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PREFACE 

Methods and models in statistics: 
in honour of Professor John Neider, FRS 

This book contains written versions of papers presented at a two-day 
symposium in March 2004 in honour of Professor John Neider, FRS. John 
Neider is one of today's leading statisticians, having had a fundamental 
impact on a variety of areas of data analysis. The papers here have been se
lected to indicate the breadth of that impact. They range from the collection 
of data (Bailey on experimental design), over the fundamentals of statistics 
(Cox), through statistical modelling (Cullis, Smith, and Thompson, Wake
field, and Ripley), via statistical computing (Payne), to generalisations of 
that core statistical concept of likelihood (Pawitan, Lee). Also included is 
a biographical sketch of John, by Senn, and a bibliography of John's works 
to date (he is still carrying out and publishing important work). 

Readers may not know that John is also a keen ornithologist. In recog
nition of this, we have included here one of his earliest papers, a paper that 
combines his statistical and ornithological interests: A statistical examina
tion of the Hastings Rarities. 

Niall M. Adams, Martin J. Crowder, David J. Hand 
and David A. Stephens 

Imperial College 
March 2004 
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FOREWORD 

I have not been generally in favour of Festschrijts, finding that often the 
contributions did not seem to make any sort of consistent story. Now that I 
am on the receiving end of one, it is a pleasure to find that the contributions 
in this volume combine to give such a good view of the present-day practice 
of statistical science. 

Beginning with Finney's definition of our subject as 'making sense of 
numbers' we can immediately see what a complex business this is going to 
be. We have only to begin with the thought 'how were the numbers collected 
and can they answer the questions we wish to pose?' I was brought up in 
the Rothamsted tradition where matters of design were taken especially 
seriously. When I first went there I was given some complex experiments on 
trace elements to analyse, the designs having split rows and columns, with 
further subdivisions. I was able to construct the form of the anova tables 
from what I had learnt, correctly I believe, but then I began to wonder what 
the rules actually were. After a long period of gestation a formal description 
of the rules for a large class of (generally balanced) designs appeared my 
1965 papers in Proc. Roy. Soc. (A). BAILEY has ably summarized what 
has happened since then, much of the work originating with her, and using 
tools I did not possess. Given the vital necessity of good design, why are so 
few statisticians given a thorough grounding in it? 

Between design and analysis comes the actual execution of the exper
iment. All too often this phase is regarded as the sole job of the experi
menter, but I believe that every fully-trained statistician must have done 
an experiment. Experimentation is not as easy as many people think! 

After execution comes analysis, an endlessly fascinating exercise. We 
have to define a statistical model class and then assess how far the patterns 
that they define express the pattern in the data satisfactorily. There is 
always the possibility that no member of the class is adequate. This, I 
believe, is what happened with the famous stackloss data, in which as Dodge 
showed, all but five of the 21 data values had been found by someone to 
be an outlier of some sort. By broadening the model class from classical 
normal models to GLMs, I was able to show that there is a simple model in 
the wider class in which no outliers whatever appear! RIPLEY shows how 
difficult this process of extension and selection can be. We still have much 
to learn here. 

After fitting a model and summarizing the results via parameter esti
mates and associated estimates of uncertainty, we then should be checking 
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to see if the fit is internally consistent. This process of model checking, 
whose elements are so clearly described by COX, is, I believe, grossly un
derused in the current statistical literature. Increasingly powerful software 
makes it ever easier to fit more and more complex models, but this is of no 
help if a simple plot then shows clearly that the model cannot be right. 

There have been two important extensions of classical normal models 
in the last 30 years or so; GLMs and linear mixed models. The first ex
tended the distribution class and the scale on which additivity was defined, 
while the second allowed random effects as well as fixed effects, the errors 
remaining normal. It was obvious to ask if these two extensions could be 
combined, with random effects occurring in the linear predictor of a GLM; 
they can, of course, and the resulting models are known as generalised lin
ear mixed models (GLMMs). It is also worth asking if the distribution class 
of the random effects can itself be extended, as in the generalization of 
normal models in GLMs. The answer to this will be found in LEE's paper, 
which describes some of our joint work over some 15 years. He shows that 
a class where the random effects have a GLM conjugate distribution can 
be fitted with a single algorithm. Other major aspects of the work that he 
writes about are the joint fitting of models for mean and dispersion and the 
introduction of random effects into the model for the dispersion. This last 
extension, which has become popular in the modelling of financial data, 
will, I believe, be found to have applications in many other fields. By using 
the idea of h-likelihood as a criterion for fitting the models. The analysis 
of the whole class reduces to the fitting of an interlinked set of GLMs. The 
idea of h-likelihood is described from a different perspective by PAWITAN, 
together with an acute analysis of the place of likelihood in both modelling 
and inference. 

Although we have code for fitting our new model class (double hierar
chical generalized linear models (DHGLMs)) it is simple-minded and does 
not take any short cuts. The paper by CULLIS et al. shows how efficient 
algorithms can be written for GLMMs. I look forward to an extension of 
their ideas to our wider class. 

The class of DHGLMs, described by LEE, though in many ways of 
considerable generality, relies on linearity through the linear predictor. It 
does not include non-linear models of the type dealt with by WAKEFIELD. 
I find it hard to visualize how random-effect models can be developed from 
general non-linear models. It cannot, or should not, be simply a matter of 
adding random effects on the end of a complex non-linear function. This 
looks like a fruitful area of future research. 
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Underlying all the papers is the absolute necessity of having the com
puter as a working tool, to organize complex data, to fit models, to simulate 
sampling distributions etc. PAYNE gives a good history of the develop
ment of statistical computing in Britain. Those of us concerned learnt a 
lot, though it is disappointing to find writers of software 30 years on who 
seem to have learnt nothing from our mistakes. (It is not wrong to make 
mistakes, but it is wrong not to learn from them.) 

Finally a self-reference: I am not sure if such is rated as good form, but 
I could not resist the temptation to reprint a paper of mine from 1962, of 
which few statisticians are aware. It concerns an analysis of extraordinary 
numbers of bird rarities occurring in the Hastings area at the beginning 
of the last century. Many readers of the Witherby Handbook had noticed 
these records, but, with Hilary Fry's help, I decided to analyse them. I then 
found that two eminent ornithologists, Ferguson-Lees and Nicholson, were 
making their own enquiries on how the deceptions might have been carried 
out. Our papers constituted an entire issue of the magazine British Birds 
on this one topic, resulting in enormous interest among ornithologists. The 
result was the deletion of several hundred records from the official British 
list. This occurred just after one author had completed his five-volume work 
on British birds, in which all the Hastings records were accepted as genuine. 
Here the statistical techniques verged on the trivial, but the consequences 
were anything but trivial. 

I recommend the papers in this book to anyone wanting a view of the 
way that statistical science is developing, and I thank the authors for their 
kind remarks about my contributions. 

John Neider, Imperial College, 2004 
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JOHN NELDER: FROM GENERAL BALANCE TO 
GENERALISED MODELS (BOTH LINEAR AND 

HIERARCHICAL) 

Stephen Senn 
Department of Statistics 

University of Glasgow 

A personal portrait of some aspects of John Neider's life, personality and work 
is given. 

Introduction: some personal remarks 

Some personal remarks are in order, since the reader will be baffled as 
to how a medical statistician such as myself, a practitioner rather than a 
theoretician, can be a suitable person to give an overview of John Neider's 
work in statistics, which has been powerful and deep, and whose importance 
is only 'applied', rather than 'theoretical', in the sense that it is of great 
utility to many practitioners in many fields. In fact, this introduction will 
provide more of a plausible excuse than a valid reason but at least the 
reader will have some understanding as to why I am writing this. 

I first met John Neider when we were both lecturers at the annual 
one-day meeting of the Swiss Statistical Association in the early 1990s. 
John's lecture made more of an impression on me than my own since I can 
remember that his was about 'significant sameness' but cannot recall what 
I lectured on (either baseline balance or cross-over trials). There was little 
opportunity for us to talk to each other and I doubt that we exchanged 
more than a few words. We next met at the annual meeting of the PSI 
(Statisticians in the Pharmaceutical Industry) at Bournemouth in 1996. 
John lectured on Hierarchical Generalised Linear Models (of which more 
anon) and I on portfolio management but again we exchanged very few 
words, although I remember the meeting for another contribution of John's 
and that was that it was the first time I heard him play the piano. (This will 
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also be covered anon.) However, shortly after the Bournemouth meeting I 
saw John standing on Harpenden station. I think all who know John will 
agree that he has an unmistakable appearance: that of a tall, commanding 
and striking figure who would satisfy any schoolboy's prejudice as to what 
a scientist should look like. (For some reason the old-fashioned English 
slang word 'boffin' springs to mind.) There was no mistaking the man and 
I plucked up courage and introduced myself properly to John this time and 
have counted myself as a friend, almost from that instant. 

John lives with his wife Mary in the village of Redbourn, which is only 
three miles from Harpenden, in which is situated Rothamsted research sta
tion, the statistical department of which has counted Fisher, Yates and 
also, of course, Neider, amongst its heads. It is a curious fact that inter
ests me that the rudest letter (with possible exception of one addressed 
to John Thkey) in the collected statistical correspondence of the first head 
of statistics at Harpenden 1 is addressed to the man who was destined to 
become the third. From that you can judge that John Neider is not de
terred easily. Harpenden also has the nearest and most convenient station 
to Redbourn for getting into London. Although John took early retirement 
from Rothamsted aged only 60, this made no difference to the interest he 
has had from an early age in statistics and he has been travelling in by 
train to Imperial College ever since. Since we are gathered here at Imperial 
to celebrate John's 80th Birthday, it is a simple calculation to determine 
that he has been doing this for 20 years. For seven of those years I was in 
the fortunate position of being a frequent travelling companion of John's, 
since from 1995-2003, while working at University College London, I lived 
in Harpenden and after our 1996 introduction frequently found myself on 
the same train as John. 

In fact, John's train-travelling habits have another relevance here since 
they exhibit many features that also find a parallel in his justifiably famed 
problem- solving and algorithmic abilities. First of all there is the choice of 
train. If you wish to get into London of a morning from Harpenden without 
paying peak time rates, you must wait until after 09:30. The first train is 
then a slow train, which stops at every station (of which there are eight) 
between Harpenden and King's Cross. The second is a fast train that only 
stops at St Albans. However, the second is scheduled to arrive after the first 
but it only has four carriages as opposed to eight and you frequently have 
to stand on your way to town. I think you are beginning to perceive that 
this is a problem with many variables. John's default choice is to take the 
earlier train but he always pays keen attention to the leader board and will 
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adjust his plans accordingly. (As a Swiss, I can't resist making the comment 
that such adjustments are more frequently necessary for travellers in John's 
country than in mine.) Then there is the choice of seat. John always makes 
for the same seat, which is facing the direction of travel at the back of 
the train and next to an exit. The reasons for this choice are not declared 
by John but I note for the benefit of the curious that this seat a) allows 
adequate leg room for a tall man b) Permits the traveller to see what 
is happening on the line c) Permits quick exit from the carriage and d) 
Deposits the traveller directly opposite the entrance to the underground, 
which facility he will wish to use if proceeding to Imperial College from 
King's Cross. John is always very disappointed if his seat is taken. 

A frequent companion on our travels in to London had been Michael 
Healy, who lives in Harpenden and it is entirely appropriate, and a very 
great pleasure to me, and I am sure also to John, that Michael should be 
giving the after-dinner speech at this meeting. Travelling in with these two 
wise old men has often made me feel very foolish although, occasionally, 
despite the fact that they are both very sprightly, it has had the side-effect 
of making me feel young. 

When travelling with John you will need to be warned of a few things. 
First he is very interested in statistics, second, he believes you are too and 
third he pays you the compliment of assuming that you know more or less 
everything about statistics that he does, except, perhaps, what he has just 
recently discovered. In my case, he is wrong about the last of these by a 
very big margin and, although I have received a considerable and valuable 
education travelling in with John over the years and had many enjoyable 
discussion with him on the subject, I have also frequently emerged from a 
journey feeling a bit of a fraud. John likes talking about likelihood, be it 
conditional, joint or marginal, penalised, pseudo or quasi or even extended 
quasi, partial, restricted or profile or, latterly, hierarchical. In particular, 
John takes a poor view of those who confuse pseudo and quasi-likelihood 2 

and I fear that I do not even know enough about these two to confuse them. 
To claim I confused them would be as misleading as to say that I found it 
hard to tell the difference between Czech and Slovak. As well as likelihood, 
what John doesn't know about deviance is not worth knowing. (This is 
a dangerous statement to take out of its statistical context and must be 
interpreted intelligently.) 
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Childhood 

The Child is Father of the Man 
Wordsworth 
I want also to say something about John's childhood, as I think that this 

gives a clue to his personality and also to some qualities of his work. John 
has described his childhood as idyllic and apologised for the term, because 
he is aware that it is a cliche but knows that it was so. He was born the 
son of the son of the son of a hotel-keeper3 in Brushford near Dulverton, a 
small town in Exmoor and in the beautiful valley of the Barle, close to its 
confluence with the Exe. He has had this to say about himself as a child 

"We swam in the river. We flooded a piece of a field in the winter in case 
there was enough ice to skate on, which was not very often. I went every
where on my bicycle, up to the edge of the Moor, and into the woodlands 
that bordered the rivers Exe and Barle. I think it's hard to imagine a nicer 
place with no restrictions on where we could go. We collected plants and 
mounted them in books. I loved the long names of the families - caryophyl
laceae, scrophulariaceae and so on. We collected birds' eggs, something that 
of course would be absolutely forbidden today. We collected butterflies. We 
learned a lot about natural history from what we simply discovered in our 
movements around." 3 

This conjures up a delightful image in my mind of John as a child of 
nature in some latter-day Garden of Eden looking on everything in delight 
and wonder but consumed with the sort of overwhelming curiosity that got 
mankind into trouble in the first place. John is, in fact, a great gardener, or 
perhaps it would be more accurate to say that Mary is a great gardener and 
so is John (they have a most beautiful and extensive garden at Redbourn). 
John is also a keen amateur ornithologist and has applied statistical rea
soning to this. Also, of course, all of his working life he has worked at an 
agricultural research station, first at Wellesbourne and then at Rotham
sted. I think that a love of nature has been a constant of his life. But I 
think that the relevance of his childhood goes beyond this. I am convinced 
that John sees statistics as one great big garden and he is determined to 
go about in it and discover all the possible varieties of likelihood that there 
are, encourage them to flourish, determine which one grows best in which 
soil, and show how they are connected to each other. 

I also find it revealing and interesting that John refers to 'we' in this 
piece, a reference to his brother. Even in his early scientific investigations 
there was a collaborator. A key feature of his scientific career has been 
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his many successful collaborations with one other statistician, so we have, 
Hammersley and Neider on simulation4 , Neider and Mead5 on a simplex 
method of optimisation, Neider and Wilkinson creating Genstata, Neider 
and Wedderburn on generalised linear models6 and then an important book 
on the same subject by McCullagh and Nelder7 and finally (for the moment 
at least) Lee and Neider on hierarchical generalised linear models8 . 

The section quotation is from Wordsworth's famous poem, which begins, 
'My heart leaps up when I behold 
A Rainbow in the sky'. 
I am sure that John's does too. As I have already stated, his love of 

Nature is very deep, but he has the advantage over Wordsworth that it also 
leaps up when he beholds data. Or to adapt the language of Apocalypse 

Now, he could say, 'I love the smell of data in the morning'. To give an 
example, a few years ago I drew John's attention to a witty article by 
Yadolah Dodge9 looking at the history of attempts to analyse Brownlee's 
famous stack-loss data 10 . Dodge identifies 60 analyses of the data by various 
authors and points out that of 21 data points given by Brownlee only five 
have been identified as an outlier by nobody. Now something like this is 
a challenge to a man of John's mettle and, sure enough, we now have a 
further paper in the statistical literature by John entitled, 'There are no 
outliers in the stack-loss data' 11 . 

General balance 

The first of his many important contributions to statistics that I wish to 
discuss did not, however, start as a collaboration, although it later led to 
a collaboration with Graham Wilkinson in Adelaide. Let John speak for 
himself: 

"During my first employment at Rothamsted, I was given the job of 
analysing some relatively complex structured experiments on trace ele
ments. There were crossed and nested classifications with confounding and 
all the rest of it, and I could produce analyses of variance for these designs. 
I then began to wonder how I knew what the proper analyses were and I 
thought that there must be some general principles that would allow one 
to deduce the form of the analysis from the structure of the design. The 
idea went underground for about 10 years. I finally resurrected it and con
structed the theory of generally balanced designs, which took in virtually 

aGentstat®- trademark information supressed hereafter 
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all the work of Fisher and Yates and Finney and put them into a single 
framework so that any design could be described in terms of two formu
las. The first was for the block structure, which was the structure of the 
experimental units before you inserted the treatments. The second was the 
treatment structure - the treatments that were put on these units. The 
specification was completed by the data matrix showing which treatments 
went on to which unit." 3 

In fact, this extremely powerful general framework of John's12•13 is the 
basis of the analysis of variance capabilities of Genstat, a result of his fur
ther collaboration with Wilkinson already alluded to. A very wide class of 
designs, including completely randomised designs, randomised blocks, split 
plots, Latin and Graeco-Latin squares, split-split plots, balanced incom
plete blocks, balanced lattices, Youden squares and many more14 , in fact 
all designs possessing the property of 'first-order balance', can be analysed 
using this approach. As far as I am aware, Genstat is the only package that 
does this and although I am not going to attempt to explain the property 
of first-order balance I am going to draw attention to an explicit feature of 
this whole philosophy of analysis of variance that is lost in many modern 
approaches to data-analysis. 

The feature is that a clear, and to my mind fundamental, distinction is 
drawn between blocking and treatment structures. Let me give an example 
from my own field, that of clinical trials. You could have a clinical trial in an 
indication in which you believed that the outcome would, other things being 
equal, differ strongly by sex. That being so you could decide to make sex 
a blocking factor by running two randomisation lists, one for men and one 
for women. Since, of course, you will have many patients of each sex under 
each treatment you have the structure of a two-way analysis of variance 
with replication. In a linear model you could have 'sex' as a main effect and 
'treatment' as a main effect and also investigate the interaction between the 
two. Such a model makes no distinction of type between sex and treatment 
and in nearly all statistical packages there will be no way of distinguishing 
them. Not so with Genstat in which you can declare 'sex' as a blocking 
factor and 'treatment' (appropriately) as a treatment factor. The point is 
that you have allocated the patients their treatments and these could have 
been different but you haven't allocated them their sexes and these could 
not and once you have declared one as a block and the other as a treatment 
Genstat will go on to encourage you to make different sorts of inferences 
about them. 
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Generalised Linear Models 

Skipping over much important other work of John's, not least his citation 
hit with Roger Mead5 on 'A simplex method for function minimization', we 
come to another stellar contribution of John's to modelling data, namely 
his paper with Wedderburn on generalised linear models. Appropriately 
enough this was published in that annus mirabilis of statistics 1972, a year 
that gave us not only GLMs but also proportional hazards 15 , Bayesian 
approaches to linear models16 and the log-rank test 17 . The statistical world 
changed and if it is now puzzling for medical statisticians to try and imagine 
what survival analysis looked like before David Cox's seminal paper, it is 
also difficult for applied statisticians generally to imagine what modelling 
was like before we had GLMs. Neider and Wedderburn was a paper that 
changed the statistical landscape for ever and it is simply impossible now 
to envisage the modelling world without it. 

That this is so is not without its irony and, although John may not be 
pleased to hear me say this, his later work on modelling has tended to have 
the effect of making his earlier work on general balance less relevant to us 
now. The very flexibility of GLMs has encouraged us to fit more things and 
differently. The randomised experiment with distinction between block and 
treatment factors, Normal error terms, correct and inevitable partitionings 
of variances determined by design, and close parallels between randomisa
tion and modelling approaches, seems to us now less like a commanding 
fortress of excellence, set somewhat apart in the city of inference, but more 
like a single apartment (albeit, perhaps, the penthouse suite) in the tower
block of data-modelling we all now occupy. 

Statistical computing 

John has been a major force in statistical computing but I think that his 
efforts in this direction have not always been crowned with the success that 
they deserve and, in this context, I am going to permit myself two critical 
remarks. 

First, Genstat, which is a magnificent package, with whose origins and 
development John has been intimately involved, has failed to make the im
pact it deserved. This, I believe, is partly traceable to an early decision by 
the developers to make it a powerful and flexible tool for the expert statis
tician but user-unfriendly to the amateur. This latter feature was always 
pointless, since there was no possibility of the Genstat developers dictat
ing what would happen in the world at large. Sure enough, other packages 
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concentrated on being user-friendly to the statistically inept and as a con
sequence huge quantities of misleading analyses are produced by all and 
sundry. But would things have been worse if the Genstat developers had 
also played this game? It is an irony that Genstat is now one of the most 
user-friendly packages there is. It has the best menu to command mode 
integration of any package I know and superb spreadsheet capabilities as 
well, in addition, of course, to all-round statistical capabilities. (As regards 
that, I can really only fault it on survival analysis. This reflects its agricul
tural origins since little work has been done on modelling the life-times of 
vegetables.) 

Second, the algorithms that were developed to exploit Neider and Wed
derburn's wonderful synthesis of 1972, were placed in a new package, 
GLIMb, rather than being immediately offered via Genstat. So the op
portunity was missed to make Genstat a package that everybody needed 
to have. GLIM and the GLIM community took off rapidly, especially in 
Britain, but in the long-term the sort of specialist package that GLIM was, 
was doomed to pass from being cutting-edge to superfluous. Now you can 
do your generalised linear modelling within SAS@, SPlus@ and, of course, 
best of all, within Genstat. 

Collaboration with Youngjo Lee 

In recent years, John has been extending our modelling capabilities by 
combining two different developments in data-analysis. The first of these, 
due to his work with Wedderburn6 , was to throw off the shackles of Nor
mality. The second, associated with the work of people such as Patterson 
and Thompson 18 , permits general handling of models for data with more 
than one error term provided that these errors are Normally distributed. 
Together with Youngjo Lee, John has been developing hierarchical linear 
models, that is to say models that, 'allow extra error components in the 
linear predictors of generalized linear models'. 8 Their approach to fitting 
these avoids the integration necessary in order to marginalise the likelihood 
over the unmeasured random effect and instead relies on a generalisation of 
the joint likelihood of Henderson, the hierarchical or h-likelihood. I think 
that it is fair to say that this work has met with some hostility, but this has 
not deterred John and Youngjo who bit by bit have revealed the supposed 
counterexamples to be false without, thereby, convincing all their critics. 

hGLIM®- trademark information supressed hereafter 
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Only the future will tell whether this work of theirs is eventually revealed 
as a misleading diversion or a true advance but either way it seems to me 
that two points are undeniable. First, that whatever repugnance some may 
feel for the philosophical basis of h-likelihood their modelling approach per
forms extremely well in practice. Second that their espousal of h-likelihood 
is causing many to think more deeply about the issues involved. 

I can only describe John's and Youngjo's collaboration with each other 
as marvellous. Despite considerable differences of age, culture and education 
and a formidable obstacle, even in this age of electronic communication, of 
distance, they have achieved a prodigious output of papers and clearly love 
working together. As the younger partner, it is perhaps understandable that 
Youngjo has been the more regular traveller and if you visit John either at 
Imperial or Redbourn you can often come across Youngjo. 

I have been racking my brains to think of similar bivariate statistical 
partnerships but can think of hardly any: Neyman and Pearson, perhaps, 
but I do not think that they published as often together as Neider and Lee. 
Fisher and Yates are two names that go together but in fact they have very 
little joint published work. Mather was a frequent published collaborator 
of Fisher but that was in genetics. The most appropriate equivalent part
nership, I believe, comes from mathematics and is that of Littlewood and 
Hardy. 

In summary: some personal remarks 

Where I live and work now, in Glasgow, I can walk to work in the time 
it previously took me to walk to the station in Harpenden. I do not miss 
travelling on Thameslink from Harpenden to London but despite that it is 
no contradiction to say that I do miss my Journeys with John. In addition 
to discussing statistics, John had the habit of showing me from time to 
time the latest offer from his wine club and asking me whether I would 
be interested in going halves on a crate. The answer was always, 'yes,' and 
John always delivered my share from Redbourn to Harpenden by car. When 
I have been asked by guests, for example, where I got a particularly curious 
and fine bottle of Lebanese wine, I have taken great pleasure in replying, 
"Oh I get them from my wine-merchant. His name is John Neider. He is 
also quite well-known as a statistician." 

I shall also miss the famous musical matinees at Crown Street, with 
the entertainment provided by John at the piano assisted by friends and 
colleagues and, at the interval, the table groaning with cakes made by Mary. 
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John is a very fine pianist and love of music must count, together with that 
of statistics and nature, as a major theme of his life. 

I wish John and Mary many more musical matinees and John and 
Youngjo many more papers together. 
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SOME REMARKS ON MODEL CRITICISM 

D. R. Cox 

Nuffield College and Department of Statistics 

Oxford 

To John Neider, on his 80th birthday 
Some general comments are made about the role of model criticism in statistical 
analysis and the relation of the corresponding methods to statistical theory 
more broadly. Types of procedure are reviewed with examples. 

1. Introduction 

Box (1980) introduced the term model criticism although the notion is 
much older going back at least to the informal use of least squares residuals 
in the 19th century and more formally to Karl Pearson's development of 
the chi-squared test of goodness-of-fit (Pearson, 1901). Box also coined the 
aphorism all models are false but some models are useful, raising immedi
ately the questions as to what makes a false model useful and as to why 
should we bother to criticize models that we know are false anyway. 

The organizers of this meeting asked for a paper on model criticism so 
that the second and easier question has to be answered, the answer pre
sumably being that the objective is to point the way, if appropriate, to 
more useful models, and so requiring at least a partial answer to the first 
question about model usefulness. There are various criteria that may be rel
evant; see, for example, Cox and Wermuth (1996, pp 18-20). These include 
providing a link with underlying theory or background knowledge, provid
ing a comparison with previous work in the field, suggesting a potential 
data-generating process, having parameters with individual clear subject
matter interpretations, specifying an adequate but not overelaborate error 
structure, including parameters representing key features of the research 
questions of interest regardless of whether these effects are "significant" 
and finally giving an adequate fit. 

13 
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A broad distinction, even if a bit fuzzy at the edges, may be drawn 
between on the one hand purely empirical statistical models and on the 
other hand substantive models that contain some specific-subject matter 
basis. In the former some combination of adequacy of fit, interpretability 
of parameters and simplicity a.re appropriate for judging model suitability. 
In the latter type, it may be unwise to abandon totally a type of model 
solely on the basis of lack of fit, especially at the edges of the region of 
investigation. 

There is the further implication that a procedure that at least points in 
the direction of potential improvement in the model is to be preferred over 
one that merely signals fit or lack of fit. 

The remainder of this paper focuses on the issue of fit. 
The detailed literature on examining model adequacy is vast and this 

short review centres around the following themes. First how does model 
criticism fit into some formal theory of statistical inference? Secondly what 
broad types of procedure are available and finally how do these procedures 
fit into statistical practice? 

For some purposes it may be helpful to distinguish model criticism from 
data criticism, the latter but not the former concentrating largely on the 
detection of relatively small numbers of anomalous observations. 

2. Formal theory 

We consider a parametric family of models Jy (y; 0) with () E Oo for observed 
random vector Y, the density depending also on data z not regarded as 
random and regarded as fixed. If there is a minimal sufficient statistic S of 
relatively small dimension the likelihood can be written in the form 

fs(s; B)!Yts(Y Is), 

so that the second factor is available for examining model fit. Are the data 
in some sense suspiciously extreme in their conditional distribution given 

S= s? 
While discussions of sufficiency typically focus on the role of the first 

factor, for the present purposes it is the second that is needed. 
For the normal theory linear model with unknown variance, S consists 

of the least squares estimates and the residual sum of squares and the 
conditional distribution is essentially that of the standardized residuals and 
any chosen function of them has in principle a distribution not depending 
on () or on s, the latter being clear on grounds of invariance. An explicit 
use of this kind of argument in a different context is by Fisher (1950) in his 
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examination of goodness of fit with the Poisson distribution. Given a series 
of observations Yl, ... , Yn and the model that they are a random sample 
of a Poisson distribution of unknown mean 0, Fisher suggested as possible 
tests of model adequacy the sample variance and the number of zeros. He 
obtained the exact conditional distribution of these given the sample mean. 
The former statistic gives essentially the chi-squared dispersion test which 
Fisher had set out much earlier. In principle similar arguments are possible 
when the parameter () is the canonical parameter of an exponential family 
distribution as in generalized linear models with canonical link (McCullagh 
and Neider, 1989). These arguments leave open the question of the choice 
of the function of the data to be used in the assessment of fit. This is clearly 
a crucial issue in that all data are extreme in some respect, as Neyman in 
particular pointed out. 

Box (1980), in effect following Fisher, suggested essentially an absolute 
test of significance in which the sample points are ordered in decreasing 
value of fvls(Y I s) and the probability calculated of a deviation as or more 
extreme than that observed. That is, a p-value is found using the ordinate of 
the conditional density as test statistic, small values being evidence against 
the model. There seem a number of objections to this as a general procedure. 
First there are obvious difficulties with continuous variables and while it 
can be argued that all real problems are discrete there would be some 
dependence on the mode of discretization adopted. More seriously, perhaps, 
it will not be true in general that the test statistic points to deviations in the 
direction or directions of substantive importance. This bears, in particular 
on the issue of whether a suspiciously small value of, say, chi-squared, is as 
strong evidence against a model as is a large value of chi-squared. 

For problems with no simple reduction by sufficiency one might re
gard the maximum likelihood estimate and the observed information ma
trix as approximately sufficient and consider the conditional distribution of 
Y given those two statistics which in well-behaved problems will have only 
slight dependence on the unknown 0. One could regard some of the pro
cedures for checking nonlinear models via simulation in this light. A more 
intuitive approach is to define residuals for each observation, or sometimes 
groups of observations and to plot these possibly computing summarizing 
statistics from them. A rather general definition of residuals and discussion 
of test statistics based on them was given by Cox and Snell (1968, 1969) 
but has rarely been used outside survival analysis for which there is a quite 
extensive special literature. 

So far it has been implicitly assumed that some procedure formally or 
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informally akin to a test of significance is involved. That is, we make some 
assessment of what the data ought to be like if the model were true, for ex
ample that the number of zeros in a Poisson series should be simply related 
to the mean. We then examine the data for consistency with that assess
ment and if the discrepancy is too great regard the model with suspicion. 

A different approach starts from the position that the model is at best 
a good approximation and that the problem should be regarded as one of 
estimating the distance between the assumed model and the "true" one. Let 
us skate over the question as to what the notion of a "true" model might 
mean. Then a distance has to be defined and in some contexts at least, for 
example the classical chi-squared goodness of fit with a special multinomial 
distribution, that is not difficult via the asymptotic expectation of the test 
statistic under the "true" model. Another appealing possibility with a long 
history for discrete data is to use a misclassification rate; the fitted pre
sumed false model can be used to classify individuals and the proportion 
misclassified can be used as a descriptor of model fit and also (Firth and 
Kuha, 2004) be the basis of formal procedures. The broad approach of es
timating a suitable distance parameter is explored systematically by in as 
yet unpublished work by B. Lindsay. A difficulty with this approach is that 
the measure of distance may be difficult to define in an interpretable way 
and more seriously that the estimate may give no clear indication of how 
the model might be improved if the distance is somehow judged too large. 

In a fully personalistic Bayesian discussion, in so far as I understand 
it, probability assessments cannot be wrong: they are what they are and 
provided they are coherent, i.e. internally consistent, that is all that is 
required. At a more pragmatic level there could be difficulties if either the 
data are in conflict with any model of the proposed form or if the data and 
the prior are discrepant. Thus a sample possibly from a Poisson distribution 
might have its variance approximately equal to its mean but a mean far in 
the tails ofthe proposed prior distribution. That would mean that either the 
data have a systematic error or that the prior is based on misconceptions 
(or both). If the prior is supposedly innocuous, or even chosen in the light 
of a surreptitious look at the data, this difficulty will not arise. If, however, 
as is an attraction of the Bayesian formalism, the prior is a serious attempt 
to include additional information, the issue of consistency of prior and data 
seems in principle important and rarely discussed. In so far as the prior 
can be regarded as pseudo-data, checks are certainly possible, although 
typically outside the Bayesian formulation. 
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3. Choice of criterion 

For the rest of the discussion it is assumed that model criticism consists 
of choosing some aspects of the model that can be predicted under the 
model and checking whether the prediction is satisfied, as judged possibly 
by a graphical procedure or by calculating the p- value of one or more 
statistics. These two methods of assessment are not in principle essentially 
different in that the graphical procedures cannot be interpreted except via 
substantial experience or via something akin to a simulation envelope and 
the relation of the latter to a p-value is clear. The notion of deducing some 
testable consequence of the model and then examining the consistency of 
the data with that calculation is no different in principle from that of testing 
consistency in a deterministic context. 

How should the criteria used for assessment be chosen? There is now a 
major difficulty. First in most applications one has some idea not just of the 
kinds of departure likely to arise but more importantly of the kinds of depar
ture of substantive interest, the most interesting of which may throw into 
question the formulation of the research question under investigation. On 
this count one would like criteria that focus on aspects of importance and 
also, although this is not essential, are diagnostic of the kind of modification 
required, ranging from checking and possibly discarding some observations 
to radical reformulation of the model or even of the research question being 
studied. To some extent the model failures likely to be important can be 
foreseen a priori. On the other hand there is always the possibility of some 
important effect of totally unforeseen kind. 

This leads to a classification of procedures ranging from the highly fo
cused to those that M.S.Bartlett termed omnibus tests. The former, consid
ered as tests, will typically involve a small number of degrees of freedom, for 
example if converted into chi-squared form, and may indeed essentially be 
based on estimates of either one or at least a small number of parameters 
in some model different from that under test. The omnibus tests will be 
based on a large number of degrees of freedom with a corresponding loss of 
sensitivity against specific alternatives. Somewhat equivalently an omnibus 
procedure may be based on inspection of residuals for any one of a large and 
possibly ill-specified range of anomalous features. There are a large number 
of such procedures. If they are intended to detect anomalous observations 
or small numbers of observations, smoothing of residuals is undesirable. 
Otherwise to detect "smooth" departures from an initially specified model 
implicit or explicit smoothing is needed. Thus Lin, Wei and Ying (2002) 
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have discussed a systematic family of procedures based on cumulation of 
residuals after arranging them in order systematic with respect to features 
such as explanatory variables. 

A different classification distinguishes checks of the assumed form of 
the systematic variation from those of the error structure, the former being 
often but not invariably the more important. 

Here are some simple examples. An omnibus test of normality could 
be based on the chi-squared test of grouped data, having an appreciable 
number of degrees of freedom. A focused test could be based on estimates 
of the standardized third and fourth cumulants. These could be combined 
essentially into a chi-squared statistic with two degrees offreedom or, prob
ably preferably, the more significant of the two component statistics used 
to assess fit; an advantage of the latter is its stronger immediate diagnostic 
power (Cox and Hinkley, 1974, p. 72). These procedures give no check of 
possible internal dependencies in the data which for a number of purposes 
may be more important than changes in distributional shape. Of course 
there are a large number of other approaches to this problem. 

Tests with good diagnostic features are often best derived by supple
menting the initial model with one or more additional parameters and then 
deriving a test, for example based on the additional log likelihood achieved. 
Such models need not be those to be used as a new basis for interpreta
tion if the need for model change is established. For example inclusion of 
a quadratic term in a linear model may often be the best base for testing 
linearity. On the other hand polynomials are often not the best basis for 
the analysis of clearly nonlinear relations; see, for example, McCullagh and 
Neider (1989, sec. 14.3). 

A particular instance arises in the study of relatively complicated multi
variate dependencies, often based on somewhat limited data. Here it is un
reasonable to assume total linearity of, say ordinary linear regressions and 
logistic regressions and, at the same time, proceed with arbitrary shapes 
of dependence including interactions. Cox and Wermuth (1993) suggested 
using probability plots of all possible squared and cross-product terms of 
explanatory variables as a guide to the detection of interaction and nonlin
earity and gave further examples of effective use (Cox and Wermuth, 1996, 
Chapter 6). Software for implementing these procedures is available on the 
World Wide Web. 

A check of the proportionality of hazard functions can be based on 
inspecting Kaplan-Meier curves obtained from separate sections of data or 
on some kind of generalized residual plot; note that the latter can be hard 
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to interpret whenever there is an appreciable proportion of censored data. 
A more focused approach is to include in the fitted model one or more 
terms representing interactions of say treatment effects with time (Cox, 
1972). The purpose of such a model is, as with polynomial models used to 
assess linearity of regression, more to provide a simple easily implemented 
detection device with probability properties known under the initial model 
than to serve as a replacement model in its own right. 

In regarding model criticism as in some way linked to significance testing 

it may be objected that we are testing a hypothesis that we virtually know 
must be false. One answer is that until a departure at least approaching 
some interesting level of significance has been achieved, it is unclear in what 
direction to amend the original model. In that sense the initial model is a 
dividing hypothesis (Cox, 1977). 

4. Influence and breakdown 

A substantial literature has developed around the notion of the influence 
on estimates of single observations or small groups of observations and on 
the related notion of the proportion of observations that may be massively 
defective without undue effect on an estimate. This raises somewhat differ
ent issues from the ones discussed in the present paper, essentially of data 
criticism rather than of model criticism. It may indeed be very helpful to 
know that the conclusions from some data depend critically on a fairly small 
proportion of the data. This is an aspect of the broader issue of the trans
parency of methods of analysis, i.e. of the ability to follow pathways from 
the raw data to the conclusion. Nevertheless that is not a basis for model 
criticism; to have a few very informative observations and a lot of rather 
uninformative observations is not a good situation but is not in general on 
its own a basis for rejecting the informative values! 

For further discussion, see Atkinson (1985) and Cook and Weisberg 
(1999). 

5. Role in applications 

The discussion so far has concentrated on the analysis of in effect a single set 
of data. In many contexts, however, there are several or indeed many sets 
of data expected to be broadly similar. A formal or informal formulation 
via a model in which different sets of data have key parameters governed 
by a probability distribution is an old idea which modern computational 
developments make increasingly popular and appropriate especially when 



20 D. R. Cox 

the number of sets of data is appreciable. (Such formulations are occasion
ally termed Bayesian, but this usage is misleading unless either the variance 
components involved are given a hyper-prior or interest focuses on param
eter values in particular sets of data.) It is important in such analyses that 
unless there are compelling reasons otherwise models of the same form and 
with the same parameter space are used for all sets of data; for example, 
the practice of fitting straight lines to some sets and nonlinear functions to 
others on the basis either of some formal procedure or from inspection of 
residuals may be very misleading. 

The most suitable checking procedures depend on the amount and com
plexity of the data involved. Often the fitting of one or more expanded 
models, preferably supplemented by some graphical representation, will be 
the simplest and most effective route. It seems in principle, however, that 
especially in complex problems the possibility of failure of the initial model 
of some unanticipated kind must be considered and for this graphical anal
ysis of, for example, residuals will often be the best approach. Indeed any 
account of statistical theory must be seriously defective if in principle it 
offers no route for criticism of the whole formulation used for analysis. In 
terms of the practice of statistical analysis the issue raises big challenges, 
especially with large sets of data. Overzealousness in the search for dis
crepancies with a model is virtually certain to find something apparently 
unusual, but search only within an initially specified narrow range of possi
bilities may overlook crucial mistakes of formulation. Of course within fields 
where new data can be obtained relatively quickly, independent check of 
unexpected features with new data will be both desirable and feasible. 

Reference 

Atkinson, A.C. (1985). Plots, transformations and regression. Oxford Uni
versity Press. 

Box, G.E.P. (1980). Sampling and Bayes' inference in scientific modelling 
and robustness (with discussion). J. R. Statist. Soc. A 143, 383-430. 

Cook, R.D. and Weisberg, S. (1999). Applied regression and analysis in
cluding computing and graphics. New York: Wiley. 

Cox, D.R. (1972). Regression models and life tables (with discussion). J. 
R. Statist. Soc. B 34, 187-220. 

Cox, D.R. (1977). The role of significance tests (with discussion). Scand. J. 
Statist. 4, 49-70. 



Model Criticism 21 

Cox, D.R. and Hinkley, D. V. (1974). Theoretical statistics. London: Chap
man and Hall. 

Cox, D.R. and Snell, E.J. (1968). A general definition of residuals (with 
discussion). J. R. Statist. Soc. B 30, 248-275. 

Cox, D.R. and Snell, E.J. (1971). On test statistics calculated from residu
als. J. R. Statist. Soc. B 58, 589-594. 

Cox, D.R. and Wermuth, N. (1994). Tests of linearity, multivariate normal
ity and the adequacy of linear scores. Appl. Statist. 43, 347-355. 

Cox, D.R. and Wermuth, N. (1996). Multivariate dependencies. London: 
Chapman and Hall. 

Firth, D. and Kuha, J. (2004). On the index of dissimilarity for lack of fit 
in log linear models. Under review. 

Fisher, R.A. (1950). The significance of deviations from expectation in the 
Poisson series. Biometrics 6, 17-24. 

Lin, D.Y., Wei, L.J. and Ying, Z. (2002). Model-checking procedures based 
on cumulative residuals. Biometrics 58, 1-12. 

McCullagh, P. and Neider, J.A. (1989). Generalized linear models. 2nd ed. 
London: Chapman and Hall. 

Pearson, K. (1901). On the criterion that a given system of deviations 
from the probable in the case of a correlated system of variables is such 
that it can reasonably be supposed to have arisen from random sampling. 
Phil. Mag. Series 5 50, 157-175. 



This page intentionally left blank 



LIKELIHOOD PERSPECTIVES IN THE CONSENSUS AND 
CONTROVERSIES OF STATISTICAL MODELLING AND 

INFERENCE 

Yudi Pawitan 
Department of Medical Epidemiology and Biostatistics 

Karolinska Institutet 
Stockholm, Sweden 

Email: yudi .pa.wita.n~meb. ki. se 

Likelihood ideas have driven most of the progress in statistical modelling in the 
last 3 decades, in particular in the area of generalized linear models and survival 
analysis. Various extensions of the likelihood concept, to deal with observation
and parameter-driven complexities in modelling, are reviewed. There is now an 
extremely rich modelling framework capable for dealing with complex datasets. 
We can say with reasonable confidence that we have a general consensus about 
the utility of the likelihood function for modelling. Unfortunately, the same 
cannot be said for statistical inference, where consensus is lacking even for 
something as simple as interpretation of the confidence intervals or computa
tion of 2-sided P-values, and a direct use of likelihood is still controversial. I 
will review the consensus and use this opportunity to indicate where the like
lihood perspective, in particular the Fisherian idea of 'ladder of uncertainty', 
throws some lights on the controversies. The key idea is that uncertainty can 
be expressed by both likelihood and probability, where likelihood is a weaker 
measure of uncertainty and only probability allows objective verification in 
terms of long-term frequencies. 

1. Introduction 

"The problems of theoretical statistics," wrote Fisher in 1921, "fall into two 
main classes: a) To discover what quantities are required for the adequate 
description of a population, which involves the discussion of mathemati
cal expressions by which frequency distributions may be represented; b) 
To determine how much information, and of what kind, respecting these 
population-values is afforded by a random sample, or a series of random 
samples." It is clear that these two points refer to statistical modelling and 
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inference. 
In the same paper, for the first time, Fisher coined the term 'likelihood' 

and contrasted it with 'probability', two "radically distinct concepts [that] 
have been confused under the name of 'probability' ... ". It is a significant 
fact that likelihood is a key concept in both modelling and inference. In 
1912 Fisher's first insight was to use likelihood (not explicitly called so 
then), which he called 'an absolute criterion', for estimation (modelling). 
His last insights on likelihood in his last book (edited posthumously, Fisher 
1973) were mostly on the use of likelihood for inference. 

The likelihood-based methodology is of course not the only approach 
one can take in statistics. The least-squares method and the method of mo
ments were around in 1912. Later, other methods of estimation or inference 
appeared in the statistical scene, such as the method of optimal unbiased 
estimation, rank tests, admissible estimation, robust estimation, etc. Fisher 
(1912) dismissed the least-squares approach as 'obviously inapplicable to 
frequency curves', while the method of moments was deemed 'arbitrary'. 

We will discuss in more detail later in what ways the non-likelihood 
based methodologies are lacking compared to the likelihood ones. For now, 
we need only refer to Fisher's point (a) above, where "discussion of math
ematical espressions by which frequency distributions may be represented" 
clearly indicates data modelling. Most, if not all, non-likelihood-based meth
ods of estimation are simply mathematical or numerical techniques, which 
are somewhat removed from the statistical modelling of the observed data. 

By 'modelling' we usually mean a deeper interaction between a statis
tician and the data, where features of the data influence the statistician's 
decisions on what to do. If one is determined to use, say, the least-squares 
method, one will find it hard to deal with discrete or heavy-tailed outcomes. 
By 'modelling' a statistician first assesses and decides what 'frequency 
curve' is appropriate for the observed data, and the likelihood methodology 
automatically takes the decision into account. 

FUthermore, most non-likelihood estimation methods are typically 
empty of inferential consequences. For example, if one gets estimates from 
the least-squares optimization, other principles are required to perform in
ference on the results. Large-sample results, usually in the form of asymp
totic normality of the estimates, are the main theoretical basis for inference. 
In contrast to the likelihood approach, such results are usually not invariant 
with respect to transformation of the parameters. 

The richness of likelihood-based modelling is manifest when one 
searches, for example, the Current Index to Statistics for 'likelihood'. The 
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other side of likelihood, its direct role in inference, however, is still contro
versial. In this paper I will review the consensus of the power of likelihood 
for modelling, and discuss the lack of consensus in inference. 

2. Likelihood in modelling 

Modelling involves fitting mathematical structures to real observations so 
we can perceive order or patterns more clearly; we then use the models, 
for example, for description or prediction. There are two aspects of mod
elling: 'fitting' and 'structures'. 'Fitting' requires techniques or methods, 
and 'structures' require models for data distribution to capture the ran
domness as well as models for the systematic structure, such as linear or 
nonlinear models. 

Interesting models and methods were born in data-rich environments: 
astronomy data led to the method of least-squares and Laplacian calcu
lus of probability (later known as Bayesian statistics), anthropometric data 
to regression and correlation methods, industrial data to the t-test, and 
agricultural experiments to the analysis of variance and design methodolo
gies. Note, however, that the most common distributional model associated 
with those techniques was the Gaussian model. While these classical meth
ods have served us well, newer applications of statistics, such as in the 
biomedical areas, have provided us with more complex problems. It is for 
dealing with these problems that the likelihood becomes indispensable. 

Complexity in modelling comes from two sources: (a) observation-driven 
and (b) parameter-driven. In observation-driven complexity, the outcome of 
interest might be non-Gaussian (discrete or heavy-tailed), censored, miss
ing, irregularly observed, or measured from an unbalanced design. Discrete 
data make model identification and model checking via residual analysis 
harder compared to continuous data. Heavy-tailed data can simply throw 
off many classical Gaussian-based procedures, and produce misleading an
swers. Analysis of censored or missing data requires specialized assumptions 
and techniques. Missing/unbalanced data may complicate an otherwise sim
ple orthogonal structure from designed experiments. 

Parameter-driven complexity arises from a large number of parameters 
needed to represent the data distribution. These types of problems includes, 
for example, the nonparametric function estimation (smoothing or inverse 
problems), semi-parametric models, repeated/dependent observations and 
mixed models. 

Dependent outcomes, even Gaussian ones, such as time series or spa-
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tial data, have a complexity that is somewhat on the border between the 
two types. Complexity arises if we are willing (or forced) to model the 
dependence structure. For an analysis of a stationary time series, if the 
dependence structure is allowed to be free or 'non parametric', then the 
complexity is parameter-driven. But if we impose a parametric structure, 
such as an'< autoregressive integrated moving average ( ARlMA ) model, 
then the number of parameters is low, but the analysis is still more compli
cated than the analysis of non-time-series data. In some cases it is possible 
to 'ignore' the dependence structure, and thus simplify the analysis, and 
still come up with a valid analysis (e.g., the generalized estimating equation 
technique; see Liang and Zeger, 1986, or Diggle et al, 2002). 

