =0
n-—1
-W2 + Z WE=> WiWin
7=0 j=0
1W2 n—1
=3 24D Wi(W; — W) (4.3.5)

=0
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From (4.3.5), we conclude that

n—1 n—1

1 1
D WiWir = Wy) = 5 Wi = 23 (Wi = Wy)2.
1=0 j=0

In the original notation, this is

& (0T (j+1)T T
w () [ (55) - ()

— n n n

o35 (42) v ()]

j=0

Letting n — oo in (4.3.4) and using this equation, we get
T 1 1 1 1
/ W(t)dW (t) = §W2(T) - 5 W.W)(T) = §W2(T) -5T. (436)
0

We contrast (4.3.6) with ordinary calculus. If ¢ is a differentiable function
with g(0) = 0, then

T T
| s0dat0 = [ atrg 0 @t = 320 | = 500,

The extra term —3T in (4.3.6) comes from the nonzero quadratic variation
of Brownian motion and the way we constructed the It6 integral, always eval-
uating the integrand at the left-hand endpoint of the subinterval (see the
right-hand side of (4.3.4)). If we were instead to evaluate at the midpoint,
replacing the right-hand side of (4.3.4) by

JL‘E}OZ W ((J +3 ) [W (%) —W (%T)] : (4.3.7)

then we would not have gotten this term (see Exercise 4.4). The integral ob-
tained by making this replacement is called the Stratonovich integral, and the
ordinary rules of calculus apply to it. However, it is inappropriate for finance.
In finance, the integrand represents a position in an asset and the integrator
represents the price of that asset. We cannot decide at 1:00 p.m. which po-
sition we took at 9:00 a.m. We must decide the position at the beginning of
each time interval, and the It6 integral is the limit of the gain achieved by
that kind of trading as the time between trades approaches zero.

For functions g(t) that have a derivative, integrals such as fo t)dg(t)
are not sensitive to this distinction (i.e., the It6 integral and Stratonovich
integral approximations have the same limit, which is 1¢2(T)). For functions
that have a nonzero quadratic variation, integrals are sensitive to where in
the subintervals the approximating integrands are evaluated.
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The upper limit of integration T in (4.3.6) is arbitrary and can be replaced
by any ¢ > 0. In other words,

/ t W (u) dW (u) = %Wz(t) - %t, t>0. (4.3.8)
0

Theorem 4.3.1(iv) guarantees that fot W (u) dW (u) is a martingale and hence
has constant expectation. At ¢ = 0, this martingale is 0, and hence its expec-
tation must always be zero. This is indeed the case because EW?(t) = t. If
the term —%t were not present, we would not have a martingale. a

4.4 It6-Doeblin Formula

The addition of Doeblin’s name to what has traditionally been called the It6
formula is explained in the Notes, Section 4.9.

4.4.1 Formula for Brownian Motion

We want a rule to “differentiate” expressions of the form f(W (t)), where f(z)
is a differentiable function and W (t) is a Brownian motion. If W (t) were also
differentiable, then the chain rule from ordinary calculus would give

2 5w = r W),
which could be written in differential notation as
df(W(t)) = f(WR)W'(t)dt = f'(W(t)) dW (¢).

Because W has nonzero quadratic variation, the correct formula has an extra
term, namely,

(W (1)) = /(W) dW () + 5 1" (W(2)) d. (4.4.1)

This is the Ito- Doeblin formula in differential form. Integrating this, we obtain
the Ité-Doeblin formula in integral form:

1w o) - 1w o) = [ rw@ awe +3 [ Fww)d. (442

The mathematically meaningful form of the It6-Doeblin formula is the
integral form (4.4.2). This is because we have precise definitions for both
terms appearing on the right-hand side. The first, fot f'(W(u)) dW (u), is an

It integral, defined in the previous section. The second, fot (W (u)) du, is
an ordinary (Lebesgue) integral with respect to the time variable.
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For pencil and paper computations, the more convenient form of the Ito-
Doeblin formula is the differential form (4.4.1). There is an intuitive meaning
but no precise definition for the terms df (W(t)), dW (t), and dt appearing in
this formula. The intuitive meaning is that df (W (t)) is the change in f (W (t))
when t changes a “little bit” dt, dW(t) is the change in the Brownian motion
when t changes a “little bit” d¢, and the whole formula is exact only when
the “little bit” is “infinitesimally small.” Because there is no precise definition
for “little bit” and “infinitesimally small,” we rely on (4.4.2) to give precise
meaning to (4.4.1).

The relationship between (4.4.1) and (4.4.2) is similar to that developed
in ordinary calculus to assist in changing variables in an integral. If asked
to compute the indefinite integral [ f(u)f’(u)du, we might make the change
of variable v = f(u) and write dv = f’(u) du, so that the indefinite integral
becomes [ vdv, which is $v2 + C = 1 f%(u) + C, where C is a constant of
integration. The final formula

[ s du= 37w + €

is correct, as can be verified by differentiating § f?(u)+C to get f(u)f’(u). We
do not attempt to give precise definitions to the terms dv and du appearing
in the equation dv = f’(u) du used in deriving it.

We formalize the preceding discussion with a theorem that provides a
formula slightly more general than (4.4.2) in that it allows f to be a function
of both ¢ and z.

Theorem 4.4.1 (It6-Doeblin formula for Brownian motion). Let
f(t,z) be a function for which the partial derivatives fi(t,z), fz(t,z), and
fzz(t,z) are defined and continuous, and let W(t) be a Brownian motion.
Then, for every T > 0,

T
f(T,W(T)) = f(0,W(0)) + /0 fe(t, W(t)) dt
T 1 (T
+ / f=(8, W(t)) dW (t) + 3 / foz(t, W(t)) dt. (4.4.3)
0 0

SKETCH OF PROOF: We first show why (4.4.3) holds when f(z) = 2. In this

case, f'(z) = x and f"(z) = 1. Let z;4, and z; be numbers. Taylor’s formula
implies

1
f(@i1) — f(z5) = f'(@5) (@541 — z5) + §f"($j)(1‘j+1 ;)% (444)
In this case, Taylor’s formula to second order is exact (there is no remainder

term) because f’” and all higher derivatives of f are zero. We return to this
matter later.
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Fix T > 0, and let IT = {to,t1,...,t,} be a partition of [0,7] (i.e., 0 =
to < t1 < -+ < tp, =T). We are interested in the difference between f(W(0))
and f(W(T)). This change in f(W(t)) between times ¢t = 0 and ¢t = T can
be written as the sum of the changes in f(W(t)) over each of the subintervals
[tj,tj+1]. We do this and then use Taylor’s formula (4.4.4) with x; = W(t;)
and Tjp1 = W(tj+1) to obtain

n—1

FW(T)) = f(W(0)) = [f(W(t;+1)) — F(W(t;))]

=0

n—1
=D W) [Wtj) - W(ty)]
j=0
n—1
b2 3 P W (t10) - We)] (445)
=0

For the function f(x) = 322, the right-hand side of (4.4.5) is

n—1 n—1

D W) [Wti1) - W(t)] + 2 3 [Witjn) - W) (4.4.6)
2

j=0 j=0

If we let ||II|| — 0, the left-hand side of (4.4.5) is unaffected and the terms on
the right-hand side converge to an It6 integral and one-half of the quadratic
variation of Brownian motion, respectively:

f(W(T)) - £(W(0))

) n—1 . 1 n—1 )
= Jm g W) [W (1) - Wit)] + lim o ZO [W(tj) — W(t;)]
T 1
= / W(t)dW(t) + 5T
0
T 1 T
= / f'(W(t) dw (t) + 3 / " (W(t)) dt. (4.4.7)
0 0

This is the It6-Doeblin formula in integral form for the function f(z) = 3z2.

If instead of the quadratic function f(z) = 3z we had a general func-
tion f(x), then in (4.4.5) we would have also gotten a sum of terms con-

taining [W(tj41) — W(tj)]s. But according to Exercise 3.4 of Chapter 3,
Z;:OI [W(tjs1) — W(t]-)|3 has limit zero as ||II|| — 0. Therefore, this term
would make no contribution to the final answer.

