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Chapter 1

Introduction

During recent years the search for non-integrability criteria for Hamiltonian sys-
tems based upon the behaviour of solutions in the complex domain has acquired
more and more relevance.

We comment on some historical antecedents of our approach to the non-
integrability of Hamiltonian systems.

We consider a real symplectic manifold M of dimension 2n and a Hamiltonian
system Xy defined over it. Let I' be a particular integral curve z = z(t) (which is
not an equilibrium point) of the vector field Xz. Then we can write the variational
equation (VE) along I,

i= 2L ()

Using the linear first integral dH(z(t)) of the VE it is possible to reduce this
variational equation (i.e., to rule out one degree of freedom) and to obtain the
so-called normal variational equation (NVE) which, in suitable coordinates, can
be written as

£ = JS(t)E,

()

is the standard symplectic form of dimension 2(n — 1).

Poincaré gave a non-integrability criterion based on the monodromy matrix
of the VE along a periodic real integral curve: if there are £ first integrals of the
Hamiltonian system, independent over the integral curve, then k characteristic
exponents must be zero. Moroever, if these first integrals are in involution, then

where, as usual,
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4 CHAPTER 1. INTRODUCTION

2k characteristic exponents must necessarily be zero ([87], pg. 192-198). Fur-
thermore, in Poincaré’s work we can also find the relation between linear first
integrals of the variational equation and solutions of this differential equation
([87], pg. 168). In fact, Poincaré’s results are intimately related to the reduction
process from the VE to the NVE.

In 1888 S. Kowalevski obtained a new case of integrability of the rigid body
system with a fixed point, imposing that the general solution is a meromorphic
function of complez time. In fact, as part of her method, she proved that, ex-
cept for some particular solutions, the only cases in which the general solution is
a meromorphic function of time are Euler’s, Lagrange’s and Kowalevski’s cases
[57]. Lyapounov generalized the Kowalevski result and proved that, except for
some particular solutions, the general solution is single-valued only in the above-
mentioned three cases. His method is based on analysis of the variational equation
along some known solutions [66, 63].

In 1963 Arnold and Krylov analyzed sufficient conditions for the existence
of a single-valued (but not complex analyticall) first integral of a complex lin-
ear differential equation; and, under certain conditions, they proved the uniform
distribution of values of the monodromy group on the corresponding invariant.
Their proof is based upon the properties of the closure of the monodromy group
considered to be contained in a linear Lie group [5]. We remark that this is not so
far from the fact that the Galois group of a Fuchsian linear differential equation
is the Zariski closure of the monodromy group (see Chapter 2 below).

In 1982 Ziglin [114] proved a non-integrability theorem for complex analytical
Hamiltonian systems. He used the constraints imposed by the existence of some
first integrals on the monodromy group of the normal variational equation along
some complex integral curve. This result concerns branching of solutions: the
monodromy group expresses the ramifications of solutions of the normal varia-
tional equation in the complex domain.

Let M be a complex analytic symplectic manifold of complex dimension 2n
with a holomorphic Hamiltonian system Xy defined over it. Let I' be the Riemann
surface corresponding to an integral curve z = z(t) (which is not an equilibrium
point) of the vector field X . Then, as above, we can write the VE along I" and
the NVE of dimension 2(n — 1),

£=JS(b)E.

In general, if there are k analytical first integrals, including the Hamiltonian,
independent over I' and in involution, then, in a similar way, we can reduce the
number of degrees of freedom of the VE by k. The resulting equation, which
admits n — k degrees of freedom, is also called the NVE [8]. Then we have the
following result by Ziglin:



Theorem 1.1 ([114]) Suppose that a Hamiltonian system admits n — k addi-
tional analytical first integrals, independent over a mneighbourhood of I' but not
necessarily on T itself. We assume, moreover, that the monodromy group of the
NVE contains a non-resonant transformation g. Then, any other element of the
monodromy group of the NVE sends eigendirections of g into eigendirections of g.

We say that a linear transformation g € Sp(m, C) (the monodromy group is
contained in the symplectic group) is resonant if there exist integers r, ..., 7, such
that 7' --- A" =1 (\; are the eigenvalues of g).

Ziglin himself, in a second paper, applied his theorem to the rigid body and
showed that, except for the three above-mentioned cases, this system is not com-
pletely integrable. He also studied the problem of the existence of an additional
partial first integral and eventually included the Goryachev-Chaplygin case. Fi-
nally he applied his method to the Hénon-Heiles system and to a particular Yang-
Mills field. For this last system, Ziglin proved the non-existence of a local mero-
morphic first integral independent of the Hamiltonian in any neighbourhood of
the hyperbolic equilibrium point [115]. In the present book we also obtain local
non-integrability of some Hamiltonian systems in a neighbourhood of an equilib-
rium point. But in our situation the equilibrium points can be degenerate (see
below Section 4.3).

In 1985 Tto applied the Ziglin theorem to the non-integrability of a general-
ization of the Hénon-Heiles system [48]. From this date until today many papers
have appeared on this subject. We shall comment briefly on some of them.

Yoshida published a series of papers about the application of Ziglin’s theorem
to some homogeneous two degree of freedom potentials with invariant planes. For
such potentials he can project the normal variational equation over the Riemann
sphere and obtain a hypergeometric equation [110, 111]. Later Churchill and Rod
interpreted Yoshida’s results geometricaly as a reduction of the associated holo-
morphic connection by discrete symmetries ([24], see also [9, 25]). Several other
papers are also oriented towards applications [44, 112, 47, 101, 23]. In Section
5.1, we will improve Yosida’s results.

The differential Galois approach to Ziglin’s theory appeared for the first time,
independently, in [25] and [75, 81]. The papers [8], [26] and [82] followed. Two
applications of the theory (developed in [25]) to non-academic examples are [58,
59]. A common limitation of these works is the restriction to Fuchsian variational
equations (their singularities must be regular singular). Here we overcome this
difficulty. Our basic idea is very simple: rather than working with the monodromy
group, we work directly with the differential Galois group. Another problem
inherent in Ziglin’s original approach is the distinction between two types of first
integrals: those that are useful for reduction and those are not. Of course, if
we assume the involutivity and independence of all the integrals, then, from a
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theoretical point of view, this distintion is no longer relevant. In fact, if some
integrals are independent over I', then the differential Galois theory itself allows
an explicit process of reduction, in some sense.

In a way, up to now all known non-integrability criteria have not taken into
account the involutivity hypothesis: only the independence of the first integrals
is used. So, with exception of Poincaré’s result mentioned above, we allow for
the first time an obstruction to complete integrability in the Liouville sense. This
means taking into acount not only the number of independent first integrals, as in
the works of Ziglin and his followers, but also the fact that they are in involution.

We emphasize that this monograph must be considered as research on the con-
nection between two different concepts of integrability: integrability of a Hamil-
tonian system Xy and integrability of the variational equation along a particular
solution I of X . It is reasonable to suppose that if the flow of X has a regular
behaviour, then the linearized flow along I' given by the variational equation must
also be regular. So, we can express simply our guiding idea at the beginning of
our work on this problem: if the initial Hamiltonian system Xz is completely
integrable then the VE must also be integrable but differently, in the sense of the
differential Galois theory, i.e., the corresponding Picard-Vessiot extension must
be a Liouvillian extension, or equivalently the identity component of the corre-
sponding differential Galois group must be a solvable algebraic group.

In fact, we ultimaly obtained a more precise result: in the complete inte-
grability case the identity component of the differential Galois group of the VE
is necessarily abelian, i.e., the abelian structure of the Poisson algebra of first
integrals of X is “projected” at the linear level.

This monograph is divided into three parts. In part I, consisting of Chapters
2 and 3, we present the basic tools of the two integrability theories mentioned
above .

Chapter 2 is devoted to explaining the necessary concepts and results of dif-
ferential Galois theory. In general, these results are well known, but some of them
were obtained in joint research of the author with J.P. Ramis (Proposition 2.4 and
Theorems 2.4, 2.5) [77] and with C. Simé (Propositions 2.2, 2.3 and 2.6)[81, 82].
The proof of Proposition 2.4 and of Theorems 2.4, 2.5 is given in appendices A
and B. In appendix C (about connections with structure groups) we also follow
the paper [77] of the author with J.P. Ramis. These appendices are technically
more difficult and abstract than the main body of the rest of the monograph.

In Chapter 3 we explain several concepts of complete integrability of Hamil-
tonian systems. As in differential Galois theory, there are several concepts of
integrability depending on the coefficient field considered, for a Hamiltonian sys-
tem several different definitions arise according to the degree of regularity of the
first integrals involved and whether we consider the real or complex situation.



Some definitions, as in the case of algebraic completely integrable systems, are
based on the dynamical behaviour of the system. In Section 3.4 we give some
properties of the Poisson algebra of rational functions. The results of this section
are obtained as part of joint work of the author with J.P. Ramis and are the purely
algebraic side of the main results of Chapter 4 [77].

Part 1T consists of Chapter 4 which is the central chapter of this monograph.
There we explain the above mentioned result on the abelian character of the
identity component of the Galois group. The results of this chapter were also
obtained in a joint work of the author with J.P. Ramis [77].

Part III is devoted to applications. In Chapter 5 we apply our non-integrability
result of Chapter 4 to three non-academic classical situations: homogeneous po-
tentials, a cosmological model and a three body problem, obtaining not only new
simple proofs of known results but many new results. This chapter is a reformula-
tion of some joint results with J.P. Ramis [78], and we give an additional example
of homogeneous potentials.

In Chapter 6 we analyze the non-integrability of a family of two degrees of
freedom potentials with an invariant plane and a normal variational equation of
Lamé type. Particular cases are the Hénon-Heiles family and the Toda family of
three particles with two unequal masses. This chapter is part of joint work of the
author with C. Simé [82].

Chapter 7 is devoted to a connection between the Galoisian non-integrability
criterion of Chapter 4 and Lerman’s real dynamical criterion of non-integrability,
in a particular situation. This connection was conjectured by the author when he
met Lerman some years ago at a meeting in Torun, Poland. The results of this
chapter were obtained in a joint work with J.M. Peris [76].

In Chapter 8 we give some complementary applications and we formulate some
conjectures that open new lines of research.

The reader may check that applications can be done using a unified and sys-
tematic approach:

1. Select a particular solution.

2. Write the VE and the NVE.

3. Check if the identity component of the differential Galois group of the NVE
is abelian.

As we will see, step 2 is easy. In Chapter 4 we give an algorithm for obtaining
the NVE from the VE. Step 3 is quite problematic in general, but fortunately, in
some particular cases common to many applications, there exist efficient algebraic
algorithms that can decide. The prototype is Kovacic’s algorithm for second order
equations. In all the applications that the author knows, step 1 (which is shared
by all the classical proofs of non-integrability) is achieved by the existence of a
completely integrable subsystem, typically, by the existence of an invariant plane.
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Of course this is in some sense unsatisfying from a philosophical point of view: if
a system is “as far as possible” from integrability, then each integral curve will be
pathological and our method does not work. Anyway in such a case the classical
methods fail for the same reason.



Chapter 2

Differential (zalois Theory

The differential Galois theory for linear differential equations is the Picard-Vessiot
Theory. In this theory there is a very nice concept of “integrability” i.e., solutions
in closed form: an equation is integrable if the general solution is obtained by a
combination of algebraic functions (over the coefficient field), exponentiation of
quadratures and quadratures. Furthermore, all information about the integrabil-
ity of the equation is coded in the identity component of the Galois group: the
equation is integrable if, and only if, the identity component of its Galois group
is solvable. It is a powerful theory in the sense that, in some favorable cases
(for instance, for equations of order 2), it is possible to construct algorithms to
determine whether a given linear differential equation is integrable or not.

We shall present only the essential definitions. Results shall be stated without
proofs, unless the author has some contribution to them or if they are not easily
found in the references. Three different approachs shall be used: ( [12, 21, 50,
51, 54, 71, 69, 94, 102]): the classical approach, the Tannakian approach and the
monodromy and Stokes’s multipliers approach. As will become clear, all of them
will be useful in this monograph.

In Sections 2.3, 2.4, 2.5 and 2.6 we will follow [77].

2.1 Algebraic groups

In this section the necessary results of linear algebraic groups are presented. An
introduction to linear algebraic groups is given in [19]. For more information see
the monographs [45, 14].

A linear algebraic group G (over C) is a subgroup of GL(m, C) whose matrix
coefficients satisfy polynomial equations over C. It has structures of an algebraic
variety (non-singular) as well as of a group, and these two structures are com-
patible: the group operation and taking of inverses are morphisms of algebraic

9



10 CHAPTER 2. DIFFERENTIAL GALOIS THEORY

varieties. We note that in a linear algebraic group there are two different topolo-
gies: the Zariski topology, where the closed sets are the algebraic sets, and the
usual real topology. In particular, an algebraic group is a complex analytical Lie
group and we can consider the Lie algebra of this group. Therefore the dimension
of G is the dimension of the Lie algebra of G. Given a linear algebraic group G,
the identity component (or the neutre component) G is the (unique) irreducible
component which contains the identity element of G.

We remark that an algebraic linear (or affine) group G is usually defined as an
affine algebraic variety with a group structure, with the compatibility condition
above: the group multiplication and taking of inverses are morphisms of algebraic
varieties. Then, given a such G, there is a rational faithful representation of G as
a closed subgroup of GL(m, C), for some m, and we obtain the equivalence with
our definition.

It is clear that the classical linear complex groups are linear algebraic groups.
For instance SL(n,C), SO(n,C) (rotation group) and Sp(n,C) C Gi(2n,C)
(symplectic group) are linear algebraic groups since they are defined by poly-
nomial identities.

Proposition 2.1 The identity component GO of a linear algebraic group G is a
closed (with respect to the two above topologies) normal subgroup of G of finite
index and it is connected with respect to the two above topologies. Furthermore
the classes of G/G° are the irreducible connected components of G.

We note that by the above proposition G is also a linear algebraic group
and the Lie algebra of G, Lie(G) = G coincides with the Lie algebra of G°,
Lie(GY) = G. As for every Lie group, G° is solvable (abelian) if, and only if,
G is solvable (respectively abelian). Furthermore, G is connected if, and only if
G =G°.

The characterization of the connected solvable linear algebraic groups is given
by the Lie-Kolchin theorem.

Theorem 2.1 (Lie-Kolchin Theorem) A connected linear algebraic group is
solvable if, and only if, it is conjugated to a triangular group.

In the context of linear algebraic groups a torus is a group isomorphic to the
multiplicative group (C*)*. The dimension of the above torus is k. Equivalently,
it is a linear algebraic group conjugated to a diagonal group. It is clear that a
torus is connected and abelian.

Let G be a linear algebraic group. A maximal torus in G is a torus of maximal
dimension contained in G. As a maximal torus is connected, it is contained in the
identity component GP.
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Ezample. Let Sp(n,C) C GI(2n,C) be the symplectic group. It is easy to see
that the maximal tori in Sp(n, C) are all the groups conjugated to

T = {diag(A1, Aay s Ay, AT A o A0 D) N € CF i = 1,2, ., n ).

Indeed as is well known, the eigenvalues of the symplectic matrices o € Sp(n, C)
appear in pairs (A, A1) (see for instance [3]) and we get the above.

Given a subset S C GL(n,C), let M be the group generated by S and G be
the Zariski closure of the group M. By definition the group G is a linear algebraic
group and we will say that this group is topologically generated by the set S.
Sometimes we will emphasize in the difference between M and G and we will say
that M is algebraically generated by S.

Since the examples of irreducible equations that we shall meet will be of second
order and symplectic, we end this section with a classification of the algebraic
subgroups of SL(2,C). We shall need two lemmas.

Lemma 2.1 ([50]) Let G be an algebraic group contained in SL(2,C). Assume
that the identity component GO of G is solvable. Then G is conjugate to one of
the following types:

(1) G is finite,

_p-1
(2)G={<3 N ) (g ’ ) A,ﬁec*},
(8) G is triangular.

Lemma 2.2 Let G be an algebraic subgroup of SL(2,C) such that the identity
component G° is not solvable. Then G = SL(2,C).

The last lemma is well-known and it follows easily from consideration of the
Lie algebra of G C SL(2,C). Indeed, if G° is not solvable then the dimension of
G must be equal to 3, because all 2-dimensional Lie algebras are solvable.

Proposition 2.2 ([81]) Any algebraic subgroup G of SL(2,C) is conjugated to
one of the following types:

01

2.G:G0:{<; (1)>,u60}.

1. Finite, G° = {1}, where 1 = ( L0 )
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3. G = {( 2 )\91 > , Ais a k-root of unity, u € C},

7. G=G"=SL(2,C).

Proof. Assume G to be infinite and conjugated to a triangular group, i.e., it is
contained in the total triangular group (isomorphic to the semidirect product of
the additive group C and of the multiplicative group C*)

{(2 ;L),AEC*,,LAEC}.

Let 1) be the morphism of algebraic groups

¥: G — C*,

A0

If kerey is trivial then G must be the diagonal group

A0 %
oo{(3 ) ree)

because then G = ¢(G), ¥(G) being an algebraic subgroup of the multiplicative
group C*. But then ¢(G) must be equal to C* (the only possible non-trivial
subgroups of C* are the cyclic finite groups).

If ker is non-trivial then, as it is (isomorphic to) an algebraic subgroup of
the additive group C, it is the total unipotent group

defined by



2.2. CLASSICAL APPROACH 13

(3 1))

Now as above we have two possibilities: either 1(G) is equal to the multiplicative
group C* or it is a finite cyclic group. The proposition follows from the two
lemmas above.

Q.E.D.

The above proposition is analogous (but more precise: we need to know when
the identity component of the Galois group is not only solvable, but abelian) to
the proposition in [56], pag. 7. We remark that the identity component G° is
abelian in cases (1)—(5) and is solvable in cases (1)—(6).

2.2 Classical approach

A differential field K is a field with a derivative (or derivation) d = ', i.e., an ad-
ditive mapping that satisfies the Leibniz rule. Examples are M(T') (meromorphic
functions over a connected Riemann surface I, the reason for this notation will
be clear below: I' — " will be the set of singular points of the linear differential
equation) with a non trivial meromorphic tangent vector field X as derivation, in
particular C(z) = M(P1) with d% or zd% as derivation, C{z}[z~!] (convergent
Laurent series), or C[[z]][z~!] (formal Laurent series) with m% as derivation. We
observe that there are some inclusions between the above differential fields.

We can define (differential) subfields, (differential) extensions in a direct way
by requiring that inclusions must commute with the derivations. Analogously,
a (differential) automorphism in K is an automorphism that commutes with the
derivative. The field of constants of K is the kernel of the derivative. In the above
examples C is such a kernel. From now on we will suppose that this is the case.

Let

¢ =A¢ A€ Mat(m, K). (2.1)

We shall proceed to associate to (2.1) the so-called Picard-Vessiot extension
of K. The Picard-Vessiot extension L of (2.1) is an extension of K, such that if
Uy ey Uy 18 @ “fundamental” system of solutions of the equation (2.1) (i.e., linearly
independent over C), then L = K (u;;) (rational functions in K in the coefficients
of the “fundamental” matrix (uy -+ wu,,) ). This is the extension of K generated
by K together with u;;. We observe that L is a differential field (by (2.1)). The
existence and unicity (except by isomorphism) of the Picard-Vessiot extensions is
proved by Kolchin (in the analytical case, K = M(T'), and this result is essentially
the existence and uniqueness theorem for linear differential equations).



14 CHAPTER 2. DIFFERENTIAL GALOIS THEORY

As in classical Galois theory, we define the Galois group of (2.1) G := Galg (L) =
Gal(L/K) as the group of all the (differential) automorphisms of L which leave
fixed the elements of K. This group is isomorphic to an algebraic linear group
over C. We say that the extension L/K is normal if any element of L, invari-
ant by the Galois group Galg (L), necessarily belongs to K. The Picard-Vessiot
extensions are normal and by this property of the Picard-Vessiot extensions it
is proved that the Galois correspondence (between groups and extensions) works
well in this theory.

Theorem 2.2 Let L/K be the Picard-Vessiot extension associated to a linear dif-
ferential equation. Then there is a 1 — 1 correspondence between the intermediary
differential fields K C M C L and the algebraic subgroups H C G := Galg (L),
such that H = Galpys(L) (the extension L/M is a Picard-Vessiot extension). Fur-
thermore, we have

(i) The normal extensions M /K correspond to the normal subgroups H C G.
Then the group G/H s a linear algebraic group, the extension M /K is a Picard-
Vessiot extension and G/H = Galg (M).

(ii) Let F be a subgroup of G and K the subfield of L given by the the elements
of L fized by F. Then H := Galk,(L) is the Zariski closure (over the field of
constants C) of F (i.e.,H 1is topologically generated by F).

As a corollary, when we consider the algebraic closure K (of K in L), we
obtain Galk (K) = G/G°, where G° = Galz(L) is the identity component of the
Galois group G which corresponds to the transcendental part of the Picard-Vessiot
extension, i.e., by definition, the extension L/K is the maximal transcendental
extension between the extensions L/Lq, with L; an extension of K. If K=K
(ie., if G = GY), we say that L/K is a purely transcendental extension.

Another consequence of Theorem 2.2 is that if A C T is a Riemann surface
contained in T and L is a Picard-Vessiot extension of M(T), then Gala)(L) C
Gal M(T) (L). We will apply this in Chapter 7. In a similar way, the local Galois
group at a singular point s € T — T, Galcizye-1)(L) == Galg, (L), is a subgroup of
the global Galois group Gal (L) (as usual, we identify the germs of meromor-
phic functions at a singular point s with Laurent series centered at this point).

We will say that a linear differential equation is (Picard-Vessiot) integrable
(or solvable) if we can obtain its Picard-Vessiot extension K C L and, hence,
the general solution, by adjunction to K of integrals, exponentiation of integrals
or algebraic functions of elements of K. In other words, there exists a chain of
differential extensions K; := K C Ky C --- C K, := L, where each extension is
given by the adjunction of one element a, K; C K;11 = K;(a,d’,d”,...), such that
a satisfies one of the following conditions:



2.2. CLASSICAL APPROACH 15

() o € K,

(ii) @’ = ba, b € K;,

(iii) a is algebraic over K;.

The usual terminology is that the Picard-Vessiot extension is Liouvillian. Then,
it can be proved that a linear differential equation is integrable if, and only if, the
identity component of the Galois group, G, is a solvable group. In particular, if
the identity component is abelian, the equation is integrable.

Furthermore, the relation between the monodromy and the Galois group is as
follows.

Let T —T be the set of singular points of the equation i.e., the poles of the coef-
ficients on I'. We recall that the monodromy group of the equation is a subgroup of
the linear group, given by the image of a representation of the fundamental group
71 (') into the linear group GL(m,C). This representation is obtained by ana-
lytical continuation of the solutions along the elements of 7 (T ( see for instance
[36]). The monodromy group is contained in the Galois group and if the equation
is of Fuchsian class (i.e., it has regular singular singularities only), then the Galois
group is dense in the monodromy group (Zariski topology) i.e., the Galois group
is topologically generated by the monodromy group (see [69]). In the general case,
Ramis found a generalization of the above and, for example, he proved that the
Stokes matrices associated to an irregular singularity belong to the (local) Galois
group (see Section 2.5 below). We will formulate a generalization of this result in
Theorem 2.4 (see Appendix B for the proof).

A useful criterion for unimodularity is the following. The second order equa-
tion with coefficients p and ¢ in a differential field K

" +pt' 4 g€ =0, (2.2)
has a Galois group contained in SL(2, C) if, and only if, p = nd/d’, for some n € Z,
d € K. To show this we note that for all o in the Galois group, the Wronskian
w belongs to K if, and only if, w = o(w) = det(o)w, which is equivalent to
det(c) = 1. We get this result by Abel’s formula w' + pw = 0 (we take w = Cd",
with C' € C).
By the above criterion, the equation

£+ g¢ =0, (2.3)
(where g € K) has a Galois group contained in SL(2, C). Now the classical change
v = =& /€ leads to the associated Riccati equation

v =g+’ (2.4)

Then
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Proposition 2.3 ([81]) If the equation &" + g&€ = 0 is integrable then we are in
one of the situations 1 to 6 of Proposition 2.2, and if we assume that the Galois
group 1is not finite, then one has for the Riccati equation (2.2) the following:

1. Cases 2, 3 and 6: it has exactly one solution in K.
2. Case 4: it has two solutions in K.

3. Case 5: it has two solutions in a quadratic extension of K but they do not
belong to K.

Proof. (A less detailed statement can be found in [50].) In cases 2, 3 and 6 there
exits a solution, &1, such that

¢y _¢
U(_) = >
& ¢
for any o in the Galois group. By the normality of the Picard-Vessiot extensions,
one has that v; = —¢] /& belongs to K. Therefore v; is a solution of the Riccati

equation in K. Let us assume that there is another solution, vy of the Riccati
equation in K. Let & be defined by vy = —&5/&. Then {&;,&,} is a fundamental
system of solutions of £” + g¢ = 0, because

w
vy — V] = —,
2 T ag
w being the Wronskian of {£1,&}. But for each element

~(57)

in the Galois group G, o(v;) = v;, i = 1,2, implies that G is diagonal. Indeed, if

€& _ bt 88
¢ g b+ BE]
then Sw=0 and, therefore, 8 = 0. In an analogous way we obtain v = 0. Then G
would be diagonal and this contradicts the hypothesis.

In case 4, let {£1,&2} be a fundamental system of solutions such that o(&;) =
A1, 0(&) = A1, with o an element of the Galois group. Hence o(¢'/€) = €'/¢,
and by normality we get v; = —¢'/¢ € K, for i = 1,2. Of course one has v, # vy

because
w

a6’

In case 5, G/G? is the Galois group of the quadratic extension K/K and G°
is the Galois group of the extension L/K (see the remark after Theorem 2.2). As

V2 — VU1 =
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GY is diagonal, the proof that the Riccati equation has two different solutions v,
ve in K proceeds as in case 4. They do not belong to K because then G would
be diagonal. We note that, in case 5, if the Riccati equation has one solution K
then it has two solutions in K. Indeed, let v; = k + y/w be a solution in K, with
Kk, ,w € K, \Jw ¢ K, then vy = k — \/w is another solution in K.

Q.E.D.

We remark that although the above proposition is closely related to Kovacic’s
algorithm (see Section 2.6), we establish it in an independent way, because for
some particular equations (as for Lame’s equation, see Section 2.8.4) it gives us
good results without using all the machinery of Kovacic’s algorithm.

We finish this section with a remark about differential extensions by quadra-
tures. Let L/K be a differential extension by integrals, i.e., L = K (a1, ag, ..., as),
where af € K, i = 1,2,...,s. Then L/K is a Picard-Vessiot extension and the
Galois group Gal(L/K) is isomorphic to an additive group G}, := (C",+), for
some 7 < s. For s = 1 (see [50, 71]), the corresponding linear differential equation
is a second order equation. For arbitrary s, we write the corresponding linear dif-
ferential equation as a direct sum of s second order equations and we obtain the
linear representation of the Galois group as an additive subgroup of the unipotent
linear group contained in GL(2s,C). In particular, Galg (L) is connected, and
L/K is a purely transcendental extension.

2.3 Meromorphic connections

Linear connections are the intrinsic version of systems of linear differential equa-
tions. Moreover, with connections it is possible to work with necessarily non-
trivial fibre bundles. A good reference for this section is [104] (see also [29, 30,
51, 69]).

Let I" be a (connected) Riemann surface. We denote by Or its sheaf of holo-
morphic functions, by Qr its sheaf of holomorphic 1-forms (corresponding to the
canonical bundle) and by AT its sheaf of holomorphic vector fields. We will identify
vector fields with derivations on Or. We have a sheaf structure of Lie-algebras
on Ar. There exist, clearly, natural structures of Op-modules on Qr and AT,
respectively. There exists a natural map (contraction)

Qr Qor Xr — Orp,

wQUv < w,v >.

Let V' be a holomorphic vector bundle of rank m on I'. We denote by Oy its
sheaf of holomorphic sections. Then a holomorphic connection is by definition a
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map
V:0y = Qr ®o Oy,

satisfying the Leibniz rule
V(v+w) =Vv+ Vuw

Vfv=df @ v+ fVu,

were v, w are holomorphic sections of the fibre bundle V and f is a holomorphic
function.

By definition a section v of the fibre bundle V is horizontal for the connection
V if Vo = 0.

If the connection V is fixed, then to each holomorphic vector field X over T,
we can associate the covariant derivative along X

V)(:Ov—>0v,

Vx:v—=-><Vuy, X >.

It is clearly a C-linear map. If we denote by Endc(Oy ) the sheaf of spaces of
C-linear endomorphisms of the sheaf of complex vector spaces Oy, then we get a
map

V:&r — E’rde(Ov),
X = V)(,

such that
Vx((w+w)=Vxv+ Vxw,

Vx(fv) = X(f)v+ fVxv, f€Or.

We are going to compute V in local coordinates. Let X be a holomorphic
vector field over an open subset U of the Riemann surface I'. Restricting U, if
necessary, we can suppose that there exists a holomorphic local coordinate ¢ over

U such that
d

X =—.

dt
Let e = {e1, ..., em } be a holomorphic frame of U, i.e., the data of m holomor-
phic sections of V over U, such that e;(p), ..., ey, (p) € V), are linearly independent

at every point p € U. Then we can set

m
V@j = — Zaijei,
=1
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(a;j) being a square matrix of order m whose entries are holomorphic functions
over U. We write Ve = —Ae.

The matrix A = (a;;) is by definition the connection matrix and it determines
completely the connection: if v is a holomorphic section over U, then we can write

it in coordinates
m
U= E :gieia
i=1

where the ;s are holomorphic functions over U, and we have

Vo = Z(E - Zaz’jfj)eia
i=1 j=1
i.e., the connection V is represented in the local coordinate ¢ and the frame e by
the linear differential operator
d

=——-A

V::V% 7

Hence, we can associate to the solutions { € O of the linear differential system

d&; i )
d_tz = jz::laijfj, 1=1,...,m,

the horizontal sections v of the connection
Vo =0.

More precisely the map
m
DL
i=1

induces an isomorphism of m-dimensional complex vector spaces between the
space of solutions and the space of horizontal sections.

In fact we are interested not only in differential equations (or systems) with
holomorphic coefficients, but also in differential equations (or systems) with mero-
morphic coefficients. Therefore we need to extend the above concept of holo-
morphic connection in order to deal with poles and consequently to introduce
meromorphic connections. We shall follow Section 4 of [104] (a more elaborated
analysis in the context of free coherent sheaves can be found in [67]).

Let T be a Riemann surface and V' a holomorphic vector bundle on T. In our
applications, the following specific conditions will hold. Let I' C T be an open
subset such that S = T —T is a discrete subset (the singular set). We will consider
meromorphic sections of the bundle V, and in general we will limit ourselves
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to sections whose restriction to I' is holomorphic. Then at any point s € S
their components, in coordinates with respect to a holomorphic local frame, are
meromorphic functions in a neighbourhood Uy, which are holomorphic on Us—{s},
with a pole at s. Using a local holomorphic coordinate ¢, vanishing at s, we can
identify these functions with elements of the field C{t}[¢t!]. That is the field
C{t}[t™'] with the field ks of germs at s of meromorphic functions.

We denote by Mgy the sheaf of meromorphic functions over T, by M% =
Mg R0 () the sheaf of meromorphic 1-forms, and by Lz = Mg ®o A its sheaf
of meromorphic vector fields. We have a sheaf structure of Lie-algebras on L.
Clearly there exist natural structures of sheaves of Mp-vector spaces on ./\/llF and
Lz, respectively. There exists a natural map (contraction)

1
MF ®MF EF — MF,

pRU =< p,v > .

Let V be a holomorphic vector bundle of rank m on I'. Then a meromorphic
connection on V is by definition a map

V: MV — M%@MFMV7
satisfying the Leibniz rule
V(v+w) =Vv+ Vuw

Vfv=df v+ fVu,

where v, w are holomorphic sections of the fibre bundle V' and f is a meromorphic
function.

If the meromorphic connection V is fixed, then to each meromorphic vector
field X over I' we can associate the covariant derivative along X

Vx: My = My,

Vx:v=<Vy, X >.

It is clearly a C-linear map. Then if we denote by Endc(My ) the sheaf of
C-linear endomorphisms of the sheaf of complex vector spaces My, we get a map

V: Ly = Endc(My),

X —Vyx,

such that
Vx((w+w)=Vxv+ Vxw,
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Vx(fv) = X(f)o+ fVxv, [feMr.

Let V be a meromorphic connection over I'. We will say that it is holomorphic
at a point p € T if, for every germ at p of the holomorphic vector field X, the space
of germs at p of holomorphic sections of the fibre bundle V' is invariant by the
covariant derivative Vx. Later we will consider connections that are meromorphic
on I' and holomorphic on I'. They can have poles on the singular set S.

If we want to compute in local coordinates in a neighborhood of a singular
point s € S, then we choose a holomorphic coordinate ¢ at s (vanishing at s) and
we write our given vector field X = f (t)%, where f € ks (in general we cannot
write X as %, because the field X may vanish or admit a pole at the point s, as
we shall see later in the applications). Then using a holomorphic frame e of V' as

above, we get a differential system

V= f(t)% _AQ).

We can introduce the meromorphically equivalent differential system

d
< - B(0),
where B = f~'A is a meromorphic matrix over U.

We denote the field of global meromorphic functions over I' by kg It is
important to notice that every holomorphic fibre bundle over a Riemann surface
T is meromorphically trivial over T (i.e., globally, see Appendix A). Therefore its
space of global meromorphic sections is isomorphic to some k%l In particular,

we can choose a non-trivial meromorphic vector field X over I'. It will define
a derivation ¢ over the field kx and we will get a differential field (kg,d). If V
is a holomorphic vector bundle over I' and if M(I') ~ k' is its kr-vector space
of meromorphic sections, then the covariant derivative Vx induces a C-linear
endomorphism of the space M(T') and therefore it can be interpreted as a C-
linear endomorphism of the space k%l We can choose as a local coordinate ¢

over I a non-trivial global meromorphic function over I' (it will be a true local
coordinate, i.e., a local biholomorphism, but perhaps over a discrete subset). We
can write X = f(t)%, where f € k. Then we can choose a global meromorphic
frame of V over I', that is a set e = {ey,...,en} of meromorphic sections of
V inducing a true holomorphic frame over a non-trivial open subset (necessarily
dense). Finally, proceeding as above, we can interpret our connection as a global

meromorphic differential system

V=765 ~ A,
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or equivalently

d
— — B(t
&= B(),

where B = f~'A is a global meromorphic matrix whose entries belong to k.

In the preceding process it is in general necessary to introduce new poles.
We will keep our notations, always denoting by S the new singular set and by
[ the new regular set (i.e., the set S can be bigger than the set of poles of our
connection).

We will also need meromorphic connections on meromorphic bundles over a
Riemann surface I'. It is easy, using Appendix A, to adapt the preceding defi-
nitions. We leave the details to the reader. In our applications the more general
situation will be the following. The symbol V will be a meromorphic connection
on a meromorphic bundle over r. By restriction, we will get a meromorphic con-
nection on a holomorphic bundle over an open dense subset ' C F', and by a new
restriction a holomorphic connection on a holomorphic bundle over an open dense
subset I' C T. The sets T — T and T — T will be discrete ( frequently finite in the
applications) subsets and they will correspond to the introduction of equilibrium
points and points at infinity, respectively.

In the rest of this section we fix the (connected) Riemann surface T', and
the non-trivial meromorphic vector field X over I'. We interpret this field as a
derivation on the field of global meromorphic functions kg = M(T) over I'. As we
explained above, we can consider a meromorphic vector bundle as a vector space
over kg.

From a given meromorphic connection V defined on the vector bundle V', we
can obtain an infinite number of induced meromorphic connections ([29, 30, 51,
69, 104]) by natural geometric processes. The idea is to extend naturally the con-
nection to the tensor levels by requiring that the Leibniz rule be satisfied by the
tensor products (V(u®v) = Vu®v+v® Vo) and that the action on a direct sum
is the evident one (i.e., V(U®V) = VU®VV). So, we can construct connections:
V*, ®FV, AFV, SkV, acting on the bundles V*, ®FV, AFV, SFV, re-
spectively. By definition, ®°V is the field of meromorphic functions and we endow
it with the connection X (interpreted as a derivation on this field). With all these
constructions we can build various direct sums and we can iterate the process. So,
for example, A3(V* @ S2V) is an induced connection. If a subbundle is invariant
by a connection, this connection is by definition a subconnection. We can also
introduce subconnections and quotients in our machinery.

We observe the similarity of the above definitions to derivations in differential
geometry (Lie derivative, etc...). This is not merely a coincidence as we will see
in Section 4.1, where we will consider a connection as a Lie derivative.

In a natural way we can generalize the above in order to consider construc-
tions using a family of given connections. For instance, let V; and Vg be two
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meromorphic connections over the vector bundles V; and V5, respectively. The
tensor product V1 ® Vs is defined by the Leibniz rule as above, V; ® Vy(u® v) =
Viu® v+ v ® Vav, where v € Vi and u € V5. In an analogous way we define the
direct sum of connections, etc.... Finally, we get the tensor category of the mero-
morphic connections over I'. The homomorphisms of this category are defined in
the following way. A homomorphism ¢ between V; and V5 is a homomorphism of
the underlying vector spaces (over the field kr) ¢ : Vi — V5, such that ¢V = V¢
(for more details and formal definitions, which are not needed here, the interested
reader can look at [29]). Now it is clear how to extend the usual definitions
on homomorphisms of vector spaces to homomorphisms of connections. For in-
stance, an exact sequence of connections is given by an exact sequence of vector
spaces, where the homomorphisms that define the sequence are homomorphisms
of connections.
Now, we will obtain the connection matrices for some examples.

Ezample 1. The dual connection V* is defined from the Leibniz rule by

X <a,v>=<V'a,v >+ < a,Vv >,

where v € V, a € V*, and <,> denotes the duality. If e and e* are dual frames
in V and V*, respectively, then we have

d
<V¥e*,e>=— <e'e>+ <e*ed>=<e*Al e >,

dt
A is the connection matrix of V in the frame e, i.e., Ve = —Ae. Hence, we have
obtained just the adjoint differential equation: the adjoint differential equation of
dg
X _ 4
dt ¢
is by definition
dn
—L=_Aly.
dt 1

We observe that, in order for o = ;™ ;€ to be a linear first integral of
Vo =0,
it is necessary and sufficient that
Via =0.

This is a well known property of the adjoint. In a similar way, it is possible to
prove that the horizontal sections of S¥V* are the homogeneous polynomial first
integrals of the linear equation defined by the initial connection on V.
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It is usual to write V instead of V*, ®"*V, etc..., if the vector spaces on which
they act are clear enough. We will follow this convention.

Ezample 2. The connection A"V (dimV =m) is defined by

m
ViAo Avg) = 01 Ao AVU A+ A,
=1

Then V(ey A--- Aey) = trd eg A -+ A ep. We have obtained the differential
equation for the determinant of a fundamental matrix, i.e., the so-called Jacobi-
Abel formula ( vy A« A vy, = det(vy,...,vm) e A= Aep).