The development of generalized linear models (GLM) (Neider and Wed
derburn, 1972), and Cox's proportional hazard regression (Cox, 1972) ad
dressed much of the complexity for modelling non-Gaussian and censored 
data. These likelihood-based methods are practically unchallenged as the 
standard methodology for such data. No general-purpose technique is yet 
recognized for missing data problems, but the likelihood approach is almost 
the only viable one. 

As we would expect, the slowest to develop methodologically are the 
methods to deal simultaneously with observation-driven and parameter
driven complexities. In these problems we might have clustered binary 
outcomes, with a large number of clusters, and we are interested in the 
estimates of cluster effects and, possibly, other fixed predictors. Or, we 
might have a time series of count data, and be interested in forecasting 
or concise descriptions of the dependencies. Specialized techniques may be 
developed for particular problems, but the likelihood-based generalized lin
ear mixed models (GLMM) of Lee and Neider (1996, 2001), hierarchical 
GLM (HGLM) and Double hierarchical GLM (DHGLM), provide the rich
est modelling framework to deal with these problems. Here the likelihood 
concept needs to be extended to deal with random parameters. It seems 
clear to me that current and future work in likelihood-based general-purpose 
models will be directed in this area. 

3. Extensions of likelihood 

The coverage of the likelihood approach is greatly extended by various 
modifications, or in some cases, compromises, to deal with data too complex 
for an exact likelihood. There is a bewildering array of likelihoods of various 
kinds, which seems intimidating to those new to likelihood methodology. 
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Similar to factors that drive the problem complexity in the previous section, 
it is instructive to categorize likelihood extensions as observation-driven or 
parameter-driven. 

3.1. Profile, marginal, conditional, modified profile 
likelihoods 

The first type of parameter-driven extension occurs as modifications to deal 
with nuisance parameters. Much theoretical effort is directed to this prob
lem, and the benefits can be applied to both modelling and inference. The 
main objective is to remove the nuisance parameters and arrive at a 'sensi
ble' likelihood of some parameters of interest. Among these extensions we 
find the idea of profile likelihood, marginal likelihood, conditional likelihood, 
and various modified or adjusted profile likelihoods. One might also men
tion the pseudo-likelihood and estimated likelihood, although these terms 
are much less standardized. 

Suppose that ((), TJ) are the parameters neeeded to specify the distribu
tion of the observed data x, where() is the parameter of interest and T} is the 
nuisance parameter. Suppose that L(B, TJ) is the joint likelihood of (B, TJ). 
Then the profile likelihood is 

Lp(B) = sup L(B, TJ) 
T/ 

where the supremum is taken over T} at fixed B. As a contrast, one might 
quickly mention the estimated likelihood or pseudo-likelihood (Gong and 
Samaniego, 1981) 

Le(B) = L(B, i/), 

where 7f is some estimate of T} from the data. A special theory must be 
developed to account for the variability due to estimation of TJ· 

In many applications, the profile likelihood can be interpreted directly 
as the usual likelihood, although it is not a 'true likelihood' since in general 
it does not correspond to a probability of an observed event. It known 
that the profile likelihood leads to biased estimates and over-precision; the 
amount of bias is partly determined by the number of nuisance parameters. 
The problem becomes serious when the number of nuisance parameters is 
of the same order of magnitude as the sample size. 

The marginal and conditional likelihoods alleviate the problems associ
ated with profile likelihood. Suppose that we have some statistics u = u(x) 
and v = v(x) such that x has a one-to-one map with (u, v). If the marginal 
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distribution of u depends only on(), 

Pll, 11 (u,v) = Pll(u)p1J, 11 (vlu) 

and then we have the marginal likelihood L(()) = p9 (u). If the conditional 
distribution of u given v depends only on(), then the conditional likelihood is 
L(()) = Pll(ulv). These likelihoods are 'real' likelihoods, since they are based 
on probability of some observed events, so they obey the usual properties of 
likelihood. Some loss of efficiency might occur from ignoring the information 
contained in v, but in applications of these likelihoods we usually add an 
extra argument that such loss is not substantial. 

Even when available, for example in the exponential family models, 
exact conditional or marginal likelihoods, may be difficult to derive. The 
modified or adjusted profile likelihood can be thought of as an approximate 
marginal or conditional likelihood. Suppose fj9 is the maximum likelihood 
estimate of rJ for fixed (), and I(fj11) is the associated observed Fisher in
formation. Then the modified profile likelihood (Barndorff-Nielsen, 1983) 
is 

log Lm(()) = log Lp(()) - ~log II(T/9 )I +log I:~ I , (1) 

see Pawitan (2001, Section 10.6) for an elementary heuristic derivation. The 
last term on the right hand side makes this version of modified profile like
lihood invariant with respect to transformation of the parameters, but it is 
usually hard to derive; see Barndorff-Nielsen and Cox (1994) for estimation 
of the last term. 

Suppose that the parameters of interest and the nuisance parameters 
are almost orthogonal such that fJi'jjfJi}IJ:::::: 1, or that% slowly varying over 
e. Hence, we get Cox and Reid's (1987) adjusted profile likelihood 

logLa(()) = logLp(())- ~logl/(7}11)1. (2) 

The modified and adjusted profile likelihood formulas apply even to prob
lems where (ff, i'j) is not sufficient. If there is an ancillary statistic a(x), these 
modifications of profile likelihoods are approximate conditional likelihoods 
given the ancillary statistic. 

3.2. Partial and empirical likelihoods 

Partial and empirical likelihoods are also parameter-driven extensions, to 
deal with infinite-dimensional nuisance parameters. Cox's partial likelihood 
was introduced in 1972 and soon became the key analytical tool for survival 
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analysis. It can be derived in many ways, but one that is theoretically 
illuminating is its derivation as the profile likelihood for the proportional 
hazard model, by profiling out the unknown nonparametric baseline hazard 
(e.g., Whitehead, 1980). It is a remarkable result that profiling out the 
infinite-dimensional nuisance parameter still produces a sensible likelihood. 

The empirical likelihood is also a remarkable and relatively recent dis
covery (Owen, 1988). In the simplest case, given an iid sample (x1, ... , xn) 
from a distribution with mean (), the empirical likelihood of() is defined as 
the profile likelihood obtained by profiling out the space of all distributions 
with mean 0. Specifically, 

n 

L(O) =sup IJpe(xi) 
Fo i=l 

where the supremum is taken over all distributions supported on x1, ... , Xn, 

such that the mean J xdF11 ( x) = (). Empirical likelihood for more complex 
models are covered in Owen (1990, 1991) and Kolaczyk (1994), and in recent 
years it has been extended to cover a great number of applications (Owen, 
2002). 

There is a close connection between the empirical likelihood and the non
parametric bootstrap (Davison et al, 1992; Pawitan 2000). In some sense 
the empirical likelihood is the 'proper likelihood' associated with the boot
strap . Some deep theories have been developed to show the advantage of 
empirical likelihood over the bootstrap (DiCiccio et a!, 1993). 

3.3. Quasi- and pseudo-likelihoods and estimating equations 

Observation-driven extensions of the likelihood are usually motivated by 
the need to deal with complex data types, for example, dependent non
Gaussian outcomes including repeated measures, time series or spatial 
data. Among these extensions we find the quasi-likelihood, extended quasi
likelihood, pseudo-likelihood and so-called Gaussian estimation in time se
ries. It is useful to mention here the closely related estimating equation 
approach. 

The quasi-likelihood (Wedderburn, 1974) is associated with the adop
tion of the exponential family likelihood regardless of the true distribution 
of the data. The approach is suited for estimation of model parameters for 
many non-Gaussian outcomes beyond the usual binomial or Poisson mod
els. Wedderburn considered the quasi-likelihood approach as an extension 
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of Neider and Wedderburn's (1972) GLM class of models, since the quasi
likelihood does not have to be a real likelihood. He cited Fisher (1949), 
who analysed continuous data, where the variance was proportional to the 
mean, as if the data were Poisson. 

Suppose we have independent outcomes Yl, ... , Yn with mean Eyi = f.-Li 
and variance v(J-Li), where f.-Li is a function of unknown regression parameters 
(f3t, ... , (Jp). Wedderburn's original definition of quasi-likelihood (strictly it 
is quasi-log-likelihood) is a function K(yi, J-Li) satisfying 

8K(yi, J-Li) Yi - /-Li 

8J-Li V(J-Li) 

Wedderburn showed that the quasi-likelihood is a true log-likelihood if and 
only if the outcome Yi comes from the exponential family model with den
sity exp{lliYi- A(lli) + c(yi)}. Furthermore, as far as first-order inference 
is concerned (e.g., up to asymptotic normality of the regression estimates), 
the quasi-likelihood implied by a mean-variance relationship behaves largely 
like a true likelihood, provided an exponential family exists for such a re
lationship. To be clear, such a result assumes that the mean-variance rela
tionship is correctly specified. McCullagh (1983) reviewed the large-sample 
theory of quasi-likelihood; in one key difference, the quasi-likelihood ratio 
statistic has a n- 112-rate of convergence (to the x2-distribution), while the 
true likelihood ratio statistic has a faster n - 1-rate of convergence. 

With little effort, Wedderburn's one-parameter exponential family can 
be extended to the exponential dispersion family (J0rgensen, 1987), where 
the likelihood contribution of the outcome Yi is 

(3) 

with a known function A(), but unknown dispersion ¢. In particular we can 
now fit binomial or Poisson data with overdispersion. The function c(yi, ¢>) 
is implicitly determined, since the density must integrate to one, and is only 
available in a few special cases such as the normal and gamma models. 

The unknown¢> and implicitly-defined c(yi, ¢>) do not affect the estima
tion of the regression parameters ((31, ... , (Jp). However, a likelihood-based 
estimation of¢> needs an explicit c(yi, ¢>). Neider and Pregibon (1987) de
fined an extended quasi-likelihood, where the contribution of Yi is 

logLi = -~log(¢v(yi))- 2
1¢>D(yi,jli) 

where D(yi, 'iii) is the so-called deviance function defined by 

L(yi, ¢> = 1; Yi) 
D(yi,f.-Li) = 2log L( . ¢> = 1. ·). f-L,, , y, 
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The extended quasi-likelihood allows likelihood-based modelling of the dis
persion parameter using the deviance as 'data'. 

Even though quasi-likelihood was originally defined for regression pa
rameters, it is clear that the idea of using an assumed likelihood is useful 
more generally in situations where natural probability models may not be 
available. First-order inference, based on asymptotic normality of the esti
mates, can be developed quite easily. There is a general theory for inference 
based on an assumed or 'possibly wrong' working model (e.g., Serfling, 1980, 
Chapter 7), where the asymptotic distribution of the estimates depends 
only on the first and second derivatives of the assumed log-likelihood. This 
is, for example, the motivation behind the Gaussian estimation or Whittle 
likelihood in time series analysis, where the Gaussian likelihood is applied 
regardless of whether the observed series is Gaussian or not. It is a useful 
approach since the scope for non-Gaussian time series models is limited. 

By starting at the score equation of the quasi-likelihood one gets the 
estimating-equation or M-estimation approach. The advantage is that it is 
possible to use an estimating equation which is not a derivative of a log
likelihood. An important example is the generalized estimating equation 
(GEE) method to deal with non-Gaussian repeated measures (e.g., Diggle 
et al, 2002). One key modelling strategy in GEE, that is different from the 
original quasi-likelihood approach, is the emphasis that the mean-variance 
relationship does not have to be correct. A robust variance formula is used 
to get a valid inference. 

In image analysis, exact likelihoods, for example based on the Gibbs 
distribution, are also much too complicated to use for statistical purpose. 
Here, the idea of pseudo-likelihood, which is based on the product of con
ditional probabilities, has been shown to have reasonable properties (e.g., 
Besag, 1974; Strauss, 1982). Note the term 'pseudo' here, pointing to the 
need to regularize the names we assign to different likelihoods. 

Inference from the estimating-equation approach typically relies on 
Wald-type statistics, i.e., asymptotic normality of the estimates. For exam
ple, confidence intervals would be of the forme± 1.96se(B). Better inference 
can be achieved, for example, via the bootstrap. Extension to likelihood
based inference would have to be based on the empirical likelihood idea, 
although this is not routine practice. In principle, we can construct the 
empirical likelihood from the bootstrap (e.g., Davison and Hinkley, 1988; 
Pawitan, 2000). 
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3.4. Predictive and hierarchical likelihoods 

The last extensions of likelihood that we consider here are motivated by the 
desire to use the likelihood-based method to deal with unobserved random 
variables, such as those in prediction or random-effects estimation prob
lems. Suppose that y is the observed number of successes from a binomial 
experiment with n trials and unknown probability 0. What is wanted is a 
prediction for z, the number of successes for the next m independent trials. 
The classical definition of likelihood does not work: treating the unknown 
z as a realized and fixed value, we find that the conditional distribution of 
y given z is free of z (because of independence). It is interesting that such 
a problem does not occur with the Bayesian approach, where we would 
simply find the conditional density p(ziy), by integrating out the unknown 
parameter 0. 

The effort to define predictive likelihood began with Lauritzen (1974) 
and Hinkley (1979). Suppose (y,z) has a joint density Po(y,z), and R(y,z) 
is a sufficient statistic for (), so that the conditional distribution of (y, z) 
given R = r is free of(), One can then derive the conditional distribution 
of of z given y, which also free of(); thus the 'predictive likelihood' of z is 

L(z) = Po(y, z) 
Po(r(y, z)) 

The need to have a sufficient statistic, for getting rid of the nuisance param
eter(), restricts the application of this predictive likelihood to more general 
problems. 

Butler (1986) and, later, Bj~rnstad (1990, 1996) developed and investi
gated a more general concept of joint likelihood of the unknown parameters 
( (), z) defined by 

L((), z) = Po(y, z). ( 4) 

This definition is clearly an extension of Fisher's original definition of likeli
hood for fixed parameters, so it deserves to be called 'extended likelihood'. 
As in the case of classical likelihood for fixed parameters, the problem of 
the nuisance parameter () leads to many different versions of predictive 
likelihood. By far the simplest is the profile likelihood 

Lp(z) = supL(O,z) = L(ez,z), 
9 

where (iz is the MLE of () assuming that z is observed. The same modifi
cations of profile likelihood as discussed in Section 3.1 apply to L(z). For 
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example, one might use the adjusted profile likelihood 

1 ~ 
log La (z) = log Lp(z) - 2 log \I(Bz) \, 

where I(ifz) is the observed Fisher information in the estimation of (} for 
fixed z. As for the fixed-effects estimation, one might consider the adjusted 
profile likelihood as an approximate conditional-distribution-based predic
tive likelihood as defined by Hinkley (1979). 

What is the 'proper' likelihood for a random parameter? Bayarri et 
al (1987) concluded that no general definition could be found. Bj0rnstad 
(1996) extended the definition of sufficiency, conditionality and likelihood 
principles to include the random parameters, and proved Birnbaum's (1962) 
theorem that sufficiency plus conditionality principles are equivalent to the 
likelihood principle, assuming that we use the definition ( 4). This implies 
that the extended likelihood (4) contains all the information about (0, z) in 
the data y. As we shall see, however, this result does not 'solve' our problem 
yet, since the likelihood principle does not tell us how to deal with inference 
with individual parameters (} and z, but it least it does confirm that one 
must start with (4). 

Example 1: Suppose that we have a one-way random effects model 

Yij=!l-+bi+eii• i=1, ... ,n; j=1, ... ,m 

where conditional on bi, Yij is N(!l- + bi, 1), and the bt, ... , bn are iid N(O, 1). 
Using (4), with 11- and bi's as the unknown parameters, one gets 

By jointly maximizing this likelihood one gets the 'maximum likelihood estimate' 
(MLE) Ji. = jj. But suppose we reparameterize the random effects, by assuming 
that bi =log ai. Allowing the Jacobian, we now get 

1~ 2 1~ 2 ~ log L(/1-, a1, ... , an) = -2 L..., (Yij - 11-- log ai) - 2 L..., (log ai) - L..., log ai, 
lj i i 

and, by maximizing, obtain ji = fj + 1. Hence the estimate of the fixed-effects is 
not invariant with respect to reparameterization of the random effects. 

It is worth repeating the usual caveat that the likelihood principle does 
not tell us 'what to do', for example how to estimate individual component 
parameters or how to deal with parameter transformation. The invariance 
of MLE in classical likelihood theory is not a consequence of the likelihood 
principle or any frequentist consideration such as the repeated sampling 
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principle; the invariance of MLE is implied by the axiom of invariance 
of likelihood ratio (e.g., Pawitan, 2001, Chapter 2). The fact that we do 
not have invariance of MLE with respect to transformation of the random 
parameters does not invalidate the extended likelihood (4). It does mean, 
however, that additional principles are needed to deal with the component 
parameters and parameter transformation. 

It is obvious that the proper likelihood for the fixed parameter () should 
be based on the marginal density pe(y), so 

L(()) = 1 L((), z)dz. 

Inference based on £(()) is invariant with respect to arbitrary transforma
tion of z. The profile likelihood Lp(z) for the random parameter satisfies the 
invariance with respect to transformation of the fixed parameter. Further
more, the estimate of z derived as a maximizer of L((), z) coincides with the 
maximizer of the profile likelihood Lp(z). Since in general Eg(Z) # g(EZ), 
except if g() is linear, it seems sensible to require only that the random 
parameter estimate is invariant with respect to linear transformation of the 
random parameter itself. 

It is interesting that Bj0rnstad (1990) only listed 'time series and fore
casting' as the major area of application of predictive likelihood. It seems 
clear now that random-effects estimation in generalized linear mixed models 
constitutes a substantial extension. It is in this setting that Lee and Neider 
(1996) defined the hierarchical (h-) likelihood specifically for extending GLM 
class of models to include random effects. 

Suppose that, conditional on random effects b, the outcome Yi follows 
the exponential family model (3) with mean J.Li· Let J.L be the vector of J.L/s, 
and assume that 

h(J.L) = X/3 + Zb, 

where h() is a known link function applied element-by-element, X and Z are 
design matrices, [3 is a fixed parameter and b is random with density Pe(b). 
The fixed parameter() contains the dispersion parameters. The h-likelihood 
is the extended likelihood 

L(/3, (),b) = Pf3,9(y, b), 

where the random effects b appear additively as Zb in the linear predictor. 
Let us call this the additivity condition. For fixed(), the estimates of /3 and 
bare computed as the maximizer of the h-likelihood (MHL). 
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Under the additivity condition, Lee and Neider (1996) showed that in 
several important models (e.g., normal y- normal b, Poisson y- gamma 
b) the MHL estimate of (3 coincides with the MLE from the marginal like
lihood, and more generally the distance between the MHL estimate and 
MLE are asymptotically of order Op(n- 1 ). Lee and Neider (2001) showed 
that the h-likelihood is the only extended likelihood that gives invariant 
MHL with respect to linear transformation of the random effects b. This 
means that the additivity condition provides a natural scale for the random 
effects, leading to convenient estimation of the fixed regression parameter 
(3. 

The use of extended likelihood and the associated likelihood principle 
borders on inference, so it is not surprising that controversies should occur. 
The likelihood principle does not tell us how to get parameter estimates and 
how to deal with invariance. We know that jointly maximizing the extended 
likelihood with respect to all unknown parameters will lead to contradic
tions or lack of invariance, and no one ever suggests that we should do that. 
The h-likelihood suggests a particular scale of the random parameters that 
allows joint estimation of the fixed and random-effects mean parameters. It 
does not allow joint estimation of the dispersion parameters; extra princi
ples, such using the adjusted profile likelihood, are needed for this purpose. 
The price for this restriction is that one is not free to transform the scale 
arbitrarily. As with the original definition of quasi-likelihood, the value of 
the particular definition of likelihood is judged by the class of models that 
it covers. 

4. Various comments 

4.1. A case for likelihood-based inference 

Many students leave a theory of statistics course with the wrong impression 
that Wald-statistic-based inference is equivalent to likelihood-based infer
ence. Confidence intervals are based on the asymptotic distribution of the 
likelihood ratio statistic (Wilk statistic) or of the maximum likelihood esti
mate (Wald statistic). For example, in the scalar case, the likelihood-based 
95% confidence interval is 

L(O) 
{e, 2log L(O) :s:; 3.84} 

and the Wald interval is 

e ± 1.96 se(O). 
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While both are based on asymptotic theory of the same first order, the 
likelihood-based interval is better in the following sense. 

Suppose that 

{}-{) 
-~ rv N(O,l) 
se(()) 

is true, then the Wald interval is exact. Otherwise it is first-order accurate, 
in the sense that its true coverage is 95% + 0(1/ y'n). In contrast, the 
likelihood-based interval is exact as long as there exists a transformation 
g(·), which we do not need to know, so that 

g(e)- !!_(()) rv N(O, 1). 
se(g( ())) 

Otherwise, it is second-order accurate, in the sense that its true coverage 
is 95% + 0(1/n). 

This means that the applicability of the likelihood interval is much wider 
and, consequently, it is much safer to use than the Wald interval. The 
main source of problems with the Wald interval is that e may be far from 
normal, and if we want to transform it to improve the normality we need 
to know which transformation to use. All that is done automatically by the 
likelihood interval. 

4.2. Computing 

Likelihood methods are inherently computational: given data and model 
they can proceed quite automatically with little input from the statisti
cian. Thus, their progress has coincided with the advent of cheap com
puting, where now there is little need for compromise in model com
plexity. Neider and Wedderburn's GLM was immediately associated with 
the Gauss-Newton or iteratively-weighted-least-squares (IWLS) algorithm. 
Computer-intensive methods, such as the bootstrap and Gibbs sampling or 
Monte-Carlo Markov Chain (MCMC) simulation, have also helped in reduc
ing or avoiding the analytical problems associated with likelihood inference 
in complex models. 

There is an obvious computational problem in producing parameter es
timates for a model. Traditionally, we rely on analytical work to get our 
inference; e.g., getting the Fisher information and using the Delta Method. 
More complex problems now also require computational methods to pro
duce inference. The simplest approach is to estimate the standard error 
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using the bootstrap method (Efron and Tibshirani, 1993). A more elab
orate scheme is to produce an empirical likelihood using the bootstrap. 
The Bayesian perspective leads to Gibbs sampling or Monte Carlo Markov 
Chain (MCMC) method to produce the posterior likelihood. 

4.3. Non-likelihood methods 

While the likelihood method is not the only approach for many of the 
problems, it is usually the one that 

• can adapt/extend most naturally to different types of data, and 
• specifies explicit, and usually testable, assumptions about the dif-

ferent elements under study. 

A commonly-cited weakness of the likelihood method is that it is not robust 
with respect to distributional assumption. We can view this positively as 
an encouragement to look at the data carefully and to perform sufficient 
model checking; in the end we shall be rewarded as the likelihood method 
is theoretically optimal, and modelling data properly contributes to better 
understanding of the phenomena under study. 

As an example, nonparametric regression estimation or smoothing can 
be easily done using the non-likelihood-based kernel method, but 

• it is not natural for non-Gaussian data, 
• the choice of smoothing kernel is arbitrary, 
• a special kernel is needed on the boundaries, and 
• the choice of smoothing parameter requires special techniques or 

additional principles. 

Similar comments may apply to other general non-likelihood techniques 
such as the methods of unbiased estimation, rank tests, admissible esti
mation, robust estimation, etc. I am here talking in general terms; it is 
of course possible to offer specific cases for which a non-likelihood method 
is just what we need. From a theoretical point of view we can vouch for 
the likelihood method for its large-sample optimality properties, though its 
application does not rely on large samples. 

5. Consensus 

Except for experimental design, every area of statistics has had a large 
input of likelihood thinking. (In this context I also include the whole area 
of Bayesian methods as likelihood-based in the sense that likelihood is a key 
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component in the methodology.) There is a general consensus in modelling 
in the sense that 

• the class of datasets that can be addressed by routine methods, 
using off-the-shelf software, has become very large, 

• when faced with a certain type of data, we expect sensible statis
ticians to agree on an appropriate methodology. 

Another marker of consensus is that there is now very little debate about the 
merits or otherwise of the Bayesian approach. With the advent of MCMC 
simulation methods the Bayesian approach has proven viable for solving 
complex modelling problems, so it can now be justified almost by the util
itarian principle alone, rather than by orthodox philosophical reasons. 

I believe that consensus is reached in modelling because the models we 
have developed actually serve our purpose quite well. Another reason is that 
there is an evolutionary process where useful models get used and improved, 
while less useful ones get forgotten. There are also specific techniques de
veloped to compare models with the reality they are meant to represent. In 
their evolution models interact and are confronted with reality, so it is no 
surprise that we converge to a set of powerful models and techniques. 

Example 2: DuMouchel (1999) reported a data-mining exercise for unusual 
adverse events in a large frequency table from the Federal Drug Administration 
Spontaneous Reporting System. There were 1398 drugs considered and 952 types 
of adverse events (a total of around 1398x952=1.3 million cells). Given such a 
large number of cells we can guess that they are quite sparse, and it is quite easy 
to get spurious results. 

Let Nij the frequency of drug i and adverse effect type j. Assuming that a 
person contributes to a single cell only (e.g., only a major side effect is reported), 
then we can model Nij as Poisson(J.tij ), where in obvious notation 

where Tij is the interaction between drug i and side effect j. A high value of Tij 

indicates that drug i has an unusually large side effect of type j, i.e., it is larger 
than what one would expect from an independence assumption. Since there is a 
large number of Tij 's it makes sense to make a random-effects assumption that 
they are iid with some distribution G9. The random-effects assumption would 
automatically produce a shrinkage estimate, thus avoiding spurious estimates. 

Estimation of the Tij 's can proceed quite straightforwardly as a problem in 
GLMM. This is what I meant by the consensus: the relatively straightforward 
way of thinking and the availability of rich models to deal with the problem. One 
may still disagree with some of the details; e.g., the exact form of G9, but the 
bulk of the modelling strategy is quite settled. 
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Example 3: Recent advances in genomic technology allow simultaneous mea
surements of the expression of thousands of genes in a sample. In a breast cancer 
study in the Karolinska Hospital in Stockholm (Pawitan eta!, 2004), we obtained 
the expression of 5549 genes from each sample/patient, and in all there were 
62 patients. The objective in the study is to use the gene expression values as 
prognostic indicators. For each patient we ascertained the age, size of tumours, 
and cancer relapse or death were considered as the endpoint during followup. We 
fitted a Cox proportional-hazards regression model 

log >.i(t) =log >-o(t) + x~(J + z~b (5) 

where >-o(t) is the baseline hazard function, (3 is a fixed regression parameter and 
b is a random-effects parameter for the gene expression; Zi is the vector of gene 
expression data and Xi is a covariate vector of other information that will be used 
to provide an adjustment of the gene expression data. While the large number of 
variables involved is non-standard, the analysis is relatively straightforward via 
a re-expression of the hazard regression in terms of Poisson regression, so the 
problem reduces to GLMM. 

6. Controversies in Inference 

We can view statistical methods and models as a firm upper structure in 
the statistical edifice. But how is the foundation? It appears that the sturdy 
upper structure of statistics has supported a frail foundation by suspension. 
While we have developed highly sophisticated tools we still have not agreed 
on how to interpret a confidence interval! (By confidence interval I mean any 
form of interval we form to express our uncertain or incomplete knowledge 

about a parameter, so it includes Bayesian intervals.) 
Those not convinced that controversies still exist in Statistics should 

read Lindsey (1999) and the discussions in it. Those who feel that a dis

cussion about the foundation of Statistics is not worth the time and effort 
should reflect on how they would feel if biologists, for example, did not care 
strongly whether homo sapiens arrived by evolution or by creation using 
the same principle that 'in practice it matters little.' 

Example 4: When we say that the 95% 'confidence' interval for () is 1.2 to 5.4, 
Bayesians would argue that the degree of uncertainty of 95% does apply to the 
specific interval, while frequentists argue passionately otherwise. 

This is a symptom of a deeper malaise: there is a fundamental and un

solved difficulty of satisfying both the obvious psychological need to attach 
uncertainty to a unique event and the long-term objective meaning of prob
ability statements. I would put this as the foremost challenge in inference. 

Example 5: The Forsooth! Section in the October 1999 issue of the RSS News 
published the following: 
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The Met Office give a 40 per cent chance of clear skies for the eclipse, 
but they admit a 30 per cent chance that they may be wrong. (Daily 
Telegraph, 5 August 1999) 

This is such a 'standard' statement of uncertainty that it is surprising to see the 
subsequent controversy on how one should react rationally to such a statement. 
The issue is whether we can provide a measure of uncertainty associated with 
an estimated probability of a specific event. There is apparently a similar and 
continuing controversy in genetic counseling. 

There is still no generally-accepted method to compute two-sided P
values for asymmetric sampling distributions. For example, on observing a 
Poisson variate x = 4, what is the two-sided P-value for the hypothesis that 
the mean (}0 = 1? The answer varies from 0.019 to 0.08 depending on what 
definition we use; see Dunne, Pawitan and Doody (1998). The issue is both 
embarrassing, as we cannot answer a client convincingly, and exasperating, 
as there is no indication that statisticians will eventually agree on a sensible 
definition. 

A recent informal poll (in the Allstat email distribution list) on the 
'exact' analysis of 2-by-2 tables still indicates general disagreement among 
statisticians. For example, should we condition on the margins? There is 
a related question: should we use Yates's corrected x2? (Apparently, not 
everyone is aware that Yates's correction makes the two-sided P-value from 
the x2 test very close to doubling the one-sided P-value from the hyper
geometric distribution obtained by conditioning on the margins. Notwith
standing, there is still no consensus on two-sided P-values.) See Haviland 
(1990) for an extensive discussion. 

Deeper foundational issues arise in the analyses of sequential experi
ments. Here P-values depend on unobserved future data, which may or 
may not be collected, thus leading to paradoxes where a statement of evi
dence depends on the experimenter's intention. Since any experiment can 
be imbedded in a sequential experiment, the issue has general relevance. 
The first example below is from Berger and Wolpert (1988) and the second 
arose in a consulting session. 

Example 6: An experimenter finished a study (say, with a sample size of 100, 
to be definite) and found z = 2.0 for a one-sample test of the mean. This is 
'of course' a significant result at the 0.05 level. But wait, what if it weren't? 
Suppose the experimenter would have continued to collect more data (another 
100 subjects), then z = 2.0 is no longer a significant result! This is because it is 
now part of a sequential test, so the critical value needs to be adjusted to 2.18 to 
achieve the 0.05 level. So the intention of the experimenter becomes relevant in 
the statement of evidence from the experiment. 
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Example 7: If we use the current data to calculate how much more data we 
should collect, can we then use all the data for the final analysis? If yes, should 
we somehow 'pay a penalty' in our analysis? 

7. Views of probability 

The main purpose of statistical inference is to produce measures and state
ments of uncertainty as we proceed from the known to the unknown. It 
is well known that our view of probability determines how statements of 
uncertainty are produced and interpreted. It is here we still see, as deep as 
ever, the rift between the Bayesian view of probability as a subjective mea
sure of uncertainty and the frequentist view that probability is a measure 
of long-term frequency. 

We can recognize two kinds of uncertainty. One is stochastic, which is 
an uncertainty due to randomness; e.g., we do not know what the outcome 
of a coin toss will be. There is no controversy that probability theory is the 
main tool for dealing with this sort of uncertainty. The other is uncertainty 
due to some or total ignorance about an unknown fixed parameter. For 
example, while riding a train we might not know whether the restaurant is 
at the front or at the back of the train. Bayesians would also use the same 
probability theory to deal with the second uncertainty, while frequentists do 
not deal with it directly. Note also that the second uncertainty is associated 
with a specific instance. 

8. Paradoxes 

There are well-known paradoxes under both Bayesian and frequentist views. 
A paradox is an absurd conclusion drawn from a seemingly reasonable ar
gument. The existence of a paradox is a warning that there is something 
incomplete, if not wrong, in our reasoning. Paradoxes have always been im
portant in the history of mathematics. The foundation of mathematics had 
had several major reconstructions in response to paradoxes; for example, 
Russell's paradox in 1901 - about the set of all sets that are not members 
of themselves - created a (creative) crisis that was not fully solved until 
Godel's startling theorem in 1931 about the incompleteness of arithmetic. 

8.1. Exchange paradox 

Example 8: A swami puts an unknown amount, (} dollars, in one envelope 
and 20 dollars in another. He asks you to pick one envelope at random, open 
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it and then decide if you would exchange it with the other envelope. You pick 
one (randomly), open it and see the outcome x = 100 dollars. You reason that, 
suppose Y is the content of the other envelope, then Y is either 50 or 200 with 
50-50 chance; if you exchange it you expect to get (50+ 200)/2 = 125, which 
is bigger than your current 100. So, you would exchange the envelope, wouldn't 
you? 

Here is the wonderful paradox: the reasoning above holds for any value 
of x, which means that you actually do not need to open the envelope in the 
first place and you would still want to exchange it! The exchange paradox 
has been analyzed from the Bayesian perspective, e.g., Christensen and Utts 
(1992), who found that our intuitive reasoning above corresponds to using 
a uniform prior on log 8. If such a choice leads to a paradox, not knowing 
8, what proper prior can we use? 

First note that, if we do not exchange or always exchange, our expected 
winning is 38/2. It is instructive to discuss a frequentist strategy (Ross, 
1994) that leads to better returns: 

(1) Generate a random variate u with any strictly positive density f(u) on 
the positive real axis. 

(2) Take one envelope at random and observe the amount x. 
(3) Compare x and u. If x < u then exchange the envelope, otherwise keep 

it. 

It is a nice exercise in a probability course to show that the expected return 
from such a randomized strategy is strictly greater than 38/2 

Note, however, how the frequentist strategy can be applied in practice. 
To follow a frequentist reasoning, first assume that 8 is fixed. Then the 
above strategy is not applicable to a sensible person playing a repeat game. 
To see this, suppose that at the first draw the player sees the amount x. 
Then he should ask for an exchange so he knows what 8 is exactly; after 
that it will be absurd to have any randomized strategy. 

This means that the strategy cannot be applied to one person acting 
sensibly; it can be applied to a group of individuals acting independently, 
each playing once and there is no sharing of any information, but at the 
end the winnings are divided out equally. If such a group does not actually 
exist, another interpretation is for a person to play once and to imagine that 
such a group exists only hypothetically and be happy with the result of his 
randomized procedure; now it is not clear if the hypothetical group-based 
winning is relevant for this single player. 

If 8 is random (but with an unknown distribution), then one person can 
play a repeat game and use the randomized strategy to improve his winning. 
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A Bayesian strategy can also be devised to take advantage of randomness 
in B; see Christensen and Utts (1992) 

8.2. Saint Petersburg Paradox 

Bayesians stress individual decision making, while frequentists emphasize 
long-term properties (insisting that what is good in the long term is good 
individually). As richly illustrated by the celebrated Saint Petersburg para
dox, these two goals are not always compatible. Probability theory grew as 
a method to settle fair prices in games of chance. The infinite expectation 
of the Saint Petersburg game, first stated in a letter by Nicolas Bernoulli 
in 1713, bewildered generations of probabilists until Feller solved it in 1937 
(see Feller, 1968, page 251-253). 

Example 9: A single play of the Petersburg game consists of a series of tosses 
of a fair coin until it turns out heads. If this occurs at the r'th throw, the player 
receives x = 2r pounds. The expected value of the payment is 

00 

r=l 
00 

= L 2r2-r = oo. 
r=l 

What is the fair entrance fee to play the game? 
An informal frequentist interpretation of the infinite expected payment 

means that a player should be willing to pay a large amount of money in 
exchange of potentially large payment. Here is the paradox: we know that 
it only takes an average of 2 tosses to throw heads, so nobody in his right 
mind would want to pay anything but a small amount. It is almost certain 
that the game will end by the tenth toss (with probability 1-2-10 = 0.999), 
at which point the average payment is only 10. So here we have a situation 
where a sensible individual will not follow a decision - e.g., pay £100 to 
play the game- that is guaranteed profitable by a long-term argument. 

Feller's solution was ingenious. Let x 1 , . .. , Xn be the payments for n 
independent plays of the game and Sn = L; x;. Feller showed that 

Sn -+ 1 
n log2 n 

in probability as n goes to infinity. This means, informally, for n large Sn 
becomes close to n log2 n. So, if there are n players (each playing once), then 
each should be willing to pay log2 n to make it a fair game for the house, 
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i.e., there is a variable entrance fee depending on the number of players. 
For example, if there are 210 = 1024 players, each should pay £10. This is 
supposed to 'solve' the paradox. 

Actually, the paradox is not really solved: the theory merely confirms 
that Saint Petersburg game is an impossible game. For starters, when the 
house opens for business it does not know how many players will play and 
how many games will be played, so it cannot set a price; an individual 
who does not know how many games he will play cannot even decide for 
himself what is a fair price. Furthermore, fundamentally, what is fair for 
the house is not appealing to the individual player, and vice versa. There 
is an irreconcilable duality between the individual's and the house's (or 
group) points of view which is impossible to satisfy simultaneously. To see 
this, suppose that there are 1024 players, each wanting to play 1024 games. 
Using Feller's result, from a player's point of view a fee of £10 per game is 
fair, but not for the house, since it has to deal 220 games, so it has to charge 
£20 per game. It is important to note that each point of view is valid. 

To put this parable in statistical context, frequentist long-term proper
ties, such as the overall type-I error probability (or a level) or confidence 
level, are group properties in line with the house's perspective, while the 
Bayesian view of individual decisions is more sympathetic to the player's. 
The Bayesian rejection of frequentist methods is in the latter's insistence 
that a player should take the house's point of view in his decision mak
ing. On the other hand, in stressing the individual decision makers, the 
Bayesians get criticized for ignoring the house's perspective. 

8.3. Prisoner's dilemma 

This is not a paradox, but a closely related dilemma. Statisticians are not 
the only professionals that think carefully about the problem of rational 
decision. There is a large literature in political, social or moral philosophy on 
the so-called prisoner's dilemma , (see, for example, Campbell and Sowden, 
1985), which concerns the rational basis of moral behaviour. There are many 
versions of this dilemma, but here is one that explains the name (Campbell, 
1985). 

Example 10: Imagine that you and an accomplice commit a crime and are 
waiting for a trial. The prosecutor offers you a deal: "there is enough evidence to 
convict both of you, so even if both of you remain silent you will be sentenced to 
one year. But, if you cOnfess and your friend remain silent, you will go free and 
your friend will get 10 years. The converse is true if you remain silent, but your 
friend confesses. However, if both of you confess you will both get 9 years." What 
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should you do? 

You as a 'rational' person would think: 

• Either the other prisoner will confess or he will not 
• If he does, it is better for you to confess 
• If he does not, it is also better for you to confess 
• So, it is better for you to confess. 

You know, however, that the other prisoner would obviously go through 
the same reasoning and end up confessing, so you would both get 9 years. 
Had both of you remained silent you would only get one year. How can it 
be rational to confess? 

The crux of the prisoner's dilemma is that what is rational for one 
person (i.e., maximizing utility) is not sensible if everyone behaves the same 
way. There are many situations that resemble the prisoner's dilemma, for 
example; peace negotiation between two warring parties, everyday trade 
negotiation, voting, vaccination schemes, etc. 

The interesting and highly relevant fact for us statisticians is that the 
philosophers and political scientists clearly recognize several distinct prob
lems: 

• one-off game, two players 
• n-games, two players 
• one-off game, n players 
• many games, many players 

What we learn from the literature is that there is some agreement that for 
a one-off game 

• strategy is not meaningful 
• 'be rational' is not meaningful advice as far as maximizing utility is 

concerned 
• players are doomed to frustration 

The only cases where it is possible to have a strategy (e.g., tit-for-tat) are 
when many games are involved. Can we not agree on something similar for 
our inference paradoxes? 

9. Ladder of uncertainty 

Settling the foundation of inference does not mean we want a new set of 
principles that will change practical statistics. As an analogy we can look 
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at the early history of calculus, from the time of Newton and Leibniz in the 
late 1600s, where mathematicians had to rely on the idea of infinitesimal. 
It was a 'number next to zero,' needed in the steps to compute derivatives 
and integrals. Obviously there is no such number, so its presence in calculus 
sticks out like a sore thumb. It took more than a century for mathematics 
to settle with the idea of epsilon-delta limits by the mid-1800s and get rid 
of the infinitesimals. Here limits serve as a rigorous foundation, but do not 
change 'practical' calculus- in fact the infinitesimal made a late come-back 
in 1960s in the idea of 'hyper-reals'; see later. We are in search of something 
similar in inference. 

The main feature of the previous and many other paradoxes in statisti
cal inference is the fundamental duality between the individual (or unique 
case) and group reasoning. The controversy is in the use of probability in in
dividual reasoning; this is precisely where we face the problem of inference. 
The problem is that while we can take the Bayesian and frequentist views 
as the extremes of a spectrum there is no articulated middle ground on 
offer. It seems that what we must look closely at is our view of uncertainty, 
and, in particular, we must accept a 'ladder of uncertainty', a Fisherian 
idea contained in his last book Statistical Methods and Scientific Inference 
(1973). The proposal can be summarized as follows: 

• whenever possible we should base inference on probability statements, 
otherwise it should be based on the likelihood 

• the likelihood can be interpreted subjectively as a rational degree of 
belief, but it is weaker than probability, since it does not allow an 
objective verification, and 

• in large samples there is a strengthening of likelihood statements where 
it becomes possible to attach some probabilistic properties. 

The distinguishing view is that inference is possible directly from the 
likelihood function; this is neither Bayesian nor frequentist, in fact both 
schools would reject such a view as they allow only probability-based in
ference. This Fisherian view, however, also differs from the so-called 'pure 
likelihood view' that considers the likelihood as the sole carrier of evidence 
in statistical inference (e.g. Royall, 1997). 

To emphasize, in this proposal we recognize two 'well-defined levels of 
logical status' for uncertainty about unknown quantities, one supplied by 
probability and the other by likelihood; a likelihood-only statement is used 
to 'analyze, summarize and communicate statistical evidence of types too 
weak to supply true probability statements' (Fisher, 1973, page 75); fur-
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thermore, when available, a probability statement must allow an objective 
verification. In 1921 Fisher already recognized likelihood and probability as 
'two radically distinct concepts', but it seems only in his last book - first 
published in 1956- he explicitly considered a direct use of likelihood for a 
weaker form of inference. 

Putting this proposal into practice is not going to be simple. It would be 
convenient to be able to say that (i) unique-case reasoning and statements 
should be based on likelihood, and group-based reasoning and statements 
should be based on probability; and (ii) when a probability statement is 
provided it is in general not attached to a unique result (such as a specific 
confidence interval), but to a collection of results, and that in this case there 
is no need to satisfy the psychological sense of uncertainty. But Fisher would 
immediately be against that, since for him the (fiducial) probability applies 
to unique-case reasoning. 

Other ladders in mathematics 

The idea of a ladder of uncertainty can be compared with 

• the ladder of infinity in number theory 
• the ladder of truth in the theory of logic 
• the ladder of real numbers. 

Georg Cantor's investigation of the infinite led to a surprising discovery 
that there were layers of infinity. It is now 'standard' knowledge, for exam
ple, that there are more reals than integers. This idea solves many ancient 
paradoxes, such as Zeno's paradoxes. 

Alfred Tarski's ladder of truth is more exotic. Statements about the 
objective world can be true0 or false0 , but statements about those state
ments maybe true 1 or false1 . Thus "the statement that 'the snow is yellow' 
is false0 " is true1 . Such a hierarchy of truth gets rid of self-referential para
doxes, as in the statement 'this sentence is false', as meaningless statements. 

The ladder of reals, consisting of the standard-real and the hyper-real, 
is an effort to revive the infinitesimal. There is now a respectable branch of 
mathematics called 'non-standard analysis', based on the hyper-real, which 
is a real number plus a 'cloud' of infinitesimals around it. It is possible using 
non-standard analysis to develop calculus without limiting arguments. 

Actually it is a common trick of mathematics to expand the concepts 
when there are things that cannot be handled. For example, the complex 
number is introduced as there is no real solution to x 2 = -1, and now 
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it is impossible to imagine the awkwardness of mathematics without the 
complex numbers. Rules governing the complex numbers are not the same 
as those for the reals. 

9.1. Likelihood versus probability 

There are several ways in which likelihood is weaker than probability, e.g., 
it cannot function as weight for averaging purposes and it is not calibrated. 

Example 11: For the previous exchange paradox: if we know absolutely nothing 
about 8, then the other envelope is either 50 or 200 with equal likelihood (not 
probability). It simply says there is no rational way of preferring one envelope 
over the other. We cannot then use the likelihood as weight for averaging, thus 
avoiding the paradox. Here the likelihood satisfies the psychological need to attach 
some uncertainty in a unique case, something denied by the frequentists. 

The likelihood is not calibrated in the following sense. A probability of 
0.02 has an objective meaning in repeated-sampling terms, but a likelihood 
ratio of 50 does not have a universal meaning; in particular, the meaning 
can depend on the experiment and the size of the parameter space. This 
must be accepted as part of the 'weakness' of likelihood as opposed to 
probability. 

Example 12: We pick a card at random out of a deck of 52 cards and, say, we 
observe the ace of clubs. Then consider two hypotheses: H: it is a standard deck 
of cards or A: it is a deck of 52 aces of clubs. The likelihood ratio of A against 
H is 52. If the hypothesis A is formed after seeing the result then we feel it is 
spurious; but it can also be formed prior to observing a card, where it is one of 
a large collection of hypotheses of all possible decks of cards. Likelihood by itself 
cannot tell if the evidence is spurious or not. 

Finally, the likelihood does not follow the rules of probability. In par
ticular, rules regarding transformation of parameters are handled using the 
invariance axiom of the likelihood ratio. This implies that we are equally 
ignorant regardless of how we parameterize our model, and it avoids the 
well-known difficulty of the Bayesian methods regarding the invariance and 

choice of the prior distribution. 

10. Settling the controversies? 

I believe that the ladder of uncertainty will go some distance towards set
tling the controversies in statistical inference. Total settlement, however, 
seems unlikely at the moment, because 

• a probability-based statement is not actually ruled out for unique-case 
inference, but at the moment there is no complete guidance as to where 



Likelihood in Modelling and Inference 49 

it is possible. Fisher's condition on recognizable subsets may apply, 
i.e., a probability statement for a confidence interval is applicable if 
we cannot find a subset of the sample space under which condition a 
different probability statement is true. 

• there is still a theoretical difficulty in dealing with nuisance parameters. 
• it is not clear if there is a canonical way to calibrate the likelihood. At 

the moment the Akaike information criterion is the main tool for con
tinuous parameter models, but its relevance is not clear if the parameter 
space is discrete (as in a collection of K models, where K maybe large). 

In conclusion, we have discussed a Fisherian proposal on the ladder 
of uncertainty that occupies a truly middle-ground position between the 
Bayesian and frequentist extremes. It satisfies, via likelihood, the psycho
logical need to attach a degree of uncertainty to a unique event and, via 
probability, the scientific requirements of objectivity. From this new per
spective both Bayesian and frequentist methods achieve stronger results 
than likelihood, but at the price of more assumptions in their applications. 
A deep theoretical result was shown by Birnbaum (1962) that all evidence 
in an experiment is contained in the likelihood function, so reporting the 
likelihood should be routine. What needs to be done is to work out ex
actly where probability statements are possible and how routine reporting 
of applied results should be done. 
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Since the original paper by Patterson and Thompson[!] there has been 
substantial interest and development of the technique known as Residual 
Maximum Likelihood (REML) estimation. REML is now the method of 
choice for estimating variance components (or more generally variance pa
rameters) in linear mixed models. REML was devised as a variant of the 
Maximum Likelihood (ML) estimation of variance components of Hartley 
and Rao[2] for the problem of estimating intra-block and inter-block weights 
in the analysis of incomplete block designs with block sizes not necessar
ily equal. Nelder[3] had earlier devised an efficient estimation of weights in 
generally balanced designs (GBDs) in which the blocks are usually, though 
not always, of equal size. When block sizes are equal REML estimation and 
Nelder's approach yield identical results for GBDs. 
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Simplistically, in REML, the relevant likelihood function is the likeli
hood for a set of "error" contrasts, rather than that for the full likelihood 
function. The difference is analogous to the well known difference between 
the two methods of estimating the variance (o- 2) of a normal distribution 
given a sample of size n. Both ML and REML use the same sum of squares 
of deviations about the sample mean, but ML equates the sum of squares 
to na2 , whereas REML equates the sum of squares to (n- l)o-2 • That is, 
REML accounts for the "loss in degrees of freedom" attributable to esti
mation of the mean (more generally the model's fixed effects). Recently, 
Verbyla[4] presented an illuminating derivation of REML using the fact 
that the Residual Likelihood can be regarded as a marginal likelihood (in 
the sense described, for example, by Cox and Hinkley[5](pp 16-18.)). Other 
justifications for REML have been given, such as a marginal posterior den
sity, as an iterative MIVQUE or MINQUE procedure, or as an adjusted 
profile likelihood (Cox and Reid[6]; Lee and Nelder[7]). 

