Probabilistic Analysis

of Packing and

Partitioning Algorithms

E. G. COFFMAN, JR.
AT&T Bell Laboratories
Murray Hill, New Jersey

GEORGE S. LUEKER

Department of Information and Computer Science
University of California

Irvine, California

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.

New York « Chichester * Brisbane + Toronto -

Singapore

To our parents

In recognition of the importance of preserving what has been
written, it is a policy of John Wiley & Sons, Inc., to have books
of enduring value published in the United States printed on
acid-free paper, and we exert our best efforts to that end.

Copyright © 1991 by AT&T.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the

1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data:
Coffman, E. G. (Edward Grady), 1934-

Probabilistic analysis of packing and partitioning algorithms/
E.G. Coffman, Jr., George S. Lucker.

p. cm. — (Wiley-Interscience series in discrete mathematics
and optimization)

“A Wiley-Interscience publication®’

Includes bibliographical references and index.

ISBN 0-471-53272-X

1. Partitions (Mathematics). 2. Combinatorial packing and

covering. 3. Probabilities. I. Lueker, George S. II. Title.
III. Series.

QA165.C64 1991
512.9'25—dc20 90-23539
CIP

Printed in the United States of America

10 9 87 635 4321

Preface

In the early 1970’s the development of the theory of NP-completeness gave
strong evidence that, for many optimization problems, it would be unrealistic
to hope to find efficient algorithms that always produce the exact optimum.
This provided new motivation for the study of algorithms that give good
approximations, and for algorithms that work well on the average. Since
the mid-1970’s, a great deal of research has concentrated on the applica-
tion of probability theory to the analysis of algorithms. This book examines
techniques that have proven useful in such analysis, focusing on applications
to two problem areas: bin packing and partitioning. Since the book con-
centrates as much on techniques as on results, it should provide a useful
introduction to probabilistic analysis even for those readers with interests in
other problem areas. '

In a typical packing problem, we want to pack a set of objects into
standardized containers so as to minimize wasted space; equivalently, we may
want to cut a required set of pieces from standardized stock so as to minimize
wasted material (trim loss). In the scheduling problem, we want to allocate a
collection of jobs (without precedence constraints) among a set of machines
so as to minimize the time until all jobs are finished. This scheduling problem
and the one-dimensional versions of the packing and cutting problems can all
be described abstractly in terms of set partitioning under sum constraints.
One or more of these problems, or their generalizations to two or three
dimensions, exist in virtually every modern industry; collectively, they are
of great practical importance. All currently known algorithms for finding
exact solutions to these problems require a computing time that becomes
impractical as the number of items (objects, pieces, jobs) becomes large; the
theory of NP-completeness suggests that this will continue to be the case.
Thus, a major effort has gone into the design and analysis of fast heuristic
algorithms that produce good, approximate solutions most of the time. A
mathematical analysis is clearly needed in order to give precise meanings

vil

viii PREFACE

to the terms “good” and “most of the time.” Such an analysis can also be
expected to yield insights into the structure of good heuristics.

This book presents and illustrates a wide variety of techniques for analyz-
ing the typical or average-case properties of the solutions (packings, cuttings,
or schedules) produced by heuristic algorithms. In terms of the packing prob-
lem, for example, the analysis begins with the formulation of a probability
model in which the items to be packed are defined to be random samples
from some given probability distribution. Properties of the packings pro-
duced by the algorithm then become random variables whose distributions
are the goals of the analysis. Intensive research into the analysis of this prob-
lem began a little over 10 years ago, and picked up considerable momentum
a few years later with striking new results.

Major mathematical challenges are posed by the probabilistic analysis
of the problems presented here. Indeed, as the reader will soon discover,
approaches leading to exact results are rarely successful, especially for the
better heuristics. Instead, researchers have turned to asymptotic methods,
a secondary theme of this book. Such methods provide order-of-magnitude
results for problem instances containing large numbers of items. In spite of
their limitations, the results can be very useful in evaluating and comparing
heuristics.

This book grew out of a survey on asymptotic methods that we wrote
in collaboration with A. H. G. Rinnooy Kan [CLR88]. It is a pleasure to
acknowledge the part played by Rinnooy Kan in originating the survey and
in subsequently encouraging us to follow up with a book. We have benefitted
greatly from the discussions we have had with many of our colleagues.
Notable among these are Leo Flatto, David S. Johnson, Richard Karp, Kadri
Krause, WanSoo Rhee, Peter Shor, Michel Talagrand, and Richard Weber.
We owe a special debt of gratitude to Peter Shor for his contributions,
particularly in collaborating with us in the preparation of Chapter 3 and in
granting permission for us to adapt material from [Shor86]. Finally, we would
like to thank Sue Pope for her expert typing assistance, and Pat Harris for her
skillful assistance in preparing the files necessary to set the manuscript using
LaTeX. The second author wishes to thank the National Science Foundation®
for support under Grants DCR 85-09667 and CCR 89-12063 at the University
of California at Irvine.

1 Any opinions, findings, and conclusions or recommendations expressed in this publi-
cation are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

Contents

List of Figures

1 Introduction

1.1
1.2
1.3
1.4

Overview. v v v i i e e e e e
Ilustrative applications
Notation e
Classical algorithms
1.4.1 Makespan scheduling
142 Binpacking L oL L.

2 Analysis Techniques

2.1

2.2
2.3
2.4
2.5
2.6
2.7

Sums of i.i.d. random variables
2.1.1 Small deviations and the central limit theorem
2.1.2 Bounds on the tails of the distributions
2.1.3 Estimates of moments

Markov chains e e e e e e e

Dominating algorithms
Bounds that usuallyhold
Monotonicityo e e
More specialized techniques e
2.7.1 Applications of the Poisson process
2.7.2 Kolmogorov-Smirnov statistics
2.7.3 The second moment method

2.7.4 An application of renewal theory

X

xiii

CONTENTS

Matching problems 41

3.1 Proofs for Euclidean and rightward matching 43
3.1.1 Thelowerbound 44
3.1.2 Thewupperbound 50
3.1.3 A rightward matching problem 53

3.2 Proof of the up-right matching estimate 56

3.2.1 The lower bound e e 57
322 Thewupperbound 64

Scheduling and Partitioning 75

4.1 Analysis of classical greedy heuristics 75

4.2 Differencing methods 83

4.3 On the optimumsolution 90

Bin Packing: The Optimum Solution 99

5.1 Basic algorithms and bounds 99

5.2 Perfectpackings. 104

5.3 Functional analysis of the packing constant 110

Bin Packing: Heuristics ' 121

6.1 Off-line packing: FFDand BFD 122
6.1.1 The expected behavior 122
6.1.2 Deviation from the expected behavior 128

6.2 On-line bin packing: Best Fit 129

6.3 On-line linear-time bin packing 133
6.3.1 Next Fit: The expected behavior 133
6.3.2 Deviation from the expected behavior 144
6.3.3 The HARMONIC algorithm 146
6.3.4 On-line matching e e e e e e e 148
6.3.5 On-line packing with limited active bins 150

Packings in Two Dimensions 155

7.1 Off-line algorithms 155
7.1.1 Packing squares into a strip 156
7.1.2 Packing rectangles intoastrip 166
7.1.3 Two-dimensional bin packing 169

7.2 On-line algorithms 172

CONTENTS xi

References 177

Index 189

List of Figures

2.1

2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4

5.1
5.2
5.3

5.4

6.1
6.2

[lustration of the argument used in the proof of Hoeffding’s

bound e e e e e 18
Packing about areciprocal 29
A maximum up-right matching 42
A square S and its triangular regions 45
The pairsin S;; oL 47
Moving plus points of S € G;_; in stage 1,step¢ 52
A rightward matching 54
The transformed problem 58
The sequence of triangles after a stage of the refinement process 59
The initial triangle 00, 60
Atypicaltriangle T'. L. 61
INlustration of theregion R 65
Approximating a function in F by a function in F* 67
The function u(z) and two inverse functions, « and 8 78
Mustrationof PDM 84
Mustration of LDM o oo vt v 85
Sampling to control distributions - 88
An example of a dual-feasible function 108
Bin packing with items drawn uniformly from [a,bd] 109
Illustration of a simple proof that U(a,b) allows perfect pack-

ing if [a,] C [0,1] is symmetricabout 1/p 115
A perfect packing strategy for the interval [a,b] 117
Example of the queueing process for MFFD 125
Anexampleof Best Fit 130

xiv

6.3

6.4

6.5
6.6
6.7
6.8
6.9

6.10

7.1
7.2
7.3
7.4
7.5
7.6
7.7

LIST OF FIGURES

An example of the matching used during the proof of the upper

boundon Best Fit00, 131
An example of the matching used during the proof of the lower

bound for open-end on-line packing 134
Partition examples for the analysis of Next Fit 139
The mapping cycle, 140
The asymptotic efficiency of NF packings 145
An example for the HARMONIC algorithm 147
Illustration of the argument leading to an integral equation for

Smart Next Fit 152

Comparison of the efficiency of Next Fit and Smart Next Fit . 153

A strip-packing example 156
A square-packing example, 157
Example for the first three steps of Algorithm A 160
The function 8(y) 162
A packing produced by AlgorithmB 167,
Example for Algorithm KLM 170

ABFSpacking oo, 176

Probabilistic Analysis
of Packing and
Partitioning Algorithms

Chapter 1

Introduction

1.1 Overview |

The problems to be studied in this book generally require the partitioning
of aset § = {X1,X,,...,X,} of nonnegative numbers so that the sums of
the elements in the blocks of the partition satisfy some given property. For
example, an instance of the makespan scheduling problem is made up of S
and an integer m > 2; the objective is to find a partition of S into m blocks
so that the maximum block sum (i.e., the makespan) is minimized over all
such partitions. Although there are many possible interpretations, in the
one motivating the name of the problem each X; represents a task or job
running time and a block corresponds to the set of tasks to be run on the
same processor of an m-processor multiprocessor system.

Very closely related is the partition problem. The input for this problem
is the same as for the makespan scheduling problem, but now the objective
is to find a partition of L, into m blocks such that the difference between the
maximum and minimum block sums is minimized over all such partitions.
Note that for the special case m = 2 an optimum partition (schedule) for the
partition problem is also an optimum schedule for the makespan problem.
Moreover, for any m > 2 one expects that a good heuristic for the partition
problem will be a good heuristic for makespan scheduling.

As another example, an instance of the one-dimensional bin-packing
problem is composed of a real number ¢ > 0 (the bin capacity) and a set
S of elements (items or pieces) no larger than c. The problem is to find a
partition of S of minimum cardinality under the constraint that no block
sum exceeds c. (In this problem, c is essentially a scale factor, so henceforth,
without loss of generality, we make the usual normalization ¢ = 1.)

1

2 CHAPTER 1. INTRODUCTION

Merely deciding whether a list of numbers can be partitioned into two
blocks with equal sums is N"P-complete [Karp72], so all of the above problems
are well-known to be NP-complete. Thus, it is generally believed that
algorithms solving these problems both exactly and efficiently do not exist.
(Garey and Johnson [GJ79] provide a comprehensive treatment of AN P-
completeness and its implications.) A substantial literature has built up over
the past 20 years on the design and analysis of heuristic or approximation
algorithms.

Most of the early research in the analysis of sequencing and packing
algorithms concentrated on combinatorial, worst-case results. For example, if
H(S, m) denotes the makespan under heuristic H with S and m as inputs, the
objective was to find for each m a least upper bound on H(S, m)/OPT(S, m)
_over all S, where OPT stands for an optimum algorithm, i.e., OPT(S, m)
denotes the solution value of the makespan problem for the problem instance
(S,m). Similar performance ratios were defined and studied in this way for
bin-packing problems.

By contrast, the probabilistic analysis of algorithms covered in this book
is a more recent line of research. In this type of analysis the elements of S are
usually assumed to be n independent, identically distributed (i.i.d.) random
variables with a given distribution function F(z). The structure of most
heuristics makes it convenient to suppose that these random variables are
provided in the form of a list L, = (Xi,...,X,). Thus in the following
a list L, denotes an instance of bin packing with ¢ = 1 assumed, and
(L, m) denotes an instance of the makespan scheduling problem. For a
given algorithm H, H(L,,m) and H(L,) are the obvious random variables,
whose distributions are the goals of a probabilistic analysis.

Often, however, complete knowledge of distributions seems to be out of
reach, and we must settle for weaker results, such as asymptotic statements
about expected values and perhaps higher moments. Results are expressed
as functions of n with ¢ = 1 assumed for bin packing, and both n and m for
the partition problem. Since the performance of an approximation algorithm
should be assessed relative to the best possible performance, namely, that of
an optimization algorithm, a great deal of the analysis in this book goes into
the study of optimum performance. '

As might be expected, a probabilistic analysis is frequently quite difficult,
even when one is only attempting to find expected values. A principal
source of difficulty is created by the conditional probabilities that arise in the
analysis of an algorithm. For example, if an algorithm begins by comparing
X, and X, then in the branch of the algorithm corresponding to X; > X, the

1.1. OVERVIEW 3

distributions are conditioned upon the event {X; > X,}. After the algorithm
has made a substantial number of comparisons, the conditioning can easily
make a direct analysis formidable. Thus a primary goal of this book is to

describe the various methods that have been used to deal with difficulties of
this kind.

The focus on methodology limits our coverage of previous research to
those results that we feel are good illustrations of the analytical tools that
have been used, especially those that promise wide applicability in solving
related problems not covered in this book. The literature is quite extensive,
and even within this theme we cannot claim to make a complete survey of the
available tools. More thorough reviews of results on the large variety of prob-
lems related to packing and partitioning can be found in several surveys. Dy-
ckhoff [Dyck90] references these surveys in a recent article that also proposes
a general taxonomy of such problems. The survey by Coffman, Garey, and
Johnson [CGJ84] and the annotated bibliography by Karp et al. [KLMR84]
are particularly appropriate sources of extensions and variants of the prob-
lems/algorithms studied in this book. We also remark that there is a sizeable
literature, which we do not cover, on heuristic methods more elaborate than
many of those covered here, e.g., local-neighborhood search, simulated an-
nealing, and branch-and-bound methods. As we will see, even the analysis
of relatively simple heuristics can often pose a substantial challenge.

The remainder of this chapter discusses examples of application areas for
the abstract problems of packing and partitioning, describes several classical
approximation algorithms that will receive special emphasis in later chapters,
and discusses some notation to be used throughout the book.

Chapter 2 is the foundation for the remaining chapters; it introduces and
illustrates a number of basic problem-solving techniques. Some of these are
quite general and widely used; others are more specialized and hence more
limited in their application. A number of fundamental, often-used back-
ground results in applied probability are also presented. Chapter 3 continues
the discussion of background results by discussing matching problems in the
plane, which have found numerous applications in the analysis of packing
and other problems. |

Chapter 4 applies the techniques of Chapter 2 to the analysis of algorithms
for the scheduling (makespan) and partitioning problems. Chapters 5 and 6
deal similarly with the analysis of one-dimensional bin packing, the first of
these focusing on the optimum solution and the second on approximation
algorithms. Chapter 7 concludes the book with a discussion of packing
problems in two dimensions.

4 CHAPTER 1. INTRODUCTION
1.2 Illustrative applications

The applications of packing and partitioning problems are huge in number
and scope. We mention a few here to illustrate the variety, but the reader
will have no difficulty in adding many more to the list.

Consider one-dimensional bin packing, for example. This problem arises
in stock-cutting applications whenever material such as cable, lumber, pipe,
or tape is supplied in a standard length; a list of demands for pieces of the
material, each piece being no larger than the standard length, is to be satisfied
by cutting up a minimum number of standard lengths, thereby minimizing
the wasted material, also called the trim loss. By extending this notion
of “material” to the more general concept of “resource,” we find diverse
applications in many different industries. For example, let the resource be
time. We could be assigning commercials (pieces) to station breaks (fixed
time slots) in the television or radio industry. Let the resource be weight.
In the transportation industry we could be loading objects of varying weight
onto a collection of trucks with identical weight limits.

In the design and programming of computers the resource could be stor-
age. In table formatting, variable-length items of information are to be dis-
tributed among computer words, and in storage allocation records/files are
to be assigned to equal-capacity disk cylinders.

The classical makespan problem originated in the scheduling requirements
of industrial job shops and was given a fresh impetus by researchers concerned
with parallel processing in computer systems. However, it bears repeating
that one-dimensional bin packing and makespan scheduling are problems on
the same basic structure. They differ only in which parameter is constrained
(number of blocks or maximum block sum) and which parameter is taken as
the objective function, so both can occur in the same applications. Makespan
formulations tend to be design questions; for example, one can ask for the
minimum truck design, in the sense of weight capacity, that is needed to
transport a given collection of objects in a given number of trucks; the
corresponding bin-packing problem is the minimum number of trucks of a
prespecified weight capacity needed to transport the collection of objects.

The applications of packing in two dimensions are also ubiquitous. We
begin with the study of a problem called strip packing. We are given a semi-
infinite strip of unit width and a problem instance L, = (R, R,..., Ry)
specifying a list of rectangles R; = (X;,Y;), 1 < ¢ < n, with X; < 1 the
width and Y; the height of R;. The object is to pack the rectangles into the
strip so that

1.3. NOTATION 5
1. the rectangles do not overlap each other or the edges of the strip,

2. the rectangles are packed with their sides parallel to the sides of the
strip (90° rotations are disallowed), and

3. the packing height is minimized, where the packing height is the maxi-
mum height reached by the tops of the rectangles in a vertically oriented
strip.

We also study a variant, called two-dimensional bin packing, where hor-
izontal boundaries are placed at the integer heights of the strip. In this
problem, strip packings are subject to the additional constraint that no rect-
angle can overlap any of these boundaries. In this version of strip packing,
the “size” of the packing is taken to be the least integer no smaller than the
height of the packing, i.e., the number of bins (unit squares) spanned by the
packing.

Stock-cutting is again a far-reaching application area. The coils, spools,
or lengths in one dimension become rolls, strips, or sheets of textiles, pa-
per, plastics, sheet metal, etc., from which rectangular shapes are to be cut.
Storage applications appear in countless settings; e.g., consider the archival
storage of paintings (on walls) in large art museums, the allocation of adver-
tisements in the yellow pages of a telephone directory, etc.

Scheduling under a resource constraint is another general applications
area. For example, jobs (programs) in a computer have dimensions corre-
sponding to both running time and storage requirements. The problem is to
schedule a collection of jobs under a fixed limit on the total storage being oc-
cupied by jobs running in parallel. The constrained resource could be power,
a situation that arises in scheduling experiments in spacecraft.

1.3 Notation

This section lays down a few notational conventions. As is common in the
literature of mathematics and computer science, we let In denote log, and
lg denote log,. In cases where the base does not matter (provided it is a
constant greater than 1), we simply write log.

When writing expressions, we assume that the division operator “/” has
lower precedence than multiplication; this enables us to write, for example,
1/pk instead of the more cumbersome 1/(pk).

6. CHAPTER 1. INTRODUCTION

We will often consider the uniform distribution, so it is convenient to let
U(a,b) denote the distribution uniform over [a, b]; the use of U(0,1) will be
especially frequent.

In the probabilistic analysis of packing and partitioning problems, one
rarely finds an explicit formula for the quantity of interest. A variety of
weaker but still informative statements can be made. Using bin packing as an
example, suppose that the expected value E[H(L,)] is being investigated. If
we are unable to find an explicit formula for E[H (L,)], we may still be able to
find a function f(n) such that E[H(L,)] ~ f(n), i.e., the ratio E[H(L,)]/f(n)
tends to 1 as n — oo. Failing this, we may be able to find upper or lower
bounds on the ratio, which can be conveniently described in terms of the
O-, Q-, and O-notation explained in [Knut76]. Let g(n) and f(n) be two
functions of interest. If there are positive constants C and C’ such that

Cf(n) <g(n) < C'f(n) (1.1)

with finitely many exceptions, then we write g(n) = O(f(n)). (Note that
O-notation enables us to disregard constant factors; thus, for example, the
base of the logarithm in O(logn) is immaterial as long as it is a constant
greater than 1.) If even a statement of the form in (1.1) cannot be proved,
we may be able to establish the left or right side of (1.1). If |g(n)| < C f(n)
with finitely many exceptions, we write g(n) = O(f(n)); note that because
we take the absolute value in the definition, O-notation can be applied to
usefully describe a function that may assume negative values. Similarly, if
Cf(n) < g(n) with finitely many exceptions, then we write g(n) = Q(f(n)).
One other notation that will occasionally be useful is g(n) = o(f(n)), which
means that lim,_,., g(n)/f(n) = 0.

Occasionally we will make the statement that a percentage Q(1) of the
items in some set satisfy some property; in view of the above definition, this
means that for all but finitely many n, the percentage of items in the set
which satisfy the property is bounded below by some constant ¢ > 0. (Note
that a percentage is always trivially O(1).) |

The quantity that plays the role of g(n) will often be the expected value
of some random variable; however, we may not always be able to describe
the expectation. For example, in some cases it may be possible to prove a
strong bound on the median of some variable but not on its mean.

Sometimes we can make very strong statements. For example, instead
of just showing that E[H(L,)]/f(r) — 1 as n — oo, we may be able to
characterize the asymptotic behavior of E[H(L,)] — f(n). As a more concrete
example, we may be able to show that the number of bins used to pack n

1.4. CLASSICAL ALGORITHMS 7

items is asymptotic to the total size of the items. It then becomes interesting
to investigate the difference between E[H(L,)] and the total size, i.e., the
total amount of wasted space in the bins, to determine rates of convergence
as a function of n.

1.4 Classical algorithms

In this section we record, for convenient future reference, several of the stan-
dard algorithms that have been applied to the partitioning and bin-packing
problems. Hereafter, references to these problems will use terminology com-
monly found in the literature. The elements of L,, are called items and tasks
in bin packing and makespan scheduling, respectively; blocks are called bins
B, B,, ... and processors, Py, P, ..., respectively; and the process of assign-
ing elements to blocks is termed packing and scheduling, respectively.

Initial studies of the algorithms described here were confined to combi-
natorial, worst-case behavior. References to original articles are made where
. appropriate. A general treatment of the combinatorial theory of scheduling
and packing algorithms can be found in the book [Coff76].

Algorithms can generally be divided into two major classes, on-line and
off-line. To be called on-line, an algorithm must consider the items one at
a time and make an irrevocable decision as to where each item is to be
packed or scheduled before any data are available about subsequent items.
In an off-line algorithm all item sizes are available for inspection before any
decisions must be made about the packing. Qften an off-line algorithm uses
this information simply to sort the items into decreasing order of size, and
then process them in that order. We further categorize on-line algorithms
as open-end or closed-end. An open-end algorithm must pack items as they
arrive without knowledge of the total number of items to be packed; a closed-
end algorithm may make use of the total number of items to be packed
when making decisions. (These distinctions will be especially important in

Chapter 6.)

1.4.1 Makespan scheduling

The probabilistic analysis of scheduling started with the list scheduling (LS)
rule [Grah66]. According to this simple rule, initially available proces-
sors P,..., P, are assigned tasks in the order listed by the input L, =
(X1, Xz,...,X,). The ith task, X;, is assigned to any processor whose fin-
ishing time is minimum in the schedule for the first ¢+ — 1 tasks. (Thus, in

8 CHAPTER 1. INTRODUCTION

particular, the first m’ = min(m,n) tasks may be assigned to the proces-
sors Pp,..., P, in any order.) An analysis of this rule will be presented in
Section 2.2.

We will denote order statistics by parentheses around subscripts; thus X;
will denote the ith smallest of the task times. A substantial improvement
in the performance of the LS rule can be obtained by the simple expedient
of processing the tasks in order of decreasing size. The LS rule applied to
the ordered list (X(n), X(n-1),.-.,X(q)) is called the LPT rule, for Largest
Processing Time first [Grah69]. Such a heuristic is an instance of the greedy
method, in which we try to achieve or come close to a global optimum by
making decisions that seem desirable in some local sense. Here, by scheduling
large tasks first, we are hoping that the later, smaller, tasks will decrease
any large differences between processor loads. Section 4.1 investigates the
probabilistic behavior of this rule.

1.4.2 Bin packing

In this section we define several bin-packing algorithms. It is useful to classify
bins into one of three categories: empty, active, and closed. An empty
bin is one into which no items have been placed. After an item has been
placed into a bin, we consider it active if it is still available for placement of
additional items, and closed if it is not. (The notion of active bins will be
especially important in Section 6.3.5.) In each of the bin-packing algorithms

we discuss, we assume that there is an unbounded sequence of initially empty
bins, By, Bo,....

We first describe three on-line algorithms. In each of these, items of L, are
packed in turn, starting with X;. The simplest is the linear-time algorithm
Next Fit, abbreviated NF. (By a linear-time algorithm we mean one which
uses O(n) time.) Suppose Xj,...,Xi-1, ¢ > 1, have already been packed,
and B; is the highest indexed nonempty bin. Then X; is placed in B; if it
fits, i.e., if X; plus the sum of the sizes of items already in B; is at most 1;
otherwise, we close B;, and X; is placed into B;;;. Note that this algorithm
never has more than one active bin at a time. A study of the worst-case
behavior of NF and certain of its variants can be found in [John74].

Two other rules, First Fit (FF) and Best Fit (BF), never close a bin as
long as items remain to be packed. In fact, neither will start a new bin
unless the next item to be packed will not fit into any of the bins used so
far; where FF and BF differ is in the rule used to select among the active
bins when more than one of them can accommodate the item. Specifically,

1.4. CLASSICAL ALGORITHMS 9

FF packs each item into the lowest indexed bin into which it fits, whereas
BF packs X; into a bin which can accommodate it with the smallest capacity
left over (with ties resolved in favor of the lower-indexed bins). Although
a naive implementation of either of these would use ©(n?) worst-case time,
by selection of an appropriate data structure [Knut73, Stan80] each can be
implemented to run in O(nlogn) worst-case time. A worst-case analysis of
FF and BF packings appears in [JDUGGT74]. '

Just as in Section 1.4.1, we can try to improve the performance of NF,
FF, or BF by first sorting the items to be packed into order of decreasing size,
i.e., processing them in the order X(,y, X(n-1),...,X()- The word Decreasing
after the name of the heuristic (e.g., First Fit Decreasing) or the letter D after
the acronym (e.g., FFD) indicates that this sorting is to be done. Note that
each of NFD, FFD, and BFD is off-line since the sorting process examines
each item before any placement is done. Worst-case results appear in [BC81]

for NFD and in [JDUGGT74] for FFD and BFD.

Chapter 2

Analysis Techniques

This chapter describes a number of basic approaches to the analysis of
packing and partitioning problems and presents concrete illustrations for
most of the methods. Additional, more elaborate instances of most of the
approaches will be found in later chapters.

The background in applied probability needed to follow the methods
introduced here is modest. However, it is worth noting that heavy reliance
is placed on classical inequalities (which is hardly surprising in a book
where bounds on algorithm performance are so often the objective). Boole’s
inequality is used so frequently that we mention it here explicitly: if {E;}
is an arbitrary countable sequence of events, then Pr{lJ; E;} < ¥; Pr{E;}.
Examples of other relevant combinatorial or probabilistic inequalities include
the geometric-arithmetic mean inequality, Chebyshev’s inequality, Schwarz’
(or the Cauchy-Schwarz) inequality, Jensen’s inequality, etc. The reader is
assumed to be familiar with these results, at least in their simpler forms.
(A listing of some basic combinatorial inequalities can be found in [AS70,
~ Section 3.2], and probabilistic results can be found in [Fell68, Fell71]; the
appendices of [Hofr87] also provide a useful list of such results.)

In this and the remaining chapters, particularly frequent use is made of
probability bounds and limit laws for sums of i.i.d. random variables, and
for the special cases corresponding to simple random walks, where random
variables take the values =1 only. For this reason, the present chapter begins
with a special section devoted to these results. The theorems of this section
are not intended as an exhaustive survey of the available theory, but rather
should be taken simply as lemmas for the results to follow in later sections
and chapters.

As a final comment before getting into the analysis, we note the valuable
role that numerical experimentation can play in guiding the probabilistic

11

12 CHAPTER 2. ANALYSIS TECHNIQUES

analysis of algorithms. In order to get a feeling for the probabilistic behavior
of a problem, one can generate problem instances at random, and it may be
sufficient to examine only a relatively small set of such instances. Thus it
may well be possible to generate data for problems in which there are many
thousands of items, and develop intuition about the asymptotic behavior
of the solution. This can then guide the analysis. For examples of such
experiments, the reader is referred to the work of Ong, Magazine, and Wee

[OMW84], Bentley et al. [BIJLM83], and McGeoch [McGe87].

2.1 Sums of i.i.d. random variables

Reducing the analysis of an algorithm to that of a sum of i.i.d. random
variables often presents a difficult problem. But when this can be done,
a large literature of useful results can be exploited. This section presents
a sampling of these results that will be used on many occasions. It also
illustrates one type of analysis commonly used to prove probability bounds
for sums of bounded random variables.

2.1.1 Small deviations and the central limit theorem

Let n(z) denote the density of the normal distribution with zero mean and
unit variance, i.e.,
1

\/271'6 ’

and let M(z) denote the corresponding distribution function

wz) =

‘ﬁ(:z:)=/z w(z) dz.

—00

We note that estimates of the tails 1 —(z) are available:
1-NMz) < n(z)/z for z > 0; (2.1)

more precise asymptotic descriptions can be found in [AS70, Section 26.2].

Now let X1, X, ... be independent samples of a random variable X with
distribution function F(z), mean g, and positive variance 0. For n > 1, call
Sn = 3", X; the nth partial sum of X, and call

A

Sp = Sn — ny,

2.1. SUMS OF 11.D. RANDOM VARIABLES 13

which has zero mean, the nth centered partial sum of X. Call

gn = Sn — n'u’

Jvno
with zero mean and unit variance, the nth normalized partial sum of X.
Under appropriate conditions on F'(z), the central limit theorem states that

the random variables S,, converge in law to a normal random variable with
zero mean and unit variance, i.e.,

Pr {S’n < :1:} — NM(z) as n — oco. (2.2)

A condition sufficient for (2.2) to hold is that the mean and variance of X
exist and are finite [Fell71, Section VIII.4, Theorem 1]. Indeed, in many
of our applications, X satisfies a much stronger condition: it has bounded
range.