Ezample 3. Let 0 — (V1, V1) — (V, V) — (V2, V3) — 0 be an exact sequence
of connections. In other words the connection (V7, V1) is a subconnection of (V, V)
(i.e., isomorphic to the restriction of V over an invariant subspace of V' by V), and
(Va, V3) is isomorphic to the “normal” connection (V/Vi, V) to (Vi, V), defined
in the natural way. It is easy to verify that this normal connection is well defined.
Then if we take a basis ey, ..., e, ex11,...,en of V such that ey, ..., e; is a basis of
V1, the matrix of the connection V (we write in a more informal way V instead

of (V,V), etc...) is given by
A, B
0 Ay /’

A; and Aj being the matrices of the connections Vi and Vs respectively.

Now the method for solving the linear equation of (V, V) is the following. Let
Uy, Uy be fundamental matrices of the connections Vi, V2 respectively, then a
fundamental matrix of V is given by

u, VvV
0 Uy |~

By writing explicitly the differential equation of U,

dUu
—=A
7 U,

it is clear that the matrix V' is obtained from U; and Us by the method of variation
of constants. Then we have the chain of Picard-Vessiot extensions

K C K(Ul) C K(UI,UQ) C K(Ul,UQ,V),

the last one being obtained by variation of constants.
As we will see later in Chapter 4, a similar method (but more involved due
to the additional structure given by the symplectic form) will be used in order
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to reduce the variational equation (along a particular solution of a Hamiltonian
system) to the normal variational equation. This will be also useful in Chapter 8.

In this book we are mainly interested in the following particular vector bundles
and connections. A (meromorphic) symplectic vector bundle is a (meromorphic)
vector bundle V such that there is a holomorphic section Q € A?V* whose restric-
tions to the fibres of V' are not degenerated (the rank m of V' is 2n).

Then we have also the following result on the trivialization of a symplectic
vector bundle.

Proposition 2.4 ([77]) A symplectic vector bundle V' over a Riemann surface
is (symplectic) meromorphically trivial (i.e., there exists a global symplectic frame
given by meromorphic sections).

We will give a proof of the above proposition in Appendix A.

As above we denote by kg the field of meromorphic fuctions over I'. We denote
by & the kg-vector space of global meromorphic sections of V. The form €2 induces
a kg -bilinear antisymetric map

Q:(€®S—>kf,

(v, w) — Qv,w).

If v, w are holomorphic sections of V in a neighborhood of a point p € T, then
Qv,w)(p) = Qv(p),w(p)) € C. Consequently the kg -bilinear map

is non-degenerate.

For many applications, we can identify the symplectic bundle V' with the
symplectic vector space £ over the field k. In this situation all the purely algebraic
results on symplectic vector spaces over the numerical fields R or C remain also
true [6]. In particular, there are symplectic bases i.e., canonical frames given
by global meromorphic sections, and, with respect to a symplectic base, €2 is
represented by the canonical form

(50

Furthermore, changes of symplectic bases are given by elements of the symplectic
group Sp(n,ky) C GL(2n, kg).

By definition we will say that a (holomorphic or more generally meromorphic)
connection V over the symplectic bundle V' (or (V,V,Q) in a more formal way)
is symplectic if () is a horizontal section of A2V*, i.e., it satisfies V2 = 0 (for a
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related definition see [8]). Then, it is easy to see that, after a choice of coordinates,
if we compute the connection matrix A of V in a symplectic frame e, it satisfies

A'J+JA=0

(to show this, it is sufficient to note that 0 = VQ = V(e* ® Je*')). This condition
is equivalent to the existence of a meromorphic symmetric matrix S such that
A = JS, and the matrix A belongs to the Lie Algebra of the symplectic Lie group
with coefficients in the field k5. Then the equation

Vo=0

is the intrinsic expression of the linear Hamiltonian system

£ = JSE,

where £ = (£1,...,&2,)! are the coordinates of v in the symplectic base and, as
usual in dynamical systems, we denote the temporal derivative by a dot.

Conversely, if the matrix of the connection V computed in a symplectic frame
is symplectic, then V2 = 0 and this connection is symplectic. Therefore our
definition of a symplectic connection is equivalent to the definition of a connection
with structure group G = Sp(2n; C) given in Appendix A.

All the above constructions remain valid if we start with a local meromor-
phic connection on the vector space V over the field C{t}[t~!] with the suitable
dictionary: % instead X, etc....

2.4 The Tannakian approach

We present now the Galois theory from the intrinsic connection perspective [21,
29, 51, 69]. Let (V,V) be, as in the above section, a meromorphic connection
over a fibre bundle of rank m. Then, we consider the horizontal sections, SolV :=
Solp,V of this connection at a fixed non-singular point pg € I' (they correspond to
solutions of the corresponding linear equation). By the general existence theory
of linear differential equations, SolV is a vector space over C of dimension m (if
we consider the solutions in a simply connected domain that contain py). Then
the mapping

(V,V) — SolV

is called a functor fibre (it is a functor between the tensor category of the mero-
morphic connections and the tensor category of complex vector spaces).

Now, as in the previous section, we obtain the family of tensor constructions:
(V, V), (V*,V*), etc..., from a given connection. In this family we include the
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subconnections. A subconnection of a construction (C(V),C(V)) is an object
(W, C(V)w), W being a subbundle of C (V) invariant by C(V). The next step is
to consider the corresponding spaces of solutions by the functor Sol, for all the
elements of this extended family. Then C'(SolV) = Sol(CV), and the Galois group
of the initial connection (V, V), GalV, is defined as the subgroup of GL(SolV) =~
GL(m, C), which leaves invariant the spaces corresponding to all constructions
C(V). We remark that GL(SolV) acts on any construction by the usual pull-
back. The key point is that the above group is isomorphic (as an algebraic group)
to the Galois group G of the corresponding linear equation. This approach to the
Picard-Vessiot theory is called the Tannakian point of view.

Ezample. Let (V,V,Q) be a symplectic connection with rank V = 2n and X the
holomorphic vector field over T'. We make the construction (Mrp(T) ® A2V*, X &
A?V*), Mr(T) being the (global) meromorphic functions over T, holomorphic on
I'. The line subbundle generated by 1 + Q, Mp(T)(1 + ), is invariant, because
VQ=0and V(f(1+ Q) = X(f)(1+Q), f € Mp(T). Hence, the corresponding
construction by Sol, C(1 + p) (Q is a horizontal section of A?V*) is invariant
by the Galois group. Therefore, the Galois group is contained in the symplectic
group Sp(Sol(V')) = Sp(n, C). A different proof of this in a more general context

will be given in Appendix C.

2.5 Stokes multipliers

The objective now is to state a theorem of Ramis which relates the Picard-Vessiot
theory with the Stokes multipliers at an irregular singular point [90, 69, 74, 16].
For simplicity, we will explain only the main concepts necessary to understand
the theorem, for the case of a second order differential equation (equivalently, for
a system of dimension two). The reader can find a good introduction in [74] and
the complete proof is in [16].

We start with the local case and we will consider that the singular point is at
infinity, 2o = co. Furthermore, we denote by K := C[[z™']][z], K := C{z~"}[z],
the field of formal and convergent Laurent series respectively. Then, the objective
is to calculate the Galois group of the equation

d 51 o 51
- ( . ) _A< ; ) , A€ Mat(2,K). (2.5)

We also assume that the Newton polygon of the above equation has only one
integer slope k € N*. This is called the non-ramified case and the general case
can be reduced to this one. By the Newton polygon of (2.5) we mean the Newton
polygon of the equivalent second order single differential equation in z = %, ie.,
the Newton polygon of the differential polynomial P[D] = pD? + ¢D + r (the
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equation is P[D]¢ = 0), with D = d%, p € Clz], q,r € C{z}, p(0) = q(0) = 0.
By the Fuchs theory, it is not difficult to see that the point zp = co is an irregular
singular point if, and only if, the Newton polygon has a side with slope in (0, 00).

By the classical theory (Huhukara-Turritin, [105]), there is a fundamental
matrix U of (2.5), such that,

U=zle®H, LeM@? C),

where Q = diag(q1,q2), q1,92 € C[z], LQ = QL, and H is holomorphic in any
open angular sector at oo of opening angle < 7/k,

Sa(m/k) :=={t:|z| > a,argx € (d — 7 /2k,d + w/2k)},

with a a suitable constant and &k := deg(¢1 — ¢2). Then H has an asymptotic
expansion (whose entries are formal series):

H~H, HeGL2K).

Here d is the argument of the bisecting line of the sector. A sector is characterized
by d, a, where « is the opening. Then we will denote this sector by Sy(«).
This means that equation (2.5) has the formal solution

(}':xLeQI;I, U~U.

We observe that for ¢; = g = 0, we are in the regular situation (the singular
point is a singular regular one, and the formal series U is convergent).

In order to state the Ramis theorem we need some terminology: the exponen-
tial torus, the formal monodromy and the Stokes multipliers.

The exponential torus of (2.5) is defined (up to an isomorphism) as the Galois
differential group of the Picard-Vessiot extension

K C K(e?,e?).

We see that this group is the Galois group of the trivial equation, considered over
K,

& _ dai,
de  dz>"

This exponential torus is (isomorphic to) C* or ( C*)? if the rank of the Z-
module M generated by {qi,¢2} is one or two, respectively. In the first case, the

action of C* is defined by

=1,2.

Areli = et X" Ne CF, <s>= Mg,
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and, in the second case,
Ai: el — )\ieqi, 1 =1,2.

By definition this action is constant on the coefficient field K.
The formal monodromy is the transformation M € GL(2, C), such that

U— UM,
when we formally make the circuit
z — Mg,

It is clear that, by analytic continuation, it is possible to continue the analytic
solution U to sectors Sy(a), with a > m/k. The problem is that, in this new
sector, this solution is not necessarily asymptotic to U. The lines that bound the
sectors where the asymptotic relation (2.5) remains valid are called Stokes rays.
These lines are characterized by

lim [z 9% (4:=2) Re(q, — g3) = 0,

when |z| tends to oo along this line. We can think that the analytic continua-
tion from a sector S4(7/2), where the asymptotic expansion (2.5) is satisfied, is
obtained by rotating the bisecting line d (in both directions), but preserving the
opening 7/k. Then we stop when a bounding side of the sector reaches a Stokes
ray. The bisecting line ds of this bounding sector Sy, := Sq, (7/k) is called a
singular line (sometimes it is called an anti-Stokes ray). They are characterized
by the maximal exponential decay for e?~% or e%27%. By the general theory,
there are two sectors Sy, ¢, Sd, ¢, ( ds + € means a small change in the argument
of ds by €, 0 < € < m/2k, and keeping the opening less than 7/k). Hence, we get
two analytical solutions U', U~ defined over Sy, (by analytical continuation to
this sector, € going to 0). Then we have

U~ =U*Stog,,

where, by definition, the matrix Stos, € GL(2,C) is the Stokes matrix in the
singular direction dg. It is possible to see that these Stokes matrices are unipotents,
i.e., of the form (in the suitable fundamental system)

(01)
(1)

or,
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In particular, they belong to SL(2, C). The complex numbers i, A are called the
Stokes multipliers. In particular they belong to SL(2, C).

In an analogous, but more delicate, way (in this general case the phenomenon
of multi-summability appears) we may describe the exponential torus, the formal
monodromy and the Stokes matrices for a local system of differential equations of
arbitrary dimension m

d
é =A¢{, A€ Mat(m,K) (2.6)
(see [74, 16]).

Then

Theorem 2.3 ([90, 69, 16]) The Galois (local) group of (2.6) is topologically
generated by the exponential torus, the formal monodromy and the Stokes matrices

(at x =0).

We note that among these generators the main source of non-integrability
comes from the Stokes multipliers. For example, it is not difficult to prove that
the Zariski closure of the group (algebraically) generated by the two matrices

(01)
(1)

where A, p are both different from zero, is SL(2, C) [18].

It is possible to generalize the above theorem to a global linear differential
equation in the following way. Let K be the field of meromorphic functions on a
Riemann surface X and S C X a discrete set. Then (see Appendix B)

Theorem 2.4 ([77]) Let

% _ A¢, A€ Mat(m, K) (2.7)
dx
be a linear differential equation, S being the set of singular points (i.e., poles of
the entries of A). Let P; be the set of Stokes matrices and exponential torus at
each of the singular points a; € S, and let M be the usual monodromy group of
(2.7) . Then the Galois group of (2.7) is topologically generated by P; (a; € S)
and M.
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2.6 Coverings and differential Galois groups

In concrete differential equations it is useful, if possible, to replace the original
differential equation over a compact Riemann surface, by a new differential equa-
tion over the Riemann sphere P! (i.e., with rational coefficients) by a change of
the independent variable. This equation on P! is called the algebraic form of the
equation. In a more general way we will consider the effect of a finite ramified
covering on the Galois group of the original differential equation. In Appendix B
the following theorem is proved.

Theorem 2.5 ([77]) Let X be a (connected) Riemann surface. Let f : X' —
X) be a finite ramified covering of X by a Riemann surface X'. Let V be a
meromorphic connection on X. We set V' = f*V. Then we have a natural
injective homomorphism

Gal (V') = Gal (V)

of differential Galois groups which induces an isomorphism between their Lie al-
gebras.

We observe that, in terms of the differential Galois groups, this theorem means
that the identity component of the differential Galois group is invariant by the
covering.

An algebraic version of the above theorem is given by Katz [51]. This result is
also proved in [8] (Proposition 4.7) for the particular case of a Fuchsian differential
equation (see also [24, 25, 27, 9]). It is the mapping version for the so-called (in the
cited references ) method of reduction by discrete symmetries. Then this method
is also valid in our more general setting. It is important to notice that, if one of
the connections in the proposition is symplectic, then the identity components of
the Galois groups of both connections are symplectic too.

2.7 Kovacic’s algorithm

The Kovacic algorithm gives us a procedure in order to compute the Picard- Vessiot
extension (i.e., a fundamental system of solutions) of a second order differential
equation, provided the differential equation is integrable. Reciprocally, if the dif-
ferential equation is non-integrable, the algorithm does not work (see[56]). In this
(necessarily brief) description of the algorithm we essentially follow the version of
the algorithm given in [33, 32]. The author is indebted to Anne Duval for some
clarifications about his papers.

Given a second order linear differential equation with coefficients in C(z), it is
a classical fact that it can be transformed to the so-called reduced invariant form
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" +g¢ =0, (2.8)

with g = g(z) € C(x).

We remark that in this change we introduce the exponentiation of a quadrature
and the integrability of the original equation is equivalent to the integrability of
the above equation although, in general, the Galois groups are not the same.

The algorithm is based on the following two general facts:

(A) The classification of the algebraic subgroups of SL(2, C) given in Proposition
2.2 (the Galois group of the equation (2.8) is contained in SL(2,C): see Section
2.1).

(B) The well-known transformation to a Riccati equation, by the change v =

_gl/g,

v =g+l (2.9)

Then (see Section 2.2) the differential equation (2.8) is integrable, if and only
if, the equation (2.7) has an algebraic solution. The key point now is that the
degree n of the associated minimal polynomial Q(v) (with coefficients in C(z))
belong to the set

Limaz = {1,2,4,6,12}.

The determination of the set L of possible values for 7, is the First Step of
the algorithm. We remark that for n = 4, n = 6 and n = 12, the Galois group of
(2.8) is finite (hence these values are related to the crystalographic groups). The
two other steps of the algorithm (Second Step and Third Step) are devoted
to computation of the polynomial Q(v) (if it exists). If the algorithm does not
work (i.e., if the equation (2.7) has no algebraic solution) then equation (2.8) is
non-integrable and its Galois group is SL(2, C).

Now we will describe the algorithm.

Let (z)
s(x
g=9(z) = o)’
with s(z), t(z) relatively prime polynomials, and ¢(z) monic. We define the
following function h on the set Lyae = {1,2,4,6,12}, h(1) =1, h(2) =4, h(4) =
h(6) = h(12) = 12.
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First Step

If t(z) = 1 we put m = 0, else we factorize #(x) in monic relatively prime
polynomials. Then

1.1. Let I be the set of roots of #(z) (i.e., the singular points at the finite
complex plane) and let T' = T U oo be the set of singular points. Then the order
at a singular point ¢ € I is, as usual, o(c) = 7 if ¢ is a root of multiplicity 7 of
t(x). The order at infinity is defined by o(o0) = max (0,4 + deg(s) — deg(t)). We
call m* the maximum value of the order that appears at the singular points in I,
and T'; is the set of singular points of order 4 < m™.

1.2. If m™ > 2 then we write 2 = card(I'y), else 72 = 0. Then we compute

v =792 +card(U roaa Tg).

3<k<m+

1.3. For the singular points of order one or two, ¢ € 'y UT';, we compute the
principal parts of g:

g = ac($ - 0)72 + /60(37 - C) + 0(1)7

if ce I, and

g = s 2+ Booz 24+ Oz 1),
for the point at infinity.

1.4. We define the subset L' (of possible values for the degree of the minimal
polynomial Q(v)) as {1} C L' if y =y, {2} C L' if v > 2 and {4,6,12} C L if
mt < 2.

1.5. We have the three following mutually exclusive cases:
1.5.1. f m* > 2, then L = L.

1.5.2. If m* < 2 and the two following conditions are satisfied:

1.5.2.1. For any c € T, /1 +4a, € Q, and > v e = 0,
1.5.2.2. For any c¢ € I such that /1 +4a, € Z, logarithmic term does not
appair in the local solutions in a neigbourhood of ¢,

then L = L'.
1.5.3. If cases 1.5.1 and 1.5.2 do not hold then L = L' — {4,6,12}.

1.6. If L = (b, then equation (2.8) is non-integrable with Galois group SL(2, C),
else one writes n for the minimum value in L.
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(We remark that condition 1.5.2.2 is new. As the reader can check, it follows
trivially from the fact that the existence of a logarithm in a local solution is an
obstruction to have a finite monodromy and Galois group. I decided to include
this condition here because it has been applied with success in some important
applications [49].)

For the Second Step and the Third Step of the algorithm we consider the
value of n fixed.

Second Step
2.1. If oo has order 0 we write the set

= {0, h(nn),2h(:)

2.2. If ¢ has order 1, then E. = {h(n)}.
2.3. If n = 1, for each c of order 2 we define

1 1
E,. = {5(1 + V1 + 4o, 5(1 —V1+4a.}.

2.4. If n > 2, for each c of order 2, we define

E.= Zﬂ{@(l - V1+4a.) —)—Mk\/l—)—élac tk=0,1,...,n}.

n

2.5. If n = 1, for each singular point of even order 2v, with v > 1, we compute
the numbers «, and (. defined (up to a sign) by the following conditions:

2.5.1. Ifc e T,

v—1

g={acl@ =)™+ Y picle = )TV + Bz - o) +0((z - )7,
=2

and we write

v—1
\/§C =z —c)V + Z ic(x — )"
=2

2.5.2. If ¢ = o0,
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v—3

g= {aooxy_2 + Z lj'i,ooxi}Q _ 500551/_3 + O((IIV_4),
=0

and we write

v—3

Vi = o7+ 3 et
=0

Then for each ¢ as above, we compute
1
E.= {5(1/ + eg—z) te =1},
and the sign function on F, is defined by

sign(3 (v +e0) = ¢,

Q¢

being +1 if 5, = 0.

2.6. If n = 2, for each c of order v, with v > 3, we write E. = {v}.

Third Step
3.1. For n fixed, we try to obtain elements € = (e.)qcr in the cartesian product
[I.cr Ee¢, such that:

(i) d(e) :=n — % Y_cer €c 1S a non-negative integer,

(ii) If » = 2 then there is at least one odd numbers in e.

If no element e is obtained, we select the next value in L and go to the Second
Step, else n is the maximum value in L and the Galois group is SL(2,C) (i.e.,
the equation (2.8) is non-integrable).

3.2. For each family e as above, we try to obtain a rational function () and a
polynomial P, such that

(1)
Q= % Z G__CC + 0n1 Z sign(€c)v/9 .

€T
cel” CGUV>1F2U

where 6,1 is the Kronecker delta.

(ii) P is a polynomial of degree d(e) and its coefficients are found as a solution of
the (in general, overdetermined) system of equations

P, =0,
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Py =—(P) —QPi—(n—14)(i +1)gPiy1, n>1 >0,
P, =_P.

If a pair (P, Q) as above is found, then equation (2.8) is integrable and the
Riccati equation (2.7) has an algebraic solution v given by any root v of the
equation

n
Z ivi =0.
= (n—1)!

If no pair as above is found we take the next value in L and we go to the
Second Step. If n is the greatest value in L then equation (2.8) is non-integrable
and the Galois group is SL(2, C).

We notice that a remarkable simplification of the above algorithm was obtained
in [100] for irreducible differential equations, and an algorithm for third order
differential equations is given in [97, 98].

2.8 Examples

We now illustrate the Picard-Vessiot Theory with some examples. As we are
interested to know when the identity component of the Galois group is abelian
(see Chapter 4), we make explicit it in the known cases.

2.8.1 The hypergeometric equation

The hypergeometric (or Riemann) equation is the more general second order linear
differential equation over the Riemann sphere with three regular singular singu-
larities. If we place the singularities at x = 0, 1, 0o it is given by

d*¢ l—a—-d 1—y—9" d¢
w Pt .
oo/ vy BB — ad’ —vv'
o — 2.1

where (a, '), (v,7'),(8, 8") are the exponents at the singular points and must
satisfy the Fuchs relation a + o' +v ++' + 8+ 8/ = 1. We denote the exponent
differences by \= o — o/, v =y —+' and i = 8 — A
We also use one of its reduced forms
d?¢ c—(a+b+ 1)z d¢ ab
dz? z(z — 1) dz  z(z —1)

£ =0, (2.11)
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where a, b, c are parameters, with the exponent differences A=1-— c,V=c—a—b>
and i = b — a, respectively.

Now, we recall the theorem of Kimura that gives necessary and sufficient
conditions for the hypergeometric equation to have integrability.

Theorem 2.6 ([52]) The identity component of the Galois group of the hyper-
geometric equation (2.10) is solvable if, and only if, either

(i) At least one of the four numbers A+ i + 0, =X+ A4+, \—fji+0, A\ +ji— D
s an odd integer, or

(ii) The numbers X or —X, i or —fi and U or —0 belong (in an arbitrary order)
to some of the following fifteen families

1 | 1/241|1/24+m | arbitrary complex number

2 [12+1 | 13+m 1/3+¢

3 12/34+1|1/3+m 1/3+¢ I +m +q even
41241 1/3+m 1/4+q

5 12/3+1|1/44m 1/44¢q [ +m +q even
6 [1/2+1|1/3+m 1/5+q

712/5+1]1/3+m 1/34+¢q [ +m +q even
8 12/3+1|1/5+m 1/5+¢ [ +m +q even
9 |1/24+1|2/54+m 1/54+¢q [+ m +q even
101 3/5+1|1/3+m 1/5+¢ [ +m +q even
1112/5+11]2/5+m 2/5+¢q [ +m +q even
12 12/3+1[1/3+m 1/54¢q [ +m +q even
13 14/5+1 | 1/5+m 1/54¢q [ +m +q even
4| 1/2+1]2/5+m 1/3+¢q [ +m +q even
15 3/5+1]2/5+m 1/34+¢q [ +m +q even

Here I, m and q are integers.

We recall that Schwarz’s table gives us the cases for which the Galois (and
monodromy) groups are finite (i.e., the identity component of the Galois group is
reduced to the identity element) and is given by fifteen families. These families are
given by families 2-15 of the table above and by the family (1/24+Z)x (1/24+Z)xQ
(see, for instance, [88]). As this last family is already contained in family 1 of the
above table, all of the Schwarz’s families are, of course, contained in the above
table .

2.8.2 The Bessel equation

The Bessel equation is
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d d
== fx—=+ (2 —n?)E =0, (2.12)
T T

with n a complex parameter. This equation is a particular confluent hypergeo-
metric equation (by a limit process two of the singular points in a variant of the
hypergeometric equation coincide).

As (2.12) is one of the most simple but non-trivial (i.e., in general, non-
integrable) equations with Stokes phenomenon, we are going to make explicit
for it the concepts introduced in Section 2.5.

First, we observe that the Galois group is contained in SL(2,C), since 1/z
is a logarithmic derivative (see Section 2.2). It is an equation with two singular
points, 0, oo, the first one being regular singular and the second one irregular.
We are interested in the point at infinity.

There are several ways to compute the matrices (Q and L of Section 2.5. For
example, we can follow the general constructive method of the Huhukara- Turritin
theory [105, 10]. First, we make a formal change

(1))

where P € Mat(2,K) (K := C[[z"']][z]) which formally diagonalizes the equa-
tion. The solution is precisely the formal solution in equation (2.12), and is found
step by step in a recursive way ([105, 10]). In this way we obtain ¢; = ix = —¢y
and L = —1/2I. The exponential torus is C* and the formal monodromy M =—1I.

The Stokes rays are Ry and R_, and the singular lines 1R, iR _. Hence, we
have two Stokes multipliers (one for each singular line),

(1~
5t1_<01),

10
su-(10).

But, for this equation the global theory (coefficients in C(z)) and the local
one (coefficients in K = C{{z !}}[z]) are essentially the same. We note that
the actual monodromy My around 0 and around oo are the same, therefore the
differential Galois group at the origin can be interpreted as a subgroup of the dif-
ferential Galois group at infinity. It is possible to compute the actual monodromy
My in the classical basis at the origin, which is of course different from the basis at
infinity introduced in the previous computation. We get My = diag(e?™", e~27"),

It is easy to relate the actual monodromy and the formal monodromy at infinity
using the Stokes multipliers:



2.8. EXAMPLES 39

My = Sty M St,.

Now, as the trace is an invariant, we get
trMy = 2cos(2mn) = —Ap — 2, A\p = —4cos’an.

Hence, if n does not belong to Z + 1/2, the Bessel equation is non-integrable.
In fact, this necessary condition for integrability is also sufficient. So by the
classical theory (see, for example, [62]) it is well known that the Bessel functions
for n € Z + 1/2 can be expressed by elementary functions: the Picard-Vessiot
extension is obtained by exponentiation of integrals of elements of C(x).

2.8.3 The confluent hypergeometric equation

One of the forms of the general confluent hypergeometric equation is given by the
Whittaker equation [109]

¢ 1 Kk  4u—1

2 am gt T =l (2.13)

with parameters x and p. The singular points are z = 0 (regular) and z = oo
(irregular).

As in the case of the Bessel equation we have two singular lines associated to
the irregular point for (2.13). For computation of the Galois group, the following
proposition is useful ([69], subsection 3.3))

Proposition 2.5 There is o fundamental system of solutions such that if o, 8
are the two Stokes multipliers corresponding to the two singular lines, with corre-

sponding Stokes matrices
1l «
0o 1)’

1 0
g 1)’
then

(i) « = 0 if, and only if, either k — p € %-i—N ork+u € %—i—N.

(ii) B =0 if, and only if, either —x — p € %+N or —k+p € %+N.

Furthermore (with respect to the same fundamental system of solutions), the
group generated by the formal monodromy and the exponential torus is given by
the multiplicative group
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(&) nec)

As a consequence, we get the abelian criterion expressed in terms of the pa-
1 1

rameters p:=k +p — 5 and ¢: =K —pu — 5.
Corollary 2.1 The identity component G° of (2.13) is abelian if, and only if,
(p,q) belong to (N x (=N*)) U ((=N*) x N) (i.e., p, q are integers, one of them
being positive and the other negative).

We observe that the abelian case (G° abelian) for the Whittaker equation is
only possible when the two Stokes multipliers are zero and this corresponds to
the diagonal case 4 of the classification given by Proposition 2.2 (the Whittaker
equation is a symplectic one). If only one of the Stokes multipliers is different
from zero we are in case 6 of this classification, and we have integrability but
the identity component of the Galois group is not abelian. If two of the Stokes
multipliers are different from zero, we fall in case 7 with Galois group SL(2,C),
as we remarked in Section 2.5.

If in the Bessel equation (2.12) we make the change of the dependent variable
E=qg 2y and of the independent variable z = z/2i, we get a Whittaker equation

d’>n 1 4n® -1

= (Gt —

dz 4 4z
with parameters kK = 0 and 4 = n. As in the above change we only introduce
algebraic functions, the identity component of the Galois group of the Bessel
equation is preserved.

)yn =0, (2.14)

2.8.4 The Lamé equation
The algebraic form of the Lamé Equation is [88, 109]

d*n  f'(z) dn Az + B

a2 " 2f(z) dz f(z)

n=0, (2.15)

where f(z) = 423 — gox — g3, with A, B, go and g3 parameters such that the
discriminant of f, 27¢g2 — g3 is non-zero. This equation is a Fuchsian differential
equation with four singular points over the Riemann sphere.
With the well known change z = P(z), we get the Weierstrass form of the
Lamé equation
d*n

T2 (AP(z) + B)n =0, (2.16)
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wher P is the elliptic Weierstrass function with invariants gs, g3 (we recall that
P(z) is a solution of the differential equation (%£)? = f(z)). Classically the
equation is writen with the parameter n instead of A, with A = n(n + 1). This
equation is defined on a torus II (a genus one Riemann surface) with only one
singular point at the origin. Let 2w;, 2ws be the two periods of the Weierstrass
function P and g, gy their corresponding monodromies in the above equation.
If g, represents the monodromy around the singular point, then g, = [g1,g2]
([109, 88]).

By the above theorem we know that the identity component of the Galois
group is preserved by the covering IT — P!, t — 2.

The relation between the monodromy groups of equations (2.15) and (2.16) is
discussed in [88], Chapter IX. From a modern point of view it is studied in [27].

Now we study the integrability of the Lamé equation (2.16) which is equivalent
to the integrability of (2.15). In fact, we have a stronger result: the identity
components of the Galois groups of both equations are isomorphic (by Theorem
2.5).

First, it is easy to see that a necessary and sufficient condition for the total
Galois group of (2.16) to be abelian is that n € Z. We sketch the steps of the
proof. Indeed, this is a classical well-known necessary and sufficient condition for
the monodromy group M of the equation(2.16) to be abelian (it is clear that, as
M is generated by g; and gs, an equivalent condition for the abelianess of M is
g. = 1(identity), and the indicial equation at the singularity is p> —p—n(n+1) =
0, and there is no logarithmic term for n integer. Therefore, as G is topologically
generated by M, it must also be abelian.

Now the known (mutually exclusive) cases of closed form solutions of the Lamé
equation (2.16) are as follows:

(i) The Lamé and Hermite solutions [34, 42, 88, 109]. In this case n is an
arbitrary integer and the three other parameters are arbitrary. In the case of the
Lamé solutions there is one solution that is an elliptic function with the same
periods as the function P (i.e., it belong to the coefficient field K'), hence, by the
normality of the Picard-Vessiot extensions, in this case the Galois group of the
equation (2.16) is of type 3 of Proposition 2.2. We will use this property in the
last chapter.

(ii) The Brioschi-Halphen-Crawford solutions [7, 34, 42, 88]. Now m := n+1 €
N and the parameters B, g and g3 must satify an algebraic equation
0= Qm(g92/4,93/4, B) € Z[g2/4,95/4, B,

where ), has degree m in B. This polynomial is known as the Brioschi determi-
nant and we will construct later in this section.



42 CHAPTER 2. DIFFERENTIAL GALOIS THEORY

(iii) The Baldassarri solutions [7]. The condition on n isn + § € 3Z U 1Z U
+Z — Z, with additional (involved) algebraic restrictions on the other parameters.

We notice that, by the above arguments, case (i) exhaust all the possible
abelian cases for the Galois group G of equation (2.16) (i.e., types 1 abelian, 2, 3
with & = 1,2 and 4 in Proposition 2.2). Furthermore cases (ii) and (iii) exhaust
all the other possibilities of purely algebraic solutions (i.e., G finite). In other
words, the known solutions cover types 1, 2, 3 with kK = 1,2 and 4 of Proposition
2.2. We are left now with type 3 (with & > 2), type 5 and type 6, to complete the
study of the integrability of equation (2.16).

Proposition 2.6 ([81]) The equation (2.16) is integrable only in the cases (i),
(ii) and (iii) above.

Proof. For type 5 of Proposition 2.2, by Proposition 2.3 the associated Riccati
equation, v' = g +v%, g(z) = —(n(n + 1)P(z) + B), must have two solutions,
vi2 = Kk * /w, in a quadratic extension of K = M(II) (field of meromorphic
functions on the Riemann surface II of genus one). Therefore x,w € K satisfy the
system

KI:HQ-FUJ—FQ,
W' = 4Kw.

These equations are found in [7] and in what follows we use some of the methods
of this paper.
The above system is equivalent to

1/ 1 (w2
Z(E) _1_6<;> _w=g (2.17)

(this equation was well-known in the classical literature, see [43], page 35).

If v, = —=¢£/&, i = 1,2, proceeding as in the proof of Proposition 2.2 we
get w?/(4w) = €2¢2. On the other hand let a1, as be a fundamental system of
solutions corresponding to the indicial equation around the singular point z = 0
(modulo periods). That is, a1 = 2”1 ¢1(2), ag = 272 ¢2(z) (#1(0) # 0, ¢2(0) # 0),
where p;1 = n + 1, po = —n are the roots of the indicial equations at the origin
and logarithmic terms can not appear, because w?/(4w) = ¢2¢2 and w € K.

Expressing &1, &9 as linear combinations of &1, as we obtain

2

o= az4m+4g2511 + bz2m+3¢i’¢2 + cz%ﬁ%qﬁ%

—i—dz*ZmngSl (;5% + ez*4m¢§.
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Furthermore, £2¢2 is an elliptic function whose only pole is z = 0 (modulo
periods), because this is the only singular point of the solutions of the Lamé
equation. Therefore w?/(4w) = 27 %¢, k € N, ¢(0) # 0, where ¢ is a holomorphic
function in a neighbourhood of z = 0. We have the following mutually exclusive
possibilities:

(a) 2m € Z (and m # Z, otherwise we fall into the Lamé or Hermite solutions),
else
(b) 4m € Z, 2m € Z.

Case (a) corresponds to the Brioschi-Halphen-Crawford solutions since those
are the only ones such that 2m € Z, m # Z and they have no logarithmic term.

In case (b), b = d = 0 and we can take m > 0 because if 4m < —5 then
4m + 4 < —1, and the values 4m = —1, 4m = —3 are excluded because w? /4w
must have a pole at z = 0. Therefore 4m = k € N, k odd. Then w = w?/(4£2¢2)
is an elliptic function of odd order k, having a zero of order k£ in z = 0 and hence
a pole of odd order at some point z = zy # 0 (module periods). On the other
hand (w'/w)? and (w’/w)" are elliptic functions with double poles at z = 0 and at
the poles of w. From (2.17) it follows that g has a pole at zy # 0 contradicting
the fact that it has only one pole at z = 0 (module periods). Type 5 does not
occur in the equation (2.16).

The impossibility of type 3 (with &£ > 2) and of type 6 of the Proposition 2.2
is simpler. By a direct computation, the derived group G’ is given by unipotent
triangular matrices. But as the local monodromy around the singular point g, €
G, the exponents (i.e., solutions of the indicial equation) must be integers and we
are in the Lamé or Hermite solutions with an abelian Galois group, contradicting
the assumption that the Galois group is of type 3 (with & > 2) or type 6. We
have finished the proof.

Q.E.D.

We will need two more results about equation (2.16). The first one is very
elementary, we state it as a proposition for future references.

Proposition 2.7 Assume that for equation (2.16) we have g2 = 1 (or g3 = 1),
gi, t = 1, 2, being the monodromies along the periods. Then the Galois group of
this equation is abelian.

Proof. From g? = 1 it follows that gy = 1 or g; = —1 (because g; is in
SL(2,C)). If g1 = 1, it is clear that g, = [g1,82] = 1 (the case g1 = —1 is
analogous).

Q.E.D.

The second result is not so elementary and we need some terminology.
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We recall that the moduli of the elliptic curve v? = 4u? — go — g3 (we write the
elliptic curve in the canonical form, where as above gy and g3 are the invariants)
is characterized by the value of the modular function j,

9

% (2.18)
93 — 2793

j = j(QQa 93) =
We recall that two elliptic curves are birationally equivalent if, and only if, they
have the same value of the modular function (see, for instance [93]).
Although the conditions on g2, g3 and B for a finite Galois group (case (iii)) are
difficult to systematize, there is, in this case, a general result by Dwork answering
a question posed by Baldassarri in [7].

Proposition 2.8 ([35]) Assume that the Galois group of equation (2.16) is fi-
nite. Then for a fized value of n, the number of possible couples (j, B) is finite.

We note that the proof of Dwork is given for the algebraic form of the Lamé
equation (equation (2.15)). But as by a finite covering the identity component of
the Galois group is preserved (Theorem 2.5), then the finiteness of the Galois group
of equation (2.15) is equivalent to the finiteness of the Galois group of equation
(2.16) (a linear algebraic group is finite if, and only if, its identity component is
trivial) and the result is valid also for equation (2.16).

The author is indebted to B. Dwork for sending him the above result.

Finally, for the families of type (ii) we recall the computation of the Brioschi
determinant following Baldassarri [7] (it will be important in the applications of
Chapter 6). If in the Lamé equation we make the Halphen substitution [42] z = 22
and use the addition theorem for P (see [109]) we obtain

2 () 2
% —4 [n(n+1)(i (Z,((;)) — 2P(2)) +B} £=0. (2.19)

If (2w;, 2ws) are the periods of P, the singularity of (2.16) at z = 0 (modulo

the periods) is transformed to the singularities of (2.19)

z= 0,0.11,(.(}2,(.(}3

(modulo the periods), where w; + wy + w3 = 0. Now, to complete the Halphen
transformation, we perform the change ¢ = (P’(2)) "w, obtaining
d?w P"(2) dw

_9
a2 “"Ppiz) az

+4(n(2n—-1)P(2) —B) w=0,

with singularities as above. Now let 2z = P(2) be a new independent variable (i.e.,
we have a finite covering z — x). We get the following algebraic form for the
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above equation

(—o+ Lo+ 8) 901 (3022 2) (m - )22 4 (5 (2m— 1)(m— 1) a]w = 0,
(2.20)

having singularities at 0o, eq, ea, e3 (corresponding to the previous ones

07 Wi, w2, W2

n (2.19). We recall that m = n + 3.

The exponents associated to the singularities are (0,m) at e;,7 = 1,2,3, and
(=2m+1,—m+1) at co. As the difference is m € N there will appear, in general,
logarithmic terms. But if in one of the singularities there are no logarithmic terms
they do not appear in any of the other singularities, because all the singularities
come from the unique singularity of (2.16) by means of the Halphen transforma-
tion. Furthermore, if in an equation over P! all the exponents are integers and
there are no logarithmic terms, then the general solution is rational. In particular,
if this happens in (2.20), then we have integrability for the Lamé equation.

