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Foreword

This monograph has grown from my PhD thesis Interior point Methods for Semidef-
inite Programming [39] which was published in December 1997. Since that time,
Semidefinite Programming (SDP) has remained a popular research topic and the asso-
ciated body of literature has grown considerably. As SDP has proved such a useful tool
in many applications, like systems and control theory and combinatorial optimization,
there is a growing number of people who would like to learn more about this field.

My goal with this monograph is to provide a personal view on the theory and ap-
plications of SDP in such a way that the reader will be equipped to read the relevant
research literature and explore new avenues of research. Thus I treat a selected num-
ber of topics in depth, and provide references for further reading. The chapters are
structured in such a way that the monograph can be used for a graduate course on
SDP.

With regard to algorithms, I have focused mainly on methods involving the so-
called Nesterov—Todd (NT) direction in some way. As for applications, I have selected
interesting ones — mainly in combinatorial optimization — that are not extensively
covered in the existing review literature.

In making these choices I hasten to acknowledge that much of the algorithmic anal-
ysis can be done in a more general setting (i.e., working with self-concordant barri-
ers, self-dual cones and Euclidean Jordan algebras). I only consider real symmetric
positive semidefinite matrix variables in this book; this already allows a wealth of
applications.

Required background

The reader is expected to have some background on the following topics:

m linear algebra and multivariate calculus;

linear and non-linear programming;
® basic convex analysis;

m combinatorial optimization or complexity theory.

Xi



Xii Aspects of Semidefinite Programming

I have provided appendices on the necessary matrix analysis (Appendix A), matrix cal-
culus (Appendix C) and convex analysis & optimization (Appendix B), in an attempt
to make this volume self-contained to a large degree. Nevertheless, when reading this
book it will be handy to have access to the following textbooks, as I refer to them
frequently.

m  Convex Analysis by Rockafellar [160];
m Matrix Analysis and Topics in Matrix Analysis by Hom and Johnson [85, 86];

m  Nonlinear Programming: Theory and Algorithms by Bazarraa, Sherali and Shetty

[16];

m Theory and Algorithms for Linear Optimization: An interior point approach, by
Roos, Terlaky and Vial [161];

m  Randomized Algorithms by Motwani and Raghavan [128].

In particular, the analysis of interior point algorithms presented in this monograph
owes much to the analysis in the book by Roos, Terlaky and Vial [161].

Moreover, 1 do not give an introduction to complexity theory or to randomized
algorithms; the reader is referred to the excellent text by Motwani and Raghavan [128]
for such an introduction.
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Matrix notation

AT :  transpose of A € R™*";
AT AT
ai; : ijthentryof A€ R™ %,
A~B : A=T7!'BTfor some nonsingular T
= the matrices A and B are similar;
A» B(A» B) : A - Bissymmetric positive semidefinite (positive definite);
A=<B(A<B) : A-Bissymmetric negative semidefinite (negative definite);
R(A) : range (column space) of A € R**";

Special vectors and matrices

I, : 7 x ridentity matrix;
I : identity matrix of size depending on the context;
Omxn © T X m zero matrix;
0, : zero vectorin R™;
0 : zero vector/matrix of size depending on the context;
en - vector of all-ones in R™;
e : vector of all-ones of size depending on the context;

Sets of matrices and vectors

R™ : n-dimensional real Euclidian vector space;
R’ : positive orthantof R™;
Z" : n-tuples of integers
Z% : n-tuples of nonnegative integers
R™*™ :  space ofreal (n X n) matrices;
S, = {X|XeR™, X=XT},
Sy = {X|XeS, X =0}

S5t = {X| X €S, X >0}
Cn = {A€S, | zTAz >0 Vze€R7}} (Copositive matrices);
N, = {A€8,|ai; >0 Vi,j=1,...,n} (Nonnegative matrices);
svec (S;f) = {z € R D) ‘ smat(z) € S,T} ;

{(-1,1}" = {eeR"|ze{-1,1},i=1,..,n};
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Functions of matrices

Ai(A) ¢ ithlargest eigenvalue of A, if A\;(A) e R Vj;
Amax(4) = max);(4), if \;(4A) e R Vi
Amin(4) = minX;(4), if \;(4) e R Vi
Tr(4) = Y au=» X(A) (raceof A€ R™");
(A,B) = Tr (ABT);
det(A) : determinant of A € R**" = H Ai(A);
I4|? = Tr(Aa4T) = Z Z a?; (Frobenius norm)
L
= Y M(A)if A€ Sy
IAlz = (Amax(ATA))? (spectral norm)
= Amax{4)ifA >0
p(A) = max|);(A4)| (spectral radius of A);
Amax{A4) . .
A) = UG (A
k(A) )\min(A)l (A) >0Vi
= condition number of A if A > 0;
A . unique symmetric square root factor of A > 0;
Diag (z) n X n diagonal matrix with components of z € R™ on diagonal;
diag (X) n-vector obtained by extracting diagonal of X € R™*";
Vec(A) = [ally a21, - .- Qn1, A12, a22)"-7a‘n.n]T for A eRan;
SVEC(A) = [an, \/Ealz, . \/Ealna a22, \/§a23, ceay ann]T for A S Sn,
smat : inverse operator of svec;
Set notation
ri{C) : relative interior of a convex set C;
dim(£) : dimension of a subspace L;
C* : Dual cone ofa cone C ¢ R"

= {xER"|xTyZOVyEC};
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SDP problems in standard form

(P) primal problem in standard from;

(D) : Lagrangian dual problem of (P);
P : feasible set of problem (P);
D : feasible set of problem (D);

P optimal set of problem (P),

D* optimal set of problem (D};

(Pyy) ELSD dual of (D);
(Deor) - Lagrangian dual of (P,y);

L = span{Ai,...,An};

Interior point analysis

log(t) natural logarithm of ¢ > 0;
P{t) = t—log(l+t) t>—1;
1
X)) = ;Tr(CX)—logdetX;
1
H(Sy) = ;bTy + log det(S);
XS XS
;d(X,S) = Tr (—) — log det (—) —mn;
H H
1 1 1 -3 2
D = [XE (XESXE) ZX%J where (X, S) € 1i (P x D)
= Nesterov-Todd scaling matrix;
14 D~:XD"% = D:SD¥;
1 1
5(X,S,pn) = —H M —VH;
2 Z Vi
Dx = D iAXD™%i (AX efll);
Ds D*ASD? (AS € L):;
¥(X,5) = -—logdet(XS)+nlogTr(XS)— nlogn (Centrality function);
®(X,S) = (n+vvn)logTr(XS)—logdet(XS)—nlogn
= Tanabe-Todd-Ye potential function;
Graph theory
G=WVE simple undirected graph with vertex set V and edge set E;

a(G) stability number of G;
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x(G)
w(G)
G

Notation for asymptotic analysis

chromatic number of G;

clique number of G;

complementary graph (complement) of G;
Lovasz Y-function of G;

Shannon capacity of G;

Let f(n),g(n) : R— R,. We say that

f(n)/g(n)is bounded from above;
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1

INTRODUCTION

Preamble

This monograph deals with algorithms for a subclass of nonlinear, convex optimization
problems, namely semidefinite programs, as well as selected applications of these
problems. To place the topics which are dealt with in perspective, a short survey of
the field of semidefinite programming' is presented in this chapter. Applications in
combinatorial optimization and engineering are reviewed, after which interior point
algorithms for this problem class are surveyed.

1.1 PROBLEM STATEMENT

Semidefinite programming (SDP) is a relatively new field of mathematical program-
ming, and most papers on SDP were written in the 1990’s, although its roots can be
traced back a few decades further (see e.g. Bellman and Fan [19]). A paper on semidef-
inite programming from 1981 is descriptively named Linear Programming with Matrix
Variables (Craven and Mond [37]), and this apt title may be the best way to introduce
the problem.

The goal is to minimize the inner product

(C, X) := Tr (CX),

'Some authors prefer the more descriptive term ‘optimization’ to the historically entrenched ‘program-
ming’.
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of two n x n symmetric matrices, namely a constant matrix C and a variable matrix X,
subject to a set of constraints, where "Tr’ denotes the trace (sum of diagonal elements)
of a matrix.” The first of the constraints are linear:

Tr (A, X)=b;, i=1,...,m,

where the A;’s are given symmetric matrices, and the b;’s given scalars. Up to this
point, the stated problem is merely a linear programming (LP) problem with the en-
tries of X as variables. We now add the convex, nonlinear constraint that X must be
symmetric positive semidefinite’, denoted by X > 0.*

The convexity follows from the convexity of the cone of positive semidefinite matri-
ces. (We recommend that the reader briefly review the properties of positive semidef-
inite matrices in Appendix A.)

The problem under consideration is therefore

(P): p* :=i§1{f{Tr(CX) Tr{A;X)=b(G=1,...,m), X =0},

which has an associated Lagrangian dual problem:

T
(D): d*:=sup¢bTy : > yA;+8=C, S=0, ycR™
.5 i=1

The duality theory of SDP is weaker than that of LP. One still has the familiar weak
duality property: Feasible X, y, S satisfy

T T
Tr(CX)-bTy="Tr | [ S+ %A | X | =D %Tr(A:X)="Tr(SX) >0,
i=1 =1

where the inequality follows from X > 0 and S > 0 (see Theorem A.2 in Appendix
A). In other words, the duality gap is nonnegative for feasible solutions.
Solutions (X, y,S) with zero duality gap

Tr(CX) - bTy=Tr(SX)=0

are optimal. For LP, if either the primal or the dual problem has an optimal solution,
then both have optimal solutions, and the duality gap at optimality is zero. This is the

This inner product corresponds to the familiar Euclidean inner product of two vectors — if the columns
of the two matrices C and X are stacked to form vectors vec(X) and vec(C), then vec(C’)Tvec(X ) =
Tr (CX). The inner product induces the so-called Frobenius norm:

2
IA]? = (A, 4) = Tr (A4T) = 3" 43,
i

See Appendix A for more details.

3By definition, a symmetric matrix X is positive semidefinite if zX' Xz > 0 Vz € R™, orequivalently,if
all eigenvalues of X are nonnegative.

“The symbol ‘>’ denotes the so-called Léwner partial order on the symmetric matrices: A > B means
A — B is positive semidefinite; see also Appendix A.
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strong duality property. The SDP case is more subtle: One problem may be solvable
and its dual infeasible, or the duality gap may be positive at optimality, etc. The
existence of primal and dual optimal solutions is guaranteed if both (P) and (D) allow
positive definite solutions, ie. feasible X » 0 and § > 0. This is called the Slater
constraint qualification (or Slater regularity condition). These duality issues will be
discussed in detail in Chapter 2.

1.2 THE IMPORTANCE OF SEMIDEFINITE PROGRAMMING

SDP problems are of interest for a number of reasons, including:

m SDP contains important classes of problems as special cases, such as linear and
quadratic programming (LP and QP);

m important applications exist in combinatorial optimization, approximation theory,
system and control theory, and mechanical and electrical engineering;

m Loosely speaking, SDP problems can be solved to e-optimality in polynomial time
by interior point algorithms (see Section 1.9 for a more precise discussion of the
computational complexity of SDP); interior point algorithms for SDP have been
studied intensively in the 1990’s, explaining the resurgence in research interest in
SDP.

Each of these considerations will be discussed briefly in the remainder of this chapter.

13 SPECIAL CASES OF SEMIDEFINITE PROGRAMMING

If the matrix X is restricted to be diagonal, then the requirement X > 0 reduces to
the requirement that the diagonal elements of X must be nonnegative. In other words,
we have an LP problem. Optimization problems with convex quadratic constraints
are likewise special cases of SDP.” This follows from the well-known Schur comple-
ment theorem (Theorem A.9 in Appendix A). Thus we can represent the quadratic
constraint

(Az +b)T (Az +b) — (cTz+d) <0, zeR",

by the semidefmite constraint

I Az +b
(Az + )T Tz +d

In the same way, we can represent the second order cone (or ‘ice cream cone’):

5This includes the well-known convex quadratic programming (QP) problem.
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by requiring that a suitable arrow matrix be positive semidefinite:

tl

zT ¢t

Another nonlinear example is

min {(CT:"')Q

T dTz

Asz},

where it is known that Tz > 0 if Az > b. An equivalent SDP problem is:5

Tz 0

min ¢ t Tz d¥z 0 =0
0 0 Diag(Az—b)

Several problems involving matrix norm or eigenvalue minimization may be stated as
SDP’s. A list of such problems may be found in Vandenberghe and Boyd [181]. A
simple example is the classical problem of finding the largest eigenvalue A,ax(A) of
a symmetric matrix A. The key observation here is that ¢ > Anax(A) if and only if
tI — A > 0. The SDP problem therefore becomes

mtin{tItI—AEO, teR}.

An SDP algorithm for this problem is described by Jansen et al. [88, 90].

1.4 APPLICATIONS IN COMBINATORIAL OPTIMIZATION

In this section we give a short review of some of the most important and successful
applications of SDP in combinatorial optimization.

The Lovdsz 9-function

The most celebrated example of application of SDP to combinatorial optimization is
probably the Lovédsz J-function [115].
The Lovész ¥-function maps a graph G = (V, E) to R, in such a way that
w(G) < 9(G) < x(G), (1.1)

where w(G) denotes the clique number’ of G, x(G) the chromatic number® of G, and
G the complement of G.”

SWe use the following notation: for a matrix X, diag (X) is the vector obtained by extracting the diagonal
of X; for a vector z, Diag () is the diagonal matrix with the coordinates of x as diagonal elements.
7 A maximum clique (or completely connected subgraph) is a subset C C V with Vi,5 € C(i # j)
i,7) € E, such that \C\ is as large as possible. The cardinality |C)| is called the clique number.

he chromatic number is the number of colours needed to colour all vertices so that no two adjacent
vertices share the same colour.
The complementary graph (or complement) of G = (V, E) is the graph G = (V, E) such that for each
pair of vertices 7 # j one has (4, ) € Eifand only if (4, j) ¢ E.
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The ¥-function value is given as the optimal value of the following SDP problem:

9 (G) == max Tr (ee” X) = e Xe,
X
where e € RV denotes the vector of all-ones, subject to

(4,7) ¢ E (i # 7)

I

.’L',;]' O,
Tr(X) = 1
X = 0.

The relation (1.1) is aptly known as the ‘sandwich theorem’ (a name coined by Knuth
[103]). The sandwich theorem implies that ¢(G) can be seen as a polynomial time
approximation to both w(G) and x(G), and that the approximation cannot be off by
more than a factor |V|. This may seem like a rather weak approximation guarantee,
but some recent in-approximability results suggest that neither w(G) nor x(G) can be
approximated within a factor |V|'~¢ for any € > 0 in polynomial time (see Héstad
[81] and Feige and Kilian [57]).

We will review some of the properties of the ¥-function in Chapter 10, and will
give a proof of the sandwich theorem there; moreover, we will look at some alternative
definitions of this function. We will also review how the ¥-function may be used to
estimate the Shannon capacityw of a graph.

The MAX—CUT problem and extensions

Another celebrated application of SDP to combinatorial optimization is the MAX-
CUT problem. Consider a clique G = (V, E) where each edge (¢,j) has a given
weight wi; > 0 (2 # 7).

The goal is to colour all the vertices of G using two colours (say red and blue), in
such a way that the total weight of edges where the endpoints have different colours
(called non—defect edges) is as large as possible. The non—defect edges define a ‘cut’
in the graph — if one ‘cuts’ all the non—defect edges, then the blue and red vertices are
separated. The total weight of the non—defect edges is therefore also called the weight
of the cut.

Goemans and Williamson [66] derived a randomized 0.878-approximation algo-
rithm'! for this problem using SDP. The first step was to write the MAX-CUT prob-
lem as a Boolean quadratic optimization problem, i.e. an optimization problem with
quadratic objective function and Boolean variables. For each vertex in V we introduce

"The Shannon capacity is a graph theoretical property that arises naturally in applications in coding theory;
see Chapter 10 for details.

Yconsider any class of N P-complete maximization problems. An a-approximation algorithm (0 < a <
1) for this problem class is then defined as follows. For any problem instance from this class, the algorithm
terminates in time bounded by a polynomial in the size of the instance, and produces a feasible solution
with objective value at least a times the optimal value for the instance.
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a {—1,1} variable:

1 if vertex ¢ is coloured red ]
T; = ) 2_—“‘1,...,|V|.
—1 if vertex 7 is coloured blue

Note that, for a given edge (i, j) € E we have

1 if (4,7) is defect
T;T; =
—1 if (4,7) is non—defect.

The weight of the maximum cut is therefore given by

1 TLz, (12

1
OPT := - § o (1 — 274 — -
= maXx Wij ( 1,'11,']) = ze{mfaj(}{ | 41'

ze{-11}VI | 2 4

where L is the matrix
L = —W + Diag(We),

where W is the matrix with zero diagonal and the nonnegative edge weights as off-
diagonal entries, and e the all-ones vector. If all weights are zero or one, then L is
simply the Laplacian of the graph.12 Note that L is a diagonally dominant matrix, and
is therefore positive semidefmite (see Appendix A).

We can relax problem (1.2) to an SDP problem by noting four things:

l. zTLz =Tr (LzzT), by the properties of the trace operator (see Appendix A);
2. the matrix X := zz7 is positive semidefinite;

3. the ith diagonal element of X := zz7T is givenby zZ = 1;

4. the matrix X := zz7 has rank one.

If we drop the last (rank one) requirement, we arrive at the SDP relaxation
— 1
OPT < OPT := m}a{ix{ZTr(LX) | diag (X) = e, XtO}. (1.3)

Goemans and Williamson [66] devised a randomized rounding scheme that uses the
optimal solution of (1.3) to generate cuts in the graph. Their algorithm produces a cut
of weight at least 0.8780PT > 0.8780PT.

This seminal result has been extended to MAX-k-CUT (where we allow k colours
instead of two) by Frieze and Jerrum [59], and their results were further refined by
De Klerk et al. [42]. We will review all these results in Chapter 11. A variation on

Recall that if A is the adjacency matrix of G, and d € RIV1 is the vector with degrees of the vertices as
components, then the Laplacian matrix is givenby L = Diag(d) — A.
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the MAX-CUT problem is MAX-BISECTION where the cat must partition the vertex
set into two sets of equal cardinality. A 0.65-approximation algorithm was given for
MAX-BISECTION by Frieze and Jerrum [59] and this approximation guarantee was
improved by Ye [190] to 0.699. Another related problem is the approximate graph
colouring problem. The goal is to give a legal colouring'® of a k-colourable!® graph
in polynomial time, using as few colours as possible. An SDP-based approximation
algorithm for this problem is given by Karger ez al. [98]. We will derive their approx-
imation results in Chapter 11, Section 11.8.

The (maximum) satisfiability problem

An instance of the maximum satisfiability (MAX-SAT) problem is defined by a collec-
tion of Boolean clauses {Cy,..., Cy}, where each clause is a disjunction of literals
drawn from a set of variables {p,,...,p,}. A literal is either a variable p; or its
negation —p; for some i. An example of a three literal clause (or 3-clause) is

Ci :=p1 Vpz V 3,

where ‘V’ denotes the logical OR operator. This clause evaluates to TRUE if p, is
true, p,is TRUE, or psis false. Each clause has an associated nonnegative weight,
and an optimal solution to a MAX-SAT instance is an assignment of truth values to
the variables which maximizes the total weight of the satisfied clauses, MAX-k-SAT
is a special case of MAX-SAT where each clause contains at most k literals. The
satisfiability (SAT) problem is the special case where we only wish to know if all the
clauses can be satisfied simultaneously.

Goemans and Williamson [66] showed that the MAX-2-SAT problem — like the
MAX-CUT problem — allows a 0.878-approximation algorithm. Feige and Goemans
[56] have shown that the addition of valid inequalities (so-called triangle inequalities)
improves the approximation guarantee of the SDP relaxation from 0.878 to 0.931.

Karloff and Zwick [99] extended the analysis to MAX-3-SAT and proved a 7/8-
approximation guarantee (for satisfiable instances). This bound is tight in view of a
recent in-approximability result by Hastad [80]. Zwick [194], and Halperin and Zwick
[79] have continued this line of research, and have given approximation guarantees for
MAX-4-SAT and other related problems.

For the SAT problem, De Klerk ef al. [50] have investigated a simple SDP relax-
ation and showed that it can be used to detect unsatisfiability of several polynomially
solvable subclasses of SAT problems. Most of these results on SAT and MAX-SAT
are derived in Chapter 13.

Approximating the stable set polytope

For a graph G = (V,E), a subset V! C V is called a stable set (or co-clique or
independent set) of G if the induced subgraph on V' contains no edges. The cardi-
nality of the largest stable set is called the stability number (or co-clique number or

135 legal colouring is a colouring of the vertices so that there are no defect edges.
4We call a graph G «-colourable if x(G) < k.
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independence number) of G. The incidence vector zvy+ of a stable set V is defined as

1 ifieV’
(IV')i = .
0 otherwise.

The stable set polytope STAB(G) of G is defined as the convex hull of the incidence
vectors of all stable sets.

Sherali and Adams [164] first showed how to describe the stable set polytope as the
projection of a polytope in a higher dimension. Lovasz and Schrijver [116] presented
a similar idea and also gave a description of STAB(G) using SDP. These methods are
called lift-and-project methods. Anjos and Wolkowicz [11] and Laserre [111, 110]
have introduced other lift-and-project schemes, and Laurent [113, 112] has recently
investigated the relationships between all these approaches.

In Chapter 12 we will give a somewhat unusual perspective on lift-and-project
methods. We will show how the stability number of a graph can be computed by
solving a suitably large LP or SDP problem, following the methodology by De Klerk
and Pasechnik [41].

Other combinatorial applications

SDP relaxations have also been employed for the traveling salesman problem (Cvetko-
vié et al. [38]), quadratic assignment problem (Zhao et al, [193]), machine scheduling
(Yang et al. [186]), and other problems. A recent survey was done by Goemans and
Rendl [64].

1.5 APPLICATIONS IN APPROXIMATION THEORY
Non-convex quadratic optimization

The randomized MAX-CUT algorithm by Goemans and Williamson [66] has been
extended to general Boolean quadratic optimization, as well as to some related prob-
lems. Recall from (1.2) that the weight of a maximum cut in a graph can be obtained
by solving a problem of the form

¢™** = max {z7Qz | z; € {-1,1} (Vi)}, (1.4)

where Q corresponds to the ‘weighted Laplacian’ of a graph. In the same way as for
MAX-CUT we can derive the SDP relaxation for general symmetric matrices Q, to
obtain

¢ = max{Tr (QX) | diag (X) =e, X = 0}. (1.5)
The results by Goemans and Williamson [66] show that 0.878¢ < ¢™** < g if Q
corresponds to the ‘weighted Laplacian’ of a graph with nonnegative edge weights.
Nesterov [136] proved that %rj < g™* if Q > 0, and for general symmetric Q proved

that
(7-9),

where (¢™™, ¢™*) is the range of feasible objective values in(1.4), and (g,q) is
the range of feasible values in the relaxation problem (1.5). As for the MAX-CUT

4—7

q_gzqmax_qmin Z
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problem, one can use an optimal solution of (1.5) to generate a feasible solution, say
z, of (1.4) via a randomized rounding scheme. The expected objective value of z, say
E(z), satisfies

M =T _ 1< il_

qmax — qun 2 7
The same bounds were obtained by Ye [189] for the ‘box-constrained’ problem where
z; € {—1,1} is replaced by —1 < z; < 1 in problem (1.4), as well as for problems
with simple quadratic constraints of the form: Y- | a;z? = b. For a more detailed
review of all these results and some further extensions, see Nesterov et al. [139].

Bomze and De Klerk [27] have considered SDP relaxations of the so-called stan-

dard quadratic optimization problem:

min z7 Qz,
TEA

where A is the standard simplex inRR™, namely

A = {1; ZziZI, IiZO(izl,...,n)}.
1=1

The authors showed that this problem allows a polynomial time e-approximation for
each ¢ > (0. This improves an earlier result by Nesterov [134] who showed that a
2/3-approximation is always possible. These results are reviewed in Section 12.7.

Quadratic least squares and logarithmic Chebychev approximation

Den Hertog et al. [51] showed that the quadratic least squares approximation of a
multivariate convex function in a finite number of points is not necessarily a con-
vex quadratic approximation. The best convex quadratic approximation (in the least
squares sense) can be found using SDP. This is discussed in detail in Chapter 9.
Another class of approximation problems that can be modeled as SDP are logarith-
mic Chebychev approximation problems. Given vectors ay,...,ap € R* and b € R?,
the problem is defined by
min max ilog al'r —log bi| . (1.6)

z i=1,..,p

By observing that

Ty b
|logaf z — log b;| = log (ma.x { a;).z, T }) )

we see that problem (1.6) is equivalent to

. 1 _afz .

min¢t | - < <t 1=1,...,p;,
t b;

which in turn is equivalent to
T
a;
t— 0 O
min { ¢ 0 ﬁ;f_z 1|=0, i=1,...,p
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The resulting problem is an SDP problem of dimension n = 3p, m = k + 1; for more
details, see Vandenberghe and Boyd [181].

Nonnegative polynomials

It is well known that a univariate homogeneous polynomial is nonnegative on R if and
only it can be written as a sum of squares. The same is not true in the multivariate
case. SDP can be used to decide whether a given homogeneous polynomial has a sum
of squares decomposition.

If a multivariate homogeneous polynomial p(z) is positive on R™, then

p(z) (Z z?) (.7
i=1

can be written as a sum of squares for r sufficiently large, even if p(z) cannot. This
is a celebrated theorem by Polya [146], and related to the famous 17 problem by
Hilbert."

For a given value of r we can therefore use SDP to decide if the polynomial in
(1.7) can be written as a sum of squares. As an application one can give sufficient
conditions for copositivity of a matrix. A symmetric matrix A is called copositive if

zTAz >0 Vze R%,

or, equivalently
pa(z) = Zaijz?z? >0 VzeR™
)

One can therefore give a sufficient condition for copositivity by deciding if the homo-
geneous polynomial p4(z) (E?Zl z?)r has a sum of squares decomposition for some
givenr > 1.

The procedure for finding a sum of squares decomposition is explained on page
193 of this monograph, based on the work by Parillo [141].

16 ENGINEERING APPLICATIONS

One of the richest fields of application of SDP is currently system and control theory,
where SDP has become an established tool. The standard reference for these problems
is Boyd ef al. [31]; a more recent survey was done by Balakrishnan and Wang [13].
Introductory examples are given by Vandenberghe and Boyd [181] and Olkin [140];
the latter reference deals with a problem in active noise control: The noise level inside
a dome is reduced by emitting sound waves at the same frequency but with a suitable
phase shift. The underlying control problem involves optimization over the second
order cone, which was shown in Section 1.3 to be a special case of SDP.

Other engineering applications of SDP include VLSI transistor sizing and pattern
recognition using ellipsoids (see Vandenberghe and Boyd [181]).

BFrora history of Hilbert’s 17th problem, see Reznick [159],
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An application which receives less attention is structural design, where the best
known SDP problem involves optimal truss'® design. Two variants are:

1. minimize the weight of the structure such that its fundamental frequency17 remains
above a critical value;

2. minimize the worst-case compliance (‘stored energy’) of the truss given a set of
forces which the structure has to withstand.

For a recent review, see Ben-Tal and Nemirovski [21].

An important consideration in optimal design is that of robustness, i.e. one should
often allow for uncertainty in the data of the optimization problem and compute the
best worst-case scenario. A survey of robust optimization problems that can be for-
mulated as SDP’s is given by Ben-Tal et al. in [20].

1.7 INTERIOR POINT METHODS

Bearing the links between LP and SDP in mind, it may come as little surprise that
interior point algorithms for LP have been successfully extended to SDP.

The field of interior point methods for LP more or less started with the ellipsoid
algorithm of Khachiyan [101] in 1979, that allowed a polynomial bound on the worst-
case iteration count. This resolved the question whether linear programming problems
are solvable in polynomial time, but practical experiences with the ellipsoid method
were disappointing. The next major development was the famous paper by Karmarkar
[100] in 1984, who introduced an algorithm with an improved complexity bound that
was also accompanied by claims of computational efficiency. In the following decade
several thousand papers appeared on this topic. A major survey of interior point meth-
ods for LP was done by Gonzaga [70] (up to 1992). Several new books on the subject
have appeared recently, including Roos et al. [161], Wright [184] and Ye [188]. It
has taken nearly ten years to substantiate the claims of the computational efficiency
of interior point methods; several studies have now indicated that these methods have
superior performance to state-of-the-art Simplex algorithms on large scale problems
(see e.g. Lustig et al. [119] and more recently Andersen and Andersen [9]).

The first extension of interior point algorithms from LP to SDP was by Nesterov
and Nemirovski [137], and independently by Alizadeh [3] in 1991. This explains
the resurgence of research interest in SDP in the 1990’s. Nesterov and Nemirovski
actually considered convex optimization problems in the generic conicformulation:

inf {c"z |z e (L+b)NC}, (1.8)

where £ denotes a linear subspace of R™, b,¢c € R", and C is a closed and pointed18
convex cone with nonempty interior. The associated dual problem is

sup {7y |y € (LT +c)nC*},
v

' truss is a structure of bars which connect a fixed ground structure of nodes. (A famous example is the
Eiffel tower!)

17Frequency at which the structure resonates.

'8A cone is called pointed if it contains no lines.
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where £+ is the orthogonal complement of £in R™,and C*is the dual cone of C:
C*:={z|(z,y) >0VyeC}.

Note that the nonlinearity in the problem is ‘banished’ to a convex cone. In the SDP
case this cone of semidefinite matrices

SFi={X|X €S8, X =0},

where S,, denotes the space of symmetric n x n matrices. Nesterov and Nemirovski
showed that such conic optimization problems can be solved by sequential minimiza-
tion techniques, where the conic constraint is discarded and a barrier term is added to
the objective. Suitable barriers are called self-concordant. These are smooth convex
functions with second derivatives which are Lipschitz continuous with respect to a
local metric (the metric induced by the Hessian of the function itself).

Self-concordant barriers go to infinity as the boundary of the cone is approached,
and can be minimized efficiently by Newton’s method.”” Each convex cone C pos-
sesses a self-concordant barrier, although such barriers are only computable for some
special cones. The function f(z) = — 3.7, log(z;) is such a barrier for the pos-
itive orthant of R™, and is instrumental in designing interior point methods for LP.
Likewise, the function

foar (X) = —log det(X)

is a self-concordant barrier for the cone of semidefinite matrices (see Nesterov and
Nerovski [137]). Using this barrier, several classes of algorithms may be formulated
which have polynomial worst-case iteration bounds for the computation of e-optimal
solutions, i.e. feasible (X*85%) with duality gap Tr (X*S*) < ¢, where ¢ > Oisa
given tolerance; see Section 1.9 for a more precise statement of the complexity results.

LOGARITHMIC BARRIER METHODS

Primal methods Primal log-barrier methods use the projected Newton method
to solve a sequence of problems of the form

n}}n{Tr(CX)—ulogdet(X) | Tr (A:X)=b;(i=1,...,m)},

where the parameter y is sequentially decreased to zero. Such algorithms were anal-
ysed by Faybusovich in [54, 55] and later by other authors in He ef al. [82] and Anstre-
icher and Fampa [12]. Note that the condition X > 0 has been replaced by adding a
‘barrier term’ to the objective.” The condition X » 0is maintained by controlling the
Newton process carefully — large decreases of u necessitate damped Newton steps,
while small updates allow full Newton steps.

These results will be reviewed in Chapter 5.

%The definition of self-concordant barriers will not be used here and is omitted; for an excellent introduc-
tory text dealing with self-concordance, see Renegar [158].

This idea actually dates back to the 1960’s and the work of Fiacco and McCormick [58]; the implications
for complexity theory only became clear two decades later, when Gill et al. [63] showed that the method of
Karmarkar could be interpreted as a logarithmic barrier method.
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Dual methods Dual logarithmic barrier methods are analogous to primal ones,
and one solves a sequence of problems

m

. T —

r;usn {b y— plogdet S ;ylAl +8 C} ,
where the parameter y is again sequentially decreased to zero.

There has been a resurgence in interest in these methods recently. The reason is that
one can exploit the sparsity structure of problems like the MAX-CUT relaxation (1.3)
more efficiently than with other interior point methods. Benson ef al. [23, 22] and
Choi and Ye [34] have implemented the dual method and report results for the MAX-
CUT relaxation (1.3) of sparse graphs with up to 14000 vertices. These developments
are reviewed in Chapter 5, Section 5.10.

Primal—dual methods Following the trend in LP, so-called primal-dual meth-
ods for SDP have received a great deal of attention. These methods minimize the
duality gap

Tr (CX) — b7y = Tr (X 9),

and employ the combined primal-dual barrier function
— (logdet(X) + logdet(S)) = — logdet(X S).

This means that a sequence of problems of the following form are solved

X,y,5

min {’I‘I‘(XS)—/_LIOgdet(XS) : ’I‘I‘(AIX):I), V’l, Zy1A1+S:C .

i=1

(1.9
The minimizers of problem (1.9) satisfy
’I‘I‘(A,X) = b,‘, i:1,...,m
71 A +S = C
Zl-l Y (1 10)
XS = ul
X, » 0

These equations can be viewed as a perturbation of the optimality conditions of (P)
and (D), where p = 0. System (1.10) has a unique solution under the assumptions that
the A;’s (i = 1,...,m)are linearly independent, and that there exist positive definite
feasible solutions of (P) and (D). This solution will be denoted by X (12), S{1), y(),
and can be interpreted as the parametric representation of a smooth curve (the central
path) in terms of the parameter u. The properties of the central path are reviewed in
detail in Chapter 3.

Logarithmic-barrier methods are also called path-following methods, due to the
relation between the central path and the log-barrier function.
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Primal-dual log-barrier methods solve the system (1.10) approximately, followed
by a reduction in y. Ideally, the goal is to obtain primal and dual directions AX and
AS, tespectively, that satisfy X + AX > 0, S+ AS > 0as well as

Tr(A4;AX) = 0, i=1,...,m
Y AyA+AS = 0 (L11)
(X +AX)S+AS) = ul
AX = AXT.

The third equation in (1.11) is nonlinear, and the system is overdetermined.

Perhaps the most straightforward solution approach is to linearize the system (1.11)
and subsequently find a least squares solution of the resulting overdetermined linear
system (the Gauss—Newton method). This approach was explored by Kruk ez al. [109],
and a variation thereof by De Klerk ef al. [43].

Another approach was taken by Zhang [192], who suggested to replace the nonlin-
ear equation in (1.11) by

Hp (AXS+ XAS) =ul — Hp(XS), (1.12)
where H p is the linear transformation given by

1
Hp(M) =7 [PMP™" + P~ TMTPT],

for any matrix M, and where the scaling matrix P determines the symmetrization
strategy. Some popular choices for P are listed in Table 1.1. If one replaces the

[ £ I Reference
Cfotevinhuilt
[Y 3 (x 15y :z) X a] s Nestesov and Todd [138%
X% Monteiro {124], Kojima ef al. {108k
5% Monteiro {124], Helmberg et af. [84}, Kojima e o, {108);
I i Alizadeh, Hasherley and Ovedon {81

Table 1.1.  Choices for the scaling matrix P.

nonlinear equation in (1.11) by (1.12), and drops the requirement AX = AX7, then
we obtain a square linear system. Moreover, if this system has a solution, then AX
is necessarily symmetric. The proof of the existence and uniqueness of each of the
resulting search directions from Table 1.1 was done by Shidah ef al. in [1651.2

YFor P = [ existence and uniqueness is not always guaranteed; a sufficient conditionis X $ + SX > 0.
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—1 B
The conspicuous entry P = |:X% (X%SX%) ’ X%] in Table .1 warrants

some comment. Nesterov and Todd [138] showed® that for each pair X >~ 0,5 -0
there exists a matrix D such that

V2 foar(D)X = 8.

It is shown in Appendix C that the Hessian V2 fy,,(D) is the linear operator which
satisfies
V2 foar(D): X = D' XD

It follows that X = DSD, from which it easily follows that D = PZ2. In this way we
obtain the symmetric primal-dual scaling P"*XP~! = PSP.

The list of primal—dual search directions given here is by no means complete; for a
more detailed survey, see Todd [172].

Algorithms differ in how g is updated, and how the symmetrized equations are
solved. Methods that use large reductions of u followed by several damped Newton
steps are called long step (or large update) methods. These are analysed in Jiang [96],
Monteiro [124], and Sturm and Zhang [169].

Methods that use dynamic updates of u include the popular predictor-corrector
methods. References include [6, 107, 148, 170]. Superlinear convergence properties
of predictor-corrector schemes are studied in [148, 105, L17].

There have been several implementations of predictor—corrector algorithms for
SDP, including SeDuMi by Sturm [167] and SDPT3 by Toh el al. [175].

We will review some primal—dual path—following methods that use the direction
due to Nesterov and Todd [138] in Chapter 7.

AFFINE-SCALING METHODS

Affine—scaling algorithms for LP have been of interest since it became clear that Kar-
markar’s algorithm was closely related to the primal affine—scaling method of Dikin
[53] (from 1967!). In fact, modifications of Karmarkar’s algorithm by Vanderbei ef al.
[182] and Barnes [15] proved to be a rediscovery of the primal affine—scaling method.

The primal affine—scaling direction for SDP minimizes the primal objective over
an ellipsoid that is inscribed in the primal feasible region. Surprisingly, Muramatsu
[130] has shown that an SDP algorithm using this search direction may converge to a
non-optimal point, regardless of which step length is used. This is in sharp contrast to
the LP case, and shows that extension of algorithms from LP to SDP cannot always be
taken for granted.

Two primal-dual variants of the affine—scaling methods were extended by De Klerk
et al. in [48] from LP to SDP. These algorithms minimize the duality gap over el-
lipsoids in the scaled primal-dual space, where the matrix P = D7 is used for the
scaling. One of the two methods is the primal-dual affine—scaling method, where the

22This result was actually proved in the more general setting of conic optimization problems where the cone
Cin (1.8) is self-dual, i.e. C = C* The interested reader is referred to Nesterov and Todd [138].
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search direction is obtained by using x = 0 in(1.12). The primal-dual affine—scaling
method can fail if the scaling P = I from Table 1.1 is used (instead of P = D%).
This was recently proved by Muramatsu and Vanderbei [131]. We review these results
in Chapter 6.

PRIMAL-DUAL POTENTIAL REDUCTION METHODS

These algorithms are based on the so-called Tanabe—Todd—TYe potential function
®(X,S) = (n+ vy/n)log (Tr(XS)) — log (det(XS)) — nlogn,

where v > 1. In order to obtain a polynomial complexity bound it is sufficient to
show that & can be reduced by a constant at each iteration. A survey of algorithms
which achieve such a reduction is given by Vandenberghe and Boyd [181]. We will
review this methodology in Chapter 8, and give the analysis of a potential reduction
method due to Nesterov and Todd [138]. An implementation of this method was done
by Vandenberghe and Boyd [179] (the SP software package).

INFEASIBLE—START METHODS

Algorithms that do not require a feasible starting point are usually called infeasible—
start methods. Traditional big-M initialization strategies are reviewed in Vanden-
berghe and Boyd [181]; other references for infeasible-start methods include [105,
117, 148].

An elegant way of avoiding big-M parameters is to embed the SDP problem in a
larger problem that is essentially its own dual, and for which a feasible starting point
is known. A solution of this self-dual embedding problem then gives information
about the solution of the original problem. The idea of self-dual embeddings for LP
dates back to the 1950’s and the work of Goldman and Tucker [69]. With the arrival of
interior point methods for LP, the embedding idea was revived to be used in infeasible—
start algorithms by Ye er al. [191].

The idea of embedding the SDP problem in an extended self-dual problem with a
known starting point on the central path was investigated for SDP by De Klerk et al.
[44] and independently by Luo ef al. [118], as extensions of the work by Potra and
Sheng [148], who used so-called homogeneous embeddings.

The embedding approach will be described in detail in Chapter 4.

1.8 OTHER ALGORITHMS FOR SDP

Although the mathematical analysis of interior point methods for LP and SDP is quite
similar, the implementational issues are different. In particular, in the LP case one
can exploit sparsity in the data very efficiently, and sparse problems with hundreds
of thousands of variables and constraints can be solved routinely using primal—dual
predictor—corrector methods. In the SDP case this is much more difficult, and the
largest problems that can be solved by primal—dual predictor—corrector methods in-
volve matrices of size of the order of a thousand rows, and a thousand constraints
(even if the data matrices are very sparse). For a detailed discussion on this issue, see
Fujisawa e al. [60].
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For this reason there has been interest in methods that do not require computation
of the Hessian (or even the gradient) of the barrier function fu,,(X) = log det(X).

m Bundle methods (zero—order methods) for eigenvalue optimization and related
problems are surveyed by Helmberg and Oustry [83];

m First order methods (that use only gradient information) have been implemented
by Burer and Monteiro [32] for the MAX-CUT relaxation (1.3). These methods
are used to solve a (nonconvex) nonlinear programming reformulation of the SDP
problem. The drawback with the nonconvex formulation is that one cannot guar-
antee convergence to an optimal solution.

19 THE COMPLEXITY OF SDP

In this section we review known results on the computational complexity of SDP,
based on the review by Ramana and Pardalos [156].
We first consider the bit (Turing machine) model of computation.2
Consider an SDP instance in the standard primal form (P) (see page 2) with integer
data and feasible solution set P, and let arational € > 0 be given.

3

m If an integer R > 0 is known a priori such that either P = @ or || X|| < R for
some X € P, then one can find an X* at distance at most e from P, such that
I'Tr (CX*) — p*| < ¢, or a certificate that 77 does not contain a ball of radius e.
The complexity of the procedure is polynomial in n, m, log(R), log (%), and the
bit length of the input data. This result follows from the complexity of the ellipsoid
algorithm of Khachiyan [101] (see also Groétschel et al. [73]);

m If a rational X € P is given such that X > 0, and an integer R > 0 is known a
priori such that || X|| < Rforall X € P, then one can compute a rational X* € P
such that Tr (CX*) — p* < e using interior point methods. The complexity of
this procedure is polynomial in n, m, log(R), log (%), the bit length of the input
data, and the bit length of X (Nesterov and Nemirovski [137]).24
We can also ask what the complexity is of obtaining an exact optimal solution (as

opposed to an e-optimal solution). Consider the SDP instance

maxy
subject to
2
y = 0
y 1

gee e.g. Garey and Johnson [61] for a discussion of the bit model of computation.

24A5 mentioned by Ramana and Pardalos [156], a polynomial bound has not been established for the bit
lengths of the intermediate numbers occurring in the interior point algorithms. Strictly speaking, this should
be done when deriving complexity results in the bit model of computation.
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Note that the data is integer, but the unique optimal solution y = /2 is irrational.
It is therefore not meaningful to speak of the complexity of SDP in the bit model of
computation, since the output is not always representable in this model.

However, we can still consider the semidefinite feasibility problem (SDFP):

Does there exist a y € R™ such that

m
C_ZyiAi =07

i=1

(Here the data matrices are integer.) The following is known about the complexity of
SDFP (Ramana [153]):

m In the bit model of computation: Either SDFP € NP N co-NP or SDFP ¢ NP U
co-NP;

m In the real number model of computation of Blum, Shub, and Smale [24]: SDFP
€ NP N co-NP.

In other words, the complexity of SDFP is not known, but it cannot be an NP-complete
problem, unless NP = co-NP. Porkolab and Khachiyan [147] have proven that SDFP
€ P (in the bit model) if either m or n is a fixed constant. The complexity question
for SDFP is recognized as one of the most important open problems in the field of
semidefinite programming.

110 REVIEW LITERATURE AND INTERNET RESOURCES

The presentation in this chapter was loosely based on the short survey by De Klerk et
al. [45]. The seminal work of Nesterov and Nemirovski [137] contains a section on
special cases of SDP problems (§6.4), as well as the development of an entire interior
point methodology. An excellent survey by Vandenberghe and Boyd [181] deals with
basic theory, diverse applications, and potential reduction algorithms (up to 1995).
Three more recent surveys that focus more on applications of SDP in combinatorial
optimization are by Alizadeh [4], Ramana and Pardalos [156] and Goemans [65]. The
paper [4] also deals with interior point methodology, while [156] contains a survey of
geometric properties of the SDP feasible set (so-called spectrahedra), as well as com-
plexity and duality results. Lewis and Overton [114] give a nice historical perspective
on the development of SDP and focus on the relation with eigenvalue optimization.
Most recently, the Handbook of Semidefinite Programming [183] contains an exten-
sive review of both the theory and applications of SDP up to the year 2000.

Christoph Helmberg maintains a web-site for SDP with links to the latest papers
and software at

http : //www.zib.de/helmberg/semidef .html

A web-site with benchmarks of different SDP solvers is maintained by Hans Mittel-
mann at
http : //plato.la.asu.edu/kench.html
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2

DUALITY, OPTIMALITY, AND
DEGENERACY

Preamble

All convex optimization problems can in principle be restated as so—called conic linear
programs (conic LP’s for short); these are problems where the objective function is
linear, and the feasible set is the intersection of an affine space with a convex cone.
For conic LP’s, all nonlinearity is therefore hidden in the definition of the convex cone.
Conic LP’s also have the strong duality property under a constraint qualification: ifthe
affine space intersects the relative interior of the cone, it has a solvable dual with the
same optimal value (if the dual problem is feasible).

A special subclass of conic LP’s is formed if we consider cones which are self-
dual. There are three such cones over the reals: the positive orthant in R"™, the Lorentz
(or ice—cream or second order) cone, and the positive semidefinite cone. These cones
respectively define the conic formulation of linear programming (LP) problems, sec-
ond order cone (SOC) programming problems, and semidefinite programming (SDP)
problems. The self—duality of these cones ensures a perfect symmetry between primal
and dual problems, i.e. the primal and dual problem can be cast in exactly the same
form. As discussed in Chapter 1, LP and SCO problems may be viewed as special
cases of SDP.

Some fundamental theoretical properties of semidefinite programs (SDP’s) will be
reviewed in this chapter. We define the standard form for SDP’s and derive the as-
sociated dual problem. The classical weak and strong duality theorems are proved
to obtain necessary and sufficient optimality conditions for the standard form SDP.

21
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Subsequently we review the concepts of degeneracy and maximal complementarity of
optimal solutions.

21 PROBLEMS IN STANDARD FORM

We say that a problem (P) and its Lagrangian dual (D) are in standard form if they
are in the form

(P): p*:= igx{f{’l‘r(CXHTr(A,-X):b,- (i=1,...,m), XeS'},

and

ZyiAi+S:C, SeS,T,yeR’"}.

=1

(D): d* :=sup {bTy

y,S

We will refer to X and (y,S) as feasible solutions as they satisfy the primal and
dual constraints respectively. The primal and dual feasible sets (i.e. sets of feasible
solutions) will be denoted by P and D respectively:

P:{X|rrr(A1X):bl ('l:l,,TTl.), Xto}v

and

i=1

D= {(y,S)

Similarly, P*and D*will denote the respective optimal sets (i.e. sets of optimal solu-
tions):

P*:={X€P|Tr(CX)=p*} and D* := {(S,y) € D | bTy = d*}.

The values p* and d* will be called the optimal values of (P) and (D), respectively.
We use the convention that p* = —oo if (P) is unbounded and p* = oo if (P) is
infeasible (P = ), with the analogous convention for (D).

A problem (P) (resp. (D)) is called solvable if P* (resp. D*) is nonempty.

It is not hard to see that (D) is indeed the Lagrangian dual of (P). Note that

’o= it sxll{)m{WCX)—_Zyim(A,-X)—b,-)} @
yE i=1

. 4 T
)1{n>f0 sup {Tr ((C— Zy,A,) X) +b y} )
=“yeR i=1

The Lagrangian dual of (P) is obtained by interchanging the ‘sup’ and ‘inf’, to obtain
the problem:

n . T : - - A
(D') - yzli{)m{b y+)1{ntf0{'1‘r((c ;%Al)x)}}. (2.2)

if
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The inner minimization problem in (D’) will be bounded from below if and only if

Tr ((C—Zy,-A,-) X) >0 VX >0,
i=1
i.e. if and only if

m
C - Z y:A4; = 0.
i=1
In this case the inner minimization problem in (D’) has optimal value zero. Problem
(D’) can therefore be rewritten as

sup {bTy
yeR™

Defining S := C — 3", y; A;we obtain problem (D).

C—iyiz‘lito}-

i=1

ASSUMPTIONS

The following assumption will be made throughout this monograph.
Assumption 2.1 The matrices A; (i = 1,...,m)are linearly independent.

Under Assumption 2.1, y is uniquely determined for a given dual feasible S. Assump-
tion 2.1 therefore allows us to use the shorthand notation: y € D or S € D instead
of (y,8) € D. It is essentially the same assumption as the assumption in LP that the
constraint matrix must have full rank. To see this, note that the linear independence of
A; (i=1,...,m)is equivalent to the linear independence of vec(A;) (i = 1,...,m).
The assumption can therefore be made without loss of generality."

Another assumption which will be used when specified is the assumption of strict
feasibility.

Assumption 2.2 (Strict feasibility) There exist X € P and S € D such that X » 0
and S > 0.

Strict feasibility is also called strong feasibility, Slater’s constraint qualification or
Slater’s regularity condition. Assumption 2.2 is sometimes also referred to as the
interior point assumption.

Note that the assumption is consistent with the usual definition of Slater regularity
for convex optimization (Assumption B.1 in Appendix B), if we use the fact that the
(relative) interior of S, is given by the n x n symmetric positive definite matrices.
Note that if Assumption 2.2 holds, then the relative interior of the primal-dual feasible
set is given by (see Theorem B.3 on page 239):

ri(PxD)={(X,5)ePxD|X >0, S>0}.

We will see in the next section that Assumption 2.2 guarantees that P* #£ @, D* # @
and p* = d*. For the time being we do not make this assumption, however.

'Practical algorithms for ensuring full row rank of a matrix are described by Andersen [8].
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ORTHOGONALITY OF FEASIBLE DIRECTIONS

The following orthogonality property for (P} and (D) is easily proven, and will be
used extensively.

Lemma 2.1 (Orthogonality) Ler (X, (y,S)) € P x Dand (X°,(y°,8%) e P xD
be two pairs offeasible solutions. Denoting AX = X — X% and AS = § — 59, one
has: Tr (AXAS) =0.

Proof:
By the definition of AS and D:

AS = (4 — ui)Ai,
=1

" AS € span {Ay,...,An}.
Similarly, by the definition of AX and P one has:
Tr (A,AX) = Tr (4;X) - Tr (A X)) =b;—b; =0, i=1,...,m,
which implies
AX € span {4,,... ,Am}L.

This shows that AS lies in the subspace of S,, spanned by the matrices A; (i =
1,...,m),and AX lies in the orthogonal complement of this subspace. a

y o

Now let
L:=span {A,...,An}. (2.3)
Given a strictly feasible X € ri (P) we call AX a feasible direction at X if AX ¢
£+, Similarly AS is a feasible direction at a strictly feasible S € ri (D) if AS € L.
The idea is that there exists an a > 0 (called the step length) in this case so that
X +aAX € Pand § + aAS € D. For this reason we also refer to X + aA X and
S + aAS as feasible steps.