Estimates of the rate of convergence in (2.2) are also of interest. The
following, which we state without proof, will sometimes serve our needs.

Theorem 2.1 (Berry-Esséen [Fell7l, Section XVI.5]) If u, o, and p =
E[|X — |®] are bounded, then
3p
o3\/n’
Note that this theorem holds in a very general context, but provides no
information about the density of the partial sums; in fact, the conditions do

Pr{gn <z}-—MN(z) <

(2.3)

not imply that such a density exists. With somewhat stronger conditions the
density can be estimated. Let ¢(¢) = E[e*X] be the characteristic function
of X, and let u = E[(X — p)¥] be the kth central moment of X.

Theorem 2.2 (see [Fell71, Section XVI.2]) Let X be a random variable with
characteristic function ¢. If p, o2, pa, and py are bounded and there is a
v > 1 such that |p|” is integrable, then for n > v the centered partial sum S,
has a density f, satisfying'

fu(z) = alﬁ (1 + %P(a%)) "(af/ﬁ) +0(n™%?),

P(z) = %(z3 —3z2).

where

The hidden constants in the O-notation are independent of .

1This is in a somewhat different form from that appearing in [Fell71]. The function fn
is scaled differently, and we have used the fact that for any fixed polynomial p the function
p(z)n(z) is uniformly bounded.

14 CHAPTER 2. ANALYSIS TECHNIQUES

In fact, an asymptotic expansion for f,, sometimes called the Edgeworth
expansion, is available; see [Fell71, Section XVI1.2].

Occasionally, it is convenient to be able to estimate the value Pr{X = k},
where X has a binomial distribution. Theorem 2.1 is not suitable for this task
since it only gives bounds on the partial sums Pr{X < k} = 2% ,Pr{X =i},
and Theorem 2.2 is not suitable since its conditions are not met. Fortunately,

a convenient bound is available.

Theorem 2.3 ([Fell68, Section VII.2-VIL3]) Let X be binomially dis-
tributed, giving the number of successes in n Bernoulli trials with each having
success probability p; let g=1—p. Then

Pr{X = k} = (1 +0(1)) \/i_pqn('i/;_";’) (2.4)

uniformly in k, provided k varies with n in such a way that k —np = o(n?/3).
Note that virtually all of the mass of the distribution in Theorem 2.3 lies
within the region where the estimate of (2.4) applies. In particular, suppose

we choose an « € (1/2,2/3), say, o = 3/5. Then since Pr{X = k} decreases
as we move away from the center of the distribution, we have

Pr{|X —npl 2 n*} = O(n)Pr {|X —np| = |n*]}
= O(v/n)n(0(n*'))
= o(n7") (2.5)

for any positive integer . We will say such a quantity goes to zero quickly
enough to swallow polynomials.

By letting p = % in Theorem 2.3, we obtain an estimate of the binomial
coeflicients:

27" (Z) = (1 + o(l)) \/rlﬁzn (k\;%‘g) = (1 + 0(1))\/%6_2(’“_”/2)2/”,
(2.6)

provided k& — n/2 = o(n?/3).

When applying these estimates, it is often useful to be able to approximate
a sum by an integral. A powerful tool for this purpose is Euler’s summation
formula. For our purposes the following very special case will be sufficient.
Assuming that f is differentiable over [a, b], we have

1) = [fayde + (7@ + 7)) +en 21)

k=a

2.1. SUMS OF LI.D. RANDOM VARIABLES 15

where -
leal < 5 [1£ (@)l da.

For a much more general form see [Knut73, Section 1.2.11.2]. Note that if a,
b, and f vary as functions of n, but the number of sign changes in f’(z) over
[a, b] is bounded by some absolute constant, we can conclude

kX:: f(k) = /: f(z)dz + 0(@3@ |f(w)|). (2.8)

This observation will often be useful in our analyses.

2.1.2 Bounds on the tails of the distributions

Results of the type shown in Theorems 2.1 and 2.2 of the previous section are
helpful when we are interested in estimating the probability of small devia-
tions from the mean. When we are interested in showing that the probability
of a large deviation is extremely small, these theorems are generally not use-
ful, because of the large error bounds. We turn next to Chernoff estimates for
the tails Pr{S’n > z} for large z. Many such bounds begin with the following
simple observation. For any event A, let 14 be the indicator for A, that is,
the random variable that is 1 when A holds and 0 when it does not. One
easily sees that for an arbitrary random variable Z,

lizpay < X@% (2.9)

for any A > 0.

Now let X be a random variable with finite expectation ¢ = E[X], and
let S, be the sum X; + X3 + --- + X,, of n independent random variables
distributed as X. Let a be a value greater than or equal to u. Letting S,
play the role of Z in (2.9), and taking expectations, we obtain

Pr{S, > na} = E[l{s,5na}) < E [eA(S"_"“)] = e " E [H eAX'] . (2.10)

i=1

Now because of the independence of the X;, we can rewrite this as
Pr{S, > na} < e [] E [M] = (E[*F)" (2.11)
1=1

Recalling that this holds for any A > 0, and letting u(a) = infyyo E[e}&X—9)],
we have .

Pr{S, > na} < (u(a))n. (2.12)

16 | CHAPTER 2. ANALYSIS TECHNIQUES

In fact, one can drop the constraint A > 0 on the range of X in the definition
of u(a) since by the inequalities e* > 1 4+ z and a > p we would have

A< 0 = E[e**-9] > E[1+ MX — a)] =1+ Mg —a) > 1= E[e2X-9)],
A symmetric argument holds for the case a < u, so we have the following:

Theorem 2.4 ([Cher52]) Suppose p = E[X] exists and is finite, and let S,
be distributed as the sum of n independent samples of X. Then defining

u(a) = iI}f E[eA(X_“)],
we have :
a>p = Pr{S,>nae}< (U(a)))
and

a<p = Pr{S,<na}< (u(a))n.

Chernoff [Cher52] also shows that u(a) is the best possible base in an
exponential bound of this sort, in the sense that for 0 < b < u(a),

b" = o(Pr{S, > na}) and b" = o(Pr{S, < na}).

As an example of Theorem 2.4, suppose X has an exponential distribution
with mean 1, i.e.,Pr{X < z} = 1—e " for z > 0. Then one readily computes

—al
for A\ <1

AMX =a)) _ ° Mz=a) -z — €
Ele]_/0 e e *dzx T

(with divergence to +oco for greater A), so for this distribution we have

—alX
.. € 1
= = @ 2.1
u(a) }&fl D e - (2.13)
where the minimum was determined to occur at A = 1 — 1/a by simple

calculus. The resulting bound will be used in Section 4.1.

A similar sort of bound can be obtained with an assumption weaker than
independence of the X; [Hoef63]. A sequence 5’,-, 1=1,...,n,is said to be a
martingale if

E[S: | $1,8,,...,5]=8;, for1<j<i<n.

Suppose we do not know the distributions of the X; and are not even given
that they are i.i.d. Instead, we know that their range is limited by

|Xil <1 (2.14)

2.1. SUMS OF I1.D. RANDOM VARIABLES 17

and that the sequence of centered partial sums S is a martingale. In terms
of the X;, this latter condition tells us that although the X; may not be
independent,

E[X, | Xl,Xg, . ,X,‘__l] = E[X,], (215)

in other words, conditioning X; on the values of any of the X;, j < i,
may affect its distribution but not its mean. Again, we wish to bound the
probability that S, is substantially greater than its mean. We can no longer
use independence as we did to go from (2.10) to (2.11), since without it we
cannot conclude for a function g that we have

: [f[lgm)] - Tl (2.16)

If, however, g is a linear function, (2.15) does imply (2.16). This motivates
the following approach, which also takes advantage of (2.14): we bound each
e*Xi by an approximation linear in X;:

e < lemM1 - Xi) + 1M1+ X;) for [X < 1.
(See Figure 2.1.) Now letting ; = E[X;], we may write

Pr{gn >t} <E [eA(g"_t)] < e~ME [62;1"()("7")]

— e—/\tE [ﬁ e/\X.'—’y.‘:|

1=1

< e~ME []__n[e~ (-12-*6"‘(1 - X))+ 1M1+ X,—))]

=1

e e[(20— X0+ 3004 X0)

=1

=™]__nI e~ M (-12-6"‘(1 —y)+ Ler1 + fy,-)) : (2.17)

1=1

We will be finished if we can find a good bound on the multiplicands in the
above product. To this end, let

B) = e (Fe 1=) + 31 +0))

and let

1-— 1+
L0 =T $0w) = —(1+ @A +1n (5L 4+ ZTEe).

18 CHAPTER 2. ANALYSIS TECHNIQUES

G G

-1 0

—z —

Figure 2.1: Illustration of the argument used in the proof of Hoeffding’s
bound. Since we know z ranges only over [—1,1], and since the exponential
function is convex, we can bound e** by the bold straight line.

2.1. SUMS OF L1D. RANDOM VARIABLES 19

To bound this, note that

7] 144

5}[/(/\,”)__(14'”)'*' 1_”6—2)\+ 1+'ua
2 2
s0 aa—AL(O,/L) =0, and

0? 14+ p)(1 — p)e™®

9 Low) = 1+ w1 —p) <1,
o\ (1+#+1_#e—2)\)

2 2

where we have used the geometric-arithmetic mean inequality. Hence by
Taylor’s theorem we have L(\, 1) < X2/2 so (A, 1) < e**/2. Thus we can
simplify (2.17) to

n
Pr{S, >t} <e™ I /2 _ MY)2

=1

It is routine to show that the right side is minimized by the choice A = t/n,
which leads to the bound e~*/2". Letting t = z+/n, we obtain (2.18) in the
following theorem. Replacing X; by —X; gives (2.19).

Theorem 2.5 ([Hoef63]) Let X;, i = 1,2,...,n, be independent random
variables that assume values in the range | X;| < 1. Let S, = X; + Xo+-- -+
Xn, and S, = S, — E[S,]. Then forz >0

Pr{8, > zv/n} < e %/, (2.18)
and .
Pr{$, < —z/n} < %12 (2.19)

This conclusion remains valid even if we weaken the assumption that the X;
are independent to the assumption that the sequence S, is a martingale.

In some cases we require estimates in which the dependence on parameters
of the distribution of X is explicit. A convenient such estimate, known as
Bernstein’s bound [Hoef63, Equation (2.13)], is given below.

Theorem 2.6 (Bernstein) Let X;, ¢ = 1,2,...,n, be independent random
variables with variance 0%, and suppose that |X; — E[X;]| < M. Then for
z2>0
. z?/2
Pr{S, > zv/n} < exp {——-—/——} .

2 4 Mz
o+ 3 /m

20 CHAPTER 2. ANALYSIS TECHNIQUES

Sometimes we want to be able to bound the probability that any of the
partial sums S; exceeds some limit. This can, for example, be very useful
when a random walk arises. A first attempt to obtain such a bound might
simply use Theorem 2.5 and Boole’s inequality to obtain

Pr{]rg%)% S > t} = Pr {1L=J] {5’, > t}}

< min{l, zn:Pr{S*,- > t}}

=1

< min {1, Z e'tz/%}.

=1

This bound turns out to be rather weak, however; in fact, some computation
shows that the value of ¢ for which it first drops below 1 is ©(y/nlogn).
By a more careful argument combining Skorohod’s inequality (see [Brei68,
Section 3.4, Lemma 3.21]) with Theorem 2.5 we can obtain a stronger result:

Theorem 2.7 Let X;,i=1,2,...,n, be independent random variables that
assume values in the range | X;| < 1. Let S; = Xi + Xo + -+ + X;, and
S; = S; — E[Si]. Then forz >0

B

Pr {max S’;

x } < 2e~%/8 and
1<ikn -

(2.20)

Pr { min §; < —z n} < 27 /8,
1<ikn

ﬂ

Proof. Let 2t = z/n, and let C; be the event that S; is the first centered
partial sum greater than or equal to 2¢, i.e.,

Cj={.§'j22t and Sy <2tforalll <k<j}.

Then .
{masszu}= o,
and? .
Pr {]rggzx S; > Qt} <Y Pr{C;}. (2.21)
<i<n ot

2In fact, since the C; are disjoint, equality holds in (2.21), but we do not need equality
for this proof.

2.1. SUMS OF LI.D. RANDOM VARIABLES 21
Using the disjointness of the C; and the fact that

{Ci}n{8a— %52 —t} S {8 >t

[——
-

we can write

Pr{S’n >t} > ZPr{C’j and S, — S’j > —t}
j=1

n

= Z Pr{C; }Pr{S’ > —t}, (2.22)

where in the last step we have used the independence of the events {C;} and
{8, — S' > —t}. Now by Theorem 2.5

Pr{S, >t} < ¥/
and
Pr{8,—5;> -t} =1—-Pr{8, = §; < =t} > 1 — ¢ /2= > | _ /27,

Substituting these bounds into (2.22), we obtain
e > (1 - e72") 3 Pr{Cy). (2.23)
=1
From (2.21) and (2.23) we get

-z?/8 .
Pr{max S > :c\/_} <m1n{1, T—%——_——E/—s} < 26""2/8,
: —e 7

1<i<n

which is the first part of (2.20). The second part follows upon replacing X;
by —X,'. .
Note that an integration of the above tail probability yields

In all cases of interest here, we will have a matching lower bound of Q(1/n).

A demonstration of this fact for a specific distribution appears in the next
section.

22 CHAPTER 2. ANALYSIS TECHNIQUES

2.1.3 Estimates of moments

In addition to the above convergence in distribution, it is also helpful to know
whether the moments converge to the corresponding moments of the limit
distribution. Here, we often deal with i.i.d. bounded random variables X;,
¢t =1,2,...; for this case the desired convergence is easy to prove. The proof
gives us a technical application of the Hoeffding bounds in Theorem 2.5.

Let S have the normal distribution with zero mean and unit variance,
so that, as n — o0, S, converges in distribution to S. The sequence |S,|",
n > 1, is said to be uniformly integrable if, uniformly in n,

lim E[|S’ " Ls, |>c] = 0. (2.24)

C—00

If this holds, then we have (see [Serf80, p. 13])
E[1S.I"] — E[ISI] and E[S;]— E[S"].
To show that (2.24) holds, consider first the integral
/c°° " dPr{$, < 2} = —/c°° " dPr{3, > z}

= —z"Pr{S, > x}l:o + /oo re" " Pr{S, > ¢} dz.
: (2.25)
Since the X; are bounded, Var(S,) = O(n), and by Theorem 2.5 there is a
constant a > 0 such that Pr{S, > £} < e¢~***/? uniformly in n. Using this
bound in (2.25), we get easily

lim T dPr{S, <z} =0. (2.26)
Now Theorem 2.5 also gives Pr{3, < —z} < e **/?, so by a similar
argument

lim |:c |dPr{S, <z} =0 (2.27)

C—00

uniformly in n. Thus (2.24) follows at once from (2.26) and (2.27).

We illustrate these results with an example that also shows how to
deal with certain situations where the number of random variables being
summed is also random. Let X;, 2 =1,2,..., be i.1.d. random variables with
Pr{X; =41} = Pr{X; = —1} = p/2 and Pr{X; = 0} = 1 — p for some fixed
0<p<1. PutS,=3",X; as usual, and observe that max(0,S5,) is equal
in distribution to the excess of heads over tails after a sequence of N tosses

2.2. MARKOV CHAINS 23

of a fair coin, where IV has a binomial distribution with parameters pand n
(and hence mean pn). We have E[S,] = 0 and Var(S,) = np. Now

max(0, S,) = I_S’nIQ'*'_‘Sn,

so by the uniform integrability of |S,|/\/np we get

1 o0 2
E[max(0, S,)] ~ \/W/O ze™" /P do = \/np/2n (2.28)

as n — oo. Also, since |S,;| = max(0,S,) + max(0,—S,), we obtain by
symmetry

E[|S.]] = 2E[max(0, S,)] ~ /2np/= (2.29)

as n — 00.

The expectation of max;<i<n 5; is also of interest. Consider the case
p = 1. An integration of the tail probability provided by Theorem 2.7 gives

E L“s’%’i si] — O(v/n).
Now, clearly, max;<i<n S, is bounded below by max(0,S,). Hence by (2.28)
we also have

s] = o0

1<i<n

so we conclude

E | max s] _ O(v/n). (2.30)

1<i<n

2.2 Markov chains

Techniques for obtaining partitions that approximately solve some problem
have often been defined by sequential algorithms, such as those in Section 1.4.
Thus a fundamental approach to the probabilistic analysis of such an algo-
rithm begins with the formulation of an appropriate Markov chain repre-
senting the execution of the algorithm as it forms the partition element by
element. A state of the Markov chain must represent block sums in a suit-
able way; given the state space, the transition function will be defined by
the algorithm. If the state space and transition function are simple enough,
then classical methods can be applied to obtain results for general n through

24 CHAPTER 2. ANALYSIS TECHNIQUES

a transient analysis or asymptotic results for large n through a steady-state
analysis. _

To illustrate ideas, let us consider an average-case analysis of the simple
LS rule for the makespan problem, defined in Section 1.4.1. Let us consider
the simplest nontrivial case, m = 2, and define V; as the (positive) differ-
ence between the processor finishing times after the first i tasks have been

scheduled. Thus

- [Vis1 = Xi| for1<i<n,
Vi= {0 for : =0, (2°31)
so the analysis of
Vo n
LS(Ln2) = =+ 52X, (2.32)
i=1

reduces to the analysis of the chain {V;}i»o. It is easy to see that {V;}i>o is
a Markov chain. Let F' be the common distribution function of the X;, and
assume that F'(z) has a density f(z) on [0,00). Then the distributions of
the V;, ¢+ > 1, have densities f;(z) satisfying the recurrence

f(y) for i = 1,
fily) = /Ooo k(z,y)fi-1(z)dz for i > 2, (233)

where k(z,y) is the transition density of the Markov chain. A straightforward
analysis of (2.31) shows that

. [flz—y)+ f(z+y) forO0<y<ez,
Fay) = {f(:c—i-y) fory >z > 0. (2:34)

From (2.33) and (2.34), a stationary density fo in the limit 2 — oo is defined
by

foul) = [fle + 9)f(@) b2+ [frole 1) f(@) o
= [T fola+9)f@) do+ [ful@)f@+y)dz, (239)

with a solution L~ F(y)
fooly) = —E[T]y_ (2.36)

As an example, suppose the distribution of X is U(0,1), so F(z) =
over [0,1]. Then (2.36) gives foo(y) = 2(1 — y) over [0,1]. Equations
(2.33) and (2.34) show that in fact fi(y) = 2(1 —y), 0 < « < 1, for
all { > 2. Hence (assuming n > 2) we have E[V;] = 1/3, so (2.32) gives

2.3. BOUNDS 25

E[LS(Ln,2)] = (n/4)(142/3n). Then E[OPT(L,,2)] > E[T%, X;]/2 =n/4
yields the relative-performance bound
E[LS(Ln,2)] <14 _2_
E[OPT(L,,2)] 3n

Another application of the Markov-chain approach can be found in Sec-
tion 6.3.1, where NF bin packing is analyzed. We point out that this approach
has been successful only for the simpler, less efficient heuristics. The state
spaces of Markov chains defined for heuristics like FF and BF appear to be
too large and unwieldy for a tractable analysis.

2.3 Bounds

When approaches to exact results fail, one turns naturally to bounds in
order to get at least some information. Of.course, bounds can enter the
analysis in many ways. Here, we consider bounds introduced at an early
stage. A prime example consists of applying at the outset a bound to the
objective function itself; e.g., in analyzing the bin-packing heuristic H it
may be possible to find a useful, more tractable function ¢g(L,) such that
g(L,) > H(L,) for all problem instances L,. Thus, if E[g(L,)] is relatively
easy to calculate, then for the average-case performance measure we obtain
the bound E[H(L,)] < E[g(Lx)].

A concrete example is provided by the LS algorithm, discussed in the
previous section. Let the objective function be the relative error

LS(L,,m) — OPT(L,,m)
LS _ ’
B (Ln,m) = OPT(L,,m) '

(2.37)

To develop a bound, observe first that a scheduling rule can do no better
than to keep all the processors busy during the makespan, assigning to each
processor (1/m)th of the total work. Thus

1 n
OPT(L,,m) > - > X (2.38)
i=1
On the other hand, consider any algorithm that does not introduce idle time
when unfinished tasks remain; such an algorithm can do no worse than to
finish off the schedule with the largest task executing alone, i.e., all but one
processor is idle during the last X,y = max]_, X; time units. Then

LS(Ln,m) < ((m — 1) X +§X,-> .' (2.39)

1
m

26 CHAPTER 2. ANALYSIS TECHNIQUES

If we can assume X,y < 1, substitution of (2.38) and (2.39) into (2.37) yields
the bound]
m J—

n s
=1 Ai

so our problem has been reduced to the analysis of sums of i.i.d. random
variables.

R“S(L,,m) < ~ (2.40)

To illustrate the possible results, assume the X; are uniformly distributed
on [0,1]. Then an appeal to Theorem 2.5 with z\/n = n/4, for example,
yields

4(m -1 " 1 n —n/32
PI‘{RLS(Ln’m)> (—n_l} SPI‘{Z (X,—g) <—Z} <e / ,

i=1

which gives information on how fast the relative error tends to 0 as n — oco.

The coefficient 1/32 in the exponent can be increased substantially by
exploiting the parameters of U(0,1); e.g., see Theorem 2.6. Also, the dis-
tribution U(0,1) allows a slight tightening of (2.40), since (2.38) and (2.39)
imply R'$(L,,m) < %, where Z,_; = T2 X(5)/X () is asum of n — 1
independent random variables from U(0,1). Coffman and Gilbert [CG85]

give a detailed analysis of this bound.

The exponential case F(z) = 1 —e~*%, z > 0, was also studied in [CG85].
For this case, a more convenient bound was found to be R“(L,,m) <
(m — 1)V/(mW + V), where W is the earliest processor finishing time in
the LS schedule and V = LS(L,,m) — W is the difference between the
earliest and latest processor finishing times. This bound follows easily from
OPT(L,) > (mW 4+ V)/m and LS(L,,m) = W 4+ V. Using similar bounds,
Boxma [Boxm85] extended the results to the case where F(z) is the Erlang-k
distribution.

2.4 Dominating algorithms

A common way to find a useful bound on H(L,) is to introduce a simpler,
more easily analyzed algorithm H’ for which it can be proved that H'(L,) >
H(L,) for each problem instance L,—then we say that H' dominates H.
Many of the results in the probabilistic analysis of bin packing afford good
illustrations of this approach. Although the technique applies equally well to
makespan scheduling, it has not been exploited there to nearly the same
extent. As an illustration, we consider the Next Fit Decreasing (NFD)
heuristic defined in Section 1.4.2.

2.5. BOUNDS THAT USUALLY HOLD 27

Csirik et al. [CFFGRS86] obtained results for NFD by analyzing a domi-
nating algorithm called sliced NFD with parameter r, SNFD,. SNFD, is the
same as NFD until it first packs an rth item into a bin. (Note that the size
of such an item can be no greater than 1/r.) At that point SNFD, packs the
remaining items r to a bin. For any list L,, SNFD, clearly dominates NFD,
i.e., SNFD.(L,) > NFD(L,).

Let k;, 2 > 1, denote the number of items in L, with sizes in the interval
(1/(i+1),1/i], and let K; = ki + kis1 + - --. The following bounds are easily
verified:

T A

Y [H < NFD(L,) < SNFD,(L,) < [K’“] +§1 (H .

r

=1

Now suppose item sizes are independent samples from U(0,1). Then E[k;] =
n/i(t + 1) and E[K, 1] = n/(r + 1). We now let r — o0, as a function of n,
rapidly enough so that the contribution of K4, /7 is o(n), but slowly enough
so that the number of times we round to an integer is also o(n); for example,

let » = v/n. Then the above bounds show that

EINFD(L,)] ~ 3 ﬁ = (% . 1) n as n — oo,

1=1

a result also obtained by [HK86]. [CFFGRS86] also show that NFD(L,)
satisfies a central limit theorem, that is, that in the limit of large n, NFD(L,,)
is normally distributed.

Finally, we mention results of Rhee [Rhee87], who showed that

&

NFD(L,) — ioj -

=1

<1+logn.

o~

Now let f(z) = 1/|1/z], that is, f(z) is rounded up to the next value
which is a reciprocal. Then 32, k;/i = i, f(Xi). Using these observa-
tions Rhee easily achieves a central limit theorem for NFD(L,,) for general
distributions F on [0, 1].

2.5 Bounds that usually hold

In some cases it helps to employ a deterministic bound that may not hold in
all cases. For example, instead of looking for a bound that always holds, it
may be possible to find a better bound g(n) such that H(L,) < g(n) holds in
some very likely event A, and in the remaining cases a much weaker bound

28 CHAPTER 2. ANALYSIS TECHNIQUES

H(L,) < ¢’(n) holds. If g, is the probability of the complement A of A, and
gn — 0 for large n sufficiently rapidly so that ¢,¢'(n) = o(g(n)), then we
have

E[H(L,)] = Pr{A}E[H(Ln) | A] + Pr{fl}E[H(Ln) | A]
< (1= gn)9(n) + gag'(n) ~ g(n). (2.41)

As an example, we will give a simple proof that if the X; are i.i.d. and
uniform over some interval [a, b] C [0, 1] that is symmetric about 1/p for some
integer p > 1, then E[OPT(L,)] ~ n/p. (Other proofs of this result appear
in [Luek83, RT88b]. The proof here combines ideas from both of these, and
is similar to a proof involving triangular distributions appearing in [KLV87].)
A lower bound of

E[OPT(L,)] > n/p (2.42)

is trivial since E[}°7.; Xi] = n/p. For the upper bound we will describe a
heuristic H and show, by the method of a bound that usually holds, that
E[H(L,)] ~ n/p. It will be helpful to consider a further randomization of
the data allowing us to view them as points distributed uniformly over a
rectangle, as shown in Figure 2.2; the horizontal coordinate of a point is
the item size, and the vertical components are chosen independently and
uniformly. We divide the rectangle as follows. First, we divide it by a
horizontal line so that there is a long narrow subrectangle at the top, with the
ratio between the top and bottom part being 1 : p — 1. Next, we divide the
lower part horizontally into p—1 equal subrectangles. These subdivisions are
shown as bold lines in the figure. Now, for some k > 1, we divide each of the
subrectangles by vertical lines into k equal slices, giving us a total of pk slices.
We partition the slices into k+1 classes, satisfying the condition that for each
class, selecting one item from each slice in the class will always give us a set
of items that fit together into a bin. To form class number j, 1 <j < k-1,
we select the jth slice from the left in each of the lower p — 1 subrectangles,
and the (j+ 1)st slice from the right in the top subrectangle. For j = k, class
number j is formed similarly except that there is no representative in the top
subrectangle. Finally, the top right slice goes into a special class k + 1 by
itself. (See Figure 2.2.) It is not hard to verify that these classes satisfy the
desired condition. Note that the total number of classes is k+ 1. Hence, if we
let M be the maximum number of items appearing in any slice, an obvious
heuristic, say, H, can pack all of the items using only (k + 1)M bins.

Now fix k and some € > 0, and let A be the event that M < (n/pk)(1+e¢).
The bound that usually holds is the one we can conclude in the event that A
occurs, i.e., in the notation of (2.41), g(n) = (k+ 1)M < T—;E:,ti(l + €); when

2.5. BOUNDS THAT USUALLY HOLD ‘ 29

1
8 7 6 5 4 3 2 1 E+1
p—1
p
12‘3456789123456789123456789123456789
0

a 1/p=1/5 b

Figure 2.2: Packing about a reciprocal. This figure illustrates a simple
proof that items distributed uniformly over an interval symmetric about a
reciprocal 1/p can be packed using an average of n/p bins. Here p'= 5, and
the number k of slices per subrectangle is 9. The symbol appearing inside a
slice indicates the class of which it is a member.

30 CHAPTER 2. ANALYSIS TECHNIQUES

A fails, we fall back on the trivial bound ¢'(n) = n, which corresponds to
using a separate bin for each item.

To estimate the probability g, that A fails, we begin by considering a
single slice and letting S, be the number of items in that slice. Now the
sizes of the items are independent, and each falls in the slice with probability
1/pk. Hence the number of items in the slice is distributed as the sum of
n independent variables, each of which is 1 with probability 1/pk and 0
otherwise. Thus an application of Hoeffding’s bound (Theorem 2.5, with
z = ey/n/pk) shows that

PI‘{Sn > (n/pk)(l + 6)} = PI‘{Sn _ E[Sn] > Gn/pk} < e_n€2/2p2k2'

Since there are pk slices, by Boole’s inequality the probability that any of
them has more than (n/pk)(1 + €) items is

2k2

¢ = Pr{A} < pke™ < 12K
which is still exponentially small in n. Hence (2.41) becomes

E[H(L)] < (1= 0)9(n) + 029/ () ~ g(r) = S5 4=(1 4 o).

Since this holds for arbitrarily large k and arbitrarily small ¢, we can combine
it with (2.42) to obtain
E[OPT(L,)] ~ n/p.

The general structure of this approach also appears in the proof of the up-
right matching theorem in Section 3.2 and in the analysis of two-dimensional
packing in Section 7.1.1.

2.6 Monotonicity

We say that a bin-packing algorithm is monotonic if increasing the size of
some of the items, or adding new items, can never decrease the number
of bins used by the algorithm. (For the scheduling problem, an analogous
monotonicity property could be defined, but it does not appear to be as useful
in that problem.) OPT is clearly monotonic. Of the algorithms discussed in
Section 1.4.2, one can show that NF is monotonic, but that the FF and FFD
algorithms and the BF and BFD algorithms are not (see [John73, Murg88]).