To avoid logarithmic terms at x = 0o, a necessary and sufficient condition is
the existence of a Laurent series solution of the form

o0
w=> ¢z e #£0, (2.21)
=0

corresponding to the lower exponent —2m + 1.
This leads to a recurrent system for the coefficients cg, cq, ..., which, in par-
ticular, gives the uncoupled system:

B¢ + (m—-1)c =0,
2m—-1)(m—-1)%co + B ¢ + 2(m—2)c =0,
2m—-1)2m—-2)L ¢, + (2m—-2)(m—-2)2c1 + Bcea+3(m—3)cs =0,
2m—=-2)2m—-3)Lc 4+ 2m—-3)(m—-3)Lc: + Bee+4m—4)c =0,
(m+3)(m+2)Lcn-a + (M+2)2Lcps + Bem—2t+t(m—1)1cm—1 =0,
m+2)(m+1)Lcn 3 + Mm+1)1Lcy 2 + Bem-t =0.

Therefore, the necessary and sufficient condition to have a solution of the form
(2.21) is

Qun(%Z.2.B) =0, (2.22)
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where Qm(%, z, B) is the determinant of dimension m of the coefficients of the
above linear system in the variables cg, ¢1, ..., ¢;—1. This is the Brioschi determi-
nant.

We observe that all the examples in this section are second order differential
equations over the Riemann sphere (in the case of the Lamé equation we con-
sider its algebraic form), then it is theoretically possible to apply the Kovacic’s
algorithm [56, 33].



Chapter 3

Hamiltonian Systems

This chapter is devoted to explaining some concepts and results on Hamiltonian
systems. We focus our attention on the concept of complete integrability i.e.,
Liouville integrability: the existence of n independent first integrals in involution,
n being the number of degrees of freedom. Although integrability is well defined
for these systems, it is very important to clarify what kind of regularity is allowed
for the first integrals: differentiability or analyticity in the real situation, ana-
lytic, meromorphic or algebraic (meromorphic and meromorphic at infinity) first
integrals in the complex setting.

Another important problem is to clarify the dynamical meaning of the dif-
ferent concepts of integrability or non-integrability. For instance, it is clear in
the differential real situation that an open dense domain of the phase space is
foliated by Lagrangian invariant manifolds. In the opposite direction one can ask
for the dynamical meaning of non-integrability. In fact, it is well known that, in
the real context, the existence of transversal homoclinic orbits is an obstruction
to the integrability by real analytical first integrals. But in the complex situation,
practically all is unknown about the global dynamical behaviour of non-integrable
systems. In Chapter 7, for a particular situation, we will make connection between
the purely algebraic differential Galois obstruction to integrability of Chapter 4
and the existence of transversal homoclinic orbits.

In this chapter we assume, unless otherwise stated, that we are either in the
real (differentiable or analytical) situation or in the complex analytic situation.
So all the objects that we consider (manifolds, functions, tensors, morphisms,
bundles, etc...) are endowed with the same degree of regularity, respectively. We
denote the ground numerical field by k. So, £ = R in the real case and k = C in
the complex case.

This chapter can not be considered as an introduction to Hamiltonian systems.
As in Chapter 2, we have, in general, presented only the required definitions and
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results without proofs. On the other hand, we prove the results of Section 3.4
about the abelian structure of some subalgebras of the Poisson algebra of rational
functions. These results were obtained as part of joint work of the author with
J.P. Ramis [77] and they are essential preliminaries for proof of the fundamental
theorems of Chapter 4.

3.1 Definitions

We remark that in classical books (see, for instance, [4, 3, 65]), definitions are
given in the real (differentiable or analytical) context, but all of them work well in
the complex (holomorphic) setting. But in order to be able to deal with complex
singularities , we give some specific definitions valid in the complex situation only
(we will follow [77]).

A symplectic manifold is a manifold M endowed with a closed, non-degenerate
two-form 2: the symplectic form. It is well-known that the dimension of M over k
must be even, 2n. The symplectic manifolds are the phase space of Hamiltonian
systems and their tangent bundles are symplectic bundles which have already
been defined in Section 2.3 in the complex setting (for real symplectic bundles,
see [65]).

Exzample. Let Q = k™ and M = T*Q ~ k" be its cotangent bundle. We get a
symplectic structure on M defining the symplectic form Q = 37 dy; A dz; =
d(>1, yidz;), with x; being the coordinate functions on the base ) and y; the
coordinates on the fiber T;(@Q. It is clear that the matrix of {2 has in this case
the canonical form J of Section 2.3 (in a formal way one can say that there is a
canonical or symplectic frame in the symplectic bundle T'M)

J:(gg).

This example can be easily generalized to an arbitrary manifold ). The coor-
dinates z; are the positions and y; are the canonically conjugated momenta. The
space () is called the configuration space.

The above example gives us the general structure of the symplectic form in
local coordinates according to the Darboux theorem .

Theorem 3.1 (Darboux Theorem) In a neigbourhood of each point p of the
symplectic manifold M there is a system of coordinates (z;,y;) (canonical coor-
dinates) such that the symplectic form is expressed in the canonical form Q =
2?21 dy; N dx;.
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As in Riemannian geometry, the non-degeneracy of the symplectic form defines
the musical isomorphism of vector bundles

b: TM — T*M,

given by Q(X,) = »X, with X a vector field. As is usual in the theory of vector
bundles we identify the vector bundle with its sections. This can also be written
as the contraction ix{) = b - X. We remark that in canonical coordinates (i.e.,
in a symplectic frame in TM and in the dual frame in T*M) b~! is given by the
matrix J.

A Hamiltonian vector field is a vector field Xy defined on the symplectic
manifold M such that Xz = b~! - dH, where H is a function: the Hamilton
function or simply the Hamiltonian. The differential equations of the integral
curves of a Hamiltonian vector field Xz are called a Hamiltonian system and as
a direct consequence of the Darboux theorem it is possible to write them as

. OH
T = )
i
. _OH
yl - 81‘2 )

1 =1,...,n. The above system of equations is called the Hamilton equations asso-
ciated to the Hamiltonian H. Sometimes we will write the above equations in a,
more compact form as

z2 = Xpg(2),

with z = (21, ..., Zpn, Y1, .-, Yn). Also one often uses the same name for the Hamil-
tonian system and for the vector field Xy.

Among the several invariants by a Hamiltonian flow, the most important one
is the symplectic form . In other words, Lx, = 0, where we write Lx for the
Lie derivative with respect to X, and one says that the flow is symplectic. As we
will see in Chapter 3, a direct consequence of the above is that the variational
equations along a particular solution are given by symplectic connections. In
particular, the Galois group of the variational equations must be symplectic.

As the Hamiltonian flow is symplectic, the powerful tool of canonical trans-
formations can be used to simplify the system; ideally we would like to solve it
completely. A canonical transformation is a change of variables from the (canoni-
cal) variables (z;,;) and the time ¢ to the variables (2;,%;), t (i = 1,2, ...,n), such
that the “extended” symplectic form Y}, dy; A dz; — dH A dt remains invariant.
So, " dy; Adz; — dH N dt = Y1, dij; A di; — dH A di. Then the Hamilton
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equations are also invariant by the transformation. We note that the above def-
inition is more general than the usual one in which the symplectic form remains
invariant.

By means of the musical isomorphism b it is possible to endow the regular
functions on M with a special structure of Lie algebra: a Poisson algebra. It
is clear that the aplication f — X; between the functions and the Hamiltonian
vector fields is k-linear. In order to obtain a homomorphism of Lie algebras, we
have to define a Lie bracket over the functions {, }, the Poisson bracket, such that

Xd{f,g} = [Xf,Xg],

for given functions f and g. Hence, the Poisson bracket is given by

{f:9} = QXy, Xy).

In canonical coordinates it has the classical expression

n
of o9  9f g
{fgy=> -5 —=-2"
im1 dy; Ox; dz; Oy;
Then the algebra of functions (differentiable or analytical, in the real case;
holomorphic or meromorphic in the complex case) has the following important

properties.

Proposition 3.1 The functions over M endowed with the Poisson bracket have
the structure of a Poisson algebra. In other words, they satisfy the properties

(i) They are a Lie algebra (with the Bracket {,}),
(ii) {h,fg} = f{h,g9} + g{h, f} (Leibniz rule).

We note that the set of functions over M have two different algebraic struc-
tures: it is a commutative algebra with respect to the ordinary product, and it
is a Poisson algebra (in particular, a Lie algebra). The property (ii) above is a
compatibility condition between these two structures.

Furthermore, given a Hamiltonian vector field Xy we have the following

Proposition 3.2 (1) The function f is a first integral of Xp if, and only if,
{H, f} =0 (we say that the funtions f and H are in involution or commute). In
particular, H is always a first integral of Xp.

(2) The set of first integrals of Xy is itself a Poisson subalgebra with the
Poisson bracket (Jacobi’s theorem).

(3) If the functions f and g are in involution, then the flows of the Hamiltonian
fields Xy and Xy must commute, i.e., ¢yo ¢y = g0 ¢y, if ¢r, ¢y are the flows of
f and g, respectively.
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We note that (2) follows directly from (1) and from the Jacobi identity.

It is important to recall that in the two above propositions we can consider
several degrees of regularity for the algebra of functions over M. So, it is true for
the algebra of differentiable or analytical functions in the real case and for the
algebra of holomorphic or meromorphic functions in the complex case. Moreover,
it is even possible to consider more regular cases, for instance the algebra of
polynomials or the algebra of rational functions (if the symplectic manifold M is
a vector space of dimension 2n).

Now we look at the meromorphic case. Let H be a given holomorphic function
over M and Xy the associated holomorphic Hamiltonian vector field. For some
applications (cf., introduction of the points at infinity in Chapter 4 below) it
is necessary to allow meromorphic Hamiltonian functions. The corresponding
Hamiltonian vector field will be of course also meromorphic. But it can also be
necessary to allow degeneracy points or poles for the canonical form 2. Then we
consider a complex connected manifold M’ of complex dimension 2n, endowed
with a closed meromorphic 2-form 2. We suppose that Q is holomorphic and
regular over a not void open subset M C M'. Then we can choose M such that
M’ — M is an analytic, non-necessarily regular, hypersurface Mo, C M'. The form
) is a meromorphic section of the bundle A>T*M. Therefore it is equivalent to
say that the tangent bundle TM admits a structure of a meromorphic symplectic
bundle. The manifold (M, ;) is clearly a symplectic manifold. We call M, the
hypersurface at infinity.

Ezample. Let M' = P! x P, M = C%, My, = {00} x PLUP! x {00}. We denote
(z,y) € C? and by =/, y the coordinates at infinity over respectively the first and
second factor P! of M’. Then we set Q = dx A dy over M. It extends uniquely to
a meromorphic form over M’ and we have

_da' Ndy

0=
x’2y’2

over a neighborhood of {oco} x {o0}.

We go back to our general situation.
To a holomorphic (resp., meromorphic) vector field X over M’', we can asso-
ciate a meromorphic 1-form «, using the formula

a(Y) = Q(Y, X).

We get the usual musical map b by restriction to M. This map is an isomor-
phism over M. Writing the application b in coordinates in a neighbourhood of a
point at infinity we see that b admits an inverse. This inverse is holomorphic over
M but can have poles over M.
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We finish this section with two remarks. So far we have only considered
autonomous Hamiltonian systems (Hamiltonian vector fields independent of time).
It is possible to generalize the above structures to the non-autonomous situation
(see Section 5.1 of [3]). From an intrinsic point of view this is done in the context
of contact geometry, instead of symplectic geometry, which, in coordinates, is
given by the extended symplectic form

n

> dy; Adz; — dh A dt,

i=1
defined in the 2n + 1-dimensional extended phase space parametrized by (z;, y;, t)
(i = 1,...,n). Then the Hamilton equations are given by the same expression,
whith the Hamilton function depending on time. We note that for linear non-
autonomous Hamiltonian systems an alternative intrinsic description has already
been given in Chapter 2 of this monograph in the context of symplectic connec-
tions.

We remark that usually in classical mechanics the Hamiltonian H is the energy

of the system, and for a classical Hamiltonian system it is given by

H=T+YV,

where T' (the kinetic energy) is a definite positive quadratic form with respect to
the momenta y; (with coefficients, in general, depending on the coordinates ;) and
V' (the potential) is a function of the coordinates z;, i = 1,2, ..., n only. Frequently
people define a Hamiltonian system by its potential, V' = V (1, z9, ..., z,,), then it
is assumed that the kinetic energy is given by the typical expression in Euclidean
coordinates

We will also follow these conventions.

3.2 Complete integrability

Let Xz be a Hamiltonian system defined over a symplectic manifold M of di-
mension 2n. One says that a Hamiltonian system X is completely integrable or
Liouville integrable if there are n functions f; = H, fo,..., fn, such that

(1) They are functionally independent i.e., the 1-forms df; i = 1,2,...,n, are
linearly independent over a dense open set U C M, U = M.

(2) They form an involutive set, {f;, f;} =0,4, 7 =1,2,...,n.
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We remark that by (2) the functions f;, i = 1,...,n are first integrals.
An important property is the following.

Proposition 3.3 Let M be a symplectic manifold of dimension 2n. Let

fla"'afn-l-l

be an involutive set of functions. Then the functions fi, ..., fn, fn+1 are function-
ally dependent.

This proposition is well-known in the real case. In the complex case the same
proof works well. As the proof is very simple and instructive we shall give it (for
k = C) for the sake of completeness.

Proof. We can interpret b as an isomorphism between the holomorphic fiber
bundles TM (tangent bundle) and T*M (cotangent bundle). We denote by f the
inverse isomorphism.

We assume that the functions f,..., fn, fn+1 are functionally independent.

Then the C-linear forms df(z),...,df,+1(z) are linearly independent for every
2 € U (U is a dense open set in M). Let o € U. We set fi(zg) = ¢; € C. The
subset ¥ = {f1 = ¢1,..., fn+1 = Cn41} is an analytic (smooth) submanifold of

complex dimension n — 1. The vector fields Y; = fdf; (i = 1,...n+ 1) are tangent
to X (df;(Y;) = {fi, f;} = 0) and linearly independent over the complex field at
each point of U. (The linear map f§ induces an isomorphism between T, M* and
T,M.) This implies dimn ¥ > n + 1 and we get a contradiction.

Q.E.D.

There are several possible generalizations of the above definition of integrabil-
ity for Hamiltonian systems. An aparently more general definition of complete in-
tegrability for a Hamiltonian system X is obtained considering the n functionally
independent first integrals in involution f;, ¢ = 1,...,n, without the assumption
that one of them is the Hamiltonian H itself. But then by the last proposi-
tion, the Hamiltonian is functionally dependent on fi, ..., f,, and the set given by
H, fs, ..., fn satisfies the two properties above. Therefore the two definitions are
equivalent.

One of the most elementary cases of (complete) integrability is the following.

Ezample. Let Xy be the Hamiltonian system of n degrees of freedom, defined in
canonical coordinates by the Hamiltonian

H=Hi+Hy+ -+ Hp,

where each H; = H;(z;,y;) i.e., a function of z;,y; only. Then the Hamiltonian
system Xy is completely integrable, H; being, ¢« = 1,...,n the first integrals in
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involution. In this case we say that X is separable. In fact this is not the most
general definition of separability, but this is the only one that we will use.

It is clear that the concept of complete integrability, as defined above, deals
with the existence of an involutive Poisson subalgebra of the Poisson algebra of
first integrals of Xp. Indeed, the vector space generated by fi,..., f, (over the
numerical field k) is an involutive Poisson algebra. In particular, we get an abelian
Lie algebra, and by the duality given by the symplectic structure (the musical
isomorphism b~!) one obtains the abelian Lie algebra generated by X Froee Xfs
as well as an abelian Lie group isomorphic to k™. This consideration is, in the
real case, the starting point in the proof of the “geometrical” part of the Liouville
theorem.

Theorem 3.2 (Liouville Theorem) Let Xy be a real completely integrable Hamil-
tonian system defined over a real symplectic manifold M of dimension 2n. Let
f1y s fno be a set of involutive first integrals and My = {z € M : fi(z) =

aj, 1 = 1,...,n}, a = (a1, ...,a,), a non-critical level manifold of fi,..., fn (that
is, rank(dfy, ...,dfn,) = n over My). Then

(a) My is an invariant manifold by the flow of the Hamiltonian system Xy,
and if it is compact and connected it is diffeomorphic to an n-dimensional torus
T = R"™/Z"™ (Liouville torus).

(b) In a neighbourhood of the torus My there is a canonical system of coordi-
nates (I, ¢) = (L1, ..., In, P15 .oy 0 ), di(mod 27), the action-angle coordinates, such
that the action coordinates 1 correspond to o transversal direction to the torus and
the angle variables ¢ are the coordinates on the torus. Then, Hamilton’s equations
for X expressed in these coordinates are

ji = 07

QZ.SZ' = Wy,
1 = 1,...,n, where the frequencies w; depend on the action variables only, i.e.,
wi = wi(l1,..., 1), and the Hamiltonian system of Hamiltonian H is integrated

by quadratures.

Before some remarks about the Liouville theorem it is convenient to introduce
a definition. A Lagrangian manifold in a (real or complex) 2n-dimensional sym-
plectic manifold M is an n-dimensional (differentiable or analytical, respectively)
submanifold L of M such that the symplectic form €2 restricted to L is identically
zero. A reference on Lagrangian manifolds is [107].

Although we do not give here a proof of the Liouville theorem (a complete
proof is given in [4]), we make some comments about the method used in the
proof.
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As remarked, the geometrical part of the theorem ((a) above), is based on a
particular realization of the Frobenius theorem: the distribution Xy, ¢ =1,...,n
with integral manifolds M, is not only involutive but also abelian. This gives an
action of the Lie group R" (of the Lie algebra generated by Xy, 4 =1,...,n) on
the manifold M,. It is proved then that the above action is transitive and the
isotropy group is a discrete subgroup of R" and hence isomorphic to Z". From
the general theory of homogeneous spaces, claim (a) follows.

The computational part of the Liouville theorem ((b) above), is based on
the Hamilton-Jacobi theory of canonical transformations. The action coordinates
are essentialy given by the n periods of the action differential 1-form Y 7' ; y;dz;
along the n-torus M,, and the angle coordinates are the natural coordinates on
the torus. In order to solve explicitly in a closed way a given completely integrable
Hamiltonian system, in the original coordinates (z1, ..., Zpn, Y1, .., Yn), it is neces-
sary to make quadratures and inversion of differentiable functions. Although this
program is in general a difficult task, it is theoretically possible. The dynamics
of the system is known: an open dense domain U of the phase space is foliated
by invariant manifolds and the flow restricted to them is linear. We observe that
the invariant manifolds M, are Lagrangian manifolds, because if a is fixed, the
action coordinates I;, 1 = 1,...,n, are constant and are moment type coordinates,
such that the symplectic form is expressed as Q = >"i" | dI; A d¢;.

In the general complex setting with holomorphic or meromorphic first in-
tegrals, instead of differentiable ones, it seems difficult to extend the Liouville
theorem. As in the real case, the phase space is foliated by Lagrangian manifolds,
but unfortunately, it seems that a description of the general topology of these
manifolds and of the flow of Xz on them is missing, for the most general case.

However, in the algebraic (complex) context and under some additional as-
sumptions, normally associated to the existence of a “good” Lax pair for the
system, or the solvability of the system by abelian functions, it is possible also
to get invariant complex manifolds (roughly spiking abelian varieties) such that
the flow on them is linear, and the general solution of the system is expressed by
abelian functions. These are the so-called algebraically integrable systems (see, for
instance [1, 2, 84, 103]). It is remarkable that most of the known non-trivial com-
pletely integrable Hamiltonian systems are solved by this method, but there are
completely integrable systems that are not algebraically integrable. For instance,
the trivial 1-degree of freedom classical Hamiltonian system with Hamiltonian

1
H = §y2 + V((II),

where the potential V is a polynomial of degree greater than 4 or less than 3, is
not algebraically integrable. We note that if the degree of V' is 3 or 4, the abelian
variety is an elliptic curve, i.e., a complex torus.
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Despite the last remark, in the applications, we are interested in complex
analytical (holomorphic or meromorphic) Hamiltonian systems such that when
the coordinates are real then the Hamiltonian system is also real. In other words,
we obtain the real Hamiltonian system as a subsystem, when we restrict the time
and the dependent variables to real values. In this case we can apply the Liouville
theorem to the real system, and then we can make the analytical continuation,
i.e., we simply consider the variables of the system, including time, as complex.

These considerations justify the use of the definition of complete integrability
also in the complex setting (with holomorphic or meromorphic first integrals in
involution). From now on integrability always means complete integrability.

We observe the analogy between this concept of integrability for Hamiltonian
systems and the concept of integrability for linear differential equations given in
Chapter 2 in the context of differential Galois theory. The Liouville extensions of
Chapter 2 correspond to the Liouville theorem here. For the identity component
of the Galois group solvable (equivalently, the Lie algebra of the Galois group is
solvable) there, we have here an abelian Lie algebra of symmetries of the Hamil-
tonian system. We remark that it is interesting and not casual that the name of
Liouville is attached to both concepts of integrability. In fact Liouville devoted
an important part of his life to the search for a general theory of integrability for
differential equations.

As a last remark and although this monograph is not oriented in this direction
(for this reason we do not enter in the technical details and definitions, but we will
give references), we would like to point out another relation, between differential
Galois theory and integrability of Hamiltonian systems which seems not well-
studied. Concretely, there is a direct connection between algebraically completely
integrable systems and the strongly normal extensions of Kolchin (see [54] and
[15], Chapter IV, Section 3). It would be interesting to clarify completely this
connection. For instance, we will state the following question.

Question. What is the relation between the singularity theory of Adler and van
Moerbeke on algebraic completely integrable Hamiltonian systems (see [2, 103])
and singularity theory of the Kolchin’s strongly normal extensions as studied by
Buium ( [15], Chapter 1V)?

3.3 Three non-integrability theorems

In this section we shall explain three non-integrability results for Hamiltonian
systems: a theorem proved by Poincaré for real Hamiltonian systems, a theorem
proved by Ziglin for complex Hamiltonian systems and a theorem proved by Ler-
man for real Hamiltonian systems. All of them are based upon a study of the
variational equations (VE) along particular integral curves.
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Let Xz be a real Hamiltonian system defined on a (real) symplectic manifold
M of dimension 2n,

z = XH(Z),

and let ' be a periodic orbit of this system of period T given by z = z(t),
z(t+T) = z(t).

We recall that the variational equations (VE) of a Hamiltonian system X
along the integral curve I' are defined by the linear non-autonomous differential
system of equations

€= Xpy(2(t))E-

We set A = A(t) = X} (2(t)). Let U(t) be a fundamental system of solutions of
the VE along I', with U(0) = I (identity matrix), then U(¢#) is the linear part of
the flow ¢(t) of Xy along T, i.e.,

¢'(t)-E=U(t)- &,

£ € TyM, pel. The matrix M = U(T) is called the monodromy matrix of the
periodic orbit I' and its eigenvalues are called multipliers of the periodic orbit T'.
As M is symplectic, M € Sp(n,R) and if A is a multiplier then A~! must be also
a multiplier.

Theorem 3.3 (Poincaré Theorem [87]) Assume that a Hamiltonian system
Xpg has an involutive set f1 = H, ..., f of k first integrals (k < n) functionally
independent on the periodic orbit I'. Then at least 2k multipliers of T' must be
equal to one.

Between the several equivalent proofs we select the more instructive for our
ends (this proof will be intimately related with the process of reduction from the
(VE) to the (NVE): see Section 4.1).

Sketch of the Proof. By restriction of the k& Hamiltonian fields Xy, ,..., Xy, to T,
we obtain & independent solutions of the VE v; = Xy, (2(t), « = 1,..., k. For each
point p € I', we can take a symplectic base in the symplectic space T, M that
contains the k£ vectors v;. In this base we have 2k eigenvectors with eigenvalues
equal to one.

Q.E.D.

Corollary 3.1 Let I' be a periodic orbit of a completely integrable Hamiltonian
system Xy, fi = H,..., fn being an involutive set of first integrals independent
over I'. Then the 2n multipliers of I' are equal to one.
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It is clear in the corollary that the periodic orbit, I', is contained in a Liou-
ville torus (if the invariant manifold of the Liouville theorem that contains I" is
compact).

We remark that Poincaré’s theorem can be generalized to the complex holo-
morphic setting (with the same proof) if instead of a periodic orbit we consider an
element of the fundamental group of the Riemann surface defined by a complex
integral curve, and instead of the monodromy of a periodic orbit we consider an
element of the monodromy group of the variational equation. By one more step
we do the same thing for the Galois group. In fact all of the above is a consequence
of the process of reduction by k degrees of freedom from the variational equations
(VE) to the normal variational equations (NVE), if there is an involutive set of &k
first integrals independent over the integral curve. This will be done in detail in
Chapter 4 from the differential Galois point of view.

We note also the analogy of the method of reduction with the so called
d’Alambert reduction of the order for a scalar linear differential equation when
some independent particular solutions are known (see, for instance, [46], p. 121-
122). In the complex case, both methods must be considered as part of the same
theory: the differential Galois theory.

In the complex situation, Ziglin in 1982 [114] proved a non-integrability the-
orem. He uses the constraints imposed by the existence of a sufficient number
of first integrals on the monodromy group of the normal variational equations
along some integral curve. This is a result about branching of solutions: the mon-
odromy group expresses the ramification of the solutions of the normal variational
equations in the complex domain.

We consider a complex analytic symplectic manifold of dimension 2n and a
holomorphic Hamiltonian system Xy defined on it. Let I' be the Riemann surface
representing an integral curve z = z(¢) which is not an equilibrium point of the
vector field Xz. Then we can write, as above, the variational equations (VE)
along I,

i = Xp (2(t))n.

In general if, including the Hamiltonian, there are k analytical first integrals
independent over I' and in involution, we can reduce the number of degrees of
freedom of the VE by k and get the normal variational equation (NVE) that, in
suitable coordinates, can be written as a linear Hamiltonian system

£ = JS(t)E,

where, as usual,
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is the matrix of the symplectic form of dimension 2(n — k).

As the NVE is a Hamiltonian linear system, its monodromy group is contained
in the symplectic group. We note that the monodromy group is contained in the
Galois group and the Galois group is symplectic (see Section 2.4 or Appendix C).

Theorem 3.4 (Ziglin) Suppose that an n-degrees of freedom Hamiltonian sys-
tem has n — k additional meromorphic first integrals, independent of the above
integrals over a neighbourhood of T' (but not necessarily over T' itself) and assume
also that the monodromy group of the NVE contains a non-resonant transfor-
mation g. Then, any other element of the monodromy group of the NVE sends
etgendirections of g into eigendirections of g.

We recall that a linear transformation of Sp(m,C) is resonant if there are
integers 71, ..., "y, such that AJ' --- A\ = 1, with \; being its eigenvalues.

We remark that Ziglin’s theorem does not assume complete integrability of the
Hamiltonian system Xp. The n independent first integrals are of two types: k of
them that are in involution and independent over I' are used to make the reduction
to the NVE only; the other n — k firts integrals, not necessarily in involution,
restrict the possible structure of the monodromy group of the normal variational
equation. However for two degrees of freedom (n = 2 in Ziglin’s theorem) the
Hamiltonian system is completely integrable.

Now the variational equation along a particular integral curve z(t) of Xp
always has the particular solution X (z(t) = Z(¢). We then get the normal vari-
ational equations by reducing one degree of freedom. This reduction is connected
to a Poincaré map in the following way.

Let T' be a periodic orbit of a real Hamiltonian system Xy with n-degrees
of freedom (or a loop in the fundamental group of the Riemann surface that
represents I', for the complex case). Then we consider a symplectic submanifold
S (Poincaré section) of dimension 2n — 2 transversal to I' and contained in the
energy manifold level that contains T', i.e., S C H~'(h) with H(T') = h. Then the
Poincaré map P of the periodic orbit I (of a loop of the fundamental group of the
Riemann surface I, in the complex setting) is a map defined in a neihgbourhood
U, C S of a point p € I" given by the intersection of the flow of the Hamiltonian
system Xz with the section S. Then the linear part of the Poincaré map, P'(p), is
given precisely by the monodromy matrix of the normal variational equations (an
element of the monodromy group of the normal variational equations, respectively,
in the complex case).

If the integral curve I' is not a periodic orbit, it is also posible to define a
Poincaré map P between two transversal sections S; and Sy (in a given energy
level) to the integral curve I'. As above, this map is defined by the flow of Xy
and, in general, it is only defined in a neigbourhood of the curve I'.
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We shall now restrict our attention to the real case in order to explain the
theorem of Lerman. Let X be a two degrees of freedom real analytic Hamiltonian
system with a saddle-center equilibrium point o € M, with H(o) = 0. The
following two facts are well-known:

(i) Associated to the “saddle part” are stable and unstable integral curves of
X asymptotic to the equilibrium point.

(ii) Associated to the “center part” for sufficiently small energies h is a one-
parameter family of periodic orbits (Liapounov orbits) with parameter h. The set
of these orbits defines the center manifold of the equilibrium point.

Moreover, the above Liapounov orbits are unstable, i.e., the multipliers of the
Poincaré map of these orbits are outside the unit circle. Hence each Liapounov
orbit has two-dimensional stable and unstable invariant manifolds.

We make the additional assumption that there is a homoclinic orbit (or homo-
clinic loop), i.e., the continuation of the stable and unstable curves in (i) coincide
in a single integral curve.

The key point now is to know if the stable and unstable invariant manifolds
of the Liapounov orbits are the same or not. The importance of this fact is that
if they are not the same, then, as a consequence of their intersection, the system
has transversal homoclinic orbits, we have unpredictable chaotic dynamics (for
instance, the Bernouill shift is included as a subsystem) and the Hamiltonian
system has no additional (real) analytical first integrals besides the Hamiltonian
(see [83]).

Let @ be the flow map along the homoclinic orbit between two points in it
and contained in a small enough neigbourhood U of the equilibrium point. Then

Theorem 3.5 ([64]) There are suitable coordinates in U such that in these co-
ordinates, the linearized flow
K Q
b —

where R s the 2 X 2 matriz corresponding to the normal variational equation
along the homoclinic orbit. Now assume that the stable and unstable invariant
manifolds of every (small enough) Lyapounov orbit are the same. Then R must
be a rotation.

We remark that the matrix R gives us the linear part, dP, of the Poincaré map
P (in some coordinates) along the homoclinic orbit between transversal sections
through two points in it, and contained in a small enough neigborhood of the
equilibrium point o.

Now if we asssume that the Hamiltonian is a classical one, H = 1/2(y? +y3) +
V(z1,z2), and if the homoclinic orbit is contained in an invariant plane (x1,y1),
we can write the Hamiltonian as
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1 1
H = S0 + 1) + 0lo1) + 3a(z1)sd + hot. (), (31)

where

1
o(rr) = —§V2(II% + hoot.(z1), alz)) = w?+ hot.(z), (3.2)

with v and w non vanishing real parameters.

The above theorem is generalized to more degrees of freedom in [55], although
we do not need this result here.

We shall see later in this monograph that the above three theorems, the
Poincaré theorem (as it is interpreted above within the process of reduction from
the VE to the NVE), the Ziglin theorem (with n = k 4 1, i.e., when Xy is com-
pletely integrable) and the Lerman theorem are connected in a deep way. This
unity is transparent in the framework of the differential Galois theory.

3.4 Some properties of Poisson algebras

In this section we expose some results on certain properties of the Poisson algebra
of rational functions over a symplectic space. These results were obtained in [77].

Let V be a symplectic complex space of (complex) dimension 2n. We choose a
symplectic basis {e1,...,ep;€1,...,6,} and we denote by (z1,...,Zn;Y1,...,Yn)
the coordinates of v € E in this basis. If < v,v’ > is the symplectic product of
v,v' € E, then

n
< U,v' >= szy; — x;yl
i=1
We set
C[V] =P skv*.
k0

We endow C[V] with the ordinary multiplication. We get the commutative
C-algebra of polynomials on V. We denote by C(V) the field of fractions of C[V].
Using the Poisson product, we endow C(V') with a structure of non-commutative
C-algebra, the Poisson structure.

Using coordinates we can compute the Poisson product of f,g € C(V):

_N0f 9 _Of 09
{f’g}_gayi ox; 0z Oy;

The two products on C(V') are related by the Leibniz rule

{fg,h} = f{g,h} + g{f, h}.
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Let A C C(V) be a complex vector subspace. If it is stable by the Poisson
product, then A is a Poisson subalgebra of C(V'). The field of fractions of A is
also a Poisson subalgebra of C(V').

Let A be an involutive subset of C(V). Then the complex vector subspace
generated by A is also involutive and a Poisson subalgebra. Using the Leibniz
rule we verify that the subalgebra (for the ordinary product) generated by A is
involutive and is also a Poisson subalgebra.

A subset of an involutive subset is clearly also an involutive subset.

Let A be a subset of C(V'). We define the orthogonal A+ of A in C(V') by

At ={f e C(V)/{f, g} =0 for every g € A}.

The biorthogonal of A is A+ = (A4)+.

Using the Leibniz rule and the Jacobi identity we verify immediately that
At is a subalgebra and a Poisson subalgebra of C(V). Therefore A+~ is also a
subalgebra and a Poisson subalgebra of C(V').

Let A be a subset of C[V]. It is involutive if, and only if, we have the inclusion
A C A+, Moreover, if A is involutive, we have the inclusions

Ac At c At

and A1t is an involutive subalgebra of C(V).

Let A be a subalgebra of C(V) (for the ordinary product). We say that
f € C(V) is algebraic on A if there exists a non-trivial polynomial P € A[Z] such
that P(f) = 0. The algebraic closure A of A in C(V) is by definition the set of
the f € C(V) that are algebraic on A. The algebraic closure A of A in C(V) is
a subfield (it is the algebraic closure of the field of fractions of A). The following
proposition and its corollary are essential in this book.

Proposition 3.4 Let A C C(V) be an involutive subalgebra,i.e., a subalgebra for
the ordinary product which is also an involutive subset. Let A C C[V] be the
algebraic closure of A in C(V'). Then we have inclusions

AcAc At c At
and A is an involutive subalgebra of C(V)

Proof. Let 8 € A. Let P € A[Z] be a minimal polynomial for 3.

We choose / € A+. From P(3) = 0, we get {P(3),'} = 0. Using 8 € A and
the Leibniz rule we see easily that the operator {., '} is A-linear derivation on
A[f], therefore

(PO)LBY = 5258} =0,
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As the polynomial P is minimal, we have g—}Z)(ﬁ) # 0 and therefore {3, '} = 0.
This yields A ¢ A+, As A+ is involutive, the subalgebra A is also involutive.

Q.E.D.

Corollary 3.2 Let V be a symplectic complex space of dimension 2n. Let A C
C(V) be a subalgebra (for the ordinary product) which is generated by a finite
involutive subset « = {au,...,an}. We suppose that the n elements ai,...,an
are algebraically independent. Then

(i) A is an involutive subalgebra,

(ii) AL is an involutive subalgebra,

(iii)) A = A+ = AL

Proof. Claim (i) is evident.

Let f € AL, It is orthogonal to & C A. The n elements a,...,q, are
algebraically independent and in involution, therefore f and «q, ..., «a, are alge-
braically dependent. We admit this claim and we prove it later. Then f € A.
We get an inclusion A+ C A. Using the proposition, we get also the inclusions
A c At c AL Therefore A = At = A+L. The subalgebra A+ is involutive.
Claim (%) follows.

Q.E.D.

Now we set as usual
J— 0 I
“\-1 0)’

where I is the identity matrix of dimension n. Then we have J! = —J = J~L.
A square matrix M of order 2n is symplectic if and only if

MM = J.

A square matrix M of order 2n is in the Lie algebra of the Lie group of
symplectic matrices if and only if

M'J+JM =0.

This is equivalent to (JM)! = JM, i.e., to the fact that the matrix JM is symmet-
ric. This Lie algebra is the set of linear Hamiltonian vector fields (with constant
coefficients).

The symplectic structure on the symplectic vector space V gives the musical
isomorphism

p:V = V™

If X is the column vector of the coordinates of v € V' in the chosen symplectic

basis, then the column vector of the coordinates of b(v) in the dual basis is JX.
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Using the contraction V* ® V — C between the first and the third factor in
V*@V ®V, we get homomorphism

V*®V = End(V).

It is well known that this is an isomorphism and in general we will identify V*®V
and End(V') modulo this isomorphism.

We set 1) = idv*®(%b). Themap ¢ : V@V — V*®V™ is an isomorphism. We
can interpret 1 as an isomorphism End(V) — V* @ V*. An element u € End(V')
belongs to the Lie algebra sp(V') if and only if 9(u) is invariant by the symmetry

V*QV* =V eV*
VRQW— w R .

Then ¢(u) defines an element of S2V* and 1 induces an isomorphism
¢:sp(V) — S*V*.

If as before we use the chosen symplectic basis of V' and the dual basis of V*
and if we denote, respectively, by M and M’ the matrices of u € sp(V) and the
matrix of the quadratic form corresponding to ¢(u) € S2E*, then

1
M' = ~JM.
2

We define an operation of the Lie algebra End(V) on V* by w — —ul(w). Us-
ing this operation and the natural operation of End(V') on V, we get an operation
of End(V) on V*@ V:

wRv = —ul(w) v+ w® u(v).
If we identify V* ® V with End(V'), then the corresponding operator is [u,.].

Lemma 3.1 (i) By the isomorphism ¢ : sp(V) — S?V*, the operation of sp(V)
on V* defined above corresponds to the action of S2V* on V* given by the Poisson
product.

(ii) By the isomorphisms ¢ : sp(V) — S?V* and b : V. — V*, the natural
operation of sp(V) on V corresponds to the action of S*V* on V* by the Poisson
product.

Proof. We use a canonical basis on V and the dual basis on V*. Let M be the
matrix of u € sp(V). Then M’ = 3JM is a symmetric matrix. It is the matrix
of the quadratic form corresponding to ¢(u). We denote by X (resp. X') the
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column vector of the coordinates of v € V* (resp. v' € V*) in the dual basis.
If X! = (z;y) and X" = (2/;¢/). If f(z;y) = X!M'X and g(z;y) = X" X.
A
1
We denote M' = 3 (Bt D
2f(z;y) = 2'Ax + y' Dy + 2! By + y' B'z and g(z;y) = o'z + ¢ty = o'2’ + 'y
We have

The matrices A and D are symmetric. Then

{f,9}(z;y) = 2" (—Ay' + Ba') + y*(—B'y' + Da').

Then {f,g}(z;9) = X' X" = (X")' X, where X" = M" X', with M" = (g __élt).
-B' —-D B -A
= — ! —= — t g
We have M = —2JM ( A B ) and —M <D —Bt> . We have
finally M" = —M?". This ends the proof of claim (i).
Claim (ii) follows from the equality
B -A -BY —-D
(p m)=(4 %)
~JM"J =M.
Q.E.D.

Lemma 3.2 Let ¢ : sp(V) — S?V* be the isomorphism of complex vector spaces
defined by ¢ = idy~ ® %b. If sp(V') is endowed with its Lie algebra structure and
if S?2V* is endowed with its Poisson algebra structure, then ¢ is an isomorphism
of Lie algebras.

Proof. We can define a Poisson action of S2V* on V*@ V*: {f,g®h} = {f,9} ®
h+g®{f h}.