SYMMETRIC PROBLEM REFORMULATION

It is sometimes useful to reformulate (P) and (D) in in a symmetric conic formulation,
where both problems have exactly the same form. To this end, let M € &, be such
that Tr (A;M) =b; (i =1,...,m)and Tr (CM) = 0. Then (P) has the alternative
formulation

(P): p*"= inf {Tr(CX)| X € L~ + M, X » 0}, (2.4)
and the Lagrangian dual of this problem is the conic reformulation of (D):

(D) : d*zsL;p{Tr(—MS)| SelL+C, S0}, (2.5)
where Lis defined in (2.3).

Note that X € P if and only if X is feasible for (P’). Similarly, one has § € Dif
and only if § is feasible for (D), and b7y = Tr (-M S)if S = C — 3> 1", yiA;.
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22  WEAK AND STRONG DUALITY

The difference between the primal and dual objective values at feasible solutions of
(P) and (D) is called the duality gap.

Definition 2.1 (Duality gap) Let X € P and (y,S) € D. The quantity
Tr (CX)—bTy
is called the duality gap of (P) and (D) at (X,y, S).

By the definitions of (P) and (D) one has for feasible (X, y, S):

Tr (CX) — bTy = Tr ((Zm: yid; + s) X) - Zm: yiTr (A4;X) = Tr (SX) > 0,

where the inequality follows from X > 0 and S > 0 (see Theorem A.8 in Appendix
A). The nonnegativity of the duality gap is called the weak duality property, which we
can state as a theorem.

Theorem 2.1 (Weak duality) Ler X € Pand (y,S) € D. One has
Tr (CX) —bTy =Tr(5X) > 0, (2.6)
i.e. the duality gap is nonnegative at feasible solutions.

Of course, the weak duality relation between (P) and (D) also follows from the fact
that (D) is the Lagrangian dual of (P). Indeed, one can easily prove that for any
function f : S; x Sy — Rwhere S and S;are arbitrary subsets of R™,there holds

inf su z,y) > sup inf f(z,y).

Ieslyegf( y) sup Inf fz,y)
Applying this inequality to (2.1) and (2.2) yields that p* > d*. However, the direct
proof of Theorem 2.1 has the additional advantage that we get the useful expression
(2.6) for the duality gap.

Definition 2.2 (Perfect duality) The problems (P) and (D) are said to be in perfect
duality if p* = d*.

Note that this definition does not imply that P* and D* are nonempty. If D* is also
nonempty, then we say that strong duality holds for (P) and its dual (D).

Example 2.1 (Adapted from Vandenberghe and Boyd [181]) This example shows
a pair of dual problems for which perfect duality holds but P* = {. Consider the
following problem in the standard dual form:

(D): sup yq
y€R2
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subject to
01

11

1 0 0
Y1 + Y2 =
0 0 0

—= O

This problem is not solvable but sup cpy2 = 1. Its dual problem (which is in the
standard primal form) takes the form:

01
(P): minTr X
X
subject to

12 1

00
X*= =0,
01
is the unique optimal solution with optimal value 1. ]

If (P) (resp. (D)) is strictly feasible, and (D) (resp. (P)) is feasible, then perfect
duality holds and D* # @ (resp. D* # 0). The proof of this theorem requires a
fundamental result from convex analysis, namely the separation theorem for convex
sets (Theorem B.4 in Appendix B). This theorem essentially states that two convex
sets in R™ can be separated by a hyperplane if and only if their relative interiors are
disjoint.

Theorem 2.2 (Strong duality) Assume that d* < oo (resp. p* > —oo). Further
assume that (D) (resp. (P)) is strictly feasible. It now holds that P* # @ (resp.
D* # 0)and p* = d*.

Proof:
We will first consider the case where d* < oo and (D) is strictly feasible. The proof
is trivial if b = Osincethen X™* := 0 is optimal for (P). We can therefore assume
b+#0.

Let us define the (nonempty) convex set

m
M:{SES,, S:C—ZyiAi, bTyZd*,yERm}.

=1

The relative interiors of M and S7 are disjoint, by construction. To see this, recall
that the (relative) interior of 8 consists of all symmetric positive definite matrices. If
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there exists a positive definite S € M then d* obviously cannot be the optimal value
of (D).

We can now apply Theorem B.4 by associating &, with Rz 1) i the usual way,
and using that svec (A)Tsvec(B) = Tr (AB) for A, B € S,,. Thus we find that there
exists a (nonzero) A € &, such that

sup Tr(SA) < inf Tr(UA). 2.7
SemM Uess

Since S;} is a cone, the infimum on the right-hand side must be either —oo or zero.
Since M # @, the latter case applies, i.e.

inf Tr (UA) =0,
Uest

which shows that A > 0, and therefore by (2.7) one has:

sup Tr (SA) < 0. (2.8)
SemM

Each y € R™ satisfying b7y > d* defines an S € M, and

—Zym(A,.A) = Tr ((S—C)A)

Tr (SA) — Tr (CA)
< —Tr(CA), (2.9)

where the inequality follows from (2.8). In other words, the linear function
Fly) =D wiTr(AiA)
i=1

is bounded from below on the half space defined by 4Ty > d*. This is only possible if
Tr(AA)=p8b, i=1,...,m, (2.10)
for some 8 > 0. If # = 0, then
Tr(A;A)=0, ¢=1,...,m,

and consequently Tr (CA) < 0by (2.9). At this point we use the assumption of strict
feasibility: there exist (y°, S°) € Dwith S° >~ 0. Taking the inner product of S° and
Ayields:

Tr (S°A)

I
=
Q

Z
|
2
=]
=
=
Z
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This is a contradiction: A > 0 and S° > 0imply that Tr (AS®) > 0. Thus 8 > 0 and
we can define 1
X*:==-A»0.

It therefore holds that Tr (A; X*) =b; (i =1,...,m) by (2.10), and
Tr (CX*) < bTy Vy such that 4Ty > d*,

by (2.9), which implies Tr (CX*) < d*. Consequently, Tr (CX*) = d* by the weak
duality theorem (Theorem 2.1). We conclude that X* € P*, which completes the first
part of the proof.

It remains to prove the analogous result where (P) is assumed bounded and strictly
feasible. The easiest way to do this is to use the symmetric reformulation of (P) and
(D) as described in Section 2.1. The symmetry implies that we can apply the result for
(D) in the first part of this proof to (P) as well; thus we conclude that strict feasibility
and boundedness of one of (P) or (D) imply solvability of the other and p* = d*.
This completes the proof. a

As a consequence of Theorem 2.2 we have the following useful result, which gives
a sufficient condition for strong duality.

Corollary 2.1 Let (P) and (D) be strictly feasible. Then p* = d* and both optimal
sets P* and D* are nonempty.

Proof:

Since (P) and (D) are feasible, both p* and d* are finite, by Theorem 2.1 (weak du-
ality). The boundedness and strict feasibility of both problems imply that the optimal
sets P* and D* are nonempty and p* = d*, by Theorem 2.2 (strong duality). a

THE CONIC DUALITY THEOREM FOR MORE GENERAL CONES

The proof of Theorem 2.2 can actually be extended to cover more general conic LP’s.
In other words, we can replace the positive semidefinite cone by a more general convex
cone. To this end, let K be a closed convex cone with dual cone X*, and define the
primal and dual pair of conic linear programs:

(Pe) p":=inf {Tr (CX) | Tr(AX)=bi (i=1,...,m), X €K}

iyiAmLS:C, SEIC*}.

=1

(Dg) d*:= sup {bTy
yERm

If K = S;F we return to the SDP case.

Theorem 2.3 (General conic duality theorem) If there exists a feasible solution X° €
1i (K) of (Px), and afeasible solution of (Dy), then p* = d* and the supremum in
(D) is attained. Similarly, if there exist feasible y°, S° for (Dx) where S° € ri (K*),
and afeasible solution of (Px), then p* = d* and the infimum in (Px) is attained.
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STRONGER DUALITY THEORIES

It is also possible to formulate strong duality results without requiring any regularity
condition, via a procedure known as regularization. It is important, however, to notice
that a feasible problem that does not satisfy the Slater condition is ill-posed in the
sense that an arbitrary small perturbation of the problem data can change its status
from feasible to infeasible. We give a brief review of regularized duals in Appendix
G.

2.3 FEASIBILITY ISSUES

To detect possible infeasibility and unboundedness of the problems (P) and (D) we
need the following definition.

Definition 2.3 (Primal and dual improving rays) We say that the primal problem
(P) has an improving ray if there is a symmetric matrix X > 0 such that Tr (A; X) =
0, ¢=1,...,m) and Tr (CX) < 0. Analogously, the dual problem (D) has an
improving ray if there is a vector j € R™ such that S := — %" §;A; = 0and
Ty > 0.

Primal improving rays cause infeasibility of the dual problem, and vice versa. For-
mally one has the following result.

Lemma 2.2 [fthere is a dual improving ray y, then (P) is infeasible. Similarly, a
primal improving ray X implies infeasibility of (D).

Proof:
Let a dual improving ray 3 be given. By assuming the existence of a primal feasible

X one has

0<bTg =) Tr(AX)s =-Tr(XS) <0,
i=1
which is a contradiction. The proof in case of a primal improving ray proceeds simi-
larly. m]

Definition 2.4 (Strong infeasibility) Problem (P) (resp. (D)) is called strongly in-
feasible if (D) (resp. (P)) has an improving ray.

Every infeasible LP problem is strongly infeasible, but in the SDP case so-called weak
infeasibility is also possible.

Definition 2.5 (Weak infeasibility) Problem (P) is weakly infeasible if P = @ and
vet for each € > Qthere exists an X > O such that

"I‘I‘(A,X) — b,| S €, V.
Similarly, problem (D) is called weakly infeasible if D = { and for every e > O there
existy € R™ and S = 0 such that

<e.

iyiAi +S5-C
i1
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Example 2.2 An example of weak infeasibility is given if (D) is defined by n = 2,
m=1b=[10]7,

10 01
A= , and C = )
0

so that problem (D) becomes:
sup y1
subject to

1 0 01
Y1 +8=
0 0 1 0

We can construct an 'e-infeasible solution’ by setting

1/e 1 1
S = N
1 ¢ €
so that
110 1/e 1 01
ly1Ar +S - Cll=|-- + - =€
€ 00 1 € 1 0

It is not difficult to show that an infeasible SDP problem is either weakly infeasible or
strongly infeasible.

Theorem 2.4 Assume (D) (resp. (P)) has no improving ray. Then (P) (resp. (D)) is
either feasible or weakly infeasible.

Proof:
Let problems (P) and (D) be given. We will show that (P) is either feasible or weakly
infeasible if (D) has no improving ray. The proof where (P) has no improving ray
then follows from the symmetric problem reformulation.

Define the two (nonempty) convex cones

Kﬁ:{yeRm —E:w&EO},KWI{yERm|Hy>O}
i=1

Since there is no dual improving ray, the relative interiors of these two cones are
disjoint. If we apply the separation theorem for convex sets (Theorem B.4) we find
that there exists a nonzero r € R™ such that

sup rTy < rTy.

inf
yeKL yeK:



DUALITY, OPTIMALITY, AND DEGENERACY 31

Since 0 € X; one has sup ¢, rTy > 0, and since Ky is a nonempty cone one has
infyex, rTy € {0, —oo}. It follows that

sup rTy = inf rTy=0.
yeK, yeK:

Thus we find that the function f(y) = rTy is bounded from below on the half-space
bTy > 0. This is only possible if r = ab for some a > 0. Obviously, we can take
a = 1 without loss of generality. Thus we have shown that

sup {bTy —Zy,-A,- > 0} =0. .11
yeRm 1=1

We can now show that (P) is either feasible or weakly infeasible. To this end, define
auxiliary variables t+ € R and ¢t~ € R} and consider the problem:

inf {i(t;f +1t7)

xrot+eRT-eRT | 1

Tr(A4X)+th -t =b;(i=1,...,m)

(2.12)
Note that the optimal value of this problem is zero if and only if (P) is either feasible
or weakly infeasible. If the optimal value of problem (2.12) is zero, then (P) is:

s feasible if the optimal set of problem (2.12) is nonempty;
= weakly infeasible if the optimal set of problem (2.12) is empty.

The dual problem of (2.12) is given by

sup {bTy
yeR™
which clearly has optimal value zero because problem (2.11) does. Moreover, prob-

lem (2.12) is clearly strictly feasible, and we can apply the strong duality theorem
(Theorem 2.2) to conclude that the optimal value of problem (2.12) is indeed zero. O

m
=) wmdi =0, —15yi51(i=1,..-,m)},

i=1

We can give an alternative characterization of weak infeasibility by introducing the
concept of a weakly improving ray. Whereas an improving ray in (P) causes strict
infeasibility in (D) (and vice versa), weakly improving rays cause weak infeasibility.
Definition 2.6 (Weakly improving ray) We say that the primal problem (P) has a
weakly improving ray if there exists a sequence X®) = 0 (k =1,2,...) such that

lim inf | Tr (A,—)_((k))‘ =0(i=1,...,m), limsup Tr (CX®) = -1,

k—o0 k—o0

Analogously, the dual problem (D) has a weakly improving ray if there are sequences
§*® € R™ and S®) = 0 such that

m
501+ 3594,

i=1

lim inf =0, liminf 7§ = 1.
k—o0 k—o00
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Theorem 2.5 The problem (P) (resp. (D)) is weakly infeasible if and only if (D)
(resp. (P)) has a weakly improving ray.

Proof:
We will show that (D) is weakly infeasible if and only if (P) has a weakly improving
ray. The proof where (P) and (D) are interchanged then follows from the symmetric
problem reformulation as before.

Consider the problem

m+1
inf 5 +1t) (2.13)
x-o0,¢+eRTH t-eRTH! ;
subject to
Tr(AX)+tf -t = 0 (i=1,...,m)
Tr(CX)+t), , ~t. ., = —L

Note that problem (2.13) has optimal value zero if and only if (P) has either an im-

proving or a weakly improving ray. If the optimal value is zero, it is attained if (P)

has an improving ray and it is not attained if (P) only has a weakly improving ray.
The dual of problem (2.13) is given by

m
ym1C = Y y:ihi = 0, —1Syi51(i=1,...,m+1)}.

=1

sup { “Ym+1
yeR"‘“
(2.14)

Note that problem (2.13) is strictly feasible, and the zero solution is feasible for its dual
problem (2.14). We can therefore apply the strong duality theorem (Theorem 2.2) to
conclude that the optimal value of problem (2.14) is attained, and that it is positive
if and only if (P) has neither an improving ray nor a weakly improving ray. On the
other hand, it is easy to see that problem (D) is feasible if and only if the optimal
value of problem (2.14) is positive: if the optimal value in (2.14) is positive, then we
can divide y,,, 1 C — 3 v yiA; > 0bY ym,y to obtain a feasible solution to (D).
Conversely, if there is a feasible 3 € R™ such that C — 3" | y? A; = 0, then we
can construct a feasible solution to (2.14) with positive objective value as follows: if

max;=1,.m |y?| < Isety; =y? (i =1,...,m)and yp, | = 1; otherwise set
1 Y5 :
Ym+1 = |07yi: : 0 (’L‘—'l,...,m).
max;=1,..,m || max;—1,..m |49
This completes the proof. |

2.4 OPTIMALITY AND COMPLEMENTARITY

By weak duality (Theorem 2.1) we know that X* € P and S* € D will be optimal if
the duality gap at (X*, §*)is zero, i.e. Tr (X*S§*) = 0. The condition Tr (X*S*) =
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0 is equivalent to X*S* = 0, since X* > 0 and $* > 0 (see Lemma A.2 in Appendix
A). Tt follows that sufficient optimality conditions for (P) and (D) are:

'I\I‘(A,,X) = bi, X>_'0, i:l,...,m
Y wdi+S = C S»x0 (2.15)
i=1
Xs = 0.

The condition XS = 0 is called the complementarity condition, and optimal solutions
that satisfy this condition are called complementary.

The strong duality result of Corollary 2.1 implies that these optimality conditions
are also necessary if (P) and (D) are strictly feasible.

Theorem 2.6 (Necessary and sufficient optimality conditions) Under Assumption
(2.2) (strict feasibility), (2.15) is a system ofnecessary and sufficient optimality con-
ditions for (P) and (D).

In what follows, we will assume strict feasibility of (P) and (D), unless otherwise
indicated. Also, the range (or column) space of any primal (resp. dual) feasible X € P
(S € D) will be denoted by R(X) (resp. R(S)).

In the special case of linear programming (LP) one always has strict comple-
mentarity, I.e. there exists an optimal solution pair (X*,S*) € P* x D* such that
X* + §* > 0.2 For general SDP this is not the case, as the next example shows.

Example 2.3 (Alizadeh etal. [5]) Let n=m =3, b= [100]Tand

0 00 1 00 0 01 010
C=]1000)|4:=|000|A42=|010]|A4=|1 00
0 0 1 000 1 00 0 0 1
The optimal solutions of (P) and (D) are given by
1 00 0 0O
X*=1000|,5%=00E=1,23),5=|000
0 00O 0 01

The solution X* is clearly optimal, since C' = 0 and therefore Tr (CX) > 0VX € P.
It is also easy to see that the optimal solutions (X*,S8*) are unique, and therefore
strict complementarity does not holdfor this example. a

*The strict complementarity property for LP is known as the Goldman-Tucker theorem[69].
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It is therefore natural to introduce the weaker concept of maximal complementarity,
that corresponds to optimal solutions of maximal rank.

Definition 2.7 (Strict and maximal complementarity) We call X* € P* a maxi-
mally complementary primal optimal solution if

R(X)C R(X™) VX € P,
and, similarly, S* € D* is called a maximally complementary dual solution if
R(S) C R(S*) VS €D

If a maximally complementary solution pair (X*, S*) satisfies X* + §* > 0, then we
call (X*,8*) a strictly complementary solution pair.

It may not be immediately clear that maximally complementary solutions exist, but
any optimal solution in the relative interior of the optimal set is maximally comple-
mentary, as the following lemma shows.

Lemma 23 The following statements are equivalent for a given X* € P*:
(i) X*is maximally complementary, ie. R(X) C R(X*) VX € P*;
(i) X*€ri(P*);
(in) rank(X*) > rank (X) VX € P*.
Proof:
We only show that (ii) implies (i). The other relationships can be shown easily.” Let
X* € ri (P*) and X € P* be given. We will show that R(X) C R(X*). Since
X* € ri (P*), we can find a X € P* such that X* = AX + (1 — /\)X for some
A € (0,1). Now let z € R™ be in the null-space of X*. One has
0=z"X2=2T DX + (1 -N)X)z=Az"Xz+ (1 - \)z" Xz.
Since X > 0 and X > 0, we have
MTXz=(1-NaTXz=0.
Thus
T Tk L 1|2
O=z' Xz=z'X2X2z = ”XZwH ,

and therefore X 2z = 0 where X  denotes the symmetric square root factorization of
X. This implies X 3 (X éw) = Xz = 0, as required. a

*Lemma 2.3 actually holds for any face of the positive semidefinite cone (it is stated here for the optimal
face, but we do not make use of the optimality property). For detailed proofs of Lemma 2.3, see Barker and
Carlson [14] and Pataki [145]. A more detailed analysis of the faces of the semidefinite cone, and results on
the rank of optimal solutions may be found in Pataki [143].
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The lemma shows that all X* € ri (P*) have the same range space, which we will
call B, and that for all other optimal X € P* one has R(X) C B. Similarly we can
define the subspace A/ such that R(S*) C A forall §* € D* and R(S*) = N forall
S* € 11(DY).

Since optimal X* € P* and §* € D* commute (X*S* = §*X* = 0), the spectral
(eigenvector-eigenvalue) decompositions of an optimal pair X* and S* take the form:

X*=QAQT, §*=QzQ7, (2.16)

where ( is orthogonal and the diagonal matrices A and ¥ have the (nonnegative)
eigenvalues of X* and S* on their respective diagonals. Obviously X*S* = 0 if
and onlyif AY, = 0. Furthermore, R(X*) = R(QA) and R(5*) = R(QX), ie.
the range spaces are spanned by those eigenvectors corresponding to strictly positive

eigenvalues.

Now let g be an orthogonal matrix whose columns form an orthonormal basis for
the subspace B. For example, if X* = QAQT € ri (P*) we can choose Qg as the
submatrix of Q obtained by taking the columns corresponding to positive eigenvalues.

Note that the spaces B and N are orthogonal to each other. In the case of strict
complementarity they span R"™; if strict complementarity does not hold, then we can
define the subspace T which is the orthogonal complement of B U A/. Note that
B, N and T partition R™ into three mutually orthogonal subspaces." Thus we also
define the matrices Q and Qr as orthogonal matrices such that R(Qn) = A and
R(Qr) = T. The matrices @, @ and @Qr are not uniquely defined, of course, but
since an orthonormal basis of a given subspace of R™ is unique up to a rotation, we
have the following.

Lemma 2.4 LetQg and Qg be orthogonal matrices such that
R(QB) = R(Qp) = B.
Now there exists a square orthogonal matrix U such that QgU = Qp.

Using this lemma, it is easy to derive the following useful representation of optimal
solutions.

Theorem 2.7 Let Qg be given such that R(Qg) = B and QEQp = I. Any optimal
solution X € P* can be written as

X = QuUx Q5 (2.17)

where Uy is a suitable positive semidefinite matrix of size dim(B) x dim(B). If X €
ti (P*), then Ux > 0. Similarly, any dual optimal solution SP* can be written as

S =QnUsQY (2.18)

“This is the natural extension of the concept of the optimal partition in LP, and the optimal tri-partition in
LCP.



36 Aspects of Semidefinite Programming
where Ug is a suitable positive semidefinite matrix ofsize dim(N') x dim(N).

Note that Uy in (2.17) is uniquely determined by @ g and is given by Ux = QgU xQ g,
since QTQp = I. Thus it can easily be understood that the matrices X and Ux in
(2.17) have the same spectrum, except that the multiplicity of zero in the spectrum of
X may be larger than in the spectrum of Uyx.

2.5 DEGENERACY

A feasible solution z° of an optimization problem
{minf(w), gi(x) <0, 2=1,.. .,m}

is called degenerate if all the gradients of the active constraints’ at the point z° are
linearly dependent. It is well-known in linear programming that degeneracy can cause
cycling of the Simplex algorithm, unless suitable pivoting rules are used. It is also
known that the absence of degeneracy ensures that optimal solutions are unique.

The concept of degeneracy can be extended to SDP* Of course, SDP problems are
in conic form, and therefore the concept of active constraints is not well-defined.

The gradient of a constraint at some point is orthogonal to the level set of the
constraint function at that point. In the SDP case, we can replace the level set by the
smallest face of S} that contains the given point X > 0. We can then replace the
gradient by the orthogonal complement of this face.

Let us denote

L =span {4,,...,An},

as before. For a given X € P of rank r we further define the subspace:

T XecS, | X U Vigr
%= €Sn —QVTOQ’

where U € S,, V € R™*(™ " and Q € R™ " is an orthogonal matrix with the

eigenvectors of X corresponding to positive eigenvalues as the firstr columns. This

subspace is simply the tangent space to the smallest face of S that contains X (see

Pataki [145], §3.2).

Definition 2.8 (Primal degeneracy) We call X € P primal nondegenerate if
Sp=Tx +L". (2.19)

Otherwise, we call X primal degenerate.

7 A constraint g;(z) < 0 is active at the point 20 if g:(z%) = 0.
The approach in this section closely follows that by Alizadeh et al. [5], where the concept degeneracy was
first extended to SDP.
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Dual degeneracy can be defined in a similar way. As before, for a given S € D of rank
s we define the subspace:

o V| .
Te:=<S€S, |S5=Q Q
vT W

where W € S, V € R(™9)%3 and Q € R™ ™ is an orthogonal matrix with the

eigenvectors of S corresponding to positive eigenvalues as the last s columns.

Definition 2.9 (Dual degeneracy) We call S € D dual nondegenerate if
Sn=Ts+ L.

Otherwise, we call S dual degenerate.

Problem (P) (resp. (D)) is called nondegenerate if all X € P (resp. S € D) are
nondegenerate.

Example 2.4 (Alizadeh et al. [S]) We show that the optimal solution X* in Example
2.3 is nondegenerate. Note that we have Q = I,

u v U 0 —%zl —%1‘2
— 1L _
Tx=|vn 0 0 |,L = —%zl T T3 )
(%) 0 0 —'%1‘2 I3 I

where u,vy,v2 € R, and 1,25, xz3 € R, so that
1
83 =Tx-+ L )

ie. X*is nondegenerate. Similarly, one can show that S*is dual nondegenerate. O

The example illustrates a general result: an optimal primal nondegenerate solution
implies a unique dual optimal solution and vice versa.

Theorem 2.8 (Alizadeh et al. [5]) Let (P) and (D) be strictlyfeasible. If there exists
a nondegenerate X* € P* (resp. 8* € D*), then (D) (resp. (P)) has a unique optimal
solution.

Proof:

Let S; € D*, S; € D*, and let X* € P* be primal nondegenerate. We can assume
that the orthogonal matrix X * with eigenvectors of X* as columns takes the form Q =
[Q, Qn| where @ is an orthogonal matrix, whose columns include those eigenvectors
of X* that correspond to positive eigenvalues, and where ) is an orthogonal matrix
whose columns span the space N. To fix our ideas, we assume that dim(A) = s such
that (5 is an n x s matrix.
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By (2.18), we can write
T T
51 =QnU1QN, S2= QNU2QN

where U; and U; are suitable positive semidefinite matrices of size s X s.
We will prove that AS := §; — S; = 0. Note that AS € £ and

AS = Qn (U — U,)Q%.
Let Z € &, now be given, and recall that by nondegeneracy
Sn = Tx- + L.
We can therefore decompose Z as
4 =27+ 21,

say, where Zy € Tx- and Z,: € L£*. We now show that the inner product of Z and
AS is zero:

Tr (ASZ) = Tx (AS(Zr+2Z..))
Tr (ASZ7)
u v
= Tr | Qn(U1 - U2)QFQ QT)
VT 0
T NT T |4
= Tr | (QxQ) (U1 — U2)QKQ . O}
0 0 u v
= ’I‘I’ :0,

0 Uy~-U, vT 0

where we have used the fact that

Q%Q = Q%[Q7QN] = [Osx(n—s)a IS]'

We conclude that AS = 0, since Z € §,, was arbitrary. O

If strict complementarity holds for (P) and (D), then the converse of Theorem 2.8
is also true. In other words, if we assume strict complementarity, then the concepts of

primal nondegeneracy and unique dual optimal solutions coincide.

Theorem 2.9 (Alizadeh et al. [S]) If strict complementarity holds for (P) and (D),
then nondegeneracy of (P) (resp. (D)) is a necessary and sufficient condition for an
optimal solution of (D) (resp. (P)) to be unique.
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Proof:
First note that the nondegeneracy condition (2.19) for some X* € P* can be restated

as:

T N L= {0}.
Also note that
L 0 0 T T
Tx-=4X €S, [X=Q 0w QR =QNWQN,

where Q and @y are defined as in the previous lemma. It follows that a linear equation
of the form
m
QVWQL + > 5:4: =0 21)
i=1
in the variables W and g only has the zero solution in case of primal nondegeneracy.
Assume that primal nondegeneracy does not hold; in this case the linear equation

QNWQREL + Y g:Ai=C 2.22)

i=1

has an affine solution set with positive dimension, since the homogeneous system
(2.21) has multiple solutions. Any maximally complementary dual solution, say § €
ri (D*) corresponds to a solution of (2.22) with W > 0. Since any S* = QNWOQNT
which satisfies (2.22) is dual optimal if W > 0, there must be an open neighbourhood
of § containing other optimal solutions of (D). The proof where (D) is nondegenerate
issimilar. a

In the absence of strict complementarity, nondegeneracy is not necessary to ensure
unique optimal solutions, as the following example shows.

Example 2.5 (Alizadeh et al. [S]) Ifwe replace the matrix Az in the previous exam-
ple by

000
Az3=10 0 0},
0 01

then it is easy to show that dual nondegeneracy no longer holds, and there are still
no strictly complementarity optimal solutions. The primal optimal solution remains
unique and unchanged, however. a
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3

THE CENTRAL PATH

Preamble

If the system of necessary and sufficient optimality conditions for (P) and (D) is
perturbed by introducing a parameter p > 0 in a special way, then the solution of the
perturbed system defines an analytic curve (parameterized by p) through the feasible
region, which leads to the optimal set as g | 0. This curve is called the central path
and most interior point methods ‘follow’ the central path approximately to reach the
optimal set. We will review various properties of the central path.

3.1 EXISTENCE AND UNIQUENESS OF THE CENTRAL PATH

We now perturb the optimality conditions (2.15) for (P) and (D) to

Tr(A:X) = b, X>0, i=1,...,m
dwAi+S = €, §»0 3.1
y=1

XS = ul,

for some p > 0. Note that if 4 = 0 we regain the optimality conditions (2.15). We will
show that system (3.1) — which we sometimes refer to as the centrality conditions —
has a unique solution for any y > 0. This solution will be denoted by

X (1), S(p), y(1),
41
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and can be seen as the parametric representation of an analytic curve (the central path)
in terms of the parameter u. The existence and uniqueness of the central path can be
proved in the following way: consider the problem

1
?:_1(1) {fl‘,‘(X) = ;’I‘I’(CX) —logdet X ’ Tr(AX)=b(i=1,... ,m)} ,
i.e. the minimization of the primal log-barrier function over the relative interior of P.
The function f} is strictly convex (see Theorem C.1 in Appendix C). The KKT (first
order) optimality conditions for this problem are therefore necessary and sufficient,
and are given by:

1 _ .
ViX)=C-XT = > GA
=1
’I‘I’(AlX) = bi i:l,...,m

X >

Defining § = C ~ Z:’;l y;A; where y; = pg;, this system becomes identical to
system (3.1). In other words, the existence and uniqueness of the central path is equiv-
alent to the existence of a unique minimizer of f in ri(P) for each 4 > 0. Since
the function f} is strictly convex, any minimizer of f} is unique.” One way to prove
existence of the central path is therefore to show that the level sets of f}' are compact
if (D) is strictly feasible. This ensures the existence of a minimizer, say X7. We can
use this minimizer to construct a solution of (3.1) as follows:

X(p) =X, S(u):=p(X;)

Note that S(p) as defined in (3.2) is dual feasible, as it should be.
One can also approach the proof from the ‘dual side’, by maximizing the dual
barrier

-1

1
i (S, y) = ;bTy + logdet(S), (y,5) € D,

and proving that its level sets are compact if (P) is strictly feasible.

We will give a proof below, where we consider the combined problem of minimiz-
ing the difference between the primal barrier f¥ and the dual barrier f4. To this end,
we define the primal-dual barrier function f 1‘,‘ 1 PxD— Ry

:d(X7S) = f;,‘(X)—f;(S,y)—n—nlog(y.)

1 1
= ~Tr(CX)— —bTy — logdet(X) — log det(S) — n — nlog(y)
p p
X
= Tr (—S) — logdet (ﬁ) -n
p p

" The gradient of f5 is derived in Appendix C.
*For a proof that a strictly convex function has a unique minimizer over a compact convex set, see e.g.
Bazaraa et al. [16], Theorem 3.4.2.




THE CENTRAL PATH 43

i=1

Note that (X*, §*) is a minimizer of f}‘,‘d and only if X* and S* are minimizers of
fl and — £} respectively. Also note that f},(X,S) = 0if and only if XS = ul. We
therefore aim to prove that a unique minimizer of f}‘,‘ ', exists and satisfies (3.1).

We canrewrite f/,(X,S) as

FaX,8) = v (@ - 1) (3.3)

where 1(t) := t —log(1 +t) (see Figure 3.1). Note that f:d is given as the sum of two

e i U S JPP SOOI .
~1 ~0.5 0 05 t 14 ¢ £5 3 a8 4

e

Figure 3.1.  The graph of 9.

strictly convex functions ( ff and — f4) up to a constant, and is therefore also strictly
convex. We therefore only have to prove that its level sets are compact in order to
establish existence and uniqueness of the central path. We will do this in two steps:

1. First we will show that the level sets of the duality gap are compact (Lemma 3.1);

2. Subsequently we will show that the compactness of the level sets of the duality gap
implies that the level sets of the primal-dual barrier function f ;‘d are also compact
(Theorem 3.1).

Lemma 3.1 (Compact level sets of duality gap) Assume that (P) and (D) are strictly
feasible. The set

Ga:={(X,S) € PxD|Tr(XS) < a}

is compact, for each o > 0.
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Proof:
Let (X9, 59) be any strictly feasible primal-dual solution, and (X, S) € G, for some
given o > 0. By orthogonality, Lemma 2.1, one has

Tr (X — X°)(S - S%) =0. (3.4
Using Tr (X 5) < « simplifies (3.4) to
Tr (XS°) + Tr (X°S) < a+ Tr (X°S°). (3.5)

The left-hand side terms of the last inequality are nonnegative by feasibility. One
therefore has
Tr (XS°) <o+ Tr(X°S°),
which implies
a+ Tr(X°S9)
Amin(‘SO) '
where Amin (S°) denotes the smallest eigenvalue of S°. Now using the fact that any

positive semidefinite matrix X satisfies || X|| < Tr (X) for the Frobenius norm (see
Appendix A), one has

Tr (X) <

a+ Tr (X259
Amin(‘SO)
A similar bound can be derived for ||.S||. It remains to show that G, is closed; this

follows from the closedness of P and D and the linearity of the duality gap function
Tr (XS) = Tr (CX) ~ bTyon P x D. 0

X1 <

Theorem 3.1 (Existence of the central path) The central path exists if (P) and (D)
are strictly feasible.

Proof:
Let X° > 0 and S° > 0 be strictly feasible solutions to (P) and (D) respectively and
let p > 0 be given. Choose a > 0 such that £k, (X°,5°) < a and denote the a-level

set of f},; by
Lai={(X,5)€PxD | f4(X,5) <a, X =0, § » 0}.

We will prove that L, is bounded and closed, i.e. compact. Let (X,S) € L, and let

A(XS) .
t; = , t=1,...,n.
u

By the definition of L, one has:

a 2 f:d(X,S)
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Dot - 1)
i=1

> (t; — 1) for any giveni € {1,...,n}
= t; —1—log(t;)
1 1 1
= Sti+|=t;—log|=t:])] —log2—1
e (30w (51)) -8
> lt log2 -1
Sli — 1o 4
Z 3 g

where the first inequality follows from the nonnegativity of 3, and the second inequal-
ity follows from log(t) < t. This shows that

Mi(XS)<2u(a+log2+1), i=1,...,n. (3.6)
On the other hand, the above argument also shows that
a>t;—1—log(t;) > —1—log(t;), i=1,...,n,
which in turn implies that
M(XS) > pe el i=1,...,n (3.7

In other words, the eigenvalues of XS are bounded away from zero as well as from
above. In particular, (3.6) implies
Tr (XS) =Y M(XS) < 2np(a+log(2) + 1),
i=1
which implies that L, is bounded, by Lemma 3.1. It remains to show that L, is closed.
From (3.7) follows that

det(X S) = [T Mi(XS) > pre ™), (3.8)
=1
Now let (X, 8) € cl(L,) be given. Note that there must hold X € P and S € D. By
the continuity of the determinant function and (3.8) there must hold

det (XS) >0,
which implies that X > 0 and § > 0. The continuity of f:d further implies that
:d(X', S) < a and consequently (X', S’) € L,. |

Remark 3.1 In order to prove the existence of the central path, we have not made
Sull use of the fact that (P) and (D) are in the standard form. Rather, we have only
used the orthogonality property (Lemma 2.1). This observation will be important in
the next chapter where we will study self-dual problems that are not in the standard
Sform.
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3.2 ANALYTICITY OF THE CENTRAL PATH

Our geometric view of the central path is that of an analytic’ curve through the relative
interior of P x D which leads to the optimal set. The analyticity follows from a
straightforward application of the implicitfunction theorem.”

Theorem 3.2 (Implicit function theorem) Ler f : R™™ s R™ be an analytic
Sfunction of w € R"™ and z € R™ such that:

1. There exist w € R"™ and z € R™ such that f(w,z) = 0.
2. The Jacobian of f with respect to z is nonsingular at (i, z).

Then there exist open sets Sy, C R™ and S; C R™ containing w and Z respectively,
and an analytic function ¢ : Sg — Sz such that z = ¢(w) and f(w, p(w)) = 0 for
all w € Sg. Moreover

Vo(w) = —V, f(w, ¢(w)) ™' Vo f(w, d(w)). (3.9)

a

Theorem 3.3 (Analyticity of the central path) The function

fep o= (X (1), y(n), S(n))

is an analytic function for p > 0.

Proof:
Let g > O be given. The proof follows directly by applying the implicit function

theorem to the function

f R X R™ x R™*™ x R~ R™ x R**"™ x R"*"

defined by:

[ Tr(AiX) - b

f(X,y,S,IJ,) = ?nr(AmX)‘—bm
ZyiA,- +S-C
i=1
XS - p,I

*For a short review on analytic functions see Appendix D.
“There are many variations of the implicit function theorem. We will use the version that deals with analytic
functions, as given in e.g. Dieudonné [52], Theorem 10.2.4.
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Note we have dropped the symmetry requirement for X and S, since it is redundant
on the central path. Also note that f is zero at (X (u), y(u), S(u), ) forany p > 0.
We now associate [vee(X)T yT vec(S)T)T with z in Theorem 3.2 and p with w. The
minor of the Jacobian matrix of f with respect to (X,y, S) is given by:

A 0 0
Vx5 f(X,y,8,p) = 0 AT I. |, (3.10)
S®l, 0 I,®X

where A = [vec(4;),...,vec(4,,)]T, I, is the identity matrix of size n, and ®
denotes the Kronecker product. We proceed to show that the matrix in (3.10) is non-

singularat (X (o), y(1o), S(so)).
To this end, assume that

Spo)®In 0 I, ® X(po) Z

for some z € R™, y€Rand z € R™ . This system can be simplified to:

Az = 0
ATy +2 =
(S(po) @ In)x + (In ® X (mo))z =

Note that the first two equations imply 27z = 0, and the third equation yields:
z + (8(ko) ® In) ™' (In ® X (no))z = 0.
Taking the inner product with z on both sides and using 7z = 0 yields
27 (S(10) ® In) " (In ® X (mo))z = 0

which is the same as
27 [S(po) ™! ® X(po)] 2 =0, (.11

if we use the identities (A®B)™! = A~'®B~!and (AB)®(CD) = (AC)®(BD).?

. It is clear that — since S~ (o) ® X (uo) is positive definite® — it follows from
(3.11) that 2z = 0, which in turn implies z = O and y = 0.

We can now apply Theorem 3.2 to prove that there exists an analytic function, say

¢ R X R™ x R™*™,

3For proofs of these identities, see Horn and Johnson [86].
*IfA > 0 andB > 0, thenA ® B > 0; see Horn and Johnson [86] for a proof.
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defined in some interval containing pg, and f(¢(x), #) = 0 if p belongs to this inter-
val.

Also, ¢(u0) = (X (ko), y(po), S(uo)) and therefore ¢(u) € S+ xR™ xS+ for
u sufficiently close to pg, because ¢ is continuous. We can therefore find an interval
containing pqsuch that the condition f($(u), u) = 0is equivalent to the centrality
conditions (3.1) for values of p in this interval. Since the centrality conditions have a
unique solution, it follows that ¢(u) = (X (u),y(u), S(p)) in this interval. a

The implicit function theorem also supplies an expression for the tangential direc-
tion to the central path. This direction is the solution of a linear system with coefficient
matrix (3.10), by (3.9). The tangential direction is the direction used by all primal-dual
path-following interior point methods if the current iterate (X, .S) € P x Dis on the
central path. (The methods differ if the current iterate is not on the central path.)

Halicka [77] has recently shown that the central path can be analytically extended
(see the definition in Appendix D) to p = 0 in the case of strict complementarity. As
a consequence all derivatives of the central path (with respect to ) have finite limits
as p | 0,in case of strict complementarity.

3.3 LIMIT POINTS OF THE CENTRAL PATH

In this section we will show that any sequence along the central path has accumulation
points in the optimal set, and that these accumulation points are maximally comple-
mentary. Then we will prove thatas p | 0, the central path converges to a maximally
complementary solution pair. Under the assumption of strict complementarity, the
limit is the so-called analytic center of the optimal set which will be defined later on.

In what follows we consider a fixed sequence {u;} | Owith g > 0,t = 1,--,
and prove that there exists a subsequence of {X (), S(u:)} which converges to a
maximally complementary solution. The existence of limit points of the sequence is
an easy consequence of the following lemma.

Lemma 3.2 Given g > 0, the set
{(X(n), S(w)) : 0<p< i}

is contained in a compact subset of P x D.

Proof:

The proof follows directly from Lemma 3.1, by noting that Tr (X (u)S(r)) < ngif

u < B 0
Now let

X () = Que) A(ue)Que)”s  S(pe) = Que) B(e) Qe)™

denote the spectral (eigenvector-eigenvalue) decompositions of X (u¢) and S{pu:)
Lemma 3.2 implies that the eigenvalues of X (4;) and S(u,) are bounded. The matri-
ces Q(p) are orthonormal for all ¢, and are therefore likewise restricted to a compact
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set. It follows that the sequence of triples

(Q(Mt)7 A(Mt)7 Z(llt))

has an accumulation point, (Q*, A*, £*) say. Thus there exists a subsequence of {u}
(still denoted by {u,} for the sake of simplicity) such that

Jim Q(ue) =Q,  lim A(p,) = A, lim B(p) = X7
Note that A(ps)E(ue) = pl. Thus, defining
X = AT = lim X (ng), S%:= Q*x* QT = Jlim S(pe),  (3.12)

we have A*2* = 0 and the pair (X, §%) is optimal.

We are now in the position to show that all limit points of the central path are
maximally complementary optimal solutions. The proof given here is based on the
proof by De Klerk et al. [44].

Theorem 34 The pailX®, S*) as defined in (3.12) is a maximally complementary
solution pair.

Proof:

Let (X*, S*) be an arbitrary optimal pair. Applying the orthogonality property (Lemma
2.1)and Tr (X*S*) = 0, Tr (X (u:)S(u¢)) = np, we obtain

Tr (X (ue)S*) + Tr (X*S(ue)) = npe.
Since X (u+)S(pe) = ped . dividing both sides by p, yields
Tr (S(ue)™'S*) + Te (X" X () ™') = n (3.13)
for all ¢. This implies
Tr (X*X(u:)™ ) <n, Tr(S(u) 'S*) <n, (3.14)

since both terms in the left-hand side of (3.13) are nonnegative. We derive from this
that X%and S°are maximally complementary. Below we give the derivation for X%
the derivation for 5¢ is similar and is therefore omitted.

Denoting the i-th column of the orthonormal (eigenvector) matrix Q(u:) by qi(u:)
and the i-th diagonal element of the (eigenvalue) matrix A(pu:) by A;(pe) wehave

X(u) 7" = Que)Aue)” Z )‘ it Yai(pe)" (3.15)

Substituting (3.15) into the first inequality in (3.14) yields

Tr (X*X(w)™") = ZTr ()‘1 . ‘(Mt)Qi(ﬂt)T>

ql ut Tx* %(ut) <
= E =/ =V . 3.16
Ailpe) =" G19)
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The last inequality implies
q‘i(/-l't)TX*q‘i(lJ't) SnAi(ﬂt)7 1= 1,2,"',71.
Letting ¢ go to infinity we obtain
*T * ok * .
;" X*q; <nd], i=1,2,---,n,

where g denotes the ¢-th column of @* and A the i-thdiagonal element of A*. Thus
we have ¢ T X ¢ = 0 whenever A* = 0. This implies

X*qr =0if A} =0, (3.17)

2
since (gF)TX*qr = || X *%q;‘ , where X*2 is the symmetric square root factor of

X*. In other words, the row space of X is orthogonal to each column ¢f of Q* for
which A¥ = 0.Hence the row space of X is a subspace of the space generated by the
columns g} of @* forwhich A} > 0. The latter space is just R (Q*A*) which equals
R (X?). Since X* is symmetric we conclude that R(X) C R (X*®). 0

Notation:

In what follows we define

B = {i: Al>0}
N = {i: o >0}
T = {1,2,---,n}\(BUN).

Then the sets B, N and T form a partition of the full index set {1,2,--- ,n}. Let Q%
denote the submatrix of @Q* consisting of the columns indexed by J C {1,2,---,n}.
(The matrices Q;(u) and A;(p) are defined similarly.) Note that Q%, Q% and Q%
are special choices for the matrices Q g, Qn and Qr as defined in Section 2.4. In
particular, QF, Q3 and Q.are orthogonal matrices such that

R(Qp) =B, RQN)=N, R(Qy)=T.

Using this notation, it follows from Theorem 2.7 that any optimal pair (X*, S*) can
be written as

X* = QyUx-Q5", and S* = Q3 Us-Qx” (3.18)
for suitable matrices Uy« » 0 and Ug. > 0. In fact, since Q}‘BTQE is equal to the
identity matrix I g, of size |B| and Q}‘VTQ}‘V equals the identity matrix I}, of size
IN|, Ux+ and Ug- follow uniquely from

Ux- = Q5TX*Q%, and Us. = Q37 S*Q%. (3.19)

Thus, maximally complementary solutions correspond to positive definite Uy« and
Ug-
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Definition 3.1 (Analytic center) The analytic center of P* is the (unique) solution
of the maximization problem

ax {det (Ux) | Q3UxQ3" € P*} . (3.20)
Ux>-

Similarly, the analytic center of D*is the (unique) solution of the maximization prob-
lem

max {det (Us) [ QuUsQiT €D} (3.21)

The uniqueness of the analytic centers follows from the following observations:

1. We know that the optimization problems (3.20) and (3.21) have optimal solutions
because the the optimal sets P* and D* are compact and the determinant is a
continuous function. (The compactness of the optimal sets follows by setting o =
0 in Lemma 3.1.)

2. We know that det(Ux) > 0 if and only if X € ri (P*) which implies that the
optimal solution in (3.20) will have positive determinant (will be maximally com-
plementary). This means that we can replace det(Ux) in (3.20) by log det(Ux)
which is a strictly concave function (by Theorem C. 1 in Appendix C).

3. The strict concavity of the logdet function implies that problem (3.20) has a
unique solution.

The analytic center of the optimal set is important in the context of the central path,
because it is the (unique) limit point of the central path in the case of strict comple-
mentarity.

3.4 CONVERGENCE IN THE CASE OF STRICT
COMPLEMENTARITY

We now prove the convergence of the central path to the analytic center of the optimal
set under the assumption that a strictly complementary solution exists (i.e. T' = @, or,
equivalently 7 = {0}).The proofis analogous to the proof in the LP case and is taken

from De Klerk et al. [46].

Theorem 3.5 If T = {0} (strict complementarity holds) then X is the analytic
center of P*and S* is the analytic center of D*

Proof:
Just as in the proof of Theorem 3.4, let (X*,S*) be an arbitrary optimal pair. We may
rewrite (3.13) as

th P't) qu P't th Pft Sq‘L P't):
A pat oi(p

7An earlier proof of the convergence of the central path in the case of strict complementarity was given by
Luoetal [117].
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Since all terms in the above sums are nonnegative, this implies

Z Qi(ﬂt)TX*fIi(ut) + Z Qi(ﬂt)TS*fIi(ut) <
i€B Ai(nt) iEN ai(u) B
Letting ¢ go to infinity we obtain

Zq*TX* Zq

i€EB 1EN

*TS* *

This can be rewritten as
Tr (X*QuUxiQ3") + Ir (S"QUsIQT) <,
or r
* T ya e pr— * *
Tr (Q3"X"Q3Ux!) + Tr (Qx7S"QxUS!) <n.
Using the definition of Ux and Ug in (3.19), this implies
(UX'UXG) + Tr (US‘Usa) <n.

Since T = @, we have |B| 4 |N| = n. Recall that the matrix Ux. U+ has size
|B| x |B| and Us. Ug.! has size |N| x |N|. Applying the arithmetic-geometric mean
inequality to the eigenvalues of these matrices we get

det (Ux-Uxa) det (Us-Ugi') < (}l (Tr (Ux-Uxt) + Tr (US-US‘}))) <1,

which implies
det (Ux-)det (Us-) < det (Uxa)det (Usa). (3.22)

Substituting S* = S%in (3.22) gives det (Ux-) < det (Uxa)and by setting X* =
X@ we obtain det (Ug.) < det (Uga). Thus we have shown that X is the analytic
center of P* and S the analytic center of D* a

One can also show that the central path passes through the analytic centers of the
level sets Tr (X.S) = np.

Lemma 33 Let X € Pand S € D satisfy Tr (X S) = np. One has
det(XS) < det (X (4)S(1)),
ie. the pair (X (), S(u)) is the analytic center of the level set
{{X,8) : Tr(XS)=nu, X €P, SeD}.

Proof:
Assume that X € P and S € Dsatisty Tr (X S) = np. By orthogonality one has

Tr (X(4) — X) (S(n) - 5) =0,
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as before. Using X (1)S () = pI and Tr (X S) = ny, simplifies this to
Tr (X(u)"'X) + Tr (S(g)~'S) = 2n.

Applying the arithmetic-geometric inequality to the eigenvalues of X (u)~1X and
S(u)~1S yields
L 1
[det (X (u)"'XS(p)~1S)]* < o [Tr (X(p) 7' X))+ Tr (S(p)"'S)] =1,

which implies the required result. m|

Based on the result of the lemma, it is tempting to conjecture that the central path con-
verges to the analytic center of P* x D* even in the absence of strict complementarity,
but this is not true.®

Example 3.1 (Halick4 etal. [78]) Letn =4, m =4, b= [1000]T and define (P)
and (D) via

0 0 0 O 1 0 0 O
0 0 0 O 01 0 0
C: aAI: ’

0 0 0 0 0 0 0 O

0 0 0 1 0 0 0 O
0 0 0 0 0 0 0 0 0 0 0 O
0 0 0 1 0 0 1 0 0 0 0 0

A2: aAS: 7A4:
0 0 1 0 01 0 0 0 0 0 1
01 0 O 0 0 0 1 0 0 1 0

The primal problem (P) can be simplified to: minimize x44 such that

1—zy 212 T13 T14
T2 T22 —15544 *19«‘33
X = 2 2 >0
1
Ti3  —3%Taa T33 0
1
Tig  —35Z33 0 Taq |

The optimal set of (P) is given by all the positive semidefinite matrices of the form

1—.”1,‘22 12 0 0

X = Z12 z22 0 0
0 0O 0 0

0 0 00

$A proof of this conjecture has been published by Goldfarb and Scheinberg [68], but this proof is incorrect
in view of Example 3.1.
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Solutions ofthe form X* are clearly optimal, since C = Qand therefore Tr (CX) > 0
VX €P.