The rapid expansion of interest in REML over the past 15 years has 
been largely a result of its availability in both commercially and public 
domain software such as SAS[8], S-PLU$[9], GENSTAT 5[10](pp413-503), 
ASReml[11] and samm[12]. These implementations have adopted more ef
ficient computing strategies, including sparse matrix methods[13, 14] and 
algorithms that are not as computer intensive as the Fisher Scoring (F
S) algorithm suggested by Patterson and Thompson[!]. These algorithms 
include derivative free methods utilised by Smith and Graser[14], which 
became the basis of the DFREML package[15], first-order schemes such as 
the Expectation-Maximisation (EM) scheme[16] and the computationally
efficient second-order scheme known as the Average Information (AI) 
algorithm[l7], which has become the basis for the ASReml GENSTAT 5 and 
samm implementations. This algorithm has the second-order convergence 
properties of the F-S or Newton-Raphson (N-R) algorithms but removes 
the burden of computing the trace terms in the expected and observed 
information matrices required by the F-S and N-R algorithms, respectively. 

Paralleling these developments there has also been an expansion in linear 
mixed-effects models to what we term a general (not to be confused with 
generalised) linear mixed model, in which correlation may exist within and 
between random effects. REML is now widely used (or recommended) for 
the analysis of longitudinal and repeated-measures data[18, 19], spatial and 
geostatistics data[20, 21], animal and plant breeding applications[22, 23], 
non-parametric or semi-parametric regression[24] and bioinformatics data 
[25, 26]. 
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In this paper we present a review of REML. Our review is centred on 
what we see as the four major themes that constitute the REML "story" 
thus far. As such, the structure of the paper is as follows. We begin in 
Sec. 2 with a description of the origin of REML through its links to the 
analysis of variance methods for designed experiments proposed in several 
key papers by Nelder[27, 28, 3]. In Sec. 3 we present the formulation of a 
general linear mixed model and discuss estimation in Sec. 4. Sec. 5 deals 
with computational strategies, reviewing computing algorithms, presenting 
several new schemes and providing a limited comparison of these algorithms 
using some published data-sets. In Sec. 6 we consider inference for linear 
mixed-effects models with particular emphasis on the approach of Kenward 
and Roger[29], who considered inference concerning fixed effects within the 
REML framework, and illustrate how their adjustments for Wald tests and 
standard errors can be readily implemented within the AI algorithm. The 
analysis of data using linear mixed models usually requires forming predic
tions of a linear combination of fixed and random effects as a summary to 
explore the relationships established in the analysis. Lane and Nelder[30] 
described a general approach for forming predicted values in general(ised) 
linear models, which was extended by Lane[31] to lessen the computational 
burden of obtaining standard errors of predicted values. In Sec. 7 we con
sider the problem of forming predictions in a general linear mixed model 
and present the approach of Gilmour et al.[32], which builds on the work 
of Lane and Neider. 

2. REML and the analysis of Generally Balanced Designs 

2.1. Preliminaries 

The class of generally balanced designs (GBD) was introduced by Nelder[27, 
28]. This class includes many experiment designs that have been widely used 
in practice. In a GBD the n experimental units have an orthogonal block 
structure, which is defined by the sampling or randomisation employed in 
their selection. This block structure defines the null (i.e. in the absence of 
treatment effects) analysis of variance. It can be shown that this results in 
a variance structure for the data given by 

q+l 

var (y) == V = L ~ipi 
i=O 

where y is the vector of data, the Pi are mutually orthogonal idempotent 
(n x n) matrices summing to the identity matrix of order n, which define 
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the strata of the analysis (Po defining the stratum that corresponds to the 
general mean) and the ~i are known as the stratum variances. We also note 
that the null analysis of variance follows from the decomposition of the 
total sum of squares, y'y, into q + 2 components, y' Piy, which is termed 
the sum of squares for the ith stratum and the rank of Pi, denoted vi, is 
the degrees of freedom associated with this stratum sum of squares. 

If we consider the application of, say, p treatments, then we denote the 
vector of fixed effects for these treatments by r. Following Nelder[3], we 
further assume that the complete set of treatment effects can be represented 
in terms of a linear (treatment) model of terms involving crossed, nested, 
or a mixture of both, factors that relate to the treatment structure. It is 
therefore possible to write a linear model for the vector r given by 

l 

r = Tr = LTir 
j=l 

where, again, the T j are mutually-orthogonal, idempotent (p x p) matrices 
summing to the identity matrix of order p. 

The model for y in terms of the first and second moments can therefore 
be equivalently written as 

q+l 

y = Xr+ L:ziui 
i=l 

q 

= Xr+ L:ziui +e, 
i=l 

say, where Zq+l = In and Uq+l = e, X is a known fixed-effects design 
matrix assigning treatments to experimental units, Zi is a (n x bi) known 
design matrix, and E(ui) = O,var(ui) = arhi and cov(ui, Uj) = 0. 
Note that we use the conventional notation so that the residual variance, 
a~+ 1 = a 2 . The vectors u i are called random effects, hence the linear mixed
effects model. The variance parameters (ar) are called variance components. 
There is a unique relationship between the stratum variances (~i) and the 
variance components that depends on the blocking structure and hence the 
strata. We consider two examples in Sees. 2.2 and 2.3 to illustrate this. 

The full analysis of variance is best constructed via a non-singular trans
formation of the data vector y to K'y, where K = [Ko, Kl> ... , Kq+l]· 
The Ki are full-rank matrices of size n x Vi chosen so that 

Pi= KiK~ 
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We note that K;Kj = 0 and K;Ki = Iv;· Hence the sub-vectors of 
K'y,K;y are mutually independent with means K;Xr and variances 

~Jv;· 
If we now consider estimation of T in the ith stratum, then the least 

squares (ML under the assumption of normality for the vectors of random 
effects) estimate satisfies 

(1) 

The matrix T X' P;XT is the information matrix for the fixed effects in 
stratum i. It may not be of full rank and hence obtaining a unique solution 
to Eq. [1] depends on finding an appropriate generalised inverse. A GBD is 
defined to be one in which 

for all i, j. 

l 

TX'P;XT = LAijTj' 
j=l 

(2) 

The A;j in Eq. [2] are the effective replication factors for the jth treat
ment term in the ith stratum. Therefore a generalised inverse ofT X' P;XT 
is L:~=l >.-;/Tj where we set \j 1 = 0 if >.;1 = 0. When A;j i- 0 then the 
estimate of TjT in stratum i is given by 

T 1f[iJ = Xi/TJX' P;y, 

with variance (~;/ Aij)Tj. The treatment sum of squares for stratum i is 
A;j(Tjf[;J)'(T1f[;J) with degrees of freedom equal to the rank of Tj. 

If we consider the >.;1 as elements of a (q + 2) x l matrix, say A, termed 
the effective replication matrix after Nelder[3], with rows corresponding 
to strata and columns corresponding to treatment terms, then orthogonal 
designs have the property that each column contains only one non-zero 
element, i.e. all the information for each treatment term is contained in 
only one stratum. For these designs it is then simple to complete the full 
analysis of variance by subdividing the sum of squares in each stratum into 
a (total) treatment sum of squares and an error sum of squares (obtained 
by difference from the total sum of squares for that stratum). 

When there is more than one non-zero element in any column j, of A 
then there exist independent estimates of the treatment effects, T jT, with 
variances (~;/ AiJ )Tj. The A;j are known and so the problem of combining 
information is one of estimation of the ~i· 

Using the approach outlined in the preceding developments, we now use 
two simple examples to illustrate the link between the ANOVA estimates of 
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stratum variances and REML for designs with orthogonal block and treat
ment structure; we also extend this, using an idea due to Thompson[33], to 
demonstrate the link between REML and the approach of Yates[34] for a 
balanced incomplete block design. 

2.2. Split Plot Design 

Consider a split plot design split plot design with b blocks, w whole-plots 
in each block, s sub-plots in each whole-plot and n = bws. Two treat
ment factors, given by A and B, are assigned to the whole-plots and sub
plots respectively. There are four strata, corresponding to the mean, blocks, 
whole-plots within blocks and sub-plots within whole-plots, with degrees of 
freedom 1, b- 1, b( w - 1) and bw( s - 1) respectively. If we denote the three 
variance components for blocks, whole-plots within blocks and error by 
CTf, cr~ and cr2 then, noting that ~0 is confounded with the overall mean, 

6 = wscri + scr~ + cr2 , 

c 2 2 
<,.2 = SO' 2 + CT • 

The treatment model may be written as 

4 

Tr = l:T1r 
i=l 

and the matrix A is given by 

[
bOOO] 
0000 

A= ObOO ' 

OObb 

with rows indexed by mean, block, block.wplot and block.wplot.splot and 
columns by mean, A, B and A.B. 

The analysis of variance table can be constructed by decomposing the 
total sum of squares for each of the four strata, noting that there is no 
residual sum of squares for the mean stratum, there is no treatment sum of 
squares for the block stratum, hence the residual sum of squares equals the 
total sum of squares, and the residual sum of squares for the block.wplot 
and block.wplot.splot strata are given by 

S2 = y'P2Y- SA 
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= y'P;y 

83 = y'P3y- SB- SAB 

=y'P;y, 

where sA, s 8 and SAB are the sum of squares for A, Band A.B respectiv_ely. 
The ANOVA estimates of the stratum variances are then given by ~i = 

sdv;, i = 1, 2, 3, where vi is the rank of P; (note that P 1 = P~). If we 
assume normality for the random effects, then these estimates are equivalent 
to the estimates that maximise the residual likelihood (ie, the likelihood of 
the error constrasts); for this example the residual likelihood can be shown 
to be equal to the likelihood of si, i = 1, 2, 3, the log of which is, ignoring 
constants, given by, 

fR = £(6; St) + £(6; 82) + £(6; SJ) 

- ~ [(b- 1) log6 + St/6 + (b- 1)(w- 1) log6 + s2/6 

+ (b- 1)w(s- 1) log6 + SJ/6]. (3) 

The log-likelihood of y, after replacing the treatment effects by their least 
squares estimates, is 

£ = -~ [log~o + (b- 1) log6 + St/6 + b(w- 1) log6 + 82/6 

+ bw(s- 1) log6 + SJ/6] (4) 

The terms that depend on the data are the same in both Eq. [3] and Eq. [4], 
but the coefficients of the log~i differ, one being the degrees of freedom for 
the stratum residual sum of squares (Eq. [3]: REML) the other the total 
degrees of freedom for the stratum (Eq. [4]: ML). 

2.3. Balanced Incomplete Block Design 

The results presented in Sec. 2.2, linking REML estimates to ANOVA esti
mates of variance components for designs with orthogonal block and treat
ment structures, are well known but cannot be readily extended when there 
are departures from orthogonality. It is possible, however, for the class of 
GBD with equal block sizes, to consider an idea proposed by Thompson[33], 
which intuitively links REML estimation to the approach of Yates[34] and 
gives the same estimates as Nelder[3]. 

We consider the simple example of a balanced incomplete block design 
based on the design in Cochran and Cox[35] (pp 444). We assume that 
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there are t treatments replicated r times in b blocks in each replicate, each 
comprising p plots. The block structure is the same as the split-plot design 
and hence we consider the same decomposition. We consider the simple 
treatment model containing a general mean and deviations from the general 
mean, i.e. Tr = T1T + T2T. 

The matrix A is given by 

A= [L, ~E)]' 
0 rE 

where E = t(p- 1)/[p(t - 1)] = 0.6 for the example we consider, with 
r = 5,p = 2, t = 6 and b = 3. 

Thompson[33] proposes a two-stage approach similar to the approach 
used for the ANOVA decomposition for orthogonal designs in which we 
compute the residual sum of squares for each stratum given by 

81 = y' Ply 

82 = y' P2y- .X22(T2f[2])'(T2f[2]) 

= y'P2y 

83 = y' P3y - A32 (T2f[3J )' (Td[3]) 

= y'P'jy, 

with degrees of freedom r- 1, r( b -1)- t + 1 and rb(p -1)- t + 1 respectively. 
It is clear, however, that there is information on the stratum variances that 
is being lost by estimation of T 2r in two strata. To recover this we form 
the sum of squares of the difference T2(r[3]- T[2J), which is given by 

8t = (f[3]- f[2j)'T~T2(f[3]- f[2j), 

which hast- 1 degrees of freedom and expectation -X2l6 + Xil6· It is 
clear that 8 1 , 82, 83 and 8t are mutually independent and that maximisation 
of the likelihood of 8 1 , 82, 83, 8t for u?, u~, u2 is equivalent to maximisation 
of the likelihood of K'y for K being a full rank matrix of size n x (n- t) 
such that K' X = 0. The likelihood of K' y is the residual likelihood. 

Maximisation of the former likelihood can be easHy achieved using a 
generalised linear model, after McCullagh and Nelder[36], with a Gamma 
distribution, identity link and weight vector vi/2. For the example from 
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Cochran and Cox we have (8 1 , 8 2 , 83, 8t) = (298.467, 174.833, 77.33, 32.139), 
weights equal to (2, 2.5, 5, 2.5) and design matrix 

[
6 2 1 l 0 2 1 
0 0 1 
0 1 0.833 

yielding REML estimates a-; = 8.44, 0"~ = 8.28 and D-2 = 7.38. 
Thompson[33] shows that this can be extended to the case when treat

ment estimates for T 1r are available on m1 + 1 strata, by constructing 
differences between the first mi estimates and the last estimate, and hence 
calculating an m1 x m1 matrix representing mean squares and products of 
differences (see Thompson[33] for details). 

3. A general linear mixed model 

The general linear mixed model we present extends the linear mixed-effects 
model used in Sec. 2. This model accommodates all of the analyses that 
were described in Sec. 1. The particular feature is the extended generality 
for variance models for the random effects, u and the residual e. We de
note these as G-structures and R-structures. We also consider both crossed 
and nested variance models and, where sensible, exploit the assumption of 
separability without loss of generality to reduce the computational burden. 

3.1. The Model 

If y is the (n x 1) vector of observations, the general linear mixed model 
can be written as 

y = Xr + Zu+ e, (5) 

where Tis the (p x 1) vector of fixed effects, X is the (n x p) design matrix 
(assumed to be of full rank) for fixed effects, u is the (b x 1) vector of 
random effects, Z is the (n x b) design matrix for random effects, and e is 
the (n x 1) vector of residual errors. It is assumed that 

where G = G(T) and R = a 2 :E, :E = :E(¢). The variance parameters, a~ 
and a 2 , are included to change parameterisations from variance components 
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to variance component ratios. Their inclusion depends on the application 
and the form of the G- and R-structures. 

The distribution of y is then N(Xr, V), where V = a!H and H = 
ZGZ' +R. 

3.2. R- and G-structures 

To allow for the analysis of data from different experiments or from distinct 
sections, such as in glasshouse or microarray experiments, we allow a very 
general structure for the variance of the residual vector. We assume that 
there exists an indexing factor that delineates the sections of the data and 
we partition e conformably with this indexing. Thus, e = [e~, e~, ... , e~]'. 
The variance matrices for the sections may differ, but generally we assume 
that the errors from different sections are independent. Thus, 

R = EB]=IRj· 

In the simplest case the matrix R is an identity matrix. More complex 
variance structures arise in many applications in which Rj may be the 
kronecker product of one or more component matrices. The component 
matrices are related to the underlying structure of the data (see for example 
Smith et al.[37].) 

We assume that the vector of random effects is given by u = 
[u~ u~ . . . u~]', where u; is a b; x 1 vector. In most applications the 
u; relate to separate terms in the linear mixed model and are assumed to 
be mutually independent. In some applications, for example random re
gressions, separate terms may be correlated. In either case we can assume 
that 

where separate terms are grouped according to the nature of the covariance 
model. Correspondingly, we have Z = [Z 1 Z 2 ... Zq]· As for R1, G; is 
assumed to be the Kronecker product of one or more component matrices. 
These matrices are usually indexed by the factors that are used in the 
construction of the relevant term in the linear mixed model. 

3.3. Identifiability of variance models 

The generality of the mixed model can often result in problems of iden
tifiability of variance models. The cause of the non-identifiability can be 
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sometimes hard to diagnose. The problem is similar in principle to ensur
ing that the fixed-effects model is not over-parameterised. That is, variance 
models may not be identifiable as they are over-parameterised. Also, there 
may be insufficient data to estimate the parameters of the chosen variance 
model. General principles exist for combining variance models that can be 
implemented to avoid most problems in practice (see Gilmour et al.[ll]). 

4. Estimation 

Estimation in a linear mixed model encompasses both the estimation of the 
variance parameters u = ( u~, ~') 1 , where ~ = ( 1', u 2 , ¢') 1 , and estimation 
(or prediction) of the effects (r and u) for given values of the variance 
parameters. The two processes are very closely linked and are combined in 
the computing algorithm used to carry out the estimation. 

4.1. REML estimation of variance parameters 

Verbyla[4] presented an illuminating derivation of the residual likelihood. 
He partitioned the full likelihood for the mixed model in Eq. [5] into two 
independent parts: one relates to the treatment (fixed-effect) contrasts and 
the other to the residual contrasts (i.e. Zu+e). Maximization of the former 
provides estimates of the fixed effects, whereas maximization of the residual 
likelihood provides REML estimates of the variance parameters. 

Briefly, Verbyla[4] considers a non-singular matrix L = [L1 £2], where 
L1 and £ 2 are (nxp) and (nx (n-p)) matrices chosen to satisfy L~X = lp 
and L~X = 0. The distribution of the transformed data, L' y = (y~ y~ )', 
say, is given by 

We express the likelihood of L'y as the product of the conditional like
lihood of y 1 given y 2 and the marginal likelihood of y 2 . The marginal 
distribution of y 2 is 

and the conditional distribution of y 1 given y 2 is 
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where Y2 = L~ H L2 (L;H L2) - 1 y 2 • The associated log-likelihood func
tions (excluding constant terms) are given by 

iR = f(a!, Kj y 2 ) 

= -4 { (n- p) log a! +log IL;H L2l + y~ (L~H L2) - 1 y 2/a!} (6) 

and 

£1 = i(T, a!, K; Y1 IY2) 

= -4 {ploga! +log I (X'H- 1X)- 1
1 

+ (yl - T- y;)' (X' n-l X) (yl- T- y~) /a!}. 

Clearly, the likelihood of y 2 contains no information on T so that T 

must be estimated from the conditional distribution of y 1 given y 2 . The 
MLE ofT is 

The likelihood of y 1 given y 2 is a function of T,a! and K, but, since 
T and y 1 are both vectors of length p, once T has been estimated there 
is no information left to estimate a! and K. The variance parameters are 
therefore estimated using the marginal likelihood of y 2 , that is, the residual 
likelihood. This is given in Eq. [6], though a better known form is given by 

.eR = -4 { (n- p) log a!+ log IHI +log IX' n-l Xi-

log IX' XI+ y' Py/a!}, (7) 

where P = H-1 - H-1 X (X'H- 1 X) -I X' H-1 . 

The REML estimates of a! and K are obtained by solving the REML 
score equations: 

I { ( ') I ' 2} UR(t;,;) = -2 tr PH; -y PH;PyjaH , (8) 

where Hi = aH ja"'i· Hence it follows that the REML estimate of a!, 
given K, is 

a! = y'Py/(n- p) 
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4.2. Prediction and the mixed model equations 

In this section we consider the prediction of the linear combination c'1 r+~u 

of fixed and random effects, where c 1 is a known (p x 1) vector and c2 is a 
known (b x 1) vector. If a! and Hare known, implying that a! and,.;, are 
known, the predictor that has the minimum mean-square error among the 
class of linear unbiased predictors is given by c~ f + c2ii., where 

f = (X'H- 1Xr1 X' H- 1y, 

ii. = GZ' Py. 

A simple extension of this yields f as the best linear unbiased estimator 
(BLUE) ofT and ii. as the best linear unbiased predictor (BLUP) of u. 

Robinson[38] provides an excellent account of BLUP and many other 
aspects concerning the prediction of random effects. In his paper Robinson 
presents several derivations of BLUP, however the original derivation of 
BLUP presented in Henderson[39] provides an important link with the es
timation of variance parameters. Henderson described the BLUP estimates 
as being "joint maximum likelihood estimates". Later, Henderson[40] re
tracted this statement and suggested that this terminology should not be 
used, as the function being maximised is not a likelihood. However, Hen
derson's derivation was based on maximising a function derived from the 
joint distribution of y and u. The log-density function for (y, u) can be 
written as 

logfy(y I u; r,a;,a2 ,¢) + logfu(u; a!,f') 
This is the log-joint distribution of (y, u). It is not a log-likelihood as u 
is not observed. The vectors of fixed and random effects ( T and u) can be 
"estimated" by maximising this function. Differentiation with respect to T 

and u and setting the result to zero leads to the system of equations known 
as the mixed model equations (MME), as proposed by Henderson[39]. This 
can be written in matrix-vector notation as 

[X'R- 1X X'R- 1Z ] [f] [X'R- 1y] 
z' n-1 x z' n-1 z + c- 1 u. = z' n- 1y 

A more abbreviated representation of the MMEs is 

cjj = w' n-1y, (9) 

where W =[X Z] ,/3' = (r' u') and 

C = W'R- 1W + c•, 
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G* = [~ G~l]. 
The solution to Eq. [9] requires an estimate of ""· In practice these are 
replaced by their REML estimates. The resulting solutions are termed Em
pirical BLUEs (E-BLUEs) and Empirical BLUPs (E-BLUPs). 

5. Iterative schemes for REML estimation of variance 
parameters 

In general, maximisation of the residual likelihood in Eq. [7] requires an 
iterative scheme. Patterson and Thompson[1] used a F-S algorithm, which 
requires calculation of the expected information matrix for the variance 
parameters. The associated computational burden is prohibitive for large 
data-sets or complex variance models. This was the motivation behind the 
development of the AI algorithm (Gilmour et al. [17]), which employs an 
information matrix that is an approximate average of the observed and ex
pected information matrices. The AI algorithm has proved to be a compu
tationally efficient algorithm for variance-parameter estimation in a wide 
range of applications, including variance-component models in large un
balanced data-sets (see Hofer[41] for a recent computational comparison of 
methods) and factor-analytic or unstructured models for multi-environment 
plant variety trials. In complex models such as the latter, however, second
order methods, including AI, are sensitive to the choice of starting values. 
The convergence sequence is not guaranteed to be monotonic, nor are the 
variance parameters ensured to remain within the parameter space, so poor 
start values may cause convergence difficulties. For this reason first-order 
schemes, the most popular of which is the Expectation-Maximisation (EM) 
algorithm (Dempster et al. [16]), have been widely used for REML esti
mation of variance parameters. The EM algorithm is stable (insensitive to 
choice of starting values), has a monotonic convergence sequence and pa
rameters are guaranteed to remain within the parameter space. However, 
it may be very slow, in the sense of requiring a large number of iterations 
for convergence, and may not be applicable for some variance models. The 
Parameter Expanded EM (PXEM) algorithm (Liu et al. [42]) is a variant 
of the EM algorithm that was formulated in order to reduce the number 
of iterations. In general, this algorithm still requires more iterations than a 
second-order method. 

In this section we review the AI, EM and PXEM algorithms. We then 
describe a series of hybrid algorithms that involve a combination of AI 
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and EM (or PXEM) updates. The aim is to exploit the desirable proper
ties of both types of algorithm, namely the speed of the AI algorithm and 
the stability of the EM (or PXEM) algorithm. Finally, we investigate the 
performance of the various schemes using two published data-sets. Further 
work will use these results to suggest robust procedures for generating bet
ter initial values for variance parameters and suggest efficient schemes to 
keep parameters within the required parameter space. This could involve a 
Choleski parameterization (Lindstrom and Bates[43]) or log transformation 
(see Lee and Nelder[44J, for example). 

5.1. The Average Information algorithm 

Gradient methods for variance parameter estimation are based on the lin
earisation of the score equations using the first term in a Taylor's expansion. 
Expanding the score equations in Eq. [8] about the value CT(m), then equat
ing to zero yields an updated value of 

CT(m+1) = CT(m) + [Io(m)J -1 U R(CT(m)), 

where I~m) is the observed information matrix for CT evaluated at u(m). We 
note that, since an algebraic form for u!(m) exists, we only need an update 
for K.. This is given by 

,._(m+1) = ,._(m) + [Io(m)~<~<] UR("'-(m)), (10) 

where I 0 (m)t<t< is the portion of [I)ml] - 1 relating to K.. This scheme is 

known as the N-R algorithm. Closely related to this is the F-S algorithm 
in which the expected information matrix (denoted I e) is used instead of 
observed information. The AI algorithm is obtained by using the so-called 
average information matrix (denoted I A). The matrix I A is a scaled residual 
sums of squares matrix given by 

IA = ~Q'(P/u!)Q, 

where the columns of Q are working variables corresponding to u! and K. 

and are given by 

qa2 = HPyfu!, 
H 

ql<i = HiPy. 

Note that for models in which the variance structure is linear in the pa
rameters (for example in variance component models), elements in IA are 
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exact averages of the corresponding elements in I 0 and I e. In other models 
they are approximate averages in which y' PHijPy is approximated by its 

expectation tr (PHij) (where Hij = 82Hf8"'i8"'J)· 

Thus, the I A matrix does not involve the computationally-intensive 
trace terms needed for I 0 and I e· Additionally, it can be computed ef
ficiently via absorption of the mixed model coefficient matrix C on the 
working variable matrix. That is, by commencing with the augmented co
efficient matrix 

[
Q'R- 1Q Q'R- 1X Q'R- 1Z l 
x'n-•Q x'n-•x x'n-•z 
Z'R- 1Q Z'R- 1 X Z'R- 1 Z + a-• 

and then sequentially absorbing the rows and columns of this matrix into 
the first element, Q' R- 1 Q. This approach forms the basis of the imple
mentations of the AI algorithm in ASReml, GENSTAT 5 and samm. 

5.2. The Expectation-Maximisation algorithm 

The EM algorithm (Dempster et al. [16]) is a widely-used technique for 
calculating parameter estimates via maximum likelihood. It is particularly 
well suited to variance parameter estimation in linear mixed models since 
the random-effects vector u is a natural choice for the "missing" data. In 
this section we present a REML-EM algorithm for estimation of variance 
parameters in the linear mixed model. Each iteration of the algorithm com
prises two steps: the expectation (E) step and the maximisation (M) step. 
For the E-step we evaluate the conditional expectation of the joint likeli
hood of the so-called complete data ( u', y')' given the observed part of the 
data that relates to estimation of the variance parameters, i.e. y 2 • Note 
that it is the conditioning on y 2 rather than y that provides the basis of 
a REML-EM algorithm in contrast to the standard ML algorithm. The 
conditional expectation is evaluated at the current updates for O"! and ,;,. 
TheM-step involves maximisation of the resultant expectation with respect 
to ,;,. As in the AI algorithm an update for O"! given ,;, can be obtained 
algebraically so we need only consider updates for ,;,. 

The joint likelihood (though we note it is not strictly a likelihood since 
u cannot be observed) of (u',y')' is, ignoring constants, given by 

ic = -~ {(n +b) logO"!+ nlog0"2 +log I:EI + e':E- 1e/(0"20"!)+ 

log IGI + u'G- 1u/O"!}. 
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The expected value of this joint likelihood, conditional on y 2 and evaluated 
at the current iterate CT(m) = [ O"~(m), K.(m)l]', is given by 

t'ce(K.)(m) = t'ce(/)(m) + t'ce(<12, c/J)(m), 

say, where 

t'ceb)(m) = -~E (blogO"! ~ logiGI + u'G- 1u/O"! I Y2, CT = CT(m)) 

fee( <12, cp)(m) = - ~E( n log 0"! + n log <12 + log I:EI+ 

e':E-1 ej(<12<1!) I Y2, CT = CT(m)) . 

Evaluation of these expectations requires use of the conditional distribu
tions of ul y2 and el y2 (evaluated at the current iterate). Thence we 
obtain 

fceb)(m) = -~ { blogO"!(m) +log IGI + tr ( G- 1cZZ(m)) + 

u.Cm)IG-1u(m) /O"!(m)} 

where czz is the portion of the inverse of C corresponding to u and 

t'ce(<12, cp)(m) = -! { n log O"!(m) + n log<12 +log I:EI+ 

tr (:E-1wc-1(m)wl) /<12 + e(m)1}.:;-1e(m) /(<12(1!(m))} • 

This is the E-step. The M-step involves maximisation of t'ce with respect to 
"'·The (m+ l)th update for a parameter /ij associated with Gi is obtained 
by equating the following derivative to zero: 

a.ece("")(m) { ( ) ( ) 
----:c'--'-'--'- = -~ tr Gi 1Gij - tr Gi 1GijGi 1Cz,z,(m) -

a,ij 

-(m)'G-1G ... Q-1-(m)/ 2(m)} 
ui i •1 i ui O" H • 

This usually provides an explicit solution for the updated parameter /ij· 
The (m + l)th update for a parameter ¢i associated with :E is obtained 

by equating the following derivative to zero 

8fce(<12 , A.)(m) { ( ) ( ) 8¢i"' = -~ tr :E-1:ti - tr :E-1:ti:E-IwcCm)-1W' /0"2-

e(m)':E-1:ti:E-1e(m) /(<12(1!(m))} 

which may still require an iterative solution itself (see Foulley et al.[22]). 
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For (]"2 we have 

8Cce((J"2, ¢)Cm) 
8(]"2 

= -~ { tr (I n/(]"2 ) - tr ( WC(m)- 1W''E- 1) j(J"4 -

e(m)''E-le(m) /((]"4)} 

:=;. (J"2(m+l) = { (p + b)(J"2(m) _ (J"2(mltr ( cCm)-lG(m)•) + 

e(m)' 'E(m)-le(m)} fn. 

It is interesting to note that EM updates can be expressed in an anal
ogous form to gradient methods, that is, as in Eq. [10], but with an in
formation matrix that corresponds to the complete data. Specifically, the 
elements of this matrix are given by -82f.ce/8Ki8Kj. (Also see Jensen et 
al. [45].) 

5.2.1. Example: EM updates for an unstructured G-matrix 

We illustrate the ideas developed above for a linear mixed model with an 
unstructured variance model for the random effects. This model often arises 
in multivariate, multi-environment trial or random regression applications. 
For simplicity we assume only a single random effect (i.e. the one of in
terest) and only present the updating scheme for the variance parameters 
associated with the G-structure. We assume a model of the form 

y=Xr+Zu+e, (11) 

where ugt x 1 is a vector of random effects corresponding to sires (genotypes) 
within traits (trials) with associated design matrix zn x gt. We assume that 
the random effects and residuals have a joint Gaussian distribution with 
variance matrix 

where G = Gt ® 1 9 , the subscript t denoting traits (trials). 
Following the approach outlined previously, the EM update for Gt is 

obtained as 

G~m+l) = (u(m),u(m) I(J"!(m) + wCm)) /g, 

where U is the g x t matrix such that vec(U) = u. Also, 'litxt is a matrix of 
average prediction errors for each trait (trial), that is, with elements given 

by '1/Jij = tr ( C~z) and Czz = { C~z} is partitioned accordingly into 

g x g matrices for each pair of traits (trials). 
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5.3. The Parameter Expanded EM algorithm 

Although the EM algorithm has been widely used for the estimation of vari
ance parameters in the linear mixed model it can be slow to converge. This 
is particularly a problem when the estimates of the variance parameters 
are on or near the boundary of the parameter space (Laird and Ware[l8]). 
Furthermore, Foulley and van Dyk[46] suggest that biometricians working 
in animal breeding have been among the largest users of the EM algorithm, 
but note that the EM algorithm can be very slow to converge in these appli
cations due to the relative magnitude of some of the variance components. 
To improve the rate of convergence of the EM algorithm, Liu et al. [42] 
introduced the parameter expanded EM or PXEM algorithm. In the case 
of linear mixed models, the algorithm involves the re-scaling of the random 
effects for simple variance components models or a rotation of the random 
effects for unstructured G-matrices. In this section we briefly review the 
PXEM algorithm and illustrate its application in a simple example. For a 
more thorough review the reader is referred to Foulley and van Dyk[46]. 

The PXEM algorithm assumes that the parameter vector ,. can be 
expanded to a larger set of parameters r' = (,.*'A') where A is a "working" 
parameter. The expanded parameterisation must satisfy the following two 
conditions 

(1) it can be reduced to the original parameterisation, ,., maintaining the 
same data model via a many-to-one reduction, r;, = F(r); 

(2) when A is set to its "null" value, say Ao this induces the same complete 
data model as with ,. = ,. •. 

Once we have set up the expanded parameter set the PXEM algorithm 
proceeds in a fashion simliar to the EM algorithm, in which there is an E
step and an M-step. The PX-E step computes the conditional expectation 
of the joint density of the complete data given y 2 , the so-called observed 

data, with rCmJ set to ( l\;.,(m), N = >-.0) '. The PX-M step then maximises 

this conditional expectation with respect to the expanded parameters and 
r;,(m) is updated via the reduction ,.(m+l) = F(r(m+Il). 

5.3.1. Example: PXEM updates for an unstructured G-matrix 

We consider the model in Eq. [11], which can be expanded to 

y=XT+ZAf+e, (12) 
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where A= (At®l9 ),u = (At®l 9 )f and var(u) = O"!G = O"!(Gt®I9 ),and 
var(f) = O"!D = O"!(Dt ® 1 9 ); thus, G 1 = AtDtA~ and G =ADA'. 
The matrix A:xt is assumed to be invertible while the matrix n:xt ls 
symmetric positive definite. Further we let 1 = vech(Gt), .>.. = vec(At) and 
d = vech(Dt). The reduced parameter vector is K 1 = ( 1', ¢'), where in this 
case ¢ is the null vector, while the expanded variance parameter vector is 
r' = [ d' .>..']. The role of the extra parameter matrix At, is simply to rotate 
the random effects. Note that the null value of .>..0 = vee (Aw) = vee (It) 
results in the same variance model parameterisation as the reduced variance 
parameter model with Gt = Dt. 

We then define the complete data to be (f', y')' and consider the joint 
likelihood, which is given by 

fe(r; f, y) = -~ { (n + gt) logO"!+ e'e/O"! +log IDI + !' n-l f /O"!}. 

The expected value of this joint likelihood conditional on y 2 and evaluated 
at r = [ K*(m)l, .>._~]', is given by 

fee(r)(m) = fee(d)(m) + fee(.>..)(m), 

say, where 

fee(d)(m) = -~E (gtlogO"! + logiDI + f'D- 1 f/O"! I Y2, r = [K*(m)',.>..~J')' 

fee(.>..)(m) = -~E ( n logO"!+ e'e/O"! I Y2, r = [K*(m)/, .>..~J'). 

We maximise fee with respect to both d and .>.. to obtain updates from 
which 1 is then updated via 

G(m+l) = A (m+l) D(m+l) A (m+l)/. 

We first consider .>... Maximising fee with respect to .>.. leads to updates of 

the form 

.>._(m+l) =A -l(m)b(m), 

where b is a vector oflength t2 whose (i, j)th element is bii and A is a t2 x t2 

matrix whose rows and columns are indexed by (i, j) and (k, l) respectively 
with elements given by aij;kl· The elements of b and A are given by 

b.= u(m)lj.._' .. z'y"*(m)- 0"2(mltr (A.'.z'XCXZ(m)) 
lJ lJ H lJ l 

- -(m)'A' I z'zA' -(m) + 2(m)t (z' ZA cZZ(m) A--') aij;kl- u ij klu O"H r kl ,1 , 

. xz 
where y* = y- XT and A;j = oAjoAij and c is the off-diagonal 
portion of the inverse of C corresponding to T and u. 
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The updating formula for d is obtained using the same approach as for 
the EM updates for unstructured G-matrices presented earlier. 

5.4. Improved iterative schemes 

When REML estimates of variance parameters are within the parame
ter space the most common cause of convergence difficulties for second
order methods, including AI, is the use of poor starting values. Given that 
second-order methods converge much faster than first-order methods when 
updates are "close to" the solution, we propose hybrid schemes that use 
EM (or PXEM) updates until close enough to the solution, then invoke 
AI updates. Operationally, we compute the score vector and AI matrix at 
each iteration, and then check that the AI matrix is positive definite and 
calculate a global measure of proximity of the current estimates to the 
REML solution. The proximity measure for the mth iteration is calculated 
as U R(CT(m))' I A (u(m))- 1 U R(CT(ml). In the hybrid schemes we only use AI 
updates if the AI matrix is positive definite and the proximity measure has 
a p-value greater than some pre-determined tolerance when compared with 
a chi-square reference distribution with degrees of freedom equal to the to
tal number of variance parameters. We choose to always use AI updates for 
variance parameters associated with R since we believe most convergence 
difficulties are in relation to parameters in G. In the remainder of this pa
per these schemes will be referred to as the "EM/ AI" and "PXEM/ AI" 
schemes. 

5.4.1. Local schemes 

A computationally "cheaper" alternative to using full EM {or PXEM) iter
ations in the hybrid schemes is to use an internal or so-called local EM (or 
PXEM) scheme that is invoked within the external iterations. These hybrid 
schemes will be referred to as the "local EM/ AI" and "local PXEM/ AI" 
schemes. The motivation for these approaches was the use of augmented 
dispersion models for the estimation of dispersion parameters in hierarchi
cal generalised linear models {Lee and Nelder[44]). We describe our hybrid 
schemes in the context of a single random factor and let 0" 2 = 0"2 (0) and 

H H ' 

cp = cp(o) denote the values for these parameters from the external loop. Af-
ter absorption of fixed effects in the mixed model equations (of the external 
loop) we have 

(Z' sco) z + Gco)-l )u = t 
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where 

and 

s(o) = R(o)-1 _ R(o)-1 X(X' R(o)-1 X)-1 X' R(o)-1. 

Thus, we have that 

E(t) = Z'S(0)XT = 0 

var(t) = u!(O)(Z'S(O)zGZ'S(O)z + Z'S(O)z) 

The matrix Z' S(O) Z will in general be singular and not readily available 
within the framework of mixed-models software such as ASRemiHence we 
propose in the following to approximate this matrix by another matrix that 
we denote by n(o), which is non-singular and whose elements are accessible 
from the (current) external loop. The method of approximation will in 
general depend on the application and the form of the model for G. 

Define the modified working effects vector by 

z = n(o)- 1t/~ 
and hence 

E (z) = 0 
var(z) = 0(0)- 1(Z'S(O)zGZ'S(O)z + Z'S(O)z)0(0)- 1 

~ G + f!(o)-1 

Hence we have approximately, 

z ~ N(O,G + n(o)-1 ) 

Since G = G(-y) the opportunity exists to update 1 from an internal up
dating scheme, in which we have implicitly fixed the estimates of the fixed 
effects and the other variance parameters from the current external loop. 
The approach is illustrated in the following section for an unstructured 
variance matrix. 

Example: Local scheme for an unstructured G-matrix 
In this section we consider the example considered in sections 5.2.1 and 

5.3.1. The "local" linear mixed model is given by 

Z = Uz + ez 

= Afz + ez (13) 
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and, as before, A = At® 19 , Uz = Afz and var(uz) = G = Gt ® 
/ 9 ,var(fz) = D = Dt ® 19 ; thus, Gt = AtDtA~. As before the ma
trix A~xt (and hence Dt) is assumed to be invertible while the matrix Dis 
symmetric positive definite. Lastly, we have that var (ez) = O(o)-1 , which 
is assumed to be known (as is 0'~). 

To implement the local scheme we first consider an appropriate full rank 
approximation to the matrix Z' sz. If cZZ(O) = { c~Z(O)} ( i,j = 1 ... t) 
is the coefficient matrix from the mixed model equations associated with u 
evaluated at the current parameter values, then, in order to obtain a n<o), 
we suggest approximating CZZ(O) by 

C(0 l* = { diag ( c~z(o))} 

and hence we choose 

In terms of the data vector z we have 

_ n(0)-1CZZ(0)-1 -(0)/ f2(o) 
Z-u U VO'J:i', 

where 

u.(o) = 0 zz(o) z' 8 (oly. 

In order to implement the scheme we must apply the same approximation 
for the calculation of z. That is, we must use 

* _ n(0)-1C(0)*-1 -(0)/ f2(o) z - H u VO'J:i ·. 

Since Eq. [13] is a (trivial) linear mixed model in which the fixed-effects 
design matrix is the null matrix, we can implement either EM or PXEM 
schemes quite simply. 

5.5. Analysis of data-sets 

Here we examine the performance of a range of iterative schemes on two 
published data-sets, namely the lamb weight data presented in Callanan 
and Harville[47] and the ultrafiltration data presented in Foulley and van 
Dyk[46]. We have used models as given in these papers. Note in particular 
that the variance parameterisation used in both cases corresponds to the 
scale parameter 0'! being fixed at the value 1. Convergence was defined 

as being achieved when the norm VC'f:.(O'Jml- O'fm- 1))2)/(2.:: O'jml2 ) of all 
variance parameters was smaller than 1-8 . For the hybrid schemes, AI was 
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invoked when the p-value for the proximity measure was greater than 0.5. 
The local schemes require a choice for the number of internal iterations. For 
the PXEM scheme we used a single internal iteration and for EM we used 
3 iterations. The reasoning behind our choices was that the updates from 
a single internal iteration of local EM are equivalent to those from a single 
global iteration of EM so, in order to take advantage of the economies of 
the local scheme, it is desirable to perform more than a single iteration (we 
chose 3). In contrast, updates from a single iteration of local PXEM are 
different from the global PXEM updates since the prediction error covari
ance terms between fixed and random effects (ie. cxz) are ignored. One of 
the principal motivations for the local PXEM scheme was the difficulty in 
implementing global PXEM in ASReml (due to the need for terms involving 
cxz). Thus we have an interest in assessing the performance of a scheme 
that is essentially PXEM but ignores these terms. The local PXEM scheme 
with a single internal iteration provides such an algorithm. Determination 
of an optimum number of internal iterations for either EM or PXEM is an 
issue that requires further research. 

5.5.1. Lamb weight data 

The data consist of the weights at birth of 62 single-birth male lambs. Each 
lamb was the progeny of one of 23 sires and the sires belonged to one of 
5 population lines. Each lamb had a different dam and the age groups of 
the dams were recorded (1=1-2 years; 2=2-3 years; 3=over 3 years). The 
model fitted to the data can be written in symbolic form as 

weight rv mu + age + line + sire 

where age, line and sire are factors with 3, 5 and 23 levels, respectively, 
and mu is the intercept term. The effects of sire (within line) are fitted as 
random effects; all other effects are fitted as fixed. In matrix notation we 
have 

y=X-r+Zu+e, 

where -r is the vector of fixed effects comprising the intercept and the main 
effects of age and line, and u is the vector of random sire effects. The 
associated design matrices are X 62 x7 (assumed to be of full column rank) 
and Z 62 x 23 • The vector of residual effects is given by e. We assume that u 
and e are independent with 
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and e"' N(O, 0';/52). 

We used nine different iterative schemes to obtain REML estimates of 
the variance components 0'; and 0'~. These schemes included standard AI, 
EM and PXEM and the hybrid schemes EM/ AI, PXEM/ AI, local EM/ AI 
and local PXEM/ AI. In addition, we used a linearised AI and a linearised 
method of successive approximations (MSA) scheme in order to compare 
our results with those presented in Callanan and Harville[47]. The stan
dard and linearised AI schemes are analogous to the standard and lin
earised N-R schemes labelled "NR2" and "LN1" respectively in Callanan 
and Harville[47]; the linearised MSA scheme is "LMSA1" as per Callanan 
and Harville[47] (and note that our EM scheme is equivalent to Callanan 
and Harville's "EM1"). Two sets of starting values were used, namely 
(0'; = 0.01, 0'~ = 1) and (0'; = 5, 0'~ = 1). 

The REML estimates of the variance components were a-; = 0.5171 
and a-; = 2.9616. The numbers of iterations to convergence for all schemes 
(other than the linearised schemes) are given in table 1. The linearised 
AI scheme required 12 iterations (from both sets of start values) and the 
linearised MSA scheme required 12 and 14 iterations (for the start values 
of 0'; = 0.01 and 0'; = 5 respectively). Note that in the AI scheme the 
first update for 0';, when started from the value 5, was negative. We have 
implemented a strategy in ASReml for such cases, namely to change the 
inadmissable estimate to an admissable value (chosen to be 0.0001) then 
re-update other parameters subject to this alteration. Without this remedial 
action the AI algorithm failed for this data-set when the start value 5 was 
used for 0';. 

We have graphed the iteration sequences for 0'; for the AI algorithm and 
all hybrid schemes (see figure 1). Only the first 10 iterations are shown. 

5.5.2. Ultrafiltration data 

The data consist of the ultrafiltration response of 20 membrane dialysers 
measured at 7 different transmembrane pressures with an evaluation made 
at two blood flow rates. The model fitted to the data can be written in 
symbolic form as 

ufr "' mu + bfr + tmp + tmp2 + tmp3 + tmp4 + 
subject+ subject.tmp + subject.tmp2, 

where bfr (blood flow rate) is a factor with 2 levels, tmp (transmembrane 
pressure) is a covariate (as are tmp2=tmp2 , tmp3=tmp3 and tmp4=tmp4 ), 
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Fig. 1. Lamb weight data: estimates for sire variance component for 5 algorithms: 
1=standard AI; 2=EM/ AI; 3=PXEM/ AI; 4=local EM/ AI; 5=local PXEM/ AI. First 
10 iterations only. (a) start values a: = .01, a~ = 1 and (b) start values a; = 5, a~ = 1 

Table 1. Number of iterations to convergence for 2 data-sets 
and a range of algorithms. For hybrid schemes, the break-down 
into non-AI and AI iterations is given in parentheses. Notes: 
lamb1 start values a; = 0.01, a: = 1, lamb2 start values 
a; = 5, a: = 1 and 3 updates for a; constrained to be pos
itive 

Algorithm Lamb 1 Lamb2 Ultrafiltration 

AI 14 143 Failed 

EM 1296 342 249 

PXEM 83 78 42 

EM/AI 15 (3/12) 16 (4/12) 13 (5/8) 

PXEM/AI 13 (3/10) 14 (3/11) 8 (2/6) 

local EM/AI 15 (3/12) 14 (3/11) 11 (3/11) 

local PXEM/ AI 13 (2/11) 13 (2/11) 7 (1/6) 

and subject ( dialyser) is a factor with 20 levels. The effects in bold are fitted 
as random effects; all other effects are fitted as fixed. In matrix notation we 
have 

y=Xr+Zu+e, 

where T is the vector of fixed effects and u = (u0, uJ., ui)' is the vector of 
random effects, partitioned as the subject intercept, linear and quadratic 

ffi. · · l Th · d d · · X I40x6 ( coe cwnts respective y. e associate esign matnces are as-
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sumed to be of full column rank) and Z 140 x 60 . The vector of residual effects 
is given by e. We assume that u and e are independent with 

( :~) "'N ((~), [:~~ cru ] ®l2o) 
U3 0 CT02 CT12 CT22 

and e"'N(o,cr;/140) 

We used seven different iterative schemes to obtain REML estimates of 
the variance parameters. These schemes comprised standard AI, EM and 
PXEM and all hybrid schemes. The starting values used were as given 
in Foulley and van Dyk[46], namely croo = cru = cr22 = 4, cro1 = 
2, cr02 = -1.2, cr12 = -2.4 and cr; = 4. The use of these values re
vealed the instability of second-order methods when starting values are 
poor, with standard AI failing to converge, whereas standard EM and 
PXEM converged. The REML estimates of the variance parameters were 
B-oo= 2.25, 8-u = 24.08, 8-22 = 2.17, B-o1 = -3.73, B-o2 = 0.69, .B-12 = -6.83 
and a-; = 3.32. The numbers of iterations for convergence are given in table 
1. 

We have graphed the iteration sequences for the random regression vari
ance parameters for the AI algorithm and all hybrid schemes (see figure 2). 
Only the first 10 iterations are shown. 