As an example of the use of monotonicity, suppose we start with a list
L, = (X1, X2,...,X,), and create a new list L!, = (X{,X;,...,X,), where

2.6. MONOTONICITY 31

X, = r[X,/r] for some constant r > 1. Informally, we are rounding each
element up to a multiple of 1/r. Monotonicity assures us that OPT(L,) <
OPT(L;,). As we will see below, by a somewhat different rounding technique
we can make the difference between the solutions quite small. The fact
that L] has only r distinct item sizes can be very helpful. For example, it
can enable us to use the linear programming approximation, which we now
describe.

The bin-packing problem can be viewed as a type of integer program. By
relaxing this to a linear program, we can gain some insight into the problem.
We want to consider problems in which many items have the same size, so
we will define somewhat different notation in this section. Suppose there
are N different sizes, sy, s2,...,sn € (0,1], and we have m; items of size s;;
for reasons that will become clear, we will later, when we relax the integer
program to a linear program, allow the possibility that the m; be nonintegers.
If ¢= (c1,¢2,...,cn), where 0 < ¢;, satisfies Ef’:I c;s; < 1, we will say that
C is a possible configuration for a bin. Let C be the set of all possible such
configurations. (Note that |C| may be a very large number; in fact, since we
have not given any positive lower bound on the s;, we cannot give any bound
on |C| as a function only of N. However, since each s; is positive, we know
that |C| is finite.) Let M = |C|, and for each 0 < j < N and 1 < k < M,
let Cy; be the number of items of size s; in the kth configuration. Now
to perform the packing of all the bins, we only need to decide how many
times to use each configuration; let £, be the number of times we use the kth
configuration. We obtain the following integer program I:

M
minimize Z tr
k=1
M
subject to Ztkaj >m; forj=1,...,N,
k=1
tr >0 fork=1,...,M. (2.43)

(Note that in the middle line of (2.43) we could replace “> m;” by “= m;”
without changing the value of the solution.) The solution to this integer
program will yield the optimum number OPT(I) of bins needed to pack the
items. Let LIN(I) be the solution to (2.43) with the constraints on the tx
relaxed so that they may be arbitrary nonnegative reals.

It is of interest to see the relationship between these two problems.

Clearly, relaxing the constraints can only lower the minimum, so LIN(I) £
OPT(I). To obtain a bound in the other direction, we may solve LIN(I) and

32 CHAPTER 2. ANALYSIS TECHNIQUES

then round each ¢; up to the next integer. Although the number of ¢, may
be very large, we know that there exists an optimum solution in which the
number of nonzero ¢, is at most equal to the number ‘N of constraints, so we
have the following:

Lemma 2.8 LIN(J) < OPT(I) < LIN(I) + N.

In Section 2.7.2 we will give an application of this bound. In [CW86a] the
notion of configurations and linear algebra are used to give a characterization
of the growth rate of wasted space in a packing for discrete distributions; a
further discussion can be found at the end of Section 5.3.

2.7 DMore specialized techniques

Classical results from applied probability have been used in a variety of ways,
some involving considerable ingenuity. We describe several of these results
in this section.

2.7.1 Applications of the Poisson process

As we mentioned in Chapter 1, the lack of independence can be a significant
source of difficulty. Occasionally, one can produce the desired independence
by a further randomization of the input. For example, let N be a random
variable with a Poisson distribution and mean value n. Equivalently, N may
be taken as the number of renewals in [0,1] of a Poisson process with rate
parameter n. If we draw NV i.i.d. values from U(0,1), then for any interval I C
[0,1] the number of points in I and the distribution thereof are independent of
events outside of I. The standard deviation of NV is y/n, and for large n, N/n
is likely to be very near 1, so in some sense the distribution just mentioned
is not far from the distribution of n i.i.d. values drawn from U(0,1). In some
cases one can thus use the Poisson distribution to simplify an analysis. An
application of this approach to a packing problem appears in Section 6.1.1.

A useful, complementary view of the above property of Poisson processes
can be stated as follows (see [Cinl75], for example). Let 0 < ¢ < t2 <
. < tpy1 be the first n + 1 event times of a Poisson process with rate
parameter 1, and define t, = 0. By definition, the differences #;1; — ¢;,
i=1,2,...,n, are i.i.d. with an exponential distribution. It is well known
that the ratios ¢;/tn41,1 < ¢ < n, are independent of ¢,1; and distributed
as the order statistics of n i.i.d. uniform random draws from [0,1]. Thus

2.7. MORE SPECIALIZED TECHNIQUES 33

in some cases replacing these order statistics by the ¢; can be useful when
analyzing problems involving the differences of these order statistics. (See
[KT81, Chapter 13] for more discussion of the relationship between the
Poisson process and order statistics.)

As an example of the power of this observation to simplify analyses,
consider the following variation of the LPT scheduling rule discussed in
Section 1.4.1, which we call PLPT for Paired Largest Processing Time first.
(The analysis below can be found in [CFL84b], where PLPT is motivated
by the easily proved fact that a reversal of the schedule leads to minimum
total flow time.) Again we begin by sorting the tasks into order of decreasing
size. Now, however, we schedule tasks two at a time; specifically, we take
the largest two remaining tasks and place one onto each processor, with the
larger of the two going to the processor having the smaller workload so far. If
the number of tasks is odd, the last (smallest) task to be scheduled goes onto
the processor with the smaller workload. Thus, if we let V; be the variation
between processor workloads just after tasks X(ny, X(n-1,..., X(i+1) have
been scheduled, we have

Vo, =0,
Vi = |Vigz — (X(i42) — X(i41y)| for n — i even,
Vo= Vi — X(yy| if nis odd. (2.44)

(We leave V; undefined if ¢ # 0 and n — ¢ is odd.) The distribution of ¥
may not be immediately apparent from this recurrence. To see what this
distribution is, first, let X(l),X(g), .. be the successive epochs of a Poisson
process with rate parameter 1; i.e. X(,+1) X(.t =0,1,2,..., with X(o) =0,
are 1.i.d. random variables havmg an exponential dlstrlbutlon with mean 1.
We may define corresponding variables Vi by

Vo =0,
V. = |f/}+2 — (X(;+2) — X(;+1):;| for n — ¢ even,
Vo = |f/1 - X(1)| if n is odd.
Given X(n+1), the random variables X(Q) /X(n+1) are distributed as the order

statistics of n independent samples from U(0,1), so given X(n+1) = z, we
have

E[V% | Xntr) = 2] = <E[V4)].
Since E[X(,H_l)] =n + 1, we have
E[V] = (n + DE[VA. (2.45)

34 CHAPTER 2. ANALYSIS TECHNIQUES

Thus it remains to determine E[Vb] this, however, is straightforward. By
construction, the distributions of X(l) and of each difference X(1.+1) - X(1
are 1ndependent and exponential with mean 1. Then by a simple induction,
each V; has an exponential distribution with mean 1, since the (absolute) dif-
ference between two independent exponentially dlstrlbuted random variables
with mean 1 is again exponentially distributed with mean 1 (see [Fell71, Sec-
tion I1.4]). In particular, E[V] = 1. Thus by (2.45) we see that the expected
fina] variation in the original problem (solving (2.44)) is

E[Vo] = E[Vol/(n +1) = 1/(n + 1)

Another illustration of this technique is provided in Section 4.1.

We have noted a tight relationship between the exponential distribution
and the differences of order statistics of uniform random variables. It is also
worth noting that the differences of order statistics of i.i.d. exponentially
distributed random variables can be easily expressed.

Lemma 2.9 ([Fell71, Section 1.6, Example (a)]) Let X1) < Xz < -+ <
X(n) be the order statistics of n i.i.d. exponential random variables with mean
1, and define X(oy = 0. Then the differences Xy1)— X)), 0 <1 <n—1, are
independent, and X ;41— X(;) is exponentially distributed with mean 1/(n—1).

An application of this lemma will appear in Section 4.2.

2.7.2 Kolmogorov-Smirnov statistics

Let Xi,X,,...,X, be a set of i.i.d. samples according to some continuous
distribution F. Their sample distribution function is defined as

1
Fn(x)=5{i: Xi < =z}|

For large n we would expect that the difference between F), and F' would be
small. The Kolmogorov-Smirnov statistic, defined as

D, = supan(x) — F(x)l,
provides a measure of this difference and has been studied extensively (see

[Durb73, Chapters 2-3]). Of special interest here will be the one-sided
Kolomogorov-Smirnov statistics given by

D} = sup(Fu(a) - F(2)),

2.7. MORE SPECIALIZED TECHNIQUES 35

D} = sup (F(z) = Fu(2)).

It is not hard to show that these statistics both have the same distribution,
and that this distribution does not depend on the distribution F' (assuming
F is continuous); in fact, the distribution of D} and D, is the same as that

of)

max {l - U }

1<54n \n ()
where the U(;) are the order statistics of ni.i.d. samples from U(0,1). Smirnov
has shown that (see [Durb73, Section 3.6])

Pr{D: < %} =1-—¢% (1 —

(The constants hidden by the O-notation are independent of n but not
independent of z.) It is also easily established that

Pr{Dj; > %} = 0(e™)

for some a > 0. As a consequence we can easily compute

32;5 +0(1 /n)) . (2.46)

E[nD}] = E[nD;] = ©(Vn). (2.47)

In applications, the inequality D} < d can occasionally be transformed
directly into a corresponding bound on a given performance measure. For
example, Bruno and Downey [BD86] observed how this works in analyzing
the bound in (2.40) when task sizes are independent samples from U(0,1).
In this case D} < d means that ¢/n — X(;) < d holds for all 7 = 1,...,n, s0
a summation yields 2 — dn < 37, X;. Substituting into (2.40) gives

m—-1 _2m-1) 1

LS <
R (Laym) < (n+1)/2—dn — n 1-2d

Then the estimate (2.46) can be used to bound the distribution of R**(Ln,m).
Some applications of Kolmogorov-Smirnov statistics to the analysis of bin-
packing can be found in [BD85, Knd81, RT89b, RT89c|; we make no claim
that this list is exhaustive.

In a demonstration of the power of the estimate (2.47), suppose we have an
arbitrary (not necessarily continuous) distribution F" over [0,1]. As usual, let

OPT(L,) be the number of bins required to pack n items drawn according to
F, and define the packing constant for F' to be ¢ = lim,_ E[OPT(L,)]/n.

36 CHAPTER 2. ANALYSIS TECHNIQUES

(Informally, the packing constant is the limiting expected number of bins
used per item in an optimum packing.) We will give a simple proof that
E[OPT(L,) — nc] is O(y/n). (This is actually a special case of a result in
[RT89f], but it is of interest to see how easily it can be obtained by the
use of the Smirnov estimate and the linear programming approximation of
Lemma 2.8.)

To begin, we let m be a parameter to be chosen later and define a new
distribution G consisting of m atoms, each of weight 1/m, at s; = F~(j/m),
for j =1,2,...,m. (Here we define F~}(2) = min {z: F(z) > z}.) Let ¢n,
be the packing constant for GG. It is not hard to see that

em —1/m < ¢ < e,

so we investigate ¢,,. Note that generating n items X; distributed according

to G can be achieved by taking n uniform samples U; and setting X; =
F=Y([mU;]/m). Now

nD, = max {nz - i{z : U < z}i} = c%lfgxl“{z s Ui > z}| -(1- z)n}
Clearly, if we remove the items generated by the largest nD; of the U; and
pack them in individual bins, we will be left with a set of items X with sizes
in {s;}1<j<m such that

[{i: X;>s;}<n(l—-j/m) forl<j<m. (2.48)

Let OPT(I) be the number of bins required to pack these remaining items.
Note that OPT(I) < OPT(I"), where I’ contains exactly [n/m] items of
each size s;. Finally, let LIN(I') be a linear programming relaxation of this
problem, in which we are to pack exactly n/m (rather than [n/m]) of each
item size. In view of Lemma 2.8, we have OPT(I’) < LIN(I') + m. It is not
hard to see from the law of large numbers that LIN(I") = nc,,. Hence we can
bound the total number OPT(L,) of bins required to pack all of the items
by
OPT(L,) < nD; +m + nem < nD,; +m+n(c+1/m).

(See [Rhee90] for an asymptotically much stronger bound.) Then taking
expectations using (2.47), and letting m = /n, we obtain

E[OPT(L,)] — nc = O(v/n),

where the constants hidden by the O-notation are independent of the distri-
bution.

2.7. MORE SPECIALIZED TECHNIQUES 37

2.7.3 The second moment method

By an application of Chebyshev’s inequality it is not difficult to prove that
for a random variable whose first and second moments exist,

E[Y?] — E[Y]?

Pr{Y =0} < YT

This inequality has often been used to show the existence of combinatorial
quantities; its use is called the second moment method (see [ES74, Chap-
ter 16)).

L. A. Shepp® [Shep72a, Shep72b] has shown how one can prove a some-
what stronger inequality by a different route. Using Schwarz’ inequality, we
have

E[Y])” = E[liy20Y1* < E[ly2q)]E[Y?] = Pr{Y # 0}E[Y?],

so that
E[Y?] — E[Y]?

Pr{Y =0} < e el

In Section 4.3 we will let Y be the number of feasible solutions to the
partition problem that satisfy a certain constraint and use this result to show
that Y is likely to be nonzero. This will enable us to state an asymptotic
bound for the median of the optimum solution.

Recently Berger [Berg91] has presented a related technique called the
fourth moment method. She notes that by a simple direct argument, or by
Holder’s inequality, one can show that for an arbitrary random variable Y
we have
E[Yz]s/z

E[IY]] > W-

(2.49)
Here we give a simple illustration of this method.* Let Y be the sum of n
independent variables Xj, Xa,...,X, each of which is +1 with probability
p, —1 with probability p, and 0 with probability 1 — 2p. Assume n > 1;
p is allowed to vary with n provided np > 1. We wish to estimate E[|Y]].
(Note that because we are letting p vary with n, the argument leading to
(2.29) (page 23) may not hold here; in particular, Y need not approach a
normal distribution as n — ©0.)

3Shepp attributes the basic idea to [Bill65].
4Berger gives considerably deeper examples than the simple one presented here, by
applying this inequality to the design of parallel algorithms.

38 CHAPTER 2. ANALYSIS TECHNIQUES

Using the fourth moment method we can estimate E[|Y|] easily. One
readily computes that E[Y?] = np. Now E[Y*] can be expressed as

>3 E[X:X; Xk X

1k=11=1

>

n n
=1 j=

Note that some of the indices i, j, k, and [may be equal. In fact, it is not
hard to see that E[X;X;X;X)] vanishes unless all four indices are equal or
two of them equal one value and the other two equal another value. Using
this observation we can readily compute E[Y*] = ©(n?p?), and thus by (2.49)
we have

E[Y]) = Q(v/np),
where the hidden constants are independent of both n and p. Using Theo-
rem 2.6 it is not hard to establish that this bound is tight, so

E[IY]] = ©(y/7p)- (2.50)

This fact will be useful in Section 3.1.1.

2.7.4 An application of renewal theory

Let Y1,Y2,... be a sequence of i.i.d. nonnegative random variables, and let
Sy be the partial sums given by
g = {0 forn =0,
" L Spe1 + Y, forn>0.

For convenience, let Y be a random variable distributed as the Y;. If we
imagine that the Y; are distributed as the lifetime of some component that is
replaced when it fails, we can interpret S, as the time until the nth failure.
This process is called a renewal process, and the “failures” are called renewal
events. Sometimes it is more useful to think of the process from a different
point of view: we let N; be the number of failures during the time period
[0,¢], so that
Pr{N; > n} = Pr{S, < t}.

Assuming that Y has mean g and variance o2, one can show that E[N;] ~ ¢/p,
which fits well with the intuition that the failure rate is about one item every
¢ time units. In fact, one can prove a much stronger description of E[IV].
The following definition will be useful: if Y assumes only nonnegative integer
values, we say that the process is periodic if there is an integer k¥ > 1 such
that Pr{Y = i} # 0 only when ¢ is a multiple of k; a process that is not
periodic is aperiodic.

2.7. MORE SPECIALIZED TECHNIQUES 39

Theorem 2.10 Suppose the time between renewal events in a renewal pro-
cess is distributed as a random variable Y, with mean u and variance o2.

Then

a) if Y assumes only nonnegative integer values, and the process is aperi-
odic, then [Fell68, Section XIII.12, Exzercise 22]

t ol tp—

E[Nt] = ; + 2—#2 + 0(1),

and

b) if Y has a density, then [Coz62, Section 4.2]

2 2

_ L, o

In [CFGR], renewal theory is applied to a variation of the bin-packing
problem in which we say a bin is covered if it is packed to a level of at least
1, and we wish to maximize the number of bins covered; let us call this the
bin-covering problem. Next Fit is easily adapted to this new problem. We
initially select an empty bin as the current bin. Then, for each item, we pack
it in the current bin; if this causes the bin level to be at least 1, close this
bin and start a new (empty) current bin. Call this algorithm Covering Next
Fit, and define CNF(L,) to be the number of bins covered by this algorithm.
(Note that at the end of the algorithm, the then current bin will not count as
being covered, even if it contains some items, because the total size of these
items will be less than 1.)

Assume that the items to be packed are i.i.d. uniform over [0, 1]. It is not
hard to compute that

k k
Pr{ZX; < x} = % provided z < 1.

i=1
It is convenient to suppose temporarily that an infinite sequence of items is

available to be packed. Then, if we let v; denote the number of items in the
.covering of the jth bin, we see that '

k k 1
Pr{v1 > k} = Pr {21)(1 < 1} = Pr {;X, S 1} =]\,T[(251)
Note that an item is always packed into the first bin for which it is considered,
so the v; are i.i.d. Hence the number of bins covered by n items corresponds
to the number of renewal events in the first n time units of a renewal process

40 CHAPTER 2. ANALYSIS TECHNIQUES

in which the time between renewal events is distributed as given in (2.51).
Hence, by Theorem 2.10, if we let u and o2, respectively, represent the mean
and variance of vy, we have

n ol4pu—u

E[CNF(L,)] = LT T + o(1). (2.52)

The quantities g and o? are readily computed using generating functions.
(For discussion of generating functions of random variables the reader is
referred to [Fell68, Knut73, Luek80, PB85].) By (2.51) we have

> Pr{v; > k}2* = ¢,
1=0

so since Pr{v; = k} = Pr{v; > k — 1} — Pr{v; > k}, the generating function
for the random variable v; is

P(z)= iPr{vl =k}2F =14 (z=1)¢.

Hence
p=P(l)y=ze|,_, =e¢,

and
02 = P”(l) + Pl(l) - ”2 = (Z + 1)62 |z=1 + Zez |z=1 - 62 = 36 - 62'
Inserting these values into (2.52), we obtain the remarkably precise estimate

E[CNF(L,)] = 32—2— —140(1).

(For further investigations of the probabilistic behavior of the bin covering

problem, see [RT89d, Rhee90].)

Chapter 3

Matching problems

Let n plus points and n minus points be chosen independently and uniformly
at random in the unit square. Let M,, denote a matching of the plus points to
minus points and let (P~, P*) denote a pair of matched points (or an edge)
in M,. Define d(P~,P*) as the Euclidean distance (edge length) between
P~ and P*. In Section 3.1 we discuss the following estimate for the expected
total distance between matched points, a result first proved by Ajtai, Komlds,
and Tusnddy [AKT84].

Theorem 3.1 Let M, denote a matching that minimizes the sum
> (p-p+yeM, A(P~, P*). Then

E| S 4P, PY)
(P_,P+)€Mn

=@(\/;Ll—mg—n).

This total-edge-length matching problem is perhaps the most basic of the
stochastic planar matching problems. Another problem, of even greater use
to us, is the up-right matching problem. Here we have a total of n points,
with each being an independent random draw from the unit square as before,
and each being a plus or minus with equal probability. Thus the numbers of
plus and minus points are described by a binomial distribution. Now let M,
denote a matching of plus points to minus points such that matched pluses
are above and to the right of their corresponding minuses and such that the
number of points so matched is a maximum. Thus, if (P, P*) € M, where
P~ =(z~,y") and Pt = (z*,y"), then 2~ < z* and y~ < y*. The problem
is to estimate the expected value of U,, the number of points left unmatched
in M,. Figure 3.1 shows an example.

~ In [Shor86], Shor proved that E[U,] = Q(+v/nlog®*n); also, Leighton and
Shor [LS89] and Rhee and Talagrand [RT88a] showed that there exists a K

41

42

CHAPTER 3. MATCHING PROBLEMS

D S/
S/
D
S/
S/
® e
S/
2

Figure 3.1: A maximum up-right matching. Here n = 14 and U, = 4.

3.1. PROOFS FOR EUCLIDEAN AND RIGHTWARD MATCHING 43

such that Pr{lU, > Ky/nlog¥*n} = n=¥ V%" from which it follows that

E[U,] = O(/nlog®*n). Hence the following precise asymptotic estimate is
available; it will be proved in Section 3.2.

Theorem 3.2
E[U,] = O(/rlog®*n).

We will also study a third variation involving rightward matching, where
matched pluses are required to be to the right of their corresponding minuses.
A variation not covered here considers the problem instances of Theorem 3.1
and asks for an estimate of the expected maximum edge length in a matching
that minimizes this quantity [LL82].

The literature on stochastic planar matching is relatively recent. A survey
on the subject and its connections with bin packing can be found in [Shor85b];
this survey also discusses the duals of the matching problems expressed as
linear programs.

In addition to bin packing, many applications have been cited for stochas-
tic matching results. These include transportation assignment problems,
VLSI design, computer storage allocation, and hypothesis testing in statistics.
However, bin-packing applications provided a special impetus to the research.
Here, the seminal paper is that of Karp, Luby, and Marchetti-Spaccamela
[KLMS84], who discovered the relationship between two-dimensional bin
packing and up-right matching.

The remainder of this chapter focuses on stochastic matching results to
be used in the bin-packing analysis of later chapters. The use of Theorem 3.1
is indirect; the proof in Section 3.1 introduces a construction essential to the
proof of a fundamental lower bound on on-line bin packing. The up-right
matching estimate proved in Section 3.2 will be exploited in Sections 6.2
and 7.1.3 in the analysis of efficient one- and two-dimensional bin-packing
algorithms. As will be seen, the proofs to follow create many opportunities
to apply the fundamentals of Chapter 2. (On a first reading, one may wish
to read the theorem statements but not the proof details. An understanding
of the proofs, which are rather arduous, is not needed in later chapters.)

3.1 Proofs for Euclidean and rightward
matching

This section begins with a proof of the €(y/nlogn) lower bound of Theo-
rem 3.1. We then discuss the upper-bound proof. The section concludes

44 CHAPTER 3. MATCHING PROBLEMS

with a rightward matching result that makes use of the lower-bound proof
for Theorem 3.1. Our general approach to the proof of Theorem 3.1 is similar
to that in [AKT84]. However, our lower-bound proof uses more elementary
methods, so the details differ significantly.

3.1.1 The lower bound

As is common in probabilistic analyses, part of the strategy of the following
proof is the avoidance of difficulties caused by a lack of independence. Central
to the proof is the following simple idea: suppose X is an integer-valued
random variable whose distribution is symmetric about 0; that is, for all
integers ¢, Pr{X = ¢} = Pr{X = —:¢}. Now suppose we construct two
random variables Y and Z from X as follows. Let Y = |X|. If X =0, let Z
be £1 according to a toss of a fair coin; otherwise, let Z be 1 if X > 0 and
—1if X < 0. Then it is easy to see that Y and Z are independent. We will
refer to this simple fact below as symmetry independence. '

In preparation, we need the following definitions. Let S be a square with
sides of length s parallel to the z or y axis. The triangular regions of S are
the four triangles bounded by the edges and diagonals of S; these regions are
numbered I-IV in Figure 3.2. For points (z,y) € S, f(S;z,y) denotes the
distance to the nearest boundary of S. Define f(S;z,y) = 0for all (z,y) & S.
Thus, for (z,y) in the square S of Figure 3.2,

T — o if (z,y) €1,
) _Jzo+s—z if (z,y) €1l
f(S,:c,y) - Y — Yo lf (x,y) € III, (31)

yo+s—y if (z,y) € IV.

Note that f(S;z,y) is continuous; it is also differentiable except on the
edges and diagonals of S. The derivatives (%E,%S) take on the constant
values (1,0), (—1,0), (0,1), and (0,—1) throughout the interior of regions
I, 11, 111, and IV, respectively. When possible, we will use the abbreviation
f(S) = £(S;z,y).

E[£(S)] denotes the expected value of the distance to the nearest bound-
ary from a point (x,y) chosen uniformly at random in S. A simple calculation
shows that, for the square in Figure 3.2,

E[f(S)] = =. (3.2)

" IThe proof presented in this section was worked out in collaboration with P. W. Shor.
The underlying ideas can be found in Shor’s Ph.D. thesis [Shor85b].

(=23 VA

3.1. PROOFS FOR EUCLIDEAN AND RIGHTWARD MATCHING 45

Zo, Yo+ S Zo+ S, Y+ S

v

II1

Zo, Yo Zo + S,Yo

Figure 3.2: A square S and its triangular regions.

Let P be a set of points in the plane, each of which is labeled with a plus or
minus. The subsets of plus and minus points are denoted by {P*}, {F},
respectively. The plus discrepancy AT (S) of a square S is simply the number
of plus points of P in S minus the number of minus points of P in S.

In order to prove

E [S 4P, PY)

(P-,Pt)eM,

-8 (o).

we construct a function w = w(P), P = {PF} U{F}, such that?
E [waﬁ) - w(Pr>] =0 (y/nlogn), (3.3)
J=1 '
and for any two points P and P’ in the unit square

[w(P) — w(P)]
d(P, P")
2 As noted in [AKT84], this approach can be attributed to Ford and Fulkerson [FF62].

It is easy to verify that w arises as the dual function in a linear programming formulation
of the matching problem.

< 1. (3.4)

46 ' CHAPTER 3. MATCHING PROBLEMS

To see how such a function would prove the lower bound, consider any
matching of the plus points to the minus points, with the points indexed
so that Pt is matched to P, for 1 < 1< n. By (3.4) and then (3.3)

E [lz:; d(Pf, Py o (, [log n) ,

E [2 w(B}) — w(P)

=1

and the lower bound is proved.

To develop the function w, we first define a simpler function v that satisfies
(3.3) but not (3.4). Later, v will be modified so as to obtain a function w
satisfying both (3.3) and (3.4).

Let G;, ¢ > 1, denote the 4' x 4! subdivision of the unit square into
16' grid squares, each having sides of length 47*. Let S;;, j = 1,2, ..., 16
denote the jth grid square in G;. (How these squares are enumerated is
unimportant.) Go contains only the unit square Sg;. Corresponding to the
sequence Go, G, ..., the function v is constructed in r stages according to

the recurrence
Vo = 0,

vigr =v;+ 6 fori >0, (3.5)
with é; defined as follows.

For each j, divide up S;; into its 16 constituent grid squares of G;y;, and
then organize these grid squares into pairs as shown in Figure 3.3; paired
squares are called companions. We want to define é; in (3.5) so that v;44
is obtained from v; by adding for each j = 1,...,16' either plus or minus
f(Sit1,5)/+/clgn according as the plus discrepancy of Sit1,; is, respectively,
greater or less than that of its companion. (Here, ¢ > 0 is a universal constant
whose role will be described later.) To accomplish this, put

16°

b; = Z(S,'j, (3.6)
i=1

where
2 b(SPIFSP) — FSENL, (3.7)
and for 1 <k <8,
1 if A"'(S(k)) A"'(S(k))
b(Sz(f)) — { \fclgn (38)

S it AR(SP) < A%,

3.1. PROOFS FOR EUCLIDEAN AND RIGHTWARD MATCHING 47

N ’
N ’
N /s
. L
N 5) &(5) ’

N\ Sl] S’J 7’

SO NN e (4)
SU AN e SU
N ’

N ’
N ’
N ’
N L’
(8 N ’ 6)
Sij \\\ g Sz]
&(1) N P C))
Sz] \\ // Sz]
’ N
’ N
7 AN
&(8) ‘. N &(6)
Si al N Sy
. &(3) o(2) N
PRGN
’ N
’ N
’ N
’ N
7 AN
/) A7) .
al St Sij N
’ (3) (2) N
, St_‘/ S’J N
’ N
Sis

Figure 3.3: The pairs in S;;. Note that the companion squares Si(f) and S’,(Jk)
are either adjacent along a diagonal or they are the adjacent interior squares
of the first or last row or column.

48 CHAPTER 3. MATCHING PROBLEMS

For resolving ties (i.e. A"'(S(k)) A"'(S())) we assign b(Si(f)) one of the two
values in (3.8) by the toss of a fair coin.

At first the reader might think that it would be simpler to base the sign
choice in (3.8) on the sign of the plus discrepancy of a single square, rather
than on the difference between the plus discrepancies of two companions.
The advantage of the latter approach is that even though the numbers of
plus points and minus points in S;; may be conditioned (because of earlier
stages in the process), the difference A"'(Si(f)) — A"'(S,-(f)) has a distribution
symmetric about 0. This will enable us to take advantage of symmetry
independence.

The desired function v = v, is is now obtained by putting r = [11gn].
For simplicity, we assume hereafter that n is such that ;lgn is a positive
integer. Note that then there is an average of one plus point and one minus
point per grid square in G,. It is routine to extend the following analysis
to general values of n; only the constants hidden in our asymptotic results
change.

To show that v satisfies (3.3), we first fix ¢ > 0 and verify that, for the
function added at the (¢ + 1)th stage,

E IZ:;&(B*)—&-(B‘)]=Q(oen) (3.9)

Since this estimate is independent of ¢, the expected contribution of all tlgn
stages gives the desired result in (3.3) with w replaced by v.

A bit of compact notation will be useful. Let

Zf(S - f($) IP- =

S (053 B = £(3; B) = 32 (F(8; P0) — 18).