Using the preceding lemma we see that the action of sp(V') on V*® V defined
above corresponds to the Poisson action of S2V* on V* ® V* modulo the isomor-
phisms ¢ : sp(V) = S?V* and idy- @ 2 : V* @ V = V* @ V*. (In claim (i) of
the preceding lemma, we can replace the isomorphism b by the isomorphism %b)
The isomorphism idy+ ® %b :V*®V — V*® V* induces the isomorphism ¢ and
the action of u € sp(V') on sp(V) is v +— [u,v]. This ends the proof of the lemma.

Q.E.D.

We remark that the above lemma is nothing else but the formalization in our
context of the well-known isomorphism between the Lie algebra of Hamiltonian
linear vector fields and the Poisson algebra of quadratic Hamiltonian functions.

Now we can state the main result of this section.
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Let u € sp(V). Using the action of u on V* defined above we get an action
on C[V]. We denote by r this action f — u.f.

Let G C sp(V) be a Lie subalgebra.

We recall that f € C[V] is an invariant of G if u.f = 0 for every u € G.

Theorem 3.6 Let V be a symplectic complex space. We set dimcgV = 2n. Let
G C sp(V) be a Lie subalgebra. Let a = (au,...,ay) be a finite involutive sub-
set. We assume that the n elements ay, ..., ay are algebraically independant and
invariants of G. Then the Lie algebra G is abelian.

Proof. By Lemma 3.1 we see that u.f = 0 is equivalent to {¢(u), f} = 0. We
denote by A the subalgebra generated by «. This algebra is involutive, AL is in-
volutive by Corollary 3.2 and ¢(G) C A*+. As $(G) is a Poisson algebra isomorphic
to the Lie algebra G, the result follows.

Q.E.D.

Now we are going to finish the proof of Corollary 3.2.

Let U C C™ be a connected open subset. We denote by O(U) the C-algebra
of holomorphic functions on U. We denote by M(U) the field of meromorphic
functions on U, i.e., the fraction field of O(U). Let fi,..., f; € M(U). In this
context, we say that they are functionally dependent if there exists a non-trivial
relation 7" g;df; = 0, with g1,...,9m € M(U) (91,...,9m # 0), that is if the
meromorphic differential forms df, ..., df,, are linearly dependent over the field
M(U).

It is easy to prove the following result.

Lemma 3.3 Let U C C" be a connected open subset. Let fr,..., fm € M(U).
The following conditions are equivalent:

(i) f1,--., fm are functionally independent;

(ii) there exists an open connected dense subset W C U such that fi,..., fm €
O(W) and rankc(df1(z), ..., dfm(z)) = m for every x € W;

(iii) there exists a point x € U such that fi,..., fm are holomorphic at x and
such that rankc (df1(z), ..., dfm(z)) = m.

Proposition 3.5 In C(V) = C(x1,...,x,) functional (over some open set U of
V') and algebraic dependence (over C) are equivalent.

This well-known result is proved (for instance) in [8], and it is also used in
Ziglin’s original paper [115]. We give the proof for completeness.

Proof. For proving the above proposition, we recall the following classical result
([8], Proposition 1.15).



3.4. SOME PROPERTIES OF POISSON ALGEBRAS 67

Proposition 3.6 Let L C K be a field extension of 0-characteristic fields. Then
any derivation on L extends to a derivation on K.

Let f1,...,fm € C(V). If P(f1,...,fm) =0 for some polynomial
P e C[Zl,...,Zm],

then dP(f1,..., fm) = E%P(fl,...,fm)dfi = 0, therefore fq,..., f, are func-
tionaly dependent.
Conversely, if the f;’s are algebraically independent then

C(f) =C(f1;--, fm)

is a transcendental extension of degree m of C and the differential operators
0/0f; are well defined on C(f). We have aifi fj = 0;j. We have a field extension
C(f) c C(V), therefore the differential operators 9/9f; extend to derivations D;
on C(V). We have clearly D;f; = d;j. We define germs of vector fields X; =
> i=t,..n Di(zj)0/0z; (i = 1,...,m). For every g € C(V) we have (dg, X;) =
Dig. Let g1,...,9m € C(V) be such that 37, ., gidfi = 0. If we contract this
relation with the vector field Xy, we get g, = 0. Therefore the f;’s are functionally
independent.

Q.E.D.

Proposition 3.7 Let V' be a symplectic complex space of dimension 2n. Let C(V')
be the field of rational functions on V. Let fi,..., fnt1 € C(V) = C(x1,..., %)
in involution. Then the functions fi, ..., fn, fn+1 are functionnally dependent over
an open domain U C V.

This proposition is well-known in the real (differentiable) case. In the complex
case the same proof works well. We shall give the proof for completeness.

Proof. We can interpret b as an isomorphism between the holomorphic fiber
bundles TV (tangent bundle) and T*V (cotangent bundle). We denote by b the
inverse isomorphism.

If we assume that the functions fi,..., fn, fn+1 are functionally independent,
then they are regular and rankc (dfi,...,dfn+1) = n + 1 on a dense open domain
U.

The C-linear forms df;(z),...,dfp+1(z) € TR V* are linearly independent for
every x € U. Let gy € U. We set fi(zg) = ¢; € C. The subset ¥ = {f; =
Cly--+s fnt1 = Cpp1} C U is an analytic (smooth) submanifold of complex di-
mension n — 1. The vector fields Y; = 4df; (1 = 1,...,n + 1) are tangent to X
(df;(Yj) = {fi, f;} = 0) and linearly independent over the complex field at each
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point of V' (the linear map [ induces an isomorphism between T, V* and T, V).
This implies dim ¥ > n + 1 and we get a contradiction.

Q.E.D.

Corollary 3.3 Let V be a symplectic complex space. We set dimcV = 2n. Let
fis-ooy fnr1 € C(V) = C(x1,...,T2,) in involution. Then

(i) f1,--., fn+1 are algebraically dependent,

(i) if, moreover f1,..., fn are algebraically independent, then f,11 is algebraic
over the C-algebra generated by f1,..., fn.

Proof. The functions f1,..., fn11 are functionally dependent (on some open sub-
set), therefore they are algebraically dependent (over the complex field C).
If the functions fi,..., f, are algebraically independent, then we get a relation

P(fla---afnJrl):Amfm_l"‘""i‘AO:Oa

where P € C[Fl, R ,Fn+1] and Ag,..., Ay € C[Fl, R ,Fn] ~ C[fl, R ,fn] The
last isomorphism is a consequence of the algebraic independence of fi,..., fy,
with m > 0.

Q.E.D.

With this result we can end the proof of Corollary 3.2 and therefore the proof
of Theorem 3.6.



Chapter 4

Non-integrability Theorems

After the long preliminary work of Chapters 2 and 3, we now give the central
theoretical results of this book. They will be used in a systematic way in the rest
of this book.

In Section 4.1 we explain the process of reduction from the variational equa-
tions (VE) to the normal variational equations (NVE) within the framework of
the differential Galois theory. It is important to recall that to some extent it can
be considered as a formalization of the Poincaré theorem as explained in Chapter
3. This section contains an elementary but important new result that is essential
in applications: if the identity component of the differential Galois group of the
VE is abelian then the identity component of the differential Galois group of the
NVE is also abelian.

The main theorems are given in Section 4.2. These theorems are to some
extent variations, in different situations, of our central result: the non-abelian
character of the identity component of the differential Galois group of the VE (or
the NVE) is an obstruction to integrability in Liouville sense. The proof is based
on an infinitesimal method: we analyze the structure of the Lie algebra of the
Galois group. This approach is clearly allowed by the Galoisian formulation of
Ziglin’s theory: the differential Galois group is an algebraic group, and therefore
a Lie group. In Ziglin’s original formulation the monodromy group is discrete and
it is impossible to use an infinitesimal method. We remark that the differential
Galois group contains the monodromy group and therefore the Zariski closure
of this monodromy group. But, in the irregular (i.e., non-Fuchsian) case, the
differential Galois group can be larger than this Zariski closure. We stress that, if
we search for a non-integrability criterion, then the larger the differential Galois
group, the better!

Section 4.3 is devoted to some first examples in order to illustrate the above
theoretical results. We will apply our non-integrability result to the family of two
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degrees of freedom Hamiltonian potentials
1 3 1 2 *
U($1,$2) :§$1+§(a+bx1)$2,a€ C*, be C,

and
1 1
U(z1,22) = Ex? + 5(@36?_4 + bz 4 cx )3, n € N, n > 3.

The results of this chapter were obtained in a joint work of the author with
J.P. Ramis ([77]).

4.1 Variational equations

4.1.1 Singular curves

Let X := Xy be a holomorphic Hamiltonian system defined on an analytic com-
plex symplectic manifold M of dimension 2n (the phase space) by a Hamiltonian
function H. Before going to formal constructions, we make some comments about
the essential underlying ideas. If 2 = ¢(t) is a germ of an integral curve, but not
an equilibrium point, then one can consider the corresponding connected complete
complex phase curve (") in the phase space. We denote by I' the corresponding
abstract Riemann surface. By an abuse of terminology we say that I is an integral
curve. From now on by an integral curve we understand, in general, this abstract
curve. On the integral curve I' we can use the complex time ¢, which is defined up
to an additive complex constant, as a local parameter (uniformizing coordinate).
However it is essential to think of I' as an abstract Riemann surface over which
we can use other local parametrizations. The only distintive fact of a temporal
parametrization is that it allows us to express the Hamiltonian field in the sim-
plest way: X = d/dt. Then, using a pull-back, we interpret X as a holomorphic
vector field on I'.

If necessary we will make a careful distinction between the abstract Riemann
surface I' and the phase curve ¢(I') C M which is the image of I by an immersion
i. This immersion induces a bijection I' — ¢(T"). Note that i is not, in general, an
embedding.

It can happen that the complex time is a global parametrization of I". This
is frequent in applications (cf., example 2 below). More precisely we have an
analytic covering 9 : C — T', t — (¢). But it is important to notice that, in
general, in such a situation it is an infinitely sheeted covering (i.e., the function
1 is transcendental). We will see later that in our theory it is not important to
distinguish the curves up to a finite covering (and we will use this fact in the
applications very often), but it will be strictly forbidden to replace a curve by
one of its infinitely sheeted coverings. Therefore in the preceding situation it is
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important to distinguish carefully between the integral curve I' and the complex
time line C.

In the following, the variational equation over I' is locally a system of linear
equations with holomorphic coefficients, or more abstractly a holomorphic sym-
plectic connection V over I'. We get it by pull-back from the variational equation
over the phase curve i(I"), which is classically associated to our Hamiltonian sys-
tem.

The following step is to introduce the possibility of adding singular points in
order to obtain a meromorphic symplectic connection on some extended Riemann
surface I'. It seems natural to add the equilibrium points of X that belong to
the closure in the phase space M of the phase curve i(I'), i.e., the possible limit
points of the phase curve ¢(I"') when the time is made infinite. The problem is that
the resultant extended set is not, in general, an analytic smooth curve. We will
limit ourselves to the following case: we suppose that the the set of equilibrium
points in the closure of i(I") is discrete ( if not, we add only a discrete subset)
and that the extended curve [ is an analytic complex subset of dimension one of
M. We allow singularities on I, and in general, they will be precisely the added
equilibrium points. As usual in algebraic and analytic geometry, we can desingu-
larize this curve and obtain a “good” Riemann surface I'. This Riemann surface is
abstract and of course it is not contained in the phase space M. The holomorphic
connection V over I', which represents the VE, extends on a meromorphic con-
nection over I'. The poles of this connection are “above” equilibrium points and
correspond to branches of the curve I' at the corresponding equilibrium point.

The reader not familiar with algebraic or analytic singular curves and their
non-singular models can find some information in [53, 85, 108] (in particular [85]
Theorem 4.1.11 is valid in our case if we replace the finite set of singular points by
our discrete set and the compact analytic curve by our, in general, non-compact
curve).

In some problems it is interesting to add points at infinity to T' or to I'. We
now add to the symplectic manifold (M, w) a hypersurface at infinity My: M' =
M U My,. We suppose that M’ is a complex manifold and that w admits a
meromorphic extension over M’. Then it is natural to add to the curve I the
points of M, that belong to the closure of this curve in the extended phase space
M'. The resultant extended set is not, in general, an analytic smooth curve. As
before, we limit ourselves to the following case: we suppose that the set of points
at infinity in the closure of I is discrete ( if not, we add only a discrete subset) and
that the extended curve I' is an analytic complex subset of dimension one of M’.
Then, as before, we can desingularize this curve and obtain a Riemann surface
['. The meromorphic connection V over I' which represents the VE extends
on a meromorphic connection over I'. The poles of this connection are above
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equilibrium points or above points at infinity.

After these preliminaries, we start with the formal definitions. Let = = ¢(t)
(where ¢ is a complex parameter, not necessarily the time) be a germ of regu-
lar holomorphic parametrized curve in the phase space, i.e., ¢ is given in local
coordinates by a convergent Taylor expansion in a neighbourhood of ¢ = 0 with
#'(0) # 0. We have locally a homeomorphism between an open disk centered in
t = 0 and its image by ¢. We consider two such elements ¢, ¢2 as equivalent if
there exists a germ of holomorphic function p, at the origin such that p(0) = 0,
p'(0) # 0 and ¢o = ¢ o p (change of parametrization). We denote by C the set of
germs of curves over the phase space up to the above equivalence.

It is possible to endow the set C with a natural topology. If a germ ¢ belongs
to C, and is defined by a holomorphic function ¢(¢) for ¢ varying in an open disk
U C C, then for any point ¢y in U, we define ¢y, € C as ¢y, (t) := ¢(t + to). The
sets U(¢) := {¢y, } are a basis for the open sets in C.

Given a germ ¢ € C, it defines the abstract Riemann surface I' given by its
connected component i(I"). For more details see [53], Chapter 7 (in this reference
the analysis is made in the context of plane curves, but it remains clearly valid
without changes in our situation) or the classical H. Weyl monograph ([108], page
61).

So, if we have the germ of an integral curve that passes by a point zg, z =
b, (t) with the initial condition ¢,,(0) = xp, then the Riemann surface which it
defines is precisely I'. If we identify I" with the corresponding (connected) phase
curve in the phase space i(I"), we get the Hamiltonian field X over I' (d/dt in the
temporal parametrization). More precisely this Hamiltonian field is the pull-back
of the Hamiltonian field over M by the immersion 7 : I' — M. At the points of
the set I' — I, the vector field X is by definition zero (as they correspond to the
equilibrium points belonging to the closure of 7(I") in the phase space M).

Ezample. We illustrate the above considerations with an example that is impor-
tant in the applications. Let a one degree of freedom system be defined by the
following analytical Hamiltonian over an open set of C?

1

1
H(z,y) = Eyz + 590(95)-

If we consider the energy level zero, we obtain an analytic subset defined by the
equation P(z,y) = y? + ¢(r) = 0. We assume that this set C is connected (if
not, we select one of its connected components). Then C is an analytic curve. Its
singular points are exactly the equilibrium points E := {(0,z) : ¢(z) = ¢'(z) =
0}. So, the curve C' =T is equal to the disjoint union of I or more precisely i(I")
and E. And we obtain I' as the corresponding non-singular model of T.

In order to perform some explicit computations, we will analyze some simple
particular cases:
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1) Let ¢(z) = 223. The curve C is now

p
P(z,y) = y* + 32",

And
C=L=TuU{(0,0)},E=1{(0,0)}.

We note that [' admits a temporal parametrization
(z,y) = (=6t72,12¢ 7).

We can desingularize the point (0,0), as usual, by using Puiseaux series ([53],
Chapter 6), indeed we obtain only one branch (z,y) = (—6£2,12¢3). We write
instead of ¢ because this parameter is not the time (£ = 1/t), and this is so because
the temporal parametrization of I' is rational.

Now we can compute the Hamiltonian vector field X on . As X = yd/dz,
on I'; X = d/dt, if we use the temporal parametrization, and

y(t) d o d

—:—t =,

JOd

at the singular point s in T — T

2) Let ¢(z) = 22(1 — ). The curve I contains a homoclinic orbit i(I'), and the
origin as an equilibrium point. We can parametrize globally the Riemann surface
I' using the time parametrization

2 2sinht

(@(®),9(1) = (T oomne’ ~ (1 + cosht)?

).

We remark that, despite its transcendental appearence (i.e., the above equations),
the Riemann surface I' is algebraic: it is only a problem related to the selected
parametrization. Owur global time parametrization is not one to one: it is an
infinitely sheeted covering. Now applying the Puiseux algorithm we obtain im-
mediately two branches and hence two points s1, so belonging to I’ — I' above the
origin in [,

(z,y) = (t,t + h.o.t.),

(z,y) = (£, —t + h.o.t.).
We can express the field X as (£ + ---)d/dt or (—t + --)d/dt, respectively.

3) We observe that in example 1) the equilibrium point is degenerated and the
field X has a zero of multiplicity two in I' at the corresponding point above it.
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However, in example 2) the equilibrium point is non-degenerated and the field X
has a simple zero at the two corresponding points of I'. This is not casual. In
fact, let p(z) = 2" + O(z"*!) (with n < 2) be the expansion of ¢ at the origin,
then, by a simple inspection of the Newton polygon we get the following facts. If
n is odd, we get only one point belonging to T' — T, (x,y) = (£2,#" + h.o.t.), and
the field X has a zero of order n — 1 at this point. If n is even, we get two points
above (0,0) in T — T, (z,y) = (£,#"/?), (z,y) = ({, —"/?) and the field X has a
zero of order n/2 at each one. Of course, the above results do not depend upon
the parametrization. This simple fact is fundamental, as will become clear in the
applications.

4.1.2 Meromorphic connection associated with the variational
equation

Once we have defined I" and the derivation X, we define the holomorphic connec-
tion associated to the variational equation (VE) over I'. More generally, if we add
some equilibrium points (respectively some equilibrium points and some points
at infinity), we define the meromorphic connection associated to the variational
equation (VE) over I' (respectively ).

Let Tt be the restriction to I' or more precisely to i(T") of the tangent bundle
TM to the phase space M. It is a symplectic holomorphic vector bundle. More
formally the fiber bundle Tt is the pull-back of Ths by the immersion ¢ : I' — M.

The holomorphic connection which defines the variational equation along I’
comes by pull-back from the restriction to ¢(I') of the Lie derivative with respect
to the field X

Vo = LX}/H*,

where Y is any holomorphic vector field extension of the section v of the bundle
Tiry-

The fact that the connection V is symplectic follows from the definition of a
Hamiltonian vector field: the symplectic form is preserved by the flow.

Using the local time parametrization z = z(¢) on I' and local canonical coordi-
nates z = (L1, ..., Tny Y1, -y Yn) ‘= (21, ..., 22n) on M, we have the usual definition
of the variational equation (VE) along the phase curve.

We write the Hamiltonian system

. _ jOH
z 0z’

where %—IZ{ is the Jacobian matrix of H. Then we can express our connection V in
a holomorphic frame (eq,...,es,), and we get a differential system. Choosing the
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symplectic frame % associated to the canonical coordinates (21, ..., zo), we get

the differential system

g

where

X

Alt) = S

(2(t)) = JHessH(z(t)) = JS,

S = HessH (z(t)) being the Hessian matrix of the Hamiltonian function H (this
is a direct consequence from the expression of the Lie bracket [} X;0/0z;, 0z;]).
Hence we obtain the differential system that defines the VE in its usual form. It
is clearly a linear Hamiltonian system.

Now we add to (") a discrete set of equilibrium points, where by definition
the field Xy vanishes. We suppose that I is the closure, in the phase space M,
of i(T") and that [ is, in general, an analytic curve in M which is singular at the
equilibrium points. We denote by I' — ' a desingularization of the curve I'. We
consider I' as an open subset of I'. By restricting the tangent bundle TM to T,
we get an holomorphic bundle 1T over I', and by pull-back a holomorphic bundle
Ty over I

If the point a above is an equilibrium point, we cannot use the temporal
parametrisation on I' . Then we choose a uniformizing variable u at a € T'
(u(a) = 0), and we write the immersion i: u — i(u). We get X (i(u)) = f(u)d/du
(u # 0) with f(0) = 0 (by definition the Hamiltonian field X vanishes at ¢(0)).
Using u as a local coordinate on i(I') we can write X = d/dt = f(u)d/du. Then
the pull-back by 7 of the VE in a punctured neighbourhood of « is

€ _ 1 ox

This system is a holomorphic differential system over a punctured neighbourhood
of a in T'. Tt can clearly be interpreted as a meromorphic differential system over
a neighbourhood of a.

Such local constructions over I' glue together and we get a symplectic mero-
morphic connection over I'. It defines the VE over I.

When some points at infinity are added, a similar construction over I’ can be
performed. The only difference is that the Hamiltonian field X = Xz can have
a pole at one of these points at infinity due to possible singularities at infinity of
the symplectic form. Then the function f(u) is now in general meromorphic.
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4.1.3 Reduction to normal variational equations

The problem of reducing a linear system of equations goes back to D’Alembert’s
reduction of the order of a linear differential equation by means of a known par-
ticular solution.

In the Hamiltonian case, as we shall see, the underlying mechanism that ex-
plains reduction is the existence of invariant unidimensional horizontal sections
(of (V,V) or (V*,V*)) which are in involution.

All the bundles and connections considered in this section are meromorphic.
In the process of reduction we might need to add some new singular points of
the reduced connection. We consider these new singularities as singular points of
the initial VE, i.e., as points of I' — I'. With this in mind, all the bundles and
connections will be defined over the same fixed connected Riemann surface I' or
T with the same “singular set”. Also, as usual, we will identify a bundle with its
sheaf of sections.

Let V be a symplectic vector bundle of rank 2n. Locally we can define a
symplectic form Q which defines the symplectic structure of V. If vy,...,v; are
global meromorphic sections of V linearly independent over I' (vy A ... Avy, € A¥V
is different from zero on I') and in involution (i.e., Q(v;,v;) =0, 4,5 = 1,..., k),
then we can obtain some subbundles of V' as follows. But before this we remark
that, by definition, the sections wvq,...,v; have their coefficients in the field of
meromorphic functions over T or fl, being holomorphic over T'.

Let F be the rank k£ (meromorphic) subbundle of V' generated by vy, ..., vg.
We get F-( L with respect to the symplectic structure) as a sub-bundle of V.
We have clearly F C F+. The normal bundle N := F/F is a rank 2(n — k)
symplectic bundle which admits locally the symplectic form 2y defined by the
projection of €. It is easy to see that this form is well defined and non-degenerated
over I'. See also [8, 65], where meromorphic vector bundles do not appear but the
constructions are similar.

Using Lemma 4.2 below, we can suppose that the form Qp is globally defined
and that it is meromorphic over T' and holomorphic and non-degenerated over T.
We will implicitly make these hypotheses in what follows.

The following proposition (with the same notation as above) is essentially a
consequence of Propositions 1.11 and 1.6 of [8] with small changes in the notation
and taking into account the fact that we work here with meromorphic connections
instead of holomorphic connections.

Proposition 4.1 Let (V,V,Q) be a symplectic connection and v1,...,v an in-
volutive set of linearly independent global horizontal sections of V. Then, by
restriction, we have the subconnections (Vi =0, F), (Vpy, F+) and a symplectic
connection, (Vy,N,Qn), on the normal bundle .
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Proof. Tt is obvious that the bundle F is invariant by V. The invariance of F*
by V follows from the formula

Q(Vw,v) = X (Qw,v)) — Qw, Vv) — (VQ)(w,v),

and from the fact that V is a symplectic connection.

We define the connection Vy on N := F1/F from the action of V on the
representatives of the classes of N in F-. Of course Vy is well defined (Vy = 0)
and it is a symplectic connection.

Q.E.D.

The connection Vy is called the normal (reduced) connection and the corre-
sponding linear differential equation the normal equation.

We remark that although the proof of the above proposition is technically
similar to those of the propositions in [8], the philosophy here is different. Here
the connections V, Vy have the same singularities in I' — I'; in particular, the
differential fields of coefficients of the corresponding linear differential equations
are the same (the meromorphic functions over T').

Our objective now is to investigate the relation between the Galois group of the
initial equation Gal V and the Galois group of the normal equation Gal V. We
will use two different methods. The first is based upon explicit classical computa-
tions. The results so obtained are sufficient for the applications. More precisely for
these applications it is sufficient to know that if the identity component of Gal V
is abelian, then the identity component of Gal V is also abelian. The second
method is based upon Tannakian arguments and a more precise relation between
the two differential Galois groups is established. This relation is interesting by
itself, although not necessary for the work being developed here.

Let (V,V,) be a symplectic connection. Then we have the musical isomor-
phism defined by Q

b (V,V,Q) — (V5 V5 (D),

so the symplectic form section is transported to the Poisson bracket,

{a, B} = Q(h(e), 5(P)),

h := b~!. In some references it is said that V* with the Poisson bracket is a
Poisson vector bundle, see for instance [65].

Now, let @ € V*, v € V be two sections. Then «ag := a(pg), vo := v(py) are
elements of the fibres at py € I', and by using Cauchy’s existence theorem can be
identified with elements belonging, respectively, to the vector spaces of germs of
solutions at pg: E* = SolV*, E = SolV.
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Lemma 4.1 Let (V,V,Q) be a symplectic connection and let o, v := b~ e, global
sections of, respectively, the bundles V* and V. Then the following conditions are
equivalent:

(i) v is a (linear) first integral of the linear equation defined by V.

(ii) o is a horizontal section of V* (i.e., a solution of the

adjoint differential equation).

(71i) v is a horizontal section of V.

(iv) ag is invariant by the Galois group Gal V.

(v) vy is invariant by the Galois group Gal V.

Proof. The equivalence between (i) and (ii) follows from
X(< a,w>) =<Va,w >+ < a,Vw >,

X being the holomorphic vector field on the Riemann surface I', such that V :=
Vx. The equivalence between (ii) and (iii) follows from

0=X(Qv,v)) =X(<a,v>)=<Va,v>+<a,Vv>.

Now if « is a horizontal section of V*, (Mgy(1 4 «),d @ V*) is a rank one
subconnection of (My @ V*,6 @ V*). Then (as in the final example of Section
2.4) the corresponding complex construction by the fibre functor Sol, that is the
complex line C(1 + ay), is (pointwise) invariant by the Galois group. So we get
(iv). That (ii) is a necessary condition for (iv) is clear from the fact that ag is a
local horizontal section at a point py € I' that, by assumption, can be extended
to a global section «. From the unicity in Cauchy’s theorem it is necessarily a
horizontal section.

The equivalence between (iii) and (v) is obtained in a similar way: we only
need to write V instead of V* (another way of finishing the proof is to prove the
equivalence between (iv) and (v) using the fact that the musical isomorphism by
between the vector spaces (E, ) and (E*,{, }o) induces a bijection between the
invariants of the Galois group in £ and E*).

Q.E.D.

Let aq, ..., (o section of V*) be an involutive set of (global) independent
(i.e.,they generate a rank k subbundle) first integrals of the symplectic connection
(V,V,Q). By the above lemma we obtain an involutive set vy, ..., v; of independent
(global) horizontal sections of (V,V, Q). If as above, F' is the rank k£ subbundle of
horizontal sections generated by vy, ..., v, we can construct the subbundles and
connections (Vg, F), (VpL,FL) and (Vy, N = FL/F,Qy) (in general we will
write simply V). We remark that it is easy to prove [8] that

Ft={weV <apw>=0,i=1,..k}
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From the (meromorphic) triviality of the symplectic vector bundles (see ap-
pendix B) and the properties of the symplectic bases (by Proposition 2.4, the
global meromorphic sections are a symplectic vector space over the field of global
meromorphic functions K = M(T) over I') we have

Lemma 4.2 There exists a global (meromorphic) symplectic canonical frame that
contains the given linearly independent and involutive horizontal sections vy, ..., vg.

Now we compute the normal equation in coordinates. Let JS be the matrix of
V in a canonical frame (S is a symmetric matrix). We define a symplectic change
of variables using some new canonical frame which contains the given linearly
independent and involutive horizontal sections vy, ..., v.

We denote the matrix of the symplectic change of variables by

P = (D Dy Cy Cy),

where Cy = (¢4, ...,£!), and the 2n-dimensional column vectors &;, i = 1, ..., k, are
the coordinates of v; in the original canonical frame. Then we have [72]:

~CtJ
—~CLJ
Dty |’
DyJ

Pl =

AP —-P=JSP—-P=(JSD,-D, JSDy—Dy, JSC,—-C, 0),

since (5 is a fundamental matrix solution of the original linear equation. Hence
the matrix of the transformed equation is

CYSD, +JD)) E  CYSC,+ JC})
CL(SD +JD) C4(SCy + JCY)
—DY(SD, 4+ JD,) F —D{(SCy + JC))
—~D4Y(SD + JD) G

PlJS] =P Y(JSP - P) =

o O O O

where D = (D1 Ds) and E, F, G are given matrices. The matrix P[JS]
is necessarily infinitesimally symplectic, i.e., of the form JS; with S; symmetric
(see,for instance, [72], pg. 36,37). Hence C4(SD + JD) and C4(SCy + JCy) are
zero, E = -G, M = F', CY(SD,+JD;) = (CtS—CtJ)D; and H, CYH(SC,+JC}),
—D!(SD; 4+ JD;) are symmetric.

Reordering the new canonical frame, the matrix of the connection V becomes
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Ci(SD,+JDy) CLSC,+JC) G 0

—DY(SDy + JD -DIS—DtJ)C; F 0

PlJS] = 1( 01 1) (=D1 ) 11)C1 "o
Ft Gt H 0

Then the transformed differential equation 7 = P[JS]n in the variable n =
(o, B,7,0) is

= CH(SD:i + JDy)a+ CH(SCy + JC1)B + G,
—DY(SD;y + JDy)a + (—D!S — DLI)C1 B + Fry,
0,

= Fta — G'B8 + Hy.

.2 - O
I

The matrix of the normal equation is

C{(SDy+JDy)  C(SCy+JCh)
—D{(SDl + JDl) (—D{S — D{J)Cl '

Then we get the Picard-Vessiot extension L/K of V from two successive ex-
tensions

K CLyCL,

where Ly /K is the Picard-Vessiot extension of the normal equation (i.e.,of Vy)
and L/ Ly is an extension composed by two successive extensions L/L; and Ly /Ly
by integrals.

Now, using the Galois correspondence, we get

Gal(Ly/K) = Gal(L/K)/Gal(L/Ly).

It is well known that extensions by integrals are normal purely transcendental
extensions. Their Galois groups are additive abelian groups isomorphic to some
G, := (C",+) (see Section 2.2). Therefore Gal(L/Ly) is Zariski connected and
we get the inclusion of Gal(L/Ly) in the identity component GalVy (Gal(L/Ly)
is the group H that will appear below in the Tannakian reduction: see the next
subsection).

Finally, for n = k& we can solve the initial system by quadratures. This is
proved in [72]. Our computations on the matrix JS are a generalization of the
computations in this reference (we in fact kept the same notations).

Proposition 4.2 Let ay,...,ar € V* be an involutive set of independent (global)
first integrals of (V,V,Q). Let Vi be the normal connection defined by the above
set. Then we have
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(i) The linear differential equation corresponding to the connection
(V,V,Q) is integrable if, and only if, the normal equation
corresponding to (Vn, N, Q) is integrable.

(ii) If the identity component of GalV is abelian then

the identity component of GalV  is also abelian.

Proof. Using the preceding results and the differential Galois correspondence, the
equivalence (i) follows from the general group theory, i.e., any quotient group
of a solvable group is solvable, and conversely, if a normal subgroup and the
corresponding quotient group are solvable then the original group is also solvable.
Claim (ii) is evident.

Q.E.D.

Claim (ii) in the preceding proposition is essential for applications.

If now we have the variational equation (VE) over an integral curve I' of a
meromorphic Hamiltonian system Xp, and if fi1 = H, fo, ..., fr is an involutive
set of independent meromorphic first integrals of Xy, then we get an involutive
set oy = dH, ay = dfs, ..., ap = dfy of independent first integrals of the (VE) (see
Section 4.2) and we can apply the results of this section. The normal equation so
obtained is then called the normal variational equation (NVE).

Ezample. As an example, we apply the above considerations to the variational
equations along an integral curve I' of a two degrees of freedom Hamiltonian
system. We want to obtain the (NVE) from the (VE) when the Hamiltonian
is a natural mechanical system, H = T + U, T = (47 +y3), U = U(z1,22)
(potential).

Then o = dH (over T') is a linear first integral of the (VE), i.e., an element of
V*. We know that this is equivalent to the fact that z = (y1,y2, —Uy,—Us) € V
(where we have used subindexes for the derivatives of the potential) is a known
solution. There are several possibilities for the choice of the symplectic change P
(which is defined by a symplectic frame admitting Z as one of its elements).We
can suppose that y; and yo are not identically zero (if this is not the case the
NVE is obtained without any computation from the VE), then we can select a
very simple solution

0 0 0 Y1
_ Y2
p— y1 01 0 Y2
0o - m 1 -U;
U o _
y12 0 y; Uz

Applying the formula obtained above, the matrix of the NVE is
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y2Ur2 /1 Ui/

We observe that, as expected, it belongs to the symplectic Lie algebra sp(1, K) =
sl(2, K)).

< ~Ui/yr 1+ (y1/y2)? )

4.1.4 Reduction from the Tannakian point of view

We now give a new proof of Proposition 4.2 using Tannakian arguments. In fact
we will get a slightly more precise result. This improvement even if it is not used
later in this book, is important by itself.

We recall that a group G is meta-abelian if its derived group G’ is abelian. In
particular, a meta-abelian group is solvable.

The relation between the initial Galois group and the reduced Galois group is
given by the following result

Proposition 4.3 Let aq,...,ar € V* be an involutive set of independent (global)
first integrals of (V,V,Q). Let V be the normal connection defined by means of
the above set. Then

(GalV )y = GalVy/H,

where GalVy and GalV ¢ are respectively the identity components of the Galois
groups of V and V, and H is a closed normal meta-abelian subgroup of GalVy.

Proof. With the above notation, at the level of connections we have the natural
morphisms

(V.V) « (F4, Vpi) = (N = F*/F,Vy),
(the first one is the inclusion and the second the projection) and the isomorphism
b: (V,V,Q) — (V5 V" {,}).

Applying the fibre functor we get the corresponding morphisms and isomor-
phism

(Evﬁ) A (F()ngFOJ-) - (NO :FOL/FOvQNO)
bo : (Ea Q) — (,VU*,{,}),

where E = SolV, Fy = SolV, etc... .In order to simplify the notation, we write
Q and {, } instead of Qy, {, }o.
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Let Fy*,{,} be the involutive subalgebra generated by «i,...,ar. Then we
obtain the morphisms

(E*v{v}) A (FgLv{v}FJl) - (Nf)k = FU*L/Fo*v{v}Né‘)a

where the orthogonality | is now defined by the Poisson bracket.
We have the natural morphisms of algebraic groups

Gal V — Gal Vi1 — Gal V.

By composition, we get a surjective morphism ¢ : Gal V — Gal V.
We get also the corresponding morphisms of Lie algebra

LieV — LieVp1 — LieVy
and the surjective morphism
w: LieV — LieVy.

We know from Section 3.4 that the Lie algebra LieV is isomorphic to a Lie
subalgebra of (S?2E*,{,}) and that, modulo this isomorphism, the action of 8 €
LieV on E* is given by

{B,.}: 6 = {B,d}.

Then it is easy to describe the natural morphisms
LieV — LieVpi — LieVy

by restriction and projection of {3,} (we observe that {5,a} = 0, for any €
LieV, o € F§ or in a shorter way {LieV,Fj} = 0 ), and LieVy is considered
also as a subalgebra of (S2N*,{,}), modulo a musical isomorphism.

Using the morphism of Lie algebras

w: LieV — LieVy

we get an isomorphism
LieVy =~ LieV /Ker .

We set ker m := H. Then 8 € # if and only if {3, F; '} C Ff. As {E*,E*} C
C, by the Jacobi identity

{{5a 5}a a} = {/Ba {5a a}} - {6a {/Ba a}},

(with 8 € LieV, § € E*, a € Fj), we get the inclusion {LieV,E*} C Fit.
Applying again the Jacobi identity in the form
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{{/67/6,}75} = {Ba {/6,75}} - {/6,7 {Ba 5}}7

with 3,5" € H and § € E*, we note that this identity is simply the expression of the
action of the commutator [A, B] as AB — BA in the usual linear representation;
we obtain {{3,5'},d} € Fy. So, as the algebra H annihilates Fj we conclude
that the derived algebra H' is abelian, i.e., H is meta-abelian and, in particular,
solvable.

We set H = ker ¢. The group H is an algebraic subgroup of Gal V. Using
the results of the preceding subsection we can interpret H as a differential Galois
group and we recall that this group is Zariski connected. Its Lie algebra is H,
therefore H is meta-abelian.

Q.E.D.

From the classical Picard-Vessiot theory we get

Corollary 4.1 We have the following statements:

(i) The linear differential equation corresponding to the connection (V,V, )
is integrable if and only if the normal equation corresponding to (Vy,N,Qn) is
integrable.

(ii) If the identity component of GalV is abelian then both the identity com-
ponent of GalV  and the group H are abelian.

Proof. (i) follows as in Proposition 4.2 (but using here Proposition 4.3). Claim
(ii) is a direct consequence of the above proposition.

Q.E.D.

In the above corollary (i) expresses the meaning of the reduction: we can solve
(in the Galois differential sense) the linear equation corresponding to V when we
know the solutions of the linear equation corresponding to V.

4.2 Main results

Let E be a complex vector space of dimension m > 1. As above we denote by C[E]
the C-algebra of polynomial functions on E, and by C(F) the field of rational
functions on F, i.e., the quotient field of C[E].

Let G C GL(FE) be an algebraic subgroup. We define a left action of G on
C[E] or C(E) by (9,f) =g.f = fog™ ! (9 € G ,f € C(E)). It corresponds to
the usual action of G on the constructions over E. Let G be the Lie algebra of G.
If u € G C End(E), we define its action on V* by —u! and its action on E* @ E*
by —u' ® 1 — 1 ® u!. Its natural action f + wu e f on C[E] (isomorphic to the
symmmetric tensor algebra S*(E£*)) or on C(F) follows using evident formulas.
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We define by C[E]“ (respectively C(E)%) the C-algebra of G-invariant ele-
ments of C[E] (resp C(E)) (i.e., those f € C[E] (respectively C(E)) such that
g.f=f,forallg € G). If f € C(V)Y, thenue f=0forallu€g.

We can clearly identify C with a subfield of C(E)“. As in [25, 8], for r > 1,
we will say that an algebraic group G is r-Ziglin if transdegC(E)% > r. We will
say that an algebraic group G is r-involutive Ziglin if there exists r algebraically
independent elements fi,..., f, € C(E)% in involution.

We can now state our main results.

In order to facilitate the main applications to non-academic problems, we will
give three versions of this main result and add some corollaries for local situations.
Each statement will generalize the preceding.

Let I be the abstract Riemann surface defined by a non-equilibrium connected
integral curve i(I") of an analytic Hamiltonian system X with n degrees of free-
dom on a symplectic complex manifold M.

Theorem 4.1 If there are n meromorphic first integrals of X that are in invo-
lution and independent over a neighbourhood of the curve i(I), not necessarily on
[ itself, then the Galois group of the VE over I' is n-involutive Ziglin. This Galois
group 1is the Zariski closure of the monodromy group. Furthermore, the identity
component of the Galois group of the VE over I' is abelian.