If we take a function f(t,z) of both the time variable ¢ and the variable
z, then Taylor’s Theorem says that
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fivr,zi41) — f(t), ;)
= fe(ts, ;) (ti1 — t5) + fo(tj, ;) (Tj01 — T5)

1
+5faa(ts, ) (T4 = 25)? + fia(ts, ©5)(tj+1 — £)(Tj41 — ;)
+%ftt(tj, z;)(tj+1 — t;)® + higher-order terms. (4.4.8)
We replace z; by W(t;), replace =1 by W(t;+1), and sum:

f(T,W(T)) — £(0,W(0))

n—1

=Y [f(tier, Wtin)) — £(t, W(t5))]
=0
n—1 n—1
=3 felt;, W) (tiar — t5) + D fa(t, W(t5)) (W (tj1) — W(25))
j=0 j=0
n—1
+% Z fz:r: (tja W(tJ)) (W(tj+l) - W(tj))2
j=0
n—]l
D Fea (i W(t) (t41 — £5) (Wt 1) — Wt5))
j=0
n—1
+% j;) fie(t5, W (t))(tj+1 — t;)® + higher-order terms. (4.4.9)

When we take the limit as ||II|| — 0, the left-hand side of (4.4.9) is unaf-
fected. The first term on the right-hand side of (4.4.9) contributes the ordinary
(Lebesgue) integral

n

-1 T
e X 6 W) b1 ) = | rewe)a

to the final answer. As ||II|| — 0, the second term contributes the It6 in-
tegral fOT f=(t,W(t)) dW (t). The third term contributes another ordinary
(Lebesgue) integral, 1 fOT foz(t, W(t)) dt, similar to the way we obtained
this integral in (4.4.7). In other words, in the third term we can replace
(W(tj41) — W(t]-))2 by t;+1 —t;. This is not an exact substitution, but when
we sum the terms this substitution gives the correct limit as ||II|| — 0. See
Remark 3.4.4 for more discussion of this point. With this substitution, the

third term on the right-hand side of (4.4.9) contributes 1 [ fo (t, W(2)) dt.
These limits of the first three terms appear on the right-hand side of (4.4.3).
The fourth and fifth terms contribute zero. Indeed, for the fourth term, we
observe that
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n—1
i 1D (65, W) (1 = 1) (W (t540) = W)
j=0
n—1
< ||1171||n—1>02 |fea (85, WED)| - (i1 = 85) - [W (Ei11) = W(2,)]
3=0
< dm max [W(ten) - W(t)| - lim Zlfm t5, W(t;))|(tj+1 — t5)
T
=0- / |fez (8, W(2)) dt = O. (4.4.10)
0

The fifth term is treated similarly:

n—1

3 tht (t5, W (t5)) (tir1 — t5)?

IIITII—>0

< i3 Z [ foe (t3, WED)| - (1 = 15)?
1

<= i - =t

<3 ||IlIl||H—1>OOSII?Sa;)1(—l(tk+l tk) - "H" Z | fee (t5, W ()| (E541 — 5)
1 T

= §~0-/ fa(t,W(t))dt = 0. (4.4.11)

0
The higher-order terms likewise contribute zero to the final answer. d

Remark 4.4.2. The fact that the sum (4.4.10) of terms containing the product
(tj+1 — t;)(W(tj+1) — W(t;)) has limit zero can be informally recorded by
the formula dt dW(t) = 0. Similarly, the sum (4.4.11) of terms containing
(tj+1 — t;)? also has limit zero, and this can be recorded by the formula
dtdt = 0. We can write these terms if we like in the It6-Doeblin formula, so
that in differential form it becomes

af (t, W (2))
= fi(t, W(t)) dt + f=(t, W(t)) dW(t) + %fz, (t, W(t)) dW(t) dW (2)
+/fiz(t, W(t)) dt dW (t) + % foa(t, W (2)) dt dt,
but
dW(t)dW(t) =dt, dtdW(t)=dW(t)dt=0, dtdt=0, (4.4.12)
and the It6-Doeblin formula in differential form simplifies to

df (t, W(t)) = fi(t,W(t)) dt+fz(t,W(t))dW(t)+%fm(t,W(t)) dt. (4.4.13)
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In Figure 4.4.1, we illustrate the Taylor series approximation of the differ-
ence f(W(tj+1)) — f(W(t;)) for a function f(x) that does not depend on t.
The first-order approximation, which is f'(W(t;)) (W (tj+1) — W(t;)), has an
error due to the convexity of the function f(z). Most of this error is removed
by adding in the second-order term 3 f” (W (t;)) (W (tj+1) — W(tj))z, which
captures the curvature of the function f(z) at z = W(t;).

(W (tj41), F(W (t541)))

Fig. 4.4.1. Taylor approximation to f(W(t;+1)) — f(W(t;)).

In other words,

F(W(ty41)) = F(W(25)) = f/(W(t;)) (W (tj41) — W(t;)) + small error,
(4.4.14)

and
FW(tje)) — F(W(t5)) = f'(W(t;)) (W (tj41) — W(Ey))

38" (W(t5) W lt341) ~ Wity))
+ smaller error. (4.4.15)

In both (4.4.14) and (4.4.15), as ||II|| — 0, the errors approach zero. However,
before we let ||II]|| — 0, we must first sum these equations over j, and the
smaller we make ||II]|, the more terms there are in the sum. When we sum
both sides of (4.4.14), the errors accumulate, and although the error in each
summand approaches zero as ||II|| — 0, the sum of the errors does not. When
we use the more accurate approximation (4.4.15), this does not happen; the
limit of the sum of the smaller errors is zero. We need the extra accuracy
of (4.4.15) because the paths of Brownian motion are so volatile (i.e., they
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have nonzero quadratic variation). This extra term makes stochastic calculus
different from ordinary calculus.

The It6-Doeblin formula often simplifies the computation of It6 integrals.
For example, with f(x) = 322, this formula says that

%W"’(T) = F(W(T)) - F(W(0))
T 1 [t
- [ rwve) v+ [ rrweo)
0 0
T
= / W(t)dW(t)+lT-
0 2

Rearranging terms, we have formula (4.3.6) and have obtained it without
going through the approximation of the integrand by simple processes as we
did in Example 4.3.2.

4.4.2 Formula for Ité Processes

We extend the It6-Doeblin formula to stochastic processes more general than
Brownian motion. The processes for which we develop stochastic calculus are
the Ité processes defined below. Almost all stochastic processes, except those
that have jumps, are It6 processes.

Definition 4.4.3. Let W(t), t > 0, be a Brownian motion, and let F(t),
t > 0, be an associated filtration. An It6 process is a stochastic process of the
form

t t
X(t) = X(0) +/ A(u) dW (u) +/ O(u) du, (4.4.16)
0 0
where X(0) is nonrandom and A(u) and ©(u) are adapted stochastic pro-
2
cesses.

In order to understand the volatility associated with Ito6 processes, we must
determine the rate at which they accumulate quadratic variation.

Lemma 4.4.4. The quadratic variation of the Ité process (4.4.16) is
t
(X, X](t) = / A%(u) du. (4.4.17)
0

PROOF: We introduce the notation I(t) = fot A(u) dW (u), R(t) = fot O(u) du.
Both these processes are continuous in their upper limit of integration . To

2 We assume that E fot A?(u) du and fot |©(u)| du are finite for every ¢t > O so that
the integrals on the right-hand side of (4.4.16) are defined and the Itd integral
is a martingale. We shall always make such integrability assumptions, but we do
not always explicitly state them.
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determine the quadratic variation of X on [0,t], we choose a partition IT =
{to,t1,..-,tn} of [0,t] (i,e., 0 =ty < t; < --- < t, = t) and we write the
sampled quadratic variation

[}
—

 [Xtsn) - X)) = 3 [sn) 1) + 3 [Ritsa) = ()
j=0 j=0 Jj=0
123 [Tlty01) - 1(t5)] [Rlts o) — R(t5))-
3=0

As | II|| — 0, the first term on the right-hand side, Z;:; [I(tj41) =1 (tj)]z,
converges to the quadratlc variation of I on [0, ], which according to Theorem
4.3.1(vi) is [1, I](t) fo A?(u) du. The absolute value of the second term is
bounded above by

osflglg_lm(tkﬂ — R(ty)| Z|R (tj+1) — R(t5)|
n=1| o,
= pmax [Riteen) = R0l | [ 0w au
ot o
< oo, IRCn) - R0| -3 [ e
= e  [RGtean) ~ R - [ 10 du

and as ||II|| — 0, this has limit O-f(;' |©(u)| du = 0 because R(t) is continuous.
The absolute value of the third term is bounded above by

max |I(tk+1 tk)' ZlR ]+l R(tj)|

0<k<n

<2 max |I(tk+1)—I(tk)|-/0 |© ()| du,

0<k<n—1

and this has limit 0- fot |©(u)|? du = 0 as ||IT|| — 0 because I(t) is continuous.
We conclude that [X, X](¢) = [I,I](t) = f; A%(u) du. O

The conclusion of Lemma, 4.4.4 is most easily remembered by first writing
(4.4.16) in the differential notation

dX(t) = A(t) dW(t) + O(¢) dt (4.4.18)

and then using the differential multiplication table (4.4.12) to compute
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dX (t)dX(t) = A%(t) dW (t) dW (t) + 2A(t)O(t) dW (t) dt + O%(t) dt dt
= A%(t) dt. (4.4.19)

This says that, at each time ¢, the process X is accumulating quadratic
variation at rate A2(t) per unit time, and hence the total quadratic varia-
tion accumulated on the time interval [0,¢] is [X, X](t) = fot A?(u) du. This
quadratic variation is solely due to the quadratic variation of the It6 inte-
gral I(t) = [i A(u)dW (u). The ordinary integral R(t) = [; O(u)du has zero
quadratic variation and thus contributes nothing to the quadratic variation
of X.

