HANDBOOK OF

Mathematical
Techniques for
Wave /Structure
Interactions

C. M. Linton
P. Mclver

CHAPMAN & HALL/CRC

Boca Raton London New York Washington, D.C.



Library of Congress Cataloging-in-Publication Data

Linton, Christopher M.

Handbook of mathematical techniques for wave/structure interactions
/ Christopher M. Linton, Philip MclIver.

p. cm.

Includes bibliographical references and index.

ISBN 1-58488-132-1 (alk. paper)

1. Water waves--Mathematical models--Handbooks, manuals, etc. 2.
Structural dynamics--Handbooks, manuals, etc. I. Mclver, Philip.

II. Title.
TA654.55 .L56 2001
624.1"71--dc21 2001017068

CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse-
quences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, microfilming, and recording, or by any infor-
mation storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion,
for creating new works, or for resale. Specific permission must be obtained in writing from CRC
Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks,
and are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 1-58488-132-1
Library of Congress Card Number 2001017068
Printed in the United States of America 1 2 3 4 567 8 90
Printed on acid-free paper

© 2001 By CRC Press LLC




Contents

Preface

1 The water-wave problem

1.1 Introduction

1.2 The linearized equations

1.3 Interaction of a wave with a structure
1.3.1 The radiation condition
1.3.2 The scattering problem
1.3.3 The radiation problem
1.3.4 Hydrodynamic forces and moments
1.3.5 Limitations of the inviscid, linear theory

1.4 Reciprocity relations

1.5 Energy of the lluid motion
1.5.1 Energy radiated to the far feld
1.5.2 Potential and kinetic energy

2 Eigenfunction expansions
2.1 Construction of vertical eigenfunctions
2.2 Two-dimensional problems
2.2.1 The wave-maker problem
2.2.2 Forced oscillations of a rectangular tank
2.3 Three-dimensional problems
2.3.1 Sloshing in a rectangular tank
2.3.2  Oblique waves
2.3.3  Scattering by a synnuetric obstacle
2.3.4  Cylindrical polar coordinates
2.3.5  Sloshing in a cylindrical tank
2.4  The Helmholtz equation

© 2001 By CRC Press LLC



2.5

2.6

2.4.1 Scattering by a vertical circular cylinder
Matched eigenfunction expansions

2.5.1 Scattering by a vertical barrier

2.5.2 A heaving truncated circular cylinder
2.5.3 The finite dock problem

Infinite depth

3 Multipole expansions

3.1

3.2

Isolated obstacles

3.1.1 A submerged circular cylinder
3.1.2 A heaving hemisphere

3.1.3  Sloshing in a hemisphere

Multiple bodies

3.2.1 Two submerged circular cylinders
3.2.2 A row of vertical circular cylinders

4 Integral equations

4.1

4.2
1.3
4.4

4.5
4.6

4.8

5 The
5.1

Source distributions

4.1.1 Numerical solution

4.1.2  Irregular values

Green’s theoremn

4.2.1 Scattering by a vertical cylinder

Thin obstacles

4.3.1 Numerical solution

Interior problems

Free-surface problems

Numerical evaluation of Green’s functions

4.6.1 Green's functions for three-dimensional
water-wave probletns

4.6.2 Channel Green’s functions

Diffraction by a breakwater

4.7.1 Diffraction by a gap in a breakwater

4.7.2 Diffraction by an insular breakwater

4.7.3 Embedding formulas

4.7.4 Numerical solutions

Babinet’s principle

Wiener-Hopf and related techniques
The Wiener-Hopf technique

5.1.1 The Sommerfeld problemn

5.1.2 High-frequency approximations

© 2001 By CRC Press LLC



5.1.3 A submerged horizontal plate
5.2 Residue calculus theory

5.2.1 Asymptotics of infinite products

5.2.2 The finite dock problem

5.2.3 DPeriodic coastlines

6 Arrays

6.1 An array of vertical circular cylinders

6.2 A general interaction theory

6.3 The wide-spacing approximation
6.3.1 Scattering by equally-spaced identical structures
6.3.2  Wave propagation through a periodic array

6.4 Diffraction by multiple gratings
6.4.1 A single grating
6.4.2 Reciprocity relations
6.4.3 Multiple gratings

7 Wave interaction with small objects

7.1 Introduction

7.2 Diffraction by a breakwater
7.2.1 Informal solution to the breakwater-gap problem
7.2.2 A formal matchiug principle
7.2.3 Formal solution to the breakwater-gap problem
7.2.4 The insular breakwater

7.3 Scattering by a vertical cylinder

7.4 Radiation by a heaving cylinder

7.5 A technique for eigenvalue problems

8 Variational methods
8.1 Scattering and radiation problerns
R.1.1 The variational principle
8.1.2 Numerical implementation
8.1.3 The Galerkin method
8.1.4 Complementary approximations
8.2 Eigenvalue problems
8.2.1 Eigenvalues of the negative Laplacian
R.2.2 The sloshing problem
8.2.3 The maximum-minimum principle
R.2.4 The Rayleigh-Ritz method

© 2001 By CRC Press LLC



Appendices
A Bessel functions

B Multipoles
B.1 Two dimensions, infinite depth
B.2 Two dimensions, finite depth
B.3 Three dimensions, infinite depth
B.4 Three dimensions, linite depth
B.5 Oblique waves in inhinite depth
B.6 Oblique waves in [inite depth

C Principal-value and finite-part integrals

References

©2001By CRC Press LLC



Preface

A wide range of mathematical techniques are now available for the so-
lution of problems involving the interaction of waves with structures.
Many of these techniques are described in existing textbooks, but of-
ten not in the context of wave/structure interactions and often without
reference to applications at all. This book draws together some of the
most important of these methods into a single text to form a convenient
reference work for both applied mathematicians and engineers. All of
the techniques are described within the context of wave/structure in-
teractions and are often illustrated by application to research problems.
An advantage of describing a number of methods within the same text is
that, for particular problems, direct comparisons can be made between
them.

The methods described in this book may be applied to a wide variety of
problems from many fields of research including water waves, acoustics,
electromagnetic waves, waves in elastic media, and solid-state physics.
When writing the book it soon became clear that it was impossible to
do justice to all of these fields, and so we decided to focus mainly on
problems that have interpretations within the linearized theory of water
waves. However, we have made extensive reference to applications of
the techniques in other areas, both throughout the text and in extensive
bibliographical notes that are placed at the end of many of the sections
within the book. Our hope is that in this way the book will be a useful
reference work for workers from a wide range of research fields.

The reader is assumed to have a knowledge at an undergraduate level
of multivariable calculus, including the solution of linear partial differ-
ential equations, and complex-variable theory. Detailed explanations
are given of the important steps within the mathematical development
and, where possible, physical interpretations of mathematical results are
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given. The overall aim is provide a pedagogical text that will help read-
ers apply the techniques to their own problems.

In view of our decision to focus on water waves, the first chapter of
the book is concerned with the linearized theory of the interaction of
water waves and structures. One purpose of this chapter is to help those
unfamiliar with the area to appreciate more the applications discussed
in later chapters. We also took the view that it would be convenient
for those who work in water waves to have a fairly detailed account of
background material readily to hand.

Each subsequent chapter deals with a different technique. Chapters 2
and 3 consider the representation of solutions by infinite series of suitably
chosen functions. Chapter 2 first describes the construction of eigen-
function expansions using the technique of separation of variables for
partial differential equations, and then goes on to describe the method
of matched eigenfunction expansions. Chapter 3 deals with so-called
multipole expansions where the basis functions are singular at a point
exterior to the domain of interest. In some simple cases the multipoles
are exactly the eigenfunctions obtained by separation of variables.

Many problems are conveniently formulated in terms of integral equa-
tions and in Chapter 4 some methods for the formulation and numerical
solution of such equations are described. In the water-wave problem
numerical methods based on integral equations obtained from an appli-
cation of Green’s theorem are popular. Crucial to the success of these
methods is the efficient evaluation of the Green’s function and Chapter
4 also describes effective methods for this purpose.

The Wiener-Hopf method and the related residue calculus theory are
important techniques for the solution of problems of wave interaction
with semi-infinite geometries. A detailed exposition of these advanced
techniques is given in Chapter 5. Examples are used to illustrate how
both techniques can be used to obtain approximations to the solutions
of problems involving finite geometries.

Chapter 6 deals with wave interaction with an array of structures and
describes both exact methods and very effective approximate techniques
based on the assumption that the structures are widely spaced compared
to the wavelength. Arrays that are compact or that extend to infinity
in one direction are both treated.

It is often useful to use approximate techniques on difficult problems
in order to gain insight into the physical processes involved. It is with
this in mind that approximate methods are given in Chapter 7 for the
analysis of wave interaction with objects that are small relative to the
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wavelength. In this chapter, the method of matched asymptotic expan-
sions is applied to both small structures and structures with small gaps.
A separate technique for the solution of eigenvalue problems involving
small objects is also described.

Finally, Chapter 8 describes variational techniques that can, for cer-
tain classes of problems, yield very accurate solutions with minimal com-
putational effort. First of all, it is shown how variational methods can be
used to improve the eigenfunction techniques given in Chapter 2, and
then the classical Rayleigh-Ritz method for the solution of eigenvalue
problems is described.

Almost all of the numerical computations reported here were carried
out by the authors specifically for inclusion in this book. We also believe
that some of the material in this book appears in print for the first time.
This includes the multipole solution for oblique-wave incidence on a sub-
merged cylinder in §3.1.1, the development of the wide-spacing approxi-
mation for scattering and radiation by an arbitrary number of structures
described in §6.3, and the higher-order solution to the breakwater-gap
problem by matched asymptotic expansions given in §7.2.3

We are very grateful to Paul Martin and David Porter for answering
our technical queries, and to Maureen Mclver for her critical reading of
the manuscript. Thanks are also due to John Cadby for some of the work
in §3.1.1 and to Matthew Bowen for working through some sections and
weeding out mistakes. Some must remain, and for that we apologise.

C. M. Linton
P. Mclver
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Chapter 1

The water-wave problem

The techniques described in this book have applications in many areas
of physical interest, including the fields of water waves, acoustics, and
electromagnetic waves. However, for definiteness in the interpretation
of both the problems and their solutions, we have decided to focus most
attention on applications in the linearized theory of water waves. Exam-
ples of the application of the techniques to problems in other physical
contexts are referred to, where appropriate, in the text and are also
provided through the extensive bibliographical notes. For the scatter-
ing of electromagnetic and acoustic waves by structures, an extensive
collection of results is given by Bowman, Senior, and Uslenghi (1987).

The present introductory chapter is therefore concerned with the hy-
drodynamics of the interaction of water waves with structures. It in-
cludes the equations that govern the fluid motion as well as definitions
of integrated quantities which are physically important, such as hydro-
dynamic forces and reflection and transmission coefficients.

In §1.1, we begin with brief derivations of the governing equations
and nonlinear boundary conditions for the water-wave problem; the re-
duction to the linearized theory for small amplitude waves is described
in §1.2. When subject to an incident water wave, a structure will in
general scatter the incident wave field, and be forced to move so that
further waves are radiated. On the basis of the linearized theory, the
full problem can be decoupled into a scattering problem and a radiation
problem which are linked by the equation of motion for the structure.
In §1.3 the scattering and radiation problems are described in detail,
and expressions are given for the hydrodynamic forces on a structure in
both problems. Some identities involving these forces, as well as other
integrated quantities, are discussed in §1.4. Finally, in §1.5, the rela-
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tionship between the hydrodynamic forces in the radiation problem and
the energy of the fluid motion is described.

1.1 Introduction

Here a brief introduction is given to the standard equations of invis-
cid water-wave theory. For a more complete account the reader might
consult Chapter 1 of the book by Crapper (1984) or of that by Johnson
(1997).

For all of the water-wave problems discussed in this book, a Cartesian
coordinate system (z,y, z) is adopted with the z-axis directed vertically
upwards and with z = 0 in the plane of the undisturbed free surface.
For purely two-dimensional motion the dependence on y will be omitted
and, throughout, time is denoted by t.

The fluid is assumed to be inviscid and incompressible and its motion
to be irrotational. For irrotational motion the fluid velocity u may be
expressed as the gradient of a scalar velocity potential ®(x,y, z,t), that
is u = V®. Conservation of mass requires that the divergence of the
velocity is zero so that ® satisfies Laplace’s equation

V2 =0 (1.1)

throughout the fluid.
The vertical elevation of a point on the free surface is written

z =n(z,y,t). (1.2)

The kinematic condition that fluid particles cannot cross the air-water
interface is obtained by equating the vertical speed of the free surface
itself to that of a fluid particle in the free surface to get

on  ovon o8on _ 00

ot " owor " oyoy 0z e=n@y,t).  (13)

If surface tension is neglected (this is valid for waves longer than a
few centimetres), the pressure must be continuous across the interface,
and at any point in the fluid Bernoulli’s equation,

0P

S+ |V<I>|2+I—;+gz:0, (1.4)
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holds where p is the fluid density, g is the acceleration due to gravity and
p is the pressure in the fluid relative to atmospheric pressure. Because of
the comparatively small density of the air its motion may be neglected
and the pressure along the interface taken to be constant. Bernoulli’s
equation evaluated at the interface, where p = 0, then gives the dynamic
condition
0P 2
5 T2IVel +gn=0 on z=n(zy,1). (1.5)
When there is an impermeable sea bed so that the local fluid depth
is h(z,y), then there must be no flow normal to the bed and hence
0P
= _90
on

where n is a coordinate measured normal to the bed.

on z=—h(z,y), (1.6)

1.2 The linearized equations

For sufficiently small motions relative to the wavelength, the above
nonlinear free-surface conditions (1.3) and (1.5) may be linearized about
the undisturbed state. The linearized theory requires the amplitude of
the fluid motion to be small compared to the wavelength throughout
the fluid domain including the vicinity of any structures, and hence
the amplitude of any structural motions must also be small relative to
other length scales. It is consistent with the linearization to apply the
free-surface boundary conditions on z = 0, in which case the kinematic
condition (1.3) becomes

on 0P
_— e — = ]..
5 =5, O ¢ 0 (1.7)
and the dynamic condition (1.5) becomes
i
aa—t—l—gn:O on z=0. (1.8)

These two conditions may be combined by differentiation of (1.8) with
respect to t and substitution for 9n/dt from (1.7) to get the linearized
free-surface condition

9’ 9%

- — = =0. 1.9
8t2+gaz 0 on z=0 (1.9
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All of the results, here and in subsequent chapters, are based on the
linearized theory and relate to time-harmonic motion with a specified
frequency. Corresponding results for more complicated motions such as
the response to a random sea may be constructed by Fourier analysis (see
for example Faltinsen 1990, Chapter 2). For time-harmonic motions of
radian frequency w, time may be removed from the problem by writing

®(z,y,2,t) = Re {4(z,y,2) e_i“’t} , (1.10)

where ¢ is a complex-valued potential and Re denotes the real part.
This is a convenient way of extracting the time dependence in time-
harmonic problems as only a single function need be solved for. A more
cumbersome alternative is to write

®(z,y,2,t) = ¢z, y, 2) coswt + ¢i(z, v, 2) sinwt, (1.11)

where ¢, and ¢; are the real and imaginary parts of ¢, and then to solve
for the two real-valued functions ¢ and ¢; separately. A comparison
of (1.10) and (1.11) shows that ¢ contains information about both the
amplitude and the phase of the motion.

From equation (1.1) it follows that ¢ satisfies Laplace’s equation

Vi =0 (1.12)

throughout the fluid domain. In terms of ¢, the linearized free-surface
condition (1.9) becomes

0p B
E_qu on z=0, (1.13)

where K = w?/g, and the bed condition (1.6) becomes

o= 0 on z=—h(z,y). (1.14)

For deep water, characterized by the limit h(z,y) — oo for all z and y,
the condition (1.14) is replaced by

[Vd| =0 as z— —o0. (1.15)

The potential ¢ must also satisfy boundary conditions on any structures
within the fluid and radiation conditions at large horizontal distances;
these will be discussed in §§1.3.1-1.3.3.
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We will only consider the cases of deep water and constant finite
depth in any detail. A great deal of work has been done on scattering
problems in which h is variable; for a recent review of two-dimensional
problems of this type, see Porter and Chamberlain (1997). In the case
of constant finite depth A, one solution of (1.12)—(1.14) is a plane wave.
With horizontal polar coordinates (r,6) defined by

x=rcosf), y=rsinb, (1.16)
a plane wave of amplitude A and wavenumber k propagating in the
direction # = 3 has a potential

by = igA
I " Ucoshkh

corresponding to a free-surface elevation given, from (1.8) and (1.10),
by

ek c0s(9=8) cosh k(z + h), (1.17)

n = Aelkreos(=F) (1.18)

The wavenumber & is the number of wavelengths in a distance 27, meas-
ured in the direction of wave propagation, and so the wavelength of such
a disturbance is A = 27 /k. If the wave is propagating in the direction
of # = 0 along the xz-axis, then the exponential factor in (1.17) and
(1.18) reduces to €*2. The potential ¢; identically satisfies (1.12) and
(1.14) and will satisfy (1.13) provided K = w?/g and k are related by
the dispersion relation

K = ktanhkh. (1.19)

The solutions to this equation will be discussed in detail in §2.1. Here
we just note that for a specified frequency w the equation determines
the wavenumber k.

In the case of deep water the dispersion relation reduces to K = k
and a plane wave making an angle # = 0 with the positive = axis has
the form

¢I — _% elKrcos(O—ﬁ) eKz, n= AelKrcos(O—ﬁ) ) (120)
|

1.3 Interaction of a wave with a structure

On the surface of a structure, the normal component of the structural
velocity must equal the velocity component in the same direction of an
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adjacent fluid particle. In terms of the velocity potential ® introduced
in §1.1, this requires

o®
2 _v,. 1.21
o = (1.21)

where V,, is the component of the structural velocity in the direction of
the normal coordinate n directed out of the fluid. In the linearized theory
this condition is applied on the equilibrium surface of the structure which
will be denoted by Sg.

A wave train incident upon a floating structure will be diffracted to
produce a scattered wave field and also set the structure in motion to
produce a radiated field. By linear superposition, the velocity potential
may be decomposed into two parts as

d = dg + Oy. (1.22)

The potential ®g is the solution of the scattering problem in which the
structure is held fixed in the waves and it may be further decomposed
as

&g = o)+ Pp (1.23)

where ®1 represents the incident wave train and ®p, the diffracted waves.
Because the structure is held fixed, the appropriate boundary condition
is

0%s 0 0%p _%
on on  On
The potential ®g is the solution of the radiation problem, in which the

structure is forced to oscillate in the absence of an incident wave, and
satisfies

on Sg. (1.24)

% =V, on Sp. (1.25)

In general, the normal velocity V, is found from the equation of motion

of the structure (see Mei 1983, §7.2, or Newman 1977, Chapter 6) and

will depend, in particular, on the forces that result from any incident
waves.

Following (1.10), for time-harmonic motions with radian frequency w,

the time variation in the scattering potential is separated out by writing

®s = Re {(¢1 + ¢p) e}, (1.26)
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where, for constant finite depth, the incident wave ¢ has the form (1.17)
(or (1.20) for deep water). Similarly, for the radiation potential the time
variation is separated out by writing

®p = Re {pre ™} . (1.27)

Both ¢p and ¢r are complex-valued functions of position only.

1.3.1 The radiation condition

To obtain a unique solution, the diffracted field ¢p and the radiated
field ¢r, defined in equations (1.26) and (1.27), respectively, must each
satisfy a radiation condition specifying that the waves corresponding
to these potentials propagate away from the structure. For w equal to
either ¢p or ¢r the radiation condition can be written

. ow
i (a F 1’“") =0 (1.28)
in two dimensions and
ow
li V2 (22 = .
Jim 7 (67‘ 1kw> 0 (1.29)

in three dimensions, where k is the wavenumber introduced in §1.2 and r
is the horizontal polar coordinate introduced in equation (1.16). In three
dimensions a radially spreading cylindrical wave of decreasing amplitude
is obtained and energy conservation arguments require the factor of 7172
in (1.29). The role of the precise form of the radiation condition (1.29)
in formulating integral equations is demonstrated in §4.2.1.

Here it is assumed that there are no ‘trapped-mode’ solutions at the
frequency of interest. A trapped mode supported by the structure is a
free oscillation of the fluid that has finite energy. The existence of such
a mode would mean that the radiation condition no longer guarantees
the uniqueness of the solution. Uniqueness has been proved for certain
classes of geometries; for example, uniqueness of the solution is estab-
lished for surface-piercing structures which have the property that any
vertical line emanating from the free surface does not intersect the body
(John 1950), or two-dimensional structures which are contained within
lines which emanate from the free surface at a certain angle (Simon and
Ursell 1984). On the other hand, trapped modes have been proved to ex-
ist for certain surface-piercing structures in the two-dimensional water-
wave problem by Mclver (1996a) and in the three-dimensional problem
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by Mclver and Mclver (1997). Their existence for certain submerged
structures has been demonstrated by Mclver (2000a). The implications
of the existence of trapped modes for the solutions of the boundary-value
problem are discussed by Mclver (1997), while the implications for the
hydrodynamic forces, defined later in §1.3.4, are discussed by Newman
(1999).

1.3.2 The scattering problem

In the scattering problem, the solution ¢p for the diffracted wave field,
defined in equation (1.26), is a solution of Laplace’s equation within
the fluid domain and satisfies the free-surface condition (1.13), the bed
condition (1.14) (or (1.15) for deep water), and

otn _ O
on on
As noted in §1.3.1, to ensure a unique solution the diffracted field must

also satisfy a radiation condition in the form of either (1.28) or (1.29)
with w = ¢p.

on Sg. (1.30)

1.3.3 The radiation problem

To fully describe the position and orientation of a rigid structure, six
coordinates, corresponding to six modes of motion, are required. In
naval hydrodynamics, the translational modes are called surge, sway,
and heave for the motions parallel to the z-, y- and z-axes, respectively,
and the rotational modes are called roll, pitch, and yaw for motions
about these axes. In general, the motion of the structure will be a
combination of movements in all of these directions and the velocity of
a point on the surface, measured normal to the surface, may be written

Vo =Un+Q.(r X n), (1.31)

where r is the position vector of the point measured from the centre of
rotation and n is a normal vector to the structure’s surface directed out
of the fluid. Here, the translational velocity vector

U = (U, Uz, Us) (1.32)

has components corresponding to surge, sway, and heave motions, re-
spectively, and the rotational velocity vector

Q = (Us,Us, Us) (1.33)
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has components corresponding to roll, pitch, and yaw, respectively. The
normal velocity V, given by (1.31) may be rewritten as

6
Vo= Uwny, (1.34)
p=1

where {n,;u =1,2,3} are the x,y, z components of the unit normal tc
the structure defined by the direction cosines

ny = cos(n,z), ng=cos(n,y), ng=cos(n,z), (1.35)

while {n,; u = 4,5,6} are the corresponding components of r x n. If a
point on the structure’s surface has coordinates (z,y,z) and (2',y', 2')
is the equilibrium position of the centre of rotation, then

ng = (y—y)ns — (z — 2')na,
ns = (z — 2")ny — (z — 2')ng, (1.36)
ne = (x — ' )nz — (y — y')ny.

For time-harmonic motions, each velocity component may be written

U, = Re {u, e '} (1.37)

and hence by linear superposition the radiation velocity potential, de-
fined in equation (1.27), may be decomposed as

6
SR = uudy (1.38)

p=1

where u,, is the complex amplitude of the oscillations in mode p. The
potential ¢, describes the wave field due to oscillations in mode p with
unit velocity amplitude. The boundary condition (1.25) on the struc-
tural surface Sg, with V;, given by (1.34), is satisfied provided that

09
on

Hence, ¢,, is a potential satisfying Laplace’s equation within the fluid,
the free-surface boundary condition (1.13), and the structural boundary
condition (1.39). To obtain a unique solution, the radiated field must
also satisfy a radiation condition in the form of (1.28) or (1.29) with
w= @,

=n, on Sg, pu=12,...,6. (1.39)
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1.3.4 Hydrodynamic forces and moments

A structure immersed in water will be subject to forces due to the
pressure from the surrounding fluid. From Bernoulli’s equation (1.4),
after linearization, the pressure at any point in the fluid, relative to that
of the atmosphere, is

0P
P=—pgz—pg- (1.40)

The first term is the pressure associated with the submergence of the
measurement point, while the second term is the hydrodynamic pressure
due to the motion of the fluid. Here, we are concerned only with the
latter. The force on a structure is found by integrating the pressure
multiplied by the unit normal vector over the surface of the structure
and so, from (1.40), the u component of the hydrodynamic force due teo
the fluid motion is given by

Fult)=—p / / %I)n” ds, (1.41)
S

where the integral is taken over the mean wetted surface Sg for con-
sistency with the linearization and n, is the generalized normal defined
in §1.3.3. For time-harmonic motion of angular frequency w the time-
variation in the potential is removed as in (1.26) and (1.27) so that

Fu(t) =Re{F, e}, (1.42)
where from (1.41),
F, = iwp// ¢n, dS. (1.43)
SB

As explained previously, the velocity potential describing the fluid
motion may be decomposed into two parts representing the scattered
and radiated wave fields. The total hydrodynamic force on the structure
due to these wave fields is decomposed similarly by writing

6
Fu=Xu+Y wfop, (1.44)

v=1
where the component of the so-called exciting force due to the scattered
wave field is

X, = iwp / / (¢1 + ¢p)n, dS (1.45)
Ss
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and the component of the force resulting from forced oscillations in
mode v is

fuu = iwp//ﬁt’yn#dS- (1.46)
SB

It is conventional to further decompose the latter force into real and
imaginary parts by writing

fop =iw | ay +lb”“ : (1.47)
B L w

The first term is that part of the force in phase with the acceleration in
mode v, and the second term that part in phase with the corresponding
velocity. The real quantities a,, and b,, are termed the added mass
and radiation damping (or just damping) coefficients and they may be
considered as properties of the structure and, in general, are functions
of frequency. From (1.46) and (1.47),

b,
Qv + lw” = p// $um,, dS. (1.48)
Sg

Further details of forces and moments and the equations of motion of a
structure are given by Mei (1983, §7.2) and Newman (1977, Chapter 6).

1.3.5 Limitations of the inviscid, linear theory

The linearized theory assumes that the wavelength is much greater
than the wave height (that is, the wave slope is small). The fluid motion
generated by any moving structures must also be correspondingly small.

Figure 1.1 roughly indicates the region of validity of the inviscid linear
theory described in this chapter. Here H is the wave height (trough to
crest), D is a typical diameter of a structure and A is the wavelength.
When H/D is large, so that particle paths are long compared to the
structural diameter, low separation occurs and this changes substan-
tially the flow from that predicted by the inviscid theory. This is the
region marked ‘viscous’ in figure 1.1. When A/D is large, so that the
wavelength is much longer than typical structural dimensions, the wave
field is little modified by the structure and wave diffraction is relatively
unimportant. For moderate A/ D the wave field is significantly modified
by the presence of the structure and wave diffraction effects must be
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FIGURE 1.1

Regimes of importance for viscous and diffraction forces.
(Adapted from Figure 1.6 of O. M. Faltinsen, Sea Loads on
Ships and Offshore Structures, Cambridge University Press,
1990.)

included. As the fluid particle paths are now small compared to the
size of the structure, separation will not usually occur and the inviscid
theory may be used as viscous effects are confined to the thin bound-
ary layers on the structure’s surface. Thus, the primary application of
the theory is to the parameter regime marked ‘diffraction’ in Figure 1.1.
For further discussion of viscous effects see, for example, Sarpkaya and
Isaacson (1981, Chapter 6).

1.4 Reciprocity relations

There are some very general identities relating the quantities that
have been introduced which enhance our understanding of the physical
meaning of these quantities. They also provide checks that can be used
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on analytical or numerical work and help reduce the effort required to
calculate the quantities related by them. One way of deriving these
identities is to use Green’s theorem (see §4.2) which, for two harmonic
potentials ¢ and 1 both satisfying the free-surface and bottom boundary
conditions (1.13) and (1.14) (or equation 1.15), implies that

] (65 i) oseam [f (452 -v5)as-o. 0o

where Sg is the wetted surface of the structure, Sx is a vertical circular
cylinder of radius X, and as usual the normal is directed out of the fluid
region. In two dimensions Sy is replaced by two vertical lines at z = £ X
and following the standard convention we write S, for limx_,. Sx-

By substitution of various radiation and scattering potentials in place
of ¢ and ¥ in (1.49) many useful results can be obtained. This was
first done systematically by Newman (1976), though many of the results
were known much earlier. The method of generating these so-called
reciprocity relations is now standard and only brief details will be given
here. A more thorough account, including references to the original
derivations of the results, can be found in Mei (1983, §7.6), though some
more recent results are described at the end of this section.

Suppose ¢ = ¢, ¥ = ¢, are two radiation potentials corresponding
to two different modes of motion as defined in (1.38) and (1.39). It
follows from (1.49) that the added mass and damping matrices given by
(1.48) are symmetric. If we use ¥ = ¢,, the complex conjugate of ¢,,
in (1.49) and make use of this symmetry and the radiation condition
(1.29), we can relate the damping coefficient to the far-field form of the
radiation potentials through

by = pwks/w/ ¢, dS. (1.50)

If we restrict attention to the situation in which far from any structures
the depth has a constant value, &, then in two dimensions we can assume
(see equation 1.17) that

+ :l:lka: cosh k(z + h)
O~ A cosh kh

for some constants Aff, which represent the amplitudes of waves radiated
to oo, and then (1.50) gives

as x — %oo, (1.51)

b = pKcg(A7 Ay + AT AD), (1.52)
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where

v w 2kh
_Qw_ w2 .
T3 2% < + sinh 2kh) (1.53)

is the group velocity for waves in water of depth k. (The group velocity
is the velocity at which energy is propagated.)
In three dimensions we can assume that

2 N2 ., . . coshk(z+h)
~ _“ ikr—in/4
Pu ~ Au(0) < ) ¢ cosh kR

- as r—oo (1.54)

(this will be explained in §2.3.4 below), where A,(6) is some function
which represents the angular dependence of the amplitude of the radi-
ated waves in the far field and then the damping coefficients satisfy

_ 2pKey [T

b = A, (0)A,(6) do. (1.55)

0
It will be shown in §1.5 that this implies that the damping coefficients
by, are proportional to the energy radiated to infinity by a structure
oscillating in mode pu.

Next we examine what happens if we use two scattering potentials in
(1.49). Suppose ¢ = ¢, 9 = ¢@ with 9™ /on = 8¢ /on = 0 on
Si. In two dimensions we can characterize such a potential by

¢(j) ={4,,B;;C;,D;}, j=12, (1.56)

implying that

0 ) i )
Substitution of this into (1.49) gives the simple formula
A1By — B1A2 = C1Dy — D1Cs. (1.58)
A plane wave of unit amplitude incident from £ = —o0 and scattered by
a structure is characterized by
oW = {1, Ry; 1,0} (1.59)
whilst if the incident wave is from = = 400 we have
¢? = {0,Ty; Rz, 1}. (1.60)
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where R; and T;, i = 1,2, are known as reflection and transmission
coefficients, respectively. Substituting these forms into (1.58) shows that

T, = Ts. (1.61)

This is a remarkable result. It states that the transmission coefficient is
independent of the direction of the incident wave regardless of the shape
of the structure (or indeed the number of structures).

Instead of using 1 as above we can use ¢ = ¢(1) = {R;,1;0,T1} and
then (1.58) gives

1—|Ri]? = |Th)? (1.62)

which is a statement of the conservation of energy. Similarly 1—|R5|? =
|T2|? and combining these equations with (1.61) shows that

|y | = | Rl (1.63)

Thus the modulus of the reflection coefficient, though not necessarily the
phase, is independent of the direction of the incident wave. (Equality of
the phases occurs if the structure has symmetry about z = 0.) Informa-
tion about the phase of the reflection and transmission coefficients can
be obtained by taking ¢ = ¢ and ¢ = ¢(2). If we write

T=|Tle®, R;=|Rle™, j=12 (1.64)
then (1.58) reduces to
81 + 6y =20 £ . (1.65)

Similar results can be obtained for the three-dimensional case. A
general scattering potential due to an incident wave of amplitude A,
making an angle 3; with the positive z-axis, has the far-field form

, igAcoshk(z+ h) | ik 3 2 \'? . ikr—i
¢ ~ = wcosh(kh : lek B (7r—kr) AT

(1.66)
where we note that the normalized scattering amplitudes AU)(9) (like

R and T in the two-dimensional case) are non-dimensional, unlike the
functions A,(¢) defined in (1.54) (and AE defined in equation 1.51)
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which have the dimensions of length. Two results that can be obtained
are

AW (B +7) = AD(By + ) (1.67)
and
1 27
AW (By) + A () = —~ / AD (6YA®) () 4. (1.68)
0

Returning to the two-dimensional case, we can obtain further results
by considering the potential ¢ = —igw='(¢, — ¢,.), where ¢, is a radi-
ation potential whose far field is given by (1.51). Since on the structure
O0¢n/0n = ny,, which is real, it is clear that 8y /0n = 0 on Sg and so ¥
is a scattering potential characterized by

Y= {-Az, A5 Af, AL} (1.69)
With ¢ = ¢V = {1, Ry; T, 0}, (1.58) gives
AL + RiA; + TAL =0, (1.70)
and with ¢ = ¢ = {0, T; Rz, 1} we obtain
A+ RAL +TAL = 0. (1.71)

These results are known as the Bessho-Newman relations. For the case
of a structure that is symmetric about a vertical plane making symmetric
(heave) oscillations we have

Al = A7 = A, = |A] &, (1.72)

say, whilst for such a structure making antisymmetric (surge or roll)
motions

Al =—A; = A, = |A,| €, (1.73)

say. Noting that Ry = Ry = R in this case, we see that the Bessho-
Newman relations show that

R4+ T = —AjjA, = — e R—T=—A,/A4, = —e¥% . (1.74)

In three dimensions the Bessho-Newman relations are

- 1 2r ]
Au(By) + Ap(Bi +m) + —/ AL (0)AY)(9)do =0 (1.75)
™ Jo
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and they reduce to particularly simple expressions when the structure is
axisymmetric (Davis 1976). For such a structure the scattered field due
to an incident wave making an angle 3; with the positive z-axis is an
even function of § — 3; and so we can write the scattering amplitude as

oo
AV () = Z %" cm cosm(0 — f3;) (1.76)
m=0
for some set of unknowns ¢,,,, m =0,1,2,.... Here ¢, is the Neumann

symbol, defined by €9 = 1, €, = 2, m > 1 and the factor €,/2 is
introduced for convenience. The angular dependence of the radiated
waves in mode p can be written in the form

A,8) = 3 (=)™ (am cos mb + by sin mh) (1.77)

and then (1.75) reduces to

am + (L4 ¢m)8m = 0, m=0,1,2,..., (1.78)

b + (1 4 ¢m)bm =0, m=1,23,..., (1.79)

from which it is clear that each of the coefficients c,, satisfies the equation
1+ cm| =1

Finally, we can take ¢ = ¢y + ¢p, the potential of the incident plus

diffracted field on a fixed structure, and take ¥ = ¢,, the radiation

potential for the forced motion of the same structure in mode u. Since
both ¢p and ¢,, describe outgoing waves at infinity, application of (1.49)

results in
. 19} o
X, = —ipw [ (%2~ 0,58 as (1.80)
Soo

which relates the exciting force in the ut direction, defined in (1.45), to
the far field of the radiation potential for mode p. In the two-dimensional
case we assume (1.51) to hold and if the incident wave has amplitude A
and is from ¢ = oo we obtain

X, = —2iwpcgAAE. (1.81)

In three dimensions, with the incident wave making an angle  with the
positive z-axis we have

X, (B) = —4iwpk Y AAL(B + ). (1.82)
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These are known as the Haskind relations and they show that the ex-
citing force in the put? direction is proportional to the amplitude of the
waves radiated by the forced motion of the structure in mode y, in the
opposite direction to that of the incident wave.

All the reciprocity relations derived above relate far-field quantities,
or quantities such as the damping coefficient which are defined in terms
of integrals of near-field quantities. In two dimensions one can actually
express the scattering potential at all points in the fluid in terms of
the solutions to radiation problems. For example, for a structure which
is symmetric about a vertical plane (and assuming that the scattering
problem possesses a unique solution), McIver (1996b) showed that the
scattering potential due to an incident wave of unit amplitude, ¢(1),
defined in (1.59), can be expressed in terms of the solutions to two
radiation problems. Thus if ¢5 is the solution to the symmetric (heave)
radiation problem and ¢, is the solution to the antisymmetric (surge or
roll) radiation problem, with far-field amplitudes defined in (1.72) and
(1.73), then

won— Ly - Lo — 5
g ¢ - 2A—a(¢a ¢a) 2A—S(¢S ¢S), (1'83)

provided that A, /= 0 andAs /= 0. Note that equation (1.74) follows
immediately from the far-field form of this relation.

Reciprocity relations can also be derived for water-wave problems
other than those described in this section. Thus Srokosz (1980) and
Linton and Evans (1993b) derived relations applicable to a structure
placed in a channel with vertical sides and Linton and Mclver (1995)
and Cadby and Linton (2000) derived relations (in two and three di-
mensions, respectively) applicable to a structure in a two-layer fluid
consisting of a finite fluid layer of one density above an infinitely deep
layer of greater density. Another situation in which reciprocity relations
can be derived is described in §2.3.2. See also the bibliographical notes
at the end of §6.3.

Finally, we note that reciprocity relations analogous to those described
above for water-wave problems can also be derived for acoustic or elec-
tromagnetic waves, see for example Jones (1986, §1.35).
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1.5 Energy of the fluid motion

Here the relationship between the added mass and damping coetfi-
cients, defined in (1.47), and the energy of the fluid motion in a forcing
problem is considered. In particular, it is shown that the damping meas-
ures the energy radiated to the far field while the added mass is related
to the energy of the near field motion.

Consider a radiation problem and let ®(x,y, z,t) be the corresponding
velocity potential. For simplicity a structure oscillating in a single mode
of motion will be considered (the generalization to multiple modes of
motion is given by Falnes and Mclver 1985). Thus, as in (1.27) and
(1.38),

®(z,y, z,t) = Re {up(z,y,z) e} (1.84)

where u is the complex amplitude of the structures velocity. The corre-
sponding added mass and damping coefficients, as defined in equation
(1.47), will be denoted by a,, and b,,, respectively.

1.5.1 Energy radiated to the far field

It has been shown in (1.50) that the damping coefficient is related
to the far-field motion. In fact, it is proportional to the time-averaged
energy Hux of the waves radiating to the far field, as will now be shown.

The rate of working of the hydrodynamic force on an area element
AS is pg AS 0%/0n, where pg = —pOP/0t is the dynamic pressure and
0®/0n is the outward normal component to AS of the fluid velocity.
The total energy flux across S is therefore

0% 0d
E;=— ——dSs. 1.85
f ”// at on 20 (1.85)
Seo
Now
0% 0d ) it 0 it
i _ w —LeTw 1.86
51 Bn Re {—iwuge }Re{uane (1.86)
0P _o 0o
_ 1 2, 7Y 2iwt 1 2,7
= 2u.)Im{u QSane }+ 2u.)Im{|u| QSan} (1.87)
where the result
Rez; Rezo = %RG{Z1Z2}+ %Re{zlz_z}, (188)
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which holds for any two complex numbers z; and z3, has been used. The
average energy flux over one period is therefore

w 2n fw . (95
(B = 5/0 Eydt = —Lpulul //Im{(b%} ds.  (1.89)
Sco

By virtue of the radiation condition (1.29), as the radial coordinate
T — 00

¢ . -
05, ~ —ik¢P (1.90)
and therefore from (1.50)
(Ey) = boulul? [[ 4345 = H1ulb, (L)
Sco

and the time-averaged energy Hlux is proportional to the damping co-
efficient. In other words the damping coetficient measures the energy
radiated away from the structure by the waves.

1.5.2 Potential and kinetic energy

The potential energy of a fluid column of horizontal cross-section AS
due to the elevation 7 of the free surface is

n
pgAS/ zdz, (1.92)
0

where the potential energy has been taken to be zero in the absence of
waves. The total such potential energy of the Hluid is therefore

V = 1pg //772dS. (1.93)
Sk

From (1.8),
n= % Re {iug(z,y,0) e} (1.94)

and hence by (1.88),

2).,12 2
_ —pwlul — a P 2 —2iwt// 2
V=" //¢>¢>dS 1, Reque $2dS (1.95)
Sk Sg
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and so the time-averaged potential energy
21,12 _
(V) = M//qbqbds. (1.96)
4g
Sy

The total kinetic energy of the fluid motion over the fluid volume 7 is

T = %p///V@-V@dT (1.97)

T

and hence from (1.88),

T = 1pluf // V¢ -Vedr + 1pRe {zﬁe—?m // v¢.v¢d7}.

(1.98)

As ¢ is a solution of Laplace’s equation and by the divergence theorem

///Vfb-VEdT:/T//V-(¢V$)d7=é/¢g—id8, (1.99)

where n is the outward normal coordinate to the surface S surrounding
7 (the bed may be excluded as 9¢/0n is zero there). Thus, the time-
averaged kinetic energy is

(T) = %p|u|2//¢g—gd5’. (1.100)
S
Now by (1.4%), (1.96), and (1.50),
/s/qsg—de:ZB/qsggdS-l—%24/¢5d5+i/¢g—5d5 (1.101)

1 ibw) 4 ib,.,,
L + V) — 1.102
p ( B w p|u|2< > pw ( )

and so from (1.100),

(T) = (V) = Layuul® (1.103)
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added mass

Kc

FIGURE 1.2
Non-dimensional added mass a,,,, /pwc® of a horizontal cylinder
of radius ¢ submerged to a deptﬁ d vs. frequency parameter Kc.

That is, the difference between the time-averaged kinetic and potential
energies is proportional to the added mass coefficient.

Consider the contribution to (T') from the region g bounded by Sk,
a vertical circular at » = R, and S.. If R is sufficiently large for
the asymptotic form of the radiation potential (1.54) to apply then the
integrals over Sg and S, cancel, leaving only the integral over the free
surface. It follows that in the region 7g, (T') = (V) and hence, from
(1.103), the added mass is related to the energy of the near-field motion.
When free-surface effects are dominant, so that V' exceeds T, then the
added mass is negative. This is illustrated in Figure 1.2 for the two-
dimensional problem of an oscillating, submerged, horizontal circular
cylinder in deep water. The added masses in heave and sway are equal
for this geometry and are plotted here against a frequency parameter.
For the deeper submergences the added mass varies with frequency but
is always positive. If the submergence is reduced, so that the cylinder
interacts strongly with the free surface, a range of frequencies appears
for which the added mass is negative. This phenomenon is discussed in
detail by McIver and Evans (1984b).
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Chapter 2

Eigenfunction expansions

The general theory in Chapter 1 shows that a linear water-wave/structure
interaction problem requires the solution to Laplace’s equation in the
fluid domain subject to boundary conditions on the free surface, the
bed, the structure or structures and, if the fluid is unbounded, at in-
finity. The techniques available for the solution of such a problem will
depend on the geometry of the Hluid domain and the geometries of the
structures involved.

Laplace’s equation separates in many different coordinate systems and
if the geometry of the problem allows the boundary conditions to be sep-
arated also, progress can be made by utilizing this separation property.
In this chapter we will investigate problems where the velocity poten-
tial can be written in terms of infinite series of separated eigenfunctions.
This technique can thus be used when all the boundaries fit nicely into a
particular coordinate system and so is fairly restricted in its application.
Nevertheless it can be used to solve a number of basic problems simply
and accurately.

Of course, realistic geometries will rarely have these nice properties
but it will often be the case that away from the bodies under investiga-
tion the fluid domain will be such that eigenfunction expansions can be
used. In such cases the region containing the body can be discretized
using, say, a finite-element technique and this then matched to the ana-
lytic representation in the outer region. This ‘hybrid-element’ technique
is described in detail in Mei (1983, §7.7).
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2.1 Construction of vertical eigenfunctions

In the case where the depth A is finite and constant, equation (1.14)
becomes

o
a—sz on z=—h (2.1)
and separable solutions of equation (1.12) may be sought in the form
P(x,y,2) = W(z,y)Z(2). (2.2)

Substitution of this form for ¢ into Laplace’s equation shows that
1 [0*W N PwW 142,
—_— _— _ = —-—— =
W\ 0z Ay? Z dz? ’
where the separation constant, or eigenvalue, « is to be determined by
the boundary conditions. In this section attention will be paid to the
form of Z, which will be referred to as a ‘vertical eigenfunction’.

In view of (2.1) and (2.3), the general solution for Z(z) may be con-
veniently written as

Z(z) = Ccosa(z + h) + Dsina(z + h). (2.4)

The bed condition (2.1) gives immediately that D = 0 and the free-
surface condition (1.13) is satisfied provided « is a root of

(2.3)

K + atanah = 0. (2.5)

Equation (2.5) has an infinite sequence of positive real roots (see Fig-
ure 2.1} which will be denoted by {k,; n =1,2,3,...}. There is also a

sequence of negative roots {—k,; n =1,2,3,...}, but these lead to ex-
actly the same eigenfunctions and so need not be considered separately.

The nature of these roots can be important in applications. From
Figure 2.1 it can be confirmed that k,h € ((n — 1/2)7,nm) and it can

be shown that as n — oo for fixed Kh,

Kh 1 1\ (Kh\®
On the other hand, as Kh — oo for fixed n we have the behaviour
knh ~ (n—1 14 ! 2.7
oo (=) (U g ¥ R ®7)
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FIGURE 2.1
Intersections of f = —K/a and f = tan ah showing the loca-

tions of the real roots ah of (2.5) in ah > 0. These roots lie in
the intervals ((n — 1/2)w,nxw) for n = 1,2,3,....

and as Kh — 0 for fixed n,

_Kh_ (Kh?

knh ~nm o ()

(2.8)

In addition to the real roots of (2.5) there is also a pair of purely imagi-
nary roots which will be denoted by o = +kg, where kg = —ik, say, and
k is the positive root of the dispersion relation

K = ktanhkh; (2.9)

again it is sufficient to consider only the positive root. As explained
later in §2.2, in regions which are unbounded in a horizontal direction
this last root corresponds to propagating modes while each k&, (n > 1)
corresponds to a decaying or ‘evanescent’ mode.

Equations (2.5) and (2.9) are straightforward to solve numerically by
standard methods. However, in applications, computational efficiency is
often important and hence Newman (1990) and Chamberlain and Porter
(1999) have obtained highly accurate approximations to the roots that

© 2001 By CRC Press LLC



may then be refined by iteration. It is also worth noting that (2.5) and

(2.9) may be solved exactly in terms of integrals (Burniston and Siewert

1973), but this is computationally inefficient for practical calculations.
The vertical eigenfunctions are orthogonal because, for m /=,

0
/ cos k(2 + h) coskn(z + h) dz
—h
ki sin k;hcos kph — ky, sink,hcosk,,h
k2, — k2 -

where (2.5) has been used to simplify the result of the integration. It is
convenient to normalize the vertical eigenfunctions by writing

Yn(2) = N 'cosk,(z+h), n=0,1,2,... (2.11)

and requiring

0, (2.10)

1 o
r [ wn@Pde =1, (2.12)
hJ-n
so that
1 sin 2k, h
2= — . 2.13
N 2(” Sk ) (2.13)
Two other forms for N,, that are sometimes useful are given by
1 sink,h\ 1 K
2 n
= (1= ) (71— 2.14
Mo 2( Kh ) 2( (K2+k3,)h)’ (2.14)

which are equivalent to (2.13) by virtue of (2.5). With the above def-
initions, the orthogonality relations (2.10) and (2.12) may be written
as

0
% /_ (2 (2) 4 = b, (2.15)

where 0,5, is the ‘Kronecker delta’ defined by d.,, = 1 if m = n, and
Omn =0 if m /.

The problem of determining Z(z) from (2.3) subject to boundary con-
ditions on the free surface and bed is of standard Sturm-Liouville type
and so it follows (see e.g. Birkhoff and Rota 1989, Chapter 11, §3) that
the set {¢¥m; m = 0,1,2,...} is complete and any square integrable
function f(z) defined on (—#A,0) can be expanded as

F&)= 3 ombn(a), where an = / J(EYn(2) 5
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2.2 Two-dimensional problems

In two-dimensional problems, where there is no dependence on y,
equation (2.3) has the general solution

W(z,y) = X(z) = Ae”** + Be%*, (2.16)

where A and B are constants to be determined from the boundary condi-
tions. The general solution, or eigenfunction expansion, for the potential
¢ is obtained by superimposing all the possible modes to get

oo

P(x,2) = Y (Ape ™ " £ B, k%) yy (2). (2.17)

n=0

It follows from (1.10) that in this expression the term involving exp(ikz)
(recall that kg = —ik) corresponds to a wave propagating towards large
positive z while the term involving exp(—ikz) corresponds to a wave
propagating towards large negative . Terms which decay as + — —o0
or as x — oo are referred to as evanescent modes.

2.2.1 The wave-maker problem

Consider a semi-infinite tank of Hluid occupying > 0, z € (—h,0).
On z = 0 there is a wave-maker that oscillates with a specified velocity
distribution at an angular frequency w and hence generates waves that
propagate towards large positive . Denote the velocity potential for the
tlow by ®(z, z,t) and suppose that the wave-maker boundary condition
is

o
o U(z) coswt, (2.18)
where the real-valued function U(z) is the imposed distribution of ve-
locity on = 0.

If the time dependence of ® is factored out as in (1.10) the time-
independent potential ¢ satisfies equations (1.12)—(1.14),

o¢

e U(z) on z=0 (2.19)
and a radiation condition
o .
9 ikp -0 as kx— o0 (2.20)
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that requires the solution to be bounded and any waves to be outgoing.
Application of the radiation condition (2.20) to the general solution
(2.17) gives a form for the potential of

d(z,y) = ZA e kT (2). (2.21)

From (2.19), it is required that

¢

Pa), = > Apkntpn(z) =U(2), z € (=h,0), (2.22)

n=0

and the unknown set of coefficients {An; n = 0,1,2,...} can now be
determined by exploiting the orthogonality properties (2.15) of the ver-
tical eigenfunctions. In (2.22) multiply throughout by each of the set
{¥m(2); m=0,1,2,...} in turn and integrate over the depth to get

1 0

Ap = ——
™ kmh

U(2)m(z)dz. (2.23)
The coefficient Ay determines the amplitude and phase of the wave that
propagates to large x.

For the special case of a vertical wave-maker in horizontal motion, so
that U(z) = U, a constant, the coefficients are

Usinknh

Am = —
k2 h Ny,

m=20,1,2,... (2.24)
and the amplitude and phase of the wave propagating away from the
wave-maker can be obtained from

iU sinh kh

Ay = —
0 k2hN,

(2.25)

The force on the wave-maker due to this surge motion can be determined
in terms of the added mass and damping coefficients as described in
§1.3.4, though the damping coefficient can be calculated more directly
via the relation (1.52).