The analytic center of P*is obviously given by

o

0 0
0 0
0 0
0 0

o O O Ne
o O N

However, we will show that the limit point of the primal central path satisfies

2

£ 000

0o 3

X(u) — 3 asp § 0.

0 o

0 0 0 O

The dual problem is to maximize y, such that
-y 0 0 0

0 — — —
S = (1 Y3 Y2 = 0.

0 —-y3 —-y2 —wm

0 -~y ~ya 1-ys

Thus the dual problem has a unique optimal solution

0
: 0
yi =0(i=1,234), §*=

0
0

o o o ©
- o o ©

0
0
0
0

It is also easy to see that strict complementary does not hold.
Due to the structure of feasible S € D, the primal central path has the following
structure

1 — z92(p) 0 0 0
0 To2(p)  —3zas(p) —3z33()
0 —%%4(#) z33 () 0
3733(n) 0 Taa(s)
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By Lemma 3.3, the point on the central path X () is, for any p > 0, the analytic center
ofa level set. The level set is given by the primalfeasibility and a level condition which
is Taa = x44(p) > 0in our case. This implies that X (p) maximizes

1—-z9 0 0 0

0 T —iz 1
det 22 7Taa() 5T33 (3.23)

0 - %“4(#) T33 0

| ? ~3%3 0 zas(n) |
under the conditions
23, _ 3
z22 € (0, 1)7 3z > 0, :1,‘22:1:33;1,'44(”) — %‘14(”) > 0.

These constraints are not binding at the optimal solution (the p-center). We there-
fore obtain necessary and sufficient conditions for the analytic center by setting the
gradient (with respect to Tqz and x33) ofthe determinant in (3.23) to zero:

z33(p)zaq(pt) — 2T (p)zss(p)zaa(p) + %3344(#)3 + %zaa(u)a = 0(324)
(1~ z2(p)) <$22(#)1‘44(#) — %%3(#)2) = 0.(325)

Using z22(p) € (0, 1), we deduce from (3.25) that
2

V3

Substituting this expression in (3.24) and simplifying, we obtain:

2 10 3/2 1 3/2
—n\/z — ——T + -z = 0.
\/?—) 2 (IJ) 3\/§ 2 (IJ) 4 a4 (IJ)

We assume that the central path convergesfor this example — a proofthat the central
path always converges will be given in Theorem 3.6. In the limit where p | 0, we
have z44(p) — 0, since the limit point must be an optimal solution. Moreover, we can
assume that Tz (1) is positive in the limit, since the limit point of the central path is
maximally complementary (Theorem 3.4). Denoting lim,, o T22(pt) := z22(0) > 0,
we have:

zaa(#) = 1‘22(#)9344(#)'

2 10

7§ T92(0) — Wgﬂbz

that implies z2(0) = g O

(0)*% =0,

The following example shows that the central path may already fail to converge to
the analytic center of the optimal set in the special case of second order cone optimiza-
tion.
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Example 3.2 (Halicka eral. [78]) Consider the problem of minimizing x5 subject to

zin 12 0 0 0
Tz z22 0 0 0
0 0 33 Zog 0 =0
0 0 z92 z12 0

0 0 0 0 1-(z1n+ass) |

Note that this problem is equivalent to a second order cone programming problem (the
semidefiniteness constraint can be written as linear and convex quadratic inequality
constraints). The optimal set is given by all matrices of the above form where z19 =
ZToo = 0, and the analytic center of the optimal set is given by the optimal solution
where 1, = x33 = %

Using exactly the same technique as in the previous example, one can show that
the limit point for the central path is £y, = 2/7, z33 = 3/7. However, the proof is
more technical for this example due to the larger number of variables, and is therefore
omitted. ]

3.5 CONVERGENCE PROOF IN THE ABSENCE OF STRICT
COMPLEMENTARITY

Since the central path does not converge to the analytic center in general, we give a
proof that it always converges.’

We will use a well-known result from algebraic geometry, namely the Curve selec-
tion lemma."’

Definition 3.2 (Algebraic set) A subset V € R* is called an algebraic set if V is the
locus of common roots of some collection of polynomial functions on R¥

Lemma 3.4 (Curve selection lemma) Let V C R* be a real algebraic set, and let
U < R be an open set defined by finitely many polynomial inequalities:

U={zeR":gi(z)>0,..,q(z) > 0}.

The convergence property seems to be a ‘folklore’ result which is, for example, already mentioned in the
review paper by Vandenberghe and Boyd [181] on p. 74 without supplying references or a proof. In Kojima
et al. [14] the convergence of the central path for the linear complementary problem (LCP) is proven
with the help of some results from algebraic geometry. In [108], Kojima et al. mention that this proof for
LCP can be extended to the monotone semidefinite complementarity problem (which is equivalent to SDP),
without giving a formal proof. The proof given here is taken from Halick4 et al [78], and uses ideas from
the theory of algebraic sets, but in a different manner than it was done by Kojima et al. [104]. An earlier
— but more complicated — proof of convergence of the central path in a more general setting is given by
Grafia Drummond and Peterzil [71].

A proof of the Curve selection lemma is given by Milnor [122] (Lemma 3.1).
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If U NV contains points arbitrarily close to the origin, then there exists ane > 0 and

a real analytic curve
p:[0,€) > RF

with p(0) = 0and with p(t) e UNV fort > 0.

We will now prove the convergence of the central path by applying the Curve se-
lection lemma.

Theorem 3.6 (Convergence of the central path) Even in the absence of strict com-
plementarity, the central path

{X,8)|p>0, XS=ul, X€P,S €D}
has a unique limit point in P* x D*

Proof:

Let (X*,y*, S*) be any limit point of the central path of (P) and (D).
With reference to Lemma 3.4, let the real algebraic set V be defined by
V= ()_(753 ’/J‘) Z,(gl)Az+‘§ =0

(X+X)S+8—pl = 0

and let the open set U be defined by: U = (X, S, 7, i) such that all principal minors
of (X + X*) and (S + S*) are positive, and p > 0.

Now V N U corresponds to the central path excluding its limit points, in the sense
thatif (X, S,g,p) € UNV, then X(pu) = (X + X*) and S(u) = (S + S*), where
X (p) (resp. S(p)) denotes the p-center of (P) (resp. (D)) as before.

Moreover, the zero element is in the closure of V N U, by construction.

The required result now follows from the Curve selection lemma. To see this, note
that Lemma 3.4 implies the existence of an € > 0 and an analyticfunction p : [0,€) >
8™ x 8™ x R™ x R such that

p(t) = (X(t),51),5(), u(t)) = (Onxn,Onxn,0m,0) as t |0, (3.26)

and if t > 0, (X(¢t), 5(t), §(t), u(t)) e UNV, ie:

Zi Yi (t)Ai + ‘g(t)

(X () + X*)(S(t) + §7) — u(®)]

0 (¢=1,...,m)
0 (3.27)
0

Il

k)

and X(t) > 0, S(t) > 0, u(t) > 0.
Since the centrality system (3.1) has a unique solution, the system (3.27) also has a
unique solution given by

X(t) + X" = X(u(1), S(t)+8*=S(u(t))
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ift > 0. By (3.26), we therefore have

ltlg)lX( p(t) =X", ltlﬁ)lS( p(t)) = 5%, ltlf(r)ll,l.(t) =0.
Since p(t) > 0on (0,€), u(0) = 0, and p(t) is analytic on [0, €), there exists an
interval, say (0, ¢€') where /,1. '(t) > 0 (see Theorem D.1 in Appendix D). Therefore
the inverse function p~! : p(t) +> ¢ exists on the interval (0, u(e’)). Moreover,
p~1(t) > Ofor all ¢t € (0, u(e’)) and limg o 1 (¢) = 0.
This implies that

lim X (£) = lim X (u(u ™ (8))) = lim X (™) + X = X"

Similarly, lim, o S(¢) = S* Since the limit point (X*, S*) was arbitrary, it must
therefore be unique. O

At the time of writing, it is an open problem to correctly characterize the limit point
of the central path in the absence of strict complementarity.

3.6 CONVERGENCE RATE OF THE CENTRAL PATH

It is natural to ask what the convergence rate of the central path is. In the case of strict
complementarity, one can show the following.

Theorem 3.7 (Luo etal. [117]) Assume that T' = @ (strict complementarity) and let
(X2, 8%) denote the analytic center of P* x D* as before. It holds that

X (1) = X% = O(u), [1S(r) = 5% = O(n).

In the absence of strict complementarity the convergence rate can be much worse, as
the following example shows.

Example 3.3 (Adapted from Sturm [168]) Consider thefollowing instance which is
in the standard dual form (D):

max —yn
subject to
[ 1w v e ye |
nn y2 0 ... 0
5= y2 0 ys =0
0
| Y1 O ... O Yn |
The unique optimal solution is given by y; = 0 (i = 1,...,n), yet on the central path

one has
9—(n—2)

yo(p) = cp ,
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for some constant c that is independent of u. We therefore have

I5(k) - 5l = 2 (w*"),

where S* denotes the unique optimal solution. a

At the time of writing, it remains an open problem to determine the worst-case con-
vergence rate of the central path in the absence of strict complementarity.
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4

SELF-DUAL EMBEDDINGS

Preamble

If an SDP problem is also its own dual problem, then the duality relations are much
simpler. In particular, if such a self-dual problem is strictly feasible, then it is solvable
and the optimal value is zero, by the strong duality theorem (Theorem 2.2). In this
chapter we show how to embed a given pair of problems in standard form (P) and
(D) in a bigger self-dual problem for which a strictly feasible solution on the central
path is known. One can therefore solve the embedding problem, and its solution gives
information about the feasibility and solvability of (P) and (D).

4.1 INTRODUCTION

Most semidefinite programming algorithms found in the literature require strictly fea-
sible starting points (X® > 0, §% 5 0) for the primal and dual problems respectively.
So-called ‘big-M’ methods (see e.g. Vandenberghe and Boyd [180]) are often em-
ployed in practice to obtain feasible starting points. For example, consider an SDP
problem in the standard dual form:

> vAi+S=C, §x0, yER’"}.

i=1

(D): d*:=sup {bTy
y,S

61



62 Aspects of Semidefinite Programming

Assume that a strictly feasible solution (y°, $°) of (D) is known, but no strictly primal
feasible point is known for its Lagrangian dual (P) (which is in standard primal form):

(P): p*:=inf{Tr(CX) | Tr(A:X) = b; (i=1,...,m), X = 0}.

In order to apply primal-dual methods (where feasible solutions to both (P) and (D)
are required), one could solve the modified problem

sup BTy | ) yidi+S=C, Tr(S) <M, S = 0. @.1
Y

i=1
Roughly speaking, problem (4.1) has the same solution status as (D) if M is ‘large
enough” — if (D) is infeasible, then so is (4.1), and if (D) is solvable then so is
@.n!

A slightly modified dual of problem (4.1) is

N>(i)n)f{>0{’1‘r (C(X —kD)+6M | Tr (Ai(X —=cD))=bi (i=1,...,m)}.
T (4.2)

One can now construct a strictly feasible starting point for problem (4.2) by choos-
ing s ‘large enough’, while no such starting point was available for (P).

An analogous strategy is available if only a strictly feasible primal solution is avail-
able. If neither a primal nor a dual feasible point is known, a similar strategy can
again be employed by introducing two ‘big-M’ parameters (see Vandenberghe and
Boyd [180] for details). The difficulty with these approaches is that no a priori choice
for the ‘big-M’ parameters is available in general. For example, if x cannot be driven
to zero in problem (4.2), then one can only conclude that ‘there is no optimal solution
S* of (D) with Tr(S*) < M’. We therefore need an a priori bound on Tr (§*) in
order to give a certificate of the problem status of (D), while such information is not
available in general.

In the LP case an elegant solution for the initialization problem is to embed the
original problem in a skew—symmetric self-dual problem which has a known interior
feasible solution on the central path. The solution of the embedding problem then
yields the optimal solution to the original problem, or gives a certificate of either
primal or dual infeasibility. In this way detailed information about the solution is
obtained.”

Despite the desirable theoretical properties of self-dual embeddings, the idea did
not receive immediate recognition in implementations, due to the fact that the embed-
ding problem has a dense column in the coefficient matrix. This can lead to fill-in of
Choleski factorizations during computation. In spite of this perception, Xu er al. [185]

UIf (D) is feasible but not solvable and d* is finite, then the big-M approach described here will not work.
In particular, the modified problem4.1 will have an optimal solution even though (D) does not.

>The idea of self-dual embeddings for LP dates back to the 1950’s and the work of Goldman and Tucker
[69]. With the arrival of interior point methods, the embedding idea was revived to be used in infeasible
start algorithms by Ye et al. [191] (see also Jansen et al. [89]).



SELF-DUAL EMBEDDINGS 63

have made a successful implementation for LP using the embedding, and it has even
been implemented as an option in the well-known commercial LP solver CPLEX-
barrier and as the default option in the commercial solvers XPRESSMP and MOSEK.
The common consensus now is that this strategy is a reliable way of detecting infeasi-
bility, and promises to be competitive in practice (see Andersen ef al. [10]).

For semidefinite programming the homogeneous embedding idea was first devel-
oped by Potra and Sheng [148]. The embedding strategy was extended by De Klerk
et al. in [44] and independently by Luo et al. [118] to obtain self-dual embedding
problems with nonempty interiors. The resulting embedding problem has a known
centered starting point, unlike the homogeneous embedding; this simplifies the anal-
ysis, since the central path is well-defined. The embedding technique is implemented
in the SDP solver SeDuMi by Sturm [167].

A maximally complementary solution (e.g. the limit of the central path) of the em-
bedding problem yields one of the following alternatives about the original problem
pair:

(I) a complementary solution pair (z*,S*) € P* x D* is obtained for the original
problem pair (P) and (D);

(I) an improving ray is obtained for either the primal and/or dual problem (so-called
strong infeasibility (see Definition 2.4) is detected);

(IIT) a certificate is obtained that no complementary solution pair exists and that neither
(P) nor (D) is strongly infeasible. This can only happen if one or both of the
primal and dual SDP problems fail to satisfy the Slater regularity condition.

Loosely speaking, the original primal and dual problems are solved if a complemen-
tary solution pair exists, or if one or both of the problems are strongly infeasible.

Unfortunately, some pathological duality effects can occur for SDP? which are ab-
sent from LP, for example:

m A positive duality gap at an optimal primal-dual solution pair;

m an arbitrarily small duality gap can be attained by feasible primal-dual pairs, but
no optimal pair exists;

= an SDP problem may have a finite optimal value even though its (Lagrangian) dual
is infeasible.

These situations cannot be identified with the embedding approach, unless an addi-
tional assumption is made: if the primal and dual problems are in so-called perfect
duality, and one is solvable, then additional information can be obtained from the em-
bedding, as was shown by De Klerk ef al. [46]. This assumption holds if for example
the primal is strictly feasible and the dual is feasible, by the strong duality theorem
(Theorem 2.2). Moreover, one can replace the problem to be solved by a larger prob-
lem which - together with its Lagrangian dual - satisfy these assumptions. In theory
at least, we can therefore make the assumption without loss of generality.

*Examples of these effects are given in Examples 2.1, 2.2, and 4.2.
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4.2 THE EMBEDDING STRATEGY

In what follows, we make no assumptions about feasibility of (P) and (D).
Consider the following homogeneous embedding’ of (P) and (D):

Tr(A;X) —7b; =0 Vi
-3 vid +7C -S =0
2y 4.3)
bTy ~Tr (CX) -p =0
y € R™, X >0, 7>0, S>>0, p>0.

A feasible solution to this system with 7 > 0 yields feasible solutions %X and %S to
(P) and (D) respectively (by dividing the first two equations by 7). The last equation
guarantees optimality by requiring a nonpositive duality gap. For this reason there is
no strictly feasible solution to (4.3).

Here we will describe an extended self-dual embedding due to De Klerk et al. [44],
in order to have a strictly feasible, self-dual SDP problem with a known starting point
on the central path.

The strictly feasible embedding is obtained by extending the constraint set (4.3)
and adding extra variables to obtain:

y,X,g,l;,%‘,p,v b8
subject to
Tr (A X) —7b;  +6b; =0
- Z;n:.l y]'A]' +7'C —GC’ -8 =0
bTy —Tr(CX) +0a —p =0
~bTy +Tr (CX) -7a —v =-8
y € R™, X >0, 720, 620, §>»0, p>0, v>0
4.4
where
l_)i = bi —Tr (Al)
C = C-1I
a = 1+Tr(C)
8 = n+2
andi=1...n

“The formulation (4.3) was first solved by Potra and Sheng [148, 149] using an infeasible interior point
method, and recently it has been incorporated in the SeDuMi software of Sturm [167].
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It is straightforward to verify that a feasible interior starting solution is given by
W=0,X=8"=Tand g =p° =70 = = 1.

Note also that the solution with v = 3 and all other variables zero is optimal, since
the objective function is always nonnegative. In other words, § = 0 in any optimal
solution. It is therefore a trivial matter to find an optimal solution, but we are only
interested in maximally complementary solutions.

The underlying idea is as follows: we wish to know whether an optimal solution to
the embedding exists with 7* > (. (Recall that this yields a complementary solution
pair to (P) and (D).) A maximally complementary solution will yield such a solution,
if it exists. In the next section it will become clear how maximally complementary
solutions may be obtained as the limit of the central path of the embedding problem.

SELF-DUALITY OF THE EMBEDDING PROBLEM

The dual of the embedding problem is essentially the same as the embedding problem
itself, which explains the ‘self-dual’ terminology. To prove it, we first consider a
generic form of self-dual conic optimization problems.

Theorem 4.1 Let K C R¥be a closed convex cone with dual cone K*and let A c
R**F be skew-symmetric. Then the Lagrangian dual of the optimization problem

p:f:inf{cTz | Az —s=—c, €K, s€K*} (4.5)
is given by
—inf{cTz | Az —s=-c, z €K, s€ K*}.
It follows that if problem (4.5) is strictly feasible, then p;f =0.

Proof:
The Lagrangian associated with problem (4.5) is

L{z,s,y) =Tz +yT(Az — s+ ¢) = (ATy + )Tz — yTs + 97,

and the Lagrangian dual of problem (4.5) is defined by

su inf  L{z,s,y) = T inf AT T . T .
S8 e lier P Y) 55{ v+, il {(4Ty+ Tz —yTs}

The inner minimization problem will only be bounded from below if ATy + ¢ € K*
and —y € K, in which case the optimal value of the inner minimization problem is
zero. We can therefore simplify the Lagrangian dual to

sup {cTy | ATyt ce IC*} .
—yeK

We now use the skew symmetry AT = — A4 and substitute new variables 4 = —y and
v = ATy + ¢ = Au + cto obtain the problem

sup{~cTu | Au —v=—c, uek, veK*}.
w,v
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Switching from maximization to minimization we obtain the required result. a
We can now show that problem (4.4) is self-dual by casting it in the generic form

4.5).

Corollary 4.1 The embedding problem (4.4) is self-dual.

Proof:
With reference to problem (4.4), we construct the skew-symmetric matrix A in (4.5)
as follows:

0 A —b b
4 —AT 0 svec(C) —svec (C)
. T —svec(C)T 0 a ’
-7 svec(C)T —a
where A is the m x %n(n + 1) matrix with row i given by svec(4;)T (i = 1,...,m).

We further group the variables in (4.4) as
z = [yT,svee(X)T,7,0)7, s= [T, svec($)T, p,v]7,

where z € R™ is an auxiliary vector of variables which will be restricted to the zero
vector; this is accomplished by choosing the cone X as®

K =R™ xsvec(S]) x Ry x Rj.
The dual cone is therefore given by
K* = 0m x svec (S) x Ry x R

Note that the condition s € X* in (4.5) implies z = 0,,, as required. Finally, we define
¢ € R™HIn(r1)+2 4 having last component 3 and all other components zero.

It is straightforward to verify that we have now cast the embedding problem (4.4) in
the generic form (4.5), so that the self-duality of the embedding follows from Theorem
4.1. a

COMPLEMENTARITY FOR THE EMBEDDING PROBLEM

The strict feasibility and self-duality of the embedding problem (4.4) imply that the
duality gap equals 263. It is readily verified that

03 ="Tr (XS)+7p+0v. (4.6)

*We use the notation svec (Sj{) = {:1: € REN(nHD) { smat(z) € S,T}
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This shows that an optimal solution (where #3 = 0) must satisfy the complementarity
conditions:

XS =0
pr = 0 @4.7)
v = 0.

4.3 SOLVING THE EMBEDDING PROBLEM

The embedding problem can be solved by any interior point method that ‘follows’
the central path. But first we must formalize the notion of the central path of the
embedding, since the embedding problem is not in standard form. To this end, one
can relax the complementarity optimality conditions (4.7) of the embedding problem
to

XS = ul
TP = M
v = p

If one defines new ‘primal and dual variables’ X, S of dimension n + 2 as follows:
X S

%= .,

v 6

¥}
Il
°

then the central path of the embedding problem can be defined as the (unique) solution
of
XS=yul, p>0,

subject to (4.4), denoted by (X'(,u), S'(u)) for each p > 0.

Search directions for the embedding problem

Several interior point algorithms will be analyzed in the following chapters. This anal-
ysis, however, will be for problems in the standard form (P) and (D). The only part of
the analysis that is different for the embedding problem, is the actual computation of
feasible search directions. In other words, once the search directions have been com-
puted the rest of the analysis uses only the orthogonality property, which also holds
here. To see this, let (A)Z' , AS ) denote any feasible direction for the embedding prob-

lem at the feasible point (X', 5‘) Itis straightforward to verify that Tr (AX'AS') =0,

i.e. the orthogonality principle holds. Note that this is enough to ensure the existence
and uniqueness of the central path, by the proof of Theorem 3.1 (see Remark 3.1).
Moreover, it is enough to ensure that the limit of the central path is maximally com-
plementary (see the proof of Theorem 3.4).
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In other words, all we have to show here is that the search directions used in interior
point algorithms are well-defined for the embedding problem.
For continuity of presentation we defer this analysis to Appendix F.

44 INTERPRETING THE SOLUTION OF THE EMBEDDING
PROBLEM

We can now use a maximally complementary solution of the embedding problem (4.4)
to obtain information about the original problem pair (P) and (D). In particular, one
can distinguish between the three possibilities as discussed in the introduction, namely

() A primal-dual complementary pair (X*, §*) € P* X D* is obtained;
(ID A primal and/or dual improving ray is detected;

(IIT) A certificate is obtained that no complementary pair exists, and that neither (P)
nor (D) has an improving ray.

Given a maximally complementary solution of the embedding problem, these cases
are distinguished as follows:

Theorem 4.2 Let (y*, X*, 7*, 6*, S*, p*, v*) be a maximally complementary so-
lution ofthe self—dual embedding problem (4.4). Then:

(i) if T* > 0, then case (1) holds;
(ii) T =0and p* > 0, then case (1) holds;
(iii) if T* = p* = 0, then case (Ill) holds.

Proof:
Consider the two possibilities 7* = 0 and 7* > 0.

Case:7" >0
Here, ;I;X * and _%.S* are maximally complementary and optimal for (P) and (D)

respectively, i.e. case (/) holds.

Case: 7" =0

In this case, one has 7 = 0 in any optimal solution of the embedding problem. This
implies no complementary solution pair for (P) and (D) exists, because if such a pair
exists we can construct an optimal solution of the embedding problem with 7 > 0
as follows: Let a complementary pair (Xp, Sp) € P* x D* be given, and set 6* =
p* =0, X* = 7Xp, and S* = 7*Sp, where 7* > 0 will be specified presently.
This choice of variables already satisfies the first three constraints of the embedding
problem for any choice of 7* > 0 (see (4.4)). The fourth equation of the embedding
problem can now be simplified to:

I

vt n+2-Tr (X" +8")—7"
= n+2—T*('I‘I'(Xp+Sp)+1)
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One can therefore choose any 7* > 0 which satisfies

n -+ 2
< T (Xp+Sp)+1’
to obtain a value v»* > 0. We have therefore constructed an optimal solution of the

embedding problem with 7* > 0.
If 7* = 0 it also follows that Tr (4;X*) = 0 for all ¢ and Z:’;l yrA; £ 0. Now
we distinguish between two sub-cases: p* > 0 and p* = 0.

*
T

(4.8)

Sub-case: 7* =0andp* > 0
Here one has bTy* — Tr (CX*) > 0,i.e. bTy* > 0 and/or Tr (CX*) < 0. In other
words, there are primal and/or dual improving rays and case (II) applies. If ¥Ty* > 0
then y* is a dual improving ray. In this case (P) is infeasible by Lemma 2.2, and if
(D) is feasible it is unbounded. If Tr (CX*) < 0 then there exists a primal improving
ray. In this case (D) is (strictly) infeasible, and if (P) is feasible it is unbounded. If
both $Ty* > 0 and Tr (CX*) < 0, then both a primal and a dual improving ray exist
and in this case both (P) and (D) are infeasible.

Conversely, one must show that if there exists a primal and/or dual improving ray,
then any maximally complementary solution of the embedding problem must have
p* > 0and 7* = 0. Given a primal improving ray X > 0, one can construct an
optimal solution to the embedding by setting X* = xX, where x > 0 is a constant to
be specified later, and further setting 7* = 0, 8* = 0 (which guarantees optimality),
and y* = 0, to obtain:

pr = —kTr(CX)>0
KTr (4, X)=Tr (A X") = 0, i=1,...,m
§* =0
vto= n+2+nT&‘(CX—X).

The first three equations show that p*, X™* and S* are feasible. It remains to prove that
v* is nonnegative. This is ensured by choosing

K 07

T (CX-X)
where the inequality follows from the definition of an improving ray. The proof for a
dual improving ray proceeds analogously.

Sub-case: 7 = p* =0
Finally, if a maximally complementary solution is obtained with 7* = p* = 0, then
we again have that all optimal solutions yield p = 7 = 0, i.e. cases (I) and (II) cannot
occur. This completes the proof. O

Two important questions now arise:

m How does one decide if 7* > 0 and p* > 0 in a maximally complementary
solution, if only an e-optimal solution of the embedding problem is available?

m  What additional information can be obtained if case (III) holds?

These three questions will be addressed in turn in the following sections.
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4.5 SEPARATING SMALL AND LARGE VARIABLES

A path following interior point method only yields an e-optimal solution to the em-
bedding problem. This solution may yield small values of p and 7, and to distinguish
between cases (I) to (II) it is necessary to know if these values are zero in a maxi-
mally complementary solution. This is the most problematic aspect of the analysis at
this time, and only partial solutions are given here.

In what follows the set of feasible X for the embedding problems is denoted by P
and the optimal set by P*. The sets D and D* are defined similarly.

To separate ‘small” and ‘large’ variables we need the following definition.®

Definition 4.1 The primal and dual condition numbers ofthe embedding are defined

as
op = sup f(X), op:= sup f(S),
XeP- SeD+
where f is defined by
fX=0

FX) =

mini:,\i()'()>0)\i(X) otherwise.
The condition number o of the embedding is defined as o := min{op,op}.

Note that o is positive and finite because the solution set of the self-dual embedding
problem is bounded.

In linear programming a positive lower bound for o can be given in terms of the
problem data (see Roos et al. [161], Theorem 1.33). It is an open problem to give a
similar bound in the semidefinite case.

If we have a centered solution to the embedding problem with centering parameter
1, then we can use any knowledge of o to decide the following:

Lemma 4.1 For any positive u one has:
() >o/n  and p(p) < Apfoc ift* >0and p* =0
T(p) <npf/o and p(p) > o/a  if T =0and p* >0,
where the superscript * indicates a maximally complementary solution.

Proof:

Assume that p* is positive in a maximally complementary solution. Let S* € D*be
such that p* is as large as possible. By definition one therefore has p* > o. Recall
that by the orthogonality property one has

Tr (X()$") < 7p,

SThis definition is due to Ye [187] in the special case of LP.
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which implies that the eigenvalues of X (,u)g * satisfy
by (X(u)g*) <au, Vi

In particular

T(n)p* < np.
This shows that ~ ~
(W) < o5 < 25,
p o
Since 7(p)p(p) = p one also has
o
pln) 2 =
n
The case where 7* > 0 and p* = 0is proved in the same way. a

The lemma shows that once the barrier parameter y has been reduced to the point
where u < (%)2, then it is known which of 7 or pis positive in a maximally com-
plementary solution, provided that one is indeed positive. The smaller the condition
number, the more work will be needed in general to solve the embedding to sufficient
accuracy.

The proof of Lemma 4.1 can easily be extended to the case where the e-optimal
solution is only approximately centered, where approximate centrality is defined by

< Amax(X S)

K(XS) = —= <R
Amiu()(S)

b

for some parameter & > 1. Formally one has the following result.
Lemma 4.2 Let (X',g) be a feasible solution of the embedding problem such that
k(X S) < kfor some k > 1. One has the relations:

and pﬁyf—gl ift* >0and p* =0 (4.9)

and p> Z ift* =0and p* >0

— RKn
where the superscript * indicates a maximally complementary solution.

The condition number is related to the concept of ill-posedness (see e.g. Renegar
[157]) of the SDP problem to be solved. Consider the following example.

Example 4.1 The problem in Example 2.2 is weakly infeasible, but it can be consid-
ered as ill-posed in the following sense: if we perturb the data slightly to obtain the
problem

sup ¢ ¥1 | % 0 = (4.10)
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for some small ¢ > 0, then the problem (4.10) and its dual are strictly feasible and
therefore solvable. Problem (4.10) has the unique solution

1/e 1 . 1
S* = sy Y1 = T
1 € €
and its dual has solution
1

xr_| z ~%

e 1

T2 2e2

Assume now that we solve problem (4.10) via the embedding approach. Itfollowsfrom
inequality (4.8) that the optimal value ofthe embedding variable T will satisfy
4
— 1 1 1 < 862.
1+ -+ets+ 52

This shows that the condition number o will be 0(62). Thus, we will have to reduce u
to the point where p < Q (64) in order to correctly classify the problem status via the
embedding approach. The required value of p will typically be smaller than machine
precision, ifsay € <1074,

This illustrates the inherent numerical difficulty with problems like the weakly in-
feasible problem in Example 2.2. O

Note that Lemma 4.1 has very limited predictive powers: if p(u) < 2 and T(p) <
_ a
£ then one can conclude that 7* = p* = 0 in a maximally complementary solution.
In all other cases no conclusion can be drawn unless some a priori information is

available about (P) and (D).

In order to improve the results of Lemma 4.1 one must establish the rate at which
7(u) and p{p) converges to zero in the case where both are zero in a maximally com-
plementary solution. This remains an open problem. Example 3.3 shows that the

convergence rate will certainly not be better than O (,LLT(FZ)> in general, but this

may not be the worst case behaviour.

4.6 REMAINING DUALITY AND FEASIBILITY ISSUES

If p* = 7* = 0 in a maximally complementary solution of the embedding problem
(i.e. case (IIT) holds), then one of the following situations has occurred:

1) The problems (P} and (D) are solvable but have a positive duality gap;
2) either (P) or (D) (or both) are weakly infeasible;

3) both (P) and (D) are feasible, but one or both are unsolvable, e.g. p* isfinitebut
is not attained.

Case 1) was illustrated in Example 2.1, and case 2) by Example 2.2. The remaining
case occurs in the following example.
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Example 4.2 The following problem (adapted from Vandenberghe and Boyd [180])
is in the form (D): find

sSup y2
subject to
0 0O 1 00 1 00
y1{0 1 0 |+yp2[{0 0 1 [=2(0 0O
0 00 010 0 0 O

This problem is solvable with optimal value y3 = 0 and the corresponding primal
problem is solvable with optimal value 1. a

Note that in all cases the problems under consideration are ill-posed, in the sense
discussed in Example 4.1. In other words, an arbitrary small perturbation can change
the feasibility status. We therefore have little hope of solving such problems on a
computer where rounding errors in effect introduce small perturbations.

From a purely theoretical point of view one can get more information on the solu-
tion status of such problems from the embedding if we make an additional assumption.
To fix our ideas, we wish to determine the status of a given problem in the standard
dual form (D). We now make an additional assumption.

Assumption 4.1 Problems (P) and (D) are in perfect duality, and P* is non-empty
ifd* is finite.

We can make this assumption without loss of generality by replacing (D) and (P) by
the regularized problems (D} and (P, ;) (see Appendix G).

Theorem 4.3 (De Klerk ef al. [46]) Consider a problem (D) in standard form such
that (D) and its dual (P) satisfy Assumption 4.1. Assume that a maximally comple-
mentary solution

(y*7 X*7 7_*7 0*7 S*’ p*7 l/*)
of the embedding problem for (P) and (D) is known. The following now holds:
1. Ift* >0, then T%S* is an optimal solution of (D); STOP
2. Ifp* > (O, then strong infeasibility of either (P) or (D) or both is detected; STOP

3. Ift* =p* =0, then

e (44) | =
;

where X () and T(u) refer to the values ofthe embedding variables on the central
path.
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5

THE PRIMAL LOGARITHMIC BARRIER
METHOD

Preamble

Primal logarithmic barrier methods for SDP are analysed in this chapter. These algo-
rithms are also known as primal path-following methods, since they follow the primal
central path approximately to reach the optimal set. In particular, a simple analysis
of the so-called method of approximate centers for SDP is presented here, based on
He et al. [82]. This method is an extension of a method by Roos and Vial [162] for
LP. Purely primal (or purely dual) methods only use information regarding the primal
(or dual) feasible iterate, but not both. Primal-dual methods use both primal and dual
information in forming a search direction. For many semidefmite programming prob-
lems arising in combinatorial optimization, either the primal feasible X or the dual
feasible S will always be sparse, but not both. The best way to exploit sparsity is often
to work with a purely primal, or purely dual method.

5.1 INTRODUCTION

In the rest of this monograph we assume strict feasibility of (P) and (D) (Assumption
2.2 on page 23). As before, let (X (p), y(), S(p)) denote the unique solution of the
system of centrality conditions

Tr(A;X) = b, X»0, i=1...,m
duiAi+8 = C, §»0
=1

75
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XS = ul

Recall from Section 3.1 that the existence and uniqueness of the solution follows from
the fact that (X (), y(p), S(p)) is the unique minimum of the strictly convex primal-
dual barrier function

(X, 8) = iﬁ (XS) - logdet(XS) —n,

that is defined on ri (P x D). The primal-dual barrier is easily shown to be the dif-
ference (up to the constant n) between the primal and dual barrier functions, defined
respectively on ri (P) and ri (D) by

FAX) = L1r (0X) — logdet X
n

and

iy, S) = «ibTy —logdet S.

The primal central path corresponds to theminimizers X (u) of f'(X). For this reason
u is referred to as either the centering parameter or the barrier parameter.

The short step algorithm to be presented follows the primal central path closely,
and the search direction AX is simply the projected Newton direction of the primal
barrier; the projected Newton direction is obtained by minimizing the quadratic Taylor
approximation of f}' subject to the condition AX € L for a feasible primal direction.
Formally the definition is (see e.g. Gill etal. [63]):

AX = argmin (VIHX),AX) + % (VEH(X)AX,AX)
subject to the feasibility conditions
Tr(A;AX)=0, i=1,...,m.
We can now give a formal description of the algorithm for (P).

Notation

In order to keep notation simple, we do not indicate iterates generated by algorithms
by using subscripts or superscripts. This necessitates ‘programming language’-type
expressions such as X := X 4+ AX in the statement of algorithms, although notation
like X+ .= X*) L (AX )(k) is certainly more pleasing from a mathematical point
of view. We will also use statements like: ‘Let X € P denote the current iterate’, if
we consider the situation at the start of an arbitrary iteration.
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Short step primal logarithmic barrier algorithm

Input
A pair (X°, po) such that X© isstrictly feasible and ‘sufficiently centered’;

Parameters
An accuracy parameter € > 0.
An updating parameter 8 := 4—\—/—71—1@;
begin
X = X% p:= pg;
while ny>e¢ do
X =X+AX,
pi=(1—0)u;

end
end

In Section 5.2 we will quantify the requirement ‘sufficiently centered’ that appears
in the statement of the algorithm. Loosely speaking, we require that the starting point
X € 1i (P) is ‘sufficiently close’ to theprimal p°-center X (u°). Moreover, we will
show in the following sections that the algorithm converges to an e-optimal solution

in O (y/nlog(nu®/e)) iterations.

Outline of the chapter

The chapter is structured as follows: In Section 5.2 the centrality function is intro-
duced, which is then related to the primal search direction in Section 5.3. The be-
haviour of the primal step near the central path is analysed in Section 5.5. The anal-
ysis of a centering parameter update in Section 5.6 allows the complexity analysis of
Section 5.7. Different versions of the dual algorithm are discussed in Section 5.8 and
Section 5.9. The chapter ends with a section on the application of the dual method to
SDP’s arising from relaxations of combinatorial optimization problems.

5.2 A CENTRALITY FUNCTION

For X € ri (P) and a given parameter . > 0, wedefine

11,1 i
S(X, u),y(X, = ar; min H—XESXE~IH; yuAi+8S=C5.
(SCX, 1), 4(X, 1) gsesmyeRm{ - >y
(5.1)
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In other words, S({X, ) satisfies the dual feasibility constraints without the semi-
definiteness condition. We define the ‘centrality function’!

(5.2)

X3S(X, wx} 1“
; .

55(X, 1) 1= H

Note that one has
(X, ) =0 = X=X(u).

We will refer to X as being sufficiently centered with respect to p if 6,(X, p1) is smaller
than some prescribed parameter.

The matrix S(X, ) plays an important role in the analysis of the algorithm. In
particular, the search direction can be expressed in terms of it, as is shown in the next
section.

5.3 THE PROJECTED NEWTON DIRECTION FOR THE PRIMAL
BARRIER FUNCTION

Recall that the projected Newton direction for the primal barrier
1
fH(X) = =Tr(CX) — logdet X
7

at a given pair (X, p) is defined as:

1

AX arg min (VX p), AX) + 5 (VAR X, p)AX,AX)  (5.3)

— . 1 2 2
= argr‘IAlg?Tr (Vf;‘(X,u)AX) + E'I‘r (V f;‘(X,u)AX ) (5.4)
subject to the feasibility conditions
Tr(4,AX)=0, i=1,...,m,

where V f}* and & f4 denote the gradient and Hessian of f/f respectively. In other
words, the projected Newton direction minimizes the quadratic Taylor approximation
to f} subject to the condition for a feasible direction. We will denote the projected
Newton direction at X by AX to keep notation simple.

As in the LP case, we can derive an explicit expression for AX. To this end, it is
shown in Appendix C that

1
VX)) = ;C - X1

lBy centrality function we meanafunction f : ri (P x D) — Ry such thatif (X, S) is a global minimizer
of f, then (X, S) = (X (u), S(p)) forsome p > 0.
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and V2 f;‘(X 1) 0 S > Sy s the linear operator that satisfies
VI(X)AX = X TTAXX T YAX €S,
Substitution of the gradient and Hessian in (5.3) yields
AX = argmingy {%’I‘r (CAX) - Tr (X1AX) + %’I‘r ((X‘IAX)Z)} ,

subject to
Tr(A;AX) =0, i =1,...,m.

The KKT optimality conditions for this problem are

1 m
—C- X'+ XTIAXXT 4 yidi = 0
K i=1
Tr (4,AX) = 0, i=1,...,m.

Straightforward manipulation of the optimality conditions yields

vec (X“%AXX‘%) = — [I - AxT(AxAxT) ' Ax] vec (lX%CX% - 1) :
g (5.5)
where Ax is the m x n? matrix with rows vec (X%AjX%)T, forj = 1,...,m
Expression (5.5) is simply the orthogonal projection of the vector

1 .
vec (—X%CXE ~ 1)
n

onto the null-space of Ax.2 Note that the row space of Ax is given by
span {vec (X%AlX%) ..., VeC (X%AmX%) } ,
and the null-space is the orthogonal complement of this space.

Reverting to the space of symmetric matrices S,,, it is clear that the search direction
AX is obtained via a projection of the matrix (}%X ICX5 -1 ) onto the orthogonal

complement of
span{X%AlX%, . ,X%AmX%}.
The relevant projection operator P4, : S, — Sy is given by
Py (M) = arg min {|W — M]| : Tr (X2 AXIW)=0, i=1,...,m}.
i (5.6)

2 A different but equivalent approach may be found in a paper by Nemirovski and Gahinet [133], where
they consider the projection onto span {A1, ..., Am }L relative to the metric induced by the inner product

(A, B>x% =Tr (AX%BX%) for symmetric matrices A and B.
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We can now write the search direction AX in terms of S(X, p).

Lemma 5.1 The projected Newton direction at X € 1i(P) has the following two
representations:

) toxs: . X, u)X
AX = - xt (PAX (¥_1))p?(%_x)

Proof:

We will compare the two representations by looking at the optimality conditions for
the respective underlying optimization problems, namely (5.6) and (5.1).

1 1
Note that the optimization problem that yields P4, (x:gixz -1 ) via (5.6) is

min -1
WES,

H Tr (X%AiX%W)zo, i=1,...,m

5.7
The KKT (first-order) optimality conditions for this problem are
1 1
w— [ XZexz 1) +37" 6X31A4XE = 0,
( z 2in (5.8)
Tr(A:XiWXz) = 0, i=1,...,m.
Similarly, the optimization problem that yields S(X, p), y(X, p) is
X38X3 o
min {220 0| YA+ S =0, (5.9
yeR™ ses, H P
and the associated KKT optimality conditions take the form
XSX - X
PLE Q T oon
Tr (4:Q) =0, i=1...,m (5.10)
Z?}_—l yzAl + S = C7

where @) € &,.1If we denote the solution of System (5.10) by
(y(X, 1), S(X, 1), Q(X, 1)),
then it follows that

§(X,p) = iy(X, p)and W (X, p) == pX~EQ(X, p) X %

satisfy the first equation of System (5.8). The second equation of System (5.10) shows
that .
Tr (A, X3 W(X,p)Xz)=0, i=1,...,m.
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Thus an optimal solution to problem (5.7) can be constructed from an optimal solution
to (5.9) and vice versa. Since problem (5.9) is simply a linear least squares problem
and consequently has a unique solution, the equivalence of the two definitions of AX
follows. a

Computation of the search direction in practice

The optimality conditions (5.10) may be solved by rewriting them as
Zym (X A:iXA;) = Tr(XA;XC) ~ pTr(4;X), j=1,...,m. (5.11)
i=1

The solution of this m x m linear system yields y(X,p). The coefficient matrix
[Tr (X A; X A;)] of the linear system (5.11) is symmetric positive definite because the
matrices 4; (i = 1,...,m) are linearly independent (see Appendix A, Lemma A.3).
Letting S(X, p) = > v, vi(X, u)A; — C, the search direction is calculated from

1
AX =~ XS(X,m)X + X.

54 THE AFFINE-SCALING DIRECTION

Lemma 5.1 shows that the search direction AX may be split into two terms, say

AX = lAX“ + AXE,

I
where
AX® = — X} (PAX (X%CX%)) X3 (5.12)
and
AXC:= X7 (Pa, (I) X%, (5.13)

The terms AX? and AX¢ are respectively called the affine—scaling and centering
components of the search direction. Note that the affine—scaling component of the
search direction A X becomes dominant for small values of . Remember that we are
trying to compute the ‘target’ point X (u) on the primal central path. We can therefore
interpret the affine—scaling direction as a ‘greedy’ approach where we ‘target’ the limit
point of the primal central path. In other words, the affine—scaling direction aims at
maximal decrease of the objective in a single iteration without attempting to stay near
the central path.

This geometric interpretation will now be further motivated by a different formula-
tion of AX¢,
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A SECOND FORMULATION FOR THE AFFINE-SCALING DIRECTION
By the definition of the projection P4, in (5.6) we can write the definition of AX*? as
XTIAX°X"F = arg min {|[W - X:CX3|| : Tr(X3A:X2W) =0}, (5.14)
€8n

fori =1,...,m.

The affine—scaling direction can also be defined in a different way, namely

2
<1, Tr(4AX) =0

(5.15)
fori = 1,..., m. Itis easily verified that two definitions are equivalent by comparing
the optimality conditions of the two minimization problems (5.14) and (5.15).

X+AX®ecP

AX® = argrgi)?{Tr(CAX) : HX—%AXX—%

Lemma 5.2 Let X € P be given. IfAX is afeasible direction (i.e. Tr (4;AX) =0
(i = 1,..., m)) and also belongs to the ellipsoid
2
ol

{AX : ”X—%AXX—%

then X + AX € P.
Proof:

The condition
1 112 n 1 L 2
HX—EAXX—EH =Y n(xtaxx—t) < (5.16)
i=1

implies that .
i (X—%Axx-%)l <1, (i=1,...,n),

which in turn shows that
1 1
T+ X 2AXX "2 = 0.

Pre and post-multiplying by X z gives X + AX > 0, which is the required result. O

The ellipsoid defined by (5.16) is called the Dikin ellipsoid at X.

Muramatsu [130] proved that an algorithm using the affine—scaling direction can
converge to a non-optimal point, regardless of which (fixed) step length is used. In
order to formulate a convergent algorithm, it is therefore important to add the centering
component A X ¢ to the search direction. (For LP itis possible to choose the step length
such that the affine—scaling algorithm is convergent.)
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55 BEHAVIOUR NEAR THE CENTRAL PATH

We now consider the situation where, for a given g > 0, we know an X € 1i (P) such
that 6,(X, ) < 1. We wish to know what the effect of a full projected Newton step

1
Xti=X 4+ AX =2X - ~XS(X,p)X.
n

is in this situation.

The pair (X+, S(X, 1)) now satisfies the primal and dual equality constraints but
not necessarily the semidefiniteness requirements. The next two lemmas show that
the semidefiniteness requirements are also satisfied if X is sufficiently centered with
respect to p.

Lemma 53 If X > Oand 6,(X,p) < 1,then S(X, u) > 0.
Proof:

By the definition of 6,(X, u) in (5.2) we have

X3S(X,pm)X?
U

Tr ((%X%S(X, pXi— 1)2)

n

=¥ (ixi (X%S(X,M)X%) - 1)2.

=1

op(X,p)? = H -1

Using 6,(X, ) < 1, we have

Zn: (l/\i (X%S(X,M)X%) - 1)2 <1,

i=1 H

which shows that ); (X%S(X,M)X%) >0(i=1...,n),and thus S(X, ) > 0. O

The last lemma shows a very interesting feature of the method. Although we only
use primal feasible X € ri(P) in the execution of the algorithm, we obtain feasible
dual points S(X, p) € ri(D) as a bonus whenever 6,(X, 1) < 1. This is important,
because it gives us the upper bound

Tr(CX) - p* < Tr(XS(X, p))

on the difference between the objective value at the current iterate and the optimal
value, by the weak duality theorem.
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The next step is to show that Xt := X + AX is feasible if X is sufficiently
centered.

Lemma 54 Let Xt = X +AX =2X — %XS(X, WX If X =0 and 6,(X, p) <
1, then X+ > 0.

Proof:

Note that X+ may be written as
1 1 S(X
X+ =X13 <21—X5%X%) Xt (5.17)

Because 6,(X, ) < 1, Le. HﬁX%S(X,u)X% — IH < 1, itfollows that

n 1 1
(st )
um

i=1
Thus we have
1 1 1 .
A <;XZS(X,[,L)X2> €(0,2), i=1,...,n
which implies
S(X
Ai (ZI—X%MX%) €(0,2), i=1,...,n
u

and consequently X+ > 0, by (5.17). O

One also has quadratic convergence of the primal iterate to the central path.’
Lemma55 If X € 1i(P)and 6,(X,pn) < 1 then
1
Xt =X +AX=2X - - XS(X,u)X
7

satisfies 6, (X ¥, ) < 62(X, ).

*The quadratic convergence result was first established by Faybusovich [55], and later by He et al. [82] and
Anstreicher and Fampa [12]. It was also obtained in the general setting of convex programming problems
in conic form for self-scaled cones by Nesterov and Todd [138].
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Proof:
By the definition of é,(X, 1) in (5.2) we have

2

X+3S(X+,p) X+t
Sp(XF )P = H SXTLWXTE
u
2
~1I

H X+58(X, ) X+1
i

Tr ((%S(X, WXt — 1)2) .

Substituting X+ = 2X — 2 XS(X, p) X yields

IA

S, (X, ) Tr ((%S(X, 1) [2)( = iXS(X, u)XJ - I) 2)

Tr ((—S(X, WX — I)4>

Tr lX%SX,uX%~I4
((rtsernct 1))

—

=

)
2

2
H<1X%S(X, pXi— I)
n
4

= 6,(X, ),

IA

1
H;X%S(X, WXi— I

where the second inequality follows from the sub-multiplicativity of the Frobenius
norm (see Appendix A). o

5.6 UPDATING THE CENTERING PARAMETER

Once the primal iterate X is sufficiently centered, i.e. 6,(X, ) < 7 for some tolerance
7, the parameter u can be reduced. To fix our ideas, we update the barrier parameter
in such a way that we will still have 6,(X, ut) < % after an update u — ut. The
followingstep X + AX will then yield a feasible X T satisfying §,(X*+, u*) < %,by
Lemma 5.5.

In order to realize these ideas, we must analyse the effect of a y-update on the
centrality function.
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Lemma 5.6 Define a p—update by pt = (1 — 8)u, where 0 < 6 < 1 is a given
parameter. It then follows that

(X, 1%) < g (X, 0) + 6V).

Proof:
Using the definition of S(X, u1) we may write
Xis(X,ut)xi I“
(1-0)u
X3i8(X,p)Xz
o

1 1
_|[xisxemxt 1 o6

op(X,ut) =

-1

IA

IA

(1—6)u 1-6"  1-46
1

1 X3S(X, )Xz
(H CTOL S +0|In)
1—-6

1-6
where the second inequality follows from the triangle inequality.

(JP(Xv /1') + 0\/7_") ’

The above result enables us to choose an updating parameter § which guarantees
that the primal iterate remains sufficiently centered with respect to the new param-

eter = (1 — Q)p.
Lemma 5.7 Let 6,(X,p) < % and 6 = 1/(4\/n + 2). After a step X+ = X + AX

and a subsequent update p* = (1 — 0)p, one has 6,(X+,u") < 1.

Proof:
Using Lemma 5.6 and Lemma 5.5 successively we get
1
(X" u") < 5 (G(XT 1) +6Vn)

< Tl (B )+ 0vR).

Substitution of § = 1/(4\/7_1 + 2) gives

<4\/ﬁ+2<1+ vn ):%

SAX+ ury< VR TAf L VT
WX S AT \d Tavn 1

b

which completes the proof.
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Dynamic p-updates

It is easily verified that if 6, (X, ) < %, the dynamic update

%—JP(X’AU’)> 1
\/ﬁ+% ~ 4y/n+2

ensures that §,(X, ut) < %, if u* = (1—8)u. A natural question is whether it is pos-
sible to find the smallest value of 4% such that the proximity condition 6,(X, u*) < %
still holds. This is indeed possible; the key observation is that é,(X, ) can be rewrit-
ten as

6=

l

6p(X, 1) = || X <AXC+ AXG) Tz

?

by the definition of §, and Lemma 5.1.