Notice in this connection that having zero quadratic variation does not
necessarily mean that R(t) is nonrandom. Because ©(u) can be random, R(t)
can also be random. However, R(t) is not as volatile as I(t). At each time ¢,
we have a good estimate of the next increment of R(t). For small time steps
h>0,

R(t + h) = R(t) + 6(t)h,
and we know both R(t) and ©(t) at time ¢. This is like investing in a money
market account at a variable interest rate. At each time, we have a good
estimate of the return over the near future because we know today’s interest
rate. Nonetheless, the return is random because the interest rate (© in this
analogy) can change. In contrast, I is more volatile. At time ¢, one estimate
of I(t+ h) is
I(t+h) = I(t) + A(t)(W(t + h) — W(t)),

but we do not know W (t + h) — W(t) at time ¢. In fact, W(t + h) — W(¢) is
independent of the information available at time ¢. This is like investing in a
stock.

So far we have discussed integrals with respect to time, such as R(t) =
fot ©(u) du appearing in (4.4.16) and It6 integrals (integrals with respect to
Brownian motion) such as I(t) = fot A(u)dW (u), also appearing in (4.4.16).
In addition, we shall need integrals with respect to It6 processes (i.e., integrals
of the form fot I'(u) dX (u), where I' is some adapted process). We define such
an integral by separating dX (t) into a dW (t) term and a dt term as in (4.4.18).

Definition 4.4.5. Let X (t), t > 0, be an Ité process as described in Definition
4.4.3, and let I'(t), t > 0, be an adapted process. We define the integral with
respect to an Itd process®

/t I'(u)dX(u) = /t I'(u)A(u) dW (u) + /t I'(u)O(u) du. (4.4.20)
0 0 0

We again work through the sketch of the proof of Theorem 4.4.1, but with
the Itd process X (t) replacing the Brownian motion W (t). In place of (4.4.9),
we now have

3 We assume that Efot I'?*(u)A%(u) du and fot | (u)©(u)| du are finite for every
t > 0 so that the integrals on the right-hand side of (4.4.20) are defined.
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f(T X(T)) - (0 X(O))
—th t]’ t) ]+1_t)+Zf1‘ tJ’Xt))( J+l)_X(tJ'))

j=0

+% Z fex (£, X (£5)) (X (tj41) — X (t;))”

j—

+tha: t5, X(85)) (b1 — 1) (X (t541) = X(25)
j=
n—1

+% Z fee (5, X (£5)) (tj41 — t;)> + higher-order terms. (4.4.21)
3=0

The last two sums on the right-hand side have zero limits as ||II|| — 0 for the
same reasons the analogous terms have zero limits in the sketch of the proof
of Theorem 4.4.1 (see (4.4.10) and (4.4.11)). The higher-order terms likewise
have limit zero. The limit of the first term on the right-hand side of (4.4.21)

is fOT fe(t, X (t))dt. The limit of the second term is

T T T
/ f=(t,X(t)) dX(t):/ fx(t,X(t))A(t)dW(t)+/ f=(t, X(t))6(t)dt.
0 0 0

Finally, the limit of the third term on the right-hand side of (4.4.19) is

T T
3] T X)X X0 =5 [ feale X0) 220)

because the Ité process X (t) accumulates quadratic variation at rate A%(t)
per unit time (Lemma 4.4.4). These considerations lead to the following gen-
eralization of Theorem 4.4.1.

Theorem 4.4.6 (Ito-Doeblin formula for an Ité process). Let X(t),
t > 0, be an Ité process as described in Definition 4.4.3, and let f(t,z) be a
function for which the partial derivatives fi(t,x), fz(t,z), and fz-(t,x) are
defined and continuous. Then, for every T > 0,

£(T, X(T))
T T

— £(0,X(0)) + / £(t, X(®) dt + / £o(t, X (2)) dX(t)
0 0

1 T
+3 /0 faa (t, X (2)) dIX, X](2)
=f(0,X(0))+/ £t X(2) dt+/ fo(t, X (t)) A(t) dW (t)
0 0

T 1 T
+ /0 fz(t,X(t))G(t)dt+§ /0 foz (6, X (1)) A%(t)dt.  (4.4.22)
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Remark 4.4.7 (Summary of stochastic calculus). Theorem 4.4.6 is stated in
mathematically precise language. Every term on the right-hand side has a solid
definition, and in the end the right-hand side reduces to a sum of a nonrandom
quantity f(0,X(0)), three ordinary (Lebesgue) integrals with respect to time,
and an It6 integral.

However, it is easier to remember and use the result of this theorem if we
recast it in differential notation. We may rewrite (4.4.22) as

df (t, X (t)) = fe(t, X (1)) dt + f=(t, X (¢)) dX () + %fm(t,X(t)) dX(t)dX(t).
(4.4.23)

The guiding principle here is that we write out the Taylor series expansion of
f(t, X (t)) with respect to all its arguments, which in this case are ¢ and X (t).
We take this Taylor series expansion out to first order for every argument that
has zero quadratic variation, which in this case is t, and we take the expansion
out to second order for every argument that has nonzero quadratic variation,
which in this case is X (¢).

We may reduce (4.4.23) to an expression that involves only dt and dW (¢)
by using the differential form (4.4.18) of the It6 process (i.e., dX{t) =
A(t)dW(t) + O(t)dt) and the formula (4.4.19) for the rate at which X(¢)
accumulates quadratic variation (i.e., dX(t)dX(t) = A2(t)dt). This is ob-
tained by squaring the formula for dX (t) and using the multiplication table
(4.4.12). Making these substitutions in (4.4.23), we obtain

df (t, X(t)) = f(t, X (8)) dt + f=(t, X (t)) A(t) dW(2)
+/2(t, X (£))O(t) dt + % foz(t, X (2)) A%(t) dt. (4.4.24)

Itd calculus is little more than repeated use of this formula in a variety of
situations. o

4.4.3 Examples

We conclude this section with three examples illustrating Remark 4.4.7. Many
more examples are developed in subsequent sections and in the exercises.

Ezample 4.4.8 (Generalized geometric Brownian motion). Let W(t), ¢t > 0,
be a Brownian motion, let F(t), t > 0, be an associated filtration, and let (%)
and o(t) be adapted processes. Define the It0 process

X)) = /ot o(s)dW(s) + /Ot (a(s) - %o’%s))ds. (4.4.25)

Then
dX(t) = o(t) dW(t) + (alt) - %&’(t)) dt,
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nd
; dX (t)dX (t) = o?(t) dW (t) dW (t) = o2(t) dt.

Consider an asset price process given by

¢ ¢
S(t) = S(0)eX® = S(0) exp {/ o(s)dW (s) +/ (a(s) - %gi’(s))ds} ,
0 0
(4.4.26)
where S(0) is nonrandom and positive. We may write S(t) = f(X(t)), where
f(z) = S(0)e*, f'(z) = S(0)e®, and f"(z) = S(0)e*. According to the Ito-
Doeblin formula

dS(t) = df (X (t))
= /(X)) dX () + 3" (X)) dX () aX ()
= S5(0)e*X® dX (t) + %S(O)ex(t) dX (t)dX(t)

= S(t)dX(t) + %S(t) dX(t)dX (t)
= a(t)S(t) dt + o(t)S(t) dW (t). (4.4.27)

The asset price S(t) has instantaneous mean rate of return «(t) and volatil-
ity o(t). Both the instantaneous mean rate of return and the volatility are
allowed to be time-varying and random.