2.2.2 Forced oscillations of a rectangular tank
Another important two-dimensional problem is that of a partially-

filled rectangular tank undergoing forced oscillations. Specifically we
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can consider a container bounded by x = £b, z = —h containing liquid
whose undisturbed free surface is at z = 0 and look at the case of forced
time-harmonic horizontal oscillations of constant amplitude. When the
time variation has been factored out in the manner of equation (1.10),
the boundary conditions on the container walls become

¢

oz
(c.f. equation 2.19 with U(z) = 1) which implies that ¢ must be anti-
symmetric in z.

One possible method of solution is to incorporate the antisymmetry
in z into (2.17) so that

=1 on z==b (2.26)

d(z,2) = ZA sinh k2 ¥ (2) (2.27)

n=0

and then apply the boundary condition on = = b to get

z Apky, cosh kb ¥, (2) =1, z € (—h,0). (2.28)
n=0
The orthogonality of the functions 1, (z) can then be used to determine
the coefficients A,, in the way described after equation (2.22) and we
obtain

6= Z sin k, h sinh k,, 2 (). (2.29)

— NypkZhcoshk,b

An alternative approach (see e.g. Graham and Rodriguez 1952) is
to look for solutions of the form ¢ = x + ¢ and then 1 satisfies the
boundary-value problem

Vi =0 x¢€(0,b),z€ (—h,0), (2.30)

Kx+¢)=1%, on z=0, (2.31)

P, =0 on z=-h, (2.32)

=0 on z=0, (2.33)

Y=0 on z=b, (2.34)

where again the antisymmetry in = has been exploited. Equations (2.30)
and (2.32)—(2.34) yield the expansion

P = Z By, sin i@ cosh i (2 + h), (2.35)

m=0
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where p, = (m+ 1)7/b and then the free surface condition (2.31) gives

Kz = Z B, sin g @ (o, sinh b — K cosh p h) . (2.36)

m=0

The orthogonality of the trigonometric functions can be used to deter-
mine the unknown coefficients B,, and we obtain

-nHm h
—m+2KZ ) sm,ummcos tm(z + h) (2.37)
m=0

— K)coshup,h

where K,, = p,, tanh u,,h. This form for the solution can be shown
to be equivalent to (2.29) and both expressions reveal the resonances
at k = pm (ie. at kb= (m+ 1)m, m = 0,1,2,...). The numbers K,
are the natural frequencies of antisymmetric oscillations in a rectangular
container of width 2b and depth h.

2.3 Three-dimensional problems

Fully three-dimensional solutions of (2.3) will now be sought by the
method of separation of variables. For rectangular geometries it is ap-
propriate to write

W(z,y) = X(2)Y (y) (2.38)
and then we find that

12X, 1% ,
I X B S 2.39
XdZ T yvaE s (2.39)

say. Hence
d2—X+ X =0 and dZ—Y—(k%r Y =0 (2.40)
dm2 Y - dy2 n Y - N

2.3.1 Sloshing in a rectangular tank

Consider the problem of determining the natural frequencies of oscil-
lation of fluid in a rectangular container (of length a and width b, say)
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with constant depth h. This is equivalent to looking for solutions to
Laplace’s equation in = € (0,a), y € (0,b), z € (—h,0) which satisfy the
bed boundary condition (1.14) together with wall boundary conditions

b9

83:20 on r=0,a0 and %:0 on y=0,b (2.41)

dy

The nature of these boundary conditions and the equations (2.40) shows
that we must have y? > 0 and k2 + 2 < 0 which in turn shows that we

must take n = 0 (since k3 = —k?) and then the solution is proportional
to
l
¢ = cos ‘o cos m;ry Yo(z), (2.42)
a

where [ and m are arbitrary integers (not both zero) and

(2.43)

If one were to solve a forced motion problem for a rectangular tank, then
resonances would be found at these natural frequencies just as for the
two-dimensional case considered in §2.2.2 (see Graham and Rodriguez
1952).

2.3.2 Oblique waves

In certain situations it is necessary to consider geometries which dc
not vary in the y-direction, and to look for solutions which are periodic
in y. In such cases we can look for solutions of (2.3) in the form

W(z,y) = X(z) ' (2.44)
from which we deduce (using equation 2.40 with v2 = —k2 — £2) that
X(z) = Ae ™% £ Be®®, (2.45)
where o, = (k2 + £2)'/2. Note that ap = (£2 — k2)!/2 and so (2.45)
will represent a propagating wave if £ < k. In this case we can write
o = —i(k? — £2)1/2? and define an angle 8 by

(k2 —2)Y2 =kcos, £=ksing. (2.46)
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A solution of (2.3) containing (2.45) with n = 0 would then be of the
form

¢(z,y,2) = p(x,2) %, (2.47)
where
o= (A eikzcosﬁ +B e—ikxcosﬁ)wo(z)' (2.48)

The term involving exp(ikz cos 3) represents a wave making an angle 3
with the positive z-axis while the term involving exp(—ikz cos ) rep-
resents a wave making an angle m — § with the positive z-axis. The
two-dimensional case can be recovered by setting 5 = 0.

Since ¢ satisfies Laplace’s equation throughout the fluid domain, the
reduced potential ¢ satisfies the two-dimensional modified Helmholtz
equation

V2o —£2p =0 in the fluid, (2.49)

and has the eigenfunction expansion

oo

o(z,2) = Z (An e " + B, e*"%) 9, (2). (2.50)

n=0

Although the fluid motion is three-dimensional, the boundary-value prob-
lem that we need to solve is actually two-dimensional. Reciprocity re-
lations, similar to those derived in §1.4 for the strictly two-dimensional
case, can be derived in this case also. The appropriate radiation prob-
lems no longer correspond to rigid body motions, however, but to forced
motion problems where the forcing has an exp(ify) dependence. See
Green (1971), Bolton and Ursell (1973), and Garrison (1985) for more
details.

2.3.3 Scattering by a symmetric obstacle

Suppose a wave making an angle 8 (which might be zero) with the
positive z-axis is scattered by an obstacle which is in the form of an
infinite cylinder whose generators are parallel to the y-axis and whose
cross-section is symmetric about x = 0. We can look for a solution
of the form ¢(z, z) exp(ify), where ¢(z, z) satisfies (2.49) together with
the free-surface and bed boundary conditions, (1.13) and (1.14), and we
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must have dp/0n = 0 on the body boundary. The appropriate radiation
condition for this problem shows that

oo {(eikzcosﬁ +Re_ikzcosﬁ)¢0(z) as T — —00 (2.51)

T eikz <08 B qp(2) as & — 00,

where R and T are the unknown reflection and transmission coefficients,
respectively.

Another way of formulating this problem is to split ¢ into a part @™
which is symmetric about = 0 and an antisymmetric part ¢~ such
that ¢ = ¢ + ¢~. If we denote that part of the line z = 0, z € (—h,0)
which does not contain the obstacle by L, then

At

W:O on L, ¢ =0 on L. (2.52)

We then only need consider the region & < 0 since the solutions can
be extended into the whole fluid region using the symmetry relations
o+ (3,2) = 9* (~2,2) and 9~ (,2) = —p~ (—2, 2).

The appropriate behaviour as £ — —oo for these new potentials is

1,. .
<pi ~ 5 (elkzcosﬁ _|_R:i: e—lk:vcosﬂ) 1/}0(2)7 (253)

and if we can solve for Rt and R, the reflection and transmission

coefficients for the full problem can be recovered from the equations
1 1
R= 5(R++R—), T=3 (R*—R7). (2.54)

The reduction of a problem posed over the whole range z € (—o00, ) tc
two problems each posed on x < 0 often leads to a considerable saving
of effort.

2.3.4 Cylindrical polar coordinates

Here the general eigenfunction expansion for three-dimensional prob-
lems will be constructed in terms of cylindrical polar coordinates (r, 6, z)
where the polar coordinates (r,6) are defined as in (1.16) through

z=rcosf and y=rsind. (2.55)
In terms of these coordinates, equation (2.3) for W(r,0) = W(z,y) is
10 ( GW) 1 W

p— — _— = 2
el + K2W. (2.56)

or r? 962
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Look for separable solutions in the form

W(r,8) = R(r)©(9) (2.57)
so that from equation (2.56),
r2[1d ( dR\ , 1d20
Flra (05 -8R =g = e

say. The general solution for © is
O(0) = Acos 36 + Bsin 36, (2.59)

for some constants A and B. In many applications, for example those
involving a fluid domain exterior to a finite structure, the requirement
that the potential be continuous implies that § must be an integer, m,
say. The equation governing R(r) is then

d [ dR
r— (TE) —(m*+krHR=0, m=0,1,2,..., (2.60)

which is the modified Bessel’s equation (A.3). Thus
R(r) = CLy(knr) + DKpy(kpr), m,n=0,1,2,..., (2.61)

for some constants C and D, where I,, and K,, denote the modified
Bessel functions of the first and second kind, respectively, and of order m.
The general solution for ¢ is

=

m=0n

Arnn cosmb + Bp,p, sin mé)

MS

O

X [Conndm(knt) + Domn Ko (k)] ¥n (2). (2.62)
Since kg = —ik, it follows from (A.4) and (A.5) that
Ly(kor) = (—)™Jpm(kr) and  Ko(kor) = ni™ 1 HY (kr), (2.63)

where J,, is a Bessel function of the first kind and H,(,}) is a Hankel
function of the first kind, both of order m. The behaviour of J, (kr)

and H,(,p(kr) for large argument, given by (A.10) and (A.12), shows that
these terms correspond to propagating modes and it follows from (A.2)
that the combination of radial functions

CrmoIm(koT) + Dimo Ko (Kor) (2.64)
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has two useful alternative representations; these are

C! oJm(kr) + DL HD (kr) (2.65)
and
Cl oI (k1) 4+ DLt o Yo (7). (2.66)

Here Y,,, denotes the Bessel function of the second kind and of order m.
From (A.12) and the radiation condition (1.29), a solution which repre-
sents outgoing waves will be of the form

oo

¢ = (A, cosmf + By, sinmf) H (kr)o (2) (2.67)
" 2 1/2 '
~ f(8) (—) ekr=im/4yh(2) as  kr — oo, (2.68)
wkr

for some function f. Thus, the form (2.65) is suited to representations
of a potential for scattering or radiation problems where a radiation
condition is imposed. The form (2.66) is suited to representations of a
potential in regions of finite horizontal extent.

The other terms in (2.62) either become unbounded or decay as the ra-
dial coordinate increases. From (A.8) it follows that the terms I, (kn7),
n > 0, all increase exponentially as k,7 — oo and so will not be present
in the expansion of a potential in a region which extends to infinity.
On the other hand (A.9) shows that the terms Ky, (kn,7), n > 0, all de-
crease exponentially as k,r — 00. These latter terms are the evanescent
modes.

2.3.5 Sloshing in a cylindrical tank

Consider the problem of determining the natural frequencies of oscilla-
tion of fluid in a cylindrical container with a vertical axis, of radius a and
height h. These will be the frequencies at which resonances occur if the
container is forced to undergo oscillatory motions (for a solution to the
problem of forced horizontal motions, see Isaacson and Subbiah 1991).
In our case we wish to solve V2¢ = 0 within the container together with
the free-surface condition (1.13), the bed boundary condition (2.1), and

o¢

e 0 on r=a. (2.69)
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Any solution can be expressed in the general form (2.62) and the or-
thogonality of the functions cosmé and sinm# on (0,27) and ¥, (z) on
(—h,0) implies that the component of d¢/0r for each n and m must
vanish separately. Since the solution must be regular at r = 0, (A.14)
and (A.15) show that all the coefficients of K,,(k,r) must be zero and
since I, (z) > 0 for all x > 0 (Abramowitz and Stegun 1965, §9.6), the
only possibility is

d(r,0,z) = (Ap, cosml + By, sinmb)J,, (kr)g(2) (2.70)

for any integer m. Application of (2.69) shows that J,,(ka) = 0 and
hence that ka = j,,,,, where j,.. is the n*® zero of J;,. Properties of
such zeros are given in (A.23)-(A.27).

This example can easily be extended to cover the case of an annular
cylinder with fluid occupying the region r € (b,a), z € (—h,0). Since
we no longer require regularity at the origin, the r dependence of the
solution has the more general form (2.66) and the condition of zero
normal flow on r = a, b shows that the eigenvalues ka are given by the
solutions for x of

Jy (@)Y, (zb/a) — J,.(xb/a)Y, (x) =0 (2.71)

(see, for example, McLachlan 1954, §2.64).

2.4 The Helmholtz equation

In water-wave scattering problems where the depth is constant, equa-
tion (1.17) shows that an incident plane wave takes the form (up to an
arbitrary multiplicative constant)

b1 = ik cos(8—p) ¢O(z) (2.72)

for some angle 3. If the scatterer has constant cross-section and ex-
tends throughout the water depth, the orthogonality of the functions
{¥m(z); n = 0,1,2,...} implies that the diffracted wave will also be
proportional to ¥g(z). The potential for the problem may thus be de-
composed as

¢(T7 g, Z) = (P(T7 9)1,&0(2') (273)

© 2001 By CRC Press LLC



and, since ¢ satisfies Laplace’s equation (1.12), ¢ satisfies the Helmholtz
equation

Vip+k*p=0 (2.74)

throughout the fluid domain, and V2 now denotes the Laplacian opera-
tor in terms of the horizontal coordinates only.

Such problems have direct analogues in the theory of acoustics and
electromagnetic waves. Thus in linear acoustics, the pressure fluctuation
p satisfies the wave equation

_19%
=G
where ¢ is the speed of sound and if one assumes a time harmonic vari-
ation of the form p = Re{pexp(—iwt)}, one obtains (2.74) where now
k = w/c. The same type of reduction occurs in Maxwell’s theory of
electromagnetic waves, where the electric potential for a disturbance in
free space satisfies the wave equation (2.75) but with ¢ now the speed of
light; see Jones (1986) for more details.

Many of the examples given in this and subsequent chapters involve
the solution of the Helmholtz equation and the above remarks demon-
strate that techniques developed for such problems have applications in
a number of physical contexts.

Vp (2.75)

2.4.1 Scattering by a vertical circular cylinder

Consider the scattering of an incident plane wave of wavenumber & by
a bottom-mounted vertical circular cylinder standing in water of con-
stant depth h. Without loss of generality we can assume that the axis
of the cylinder coincides with the z-axis and that the incident wave is
from x = —co. The potential of the incident wave is written as

¢1 = "% qh(2) (2.76)

and the total potential for the problem may be decomposed according to
@(r,0,2) = p(r,0)1o(z), where ¢ satisfies the Helmholtz equation (2.74)
throughout the fluid domain.

The potential can be further decomposed as ¢ = @1 + pp and in
cylindrical polar coordinates we have

oo
@ = elkreosd — Z €mi™ Jm (kT) cosm@ (2.77)
=0
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(Abramowitz and Stegun 1965, 9.1.42-43), where €, is the Neumann
symbol defined on page 17. Since the diffracted wave ¢p must behave
like an outgoing wave as kr — oo the result (2.67) means that we can
write

D = Z amemi™HY (kr) cosm#, (2.78)

m=0

where the complex coefficients a,, are to be determined and the orthog-
onality of the functions in € has been used to eliminate terms in sin m6.
Application of the body boundary condition

O¢p _ 8<P1
or  or

r=a (2.79)

and the orthogonality of the functions cosmf on (0, 27) gives

I (ka)
m = _Tk) (2.80)
Thus
o(r,0) = Z Emi™ ( m(kr) — %}‘:)) T(,P(kr)) cosmf. (2.81)

In practical applications a quantity of interest is the value of ¢ (which is
proportional to the pressure) on the cylinder and this has a particularly
simple form due to the Wronskian relations satisfied by the Bessel func-
tions, equation (A.7). We find that the total potential on the cylinder
surface is given by

2 m sm+1
#(a,b,z) 1’7[:2:) Z 6(1;, cosm9. (2.82)

Mei (1983, §7.5) gives more information on how this can be used tc
calculate quantities such as the forces on the cylinder.
Bibliographical notes

The specific example of water-wave scattering by a vertical circular
cylinder in finite depth seems to have been examined first by Omer and
Hall (1949), though the work of MacCamy and Fuchs (1954) is perhaps
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better known. The radiation problem for the forced horizontal oscilla-
tions of a vertical cylinder, for which a reduction to the two-dimensional
Helmholtz equation is no longer possible, was solved in terms of an
eigenfunction expansion by Isaacson, Mathai, and Mihelcic (1990) and
comparisons were made with experimental data. A different form for
the solution of the radiation problem involving an integral representa-
tion was given by MclIver (1994b).

In the context of acoustics the history of the problem described in this
section goes back to the 19t century with the work of Lord Rayleigh in
1878 on the interaction of sound waves with cylinders whose diameter
is small compared to wavelength (Rayleigh 1945, §343). Indeed, the
problem of the interaction of a sound wave with an arbitrary finite array
of circular cylinders was solved in 1913, as will be described in §6.1
below.

2.5 Matched eigenfunction expansions

There are very few geometries for which the solution can be written in
the form of a single eigenfunction expansion as in the previous section.
One technique that may be applicable for a more general geometry is to
represent the solution as a different expansion in different regions and
then to match these expansions across the boundaries between these
regions.

2.5.1 Scattering by a vertical barrier

Consider the diffraction of an oblique incident plane wave making an
angle 3 with the positive z-axis by a thin vertical barrier which occupies
z =0,z € [-d,0], y € (—00,00) in water of uniform depth h. The
theory presented in §2.3.2 shows that the total velocity potential for the
scattering problem can be written ¢(z, z) exp(ify), where ¢ = ksinf
and then ¢(z, z) satisfies the modified Helmholtz equation (2.49), the
bed and free-surface boundary conditions (1.13) and (2.1), together with

Op

e 0 on =0, z€(—d,0). (2.83)
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The appropriate radiation conditions are

v~ {(em +ReT) go(z)  as @ — —00 (2.84)

T €1%% 1) (z2) as T — 00,

where @ = kcosf3 and R and T are the reflection and transmission
coetficients which we wish to determine.

In order to complete the description of the problem we must specify
the behaviour of the solution in the vicinity of the bottom of the barrier.
If we consider a small fluid region near the barrier tip, then the potential
@ is essentially governed by Laplace’s equation because of the rapid
variations in this region. If we introduce polar coordinates (r,6) with
origin at the barrier tip (z, z) = (0, —d), so that the sides of the barrier
correspond to § = 0 and @ = 2m, then the boundary condition on the
barrier walls is 0¢/00 = 0 on § = 0,27. The solution must therefore
satisfy @ ~ ¢+ 7'/2cos(0/2) as r — 0, where c is a constant. In other
words the singularity in the velocity field for the full problem must be
governed by the relation

Vo=0@r"1%) as r—0. (2.85)

From (2.50) and (2.84), in # < 0 we can expand the potential as the
eigenfunction series

o= (€T +ReT ) Pg(2) + 3 An e 9hn(2), (2.86)

n=1

where o, = (k2 + ¢2)'/2. Similarly, in & > 0,
o =Teg(2) + Y Bne ™% ¢hn(2). (2.87)
n=1

The complex numbers R, T', A,, B,, n > 1, must be determined by
matching these representations for ¢ across the plane = 0.

Physically it makes sense to match the fluid pressure and velocity
across £ = 0, z € (—h, —d), which corresponds to imposing continuity
of ¢ and ¢, across this region. Mathematically, these conditions imply
that the potential (z, z) exp(ify) in < 0 is the harmonic continuation
of that in > 0 (see, for example, Kellogg 1953, Chapter X, §5, Theo-
rem VI). Bearing in mind the boundary condition (2.83), it is clear that
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@z must be continuous across the whole interval x = 0, z € (—h,0) and
S0

ia(l — R)yo(z) + Z U AnPn(2)

=iaTPo(2) — Y onBnn(z),  z € (—h,0). (2.88)

The orthogonality of the depth eigenfunctions then shows that
1-R=T and A,=-B,, n>1. (2.89)

The other available information can then be expressed by the equations

Yo(2) + Y Anthn(2) =0 z € (—h,—d), (2.90)
n=0
D onAntn(z) =0 z € (=d,0), (2.91)
n=0
where we have written Ag = R — 1 and o9 = —ic. The first of these

equations follows from the continuity of ¢ across ¢ = 0, z € (—h, —d)
after using (2.89) and the second follows from (2.83).

Another way of deriving these equations is to split the problem into
a symmetric and an antisymmetric part as described in §2.3.3. The
symmetric potential ¢ satisfies dp*/dz = 0 on z = 0 and the solution
is simply ¢ = cosazo(z). The antisymmetric part ¢~ satisfies the
condition ¢~ =0 on & =0, 2z € (—h, —d) together with (2.83) and we
only need consider the region < 0, in which ¢~ can be expanded as

1 ) ) 00
T =3 (€2 +R™ e ) g (2) + > Ap e 1y (2) (2.92)
n=1
so that ¢ = ¢ + ¢~ and from (2.86),
1
R=3 (L+R7). (2.93)

The boundary condition ¢~ =0 on z =0, z € (—h, —d) then reduces to
(2.90) and 8¢~ /Ox =0o0n z =0, z € (—d,0) implies (2.91).

Equations (2.90)—(2.91) can be converted into an infinite system of
equations for A,, n > 0 in a variety of different ways. One possibility is
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to multiply both equations by the set of functions ¥, (2), m > 0, inte-
grate over the appropriate range and then add the resulting equations.
This leads to

amhAm + Z [cnm(]- - anh)] Apn=—com, m=0,1,2,..., (294)

n=0

where

—d 0
om =5 [ U Wn() 4z = bom— 1 [ (e Wm() s, (299)

see (2.15).

The system (2.94) can be solved by truncating and numerically solving
an N x N system of equations. However, because of the singularity in the
velocity near the tip of the plate revealed by (2.85), the convergence as
N increases is very slow. Mclver (1985b), who considered the scattering
of waves by two barriers by the above method, suggested that it was
necessary to take N as large as 400 and then use linear extrapolation to
achieve satisfactory results. In order to derive a system of equations with
much better convergence characteristics it is necessary to use a solution
procedure which accurately models the singular behaviour near the end
of the plate and this can be done using the Galerkin method also used
in §4.7.4 below.

First we introduce the function

Ulz) = % =Y o Antn(z), (2.96)
z=0 n=0

representing the horizontal fluid velocity on = 0. This function can be
expanded in terms of the orthogonal eigenfunctions v,(z) as

U(z) = Untn(2), (2.97)
n=0
where, since U(z) =0 for z € (—d,0),
1 [
Up = onAn = E/ U(z)pn(2)dz, n=0,1,2,.... (2.98)
—h
It is convenient to introduce a function u(z) defined by U(z) = —Ru(z)

and then the equation representing continuity of pressure across the gap
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under the barrier, (2.90), can be written, using (2.98) for n > 1, as

—d
Ku= / w(t)K (z,8) dt = 1o (2), (2.99)

—h

where
i L (2). (2.100)
= h

The integral operator K defined by (2.99) and (2.100) is real, linear,
symmetric, and positive definite and it follows that the solution u(z) to
the integral equation (2.99) is real. Once (2.99) has been solved for u,
then the relation

/ () o(2)dz = iah(R — /R, (2.101)

—h

which follows from (2.98) with n = 0, may be used to determine the
reflection coefficient R. Many boundary-value problems may be formu-
lated in terms of an integral equation of the form (2.99) and with a
condition corresponding to (2.101). The advantages of such a formula-
tion are described in §8.1.

To obtain a numerical solution to (2.99) efficiently, we approximate
u(z) for z € (—h, —d) by writing it as

N
=3 anua(2), (2.102)
n=0

where the functions u,(2) are chosen to correctly model the singular
behaviour of the fluid velocity near to the submerged end of the barrier.
Since, from (2.85), u(z) = O(|z + d|~'/?) as z — —d from below and,

from (2.1), u/(z) = 0 on z = —h, we choose to write
- h
un(z) = ((h—d)2 _ (h+z)2) 1/2T2n (hjfi) , (2.103)

where T),(cosfl) = cosnf is a Chebyshev polynomial. This expression
has the required form and the choice of Chebyshev polynomials allows
certain integrals that occur below to be evaluated explicitly. The repre-
sentation (2.102) is then substituted into (2.99) and (2.101), the result-
ing equations are multiplied by each of the set of functions um,(z) and
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integrated over (—h, —d). This yields

N
> anKmn = Fmo, m=0,1,2,... (2.104)
n=0
and
N
> " anFno = ich(R - 1)/R, (2.105)
n=0
where
=1
Kmn=>_ - FmsFrs (2.106)
s=1 Gs
and

_d T i
F,. = /_ (£ () 42 = )N o (bu(h = ) (2:107)

Here Js,, is a Bessel function of the first kind and the last integral has
been evaluated using Gradshteyn and Ryzhik (1980, eqn 7.355(2)). The
infinite system of equations (2.104) has excellent convergence character-
istics. Porter and Evans (1995) report that for typical parameter values
a truncation parameter of N = 5 is sufficient to ensure six-figure ac-
curacy. Once the system of equations has been solved for the unknown
coefficients a,, an approximation to the reflection coefficient can be com-
puted from (2.105). The complete solution is then readily obtained using
(2.98).

It is also possible to formulate the problem as an integral equation for
the jump in potential across the barrier

p(z) = p(07,2) —(07,2), z€(—d,0), (2.108)
and this leads to a problem of the type discussed in §8.1.4 (see Porter
and Evans 1995 for details).

Bibliographical notes

Problems concerning the scattering of water waves by rigid barriers
can be solved by numerous different techniques and are the subject of
a recent book (Mandal and Chakrabarti 2000). The efficient solution

© 2001 By CRC Press LLC



procedure given above is essentially that described by Porter and Evans
(1995) who also consider the scattering of waves by a bottom-mounted
barrier, a barrier with a gap, a totally submerged barrier, and two iden-
tical barriers, and finally they apply the method to the calculation of
the natural frequencies of oscillation of a fluid in a rectangular tank with
a vertical baffle.

The radiation problem of the forced rolling motion of a thin barrier
about the vertical is solved using the same technique by Evans and
Porter (1996). Related Galerkin methods have been used in other con-
texts. For example, Lavretsky (1994) applied the method to the scat-
tering of electromagnetic waves by a circular aperture in a rectangular
wave guide.

2.5.2 A heaving truncated circular cylinder

In the vertical barrier problem considered above, the expansions in the
regions to the left and to the right of the barrier were in terms of exactly
the same eigenfunctions, and this leads to certain simplifications when
the matching is performed. The same is true in three dimensions for the
problem of wave interactions with a vertical cylindrical tube; see Thomas
(1981) who solved a radiation problem for a cylindrical duct on the sea
bed, fitted with a piston undergoing forced oscillations at the base. In
the following example different eigenfunctions are used in the different
fluid regions and the resulting equations are thus more complicated.

Consider the radiation of waves by a vertical circular cylinder occu-
pying r = (z? + y?)/? < a, —d < z < 0, making vertical oscillations in
water of uniform depth kA > d. It will be convenient to write [ = h — d.
The problem is axisymmetric so the velocity potential ¢ is a function of
r and z only. The velocity potential ¢ satisfies Laplace’s equation in the
fluid, the free-surface condition (1.13), the bed condition (2.1), and

o9
o = 0 on r=a, z€(-d,0), (2.109)
% =U on re(0,a), z=—d, (2.110)

where U is the prescribed vertical velocity. As r — oo the potential
must behave like an outgoing cylindrical wave and so in the region r > a
we can write (see equation 2.62)

o=, Ko(knr)
¢ = Ul;bnmwn(z) (2.111)
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in which the n = 0 term corresponds to an outgoing wave (see A.5) and
the factor Ko(kna) is introduced for convenience. In the inner region,
defined by 7 < a and z € (—h, —d), the potential can be written as
the sum of a particular solution which satisfies (2.110) and a general
solution which satisfies a homogeneous boundary condition on the base
of the cylinder. Thus we can write

- c- Ig(Anr)
¢ = U¢p+UlT;)€nanfo()\na) cos Ap (2 + h), (2.112)

where €, is the Neumann symbol defined on page 17,

bp = % ((z +h)? - ;) (2.113)

and A, = nw/l. The two expansions (2.111) and (2.112) must be
matched by insisting that ¢ and 0¢/0r are continuous across r = a.
If the first of these conditions is imposed and the resulting equation
multiplied by the set of functions {cos A, (z + h); m =0,1,2,...} and
then integrated over (—h, —d), we obtain

Jm + A :ancmn, m=20,1,2,..., (2.114)
n=0

where

d 1 (1 a2) =0
1 (- i _o,
gm = l_z/_h ¢p|T:acos/\m(z+h)dzz 213 2

(-1)™/m*r? m>1

(2.115)
and
I (=1)™ky, sin ky1
mn = 7 m = 2.11
¢ i /;h €os A (z + h)n(z)dz NA(R —2) (2.116)
It is helpful to define two new quantities
AnlIi(Ana) knhK|(kna)
= ) g, = Tnt0lind) 2.117
Pr = T Owa) "= TKo(kna) (2.117)
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(note that pgp = 0) and then continuity of O¢/dr, together with (2.109),
imply

23 btntinl2) = f(2), 2 (~h,0), (2.118)
n=0
where
a oo
F(e) = ~3 + 2; GnPn cos Ay (z+h) z € (—h,—d), (2.119)

0 z € (—d,0),

and then (2.118) can be multiplied by each of the functions 1,,(z) and
integrated over (—h,0). This results in

a

bmGm = — 2

Com +2 ) nPnCnm, m=0,1,2,.... (2.120)
n=1

It is possible to combine (2.114) and (2.120) by eliminating either the
coefficients a,, or b,,,. If one is interested in the added mass and damping
coefficients, which are related to the integral of ¢ over the base of the
cylinder (see equation 1.48), it is convenient to solve for the coefficients
@m- Thus we eliminate b,, and obtain the infinite system of equations

ad a
Um =2)  GnPnfmn = —9m — 51 fmo, Mm=0,1,2,...,  (2121)
n=1
where
frm =Y e (2.122)
=0 s

Care must be taken in the numerical evaluation of this sum due to the
possible occurrence of large terms resulting from the behaviour of the
denominator in the definition of ¢,y given by (2.116). In particular, the
sum must be truncated well beyond s = (h/l) max(m,n).

The system of equations (2.121) can be solved numerically by trun-
cation and Yeung (1981) reported that in order to achieve 1% accuracy,
it was “rarely necessary to go beyond 20 equations”. The fact that the
system (2.121) converges much more rapidly than the system (2.94) for
the vertical-barrier problem is a consequence of the fact that the corner
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at the intersection of the base and the side of the cylinder is less sharp
than the corner at the tip of the barrier and hence the singularity in the
derivative of ¢ there is weaker. In fact, in this case,

Ve=00p""% as p=(r—a)?+(z+ d)2)1/2 — 0. (2.123)

It is possible to derive a system of equations which converges even more
rapidly, using a Galerkin method similar to that described in §2.5.1 for
solving the vertical-barrier problem, but this will not be pursued here.

The analysis given above is only for heave oscillations, but Yeung
(1981) solved all three distinct radiation problems (surge, heave, and
roll) using the above technique.

Bibliographical notes

Problems concerning water-wave interaction with a truncated vertical
cylinder were first studied by Miles and Gilbert (1968), and the scat-
tering and radiation problems for the two-dimensional case of a surface-
piercing rectangular block were solved by Mei and Black (1969) and
Black, Mei, and Bray (1971), respectively. In these papers the appropri-
ate eigenfunction expansions were constructed but then a variational for-
mulation was used to obtain numerical solutions. The scattering problem
with a truncated vertical cylinder was solved using a method similar to
that described above by Garrett (1971). Eigenfunction expansions have
also been used by Abul-Azm and Gesraha (2000) to solve the problem
of oblique wave scattering by a rectangular cylinder in the free surface.

When the height of the cylinder d is zero, the problem considered
above becomes that of a heaving circular disk. This problem has been
solved using integral equations by MacCamy (1961) and using a system-
atic hierarchy of variational approximations by Miles (1987). Problems
involving submerged disks have been solved using matched eigenfunction
expansions by Yu and Chwang (1993) and Chwang and Wu (1994).

The matched eigenfunction expansion technique can be used to study
radiation problems involving bottom-mounted circular cylinders. The
surge problem, which is relevant to earthquake excitation of cylindri-
cal storage tanks, was studied by Tung (1979), and Mclver and Evans
(1984b) solved the heave problem as part of an investigation into the
occurrence of negative added mass (see §1.5.2).

A number of authors have used the eigenfunction expansion tech-
nique to analyze wave interaction with elliptical cylinders, in which case
the solution is described in terms of Mathieu functions. The radiation
and scattering of waves by a bottom-mounted surface-piercing elliptical
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cylinder were studied by Chen and Mei (1973) and problems concerning
truncated elliptical cylinders have been solved in Stiassne and Dagan
(1973) and Williams and Darwiche (1988, 1990).

2.5.3 The finite dock problem

Consider the diffraction of an oblique incident plane wave making an
angle § with the positive z-axis by a rigid dock which occupies z = 0,
x € [—a,a], y € (—o0,00) in water of uniform depth h. The incident
wave can be represented by the potential

P1 = el*@+a) ity 4 (2), (2.124)

where ¢ = ksinf3 and o = kcosf = (k* — £2)'/2. From (1.8), (1.10),
and (2.11), it follows that this corresponds to a wave with free surface
elevation given by n(x) exp(ify) where

iw cosh kh cala+a)
gNo

(2.125)

The total velocity potential for the scattering problem can similarly be
written ¢(z, z) exp(ify) where ¢(z,z) satisfies the modified Helmholtz
equation (2.49), the bed condition (2.1),

Kp=¢p, onz=0,|z|>a, (2.126)
;=0 onz=0,|z|<a, (2.127)

and we choose to define the reflection and transmission coefficients R
and T through the far-field behaviour

ia(z+a) —ia(z+a) —
o~ {(e +Re )1/10(2) as & — —o00, (2.128)

T el(@=2) 4 (2) as T — 0o.

One final condition needs to be applied and that is a condition which
specifies the nature of the solution near the plate edges, (z, z) = (+a,0).
If we insist that ¢ is regular at these points then Wigley (1964), Theo-
rem 3.3, implies that

O

2
ot~ ATInrt s rt=(zFa?+23)"" 50, (2129

for some constants A*.
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To make the solution procedure simpler we make use of the decompo-
sition into symmetric and antisymmetric potentials described in §2.3.3.
In z < —a we can expand the potentials as eigenfunction series as follows
(see equation 2.50):

oF = (70l L RE 0l ) () + 3 AT ey (2),

n=1
(2.130)
where g = —ia = —i(k? —£%)Y/2, o, = (k2 4 £2)'/2, n > 1, whereas for
z € (—a,0) we expand ¢t as
0o ¢ ~
ot = ZO ?nB;t (P £ePrT) cos Az, (2.131)
n=l

where 8, = (A2 4 £2)Y/2 \,, = nn/h and €, is the Neumann symbol
defined on page 17. The edge condition (2.129) enables us to determine
the behaviour of the coefficients A,, and B,, for large n. We use the
result that

Z nle™ ~ —lnz as x— 0" (2.132)

which can be derived using Mellin transforms, see e.g. Martin (1995). It
follows that we must have n4,, = O(n™1), nB, exp(Bra) = O(n~!) and
hence that

A, =0(n7?), B,e*=0n"? as n— oo (2.133)

Equations (2.130), (2.131), and (2.133) ensure that ¢* satisfies all
the appropriate equations and boundary conditions, provided ¢* and
T /Ox are continuous across £ = —a. Note from (2.131) that there
will be significant differences depending on whether or not £ = 0. In
particular, if £ = 0 the n = 0 term will not contribute to ¢~ or dpt /dz.
Below, we will assume that £ /= 0 and then recover results for the/ = 0
case (i.e. normal incidence) by letting £ — 0.

The continuity of p* across ¢ = —a implies
€
20(2) + Z Ay (2) 7"3 “Pne L ePra) cos Npz  (2.134)
n=0
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and from the continuity of velocity,

S ondiua(s) = Y TR (P T b coshez  (2135)
= n=0

is obtained. Here we have written R = Ag + 1 for convenience. Equa-
tions (2.134) and (2.135) can be converted into an infinite system of
equations in a number of different ways. For example, if (2.134) is mul-
tiplied by ¥m(z) and integrated over (—h,0), (2.135) is multiplied by
cos A,z and integrated over (—h,0), and B eliminated from the re-
sulting equations we obtain

ﬁnai Bra
200m + A Z Ai (Z ercmcmr © )) m >0,

e—Bna :Feﬁna)
(2.136)

where

knsink,h

ANLOE (2.137)

1 0
Crm = —/ Yn(z) cos Az dz =
hJ_n

The system (2.136) can be solved by truncation in the usual way.

The behaviour of the unknowns A, for large n is given by (2.133) and
so the terms in the sum over n in (2.136) are O(n™2) as n — oco. A
system of equations which converges much more rapidly can be derived,
however. This is because the semi-infinite dock problem (where the dock
occupies z > 0, z = 0) can be solved explicitly (as will be demonstrated
in Chapter 5).

If we use the orthogonality of the functions cos A,z with both (2.134)
and (2.135) and then eliminate Bt we can obtain the system

a1 ~2ma 1 ~2ma
1% + = + m >0,
Tg) " (an_ﬁm an+ﬁm) a0+/8m aO_IBm

(2.138)

where we have defined
Vit = AF +1=R*, (2.139)
Vi = Az Nokn sin knht >1 (2.140)

n N’nkO sin k()h
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The sum over n in this system still converges like 1/n?, but rather than
truncate this system of complex equations and solve it numerically we
can take advantage of the fact that the terms exp(—23na) all tend to
zero rapidly as a/h gets large and that if the exponential terms were
not present the system could be solved explicitly. The modified residue
calculus technique can be used to convert the system into one which
converges exponentially and it ensures that the solutions V,* are O(n™1)
as n — 00, as required by (2.133). This procedure is described in §5.2.2
and bibliographical notes for this problem are given there.

2.6 Infinite depth

For infinite depth there is a theory equivalent to that described in the
preceding sections of this chapter, although it is less frequently used. To
illustrate the main ideas, the solution will be given of the wave-maker
problem described for finite water depth in §2.2.1. Thus, a harmonic
function ¢(z, z) is sought in z > 0 satisfying the free-surface condition
(1.13), the depth condition (1.15), the wave-maker condition (2.19), and
the radiation condition (2.20) in which the wavenumber k is replaced by
its deep water value K = w?/g.

Separation of variables and application of the free-surface, depth, and
radiation conditions leads to the solution

B(z,z) = Ag KT eX= 4 / - A(p)¥,(z) e dp (2.141)
0

which is the analogue of (2.21). Here, Ag and A(p) are to be found and
U, (z) = pcospz + Ksinpz (2.142)

satisfies the free-surface condition for all u. Application of the wave-
maker condition (2.19) gives

o¢

— :iKAOeKZ—/ A(p)9,(2)pdp =U(z). (2.143)
o |,_, 0

Here, we assume that U(z) is square integrable over (—o00,0). The
unknowns Ag and A(u) can be expressed in terms of the wave-maker
velocity U(z) by an application of the so-called ‘Havelock wave-maker
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theorem’ which states that if, for z € (—00,0) and K > 0,

£ = Coes+ [ e an, (2.144)
0
then
Co = 2K / ’ f(z)eX? dz (2.145)
and
2 0
CW = e /_ W) (2.146)

(This extension of the Fourier transform is stated without proof by Have-
lock 1929, but a derivation is given by Dudley 1994, example 3.7, where
it is called the ‘impedance transform’.) Application of this transform tc
(2.143) yields

0
Ay = -2 / U(z)ef? dz, (2.147)

0
A(p) = —m /_ . U(2)¥,(z)dz (2.148)

and the solution is complete. Ursell (1947, 1948) used the Havelock
wave-maker theorem to obtain exact solutions to the problems of wave
scattering and radiation by a thin surface-piercing vertical barrier par-
tially immersed in an infinite-depth fluid.
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Chapter 3

Multipole expansions

The eigenfunction expansion techniques described in Chapter 2 rely on
the ability to expand the potential in terms of the vertical eigenfunc-
tions constructed in §2.1. This can only be done when the fluid is made
up of regions of constant finite depth and when the boundaries of all
subregions coincide with coordinate lines or surfaces. In this chapter a
different approach will be considered, in which the potential in the Hluid
is represented as a sum of singularities placed within any structures that
are present. These singularities, called multipoles, are constructed to
satisfy the field equation, the free-surface and bed boundary conditions
(infinite and constant finite depth can be considered), and a radiation
condition which demands that they behave like outgoing waves in the
far field. A linear combination of these multipoles is then constructed
and made to satisfy the appropriate body boundary condition. This
leads to an infinite system of linear algebraic equations for the unknown
coefficients in the multipole sum which can be solved numerically by
truncation. Experience shows that the systems of equations that result
from using a multipole method possess excellent convergence character-
istics and only a few equations are needed to obtain accurate numerical
answers.

The ability to apply the body boundary condition in a sensible way
requires that the multipoles can be expanded in a coordinate system in
which the body boundary is a coordinate surface and this restricts the
class of obstacles for which the method is appropriate. The majority
of wave/structure interaction problems that have been treated in this
way involve circular cylinders, either horizontal or vertical, or spherical
geometries, and problems of these types will be described in this chapter.
The extension of the method to more complicated coordinate systems
so as to treat, say, elliptical or spheroidal shapes, increases the technical
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difficulty but does not introduce any additional features to the method.

While the technique is perhaps best suited to single structures, mul-
tipole expansions can also be used to solve certain problems involving
multiple bodies. This will be illustrated by considering a radiation prob-
lem for two submerged circular cylinders and a scattering problem for
an infinite row of bottom-mounted vertical circular cylinders.

When the body boundary does not fit nicely into a particular coor-
dinate system, it may still be possible to expand the velocity potential
as a series of multipoles and use a simple collocation method to deter-
mine the unknown coefficients in the expansion. The question of the
validity of the expansion for a given geometry is a complex one, however
(see Athanassoulis 1984, Martin 1991b), and this approach will not be
pursued here.

A systematic procedure for the construction of multipole potentials
for Laplace’s equation was given by Thorne (1953) and expressions from
his paper together with many others which detail the properties of these
functions are collected together in Appendix B. Multipoles have a dif-
ferent form depending on whether the singularity is in the free surface
or submerged below it. As a result, problems for surface-piercing struc-
tures tend to be treated slightly differently from those concerning totally
submerged structures. We will begin by illustrating the latter case and
take as our example the classical problem of a submerged horizontal
circular cylinder.

3.1 Isolated obstacles
3.1.1 A submerged circular cylinder

Consider the scattering of a plane wave normally-incident on an in-
finitely long submerged horizontal circular cylinder of radius a. The
central axis of the cylinder is taken to be 2 =0, z = —f (f > a) and
the incident wave is taken to be from # = —oc0. To begin with we will
assume that the water is infinitely deep and thus ¢ = ¢; + ¢p where (up
to an arbitrary multiplicative constant)

¢I eKz iKz _ —Kf Z KT) —1n9 ) (31)
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FIGURE 3.1
Coordinates for a submerged horizontal cylinder.

Here r» and @ are polar coordinates defined by z + f = —rcosf, x =
rsin @, as shown in Figure 3.1. If we wish to consider an incident wave
of amplitude A, then the whole solution should be multiplied by —igA/w
(see equation 1.20). The symmetric nature of the obstacle means that
we can decompose the problem into symmetric and antisymmetric parts
as in §2.3.3 and for the symmetric part we write the multipole expansion

(o]
¢t =ef?cos Kz + Za"an(p:[, (3.2)

n=1

where the functions ¢} are symmetric multipoles defined in §B.1 (with
¢ =0and {( = —f), a, are unknown complex constants and the factor
a™ is introduced for convenience. Note that no source term is included
in the summation since this would result in an instantaneous flux of fluid
across the surface of the cylinder, which is physically unacceptable. The
function ¢* satisfies all the conditions of the problem except the struc-
tural boundary condition and in order to apply this condition, which is
0¢/0r = 0 on r = a, we must first expand ¢+ in terms of r and 9. From
(3.1) and (B.24) we have

o0 —K n
¢t =e K Z (=Kn)" n'r) cosnb
n=0 ’

> cosnf =
n Ab p™ 3.3
+ E a"ay, ( o + mE R cosm9) , (3.3)

n=1 =0
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where A} is defined by (B.25) and then application of the body bound-
ary condition leads (because of the orthogonality of the functions cos nf)
to the system of equations

oo —_Ka)™
am—ZamJ“"A;nan:e_Kf%, m=1,23,.... (3.4)
n=1 :

This system can be solved numerically by truncating the infinite series
and solving an N x N system of equations. A value of N = 4 will produce
three decimal place accuracy unless Ka is large or the gap between the
cylinder and the free surface is small.

For the antisymmetric part we write

¢~ =ief*sinKz+ > a"Bndy, (3.5)
n=1
where the functions ¢, are antisymmetric multipoles defined in §B.1.
Application of the structural boundary condition leads (using the polar
expansion of the multipoles (B.33) and the orthogonality of the functions
sinnf) to the system of equations

e—Kf (=Ka)™

— m=1,2,3,..., (3.6

B — Y _a™"AL B, = —i

n=1

where A, is again defined by (B.25).
A comparison of (3.4) and (3.6) shows that the unknowns from the
symmetric and antisymmetric parts of the problem are related through

Br = —icn (3.7)

and so the full solution can be written

$=¢*+¢" =1+ ) d"an(¢r —igr). (3.8)
n=1
The far-field behaviour of ¢ follows from a combination of the results
(B.18) for the functions ¢;} and (B.27) for the functions ¢ . This leads
immediately to the remarkable conclusion that as ¢ — —o0, ¢ ~ ¢
(i.e. the reflection coefficient is zero) and we also find that as # — oo,
¢ ~ T'¢1 where the transmission coefficient is given by

2 an(—Ka)™
T=1+4rie 1Y (=Ko (3.9
= (n-1! )
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FIGURE 3.2
| R| plotted against Ka for a submerged cylinder with f/a = 1.5
in different water depths.

It is not immediately obvious from this expression that |T'| = 1, which
must be true for energy to be conserved (see equation 1.62). A simpler
expression for the transmission coefficient which clearly satisfies this
requirement will be derived below.

The only changes to the above analysis that are required in order to
treat the finite depth case involve replacing (3.1) by

¢1 = coshk(z + h)e*® (3.10)

and defining A}, by (B.54) and A, by (B.61). Crucially A} and 4.,
are no longer equal and as a result (3.7) no longer holds. Some curves of
the reflection coefficient for this case, plotted against non-dimensional
frequency, are shown in Figure 3.2. The three curves correspond to
cylinders with a constant immersion depth to radius ratio of 1.5, but in
different water depths. Whilst it is clear that R is no longer identically
zero, it is zero at certain frequencies and as one might expect, the mag-
nitude of the reflection coefficient generally increases as the water gets
shallower.

One of the attractive features of multipole expansion methods for
this type of problem is that the evaluation of hydrodynamic forces is
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straightforward. Thus for a submerged horizontal circular cylinder in
infinite depth and an incident wave of amplitude A, the vertical exciting
force is given, from (1.45), by

Xy = pgA ¢(a,0) cosfads. (3.11)

-7

The orthogonality of the trigonometric functions means that the only
contribution to the integral comes from the terms in ¢ which are pro-
portional to cos f and thus, from (3.3),

Xy = mpgAa (—Ka e 5 fay + Za"HAlnan) . (3.12)

n=1

This expression can be greatly simplified using (3.4) with m = 1 and we
find that

Xy =2mpgAac;. (3.13)

A similar calculation reveals that the horizontal exciting force is given

by
Xn = 2ripgAaay (3.14)

and thus that the amplitudes of these oscillatory forces are identical but
that they are 90° out of phase. When the water depth is finite this
result is no longer true and in fact the amplitude of the horizontal force
(considered as a function of the non-dimensional frequency parameter
Ka) has a larger maximum than in the infinite depth case and it oc-
curs at a smaller value of Ka, whereas the maximum amplitude of the
vertical force is reduced and occurs at a higher frequency (Naftzger and
Chakrabarti 1979, Linton 1988).

These formulas for the exciting forces enable an expression for the
transmission coefficient to be derived which is much simpler than (3.9).
The amplitudes of the waves radiated to infinity by a submerged hori-
zontal circular cylinder in heave or surge can be found from (3.13) and
(3.14), respectively, if we use the Haskind relations (1.81). These ampli-
tudes can then be substituted into (1.74) and we find that (since R = 0)

T =—o /o7, (3.15)

which clearly satisfies |T'| = 1 as required.
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Let us now consider the heave and surge radiation problems for the
cylinder. The surge problem (mode 1) is antisymmetric about z = 0,
whereas the heave problem (mode 3) is symmetric and so we can write

$r=> a™ e, ga=) a"lyied, (3.16)
n=1 n=1

for some set of unknowns 735. Application of the structural boundary
conditions

91
or

9%s

=sin6,
r=a ar r=a

= cosf, (3.17)

shows that ;' satisfies the same system of equations as a.,, namely
(3.4), except with —d;,, on the right-hand side, whilst ~,. satisfies the
same system of equations as B, (3.6), with the right-hand side again
changed to —d1,,. These systems can again be solved by truncation
and then the added mass and damping coefficients, given by (1.48), can
be calculated. A similar simplification to that used to determine the
exciting forces in (3.13) and (3.14) can be applied in this case and we
find that
ib
at, + :V = 7ma?p(1 + 2v5). (3.18)

In infinite depth A}, = A, and so the systems of equations for
surge and heave are identical. We thus have v,; = ;. in this case and
the added mass and damping coefficients for the two modes of motion
are the same. Since in deep water ¢, ~ Lip} as z — +oo, it follows
that the amplitudes of the waves radiated to infinity, As and A,, defined
by (1.51) and (1.72), (1.73), satisfy

A, =i, (3.19)

and the fact that R = 0 then follows from (1.74). Numerical results
for the added mass of a submerged horizontal cylinder are given in Fig-
ure 1.2.

Scattering of obliquely incident waves can also be treated using the
multipole expansion method. In this case we factor out an exp(ify)
dependence as shown in §2.3.2 and then require the reduced potential ¢
to be the solution of the modified Helmholtz equation (2.49), where, for
infinite depth, £ is related to the incident wave angle 3 through

o= (K =2 =Kcosf, {=Ksing (3.20)
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and we clearly must have { < K. In deep water an incident wave is
represented by

g1 = eff7elo® — oK/ Z en(—1)"I,(¢r) cosn(f +ivy), (3.21)

where K = fcosh~, I, is a modified Bessel function, and ¢, is the
Neumann symbol defined on page 17 (see Gradshteyn and Ryzhik 1980,
eqns 8.511(4), 8.406(3)).

The multipole expansion for ¢ now takes the form

P=w1+ ) ol + ) Bugi, (3.22)

n=0 n=1

where ¢} and ¢ are, respectively, the symmetric and antisymmetric
multipoles defined in §B.5. We note that, unlike in (3.2), the n = 0
term is included in the sum of symmetric multipoles (the completeness
of multipole expansions for oblique wave problems is discussed in Ursell
1968).