Denoting D° := X-3PAX°®X~%and D° ;= X" AX®X~%,we see that the
smallest value of 4+ which still satisfies 6, (X, ut) < %is the smallest positive root
of the equation

1 1
P P

Squaring both sides of the last equation yields the following quadratic equation in i:

IID“H + Tr(D“DC)+HDC|| =0,

»Jkl'—‘

which can be solved to obtain the desired value pt.4

5.7 COMPLEXITY ANALYSIS

To prove the polynomial complexity of the algorithm, we need the following lemma
that bounds the duality gap in terms of the centrality function ¢,,.

Lemma 5.8 [f X €ri(P)and 6,(X,pu) < 1fora giveny > 0, then

p(n = 6p(X, n)v/n) < Tr(CX) —bTy(X, 1) < p(n+ &(X, w)v/n) .

Proof:

Note that

b

Tr (CX) - bTy(X, u) = Tr (XS(X, 1)) = Tr (X7 S(X, u) X 7).

*This dynamic updating strategy is the extension of the strategy for LP described by Roos et al. [161],
§6.8.3.
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Using the Cauchy—Schwartz inequality yields

8p(X, p)v/n = ‘ XESX, X3 HE ‘w _a,
which implies that
n— (X, u)v/n < w <n+6,(X, p)vn,
which in turn gives the required result. a

We can now derive the worst case complexity bound of the algorithm.

Theorem 5.1 Let ¢ > 0 be an accuracy parameter, § = W_rlm and p® > 0. Let

X0 = 0be a strictly feasible starting point such that 6,(X°, u°) < % The algo-

rithm terminates after at most [6\/7_Llog ﬂf:—o—‘ steps, the last generated points X and
S(X, ) are strictlyfeasible, and the duality gap is bounded by Tr (X S(X, u)) < 3e.

Proof:

After each iteration of the algorithm, X will be strictly feasible, and 6,(X, p) < 1/2,
due to Lemma 5.7. After the k-th iteration one has p = (1 — @)*p. The algorithm
stops if k is such that

npo(l - 0)F < e
Taking logarithms on both sides, this inequality can be rewritten as
nul
pt

—kIn(l — 6) > log

Since—In (1 — €) > 6, the last inequality will certainly hold if

0
k6 > log 2.
€

which implies
0
k> 6y/nlog -

€

for the default setting § := This proves the first statement in the theorem. Now

1
4/n+2°
let X be the last generated point; then it follows from Lemma 5.3 that S(X, u) = 0.

Moreover, the duality gap is then bounded by

Tr (X S(X,p))

IA

o5

(B0 3,

where the first inequality follows from Lemma 5.8. This completes the proof. a

IA
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5.8 THE DUAL ALGORITHM

The algorithm for the dual problem is perfectly analogous to that of the primal prob-
lem. If one defines
"

S3XSz

X(S,p) := arg min
i

‘ Tr A; X = b;, i:l,...,m},

for a strictly feasible dual variable S > 0, then the first-order optimality conditions
which yield X (S, u) are

S[——I] ZAyH = 0 (5.18)
rI‘I‘(A,X) = bi, i:l,...,m. (519)

Pre- and post-multiplying the first equation with S~ and subsequently using the sec-
ond equation yields:

ZAyJI‘r (A,-S_IA]-S_I) = _ibj + Tr (AjS_l) , J=1,...,m. (5.20)
If we now define

SEX(S,p)S*
u

Jd(svu) = -1

b

then we can repeat the analysis for the primal algorithm, but with the roles of X
and § interchanged. The search direction of the algorithm, i.e. the projected Newton
direction of the dual barrier f¥, becomes

—

AS = S <I—1S%X(s,u) ) 5% = — Z yiA;, (5.21)
K =1

where Ay is obtained by solving (5.20), and A S subsequently follows from

== i Ay A
i=1

We now give a formal statement of the short step dual logarithmic barrier method.



90 Aspects of Semidefinite Programming

Short step dual logarithmic barrier algorithm

Input
A strictly dual feasible pair (S°, y°);
A parameter pg > 0 such that 64(S°, pg) < %
Parameters
An accuracy parameter € > 0.
An updating parameter 4 := 4\/—++2;
begin
S = 8% pu = po;
while ny>e¢ do
5:=28— %SX(S, ©)S;
pi=(1-0)u;

end
end

Due to the symmetry in the analysis, the dual algorithm has the same complexity
bound as the primal algorithm.

Remark 5.1 An important observation is that it is not necessary to form X (S, i)
explicitly in order to decide whether or not it is positive definite, or to subsequently
calculate the duality gap ifit is indeed positive definite: by (5.18) we know that

X(S,4) =0¢= S+ Ay A; = 0.
=1
Moreover, note that if X (S, ) > 0, then the duality gap at (X (S, u), S) is given by
Tr (X(5,1)5) = uTr (S — AS),

by (5.21). These observations are Important when exploiting sparsity in the problem
data, as we will see in Section 5.10.

5.9 LARGE UPDATE METHODS

The updating strategy for u described thus far is too conservative for practical use. In
this section we describe two updating strategies that allow much greater reductions of

.
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THE DUAL SCALING METHOD

This method uses a dynamic updating strategy for ;, namely
_ Tr(XS)
n+vyn’

where S € ri (D) is the current dual iterate, X & P is the best-known primal solution,’
and v > 1is a given parameter.

Dual scaling algorithm

Input

A pair (X° 8% € 1i (P x D);

A parameter up > 0 such that §4(S°, up) < %
Parameters

An accuracy parameter € > 0;

A parameter v > 1;

begin
X =X%8:=8%p:= pugp;
while Tr(XS)>¢ do
S:=285— %S’X(S7 un)S;
if X(S,p) = 0then X := X (S, pu);
_ Tr(XS).
u L n-}—u\/ﬁ’
end
end

Again, the steps in the algorithm that involve X (S, 1) should be interpreted in light
of Remark 5.1: we do not have to form X (S, u) explicitly in order to do the dual step
S +AS, or to decide whether X' (S, 1) = 0. Moreover, the role of the matrix X in the
statement of the algorithm is also symbolic — we do not need to store this matrix in
an implementation of the algorithm.

We have the following complexity result for the dual scaling method.

Theorem 5.2 (Ye [188]) The dual scaling method stops after at most

0 (umog (M))

*We assume that a primal feasible solution X € P is known a priori. One can useX = X(S,p)if
X(S,p) = 0.
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iterations. The output is a pair (X (S,u),S) € P x D where Tr (X (S, n)S) <

THE LONG STEP METHOD

The short step primal method presented in this chapter has been extended by Faybuso-
vich [55] and later by Anstreicher and Fampa [12] to use larger u-updates.

Given the results in this chapter, this ‘large update’ (or ‘long step’) algorithm can
be derived as a mechanical extension of the corresponding LP analysis by Roos et al.
[161], §6.9.

The algorithm in question performs damped projected Newton steps with respect to
a given value of puntil 64(S, u) < % holds for the current iterate S (inner iterations).

Only then is y reduced by a fixed fraction via p < (1 — @)u (outer iteration). The
algorithm can be stated as follows.

Long step dual logarithmic barrier method

Input
A pair (S°,4°) € 1i (D);
A centering parameter 7 > 0 (default 7 = %);
A value p0 such that §4(S°%, %) < 73
An accuracy parameter € > 0;
An updating parameter 0 < 8 < 1.
begin
§:=58%y:=y% pn=u"
while Tr(XS)>e¢ do
if 64(S,p) <7 do (outer iteration)
pe=(1-0)u;
else if 64(S, 1) > 7 do (inner iteration)
Compute (AS, Ay) ;
Find o = argmin f5(y + alAy, S + aAS, ) ;
S5:=5+aAS;
y =y +aly;
end

end
end

This algorithm has the same worst-case iteration bound as in the LP case: if § =
O(1) the iteration bound is O(nL) and if § = O (ﬁ) the iteration bound becomes

O(V/nL).
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5.10 THE DUAL METHOD AND COMBINATORIAL RELAXATIONS

Many SDP problems arising in combinatorial optimization involve rank one coeffi-
cient matrices, say
[ & n s
A, =a;a;, a;€R", 1=1,...,m.
In this case the linear system in (5.20) can be formed very efficiently. Indeed, note
that the coefficient matrix (say M) in (5.20) now reduces to:

mi]- = Tr (AiS?IA]'SAI)
= Tr (aialTS_lajaTS_l)

J
= (aiTS_laj)z .

For SDP relaxations of Boolean quadratic problems (like the MAX-CUT relaxation
(1.3) on page 6) the expression simplifies even more, as a; ( = 1,...,n) is then
simply the ith standard unit vector. In this case we have:
= (g1 4 =
mi; = (S )i]., ,5=1,...,n
The coefficient matrix M can therefore be formed efficiently if § is sparse. For many
applications this is indeed the case, since

S = _iyiAi + C,
i=1

and C often has the same sparsity structure as the Laplacian of a sparse graph. (Recall
that this is the case for the MAX-CUT relaxation on page 6.) If § is indeed sparse,
one can compute S~! by doing a sparse Choleski factorization of S with pre-ordering
to reduce fill in. Although S~! is not necessarily sparse if S is, this is often the case
in practice, and then the coefficient matrix of the system (5.20) is also sparse and can
likewise be solved using sparse Choleski techniques.

The importance of Remark 5.1 on page 90 is now clear: we only wish to work with
the sparse matrix 5, and would like to avoid computation and storage of X (S, ),
since this matrix will be dense in general.

Software  The dual scaling algorithm has been implemented by Benson ez al. [23,
22] in the DSDP software package. This software out-performs primal-dual solvers
on the MAX-CUT relaxation and similar problems where sparsity can be exploited
when forming and solving the linear system (5.20). Choi and Ye [34] have improved
the performance on large problems by solving the linear system (5.20) using a pre-
conditioned conjugate gradient method (instead of a Choleski factorization). The au-
thors report results for the MAX-CUT relaxation of sparse graphs with up to 14000
vertices.
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6

PRIMAL-DUAL AFFINE-SCALING
METHODS

Preamble

Perhaps the most obvious solution approach for the dual pair of SDP problems (P)
and (D) is to solve the nonlinear system of optimality conditions (2.15) on page 33 via
some iterative scheme. There are different ways to do this, and the resulting algorithms
are called primal-dual affine—scaling methods. We will analyse in this chapter the
algorithm due to De Klerk et al. [48]. Primal-dual affine-scaling directions are also
known as the predictor directions in predictor—corrector algorithms (see Chapter 7),
and are therefore of significant theoretical interest.

6.1 INTRODUCTION
The LP case

The introduction of Karmarkar’s polynomial-time projective method for LP in 1984
[100] was accompanied by claims of some superior computational results. Later it
seemed that the computation was done with a variant of the affine—scaling method,
proposed by Dikin nearly two decades earlier in 1967 [53]. The two algorithms are
closely related, and modifications of Karmarkar’s algorithm by Vanderbei et al. [182]
and Barnes [15] proved to be a rediscovery of the affine-scaling method. Dikin’s
affine—scaling method is a purely primal method, and the underlying idea is to mini-

95
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mize the objective function over an ellipsoid which is inscribed in the primal feasible
region. Interestingly enough, polynomial complexity of Dikin’s affine—scaling method
in its original form has still not been proved. Even more interesting is that the exten-
sion of this method to SDP may fail to converge to an optimal solution.'

In the primal-dual setting, the natural extension of the notion of affine—scaling is
to minimize the duality gap over some inscribed ellipsoid in the primal-dual space. A
primal—dual affine—scaling method for LP is studied by Monteiro e al. in [125], where
the primal—dual search direction minimizes the duality gap over a sphere in the primal—
dual space. This algorithm may be viewed as a ‘greedy’ primal—dual algorithm, that
aims to reach optimality in a single iteration, without attempting to stay close to the
central path. The worst—case iteration complexity for this method is O(nL?), where”

L= log <initia1 duality gap) .

€

As such, it is an algorithm of significant theoretical interest.

Jansen er al. [91] proposed a related primal-dual direction for LP — called the
Dikin-type affine—scaling direction — where the resulting algorithm has an improved
O(nL) worst-case complexity bound. This search direction minimizes the duality gap
over the so-called primal-dual Dikin ellipsoid. The interesting feature of this method
is that each step involves both centering and reduction of the duality gap.

It was shown by Jansen er al. [92] that the Dikin-type direction and the primal-dual
affine—scaling direction by Monteiro et al. [125] both belong to a generalized fam-
ily of ‘affine—scaling’ directions. This motivates the name Dikin-type affine—scaling
direction.

Extensions to SDP

There is no obvious unique way to extend the method by Monteiro et al. [125] to SDP.
We can define a family of directions at a strictly feasible pair (X, S) as the solutions
of the system:

Tr(AAX) = 0, i=1,...,m
> ApA+AS = 0

=1

Hp (AXS + XAS)

|
!
=
>
2

'See Muramatsu [130] and the remarks in Section 5.4.

*In LP, if € is chosen such that L equals the bit-length of the input, then it is possible to round an e-optimal
solutionpair (X*, S*)(i.e. Tr (X*S*) < €) to exact primal and dual solutions (see e.g. Roos et al. [161]).
In SDP, this association between L and the bit-length of the input data is meaningless — there is no choice
for e which would yield exact optimal solutions. In fact, it is easy to construct instances of SDP problems
with integer data but unique irrational solutions (see Section 1.9).
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where H p is the linear transformation given by
1
Hp(M) := 5 [PMP '+ P TMTPT],

forany M € R™™, and P is one of the scaling matrices from Table 1.1. Note that
this system corresponds to ¢ = 0in (1.12). In other words, it can be seen as a strategy
to solve the optimality conditions (2.15) for (P) and (D).

Recall from Section 5.4 that the primal affine-scaling direction is associated with
1 = 0. Loosely speaking, we can view affine—scaling directions as a ‘greedy’ attempt
to reach the limit point of the central path in a single step.

In the special case of LP, each choice of scaling matrix P from Table 1.1 yields
a search direction which coincides with the primal-dual affine—scaling direction of
Monteiro et al.

We will only consider the direction using the Nesterov-Todd scaling (see Table
1.1); this is important, since the primal-dual affine-scaling method can fail for SDP
for the scaling 7 (the AHO direction) in Table 1.1. This interesting negative result was
proven by Muramatsu and Vanderbei [131]. At the time of writing, the primal-dual
affine—scaling method has not been extended for the other choices of scaling matrices
in the table.

Outline of this chapter

In this chapter both the primal-dual affine—scaling method of Monteiro ef al. [125]
and the method of Jansen et al. [91] are generalized to SDP, by using the NT scaling.
The former will be referred to as the primal-dual affine—scaling method, and the latter
as the primal-dual Dikin-type method, or Dikin-type method, for short.

The Dikin-type method will be presented first, and its simple analysis will then be
extended to the primal—dual affine-scaling method. Some preliminaries are discussed
first. In, particular, symmetric primal—dual scaling is discussed in Section 6.2, and the
algorithms are introduced in Section 6.3. It is shown how the two directions corre-
spond to the minimization of the duality gap over two different ellipsoids in the scaled
space. In Section 6.5 conditions to ensure a feasible step-length are derived, and the
polynomial complexity result for the Dikin-type method is proven in Section 6.6. In
Section 6.7 the analysis is extended to include the primal-dual affine—scaling method.

6.2 THE NESTEROV-TODD (NT) SCALING

For strictly feasible solutions X > 0and S > 0 to (P) and (D) respectively, the
scaling—matrix
1
D:=5"% (S%XS%)ZS—%, 6.1)
introduced in Section 1.7, satisfies D! X = SD, or

D 3XD"% =D3SD% .= V. (6.2)
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In other words, the matrix D may be used to scale the variables X and § to the same
symmetric positive definite matrix V.’

Note that . .
V2=D"7XSD? ~ X8, (6.3)

i.e. V?has the same eigenvalues as XS and is symmetric positive definite.
We will sometimes refer to this way of ‘symmetrizing’ XS as NT scaling.*

As a consequence of (6.3), the duality gap at (X, S) € ri (P x D) is given by
Tr (X$) = Tr (V?) = |[V|* = D M(W).
i=1

We can scale any pair primal-dual search directions in a similar way; feasible search
directions (A X, Ay, AS) must satisty

Tr (A,AX) = 0, i=1,...,m
Z:;lAyiAi+AS = 0.

(6.4)

Recall that Tr (AXAS) = 0 (see Lemma 2.1).

The scaled search directions are defined by
Dx :=D 3AXD"%

and
1 1
Dg :=Dz2ASDx?.
For the scaled directions D x and Dg we therefore also have the orthogonality property
Tr (DxDg) = 0. Using (6.4), we obtain

m
Ds =~ Ay;D%A;D¥,
i=1

i.e. Dg must be in the span of matrices D%AiD% and Dyin its orthogonal comple-
ment, ie.

Tr (D%A,-D%DX) =0, i=1,...,m.
The scaled primal-dual direction is defined by

Dy := Dx + Dg.

*In the matrix analysis literature, the matrix D is sometimes referred to as the geometric mean of S—1 and
X, see e.g. Aarts [1], Definition C.0.2, and the references therein. As mentioned in Chapter 1, the matrix
D was introduced by Nesterov and Todd in [135] and later by Sturm and Zhang [170] from a different
perspective.

*In practice the scaling matrix D may be computed from the Choleski factorizations of X and 5, and one
additional singular value decomposition (SVD) (see Todd ez al. [173]).
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After a feasible primal-dual step (AX, AS) the duality gap becomes

Tr (X + AX)(S+ AS)) = Tr ((V + Dx)(V + Ds)) = Tr (VZ + VDy),
(6.5)
where we have used the linearity of the trace as well as the property Tr (AB) =
Tr (BA) (see Appendix A, Section A.3).

Notation

Note that there is a one-to-one correspondence between (X, S) € ri (P x D) and V2
via (6.3). Similarly, there are one-to-one correspondences between AX and Dx, and
AS and Dg. In what follows we will sometimes use the original variables (X, S) and
original search directions (AX, AS), but we will also use the scaled expressions V,
Dx, Dg and Dy when this is convenient.

6.3 THE PRIMAL-DUAL AFFINE-SCALING AND DIKIN-TYPE
METHODS

We will now introduce the Dikin-type and primal-dual affine—scaling directions from
a geometric perspective, namely by minimizing the duality gap over two different
ellipsoids.

THE DIKIN-TYPE DIRECTION

The search direction of the primal-dual Dikin-type affine—scaling algorithm is derived
by minimizing the duality gap over the so called primal-dual Dikin ellipsoid as fol-
lows:

D} = argnlsin{'l‘r(V2 +VDy) : ||V_%DVV_%H < l}. (6.6)
v

Note that V' + Dy > 0 if Dy is feasible in (6.6). It is easily verified that the optimal
solution is given by
V3

The transformation back to the unsealed space is done by pre- and post-multiplying
(6.7) by D7 to obtain
—-X5X

AX + DASD = — 222
(Tr (X5)?)%

(6.8)

The Dikin-type direction is obtained by solving (6.8) subject to the conditions (6.4).
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THE PRIMAL-DUAL AFFINE-SCALING DIRECTION

The primal-dual affine—scaling direction can be defined by simply changing the norm
in (6.6) to the spectral norm:

D3 = argnll)in{Tr(V2+VDv) : ||v—%DVv—%||251}. (6.9)
Vv

Note that [V=% Dy V2|3 < 1is equivalent to the condition
I>V™iDyV™% - L

This is the same as V + Dy > 0and V — Dy > 0. Since V + Dy > 0 one has
Tr (V(V + Dy)) > 0, which implies that the optimal solution in (6.9) is given by
D3, = —V. Pre- and post-multiplying D, = —V by D73 as before, one obtains

AX + DASD = - X. (6.10)

The solution of this equation subject to conditions (6.4} yields the primal-dual affine-
scaling direction.

We get the same direction if we minimize the duality gap over the sphere | Dy ||2 <
||[V||2. This shows the analogy with the LP situation: the primal-dual affine-scaling
direction is obtained by minimizing the duality gap over a sphere in the scaled primal—
dual space.

A NOTE ON THE DIKIN ELLIPSOID

There is some inconsistency in the literature concerning the definition of the primal-
dual Dikin ellipsoid. In the paper by Nemirovski and Gahinet [133] it is defined as

IX"tAXX 3|2+ ||S"3ASSF|2 < 1, (6.11)
which is the same as
[V ¥Dx V3|2 + [V iDsV 3|2 < L.
A primal-dual step (X +AX, S+ AS) which satisfies (6.11) is always feasible: From
(6.11) one has —1 < A, (X—%Axx—%) <1G=1,...,m),0r
XTPAXX"E > -1,
which in turn implies X + AX > 0. Similarly one has § + AS > 0.

COMPUTATION OF THE TWO SEARCH DIRECTIONS

It is easily shown that (6.8) and (6.4) imply
—Tr (4;XSX)

C i=1,....m, (6.12)
(Tr (X S5)%)=

> Ay, Tr (A;DA;D) =
j=1
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for the Dikin-type direction, and that (6.10) and (6.4) imply
> " Ay;Tr (A;DA;D) = —Tr (AX), i=1,...,m, (6.13)
j=1

for the primal-dual affine—scaling direction. The solution of these m x m linear sys-
tems yield Ay for the respective search directions. The coefficient matrices of the
systems (6.12) and (6.13) are positive definite; a simple proof of this is given in Ap-
pendix A, Lemma A.3.

Once Ay is known, AS follows from 3 .-, Ay;A; = —AS, and AX is subse-
quently obtained from (6.8) (Dikin-type steps) or (6.10) (primal-dual affine-scaling
steps).

The linear systems (6.12) and (6.13) — or linear systems with a different right-hand
side vector — can be formed and solved in

2 1
gmn3 + Emzn2 + O(max{m, n}3)

flops. The reader is referred to Monteiro and Zanjdcomo [127] for details. All the
primal-dual search directions in this monograph are defined via a linear system with
the same coefficient matrix as (6.13) and can therefore be solved in the same num-
ber of operations. The problem is that forming the coefficient matrix in (6.13) is an
expensive operation. The coefficient matrix is also always dense, even if the data ma-
trices (7, Ay,..., A, 0or X or § is sparse. For this reason one cannot exploit sparsity
as efficiently as in the LP case when doing the numerical linear algebra. Specialized
techniques for forming and solving systems like (6.13) are described by Fujisawa et
al. [60].

THE ALGORITHMS

The two primal—dual algorithms can both be described in the following framework.
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Short step primal-dual affine-scaling algorithms

Input
A strictly feasible pair (X, S%);

Parameters
To > 1 such that k (X°8%) < rg;
accuracy € > 0;

L :=log l‘d@;
1

T (Dikin-type steps), or
Q= #‘Tu (Primal—dual affine-scaling steps);

[0 2

begin
X :=X9%8:=80
while Tr(XS)>e do
Compute AX, AS from (6.8) and (6.4) (Dikin-type steps)
or from (6.10) and (6.4) (primal—dual affine-scaling steps);
X =X +aAX;
S :=85+aAS;

end
end

We will prove that the Dikin-type algorithm computes a strictly feasible e-optimal
solution (X *, §*) inO(7onL) steps, and this solution satisfiesk(X*S*) < 7, where
k(X S) is a ‘function of centrality’ to be described shortly (in (6.14)). The primal-
dual affine-scaling algorithm converges in O(rgnL?) steps, and the solution satisfies
k(X*S*) < 37.

6.4 FUNCTIONS OF CENTRALITY

The Dikin-type steps have the feature that the proximity to the central path is main-
tained, where this proximity is quantified by

Amax (X S)

—)\m'm(XS) (6.14)

K(XS):=

with Amax (X S)the largest eigenvalue of XS and Amin (X S)the smallest.

This ‘centering effect’ of the Dikin-type steps is illustrated by the following exam-
ple.
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Example 6.1 The centering effect is clearly visible in Figure 6.1, for the small exam-
ple with data

1 1 3
Ar=1| -1 1 1 yAz2=|4 2 -1 |,A3=]|1 6 4 |,
3 1 -2 2 -1 1 3 4 -2

and with feasible starting solution

2.2 01 01 1.5  0.005 0
X°=|01 15 o008 |,5° 0.005 095 0
0.1 008 1.5 0 0 15

The minimum and maximum eigenvalues of XS are plotted at successive iterations

. W} = 07 4
&
5‘& v
¢ x "7 cortrad path
= x -
x Ph i
¥ L
LIPS
7‘}’
£ -
% -
‘,n’
L I
K__»‘
B - L
A0S o
a5

Figure 6.1. The centering effect of primal—dual Dikin steps, seen from iterates of the short
step algorithm. The dashed line corresponds to the central path.

for the short step primal-dual Dikin-type method. In this figure the central path cor-
responds to the diagonal where largest and smallest eigenvalues are equal. a

The primal—-dual affine-scaling steps may become increasingly less centered with
respect to the function x(X S), which complicates the analysis somewhat.
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Note that one always has x(XS) > 1 with equality if and only if X5 = p[ for
some g > 0, i.e. if the pair (X, S) is centered with parameter p.

6.5 FEASIBILITY OF THE DIKIN-TYPE STEP

We proceed with the analysis of the Dikin-type affine—scaling method, after which we
will extend the analysis to cover the primal-dual affine—scaling method as well.

Having computed the Dikin-type step direction (AX, AS) from (6.8) and (6.4), a
feasible step length must be established. Denoting

Xy =X+ aAX, S,:=854+aASs,

we establish a value & > O suchthat X5 > 0 and S5 > 0. The following lemma gives
a sufficient condition for a feasible step length &.

Lemma 6.1 Let X > Qand S > 0. Ifone has
det (X,S,) >0 V0<a<a,

then XE( > 0 and Sa > 0.
Proof:
Since det(X,Sa) = det(X,) det(S,), one has

det(XoSa) = [ [ Mi(Xa) [T Xi(Sa)- (6.15)
The left-hand side of equation (6.15) is strictly positive on [0, &|. This shows that the
eigenvalues of X, and S, remain positive on [0, &] (the eigenvalues X; (X, and X; (S,

(z = 1,...,n) are smooth functions of « in the sense of Theorem A.5 in Appendix
A). O

In order to derive bounds on o which are sufficient to guarantee a feasible step
length, we need the following three technical results.

Lemma 6.2 Let Dx € S, and Dg € S,, be such that Tr (Dx Dg) = 0. The spectral
radius of Dx Dgs + DgD x is bounded by

1
p(DxDg + DsDx) < §||DX + Dg|).

Proof:

It is trivial to verify that

[((Dx + Ds)* ~ (Dx — Ds)?]

N =

DxDs+ DsDx =
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which implies
1 2 1 2
*—Q‘(Dx — Dg)* 2 DxDs+ DsDx < §(Dx + Dg)*.
It follows that
1 1
—§||DX — Ds||*I %= DxDgs + DsDx < 5||DX + Ds|\*I.

Since Tr (Dx Dg) = 0, the matrices (Dx + Dg) and (Dx — Dg) have the same
norm. Consequently

1 1
——2-||DX + Ds||*I = DxDs + DsDx = 5HDX + Dg|]*T

from which the required result follows. |

Corollary 6.1 For the Dikin-type step Dx + Dg = —V3/||V?||, one has
1
p(DxDs + DgDx) < §p(V2).
Proof:
By Lemma 6.2 one has
2p(DxDs + DsDx) < ||Dx + Ds|?
_ <||V3||)2 _ T (V9
V2l (vzin?
Tr (V%)
< (V) g = PV,
(v2)h?
which is the required result. a

The following lemma contains two useful results from linear algebra concerning
semidefinite matrices. It is proven in Appendix A (Lemma A.1).

Lemma 6.3 Let Q ¢ S§¥, andlet M € R™*" be skew—symmetric, ie. M = —M7T.
One has det(Q + M) > 0. Moreover, ifA;(Q+M)€eR (i=1,...,n), then

0< /\min(Q) S /\min(Q + M) S /\max(Q + M) S /\max(Q)a
which implies K(Q + M) < k(Q).
We are now in a position to find a step size a which guarantees that the Dikin-type

step will be feasible. To simplify the analysis we introduce a parameter 7 > 1 such
that (X S) = x(V?) < 7. This implies the existence of numbers 71 and Tysuch that

I <V2< 1, m=mT. (6.16)
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Lemma 6.4 The steps X, = X + aAX and 8, = S + aAS are feasible ifthe step
size « satisfies a < & where

&:min{”V2” 4 }
2m ||V

K (XaSa) _<_ T.

Furthermore

Proof:

We show that the determinant of XS, remains positive for all & < &. One then has
X4,85 > 0by Lemma 6.1.

To this end note that

XaSa ~ (V+aDx)(V +aDg)
= V?24+aDxV +aVDg +a’DxDg
, aV?

1 2
- — + -« (DxD5+D5Dx)
Va2

1 1
+ Eaz(DXDS—DsDx)‘i-§a(DxV+VD5—-VDX—-DsV) ,

since Dx + Ds = —V3/||V?||. The matrix in square brackets is skew—symmetric.
Lemma 6.3 therefore implies that the determinant of X, S, will be positive if the
matrix

aVt 1
Qa) =V’ - & + §a2(DxDs + DsDx)

is positive definite. Note that Q(0) = V2 > 0 and x (Q(0)) < 7. We proceed to prove
that x (Q(a))remains bounded by x(Q(a)) < 7or 0 < a < & . This is sufficient to
prove that Q(a) > 0, 0 < a < &, and therefore that a step of length & is feasible.

Moreover, after such a feasible step we will have X5 > 0, S5 > 0. The matrix
X555 therefore has positive eigenvalues and we can apply the second part of Lemma

6.3 to obtain
K (XaSa) <k (Q(a)) <7

We start the proof by noting that if ) is an eigenvalue of V2, then (A — aA?/||V?|])
is an eigenvalue of [V? — aV*/||V?||]. The function

£2
o) =t—a——
V2
is monotonically increasing on ¢ € [0, 5] if a < &, since & < ||V?||/(27,). Thus

4
¢(n)IjV2—”%,V2—”j¢(n)z Vo<a<a
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or, equivalently,
1, 1,
¢(TI)I + 5(1 (DxDs -+ DsDx) = Q(a) = ¢(T2)I -+ 5(1 (DxDs + DsDx),

forall 0 < o < &. We will therefore certainly have x(Q(a)) < 7if
1, 1,
T ¢(T1)I -+ 5(1 (DxDs -+ DsDx) b ¢(T2)I -+ 5(1 (DxDs -+ DsDx).

This matrix inequality can be simplified using 75 = 77; and subsequently dividing by
a. This yields

2 __ 2
(LW;HTI ) I+a(r—1) (%(DXDS + DSDX)) = 0. (6.17)

Expression (6.17) may be further simplified using

-7 =(r—1)mm

to obtain

1
(ﬁ) I+ —2-a(DxDs +DgDx) >0

which will surely hold if
1
(—”7‘1;“”) I—ap (g(DXDs + DSDX)) I>0.

Substituting the bound

1
p <§(DXDS + DSDX)> <

from Corollary 6.1 yields

or

which is the second bound in the lemma. 0

6.6 COMPLEXITY ANALYSIS FOR THE DIKIN-TYPE METHOD

A feasible Dikin-type step of length « reduces the duality gap by at least a factor
(1- %) Formally we have the following result.
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Lemma 6.5 Given a feasible primal-dual pair (X, S) and a step length « such that
the Dikin-type step is feasible, i.e. Xo := X + aAX > 0, and S, := S+ aAS > 0,

it holds that
a
aYoa S - — | Tr(X -
Tr (XaSa) (1 \/ﬁ) (XS)

Proof:

The duality gap after the Dikin-type step is given by

Tr (XQSQ) = ((V+an)(V+aDs))
= Tr (V?+aV(Dx + Ds))

™ (Vo)

VI? - a2l
(I
= (l nvn2)“(“)'

By the Cauchy—Schwartz inequality one has

IVIZ =Tr (IV?) < ][ [V?]] = Vn |[V?]],

Il

which gives the required result. 0O

We are now ready to prove a worst-case iteration complexity bound.

Theorem 6.1 Let € > 0 be an accuracy parameter, and let 7q > 1 be such that
k(X®S%) < 7o. Further let L = log (Tr (XOSO)/E), and o = Toi/;. The Dikin-type
step algorithm requires at most [TonL] iterations to compute a feasible primal-dual
pair (X*, 8*) satisfying £(X*S*) < 79 and Tr (X*5*) < e

Proof:

We first prove that the default choice of «v always allows a feasible step. To this end,

note that
1 ! nf I 2]l V2
Tg\/ﬁ 7'2\/_ 27'2 - 27'2 ’
since 0 = 711 < V2. This shows that o meets the first condition of Lemma 64.
Moreover, it holds that ||[V2|| < 751/n, which implies

O =

47'1 > 47'1 4 >
= «a
[V3] = 2v/n 7ovn

The default choice of « therefore meets the conditions of Lemma 6.4 and ensures a
feasible Dikin-type step.
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We know by Lemma 6.5 that the duality gap is reduced at each iteration by at least
a factor (1 — n—ln;) As the initial duality gap equals Tr (X°S%), the duality gap will
be smaller than e after k iterations if

(1 - i)k Tr (X°S?%) < .

nTg

Taking logarithms yields

klog (1 - i) +log (Tr (X°S°)) < log(e). (6.18)

nToy

1 1
nTg nTo

condition (6.18) will certainly be satisfied if

Since

L > log (Tr (X°5°%)) —loge = L,

nTo

which implies the required result. ]

The O(7yn) complexity bound is a factor /n worse than the best known bound for
primal—dual algorithms.

6.7 ANALYSIS OF THE PRIMAL-DUAL AFFINE-SCALING METHOD

We return to the primal—dual affine—scaling algorithm. This analysis is analogous to
that of the Dikin-type method, but there is one significant difference: whereas the
Dikin-type iterates stay in the same neighbourhood of the central path, the same is not
true of the affine—scaling steps. The deviation from centrality may increase at each
step, but this can be bounded, and polynomial complexity can be retained at a price:
The step length has to be shortened to

1

= 6.19
@ TLL’T()’ ( )

and the worst case iteration complexity bound becomes O(mgnL?).

We need to modify the analysis of the Dikin-type step algorithm with regard to the
following:

m We allow for an increase in the distance (X S) from the central path by a constant
factor £ > 1 at each step;

m The step length « in (6.19) is shown to be feasible for 7gnL? iterations, provided
that we choose the factor ¢ in such a way that the distance from the central path
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stays within the bound k(X S) < 37y for O(7nL?) iterations — the convergence
criterion is met before the deviation from centrality becomes worse than 37g.

Recall that the primal-dual affine-scaling direction is obtained by solving
AX + DASD = - X,
subject to (6.4). A feasible step in this direction gives the following reduction in the

duality gap.

Lemma 6.6 Given a pair (X, S) € ri(P x D), assume that the primal-dual affine-
scaling step with step length « is feasible, ie. X, := X + aAX € P, and S, :=
S+ aAS € D. It holds that

Tr (X4S4) = (1 - a)Tr (XS).

Proof:

Analogous to the proof of Lemma 6.5. a

As with the Dikin-type step analysis, we will also need the following bound.

Lemma 6.7 For the primal-dual affine—scaling step Dy = Dx + Dg = —V, one
has

1
p(DxDs+ DsDx) < §||VH2

Proof:

Follows from Lemma 6.2. 0

Now let 7 = k(X S) and 79 = x(X°8?) for the current pair of iterates (X, S) and
starting solution (X, §9) respectively, and let 7y, 7, satisfy (6.16).”

We also define the amplification factor

1

ti=1+4——
+TLL27'0,

which is used to bound the loss of centrality in a given iteration.

*The value 7o had to be strictly greater than one, i.e. 7y > 1, for the Dikin-type algorithm. Here it is
sufficienttorequite 79 > 1. The value 7o = x(X°S?) can therefore be used for the primal-dual affine-
scaling method.
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Lemma 68 Ift < 3—:‘1 then the steps Xoq = X + aAX and S, = S + aAS are
feasible for the step size
1

a= ,
’IlL’TO

and the deviation from centrality is bounded by
K (XE( Sa) S tT,
where 7 = k(X S).

Proof:

As in the proof of Lemma 6.4, we show that the determinant of X, S, remains positive
forall a < &, which ensures X5, S5 > 0 by Lemma 6.1.

As before, note that

XaSa ~ (V+aDx)(V +aDsg)
V2+aDXV+aVD5+a2DXD5

1
1-a)V?+ —2-a2(DXD5 + DgDx)
1 1
+ §a2(DXD5 — DsDx) + —2-a(DXV +VDs—VDx — DsV)|,

since Dx + Dg = —V. The matrix in square brackets is skew—symmetric. Lemma
6.3 therefore implies that the determinant of [ X, S, will be positive if the matrix

Qa):=(1- a)V2 + %az(DxDs + DsDx)

is positive definite. Note that Q(0) = V2 = 0 and s (Q(0)) = .
prove that & (Q(c)) remains bounded by k(Q(a)) < trfor0 < a <
amplification factor ¢. This is sufficient to prove that Q(a) > 0, 0
therefore that a step of length & is feasible.

We proceed to
a, for the fixed
< a £ &, and

Moreover, after such a feasible step we will have X5z > 0, S5 > 0. The matrix
X585 therefore has positive eigenvalues and we can apply the second part of Lemma
6.3 to obtain

k(XaSa) < 6 (Q(a)) < tr.
To start the proof, note that forall 0 < a < @ one has
71(1—a)I+%a2(DXD5+D5DX) < Q(a) = 72(1—a)I+%a2(DXD5+DsDX).
We will therefore certainly have x(Q(«)) < trif

1 1
tT[Tl(l — a)I + Eaz(DXDS -+ DsDx)] > 7'2(1 - a)I + §a2(DxD5 -+ DsDx).
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Using 7 = 77;the last relation becomes
1
2(1 — a@)(t ~ DI + §a2(t'r ~1)(DxDs +DsDx) = 0. (6.20)

Since one has p(DxDgs + DsDx) < 3||[V|* < %Tzn by Lemma 6.7, inequality
(6.20) will hold if

1
(1-a)(t—-1)— Zaz(t'r ~1)n>0. (6.21)
Using the assumption t7 < 37g, it follows that (6.21) will surely hold if

(1—a) (L) - iaz(sm ~-1)n >0,

We now investigate how many iterations can be performed while still satisfying the
assumption k(X S) < 37p/tof Lemma 6.8.

Lemma 6.9 One has
K(XS) < 37

for the first [nL%ry] iterations of the primal-dual affine—scaling algorithm.
Proof:

By Lemma 6.8 one has
k(X 8) < 7ot after k iterations,

provided that k is sufficiently small to guarantee Tot* < 37. Using ¢ = 1 + nLl—2r0
we obtain

k
1
tk = (1+L—2) < 3ifk < [nL%7],
n T0

which gives the required result. 0

It only remains to prove that [nL?7g] iterations are sufficient to guarantee conver-
gence. The proof is analogous to that of Theorem 6.1. Formally we have the following
result.

Theorem 6.2 Let € > 0 be an accuracy parameter, and let 1 be such that n(XOSO) <
70. Further let L = log (Tr (XOSO)/E) and @ = —*—. The primal-dual affine-

nLtg
scaling algorithm requires at most [nL%1y] iterations to compute a feasible primal—

dual pair (X*,S*) satisfying k(X *5*) < 319 and Tr (X*S*) < e.




PRIMAL-DUAL AFFINE-SCALING METHODS 113

Proof:

By Lemma 6.8 a step of size o = #T; is feasible as long as the iterates (X, S) satisfy
1

K(XS) < 37. Such a step reduces the duality gap by a factor (1 — ;7—) (Lemma
6.6).

By the proof of Theorem 6.1, this reduction of the duality gap ensures that the
convergence criterion is met after k steps, if

0¢go
ko > log 250 _
€

ie.if k > nL?7. Lemma 6.9 guarantees that the first n L%, steps will be feasible,
which completes the proof. 0
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PRIMAL-DUAL PATH-FOLLOWING
METHODS

Preamble

Primal-dual path—following methods are aptly named: the underlying idea for these
algorithms is to ‘follow’ the primal—dual central path approximately in order to reach
the optimal set. More precisely, the centrality conditions (3.1) on page 41 are solved
approximately for a given value of u > 0, after which u is reduced and the process is
repeated. Primal-dual path—following methods have emerged as the most successful
interior point algorithms for linear programming (LP). Predictor-corrector methods are
particularly in favour, following successful implementations (see e.g. Andersen and
Andersen [9]). The extension of algorithms from linear to semidefinite programming
(SDP) has followed the same trends. We will consider methods here that use the
Nesterov—Todd (NT) scaling, namely a short step method as analysed by De Klerk et
al. [47], and a long step (large update) method due to Jiang [96]. We will also review
some predictor—corrector methods that use the NT direction.

7.1 THE PATH-FOLLOWING APPROACH

For a given value p > 0, the p-center (X (), S(p)) can be regarded as a rarget point
on the central path with associated target duality gap Tr (X (u)S(x)) = np. In other
words, if the u-center (X (u), S{p)) can be computed exactly, then the duality gap
will be equal to npu.

115
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Path—following algorithms iteratively compute an approximation to (X {(u), S(u));
this is then followed by a decrease in the value of pu.

Assume that a strictly feasible pair (X, S) € ri (P x D) is given as well as a value
u > 0. Ideally, we wish to compute (AX, AS) such that X+ AX € P,S+AS €D,
and
(X + AX)(S+ AS) = pul. (7.1)
As discussed on page 14, there are different ways to approximate the solution of the
resulting overdetermined, nonlinear system of equations. The different solution ap-
proaches lead to different search directions.! One of the popular primal-dual directions
is the so-called Nesterov-Todd (NT) direction, introduced in [138] (see page 14).2 We
will only study the NT direction in this chapter.

To derive the NT search directions, the notation for the primal-dual (NT) scaling
as introduced in Section 6.2 on page 97 is used. Using the scaling matrix D defined in
(6.1) on page 97, we can rewrite (7.1) as

(V+ Dx)(V + Ds) = pl, (7.2)
where V = D"3XD~% = D3SD%, Dx = D"iAXD~%, Ds = Dz ASD%, and
Dy = Dx + Dg, as before.

We now weaken condition (7.2) by replacing the left-hand side with its symmetric

part, to obtain

1

2

The next step is to linearize this system by neglecting the cross terms .Dx Dg and
DgDx, to obtain

1

2

Equation (7.3) (called a Lyapunov equation) has a unique symmetric solution (see

Theorem E.2 on page 250), given by

(V + Dx)(V + Ds) + ((V + Dx)(V + Ds))7| = al.

((DX + Ds)V + V(DX + DS)) =pul — V2. 7.3

Dy =Dx+Dg=uV 1 -V
Pre- and post-multiplying with D3 yields the Nesterov-Todd (or NT) equations:
AX + DASD =puS™' - X (7.4

subject to
Tr(A;AX) ,
AS = Z:Zl Ayi Ai -

0, i=1,....m

fl

(7.5)

' A comparison of the best known search directions was done by Todd [172] and by Aarts [1].
2Kojima et al. [106] showed the NT direction to be a special case of the class of primal-dual directions for
monotone semidefinite complementarity problems introduced in Kojima et al. [108].
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As before, we can easily deduce
> Ay, Tr (A;DA;D) = pTr (4;571) - Tr (A:X)

= ,uTr (A,'S_l) -bi, 1= 1,...,m.

This linear system has the same coefficient matrix as the system (6.13) on page 101;
recall that this matrix is positive definite. We can therefore solve for Ay and conse-
quently obtain AS from the second equation in (7.5), after which we obtain AX from
(74). The resulting direction (A X, AS) is the NT direction.

Note that the primal-dual affine-scaling direction in Chapter 6 is obtained by set-
ting u = 0. In other words, the primal-dual affine—scaling direction ‘targets’ the limit
point of the central path.

A CENTRALITY FUNCTION

Assume we are given (X,S) € ri(P x D) and a value p > 0. We will use the
centralityfunction
5(X,8,1) = 2 —=||Dv]| = 5 | VAV ——V
I, M) L 2 \/— 14 H

that was introduced by Jiang [96] (without the constant %). Note that 6(X,S,u) > 0
and
8(X,S,u) =0 V?=pul < XS =pul.

This function generalizes the LP function of Jansen ef al. [93] to semidefinite pro-
gramming, and will be used extensively in this chapter. It was shown by Jiang [96]
that §(X, S, u)is related to the directional derivative of the primal-dual barrier along
the NT direction. To derive this relation, let (AX, AS) denote the NT direction at
(X, S) and let f: ., denote the primal-dual log barrier

fha(X, S, p) = -1—'I‘r(XS) —logdet(XS).
©

The directional derivative of fpq at (X, S) along the NT direction is given by:

(Vxf(X,S,n),AX) + (Vs f(X,S,pn),AS)
(R O (R
R (ERSDE(CESL
“w(())

= --’n D}) = —48°.
M
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This equality shows that § is a natural centrality function associated with the NT di-
rection.

THE GENERIC ALGORITHM

The algorithms presented in this chapter all fit in the following framework.

Generic primal-dual path-following algorithm

Input
A pair (X°,8%) € P x D;

Parameters
Parameters 7 < 1 andpg > 0 such that§ (X°, S, ug) < 7
An accuracy parameter € > 0;

begin
X =X9%8:=58%pu=pg
while Tr(XS)>e¢ do
Compute AX, AS from (74) and (7.5);
Choose a step lengthe € (0, 1];

X =X +aAX;
S =85+ aAS;
Choose an updating parameter 0 < § < 1,
pi=(1-08)pu;
end

end

We will refer to
(X+,S+) =(X+AX,S+AS)

as a full NT step, and to
(Xoa,Sa) = (X +alAX,5+ aAS)

as a damped NT step if 0 < a < 1.

7.2  FEASIBILITY OF THE FULL NT STEP

As before, let (X,S) € ri (P x D) and a value z > 0be given. One can now prove
the following two results which are analogous to the LP case: If (X, S, u) < 1 then
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the full NT step is feasible, and the duality gap after the step attains its target value,
namely nu.

The feasibility of the full NT step is proved in the following lemma.
Lemma 7.1 (Condition for a feasible full NT step) Let (X,S) € ri(P x D) and
u> 0. If6:=8(X,S,pn) <1, then thefull NT step is strictly feasible.
Proof:

We show that the determinant of XS, remains positive for all @ < 1. One then has
X(1),5(1) > 0by Lemma 6.1.

To this end note that

XaSa ~ (V+an)(V+aD5)
= V2?24 aDxV +aVDg+o?DxDg

1
= VZjio(ul -V + §a2 (DxDs + DsDx)

1 1
+ §a2(DXD5 — DgDx) + 5cz(DxV +VDs—-VDx — DsV)|,

where we have used equation (7.3).

The matrix in square brackets in the last equation is skew-symmetric. Lemma 6.3
therefore implies that the determinant of [ X, S,] will be positive if the matrix

1
M(a) ==V +o(ul —V?) + 5oz2 (DxDs + DsDx)
is positive definite. Since we can rewrite the expression for M (a) as
al

one will have M(a) » 0if o £ 1 and ||% (DxDgs + DgDx) /,u”2 < 1. The last
condition is easily shown to hold by using Lemma 6.2 and § < 1 successively:

1

1 1
== “— (DxDs + DsDx)|| < —||Dv|?=46%<1.
B2 4p

1
HE (DxDgs + DsDx) [

2 2

This completes the proof. a

The next lemma shows that the target duality gap is attained after a full NT step.

Corollary 7.1 Let (X,S) € ri (P x D) and p > 0 such that (X, S, p) < 1. Then

Tr (XSt = np,
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ie. the target duality gap is attained after one full NT step.
Proof:
By the proof of Lemma 7.1 we have
xXtst (7.6)
~  ul + % (DxDs + DsDyx)

1 1
+ E(DXDS_DSDX)+§(DXV+VDS_VDX"DSV) . (17

Because A ~ B implies Tr (4) = Tr (B) (4, B € R™*™), we deduce
Tr (XTS*) = Tr (uI) = np,

by using Tr (Dx Dg) = 0 and the skew symmetry of the matrix in square brackets.”
O

7.3 QUADRATIC CONVERGENCE TO THE CENTRAL PATH
Notation

In what follows we denote the skew-symmetric matrix in (7.7) by M. We can also
simplify the notation by defining

Dxs := - (DxDs+ DsDx},

1
2
i.e. Dxgis the symmetric part of. D x Dg.

We proceed to prove quadratic convergence of full NT steps to the target point
(X (u), S(p)). To this end, we need three technical results that give information about
the spectrum of X+S§+. We denote the NT scaling of X+ S+ by (V+)°.

Lemma 7.2 One has )
Awin (V4)7) 2 0(1 - 62),
where A denotes the smallest eigenvalue.

Proof:

From (7.7) it follows that

/\min ((V+)2) = /\min (HI+DXS +M)

*Recall that the trace of a skew symmetric matrix is zero.
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The skew-symmetry of M implies
2
Amin ((V+) ) > Amin (HI + DXS)
> p—|Dxsll,-
Substitution of the bound for || D ||, from Lemma 6.2 now yields:
+12 1 2 2
Mmin (V) 2 0= ZIIDy | = (1- %),

which completes the proof. a

Lemma 6.2 gave a bound on the spectral norm of Dxg. We now derive a similar
bound on its Frobenius norm.

Lemma 7.3 One has

IDxs|” < < |1 Dv]*.

00| =

Proof:

It is trivial to verify that
1
DxDs —+ DsDX = 5 [(DX + DS)2 — (DX — Ds)z] .

Since Tr (Dx Ds) = 0, the matrices Dy = Dx + Ds and Qv := Dx — Dg have
the same norm. Consequently

2 L2 NG
IDxsl® = |5 (0% - @)

1
= T (DY + @) —2D7QY)
1 2
AR

1 4 4 1 4
= (IDvIl" +lIQvll*) = 5 1DV

IN

IN

The quadratic convergence result will now be proved.

Lemma 7.4 (Quadratic convergence) Afier a feasible full NT step the centrality func-
tion satisfies
52
6t = 8(XT, ST, ) < om0 —.
2(1 - 42%)
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Proof:

The centrality function after the full NT step is given by

1 _ 2
@) = Ll v
dp
1 -1 2\ ||
= v (=)
2|97 (s = (v
< Ly ((vH)™) H,u]— (V+)2”2.
-_— 4;1’ max
We now substitute the bound from Lemma 7.2 to obtain
1 2|2
5+ 2<7H 1-(’[
(6%) = 42(1 — 62) H v*)
To complete the proof we show that:
H2? 2
a2 = (V4’| < 1Dxsl*. (7.8)
In order to prove (7.8), note that
2|2 &
= (v4)*|" = 32 ul + Dxs + M) = X (uD)P
1=1
= > [\(Dxs+ M))?
i=1
- Tr ((st + M)Q) :
Using the skew-symmetry of M one obtains
2 2 2 T
] = e (e )
< Tr(Dxs)® = || Dxsl*.
The final result now follows from Lemma 7.3. a

The local convergence result has the following implications.