This example includes all possible models of an asset price process that is
always positive, has no jumps, and is driven by a single Brownian motion.
Although the model is driven by a Brownian motion, the distribution of S(t)
does not need to be log-normal because a(t) and o(t) are allowed to be time-
varying and random. If & and o are constant, we have the usual geometric
Brownian motion model, and the distribution of S(t) is log-normal.

In the case of constant a and o, (4.4.26) becomes

S(t) = S(0) exp {aW(t) + (a - %aZ) t}. (4.4.28)

One can incorrectly argue from this formula that since Brownian motion is a
martingale (i.e., it has no overall tendency to rise or fall), the mean rate of
return for S(¢) must be a — %02. The error in this argument is that although
W(t) is a martingale, S(0)e”"(?) is not. The convexity of the function e*
imparts an upward drift to S(0)e®" ®). In order to correct for this, one must
subtract o2t in the exponential; the process S(0)exp {oW (t) — 30%t} is a
martingale (see Theorem 3.6.1). If we now add at in the exponential, we get
S(t), a process with mean rate of return a.

The It6-Doeblin formula automatically keeps track of these effects, even
when a and o are time-varying and random. If & = 0, then (4.4.27) yields

dS(t) = a(t)S(t) dW (t).
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Integration of both sides yields

S(t) = S(0) + / t o (s)S(s) dW (s).
0

The right-hand side is the nonrandom constant S(0) plus an It integral,
which is a martingale, and hence (in the case a = 0)

S(t) = S(0) exp { /0 " o(s) W (s) - % /0 “02(s) ds} (4.4.29)

is a martingale. In other words, the term o(¢)S(t)dW (t) on the right-hand
side of (4.4.27) contributes no drift, just pure volatility, to the asset price.
When a(t) is a nonzero random process, (4.4.27) shows that it plays the
role of the mean rate of return. In the case of time-varying and random a(t),
we will call this the instantaneous mean rate of return since it depends on the
time (and the sample path) where it is evaluated. |

The preceding example supplies the heart of the proof of the following
theorem.

Theorem 4.4.9 (Itd integral of a deterministic integrand). Let W(s),
s > 0, be a Brownian motion, and let A(s) be a nonrandom function of time.

Define I(t) = fot A(s)dW (s). For each t > 0, the random variable I(t) is
normally distributed with ezpected value zero and variance fot A?(s)ds.
PROOF: The mean and variance of I(t) are easy to determine. Since I(t) is

a martingale and I(0) = 0, we must have EI(t) = I(0) = 0. It6’s isometry
(Theorem 4.3.1(v)) implies that

Varl(t) = EI*(t) = / t A%(s)ds.
0

We do not need to take the expected value of fot A?(s)ds on the right-hand
side of this formula because A(s) is not random.

The challenge is to show that I(t) is normally distributed. We shall do
this by establishing that I(t) has the moment-generating function of a nor-

mal random variable with mean zero and variance fot A?(s)ds, which is (see
(3.2.13))

t
Ee*'® = exp {%uZ / A%(s) ds} for all u € R. (4.4.30)
0
Because A(s) is not random, (4.4.30) is equivalent to

Eexp {uI(t) - %u2 /Ot A%(s) ds} =1,
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which may be rewritten as

Eexp {/Ot uA(s)dW (s) — %/Ot (uA(s))zds} =1. (4.4.31)

But the process

exp {/Ot uA(s)dW (s) — %/Ot (uA(s))2ds}

is a martingale. Indeed, it is a generalized geometric Brownian motion with
mean rate of return a = 0; see (4.4.29) with o(s) = uA(s). Furthermore, this
process takes the value 1 at ¢t = 0, and hence its expectation is always 1. This
gives us (4.4.31). O

Note that (4.4.31) always holds, regardless of whether A(s) is random.
However, we need to assume that A(s) is nonrandom in order to obtain the
moment-generating function formula (4.4.30) from (4.4.31). When A(s) is
random, there is no reason that the distribution of fot A(s)dW (s) should be
normal.

Ezample 4.4.10 (Vasicek interest rate model). Let W (t), t > 0, be a Brownian
motion. The Vasicek model for the interest rate process R(t) is

dR(t) = (. — BR(t)) dt + o dW (2), (4.4.32)

where a, 8, and o are positive constants. Equation (4.4.32) is an example of a
stochastic differential equation. It defines a random process, R(t) in this case,
by giving a formula for its differential, and the formula involves the random
process itself and the differential of a Brownian motion.

The solution to the stochastic differential equation (4.4.32) can be deter-
mined in closed form and is

R(t) = e PtR(0) + E(1 —e7Pt) +ge Pt / t e dw (s), (4.4.33)
B 0

a claim that we now verify. In particular, we compute the differential of the
right-hand side of (4.4.33). To do this, we use the It6-Doeblin formula with

f(@t,z) =e PR(0) + %(1 —e7Pt) + ge Ptz

and X(t) = fot eP* dW (s). Then the right-hand side of (4.4.33) is f(¢, X(t)).
The technique we are using is to separate the right-hand side into two parts: an
ordinary function of two variables t and z, which has no randomness in it, and
an Ité process X (t), which contains all the randomness. For the It6-Doeblin
formula, we shall need the following partial derivatives of f(¢,z):
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fe(t,z) = —Be P R(0) + ce P —ope Ptz = a - Bf(t,z),
fz(t,x) = oe P,
fzz(t,z) =0.

We shall also need the differential of X (t), which is dX (t) = eftdW (t). We
shall not need dX (t) dX(t) = e?Pt dt because fzz(t,z) = 0. The It6-Doeblin
formula states that

df (t, X (1))
= fe(t, X(t)) dt + f=(t, X (t)) dX (¢) + %fm (t, X (1)) dX (t)dX(t)

= (a - ﬁf(t,X(t))) dt + o dW (t).

This shows that f(¢, X (t)) satisfies the stochastic differential equation (4.4.32)
that defines R(t). Moreover, f(0,X(0)) = R(0). Because f(t, X(t)) satisfies
the equation defining R(t) and has the same initial condition as R(t), it must
be the case that f(¢, X (t)) = R(t) for all t > 0.

Theorem 4.4.9 implies that the random variable fot s dW (s) appearing
on the right-hand side of (4.4.33) is normally distributed with mean zero and

variance .
1
28s 20t
e“PPds = —(e“”* —1).
/0 25( )

Therefore, R(t) is normally distributed with mean e =%t R(0) + s(1- e~Pt) and
variance %(1 — e’wt). In particular, no matter how the parameters o > 0,
B > 0, and o > 0 are chosen, there is positive probability that R(t) is negative,
an undesirable property for an interest rate model.

The Vasicek model has the desirable property that the interest rate is
mean-reverting. When R(t) = §, the drift term (the d¢ term) in (4.4.32) is
zero. When R(t) > §, this term is negative, which pushes R(t) back toward
3- When R(f) < g, this term is positive, which again pushes R(t) back
toward 3. If R(0) = 3, then ER(t) = 3 for all ¢t > 0. If R(0) # 5, then
lim;_,o ER(t) = 5. O

Ezample 4.4.11 (Coz-Ingersoll-Ross (CIR) interest rate model). Let W(t),
t > 0, be a Brownian motion. The Cox-Ingersoll-Ross model for the interest
rate process R(t) is

dR(t) = (o — BR(t)) dt + o/ R(t) dW (t), (4.4.34)

where o, 8, and o are positive constants. Unlike the Vasicek equation (4.4.32),
the CIR equation (4.4.34) does not have a closed-form solution. The advantage
of (4.4.34) over the Vasicek model is that the interest rate in the CIR model
does not become negative. If R(t) reaches zero, the term multiplying dW ()
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vanishes and the positive drift term a dt in equation (4.4.34) drives the interest
rate back into positive territory. Like the Vasicek model, the CIR model is
mean-reverting.