The boundary condition on the structure then shows that the un-
known coefficients «,, and 3, must satisfy the systems of equations

Om + Frpy Z Al o = —€m e_Kf(—l)mFm coshmy m=20,1,2,...,
n=0
(3.23)

where F,, = I},(¢a)/K},(fa) and A}, is defined by (B.116), and

B+ Fm Y ApnBn = 217K (1) Fsinhmy m=1,2,3,...,
n=1

(3.24)

where A, is defined by (B.121). These equations can be solved numer-
ically by truncation and again the convergence characteristics are excel-
lent. Just as for normal incidence, the truncation required for a given
accuracy increases as the submergence decreases or as Ka increases.
In this case we also find that the truncation size must be increased as
B — m/2. The reflection and transmission coefficients can be determined
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from

R=2rKo 'e Kf Z(—l)"(ian coshny + B, sinhnvy), (3.25)

n=0

T =1+2nKo™"e ¥/ > " (~1)"(ion coshny — B sinhny),  (3.26)
n=0

which follow from (3.22) and the far-field form of the multipoles (B.112),
(B.118). Approximate expressions for R and T based on an integral
equation formulation were derived by Levine (1965), who established
that the reflection coefficient is not identically zero for the oblique inci-
dence case. The extension of this scattering problem to finite depth is
straightforward; the multipoles ¢} and ¢, must simply be replaced by
their finite depth counterparts given in §B.6.

A further extension is to consider the case £ > K. With this condition
it is no longer possible for propagating waves to exist as |z| — o0.
Nevertheless, for fixed ¢, one can look for values of K in the interval (0, ¢)
at which non-trivial solutions to the boundary-value problem exist; such
solutions corresponding to waves propagating along the cylinder and
decaying exponentially away from the cylinder. Solutions of this type
are known as trapped modes. Mathematically, we need to solve (3.23)
or (3.24) with zero on the right-hand side. Note that because ¢ > K, all
the terms in these equations are real. The problem boils down to finding
values of K for which either of the infinite determinants |8y,, + Fn AZ ,
vanishes; if the plus sign is taken then the resulting modes are symmetric
about & = 0 whereas they are antisymmetric about this line if the minus
sign is used.

Bibliographical notes

The fact that the reflection coetficient for a submerged horizontal cir-
cular cylinder in infinite depth water is zero, for all incident wave fre-
quencies, was discovered by Dean (1948) using a conformal mapping
technique and the multipole expansion method described above was
presented by Ursell (1950a), who also proved (Ursell 1950b) that the
systems (3.4) and (3.6) always possess unique solutions. The first per-
son to consider the forces on such a structure was Ogilvie (1963) and the
calculation of the hydrodynamic characteristics via the heave and surge
radiation problems and the reciprocity relations can be found in Evans
et al. (1979), who investigated the possibility of using a submerged cylin-
der as a wave energy device. More recently, Linton and Mclver (1995)
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have shown that zero reflection occurs at all frequencies when a circular
cylinder is submerged in the lower layer of an infinitely deep two-layer
fluid. In that case there are two possible wavenumbers for a given fre-
quency, one associated with the free surface and one with the interface,
but remarkably the reflection coetficient vanishes identically whichever
incident wavenumber is chosen.

Multipole expansions have been used to calculate the hydrodynamic
characteristics of many other submerged bodies. Circular cylinders in
finite depth were treated in Evans and Linton (1989), who examined the
possibility of using a tethered submerged cylinder as a breakwater. The
case of a submerged sphere in deep water can be found in Srokosz (1979)
and Wang (1986) and the finite depth case was treated by Linton (1991).
The heave added mass and damping coefficients of a submerged torus
in deep water, relevant to the design of ring-hulled semi-submersible oil
platforms, were computed by Hulme (1985).

Ursell (1951) proved that provided ka was small enough, values of K
at which trapped modes can occur above a circular cylinder do exist for
the symmetric problem and Jones (1953) provided a more general proof
which removed the restriction on the size of cylinder. Numerical com-
putations of the symmetric trapped-mode frequencies were performed
by Mclver and Evans (1985). Much less work has been done on the
antisymmetric problem, but such modes have been found numerically
(Martin 1989).

The method of multipoles may be applied to many problems in differ-
ent physical contexts. For example, Linton (1995) applied the method
to the problems of potential low and Stokes (viscous) flow past, and
acoustic scattering by, a sphere on the axis of a circular cylindrical tube.

3.1.2 A heaving hemisphere

The use of multipole expansions is not restricted to the study of wave
interaction with submerged bodies; problems involving surface-piercing
structures can also be treated. To illustrate this we describe the method
used to solve the problem of a floating hemisphere undergoing forced
vertical oscillations in deep water. Spherical polar coordinates (r, 6, @)
and cylindrical polar coordinates (R, a, z) are used, defined by

x=Rcosa, y=Rsine, z=-rcosf), R=rsinf. (3.27)

The problem is clearly axisymmetric and so the solution ¢ will be inde-
pendent of a.
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For this problem it is most convenient to write ¢ as the sum of a
source term U, given by (B.71), and a series of wave-free potentials 12y,
given by (B.84) with m = 0. A source term is required as there is
a non-zero instantaneous net flux of fluid across the mean position of
the submerged surface of the hemisphere. The amplitude of the waves
radiated to infinity is determined entirely by the coefficient of the source
term in this expansion. (Since the source is axisymmetric, this expansion
is clearly only applicable to axisymmetric problems like this one; if one
were solving a different radiation problem one would have to include—
as Hulme (1982) did for the surge problem—a higher-order multipole
with the appropriate wave-like behaviour at infinity.) Thus we write the
multipole expansion as

¢ = co <a2\1: +> a2"+2cn¢2n) , (3.28)

n=1

where we tacitly assume that the coefficient multiplying the source term
is non-zero (Hulme’s calculations reveal this to be always the case) and
the body boundary condition is

99 _
o = cosf on r=a (3.29)
from which, for 6 € (0,7/2),
_ = _ Pi(p)
F(u,Ka) =Y cn (KaPon_1(n) + (20 + 1) Pan (n) = o (3.30)

n=1

where we have written u = cosf and

F(u,Ka) = a*— . (3.31)

If (3.30) is integrated with respect to u over (0,1) we obtain

1 oo
IOl 1
F(p,Ka)dp—Ka ) cplpon—1=— =7, 3.32
\/O (,LL ) H ngl nd0,2n—1 co 260 ( )
where
1
I = / P (1) Pr (1) die, (3.33)
0

© 2001 By CRC Press LLC



integrals which can be determined in closed form in terms of elementary
functions (see Hulme 1982).

The expression for ¢y given by (3.32) is now substituted back into
(3.30) to give

fj (20 -+ 1) Pon(p) + KalPan1(1) — 2Pu(1) o 3n 1) = ot Ka),
i (3.34)

where
G(u, Ka) = F(u, Ka) — 2P1(p) /1 F(v,Ka)dv. (3.35)
0

To convert (3.34) into an infinite system of equations we multiply by
each element of the complete set {Ps,,(1); m =1,2,3,...} in turn and
integrate over (0,1). We find that the unknowns ¢,, n = 1,2,3,...,
must satisfy the infinite system of equations

imiicm%-KanZlAmncn—ﬁm, m=1,23,... (3.36)
where

Amn = Iomon-1 — 2Iom,110,2n-1, (3.37)

Brm = Joam — 2Jolam,1, (3.38)

Im = /01 F(p, Ka)Py, (1) du (3.39)

and then ¢y can be determined from (3.32). With the aid of the source
expansion (B.74) we can show that

" Ol
Im = — m,0 — KGZ 1 £ o
—|—Kaz [Y(n)+7i—InKa] — 1) In,, (3.40)
where 1(n) = —y+ >.7_ 57! is the Digamma function and vy is Euler’s

constant.
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The behaviour of the coefficients ¢, in the limit as Ka — 0 can easily
be determined since it follows from (3.36) that
n+1
2n+1
The asymptotic form for 3, in this limit can also be found and it can

then be shown that the added mass and damping coefficients (defined
in equation 1.48) satisfy

eh=——"P[1+0O(Ka)] as Ka—0. (3.41)

M™'ags =L - 2KalnKa+ O(Ka), (3.42)
(Mw) b33 = 3nKa + O((Ka)?), (3.43)
where
dn+1
=3 Z T 112n L ~ 0.83095 (3.44)

and M is the mass of fluid displaced by the hemisphere.

Bibliographical notes

The method described above was originally implemented by Havelock
(1955) and improved on by Hulme (1982), who also solved the surge
problem using the same technique. Havelock’s work was an extension to
three dimensions of the pioneering work of Ursell (1949), who introduced
the multipole expansion method when analyzing wave interactions with
a Hoating semicircular cylinder in infinite depth. The corresponding
finite depth problem was solved by Yu and Ursell (1961).

The behaviour of the added mass for a floating hemisphere at low
frequency, as given by (3.42), was derived using an entirely different
method by Kotik and Mangulis (1962). (They did not calculate the
constant L, but showed that for an arbitrary three-dimensional body in
deep water whose intersection with the free surface has area ma?, the
added mass in heave satisfies ag3z(Ka) — az3(0) ~ —%,mraa'K alnKa as
Ka — 0.) This result, which is in agreement with the calculations of
Havelock (1955), contradicts the calculations of Barakat (1962), who
claimed that the added mass for a heaving hemisphere is initially a
decreasing function of Ka as Ka increases from zero.

3.1.3 Sloshing in a hemisphere

A technique akin to multipole expansions can also be used to find
the natural frequencies of oscillation of certain fluid-filled containers.
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Following on from the previous example we consider the case of a half-
full sphere. Thus we seek a function ¢, harmonic in r < a, 8 € [0,7/2),
a € [0,2r), which satisfies ¢/0r = 0 on 7 = a as well as the free-surface
boundary condition, which in spherical polar coordinates takes the form
3¢ i

Kop=-—= 0=—. 3.45
4 r 06 on 2 (3.45)
The natural frequencies of oscillation then correspond to those values of
K for which non-trivial solutions can be found.

If we assume that the velocity potential has a cos Mo dependence
then it follows that it can be expanded in spherical harmonics as

¢(r,0,0) = cos Ma Z enr™PM (1), (3.46)
n=M

where we have written y = cos 6. If the free-surface boundary condition
is applied we find, since PM(0) = 0 if n + M is odd and

PM'(0) = (n+ M)PM (0, (3.47)

that ¢ must be of the form

et r2n
¢=cosMa Z Con+1 <T2"+1P21\7/{+1(u) —(2n+ M+ 1)7])21\;{(#))
n=m
(3.48)
if M = 2m is even, whereas
- 2 pM rn Tl oM
¢ =cosMa Z Con (r ™ Por (1) — (2n + M)TP2n_1(u))
n=m+1
(3.49)

if M = 2m+1 is odd. Thus for this interior problem we have constructed
combinations of regular solutions of Laplace’s equation which satisfy
the free-surface boundary condition and which are the analogues of the
singular solutions (B.84) and (B.85) for the exterior problem.

If the body boundary condition is now applied and the orthogonality
result, valid if p 4+ ¢ is even,

dpq(q + M)!
(2¢+1)(¢g— M)V

1= [ PGP ) = (350
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used, we find that (except when M = 0) the values of (Ka)~! which
give rise to non-trivial solutions are the eigenvalues of an infinite matrix
A whose elements are given by

(4 +2M — 3)(25 + M — 1)(2i — 2)! _,,
A'ij = (21 n M — 2)(2’l n oM — 1)| I2j+M—1,2'i+M—2' (351)

When M = 0 a complication arises because the summation in (3.48)
now starts from zero and thus contains a constant term, which vanishes
when the body boundary condition is applied. However, we can in this
case solve for c; in terms of cony1, 7 = 1,2,3,..., and show that (Ka)~!
must be an eigenvalue of

4141

Ai = =5

(I2541,2 = 2I2541,001,2:) - (3.52)

The integrals Igf’q are given in terms of elementary functions in Hulme
(1982) and so the sloshing frequencies can easily be computed numeri-
cally by truncating A to an N x N matrix and increasing N until the
desired accuracy is achieved. The more eigenvalues that are required
the larger the value of N that is needed, but in practice this technique
is only sensible for determining the first couple of sloshing frequencies
because asymptotic expressions can be derived for the higher modes.
Thus for the case considered here Davis (1975) showed that for m > 1
the n*h eigenvalue is given for large n by the asymptotic expression

Kpa~j

Imn

1 1 1 661 4
——— - — S+ —+—), (353
45t BTG, 2523, 768 372

where j,,,, is the n*h zero of J/, (). For m = 0, the numbers j/,,, should
be replaced by j;, ,,1 Decause the first zero of Jy(z) is zero. Some
numerical results are shown in Table 3.1 for the first three azimuthal
modes m = 0,1,2. The table shows results computed from (3.51) and
(3.52) using an 8 x 8 and a 16 x 16 truncation, together with the correct
value to three decimal places and the value computed from (3.53). The
high accuracy of the asymptotic formula, for all but the lowest mode, is
clear.

The method described here was applied to the two-dimensional prob-
lem of sloshing in a cylinder of semi-circular cross-section and the three-
dimensional problem of sloshing in a semi-circular horizontal cylinder of
finite length (as well as to the hemisphere problem) in Evans and Linton
(1993b).
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m=0 m=1 m=2

8 x 8 3.744 6.896 1.560 5.272 2.819 6.622

16 x 16 3.745 6.976 1.560 5.275 2.820 6.659
correct to 3dp. 3.745 6.976 1.560 5.276 2.820 6.659
asymptotic 3.750 6.976 1.514 5.274 2.873 6.658

Table 3.1 Sloshing frequencies Ka for a half-full sphere.

3.2 Multiple bodies
3.2.1 Two submerged circular cylinders

It is possible to use the multipole method to solve problems involving
the interaction of waves with more than one obstacle of the same type.
The general procedure involves writing the solution as a sum of multipole
expansions corresponding to each structure and then re-expanding each
of these expansions about the centre of each of the other structures so
that the boundary conditions can be applied. To illustrate the method
we will consider a relatively simple case, namely two identical submerged
circular cylinders in heave motion in deep water.

The central axes of the cylinders, which both have radius a, are taken
to be (z,z) = (£b, — f) so that the resulting solution is symmetric about
z = 0. We use multipoles QS%l)i singular at ¢ = b z = —f, where a
plus sign signifies a multipole symmetric about £ = b and a minus sign
indicates a multipole antisymmetric about this line (such potentials are
defined in §B.1). Similarly for the multipoles ¢£3)i, which are singular
at © = —b, z = —f. Then we can consider the potential

:oon (1) (2) — (D= _ 32— )
¢ ga“[ﬁ(%”wn“)ﬂn (6= —e@7)], (359

for some set of unknowns 75. This potential is symmetric about the line
x = 0 by construction and so we only need to apply the body boundary
condition on the surface of one of the cylinders; the other will be satisfied
automatically.

The multipoles QSS)i can be expanded in terms of polar coordinates
(r1,601) centred at (b,—f) using (B.24). (Note that r; and 6; have a
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different meaning in Appendix B.) For the multipole ¢£,2)+ we have

cosnfy  (=1)"
™ (n — 1)!]%

/J'+K'u,'n 1
u—K

Pt = e#==9 cos pu(x + b) d,

(3.55)

where (r3,62) are polar coordinates centred at (—b, — f). The integral is
readily expanded in terms of (ry,6;) by writing

cos pu(x + b) = cos u(x — b+ 2b)
= cos pu(x — b) cos 2ub — sin u(x — b) sin 2ub  (3.56)

so that, for r < 2f,

g+ = 28 n02 Z 2T cosmly + i Q rMsinméy, (3.57)
m=1
where
Pln= n(l,_(ily:?;,]éwz fgm*n—le—?ﬂf cos 2ubdu, (3.58)
Qi = n(l,_(il)yjj;,foooz J_rgum“‘—le—?ﬂf sin 2ubdpu. (3.59)

It remains to express r; "

cos nfs in terms of r; and #;. This is facili-

tated by the introduction of a second complex unit j (independent of the
complex unit i introduced when the time-dependence was factored out
in equation 1.10) so that any point in the (z, z)-plane can be represented
by a complex number w = z + jz. The central axes of the two cylinders

are located at wy = b —jf and we = —b — jf and clearly w; — ws = 20.
For an arbitrary point w we have
w=w; +re@r=7/2) = wo + To gl(02=7/2) (3.60)
Consider the complex function
(ir e
= = 3.61
Fa) = o " = o (361)

This function is analytic everywhere in the complex j-plane except at
w = wq and so it can be expanded as a power series about w = w, and
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the expansion will be valid on r; = a. Thus

= d™f (w — wp)™
fn(lU) o Z d’LUm w=wq m' (362)
0
- ™(n+m—1)! i[mfs —(nkm)/2
= Z ml (n— 1)1(2p)ntm inej[m ( ' (3.63)

It follows that

e}

cosn@z (-D™(n+m-1)!
Z m!(n — 1)I(2b)n+m

" cos[mf; — (n+m)m/2]. (3.64)
=0
This expression can then be substituted into (3.57) to provide an expan-
sion of ¢>£;2)+ in terms of r; and 64, valid on r; = a.
For ¢>£3)‘ we obtain

. 0 oo 00
pD- = %Z—z + Z P, cosmb; + Z Qmnrtsinmby, (3.65)
2 -

m=1
where
_ ( 1)m+n+1f N+K 1 2t
Pron T mlln—11J, p-— KM e “M sin 2ubdp, (3.66)
_ (—1)m+"][ p+K o o
= 2ubdy. 3.67
mn m|(n_1)' y H— K,U cos 2p0dp ( )
and
s1nn:92 n+m 1)1
3 I, o i 099

Equations (3.57) and (3.65), together with (3.64) and (3.68), can then
be substituted into (3.54) to provide an expansion for ¢ solely in terms
of the polar coordinates 1 and ¢; of the form

b= Z g+l [%l (Coinel 4 Z r »cosmby + S sin m91])
n=1 1 m=0
o (S“;_:el + Z ™[Cin cosmby + Sy, sinmol]) l (3.69)
1 m=0
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where the coefficients C£,, and SZ,, are known. This expansion is valid
on 71 = a and so allows the body boundary condition, d¢/0r; = 0 on
r1 = a, to be applied.

This results in the coupled systems of equations

T = D @™ + Crntn) = —b1m, (3.70)
n=1
Yo — 2 A" (Sh T + S ) =0, (3.71)
n=1
m=1,2,3,... in both cases, which can be solved numerically by trun-

cation. The extension to finite depth is straightforward; the multipoles
of §B.1 are simply replaced by their equivalents from §B.2.

Bibliographical notes

The heave problem for two identical half-immersed cylinders in deep
water was solved by Wang and Wahab (1971) and both the heave and
surge problem for two identical submerged cylinders in deep water were
solved by Wang (1981). All these problems have relevance to the design
of catamaran-type vessels. The general problem of wave radiation and
scattering by a group of horizontal cylinders with different radii and
immersion depths in infinitely deep water was solved by O’Leary (1985).
The case of two cylinders moving in surge but exactly out of phase with
each other, which is equivalent to a surging cylinder next to a vertical
wall, was treated by Linton (1988) for the case of finite depth.

The three-dimensional radiation and scattering problems for a group
of submerged spheres were solved using multipole expansions by Wu
(1995).

3.2.2 A row of vertical circular cylinders

Consider a row of identical bottom-mounted vertical circular cylinders
of radius a arranged so that the centres of the cylinder cross-sections
are at (z,y) = (0,2md), m = 0,4£1,42,.... Define horizontal polar
coordinates centred on the origin by = rcosf, y = rsinf in the
usual way. We assume that a plane wave making an angle 8 with the
positive z-axis is incident on the cylinders and the depth dependence
of the problem is factored out as described in §2.4 so that the problem
is reduced to one in the (z,y)-plane and we look for solutions to the
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Helmholtz equation (2.74). The incident wave is characterized by
p = elozHily _ gikrcos(9-5) _ Z emi™Im(kr) cosm (6 — B)  (3.72)
m=0

(Gradshteyn and Ryzhik 1980, eqn 8.511(4)), where J,, is a Bessel func-
tion of the first kind,

a=kcosf3, { = ksin 3, (3.73)

and €, is the Neumann symbol defined on page 17.

Since the incident wave is periodic in the y-direction and the array of
cylinders extends over the whole y-axis, we can seek a scattered wave
field ¢ which has the term exp(ify) in common with the incident wave.
This, together with the periodicity of the geometry, implies that

o(z,y) =Y (z,y), (3.74)

where v is periodic in y with period 2d. It follows that we need only con-
sider the strip |y| < d and from (3.74) we can derive the two independent
periodicity conditions

Plys =" ol,__, (3.75)
and
G| _ ouea 00 . (3.76)
ay y=d 8y y=—d

The approach we now take is to construct multipoles ¢;7, ¢, symmet-
ric and antisymmetric, respectively, about the line z = 0. Such functions
satisfy the Helmholtz equation in the strip |y| < d, ¢ € (—o00,0), ex-
cept at the origin where they are singular, and the periodicity conditions
(3.75), (3.76). The derivation of these functions for ¢ = 0 is described
in detail in Linton and Evans (1992) and for non-zero ¢ they are listed
together with some of their important properties in Linton and Evans
(1993c).

We thus express the velocity potential as

P=01+ Y anpt + > bagy, (3.77)
n=0 n=1
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where the multipoles are defined by

2, o [T f(y,t) coskztean(t)
Pin(z,y) = ——(-1) fo TN (3.78)
2 n [ 9(y,t) coskxt conti(t)
Pan1(T,y) = ;sgn(y)(—l) fo ’y(t)A(t)2 2 dt, (3.79)
_ 2 n [ 9(y,t)sin kat son(t)
‘p2n($7y) - _; Sgl’l(y)(—l) ]é ")’(t)A(t) 2 dt7 (380)
_ 2, o [ f(y,t) sinkzt santa(t)
‘p2n+1($7 y) - T ( 1) ]% ")’(t)A(t) dt7 (381)
with
f(y,t) = ¥4 W sinh k(1) |y| + sinh[ky(t)(2d - ly])],  (3.82)
g(y, t) = e¥¢dsenW) cosh ky(t)y — cosh[ky(t)(2d — |y|)], (3.83)
A(t) = cosh 2k~y(t)d — cos 2¢d (3.84)
and
A(t) = —i(1 — )12 = (12 — 1)1/, (3.85)
cm(t) = cos(msin~! t) = cos[m(m/2 +icosh™' t)], (3.86)
sm(t) = sin(msin~!t) = sin[m(7/2 4 icosh™' t)]. (3.87)

The first and second expressions in the last three of these definitions
correspond to t < 1 and t > 1, respectively.

The unknown constants a,, bn, can then be determined by applying
the boundary condition on the cylinder, which is d¢/dr = 0 on r = a.
Using the appropriate polar coordinate expansions of the multipoles (see
Linton and Evans 1993c), we can write, for r < 2d,

0(r,0) =" Crm(r)cosmb’ + > Sp(r)sinmf’, (3.88)
=0

m=1

where 8’ = 7/2 — 0 and, with ' = /2 — §3,

Crn(r) = €mi™ I (kr) cosmfB' + amH (k) + Jn(kr) Y anErby,
n=0

(3.89)
Sm(r) = 2™ I (kr) sinmf' + b HSY (k1) + Jm (k1) Y bpFrmye-

n=1

(3.90)
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Here

(2 20 ¢~2k74 _ 05 24d
%i”‘m“f % cnemdt, m+m even,
Bon =14 oy 2¢d !
%i”‘m][ SH;—A CnCm dt, n +m odd,
\ 0
(3.91)
(4 %0 e=2k7d _ 05 20d
—i"_m"'l][ e% SpSmdt, m+m even,
™
Finn = 4 co in 2¢d ! (3.92)
S
—i"_mf A SnSm dt, n +m odd.
\ T 0

The body boundary condition implies that C;,(a) = S,,(a) = 0, from
which

O + Zy Z an Bt = —€ni™Zy cosmf, m=0,1,..., (3.93)
n=0

b+ Zm 3 bnBiy = —2"Zymsinmf,  m=12,..., (3.94)
n=1

where Z,,, = J],(ka) /Hr(,p'(ka). Thus the a,’s and the b,’s each sat-
isfy an infinite system of linear algebraic equations which can be solved
efficiently by truncation. The fact that the equations decouple is a con-
sequence of the symmetry of the geometry about £ = 0. The systems of
equations (3.93) and (3.94) can be used to simplify the polar coordinate
expansion (3.88), resulting in

o(r,0) =3 (HT(,})(kr) - Z;lJm(kT)) (@m cOSmE' + by sinmd’)
m=0

(3.95)

valid for r < 2d, which takes a particularly simple form on r = a due to
the Wronskian relation (A.7).

In order to determine the reflected and transmitted wave fields, the
far-field forms of the multipoles ¢ are needed. These are related to the
positive real zeros of the function A(t) which appears in the denomina-
tors of the multipoles, i.e. t =t,, p= —pu,... ,v, where

to= (1= (6/0)% L= L4pr/d (3.96)
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and u, v are non-negative integers such that
b1 <—k<l_,, by <k <ty (3.97)

It can be then be shown, from (3.77)—(3.81), that

14
eiaa:+i€'y+ § : Rpeilp'y—ik:ctp as & — —00,
o~? p=—p (3.98)
§ : Tp ell,,'y+1k:ct,, as & — +00,
p=—n

where

R, = (kdt,) " (P, +iQyp), T, = bop + (kdtp) (P, —iQp)  (3.99)

and
Py =" [azncon(ty) — isgn(fp)azni1conia (tp)], (3.100)
n=0
Qp = Z [bon—152n—1(tp) — isgn(£p)bansan(tp)] - (3.101)
n=1

The far-field solution is thus seen to consist of the incident plane
wave plus a finite sum of reflected and transmitted plane waves with
amplitudes |Ry|, |Tp|, p = —4, ... ,v. The transmitted waves are plane
waves of the form exp(ifpy + ikat,) and these make angles 6,, where
0p € (—m/2,m/2), with the positive z-axis where, from equations (3.96)
and (3.97), cosf, = tp, sinf, = £,/k. Thus using (3.73) we have

sin@, = sin 8 + pr/kd, P=—fhy... V. (3.102)

The reflected waves make angles m — 8, with the positive z-axis.
Applying Green’s theorem to ¢ — ¢ and its complex conjugate, see,

for example, Achenbach et al. (1988), leads (exactly as in the derivation

of equation 1.62) to a result which represents the conservation of energy:

14

Y Bl + [T *) = to. (3.103)

p=—p

It is straightforward to obtain the behaviour of Ry and Ty in the limit
as kd — 0 with a/d fixed or as a/d — 0 with kd fixed. From (3.93) and

© 2001 By CRC Press LLC



(3.94), using (A.19)-(A.22), it can be shown that in either of the above
limits

ap ~ —imi(ka)?, ay ~ —3w(ka)?*sinB, by~ —in(ka)?cosf
and an, b, = O((ka)*), n > 2. We thus obtain

wika? wika?
1+2 2 To~1 .
4dcosB( +200s26), To + 4dcos 3

Ry~ — (3.104)
When just one mode is present (i.e. u = v = 0) these approximations can
be improved by applying the conservation of energy condition (3.103) as
described by Miles (1982).

Bibliographical notes

When ¢ = 0 the multipoles used above are appropriate to the physical
problem of a body on the centre-line of a water-wave channel. Similar
multipoles can be derived for singularities which are off the centre-line in
such a channel. This was done in McIver and Bennett (1993) and such
multipoles were used to solve the scattering problem for an arbitrary fi-
nite array of circular cylinders in a channel in Mclver and Linton (1994)
and Linton and MclIver (1996). Utsunomiya and Eatock Taylor (1999)
used these multipoles to compute frequencies at which trapped modes
exist in the vicinity of a row of circular cylinders placed across a chan-
nel. Fully three-dimensional problems concerning submerged spheres in
channels have also been solved using multipoles (Wu 1998, Ursell 1999).
An in-depth discussion of the use of multipoles in channel problems can
be found in Linton (1997).

Multipoles equivalent to those used in this section but with £ > k were
used in Mclver, Linton, and Mclver (1998) to find the possible wavenum-
bers at which pure Rayleigh-Bloch surface waves can propagate along
an infinite row of circular cylinders. A Rayleigh-Bloch wave propagates
along the surface of a structure that is adjacent to an infinite medium,
with decay of the motion into the medium. For further details of such
waves see §5.2.3.
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Chapter 4

Integral equations

The formulation of wave scattering and radiation problems in terms
of integral equations has proved to be of great utility. In a few cases
such a formulation has resulted in an exact solution. However, integral
equations may also be used to obtain asymptotic approximations and
to form the basis of accurate numerical methods. In this chapter we
concentrate on the derivation of integral equations from a boundary-
value problem and on the numerical solution of such equations. The
reader might consult Porter and Stirling (1990) for detailed discussion
of the theory of integral equations and Delves and Mohamed (1985) for
more on the numerical solution of integral equations.

The main problem to be solved here using integral equations is the ra-
diation of waves by an obstacle with a prescribed distribution of velocity
on its surface. This includes the case of wave scattering as the veloc-
ity distribution then arises from the incident wave. Two main methods
of derivation are described. First of all, in §4.1 the solution is written
as a distribution of wave sources over the surface of the obstacle and
an integral equation is obtained for the unknown source strength. The
second approach, described in §4.2, uses Green’s theorem to obtain an
integral equation. In the case of a thin obstacle a modification of the
approach is required and this is given in §4.3. Specific applications to
interior eigenvalue problems and free-surface problems are discussed in
§84.4 and 4.5, respectively.

One integral-equation approach to free-surface problems based on
Green’s theorem involves the use of rather complicated Green’s func-
tions. In applications where many different evaluations of a Green’s
function is required it is important to use an efficient algorithm. Algo-
rithms for a variety of different problems are discussed in §4.6.

In §4.7, many of the ideas are illustrated in detail by consideration of
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the complementary problems of diffraction of water waves by a break-
water with a gap and a breakwater of finite length. These particular
problems are chosen as there is the interesting feature that ‘embedding’
formulas may be used to obtain the solutions to both problems for an
arbitrary angle of wave incidence in terms of the gap problem for one
angle of wave incidence. Two numerical methods are described for the
solution of the gap problem and comparisons made between them. The
relationship between these complementary problems is an example of
Babinet’s principle and this is discussed in §4.8.

4.1 Source distributions

To illustrate the main ideas behind the formulation of integral equa-
tions using source distributions, the following two-dimensional problem
is considered. Let D denote the unbounded region exterior to the simple
closed curve Sg; upper case letters P and (Q are used to denote points in
D and lower case letters p and g are used to denote points on the curve
Sg. The problem is to determine ¢(P) which satisfies the Helmholtz
equation

(VE+kH)¢(P)=0, PeD, (4.1)
the boundary condition

o¢

a_n,,(p) = f(p), p€ Sk, (4.2)
and the radiation condition
(P - k(7)) 0w rpoe (43
a’l‘p

Here f(p) is a given function on Sg, k is a given positive real number,
and n, is a normal coordinate at p € Sg measured in the direction from
D towards Sg. The origin of coordinates is within D_, the interior
of Sp, and (rp,0p) are the polar coordinates of P relative to O. The
function f(p) may be an imposed velocity distribution or may arise from
an incident wave. Thus the formulation includes both scattering and
radiation problems. A boundary condition of the form (4.2) is referred to
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as a Neumann boundary condition. Note that, unless otherwise stated,
references in this text to a Neumann boundary condition are to the
homogeneous case for which f(p) = 0.

The fundamental source solution for the Helmholtz equation is

G(P,Q) = £HS (kRrq), P £Q, (4.4

where H(gl) denotes a Hankel function and Rpg is the distance of the
field point P from the source point Q). Note from (A.17) that

1
G(P,Q)~ o InRpg as kRpg — 0. (4.5)

Now

Rpq = [rp + 15 — 2rprgcos(fp — 0g)] .

2
1- 9 cos(fp —0g) + O (T—g)] as £ - o0 (4.6)
Tp T'P TQ

:‘]"P

and hence from equation (A.12) as krp — o0,

Tkrp

1/2
H(gl)(kRPQ) ~ < ) ei(krp—er cos(fp—0g)—n/4) (47)

so that G(P,Q) also satisfies the radiation condition (4.3). A solution
of (4.1)-(4.3) is sought in the form

B(P) = /S 1(@)G(P,q) dsq, (48)

which by the properties of G(P, Q) satisfies both (4.1) and (4.3). It
remains to satisfy (4.2) by choice of the ‘source distribution’ u(g). Con-
sider differentiation of ¢(P) with respect to the normal direction at
p € Sg. For P ¢ Sg

op oG
o P)= [ w@ 5t (Pa)ds, (19)
but for P — p € Sg,
0 oG
o) =)+ [ w@ 5 mads,  @10)
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(see Smirnov 1964, §195 and §199). Equation (4.8) may be used to
continue ¢ in to the interior D_ of Sg. The potential is continuous
across S, but its normal derivative has a discontinuity and in particular

9

ony

(p-) =

B[

u(o) + /S u<q>§—fp<p, g)ds,, (4.11)

where p_ € Sg is obtained by approaching Sg from D_.
By construction (4.8) satisfies the boundary condition (4.2) provided
the source distribution u(q) satisfies the integral equation

)+ /S u(q)(%(p, Q)ds, = f(p), € Sp. (4.12)

This is a Fredholm integral equation of the second kind for the source
distribution p(g). Once u(g) is determined the potential everywhere in
D follows from (4.8).

It might seem at first sight that the kernel of (4.12) is singular. How-
ever, Smirnov (1964, §199) demonstrates that for logarithmic G, then
the kernel of an integral equation of the form (4.12) is a continuous
function of the arc length s (see also §4.1.1 below). This is not true in
three-dimensional problems for which the kernel is weakly singular (see
Kellogg 1953, p. 299).

4.1.1 Numerical solution

One approach to the numerical solution of (4.12) is now described.
Suppose that the curve Sg may be described in terms of a parameter
u € [a,b) so that (4.12) may be rewritten as

b
—%M(u)—k/ M(v)g—i(u,v)w(v)dv:f(u), u € [a,b), (4.13)

where (z(u),y(u)) are the coordinates of the field point p, (z(v), y(v))
are the coordinates of the field point g,

oG oG

M(u) = ,LL(p), g(u,v) = G(p7 Q), 8_’1’Lp(u’v) = 8_np(p’ Q) (414)

w() = ([7'@)]* + [y @)]7) 2. (4.15)
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The interval [a, ] is divided into N equal subintervals with end points
{u; = a+1ib—-a)/N; i =0,1,... ,N} and midpoints {8; = (u;—1 +
u;)/2; 1=1,2,...,N}. Collocation at the element midpoints then leads
to the simultaneous equations

—lM@)+b_a§5M@J£g@-@ﬁdd)
2 2 N‘l ]87'7/17“'7 7
]:

= f(@), i=12,...,N

for the source distribution values {M(4;); i =1,2,... ,N}.

As noted after (4.12), the normal derivative of the Green’s function is
non-singular when the source point ¢ and field point p coincide and the
limiting value as ¢ — p may be found as follows. Write

(4.16)

?

1 ~

where G(p,q) and its first derivatives are non-singular when ¢ = p,
and hence its normal derivative may be calculated without difficulty
everywhere on Sg. In terms of the parameters v and v

% _ V(W) —z@)] + 2 (u)y(u) — y(v)]

o (In Rpy) = o . (4.18)

By Taylor’s theorem

z(v) = z(u) + (v — w2’ (u) + 3(v - w)*" (w),

’ 1 2,1 (4'19)
y(v) =y(u) + (v —u)y' (u) + 3(v —u)"y"(u2),
where u; and us lie between u and v, and hence as |u —v| — 0
Bpq = [(2(u) - 2(0))? + (y(w) - y()*] "
= |v — ulw(u) + O(|v — u|?) (4.20)
and so as kRyq — 0
9 Y (wa" (u) — 2'(u)y" (u)

oy o) 2 T . 4

Once the source distribution is determined (4.8) may be used to de-
termine the field throughout D. Thus

b

N u;
WP =M@ [ G, (@22)

i—1
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where the integral of G has been retained because of the logarithmic
singularity as P — ¢ if P is chosen on Sp.

4.1.2 Irregular values

The boundary-value problem (4.1)—(4.3) is known to have a unique so-
lution for all k2 > 0 (Colton and Kress 1983, §3.3). A difficulty with the
above method is that the integral equation (4.12) is not uniquely solvable
for certain values of k? known as irregular values (a phenomenon recog-
nized by Lamb 1932, §290). These values of k? correspond to eigenvalues
of the interior Dirichlet problem specified by

(V2+E2)$(P.)=0, P_eD._, (4.23)

¢(p-) =0, p- €5s, (4.24)

where D_ is the interior of Sp and p_ is obtained by approaching Sg
from D_. A condition of the form (4.24) is referred to as a (homoge-
neous) Dirichlet boundary condition.

The correspondence between the irregular values and the eigenvalues
of an interior problem can be seen from an examination of the homoge-
neous equation corresponding to (4.12). From the Fredholm alternative,
if the homogeneous equation has no non-trivial solutions then the non-
homogeneous equation has a unique solution (see, for example, Porter
and Stirling 1990, theorem 4.10).

Suppose that the homogeneous equation

0
—3u(p) +/ wa) 5 —Gp,g)dsg =0, peSp (4.25)
Sp Tp

does have a non-trivial solution for u(p). The corresponding potential
defined by (4.8) has zero normal derivative on Sg and hence, by the
uniqueness of the solution to the boundary-value problem, ¢(P) = 0 for
all P € D and in particular ¢(p) = 0 for p € Sg. Further, by continuity
of the representation (4.8), ¢(p—) = ¢(p) = 0 for p_ € Sg (see equation
4.10) and so, as long as k? is not an eigenvalue of the interior Dirichlet
problem, ¢(P_) =0 for all P_ € D_ and, in particular, from (4.11)

o9

Sp-) = )+ [ w05CRdn =0 (420

Sp
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Hence, from (4.25), u(p) = 0 contradicting the original assumption that
u(p) A 0. Thus, ifk? is not an eigenvalue of the interior Dirichlet prob-
lem (4.23)—(4.24), then the integral equation (4.12) is uniquely solvable.

Conversely, if k? is an eigenvalue of the interior Dirichlet problem
and ¢(P_) is a corresponding non-trivial solution, then from (4.11) and
(4.25),

M) = g (p-) -0 (1.27)

and there is no contradiction in assuming a non-trivial solution for u.
Thus, a solution of the original boundary-value problem based on the
integral equation (4.12) may break down if k2 is an eigenvalue of the
Laplacian for the interior Dirichlet problem. This is purely an artifact
of the solution procedure and, more specifically, of the Green’s function
used. One way of eliminating irregular values (Ursell 1973) is to modify
the Green’s function by adding terms that are singular at an origin O
within Sg. Let Sg’ be a contour within Sg and surrounding O. The
additional terms in the Green’s function are constructed to ensure that
the interior potential ¢(P_) satisfies a condition on Sg’ which ensures
that if ¢(p_) =0, p_ € 9B, then ¢(P-) = 0 when P_ lies between Sp
and Sg’. This eliminates the possibility of non-trivial solutions to an
interior Dirichlet problem and hence the modified integral equation is
uniquely solvable. An alternative is to use a method that is known to
be free of irregular values such as the null-field method (Martin 1980).

4.2 Green’s theorem

Consider a region D bounded by a surface S and suppose that through-
out D the complex-valued functions ¢ and G are continuously differen-
tiable and have continuous second partial derivatives. It follows that ¢
and G satisfy Green’s second identity (Kellogg 1953, p. 215),

/ / / (¢V2G — GV?¢) dV = / / (¢——Ga¢) ds, (4.28)

where n is a coordinate directed in the outward normal direction to
the surface S. Further, if ¢ and G are both solutions of the Helmholtz
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equation
ViU + KU =0 (4.29)

throughout D for some k (possibly zero), then the integrand within the
volume integral vanishes identically and (4.28) reduces to

/ / (¢— ~-G%- ) ds =o. (4.30)

This relation is often referred to as Green’s theorem.

First of all suppose that ¢(P), P € D, is the unknown function in a
particular two-dimensional problem so that S is a closed curve (following
the notation of §4.1, we use P and @) to denote points within D, and p
and ¢ to denote points on the boundary of D). By appropriate choice
of a Green’s function G(P, @), (4.30) may be used to obtain an integral
representation for ¢, and/or an integral equation for ¢, in terms of the
behaviour of ¢ on S. The appropriate choice for G has the asymptotic
form

1
G(P,Q)~ 5-InRpq as Rpqg—0, (4.31)

where Rpg is the distance of the field point P from the source point Q.
By construction G(P, Q) is singular at @ and so, for the application of
Green’s theorem, if () lies within or on S then it must be excluded from
the domain D. Consider first of all the case when @ is within S and
let S¢ be a circle of radius € with centre at Q. Application of Green’s
theorem is now made to ¢ and G over the domain between S and S,
so that the line integration is over S U S.. In the limit as ¢ — 0, the
contribution from S, is

i /( e (1.Q) - G0,Q) o)) s,

= lim Ozﬂ(rb(p)[ I (p,Q)]
6.Q) |- 5pto )])R,,Q_fdg
edf

' 2n 1 InR Q (9¢
= !1_1{(1) ; (¢(p) [_ 27erQ:| - 27rp [_ OR,q (P)]) Ryq=e
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where the asymptotic form (4.31) and lim._,o ¢(p) = ¢#(Q) have been
used in the limiting process. Hence, Green’s theorem (4.30) yields

o= [ <¢(p)g—i(p,Q)—G(p,Q)§—Ti(p)) dsp, QeD, (433)

which is an integral representation for ¢ at an arbitrary point within D
in terms of the values of ¢ and its normal derivative on the boundary.
The subscripts on the normal coordinate n, and the line element ds,
indicate that these are associated with the point p € S. If ¢ is known
on S, and G can be constructed so that G(p, Q) = 0 for all p € S, then
(4.33) gives the solution explicitly. Alternatively, if 0¢(p)/dn, is known
for p € S and G can be constructed so that 9G(p,Q)/0n, = 0 for all
p € S, then again (4.33) gives the solution.

If ¢ lies on the boundary of S then a semicircular (rather than a
circular) contour is required to exclude g from D which results in

G
100 = [ (005 0.0~ Cr ) sy ac5. @42
If for p € S, 0¢(p)/On, is known, then (4.34) is an integral equation for
the boundary values of ¢. As noted in §4.1, the normal derivative of G
appearing in (4.34) is a continuous function of the arc length when G
has a logarithmic singularity.

Simplifications are often obtained by constructing G to satisfy the
same boundary condition as ¢ on some Sy C S so that the contribution
to the integral from S, vanishes. Once the integral equation has been
solved for ¢, (4.33) may be used to determine ¢ throughout D. It should
also be noted that if the source point @ lies outside D then

/ (¢(p>§—i(p,Q>—G(p,Q>%(p>) ds,=0.  (4.35)

In the above derivation, the singular point of the Green’s function
was regarded as fixed. A change of notation and an application of the

symmetry property G(P,Q) = G(Q, P), which holds for the particular
problems under consideration here, yields

$(P) = /S (¢(q>§—i(P,q>—G(P,q>§—Ti(q>) ds,, PeD, (436)
and

boto) - [ (¢(q>§—i(p,q>—a(p,q>§—i(q>) ds,, peS. (437)
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The representations (4.36)—(4.37) may now be interpreted in terms of
distributions of sources and dipoles over the boundary surface S.

In three dimensions similar formulas may be obtained. The appropri-
ate Green’s function has the asymptotic form

1
47erQ

G(P,Q) ~ — as Rpg — 0. (4.38)
When P lies inside (or on) S it is excluded from D by a sphere (or
hemisphere) and this results in equations identical in form to those for
the two-dimensional case in equations (4.36)—(4.37).

4,2,1 Scattering by a vertical cylinder

To illustrate the integral-equation formulation described in §4.2, the
problem of the scattering of waves by a vertical cylinder extending
throughout water of constant depth is considered. The cylinder has
a uniform but otherwise arbitrary cross-section which is denoted by Sg
and the corresponding cross-section of the fluid region is denoted by
D. The origin of coordinates O is chosen to be within Sg and (rp,fp)
are horizontal polar coordinates of a point P relative to O. The case
in which the cross-section is a circle was solved using an eigenfunction
expansion in §2.4.1 and as in that case, the depth may be removed from
the problem by writing the potential as

®(z,y,2,t) = Re {[¢1() + d(z,y)] Yo(z) e}, (4.39)
where the incident wave potential is
¢1 = eiFT (4.40)

The diffracted wave potential ¢ satisfies the Helmholtz equation (4.1),
the cylinder boundary condition
¢ ¢
—(p)=—=—2, peESg, 4.41
B, () ony’ p B ( )
where n, is the normal directed out of the fluid region at p, and the
radiation condition (4.3). The problem above is a special case of that
used for illustrative purposes in §4.1.
The fundamental Green’s function for the Helmholtz equation is given
by equation (4.4). The contour S for the application of Green’s theorem
is chosen to be Sg U Sx where Sx is a circle of large radius rp = X.
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Now as krp — oo for fixed @ the asymptotic form of G(P,()) follows
from (4.7) and is

G(P,Q) ~ G(P,Q)rp? e, (4.42)

where G (P, Q) is independent of rp. In the limit kX — oo, the contri-
bution to the integral on the right-hand side of (4.33) is therefore

. I oG ¢
Jim A (¢(p)a—%(p,Q)—G(p, Q)a—%(p)) T,,:deg
. 2”( 8¢ ) A kX v1/2
= lim ik¢(p) — (p) G(p, Q)€™ X'/7d0 (4.43)
X—oo 0 ’r’p:X

which vanishes by virtue of the radiation condition (4.3). The integral
equation (4.37) therefore reduces to

~14(p) + /S ¢(q)§—i(p, g)ds,

0
- / G(p,q)a—qsl(Q)dsq, pESp, (4.44)
S qu

which is a Fredholm integral equation of the second kind for the values
of ¢ on the cylinder contour Sg.

A simplification of (4.44) may be obtained as follows. An application
of Green’s theorem (4.30) in D_, the domain interior to Sp, to the
incident wave ¢; = exp(ikz) and the Green’s function G(P, Q) yields

ii(p) = —_/SB <¢1(p)g—i(p,q) - G(P,Q)%(Q)) dsq, p€ S,
(4.45)

where the normal coordinate n, is directed into D_. Elimination be-
tween (4.44) and (4.45) of the term involving the derlvatlve of ¢r yields

p)+/ ¥(g p,q)dsq——¢1( ), pESE, (4.46)

where ¥ = ¢+¢1. A numerlcal scheme based on this formulation is given
by Isaacson (1978) and he includes an investigation of the interactions
between neighbouring cylinders.

The kernel of the integral equations (4.44) and (4.46) is the transpose
of that appearing in (4.12) and so, by the Fredholm alternative theo-
rem, it will therefore also suffer from the problem of irregular values as
described in §4.1.2.
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4.3 Thin obstacles

If the obstacle under consideration has negligible thickness, then the
integral equation technique described above requires modification. Con-
sider the two-dimensional problem (4.1)—(4.3) used for illustration in
§4.1, but where the obstacle is now taken to be thin. Denote the obsta-
cle by the arc I, the two sides of I by I'*, and the corresponding normal
coordinates directed out of the fluid by ng for p € I'. The boundary
condition (4.2) is rewritten as

o¢
F(p) ==xf(p), perl (4.47)

Np
(this class of forcing functions includes the case of an oscillating rigid
plate). An application of Green’s theorem to ¢ and the fundamental
source (4.4) and use of the radiation condition leads to a representation
for ¢ in the form (4.36) where the integration is over both sides of the
arc I'. Now by definition

0 0

—_— =, er, 4.48

ong ong 7 (4.48)
and hence after application of (4.47) the representation (4.36) reduces
to

oP) = [ 1#0) g (Pydsy, PED, (149
where
[6(9)] = ¢(a*) —¢(g7), ¢* €T, (4.50)

is the jump in the potential across I' and some cancellation has occurred
in the integrations along I't. It remains to satisfy the boundary condi-
tion (4.47). Now the two equations

o¢

o) = 5o [0 S ) dsg = £0), pET, (@5

both reduce to the same equation by virtue of (4.48) and hence the
superscripts may be dropped to obtain

Ginp A[¢(Q)]g—ri(p,q) dsq = flp), perl, (4.52)
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which is an integral equation for [¢(q)]. For definiteness all normal
derivatives will be associated with I'* from now on. If [¢(q)] is deter-
mined for all ¢ € T' then (4.49) yields the potential ¢ throughout the
fluid domain.

By the theorem in §2 of Martin and Rizzo (1989), (4.52) may be
rewritten as

f @5t = 1), per, (@5

where the integral is now a finite-part integral as defined in Appendix C.
An equation of this type is known as a hypersingular integral equation
because of the strength of the kernel singularity. Denote the unit normals
at p € T by n(p) = (nf,nf). If p € T has coordinates (z,y) and ¢ € T
has coordinates (¢, 7), then

G [, . o0\ [ 40 40
o ~ (955 +1i5y) (113 745, ©

_ kn() -n(g) )
= WHI (kRpg)

B k*(n(p) ~f}£}1{)}27(:1(q) 'RPQ)Hél)(kqu)- (4.54)

where Ry, is the position vector of p relative to q, Rpq = |Rypq|, and
Hf(r% ) denotes the Hankel function of the first kind with order m.