Corollary 7.2 If6(X, S, pn) < % then §(X+, St u) < 6%(X, S, u), ie. quadratic
convergence 10 the p-center is obtained. The weaker condition §(X,S,pn) < 4/2

3
implies §( X+, 8%, u) < 6(X, S, u) and is therefore sufficient for convergence.
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74 UPDATING THE BARRIER PARAMETER p

If the current iterates (X, S) € ri (P x D) are sufficiently close to the target point
(X (u), S(n)).say 8(X, S, u) < 1, then the parameter p is updated via

pr=(1-0)u

where 0 < 8 < 1 is a given parameter. We show that a default value of § = ﬁ
ensures that §(X, S, u*) < % The next full NT step then again yields a feasible pair
(X+,8%) €r1i (P x D)with §(X™*, S+, ut) < 1, due to the quadratic convergence
property (Corollary 7.2).

We first prove a lemma that relates the centrality function after the y-update to the
centrality function before the u-update.

Lemma 75 Let (X,S) € ri (Px D), p:= Tr(XS)/n, and § := §(X, S, pn). If
ut = (1 — @ pufor some 0 < 6 < 1, one has

e e LA
T 4(1 - 6) ’
Proof:
To simplify notation we introduce U := ﬁV. In terms of this notation one has
2 1 2
4(8(X, 8, ut = |[V1-6U"! - ——U
600 5,0)" = | Vi
oU 2
= —-Vi-e(Uu?t-vu
|- viow-v)

Note that ||U||? = Tr (U?) = ﬁTr(VL’) = n. This implies that U is orthogonal to
Utl-Uu:
T (U (U7 - U)) = - U =0,

Consequently
9 82U [2 _ 2
1(60x.5,540)7 = I (1 gy o=t - v
The required result now follows from the observation H vl - U|| = 24 together with
|U]12 = n. 0

An immediate corollary of the lemma is the following: If one has a primal-dual pair
(X,8) € ri(P x D) and parameter p such that 6(X, S, u) < £, and p is updated via
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pt = (1- 2\1/_);1, then one has §(X, S, u™) < % As discussed above, the next
tsa

NT step now yields a pair (X ¥, $7)ri (P x D) that satisfies

§(X*,S%,u%) <

wll——l

The algorithm therefore generates a sequence of iterates that always satisfy § < %
Moreover, the duality gap is reduced by a factor (1 — \/_) at each iteration, since the
duality gap after the full NT step equals the target duality gap.

These observations imply the following result which establishes the polynomial

iteration complexity of the algorithm. The proof is similar to that of Theorem 6.2 on
page 112, and is omitted here.

Theorem 71 IfT = % and § = ﬁ then the primal—dual path—following algo-
rithm with full NT steps on page 118 stops after at most

0
{%/Elog 7_1/1_“
€

iterations. The output is a primal-dual pair (X, S) € ri (P x D) satisfying Tr (X S) <
€.

75 A LONG STEP PATH-FOLLOWING METHOD

This algorithm performs damped NT steps with respect to a given y until the condi-

tion §(X, S, ) < % is met. These steps are termed inner iterations. Only then is

the parameter p updated via u* = (1 — 8)u (outer iteration). The step lengths are
determined by line searches of the primal-dual logarithmic barrier function

Fa(X, S, p) = lTr(XS) — logdet(X S) — n.
"

Formally, the algorithm is as follows.
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Long step primal-dual path—following method

Input
A centering parameter 7 > 0;
A pair (X9, S8°) €1i (P x D)and a u° > 0 such that § (X°, S° p°) < ~;
An accuracy parameter € > 0,
An updating parameter 8 < 1;
begin
X :=X%S8:= 8%
while Tr(XS)>¢ do
if 6(X,S,u) <7 do (outer iteration)
po=(1-0)u;
else if &(X,S,u) > 7 do (inner iteration)
Compute AX, AS from (7.4) and (7.5) ;
Find o := arg min f,(X + aAX, S+ aAS, p);
X =X +aAX,S5:=5+aAS;
end

end
end

The complexity analysis for the long step method is very similar to that of potential
reduction algorithms (see Chapter 8), and we only state the worst-case iteration com-
plexity result here. A detailed complexity analysis of the long step method is given by
Jiang [96] (see also Sturm and Zhang [169]).

Theorem 7.2 The long step primal-dual path—following algorithm requires at most

(e ("))

iterations to compute a strictly feasible pair (X*, S*) € ri (P x D) that satisfies

Tr(X*S*) < e.

7.6 PREDICTOR-CORRECTOR METHODS

Predictor—corrector methods are the most popular primal—dual methods at the moment,
due to some successful implementations (see page 131). We will describe two variants,
one due to Mizuno, Todd and Ye [123] for LP, and the other due to Mehrotra [121].
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Mizuno—Todd-Ye predictor—corrector methods

A so-called Mizuno-Todd-Ye [123] predictor—corrector method alternates predictor
and corrector steps. The predictor step is a damped step along the primal—dual affine—
scaling direction (see page 100). This is followed by a corrector step defined as the
full NT step with respect to p = Tr (X S)/n, where (X, S) € ri(P x D) are the
current iterates. Formally, we can state the algorithm as follows.

Mizuno-Todd-Ye predictor-corrector method

Input
A centrality parameter 7 > 0;
A pair (X°,5°) € ri (P x D) such that § (X°, S% u°) < 7, where
p® := Tr (X°8%) /n;
An accuracy parameter € > 0;
A parameter 0 < § < 1;
begin
X =X%8:=8%p=u"
while Tr(XS)>¢ do
Corrector step
Compute AX, AS from (7.4) and (7.5) (NT direction);
X =X+ AX, S:=85+ AS (full NT step);

Predictor step

Compute AX, AS from (6.10) and (6.4) (primal-dual affine—scaling
direction);

X =X+0AX, S§:=8+0AS,

pe=(1-0)u;
end
end

Note that the parameter 8 is used as the step length for the predictor step, as well
as for the p-update: p+ = (1 — §)u. The following lemma gives us a dynamic way
to choose § such that we will always have §(X, S, u) < 7. This lemma was proved
for LP by Roos et al. [161] (Theorem 11.64); their proof can be extended to SDP in a

straightforward manner.

Lemma 7.6 If7 = 1/3, then the property §(X,S,u) < 7 holds for each Iterate
(X,8) € P x D produced by the Mizuno-Todd-Ye predictor—corrector algorithm,
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provided we use

2
0=

= ; (7.9)
1+4/1+13]|4 (D% D + D$D2) /u|

where DS and D% refer to the scaled primal-dual affine scaling direction (D% +
Dg=~-V)

In particular, the lemma states implicitly that each predictor step will be feasible if the
step length 8 is chosen from (7.9).

The duality gap can only decrease during the predictor step — during a corrector
step the duality gap stays constant, by Corollary 7.1. By Lemma 6.6 on page 110,
we know that each predictor step will reduce the duality gap by a factor (1 — §). We

have to show that § = Q2 —ﬁ in order to retain the same O(y/n) worst-case iteration
complexity as for the short step method. This is straightforward by recalling
DY + D3 = ~V, Tr (DD$) =0,
so that
a (|2 a2 2
1D5%|™ + 1D5 1" = [IV]]" = nu,
which implies
1

1D HIDSI < 5mm, (7.10)
by using 2ab < a? + b% (a,b € R). We now use (7.10) to give an upper bound on
||% (DS D% + D% D%) /uH as follows:

AN

1 a a a 1 1 a
|5 0x0% + DxD%) | < 310K D8I/ + 3 15 D3I

a a 1
< ID%INDsN /1 < 5,

where the first two inequalities follow from the triangle inequality and sub-multiplicativity
of the Frobenius norm respectively, and the last inequality is due to (7.10). If we look
at the expression for § in (7.9), we therefore see that

2
6> ——m—.
144/1+8n

This shows that the Mizuno-Todd-Ye predictor—corrector algorithm has a similar
complexity as the short step method (see Theorem 7.1). Formally we have the fol-
lowing result.

Theorem 7.3 If 7 = 1/3 and 8 is given by (7.9), the Mizuno-Todd-Ye predictor—
corrector algorithm stops after at most

KH @) g M]
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iterations. The output is a primal-dual pair (X, S) € ri (P x D) satisfying Tr (X S) <
€.

Superlinear convergence

Recall that a predictor step reduces the duality gap by a factor (1 — #) where  is
defined by (79). Also recall that the duality gap is given by nu after the corrector
step. The duality gap will therefore converge to zero at a quadratic rate if and only if

(1-8)u =0 (i2) ie. (1 - ) = O(n).

It is easy to show that — for @ as defined in (7.9) — we have
131
1-0< 2| o508+ 0302)

(see Lemma 1165 by Roos et al. [161]). We will therefore have quadratic convergence
asymptoticallyif

= O(p). (7.11)

1 a a a a
B) (D% D5 + D% D3) /1

This bound holds in the special case of LP, and one can therefore show asymptotic
quadratic convergence of the Mizuno-Todd-Ye predictor—corrector algorithm for LP
(see also Roos et al. [161], §7.7). In the SDP case one can only prove a weaker result,
under the assumption of strict complementarity.

Theorem 7.4 (Luoet al. [117)  Lez (X, S) € ri (P x D) and let D and Dg denote
the scaled primal—dual affine-scaling directions at (X, S),ie. D + Dg = -V. If
strict complementarity holds for (P) and (D), one has

“%(D}D“S+D}D§)/MH =0(8(X, S, 1) + p). (7.12)

The fact that one can only prove a weaker result in the SDP case is probably not due
to shortcomings in the analysis, as can be seen from the following example.

Example 7.1 (Adapted from Kojima et al. ([105]) Consider the problems (P) and
(D) in standard form with data

-2 0 0 1 00 —2
Ay = , Ay = , C= , b=
0 0 1 -2 0 1 0

1 0 0 0 0
X* = s S*: s y*:
0 0 0 1 0
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Consider the sequence offeasible points (X, Sk, yx) — (X*,S*,y") defined by

where €, —

€k (1+c)e,  —y/Cek (14 c)ex/2
: y Yk -
€k —+/CE€L 14 2,/cex \/CEL

0 and ¢ > 0. Here the values ¢ := % and e = 107F/10 ( =

30,..., 80) will be used.

We investigate the centrality of the given sequence offeasible points. It seems
clear from Figure 7.1 that 6(X,S,p) < 0.13for the sequence of points. In other
words, all the points lie in the region of quadratic convergence to the central path.
The maximum feasible step length (denoted by ouyax) to the boundary along the NT

B(K, B0

Figure 7.1.
function of k.

B3 po oy 7 T T : T
PRLL] g 4
DR -i
A eitg IR e s s
“’"’l"
-~
Gizy _// k
H . Ve
DAGE / E
ot/ -
/
¢
f;
A
s 1 1 kY L 3 31,

The centrality function 6(Xg, Sk, ux) where pp = %’I‘r (XkSk) as a

predictor direction does not approach one along the sequence of iterates, as can be

seen from Figure 7.2.

a

Superlinear convergence has been proved for the Mizuno-Todd-Ye predictor-corrector
scheme using the NT direction under assumptions of a strictly complementary solu-
tion and increasingly centered iterates by Kojima et al. [105] and Luo efal. [117]. In
particular, if we do repeated centering steps so that §(X, S, u) = O(u) after the cen-
tering steps, then the bound (7.12) becomes the same as (7.11). The requirement for
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Figure 7.2. The maximal feasible step length amay along the NT predictor direction does
not converge to one along the sequence of points (X}, S).

extra centering steps is very undesirable from a practical point of view, since centering
steps do not decrease the duality gap.

There is some hope that Example 7.1 does not preclude superlinear convergence of
the Mizuno-Todd-Ye predictor—corrector algorithm — in the example the sequence
of points is constructed in a special way, and these points do not correspond to actual
iterates generated by the algorithm. In particular, it may be possible to prove that the
centering steps become more accurate for small values of p.

Mehrotra-type predictor—corrector methods and software

Most implementations use the so-called Mehrotra-type [121] predictor—corrector method.
Here the primal-dual affine—scaling direction is also computed, but no step is made
along this direction. It is used instead to find a suitable ‘target value’ for u and to com-
pute a second order approximation of the solution of the nonlinear system (7.2). We
give a summary of the steps of the algorithm here. To this end, let (X, S) € ri (P x D)
denote the current iterates, as before.

m The maximal feasible step-length along the primal-dual affme—scaling direction is
calculated, as well as the duality gap g* that would result from this step.
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The value of g* is used to choose a target value of u via

p= (-9 &

Tr(XS)) n’
Note that the value p = ng corresponds to the value of the duality gap that can be
attained along the primal—dual affine—scaling direction. This value is now further

reduced by multiplying with the factor F'[(]TS) (the fraction by which the duality
gap can be reduced).

The search direction is now computed via a ‘second order method’ — one does not
compute AX, AS from (7.4) and (7.5), but uses the primal-dual affine-scaling
directions D% and Dg to obtain a more accurate (second order) solution of (7.2).
In particular, one can solve the Lyapunov equation

1
((Dx + Ds)V +V(Dx + Ds)) = pl —V? — 5 (DxDs + DsDk),

N =

instead of (7.3)* to obtain scaled search directions Dx and Dg.

The maximal feasible step-lengths, say amax and Gmax along AX = DD XD%
and AS = D" 2DgD™2 respectively, are now calculated, and the damped steps
X + (1 — €)amaxAX and S + (1 — €)BmaxAS are taken for some small value
e> 0.

Todd et al. [173] for more details on the implementation.

Software Mehrotra-type predictor—corrector algorithms using the NT direction have
been implemented in the software SeDuMi by Sturm [167] and SDPT3 by Toh e al.
[175]. In the SeDuMi package only the NT direction is used, and in SDTP3 the NT
direction can be specified by the user. These are two of the most successful implemen-
tations of primal—dual methods for SDP at the time of writing.

“Note that we are approximating the cross term D x D g that had been neglected in (7.3), by using D$, and

Ds.
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PRIMAL-DUAL POTENTIAL REDUCTION
METHODS

Preamble

The progress of a primal—dual interior point algorithm can be monitored by evaluating
the so-called Tanabe-Todd—Ye potential function at each iteration. If one can guaran-
tee that this function decreases by at least a fixed constant at each iteration, then one
can immediately deduce a complexity bound for the algorithm. So-called potential
reduction methods are therefore appealing from a theoretical perspective, since the
analysis is conceptually simple.

Potential reduction methods were the first methods to be extended from linear pro-
gramming (LP) to the more general semidefinite programming (SDP) problem; Nes-
terov and Nemirovski [137] and Alizadeh [3] independently analysed several potential
reduction methods that have analogies in the LP literature.

A primal—dual potential reduction method suited for the structure of linear matrix
inequalities arising in control theory applications was analysed by Vandenberghe and
Boyd in [180]. A general potential reduction method for conic LP’s involving homo-
geneous self—dual cones (including SDP) is presented by Nesterov and Todd [138].

Most of these methods (and some variants thereof) are described in the review paper
by Vandenberghe and Boyd [181]. Two more recent surveys are by Alizadeh and S.
Schmieta [7] and Tungel [176]; these papers include potential reduction methods for
more general conic LP’s.

133



134 Aspects of Semidefinite Programming

In this chapter we describe the framework of analysis for these methods, and apply
the methodology to the potential reduction method of Nesterov and Todd [138].

8.1 INTRODUCTION

Primal-dual potential reduction algorithms achieve a constant decrease of the so-
called Tanabe-Todd-Ye [171, 174] potential function at each iteration. This function
is defined on ri (P x D) by:

O(X,S9) := (n+vyn)logTr (XS) — logdet(XS) — nlogn,

where v > 11is a given parameter. If one can prove that an algorithm achieves a
constant reduction of ® at each iteration, then one can immediately give a worst-case
iteration complexity bound for the algorithm.

Potential reduction algorithms fit into the following framework.

Generic primal-dual potential reduction method

Input
A strictly feasible starting pair (X, S%);

Parameters
An accuracy parameter € > 0;
A parameter v > 1.
begin
X := X% §:=59
while Tr(XS)>e¢ do
Compute feasible descent directions for @ at (X, S), say (AX,AS);
Find (¢, ) = argmin ®(X + aAX,S + BAS) subjectto 0 < a <
Qmax, 0 £ 8 < Bmax (plane search), where aupax and fmax denote the
respective maximal feasible step lengths;
X =X+4+alAX,;5:=5+BAS;

end
end

This plane search procedure in the algorithm is examined more closely in the next
section.



PRIMAL-DUAL POTENTIAL REDUCTION METHODS 135

8.2 DETERMINING STEP LENGTHS VIA PLANE SEARCHES OF
THE POTENTIAL

Once suitable primal-dual search directions (AX, AS) have been computed, step
length parameters must be chosen to ensure feasible steps. In other words, one must
find «, 3 such that

X+aAX >0, S+p5AS>0.

This is done by performing a plane search on the potential function . Webriefly
review this procedure here.

The intervals for feasible step lengths in both the AX and AS directions are
1

calculated first. This is done by computing the eigenvalues of X"3AXX"? and
573 ASS~1,ie. the generalised eigenvalues of the pairs (X, AX)and (S, AS).

The idea is as follows. Assumethat X ~% AX X ~% has at least one negative eigen-

value. Then .
1
X+aAX 0= IT+aX 2AXX 2 >0,

which in turn holds if and only if
Armin (ax-%Axx-%) > 1.

This is the same as !

s Amin (X—%AX)(—%)'

Thus we have

Osasamaxa OSﬁSﬁmax, (81)
where
~1 ,
Gmax = _ min 1 < | M (xraxxTd) <oy,
heen | (x-taxx-)
. -1 _1 _1
Bmax =  min A (S }ASS ) <0

=l |y, (S—%Ass—%)

Once the eigenvalues of X 3AXX%and S"3ASS~% are known, the plane search
reduces to the two dimensional minimization problem: find values (a*,3*) in the
rectangle (8.1) that minimize

fla,8) = ®(X +aAX,S+BAS)
= (n+vyn)log(Tr (XS) + aTr (CAX) — gbT Ay)

- zn:log [1 +a) (X_%AXX‘%)}
i=1

- znjlog [1 + BN (S—%Ass—%)] .
=1
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The function f is quasi-convex and has a unique minimizer in the interior of the rect-
angle of feasible step lengths defined by (8.1). An important observation is that the
evaluation of f(a,f), Vf(a,B) and V2f(a,3) can be done in O(n) operations,
which means that the plane search can be done efficiently once the eigenvalues of
X-3AXX~%and S"2 ASS™% have been computed.

8.3 THE CENTRALITY FUNCTION ¥

As mentioned in the introduction, the potential function & is composed of a ‘duality
gap' term and a ‘centrality term’. The centrality term is given by the function:

22 M(XS)
(T, M)
= —logdet(XS)+ nlogTr(XS)—nlogn.

¥(X,S) = nlog

Thefunction ¥ is determined by the ratio of the arithmetic and geometric means of the
eigenvalues of XS. By the arithmetic—geometric mean inequality, ¥ is always non-
negative and zero if and only if the pair (X, §) is centered. The following inequalities
show that the centrality functions  and ¥ are closely related:”

log (k(XS)) —-2log2 < ¥(X,S) < (n—1)log(xk(X8S)). (8.2)

As an example we show how the function ¥ may be used to explain the ‘centering
effect” which we observed for the primal-dual Dikin-type direction in Chapter 6 (Fig-
ure 6.1). As before we will use the NT scaling as described in Section 6.2 to obtain
the scaled directions Dx and Dg, the scaled primal-dual step Dy = Dx + Dg, as
well as V.

Example 8.1 We show here that the primal-dual Dikin-type direction is a descent
direction for W at (X,S) € ri(P x D), unless (X, S) are on the central path.
The directional derivative of ¥ along (AX, AS) is given by (Vx¥(X,5),AX) +
(Vs¥(X,S),AS). We will now show that the directional derivative of ¥ along the
primal-dual Dikin step direction is always non-positive, and zero on the central path
only. Indeed, using the expressions

n

=Xy — g U(X,8) =-S5+ ——=X

'See Vandenberghe and Boyd [181], and the references therein.

The inequalities in (8.2) will not be used again and only serve to show that « is bounded in terms of ¥. For
aproof of (8.2)and anextended discussionof the function ¥ the readerisreferred toDennisand Wolkowicz
[95], where other bounds are also given.

*The required calculus results may be found in Appendix C.
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it is easy to verify that the directional derivative is given by

(Vx¥(X,S),AX) = +(Vs¥(X,S),AS) (8.3)
- oo (2 )
= Tr (DV (WV - V‘1>> . (8.4)

Substituting the primal-dual Dikin-type direction Dy = ﬁ vields

(Vx¥(X, S)AX) = +(Vs¥(X, §)AS)
—nV4 & )
<|V||2||V2H V2]

112 : _nuvzan
el s

The right-hand side expression is always non-positive by the inequality

IVII* < v V2|, (8.5)
thatfollows from the Cauchy—Schwartz inequality. Equality holds in (8.5) ifand only
ifV = pl for somey > 0, i.e. ifand only ifX and S are on the central path. 0

8.4 COMPLEXITY ANALYSIS IN A POTENTIAL REDUCTION
FRAMEWORK

The Tanabe-Todd-Ye potential function is obtained by adding an additional ‘duality
gap’ term to the ‘centrality’ function W as follows:

®(X,S) = vvulogTr(XS)+¥(X,S) (8.6)
= (n+vyn)logTr(XS) — logdet(XS) — nlogn,

where the (fixed) parameter v > 1 determines the relative ‘weight’ given to the duality
gap term.

Using (8.6) and (8.4), it is easy to show that the directional derivative of & at
(X,5) €ri (P xD)is givenby:
(Vx¥(X,S),AX) + (Vs¥(X, §), AS)
= Tr (Vx®(X,S)AX)+ Tr (Vx®(X,S)AX)
VDy

(n +vy/n)Tr (W) +aTr (V7'Dy). (8.7)

1

The duality gap Tr (XS) tends to zero as ® tends to minus infinity. In particular,
we have the following bound on the duality gap Tr (XS) in terms of ®(X, S).
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Lemma 8.1 Ler (X, S) €ri (P x D). One has

Tr (X S) < exp (@%/;)) , (8.8)

where ®(X, S) is as defined in (8.6).

Proof:
By (8.6) we have

B(X, ) ¥(X,5)
u\/ﬁ u\/r_z

since ¥(X,S) > 0. The required result follows. a

> log (Tr (X5)),

= log (Tr (X9)) +

If we have an algorithm that fits in the framework on page 134, and that reduces
d by an absolute constant at each iteration, then we can immediately give a worst-
case iteration complexity bound for the algorithm. This follows from the following
theorem.

Theorem 8.1 Ifa given algorithm (that fits in theframework described on page 134)
decreases the potential function ® by an absolute constant c,eq (independent of n) at
each iteration, then at most

[u\/ﬁL-F\I/(XO,SO)-‘ (8.9)

Cred

iterations are needed to satisfy the convergence condition Tr (X 8) < ¢, where (X°, 8%)
are the strictly feasible starting solutions and L = log ('I‘r (XOSO)/E), as before.
Proof:

After k steps of the algorithm we will have computed a pair (X,S) € ri (P x D)
such that
®(X,S) < ®(X° 8% — kcrea

By (8.8) we therefore know that

XO, SO) — kc,ed)

Tr(XS) < exp (M) < exp (Q( o

G

We will therefore surely have Tr (X S) < e if

d(X0, 59) —
exp ( ( au\jﬁ kcred) Sf-
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If we rewrite this inequality we find that we will have computed a pair (X, S) €
ri (P x D) suchthat Tr (X S) < e after k steps, provided that:

vy/nlogl+ @ (X0, S°)

k>
Cred
vynlogl +vy/nlog Tr (X°S°) + ¥ (X°, 5°)
B Cred
_ v/RL+ ¥ (X959
- Cred ’
Tr (X°s° . . .
where L = log , and where we have used (8.6) to obtain the first equality.

€

0

8.5 A BOUND ON THE POTENTIAL REDUCTION
Assume now that we have a given pair of feasible directions AX, AS that are feasible
descent directions for @ at a given feasible pair (X, S) € ri (P x D).

We first recall a useful sufficient condition for a feasible step length.

Lemma 82 Assume that (AX,AS) € L x L and (X,S) € 1i (P x D). Wewill
have X + aAX €r1i(P) and S + aAS € 1i (D) ifah < 1, where
(8.10)

2 1 _1])? 1 _1]|?
R = “X SAX X3 +“S }ASS}

2

1 2 1
= |vipxvd| 4 lvipsy-i

Proof:

We have already encountered the quantity k on page 100, where we also showed that
a step length a < h is always feasible. 3

The following lemma gives a bound for the change in @ brought about by the step
(X + aAX, S +aAS).

Lemma 8.3 Assume that (AX,AS) € Lt x L is a strict descent direction of ®
at (X,S) € ri (P x D). A primal-dual step (X + aAX,S + aAS) of length a
(ah < 1) isfeasible and reduces the potential function ® by at least

A® = ¥(X,5)-P(X +aAX,S+ aAS)
> —a((Vx¥(X,5)AX) + (Vs¥(X, S)AS)) — p(~ah),
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where
Y():=t—log(l+t), t>-1€R

(see Figure 3.1 on page 43).

Proof:
By the definition of the potential function one has:
AP = ®(X,8) - ®(X +aAX,5+ aAS)

_ [ Tr(XS)
= (n+ovn)log |Tr(XS) + oTr (XAS + SAX)J
det(X + aAX) det(S + aAS)
det X ] +1°g[ det S
_ [ v]?
= (n+wvyvn)log VIE T oTx (VDy)
+log (det(X ') det[X + aAX]) + log (det(S™") det[S + aAS])
[ 1
= (0 Vg |
+logdet[I + aX 'AX] + logdet[I + aS™'AS].

+log{

To proceed, the following inequality is needed (for a proof, see e.g. Roos et al. [161],
Lemma C.1):

ko

k
> log(1 + ;) Z v(—|lz]), vz e RF, ||lz]| < 1, (8.11)

where
W(t) =t —log(1+1), t>—-1€R, (8.12)

as before (see Figure 3.1 on page 43).
We would like to apply (8.11) to the eigenvalues of X~ 'AX and S~ !AS. To
this end, note that
X (aXT1AX) = an (XTHAXXH), A (a571A8) = axi (573 ASSTH),

(¢=1,...,n),suchthat

L

> [ (X 71aX))" + (s (a571A8)) ]

=1

[t _1? [P 12
a HX SAX X} HS FASS}

= (ah)2

with has defined in (8.10). We can therefore apply (8.11) to the eigenvalues of
aX 'AX and aST!AS if ah < 1. Thus we obtain the inequality

logdet[I+aX 'AX]+logdet[I+aS™'AS] > oTr (X 'AX+S7'AS)—¢(-ah),
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which holds if ah < 1. Recall from the previous lemma that ah < 1 isasufficient

condition for a feasible step length.

We have now obtained the relation:

A® > (n+wvvn)log 1+aTr(V1DV)/||VH2 +aTr (X 'AX + S71AS)
—p(—ah)
= —(n+vyvn)log[1+aTr(VDy)/|V|?] +Tr (V 'Dy)
—(—ah).

Using the well-known inequality —log(1 + z) > —ux, as well as the expression (8.7)
for the directional derivative of @, completes the proof. a

Corollary 8.1 Assume that Dy corresponds to a (strict) descent direction of ® at
(X,S8) € ri (P x D). A primal-dual step of length o* along this direction reduces

the potential function @ by at least

c
a®2v(5).
where
¢ = —((Vx¥(X,9)AX)+ (Vs¥(X,S)AS))
VD
= —(n+uvyn)Tr (W) +Tr (V~'Dy) > 0,
and
.11 _1
CTh ern T h
Proof:
By Lemma 8.3 we know that
A® > ac— y(—ah) = a (€ + h) + log(1 — ah), (8.13)
where D
|4
¢:=—(n+vyn)Tr (WVI—‘;) +Tr (V™ 'Dy).

Note that ¢ > 0, because we assume that Dy, corresponds to a strict descent direction

of ® at (X,S).
The function of o in (8.13) is strictly concave for 0 < @ < 1/h, and has maximizer
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Thus
AD > a*c— YPp(—a"h) =7 (E) ,

which is the required result. 0

To find a lower bound on A®, we can therefore find a suitable lower bound on
¢/h. The quantities € and h are completely determined by the current iterate V and
the direction Dy that we choose. In the next section we will analyse a potential reduc-
tion method that uses the NT direction (see page 116), namely the potential reduction
method of Nesterov and Todd [138].

8.6 THE POTENTIAL REDUCTION METHOD OF NESTEROV AND
TODD

This method uses the NT direction in conjunction with a dynamic updating strategy
for p.

A formal statement of the algorithm is as follows.

Nesterov-Todd potential reduction method

Input
A strictly feasible starting pair (X°, S9);

Parameters
An accuracy parameter ¢ > 0;
A potential parameter v > 1.
begin
X :=X%68:=8°
while Tr(XS)>e¢ do
p="Tr(XS)/(n+vyn);
Compute AX, AS from (7.4) and (7.5);
Find (o, 8) = argmin ®(X + aAX, S + SAS)
X =X +aAX,; S =54+ 38AS;

end
end

Recall that the NT direction is defined (for a given p > 0) via

Dy =uV 1V,
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and that we have the associated centrality function

11 1 1
§ = 5(X, S, ) —;||Dv||=5u¢ﬁv—l——vH. (8.14)

T2k JE

We can give an upper bound for A in terms of § by using the following lemma.

Lemma 8.4 (Jiang [96]) Let y > 0 be given and define § as in (8.14). One has
1
max {p (Vvrv 1) ,p (\/—_V) } <8 +41+62,
m

where p denotes the spectral radius. a

Proof:

: 1
We denote the eigenvalues of ﬁV by

wi =M (%V) (i=1,...,n).

The eigenvalues of ﬁV_l are therefore given by 1/u; (i = 1,...,n). Using this

notation we have )
/1
46% = — —u | . 8.15
> (5 -w) 19

i=1
Now the proof proceeds exactly as the proof given in Lemma I1.60 in Roos et al.
[161] for the special case of LP. We will repeat it here to make our presentation self-
contained.

Since u; is positive foreach i = 1,...,n, we know by (8.15) that
—26u; <1 —u? < 26u;.

This implies
u? - 20u; —1 <0 < wu? 4 26u; —~ 1.

Rewriting this as
(uj—8)2 ~1-62<0< (u; +68)%~1-4?

we obtain
(u; — 8)2 <1+46%< (u; +6)%,

which implies

ui — 0 < |u; — 0] < V1462 <wu;+4.

0+ V1462 <u; <6+ V1462 (8.16)

Thus we arrive at



144 Aspects of Semidefinite Programming

To complete the proof, we note that

1
5+ V1482 = —————
§+ 1+ 62

so that (8.16) implies u; < § + V1 + §2 u; <d+vV1+462@GE=1,...,n). O

We are now ready to give an upper bound on A in terms of é.

Lemma 8.5 Let h? := |V -2 DxV "% |2+ ||V 2DsV~%||% One has

h§25(6+ V1 +62), (8.17)
where § is defined in (8.14), and Dx, Dg refer to the NT direction.

Proof:

In the proof we will repeatedly use the inequality (see page 233):
Tr (AB) < Apax(A)Tr (B), for A, B > 0.
By definition of h:

1 1 2 1 1 2
n = ||[v-ipxv=H|| 4 |viDsv

= Tr (V'DxV ™ 'Dx + V7 'DsV™'Dg)
< Amax(V73)Tr (D% + D)

1
= — =  __||Dvl?

/\min(Vz)H vl

= p(V*)IDv|?

1 Dy|?
_ ., (_Vz> 1Dy *
M M
Using the last lemma we now have
2
h? < (6+ V1t 62) (46%),

2
where we have also used 462 = JJD_:[L_ O

We can now use the bound (8.17) together with Corollary 8.1 to obtain the follow-
ing result.

Lemma 86 Ler (X,S) €r1i (P x D) be given and let yp = —;II—‘r\—/%(% One can always
find afeasible step length such that

26
AQZ¢(6+\/1+62>
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along the NT direction.

Proof:
From Corollary 8.1 we know that
c
> —
sozo(3).
where D
|4
C:= —(TL + V\/E)'I‘r (W) + Tr (V_le) .

2
Substitutin = VI into the expression for ¢ we obtain
g p n+vyn p

¢ = 1T (VDy)+Tr (VD)
"

= %Tr (Dv (-V +pV™))

1
= = [Dv|* = 46%
7

where we have used Dy = —V + pV ~1. Thus we have
c _ 4% 26
h h = §+V146%
where the inequality follows from (8.17). The required result is now obtained by
substituting the lower bound on ¢/h in Corollary 8.1. 0

Loosely speaking, we can always reduce ® by an absolute constant if § is large
enough. Moreover, we know from Lemma 7.5 that after an update p+ = (1 —
6)Tr (X S), where 6 € (0,1), the value of § (X, S, ™) will be bounded from be-

low by
92
§(X, 8 ut)) > 2.
It is easy to check that the u-updating strategy
_ Tr(XS)
T n+4vyn

of the Nesterov-Todd potential reduction method corresponds to

+

v
vn+v’
and therefore by straightforward calculation one has
2 vin +v3y/n
> .
~4(n+v?+2vy/n)

(8(X,S, ™))



146 Aspects of Semidefinite Programming

Using n > 2and v > 1 we therefore have §(X, S, ™) > 0.38. Substituting this
value into the bound from Lemma 8.6 yields A® > 0.1. This bound for A® is rather
pessimistic — it is easy to check that for v > 10, one has A® > 0.27, for example.

The Nesterov—Todd potential reduction algorithm therefore has the following worst-
case complexity, by Theorem 8.1.

Theorem 8.2 The Nesterov—Todd potential reduction algorithm requires at most

[\/EVL+ \IJ(X",SO)"

0.1

iterations to compute a pair (X*, S*) € ri (P x D) that satisfies Tr (X*S*) <e. O

Note that the method has the same O (y/n) iteration complexity as the short step
method (see Theorem 7.1 on page 124), but it allows for much larger reductions of
o per iteration. For this reason potential reduction methods are more practical than
short step methods. In practice, potential reduction algorithms have been replaced in
implementations by the more popular predictor—corrector methods.

Software A slightly dated code by Vandenberghe and Boyd [179], called SP, uses
an implementation of the Nesterov—Todd potential reduction method.
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CONVEX QUADRATIC APPROXIMATION

Preamble

Letn > 1 and let f : R™ — R be a convex function. Given distinct points

21,22, +,2n In R™ we consider the problem of finding a quadratic function g :
R™ — R such that ||[f(21) — g(21),- .., f(zn) — g(2n)]]| is minimal for some given
norm | - ||. For the Euclidean norm this is the well-known quadratic least squares

problem. (If the norm is not specified we will simply refer to g as the quadratic ap-
proximation.) In this chapter — that is based on Den Hertog er al. [51] — we show
that the quadratic approximation is not necessarily convex for n > 2, even though it
is convex if n = 1. The best convex quadratic approximation can be obtained in the

multivariate case by using semidefinite programming.

9.1 PRELIMINARIES

Let n > 1 and let f : R®™ — R be a convex function. Given distinct points
21,22, -, 2y in R™ we consider the problem of finding a quadratic function g :
R"™ — R such that

The function g being quadratic, we can write it as

glz) = 2TQz+rTz+4~ 9.2)
149
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where Q € S,,, r € R™ and v € R. Hence, the problem of finding ¢ such that (9.1)
holds amounts to finding @), r and ~y such that

z?in+rTzi+7=f(zi) 1=12,---,N. (9.3)

This is a linear system of N equations in the unknown entries of Q, r and ~. The
number of unknowns in Q is equal to %n(n + 1), hence the total number of unknowns
is given by

1 1
—2—n(n+1)+n+1:§(n+1)(n+2).

We call the points 2y, 2o, - - -, 2 quadratically independent if
2TQzi+7rT2i+v=0 i=1,2,--\N = Q=0 r=0 r=0. (9.4

Note that in this case N > %(n +1)(n+ 2). Moreover, if N = %(n +1)(n + 2), then
system (9.3) has a unique solution. We conclude that if the given points 2y, 22, - -, 2y
are quadratically independent and V = %(n + 1)(n + 2), then there exists a unique
quadratic function g such that (9.1) holds. This is the interpolation case. When N >
%(n + 1)(n + 2), the linear system (9.3) is overdetermined and we can find a least
norm solution:
min ||z
where
=20 Qzi+ 71Tz +v— fz), i=1,...,N.

If the norm is the Euclidean norm, then the function g is the quadratic least squares

approximation. If we do not specify the norm, we will simply refer to quadratic ap-
proximation.

9.2 QUADRATIC APPROXIMATION IN THE UNIVARIATE CASE

In this section we consider the univariate case (n = 1),i.e. fis a one-dimensional con-
vex function. It is obvious that for any three quadratically independent points zy, 29, 23
the function g will be convex. In other words, the quadratic interpolation function is
convexity preserving. We proceed to show that also the quadratic approximation is
convexity preserving. More precisely, we show that the quadratic approximation g of
f with respect to a set of points

Z:= {217227" '7ZN}
is convex for any norm.
Theorem 9.1 Let 2y < zp < ... < zyand y; = f(z) (¢ = 1,...,N) be given,

where f is a univariate convexfunction. The quadratic approximation g to this data
set is a convex quadratic function.
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Proof:

Assume that the quadratic approximation g to the data set is strictly concave; see
Figure 9.1.

Now we distinguish between two possibilities:

(i) thefunction g intersects f in two points;

(i1) thefunction g intersects f in at most one point;

Case (i) is illustrated in Figure 9.1. One can now construct the chord through the two
points of intersection. This chord then defines an affine function which is clearly a
better approximation to the data set at each data point in Z.

Chord

v

Figure 9.1.  lllustration of the proof of Theorem 9.1.

In case (ii) the relative interiors of the epigraph of the function f,namely

epi(f) = {(z,9) |y 2 f(2)},

and the set
{(9) |y < g(2)}

are disjoint. These are convex sets, and therefore there exists a line separating them,
by the well-known separation theorem for convex sets (see Theorem B.4 in Appendix
B). This line again gives a better approximation to the data than g. |
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9.3 QUADRATIC APPROXIMATION FOR THE MULTIVARIATE
CASE

In this section we first show that quadratic interpolation in the multivariate case is not
convexity preserving. Consequently, quadratic approximation is not convexity pre-
serving for any norm. Subsequently we show how the best convex quadratic approx-
imation can be obtained for the 1-norm, 2-norm, and co-norm by using semidefinite
programming.

The following (bivariate) example shows the counterintuitive fact that quadratic
interpolation is not convexity preserving in the multivariate case.

Example 9.1 Let f : R? — R be given by
f(l‘):—logzlzz, o >07I2 >07

which is clearly a convexfunction, N = 6, and the data points z,, ...,z € R® are
the 6 columns ofthe matrix Z given by

1 23 2 4 6
21 2 3 4 6

4 =

These points are quadratically independent since the coefficient matrix of the linear
system (9.3) is given by

1 2 4 1 2 1
4 2 1 2 11
9 6 4 3 2 1
4 6 9 2 3 1]
16 16 16 4 4 1
36 36 36 6 6 1

and this matrix is nonsingular. The (unique, but rounded) solution of (9.3) is given by

-0.2050  0.2628 —0.7804
Q= , r= , v = 1.6219.
0.2628 —0.2050 —0.7804

The eigenvalues of Q are approximately —0.4677 and 0.0578, showing that Q is in-
definite. Hence the quadratic approximation g of f determined by the given points
2y, 22, -, 2, is not convex. Figure 9.1 shows some ofthe level curves of f (dashed)
and g (solid) as well as the points z; (i = 1,2---,6). The level sets of g are clearly
not convex and differ substantially from the corresponding level sets of f. a
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Figure 9.2.  Level curves of f and g and the points where they coincide

Now we will show how to find the best convex quadratic approximation using SDR
Our aim is to obtain a good convex quadratic approximation g of f on the points in
the finite set

Z:={z1,22,"-,2N},
with respect to different norms. Convexity of g is equivalent to the matrix Q in (9.2)
being positive semidefinite.

The oo-norm

To this end, one can minimize the infinity norm of f — g at Z, yielding the objective
min max |f(2) = g(=)]. (9.5)
It will be convenient to use the notation
s(2) = f(2) —g(2) = f(2) —27Qz — 1Tz — z€ Z.
Thus we can rewrite problem (9.5) as
min{t| —t<s(z)<t(Vze€ Z), Q =0}, (9.6)
where the variables in the optimization problem are

teR, QeSH, reR?, yeR. (9.7)
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The 1-norm

Minimization of the l-norm of f — g at 2, yields the problem

min Y |f(z) — 9(2)|. 9.8)

ze2
This is equivalent to solving
min{th —~t, < s(2) <t, (Vz € Z), Q>_—0}, 9.9)
z€Z

where the variables in the optimization problem are

tn €R,...,t,, €ER, QeST, reR", yeR.

The 2-norm

Finally, we can minimize the 2-norm of f— g at 2 (least squares), as follows.

min Y _ (f(2) — 9(2))’, (9.10)

and this can be rewritten as

min¢t | [ s(z)2<t, Qx0p, (©.11)

z€Z

where the variables in the optimization problem are the same as in (9.7).

For the oo and I-norms, the resulting problems (9.6) and (9.9) have linear con-
straints and the semidefinite constraint ¢ > 0. Problem (9.11) (for the 2-norm) has an
additional second order cone (Lorentz cone) constraint, and is therefore also an SDP
problem (see Section 1.3 on page 3).

Example 9.2 For the bivariate example given above we calculated the least squares
(2-norm) quadratic approximation while preserving convexity. We solved problem
(9.11) using the SDP solver SeDuMi [167], to obtain the following (rounded) solution:

11 1
Q = 0.02750 . r=—0.7287 , v =1.219.
11 1

The eigenvalues of Q are approximately 0.55 and Q, showing that Q is positive semidef-
inite. Hence the best convex quadratic approximation g of f determined by the given



CONVEX QUADRATIC APPROXIMATION 155

points 21,29, -+, 2¢, IS convex, but degenerate. Note that Q is not positive definite
because the constraint Q > Q is binding at the optimal solution ofproblem (9.11). (If
we remove the constraint Q > 0, then we get the non-convex interpolation function of

the previous example.)

Figure 9.3 shows some of the level curves of f (dashed) and g (solid) as well as

the points z; (i = 1,2---,6). Comparing with Figure 9.2 we see that the convex

Figure 9.3.  Level curves of f and ¢

approximation approximates f much better within the convex hull of the six specified

points, ifthe measure of quality is the maximum error or integral of the errorfunction
err(z) = | f(z) — g(2)]

over the convex hull. (The convex hull defines a natural ‘trust region’ for the approxi-

mation. ) 0
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THE LOVASZ 9-FUNCTION

Preamble

The Lovasz ¥-function maps a graph G = (V, E) to R, and ¥(G) is given as the
optimal value of a certain SDP problem. Inparticular, 19(@) gives an upper bound on
the clique number of G, where G denotes the complement of G. The upper bound is no
worse than the chromatic number of G. This result is known as the ‘sandwich theorem’
(a name coined by Knuth [103]); it gives a polynomial-time approximation to both the
clique and the chromatic numbers (these numbers cannot be computed in polynomial
time, unless P = NP). In this chapter we will give a proof of the sandwich theorem,
and derive some alternative formulations for the J-function as SDP's.

10.1 INTRODUCTION

The 9-function was introduced by Lovasz [115] to give a polynomial time lower bound
on the so-called Shannon capacity of a graph (see Section 10.4). It is interesting to note
that the definition of 9(G) as an SDP problem dates back to 1979. As such it is a nice
example of a relatively old problem that has benefited from the emergence of efficient
solution algorithms in the 1990's. (In 1979 it was known that SDP problems could
be solved in polynomial time via the ellipsoid method, but no practical algorithms

were available.) The #-function has proved to be of great importance in combinatorial
157
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optimization. The sandwich theorem states that

w(G) <9(G) < x(G),
which means that 19(@ ) can be seen as a polynomial time approximation to both w(G)
and x(G)- In a sense one cannot find better approximations to the clique or chromatic
number polynomial time: neither w(G) nor x(G) can be approximated within a factor
|V|1=¢ for any € > 0 in polynomial time, unless NP = ZPP! (see Hastad [81] and
Feige and Kilian [57]).

The ¥-function also forms the basis for a number of approximation algorithms, that
will be described in the next chapter. A detailed exposition of the properties of the
Y-function is given by Knuth [103].

102 THE SANDWICH THEOREM

The sandwich theorem relates three properties of a graph G(V,E): the chromatic
number x(G), the clique number w(G), and the Lovdsz number ¥ (G), of the com-
plementary graph G which can be defined as the optimal value of the following SDP
problem:

9 (G) := maxTr (ee™X) = eTXe (10.1)
subject to
zi; = 0,(,7) ¢ E(i#7)
Tr(X) = 1 (10.2)
X = 0

The ‘sandwich theorem’ states the following.2

Theorem 10.1 (Lovasz's Sandwich Theorem [115]) Forany graph G = (V, E) one
has

w(G) <9 (G) < x(G)-
Proof:

In order to prove the first inequality of the theorem, we show that problem (10.1)-
(10.2) is a relaxation of the maximum clique problem.

Let z¢ denote the incidence vector of a cliqueC of sizek inG, ie:
1 ifieC

(zc)i =
0 otherwise.

'"The complexity class ZPP C NP is a generalization of the complexity class P, and is defined as the
class of languages that have Las Vegas algorithms (randomized algorithms with zero sided error) running
in expected polynomial time; for more information, see Motwani and Raghavan [128], page 22.

The proof given here is due to De Klerk et al. [45]; another proof is given by Knuth [103].
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It is easy to check that the rank 1 matrix

1
X := -Ezczg
is feasible in (10.2) with objective value
1 k?
CTXC = E (CT.'L'C)Z = T = k

We therefore have w(G) < ¥ (G) , which is the first part of the sandwich theorem.

The second part is to prove 9 (G_) < x(@G). To this end, we write down the La-
grangian dual of the SDP relaxation (10.2) to obtain

9 (G) = 1}11}51 A (10.3)
subject to
Y +eeT < A
vi; = 0, (4,5)€E({i#37) (10.4)
y; = 0,1eV.

Note that both the primal problem (10.1) and dual problem (10.3) satisfy the Slater
constraint qualification (Assumption 2.2 on page 23), and therefore have the same
optimal value, namely 9 (G).

Given a colouring of G with k colours, we must construct a feasible solution for
(10.4) with A < k. Such a colouring defines a partition V = UleCi where the C;’s
are subsets of nodes sharing the same colour. In other words, the C;’s must be disjoint
stable sets (co-cliques). Now let ; = |C;| and define

M;:=k(l, —E,), i=1,...,k,

where I, is the (v; x «;)identity matrix, and E., the all-1 matrix of the same size.

We will show that the block diagonal matrix

M, 0 0
0 M, ... 0
y=| (10.5)
. . .- 0
0 o M,

is feasible in (10.4) if A = k. By construction, Y satisfies the last two constraints in
(10.4). We must still show that Y + eeT < kI, i.e. the largest eigenvalue of Y + ee”
must be at most k.



160 Aspects of Semidefinite Programming

The Raleigh-Ritz theorem (see Appendix A) states that for any symmetric matrix
A, one has:

Amax(A4) = max {zT Az | ||z| = 1}. (10.6)
It follows that the maximal eigenvalue of Y is given by
k k
Amax(Y) = max {Z idmax(Mi), D =1, 0; >0 Vi} . (10.7)
=1 i=1

Moreover one has A\yax(M;) = k, sothat (10.7) yields Apax(Y) = k. The eigenvector
corresponding to k is orthogonal to the all-1 vector e. To see this, note that Yz = Az

implies
7k('7i_1) Z .’L‘jZ/\ Z Zj, i=1,...,k,
JjeC; JEC;

sothat 3. - z; =0 (i = 1,...,k) if A > 0. Inparticular, eTz = 0 from which
it follows that k is also an eigenvalue of Y + ee”. Assumingthat k is not the largest
eigenvalue of Y +eeT, then the largest eigenvalue must have an eigenspace orthogonal
to the eigenspace of k. The orthogonal complement of the eigenspace of k is spanned
by the vectors

1 ifjed
(zC;‘)]‘ = !
0 otherwise,
where i = 1,... k. The maximal eigenvalue of Y + eeT can therefore be computed
from (10.6):
Amax (Y +eeT) = max {27 (Y +eeT)z : z €spanf{zc,,...,z0,}}
z||=1

k k
- T TN . = 2 _
= moz}x {z Yz+ (e z) = Zaizci, Z%—ai = 1}.
i=1 i=1
Substituting the expression for x, and using the construction of Y simplifies this to

Amax (Y + eeT)

max kZa ~%-) -+ (i%‘ai)

2

k
Z'y,—af = 1}

=1
2

k
Z'y,—a? = 1} .
=1

The function to be maximized is always non-positive, since it is of the form

k k
k -+ msx Z ,% (Z %ai)
i=1

i=1

~kaTz 4 (e72) < —haTz + (|lel2])® = —kTz + Klj2]* =

where z; = a;v;, (1 = 1,..., k). This leads to the contradiction Ay (Y + eeT) <
k.
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We conclude that Apax (Y + ee”) = k. O

Example 10.1 (9(G) of the pentagon) Let G = (V, E) be the graph ofa pentagon.
The adjacency matrix’® of G is given by

(00100 1]
10100
A=l01 010 (10.8)
00101
1001 0|

Wehave w(G) = 2, x(G) = 3. We will show that 19(@) = /5 in this case. To this
end, note that the matrix

X = %(2[4—(\/5—1),4)
[ 2 5-1 0 0 Vi-1|
V5 -1 2 V5 -1 0 0
= % 0 V-1 2 V5 -1 0
0 0 V5 -1 2 V5 -1
| VE-1 0 0 VE-1 2

is positive semidefinite and feasible in (10.2), with corresponding objective value
Tr (eeTX) = /5. We want to prove that X is in fact an optimal solution. This
can be done by finding a dual feasible solution — i.e. a solution satisfying (10.4}) —
with the same objective value. Such a solution is given by

V5-5

A=+V5andY = 5

(eeT——A—I).

Note that Y isfeasible in (10.4) by construction. It is also easy to verify that Y +eel <
Al as required. D

*The adjacency matrix A = A(G) of a graph G = (V, E) has entries
1 if(i,j) e E
a;; =
0

otherwise.
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The sandwich theorem can equivalently be stated as
a(G) <9(G) < x(G),

where a(G) is the stability number of G.

An immediate consequence is that 9(G) = a{(G) if G is a so-called perfect graph.

Definition 10.1 (Perfect graph) A graph G = (V, E) is called perfect if a(G') =
w(G)for every induced subgraph G’ of G.

10.3 OTHER FORMULATIONS OF THE ¢¥-FUNCTION

We have given a proof of the equivalence of two different definitions of ¢ (é) via
(10.1) and (10.3). These and other equivalent definitions of ¢ (C_}) are discussed in
Grotschel et al. [72].