Although one cannot derive a closed-form solution for (4.4.34), the dis-
tribution of R(t) for each positive ¢t can be determined. That computation
would take us too far afield. We instead content ourselves with the derivation
of the expected value and variance of R(t). To do this, we use the function
f(t,z) = etz and the It6-Doeblin formula to compute

d(e®*R(t))

= df (t, R(t))

= fe(t, R(t)) dt + fo(t, R(t)) dR(t) + % fez(t, R(t)) dR(t) dR(t)

= BePR(t) dt + €t (a — BR(t)) dt + ePta/R(t) dW (t)

= ae® dt + oePt\/R(t) dW (t). (4.4.35)
Integration of both sides of (4.4.35) yields

e’ R(t) = R(0) + a / t Ptdu+o / t e?*\/R(u) dW ()

0 0
t

= R(0) + %(e‘” ~1)+o / P \/R(u) dW (u).
0

Recalling that the expectation of an It6 integral is zero, we obtain

PER(t) = R(0) + %(ef’t ~1)

or, equivalently,
ER(t) = et R(0) + %(1 ) (4.4.36)

This is the same expectation as in the Vasicek model.
To compute the variance of R(t), we set X (t) = eP¢R(t), for which we have
already computed

dX (t) = ae®t dt + oePt\/R(t) dW (t) = aePt dt + oe'T /X (t) dW (t)

and EX (t) = R(0) + § (¢”* — 1). According to the It6-Doeblin formula (with
f(z) = 1:2’ fl(x) = 2z, and f”(l‘) =2),

d(X2(t)) = 2X(t) dX(t) + dX(t) dX(t)
= 20ePt X (t) dt + 20¢T X () dW (t) + 02ePt X (t) dt. (4.4.37)

Integration of {4.4.37) yields
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t t
X2(t) = X2(0) + (2a + 0?) / e’ X (u) du + 20 / e X5 (u) dW (w).
0 0

Taking expectations, using the fact that the expectation of an Ité integral is
zero and the formula already derived for EX (¢), we obtain
t
EX?(t) = X2(0) + (22 + 0?) / P EX (u) du
0

= R*(0) + (22 + 0?) /Ot e (R(O) + %(eﬁ" - 1)) du

— R2(0) + 2a;o'2 (R(o) - %)(eﬂt —1)+ % , %(ezat _1).

Therefore,
ER?(t) = e 2P*EX?(t)
20 + o2 «a
_ —2Btp2 _ o\ Bt _ -2t
= e ?PtR*(0) + 3 (R(O) ﬁ) (e e~ %)
a(20 + 0?)
t— g (1

- e—Zﬂt) .
Finally,

Var(R(t)) = ER2(t) - (ER(t))”

_ e pr) 4 2T (RO - 3) (77t - e72%)

B B
2 2
+a( 62‘[;” ) (1- e—2ﬂt) — e~20tR2(0)
2
—%R(O)(e_‘” — e - %(1 — e )2
o? _ _ ao? _ _
= ?R(O)(e gt — € 2Bt) + 2—52(1 bt 26 Bt +e 2ﬂt).
(4.4.38)
In particular, \
; = a9
Jim Var(R(t)) = 2

4.5 Black-Scholes-Merton Equation

The addition of Merton’s name to what has traditionally been called the
Black-Scholes equation is explained in the Notes, Section 4.9.



154 4 Stochastic Calculus

In this section, we derive the Black-Scholes-Merton partial differential
equation for the price of an option on an asset modeled as a geometric Brow-
nian motion. The idea behind this derivation is the same as in the binomial
model of Chapter 1 of Volume I, which is to determine the initial capital
required to perfectly hedge a short position in the option.

4.5.1 Evolution of Portfolio Value

Consider an agent who at each time ¢ has a portfolio valued at X (t). This
portfolio invests in a money market account paying a constant rate of interest
r and in a stock modeled by the geometric Brownian motion

dS(t) = aS(t) dt + oS(t) dW (2). (4.5.1)

Suppose at each time ¢, the investor holds A(t) shares of stock. The position
A(t) can be random but must be adapted to the filtration associated with
the Brownian motion W (t), ¢ > 0. The remainder of the portfolio value,
X (t) — A(t)S(¢), is invested in the money market account.

The differential dX () for the investor’s portfolio value at each time ¢ is
due to two factors, the capital gain A(t) dS(t) on the stock position and the
interest earnings r(X (t) — A(t)S(t)) dt on the cash position. In other words,

dX(t) = A(t)dS(t) + r(X(t) — A(t)S(¢)) dt
= A(t)(aS(t) dt + aS(t) dW () + r(X(t) — A(t)S(t)) dt
=rX(t)dt + A(t)(a — r)S(t) dt + A(t)aS() dW(t).  (4.5.2)

The three terms appearing in the last line of (4.5.2) can be understood as
follows:

(i) an average underlying rate of return r on the portfolio, which is reflected
by the term r X (t) dt,

(ii) a risk premium a — r for investing in the stock, which is reflected by the
term A(t)(a — r)S(¢) dt, and

(iii) a volatility term proportional to the size of the stock investment, which
is the term A(t)aS(t) dW (t).

The discrete-time analogue of equation (4.5.2) appears in Chapter 1 of
Volume I as (1.2.12):

Xn+1 = AnSn+1 + (1 + T)(Xn - Ansn)-
We may rearrange terms in this equation to obtain
Xn+1 — Xn = An(Snt1 — Sn) + 1(Xn — AnSn), (4.5.3)

which is analogous to the first line of (4.5.2), except in (4.5.3) time steps for-
ward one unit at a time, whereas in (4.5.2) time moves forward continuously.
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See Exercise 4.10 for additional discussion of the rationale for equation (4.5.2)
in option pricing.

We shall often consider the discounted stock price e~"tS(¢) and the dis-
counted portfolio value of an agent, e~" X (t). According to the It6-Doeblin
formula with f(t,z) = e~"z, the differential of the discounted stock price is

d(e~tS(t))
= df (t,S(t))
= fe(t,S(t)) dt + fz(t,S(t)) dS(t) + %fm (t,S(t)) dS(t)dS(t)

= —re""S(t) dt + et dS(t)
= (a —r)e~ "t S(t) dt + oe" " S(t) AW (t), (4.5.4)

and the differential of the discounted portfolio value is

d(e " X(t))
= df (t, X (t))
= fe(t, X(t)) dt + f=(t, X (t)) dX (t) + %fh (t, X(t) dX(t)dX (t)

=—re " X(t)dt +e " dX(t)
= A(t)(a—r)e " S(t) dt + A(t)oe~ "t S(t) AW (t)
= A(t)d(e""S(t)). (4.5.5)

Discounting the stock price reduces the mean rate of return from ¢, the term
multiplying S(t) dt in (4.5.1), to a — r, the term multiplying e~ S(t) dt in
(4.5.4). Discounting the portfolio value removes the underlying rate of return
r; compare the last line of (4.5.2) to the next-to-last line of (4.5.5). The last
line of (4.5.5) shows that change in the discounted portfolio value is solely due
to change in the discounted stock price.

4.5.2 Evolution of Option Value

Consider a European call option that pays (S(T') — K )+ at time T'. The strike
price K is some nonnegative constant. Black, Scholes, and Merton argued that
the value of this call at any time should depend on the time (more precisely,
on the time to expiration) and on the value of the stock price at that time,
and of course it should also depend on the model parameters r and o and the
contractual strike price K. Only two of these quantities, time and stock price,
are variable. Following this reasoning, we let ¢(t, ) denote the value of the call
at time ¢ if the stock price at that time is S(t) = z. There is nothing random
about the function c(t, ). However, the value of the option is random,; it is
the stochastic process c(t, S (t)) obtained by replacing the dummy variable z
by the random stock price S(t) in this function. At the initial time, we do not
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know the future stock prices S(t) and hence do not know the future option
values c(t, S(t)). Our goal is to determine the function c(t,z) so we at least
have a formula for the future option values in terms of the future stock prices.