4.3.1 Numerical solution

To illustrate a numerical procedure for solving the equation (4.53)
consider the case when I is a flat plate of length 2¢ inclined at an angle
o to the z axis and with its centre at the origin. Parameterize I' by
taking

I' = {(uacosa,uasina), u € [-1,1]}, (4.55)
so that
n(p) = n(q) = (—sina, cosa) (4.56)
and in particular

n(p) - Rpg = n(g) - Rpg = 0. (4.57)
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The integral equation (4.53) then reduces to

k IP(U)HI(I)(ka|u—v|)

— dv=F(u), u€(-1,1), (4.58)
o lu — |

where F(u) = f(p), P(v) = [#(q)] and P(+1) = 0. Now from (A.18) it
is appropriate to write

H (kalu —v]) 2 1
(u—v)
where L(u,v) has only a logarithmic singularity as |[u — v| — 0 (see

Abramowitz and Stegun 1965, equation 9.1.88), and hence the integral
equation is rewritten as

- = —a 5 + L(u, U)} , (4.59)

1 ][1 P(v) {(1—)2 +L(u,v)} dv=—F(u), ué€(-1,1). (4.60)

2ma J_, u—v
The integral operator K defined by

1 — o)1/ 2¢(y
waw = f ST

has eigenfunctions which are the second-kind Chebyshev polynomials
Un(v),n=0,1,2,.... In particular

dv (4.61)

1 (1 = 2)120,
][_ 1 ( o & U)Z ®) 40 = —n(n + 1)U () (4.62)

(Frenkel 1983, equation 33). The Chebyshev polynomials form a com-
plete set over the interval [—1, 1] and hence it is appropriate to look for
an approximate solution of (4.60) in the form

N
P(v) = (1 =02 " a,Un(v), (4.63)

n=0
where {an; n=0,1,... ,N} are coefficients to be determined; this form

reflects the known asymptotic behaviour of P(v) as the end points of
(—1,1) are approached (Martin 1991a). Substitution of the approxima-
tion (4.63) into the integral equation (4.60) yields

N
> anAn(u) = —21aF(u), u€ (-1,1), (4.64)
n=0
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where

An(u) = —m(n+ 1)Up(u) +/ (1 —v)Y2U,(v)L(u,v)dv  (4.65)

-1

and (4.62) has been used. The integral involving L(u, v) can be evaluated
numerically without difficulty after suitable treatment of the logarithmic
singularity. Parsons and Martin (1992) discuss a number of alternatives
for the solution of (4.64) and choose to use a collocation scheme based
on the zeros of the first-kind Chebyshev polynomials given by

2j+)7 .
’LL_—,':COSW7 ]:O,l,...,N, (466)
so that (4.64) reduces to
N
> andn(y;) = —2maF(u;), j=0,1,...,N. (4.67)
n=0

Once (4.67) has been solved for the coefficients {a,; n = 0,1,... ,N}
then (4.49) may be used to determine the wave field anywhere. For the
case of the tlat plate discussed above

! oG
d(z,v) =/ P(v)—(z,y;vacos o, vasin a)a dv
—1 6nq

al : 8G
~ Z an/ (1 — v)Y2U, (v) = (z,y; va cos &, vasin a)a dv
n=0 -1 anq
(4.68)

where

oG kn(q)-Rpq (1)
- . =—2 I R .
anq ((177 Y 57 77) 4iRPq 1 (k Pq) (4 69)

and Rp, is the position vector of the field point (x,y) relative to the
source point (£,7).
Bibliographical notes

The theoretical basis for hypersingular integral equations is discussed
by Martin and Rizzo (1989, 1996) and the end-point behaviour of solu-
tions to such equations by Martin (1991a). The expansion-collocation
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method described above for one-dimensional hypersingular equations is
numerically very effective and its convergence in various function spaces
has been proved by Golberg (1983, 1985) and Ervin and Stephan (1992).

Numerical results for an integral equation in the form (4.53), with the
Green’s function given by (4.4), are given by Frenkel (1983), although
a slightly different approach to the numerical solution is adopted. The
problem where the single barrier in the example described above is re-
placed by an infinite row of identical barriers was formulated as a hy-
persingular integral equation and solved, again using a modification to
the expansion-collocation method, by Achenbach and Li (1986). Alter-
native numerical approaches to hypersingular integral equations are also
described in Krishnasamy et al. (1990) and Guiggiani et al. (1992).

Various applications of hypersingular integral equations are briefly
discussed by Martin (1991a). Applications to problems in water waves
are given by Parsons and Martin (1992, 1994, 1995). In the first of these
papers the scattering by submerged flat plates was considered and in the
second the method was extended to include submerged curved plates
and surface-piercing plates. The third paper concerned the trapping
of waves above submerged plates. Linton and Kuznetsov (1997) used
Parsons and Martin’s method to numerically compute the frequencies
of trapped modes between two surface-piercing angled barriers for the
two-dimensional water-wave problem.

The hypersingular integral equation approach can also be used to
solve three-dimensional problems involving thin surfaces. Thus Mar-
tin and Farina (1997) and Farina and Martin (1998) have derived two-
dimensional hypersingular integral equations for radiation and scattering
problems involving a submerged horizontal disk.

4.4 Interior problems

The integral-equation techniques described in sections §§4.1-4.2 are
readily applied to interior problems. For example, one such problem is
the generalization of the problem in §2.3.5 to sloshing in a cylindrical
container of arbitrary cross-section Sg surrounding the two-dimensional
region D. Let n, be a normal coordinate to Sg at p directed out of D.
The aim is to determine the eigenvalues k? of the Laplacian such that
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the problem

(V2 +k%)¢(P)=0, PeD, (4.70)
g—i( )=0, peSy, (4.71)

has non-trivial solutions for ¢. The integral equations obtained from the
two approaches of §§4.1-4.2 are essentially the same; the only difference
between them is that the kernel resulting from the source-distribution
approach is the transpose of that obtained from the Green’s theorem
approach. The source-distribution approach leads to an equation in the
form (4.25).

In solving such interior problems care has to be taken in the choice
of Green’s function. As the above eigenvalue problem is real valued (in
particular, it does not involve a radiation condition) it is possible to
formulate an integral equation using only the (singular) imaginary part

am@:%mmm) (4.72)

of the Helmholtz source (4.4), where Yy denotes a Bessel function of the
second kind. However, Mattioli (1980) has shown that a real Green’s
function leads to an integral equation that has irregular values corre-
sponding to eigenvalues of an exterior Dirichlet problem, but these can
be eliminated completely by using the complex form (4.4).

This can be explained as follows. The relevance of the exterior Dirich-
let problem arises in a similar fashion to the interior Dirichlet problem
described in §4.1.2. Suppose that Gj is used in the formulation of the
integral equation for the source distribution u(p), p € Sp, and assume
there is a non-trivial solution u(p) of the homogeneous equation. Such
a solution corresponds to a potential ¢ that is zero on Sg, but has non-
zero normal derivative on the exterior of Sg. The integral representation
for ¢ shows that it corresponds to a particular form of standing wave
at infinity in the exterior domain. A given standing wave is consistent
with a Dirichlet condition on Sg, and hence a contradiction is not ob-
tained, only for certain values of k2, the irregular values. However, if
the complex G is used, then ¢ corresponds to outgoing waves at infinity
that cannot be generated by a Dirichlet condition on Sg for any k?, and
therefore there are no irregular values.
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4.5 Free-surface problems

Consider a problem in water waves involving the scattering of an inci-
dent wave by a fixed structure or the radiation of waves by an oscillating
structure in water of constant depth h. Let D denote the fluid domain,
Sg the surface of the obstacle, Sy, the bed, and F' the free surface. From
the theory given in §§1.2-1.3, the boundary-value problem requires the
velocity potential ¢ to satisfy Laplace’s equation

V24(P)=0, Pe€D, (4.73)

the boundary conditions

j—,i(m — /), pE Sp, (4.74)
B

a—Ti(p) =0, pe€Sy, (4.75)
g—ri(p) =K¢(p), peF, (4.76)

and a radiation condition specifying outgoing waves (in the form of equa-
tion 1.28 or 1.29). Here, f(p) represents the forcing from either the
incident wave or oscillating body.

The main additional difficulty in such problems is the reduction to an
integral equation over a finite boundary by a suitable choice of Green’s
function. The usual procedure is to construct a Green’s function G(P, Q)
that satisfies Laplace’s equation for P /A~(@Q), the boundary conditions on
F and Sh, and the appropriate radiation condition. Suitable Green’s
functions for a variety of situations are easily obtained from the results
for source potentials in Appendix B; care must be taken to ensure that
the strength of the singularity is adjusted in accordance with (4.31) or
(4.38). In the solution of integral equations a major issue is the efficient
evaluation of the complicated free-surface Green’s functions and this is
addressed in §4.6.

Given the Green’s function, the potential can then be represented in
the form of a source distribution, as in equation (4.8), and the boundary
condition on Sp then leads to an integral equation identical in form
to (4.12). Alternatively, an application of Green’s theorem leads to
a representation and integral equation in the form of equations (4.36)
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and (4.37). As noted by John (1950), failure of the solution of the
integral-equation solution will occur at irregular values of the frequency
parameter K corresponding to the eigenvalues of an interior Dirichlet
problem as in §4.1.2. If Sp is completely submerged then the interior
Dirichlet problem has no non-trivial solutions and the integral equation
has no irregular values. If Sg intersects the free surface then there are
irregular values of K corresponding to eigenvalues of the problem

Vi4(P_)=0, P_cD_, (4.77)
¢(p-) =0, p-€Ss, (4.78)

d¢ B

6—%(19—) =K¢(p-), p-€F., (4.79)

where D_ and F_ are, respectively, the interior fluid domain and free
surface. A modification of the Green’s function to eliminate irregular
values in a class of two-dimensional problems is given by Ursell (1981).

Unlike the problem discussed in §4.1, for some Sg finite-energy, non-
trivial solutions of the homogeneous free-surface boundary-value prob-
lem (or ‘trapped modes’) are known to exist at specific values of K.
Thus, for such Sg, the solution of the integral equation will fail at a
trapped-mode frequency, as well as any irregular frequency. The discov-
ery of trapped modes in the free-surface problem is quite recent (McIver
1996a) and extensive investigation of the phenomenon is still under way
by a number of researchers. For recent progress on this topic see Mclver
(2000a).

Bibliographical notes

Because of their ability to handle complex geometries, computer codes
based on integral-equation techniques have been widely adopted by the
offshore industry for the solution of time-harmonic water-wave problems.
Reviews of such numerical methods are given by Mei (1978) and Yeung
(1982). Recent work on the elimination of irregular values in conven-
tional integral-equation formulations includes Lau and Hearn (1989), Lee
and Sclavounos (1989), Liapis (1992), Lee, Newman, and Zhu (1996).

For problems involving three-dimensional axisymmetric structures the
integral equation (4.12), which involves an integral over the surface of
the body, can be reduced to an infinite number of integral equations,
each one involving only a line integral. Only two of these reduced inte-
gral equations need to be solved in order to compute the forces on the
body. Details of this procedure can be found in Black (1975), Fenton
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(1978), Isaacson (1982), Hulme (1983), and Hudspeth, Nakamura, and
Pyun (1994). A extension to include terms of second order in the wave
amplitude is given by Kim and Yue (1989).

Other methods have been proposed for the numerical solution of water-
wave problems. The null-field method (Martin 1981, 1984), which in-
volves constructing a bilinear expansion for the Green’s function that
leads to an infinite system of equations for the boundary-values of the
unknown, does not suffer from the problem of irregular values. Neste-
gard and Sclavounos (1984) and Eatock Taylor and Hu (1991) used an
integral equation formulation near the structure and coupled this with a
multipole expansion in the far field. Another approach followed by Yue,
Chen, and Mei (1978) and Aranha, Mei, and Yue (1979) is to couple the
finite-element method near the structure with an eigenfunction expan-
sion in the far field. Both of these last two methods appear to be free of
the problem of irregular values.

Although one of the great advantages of integral equation formulations
over the techniques described in Chapters 2 and 3 is their applicability
to a much wider class of geometries, the integral equations (4.12) and
(4.37) can also be used as the starting point for analysis of wave in-
teractions with structures which fit nicely into a particular coordinate
system. Thus, for example, Wu and Eatock Taylor (1987, 1989) solved
radiation and scattering problems for a submerged spheroid by expand-
ing the unknown source distribution in (4.12) in spheroidal harmonics,
an approach originally used by Farell (1973) for a different type of prob-
lem. Similarly, Gray (1978) studied the scattering of surface waves by
a submerged sphere by expanding both the potential and the Green’s
function in (4.37) in terms of spherical harmonics.

4.6 Numerical evaluation of Green’s functions

When solving boundary-value problems for the velocity potential exte-
rior to a floating or submerged body via the integral equation approach
described in §4.5 it is necessary to compute the appropriate Green’s
function, G, many times. For three-dimensional radiation and diffrac-
tion problems involving realistic body geometries the number of evalua-
tions of G that need to be performed can be of the order of 10° for each
frequency at which results are desired (Newman 1992). Furthermore, it
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may be necessary to analyze responses at up to 100 different frequencies
in order to obtain a good description of the hydrodynamic characteris-
tics of a particular structure. Clearly then, the efficient computation of
such functions is desirable.

For engineering applications, the accuracy required in the final results
is usually no more than three significant figures, but the computations
involve taking spatial derivatives of the Green’s function and inverting a
large linear system of equations which is unlikely to be well conditioned.
Thus it is not inappropriate to require G to be evaluated to an accuracy
of six or seven decimals. Another reason for desiring very high accuracy
in the determination of G is so that results can be obtained for standard
problems which will serve as benchmarks against which new programmes
and techniques can be measured.

Two different types of Green’s function will be considered below. The
first is the standard free-surface Green’s function in three dimensions
(both the infinite and finite depth cases are considered). This function
is not that difficult to evaluate numerically, but in view of the fact that
in practical applications it needs to be calculated millions of times, it
is important to explore all the means by which its computation can be
accelerated. The second type of Green’s function that will be considered
is that appropriate to problems involving obstacles in channels of finite
width and depth. Such a Green’s function might be used if trying to
quantify the effects of the channel walls on the hydrodynamic charac-
teristics of a body measured in a wave-tank experiment. This Green’s
function represents considerably more of a challenge when it comes to
its efficient numerical calculation.

4.6.1 Green’s functions for three-dimensional
water-wave problems

For fully three-dimensional water-wave problems the Green’s function
is defined for infinite depth in §B.3 and for constant finite depth in §B.4.
In each case the imaginary part of the function is given explicitly and
so it is only the computation of the real part that is of interest. The
infinite depth case will be considered first.

After the singular part of the Green’s function has been subtracted
off we are essentially left with the problem of computing a function of
two variables F'(z,y) for which the three expressions (B.65), (B.69), and
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(B.70) give, on associating K (z + ¢) with —y and KR with z,

® 2
F(x,y) = f e~ Jo(uz) du, (4.80)
0o U-— 1
4 [ i
F(z,y) = —2ne™¥ Yo(a) — ;/0 %%(m) du, (4.81)
_ v eu—Y
Fa) = —me™ (Hole) +¥i(0) =2 [ o du, (182
respectively. The Green’s function is then given by
4 1 1 K (240)
—G=—+—+F(KR,K|z+]) + 2wie Jo(KR). (4.83)

K Kr Kr

We need to be able to evaluate F(z,y) for all y > 0 and z > 0. The
Bessel functions Jy and Yy and the Struve function Hg can all be com-
puted efficiently using standard routines; for example, Newman (1984a)
provides polynomial approximations for Jy and Yy and a rational ap-
proximation to Hy, all with absolute errors less than 1078,

For typical parameter values that would be appropriate in ship-wave
calculations, Hearn (1977) showed that computation of F' from (4.82),
which involves only standard functions and a finite non-singular integral,
was in general significantly quicker than using (4.80) or (4.81), with
(4.80) being more efficient than (4.81), particularly for small z.

For small & and large y, (4.80) is the most efficient starting point
for computations. The Cauchy principal-value integral can be readily
evaluated using one of the following techniques. First, since

2
f (u—1)"tdu =0, (4.84)
0
it follows that

F(z,y) = /02 i) — et i) du + b L“)l e " du, (4.85)

u—1 9 U—

where f(u) = 2Jp(uz). This is often referred to as Monacella’s method in
the literature (Monacella 1966). Another method, used by Endo (1987)
when calculating the finite depth Green’s function, is to write

F(z,y) = /oo % e™% du — f(1) e"Y Ei(y), (4.86)
0
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where Ei is the exponential integral (Abramowitz and Stegun 1965, §5.1).
In both methods the integrand in the first integral is continuous at u = 1.

Alternatively, (4.80) can be used to derive a series expansion for F'
which is useful when z/y is small. If Jy(uz) is expanded in powers of
(ux)? (Abramowitz and Stegun 1965, eqn 9.1.10) and then the integral
evaluated term by term one can obtain (see Noblesse 1982)

2 (—22/4)" (& (m— 1)
F(w,y)=2z( &63) (Z ( ml)' —e‘yEi(y)). (4.87)
n=0 ’

m=1 Y

According to Newman (1985), six decimal place accuracy can be ob-
tained for all z/y < 0.5 by truncating this series at n = 9.

There are of course other ways of developing series expansions for F.
One possibility is to expand the exponential in (4.82) in powers of u and
integrate the resulting expression term by term. Details can be found in
Newman (1984b). The resulting expression in terms of positive powers
of both z and y is uniformly convergent throughout > 0, y > 0. When
x/y is large it is possible to derive a useful asymptotic series from (4.82)
by expanding the reciprocal square root in the integrand in powers of
(u/z)? and integrating term by term. It is also possible to produce
approximations valid when both z and y are large (see Newman 1985).

It is thus clear that there are many different analytic expressions that
can be used as starting points for the calculation of the Green’s function
and which is the most appropriate will depend critically on the given
parameter values. Thus Telste and Noblesse (1986) presented a method
based on a decomposition of the quadrant in which F' is defined into five
subregions and the use of different analytic representations in each of
these regions. The numerical procedure advocated by Newman (1992)
for the evaluation of F' is also based on the subdivision of the quadrant
z > 0, y > 0 into various subregions. The analytic expressions given
above and others from the papers cited provide the necessary informa-
tion to be able to separate out from the calculations any singularities and
persistent oscillations so as to leave slowly-varying functions of two vari-
ables to be evaluated. These can then be computed using economized
polynomial approximations.

Thus, given a well-behaved function f(z1,z2) defined on |z1| < 1,
|z2] < 1, we can assume an expansion in Chebyshev polynomials of the
form

flz1,22) = i icmnTm(atl)Tn(mg). (4.88)

m=0n=0
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The coefficients ¢,y are easily computed using orthogonality relations
for the Chebyshev polynomials and can then be stored. In the actual
implementation reported by Newman, which is designed to produce six
decimal place accuracy over the whole domain ¢ > 0, y > 0, the quad-
rant is subdivided into 48 subdomains and 31 polynomial coefficients are
needed in each of these domains.

For the finite depth case the Greens’s function is given in terms of a
Cauchy principal-value integral by (B.86), but there is no representation
in terms of finite integrals analogous to (4.82). However there is now
an eigenfunction expansion (B.91). This expression converges rapidly
provided R/h is large enough and for R/A > 0.5 a maximum of 12
terms are required to achieve an accuracy of six decimals. (For larger
values of R/h, [6h/R)] terms are sufficient for this level of accuracy.) For
small R/h the eigenfunction expansion is unsuitable for computations
since the individual terms become singular in the limit as R/h — 0
and for R/h < 0.5, Newman (1992) describes algorithms based on triple
economized polynomial approximations to functions of three variables,
requiring a total number of stored coefficients of about 8000.

An alternative approach to the computation of the finite depth Green’s
function has been developed by Linton (1999b). If we write

1

Zm Nz o8 km/(z + k) coskm (¢ + h), (4.89)

2
m

then the real part of the Green’s function is g where

Ang = —7ZoYo(kR) +2 Y . ZmKo(kmR) (4.90)
m=1
= ZYokR) + Y Zm / o~ B?/at g2t %, (4.91)
m=1 0

where the integral representation for the modified Bessel function K
given by Gradshteyn and Ryzhik (1980 eqn 8.432(7)) has been used.
The procedure now is to split the integral at an arbitrary point, a? say,
and then treat the two resulting integrals differently. By varying a the
convergence characteristics of the resulting expressions can be altered.

If we define

e dt
Ao = —nYy(kR) — / e /4t gkt - (4.92)
0
Am :/ e~ R /4t o=kt %, m>1, (4.93)
a2
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then (4.91) becomes

2

R a
Ang =" ApnZm + / e—Rz/‘“w(t)g, (4.94)
m=0 0 ¢
where
w(t) =Y Zme Tkt (4.95)
m=0

It is straightforward to evaluate the integrals A,,, m > 1, numerically
due to the monotonic exponential decay of the integrand and the same is
true of A, except when R is very small. In the latter case it is possible
to derive a series expansion by expanding exp(k®t) in powers of t and
integrating term by term. Note that Ay is not singular as R — 0; in
fact, when R =0,

Ao = —Ei(K*a®),  Am=Ei(kld?), (4.96)

where Ei and E; are exponential integrals as defined in Abramowitz and
Stegun (1965, §5.1).

The expression for w converges rapidly for large values of ¢t but the
integral in (4.94) is over values of ¢ near the origin so in order to develop
an expression for the Green’s function which is easy to compute we
require a representation of w which converges rapidly for small ¢t. Such
an expansion was derived in Linton (1999b) and if this is substituted
into (4.94) and some of the integrals evaluated we obtain

dmg = ZA L, +—erfc( )+lerfc(2a)

T
—0 2

1/2
+Z R2+ T o (%) (4.97)

v oS (3 ] 2,

in which

X1=—¢(—z, X2 =2h—(+z,
X3:2h+C—z, X4:4h+C+Z
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and erfc is the complementary error function (Abramowitz and Stegun
1965, §7.1). The term @ (which is actually an infinite series of compli-
cated expressions) can be omitted from numerical calculations as will be
described below.

The value of g is independent of a, but this parameter crucially af-
fects the convergence of the infinite series in (4.97). It also affects the
magnitude of the error introduced by omitting @ from the calculations
and this error (for which a simple bound can be obtained) can be made
smaller than the desired accuracy for g by using a small enough value
for a. We note that in the limit as a — 0 we recover the eigenfunc-
tion expansion (4.90) which, as has already been noted, is numerically
efficient when R/h is large. For small values of R/h we can use (4.97)
with a non-zero value of a. The larger a is the fewer terms are required
in the infinite series, but the error introduced by omitting @ from the
calculations puts an upper bound on the value of a that can be used.
It was shown in Linton (1999b) that this error is less than 1078 when
a = h/4. By this process values of g accurate to six places of decimals
can be obtained for all R by truncating the infinite series in (4.97) at
m = 3. Of particular note is that when |z 4 (| is very small and R =0,
a situation in which this particular Green’s function is otherwise very
difficult to evaluate, the representation (4.97) takes a particularly simple
form due to (4.96) and still converges rapidly.

4.6.2 Channel Green’s functions

Consider a water-wave channel of width d and depth h. For problems
in which the depth dependence can be factored out (such as scattering
by bottom-mounted surface-piercing cylinders of constant cross-section)
the Green’s function G(z, y; €, ) satisfies the two-dimensional Helmholtz
equation (4.1), with a logarithmic singularity as (z,y) approaches (¢,7),
and the wall boundary conditions

oG

— =0, on =0,d. 4.98

3y y (4.98)
This is exactly equivalent to seeking the Green’s function for a two-
dimensional acoustic wave guide with rigid walls. This Green’s function
can be written in terms of a function of two variables as

G(z,y,&,m) = G(X,y —n) + G(X,y +n), (4.99)
where X = o — € and G represents an infinite row of line sources at

(z,y) = (0,2md), m = 0,£1,+2,.... There are many alternative rep-
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resentations for G (see Linton 1998 and the references cited therein),
perhaps the best known being the image series

oo

é(w,y):—i S HP (krm), (4.100)

m=—00

where 7, = [2 + (y — 2md)?]'/?, and the eigenfunction expansion

~ 1 o= ¢ mm
—_z Em —amlzl/d o TVTY
G(z,y) = -1 mgzo p~ e cos —=, (4.101)
where
o = (m2n? — k2d?)"? = —i (k22 — m2x?)"/? (4.102)

and €,, is the Neumann symbol defined on page 17.

The image series represents a sum of sources (each given by equation
4.4) arranged periodically along the y-axis and clearly shows, see (A.17),
that as krg — 0, G ~1In rg. However, it is useless from a computational
point of view due to the slow convergence of the summation. The eigen-
function expansion on the other hand does not display the singularity at
the origin explicitly, but has the advantage that the imaginary part of
G can immediately be obtained as a finite series, the only contributions
coming from those values of m for which o, is imaginary. The series is
also useful for numerical computations when |z| is large, but converges
extremely slowly when & = 0. Various techniques for accelerating this
series are collected together in Linton (1998).

Another approach to the computation of G is to use an integral repre-
sentation. One such representation, which appears to be computation-
ally efficient, is

4iGla,y) = H(gl) (kro) — % ,/ooo COShgzgk(zxu__ii))]_cf)SyZ{(U)] du,

(4.103)

where f(u) = (u? — 2iu)'/2.

In applications where a large number of computations of G are re-
quired for each value of kd, the so-called lattice sum technique can be
competitive. If Graf’s addition theorem for Bessel functions (Gradshteyn
and Ryzhik 1980, eqn 8.530(2)) is applied to the image series (4.100) we
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obtain

4iG(z,y) = HV (kro) + Y ee(—1)*Sa¢(2kd) Jae(kro) cos 206, (4.104)
£=0

where x = rgcosf, y = rgsinf and

Sp(t) =2 i HWY (my). (4.105)

m=1

The convergence of the sum over / is very rapid and the main compu-
tational effort comes from the evaluation of the lattice sums So.(2kd).
Representations for these sums in terms of series which converge rea-
sonably quickly were given by Twersky (1961) (see also Miles 1983, Ap-
pendix A) and accelerated versions are given in Linton (1998). Since
the lattice sums do not depend on either z or y they only have to be
computed once for each value of kd, hence a considerable computational
saving can be achieved if many spatial evaluations are required for each
frequency of interest. B

Finally, a representation for G can be derived in terms of an arbitrary
parameter a, much as for the finite depth water-wave Green’s function
above, though in this case the result is somewhat simpler:

_ iy Ty .
G==3 2 oocos— [fnl(@) + fr(a)]

R (=N o2 dt
_E/ PR - (4.106)
0 m=—0C

where

FE(z) = erome/derfe (ama + i) . (4.107)
2ad
The integral in (4.106) is easily evaluated numerically due to the mono-
tonic and exponential decay of the integrand. For small values of g, the
m = 0 term from the second summation is best treated separately. If
exp(k?t) is expanded in powers of t and the result integrated term by
term we obtain

2 42 0o

a 2 2, dt (kad)®™ 3
r2/4t k%t Z 0
‘/0 e o (5] _t = | l;n 1 a3 | (4108)

n=0
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from which we recover the fact that
~ 1 3 1
G~ _EEI (m) ~ g In ro as 7To— 0. (4109)

In the limit as a — 0 we recover the eigenfunction expansion (4.101)
from (4.106). By increasing a we can change the relative importance of
the two summations in (4.106) and by balancing the convergence rates
an extremely efficient method for the numerical evaluation of G can be
developed. Typically, values of a in the range 0.2 < a < 0.5 give the
best results.

For channel problems where the depth dependence cannot be factored
out a computationally efficient representation for the Green’s function
can be derived by combining (4.97) with (4.106). The details can be
found in Linton (1999a).

4.7 Diffraction by a breakwater

To illustrate the power of integral equation methods, the problem of
diffraction of waves by a breakwater is now considered in some detail.
A straight, rigid, vertical breakwater stands in water of uniform depth.
The thickness of the breakwater is assumed to be negligible and Carte-
sian coordinates are chosen so that the z,y-plane is horizontal and the
breakwater coincides with the z-axis. Standard plane polar coordinates
(r,0) defined by z = rcos€ and y = rsin 6 will also be used.

Two configurations of breakwater will be considered. In the first the
breakwater is of infinite extent but contains a single gap, and in the
second the breakwater has finite length.

4.7.1 Diffraction by a gap in a breakwater

In this section, the breakwater occupies that part of the y-axis for
which |z| > a so that it has a single gap in |z| < a; for convenience this
last interval will be denoted by L. A wave with wavenumber £ is incident
in y > 0 at an angle 3 to the z-axis (see Figure -1.1); from the symmetry
of the problem it is sufficient to consider 3 € [0,7/2]. The initial aim is
to derive an integral equation that may be used to determine the wave
field resulting from the diffraction of this wave by the gap. This problem
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(—a,O) (a,(])

FIGURE 4.1
Sketch of the breakwater-gap problem.

is equivalent to one in two-dimensional acoustics in which an incident
wave is diffracted by an aperture in a rigid screen.
The problem may be solved in terms of a velocity potential

®1(z,y,t) = Re {¢r(z,y) e '}, (4.110)

where ¢, for the reasons explained in §2.4, satisfies the two-dimensional
Helmbholtz equation (2.74), has zero normal derivative on the breakwater,
and satisfies a radiation condition specifying that the diffracted waves
are outgoing. The incident wave has a potential

¢] — e—ikrcos(O—ﬂ) (4111)

and it is convenient to extract from the total potential ¢ both ¢; and
its reflection from a rigid barrier at y = 0. Thus, write

(4.112)

| 2cos(kysin B) emkecosB Lot (z,y), y >0,
Pr(ey) = {df(a‘,y), y<0,

so that the potentials ¢* represent the diffraction by the gap and satisfy
the Helmholtz equation and the radiation conditions

lim r!/2 (ﬁ - ikqsi) =0 (4.113)

kr—oo 87‘

in the appropriate half plane. To ensure uniqueness of the solution the
edge conditions that ¢r is bounded at the breakwater tips (z,y) =
(+a,0) are imposed. This leads to a solution satisfying

Vor| = O(rz?) as i —0, (4.114)
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where r3 denote the distances from the edges (z,y) = (+a,0), so that
the energy of the fluid motion is bounded in all compact subsets of the
fluid domain. For further discussion of the edge condition see Jones
(1986, §9.2).

With the above construction, the condition of no flow through the
breakwater requires that

dp*

90 (4,0 = 2"
Oy

,0)0= —(2,0)=0, z¢L. (4.115)
dy

Further, there must be continuity of potential and velocity in the gap
which give, respectively,

9 g—ikzcos B +¢+($,0) =¢ (;1;,0), x€L, (4.116)
and
ot 09~
5.0 =% 0,0 =), zel (@D

An integral equation for vg(z) is now derived by applications of Green’s
theorem (4.36) to ¢* and the Green’s function

1
Gla,y;6,m) = - [Hél)(kR) + Hgl)(kR’)] , (4.118)
where

R=[@-8*+@-n?" (4.119)

is the distance between the field point (z,y) and the source point (¢,7),
and

R =[z-8°+@w+m?]" (4.120)

is the distance between the field point and the image point (£, —7); by
construction

oG

First of all the contour of integration is chosen as y = 0% together
with an enclosing semicircle in y > 0 (see Figure 4.2). Green’s theorem
(4.36) yields

(&, m) = / vg(x)HV (kR)dz, >0, (4.122)
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FIGURE 4.2
Contours for the application of Green’s theorem to the break-
water gap problem.

where the boundary condition (4.115), the continuity condition (4.117),
and also (4.121) and the fact that R = R’ on y = 0 have been used
to simplify the integrations. A similar calculation with the contour of
integration chosen as y = 0~ and an enclosing semicircle in y < 0 gives

¢~ (&,—n) = %/ng(m)Hél)(kR) dz, n>0. (4.123)

The last two equations are representations for ¢ in terms of the unknown
velocity vg(x) and it follows immediately that

¢~ (37, _y) = —¢+(37, y)7 y=>0. (4124)

An integral equation for vg(z) is obtained by using the representations
(4.122) and (4.123) in the the potential continuity condition (4.116) to
obtain

/ h(lz —t))vp(t) dt = fs(z), =z €L, (4.125)
L
where

h(w)=%Hél)(kw) and fp(z) = e7kTeosh, (4.126)
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The integral equation has been written in the form (4.125) to empha-
size that some of the results to follow in §4.7.3 are not restricted to
the breakwater-gap problem, but apply to a general class of integral
equations with difference kernels.

An important physical quantity is the amplitude of the diffracted
waves in the far field. This is readily obtained from (4.122) and (4.123)
using the asymptotic behaviour of the Hankel function given in equation
(A.12). A change of notation in (4.122) gives

5 @) =~ [ wOHO Ead y>o (1.127)
where
p=(r+t2—2rtcos®)V2 ~r —tcosh as 1/t — o0 (4.128)
and so for 6 € (0,7)

N ei(kr—37/4)
o7 (z,y) ~ WG(Q,ﬁ) as kr — oo, (4.129)
where
G(9,8) = / vg(t) e dt — (vg, fr_p) (4.130)
L

is known as the diffraction coefficient and the inner product is defined
by

(v,w) = /L v(t)w(t) dt. (4.131)

The diffracted field in the lower half plane follows from (4.124).
From the definition (4.130) and the integral equation (4.125)

60.6) = [ waipla)dz = [ va(o){ [ 1z~ thuoo)ae} oz

:/ng(t) {/Lh(|.'1;—t|)vﬁ(:1;)d:1;} dt

~ [ wsavdt=G(5,6) (4.132)
L
This reciprocity principle says that the far-field diffracted waves meas-

ured in the direction 6 due to waves incident at an angle 3 are the same
as those observed at an angle 3 due to waves incident at an angle 6.
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4.7.2 Diffraction by an insular breakwater

A closely-related problem to that of diffraction by a breakwater gap
is that of diffraction by an ‘insular’ breakwater, that is, a straight, rigid,
vertical breakwater of finite length. The problem is similar to that de-
scribed in §4.7.1 except that the breakwater occupies |2| < a instead of
|z| > a. This problem is equivalent to one in two-dimensional acoustics
in which an incident wave is diffracted by a rigid ribbon.

The incident wave is removed from the total potential throughout the
fluid domain so that

pr(z,y) = e *70=F) 1 4(z,y), (4.133)

where the diffraction potential ¢ satisfies the Helmholtz equation, the
condition of no flow through the breakwater,

g—j(w,O) = iksin Be~kecosB gL, (4.134)

the radiation condition

lim r'/2 (% —ikqs) =0 as r— o0, (4.135)
kr—o0 or
and an edge condition similar to (4.114).

A suitable integral equation for the problem is derived in a very similar
way to that used in §4.7.1. First of all, applications of Green’s theorem
(4.36) in the upper and lower half planes to ¢ and the Green’s function
defined in (4.118) yield

_ [T oxy )
¢(§> :|:'I’]) - :F2 ay (w70 )HO (kR) dl‘, n> 07 (4136)

where y = 0. Hence, from the continuity of 8¢/0y on y = 0,

Pz, —y) = —¢(z,y) (4.137)
and, as ¢ is continuous for |z| > a, it then follows that
¢(x,0) =0, |z[>a. (4.138)

If instead Green’s theorem (4.36) is applied in the upper half plane to
¢ and the Green’s function

G(z,y;€,m) = % [Hé”(kR) - Hé”(kR’)] , (4.139)
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which satisfies

G(z,0;¢,m) =0 (4.140)
and with the aid of
oHy" . oH"
By (kR) = — By (kR) on y=0, (4.141)

this results in the alternative representation
oH"
sem =3 [ H@ 0Tkl >0, (414

where y = 0, and (4.138) has been used to reduce the range of integra-
tion. It remains to satisfy the boundary condition (4.134). Now

oHY ol
Z20 (kR) = kR 4.143
5 (KF) = —=50=(kR) (4143)
so that
0, 4 oHV
60 = 5o [ 9,010 (kR) da
n=0
_ L& R (2,01 HP (kR) da
Y o

. 82
—= (— + k'~’) / ¢(x, 0N HV (k| — €)dx,  (4.144)
L
and hence, with a change of notation, (4.134) yields the integral equation
d2
(d 5+ k2> / h(lz —t|)pp(t)dt = iksin B fg(x), z€ L, (4.145)
L

for the potential ¢5(z) = ¢(z,0"). From (4.138) this potential satisfies
the boundary conditions

¢p(%a) =0. (4.146)
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The far-field diffracted waves are calculated in a similar way to the
gap problem in §4.7.1. It is found that

ei(kr—3m/4)
73 F@,3) as kr— oo, (4.147)

#(z,y) ~ @k

where the diffraction coefficient

F(6,8) = iksin6 (¢3, fx—o) (4.148)

and the inner product notation is defined in equation (4.131).

4.7.3 Embedding formulas

It is a remarkable fact that the solutions of the integral equations
(4.125) and (4.145) for all angles of wave incidence 3 can be expressed
in terms of the solution of (4.125) for a single 8. These results, known
as embedding formulas, will now be derived. The formulas apply for
general weakly singular kernels h(|z — t|) as long as the corresponding
integral operator is injective, as is the case for the Hankel-function kernel
in the breakwater-gap problem.

First of all it is noted that the geometrical symmetry in the two prob-
lems immediately implies that

Ur—p(—z) =vp(x) and ér_p(—7) = Pp(x). (4.149)

In turn, these imply that the diffraction coefficient

Glr—b0,m— ) = / vr_p(@)Tol@) dz = /L vrp(—2)Fo(=2) dz

L
= /ng(w)f,,_g(m) dz = G(9,5) (4.150)
and similarly
F(r—0,7—p)=F(6,0). (4.151)

For convenience the integral equations (4.125) and (4.145) are rewrit-
ten using operator notation as

(Hvg)(z) = fa(x), z€lL, (4.152)
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and

2
(dd_mz + kz) (H¢p)(z) = iksin 3 fp(x), =z €L, (4.153)

respectively. Integration by parts and application of ¢g(£a) = 0 give

S (Hg)(@) = (H) (@) (4.154

so that (4.153) may be rewritten as
d? d d
(8 +#) wone = (2 +1) (£ - ) (How@

= <% + ik) {H(¢j — ik¢p)} (z) = iksin B fa(z), « € L.
(4.155)

The last equality is a first-order differential equation which has general
solution

{H(¢p —ik¢p)} () =cot 38 (fa(z) —cpfo(x)), z€L, (4156)

where cg is the constant of integration, and it immediately follows from
(4.152) and the assumption that H is injective that

¢p(x) — k() = cot 38 (vs(z) — cpuo(a)), =z € L. (4.157)

The constant cg is determined by taking the inner product with fr of
both sides of (4.157). Integration by parts and application of ¢g(£a) =0
show that

(5 —ikdp, fx) =0 (4.158)
and hence

cg = G(B,0)/G(0,0) (4.159)
so that

¢3(z) — ikdp(x) = cot 38 {vﬁ(a:) - gig’g)) vo(a:)} , x=€L. (4.160)
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If, in this equation, 3 is replaced by 71— and = by —z and the symmetry
properties of ¢g and vg used, this results in

—¢j3(z) — ikgp(x) = tan 33 {vﬁ(x) — G(g(;—go)vo(—x)} , w€lL.

(4.161)

Elimination of vg from the last two equations gives the differential equa-
tion

Pp(w) +ikcos B pp(x) =

2213]50) {G(B,0)vo(z) — G(7 — B,0)vo(—2)}, z€L, (4.162)

which has the solution

fg( z)sin 3
2G(0,0)

< [ 1606, 000(6) ~ Gl — 5,000(~1)) fu-s()dt (416)

Pp(z) =

satisfying ¢(f+a) = 0. For any angle of incidence f3, this expresses the
solution to the insular breakwater problem entirely in terms of the so-
lution to the breakwater-gap problem for angle of incidence zero. With
¢p determined, vg follows from either of (4.160) or (4.161).

It is now a straightforward matter to determine expressions for the
diffraction coefficients entirely in terms of the diffraction coefficients for
the breakwater-gap problem for angle of incidence zero. The results are

m—60,0)G(r — 3,0) — G(0,0)G(8, 0)}
2G(0,0)(cos 6 + cos 3)

F(8,3) =sin6 sinB{G(

(4.164)
for the insular breakwater and
_ GO)G(B) — Gz — )G(r — )
G0:8) = ——36(0,0)(cos T + cos ) (4.165)
for the breakwater with gap, where
G(0) = (14 cos0)G(6,0). (4.166)
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The results in (4.164) and (4.165) are undefined for § = m — 3, but the
appropriate limiting forms can be obtained from L’Hopital’s rule. For
example,

G'(r — BG(B) + C'(B)G(r — B)

G(r —B,8) = - 2G(0,0) sin 8

(4.167)

This expression is itself undefined for sin f# = 0 and G(7,0) = G(0, )
must be computed directly.

4.7.4 Numerical solutions

Here two numerical methods are presented for the solution of the inte-
gral equation for the breakwater-gap problem. In view of the embedding
formulas in §4.7.3, at each frequency it is required only to solve the gap
problem for zero angle of incidence in order to obtain the solutions for
all angles of incidence for both the gap and insular breakwater problems.
The solution for the insular breakwater may be obtained directly using
the method given in §4.3.

First of all, the integral equation (4.125) is solved by a collocation
method. In this method the integral is approximated by a summation
and equations generated for values of vg(z) at discrete points within L.
Before doing this it is advantageous to make a change of integration
variable in view of the fact that vg(x) ~ C*(a Fz)" /2 as ¢ — +a
(MacCamy 1958b). An appropriate change is to write

x=acosu and t=acosv (4.168)

so that (4.125) becomes

%/0" H(gl)(ka| cosu — cosv|) Va(v) dv = eikacosucosB -y (0 1),

(4.169)

where, by construction,
Vi(u) = avg(acosu)sinu (4.170)
is non-singular for all u € [0, 7]. Divide the interval [0, 7] into N equal
elements with end points {u; = iw/N; i = 0,1,... , N} and midpoints

{4; = (ui—1 +u;)/2; i = 1,2,...,N}. The integral equation is re-
duced to a set of simultaneous equations for {Vg(dy;); i = 1,2,... ,N}
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ka 20 40 60 80 100

T 3.9953 3.9964 3.9965 3.9966 3.9966
2r  5.7076 5.7147 5.7154 5.7155 5.7156
3m  7.1095 7.1309 7.1328 7.1332 7.1334
4m  8.3918 8.4414 8.4452 8.4461 8.4464

Table 4.1 The modulus of the diffraction coefficient G(117/12,7/12)
for various wavenumbers ka and numbers of collocation points N.

by approximating the integral by a summation and collocating at the
midpoints of the elements to get

N

. "
% Z V(i) / H(()l)(ka| cos@; — cosv|)dv
Uj—1

— e—]kacosuicosﬂ i = 1,2,' .

y

LN, (4.171)

This is a set of linear simultaneous equations that is readily solved for
the velocities {V3(4;), 1 =1,2,...,N}. The diffraction coefficient then
follows from (4.130) and is

0 ,8) Zvﬂ / e—ikacosvcosO dv. (4'172)

F—1

The integrals in the last two equations are straightforward to calculate
numerically by standard techniques, although it should be noted that
the integrals in (4.171) contain a logarithmic singularity when ¢ = j.
The rate of convergence of the numerical scheme depends on ka and
the angles of incidence and observation. The convergence becomes slower
with increasing wavenumber ka due to more rapid variations in Vg and
results for various ka and increasing N are presented in Table 1.1 for
the diffraction coefficient G(6,3) = G(11w/12,7/12). The particular
angles of incidence and observation have been chosen because there is
also a decrease in the rate of convergence near the lines 6 = 7 — 3 as
the angle of incidence 3 is decreased. Thus, the results illustrate what
are roughly the slowest rates of convergence that can be expected from
the numerical scheme. They are compared with those from a different
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zla

FIGURE 4.3

The wave field |¢r| diffracted by a gap of width 2a in a break-
water: non-dimensional wavenumber ka = m/2, angle of wave
incidence 8 = m /4.

numerical scheme below. Graphical results for the diffraction coefficient
are presented in §5.1.2 and §7.2.

The representations (4.122)—(4.123) may be discretized in the manner
of (4.171) and used to compute the wave field throughout the fluid do-
main. A sample computation is given in Figure 4.3 where the modulus
of the total potential ¢ is illustrated; in the water-wave problem this
is proportional to the amplitude of the free surface oscillations. In the
figure, darker regions indicate small amplitude oscillations and lighter
regions indicate large amplitude oscillations. In y > 0 the principle
feature is the reflection of the incident wave from the barrier to create
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standing waves which are indicated by the alternate light and dark bands
roughly parallel to the z-axis.

A second numerical technique, known as the Galerkin method, for
the solution of the integral equation for the breakwater-gap problem is
now presented. In terms of the operator notation introduced in equation
(4.152) the integral equation is

(Hvg)(x) = fa(x), x€lL. (4.173)

An approximation to the solution of this equation is sought in the form
of a finite series

N
z) = anxn(z), (4.174)
n=0

where the expansion set {xn; n = 0,1,... ,N} is prescribed and the
coefficients {a,; n = 0,1,...,N} are to be found. It is assumed here
that the expansion set is real valued. The series (4.174) is substituted
into (4.173) and then the inner product taken with each member of the
expansion set to obtain

> an(Hxn, Xm) = (5, Xm) = gm(B), m=0,1,...,N, (4.175)
n=0

which is a set of N simultaneous equations for {a,; n =0,1,... ,N}.
With the coefficients determined in this way, the diffraction coefficient

G(6,8) = (v5, frs) Zangn (4.176)

In view of the known singular behaviour in vg(z) at © = %a (see
equation 4.114), an appropriate choice for the expansion set is

xXn (@) = % n=0,1,...,N, (4.177)

where T, denotes a Chebyshev polynomial of degree n. With this choice

(Hxn,xm) = / / H (k|z —t]) @ (x/;;z/z (af"i(ié‘)ll)/z dz dt
(4.178)
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which with the changes of variable (4.168) is

(HXn, Xm) = %/ / H(gl)(ka|cosu — cosv|) cos nu cos mv du dv.
o Jo
(4.179)

By exploitation of the form of the integrand, it may be shown that
(HxXn,Xm) =0 if m 4+ n is odd. Further

gn(B) = / e ikacosucos B oos oy duy = w(—i)"Jp(kacosB)  (4.180)
0

(Gradshteyn and Ryzhik 1980, equations 3.715.13 and 3.715.18).

The imaginary part of the double integral in (4.179) has a non-singular
integrand and is straightforward to evaluate numerically. The real part
requires care as there is a singular line in the integrand that causes some
difficulties. It is possible to rewrite this integral in terms of single inte-
grals of products of Bessel functions, but as this introduces integrals with
infinite ranges and oscillatory integrands there is probably no advantage
in doing this. Instead, the real part can be written

Re(HXn, Xm) = —%/ / {Yo(ka|cosu — cosv|)
o Jo

2 1
——In(|cosu — cosv|)} cosnucosmvdudv — =Ly, (4.181)
Y Y

where

™ ™
an:/ / In(| cosu — cosv|) cos nu cos mv du dv
o Jo

—7%In2, m=n=0,
=< —m/2m, m=n £ (4.182)
0, m f£n.

(The last results follow from properties of the Chebyshev polynomials
which are given, for example, by Estrada and Kanwal 1989, §2.) The
integral given explicitly in (4.181) now has a non-singular integrand
throughout the range of integration and is amenable to numerical inte-
gration by standard techniques.

Numerical results obtained using the Galerkin method are given in
Table 4.2. Similar comments on convergence to those made on the col-
location method apply here. The same parameters have been chosen for
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ka 5 10 15 20 25

m  3.9883 3.9966 3.9966 3.9966 3.9966
2 3.6659 5.7155 5.7156 5.7156 5.7156
3m  3.4499 7.0447 7.1336 7.1336 7.1336
4w 3.0742 5.6521 8.4435 8.4468 8.4468

Table 4.2 The modulus of the diffraction coefficient G(117/12,7/12)
for various wavenumbers ka and truncation level N.

Tables 4.1 and 1.2 so that direct comparison between the two methods
can be made. The convergence of the Galerkin method is quite rapid
with increasing N and in all cases the results have converged to many
more decimal places than those shown here. A disadvantage in using the
Galerkin method for the present problem is that particular care must be
taken in the computation of the double integral in equation (4.179). By
contrast, the collocation method is very simple to implement and there
is no difficulty in computing to graphical accuracy for the range of ka
considered.

Bibliographical notes

Much of the material in §§4.7.1-4.7.2 is described by Lamb (1932,
§305), although the integral equations are not given explicitly. The
derivation of the integral equations is also described by Gilbert and
Brampton (1985) who solve the equations by the collocation method
given in §4.7.4. Gilbert and Brampton also give tables of numerical
results for both the breakwater-gap and insular breakwater problems;
however, their numerical results for the gap problem seem to contain
some errors. Other authors have made similar calculations, for example
Hunt (1990).

The problems of diffraction by an aperture in a screen with both a
Neumann condition (the breakwater-gap problem) and a Dirichlet con-
dition, and the complementary problems with a finite length strip, have
exact solutions in terms of Mathieu functions (Carr and Stelzriede 1952,
Morse and Rubinstein 1938). However, these solutions are little used
due to the difficulty of computing Mathieu functions.

A related problem that has been solved using integral equations is
that of diffraction by a circular harbour with a gap (Burrows 1985).
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The problems of scattering by a breakwater consisting of a periodic row
of gaps in a wall have been solved for normal incidence by Dalrymple and
Martin (1990) using matched eigenfunction expansions, and for oblique
incidence by Williams and Crull (1993) using an integral equation ap-
proach.

Williams (1982) discusses embedding formulas in both breakwater
problems, but the approach used here in §4.7.3 follows Porter and Chu
(1986). A direct method for obtaining the embedding formula for the
breakwater-gap problem that does not rely on the link with the insular
breakwater problem is described by Porter and Stirling (1994). An ex-
tension of these ideas to an infinite breakwater containing an arbitrary
(finite) number of gaps has been made recently by Biggs, Porter, and
Stirling (2000).

The Galerkin approach to the numerical solution of the integral equa-
tion used in §4.7.4 is described by Porter and Stirling (1990, chapter 8).
Similar methods have been applied to wave diffraction by a gap between
two breakwaters that are not in line by Smallman and Porter (1985).

4.8 Babinet’s principle

The results of §4.7.3 show that the diffraction problems solved in
§64.7.1 and 4.7.2 are related. This is a form of Babinet’s principle
which, in the context of acoustic or electromagnetic waves, asserts that
the problem of diffraction by a plane screen S containing apertures L is
related to a complementary diffraction problem in which L is a screen
with apertures S, although the boundary conditions in the two prob-
lems will be different. The precise relation between the problems for the
electromagnetic case is given in Baker and Copson (1950, §3.3) and a
discussion covering both the acoustic and electromagnetic cases is given
by Jones (1986, §9.3). MacCamy (1958a) showed how this principle
could be extended to a number of different types of scattering problem.

Following MacCamy, we will show how the solution to diffraction prob-
lems of the type considered in §4.7.2, where the scatterer is a finite strip,
can be determined in terms of solutions to problems of the type treated
in §4.7.1, where waves are diffracted by a gap in a plane screen.

If the problem of §4.7.1 is decomposed into parts which are, respec-
tively, symmetric and antisymmetric about y = 0 it is readily shown
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that it is equivalent to a half-plane problem for a potential 1, assumed
to be bounded throughout the fluid domain, of the following type:

(V2+ kY =0 in y>0, (4.183)
g—z} = on y=0,|z|>a, (4.184)
Y=h(z) on y=0,z|<aq, (4.185)

Jim ri/2 (gw 1k¢) (4.186)

Similarly, the problem treated in §4.7.2 is determined by the solution to
a half-plane problem of the form

(V24+EDp=0 in y>0, (4.187)
$p=0 on y=0,|z|>aq, (4.188)
9¢
3 =g(z) on y=0,|z|<a, (4.189)
Jim ri/2 <g¢ 1k¢) (4.190)

For any given functions g and h, analytic on |z| < a, the solution to
(4.187)—-(4.190), designated P2, can be related to the solution to (4.183)-
(4.186), designated P1, in the following way.