=1 =1

By (3.6)-(3.8), the basic quantity to be estimated in a proof of (3.9) is
E(S) S, £(S) — £(S) |P_], where S and § are companions in Giyi. The

points of P in a grid square of G;;; are distributed uniformly at random
over that square. Let N* and N~ be the number of plus points and minus
points in S, respectively. Define N+ and N- similarly for 5. Then by (3.2)

3.1. PROOFS FOR EUCLIDEAN AND RIGHTWARD MATCHING 49

and (3.8)

e (6(5) 32 £(5) — £(9) 2L | ¥, N, B¥, K-
=1

1 .
6\/c Ig n 4""1

Let A be the area of either of the two compamons By symmetry indepen-
dence, the distribution of [N* — N~ — (N+ — N~)| is not conditioned by any
comparisons we have made thus far; its distribution is the same as that of the
absolute value of a variable constructed by adding n variables, each of which
is +1 with probability A, —1 with probablllty A, and 0 otherwise. From
(2.50) (page 38) we know that E[|[N+ — N~ — (N+ —N-)|] is ©(v/nA). Since
in our case 4 = 16-(+1) this expectation is ©(y/n/4"). Thus by (3.10) the
expected contribution from a single pair of companions is ©(16%y/n/logn).
Since there are ©(16') pairs of companions, the total contribution from them
all is ©(y/n/logn), and (3.9) is established. Thus, if we had let w = v, we
‘would have satisfied (3.3).

Next, we see how to modify the construction to ensure that (3.4) holds.
We begm by analyzing the partial-derivative process {3“ }0< < with v; =

EINY =N —(F*—F). (3.10)

v;(P) and P a point in some S,; not on an edge or diagonal of S,;. By

symmetry a similar analysis applies to . The goal of the analysis is
g

0<i<lr
a proof of the following result, from Wthh a proof of the lower bound follows

readily.

Claim 3.3 Let S and S be companions in G,. Then throughout the triangular
regions of SUS, we have %,% < V172,71 = 1,...,r, with probability
1 — O(e~/).

Proof of claim. First, from (3.1) and (3.8), observe that at point P we
have 24tL = 2% 4 ¢ where a=1/\/clgn or 0. (Note that whether or not a
is 0 depends only on the location of the point P.) It is convenient to retain
the expanded set of sample paths in which stages adding or subtracting 0 are
kept distinct. Note that the values £:1/1/clgn are equally likely at each stage
where a # 0. That 1s, {%} is a martingale sequence. This follows because,
given the number of points in S;;, for any two grid squares S and S’ within
Si;, A(S) — A(S") is equally likely to be positive or negative, independent
of the plus discrepancy of S;;. (Recall that we resolve ties by a flip of a fair
coin.)

50 CHAPTER 3. MATCHING PROBLEMS

To estimate the maximum excursions of {%‘}, let N, < r denote the
number of nonzero steps in {%‘}051'9- Then for a given value of N,,

maXo<i<r | 32| is equal in distribution to maxocicn, |Z:|, where {Z} is a
symmetric random walk starting at the origin Zo = 0. It is easy to show
that maxo<i<n, | Z;i| increases stochastically with N,, so

Vi
- >t} SPr{ max |Z;| >t}, for t > 0. (3.11)
0<i<Ny

T

Pr { max

0<iLr

If 6% denotes the variance of Z,, then by Theorem 2.7 (page 20), suitably
scaled, we have
Pr{ max |Z;| > at} = 0(e~"/?).
0<i< N,

Since 0% = r/clgn = 1/4c, the choice ot = 1/1/2 leads to
~cf4
Pr {0332% %] > ,/1/2} = O(e=*).

Then by (3.11) we have 2% < /172, i = 1,...,r, with probability 1 —
O(e~c/*).

Now 2% can take at most four distinct values in S,;, depending on which
triangular region of S,; contains P. Thus, combining the above analysis with -
that of %13’/‘ and extending the result on S,; to both S;; and its companion,
applications of Boole’s inequality prove the claim. |

We are now ready to modify v so as to obtain a new function w satisfying
both (3.3) and (3.4). We need only change the definition of 5(S) in (3.8) so
that, if 5(S) as defined would lead to a function such that ‘%“ > /1/2 or

%;’/i > +/1/2 at some point in S{JS, then b(S) is taken to be 0 instead.

Then, by definition, we have for the new function %‘f, %‘yﬂ < V172, and

hence (%‘;’—)2 -+ (%‘;—’)2 < 1 throughout the unit square. Property (3.4) follows

directly.

For property (3.3) we note that, by symmetry independence, the event
that a pair of companions is affected by the modification is independent of
the value of |[N* — N~ — (N+ — N-)| for that pair. Thus by Claim 3.3, for
large enough c, the contribution to (3.9) is affected only by a constant factor,
so (3.3) will still hold. Thus both properties (3.3) and (3.4) hold and we are
done. N

3.1.2 The upper bound

Only the lower bound result will be of later use. However, the upper-bound
proof is worthy of discussion. Here we give a heuristic argument which 1is

3.1. PROOFS FOR EUCLIDEAN AND RIGHTWARD MATCHING 51

a slight variation on the proof in [AKT84].> The argument is constructive
in that it defines an algorithm that produces a matching with the desired
expected total edge length. We give below the construction. It is easy
to argue heuristically that the algorithm gives a matching satisfying the
O(+/nlogn) bound; these remarks are given following the definition of the
algorithm. For a proof of the upper bound see [AKT84], and for a completely
different proof see [Tala91].

For convenience, we consider problem instances in which the number of
points is a power of 4. Generally speaking, the algorithm shifts the positions
of the points while successively refining the unit square into grids G} similar
to those in the previous subsection. The G! are 2° x 2° arrays of identical
squares, so the earlier grids G; are given by G; = G}, for « > 0. Each of
the ' = lgn steps of the algorithm consists of two stages; in step i the
two stages are performed on each square in G;_;. At the end of step 7 there
will be exactly n/4' points in each grid square of G!. The desired result is
obtained from an estimate of the expected total distance between the initial
and final positions of the points.

Figure 3.4 illustrates the process applied to the plus points of a square S
in G!_,. S has been translated to the origin for convenience; also assume that
the right edge of S has x coordinate 1. The first stage begins by determining
a median line dividing S vertically into two rectangles, each with half the
points. The median line is placed midway between the closest points on its
left and right. Now translate the median line to the midpoint of the square,
at the same time “stretching” the z coordinates in the smaller rectangle
and “shrinking” the z coordinates in the larger rectangle. The stretching
and shrinking operations are only changes of scale that preserve the relative
positions of the points within each half of S. For example, if the median
line has z coordinate z;, then a coordinate z in the smaller rectangle of
Figure 3.4(a) is transformed to a new coordinate 2’ = z/2z; in Figure 3.4(b).
The shrinking of coordinates in the right rectangle is defined symmetrically.

The second stage of step 7 is a repetition of the first, except that it is
applied to both the left and right halves of S with the point distribution
altered as in stage 1 and with the median lines now drawn horizontally so
as to divide the rectangles into upper and lower rectangles with n/4' points
each (see Figure 3.4(b)). Stage 2 concludes with the stretching and shrinking
operations of stage 1 applied to each pair of rectangles.

3The authors acknowledge discussions with R. M. Karp, who attributes the present
variation to J. Komlds.

52 CHAPTER 3. MATCHING PROBLEMS

:
|
D : o
|
GB: o
(a) @
&) o E
:)
|
!
]
:
|
D : o
1
L e |
(o) [T 1@
4 o E
: @
1
|
(0,0)

Figure 3.4: Moving plus points of S € G;_; in stage 1, step 7. Part (a)
shows the vertical median line at the beginning of stage 1. Note that in
part (b) the portions of the square to the left and right of this line have
been scaled horizontally so that they are of equal width; points are moved
proportionately. Now the vertical median lines are drawn in both halves of
the square, and in the next stage (not shown here) vertical scaling is done
on each of the four subsquares so that both horizontal median lines divide
the square equally.

3.1. PROOFS FOR EUCLIDEAN AND RIGHTWARD MATCHING 53

It is easy to see that at the end of the v’ = llgn steps there will be
exactly one point in each of the n grid squares of G,,. The whole procedure
is repeated on the minus points in S, so that we arrive at a distribution of
points with exactly one plus point and one minus point in each grid square
of G.». Matching the points within such a grid square gives an average edge
length of at most 4/2/n. Then matching all such pairs of points gives a
matching with an O(4/n) expected total edge length. Thus, since we have an
(y/nTogn) lower bound, an upper bound on the expected total Euclidean
distance between the initial and final point positions produced by the r'-step
transformation will yield an upper bound on the expected total edge length
in a matching that minimizes the length.

It is easy to argue the expected-distance result heuristically. The pro-
cesses on the plus points and minus points are obviously independent, as
are the sequences of first stages and second stages in each process. Thus
it is enough to describe the motion of the plus points in just one of the
dimensions. By the successive rescalings of point positions it is natural to
approximate the motion of a point in one of the coordinates by a symmetric
random walk {Xi}i<i<r, in which a point is equally likely to move left or
right at each step, and the X; are independent, bounded random variables
with E[|X:]] = O(+/1/n). Hence it is reasonable to suppose that the expected
final displacement after %lgn steps is bounded by O(y/logn/n).

3.1.3 A rightward matching problem

Before getting into rightward matching we note some important extensions
of Theorem 3.1. Asis commonly the case with asymptotic results of this sort,
the absence of information about multiplicative constants is compensated by
a greater generality of the result. For example, it is not difficult to show that
the ©(y/nlogn) result also holds when [ShorS6] '
i) the number of points is Poisson distributed with mean n,
ii) the points are restricted to lie on an n X n lattice, or the problem is
similarly discretized in just one of the dimensions, or
iii) the n plus points are fixed at the vertices of a VX A/ lattlce and n
minus points are chosen at random as before.
Similar extensions also apply to the up-right matching result in the next
subsection.
The rightward matching extension here is more difficult to prove. How-
ever, the function developed in Section 3.1.1 supplies a useful tool for an-
alyzing the following problem. The problem instance is as before, but the

54 CHAPTER 3. MATCHING PROBLEMS

(? |

Figure 3.5: A rightward matching,.

(0,0)

notion of matching is generalized as follows. In a valid matching, a point P
can be matched either to a point of opposite sign or to a point on the lower
boundary directly beneath P; in the latter case the edge length is the corre-
sponding vertical distance. Whenever points of opposite sign are matched,
the plus point must be to the right of the minus point.

Figure 3.5 gives an example. As illustrated in the figure, valid matchings
do not require that the number of plus points matched to minus points
be maximized. The matching characteristic of interest is the sum V, =
Va(M,) of the vertical components of the edges in M,,. The reason for the
special nature of this problem will be found in the bin-packing application
of Section 6.2.

The following result was proved in [Shor86]; we adhere closely to Shor’s
proof.

Theorem 3.4

E[V.] = Q(y/nlogn).

3.1. PROOFS FOR EUCLIDEAN AND RIGHTWARD MATCHING 55

Proof. The result will follow easily if we can produce a function v

mapping the unit square into [0, 1] such that

1 1‘%:%’)11 <1 for all points P, P’ in the unit square,

2. E[ST, o(B) — v(P7)] = v/ Togn),
3. v is decreasing in z for 0 < z < 1, and

4. v = 0 at the lower boundary of the unit square.

To see how such a function proves the theorem, let Y(P) denote the
y coordinate of an arbitrary point P, and let (P, P’) denote a generic edge
of a rightward matching M,,. Thus P denotes a minus point or P’ denotes a
plus point. If P’ is a plus point, then P is either a minus point or a point on
the lower boundary. Similarly, if P is a minus point, then P’ is a plus point or
a point on the lower boundary. Suppose, first, that (P, P") = (P, Pj"), and
let (z7,y;) and (z},y]) be the respective positions of P,” and P}". Since M,
is a rightward matching, we have z; < :7:;F Thus, if @ is the point (z], yf),
then by property 3

v(P") = v(P) = v(P") —v(P7) < v(Q) — v(F7).

By property 1 we then have v(P') —v(P) < d(Q,P7) = |Y(P) =Y (P)|. If
either of P or P’ is a point on the lower boundary, then both points lie on
the same vertical line, so v(P') — v(P) < d(P', P) = |Y(P') — Y(P)|. Thus
in either case

o(P') — v(P) < |Y(P') = Y (P)|. (3.12)

Then using (3.12) and properties 4 and 2, we have

el s eyl ze| B v(P’)—v(Pﬂ

(P,P")eM, | (P,P")EM,,

=[S u(mn) - u()]

i1

= O(y/nTogn).

It remains to develop a function v with properties 1-4. Note, first, that
the procedure in Section 3.1.1 generates a function satisfying properties 1, 2,
and 4, but not property 3. However, building on this procedure, we can
construct the desired function v as follows.

First, take some interior horizontal slab R of the unit square, say, the
middle third, 1/3 < y < 2/3. By the procedure in Section 3.1.1 we now

56 CHAPTER 3. MATCHING PROBLEMS

develop a function w determined by the subset of the instance P in R such
that w has the properties

1. %)P—ll < 1/6 for all points P, P’ in R, .

2. E[X; w(P]) — w(P])] = Q(y/nlogn), where ly,l5,... index the points
in R, and

4'. w = 0 on the boundaries of R.

This requires only trivial modifications to the procedure in Section 3.1.1.
Restriction to R is only a change of scale, and property 1’ is obtained by
changing some constants (see Claim 3.3). The effect of the modifications
is clearly limited to the multiplicative constant hidden by the Q(v/nlogn)
result.

Finally, we define v in terms of the w above as follows.

L1 —z)y fo<y<1/3,
v=1 w(z,y)+L1-2) if1/3<y<2/3, (3.13)
1-2)(1-y) f2/3<y<L

(Note that the added terms have equal expectation on the plus and minus
points.) By inspection of (3.13) and the properties of w, v has properties 1-4,
so we are done. |

Quite recently, Shor [Shor90] and Talagrand [Tala9l] have shown that
the upper bound corresponding to Theorem 3.4 is O(+/nlogn), thus giving
a O(y/nlogn) result for rightward matching.

3.2 Proof of the up-right matching estimate

This section proves the E[U,] = ©(y/nlog®*n) result asserted by Theo-
rem 3.2 for the up-right matching problem. A relatively compact proof of
the O(y/nlog®*n) upper bound was recently presented by Coffman and Shor
[CSb] and uses several of the ideas discussed in Chapter 2. The proof of the
lower bound is given first, as it is much shorter; it is adapted from [Shor86|
and uses ideas drawn from [AKT84]. Before getting into the proofs, we dis-
cuss a number of preliminary observations and lemmas.

It is convenient to reformulate our problem in terms of the discrepancy
function,* introduced in Section 3.1.1. For any subset L of the unit square the
plus discrepancy, A*(L), is the number of plus points in L less the number of

“Problems of estimating discrepancies in various stochastic settings have received con-
siderable attention from mathematicians; a brief history appears in [LS89, RT88a).

3.2. PROOF OF THE UP-RIGHT MATCHING ESTIMATE 57

minus points in L. The term discrepancy by itself refers to A(L) = |A+(L)).
L is called a lower layerif it is closed (in the sense of point-set topology) and if
(z,y) € L implies (¢',y’) € L whenever ¢’ < z and ¢’ < y. A straightforward
application of Hall’s matching theorem (for the statement of Hall’s matching
theorem, see [BM76, Section 5.2] or [Manb89, Section 10.2.2]) shows that U,
has the same distribution as sup;c, AT(L), where L is the set of all lower
layers. We will prove

E [ilélz): A(L)] = O(v/nlog¥*n); (3.14)

the desired result follows trivially.

For each lower layer L there exist lower layers L’ such that A(L) = A(L’)
with probability 1 and such that the boundaries of L’ are the unit intervals
on the z and y axes and a third, nonincreasing boundary extending from
(0,1) to (1,0). This third boundary is called a lower-layer function.

It is readily verified that the set of partitions of S created by lower-layer
functions is also created by the subset consisting only of decreasing step
functions. Now rotate the unit square 45° counterclockwise, center it at the
point (1/2,0), and scale it down by a factor of v/2. The problem instance
changes as illustrated in Figure 3.6, where a lower-layer step function becomes
a piecewise linear function f(z), 0 < z < 1, with the slopes of the pieces
alternating between +1 and —1.

Hereafter, our terminology refers to this transformed version of the prob-
lem. Lower-layer functions are defined on [0,1], they are completely contained
in the rotated square, and they vanish at £ = 0 and 1. Let F denote the sub-
set of piecewise linear lower-layer functions with slopes alternating between

—1 and +1.

3.2.1 The lower bound

Let N be a random variable having the Poisson distribution with mean n.
We begin by noting that we can assume that the number of points is NV,
rather than n, without changing the expected number of unmatched points
by more than O(y/n); to see this, note that E[|n — N|] = O(y/n), and adding
or deleting a single point can change the number of unmatched points by at
most 1. The use of this Poisson distribution makes events involving points in
disjoint regions of the square become independent; see Section 2.7.1. Thus
we consider a random sample of N +’s and —’s in the rotated square. We
then define a sequence fo, fi,. .., fr of successively more refined lower-layer

58 CHAPTER 3. MATCHING PROBLEMS

o=

|
-

0 1
Figure 3.6: The transformed problem. The plus and minus points shown here

are for the same data as in Figure 3.1. An example of a lower-layer function
f € F is also shown.

3.2. PROOF OF THE UP-RIGHT MATCHING ESTIMATE 59

Figure 3.7: The sequence of triangles after a stage of the refinement process.
The bold line is a lower-layer function.

functions. We show that the cumulative effect of successive refinements is a
function f = fi with an expected plus discrepancy of Q(y/nlog®%n). The
fi are determined in sequence by a k-stage procedure that produces after
each stage a sequence of adjacent triangles. Let the base of a triangle be its
longest side. As illustrated in Figure 3.7, f; is the piecewise linear function
defined by bases of the triangles created by the first stages.

The first stage begins with the single isosceles triangle shown in Figure 3.8,
with vertices at (0,0) and (0, 1) and with the shorter sides having slopes +s,
where s = 1/4/Ign. A triangle T in the sequence produced at stage ¢ has
the following property. Each f;, j > 4, will pass through two vertices of
T, and the portion of f; between these vertices will be contained in T. For

60

CHAPTER 3. MATCHING PROBLEMS

Jo

Figure 3.8: The initial triangle.

3.2. PROOF OF THE UP-RIGHT MATCHING ESTIMATE 61

A G B

Figure 3.9: A typical triangle T'.

example, in Figure 3.7, the final function f will lie in the shaded triangles.
Each triangle T after the ith stage is processed in the (i + 1)th stage so
that T is replaced by two triangles, each with one-quarter of the area of T'.
The number of successive refinements is chosen to be k = [lgn] so that the
smallest possible triangles after the final stage contain at most one point each
on the average.

The procedure for refining a triangle T at stage i is illustrated in
Figure 3.9. Points D, F, and E divide AC into quarters, G bisects AB and
H bisects BC. In the sequence after stage i, T 'will be replaced by either
triangles ADB and BEC or triangles AGF and FHC according to the plus
discrepancy A*(Q) of the central quadrilateral @ (shaded in the figure). If
A*(Q) < 0, then the former choice is made so as to put @ outside the next
lower layer (above f;); if AT(Q) > 0, the latter choice is made and @ is
included in the next lower layer. In the event that AT(Q) = 0, the choice is
made according to a flip of a fair coin. Thus in this refinement @ contributes
an expected increase of E[A(Q)] = E[|A*(Q)|] to the plus discrepancy of the

lower layer.

In general, the centrél vertex B can point down, as in the figure, or up.
In the latter case, the criterion for including @ is reversed; triangles ADB
and BEC are selected if At(Q) > 0, triangles AGF and FHC are selected

62 CHAPTER 3. MATCHING PROBLEMS

if AT(Q) < 0, and a coin flip decides when A*(Q) = 0. Q’s expected
contribution then remains as above.

We call the iteration of this process for k stages the full refinement
procedure. (In the final sequence some triangles will have base slopes with
magnitudes exceeding 1; we will describe a truncated procedure below which
addresses this problem.) We number the stages so that the initial triangle
shown in Figure 3.8 is considered the result of stage 0.

For convenience in the proof, we will associate the triangles constructed
as above with nodes in a perfect binary tree of height k, which we call the
full refinement tree. The root of the tree is labeled with the triangle present
at the beginning of the process, shown in Figure 3.9. Now suppose some
triangle ABC, associated with node z in the tree, is replaced by ADB and
BEC; then triangle ADB is associated with the left child of z, and BEC is
associated with the right child of z. Similarly, if ABC is replaced by AGF
and FHC, then triangle AGF is associated with the left child of z, and FHC
is associated with the right child of z.

We now state four easily proved properties of the triangles created by the
procedure. The properties are keyed to Figure 3.9. The first three can be
proved by elementary geometric arguments; the fourth requires an induction
along with the fact that the sum of the slopes of AD and DB is twice the
slope of AB. Let the base slope of a triangle be the slope of its longest side.

1. The three vertices of T have z coordinates equally spaced, so B and F
fall on a vertical line.

2. The two triangles created from T each have 1/4 the area of T'.

3. The area of the central quadrilateral is 1/3 that of 7.

4. If the base slope of T is is, then the other two sides of T have slopes
(¢ — 1)s and (¢ + 1)s. Moreover, the two triangles created from T are
either both similar to T' (e.g., AGF and FHC in Figure 3.9), or one has
base slope (¢ —1)s and the other has base slope (i +1)s (e.g., ADB and
BEC, respectively, in Figure 3.9).

It is easily verified from the properties listed above that at stage ¢ the full
refinement procedure tests 2¢ central quadrilaterals, each of area A = 4~%s/6,
to determine whether they should be included in the next lower layer. Then
an easy calculation shows that the inclusion or exclusion of a quadrilateral @
at stage i contributes an expected increase in the lower-layer plus discrepancy
that is equal to E[A(Q)] = ©(vnd) = ©(27*y/ns). Thus stage i contributes
a total expected increase of O(y/n log™'/*n). The quadrilaterals generated
by the procedure are all disjoint, so the effect of all k stages is a lower layer
with the desired plus discrepancy (9(\/7710g3/4 n).

3.2. PROOF OF THE UP-RIGHT MATCHING ESTIMATE 63

We now return to the problem mentioned above: we need to avoid the
creation of triangles with base slopes of magnitude exceeding 1. This can
be done quite simply by stopping the refinement process whenever it would
produce a triangle that has a base slope outside of [—1,1]; we continue to
refine other triangles. Thus after each stage we have a function f; that
is a valid lower-layer function with all segments having slopes in [—1,1].
We call this modified process the truncated refinement process, and the
tree it produces, the truncated tree. Triangles (and corresponding tree
nodes) that are no longer produced are said to have been pruned. We must
show that the truncated refinement process still produces a plus discrepancy
O(+/nlog**n).

Note that whenever we prune a node we must also prune all descendants
of that node, so it is sufficient to bound the probability that leaves of the full
tree are pruned; a leaf is pruned if and only if some ancestor (including
the leaf itself) has a base slope outside [—1,1]. Since the base slope of
each node is either equal to that of its parent or is produced by adding
+s to that of its parent, the use of a random walk is suggested. A problem
arises however. Although all of the central quadrilaterals we consider are
disjoint and, therefore, the values of A*(Q) for all such quadrilaterals are
independent, the successive increments to the base slopes on a given path in
the tree are not independent. To see this, consider the table below, which
shows how the base slope of a child differs from that of its parent in various
cases. The symbol “A” indicates that the orientation of a triangle is such
that it is above its base; “57” indicates that it is below its base.

Orientation Left child Right child
of ABC Triangle Slope change | Triangle Slope change
VA ADB (4A) —s BEC (4) +s
AGF (v) 0 FHC (v) 0
A ADB (v) +s BEC (v) —s
AGF (4) 0 FHC (A) 0

A simple randomization, however, does produce the desired independence.
Suppose we generate a random path down the full refinement tree by starting
at the root and then repeatedly move to a child of the current node, using a
coin flip to determine whether to move left or right. Consider the sequence
of slope changes along this path. Since at each step we are equally likely
to go to the left or the right and since we are equally likely to have chosen
either orientation for the child during the refinement process, we see from the
above table that, regardless of the orientation of the parent, at each step the
change in slope is —s, 0, or +s, with probabilities 1/4,1/2, 1/4, respectively.

64 CHAPTER 3. MATCHING PROBLEMS

Hence let Z;, 1 < § < k, be i.i.d. random variables taking the values
—s, 0, and +s with probabilities 1/4, 1/2, and 1/4, respectively. Then the
probability that we reach a leaf that was not pruned is the probability that all
of the partial sums Z§=1 Z;, 0 <1t <k, liein [-1,1]. By using Theorem 2.7
(page 20), it is easy to see that this probability is bounded below by a positive
constant. Hence, on average, a percentage §2(1) of the leaves remain in the
truncated refinement tree; in fact, since the presence of a leaf guarantees the
presence of all of its ancestors, we can conclude that, on average, at least a
percentage §2(1) of the nodes at each level remains. Finally, it is not hard
to see that the choice of whether a node, with central quadrilateral @, is
pruned is independent of the value of A(Q). Thus the truncation changes
the expected plus discrepancy of the original full refinement process by only

a factor of O(1). |

3.2.2 The upper bound

The following lemma applies Bernstein’s bound (Theorem 2.6, page 19) and
furnishes a basis for the probability estimates needed to prove the upper
bound in (3.14). The notation Af refers to the discrepancy of the lower
layer defined by f.

Lemma 3.5 Let f; and f, be two lower-layer functions with [y |fi(z) —
f2(z)|dz = a. Then there exists a ¢co > 0 such that

O /am) if z < an,
O(e™°?) if 2 > an.

Pr{|Af1 —Ale > Z} = {

Proof. Enumerate the points in S, and let R denote the region bounded
entirely by f1 and f; and having area a. Figure 3.10 illustrates the definition.
Define p; = 0 if the kth point of S is not in R; otherwise, px = +1 or —1
according as the kth point is a plus or minus. Then A(R) = Y3, px is a
sum of i.i.d. random variables on [—1, +1], each having mean 0 and variance
a. It is easily seen that, by symmetry, |A(R)| is equal in distribution to
|At fi — At fo]. Since |Afi — Afo] < |ATfi — AT f3], the result follows easily
from Theorem 2.6 (with z/n = z) applied to A(R):

Pr{|Afi — Afs] > 2z} < Pr{A(R) > z} < exp (—%g) . |

The next lemma uses a convention that applies throughout the remainder
of the proof: when we write “g;(n) = O(gz(n)) with high probability”

3.2. PROOF OF THE UP-RIGHT MATCHING ESTIMATE 65

™~

W=

0 1

Figure 3.10: Illustration of the region R. R is R; U R, U R3, and « is the
area of R.

66 CHAPTER 3. MATCHING PROBLEMS

for given functions g¢;(n), g2(n), n = 1,2,..., we mean that there exist
constants # > 0 and ¢ > 1 such that for all n sufficiently large, Pr{g,(n) >
Bg2(n)} < 1/n°. Occasionally, we write whp as an abbreviation for “with
high probability.” Also, the symbol ¢ will be used generically to denote
constants; unless noted otherwise, constraints on ¢ are determined by the
immediate context only.

Lemma 3.6 The following statement holds with high probability. Let fi €
F, and let f; be any other function over [0,1] such that for some ¢ > 0,
|fi(z) — fa(2)| £ eIgn/n uniformly inz, 0 < z < 1. Then |Afi — Afy] =
O(v/nlogn).

Proof. Place a grid of squares of sizes v/Ign/n X y/lgn/n over the unit
square, as shown in Figure 3.11. The number of points within a grid square
entirely inside the rotated square is binomially distributed with mean 21gn.
We find from standard® estimates for this distribution that all squares in the
grid have O(logn) points with high probability.

Now in any column of the grid, f; intersects at most two squares (since
|fi(z)] = 1 on the pieces of f;), so |fi(z) — f2(z)| < ev/Ign/n shows that the
difference in the discrepancies of f; and f, within any column is concentrated
in at most a constant number of squares. Then over [0, 1] the difference in the
discrepancies is concentrated in at most O(y/n/logn) squares. The lemma
follows at once from the fact that all squares have O(log n) points with high
probability. |

Consider the grid introduced in the proof of Lemma 3.6. It is clear
that for any function f; € F we can construct another function f, € F
such that the vertices of f; coincide with vertices in the grid and such that
|fi(z) — fa(z)] € VIgn/n, for 0 < z < 1. Let F* be the subset of such
functions. Figure 3.11 illustrates the construction. Clearly, by Lemma 3.6,
(3.14) will be proved if we can show that

E[sup Af] = O(V/rlog¥n). (3.15)
fEF*

Elementary Fourier analysis shows that a lower-layer function f € F may
be represented by the sine series

f(z) = Zai sinmiz for0 <z <1. (3.16)

i>1

5In particular, we could use Bernstein’s bound Theorem 2.6 by treating the number of
points as the sum of n i.i.d. 0-1 random variables X;, i.e., X; is 1 or 0 according as the
ith point is or is not in a given grid square.

3.2. PROOF OF THE UP-RIGHT MATCHING ESTIMATE 67

1
2
logn % logn
n n
\\ \
N
N
AN
0 L \\ // N \ /;V
N 4 N > N
ST 54
D K7
N 7
§'¥ /7
\\ 7
_1
2
0 1

Figure 3.11: Approximating a function in F by a function in F*. The
function shown as a solid line is in F, and the approximating function shown
as a dashed line is in F™.

68 CHAPTER 3. MATCHING PROBLEMS

These expansions play a key role in proving (3.14). Note that, since
|f'(z)] = 1 on the pieces of f, we have

1= /Ol[f’(x)]zd:c - %Ziza?,

i>1
S0 0 |
S ita?= 2 - (3.17)
i>1 7r
Our final preliminary result describes the convergence in (3.16) for f €

F*, and is an immediate consequence of a result in [Jack4l, page 21]. Let
fn(z), n > 1, denote the nth partial sum in (3.16).

Lemma 3.7 There erists a universal constant ¢ > 0 such that for all f € F~
and for all z € [0,1]

|f(z) = fa(z)| = Jilosn

With these preliminary results in hand, we are now ready to prove the
theorem. As an application of the bound-that-usually-holds technique, we
can write for any ¢ > 0

E[U,] € ev/rlg®*n + nPr{U, > c/nlg¥*n},

since trivially U, < n.

Then, since U, is stochastically bounded by sup; . A(L), it is enough to
prove that sup; .. A(L) = O(\/ﬁlog3/4 n) with high probability. This in turn
will be proved if we can show that sup;cz. Af = O(v/n log®*n) with high
probability (see (3.15)). This last result is proved below.