We begin by computing the differential of c(t, S(t)). According to the It6-
Doeblin formula, it is

de(t,S(t))
= ce(t, S(t)) dt + ¢ (¢, S(t)) dS(¢) + %cn (t,S(t)) dS(t) dS(t)
= ct(t, S(t)) dt + cz(t, S(t)) (aS(t) dt + oS (t) dW (2))

+%cm (t,S(t))o2S?(t) dt

= |c(t,S(t)) + aS(t)ez (¢, S(t)) + %ozs'*’(t)cm(t, S(t))] dt
+0S(t)cz (8, S(t)) AW (). (4.5.6)

We next compute the differential of the discounted option price e~"*c(t, S(t)).
Let f(t,z) = e~"tz. According to the It6-Doeblin formula,

d(e™"e(t, S(t)))
= df (t,c(t, S(t)))
= fi(t, c(t, S(t))) dt + fo(t,c(t, S(2))) de(t, S(t))
3 e (1l S(1)) deft, S(2) def, S(0)
= —re""tc(t, S(t)) dt + e~ de(t, S(t))
=e [_Tc(t, S(1)) +ci(t, S()) + aS(t)es(t, S(2))

+%U2.S'2(t)cm(t, S(t))] dt + e "o S(t)c(t, S(t))dW (t). (4.5.7)

4.5.3 Equating the Evolutions

A (short option) hedging portfolio starts with some initial capital X (0) and
invests in the stock and money market account so that the portfolio value
X (t) at each time t € [0, T agrees with ¢(t, S(t)). This happens if and only if
et X (t) = e "c(t,S(t)) for all t. One way to ensure this equality is to make
sure that
d(e™™X(t)) =d(e""c(t,S(t))) for all t € [0,T) (4.5.8)
and X (0) = ¢(0, S(0)). Integration of (4.5.8) from O to t then yields
e "t X(t) — X(0) = e "c(t, S(t)) — ¢(0,5(0)) for all t € [0,T).  (4.5.9)

If X(0) = ¢(0,S(0)), then we can cancel this term in (4.5.9) and get the
desired equality.
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Comparing (4.5.5) and (4.5.7), we see that (4.5.8) holds if and only if
A(t) (o — r)S(t) dt + A(t)aS(t) dW (t)
= [—rc(t, S(t)) + ce(t, S(2)) + aS(t)ez(t, S(t)) + %a2sz(t)cm(t, S(t))] dt
+0S(t)ca(t, S(t)) dW (£). (4.5.10)

We examine what is required in order for (4.5.10) to hold.
We first equate the dW(t) terms in (4.5.10), which gives

A(t) = cz(t, S(t)) for all t € [0, T). (4.5.11)

This is called the delta-hedging rule. At each time ¢ prior to expiration, the
number of shares held by the hedge of the short option position is the partial
derivative with respect to the stock price of the option value at that time.
This quantity, c;(t, S(t)), is called the delta of the option.

We next equate the dt terms in (4.5.10), using (4.5.11), to obtain

(e —1)S(t)ez(t, S(t))
= —re(t, S(t)) + cr(t, S(t)) + aS(t)ea(t, S(t)) + %ﬁsm)cﬂ(t, S(t))
for all t € [0,T). (4.5.12)

The term a.S(t)cz(t, S(t)) appears on both sides of (4.5.12), and after canceling
it, we obtain

re(t, S(t)) = ce(t, S(t)) + rS(t)ez(t, S(t)) + 20252(t)cm(t, S(t))
for all t € [0,T). (4.5.13)

In conclusion, we should seek a continuous function ¢(t, z) that is a solution
to the Black-Scholes-Merton partial differential equation

1
c(t, x) + rxeg(t,z) + §azxzcu(t, z) =rc(t,z) forall t € [0,T), = > 0,
(4.5.14)
and that satisfies the terminal condition

c(T,z) = (x - K)*. (4.5.15)

Suppose we have found this function. If an investor starts with initial capital
X(0) = ¢(0,S5(0)) and uses the hedge A(t) = c,(t,S(t)), then (4.5.10) will
hold for all ¢t € [0,T). Indeed, the dW (t) terms on the left and right sides
of (4.5.10) agree because A(t) = c;(t,S(t)), and the dt terms agree because
(4.5.14) guarantees (4.5.13). Equality in (4.5.10) gives us (4.5.9). Canceling
X(0) = ¢(0,5(0)) and e~™ in this equation, we see that X (t) = c(t, S(t)) for
all t € [0, T). Taking the limit as ¢ + T and using the fact that both X (t) and
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c(t, S(t)) are continuous, we conclude that X (T) = ¢(T, S(T)) = (S(T)—K)+.
This means that the short position has been successfully hedged. No matter
which of its possible paths the stock price follows, when the option expires,
the agent hedging the short position has a portfolio whose value agrees with
the option payoff.

4.5.4 Solution to the Black-Scholes-Merton Equation

The Black-Scholes-Merton equation (4.5.14) does not involve probability. It is
a partial differential equation, and the arguments ¢ and  are dummy variables,
not random variables. One can solve it by partial differential equation meth-
ods. In this section, however, rather than showing how to solve the equation,
we shall simply present the solution and check that it works. In Subsection
5.2.5, we present a derivation of this solution based on probability theory.

We want the Black-Scholes-Merton equation to hold for all z > 0 and
t € [0,T) so that (4.5.14) will hold regardless of which of its possible paths
the stock price follows. If the initial stock price is positive, then the stock price
is always positive, and it can take any positive value. If the initial stock price
is zero, then subsequent stock prices are all zero. We cover both of these cases
by asking (4.5.14) to hold for all z > 0. We do not need (4.5.14) to hold at
t =T, although we need the function c(t,z) to be continuous at ¢t = T'. If the
hedge works at all times strictly prior to T, it also works at time T" because
of continuity.

Equation (4.5.14) is a partial differential equation of the type called back-
ward parabolic. For such an equation, in addition to the terminal condition
(4.5.15), one needs boundary conditions at £ = 0 and £ = oo in order to
determine the solution. The boundary condition at z = 0 is obtained by sub-
stituting £ = 0 into (4.5.14), which then becomes

e(t,0) = re(t, 0). (4.5.16)

This is an ordinary differential equation for the function c(¢,0) of ¢, and the
solution is
c(t,0) = e"¢(0,0).

Substituting ¢t = T into this equation and using the fact that ¢(T,0) = (0 —
K)* =0, we see that ¢(0,0) = 0 and hence

c(t,0) =0 for all ¢t € [0, T]. (4.5.17)

This is the boundary condition at x = 0.

As £ — oo, the function c(t,z) grows without boynd. In such a case, we
give the boundary condition at z = oo by specifying the rate of growth. One
way to specify a boundary condition at x = oo for the European call is

lim [c(t,z) — (z — e ™ T~DK)] =0 for all t € [0, T]. (4.5.18)

r—0o0
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In particular, c(t, ) grows at the same rate as z as £ — oo. Recall that c(¢, )
is the value at time ¢ of a call on a stock whose price at time ¢ is z. For large z,
this call is deep in the money and very likely to end in the money. In this case,
the price of the call is almost as much as the price of the forward contract
discussed in Subsection 4.5.6 below (see (4.5.26)). This is the assertion of
(4.5.18).

The solution to the Black-Scholes-Merton equation (4.5.14) with terminal
condition (4.5.15) and boundary conditions (4.5.17) and (4.5.18) is

ct,z) = zN(d4 (T — t,2)) — Ke " T-IN(d_(T - t,2)), 0<t< T, >0,

(4.5.19)
where . )
T o
di(’T, .’l)) = 0'_\/; [log E + <T + ?> ’T] y (4520)
and N is the cumulative standard normal distribution
No) = — [ eFdre—= [ e%d 45.21
= 2 yA— 2 2. .
W= [ eFa=g [ (@521
We shall sometimes use the notation
BSM(7,z; K,r,0) = 2N (d+(7,z)) — Ke"""N(d_(,z)), (4.5.22)

and call BSM(7, z; K, r, o) the Black-Scholes-Merton function. In this formula,
7 and z denote the time to expiration and the current stock price, respectively.
The parameters K, r, and o are the strike price, the interest rate, and the
stock volatility, respectively.

Formula (4.5.19) does not define ¢(t,z) when t = T (because then 7 =T —
t = 0 and this appears in the denominator in (4.5.20)), nor does it define c(t, z)
when z = 0 (because log z appears in (4.5.20), and log 0 is not a real number).
However, (4.5.19) defines c(t, z) in such a way that lim;,7 c(t,z) = (z— K)*
and lim, g ¢(t,z) = 0. Verification of all of these claims is given as Exercise
49.

4.5.5 The Greeks

The derivatives of the function c(¢,z) of (4.5.19) with respect to various vari-
ables are called the Greeks. Two of these are derived in Exercise 4.9, namely
delta, which is

cz(t,z) = N(dy (T - t, z)), (4.5.23)

and theta, which is

ci(t,z) = —rKe " TYN(d_(T-t,2)) - "(d4(T—t,x)). (4.5.24)

9T__
2vT —t
Because both N and N’ are always positive, delta is always positive and theta
is always negative. Another of the Greeks is gamma, which is
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1

7]
sz(t, IL‘) = N,(d+(T - t,E))&d.’.(T - t, $) = m

N’(d+(T - t, .'L'))

(4.5.25)
Like delta, gamma is always positive.