We remark that in this theorem we take as coefficient field of the VE the
meromorphic functions over T.

The following result is a consequence of Ziglin’s theorem ([114] Theorem 2,
Remark 1). As an exercise, we give here a different proof (in fact Ziglin’s result
is stronger: he does not need the involutivity hypothesis).

Corollary 4.2 We suppose that there are n meromorphic first integrals of Xg
that are in involution and independent over a neighbourhood of the curve i(T) (not
necessarily on T itself). Let g, ¢’ be non-resonant elements of the monodromy
group, then g must commute with g'.

Proof. Let G’ be the Zariski closure in the Galois group G of the subgroup
generated by g and ¢'. Let H (respectively H') be the Zariski closure of the
subgroup generated by g (respectively ¢'). Because g and ¢’ are non resonant,
the groups H and H' are maximal tori in the symplectic group, i.e., they are
conjugated to the multiplicative group of dimension n

T := {diag( A1, ..y A, AT Lo A\ N € CF i =1, n)
( see [8], Proposition 2.13)
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Therefore they are Zariski-connected. It follows that G’ C G°. Applying
Theorem 4.1 we see that G’ is abelian, therefore g and ¢’ commute.

Q.E.D.

We now add to the curve (") a discrete set of equilibrium points. We get a
singular curve I’ C M. Let I' be a non-singular model of T.

Theorem 4.2 If there are n first integrals of Xg which are meromorphic and in
involution over a neighbourhood of the curve L' and independent in a neighbourhood
of T' (not necessarily on T itself), then the Galois group of the meromorphic VE
over T is n-involutive Ziglin. Furthermore, the identity component of the Galois
group of the VE over T is abelian.

We add now to the symplectic manifold (M, w) a hypersurface at infinity M,
(M' = M U My,) and to the curve (") a discrete set of equilibrium points and
a discrete set of points at infinity. We get a singular curve [V C M’, where, as
before, we suppose that w admits a meromorphic extension over M’. Let I’ be a
non singular model of I".

Theorem 4.3 If there are n first integrals of Xy which are meromorphic and
in involution over a neighbourhood of the curve I' in M', in particular mero-
morphic at infinity, and independent in a neighbourhood of T' (not necessarily on
I itself), then the Galois group of the meromorphic VE over I' is n-involutive
Ziglin. Furthermore, the identity component of the Galois group of the VE over
[ is abelian.

We stress that, when we are in the third case, we can consider three different
Galois groups corresponding to the variational equations over three, in general
different, Riemann surfaces: I, ' and I'. Each group contains the preceding.
But our abelian criterion is less and less precise: the set of allowed first integrals
is smaller at each step. Unfortunately it is in general difficult to compute the
differential Galois group. For instance, if the Riemann surface is open it is a
transcendental problem. The most favorable situation is when, in the second
(respectively the third case), the Riemann surface I (respectively I) is compact
and therefore algebraic. Then the connection is defined over a finite extension
of the rational functions field C(z), and there exists an algebraic algorithm to
decide if the identity component of the differential Galois group is solvable; more
precisely, there exists a procedure to find a basis for the space of Liouvillian
solutions ([95, 68]). So in that situation we get the existence of a purely algebraic
criterion (unfortunately not yet effective...) for rational non-integrability. Notice
that, if the manifold M’ is algebraic, then I is algebraic.
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It is important to remark that, if the meromorphic VE over I is regular
singular (i.e., of Fuchs type), then our three differential Galois groups coincide.
Then, if we are in the algebraic situation described above, we get an obstruction
not only to the existence of n rational first integrals in involution, but more
generally to the existence of n first integrals meromorphic on the initial manifold
M and in involution. In other words, an arbitrary growth at infinity is allowed.

In fact in many practical situations, we have the following: the Riemann
surface T' is an affine curve (i.e., I = T — S, where I'" is a compact Riemann
surface and S a finite subset), the VE (respectively the NVE) is a holomorphic
connection V on a trivial holomorphic bundle over the Riemann surface I' and
it can be extended as a meromorphic connection V" on a trivial bundle over
I'". Moreover, if this last connection V" is reqular singular, then the differential
Galois groups of V and V" coincide. Therefore we can (theoretically!) compute
the differential Galois group algebraically and we can apply Theorem 4.1. Of
course we will have in general I'" = I or IV, but, for the applications it is not
necessary to verify this fact! These remarks will be very useful for some important
non-academic applications. We can conclude that Theorems 4.2 and 4.3 are really
interesting when we get irreqular singularities at the singular points (equilibrium
points or points at infinity), in particular in the local situations that we will
describe now.

In the following we give two corollaries which are local versions of our results.

Locally on T or at a regular-singular point of I, neither Ziglin’s theorem nor
our main result are conclusive. But, using our main result, we can get some proofs
of local non-integrability at an equilibrium point or at a point at infinity in some
cases (see below: Section 4.3, Example 1).

Let Xz be an analytic Hamiltonian system with n degrees of freedom on a
symplectic complex manifold M. Let a be an equilibrium point of Xg. Let " be
a germ of an analytic curve (perhaps singular) at a which is the union of {a} and
a connected non-stationary germ of the phase curve. Let I' be a germ of a smooth
holomorphic curve which is a non-singular model for L.

Corollary 4.3 If there are n germs at a of meromorphic first integrals of Xy that
are in involution in a neighbourhood of a, in particular meromorphic at infinity,
and independent in a neighbourhood of a (not necessarily on T itself), then the
local Galois group of the meromorphic germ at a of VE over ' is n-involutive
Ziglin. Furthermore, the identity component of the local Galois group of the germ
at a of VE over T is abelian.

We add now to the symplectic manifold (M, w) a hypersurface at infinity M,
(M' = M U M), and to the curve (") a point at infinity co € M. We get
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a germ at oo of the singular curve I'' (we suppose that w admits a meromorphic
extension at o).

Corollary 4.4 If there are n germs at oo of first integrals of Xg that are mero-
morphic and in involution in a neighbourhood of oo in M' and independent in a
neighbourhood of co (not necessarily on T itself ), then the local Galois group of the
meromorphic germ at oo of VE over I is n-involutive Ziglin. Furthermore, the
identity component of the local Galois group of the germ of VE over I' is abelian.

We now prove Theorem 4.1. Later we will indicate how to modify this proof
in order to get Theorems 4.2 and 4.3.

Let V,V be the holomorphic symplectic vector bundle and the connection
corresponding to the variational equation of our Hamiltonian system along the
solution I'. On the symmetric bundle S*V* of polynomials we can define the
structure of a Poisson “algebra” (over the sheaf Or of C-algebras of holomorphic
functions on T') in the following way.

Let d be the differential over the fibre, i.e.

d: SV — Sy e v,

oo
da = Z o  n;,s

where 1, ..., 12, are fibre coordinates in the bundle V* (this is a special case of
the differential of Spencer).
Then we obtain the mappings,

d@d: SV e SV — (SF Ve V) e (ST Ve V)

Ideh: (S*V' eV es 'VYeV =MV eV ies 'VieV*
c: SV VTSIV eV — Syt e STy

sym : Sk=ly* o gr=ly* Sk"H"_QV*,

where b := b~!, ¢ and sym are the musical isomorphism, the contraction between
V and V*, and the symmetric product, respectively.
The Poisson bracket

{}: SV eS8V — ghtr2y+
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is the composition of the four above maps. It is Q(T')-linear. In a direct way we
can prove that it is the usual Poisson bracket in coordinates, if we only derive
with respect to the fibre, i.e.

_ Oda 0  Oa OB
{a,p} = Za—m(?—fz - 8_&8_71,’

in a canonical frame with canonical coordinates &, . We can extend {, } to all the
symmetric algebra S*V* by bilinearity, and obtain a Poisson algebra (S*V*, {, })
(more precisely a O(I")-Poisson “algebra”).

From now on we fix a point pg € I'. Let Ey = Sol,,V be the space of germs of
solutions at pg (i.e., horizontal vectors of the connection V). We can associate to
a germ of a solution its initial condition at py. We get an isomorphism between
Ey and E =V, = T,yM. The C-algebra C[FE] is a complex Poisson subalgebra
of the complex Poisson algebra underlying the O(I')-Poisson algebra (S*V*,{,}),
and the natural isomorphism Fy — FE induces an isomorphism between this Pois-
son algebra and the natural Poisson algebra (C[FE],{, }) defined above using the
symplectic structure on £ = V,,; = T,,, M. In the following we identify these two
algebras.

The Galois group G of the variational equation acts on C[E] and the algebra
of invariants C[E]“ is also a Poisson subalgebra. Indeed since G is a symplectic
group, G commutes with the symplectic form and, for ¢ € G, «, € C[E]%,
ofa, B} = {oa, 0B} = {e, B}.

We can now replace the holomorphic bundle S*V*, whose sections are func-
tions that are meromorphic on the basis and polynomial on the fibre, by the
holomorphic locally trivial bundle LV*, whose sections are functions that are
meromorphic on the basis and rational on the fibres. We easily extend the pre-
ceding constructions to this bundle. The C-algebra C(F) is a complex Poisson
subalgebra of the complex Poisson algebra underlying the O(I')-Poisson algebra
(LV*,{,}), and the isomorphism Ey — E induces an isomorphism between this
Poisson algebra and the Poisson algebra (C(E),{,}). As above, we identify these
two algebras. The Galois group G of the variational equation acts on C(E), com-
mutes with the Poisson product, and its algebra of invariants, C(E)“, is also a
Poisson subalgebra.

In the following, by definition, a first integral of the variational equation (or
of the corresponding connection V) is a meromorphic function defined on the
total space of the bundle V', which is meromorphic over the basis, rational over
the fibers (i.e., a meromorphic section of the bundle LV*) and constant on the
solutions (i.e., horizontal sections). As the symplectic fibre bundle V' is mero-
morphically trivial as a symplectic bundle, such a first integral can be inter-
preted as an element of M(I")(n1,...,72,) (in coordinates such that the canonical
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base, (1,0,...,0),...,(0,...,0,1), corresponds to a global meromorphic symplec-
tic frame).

Let f be a holomorphic first integral defined on a neighbourhood of the analyt-
ical curve (I"). Then for any point p € I" we define the junior part [f], of f at p as
the first non-vanishing homogeneous Taylor polynomial of f at p with respect to
some coordinate system in the phase space. This process has an invariant mean-
ing and the junior part [f], must be considered as a homogeneous polynomial on
the tangent space T,M =V, at p (see[8] for the details). Furthermore, the degree
k € N of this polynomial is the same for any point p € I" ([8], Proposition 1.25).
In this way, when p varies in I', we obtain a holomorphic first integral (polynomial
on the fibres) of the variational equation defined on the bundle TrM = V. It is a
holomorphic section of S*V*.

Let f be now a meromorphic first integral defined on a neighbourhood of the
analytic curve i(T'). Then for any point p € T' we can naturally extend the map
f — [f]p to the fraction fields and define the junior part [f], of the meromorphic
first integral f at p. This junior part [f], must be considered as a homogeneous
rational function on the tangent space T,M = V|, at p. Furthermore, the degree
k € Z of this homogeneous rational function is the same for any point p € T" ([8],
Proposition 1.25). In this way, when p varies in I, we obtain a meromorphic first
integral (rational on the fibres and holomorphic on the basis) of the variational
equation defined on the bundle Tt M = V. It is a holomorphic section of LV*.

Let f, g be two meromorphic first integrals in involution in a neighbourhood
of the analytic curve i(T'). If we denote respectively by f°, ¢° the junior parts
of them at pg, then these rational functions are also in involution. Indeed 0 =
{f,9} = {fx + h.ot,g + h.ot} ={fk,g-} + h.ot., where the first term has the
degree k + r — 2. The involutivity of f° and ¢° follows from this and from the
definition of the junior part [8].

Now we recall a fundamental lemma from Ziglin. Let f be a holomorphic
function defined over a neighbourhood of the origin in a finite dimensional complex
vector space E. We define the junior part f0 of f at the origin [8]. It is an
homogeneous element of the rational function field C(E).

Lemma 4.3 (Ziglin Lemma,[114]) Let fi, ..., f, be a set of meromorphic func-
tions over a neighbourhood of the origin in the complex vector space E. We sup-
pose that they are (functionally) independent over a punctured neighbourhood of
the origin (they are not necessarily independent at the origin itself). Then there
exist polynomials P; € C[Xy,..., X;] such that, if g; = P;i(f1,...,fi), then the r
rational functions ¢?,...,g° € C(E) are algebraically independent.

The following result was proved in [114, 8].
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Lemma 4.4 Let V,V be the holomorphic symplectic vector bundle and the con-
nection corresponding to the variational equation over I'. Let fO be a first integral
of the variational equation, holomorphic over the basis and rational over the fi-
bres. Let p € I'. Then the rational function fl[,) is invariant under the action of
the monodromy group m (M;p).

The point p defines a representation of the differential Galois group G of the
variational equation as a closed (in the Zariski sense) subgroup of GL(V,). We
write G C GL(V,). Then the image p(m1(M;p)) of the monodromy representation
at p is a Zariski dense subgroup of G. We get the following result.

Lemma 4.5 Let V,V be the holomorphic symplectic vector bundle and the con-
nection corresponding to the variational equation over T'. Let f° be a first integral
of the wvariational equation, holomorphic over the basis and rational over the fi-
bres. Let p € T'. Then the rational function f;)] s invariant under the action of
the differential Galois group of V.

We need generalizations of this lemma when we have singular points (equi-
librium points or points at infinity) and when we consider variational equations
over ' or I''. But in such cases it is in general not true that the image of the
monodromy representation is dense in the Galois group and our preceding proof
no longer works. Therefore we give below a new proof of Lemma 4.5 which re-
mains valid, mutatis mutandis, in all cases. It is very elementary but central in
the proof of our main results. In fact we prove a slightly more general result.

Lemma 4.6 Let V.,V be the holomorphic symplectic vector bundle and the con-
nection corresponding to the variational equation over T'. Let f° be a first integral
of the wvariational equation, meromorphic over the basis and rational over the
fibres. Let p € T. We suppose that f° is holomorphic over the basis in a neigh-
bourhood of p. Then the rational function fz? is invariant under the action of the
differential Galois group of V.

We give two different proofs of this lemma.
First Proof. As above we choose a global meromorphic symplectic frame

(()2517 .. '7¢2n)

for the symplectic (meromorphically trivial) holomorphic bundle V' over I'. Using
this frame, we identify the field of meromorphic sections of LV* with

M(F)(T]l, . ,ﬂgn).
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We fix a point p € I'. The frame allows us to identify the fibre V,, with the space
C?" (with its canonical symplectic structure). We can suppose that (¢1,. .., ¢o,)
are holomorphic and independent at p. Then, in a neighbourhood of p, we can
choose a uniformizing variable = over the basis and write the connection V as a
differential system An = %77 — A(z)n, where A is a holomorphic matrix.

Let (¢i(z),...,Cam(z)) be the set of solutions satisfying the initial conditions
¢1(0) = (1,0,...,0),...,(2,(0) = (0,...,0,1) at the point p (z = 0). The system
(C1,...,Copn) defines uniquely a Picard-Vessiot extension M(T') < (3,...,(2, >
of the differential field M(I'). Using this system we get a representation of the
differential Galois group G of V as a subgroup of Sp(2n; C) C GL(V}).

Let fO= f%z;n1,...,m20) € M(D)(n1,...,m2,) be a first integral of the vari-
ational equation, meromorphic over the basis and rational over the fibres. We
suppose that f0 is holomorphic over the basis in a neigborhood of p. To a fixed
A= (A1,...,A2n) € C?" we associate the solution 7y = A;¢1 + - + A2pCopn. In
a neighborhood of p, we have fO(z;n\(z)) = f%(0;)) € C. We can interpret
f%(z;my) as an element of the Picard-Vessiot extension M(T) < (i,...,(2n >.
In this Picard-Vessiot extension this element is a constant (i.e., it belongs to C),
therefore it is invariant under the action of G. When X varies in C?" the function
A+ f0(0; \) is rational: it is the expression of the function fz? in coordinates.

Let 0 € G. Using the definition of a differential Galois group, we get

o(fO(zsmn)) = Oz 0(m)) = 203 1) = fO(0; ),

where 1 = o(n)(0).

Then o( = B(, with B = (bZ]) € Sp(2n; C). We have o(3_; Ai(;) = Ez’,j bijAiCj-
Therefore = B'XA and f0(0;\) = f°(0; B'A). This proves the invariance of fI?
under the action of G.

Q.E.D.

Second Proof. We sketch a second proof based upon Tannakian arguments. Let
f® € LV* be a first integral of the variational equation. We first suppose that 0 is
not a polynomial. Then we can write f* = %, with b € S¥V* and g € S"V* being
relatively prime symmetric tensors. If v is a solution of the variational equation
(that is Vv = 0) then the equation X, (f°(v)) = 0 is equivalent to the equation
(S¥V*h(v))g(v) — h(v)(S"V*g(v)) = 0. Consequently we get two equations

SEV*h = ah,
S"V*g = ag,

where ¢ is an element of the coefficient field K of the variational equation.
We set W = Sk¥V* @ S"V* and Vi = S¥V* @ S"V*. The one-dimensional
K-vector subspace W' = K(h + g) of the K-vector space W is clearly stable
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under the action of the connection Vy,. We denote by Vi the restriction of
Vw to W'. Hence we get a rank one subconnection (W', V) of the connection
(W, V) = (S¥V*@S"V*, §¥V* @ S"V*). This last connection is an object of the
tensor category of the (generalized) constructions over V. Then we can choose a
point p € T" and introduce the corresponding fibre functor. The space of germs
at p of horizontal sections of the subconnection (W', V) is a complex line in
the complex space of horizontal sections of the connection (W, V). From the
Tannakian definition of the Galois group G, this complex line is invariant by G.
This complex line is generated over C by an element ¢(h,+ gp) where ¢’ +ap = 0.
The invariance of the rational function f;,) = Z—;’ by the Galois group G follows
immediately.

Q.E.D.

The above proof is not far from some arguments used in J.A. Weil’s PhD
Thesis ([106]) for the study of Darboux’s invariants.

We remark that if f© is a polynomial, we set f = f, g = 1. The equation
X5(f°v)) = 0 is equivalent to the equation (S*V*f(v)) = 0. Then we can
replace, in the preceding proof, the connection (K (h + g), S*V* @ S"V*) by the
connection (K (1 + f),dx @® S*¥V). This connection is a rank one subconnection
of the connection (K @ S*V*,dx @ S¥V) and we can conclude as above (here the
complex line C(f, + 1) is invariant by G and G acts trivially on it).

Let now fy, ..., fn, be a family of meromorphic first integrals of the Hamiltonian
Xy in involution and independent over a neighbourhood of i(I") (not necessarily
on i(T") itself).

If we apply Ziglin’s Lemma (see Lemma 4.3 above) at a point p € I' to our
functions fi, ..., fn, by all the arguments we gave above we get n homogeneous and
independent (algebraically and analytically) functions «;,, ..., @, in the algebra
C(E)%,{,}). In other words, the abelian Lie algebra (A{,}) of polynomials in
Q1gs -y iy (With complex coefficients) is a Poisson subalgebra of C(E)%,{,})
and it is invariant by the differential Galois group I' of the variational equation.
Therefore it is annihilated by the Lie algebra G = Lie G of the algebraic group
G. We complete the proof using Theorem 3.6. This ends the proof of Theorem
4.1.

Q.E.D.

With very simple modifications we can obtain the proofs of Theorems 4.2 and
4.3. The essential difference is the following. By hypothesis the first integrals
f1,--., fn are meromorphic over the manifold M (respectively M'); in particular
at the equilibrium points (respectively, at the equilibrium points and at the points
at infinity), therefore their junior parts f{,..., f) are meromorphic sections over
[ (respectively I) of the fibre bundle LV*. Their restrictions over I will of course
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remain holomorphic, but in general they have poles at the singular points and at
the points at infinity.

If among our n meromorphic integrals there are some that are functionally
independent over I', then using the results of Section 4.1, we get

Corollary 4.5 Let fq,...,fn be a family of meromorphic first integrals of the
Hamiltonian X g in involution and independent over a neighbourhood of i(T) (not
necessarily on i(T') itself). If moreover, for a fized integer k < n, the k first in-
tegrals f1,..., fr are (functionally) independent over T, then the Galois group of
the NVE is n — k—involutive Ziglin. Furthermore the identity component of the
Galois group of this NVE is abelian.

There are similar statements in the situation of Theorem 4.2 (respectively 4.3):
i.e., when f1, ..., f, are meromorphic in a neighborhood of T (respectively I''). We
leave the details to the reader. The proof is essentially the same for all three cases.
In order to perform the reduction, we complete fi, ..., f,, into a global meromorphic
symplectic frame over I' (respectively T' or ') and we apply the process described
above in Section 4.1. We get the NVE. It can have poles, in particular, at the
equilibrium points and at the points at infinity. The Galois group G” of the NVE
is a quotient of the Galois group G of the VE. The identity component G° of
G is abelian, therefore the identity component G’ of G’ is also abelian. More
precisely G° is an extension of G, by an algebraic group, isomorphic to some
additive group G = (C",+). We remark that G" can contain a non trivial
torus isomorphic to some multiplicative group (C*?,-) (cf., our examples below
in Section 4.3). So, we observe the possibility of a crucial difference between the
first integrals eligible for the normal reduction process and the others.

We remark that, as for the main theorem, the conclusion of the corollary is
the same if we restrict the NVE to a neighbourhood of some singular point s, and
if the Galois group is the local Galois group. In this way we can use our results in
order to obtain non-existence of local first integrals in any neighbourhood of an
equilibrium point or of a point at infinity.

As a final result of this section we show how Ziglin’s theorem is a direct
consequence of the above corollary when we assume the complete integrability of
the system, i.e., n = 2 in the above corollary.

Corollary 4.6 (Ziglin Theorem, [114]) Let f be a meromorphic first integral
of the two-degrees of freedom Hamiltonian system Xy. We suppose that f and
H are independent over a neighbourhood of i(T') (not necessarily on i(T) it-
self). Moreover we assume that the monodromy group of the NVE contains a
non-resonant transformation g. Then any other transformation belonging to this
monodromy group sends eigendirections of g into eigendirections of g.
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Proof. First, we assume that, as in the above results of this section, the set (i(T")
is not reduced to an equilibrium point. Then dH remains different from zero over
i(T") and the reduction to the NVE is made using the one form dH (or in a dual
way the vector field Xp).

Then the NVE is given by a symplectic connection over a two-dimensional vec-
tor space. Hence its Galois group is an algebraic group whose identity component
is abelian and we can identify this group with a subgroup of SL(2, C). In Propo-
sition 2.2, we obtained the classification of the algebraic subgroups of SL(2,C).
Here the only possible cases are cases 4 and 5, because for the others either the
identity component of the Galois group is not abelian or all the elements of the
Galois group are resonant. It is clear that in both cases 4 and 5 we have g € G°
(we recall that the group topologically generated by a non-resonant element g is
a torus, more precisely here this torus is maximal and we have G ~ C*), and the
remaining transformations belonging to the Galois group either preserve the two
eigendirections of g or permute them.

Q.E.D.

We remark that, as was pointed out by Churchill [22], from our results (essen-

tially from Lemma 4.6, and from the reduction process: Section 4.1) it is possible

to prove that we can replace monodromy group by Galois group in the statement
of Ziglin’s original theorem (Theorem 3.4).

4.3 Examples.

Let X be the Hamiltonian system given by the Hamiltonian

H=T+U:=1/2(y} +v3) +1/2¢p(z1) + 1/20a(z1)x3 + h.o.t.(z2),

with the x; coordinates and the y; canonically conjugated momentum, i = 1, 2.
We assume that the Hamiltonian is holomorphic at the origin.

The plane {z3 = yo = 0} is invariant and the Hamiltonian restricted to it is
of the type studied in the example of subsection 4.1. We write x := x1, y := y;.
Then we have the integral analytic curve y? + p(z) = 0. We assume that o(z) =
" + h.o.t., n > 2. We want to study the NVE along this integral curve in a
neighbourhood of the origin (which is an equilibrium point).

The NVE is

d*¢

= +alw(®) = 0.
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d . d
— = ("% £ hot)—
dt ( e )dt
for n even, and
d 1. d
— = (=" + hot.)—
dt (2 o )dt
for n odd. We obtain for the corresponding NVE
P n R0)
) + (2—£ + h.o.t.)ﬁ + Té’ =0, n even,
d*¢  n—1 d¢  da(z(t))
dl?Q + ( i + hOt)ﬁ + Wf = 0, n odd.

And if
ox) = apa® + ho.t., a #0,

then, by the Fuchs theorem about regular singular singularities, we get the fol-
lowing result that we state as a proposition for future reference.

Proposition 4.4 The origin (or more precisely its corresponding points in the
desingularized curve) is a reqular singular point of the NVE of the above Hamil-
tonian system along the integral curve y? + o(z1) = 0 if and only if n — k < 2,
with n and k the multiplicity (as a zero) of © =0 in ¢ and «, respectively.

We remark that the above proposition relates the degeneration of the equilib-
rium points to the irregularity of the corresponding singular points in the varia-
tional equation. Hence, the degeneration is related to the (possible) existence of
Stokes multipliers.

Now we apply Theorem 2.5 to our Hamiltonian system

H=T+U:=1/2(y} +v3) +1/20p(z1) + 1/20a(z1)x3 + h.o.t.(z2),

(two degrees of freedom), with the integral irreducible analytic curve defined by
y%2+(x) = 0 (as above, we drop the subindexes). Furthermore we assume that ¢
and « are polynomials. Then T is a compact Riemann surface (see [53]) and the
usual change of variables x <> ¢, z = x(t) (x(¢) is the solution of the hyperelliptic
differential equation 2 4+ ¢(x) = 0) gives us a pull-back of the NVE on the
Riemann sphere (the classics call it the algebraic form of the equation, [109, 88])

Pe L P de als) , _
dz? = 2p(z)dz  2p(z)

We call this equation (ANVE): the algebraic NVE (as in other chapters).
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We observe that the singular points are the branching points of the covering
(i.e., the roots of ¢ and the point at infinity). Concerning the equilibrium points
of the original Hamiltonian, we see that = 0 is a singular point if n — k > 0 and
it is irregular if n — k£ > 2 in complete accordance with the last proposition.

Furthermore by Theorem 2.5, the identity components of the Galois groups
of the NVE and of the ANVE are the same. I we now look at the standard
transformation in order to put the ANVE in the normal invariant form

d*¢
E‘FI((L‘)f:O,
with . L d
1%
[:=q—-p>—=-—
=3P = 9w
and )
d“g d¢
zs S -0
dz? +pd:1:+q€ ’

the original equation, where we conserve the symbol ¢ for the new variable.
Note that we have introduced an algebraic function (exp(—1/2 [ p = ¢~ '/*) only.
Hence, the identity components of the Galois groups of the ANVE and of its nor-
mal invariant form are the same, and we can identify the two equations in order
to obtain non-integrability results. As a conclusion, we can work directly with
the normal form of the ANVE: if the identity component of its Galois group is
not abelian, the Hamiltonian system is not integrable (we observe that the Galois
group of the normal invariant form and the Galois group of the initial NVE as
well, are contained in SL(2,C): see Section 2.2).

Ezxample 1. We apply the theory to the very simple Hamiltonian of two degrees
of freedom with two parameters,

1 1 1
H:T+U:§(y%+y%)+§x?+§(a+bx1)x§,ae C*,be C.

This Hamiltonian system has the integral curve,

2 _ _
—:1:{’, T =—6t72, y =123, zy =1y, =0.

r: i?=—
] 3

The corresponding normal variational equation is
£+ (a —6bt~2)¢ = 0.

We observe that there are two singular points, the origin and the point at
infinity. The first one is irregular (by the above proposition) and the second one
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regular singular. In fact, as we shall see, the NVE is a confluent hypergeometric
equation.
By making the change of variables ¢t = 2’\%, we get

d? 1 1

d—zg - (Z +6b;)77 =0.
This equation is a family of Whittaker equations, with one parameter only. In
fact, as we know from subsection 2.8.4, it can be transformed into a family of
Bessel equations. Then the identity component of the Galois group of the NVE is
abelian if, and only if, yx+1/2 is integer. Hence, by Corollary 4.5, for b # %(kQ—i-k),
k € Z, this Hamiltonian system is not integrable (i.e., it does not have a global
meromorphic first integral beyond the Hamiltonian).

We observe that for ¢ = 0 the above Hamiltonian is the homogeneous Hénon-

Heiles Hamiltonian. It will be studied from the differential Galois point of view
in Chapters 5 and 6.

Example 2. For three degrees of freedom one has the following natural general-
ization of Example 1,

1 1 1 1
H=T+U=3(yi +y5 +v3) + gzi’ + 5 (A + Bz1)zi + 5 (C + Dy )as,
where A,C € C*, B,D € C.

This Hamiltonian system has the integral curve,
2 3

~af, m=-6t7 1 =12t"°, my=xz3=yy=y3=0.

r: i?2=-
z] 3

The corresponding NVE is composed of two independent Whittaker equations
of the same type (at the level of connections it is a direct sum of two connections,
each of them being the connection of a Whittaker equation). Hence, if one of the
parameters B or D is different of £(k? + k), k € Z, we get non-integrability. In
the same way we can generalize this to more degrees of freedom and to some other
examples when the NVE is split in 2 x 2 equations of the same kind.

Ezample 3. We consider now the family of Hamiltonian systems with two degrees
of freedom defined as above with ¢(z) = 2", a(z) = az™ 44 bz" 3 +cz" 2, where
n is an integer, n > 3 and a, b, ¢ are complex parameters, with a # 0.

In the same situation as above, the normal invariant form of the ANVE is

d*¢ n(n —1)

i (( T o)z 2 4+ b3 +az e = 0.

With the change of variables z = %, we get
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d*¢ 1 n(n—1) o b 5 1
i e v L S E At

where in order to simplify the notation we write again z instead of #). Now, if in
the Whittaker equation

d? 1 42 —1
e Lok
dz? 4  z 422

we do the change of variables, z = 1/z, we obtain

)n =0,

PE -1, g1
So, the ANVE is a general Whittaker equation, with
nin—4) 1 b
4 — R — = ——.
a \/c L TR LR W/
We recall that if
N 1
=K - =
1
=K—p— =
q 1 9’

then, the identity component of the Galois group of the Whittaker equation is
abelian if, and only if, (p,q) belong to (N x —N*) U (—N* x N), i.e., p, q are
integer, one of them positive and the other negative. Hence, this last condition is
a necessary condition for the integrability of the initial Hamiltonian system.

We make two remarks about the above Examples 1-3. The first one is that,
because of abelian character of the monodromy group of the NVE, we can not
obtain any non-integrability result by an analysis of the monodromy group. The
second one is that, as the NVE are confluent hypergeometric equations, the local
Galois group at the irregular point and the global Galois group coincide. Then,
by Corollary 4.3 we have proved indeed the non-integrability of these systems in
any neighbourhood of the origin in the complex phase space (the equilibrium point
corresponding to the irregular singular point).

For some special Hamiltonians it is also posible to prove local non-integrability
in a Fuchsian context as is shown by Ziglin in the following example that we include
for the sake of completeness.

Ezample 4 ([114]). We recall briefly the Ziglin analysis. The starting Hamiltonian
is
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1
H = =(y{ +y3 + 2123).

2
By an elementary canonical transformation (a rotation, which puts one of
the symmetric invariant planes on the axis zo = yo = 0), Ziglin obtained a

Hamiltonian system with potential

1
V(z1,20) = g(fff — z3)?,

where we keep the same notation for the new coordinates.

This is a potential of the type studied above with ¢(z1) = 1/4z} and a(z;) =
—1/223.

Then Ziglin considered the NVE along the family of integral curves g = yo =0
using as a parameter the energy H > 0 (he did not consider the integral curve
through the origin). These variational equations are reduced to Lame’s type and
then he applies his theorem about the monodromy group (in fact, by the proof
of Corollary 4.6, he proved the non-abelian structure of the identity component
of the Galois Group). So the system under study does not have an additional
meromorphic first integral in a neighbourhood of the above family of integral
curves.

The key point now is that by the (quasi-) projective structure of the Hamilto-
nian (the potential is a homogeneous polynomial) if the system has a holomorphic
first integral, then any of the homogeneous polynomials in the expansion of this
integral at the origin must also be a first integral. In this way Ziglin proved the
local non-integrability of this system at the origin.

In the next chapter we shall study a family of Hamiltonian systems that gen-
eralize this last example (see the Umeno families in subsection 5.1.3).



Chapter 5

Three Models

We start the part devoted to applications with three important non-academic
models: the homogeneous potentials, the Bianchi IX cosmological model and the
Sitnikov system in celestial mechanics. We note that, from the differential Galois
theory of Chapter 2 (we shall need only the theorem of Kimura and the algorithm
of Kovacic) and from our results of Chapter 4, the methods proposed here are
completely systematic and elementary. In our opinion, this reflects the fact that
the natural setting to obtain non-integrability results, using an analysis of the
variational equations (along a particular integral curve), is the differential Galois
theory.

The results of this chapter were obtained in a joint work of the author with
J.P. Ramis [78, 79], except Example 3 of subsection 5.1.3 is new and will be also
studied in Chapter 6 from a different point of view.

5.1 Homogeneous potentials

5.1.1 The model

The purpose of this section is to give a simple non-integrability criterion for com-
plex Hamiltonian systems with homogeneous potentials, i.e., of the type

1

where V' is a homogeneous function of integer degree k. We consider this as a
first non- completely academic application in order to test the results of Chapter
4. In this way, we show that we can improve some of the Yoshida results even for
two degrees of freedom (see [111]), avoiding arithmetical problems related with
the non-resonance assumptions in Ziglin’s Theorem or its generalizations, because

101
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these theorems are exclusively based on the analysis of the monodromy group of
the variational equations (see [101]).

We take three concrete examples: the collinear homogeneous problem of three
particles studied by Yoshida in [111], the n-degrees of freedom system with po-
tential

1
S S S
V —g E (L‘ilxiz---xir,

taken by Umeno [101] and the so-called Hénon-Heiles homogeneous potential stud-
ied by Yoshida [111].

5.1.2 Non-integrability theorem

Let an n degree of freedom Hamiltonian system with Hamiltonian

1
H(z,y) =T+V =Syt - +ya) + V(@1 20), (5.1)

V' being a homogeneous function of integer degree k and 2 < m. For the case
n = 2, Yoshida obtained a remarkable non-integrability theorem based on Ziglin’s
Theorem [111].

As Yoshida notes, it is not possible to generalize, in a direct way, his theorem
to n > 2. Indeed, it is difficult to check the non-resonant condition of Ziglin’s
Theorem. He asks for a generalization of Ziglin’s theorem in order to handle these
systems ([111], p. 141). With Theorem 5.1 it is possible to solve this problem and
moreover, we can improve Yoshida’s results , even for the case n = 2.

We follow the Yoshida arguments in order to obtain a set of hypergeomet-
ric equations as the NVFE along a particular solution of the Hamiltonian system
H(x,y) above. From the homogeneity of V', it is possible to get an invariant plane

x=2z(t)e, y=2(t)c, 1 =1,2,...,n,
where z = z(t) is a solution of the (scalar) hyperelliptic differential equation

2
32 = 2= 2",

(we assume the non-trivial case k& # 0) and ¢ = (¢1, ¢, ...¢;,) is a solution of the
equation

c=V'(c).

This is the particular solution I' along which we compute the VE and the NVE.
The VE along I is given, in the temporal parametrization, by

ij = —2(t)" V" (e)n.
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By the symmetry of the Hessian matrix V" (c), it is possible to express the VE as
a direct sum of second order equations

1 = —z(t)kiZ)\mi, i=1,2,...,n,

where we preserve 7 for the new variable, \; being the eigenvalues of the matrix
V" (c). We call these eigenvalues Yoshida coefficients . One of the above second
order equations is the tangential variational equation, say, the equation corre-
sponding to A, = k — 1. This equation is trivially integrable and we get as NVE
an equation in the variables & := (91, ...,0n—1) := (&1, -, &n—1), 1.€.,

£ = —2()"2diag(\y, ..o An1)E

Now, following Yoshida, we consider the finite branched covering map

T — P!,
given by t — x, with & =: z(¢t)¥ (here T is the compact hyperelliptic Riemann
surface of the hyperelliptic curve w? = %(1 — 2), see subsection 4.1.1). By the

symmetries of this problem, we get as NVFE a system of independent hypergeo-
metric differential equations in the new independent variable x

d’¢ k-1 3k—-2 d¢ N\
1) (2~ - B
rl—o)55 + (5 TR T

£=0, i=1,2...,n—1

This system of equations is the algebraic normal variational equation (ANVE).
If we write ANVE; for the scalar second order equation corresponding to the
Yoshida coefficient \; then

ANVE=ANVE,® ANVE; & ---® ANVE,_;,

(in fact it is a direct sum in the more intrinsic sense of linear connections of
Chapter 2). Then it is clear that the ANVE is integrable if, and only if, each
one of the ANVE;’s is integrable. In other words, the identity component of the
Galois Group of the ANVE is solvable if, and only if, each one of the identity
components of the Galois Group of the ANVE;’s, i =1,2,...,n — 1, is solvable.

Each one of the above ANVE;’s is a hypergeometric equation with three regular
singular points at £ = 0, £ = 1 and x = 0o. We remark that, by Theorem 2.5, the
identity component of the Galois Group of the NVE is the same as the identity
component of the Galois Group of the ANVE.

For the equation ANVE;, the exponent differences at z =0, z = oo and z = 1
are, respectively, A = 1/k, i = /(k — 2)2 + 8k ;/(2k) and ¥ = 1/2. Now we
obtain the following result.
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Theorem 5.1 If the Hamiltonian system with Hamiltonian (5.7) is completely
integrable (with holomorphic or meromorphic) first integrals, then each pair (k, \;)

belongs to one of the following lists (we do not consider the

(1) (k,p+plp —1)k/2),

(2) (2,arbitrary complex number),
(3) (—2,arbitrary complex number),

(4) (=5, 35 — 25 (F + 10p)*),

(5) (=5, 35 — 15(4 + 10p)?),
(6) (4,3 — 5(3 +4p)?),

(7) (=3, — 5:(2+ 6p)?),
(8) (=3,3% — 5:(3 + 6p)?),
(9) (=3,3% — 5:(& + 6p)?),
(10) (=3,3% — 5:(F + 6p)?),
(11) (3,— 3 + 5(2+ 6p)?)
(12) (3, =31 + 3 (3 + 6p)?)
(13) (3, =31 + 3 (S +6p)?)
(14) (3, —31 + 51 (# + 6p)?
(15) (4,—% + 5(5 +4p)?),
(16) (5, — 15 + 75 (5 + 10p)?),
(17) (5, — 4 + 15(4 + 10p)?

(18) (k, 3 (55 + p(p + 1)k)
where p is an arbitrary integer.

trivial case k =0)

Proof. The proof follows from our Corollary 4.1 and from Kimura’s theorem, be-
cause if the identity component of the Galois group is abelian, then, in particular,
it is solvable. Case (1) corresponds to case (i) in Kimura’s theorem and cases
(2)-(18) to case (ii) in Kimura’s theorem. In particular, in cases (4)-(18) the
Galois Group is finite and the identity component of the Galois Group (of the

ANVE and of the NVE) is trivial.