5.6. Discussion of Results 

Foulley and van Dyk[46] state that the EM algorithm is widely used for 
REML estimation of variance parameters in a linear mixed model. They 
suggest that a major reason for its popularity is the stable convergence prop
erty but that a disadvantage is its slow convergence. They therefore focus on 
"EM procedures and ways to improve them". In particular, they advocate 
use of the PXEM algorithm. We have adopted the converse strategy, that 
is, our focus is on a fast, computationally-efficient algorithm, namely the 
second-order method of AI, and ways to improve its stability. At present, 
attention has been restricted to cases in which the REML solution is within 
the parameter space and our discussion here is in that context. The prob
lem of iterative schemes when the REML solution is outside the parameter 
space is the subject of current research. 

Our analysis of the lamb weight data clearly shows that when initial 
values for variance parameters are reasonable the AI algorithm converges 
in far fewer iterations (14) than either PXEM (83) or EM (1296). The 
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Fig. 2. Ultrafiltration data: estimates for random regression variance parameters for 
4 algorithms: 2=EM/ AI; 3=PXEM/ AI; 4=local EM/ AI; 5=local PXEM/ AI. First 10 
iterations only. 

superiority over EM reflects the well-known difference between the speed of 
first- and second-order methods. The direct comparison of AI and PXEM 
suggests that PXEM, although an improvement over EM, still falls well 
short of AI in terms of speed of convergence. However, with poor initial 
values, second-order methods, including AI, may be unstable. In simple 
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models, in particular variance component models, this may not be an issue 
provided that non-negativity constraints are imposed and properly dealt 
with during the iteration sequence. This is illustrated in our analysis of 
the lamb weight data. Instability is most likely to arise in models with 
a more complex variance structure such as the unstructured model used 
in the random regression context. Our analysis of the ultrafiltration data 
reveals a potential solution in the form of hybrid schemes that employ a 
sequence of EM or PXEM updates followed by AI. All of the proposed 
hybrid schemes converged in far fewer iterations (ranging from 7 for the 
local PXEM/ AI scheme to 13 for the EM/ AI scheme) than either PXEM 
(42) or EM (249). The initial EM-type updates in the hybrid schemes are 
merely a tool to move close enough to the REML solution to enable AI to be 
successfully invoked. An obvious alternative is to ensure that initial values 
are sufficiently close to the solution. General approaches for generating 
good initial values for a range of variance models is the subject of current 
research. 

Although illustrated in terms of small examples, the algorithms pre
sented here are all amenable for use on large data-sets (i.e. with large num
bers of random effects or many variance parameters). Harvillef48] dismisses 
the use of second order methods in such settings, suggesting that they are 
so computer intensive as to be infeasible. This may be the case for the 
N-R and F-S schemes but the AI algorithm is routinely implemented on 
large data-sets, particulary in animal and plant breeding applications and 
requires little more computation than first-order schemes[17]. For example, 
we routinely use the AI algorithm to fit complex variance models to multi
environment plant variety trial data where the number of random effects 
often exceeds 60,000. 

6. Inference in linear mixed models 

6.1. Hypothesis tests for variance models 

REML likelihood ratio tests (abbreviated to the acronym REMLRT) can 
be used to compare nested models. That is, for a comparison of (nested) 
models Mo and M1 with the same fixed model, where M 1 contains k extra 
variance parameters, the REMLRT statistic is given by 

where fRi is the residual log-likelihood for model i. 
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The statistic D is asymptotically distributed as a chi-squared variable 
with k degrees of freedom. The exception is when the test involves a null 
hypothesis with the parameter on the boundary of the parameter space 
(see Stram and Lee[49] for further discussion). REMLRT cannot be used 
to compare non-nested models. In these situations the Akaike Information 
Criterion AIC[50] has been proposed as a model selection criterion. This is 
given by AIC = -2fR + 2k, where f.R is the value of the maximised REML 
log-likelihood and k is the number of variance parameters being estimated. 
Various other criteria have been suggested to improve the performance of 
the AIC criteria in different settings. Some examples of these include the 
Corrected Akaike Information Criterion AJCC[51], the Bayesian Informa
tion criterion BIC[52] and Residual Information Criterion[53]. 

6.2. Inference for fixed effects 

For many applications of the general linear mixed model given in Eq. [5], 
interest centres on the vector of fixed effects. In such cases it is well known 
that specification of the variance model, either via a design-based or model
based route, significantly affects inference for such fixed effects. The distri
bution of theE-BLUE ofT is in general not known. For certain situations, 
particularly in small samples or in designs with multiple strata or complex 
variance models, this can have a significant impact on the distribution of 
the E-BLUE (see, for example, Welham and Thompson[54]). 

Wald-type test procedures are generally favoured for conducting tests 
concerning T, though these are based on asymptotic x2 approximations 
and hence also ignore the additional variability in the estimated variance 
parameters. 

Kenward and Roger[29] considered this general problem in detail. They 
pursue the concept of construction of Wald-type test statistics through an 
adjusted variance matrix of f. Note that in the following, rather than in
troduce additional notation, and for consistency with Kenward and Roger, 
we shall use f to denote the E-BLUE, obtained as the solution to Eq. [9] 
after replacing K by its REML estimate. Kenward and Roger argue that it 
is initially useful to consider an improved estimator of the variance matrix 
of f which has less bias and accounts for the variability in estimation of 
the variance parameters. There are two reasons for this. Firstly, the small 
sample distribution of Wald tests is simplified when the adjusted variance 
matrix is used. Secondly, if measures of precision are required for f, or 
effects therein, those obtained from the adjusted variance matrix will gen-
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erally be preferred. The adjusted variance matrix builds on the work of 
Harville and colleagues (see for example[55]) and is given by 

oi>, ~ oi> + 2<1' [ t, t, w,, ( b,,- b,oi>b,- ~D,,) l <1', (14) 

where r is the dimension of u, and 

. ,8v-1 

Di =X - 8--X, 
(}"i 

. ,8v-1 8v- 1 

Dij =X - 8--V-8--X, 
(}"i (}"j 

jjij = X'v-1 8zv v-1 X, 
8(}"i8(}"j 

ci> = (x'v-1xr1, 

and wij is ( i, j) th element of the inverse of the AI matrix. In the following 
we have omitted the "hat" unless there is ambiguity. All matrices that are 
functions of the variance parameter vector u are replaced by the equivalent 
matrices with u replaced by its REML estimate. 

For inferences concerning L' T, where L is a p x v known matrix of full 
rank, Kenward and Roger [29] propose the use of the adjusted variance 
matrix presented in Eq. [14] in a Wald-type statistic given by 

Fe= (f- r)'L( L'ci> AL) - 1 L'(f- r)/v. 

An appropriate F-approximation is achieved by consideration of a scaled 
form of Fe, say F*, where and F* =>.Fe, so that F* "'"Fv,m· The formulae 
for m and ).. are 

where 

m = 4 + (v + 2)/(vp- 1), 

>. = m/(E(F) (m- 2)), 

p = var (F) /2E (F) 2 . 

We replace E (F) and var (F) by 

E* = (1- Az/v)- 1 , 

V* = 2(1 + c1B)j{v(1- c2B)2 (1- c3B)}, 
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where 

c1 = gj{3v + 2(1- g)}, 

c2 = (v- g)j{3q + 2(1- g)}, 

C3 = (v + 2- g)j{3v + 2(1- g)}, 

g = {(v + 1)A1- (v + 4)A2}/{(v + 2)A2}, 

B = (A1 + 6A2j(2v). 

All of these are simple to compute once we have A1 and A2 • These can be 
written as 

for 

r r 

A1 = L L W;jtr (E>A1;) tr (E>A1j), 
i==1 j=1 

r r 

A2 = L '2: w;itr (E>AliE>A11), 
i=1 j=1 

e = L(L'~L) - 1 L', 

Ali= ~Di~· 

6.3. Computing the scaled F and adjusted variance matrix 

Computation of the scale and residual degrees of freedom for F*, as well as 
the adjusted variance matrix off, can be challenging in many applications 
of the general linear mixed model. For problems with either a large number 
of fixed effects or a large number of variance parameters the computational 
burden is substantial. In this section we present an efficient approach to 
compute the quantities. The approach fits into the AI algorithm and, at 
the time of writing, a beta-version has been implemented for testing in 
AS Rem I. 

Analogous to the concept of working variables within the AI algorithm, 
we define working effects matrix for each variance parameter ()i, given by 

Qf =vi v-1 X~= V;H- 1 X (X'H-1X) - 1, i = 1, ... 'r 

where 
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then it can be shown that 

where Pv = P /r>!. 
Thus, excluding the last term, the adjusted variance matrix is a weighted 

sum of residual sums-of-squares and cross-products matrices for the working 
effects matrices. The final term can be computed if necessary by noting that 

••X •• 1 ( 1 )-1 where Qij = Vi1H- X X'H- X and 

.. [J2V 
V;J = -{) {) . 

C>i (> j 

This quantity is available as an intermediate term in the absorption of Con 
the working effects matrix Q~. This term is zero for a large class of variance 
models, otherwise our experience suggests this term can be ignored. 

The matrix A 1i required for the scale and residual degrees of freedom 
can also be computed in a similar manner by noting that 

A1i =- (X'H- 1Xf1 X'H- 1Qf. 

A computationally cheap alternative, using numerical differentiation of <I> 
with respect to C>i, can be used by noting that 

This approximation appears adequate for the range of problems we have 
considered thus far. 

6.4. Kenward adjustments in ANOVA settings 

Consider the linear mixed-effects model with variance components (setting 
r>! = 1), where G = EBj= 1lj hJ. Then, if it is possible to consider a natural 
ordering of the variance component parameters, including e> 2 , we can use 
an idea due to Thompson[33] to further reduce the computational load. 
That is, consider diagonalisation of the expected (or average) information 
matrix. If F is the average information matrix for u, let U be an upper 
triangular matrix such that F = U'U. Further, we define 
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where De is a diagonal matrix whose elements are given by the inverse 
elements of the last column of U, i.e. dcii = 1/u;r, i = 1, ... , r. The matrix 
U c is therefore upper triangular with the elements in the last column equal 
to one. If the vector u is ordered in the "natural" way, with u 2 being the last 
element, then we can define the vector of so called pseudo stratum-variance 
components by 

Thence, 

var (€) = D~. 

The diagonal elements can be manipulated to produce effective stratum 
degrees of freedom (Thompson[33]) viz 

IJ; = 2e /d~ii 
To compute the adjusted variance matrix and the terms for the scaled 

F-test we need to calculate the working effects matrices for the pseudo 
stratum-variance parameters ~i from the working effects matrices for ui. 
That is, 

i 

= L u~iQj(a). 
j=l 

It follows immediately that 

and similarly 

where 

T 

cp = cp + ""d2Qx(E)t PQx(€) 
A ~ en l l 

i=l 

T 

A 1 = L d~;;{tr (8Ali)} 2 , 

i=l 
T 

A2 = L d~;;tr (8A1;8A1;), 
i=l 

Li .. (]cp 
. - ]> __ 

Ah- uc ou·. 
j=l J 
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A similar approach can be used to reduce the computational burden for 
a general model by suitable diagonalisation of the AI matrix, thus avoiding 
the need for the double summation in Eq. [14]. 

7. Prediction for the general linear mixed model 

Lane and Nelder[30] describe a general approach for forming predictions 
in general(ised) linear models. Briefly, their approach involves forming the 
fitted values for all combinations of the variables in the model, then taking 
marginal means across the variables not relevant to the current predic
tion. Their approach has been implemented in GENSTAT 5. Some compu
tational limitations with the calculation of the standard errors of predicted 
values have been recently removed (Lane[31]). This algorithm, however, is 
not generally suitable for use in linear mixed models. An alternative ap
proach, suited to the class of balanced linear mixed models with several 
random terms that can be analysed by ANOVA, is to replace predictions 
by treatment means. This approach may not be suitable for unbalanced or 
non-orthogonal data sets. Where random effects are present in the model, 
a decision must be made about how to treat these terms in prediction, and 
this might differ according to the purpose of a particular prediction. For 
correlated random effects, information on effects present in the data may 
be used to predict effects not present in the data set, with prediction stan
dard errors allowing for the extra uncertainty associated with the effects 
not being observed. The application of this principle to the residual error 
gives the kriging predictions used in geostatistics. 

In the following sections we briefly review the algorithm described by 
Gilmour et al.[32J, which has been implemented into both ASReml and the 
REML directive of GENSTAT 5. 

7.1. The Prediction Model 

We define a prediction to be a linear function of the (empirical) BLUP of 
random effects with the (empirical) BLUE of fixed effects. A prediction is 
typically formed as the predicted response from an experiment for a subset 
of explanatory variables at given values, with the remaining explanatory 
variables in the model being either averaged over, ignored, or taking a 
specified value. Welham et al.[56] consider the possible roles of fixed and 
random model-terms in prediction and conclude that, while fixed model
terms can never be ignored, random terms may be either included (for a 
conditional prediction) or ignored (to obtain a marginal prediction). They 
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also illustrate that flexibility in the averaging process is required to allow for 
different weighting schemes over factors, or combinations of factors. Aliasing 
and nesting must be determined to ensure invariance of predictions to the 
parameterisation used. 

7.2. Steps in the prediction process 

Gilmour et al.[32] consider four main steps, which are 

(1) Choosing the explanatory variable(s) and their respective values for 
which predictive margins are required; the variables involved are called 
the classify set. 

(2) Determining which variables should be averaged over to form predic
tions. The values to be averaged over must also be defined for each 
variable; the variables involved are called the averaging set. The com
bination of the classify set with the averaging set defines a multi-way 
hyper-table. Formally, variables to be evaluated at a single specified 
value within the prediction, e.g. a covariate evaluated at its mean value, 
can be equivalently included as a member of either the classify or av
eraging sets. 
At this point, there may be some explanatory variables in the model 
that do not classify the hyper-table. These variables will normally only 
occur in random terms that are ignored when forming the fitted values. 

(3) Determining which terms from the linear mixed model are to be used 
in forming predictions for each cell in the multi-way hyper-table. 

( 4) Choosing the weighting for forming means over each dimension (or 
combination of dimensions) of the hyper-table. 

7.3. Prediction process 

If we denote the vector of predictive margins by 7r, then 

7r = D/3, 
where D is a d x (p + b) matrix . We require both 7r and the matrix of 
prediction errors, DC- 1 D'. The matrices D and C are often very large, so 
that it is not practical to directly compute the matrix products involved. 
Gilmour et al.[32] decomposed D into matrices which relate to the four 
steps described in the prediction process. That is, 

D=AWMMS, (15) 
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where S is a r x (p + b) binary matrix that §.elects the elements of f3 which 
are used to form the predictions, M is a c x r "design" matrix that forms 
(a portion of) the multiway hyper-table for the specified combinations of 
the classify set plus the averaging set, W M is a c x c diagonal matrix of 
Yleights and A is a d x c matrix, that, when combined with W M, §,Verages 
the multiway table to produce the predictive margins. 

As pointed out by Lane[31], aliasing is an important problem to be 
aware of and keeping A and W M separate helps to control the type of 
averaging of the multi-way hyper-table, which is important for problems in 
which aliasing has occurred. Care must be taken whenever aliasing occurs 
to ensure that sensible averaging occurs. 

The main difference between the Gilmour et al. algorithm and the al
gorithm proposed by Lane and Nelder[30] is the presence of the matrix 
s. 

7.4. Computing Strategy 

One of the major obstacles with the implementation of the Lane and Neider 
algorithm in GENSTAT 5 has been limits on the size of the model and or 
the data-set for which predictions and associated standard errors can be 
readily obtained. Use of sparse-matrix methods, and judicious formation 
of D and the matrix of prediction error variances, has to a large degree 
ameliorated this problem whereby over 20,000 predictions can be obtained 
without recourse to inordinately large computers. 

Ignoring most of the details of the algorithm, such as initialisation of 
component matrices, checks on aliasing and forming D, we simply illustrate 
how the algorithm fits easily within the AI framework. M is the augmented 
mixed model matrix, given by 

Absorption of C gives 

M* = [ y' Py -1r' ] 
-7r -DC- 1 D' . 

The absorption is performed using a reordering of the mixed model matrix, 
retaining a high degree of sparsity (Gilmour et al. [17]). 
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John Neider's career in statistical computing is traced with particular refer
ence to his ideas and contributions to statistical algorithms, data structures, 
languages and software. Key concepts were (I) that algorithms should be com
prehensive to avoid constraining the users within a restricted set of facilities 
constructed in a piecemeal way, (2) that output from algorithms should be 
able to be saved in suitable data structures so that it can be used as input to 
other algorithms, and (3) that the command language of any statistical sys
tem should be usable as a programming language in its own right to facilitate 
the efficient development of new ideas. The development of these concepts is 
described with particular reference to their implementation in Genstat, GLIM 
and GLIMPSE. 

1. Context and history 

Practical statistics looked very different in October 1949 when John Neider 
received his first appointment as a statistician, at the newly set-up Veg
etable Research Station of the Agricultural Research Council (ARC). Later 
this was renamed as the National Vegetable Research Station (NVRS), 
and it has now become Horticultural Research International, Welles bourne. 
Analyses were performed using mechanical calculators, operated by hand 
or perhaps (if you were lucky) with the help of an electric motor - the 
sprained wrist must have been the precursor of Repetitive Strain Injury! 
Nevertheless, some fairly sophisticated analyses were possible. For exam
ple, Yates (1937) described methods for some of the experimental designs 
routinely analysed in this way, including 2n designs with confounding be-

95 
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tween treatment interactions and blocks, split plots, and quasi-factorials. 
Similarly, Finney (1947) showed how to fit probit lines and pro bit planes by 
hand. However, data sets were relatively small, models were fairly simple, 
and the pressure of routine analysis must have severely limited the oppor
tunities for innovation. As Frank Yates noted in the Rothamsted Annual 
Report for 1952: 

"The analytical work has again involved a very considerable com
puting effort." (sic). 

1.1. Rothamsted 

The buildings at Wellesbourne had not been completed in 1949. So John 
worked initially at Rothamsted (another ARC station), in the Statistics De
partment then headed by Frank Yates. This began John's association with 
Rotha.msted, which continued after his arrival at Welles bourne. Some of his 
collaborations are recorded by Yates in the Rothamsted Annual Reports. 
For example, in 1957 John was investigating the use of the Newton-Raphson 
iterative procedure for solving least-square equations with S. Lipton (see 
1957 Rothamsted Annual Report). The context was the fitting of logistic 
curves, foreshadowing John's development of his generalized logistic curve 
(Neider 1962). In 1959 Howard Simpson programmed the Jackson method 
for analysis of capture-recapture data for John - foreshadowing their long 
collaboration on Genstat. In 1960 G.W. Bonsall used John's method toes
timate components of variance in genetical data and, in 1961, collaborated 
with him and with members of Birmingham University in the application 
of improved techniques to estimate genetical parameters in experiments on 
Drosiphila and tomatoes. In 1962 John collaborated with Rothamsted on 
the automatic recording of data using the "Port-a-punch" system, and the 
1964 Rothamsted Annual Report noted that NVRS statisticians 

"do much of their own programming and tape preparation and co
operate with us in the writing of general programs" 

The Rothamsted association became more formal in 1968, when John 
took over as Head of the Statistics Department following Yates' retirement. 
At that point, Rothamsted was anticipating the arrival of its fourth com
puter, an ICL 4-70. The first Rothamsted computer, an Elliot 401, had 
been obtained in 1954 and can be claimed to be the first computer to be 
associated primarily with agricultural research and with statistics. An El
liot 402 was added in 1961, before both were replaced by a Ferranti Orion 
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in December 1963. These computers were available to other ARC stations, 
but this must have been very inconvenient, even after the addition of a telex 
link to NVRS in 1967. The 401 and 402 supported only one user at a time, 
programs were written in machine code, and considerable ingenuity had to 
be used to make efficient use of the rotating disk that stored data and pro
grams during execution. The aim was to ensure that successive instructions 
passed the reading head at just the right moment to avoid a wasted rota
tion of the disk. Nevertheless, many analysis programs were developed. The 
1964 Rothamsted Annual Report noted that, in their final year of operation, 
the 401 and 402 analysed 14,357 variates (or analysis variables). However, 
this took a total of 4,731 hours! The Orion was much more efficient, and 
provided an early computing language called Extended Mercury Autocode. 
Facilities provided by the programs developed in EMA included analysis 
of 2n or 33 experiments and of factorial designs, multiple regression, and 
analysis of surveys. The Orion could run more than one program at a time 
but, in practice, this was of limited benefit as most programs required all 
the available disk space. 

The ICL 4-70 was delivered to Rothamsted in July 1970 and became 
usable by the Statistics Department in November. In the interim, programs 
were developed on an IBM 360 computer at Edinburgh Regional Com
puting Centre, accessed through a telex link. The 4-70 was a major step 
forward, and provided many of the computing facilities that we now take 
for granted. It supported a high-level programming language (Fortran), al
lowed programs and data to be stored on disk, and even provided a rather 
slow interactive mode of use (known as RIRO, standing for roll-in-roll-out). 
The operating system, Multijob, also enabled larger programs and data sets 
to be handled by "overlaying" subroutines and common blocks that would 
not all be needed at once, although it was not until 1971 that this was 
operating reliably. 

So John arrived at Rothamsted at a time when many new opportunities 
were opening up for statistical computing. In particular, it was now feasible 
to develop general-purpose statistical systems. John had prepared his ideas 
for just such a system during his time at NVRS and also, importantly, on 
a visit to the Waite Institute of the University of Adelaide in 1965-1966 
where he was able to work with Graham Wilkinson of the CSIRO Division 
of Mathematical Statistics. An additional bonus of this trip was that, on the 
boat to Australia, he was able to write a program to implement the Nelder
Mead simplex algorithm for optimization, which is now a citation classic 
(Nelder & Mead 1965). Furthermore, within the Rothamsted Department, 
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there was considerable expertise that could be deployed, and several existing 
statistical programs to provide an additional source of algorithms and ideas 
(see Gower 1986). The result eventually became the system now known as 
GenStat for Windows; see Section 4.1. 

John's other statistical computing interests during his time at Rotham
sted included the Royal Statistical Society's Working Party on Statistical 
Computing (Section 1.2), and the development of the program GLIM (Sec
tion 4.2). He retired from Rothamsted in October 1984, but has remained 
a regular and welcome visitor, and has retained a continuing interest in 
Genstat. 

1.2. Working Party on Statistical Computing 

Another important thread in John's career began on 15th December 1966 
when, with Brian Cooper, he organised a meeting at the Atlas Computer 
Laboratory, Chilton, on Statistical Programming - the Present Situation 
and Future Prospects. The organisers believed that many good ideas had 
been developed amongst a diverse set of systems, but there had been much 
duplication of effort and the systems were increasingly incompatible with 
each other. With the arrival of a new generation of computers which, for 
example, might facilitate conversational use, they felt that it might be op
portune to look closely at progress and prospects for statistical computing. 
John circulated a memorandum setting out some thoughts on the possi
bilities of a statistical language using standardised data structures and in
struction formats. This received an encouraging response, which led Brian 
Cooper to suggest the meeting. The participants, 41 in all, included statis
ticians, programmers and representatives of computer manufacturers, and 
the talks described current work at Rothamsted (Gower, Simpson & Martin 
1967), the Atlas Computer Laboratory (Cooper 1967), University of Lan
caster (Colin 1967), the Meteorological Office (Craddock & Freeman 1967), 
and in the USA (Chambers 1967). In the discussion John revealed that he 
had not volunteered to discuss Genstat as he had recently spoken about 
the system to the Biometric Society. 

The discussion contains many threads that would not be out of place 
today, for example concern about potential misuses of statistical systems 
and methods e.g. multiple regression ("one of the most used, and misused 
of standard statistical programs": Page 1967). Others have been overtaken 
by time. For example, it was felt by several contributors that conversational 
modes of use could be impracticable because pressure of use would preclude 
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the necessary time for thought. However, Vickers (1967) pointed out that 

"Clearly if those of us around this table were presented with a 
console most of us would spend too much time racking our brains, 
and activity would be pretty slight. But let us not forget that the 
sixth-form boy who sees a console today and then goes on to a 
degree in statistics and computation will be a very fine console
operator in five years time. Such people, who can react to consoles 
quickly, will be with us soon." 

The graduates of 1971 would agree, although console-operation may have 
proved more of a means within their careers than an end in itself! More 
tellingly, Meier (1967) predicted that consoles would soon become suffi
ciently cheap for them to be left unused (if necessary) until needed. 

At the end of the meeting Ewan Page proposed, and Michael Healy 
seconded, a proposal that a working party be set up. David Finney, who had 
chaired the discussion, called for nominations and as a result the Working 
Party on Statistical Computing was formed with the following members: 
John Nelder (Chairman), Brian Cooper (Secretary), James Craddock, Ewan 
Page, John Gower and Michael Healy. 

The first activity of the Working Party was to establish and maintain 
a statistical algorithms section in the RSS journal Applied Statistics. The 
initial aim seems to have been to support good computing practice by pro
viding implementations of the basic building blocks of a statistical program. 
Later very much more complicated techniques were added, and the publi
cation of an algorithm for a new piece of methodology became an equally 
valid (and perhaps more effective) way of registering a new idea. The sec
tion was instigated in 1968, when John was one of the two joint editors 
of Applied Statistics. An editorial announcement Statistical algorithms ap
peared in issue 1 of the 1968 volume, the first seven algorithms appeared 
in issue 2, and a further five in issue 3. By 1971, the volume of work jus
tified the establishment of an explicit Algorithms Editor on the Applied 
Statistics Editorial Board. John took the title for that year (giving up his 
joint-editorship), before passing the role to David Hill who continued until 
1976. Subsequent editors were Howard Simpson (1977-1979), Paul Grif
fiths (1979-1984), Patrick Royston (1985-1987), Janet Webb (1985-1988), 
David Muxworthy (1988-1991), Peter Fayers (1988-1991), Carl O'Brien 
(1991-1997), and Nick MacLaren (1992-1994). 

John was very keen to support the algorithms section, personally and 
through his NVRS and Rothamsted colleagues. By the time the activity 
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ceased, in 1997, 321 algorithms had been published, over 9% of which origi
nated from John and his immediate colleagues. The other major activity of 
the Working Party was the program GLIM , which is described in Section 
4.2. John resigned as Chairman of the Working Party in 1984, at the time 
of his retirement from Rothamsted. 

1.3. Imperial College 

John was first appointed as a Visiting Professor at Imperial College (or, to 
use its formal title: Imperial College of Science, Technology, & Medicine, 
London) in 1972. Following his retirement from Rothamsted, this became 
his main centre of operations. The first of these was the GLIMPSE project, 
described in Section 4.3. Later projects included his Genstat-based K, MD 
and HG systems (Section 4.3), and his associated and continuing research 
with Youngjo Lee on hierarchical generalized linear models (Section 3.3). 

2. Data structures 

Right from the outset, John regarded the existence of suitable data struc
tures as fundamental to the design of a successful statistical system. He 
introduced Genstat in the 1968 Rothamsted Annual Report as follows: 

"The system under construction (for GENeral STATistical work) 
is based on the idea that the easiest way to ensure compatibility 
of different programming modules is to define the basic data struc
tures on which they operate. Some of these structures can be seen 
in raw experimental data, whereas others are created during anal
ysis. At any stage, the analysing program will have assembled a set 
of these structures in the core-store of the machine." 

The initial Genstat system supported the data matrix (as a collection of 
columns with equal lengths), three types of matrix for matrix arithmetic 
(rectangular, symmetric and diagonal), the multi-way table, the scalar, the 
textual string, a special structure to store latent roots and vectors, and a 
structure to refer to sets of other structures which became known as the 
pointer. In the 1969 Report he noted that 

"All GENSTAT programs use these standard structures as input 
and produce others of the same kind as output; their use thus gives 
the automatic compatibility between programs that is so important 
if the system is to be easy to use.". 
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A key requirement is the ability to save output from algorithms in data 
structures so that it can be used as input to other algorithms. Neider (1974) 
explained why this was essential for multi-stage analyses. 

"Almost everyone accepts the idea that the analysis of a substan
tial body of data must be a multi-stage process of trial and error. 
Our models can only be tentative, may be contradicted by the data 
themselves, and will usually need revision. But although everyone 
may accept this principle, far too many people accept computer 
programs that, far from encouraging a multi-stage approach, ac
tively foster the single-stage procedure 

input 
analyse 
output 
stop. 

Those who do not wish to think may welcome the magic black 
box that tabulates their data in all possible ways, does all possible 
regressions, calculates all possible statistics, prints the result on 
several kilometres of paper and then stops. The intelligent user 
will reject this approach, but he needs to recognise the symptoms 
that a program is based implicitly on a single-stage view of analysis. 
The critical question is - does the system allow the output from 
a procedure to be named as instances of suitable data structures, 
and used subsequently as input to other procedures? If the answer 
is no then, real multi-stage analysis is going to be at best difficult 
and at worst impossible. Thus facilities for naming output and 
the definition of a common set of structures for both input and 
output are key features of a system supporting multi-stage analysis. 
A further essential feature is of course the ability to save, and 
subsequently to retrieve, not just the raw data but data structures 
derived from them." 

Payne & Neider (1976) extended this campaign by examining ten pop
ular statistics packages to see what types of data structure were provided, 
and how these could be used. Again the focus was on the ability to link al
gorithms together through their data structures. In their introduction they 
stated 

"The availability of a particular structure, although not absolutely 
essential for the feedback of information from an algorithm into 
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the system, very much affects the extent to which this is provided. 
For example packages without scalar structures seem reluctant to 
allow the user internal access to scalar quantities like a regression 
coefficient (see 1.3). This internal access to output structures is 
crucial if the user is not to be constrained within the (relatively 
small) set of problems that have been programmed by the package 
designers. For example: the regression algorithm in a package may 
simply take sets of x- and y-variates, perform the regression, print 
the results and plot the regression lines and residuals. This would 
provide a rather restricted analysis. If however the algorithm, al
lows the regression coefficients, residuals and fitted values to be 
accessed by the graphical and transformation algorithms, differ
ent sets of lines can be plotted in the same frame, residuals can 
be plotted against other possible x-variates, or as a histogram etc. 
Furthermore, if weighted regression is available, the way is open to 
exploit techniques based on iterative weighted least squares, using 
the fitted values from one iteration to define the weights used in 
the next. This procedure is, of course, greatly simplified if macro 
and looping facilities are provided." 

It was perhaps no surprise to find that Genstat came out top in the compar
ison, but the aim of the paper was more to raise standards than to promote 
Genstat (which, at that stage was not being marketed commercially). The 
conclusion stated 

"The purpose of this paper has not been to recommend any par
ticular package as a 'best buy' (although some packages are clearly 
more limited than others) but to suggest other ways of evaluating 
packages apart from examining the algorithms they provide, and to 
highlight areas for improvement. Two points seem worth repeating 
here. First, the use of the data matrix as the basic data structure 
is rather inflexible - it forces all variates to be of the same length, 
precludes the use of scalar structures and the provision of general 
calculation facilities involving structures of different types. 
Secondly, if a package is to be useful not only to the routine user, 
but also to the user who wishes to develop new forms of analysis 
- to use the package as a research tool rather than as a standard 
black box - it is important to allow output from algorithms to be 
copied into named data structures of a form recognised by other 
algorithms in the package. There has certainly been much misuse of 
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packages by unthinking users, and it is important that originators 
should not encourage rigidity by making their packages difficult to 
use flexibly." 

Now, over 25 years later, it should seem surprising that this was ever 
a controversial view, but a repeat of the same survey would no doubt find 
that some packages are still far from flexible in this respect. However, many 
users demand flexibility, and they have a range of systems such as Splus 
and, of course, Genstat itself able to satisfy their needs (see Section 4.1). 

3. Algorithms 

Implicit in John's work in Genstat and GLIM, and stated explicitly by 
Nelder & Payne {1991), is the aim that algorithms should be comprehensive. 
In their discussion on statistical features, N elder & Payne ( 1991) state that 

"One way in which a package designer can encourage flexibility 
is to select algorithms that are as general and comprehensive as 
possible. For example, analysis of designed experiments is often 
broken up into separate programs for a one-way classification, two
way classification, Latin square, and so on; this piecemeal approach 
tends to foster the attitude whereby users think of designing an ex
periment as being merely a process of selecting from a limited set 
of alternatives, instead of the more challenging - and rewarding -
task of devising the arrangement that most effectively meets the 
requirements of the investigation. Thus, the analysis-of-variance al
gorithm in Genstat [9, 13] {i.e. Payne & Wilkinson 1977, Wilkinson 
1970} handles the complete class of generally balanced designs [4, 
5] {Nelder 1965}, and these cover virtually all the standard exper
imental designs: Genstat is distributed with a data file that shows 
how it can analyse all the worked examples in the standard text of 
Cochran and Cox [1] {1957}." 

In fact, in Genstat for Windows you can enjoy the best aspects of both the 
general and the piecemeal approaches, because the general algorithms are 
used by special-purpose procedures- and now menus- that provide custom 
interfaces to the simple analyses, such as one-way anova. However, there 
are also menus that allow the full power of the algorithms to be invoked by 
those with wider needs and knowledge. 
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3.1. Analysis of variance 

Design and analysis of experiments was the first area that John studied. His 
concept of general balance (Nelder 1965) brought virtually all of the tra
ditional experimental designs into a single framework, and facilitated their 
analysis by a single algorithm. In this case, the algorithm was developed by 
Graham Wilkinson, initially at the Waite Institute and at CSIRO in Ade
laide Australia; then later (from 1971-1975) it was revised extensively at 
Rothamsted in collaboration first with Charlie Rogers, and then with Roger 
Payne (i.e. this author) - who took over the subsequent development af
ter Wilkinson left Rothamsted (see e.g. Payne & Wilkinson 1977, Payne & 
Tobias 1992, Payne 1998). Wilkinson (1970) noted that the algorithm was 
derived partly from the theory of general balance of Nelder (1965), and its 
ability to produce a correct and complete analysis when there is more than 
one block (or error) term is an aspect that, even now, is a strong advantage 
of Genstat compared to other statistical systems. 

When there are several block terms, the total sum of squares can be 
partitioned up into components known as stmta, one for each block term. 
Each stratum contains the sum of squares for the treatment terms esti
mated between the units of that stratum, and a residual representing the 
random variability of those units. The properties of a generally balanced 
design are that (i) the block terms are mutually orthogonal, (ii) the treat
ment terms are also mutually orthogonal, and (iii) the contrasts of each 
treatment term all have equal efficiency factors in each of the strata where 
they are estimated. The mathematics underlying the Genstat analysis algo
rithm (Wilkinson 1970, James & Wilkinson 1971) are not straightforward 
to relate to those of general balance. In fact, the class of designs that the 
Genstat algorithm can analyse (known as designs with first-order balance) 
include some that are not generally balanced. The precise connection be
tween the two classes was made by Payne & Tobias (1992). First-order 
balance does not require an orthogonal block structure (condition i), but 
Payne & Tobias (1992) showed that a first-order balanced design that does 
have an orthogonal block structure will also be generally balanced. 

Implicit in the definition of general balance is the idea that treatment 
effects may be estimated in more than one stratum. The simplest example 
is the balanced incomplete block design, where there are treatment esti
mates both between blocks, and between the plots within blocks. Under 
these circumstances, it is advantageous to present treatment estimates that 
combine the information from each of the strata where the treatment is 
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estimated. Neider (1969) showed how to do this in the analysis of variance 
of a generally-balanced design. Payne & Tobias (1992) extended this to 
analysis of covariance, and Payne added this facility to the Genstat anova 
algorithm (Payne et al. 1993). Payne & Tobias (1992) noted that it was 
not known how to calculate effective degrees of freedom for the standard 
errors of the combined effects. This problem has now been solved. Effective 
degrees of freedom are now provided by Release 7.1 of Genstat (Payne et 
al. 2003), and studies are under way to see how well the combined effects 
can be assessed by t-distributions with that number of degrees of freedom. 

General balance, together with John's other contributions to experimen
tal design, is described in more detail in Chapter 9. 

3.2. Generalized linear models 

The development of generalized linear models , by Neider and Wedderburn 
(1972), now provides one of the most useful techniques in any data-analyst's 
tool kit. The discussion here is concerned more with its implications for 
statistical computing. 

Iteratively reweighted least squares was in use prior to that paper, no
tably for probit analysis (Finney 1947). However, the focus on bioassay 
(and, originally, on hand calculation) seems to have meant that only a few 
types of model were considered: those with a single dose variate i.e. probit 
lines; those with a variate (dose) and a factor (type of drug) where the 
aim is to compare new drugs with a standard; and those with two variates 
(e.g. quantity and concentration of a drug) i.e. pro bit planes. Essentially, 
this provided another piecemeal approach. Neider & Wedderburn (1972) 
not only expanded the range of models covered by the framework. They 
also emphasised that the algorithm was fundamentally a regression algo
rithm, and should thus be able to fit any of the models that would be 
considered in that, more familiar situation. The regression analogy allows 
non-statisticians to use the methodology with confidence, building on their 
regression experience. For example, the Genstat Guide (Payne et al. 2003, 
Part 2 page 218) states that: 

Generalized linear models extend the ordinary regression frame
work to situations where the data do not follow a Normal distribu
tion, or where a transformation (known as the link function) needs 
to be applied before a linear model can be fitted. 

So, the potential user needs to be aware that data may not follow a normal 
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distribution and that, for example, proportions may arise from binomial 
distributions and counts from Poisson distributions. This should not be a 
problem: for example, both of these distributions are now taught in schools 
in Britain, and no doubt in many other countries. The user also needs to re
alise that relationships may be nonlinear, again a relatively straightforward 
idea to communicate - and an essential one when the response variable is 
constrained to be non-negative (as with counts). 

The implementation of the generalized linear models algorithm, initially 
(from 1974) in GLIM and then (from 1976) in Genstat, led to dramatic 
improvement in the quality of statistical analysis allowing unsatisfactory 
approximate analyses, such as those involving the angular transformation 
of percentage data, to be discarded. 

3.3. Hierarchical generalized linear models 

During the 1980's interest grew about ways of incorporating extra error 
terms into generalized linear models. The paper by Schall (1991) established 
generalized linear mixed models, in which there were additional normally
distributed terms in the linear part of the generalized linear model, as 
a standard. (Note, though, that there had been earlier, related, work by 
Thompson 1979.) By tha.t time, John had completed his work on GLIMPSE 
(Section 4.3), and was again researching into generalized linear models with 
Gens tat as his computing environment (Section 4.4). At the Gens tat Con
ference, at University of Kent in Canterbury in July 1993, he spoke on 
Extending the frontiers of generalized linear models. The final section of 
the talk described conjugate GLMMs, in which the random components 
are assumed to follow the conjugate distribution to that of the GLM errors 
(Neider 1993). By the time of the Genstat conference at Wagga Wagga in 
November 1994, these had become double generalized linear models (Neider 
& Lee 1994). The theory allowed for two-stage models where both between
and within-group components came from exponential families, and included 
both generalized linear mixed models and conjugate double generalized lin
ear models. Finally, by the time of the Genstat Conference at University 
College, Dublin in July 1995 (Neider 1995) and at the Royal Statistical So
ciety in December 1995 (Lee & Neider 1996), the full theory of hierarchical 
generalized linear models had emerged. 

From the point of view of statistical computing, the models offer the 
huge advantage of a unifying approach, bringing together a wide range of 
models within a single framework. As with the other general algorithms 
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described in this section, this empowers users, giving them the flexibility to 
select a good model, rather than the one that is least inappropriate. The 
models are fitted by a computationally efficient algorithm. So users are en
couraged to analyse their data interactively, and to find the right model 
rather than simply stopping with relief when they find one that converges. 
Finally, the fact that a hierarchical generalized linear model can be defined 
from two interlinked generalized linear models (Lee & Neider 2001) means 
that we have access to a familiar repertoire of model checking techniques, 
and can thus base our choice of error distributions on the data rather than 
on prejudice or software limitations. The theory of hierarchical general
ized linear models is described in Chapter 10, and their implementation in 
Genstat (Payne et al. 2003) is described in Section 4.4. 

4. Statistical software 

From the earlier sections of this chapter, it will be apparent that John's 
interests in statistical methodology have always been aimed at generating 
implementations of the new theory, to enable the methods to be used in 
practice. John's work has resulted in two very widely used systems, Genstat 
and GLIM. This section traces his statistical computing career, starting 
with Genstat, continuing with GLIM, then investigating expert systems 
through GLIMPSE, and finally returning to Genstat as his environment for 
implementing, investigating and distributing new algorithms and systems. 

4.1. Genstat 

The ideas underlying Genstat took shape during John's visit to the Waite 
Institute of the University of Adelaide in 1965-1966. The first program 
called Genstat was produced there during 1966 by John with Graham 
Wilkinson, who was then the acting Reader of Biometry at the Waite on 
secondment from CSIRO Division of Mathematical Statistics. The main 
features were an early version of Wilkinson's analysis-of-variance algorithm 
(Section 3.1), and some facilities for multiple regression. However, develop
ment stalled following John's return to Wellesbourne, and Graham's return 
to CSIRO- who were unwilling to support the project further. John's ap
pointment at Rothamsted in 1968 rescued the project, and provided access 
to the many additional ideas and the extensive expertise of the Rotham
sted Statistics Department. In 1970 Graham Wilkinson joined Rothamsted 
too, and the first release of the new Genstat appeared. Additional facili
ties included principal component and principal coordinate analysis, single-
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linkage cluster analysis and facilities for general calculations on vectors, 
matrices and tables. So Genstat was already well on the way to becoming 
an authentically general-purpose statistical system. 

By the second major release, in 1972, the Genstat language was suf
ficiently general to implement new methods, and was used for example 
by Colin Banfield at Rothamsted to program canonical correlation analy
sis. In the third major release (1973), the distribution of these programs 
was simplified by the inclusion of a macro facility. A standard Library of 
macros was collected and released in 1975. The initial Library had just six 
macros. However, by 1983 it contained 35 macros, and there were a fur
ther 16 macros in an additional library contributed by CSIRO (see Alvey 
et al. 1983). To facilitate the efficient execution of these programs, and to 
allow for the use of labels and jumps, Genstat programs ran through two 
phases: first a block of commands was compiled into an internal form, then 
it was executed. Some of the inefficiencies of interpreted languages were 
thus avoided. However, as we shall see later, this greatly complicated inter
active use. Two other major landmarks, associated especially with John, 
were the extension of the regression algorithm in i976 (Release 3.09) to 
cover generalized linear models, and the inclusion in 1982 (Release 4.04) 
of facilities to generate tables of predictions from generalized linear models 
(see Lane & Nelder 1982). 

The first interactive use of Genstat took place at Edinburgh in 1975 on 
an ICL 4-75 with a paged operating system. This prompted John to note 
that 

"interactive use, even of such a large program as Genstat, is possible 
and efficient, given a suitable operating system and software" 

(Nelder 1976). The ICL 4-70 at Rothamsted was too limited to support 
widespread use of an interactive Genstat, although a version was prepared 
that required less than 200 "store units" on the 4-70 (about lOOk bytes) to 
run. Reasonable response times could be obtained outside the core Rotham
sted working day, but in the middle of the working day there was plenty 
of time to think between command prompts (c.f. Section 1.2!). However, 
interactive use was complicated by the two phases of execution: for exam
ple, to execute commands one at a time, each one had to be accompanied 
by a 'RUN' command. Also output had been designed to exploit the spa
ciousness of a printer, and was all in upper case. So, in 1983, with the 
opportunity for true interactivity becoming available though the replace
ment of the ICL-470 by DEC VAX computers, it was time to consider a 
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redesign of Genstat. 
Further incentives for change were the complications and incompatibili

ties that had built up as the system had expanded, resulting in a plethora of 
different concepts being used across the language. Furthermore, the macro 
facility was proving very complicated to program and use. Information was 
passed into each macro using global data structures (and, in fact, all the 
data structures involved in the macro program were taken to be global un
less they were explicitly defined as local). So, in effect, the "parameters" of 
the macro had fixed names, and there were no defaults. The macros had 
to be recovered from Genstat's backing-store files explicitly, and complex 
programming was done using labels and jumps rather than the more recent 
and more reliable mechanisms of structured programming (e.g. if-then-else 
and case). 

So, during 1983 with John's advice and support, a specification was 
prepared for a radically revised version, Genstat 5 (Payne 1983, Payne & 
Lane 1986, Payne et al. 1987). This would have a redesigned, simpler and 
consistent, syntax which would be easier to learn and remember. It would 
support structured programming and the compile/run distinction would be 
abolished; the only time that a command would not be executed immedi
ately would be when a loop of commands was being defined. The macro 
would be replaced by a new procedure structure. Procedures would have an 
identical syntax for use to that of the standard Genstat commands, and 
they would be accessed automatically from libraries as required. The facil
ities for pointers (see Section 2) would be extended to support the ideas 
of Lamacraft & Payne (1980) that statistical data often need to be repre
sented in compound and hierarchical structures. There would be a general 
text vector, and facilities for manipulation of text (editing, concatenation 
&c.). Finally facilities were added to plot graphs in high resolution, and to 
fit a range of standard curves. 

The first release of Genstat 5 took place in 1985, in time for the Genstat 
Conference at University of York, and in the ensuing years it has fulfilled 
its promise to be accessible to novice users while still providing an environ
ment for statistical experts to develop their own ideas. John's HG-system 
(Section 4.4) provides a good example of Genstat's use in research, and 
there are plenty of others in the manual that describes the wide variety 
of procedures now in the official Genstat Library (Payne & Arnold 2003). 
These days, statistical analysis seems to take place mainly on PC's running 
MS Windows, and there use has become even more straightforward with 
the development of seven "Editions" of "GenStat for Windows" during 
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1996- 2003 (see e.g. Baird et al. 2003). Now, as Section 4.4 illustrates, new 
research can be devised, implemented and evaluated using Genstat com
mands, distributed in procedures in the Genstat Library, and then made 
accessible even to those with little programming expertise by extensions to 
Genstat's menu interface. 

Initially Genstat was distributed by Rothamsted, but in 1979 (when 
there were about 100 licenses in 20 countries) distribution was taken over 
by the Numerical Algorithms Group, Oxford. Now, in 2004, Genstat is 
developed and marketed by VSN International, a company set up for that 
purpose by Rothamsted and the Numerical Algorithms Group. 

4.2. GLIM 

By 1972 the Algorithms Section of Applied Statistics was running smoothly, 
and the Working Party on Statistical Computing was ready for another 
challenge. In meetings in January of that year, John suggested that they 
should collaborate on an interactive program to implement the class of 
generalized linear models about to be published by Neider & Wedderburn 
(1972). The system drew on John's Genstat experiences, for example in 
its use of the same syntax for specifying models (see Wilkinson & Rogers 
1973). However, it had a simplified language, that aimed to support an 
interactive style of use. The commands (again known as directives) had 
fewer operands, and did not for example have the dichotomy of '"options" 
and "parameters" of the Genstat syntax. GLIM also supported a much 
more limited set of data structures. In fact the first release provided only a 
single data matrix, represented by individual columns of factors or variates. 
So all vectors had to be of the same length. A further restriction was that 
the factor levels could be represented only by the integers 1 upwards. 

GLIM 1 appeared in 1974 (see Neider 1975), and was distributed on 
behalf of the Royal Statistical Society by the Numerical Algorithms Group 
to about 50 sites on about 10 different ranges of computer (see Richardson 
& Baker 1980). This was followed in 1975 by GLIM 2, which reached about 
130 sites. Notable improvements were the macro facility, and the inclusion of 
26 scalar structures named %A, %B, ... %Z, and the inclusion of offsets into 
the models. In addition to John himself, the main contributors to these first 
two releases, were Michael Clarke, David Hill, Charlie Rogers and Robert 
Wedderburn up to the time of his tragic death in June 1975. 

GLIM 3 was a major step forward, which took until 1978 to appear. 
A lesson was (re)learned about data structures in that vectors were now 
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no longer constrained all to have the same length. Also suffices were in
troduced, to allow subsets of vectors to be defined. Model fitting was sim
plified by removal of the requirement to specify the maximal model (i.e. 
the largest model that might be considered) before any fitting took place. 
Other improvements in the modelling facilities included the ability for users 
to specify their own links and error distributions, thus enhancing its use as 
a research tool. There were also additional functions and enhancements to 
the programming facilities. The main contributors were Bob Baker, Michael 
Clarke and John himself. By 1980 GLIM 3 had been distributed to nearly 
300 sites, and it had had an immense influence on the new generation 
of practical statisticians. For many it provided their first experience of 
analysing data interactively. It encouraged them to think about each data 
set, instead of directing it at a black box with a request for "statistics all". 
It provided opportunities to investigate a rich set of models, and good di
agnostics (including plots) to assess which one would be most appropriate. 
The macro library also provided opportunities to develop and distribute 
new techniques, although considerable ingenuity (and very convoluted cod
ing) was often needed to overcome GLIM 3's limited set of data structures 
and operations (e.g. no matrices nor tables, and no matrix nor table arith
metic). 