Let ho(x) be any particular solution of the differential equation

d%h
az T
Assume that P1 can be solved for h(z) = ho(z), h(z) = exp(—ikz) and

h(z) = exp(ikz), and denote the respective solutions by g, 11, and .
Set

+k%h = —g, lz| < a. (4.191)

[ 81111 O
6= +AGE +BSL,

(4.192)
where A and B are constants. By construction ¢ satisfies (4.188). Since

¥i, 1 = 1,2,3 all satisfy (4.183), it follows that

24, 2,/
63:;’ = —%;I;’ — k7, i=1,2,3, (4.193)
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and this must hold on y =0, |z| < a. Thus, on y =0, |z| < q,

99
oy
where (4.191) has been used, and so ¢ also satisfies (4.189). The con-
stants A and B can be determined by ensuring that ¢ has the appropriate
behaviour near the points (%a,0).
As we have already remarked in §4.7.4, on y =0

62;/% ~CEaF2)"V? as 2 — +q, (4.195)
Y

2
- (% + ’“2) (ho(xz) + Ae™** +Be*®) = g(x),  (4.194)

for some constants C;*. These numbers can be easily evaluated if the
problem for 1 is solved using the Galerkin method. Thus if the normal
derivative of ¢ on the line y = 0, |z| < @, is approximated as

N
P 23" 0 xa(a), (4.196)
ay n=0

where Yy, is defined in (4.177), we can compute the coefficients a%) from

a system of equations of the same type as (4.175). It then follows that

N
661/”' ~Ra(aF o) 2> (1)) as 7 — +a (4.197)
4 n=0
and so
N
CF = (20)72) " (+1)"ald). (4.198)
n=0

The solution to P2 must be regular at (+a,0); indeed it follows from
(4.188) that ¢(£a,0) = 0. But from (4.192) and (4.195) it is clear that

¢~ [CE+ACE+BCE) (aF2)7? as 2 — +a. (4.199)
Hence we must have
CE+ACE +BCsF =0 (4.200)

and these two equations determine A and B.
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For the specific problems solved in §§4.7.1 and 4.7.2 we have, from
(4.116) and (4.124),

h(z) = —e7*7<*f and g(z) = iksin fe k=P, (4.201)

so we can take
i

~ ksinf

ho(z) = e~ikz cos B (4.202)

and it follows that
i

- ksinf3

Yo Vg, (4.203)

where @g(z,y) is the solution to the breakwater-gap problem (in y > 0)
for angle of incidence 3. Similarly v is proportional to ¢g and s is
proportional to ¢,. Hence for 5 /£~ 0 orm we can write

i <6<pa 0% | & 8%)

= = +A—+B
¢ ksin 3 8y+ 8y+ Oy

(4.204)

and the constants A and B can be determined as the solutions to the
equations

Cy+ACF + BCE =0 (4.205)

in an obvious notation. This shows that the solution to the insular break-
water problem with angle of incidence 3 can be expressed (everywhere in
the fluid domain) in terms of the solutions to the breakwater-gap prob-
lem with angles of incidence 3, 0, and 7. Of course, symmetry implies
that @ (z,y) = po(—=,y) and CE = Cf.

Bibliographical notes

Another example where a diffraction problem with a finite scatterer
can be expressed in terms of the solution to a ‘gap’ problem is the
infinite depth water-wave problem where the scattering structure is a
finite dock (the equivalent problem in finite depth was examined using
matched eigenfunction expansions in §2.5.3 and is treated using residue
calculus theory in §5.2.2 below). For normal incidence, Rubin (1954)
showed how the dock problem could be expressed in terms of the solution
to a (non-physical) boundary-value problem in which the free surface is
replaced by a rigid lid and the dock itself by a strip with a mixed bound-
ary condition corresponding to (1.13) with negative K. One advantage
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of this approach is that the new problem, unlike the original one, is
amenable to variational arguments and Rubin showed how the standard
integral equation could be transformed into one with a much simpler
kernel (though a more complicated right-hand side) and was able to use
this new formulation to prove the existence and uniqueness of a solution.
The transformed integral equation was used in Sparenberg (1957) and
MacCamy (1961) to produce numerical solutions. For the case of oblique
waves, the transformation can still be made (see MacCamy 1958a), but
results were computed in Garrison (1969) from the more complicated
integral equation.
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Chapter 5

The Wiener-Hopf and related
techniques

In some wave/structure interaction problems where the structure is semi-
infinite in extent, it turns out that it is possible to obtain the solution
explicitly in terms of an integral. This expression can be used as a basis
for numerical calculations and it also allows certain information about
the solution, such as the far-field form, to be obtained exactly.

The most commonly used method in diffraction theory for solving
such problems is the Wiener-Hopf technique and this will be outlined
in §5.1. In §5.1.1 the procedure will be illustrated by solving the classic
Sommerfeld problem, namely the diffraction of waves by a rigid half-
plane, and in §5.1.2 it will be shown how the solution to this problem
can be used to obtain high-frequency approximations to the breakwater-
gap and the insular breakwater problem given in §4.7. The problem of
water-wave scattering by a submerged horizontal plate in finite depth
is solved in §5.1.3 to illustrate the use of the Wiener-Hopf technique on
problems involving the free-surface boundary condition (1.13).

An alternative method, which is perhaps conceptually simpler though
not so widely applicable, is the so-called residue calculus theory and
this is described in §5.2. Both the Wiener-Hopf technique and residue
calculus theory are fairly technical procedures and some necessary pre-
liminaries to the latter approach are discussed in §5.2.1. The first ex-
ample of the application of the method is to the scattering of oblique
waves by a rigid dock lying in the free surface. When the dock is semi-
infinite in extent the problem can be solved exactly, but one of the
advantages of the residue calculus theory is that it is easily modified to
provide extremely efficient numerical methods for the solution of prob-
lems where the scatterer is finite. Thus in §5.2.2 it is shown how the
problem that was formulated using matched eigenfunction expansions in
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§2.5.3 can be transformed into one which is better suited to numerical
calculations. This example also shows that the solution to semi-infinite
problems can be used to provide good approximations to the equivalent
problems involving scatterers of finite length and in §5.2.3 this idea is
used to derive accurate approximations to the scattering of an incident
wave by a comb-like grating.

5.1 The Wiener-Hopf technique

The Wiener-Hopf technique is a very powerful method which enables
certain linear partial differential equations subject to boundary condi-
tions on semi-infinite domains to be solved explicitly. It can also be used
to provide approximate solutions to more realistic problems. The tech-
nique was initially developed to solve special types of integral equations
and subsequently it was appreciated that certain problems in diffraction
theory could be formulated as integral equations which were amenable to
solution via the Wiener-Hopf procedure. The method as it is described
below is based on the simplified procedure of Jones (1952), which re-
moves the need to formulate the integral equation when solving partial
differential equations.

Crucial to the method are the analyticity properties of complex Fourier
transforms. Suppose first that s is real. The usual Fourier transform F'
of a function f and its inverse can be defined through the equations

F(s) = / - f(z)e'*® da, (5.1)
fz) = % /_  F(s)e-ie ds, (5.2)

Suppose now that s = ¢ + ir is a complex variable. Under suitable
conditions on f (see, for example, Noble 1958, p. 11) we can extend
these relations and define the so-called generalized Fourier transform.

We begin by defining half-range transforms as follows. If f(z) = 0
for z < 0 and if |f(z)| < Aexp(miz) as £ — o0, for some constants A
(positive) and 71, then

Fi(s) = /0 - f(z)e'*® da (5.3)
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is an analytic function of s in the region 7 > 7 of the complex s-plane
and

flx) = %/CFJF(s)e_isz ds, (5.4)

where C is a path within the region of analyticity of F (s) on which o
varies from —oo to co. Furthermore, if f(z) ~ 2* as ¢ — 07 (A > 1),
then
I'(A+1)
Fy(s) ~ Cis)t (5.5)
as |s| — oo with 7 > 7y,
Similarly, if f(z) = 0 for ¢ > 0 and if | f(z)| < Bexp(mx) as ¢ — —o0,
then

0
F_(s)= / f(z)e's® dz (5.6)
is an analytic function of s in the region 7 < 7 and
1 )
- ' —18T 5'
@) = g7 [ F-e)e7 as 5.7

where C is a path within the region of analyticity of F_(s) on which ¢
varies from —oo to co. If f(x) ~ (—=z)* as ¢ — 0~ (A > —1), then

'(A+1)
as |s| — oo with 7 < 7o.
These results for half-range transforms can be combined. If
Aen” as T — o0
< ’ 5.9
£ (@) {Be"ﬂ as I — —oo, (5:9)

with 7y < 79, then the full-range transform defined by (5.1) is an analytic
function of s in the strip 7 € (71, 72) and the inversion formula is given
by (5.2) with the path of integration lying within the strip of analyticity.

In a typical Wiener-Hopf solution procedure one begins by applying
Fourier transforms to the underlying partial differential equation with
respect to s to reduce the problem to an equation of the form

A(s)U,4(s) + B(s)¥_(s) + C(s) =0, T € (11,T2), (5.10)
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FIGURE 5.1
Diffraction by a half-plane.

in which A, B, and C are given functions whilst ¥ (s) and ¥_(s) are
unknown functions with the properties that ¥, (s) is analytic in the
half-plane 7 > 7, and ¥_(s) is analytic in the half-plane 7 < 72. The
aim is then, by a suitable decomposition of the functions A, B, and C,
to convert this to an equation of the form

K ()0, (s)+Cy(s)=K_(s)¥_(s)+C_(s), T€(m,m), (511)

where all the ‘plus’ functions are analytic for 7 > 7 and all the ‘mi-
nus’ functions are analytic for 7 < 7. It is this decomposition which
represents the crucial step in the process and which characterizes the
difficulty of a given problem.

Although (5.11) is a single equation for the two unknowns ¥4 (s), it
can be used to solve for both of these functions simultaneously. Each
side of (5.11) defines the analytic continuation J(s) of the other into the
whole complex plane and knowledge of the behaviour of the functions
in (5.11) as |s| — oo in the strip of analyticity can then be used tc
determine J(s) (and hence ¥4 (s)).

Some of the technicalities associated with the Wiener-Hopf technique
will be illustrated through the examples which follow. For more details
the reader is referred to Noble (1958) and Crighton et al. (1992).

5.1.1 The Sommerfeld problem

Consider the diffraction of a plane wave by a semi-infinite rigid vertical
barrier extending throughout water of constant depth h so that the bed
is at z = —h. The incident wave makes an angle 3 with the z-axis and
the barrier occupies y = 0, € (—00,0] as shown in Figure 5.1, which
depicts a plan view of the geometry.
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The depth variation for the problem can be factored out by writing
®r(z,y,2,t) = Re {¢r(z,y) coshk(z + h)e™ ™}, (5.12)

where k is the solution of the dispersion relation (2.9) and then we can
extract the incident wave field by setting

b1(2,9) = Bla,y) + e kzeosAkysing, (5.13)

The boundary-value problem for ¢ is then

V3 +k*p =0 in the fluid, (5.14)
g—z —iksinfB e kTP on g <0,y=0 (5.15)

and we note that 8¢/dy is continuous on y = 0 for both z > 0 and z < 0
whereas ¢ is only continuous on y = 0 for # > 0. The appropriate edge
condition is that

|[Vo| = O(r_l/z) as 1= (w2 + y2)1/2 -0 (5.16)

and we must impose a radiation condition of the form (1.29) which
requires the diffracted wave field to be outgoing. For mathematical
convenience we treat k as a complex variable and write £k = kq + ie,
€ > 0 (the limit ¢ — 0 will be taken at the end of the calculation) and
then the radiation condition shows that (see Noble 1958, §2.2)

¢ = O (explex cos 3]) as T — —00, (5.17)

=0 (m_1/2 exp[—em]) as T — 00. (5.18)

Next we introduce another complex variable s = ¢ + it and take the
complex Fourier transform of (5.14) so that

‘11”(37y) - 72\11(87:‘/) = 07 Y= (32 - k2)1/27 (519)
where
0 .
Wsw) = [ sy i (5.20)
—0o0
and a prime indicates differentiation with respect to y. The branch of

v is chosen so that when s = 0, v = —ik and v ~ |s| as s — +o0
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along the real axis. The full-range Fourier transform ¥ is decomposed
as U =V, 4+ ¥_, where

V()= [ d@a)e da, (5.21)

U_(s,y) = /_ b(z,y) €% dz (5.22)

and (5.17), (5.18) show that ¥, is an analytic function of s provided
7 > —e whereas U_ is an analytic function of s provided 7 < ecos 3.

Since the real part of « is always positive in the strip 7 € (—e¢,¢€) the
solution of (5.19) subject to the requirement of boundedness in y and
the continuity of 8¢/dy (and hence of ¥ /9y) on y =0 is

_ JA(s)e™ 1y 20,
U(s,y) = {_A(S) eV oy <o, (5.23)

where A(s) is as yet undetermined. The continuity conditions on ¢ show
that the functions ¥ (s,0), ¥/, (s,0), ¥’_(s,0) are well defined and that,
from (5.23),

U, (5,0)+T_(s,07) = U(s,0™) = A(s), (5.24)
U,i(s,0)+P_(5,07)=¥(s,07) = —A(s), (5.25)
' (5,0) +¥'_(s,0) = ¥'(s,0) = —vA(s), (5.26)

in which ¥(s,0%) = limy_ox ¥(s,y) etc. The only function in these
equations for which the region of analyticity is unknown is A(s) so we
choose to eliminate it. From (5.15),

ksin 3

U’ (s,0) = G —Fcosh) (5.27)
and so (5.24)~(5.26) reduce to
W, (s,0) = —S_(s), (5.28)
¥, (s,0) + % — _yD_(s), (5.29)
where
S_(s) = % [W_(s,0%) +T_(5,07)], (5.30)
D_(s) = % [U_(s,0%) - ¥_(s,07)] . (5.31)
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Both (5.28) and (5.29) hold in the strip 7 € (—¢,ecos5) and are of
standard Wiener-Hopf type (5.10) but we actually only need to solve
(5.29) since knowledge of ¥/, (s,0) is sufficient to determine A(s) from
(5.26) and (5.27).

In order to transform (5.29) into an equation of the form (5.11) we
proceed as follows. First

v = (s-l—k)l/2(s—k)1/2 (5.32)

in which the first factor is analytic for 7 > —e and the second is analytic
for 7 < € and secondly

ksin 3

G keosp) s F Rz~ H+(&)+H-(s), (5.33)
where
_ ksinf 1 B 1
Hi(s) = (s — kcos 3) ((5 T2 k+ kcosﬁ)1/2) (5.34)
is analytic for 7 > —e and
H_ (S) _ k sinﬁ (5.35)

(s —kcosB)(k + kcos3)1/2

is analytic for 7 < ecos 8. Equation (5.29) can then be rearranged to
give

v, (s,0)

Grrue T =—H-() — (s - K)V2D_(s) = J(s), (5.36)

where J(s) is analytic in the whole s-plane. To determine J we need to
know the behaviour of the functions in (5.36) as |s| — oo in the strip
T € (—€,€ecos f3).

From (5.5), (5.8), and (5.16),

V', (5,0) = 0(s"Y?) as |s| — o0, T > —¢, (5.37)
U_(5,05)=0(s7!) as |s| = 00, T < ecosf (5.38)

and by construction Hy(s) = O(s™!) as |s| — oo in the appropriate
region of the s-plane. It follows that J(s) is analytic in the whole s-plane

and tends to zero as s — 00 in any direction. Hence from Liouville’s
theorem J(s) is identically zero (see, for example, Noble 1958, p. 6).
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From (5.26), (5.27), (5.34), and (5.36), A(s) can be determined and
then (5.23) and the Fourier inversion theorem show that

ocotia

sy O
=_ k—k
¢($, y) o ( COSﬁ) —cotia (3 _ k)1/2(3 — k cos ﬁ) 5

(5.39)

where a € (—¢,ecos3). This solution is discussed in detail by Noble,
(1958, §1.6 and §2.6) and he shows that it can be expressed in terms of
Fresnel integrals. With = rcos@, y = rsin#, 6 € (—m, ),

—in/4 .
o(r, 0) _ e7rl_/2{e—1krcos(0+ﬁ) F [(2kr)1/2 cos 4 "2" ﬁ:l

_ p—ikrcos(8-8) p |:(2k,,.)1/2 COos 0_T’6:| }, (5-40)

where

F(v) = / ” exp(iu?) du. (5.41)

5.1.2 High-frequency approximations

In §4.7 numerical methods were described for the solutions of the prob-
lems of diffraction of waves by a breakwater with a gap and by an insular
breakwater. High-frequency approximations to the solution of both of
these problems can be obtained by suitable combinations of the exact
solution to the problem of diffraction of waves by a rigid half-plane given
above in equation (5.40). For example, in the breakwater-gap problem,
if the frequency of the waves is sufficiently high there will be little inter-
action between the two ends of the gap and an approximation is obtained
by combining two solutions for a half-plane in a suitable way. For a gap
or insular breakwater of width 2¢ and an incident wave of wavenumber
k, high frequency corresponds to the limit ka — oco. This limit could
equally well be interpreted as corresponding to an increasingly large gap
or breakwater in waves of fixed wavelength.

For a half-plane occupying {y = 0, z < 0} and subject to an incident
wave ¢1(r,6;3) given by equation (4.111), the total potential may be
written

¢r(r,8; 8) = ¢1(r,0; 8) + ¢(r, 6; B), (5.42)
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FIGURE 5.2
Coordinate systems for the breakwater-gap problem.

where the scattered field ¢ is given by equation (5.40). For real v, the
Fresnel integral has the asymptotic forms

iei'v2

. s aiv?
and F(—v)~7r1/2e”r/4—L as v— oo (5.43)

Fl)~ 2vu

(Jones 1994, §8.13) and therefore

,65), 0 € (—m, 7 — 6o),
b(r.6: ) = ¢s(r,0; ) o (=, 7 — 6o) (5.44)
#s(r,0; ) + eikroos(0+8) - g c (1 — @, ),
where as kr — 00,
9 \ /2 eitkr+m/4) gip %Gsin %,6’
¢s(r, 0 8) ~ <%) cosf + cos 3 ' (5.45)

As previously in §4.7.1, for the breakwater-gap problem the origin
of coordinates is chosen in the centre of the gap. It is convenient
to introduce further polar coordinate systems (ry,01) with origins at
(z,y) = (£a,0) as shown in Figure 5.2. Now

x=%*aFrrcosfs and y=ryisinfby, (5.46)

so that
o1(r,0; 8) = ekacsB i (r_ 0_; B) (5.47)
= e kacosB g (r i — ) (5.48)

and hence, under the assumption that the wave fields diffracted from
each end of the gap do not interact, an approximation to the solution in
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y>0is
or(r,6; B) = ¢1(r, 0; B) + e*2<P w(r_ 0_; 3)
+ e_ikaCOSﬁ ¢(T+7 0+7 ™= ﬁ); (549)

where ¢ is given by (5.40). As r/a — oo for 6 € (0,7)

2
ri=r[1:|:gCOSO+O(:—2)], 9_~0 and 0, ~7m—0, (5.50)

so that from equations (5.44)-(5.45),

¢T(7', 6; ﬁ) — e—ikrcos(e—ﬁ) +e—ikrcos(6+ﬁ) ¢y (T,o;ﬂ) (5‘51)
with
2 1/2 ei(kr+m/4) ) ) )
¢4 (r,60;8) ~ <7r_kr) 050+ cos {e’k“(c°se+°°sﬁ) sin %QSln %ﬁ

_ e—ika(cos §+cos 3) cos %QCOS %ﬁ} as kr — oo. (5.52)

The last expression is undefined when 6 = 7 — 3; however, an application
of L’Hopital’s rule gives

ei(kr+1r/4)

N 1
dy(r,m—3;8) ~ W {21ka,sm,3— m} as kr — oo

(5.53)

which demonstrates that the approximation breaks down when 3 = 0 or
7. The diffraction coefficient G(8, 3) follows immediately from (4.129).

For the insular breakwater, a similar calculation leads to the approx-
imation

o1 (r,0;8) = e *7esC=B) L g(r.0;8), 6 € (0,m), (5.54)
where
9 \ /2 gi(kr—3n/4) )
9 ~ 2 ika(cos 6+4cos 3) 1 1
#(r,6;8) (wkr) Py " e cos 10cos 13

— e~ ika(cosf+cos B) i) 1fsin %ﬁ} as kr — oo. (5.55)
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FIGURE 5.3

The modulus of the diffraction coefficient G(6,3) for a break-
water with a gap with ka = 2mw. Accurate numerical results are
shown with a solid line and the high-frequency approximation
with a dashed line.

The last expression is undefined when 6 = 7 — 3; however, an application
of L'Hopital’s rule gives

ei(kr—37/4)

¢(r,m— B3 8) ~ k) e

1
{2ikasinﬁ—|— —} as kr — oo
sin 3

(5.56)

and as before the approximation breaks down when 8 = 0 or w. The
diffraction coefficient F'(6, 3) follows from (4.147).

The above high-frequency approximations are compared in Figures 5.3
and 5.1 with numerical solutions of the integral equations obtained in
§4.7 for a moderately high value ka = 2m. For both the breakwater
gap and insular breakwater problems the high-frequency approximation
performs reasonably well for normal incidence 8 = w/2. The accu-
racy of the approximations deteriorates as (3 is reduced towards grazing
incidence. However, the comparisons for the insular breakwater are gen-
erally poorer than for the gap problem. First of all, it is apparent from
equation (5.55) that the high-frequency approximation to the insular
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FIGURE 5.4

The modulus of the diffraction coefficient F(60,3) for an insu-
lar breakwater with ka = 2w. Accurate numerical results are
shown with a solid line and the high-frequency approximation
with a dashed line.

breakwater problem does not satisfy (4.138) and hence there are dis-
crepancies near § = 0, 7. Secondly, the neglected interaction terms in
the high-frequency expansion of the solution are larger in the insular
breakwater problem. Kobayashi (1991, §2) gives a thorough analysis of
this problem and shows the interaction terms to be of order (ka)~'/? as
ka — oo. Abrahams (1982) has examined the gap problem (for normal
incidence) and shows the interaction terms to be of order (ka)=3/2 as
ka — oo.

Bibliographical notes

The high-frequency approximation used here is formulated by Jones
(1986, £§9.25) and, in the context of breakwaters, by Penney and Price
(1952) although the latter authors consider the case of normal incidence
only. This approximation assumes there is no interaction between the
ends of the gap or breakwater. Noble (1958, §5.6) describes a method
of obtaining high-frequency approximations that includes an interaction
term for a variety of diffraction problems. The method is applicable to
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the problems discussed here, but Noble works out the details only for a
finite-length strip with a boundary condition corresponding to zero po-
tential on the strip. This last problem had been examined previously by
Karp and Russek (1956) using a technique based on physical arguments.
High-frequency approximations including interaction terms are given for
the rigid insular breakwater by Kobayashi (1991, §2) and for the rigid
breakwater with a gap, under normal incidence, by Abrahams (1982).

5.1.3 A submerged horizontal plate

The Wiener-Hopf technique can also be used to solve problems involv-
ing the free-surface boundary condition (1.13). Consider the case of a
fixed thin rigid plate placed along z = —d, © < 0, y € (—00,00) in water
of depth & (h > d), with an oblique wave incident from © = —o0 above
the plate. A factor exp(ify) can be removed as described in §2.3.2 and
we are left with the problem of solving the two-dimensional modified
Helmholtz equation

(V2 —3)p(z,2) =0 in the tluid, (5.57)
together with the boundary conditions
7]
a—f —Ky on z=0, (5.58)
3]
a—f —0 on z=—h, (5.59)
3]
6—‘5:0 on z=-d z<0 (5.60)
and the edge condition
Vol =0 as r=[22+(z—d)%"* 0. (5.61)

In the region z > 0, propagating waves take the form
(A eia:c _+_Be—iaz) 1/}0 (Z),

where o = (k? — £2)Y/2, k is the positive solution to the dispersion
relation ktanh kh = K, and we clearly require k > £ for such waves to
exist. In the region above the plate the situation is very similar except
that the water depth is now d, so we define x to be the positive solution
to the dispersion relation x tanh xd = K and then propagating waves in
z <0, z € (—d,0), take the form

(Aeie+Beine) o(2),
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where p = (k2 — £2)/2 and y(z) is defined as in (2.11) but with h
replaced by d. It follows that we require k > £ for propagating waves to
be possible in the region above the plate, but if k¥ < ¢ < Kk no waves can
propagate into the region > 0 and so there will be total reflection. For
simplicity we will restrict attention to this case. The reflection coefficient
R, which is defined in terms of the far-field behaviour through

@~ 1]10(2) (ei"I —l—Re_i’”) as x — —00, —d< z<0, (5.62)

thus satisfies |[R| = 1. As z — o0 and as * — —oo below the plate
we require ¢ to tend to zero. For mathematical convenience we treat
u as a complex variable and write 4 = u; + i€, € > 0, so as to ensure
the convergence of certain integrals. The original problem can then be
recovered by letting € — 0 at the end.

Let the velocity potential be given by

_ el 'ZJO(Z) +pi(z,z) —-d<z<0,
oz, z) = {m (.2) Chese—d (5.63)

and define full- and half-range Fourier transforms by

®;(s,2) :/ pi(s,2) €% dz, j=1,2, (5.64)

— 00

oo 0
=/ p;(s,2)e? da:+/ ¢;(s,2) €% da (5.65)
0

— 00

=®;1(s,2) + ®;_(s,2). (5.66)
It follows from (5.62) and (5.63) that, provided € is small enough,
p1 = O (exp[—€lz]]) as |z| - o© (5.67)

and, in view of the nature of the eigenfunction expansion that can be
constructed for ¢, 2 also decays exponentially as || — oco. Hence
®;, (s,2) exists and is analytic in the half-plane 7 > —e and ®;_(s, 2)
exists and is analytic in the half-plane 7 < €. Subscripts + and — will be
used throughout this analysis to indicate functions which are analytic in
the regions 7 > —e and 7 < ¢, respectively.

If we take the Fourier transform of (5.57) and use a prime to denote
differentiation with respect to z, we obtain

®Y(s,2) — ¥’ ®;(s,2) =0, j=1,2, (5.68)

© 2001 By CRC Press LLC



where v(s) = (s® + £2)!/2, suitably defined so as to be single valued.
Unlike in the Sommerfeld problem considered previously, the precise
definition of the branch of v will not concern us here; this is because the
function K (s) which appears in (5.78) below is actually a function of 2.
So as to satisfy the free-surface and bottom boundary conditions, let

®(s,2z) = A(s){ycoshyz + Ksinhyz}, —d<z<0, (5.69)
®5(s,z) = B(s) coshy(z + h), —h<z<—d, (5.70)

where A(s) and B(s) are to be determined.
The boundary condition on the plate, the continuity of vertical ve-

locity and the continuity of pressure across z = —d, > 0 transform
to
&, _(s,—d) =¥, _(s,—d) =0, (5.71)
q)/1+ (57 _d) = q>f‘2+(57 _d) = Q-l- (5)7 say, (572)
and
iho(—d
‘I’H_(S, —d) - ‘1’2_,_(8, —d) + 1/:)3_ S) =0. (573)

From (5.71) and (5.72) it follows that the problem is completely de-
termined once Q4 (s) is known since differentiating equations (5.69)
and (5.70) with respect to z and then putting z = —d shows that

A(s) = —Q4 (s)y *(ysinhyd — K coshyd) ™!, (5.74)
B(s) = Q. (5)(ysinhye) !, (5.75)

where ¢ = h — d. Substituting these expressions into equations (5.69)
and (5.70), subtracting and using (5.66) and (5.73) gives
igho (—d)

D_(s,—d)+
(s,—d) i s

— Q1 (s)K(s), (5.76)

where
D_(s,2) = ®2_(s,2) — ®,_(s,2) (5.77)

and

~sinhvh — K cosh vh

K(s)= .
(s) ~sinh ye (ysinhyd — K cosh vd)

(5.78)
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The next step in the Wiener-Hopf procedure is to factorize K (s) into
a product of two functions, one a ‘plus’ function analytic in 7 > —e and
the other a ‘minus’ function analytic in 7 < €. Thus we write

K(s) = K4(s)K_(s), (5.79)

where as yet the functions K4 and K_ are undetermined.
Equation (5.76) can then be rearranged to give

1 oy D) e
K (s) (D‘(S’ D u+8) K (-m(nt 9)

iYho(—d)

QuEL() ~ sy (580
which has the property that the left-hand side is analytic in the region
7 < € whilst the right-hand side is analytic in the region 7 > —e of the
complex s-plane. It follows that (5.80) is valid in the strip —e < 7 < €
and that both sides can be analytically continued to give a function J(s)
which is analytic throughout the complex s-plane.

The required product factorization given by (5.79) is carried out as
follows. The function K(s) defined by (5.78) has zeros and poles but
no branch points in the complex s-plane and we write K(s) using an
infinite product representation which exhibits its poles and zeros explic-
itly. Beginning with the factor ~ sinh vyc in the denominator we note that
the infinite product representation of sinh z is given in Abramowitz and
Stegun (1965, eqn 4.5.68) and thus we can write

yesinhye = { (s +if) H ( 1_|_£2//\2 1/2 —is//\n) eis//\n}

=8 1

X {c(s —if) ([1 + Zz/)\ﬁ] 2y is//\n) e‘is/’\”} , (5.81)

where A\, = n7/c and the function enclosed by the first pair of braces is
non-zero and analytic in the region 7 > —e and thus represents a ‘plus’
function whilst the function in the second pair of braces is a ‘minus’
function, non-zero and analytic for 7 < €. The exponential factors are
included to ensure the absolute convergence of the two infinite products.

The function f(z) = Acoshz — zsinhz can also be written as an
infinite product. The zeros of this function are, as described in §2.1, +z,,
n =0,1,2,..., where zy is real, positive, and satisfies 2o tanhzy = A
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and z,, n > 0, are purely imaginary (with positive imaginary part)
and satisfy z,tanz, + A = 0. That these are the only zeros can be
established by using the argument principle of complex variable theory;
see for example Mclver (1998). Thus the Weierstrass product expansion

for f(z) is

00 2
Acoshz — zsinhz=A I I (1— —2) (5.82)
V4

n=0
It follows that
2 O ,.)/2
yhsinhyh — Khcoshyh = Kh( 1) 1I (1 + k2) (5.83)

n=1

where k,, are positive and satisfy k,tank,h + K = 0. The function
~vhsinh~vh — K hcosh~vh can thus be written as the product of a ‘plus’
function and a ‘minus’ function, defined by

(yhsinhyh — Khcoshyh)+ = (Kh)'/? (s/k +i[?/k* - 1] Y 2)
<11 ([1 + 02k £ is/kn> eish/nm (5 84)
n=1

in an obvious notation. The behaviour of the numbers &, for large n,
given by (2.6) ensures that the infinite products are absolutely conver-
gent. Similarly we have

(vdsinhyd — Kdcoshyd) s = (Kd)“/?x™ (s £ p)

x H ([1+e2/m2)"* Fis/nn ) eisimm, - (5.85)

where the numbers k,, are positive and satisfy k, tank,d + K = 0.
We can therefore write
(yhsinh yh — Kh coshyh) 4 e£X(s)
(vesinhyc)+ (yd sinhvd — Kd cosh vd) +

K (s) = (cd/h)"/? (5.86)

where the exponential factor exp(+x(s)) is to be chosen so that the
functions K4 (s) can be made to have algebraic (rather than exponential)
growth in their respective half-planes as |s| — 0o. The determination of
x(s) requires a careful analysis of the asymptotic forms of the various

© 2001 By CRC Press LLC



infinite products that are implicit in (5.86). Results from §5.2.1 below
show that the correct choice for x(s) is given by

x(s) = (is/7)(clnc+dInd — hlnh) (5.87)
and this choice implies that
Ki(s)=0(s""?) as|s| - . (5.88)

It then follows from (5.5), (5.8), and (5.61) that both sides of equa-
tion (5.80) tend to zero as |s| — O in the strip of analyticity and thus
from Liouville’s theorem (Noble 1958, p. 6) that J(s) = 0. Hence

itho(—d)
(it 9K+ (&) K+ (1)’
where the fact that K, (s) = —K_(—s), which follows from (5.81) and
(5.84)—(5.86), has been used.
Substituting this form for Q4 (s) into equations (5.74) and (5.69) and
then using the inversion formula for Fourier transforms results in

Qi(s) = — (5.89)

itho (—d) (ycoshvyz + K sinhyz) e™1s®
p1(z,2) = - ds,
27Ky (u) Jp y(vsinhyd — K coshyd) K, (s)(u + s)
(5.90)
where P is a path from ¢ = —o0 to oo in the strip —e < 7 < € which

passes above any singularities on the negative real axis and below any
on the positive real axis. In the limit ¢ — O this path becomes the real
axis itself with suitable indentations to avoid any singularities on the
axis.

In order to calculate the reflection coefficient we must examine the
form of ¢1(z,z) for x < 0. Closing the contour in the upper half
plane we pick up contributions from the poles corresponding to the ze-
ros of ysinhyd — K coshyd which lie on the positive real axis or have
positive imaginary part, i.e. those at s = p and s = i(k2 + £2)V/2,
n =1,2,3,....The contributions from all these poles are exponentially
small as x — —o0 except that from s = u (which corresponds to v = k)
and thus we obtain

©1(x, 2) ~ Po(z) Re™He, (5.91)
where, making use of the fact that x tanh kd = K,

( sinh 2xd
=1+ ===

= 5o ) 2u2dK3 (). (5.92)

1
R
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From (5.81) and (5.84)—(5.86) we have that

—1/2
—exlwy € TR T2 k2 — 112
Ki(p) = o (u/k+1[€ /K2 —1] )

([L+ /2] — k)

x (5.93)
H V(1272 =i ) (L4 27222 = /2
from which, since  is purely imaginary and p? + ¢2 = k2,
2/.2 oo 2/1.2
2 (“/k —1) (1+”/kn)
= 5.94
kel == U irapmarepg - 69
= [2u%d(1 + sinh 2xd/2kd)] - (5.95)

repeated use of (5.82) having being made in performing the last step of
the calculation. We thus find, from (5.92), that

IR =1 (5.96)
as expected.

Bibliographical notes

The expression for the reflection coefficient derived above was used
by Linton and Evans (1991) to calculate approximate values for the fre-
quencies at which trapped modes can exist above a submerged horizontal
plate of finite length in water of constant depth. The essential idea, just
as in §5.1.2, was to assume that the edges of the plate are sufficiently
far apart so that there is little interaction between them. Martin (1995)
showed how to take the awkward limit of K (u) as h — oo and thus
recover results for infinite depth, found originally using the Wiener-Hopf
technique by Greene and Heins (1953).

The problem in which the geometry is exactly as above but the wave
is incident from the deep region was solved by Heins (1950b) who for-
mulated the problem as an integral equation using Green’s functions.
Mclver (1985a) reworked the problem using the simpler method due to
Jones (1952).
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5.2 Residue calculus theory

Many problems involving semi-infinite boundaries can be formulated
in terms of eigenfunction expansions as described in Chapter 2. In such
cases it is often possible to use the so-called residue calculus theory to
obtain the explicit solution. The basic idea is to derive an infinite system
of equations based on mode matching that can be solved exactly by
constructing a meromorphic function f with an appropriate distribution
of poles and zeros so that the unknowns in the infinite system correspond
to the residues of f.

The method seems to have been first used by Whitehead (1951) and
Berz (1951) in studies of the diffraction of microwaves. A number of
papers presenting solutions using this technique to problems with semi-
infinite boundaries appeared during the 1950s and 60s and the method is
described in detail in Mittra and Lee (1971). For one particular problem,
Mittra and Lee (§3-13) showed that the residue calculus technique is
precisely equivalent to the Wiener-Hopf procedure. An attractive feature
of the residue calculus theory is the ease with which it can be modified
so as to produce numerically efficient methods for structures with finite
boundaries. The method for dealing with finite length corrections seems
to date back to VanBlaricum and Mittra (1969) and Itoh and Mittra
(1969) and is described briefly in Jones (1994, §2.12). It is this aspect
of the method that will be focussed on in the examples in §5.2.2 and
§5.2.3.

In the application of the method it is necessary to use results concern-
ing the asymptotics of infinite products and the relevant theory is given
in §5.2.1 first.

5.2.1 Asymptotics of infinite products

In order to apply the residue calculus theory we will need the asymp-
totics of certain infinite products. In problems where (V2 — £2)¢ = 0
is being solved subject to the standard bed and free-surface boundary
conditions, the function

£2) = T] @ - z/an)eh/me (5.97)

n=1

arises, where z is a complex variable, a, = (k2 + ¢2)'/2 and kn, n =
1,2,3,... are the positive real roots of the dispersion relation (2.5).
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From (2.6) we have that k,h ~ nm 4+ O(n™!) as n — 00, so that
an =nw/h+O0(nh). (5.98)

This ensures that the terms in (5.97) are 1 + O(n~2) as n — oo and
hence that the product converges uniformly. To obtain asymptotics of
this infinite product for large z we make use of the infinite product rep-
resentation of the Gamma function (see Abramowitz and Stegun 1965,
eqn 6.1.3),

o yzh/m
1- shjmm _ & 5.99

in which v & 0.5772 is Euler’s constant. The asymptotics of the Gamma
function are given by Stirling’s formula (Abramowitz and Stegun 1965,
eqn 6.1.37).

In order to determine the behaviour of g(z) for large z, excluding the
case when z is real and positive, we write

ﬁ (z = a" (5.100)

n=1

evzh/m

1) = (1 —zh/m)

where A\, = nm/h. Now

T A=) T7 A T An — O
a5y = T I ()
T An T A2 —a2
! bl (o) e

and because of the asymptotics of a,, for large n given by (5.98), both
infinite products converge uniformly. Hence as z — o0, on a contour
avoiding real, positive values,

° An(z — an) o An
LAl JAN | 5.102
;!;[1 an(z - /\n) ,;!:‘[1 0 ( )
so that
1 1/2 oo An
f(z) ~ e(2) (—2zh> n]l ~ (5.103)
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where
e(z) = exp [ﬁ (7 —1+1In _—‘Zh)] . (5.104)
™ ™

Asymptotics for z real and positive can be obtained as follows. We
note that

S K cosCh+ (sinCh o k2
]:[1(1—z/an)(1+z/an)= ;?(fJFJgfﬂ:f)c ]:[1—% (5.105)

where ¢ = (22 — £2)/2, which follows from the Weierstrass product
expansion (5.82). The product []o-, k2/a2 could also be evaluated
explicitly with the aid of this identity, though this serves no purpose
here. Hence, substituting (5.105) into (5.97) and then using (5.103)
with z replaced by —z, we have that as z — oo through real positive
values

1/2 K cosCh+¢sinCh 1
1)~ @l e H /\nan (5.106)

For the case where the free-surface boundary condition is replaced by
a Neumann condition, the product

g9(z) = [[ (1 = 2/Bn) e/ (5.107)

n=1

is encountered. Here 8, = (A24£2)/2 and as n — o0, fn = Ay +0(n~1).
Asymptotics for this function can be derived exactly as above, or we can
simply take the limit as K — 0 in the above formulas, noting that in
this limit K ~ k?h and k,, — An.

It follows that as z — 00, provided z is not real and positive.

. 1/2
g(z) ~ (m) e(z), (5.108)
and as z — oo through real positive values,

sin Ch ( 220 )1/2

g9(z) ~ Ce(—2) \Sinhan (5.109)
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5.2.2 The finite dock problem

In §2.5.3 the problem of oblique wave scattering by a finite dock was
formulated using matched eigenfunction expansions. One method of
matching led to the pair of infinite systems of equations (2.138), which
are reproduced here:

> 1 e~ 2Pma 1 e~ 2Pma
VE ( + ) = ) 5.110
T; " an_,Bm an"‘ﬁm aO"‘ﬁm aO_,Bm ( )
for m=0,1,2,..., where we require the unknowns to satisfy
VE=0(m1) as n— oo (5.111)

so as to correctly model the singularity near the edges of the dock at
x = ta, z = 0. The quantities which appear in (5.110) are defined by

op = —ia = —i(k* =)V, e, =(RE+ Y2 n>1, (5.112)
Bn= (2 + Y2 n>o0, (5.113)

where k and k,, are the solutions to (2.9) and (2.5), respectively, £ =
ksin 3 is the wavenumber in the y-direction (8 being the angle with
the positive z-axis made by the incident wave), and A, = nn/h. The
reflection and transmission coefficients for the problem are given by

R=3 (i +Ve), T= (% %)  G19
and here we will describe how these quantities can be determined using
the residue calculus theory.

The system of equations (5.110) cannot be solved explicitly, but we can
make use of the fact that if the exponential factors were not present, the
system could be solved explicitly. This allows us to convert the problem
into a system of equations which converges exponentially rather than
algebraically. Thus we begin by solving the reduced system

S 1 1
= , m=20,1,2,..., 5.115
Zan_ﬁm oo + Bm ( )

for the unknown complex coefficients V;,. This is precisely the system
of equations that is obtained from the matched eigenfunction expansion
method for the semi-infinite dock problem, the dock occupying = > 0,
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z = 0 and the reflection coefficient for that problem, which we will label
as R, is given by Vj.
Consider the function

o(x) = —— [[—= 2/bn (5.116)

ztao 1—z/an

It follows from (5.103), (5.106), (5.108), and (5.109) that
g(z) =0(z"") as z— o0 (5.117)

through a sequence of values which avoids the points z = «, (which
correspond to the points at which K cos¢h + ¢sinCh =0).
If we consider the numbers

1 g9(z)
I, =1 — =0,1,2,... 5.118
m Nl_Igo27r1/CNz—Bm “ m ey ( )

where Cy are circles centred on the origin with radius (N + 1) /h, then
the behaviour of g(z) for large z implies that I, = 0. Cauchy’s residue
theorem then shows that

R(g: —ag)  ~=R(g:ay) _
o +nz:;) apey aaindl! (5.119)

for each m > 0, where R(f : z9) means the residue of f(z) at z = z¢. If
we write

1+ O!()/an
G = 5.120
H 1+ O!()/,Bn ( )
then
R(g: —a9) =G™! (5.121)

and so the solution of (5.115) is given by
Vo =GR(g: ay), (5.122)

which can be shown, using techniques similar to those described in §5.2.1,
to satisfy (5.111). In particular

_2ip (I —ia/an)(I +ia/Bn) _ _2ip 2is.,
Vo=Re =€ H T iafa @ a/m) ¢ e (5.123)
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where

i tan~"(a/fBn) — tan"(a/ay)) . (5.124)
To treat the dock of finite extent we consider the function
fE(z) = Grg(2)h*(2), (5.125)
where g(z) is given by (5.116) as before,
RE(z) =1+ i . f’j‘; (5.126)
n=0 hid

and G*, C, n > 0, are constants to be determined. It is the inclusion
of the function g(z), which is used in the determination of the explicit
solution to the semi-infinite dock problem, in the solution procedure for
the finite dock problem that is crucial to the success of the technique.
The numbers

In = i 1/fi() L e 0,1,2

= m —- z m =

m N—»oo27r1 Cn Z—Bm Z+5m z, y Ly 4y )
(5.127)

are all zero for the same reasons as before and Cauchy’s residue theorem
gives

F5(Brm) 070" £5(=3 )+R(fi-—a>< Lo o )
m m . 0 —ao—ﬁm —a0+5m

+iR(fi- L LN\ _o (5128
n=0 'an) (an_ﬁm an+5m>_ ’ ( )

for each m > 0. A comparison with (5.110) shows that the solution will
be given by

VE=R(f*:on) (5.129)
provided
R(ff:an) =071 as n— oo (5.130)

(which follows from the fact that f*(z) = O(z7!) as z — 00), G* is
chosen so that R(f*: —ap) = 1, and

FE(Bm) £e™ 2P0 fF(—B,)=0 m>0. (5.131)
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‘We thus define

G

Gt— 7
h*(—ao)’

(5.132)

where G is defined in (5.120) and then provided (5.131) is satisfied we
have

ViE =R(ft:a0) = ———"R (5.133)
where Ry, is given by (5.123). In order to satisfy (5.131), the coefficients

CZ, m > 0, used in (5.126) must satisfy the infinite systems of real
equations

Ct+D, =+Dp,, m=012,..., 5.134
2 Gt (5.134)

with
Dy = 2[8—2&1 H (1 _ e/an)(l + Z/ﬁn) (5135)

L a5 /6,) =8,y

and for m > 1,

_ 2,Bm(e + ,Bm)(am - ,Bm) —2Bma ad (1 - ,Bm/an)(l + ,Bm/,Bn)
Dm B ([ - /Bm)(am + /Bm) ¢ 1:‘[1 (1 + ,Bm/an)(l - /Bm/ﬁn) ‘
n/m

(5.136)

If we combine the symmetric and antisymmetric solutions using (5.114)
we find that the reflection and transmission coefficients are given by

R =

N =

(e¥+ 4+ e28-) R, T— % (e¥%+ —eM-) Ry,  (5.137)

where

+ ~_Cn
E=arg[1-) o b (5.138)
n=0 n

As a/h — 00, (5.134) shows that Ct — 0, and hence exp(2i6*) — 1.
Thus R — R, and T — 0 as expected.
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Because of the presence of the factor exp(—28,,a) in the expression
(5.136) for Dy, the systems of equations (5.134) converge very quickly
provided a/h is not too small and provide an extremely efficient method
for computing the unknowns C:t. Moreover, it is possible to prove (using
the method described in Appendix B of Evans 1992) that, for sufficiently
large a/h, (5.134) has a unique solution with Y ov_ (C£)? < co.

Results for normal incidence can be extracted from the above analysis
by taking the limit as § — 0 (i.e. £ — 0 for fixed k). First we note that
in this limit

Dy ~ 204 46% (0 — a) + O(£3), (5.139)

where

(1 1
o= — - — 5.140
> (%) 6149
and hence the m = 0 equation in (5.134) with the plus sign then becomes
C’()" = 0 and we only need to solve the system for m > 1. The leading

order behaviour of the m = 0 equation in (5.134) with the minus sign is
more complicated; we find that

(c—a)Cq + ) ﬁ—; =1 (5.141)
n=1""

Apart from these changes, we can simply set £ = 0 in the general ex-
pressions for R and T'.

The procedure described above provides a numerically straightforward
way of computing the reflection and transmission coefficients for the
finite dock problem in finite depth. The infinite systems of equations
that need to be solved converge extremely rapidly and the sums and
products that need to be evaluated cause no difficulty. For example, the
terms in the summation in the definition of J., equation (5.124), are
O(n~3) as n — co. This is computationally acceptable, but the series is
easily accelerated if necessary.

To demonstrate the rapid convergence of the infinite systems of equa-
tions we can consider the extreme case of a 1 x 1 truncation. If we
only include one term from the summation in (5.134), solve for C’(:)t, and
substitute into (5.138) we obtain

+5in 20
+
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a/h
g 025 05 0.75 1

0° 86 094 013 0.021
40° 5.2 043 0.046 0.0056
80° 0.61 0.026 0.0020 0.00020

Table 5.1 Maximum percentage error (over all frequencies) when
computing |R| for the finite dock problem using a 1 x 1 truncation.

where b = Dy /2¢. If we substitute this expression into (5.137) and use
(5.123) we obtain the approximations

i i -1 i 1 —e4iB
R%ez deo ezﬁ (m) , T%bez deo (m) . (5.143)

If we take the limit of (5.143) as 8 — 0 using (5.139) we obtain the
following approximations for the normal incidence case:

k(o — a) €®id - _j e2i6c0
k(c —a)—1i"~ T ko —a)—i’

The accuracy of these approximations depends strongly on the value
of a/h and to a lesser extent on the value of 3, with larger values of either
parameter resulting in greater accuracy. This is illustrated in Table 5.1
which shows the errors that result from using these approximations to
compute |R|. For each value of a/h and [ the table gives the maximum
percentage error in the computed value of |R| as K varies over the entire
frequency range. The table shows that 1% accuracy is achieved for
all values of a/h > 0.5, with the accuracy increasing rapidly as a/h
increases.

It is also possible to examine the long wave limit, i.e. Kh — 0, for
fixed 8. In this limit kh ~ (Kh)'/? and an analysis of (5.134) reveals
that

R~ (5.144)

6t ~ B — kasin B tan 3, 0~ ~f[— %+kacosﬁ (5.145)
and hence that
R ~ —ikasec 3, T ~ 1+ ikasec 3 cos20. (5.146)

For 3 = 0, these results agree with those in Martin and Dalrymple (1988)
after taking account of the different definition of T" used in that paper.
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Bibliographical notes

Problems concerning the interaction of water waves with a rigid plate
lying in the free surface have a long history. The Wiener-Hopf technique
was used in Heins (1948) to explicitly solve the interaction of oblique
waves (generated by a line source along the edge of the plate) with a
semi-infinite dock in water of finite depth. The case of normally incident
waves is recovered by taking an appropriate limit. The method used is
also applicable to infinite depth, but in that case the method breaks
down in the limit corresponding to normally incident waves. However,
this latter problem can be solved using complex variable theory and a
method related to Laplace transforms (Friedrichs and Lewy 1948).

Most work on finite dock problems has concentrated on the infinite
depth case and utilized an integral equation approach (some of which is
described in the bibliographical notes at the end of §4.8). The difficult
subject of short wave asymptotics for finite dock problems in infinite
depth was the subject of a series of papers: Holford (1964a), (1964b),
Leppington (1968), (1970), (1972), the last of these also including some
results for finite water depths.

The first results for the finite depth case were based on shallow water
theory (Stoker 1957) and then numerical calculations of the reflection
and transmission coefficients were presented in Mei and Black (1969)
for the scattering problem based on the full linear theory. A general
numerical scheme, based on the finite-element method, for the solution
of oblique scattering problems by infinite cylinders of constant cross-
section lying in the free surface in water of finite depth was developed in
Bai (1975). In particular, Bai considered the diffraction of waves by a
cylinder with rectangular cross-section, including the case of zero draft,
which corresponds to the finite dock problem. The finite depth problem
has also been attacked using the complicated machinery of dual integral
transforms in Dorfmann and Savvin (1998), though no numerical results
were presented.

5.2.3 Periodic coastlines

Consider an ocean of constant depth h, bounded by a periodic coast-
line consisting of a straight, vertical cliff face from which protrudes an
infinite number of equally-spaced identical thin vertical barriers, each
one of length @ and extending throughout the water depth. We will
begin by assuming that a plane wave is incident on the coastline and
calculate the scattered wave field. A plan view of the geometry is shown
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FIGURE 5.5
Scattering by a periodic coastline.

in Figure 5.5.
The depth variation can be factored out as in §2.4 and then the field
equation to be solved is the two-dimensional Helmholtz equation

(V24+ kg =0 (5.147)

in the fluid region, subject to the boundary conditions

0
a—z =0 on z¢€(0,a), y=md, m an integer, (5.148)

together with appropriate radiation conditions as 2 — o0.
The incident wave is described by

¢I — eiaa eiZy—iaa:7 (5150)

where @ = kcos 3, £ = ksin 3, and the phase factor exp(iaa) has been
introduced for convenience. As § € (0,7/2), it follows that £ € (0,%).
Since the incident wave is periodic in the y-direction and the array of
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plates extends over the whole y-axis, we seek a scattered wave field which
has the term exp(ify) in common with the incident wave. This, together
with the periodicity of the geometry, implies that the total potential
must satisfy

$(z,y + md) = €™ ¢(z, y) (5.151)

and we only need consider the problem in the strip y € (0, d).