In order to simplify notation in the following discussion, we sometimes
suppress the arguments (¢,z) of ¢(t,z) and (T — t,z) of di(T — ¢, z). If at
time ¢ the stock price is z, then the short option hedge of (4.5.11) calls for
holding c,(t, z) shares of stock, a position whose value is z¢c; = zN(dy). The
hedging portfolio value is ¢ = N (d) — Ke~"T-t) N(d_), and since zc.(t, z)
of this value is invested in stock, the amount invested in the money market

must be
ct,z) — g (t,z) = —Ke " TIN(d_),

a negative number. To hedge a short position in a call option, one must borrow
money. To hedge a long position in a call option, one does the opposite. In
other words, to hedge a long call position one should hold —c; shares of stock
(i.e., have a short position in stock) and invest Ke~"(T~*) N(d_) in the money
market account.

Because delta and gamma are positive, for fixed ¢, the function c(¢,z) is
increasing and convex in the variable z, as shown in Figure 4.5.1. Suppose
at time t the stock price is ; and we wish to take a long position in the
option and hedge it. We do this by purchasing the option for ¢(¢, z;), shorting
¢z(t, z1) shares of stock, which generates income z; ¢, (¢, x1), and investing the
difference,

M = zyc.(t, x1) — c(t, 1),

in the money market account. We wish to consider the sensitivity to stock
price changes of the portfolio that has these three components: long option,
short stock, and long money market account. The initial portfolio value

c(t,z1) — e (t,z1) + M

is zero at the moment ¢ when we set up these positions.

If the stock price were to instantaneously fall to zo as shown in Figure 4.5.1
and we do not change our positions in the stock or money market account,
then the value of the option we hold would fall to ¢(t,zo) and the liability
due to our short position in stock would decrease to zgcz(¢,z1). Our total
portfolio value, including M in the money market account, would be

e(t,zo) — zocg(t,z1) + M = c(t, x0) — cz(t, z1)(xo — 71) — c(t, z1).

This is the difference at zo between the curve y = c¢(¢,z) and the straight
line y = ¢z (¢, z1)(z — 1) + ¢(t, 1) in Figure 4.5.1. Because this difference is
positive, our portfolio benefits from an instantaneous drop in the stock price.

On the other hand, if the stock price were to instantaneously rise to z2
and we do not change our positions in the stock or money market account,
then the value of the option would rise to c(¢, z2) and the liability due to our
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short position in stock would increase to x2c;(t, ;). Our total portfolio value,
including M in the money market account, would be

c(t, ) — xac(t, 21) + M = c(t, 22) — ¢z (¢, 21) (22 — 1) — c(¢, 1).

This is the difference at 2 between the curve y = ¢(¢,z) and the straight line
y = ¢z(t,z1)(x — z1) + c(t,z1) in Figure 4.5.1. This difference is positive, so
our portfolio benefits from an instantaneous rise in the stock price.

Option 4 y = clt, z)
value
Slope cz(t, 1)
Yy = cz(t, z1)(z — 1) + c(t, 21)
- Zo ) Z2 Stock price

Fig. 4.5.1. Delta-neutral position.

The portfolio we have set up is said to be delta-neutral and long gamma.
The portfolio is long gamma because it benefits from the convexity of ¢(t, x)
as described above. If there is an instantaneous rise or an instantaneous fall in
the stock price, the value of the portfolio increases. A long gamma portfolio
is profitable in times of high stock volatility.

“Delta-neutral” refers to the fact that the line in Figure 4.5.1 is tangent
to the curve y = ¢(t, z). Therefore, when the stock price makes a small move,
the change of portfolio value due to the corresponding change in option price
is nearly offset by the change in the value of our short position in the stock.
The straight line is a good approximation to the option price for small stock
price moves. If the straight line were steeper than the option price curve at the
starting point x;, then we would be short delta; an upward move in the stock
price would hurt the portfolio because the liability from the short position
in stock would rise faster than the value of the option. On the other hand, a
downward move would increase the portfolio value because the option price
would fall more slowly than the rate of decrease in the liability from the short
stock position. Unless a trader has a view on the market, he tries to set up
portfolios that are delta-neutral. If he expects high volatility, he would at the
same time try to choose the portfolio to be long gamma.

The portfolio described above may at first appear to offer an arbitrage
opportunity. When we let time move forward, not only does the long gamma.
position offer an opportunity for profit, but the positive investment in the
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money market account enhances this opportunity. The drawback is that theta,
the derivative of ¢(t,z) with respect to time, is negative. As we move forward
in time, the curve y = c(¢, z) is shifting downward. Figure 4.5.1 is misleading
because it is drawn with ¢ fixed. In principle, the portfolio can lose money
because the curve c(t, ) shifts downward more rapidly than the money market
investment and the long gamma position generate income. The essence of the
hedging argument in Subsection 4.5.3 is that if the stock really is a geometric
Brownian motion and we have determined the right value of the volatility
o, then so long as we continuously rebalance our portfolio, all these effects
exactly cancel!

Of course, assets are not really geometric Brownian motions with constant
volatility, but the argument above gives a good first approximation to reality.
It also highlights volatility as the key parameter. In fact, the mean rate of
return a of the stock does not appear in the Black-Scholes-Merton equation
(4.5.14). From the point of view of no-arbitrage pricing, it is irrelevant how
likely the stock is to go up or down because a delta-neutral position is a
hedge against both possibilities. What matters is how much volatility the
stock has, for we need to know the amount of profit that can be made from
the long gamma position. The more volatile stocks offer more opportunity for
profit from the portfolio that hedges a long call position with a short stock
position, and hence the call is more expensive. The derivative of the option
price with respect to the volatility o is called vega, and it is positive. As
volatility increases, so do option prices in the Black-Scholes-Merton model.

4.5.6 Put—Call Parity

A forward contract with delivery price K obligates its holder to buy one share
of the stock at expiration time T in exchange for payment K. At expiration,
the value of the forward contract is S(T') — K. Let f(¢,z) denote the value of
the forward contract at earlier times ¢t € [0,7] if the stock price at time ¢ is
S(t) = z.

We argue that the value of a forward contract is given by

ftz)y=z—e"T-YK, (4.5.26)

If an agent sells this forward contract at time zero for f(¢,S(0)) = S(0) —
e "TK, he can set up a static hedge, a hedge that does not trade except
at the initial time, in order to protect himself. Specifically, the agent should
purchase one share of stock. Since he has initial capital S(0) — e "TK from
the sale of the forward contract, this requires that he borrow e~"T K from the
money market account. The agent makes no further trades. At expiration of
the forward contract, he owns one share of stock and his debt to the money
market account has grown to K, so his portfolio value is S(T') — K, exactly the
value of the forward contract. Because the agent has been able to replicate the
payoff of the forward contract with a portfolio whose value at each time ¢ is
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S(t)— e~"(T-t) K this must be the value at each time of the forward contract.
This is f(t,S(t)), where f(¢,z) is defined by (4.5.26).

The forward price of a stock at time ¢ is defined to be the value of K that
causes the forward contract at time ¢ to have value zero (i.e., it is the value
of K that satisfies the equation S(t) — e~ "(T~Y K = 0). Hence, we see that in
a model with a constant interest rate, the forward price at time ¢ is

For(t) = e" T~ 5(t). (4.5.27)

Note that the forward price is not the price (or value) of a forward contract.
For 0 < t < T, the forward price at time ¢ is the price one can lock in at time
t for the purchase of one share of stock at time T', paying the price (settling)
at time T. No money changes hands at the time the price is locked in.

Let us consider this situation at time ¢ = 0. At that time, one can lock
in a price For(0) = e"TS(0) for purchase of the stock at time 7. Let us do
this, which means we set K = e"7.S(0) in (4.5.26). The value of this forward
contract is zero at time t = 0, but as soon as time begins to move forward,
the value of the forward contract changes. Indeed, its value at time ¢ is

f(t,5(2)) = S(t) — e™S(0).