The popularity of the interactive approach led to an investigation from 
1978 onwards of the possibility of putting the Genstat analysis of vari
ance algorithm into the GLIM framework (see Payne 1982). Other poten
tial new modules for GLIM included a tabulator and calculator for arrays 
(Green 1982), and facilities for displaying graphics on high-resolution de
vices (Slater 1982). An unsuccessful attempt was made to combine these 
all into a single system, to be known as PRISM (Baker 1982). However, 
the name PRISM had to be abandoned because of trademark clashes, the 
project itself failed to gel, and the collaboration between Rothamsted and 
the Working Party on Statistical Computing came to a close in 1984 when 
John retired as Head of the Rothamsted Statistics Department and Chair
man of the Working Party. So instead GLIM 3.77 appeared in 1985, and 
the Rothamsted focus returned to Genstat and its reincarnation as a fully 
interactive system in Genstat 5 (Section 4.1). 

4.3. GLIMPSE 

In 1984, when John retired from Rothamsted, it seemed clear that Expert 
Systems would be the next big idea in statistical computing. For example, 
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no topic attracted more papers in the proceedings of the COMPSTAT 1986 
conference (see Antoni, Lauro & Rizzi 1986), or generated more challenging 
aspirations. The British Government was willing to support research in this 
area, through its Alvey programme- and one of these grants was to Imperial 
College and to the Numerical Algorithms Group to develop the GLIMPSE 
system (O'Brien 1989, Neider 1991). 

GLIMPSE was developed by John, with Carl O'Brien at the Numerical 
Algorithms Group and David Wolstenholme at Imperial College, to provide 
a knowledge-based front-end for GLIM. GLIM was a good candidate for 
such a project. It was a rather minimalist program, offering little on-line 
help on the syntax and no assistance on modelling strategy other than 
diagnostics when fitting was unsuccessful. However, it did focus on a clearly 
defined set of models, and provided language facilities such as macros that 
the front-end could use for its communications. The project set itself the 
realistic goal of building a system able to advise on data validation, data 
exploration, model selection and model selection within GLIM. It was also 
realistic about the potential users, realising that they might sometimes want 
to ignore the advice. 

The system had three main components, all written in the computing 
language Prolog: the User Interface, the Translator and the Abstract Statis
tician. The Interface managed the communications between GLIMPSE and 
the user, and included the facility for them to ask each other questions. 
The questions from GLIMPSE included not only the obvious categories 
such as a query-the-user facility to obtain the necessary information about 
the dataset. It might also ask the user's own opinion, for example, as to 
whether a plotted relationship could be taken to be linear. Of course, the 
user could then reply "what do you think?", but this still leads to a less 
authoritarian approach, and one in which the user might learn as well as 
observe a strategy. The user questions also supported this approach, and 
included: "What answers are possible?" (e.g. is "don't-know" an option .. ); 
"What does that mean?'' (connecting to explanations of terminology in the 
help system); "What is the background to that question?" (again linking 
to explanations in the on-line help); "Why is the question being asked?" 
(resulting in an explanation of how the question relates to the Prolog rules 
that are being followed); and "What was the question again?" (to repeat 
the question after all this help and explanation!). 

The key statistical component was the Abstract Statistician, which 
aimed to embody the statistical expertise of the team as a set of Prolog 
rules. To execute the rules the user was asked for information, through the 
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User Interface. Once sufficient information had been obtained, tasks were 
generated by the Translator for execution by GLIM. The GLIM output was 
absorbed back into the front-end, so that it could be presented to the user, 
or used to draw conclusions to decide on the next stage of the analysis. The 
conclusions could be drawn by GLIMPSE, but users also had the ability 
to depart from the Abstract Statistician's strategy and pursue their own 
approach instead. Of course the price of liberty was the ability to generate 
an analysis that might be statistical nonsense. However, it also meant that 
there would be no barriers to the investigation of new research. 

In practice GLIMPSE became more a tool for experts than a tool to 
provide expert help to novices. Its long-term effect on statistical comput
ing has been perhaps more through the influence of its ideas of modelling 
strategy and model checking, for example in John's later modelling systems 
(Section 4.4) and within the menus of GenStat for Windows, than through 
its own wide-spread use. However, it contained many very interesting and 
far-sighted ideas and, when it was released in 1989, it was one of the first 
statistical expert systems to be made available commercially- and perhaps 
one of the few to deliver what the originators had promised. 

4.4. The K-, MD- and HG-systems 

By the end of the 1980's, the transformation of Genstat into the fully
interactive and easily extendable system, Genstat 5, was complete (see 
Payne et al. 1987). Following the GLIMPSE project, John was keen to 
find a powerful framework, with sympathetic developers and a reliable fu
ture, in which to investigate and implement his future research. Genstat 
seemed to fulfil all these criteria. Furthermore, the ability that it provided 
for users to customize their environment, through procedure libraries and 
commands to control aspects like the mode of execution and the style of 
graphics, enabled him to adapt it to his own requirements. In particular, it 
allowed him to achieve the best of both worlds, by building a system within 
Genstat known as the K-system (Nelder 1993) to provide the features that 
he most missed from GLIM. 

The first requirement was to provide the ability to set the individual 
aspects of the model without having to (re)specify a complete Genstat 
MODEL command. The second requirement was to duplicate the GLIM 
feature whereby output components are saved automatically in data struc
tures with standard names (such as %FV for the fitted values or %DV for 
the deviance). Within Genstat, users are required to save these components 
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explicitly and define their own names, using commands such as RKEEP and 
AKEEP. This gives the user more freedom, and avoids confusion amongst 
the richer set of models that Genstat supports. However, the GLIM con
vention saves time for users who are interested only in generalized linear 
models and who are willing to accept standardization. A final requirement 
was to provide a very succinct set of commands to minimize typing. 

Tools to assist with the first two requirements were provided in Genstat 
5 Release 3 by adding a new command called WORKSPACE. This allowed 
workspaces of data structures to be defined and then accessed anywhere 
within a program. Another extension allowed the workspaces defined within 
a procedure to refer to data structures within the main program. So the K
system could define a workspace to record all the aspects of a model, and use 
this to fill in a complete Genstat MODEL command every time an aspect 
needed to be changed. Other workspaces were defined to contain the various 
output components (with their standard names). Workspaces have proved 
to be a very powerful concept particularly for problems that require suites 
of procedures (including the more recent MD- and HG-systems). They can 
be used to store and transmit working variables and status information, 
safely out of sight of the user. 

The K-system, with its 71 procedures and 6 workspaces, supports a 
very interactive approach to model fitting with a strong focus on model 
validation and checking. It has also provided a foundation upon which John 
Neider and Youngjo Lee have built two additional systems: the MD-system 
for joint modelling of mean and dispersion, and the HG-system for fitting 
hierarchical generalized linear models (see Section 3.3 and Chapter 10). The 
HG-system has provided a test base for the theory as it has evolved. Thus 
the power and flexibility of Genstat as a programming environment has 
played a key role to enable the theory to be developed. In the 6th Edition of 
Genstat for Windows additional procedures were implemented (Lee, Neider 
& Payne 2002) to provide access to the hglm algorithms, independently 
to the K-system. At the same time, a menu interface was included. So 
hierarchical generalized linear models have now become part of the standard 
set of analyses available to any user. 

5. Conclusion 

In the course of one career, practical statistics has gone from an onerous 
and expert task to a task that can be handled by novices - for whom 
the expert can quickly develop and disseminate new ideas. Many of the 
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necessary developments have been due to John himself, or to the example 
and inspiration that he has provided to those of us that have had the good 
fortune to work with him. 
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In this paper frequentist and Bayesian approaches to non-linear regression 
modelling are described, critiqued and contrasted. Estimating functions provide 
a unifying framework for frequentist inference, and sampling-based methods 
provide a flexible computational technique for carrying out Bayesian analyses. 
Special interest is focused upon the effects of model misspecification; in this 
regard the use of the (linear) exponential family is beneficial, and provides one 
advantage of using the generalized linear model class. A new application of the 
inverse polynomial models introduced in [36] is presented: the analysis of data 
from a pharmacokinetic experiment. 

1. Introduction 

Over recent years, increases in computer power, algorithmic development 
and the inclusion of such algorithms within statistical software, have un
shackled the statistician in his/her ability to fit models of choice, rather 
than models imposed by mathematical and/ or computational convenience. 
In this paper the analysis of data using non-linear models is considered. 

In preparation for analysis the strategy that is stressed is: 

1 To formulate an initial model class on the basis of the context. 
2 To examine this class with respect to its statistical properties; specif

ically the behaviour of estimators and posterior distributions (in par
ticular with respect to model misspecification) may be examined from, 
respectively, frequentist and Bayesian perspectives. 

3 To examine computational aspects. 

119 
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In either 2 or 3 the model may be altered to correct mathematical or compu
tational shortcomings. The approach followed in this paper is rooted firmly 
in the tradition of attempting to understand structure within data through 
parametric modelling of the mean, in contrast to the predictive view of 
statistical inference (see [5] and the ensuing discussion). 

There are a number of challenges associated with the ability to fit ever 
more complex models. First, the statistical properties of complex models 
are often not fully understood, in particular with respect to model mis
specification. A second problem is the potential for loss of information on 
parameters of interest when the number of nuisance parameters is unnec
essarily increased by expanding the model; further discussion of this issue 
is given in Section 3.2. 

A third difficulty is that there now exists great potential for over-fitting 
in which models become too dataset-specific as they are refined on the basis 
of the examination of diagnostics. In practice, if refinement is carried out 
through the fitting of alternative models (e.g. transformation of covariates, 
choice of distribution for the responses), then interval estimates will often 
be too narrow since they are produced by conditioning on the final model, 
and hence do not reflect the mechanism by which the model was selected 
(see [7], and the accompanying discussion). From a frequentist standpoint 
estimators and test statistics should be examined via their long-run be
haviour given the model-fitting process, including refinement. To be more 
explicit, let P denote the procedure by which a final model M is decided 
upon. Then suppose it is of interest to examine the bias of a statistic T, 

E[TIP] = EMIP{E[TI M]}. (1) 

In general it will be incorrect to report E [ T I M] where M is the final model 
chosen, since this does not reflect the procedure by which M was chosen, but 
rather acts as if the final model is the "truth". From a Bayesian standpoint 
the same problem exists because the posterior distribution should reflect 
all sources of uncertainty and a priori all possible models that may be 
entertained should be explicitly stated, with prior distributions being placed 
upon different likelihoods and the parameters of these likelihoods; model 
averaging should then be carried out across the different possibilities, a 
process which is fraught with difficulties not least in placing "comparable" 
priors over what may be fundamentally different objects (see Section 6 for 
an approach to rectifying this problem). 

One solution to this third difficulty is to never refine the model for 
a given data set. This approach is operationally pure but pragmatically 
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dubious (unless one is in the context of a randomized experiment) since we 
may obtain appropriate inference for a model that is a very poor description 
of the phenomenon under study. The philosophy suggested here is to think 
as carefully as possible about the initial model class before the analysis 
proceeds, but after fitting to carry out model checking and refine the model 
in the face of clear model misspecification, with refinement ideally being 
carried out within distinct a priori known classesa. Inference then proceeds 
as if the final model were the one that were chosen initially. This is clearly a 
subjective procedure but can be informally justified via either philosophical 
approaches. 

Under a frequentist approach inference follows from the behaviour of 
an estimator under repeated sampling from the true model, and if an ini
tial model is clearly wrong on the basis of a residual plot (say), then it is 
very unlikely to be close to the "true" model and hence it is more appro
priate to obtain properties of estimators under the assumed model. With 
reference to (1), if a model is chosen because it is clearly superior to the al
ternatives, then it may be reasonable to assume that E[T I P] ;:;:j E[T I M], 
because M would be consistently chosen in repeated sampling under these 
circumstances. 

In a similar vein, under a Bayesian approach the above procedure is 
consistent with model-averaging but with the posterior model weight be
ing concentrated upon the chosen model (since alternative models are only 
rejected on the basis of clear inadequacy). The aim is to provide proba
bility statements, from either philosophical standpoints that are "honest" 
representations of uncertainty. The above approach is relevant to analyses 
that are more confirmatory in their outlook, as opposed to being used for 
prediction, or for more exploratory purposes (for example, to gain clues to 
models that may be appropriate for future data analyses). 

The structure of this paper is as follows. The frequentist approach to the 
analysis of non-linear models is considered in Section 2, with an estimating 
functions approach being emphasized, and specific choices being suggested 
by likelihood and quasi-likelihood. The Bayesian approach is described in 
Section 3 with computation via direct sampling from the posterior being 
described. A critique and comparison of the frequentist and Bayesian ap
proaches is carried out in Section 4; in particular, situations in which one 
may be preferred over the other are delineated. Specific non-linear model 

aso that, for example, examining quanti,le-quantile plots for different t distributions and 
picking the one that produces the straightest line would not be a good idea. 
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classes are considered in Section 5; with generalized linear models being 
described in Section 5.1 and compartmental models in Section 5.2. The 
approach to modelling followed in the paper is illustrated with the analy
sis of a set of pharmacokinetic data in Section 6. The paper ends with a 
concluding discussion in Section 7. 

2. Frequentist Inference 

Under the frequentist approach to inference procedures are assessed with 
respect to their long-run properties under hypothetical repeated sampling. 
If estimation is the objective then the aim is to obtain an estimator whose 
distribution is "close" to the true value. A fundamental criterion is con
sistency, which heuristically states that the estimator tends to the true 
value as the sample size increases. Another criterion by which we may com
pare two competing asymptotically unbiased estimators is via comparison 
of their asymptotic variances; an asymptotically efficient estimator is one 
that attains the lowest possible asymptotic variance. 

Estimating functions have emerged as a unifying approach to much of 
frequentist inference and in the next section we review the basics before giv
ing specific examples of estimating functions in the following two sections, 
specifically those arising from likelihood in Section 2.2 and quasi-likelihood 
in Section 2.3. In Section 2.4 sandwich estimation as a method of obtaining 
a consistent estimator of the variance of an estimator is described. 

2.1. Estimating Functions 

Let Y = (Y1, ... , YnY, represent n observations from a distribution indexed 
by a p-dimensional parameter 8, with Yil8 (conditionally) independent. An 
estimating function is a function 

n n 

G(8) = L G((J, Yi) = L Gi((J) (2) 
i=l i=l 

of the same dimension as (} for which 

E[G(8)] = 0. (3) 

The estimating function G(8) is a random variable because it is a functio~ 
of Y. The corresponding estimating equation that defines the estimator (} 
has the form 

n 

c(ii) = L Gi(ii) = o. (4) 
i=l 



Non-Linear Regression Modelling and Inference 123 

For inference, the frequency properties of the estimating function are de
rived and are then transferred to the resultant estimator. This is an inge
nious approach because the estimating function may be constructed to be 
a simple function of the data, while the estimator of the parameter that 
solves (4) will often be unavailable in closed form. The estimating function 
(2) is a sum of random variables which provides the opportunity to evaluate 
its asymptotic properties via a central limit theorem. The art of construct
ing estimating functions is to make them dependent on distribution-free 
quantities, for example, the population moments of the data; in Section 
5.1 we will see that estimators arising from exponential family models are 
particularly appealing. We now state a theorem that forms the basis for 
asymptotic inference. 

Theorem: The estimator On which is the solution to the estimating equation 

n 

G(On) = LGi(On) = 0, 
i=l 

has asymptotic distribution 

On ,.;.., NP (o,A- 1BAT- 1), 

where 

and 
n 

B = Bn(O) = cov(G) = L cov{Gi(O)}. 
i=l 

The form of the covariance of the estimator here, the covariance of the 
estimating function, flanked by the inverse of the Jacobian of the trans
formation from the estimating function to the parameter, is one that will 
appear again in Section 2.4 in the context of sandwich estimation. 

In practice, A= An(O) and B = Bn(O) are replaced by A= An(On) 
and fi = Bn (On), respectively. In this case, from a Slutsky Theorem (see 
for example [17], Chapter 6), 

On ,.;.., Np ((},A-I BAT-I) ' 

since A ____,P A and fi ____,P B. 

(5) 
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The accuracy of the asymptotic approximation to the sampling distribu
tion of the estimator is dependent on the parameterization adopted. A rule 
of thumb is to obtain the confidence interval on a reparameterization which 
takes the parameter onto the real line (for example, the logistic transform 
for a probability, or the logarithmic transform for a dispersion parameter), 
and then to transform to the more interpretable scale; examples are pre
sented in Sectiot;_ 6. Es~mators for functions of interest, cf> = g(O), may 
be obtained via ¢> = g ( 0), and the asymptotic distribution may be found 
using the delta method. 

2.2. Likelihood 

We begin by giving the definition of likelihood (as given by [19], p. 24). 

Definition: Viewing p(y I 0) as a function of 0 gives the likelihood 
function which we denote by L(O). 

To follow a likelihood approach one must, therefore, specify the proba
bility distribution of the observed data given the model parameters, that is 
p(y I 0). In this paper we consider models that are appropriate when the 
data are independent and identically distributed conditional on 0, so that 
we have 

n 

p(y I 0) = II P(Yi I 0). 
i=l 

The probability model for the full data, which determines the likelihood 
(and includes the independence assumption), is based upon the context and 
all relevant accumulated knowledge. The level of belief in this model will 
clearly be context-specific and in many situations there will be insufficient 
information available to confidently specify all components of the model. 
Depending on the confidence in the likelihood, which in turn depends on 
the sample size (since large n allows examination of the assumptions of 
the model), the likelihood may either be effectively viewed as "correct" in 
that inference proceeds as if the true model were known, or may instead 
be seen as an initial working model from which an estimating function is 
derived, the properties of the subsequent estimator then being determined 
in a more general setting. For example, in Section 2.4 we describe a method 
for producing an estimator of the variance of the estimator that does not 
depend on the full probability model. 
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The value of(} that maximizes L(O), denoted ii, is known as the Max
imum Likelihood Estimator (MLE); the MLE is therefore that value of (} 
that gives the highest probability to the observed data. We now define 
some functions of the likelihood which will aid in the development of the 
asymptotic distribution of the MLE. 

For both computation and the evaluation of analytical properties, it is 
convenient to consider the log likelihood function which is given by 

n n 

l(O) = logL(O) = Llogp(Y; I 0) = Lli(O), 
i=l i=l 

and the score function 

8/(0) [81(0) 8/(0)]r 
G(O) = fiO = 8Bl ' ... , 8Bp = [GI(O), ... , Gp(O)f, 

which, as we show below, satisfies the requirements of an estimating func
tion upon which inference may be based. 

Definition: Fisher's expected information is given by 

I(O) = E{ G( O)G( or}, 
a p x p matrix. 

Result: Under regularity conditions: 

E[G(O)] = E [ ~~] = 0, (6) 

and 

I(O) = E{G(O)G(OY} = -E [ 8~;')] = -E [ 8: 2
00 1(0)]. (7) 

Since E[G(O)] = 0 we have I(O) = cov{G(O)}. From this result we have 

-A(O) = B(O) = I(O) 

and so, from the theorem of Section 2.1: 

On ~ Np{O, I(0)-1 }. 

It can be shown that MLEs are asymptotically efficient, if the model from 
which the score was derived is correct, see for example [45], Chapter 8. 

As an alternative to using the asymptotic distribution, resampling meth
ods such as the bootstrap may be used to examine the sampling distribu
tion, see [15] and [10]. We do not discuss the bootstrap further, but acknowl
edge that a large literature now exists on both its theoretical properties and 
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its use in practice (though its use in small samples is not recommended). 
Likelihood ratio tests may be used to obtain confidence intervals (and are 
invariant to the parameterization adopted), and profile likelihood provides 
a method of examining the likelihood function for a parameter of interest 
alone. 

In multiparameter situations adjusted profile likelihood may be used to 
create confidence intervals for a parameter of interest while making an at
tempt to account for the estimation of nuisance parameters. This approach 
can be computationally intensive and is not always reliable, and a number 
of modifications have been suggested, see for example [41]. 

If the model is misspecified then the MLE is that value of the parameter 
that brings the assumed model closest, in a Kullback-Leibler sense, to the 
true model ([26], [53]). 

2.3. Quasi-Likelihood 

In this section we describe an estimating function that is, at least on the 
surface, based upon the mean and variance of the data only. Specifically we 
assume 

E[YI,B] = J.L(,B), 

cov(YI,B) = <PV{J.L(,B)}, 

where J.L(.B) = [/Lr (,B), ... , /Ln(.B)f represents a regression function and V is 
a diagonal matrix (so the observations are uncorrelated), with 

var(Yi I .B) = </> V {ILi (,B)}, 

and </> > 0 is a scalar which is independent of ,B. The aim is to obtain the 
asymptotic properties of an estimator of ,B. The specification of the mean 
function in a parametric regression setting is unavoidable, and least squares 
would indicate that properties for an estimator may be obtained from the 
additional specification of the variance. 

To motivate an estimating function we follow [33] (see also [18] for an 
exceptionally clear description of quasi-likelihood) and consider the sum of 
squares 

(8) 

where J.L = J.L(,B) and V = V(,B). To minimize this sum of squares there 
are two ways to proceed. Perhaps the more obvious route is to acknowledge 
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that both JL and V are functions of {3 and differentiate with respect to {3 

to give 

av- 1 

-2UV- 1(Y- JL)/¢ + (Y- JLt {jjJ(Y- JL)/¢, (9) 

where D is the n X p matrix of derivatives with elements ap;/ 8/3j' i = 

1, ... ,n;j = 1, ... ,p. Unfortunately, if we only assume that E[Yi] = p;({3), 

the expectation of (9) is not necessarily zero, and so a consistent estimator 
of {3 will not generally result in this situation if it based on (9). However, if 
the true variance is equal to ¢> V, then there is an efficiency loss in ignoring 
the second term, since it contains information on {3. This illustrates the 
classic efficiency-robustness trade-off that must be addressed whenever a 
model (procedure) is chosen for inference. 

Alternatively we may suppose that V is not a function of {3 when we 
differentiate (8), and then solve 

D(,i3tV(,i3)- 1{Y- JL(,i3)};¢ = 0. 

As shorthand we write this function as 

u = uv-1{Y- JL}!¢. (10) 

This estimating function is linear in the data and so its properties are 
straightforward to evaluate. In particular: 

(1) E[U({3)] = 0. 

(2) cov{U(f3)} = Drv-1 D/¢. 

(3) -E [ ~~] = cov{U(f3)} = UV- 1 Dj¢. 

The similarity of these properties with those of the score function ( equa
tions (6) and (7)) is apparent and has lead to (10) being referred to as a 
quasi-score function. Note that the derivation of (3) depends only on correct 
mean specification, while (2) relies on correct variance specification also. 
We can apply the theorem of Section 2.1 directly to obtain the asymptotic 
distribution of the maximum quasi-likelihood estimator (MQLE) as 

jj ,:.., Np{f3, (uv- 1 n)-1¢}, 

where we have so far assumed that ¢>is known. Note that ,i3 does not depend 
on ¢, a consequence of assuming that ¢> is a multiplier in the variance 
function. Since 

E[(Y- JLtV- 1(JL)(Y- JL)] = n¢>, 
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an unbiased estimator of ¢> would be 

(Y -~-tYV- 1 (~-t)(Y -~-t)fn. 

A "degrees of freedom corrected" (but not in general, unbiased) estimate is 
therefore given by the Pearson statistic divided by its degrees of freedom 

¢ = _1_ ~ {Y;- j7;}2 
n- p {;r V(j7;) ' 

(11) 

where j7i = j7i({j). The benefit of this approach, as opposed (say) to con
structing an estimating function for ¢> from a likelihood, is again one of 
robustness, since (11) will in general be more appropriate under a broader 
range of circumstances (those in which the mean and variance-covariance 
models are correct) than a model-based alternative. The asymptotic distri
bution that is used in practice is given by 

jj ,:.., Np{{3, (.UV- 1 D)-1¢}, 

so that the uncertainty in '¢ is not accommodated in the uncertainty for jj 
(see Section 3.2 for related discussion). [32] and [8] give conditions under 
which this asymptotic result applies. [9] gives counter-examples in which a 
linear estimating function such as (10) does not perform well; these exam
ples are mostly of theoretical interest but do indicate that one should not 
assume that linear estimating functions always perform well. 

Integration of the quasi-score (10) gives 

{J.L y- t 
l(JJ.;y) = }y ¢>V(t) dt, 

which, if it exists, behaves like a log-likelihood, explaining the genesis of 
the label "quasi-likelihood"; [51] was the first to consider this class. As an 
example, for the model E[Y] = IJ. and var(Y) = ¢>1J. we have 

1!-Ly-t 1 
l(JJ.;y) = -dt = -[ylogJJ. -JJ. + c], 

y ¢>t ¢> 

where c = -y logy - y and y log IJ. - IJ. is the log likelihood of a Poisson 
random variable. The word "quasi" refers to the fact that the score may 
or may not equate to a probability function. For example, the variance 
function JJ.2 (1- JJ.) 2 does not correspond to a probability distribution (but 
was shown by [34], Example 9.2.4, to be useful in a particular application). 
If the estimating function (10) corresponds to a score function then the 
subsequent estimator corresponds to the MLE. Hence, although the mean 
and variance only are specified in the estimating function, there may be an 
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implicit model in the sense that the estimating function corresponds to a 
particular likelihood function. As a trivial example, the estimating function 
based on E[Y] = Ji., var(Y) =¢corresponds to the model Y "' N(Ji., ¢). 

md 

The prediction of observable data Y is not possible with quasi-likelihood, 
since there is no probabilistic mechanism to appeal to. 

2.4. Sandwich Estimation 

A general method of avoiding stringent modelling conditions when the vari
ance of an estimator is calculated is provided by sandwich estimation. The 
basic idea is to estimate the variance of the data empirically with mini
mum modelling assumptions, and to incorporate this in the estimation of 
the variance of an estimator. While the idea may be traced at least as far 
as [26], the paper of [52] implemented the technique for the linear model, 
and [42] provided a clear and simple account with many examples; [30] 
and [54] described the technique in the context of longitudinal data by us
ing the replication across individuals to estimate within-person correlations 
empirically. [6], Appendix A.3 provide a good review. 

We have seen that when the estimating function corresponds to a score 
equation, then under the model 

I= A= -B 

so that 

var(O) = A(0)- 1 B(O)A(O)T- 1 = I(0)- 1 . 

If the model is not correct then this equality does not hold, and the vari
ance estimator will be incorrect. An alternative is to evaluate the variance 
empirically via 

~ ~ 8 ~ 
A=~ 89 G(9, Y;), 

i=1 

and 
n 

B = L G(O, Y;)G(O, Y;)T. 
i=1 

This method is general and can be applied to any estimating function, not 
just those arising from a score equation. 

Suppose we assume E[Y] = 1-L and var(Y) = ¢V with var(Y;) = ¢V(J1.;), 
and cov(Y;, }j) = 0, i, j = 1, ... , n, i -=f. j, as a working covariance model. 
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Under this specification it is natural to take (10) as an estimating function, 
in which case cov{U(,B)} = nrv- 1cov(Y)V- 1 Dj¢2 to give 

var.(jj) = (_DTV- 1 D)-1 _DTV- 1cov(Y)V-1 D(_DTV- 1 D)-1 , 

and so the appropriate variance is obtained by substituting in the correct 
form for cov(Y) which is, of course, unknown. However, a simple "sand
wich" estimator of the variance is given by 

var.(jj) = (_DTV- 1 D)-1 .orv-1 It" RV-1 D(_DTV-1 D)- 1 , 

where R = (R1, ... ,RnY is then x 1 vector with Ri = Yi- Jl.i(jj). This 
estimator is consistent for the variance of jj, under correct specification of 
the mean, and with uncorrelated data. There is finite sample bias in ~ as 
an estimate of Yi - Jl.i (,B) and versions that adjust for the estimation of the 
parameters ,B are also available, see for example [29]. 

The great advantage of sandwich estimation is that it provides a con
sistent estimator of the variance in very broad situations. There are two 
things to bear in mind when one considers the use of this technique, how
ever. The first is that for small sample sizes, the sandwich estimator may be 
highly unstable, and in terms of mean squared error model-based estima
tors may be preferable for small to medium sized n (for small samples one 
would anyway want to avoid the reliance on the asymptotic distribution). 
Hence empirical is a better description of the estimator than robust. The 
second consideration is that if the model is correct, then the model-based 
estimators are more efficient. 

3. Bayesian Inference 

3.1. Summarising the Posterior Distribution 

In the Bayesian approach, all unknown quantities which are contained in a 
probability model for the observed data (including, the model parameters, 
and any missing or censored data) are considered to be random variables. 
This is in contrast to the frequentist view in which parameters are treated 
as constants.b Let(}= (fh, ... , ePy denote all of the unknowns of the model, 
and y = (y1, ... , Yn Y the vector of observed data. Also let I represent 
all information relevant to the analysis that is currently available to the 
individual who is carrying out the analysis, in addition toy. 

bHere, strictly, fixed effects parameters are being considered. So-called rondom effects 
are assumed to arise from a population distribution and are viewed as random. 
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Inference is made through the posterior probability distribution of 8, 
after observing y: 

(81 I)= p(y I (),I) 7r(8 I I) 
P y, p(y I I) ' (12) 

where p(y I 8, I) is the likelihood, and 1r( () I I) the prior distribution rep
resenting the probability beliefs for() before observing the data y, based on 
the current information I. Different individuals will have different informa
tion I and so in general priors, and for that matter likelihoods, may differ. 
The normalizing constant is given, for continuous 8, by 

p(y I I)= fop(y I 8,I) 7r(8 I I) d(J (13) 

and is the marginal distribution of the data, given the likelihood and prior. 
From this point onwards we suppress the dependence on I, for notational 
convenience. 

To summarise the posterior distribution marginal distributions for 
parameters of interest may be considered. For example, the univariate 
marginal distribution for a component B; is given by 

p(B; I y) = f p(8 I y) d8(il, 
}(J(i) 

(14) 

where (J(i) is the vector of all parameters,(), excluding (}i· Posterior moments 
may be evaluated from the marginal distributions; for example the posterior 
mean is given by 

(15) 

Posterior means, in contrast to MLEs, are not invariant to transforma
tion, that is, E[g( 8) I y] f. g(E[ ()I y]), unless g is a linear function). Fur
ther summarisation may be carried out to yield the 100xq% quantile, B;(q) 
(0 < q < 1) by solving 

r!Ji(q) 

}_
00 

p(B; I Y) dB;= q. (16) 

In particular, the posterior median, (}i(0.5), will often provide an adequate 
summary of the location of the marginal posterior, and a 100 x p% equi
tailed credible interval is provided by [B; { (1- p) /2}, (}i{ (1 + p) /2}] for prob
ability p, 0 < p < 1. 
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Another useful inferential quantity is the predictive distribution for fu
ture observations, z, which is given, under conditional independence, by 

p(z I y) = fe p(z I O)p(O I y )dO. (17) 

If we wish to compare models Mo and M 1 then a natural measure is 
given by the posterior odds 

Pr(Mo I y) p(y I Mo) Pr(Mo) 
Pr(M1 I y) = p(y I M!) x Pr(M1)' (18) 

where the Bayes factor p(y I Mo)/p(y I M!) is the ratio of the marginal 
distributions of the data under the two models, and Pr(Mo)/ Pr(M1) is the 
prior odds. To calculate the former, integrals of the form (13) are required. 

Bayesian inference is deceptively simple to describe probabilistically, but 
there have been two major obstacles to its routine use. The first is how to 
specify prior distributions and will be considered in Section 3.3. The second 
is how to evaluate the integrals required for inference, for example (13)
(17), given that for most models (and for all but the most trivial non-linear 
models always), these are analytically intractable. A general method for 
non-hierarchical non-linear models is described in Section 3.4. 

If the likelihood is correctly specified then, under certain conditions, the 
posterior distribution is asymptotically normal with mean the true value, 
and variance-covariance matrix given by the inverse of the expected infor
mation, for non-technical derivations see for example [38], p. 75 and [20], 
Appendix B. An important practical condition is that the prior does not 
exclude any part of the support of the parameter. More rigorous treatments 
can be found in, for example, [50] and [27], where it is shown that under 
suitable regularity conditions the posterior distribution tends to a normal 
distribution with mean the MLE, and variance-covariance matrix given by 
the inverse of the observed information, evaluated at the MLE. 

While the posterior distribution is asymptotically independent of the 
prior distribution, so that point and interval estimates are often robust to 

the prior choice with increasing n, Bayes factors are asymptotically sensitive 
to the prior, for further discussion see for example [38], p. 195. [28] give 
a review of Bayes factors, including discussion of computation and prior 
choice. 

3.2. Model Misspecification 

The behaviour of Bayesian estimators under misspecification of the likeli
hood has received less attention than frequentist estimators. As discussed 
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above, under sensible prior distributions the posterior distribution mimics 
the sampling distribution of the MLE, and so properties of the latter, such 
as consistency, can be transferred to, for example, the posterior mean or 
median. 

Rather than the effects of misspecification, the emphasis in the Bayesian 
literature has been on sensitivity analyses ([38], Chapter 7, gives a review 
of approaches to address sensitivity to prior and likelihood choices), or on 
embedding a particular likelihood or prior choice within a larger class. If a 
discrete number of choices are considered then model averaging has been 
used (for a review see [14]), while others (e.g. [21]) prefer to embed the 
model within a continuous class and then integrate over this class. 

[4] argue that examining the behaviour of an estimator under model 
misspecification (which they term criterion robustness) is inadequate since 
as the model varies the criterion should change also. While this is certainly 
true in some situations, it is not true in general and so should not be used 
as a reason to reject the approach out of hand. Perhaps the reason that such 
an approach has not been followed is because it is more difficult to apply 
when no closed form estimator is available. The philosophies behind con
sideration of misspecification are therefore very different under frequentist 
and Bayesian approaches. 

A major problem with considering model classes with large numbers 
of unknown parameters is that uncertainty on parameters of interest will 
be increased if a simple model is closer to the truth, so there will be an 
efficiency loss associated with considering models that are too large. In par
ticular, model expansion may lead to a decrease in precision. The following 
discussion relates to likelihood inference as well as to Bayesian inference, 
but we include it here because the emergence of MCMC has encouraged 
the use of larger and larger models within a Bayesian approach. 

We examine the form of the posterior variance. As n increases the prior 
effect is negligible and the posterior variance is given by the inverse of the 
observed information; for convenience, we consider the expected informa
tion, which is asymptotically equivalent. Suppose that we have a k x 1 vector 
of parameters, /3, in an original model (and these include the parameters of 
interest), and p- k additional parameters,/, in an expanded model. Then 
consider 

(19) 

where I u is a k x k matrix corresponding to the information for f3, and 
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I 22 is the (p - k) x (p - k) information for /· In the simpler model the 
information on the parameters of interest is I 11 , while for the enlarged 
model it is 

which is never greater than I u. 
To illustrate in a simple regression setting, consider an observational 

study in which the covariate of interest in not orthogonal to all other po
tential confounding variables. As a specific example, the model 

is an expansion of the model 

Yi = !36 + f3r(xi- x) + ti, 
i = 1, ... , n, where Ci rv N(O, 0"2 ), with 0" 2 known. Here we have distin-

iid 

guished between /36 and f3i in the expanded model, and (30 and /31 in the 
reduced model, because the parameters have different interpretations, and 
we need to distinguish between them when the posterior variance of each is 
considered below. Letting x denote then x 3 matrix with i-th row [1 Xi zi], 
and {3e = (/36 !3i )T, we have 

where Bxx = Ei(xi- x) 2 , Bxz = Ei(xi- x)(z;- z), Bzz = I:i(zi- 2) 2 . 

Hence 

[
1/n 0 0 l 

I({3,"f)- 1 =0"2 0 Bzz/D -Bxz/D , 
0 -Bxz/ D Bxx/ D 

where D = BxxBzz- s;z, giving 

(j2 

var(/3fly) = S - S2 ;s 
XX XZ ZZ 

(j2 
2: -8 = var(f3fly), 

XX 

with equality if Bxz = 0, i.e. if x and z are orthogonal. Intuitively, the 
posterior variance is increased because when z is present in the model there 
are competing explanations for the observed association between y and x. 
Of course, one of the reasons for including additional variables is to reduce 
bias; however, it is straightforward to phrase the above argument in terms of 
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mean squared error and reach the same conclusion when the bias reduction 

due to the inclusion of z is not great. 
With unknown CJ 2 the situation is more complex since important co

variates will reduce the size of the estimate of the variance, s 2 = RSSjDF 
(where RSS is the residual sum of squares and DF the degrees of freedom), 
and (asymptotically, or with flat priors) var(.BiiY) = (ffx)-1s2 and so the 
posterior variance will be reduced also. However, at some point this variance 
will also increase since s2 increases as unimportant covariates are added to 
the model. So again the overall conclusion is the same: models should not 
be chosen to be as large as possible, because the variance of quantities of 
interest will be unnecessarily increased. 

We now briefly discuss the general situation in which estimated param
eters are used in the information matrix. In this situation the variance of 
quantities of interest is again increased (as just discussed in the normal 
case). The simplest example is in a generalized linear model with scale 
parameter ¢. Assuming ¢ is known corresponds to one family, while ¢ un
known corresponds to another family, as examples the Poisson becomes the 
negative binomial, and the exponential becomes the gamma. If the data 
are truly from the simpler model then interval estimates will be unneces
sarily widened if the larger model is assumed. This occurs even though the 
posterior distributions of f3 and ¢ are asymptotically independent (so that 
in (19) / 12 and h 1 are zero); the extra uncertainty is introduced when 
estimates are substituted into the information. As an aside, the Poisson 
and exponential scenarios are perhaps not the best illustrations since not 
allowing excess variation in these two models would be a very dangerous 
modelling strategy. 

The above is a very informal discussion, for a far deeper discussion of 
the choice between Student's t and normal errors see [25]. An interesting 
theoretical finding is that even if the errors are truly t, if the degrees of 
freedom are estimated, for small values of n, it will be more efficient to 
assume normal errors, because of the extra uncertainty involved in the 
estimation of the degrees of freedom. 

3.3. The Prior Distribution 

The specification of the prior distribution is clearly a crucial aspect of the 
Bayesian approach. We distinguish between two situations. In the first an 
analysis is required in which the prior distribution has minimal impact, so 
that the likelihood is concentrated upon. Such an analysis may be used 
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as a comparison with other analyses in which more informative priors are 
specified, in order to determine the information being provided by the prior. 
In this situation, the Bayesian formulation may also be seen as a convenient 
way of carrying out computation for those with a likelihood bent. The 
second situation is one in which it is desired to incorporate more substantial 
prior information in the analysis. 

For non-linear models care must be taken to ensure that the posterior 
corresponding to a particular prior choice is proper. In particular the use 
of an improper uniform prior is not to be universally recommended. Such 
forms for fixed effects in a generalized linear model will usually lead to a 
proper posterior ( [11]) although not for some pathological cases; for example 
if a uniform prior is used on log{p / ( 1 - p)} and y = 0 or y = n. 

To illustrate the non-propriety in more general non-linear models con
sider the model 

i = 1, ... , n, with()> 0 and cr2 assumed known. With an improper uniform 
prior on () we have the posterior 

As() -too 

p(() I Y) -t exp {- 2~2 ~Yi} 
that is, a constant, so that the posterior is improper. Intuitively, the problem 
here is that as() -t oo the fitted values do not move increasingly away from 
the data but to the asymptote y = 0. There are no asymptotes in the linear 
model and so as the parameters increase/decrease to oo/-oo, the fitted line 
moves increasingly far from the data, and the likelihood tends to zero. 

3.4. Simulation-Based Inference 

Simulation-based methods have revolutionised the practical applicability of 
Bayesian methods. Such methods build on the duality between samples and 
densities ([44]); given a sample we can reconstruct the density, and given 
an arbitrary density we can generate a sample, given the range of generic 
random variate generators available (see [12]). With respect to the latter, 
the ability to obtain direct samples from a distribution decreases as the 
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dimensionality of the parameter space increases and in this case Markov 
chain Monte Carlo (MCMC) methods may be used as an alternative, the 
disadvantage being that iteration is needed to produce samples that can be 
viewed as from the density of interest, and these samples are dependent. It 
is also not straightforward to calculate marginal densities such as (13) with 
MCMC, see [13] for a review. 

For hierarchical models direct sampling is rarely possible (though feasi
ble if the random effects may be integrated out, as in a linear hierarchical 
model), and MCMC needs to be considered. This paper concentrates on 
non-hierarchical models and in this case direct sampling is often feasible. 
We now describe a rejection algorithm that we will use to carry out Bayesian 
inference in Section 6. 

Let 0 denote the unknown parameters and assume that we can evaluate 
the maximized likelihood M = sup p(y I 0). The algorithm then proceeds 

(} 
as follows: 

(1) Generate U,..... U(O, 1) and, independently, 0,..... 1r(O) (the prior). 
( 2) Accept 0 if 

u < p(y I O) 
M ' 

otherwise return to 1. 

The probability that a point is accepted is given by 

Pa = ~ J p(y \ 0)1r(O)dO = p~), 
([47]). Hence the empirical rejection rate, Pa, can be used to derive the 
marginal likelihood from (13) as 

p(y) = M X Pa· (20) 

An alternative importance sampling estimator that is more efficient ([16], 
[39]) is given by 

where o<sJ ~ 1r(O). Hence it is straightforward to calculate Bayes factors 

using the rejection algorithm. 
Clearly we need a proper prior distribution to implement the above algo

rithm, and the efficiency of the algorithm will depend on the correspondence 
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between the likelihood and the prior, as measured through p(y). As n in
creases, the algorithm will often become less efficient; typically, M increases 
as n increases. As we will demonstrate in Section 6, it is straightforward 
to specify the prior distribution in one parameterization, and specify the 
likelihood in another. The latter is useful since we may be able to specify 
the prior in terms of a set of model-free parameters, and then compare 
different likelihoods with an "egalitarian" prior. Another potential advan
tage is that the above algorithm does not require the functional form of the 
prior. [47] used a predictive distribution from a Bayesian analysis of a set 
of data as the prior for the analysis of a separate data set; samples from the 
predictive distribution could be simply generated, even though no closed 
form was available for this distribution. 

For a generalized linear model (GLM) let () = ({3, ¢) where {3 is the 
vector of regression parameters and ¢ is a dispersion parameter. Standard 
software may be used to find the MLE, 0; however, some software (R for 
example), by default supplies a method of moments estimator, rather than 
the MLE, of¢. Since the MLE of() does not depend on ¢ in a GLM, one 
simply needs to find the MLE ¢ (which is available in R for some families, 
and in particular for the normal and gamma likelihoods that are used in 
Section 6). 

4. Comparison of Frequentist and Bayesian Methods 

In this section we will describe situations in which frequentist and Bayesian 
methods are likely to agree, and when one is preferable over the other. We 
concentrate on estimation since point and interval estimation are directly 
comparable under the two paradigms. For model comparison the objectives 
of Bayes factors and hypothesis tests are fundamentally different, see for 
example [1], and so comparison is more difficult. 

In terms of interpretation, the Bayesian approach is more straightfor
ward since one can make probability statements, for example, credible in
tervals are probabilistic. In contrast, frequentist confidence intervals are not 
so simple to interpretable. 

Another appealing characteristic is that the Bayesian approach to infer
ence may be derived via decision theory, see for example [3]. The likelihood 
principal, [2], also leads one towards a Bayesian approach since all frequen
tist criteria invalidate this principle, and a true likelihood approach, as 
followed by for example, [43], is difficult to calibrate. One may of course 
question the whole endeavor of establishing optimality, given that the sub-
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sequent use depends on the specification of likelihoods and priors, both of 
which are fraught with difficulties. 

In contrast the frequentist approach has been justified within a fre
quentist set of guidelines. For example, there is a Gauss-Markov theorem 
for linear estimating functions (e.g. [23], [32]), while [9] considers the opti
mality of quadratic estimating functions (which for implementation unfor
tunately require assumptions about the third and fourth moments). If one 
accepts that frequentist criteria are natural, then it would be desirable to 
find an estimator which minimises the mean squared error with respect to 
the sampling distribution. Unfortunately, this is not in general possible for 
finite n, so instead adjusted criteria (such as minimum variance unbiased 
estimation) become desirable. 

A major problem with the frequentist approach is that, in contrast to 
the Bayesian approach, there is no rigid prescription for carrying out in
ference. Hence, for example, different types of likelihood (e.g. conditional, 
marginal, partial, profile, adjusted profile) exist as alternatives when con
ventional likelihood methods are inadequate (though in such cases the use 
of Bayesian methods usually requires careful prior specification). Some of 
these procedures are to deal with nuisance parameters, again the Bayesian 
approach is theoretically straightforward since posterior distributions for 
parameters of interest are obtained through marginalisation. 

The greatest drawback of the Bayesian approach is the need to spec
ify both a likelihood and a prior distribution. Sensitivity to each of these 
components can be carried out but the extent of such an investigation is 
difficult to determine, and one then is faced with the difficulty of how the 
results are reported. As we have discussed, assessing the behaviour of pro
cedures under model misspecification is far more developed for frequentist 
methods than for Bayesian methods. For example, although a specific like
lihood may be used to define the estimator, the properties of this estimator 
can be evaluated under more general models. 

Bayesian methods are far more amenable to situations in which n is 
small. In this situation it is not possible to check the likelihood and infer
ence will in general be sensitive to both likelihood and prior choices. When 
the model is very complex then Bayesian methods are again advantageous 
since they allow a rigorous treatment of nuisance parameters; MCMC has 
allowed the consideration of more and more complicated hierarchical mod
els. Spatial models, particularly those that exploit Markov random field 
second stages, provide a good example of models that are very naturally 
analysed using MCMC, where the conditional independencies may be ex-
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plaited. Unfortunately assessments of the effects of model misspecification 
are rarely carried out for such complex models, instead sensitivity stud
ies are again typically carried out. Bayesian methods are also a good idea 
in situations in which the maximum likelihood estimator provides a poor 
summary of the likelihood, for example in variance components problems 
where the likelihood may be highly skewed. 

If n is sufficiently large for asymptotic normal approximation of the 
sampling distribution to be accurate, then frequentist methods begin to be
come preferable. In particular, sandwich estimation can be used to provide 
a consistent estimator of the variance-covariance matrix of the estimator. 
Hence, if the estimator of a parameter of interest is consistent also, reliable 
confidence coverage will be guaranteed. We stress that n needs to be suf
ficiently large for the sandwich estimator to be stable. A typical Bayesian 
approach would be to increase model complexity, often through the intro
duction of random effects. The difficulty with this is that although this 
allows more flexibility, a specific form needs to be assumed for the mean
variance relationship, whereas sandwich estimation is consistent in more 
general situations (quasi-likelihood lies between the two, though there is 
usually an implicit model underlying the quasi-score function). 

5. Non-Linear Regression Models 

In this section we briefly review two classes of models, in anticipation of 
their use in Section 6. 

5.1. Generalized Linear Models 

Generalized linear models were introduced by [35], and the most compre
hensive and interesting description is still [34]; an excellent review is also 
given by [18]. A GLM is defined by two components: 

( 1) The responses y; follow an exponential family so that the distribution 
is of the form 

p(y;IB;, ¢) = exp( {y;B;- b(B;)}/a(¢) + c(y;, ¢)), 

where B; and ¢ are scalars. This is sometimes referred to as a linear 
or natural exponential family. It is straightforward to show (using the 
results of Section 2.2) that 

E[Y;IB;,¢] = J.L; = b'(B;) 



Non-Linear Regression Modelling and Inference 141 

and 

var(Y;JOi, ¢) = b"(Oi)a(¢), 

i = 1, ... ,n, with cov(Y;,YjJOi,ffJ,¢) = 0 fori =1- j. This describes the 
stochastic part of the model. 

(2) We have g(J-Li) = xif3 where Xi is 1 x p and {3 is p x 1 so that we have 
a linear predictor on a scale determined by the so-called link function 
g(·). This describes the deterministic part of the model. 