The problem is set up in a standard way by treating the two regions
z € (0,a) and z € (a,00) separately, expanding the potential in each of
these regions in terms of appropriate eigenfunctions, and then matching
¢ and 0¢/dx across z = a. Thus for z € (0,a) we write

¢ = Z B, cos(nmy/d) cosh Bz, (5.152)
n=0
where
B = (n*m?/d® — k*)Y/? (5.153)

and, for simplicity, we restrict attention to the case when only one wave
mode is possible between the plates, i.e. kd < 7, in which case 8,,n > 1,

is real and By = —ik. For z € (a,00) we write the wave field as
oo
¢ — eify—ia(z—a) + Z A eiﬂny—an(z—a)’ (5'154)
n=—00
where
by, =L+2nm/d (5.155)

and

o0 = —ia,  an = (2 —kHY2 n#o. (5.156)

Since ¢ € (0,%) and we have chosen kd < m, it follows that |£,| > k,
n # 0. Hence an, n # 0, is real and there is just one reflected mode. As
T — 00,

¢ ~ eiéy—ia(:c—a) +A4 ei€y+ia(z—a) (5.157)
and thus the reflection coefficient is given by

R = Age %ea, (5.158)
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If we impose continuity of ¢ and d¢/dz across x = a, multiply each
of the resulting equations by cos(mny/d), m = 0,1,2,..., integrate over
(0,d), and then eliminate B,,, we obtain an infinite system of equations
for the unknowns A,, which can be written in the form

>, A Vs 1 —2fma 1 —2Bma
e P ey s I XL
{ 0n — Bm on + Bm oo + Bm oo — Bm

n=—oo

for m=0,1,2,..., which is of almost exactly the same form as (5.110).
There are significant differences however. First, the infinite sum is over
all integers n, not just non-negative n. Secondly, the definitions of «,
and [, differ from those used in §5.2.2 in two crucial respects: [y is
imaginary and, from (5.153), (5.155), and (5.156), we have a,, ~ nw/2d,
but 3, ~ nr/d as n — co. In order that the appropriate edge condition
is satisfied (see equation 5.16) we require

A, =0(n"%?) as n— 0. (5.160)

In the finite dock problem considered in §5.2.2, we first solved a re-
duced system of equations in which terms which decayed exponentially
as @ — oo were neglected. The effect of these neglected terms was then
incorporated as a modification to the explicit solution of the reduced
system. Here we will just examine the reduced system, though the finite
length corrections (which would involve solving an exponentially con-
vergent system of real equations) could easily be computed. For this
scattering problem, unlike for the dock problem, the dependence on a is
not totally absent in the reduced system. This is because 3y is imaginary
and so the term exp(—28ya) does not decay as a — oo. Physically this
corresponds to the fact that waves propagate in the regions between the
barriers whatever the value of a, whereas in the dock problem there is
only an evanescent wave-field beneath a semi-infinite dock.

Thus in order to obtain an approximate solution for large a/d we
neglect the terms exp(—28,a), m > 1 and obtain

o

Al ft 1
= + ¢bmo, m=0,1,2,..., 5.161
Z an — Bm g + Bm 40mo ( )

n=—oo
where

g=e"*[(ag— Bo)7! = C] (5.162)
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and

X Al 0!t
C= R 5.163
Z on+ Bo ( )

n=—oo

This system of equations can be decomposed into two simpler systems
by writing

Aneng_1 =Up + ¢V, (5.164)
where, for m =0,1,2,...,
o0
U, 1
> LA , (5.165)
ne—oo ¥n T Bm 0+ Pm
o0
Vi
Y ——— =m0 (5.166)
oo ¥n T Bm

The system (5.165) is similar to (5.115) which was solved in §5.2.2, but
the required behaviour of the unknowns U, is different since from (5.160)
and (5.164) we must have Uy, V;,, = O(n~1/?) as n — co.

Before solving these equations we shall examine the relationship be-
tween their solutions, U, and V;,, and the retlection coefficient, which is
related to Ag through (5.158). From (5.163) and (5.164) we have

where

oo

Un L Vi,
F= Z an+ﬁ0, Q_ Z an+ﬁ0 (5168)

n=—oo n=—oo

and elimination of C and q between (5.162), (5.164), and (5.167) shows
that

(g — o)™ =P
e~Zike () -
In order to obtain the reflection coefficient, therefore, we need to know

Uy and Vj together with the sums P and Q.
To solve (5.165) we consider the function

Ay =Uy+ Vy (5.169)

s (L= 3/B) B (L= 2/Ba)
g(z) = Ge w12 = 22/;(2)) H T 2/a( 2o’ (5.170)

n=1
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where G is a constant chosen so that R(g : —ap) = 1. The asymptotics
of the product

oo

H (1 _ z/ﬁn) ezd/nw

n=1
are given by (5.108) and (5.109) with k replaced by d and ¢ replaced by
ik, and the asymptotics of the product

oo

T[] - 2/an)(1 — z/an) /™

n=1

can be determined using the same techniques as were used to derive
the results in §5.2.1, though the details are slightly different. From the
resulting expressions we can show that

9(z2) =0(=z"Y?) as z—o00 (5.171)

through a sequence of values which avoids the points z = ay, n =
0,+1,42,.... Thus the numbers
1
9(2) 4,

= lim — [ 2&2

=0,1,2,... 5.172
m N—oo 27i CNZ:iZIBm ’ m T ’ ( )

where Cy are circles centred on the origin with radius ¢, + 7 /d, are zerc
and Cauchy’s residue theorem applied to I, then gives

oo

R(g: o) 1
_ -0, m=0,1,2,.... 5.173
Z an_ﬁm a0+,8m ( )

n=—oo

Comparison with (5.165) shows that
Up=R(g:an), n=0+142..., (5.174)

which can be shown to satisfy U, = O(n~1/2) as n — 00 as required.
Cauchy’s residue theorem applied to I} gives

— R(g:om) 1
- +9(=Bm) =0, m=0,1,2,...,
n:z_oo an + ’Bm Qo — :Bm g( m)
(5.175)
and the m = 0 equation is simply, see (5.168),
P = (ag—Bo)™" = g(~Po)- (5.176)
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To solve (5.166) we consider the function

Fe-%Mm2 = (1-2/Bn)
z) = , 5.177
AUl sy § gy o g gy oy (B.177)
where F' is a constant chosen so that f(3g) = —1, and the numbers
L1 f(2)
+ _ _
Jm—IJEnw2W1 CNZiﬁmd m=0,1,2,..., (5.178)
where Cp are as before. Cauchy’s residue theorem implies
-— R(f:
3 Rifiem) 5 _0, m=o012..., (5.179)
n=—00 - ﬂm
— R
3 R{f:on) | F(=Bm) = m=0,1,2,..., (5.180)
ne—oo On + :Bm
and comparison with (5.166) and (5.168) shows that
Vo=R(f:0g), n=0,£1,+2..., (5.181)
Q= —f(-Po). (5.182)
Substitution of (5.174), (5.176), (5.181), and (5.182) into (5.169) gives
—21k —2
* —p~*f(=ho)
Ay = Q , 5.183
0 (g 0) e—21ka f(_ﬂO) ( )
where we have written
Po—ay k—a 1—cosf3 21
= = = =t 5.184
P Bo+ay k+a 1+cospf a2 ( )
and used the fact that
R(f : 0)g(—Bo) = (L - p"*)R(g : a0) f(—Bo)- (5.185)
Simple calculations show that
f(=Bo) =p €™, (5.186)
R(g: ap) = —p e 2% (5.187)
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where

_kd k k k
& = ln2 + Z <tan — +tan™ I — tan™ E) , (5.188)

0y = —— ln2 + Z (tan — +tan” — tan~" ﬁi) - (5.189)

a—n n

Combining (5.158), (5.183), (5.186), and (5.187) shows that the reflec-
tion coefficient

) e2i(hi+ka) _y

_ oa—2i(62+aa
R=e""" 1 — peiGitka)

(5.190)

which satisfies |R| = 1 as expected, since all the incident wave energy is
reflected by the coastline.

The accuracy of this result will depend on the value of a/d. Results
from Linton and Evans (1993a), where this problem was used as part of
the solution to a more complicated problem, suggest that for a/d > 1
the errors introduced by neglecting the exponentially decaying terms in
(5.159) are very small indeed. As a/d decreases from unity, the accu-
racy gradually deteriorates with the best results when kd is small. This
dependence of the error on kd is to be expected since the largest of the
neglected exponentials is exp(—2(a/d) (7% — k2d?)'/?) which will become
more significant as kd approaches .

In the above analysis we have assumed that £ < k but, just as for the
case of a submerged horizontal cylinder considered in §3.1.1, it is possible
to treat the case £ > k and look for frequencies at which there exist non-
trivial solutions of the homogeneous problem obtained in the absence of
the incident wave. For £ > k waves are no longer possible as ¢ — o
and any such non-trivial solutions that can be found correspond to edge
waves that travel along the coastline but do not radiate any energy out to
sea, or equivalently to Rayleigh-Bloch surface waves propagating along
a diffraction grating.

The system of equations that we must solve when £ > k is the same
as (5.159) except with zero on the right-hand side and we note that in
this case «, is real for all integers n. Once again we will neglect the
exponentially decaying terms and if we proceed much as before we find
that we must again solve (5.166), the solution being given by (5.181),
but now our solution must satisfy the condition

f(ik) = e~ 2ika (5.191)
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From (5.186), but noting that now

- i’; J_r Zz = —exp(2itan~" k/ay), (5.192)
this condition reduces to
tan~" (k/ag) + 61 + ka = (m + 1), (5.193)

for some integer m. This approximate condition for the existence of edge
waves was first derived, using this technique, by Hurd (1954). The ex-
tension to include the exponentially decaying terms, which also demon-
strates the high accuracy of (5.193), was carried out in Evans and Linton
(1993a).

Bibliographical notes

The scattering problem considered here is an example of wave scat-
tering by a diffraction grating, a subject with a vast literature in the
context of acoustic and electromagnetic waves; Petit (1980) gives a gen-
eral discussion of such problems, while Wilcox (1984) provides a more
mathematical approach to the general theory. See also the notes at the
end of §6.4.3.

When the barriers extend all the way to £ = —o0, the problem can be
solved explicitly. For various electromagnetic diffraction problems this
was done using the Wiener-Hopf technique by Carlson and Heins (1947),
Heins and Carlson (1947), Heins (1950a) and using residue calculus the-
ory by Whitehead (1951), though in all these papers the more general
problem of scattering by an array of staggered semi-infinite plates was
considered. The transmission of sound through a staggered array of fi-
nite length plates was treated using a modification of the Wiener-Hopf
technique in Koch (1971). For the case of zero stagger described above,
the solution of the semi-infinite plate problem essentially boils down to
solving (5.165), the solution of which is given by (5.174).

The question of the existence of modes propagating along a general
periodic grating in the absence of any wave field away from the grating
is still an open one, though they are known not to exist if the boundary
condition on the grating is ¢ = 0 rather than d¢/0n = 0 (Wilcox 1984,
Bonnet-Bendhia and Starling 1994). Such Rayleigh-Bloch surface waves
have, however, been observed experimentally by Barlow and Karbowiak
(1954) for the case of a corrugated cylindrical metal surface, and they
also showed how the frequencies of such modes could be associated with
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the zeros of an infinite determinant. Rayleigh-Bloch waves have been
constructed for a number of other geometries. For example Evans and
Fernyhough (1995) calculated the frequencies at which such modes occur
when the thin barriers in our example are replaced by barriers of non-
zero thickness. Computations for general shapes have been made, using
an integral equation formulation, by Porter and Evans (1999).
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Chapter 6

Arrays

Wave interactions between neighbouring structures are important in
many practical problems, including the scattering of water waves by
an offshore oil platform and the scattering of acoustic waves by a tube
bundle in a heat exchanger. In this chapter a variety of methods are
presented for such interaction problems.

The problem of wave diffraction by a finite array of circular cylinders
in which the fluid motion is governed by the two-dimensional Helmholtz
equation has a long history, and a straightforward and efficient method of
solution for this problem is presented in §6.1. In the water-wave context
this cylinder problem corresponds to a structure extending throughout
the depth. For the case when the cylinder is truncated, so that there is
fluid beneath and/or above it, the situation is considerably more complex
as a doubly-infinite set of additional modes are required to describe
the wave field. An efficient method for this more general problem is
described in §6.2.

In view of the complexity of interaction problems involving many
structures it is natural to seek approximations to the solution. A very
effective procedure is to assume that the structures are widely spaced
in comparison to appropriate length scales. Such ‘wide-spacing’ approx-
imations have been found to perform well even when the assumptions
behind them are violated. In §6.3 a method of this type for the solution
of two-dimensional water-wave problems is described. For the special
case of scattering by an array of equally-spaced identical structures ex-
act expressions for the overall reflection and transmission coefficients
may be found and this is demonstrated in §6.3.1, while in §6.3.2 the
extension is made to an infinite two-dimensional array.

A theory for the diffraction of waves by an infinite row, or grating, of
circular cylinders has already been presented in §3.2.2. The wide-spacing
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FIGURE 6.1
Plan view of two cylinders.

approximation is used in §6.4 to obtain a method applicable to multi-
ple diffraction gratings. Reciprocity relations for multiple diffraction
gratings are derived in §6.4.2.

6.1 An array of vertical circular cylinders

We begin by tackling the problem of wave scattering by a finite ar-
ray of fixed vertical circular cylinders extending throughout the water
depth. We assume that there are N (> 1) cylinders and use N + 1 polar
coordinate systems in the (z,y)-plane: (r,0) centred at the origin and
(rj,0;),5=1,...,N, centred at (z;,y;), the centre of the 5*" cylinder.
The various parameters relating to the relative positions and sizes of the
cylinders are shown in Figure 6.1. An extension of the method to the
case of an infinite row of cylinders (the same example as was considered
using the multipole method described in §3.2.2) will be considered later.

As in §3.2.2 we assume that a plane wave making an angle 3 with the
positive z-axis is incident on the cylinders and the depth dependence of
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the problem is factored out so that the problem is reduced to solving
the Helmholtz equation (2.74) in the (z,y)-plane. The incident wave is
characterized by

¢1 = exp(iax + ily) = exp(ikr cos(d — 3)), (6.1)

where o = kcos 8 and £ = ksin 3.
A phase factor for each cylinder, I;, is defined by

I = elox;+ily; (6.2)
and then we can write
oo
b1 = Ij elkrs cos(0;—B) _ Ij Z ein(1r/2—0j+ﬁ) Jn(ij), (6.3)
n=—o00

(Gradshteyn and Ryzhik 1980, eqn 8.511(4)).

Each cylinder will scatter the waves which are incident upon it and we
can take account of all such scatterings by expressing the total potential
as the sum of the incident wave and a general outgoing wave emanating
from each cylinder. Thus (see equation 2.67), the total potential is
written

N (o]
p=¢1+> > ALZIHD (krj)ems, (6.4)

j=ln=—o0

for some set of unknown complex coefficients A7, and the factor ZJ =
Jy (kaj) /H,(ll)'(kaj) is introduced for convenience.
In order to apply the boundary condition of no flow through the cylin-

der surfaces, which is

o¢

8—%:0 on rp,=4a, p=1,...,N, (6.5)
equation (6.4) must be written solely in terms of the coordinates rp
and 0. This is accomplished using Graf’s addition theorem for Bessel
functions (Gradshteyn and Ryzhik 1980, eqn 8.530), which shows that
provided r, < Rj, for all j, we can write

[e o]
¢(rp,0p) = Z (Ip‘]n (krp) ein(r/2=6p+8) +Asz£Hr(zl)(k"p) ein0p>
n=—o0o
+3° S A2 Y Talkrp) HY, (kRyp) €™ €™ (6.6)
j:l n=—oo m=—0C0

Ap
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The geometrical restriction implies that this expression is only valid if
the point (rp,6p) is closer to the centre of cylinder p than the centres
of any of the other cylinders. This is certainly true on the surface of
cylinder p and so (6.6) can be used to apply the body boundary condition
which leads, after using the orthogonality of the functions exp(imf,),
m=0,£1,+2,..., to the system of equations

N 00
AL 4D D0 MZLECT D (kRy) = ~Lp @/,
j:] n—=——00

A
p=1,...,N, m=0,1,2,.... (6.7)

Equation (6.7) can be substituted back into (6.6) and it follows that
provided r, < R;, for all j,

P(rp,0p) = Z A% Chiste (ZgHr(zl)(kTp) - Jn(""'p)) : (6.8)

n=—00

This expression provides an extremely simple formula for the velocity
potential, and hence the free-surface elevation, in the vicinity of a cylin-
der. The potential on the cylinder surfaces has a particularly simple
form since, using (A.7), we have

[e.9}

2i AP einbe
¢(ap,9p)_—ﬂkap > o (6.9)

n—=——00

If we put N =1 in (6.7) and take the cylinder to be at the origin with
B =0, we find that AL, = —i™ and we recover the results for a single
cylinder given in §2.4.1.

As an example of the sort of results that this theory predicts, Fig-
ure 6.2 shows the results of computations of the exciting force (defined
in equation 1.45) on four identical cylinders arranged in a square. This
example is the same as that used in Figure 2 of Linton and Evans (1990),
but the curves shown in that paper are in error. The values have been
non-dimensionalized by the forces that would be experienced if the cylin-
ders were in isolation, so the curves represent the effects of the inter-
action due to the array and they clearly demonstrate that interaction
effects can be extremely important in determining the amplitude of the
force. For example, the force on cylinder 1 near ka = 1.7 is over twice
what it would be if the other cylinders were not present.
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FIGURE 6.2

The non-dimensional amplitude of the forces on a group of four
cylinders arranged in a square. The cylinders, numbered 1-4
are at (—h,—h), (h,—h), (h,h), (—h,h), respectively, and in
each case the radius is h/2. The incident wave makes an angle
of 45° with the positive xz-axis. The upper curves show the
force in the direction of wave advance on cylinders 1, 2, and 3
(the magnitude of the force on cylinder 4 is identical to that
on cylinder 2) whereas the lower curve shows the force in the
direction perpendicular to wave-advance on cylinder 2 (this is
zero on cylinders 1 and 3).

The same approach as has been used above for the finite array case
can be used to treat the case of an infinite row of identical bottom-
mounted vertical circular cylinders which was solved using the multipole
method in §3.2.2. Thus we can consider a row of identical cylinders of
radius a arranged so that the centres of the cylinder cross-sections are
at (z,y) = (0,2md), m = 0,£1,+2,.... The total potential must now
be written as

o0

p=¢1+ > > ATZ H(kry)entr, (6.10)

m=—00 N=—00

The quantities A7 are unknown complex numbers which must be
found by applying the boundary condition on the cylinders. Due to the
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periodicity of the geometry it is clear that the only difference between
the effect of the m*" cylinder and that of the cylinder situated at the
origin will be that due to the different phase of the incident wave at that
cylinder. Thus we have

AT =T, A, (6.11)

where we have written A,, for A2. With this considerable simplification
we now need only apply the body boundary condition on one of the
cylinders. This leads (in much the same way as for the finite array case)
to the infinite system of equations

Ap+ Z Ay Zp P/ ZH(I) (2mkd) [In + (=1)"PI_]

n=—oo m=1

= —eP(/2-B) 0 £1 42 ... (6.12)

The sum over m is slowly convergent and must be considered carefully
in any numerical computations. Methods for the accurate evaluation of
sums of the form > °_, cme,l)(mw) have been considered by a num-
ber of previous authors, see for example Yeung and Sphaier (1989) and
Thomas (1991).

The system of equations (6.12) can be used to derive a compact ex-
pression for ¢ near to the cylinders. We obtain, for a < r < 2d,

(r,0) Z Ay e (z HD (kr) — n(kr)) (6.13)

n=—00

and

2 & A6
)= —— - 6.14
9(a,60) = ——— n:Z_oo 2O k) (6.14)

which are of precisely the same form as (6.8) and (6.9) derived above for
the finite array case, though the unknown coetficients are the solutions
of a different system of equations.

One disadvantage of solving this particular problem in the manner
described above is that the nature of the far field is not immediately
apparent. The potential in (6.10) is expressed as an infinite sum of
outgoing circular waves, but as |z| — oo we know that the solution
must behave like a sum of plane waves. The reflection and transmission
coefficients, which determine the amplitudes of these far-field waves,
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are thus not readily evaluated from this formulation, but comparison of
(6.13) with (3.95) shows that the unknown coefficients A,, are related to
the unknowns a, and b, used in the multipole solution procedure, by

€ni™
an = T(An + A—’n)Z’n, (6.15)
by = i"H—An + A_p)Zy. (6.16)

Thus a,, and b, can be evaluated and R, and T, computed from (3.99)-
(3.101).

Bibliographical notes

The method of solution for finite arrays described in this section was
devised by Zaviska (1913) in the context of two-dimensional acoustics
and the system of equations (6.7) was derived by Row (1955) (using
a technique based on integral equations) for the problem in which the
boundary condition on the cylinders is ¢ = 0. The first application of
the method to the water wave problem was carried out by Spring and
Monkmeyer (1974) and the simplification leading to (6.8) was first noted
by Linton and Evans (1990). The same method was used by Kim (1993)
to solve the much more complicated radiation problem for an array of
cylinders in an arbitrary mode of motion.

An approximate solution to this problem was devised by Mclver and
Evans (1984a) based on the work of Simon (1982). If the cylinders are
assumed to be widely spaced it is possible to approximate the circular
waves that emanate from one cylinder as plane waves when they en-
counter the other cylinders. This ‘plane-wave approximation’ actually
produces accurate results even for closely-spaced cylinders, but does not
lead to significant savings in effort.

Zaviska’s method was applied to the case of normal incidence on an
infinite row of cylinders by von Ignatowsky (1914) and was extended to
oblique incidence in Twersky (1962). The normal incidence problem was
solved in the context of water waves by Spring and Monkmeyer (1975).

6.2 A general interaction theory

It is possible to derive an interaction theory for a much more general
class of structures than the bottom-mounted vertical circular cylinders
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considered in §6.1. Kagemoto and Yue (1986) showed how this could
be done for an array of structures in water of constant finite depth,
which have the property that they are ‘vertically separated’. The precise
meaning of this restriction will be made clear following (6.20) below,
but arrays containing structures with intersecting vertical projections
are certainly excluded. One structural geometry for which the method
of Kagemoto and Yue (1986) is suitable is the truncated cylinder that
has already been discussed in §2.5.2.

Unlike for the case of bottom-mounted wall-sided structures such as
the cylinder array in §6.1, the depth dependence cannot be factored
out from this less restrictive problem and so the general form for an
outgoing cylindrical wave emanating from the 5" structure is written
(see equation 2.62)

¢L(r;,05,2) = > ¥m(2) > Al Kn(kmrs)e™ (6.17)
m=0

n—=-—0oo

Here (r;,0;, z) are cylindrical polar coordinates, with origin O; fixed in
the undisturbed free surface, and axis r; = 0 passing through the 4th
structure. The distance between the local origins O; and O, is Rj, and
the relative position of the origins is determined by the angles «;, as
shown in Figure 6.1. The depth eigenfunctions ¥, (z) and the numbers
k. are defined in §2.1 and we note that kg = —ik, where k is the
positive solution to the dispersion relation ktanhkh = K. The m =0
terms in the expansion thus correspond (see equation A.5) to outgoing
cylindrical waves, whereas (see equation A.9) the terms with m > 1
represent evanescent modes, which decay exponentially away from the
structure.

For the vertical circular cylinders considered previously, an infinite
system of algebraic equations was derived which could be solved numer-
ically by truncation. Here we proceed slightly differently by truncating
the infinite summations at the outset. Thus we introduce truncation
parameters M and N,,, m =0,1,... ;M and write

N,
¢ (ry,05,2) = Zwm z) Z A K (k) €75 (6.18)

n=—Nn.,
= Aj \I'j(rj,Oj,z), (619)

where A; is the vector of coefficients A7, and ¥, is the vector of scat-

tered partlal cylindrical waves ¥ (2) Ky (kmr;) exp(inf;). In Kagemoto
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and Yue’s original treatment, the m = 0 terms were considered sepa-
rately, but this is unnecessary provided we always bear in mind that
Kn(kor) and I (kr) are related to HS" (kr) and J,(kr) through (A.5)
and (A.4), respectively. The precise ordering of the elements A7 ,, in the
vector A; and the partial waves ¥, (2) Kn(km7;) exp(ind;) in the vector
¥, is unimportant, provided of course that they are consistent.

It follows from Graf’s addition theorem (Gradshteyn and Ryzhik 1980,
eqn 8.530) that, for j,p=1,... ,N, 5 Ap,

K (kmry) €™017%0) = % " Kooy (K Ryp) i (kmrp) €70 ¥ 30,
l=—00

(6.20)

provided 1, < Rjp for all j. (The use of this result means that, in
addition to the requirement for non-overlapping vertical sections, which
is necessary for (6.17) to be valid in the immediate neighbourhood of
a structure, we must also have an array for which the escribed vertical
circular cylinder to each structure, centred at its respective origin, does
not enclose any other origin.) Thus, using a suitably truncated version
of (6.20), we can write

U =Tjp®y, (6.21)

where @, is a vector of ‘incident’ partial cylindrical waves of the form
Ym(2)In(kmrp) exp(infy) and the element of the matrix T'j, which re-
lates the scattered partial wave ¥, (2) Kn(km7;) exp(inf;) to the incident
partial wave ¥, (2)I;(knrp) exp(ilf,) is given by

[Tipl, = (—1) Kn_i(km Rjp) /"0 (6.22)

A combination of (6.19) and (6.21) shows that the potential ¢ can
be evaluated in terms of the wave field at structure p as

Ph(rp,0p,2) = A T, @, (6.23)

and so the total field incident upon structure p is

N
K=t +> ATT;;®, (6.24)
j=1
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where ¢} is the incident wave written in terms of (rp,6p,2z). From (6.3)
this is just

No
¢ = Ippo(2) Y (1) In(korp) €™ P = o], (6.25)

n=—Np

where a, is the vector of coefficients of the partial wave decomposition
of the incident wave about Oy, all of whose components are zero except
those corresponding to the propagating modes. Thus

N
xF = (a,? + Aj.’Tj,,) ®,. (6.26)

j=1

At this point in the development of the theory it is instructive to look
back at the special case of bottom-mounted cylinders considered in §6.1.
In that case (6.6) gives the total field in the vicinity of cylinder p and is
made up of three parts. The first term in the initial sum is just ¢¥ and the
final triple summation is equivalent to the sum in (6.26). The remaining
part is a general outgoing wave from cylinder p and the application of
the boundary condition on that cylinder leads to the system of equations
(6.7). This system relates the coefficients in the expansion of the wave
emanating from cylinder p to the coefficients in the expansion of the
incident field at p (as in equation 6.26) through the boundary condition
on cylinder p.

In general, it is possible to relate the incident and diffracted partial
waves at the p*® structure through the diffraction characteristics of that
structure in isolation. Thus there exist ‘diffraction transfer matrices’
By, p=1,...,N (often referred to as T-matrices, see Martin 1985b)
such that, from (6.26),

N T
A, =B, (ag +Y° A]Tij) : (6.27)

j=1
A

Specifically, the element [B,], is the amplitude of the n® partial wave
of the scattered potential due to a wave of mode [ incident on body p in
isolation.

In order to use this interaction theory therefore, we must first obtain
the elements of B,, p = 1,...,N, and then the unknown amplitudes
A, can be determined from the system of equations (6.27). For general
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geometries the matrices B, are fully populated, but for axisymmet-
ric structures they are sparse, which simplifies the procedure somewhat.
Thus for an array of axisymmetric structures we can consider, for each p,
the scattering of an incident field of the form 9., (2) I, (km7p) exp(infy),
m=0,1,... , M, n=0,+1,42,... ,+N,,, by the p** structure in iso-
lation, with a resulting diffracted field of the form

Z lmn le ) elfr.

The coefficients ¢, ,,, are the elements of B,.

For the bottom-mounted circular cylinders considered in §6.1 we only
need to consider the case m = 0 and the factor 19 (z) can be ignored. An
incident field of the form I, (ko7p) exp(inf,) results in a scattered field
P Kp(korp) exp(infp) and, from the results in §2.4.1 and bearing (A.4)
and (A.5) in mind, we have that for this case B, is diagonal and

2i
[Bplpn = b = —(=1)"Z%, (6.28)

L
where ZF = J,’l(kap)/H,(ll)'(kap). From (6.25) it follows that
lapl, = I(~ 1) e (6.29)
and a comparison of (6.4) and (6.17) shows that

[Ap), = %(—i)"“AﬁZ}i. (6.30)

The elements of T'j;, are given in (6.22) and if the values from (6.28)-
(6.30) are substituted into (6.27) we obtain the infinite system (6.7) as
before.

In general it is not possible to determine the elements of the matri-
ces B, analytically and instead they must be determined numerically,
perhaps using one of the many techniques described in this book. We
have only described the scattering problem here, but the extension to
radiation problems is straightforward.

Bibliographical notes

Multiple scattering problems have a long history and a vast associated
literature; some examples have already been discussed in §3.2. In the
context of electromagnetic waves a technique for solving such problems
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was described by Heaviside (1893). His approach was an iterative one in
which each structure diffracts waves towards the others, leading to fur-
ther scattered fields, each of which is then scattered by all the structures,
and so on. In the context of acoustics this procedure was pioneered by
Twersky (1952) and it has been used in water-wave problems by, for
example, Ohkusu (1974), Greenhow (1980), Duncan and Brown (1982),
Mavrakos and Koumoutsakos (1987), and Mavrakos (1991). This tech-
nique shares with the method described in this section the advantage
that the multiple scattering problem is solved in terms of the (assumed
known) solutions to the individual scattering problems, but it rapidly
becomes unmanageable as the number of scatterers increases.

The method of Kagemoto and Yue (1986) was used by Yilmaz and
Incecik (1998) and Yilmaz (1998) to solve the problems of scattering
and radiation by an array of truncated vertical circular cylinders, and it
has been modified to cope with very large arrays by Kashiwagi (1999)
and Chakrabarti (2000). Both these latter authors use the idea of di-
viding the array into identical modules, each of which contains many
structures, and computing the characteristics of an individual module
before combining the modules into the full array.

An approximate theory for the scattering and radiation of waves by
an array of structures that are each small relative to the wavelength was
developed in the context of wave-power devices by Kyllingstad (1984).

6.3 The wide-spacing approximation

Here a ‘wide-spacing approximation’ is developed for two-dimensional
water-wave problems involving a number of structures. The basis of the
approximation is to assume that the structures are sufficiently widely
spaced for evanescent modes to be neglected when calculating the inter-
actions between neighbouring structures. Martin (1985a) examined the
approximation in detail and concluded that it is based on the assump-
tions that the spacings between structures are large compared to both
the wavelength and the size of each structure. Thus, if L is a typical
spacing, a a typical size, and k the wavenumber, then the approximation
formally requires kL > 1 and L/a > 1.

Consider N, not necessarily identical, structures in the vicinity of
z =1L, n=1,2... , N. The hydrodynamic theory described in §1.3
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was developed for a single structure; the extension to N structures is
straightforward and may be considered as the addition of extra modes
of motion. In two dimensions there are three possible modes of motion
(heave, sway, and roll) for a single structure and hence there are a total
of 3N modes of motion for the array. The hydrodynamics of the array
can be described fully by consideration of the scattering problem, when
the structures are all held fixed, and a sequence of radiation problems
in which each structure in turn is forced to oscillate in a single mode of
motion while the remaining structures are held fixed. Both the scattering
and radiation problems will be included within a single formulation.

To construct the wide-spacing approximation the scattering and radi-
ation properties of the isolated individual structures are needed. When
structure n is forced to oscillate in mode pu then the corresponding po-
tential has the form

. hk(z + h)
np ~ A:t +ik(z—Ln) COs
Prpu ~ Ay cosh kh

(cf. equation 1.51). For a wave incident from the left, the reflection and
transmission coefficients for structure n are denoted by R,; and Ty,
respectively, and for a wave incident from the right by R,s and T..
From (1.61) it is known that T,,; = T,,2, but the distinction is retained
in the following so that the origin of terms can more easily be identified.

To facilitate the solution, the fluid region is divided into N + 1 regions
as follows:

z—L, — foo (6.31)

Region 1 : z € (—o0,Ly),
Region n : z € (Ly_1,L,), n=2,3,... N, (6.32)
Region N+1: z € (Ly,o0).

In region n, far enough from the structures for evanescent waves to be
negligible, the potential is written as a combination of plane waves so
that

coshk(z + h)
coshkh

n=1,2,...,N+1. (6.33)

b [An ek@=La) L B e—ik(x—Ln):|

It is assumed that a wave of amplitude A is incident from the left of the
array (to obtain a radiation problem A is set to zero) and no wave is
incident from the right; thus

4
Ay =22 ekl apd Byy, =0 (6.34)
w
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(cf. equation 1.17). In addition it is assumed that at most only structure
m oscillates in a single mode of motion to produce outgoing waves as
in (6.31); by the linearity of the problem combinations of motions are
obtained by superposition.

In region n + 1 the representation of the potential is

coshk(z + h)

cosh kh
coshk(z+ h)

coshkh ~’
(6.35)

b~ [An+1 eik(@—Lni1) B4 e—ik(a:—L,H_l):I

_ [An+1 e—ikAn gik(z—Ln) 4By ikon e—ik(a:—Ln):I

where A, = L,,+1 — L,. Note that L, does not correspond to the po-
sition of any structure, but it is mathematically convenient to include it
here. The wave propagating away from structure n in region n+ 1 arises
from the transmission of the wave propagating toward the structure in
region n, the reflection of the wave propagating toward the structure in
region n + 1, and the wave radiated away from the structure in region
n + 1; thus

An+1 em kAN — Th1dAn + Rn2Bn+1 + 6mnA7-t,“ (636)

where 0, is the Kronecker delta. Similarly, the wave propagating away
from structure n in region n arises from the transmission of the wave
propagating toward the structure in region n + 1, the reflection of the
wave propagating toward the structure in region n, and the wave radi-
ated away from the structure in region n; thus

Bp = Tn2Bny1 €% + Rn1An + 6mn A, (6.37)
1

In matrix notation, the above equations are
e—ikAn _an eikAn An+1
0 Tpyp €1F8n Bnia

o Ta O\ (An Af,
_ (_ o 1) ( Bn) G (_ W) G

or, after inversion of the first matrix,

An+1 _ A’n ! A’r—t”
() s () i (52). o0

np
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where the so-called scattering matrix

1 [Tann2 - RannQ] elkAn Rno elkAn

k- I
and
o 1 T, eikdn B, eikan 641
™ Thoo 0 o—ikA, '
Note that
det S, = % =1 (6.42)
by virtue of (1.61).
Successive applications of (6.39) lead to
() ope () rres (). oo

where
Py=1I,, P,=SnNySNn-1.-..SN-nt1 (n=1,2,... N), (6.44)

and I, denotes the 2 x 2 identity matrix. Given the scattering and
radiation properties of an individual structure, equation (6.43) can be
solved to determine B; and An4; which are proportional to the ampli-
tudes of the waves radiated to infinity on either side of the array. The
wave amplitudes in any of the regions may then be found from (6.39)
and hence the hydrodynamic forces on any of the structures calculated.
For structure n in isolation, let X,df” be the exciting force in direction
¢ when the structure is held fixed in a wave of unit amplitude incident
from z = £o0, and let fy, be the force due to the forced oscillations of
the structure in mode p in the absence of any incident wave (cf. equa-
tions 1.45 and 1.46). The total hydrodynamic force on the structure
is

w , 5w 5
Fn# = ?A"Xn# + ?Bn+1X:—u + 6mnfn#' (6'45)
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6.3.1 Scattering by equally-spaced identical structures

To illustrate further the application of the wide-spacing approximation
the scattering by N identical, equally-spaced structures will be exam-
ined in more detail. The subscript n is dropped in the reflection and
transmission coefficients and the spacing between structures is denoted
by L. The scattering matrix (6.40) then becomes

1 [T1T2 — R1R2] eikl' Rz ei“'

S=— 6.46
Ty _R e kL e—ikL ( )

or, in terms of the modulus and phase introduced in equation (1.64),
1 ei(6+kL) |R|(G2=0+kL) (g g1
S = [ (_lRlei(sl—s—kL) e—i(6+kL) ) = (321 322) . (6.47)

where (1.62) has been used to simplify one of the components of S. In
this scattering problem, in addition to (6.34),
A A
By= 925 e * and Ay, = —iT ekLn  (6.48)
w

where ﬁN and TN are, respectively, the reflection and transmission co-
efficients for the complete array. With these values (6.43) reduces to

fN elk(Ln+L) N etk
( 0 =S RN e—ikLl (649)
and if
tin t
SN _ [t b2 6.50
(tzl 22 (6:50)

is known then it follows that

~ t : ~ : t1ot
By = —2Lelkly  ang Ty = ek(Li—Ln—L) (tn _ b2 21) . (6.51)
253 ta2

The matrix power SV may be evaluated numerically, but it is alsc
possible to obtain an explicit expression by using a result from elemen-
tary matrix algebra that gives the power in terms of the eigenvalues
and eigenvectors of the matrix (Edwards and Penney 1988, §6.3). The
eigenvalues of S are e*® where

cos(6 + kL)

cosh o
||

F(kL) (6.52)
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and f(kL) is real for all kL. If |f(kL)| < 1 then
a=icos™! f(kL) (6.53)
is pure imaginary, while if | f(kL)| > 1 then
o = cosh™ |f(kL)| + ipm, (6.54)

where p is an even (odd) integer when f(kL) is positive (negative). After
some manipulation it is found that the elements of SV are given by
t11 = (s11sinh Na — sinh(N — 1)a)/sinh ¢,
t12 = s12sinh Na/sinh o,
12 12' / i ‘ (6.55)
to; = —sinh Na(e® —s11)(e™% —s11)/(s12sinh @),
to2 = (sinh(N + 1)a — 313 sinh Na)/sinh ¢,
where there are the restrictions that |R| # 0 and |T'| # 0 for the partic-
ular kL. Evans (1990) gives an equivalent form for 8" which he verifies
by induction. From (6.51) it then follows that
~ elk(lai—Ln—L) ginh o
N smh(N + 1)a — 811 sinh NC!'

(6.56)

When |f(kL)| > 1, so that o has a non-zero real part, then Ty — 0 as
N — o0 so that there are ranges of frequency for which transmission is
blocked by the array. This is discussed further in §6.3.2.

Figure 6.3 compares the wide-spacing approximation with an accurate
solution for two surface-piercing vertical barriers. Both the results for
a single vertical barrier, required for the wide-spacing approximation,
and the results for two barriers were calculated by the method of Porter
and Evans (1995). The barriers are submerged to a depth a in water of
depth h and are a distance L apart. The figure shows the modulus of the
reflection coefficient |R| as a function of the wavenumber kL for a/h =
0.5 and L/a = 2. An assumption of the wide-spacing approximation is
that kL > 1, but the accuracy of the approximation is good even for
modest kL. A second assumption is that L/a > 1 and it can be seen
that for L/a = 2 there is little deviation from the accurate solution; for
L/a = 4 (not shown) the two methods are graphically indistinguishable.

6.3.2 Wave propagation through a periodic array

The wide-spacing approximation may be used to investigate the prop-
agation of waves through a periodic array of scatterers that extends to
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FIGURE 6.3

The reflection coefficient for two vertical barriers calculated by
the wide-spacing approximation (————). Comparison is made
with an accurate solution (———) for two vertical barriers
and the solution for a single vertical barrier with the same
submergence (— —-—-— ).

infinity in both horizontal directions. Suppose that there are identical
scatterers at & = nL for all integers n. Solutions are sought in the form

é(z, 2) = €9 Yz, 2), (6.57)

where the complex wave number ¢ is to be found, and 1 has the same
periodicity as the array so that

Y(z+ L, z) =¢(z,2). (6.58)

Such solutions are often called Bloch waves and the problem is referred
to here as the Bloch problem. The above is equivalent to looking for
solutions in the form

bz + L, z) = e ¢(z, z) (6.59)

so that moving one period through the array scales the potential by
a factor Tg = €'7% which is sometimes called the Bloch transmission
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coefficient. The real part of ¢ measures the change in phase as the wave
propagates. If ¢ has a non-zero imaginary part then there is also a
change in amplitude.

To determine the possible forms of ¢ it is sufficient to consider a single
period of length L and thus attention is restricted to € [-L/2,L/2].
Equation (6.59) is equivalent to the two independent periodicity condi-
tions

$(L/2,2) = €t §(=L/2,2)

0¢ iqr, 09

——(L/2,z) = €9 —Z(-L/2,z).
P (L2, =t (L2, 2)
Under the assumptions of the wide-spacing approximation, in the vicin-
ity of @ = —L/2 the potential

(6.60)

: i hk(z + h)
~ (A ikx B ikx COS— 6.61
o (Are™ 4B ™) — o (6.:61)
while in the vicinity of x = —L/2
: i hk(z + h)
~ (Ageh® { Byeike) EIEET ) 6.62
¢ (A BT = T (6.62)

Similar arguments to those used to arrive at equations (6.36) and (6.37)
lead to

As =T1Ay + R3Bs and By =T13B2 + R A, (663)
while the Bloch conditions (6.60) yield
Ay = A @R and B, = Byellathl (6.64)

Elimination of As and B gives

A A
S (Bl) =1T1g (Bl) (6.65)
so that the Bloch transmission coefficient Tg is given by the eigenvalues
of the scattering matrix S given in (6.46). Thus

Tp = et (6.66)

where « is given by (6.52). When « is pure imaginary this corresponds
to waves that propagate through the array without change of amplitude
and this occurs for ranges of frequency known as passing bands. When
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FIGURE 6.4

The transmission coefficient |T'| vs. kL for a finite array of ver-
tical barriers as calculated by the wide-spacing approximation
(— — —-) and the Bloch solution (——).

« has a non-zero real part, the two possible solutions have an amplitude
that either grows or decays as the wave propagates; this occurs for ranges
of frequency known as stopping bands.

The Bloch transmission coefficient may be used to obtain an estimate
of the transmission through a finite array. In Figure 6.4 a comparison
for the case of N = 5 barriers is made between the transmission coef-
ficient [Ty |, as calculated from the wide-spacing approximation (6.56),
and |Tg|" where the Bloch solution corresponding to decaying waves is
selected. The geometrical parameters are the same as for Figure 6.3,
The passing bands for the Bloch solution correspond to |Tg| = 1. For
most of the stopping bands the transmission coefficient is very close to
zero. The transmission coefficient |T5| for five barriers broadly follows
the Bloch solution and, in particular, the Bloch solution predicts very
well when transmission is blocked by the finite array. As noted after
(6.56), as N — oo in the finite array then Ty — 0 for exactly the values
of kL which correspond to stopping bands in the Bloch problem.
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Bibliographical notes

The extension of many of the the reciprocity relations discussed in §1.4
to an array of structures is given by Srokosz and Evans (1979) for two
dimensions and by Evans (1980) and Falnes (1980) for three dimensions.

The wide-spacing approximation for the scattering of waves by two
fixed obstacles is described by Newman (1965). The extension to include
both scattering and radiation problems for two structures was made by
Srokosz and Evans (1979) in the context of wave-power devices. A rather
thorough investigation of the scattering problem for an arbitrary number
of identical, equally-spaced obstacles is given by Evans (1990) (the latter
work also discusses the application of the wide-spacing approximation
to sloshing problems). Similar formulations arise in other contexts, for
instance the propagation of water waves over ripples in the sea bed (see,
for example, Porter and Chamberlain 1997).

A wide-spacing approximation method for three-dimensional water-
wave problems was developed by Simon (1982) and refined by Mclver
and Evans (1984a), who solved the problem described in §6.1 using the
technique. This so-called ‘plane-wave approximation’ was also used by
Abul-Azm and Williams (1989) to solve the scattering problem for an
array of truncated circular cylinders, but for three-dimensional problems
the approximate technique seems to have little or no computational ad-
vantage over the general formulations described in §§6.1-6.2.

The Bloch wave problem is well known in solid-state physics and
Ashcroft and Mermin (1976) give a detailed account of the formalism
that has been developed. In the context of water waves, Chou (1998)
applied the theory to wave interaction with surface scatterers. The wide-
spacing approximation was applied to the Bloch problem by Heckl (1992)
in the context of sound propagation through tube bundles.

6.4 Diffraction by multiple gratings

Here the wide-spacing approximation is developed further to include
the scattering of waves by a finite number of diffraction gratings. An in-
dividual grating consists of an infinite row of identical vertical cylinders
lying along a line of constant x and with a reference axis within each
cylinder a horizontal distance 2d from its nearest neighbour in the row.
An example of such a grating was considered in §3.2.2 where the geome-
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try is an infinite row of vertical circular cylinders. The depth dependence
is removed in the manner described in §2.4 so that all potentials satisfy
the Helmholtz equation (2.74) in the z,y-plane.

First of all, in §6.4.1 a description of the diffraction of waves by a single
grating is given and this is followed in §6.4.2 by a derivation of some
relations between involving the reflection and transmission matrices for
a diffraction grating. The application of the wide-spacing approximation
to multiple diffraction gratings is given in §6.4.3.

6.4.1 A single grating

Before considering multiple gratings, the properties of a single grating
are detailed using a modification of the notation used in §3.2.2. Suppose
that this single grating lies along x = 0. A wave with potential

¢’I — elox+ity _ eikrcos(9—9q) (667)

is incident from the left at an angle 6, to the z-axis, where k is the
wavenumber,

a=kcost,, £=ksinf,, (6.68)

and (r, ) are polar coordinates defined by (z,y) = (r cos 8, rsin §). This
wave will be diffracted to obtain a reflected field

¢p ~ z R,g;) e ikreos(048) a5 2 — —00 (6.69)
p=—u

and a transmitted field

v

¢p~ Y T e*reos=0) a5 g oo, (6.70)
p=—p
where
sin 6, = sin 6, + pr/kd, (6.71)
p=[(1+sinfy)kd/n], v=I[(1--sinb)kd/n], (6.72)

and [] indicates that the integer part should be taken. The set of angles
defined by (6.71) is closed in the sense that the far-field forms (6.69)-
(6.70) are valid for any incident wave direction 64, with integer ¢ €

[_u'v V]'
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For a wave incident from the right with potential

¢I — e lax+ily _ e—ikrcos(9+0q) (673)

the reflected field is

¢p~ > REeHreos@=0) a5 g o0 (6.74)

p=—p

and the transmitted field is

ép ~ Z Tq(f,) eikrcos(0+0:) a5 0. (6.75)

p=—p

If there is symmetry of the grating about = 0 then R,(,f,) = R((,;,) and
T = T for all p and q.

In the generalization of the theory to multiple gratings, an incident
wave made up of all components allowed by (6.71)—(6.72) must be al-
lowed for. To this end, it is convenient to introduce some further nota-
tion. Let u and v be the vectors with components

ik cos(0—64) —ikr cos(6+64)
7

ug=e and v, =e q=—u,...,v, (6.76)

respectively. Thus, the components of u are rightward propagating
waves and the components of v are leftward propagating waves. Suppose
a wave with potential

¢ = Z aqug =a’u (6.77)

q=—H

is incident upon the grating from the left, where the components of @
are assumed to be known, then from (6.69)-(6.70) the total retlected
field

¢p ~ Z aqBPv, =a"TRMv as 2 — -0 (6.78)
pa=—p
and the total transmitted field

dp ~ Z aqTézl,)up =aTTWu as = — . (6.79)

p,q=—p
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Here R® and T™ are the matrices with components Rg? and Tq(,i,)
respectively. Similarly, for an incident wave

hr= ) agug=aTv (6.80)

=—p
from the right, (6.74)—(6.75) give the reflected field

)~ Z aqR,gi)up =aTRPu as z— (6.81)

p,g=—p

and the transmitted field

b~ Z aqT,g)vp =aTT®v as ¢ — —oo. (6.82)
Pa=—p

6.4.2 Reciprocity relations

Here various relations are derived that involve the amplitudes of the
reflected and transmitted waves in a diffraction problem for a grating.
The derivations use applications of Green’s theorem in a similar way to
those employed in §1.4.

Consider the two scattering potentials ¢;(z,y), ¢ = 1, 2 satisfying

c?u + d?v, T — —00,
Blay)~d (6:3)
e;u+ f;v, T — oo

By virtue of the y dependence in the wave components, such potentials
satisfy the conditions

¢i(z,d) = e*? ¢, (z, —d) (6.84)
and
%Q; (z,d) = ¥ %(m, —d); (6.85)

see equations (3.75) and (3.76).

Reciprocity relations are obtained by applications of Green’s theorem
around a rectangular contour consisting of the lines z = £X, |y| < d,
and the lines y = +d, |z|] < X, where X > 0. In general, for the
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contribution from y = d to cancel that from y = —d, ¢; and ¢, (or ¢,
and ¢2) must be used in Green’s theorem and hence

py - Oy _
-/F (d)l% - ¢2%) ds = 0, (686)

where I consists of the lines at z = £X. In the limit X — o0, applica-
tion of the far-field forms (6.83) then gives

cTWe, —dTwd, = eTWe, — fTWTF,, (6.87)

where W is the diagonal matrix with non-zero entries cosf,, ¢ =
—M, ... ,v, and the over bar denotes complex conjugate.

Define left and right scattering potentials ¢y, and ¢gr, respectively,
where

aT(u+ RWv), & — —oo,
éL ~ (6.88)
aTTWa, T — 00
and
aTT@v, T — —00,
PR ~ (6.89)
aT(v+ RPu), z— .