Let fO, f@ . f(l&n)) he successively better approximations of f € F*
defined by

2k+1
f(k)(x) =Y ai(k)sinmiz for 1 <k < |lgn], (3.18)
=1
where a;(k) is a; truncated to the |3k/2 + Z1glgn| most significant bits in
the fractional part of its binary representation. (Hereafter, we shall omit the
floor notation and treat the affected quantities as integers; extension of the
analysis to noninteger values is trivial and influences only hidden constants.)
By (3.18) differences in accuracy are bounded by

1
23(k—-1)/2 /]g_n'

|ai(k) — ai(k — 1)| < 273¢=D/2+(slen)/2 = (3.19)

3.2. PROOF OF THE UP-RIGHT MATCHING ESTIMATE 69

Clearly, for given f, the possible functions f*) make up a finite set. We
will be counting certain subsets of these functions in terms of properties

defined by

k . ' a? + a2 for y =0,
tf(k) — r f(k) 9=k With r. f(k) — 1 121
() JZE) J() J() 47 22—;J+1 ,(k) fOI'] > 0
(3.20)
From (3.17), we have
1 lgn 2]"‘1 2
Z () =d(k) + Y 3 [Rak)] < leaz — (3.21)
j=0 §=0 i=27 41
and hence
Ign Ign k . 4
3 H(fW) = Z S ri(F®)2ik < Z (fUsm) 221 —k <= (3.22)
k=1 k=1 3=0 k=3

In particular, note that (3.21) implies, for all ¢, that |¢;] < 1.

The following lemma comprises the combinatorial part of the proof.

Lemma 3.8 There erist a universal constant ¢ and a mapping from F* into

R'&™, with values denoted by (sl(f),32(f),...,slgn(f)), such that for each
f € F*, we have Y87 se(f) < ¢,

/o1 |fD(2)ldz < 1/s1(f)/2,

[1r®(@) = 1D (@)lde < fsu7)/2* for 2 <k <lgn,

and such that if i (o) denotes the number of functions g¥)| for which g € F*,
such that sg(g) < o, then

(3.23)

(o) < min{(algn)zk, 2\’”/13”} for 1 < k<lgn. (3.24)

Proof. We will show that, for a large enough constant v > 0, the mapping
su(f) = 7(t(f®) +1/1gn) (3.25)

has the properties claimed in the lemma. First, note that Z}f"l sk(f) = 0(1)
by use of (3.22).

70 CHAPTER 3. MATCHING PROBLEMS

To prove (3.23), consider a function f € F* and write from (3.18), for
2<k<L]gn,

fB(2)— fEN(z) = > ai(k) sinrix-{—i[ai(k)—ai(k—l)] sinTiz. (3.26)
i=2k41 i=1

Let gx(z) and hi(z) denote the first and second sums in (3.26), respectively.
We have from (3.20), f3 g2(z)dz = 1325, a?(k) = 147 (F®), so by
Schwarz’s inequality, with ry = ri(f*)),
1
/0 |9x(z)|dz < 27*/ry. (3.27)
Next, by (3.19),

1h2 1 2k . 2k+2
< Z , — . — <
fy M@)o < 55 laslk) — ailk = 1P < g5y,

/0l Ihi(2)|de < 27%\/2/ Tg . (3.28)

Now add (3.27) and (3.28) and note that \/7x + v/4/Ign < /2(rr + 4/ Ign)
by Cauchy’s inequality. Thus (3.26)-(3.28) yield

SO

1
| 119(@) = 1) |de < /2(ri + 4/ Ign). (3.29)
But since for any v > 4, (3.25) and (3.20) imply

sk(f) =7 (t(F®) +1/1gn) > 2(ri + 4/1gn),

(3.29) yields the second equation in (3.23). (We omit the proof of the first,
which is similar but easier.)

For the second part of the lemma, we note, first, that, for all &, nx(co) <
2V™/ 18" follows from the definition of F*—there are at most 2V 18 fync-

tions f € F*, since the vertices of these functions are restricted to the vertices
of a y/n/lgn x v/n/Ign grid on the unit square. To prove nx(c) < (o lg n)zk,
we first establish a bound on p(7), defined as the number of functions g(*),
g € F*, such that t(¢®) < 7; our bound on i (7) will only be required to
be valid when 7 > 1/1gn.

Consider a function f € F* and rewrite f(*) in (3.18) as

k2i+1

f®(z) = ar(k)sin rz + ag(k)sin2rz + > D ai(k)sinmiz. (3.30)

J=1i=2741

3.2. PROOF OF THE UP-RIGHT MATCHING ESTIMATE 71

Now consider the number of possibilities in the jth inner sum, i.e., the number
of vectors of coefficients a;(k), 29 +1 < ¢ < 2/+1 1 < j < k. It is more
convenient to work with the numbers 4;(k) = a;(k)2%/2\/Ign, since these
are integers by definition of the a;(k). By (3.20), the b;(k) satisfy

b (k) + b3 (k) = 2% Ign(al(k) + al(k)) < 2%ro(f®)1gn,

27+1 27+1
Z bf(k) = 9%k lgn Z a?(k) < 23k_2jrj(f(k))lgn
=27 +1 =27 +1

for 1 <k <lgn. (3.31)

Now divide through by 243/ and sum over j > 0. Assuming that ¢(f)) < r,
this leads to

2i+1

k
2231—% 3 bk Z (FEN2* = ¢(fB)Ign < rlgn. (3.32)

=27 41

Thus the number of functions f*) with ¢(f*)) < 7 is bounded by the num-
ber of pairs (al(k), ag(k)) times the number of vectors (b;,(k), N b2k+1(k))
satisfying (3.32). The former quantity is 2°*lgn, as can be seen from the
definition of a;(k). The latter quantity is the number of lattice points in a

(2%+1 — 2)-dimensional ellipsoid with 27 axes of lengths 21/7 lg n24-37 for

each j = 1,2,...,k, which, in turn, is approximately the volume of the ellip-
soid. Now a d-dimensional ellipsoid with axis lengths [;,...,l; has volume
d 7, aj2 d 7. d/2
H l_’ T ' < H ﬁ (27"_6) ,
o1 2 (d/2)! o 2 d

where the inequality is obtained from Stirling’s formula. With d = 2k+1 — 2
and the [; given above, this yields

) a/2 d l;

pi(t) ~ 2% 1gn (7re) H -
d 1—1

It is easy to verify that, if > 1/1gn, replacing the constant 2we by a suitably

larger constant allows us to drop the 23* Ign factor and convert the volume

approximation to an upper bound. Substituting for d and the l;, we then

find that for some constant 7,

(7rlgn)2k‘1 k k—35)29/2
(1) < (5 —)7 j—II12(4 NP2 forr > 1/1gn.

72 CHAPTER 3. MATCHING PROBLEMS
Routine algebra then shows that there is a constant v such that
pr(t) < (yrlgn)® for r > 1/lIgn. (3.33)

By (3.25) we know that n(c), the number of f € F* satisfying sx(f) <7, is
the number of f € F* satisfying t(f¥)) < o/v — 1/lgn, which is

pr(o/y —1/l1gn).

In the case that o/ < 1/1gn, this value is clearly 0, so (3.24) holds tr1v1ally
If o/v 2 1/lgn, using (3.33), we have pi(2 — 5) < pi(2) < (olgn)?, and
again (3.24) holds. o

As a trivial extension of Lemma 3.8, it is convenient to assume for each
f that sx(f) is a positive multiple of 1/1gn, 1 < k < lgn.

We turn now to the probabilistic part of the proof. Consider any function
fU&™) with f € F*. Comparing f(18™ and the partial sums f,, we have by
the definition of the a;(k) that |a; —ai(lgn)| = 0(1/(\/1\og—nn3/2)) and hence

1
— (lsn) < — = _— f <z<l.
2(e) = £ < 3ol — asllgn)] = O (e 0 <2 <
(3.34)
By Lemma 3.7 we have |f(z) — fa(z)| = O(1/+/nlogn), 0 < z < 1. This

together with (3.34) yields |f(z) — f%™(z)| = O(1/+/nlogn), 0 < z < 1.
We conclude from Lemma 3.6 applied to f™ and f that if

sup AfUe™ = O(y/nlog®*n) whp, (3.35)
feF*
then sup;er. Af = O(v/nlog®*n) whp as well. We prove (3.35) below.
Consider any f € F* and write

Aflem = 1f:l(Af ® — AfED), (3.36)

k=1

with Af(®©) = 0. Below, we introduce numbers gx = g (sk(f)), 1<k<Llgn,

such that 387 sx(f) < c implies T g = O(v/nlog®*n) for all f € F*. If
f is such that A f0&™) > Z}f"l qx, then there exist k and o, with 1 < k <lgn,
1/1gn < o < ¢ (with c as given in Lemma 3.8), such that sx(f) = o and
AfR) — A =1 > g (o). Over all f € F*, the number of pairs of functions
(f®), f*=1)) for given k, o, and sx(f) = o is at most 7x(o), so by Boole’s

3.2. PROOF OF THE UP-RIGHT MATCHING ESTIMATE 73

inequality,

Ign
Pr {f,%‘}’f Af(lsn) > Z gk (Sk(f))}

k=1
< clg? kA p(k-1)
Selg'n mex = max mk(o)Pr{Af" — Af"70 > gi(0)},
1/1gn<o<c
(3.37)

where the clg® n factor comes from the lgn values of k'and the at most clgn
values of ¢ (recall that the si(f) are chosen as multiples of 1/1gn). With
nk(o) bounded by (3.24), and with gx(co) as defined below, we will show that

min {QV"/ n (olg n)2*}Pr{A fE —AfED S g (0)} <1/n (3.38)

for any choice of k, o, and f € F* with sx(f) = 0. Since Ig? n/n? = O(1/n),
the proof of (3.35) will be complete once we have verified that, in the left-
hand side of (3.37), Ti% gk (s(f)) = O(v/nlog®*n) for all f € F.

Now consider the pair of functions (f*), f*=1)) for an f such that s;(f) =
o. To apply Lemma 3.5 to (3.38), let f(*) and f(*-1) be f; and f2, respectively,
and let o = \/o/2* from (3.23). Define ux = ux(c) by

u; = cg'ny/o (ln(alg n) + 271 1n n) , (3.39)

where ¢ is as in Lemma 3.5. We consider two cases. If ux < an, substitute
(3.39) into the first of the bounds in Lemma 3.5 and then substitute the
result into the left-hand side of (3.38). A little algebra shows that

min {2\/"/ En (o]g n)2*}Pr{A FB ZAFED S)
=0 ((clgn)” e =2 /™V7) = O(1/n%), (3.40)
as desired. To take care of the other case, ux > an, we put ¢x = qr(c) =

ur + v, where
v=cy (\/n/lgn+21gn) In2. (3.41)

For, if q& > an, then Lemma 3.5 and substitution into the left-hand side of
(3.38) give

min {2 Vrllen (g1g n)zk }Pr{Af(k) —AfFD s g} =0 (2 v/ lg"e_c“’)

= 0(1/n?), .

74 CHAPTER 3. MATCHING PROBLEMS

again as desired. Thus (3.38) is established.

It remains to show that 87 g, = Y% (ux + v) = O(y/7 log®* n) for all
f € F*. Recall that o = sg(f). For the contribution of the u; use Cauchy’s
inequality, abbreviate sy = sx(f), and write

up = 0 (\/ﬁs}c/‘!\/log(sklog n) + \/7731/42_k/2\/10g n) . (3.42)

Since s; is bounded by a constant, the contribution to 3~ ux of the second
term in (3.42) is easily seen to be O(y/nlogn). By Lemma 3.8 the sum of
the sk, 1 < k <lgn, is at most a constant ¢, so the contribution of the first
term is O(wy), where

Ign Ign
wn = max {\/ﬁz 2t g(zelgn) : 2 > 1—1— and Yz < c}. (3.43)
2y

k=1 gn k=1

A calculation shows that the function w(z) = 2'/4lg(zlgn) is increasing
and concave (i.e., w”(z) < 0) for all z > 1/1lgn. Then by Jensen’s inequality
the maximum in (3.43) is achieved by putting all z; equal to ¢/lgn, so

len /g e
ny. lngi = O(v/nlog®*n),

k=1

Wyp =

and hence 1% ux = O(y/nlog¥*n). It can easily be seen by inspection that
vlgn = O(v/nlogn), so (3.35), and hence the upper bound, is proved. [|

Chapter 4

Scheduling and Partitioning

4.1 Analysis of classical greedy heuristics

In the previous chapter we studied the simplest scheduling heuristic, LS, in
a number of examples. The results confirmed that for fixed m the expected
relative error of LS tends to 0 as n — oco. However, for the absolute error

AYS(L,,m) = LS(L,,m) — OPT(L,,m), (4.1)

this is not the case. Several more difficult probabilistic analyses have con-
cerned better heuristics, H, for which A¥(L,,m) — 0 almost surely as
n — oo with m fixed. Such a heuristic is the LPT rule described in Sec-
tion 1.4.1, where the tasks X; are assigned to processors in decreasing order
of size, i.e., the tasks are assigned in the order X(,) > Xn_1) 2 -+ 2 X().
Intuitively, the smaller tasks assigned later by LPT can be used to patch up
the differences between the workloads of the processors. One expects LPT to
do much better than LS, and, indeed, as shown below, AYFT(L,,m) — 0 as
n — oo under very mild conditions on the distribution F' of the X;. (Since we
will often consider the almost-sure convergence of sequences of random vari-
ables, we will use the standard abbreviation (a.s.) to mean “almost surely.”)

The bounds of (2.38) and (2.39) are not strong enough to lead to the
desired results. A number of authors, such as Loulou [Loul84a], have found
that tighter bounds can be obtained by looking directly at the idle time of
the processors; although various notations have been used, here we cast all
of these results in terms of the average idle time DYFT(L,,,m), which is the
average over all processors of the difference between this processor’s workload
and the makespan; more precisely, we define DYT(L,,m) by

1
LPT(Ln,m) = — 3" X; + DYPY(L,,m), (4.2)

n
=1

5

76 CHAPTER 4. SCHEDULING AND PARTITIONING

so from (2.38) we have
AYT(L,,m) < D**T(L,, m). (4.3)

The result below verifies that LPT is asymptotically optimal in the strong
absolute-error sense. Frenk and Rinnooy Kan [FR87, RF86] noted, as did
Loulou [Loul84a], that

1 i
LPT
To see this, let ¢ be the largest index such that X(;) runs until the end of the
schedule. Then, just after X(;) is scheduled, the average idle time is at most
(m —1)X()/m. Each task X(x) scheduled after X(;) reduces the average idle
time by X(x)/m. The bound in (4.4) provides a powerful tool. For instance,

let us assume that F is strictly increasing in (0,8) for some 6 > 0, and
E[Xi] < oo. Bounding the right-hand side of (4.4) by

1 Lend _
X(len]) + max {X(n) - ;X(k), 0}, 0< F(e) <6, (4.5)
=1

we observe that the first term in (4.5) converges (a.s.) to F~!(e) as n — oo,
and can be made arbitrarily small by an appropriate choice of € (see ESerfSO],
for example). Also, X(n)/n — 0 (a.s.) (since E[X;] < oo) and e, Xy /n
converges (a.s.) to a positive constant as n — oo for every € > 0. Thus the
first term within the maximization in (4.5) tends to —oo (a.s.), and we have

Theorem 4.1 ([FR87]) If E[X;] < co and, for some § > 0, F(z) is strictly
increasing in (0,8), then AYPT(L,,m) — 0 (a.s.) as n — oo.

We turn next to the analysis of the more interesting rates of convergence.
The first such result below focuses on the expected value when the X; are
i.i.d. from U(0,1). The analysis exploits the relation discussed in Section 2.7.1
between the uniform distribution and the Poisson process.

We need a preliminary combinatorial result.

Lemma 4.2 In the event that the X; satisfy ai < z; < Bt for m <1 < n,
where 0 < a < B, we have D*PT(L,,m) < mB?/c.

Proof. Let _
L1y
Di =X = — > X,

m k=1

4.1. ANALYSIS OF CLASSICAL GREEDY HEURISTICS 7

so that

DLPT(Ln,m) < ma x D;,
9%

by (4.4). Also define

Bm for : < m,
— .1 '
d; = pr— — Z ak fori>m, (4.6)
m<k<i
so that in the specified event we have D; < d;, and hence
LPT _

D*"*(L,,m) < max d;. (4.7)
Now d; — d;-1 = [— —az for ¢ > m, so it is not hard to see that a
value of 7 that maximizes d; is the largest i for which 8 — Lai > 0, i,
i = |fm/c]. (Note that this is at least m, since § > a.) Now by (4.6) we
have d(gm/a] < BlAm/a] <mp?/a, so (4.7) gives the lemma. N

Theorem 4.3 ([CFL84a]) If F(z) is U(0,1), then E[D'FT(L,,m)] <
cmm/(n + 1), where cn, s bounded and limy, o ¢ = 1.

Proof. Let Xy, Xa, ... be the successive epochs of a Poisson process with
parameter 1; i.e., the differences X,+1 —X;,1=0,1,2,..., with Xo = 0,
are i.i.d. random variables having an exponential distribution with mean 1.
Given X (n+1), the random variables X, / Xn+1 are independent samples from
U(0,1), so we have

ELD | Rnss = 3] = 2E[DYT(L,, m)],

where D is the average idle time within the LPT schedule of n tasks whose
order statistics are given by the Xi, 1 < i < n. Since E[Xp1] = n + 1,
we have E[DYPT(L,,m)] = E[D]/(n + 1). The remainder of the proof shows
that E[f)] < cnm, where ¢, is a bounded function of m that approaches 1
as m — oo.

From Chernoff’s bound (Theorem 2.4, page 16) and (2.13) we remember
that

Pr{X; < ai} < (u(@))’, (4.8)
and .

Pr{X: > Bi} < (u(B)), (49)
where

u(z) = zel %,

78 CHAPTER 4. SCHEDULING AND PARTITIONING

u(z) = ze'”

Figure 4.1: The function u(z) and two inverse functions, o and S.

Note that as = increases, u(z) increases monotonically from 0 to its maxi-
mum of u(1) = 1, and then decreases monotonically to 0 thereafter. (See
Figure 4.1.) Thus, to each u € (0,1) there correspond two values of z, to be
denoted o(u) and B(u) (with a(u) < B(u)), which are the functions inverse
to u(z); at u = 1 the two functions coincide, a(1) = G(1) = 1. Hence if we
let

¢ = minu(X/i),
the distribution G,, of ¢ satisfies
G (2) = Pr{¢ <z}
= Pr {Hi e {mm+1,...,n}, Xi<az)ior X; > ﬂ(a:)z}

n

< Z (Pr{X,- < ofz)i} + Pr{X; > ﬂ(x)z})

< 3 ((utata) + (u(a@)) < 320t < 2
Of course, we also have G,,(z) <1, so
Gm(z) < min{f“_’m ,1}. (4.10)

Then, applying Lemma 4.2, we have
E[D] < mep,

where

en= [29 e (2) = /lK(x)dG;n(x),

o afz)

4.1. ANALYSIS OF CLASSICAL GREEDY HEURISTICS 79

and K(z) = B%(z)/a(z). We now estimate this integral. Intuitively, for large
m, the increase in G,, is concentrated near 1, where I (z) is approximately 1,
so we expect the integral to be approximately 1. Motivated by this intuition,
we split the integral into two parts, one over [0, z,,] and the other over [z,,, 1],
where z,, = 1—m~'/2, (This value of z,, is chosen so that z,, — 1as m — oo,
but slowly enough so that most of the increase in G,, is to the right of z,,.)

It is not hard to see that K(z) is continuous and decreasing over (0, 1],
and that K(z) ~ eln?z/z for = near 0. Thus we have, for some constant C,
K(z) < C(1 + elog® z/z). Hence

m log? z

/ozm K(z)dGpn(z) < C/OI dGom(z) + C/ozm dGon ()

T

zm log?z , 2z™
<
_c/o 2 4= 4 CCn(an)

l1—=2
2 zm Jog?
<% [E Emamt da + CG(om)
l1—2z, Jo T
2 Zm
<7 Tfm /0 ™ ?log’ z dz + CGp(zm)
mC’ z" 'log’z xm
< m m / m 4.
“l-z, (m-=1) +,Cl—a:m’ (4:11)

where C' is some new constant. Since 27 ~ e~V™, it is not difficult to see
that this expression is bounded by a constant independent of m (assuming
of course m > 2), and that it approaches 0 as m — oco.

Over the remaining interval, [z, 1], we have

/ " K(2) dGn(2) = K(3)(Gn(1) = Grm(am)) (4.12)
for some & € [z, 1]. For large m this means that Z approaches 1, so since
K(z) ~ 1 near 1 we know that K(Z) ~ 1. Also, for large m we have
Gm(1) = Gn(zm) = 1 — Gu(zm) ~ 1, so the integral over [z, 1] approaches
1.

Thus ¢m, which is the integral over the entire interval [0, 1], satisfies the
conditions of the theorem.

The next result, although it says less about multiplicative constants,
generalizes Theorem 4.3 in two important ways. First, the result applies
to any distribution of the form F(z) = 2%, 0 < z < 1, for some a > 0, and,
second, it gives information about the rate of convergence for all moments

80 CHAPTER 4. SCHEDULING AND PARTITIONING

of DYPT(L,,m). The result appears in the work of Boxma [Boxm84], but we
use the proof in [RF86], where efficient use is made of (4.4).

Theorem 4.4 ([Boxm84, RF86]) If F(z) = 2%, 0 < z < 1, for some
0<a< oo, then
E[AYFT(L,, m)P] = O(n=P/?).

Proof. We bound E[D'FT(L,,m)?] using (4.4); then the theorem will
follow from the fact that, by (4.3), E[A**T(L,, m)?] < E[DYFT(L,,m)?].

Let Zx) denote the kth-smallest order statistic of n independent samples
from U(0,1). Then, trivially, the X;), 1 < ¢ < n, are equal in distribution

to Z; 1/ ®. Thus, taking the expected value of (4.4), we have

p .
LPT — 1 /a l/a.

. Let &, be the event that the maximum in (4.13) is achieved at : = n.
To develop a recurrence, we treat &, separately; using the fact that the
expression under the rightmost expectation is bounded by 1, we bound (4.13)

by

7. 1/a 1 & (7, /e *
< p/a ﬂ I, ﬁ .
dn,m > Pr{gn} +E l:Z(") (lé?San)il { (Z(n)) m ; (Z(")

(4.14)
We have factored out Zf,{)a so as to facilitate the observation that, given Z(»),
the ratios Z(;)/Z(n), 1 < ¢ < n — 1, are distributed as the order statistics of

n — 1 independent samples from U(0,1). Then, since E[Zf,{)a] =n/(n+p/a),
we can rewrite (4.14) as

n

dpm < Pr{&.} + W

dntm. (4.15)

To bound Pr{&,}, we note that £, implies

—ZX(,)= —ZX <X(n) <1.

7.1

Thus, since E[X;] = a/(a + 1),

Pr{f,} < Pr{Xn: } < Pr{Xn:Xj —nE[X;] £ - (acfl — m)}

4.1. ANALYSIS OF CLASSICAL GREEDY HEURISTICS 81

Then by Theorem 2.5 (page 19) we have, for any fixed m, Pr{€,} = O(e°").
Substituting into (4.15) and then introducing the functlon gn = (n+1)?°d,
yields the recurrence

n 4+ 1\?/¢ n
gn _<_ (n) (n +p/a) In—1 + O(nP/ae—cn).

Now 1t is readily verified that

(n : 1)”“ (n +np/a) =1+0(7),

so this recurrence becomes

gn < (1 + O(n_z))gn-l + O(nPl2e™m),

Since T[22, (1 + O(n‘z)) converges, it follows easily that g, = O(1), and
hence

E[AYY(L,,m)"] < E[D**T(L,,m)?] < dpm = O(n~?/*). |

For the case p = 1 a matching lower bound was proved in [CFL84a]. As
this result exploits a simple but useful property of the median of a distri-
bution, it is reproduced below. We make use of the following combinatorial
result.

Lemma 4.5 Let z;, 1 < ¢ < n, be sample values of the Xy (so x, >
Tp_y 2> --- 2> x1). Let v; denote the total idle time in the LPT schedule for
TnyTn_1,...,Ti. LThen v; > |vip1 — x4l.

Proof. Let /; denote the length of the schedule for z,,zn_1,...,z;. If
l; = Iy, then clearly v; = v;y1 — z; 2> 0 and the lemma follows. If I; > [;4,,
then
Vi = Vi1 — Ti + m(l, - l,'+1), (4.16)
so that if v;4; > z; we are again done. If vi4; < x;, then [; — liy; 2 z; —vipa
is easily seen to hold, so that (4.16) implies

vi > m(xi — vig1) + vip1 — @i = (m— 1) (x; —vig1) 2 viga — x| W

Theorem 4.6 ([CFL84a]) If, for some a > 0, F(z) = z® for 0 <z <1,
then
E[DYFT (L, m)] = O(n'/*).

82 CHAPTER 4. SCHEDULING AND PARTITIONING

Proof. By Theorem 4.4 we need only prove the lower bound Q(n'/?).
From Lemma 4.5 we may write

1

1
E[DLPT(me)] — EE[VI] > -T;E [|V2 - Xl i X2y - ,X(n)])

where V; is the random variable with the sample v; in the lemma. For later
convenience we normalize with respect to X,y to obtain

V2 Xy
X X

EW] > E [X(z) E |:

X(2)a v aX(n)]] ’

and then obtain the lower bound

E[Vi] > E [X(z) min E [a—

But for any random variable Y, E[|a — Y|] is minimized when « is chosen to
be the median, medY’, of the distribution. Thus we have the bound

EVi] > E[X)k (X(2))], (4.17)
where h(X(g)) = E[|Z — med Z| | X(g)] with Z = X(l)/X(g), so that

F(zy)/F(y) for0<z<1,

PI‘Z< X = =
{Z <] X =y} {1 for > 1.

For F(z) = z%, 0 < ¢ < 1, we have the simplification F(zxy)/F(y) = F(z) =
z%, 50 Pr{Z <z} =2% 0 <z <1. A calculation gives

a 1
b(Xe) = =7 (1= 372 - (4.18)

Finally, if F{3y denotes the distribution of X3, then in terms of the
gamma function we have

E[X)) = /0 - Figy(a)]dz
= /01(1 —z* dz + n/l (1 —z*)* dz

(1+&%)r(HTn+1) N (+&)r)
I(n+1+1) e

as n — oo, (4.19)

a

4.2. DIFFERENCING METHODS 83

where we have used [AS70, Sections 6.1.47, 6.2.1, 6.2.2]. The theorem then
follows from (4.17)-(4.19). B

Further asymptotic results for the distribution F((z) = z%,0 < ¢ < 1, can
be found in [Boxm84, RF86, FR87]. Boxma [Boxm84] shows that the tail
probability Pr{A"T(L,,m) > 2z} tends to 0 exponentially fast in n for any
fixed 0 < z < (m —1)/m. Frenk and Rinnooy Kan [FR87] prove that, for
any fixed m, AYFT(L,, m) converges to 0 (a.s.) at a rate O((log log n/n)l/“)
more precisely,

)

1/a
lim sup (—n—) AYT(L,.m) < 0o (a.s.).

n—oo \loglogn

These papers present analogous results for the exponential distribution
F(z) = 1—¢*, z > 0. In addition, the results in [RF86, FR87] are
extended to multiprocessor systems in which the processors are allowed to
have different speeds.

4.2 Differencing methods

Karp and Karmarkar[KK82] have devised an elegant heuristic, called the
differencing method, that greatly improves on the asymptotic behavior of the
LPT heuristic described in the previous section. In this section we sketch
the analysis of one efficient application of this heuristic. These methods
can most readily be explained for the case m = 2, although they can be
extended to arbitrary values of m so as to yield similar asymptotic behavior.
For the remainder of this section we restrict ourselves to m = 2; this is
sufficient to cover the main points of the asymptotic analysis. We conclude
the section by showing that one of the simpler algorithms that can be viewed
as a differencing method does not have good behavior.

If X and Y are two elements in some list, let us use the phrase “differ-
encing X and Y” to mean replacing X and Y by |X —Y|. A key observation
of the set-differencing method is that differencing X and Y is equivalent to
making the decision that they will go into opposite blocks. Thus, if we iter-
ate this operation until we have reduced the set to a single value, we have
effectively produced a partition with that value as its block-sum difference.
It is not hard to actually reconstruct the partition by working back through
the differencing operations that were performed. For example, let L) de-
note the set following the ith differencing operation (L® = L,). Suppose X
and Y in LG~V were differenced in forming L), Then to obtain the solution

84 CHAPTER 4. SCHEDULING AND PARTITIONING

o—o ° e ° . - - o

L I
J I

Figure 4.2: Tllustration of PDM.

(partition) for L{~1) from the solution for L{!), we simply remove the element
|X — Y| from the partition for L{!) and then append X and Y in the obvious
way that preserves the block-sum difference of the partition for L{!).

Various algorithms can be obtained by choosing different methods for
selecting the items to difference. For example, define the paired differencing
method, PDM, as follows; see Figure 4.2. Order the items largest to smallest;
pair the largest two, the third and fourth largest, etc., possibly leaving the
smallest item unpaired; now difference each pair. Call this a phase of PDM.
Iterate these phases on values remaining until only one value remains. A
second possibility, which we call the largest differencing method, LDM, is as
follows: pick the largest two items and difference them; iterate until a single
value remains. Figure 4.3 illustrates this algorithm on the same input data
as used in Figure 4.2. At first, PDM is quite appealing, and one might expect

4.2. DIFFERENCING METHODS 85

T
1

/ ﬁ
]

Figure 4.3: Illustration of LDM.

86 CHAPTER 4. SCHEDULING AND PARTITIONING

it to yield a final difference of n=%1°8™ by the following heuristic argument.
It is clear that there are O(logn) phases before PDM halts, and in the first
half of the phases there will be Q(1/r) items present, so by differencing pairs
we might hope to achieve a reduction by a factor of \/n or more in the
typical sizes of the items remaining. We will see later in this section that
this intuition is far from correct. The behavior of LDM is still open to
our knowledge. Note that the distribution of the remaining items becomes
conditioned in a complicated way as the algorithm proceeds.