While computational advances have unshackled the statistician from the 
need to use GLMs, they are still an extremely useful class of models. The 
use of the exponential family is advantageous because the score equation 
can be written 

where l = l(O, ¢) is the log-likelihood, and so if the mean is specified cor
rectly the MLE of {3 will be consistent (see the theorem of Section 2.1). 
Bayes estimators are consistent in this case also (so long as the priors do 
not exclude a part of the parameter space), due to the asymptotic equiv
alence between the sampling distribution of the MLE and the posterior 
distribution (Section 3.1). It is not necessary to have a linear predictor 
on any particular scale so, for example, the sums of exponentials models 
of the next section will share this consistency, if the responses arise from 
the exponential family (so long as regularity conditions are satisfied). So 
called canonical links in which (}i = xif3 provide simplifications in terms of 
computation. 

GLMs are also very useful pedagogically since they separate the deter
ministic and random components of the model; this aspect was emphasized 
by [35] who wrote in the abstract: "The implications of the approach in 
designing statistics courses are discussed". 

5.2. Compartmental Models 

Pharmacokinetics is the study of the time course of a drug and its metabo
lites following introduction into the body. In this section we describe a class 
of models that has been extensively used in such studies to model individ
ual drug concentrations, y(x), as a function of time x. The drug may be 
introduced into the body via a variety of routes of administration including 
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intravenously (directly into the bloodstream via either a bolus or an infu
sion), subcutaneously (beneath the skin), or orally. After introduction the 
drug undergoes the processes of absorption, distribution and elimination. 
These processes may be modelled by assuming the body consists of a se
ries of homogenous pools or compartments, and then considering a set of 
differential equations that determine the rate of flow of drug between the 
different compartments, see [22] for a comprehensive account of pharma
cokinetic models and principles, and [24] for an account of compartmental 
modelling in general. 

As a simple example consider a model with a single compartment for the 
distribution and elimination, and an oral dose; we make use of this model 
in Section 6. We may think, nominally, of the compartment corresponding 
to the blood; in general pharmacokinetic modelling via a compartmental 
system is a convenient visualisation but the compartments often have no 
physiological meaning, rather phyisological parameters such as the time to 
maximum concentration, maximum concentration, elimination half-life and 
clearance are of interest. These parameters are defined in Section 6. 

Let wi(x) represent the amount of drug in compartment i, i = 0, 1, at 
time x, with compartment 0 representing the site from which absorption 
occurs. The differential equations describing the drug flow between the 
compartments may be assumed to be of the form 

dwo 
dx = -kawo 

(21) 
dw1 
dx = kawo- kewl 

where ka is the absorption rate constant associated with flow from compart
ment 0 to compartment 1, and ke is the elimination rate constant. Assuming 
that w(O) = D is the dose at time zero and that the (apparent) volume of 
distribution (which converts total amount of drug into concentration) is V 
we may solve (21) to obtain the time course of the concentration, p,(x), as 

p,(x) = V(k~~ ke) {exp[-kex]- exp[-kax]}. (22) 

This model is sometimes known as the flip-flop model because there is a 
basie identifiability in that the same curve is achieved with the parameter 
sets (V, ka, ke) and (Vke/ka, ke, ka), and it is often assumed that ka > ke 

in order to enforce identifiability. 
We now consider the stochastic part of the model. In addition to mea

surement error in the assay technique, errors are introduced due to model 
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misspecification (particularly at later phases of drug development which 
are carried out in a poorly controlled environment, and so the reported 
sampling times may be subject to error, for example). Assay precision is 
often found to increase with increasing true concentrations and models of 
the form 

y(x) = J.L(x) + 8(x), 

where 8(x) "' N {0, J.L(x)'Yaj} with "( > 0 have been used. The variance 
power "( is either fixed, with "( = 2 being a common choice to produce 
a constant coefficient of variation, or estimated. A constant coefficient of 
variation can also be approximately achieved by taking 

logy(x) = logJ.L(x) + t:(x), 

with t:(x) "'N(O, CY2). 

[49] provide a review of pharmacokinetic and pharmacodynamic mod
elling including more details on both biological and statistical aspects. 

6. Pharmacokinetic Data Analysis 

An oral dose of 1mg of Theophylline was administered to a new born baby, 
and concentration time data (xi, Yi) were subsequently collected for i = 

1, ... , 8. These data were previously analyzed by [46], and are reproduced in 
Table 1. 

Table 1. Concentration (y) as a 
function of time (x), obtained from 
a new-born baby following the ad
ministration of a 1mg dose of Theo
phylline. 

i x; (hours) Yi (mg/liter) 
1 1.00 60.22 
2 1.42 73.41 
3 3.58 63.43 
4 5.08 56.43 
5 6.83 48.81 
6 9.08 30.40 
7 12.3 20.67 
8 23.8 7.28 

Traditionally, the so-called one-compartment open model, as described 
in Section 5.2 would be fitted to these data. Under this model the con
centration at time x is given by (22) which we reproduce here, along with 
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an alternative form, in order to motivate a log-linear inverse polynomial 
model: 

( Dka 
J.L x) = V(ka _ ke) { exp[-kex] - exp[-kax]} 

= D exp(,Bo + .B1x) {1- exp[-(ka- ke)x]}, (23) 

where .Bo = log{ka/(V(ka- ke)} and .81 = -ke. Typically, interest does not 
focus upon (V, ka, ke), but rather on the following derived parameters: 

• The elimination half-life, which is the time it takes for the drug con
centration to drop by 50%, when elimination is the dominant process: 

X1j2 = (log2)/ke. 

• The time to maximum 

1 (ka) Xmax = ka - ke log ke . 

• The maximum concentration 

J.L(Xmax) = V(~~ ke) {exp(-keXmax)- exp(-kaXmax)} 

= D ( ka) ka/(ka -ke) 

V ke 

• The clearance, which is the amount of blood cleared of drug in unit 
time, is given by Cl = D / AUC where AUC is the area under the 
concentration time curve so that 

We assume that 

where Ei "-J N(O, a 2). 
iid 

Cl = V X ke. 

As an alternative to the above compartmental model, we here fit the 
log-linear inverse polynomial model, a GLM, given by 

J.L(x) = D exp(/3o + .B1x + .82/x). 

Comparison with (23) shows that ,82 is the parameter that determines the 
absorption; the model only makes sense if it produces an increasing ab
sorption phase and a decreasing elimination phase which correspond, ret
rospectively, to ,82 < 0 and ,81 < 0. This model is very much in the spirit 
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of [37] in which the inverse polynomial form was suggested as a model for 
enzyme-kinetic data. Note that each of the derived parameters are functions 

of (f = (f3o ,fJ1, fJ2). Specifically: 

• The elimination half-life 

• The time to maximum 

• The maximum concentration 

• From the definition as D / AUC the clearance is given by 

Cl- ~ 
- 2exp(f3o)BesselK{2({31{32)l/2}' 

(24) 

where BesselK denotes a modified Bessel function of the third kind. 

The data are assumed to be gamma distributed, specifically 

so that rpl12 is the coefficient of variation. [31] examine various distribu
tional choices for pharmacokinetic data, and found the gamma assumption 
to be reasonable for their examples. A more extensive discussion of the ap
plication of this model to pharmacokinetic data may be found in [48]. A 
disadvantage of this model compared to compartmental models is that if 
multiple doses are considered the mean function does not correspond to a 
GLM. 

The lognormal compartmental and gamma log-linear models were fitted 
in R, with maximum likelihood estimation of {3, and the moment estima
tor, (11), for the dispersion parameter. Confidence intervals based on the 
asymptotic distribution of the MLE were calculated for the parameters of 
interest using the delta method. These parameters are all positive and so 
the intervals were obtained for the log transforms, and then exponentiated 
(the delta method for the clearance under the log-linear model was not 
used because of the intractability of the calculations, the sampling-based 
Bayesian approach that we describe shortly is straightforward, however). 
The results are displayed in Table 2, and the fitted curves in Figure 1. Each 
of these summaries shows a remarkable level of agreement across models. 
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The maximized log-likelihoods were -21.58 for the gamma model and -20.89 
for the lognormal model; these models are not nested and so a likelihood 
ratio statistic is not available, but the use of AIC is valid and suggests no 
significant differences between the models. 

We now describe a Bayesian implementation of each of these models 
using the rejection algorithm described in Section 3.4. We place prior dis
tributions on the half-life, x1;2, time to maximum, Xmax, maximum con
centration, JJ( X max) and coefficient of variation; this is more natural for 
each of the models (and in particular for the log-linear model within which 
(32 is not straightforward to interpret). Another benefit of specifying the 
prior in terms of model-free parameters is that models may be compared 
using Bayes factors on an equal footing, in the sense that the prior in
put for each model is identical. For more discussion of this issue, see [40]. 
We choose independent lognormal priors for these four parameters. For a 
generic parameter, e, denote the prior bye "' Lognormal(J.L, a-). To obtain 
the moments of these distributions we specified the prior median, Om, and 
the 95% point of the prior, Bu, and then solved for the moments via: 

J-1 = log(Om), CY = {log(Ou)- JJ}/1.645. 

The third line of Table 2 gives the illustrative prior choices; samples were 
simulated from the prior in order to estimate empirically the quantiles of 
the induced prior for Cl. This prior could be criticised for the assumption 
of independence; it would be straightforward in principle to specify a mul
tivariate lognormal, however, perhaps with the moments being based on a 
population pharmacokinetic analysis of a group of patients who are thought 
to be exchangeable with the specific subject being considered. 

To implement the rejection algorithm we sample from the prior on the 
parameters of interest, and then back-solve for the parameters that describe 
the likelihood. For the compartmental model we transform back to the 
original parameters via 

ke = (log2)/xl/2 

0 = Xmax(ka- ke)- log ( ~:) (26) 

V = D (ka)ka/(ka-ke) 

J.L(Xmax) ke 

so that ka is not directly available, but must be obtained as the root of 
(26). For the log-linear model the transformation to {3 is via 

fJ1 = -log2/xl/2> fJ2 = fJIX~ax> fJo = logJ.L(Xmax) + 2((31(32) 112. 
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The rejection algorithm described in Section 3.4 was used, with the 
MLEs for the {3's obtained from the analyses reported earlier (and replac
ing the method of moments estimators with the MLEs for the dispersion 
parameters), and 500 samples being generated from the posterior distri
butions; the acceptance rates were 0.0030 and 0.0015 for the gamma and 
lognormal models, respectively. Table 2 summarizes inference for the pa
rameters of interest with the interval estimates and medians being obtained 
as the sample quantiles. Note that inference for the clearance is straightfor
ward since samples can be substituted directly in to the form (24). Figures 
2 and 3 show the posteriors for the functions of interest under both models. 
These figures and Table 2 show that Bayesian inference under both of the 
models is very similar; frequentist and Bayesian methods are also in close 
agreement for this example. The posteriors are skewed for all functions of 
inference apart from the clearance parameter, indicating that the posterior 
medians are more representative than the MLEs. The clearance parameter 
is often found to be well-behaved, since it is a function of the area under 
the curve, which is very stably estimated. 

We evaluated the normalizing constants using (20), and calculated the 
Bayes factor comparing the gamma and lognormal models (denoted M c 
and ML, respectively) on the log2-base scale (which is suggested by [28]). 
We obtain log2 p(y I Me) -1og2 p(y I ML) = -39.56- (-39.52) = -0.04, 
showing no significant difference between the models, in agreement with 
the AIC conclusion described earlier. 

Table 2. Point and 90% interval estimates for the data of Thble 1; Cl de
notes Clearance, CV Coefficient of Variation (expressed as a percentage). 
The Bayesiap point estimates correspond to the posterior medians. 

Model xl/2 X max J.t(Xmax) 
Comp MLE 6.27 (5.66,6.95) 1.87 (1.39,2.53) 70.5 (56.3,88.3) 
GLM MLE 6.12 (4.46,8.39) 1.72 (1.36,2.17) 68.5 (53.0,88.5) 
Prior 5.00 (2. 78,9.00) 1.00 (0.333,3.00) 65.0 (52.8,80.0) 
Comp Posterior 6.44 (5. 74, 7.28) 1.69 (0. 700,2.23) 70.4 (64.4,78.1) 
GLM Posterior 6.37 (5.69,7.18) 1.40 (0.556,2.06) 69.2 (62.6,77.2) 

Model Cl(xlO:s) cv (x w•) 
Comp MLE 1.28 (1.19,1.36) 11.3 (7.46,17.0) 
GLM MLE 1.27 h-) 9.68 (7.89, 11.9) 
Prior 1.50 (3.29,13.9) 10.0 (2.50,40.0) 
Comp Posterior 1.28 (1.19,1.40) 12.3 (7.82,20.3) 
GLM Posterior 1.27 (1.16,1.37) 12.5 (7.95,21.2) 

Residuals were examined to assess the appropriateness of the mean function, 
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Fig. I. Fitted curves for Theophylline data. 

the mean-variance relationship, and the distribution of the errors. No clear 
inadequacy was evident for this (admittedly small) data set. 

7. Discussion 

In this paper a review of parametric non-linear modelling has been pre
sented, with both frequentist and Bayesian approached to inference being 
described. It has been argued that models should first arise from the con
text, with mathematical and computational aspects being subsequently ex
amined. The computational convenience of GLMs is a major benefit, and 
since their introduction in [35] GLMs have been widely used in an array 
of contexts, a testimony to their flexibility and their continued competi
tiveness with the increased array of models that are now computationally 
feasible for the practicing statistician. GLMs also have desirable statistical 
properties; in particular the use of the linear exponential family yields con-
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Fig. 2. Histogram representations of posterior distributions for the compartmental 
model; solid curves denote the lognormal prior distributions. 

sistent estimators from likelihood or Bayesian approaches, so long as the 
mean model is correctly specified. 

We have also described a simple rejection algorithm that may be used 
to produce independent samples from the posterior distribution and is very 
convenient in situations in which informative prior distributions are avail
able, and the maximised likelihood can be simply calculated. The advan
tages of such sampling-based approaches have also been illustrated, in par
ticular, inference for functions of interest is straightforward. 
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Traditionally a 'model' is a family of probability distributions for the observed 
data parametrized by a set of parameters (of fixed and finite dimension), but 
it is often helpful to consider all the models considered as subsets of one 
model, as well as some even larger models used in 'over-fitting' as part of 
the validation process. Traditional distinctions between 'parametric' and 'non
parametric' models are often moot, when people now (attempt to) fit neural 
networks with half a million parameters. We consider how to select in such 
model classes. 

1. Introduction 

Statisticians and other users of statistical methods have been choosing mod
els for a long time, but the current availability of large amounts of data and 
of computational resources means that model choice is now being done on 
a scale which was not dreamt of 25 years ago. Unfortunately, the practical 
issues are probably less widely appreciated than they used to be, as statis
tical software has made it so much easier for the end user to trawl through 
literally thousands of models (and in some cases many more). 

Model choice is a large subject, and this paper deliberately chooses to 
look at only some aspects of it, most particularly some of the misunder
standings about formal methods such as AIC and cross-validation. Whole 
books have been written about these and other aspects: two recent ones are 
Harrell [22] and Burnham and Anderson [10]. 
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2. Why do we want to select a model? 

I have slowly come to realize that this is an important question and one 
that is asked too seldom. First we need to ask where do our models come 
from? 

• Sometimes a set of models is provided based on subject-matter the
ory. In my experience good theory is very rare. Sometimes these are 
called mechanistic models. One example is the Black-Scholes theory of 
option pricing, which is derived from a theory and has been shown to 
be a good approximation, but not so good that practically important 
improvements cannot be made. 

• Most often some simple restrictions are placed on the behaviour we 
expect to find, for example linear models, AR(p) processes, factorial 
models with limited interactions. These are sometimes called empirical 
models. Note that these can be very broad classes if transformations of 
variables (on both sides) are allowed. 

• We now have model classes that can approximate any reasonable model, 
for example neural networks [38]. Nowadays we may have the data and 
the computational resources to fit such models, if not necessarily the 
understanding to fit them well. 

The main distinction I would draw is between explanation and predic
tion. Generally with the mechanistic models we are concerned with explain
ing how the world works, even though the philosophy of science teaches that 
we test models by their ability to predict. The third class of models is un
ambiguously designed to give good predictions. 

For the second class, we might be doing either. When people first started 
to do agricultural experiments they were (it seems) both trying to find out 
which factors had an effect, and for those that did, how large the effect 
was. Nowadays many experiments are done with microarrays to find out 
which few (out of thousands) of genes are expressed differently in different 
experimental conditions. But regression and time-series models are most 
commonly used for their predictive abilities. 

For explanation, Occam's razor applies and we want 

an explanation that is as simple as possible, but no simpler 
attrib Einstein 

and we do have a concept of a 'true' model, or at least a model that is a good 
working approximation to the truth. Simplicity helps both with communi-
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eating the concepts embodied in the model and in what psychologists call 
generalization, the ability to 'work' in scenarios very different from those 
in which the model was studied. 

On the other hand, prediction is like doing engineering development. 
All that matters is that it works, and if the aim is prediction, model selec
tion should be based on the quality of the predictions. Workers in pattern 
recognition have long recognised this, and used validation sets to choose 
between models, and test sets to assess the quality of the predictions from 
the chosen model. Because the model may be used in scenarios very dif
ferent from those in which it was tested, generalization is still important, 
and other things being equal a mechanistic model or a simple empirical 
model has more chance of reflecting the data-generation mechanism and so 
of generalizing. But other things rarely are equal. 

We should ask why we do want to choose a model. It does seem a 
widespread misconception that model choice is about 'choosing the best 
model'. For explanation we ought to be alert to be possibility of there 
being several (roughly) equally good explanatory models: when I was a 
young Lecturer at Imperial College I learnt this from David Cox, having 
already done a lot of informal model choice in applied problems in which I 
would have benefited from offering several alternative solutions. 

For prediction I find a good analogy is that of choosing between expert 
opinions: if you have access to a large panel of experts, how would you use 
their opinions? (See Cooke [11].) People do tend to pick one expert and 
listen to him/her, but it would seem better to seek a consensus view, which 
translates to model averaging rather than model choice. Our analogy is with 
experts, which implies some prior selection of people with a track record: 
one related statistical idea is the Occam's window [27] which keeps only 
models with a reasonable record. 

A major reason to choose a model appears still to be computational 
cost, a viewpoint of Geisser [21, §4.1]. This has become less relevant, and 
we discuss model averaging in a later section. Note, though, that taking 
a consensus view only helps sometimes with generalization. For example, 
Draper [14, p. 48] has a graph of predictions of oil prices for 1981-90 made 
in 1980. The analysts were all confident, differed considerably from each 
other, and were all way off! Almost all of the uncertainty is in the 'correct' 
model for oil price movements, and the analysts' models all seem to be 
incorrect as prices went down when all the analysts predicted them to rise. 

Ein-Dor and Feldmesser [16] provide an example of the confusion be
tween explanation and prediction that is one of my favourite teaching ex-
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amples. The title says they give a relative performance prediction model, yet 
they selecta a subset of transformed variables in seeking an explanation. 

3. A historical perspective 

Let us look back 25 years to when I started to learn about this area. The 
set of models one could consider was severely limited by computational 
constraints, although packages such as GLIM 3. 77 were becoming available. 

Stepwise selection was the main formal tool, using hypothesis tests be
tween a pair of nested models, e.g. F tests for regressions. Almost no one did 
enough tests to worry much about issues of multiple comparison. Nowadays 
people do tens of thousands of significance tests (see Marchini and Ripley 
[29] for an example of mine). 

Residual plots were used to help assess the fit of models, but they were 
crude plots and limited to small datasets. 

There was very little attempt to deal with choosing between models 
that were genuinely different explanations: Cox [12, 13]'s 'tests of separate 
families of hypotheses' existed but were little known and less used. 

Formal methods of model choice were becoming available. Schwarz [41] 
had proposed a criterion sometimes called SBC or BIC, although it seems 
to be due to Jeffreys in the 1930's. Papers by Allen [3, 4] and Akaike 
[1, 2] had introduced PRESS and AIC (Akaike's An Information Criterion) 
respectively. Cross-validation goes back at least as far as Mosteller and 
Wallace [32], and Stone [43] was read to the Royal Statistical Society, to a 
less than appreciative audience. 

Perhaps the only formal criterion that was in common use was Mallows' 
Cp criterion for regression, which I am told was well known long before 
Mallows' first publication [28]. 

My impression is that these developments were held back by the lack of 
computational resources to try out large classes of models, and by the lack 
of large datasets to present challenging problems. 

4. Cross-validation 

Cross-validation (CV) is a much misunderstood topic in the neural networks 
and machine learning community. 

The idea of leave-one-out CV is that, given a dataset of N points, we 
use our model-building procedure on each subset of size N- 1, and predict 

"the paper is a wonderful example of how not to do that, too. 
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the point we left out. Then the set of predictions can be summarized by 
some measure of prediction accuracy. Allen's PRESS (prediction sum-of
squares) used this to choose a set of variables in linear regression. Stone 
[43] and Geisser [20] pointed out we could apply this to many aspects of 
model choice, including parameter estimation. It is often confused with 
jackknifing a la Quenouille and Tukey. 

Having to do model-building N times can be prohibitive unless there 
are computational shortcuts. 

In V-fold cross-validation we divide the data into V sets, amalgamate 
V- 1 of them, build a model and predict the result for the remaining set. 
Do this V times leaving a different set out each time. How big should V 
be? We want the model-building problem to be realistic, so want to leave 
out a small proportion. We do not want too much work, so usually V is 
3-10. One early advocate of this was Breiman et al. [9]. 

Leave-one-out CV does not work well in general, as it makes too small 
changes to the fit. Ten-fold CV often works well, but sometimes the result 
is very sensitive to the partitioning used, and it is often better for com
parisons than for absolute values of performance. How prediction accuracy 
is measured can be critical. We can now afford to average the results over 
several random partitions. 

Stone [43, pp. 126-7] mentioned the idea of using cross-validation not 
to choose between models but to combine them. This has been developed 
by Wolpert [47] under the name of stacked generalization. 

5. AIC , BIC and all that 

Akaike [1, 2] introduced a criterion for model adequacy, first for time-series 
models and then more generally. He relates how his secretary suggested 
he call it 'An Information Criterion', AIC. Two books largely about this 
criterion are Sakamoto et al. [39] and Burnham and Anderson [10]. 

This has a very appealing simplicity: 

AIC = -2log(maximized likelihood)+ 2p 

where p is the number of estimated parameters. Choose the model with 
the smallest AIC (and perhaps retain all models within 2 of the minimum). 
(Despite the simplicity, quite a few people have managed to get it wrong, 
for example the step function in S-PLUS.) This is similar to Mallows' Cp 
criterion for regression, 

Cp = RSS/CT2 + 2p- N 



160 B. D. Ripley 

and is the same if cr2 is known. Both are of the form 

measure of fit + complexity penalty 

Schwarz's criterion, often called BIC, replaces 2 by log n for a suitable 
definition of n, the size of the dataset. In the original regression context 
this is just the number of cases. 

Derivation of AIC 

Suppose we have a dataset of size N, and we fit a model to it by maximum 
likelihood, and measure the fit by the deviance D (constant minus twice 
maximized log-likelihood). Suppose we have m (finite) nested models. 

Hypothetically, suppose we have another dataset of the same size, and 
we compute the deviance D* for that dataset at the MLE for the first 
dataset. We would expect that D* would be bigger than D, on average. In 
between would be the value D' obtained if we had evaluated the deviance 
at the true parameter values. Some Taylor-series expansions (e.g. Ripley 
[38], pp. 31-4) show that 

ED*- ED' ~p, ED'-ED ~p 

and hence AIC = D + 2p is (to this order) an unbiased estimator of ED*. 
The latter is a reasonable measure of performance, the Kullback-Leibler 
divergence between the true model and the plug-in model (at the MLE). 

These expectations are over the dataset under the assumed model. 

Crucial assumptions 

The assumptions needed for this argument are much less well known than 
they should be, and AIC is often proposed (and used) to select between m 
very different models. 

(1) The model is true! Suppose we use this to select the order of an AR(p) 
model. If the data really came from an AR(po) model, all models with 
p ;::: p0 are true, but those with p < p0 are not even approximately true. 
This assumption can be relaxed. Takeuchi [45] did so, and his result 
was rediscovered by Stone [44] and many times since. However, p gets 
replaced by a much more complicated formula that is not simple to 
measure. 

(2) The models are nestedb - AIC is widely used when they are not. 

bsee the bottom of page 615 in the reprint of Akaike [1]. 
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(3) Fitting is by maximum likelihood. Nowadays many models are fitted 
by penalized methods or Bayesian averaging .... That can be worked 
through too, in NIC [33, 34, 35] or Peff [30, 31]. 

(4) The Taylor-series approximations are adequate. People have tried var
ious refinements, notably AICC (or AICc) given by 

AICC=D+2p(N N ) 
-p+1 

Also, the MLEs need to be in the interior of the parameter space, even 
when a simpler or alternative model is true. (This is not likely to be 
true for variance components for example.) 

(5) AIC is a reasonably good estimator of ED*, or at least that differences 
between models in AIC are reasonably good estimators of differences 
in ED*. This seems to be the Achilles' heel of AIC. For N independent 
samples we expect AIC = Op(N) but the variability as an estimate is 
Op( JN). This reduces to Op(1) for differences between models provided 
they are nested. 

AIC has been criticised in asymptotic studies and simulation studies 
for tending to over-fit, that is choose a model at least as large as the true 
model. That is a virtue, not a deficiency: this is a prediction-based criterion, 
not an explanation-based one. 

AIC is asymptotically equivalent to leave-one-out CV for independent 
identically distributed samples using deviance as the loss function [44], and 
in fact even when the model is not true NIC is equivalent [38]. 

6. Bayesian Approaches 

Note the plural - I think Bayesians are rarely Bayesian in their model 
choices. Assume m (finite) models, exactly one of which is true. 

In the Bayesian formulation [5, 14], models are compared via P{M IT}, 
the posterior probability assigned to model M given the dataset T. 

P{M IT} ex p(T I M)pM, 

p(T I M) = J p(T I M, B)p(B) dB 

so the ratio in comparing models M 1 and M 2 is proportional to 
p(T I Mz)fp(T I MI), known as the Bayes factor. 

However, a formal Bayesian approach then averages predictions from 
models, weighting by P { M I T}, unless a very peculiar loss function is in 
use. 



162 B. D. Ripley 

Suppose we just use the Bayes factor as a guide. The difficulty is in 
evaluating p(T I M). Asymptotics are not useful for Bayesian methods, as 
the prior on B is often very important in providing smoothing, yet asymp
totically negligible. One approximation is to take B as the mode of the 
posterior density and Vas the inverse of the Hessian of -logp(BI T) (since 
for a normal density this is the covariance matrix); we can hope to find B 
and V from the maximization of 

logp(B IT) = L(B; T) + logp(B) + const 

Let E(B) = -L(B; T)- logp(B), so this has its minimum at Band Hessian 
there of v-l. 

p(T I M) =I p(T I B) p(B) dB= I exp -E(B) dB 

~ exp-E(B) I exp[-~(B- BfV- 1(B- B)] dB 

= exp- E(B) (27r )P/21VIt/2 

via a Laplace approximation to the integral. Thus 

logp(T I M) ~ L(B; T) + logp(B) + ~ log27r +~log lVI· 

It may be feasible to use this directly for model selection. 
If we suppose B has a prior which we may approximate by N(Bo, V0 ), we 

have 

logp(T I M) ~ L(B; T) - ~ (B- Bo)TV0- 1 (B- Bo) 
-pog IVol + pog lVI 

and v- 1 is the sum of V0- 1 and the Hessian H of the log-likelihood at B. 
Thus 

logp(T I M) ~ L(B; T)- ~(B- Bofv0- 1(B- Bo)- ~log IH[. 

If we assume that the prior is very diffuse we can neglect the second term, 
so the penalty on the log-likelihood is - ~ log I HI· 

For a random sample of size n from the assumed model, this might be 
roughly proportional to - ( ~ log n) p provided the parameters are identifi
able. This is the proposal of Schwarz [41]. 

Crucial assumptions 

(1) The data were generated as an independent, identically distributed ran
dom sample, and originally for linear models only. It is not clear what 
n should be for, say, a random effects model. 
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(2) Choosing a single model is relevant in the Bayesian approach. 
(3) The model is true. 
(4) The prior can be neglected. We may not obtain much information about 

parameters which are rarely effective, even in very large samples. 
(5) The simple asymptotics are adequate and that the rate of data collec

tion on each parameter would be the same. We should be interested 
in comparing different models for the same n, and in many problems p 
will be comparable with n. 

Note that as this is trying to choose an explanation, we would expect 
BIC to neither overfit nor underfit, and there is some theoretical support 
for that. 

7. Deviance Information Criterion 

Named by Spiegelhalter et al. [42] in a Bayesian setting where prior informa
tion is not negligible, and the model is assumed to be a good approximation 
but not necessarily true. 

In GLMs (and elsewhere) the deviance is the difference in twice max
imized log likelihood between the saturated model and the fitted model, 
or 

D(B) =deviance( B) = const(T) - 2L(B; T) 

and in GLMs we use D(B) as the (scaled) (residual) deviance. 
Define 

PD = D(B) - D(1J) 

The first overline means averaging (} over p(B IT), and the second means 
our estimate of the 'least false' parameter value, usually the posterior mean 
of(} (but perhaps the median or mode of the posterior distribution). Then 
define 

DIG= D(B) + 2po 

Clearly DIC is AIC-like, but 

• Like NIC it allows for non-ML fitting, in particular for the regular
ization effect of the prior that should reduce the effective number of 
parameters. 

• It is not necessary (but is usual) that PD 2 0. 
• DIC is explicitly meant to apply to non-nested non-liD problems. 
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• DIC is intended to be approximated via MCMC samples from the pos
terior density of 0 given T. On the other hand, DIC needs an explicit 
formula for the likelihood (up to a model-independent normalizing con
stant). 

8. Model Averaging 

For prediction purposes (and that applies to almost all Bayesians) we should 
average the predictions over models. What do we average? 

The probability predictions made by the models. 

For linear regression this amounts to averaging the coefficients over the 
models (being zero where a regressor is excluded), and this becomes a form 
of shrinkage. Other forms of shrinkage like ridge regression may be as good 
at very much lower computational cost. 

Note that we may not want to average over all models. We may want 
to choose a subset for computational reasons, or for plausibility. 

How do we choose the weights'? 

In the Bayesian theory this is clear, via the Bayes factors. In practice this 
is discredited. Even if we can compute them accurately (and via Markov 
Chain Monte Carlo we may have a chance), we assume that one and exactly 
one model is true. In practice Bayes factors can depend on aspects of model 
inadequacy which are of no interest. I first encountered this in Ripley [37], 
where we fitted formal probability models to images (and therefore had 
tens of thousands of observations). There was a common noise model but 
different priors for the different models. We were able to calculate Bayes 
factors approximately by MCMC in a week or so, and we were pleased to see 
that that the factors were very decisive. After some checking, we discovered 
that they were very decisively picking the wrong model. There was a 'true' 
model (the models represented different species of nematodes) but a lot of 
investigation showed that the 'noise' model was interacting with the texture 
of the nematodes. 

Alternative approaches are via cross-validation (goes back to Stone [43]) 
and via bootstrapping [25]. This can also be viewed as an extended esti
mation problem, with the weights depending on the sample via a model 
(e.g. a multiple logistic); so-called stacked generalization [47] and mixtures 

of experts [23]. 
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Bagging, boosting, random forests 

Model averaging ideas have been much explored in the field of classification 
trees. 

In bagging [6, 7] models are fitted to bootstrap resamples of the data, 
and weighted equally. Breiman [7] motivates this for unstable methods such 
as classification trees in which a small change in the training set can lead to 
a large change in the classifier. A variant on this idea which has been sug
gested many times is to add 'noise' to the training set, randomly perturbing 
either the feature vectors x or the classes c (or both). Further along this line, 
we could model the joint distribution of (X, C) and create new training sets 
from this distribution. Bagging can be seen as the rather extreme form of 
this procedure in which the model is the empirical distribution. (Krogh and 
Vedelsby [24], use cross-validation rather than re-sampling, and consider de
signing training sets weighted towards areas where the existing classifiers 
are prone to disagree.) 

In boosting [40, 17, 15, 18, 19] each additional model is chosen to (at
tempt to) repair the inadequacies of the current averaged model by resam
pling biased towards the mistakes. The idea is to design a series of training 
sets and use a combination of classifiers trained on these sets. (Majority 
voting and linear combinations have both been used.) There have been 
many papers on this topic, as well as empirical tests which tend to show 
[e.g., 36] that boosting often does well but occasionally does disastrously. 

In random forests [8] the tree-construction algorithm randomly restricts 
itself at the choice of each split, to create a 'forest' of trees from a single 
training set. 

9. Practical model selection in 2004 

The concept of a model is much larger than it was 25 years ago. Even a 
decade ago, people attempted to fit neural networks with half a million free 
parameters. We are no longer so tied to maximum likelihood estimation, 
and fit models to much larger datasets. The latter almost inevitably means 
that we fit more complex models, and 'smooth' terms are often used in 
place of linearc terms. 

Large model classes often overlap very considerably. There are many 
ways of obtaining a smooth curve like Figure 1. The traditional approach 
would be to fit a polynomial, and one of the curves is a degree-six polyno-

cor low-order polynomial 
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Fig. 1. Two smooth curves fitted to the concentration of the chemical GAG in the urine 
of 314 children aged 0-18 years. 

mial chosen by forwards stepwise selection. The other is a smoothing spline, 
with the degree of smoothness chosen by GCV. d There are many alterna
tive approaches, including neural networks and local polynomials [46, 26]. 
These can all fit very similar curves, and the issue of choosing between the 
model classes is rather a moot one. 

Alternative explanations with roughly equal support are commonplace: 
model averaging seems a good solution. Selecting several models, studying 
their predictions and taking a consensus is also a good idea, when time 
permits and when non-quantitative information is available. As Figure 1 
shows, we may need other information to choose between very different 
formulae with similar predictions, in so far as we can choose at all. 

'Regression diagnostics' are often based on approximations to over
fitting or case deletion. Now we can (and some of us do) fit extended models 
with smooth terms or use fitting algorithms that automatically downweight 
groups of points. (I rarely use least squares these days.) It is still all too 
easy to select a complex model just to account for a tiny proportion of 
aberrant observations. 

d generalized cross-validation, which is not in fact cross-validation as defined here. 
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Although we do have more tools available than at the start of my career, 
it seems to me that model selection has actually got harder: as we explore 
more of the statistical model world we encounter more and more chasms 
awaiting the unwary. It worries me how casually AIC and its allies are used, 
and hope this paper will go some way to raising awareness of the limitations 
of formal methods of model selection. 

References 

1. Akaike, H. (1973) Information theory and an extension of the maximum 
likelihood principle. In Second International Symposium on Informa
tion Theory (Eds B. N. Petrov and F. Caski), pp. 267-281, Budapest. 
Akademiai Kaid6. Reprinted in Breakthroughs in Statistics, eds Kotz, 
S. & Johnson, N. L. (1992), volume I, pp. 599-624. New York: Springer. 

2. Akaike, H. (1974) A new look at statistical model identification. IEEE 
Transactions on Automatic Control, 19, 716-723. 

3. Allen, D. M. (1971) Mean square error of prediction as a criterion for 
selecting variables. T~chnometrics, 13, 325-331. 

4. Allen, D. M. (1974) The relationship between variable selection and 
data augmentation and a method of prediction. Technometrics, 16, 
467-475. 

5. Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. Chich
ester: Wiley. 

6. Breiman, L. (1996a) Bagging predictors. Machine Learning, 24, 
123-140. 

7. Breiman, L. (1996b) The heuristics of instability in model selection. 
Annals of Statistics, 24, 2350-2383. 

8. Breiman, L. (2001) Random forests. Machine Learning, 45, 5-32. 
9. Breiman, 1., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) 

Classification and Regression Trees. Monterey, CA: Wadsworth and 
Brooks/Cole. 

10. Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Mul
timodel Inference. New York: Springer, second edition. 

11. Cooke, R. M. (1991) Experts in Uncertainty. Opinion and Subjective 
Probability in Science. New York: Oxford University Press. 

12. Cox, D. R. (1961) Tests of separate families of hypotheses. In Proc. 4th 
Berkeley Symposium (Ed. J. Neyman), volume 1, pp. 105-123, Univer
sity of California Press. University of California Press. 



168 B. D. Ripley 

13. Cox, D. R. (1962) Further results on tests of separate families of hy
potheses. Journal of the Royal Statistical Society series B, 24, 406-424. 

14. Draper, D. (1995) Assessment and propagation of model uncertainty 
(with discussion). Journal of the Royal Statistical Society series B, 57, 
45-97. 

15. Drucker, H., Cortes, C., Jaeckel, L. D., LeCun, Y. and Vapnik, V. 
(1994) Boosting and other ensemble methods. Neural Computation, 6, 
1289-1301. 

16. Ein-Dor, P. and Feldmesser, J. (1987) Attributes of the performance 
of central processing units: A relative performance prediction model. 
Communications of the A CM, 30, 308-317. 

17. Freund, Y. (1990) Boosting a weak learning algorithm by majority. In 
Proceedings of the Third Workshop on Computational Learning Theory, 
pp. 202-216. Morgan Kaufmann. 

18. Freund, Y. (1995) Boosting a weak learning algorithm by majority. 
Information and Computation, 121(2), 256-285. 

19. Freund, Y. and Schapire, R. E. (1995) A decision-theoretic generaliza
tion of on-line learning and an application to boosting. In Proceedings 
of the Second European Conference on Computational Learning Theory, 
pp. 23-37. Springer. 

20. Geisser, S. (1975) The predictive sample reuse method with applica
tions. Journal of the American Statistical Association, 70, 320-328. 

21. Geisser, S. (1993) Predictive Inference: An Introduction. New York: 
Chapman & Hall. 

22. Harrell, Jr., F. E. (2001) Regression Modeling Strategies, with Applica
tions to Linear Models, Logistic Regression and Survival Analysis. New 
York: Springer-Verlag. 

23. Jacobs, R. A., Jordan, M. 1., Nowlan, S. J. and Hinton, G. E. (1991) 
Adaptive mixtures of local experts. Neural Computation, 3, 79-87. 

24. Krogh, A. and Vedelsby, J. (1995) Neural network ensembles, cross val
idation, and active learning. In Advances in Neural Information Pro
cessing Systems 7. Proceedings of the 1994 Conference (Eds G. Tesauro, 
D. S. Touretzky and T. K. Leen), pp. 231-238, Cambridge, MA. MIT 
Press. 

25. LeBlanc, M. and Tibshirani, R.. J. (1993) Combining estimates in re
gression and classification. Preprint, Depts of Preventive Medicine and 
Biostatistics and of Statistics, University of Toronto. 

26. Loader, C. (1999) Local Regression and Likelihood. New York: Springer
Verlag. 



Selecting Amongst Large Classes of Models 169 

27. Madigan, D. and Raftery, A. E. (1994) Model selection and account
ing for model uncertainty in graphical models using Occam's window. 
Journal of the Royal Statistical Society, 89, 1535-1546. 

28. Mallows, C. L. (1973) Some comments on CP' Technometrics, 15, 661-
675. 

29. Marchini, J. L. and Ripley, B. D. (2000) A new statistical approach 
to detecting significant activation in functional MRI. Neuroimage, 12, 
366-380. 

30. Moody, J. E. (1991) Note on generalization, regularization and architec
ture selection in nonlinear learning systems. In First IEEE-SP Work

shop on Neural Networks in Signal Processing, pp. 1-10, Los Alamitos, 
CA. IEEE Computer Society Press. 

31. Moody, J. E. (1992) The effective number of parameters: an analysis of 
generalization and regularization in nonlinear learning systems. In Ad
vances in Neural Information Processing Systems 4. Proceedings of the 
1991 Conference (Eds J. E. Moody, S. J. Hanson and R. P. Lippmann), 
pp. 847-854, San Mateo, CA. Morgan Kaufmann. 

32. Mosteller, F. and Wallace, D. L. (1963) Inference in an authorship 
problem. Journal of the American Statistical Association, 58, 275-309. 

33. Murata, N., Yoshizawa, S. and Amari, S. (1991) A criterion for deter
mining the number of parameters in an artificial neural network model. 
In Artificial Neural Networks. Proceedings of ICANN-91 (Eds T. Ko
honen, K. Miikisara, 0. Simula and J. Kangas), volume I, pp. 9-14, 
Amsterdam. North Holland. 

34. Murata, N., Yoshizawa, S. and Amari, S. (1993) Learning curves, model 
selection and complexity of neural networks. In Advances in Neural 
Information Processing Systems 5. Proceedings of the 1992 Conference 
(Eds S. J. Hanson, J. D. Cowan and C. L. Giles), pp. 607-614, San 
Mateo, CA. Morgan Kaufmann. 

35. Murata, N., Yoshizawa, S. and Amari, S. (1994) Network information 
criterion-determining the number of hidden units for artificial neural 
network models. IEEE Transactions on Neural Networks, 5, 865-872. 

36. Quinlan, J. R. (1996) Bagging, boosting, and C4.5. In Proceedings of 
the Fourteenth National Conference on Artificial Intelligence, Menlo 
Park, CA. AAAI Press. 

37. Ripley, B. D. (1992) Classification and clustering in spatial and im
age data. In Analyzing and Modeling Data and Knowledge (Ed. 
M. Schader), pp. 93-105, Berlin. Springer. 



170 B. D. Ripley 

38. Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cam
bridge: Cambridge University Press. 

39. Sakamoto, Y., Ishiguro, M. and Kitagawa, G. (1986) Akaike Informa
tion Theory Statistics. Dordrecht: Reidel. 

40. Schapire, R. E. (1990) The strength of weak learnability. Machine 
Learning, 5(2), 197-227. 

41. Schwarz, G. (1978) Estimating the dimension of a model. Annals of 
Statistics, 6, 461-464. 

42. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. 
(2002) Bayesian measures of model complexity and fit (with discussion). 
Journal of the Royal Statistical Society series B, 64, 583-639. 

43. Stone, M. (1974) Cross-validatory choice and assessment of statistical 
predictions (with discussion). Journal of the Royal Statistical Society 
series B, 36, 111-14 7. 

44. Stone, M. ( 1977) An asymptotic equivalence of choice of model by cross
validation and Akaike's criterion. Journal of the Royal Statistical Soci
ety series B, 39, 44-47. 

45. Takeuchi, K. (1976) Distribution of informational statistics and a cri
terion of fitting. Suri-Kagaku, 153, 12-18. [In Japanese]. 

46. Wand, M. P. and Jones, M. C. (1995) Kernel Smoothing. London: 
Chapman & Hall. 

47. Wolpert, D. H. (1992) Stacked generalization. Neural Networks, 5, 
241-259. 



PRINCIPLES OF DESIGNED EXPERIMENTS IN 
J. A. NELDER'S PAPERS 

R. A. Bailey 
School of Mathematical Sciences 

Queen Mary, University of London 
Mile End Road 

London El 4NS 

1. Experimental protocol 

When I am involved as a statistician in the design of a scientific experiment, 
I usually keep a written record under the following headings. 

(1) How many experimental units are there, and how were they structured 
before the treatments were applied? 

(2) How many treatments are there, and hQw were they structured before 
being allocated to experimental units? 

(3) What is the systematic, or combinatorial, design used (for example, 
incomplete-block design with specified efficiency factors for a complete 
basis of treatment contrasts, split-plot design with certain factors on 
whole plots and others on subf>lots, fractional factorial design with 
specified aliasing, etc)? Why was it chosen? 

(4) What method of randomization was used, and what layout did it pro-
duce? 

(5) What will be the assumed expectation structure of the responses? 
(6) What will be the assumed covariance structure of the responses? 
(7) What is the proposed analysis of the data? 

John Nelder has contributed to the thinking on all of these topics. In 
the sections below, I enlarge on his contributions and give some account 
of the work that followed from his. Section 2 emphasizes that structure 
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on the experimental units is different from structure on treatments. Sec
tions 3 and 4 describe families of structures that may be suitable for either 
experimental units or treatments. Section 5 relates randomization to the 
structure on the experimental units, and Section 6 in turn relates both of 
these to the covariance structure. Families of expectation models defined by 
qualitative factors are covered in Section 7, while Section 9 touches briefly 
on quantitative factors. Section 8 discusses properties of the combinatorial 
design, in the sense of how treatments are allocated to plots. The proposed 
analysis, and its implications for design, are briefly discussed in Section 10. 

2. Plot structure is different from treatment structure 

Many books on the design of experiments, from [27] to [30, 35, 40], use 
notation such as Yij to denote the response on the j-th experimental unit 
to which treatment i is applied. In other words, the experimental units 
are seen to have no intrinsic names before treatments are applied. This 
labelling ensures that the trial is not blind; it also encourages the scientist 
to collect data, or conduct mid-trial operations, in treatment order rather 
than according to any structure on the units. 

In [43], John Nelder remarked that "experimental units ... have an inter
nal structure regardless of whether any differential treatments are applied to 
them or not". He called this structure block structure; I call it plot structure, 
as plot is my shorthand for experimental unit. The plot structure should 
be specified, and the individual experimental units named or numbered, 
before treatments are applied. Information about treatment allocation can 
be added later, to show the full layout. 

For example, a completely randomized trial for three pig feeds might be 
laid out as follows. 

Pig 1 2 3 4 5 6 7 8 9 10 11 12 
Feed 3 1 1 2 3 1 3 2 1 2 3 2 

Here the experimental units are the pigs and the plot structure is no struc
ture. The pigs should be weighed in the order 1-12, and the weight of the 
ninth pig recorded as yg, not as Yl4. 

Alternatively, the pigs might comprise four pigs from each of three lit
ters. Then the grouping into litters provides the plot structure. Many people 
would call the litters blocks. The layout might then be as follows. 

Litter 1 
Pig 1 
Feed 3 

1 1 

2 3 
1 1 

1 2 2 
4 5 6 
2 3 1 

2 2 3 
7 8 9 
3 2 1 

3 
10 
2 

3 
11 

3 

3 
12 
2 
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Now the ninth pig can be called pig 9, giving weight yg, or pig 1 in litter 3, 
giving weight y31 . In both cases it is the plot structure that provides the 

pig's label. 
Combinatorial books, such as [15, 29, 58] typically have a different prob

lem with this example. They see three treatments, and three blocks of size 
four, but they see no pigs at all. It is hard to convey the importance of plot 
structure to people steeped in this point of view. 

Plot structure is usually determined by blocks, rows, columns etc. Treat
ment structure means the structure inherent in the set of treatments before 
they are applied to plots. Typical treatment structures are: factorial; new 
treatments plus control; treatments grouped into types. The distinction be
tween the plot structure and the treatment structure must be made at the 
design stage and should be maintained when the data are analysed. It is 
common for otherwise admirable books for non-statisticians, such as [32], 
to ignore the distinction at the analysis stage. 

Following [43], Genstat forces the user to specify plot structure and 
treatment structure separately using the directives blockstructure and 
treatmentstructure. See [50, Sections 4.1-4.2]. 

Some more complicated experiments, with several phases or with later 
treatments superimposed on previous ones, involve three or more structured 
sets rather than two. Brien [20] pointed out that proper design and analysis 
must be based on recognition of these distinct structures. Nelder's ideas for 
two structures are generalized to three or more by Brien and Bailey [21]. 

3. Crossing and nesting 

John Nelder introduced the crossing and nesting operators ( * and /) in 
his important pair of papers [43, 44] on simple orthogonal block structure. 
They form the basis of the model structure formulas for both plots and 
treatments in Genstat analysis of variance [50, Chapter 4], and are also 
used in Genstat regression [50, Section 3.3]. As Heiberger [33] shows, equiv
alent operators are used in many statistical computing packages, although 
sometimes the notation is different. Nelder himself originally used --+ for 
nesting. However, the definitions in the statistical computing packages are 
subtly but importantly different from Nelder's original definitions. I shall 
call the original usage the structural one and the other the modelling one. 

The differences between the two can be illustrated by the formula R *C. 
Here I use U to denote the trivial factor with a single level, which gives the 
model term for the grand mean, called f.l by the Iowa school [36], and which 
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is typically omitted from analysis-of-variance tables (interestingly, it is not 
omitted by Nelder [47] nor always by Mead [38]); I use E to denote the 
other trivial factor, which is called c by the Iowa school and **units** in 
Genstat. I shall explain later why I call some things pre-factors rather than 
factors. 