The forms (6.88)—(6.89) effectively define the wave amplitudes in (6.83)
that are appropriate to ¢1, and ¢r. Application of (6.87) gives the
following:

(i) ¢1=¢2=¢r=
ROWRD + TOWTO =W, (6.90)
(i) ¢1 = ¢2 =¢r =
ROWR® + TOWT®" =W, (6.91)
(iii) ¢1 = @1, #2 = ¢r =
ROWT®" y TOWR®” =0, (6.92)
(iv) ¢1=or, ¢2 = ¢ =
ROWTW™ L TOWRM™ =0, (6.93)
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Here + denotes conjugate transpose. A reduction of equations (6.90)—
(6.93) for the case of a symmetric grating was obtained by Twersky
(1962). Equations (6.90)—(6.91) express conservation of energy flux and
for a symmetric grating are equivalent to (3.103). The above may be
written in block matrix form as

RO T\ (W 0 (RV T®" W 0
(T(2) R(2)) (0 W) (T(1)* R(g)*) = (0 W) . (6.94)
For some special cases of the boundary conditions (6.84)—(6.85) it is
possible to apply Green’s theorem to a pair of functions ¢;, i = 1,2, for
which the contributions to the boundary integral from y = +d vanish
individually. For example, this happens if either homogeneous Neumann

or Dirichlet conditions are applied on y = +d to obtain a wave guide
problem. In these cases, in addition to (6.86), the relation

02 O .
‘/F <¢1% - 2%) ds=0 (695)

holds. Application of the far-field forms (6.83) gives
cTWey —dTWd; =eTWey — fFTWF, (6.96)
and then (6.96) yields the following:
(i) ¢1=¢2=¢L =

wWROT = ROW, (6.97)
(i) ¢1 = ¢2 = ¢r =

wR®T = ROw, (6.98)
(iii) ¢1 =L, p2 = dr =

wr@T = TOW, (6.99)
(iv) ¢1 = ¢r, 2 = ¢L =

wr®T - 7w, (6.100)
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Further (6.97)—(6.100) may be used to simplify (6.90)—(6.93) to

RORO 4 7OTO _ (6.101)
RORD L 77O _ (6.102)
ROT® L TR _ g (6.103)
ROTO 7@ RD _ g (6.104)

where I is the identity matrix. The above may be written in block

matrix form as
rY ) rY 7@ I0
(T(2> R(2>) TO gD ) — (0 I)' (6.105)
6.4.3 Multiple gratings

The development of a wide-spacing approximation for diffraction of
waves by multiple gratings is similar to that used in §6.3 when there
is a single propagating mode. Consider N gratings in the vicinity of
x=L,,n=1,2,... , N. For simplicity, it is assumed that the gratings
are equally spaced, so that

Lny1—Lp=L, n=12,...,N—1, (6.106)

and that for grating n there is a line of symmetry at = L,,. With this
assumption the reflection and transmission matrices for grating n satisfy

RP-=RP=R, and TV =TP =T, (6.107)
The fluid region is divided up according to the scheme in (6.32). It is
convenient to introduce vectors u,, and v,, with components
ik[(z— L, ) cos 0g+y sin 8,] ik[—(z—Ln) cos 0,4y sin 8]

(6.108)

[un], =€ [vn], =€

and then
u=Dyu, and v=D,'v,, (6.109)

where D,, is the diagonal matrix with non-zero elements {eikl‘" cosby g =

—H, ... ,v} and the components of u and v are given in equation (6.76).
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In region n, far enough from the gratings for evanescent waves to be
negligible, the potential is written

¢~ afu, +blv,, (6.110)

where a,, and b,, are unknown at this stage. In region n + 1, (6.109) is
used to express the potential as

¢~al juni1+ bz+lvn+1 =al, D 'u, + bZHD'vn, (6.111)
where D is the diagonal matrix with non-zero elements {eikl‘ cosbly g —
—M,... ,v}. The waves propagating to the right in region n + 1 are due
to the transmission of the waves propagating to the right in region n
and the reflection of the waves propagating to the left in region n + 1,
hence

al D' =alT, +bl,,DR,. (6.112)

Similarly, the waves propagating to the left in region n are due to the
transmission of the waves propagating to the left in region n+ 1 and the
reflection of the waves propagating to the right in region n, hence

bf =l DT, +alR,. (6.113)

A similar method of solution to that adopted in §6.3 may be followed,
but Mulholland and Heckl (1994) suggest a more eflective scheme for the
calculation of the overall reflection and transmission matrices as follows.

First of all consider the diffraction by two gratings and in particular
the two pairs of equations obtained by setting n = 1,2 in (6.112)—(6.113).
For a prescribed wave incident from the left a; is known, b3 = 0 and
b; and a3 describe the overall reflection and transmission by the pair of
gratings. Elimination of as and bs yields

bl =aTR and aof =aTTDD, (6.114)
where
R=R,+T,(I-DR,DR;)"'DR,DT; (6.115)
and
T =T,(I - DR,DR,)"'DT,D™’ (6.116)
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are, respectively, the reflection and transmission matrices for the pair
of gratings. The particular form of the transmission matrix T is chosen
because

aluz3 =alD'D 'u; = aTTu,. (6.117)

An iterative algorithm for N gratings can be developed from the ob-
servation that if the reflection and transmission matrices are known for
n gratings, then these can be regarded as a single grating and the matri-
ces for n + 1 gratings found from an application of (6.115)-(6.116). The
algorithm given by Mulholland and Heckl (1994) is as follows:

(i) R=Rn,T =Th;
(if) forn =N —-1,1,—-1do

F=DTD',G=DRD,K=(I-GR,)"!
R=R,+T.KGT,,T =T,.KF.

The algorithm begins by setting the overall reflection and transmission
matrices, R and T, respectively, to the reflection and transmission ma-
trices for grating N. In the first pass through the loop (ii), the results
for two gratings are used to combine the matrices for_grating N with
those for grating N — 1 to obtain updated values for R and T'. In the
next pass through the loop, gratings N and N — 1 are regarded as a
single entity and combined with grating N — 2, again using the results
for two gratings. The procedure continues until all N gratings have been
accounted for.

Computations for diffraction by multiple gratings are presented in Fig-
ure 6.5. The calculations are for normal incidence (6, = 0) on gratings
of circular cylinders and show how the quantity

Er= Y [Tyl*cosb,, (6.118)

p=—p

which is proportional to the transmitted wave energy, varies with the
number of rows N in the complete grating. For the values of kd chosen
there are three propagation directions (see equation 6.72). It is inter-
esting to note the relatively large variations in Er for kd = 1.257,1.57
compared with kd = 1.757 for which Er varies little with N.

© 2001 By CRC Press LLC



0.6 1 1 1
0.4+
Er

0.2

0 T T T

0 5 10 15 20
N
FIGURE 6.5

Transmitted energy FEr for normal wave incidence vs. number
of gratings of circular cylinders N; radius a = 0.5d, spacing
L =2d,kd=1257 (—-— ), kd = 1.57r (——), kd = 1.75m

—=9-

Bibliographical notes
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Chapter 7

Wave interaction with small
objects

7.1 Introduction

Here techniques are described for obtaining approximations to the
solutions of problems in which a wave interacts with an object whose
characteristic size is much smaller than the wavelength. The main tech-
nique used is the method of matched asymptotic expansions which has
been used in a great variety of problems with considerable success. Three
problems are chosen here to highlight different applications.

In §7.2 the problem of wave diffraction by a gap in a breakwater, al-
ready investigated in §4.7 and §5.1.2, is examined in some detail and
used to illuminate some of the main ideas of the method of matched
asymptotic expansions. The problem is first solved using an informal
technique that does not rely on the application of a formal matching
principle. This informal method works well in the gap problem, but is
known to give incorrect results in some problems. To avoid this possibil-
ity it is advisable to use a formal matching principle and this is described
here and then used to solve the gap problem.

The method of matched asymptotic expansions is versatile and can
yield results that apply to classes of geometry rather than just to spe-
cific geometries. For example, in §7.3 water-wave scattering by a verti-
cal cylinder of uniform, but arbitrary, cross-section is investigated (this
problem is treated by the method of integral equations in §4.2.1). The
approximate solution obtained here is expressed in terms of the dipole
response of the cross-section to a uniform flow which is easily calculated
for a number of specific geometries.
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FIGURE 7.1
Sketch of the inner and outer regions.

Both of the problems treated in §§7.2-7.3 have interpretations in the
scattering of acoustic and electromagnetic waves as well as water waves.
In the latter case, the free surface is removed from the problem in an
elementary way. In the third problem of wave radiation by a heaving
horizontal cylinder, described in §7.4, this cannot be done and the free
surface must be incorporated into the solution procedure.

In §7.5 a fourth problem is considered in which the aim is to find the
natural frequencies of oscillation of a fluid in a container that contains a
number of structures. Eigenvalue problems of this type can, in principle,
be solved by the method of matched asymptotic expansions, but with
considerable difficulty. A different technique is described that allows
asymptotic results for eigenvalue problems involving small obstacles to
be obtained in a quite straightforward way.

The bibliographical notes for this chapter are collected together at the
end of the chapter.

7.2 Diffraction by a breakwater

To introduce some of the main ideas of the method of matched asymp-
totic expansions, the problem of wave scattering by a vertical breakwater
with a gap is considered. The breakwater lies along the z-axis with a
gap occupying |z| < a and a plane wave with wavenumber % is incident
at an angle 3 to the z-axis. The full details of the problem formulation
are given in §4.7 and the geometry is sketched in Figure 1.1. The po-
tential must satisfy the Helmholtz equation and a radiation condition,
and have zero normal derivative on the breakwater.
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There are two length scales in the problem, namely a and k~! (=
wavelength/27). An approximation to the solution will be obtained
under the assumption that the wavelength of the incident waves is sig-
nificantly greater than the width of the gap so that ka < 1. To facilitate
the solution to the problem the flow domain is thought of as being di-
vided into two overlapping regions. These are an inner region within
distances r = (z2 + y?)'/2 <« k= of the aperture and an outer region
at distances r >> a (see Figure 7.1). Separate inner and outer solutions
are constructed within each of the regions. Because the full boundary
conditions for the problem cannot be applied in both regions, the inner
and outer solutions will each contain a number of unknown constants.
These constants are determined by matching appropriate asymptotic
forms in the overlap region. The inner expansion (as kr — 0) of the
outer solution is matched term by term with the outer expansion (as
r/a — o0) of the inner solution according to a well defined ‘matching
principle’. We begin with an informal approach to the problem in §7.2.1
before describing the formal matching principle in §7.2.2.

7.2.1 Informal solution to the breakwater-gap problem

For low-frequency waves with wavelength significantly greater than
the gap width, so that ka < 1, an observer in the far field will view
the effects of the gap as a point disturbance situated on a rigid wall.
In particular, the incident wave will drive an oscillatory flow through
the gap so that in the far field the disturbance appears as a point wave
source at the origin. Thus, the forms of the total potential equivalent to
equation (4.112) are the outer solutions

¢r(x,y) = 2cos(kysin §) e~ ke cosh —I—mH(gl)(kT), y>0, (7.1)

and
or(z,y) = —mH(gl)(kr), y <0, (7.2)
where H(gl)(kr) is the source solution of the Helmholtz equation and m
is the source strength which is to be found. The form for y < 0 follows

from equation (4.124). The inner expansion of the outer solution in
y>0is

o
¢T~2+m{1+—1<7+1nk—;)} as kr —0 (7.3)
Vis
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and in y < 0 is

¢T~—m{1+%<”y+ln%)} as kr — 0, (7.4)

where the asymptotic form of the Hankel function in (A.17) has been
used.

Within the vicinity of the gap the length-scale of the fluid motion is
the gap width 2a and so, because of the assumption ka < 1, variations in
the fluid motion on the scale of the wavelength cannot be observed and it
is appropriate to approximate the field equation by the two-dimensional
Laplace equation. The leading-order approximation to the inner solution
is therefore constructed from harmonic functions that have zero normal
derivative on the surface of the breakwater. Such functions may be
determined with the aid of a conformal mapping. The fluid domain in
the physical t = (z + jy)/a plane is mapped onto the upper half of the
complex 7 plane according to the transformation

t=31(r+77"), (7.5)

where the ends of the gap are mapped to 7 = 1. In this mapping
the square root of minus one is denoted by j to distinguish it from i
that arises from the time variation (see equation 4.110). As [t| — oo in
Irnjt > 0,

o L -3
T—2t—2t+0(t ) (7.6)

and as [t| — oo in Im;t < 0,

1
==+0(t?). 7.7
=2+ 0 () &
Under the mapping, the lines Im;7 = 0, 7 /= 0, correspond to the
breakwater so that the most general solution that satisfies the condition
of no flow through the breakwater is

¢t =QIn|r|+ > CpRe7", (7.8)

where Q and each C, are real constants. In the complex 7 plane, the
origin and the point at infinity in the upper half-plane correspond to
the points at infinity in the lower and upper halves of the t plane, hence
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singularities at these points are permissible in the inner solution. To
match with the inner forms of the outer solution in (7.3)—(7.4) which
contain constants and logarithms, the general solution is restricted to
the form

¢r=QIn|r|+ Cy (7.9)

which, in view of (7.6)—(7.7) has an outer expansion,
2
¢)TNan;T+CO as 2—»00 (7.10)
iny > 0 and
2r T
¢pr~—-Qln—+Cy as — — o0 (7.11)
a a

in y < 0. The inner expansions of the outer solution (7.3)—(7.4) and
the outer expansions of the inner solution (7.10)—(7.11) are matched by
equating the coefficients of Inr and the constants, and this results in
2i 2i k
0= i Gomrem i ()}

T
for the matching in y > 0, and

_ 2im ka

9
Q=—— and C’oz—m{l-l-—l(fﬁ—ln—)} (7.13)
T s 4
for the matching in y < 0. Hence

m:—[1+§<7+1n%)]_1 (7.14)

and the outer solution in equations (7.1)—(7.2) is fully determined. From
(A.12) and (4.129) the diffraction coefficient G(¢, ) = 2im which is inde-
pendent of both the angle of incidence 8 and the angle of observation 6.

7.2.2 A formal matching principle

The above informal approach to the method of matched asymptotic
expansions has been used with success in a number of different con-
texts. However, in some problems erroneous results can be obtained if
the method is applied without sufficient care and therefore it is always
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advisable to apply a formal matching principle. Here only a brief de-
scription of a suitable matching principle is given; for further background
the reader is recommended to consult Crighton et al. (1992, Chapter 6).

Suppose that a problem depends on the parameter ¢ and inner and
outer solutions are to be sought in the limit ¢ — 0 (in §7.2.1, € = ka).
Further, suppose for simplicity that the problem involves a single coordi-
nate r and in the inner region this is scaled to give a non-dimensional co-
ordinate p while in the outer region it is scaled to give a non-dimensional
coordinate R, where R = ep. Note that when p is order unity then, by
the assumption on €, R <« 1, reflecting the presence of two disparate
length scales.

A typical outer solution up to terms in €™ may have the form

xo(R) + ex1(R) + ... + €™xm(R) = x'™(R; ), (7.15)

say. In this outer solution put R = ep and expand up to terms in €", say,
to obtain an inner expansion of the outer solution which is denoted by
x!™™. The change of variables is a device to examine the limit R — 0.
Similarly, a typical inner solution up to terms in €® may have the form

Yo(p) + ep1(p) + ... + € Ynlp) = ¥ ™ (p;€). (7.16)

In this inner solution put p = R/e and expand up to terms in €™ to
obtain an outer expansion of the inner solution which is denoted by
(™™ Now, the change of variables is a device to examine the limit
p — 0. The formal matching principle asserts that

x (™) = gpmm), (7.17)

This is achieved by writing both quantities in terms of the same set of
coordinates, either inner or outer, and equating like terms involving the
same gauge function. For example, if

1 4, A
xED = e 4 (f i R_§> (7.18)
and
P = G2 (T T (7.19)
“rR TR 2R '

then the matching principle x>V = (1,2 requires

Clz]., A1=7I', A2=7I'/2. (720)
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The above contains only integer powers of the small parameter €. In
general, m and n may be rational numbers and the series may also
contain non-algebraic functions of €. In the following examples gauge
functions involving Ine appear. When truncating a series in € and ap-
plying the matching principle, all terms involving logarithms of € must
be grouped with other terms according to the power of € involved. For
example, in a wave scattering problem a typical outer solution may have
the form

x® = & { 4B (R) + A H{V (R) cos )

- {AOH(”(em + A HY (ep) cosf)}
{Ao [1 += (7 +In %) ?Ine) ] (721

+ Ay [——+O elne)

+

cosO} as €—0.

Hence

2i
(1) = 24, [-=— 0 7.22
X €A, [ ﬂep] cos ( )

and

% ep %
(2,2) _ 2 -
X € {AO [1 + - (7 +1In 5 )] + A [ wep] cos0}, (7.23)

where terms in €2 Ine have been grouped together with terms in 2. A
typical inner solution in such a problem may have an outer expansion

icosf

R
P32 = lne Cq + € { +Ci+4in ?} . (7.24)

To apply the matching principle x(22 = (32 v(22) is written in terms
of the outer coordinates to get

2i R 2i
(2,2) _ 2 1+ = = A | === 95
X € {AO[ + <7+ln2>]+ 1[ R] cos0} (7 )

(the matching can be carried out equally well with both x(%2) and (22
written in terms of the inner coordinates). The application of the match-
ing principle is illustrated in 'lable 7.1 and results in

Ag = —mif4, Ay = —7/2, Co=1/2, C; = (y—In2—7i/2)/2. (7.26)
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gauge function  form x 2 P22

lne constant 0 Co — %
€ constant Ao [1+ 2i(y — In2) /7] Ch
e InR Ag2i/m 1
€2 cosf/R Ay [-2i/7] i

Table 7.1 Application of the matching principle x(22) = ¢(2:2),

7.2.3 Formal solution to the breakwater-gap problem

For the solution of the breakwater-gap problem by a formal applica-
tion of the method of matched asymptotic expansions it is convenient
to decompose the problem into two sub-problems, one symmetric in
and one antisymmetric in z. This is done because the natural gauge
functions associated with each problem are different. Thus, the total
potential is written

¢T(m7y) = ¢S(377 y) + ¢>A(.’17,y) (727)

where
¢s(—z,y) = ¢s(z,y) and ¢a(—z,y) = —Pa(z,y). (7.28)

The symmetric problem

The symmetric problem will be considered first as this is equivalent to
the informal solution already obtained in §7.2.1. With the assumption
that € = ka <« 1 and the appearance of source terms in the solution
(see equation 7.8), the set of gauge functions in this problem can be
expected to involve logarithms of €. However, the informal solution of
§7.2.1 gives a diffracted field term that is symmetric in z and for which
the denominator contains the factor

ka mi —ikae”
In— ——=1 = .
n-— +y 5 =In ( 1 ) Inp (7.29)

say. A formal application of the method of matched asymptotic expan-
sions leads to terms in inverse powers of Ine that arise directly from
the expansion in € of [In u]~!. The solution procedure can be simplified
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considerably by adopting i = o€ as the expansion parameter, where
o=—ie" /4.

The Huid motions in the outer region take place on the scale of the
wavelength of the incident waves and hence suitable non-dimensional
coordinates are

X=kz, Y=ky, R=kr (7.30)
and it is convenient to solve for the scaled outer potential

x(X,Y) = Inpgs(z,y) (7.31)

in order to remove cumbersome logarithmic terms from the denomi-
nator (see the informal solution in §7.2.1). Substitution of the scaled
outer variables into the governing equations shows that x satisfies the
Helmholtz equation,

Px | x
X Txix=o (7.5
within the fluid,
Ox

and a radiation condition to ensure that the diffracted part of the field
propagates away from the gap. In the limit € — 0, (7.33) becomes

(24

v (5,0 =0, [X|#£0, (7.34)

and it is this boundary condition that is to be applied in the outer region
for the solution by matched asymptotic expansions.

Guided by equations (7.1) and (7.2), the leading-order outer solution
is written

XS?) = In .2 cos(X cos 3) cos(Y sin B) + AOH(SI) (R), Y>0, (7.35)
and
X = —4HM(R), Y <0, (7.36)

where Ap is a constant to be determined from the matching. The first
term on the right-hand side of (7.35) is the symmetric part of the incident

© 2001 By CRC Press LLC



wave. The most general form for the diffracted field in Y > 0 that is
consistent with the boundary and symmetry conditions is

3" A, HY)(R) cos2nd,
n=0

but the subsequent matching gives Az, = 0, n > 0, so for simplicity of
presentation only the first term in the series is included. In general, the
user of the method should be aware of the most general solution at each
stage and include appropriate additional terms if difficulties arise in the
matching.

The variations in the fluid motion in the inner region take place on the
scale of the width of the breakwater gap and so suitable non-dimensional
coordinates are

(7.37)

T
a

T
§:—, n=—p=
a

When the outer solutions X( ) are written in terms of the inner coordi-
nates and expanded up to terms in In y and constants, then the inner
expansions of the outer solutions are

2i 2i
(00) 2ln,u+A0{ 1(7+1n¥)}:21np+140?11n2p,p
o
(7.38)

and
9
X(_O’O) = —Ag {1 + — ('y +1In NP)} = —AO—1 In2up, (7.39)
20 T

where the definition of ¢ has been used to simplify the expressions.
When rewritten in terms of the inner coordinates (7.37), the governing
equations for the the inner potential ¥(£,n) = ¢s(z,y) are

o*y 82¢ s

852 + 21,& 0 (7.40)
within the fluid and

oY _

a—n(&o) =0, [>1 (7.41)

The inner solution turns out to have the form

Y& mp) =Inpvo(§,n) +vo&,m) + ...+ pe(&m) +... . (7.42)
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When this expansion is substituted into (7.40) and terms multiplied by
the same function of i equated, it may be seen that all terms up to, but
not including, that in u? are harmonic functions (that is, solutions of
the two-dimensional Laplace equation). Terms from that in u? onwards
will satisfy a Poisson equation if there is a non-zero term at an order yu?
lower in the expansion. For example, 1, is a solution of

Oy | 0%y Yo

ae2 + a2 = o2 (7.43)

In what follows only the expansion 1(® (that is, all terms in 9 up to
and including €°) is needed and so all the functions that appear are
harmonic.

The radiation condition is not relevant to the inner region and so the
leading-order approximation to the inner potential is a harmonic func-
tion that satisfies (7.41). Such functions have already been discussed in
§7.2.1 and may be expressed in terms of the complex variable 7 intro-
duced in equation (7.5), where now t = £ + jn. The general form of the
inner solution is given in (7.8). However, in view of the requirement to
match with the forms in (7.38)—(7.39), the leading-order inner solution
is written

@ =Inp.By + Qln|r| + Co, (7.44)

where By, Q and Cy are constants to be found from the matching. When
the inner solution (%) is, with the aid of (7.6)—(7.7), written in terms of
the outer coordinates, expanded up to terms in In u and constants and
then rewritten back in inner coordinates it is found that

% =Inp.Bo £ QIn2p + Co, (7.45)

where the upper sign indicates the expansion in > 0 and the lower
sign the expansion in 7 < 0. Application of the matching principles
1/)(0 0) =y (0 0 yields

C() = 0, Bo = 1, AO = 7Ti/2, Q = —1, (746)
so that
@ =Ing—In|r|. (7.47)
Further expansion of the inner solution, again using (7.6)—(7.7), gives
20
wﬁf’” InpFln2p+ czsp (7.48)
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which, in view of the relation p = R/e = oR/u between the inner and
outer coordinates, suggests the need for a dipole in the outer solution at
order u?. Hence the outer solutions are extended to

Xf) = In p.2 cos(X cos ) cos(Y sin 3)
+ 7r51H(§1)(R) + 2 A HV (R)cos 29 (7.49)
and
A = —%iHél)(R) — 2 A, H (R) cos 20 (7.50)

which have inner expansions

4ig? 20
Xg:z,o) =lnuFln2pF o7 Az COS2 (7.51)
™ P
and the matching principles wﬁf 2 = Xg,o) yield
Ay = mi/1602. (7.52)

This information is enough to determine the symmetric outer potential
up to terms in 2 and, in terms of the original variables, this gives

¢é2) = 2cos(kx cos 3) cos(ky sin 3) + %Hél)(lﬂ)
. 2
mﬂ—;uﬂgl)(kr) cos20, y> 0. (7.53)

Note that to this order of approximation the symmetric part of the
diffracted field in the outer region is independent of the angle of inci-
dence 3.

The antisymmetric problem

For the antisymmetric problem expansions are sought in terms of the
parameter € = ka < 1 as there is no information to suggest another
parameter is more appropriate. The scalings adopted are the same as
for the symmetric problem (see equations 7.30 and 7.37) and in order to
satisfy (7.32)—(7.33) the outer solution is written

XS?) = —2isin(X cos f) cos(Y sin ) + fp(e)Ale(l)(R) cosf  (7.54)
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for Y > 0 and
P —fp(e)Aprl)(R) cos @ (7.55)

for Y < 0. The first term on the right-hand side of (7.54) is the anti-
symmetric part of the incident wave. The second term contains the
least-singular term that satisfies the required asymmetry and has zero
normal derivative on Y = 0, X /= 0. If this is an incorrect choice then
this would be revealed in the failure of the matching. The size of this
term is not known at this stage, hence the presence of the unknown
gauge function fp(¢); this and the constant A, will be determined by
the matching.

When the outer solutions are rewritten in terms of the inner variables
and expanded using (7.6)—(7.7) then, from equations (A.16) and (A.18),
ase—0

2icosf
Xff) = —2ie€ cos B+ O(€®) + fo(e)Ap (_ 17(;60; + O(e)) (7.56)
and
(p) _ 2icosf
— 594, (- 222 4 0(9). (7.57)
A general form for the leading-order inner solution is
P = gy Z Cr, Rej 7™, (7.58)
Inl odd

where the gauge function g,(€) is to be found (the selection of the odd
integers arises from the requirement that the solution be antisymmetric
in z). Suppose that the non-zero term with the largest exponent involves
7™, where m is a positive integer. In the upper half-plane 7 ~ 2t as
[t| — oo so that a term proportional to R™ would then be forced at
leading order in the inner expansion (7.56) of the outer solution for
Y > 0. The only term of this type is with m = 1. Now suppose that the
term with smallest exponent involves 7™, where m is a positive integer.
In the lower half-plane 7 ~ 1/2t as |t| — oo so that a term proportional
to R™ would then forced at leading order in the inner expansion (7.57)
of the outer solution for Y < 0. There is no term of this type. Hence, the
only possibility of matching with the outer solution is if the leading-order
inner solution has the form

P = go(€)Co Rej 7 (7.59)
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and hence

PP = g (€)Co2t. (7.60)

From (7.56) it is now apparent that the matching will work only if g =1,
g1(e) = € and fp(e) = o(1) as € — 0, and hence

XS?’I) = —2ie cos 3 (7.61)
so that the matching principle XS?’I) = 11153’0) gives
Co = —icosf3. (7.62)
Further expansion of the inner solution gives
6
1 = _iecos B (zg - C;’i ) (7.63)

and matching with (7.56) is possible only if p = 2 and f2(e) = €% so that
. o (2,1)
the matching principle x1"°" = ¥ gives

Ay = —iwcosﬁ. (7.64)

2

The antisymmetric potential up to terms in € is now determined and is

&) = _2isin(kx cos B) cos(kysin §) — 1 cos B HM (kr) cos .
(7.65)

The diffraction coefficient

From (A.12), (7.53), and (7.65) the low-frequency approximation to
the diffraction coefficient defined in (4.129) is

B 1 (ka)?
G(0,8) = (—m + (o

cos20 — 1(ka)? cos 3 cos 9) ,  (7.66)

where p is defined in equation (7.29). This low-frequency approxima-
tion is compared with numerical solutions in Figure 7.2 for ka = 7/8.
This comparison is typical for ka € (0,7/4) in that the approximation
captures the essential features of the exact solution without achieving
high numerical accuracy. The maximum numerical error in |G(6,3)|
ranges from about 0.1% at ka = 7/32 to about 20% at ka = 7/4. By
ka = /2, the low-frequency approximation has broken down and does
not reproduce the oscillations of the exact solution as 6 varies.
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FIGURE 7.2

The modulus of the diffraction coefficient G(0, 3) for a break-
water with a gap for ka = 7/8. Accurate numerical results are
shown with a solid line and the low-frequency approximation
with a dashed line.

7.2.4 The insular breakwater

It is relatively straightforward to find approximations to the insular
breakwater problem by the method of matched asymptotic expansions
(it is a special case of the problem treated later in §7.3). However, the
result (4.164) allows an approximation to the diffraction coetficient to
be deduced immediately from the approximation for the breakwater-gap
problem given in equation (7.66). The result is

F(8,5) = 47(ka)?sin 6 sin 3. (7.67)

In this approximation the far-field diffracted waves are always symmetric
about 6 = /2, which is not true for the exact solution.
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7.3 Scattering by a vertical cylinder

Here the problem of scattering of a plane wave by a cylinder with
arbitrary cross-section is solved using the method of matched asymptotic
expansions and used to illustrate that the precise geometry need not be
specified in order to apply the method. An integral equation formulation
of this problem is given in §4.2.1. The cylinder is assumed to have
uniform cross-section throughout the depth so that the depth can be
removed from the problem. A plane wave of wavenumber k propagates
in the direction of x increasing and is taken to have potential

¢I _ e—ik'r cos(6—p) . (7.68)

The boundary of the cross-section of the cylinder is denoted by I' and
the origin of the horizontal coordinates (z,y) is chosen to be within I'.
The potential ¢ for the scattered wave field must satisfy the Helmholtz
equation

(V24 kg =0 (7.69)
within the fluid region, the boundary condition

on on ’

where n is a normal coordinate directed out of the fluid, and a radiation
condition in the form (1.29) that specifies outgoing waves.

An approximation to the solution will be obtained under the assump-
tion that € = ka < 1, where a is a measure of the horizontal dimension
of I'. The fluid domain is divided into an inner region surrounding the
cylinder to distances 7 = (2% 4+ y2)'/2 <« k~! and an outer region at
distances T > a. Scaled coordinates for the outer region are defined by

(7.70)

X =kz, Y =ky, R=kr, (7.71)
so that the field equation for the outer potential x(X,Y) = ¢(z,y) is

Px  x
axz tays TX =0 (7.72)

The boundary condition (7.70) is not relevant to the outer region but x
must satisfy the radiation condition.
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In the inner region, scaled coordinates are defined by

T y T
52 S N="P= " (773)
a a a
and in terms of these variables the field equation for the inner potential

Y(€,n) = ¢(x,y) becomes

0* o*
8—;5 + 577% + fzw =0 (7'74)

and the boundary condition (7.70) becomes

6_1/) _ _i —iepcos(0—-0) | _ : i _
5 = o [e ] =leq- [pcos(6 — )]

+ %62% [p?cos’(@—B)] +... on TI. (7.75)

This indicates the inner solution has terms at orders e and €2. The pos-
sibility that an expansion contains other terms should always be borne
in mind and the matching will fail if required terms are omitted. Thus,
an inner solution might be examined in the form

"l’(l) = gp()p + €1 + gq(€)Yhg + Y, (7.76)

where as € — 0, gp(€) = o(€), € = 0(gq(€)), and gy(€) = o(€?), and the
matching used to determine the gauge functions g,(¢) and gq(€) as was
done for the antisymmetric problem in §7.2.3. Here, this process gives
an inner expansion in the form

YW = ey + €2 Ine og + €24hg, (7.77)

where after substitution in (7.74) and (7.75) and comparison of like
terms, 11, 191, and e are seen to be harmonic functions that satisfy

o .0
% = 1% [pCOS(g - ,8)] on F, (778)
0o
o 0 on T, (7.79)
and
8¢2 _ 1 5} 2 27
- [p?cos*(@—B)] on T, (7.80)
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respectively. The boundary condition (7.78) is the same as that in the
problem of a uniform stream of complex velocity i Howing past the cylin-
der from the direction # = 3 and hence 1), is just the disturbance to this
flow generated by the cylinder. From results in potential theory (Batch-
elor 1967, equation 2.10.4)

wlNi<Nz<;os9+,uyspm9) a5 p 0o, (7.81)

where a possible constant term has been omitted as this cannot be
matched with the outer solution given below. The dipole coefficients
pz and p, are properties of the geometry. The only solution for ;2
consistent with the matching is a constant Cyp, say. From the divergence
theorem

0o _ lﬁ Y
r%ds N ,/1" 29n [‘0 cos” (6 ﬁ)] ds -~
= —%/Svgn [(§cosﬁ+nsinﬁ)2} ds = -5,

where S is the area within I, and hence (Batchelor 1967, equation 2.10.4)
S

1/)2~C’1+2—1np as p — 00, (7.83)
T

where C; is a constant (note that Batchelor takes the normal to be
directed into the fluid). From the above results

P2 = lne Cy

. { g cost iné S. R
—|—€2{1<N ;;S +”y2n )—i—C’l—i—%ln?}. (7.84)

The outer expansion of the inner solution (7.84) suggests that the
leading-order outer solution has the form

x® = & {40 (R) + 4 B (R) cos§ + B HV (R)sin0 ], (7.85)

where Aq, A1, and B; are constants to be found from the matching, and
this has an inner expansion

% R
X2 = {Ao [1 +2 (v +In —)]
™ 2

+ (Ay cosf + Bysinf) (—:—;) } . (7.86)
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The matching principle x(>2 = (22 yields

AO = —%IS, A] = _%77'“17 Bl == _%ﬂ-qu (787)
S S i
C'o—%, Cl—%(’)’—lnz—?) (7.88)

and hence the outer solution x(? is fully determined

The dipole coefficients for a number of cylinder contours I' are read-
ily available. For example, Milne-Thomson (1996, p. 167) solves the
problem of flow past an elliptical cylinder with axes of length 24 and 2b
measured parallel to the £&- and n-axes, and the dipole coefficients are
readily calculated as

(a+ b)bcos

po =~ and =

_(a+b)sinp
2a? '

” (7.89)

For the particular case of a flat plate of length 2a lying along the z-axis,
so that b =5 =0,

x? = 3€8msin B H{l)(R) sin 0
i(R—3r/4)\ /2 -
~ (W) semsinfsinf as R — oo, (7.90)

which confirms the result in equation (7.67).

7.4 Radiation by a heaving cylinder

Water-wave problems involving a free surface may also be solved by
the method of matched asymptotic expansions. To illustrate the main
ideas, the two-dimensional problem of wave radiation due to the vertical
(heave) oscillations of a half-immersed, horizontal, circular cylinder of
radius a in deep water is considered. The origin of coordinates is chosen
to be at the centre of the cylinder so that the mean free surface is
z =0, |z| > a. The fluid motion takes place in the z, z-plane and polar
coordinates (r,#) are defined by

x=rsinf, z = —rcosf (7.91)
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so that 6 is measured from the downward vertical as in §3.1.1.

The problem is formulated as in §1.3.3 so that the time-independent
velocity potential ¢3(z,z) for the flow satisfies the Laplace equation
within the fluid, the free surface condition (1.13), the decay condition
(1.15), the cylinder boundary condition

9¢s
or

(see equation 1.39), and a radiation condition specifying that the waves
generated are outgoing. There are two length scales in the problem,
namely the cylinder radius a and the wavelength of the radiated waves
2n /K, where K appears in the free-surface condition (1.13). An ap-
proximate solution is sought under the assumption that € = Ka < 1.
The inner region is the fluid region surrounding the cylinder to distances
r < K1 and the outer region is the fluid in r > a.
Define inner region coordinates by

T z T
E=—, (==, p=—. (7.93)
a a a

=—cosf on r=aq, |0 <7/2 (7.92)

With this change of variables, the cylinder and free-surface boundary
conditions for the inner potential ¥(¢,() = ¢3(z, z)/a become, respec-
tively,

oy

i —cosf on p=1, |0 <7/2, (7.94)

and

o
W _ ey on (=0, ¢ >1. (7.95)
o¢
As e — 0, the leading-order approximation to the free-surface boundary
condition is

o

0= 0 on |0|=m/2, p>a. (7.96)
A harmonic function satisfying (7.94) and (7.96) is
™ cos 2nf

Pp = —— (m + Z 4n2 zn) : (7.97)

Solutions satisfying homogeneous boundary conditions could be added
to this, but apart from constants such solutions grow as p — oo and
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prove impossible to match with the outer solution. The outer expansion
of 1, contains logarithms and the previous examples suggest that this
requires constant terms at order Ine in the inner solution. Thus, the
leading-order inner solution is written

YO =1ne Co+ Cy + 9y (7.98)

which has an outer expansion

R

Y@ =Ine Co+ C; — %ln - (7.99)
Define outer region coordinates by
X=Kz, Z=Kz, R=Kr (7.100)

and the outer potential x(X,Z) = ¢3(z,z). In the outer region the
cylinder appears as a point disturbance and the free surface condition is
to be applied on y = 0, /= 0. The outer expansion of the inner solution
suggests that the leading-order outer solution is a wave source at the
origin so that

X = Aogo(X, 2), (7.101)

where
[ee] euZ

9(X,2) = —f cos X dy (7.102)
o H—1

is given in equation (B.13). From (B.16) the inner expansion is
x©9 = Ag (y + In R — 7i) (7.103)
so that the matching principle x(%9 = (%9 gives
Ag = =2/m, Co = =2/m, C; = =2(y — i)/~ (7.104)

Asymptotic approximations as Ka — 0 to the added mass and damping
coefficients per unit length of the cylinder follow from equation (1.48)
and are given by

ib33 7\'/2
a3+ —— ~ p/ [ay @] cos @ adf
w —%/2

7I'/2 2
— pa? / . [_; (InKa+ 7 — i) + 9| cos@ dg. (7.105)
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The series that results from the integration of 1, can be summed (Grad-
shteyn and Ryzhik 1980, equation 0.236.5) and thus as Ka — 0

ib33 4 p0.2 (
s

agy + —= ~ ~InKa+3-2In2— v+ mi). (7.106)

7.5 A technique for eigenvalue problems

An interesting technique for the calculation of the natural frequencies
of oscillation of a fluid within a container that has a number of small
objects within it is given by Curzon and Plant (1986). Here the method
is described in the context of a sloshing problem considered by Drake
(1999). The concrete shaft of the Draugen oil-production platform con-
tains a number of pipes and the aim is to calculate the effect of these
pipes on the fundamental sloshing frequency of water contained within
the shaft. The concrete shaft and the N pipes within the shaft are
all simplified to rigid vertical circular cylinders; a cross-section through
the geometry is illustrated in Figure 7.3. Within this cross-section, D
denotes the the fluid domain (excluding the pipes) and Sy the outer
boundary. The cross-sectional area of pipe ¢ is denoted by D; and the
corresponding boundary by S;. Cartesian coordinates (z,y, z) are cho-
sen so that the x, y-plane is parallel to the cross-section and the z-axis
is directed vertically upwards.

As in §2.3.5, the velocity potential is written ¢(z,y, z) = ¢(x,y)¥o(2),
where 19(z) is the vertical eigenfunction defined in equation (2.11), and
hence

—Vip=k%p for (z,y)€D (7.107)

and

%:0 for (z,y)€S;, i=0,1,...N. (7.108)
on
The aim is determine the eigenvalues of the Laplacian k? and hence,
through equation (2.9), the frequencies of oscillation of the fluid.
Let k2 be an eigenvalue of the Laplacian for the domain Dy bounded
by So (that is with the pipes removed) when a homogeneous Neumann
condition is imposed on Sy, and let g be the corresponding eigenfunc-
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FIGURE 7.3
Cross-section of the shaft geometry. (Adapted from Figure 9
of K. R. Drake, Applied Ocean Research, 21, 133—-143, 1999.)

tion. Thus,
—Vipo =kipy for (z,y) € Do (7.109)
and
%0 =0 for (z,y)€ So. (7.110)
on

An application of Green’s theorem (see §4.2) to ¢ and g over their
common domain of definition D gives

dp  Opg
20— V2 A=/ = = 111
J[ (oo —ovran) an= [ (oogf —o%2) as. (i
D

where I' = U7_,S; is the boundary of D. With the aid of equations
(7.107)~(7.110) this simplifies to

(k2 — k?) // YopdA = —/ <p—8‘p° ds, (7.112)
s 8n
D

where § = U, S; is the boundary of the pipes. Under the assumption
that each pipe S; has small radius a; relative to the primary length scale
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of the fluid motion (that is ka; < 1,7 = 1,2,...,N), an approxima-
tion to the eigenvalue k2 is obtained by approximating the integrals in
(7.112).

For pipes of sufficiently small radius the function ¢g is a good ap-
proximation to the eigenfunction ¢ over the bulk of the domain D and
furthermore, in the integral on the left-hand side of (7.112), ¢ may be
replaced by ¢y and the integration carried out over the whole interior

Do of So so that
// popdA = // @z dA. (7.113)
D Do

In the boundary integrations over {S;; ¢ = 1,2,..., N}, the pertur-
bation of ¢ from ¢y is significant because on each S; the normal velocity
must be zero. In the vicinity of each S; write

© = o+ ¢; (7.114)

where, because of the assumption ka; < 1, ¢; is locally a solution of
Laplace’s equation (see equation 7.74, for example). By Taylor expan-
sion about the centre O; of S;, the potential ¢y at a point with position
vector r is, in the limit a; — 0,

wo(r) = poi + Vipo.R; + O(a?) (7.115)

where R; is the position vector relative to O;, and ¢g; and V;¢q are,
respectively, the values of ¢y and Vg, at O;. The boundary condition
of no flow through S; is therefore

9¢i _ _9¢0 _ _Vipo-R
OR; OR; R;
provided g; is sufficiently small, and therefore

0~ a?Vipo.R;
T~ - 52
R;

on Ri = aj, (7.116)

(7.117)

after requiring that the disturbance ¢; — 0 as R;/a; — oo. The approx-
imation (7.117) to the perturbation potential ¢; is the dipole response
to the near uniform flow generated by g in the neighbourhood of S;
(see equation 7.81). With this approximation to y;, the right-hand side
of (7.112)

0
‘po 2 ds ~ - Z/ (90 + Vigo-R;) gjds (7.118)
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where the minus sign arises because the normal coordinate n is directed
out of the fluid region. Application of the divergence theorem and the
assumption that the variation of g and Vg across D; may be neglected
gives

19
/ 240 dS //V (poVipo)dA = // (0V?p0 + [Vipo|*) dA
S

=~ ma; ((pogv wo + |Vipol ) (—k2tpgi + |V,-(p0|2) . (7.119)

Now from (7.116)

/ ( 1%0- Rl) (PO dSN—/ (V','(P().I?.,'):2 ds
a; S;

27
= af |V,-(p0|2/ cos? 6,d0; = 7raf|V,vtp0|2, (7.120)
0

where 0; is a polar angle with origin at O;. The above results when
substituted in (7.112) yield

m Zaf (2|V1‘P0|2 - kg‘sz')
k? = k2 — —=1 . (7.121)

IES
Do

The sloshing frequencies of water within an annular region can be
calculated exactly (see McLachlan 1954, §2.64). For an inner pipe of
radius b within an outer circle of radius a, the exact solution for the
fundamental mode, expressed in terms of the parameter ka, is compared
with the approximation (7.121) in Table 7.2. Results corresponding
to a uniform distribution of 32 pipes have been calculated by Drake
(1999) using the boundary-element method and are compared with the
approximation (7.121) in lable 7.3. All pipes have the same radius b
and the outer domain is again a circle of radius a. The utility of the
present method for this complex geometry is clearly demonstrated.
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b/a ka (exact) ka (approx)
0.00 1.84118 1.84118
0.05 1.83157 1.83152
0.10 1.80347 1.80220
0.15 1.75977 1.75226
0.20 1.70512 1.67984

Table 7.2 Comparison of exact and approximate values of ka for an
annular region.

b/a  ka (numerical) ka (approx)

0.0000 1.847 1.841
0.0125 1.842 1.836
0.0250 1.825 1.820
0.0375 1.798 1.793
0.0500 1.761 1.754
0.0625 1.716 1.704
0.0750 1.663 1.639

Table 7.3 Comparison of numerical and approximate values of ka
for 32 pipes of radius b within a cylinder of radius a. (Reprinted from
Applied Ocean Research, 3, K. R. Drake, The effect of internal pipes on
the fundamental frequency of liquid sloshing in a circular tank, 133-143,
Copyright (1999), with permission from Elsevier Science.)

Bibliographical notes

The informal procedure used in §7.2.1 for the solution of water-wave
problems by the method of matched asymptotic expansions was pio-
neered by Tuck (1975) and applied to the breakwater-gap problem by
Mei (1983, §5.5). Although this method works for problems involving an
aperture, it fails to give the correct results for certain other problems.
For example, the scattering of waves by a rigid semi-infinite duct has
an exact solution (Noble 1958, p. 100) which when expanded in an ap-
propriate way does not agree with the result obtained from an informal
application of the method of matched asymptotic expansions similar to
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that in §7.2.1. The reasons for the failure of the matching method in
this particular problem are discussed by Mclver and Rawlins (1992) and
a formal solution is obtained by Mclver and Rawlins (1993). The formal
matching principle used in the problems discussed here was developed by
Crighton and Leppington (1973) and is discussed in detail by Crighton
et al. (1992, Chapter 6).

The scattering of long surface waves by various objects has been
treated by Davis and Leppington (1977, 1985) with applications in elec-
tromagnetic waves and water waves. A survey of long-wave results for
the water-wave problem obtained by the method of matched asymptotic
expansions is given by Mclver (1994a).

Another problem where an informal application of the method of
matched asymptotic expansions can give incorrect results is the diffrac-
tion of long waves by an obstacle in a wave guide.  This problem is
examined in detail by Martin and Dalrymple (1988) who give a proce-
dure for obtaining the correct result. Acoustic wave propagation along
a stepped guide with radiation into free space is analyzed by Lesser and
Lewis (1972a, 1972b).

As well as the scattering and radiation problems considered here, the
method of matched asymptotic expansions may be used to obtain results
for eigenvalue problems. For example, McIver (1991) obtains asymptotic
results for the trapping of modes by an obstacle in a water-filled channel
or, equivalently, an acoustic wave guide.

In addition to the scattering of waves by single structures, the method
of matched asymptotic expansions may be used to analyze wave interac-
tion with an array of structures. For example, McIver (1987) considers
the scattering of water waves by an array of vertical cylinders and float-
ing hemispheres in order to explain the enhancement of wave forces in
long waves. Unlike those discussed here, the problem treated involves
three length scales and consequently the fluid domain must be divided
into three regions. This work is an application of a technique developed
by Balsa (1982, 1983) in the acoustic context to analyze low-frequency
oscillations of structures in a flow.

Here we have concentrated on applications of the method of matched
asymptotic expansions to problems in which the wavelength is much
greater than a typical dimension of the obstacle. The method may also
be applied to problems in which the wavelength is much less than a
typical obstacle dimension. Such high-frequency applications were pio-
neered in the field of water waves by Leppington (1972) and, for example,
can be used to analyze wave scattering by a partially-immersed horizon-
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tal circular cylinder (Alker 1977) and a submerged, horizontal elliptical
cylinder (Leppington and Siew 1980). The same method is used by Si-
mon (1985) in an extensive investigation of the high-frequency radiation
of waves by surface-piercing structures.

The technique for eigenvalue problems described in §7.5 is based on
the work of Curzon and Plant (1986) who analyzed the eigenfrequencies
of an acoustic cavity containing a small obstacle. A similar, but more
formal, perturbation approach to such problems is described by Mehl
and Hill (1989), while the method of matched asymptotic expansions
is used by Lesser and Lewis (1974). Similar problems arise in other
contexts. For example, Davidovitz and Lo (1987) consider the propaga-
tion of electromagnetic waves in an annular guide using similar ideas to
Curzon and Plant (1986).
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Chapter 8

Variational methods

In §2.5.1 the problem of wave scattering by a vertical barrier was solved
using an integral-equation method. Here some of the background to
this approach is explained in the context of a variational procedure. In
particular, it is explained how the numerical procedure used in §8.1 is
able to achieve high accuracy and how complementary bounds may be
obtained for physical quantities.

Eigenvalue problems have been used as examples throughout this
book. In §8.2 a variational approach to eigenvalue problems in terms
of the so-called Rayleigh quotient is described and, in particular, the
maximum-minimum definition of eigenvalues is used to obtain some gen-
eral results. Finally, the Rayleigh-Ritz method for the numerical calcu-
lation of eigenvalues is explained in the context of an example from wave
propagation through infinite arrays of scatterers.

8.1 Scattering and radiation problems

In a number of scattering and radiation problems it is desired to de-
termine the quantity

A= /L w(t)f () dt, (8.1)

where u solves the integral equation

/LK(z,t)u(t) dt = f(z), z€ L. (8.2)
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Here L is a real interval, the integral operator K is real, positive definite
and symmetric, so that K(z,t) = K(t,2), and f is a given real function.
One such problem is described in §2.5.1 where the integral equation is
(2.99) and the quantity of interest is given in (2.101).

It is convenient to write the integral equation as

Ku=f (8.3)

and to introduce the inner product

(v,w) = /Lv(t)w(t) dt (= (w,v)) (8.4)
for real v and w so that

A= {u,f). (8.5)
The symmetry of K and the symmetry of the inner product give

(Kv,w) = /L { /L K(z,t)0(t) dt} w(z)dz
= /Lv(t) {/LK(t,z)w(z) dz} dt = (v, Kw) = (Kw,v) (8.6)
and the positive definiteness is expressed as

(Kv,v) >0 for all v. (8.7)

8.1.1 The variational principle

To obtain a variational principle suitable for the calculation of A, it
is first observed that

) (s
A=y T Kuw) (®.8)

where the integral equation (8.3) and the symmetry of the inner product
have been used to rewrite the denominator. Define a functional

App] = (v, f)* (8.9)

(Kv,v)

and consider the effects of arbitrary small variations in v. To this end
write

v=vg+ev;, €KI1, (8.10)
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and then
Alvo + 1] = @"—JIV) [1 +2¢ <<“"f) - <K”""°>) + 0(62)] .

(K’Uo,’vo ('U(],f) (K’Uo,’vo)
(8.11)
If vg is the solution of (8.3) then
(KU17U0> = <U17KU0> = <U17f>7 (812)

where the symmetry property (8.6) has been used, and

(Ko, vo) = (f,v0) = (vo, f) (8.13)

so that the coefficient of € in (8.11) is zero. Conversely, if for all vy, the
coefficient of € is zero then

(Ko, o) (w1, f) = (vo, f)(Kv1,v0) (8.14)
or by (8.6)
(Kvg,vo){f,v1) = (vo, f)(Kvo,v1) (8.15)
which holds for any v, provided
(Ko, vo) f = (vo, f)Kuo. (8.16)

This relation in unaffected by multiplicative scalings of vg and so if
a scaling is chosen to give (Kwvg,vo) = (vo, f) it follows that Kvy =
f, that is, vy satisfies the integral equation (8.3). Thus, it has been
demonstrated that A[v] is stationary with respect to small variations in
v if and only if v solves (8.3).

8.1.2 Numerical implementation

The variational formulation described above may be used as the basis
of a numerical method for the calculation of A. An approximate solution
of the integral equation (8.3) is sought in the form

N
Ut) = anua(?). (8.17)
n=0

The coefficients {an;n = 0,1,..., N} are found by exploiting the con-
nection between the solutions of (8.3) and the stationary values of A

© 2001 By CRC Press LLC



and, in particular, by consideration of the changes in A[U] with respect
to variations in the coefficients. A necessary condition for A[U] to be
stationary is that for all m =0,1,...N

S = TR a3 (KUU) f ) = U A (KU, um)] =0 (815)
which is satisfied if
(KU,U)(f,um) = (U, FY{EU, um). (8.19)

This relation is unaffected by multiplicative scalings to U and if a scaling
is chosen to give

(KU,U) = (U, f) (8.20)
it reduces to
(KU, um) = (f,um), m=0,1,...,N, (8.21)
or
N
> an(Ktn, um) = (ftm), m=0,1,...,N, (8.22)
=0

which is a set of simultaneous equations for the a,.
Once the coefficients are known then

N
A= (va)zzan(un7f)- (8.23)
n=0

From (8.11) it is apparent that the stationarity of A[U] to small varia-
tions in U implies that A can be calculated with an error that is second
order in the deviation of U from the true solution u. Further, with the
aid of (8.6) and (8.20),

Alu] — A[U] =

u, f) = (U, f) = (w, f) = 2(U, /) + (U, f)

u, Ku) — 2(U,Ku) + (KU, U)

u, Ku) — 2(U,Ku) + (U,KU)

U—u, KU —u))

>0 (8.24)

o~ o~ o~ o~

because K is positive definite. Thus
A[U] € Alu] (8.25)
so that A[U] is a lower bound for Afu] = A.
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8.1.3 The Galerkin method

An alternative to the variational solution is a direct solution of the
integral equation using the approximation (8.17). Substitution of this
approximation into the integral equation gives

N
> anKun = f (8.26)
=0

and then multiplication throughout by each of the u,(t) and integration
over L gives the equations (8.22). This technique, known as the Galerkin
method, is therefore entirely equivalent to the variational approach and
due to its simplicity is usually preferable. The Galerkin method is used
for the solution of the problem in §2.5.1.