These difficulties are handled by Karmarkar and Karp [KK82], who intro-
duce another algorithm DM* that is easier to analyze. DM* to some extent
uses the approach of PDM, where paired numbers are usually close in size.
However, by a certain randomization of pair selection, a simplified inductive
relationship can be proved. A strong result, can then be obtained, under the
assumption that the density f(z) of the X satisfies the following smoothness
(Lipschitz) condition: there exists a 8 > 0 such that for all z and y in [0, 1],

Af () = f()l < Blz —yl.

Theorem 4.7 ([KK82]) There exists a ¢ > 0 such that with a probability
that tends to 1 as n — oo, the difference in block sums for the DM* partition
satisfies DM*(L,,2) < n=closn,

After a description of DM* we briefly discuss the proof of this theorem.
DM* is organized into phases patterned after those of PDM. The input to
the 7th phase is a set S;_; of numbers in an interval [0, o;_;], where Sy = L,
and ap = 1. The ith phase begins by subdividing the interval [0, ;—;] into
subintervals of length «;, where the number «;_;/a; of subintervals is some
fraction 1/K of |Si_4].

Within each subinterval, pairs of values are selected at random until there
remains at most one value (the odd value, if one exists). The absolute
difference of each pair is placed in a set S;. (Note that all differences in
S! are in [0, o;].) After all subintervals have been processed in this way, the
algorithm then applies LDM to the set C of odd values that remain, if C
is nonempty, to obtain a value d. The value d is then added to S; to form
the set S;. If d < ¢4, then the :th phase terminates. Otherwise, the largest
value in S; (initially d) is iteratively differenced against randomly chosen
elements in S; until all values are in [0, c;], at which point the :th phase
terminates. After the last phase, when a single number remains, the DM*
partition of L, is constructed by a simple backtracking procedure similar to
the one mentioned earlier.

4.2. DIFFERENCING METHODS 87

A primary objective of the analysis is a proof that for each ¢ the numbers
within each subinterval of [0, o;] are statistically independent and approxi-
mately uniformly distributed. In Figure 4.4 we note how a distribution that
is nearly uniform can be converted to a distribution that is exactly uniform
by rejecting a small number of the sample points. If we form a set of points
by first drawing according to the density f, but then only accepting a point «
with probability £/ f(z), we effectively reject the portion of the density above
the line at height £. Thus the distribution of what remains is uniform. This
sort of “resampling,” while not a part of the DM* algorithm itself, plays a
key role in the analysis; the details of the argument are beyond the scope of

this book.

The performance of PDM is much worse than that of DM*. Karp [Karp85]
empirically observed that PDM tends to work very poorly, since there is a
tendency for a large item to form that cannot be substantially reduced by
differencing with the other, much smaller, items. In fact, this can be proved:

Theorem 4.8 ([Luek87]) With i.i.d. input from U(0,1), the expected size of
the difference produced by PDM is O(n71).

Proof. The proof exploits properties of the Poisson process. Let D be
the final difference achieved when the items to be partitioned are n i.i.d.
draws from U(0,1). Now assume instead that the items are given by the first
n epochs Xl,Xg, e, Xn of a Poisson process with rate 1, and let D be the
‘difference achieved. As in Section 4.1, by the observations in Section 2.7.1 it
is easy to verify that

E[D] = E[D]/(n +1). (4.20)

After the first stage of PDM, there are clearly [n/2] differences remaining,
and they are i.i.d. exponential random variables with mean 1. Hence by
Lemma 2.9 (page 34), after the second stage the differences are 2y, 22, . . . , Zm,

where m = [[n/2]/2] and

Pr{z >z} = e~ *V=, (4.21)

Next we establish that if we let L be the largest of the z;, and let L; and L,
be the largest and second largest elements of {zs,..., Zm}, then

~L,-L,<D<L (4.22)

The upper bound in (4.22) is immediate, since the difference of two items is
certainly no more than the maximum of the two. To see the lower bound,
consider two cases. On the one hand, if z; is not the unique maximum of

88

CHAPTER 4. SCHEDULING AND PARTITIONING

— T —

Figure 4.4: Sampling to control distributions.

4.2. DIFFERENCING METHODS 89

{z1,22,..-,2m}, then we must have Ly = L > z;, so the lower bound is
trivial. On the other hand, if z, is the unique maximum of {zy, 22,..., zZn },
then L; and L, must be, respectively, the second and third largest elements
of this set. Hence after the next stage of PDM, the remaining items will be
z1 — L, and a set of items whose sum is at most L4, from which the lower
bound follows immediately.

Taking expectations in (4.22), we have

A

Elz1] — E[L1] — E[L] < E[D] < E[L]. (4.23)

From (4.21) we immediately compute E[z;] = 1. It remains to estimate the
expectations of L, L, and L,. From (4.21) and the definition of L we have

Pr{L >z} =Pr{3i € {1,2,....m}: z; >z}

<SS Pr{z>al=) (T < 3 2imDe
t=1 i=1 =1

e—x
Tl — 2]

Hence .
Pr{L >z} < max{l, ﬁ}.

Numerical evaluation and integration yield E[L] < 1.21. Similarly, one
computes E[L;] < 0.52. Finally, to estimate L,, we note that

Pr{L§>x}=Pr{3i,j€{2,3,...,m}: i#£7, z>zand z; >z}
< Y. Pr{z >z}Pr{z >z}

2Li<j<m

Si i e—(2i—l)xe—(2j—l)1:

1=2 j=t+1

0o o L
<5 5 e

i=2 j=i+1

We now count the number of occurrences of each value of the exponent to
obtain

Pr{L: >z} < Z(z + 1)(6-(8+4i)x + e—(10+4i)1:)
1=0

— (6—81: + 6—101:) Z(Z + 1)6—41'1:
=0
6—81: + 6—101: -
= (1 —)2 :

90 CHAPTER 4. SCHEDULING AND PARTITIONING

Hence

-8z —10zx
Pr{L; > z} < max {1, ¢ e }

(]_ — 6—41:)2 '
"Numerical evaluation and integration yield E[L;] < 0.30. Inserting these
estimates into (4.23), we obtain

A

1-0.52 —0.30 < E[D] < 1.21,

so E[D] = ©(1). Then (4.20) yields the theorem. |

([Luek87] actually shows the stronger result that there exist positive
constants «, f, and p such that for large n we have Pr{D € [a/n,B/n]|} > p.)

Although the performance of PDM itself is poor, Tsai [Tsai90] points out
that a single stage of the Paired Differencing Method can be a useful first
step if one wants to balance not only the total workload but also the number
of jobs placed on each processor. This single stage of paired differencing does
not cause ©(n~!) behavior; in fact, Tsai shows that if we follow it by an
application of LPT, the workload difference is almost surely O(logn/n?) if
the input are i.i.d. uniform.

4.3 On the optimum solution

The preceding results leave open a number of interesting questions, e.g.,
e Can a polynomial-time algorithm achieve a difference of O(e“‘"), for
some positive «, in expectation or at least with high probability?

e What is the behavior of the true optimum?

While we do not know an answer to the first question, an interesting analysis
for the second appears in [KKLO86]. Here we will consider partitioning
variables into only two blocks, so a partition is determined by its first block.

Let A denote the family of all subsets of N = {1,2,...,n}. Then the set
of partitions is {(A, A)}ca; note that in this way of counting partitions we
consider (A4, A) and (4, A) to be distinct. Say a partition is even if |A| = [4],
ie., if |A] = n/2; we let A, be {Ac A: (A, A)iseven}. In [KKLOS6]
the minimum difference achievable is considered both when the partition is
restricted to be even and when it is unrestricted. We first consider the case of
partitions restricted to be even. One can estimate the distribution of the best
~ partition difference fairly accurately for small arguments. (Note that because
of the O(n™') term in (4.24), this theorem does not yield a bound on the

4.3. ON THE OPTIMUM SOLUTION 91

expectation of the best difference. We do not know whether the expectation
is O(e~*") for some a > 0.

Theorem 4.9 ([KKLOS86]) Assume that X1, Xa,...,X, are i.i.d., and that
X:1 has a bounded density, variance 0> > 0, and finite third and fourth
moments. Let G(e) be the probability that the best even partition difference
is € or less. Then

G(e) < z(l + O(n_l)), and

z _
G(e) 2 = (1+0(n™)), (4.24)
where
2%¢
z = .
onrn

Hence the median value of the distribution of the minimum difference of even
partitions is ©O(n/2").

Proof. To minimize notation, assume o2 = 1; once the theorem is proved
in this case, the generalization to arbitrary o? > 0 follows immediately by
scaling. Also, we first assume assume ¢ is in the range

¢

0 <e<n?2™ (4.25)

then for larger € the bounds in the theorem follow readily. Let
A(A) = ZX{ - ZXi
€A i€A

and

Yo=|{A€ A |A(A) < €}, (4.26)

i.e., Y, is a random variable denoting the number of even partitions that
achieve a difference of € or less. (Note that ¥, will be an even integer.) Then
G(¢) = Pr{Y, > 0}, and we must estimate upper and lower bounds on this
probability. Let X.ym be the symmetrization of Xi, i.e., a random variable
distributed as the result of subtracting two independent samples of X;; note
that the variance of X.ym is 2. Let g be the density of Xsym, and ¢** be the
density of the kth partial sum of Xeym-

An upper bound is rather straightforward. For any nonnegative integer-
valued random variable we have the simple bound

Pr{Y¥, >0} < E[Y.]-

92 CHAPTER 4. SCHEDULING AND PARTITIONING

In fact, in the present case the values assumed by Y,, are always multiples of
2, so we can write

Pr{Y, > 0} < E[Y,]/2. (4.27)

The expectation of Y;, is easily calculated; we have
E[Y,] = E[[{4A € A.: |A(A)| < €}
= ¥ Pr{A(4) < ¢}

A€cA.

[[

= |A.| g g™ (z)dz = (7:;2) 5 g™ (z) dz, (4.28)
To estimate the integral, we will apply Theorem 2.2 (page 13) to estimate
the value of ¢g*"/2. Letting ¢ denote the characteristic function of X1, by
[Fell7l, Section XV.1, Corollary to Lemma 2|, the characteristic function
for Xsym is |@?|. Then, since its density g is bounded and its characteristic
function is nonnegative-real-valued, we conclude by [Fell71, Section XV.3,
Corollary to Theorem 3] that this characteristic function is integrable. Thus
an application of Theorem 2.2, with 02 = 2 and u3 = 0, gives the estimate,
for m € {1,2,...,n},

9" (z) = \/;En (\/%) + O(m‘3/2),

and, therefore, in view of (4.25),

1
Varm

Substituting (4.29) into (4.28), one obtains

g™ (z) =

(1 + O(m_l)) for |z| <. (4.29)

where we have used

(1+0(n™))2"+ /V2rn, (4.31)

(o)

4.3. ON THE OPTIMUM SOLUTION 93

which is a well-known consequence of Stirling’s approximation (see [Knut73,
Section 1.2.11], or [AS70, formulas 6.1.37-38]). Then by (4.27) we have the
upper bound in (4.24).

By means of a suitable lower bound for Pr{Y; > 0}, we would also like to
be able to show that good partitions are likely to occur. Unfortunately, the
expectation of Y, does not in itself provide much help. (It is easy to construct
examples of a random variable that is extremely unlikely to be greater than
0, even though its expectation is much greater than 1. For example, let Y
be 10° with probability 10~%, and 0 otherwise.) However, using the second
moment method described in Section 2.7.3, we can provide a bound if we
also know E[Y;?]. As explained there we have

E[Y.]*

Pr{Y, > 0} > ey’

(4.32)

so we can show that Y, is likely to be nonzero by showing that E[Y;]? is
comparable to E[Y;?].

At first, it might seem that the calculation of the second moment of
Y, would be much more difficult than calculating the first moment, but a
standard method is available. For any A € A,, let

Z(A) = 1{ja)l<es

so Z(A) is one when A yields a partition difference bounded by ¢, and 0
otherwise. Then, since Y;, = 3 4¢ca, Z(A), we have

EYZ1=E| > Z(4) > Z(B)| = >, > E[Z(4)Z(B)].
A€A. BeA. AcA. BeA,

Now it is not hard to see that E[Z(A)Z(B)] depends on A and B only through
|A N Bl, so let

E,. = E[Z(A)Z(B)] when |AN B| = m.

Then, by consideration of the number of choices of A and B with various
intersection cardinalities,

1= () 5 (D) AT () 5 () e o

E,, is estimated in several cases, which we briefly outline.

94 CHAPTER 4. SCHEDULING AND PARTITIONING

a) First suppose that m = 0 or m = n/2, s0o B = A or B = A. Then
|A(A)| = |A(B)|, so Z(A) = Z(B) and we have

Eo = Enpy = E[Z(A)Z(B)] = E[Z(A)]

where we have again used the estimate (4.29).

b) If m is near n/4, say, [n/4 —n®5] < m < |n/4 + n®3], let Seom =
%(A(A) + A(B)) and Sgr = %(A(A) - A(B)). (We assume n is large
enough so that n3/® < n/8.) It is not hard to verify that Seom and Sqir are
independent with densities g*™ and ¢*(*/2~™), respectively. Moreover,
Z(A)Z(B) is 1 if and only if (Saif, Scom) lies in the diamond-shaped
region —e < Sgir &+ Scom < €, which has area 2¢2. In this region another

application of the estimate in (4.29) yields

Em — // g*m(x)g*(n/2—m)(y) dz dy
—e<zty<e

2¢2

B tmyfm(n/2 = m)

(1+0(m™),

and hence

|_n/4+n3/5j 2 2
2 () B

m=[nf4—-n3/5] m

/a4l f 9\ 2 €2
= (1+0(n7") ()
() m=rn,z4;n3,51 m J 2my/m(n/2 — m)

1\ € n/a4n/2) n/2\? 1
=(1+0m™M) X (/)
T m=[n/4—n3/5] m \/m(n/2 - m)

= (1+0(n™)) (nr/lz) i—i
(4.34)

where we have deferred the justification of the last step in (4.34) to
Lemma 4.10 below.

¢) For the remaining cases the contribution to the sum is negligible, from

the crude bound E,, < 1 and the fact that ("7{12)/(&;2]), for m ¢

[[n/4 — n3/5], |n/4 + n®/3]], is small enough to swallow polynomials
(see (2.5)).

4.3. ON THE OPTIMUM SOLUTION 95

Inserting the results of these three cases into (4.33), one obtains

E[Y?] = (/2) (\/‘;_;;+ (n/z) 2¢) (1+0(n-1))

= (4z + 4z2)(1 + O(n_l)),

where in the last step we again used (4.31). Substituting this and (4.30) into
(4.32), one computes

z -1
Pr{Y, >0} > ﬁ—z—(l +O(n))a
giving the lower bound in (4.24). [

Lemma 4.10

L /4475] 101 2 . i/
2) o=~ 003)
m=[n/4—n3/5] m(n/2 - m) n
Proof. The idea of the proof is to note (as in another example in [Pipp77])

that ("/ 2) becomes more and more tightly concentrated near the middle of

-1/2
the summation as n becomes large, and that in this vicinity (m(n/2—m)) /

is approximately 4/n. To make this rigorous, note that by Taylor’s theorem
we can readily compute the (crude) bound

1 S
1< ———<1+42z% for —

V1 —z?

and that with some algebraic manipulation this implies?

2
é < ! < é+ﬁ (m - 2) for |'n/4—n3/5] <m< |_n/4+n3/5j.
no m(n/2—m) " 7

4
Now, since 3 7 _¢ ("/ 2) (/2) we have

<z <

DN | =
DN | =

m

Ln/4§3/5J (n/2)2 1 18, 4 L/ 4§3’SJ (n/2)2
m=[n/4-n3/5] m V m(n/2 - m) n® " n m=[n/4-n3/5%] m

= 2+ (14 0(n7) = (/2)
(4.35)

1Specifically, let £ = 4m/n — 1 and multiply both sides by 4/n. Recall that we assume
n3/5 < n/s.

96 CHAPTER 4. SCHEDULING AND PARTITIONING

where
n n3/% 2
B m=[n/4—n3/5] m 4

Now from the estimate (2.6), we can write this as

Ln/a4n®/3] 5 2 n\ 2
|dn] < {1+ 0(1) (2"/2 ——e‘z(m‘"/“)z/("/?)) (m — —)
() m=|'n/z4;n3/5'| n7r/2

[n/44n°/3] 4 n\ 2 8 n\ 2
= {1+ o(1) (2”——) (m——) exp (—— (m——)) .
() m=[n%zn3/51 nmw 4 n 4

At this point we approximate the integral as in (2.8); it is easy to verify that
the error term is of smaller order than the sum, so we have

4 [n/44n%/3) n\? 8 nY\?
ldnl < (1 + 0(1)) (2 nﬂ') [nf4—n3/5] ’ 4 xP (n * 4 de

4 n3/8 2
= (1 + o(l))Z"——/ o u?e= /MY gy oo
nmwJ-n

= (1 +o(1))2”——4—2_6 2mn’/?
nmw

= (1 + 0(1))2""4\/271/71'.
(4.36)

Actually, this estimate is more precise than we need. It suffices to note that
from (4.36) and (4.31) we have

i = 0~ = o2 (7).

so from (4.35) we have the lemma. o

(We note that an alternative approach to proving the lemma could make
use of generating functions, which can give exact formulas for expressions

such as 22/_20 ("/2) (- 1)2.)
Next we briefly describe the argument used in [KKLO86] for the case of
unrestricted partitions; that is, we redefine
o

{AeA: Y X -3 X

i€A i€d
removing the subscript e from .A. Note that this means that we can no longer
assume A = A for A € A, so we can no longer conclude the last line in (4.28).

Y, = (4.37)

4.3. ON THE OPTIMUM SOLUTION 97

However, if we let 61, 6,,...,8, be random variables that assume the values
+1 with equal probability, and are independent of the X; and each other,
then (4.37) easily yields

n

Z&,’X{' S 6} . (438)

=1

E[Y.] = Z Pr{

AcA

ZX,-—ZX;' < e} =2"Pr{

i€A i€d

One could again use Theorem 2.2 to estimate this, but we will briefly indicate
the alternative approach that is used in [KKLO86], based on characteristic
functions. (Note that the proof of Theorem 2.2 that appears in [Fell7l,
Section XVI.2] itself makes use of characteristic functions.) To illustrate
some of the methods, here we briefly sketch the method of calculation of
E[Y,.].

Let h, be the density function for 3°7-; é;X;; then the probability within

the right side of (4.38) can be rewritten as

I Z ho(z) de. (4.39)

The characteristic function corresponding to the density h, can easily be
expressed. Note that if ¢ is the characteristic function for one of the X;,
then the characteristic function for §;X; is

() =5(#(0) + $(=1)) = Re (1),

since the real part of the characteristic function is an even function, and the
imaginary part is odd. Hence the characteristic function ¢, for the sum of
the 6;X; is just

on(t) = (Re g(t))".
But now we need to use the characteristic function to estimate the value of

(4.39). If we let wo(z) be 1 for € [—¢, €] and 0 elsewhere, then the integral
(4.39) is

/ hn(z)wo(z) dz.
It turns out that because of the transform methods employed it is preferable
to use a smoother function w that serves approximately the same purpose as

wo; we omit the details of the choice of this function. If we now let w be the
inverse Fourier transform of w, a form of Parseval’s relation states that

/_o; ha(z)w(z) dz = /_o; on(t)w(t) dt.

98 CHAPTER 4. SCHEDULING AND PARTITIONING

Combining these observations, one can estimate

2"
E[Yz] =0 (\/_T_l> ,
which gives an upper bound on Pr{Y¥; > 0}. Similar ideas are useful in the
computation of E[Y;?], though the details of the calculation become quite

involved; again we omit them. The result of an application of (4.32) then
establishes that the median difference for the best partition is ©(y/n/2").

Chapter 5

Bin Packing: The Optimum
Solution

5.1 Basic algorithms and bounds

One of the first problems posed by the average-case analysis of bin packing
was the determination of E[JOPT(L,)] when the elements of L,, are distributed
uniformly over [0, 1]. An early upper bound for this distribution was provided
by Frederickson’s analysis [Fred80] of a heuristic; the technique has played
a key role in a number of later papers. The idea behind the heuristic is as
follows. It is easy to see that the expected value of the sum of the sizes of the
1th smallest item and the :th largest item is 1. This suggests the strategy of
packing the items in pairs, i.e., packing the largest item with the smallest,
the second largest with the second smallest, etc. We call this the folding
strategy. Of course, this strategy as stated will not be adequate, since it is
not enough that the expected sum of the items in a bin be at most 1; the
problem is to satisfy the constraints in all cases.

Frederickson’s solution was to choose a value of & near 1, pack items
greater than « in separate bins, and then apply the folding strategy to the
remaining items. However, when the two items paired by the folding strategy
did not fit into a single bin, they were packed into separate bins; by choosing
o sufficiently smaller than 1, this occurrence could be made unlikely. The
proper choice of a had to be

e large enough so that not too many items used single bins because they
were greater than «, but
e small enough so that most paired items would fit into a single bin.
Frederickson showed in fact that the choice @ = 1 —n!/? enabled one to pack
all of the items with an expected number of bins bounded by n/2 + O(n?/3).

99

100 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

One trivially sees that at least n /2 bins are needed on the average, since this
is the expected total size of the items, so Frederickson’s results established
that OPT(L,) ~ n/2.

At first it may appear that these results leave little room for improvement,
but as we pointed out in Chapter 1, it is often interesting to examine the
expected difference between the behavior of a heuristic and the optimum or
a lower bound. In particular, for the bin-packing problem, it is of interest to
determine the difference between the number of bins used and the total size
of the items, or, equivalently, the total amount of unused space in the bins.
Frederickson’s results showed this value to be O(n?/?); this can be tightened
to O(n'/?) by an algorithm that does not use the o discussed above. Consider
the following matching algorithm: MATCH iterates the following procedure
until all items are packed. Let S denote the set of items that remain to be
packed. MATCH considers a largest item in S, say, z. If |[S| = 1 or if no
remaining item fits with z, i.e.,y+z > 1 for all y € § — {z}, then MATCH
puts z into a bin alone. Otherwise, MATCH puts items z and z’ into a bin
alone, where 2’ is a largest remaining item other than z such that z 4z’ < 1.

A variety of techniques have been used to show that this approach wastes
only O(4/n) space. Knédel [Kndd81] used the Kolmogorov-Smirnov statistic
(see Section 2.7.2. Lueker [Luek82], whose work was motivated by the
simulation results and conjectures of Bentley, used the relation discussed in
Section 2.7.1 between the exponential distribution and the successive order
statistics of uniform random draws. This relation facilitated the analysis
by making the differences between the successive order statistics of the
items independent. Probably the most elegant analysis is that in [Karp82,
KLMS84], which reduces the problem to one involving excesses of heads over
tails in a sequence of coin flips, as follows.

Since each bin in the packing produced by the algorithm contains either
one or two items, it is clear that

n+b
5.1
) (5.1

where b is the number of singleton bins, i.e., bins with exactly one item. Let
b < b be the number of singleton bins with items larger than -;— There can
~ be at most one singleton bin with an item no larger than ,s0 6 < ¥ +1. To
estimate E[b'], we plot points on the interval [0,1/2] as follows. For each item
z < —12-, plot a & at z. For each item z > -;—, plot a @ at 1 — z. By the excess
at a point z on the interval we mean the number of @’s in [0, z] minus the
number of &’s in [0, z]. It is easy to see that an item corresponding to a @
can be packed only with an item corresponding to a & to its left (or at the

MATCH(L,) =

5.1. BASIC ALGORITHMS AND BOUNDS 101

' same location), so ¥ is simply the maximum excess at any point on [0, 1/2].
:Since all sequences of @’s and &’s are equally likely, &' is equal in distribution
‘to the maximum excess of the number of heads over tails at any point in a
'sequence of n flips of a fair coin. This quantity is ©(y/n) in expectation, as
-shown in Section 2.1.3; see (2.30). Then E[b] = ©(y/n), so by (5.1) we have

Theorem 5.1 If n items drawn independently from a uniform distribution
over [0,1] are packed by algorithm MATCH, the ezpected wasted space is

E[MATCH(L,)] — 7 = ©(v7).

In [CFGR], for n even, an exact formula for E[¢'] is obtained and gives
the more precise upper bound E[]MATCH(L,)] — 2 < 2E[¥] + 3, where

= () -0 () -

A simple argument establishes that for i.i.d. uniform item sizes the algo-
rithm MATCH is optimum up to constant factors on the amount of expected
wasted space [Luek82, KLMS84]. Let N be a random variable telling the
number of items whose size exceeds 1/2; clearly, no two of these can lie in
the same bin, so OPT(L,) > N. Let T be a random variable telling the total
size of the items; since each bin has capacity 1, OPT(L,) > T. Now, for any
two random variables Y and Z, not necessarily independent,

Pr{max(Y,Z) < £z} < min {Pr{Y <z}, Pr{Z < a:}}

Thus if we define

Pr{T <=z} ifz<n/2,

Gz) = {Pr{N <z} ifz>n/2, (52)

we have Pr{OPT(L,) < z} < G(z). We now estimate the mean of the
distribution G. '

Theorem 5.2 For item sizes drawn independently from U(0,1),

E[OPT(Ly)] — 5 2 (V3 — 1)y 55—+ o(v/):

102 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

Proof. We show that the lower bound claimed in the theorem is E[X] —
n/2, where X is a random variable with the distribution G(z). Note that

E[X]

/On z dG(z)
e[(e-3)

n n

n/2 n
_ §+/0/ (x—g) dPr{ngc}+/n/2 (x—g) dPr{N < z}.
(5.3)
We estimate the two integrals on the right of (5.3) separately. For the first,
let 0> = 1/12 denote the variance of the uniform distribution over [0,1], and
let fn(z) be the density function of the centered! sum of n i.i.d. samples from
this distribution. Then

/On/z (a: - %) dPr{N < z} = —/0"/2 fu(—2) do

n2/3

= —(1 + 0(1)) /0 z fn(—z) dz,

where the last step follows from a standard application of a Hoeffding bound
(Theorem 2.5 (page 19)). By applying Theorem 2.2 (page 13) and noting
that the third central moment of the uniform distribution vanishes because
of symmetry, this becomes

2/3

(—1+o(1)) /On z (#n(oxr) +o(n—3/2)) dz,
= (—1 + o(l)) (/(;nm fwn(ﬁﬁ) dz + O(n™%/?) /(;nm a:da:)

= (—1+0(1)) (\/ZZ:W+0(1)). (5-4)

For the second integral on the right of (5.3), we have

3 (i-) PeN =),

i=[n/2]

/71:2 (x—%) dPr{N <z} =

1Recall from Section 2.1.1 that this means the sum is translated to have mean 0.

5.1. BASIC ALGORITHMS AND BOUNDS 103

By applying (2.5), then (2.6), and finally (2.7), this becomes

[n/2+n%/%] n
(1+0(1) X (i—g) Pr{N =i}
i={n/2]
/24201 n 2 .
=(1+0(1) X (i—g) Ee-“‘-"ﬂ)”/n
i={n/2]

[n/2+n3/%] n 2 _,
— _r _“ _—2(z—nf2)?/n
= (1 + o(l)) /fn/ﬂ (a: 2) \/nﬂ_e dz.

Note that extending the range of integration to [n/2, o] introduces a relative
error covered by the o(1) term. By letting u = /2/n(z — n/2), simplification

yields
(14 0(1) / \/7ue" 1+<>(1))\/8T7r (5.5)

Adding the results of (5.4) and (5.5) gives the lower bound of the theorem
H

We remark that [CFGR] shows how a stronger argument can lead to a
lower bound with a slightly improved constant:

E[OPT(L,)] — g > \/n/327 + o(\/).

Combining Theorems 5.2 and 5.1, we have:

Theorem 5.3 For item sizes drawn uniformly from U(0, 1),
E[OPT(L.)] — 5 = = O(v/n).

The uniform distribution that we have been assuming is a very special
case, of course. Interesting analyses of optimum behavior under more general
assumptions have also appeared. We can easily generalize the upper bound
portion of Theorem 5.3 to hold for a larger class of distributions. We say that
a random variable X and its distribution function F' are symmetric about a
if X — a and a — X have the same distribution. In terms of the distribution
F of X, this means that for all z

Fla+2)=Pr{X—-a<z}=Pr{e— X <z}
=Pr{X>a—-2}=1-Pr{X <a=2z}
=1_F((a_z)—)a

or, equivalently,"

F(z)+ F((2a—2)7) = 1. (5.6)

104 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

Corollary 5.4 ([Knod8l]) For item sizes drawn independently from a dis-
tribution F' symmetric about 1/2,

E[OPT(L,)] - g = O(v/n).

Proof. Suppose we draw n i.i.d. values Uy, U,,...,U, uniformly from
[0,1], and set X; = F~!(U;). Then the expected number of bins needed to
pack the U; is n/2 + O(y/n) from the theorem. Also, the X; are i.i.d. with
distribution F'. Thus we will be finished if we can show that the number of
bins required to pack the Xj; is at most the number required to pack the U;.

Note that MATCH never places more than two items together into a
bin. Let u and u’ be two values that are placed together into a bin, and
let £ = F~!(u) and 2’ = F~1(¥/). We will show that z and z’ will also
fit together into a single bin, so the packing of the U; immediately yields a
packing of the X; using the same number of bins. Suppose instead that z
and z’ do not fit together. Then

l<z+z' =z+ F'(uv)=z+min{z: F(z) > v'},
somin{z: F(z) >u'} >1—z, and thus F(1 — z) < u'. Therefore,
1=F(z)+F((1-2)7) <F@)+Fl—gz) <u+u' L1,

contradicting the symmetry of F' about 1/2. |

Note that we cannot in general conclude that E[OPT(L,)] — % = Q(v/n)
for item sizes drawn from a distribution F symmetric about 1/2. To see this,
let F' be a single atom at 1/2; then, clearly, F' is symmetric about 1/2, but
E[OPT(L,)] — & < 1/2, since we never leave more than one-half of one bin
empty.