We will derive one more formulation of the ¥-function in this section. This formu-
lation will be used extensively in the next chapter.

Theorem 10.2 (Karger et al. [98]) The ¥-functionof the complement of a graph G =
(V, E) is given by

N\ — mint
Pe) = rgip
subject to
w; = t‘— (4,7) € E
Uiz = 1a —17 »n
U = 0
Proof:

From (10.3) and (10.4) we can deduce that

19((?)-1:mint

subject to
Y +eeT < tI+1
Yiu = 0’ 1€V
This implies that
-1 1
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subject to
% (Y +eeT — I) < I
yi; = 0,(4,75)€E (i#7)
i = 0,1€V.

By introducing the new variables p = 1/tand Y = %Y we obtain

-1
——19((_;) — = — maxp
subject to
)_/+p(eeT—I) < 1
gij = 0, (l,j)EE (z;é])
gi = 0,ieV.
The dual problem of this last formulation takes the form
-1
—=——=—minTr 2
G —1 min
subject to
Tr ((eeT—I) Z) = 1
zij = 0,(L,7)¢E (i#7)
Z = 0.

163

Note that the optimal value of the last formulation is also —1/(¥9(G) — 1), by the
strong duality theorem (Theorem 2.2 on page 26), since the Slater regularity condition

(Assumption 2.2 on page 23} is satisfied. We can rewrite the last formulation as

-1

G —1 = max(—Tr Z)
subject to
Z(i,j)eE Zij 1
zij = 0,(,7)¢E (i#])
Z = 0.
Taking the dual of this formulation yields the SDP problem:
-1 _
—19((_;) — = minp
subject to
u; = 1, 1€V
u; = p, (7)) €EE (i#7)
u = 0,
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where we have once again used the strong duality theorem. It is easy to see that this
last problem is equivalent to the one in the statement of the theorem. a

104 THE SHANNON CAPACITY OF A GRAPH

The J-function was actually introduced by Lovdsz [115] in order to study the so-
called Shannon capacity of a graph — a quantity that arises naturally in applications
in coding theory. To define the Shannon capacity, we need to introduce the strong
product of graphs.

Definition 10.2 (Strong product of graphs) The strong product G1xGoof two graphs
G1 = (W, Ey) and G = (V,, E3) is defined as the graph with vertex set V .= V) XV,
and edge set:

E = {{((vi,v;), (Ok,v)) | [(Bi,0k) € E1ori=k] and [(vj,u) € Eporj =1]},

where at least one ofthe two conditions i # k or j # | holds.

It is easy to see that a(G; * G2) > a(G1)a(G2). Indeed, if §; C Vy and S; C V5 are
stable sets of G| and G, respectively, then S; x S, is a stable set of G; x G5. Thus

(G La|Gx..xG| :=a(G).

r times

Example 10.2 We consider the problem of transmitting data via a communication
channel. The data is coded as words consisting ofthe letters of an alphabet. During
transmission, it may happen that a letter is changed to an ‘adjacent’ letter. We as-
sociate a set of vertices V with the letters of the alphabet, and join two vertices by
an edge ifthe two corresponding letters are adjacent. Let us call the resulting graph

= (V, E). For a given integer v > 0, we would now like to construct the largest
possible dictionary ofr-letter words with the property that one word in the dictionary
cannot be changed to another word in the same dictionary during transmission. Two
r-letter words

(L, .. L) (.0

correspond to the endpoints of an edge in G” if and only iffor each i = 1,.
cither I; = I;, or the letters l; and I; are adjacent. It is therefore easy to see that the
maximal number of words in this dictionary is a (GT). a

The Shannon capacity can now be defined using the strong product.
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Definition 10.3 (Shannon capacity of a graph) The Shannon capacity of a graph G =
(V, E) is defined as

1
r

O(G) = lim «(G")

r—oo

Note that this limit is finite, since a (G™) < |V|". Also note that ©(G) > a(G) and

0(G) = lim o (G¥)* = lim (a((GZ)’)’)% =0 (G?). (109

The ¥-function is multiplicative with respect to the strong graph product.

Theorem 10.3 (Lovasz [115]) Let two graphs Gy = (V1, E\) and G, = (Va, Eq) be
given. Then

Proof:

The idea of the proof is simple — we will use optimal solutions of the optimization
problems that yield #(G,) and 9¥(G>) to construct an optimal solution of the problem
thatyields 9(G; * G3). This construction is done by taking the Kronecker product of
optimal solutions.*

To start the proof, let two graphs G, = (V4, E1) and G = (V,, E») be given, and
let X; and X5 be optimal solutions of the problem

9(G) = m)?der (eeTX) =eT Xe (10.10)
subject to
Tr(X) = 1 (10.11)
X = 0

for G = G;and G = Ggrespectively. Let X* := X; ® X,. By the properties of the
Kronecker product (see Appendix E), we have X* > 0 and Tr X* = 1. Moreover,
we can label the vertices of G| * G2 := (V', E') in such a way that (X*).. = 0if
(1,7) € E'. Indeed, if we denote

1

m:{vl,...,v‘vﬂ}, 1/2:{171,.--,17|V2|}7

then a suitable labeling of V! =V} x Va is

V, = {(’Ul7’l_)1)3" L) (U171_1|V2|) 1(’U21’l_)1)7-"7(U‘V1'71_)|V2‘)} .

“The approach used here is based on a proof by Pasechnik [142],



166 Aspects of Semidefinite Programming
In other words, X* is a feasible solution of problem (10.10)-( 10.11) for G = G, *xG,.
Finally the objective value of problem (10.10)-(10.11) for G = G * Gy at X * is
el X e = efy (X1 ® X2) ey
(€|v1| ®efy, |) (X1 ® X2) (evy) ® €qvy))

= <€|7;/,| ® €|V2|) (X1ev,)) ® (X2epy))

= (e Xaemy) ® (i Xaeps)

= (R Xremr) (Koo
HG1)H(Ga),

where we have used the property (AB)®(CD) = (A®C)(B® D) of the Kronecker
product repeatedly (see page 250).

We conclude that 9(G; x G3) > 9(G1)9(Gz). To prove that equality holds, we
must consider the dual formulation of the J-function for a graph G = (V, E). Note
that the dual formulation, namely (10.3)-(10.4), can be rewritten as:

9(G) = min A
X8

subject to
S > eeT
sij = 0, (4,7)&E(i+#7)
sii = A 1€V

By the Schur complement theorem (Theorem A.9 on page 235), S > ee” isequivalent
to

Z = > 0.
el 1

We can therefore give yet another formulation for ${G), namely:

9 (G) = min A (10.12)
subject to
Z € SlV|+1
m o= 0 (L) ¢EE#) 01
2z = A 1€V
2V|41,6 1, i=1,..,|V]+1.

Now let (9(G1), Z1) and (¥(G2), Z,) denote the optimal solutions of (10.12)-(10.13)
for G; and G, respectively. Similarly to what we did for the primal problem, we will
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construct a feasible solution for the problem (10.12)-(10.13) associated with G, * G,
by using (9(G1), Z1) and (§(G2), Z2).
To this end, let Z* = Z; ® Z,. In the same way as before, it is straightforward to

show that Z* is feasible in (10.13) (for G = G, * G3) and the associated objective
valueat Z*is A = 9(G1)¥(G;). This completes the proof. O

By using the sandwich theorem (Theorem 10.1) and Theorem 103 successively,
we have . ) .
a(GN)" < (#(G7) = (B(G)N)" =¥G),
so that ©(G) < ¥(G). This is an important result, since it is not known whether there
exists an algorithm (polynomial or not) to compute ©(G). To summarize, we have the
following theorem.

Theorem 10.4 (Lovasz [115]) Let G = (V, E) be given. Then

a(G) < ©(G) < 9(G) < x(G).

Example 10.3 (Shannon capacity of the pentagon) Let G = (V, E) be the graph of
a pentagon. The complement G is isomorphic to G in this case, and therefore has the
same §-number. Its Shannon capacity ©(G) is upper bounded by§(G) = 9(G) = /5
(see Example 10.1 on page 161).

Now us denote the vertices of G by V = [1,2, 3,4, 5}, and connect the vertices
such that the adjacency matrix of G is given by (10.8) on page 161. Now G * G has
an independent set of size 5, given by

{(1,2), (2,4), (3,1), (4,3), (5,5)}.
Thus ©(G) is lower bounded by /5 because by (10.9) we have

0(G) = VB (G = /a (G?) 2 V5.

Itfollows that ©(G) = /5. o

The last example may seem simple enough at first glance, but the Shannon capacity
of the pentagon was unknown until Lovdsz introduced the -function. In fact, in a
recent talk entitled The combinatorial optimization top 10 list; W.R. Pulleyblank [151]
reserved a place for this result as one of the ten most important results in combinatorial
optimization.

It is worth mentioning that the Shannon capacity of the graph of a heptagon (7-
cycle) is still unknown.
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GRAPH COLOURING AND THE
MAX-K-CUT PROBLEM

Preamble

Given a simple' graph G = (V, E), the (unweighted)> MAX-k-CUT problem is to
assign k colours to the vertices V in such a way that the number of non-defect edges
(with endpoints of different colours) is maximal. Any assignment of k colours to
all the vertices V is called a k-cut, and the number of non-defect edges is called the
weight of the k-cut.

Example 11.1 Let us consider the Petersen graph which has |V| = 10, |[E| = 15,
and chromatic number x(G) = 3. In Figure 11.1 we show a 2-cutfor this graph. (The
vertices are partitioned into two sets indicated by triangular and square markers.)
Note that there are three defect edgesfor this 2-cut (these edges are denoted by dashed
lines). The 12 remaining edges are non-defect and we conclude that the optimal value
of the MAX-2-CUT (MAX-CUT) problem is at least 12 for this graph. In Figure 11.2
we show a maximum 3-cut for the same graph. Note that there are no defect edges

'A graph is called simple if there is at most one edge between a given pair of vertices and if there is no loop
(anedge which connects a vertex to itself).

One can generalize the problem by adding nonnegative weights on the edges. The (weighted) MAX-k-
problem is then to assign k colours to the vertices in such a way that the total weight of the non-defect
edges is as large as possible. The results in this chapter can easily be extended to include nonnegative edge
weights.

169
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Figure 11.1. A maximum 2-cut of the Petersen graph

Figure 11.2. A maximum 3-cut of the Petersen graph.

now — the 3-cut gives a legal colouring of the Petersen graph using three colours
(indicated by circular, square, and triangular markers respectively). a

MAX-k-CUT is an NP-complete problem for k£ > 2. In the case k = 2 the problem
is usually referred to as MAX-CUT. In a seminal work, Goemans and Williamson
[66] first used SDP to formulate an approximation algorithm for MAX-CUT which
produces a 2-cut with weight within a factor 0.878 of the optimal weight. This work
was extended for k > 3 by Frieze and Jerrum [59] and their results were further refined
by De Klerk ez al. [42]. In this chapter we will review all these results as well as related
results by Karger et al. [98] for the approximate colouring problem. (‘How many
colours do you need to colour a k-colourable graph correctly in polynomial time?’)
We will show that the Lovasz §-function forms the basis for all these approaches.
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The algorithms in this chapter are so-called randomized algorithms. For an excellent
introductory text on this topic the reader is referred to Motwani and Raghavan [128].

111 INTRODUCTION

The Lovasz d-function [115] of a graph G = (V, E) forms the base for many semidef-
inite programming (SDP) relaxations of combinatorial optimization problems. Karger
et al. |98] devised approximation algorithms for colouring x-colourable graphs, i.e.
graphs G with chromatic number x(G) = &. Their so-called vector chromatic num-
ber is closely related to — and bounded from above by — the §-function. The authors
of [98] proved that k-colourable graphs can be coloured in polynomial time by us-
ing at most’ min {O (n!=3/=+1) O (AI_Z/")} colours, where n = |V| and A is
the valency of the graph; their paper also contains a review of earlier results. The
work by Karger et al. employs the ideas of semidefinite approximation algorithms
and associated randomized rounding, as introduced in the seminal work of Goemans
and Williamson |66] on the MAX-CUT and other problems. The results by Karger
et al. 198] cannot be improved much for general s, since approximating the chro-
matic number of a general graph to within a factor n!~¢ for some ¢ > 0 would imply
ZPP = NP (sec Feige and Kilian [57]).* There is still some room for improve-
ment of the results of Karger et al. for fixed values of x — the best related hardness
result states that all 3-colourable graphs cannot be coloured in polynomial time using
4 colours, unless P = NP (see Khanna et al. [102]). The best known (exponential)
algorithm for exact 3-colouring runs in O(1.3446™) time (see Beigel and Eppstein

L17]).

The graph colouring problem for k-colourable graphs can be seen as a special case
of the (unweighted) MAX-k-CUT problem. Approximation algorithms for the MAX-
k-CUT problem assign a colour from a set of & colours to each vertex in polynomial
time so as to maximize the number of non-defect edges. For a survey of heuristics
for MAX-k-CUT and applications in VLSI design see Cho and Sarrafzadeh |33].
The approximation guarantee of a MAX-k-CUT approximation algorithm is the ra-
tio of the number of non-defect edges in the approximate solution to the maximum
number of non-defect edges. The fraction 1 — 1/k is achieved by a random assign-
ment of colours to the vertices (see Example 11.2). This can be slightly improved
to (1 — % + 2log(k)/k?) for sufficiently large values of k, as shown by Frieze and
Jerrum |59]; there is very little room for further improvement of this result, since the
attainable approximation guarantee is upper bounded by 1 — 1/(34k), unless P=NP
(see Kann et al. |97]). For fixed values of k the approximation guarantee can be im-
proved. For example, a guarantee of 0.836 is attainable for MAX-3-CUT, as was
independently shown by De Klerk and Pasechnik [42] and Goemans and Williamson
[67]. The approach By Frieze and Jerrum |59] is closely linked to that by Karger e al.

*The O notation means that powers of logarithms may be suppressed.
*For a review of the complexity classes P, NP, ZPP, etc. the reader is referred to Motwani and Raghavan
[128].
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in the sense that both underlying semidefinite programming relaxations are related to
the same formulation of the Lovasz 9-function.

11.2 THE 9-APPROXIMATION OF THE CHROMATIC NUMBER

The Lovasz {—function has many representations (see Chapter 10); the representation
we will use in this chapter is by Karger et al. [98]:

(*) 9(G) =mint

Ut
subject to
Uiz = 1, i=1,...,n
U = 0

Recall that the ‘sandwich’ theorem of Lovész ensures that w(G) < (G) x(G),
where w(G) and x(G) denote the clique and chromatic numbers of G = (V, E) re-
spectively,and G is the complementary graph of G.

11.3 AIM UPPER BOUND FOR THE OPTIMAL VALUE OF
MAX-K-CUT

Our goal is to assign k colours to the |V| = n vertices of a given graph G = (V,E)
such that the number of non-defect edges is as large as possible. We will give a math-
ematical formulation for this problem where we will use the following result from
linear algebra.

Lemma 11.1 Ifn > k, one can find kvectors ry,...,riyin R"such that
——== ifi
rl-Trj: =R (11.1)
1 ifi=j.
Proof:

Let U € S be defined by

1 « - -
_ Iy ifz -‘/'é 7
uij = L )
1 if i =3,
where 4,7 = 1,...,k. The matrix U is now positive semidefinite, since it is diago-

nally dominant (see Theorem A.6 in Appendix A). We can therefore obtain a factor-
ization U = RT Rwhere the columns of R are given by [ry,...,7;]say. The vectors
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r1, ..., 7k satisfy condition (11.1) by construction. a

We are now ready to give a mathematical formulation of the MAX-k-CUT problem.
To this end, let r{,...,r, denote a set of vectors in R™ (n > k) which satisfies
condition (11.1). We will associate these vectors with k different colours. Similarly
we will associate n unit vectors y; (i = 1,...,n) with the set of vertices V. Thus we
assign r;to y; if we wish to assign colour jto vertex i.

k-1 r
(MAX-k-CUT) OPT = max ~— (.;EE(I - vl y;)
2,3

subject to
yi €{r1,...,mx} (G=1,...,n). (11.2)
After an assignment of colours to the endpoints of the edge (¢, 5} € E we have
k-1 1 if (4,7) is non-defect

—— (L —yly;) =
k ’ 0  if (z,7) is defect.

Thus it is easy to see that we have given a valid mathematical formulation of MAX-k-
CUT.

We obtain an SDP relaxation of this problem if we weaken the requirement (11.2)
to

. -1 .
lysl =1G=1,...,n), 0>pfy;>— (J)eE,  (1L3)
to obtain the problem
k-1
,max > (1-yly) (114)
e (i.4)€EE
subject to (11.3).
If we define the matrices Y = [y;,...,y.] and U = YTY, we can rewrite the
relaxation as 1
max — Z (1—uj) (1L.5)
(lVJ)EE
subject to
-1 ]
02wy 2 —, if(@L))€E
u; = 1, 1=1...,n
U » o

Note the very close similarity between this problem and the (*) formulation of 9(G).

Note that the optimal value in (11.5) is an upper bound on the optimal value of
MAX-k-CUT, because (11.5) is a relaxation of MAX-k-CUT.
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114  APPROXIMATION GUARANTEES

We are going to formulate a randomized approximation algorithm for the MAX-k-
CUT problem presently. First we will review the concepts of approximation algo-
rithms and approximation guarantees.

Definition 11.1 We call a algorithm which runs in (randomized) polynomial time an
ay-approximation algorithm for MAX-k-CUT if—for any graph G = (V,E) — the
algorithm produces a k-cut with weight at least oy, x OPT, where OPT denotes the
optimal value ofthe MAX-k-CUT problem, as before. We refer to the value oy, as the
approximation guarantee.

Before proceeding we give a simple example of a %-approximation algorithm
for MAX-&-CUT.

Example 11.2 Let us consider perhaps the simplest possible randomized algorithm
for MAX-k-CUT, where we assign a colour (from our set of k colours) randomly to
each vertex in turn. Consider an edge (i,7). The probability that both endpoints
are assigned the same colour is 1/k. The expected number of non-defect edges is
therefore %[E [. In other words, our algorithm yields a k-cut containing at least
%|E| edges, in expectation. Since the optimal value of MAX-k-CUT cannot exceed

|E|, its approximation guarantee is oy > % a

Let yq, ..., yn denote an optimal solution of the SDP problem (11.4). Recall that
the optimal value of problem (11.4) is an upper bound on OPT.

Let us now consider a family of approximation algorithms where we assign k
colours to the vertices in such a way that the probability that edge (4, 7) is defect
after the assignment is a known function of y'y;, say p(y7 y;).

The expected number of edges in a k-cut generated by such an algorithm is simply
S jyer (L =P (47y;)). Thus the approximation guarantee is given by

Z(i,]')EE (1 -p (szy]))
OPT
Saier L—p(y))

2 =
Ek—l Z(i,]‘)EE‘ (1 - szZIJ)
1-p(yTy,
> min %
@er B2 (1 - yfy;)
2 1 - p(p)

025> 1/ (k-1) 1 (1 = p)’
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To obtain the second inequality we have used the following.

2 2

&=l > min = forz; >0,y >0 =1,...,n).
Zi=lyi T

Thus we have obtained the bound

i _k(A—p(p)
2 OZpZIEl}?(k—n (k—1)(1—p) (11.6)

on the value of the approximation guarantee. We will use it to derive upper bounds on
the approximation guarantees of the algorithms in the next section.

Note that the expression (11.6) no longer depends on the optimal solution of the
SDP problem (11.4). The bound is therefore valid if we use any set of unit vectors
Y1,---,Yn in R™ in the formulation of an algorithm instead of the optimal set for
problem (11.4). The only requirement is that 0 > yTy; > —1/(k — 1)if (i, ) € E.
We will therefore not use problem (11.4) again — we only needed it to derive the
upper bound on ai. Instead we will use a set of vectors that corresponds to the (*)

formulationof J(G).

11.5 A RANDOMIZED MAX-K-CUT ALGORITHM

We now propose a randomized MAX-k-CUT algorithm based on the Lovdsz J-function.
The algorithm assigns k colours to the vertices of the graph in such a way that the ex-
pected fraction of defect edges is provably small. Let

t = max {, [4(C)])

and let (U, t) be a feasible solution of problem (x). The basic idea of the algorithm is
now as follows: define vectors vy, ..., v, as the columns of a Choleski factorization
of U. These vectors are associated with the vertices of G, as before. We now generate
k vectors in R™ randomly and assign colour j to vertex 1 if the jth random vector is
‘closest’ to v; (in a sense to be made precise).

Formally, we can state the algorithm as follows.

Randomized MAX-k-CUT Algorithm

l. Lett = max {k, [9(G)]}, and let (U, t) be a feasible solution of problem (*);
2. Take the Choleski factorization U = VTV, and denote V = [vy,...,v,];

3. Generate k different random vectors’ #(1) .. r(®) ¢ R™; Each vector 7(*) is
associated with a colour 1,

"Random vectors here means that each component of each vectoris drawn independently from the standard
normal distribution with mean zero and variance one.
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4. Assign colour i to vertex j if i = argmax, v] ("), ie. assign the colour corre-
sponding to the ‘closest” random vector.

We first show that this algorithm can be restated in an equivalent way, where we
work in a higher dimension, but only need one random r € R*" instead of kdifferent
random vectors in R™. This alternative formulation is easier to analyze for small,
fixed values of k. The first formulation of the algorithm is essentially due to Frieze
and Jerrum [59] and the alternative formulation is due to De Klerk et al. [42].

Randomized MAX-.-CUT Algorithm (Alternative formulation)

L Lett = max{k,[9(G)]}, and let (U,t) be a feasible solution of problem (*).
Define

k 1
= — | I — =erel | .- 11.
Y U®k—1<k kekek> ( 7)

2. Rounding scheme:
Perform afactorization Y = VTV and denote

12 k k1.
V=[vg,v7...,07,...,05];

Choose a random unit vector 7 € R*" from the uniform distribution on the
unitballin RF™.

. . e T
Assign colour i to vertex j if i = arg max; v®

]T‘.

The vector v;- corresponds to the situation where colour ¢ is assigned to vertex j. In

particular, vertex j is assigned colour ¢ by the algorithm if v;. is the ‘closest’” to the

random vector r of all the vectors vjl-, A v}‘.

Theorem 11.1 The two statements of the randomized MAX-k-CUT algorithm are
equivalent.

Proof:

Let U, t again denote a solution of problem (*). The first step in the alternative formu-
lation is taking the Kronecker product

1 - 1
Y=U®c (Ik - Eekef) =VI'Vac (Ik ~ Eekez’)

where ¢ = £+, and subsequently obtaining the Choleski factor [v},v?,...,vk] of

Y. Vertex ¢ is then assigned colour p if and only if

p= argmta.xvar (11.8)
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for arandom r € R*". The identity (see Appendix E):
(B"B) ® (G"G) = (BT®G")(B®G)=(B®G) (B®G),
implies
_ 1 _ 1 T_ 1
VIV ®c (Ik — qu,{) = <V® Ve (Ik - EekeZ’)) Veve (Ik — quf) s
(11.9)
~1

where we have used the fact that the matrix (I — fexel ) is idempotent®. We now
define the matrices:

T
Xi=[v}, v%,...,0f] , i=1,...,n. (11.10)
Note that by (11.8), vertex i is assigned colour p if and only if

p = arg m;ax(Xir)t.

By (11.9) and (11.10) we have

X; = vF @ Vel *v?®%ekef,
so that
X, _(T Vel (., LE T = (T ® /¢ o
ir= (v, ® ck)r v; ® kekek r—(vi® cIk)r Cier

where ¢;is a scalar depending on rand v;.Note that we can ignore the last term when
findingthe largest component of X;r. In other words,

arg max(X;r), = arg max (v] ® \/EIkr)p . (11.11)
14 14
Finally, we construct a set of k£ random vectors in R™ from r as follows:
. T .

T‘(‘L) = [ri,ri+k,ri+2k, ey ri+(n—1)k] , 1= 1, ceey k.
Note that, by construction,

T T T T

(v] @ Vely)r = \/E{vi r o) r(k)] , i=1,...,n,

so that
arg max(X;r), = argmaxviTr(”), i=1,...,n,
P P

by (11.11). This completes the proof. ]

®Recall that a matrix A is called idempotentif A2 = A.
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116 ANALYSIS OF THE ALGORITHM

We proceed to give a simple proof—using geometric arguments only — which estab-
lishes the probability that a given edge is defect after running the randomized MAX-
k-cut algorithm (alternative formulation). In particular, we wish to know what the
probability (say p;)is that both endpoints of a given edge are assigned colour 1. The
probability that the edge is defect is then simply kp; since the number of colours used
equals k.

Note that both endpoints of an edge (7, j) have been assigned colour 1 if and only

if:
rTol > 1Tl ¢=2,...,k,
and
rTvl > rTy vl, ¢=2,...,k
In other words, r must lie in the dual cone of the cone generated by the vectors
1 2 k 1 2 1 k
(vi =), ..o, (v —f), (v; =07 )y s (v —v5). (11.12)

An alternative geometrical interpretation is that the half space with outward pointing
normal vector —r must contain the vectors in (11.12), i.e. the vectors (11.12) must lie
on a specific side of a random hyperplane with normal vector r (the same side as r).”

For convenience of notation we define the unit vectors

v; ’Uq

1
i .

=1 —a — g=2,...,k, 1=1,...,n
’l

[vf —fII”

The “w-vectors’ can be viewed as a set of (2k—2) points on the (2k— 3)-dimensional
unit hypersphere

q
w;

§@I = {5 e R*?| |lal| = 1},

and thus define a so-called spherical simplex® (say S) in the space S(2k—3),
P p y P

The Gram matrix of the w vectors (which has the inner products of the w-vectors
— lLe. the cosines of the edge lengths of S — as entries) is known explicitly, since the
corresponding entries in the matrix Y in (11.7) are known. In particular, it is easy to
show that the Gram matrix is given by:

1
Gram(S) := 3 ® (Ik—l + ek_lez’_l) , (11.13)

"The probability that a given set of vectors lie on the same side of arandom hyperplane has been investigated
recently by Karloff and Zwick [99] (at most 4 vectors) and Zwick [194] (general case) in the context of
MAX-SAT approximation algorithms; see Chapter 13 of this monograph. In what follows, we employ the
same approach as these authors.

®A one dimensional spherical simplex is simply a segment of the unit circle, a two dimensional spherical
simplex is a triangle on a unit sphere, etc.
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where p = =%, and t = max {[9(G)], k}, as before.

From a geometrical viewpoint, we are interested in the volume of the spherical
simplex (say S*) which is dual to the spherical simplex S, as a fraction of the total
volume of the unit hypersphere S(2¢=3)_ This dual spherical simplex is given by:

St = {:EES(2]°_3) ‘ zT2>0 Vze S}.

The Gram matrix associated with S* is given by taking the inverse of Gram(S) in
(11.13) and subsequently normalizing its diagonal. Straightforward calculations show
that this matrix takes the form
k 1 —p 1
Gram(S*) == — — ® (Ik_l—-zek_lef_l>. (11.14)

k-1 , 1

The volume of a spherical simplex is completely determined by the off-diagonal en-
tries of its Gram matrix. Unfortunately, there is no closed form expression available
for the volume function in general, and it must be evaluated by numerical integration.
The integral which yields py is given by (see Alekseevskij ef al. [2]):

B vol(S*)
o= vol (S(2k=3))

! /oo /oo —yTGram(s) ™y
e dyy ... dy2k—2.
V/det(Gram(S))w2+-2 Jo o Gl Y2k—2

We will write p; (p) from now on to emphasize that p; is a function of p only (for a
given k).

(11.15)

11.7  APPROXIMATION RESULTS FOR MAX-K-CUT

In the next two subsections we will calculate py (p) for k = 2 (MAX-CUT)and k = 3
(MAX-3-CUT) after which we will consider general k > 3. The cases k = 2 and
k = 3 are special because the integral in (11.15) can then be solved analytically.

RESULTS FOR MAX-CUT

In the MAX-CUT case (k = 2), the integral in (11.15) can be solved analytically.
In this case the spherical simplex S* is merely a circular line segment of length
arccos (—p) on the unit circle. This follows from the fact that the Gram matrix of
S* is given by

Gram(S*) =

in this case, by (11.14). Thus we have
vol (S*) arccos(—p)

pl(p) = vol (S(l)) - o 3
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so that the probability of an edge becoming defect is simply

p(p) = 2p1(p) = arccos(—p) /.
Thus the upper bound (11.6) on the performance guarantee a; becomes
2(1 = p(p))

> .
%= oz (1-p)
1 - L arccos(—
= min 1 (=p)
02p2-1  3(1-p)
> 0.878.

The last inequality is illustrated in Figure (11.3).
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Figure 11.3. The approximation of the MAX-CUT algorithm is given by the worst case
ratio of the values 1 — X arccos(—p) (solid line) and (1 — p) (dashed line). The worst
case ratio is roughly 0.878.

The a2 > 0.878 bound is the celebrated result by Goemans and Williamson [66];
in a recent talk by W.R. Pulleyblank [151] it was given the status of one of the ten
most important results in combinatorial optimization.
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RESULTS FOR MAX-3-CUT

We will now calculate the MAX-3-CUT guarantee of our algorithm.

In this case, the integral (11.15) can in fact be solved analytically to obtain:

1 N arccos(—p) — arccos?(p/2)
9 4m?

pi(p) =

181

This was first shown by Goemans and Williamson [67] and subsequently by De Klerk

and Pasechnik [40] in a different way.

The resulting approximation guarantee from (11.6) is shown in Figure 114 as a
function of 9(G). Note that the worst-case approximation guarantee occurs where

Y(G) = 3, and is approximately given by az = 0.836008.

1 T ¥ T T T T T ¥

ogal -

O.YA -
b3 -~
Qg '/.
.88+ e

056 - o

0845~

.82 e :
Q5 048 -04 035 D3 -DES  -G2  ~018  ~01 -0

~1/(8 1)

Figure 11.4.  The MAX-3-CUT guarantee as a function of ¥(G).

RESULTS FOR GENERAL MAX-K-CUT

Recall from (11.6) that the approximation guarantee of our randomized MAX-k-CUT

algorithm is given by

o 1= min w
T —1k-Dy<p<o (k- 1)(1— p)’

(11.16)
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Also recall that the worst-case for the approximation guarantee for MAX-3-CUT oc-
curs for graphs G where 9(G) < 3. We cannot prove the analogous result for all
k > 3, but will show that it is true asymptotically (for k& >> 0). For small fixed values

of k& we can give similar numerical proofs as for k = 3 (c¢f. Figure 11.4).

We have done this for k = 4, ..., 15 using the software MVNDST (for calculating
multivariate normal probabilities) by Genz [62], and the approximation guarantees are
plotted in Figure [1.5 using ‘+" markers. The plotted values lie above the curve 1-1/k
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Figure 11.5. The MAX-k-CUT approximation guarantees of the algorithm are indicated
by ‘+' markers.

(which in turn corresponds to the random assignments of & colours to the vertices, i.e.
the algorithm in Example 11.2). We will see that this is true in general (at least for
k> 0).

The approximate numerical values of o (k = 1,...,10)are shown in Table IL.I.
These are the best known approximation results for MAX-k-CUT (k < 10) at the time
of writing.



GRAPH COLOURING AND THE MAX-K-CUT PROBLEM 183

k]2 i a5 s | o | w0 |

i
i
{
§

0.903 [ 0913 [ 0.920 | 0:027 |

i

as: | 0878 | 0836 | 0.8s8 |

Table 11.1.  The MAX-k-CUT approximation guarantees for 2 < k < 10

ASYMPTOTIC ANALYSIS

Now we investigate the asymptotic behaviour of p;(p) in (11.15) for fixed p < Oas
k — oo. One can show the following.

Theorem 11.2 (De Klerk ef al. [42])

—£

N F(ﬁ)z (4w log(k 1))1+,,
Pl(P) m (k _ l)m

as k - oo, where T denotes the gamma function.

(11.17)

If we substitute (11.17) into (11.16) and differentiate with respect to p, we find that

the minimum in (11.16) is attained when p = —1/(k — 1), ie. for graphs G with
9(G) < k.
Now it is easy to show that the performance guarantee becomes
—k 1  2logk
o ~1—Fk*2 NI—E+ e

as k — oo.The ap ~1— %4— %ﬁresult was first shown by Frieze and Jerrum [59],
but the proof which was sketched here is due to De Klerk et al. [42].

11.8 APPROXIMATE COLOURING OF x-COLOURABLE GRAPHS

We now turn our attention to a different, but related problem, namely approximate
graph colouring. Given is a k-colourable graph G = (V, E), i.e. x(G) < & for some
fixed k > 3. We call an assignment of colours to all the vertices of G a legal colouring
if there are no defect edges, and ask how many colours we need to do a legal colouring
of G in polynomial time.

In this section we will sketch a proof of the following result.

Theorem 11.3 (Karger et al. [98]) A x-colourable graph with maximum degree A
can be legally coloured in polynomial time using O (Al_z/ ") colours.

We can use our approximation algorithm for MAX-k-CUT to assign k colours to
the vertices of G. If k is ‘large enough’, then fewer than %n edges will be defect. Such
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an assignment of colours to the vertices corresponds to a so-called semi—colouring of
G.

Definition 11.2 (Semi—colouring) An assignment of k colours to at least halfthe ver-
tices of G such that there are no defect edges is called a semi—colouring.

An assignment of k colours to all the vertices of G such that at most %n edges are
defect yields a semi-colouring, by simply removing the colour from one endpoint of
each defect edge.

We can obtain a legal colouring via successive semi-colourings, as follows.

(1) Choose a ‘sufficiently large’ value of k and use the randomized MAX-k-CUT
approximation algorithm to obtain a semi-colouring of G using k colours;

(2) Remove the vertices that have been coloured in step (1);
(3) Replace G by the induced subgraph on the remaining vertices;

(4) Repeat steps (1) to (3) by introducing a new set of k colours each time step (1) is
performed, until no vertices are left.

Assume for the moment that we know how to choose k such that we can always
obtain a semi-colouring. The following lemma gives a bound on the number of colours
required by the above scheme to give a legal colouring of G.

Lemma 11.2 (Karger et al. [98]) If one can obtain a semi-colouring (using k colours)
of any graph with at most n vertices in polynomial time, then any graph on n vertices
can be legally coloured in polynomial time using O(klogn) colours.

Proof:

Let G = (V, E) be given and perform a semi-colouring using k colours. Remove
the legally coloured vertices from the graph and find a new semi-colouring using &
new colours on the subgraph induced on the remaining vertices. After repeating this

process ¢ times we have an induced subgraph on at most (%)t n vertices. Iff =
Q(log(n)), then this subgraph has only O(1) vertices which we can colour using O(1)
differentcolours. |

We return to the problem of finding a suitable value for k, and prove that a semi-
colouring will be obtained with high probability if we can find a k-cut such that the
(expected) number of defect edges is at most %n.

Lemma 11.3 Let G = (V, E) be given. Assume that we have a randomized procedure
— say PROC — that assigns k-colours to V in polynomial time such that the expected
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number of defect edges does not exceed in. Then a semi-colouring of G can be
obtained in polynomial time with probability 1 — efor any given € > 0.

Proof:

By Markov’s inequality (see e.g. Theorem 3.2 in Motwani and Raghavan [128]), the
probability that the number of defect edges is more than twice the expected value is
at most % Repeating the procedure PROC # times, the probability that we have not

. . i
found a k-cut with at most %n defect edges is upper bounded by (%) . Once we have
obtained a k-cut with at most %n defect edges, we simply remove a colour from one
endpoint of each defect edge to obtain a semi-colouring. O

The total number of edges in a graph is upper bounded by |E| < %nA, where A is
the maximum degree of any vertex.

By Theorem 11.2, the expected number of defect edges is therefore bounded via:
1 1 e
kp1(p)| E| < §kp1(p)nA~ 5’”“"A- (11.18)
The expected number of defect edges will be at most %n if

I

This last inequality gives us a suitable way to choose k.

For k-colourable graphs we have p = —1/(x — 1), and consequently we obtain
a semi-colouring using O (Al_z/ ") colours, and subsequently a complete colouring

using 0 (Al_z/ ") colours. Thus we have sketched a proof of Theorem 11.3.
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THE STABILITY NUMBER OF A GRAPH
AND STANDARD QUADRATIC
OPTIMIZATION

Preamble

In this chapter we consider the class of conic optimization problems obtained when
we replace the positive semidefinite cone with the cone of copositive matrices.! The
resulting optimization problems are called copositive programs. An important appli-
cation of copositive programming is that the stability number of a graph is given as
the optimal value of a suitable copositive program. The only problem is that — unlike
for the positive semidefinite cone — one cannot optimize over the copositive cone in
polynomial time, unless P = NP. However, one can approximate the copositive cone
arbitrarily well by using linear matrix inequalities. The maximum stable set problem
can in turn be seen as a special case of the standard quadratic optimization problem
(where one optimizes a quadratic function over the standard simplex). One can apply
the same ideas as for the stable set problem to the more general case. We will review
all these results in this chapter. The presentation is based on the papers De Klerk and
Pasechnik [41] and Bomze and De Klerk [27].

'Recall that amatrix A € Sy, is called copositive if z7 Az > 0 forall z € R%.
187
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12.1  PRELIMINARIES

The maximum stable set problem Recall that for a graph G = (V, E), a
subset V' C V is called a stable set of G if the induced subgraph on V' contains no
edges. The maximum stable set problem is to find the stable set of maximal cardinality.

Example 12,1 Let us consider the Petersen graph again. In Figure 12.1 we show a
maximum stable set for this graph. (The vertices in the stable set are marked with

Figure 12.1. A maximum stable set of the Petersen graph

square markers. ) O

The maximum stable set problem is equivalent to finding the largest clique in the
complementary graph, and cannot be approximated within a factor \Vﬁ" for any
€ > 0 unless P = NP, or within a factor |V|1_6 for any ¢ > 0 unless NP =

ZPP (Héstad [81]). The best known approximation guarantee for this problem is
0] ((l—ogl%w) (Boppana and Halldérsson [29]). For a survey of the maximum clique
problem, see Bomze er al. [26].

Copositive programming As on page 28, we again consider a generic primal
and dual pair of conic linear programs:

(Pc) p" o= igf {Tr(CX)| Tr(AX) =bi (i=1,...,m), X €K}

(Dx) d*:= sup {bTy | ZyiAi +85=¢C, S€ IC*},
yeR™ i=1

where K is a closed convex cone. We define the following convex cones of matrices:
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m the copositive cone:

C, = {AESn zTAz >0 forallxe]R’_f_};

m the cone of completely positive matrices:

k
A=) "z, 5, € RL (i=1,...,k) foranyk};

=1

c;:{Aesn

m the cone of nonnegative matrices:
Nn = {AESn | Qij 20 (Z,]: 1,...,71)}.

The completely positive cone is the dual of the copositive cone for the usual inner
product (X,Y) := Tr (XY).

Optimization over the cones S and N, correspond to LP and SDP respectively,
and can therefore be done in polynomial time (to compute an e-optimal solution) using
interior point methods. On the other hand, copositive programming (where X = C,)
is reducible to some NP-hard problems, like the maximum stable set problem, and can
therefore not be solved in polynomial time, unless P = NP.

12.2 THE STABILITY NUMBER VIA COPOSITIVE PROGRAMMING

From the sandwich theorem (Theorem 10.1) we know that a(G) < ¥(G). We now
show that we can actually obtain the stability number «(G) by replacing the semidef-
inite cone by the completely positive cone in the definition of the Lovasz ¥-function
(see (10.1) on page 158).

Theorem 12.1 Let G = (V, E) be given with |E| = n. The stability number of G is
given by:

o(G) = max Tr (ee” X) (12.1)
subject to
Xi; = 0, {i,j} € E(i#))
Tr(X) = 1 (12.2)
X € ¢

Proof:

Consider the convex cone:

Cc:={XeC,: X;;=0, {i,j} € E}.
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The extreme rays of this cone are of the form zzT where 2 € R™ is nonnegative and
its support corresponds to a stable set of G. This follows from the fact that all extreme
rays of C: are of the form zzT for nonnegative z € R™ (see page 239). Therefore, the
extreme points of the set defined by (12.2) are given by the intersection of the extreme
rays with the hyperplane defined by Tr (X) = 1.

Since the optimal value of problem (12.1) is attained at an extreme point, there is
an optimal solution of the form:

X*=z"zT z* e R, z* >0, ||z*] = 1,

3

and where the support of x* corresponds to a stable set, say S* Denoting the optimal
value of problem (12.1) by A, we therefore have

A= ”m‘?x (eTz)?, & > 0, support(z) = support(z*).
z|=1

The optimality conditions of this problem imply
N 1
T = ——=Ig*,
V18]

and therefore
_ ‘ S* |2

8]

This shows that $* must be the maximum stable set, and consequently A = a(G). O

A= (eTz*)? = |8*|.

Note that — since X € C}; is always nonnegative — we can simplify (12.1) and (12.2)
to

o(G) =max {Tr (ee”X) : Tr (AX)=0, Tr(X)=1, X€Cr}, (23)
where A is the adjacency matrix of G. The dual problem of (12.3) is given by

inf {X: Q:=M+yA—ee’ €Cn}. (12.4)
)\,yER

The primal problem (12.3) is not strictly feasible (some entries of X must be zero),
even though the dual problem (12.4) is strictly feasible (set @ = (n + 1)1 — eeT)).
By the conic duality theorem, we can therefore only conclude that the primal optimal
set is nonempty and not that the dual optimal set is nonempty. We will prove now,
however, that @ = ao(f + A) — eeT is always a dual optimal solution. This result
follows from the next lemma.

Lemma 12.1 For a given graph G = (V, E) with adjacency matrix A and stability
number a(G), and a given parameter € > 0, the matrix

Q= (1+ea(l+ A) —eeT
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is copositive.
Proof:
Lete > 0 be given. We will show thatQ)? is copositive.

To this end, denote the standard simplex by
A:=<KzeR": inzl, z>0,,
i=1

and note that:

minz’ Qfz = min(l+e)a(z "z +27Az) - zTee"z
zEA TEA
= (1+eamin(z’z+ zTAz) - 1.
TEA
We now show that the minimum is attained at z* = ﬁzs. where §* denotes the
maximum stable set, as before. In other words, we will show that
: Try*,..
minz' Qfz = e (12.5)

TEA
Let z* € A be a minimizer of z7Q*z over A.

If the support of x* corresponds to a stable set, then the proof is an easy conse-
quence of the inequality:

argmax {||z|| : z € A, (e"z)?, = >0, support(z) = S} = %Izs VS cv,

which can readily be verified via the optimality conditions.

Assume therefore that the support of x* does not correspond to a stable set, i.e.
z} > 0and z% > 0 where {i,j} € E.

Now we fix all the components of x fo the corresponding values of x* except com-
ponents ¢ and j. Note that, definingcy := Zk# j zy, one can find constants ¢y, c;
and cg such that

«T %, % : 2 2
z T = min 1+ e)alz] + 2zz; +25) +
QE zi+zj:1—co,z,-20,:z:j20( ) ( ' v J)
+xicy +Tjc2 +C3

. 2
= min l+ée)a(xz; +x;) +xic1 +TiC0 + €3
Ii+zj=1*t:o,$i20‘1j20( ) ( : J) i ’

= min (1+e6ea(l- co)2 + zicr + Tjco +c3.

Titz;=1—co,x:20,2;>

The final optimization problem is simply an LP in the two variables z; and z; and
attains its minimal value in an extremal point where z; = 0 or z; = 0. We can
therefore replace x* with a vector Z such that z*T Qz* = 27 Qz and Z;x; = 0.
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By repeating this process we obtain a minimizer of 7 Q!z over A with support

corresponding to a stable set. a

The lemma shows that (¥ is copositive and therefore e-optimal in (12.4). For e = 0
we have the following result.

Corollary 12.1 For any graph G = (V, E) with adjacency matrix A one has

a(G):m’\in{)\ s MI+ A) —eeT €Cn}.

Remark 12.1 The result of Corolary 12.1 is also a consequence of a result by Motzkin
and Straus [129], who proved that
1

== i 1T L
el min (A+ Dz,

where A is the adjacency matrix of G. To see the relationship between the two re-
sults we also need the known result (see e.g. Bomze et al. [28]) that minimization
of a quadratic function over the simplex is equivalent to a copositive programming

problem:

T _ - : Ty
mip Qz = Xén(.g).{Tr(QX) : Tr(ee’ X) =1}
= IAnst{,\ : Q- deeT €Cn}

for any Q € S, where the second inequality follows from the strong duality theorem.

Corollary 12.1 implies that we can simplify our conic programs even further to

obtain:
a(G) =max {Tr (ee’X) : Tr (A+DX)=1, X €C}}, (12.6)
with associated dual problem:

a(G) = Anéiﬁ {A: Q=T +A)—e” €Cu}. (12.7)

Note that both these problems are strictly feasible and the conic duality theorem now
guarantees complementary primal-dual optimal solutions.
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123 APPROXIMATIONS OF THE COPOSITIVE CONE

The reformulation of the stable set problem as a conic copositive program makes it
clear that copositive programming is not tractable (see also Quist et al. [152]). In fact,
even the problem of determining whether a matrix is not copositive is NP-complete
(see Murty and Kabadi [132]).

Although we have obtained a nice convex reformulation of the stable set problem,
there is no obvious way of solving this reformulation.” A solution to this problem was
recently proposed by Parillo [141], who showed that one can approximate the coposi-
tive cone to any given accuracy by a sufficiently large set of linear matrix inequalities.
In other words, each copositive programming problem can be approximated to any
given accuracy by a sufficiently large SDR Of course, the size of the SDP can be ex-
ponential in the size of the copositive program. In the next subsection we will review
the approach of Parillo, and subsequently work out the implications for the coposi-
tive formulation of the maximum stable set problem. We will also look at a weaker,
LP-based approximation scheme.

REPRESENTATIONS AS SUM-OF-SQUARES AND POLYNOMIALS
WITH NONNEGATIVE COEFFICIENTS

We can represent the copositivity requirement for an (n x n) symmetric matrix M as

Py(z) = (zox) M(zoz)= Y Mzls? >0, Vz € R", (12.8)

ij=1

where ‘o’ indicates the componentwise (Hadamard) product. We therefore wish to
know whether the polynomial Ps(z) is nonnegative for all z € R™. Although one
cannot answer this question in polynomial time in general, one can decide in polyno-
mial time whether Py (z) can be written as a sum of squares. Before we give a formal
exposition of the methodology, we give an example which illustrates the basic idea.

Example 12.2 (Parillo [141]) We show how to obtain a sum of squares decomposi-
tion for the polynomial h(z) := 2z% + 223z, — 2223 + 5z

h(z) = 2zt+ 2230, — 222l + 523
z? ! 2 0 1 z?
= z2 0 5 0 T3
T1To 1 0 -1 T1To

*In Bomze et al. [28], some ideas from interior point methods for semidefinite programming are adapted for
the copositive case, but convergence cannot be proved. The absence of acomputable self-concordant barrier
for this cone basically precludes the application of interior point methods to copositive programming.
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T
z? 2 =A 1 z?
= 3 2 5 0 z2 VAER.
1T 1 0 —1+2X T1T

For A = 3the coefficient matrix is positive semidefinite. Denoting the coefficient
matrix by M, we have

112 -3 1

M=LTL L=-—— ,
V2|0 1 3

and consequently
2 2
2h(z) = (22} — 323 + 2172) " + (23 + 37122)

Thus we have obtained a sum of squares decomposition for h(x). [

Following the idea in the example, we represent Pas(z) via

Pu(z) = 2T M% (12.9)

where & = [z2,..., a:fl, T1T2, T1T3y- - -, a:n_la:n]T,and M is a symmetric matrix of
order n + 1n(n — 1).

Note that — as in the example — Mis not uniquely determined. The non-uniqueness
follows from the identities:

(wizj)? = (23)(z;)"
(zizj)(mizk) = (27)(zjzx)
(@azj)(zrz) = (wizk)(z;z1) = (zer)(z21).
It is easy to see that the possible choices for M define an affine space.

Condition (12.8) will certainly hold if at least one of the following two conditions
holds:

1. A representation of Pys(z) = 7T M Zexists with M symmetric positive semidef-
inite. In this case we obtain the sum of squares decomposition Py (z) = || LZ||?
where LTL = M denotes the Choleski factorization of M;

2. All the coefficients of Ps(x) are nonnegative.

Note that the second condition implies the first.
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Parillo showed that Pps(z) in (12.8) allows a sum of squares decomposition if and
only if M € S} + M, which is a well-known sufficient condition for copositivity.
Let us define the cone KO := S + A/,. Similarly, Py (z) has only nonnegative coef-
ficients if and only if M € N, which is a weaker sufficient condition for copositivity,

and we define C0 = AN,.

Higher order sufficient conditions can be derived by considering the polynomial

P (x) (Zx> = Xn:M,]a:fa: (Za:) (12.10)

i,j=1

and asking whether PJE;) (z) — which is a homogeneous polynomial of degree 2(r+2)
— has a sum of squares decomposition, or whether it only has nonnegative coeffi-
cients.

For r = 1, Parillo showed that a sum of squares decomposition exists if and only
if® the following system of linear matrix inequalities has a solution:

MM ¢ 5:, i=1,...,n (12.11)

MP = 0, i=1,...,n (12.12)

MDD +2MY = 0, i#j (12.13)

MY +MP +MP > 0, i<j<k, (12.14)

where M) (5 = 1,...,n) are symmetric matrices. Bomze and De Klerk [27] have

shown that this system of LMI’s is the same as

M-M®Y e SH4 N, i=1,...,n
My =0, i=1,..,n
MP oM = 0, i#j
MP+MP +MP > 0, i<j<k
Similarly, PJS)(JI) has only nonnegative coefficients if M satisfies the above system,
but with S + A, replaced by N,,. (This shows that K2 C C2, as it should be.)

Note that the sets of matrices which satisfy these respective sufficient conditions
for copositivity define two respective convex cones. In fact, this is generally true for

all r.

Definition 12.1 (C;, and X7)) Let any integer r > 0 be given. The convex cone KT,

consists of the matrices M € S, for which Pg)(a:) in (12.10) has a sum of squares

*In fact, Parillo [141] only proved the ‘if’-part; the proof of the converse is given in Bomze and De Klerk
[27].
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decomposition; similarly we define the cone C], as the cone of matrices M € S, for
which P](V;)(a:) in (12.10) has only nonnegative coefficients.

Note that C7 C K], forall r = 0,.1,.... (If Pps(z) has only nonnegative coefficients,
then it obviously has a sum of squares decomposition. The converse is not true in

general.)

The systems of linear (in)equalities (resp. LMI's) which define CJ, (resp. K7) are
given in Bomze and De Klerk [27] for r > 1.

UPPER BOUNDS ON THE ORDER OF APPROXIMATION

Every strictly copositive M lies in some cone CJ, for r sufficiently large; thisfollows
from the celebrated theorem of Pélya.