Q.E.D.

We recall Yoshida’s theorem. For n = 2 (only one parameter A appears), let

us consider the four regions

1) Sk={A>L—j+DIk/2-7+1>X>—j(j+1)|k|]/2/+j+1,j € N}, for

< _37

k
(ii) S 1 =C—{-j(j —1)/2+1,j e N},
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(iii) 1 = C - {j(j —1)/2+1,j e N},
(iv) Sy = {X < 0,5(j — D)k/2+j < A< j(j + 1)k/2 — j,j € N}, for k > 3.
Then we have [111]

Theorem 5.2 If A is in the region Sy then the corresponding Hamiltonian system
s not integrable.

Now, it is easy to show that Yoshida’s theorem is a particular case of Theorem
5.1. We sketch the steps. For case (1) of Theorem 5.1, we see that the parameter A
belongs to the complement, in the complex plane, of the Yoshida non-integrability
regions Sy, k € Z — {2, -2}, because S; =C —{p+pp—1)/2}, S.1=C—{p—
p(p+1)/2} (with p € Z), and for the rest of the k values, A = p+p(p — 1)k/2 are
precisely the extremities of the open intervals that appear in Si. For the cases (3)—
(18) we give an indirect argument. These cases correspond to a finite Galois (and
monodromy) Group, and Yoshida’s theorem is based, as Ziglin’s theorem, on the
existence of a non-resonant monodromy matrix, but for these cases all the Galois
(and monodromy) transformations of the NVE are resonant, then necessarily the
values of the Yoshida coefficient A for the cases (3)—(18) are contained in C —US.
We recall that, by Theorem 2.5, the identity component of the Galois group is
preserved when we obtain the ANVE from the NVE and that a linear algebraic
group is finite if and only if the identity component is trivial.

The knowledgeable reader may ask why we do not use the last argument
(used for cases (3)—(18)) for the case (2). The reason is that, in this case, the
Galois group might have an identity component solvable but not abelian, and
in Yoshida’s (and Ziglin’s) theorem, a necessary condition for integrability is the
abelianess of the identity component of the Galois Group. In fact, as was proved
in Chapter 4 for a two degrees of freedom Hamiltonian system, Ziglin’s theorem
is a consequence of our main results of Chapter 4, see Corollary 4.6.

5.1.3 Examples

Ezample 1. We consider with Yoshida the collinear three body problem with a
homogeneous potential

Vg2 03) = o1 — @ + a1 — a3 + |¢2 — a5)*-

By a reduction to the center of masses it is transformed to a two degrees of freedom
potential

V((L‘l,xz) = (\/gij + :Ez)k + (—\/gxl + :Ez)k + (QxQ)k.

For k an arbitrary integer, it is posible to obtain a hyperelliptic integral curve
with ANVE having Yoshida parameter A = 3(k — 1)/(1 + 2¥~1). For k even
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and positive there exists an additional hyperelliptic integral curve with an ANVE
having A = (k —1)/3 [111].
By applying the last theorem we get

Proposition 5.1 Ezcept for the four cases k = —2,1,2,4, the collinear homoge-
neous potential of three particles of degree k is not integrable (we do not consider
the trivially integrable case k =0).

We remark that, with respect to Yoshida’s results, the new feature we find
is the non-integrability of the system for £ odd and greater than or equal to 5.
Furthermore, the four cases £k = —2,1,2 and 4 are well known integrable systems
(see the references in [111]). In this way we close the integrability problem for
this family.

Example 2. We now apply Theorem 5.1 to a family of systems with an arbitrary
number of degrees of freedom, studied by Umeno [101].

In order to avoid the already mentioned arithmetical problems (for n greater
than two) related to the non-resonance condition, Umeno introduced the non-
resonance-degenerate condition. In this way he studied the non-integrability of the
systems given by the very symmetric n-degrees of freedom homogeneous potentials

1
S S S
V —g E (L‘ilxiz---xir,

where the summation considers all the possible combinations of r different in-
tegers, 41,142, ...,%,, with 4, equal to 1,2,...,n. Following Umeno, we denote this
Hamiltonian system by (n,r,s). We observe that, in any case, r < n.

For these systems, we have k = rs and it is possible (see [101]) to find a
hyperelliptic curve with associated ANVE admitting as Yoshida parameters the
values

s(r—1)

)\1:>\2:---:>\n,128—1— =\

n—1

Then, by Theorem 5.1, we get

Proposition 5.2 The above Hamiltonian systems with parameters (n,r,s)
(2 < m) are not completely integrable, except perhaps for the five cases

(i) n(s—1)=rs—1,
(ii) n(s —2) =rs — 2,
(iii) = 1,
(iv) rs =2

(v) 2(s — 1= =) = o2
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Proof. We need to check cases (1), (2) and (11)-(18) of Theorem 5.1. Case (iv)
corresponds to case (2). Now, it is easy to see that A = s — 1 — S(nr%ll) <rs—1
(this fact is also used in [101]). Hence, it is only necessary to consider the values
p=0,1 and —1 in case (1) of Theorem 5.1 (for other values of p we do not have
positive integer values of n, r and s). These values give us conditions (i), (ii), (iii)
and (v). This last case corresponds to (18) with p = 0.

Case (11) is not possible because rs = 3 impliesr =1, s =3 orr=3, s = 1.
As r =1 appears in (iii), it is only necessary to consider » = 3, s = 1. But the
equation —2/(n — 1) = —1/24 + (2 + 6p)? /24 has no solutions n € N and p € Z.

In a similar way, cases (12)-(17) are not possible.
Q.E.D.

We observe that the trivial case (iii) corresponds to a separable potential.

In his paper Umeno proved the non-existence of an additional integral for the
following systems:

(a) (n,r,1) with 3 <r,

(b) (n,r,2) except for the five cases (2,2,2), (3,3,2), (26,4,2), (6,6,2), (28,6,2),
the two families (2r — 1,7,2), (r+ 1,7,2) (2 < r) and the trivial family r = 1,

(c) (n,r,s) with2 < s, =2 <pand 2 <.

We remark that condition (c) is incompatible with condition (v) of Proposition
5.2. We first notice that n —1 > 0. Then condition (v) implies 2(s — 1 — M) =

n—1
s7-1 < 1. Therefore 2(s—1)(n—1)—2sr+2s < n—1and 2s(n—r) < 3(n—1). From
condition (c) we get s > 2 and rs — 2 < sn — 2n. Therefore 2s(n —r) > 4(n — 1).

Finally 3(n — 1) > 4(n — 1), 0 > n — 1, and we get a contradiction.

Using similar (even simpler) arguments, starting from Proposition 5.2 we can
prove the non-complete integrability of systems (a), (b) and (c) and, furthermore,
we get new non-integrable systems. For instance, the systems of type (n,r,2)
(2 < n) are not completely integrable except for (n,1,2) and (2r —1,r,2). Umeno
considers in [101] as an open problem for these systems, with r = 2, the fact
that among the systems in (b) there are some that have a non-integer difference
of Kowalevski exponents, but his criterion can not decide their non-integrability.
We have proved above that all these systems are never completely integrable.

We note that the non-integrable system with parameters (2,2,2) already ap-
peared in this monograph (see Section 4.3): it is the Yang-Mills potential studied
by Ziglin.

Ezample 3. The homogeneous Hénon-Heiles Hamiltonian is given by the Hamil-
tonian function
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1 e
H = §(y% +92) + 3 o3+ x23. (5.2)

The parameter e is assumed to be complex We notice first, that by a suitable
scaling the potential can also be taken as —:1:1 + $1$2 So, the case e = oo
is integrable. Furthermore, a rotation in the conﬁguratlon space (eventually, a
complex rotation) converts (5.2) into

V2—ee+1
3

1
H=-(n}+n)+ S+a8+ 52, (5.3)

2
2 3(e— 1)

e # 1. A suitable scaling has also been used. If e = 1, it reduces to 3(n} +n3) +
(€3 + £3), which is clearly separable. Skipping the 0(52) erms, we remark that
3) is as (5.2) with é = 25 .
In [111] Yoshida computed the values of the corresponding Yoshida’s param-
eters as A = %, A=é— 1, and by application of his theorem he obtained the

following result.

1
3
(5.

Proposition 5.3 ([111]) The Hamiltonian system with Hamiltonian (5.2) is non-
integrable for e € (—oo, 1) U (U721 (1 +7+3(}), 1 —j + 3(7°4H)).

We observe that the complement of this set of values of e contains infinitely
many intervals, with increasing lengths.

The use of the Painlevé property (see[89]) suggests that the system (5.2) is
integrable only for e = 1,6, 16 and some difficulties appear in the case e = 2 (see
[38]).

Beyond the separable case e = 1, the cases e = 6 and e = 16 are known to be
integrable. We display the first integrals independent of the Hamiltonian [89]:

1. For e = 6: F = 42323 + z3 — 42193 + 4720192,

2. For e =16 : F = yj + 4x123y3 — x2y1y2 4:5%30% S:ch.

By application of Theorem 5.1 we get the following non-integrability result.
Proposition 5.4 The Hamiltonian (5.2) is non-integrable for

e € C\{1,2,6,16}

Proof. From Theorem 5.1, the Yoshida parameter (A and 5\) can take the following
six possible values: fi(p) := p + 3p(p — 1), fo(p) == § + 2p( 1), f3(p) =
_ﬁ + 2_14(2 + 6p)2, f4(p) = _ﬁ + ﬁ(% + 6p)2 ( ) = 24 + 24(5 + 6p) ,
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fo(p) == —51 + 57(22 + 12p)%, p € Z. The integrability of the Hamiltonian (5.2)
is only compatible with the identity % —e=\+ 1, where A and )\ take values in
the above six families f;(p), i =1, ..., 6.

It is clear that A+1 > 1. On the other hand, we have 2/f1(p) < 2, 2/ f2(p) < 6,
2/ fa(p) < 16,2/ f4(p) < 192/5,2/ f5(p) < 1200/11 and 2/fs(p) < 1200/119. Then
we only need to check a finite number of cases and the only ones of these that
verify the above identity are for e =1, 2,6, 16.

Q.E.D.

We shall give a different proof of the above proposition in the next chapter.

This example was suggested to the author by Ljubomir Gavrilov some years
ago.

As a final remark, we think that it is possible to apply Theorem 5.1 to other
interesting systems.

5.2 The Bianchi IX cosmological model

5.2.1 The model

The Bianchi IX Cosmological model is a dynamical system given by the equations
in logarithmic time [60]

d?log z,

a2 = (z2 — 5133)2 - 96%7

d?log xy 9 9

a2 - (3 —11)" — 23, (5.4)
d?log x3 9 9

a2 (#1 — 2)" — =3,

with the energy constraint (from physical considerations)

T1 Ty T2 T3 T3 L1
B=—(f2y P20 B0

2., .2 2
)+ x] + x5 + x5 — 2(z179 + 273 + T371) = 0.
T1%p XT3 T3 L1

So, we get a dynamical system of dimension five on the zero level energy
manifold M.

In fact this system is a Hamiltonian system with positions x1, z2, z3 and their
conjugate moments given by

1d

-4
Y1 e og(wax3),
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1d

= ———]_
1 d
-4 :
Y3 o di og(z172)

So that the energy becomes the Hamiltonian

1
H= Z(x?y% + 23y5 + 23Y35 — 221291y — 2T9T3Y2Y3 — 2T1T3Y1Y3)

+$% + m% + wg — 22129 — 22923 — 21123 = 0.

This system is studied from a real dynamical point of view in [60, 13, 73, 28]
(the real configuration space for this system is given by z; > 0, i = 1,2,3). It
is proved in [28] that it is a locally integrable Hamiltonian system (for a precise
definition of what that means, see the above reference) on the open real physical
phase space. As it is not recurrent in the real open phase space, it is necessary
to compactify this physical phase space in order to have recurrence and then it is
proved in [13] (page 54-76) that the behaviour of the system is very complicated in
this extended real phase space (this is also studied in a more heuristic way in [60],
p. 477-484) with oscilations around the gravitational collapse (the gravitational
collapse is given by the points in the phase space with z1zex3 = 0). It seems
that some insight into this real chaotic behaviour of the Bianchi IX model was
also recently given by Cornish and Levin in the preprint [20] (this and other
additional recent references on the dynamics of Bianchi IX are given in [11]).

From the complex dynamics (with complez time) approach more recently the
paper [61] is devoted to showing that this dynamical system has not passed the so-
called Painlevé test (in fact, as remarked in Chapter 1, this method started with
the Kowaleski analysis of the rigid body [57]) , i.e., that the only movable singular-
ities of the solutions with respect to the time parametrization are poles (sometimes
the existence of movable essential singularities is also permited). The authors used
the variational equations along a family of particular solutions founded by Taub
[99], and they showed that these variational equations have an irregular singular
point and, hence, the system “contains” essential singularities in their solutions
around the Taub family. We notice that from the existence of an irregular sin-
gularity it follows inmediately that the general solution of this system (with five
parameters) is not meromorphic in time.

From the above considerations, it is clear that the Bianchi IX model is a
polemic system and apparently contradictory results were obtained. Part of this
puzzle is clarified by the following two remarks. We recall, as remarked in Chap-
ter 3, that there are several degrees of integrability of a Hamiltonian system:
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real integrability (given by differentiable or analytical real first integrals), alge-
braic integrability (the Liouville torus becomes the affine part of abelian varieties),
integrability by algebraic first integrals, by holomorphic first integrals or by mero-
morphic first integrals.

A second elementary but important remark is that if we are studying some kind
of integrability, the allowed changes of variables (i.e., canonical transformations)
must belong to the same category. For instance, if we are studing the integrability
of a system by rational first integrals (or if it has the Painlevé property), changes
of variables must have the same degree of regularity. So, changes of variables
that introduce essential singularities in the phase variables (respectively, in the
time) are not allowed, because the above integrability is not preserved by these
changes (respectively, the Painlevé property). By all the above, the Bianchi IX
cosmological model is a good “laboratory” in order to understand the interplay
between the several concepts of integrability.

In this section we shall prove the non-integrability of the Bianchi IX model
(with the Hamiltonian given by H above) by rational first integrals.

5.2.2 Non-integrability

Our proof of non-integrability lies on the variational equations along a particular
solution of the Taub family.

As noticed by Taub, the subspace xo = x3 (42 = #3) is invariant by the
flow of the system, and the reduction to this invariant four dimensional space
(three dimensional on the restricted manifold Mj) is completely integrable (it is
an integrable subsystem) and their solutions can be calculated explicitly ([99], p.
481). From the Taub family of solutions we select the particular ones

2k k cosh(2kt)

= cosh(2kt)’ e 2 cosh?(kt)’

k being a parameter. This particular integral curve is our integral curve I', along
which we compute the VE. We remark that I' is contained in the energy constraint
Mj. Furthermore T' is the Riemann sphere P!, since it has a global rational
parametrization in the variable z := tanh kt. Effectively, we can write x1,20 =
T3,T1, L9 = T3 as rational functions of z,

. _2k(1 - 2% o k(1 +2?)
L= "7 2 2=8 =5
_8k2z(1—z2)

T iy = i3 = kz(1 — 2°).

(1+422)2 °



112 CHAPTER 5. THREE MODELS

The relevant part of the VE is given by the Normal Variational Equation
(NVE) transversal to the invariant space xo = x3, £2 = 3, obtained in [61] ( as
we know from Chapter 4, the tangential part of the VE is integrable)

& —2(z129 — 222)a = 0. (5.5)

Now, as noted in [61], it is possible to write the NVE over the Riemann sphere
P! (i.e., with rational coefficients) by the change x := 2% = tanh?(kt). We write
the obtained equation in its invariant reduced form (i.e., without the term in the
first derivative in the standard way) in the new independent variable 7 as

d’n 1 1 5 1 31
PRV e | e s R T
We remark that in the above equation the parameter £ is missing.

The above equation has regular singularities at £ = 0,1 and an irregular
singularity at 2 = oo (it is a confluent Heun’s Equation). The dynamical meaning
of the equilibrium points is the following. The natural parametrization of the
Riemann surface I' =~ P! is the variable 7z, with £ = 22. Then by the double
covering P! — P!, 2z — z, from the points z = 0,1, co, we get the four points
z = 0,+1,00 of . Tt is a direct consequence of the rational parametrization
of T in the parameter z, obtained above, that z = 0,+1 (hence x = 0,1) are
equilibrium points, with z1(0) = 2k, z2(0) = z3(0) = k/2, 4;(0) =0, i = 1,2,3
and x1(£1) =0, zo(£1) = z3(xl) =k, z;(£1) =0, i = 1,2, 3, respectively. The
point £ = oo corresponds to the point z = oo of the phase curve T.

We remark that the points z = £1 (i.e., z = 1) correspond also to the physical
gravitational collapse, because

) = 0. (5.6)

k3 k3
T1T9T3 = ?(1 -2 = ?(1 —2?).
Now, we can apply the Kovacic Algorithm (Section 2.7).
Let

11 5 1 31, sz

r(x):_(1$_1 +4($_1)2 +1_GF) = %a

with ¢ a monic polynomial. Then the algorithm is divided into three steps:

First Step
1.1. The sets I and I are

I'={0,1, 00}, I = {0,1},
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with orders 0(0) = o(1) = 2, 0o(o0) = max(0,4 4+ deg s — degt) = 3, and we define
m™ := max(m, o(oc)) = max(2,0(c0)) = 3 (m is the cardinal of [').
Then the set of singular points is classified by the order:

Fg = {0, ]_}, Fg = {OO}

1.2. Asm™ > 2, we get yo =2, and v := y9 + #['3 = 3.

ot

3
1.3. oy — ~ 16 o] — —

1.5. L={2}, n=2.
Second Step

2.4. Asn =2 > 2 and h(2) = 4, we obtain Fy = Z N {1,2,3} = {1,2,3},
Ei=Zn{201—v=4), 2, 2(1+v=4)}=/{2}.
2.6. B = {3}.

Third Step

3.1. If e; = (1,2,3), e2 = (2,2,3), e3 = (3,2,3) (the elements of Ey x E; X Ey),
then the numbers d(e;), ¢ = 1,2,3 are not natural numbers. Hence the Galois
group of the equation (5.6) is SL(2,C). This equation is non-integrable and the
NVE is also non-integrable.

As the irregular point of the VE is at oo in the phase space, then by the
suitable version of Corollary 4.5 (corresponding to Theorem 4.3), we have proved
the following result.

Proposition 5.5 The Bianchi IX Cosmological Model, considered as a Hamilto-
nian system given by the Hamilton function H above, is not completely integrable
with rational first integrals.

We note that although we have not worked in canonical coordinates (i.e., in a
canonical frame in the VE) the above result is independent of this fact, because
our formulation of the general theory in Chapter 4 was completely intrinsic.

5.3 Sitnikov’s Three-Body Problem

5.3.1 The model

The Sitnikov system is a restricted three body problem given by a very sym-
metrical configuration: the primaries with equal masses m move in ellipses of
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eccentricity e in the XY plane around their center of masses O, and the third
infinitesimal body moves along the axis OZ perpendicular to the plane where the
primaries move [83]. We take, as usual, the normalization of units in such a way
that m = 1/2, the period of the primaries is 27 and the gravitational constant is
equal to one.

Then the equation of motion of the third body is given by

z
+ 22 0, (5.7)
r(t) being the distance of one of the primaries to the center of masses O.

In his book [83], Moser showed the non-integrability (and in fact the chaotic
behaviour of this system) by proving that it contains a Bernouille shift as a sub-
system (in the real domain of the phase space). Here we will give an alternative
proof of the analytical non-integrability of this system in the complex domain.

We follow [70] and we choose as a new time the eccentric anomaly 7. The
transformation is given by the Kepler equation

t=7—esinT.

Then equation (5.7) is transformed to

d
d—j_ = (1—ecosT)v,
dv (I —ecosT)z

dr (22 4r(1)2)32
with

r(T) = %(1 — €ecosT).

5.3.2 Non-integrability

As the particular integral curve I' we take the triple collision orbit with e = 1,
r=1/2(1 —cosT), z=v =0. The NVE along I' is given by

d%¢ sint  d§ 8
dr?2 1—costdr 1—cosT

¢=0. (5.8)

Now, in order to get an equation over the Riemann sphere, we make the
transformation
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We obtain

d2¢  1/2  1/2 d¢ 1 1 IR
i e + =) =0. (5.9)

(z—12 z—-1 =z

The above equation is a Riemann ( or generalized hypergeometric) equation
with three regular singular singularities at = 0, z = 1 and z = oo. The
triple collision corresponds to the singular point £ = 1 and the point £ = 0
corresponds to a branching point of the double covering defined by the above
change of variables z — 7 (physically these two points correspond to the two
vertexes of the degenerated ellipse with e = 1). We remark that by Theorem 2.5,
the identity component of the Galois group of equation (5.8) is the same as the
identity component of the Galois Group of equation (5.9).

For equation (5.9), the difference of exponents at z = 0, z = 1, £ = oo is
(respectively) A = 1/2, u = i/2v/55 and v = 1.

It is very easy to check condition (7) or (i7) of Kimura’s theorem (Theorem
2.6) for equation (5.9): as the Galois group is not finite (the exponents at the
point x = 1 are not rational numbers) we only need to check (i) and (i), family
1. In a direct way we get the non-solvability of the identity component of the
Galois Group. In particular, this identity component is not abelian. Hence, we
have obtained the following result.

Proposition 5.6 In a neighbourhood of the triple collision orbit, the Sitnikov
Three Body Problem is not completely integrable with meromorphic first integrals.

The author is indebted to José Martinez—Alfaro for suggesting this example.
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Chapter 6

An Application of the Lamé
Equation

Very simple examples of Hamiltonian systems in two degrees of freedom lead to
NVE of Lamé type, equation (2.16),

d%¢
where P denotes the Weierstrass function and A and B are, in general, complex
parameters. It is assumed, in what follows, that the roots of the polynomial f
associated to P are simple (otherwise P is reduced to elementary functions). This
is ensured if the discriminant

A :=27g% — g3 (6.2)

is non-zero, where g, and g3 are the associated invariants (see Chapter 2).

It was observed in the early examples [48], that a necessary condition for
integrability was n integer, where we set (as in Chapter 2) A = n(n + 1). The
motivation of this chapter is to understand this behaviour.

In the forthcoming sections we obtain, first, the potentials of classical Hamil-
tonians with an invariant plane such that the NVE are of Lamé type. Then a
non-integrability criterion is obtained for these Hamiltonians. The results given
here are not complete because we have not been able to prove that some numeri-
cal coefficients are different from zero (although a large number of them has been
checked!). We conjecture that all of them are different from zero.

The chapter ends with the study of some old and new examples. The case of
the homogeneous Hénon-Heiles potential is studied in detail, in particular, we give
another proof of Proposition 5.4 and numerical evidence of the non-integrability
of the system for e = 2.

117
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The results of this chapter were obtained in a joint work of the author with
C. Simé [82].

6.1 Computation of the potentials

Let

1
H= 5 (yi +y1) + V(z1,22)

be a two degrees of freedom classical Hamiltonian, where V is a real analytic
function on some domain which will be considered in C2. Assume that there
exists a continuous family of integral curves, I'j,, parametrized by the energy, h,
lying on an invariant plane that, for concreteness, will be taken as

Lpizeg=y2=0, 1 =xz(t,h), 31 =uy(th).

We know from Chapter 4 that a necessary and sufficient condition is that
1
V(w1,22) = p(w1) = 5 alw) 25 + O(3), (6.3)

where ¢ and « are arbitrary functions.
The NVE along T', is

£ —alt,h)€=0, (6.4)

where, for simplicity, we denote by «(t, h) what in fact is a(z1(¢,h)), and x1 (¢, h)

is a solution of .

the energy h ranging in a real interval.

We want to obtain a potential, V', of the type (6.3) (that is, to obtain the
functions ¢ and «, the O(x3) being arbitrary) such that (6.4) is of the type (6.1),
that is

a(t,h) = A(h) P(t,h) + B(h), (6.5)

A and B being parameters and P the Weierstrass elliptic function. From now on
we keep in mind that everything depends on A, but we do not write it explicitly.
From(6.4) and using ' to denote d;;'l’ it follows

A2(t) = 2a(z1) h — 2a(x1) p(z1) . (6.6)

Assume «(z1) not identically constant. Hence, we can obtain z; = z1(«) (possibly
multivaluated). Hence, as from (6.5) and from the differential equation which
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satisfies P(t) (22 = f(P)), it follows that &? is a cubic polynomial in «, depending
also on h. By comparing with (6.6) we get

&? = P(a, h) = Py(a) + h Py(a), (6.7)

where P is a polynomial of degree 3 in « and, therefore, either P; or P, must
have degree 3.

We remark that the case « = constant = B gives a separable potential up to
the O(x3) terms. This is equivalent to P, = 0 (see (6.8) below).

Hence, by comparing (6.6) and (6.7) and denoting by ¢(«a) the function ¢(z;(a))
we have

0= e

From (6.8) we obtain the potential from P, and P> by using the scheme

0(z) = %Pg(a(acl)). (6.8)

Bye) = alz) = eln)

Pi(a) —»  pla) (6.9)

Let go and g3 be the invariants of P. Now we look for a relation between h, Py
and P,, on one side, and A, B, g2 and g3, on the other. From (6.5) we obtain

u:="P(t) = % (a(t)—B), v:="P(t) = % , &2(t) = A%0® = A*(4u® — gou—g3) .
Therefore,
4 12B 1282 4B3
2 _ 3 4= 2 _ = _ 2
P(a,h) = &(t) = 7 o*~ —=a +( 1 0 A)a T HeAB-g: A (6.10)

We introduce the coefficients aq,...,ds by setting
P(a,h) = (a1 + hag) &® + (by + hby) &® + (c1 + hex) a+dy +hdy.  (6.11)

By comparing (6.10) and (6.11) we obtain

% — a+has, (6.12)

—% = b+ hbe, (6.13)

1252_92,4 — e the, (6.14)
—4—B3+92AB—93A2 = di+hds. (6.15)

A
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Let us proceed to the effective computation of the potentials. We classify them
according to the degree of P, and then we use (6.8). In the expressions below e
denotes an integration constant. We restrict ourselves to real solutions.

(A)degP2:0:>P2( )—d2>0 a=* $1+6

(B) deg P, =1 = Py(a) =coa+ds, a= 8x1+ex1+28 —d>

(C) degP2:2:>P2( )_bQOé +6201+d2 Let D —02 4b2d2

We should consider three cases:

(C1) D=0, by>0: Pola) =bapla+52)°, a=e-exp (%) n) - 52 .

(C2) D<0, bp>0:a="% Smh((2)1/2:1:1+e)—20—§2.
(C31)D>0,b>0, a= ;/; h((b2)1/2x —i—e)—CT?.
(C.3.2) D >0, by <0, a=x sm( —72 1/2x1+e)——b (D) deg P, = 3.

From (6.7) one derives

Ot((L‘l) :Cﬁ(flfl)-l-E, with 512(:51) :4,33—?]25—?]3,

where

2 3
02:%,122:—%, :—2C92+24Cl? d ——2C g3+20E92—8%
Let A = 2732 — g3. There are three possibilities:
(D.1) A #0, and then 8 = P(z1 + e).
(D.2) A =0 and two of the roots of 433 — go B — g3 are equal. There are two
subcases (see, for instance, [9], Vol. I p. 27). Let e3 < €3 < €1 be the roots.
(D.2.1) & = &3 = —3 & < &. Then

3 g3 g3 2(,993,1/2
= ——— + - — cose — +e
“ 2920 290 ((292) )
(D22) 2:——ég>63 Then
37 9g¢q 9qg
5:-?——@ cothQ((—g)l/%l—i—e).
252 29 2go

(D.3) A =0 and the three roots are equal. We can write P (a) = az(a — &1)3
and, hence,

8
o=———+¢.
az(z1 +e)2 !
In all the cases, when « is available as a function of x1, the function ¢ is obtained
from (6.8). We refer to Section 6.3, where some realizations of the above cases

are given explicitly.
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6.2 Non-integrability criterion

Given a two degrees of freedom complex analytic Hamiltonian system having an
integral curve, I', we have

Theorem 6.1 ([75, 81]) If the NVE along I" is of Lamé type, (i.e., (6.1)), in the
temporal parametrization and falls outside of the solvability cases (i), (ii), (iii) of
Proposition 2.6, then the Hamiltonian system is non-integrable

Proof. The proof follows in a direct way from Proposition 2.6 and our general
theorems of Section 4.2 (Corollary 4.5), because if we are not in the cases (i),
(ii) or (iii), the identity component of the Galois group is not solvable and, in
particular, it is not abelian.

Q.E.D.

In this chapter we fix the kind of regularity of the first integrals: when there
is no global meromorphic first integral independent of the Hamiltonian, we say
that the system is non-integrable.

Next we study the non-integrable cases of the families of potentials A), B), C)
and D) obtained in Section 6.1, using the above theorem. We notice that, for a
given potential (that is, given the polynomials P; and P, of Section 6.1) we have a
one parameter family of Lamé equations, the parameter being the level of energy,
h.

The analysis of the D) families, which have as # 0, is elementary. It is
enough to consider that, according to (6.12) we reach irrational values of n when
h changes. Hence, all the D) families are non-integrable.

Therefore we can assume ae = 0 (families A), B), C)) so that for a given
potential the value of n remains fixed when A changes. In particular one can not
jump from one of the cases (i), (ii), (iii) (of Proposition 2.6) to another when h
changes.

If our system falls in case (i) we can not derive additional integrability condi-
tions from the analysis of the NVE. Before proceeding to the case (ii) we analyze
the case (iii). Hence, assume that for a given value of A we have a Lamé equation
of type (iii). We have a; = ﬁ , with n as in subsection 2.8.4 (iii).

Lemma 6.1 Consider the curve o : h — (j(h), B(h)) defined by means of (6.12)-
(6.15) with as = 0 and the formula (2.18) of Chapter 2. Then o changes contin-
wously with respect to h except in the cases:

1) P, =0, which, by a remark above, has n = 0, hence it is not really of the
Lamé type,

2) by =0, c2=0, b2 —3cia; =0,

8) by =0, c2by — 3arde =0, 2b3 — 9a1bic; +27ad; = 0.
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Proof. From (6.13) we should have by = 0 (otherwise B changes linearly with ).
The possibilities to have j(h) constant are g2(h) =0, g3(h) = 0 (both cases can
not occur simultaneously because the discriminant, A, must satisfy A # 0) or
both g and g3 are independent of h.

The condition go = 0 gives 2) and g3 = 0 gives 3). If g2 and g3 do not depend
on h one finds ¢co = dy = 0. But as ag = bo = 0, we have P, = 0.

Q.E.D.

From the Dwork result (Proposition 2.8) and from Theorem 6.1 follows imme-
diately the next result.

Proposition 6.1 If ap = 0, the NVE are of Lamé type, not of the types (i)
or (ii), and the Hamiltonian system is integrable, then one should have by = 0
and either co = 0, b% —3cira1 =0 or coby — 3a1dy = 0, Qbi’ —9a1b1c1 + 27a%d1 =0.

Now we start the discussion of case (ii) (of Proposition 2.6). We need to make
an elementary but detailed analysis of the algebraic structure of the Brioschi
determinant in the framework of this chapter.

To have integrability, a necessary condition is Q. (%, 4, B) = 0 as a poly-
nomial in A, provided A # 0. We want to express the conditions for integrability
in terms of the coefficients a;, b;,c;,d;,7 = 1,2 of the polynomials appearing in
the potential. We recall that in case (ii) one should have a; = 4 o — for some
m € N, ag = 0, the remaining coefficients being arbitrary, except that bs,co and
do can not be zero simultaneously.

Let us introduce B = 51 +hby=bi+hby, C=c¢+héy = (¢ +he)lt D=
Cil—i-h(ZQ (d1+hd2)
Then B = —%, £ = {f— -C, % = —% + %C — D and the discriminant has
the expression

A = B3D — B2C? — 12BCD + 64C3 + 432D? .

Multiplying each column in the Brioschi determinant Q,,(g2/4, g3/4, B) (see Sec-
tion 2.8) by 864 we get the m x m determinant D,,(B,C, D) :=

—18(4m* — 1)B 864(m — 1)

(2m —1)(m—-1)W; —18(4m? —1)B 864 - 2(m — 2)

(2m —1)(2m —2)W>  (2m —2)(m —2)W1  —18(4m? — 1)B 864 - 3(m — 3)

(2m —2)(2m —3)W>  (2m —3)(m —3)W:1 —18(4m* —1)B
(2m —3)2m - 4HWr (2m —4)(m — 4)W,
(2m — 4)(2m — 5)W>
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where W stands for 18 B2 —864C and W, for —B?+72BC —864D. Tt follows im-
mediately that D,,(B,C, D) = > it 2+ 3k=m C’i,jkaiC’jDk , where Cj ; ;. are integer
coefficients.

Proposition 6.2 Provided some constants are different from zero (see the proof
for the details) necessary conditions for integrability in case (i), assuming A Z 0,
are:

1.Ifm=1(mod 6) : B=0, C=00r B=0,D

0,
2. Ifm=2 (mod 6): B=0, C=0,
3. If m=3 (mod 6) : B=0, D=0,
4. Ifm=4 (mod 6): B=0, C =0,
5. Ifm=5(mod6):B=0, C=0o0rB=0,D=0,

the case m = 0 (mod 6) being always non-integrable. In the list above the following
exceptions occur:

1. If m =1 the condition is only B =0,
2. Ifm=2itisby =20, =0,¢ = —3b3/256,

8. If m = 3 we need by = 0,dy = —11b1C2/64 and di = —11b1&1/64 —
45d3 /65536.

Proof. For given values of m, by, by, €1, &, d; and dy we shall consider D,, (B, C, D)
as a function of h. It must be identically zero. This will impose conditions on the
coefficients above.

If m = 1 then D,, = B and hence b; = by = 0.

If m = 2 then D,, = 8748(3B? + 256C). The term in h? contains b3 and non-
null factors. Hence by = 0. Then the term in A contains é and non-null factors.
Also & must be zero. Finally, the independent term 3b? 4 256¢; must be zero and
this case is ended.

If m = 3 then D,,, = 03,07033 -{-CLLUBC_'-{-CU’(),?,D, where 0370,0 = —35429400
and Cy 10 = —8868372480,Cp 01 = —51597803520. The term in h3 is Csgob3
and, hence, by = 0. Then the terms in h', h° give the other two conditions.

Now we proceed to the general cases according to the class of m modulo 6.

If m = 0 (mod 6) the highest power of h appears in Cp,00B™. Assuming
Cm,o,0 # 0 we should have by = 0. We note here that this is a general fact,
independent of the value of m, provided Cy, 00 # 0. Then the highest power of
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h appears in 007%700%. Again we must have ¢, = 0 if Co,%,o # 0. But then the
highest power of h appears in C’U’O,%D%, and if 0070,% # 0 we must have do = 0,
but as b3 + ¢3 + d3 > 0 the system is non-integrable.

If m = 2 (mod 6) and Cy, 0,0 # 0, Co,%,o # 0 we have by = ¢ = 0. Now

the dominant terms in h come from B2D™5 and CD™5". As dy # 0 we must
have C, 0,m= mo2b? + Co 1,m=2 c1 = 0. The next highest power of h appears in the

—m5 = — m—

BD = B3C’D and BC?D™s” terms. As a factor of (dgh)mTf5 we have
0570’mT75l_)? + CS,LmT%E?El + CI,Z,WT%EIE% ; (616)

which must be zero. If C, | m—2 # 0 we obtain ¢; in terms of b and, inserting
b hat 3
in (6.16) we get

_ Cy 0 m=2 m=2 2
b | Cyg.mes — C ﬁ +Cy g ms ()| =0. (6.17)

If the term inside square brackets in (6.17) is different from zero we should have
by = 0, and then ¢ = 0. Summarizing, we should have B = C = 0 but D is
arbitrary, ending this case.

If m = 4 (mod 6) proceeding as in the previous case we have by = & = 0
if Cinoo # 0, Co,%,o # 0. Then the dominant term appears in BD"5 and, as
dy # 0, we must have by = 0 provided N 0,m=1 # 0. The next dominant term

appears in C2D" 5 o . Again if Co 9, m=1 # 0 we must have ¢; = 0, ending the proof

in this case. Hence B =0, C =0, D being arbitrary.

We proceed to the cases with m odd. As we shall see, a part of the proof is
common for the three cases. We start with the non-common part. We assume
Cm.,0,0 # 0 and hence by = 0 in all cases.

If m =1 (mod 6), m > 1, the dominant terms appear in BC™ and C"%° D
and the coefficient of K™= is

Coy 2 (CI,WT*I,OI_hEQ + 007771773716{2). (6.18)

1

If & = 0 then the dominant term is BD "% and, as dy # 0, we must have b; =0
provided C| ; m—1 # 0. But then, if C), m—4 # 0 the dominant power of h appears
bt} 3 1< 3

in 02D™5" and we must have ¢ = 0. Hence one possibility is B=0, C =0.
If & # 0 the second factor in (6.18) must be zero. Assume by = 0 and
Cy.m=3 4 # 0. Then we must have dy = 0. The current dominant term is now
YT o
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m—3

Cym=3,Cy° dy hmT_g, and we must have d; = 0. Therefore another possibility is
e
B=0,D=0.
It remains to discuss the case ¢3 # 0, C} m_1 0182 + Cy m_3 ;do = 0, by # 0,
b 2 bl bl 2 b
which we postpone for a joint discussion with the other m odd cases.
If m = 3 (mod 6), proceeding as before, b, = 0 and either ¢ca = 0 or
C, m o012 + Cy m—3 ;dy = 0. If we assume ¢ = 0 then the dominant term
YT o m yT 9 _
is Co,o,% ds 3 h’s', provided 00,0,% # 0. But as b3 + & + d3 # 0 this case must be
discarded. Hence it is the second term that must be zero, and proceeding as in
the m =1 (mod 6) case, if by = 0 and Cj m—3 | # 0 we must have dy =0, d; =0,
_ _ yT o
i.e., we have B =0, D =0. B B
If m =5 (mod 6) we must have by = 0 and either ¢; = 0 or C| m-1 (b1¢2 +
_ bl 2 bl
Cy.m=3 ;dy = 0. If we assume co = 0, the dominant power of i has the coefficient
YT

m—=2

(02,0,"%25% + 00,1,%251)671 e (6.19)

As dy # 0 the coefficient in (6.19) must be zero. The next contribution appears
in h™5 , having as coefficient

_ — — - m—5
(Cog,mesb} + Cyy mesbier + Cy y moshidl ) da 5 (6.20)

and the coefficient in (6.20) must also be zero. Now we proceed as in the case
m = 2 (mod 6) and, under the same assumptions on the numerical coefficients,
we have b; = 0, ¢ = 0. This gives the B =0, C = 0 case.

If & # 0 we proceed as in the m = 1 (mod 6) case. If b; = 0 we also proceed
as in the m =1 (mod 6) case.