5.2 Perfect packings

Suppose the values in L, are i.i.d. with distribution function F'. Karmarkar
defines the optimum packing ratio for F' to be

. E[OPT(L,)]
5, X

Say that F allows a perfect packing (or that F is perfectly packable) if its
optimum packing ratio is 1. Since the distribution uniform over [a,b] is of
special interest, following Karmarkar [Karm82] we will say that the interval

5.2. PERFECT PACKINGS 105

[a,b] allows a perfect packing if the distribution uniform over that interval
does. Thus the results of the previous section enable us to conclude that if
0 < a<1{andb=1-a, then [q,b] allows perfect packing. A question
attributed to Karp in [Karm82] is: which intervals allow perfect packings?

Note that the optimum packing ratio is simply ¢/E[X]| where ¢ is the
packing constant for F'. (Recall that, informally, the packing constant is
the limiting expected number of bins used per item in an optimum packing;
for the formal definition see Section 2.7.2, page 35.) Hereafter, instead of
describing perfect packings by refering to optimum packing ratios with the
value 1, we shall refer to packing constants with the value E[X].

When a = 0, i.e., the distribution is of the form U(0,8) for 0 < 6 < 1,
the interval always allows a perfect packing. In fact, one can show a stronger
result:

Theorem 5.5 ([Knéd81, Karm82, Karp82, Loul84b])? Suppose F' is a dis-

tribution over [0, 1] that possesses a nonincreasing density function f. Then

E[OPT(L,)]— E [}nj X,-} = O(v/n), (5.7)

i=1

and hence F allows a perfect packing.

Proof. We begin by showing that any decreasing function f can be
decomposed into a series of distributions symmetric about inverse powers of

2. Let
ho(z) = {f(l —z) forz €[0,1/2],
f(z) for z € [1/2,1],
and
f(z) = f(z) — ho(2);
note that ho(z) is symmetric about 1/2, and fi(z) is decreasing over [0,1/2]
and 0 on [1/2,1]. Iterating, we may express f as

f(z) = fﬁ ha(a),

where hy is symmetric about 27571, By scaling, we can write

f(z) = gfpkfk(w),

2The key idea, of decomposing f into symmetric densities, was already present in
[Kndd81], although it was not sufficiently developed there to give this theorem. The
fact that, under the conditions of the theorem, F' allows a perfect packing was proved in
[Karm82, Loul84b]. The bound (5.7) is from [Karp82].

106 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

where we have chosen p; and fi so that hy = px fr and fi is a density function.
Hence the process of generating the X; may be viewed as taking place in two
steps: first, we select a value of k, which we will call the type of X;, with each
value chosen with probability px; then we select the value of X; according to
the density f.

We begin by packing type-k items into subbins of size 27%. From Corol-
lary 5.4 (suitably scaled), it follows that we can pack N items distributed
as fi into subbins of size 27% with an expected wasted space bounded by
a27F\/N, where a is some constant independent of k. Since this bound is
concave, and since the expected number of items of type k is npg, by Jensen’s
inequality we have that the expected wasted space used in packing items of
type k into bins of size 2=% is bounded by a2‘k\/m. Thus the expected
total amount of wasted space in the subbins is bounded by

ST 27k apr < ayn D> 27F = 2a4/n, (5.8)
k=0 k=0

Finally, we can treat these subbins as items and pack them into unit-size
bins. If we use NFD (defined in Section 1.4.2), the amount of wasted space
introduced in this stage is less than 1 since the subbin sizes are inverse powers
of 2. Adding this to the bound in (5.8), we see that the expected total wasted
space is O(y/n). H

Another result of this type appeared in Section 2.5. In the present
terminology, that section proved:

Theorem 5.6 If [a,b] is contained in [0,1] and symmetric about 1/p, for
some integer p, then [a,b] allows a perfect packing.

Next we consider more general [a, b]. Motivation for the approach can be
obtained by examining the dual of the linear relaxation of the integer program
in (2.43). (Recall that the problem instance was assumed to have m; items
of size s; for j = 1,2,...,N; C was the set of all possible configurations,
with M = |C|; and for each j =0,1,...,N and k =1,2,..., M, Cy; was the
number of items of size s; in the kth configuration.) This dual is: find the

u; that will
N
maximize Z m;u;
=1

N

subjecttoZujij§1 fork=1,...,M,
J=1
u; >0 forj=1,...,N.

5.2. PERFECT PACKINGS 107

By recalling the definition of the Ckj, the constraint in this optimization
problem is simply that if a set of items fits in a bin, then the corresponding
u values sum to at most 1. We wish to maximize the sum of the u values
corresponding to the items (including multiplicities).

This suggests the following approach to bounding packing constants. Say
that a function u : [0,1] — [0,1] is dual feasible if for all finite sequences
Z1,T2,...,T of positive reals,

k k
ozl = > u(z) <1
i=1

i=1

(See Figure 5.1 for an example of such a function.) One easily establishes:

Lemma 5.7 If u is dual feasible, then the packing constant c¢ for items
independently distributed as a random variable X satisfies

¢ > E[u(X)].
(Hence the optimum packing ratio is at least E[u(X)]/E[X].)

Proof. Since u is dual feasible, we know that the sum of u(z) over the
items z packed in any bin is no more than 1. Thus, for any packing, the
number of bins used is bounded below by the sum of u(z) over the sizes of
all the items; the lemma follows easily. u

We remark in passing that this function u is similar to the weighting
functions that have been used in worst-case analyses of bin packing; see
[Coff82] for more information about such analyses.

Of course, a problem that arises in applying Lemma 5.7 is to find good
choices for the function u. The identity function provides a trivial example of
a dual-feasible function, but it yields a trivial lower bound. It turns out that
the best choice of u depends on the interval in question. Computer solutions
of various examples were used to guide the selection of u in [Luek83]; an
example of a function u for a specific interval is shown in Figure 5.1. For
that particular example, using Theorem 5.6, we can asymptotically pack an
average of four items of I; per bin,> three items of I, per bin, and two items
of Is per bin. It is not hard to see that over each of these intervals, the
average value of u(z) is equal to the asymptotic expected number of bins
required per item, so the bound given by this u function can be seen to be
tight. This sort of analysis can be used to compute the packing constant in
all of the shaded diamonds in Figure 5.2. (Inside the large upper triangle,
the packing constant obviously exceeds E[X].)

3That is, the expected number of items in I over the expected number of bins used to
pack I, approaches 4 for large n.

W=

N [

108 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

N
Wi
o=

Figure 5.1: An example of a dual-feasible function. Here [a,] = [0.22,0.65].

5.2. PERFECT PACKINGS 109

Perfect &:
N

0

Figure 5.2: Bin packing with items drawn uniformly from [a, b]. The packing
constant is greater than E[X] inside the shaded area. Along the bold lines the
packing constant equals E[X]. By results to be discussed in Section 5.3, the
packing constant is equal to E[X] inside the unshaded area labeled “Perfect.”

110 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

5.3 Functional analysis of the packing
constant

In this section we explore further the way in which the packing constant ¢
depends on the distribution. For consistency with the relevant literature, we
describe random variables by probability measures rather than distribution
functions. We consider the nature of the functional c¢(y) that gives the
packing constant for a probability measure u. Rhee and Talagrand [Rhee88,
RT88b, RT89¢e, RT89f] have pioneered the application of notions of topology
and functional analysis to this problem. ,

Lemma 5.7 is motivated by the duality theory of linear programming, and
one might, therefore, suspect that a converse to it could be proved. This is
more difficult than one might first expect, because the argument based on
the duality theorem of linear programming does not seem to apply directly to
other than discrete random variables. Rhee and Talagrand [RT89e, RT89f]
have, however, been able to prove the following result, by applying the
geometric form of the Hahn-Banach theorem. (Our terminology and proof
are somewhat different from those of Rhee and Talagrand.)

Theorem 5.8 ([RT8%, RT89f]) For any probability measure u, there is a
dual-feasible u such that

e(w) = [ule)u{ds} = E[u(X)], (5.9)
where X s distributed according to p.

Before giving the proof, we provide an overview and motivation. Assume
a fixed p. The proof will start by showing that we can come up with a linear
mapping ! from measures to reals, such that we have

a) for any probability measure v, I(v) < ¢(v), and
b) for the particular 4 under consideration, I(x) = c(p).

Given a linear mapping ! on a finite dimensional vector space, one can
always always find a vector u; such that the function I(v) is just the inner
product u; - v. In fact, by the Riesz representation theorem (see [ScheT7l,
Section II.1]), this same sort of result holds in a much more general context,
namely, for bounded functionals on a Hilbert space. This gives hope that we
may be able to convert the mapping [into a function u of the sort needed in
(5.9).

To formally establish the existence of I, we will use the Hahn-Banach
theorem (see [Sche71, Section II.2]). A few definitions will be useful. Recall

5.3. FUNCTIONAL ANALYSIS OF THE PACKING CONSTANT 111

that a mapping from a vector space to the reals is called a functional. A
functional ! is linear if I(z + y) = I(z) + I(y), and {(az) = al(z) for arbitrary

real a. A functional p is sublinear if p(z+y) < p(z)+p(y), and p(az) = ap(z)
for arbitrary positive a.

Theorem 5.9 (Hahn-Banach) Let M be a subspace of a given vector space
V. Let p be a sublinear functional defined on V, and let f be a linear
functional defined on M such that f is bounded above by p. Then f can
be extended to a linear functional | on all of V such that l is bounded above
by p.

Proof of Theorem 5.8. The idea of the proof is to let the packing con-
stant play the role of p in the Hahn-Banach theorem, but there is a difficulty:
the set of probability measures do not form a vector space. However, the set
of all measures of the form

AVpos — Dlneg, (5.10)

where a and b are nonnegative reals and vpos and vneg are probability mea-
sures, does form a vector space, and clearly includes all the probability mea-
sures. So, we choose this set to play the role of V. To apply the theorem, we
must generalize the packing constant to a sublinear functional on all of V.
The generalization to arbitrary positive measures is very natural: for o > 0
let ¢(av) = ac(v). Now any measure v € V can be uniquely decomposed as in
(5.10) in such a way that a + b is minimized; we let c(v) = ac(vpos) + bc(Uneg)-
It is not hard to verify that this functional is sublinear. For M in the Hahn-
Banach theorem we simply choose the vector space {au} generated by u,
and we define f(ap) = ac(p), which is clearly linear and bounded by c.
Now we can invoke the Hahn-Banach theorem®* to state that there is a linear
functional ! such that for all positive measures v,

I(v) < c(v), (5.11)
and for the particular x4 we have fixed,
() = c(p). (5.12)

What remains is to see how to produce the desired dual-feasible function
u from [. Unfortunately, we see no immediate way to obtain this, so we have

4Note that we use the Hahn-Banach theorem itself, instead of its geometric form. The
technique given here to construct ! is somewhat reminiscent of the proof of the geometric
form of the Hahn-Banach theorem (see [Sche71, Section VIL3]), with the Minkowski

functional replaced by the packing constant.

112 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

to do a bit of work. Let u(z) be defined by
u(z) = sup {{(v) : v is a probability measure on [0, z]}. (5.13)
Note that as an immediate consequence we have |
v is a probability measure on [0,z] = u(z) > I(v). (5.14)
In fact, with the notation

u(zt) = lzlﬁ’:lu(z) and u(z”) = lziTralclu(z),

we can also conclude that
v is a probability measure on [0,z) = u(z™) > {(v); (5.15)

this follows easily from the observation that for any § > 0 we can pick ' < «
such that u((x’,x)) < 4.

Now we show that u is dual-feasible. Suppose that we are given z; € [0, 1],
1 < i <k, such that Y5, z; = 1. For 1 < i < k, let v; be an arbitrary
probability measure on [0, z;], and set » = k=1 3%, »;. It is not hard to see
that ¢(v) < 1/k, since if we draw one item according to each of the v;, these

items will always fit together in a bin. Hence, using (5.11), we have

k k
V> e(v) 2 U(v) = l(z_: k_lu,-) = k1 Z;l(u,-). (5.16)

Taking the supremum over all choices of the v; and using (5.13), we obtain

k
k1> k1 Zu(z;);
=1
multiplying both sides by k, we see that u is dual feasible.

Finally, we must show that u satisfies [u(z)u{dz} = c(x). In view of
(5.12), this means we must show that [u(z)u{dz} = I(1). Now from (5.13)
we see that u must be a (weakly) increasing function from [0,1] to [0, 1]; thus
it is continuous except for a countable number of jump discontinuities. Given
any € > 0, we can choose 0 = zg, 71, ..., Tx = 1 such that if we let I; be the

open interval (z;_1,z;), then for any 1 < ¢ < k, u varies by no more than ¢
over any I;. Define u,,(S) = u(S N {z:}), and g1, (S) = (S N I;), so that

k k
H= Z/‘ri + Ztuli' (5.17)
i=1

1=0

5.3. FUNCTIONAL ANALYSIS OF THE PACKING CONSTANT 113

Now, for a positive measure v on [0, 1], let [[v|| be defined as u([0,1]), i.e.
the measure of the entire interval [0,1]. Then

)

[u@)paidde} = u(@)lpall > Upzy), (5.18)

by (5.14) and the linearity of [. Also, by the choice of the z;, for 1 < : < k
we have

Ju@nilde} = [(@) {dn)

> u(zt)| s
> (u(z7) — €)llux
2 (pr) — €llprll, (5.19)

where we have used (5.15). Combining (5.17), (5.18), (5.19), and the linearity
of I, and noting that the sum of the total variance of the p,, and yj, is just
1, we have

[ue)nddz} > 1) - e.

Using the fact that ¢ can be chosen arbitrarily small, and using (5.12), we
have

[u@nda} 2) = c(u). (5.20)
Lemma 5.7 and (5.20) then combine to yield

[u(@)uldz} = e(). m

In fact, it is not hard to see that Theorem 5.8 remains true even if we
impose a slightly stronger condition on u, namely, that it is a subadditive
function from [0, 1] to [0,1]. Rhee and Talagrand [RT89¢] also show that for
an arbitrarily small ¢, we can add the restriction that u be continuous and
then find a u that satisfies

(k) — € < [w(z)n{dz} = E[u(X));

at
This is related to Theorem 5.11 below.

Let C be the class of probability measures that allow perfect packing. The
following is easily established:

Lemma 5.10 ([Loul84b, Rhee88]) The set C is convex. (That is, if p and
' are in C, then for all 0 < o < 1 we also have ap + (1 —a)u' €C.)

114 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

Rhee [Rhee88] and Rhee and Talagrand [RT89, RT88b] investigated the class
of probability measures for which a perfect packing is possible, and proved
some very general results. Here we will state two theorems without proof,
and then briefly indicate how they can be used to prove strong results about
perfect packings.

In order to describe some of the techniques used by Rhee and Talé/gi‘and
we briefly review certain topological notions, which we present here in the
context of probability measures over [0,1]. A sequence p; of probability
measures on [0,1] is said to converge weakly to p if for all continuous functions
fon [0,1], [f(z)du;(z) converges to [f(z)du(z); we call p the limit of the
wi. If a set D of probability measures has the property that for every weakly
convergent sequence in D, the limit is also in D, then D is said to be weakly
closed.

Theorem 5.11 ([Rhee88]) The set C is weakly closed.

Now suppose k > 1 and let R; be the set of k-tuples (z1, z2,...,zx) such
that 0 < z; <1 and Zf—;l z; = 1. Let M, denote the set of all probability
measures on Rj. For v € M, U denotes the probability measure determined
by first

a) drawing a tuple according to v and then

b) selecting a single component of this tuple (with each component being
equally likely to be selected).

Finally, let By be the family of probability measures obtainable in this way,
le.,
Br = {?}vem,-

For completeness, let By contain only the probability measure concentrated at
0. (Note that B; contains only the probability measure concentrated at 1, and
that B, is the set of probability measures symmetric about 1/2.) Finally, let
B be the class of all probability measures obtainable as (countable) positive
linear combinations of probability measures chosen from the Bi. Then the
following holds.

Theorem 5.12 ([Rhee88]) A probability measure,u. allows perfect packing if
and only if u € B.

This has the following useful corollary, which we first state formally and
then motivate more informally.

5.3. FUNCTIONAL ANALYSIS OF THE PACKING CONSTANT 115

s(t)

$1(t) $2(2) $s(t) b4(2)

a 1/p=1/5 b
Figure 5.3: Illustration of a simple proof that U(a,b) allows perfect packing
if [a,b] C [0,1] is symmetric about 1/p. In this illustration p = 5.

Corollary 5.13 ([RT88b]) Suppose we are given an integer p > 2 and
continuous functions ¢; : (0,1} = [0,1], ¢ = 1,2,...,p, such that

(61(2), 82(2), .., #5(t)) € Ry (5.21)
Define a distribution F by

P 1

F(:c)=ll—);/0

Then F allows perfect packing.

(i) dt.

Informally, the value of F(x) is the probability that ¢;(¢) < z if we pick ¢
uniformlyin {1,2,...,p} and ¢ uniformly in [0, 1]. To state this in picturesque
language, we can imagine that we are painting the line segment [0, 1] using a
spray can that can be positioned at any point and that deposits paint at that
point at a fixed rate. For ¢ = 1,2,..., p, we move the paint can according to
#:(t), where t progresses at a unit rate from 0 to 1. Then the density f(z) of
the distribution F(z) is proportional to the thickness of the paint at point z.

As an example of the power of Corollary 5.13, we will now informally
outline a very simple proof, from [RT88b], of Theorem 5.6. See Figure 5.3,
where an arrow corresponds to a ¢;. We are at the tail of the arrow at time 0,
and at the head at time 1. As time progresses from 0 to 1, we move across
the arrow at a constant speed. Since the tail positions of the arrows sum
" to 1, and the head positions sum to 1, it easily follows that at any point in

116 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

time the sum of our locations on the arrows sums to 1, so (5.21) holds. The
height of the box containing an arrow indicates the thickness of the paint
deposited. Note that the speed with which we traverse an arrow must be
proportional to its length, and hence the paint is deposited at a thickness
inversely proportional to its length. We see that the total thickness is uniform
over [a, b}, so we conclude that this distribution allows perfect packing. (This
argument could easily be formalized.)

We now discuss how the notion of weak closure mentioned above is used by
Rhee and Talagrand to exhibit specific densities that allow perfect packing.

Theorem 5.14 ([RT88b]) Let [a, b] be a subinterval of [0,1], and let f be a
density function defined over this interval such that the corresponding random
variable has mean 1/p for some integer p > 3, and such that either

f is decreasing over [a,b] and (p —1)a+b< 1, or
f is increasing over [a,b] and a + (p —1)b > 1.

Then f allows perfect packing.

Corollary 5.15 ([RT88b]) Throughout the region labeled “Perfect” in Fig-
ure 5.2, the uniform distribution over [a, b] allows perfect packing.

We first illustrate the ideas in the proof of the corollary, and then return
to the proof of Theorem 5.14. Consider the region where, for some p > 3,

a< L ocetb 1, L
“p+1T 2 T p 2
b—a> —2 (5.22)
—-—a> —0, .
p(p+1)

and
a+(p—1)b2>1.

(This and a similar case cover most of the region labeled “Perfect,” though
a part of that region requires a more difficult proof, which can be found in
[RT88b].) For any [a,b] satisfying these inequalities, we decompose U(a,b)
into two parts, each of which allows perfect packing by Theorem 5.14, as
follows. (See Figure 5.4.) We decompose the density f into two incomplete
densities f; and f;, where f; is symmetric about 1/(p+ 1) and thus perfectly
packable, regardless of our choice of £. Now if £ = 0, the mean of f; is at most
1/p since (a + b)/2 < 1/p; on the other hand, if £ = (b—a)~", the mean of f;

5.3. FUNCTIONAL ANALYSIS OF THE PACKING CONSTANT 117

1
b—a
£
f2
f
. 1 1 X
p+1 p

Figure 5.4: A perfect packing strategy for the interval [a, b].

is easily shown from (5.22) to be at least 1/p. Hence a value £ € [0, (b—a)™!]
can be chosen so that f, has mean exactly 1/p and is thus perfectly packable
by Theorem 5.14. (Shor [Shor85a] has exhibited explicit packing strategies
that give a short alternative proof for much of the region.)

Proof of Theorem 5.14. Fix p. The proof begins by considering the set
W of triples (a,b,c) that satisfy 0 < a < b<c<1l,a+b<2/p,c+a>2/p,
and (p—1)a+c < 1. With each w = (a, b, ¢) € W, we associate a probability
measure y,, with the following properties:

o If a # b, p, has a constant density on [a,b), and if b # ¢, y, has a
constant density on [b, ¢),

® 4, vanishes outside [q, ¢), and

e u, has mean 1/p.

(If & < b < ¢, then p,, has a density, but if @ = b, then p,, has an atom at a.)

Rhee and Talagrand show that each g, allows a perfect packing. The
following lemma gives a decomposition crucial to the development; its proof
is a tedious case analysis making extensive use of Corollary 5.13, and can be

found in [RT88b].

Lemma 5.16 For each w € W we can find three nonnegative numbers
M,02,Ms with n1 + 12 + m3 < 1 and three triples wy, w2, ws such that v =
P — T fhw, + N2lbw, T+ M3ftw, 1S @ positive measure and allows perfect packing.
Moreover, the choices of i and w; are Borel-measurable functions of w.

118 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

Continuation of the proof of Theorem 5.14. Lemma 5.16 suggests
that we might proceed as follows to pack u,: Decompose p., as indicated,
and pack v perfectly; what remains is a positive linear combination of three
Hw;- We can apply the process recursively to each of these. This does not
immediately yield a proof, however, since this process is not guaranteed to
stop, and it may not be apparent that it even converges in any appropriate
sense.

To overcome this problem, let My be the set of probability measures
over W and begin by noting that any probability measure v € Mw induces
a probability measure 7 on [0, 1] by

7(0,2]) = [u((0,3]) dv(w).

(Informally, this means we can generate an x drawn according to 7 by first
drawing a w € W according to v, and then drawing an = according to p..)
As we will show in Lemma 5.17 below, for each v € My, 7 allows perfect
packing.

It is not hard to demonstrate that any probability measure 4 having a
density meeting the hypotheses of this theorem can be approximated well by
linear combinations of u,; more formally, we can find a sequence vy € Mw
such that Uy converges weakly to p as N — oo. Now each 7y is perfectly
packable by Lemma 5.17 below. Hence by Theorem 5.11 u is perfectly
packable. |

Lemma 5.17 For each v € My, U allows perfect packing.

Proof. The proof is analogous to a proof of the simpler fact that, if S is a
closed set of nonnegative reals such that for all z > 0 in S thereexistsay < z
in S, then 0 must be in S. Lemma 5.16 implies that for any measure v € My,
there is a probability measure 1, € My and 7 < 1 such that 0 =7 —n7, is a
positive measure that allows perfect packing. Letting W = {7: v € Mw},
this means that W has the property that for any member of W we can shave
off a part of the probability measure that is proportional to some element of
W, and have the remainder be perfectly packable.

Given v € Mw, let
no = inf{n > 0: Iy € My for which 7 — 77 is a positive
measure that allows perfect packing}. (5.23)

In defining 7o in this way, we are trying to shave off a part of ¥ that is
proportional to some J € W, so that the mass of what we shave off is as

5.3. FUNCTIONAL ANALYSIS OF THE PACKING CONSTANT 119

small as possible subject to the remainder being perfectly packable; 7 is the
mass of the part of the probability measure that we are shaving off. By
(5.23) there will be sequences 7,, and v,, n > 0, such that lim,—co 7, = 7o
and each 0, = 7 — 1,7, is a positive measure allowing perfect packing.
Now by compactness 7, has a weakly converging subsequence, so we may
pick a subsequence 7,, that converges weakly to some v9 € My. Then 0,,
converges weakly to 7 — n¢7¥,, and by the weak closure of C we know that this
is perfectly packable. Thus we have used the closure property to guarantee
that the infimum above can be replaced by a true minimum; if o = 0, we
are done.

If no # 0, we derive a contradiction as follows. Since 79 € Mw, we can
find 7§ € My and 7} < 1 such that F, — 07, is a positive measure allowing
perfect packing. Now note that ‘

T — 0% + 10(Fo — M07e) = 7 — Moo

Since the left side is a positive linear combination of two perfectly packable
measures, it is perfectly packable. But then the right side contradicts (5.23),
since we have now shaved off only a mass of njn < 10 to obtain a perfectly
packable probability measure. H

We conclude this section with a few comments on the work of Courcou-
betis and Weber [CW86b]. They proved results for discrete distributions
that are analogous to those of Lueker and of Rhee and Talagrand; they also
investigated on-line packings in the discrete case. Recall our notation in Sec-
tion 2.6, where an integer program was defined for bin packing with finite
sets of item sizes. Assume here that the item sizes s;,...,sy are rationals
in (0,1] and define perfect configurations € = (c1,. .., cn) as those for which
Z,-N=1 csi=1land ¢ > 0,1 <7< N. Let the item-size distribution be given
by p; = Pr{X = 5;}, 1 < i < N. Let C* denote the (possibly empty) set of
perfect configurations defined on {si,...,sn}, and consider the convex cone
A C ®F spanned by nonnegative linear combinations of the configurations
(vectors) in C*. It is shown in [CW86b] that the expected number of partially
full bins in an optimal packing of n items is O(n), @(y/n), or O(1) according
as the vector p = (p1,. .., pn) lies outside A, on the boundary of A, or inside
A, respectively. Clearly, since there are finitely many item sizes and they are
strictly positive, the term “partially full bins” can be replaced by “wasted
space” in the above assertion. An on-line algorithm is exhibited in [CW86b]
that achieves O(1) wasted space in the case where pis inside A. However, the
algorithm is far from practical: it is randomizing, it packs items in a manner
that depends on how items are packed in the current set of partially full bins,

120 CHAPTER 5. BIN PACKING: THE OPTIMUM SOLUTION

and it even starts new bins when not required to do so. Subsequent papers
have introduced simpler, bounded-waste, on-line algorithms, but there is still
no known “simple” algorithm. For example, there are p inside A for which
Best Fit produces ©(n) expected wasted space. Other papers have gener-
alized these results by allowing items to be encountered in sequences with
correlation or in batches. For further discussion, including descriptions of
special cases in which 7 is inside A, see [CW86a, CKWW89, CW90].

Chapter 6

Bin Packing: Heuristics

In this chapter we first study off-line algorithms that pack items in decreasing
order of size. In Section 6.2 we turn to on-line approaches and cover several
topics. The first is a bound on the open-end BF heuristic; recall that BF
is an open-end heuristic because it makes no use of the number of items to
be packed. A superior closed-end heuristic is then described. We conclude
that section with a lower bound on open-end on-line algorithms. In the final
section, Section 6.3, we study linear-time algorithms, including one that is
asymptotically optimal, and prove a lower bound for heuristics that maintain
a limited number of active bins.

Exact results in this chapter are limited chiefly to the more easily analyzed
linear-time algorithms. An exact analysis of even the first bin in an FF or
FFD packing seems to be quite difficult in general, in spite of the property
that the sizes of the items in the first bin are not conditioned on not having
fit into earlier bins. This first-bin problem for FF, along with its relation
to problems of sequential selection, is briefly discussed in [CFW8T7]; see also
[FV89]. Interestingly, when F'(z) is the the uniform distribution U(0, 1), the
problem of determining the number of items packed is easily shown to be
equivalent to a classical version of the record-breaking problem: in a given
sequence Xi, Xs,..., X, of independent samples from U(0,1), how many
times are records set (i.e., for how many indices j > 1 does X; > max;<i<; Xi
hold)? Thus from the results on the record-breaking problem (see [Glic78])
we have that, as n — oo, the number of items packed in the first FF bin is
asymptotically normally distributed with mean and variance Inn.

An asymptotic analysis of the first-bin problem for FFD can be found in
[CFJRI0] (see also [BT89]). This analysis includes a proof that, in contrast
to FF, the expected number of items in the first FFD bin is bounded for all
n. (In the limit as n — oo, this expectation is slightly less than 5/3.)

121

122 | CHAPTER 6. BIN PACKING: HEURISTICS
6.1 Off-line packing: FFD and BFD

6.1.1 The expected behavior

Consider the analysis of the FFD and BFD heuristics described in Sec-
tion 1.4.2. A technique used in [Fred80, Luek82], at the suggestion of John-
son [John], is an illustration of the method of dominating algorithms (Sec-
tion 2.4). Here we present a simplified proof, still using dominating algo-
rithms, which benefits from ideas in [BJLMMS84, John, Karp82]. Average-
case results for FFD and BFD derive quite easily from the following combina-
torial result, together with the average-case analysis of MATCH in Chapter 5.

Lemma 6.1 For any set of item sizes drawn from [0, 1], the number of bins
used by the heuristic MATCH (Section 5.1) is at least as great as the number
of bins used by BFD or FFD.

Proof. Consider the following two-stage algorithm for packing a list L.
In the first stage, a given heuristic H packs the first ¢ items of L,, for some
given : > 0. The second stage packs the remaining items optimally subject
to the constraint that none of these remaining items can be placed into a
bin that has already received two or more items. We call the second stage
an Optimum Restricted Completion (ORC). An easy inductive proof shows
that, if we process the items in order of decreasing size, any algorithm of the
following form will yield an ORC. Let X be the next item to be packed. If X
does not fit into a bin already containing exactly one item, then X is packed
into a new bin. Otherwise, X is packed into some bin containing exactly one
item. (If more than one such bin exists, the algorithm may pack X into any
such bin; this is because items packed later are at most as large as X, so
they also fit into bins where X fits.)

Let H; denote the above two-stage algorithm, with FFD or BFD being
the heuristic for packing the first 7 items of L,; in either case, an ORC packs
the remaining items. Then, in particular, H,(L,) denotes either FFD(L,)
or BFD(L,). Since MATCH gives a packing with at most two items per bin,
it must be that Hy(L,) < MATCH(L,).! We complete the proof by showing
that H;(L,) is nonincreasing in ¢, 0 <7 < n.