Theorem 12.2 (Polya [146]) Ler f be a homogeneous polynomial that is positive on

the simplex
n
Z z=1, 2z > 0} .

A= {ZER"
i=1

For sufficiently large N all the coefficients of the polynomial
n N
(=) s
i=1

are positive.

One can apply this theorem to the copositivity test (12.8) by letting f(z) = 2T Mz
and associating x o z with z.

To summarize, we have the following theorem.
Theorem 12.3 Ler M be strictly copositive. One has
N,=Clcclc...cclism
and consequently
StT+N, =K cKlc...ckNsMm

for some sufficiently large N.

We can derive an upper bound on N by calculating the coefficients PJE;) (z) explic-
itly. This is done in the next theorem.
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Theorem 12.4 (Bomze and De Klerk [27]) Let M € S, be given. One has M € C],

if
mTMm —mTdiagM >0 Vm e L(r+2),
where
In(r) = {mezi Zmi:r}. (12.15)
i=1
Proof:

We only sketch the proof here; the interested reader is referred to Bomze and De Klerk
[27] for more details.

By definition, wehave M € C], if and only if the coefficients of

(r) 2 2
Py(x) = Ml] z; a:] Z z;
are nonnegative. Using the multinomial theorem, we can rewrite Pj(\;) (z) as
P}E/;) (1,‘) = Z amq;fml e mimn’

mel, (r+2)

where the coefficient a,, of the monomial 1:2"” -+ -z2mn ig given by

— c(m) T _ T ¢
fhm = (r+2)(r+1) [m" Mm —m"diag M] , (12.16)

where c¢(m)is the multinomial coefficient of m,namely

LTI '

c(m) = L (12.17)
m1! s mn!

Since, ¢(m) > 0, the required result follows from (12.16). O

Corollary 12.2 If M € S, is strictly copositive, then M € Cr C KT ifr > L/k — 2
where

L = max(M);;, (12.18)

*The multinomial theoremstates that
(m1+.tzm) = D e(m)" -,
meEIn(r)

where I, (r) and c(m) are defined in (12.15) and (12.17) respectively.
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and

k = minzT Mz. (12.19)
2€EA

Proof:

As before, we will have M € C7, if and only if all the coefficients (again denoted by
a,,) of the polynomial

n n T
Pya) = | 3 Miala? (Z“‘?)
ij=1 i=1

are nonnegative. By Theorem 124 we have

min @, = min (mTMm — mT diag M)
mel, (r+2) mel,(r+2)
> min @ mTMm— max deiag M
mel,(r+2) mel,(r+2)
= min _mTMm — (r+2)L
mel,(r+2)

> (r+ 2)2néi/r§zTMz —(r+2)L

= (r+2)>? (K_r;r:2>'

In other words, all coefficients of P, (x) will be nonnegative if

> 0.
r+2 7~

The required result follows. D

Note that x can be arbitrarily small, and cannot be computed in polynomial time
in general; indeed, it follows from Remark 12.1 that one cannot minimize a quadratic
function over the simplex in polynomial time (see also Section 12.7).

Remark 122 A tight upper bound on the size of N in Theorem 12.2 has recently been
given by Powers and Reznik [150] (for general homogeneous polynomials positive on
the simplex). Their general bound can be used to derive a slightly weaker result than
stated in Corollary 12.2.

124  APPLICATION TO THE MAXIMUM STABLE SET PROBLEM

We can now define successive approximations to the stability number. In particular,
we define successive LP-based approximations via

¢G) :mAin{,\ :Q=MI+A)—eT €C}, (12.20)
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for r = 0,1,2,..., where we use the convention that ¢(")(G) = oo if the problem is
infeasible.

Similarly, we define successive SDP-based approximations via:
I(G) =min {X : Q=MI+4)—cT €KL}, (12.21)

for r = 0,1, 2,... Note that we have merely replaced the copositive cone C,, in (12.7)
by its respective approximations CJ, and K7,. We will refer to r as the order ofapprox-
imation.

The minimum in (12.21) is always attained. The proof follows directly from the
conic duality theorem, if we note that A = n + 1 always defines a matrix Q in the
interior of K2 (and therefore in the interior of K7 D KO forall r = 1,2,...) via

(12.21), and that
1

- - (nI T
n2+n+IE|(n +ee)

X0 .=
is always strictly feasible in the associated primal problem:
9NG) = max {Tr (ee”X) : Tr (A+1)X) =1, X € (K.)*}

The strict feasibility of X© follows from the fact that it is in the interior of C%: forany
copositivematrix Y € C,, we have

1

Tr(X°V)=———
( ) n?+n+ E|

(nTr(Y) +e'Ye).

This expression can only be zero if Y is the zero matrix. In other words, Tr (X°Y) >
0 for all nonzero Y € Cy,, which means that X is in the interior of C}t. Consequently
X0 is also in the interior of (K7,)* forall r, since C}; C (K7)* (r = 0,1,...).

Note that

a(G) <9(G) < ¢((G), r=0,1,...

since C], C K7, C Cy,.
AN UPPER BOUND ON THE ORDER OF APPROXIMATION

We can now prove the following.

Theorem 12.5 (De Klerk and Pasechnik [41]) Let a graph G = (V, E) be given
with stability number o(G), and let () (i = 0,1,2,...) be defined as in (12.20).

One has:

(D222 (D) =),
for r > a(G)2. Consequently, also |9 | = a(G) for r > a(G)>2

Proof:
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Denote, as in the proof of Lemma 12.1,
Q! = (1+e)a(G)I + A) —eeT,
for a given ¢ > 0.
We will now prove that Q* € C~. for r > a(G)% — a(G) — 21if

1
€:= a(G)+1/[a(G)~1]' (12.22)

Note that if we choose e in this way, then @} corresponds to a feasible solution of
(12.20) where A = (1 + €)a(G) < 1 + a(G), and we can therefore round this value
of A down to obtain a(G).

We proceed to bound the parameters x and L in Corollary 12.2 for the matrix Q7.

m The value L is given by L = (1 + €)a(G) — 1.

m The condition number & is given by x = ¢, by (12.5).

Now we have

1+ e)a(G) -1 _

L/k = ( a(G)? + 1. (12.23)

€
From Corollary 12.2 now follows that Q* € C7, for r > a(G)2. o

Example 12.3 Consider the case where G = (V, E) is the graph of the pentagon. It
is well known that o(G) = 2 and 9(G) = ¥'(G) = V5 in this case (see Example
10.1).

We will show that (1) (G) = 2, to this end, note that the matrix

1 -1 1 1 -1
-1 1 -1 1 1
Q= 1 -1 1 -1 1 (12.24)

-1 1 1 -1 1
corresponds to a feasible solution of (12.21) for r = 1, with A = 2. The feasibility

follows from the known fact that Q in (12.24) is in K} (but not in K = S} + N,).
To verify this, we have to show that

(zoz)TQ(zox) (2? + ...+ z3)
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has a sum of squares decomposition. Denoting z = x o x, one can show

2TQz (Z zi)

z1(z1 — 22+ 23+ 24 — 25)2

I

i=1
+ 22(z2 — 234 24 + 25 — 21)?
+ z3(zs — 24+ 25+ 21 — 22)°
+ zulu—zn+2 +22—23)2
+ z5(zs— 21+ 22+ 23— 24)°
+  4(z12224 + 222325 + 232421 + 242522 + 2521 23).
By using z; = 22 (i = 1,...,4) we obtain the required sum ofsquares decomposition.

O

Example 124 Let G = (V, E) be the complement of the graph of an icosahedron
(see Figure 12.2). In this case n = 12 and a(G) = 3. One can solve the relevant SDP

Figure 12,2, An icosahedron is a regular polyhedron with 12 vertices and 20 faces each
of which is an equilateral triangle.

problem to obtain: 90 (G) = 1 + v/5 ~ 3.236068.

Although |9(G)| = a(G), one has Q := a(G)(A + 1) —eeT ¢ K. Thus Q
gives an example ofa 12 x 12 copositive matrix which is not in KC1. O

125 THE STRENGTH OF LOW-ORDER APPROXIMATIONS

In this section we investigate the strength of theapproximations (") to a(G)for r = 0
and r = 1.

First we show that (%) coincides with the '-function of Schrijver [163], which in
turn can be seen as a strengthening of Lovasz ¥-approximationto a(G). To be precise,
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19’(0) is obtained by adding a nonnegativity restriction to X in the formulation of
9(G) (see (10.2) on page 158).

Lemma 122 Let a graph G = (V, E) be given with adjacency matrix A and let ¥/
denote the Schrijver ¥'-function [163]:

9'(G) = max {Tr (ee"X) : Tr (AX) =0, Tr(X)=1, X € (Kp)*}.
Then
9'(G) = 90(G).

Proof:
Recall that
9N(G) = min {\ : A(I+ 4) - ee” € KD}, (12.25)

whereas the dual formulation for ¥'(G) is:

' (G) = min (MM +yA—ecT KO}, (12.26)
Y

Further recall that KS = S} + A, and let
M+ yA—eeT =8+ N, where S € SFand N € N,,. (1227

Without loss of generality we assume N;; = 0 forall ¢ € {1,...,n}, as the sum of
two positive semidefinite matrices is positive semidefinite and thus the diagonal part
of N can be added to § and subtracted from N.

Assume A;; # 0. Note that our choice of § and N is such that §;; = A — 1. Thus,
as S;j+N;; =y—1and §;; > S,-]-,5 one obtains A—1+/N;; > y—1,s0 Nj; > y—A.
Hence N + (A — y)A € N,. Therefore \(I + A) — eeT € KO as long as (12.27)
holds. Hence we can always assume that y = A. D

Let us restate the definition of 9(1)(G) by using (12.11)-(12.14) as follows.

IN(G) := min 8 subject to (12.28)
BI+A)—eeT —MD e S i=1,...,n (12.29)
MY = 0, i=1,....n (12.30)
MO +2mP = 0, i#j (12.31)
MP+MP +MP > 0, i<ji<k, (12.32)
where M®) (1 =1,..., n} are symmetric matrices.

*Here we use the fact that S € &} and has a constant diagonal.
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For v € V, denote by vl the union of the neighbourhood6 of v with v itself,
and for D C V denote by G(D) the subgraph of G induced on D (that is G(D) =

(D,{(z,y) € E | z,y € D}).

Using the above notation, it is possible to show the following.

Theorem 12.6 (De Klerk and Pasechnik [41]) The system ofLMi’s (12.28)—(12.32)
has a feasible solution with 8 = 1 + maxev (¥ (G(V — k1)) and Mi(;) =0 for all

1,7. Thus
9(G) < 1+ max(d(G(V — kb))).
keVv
In particular, if G(V — k1) is perfect for all k € V where k* # V, then 9V (G) =
B8 = a(G).

Thus, for instance, the pentagon example of the previous section can be generalized
to all cycles.

Corollary 123 Let G = (V, E) be a cycle of length n. One has 9 (G) = a(G).
Similarly a(G) = 9M(G) ifG is a wheel.

Proof:

Let G = (V, E) be a cycle oflength n. The required result now immediately follows
from Theorem 12.6 by observing that G(V — v1) is an (n-3)-path forall v € V. The
proof for wheels is similar. a

Also, complements of triangle-free graphs are recognized.

Corollary 124 IfG = (V, E) has stability number o(G) = 2, then9V(G) = 2.

Proof:
Immediately follows from Theorem 12.6 by observing that G(V — v1) is a clique (or
the empty graph) forall v € V. m|

As a consequence the complements of cycles or wheels are also recognized. The
proof proceeds in the same way as before and is therefore omitted.

Corollary 12.5 Let G = (V, E) be the complement of a cycle or of a wheel. In both
cases one has 9V (G) = o(G).

6By neighbourhood of v we mean the set of vertices adjacent to v in G.
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We conjecture that the result of Corollary 12.4 can be extended to include all values
of a.

Conjecture 12.1 (De Klerk and Pasechnik [41]) If G = (V, E) has stability num-
ber a(G), then 9(*G)~D(G) = a(G).

12.6 RELATED LITERATURE

There have been several — seemingly different — so-called lift-and-project strategies for
approximating combinatorial optimization problems. The term ‘lifting’ refers to the
fact that one works in a higher dimensional space, and ‘project’ refers to a projection
back to the original space.

Sherali and Adams [164] first showed how to describe the stable set polytope as
the projection of a polytope in a higher dimension. Lovasz and Schrijver [116] also
showed how to obtain an exact description of the stable set polytope via LP or SDR
They provided upper bounds on the number of liftings (the order of approximation).
As such, the results that have been presented in this chapter are similar to their results,
but are derived from a different perspective.

Anjos and Wolkowicz [11] have introduced a technique of successive Lagrangian
relaxations for the MAX-CUT problem, which also leads to SDP relaxations of size
(n” x n")after r — 1 steps. Recently, Laserre [111, 110] has introduced yet another
lift-and-project approach, based on the properties of moment matrices. Most recently,
Laurent [113, 112] has investigated the relationships between these approaches.

12.7 EXTENSIONS: STANDARD QUADRATIC OPTIMIZATION

We have already mentioned in Remark 12.1 that the maximum stable set problem is
a special case of a so-called standard quadratic optimization problem.” The standard
quadratic optimization problem (standard QP) is to find the global minimizers of a
quadratic form over the standard simplex, i.e. we consider the global optimization

problem
p= néig T Qx (12.33)

where ( is an arbitrary symmetric n X n matrix, and A is the standard simplex in R",
A={zeR?:eTz=1},

as before. We assume that the objective is not constant over A, which means that Q
and ee” are linearly independent.

Note that the minimizers of (12.33) remain the same if Q is replaced with Q +~ee™
where -y is an arbitrary constant. So without loss of generality assume henceforth that

For areview on standard quadratic optimization and its applications, see Bomze [25].
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all entries of Q are non-negative. Furthermore, we can minimize the general quadratic
function 27 Az + 2c¥ z over Aby setting @ = A + ec” + ce” in (12.33).

Recall from Remark 12.1 that problem (12.33) can be rewritten as the copositive
programming problem:

p=min {TrQX : Tree’ X =1, X €C};}
with associated dual problem

p=max{) : Q ~Aee” €Cn, A€R}. (12.34)

LP-BASED APPROXIMATIONS

Let us define:
P = min {TrQX : Tree” X =1, X € (C})*}, (12.35)
for r = 0, 1,... which has dual formulation
P =max{A : Q- XeeT €C;, AeR}. (12.36)

Note that problem (12.36) is a relaxation of problem (12.34) where the copositive cone
is approximated by C7. It therefore follows that p(cr) < pforall 7. We now provide an

alternative representation of p(cr). This representation uses the following rational grid
which approximates the standard simplex:

Alfr)y:={ye A:(r+2)y; €{0,1,...,n} (t=1,...,n)}. (12.37)
A naive approximation of problem (12.33) would be

Pa(r) = min{y"Qy :y € A(r)} > p. (12.38)

The next theorem shows that there is a close link between p(cr) and the naive ap-

proximation pa(,y. In particular, one can obtain p(cr) in a similar way as the naive
approximation pa(,y is obtained, i.e. by only doing function evaluations at points on
the grid A(r).

Theorem 12.7 (Bomze and De Klerk [27]) For any given integer v > 0, one has

(r) _ r42 : T 1 . T
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Proof:
The proof is an easy consequence of Theorem [2.4. Substituting M = Q — Aee” in

(12.16), it follows from (12.36) that p(cr) is the largest value of A such that

c(m)

r+2)(r+1) [m”Qm —mTdiagQ — A ((r +2)* = (r+2))] 20  (12.40)

for all m € I(r 4 2), where

(32 ma)!

dm) = T m

and

Somi=r}.

i=1

In(r) == {m A

as before. In other words,

r+1)(r +2)p) = in  mTQm —mTdiag Q. 12.41
(r+ 1) (7 + 2)p¢ e meQm —m”diagQ (12.41)
The required result now follows by setting y = :{—2-m in (12.41). a

Given the result in Theorem (12.7), it is straightforward to derive the following
approximation guarantee.

Theorem 12.8 (Bomze and De Klerk [27]) Let p := max,ca 27 Qz. One has

_ M < L -
p-p’ < —=(P-p)
as well as
Pa@ry—P< L @-p).
L - r _+_ 2 -
Proof:
By Theorem 12.7 we have
p(c") = % min {yTQy - 1,_}_2 diagQTy:y € A(r)}
> M2{p_ max -1 (di T
- r+1 <I_) yEA(T) 742 ( a‘g Q) Y
= :ﬁ (B - 1-12 max Qn‘)
12 1 =
2 (B - ml’)

P+a7(2-7)
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The first result follows. The second relation is derived in the same way: by Theorem
12.7 we have

41 (r)

.T 1
yénAlE_)y QRQy < 1+2pc ) max Qii
41 1 5
S 1‘+2£ + 1‘+2p’
which implies the second statement. a

SDP-BASED APPROXIMATIONS

Similarly as in the definition of p( ). we can define SDP-based approximations to p
using the cones K7 instead of C7, namely:

pe) = min {TrQX : TreeTX =1, X € (K7)*}, (12.42)
for » = 0, 1, ... which has dual formulation
Py =max {X : Q- dee” € K, A€ R}. (12.43)

It may not immediately be clear that the optimal values in (12.42) and (12.43) are
attained and equal. However, this follows from Theorem 2.3 by noting that X =

2 s (nl, + eeT) is feasible in problem (12.42) as well as strictly completely positive
and therefore in the interior of (K7 )* forall r = 0,1, ...; similarly, A = —1 defines
a feasible solution of (12.43) in the interior of K2, and consequently in the interior of
KT for all 7 = 0, 1,

Note that p{ > p(1) forall » = 0,1, ..., since C,, C K7..

) (r)

It follows that Theorem 12.8 also holds if pé 1s replaced by p,-”.

COMPARISON WITH KNOWN APPROXIMATION RESULTS

Consider the generic optimization problem:

¢* :=max{f(z) : z € S},

for some nonempty, bounded convex set S, and let
¢, :=min{f(z) : z € S}.

Definition 12.2 (Nesterov et al. [139]) A value o approximates ¢, with relative ac-
curacy p € [0,1] if
W} - ¢*| < V‘(QS* - ¢*)
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We say 1 approximates ¢, with relative accuracy p € [0, 1] in the weak sense if
|1/1 - ¢*| < K.

The approximation is called implementable if 1 > ¢..

Note that if ¢ is an implementable approximation, then ¢ = f(z) for some z € S.

It is known from Bellare and Rogaway [18] that there is no polynomial-time u-
approximation of the optimal value of the problem

min{zTQz : Bx=b, ngge}

1

, 3) in the weak sense, unless P = NP.

for some p € (0

Using semidefinite programming techniques, the problem
min{zTQz : Bz:%e, ngge}

can be approximated in polynomial time with the relative accuracy (1-QO(1/ log(n))),
see Nesterov ef al. [139] and the references therein.

Note the the standard quadratic optimization problem (12.33) is a special case of
this problem where B = EeT Nesterov [134] first showed that problem (12.33)
allows a 2/3 polynomial-time, implementable approximation. The result in Theorem

12.8 improves on this result, since it can be restated as follows.

Theorem 12.9 (Bomze and De Klerk [27]) The value pa(ry as defined in (12.38) is
a polynomial-time, implementable, ﬁ-i-approximation of p.

In other words, for any given € > 0 we obtain an implementable e-approximation for
problem (12.33).

Remark 12.3 At first glance the complexity result for standard quadratic optimiza-
tion seems to be in conflict with the in-approximability resultsfor the maximum stable
set problem (see page 188). Recallfrom Remark 12.1 that the stability number can be
obtained by solving the following standard quadratic optimization problem:

1

_— = i T
Te) min z (A+ Dz

where A is the adjacency matrix of G = (V, E).

The complexity result in Theorem 12.8 therefore only guarantees that we can ap-

proximate — i G) arbitrarily well in polynomial time, and this is not the same as approx-

2

imating «(G). In particular, we may have to use v = a(G) in order to determine

aG). To see this, denote Q = A + I and define o™ = l/p where p( s defined
in (12.35). Now we may assume without loss of generality a(’ > 2 (assume G is not

a complete graph). This means p(c g < ;
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Now we apply Theorem 12.8, to arrive at

1 1
1 ! -5 _1-sm
— < < a | 124
a(G) a™ — r+1 — r41 ( 4)

Ifwe set = oa(G)? in (12.44), then we can rewrite (12.44) as the equivalent inequal-
ity
2 _
a(r) _ Q(G) < Q(G) Q(G) .
a(G)? - a(G)+1

Hence we get ") — a(G) < 1 which implies [\ | = a(G) ifr > a(G)2 In other
words, Theorem 12.8 is a generalization of Theorem 12.5, as it should be.
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13

THE SATISFIABILITY PROBLEM

Preamble

In this chapter we investigate relaxations of the satisfiability problem (SAT) via semi-
definite programming. Loosely speaking, the SAT problem is to determine whether
one can assign values to a set of logical variables in such a way that a given set of
logical expressions (clauses) in these variables are satisfied.

Example 13.1 Let py, pe, p3 denote logical variables that can take the values TRUE
or FALSE, say. Further let ~p; denote the negation ofp;, and let *v’ denote the logical
‘OR’ operator. The set of clauses
pr vV p2 V Tp3
-p2 V. Tp3
1 vV p3

has a truth assignment py = TRUE, p; = FALSE, p3 = TRUE, i.e. each ofthe three
clauses are satisfied by this assignment. a

A satisfiability problem can be relaxed to a set of LMFs in different ways. If the
resulting SDP problem is infeasible, then a certificate of unsatisfiability of the SAT

211
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instance is obtained. We will look at two types of relaxations in this chapter, one due
to Karloff and Zwick [99] and the other due to De Klerk ef al. [50].!

13.1 INTRODUCTION

The satisfiability problem (SAT) is the original NP-complete problem (see Cook [35]).
A formal problem statement requires the notion of a propositional CNF formula.

Definition 13.1 (Propositional CNF formula) A propositional formula F in conjunc-
tive normal form (CNF) is defined as a conjunction of clauses, where each clause C;
is a disjunction ofliterals. Each literal is a logical variable or its negation (—). Let
m be the number of clauses and n the number of logical variables of F. A clausal
propositional formula is denoted as

F=CiACyA...ACm,

where ‘N’ denotes the logical 'AND’ operator, each clause C; is of the form

Ci=\/PjV\/ﬁPj,

Jj€L: jeJ:

with I, J; C {1, ..., n} disjoint.

Definition 13.2 (SAT) The satisfiability (SAT) problem of propositional logic is to
determine whether or not a truth assignment to the logical variables exists such that
each clause evaluates to true (i.e. at least one of its literals is true) and thus the formula
is true (satisfied).

For a lengthy survey of algorithms for SAT, see Gu et al. [74].

The more general MAX-k-SAT problem is to find the maximum number of clauses
that can be simultaneously satisfied, where the clause length is at most k; the MAX-
{k}-SAT problem involves clauses of length exactly k (similar definitions hold for
k-SAT and {k}-SAT). A clause of length £ is called a k-clause. We will not consider
clauses of length one (unit clauses) for the satisfiability problem, since these can be
removed in an obvious way (unit resolution).

Reduction to the maximum stable set problem

SAT can be polynomially reduced to the maximum stable set problem in the following
way: given a CNF formula F of the above form, we construct the following graph, say
G(F). For each literal in each clause we define a vertex of G(F), and we connect all

'The presentation in this chapter is based on De Klerk ez al. and De Klerk and Van Maaren [49].
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the vertices corresponding to any given clause. In other words, each k-clause defines
a clique of size k in G(F). We further connect any pair of vertices that correspond to
the literals p; and —p; for all 4. It is easy to see that a stable set of size m in G(F)
corresponds to a truth assignment of F, by setting the literals corresponding to the
vertices in the stable set to TRUE. Conversely, any truth assignment of F corresponds
to a stable set of size at least m in G(F). We can therefore apply the methodology in
Chapter 12 to decide if a given formula is satisfiable, by answering the question: ‘is
a (G(F)) > m?’, where « (G(F)) denotes the stability number of G(F), as before.

Approaches using SDP

A more direct approach was explored by De Klerk ef al. [50], where a simple SDP
relaxation (called the gap relaxation) of propositional formulae was proposed. If the
gap relaxation of a given formula is infeasible, then a certificate of unsatisfiability
is obtained. The authors showed that unsatisfiability can be detected in this way for
several polynomially solvable subclasses of SAT problems. The gap relaxation in De
Klerk et al. [50] is closely related to the types of MAX-k-SAT relaxations studied
earlier by Karloff and Zwick [99], Zwick [194], and Halperin and Zwick [79].

The work of these authors in turn employs the ideas of semidefinite approximation
algorithms and associated randomized rounding, as introduced in the seminal work of
Goemans and Williamson [66] on approximation algorithms for the MAX-CUT and
other problems (see page 179).

If the SDP relaxation is feasible, then one can still 'round’ a solution of the re-
laxation in an attempt to generate a truth assignment for the SAT-formula in question
(rounding schemes). In this chapter we will also explore the theoretical properties of
rounding schemes. A 7/8 guarantee is obtained for satisfiable instances of MAX-3-
SAT by rounding a solution of the relaxation due to Karloff and Zwick [99] (see Sec-
tion 13.2). This result is tight (unless P = NP) in view of a recent in-approximability
result; Hastad [80] has shown that — even for satisfiable [3}-SAT formulae — one
cannot find a polynomial time algorithm that satisfies a fraction 7/8 + ¢ of the clauses
for any € > 0, unless P = NP.? The negative result therefore also holds for satis-
fiable instances of MAX-3-SAT. As such, the results by Karloff and Zwick [99] and
Hastad [80] give a beautiful example of the recent progress made in approximation
algorithms on the one side, and in-approximability results on the other. One can also
not help but feel that these results support the P # N P conjecture!

“Note that the trivial randomized {3}-SAT algorithm that sets p; to TRUE with probability ¥2 and to FALSE

with probability %2 (for all 7 independently), will satisfy 7/8 of the clauses in a {3}-SAT formula (in
expectation).
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132 BOOLEAN QUADRATIC REPRESENTATIONS OF CLAUSES

Associating a {-1,1}-variable with z; each logical variable p;, a clause C; can be
written as a linear inequality in the following way.

Ci(z) =Y z;— »_ z; >2—£(Cy), (13.1)

JEl; JEJ;

where ¢(C;) denotes the length of clause ¢, ie. £(C;) = |I; U J;|. Using matrix
notation, the integer linear programming formulation of the satisfiability problem can
be stated as

find z € {—1,1}" suchthat Az > r,

where the vector r has components r;, = 2 — ¢(Cy), and the matrix A € R™*"is
the so-called clause—variable matrix: ag; = 1if i € Iy, ag; = —1if i € Jg, while
ax; = 0forany i ¢ I, U Jg.

To derive an SDP relaxation for a CNF formula, one can represent each clause C;
as one or more Boolean quadratic (in)equalities, that are satisfied if z corresponds to
a truth assignment for this clause.

Consider a k-clause C;, and let z refer tothe &k {—1,1} -variables that appear in
C;. There are 2* possible choices for the values of the variables that appear in z,
and all but one correspond to truth assignments of C;. Assume that we wish to find a
quadratic inequality

cT Az + 26Tz +¢; <0, z€{-1,1}*, (13.2)

that is a valid Boolean quadratic representation of C;. In other words, we want to find
values for A;, b; and ¢; such that (13.2) holds if z corresponds to any one of the 2% — 1
truth assignments for C;. We can view the requirement

T Ajx + 27z 4+ ¢; <0 for all truth assignments x of C;,

as 2k — 1linear inequality constraints in the variables A; € Sk, b; € RFand ¢; € R;
i.e. each truth assignment defines one inequality. These inequalities define a polyhe-
dral cone in S, x R* x R. Using techniques from LP, we can find the extreme rays
of this cone. Each extreme ray corresponds to a valid quadratic inequality. Since any
point in a convex cone is a convex combination of points on extreme rays of the cone,
any valid quadratic inequality for C; is a nonnegative aggregation of the quadratic
inequalities corresponding to the extreme rays.

In this way, Karloff and Zwick [99] derived a set of seven valid quadratic functions
that can be used to derive all possible valid quadratic inequalities for 3-clauses; see
also De Klerk et al. [50].

Example 13.2 Consider the clause py V p2 V p3. All valid Boolean quadratic inequal-
ities for this clause are nonnegative aggregations of the following seven quadratic
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inequalities:
T+ T3 —x2 —x3 < O ]
1Ty +Toxz —x1—x3 < 0
T1T3+Tox3 — T —x9 < O
—z1ZT2 —x1x3 —Toxz—1 < 0 [ (13.3)
-2+ +r2—1 < 0
-z1x3+x +x3—1 < 0
—z2z3+ T2 +z3—1 < 0
z1,cz,z3 € {-1,1}. )

Note that the first three inequalities in (13.3) only hold ifz € {—1,1}® corresponds
to a truth assignmentof “p, NV pa V p3. The remaining four inequalities are validfor all
z € {—1,1}>. These four inequalities are called triangle inequalities.

The analogous inequalities for all other possible 3-clauses are obtained by replac-
ing x; by —x;in (13.3) if p; appears negated in the clause. O

More recently, Halperin and Zwick [79] derived a similar set of generic quadratic in-
equalities for 4-clauses. One can do this for clauses of any length; the only problem
is that the number of quadratic inequalities increases exponentially. For 4-clauses we
already have 23 quadratic inequalities, and for 5-clauses there are 694. For this reason,
Van Maaren [178] and De Klerk et al. [50] considered so-called elliptic representa-
tions of clauses, where one uses only one quadratic inequality per clause. For the
k-clause py V ...V pg the elliptic representation takes the form:

(1 +... 4z — 12 < (k—1)% =z,...,2, € {-1,1}. (13.4)

For k = 3 we can use zf =1 to derive

3

> mimi— Y i 0. (13.5)

i£j i=1

This quadratic inequality is simply the sum of the first three of the seven generic
inequalities in (13.3).

133 FROM BOOLEAN QUADRATIC INEQUALITY TO SDP

There is a standard way to relax Boolean quadratic inequalities to LMI’s, that is orig-
inally due to Shor [166].
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The Boolean quadratic inequality (13.2) can be rewritten as

A; b zxT =z n
Tr <0, ze€{-1,1}", (13.6)
b;r C; .’I)T 1

by using the properties of the trace operator (see Appendix A). The matrix

zzT =z
zT 1
in (13.6) is positive semidefinite and has rank 1. As z2 = 1 (i = 1,...,n), all the

diagonal elements of this matrix equal 1. If we drop the rank 1 requirement, we can
relax (13.6) to

A,‘ b,‘ X y .
Tr <0, zjy=1, j=1,...,n, (13.7)
sz ¢ yT 1

where X is now a symmetric i X n matrix such that

X vy
>0, (13.8)
yT o1
which is the same as

by the Schur complement theorem (Theorem A.9 on page 235). If we have a rank one
solution of (13.7) and (13.8), then either y in (13.8) or —y will be a feasible solution
of the Boolean quadratic inequality (13.2). On the other hand, if the problem (13.7)-
(13.8) is infeasible, then there can be no solution of (13.2).

We therefore have a general procedure by which we can relax a SAT problem to a
set of linear matrix inequalities. The only non-mechanical step is to select which valid
quadratic (in)equalities will be used to represent each clause.

Two SDP relaxations

In this chapter we consider the two SDP relaxations of SAT formulae:

m the so-called gap relaxation for k-SAT by De Klerk et al. [50] which uses the
inequalities of the type (13.4) for k-clauses (k > 3);

m the relaxation due to Karloff and Zwick [99] for 3-SAT, which uses the first three
of the seven inequalities in (13.3) for 3-clauses. We will refer to the resulting
relaxation as the K-Z relaxation.
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For the generic 2-clause
P1Vp2

both relaxations use the valid quadratic equality
(1 + 29 ~1)* = 1.

Again, if p; is negated, then z, is replaced by —z; in (13.10), etc. Using z? = 1 as
before, we get
1Ty —T) — T2 = —1. (13.10)

In both relaxations the generic 2-clause p, V p, corresponds to a 3 x 3 principal sub-
matrix of the matrix in (13.8), namely

and (13.10) implies

2
T2 — Zyi =—1.
i=1

Similarly, the generic 3-clause p; V ps V p3 corresponds to a 4 x 4 principal submatrix
of the matrix in (13.8), namely

Tz 1 z23 W2

T3 T3 1 s

Vi Y2 ys 1
For the gap relaxation, (13.5) implies

3
ZTi2 + Z13 + 23 — Zyi <0. (13.11)

=1

Similarly, for the K-Z relaxation we use the first three inequalities in (13.3) to obtain:

IA

Tiz+T13 — Y2 — Y3 0
Tiz+z23—y1—ys < 0 (13.12)
T3+ Tz —y1—y2 < 0

As before, the analogous inequalities for all other possible 3-clauses are obtained by

replacing ; by —x; in the first three inequalities of (13.3) if p; appears negated in the
clause.
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Note that the identity matrix is always feasible for both the gap and K-Z relaxations
of {3}-SAT formulae. This means that unsatisfiability can only be detected if the
formula in question also has 2-clauses.

Recall that the gap relaxation is weaker than the K-Z relaxation for 3-SAT, because
(13.5) is obtained by summing the three inequalities in (13.12). The reader may well
ask why it is necessary to study both relaxations. The answer is simply that the gap
relaxation is already strong enough to detect unsatisfiability for several interesting
sub-classes of SAT problems, as we will show in the next section. On the other hand,
the K-Z relaxation leads to better approximation algorithms for MAX-3-SAT; this is
shown in Section 13.6.

The K-Z relaxation is only defined for 3-SAT. The gap relaxation is defined for
general k-SAT asfollows.

Definition 133 (Gap relaxation) We define the gap relaxation ofa given CNF for-
mula in terms ofthe clause-variable matrix; the parameters in (13.7) become

A= a,-aiT, b; = —aiy, C;= —Z(C,‘) (Z(C,‘) - 2) , 1= 1, Lo,
Moreover, for 2-clauses, the inequality sign in (13.7) becomes equality.

13.4 DETECTING UNSATISFIABILITY OF SOME CLASSES OF
FORMULAE

In this section we look at some classes of formulae where unsatisfiability can be de-
tected using the gap relaxation. (Recall that if the gap relaxation of a given formula is
infeasible, then we obtain a certificate of unsatisfiability of the formula.)

A CLASS OF INFEASIBLE ASSIGNMENT PROBLEMS

Consider a set of n prepositional variables. Let {S;,...,Sy} and {T},..., Ty}
denote an N-partition and an M-partition of this set of variables respectively. Fur-
thermore, let us assume that M < N. We now define a class of unsatisfiable CNF
formulae that we will call Fgp.

V i, 1<k <N, (13.13)
1€Sk
_'piv_'pja i,jETk) 'L#], 1SkSM (1314)

We give two famous examples of problems that fit in this format.

Example 133 (Pigeonhole formulae) Given h -+ 1 pigeons and h pigeonholes, de-
cide whether it is possible to assign each pigeon to a hole in such a way that no two
pigeons share the same hole.
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To obtain a satisfiability problem we introduce the logical variables

TRUE  if pigeon i is assigned to hole 3

FALSE  otherwise.
Each pigeon must have a pigeonhole:
Pi1Vpi2V...Vpip, t=1,...,h+1 (13.15)
No two pigeons may share a pigeonhole:
“pixVpik 7€l h+1}(i#j) andk € {1,... h}.

We now show that this encoding of the pigeonhole problem fits the format Fop: for
each hole there is a set of 2-clauses, giving rise to M = h separate sets Ty, each of
size h + 1, namely

Ti = {P1ks---+Prs1k}, k=1,...,h

Similarly, we have N = h + 1 disjoint sets corresponding to the clauses (13.15),
namely
Sk::{pkyl,...,pkyh}, k:1,...,h+1.

It is easy to see that each logical variable occurs both exactly once in the sets Sy and
exactly once in the sets Ty, so that {Ty, ..., Tr }forms an M-partition of the set of
logical variables, and {S1,. .., Sn}forms an N-partition, as required. o

Example 134 (Mutilated chess boards) Consider a chess board of size 2s x 2s
squares with the two opposing white corner squares removed (see Figure 13.1). Can

Figure 13.1. A 'mutilated’ chess board for s = 3.
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the resulting ‘mutilated’ chess board be covered by rectangular dominoes of size 2 x 1
(i.e. a single domino covers exactly two adjacent squares), such that each square is
covered exactly once?

For the SAT encoding ofthis problem we introduce the logical variables

TRUE  if adomino covers squares 1 and j

Pij =
FALSE otherwise.

Each square i must be covered:
Piny VPing V.oV Pin,, (13.16)

where ny, ..., ny are the t neighbouring squares of square ¢ (2 <t < 4).

Each square must be covered only once:
—Pik YV Djk (13.17)

where 1, j are neighbouring squares of square k.
Thus we have 4(2s* — s — 1) logical variables.

We will only take a subset of the clauses (13.16) and (13.17) to obtain a formula
of the form Fop. For all the black squares we keep the clauses (13.16), whilefor all
the white squares we only use the clauses (13.17). The first set corresponds to (13.13)
and the second set to (13.14). Again, it is easy to see that each logical variable occurs
in exactly one ofthe N = 2s? positive clauses, and in exactly one of the M = 2% — 2
sets ofnegative clauses. O

Both of the above problems are easily shown to be unsatisfiable by using suitable cut-
ting planes (see e.g. Cook et al. [36]). Surprisingly, other techniques often exhibit
exponential running times to solve formulas of this type. Indeed, Haken [75] proves
that the unsatisfiability of the pigeonhole problem cannot be detected in polynomial
time by the resolution algorithm. It is strongly conjectured that the resolution algo-
rithm requires exponential running time on the mutilated chess board problem as well

(Urquhart[177]).

*This is impossible — a single domino always covers one white and one black square, while the mutilated
chess board has more black squares than white squares.
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Let us consider the gap relaxation of Fp.

Find Xe€&,, yeR"
st. el Xes, —2el y < |Skl(|Sk| -2), 1<k<N
(SD¢p) el Xe;+2Ly=0,iji#jeTk 1<k<M
diag(X) = e,
X xyyT,

where, e is the all-1 vector in R™, eg, is the incidence vector of the set Sy, i.e.

k

1 ifp; € Sk
(esk)i = .
0 otherwise,

and e;; is the 0 — 1 vector with entries ¢ and y equal to 1 and all other components
Zero.

We can now prove the following.
Theorem 13.1 The gap relaxation (SDcp)of Fop is infeasible.

Proof:
Note that from (13.9) it follows that a” Xa > (aTy)? for any a € R™. Thus we have
2
(egky) - Qegky < egkXesk - Qegky < |Sk|(|Sk| — 2).

This implies that
2—|Sk|<efy<|Skl, 1<k <N. (13.18)

Now we consider the inequalities corresponding to the sets Tx. Summing over all the
equalities corresponding to a set Ty for fixed k, we find that

er, Xe, + (|Tk| — 2)e, diag(X) + 2(|Tx| — 1)e, y = 0.

To verify this, note that each diagonal element z,;, i € T}, occurs in exactly |Tj| — 1
inequalities; similarly, each linear term y;, ¢ € T}, occurs in exactly |7%| — 1 inequal-
ities as well. Simplifying this expression using that diag(X) = e, we obtain

er Xer, +2(Tk| — Vef,y = —|Tk|(|Tx| — 2)-
Using the semidefinite constraint again, we conclude that
2
(en,4)" +2(1Te| = Deq,y < ep, Xen, +2(|Tk| — Veq,y < ~|Ti|(|Ti| - 2)-
The outermost inequality implies

2
(er,y)” +2(Tkl — Vel y + |Te|(|Tx| — 2) < 0,
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which in turn implies®
—|Ti| < el y<2-|Tk|, 1<k < M.

Summing these inequalities we find that —n < eTy < 2M — n, while from (13.18)
we have that 2N — n < eTy < n, implying that 2N < eTy + n < 2M. Thus we
conclude that (SD¢p) is infeasible because N > M. 0

As a consequence, the gap relaxation can be used to detect unsatisfiability of both
the pigeonhole (Example 13.3) and the mutilated chess board (Example 13.4) prob-
lems.

We now consider another example.

Example 13.5 Let G = (V, E) be a clique on n vertices. Decide whether one can
legally colour G using t colours.

For the SAT encoding ofthis problem we introduce the logical variables

TRUE vertex i has colour j
FALSE otherwise

Each vertex 1 must be coloured by at least one of the t colours:
PiatVPio2V... VD, i=1,...,n. (13.19)
Adjacent vertices may not be assigned the same colour:
“pie Vpie (4,7)€E, k=1t (13.20)
Since G is a clique, the set of 2-clauses can be written as
—pieVpig L,i=1,...,n(i#7), k=1,... ¢t (13.21)

Given a truth assignmentfor this formula, then we can easily obtain a legal colouring
of G. It may happen that a vertex is assigned more than one colour in a truth assign-
ment, but then the excess colours can simply be removed (since there are no defect
edges).

Note that the formula defined by (13.19) and (13.21) is now exactly a pigeonhole
formula with h = n — 1 ifwe allow only t = n — 1 colours. The gap relaxation

“Here we use theinequality: z2 + bz + ¢ < 0if and only if

~b~vb2—4c< <—b+vb2—4c
T .
2 -~ 2
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can therefore be used to prove that a clique of size n cannot be coloured with n. — 1
colours. a

For any given graph G = (V, E} we can find the smallest integer value of ¢, say t*(G),
such that the gap relaxation of the formula defined by (13.19) and (13.20) is feasible.
By the last example, we will have ¢*(G) > w(G), where w(G) denotes the clique
number of G, as before. Moreover, ¢*(G) will be upper bounded by the chromatic
number x(G) of G, since ¢*(G) is obtained by relaxing the colouring problem. We
therefore have

w(@) < t*(G) < x(G).

This reminds one of the sandwich theorem on page 158, and suggests a link between

t*(G) and 9(G). De Klerk et al. [42] have shown that

w(G) < t*(G) < [9(G)] < x(G).

It is conjectured (but not proven) that t*(G) = [9(G)]; in fact, it is shown in [42] that
equality is obtained when suitable valid inequalities are added to the gap relaxation.

To quote Goemans [65]: ‘It seems all roads lead to !

The gap relaxation for other classes of formulae One can show that the
gap relaxation of a 2-SAT formula is feasible if and only if the formula is satisfiable
(see Feige and Goemans [56] and De Klerk ez al. [50]).

The gap relaxation can also be used to solve doubly balanced formulae by intro-
ducing a suitable objective function. The reader is referred to De Klerk et al. [50] for
details.

We stress that all the classes of formulae that have been described in this section
are known to be polynomially solvable.

13.5 ROUNDING PROCEDURES

If the gap or K—Z relaxation of a given 3-SAT formula is feasible, then one can ‘round’
a feasible solution of the relaxation in an attempt to generate a truth assignment for the
formula (if one exists). In other words, we can formulate approximation algorithms
for MAX-3-SAT in this way, for the subclass of 3-SAT problems where the gap or K—Z
relaxation is feasible. This subclass includes all satisfiable 3-SAT instances, of course.
Moreover, it is possible to establish approximation guarantees for such approximation
algorithms.

We will show here that by rounding a feasible solution of the K—Z relaxation of a
given 3-SAT formula in a suitable way, we satisfy at least 7/8 of the 3-clauses and
a fraction 0.91226 of the 2-clauses (in expectation); this result is due to Karloff and
Zwick [99].
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DETERMINISTIC ROUNDING

Recall from page 216 that the vector y in (13.8) gives a truth assignment if X, y are
feasible in (13.7) and X is a rank 1 matrix.

In general X will not be a rank | solution, but one can still check whether the
rounded vector sign(y) yields a truth assignment.

We will refer to this heuristic as deterministic rounding. Deterministic rounding
satisfies each 2-clause, say C = p; V p;, for which y; # 0 or y; # 0 in the solution of
the gap relaxation. The unresolved 2-clauses can subsequently be satisfied in a trivial
way (see Feige and Goemans [56] and De Klerk ez al. [50]).

RANDOMIZED ROUNDING WITH HYPERPLANES

Recall that the entry x;; in the matrix in (13.8) corresponds to the product z;z; of
logical variables. In fact, we may write

zij = v] ]
where v; and v; are columns from the Choleski decomposition of the matrix in (13.8).

This shows that the product z;z; is in fact relaxed to the inner product v v;, ie.
we associate a vector v; with each literal p;.

The vector y in (13.8) can similarly be seen as a vector of inner products:
yi = v7v;

where one can attach a special interpretation to the vector vy as ‘truth’ vector: in a
rank 1 solution, if »; = v then p; is TRUE, and if v; = —wvr then p; is FALSE.

This interpretation suggests a rounding scheme, introduced by Karloff and Zwick
[99] as an extension of the ideas of Goemans and Williamson [66]:
1. Take the Choleski factorization of the matrix in (13.8);
2. Choose a random hyperplane through the origin;
3. If v; lies on the same side of the hyperplane as vz, then set p; to TRUE; otherwise

set p; to FALSE.

We will refer to this procedure as randomized rounding; this heuristic can be de—
randomized using the techniques in Mahajan and Ramesh [120].

13.6 APPROXIMATION GUARANTEES FOR THE ROUNDING
SCHEMES

In this section we give a review of the analysis required to establish performance
guarantees for the randomized rounding procedure. The analysis is very similar to
that of Section 11.6 for the MAX-3-CUT problem; the methodology is largely due to
Karloff and Zwick[99].
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RANDOMIZED ROUNDING FOR 2-CLAUSES

We again only consider the 2-clause p; Vv ps without loss of generality.
Let the vectors vy, v, be associated with the literals of p; V ps.

The randomized rounding procedure will fail to satisfy this clause if all three vec-
tors vy, vg, —vr lie on the same side of the random hyperplane (see Figure 13.2).

Figure 13.2. The situation where v; and vy are separated from v by a random hyper-
plane

In general, we want to know the probability that a given set of vectors lie on the same
side of a random hyperplane. The probability that two given unit vectors vy, v liec on
the same side of a random hyperplane is easy to determine: it only depends on the
angle arccos(v¥vy) between these vectors and is given by 1 — arccos(vT vy)/m (see
Goemans and Williamson [66]). One can use this observation to treat the three vector
case using inclusion—exclusion; this is done by Karloff and Zwick [99]. We present
a different derivation here which can be generalized to more vectors. The key is to
consider a normal vector r to the random hyperplane. The clause will not be satisfied
if the three vectors all have a positive (or all have a negative) inner product with r,

Note that the Gram matrix of vy, ve, —vy is the following matrix:

1 T2 —WNn
XZ - T2 1 —Y2 3
-y —y2 1

and the K-Z and gap relaxations require

2
Ii12 — Zyi = —1. (1322)
i=1
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The vectors vy, ve, —vr can be viewed as three points on the unit sphere
8% :={z e R®||z] = 1},
and thus define a so-called spherical triangle (say S) in the space S2.
The associated dual spherical triangle is defined as
S*:={reR®: rTy; >0(i=12), rTvr > 0}
which, together with —S* form the set of normal vectors for which all three vectors
lie on the same side of the associated plane.
The probability that the clause is not satisfied is therefore given by:
(2) _ parea (S*) _ area (S*)‘
area (S?) 2

It is well known that the area of a spherical triangle is given by its angular excess’ (see
e.g. Alekseevskij et al. [2]). The dihedral angels of S* are given in terms of the edge
lengths of S and equal (7 — arccos(z12)), (m —arccos(—y1)), and (7w — arccos(—y2)),
respectively. It follows that the angular excess (i.e. area) of S* is given by:

area (S*) = (m — arccos(z12) + m — arccos(—y1) + m — arccos(—yz)) — 7

= 2w — arccos(z12) — arccos(—y; ) — arccos(—yz),

so that

1
p? =1 - o (arccos(z12) + arccos(—yy) + arccos(—ya)) - (13.23)
s

We are therefore interested in the optimization problem:

max p(?
X2

subject to X, > Oand (13.22).

Since p(? is a strongly quasi-concave function of X,, and the feasible region is
convex, this optimization problem can be solved to global optimality, because each
local optimum is also global in this case (see Theorem 3.5.9 in Bazaraa er al. [16]).
The optimal solution is given by

X,=| -

The angular excess is the difference between the sum of the (dihedral) angles of the spherical triangle and
.
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in which case the clause is satisfied by randomized rounding with probability
3
— arccos(—1/3) ~ 0.91226,
2

by (13.23).

RANDOMIZED ROUNDING FOR 3-CLAUSES

This analysis is perfectly analogous to the analysis of the 2-clause case, the only com-
plication being that the probability function does not have a closed form representa-
tion.

Let the vectors vy, vq, vz be associated with the literals of p; V pa V p3. As before,
the randomized rounding procedure will fail to satisfy this clause if all four vectors
v1, V2, v3, —vr lie on the same side of the random hyperplane.

What is the probability of this event? This question has been answered by Karloff
and Zwick [99]. Once again, we consider the normal vector r to the random hy-
perplane. The clause will not be satisfied if the four vectors all have a positive (or
negative) inner product with r.

Note that the Gram matrix of vy, ve, v3, —vr is the following matrix:

1 Ti2 T3 —Y1

_ Tz 1 Toz —Y2
X5 = vz (13.24)

Ti3 To3 1 —ys

-y —y2 -—-y3 1

and that the K-Z relaxation requires

IA
o

Ti2+T13 — Y2 — Y3
Tiz+ Tz —y1—-y3 < 0 (13.25)
izt T3 —y1—y2 < 0.

The vectors vy, v, v3, —vr can be viewed as four points on the unit hypersphere
8%:={z e R* |||z = 1},

and thus define a spherical tetrahedron (say S) in the space S3.

The associated dual spherical tetrahedron is defined as
S* = {T‘ER4 : Ty, >0(=1,...,3), rTur 20}

which, together with —S* form the set of normal vectors for which all four vectors lie
on the same side of the hyperplane.
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The probability that the clause is not satisfied is therefore given by:

(3) _ o volume (S7)

_ 13.26
volume (53) ( )

The relative volume as a function of X3 is given by the following integral (see Section
11.6):

volume(S*)

1 e °°
— — P e
volume (S3) Vdet(X;3)m? /o /o

In order to establish the worst-case performance guarantee for the randomized round-
ing scheme, we have to solve the optimization problem

_yTX:’_lydyl .- dy4

m_a.xp(3)
X3

subject to X3 > Oand (13.25).

The volume function cannot be written in closed form, but can be simplified to a
one dimensional integral (see Hsiang [87]) for spherical tetrahedrons. Surprisingly,
the gradient of the volume function is explicitly known (see Karloff and Zwick [99]),
even though the volume function itself is not.