The two usages of the formula R * C differ not only in the interpretation 
of the formula but also in what information must be available when the 
formula is used. In the modelling view you must have already declared (i) a 
set of units and (ii) factors R and Con those units, i.e. the level of R and 
C on each unit. If R * C is a treatment formula, it is an instruction to fit 
the following model terms, in order: U; R allowing for U; C allowing for R; 
R.C allowing for R and C. If it is a plot formula, it is an instruction to 
decompose the data space into the following subspaces: U; R allowing for U; 
C allowing for R; R.C allowing for Rand C; E allowing for R.C. On the 
other hand, for the structural view you must have declared simply the sets 
of levels of a pre-factor Rand a pre-factor C. Now R * C means first create 
a set of units, being all ordered pairs of the form (level i of R, level j of C) 
and then note that the factors that you want on this set of units are 

U - no coordinates 
R - first coordinate 
C - second coordinate 

R.C- both coordinates. 

Thus the modelling view is that, given some factors on a set, the formula 
R * C is a convenient shorthand for an ordered list of model terms. This 
formula not only saves us writing out R+C+R.C but also helps us to think 
about the factors and their relationship to each other. It is extremely useful 
for breaking down treatment terms. For example (jumping ahead a little to 
a mixture of crossing and nesting), consider the treatment structure shown 
in Figure 1. This is often described wrongly, by people who fail to realise 
that time of application makes no difference to zero nitrogen, as having 
structural formula timing * quantity. However, for a meaningful analysis, 
the modelling formula controlj(timing * quantity) should be used, where 
control is a 2-level factor distinguishing the treatment with zero nitrogen 
from the other six treatments. 

To use the formula R * C in the modelling way we do not need either 
or both of Rand C to be uniform (also called balanced or equi-replicate), 
nor do we need R and C to be orthogonal to each other, nor do we need all 
aliasing between Rand C to be in the grand mean, nor do we require that 
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neither be marginal to the other. 
Before continuing with the structural view, let me change notation a 

little. I writeR A C for the factor whose model term is R.C. Thus Rand C 
are both marginal to R A C, and R A C has the smallest number of levels 
subject to this restriction. One reason for using this notation is to make 
clear the connection with, and difference from, the factor which I write as 
RVC and which is defined very similarly to RAG but in a dual sense. Thus 
R V C is the unique factor which is marginal to both R and C and which 
has the maximum number of levels subject to this constraint. In particular, 
if R is marginal to C then R A C = C and R V C = R. Using this notation, 
the condition all aliasing between R and C is in the grand mean can be 
written in symbols as R V C = U. 

Now consider the structural view. This is that, given some sets of levels 
of pre-factors, the formula R * C denotes a new structured set with various 
specified factors. Strictly speaking, the pre-factor R that we start with is 
not quite the same as the factor R on the new set, which is why I use two 
distinct words; the distinction should be clearer when we consider nesting. 
Thus the formula R * C tells us to construct a set and four factors on 
that set; moreover, it tells us how to do it. This is useful, because you do 
not need to declare the set explicitly, nor to generate factors R and C in 
standard order. The construction automatically ensures that R and C are 
both uniform, that they are orthogonal to each other, that R V C = U and 
that neither of the factors R and C is marginal to the other. 

Now compare the two usages for nesting. In the modelling view it is 
assumed that you have already declared (i) a set of units and (ii) factors 
B and P on those units. If B / P is a treatment formula, it is interpreted 
as an instruction to fit the following model terms, in order: U; B allowing 

timing amount of nitrogen 
0 80 160 240 

early 

late 

Fig. I. An example where the modelling view is useful 
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for U; B A P allowing for B. If it is a plot formula, it is an instruction to 
decompose the data space as follows: U; B allowing for U; B A P allowing 
for B; E allowing for B A P. On the other hand, the structural view is 
that you have declared simply the sets of levels of a pre-factor B and a 
pre-factor P. Now the formula B / P means first create a set of units, being 
all ordered pairs of the form (level i of B, level j of P) and then note that 
the factors that you want on this set of units are 

U - no coordinates 
B - first coordinate 

B A P - both coordinates. 

Thus P is not a factor. The modelling view allows unequal block sizes 
(if the levels of B are called blocks) and plots bigger than single units 
(if the levels of P are called plots), whereas the structural view does not. 
Likewise, the structural view can never give the factorial-treatments-plus 
control structure exemplified in Figure 1. 

Very many of the designed experiments that we analyse have plot struc
tures that can be constructed using * and / in the structural way. For ex
ample, the plot structure of a row-column design is row* column: all we 
need to know is how many rows and how many columns. Thus a formula 
such as 

6 rows* 10 columns (1) 

gives complete information. Similarly, the plot structure for the second 
version of the pigs example is 

3 litters/ 4 pigs. (2) 

4. Orthogonal structures 

Structure on either the experimental units or the treatments can often be 
specified by iterated crossing and nesting in the structural sense. Thus the 
plot structure in a consumer experiment might be 

3 months/(4 weeks* 4 housewives) /2 washloads (3) 

or the treatment structure in a horticultural experiment might be 

3 varieties * 3 composts * 3 watering regimes. (4) 

In [43], Nelder called these simple orthogonal block structures. He showed 
that such a structure gives a unique orthogonal decomposition of the data 



Principles of Designed Experiments in J. A. Neider's Papers 177 

space: there is a subspace for fitting each factor, allowing for each factor 
marginal to it. 

Marginality relations are conveniently shown on a Hasse diagram. Each 
factor is represented by a black dot. If A is marginal to B then A is joined 
to B by a line or series of lines running generally downwards. The number of 
levels of each factor is written beside it. Its number of degrees of freedom, 
shown after this, is calculated by subtracting all the degrees of freedom 
above from the number of levels. The Hasse diagrams for structures (1)-(4) 
are in Figures 2-5 respectively (where convenient, names of pre-factors are 
abbreviated to their initial letters). 

u 1, 1 u 1, 1 

row 6, 5 column 10, 9 
litter 3, 2 

row 1\ column 60, 45 

Fig. 2. Hasse diagram for the plot 
structure in (1) 

litter 1\ pig 12, 9 

Fig. 3. Hasse diagram for the plot 
structure in (2) 

In the structure R*C, different levels of Care important whether or not 
the units under consideration have the same level of R. On the other hand, 
in the structure B / P we do not care about levels of the pre-factor P unless 
we know that the levels of B are equal. Let us say that B dominates P. 
(Many people would say that B nests P, but this is subtly different from 
the two meanings of nesting as an operator.) Then dominance is a partial 
order, so the pre-factors form a partially ordered set (poset), which can also 
be shown on a Hasse diagram, this time using white dots for pre-factors. 
These for structures (1)-(4) are in Figures 6-9. Every simple orthogonal 
block structure gives a poset of pre-factors. There is a genuine factor in the 
structure for each collection of pre-factors which satisfies the condition that 
if B is in the collection and A dominates B then A is in the collection. 

If we start with a poset of pre-factors then we obtain a structure which 
gives an orthogonal decomposition just as above. These new structures, 
which I now call poset block structures, were developed in this form in [11, 
56, 57]. They are more general than simple orthogonal block structures. 
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u 1, 1 

u 1, 1 

month 1\ 
housewife 

12, 9 

month 
1\ week variety compost 

3, 2 12, 9 3, 2 

M 1\ H 1\ W 48, 27 

M 1\ H 1\ W 1\ washload 96, 48 

Fig. 4. Hasse diagram for the plot 
structure in (3) 

6 row 

0 
10 column 

0 

Fig. 6. Poset of pre-factors in the 
simple orthogonal block structure (1) 

v (\ w 
9, 4 

v (\ w (\ c 27, 8 

WI\C 
9, 4 

Fig. 5. Hasse diagram for the 
treatment structure in (4) 

3 litter 

I 
4 pig 

Fig. 7. Poset of pre-factors in the 
simple orthogonal block structure (2) 

For example, a trial on chemical cleaners in milking parlours had the plot 
structure defined by the poset in Figure 10. This cannot be obtained by 
iterated crossing and nesting. 

Nelder gave an iterative procedure for obtaining the orthogonal de
composition of a simple orthogonal block structure. This does not ex
tend to poset block structures, but the Hasse-diagram procedure works for 
these, and hence for simple orthogonal block structures. In fact, the Iowa 
school [36], especially Zyskind [63], had effectively invented poset block 
structures before Nelder, but they confused the two sorts of Hasse diagram 
and their description did not lead to straightforward algorithms. 

Speed and Bailey [56] gave a further generalization, which I now call 
an orthogonal block structure [5]. Each of these consists of a collection of 
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3 month 

4 housewife 4 week 

2 washload 

Fig. 8. Poset of pre-factors in the 
simple orthogonal block structure (3) 

3 farm 

2 side 

3 variety 
0 

3 water 3 compost 
0 0 

Fig. 9. Poset of pre-factors in the 
simple orthogonal block structure (4) 

4 period 

10 measurement 

Fig. 10. A poset that cannot be obtained from iterated crossing and nesting 

uniform factors, including the two trivial ones, such that if A and B are 
included then so are A 1\ B and A VB, and A is orthogonal to B in the 
sense that their averaging matrices commute. These conditions ensure that 
the Hasse-diagram algorithm gives an orthogonal decomposition. The least 
complicated orthogonal block structure which is not a poset block structure 
is a Latin square. 

Tjur [59] generalized further by dropping the condition of uniformity 
and the requirement that A 1\ B is included if A and B are. The treat
ment structure in Figure 1 is a Tjur structure, whose Hasse diagram is in 
Figure 11. The Hasse-diagram algorithm still works. 

Just as crossing and nesting can be applied to a pair of structures which 
are not both simple orthogonal block structures, so each poset of size n gives 
an n-ary operator for combining structures [9]. However, neither orthogonal 
block structures nor Tjur structures can, in general, be defined by recursive 
use of such operators. 
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u 1, 1 

control 2, 1 

timing 3, 1 quantity 4, 2 

timing 1\ quantity 7, 2 

Fig. 11. The Tjur structure from Figure 1 

5. Randomization 

The experimenter typically associates randomization with treatments, often 
thinking of choosing a plan at random. Neider [43] pointed out that "The 
close association of randomization with the allocation of treatments can 
obscure the essential independence of the block structure ... from the treat
ment structure." He argued that randomization should consist of choosing a 
random permutation of the experimental units from all those permutations 
that preserve the plot structure. This procedure justifies the assumption 
of a randomization distribution for the null responses, to which treatment 
effects are added. Bailey [2] spelt this out in more detail. 

Because randomization should normally be defined by the plot struc
ture, Genstat makes the link explicit. Once the blockstructure directive 
has been given, the procedure arandomize does the job, provided that the 
formula given for the plot structure is a simple orthogonal block structure. 
Alternatively, the randomize directive may be used; in this case the plot 
structure must be specified as an option. See [50, Section 4.10]. 

Bailey [2, 3] showed that randomization gives the covariance matrix C 
of the responses in the patterns-of-covariance form; that is, 

c = u 2 L PiAi, (5) 

where the Ai are symmetric (0, 1)-matrices whose sum is J. If Ai(a, {3) = 1 
then Cov(Ya, Y,a) = u2 pi. Moreover, for each i, if Ai(a,{J) = 1 then the set 
of pairs (I, 6) for which Ai (I, 6) = 1 is precisely the set of pairs ( a 9 , {39 ) as 
g ranges over the permutations that preserve the plot structure. 
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6. Variance components 

Neider [43] showed that, for a simple orthogonal block structure, (5) could 
be rewritten in two equivalent forms: the components-of-variance form 

(6) 

where Bi is the totalling matrix for factor i, so that Bi (a, ,8) = 1 if a and 
,8 have the same level of factor i; and the spectral form 

(7) 

where the Pi are the orthogonal projectors onto the eigenspaces of C, irre
spective of the values of the correlations Pi· He wrote that "these matrices 
define the strata", from which I concluded that the strata are the mutual 
eigenspaces of all matrices of type (5). The Ei are called the stratum vari
ances. 

Neider [44] and Bailey [2] showed that if the data are projected onto 
any single stratum then the projected data effectively have a scalar covari
ance matrix, so one may use the standard results from the simple textbook 
model. Some treatment contrasts may be estimable in more than one stra
tum; Neider gave a method for combining the different estimators in [46]. 
These methods (stratum projection followed by combination of informa
tion) work for any covariance matrix C whose eigenspaces are independent 
of the unknown (co )variance parameters. Neider [43, page 153] called such 
a covariance matrix orthogonal; following this, Houtman and Speed [34] 
defined an orthogonal block structure to be any such covariance matrix. 
I prefer to reserve the term for particular combinatorial structures defined 
by one or more partitions into blocks, as in [5]. 

How is this connected with randomization? Neider claimed in [43] that 
randomization of a simple orthogonal block structure gives Equation (5) for 
a specific form of the matrices Ai: namely, Ai(a, ,B) = 1 if a and ,8 have the 
same level of factor i but not of any factor to which i is marginal (although 
he did not express it in this form). However, he did not actually prove that 
the group of all permutations preserving a simple orthogonal block structure 
has this property. This was done later, by Bailey, Praeger, Rowley and 
Speed [11], who proved it for the larger class of poset block structures. By 
considering randomization of Latin-square plot structures, Preece, Bailey 
and Patterson [53] showed that the analogous result does not hold for all 
orthogonal block structures, although it does hold for some orthogonal block 
structures that are not poset block structures. Nevertheless, the equivalence 
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between (5), (6) and (7) does hold for all orthogonal block structures. In a 
Tjur structure with uniform factors, expressions (6) and (7) are equivalent, 
but it is not possible, in general, to express C in the form (5); that is, the 
covariance between Yc.1: and Y,e cannot be completely specified in terms of 
which factors take the same levels on a and {3. 

Bailey [3] explored the question of which structures have the property 
that their randomization model (5) can be expressed as (7) with known 
strata. The answer includes circles (such as the edge of a petri dish) and 
unordered pairs (such as people participating in experiments to compare 
telephone equipment), as well as structures obtained from these by crossing, 
nesting and poset operators. Such structures are now called stratijiable [14]. 

If any system of blocks in the plot structure has blocks of unequal size 
then the preceding theory breaks down. Clearly one cannot interchange a 
larger block with a smaller block in randomization. Nor are expressions 
(6) and (7) equivalent if blocks have different sizes. For a structure defined 
solely by one system of blocks of different sizes, if (6) holds then the within
blocks space is a stratum but the between-blocks space is not a stratum 
in the sense of eigenspace, even though writers such as Pearce [52, Section 
4.8] call it one. Calinski and Kageyama [24, Section 3.2.2] demonstrate the 
difficulties that can occur in this case. 

Because C must be non-negative definite, and (7) is its spectral form, the 
stratum variances ~; must be non-negative. The usual estimators of these 
from analysis of variance, possibly augmented by combination of informa
tion, are mean squares or positive linear combinations of mean squares, 
which are never negative. However, the components of variance J; are lin
ear combinations of the~;, and their estimates may be negative. Neider [42, 
47] calls these components of excess variance and argues that negative esti
mates should be accepted at face value. Others, such as John and Williams 
[35, page 150] recommend that such estimates should be replaced by zero. 
Of course, this replacement procedure biases the estimators upwards, as [13] 
shows; moreover, Wolde-Tsadik and Afifi [62] conclude from an empirical 
study that such pooling of mean squares is inadvisable. 

7. Model fitting, estimation and testing 

There is some debate about whether the analysis of a designed experiment 
should focus on estimation or hypothesis testing. I think that we should 
do both. The first step is model fitting. We start with a full model and 
successively perform hypothesis tests to see if we can reduce it to a more 
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parsimonious model. Each of these tests should use a residual term that is 
orthogonal to the space for the full model. Once we have chosen a model, 
we parameterize it suitably and then estimate those parameters. We do not 
need to provide parameterizations for all the other models that we might 
have chosen. 

For example, given the seven treatments in Figures 1 and 11, the models 
entertained for the effects of treatments are probably those in Figure 12. The 
inclusion relationships between these models, as well as their dimensions, 
are shown in the model diagram in Figure 13, with the usual convention 
that larger models are at the top, which is the opposite to the convention 
for analysis-of-variance tables. The diagram is not simply the inversion of 
Figure 11, because we include the model where timing and quantity are 
additive. 

Model testing starts at the top of the model diagram. We use the differ
ence between the sum of squares for treatment, SS( treatment), and the sum 
of squares for timing+ quantity, SS(timing +quantity), to assess whether 
we can reduce the full model to the five-dimensional one. If we cannot, we 
accept the full treatment model and estimate its seven parameters. If we 
can, then we use a similar procedure to assess whether we can simplify 
the model further. However, there is now a choice about which branch to 
choose first: do we compare the five-dimensional model with timing or with 
quantity? If the six non-zero treatments are equally replicated then the 
factors timing and quantity are orthogonal to each other, which has the 
consequence that 

SS( timing+ quantity) - SS( timing) = SS( quantity) - SS( control) 

so that we will choose the same model no matter which route we trace down 
the model diagram. As is well known, if two factors are not orthogonal to 

zero 
null 

control 
timing 

quantity 
timing+ quantity 

treatment 

E(Ya) = 0 
E(Ya) =some constant "' for all a 
E(Ya) = >.i if a has level i of control 
E(Ya) = Tj if a has level j of timing 
E(Ya) = "'fk if a has level k of quantity 
E(Ya) = Tj + 'Yk if a has level j of timing and 

level k of quantity 
E(Ya) = Ot if a has Ievell of treatment 

Fig. 12. List of models for the treatment structure in Figure 1 
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treatment 7 

I 

t"/3g+q~ 5 4 
'mm~7'''Y 

oontr 2 

null 1 

I 
zero 0 

Fig. 13. Model diagram for the models listed in Figure 12 

each other then there are some data which can be explained by either factor 
alone and other data which can be explained by both factors even though 
neither alone seems to have an effect. Thus orthogonality is important not 
only to make arithmetic easy but to make inference unambiguous. 

Of the seven models that we might fit in this example, only one has 
any ambiguity about the parameters. For timing+ quantity we can replace 
any set of estimates TJ and ik by T1 + c and ik - c for any constant c. In 
addition, To and l'o can be replaced by To + d and l'o - d for a different 
constant d. There is no need for this potential ambiguity to muddle the 
way that we think about model fitting. For this model, the results can be 
presented as a two-way table of fitted values, together with standard errors 
of differences. 

I have laboured this example in some detail as an introduction to 
Nelder's famous campaign against " the neglect of marginality " [47, Sec
tion 2.1]. Most expositions of model fitting do not show a model diagram 
like Figure 13. Instead, they present a single composite equation for E(Y) 
which can be used to specify the parameters no matter which model is cho
sen. Unfortunately, it is usually possible to use this equation to specify some 
extra, incoherent models, simply by setting some items in this equation to 
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be zero. 
A slightly more complicated, but rather common, example makes this 

abundantly clear. The treatment structure in Equation (4) and Figure 5 
gives the family of models in Figure 14. Model fitting proceeds from the 
top downwards, as described before. Any model in the diagram has a per
fectly straightforward parameterization, and the parameters can be esti
mated once the model is chosen. Yet many books, including [30, 35], present 
a composite equation such as 

E(Yw) =a;+ (Ji + /k + (af3)ij + (al)ik + ((3/)jk + (afJI)ijk 

when plot w has level i of variety, level j of water and level k of compost. 
This encourages people to think that there is a sensible model with, say 

a;= (Ji = /k = (a(J);J = (a/)ik = (af3/)ijk = 0 and (f31)Jk nonzero. 
The problem is made worse by the different sorts of sums of squares (and 

hence mean squares) that are routinely produced by statistical software 
packages. These are based not on extra fits according to the model diagram, 
but on extra fits according to the composite parameters in the multipurpose 
equation for E(Y). According to [30, 31, 40], a Type I sum of squares for 
a factor shows the magnitude of the extra fit when that factors' composite 
parameters are allowed to be non-zero, given the order in which the factors 
have been fitted. In Figure 13, it is appropriate for timing if control is fitted 
before it; it is not appropriate for quantity if the two composite parameters 
for treatment are fitted first. A Type II sum of squares shows the magnitude 
of the extra fit for a factor if all factors except those marginal to it have been 
fitted first. In Figure 13, this sum of squares for timing is appropriate for 
comparing the model timing+ quantity with quantity but not necessarily 
for comparing timing with control. A Type III sum of squares gives the 
magnitude of the extra fit after all other composite parameters have been 
fitted. In Figure 13, this is appropriate for treatment but for no other term. 

In my opinion, these sums of squares are all nonsense, because they 
are attached to model terms and hence to composite parameters. Instead, 
they should be attached to lines in the model diagram. If model M 1 is 
immediately above model M2 then the test for reducing M 1 to M2 uses the 
following mean square: 

SS(M!)- SS(M2) 
dim(M!) - dim(M2) · 

This is the number that should be attached to the line joining M 1 to M2. Of 
course, if all treatment factors are orthogonal to each other then the same 
number will be attached to several different lines, so there is redundancy 
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VA WAC 

VAW+VAC+WAC 

VAW+ AC VAW+WAC VA +WAC 

VAC+W WAC+V 

~/ 
VAW VAG V+W+C WAC 

7~ 
variety+ water variety+ compost water+ compost 

compost 

null 

zero 

Fig. 14. Family of models for three treatment factors in Figure 9 
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in the diagram. Nevertheless, this approach should discourage the fitting 
of incoherent models, as even the relatively small examples in Figures 13 
and 14 show. 

Returning to his campaign in [48], Nelder described three false steps. 

"1. The putting of constraints on parameters because constraints are put 
on their estimates. 

"2. Neglecting marginality relations between terms in factorial models. 
"3. Confusing non-centrality parameters in the expectation of sums of 

squares with the corresponding hypotheses that they might be used 
to test." 

I believe that all of these could be avoided by use of the model diagram, by 
attaching each mean square to a line in the model diagram, and by refusal 
to parameterize until the model is chosen. 

8. Combinatorial design 

Given a stratifiable plot structure, we have a decomposition of the data 
space into strata, with orthogonal projectors Pi. Given the treatment struc
ture, we have a family of models and an orthogonal decomposition of the 
treatment space. If possible, the allocation of treatments to experimental 
units should be done in such a way that this orthogonality is maintained 
when the treatment space is regarded as a subspace of the data space. 
Equal replication is one way of ensuring this, but not the only way. For the 
seven treatments in Figure 1, the replication of the zero treatment has no 
effect on orthogonality. Let Tj be the orthogonal projectors onto the spaces 
decomposing the treatment space when it is embedded in the data space. 

Given all the above, Nelder [44] defined what he meant for a design to be 
balanced. By [46] he had refined this definition, as follows. The design (in 
the sense of treatment allocation) is generally balanced if there are constants 
AiJ such that 

(8) 

and 

if j -=1- k. (9) 

For such a design, TJ = Tj L:i PiTj = L:i AiJTj, so L:i AiJ = 1 for each j. 
The constant Aij is called the proportion of information on treatment term j 
in stratum i. If every AiJ is equal to 0 or 1, the design is said to be orthogonal 
[46, p. 304]. 
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How do these definitions help us to design good experiments? If we can 
make the design orthogonal then each treatment term is estimated in a 
single stratum. We use prior knowledge of the likely relative magnitudes of 
the stratum variances to ensure that treatment terms whose effects are most 
important (alternatively, those whose magnitude may be hard to detect) 
are assigned to strata whose variances are small. 

If the design is generally balanced and the relative sizes of the ~i are 
known, then the best linear unbiased estimator of a normalized treatment 
contrast in Im(T 1) is the weighted sum of the estimators from those strata i 
with Aij f:. 0, with weights proportional to Aij/~i: see [34, 44, 46]. The 
variance of this combined estimator is 1/ L_i(Aij/~i)· Once again, we can 
use prior knowledge of the ~i to compare one proposed design with another. 

For example, Leeming [37] compares the two designs in Figure 15. The 
plot structure is 3 blocks/(2 rows* 2 columns) in each case. Interest is in 
comparing each of three new treatments with the control treatment, 0. It 
is assumed that the blocks stratum variance can be very large, but that 
information from the other three strata can be combined. Which is the 

better design depends on whether or not ~B/\R/\C /~B/\R + ~B/\R/\C /~B/\C 
is greater than 1. Morgan and Uddin [41] make a similar comparison for 
this plot structure. Bailey [6] uses similar techniques for the plot structure 
large blocks/ small blocks/ plots to compare designs over a wide range of 
values of the ratio ~L/\S/\P /~L/\S· It is hard to see how designs can be 
compared analytically if they are not generally balanced. 

~ITITJ[3TIJ 
[!DJ [!ill [TIIJ 

Design 1 

~ITITJ[ITQ] 
[TIIJ [QJ2J [!ill 

Design 2 

Fig. 15. Two designs for comparing three new treatments with a control (0) 

Nelder's definition of general balance explicitly depended on both the 
given Pi and the given T 1. Houtman and Speed [34] relaxed this: given 
the stratum projectors Pi, they defined a design to be generally balanced if 
there exists any treatment decomposition L_j TJ for which (8) and (9) hold. 
Since this is equivalent to the commutativity of the information matrices 
from the different strata [55], all block designs (with equal block sizes) are 
generally balanced by this weaker definition. Pearce [52] objected that such 
a definition is useless. 
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General balance has been further explored by the Polish school [16, 17, 
23, 24, 39], as well as [4, 34, 51]. Galinski [23] argued that general balance 
(given the treatment decomposition) is important in interpreting the re
sults of an experiment rather than in designing it. If the plot structure is 
more complicated than a single system of blocks, there are designs which 
are not generally balanced even according to the weaker definition. Hout
man and Speed [34] gave an example for a row-column design, Bailey [6] 
for nested blocks. Indeed, known generally balanced designs for these more 
complicated plot structures all seem to be partially balanced in the sense 
of [18]: this includes cyclic designs [35] and designs generated by permuta
tion groups [12] as special cases. An exposition of partially balanced designs 
with many strata is in [8, Chapter 7]. 

Bailey [3] and Houtman and Speed [34] suggested that these ideas could 
be extended to plot structures that are association schemes [19] other than 
orthogonal block structures. For example, the experimental units may con
sist of 6 positions around the circumference of several petri dishes, or of all 
unordered pairs from among 10 people. Further details are in [7]. 

Thus Neider's general balance enables statisticians to compare proposed 
designs in terms of their efficiencies for various treatment contrasts. Since 
these are usually chosen to be the contrasts of interest, general balance also 
helps the statistician to interpret the results of the experiment. However, 
he gave no guidance on the combinatorial process of finding a good design. 
Theoretical results are available in [54], which can give an optimal block 
design in some circumstances. In other circumstances, the statistician needs 
to consult tables such as [26], or to use a program such as [60] or the 
advanced design features of Genstat [50, Section 4.8], or to collaborate with 
combinatorialists. A current project at Queen Mary, funded by EPSRC, is 
to make good designs available on the web: see [10, 25]. 

9. Quantitative treatments 

Although most of Neider's work on designed experiments concerns quali
tative treatment factors, he did propose the family of inverse polynomials 
in [45] as suitable models when the explanatory variables are quantitative. 
The response Y satisfies an inverse polynomial in x 1 , ... , Xn if there is a 
polynomial P ( x 1 , ... , Xn) such that 

X1 · · ·Xn 
Y = P(xl, ... , Xn)· (10) 

Unlike ordinary polynomial models, these are not invariant to the addition 
of a constant to any of the Xi, so the zero points of the Xi have to be known 
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in advance or estimated along with the other parameters. Whether or not 
these are estimated, model (10) does not give a linear model for Y. Nelder 
did not address the question of choosing levels of the Xi for an experiment 
designed to fit (10). However, this clearly belongs to the part of the protocol 
for specifying and choosing treatments. There has been much work on this 
problem in the last three decades: see Atkinson and Donev [1]. 

10. Algorithms for analysis 

Neider's vision for Genstat included a single algorithm for the analysis of 
designed experiments. There is really no need to treat each combination of 
plot structure and treatment structure as a special case. 

The anova directive in Genstat is built on previous work by Yates [28] 
and by Wilkinson [61]. The central simple idea is that the data space is 
first decomposed according to the plot structure, then further decomposed 
according to the treatment structure. Brien and Bailey [22] show how to 
extend this to three structured sets. 

Although this algorithm has wide applicability, it does, of course, de
pend on (i) stratifiable plot structure, in particular, blocks of equal size; 
(ii) orthogonal treatment structure; (iii) general balance. Patterson and 
Thompson [49] introduced REML to analyse data where these conditions 
are not met. When they are met, the anova algorithm followed by combina
tion of information should give the same results as REML, except possibly if 
there are any negative estimates of components of variance. Thus one might 
argue that analysis of variance and conditions (i)-(iii) should be ignored. I 
do not take this view. Stratifiability is needed for a randomization justifi
cation of the analysis; orthogonal treatment structure and general balance 
are both needed to help the statistician to design the experiment and to 
interpret the results. The dummy analysis of variance that can be done in 
Genstat [50, p. 250] in advance of putting in any data is a wonderful tool to 
help designers of experiments: it produces the numbers Aij and all relevant 
degrees of freedom. I usually run such a dummy analysis before advising 
the experimenter to go ahead. So, although I do not insist that (i)-(iii) 
are absolutely essential, I do think that you should have a good reason to 
design an experiment that does not satisfy them. 
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Neider and Wedderburn (1972) introduced generalized linear models (GLMs) 
for the analysis of non-Gaussian data such as proportions, counts, etc. In GLMs 
the likelihood plays a key role for their definition and likelihood methods are 
thus natural tools for routine analysis. The likelihood framework has advan
tages such as generality of application, plug-in method, algorithmic experience, 
consistency, asymptotic efficiency, etc. In GLMs a computationally efficient 
iterative weighted least squares ( IWLS ) procedure suffices for estimation. 
Wedderburn (1974) was the first to apply the IWLS procedure of GLMs to 
models that do not allow an exact GLM likelihood. In this paper I explain 
how Professor Neider and I have been further extending the likelihood-based 
model classes to allow both fixed and random effects not only in the mean and 
but also in the dispersion. This class will, among other things, enable models 
of types widely used in the analysis of data from quality improvement exper
iments, longitudinal studies, financial models, temporal and spatial models, 
etc., to be explored, and should give rise to new extended classes of models 
within a likelihood framework. A single algorithm suffices to fit all members of 
the class. The Fisher likelihood needs to be extended to maintain a likelihood 
framework for such extended classes. 

1. Introduction 

GLMs were introduced by Neider and Wedderburn (1972) for the analysis 
of non-Gaussian data. GLMs assume the likelihood to come from a one
parameter exponential family, for which the IWLS procedure suffices to 
obtain the maximum likelihood (ML) estimators and their standard errors. 
The IWLS procedure yields statistically and computationally efficient in
ferences. For inferences about the mean parameters, Wedderburn (1974) 
showed that the IWLS procedure can still be used for models that do not 
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have a GLM likelihood. This quasi-likelihood method for inferences about 
the mean parameters is widely accepted. However, it does not allow infer
ences about the dispersion parameters. 

When I first collaborated with Professor Neider in 1989 he was work
ing on extending likelihood-based models to dispersion analysis. This Jed 
to joint GLM s (JGLMs) for mean and dispersion (Neider and Lee, 1991). 
We had been further extending the model classes to allow random effects 
in the linear predictor for the mean. This Jed to HGLMs (Lee and Neider, 
1996). HGLMs have become increasingly popular since the initial synthe
sis of GLMs, random-effect models, and structured-dispersion models was 
found to be extendable to include models for temporal and spatial correla
tions (Lee and Neider, 200la, 2001b). Heteroscedasticity of means between 
clusters (so-called between-cluster variation) can be modelled by introduc
ing random effects in the mean. To form these models we need to extend 
the Fisher likelihood. The standard likelihood consists of two classes of ob
jects, observable random variables y and unknown fixed parameters. How
ever, HGLMs have an additional object, the unobservable random effects 
(or parameters), so that for three classes of objects we need an extended 
likelihood, so-called hierarchical likelihood (or h-likelihood). Unlike fixed 
parameters, for which transformation of scale does not matter in likelihood 
inferences, the scale of random parameters does matter, due to a Jacobian, 
so that the new likelihood needs careful definition (Lee and Neider, 1996). 

In current HGLMs both fixed and random effects are allowed for the 
mean but only fixed effects for the dispersion. We introduced double 
HGLMs ( DHGLMs, Lee and Neider, 2003b) which allow both fixed and 
random effects not only for the mean but also for the dispersion. This 
means that heteroscedasticity of dispersion between clusters can be simi
larly modelled by introducing random effects in the dispersion. It also leads 
to a systematic way of generating heavy-tailed distributions for various 
types of data such as counts, proportions, etc. We use the word "volatility" 
to mean heterogeneity arising from the presence of random effects in the 
dispersion. We have found that rapid changes among repeated measures 
can be explained by introducing random effects in the dispersion. 

Ever since Fisher introduced the concept of likelihood in 1921, it has 
played an important part in the development of both the theory and the 
practice of statistics. The likelihood framework has advantages such as gen
erality of application, plug-in method, algorithmic wiseness (Efron, 2003), 
consistency, efficiency, etc., which can be summarized as statistical and 
computational efficiency. The h-likelihood is a proper extension of Fisher 
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likelihood and produces similar statistically and computationally efficient 
procedures. The h-likelihood plays a key role in the synthesis of the inferen
tial tools needed for the extended classes of models; it gives a new definition 
of conjugate families, leading to data augmentation, and leads to the de
composition of an extended model into component GLMs (Lee and Neider, 
1996, 2001a,b). Thus, these extended models can be fitted as an intercon
nected set of component GLMs. A single algorithm can be used throughout 
all these extended classes of models and requires neither prior distributions 
of parameters nor multi-dimensional quadratures. This formulation means 
that a. great variety of models can be fitted by a single algorithm and com
pared using extensions of standard GLM procedures. Thus we can change 
the link function, allow various types of term in the linear predictor and 
use model-selection methods for adding or deleting terms. Furthermore var
ious model assumptions can be checked by applying GLM model-checking 
procedures to the component GLMs. 

2. GLMs 

A GLM is defined as having the following two components. 
(i) The responses y follow a one-parameter exponential family, satisfying 

E (y) = f.1. and var (y) = rjJV (f-J.). 

The one-parameter exponential family has an exact (log- )likelihood whose 
kernel is 

(1) 

where () = ()(f-J.) is the GLM canonical parameter. 
(ii) The linear predictor for the mean for f.1. takes the form 

TJ = g(f-J.) = X/3. 

Here, 1> is the dispersion parameter, V() is the GLM variance function and 
g() is the GLM link function. 

In addition to the normal distribution the GLM family includes bino
mial, Poisson, gamma and inverse-Gaussian distributions. In GLMs the 
constant-variance assumption of Gaussian linear models is weakened by 
allowing a non-constant variance function. Additivity can be achieved by 
choosing an appropriate link function. Within GLMs the variance function 
suffices to characterize a family of distributions for the response variables. 
The GLM above is mainly for modelling the mean f-J., and the dispersion 1> 
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occurs as the reciprocal of the prior weight. In summary, a GLM is speci
fied by a response variable y, a variance function V(), a link function g(), 
a linear predictor X (3 and a prior weight as shown in Table 1. 

The GLM likelihood (1) leads to the IWLS procedure, in which the ML 
estimators for (3 are obtained by solving 

xt~-1x~ = xt~-1z, 

where z = TJ + (y- p,)(OTJ/Op,) is the GLM-adjusted dependent variable 
and E = rjJW- 1 with W = (op,/OTJ) 2 V(p,); their variance estimators are 
obtained from 

var(~) = (Xt~- 1X)- 1 = rjJ(XtWX)- 1. 

This IWLS procedure for GLMs is within the likelihood framework and so 
is statistically and computationally efficient. 

Table l. Attributes for 
GLMs. 

Components (3 (fixed) 

Response y 

Mean J.t 

Variance ¢V(J.t) 

Link , = g (J.t) 

Linear Pred. X/3 
Dev. Camp. d 

Prior Weight 1/¢ 

d; = 2 Jti (y- s) /V (s) ds 

In GLMs the dispersion parameter 1> is assumed to be constant or known 
a priori. For example, the binomial and Poisson distributions assume 1> = 1. 

However, in practice, extra-binomial or extra-Poisson variation (t/l > 1) is 
often necessary, for which an exact GLM likelihood (1) may no longer be 
available. Also, for general variance functions V (p,), an exact GLM like
lihood is usually unavailable. For inferences about the mean parameters 
(3 in such models, Wedderburn (1974) showed that the IWLS procedure, 
characterized by the variance function, can be still used. 

Since 1989 I have collaborated with Professor Neider in extending the 
likelihood-based models beyond GLMs. For this purpose, the Fisher like
lihood needs to be extended. The extended likelihood should give rise to 
inferential procedures that keep within the likelihood framework, if possi
ble. The minimum requirement we imposed for such extensions was to keep 
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the IWLS procedure, maintaining computational efficiency. For extended 
classes of likelihood-based models the GLM will provide building blocks. 

3. JGLMs 

The Taguchi analysis of data from quality-improvement experiments often 
aims to find control factors that reduce the dispersion c/J, while keeping 
the mean J.L on target. This leads immediately to the joint modelling of 
mean and dispersion parameters. To allow structured dispersion, Nelder 
and Lee (1991) introduced joint GLMs (JGLMs) as having the following 
three components: 
(i) the responses y has a GLM family characterized by 

E (y) = J.L and var (y) = c/JV (J.L). 

(ii) the model for the mean J.L has the linear predictor 

TJ = g (J.L) = X {3. 

(iii) the model for the dispersion c/J has the linear predictor 

€ = h(c/J) = c,, 
where h() is the GLM link function for the dispersion. 

In a GLM the variance, var (y) = c/JV (J.L), splits into two components; 
the variance function V (J.L), which describes the functional dependence be
tween the mean and variance, and the dispersion parameter c/J (Lee and 
Nelder, 2003). By modelling c/J instead of the whole variance, we achieve 
Box's (1988) separation criterion, namely the elimination of unnecessary 
complications in the model due to functional dependence between the mean 
and variance (sometimes called the elimination of cross talk between loca
tion and dispersion effects). Parameters J.L and c/J satisfy the orthogonality 
condition of Cox and Reid (1987), and this is crucial for extending restricted 
maximum likelihood (REML) estimation to non-normal errors. 

3.1. EQL and quasi-models 

JGLMs need to be extended to arbitrary variance functions, in which there 
is no longer an exact GLM likelihood. There are two possibilities, either to 
use the extended quasi-likelihood (EQL) of Nelder and Pregibon (1987), 

q =- L[di/cPi + log{27Tc/JY(yi)}]/2, 
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where di = 2 f%;; (Yi- s) /V (s) ds is the GLM deviance component, or the 
pseudo-likelihood (PL), 

- L[(y;- p,;) 2 /{¢;V(p,i)} + log{27r¢;V(p,i)}J/2, 

based on a normal likelihood. For normal errors, they are the same, but 
in general they are different and there is considerable disagreement about 
their relative advantages. The EQL yields the quasi-likelihood estimator for 
{3, while the PL does not, so that if the PL is to be used it should be only 
for inferences about dispersions. 

Maximum PL (MPL) estimators for dispersions satisfy sample-size 
asymptotics and are asymptotically consistent as the sample size increases 
(Davidian and Carroll, 1988), while maximum EQL (MEQL) estimators 
satisfy parameter asymptotics and therefore are consistent in the limit for 
a given sample size as parameter values tend to certain limits. Many theo
retical statisticians appear to think that an estimator ought to be asymp
totically consistent in order to be statistically useful. However, in finite 
samples the mean square error (MSE) criterion seems to us a more relevant 
measure of the efficiency of estimators. Nelder and Lee (1992) showed that 
the sample-size inconsistency of the MEQL estimator would often be offset 
by the small MSE in finite samples: see also Piegorsh (1990). We have used 
the EQL because it has better finite-sampling properties; this is important 
in the analysis of data from quality-improvement experiments, where the 
data are often obtained from highly fractional factorial designs. 

The EQL is the saddle-point approximation to the GLM family of dis
tributions with a given variance function if one exists. The approximation 
is exact for normal and inverse Gaussian distributions, and differs for the 
gamma distribution and the discrete GLM distributions by the replacement 
respectively of the gamma function and factorials by their Stirling approx
imations. The EQL gives identical inferences to those from Efron's (1986) 
double exponential family (Lee and Nelder, 2000a). 

Some may prefer to use the EQL for its finite sampling property, whereas 
others may prefer the PL for consistency. This means that the EQL loses 
consistency while the PL loses statistical efficiency in the likelihood frame
work; an exact GLM likelihood can maintain both if it exists. Thus, even 
though we can maintain computational efficiency by keeping the IWLS pro
cedure we may no longer maintain statistical efficiency. This difficulty in 
dispersion inference is caused by the fact that neither the EQL nor the PL 
is an exact likelihood since they do not correspond to the probability of 
an observed response y. This does not cause a problem in mean inferences 



Likelihood-based Models Beyond GLMs 201 

(Wedderburn, 1974), showing that mean and dispersion inferences are quite 
different. In dispersion inferences the EQL has smaller MSE than the ML 
estimator in finite samples for wide ranges of parameters, which may not 
happen in mean inferences (Lee and Neider, 1992, Piegorsh, 1990). 

3.2. Fitting algorithm for JGLMs 

Let l be a likelihood with nuisance effects <5. Consider a function Pt5(l), 
defined by 

Pt5(l) = (l- [!ogdet{D(l,b)/211'}]/2)1 8=J (2) 

where D(l,b) = -82 lj8<52 and J solves 8lj8<5 = 0. Pt5(l) is an adjusted 
profile likelihood eliminating nuisance parameters <5. Here the use of P!J(q) 
is equivalent to the first-order approximation to the restricted (or residual) 
likelihood obtained by conditioning on ~ under parameter orthogonality 
(Cox and Reid, 1987). 

Lee and Neider (1998) showed that the JGLM can be fitted conveniently 
via two interconnected GLMs as follows: 
(i) The mean GLM: given ¢, inferences about f3 (based upon q) can be 
made by the IWLS algorithm for the GLM, characterized by a response y, 

variance function V (), a link g(), a linear predictor X f3, and a prior weight 
1/¢. 
(ii) The dispersion GLM: given~~ inferences about 1 (based upon P!J(q)) can 
be made by the IWLS algorithm for the GLM, characterized by a response 
dt = d;/(1 - q;), a gamma error, a link h(), a linear predictor G, and a 
prior weight (1 - q;)/2, where q; is the GLM leverage. 
Instead of d;, use of the Pearson deviance 

in the above algorithm gives an extension of the MPL procedure of Davidian 
and Carroll (1988). 

Suppose that the responses y have a normal distribution, i.e. V (p,) = 1. 
If /3 were known each dT = (y;- x;/3) 2 would have a prior weight 1/2. This 
is because 

E(d;) = ¢; and var(d;) = 2¢; 

and 2 is the dispersion for the ¢;XI distribution, a special case of the gamma 
distribution. With f3 unknown, the responses dT have 1 - q; degrees of free
dom instead of 1, because they have to be estimated. For normal models 
our method provides the ML estimators for f3 and the REML estimators 
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for ¢. For the dispersion link function h() we usually take the logarithm. 
The standardized deviance components d* become the responses for the 
dispersion GLM. Then the reciprocals of the fitted values from the disper
sion GLM provide prior weights of the next iteration for the mean GLM; 
these connections are marked in Table 2. The resulting see-saw algorithm 
is very fast. 

4. HGLMs 

Table 2. GLM attributes for JGLMs. 

Components 
Response 
Mean 
Variance 
Link 
Linear Pred. 
Dev. Comp. 
Prior Weight 

{3 (fixed) 'Y (fixed) 

y !Dd* J.l. ¢ 
rjJV(J.L) 2¢2 

"'= 9~J.I.) e = h(¢) 
X{J + Zv G'Y + Fb 
d gamma(d*, ¢) 
1/¢ (1 - q)/2 

di =2J5, (y-s)IV(s) ds, 
d* = dl(1- q), 
d:n = dml(1- qm), 
d'd = ddl(1- qd), 
gamma( d*, ¢) = 2 {- log( d* I¢) + ( d* - ¢)I¢} and 
q is the GLM leverage (Lee and Neider, 1998). 

GLMs are extended to generalized linear mixed models (GLMMs) to allow 
Gaussian random effects in the linear predictor TJ for GLMs (Pierce and 
Sands, 1975). Model classes of GLMMs can be further extended to HGLMs 
by allowing non-Gaussian random effects and structured dispersion. Lee 
and Neider (1996, 2001a) introduced HGLMs as having the following three 
components: 

(i) Conditional on random effects u, the responses y follow a GLM family 
of distributions, characterized by 

E (y\u) = J.l and var (y\u) = ¢V (J.t). 

(ii) A random-effects model for the mean J.l : given random effects u, 
the linear predictor for the mean model for J.l takes the GLM form 

TJ = g (J.t) =X {3 + Zv, (3) 
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where v = 9m (u), for some monotone function gm(), are the random effects 
and {3 are the fixed effects; parameters >. for the random effects u have the 
GLM form 

(4) 

where hm() is the GLM link and "Ym are fixed effects. 
(iii) A GLM for the dispersion¢ : the linear predictor for the dispersion 

model for ¢ takes the GLM form 

(5) 

4.1. H-likelihood 

The Fisher likelihood is composed of two classes of objects, observable ran
dom variables y and unobservable fixed parameters. HGLMs have an ad
ditional class of objects, namely unobservable random parameters u. How
ever, many people have considered the marginal likelihood, obtained by 
integrating out the random effects, as the proper likelihood of such classes 
of models. Lee and Neider (1996) found that the Fisher likelihood needs 
to be extended beyond its use in (fixed) parametric inference to inference 
from models of a more general nature that may include fixed parameters, 
random parameters, and unobserved variables. Under their framework the 
marginal likelihood is the adjusted profile likelihood for the fixed effects 
after eliminating the nuisance random parameters by integration. As a ba
sis for the likelihood for HGLMs, we may consider the joint density of the 
responses y and the random effects u, written by 

L(u, yj{3, ¢, >.) = ff3.¢(Yiv(u))JA(u). (6) 

In (1) ff3,.p(yjv(u)) is a density with a distribution from a one-parameter 
exponential family for GLMs; the second term JA(u) is the density function 
of the random effects u with parameter >.. Even though ff3,.p(yjv(u)) = 
ff3,.p(yju), mathematically we write the conditional density as !{3,¢(Yiv(u)), 
to mean that the function v( u) defines the scale on which the random 
effects combine additively with the fixed effects {3 in the linear predictor. For 
inference from HGLMs, Lee and Neider (1996) proposed to use a subclass 
of joint likelihoods of the form (6) 

L(v, yj{3, ¢, >.) = /{3,¢(Yiv)f>..(v), 

defined by a particular scale v = v(u). Let 

h = logff3.<t>(Yiv)fA(v) 
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be the (log-)h-likelihood. 
There have been several alleged counter examples purporting to show 

that h-likelihood provides qualitatively different (i.e. non-invariant) infer
ences for trivial re-expressions of the underlying model; however, all of them 
use a wrong scale in defining the h-likelihood. Thus, in the extended like
lihood the scales of the random parameters are important in its definition, 
while the scales of fixed parameters are not. Another criticism has been 
about the statistical efficiency of the h-likelihood method; however, it gives 
statistically efficient estimates if properly implemented (Noh and Lee, in 
press). 

To summarize, we maintain that the h-likelihood is a natural extension 
of Fisher likelihood to models with random parameters because it main
tains the likelihood framework in respect of having both computational 
and statistical efficiency. 

4.2. Fitting algorithm for HGLMs 

This form of the h-likelihood gives a nice representation for conjugate 
HGLMs, in which the random effects u follow the conjugate distribu
tion of the GLM distribution (1) for the yju component. Lee and Neider 
(200la) showed that the kernel of logh.(v) in h for the conjugate model 
with v = e ( u) takes the GLM form 

L { ?j;v - b( v)} / >., 

so that ?j; (known constants for each conjugate distribution) can be treated 
as quasi-data and u (and hence v = e (u)) as quasi-fixed parameters, satis
fying the purely formal relationships 

E(?j;) = u and var (?/!) = t\V (u). 

Lee and Neider (2001a) showed further that various combinations of 
GLM distributions and links for yjv and any conjugate GLM distribution 
and link for v can be used to construct HGLMs. For example GLMMs, 
assuming normally distributed random effects, are HGLMs with V( u) = 1. 