It remains to study the odd m cases assuming by = 0, & # 0, by # 0. This
requires Cp, 0,0 7 0, CoymTfe,’l # 0. We look at the coefficients of B , B , B
Taking C "5 as a factor (eventually the exponent can be negative) we should
look for the coefficients of b7, h® and A® in

1 3
pl—k A~T—k Rk R3—k ~6—k Ak
Z lek,mT*lfk,kB CTED" + Z Cka,mT*E‘fk,kB c>"D

5
+2Cs pmsy, BPTCOTEDE (6.21)
k=0

As ¢ # 0,b; # 0,by = 0 we can use I := BC as independent variable instead
of h. Then D can be written as puy + us F, where p1, o are suitable numerical
coefficients.
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Let
: - ik
Pi(E) = Y O jmot gy BV N+ w2B)",
k=0 T
- - =k
Py(E) = ) O3 pm3_pp E* F(uy + mE)",
k=0
5
P(E) = ), Cs kms pp B (g 4 paB)F
k=0

Then (6.21) can be written as

g Pi(E) + g Py(E) + P5(E). (6.22)

The condition that the terms in E7, ES E® in (6.21) should be zero gives

/ _ B? " _ 1 " B? \% .
P{(0) =0, P1(0)+§P3 (0) =0, 5133(0)4‘3135 (0) =0,
or, more explicitly,
Cl,mTil,O + CO,mTfB,l Mo = 0, (623)
1 Comes y + B® Py(p2) = 0, i1 Pi(2) + B Ps(2) = 0. (6.24)

From (6.24) we derive CO’mTfi’)’l Ps(u2) — Ps(p2) Pi(pu2) = 0, where pg is ob-
tained from (6.23). If this condition is not satisfied then one should have b; = 0
and, therefore, the case b; # 0 must be discarded.

This ends the proof of Proposition 6.2 provided some numerical coefficients
are non-zero. We proceed to prove this for some of them.

The coefficient Cyy, 0 is the value of Dy, (B, C, D) when we set B =1, C =
D =0. Let Ay, i be the determinant obtained when in D,, we consider the first £
rows and columns. Let Am,k =Ani/ 18%. Then one has the following recurrence
for Am,k :

Apgrr = —(4m?* = 1)A,, ; — 48k(m — k)*(2m — k) Ak 1

—128k(m — k)(2m — k)(2m —k +1)(m =k 4+ 1)(k — 1) Ap, k-2, (6.25)

starting with Am,g = 1. Of course, the desired value D,,(1,0,0) is equal to Amym.
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An elementary computation with (6.25) modulo 6 shows that A, ,, = 3 (mod 6)
for all m € N. Hence Cy, 00 # 0.

We notice that Cp,,20 = Din(0,1,0) if m = 0 (mod 2) and Cyg,,/3 =
Din(0,0,1) if o = 0 (mod 3). An easy recurrence shows

m 2m)!
Com/2,0 = 864™ ((m—1)11)?(2m—1)!1, Co,0,m/3 = 864™(—1)™/ (m/3> (3m) :

and hence these coefficients are also non-zero.
The coefficients C| ; m—1 defined for m = 1 (mod 3) appear when we set
"y 3 k)

C =0 in D,,(B,C, D) and skip the terms containing B? and B?. Furthermore,
we should include only one B factor. It is immediate to check that, except by
the trivial factor —18(4m? — 1), C1,0,m—1/3 is the sum of all the determinants
obtained from D,,(B,C, D) when we skip the row and column of index 3k + 1,

fork=1,..., mT_l, and we set B =C =0, D = 1. All the terms added have the

sign of (—l)mT_l. Hence Cl’o,mTfl # 0.

In a similar way, Co, m_s defined for m odd, is found to be negative. Indeed,
its value is the sum of all the determinants of the form D,, when we set B =
0, C =1 and just one D of a row of odd index equal to 1, the others being zero.

To obtain 0071, m—2 We set in D,, the variable B equal to 0. Then one of the

variables C, in rows of index 3k + 2, k = 0,..., mT”, is set to 1 and the other

C’s are set to zero. C, ; m—» is obtained by adding these determinants, and all of
bEat 3

them have the sign of (—l)mT_z. Hence, it is non-zero.
Finally we proceed to show that C;, m_4 # 0, this coefficient being defined for
1< 3

m =1 (mod 3). Set B = 0 and consider all the possible choices of block structures
for the matrix associated to D,,, with the diagonals of the blocks contained in the
diagonal of the initial matrix (that is : a block diagonal structure). We require
that 2 blocks are 2 X 2 and the remaining ones are 3 x 3. In the 2 x 2 blocks set
C =1 and in the 3 x 3 blocks set C =0, D = 1. Then CO,ZymTA is the sum of all
determinants m X m obtained in this way. The sign of all of them is the one of
(_1)%4 and this ends the proof.

Q.E.D.

We have not been able to find an obvious proof that the remaining coefli-
cients are different from zero. As for any specific problem they can be computed
explicitly, we keep this as an assumption in the statement of the proposition.

For convenience we list here all the assumptions made on the Cj ; ;. coefficients
and not proved before. We assume m > 3 and, of course, a coefficient C; ;. is
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taken equal to zero if 7 < 0. Let

(1= 2 _ 2
Bm) = (~1)"F [C50,m=5Cy | 2 —=Cy 1 msCy y me2 O me2 +Cy  mes O g )

3

be defined for m = 2 (mod 3), and

5
7(m) = Cpmes > Csk,m=t g, ut
k=0

3 3
- ( Z C3—k,mT’3—k,k Mk) ( Z k C3—k,mT*3—]g,k Mkil) )
k=0 k=1

where p = —Ol,mT—l,U/Co,mT—?)J, defined for m odd.

Then the assumptions of Proposition 6.2 are: f(m) and y(m) must be non-
zero whenever defined. These assumptions have been tested up to m = 1000 and
they are satisfied in all cases. The check has been done by constructing a specific
program for symbolic computation. Furthermore, beyond an eventual transient
for small values of m the functions 5(m) and y(m) seem to increase very quickly
in a quite regular way. Figure 6.1 displays this behaviour. Then we state the
following conjecture.

Conjecture For all m > 3, when the functions 8 and vy are defined, they are non
Z€ro.

We summarize all the results of this section in the following theorem.

Theorem 6.2 Assume that a classical Hamiltonian system with a potential like
(6.3) has NVE of Lamé type associated to the family of solutions, Ty, lying on
the o = 0 plane and parametrized by the energy, h. Then, a necessary condition
for integrability is that the related polynomials Py and Py (see Section 6.1) satisfy
as = 0, and one of the following conditions holds:

1. alzﬁforsomenEN,

2. a1 = 4n112671 for some m € N . Then, assuming the conjecture above is true,
one should have bo = 0 and we should be in one of the following cases:

2.1) m=1and b =0,
2.2) m=2and cy =0, 16a1c; +3b2 =0,
2.3) m =3 and 16a1dy + 11byjcy = 0, 1024a2d; + 704a1bicy + 4563 =0,

2.m) m > 3. Then we should have by = 0 and, furthermore, either ¢c; =
co = 0 if m is congruent with 1,2,4 or 5 modulo 6, or dy = do = 0 if m is
odd.
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Figure 6.1: The coefficients 5 and « as functions of m for m between 4 and 1000.
For scaling reasons we have replaced B,C,D by 2B,C/2, D/8, respectively, and
the coefficients Cj ; 1., entering in the expression of 8 and « have been divided by
(36(1 — 4m?))™, where m = i + 2§ + 3k is the weight of the coefficient, before
the computation of § and «. For each one of these two functions one plots the
respective argsh of 8 and v as a function of m.
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3. a1 = oy with n+ 5 € 32U 1ZU §Z\Z, by = 0 and either c; = 0,b7 —
3aic; = 0 or coby — 3a1dy = 0, 2b3 — 9arbic; + 27a2dy = 0.

We recall that, for a Lamé type equation, it is necessary to have discriminant
A(h) # 0. If A(h) = 0 we have several conditions on the coefficients of P; and

P,. If we denote by A = a3 + fmg, . ,AlA)A = 6{1 + hEZQZ then AeitlAqer 4(,7,) =0or
R(h) =0, where R(h) =27 A?B? ~18ABCD +4AC? +4B*D — B2C?.

6.3 Examples

We shall consider different examples belonging to families A), B) and C) of Section
6.1.

(1) Cubic potentials. They appear as family A). In that case dy > 0, a =
:l:\/%ml +eand Py (a) = ajo® +biad + cia+dy , with a; # 0, gives immediately
the potential by (6.7). We remark that all the cubic potentials of the form (6.3)
having NVE of Lamé type associated to o = 0 appear in this way. From Remark 3
it follows that the discriminant condition is always satisfied.

From Theorem 6.2 necessary conditions for integrability are that some of the
following holds:

1. alzﬁ, TLEN,
2. ay = 2~ and then: if m =1, by = 0; if m = 2, 16a1¢; + 3b7 = 0; if

m > 3 and m is congruent to 1,2,4 or 5 (mod 6), by = ¢; = 0. Other values
of m give non-integrability,

3. a1 = ﬁ,withn—i—% € $ZU1Z U LZ\Z and then b = 3cia; .

As a concrete example we can apply this to the generalized Hénon-Heiles
potentials studied by Ito using Ziglin’s theorem [48]. This family of potentials is
given by

1 1 1
V(z1,2z2) = Ex% + gdaci’ + (5 + cx1)z3, (6.26)

with ¢ # 0, d parameters (for ¢ = 0 the above potential is separable).
As Tto showed, by a rotation in the configuration space

r] = 1/\/3—7(1/0(1“1 +1/2 —d/cis),
To = 1/\/3—d/c((i‘2 - \/2-(1/0(2‘1),
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we get a canonical transformation, provided d/c # 3. The transformed potential
is given by

V (i1, 29) = %if +2¢/1/3 —d/ci?+ (% +(d—c)/\/3 —d[ci)i2+0(x3), (6.27)

71 and g2 being the conjugated moments.

We can apply our results to both potentials, and the integrability of the po-
tential (6.26) is only compatible with the integrability of V and V at the same
time (in other words, the potential (6.26) has two invariant planes zo = y2 = 0
and &9 = g2 = 0 as in some examples of Chapter 5).

A simple computation recovers the Ito result ([48], Theorem 3).

Proposition 6.3 Except for ¢/d = 0,1,1/6,1/2 the Hamiltonian system defined
by the potential (6.26) is non-integrable with meromorphic first integral.

For ¢/d =0,1,1/6 the system is integrable.

For ¢/d = 1/2 numerical simulations suggest the non-integrability of the sys-
tem, but a rigorous proof is still missing. We remark that the value ¢/d = 1/2 is
in some sense special. For instance, for this value the two above invariant planes
coincide. We will come back to this system in Chapter 8.

(2) Quartic potentials. Assume we are in the family B) case with P(a) =
coa + da, ¢ # 0. We recall that then a(z) = %x% +exy + 2820—;‘12, e being
arbitrary. Assume P)(«) = P2(a) S(a), where S is a polynomial of degree two.
Then the potential V is quartic (if in the O(x3) terms we only include 3, 7123, x3).
Furthermore this is the only way in which quartic potentials of the form (6.3) can
be obtained. Let S(a) = s2a? + sja + sg and a(z1) = a2? + a1 + @, by
relabelling the coefficients. We note that so,s1, o, @2, a1, g are arbitrary pro-
vided so # 0, ao # 0. This, together with the arbitrariness of the coefficients of
z3, 2123 and 3, is all the freedom available to have a quartic potential of the
form (6.3) with NVE of Lamé type. Notice that not all the quartic potentials
of the form (6.3) appear in this way. Only a codimension-two subfamily. The
coefficients of P;(a) are a; = ¢89, by = co81 + dasa, ¢1 = ca80 + dasy, dy = dasg .
From Remark 3 it follows that the discriminant condition is always satisfied.

From Theorem 6.2, the necessary conditions for integrability are that one of
the following holds:

1. @322%, neN,

m > 3, m odd, and

1
and cos1 + dosys = 0, or cas9 = %,

0.

2. C289 =

16
3
dgzslz
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3. coso = ﬁ, n + % € %Z U iZ U %Z\Z and cos; = 2dasy .
(3) Rational potentials. Again in the case of family B) and with P» and « as
before, assume that P;(a) = aja® + bia? + ¢y + dy cannot be divided by Py(«).
Then ¢(z1) is a rational function, quotient of a polynomial of degree 6 by one of
degree 2. The subfamily of rational functions of this type that can be obtained
has codimension 3. Furthermore, when the rational function is given, the terms
containing z3 are fixed (except by multiplicative constants).

Integrability conditions are immediate from Theorem 6.2. We only remark
that case 2.2) can not occur and case 2.m) can only occur with m odd.

(4) Periodic Toda lattice with 3 particles and two equal masses. Given the Hamil-
tonian with 3 degrees of freedom
L/t - B ~
H, = 5(% +p%+p§) 4 el 8270 | 30
which by means of the center of mass reduction can be simplified to
1
H= §(y% + y2) 4 22 cosh (2/3p x9) + e 171,
where p is defined by m = 3#%1 . This potential is a particular case of C1) with
a=—24pe*™, e=—24u, co=dy =0,

and 5
Py(a) = 8a%, Pi(a) = ™ o —8(24pu)?.
W

Hence n(n +1) = &+ = 6u. If n ¢ N the system is non-integrable because by # 0.

al =
(5)Potential on a cylinder coinciding locally with Hénon-Heiles. Consider 1 €
(—=%,%), 2o € S" and the potential
2

1 1 1
V= 3 D sinz; tg?z; + Ethxl + 3 (C sinzy + 1) sin®zo .
It coincides with the Hénon-Heiles potential around (0,0) up to third order. It
is of the type C.3) with a1 = %, by = —2. Hence, if % #* n(n6+1) ,n € N, it is

non-integrable.

6.4 The homogeneous Hénon-Heiles potential

We recall that, from Chapter 5, the Hamiltonian of the homogeneous Hénon-
Heiles potential is given by

1 e
H = S(yf+y3) + 5 21 +ma3. (6.28)
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We can derive the integrability conditions from the general analysis of cubic po-
tentials in Section 6.3, but we shall proceed directly. We recall some facts of
this Hamiltonian. By a suitable rotation in the configuration space we get the
Hamiltonian

1 2
H= (12 +p2) 4+ 2 ¢ 2
2(771 +m3) + 3(c = 1)51 +& &+
if e # 1 (if e = 1, it reduces to a separable potential). Then as we have already
remarked in Chapter 5, (6.29) is as (6.28) with é = _%; instead of e.

The first goal of this section is to give a new proof of the Proposition 5.4.

V2—ee+1

3
g, (629)

Proposition 6.4 The Hamiltonian (6.28) is non-integrable for
e € C\{1,2,6,16}.

Proof. Leaving aside the case e = 2, we derive the following conditions for the
coefficient n: n(n 4+ 1) = 1—82 If we denote by 7 the coefficient associated to

é:n(n+1) =12 from the relation between e and é we have
12
6 ———1)=n(n+1). 6.30
(s~ U =A@+ (6.30)

To be in one of the cases i), ii) or iii) of subsection 2.8.4, both n and 7 must be
rationals with denominator 1, 2, 4, 6 or 10. If n # 0 (the case n = 0 corresponding
to e = oo) from (6.30) we have

12
[+ 1)] < 6(—5 +1) = 806.

10 " 10

Therefore |7| has an upper bound and it remains to examine a finite number
of cases. A direct check shows that the only possible solutions of (6.30), with the
required conditions, are:

1. n =3, 7 =0, corresponding to e = 1,

2. n =2, n =2, corresponding to e = 2 (notice that in this case é is also equal

to 2),
3. n=1, n =5, corresponding to e = 6,
4. n = %, n =9, corresponding to e = 16.

This ends the proof.
Q.E.D.
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Figure 6.2: Zero velocity curve and (x1,x2) projections of the 3 simple periodic
orbits, for e = —2.
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Figure 6.3: The boundary of the Poincaré section through x9 = 0 on the (x1,y)
coordinates and the sections of the invariant manifolds of y; fore = —2 and h = 1.

Now we discuss the dynamical meaning of non-integrability. For e < 0 it is
easy to show that there are 3 simple periodic orbits, all of them touching the zero
velocity curve (zvc) in two points. One of them is symmetrical: one can take
9 = y1 = 0 as initial conditions. Due to the homogeneity it is enough to consider
energy level h = 1. Figure 6.2 displays the zvc for e = —2 and also the 3 simple
periodic orbits (1, symmetrical and 7,73, symmetric to each other) projected
on the (z1,z3) plane. These orbits are hyperbolic. For e , 0 the eigenvalue
of largest modulus of 7; tends to 1 and those of vs,7v3 to oo. For e N\, —oo the
eigenvalue of ; tends to oo and those of 9,3 to 1.

Figure 6.3 shows the intersection of v; and its unstable and stable manifolds
with the Poincaré section xo = 0. The boundary of the Poincaré section is for
yo2 = 0 and, hence it is given by the cubic % + £z =1 (see figure 6.3). The
invariant manifolds intersect transversally at an homoclinic point and this implies
chaotic dynamics. Similar patterns appear for any e < 0 (but they are difficult to
see for |e| small, for instance).

The case e > 0 is more subtle. One has 1= —ex? — 23 and, as the x;

acceleration is always x;< 0, there is no possible recurrence in the real phase
space. We can look for it in the complex phase space. Let 1, denote a complex
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number of modulus 1 and argument a.
The changes

T = 17r/3€15 T2 = 1—7r/6 §2, Y1 = 1—7r/2 M, Y2 =1n2, t= 1—7r/6 8

lead to the Hamiltonian (using s as new time)

H=o(—ni+md)+ S~ + a8, (6:31)

which is real for real variables, and on the same level of energy. For this case the
acceleration changes sign. Take, for instance, the value e = 3/2. Figure 6.4 shows
a Poincaré section of (6.31) on h =1, & = 0. One can see a typical pattern with
invariant curves, islands and chaotic regions. Symmetric periodic orbits appear
for ¢ = 1.346146... (elliptical) and ¢! = 1.766010... (hyperbolic). In figure 6.4
initial points are taken with & = & + d, ;1 = 0, where § = 0.335(0.01)0.405. In
fact, the last of these points is close to the hyperbolic one and escapes after a few
thousands of iterates of the Poincaré map. A similar behaviour is observed for
other values of e. However, for e near to 1.51602386 the elliptic and hyperbolic
simple symmetric periodic orbits coincide in a parabolic orbit and they can not
be continued to larger values with real (£,7) variables (of course, there are no
periodic orbits with real (x,y) variables). We are interested in the case e = 2.

It is not too difficult to move e to the complex plane, to follow a path and
obtain the corresponding symmetric (2 = 0 and y; = 0 initially) complex periodic
orbits (of real dimension 1), with complex period. We remark that the passage
from e to the initial value z{ is an interesting Riemann surface (we keep h = 1),
having branches when the eigenvalues are equal to 1.

For e = 2 the initial value 29 ~ 0.01247621 + i 1.08807831, leads to a peri-
odic orbit with period T ~ 5.25449302 — 42.60364041 and dominant eigenvalue
A~ —3.39790418 +i27.26367123. We keep the Poincaré section z3 = 0 (as com-
plex). The unstable and stable invariant manifolds have been generated, numer-
ically, from a fundamental domain (in the Poincaré section) diffeomorphic to a
real 2D annulus. The intersections of these manifolds with this section on h =1
are complex symmetric curves (of real dimension 2). If 1 = g,(y1), 1 = gs(y1)
describe, locally, the unstable and stable manifolds respectively, one has g = —gy,.
A homoclinic point has been found near xy = 1.15441741 + 40.14795498, y; = 0.
At this point one has ‘é—zll ~ —0.0514 + 0.1042:. Hence the manifolds intersect
transversally and we get chaotic dynamics. In particular this prevents the inte-
grability for e = 2.

We note the strong analogy with the Henén-Heiles generalized potential stud-
ied in Section 6.3. The parameter e here corresponds to the parameter d/c there.

The preceeding discussion leads to the following natural questions. The first
one is about the homogeneous Hénon-Heiles potential.
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Figure 6.4: A part of the phase portrait of the Poincaré map through & = 0 on
the (&1,m1) coordinates for e = 1.5 and h = 1.
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Question 1. Is the Hénon-Heiles homogeneous potential integrable for all e > 0
if we restrict to the real phase space?

The second question is of a more general character and very much related to
some comments that we made in Chapters 3 and 4.

Question 2. [s it true that if a system is non-integrable, (in the sense used in
this monograph), chaotic dynamics occurs in some part (eventually complex) of
the phase space?

We shall come back to Question 2 in Chapters 7 and 8.



Chapter 7

A Connection with Chaotic
Dynamics

The motivation of this chapter is to clarify the relation between the real chaotic
dynamics of non-integrable Hamiltonian systems and the purely algebraic differ-
ential Galois criterion of non-integrability based on the analysis in the complez
phase space of the variational equations along a particular integral curve. This
problem was proposed in section 6.4 (Question 2).

Concretely, and as a first step to understanding the above problem, we consider
the relatively simple situation of a two degrees of freedom Hamiltonian system
with a (real) homoclinic orbit contained in an invariant plane and asymptotic
to a center-saddle equilibrium point. In this situation Lerman [64] gives a nec-
essary criterion, in terms of some kind of asymptotic monodromy matrix of the
normal variational equations along the homoclinic orbit, for the non-existence of
transversal homoclinic orbits associated to the invariant manifolds of the Lya-
pounov orbits around the equilibrium point, i.e., real “dynamical integrability”
in a neigbourhood of the homoclinic orbit (Theorem 3.5). This condition was
interpreted by Grotta-Ragazzo [40] in terms of a global monodromy matrix of
the algebraic normal variational equation ANVE in the complex phase space and,
as the author (see the Introduction), he also conjectured the existence of some
connection between the Lerman’s theorem and Ziglin’s non-integrability criterion
(Theorem 3.4). The present chapter is devoted to clarification of this relation. In-
stead of Ziglin’s original theorem we prefer to work with the more general theory
in terms of the differential Galois group of the variational equations. We recall
that we proved in Corollary 4.6 that, for two degrees of freedom Hamiltonian
systems, Ziglin’s Theorem is a corollary in our theory.

The main result of this chapter is that (under suitable assumptions of complex
analycity) the two above necessary conditions for integrability are indeed the same,

139
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when we restrict the analysis to a complex neighbourhood of the real homoclinic
orbit. This explains why in some applications there exist two different proofs of
non-integrability: one based on the Lerman theorem and the other on the Ziglin
theorem. The important thing is that, in this case, an “algebraic” obstruction to
integrability is also a chaotic obstruction to integrability. Section 7.3 is devoted
to a detailed analysis of an example with a normal variational equation of Lamé
type.

The results of this chapter were obtained in a joint work of the author with
J.M.Peris [76].

7.1 Grotta-Ragazzo interpretation of Lerman’s theo-
rem.

In his interpretation of Lerman’s theorem, Grotta-Ragazzo considered the (com-
plexified) NVE along the (complex) homoclinic orbit I" contained in the invariant
plane 2o =y2 =0 (I': 21 = z1(t), y1 = y1(t), 22 = y2 = 0)

€+ ala(t)E =0,

where the Hamiltonian is given by (3.1).
By the change of independent variables z := x;(t), he obtain the ANVE,

e Qa) . ofa)
i " 2@ dr 2@ (7.1)

Among the real singularities of this variational equation are the equilibrium
point 1 = x = 0 and the branching point (of the covering ¢t — x)

Tl =T =61y = (290(6))1/2 = 07

corresponding to the zero velocity point of the homoclinic orbit. Let o be a
closed simple arc (element of the fundamental group) in the (complex) z-plane
surrounding only the singularities z = 0, £ = e, and m, the monodromy matrix of
the above equation along 0. Then Grotta-Ragazzo obtained the following result
([40], Theorem 8).

Theorem 7.1 The matriz R in Lerman’s theorem (Theorem 3.5) is a rotation if,
and only if, m2 =1 (identity).

In his proof Grotta-Ragazzo used the relation between the monodromy m,,
and the reflexion coefficient of the NVE (considered as a Schrodinger equation).
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7.2 Differential Galois approach

In this section we shall give the relation between the Grotta-Ragazzo result pre-
sented in the last section and the differential Galois obstruction to integrability
of Chapter 4. In order to get this, we start with a reformulation of Theorem 7.1.

So, let Xz be a two degrees of freedom Hamiltonian system with a saddle-
center equilibrium point and a homoclinic orbit I'g to this point contained in an
invariant plane xo = ys = 0.

We consider this real Hamiltonian system as the restriction to the real domain
of a complex analytic Hamiltonian system (with complex time), as in some ex-
amples in the chapters above. If we add the origin to the homoclinic orbit, then
we get a complex analytic singular curve. Now we can particularize the general
constructions of Chapter 4 to this. The origin is the singular point and by desin-
gularization one obtains a non-singular (in a neighbourhood of the origin) analytic
curve . On T there are two points, 0 and 0~, corresponding to the origin. We
note that the homoclinic orbit is, up to first order, defined by z1y; = 0, while the
desingularized curve is defined by the pair of disconnected lines 1 = 0, y; = 0
with two points at the origin. These points are, in the temporal parametrization,
t = +o0 and t = —o0.

We are interested only in a domain I'j,,. of the Riemann surface I that contains
I'r and the points 0% and 0~. This Riemann surface T'j,. is parametrized by
three coordinate charts A, A; and A, with coordinates x := z1, t and y := y;
respectively. Then, by restriction to a small enough domain, it is always possible
to get a Riemann surface I'j,. on which the only singularities of the NVE are 0"
and 0.

Let v be the closed simple path in T, surrounding 'r. If we denote by My
the corresponding monodromy matrix of the NVE, then by the double covering
t — x of the above section, we have m, = m?2. Hence, by the Grotta-Ragazzo
theorem we get the following.

Proposition 7.1 The matrix R in Theorem 8.5 is a rotation if, and only if,
my = 1.

In order to obtain the connection with the Galois Theory, we need to do some
elementary analysis on the algebraic groups of SL(2, C) generated by hyperbolic
elements.

Lemma 7.1 Let M be a subgroup of SL(2, C) generated by k elements my,ma, ...,
mg, such that each m; has eigenvalues (\;, A;l) with |\j| #1, 1 =1,2,...k. Then
the closed group M (in the Zariski topology) must be one of the groups 4, 6 or 7
the Proposition 2.2.
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Proof. As M is an algebraic subgroup of SL(2,C), it is one of the groups 1-7
in Proposition 2.2. We analyze each of these cases. The group M is not a finite
group, as m; has infinite order. Also m; is not contained in the triangular groups
of types 2 or 3 of Proposition 2.2, because the eigenvalues of all the elements of
these groups have eigenvalues on the unit circle.

Finally, if we are in case 5, necessarily m; € G° (because the eigenvalues of
G\G" are in the unit circle). But then M C G° (G? is a group) and M # G (M is
the smallest algebraic group that contains M, and furthermore G° is an algebraic
group).

Q.E.D.

As we shall show, this elementary result is central to our analysis.

Now we come back to the local homoclinic complex orbit I';,. with the two
singularities 07, 0~, coming from the equilibrium point, with monodromy ma-
trices my, m_. Let my = mym_ be the monodromy around the two singular
points. Let G, be the Galois group of the NVE restricted to I'j,. (this is a linear
differential equation with meromorphic coefficients over the simply connected do-
main of the complex plane I, obtained by adding to I'j,. the two singular points
0" and 07, i.e., we consider the diferential field of coefficients of the NVE as the
meromorphic functions over ['j,.: see section 2.2). Notice that, for simplicity of
notation, here we have used the same notation for this “local” Galois group and
the local Galois group at a singular point (Chapter 2), but they are different ob-
jects. Although the philosophy in both cases is the same: we consider a bigger
coefficient field and, by Theorem 2.2, we get a smaller Galois group.

As a direct consequence of the lemma above we obtain the following proposi-
tion.

Proposition 7.2 The monodromy matriz m., is equal to the identity if, and only
if, the identity component (Gioe)° is abelian. Furthermore, in this case, the Galois
group is of type 4 in Proposition 2.2.

Proof. If mym_ =1 it is clear that the monodromy group M is abelian, for the
monodromy group is generated by a single element (for instance, my). As the
equation is of Fuchs type, then M = G, is abelian and of type 4 in Proposition
2.2 (as the reader can verify, the Zariski closure of the group generated by a
diagonal matrix of infinite order in SL(2, C) is always of type 4).

Reciprocally, we know that the monodromy group has two generators m.,
m_ with inverse eigenvalues lying outside of the unit circle. By Lemma 7.1, if
the identity component (Gj,.)" is abelian, then as M = Gy, 10cG (and in fact
the global Galois group G) is of type 4. Furthermore, from the fact that the two
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matrices m, m_ have inverse eigenvalues (A1 = AZ"), (A4, A7") and (A_,AZ")
being the eigenvalues of m, and m_ respectively, we get the desired result.

Q.E.D.

In this way, we have proved that two unrelated first order obstructions to
integrability are, in fact, the same (under suitable assumptions of analyticity).
The first one, given by the condition in Lerman’s theorem, has been formulated
in terms of real dynamics (the existence of transversal homoclinic orbits). The
second one is formulated in an algebraic way (Corollary 4.5 restricted to ')
and has a meaning in the complex setting only. Summarizing, we have obtained
the following differential Galois interpretation of the Lerman and Grotta-Ragazzo
results.

Theorem 7.2 If the identity component (Gloc)o 18 not abelian, then there ex-
ists mo additional meromorphic first integral in a neighbourhood of I'j,. and the
invariant manifolds of the Lyapounov orbits must intersect transversally.

7.3 Example.

We shall apply Theorem 7.2 to a two degrees of freedom potential with a NVE of
Lamé type.
We take, in the formulas of Chapter 3, (3.1) and (3.2),

1

p(z1) = 9 23 (z1 —er) (21 — e2), (7.2)
€1€2
(1) LR (7.3)
a(r)) = ——=x] + ax .
! 166162 ! ! ’
where we normalize v = 1 and b := w?. So, the system depends on four (real)

parameters e, ea, a, b, with ey # e and b > 0.

We are going to compute for this example I'r, C, T and T' (from these con-
structions we get ', and Tye).

The (complex) analytical curve C is y? + 2¢(z1) = 0 (72 = y2 = 0). Without
loss of generality we assume e; > 0 and then either 0 < e; < eg or e < 0 < ej.
In both cases we can take I'r as the unique real homoclinic orbit contained in
C, 0 < z1 < ey (the canonical change z; — —x1, y1 — —y1, reduces all the
possibilities to the above one). The complex orbit I' is C' minus the origin (we
recall that the temporal parameter ¢ is a local parameter on IT').

The desingularized curve T is the projective line P'. In fact, by the standard
birrational change z = &, y; = Zy/\/e1e2, we get the genus zero curve 7 =
(Z — e1)(# — e2). Now, with the change § = 3(e1 — €2)7, & = 3(e1 — €)@ + 242,
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we obtain the curve #? — §? = 1. This last curve is parametrized by the rational
functions

oz PN r
T=—"- = .
r2 -1’ Y=o
If we compose all these changes we obtain a rational r-parametrization of

I. So, T =T U{r = £\/eafer, r = £1}, r = £/ea/e; being the two points
corresponding to the origin 1 = y; = 0, and » = £1 the two points at infinity. It
is interesting to express I'r in this parametrization:

'r = {TEC:RG(T) =0,|r| > ,/—?}U{OO} if erex <0,
1

FR:{’F602IH1(’)"):0,|T| >,/Z—2}U{oo} if ejex > 0.
1

Then, the NVE in these coordinates is

d*n o dn

— + P— =0 7.4

a e T @n =0, (7-4)
where P = 25— and @ = (Crt — Dr? + E)/(4(e17? — e2)?(r? — 1)?), with

C = 16ae%62 + 16beies + 36%, D = 16@6%62 + 32beies + 16aele§, E = 16bejes +
3e2 + 16ae; 3.

We know from the general theory that this equation is symplectic. In other
words, its Galois Group is contained in SL(2, C). Indeed, it is easy to check this
in a direct way; so, P = d% log(e1r? — e3) (see Section 2.2). Furthermore, their
singularities are r = £1 (with difference of exponents 1/2) and r = +\/ex/ey
(with exponents +iv/b). From this, and from the symmetry in 7 it follows that it
is possible to reduce this equation to a Lamé differential equation, if we take r2
as the new independent variable. But we prefer to make this reduction in a more
standard way.

So, by the covering ' = P! — P! (r — z = x1), we obtain the ANVE (7.1),

1 1 3
d2£ <1 3 N 3 : ) ﬁ Z(IIZ + 4e1esar + 46162(]6 _o (7.5)
- )

EjL E+x er T dzx 4% (z — e1)(z — e3)

In order to show that this equation is of Lamé type, it is necessary to make
some transformations. First, if we take z = 1/z, we get

>@+<i+ (b_%)z+a_%(81+82)>£:0, (7.6)
S2

dz \ 22 2(z — s1)(z — s2)

| N =

d*¢ 3
@+<z_sl T
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where s; = e%-’ 1=1,2.
The next reduction is obtained by the change ([88], p. 78)

£(z) = 2"n(2). (7.7)
By the above change, (7.6) is transformed into

d277 1/1 1 1 dn (4b+%)z+4a+%(s1+32) 0. (78
ﬁ—i_i(; z— 81 z—sz>a+ 42(z — s1)(z — s2) n=0.(78)
With the change of the independent variable
1
p=2z— 5(31 + s2) (7.9)

(7.8) becomes the standard algebraic form of the Lamé equation (see Subsection
2.8.4)
d? '(p) dn Ap+B
—Z+f(p)—77— o, o, (7.10)
dp* =~ 2f(p)dp  [(p)
where f(p) = 4p* — gop — g3, With go = 3(s1 +52)® — 5152, g5 = —3=(51 + 52) (52 —
251)(s1 — 2s9) and A= —(4b+ 1), B = —(4b+ 1)3(s1 + 52) — da — 2352,
Finally, with the well-known change p = P(7), we get the Weierstrass form of
the Lamé equation

d*n
W
P being the elliptic Weierstrass function.

We recall that this equation is defined in a torus II (genus one Riemann sur-
face) with only one singular point at the origin. We have denoted by 2wy, 2ws
the real and imaginary periods of the Weierstrass function P and g, g2 their cor-
responding monodromies in the above equation. If g, represents the monodromy
around the singular point, then g, = [g1, g2].

It is easy to see that I'r corresponds, by the global change r — 7, to the
real segment between the origin and 2w; in the plane 7. Hence, the monodromy
m, = m2 (see Section 7.2) is equal to g7. We recall now (subsection 2.8.4) that
the condition g, =1 is equivalent to n being an integer.

We come back to our example. As A = —(4b + 1/4) with b > 0, n is not an
integer (the roots of the indicial equation are —1/242iv/b) and g? # 1, equivalent
(by Proposition 7.3) to (G,.)° is not abelian. Therefore, by Proposition 2.7 and
Theorem 7.2 we have obtained the following non-integrability result.

— (n(n+1)AP(r) + B)n =0, (7.11)
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Proposition 7.3 Let

1 1
H = S(8 + 1) + plo) + (015 + hoit.(z2), (7.12)

be a Hamiltonian, where

1
p(r1) = —2616293%(961 —e1)(z1 — e2),
(1) = —>— 2% + az1 +b
o\ = —X axr
! 166162 ! ! ’

(with real parameters b > 0, e; # es, a). Then the invariant manifolds of the Lya-
pounov orbits around the origin of the above Hamiltonian system must intersect
transversally, and does not exist an additional global meromorphic first integral.

We note that the (global) Galois group G of the NVE is either of type 6 or 7
of Proposition 2.2, because by Proposition 7.2 and Lemma 7.1, the local Galois
group Gy, is already of this type and Gj,. C G (since T'jp. C T, see Section 2.2).
We shall prove that G = SL(2,C).

The relation between the Galois groups of the initial NVE (defined over T')
and equation (7.11) is given by the following lemma.

Lemma 7.2 The identity component of the Galois groups of the NVE (equation
(6)) and of equation (7.11) are the same (up to isomorphism,).

Proof. First, all the identity components G° of the Galois groups of each of
the above equations (7.5),(7.6),(7.8),(7.10) and (7.11) are the same (up to iso-
morphism). In fact, the equivalence between (7.5) and (7.6), and between (7.8)
and (7.10) is clear. On the other hand, in the change (7.7) we have introduced
algebraic functions only, and these do not affect the identity component. Further-
more, by Theorem 2.5, the coverings P! =T — P! (r — ) and Il — P! (7 — p)
preserve the identity component of the Galois group. Hence, the identity compo-
nent of the Galois group of equation (7.6) is the same as the identity component
of the Galois group of the ANVE (equation (7.5)).

Q.E.D.

Now we shall compute the identity component of the Galois group of equation
(7.11).

We recall that the roots of the indicial equation at the origin are —1/24 2iv/b.
The eigenvalues of the corresponding monodromy matrix g, are not in the unit
circle, and cases 1, 2 and 3 of Proposition 2.2 are not possible. As n is not an
integer, the abelian case 4 (of Proposition 2.2) is also impossible. We can not
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have case 5, for this meta-abelian case does not appear in the Lamé equation (by

Proposition 2.6). If we are in case 6, the commutator of the monodromy matrices

along the periods, g. = [g1, g2], has eigenvalues equal to 1. Necessarily we are in

case 7, G = G° = SL(2,C). Then, by the above lemma, the identity component

for the NVE (7.6) is also SL(2,C) and its Galois group must be SL(2, C).
Finally, we remark that the family of (complex) Hamiltonians

1 1
H ==y} +93) + p(21) + 5a(@1)25 + h.ot.(w2), (7.13)

is obtained from the family defined by formulas (7.2), (7.3) by the symplectic
(canonical) transformation y +— iy, ¢t — it. Hence, the above family and our
initial family represent the same Hamiltonian system, and Proposition 7.3 is true
for both families (it is implied that in the family (7.13) the phase space is given
by the coordinates (z1,z2,iy1,1y2), with x1,x9, iy, 1ys real).
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Chapter 8

Complementary Results and
Conjectures

In this last chapter we give some aditional results, and we also formulate some
conjectures that open new lines of research which are in progress. We will not
enter into the computational details and this chapter is writen in a more informal
style than the rest of this monograph.

It seems clear that the linear equation that appears most frequently in appli-
cations is the hypergeometric (or Riemann) equation and its confluent versions (as
Bessel equation). In Section 8.1 we will again apply the theorem of Kimura (Sub-
section 2.8.1) and our results of Chapter 4 to two systems: the Spring-Pendulum
and a generalization of the homogeneous potentials.

Section 8.2 is devoted to two conjectures on the chaotic dynamics of non-
integrable systems.

In Section 8.3 we propose a generalization of the theory to higher order vari-
ational equations. This opens a new line of research and one more conjecture is
formulated. As an example we apply this to the Henén-Heiles system for which the
first order approach is not conclusive (Section 6.3, example 1). The section ends
with some comments about a (possible) connection with the so-called Painlevé
test and the Poincaré-Arnold-Mellnikov integral.

8.1 Two additional applications

The Spring-Pendulum system is a Hamiltonian system which, in suitable coordi-
nates, is defined by the Hamiltonian (see [23] and references therein)

2

1
(y%+y_%)+_gg%+x1(>\—I—Acosxz). (8.1)

H=
2 z] 2

149
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We can expand the above function in powers of the variable z2 (as in Chapter
6) and get
1 y2
5)

1 A
H = E(yl + = 22 + 2:1:1 -z + 2:1:1$2 + O($2)

We remark that for the physical model 0 < A < 1.