Finally, let us consider a Furopean put, which pays off (K — S(T))* at
time T. We observe that for any number z, the equation

r—-K=(@x-K)"—(K-z)* (4.5.28)

holds. Indeed, if z > K, then (z — K)* =z — K and (K — z)* = 0. On the
other hand, if z < K, then (t— K)* =0and —(K—z)t = —-(K—z) =z—K.
In either case, the right-hand side of (4.5.28) equals the left-hand side. We
denote by p(t, z) the value of the European put at time ¢ if the time-t stock
price is S(t) = z. Similarly, we denote by ¢(¢,z) the value of the European
call expiring at time T with strike price K and by f(¢,z) the value of the
forward contract for the purchase of one share of stock at time T in exchange
for payment K. Equation (4.5.28) implies

f(T, S(T)) = ¢(T, S(T)) - p(T, S(T)),

the payoff of the forward contract agrees with the payoff of a portfolio that
is long one call and short one put. Since the value at time T of the forward
contract agrees with the value of the portfolio that is long one call and short
one put, these values must agree at all previous times:

ft,z) =c(t,z) —p(t,z), >0, 0<t<T. (4.5.29)

If this were not the case, one could at some time t either sell or buy the
portfolio that is long the forward, short the call, and long the put, realizing
an instant profit, and have no liability upon expiration of the contracts. The
relationship (4.5.29) is called put—call parity.



164 4 Stochastic Calculus

Note that we have derived the put—call parity formula (4.5.29) without ap-
pealing to the Black-Scholes-Merton model of a geometric Brownian motion
for the stock price and a constant interest rate. Indeed, without any assump-
tions on the prices except sufficient liquidity that permits one to form the
portfolio that is long one call and short one put, we have put—call parity. If
we make the assumption of a constant interest rate r, then f(¢,z) is given by
(4.5.26). If we make the additional assumption that the stock is a geometric
Brownian motion with constant volatility o > 0, then we have also the Black-
Scholes-Merton call formula (4.5.19). We can then solve (4.5.29) to obtain the
Black-Scholes-Merton put formula

p(t,z) = z(N(d4(T - t,z)) — 1) — Ke " T=O)(N(d_(T - t,z)) - 1)
= Ke "T"YN(—d_(T — t,z)) — aN(—dy (T — t,z)),  (4.5.30)

where dy. (T — t,z) is given by (4.5.20).

4.6 Multivariable Stochastic Calculus

4.6.1 Multiple Brownian Motions
Definition 4.6.1. A d-dimensional Brownian motion is a process
W(t) = (Wi (t),...,Wqu(t))

with the following properties.

(i) Each W;(t) is a one-dimensional Brownian motion.
(it) If i # j, then the processes W;(t) and W;(t) are independent.

Associated with a d-dimensional Brownian motion, we have a filtration F(t),
t > 0, such that the following holds.

(i) (Information accumulates) For 0 < s < t, every set in F(s) is also in
F(t).

(iv) (Adaptivity) For eacht > 0, the random vector W (t) is F(t)-measurable.

(v) (Independence of future increments) For 0 < t < u, the vector of
increments W (u) — W (t) is independent of F(t).

Although we have defined a multidimensional Brownian motion to be a
vector of independent one-dimensional Brownian motions, we shall see in Ex-
ample 4.6.6 how to build correlated Brownian motions from this.

Because each component W, of a d-dimensional Brownian motion is a
one-dimensional Brownian motion, we have the quadratic variation formula
[W;, W;](t) = t, which we write informally as

dW;(t) dW;(t) = dt.
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However, if i # j, we shall see that independence of W; and W; implies
[Wi, W;](t) = 0, which we write informally as

dW;(t) dW;(t) =0, i # j.

We justify this claim.
Let IT = {to,...,t,} be a partition of [0, T]. For i # j, define the sampled
cross variation of W; and W on [0, 7] to be

n—1

Cn = [Wilter1) — Wilte)] [Wi(tesr) — Wi(te)]-
k=0

The increments appearing on the right-hand side of the equation above are
all independent of one another and all have mean zero. Therefore, ECj; = 0.
We compute Var(Cp). Note first that

n—1
Chq= Z [Wi(tes1) — Wi(tk)]2 [Wi(tksr) — W; (tk)]2
k=0
n—1
+2 [Wilter1) — Wilte)] (W, (tes1) — Wi(te)]
<k

[Wiltes1) — Wite)] [W; (Be4a) — Wi(tx))-

All the increments appearing in the sum of cross-terms are independent of
one another and all have mean zero. Therefore,

n—1

Var(Crr) =EC} =E Y [Wiltes1) — Wilte)) [W(terr) — W;(te))™.
k=0

But [Wi(tk+1) - VVi(tk)]2 and [Wj(tk+1) - Wj(tk)]2 are independent of one
another, and each has expectation (tx+1 — tx). It follows that

n—1 n—1
Var(Cmr) = ) (tke1 — t&)® < M| - D (tker — ta) = ||| - T.
k=0 k=0

As || II|| — 0, we have Var(Cpr) — 0, so Cpz converges to the constant ECy =
0.

4.6.2 It6-Doeblin Formula for Multiple Processes

To keep the notation as simple as possible, we write the Ité formula for two
processes driven by a two-dimensional Brownian motion. In the obvious way,
the formula generalizes to any number of processes driven by a Brownian
motion of any number (not necessarily the same number) of dimensions.
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Let X (¢) and Y () be Itd processes, which means they are processes of the
form

X(¢) =X(O)+/0 61(u) du+/0 o11(u) dWl(u)+/; o12(u) dWa(u),

Y (t) =Y (0) +/0 O2(u) du +/0 021 (u) dW;(u) +/0 o22(u) dWa(u).

The integrands ©;(u) and o0;;(u) are assumed to be adapted processes. In
differential notation, we write

dX (t) = 641(t) dt + o11(t) dW1(t) + o12(t) dWa(2), (4.6.1)
dY (t) = O2(t) dt + 021 (t) dW1(t) + o22(t) dWa(t). (4.6.2)

The It6 integral fot 011(u) dW1(u) accumulates quadratic variation at rate

0% (t) per unit time, and the It6 integral fot o12(u) dWa(u) accumulates
quadratic variation at rate o%,(t) per unit time. Because both of these in-
tegrals appear in X (t), the process X (t) accumulates quadratic variation at
rate 0%, (t) + 0%,(t) per unit time:

t
. X10) = [ (oh) + b)) du.
We may write this equation in differential form as
dX (t)dX(t) = (02,(t) + o35(t)) dt. (4.6.3)

One can informally derive (4.6.3) by squaring (4.6.1) and using the multipli-
cation rules

dtdt =0, dtdW;(t) =0, dW;(t) dW;(t) = dt, dW;(t) dW;(t) =0 for i # j.
In a similar way, we may derive the differential formulas
dY (t) dY (t) = (03,(t) + 02,(2)) dt, (4.6.4)
dX(8)dY (2) = (012(t)o21(t) + o12(t) 022 (1)) dt. (4.6.5)

Equation (4.6.5) says that, for every T > 0,

T
(X, Y|(T) = /0 (011(t)o21(t) + 012(t)022(2)) dt. (4.6.6)

The term [X,Y](T) on the left-hand side is defined as follows. Let I =
{to,t1,...,tn} be a partition of [0,T] (i.e., 0 = to < t;1 < -+ < tp, = T)
and set up the sampled cross variation

n—1

3 [X (k1) = X (@)Y (Brg1) — Y (t)]- (4.6.7)
k=0
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Now let the number of partition points n go to infinity as the length of the
longest subinterval ||IT|| = maxo<k<n—1(tk+1 — tk) goes to zero. The limit of
the sum in (4.6.7) is [X,Y](T). This limit is given by the right-hand side of
(4.6.6). The proof of this assertion is similar to the proof of Lemma 4.4.4,
with the additional feature that we must use the fact that [Wy, W](t) = 0.
We omit the details.

The following theorem generalizes the It6-Doeblin formula of Theorem
4.4.6. The justification, which we omit, is similar to that of Theorem 4.4.6.

Theorem 4.6.2 (Two-dimensional It6-Doeblin formula). Let f(t,z,y)
be a function whose partial derivatives fi, fz, fy, fez, foy, fyz, and fyy are
defined and are continuous. Let X (t) and Y (t) be Ité processes as discussed
above. The two-dimensional It6-Doeblin formula in differential form is

daf(t, X (), Y (t)
=fe(t, X(t),Y(t)) dt + f=(t, X(t), Y (t)) dX(t) + £, (¢, X (t), Y (t)) Y (¢)
+%fzz (t, X(t),Y(t) dX(t) dX(t) + foy (t, X (1), Y (2)) dX (t) Y (2)

+3. 5 (6 X(2),Y (1) dY () d () (46.8)

Before discussing formula (4.6.8), we rewrite it, leaving out ¢ wherever
possible, to obtain the same formula in the more compact notation

df(t, X,Y) = frdt + frdX + f, dY
+% foz dX dX + fry dX dY + % fuwdY dY.  (4.6.9)