With the use of h-likelihood, the random-effect model (5) can be viewed as 
an augmented GLM with the response variables (yt, wl:.n)t, assuming 

f.L = E(y), u = E(?j;), var(y) = rjJV(f.L), var(?/!m) = t\Vm(u) 

and the augmented linear predictor 

T/ma = (TJt, TJI:.n)t = Tw, 
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where TJ = g(!-L) = X/3 + Zv, TJm = 9m(u) = v, w = ((Jt,vt)t are fixed 
unknown parameters and quasi-parameters, and the augmented model ma-

trix is T = ( ~ ~). Thus, for estimating w = (/3, v) the maximization of 

h leads to IWLS equations from the augmented GLMs (Lee and Neider, 
2001a). 

For estimation of (/3, ¢,.A) Lee and Neider (1996, 2001a) proposed to 
use an extended restricted likelihood Pv,{3(h) (2), which gives the following 
fitting algorithm: given ~, 
(i) we estimate 'Y by solving the IWLS equations for a GLM, characterized 
by a response d; = di/(1- qi), a gamma error, a link h(), a linear predictor 
G, a prior weight (1- qi)/2 and qi is a generalization of the GLM leverage. 
(ii) we estimate 'Ym by solving the IWLS equations for a GLM, characterized 
by a response d;,_,i = dmi/(1- qmi), a gamma error, a link hm(), a linear 
predictor Gm, and a prior weight (1- qmi)/2, where qmi is a generalization 
of the GLM leverage. 

The fitting algorithm is summarized in Table 3. 

Table 3. GLM attributes for HGLMs. 

Components {3 (fixed) 
Response y 

I 

Mean f.l-

I 

Variance ¢V(f.l-) 
Link T/ = g (f.l-) 
Linear Pred. X{J + Zv 
Dev. Comp. d 
Prior Weight 1/¢ • 
Components u (random) >.(fixed) 
Response 

WmJ 
d* m 

Mean u >. 
Variance >.Vm(u) 2>.2 
Link '1m~~ em~hm(A) 
Linear Pred. v Gm"Ym 
Deviance dm gamma(d;,, >.) 
Prior Weight 1/ >. (1 - Qm)/2 

di = 2 I,! (y- s) jV (s) ds, 
1-'t 

dmi = 2 Ji, (1/J- s) /Vm (s) ds, 
d* = d/(1 - q), 
d;,_, = dm/(1- qm), 

• 
"Y (fixed) 
d* 
¢ 
2¢2 
~ = h(¢) 
G"Y 
gamma(d*, ¢) 
(1 - q)/2 

gamma(d*, ¢)= 2{ -log(d* /¢) + (d*- ¢)/¢}and 
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(q, qm) extends the idea of GLM leverage to HGLMs (Lee and 
Nelder, 2001a). 

5. DHGLMs 

The model class of HGLMs was further extended by Lee and Nelder (2003b) 
to the DHGLM model class, having the following three components: 
(i) Conditional on random effects (u, a), the responses y assume a GLM 
family of distributions, satisfying 

E (ylu, a) = 11- and var (ylu, a) = ¢>V (p.). 

(ii) Given random effects u, the linear predictor for the mean model for p. 
takes the GLM form 

TJ = g (p.) =X /3 + Zv. 

Parameters ,\ for the random effects u have the GLM form with 

(iii) Given random effects a, the linear predictor for the dispersion model 
for ¢> takes the GLM form 

where b = 9d (a), for some monotone function gd(), are the random effects 
and 'Y are the fixed effects. Parameters a for the random effects a have the 
GLM form with 

~d = hd (a)= Gd/d, 

where hd() is the GLM link and /d are fixed effects. 
For the likelihood Lee and Nelder (in press b) use 

L(v, b, Yl/3, ¢>,>.,a)= f!3.¢(Yiv, b)JA(v)fa(b). 

Random effects in the mean describe heterogeneity, such as extra
binomial or extra-Poisson variation or correlation between repeated mea
sures for the same subject. Random effects in the dispersion describe volatil
ity among repeated measures. The use of DHGLMs allows heterogeneity 
and volatility to be distinguished. There are two kinds of heterogeneity, 
one to be explained by extra-variation and the other by sudden changes 
among repeated measures, which could be described by heavy-tailed dis
tributions. We may call the former heterogeneity and the latter volatility. 
Lee and Nelder (in press b) showed that DHGLM can be again fitted by 
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interlinked GLMs as summarized in Table 4. Note that DHGLMs could be 
further extended by allowing random effects for the dispersion components 
a and A. 

Table 4. GLM attributes for DHGLMs. 

Components fJ (fixed) 
Response y 

I 

Mean 11 

I 

Variance tfJV(p.) 
Link q=g(p.) 
Linear Pred. X{J + Zv 
Dev. Camp. d 
Prior Weight 1/¢ . 
Components u (random) ,\(fixed) 
Response 

·-~~ Mean u ,\ 
Variance AVm(u) 2,\2 

Link Om~ (m=hm(A) 
Linear Pred. V Gm")'m 
Deviance dm gamma(d;;,,A) 
Prior Weight 1/A (1- qm)/2 

di = 2J;; (y- s) /V(s) ds, 

dmi = 2 Ji; ('l/J- s) /Vm (s) ds, 

ddi = 2 J:,d ('l/Jd- s) /Vd (s) ds, 
d* = d/(1- qo), 
d;,. = dm/(1- qm), 
dd = dd/(1- qd), 

1' (fixed) 

• d' 

"' 2q,2 
{=h(tfJ) 
G1'+ Fb 
gamma(d',t/1) 
(1 q)/2 
a (random) a (fixed) 

1/!d r= dd 

·~· aVd(a) 2o2 

1ld=9d(a) {d=hd(a) 
b Gd"Yd 
dd gamma(d:i, o) 
1/o (1 - qd)/2 

gamma(d*, ¢)= 2{-log(d* /¢) + (d* - ¢)/¢} and 
(q, Qm, Qd) extends the idea of leverage to HGLMs (Lee and Nelder, 

2001a). 

6. Random effects for temporal and spatial correlations 

When the data consist of a series of repeated measurements made on each of 
a set of subjects, it is usual to find that the observations on any one subject, 
or, with spatial data, those in neighbouring areas, are correlated, and these 
temporal and spatial correlations must be reflected in the model used for the 
analysis. For this purpose Lee and Nelder (2001b) allowed random effects 
to satisfy v = L (p) r, where the elements r are independent, with joint 
distribution given by 

r =L(p)- 1 v""MVN(O,A) 
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with A =diag(>.i); MVN stands for the multivariate normal distribution. 
Here, p denotes parameters for temporal and spatial correlations. Previously 
developed random effects in the statistical literature can be classified into 
three categories. 

6.1. Random effects described by fixed L matrices 

An obvious example is the random walk, 

Tt = Vt- Vt-1· 

Various temporal models such, as the state-space models of Harvey (1989) 
and Du:bin and Koopman (2000), and various spatial models of Besag and 
Higdon(1999), fall into this category. 

6.2. Random effects described by a covariance matrices 

The multivariate normal models of Laird and Ware (1982) and Diggle et al. 
(1994) are examples. Autoregressive models, their extended form by Diggle 
et al. (1994, 1998), compound symmetric, and Toeplitz models belong in 
this category. 

6.3. Random effects described by a precision matrices 

The antedependent structures for temporal correlation of Gabriel (1962) 
and Markov-random-field models for spatial correlation (Cressie, 1993) be
long to this category. 

6.4. Financial models for dispersion 

These temporal and spatial models can also be applied to the dispersion. 
In financial models the responses are often mean-corrected to allow zero 
means to be assumed: see for example, Kim et al. (1998). Suppose that we 
have a process 

where et = CJtZt and Zt "' N(O, 1) are independent. The simplest autore
gressive conditional heteroscedasticity of order 1 model (ARCH(1), Engel, 
1995) takes the form 
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where cPt = a~. The natural analogue of exponential ARCH takes the log

link 

~t = h(¢t) = log cPt = ")'o + /'Y~-1· 
This is a JGLM under our framework. The most popular stochastic volatil
ity (SV) model, originating from Harvey, Ruiz and Shephard (1994), is 

~t = h(¢t) = log¢t = ")'o + bt> (7) 

where bt = pbt-l + rt rv AR(1); this is a DHGLM in our framework. If we 
take positive-valued responses y2 these SV models become HGLMs with 
shape parameter 1/2, satisfying 

E(y2 [b) = ¢ and var(y2 [b) = 2¢2 , 

which is equivalent to assuming that y 2 [b rv ¢XI. Here, ¢ plays the part of 
a mean parameter rather than a dispersion parameter. 

6.5. Fitting correlated random effects 

Suppose that we have serially correlated AR(1) random effects 

'r/t = 9 (J-Lt) = xtf3 + Vt, (8) 

where Vt rv AR(1), i.e. Vt- PVt-1 = Tt rv N (0, >.). Lee and Nelder (2001b) 
showed that such models can be fitted by using a HGLM with 

ry=g(p,)=X/3+Z*r, (9) 

where z• = ZL (p), and in which z• is updated iteratively. This fitting 
method applies to correlated random effects for the dispersion as well. 

7. Quasi extended GLM classes of models 

The h-likelihood, a particular form of the joint likelihood, provides a nat
ural extension of the Fisher likelihood to models with random effects. It 
provides a simple unified framework for fitting random-effect models and 
allows a computationally and statistically efficient IWLS procedure (Lee 
and Nelder, 2001a, 2003b). Models can be further extended by assuming 
the quasi-GLM for each component, characterized by a variance function. 
We can use EQLs as likelihoods for component GLMs. For these extended 
quasi-models we can maintain computational efficiency by having the IWLS 
procedure, but lose statistical efficiency because the EQLs are no longer 
exact likelihoods, since they do not correspond to the probabilities of ob
servables y and unobservables v. For a detailed description of the algorithm 
see Lee and Nelder (2001a, in press b). 
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8. Frailty models via HGLMs 

Frailty models have been widely used for the analysis of correlated survival 
data in the form of recurrent or multiple-event times. Given the unobserved 
frailties vi, the hazard function for the j-th recurrent event time of the i-th 
patient has the form 

Aij ( t I v;) = Ao ( t) exp ( 1];1 ) , 

where Ao ( ·) stands for the non-parametric baseline hazard function, 

% = x~f3 + v; 

is the linear predictor for hazards, f3 the regression parameters, and X;j 

(not including a constant) the covariates. This model is an extension of 
Cox's (1972) proportional hazards model to allow random effects. Ma et 
al. (2003) showed that the frailty model above can be fitted by using the 
following Poisson HGLM. Let Y(k) be the k-th smallest distinct event time 
among the observed event times or censored times t;jand Jet YiJ,k be 1 if 
the event time t;J occurs at Y(k) and 0 otherwise. Given frailties v;, assume 
YiJ,k to be conditionally independent with 

Yij,klv; "' Poisson(!-lij,k) for (i,J) E R(Y(k)), 

where 

Jogfl;j,k = ak + x~f3 + v; = x~,kr + v;, 

R(Y(k)) = {(i,j) : t;j 2': Y(k)} is the risk set at time Y(k)• X;j,k = (ef, x~)T, 
ek is a vector of components 0 and 1 such that ef a = ak, and r = 
(aT, f3T)T. 

Ha et al. (2001) have extended the h-likelihood to frailty models and 
showed that the resulting h-likelihood procedure gives a statistically and 
numerically efficient fitting algorithm. Ha and Lee (in press) showed that 
it is the h-likelihoods that coincide for both frailty models and the Poisson 
HGLM above. Thus, the likelihood inferences from them are identical, so 
that h-likelihood inferences for Poisson HGLMs can be used for the anal
ysis of frailty models. We do not assume that YiJ,k lv; follows the Poisson 
distribution; this is not possible because the Poisson distribution assigns 
probabilities to values greater than one. An alternative to frailty models 
for the analysis of survival data is mixed linear models allowing censoring, 
for which marginal likelihood inference is computationally very hard. Ha et 
al. (2002) showed that the h-likelihood again provides a computationally 
and statistically efficient procedure. 



Likelihood-based Models Beyond GLMs 211 

9. Application of DHGLMs 

The use of extended likelihood-based models provides new solutions to var
ious problems. These include: 
(1) joint modelling of mean and dispersion (Lee and Neider, 2001a); 
(2) the analysis of temporally and spatially correlated data (Lee and Neider, 
2001b); 
(3) the provision of model checking to see if the postulated pattern of 
random effects is supported by the data (Lee and Neider, 2001a); 
( 4) meta analysis (Lee and Neider, 2002); 
(5) analysis of survival data (Ha, Lee and Song, 2001; Ha, Lee and Song, 
2002); 
(6) implicit implementation of an EM-type algorithm to yield good estima
tors for censored linear mixed models (Ha and Lee, in press); 
(7) the prediction of future observations (Pawitan, 2001, Chapter 16); 
(8) a simple alternative to kernel smoothing (Pawitan, 2001); 
(9) the use of information from concordant pairs without making parameter 
assumptions regarding the random-effect distribution (Lee, 2001); 
(10) new robust sandwich variance estimates for fixed effect estimators, 
which cannot be obtained from marginal likelihood (Lee, 2002); 
(ll) a likelihood-based alternative to the ad-hoc approach of generalized 
estimating equations (Zeger et a!., 1988); 
(12) analysis with missing data (Lee, Noh and Ryu, 2003); 
(13) the provision of inferential tools for a much wider class of models, 
the so-called double HGLMs. Among other things, they extend stochastic 
volatility models in financial modelling, and provide natural extensions for 
heavy-tailed distributions for counts and proportions, etc. (Lee and Neider, 
2003b). 

10. Concluding remarks 

The h-likelihood is a natural extension of the Fisher likelihood, meets the 
need for general inferences from extended models, and provides a uni
fied framework of inference with an implementable algorithm. With the 
h-likelihood apparatus extensive classes of new models can be brought to
gether within a single framework. With extended likelihood-based models 
we can model heterogeneities in both the means and variances between 
clusters and analyze them using single algorithm. The decomposition of the 
complete model into several components provides insights into the develop
ment, extension, analysis and checking of the models. Statistical inferences 
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for a complicated phenomenon can then be made from an integrated model 
built upon GLMs. In the extended likelihood framework the marginal like
lihood appears as a profile likelihood similar to the restricted likelihood, 
which has been recommended to reduce the bias. 

It is perhaps unfortunate that Bayesians, from Lindley and Smith (1972) 
onwards, seem to have made a take-over bid for all hierarchical models, im
plying that one has to be Bayesian to deal with them. The availability of 
Markov-chain Monte Carlo, making all problems seem more easily solvable 
via Bayesian computations, has appeared to justify this. However, by using 
h-likelihood, we can deal with such models directly in a likelihood frame
work because there is an explicit analytic form for that kind of likelihood. 
Furthermore inferences for unobservables are possible without resorting to 
an empirical Bayesian framework. H-likelihood gives a powerful and prac
tical tool for statistical inference; being a natural extension of Fisher likeli
hood to models with unobservables, it will become, we believe, widely used 
for inference from hierarchical models. This is what Professor Neider has 
been establishing with me for the last 15 years. 
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A STATISTICAL EXAMINATION OF THE HASTINGS 
RARITIES 

J. A. Neider 

THIS PAPERa IS an attempt to establish the consistency or otherwise of 
the great flood of rarities from east Sussex and west Kent during the first 
two decades of this century, from the internal evidence presented by the 
statistical aspects of the records themselves. The consequences of various 
hypotheses which assume the validity of all the records will be tested against 
the numerical evidence. 

METHODS 

For the analysis, all records of rarities for the counties of Kent and Sussex 
for the years 1895-1954 inclusive have been extracted from Walpole-Bond 
(1938), Harrison (1953), the South-Eastern Bird Reports for 1936-47, the 
Kent Bird Reports for 1952-54 and the Sussex Bird Reports for 1948-54. 
Between them these publications cover the period and region required. 

The region has been split up into three parts: area X is contained inside 
a circle with centre Hastings Pier and radius 20 miles, except that the 
whole of Romney Marsh (apart from Hythe) is included; area YS is the 
rest of Sussex not in area X and area YK is the rest of Kent similarly. The 
inclusion of the whole of Romney Marsh in X is necessary because a number 
of records in the sources do not specify exact places in the Marsh, and the 
allocation of these records to the correct area would be problematical if the 
20-mile radius definition were strictly adhered to. 

The 60-year span has been divided into two eras, 1895-1924 inclusive, 
called A, and 1925-1954 inclusive, called B. The records dealt with here 
thus fall into one of six categories, XA, XB, YSA, YSB, YKA or YKB. 
These six combinations of areas and eras will be termed area-eras for short. 

aRepublished with permission from British Birds, 1962, 55, 283-298 
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For the purposes of this paper a rarity is defined as a species whose 
recorded occurrences have been completely enumerated in the books and 
reports mentioned, and whiCh has not occurred on the average more than 
once per year in any of the six area-eras. 

The reduction to tabular form of such a heterogeneous collection of data 
as these reports of occurrences of bird rarities over the 60 years is not easy. 
The records exhibit all gradations from virtual certainty about the identity 
of the bird to considerable vagueness, and some rules for their acceptance or 
rejection are essential. Within the limits necessarily imposed by the "strict
ness" or "leniency" of the sources, I have tended towards strictness and the 
reduction of acceptances to a minimum. No record has been accepted for 
the purpose of the following analysis unless all the following conditions are 
satisfied: 

(i) The name of the observer in the field or identifier (if bird dead), must 
be given in the source. 

(ii) The date must be given to within a year. 
(iii) No doubt must be expressed by the author (or editor) about validity of 

the record; if a record occurs in more than one source no doubt must 
be expressed by any of the authors (or editors). All square-bracketed 
records have thus been rejected. (In a few cases it was not quite obvious 
whether the author was expressing doubt or not, but, in accordance 
with the general principle, such records were rejected.) 

(iv) The bird must have been seen; records based on birds heard but not 
seen have been rejected. 

(v) The bird must have been seen or taken from the land; no records of 
birds observed from ships (including lightships) have been admitted. 

Since occurrences of rarities other than singly are important in these 
data, some formal definition of an occurrence is required. In this paper, 
two birds are said to have occurred together (and so to constitute one 
occurrence) if they were seen or taken within five mile and within seven 
days of each other. A set of more than two records of individual birds forms 

a single occurrence, if, when arranged in chronological order, every adjacent 
pair satisfies the condition for a single occurrence. A set of records also 
forms a single occurrence if the birds were specifically recorded as having 
come from a flock, even though successive records were not all within seven 
days of each other. Occurrences relating to one bird, two birds and more 
than two birds will be called singular, dual and plural respectively, while 

multiple will be used to cover dual and plural combined. Sometimes reports 
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are vague about numbers and in such cases the minimising rule is brought 
into play: thus "several" is taken to mean "three" (i.e., the smallest integer 
greater than two), "a small flock" is taken as "four", and if the author or 
editor expresses a belief that several records refer to the same individual, 
this is taken to be so and only a single occurrence is allowed. 

TABLE 1 -HYPOTHETICAL EXAMPLES OF TWO-WAY TABLES 

(SEE TEXT BELOW) 

Class II 

Class I 

(a) (b) (c) 

Exact 
Proportionality 

Winter Summer 
100 300 

50 150 

xi= o 

With random errors 
added (not significantly 

different from 
proportionality) 

Winter Summer 
98 310 

54 145 

xi= 0.21 
(0.7 > p > 0.5) 

Significant 
departure from 
proportionality 

Winter Summer 
100 200 

50 150 

xi= 7.94 
(P < 0.01) 

For the purpose of analysis an index of the rarity· of a species is required. 
In this paper the number given for England in The Handbook is used as an 
index and, as before, when any doubt is expressed there about numbers 
the smaller one is taken. Again records from sea-based observers have been 
rejected. Certain objections to this index can be raised; in particular, it does 
not cover the whole period under investigation, and hence weights records 
in favour of the earlier period. Its main advantage is that it was compiled 
by one man, independently of the present investigation, and is, therefore, 
consistent and objective. In the main, species and subspecies will be divided 
into three classes: class I rarities, which have less than 20 accepted English 
examples in The Handbook; class II, with 20-99 examples (inclusive); and 
class III, consisting of those whose occurrences are not enumerated in The 

Handbook. It is possible that some class III species have actually less than 
100 records over the period covered by The Handbook, and so overlap class 
II, because The Handbook does not appear to be entirely consistent in this 
matter. However, this overlap, if it exists, is small and unimportant. 

The only statistical, in the sense of probabilistic, techniques used in the 
following analysis are the x2 (chi-squared) goodness-of-fit test and the Pois
son distribution. The x2 test is applied here mostly to frequencies arranged 
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in two-way tables, for example the frequencies of the occurrence of rari
ties of different classes in different seasons. The simplest situation in such 
a table occurs when the relative frequencies in one set of categories (e.g. 
rarity classes) are the same for all categories in the other set (seasons). The 
first part (a) of Table I shows such an ideal situation. Each rarity group has 
three times as many summer records as winter, and each season has twice as 
many class II records as class I. The hypothesis that the relative frequencies 
are of this simple type is called in statistical parlance the null hypothesis. Of 
course in any particular sample the frequencies would almost never be ex
actly proportional, even if the null hypothesis were true, because of random 
errors in them. These random errors might give rise to something like Ta
ble l(b). Here the hypothesis of proportionality is not disproved. However, 
these random errors can only distort the picture to a certain degree and 
x2 can be regarded as a measure of whether this distortion has reasonably 
been exceeded in any particular case. 

Under certain conditions the relative frequencies of different values of 
x2 turning up can, if the null hypothesis true, be calculated. The average 
value of x2 equals a quantity called the number of degrees of freedom, 
which itself depends only on the form of the table, not on the numbers in 
it. A value of x2 much in excess of the average value means that a very 
unlikely event has taken place, if the null hypothesis is true, and hence that 
it should be discarded for some other hypothesis more in accordance with 
the facts. Thus in Table I( c), while class I has three times as many summer 
as winter records, class II has only twice as many. This gives a large x2 and 
tends to discredit the null hypothesis. Similarly, for a x2 with two degrees 
of freedom (written x~), a value of six would be exceeded in only 5% of 
cases if the null hypothesis were true. Thus values of x~ greater than six 
are said to be significant at the 5% level, or significant P = 0.05 and provide 
considerable evidence that the null hypothesis is false. It should be pointed 
out that the null hypothesis can fail to be true in two rather different 
ways. In one situation, the true frequencies may not be proportional, so 
that occurrences among class III rarities might have a relatively greater 
frequency in winter than occurrences in the other two classes; this is a 
systematic deviation from the null hypothesis. The other situation occurs 
when the random deviations are unusually large, but the true frequencies 
are still proportional; this may occur if the thing being measured comes 
from a heterogeneous population, made up of several sub-populations with 
unequal chances of being represented. Thus our class III rarities comprise a 
number of species of which some are relatively much commoner than others, 
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and this may produce a random deviation larger than average. In practice 
it is often possible to distinguish the two kinds of deviations, since one has 
a pattern while the other has not. In the analysis which follows we shall 
meet examples where the null hypothesis is well supported, and where there 
are deviations both random and systematic from it. 

The Poisson distribution is a theoretical probability distribution, often 
useful in the description of the frequencies of rare events. It is completely 
specified by its mean value. For a general description of x2 and this distri
bution a standard statistical textbook should be consulted (e.g. Snedecor 
1946). 

THE RESULTS 

The results to be discussed embrace 1, 015 occurrences, involving 1, 360 
birds of 168 species and subspecies. Subspeciation is as given in The Hand
book. This is generally satisfactory for our purposes, but the Yellow Wag
tail (Motacilla fiava) complex has presented difficulties. In particular the 
"Sykes" type (resembling beema) must be a class I rarity by our definition, 
though modern records make it much commoner and this bird actually 
makes up nearly 10 of the class I records for the rest of Kent in the years 
1925-54 (YKB). However, since The Handbook is being used for the rarity 
index, no exceptions are made to its classification of subspecies and records. 

TABLE 2 - TOTAL OCCURRENCES IN DIFFERENT RARITY CLASSES 
An explanation of the area-eras will be found on page 215, and of the 

rarity classes on page 217 

Area-era Class I Class II Class III Total 
XA 243 108 165 516 
XB 54 51 103 208 
YSA 15 16 45 76 
YSB 19 13 32 64 
YKA 11 11 22 44 
YKB 26 28 53 107 
Total 368 227 420 1,015 

The complete list of records used (which is not given in full here, but 
is being deposited at the Edward Grey Institute, Oxford) has been split 
up in various ways for the investigation, and the following aspects will be 
presented and discussed: the relative frequencies of singular, dual, plural 
and total occurrences in the three rarity classes for the six area-eras; also 
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the distribution of occurrences in the various seasons of the year and in 
different years throughout the periods concerned. 

The distribution of the total number of occurrences 
We consider first the total number of occurrences in each rarity class for 

each area-era, the relevant figures being shown in Table 2. The most obvious 
feature of these figures is that the distribution of the occurrences among the 
rarity classes in the Hastings Area for the period 1895-1924 (XA) is quite 
different from the distribution in the remaining area-eras. A x2 test carried 
out on these remaining area-eras gives X~ = 3.55, showing no significant 
difference in the proportions of the three rarity classes. Considering the 
heterogeneous nature of the data, the agreement is remarkably good. Table 
3, however, compares Hastings (XA) with the total of the remaining area
eras and it will be seen immediately that XA has nearly twice the proportion 
of class I rarities that the remainder has, balanced by a deficiency of class 
III rarities. 

TABLE 3- TOTAL OCCURRENCES FOR HASTINGS 1895-194 
COMPARED WITH ALL OTHER AREA-ERAS COMBINED 

Area-era Class I Class II Class III Total 

Hastings (XA) 243 108 165 516 

Remainder 125 119 255 499 

In contrast to the homogeneity of the remainder of the area-eras, these 
discrepancies are highly significant, producing the enormous X~ value of 

57.40. 
So far we have considered only the distribution of the numbers in the 

different rarity classes, without looking at the total number of occurrences 
in the different area-eras. It is clear from inspection of the figures for the 
rest of Sussex and Kent (YS and YK) that the trend in the two regions 
over the period of time concerned is quite different. While the total number 
of records for YS has actually declined slightly for era B compared with 
era A, that for YK has markedly increased. (It should not be assumed 
from the YS figures that the amount of bird-watching has gone down in 
that area over the period considered, because if a species has too many 
records in the second period for it to be enumerated completely in the 
sources, or if there are more than 30 records in that period, its contribution 
is automatically eliminated from these figures by the rules previously laid 
down. This tends to minimize the number of records for the second era, 
but does not bias the other comparisons we are making.) In the absence of 
agreement between the trends for these two areas we cannot say, with any 
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conviction, what the figures for XA ought to be. Incidentally, even if YS 
and YK had agreed in their trends over the two eras, no significance test 
comparing them with X would have been valid, since we have deliberately 
chosen XA for investigation on account of its unusually large total of rarities 
(the fact of this choice does not invalidate significance tests on the other 
aspects we are considering). It is fair to note, however, that the trend for 
the Hastings Area does not agree with either of the other areas. It is nearer 
toYS, but to be comparable the XA figure should be about 247 instead of 
the 516 actually recorded. 

The distribution of numbers at each occurrence 
Considering class I rarities first, and dividing occurrences into singular 

and multiple (there being insufficient records in most area-eras to divide the 
multiple occurrences into dual and plural), we get Table 4. The proportion 
of multiple records in XA (25.1 %) is much higher than in the other area
eras (average 12.0%). A x2 test excluding XA gives x1 = 2.00, indicating 
homogeneity among the "remainder" group, while comparison of XA with 
the remainder gives xf = 8.65 (P < 0.01), showing that XA disagrees with 
the remainder. This is even more marked if we divide the multiples into 
duals and plurals as shown in Table 5. Here X~ = 12.76, a more extreme 
value than the previous Xf = 8.65. The remainder group has only one 
plural occurrence for class I rarities- the Paddock Wood Snow Finches of 
1906 (Handbook, I: 155). 

TABLE 4 - DISTRIBUTION OF SINGULAR AND MULTIPLE OCCURRENCES 

FOR CLASS I RARITIES 

An explanation of the area-eras will be found on page 215 of singular and 
multiple occurrences on page 216 and of the rarity classes on page 217 

(see Appendix on pages 233-234) 

Area-era 

XA 

XB 

YSA 

YSB 

YKA 

YKB 

Total 

Singular 

182 
46 
14 
18 
10 
22 

292 

Multiple Total 

61 243 
8 54 

15 
19 

1 11 

4 26 
76 368 

The situation with class II rarities is very much the same as with class I; 
the proportion of multiple records for XA is 26.9%, while for the remainder 
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group it is 12.6%, with YSA the highest at 18.8%. Again the remainder 
group gives a low X~ = 1.20, indicating homogeneity, while comparison of 
XA with the remainder gives a significant x~ = 7.36 (P < 0.05). With class 
III rarities the situation is less clear cut, for the XA proportion of multiple 
records, here 22.8%, is slightly less than that for YSA, which has 24.4%. 
This difference of YSA from the rest of the remainder group is almost 
entirely due to records for one species, the Glossy Ibis, which contributes 
four out of the multiple occurrences for YSA. The same species contributes 
three out of the 38 multiple occurrences for XA. The result of this is that XA 
and YSA do not differ significantly, though XA differs from the remaining 
four area-eras (X~ = 7.29). One other aspect of the data deserves mention. 
In the remainder group, the percentages of plural occurrences for class III, 
II, and I rarities are 5.1, 2.5, and 0.8 respectively; that is, they fall steadily, 
being greatest in the least rare class. This is what one might expect a priori. 
However, in the XA group, the percentages (in the same order) are 9.1, 5.6 
and 9.9, and show no such trend. 

TABLE 5 - DISTRIBUTION OF SINGULAR, DUAL AND PLURAL 
OCCURRENCES FOR CLASS I RARITIES 

Area-era Singular Dual Plural Total 
Hastings (XA) 182 37 24 243 
Remainder 110 14 1 125 
Total 292 51 25 368 

The distribution of occurrences by season 
For nearly 97% of the occurrences, the month of occurrence is given 

in the source. Where it is not given, the occurrence is excluded from the 
analysis in this section. Where a single bird stayed for several months, the 
first month is taken. If a flock was present and members were shot from it 
or seen in more than one month, then the month of the first record is again 
used. The numbers for most of the months in most of the area-eras are 
too small to allow any accurate comparisons, so they have been grouped in 
four seasons of winter (December-February), spring (March-May), summer 
(June-August) and autumn (September-November). 
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TABLE 6 - DISTRIBUTION OF OCCURRENCES BY SEASONS 

An explanation of the area-eras will be found on page 215, and of the 
rarity classes on page 217. 

Number of Occurrences 
Area-Era and Spring Summer Autumn Winter 

rarity class (Mar/May) (Jun/ Aug) (Sep/Nov) (Dec/Feb) Total 
XA I 101 42 63 36 242 

II 25 38 29 13 105 
III 42 35 56 27 160 

Total 168 115 148 76 507 
XB I 16 15 16 4 51 

II 12 11 27 1 51 
III 35 16 41 10 102 

Total 63 42 84 15 204 
YSA I 5 0 7 3 15 

II 6 1 7 2 16 
III 7 3 18 7 35 

Total 18 4 32 12 66 
YSB I 6 4 9 0 19 

II 3 2 6 2 13 
III 9 11 8 3 31 

Total 18 17 23 5 63 
YKA I 2 3 3 3 11 

II 4 2 3 0 9 
III 3 6 7 17 

Total 7 8 12 10 37 
YKB I 11 9 3 3 26 

II 12 8 7 1 28 
III 20 6 14 10 50 

Total 43 23 24 14 104 

The frequency of occurrences for all area-eras, rarity classes and seasons is 
given in Table 6. The distribution by seasons is much more variable in the 
remainder group than the previous distributions considered. A remarkable 
feature is the growth of spring records in the rest of Kent from 18.9% in era 
A to 41.3% in era B, while the rest of Sussex shows no such change though 
summer records have increased there. Both these areas agree, however, in 
showing a decline in the proportion of autumn and winter records as we 
pass from era A to era B. YS shows a fall of 22.3% from 66.7% to 44.4%, 
and YK a fall of 23.0% from 59.5% to 36.5%. By contrast, the autumn and 
winter records for the Hastings Area rise slightly from 44.2% to 48.5%. It is 
also noticeable that, while the seasonal distributions of total occurrences for 
XB and YSB are very similar (giving X~= 1.26), those for XA and YSA are 
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quite unlike each other (X~ = 15.70). The XA records have another property 
not shared by any of the other area-eras in that they have a considerably 
greater proportion of spring records for class I rarities than for classes II 
and III. 

The distribution of records by years 

The relevant data on distribution by years are given in Table 7 for all 
area-eras and rarity classes. Considering first the earlier era A, we find that 
for both YS and YK the distribution of the number of class I rarities is 
very close to a Poisson; the actual frequencies and the theoretical ones of 
the Poisson distributions with the same means are shown in Table 8. 

These good fits to the theoretical distributions suggest strongly that 
there were no large differences in the numbers of class I rarities reaching 
these areas each year during this period, or in the intensity of observations 
made on them; for, if there had been any such large differences, the ac
tual frequency distributions would have had longer "tails" and the Poisson 
model would no longer have fitted well. The distribution of class I rarities 
in XA is obviously quite unlike the last two considered. In the first place it 
shows strong time trends, there being a sharp increase in the early 1900s 
followed by an equally sharp decrease after 1916. In such circumstances it 
is unreasonable to expect a theoretical distribution to fit well and, in fact, 
the Poisson distribution is a very bad fit here. It is somewhat surprising 
that the peak years in X, namely 1905, 1914 and 1915, do not correspond 
with any peaks in the other two regions. 

Differences between regions are much less remarkable for classes II and 
III. In YSA and YKA the Poisson fits less well, due doubtless to increasing 
heterogeneity in the population sampled, while the distributions for XA are 
less extreme than that for XA class I. In era B, we see a number of trends 
in time which make any agreement with a simple theoretical model out of 
the question. The major factor is the post-war increase in bird-watching, 
with its resulting effect on the number of rarities seen from 1946 onwards. 
Conversely, the war itself has depressed the number of records in X and 
YS below that of the pre-war years (although YK does not seem to show 
this), while during the period 1925-1939 there seems to be a trend towards 
an increasing number of records. In spite of these effects of the number of 
observers (for that is what they most likely are), the figures show two points 
of interest. One is that the post-war boom in bird-watching has increased 
total records in all regions by much the same proportion when compared 
with the 1925-1939 period. 
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An explanation of the area-eras will be found on page 215, 

and of the rarity classes on page 217. 

Era A 

Area-era and 
rarity class lf".l c.o r:- 00 0:. 0 ...-< N C'? "<:!' lf".l c.o r:- 00 0:. 0 

0:. 0:. 0:. 0:. 0:. 0 0 0 0 0 0 0 0 0 0 ...-< 
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...-< ...-< ...-< ...-< ...-< ...-< ...-< ...-< ...-< ...-< ...-< ...-< ...-< ...-< ...-< ...-< 

XA I 2 4 2 0 1 4 7 7 10 7 19 9 13 8 15 6 
II 3 2 0 2 1 1 7 3 4 8 7 4 3 3 3 2 

III 3 2 5 4 3 6 3 9 11 9 16 9 3 6 4 7 
Total 8 8 7 6 5 11 17 19 25 24 42 22 19 17 22 15 

YSA I 0 0 0 1 0 1 0 1 1 0 1 0 0 1 3 1 
II 0 0 1 1 0 0 1 0 0 3 3 1 2 0 0 0 

III 0 1 1 0 4 1 3 1 3 1 0 3 3 4 5 2 ~ 
Total 0 1 2 2 4 2 4 2 4 4 4 4 5 

(1) 

5 8 3 ::t: 
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., 
0 1 1 2 1 2 ~ 

II 0 0 0 1 2 0 0 0 0 1 0 0 3 1 0 0 
~· 

"' 
III 1 3 1 1 0 0 0 0 2 0 0 4 1 1 1 0 ::0 ., 

Total 1 4 2 2 3 0 0 2 2 2 1 5 6 2 1 0 ;:! .. 
(>• 

"' ..., ..., 
"" 
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Area-era and 
rarity class lf".l c.o r:- 00 0:. 0 ...-< N C'? "<:!' lf".l c.o r:- 00 0:. 0 
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III 3 2 5 4 3 6 3 9 11 9 16 9 3 6 4 7 
Total 8 8 7 6 5 11 17 19 25 24 42 22 19 17 22 15 
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III 0 1 1 0 4 1 3 1 3 1 0 3 3 4 5 2 ~ 
Total 0 1 2 2 4 2 4 2 4 4 4 4 5 

(1) 

5 8 3 ::t: 
YKA I 0 1 0 0 0 1 1 0 0 0 

., 
0 1 1 2 1 2 ~ 

II 0 0 0 1 2 0 0 0 0 1 0 0 3 1 0 0 
~· 

"' 
III 1 3 1 1 0 0 0 0 2 0 0 4 1 1 1 0 ::0 ., 

Total 1 4 2 2 3 0 0 2 2 2 1 5 6 2 1 0 ;:! .. 
(>• 

"' ..., ..., 
"" 
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TABLE 8 - THE NUMBER OF CLASS I RARITIES PER YEAR 

IN THE REST OF SUSSEX AND KENT DURING 1895-1924 
An explanation of the area-eras will be found on page 215, and of the 

rarity classes on page 217. 
Number Years with Poisson 
per year this number frequencies 

Rest of 0 18 18.2 
Sussex (YSA) 1 10 9.1 

2 1 2.3 
3 1 0.4 

Rest of 0 21 20.8 
Kent (YKA) 1 7 7.6 

2 2 1.4 

3 0 0.2 

The figures are 3.3 to I for X, 3.0 to I for YS and 3.9 to I for YK. The other 
point is that, although the post-war records for class III rarities in the X 
area are now running at a level higher than the mean for era A, while class 
II rarities are about equal, the post-war bird watchers have not managed 
to average even half the number of class I rarities per year that XA shows, 
while their best effort, five in 1951, is less than a fifth of the peak year 
(1915) in XA. 

DISCUSSION 

We began this investigation by noting the remarkable number of rari
ties recorded from the Hastings Area during the earlier part of this century. 
No attempt has been made to assess the intrinsic probability of obtaining 
so many rarities from a relatively small area in such a short time, for the 
obvious reason that the information necessary to determine such a proba
bility - such as numbers of observers, intensity of observation and actual 
totals of rare birds to be seen - is almost wholly lacking. Instead we have 
classified the records in various ways and compared the distributions for 
the Hastings Area so obtained with those for two neighbouring areas, and 
during two eras. A number of striking differences in these distributions has 
been obtained, and most of them have been in the direction of making XA, 
the Hastings Area for 1895-1924, the odd one out. We now consider what 
hypotheses would have to be adopted to explain these differences, assuming 
the validity of all the records. 

For the total number of occurrences in the three rarity classes, we found 
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XA to be quite different from the remainder of the area-eras which did not 
differ significantly among themselves. This discrepancy in XA is unlikely 
to be due simply to more or more enthusiastic observers, since the effect of 
this in YK, as shown in the differences between YKA and YKB, has been to 
leave the proportions in the rarity classes almost unchanged. Nor can X be 
a specially good area for class I rarities, judging by its performance during 
era B and since (when, in spite of the establishment of an observatory at 
Dungeness, there has still been no exceptional proportion of class I rarities). 
We must thus postulate observers who failed to report many class II and 
III rarities while recording all class I rarities. Also the evidence from the 
distribution by years shows that, to obtain the number of class I rarities 
actually recorded for XA, something more than twice the activity of post
war observers would be required. Whether there is any direct evidence 
either of the suppression of lesser rarities or of this enormously increased 
activity in the XA area-era I must leave others better qualified to say, but 
the possibility seems inherently unlikely. The distribution of the numbers at 
each occurrence for class I and class II rarities shows XA to have an excessive 
number of multiple occurrences when compared with the rest of the area
eras. Here again a mere change in the number of observers cannot account 
for it, since the proportion of multiple occurrences has remained effectively 
unchanged for YS and YK in both eras, even though the type of observation 
has largely changed from shooting to watching and the number of observers 
has greatly increased. Again to judge by the performance of XB, X has not 
recently been a specially good area for multiple occurrences. Hence we must 
suppose XA to have had observers exceptionally skilled in detecting and 
collecting multiple occurrences. Now although our definition allows a certain 
separation in both space and time for the birds in a multiple occurrence, in 
fact the birds in most multiple occurrences were from the same place and 
date, or from what was stated to be the same flock at different dates. It is 
difficult to conceive of an observer who will produce markedly more multiple 
occurrences than average. For if a person is skilled enough to track down 
one rarity he surely will not omit to look around for the possible presence of 
others of the same species. Nevertheless, the presence of such unlikely types 
seems to be the only suitable explanation, assuming that we can discard 
the possibility, even among class I rarities, that some single occurrences 
were suppressed. The changes in the distribution of rarities by seasons, 
although not exactly the same for YS and YK, are in one respect similar : 
the percentage of spring and summer records has risen as we pass from era A 
to era B. This might perhaps be the expected consequence of a changeover 
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from shooting, which is primarily an autumn and winter activity, to bird
watching, which is much more an all-the-year-round activity. The greater 
rise of spring records in Kent than in Sussex is probably a reflection of a 
real difference in the numbers of spring migrants passing through the two 
counties, which seems likely for reasons of geography. From the position of 
the X area, one would expect it to behave more like the rest of Sussex than 
the rest of Kent. This is so in era B where, as we have shown above, the 
distribution by seasons of records in XB and YSB do not differ significantly. 
In era A, by contrast, the spring and summer percentages are both greater 
for X than for YS, and slightly greater for XA than for XB. Thus, once 
again, the XA records need a special hypothesis to account for them. The 
agreement between XB and YSB suggests, also once again, that it is the 
observers whose activities must be different. For their era they were more 
active in the spring and summer than observers in the rest of the two 
counties. 

The distribution of records by years adds a further anomaly to the XA 
records, in that the frequencies for yearly numbers of class I rarities fit well 
to a simple theoretical distribution for YSA and YKA, but not to XA. The 
YSA and YKA records thus suggest a more or less static situation with 
regard to both numbers of rarities and numbers and activities of observers, 
while XA suggests violent fluctuations in one or the other or both. The 
era B records are interesting in showing that a trend like the post-war 
increase in bird-watching is reflected very similarly in all three areas, which 
we might expect a priori, in contrast to the situation in era A when area 
X is so different from the other two regions. 

It will now be clear from the foregoing discussion that if we accept all the 
XA records as genuine we are led to postulate an extraordinary situation 
regarding the activities of observers operating in this area-era. While the 
apparent results of their activities cannot be proved to be impossible, they 
appear so inherently unlikely as to call very seriously in question the basic 
assumption that all the XA records are genuine. I conclude that the data 
themselves constitute a strong prima facie case for a thorough investigation 
into the circumstances in which the Hastings Rarities came into existence. 

SUMMARY 

(1) A statistical investigation has been made of certain aspects of the many 
rare birds recorded in east Sussex and west Kent in the era 1894-1924 
(the "Hastings Rarities"), using other areas in Kent and Sussex and a 
later era (1925-1954) for comparison. 
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(2) The basic unit for the analysis is an occurrence, which may involve 
one, two or more birds. Species and subspecies are classified into three 
rarity classes based on the number of English occurrences given in The 
Handbook. The distribution of the total number of occurrences of birds 
in three different classes of rarity shows the Hastings records in the era 
1895-1924 to be anomalous, the remaining area-eras being consistent 
with one another. 

(3) The distribution of the numbers at each occurrence for species of the 
greatest rarity is also shown to be anomalous for Hastings 1895-1924 
when compared with the remaining area-eras. 

(4) The proportion of spring and summer records for the two areas ex
cluding Hastings is shown to have increased from era 1895-1924 to era 
1925-1954, but to have decreased for Hastings. Other anomalous results 
involving the Hastings 1895-1924 records are pointed out. 

(5) The distribution of occurrences year-by-year over the period 1895-1924 
is shown to fit a simple theoretical distribution for the two areas exclud
ing Hastings, but not to fit any such distribution for Hastings. Certain 
trends common to all areas for the period 1925-1954 are pointed out 
and the results compared with those for the earlier period. 

(6) Auxiliary hypotheses necessary to account for these anomalous results 
are considered, on the assumption that all the records are genuine. 

(7) It is concluded that these hypotheses are exceedingly unlikely to be 
true and that the basic assumption of the validity of all the records 
must be questioned. 
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Appendix-Rarity classes of species and subspecies analysed 

A full explanation of the rarity classes will be found on page 217. 

CLASS I (rarities with 1-19 English examples accepted in The Handbook) 

Wilson's Petrel Bulwer's Petrel Sociable Plover 

Madeiran Petrel Little Egret Semipalmated Ringed 

Madeiran Little Shearwater Great White Heron Plover 

Cape Verde Little American Bittern Killdeer 

Shearwater Blue-winged Teal Caspian Plover 

Audubon's Shearwater King Eider American Golden Plover 

Mediterranean Shearwater Kite Asiatic Golden Plover 

North Atlantic Shearwater Lesser Kestrel Dowitcher 

Upland Sandpiper Red-rumped Swallow Olivaceous Warbler 

Slender-billed Curlew Thick-billed Nutcracker Orphean Warbler 

Solitary Sandpiper Wall creeper Riippell's Warbler 

Spotted Sandpiper Dusky Thrush Sardinian Warbler 

Greater Yellowlegs Black-throated Thrush Rufous Warbler 

Lesser Yellowlegs Alpine Ring Ouzel Brown-backed Warbler 

Marsh Sandpiper Rock Thrush Dusky Warbler 

Grey-rumped Sandpiper Desert Wheatear Brown Flycatcher 

Terek Sandpiper Western Desert Wheatear Collared Flycatcher 

Baird's Sandpiper Western Black-eared Masked Wagtail 

White-rumped Sandpiper Wheatear Grey-headed Wagtail 

Semipalmated Sandpiper Eastern Black-eared Black-headed Wagtail 

Buff-breasted Sand pi per Wheat ear "Sykes's" Wagtail 

Broad-billed Sandpiper Isabelline Wheatear South European Grey 
Black-winged Pratincole Black Wheatear Shrike 
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Ivory Gull North African Black Lesser Grey Shrike 

Great Black-headed Gull Wheatear Corsican Woodchat Shrike 

Mediterranean Black- Siberian Stonechat Masked Shrike 

headed Gull Thrush Nightingale Pine Grosbeak 

Bonaparte's Gull White-spotted Bluethroat Black-headed Bunting 

Sooty Tern Cetti's Warbler Rock Bunting 

Bridled Tern Savi's Warbler Rustic Bunting 

Yellow-billed Cuckoo Moustached Warbler Little Bunting 

Black Lark Great Reed Warbler Western Large-billed Reed 

Calandra Lark Eastern Great Reed Bunting 

White-winged Lark Warbler Eastern Large-billed Reed 

Short-toed Lark Melodious Warbler Bunting 

Crested Lark lcterine Warbler Snow Finch 

CLASS II (rarities with 20-99 English examples accepted in The Handbook) 

Balearic Shearwater Whiskered Tern Barred Warbler 

Purple Heron Gull-billed Tern Yellow-browed Warbler 

Squacco Heron Caspian Tern Red-breasted Flycatcher 

Surf Seater Scops Owl Alpine Accentor 

Red-footed Falcon Snowy Owl Richard's Pipit 

Little Crake Tengmalm's Owl Tawny Pipit 

Pectoral Sandpiper Slender-billed Nutcracker Red-throated Pipit 

Pratincole White's Thrush Woodchat Shrike 

Cream-coloured Courser Aquatic Warbler Serin 

CLASS III (rarities with occurrences not enumerated in The Handbook) 

Great Shearwater Great Snipe Roller 

Night Heron Black-winged Stilt Golden Oriole 

White Stork Red-necked Phalarope Chough 

Glossy Ibis Pomarine Skua British Dipper 

Red-crested Pochard Long-tailed Skua Red-spotted Bluethroat 

Ferruginous Duck Iceland Gull Scandinavian Chiffchaff 

Ruddy Shelduck Sabine's Gull Siberian Chiffchaff 

Goshawk White-winged Black Tern Water Pipit 

White-tailed Eagle Roseate Tern Rose-coloured Starling 

GyrFalcon Black Guillemot Northern Bullfinch 

Baillon's Crake Pallas's Sandgrouse Two-barred Crossbill 

Eastern Little Bustard Bee-eater Ortolan Bunting 
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