The optimization problem we consider has a convex feasible region with nonempty
interior, but the objective function (to be maximized) is not concave. It is therefore
difficult to find the global maximum, but it can be done due to the small problem
size. In particular, the KKT conditions are necessary conditions for optimality in this
case (see Appendix B), and one can find and evaluate all KKT points numerically (see
Karloff and Zwick [99] for details). After following this procedure, we find that the
optimal solution is given by the identity matrix X3 = I4. In this case the spherical
tetrahedron S* is simply the intersection of an orthant in R* with the unit hypersphere
&3. The relative volume of S* is therefore 1/16, and the 3-clause is therefore satisfied
with probability

@1 ot T
1-p¥ =1 216 =3
We can mention that the gap relaxation with randomized rounding only gives a 2/3
approximation guarantee for 3-clauses (see De Klerk and Van Maaren [49]).

In summary, we have the following result.

Theorem 13.2 (Karloff and Zwick [99]) Ler a 3-SAT formula with a fraction p of
3-clauses and (1 — p) of 2-clauses be given, for which the K-Z relaxation is feasible.
The deterministic rounding scheme satisfies a fraction of at least 1 — p of the clauses.
The randomized rounding scheme satisfies a fraction of at least

7
gp +0.91226(1 - p)

of the clauses, in expectation.



Appendix A
Properties of positive (semi)definite matrices

In this appendix we list some well-known properties of positive (semi)definite matrices
which are used in this monograph. The proofs which are omitted here may be found
in [85]. A more detailed review of the matrix analysis which is relevant for SDP is
given by Jarre in [94].

A1 CHARACTERIZATIONS OF POSITIVE (SEMI)DEFINITENESS

Theorem A.1 Let X € &,,. The following statements are equivalent:

" X cSForX > 0(X is positive semidefinite);
m 2TXz2>0 VYzeR"®;

B nin(X) >0

m All principal minors of X are nonnegative;

s X = LLT for some L € R™*™.

We can replace ‘positive semidefinite’ by ‘positive definite’ in the statement of the
theorem by changing the respective nonnegativity requirements to positivity, and by
requiring that the matrix L in the last item be nonsingular. If X is positive definite
(X € 8§t or X » 0), the matrix L can be chosen to be lower triangular, in which
case we call X = LLT the Choleski factorization of X.

NB: In this monograph positive (semi)definite matrices are necessarily symmetric,

i.e. we will use ‘positive (semi)definite’ instead of ‘symmetric positive (semi)definite’."

"In the literature a matrix X € R™X™ is sometimes called positive (semi)definite if its symmetric part
-;—(X + XT) is positive (semi)definite.

229
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As an immediate consequence of the second item in Theorem A.1 we have that
X eS8 AXAT ¢S

for any given, nonsingular A € R™**™,

Another implication is that a block diagonal matrix is positive (semi)definite if and
only ifeach of its diagonal blocks is positive (semi)definite.

A.2 SPECTRAL PROPERTIES

The characterization of positive (semi)definiteness in terms of nonnegative eigenval-
ues follows from the Raleigh—Ritz theorem.

Theorem A.2 (Raleigh—-Ritz) Let A€ S,,. Then

Amin(4) = min {zTAz| |lz|| =1}. (A.1)
zER"

It is well known that a symmetric matrix has an orthonormal set of eigenvectors,
which implies the following result.

Theorem A.3 (Spectral decomposition) Let A € S,.Now A can be decomposed as

A=QTAQ =) N(Aia]

i=1

where Ais a diagonal matrix with the eigenvalues X\;(A) (i = 1,...,n)of A on the
diagonal, and Q is an orthogonal matrix with a corresponding set of orthonormal
eigenvectors qy, . ..,q, of A as columns.

Since A;(X)>0@GE =1,...,n)if X € &, we can define the symmetric square root
factorization of X € §;:

X3 =Z\/z\i(X)QiqiT (xe&f).
i=1
Note that X2 X% = X; X3 is the only matrix with this property.

Theorem A.4 Let X € S+ and S € S;+. Then all the eigenvalues of XS are real
and positive.
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Proof:

The proof is immediate by noting that

XS ~ (X%) 'xs (X%) = Xi5X% > 0.

-1
We will often use the notation X ~% := (X é) .

The eigenvalues of a symmetric matrix can be viewed as smooth functions on &,,
in a sense made precise by the following theorem.

Theorem A.5 (Rellich) Ler an interval (a,b) C R be given. If A : (a,b) — S, is
a continuously differentiable function, then there exist n continuously differentiable
Sunctions A; : (a,b) = R (i = 1,...,n)such that A (t), ..., A\n(t) give the values of
the eigenvalues of A(t) for each t € (a,b).

The next lemma shows what happens to the spectrum of a positive semidefinite matrix
if a skew symmetric matrix is added to it, in the case where the eigenvalues of the sum
of the two matrices remain real numbers.

Lemma A.l1 Let Q € SF+,and let M € R™ ™ be skew—symmetric (M = —MT).
One has det(Q + M) > 0. Moreover, if \;(Q+ M) e R (i =1,...,n), then

0< /\min(Q) S /\min(Q + M) S /\max(Q + M) S /\max(Q)-

Proof:
First note that @ + M is nonsingular since for all nonzero z € R™:
zT(Q + M)z = zTQz > 0,
using the skew symmetry of M. We therefore know that
P(t) = det[Q +tM] £ 0 VteR,

since tM remains skew—symmetric. One now has that %) is a continuous function of
twhich is nowhere zero and strictly positive for ¢ = 0 as det(@) > 0. This shows
det(Q + M) > 0.

To prove the second part of the lemma, assume A > 0 is such that A > A\pax(Q).
It then follows that @ — Al < 0. By the same argument as above we then have
(Q + M) — M nonsingular, or

det ((Q + M) — AI) #0.

This implies that A cannot be an eigenvalue of Q + M. Similarly, @ + M cannot have
an eigenvalue smaller than A, (Q). This gives the required result. O
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The spectral norm || - ||z on R™*™ is the norm induced by the Euclidean vector

norm:
HAz [l Az]

By the Raleigh-Ritz theorem, the spectral norm and spectral radius p(-) coincide for
symmetric matrices:

1Al := (A€ R™T™).

[All2 = p(A) 1= max[X(4)] VAES,.

The location of the eigenvalues of a matrix is bounded by the famous Gerschgorin
theorem. For symmetric matrices the theorem states that

n
et |lt—aul <D laylp, k=1,...,n, A€S,
i=1 J#t

As a consequence we find that the so—called diagonally dominant matrices are positive
semi-definite.

Theorem A.6 (Diagonally dominant matrix is PSD) A matrix A € S,, is called di-
agonally dominant if
Qi > Z|aij|7 i=1,...,n

J#i

IfA is diagonally dominant, then A € 8;7.

A.3 THE TRACE OPERATOR AND THE FROBENIUS NORM

The trace of an n x n matrix A is defined as

'I‘I‘(A) = Zaii.

The trace is clearly a linear operator and has the following properties.

Theorem A.7 Let A € R™ ™ and B € R™*™. Then the following holds:

Tr (4) = 2ims A(A);

Tr (4) = Tr (A7),

Tr (AB) = Tr (BA)

Tr (ABT) = vec(A)Tvec(B) = 37, _; ai;bi;.

The last item shows that we can view the usual Euclidean inner product on R™ asan
inner product on R™*™;

(A,B) :=Tr (ABT) =Tr (BTA) =Tr (ATB) =Tr (BT 4). (A2)
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The inner product in (A.2) induces the so-called Frobenius (or Euclidean) norm on
Rn X n:

A% := (4, 4) = Tr (AAT) = Z a

3,j=1

It now follows from the first item in Theorem (A.7) that
ICI* = S"M(O)2if C € 8.

The Frobenius and spectral norms are sub-multiplicative, i.e.
IAB < IA{lIBIl, IAB]l; < |[Al2[|Bll2 VA € R*™", B € R™*",

and || A2 < ||A| for all A € R™*"™.

One can easily prove the useful inequality:
Tr (AB) < Amax(A)Txr (B), for A, B > 0, (A3)
that is equivalent to
|AB|| < ||All2||B]|, for A,B e R™*". (A.4)

Inequality (A.4) follows from (A.3) by replacing A by AAT and B by BBT in (A.3).
Conversely, (A.3) follows from (A.4) by replacing A by Az and B by Bz in (A.4).

Theorem A.8 (Fejer) A matrix A € 8, is positive semidefinite if and only if (A, B) >
0for all B € 87. In other words, the cone S;7 is self-dual.

Proof:
Let A € §;f and B € §;F; then

(A,B) = Tr (A%A%B%B%) — Tr (A%B%B%A%) - HA%B% *>0.

Conversely, if A € S,, and (A, B) > 0 forall B € S;, then let z € R"™ be given and
set B = zzT € SF. Now

0<(A,B) = Azz Z Qi T;T; = T Az

t,7=1
For positive semidefinite matrices, the trace dominates the Frobenius norm, i.e.

Tr (X) > |[X|| VX € 5.
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This follows by applying the inequality

to the nonnegative eigenvalues of X. Similarly, one can apply the arithmetic-geometric
mean inequality

n 1/n 1 n
. < = . +
(Hz,) _nZz, Yz e R}
=1 i=1
to the eigenvalues of X € S to obtain the inequality
1 n
~Tr (X) 2 (det(X )™ VX € S},
where we have used the fact that det(A) = [, A;(A) forany A € R™*".
Lemma A2 If X € S;tand S € S and Tr (X S) =0, then XS = SX = 0.

Proof:

By the properties of the trace operator

Tr(xS) =Tr (Xix¥sish) =Tr (shxixist) = HS%X% ’

Thus if Tr (X S) = 0, it follows that $3X3 = 0. Pre-multiplying by $% and post-
multiplyingby X 7 yields $X = 0, which in turn implies (SX)T=XS=0. o

The following lemma is used to prove that the search directions for the interior
point methods described in this monograph are well defined. The proof given here is
based on a proof given by Faybusovich [54].

Lemma A3 Let A; € 8, (i = 1,...,m) be linearly independent, and let 0 #Y €
S,'f, Z € S,f“”. The matrix M € S,,, with entries

mij :T\I‘(A,LZA]Y), i,j=1,...,m
is positive definite.

Proof:

We prove that the quadratic form

m
q(z) = zTMz = Z ;LT

i,5=1
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is strictly positive for all nonzero z € R™. To this end, note that for given z # 0,

m m
q(:L‘) =Tr (Z :L‘,'A,') A Z :L‘]'AJ' Y
1=1 j=1

Denoting A(z) := ..~ z;A; (which is nonzero by the linear independence of the
Als), one has:
q(z) = Tr (A(z)ZA(z)Y) > 0,

where the inequality follows from 0 # A(z)ZA(z) > O0and Y > 0. 0

A.4 THE LOWNER PARTIAL ORDER AND THE SCHUR
COMPLEMENT THEOREM

We define a partial ordering on S,, via:
A» B+ A-BeS;.

This partial ordering is called the Lowner partial order on 8™. (It motivates the alter-
native notation X > 0 instead of X € S;}.) It follows immediately that

A> B« CTAC > CTBC VC e R™"™,
One also has
A=B<+= B '»A"' (AcS}t, BesH).

The Schur complement theorem gives us useful ways to express positive semidefinite-
ness of matrices with a block structure.

Theorem A.9 (Schur complement) [f

A B
BT C

M =

where A is positive definite and C is symmetric, then the matrix
C-BTA'B
is called the Schur complement of A in X. The following are equivalent:

®w M is positive (semi)definite;

s C — BT A=1B is positive (semi)definite.
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Proof:

The result follows by setting D = — A~ B, and noting that

I 0 A B I D A 0
DT 1 BT ¢ 0o I 0 C—BTA- B

Since a block diagonal matrix is positive (semi)definite if and only if its diagonal
blocks are positive (semi)definite, the proof is complete. 0O



Appendix B
Background material on convex optimization

In this Appendix we give some background material on convex analysis, convex opti-
mization and nonlinear programming. All proofs are omitted here but may be found
in the books by Rockafellar [160] (convex analysis) and Bazaraa et al. [16] (nonlinear
programming).

B.1 CONVEX ANALYSIS

Definition B.1 (Convex set) Let two points z',2% € R™ and 0 < X < 1 be given.
Then the point

=X’ +(1 - Nz?
is a convex combination of the two points z', 2.

The set C < R"™ is called convex, ifall convex combinations of any two points

z!,z% € Care again in C.

Definition B.2 (Convex function) A function f : C — R defined on a convex set C is
called convex if for all £1,z? € C and 0 < X < 1one has

fQz! + (1 - N)2®) < Af(z') + (1 = N f(z?).

The function is called strictly convex if the last inequality is strict.

A function is convex if and only if its epigraph is convex.

Definition B.3 (Epigraph) The epigraph of a function f : C — R is the (n + 1)-
dimensional set
{(z,7) : f(g) <T.x€C, T ER}.

237
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Theorem B.1 A twice differentiable function f is convex (resp. strictly convex) on
an open set C ifand only if its Hessian V2 f is positive semidefinite (resp. positive
definite) on C.

Example B.1 The function f : ST+ v R defined by f(X) = —log (det(X)) has a

positive definite Hessian and is therefore strictly convex. (This is proven in Appendix
C.) ]

Strictly convex functions are useful for proving ‘uniqueness properties’, due to the
following result.

Theorem B.2 If a strictly convex function has a minimizer over a convex set, then this
minimizer is unique.

Definition B.4 (Convex cone) The ser K C R™ is a convex cone ifit is a convex set
and for all z € K and 0 < X one has Az € K.

Example B.2 Four examples of convex cones in Sy, are:

® the symmetric positive semidefinite cone:

St={AeS, ‘:L‘TXIZO forallz € R*};

u the copositive cone:

Chi={A€S, |zTAz >0 forallz € R}};

® the cone of completely positive matrices:

k
A=Zziz?, z;€RY (1=1,...,k) foranyk};

i=1

C;:{Aesn

® the cone of nonnegative matrices:

No={A€S,|a;; >0 (4,5=1,...,n)}.

Definition B.5 (Face (of a cone)) A subset F of a convex cone K is called a face of
Kifforallz € Fandy,z € Konehas x =y + zifandonlyif y € Fand z € F.
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Example B.3 An example of a face ofthe cone of positive semidefinite matrices St
is
U Orx(n—r)

F = UesS}

0(n—r)><r O(nAr)x(n—r)

Note that if A € S} and B € S;1, then A+ B € F ifand only ifA € Fand B € F.
O

Definition B.6 (Extreme ray (of a cone)) A subset of a convex cone K is called an
extreme ray of K if it is a one dimensional face of K, i.e. a face that is a half line
emanating from the origin.

Example B.4 Any 0 # z € R” defines an extreme ray of the cone of positive semidef-
inite matrices S} via

{U|U =czz”, ¢>0}.

Similarly, any y € R defines an extreme ray of the cone of completely positive
semidefinite matrices C}, via

{U|U:cny,c>0}.

Definition B.7 Let a convex set C be given. The point x € C is in the relative interior
of Cifforall 3 € C there exists & € C and 0 < A < 1 such that z = A& + (1 — A)Z.
The set of relative interior points ofthe set C will be denoted by ri (C).

Theorem B.3 Assume that C, and C, are nonempty convex sets and ri (Cy)Nri (Cy) #
. Then
ri (Cl 002) =ri (Cl) Nri (Cz)

Example B.5 Note that the interior of the cone of positive semidefinite matrices S;;
is the cone of positive definite matrices SY+. Let A C S, denote an gffine space.
Assume that there exists an X € A that is also positive definite. Then, by the last
theorem,

i (ANSH) =r1i (A)nri (8F) = AnSt,
sinceri(A) = A O
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Theorem B.4 (Separation theorem for convex sets) Let Cy and Cy be nonempty con-
vex sets in R¥, There exists a v € R* such that

supriz < inf r7y
z€Cy yeC:

and

inf 7Tz < sup rTy
z€Cy y€Cs

if and only if the relative interiors of Cyand Cyare disjoint.

The second inequality merely excludes the uninteresting case where the separating
hyperplane contains both C; and Cy, i.e. it ensures so-called proper separation.

B.2 DUALITY IN CONVEX OPTIMIZATION

We consider the generic convex optimization problem:

(CO) p*=inf, f(z)

s.t. gi(z) <0, 5=1,---,m (B.1)
z €C,
where C C R™is a convex setand f,gq, -, gm are differentiable convex functions

on C (or on an open set that contains the set C).

For the convex optimization problem (CO) one defines the Lagrange function (or
Lagrangian)

m
L(z,y) := f(&) + ) y;9;(x) (B.2)
7j=1
where z € Cand y > 0.

Definition B.8 A vector pair (Z,5) € R™™, 7 € C and § > 0 is called a saddle
point ofthe Lagrange function L if
L(z,y) < L(z,9) < L(z,9) (B.3)

forallz € Cand y > 0.

One easily sees that (B.3) is equivalent with

L(Z,y) < L(z,5) forall z€C, y>0.

Lemma B.1 The vector (Z,§) € R*™™, % € C and § > 0 is a saddle point of L(z, y)
ifand only if

inf sup L(z, y) = L(Z,§) = sup inf L(z,y). (B.4)
zeC ¥>0 y>07TEC
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Since we can reformulate (CO) as

m
p* = inf su ) + yigi(z
zecy;g f(z) -Z:IJJ() )

it follows that Z is an optimal solution of problem (CO) if there exists a § > 0 such
that (Z,§)is a saddle point of the Lagrangian.

To ensure the existence of a saddle point of the Lagrangian, it is sufficient to require
the so-called Slater regularity condition (Slater constraint qualification).

Assumption B.1 (Slater regularity) There exists an = € ri(C) such that

® g;(z) < 0if gj not linear or affine,

" g;(x) <0if g;islinear or affine.

Under the Slater regularity assumption, we therefore have a one-to-one correspon-
dence between a saddle point of the Lagrangian and an optimal solution of (CO).

Theorem B.5 (Karush-Kuhn-Tucker) The convex optimization problem (CO) is gi-
ven. Assume that the Slater regularity condition is satisfied. The vector T is an optimal
solution of (CO) ifand only ifthere is a vector § such that (Z,§) is a saddle point of
the Lagrange function L.

The formulation of the saddle point condition in Lemma (B.1) motivates the con-
cept of the Lagrangian dual.

Definition B.9 (Lagrangian dual) Denote
Y(y) = igg{f(z) + > v,9i()}.
j=1

The problem

¥(y)
y=0

is called the Lagrangian dual ofthe convex optimization problem (CO).
It is straightforward to show the so-called weak duality property.

Theorem B.6 (Weak duality) If Z is afeasible solution of (CO) and § > 0, then

¥(9) < f(2)
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m
and equality holds ifand only if 1nfc{f(1') + Zgjjgj(z)} = f(&).
€
Jj=1

Under the Slater regularity assumption we have a stronger duality result, by the Karush—
Kuhn-Tucker theorem and Lemma (B.1).

Theorem B.7 (Strong duality) Assume that (CO) satisfies the Slater regularity con-
dition, and let T be afeasible solution of(CO). Now the vector T is an optimal solution
of (CO) ifand only ifthere exists a § > 0 such that § is an optimal solution of the
Lagrangian dual problem and

¥(@) = £(@)-
B.3 THE KKT OPTIMALITY CONDITIONS

We now state the Karush—-Kuhn-Tucker (KKT) necessary and sufficient optimality
conditions for problem (CO). First we define the notion of a KKT point.

Definition B.10 (KKT point) The vector (Z,§) € CxR™ is called a Karush-Kuhn—
Tucker (KKT) point of (CO) if

(i) gi(2) <0, forallj=1,....m

(i) 0=VfE)+> §;Vg;(#)
j=1

NE

(i) Y 5;95(&) =0

1

J
(v) §=0.

A KKT point is a saddle point of the Lagrangian L of (CO). Conversely, a saddle point
of L,is a KKT point of (CO). This leads us to the following result.

Theorem B.8 (KKT conditions) If (%, %) is a KKT point, then ¥ is an optimal so-
lution of (CO). Conversely — under the Slater regularity assumption — a feasible
solution T of (CO) is optimal if there exists a § € R™ such that (Z,§) is a KKT point.

We say that z € C meets the KKT conditions if there exists a y > 0 such that (z, y)
is a KKT point of (CO).

If we drop the convexity requirements on f and g; in the statement of (CQ), then
the KKT conditions remain necessary optimality conditions under the Slater regularity
assumption.



Appendix C
The function log det(X)

In this appendix we develop the matrix calculus needed to derive the gradient and
Hessian of the function log det(X), and show that it is a strictly concave function.

Lemma C.1 Let f : int (SF) — R be given by
f(X) = logdet X,

Denoting
8f(X) of(X)
0z, Oz1n
VI(X):= : : )
8f(X) 8f(X)
0z L

one has Vf(X)= X1

Proof:

Let X € int(S;}) be given and let H € S, be such that X + H € int(S;}). One has

f(X +H) - f(X)

log det(X + H) — logdet(X)
logdet (X1 (X + H))

log det (I + X—%Hx-%) .

By the arithmetic-geometric inequality applied to the eigenvalues of X “2HX "z one

has

log det (I + X_%HX“%)

IA

log (%’I‘r (I+X—%HX‘%)>H
nlog (%’I‘r (1+X—%HX—%)>
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1 ~1 _1
= nlog(1+-Tr (X SHX ) .
n

Using the well-known inequality log(1 +¢) < t we arrive at
F(X + H) - f(X) < Tr (X—%HX—%) = (X!, H).

This shows that X! is a subgradient of f at X. Since f is assumed differentiable,
the subgradient is unique and equals the gradient V f(X). a

The proof of the next result is trivial.

Lemma C2 Let f :int(S;}) — R be given by
f(X)=Tr (CX),
where C € S,,. One has Vf(X) = C.
The following result is used to derive the Hessian of the log-barrier function fper (X) =
~ log det(X).
Lemma C.3 Ler f : ST +— R be given by
f(X) = logdet X.

If V2 fdenotes the derivative of Vf : X v X~ Ywith respect to X, then V2f(X) is
the linear operator which satisfies

Vf(X)H=-X"'HX™ ', VHEcS,,
for a given invertible X.
Proof:

Let L(S,,Sy)denote the space of linear operators which map S, to §,,. The Frechet
derivative of V£ is defined as the (unique) function V2§ : S, +— L(S,, S, such that

IVF(X +H) - ViX) -V FX)H]| _
I1H][—0 1 H]]
We show that V2f(X)H := — X "' HX ! satisfies (C.1). To thisend, let H € S, be
such that (X + H) is invertible, and consider
IVA(X +H) = Vf(X) -V F(X)H|
[(X+H) =X+ X THX
|+ 8) (= (X + E)X 7'+ (X + )X HX )
(X +H)"" (HX'THX Y|
0+ B | x e x

(C.1)

IA
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which shows that (C.1) indeed holds. O

By Lemma A.3, the Hessian of the function f(X) = —logdet(X) is a positive defi-
nite operator which impliesthat f is strictly convex on S;F+. We state this observation
as a theorem.

Theorem C.1 The function f : S+ +— R defined by
f(X) = —logdet(X)

is strictly convex.

An alternative proof of this theorem is given in [85] (Theorem 7.6.6).
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Appendix D
Real analytic functions

This appendix gives some elementary properties of analytic functions which are used
in this monograph. It is based on notes by M. Halickd [76].

Definition D.1 A function f(z) : R = R is said to be analytic at * = a ifthere exist
r > 0 and {a,} such that
f(m):Zan(m—a)", Ve :lz —a| <. (D.1)

n=0

(n)
Remark D.1 Taking the nth derivative in(D.1), it is easy to see that a, = f—n,(a—)
Hence the series in (D. 1) is the Taylor series of f (z) at ¢ = a.

Remark D.2 A function f(z) that is analytic at x = a is infinitely differentiable
in some neighborhood of a and the corresponding Taylor series converges to f(zx)
in some neighborhood of a (sometimes this is used as the definition of an analytic
function). If a function is infinitely differentiable, then it is not necessarily analytic. A

well-known example is the Cauchy function f(z) = e /= forz # 0and f()=0
forz = 0. At x = 0 all derivatives are zero and hence the corresponding Taylor series

converges to the zero function.

Definition D.2 Let I C R be an open interval. Then f is analytic on 1 if it is analytic
atany point a € L.

We can extend this definition to closed intervals by making the following changes
to the above.

(a) if f(z) is defined forall z > q, then f(z) is defined to be analytic at a if there
exist an 7 > 0 and a series of coefficients {a,} such that the equality in (D.l)
holds forall z > a.
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(b) if f(z)is defined forall z > q, then we say that f(z) canbe analytically extended
to g if there exist an 7 > Qand a series ofcoefficients {a,} such that the equality
in (D.1) holds forall z > a.

The following result is used in the proof of Theorem 3.6 (that the central path has
a unique limit point in the optimal set).

Theorem D.1 Let f : [0,1) — R be analytic on [0,1). Let f(0) =0 andz = 0 be
an accumulation point of all ¢ such that f(z) = 0. Then f(z) = 0 for all z € [0,1).

Proof:
Since f is analytic at z = 0, there exist r > 0 and a,, suchthat

flz) = Zanz", Vr:0<z<r. (D.2)

n=0
We show that a,, = 0,Vn. Let g, be the first non-zero coefficient in (D.2). Hence
f(z):zk(ak+ak+1z+...), Vz:0<z <. (D.3)

Let 0 < p < r. The series in (D.3) converges at x = p and hence the numbers a,, p™
are bounded. Let |a,|p™ < K, ie., |a,| < K/p™,Vn. Then

Kla|
) 2 la*1(oul = 2t - S — ) =16 (Jos = 5 ) O

forall 0 < z < p. The last expression in (D.4) is positive for all sufficiently small
z. This is in contradiction with the assumption that f has roots arbitrarily close to
z = 0. Hence a,, = 0,Vn and f(z) = 0 in some right neighborhood of 0. Using the
analyticity in (0,1) it can be shown that it is zero on the whole domain. O



Appendix E
The (symmetric) Kronecker product

This appendix contains various results about the Kronecker and symmetric Kronecker
product. The part on the symmetric Kronecker product is based on Appendix D in
Aarts[l].

We will use the vec and svec notation frequently in this appendix, and restate the

definitions here for convenience.

Definition E.1 For any symmetric n X n matrix U, the vector svec(U) € Rzn(n+1)
is defined as

T
svec(U) = (uu, \/§U21, ey \/Eunl,uzz, \/511,32, ey \/iunz, P ,u,m> s

such that
svec(U)svec(U) = Tr (UTU) = vec(U) vec(V),
where
vec(U) = (w11, Uats - - - Uni, U1z, - - - 7u,m)T

The inverse map of svec is denoted by smat.

E.1 THE KRONECKER PRODUCT
Definition E.2 Let G € R™*™and K € R"*°.Then GQKis defined as the mr xns
matrix with block structure
G®K=[91JK] i:1,.,,,m,j:1,...,n,
Le. the block in position 1j is given by g;; K.
The following identities are proven in Horn and Johnson [86]. (We assume that the

sizes of the matrices are such that the relations are defined and that the inverses exist
where referenced.)
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Theorem E.1 Let K, L, G and H be real matrices.

» G® Kvec(H) = vec (KHGT),

n (GRK)T=GTQ®KT;

m (GRK)'=G'®K™;

" (GRK)H®L)=(GH)® (KL)

m The eigenvalues of G ® K are given by \(G)A\;(K)V i,j =1,...,n. Asa
consequence, if G and K are positive (semi)definite, then so is G Q K;

m If Gz; = N(G)z; and Ky; = Xj(K)yj, then vec (y]le) is an eigenvector of
G ® K with corresponding eigenvalue \;(G)\;(K).

As an application of the Kronecker product we can analyse the solutions of so-
called Lyapunov equations.

Theorem E2 Let A € R ™ and B € S,,. The Lyapunov equation

AX + XAT =B (E.1)

has a unique symmetric solution if A and —A have no eigenvalues in common.

Proof:

Using the first item in Theorem E.l, we can rewrite (E.l) as

vec (AX + XAT) = vec (AXT+IXAT) = (I® A+ ARI) vece(X) = vec(B).

By using the fourth item of Theorem E. | we have
(IQAA®I)=(JA)®(Al)=(AI)®@ (JA) = (AR I)(I® A).

In other words, the matrices 4 ® I and I ® A commute and therefore share a set of
eigenvectors. Moreover, by the fifth item of Theorem E. | we know that the eigenvalues
of AQI and I® A are obtained by taking n copies of the spectrum of A. Therefore each
eigenvalue of (] ® A + A® I) is given by A;(A) + A;(A) for some i, 5. It follows
that the matrix (I ® A + A ® I) is nonsingular if A and —A have no eigenvalues in
common. In this case equation (E.l) has a unique solution. We must still verify that
this solution is symmetric. To this end, note that if X is a solution of (E.l), then so is
XT. This completes the proof. m]
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E.2 THE SYMMETRIC KRONECKER PRODUCT

Definition E.3 The symmetric Kronecker product ofany two n x n matrices G and
K (not necessarily symmetric), is a mapping on a vector u = svec(U) where U is a
symmetric n X n matrix and is defined as

(G®s K)u= %svec(KUGT+GUKT). (E.2)

Note that the linear operator G ®, K is defined implicitly in (E.2). We can give a
matrix representation of G @, K by introducing the orthogonal %n(n + 1) x nmatrix

Qlie. QQT = I%n(n-}-l))’ with the property that

Qvec(U) = svec(U) and Q7 svec(U) = vec(U) VU € Sh. (E.3)

Theorem E.3 Let Q be the unique orthogonal %n(n + 1) x n matrix that satisfies
(E3). For any G € R™" and K € R™*™ one has

1
G®3K:§Q(G®K+K®G)QT.

Proof:

Let U € &,, be given and note that

2Q(GBK + K®G)QTsvec(U) = %Q (G® K + K@ G)vec(U)

- %Q (G ® K)vee(U) + (K ® G)vee(U))

= %Q (vec (KUGT) + vec (GUKT))
_ %Q (vee (KUGT + (KUG)"))
= %svec (KUGT + GUKT)

= (G ®, K)svec(U),

where we have used the first identity in Theorem E. | to obtain the third equality. O

Definition E4 If for every vector uw = svec(U) where U is a symmetric nonzero
matrix,
uT (G ®s K)u > 0,
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then (G ®, K) is called positive definite.

Lemma E.1 The symmetric Kronecker product has the following properties.

I (G®s K)=(K®,sG);

2 (GR;K)H®;L)= %(GH ®s KL+ GL®, KH);

3. svec(U) svec(V) = Tr (UV) = Tr (VU)for two symmetric matrices U and V;
4. IfG and K are symmetric positive definite, then (G ®, K) is positive definite;

5. (G, K)T = (GT @, KT).

Proof:

1. This directly follows from Definition E.3.

2. Let U be a symmetric matrix, then
(G®, K)(H ®; L)svec(U)
%(G ®, K)svec(HULT + LUHT)

Jsvec(GHULTK™ + KHULG™ + GLUHT K™ + KLUH"GT)
1

stec(GHU(KL)T + KLU(GH)T + KHU(GL)" + GLU(KH)T)
1
2

(GH ®s KL + GL ®5; KH)svec(U).

3. See Definition E.l.

4. For every symmetric nonzero matrix U we have to prove that
T (G ®, K)u > 0,
where u = svec(U). Now
uT(GR®,K)u = %uTsvec(GUK + KUG) = %svec(U)Tsvec(GUK + KUG),
since G and K are symmetric. By using Property 3 we derive
%(svec(U))Tsvec(GUK + KUG) = %(’I‘r (UGUK) + Tr (UKUG)).

Since U is nonzero and K and G are symmetric positive definite and therefore
. . 1
nonsingular, we obtain that K UG # 0 and thus

2

1 ;
5 (Tr (UGUK) + Tr (UKUG)) = Tr (VKUG) = HK%UGE > 0.
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5. Define u = svec(U) and £ = svec(L) for arbitrary symmetric matrices U and L
and m = (G ®; K)u. Now

(m = (svee(L)T(G ®, K)u= 5(svec(L)) svec(GUKT + KUGT)
and by using Property 3 it follows that
%(svec(L))Tsvec(GUKT + KUGT)
= %’I‘r (LGUKT + LKUGT)

= %’I‘r (UKTLG + UGTLK)

= %(svec(U))Tsvec(KTLG +GTLK)
= (svec(U))T(GT @, KT )svec(L)
= (svec(U)T(GT @, KT)¢.
Since £Tm = mT ¢, we obtain
mT = (svec(U))T(GT ®, KT)
and from the definition of m we derive

mT = (G ®, K)svec(U))T = svec(U)" (G ®, K)T

and thus
(G®, K)T = (GT ®, KT).

Definition E.5 For every nonsingular matrix P we define the operators £ and F as
E=(P®sPTS), F=(PX® P
By using Property 2 in Lemma E. 1 we obtain
E=(PR, P TS)=(1I® P"TSP ) (P®, P)

and
F=PX®, P T)=(PXxPTe, (P Tg,PT).

We define the operator Hp for any nonsingular n x n matrix P as

Hp(Q) = %(PQP‘I + P7TQTPT).



254 Aspects of Semidefinite Programming

The next theorems are based on Theorem 3.1 and Theorem 3.2 in Todd et al. [173].

Theorem E.4 [f the matrices X and S are positive definite and the matrix Hp(X S)
is symmetric positive semidefinite, then £ ' F is positive definite.

Proof:

. . ﬂﬂ_ﬂz T _1
Consider an arbitrary nonzero vector g € R™ 2 . Wenow provethat g* £~ Fg > 0.
Defining k := £~Tg and K = smat(k), where k is also nonzero since £~7 exists, it
follows by using Property 5 in Lemma E. 1 that

9T Fg=kTFETk = kT (PX ®, P"T)(PT @, SP™)k.
By using Property 2 in Lemma E.1 we derive
kT(PX ®, P T)(PT @, SP )k = %kT(PXPT ®, P"TSP Yk
+%kT(PXSP“1 ®, I)k.
Since X and § are symmetric positivedefinite, PX PT and P~TSP~! are symmetric

positive definite and by using Property 4 in Lemma E. | it follows that (PXPT ®,
P~TSP~1)ispositivedefinite. Therefore

%kT(PXPT ®s P"TSP™ Nk + %kT(PXSP_l ®s D)k
1 T -1
> Sk (PXSPTI®, Ik
1
= Z(svec(K))Tsvec(szzrIK + KP TsxPT).
By using Property 3 in Lemma E. 1 we now obtain
1
5vee(K) "svee(PXSPTIK + KP~TSXPT)
1
= ;Tr (K (PXSP™'+ PTSXPT) K)

- %Tr (KHp(XS)K).

Since we assumed that H p(X S) is positive semidefinite and the matrix K is symmet-
ric, it follows that the matrix K Hp (X S)K is positive semidefinite. Thus

%Tr (KHp(XS)K) > 0.
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Theorem E.5 If the matrices X and S are symmetric positive definite and the matri-
ces PXPT and P~TS P~ commute, then Hp(XS) is symmetric positive definite.

Proof:

If PXPT and P~TSP~! commute, it follows that
PXSPl=(PXPT)(P TSP~ Yy= (P TSP ') PXPT)= P TSXxPT.
Therefore the matrix PXSP~! is symmetric and
1
Hp(XS) = E(PXSP‘I + P TSXPT)=PXSP!.

From Theorem A.4 we know that XS — and therefore PXSP~! — have positive
eigenvalues. Since Hp(X S) is symmetric it is therefore positive definite. O
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Appendix F
Search directions for the embedding problem

Conditions for the existence and uniqueness of several search directions for the self—
dual embedding problem of Chapter 4 (Section 4.2) are derived here.

The feasible directions of interior point methods for the embedding problem (4.4)
can be computed from the following generic linear system:

Tr (A;AX) —ATh;  +A6b; =0
=3 AyiAi +ATC —AC —-AS =0
bT Ay —Tr (CAX) +Abo —Ap =
-bT Ay +Tr(CAX) —Ara ~Av =0

(E.1)
where 1 =1,...,m,and
Hp (AXS+ XAS) = ul—Hp(XS),
PAT+1TAp = p—71p (F2)
vAG +0Av = pu— 0y,

where Hp is the linear transformation given by
1
Hp(M):= 5 [PMP™" + P TMTPT],

for any matrix M, and where the scaling matrix P determines the symmetrization
strategy. The best-known choices of P from the literature are listed in Table F. 1. We
will now prove (or derive sufficient conditions) for existence and uniqueness of the
search directions corresponding to each of the choices of P in Table F. 1. To this end,
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l F ' Reforence
pi f ol e AN TE L 2 5 ,
R ( Xi8X j X= Masterov and Todd [138%
x4 Monteiro | 1243, Kojima e af. [10RY;
L$ Monteiro {124}, Helmberg of o, {841, Kojima er o, {108];
I Alizadeh, Haeberley and Overnion {63,

Table F.1.  Choices for the scaling matrix P.

we will write the equations (F.1) and (F.2) as a single linear system and show that the
coefficient matrix of this system is nonsingular.

We will use the notation

and define P by replacing X by X and S by S in Table F.I. We will rewrite (F.2)
by using the symmetric Kronecker product. For a detailed review of the Kronecker
product see Appendix E; we only restate the relevant definitions here for convenience.

» svee(X) = [Xy1, V2Xi2, oo V2X1n, Xaz, V2Xas, -. -, Xnn]T;

» The symmetric Kronecker product G ®, K of G, K €¢ R™*" is implicitly defined
via

1
(G ®, K)svec(H) := Ssvec (KHGT + GHKT) (VH € S™).

Using the symmetric Kronecker notation, we can combine (F.1) and (F.2) as

0 A 0 Ay 0
~AT Spon I svec (AX') = 0 F3)
0 E F svec (AS’) svec (,uI — H}-,(XS‘))

"The approach used here is a straightforward extension of the analysis by Todd et al. in [173], where this
result was proved for SDP problems in the standard form (P) and (D).
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where
A = [svec(4;) ... svec(flm)]T
0 svec(C) —svec(C)
Skew = —svec(C)T 0 o
svec(C)T ~a 0
E = Pg,(PT§), F:=(PX)®, P T

By Theorem E.4 in Appendix E we have the following result.
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Lemma F.1 (Toh et al. [175]) Let P be invertible and X and S symmetric positive
definite. Then the matrices E and F are invertible. Ifone also has Hg(XS) > 0,

then the symmetric part of E~1F is also positive definite.

We are now in a position to prove a sufficient condition for uniqueness of the search

direction.

Theorem F.1 The linear system (F.3) has a unique solution if Hz(X S) > 0.

Proof:

We consider the homogeneous system

0 A o Ay 0
—AT Sp, T svec (AX') =|0],
0 E F svec (AS’) 0

and prove that it has only the zero vector as solution.

From (F.4) we have
svec (AS’) = ATAy — SkewSVeC (Af()

and

svec (AS‘) = — (F7'E) svec (Af() .

Eliminating svec (AS’ )from the last two equations gives

AT Ay — Skewsvec (AX') + (F~'E) svec (AX') =0.

System (F.4) also implies
Asvec (Af( ) =0.

(F.4)

(F.5)

(F.6)

E7
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From (F.6) we have

svec (AX') ! ATAy — svec ( X) SkewSVEC (AX')
T -
+svec (AX) (F~'E) svec (AX) = 0.

The first term on the left-hand side is zero, by (F.7), and the second term is zero by the
skew-symmetry of S.,,. We therefore have

svec (AX')T (F7'E) svec (AX') =

which shows that AX = 0, since EF~! is assumed to be (non-symmetric) positive
definite. It follows that AS = 0 by (F.5). Furthermore, Ay = 0 by (F.6), since A has
tull rank (the matrices A; (z = 1,...,m) are linearly independent). O

All that remains is to analyze the condition
Hz(X8) >0 (F.8)

in the theorem. For the first three choices of P in Table F.1, condition (F.8) always
holds (by Theorem E.5 in Appendlx E) For P = I (the so-called AHO direction),
(F.8) becomes the condition XS + SX > 0.

An alternative sufficient condition for existence of the AHO direction was derived
by Monteiro and Zanjidcomo [126], namely

HlX%SX
I

N
IA

where p = Tr (X'S) /7.



Appendix G
Regularized duals

In this appendix we review some strong duality results for SDP problems that do not
satisfy the Slater condition.

The duals in question are obtained through a procedure called regularization. Al-
though a detailed treatment of regularization is beyond the scope of this monograph,
the underlying idea is quite simple:' if the problem

Y wAi+8=C, §=0, yeR’"}
i=1

(D): d*:=sup {bTy
y,S

is feasible, but not strictly feasible, we can obtain a ‘strictly feasible reformulation’ by
replacing the semidefinite cone by a suitable lower dimensional face (say F C S;7) of
it, such that the new problem

> yiAi+8=C, SeF, yeRm}

=1

(D): d*:=sup {bTy
v,5

is strictly feasible in the sense that there exists a pair (y, S) such that S € ri (F) and
S vyidi + S = C. Problem (D) will have a perfect dual, by the conic duality
theorem (Theorem 2.3). The main point is to find an explicit expression of the dual of
the face F. The resulting dual problem now takes the form:

(P') inf {Tr(CX) | Tr(4X) =b; (i=1,...,m), X € F*},

where F* denotes the dual cone of F. In the SDP case F* can be described by a
system of linear matrix inequalities. There is more than one way to do this and one
can obtain different dual problems within this framework (see Pataki [144] for details).

'The idea of regularization was introduced by Borwein and Wolkowicz [30]. For a more recent (and sim-
plified) treatment the reader is referred to the excellent exposition by Pataki [144].
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Ramana [153] first obtained a regularized dual for (D);2 the so-called gap-free (or
extended Lagrange—Slater) primal dual (Pgs) of (D) takes the form:

pgs = inf Tr (C(Uo + W1))

subject to
Tr (Ak(U0+WL)) bka = 1’ , M
'I‘I‘(C(Ui+Wi_1)) = 0, i=1,...,L
'I‘I‘(Ak(U,+W1_1)) = 0, 1=1, L, k=1, ,m
Wo = 0
I wr .
0, :=1,...,L
W, U
UO t 07

where the variables are U; > Oand W; ¢ R**™ i=0,...,L, and
. 1
L:mln{n, 5n(n+1) -—m——l}.

Note that the gap-free primal problem is easily cast in the standard primal form. More-
over, its size is polynomial in the size of (D). Unlike the Lagrangian dual (P) of (D),
(Pyy) has the following desirable features:

» (Weak duality) If (y, S} € D and (U;, W;) (i = 0,...,m) is feasible for (Pyy),
then
Ty < Tr (C(Up + W) .

m (Dual boundedness) If (D) is feasible, its optimal value is finite if and only if
(Pyy) is feasible.

®m (Zero duality gap) The optimal value p; s of (P,f) equals the optimal value of (D)
if and only if both (Pgs) and (D) are feasible.

® (Attainment) If the optimal value of (D) is finite, then it is attained by (P,y¢).

The standard (Lagrangian) dual problem associated with (Pg) is called the corrected
dual (Deor). The pair (Pyy) and(Dg,,) are now in perfect duality; see Ramana and
Freund[154].

Moreover, a feasible solution to (D) can be extracted from a feasible solution to
(Dcor). The only problem is that (Dc,,) does not necessarily attain its supremum,
even if (D) does.

*In fact, Ramana did not derive this dual via regularization initially; it was only shown subsequently that it
can be derived in this way in Ramana et al. [155].
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Example G.1 [t is readily verified that the weakly infeasible problem (D) in Example
2.2 has a weakly infeasible corrected problem (Do ).

The possible duality relations are listed in Table G.1. The optimal value of Deor is
denoted by d*

cor”

Status of (1) |} Status of {FPyy) | Status of { L., }

S p;f = ¥ dr, =d°
unbounded infeasible unbousded

infeasible unbournded infeasihle

Table G.1. Duality relations for a given problem (D), its gap-free dual (P,f) and its
corrected problem (Dcor-).
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conic duality theorem, 28
conic problem formulation, 11, 24
conjugate gradient method, 93
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convex function, 149, 237
convex set, 237
copositive matrix, 187
curve selection lemma, 56
cutting plane, 220
cycle (in a graph), 203

damped NT step, 118, 124
de-randomization, 224
defect edge, 169, 222
degree of a vertex, 185
deterministic rounding, 224
diagonally dominant, 172, 232
dihedral angle, 226
Dikin ellipsoid, 82, 100
Dikin—type primal-dual affine-scaling, 99
directional derivative
of ®, 137
of ¥, 137
dual barrier function, 76
dual cone, 12, 178
dual degeneracy, 37
duality gap, 2, 25, 99, 137
after full NT step, 119
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upper bound in terms of &(X, S), 137

ellipsoid method, 11, 17
elliptic representations of clauses, 215
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feasible step, 24
Frobenius norm, 2, 44, 233
full NT step, 118
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gap relaxation, 221
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Goldman-Tucker theorem, 33
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Gram matrix, 178
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homogeneous embedding, 16, 64
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idempotent matrix, 177
ill-posedness, 71

implicit function theorem, 46, 48
improving ray, 29, 69
incidence vector, 158, 221
inclusion—-exclusion, 225
independence number, 8§
independent set, 7
infeasibility, 22
infeasible-start method, 16
inner iteration, 92, 124
integer programming, 214
interior point assumption, 23
interior point methods, 11

Jacobian, 47

K-Zrelaxation, 217, 228
KKT conditions, 242
KKT point, 228, 242
Kronecker product, 47
properties of, 249

Lowner partial order, 2, 235
Lagrangian, 240
Lagrangian dual, 2, 241

of (P), 22

of SDP in conic form, 24
Laplacian, 6, 93
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logarithmic Chebychev approximation, 9
logical ‘OR’ operator, 211
logical variables, 211
long step method, 15

dual algorithm, 92

primal-dual algorithm with NT direction,
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Lorentz cone, 154
Lovész 9-function, 4, 158, 172, 189
Lovész sandwich theorem, 158, 223
Lyapunov equation, 116, 131, 250

machine scheduling, 8
matrix
completely positive, 189
copositive, 10, 189
diagonally dominant, 232
idempotent, 177
nonnegative, 189
positive semidefinite, 2
skew-symmetric, 105
MAX-2-SAT,7
MAX-3-SAT, 7
approximation guarantee for, 228
MAX-k-CUT, 169
MAX-k-SAT, 212
MAX-BISECTION, 7
MAX-CUT, 5
maximal complementarity
of optimal solutions, 34
of the limit point of the central path, 48,
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maximum satisfiability problem, 7
maximum stable set problem, 188
reduction from SAT, 212
multinomial coefficient, 197
multinomial theorem, 197
mutilated chess board formula, 219, 222

negation (of a logical variable), 211
Nesterov-Todd (NT) direction, 116
Nesterov-Todd (NT) scaling, 98
non-defect edge, 5

NP-complete, 212

optimal partition, 35
optimal solutions, 22
uniqueness of, 37, 38
optimal value
of SDP problem, 22
optimality conditions, 13, 42, 242
for (P) and (D), 33
for projected Newton direction, 79
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outer iteration, 92, 124

Pélya’s theorem, 196
path-following method, 13
primal, 75
primal-dual, 115
pentagon
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approximations of the stability number of,
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Shannon capacity of, 167
perfect duality, 25, 73
perfect graph, 162
Petersen graph, 169
maximum stable set of, 188
pigeonhole formula, 218, 222
plane search, 135, 136
pointed cone, 11
positive semidefiniteness
characterizations of, 229
potential reduction method, 16, 133
by Nesterov and Todd, 142
general framework, 134
predictor—corrector method, 15, 115, 146
Mizuno-Todd-Ye type, 126
primal barrier function, 42, 76
primal degeneracy, 36
primal-dual affine-scaling, 100, 109
primal-dual barrier function, 13, 76, 117, 124
primal-dual Dikin ellipsoid, 99
primal-dual Dikin-type direction, 136
primal-dual methods, 13
projected Newton direction, 78, §9
prepositional formula, 212

quadratic approximation, 149
multivariate case, 152
univariate case, 150

quadratic assignment problem, 8

quadratic least squares, 149

quadratic programming (QP), 3

Raleigh-Ritz theorem, 230
randomized algorithm, 171, 174
for MAX-k-CUT, 175
for satisfiable instances of MAX-3-SAT,
224
randomized rounding, 224
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for 2-clauses, 227 spherical tetrahedron, 227, 228

for 3—clauses, 227 spherical triangle, 226
regularization, 29, 73, 261 angular excess of, 226
relative interior, 239 area of, 226

of the optimal set, 34 stability number, 187
relative volume, 228 stable set, 7, 188, 213
resolution, 220 stable set polytope, 8
robustness, 11 standard quadratic optimization, 204

copositive programming formulation of,
205

sandwich theorem, 172
satisfiability problem (SAT), 7, 211
scaled primal-dual direction, 98
scaling matrix, 257
Schrijver’s «9’-function, 201
Schur complement, 235
Schur complement theorem, 216, 235
SDP problems
complexity of, 17
standard form, 22
SDTP3, 15, 131
search directions, 67
second order cone, 3
second order solution
of centering system, 130 h
SeDuMi, 15, 64, 131, 154 structural design, 11
self-dual, 65, 66 sum of squares, 10
self-dual embedding, 16 superlinear convergence, 15, 128
extended formulation, 64 symmetric Kronecker product, 251
search directions for, 257 properties of, 252 o
self-concordant barrier, 12 symmetric square root factorization, 230
semi-colouring, 184 symmetrization strategy, 14

semidefinite feasibility problem, 18 system and control theory, 10, 133
complexity of, 18
semidefinite programming, 1
applications in approximation theory, 8
applications in combinatorial optimiza-
tion, 4
applications in engineering, 10
interior point algorithms for, 11
review papers on, 18
special cases of, 3
separation theorem for convex sets, 26, 151, 239
sequential minimization methods, 12
Shannon capacity, 165
Shor relaxation, 215

LP approximation of, 205
naive approximation of, 205
SDP approximation of, 207

step length, 24

strict complementarity, 33, 34, 38, 128

strict feasibility, 23

strictly convex function, 237
characterization of, 238
minimizers of, 238

strong duality, 3, 25, 242

strong feasibility, 23

strong infeasibility
characterization of, 29

strong product for graphs, 164

Tanabe-Todd-Ye potential function (P), 16,
134, 137

Taylor expansion, 247

trace, 2, 44, 99, 232
properties of, 232

traveling salesman problem, 8§

triangle inequalities, 215

triangle-free graph, 203

truss, 11

truth assignment, 211, 224

Turing machine, 17

simp]e graph’ 169 unboundedness, 22
skew-symmetric matrix, 105 unit hypersphere, 178, 227
Slater regularity, 23, 241
solvability, 22 weak duality, 2, 241
SP, 146 weak infeasibility, 29
sparsity, 101 characterization of, 31
spectral bundle method, 17 weakly improving ray, 31, 32
spectral decomposition, 48 weight of a cut, 5, 169

of optimal solutions, 35 worst-case iteration bound, 12
spectral norm, xvi, 232 Dikin-type algorithm, 108
spectral radius, xvi, 143, 232 dual scaling method, 92

spherical simplex, 178 long step dual log-barrier method, 92
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Mizuno-Todd-Ye predictor-comector al- primal-dual path—following algorithm with
gorithm, 128 full NT steps, 124
. . short step primal log-barrier method, 88
NT potential reduction method, 146

primal-dual affine-scaling algorithm, 112 ZPP, 158