8.1.4 Complementary approximations

It is sometimes possible to reformulate the problem defined by (8.3)
and (8.5) in terms of a different quantity p(z), z € L, where L is a
‘complementary’ interval to the L appearing in §8.1. For example, in
the vertical-barrier problem described in §2.5.1, L is the gap beneath the
barrier and L is the barrier itself. In this reformulation of the problem
an integral equation in the form

Mp=f (8.27)
is obtained, with now

A7V = (p, ). (8.28)

As for the integral operator K appearing in (8.3), M is real, positive
definite, and symmetric so that the theory described above can again be
applied.

Define a functional

_ W n.
Blp] = gy (8.29)
then if
N
P(t)= bupa(t), tel, (8.30)
n=0
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is an approximation to p with the b,, determined by the Galerkin method,
say, then

B[P] = Z b (Pn, f) (8.31)

is a lower bound for A='. When combined with the result (8.25) this
gives

A[U) < A < {B[P]}! (8.32)

so that A is bounded above and below and the formulations based on A
and B are said to yield “complementary approximations” to A.

Bibliographical notes

The theory given here is described in a more general context by Jones
(1986, §85.15) and Jones (1994, §4.11 and §5.1) and applications are de-
scribed in acoustic and electromagnetic waves.

Variational methods of the type described in §8.1.1 have been used
for a variety of problem in water waves. In two dimensions, Miles (1967)
calculated the transmission past a step on the fluid bottom while Mei and
Black (1969) considered the scattering of waves by rectangular obstacles
in water of constant depth. Numerical solutions for the scattering of
waves by a circular dock, that is, a truncated vertical circular cylinder
with fluid beneath it, were obtained by Miles (1971) using variational
methods. Evans and Morris (1972) used complementary approximations
to show that a pair of identical, surface-piercing, vertical barriers in
deep water are able to both totally transmit and totally reflect waves.
Complementary approximations were also used by Porter and Evans
(1995) in a variety of problems involving thin vertical barriers in finite
depth water. Extensive results for both thin and thick vertical barriers
are given in Mandal and Chakrabarti (2000).
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8.2 Eigenvalue problems
8.2.1 Eigenvalues of the negative Laplacian

Consider a domain D of the z, y-plane surrounded by a boundary S.
The aim is to calculate the eigenvalues A of the problem

~V2¢p=Xp in D, (8.33)
99 +0¢=0 on S (8.34)
on N ’ '

where the real-valued function ¢(z,y) has continuous second derivatives
throughout D, n denotes the outward normal to S, and ¢ is real and
piecewise constant on S. For this problem there are an infinity of eigen-
values \; < A2 < ... < A, <... all of which are real. The eigenfunctions
corresponding to distinct eigenvalues are orthogonal, that is, if ¢; and
¢; are the eigenfunctions corresponding to the distinct eigenvalues A;
and A; then (¢;, ;) = 0 where here the appropriate inner product is

(v,w) = // vw dz dy. (8.35)
D
Solutions are sought that minimize the “energy functional”

E] = // |Vo|? dz dy + / ov?ds, (8.36)

s s

where s is the arc length measured along S, subject to the constraint
Hv] = // v?dedy =1 (8.37)
D

which is used to exclude the trivial solution. This minimization process
is equivalent to the minimization of the Rayleigh quotient

(8.38)

and it will be now be shown how the eigenvalue problem is recovered
by examination of the stationary values of R. The test functions v are
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required to be continuous in the closure of D and to have piecewise first
derivatives within D.
Consider a test function of the form

v=vy+evy, €Kl (8.39)

so that

2
Rlvo + ev1] — Rlwg] = TZO] // Vg - Vo dz dy
D

+ a/ vovy ds — R[vo]// vouy dody | + O(€?).  (8.40)
5 D
Now by an identity from vector calculus and the divergence theorem

/ / (v1 V%0 + Vuy - Vg) dzdy
D

://V.(vao)d:cdy:/vl%ds (8.41)
S on
D

and so

Rlvo + ev1] — Rlvg] = % [— // (V2vg + R[vo]vo) v1 dz dy

+ /S (% + avo) vl ds] +O(e®). (8.42)

Thus if vy is a stationary point of R[vg], so that for all v; the coetficient
of € is zero, then

V3o + Rlvolug=0 in D, (8.43)
v
6—: +ovp=0 on &, (8.44)

and v is an eigenfunction corresponding to the eigenvalue A = R[vg].
An important point to note is that the boundary condition (8.34) is a

so-called “natural” boundary condition as it is satisfied automatically by

functions vy corresponding to stationary points of R[v]. In other words,
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it is not required to take explicit account of the boundary condition in
the minimization process. However, if a Dirichlet boundary condition
(that is ¢ = 0) is imposed on S then the final term in (8.36) is dropped
and the test functions must be restricted to those for which vg = v; =0
on S.

8.2.2 The sloshing problem

Consider a finite three-dimensional fluid domain D with a container
with wetted surface S and bounded above by a free-surface F'. The aim
is to calculate the values of A for which the problem

V2¢=0 in D, (8.45)
o
5, =0 on & (8.46)
o
57—1—)«1) on F, (8.47)

has non-trivial solutions for the real potential ¢. In contrast to the
problem in §8.2.1, the eigenvalue now appears in one of the boundary
conditions. For this problem also, there are an infinity of eigenvalues
A1 £ A £ ... £ A, £ ...all of which are real and the eigenfunctions
corresponding to distinct eigenvalues are orthogonal. That is, if ¢; and
¢; are the eigenfunctions corresponding to the distinct eigenvalues \;
and \; then (¢;, #;) = 0, where now

(v,w) = // vwdS. (8.48)
F

The Rayleigh quotient for this problem is

// |Vv|2dV
e —
l/qﬁ ds

and a similar calculation to that given in §8.2.1 shows that both of the
boundary conditions (8.46) and (8.47) are natural, and so need not be
satisfied explicitly by a test function v.

(8.49)
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8.2.3 The maximum-minimum principle

For both of the problems given in §8.2.1 and §8.2.2 all of the eigen-
values can be characterized in terms of the Rayleigh quotient. The
minimum value of R[v] over all allowable test functions v is the lowest
eigenvalue A; and the minimizing function is the corresponding eigen-
function ¢;. For any allowable v, R[v] gives an upper bound for A;. The
second eigenvalue )\ is obtained by minimizing R[v] with the restriction
that v is orthogonal to ¢1, that is (v,¢1) = 0. The minimum of R[v]
when v is orthogonal to ¢; and ¢2 is Az, and so on.

All eigenvalues can be characterized without reference to the lower
eigenfunctions through the maximum-minimum principle

An = max min  R[v] p, (8.50)
Wai1 (v,w;)=0
i=1,2,..n—1
where W,,_1 = {ws,ws,... ,w,_1} is a sequence of admissible test func-

tions. Thus, given the sequence W,,_; the Rayleigh quotient R[v] is
minimized over all admissible test functions orthogonal to each member
of W, _1, and then J, is obtained by maximizing over all possible se-
quences W,,_;. For any sequence W, _; the successive minimum values
{p1, 2, . , i} of R[v] satisfy

ul :A17 ,U'2 S /\2, cee gy ll"n SATL (8‘51)

with equality only if w; = ¢;,1=1,2,... ,n—1.
Two important principles follow from the maximum-minimum defini-
tion of eigenvalues. These are:

1. Strengthening the conditions in a minimum problem (by imposing
restrictions on the admissible functions, for example) does not di-
minish the minimum. Conversely, weakening the conditions does
not increase the minimum.

Example (a): The boundary condition (8.34) is natural and test
functions may be chosen without restriction. If a Dirichlet condi-
tion is imposed on some part S; of S the test functions must be
restricted to those that satisfy v = 0 on 57 and hence the eigen-
values will increase (or, at least, not decrease).

Example (b): For the sloshing problem in §8.2.2, introducing a
rigid baffle into a container of fluid relaxes the continuity condi-
tions on the admissible functions and the space of test functions
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is widened. Hence the eigenvalues will decrease (or at least not
increase). The insertion of a rigid vertical baffle into a rectangular
container of fluid was studied by Evans and Mclver (1987).

2. Given two minimum problems with the same class of admissible
functions such that for every admissible function the Rayleigh quo-
tient R[u| for problem (A) is no smaller than for problem (B),
then the minimum for problem (A) is also no smaller than for
problem (B).

Example: If the value of ¢ in the boundary condition (8.34) is in-
creased or decreased then for every admissible v the corresponding
R|[v] changes in the same sense. Hence the eigenvalues can change
only in the same sense as o.

8.2.4 The Rayleigh-Ritz method

The relation of eigenvalues to the minima of the Rayleigh quotient is
the basis of a numerical method known as the Rayleigh-Ritz method. In
the method the trial function v in the Rayleigh quotient R[v] is taken to
be a finite sum of selected functions with unknown coefficients, and the
stationary points of R[v] with respect to variations in these coefficients
yield approximations to the eigenvalues. The method is numerically ef-
fective because as the eigenvalues are determined from stationary values
of R[v], the error in an eigenvalue is quadratic in the error in the trial
function v when compared to the corresponding eigenfunction, as may
be seen from the results in §8.2.1.

The method is illustrated here through consideration of the problem
of water-wave propagation through an infinite array of rigid vertical
cylinders standing in water of constant depth. The cylinders are all of
radius ¢ and are arranged in a square array so that every translation
between the axes of the cylinders has the form of a so-called lattice
vector

R = L(myi +myj), (8.52)

where 2 and j are unit vector parallel to the z- and y-axes respectively,
and m; and mq are integers. Once the time and depth dependence
have been removed, the complex-valued potential ¢ must satisfy the
two-dimensional Helmholtz equation

(V2 +EHp=0 (8.53)
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and the boundary condition

o¢ _

5 =0 (8.54)

on each cylinder, where n is a normal coordinate. Solutions are sought
in the form

d(r + R) = €97 ¢(r), (8.55)

where R is any lattice vector and 7 is the position vector of an arbitrary
point in the fluid domain. For real q such solutions correspond to waves
that propagate through the array without change of amplitude and ¢
measures the changes in the phase of the motion as the array is traversed.

Because of the periodicity of the geometry and the condition (8.55)
attention can be restricted to a single square cell of side L containing
one centrally-placed cylinder. Denote the Hluid domain of this cell by D.
If g is specified then the aim is find eigenvalues A = k? of the negative
Laplacian with the boundary condition (8.54) imposed on the cylinder
and the periodicity condition (8.55) used to relate the values of the
solution on opposite sides of the cell. As for the problems of §8.2.1 and
§8.2.2 all of the eigenvalues are real and the eigenfunctions corresponding
to distinct eigenvalues are orthogonal where now the inner product

(v,w) = // vwdz dy. (8.56)
D
The energy functional for this problem is

EW] = // |V|? dz dy, (8.57)

the constraint is H[v] = (v,v) = 1, and as before the Rayleigh quotient
Rv] = E[v]/H[v]. The condition (8.54) is a natural boundary condition
and need not be incorporated into a trial function u; however, the trial
functions are required to satisfy (8.55).

The aim is find numerical approximations to the lowest eigenvalues.
A trial function for the variational problem is chosen in the form

N

v(@Y) = Y. Gmndma(r) (8.58)

m,n=—N
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with coefficients {amn; m,n = —N,—N+1,...,N} and where the ¢mn
are admissible functions. Here the choice

rmn (,,.) — ei(Q‘f'Kmn)"", (8.59)
where
2
Kmn = %(mz-l-n]), (8'60)

is made in order to enforce (8.55). The minima of the Rayleigh quotient
R[v] as a function of the set {amn; m,n=—-N,—-N +1,... ,N} yield
approximations to the eigenvalues.

As noted in §8.2.3, the minimization of the Rayleigh quotient is equiv-
alent to the minimization of the energy functional &[v] subject to the
constraint H[v] = 1 and this can be achieved by minimizing &[v]—AH[v],
where A is a Lagrange multiplier. Define

Ev,w] = Vv .- Vwdzdy (8.61)
I
and

Hlv,w] = vwde dy (8.62)

I

so that

N

E[U] - AH [U] = Z Apqlmn (E[¢pq7 ¢mn] - AH[¢pq7 ¢mn]) .
,gmn=—N
o (R.63)

Necessary conditions for a minimum are obtained by setting the deriva-
tive with respect to each of the a4 to zero and this results in the matrix
eigenvalue problem

(E - AH)a =0, (8.64)
where the (2N 4 1)% x (2N + 1)? matrices have components

(E)pqmn = E[¢pQ7 ¢mn], (H)pqmn = H[¢pm ¢mn] (8-65)

and the (2N +1)2-vector has components (@)mn = @mx. This eigenvalue
problem may be solved by standard numerical methods to determine
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kL/m

0.452161 1.45616 1.96083 2.12720 2.39254 2.46795
0.450747 1.44452 1.95358 2.11008 2.38388 2.45978
0.450740 1.44434 1.95334 2.10959 2.38375 2.45942
0.450740 1.44434 1.95334 2.10959 2.38374 2.45942

oo |2

Table 8.1 Eigenvalues kL for wave propagation through an array of
circular cylinders illustrating the convergence with increasing values of
the truncation parameter N.

approximations to the lowest P = (2N + 1)? eigenvalues and their cor-
responding eigenfunctions. If the approximate eigenvalues are arranged
in increasing order so that

A <Ay <---<Ap (8.66)
then
A <An, n=1,2..P (8.67)

That is, the approximate eigenvalues are upper bounds for the eigenval-
ues of the original infinite dimensional problem (this follows from the
first principle in §8.2.3 as the chosen form of the approximation to the
eigenfunction corresponds to a restriction on the space of test functions).
The convergence of the method with increasing N is illustrated in L'a-
ble 8.1 for the lowest six eigenvalues for the case ¢/L = 0.5, ¢ = (7/2)1.
The results are given in terms of the wavenumber k = v/\.

The example described here is taken from McIver (2000b) where the
propagation of such Bloch waves through an array is discussed in some
detail.

Bibliographical notes
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ing problems are given by Moiseev and Petrov (1965) and a method
for computing both upper and lower bounds is described by Fox and
Kuttler (1981). A good survey for the sloshing problem of the state of
knowledge at the time is given by Fox and Kuttler (1983).

Here we have concentrated on problems where the boundary condition
has the form (8.34). An extensive survey of methods for the case of the
Dirichlet boundary condition is given by Kuttler and Sigillito (1984).
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Appendix A

Bessel functions

This appendix lists some important properties of the Bessel functions
Imy Ym, Im, Kmn, and H,(nl), where m is an integer, which are used
extensively throughout the book. The argument of these functions may
be complex and in general we will represent the argument by z. However,
if we wish to restrict attention to real arguments only, = will be used
as the independent variable. More extensive details of the properties
of these functions can be found in many sources, e.g. Watson (1944),
McLachlan (1954), Abramowitz and Stegun (1965, Chapter 9).

The Bessel functions Jp,(z) and Y, (z) are linearly-independent solu-
tions of the linear second-order differential equation

d? d
zzd—z‘i—i-zd—‘i—i-(zz—mz)fzo (A.1)

and the Hankel function of the first kind, H,(,I), is defined by
HPY (2) = Jm(2) + iV (2). (A.2)

The modified Bessel functions I,,(z) and K,,(z) are linearly-independent
solutions of the linear second-order differential equation

d? d
zzd—z‘i—i-zd—‘i—(zz—i-mz)fzo (A.3)

and they are related to J,, and Y,, by

Im(—iz) = (=1)™Jm (), (A.4)
K (—iz) = 2ri™ M H Y (). (A.5)
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Bessel functions satisfy certain Wronskian relations. For example

T2 (2)¥a(2) = Yasr (2)n(2) = =, (A.6)
Tn()HP'(2) ~ HO() Jy(2) = == (A7)

Asymptotic forms for large real arguments are as follows. As x — 00,

In(@) ~ \/g e, (A.8)
Km(z) ~ \/22 e~?, (A.9)

x

2
Im(z) ~ p— cos(z — mm /2 — w/4), (A.10)

™

2
Yin(z) ~ 4/ — 8 sin(z —mn/2 — w/4), (A.11)

™

2 .
H(l) ~ 2 Ji(z—mn/2—7/4) . A19
W)~/ e (4.12)
The corresponding results for small real arguments are that as x — 0,
I, () ~ (2/2)™ /m!, (A.13)
Ko(z) ~ —Inz, (A.14)
Kn(@) ~im-1(z/2)™™, m=1,23,..., (A.15)
Im(x) ~ (2/2)™ /m!, (A.16)
Yo(z) ~ —iH" (z) ~ ZInz, (A.17)
You(2) ~ —iH (2)
~r i m =D (z/2)"™, m=1,2,3,.... (A.18)
For the derivatives of the Bessel functions we have that as z — 0,

J’( )~ —z/2, (A.19)
I (@) ~27"g™ H / (m — 1), m=1,23,..., (A.20)
HY (@) ~ 2i/7z, (A.21)
HY (¢) ~ 2™im! /nz™ ), m=1,2,3,.... (A.22)

The functions Jp,(z), Ym(2), J/,(2), and Y, (2), m = 0,1,2,..., all
possess an infinite number of real zeros. For Jy,, Y, Y,,, m > 0, and
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for J/,, m > 0, the n*® positive zeros are labelled jmn, Ymn, Jin, and
Yin» Tespectively, but z = 0 is counted as the first zero of Jj(z). The
zeros interlace:

A.23)
A.24)

jml < jm+1,1 < jm2 < jm+1,2 < ij <... (

Ym1 < Ym+1,1 < Ymz2 < j7n+1,2 <Ymz < ... (

m < J;nl < Ym1 < y;nl < jml < J;n2 < Ym2 < y;n2 < jm2 < .77ln3 <.
(A.25)

For fixed m and as n — oo,

: p—1 4(p—1)(Tp—31)
~§— - A.26
Jmn ™8T g 3(8s)3 : (A.26)
p+3  4(7Tu?+82u—9)
~t— - A.27

where = 4m?, s = (n+m/2—1/4)7 and t = (n+m/2—3/4)m. Exactly
the same asymptotic expansions apply to the zeros y,,, and y,,,, if the
values of s and t are interchanged.
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Appendix B

Multipoles

This appendix lists formulas for, and properties of, the multipole poten-
tials used in Chapter 3 and various source potentials used throughout
the book. Derivations of the formulas which follow are not provided; for
these the reader is directed to, for example, Thorne (1953), Wehausen
and Laitone (1960), and Mei (1983). Some of the expressions which fol-
low cannot be found in any of these standard sources and, if they are
not simply obvious extensions, an explicit reference is provided.

B.1 Two dimensions, infinite depth

In this section we consider solutions of Laplace’s equation in two di-
mensions which are singular at z = €, z = ( < 0 and which satisfy the
free surface boundary condition (1.13). The coordinates that are used
are illustrated in Figure B.1 and defined below:

r=[@-8*+ (-0 n=[E-"+E+OY3
X=xz—-¢=rsinf =rysinb,

(—z=rcosb, ¢+ z=r7rycosb;.

Solutions to V2¢ = 0 which are singular at r = 0 are Inr, 7™ cosné
and r~"sinnf, n = 1,2,3,.... If the singularity at (£, {) is of the form
Inr then the potential corresponds to a pulsating source of fluid and such
functions are considered first, with a distinction being made between
functions whose singularity lies in the undisturbed free surface z = 0
and those whose singularity is submerged. Multipoles with higher order
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FIGURE B.1
Coordinates used in two dimensions for the infinite depth case.

submerged singularities are treated next and are divided into those which
are symmetric about & = £ and those which are antisymmetric about this
line. Multipoles with singularities in the free surface (other than sources)
are not presented, but the method for constructing them is essentially
the same as that for the source case. All these potentials behave like
outgoing waves as |z| — 00, but we can also construct so-called wave-free
potentials which decay at infinity and these are considered last.

In order to aid the reader in manipulating the expressions that are
given we note the following integral representations of the singularities
described above (see Gradshteyn and Ryzhik 1980, eqns 3.943, 3.944(5)
and (6)):

lnr:/ (e7# e_“’l"_dcoqu)d—u, (B.1)
p

9 lo e]
co;nn " 1 ] / pu e (z=0 cos u X du, z <, (B.2)
- 0

oo
m=1) ] / pt et 6=2) cos u X du, z>C, (B.3)
- 0

the representations of r—"sinnf being given by (B.2) and (B.3) with
cos replaced by sin and an extra factor of —1 in the expression valid for
z2>(.
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Submerged source

A submerged source situated at (£,¢), { < 0 can be written

¢=1In— 2][00 Y s pX d (B.4)
=m-—-—— COS .
o C K sk du
[(u+K _, ) du
:lnr—][ {—e”(”C)coqu+e ”}— B.5
0 p—K 12 (B-5)
~ —2mi e+ eHEX a5 g, 400, (B.6)

The second of these formulas is given incorrectly by Wehausen and
Laitone (1960, p. 482). The imaginary part of ¢ is given explicitly by

Im¢p = —2r K+ cos K X. (B.7)
Alternatively, provided x /=£, we may write
& + 2mief (z10) KIX]

:lnL—2/ peosp(z+¢) + Ksinpu(z + ¢) Xl 4y (BS)
0

T p? 4+ K2
_ _2/00 (K sin pz + pcos pz) (K sin u¢ + pcos ug) e—HIX1 4y
0 p(p? + K2)
(B.9)
and a power series expansion can be obtained from (B.4):
g=ln—+ Y Anrmcosmd,  r<2[C], (B.10)
" m=0
where
21y [ m e
Ap =— du. B.11
e e (B.11)

Another expression valid for  /=£, due to Kim (1965) and useful for
numerical calculations, is

¢=Inr +Inr + 2eKE+O [— In|X]|
+ (CI(K|X]) — in) cos KX + (Si(K|X|) + g) sin K| X]|
0
- / e KHIn(X?2 4 p2)1/? d,u], (B.12)

+¢

where Ci and Si are the sine and cosine integrals, respectively (Abramowitz
and Stegun 1965, §5.2).
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Free-surface source

Expressions for a source situated in the free surface at * = £ can be
obtained from (B.4) and (B.8) by setting r = r1, ¢ =0 and (so that we
still have ¢ ~ Inr as r — 0) dividing the result by two. Thus

oo eﬂz
¢ = —f cos uX du (B.13
o pn—K )
oKz KX _ ® peospz + Ksinpz _, x|
rie® e /0 K2 e du (z /=£)
(B.14)
~ —mief7eHEX a5 g +oo. (B.15)

The series (B.10) is not valid when { = 0, but a power series expan-
sion can be obtained from (B.13) as shown in Yu and Ursell (1961).
Throughout the fluid, except when r = 0,

¢ = "% [(y + mn K7 — 7i) cos Kz + @ sin K]

o~ (—Kn)™
m=1

where v = 0.5772. .. is Euler’s constant. The right-hand side of (B.16)

can be completely expanded in powers of r by noting that exp(Kz +

iKX) =exp(—Kr e™%).

Symmetric multipoles

Multipoles which are singular at (£,¢), ¢ < 0, and symmetric about
x = € can be written

S ALY K
¢n:cosn9+( ) ][ B+ n1er(#40 cos X dp (B.17)
0

T (n—1)! " K"
27i(—K)" :
W TR K0 KX o 4 doo (B.18)
(n—1)!

The imaginary part of ¢, is given explicitly by

2r(—K)™

K(z+¢)
m=1) e cos KX. (B.19)

Im ¢, =
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Alternatively, provided = /=£, we may write

b — 2mi(—K)" oK (z4+0) giK|X|

(n—1)!
cosnf (=1 [ prlenlXI
=— o1 /0 e gn(p) dp (B.20)
2 5] [l,n_l e—p|X| )
= D) / K (ucospuz + Ksin uz) fr(u)du, (B.21)
T A
where
n (1) = Re [i" (1 — 2ipK — K?) eiﬂ(”O] (B.22)
and
o) = (—1)*2(p cos u¢ + K sin u¢) n even, (B.23)
" (—=1)=1/2(psin u¢ — K cosp¢) n odd.

A power series expansion can be obtained from (B.17):

cosnf ad
n = et E Amnr™ cosmé, T < 2[(], (B.24)
m=0
where
(=pmin ][°°M+K “1.2
Apn = mAn—1g2u¢ gy, B.25

Antisymmetric multipoles

Multipoles which are singular at (¢,¢), ¢ < 0, and antisymmetric
about x = £ can be written

. 1" e
¢n:smn€_ (-1) ]€ “+Kun—1eﬂ(z+0sinuXdu (B.26)

™ (n—1)! u—K
— n .
FZEE® keh0) HKX 4g 5t (B.27)
(n—1)!
The imaginary part of ¢, is given explicitly by

2r(—K)™

Im ¢, = _% K+ sin K X. (B.28)
n— 1)
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Alternatively, provided = /=£, we can write

2r(—K)" K(z4¢) oiK|X]|
On + Tl)' sgn(X)e e
sinnf 1)" sgn(X) un1 e‘"'xI
=— =1 e gn(p)dp (B.29)

2sgn(X) [ urle ”|X| .
= (n—(l)') i ,u2+K2 (ncos pz + K sin pz) fr(p) du, (B.30)

where
gn () = Im [I" (4 — 2ipK — K2) (40| (B.31)
and
—1)*2(—psin u¢ + K cos n even,
(1) = ( )(n_(1 )//2» I7e yC) (B.32)
(-1 (ncosu¢ + Ksinu¢) n odd.
A power series expansion can be obtained from (B.26):
sinnf
bn=—0 Z Apnr™sinmf, 7 < 2/¢], (B.33)

m=1

where Ay, is again given by (B.25).

Wave-free potentials

It is clear from (B.18) and (B.27) that in both the symmetric and anti-
symmetric cases, the combination v, = ¢p41 + Kn~ '¢,, n=1,2,3,...
corresponds to a wave-free singularity. In the symmetric case we obtain

__cos(n+1)0 N Ecos né N cos(n+1)8; K cosnb,

S = -— B.34
¥n rntl n re rrt n Ty (B-34)
and in the antisymmetric case
. sin(n+1)§ Ksinnd sin(n+1)6; K sinnb,
= — — — . B.35
¥R e T (B.35)
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When the singularity is in the free surface these reduce to 43, = 0,
¥&,_1 =0 and (see Ursell 1949)

cos 2nf K cos(2n—1)60

Yoy = o T 1 a1 (B.36)
sin(2n+ 1)0 K sin2nf
Won = RS R W (B.37)
——

B.2 Two dimensions, finite depth

In this section we consider solutions of Laplace’s equation in two di-
mensions which are singular at = &, z = { < 0 and which satisfy both
the free-surface boundary condition (1.13) and the bed boundary con-
dition (2.1). The coordinates that are used are illustrated in Figure 13.2
and we use the same notation as in §B.1 together with
r2=[(@ =€)+ (2 + ¢+ 20)7)2, 25 = max(z,¢), z< = min(z,().

The definitions of k£ and k.,,, N,,, m =0,1,2,... are those of §2.1.

Submerged source

A submerged source situated at z = (£, (), ¢ < 0 can be written
[ee]
X
¢ = In —2% cosp
71 o coshuh

cosh u(z + h)coshu(¢ +h) e Hh | '
h hu¢|dp (B.38
X [ usinhuh—Kcoshuh + 7 sinh pzsinh u¢ | du ( )

FRNZ cosh k(z + h)cosh k(¢ + h)ef*X as 2 — +oo. (B.39)

kh
The imaginary part of ¢ is given explicitly by
Im ¢ = ——— cosh k(z + h) cosh k(¢ + h) cos kX. (B.40)
khN0

Two alternative integral representations are

T2 °°e_"h
+ln——2][
h 0 H

In—

"

» (1 + K) cosh u(z + h) cosh u(¢ + h)
psinh ph — K cosh ph

¢ =

cos uX + 1] du (B.41)
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=C
z=h
z=—2h—C ;
|
=
FIGURE B.2

Coordinates used in two dimensions for the finite depth case.

(this formula is given incorrectly in both Wehausen and Laitone 1960,
eqn 13.34, and Mei 1983, p. 382) and

*° K sinh pzs + pcosh pzs
o  pMsinh ph — K cosh ph

b= —2 cos uX

cosh u(z< + h)

dp. (B.42)

Provided z /=£, ¢ can be expanded as a series of eigenfunctions:

p==3 kh% €08 ki (2 + ) €08 ki (C + R) e Fm X1 (B.43)
m=0"T m

Free-surface source

An expression for a source situated in the free surface at z = £ can
be obtained from (B.38) by setting r = ry, { = 0 and (so that we still
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have ¢ ~ Inr as 7 — 0) dividing the result by two. Alternatively we
may write

¢ ][oo " cosuXd
=— cos uX dp
o n—K
N ][OO e H#h (K sinh puz 4 pcosh pz)
o (u— K)(K cosh ph — psinh ph)

cospX du, (B.44)

where the first term is just the infinite depth free-surface source (B.13).
The imaginary part of ¢ is given explicitly by

i
= — B.45
Im¢ SKANZ cosh kh cosh k(z + h) coskX ( )
and
i +ik X
¢ ~ —M cosh kh cosh k(z —+ h) € as x — Foo. (B46)

A power series expansion valid for |z| < 2h (r /= 0) can be obtained
from (B.44) as shown in Yu and Ursell (1961). The expansion is exactly
as for the infinite depth case, (B.16), with the addition of the term

oo
E Apr™ cosmd,

m=0
where
1 0o u2s+1 e—uh

Ay — — d B.47
2 (25)!]% (¢ — K)(usinh ph — K cosh uh) K (B47)

K oS} u2s+1 e—uh
A = du. B.48
2stl (2s + 1)!]% (¢ — K)(usinh ph — K cosh ph) o )

Symmetric multipoles

Multipoles which are singular at (£,¢), ¢ < 0, and symmetric about
x = € can be written
_ cosnb 1 ]["O uteosuX
"o (n—1'Jy wpsinhpuh — K cosh ph

fa(p)dp,  (B.49)

where
fn(p) = e #EHR) (K sinh pz + pcosh pz)
+ (=1)"(u+ K) e** cosh u(z + h). (B.50)
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An expression for ¢, as a single integral, analogous to (B.42), can be
obtained by using the integral representations (B.2) and (B.3); the form
of the resulting expression depends on whether n is odd or even. This
could then be used to derive an eigenfunction expansion for ¢,, analo-
gous to (B.43), if required. Similar remarks pertain to the antisymmetric
multipoles discussed below.

The imaginary part of ¢, is given explicitly by

k™! coshk(z + h)

Imén = = N2t — 1)1

( e REHR) 4 (1) ek(c"'h)) coskX
(B.51)

and as £ — *oo

7ik" 1 cosh k(z + h) o—K(CHR) x -
~ —1)" (C+h) ) oHikX ) )
¥ 2hNZ(n — 1)! ( H=D)e ) € (B.52)

A power series expansion can be obtained from (B.49):

cosnb

oo =" Z Amar™ cosmf, 1 <2|(], (B.53)
m=0
where
1 R p,m+" 1
Apn = '
™ oml(n — 1)!]% psinh ph — K cosh uhgmn(u) dp  (B.54)
with
gmn(ll') = ([l,—l- K) ((—1)m+" et (2¢+h) +((_1)m + (_l)n) e_”h)
+ (u— K) e r(2CHR) (B.55)

Antisymmetric multipoles

Multipoles which are singular at (£,¢), ¢ < 0, and antisymmetric
about = £ can be written

. oo el .
n = Slrrl:o + (ni 1)!]% ,usm}lll,uh Slrllfli)(fsh uh'™ fnlp)dp,  (B.56)
where
fa(p) = e PEH (K sinh pz 4 pcosh pz)
— (=)™ + K) e cosh u(z + h). (B.57)
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The imaginary part of ¢, is given explicitly by

k™ ! coshk(z + h)
2hNE(n — 1)!

Im ¢, = (e—k(c+h> —(=1)" ek(C+h>) sin kX

(B.58)
and as £ — £00

wk™ ! coshk(z + h)
2hNZ(n — 1!

b~ £ (e_k(c+h) —(=1)" ek(C+h)) etikX  (B.59)

A power series expansion can be obtained from (B.56):

b = S“T‘:@ + 3 Amar™sinmd, <2/, (B.60)
m=1
where
A = ——+ ][oo i (W)dp  (B.61)
T oml(n — 1) ,usinh,uh—Kcosh,uhgmn e '
with
Grmn () = (1 + K) (=177 D) _((—1)™ 4 (~1)™) e7H)
+ (u— K)e #EHR) (B.62)

Wave-free potentials

Wave-free singularities can be constructed as for the infinite depth
case. Equation (B.52) shows that in the symmetric case the potentials

k k
$an + T coth k(¢ + h)p2n_1, P2n+1 + 5= tanh k(¢ + h)gan

2n — 2n

are wave free and it follows from (B.59) that in the antisymmetric case
tanh and coth should be interchanged in these formulas.
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B.3 Three dimensions, infinite depth

In this section we consider solutions of Laplace’s equation in three
dimensions which are singular at x = &, y = 1, 2 = ( < 0 and which
satisfy the free-surface boundary condition (1.13). We use both spher-
ical coordinates (r,6, @), (r1,60;, @) and cylindrical coordinates (R, c, z)
defined by

r=[z—&+@w—n’+(=-9%"
mn=[&—&)>+@y—n") + =+,
(—z=rcosf, (+z=rycosby,
R= [(.’13—5)24—(y—772)]1/2 =rsinf = ry;sinfy,
z—&=Rcosa, y—n=Rsina.

Many of the formulas below involve the associate Legendre functions
P™(z). The definition of these functions that we use in this book is

2 den(a:)

Pr@) = (-1 (1 -2t

which corresponds to that used in Abramowitz and Stegun (1965) and
Gradshteyn and Ryzhik (1980), but differs by a factor of (—1)™ from
that used by Thorne (1953) and some other authors.

Solutions to Laplace’s equation in three dimensions which are singular
at r = 0 are 7"~ 1P™(cos §) cosma, n > m > 0. We note the following
integral representations of these singularities:

P (cos6 1™ e
rgzc+01 ):(T(l_)m)!/o pr et Jo(uR)dp, z<¢,  (B.63)
(=

:m/ pr et Jo(uR)dp, z>(. (B.64)
e

The special case n = m = 0 corresponds to a 1/r singularity which
represents a pulsating source of fluid and many of the expressions for
such a source can be obtained by simply setting n = m = 0 in the
corresponding expressions for the more general multipoles. The source
is such an important function, however, that it is worth describing it
separately.
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Submerged source

A submerged source situated at (£,7,¢), ¢ <0, can be written

1 Cpt K p(z+C)
== BT enl R B.65
b= 7+ B O (R (8.65)
11 *© 2K
_ T4 p(z+¢) R B.66
T+T1+]€ ,u—Ke Jo(uR)dp ( )
~2miK KO HIV(KR) as R — oo (B.67)

The imaginary part of ¢ is given explicitly by (B.78) with n = m = 0.
Alternatively, if R > 0,

¢ — 2miK X+ HIV(KR)

12 [ (p2— K?)cosp(z 4+ () + 2uK sinpu(z + ()
= ; + ;'/0 ’uz e KO(NR) du
(B.68)
1 1 4K [* Kcosu(z+¢) — psinu(z +¢)
=4 - _ = Ko(uR .
” + n T 21 K2 o(uR)du
(B.69)

A power series expansion is given by (B.81), (B.82) withn=m =0.
Another expression valid for R > 0, due to Kim (1965) but implicit
in the work of Havelock (1955) and useful for numerical calculations, is

g=L4 1 _Kexiero [W (Ho(K R) + Yo(K R) — 2iJo(K R))

T T1
0 e—Kp
+2/ —du], (B.70
cre )7 :

where Hy is the Struve function (Abramowitz and Stegun 1965, Chap-
ter 12).

Free-surface source

A source situated at (£,7,0) can be written

1 © K ehz 0 uellz
¢== +]€ = 7 Jo(uR)dp = ]é = 7 Jo(uR)du (B.71)

~ 7K ef* H{"(KR) as R— oo. (B.72)
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The imaginary part of ¢ is given explicitly by
Im ¢ = 7K X0 Jy(KR). (B.73)

An expansion in terms of spherical harmonics, valid for all » > 0, can
be obtained as shown in Hulme (1982):

n(cos )

_KZ(_U"%{(K?VPU(COSQ)} . (B74)

Multipoles

Multipoles singular at (£,7,¢), ¢ < 0, are of the form ¢} cosma and
ont sin ma, where

m  Pt(cosf )™ [Cu+ K
$n = Ti+1 ) (T(l—Zn)']é Z_Ku =+ J (uR)dp (B.75)
h 2(7”( ))IK"“ KO HO(KR) as R— oo (B.76)
m
omi(—1)" . 2\ o nme s )
~ (n( m)) Kt oK (z40) (wKR) e (KR=2-3) 4 O(R™1)
as R co. (B.77)

The imaginary part of ¢7" is given explicitly by

m(=1)" +1 oK (2+
Im ¢ = —K" 2+ I B.78
m—m)! (KR). (B.78)
Alternatively, if R > 0,
o — Py(cost)  2(-1)" /°° P Km(uR)
n T pn+l aln—m)! Jo p2+ K2

2mi n 2
ﬁx +1eK(=+0) g)(KR) (B.79)

= - m)! / 2 ) (s cos -+ K sin 1z) ()t

2mi(=1)" 41 K (z+0) (1)
(n—m)! K HY’(KR), (B.80)

Gn—m (1) dp

+
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where gn(u) and fr,(u) are given by (B.22) and (B.23), respectively. A
power series expansion is obtained from (B.75):

_ P™(cosf) |

P o Z Ansr® P (cos ), r < 2[¢], (B.81)
T s=m
where
(_1)m+n+s ][mN+K
Am = n+s Zp.cd ) B.82
S T kT e (B8

Wave-free potentials

From (B.76) it is clear that the combination

K
T+1+WJrl n, n=123,...

corresponds to a wave-free singularity. Thus

= P 1 (cos ) K P™(cos9)
mo pnd2 n—-m+1 il
Pr 1 (cosby) K P (cos6y)
— B.83
+ T;L+2 n—m+1 ’I‘;H_l ( )

represents a wave-free potential. This formula is given incorrectly in
Wehausen and Laitone (1960, eqn 13.21). When the singularity is in the
free surface these potentials reduce to zero unless n + m is odd. In that
case we obtain two distinct sets of wave-free potentials:

om _ Pavt(cos) K P (cos®) (B.84)
2n T T2n+1 o — 2m ’I‘2" » .
Al Pyt (cos6) K PI™*(cosf) B.&5
2n+1 — T2n+2 2n — 2m T2n+1 ( : )
|

B.4 Three dimensions, finite depth

In this section we consider solutions of Laplace’s equation in three
dimensions which are singular at z = €, y = 7, 2 = ¢ < 0 and which
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satisfy the free-surface boundary condition (1.13) and the bed boundary
condition (2.1). The notation is as in §B.3 together with

ra =@ - &+ (y =) + (= + { + 20)°] /2,
zs = max(z,(), z< = min(z, ¢).

The definitions of k and kp,, Ny, m =0,1,2,... are those of §2.1.

’ ’ ’

Submerged source

A submerged source situated at (£,7,(), { < 0, can be written
1 1 i 2 K)erh
p=tiLy f 2p+ K)
r Ty o psinhph — K cosh uh
x cosh u(z + h) cosh u(¢ + h)Jo(uR)du (B.86)

B _2f°° K sinh pzs, 4+ pcosh pzs,
B o psinh uh — K cosh uh

cosh u(z< + h)Jo(uR)dp (B.87)

———3 cosh k(z + k) cosh k(¢ + h)H(l)(kR) as R—oo. (B.88)

hN
The imaginary part of ¢ is given explicitly by
Im¢ = hN2 cosh k(z + h) cosh k(¢ + h)Jo(kR). (B.89)
Provided R > 0, we can use the eigenfunction expansion
¢ = e cosh k(z + h) cosh k(¢ + h)HS" (kR)
2 k h k h)Ko(knR B.90
+mZ:1hN72ncos m(z+ ) cos m(<+ ) O(m ) ( .90)
> 2
= Z Nz 008 Em(z + h) cos km (¢ + h)Ko(km R) (B.91)
m=0 m

since Ko(koR) = Ko(—ikR) = ZHS" (kR).

Multipoles

Multipoles singular at (£,7,¢), ¢ < 0, are of the form ¢7* cosma and
¢t sin ma, where

m _ Lu'(cost) 1 ][°° W T (B £ (1)
o = o1 T (n—m)! Jy psinhph — K cosh ph du (B92)
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with
() = (—1)™ e P+ (K sinh pz + pcosh pz)
+ (=)™ (e + K) e¢ cosh u(z + h). (B.93)
The imaginary part of ¢ is given explicitly by
k™ cosh k(z + h)

I = ((—1ym e HEHh (1) eklCH0)) g, (kR)
’ (B.94)

and as R — o0

m kT coshk(z+h) ¢ s _k(cHh) 4 (_qym k(CHR)) F7(1)
O~ SR NE(n ((~1me (1) ) HOD (kR).
(B.95)
A power series expansion can be obtained from (B.92):
o ="t Z AT r Pl (cos), r<2l,  (B.96)
where
1 ©_ wgn(w)
AT — ns B.9
ne 2(n—m)!(s+m)!f0 wsinh ph — K cosh ph du (B-97)

with
G () = (1 + K) (1) bR L (—1)° 4 (—1)") e=*)
+(—D™(p — K)emHEHR (B.98)

Wave-free potentials

Wave-free singularities can be constructed as for the infinite depth
case. Equation (B.95) shows that if m + n is even the potentials

¢?+1 + tanh k(C + h)ﬁb?

n—m+1

are wave free, whereas if m + n is odd

m k m
D1 + pr— coth k(¢ + h)on

are wave free.
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B.5 Oblique waves in infinite depth

In this section we consider solutions of the modified Helmholtz equa-
tion which are singular at z = £, 2 = { < 0 and which satisfy the free-
surface boundary condition (1.13). The coordinates that are used are as
in §B.1. Throughout this section we will write

v=~{coshp (B.99)

for notational convenience. Solutions to (V2 — £2)¢(r, ) = 0, which are
singular at r = 0 are K, (fr)cosnf and K,(¢r)sinnf, where K, is an
n*® order modified Bessel function. The behaviour of these functions
for small arguments is given by (A.14) when n = 0 and by (A.15) for
n =1,23,.... We have the following integral representations (see e.g.

Ursell 1951):

oo

K, (¢r)cosnd :/0 coshnpucos(£X sinh ) e’*~Ddy, z < ¢, (B.100)

= (—1)"/00Céosh nucos({X sinhp) e~ dy, z> ¢, (B.101)

K, (¢r)sinnf = /OC;inh nusin(¢X sinh ) e~ du, 2z < ¢, (B.102)
0

= (-1t /0 “sinh nusin(¢X sinhp) e~ dy, = > ¢ (B.103)

Submerged source

A submerged source situated at (£,¢), ¢ < 0, can be written

* 2
¢ = Ko(fr) — Ko(¢r1) + ][ ” ”K cos(£X sinh p) e+ dy (B.104)

o V—
~2miKo el (EH0) eieX a5 R 00, (B.105)
where o = (K2 — £2)'/2, The imaginary part of ¢ is given explicitly by

(B.114) with n = 0 and a power series expansion is given by (B.115),
(B.116) with n = 0.
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Free-surface source

A source situated at (£,0) can be written

o=f

~7iKa tef?et®X a5 R oo (B.107)

cos (X sinh ) e du (B.106)

The imaginary part of ¢ is given explicitly by
Im¢ =Ko 'ef?cosaX. (B.108)
A power series expansion expansion can be obtained from (B.106) as
shown in Ursell (1962, 2001):
¢ = Ko(lr) + (wi — v) cothy Z en(—1)"I,(¢r) cosnb cosh ny
n=0
ad n O .
— 2cothy Z(—l) — {L,(¢r) cosvB},_, sinhny (B.109)
= ov
in which €, is the Neumann symbol defined on page 17 and ~ is defined
by the equation
K = fcoshy. (B.110)
If K > £, v is taken to be positive whereas if K < £ then v = iv*, where

~* is positive.

Symmetric multipoles

Multipoles which are singular at (£,¢), ¢( < 0, and symmetric about
x = € can be written

¢n = K, (€r) cosnb
+ (—1)"][ A(p) cosh g cos (£X sinh ) eZ+9) dp (B.111)
0
~2mi(—1)"Ka ' eX(+9) coshnry eFi2X a5 ¢ — +o0, (B.112)

where a = (K? — £2)'/2 and

A(p) = . (B.113)
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If £ > K these multipoles are real but if £ < K the path of integration is
indented to pass beneath the pole at yu = vy (defined in equation B.110)
and the imaginary part of ¢,, is given explicitly by

Im ¢, = 27(—1)" Ko~ eXZ+0 coshny cos a X. (B.114)

A power series expansion can be obtained from (B.111):

¢n = Kp(fr) cosnd + Z ApnIm (1) cosmé, (B.115)

m=0

where

Amn = em(—l)"”'"][ coshmyp coshny ¢ A(p) dp. (B.116)
0

Antisymmetric multipoles

Multipoles which are singular at (£,¢), ¢ < 0, and antisymmetric
about x = £ can be written

¢n = Kp(fr)sinnd
- (—1)"]£ A(y) sinhnpsin (£X sinh i) €49 dy. (B.117)
0
~ F2r(-1)"Ka 1 eKEH D sinhny etloX a5 ¢ — 400, (B.118)

where A(p) is again given by (B.113). These functions are real if £ > K
and if £ < K the imaginary part of ¢,, is given explicitly by

Im ¢, = —2m(—1)"Ka~! K+ sinhny sin o X. (B.119)

A power series expansion can be obtained from (B.117):

¢n = Kn(fr)sinnb + > Apnln(lr)sinmf, (B.120)
m=1
where
Ampn = 2(—1)"”’"][ sinhmu sinhnu e®¢ A(u) du. (B.121)
0
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Wave-free potentials

It is clear from (B.112) that the combination of symmetric multipoles
given by

Y5 = gon—2 + 2KL ' on_1 + ¢2n (B.122)
= Kopn_2(fr) cos(2n — 2)0 + 2K0 ' K2, _1(£r) cos(2n — 1)6
+ Kon(€r) cos2nf, (B.123)

n = 1,2,3,..., corresponds to a wave-free singularity, whereas from
(B.118) it follows that the combination of antisymmetric multipoles

Yn = bon—1 + 2KL7 $2n + Gant1 (B.124)
= Kap_1(fr)sin(2n — 1)0 + 2K £ K2, (¢r) sin 2nf
+ Kopt1(€r)sin(2n + 1)6, (B.125)
n=123,...,is wave free.
I

B.6 Oblique waves in finite depth

In this section we consider solutions of the modified Helmholtz equa-
tion which are singular at z = &, z = ¢ < 0 and which satisfy both the
free-surface boundary condition (1.13) and the bed boundary condition
(2.1). The coordinates that are used are as in §B.2 and v is again defined
by (B.99). The definitions of & and Ny are those of §2.1.

Symmetric multipoles

Multipoles which are singular at (£,¢), ¢ < 0, and symmetric about
x = £ can be written

°° coshny cos (£X sinh )
vsinhvh — K coshvh

¢n = K, (€r) cosnb + ][ fa(v)du, (B.126)
0

where f, is defined in (B.50). If £ > k these multipoles are real but if
{ < k the path of integration is indented to pass beneath the pole at
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p = = cosh™!(k/£) and the imaginary part of ¢, is given explicitly by
T (e—k(c+h) +(=1)» ek(c+h))
2ahNg

Im ¢, = coshnycoshk(z + h) cosaX,
(B.127)
where a = (k? — £2)1/2. As ¢ — Fo00
i (e—k(c+h) +(=1)» ek(C+h))

+iaX
n SR NE coshnycoshk(z + h)e™'o* |

(B.128)

A power series expansion can be obtained from (B.126) and we find
that ¢, can be written as in (B.115) with

4 _Em ][“’ coshmu coshny
™2 Jo vsinhvh — K cosh vh?

where €,, is defined on page 17 and g, is given by (B.55).

(V) A, (B.129)

Antisymmetric multipoles

Multipoles which are singular at (£,({), ¢ < 0, and antisymmetric
about z = £ can be written

) *sinh nyu sin (X sinh u)
=K
In n(fr)sinné + ]% vsinhvh — K coshvh

where f,, is now defined by (B.57). These functions are real if £ > k and
if £ < k the imaginary part of ¢, is given explicitly by
T (e—k(c+h) —(=1)" ek(c+h))

fa(v)dp,  (B.130)

Im¢, = SahNZ sinhnvy cosh k(z + h) sin X,
(B.131)
where a = (k2 — £2)1/2. As ¢ — +o0
e—k(C+h) _(_1)m ek(C+h) '
O ~ +7 ( 2afENg) ) sinhny cosh k(z + h) eieX
(B.132)

A power series expansion can be obtained from (B.130) and we find
that ¢, can be written as in (B.120) with

*®  sinhmu sinhny
= d B.133
mn ]% Usinh vh — K cosh thmn(l/) I, ( )

where gmn is given by (B.62).
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Appendix C

Principal-value and finite-part
integrals

For the interval [a,b], denote by C™[a,b] the space of functions with n
continuous derivatives and by C™%[a, b], a € (0, 1], the space of functions
with n Holder continuous derivatives.

For a function f € C%%[a,b] a Cauchy principal-value integral is de-
fined by

b s—e b
Pl [ M [ 00) e

For f € C'a,b], integration by parts gives the regularization

b b
F L = @ - @) - OG- 9+ [ Somls—da

(C.2)
Further for f € CY*[a, ], it follows from (C.2) that
b
f(t) fla) }[ F't)
— = . 3
dsas—tdIt s—a b—s d (C.3)

For f € CY%[a,b] a two-sided Hadamard finite-part integral of order
two is defined by

SRR (Ve () A, 26()
7{<s—t>2dt:35%{/a ot G }
(C.4)
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which has the regularization

][6 f®) qo__fla)  f) f"f’(t) d@t (C.5)

(s—1)? s—a b-—s

Comparison of (C.3) and (C.5) gives

d L270) . [ f®)
= as_tdt——]{ ot (C.6)
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