Then the plane zo = yo = 0 is invariant and, in the reference above, the
authors studied the NVE along the integral curves contained in this plane. In
fact they made a covering z := %xl — ¢ and obtained an algebraic form of the
NVE, ANVE, as a hypergeometric (or Riemann) equation

sz+<5/z 1/2>d_g (A/z %)520, (82)
¢
2

dz z—1 z(1—
We recall that NVE and equation (8.2) have the same identity component of the
Galois group (up to isomorphism) (Theorem 2.5).
Then it is proved in reference [23] that a necessary condition for integrability
is

1
A==-(9-¢
8( q)7

q being a rational number.

In order to apply Kimura’s theorem (Theorem 2.6) we compute the difference
of exponents. They are A= %\/9 -8\, = 5 and 7 = 2. Then by Kimura’s
theorem (and our Theorems 2.5 and 4. 1) we get the following result (we leave the
details as an exercise).

Proposition 8.1 The Hamiltonian system defined by (8.1) is non-integrable with
a meromorphic first integral, except if X = %(2 —p(p+ 1)), p being an integer.

We observe that for A in the physical region 0 < A < 1, we get non-integrability
if 0 < A < 1. The cases A = 0,1 are separable. So, the integrability problem for
A in the physical domain is completely solved.

As a second example we generalize our non-integrability result on the model
of homogeneous potentials of Section 4.1 to Hamiltonian systems of the type

H=T+YV, (8.3)

V being, as above, a homogeneous function of degree k of the positions 1, ..., zy,
but 7' is now a homogeneous function of degree m of the moments yy, ..., y, (in
Section 4.1 we studied a particular case with m = 2).

Using similar arguments to those of the Section 4.1, Yoshida showed that,
under some restrictions on the homogeneous functions 7" and V, it is also possible
to obtain a direct sum of hypergeometric equations as a pull-back of a finite cov-
ering of the NVE along an algebraic curve contained in some invariant plane.
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As in subsection 5.1.2 , we call it the algebraic normal variational equation,
ANVE = ANVE, ® ANVE, ® --- ® ANVE, 1, and each ANVE; is a hyper-
geometric equation (2.11) with parameters

Ai
a+b=1/m—1/k, ab= o C—I—E,
here the Yoshida coefficients, \;, are the product of the eigenvalues of the Hessian
of T and of the eigenvalues of the Hessian of V' (obtained by simultaneous diag-
onalization of both quadratic forms). As usual we do not consider the parameter
An, corresponding to the tangential variational equation (see [113] for details).
Then by the theorem of Kimura (and Theorems 2.5, 4.1 and Corollary 4.1) we
obtain a generalization of Theorem 5.1. As the explicit list of the values of the
parameters (m, k, \;) compatible with integrability is very long in this case, it is
better to check Kimura’s theorem for the particular system under study. Then
we give the result in a indirect way.

Proposition 8.2 Assume that Hamiltonian system given by the Hamiltonian
(8.3) is completely integrable with meromorphic first integrals, then for each i =
1,2,..n — 1, the values (m,k, \;) are such that the corresponding hypergeometric
equation must satisfy one of the conditions in (i) or (ii) of the theorem of Kimura
( Theorem 2.6).

Theorem 5.1 is a corollary of the above result.
In his paper Yoshida considers the two degrees of freedom Hamiltonian

H = F(y1,y2) + F(21,22),
with
2.9

1 e
F(Zl,ZQ) = Z(Zil + Z%) + 5212’2.

This Hamiltonian has two invariant planes with an ANVE of hypergeometric
type and with Yoshida coefficients

and

3—e\?
<1 + e) ’
respectively (see [113] for details).
We leave it as an exercise to apply the above proposition to this system and
to obtain necessary conditions on the parameter e in order to have integrability.
The possibility of applying our results to Hamiltonian systems given by (8.3)
was suggested to the author by Haruo Yoshida .
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8.2 A conjecture about the dynamic

Except for Chapter 7 and for the last section of Chapter 6, this monograph has
been devoted to algebraic non-integrability critera for Hamiltonian systems. So,
the main theorems of Chapter 4 are of algebraic character, and we do not know
the dynamic of the system in the general situation. Question 2 of Section 6.3
formulates the general problem. However, in the particular hyperbolic context of
Chapter 7, we were able to prove that the algebraic obstruction to integrability,
discussed in Chapter 4, is equivalent to the dynamical one given by Lerman’s
theorem, and chaotic dynamics is given by the splitting of real invariant manifolds.
We think that this is not a pathological behaviour, typical of this kind of system
only, but that it is also true in more general situations. So we formulate the
following conjecture.

Conjecture 1 If a complex analytical Hamiltonian system is not completely inte-
grable with meromorphic first integrals, then it has an chaotic behaviour in some
part of the complex phase space.

It is clear that the formulation of the above conjecture is necessarily ambiguous
due to the context in which it is formulated. A more precise conjecture, closer to
the results of Chapter 7, can be formulated as follows.

Conjecture 2 Assume that a complex analytical Hamiltonian system contains
a completely integrable subsystem with meromorphic first integrals and that the
variational equation along an integral curve, contained in this subsystem, is non-
integrable in the sense of the differential Galois theory. Then the complex Hamilto-
nian system has an chaotic behaviour in some neighbourhood of the above integral
curve.

Conjecture 2 is being studied by Josep M. Peris and the author.

8.3 Higher-order variational equations

By commodity of notation, as in other chapters of this monograph, in this section
we identify the Riemann surface I'; defined by an integral curve, with the integral
curve i(I"). So, we say, for instance, that Tt is the tangent bundle of the manifold
M restricted to the integral curve I, etc... .

8.3.1 A conjecture

So far in this monograph we have considered the variational equation of order one
of a Hamiltonian system, X, along a particular integral curve I'. This variational
equation, VE, gives us the linear part of the flow of X along I', but we can also



8.3. HIGHER-ORDER VARIATIONAL EQUATIONS 153

consider the quadratic, cubic, etc... contributions to the flow along T' (i.e, the
rest of the jet along I'). These higher order terms are given by the higher order
variational equations along I' and it is wellknown that they can be solved by the
method of variation of constants in a recurrent way, once we know the solution of
the order one variational equation.

The problem now is to study the possible extension of our first order non-
integrability criterion to higher order (this problem was proposed by Carles Simé
to the author some years ago). We will not solve this problem in a complete way
here, but we try to gain some insight into its solution.

We start by fixing the terminology and notation. Let

i =X(2), (8.4)

be a non-linear differential equation defined on a manifold M, z € M.

Let ¢(z,t) be the flow defined by the above equation and let z(t) = ¢(z0,t) be
the function that represents the integral curve I' of the field X in the temporal
parametrization, such that zy = ¢(zo, to). Then, we denote by ¢(1), ¢ ., ¢*) .
the derivatives of ¢ with respect to z at the point (zg,t) of orders 1,2, ...k, ...,
respectively (in fact, the functions ¢(*) = ¢(¥)(¢) are defined over the universal
covering of I').

For a given k, the set of functions {¢(1), o3, ..., qﬁ(k)} satisfy the variational
equation up to order k, (VE). In particular, the variational equation (VE); is
the first order variational equation writen as VFE in this monograph. We observe
that to compute the variational equation (V E), it is convenient to write equation
(8.4) as

o9

ot
Then we compute the successive derivatives of equation (8.5), up to order k,
with respect to the variable z and we substitute ¢(z9,t) = z(¢). This set of
“prolongated” equations is (VE). It is clear that (V E);_1 is contained in (V E)y.
Furthermore, ¢(") is the solution of (V' E); with initial conditions ¢(1)(tg) = I
(identity), given by a fundamental system of solutions of (V E);), and for the
other functions ¢(*), s = 2, ..., k, we take as initial conditions ¢(*) (to) = 0 (because
these fucntions are the coefficients of the Taylor expansion of ¢(z,t) at the point
(20,1))-

Let now K be the differential field of coefficients of (V E); as in Chapter 4. We
recall that K is always a field of meromorphic functions over a Riemann surface,
but the Riemann surface considered depends on the context, I',T’, etc... (see
Sections 4.1 and 4.2). Then for a given k, to the variational equation up to order
k, (VE)g, we associate the chain of extensions of differential fields

X((2,1)). (8.5)
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K:=LyCL CLyC---CLp_1C Ly,

with L; = K(¢(1), Ly = L1(¢?) = K(¢V, ¢, L = K(¢M), ..., ")), We
know that the first extension of the above chain, K C L4, is a Picard-Vessiot
extension. The other individual extensions Ly C Lgi; are also Picard-Vessiot
extensions because they are obtained by the method of variation of constants,i.e.,
by quadratures , and the Galois group Galy, ,(Ls) is a vector group (i.e,, iso-
morphic to the additive group (C",+), for some r, see Section 2.2). From this
it is not evident that the total extension K C L; is a Picard-Vessiot extension
(a composition of Picard-Vessiot extensions is not, in general, a Picard-Vessiot
extension!), but this is indeed the case.

Proposition 8.3 For each k > 1, the extension K C Ly is a Picard-Vessiot
extension.

The key point in this proposition is that the variational equation up to order
k, (VE)g, is a linear differential equation with the same coefficient field K as the
first order variational equation (VE);.

We do not give here a general proof of the proposition above, but we prove it
for (VE), and (V E)3, since they are the only cases necessary for the application
discussed below.

The second variational equation, (V E)s is given by

) = xWg) (8.6)
¢ = xWg@ 4 x@ () g0y,

where for simplicity, according to our prescription, we write X and X@ for
X (z(t)) and XM (z(t)), respectively.

Now it is convenient to introduce some notation. Let E be a vector space,
given two linear applications f : S"E — F and g : S°F — E (S"E and S°F
are symmetric tensor powers), then we define the symmetric product of f and ¢
as the linear map

feg:S8TE — S%E,

(feg)(uev) = f(u)eg(v), with e being the symmetric product (i.e., the product
in the symmetric algebra). As usual, if f = g, we write f e g = S2f.
Consider the linear differential equation

S26() = BSZpM), (8.8)

§O = x40 4 x@g2s0) (8.9)
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where equation (8.8) corresponds to the construction $?V of the connection V;
of the first order variational equation (8.6) (i.e., we compute the derivative of
(1) o ¢(1) by the Leibniz rule and then we apply (VE);). Matrix B depends
on X and its coefficients belong to the differential field K. Equation (8.9) is
equation (8.7) written in tensorial form. We denote the connection of the above
system of equations, (8.8)+(8.9), as V3. Then we have the exact sequence of
connections (see Section 2.3, Example 3)

0 — (Vi,V1) — (Vi ® V5, V3) — (Va,S?Vy) — 0,

and the linear equation (8.8)+(8.9) is solved from the solution of ¢1) of (VE); by
the method of variation of constants. From this it is easy to see that the extension
K C L5 is the Picard-Vessiot extension of the connection V.

In a similar, but in a more involved way, we can construct a linear connection
V3 for the third order variational equation (V E)3. The associated linear equation
is given by the system of equations

$3p() = 0830, (8.10)
o) 0@ = B ed®) + D31, (8.11)
¢§(3) — X(1)¢(3) + X(2)(¢(1) ° ¢(2)) + X(3)S3¢1, (8.12)

where the matrix B is the same as above and the matrices C' and D depend in a
polynomial way on (the matrix elements of) X (1) and X@, respectively, and they
have their coefficients in K. We remark that the map X®) (ng(l) ° ng(?)), considered
as a trilinear symmetric map, is explicitely given by

(¢(1) . ¢(2))(§1, &,83) = (¢(1)§1, ng(Z) (&2, &3)) + circular permutationsof 1,2,3

(this is the “crossed” term which appears in the chain rule when we compute the
third derivative).

If V3 is the connection associated to (8.10)+(8.11)+(8.12), then as above we
have the exact sequence

0— Vi®Va,Vy) — Vi@ Ve ®V3,V3) — (V3,8°V)) — 0.

Then the extension K C L3 is the Picard-Vessiot extension of the connection V3.
We notice that from the above proposition follows

Corollary 8.1 The extension Ly /Ly is a Picard-Vessiot extension and Galr,, (Ly)
is a connected linear algebraic group (Zariski topology).
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Proof. The fact that Ly/L; is a Picard-Vessiot extension follows from the differ-
ential Galois theory (see Theorem 2.2). As each extension Ls/Ls_; is a purely
transcendental one (this is equivalent to the connectedness of Galy, ,(Ls)), then
the total extension Ly /L, is also transcendental and its Galois group is connected.

Q.E.D.

In particular, the group Galr, (Ly) is contained in the identity component
(Gk)o of Gk = GalK(Lk).

If now X = X is an integrable Hamiltonian system, under the same assump-
tions of the results of Section 4.2 (Theorems 4.1, 4.2, 4.3 or Corollaries 4.3, 4.4,
depending on the context), a natural extension of our philosophy is that the non-
linear abelian structure given by the integrability of Xz must be projected on the
variational equation at any order. Hence we state the following conjecture.

Conjecture 3 Assume that the Hamiltonian system Xpg is integrable, then the
identity component of the Galois group of the extension K C Ly is abelian for any
k>1.

By the rigidity of the complex analytical structures, it is natural to ask about
the existence of a sufficient condition of integrability, under suitable assumptions.
Assume that the Hamiltonian system is not integrable and that the integral curve
I', along which we compute the variational equations, is contained in an integrable
subsystem of Xg. Then we formulate the following question.

Question s the identity component of the Galois group of the variational equation
(VE) not abelian for some k?

We remark that if the variational equation of order one is integrable (in the
differential Galois sense), then all the higher order variational equations are also
solvable, because they are solved by the method of variations of constants in a
recurrent way, once we know the solution of the first order variational equation.

The proof of Conjecture 3 is in progress in a joint work of Jean-Pierre Ramis,
Carles Simé and the author [80].

8.3.2 An application

Now we apply the above conjecture to the Hénon-Heiles potential of Section 6.3
with d/c = 2. We recall that this is the only case in the family of the Hénon-
Heiles Hamiltonians whose integrability remains open.

If we assume that Conjecture 3 is true, we can prove the non-integrability of
this system. We give the main ideas underlying the proof.

The Hamiltonian system can be writen as
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1 1 1 1
H = 5(?/% +y3) + 595% + gxi’ + §x1x§. (8.13)

The proof is based on the following two lemmas. Let G be the Galois group
of the variational equation up to order k, (V E)j, along one of the family of elliptic
integral curves I', parametrized by the energy, and contained in the invariant plane
9 = yo = 0 (as in Chapter 6). We have shown in Chapter 6 that I is a punctured
torus and that the first order variational equation (V E); splits into a direct sum of
the tangential variational equation and the normal variational equation (because
' is contained in an invariant plane). Both of them are of Lamé type. We write
that as

Vi=Vi)re (Vi)n.

Then it is not difficult to verify that the Galois group G; = Gal(V1) is represented
by unipotent triangular matrices of the type

1 0 00
a 1 0 0 |
001 0]’
0 0 B 1

because for both, the tangential and the normal first order variational equations,
we are in the case of solvability given by Lamé, where one non-trivial solution of
the Lamé equation is an elliptic function, i.e., it belong to the coefficient field K
(see Subsection 2.8.4, or for more information [42, 88, 109]).

Notice that the Galois group G is abelian, for this reason it is not possible to
obtain a non-integrability criterion by an analysis up to first order.

As the general solution of (V E); is obtained by two quadratures, then the
extension Lj/K of the first order variational equation is transcendental (this is
also easily proved by observing that G is isomorphic to the vector group (C?, +)),
and as the extensions Ly /L are also transcendental, we have the following lemma.

Lemma 8.1 The Galois group Gy of the variational equation up to order k of
the Hamiltonian system (8.13), along the elliptic integral curves contained in the
invariant plane To = yo = 0, is connected, i.e., G}, = (G},)°.

Now the coeficients of the order k£ variational equations are elliptic functions
holomorphic over a punctured torus, and this singularity is a regular singular one
of this variational equation (because their solutions are obtained by the method
of variations of constants from the solution of the first order variational equation).
Then we arrive at the same necessary and suffficient condition for abelianess of
the monodromy (and Galois) group for the Lamé equation (see Subsection 2.8.4):
g« := [81,82] around the singular point must be the identity.
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Lemma 8.2 The Galois group Gy of the variational equation of order k, (V E)y,
of the Hamiltonian system given by (8.13) is abelian, if and only if, the local
monodromy g« of the variational equation (VE)y, around the singular point of
the coefficients is the identity.

Theorem 8.1 The Hamiltonian system defined by the function (8.13) has no
additional meromorphic integral independent of the Hamiltonian, provided Con-
jecture 3 is true.

Sketch of Proof. By Conjecture 3 we need to find some & such that (Gj)° is not
abelian. But by Lemma 8.1 this is equivalent to saying that G is not abelian,
which means equivalent, by Lemma 8.2, to g, different from the identity for some
k. Then we start with the solution of the first order variational equation, and
we solve the second order variational equation by the method of variation of
constants, then the third order variational equation by the same method and so
on ... . If in some step of this process we get a logarithm around the singular point
(i.e., a residue different from zero in the Laurent series of some integrand) then
g, is not the identity for the corresponding variational equation, and G° is not
abelian. A long but straightforward computation gives us a logarithm for k = 3.

Q.E.D.

The explicit computation in the above proof has been done by Carles Simo.
In the above cited forthcoming paper by Jean-Pierre Ramis, Carles Simé and the
author [80], the details of this computation will be explained.

We finish with two informal remarks. We note the analogy between the method
used in the above proof and the so-called Painlevé test: the existence of a loga-
rithmic term in the jet is an obstruction to integrability (see [37]).

Also, there exists an analogy with the Poincaré-Arnold-Mellnikov integral
method (see [37], where a connection with the Painlevé test is studied). We
recall that this method is essentially the method of variation of constants applied
to the variational equation with respect to parameters of a perturbed Hamiltonian
system, the unperturbed system being integrable. Then the homogeneous part of
the variational equation is integrable. In fact, by the main theorems of Chapter 4,
the identity component of its Galois group is abelian, because the homogeneous
part of the variational equation with respect to the parameters coincides with
the first order variational equation of the unperturbed system with respect to the
initial conditions. Furthermore, it is possible to check that the Poincaré-Arnold-
Mellnikov integral is an object related to a tensorial construction of the variational
equations (concretely to an exterior product). We do not pursue in this direction,
but we claim for the formulation of a theory that contains as particular cases
the theory of non-integrability with respect to the initial condition (as formulated
along this monograph) and the Poincaré-Arnold-Mellnikov theory.
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Meromorphic Bundles

In this appendix we give the precise definition of meromorphic vector bundles and
their trivializations in the symplectic case. We follow the paper [77].

Let X be a Riemann surface. We denote by Ox and by Mx the sheaves of
holomorphic and meromorphic functions on X. The sheaf of holomorphic sections
V of a holomorphic vector bundle V of rank n is a sheaf of Ox-modules that is
locally isomorphic to O%. A holomorphic vector bundle of rank n on X is also
interpreted as an element of the non-abelian cohomology set H'(X; GL(n; Ox)).

Let G C GL(n;C) be an algebraic subgroup (defined on the field of complex
numbers). We set G = Gp, C GL(n;Ox) and G™® = G, C GL(n; Mx).
We say that a holomorphic bundle on X admits G as structure group if it is
defined by an element of H'(X; G).

We need meromorphic vector bundles. By definition, the sheaf of meromorphic
sections of a meromorphic vector bundle of rank n is a sheaf of M y-modules that
is locally isomorphic to M. A meromorphic vector bundle of rank n on X is also
interpreted as an element of the non-abelian cohomology set H'(X; GL(n; Mx)).
If this element “belongs” to H'(X; G™¢), we say that the meromorphic vector
bundle admits G as structure group. There exists an equivalent definition for
a meromorphic vector bundle on a Riemann surface X, due to Deligne ([30],
1.14 p. 52). Such a bundle is an equivalence class of holomorphic extensions of
holomorphic bundles defined on X minus a discrete subset 3: locally, if z is a
uniformizing variable vanishing on 3, then two extensions V; and Vi of V are
equivalent if the corresponding sheaves of holomorphic sections satisfy

anI C KQ C anzl C ’L*K

(i : X — ¥ — X being the natural inclusion).
The following result says that every meromorphic vector bundle on a Riemann
surface comes from a holomorphic vector bundle.

159
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Lemma A.1 Let X be a Riemann surface. Let G C GL(n;C) be an algebraic
subgroup defined on the field of complex numbers. Then the natural map

H'(X;G") - H'(X;G™®)
18 surjective.
The proof is easy: the set of poles of a section of G™¢ is discrete.

Proposition A.1 Any meromorphic vector bundle on a Riemann surface X is
trivial.

Proof. Let V™ be a meromophic vector bundle on X. It comes from a holo-
morphic vector bundle V. If X is an open Riemann surface, then V" is trivial
([36], Theorem 30.4). If X is a compact connected Riemann surface, then V%"
comes from an algebraic vector bundle V' on the non-singular projective curve X.
We denote by kx the field of rational (or meromorphic) functions on X. The field
of rational sections of the algebraic bundle V' is a rank n vector space on kx ([36],
Corollary 29.17), therefore V"¢ is a trivial meromorphic bundle.

Q.E.D.

In fact we need some similar, but more precise, results involving vector bundles
with the symplectic group as structure group. We will give them below.

If now X is a singular complex analytic curve, we can also define holomorphic
vector bundles and meromorphic vector bundles on X along the same lines. If
7 : X — X is a desingularisation map (i.e., if X is a Riemann surface and m
a proper analytic map, which is a finite covering over a discrete subset of X),
then it induces an isomorphism 7* between the sheaves of meromorphic functions
Mx and M ¢, and therefore an isomorphism 7* between the meromorphic vector
bundles on X and on X.

Theorem A.1 (Grauert Theorem) Let X be a complex connected, non-compact,
Riemann surface. Let F = (Y,p,X) be a locally trivial vector (resp., principal)
holomorphic fibre bundle on X with a connected complex Lie group G as structure
group. Then F is holomorphically trivial.

Sketch of Proof. For completeness we recall here the proof. We denote by G
(resp., G¢) the sheaf of holomorphic (resp., continuous) functions on X with values
in G. The open Riemann surface X is homotopically equivalent (by retraction)
to a finite one-dimensional complex. On such a complex, a G-fibre bundle is
topologically trivial because G is connected. Therefore the fibre bundle F is
topologically trivial. An open Riemann surface is a Stein manifold. On such a
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manifold the topological and the analytic classifications of fibre bundles with a
complex Lie group as structure group coincide: the natural map

HY(X;G"™) - H'(X; G)
is a bijection [39, 17]. Therefore F is holomorphically trivial.

Q.E.D.

A complete and detailed proof is given in [92], Chapter 2.

We apply the above theorem to the symplectic group. An element of Sp(2n, C)
is a product of at most 4n — 2 symplectic transvections [31] (we can also use a
homeomorphism between Sp(2n, C) and the product of SU(n)x vector space and
the connectedness of SU(n)). Hence

Lemma A.2 The topological group Sp(2n,C) is connected.

Corollary A.1 Let X be a complex connected, non-compact, Riemann surface.
Let F = (Y,p,X) be a locally trivial vector (resp., principal) holomorphic fibre
bundle on X with Sp(2n, C) as structure group. Then F is holomorphically trivial.

We study now the case of bundles on compact Riemann surfaces.

Proposition A.2 Let X be a complex connected compact Riemann surface. Let
F = (Y,p, X) be a locally trivial holomorphic vector (resp., principal) fibre bundle
on X with structure group G = Sp(2n,C). Then F is meromorphically trivial.

Proof. The proof is based on the “GAGA” paper of Serre. The compact Riemann
surface X is also a complex algebraic (projective) curve. We denote by G the
sheaf of regular maps from X to the algebraic complex group G. We have a
natural map

L:H' (X;G) - H'(X;G™).
The symplectic group G = Sp(2n, C) satisfies condition (R) of Serre ([91], p.
33): there exists a rational section

([91], Example c) p. 34). Therefore, we can apply proposition 20 of Serre ([91],p.
33): the map L is a bijection. Using an algebraic trivialisation of the algebraic
bundle corresponding to F on a convenient affine subset of the curve X, we get
the result.

Q.E.D.
Now we shall apply the above to the bundles we are interested in.
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Let M’ be a connected complex analytic manifold of complex dimension 2n.
Let ©Q be a closed meromorphic form of degree two on M'. Let My, C M’ be
a closed analytic hypersurface (i.e., analytic subset of pure complex codimension
one) of M'. We set M = M' — M., and we suppose that  is holomorphic and
non-degenerated over M. Then (M,Q) is a complex symplectic manifold. We
denote by T' M' (resp., T* M') the tangent (resp. cotangent) bundle of M'. Tt is
a holomorphic bundle but we will use only its structure of meromorphic bundle.
Then, as we noticed before, the form 2 induces a generalized musical isomorphism
between the meromorphic bundle T' M’ and the meromorphic bundle T* M': if X;
is a meromorphic vector field on an open set U C M’, then, for every meromorphic
vector field X on U, Q(X1, X) is a meromorphic function on U, and

X - Q(X1, X)

is a ky-linear isomorphism between the k;-vector spaces of meromorphic sections
of T" M’ and T* M’ on U. We denoted by ky the field of meromorphic functions
onU.

Let H be a meromorphic Hamiltonian function over the manifold M’'. Let
Xy = #dH be the corresponding Hamiltonian field. It is meromorphic over M’
and its restriction to M is holomorphic. Let i(T") be a connected non-equilibrium
integral curve of Xy over M. Let IV be as before a (perhaps) singular curve that
is the union of (") and of a discrete subset of equilibrium points and points at
infinity. Let T bea desingularization of ['. Let fi,..., f;, be an involutive set of
first integrals (H = f1) that are meromorphic on M'. We suppose that they are
holomorphic and independent at some point of the phase curve #(I"). Then the
system df; = 0,...,df, = 0 defines a meromorphic subbundle E of Ty of rank
2n —m. The meromorphic vector fields X1 = {dfy, ... X;, = fdf, generate a rank
m meromorphic subbundle F of E. Then F' is a meromorphic subbundle. As
in [8] we get a structure of symplectic meromorphic bundle on the meromorphic
bundle N = (F*/F) over I' (we have only to replace holomorphic bundles by
meromorphic bundles in [8]).

Finally, as in [8], we get a normal variational connection on the symplectic
bundle N = (F+/F) over T'. Here the bundle and the connection are mero-
morphic. The bundle N is symplectically meromorphically trivializable, therefore
this normal variational connection can be interpreted as a meromophic differential
equation over I (the NVE).
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Galois Groups and Finite
Coverings

In this appendix we prove that the identity component of the differential Galois
group, of a meromorphic connection over a Riemann surface, does not change if
we take inverse images by a finite ramified covering. It is an analytic version of
an algebraic result of N. Katz. We follow [77].

Proposition B.1 Let V be a germ of a meromorphic linear connection at the
origin of C. We denote by K the differential field of germs of meromorphic
functions, by G = Galg (V) the differential Galois group of V and by G its
identity component.

Let H be the subgroup of G topologically generated (in the Zariski sense) by
the exponential torus and all the Stokes multipliers of V.

We denote by m € G the actual monodromy of V, by M the Zariski closure
in G of the subgroup generated by m, by MO the identity component of M and by
H; the subgroup of G generated by H and MP.

(i) The subgroups H and Hy are Zariski closed, connected, and invariant under
the adjoint action of m.

(ii) The group G is topologically generated by H and m.

(iii) The group G is algebraically generated by Hy and m, and G = Hj.

(iv) The image of m in G/G° generates this finite group

Sketch of the Proof. The actual monodromy m and the formal monodromy m
are equal up to multiplication by a product of Stokes multipliers [69, 16]. The
exponential torus is (globally) invariant by the adjoint action of the formal mon-
odromy m. Then our claims follow easily from the density theorem of Ramis,
Theorem 2.3, using some elementary results about linear algebraic groups [45].

Q.E.D.
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Lemma B.1 Let v € N*. Let V be a germ of a meromorphic connection at the
origin of the z plane, C. We set x = f(t) =t¥. We denote by (X,0) (respectively
(X',0)) the germ at the origin of the x (respectively t) plane. We denote by K
(resp., K') the differential field of germs of meromorphic functions on X (resp.,
X'). We have a natural injective homomorphism of differential Galois groups

GalK/(f*V) — GalK(V),
which induces an isomorphism between their Lie algebras.

Proof. We set G = Galg (V) and G' = Galk/(f*V). The field inclusion K C K’
induces a natural map

0:G —G.

This map is clearly injective. Let m € G be the actual monodromy of V. Then
the actual monodromy of V' = f*V is m/ = m”.

The connections V and V' have the same exponential torus and the same
Stokes multipliers (more precisely the map ¢ induces isomorphisms). We use the
notations of Proposition B.1 for V, and similar notations for V'. We have clearly
H=H'  M° = M'", therefore G* = H; = H', = G'°.

Q.E.D.

Theorem B.1 Let X be a Riemann surface. We denote by K its field of mero-
morphic functions. We choose a differential O on K. Let S = {aj}ic; C X be
a discrete subset. Let xg € X —S. For each point a; € S, we choose a germ d;
of real half line starting at a;, and drawn on the complex line tangent to X at
a;. We denote by M the field of meromorphic functions on the universal covering
(X,z0) of X pointed at xo. We identify the field K with a subfield of M. For
i € I, we denote by M; the field of germs, at a;, of meromorphic functions (i.e.,
of germs of functions meromorphic on a germ of an open sector at a; bisected by
d;). We identify the field K; of germs, at a;, of meromorphic functions with a
subfield of M;. We extend the derivation 8 on k to the fields M, M;. We also
choose continuous paths ~y;’s joining g, respectively, to the d;’s (that is, arriving
at a; tangentially to d;).

Let V be a meromorphic connection on X with poles on S at most. We denote
by V; the germ at a; of V. There exists a uniquely determined Picard-Vessiot
extension Lo (resp., L;) of the differential field (K;0) (resp., (K;;0)) associated
to V (resp., V;) such that K C Ly C M (resp., Ki C L; C M;). The path
vi induces an isomorphism of differential fields Z; between Lo and L; (we use
Cauchy’s theorem and analytical extension along ;).

We denote by G (resp., G;) the “representation” of “the” differential Galois
group Galg V (resp., Galk, V) associated to Ly (resp., L;). Using Z;, we identify
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the local Galois group G; with a subgroup of the global Galois group G. Let 11y
be the (usual) monodromy group of V. Then the complex linear algebraic group
G is topologically generated by the G;’s (i € I) and I1;.

Proof. This result is a trivial extension of a classical result due to Marotte ([68],
CH. II, H.30). We recall briefly the proof. We denote by H the subgroup of G
generated by the G;’s and II;. Let € Ly C Mg. It defines elements «; € L;.
If « is invariant by the group H, then «; is invariant by G; and Piy. Therefore,
«o; € K;: « is uniform around a;, and corresponds to a germ of meromorphic
function at a;. Finally « is non-ramified on S and meromorphic on X, with
poles on X at most. We have proved that the subfield of the Picard-Vessiot
extension Ly, fixed by the subgroup H C G is K. Then from the differential
Galois correspondance (Theorem 2.2) it follows that H is Zariski dense in G.

Q.E.D.

We remark that from Theorem B.1 and from Proposition B.1 it follows a
stronger result:

Corollary B.1 The Galois group G of the connection V in Theorem B.1 is topo-
logically generated by the Stokes matrices, the exponential tori (at the singular
points) and the monodromy group I1;.

Theorem B.2 Let X be a connected Riemann surface. Let f : X — X be
a finite ramified covering of X by a connected Riemann surface X'. Let V be
a meromorphic connection on X. We set V' = f*V. Then we have a natural
injective homomorphism

Gal (V') — Gal (V)

of differential Galois groups which induces an isomorphism between their Lie al-
gebras.

Proof. Let K (resp., K') be the meromorphic functions field of X (resp., X'). The
finite covering f : X’ — X is ramified over a finite set ¥ C X. Let S C X be the
union of the ramification set 3 and of the set of poles of V. It is a discrete subset.
Let S’ = f1(S) C X'. It is a discrete subset. We choose a base point zf, € X'~ 5’
and we set f(z() = 9 € X. Then we set G = Galg(V) and G’ = Galk/(f*V),
with similar conventions to those made above in the proof of Theorem B.1.

The field inclusion K C K’ induces a natural map

p: G —G.

This map is clearly continuous and injective and we can identify G’ with a closed
subgroup of G. We have a natural injective map 71 (X' — S";z'y) — m (X —S; ).
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We can identify (X' — S’; () with a subgroup of (X — S; ). The index of
this subgroup is finite. Following our conventions, we compute G (resp., G') with
the horizontal sections of V meromorphic on the universal covering pointed at zg
(resp., z().

We denote by IT; (resp., IT}) the natural image of w1 (X —S;zg) (resp., m (X' —
S';xp)) in G (resp., G'). By Theorem B.1, the global differential Galois group G
(resp., G') is topologically generated by G;’s and II; (resp., G}, and II}). Let
R (rep. R') be the smallest subgroup of G (rep. G’) such that it contains the
identity components of all the local differential Galois groups, and such that it is
invariant by the adjoint action of the monodromy subgroup II; (resp IT}). The
group R (rep. R') is closed and connected.

Using Proposition B.1, we see that the group G (resp., G') is topologically
generated by II; and R (resp., ITj and R'). We choose continuous paths -; joining
zo to each point a; € S in X — S. Afterwards, for each a}, above a;, we choose
a continuous path v}, joining z{ to a}, in X’ — S’. We can suppose that v} is a
path above +; followed by a path above a loop at a;.

Applying Lemma B.1 and the definition of the fundamental group as a quotient
of a set of loops, we can easily see that the map ¢ induces an isomorphism between
R’ and R. Therefore the natural map

T (X — S;20)/m (X' = S5 2) = G/G'

is Zariski dense (the group G is topologically generated by IIy and R). As the
first group is finite, it follows that the map is onto, and that the group G/G’ is
also finite. Therefore, G* = G'°.

Q.E.D.

As remarked in Chapter 2, in [51] there is an algebraic version of Theorem B.2.
It is possible to transpose Katz’s Tannakian argument to the analytic situation.
Then we get an injective homomorphism

G — Gg g K'

inducing an isomorphism of K’-Lie algebras
Gk = Gk O K'.

But this isomorphism comes by tensorisation @ cK’ from a C-linear natural map
Lie ¢ : g’c — Gc.

Therefore, ¢ is an isomorphism of complex Lie algebras. This gives another proof
of Theorem B.2.



Appendix C

Connections with Structure
Group

In this appendix we will prove an important result of Kolchin. As a corollary we
get another proof of the fact that the Galois group of a symplectic meromorphic
connection is contained in the symplectic group. As in the other appendices we
will follow [77].

Let X be a Riemann surface. We denote by Ox (resp., Mx) its sheaf of
holomorphic (resp., meromorphic) functions.

Let G C GL(n;C) be a Zariski connected complex linear algebraic group.
We denote by G C End(n;C) its Lie algebra. As in Appendix A, we denote by
G (resp., G™€) the sheaf of holomorphic (resp., meromorphic) matrix functions
whose values belong to Ox (resp., Mx). We adopt similar notations for functions
whose values belong to the Lie algebra G.

We recall that we have already defined a holomorphic G-bundle over X as a
holomorphic vector bundle over X, admitting G as a structure group. It is charac-
terized by an element of H'(M;G"). We have a notion of local G-trivialization
of a G-bundle. We also introduced the notion of meromorphic G-bundle (see
Appendix A).

Let V be a meromorphic connection on a G-bundle V. Using a local coordi-
nate t and a frame corresponding to a local G-trivialisation, we get a differential
operator Vg = % — A, where A is a meromorphic matrix. If the values of A
belong to the Lie algebra G, we say that V is a meromorphic connection with
structure group G (or a G-connection) on the G-bundle V. This definition is
independent of the choice of a trivialization: if the values of a meromorphic in-
vertible matrix P belong to the group G, then the values of the meromorphic
matrix P~'AP — P_I%A belong clearly to the Lie algebra G.

167
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Theorem C.1 Let V be a G-meromorphic connection on a trivial G-bundle V
over a connected Riemann surface X. Then its differential Galois group “is” a

closed subgroup of G.

Proof. This result is due to Kolchin, who introduced the notion of G-primitive
extension [54]. We will give here a very simple Tannakian proof. Following
Chevalley’s theorem ([96], 5.1.3. Theorem, page 131), the linear algebraic group
G C GL(n;C) is the subgroup of GL(n;C) leaving invariant a complex line W
in some construction Wy on the complex vector space V; = C”. To the natural
operation of the group G on the construction Wy, there corresponds a natural
operation of the Lie algebra G on the same construction Wy. Clearly, this action
also leaves invariant the complex line Wj. We denote by Gw, C GL(Wy) the
natural representation of G, and by Gw, C End(Wy) the corresponding Lie alge-
bra. If we choose a basis of the complex vector space Wy such that its first vector
generates W( over C, then the Lie algebra Gy, corresponds to the Lie algebra of
the matrices whose entries belonging to the first column are zero, except perhaps
the first one.

To the construction Wy on Vj there corresponds a holomorphic vector bundle
W. We obtain W from the holomorphic vector bundle V' by a similar construction.
To the meromorphic connection V on V corresponds similarly a meromorphic
connection Vi on W. To the complex line W{ corresponds a trivial sub-line
bundle W' of W. We choose a (meromorphic) uniformizing variable over X and a
frame of the trivial Gy,-bundle W, such that its first element generates the sub-
line bundle W’. Then the Gyy,-meromorphic connection Vi can be interpreted
as a system % — B, where the meromorphic matrix B takes its values into the
Lie algebra Gyy,. Consequently, the entries of B that belong to the first column
are identically zero, except perhaps the first one. Therefore, the action of the
meromorphic matrix B on the sheaf of meromorphic sections of the vector bundle
W leaves invariant the subsheaf of meromorphic sections whose values belong
to the subbundle W’. Going back to connections, we see that the meromorphic
connection Vyy leaves invariant the subbundle W', and consequently, it induces
a subconnection (W', Vy) C (W, V).

By the Tannakian approach to the differential Galois theory (Section 2.4), the
differential Galois group H of V is defined by the list of all the subspaces of all
the constructions C' (V) on the vector space V corresponding to the fibres (in
fibre functor sense) of the underlying vector bundles of all the subconnections of
the similar connections V(1) on the similar constructions C(V'). But (W, Wy)
belongs to this list, therefore H is a closed subgroup of the algebraic group G
(which itself can be defined by the only pair (W, Wp)).

Q.E.D.
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In our monograph we need only the following result corresponding to G =
Sp(n; C). (Using Appendix A, if V' is a meromorphic symplectic bundle over X,
we can suppose that it is a ¢rivial symplectic meromorphic bundle.)

Corollary C.1 Let 'V be a symplectic meromorphic connection on a meromorphic
symplectic bundle V' over a connected Riemann surface X. Then its differential
Gualois group is a closed subgroup of the symplectic group.
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