For notational convenience assume X; > X, > --- > X,.. Suppose first
that H; packs X; into a bin with at most one item. By the definition of
FIFD and BFD, X; must be packed into a bin with another item, if that is

'In fact, one easily sees that Ho(L,,).z MATCH(L,), though we do not need equality
for this proof.

6.1. OFF-LINE PACKING: FFD AND BFD 123

possible. Thus, there is an ORC for H;_; that begins by packing X; just as
X; is packed by H;, so H;(n) = H;_1(n).

Suppose next that H; places X; into a bin already containing two or more
items. Then that bin is unusable in an ORC for H;_; as well as in an ORC
for H;, i.e., ORCs for H;_; and H; begin with the same set of bins that
have exactly one item. But one readily sees that ORCs are monotonic in the
sense that, if the ORCs for H;_; and H; begin with the same set of usable
bins, then the ORC for H; starts at most as many new bins as the ORC
for H;_;. H; < H;_, follows easily from this property and the fact that H;
uses the same number of bins in packing Xj,...,X; as H;_, uses in packing
Xi,..., X1, o

Combined with Theorems 5.1 (page 101) and 5.2 (page 101), Lemma 6.1
proves:

Theorem 6.2 For item sizes drawn independently from U(0,1), we have
E[FFD(L,)] — n/2 = ©(y/n), and E[BFD(L,)] — n/2 = O(/n).

Since FFD and BFD use small items to fill gaps left by larger items, it
is natural to expect a substantial drop in the average wasted space if the
uniform distribution is assumed to extend only over [0, a] for some a < 1.
Indeed, Bentley et al. [BJLMMS84] showed that expected wasted space under
FFD with « < 1/2 is bounded by a constant independent of n. The proof
amounted to an analysis of order statistics and their relation to the structure
of FFD packings. The analysis is too involved to present here, but we can
illustrate informally the nature of their approach. Define a regular item in an
FFD packing as an item that, at its time of packing, either starts a new bin
or is placed in the highest indexed (i.e., last) nonempty bin. The remaining
items are called fallback items for obvious reasons. Bentley et al. showed
that if the gap left over by the regular items in a bin B; falls in the interval
between the jth and (j + 1)th order statistics, X(;y and X(j41), then with
high probability for all n sufficiently large, the first fallback item packed in
B; is an order statistic X{;), where j —1is bounded by a constant independent
of n. Thus we can expect B; to be nearly full.

Among other results, [BJLMMS84] showed that the average wasted space
as a function of n exhibits unexpected discontinuities at ¢ = 1/2 and a = 1.

Theorem 6.3 ([BJLMMS84]) Let U(0, a) be the item-size distribution. Then®

E[FFD(Ln) — iXi] = { 8&,11)1/3) ZZ (11/5 i/3’< 1.

2The @(nl/a) result appears in a paper in preparation, which is based on [BILMM84]
and carries the same authors.

124 CHAPTER 6. BIN PACKING: HEURISTICS

(Recall from Theorem 6.2 that the average wasted space under FFD is ©(n'/?)
when a = 1.)

Floyd and Karp [FK] have studied FFD, a = 1/2, under the a,ssurnptiovn
that the number of items is a Poisson random variable N with E[N] = n
(see Section 2.7.1). Thus the distances between adjacent item sizes are i.i.d.
exponential random variables with mean values 1/n. The analysis in [FK]
is based on a modification of FFD, called MFFD, that closes a bin once it
receives a fallback item. It is not difficult to prove that MFFD dominates
FFD. Evaluating the performance of MFFD involves an ingenious application
of queueing theory that yields two insights:

a) a simple, heuristic explanation for the discontinuity at @ = 1/2 in
Theorem 6.3, and

b) a constant upper bound to the expected wasted space that is much
smaller than that implied by the analysis of [BJLMMS84].

Before getting into the analysis, we first show how the behavior of MFFD
can be represented by a queueing process.

We describe MFFD in terms of a right-to-left scan of the interval [0, 1/2]
pictured in Figure 6.1, on which a sample, Ly, of item sizes has been plotted
as a pattern of dots. MFFD uses a FIFO queue, @, that is initially empty;
later in the scan, @) contains the sizes of gaps in partially packed bins that
have yet to receive fallback items (the scan has yet to encounter items small
enough to fit into the gaps represented in Q).

Suppose that at some point in the scan, MFFD encounters a dot at z. If
@ is empty, then the corresponding item is packed into the highest indexed,
nonempty bin, say, B;, if it fits. If it does not fit, then it starts the new
bin, Bj41, and the current gap g; in B; is plotted as a cross at point g; < z.
If @ is not empty when MFFD encounters the dot at z, then the item is
placed into the bin whose gap g; > z, ¢ < j, appears at the head of @,
whereupon g¢; is removed from Q. Finally, whenever MFFD encounters a
cross, the corresponding gap size is simply appended to Q.

We associate a queueing process with MFFD by envisioning MFFD’s
leftward scan to be at rate 1, and letting ¢(¢) be the number of customers
(gaps) in @ at time t (when the scan is at 2 —t). The arrival time of a
customer g in @ is simply 7 — g, the time at which the corresponding cross
is encountered. The sojourn time (or time spent in @) of g is g — z if an
item at z < ¢ is placed into the bin with gap g; the sojourn time is simply ¢
if no further item is ever placed into this bin (see Figure 6.1). The sojourn
time of a gap g corresponding to B; is clearly equal to the gap of unused

6.1. OFF-LINE PACKING: FFD AND BFD 125

scan direction

VA YA

Og. S. Sa S 1/4g.
q(2) 2
i 0
1/2 — t 0

Figure 6.1: Example of the queueing process for MFFD. S; denote sojourn
times. The bin corresponding to a cross contains the matched fallback item
(if any) to the left of the cross, and all regular items matched to the cross
and to the right of the cross.

space remaining in B; at the end of the scan (packing process). Thus the
cumulative wasted space in the packing up to but not including the last bin
is simply the sum of all the sojourn times. Note that our interest in ¢(¢) can
be restricted to 1/6 <t < 1/2, since no gap exceeding 1/3 is ever created,
ie.,q(t)=0forall0 <t <1/6.

The area under the line ¢(¢) in Figure 6.1 can be interpreted in two ways.
First, it is the sum of the gaps in all but the last bin at the end of the scan,
by the remarks of the previous paragraph. But also, of course, it is simply
1/3 times the average value of ¢(t) over ¢t € [1/6,1/2]. Thus, if the queueing
process is stable and hence E[g(t)] is bounded by some absolute constant,
then the expected wasted space is bounded by a constant.

It is helpful to partition ¢(t) into component processes {gx(t)}>2, where
gr(t) is simply g(t) restricted to the time interval I, = [} — £, — w=7)
corresponding to the interval (7, %] of item sizes. To analyze gx(t), we first
consider its arrival process.

Packing bins with & regular items having sizes in (37, ;] creates gap sizes
in (0, z37]; in ¢(2) these are customers arriving in 15— w10 3) = Uizk1 Ly As
a convenient approximation, let us assume that these arrivals form a Poisson
pattern over the intervals I;, j > k41, with a density determined as follows.
Let n: be the density of regular items with sizes in (ﬁ, %] We have 5, = n,
but because of fallback items, nx < n for & > 2. Then the packing of items
with sizes in (537, 3] creates an expected number of customers in Ujyk+1l;

126 CHAPTER 6. BIN PACKING: HEURISTICS

that is asymptotic to (1/k)(nk/k(k + 1)) as n — oo. Since Uj>r41l; has
duration 1/(k + 1), we take nx/k%, k > 2, as the arrival rate of the Poisson

process generated by the scan of item sizes in (ﬁ, =1
To determine the 7, observe first that the total arrival rate Ax4y of cus-
tomers to Jx4; originating from the scan of the item sizes in (3, 3], - -, (537> 7]
is given by
k
/\k.|.1 = ZT)]/]2 for k 2 2. (61)
i=2

Now ng+1 = n — Aky1, so we determine 7, and Ax from the recurrence

2 = N,
k
Nk+1 =N — Z’?j/j2,
i=2
for which the solution is easily found to be

n k

Substituting into (6.1), we obtain the arrival rates for the processes gi(t),

n & 1 nk—1
\ . =——— fork>2, 6.3
k+1 9 p j(j— 1) 2 & or £ 2 ()

with A, = 0.

We observe immediately from (6.3) that Ay < n/2 for all £ > 2. These
arrival rates are all exceeded by the maximum service rate n, so our Poisson
approximation implies that gx(¢) is stable for all k£ > 2, and hence that ¢(%)
is stable. This provides a strong basis for expecting that

E |FFD(L.) —iX,-] <E [MFFD(Ln) -y x| = o).

=1

But notice what happens when we extend the model in the obvious way
to items at density n over (0,a] for @ > 1/2. Since the items in [1/2,a) go
one to a bin, the arrival rate of customer gaps throughout [1 — a,1/2) is
at least the maximum service rate n. Thus ¢(t) is unstable in [1 — a,1/2)
and E]MFFD(Ly) — ¥, X;] is unbounded as n — oco. The experiments
in [BJLMS83] give convincing evidence that EMFFD(Ly)] — E[FFD(Ly)] =
O(1), so the above analysis leads us to expect the discontinuity at a = 1/2
in Theorem 6.3.

6.1. OFF-LINE PACKING: FFD AND BFD 127

The experiments of [BJLM83] also suggest that the asymptotic expected
wasted space is very close to 0.7 as n — oco. By a natural extension of our
Poisson approximation, a simple queueing analysis yields a result remarkably
close to this. (This approximation is attributed to Coffman by Floyd and
Karp.) Specifically, let us take the sample functions of gx(t) as those of a
single-server queue in statistical equilibrium with Poisson arrivals at rate Ay
~and 1.i.d. service times exponentially distributed with mean 1/n. For the
expected total sojourn time of customers in Ii4y, £ > 2, we have

Wk+1 ~ Nk+1’wk+1 as n — oo, (64)

where Nyy1 = Agg1/(k + 1)(k + 2) is the expected number of customers in

Ii41, and where
1/n

1—)\k+1/n

is the expected waiting time of each such customer (see [Klei76, p. 98]).
Substitution into (6.4) yields, for k£ > 2,

Wr41 =

k-1 1 k-1

Wit ~ Sk +1)(k+2) 1—(k—1)/2k (k+ 1)2(k + 2)

as n — o0.

Summing over k > 2 and adding 0.5 for the approximate expected wasted
space in the last bin leads to the approximation

k-1

N
EIMFFD(Ly) — X;]|=0.5+ =~ 0.71.
[(Zn) ;] ,;(k+1)2(k+2)

A rigorous analysis of the Floyd-Karp model faces serious difficulties. Our

Poisson approximation fails because

a) the gx(t), k > 2, are not independent processes, and

b) the interarrival times of any given gi(t), £ > 2, are not mutually

independent.

Floyd and Karp eliminate the first problem by introducing a further, still
dominating modification of MFFD. Even after this modification, the second
difficulty remains. Resorting to bounding techniques, they prove

Theorem 6.4 ([FK]) With Ly given by the renewal points in [0,1/2] of a
Poisson process at rate n = E[N], we have E[FFD(Ly) — YN, X £94.

Although this upper bound appears to be crude, as we have seen, we
emphasize that it is a rigorous bound many orders of magnitude smaller
than the bound implied by the analysis in [BJLMMS84].

128 CHAPTER 6. BIN PACKING: HEURISTICS

6.1.2 Deviation from the expected behavior

Given two lists L, and L,, let the corresponding sample distribution func-
tions® be F, and F!,. As noted in Section 2.6, neither BFD nor FFD is
monotonic. In fact, Murgolo [Murg88] gives examples of lists L, and L,
with n = n’ and L, dominating L’,, for which

n'»

4
BFD(L]) > ZgBFD(L")’
In terms of the sample distribution functions, this means that we can simul-
taneously have

Vt, F'(t) > F(t) and BFD(L,) = (1+ Q(1))BFD(L,).

Rhee and Talagrand [RT89b] establish, however, that by bounding the dif-
ference between F'(t) and F(t) (so that F’(¢) can be neither much more than
nor much less than F'(t)), we can cause BFD(L]) to be arbitrarily close to
BFD(L,). Thus BFD is continuous in some sense. More precisely, let the
sample distance between L, and L/, be supgc;<y |Fn(t) — Fri(t)|. Then there
is a function ¢(6,n) such that o

lim lim ¢(6,n) =0,

§—+Q Nn—00

and

BFD(L.) BFD(L,)

n!

< 6(6,n),

n n'

where 4 is the sample distance between L, and L;,.

For FFD, which appears to be even more pathological than BFD (see
[RT89b, page 910]), a weaker continuity result is proved in [RT89c]: for each
distribution F', there exists a constant ¢ such that for each € > 0, there are
6 and ng such that

n > ng and sup |Fn(t)—F(t)| <6

0<t<1 n

(————FFD(LH) — c(<e.

With these bounds established, Rhee and Talagrand can easily obtain
the following convergence result from properties of the Kolmogorov-Smirnov
statistic:

3See Section 2.7.2 (page 34) for the definition of the term sample distribution function.

6.2. ON-LINE BIN PACKING: BEST FIT 129

Theorem 6.5 ([RT89b, RT89c]) Let H be one of BFD or FFD, and let F be
a probability distribution. As usual let the list L, consist of n i.i.d. random
variables with distribution F'. Then there ezxists a constant ¢ such that for

every € > 0,
. - H(L,
ZPI‘{\M—C‘ 26} < 0.

n=1 n

6.2 On-line bin packing: Best Fit

Shor [Shor86] discovered the intimate connection between up-right matching
(Section 3.2) and the structure of BF packings. In so doing, he produced
a remarkably precise estimate of the expected wasted space. The analysis
below follows that in [Shor86].

To prove an upper bound, the dominating-algorithm technique will again
supply a major simplification. Define Modified Best Fit (MBF) to be the
same as BF except that a bin is closed whenever 1t receives an item no larger
than 1/2. Thus bins in an MBF packing have at most two items. Also, at
any point in the packing sequence, the active bins are just those singleton
bins with items exceeding 1/2. The dominance of MBF is proved below.

Lemma 6.6 For all lists L,, MBF(L,) > BF(L,).

Proof. The proof exploits the fact that MBF, in contrast to BF, is
monotonic. Indeed, it is easy to prove by induction that the following more
descriptive property holds. Let L{) denote the list L, with the sth item X;
deleted, 1 < i < n. Then, in terms of the number of one-item and two-item
bins, the MBF packings of L, and L{) can differ in only two ways: the MBF
packing of L, either has

i) one fewer one-item and one more two-item bin, or
ii) the same number of two-item bins and one more one-item bin.
This property implies that MBF(L,) > MBF(L{¥)) > MBF(L,) — 1.

Now remove from any given list L, all items that are packed by BF into
a bin already containing an item no larger than 1/2. Then the new list L,
contains no item that is packed by BF into a bin that MBF would consider
closed. Thus MBF and BF pack the items in L] in exactly the same way.
By the monotonicity of MBF, we then have

MBF(L,) > MBF(L.) > BF(L,). |

130 CHAPTER 6. BIN PACKING: HEURISTICS

Xs: 0.37 .
Xs: 0.52 ’ Kot 0.37 Xo: 0.25

X,: 0.80

X4: 057 | Xe: 0.55 , Xg: 0.56
X,: 0.40 4 6 || X7 0.47 8

Figure 6.2: An example of Best Fit.

Theorem 6.7 ([Shor86]) For n i.i.d. items from U(0,1), we have the ez-
pected wasted space

E[BF(Ly)] - 5 = ©(v/nlog”* n).

Proof of the upper bound. By Lemma 6.6 we need only prove the
O(v/n1log®* n) upper bound for MBF. Let the items of L, be points plotted
on a square as follows: the vertical coordinate corresponds to the index of the
item; larger indices appear lower in the square. The horizontal coordinate is
just the size of the item. We plot a @ for items greater than 1/2, and a & for
items less than 1/2. Next we fold the square in half vertically; equivalently,
we can think of plotting points X; that are greater than 1/2 at 1 — X;. We
now match points that are placed into the same bin by MBF. (See Figure 6.2
for an example of a set of items to be packed and their packing according to
Best Fit; see Figure 6.3 for an example of the up-right matching for the data
of Figure 6.2.)

Note that MBF always packs an item of size greater than 1/2 into a new
bin, and packs an item of size less than 1/2 into the bin containing a single
item of size at least 1/2 and having the smallest gap no smaller than the
item, provided such a bin exists. In terms of the points we have plotted, this
means that the corresponding matching can be produced by scanning the ©
points from top to bottom, matching each © with the leftmost unmatched
@ that is above it (has a lower index) and to its right (and, therefore, will
fit together with it in a bin). It is easily proved that this always produces
a maximum up-right matching [KLMS84]. But, as we saw in Theorem 3.2
(page 43), the expected number of unmatched points in a maximum up-right

matching is O(y/nlog®* n). -

6.2. ON-LINE BIN PACKING: BEST FIT

0,1

1/2

1:@

131

Figure 6.3: An example of the matching used during the proof of the upper
bound on Best Fit. Note that items 3 and 7 are matched even though Best Fit

does not pack them together.

132 -CHAPTER 6. BIN PACKING: HEURISTICS

We limit our discussion of the lower bound to a couple of hints (for details,
see [Shor86]). First it is convenient to restrict the analysis to that part of the
- packing containing items in the range (1/3,2/3), which are packed at most
two per bin. This part of the packing by itself implies the Q(y/nlog®*n)
lower bound. The objective is then to show that sufficiently many bins are
packed by first putting in a large item X > 1/2 and then putting in a small
item X < 1/2. Such pairs give an up-right matching that has an expected
value of Q(4/n log®*n) unmatched points, by Theorem 3.2. The expected
number of unmatched points will be within a constant factor of the expected
number of bins in excess of n/2.

Shor also establishes that First Fit wastes an amount of space that is
Q(n?3) and O(nz/ 31og!/? n) when packing n items drawn uniformly from
[0,1]. The upper bound again uses the notion of two-dimensional matching.
Quite recently, the upper bound has been tightened to give E[FF(L,)—n/2] =
©(n?/®); matching results continue to play the key role [CCGIM&91].

Surprisingly, there is an on-line packing algorithm that achieves only
O(1/n) wasted space [Shor86]: pack the first half of the items into separate
bins, and then pack the remaining items using Best Fit; note that this simple
algorithm is able to do well because it knows in advance the number of items
to be packed, i.e., it is closed-end. Shor has shown that an open-end on-line
algorithm, such as BF or FF, cannot achieve an O(4/n) wasted space bound.

Theorem 6.8 ([Shor86]) Let k be chosen uniformly from {1,2,...,n} and
let an open-end on-line algorithm pack k items chosen uniformly from [0, 1].
Then the expected amount of wasted space in the packing is Q(1/nlogn).

Proof. With minor changes, we proceed as in [Shor86| and relate this
problem to a two-dimensional matching problem. Suppose that at some point
in time, n; is the number of items in the range (1/2,1], and ny is the number
of items in the range (1/3,1/2] that are not packed in a bin with an item
greater than 1/2. Then, since a single bin cannot hold more than one item of
size greater than 1/2, nor more than two items of size greater than 1/3, we
conclude that the number of bins in use must be at least n; + ng/2; hence,
since the expected total size of the items and the expectation of n; are both
equal to n/2, ng gives us a lower bound on the growth rate of the expected
wasted space.

To estimate ny, note that we need not consider items of size greater than

2/3 as candidates for matching. We now plot @’s and ©’s as before, folding
about 1/2, but now we concentrate on the range [1/3,2/3]. For each X;, we

6.3. ON-LINE LINEAR-TIME BIN PACKING 133

plot
nothing ifz; €[0 ,1/3],
o at (21, 1;) if z; € (1/3,1/2],
@ at (=2,1—2;) if z; € (1/2,2/3),
nothing ifz; €(2/3, 11.

We join two points of opposite sign by a line segment if they correspond
to items that were packed into the same bin. In addition, we draw a line
segment down to the bottom axis from each point that was never packed
together with a point of opposite sign. See Figure 6.4 for an example of this
construction for the Best Fit packing of Figure 6.2. Note that a horizontal
line segment drawn at any point in time (other than a multiple of 1/n) will
intersect a number of lines equal to the number of unmatched points. Thus
the expected number of unmatched points, given that we choose & uniformly
from {1,2,...,n}, is equal to the expected total vertical length of these

segments. By Theorem 3.4, page 54 (see also the remarks at the beginning
of Section 3.1.3) this is 2(y/nlogn), from which the result follows. |

Very recent_results of Shor [Shor90] have yielded an open-end algorithm
achieving O(y/nlogn) wasted space. The algorithm grew out of the recent
upper-bound result for rightward matching (cf. the comment at the end of
Section 3.1). For an application of up-right matching to on-line packings of
items from a general distribution, see [RT91].

6.3 On-line linear-time bin packing

In this section we study the analysis of algorithms in which the time to pack
an item is bounded by a constant independent of n. The simplest of these
is Next Fit, which we consider first. Next, we discuss briefly the asymptotic
analysis of the harmonic algorithms. By sacrificing some of the simplicity
of NF, the harmonic algorithms offer substantial improvements in packing
efficiency.

6.3.1 Next Fit: The expected behavior

The simplicity of NF accounts for its being analyzed successfully within the
classical theory of Markov processes. For the analysis it is convenient to
define L = (X1, X, ...) as an unbounded sequence of i.i.d. random variables
(items) with the distribution F(z)on [0,1]. L, then denotes the first n items
of L.

134 CHAPTER 6. BIN PACKING: HEURISTICS

1/3 Size — 1/2

Time

Figure 6.4: An example of the matching used during the proof of the lower
bound for open-end on-line packing.

6.3. ON-LINE LINEAR-TIME BIN PACKING 135

We analyze two Markov chains. First, we analyze {I;};>1, where /; denotes
the final level of B;, i.e., the level of B; when By, receives its first item.
It is easy to verify that {l;} is a first-order Markov chain. Under mild
conditions on F(z), the general theory provides that {l;} is ergodic and that
Vi(z) = Pr{l; < z} converges geometrically fast to a limiting distribution
V(z); see [CSHY80], where it is also verified that there exists a constant
¢ > 0 such that for all m

ma — i E[l,‘]‘ <c, (6.5)

where a = lim;_,o E[/;]. In particular, this holds if F' is uniform over [0, 1].

The second Markov chain to be analyzed is {mi}iZI, where m; denotes
the level of the last occupied bin (the “current” bin) just after the ith item
is packed. As will be seen, asymptotic results on E[NF(L,)] can be obtained
for distributions U(0,a), 0 < a < 1, more easily from the analysis of {m;}i>1.
The convergence properties of {l;} also apply to {m;}.

For the analysis of {l;}, we define the conditional probability
K(z,y) =Pr{liya <y | i =z},

so that the stationary distribution is defined by

V() = /0 ' K(z,y) dV(2). (6.6)

Let S, denote the sum of n i.i.d. samples X from F(z), and let Z; denote the
first item packed into B;. If [; = z, then Z;;, has the conditional distribution
of an item size given that it is larger than 1 — z, 1.e.,

0 for 2 <1 -z,

Pr{Zin <z|li=2) = { F(z)— F(1-a (6.7)
* { ng(l(—x)) forl—-z<2<1.

Then the probability that exactly j more items fit and the total space used
in Biy1 is bounded by y < 11is Pr{Z;11 +5; <y and Zi11 + S;+ X > 1}, 50

> Pr{l-X<Zu+S<yl|lli=z} fory>1-—uz,
I((l‘,y): 720

0 fory<l-—=z.
(6.9)

136 CHAPTER 6. BIN PACKING: HEURISTICS

After computing V(z) and then a, either from an explicit formula or nu-
merically, E[NF(L,)] can be estimated as follows. First, it is easily verified

that
NF(L»)

nE[X]NE[> l,] as n — oo.
=1

Then, assuming that F is such that (6.5) holds, one can prove [CSHY80]

NF(L»)
E [> l,] ~ aE[NF(L,)] as n — oo,

so that
E[NF(L,)] ~ nE[X]/a as n — oo. (6.9)

In general, explicit solutions for V(z) appear hard to come by. However, for
F(z) uniform on [0,1] a simple solution can be found. Under this assumption,
Pr{S; <z}=z"/n},0< 2 <1, and

Pr{Z¢+1§z|l;=x}=-1:v—(x+z—1) forl—z<2z< 1. (6.10)

By (6.8), a calculation then shows that

1 — i(l - y)er—(l—y) forl—-z<y<l,

(6.11)
0 fory<l-—=z.

K(z,y) = {
It is easily verified that V(z) has a density v(z). Substitution of (6.11) into

(6.6) and differentiation yield

v(y) = ye¥ ™! /: iv(.’v) dz. (6.12)

-y X

In terms of the function g(y) = e Yv(y)/y, this integral equation is easily
converted to a second-order differential equation with constant coefficients.
Ultimately, one obtains g(y) = 3ye~¥, which proves

Theorem 6.9 ([CSHY80]) For F(z) uniform over [0,1], we have
V(z) =2® for 0< 2 <1,

and hence

2
E[NF(L,)] ~ 3 as m— oo

6.3. ON-LINE LINEAR-TIME BIN PACKING 137

From (6.10) and Theorem 6.9 the limiting density h(z) of Z; as i — oo is
easily found. A calculation gives

h(z) = g—(Qz —2%) for0<2<1,

with the expected value 5/8. The limiting distribution {¢,,} of the number
per bin can then be obtained from

1 1—-2
qm=/ h(z)dz/ Pr{Sm_1=3s, X >1—2—s}ds.
0 0
Routine manipulations yield

m2+3m+1

(m +3)! form > 1, (6.13)

gm =3
with the expected value 3/2.

Even for extensions to the distributions U(0,a), 0 < a < 1, the above
method for calculating V(z) runs into major difficulties. However, if we
want only the asymptotics of E[NF(L,)| for these distributions, then the
following observation suggests another approach. Suppose we can calculate

= lim;_, o pi, where p; is the probability that the :th item begins a new bin.
Then p is the asymptotic fraction of the items starting new bins and

E[NF(L,)] ~ pn as n — oo. (6.14)

Now let W (z) be the stationary distribution for the Markov chain {m;},
where m; is the level of the current bin after packing the ¢th item. Then the
limiting probability that the next item starts a new bin is

o= [, f@dzaw),

so for the uniform distribution on [0,a], f(z) = 1/a for 0 < z < a, and an
integration yields

p=1— —1-/1_ W(y) dy. (6.15)

aJi

Following the analysis of Karmarkar [Karm82] (see also [Hofr87]*), we now
show how to calculate W(z) and hence p for the case f(z) = 1/a,0 < z < a.
First, it is easily verified that W(z) has a density w(z) satisfying

w@)= [fe-ve@)d+ [f@ud. (616)

4We have incorporated Hofri’s corrections to [Karm82].

138 CHAPTER 6. BIN PACKING: HEURISTICS

Note that the first term corresponds to fitting an item of size z — ¥ into
a bin with level y, and the second term corresponds to starting a new bin
with an item of size = because it did not fit into a bin with level y > 1 — z.
Substituting for f(-) and putting the result in terms of the distribution W(z),
we obtain

adW(x) _ {VV(:L‘) —-W({l—-2z)+1 forz <a,

dz W(z) — W(z — a) for z > a. (6.17)

In what follows, (6.17) is solved by reducing it to two systems of linear first-
order differential equations with constant coefficients. Although the details
differ from those in [Karm82], the general method is the same. This method
is also nicely illustrated in [CCF84].

We assume initially that 1/(K +1) < a < 1/K for some K > 1. Later, we
consider the simplifications that occur when a = 1/K, K > 1. The first step
is to partition the intervals [0, a] and [a, 1] into a smallest set of subintervals
such that for K > 2 a subinterval of [0, a] maps onto a subinterval of [a, 1]
under the reflection R(z) = 1 — z in the first case of (6.17), and a subinterval
of [a, 1] maps onto a subinterval of either [0, a] or [a,1] under the translation
T(z) = z — a in the second case. An alternating merge of the two sequences
[ja,1 — (K —j)a],0<j<K,and [1— (K —j)a,(j +1)a],0< s <K -1,
yields the desired partition of [0,1], as illustrated in Figure 6.5. The labeled
arrows in Figure 6.5 indicate the mappings created by (6.17). The intervals
of the form [ja,1 — (K — j)a] are called type-1 intervals and have length
1 — Ka; the others are called type-2 intervals and have length (K + 1)a — 1.
For K = 1, Figure 6.5 shows the special case of one type-2 interval, [1 — a, g,
which maps into itself under the reflection R(z).

Now define
R(z) for 0Lz < a,
h(z) = {

T(z) fora<zr<l,

and let hi(z) = h(hi‘l(:v)), ¢ > 1, where A%°(z) = z. It is clear from (6.17)
that W(z) depends on W(h(x)) which depends on W (112(:5)) which depends
on W(h3(:v)), etc.

The second step is to verify that the sequence h*(z),: > 0, is periodic. But
it is easily seen that if z is in a type-1 interval, then R2¥+1)(z) = z, and if =
is in a type-2 interval, then A?K(z) = z. For example, consider z € [0, 1—.Ka]
and the sequence of type-1 intervals. Figure 6.6 shows the sequence h'(z),

0 < i < 2K 42, defined by (6.18). Observe that A(z), h*(z),..., A"+ (z) are
R(z),T(R(z)), ..., TX(R(z)), respectively; this sequence maps the point z

(6.18)

6.3. ON-LINE LINEAR-TIME BIN PACKING 139

a) K=1,3<a<1

T t T |
0 W 1
T
b)K=31<a<l R

R

-l

|

1-2a (Km
| } | I
. } } } q

NS

T T

Figure 6.5: Partition examples for the analysis of Next Fit. Mappings shown
are R(z)=1-2,T(z)=2—a.

140 CHAPTER 6. BIN PACKING: HEURISTICS

h(z)

h2K+2(I) h2K+1(.’v') hK+4(.’v) hK+3(.’v)

1-2a l1-a

hK+2(:v)
T—1—-z—21—z—a—:---—1—-—z2z— Ka

—Kat+z—(K—-1)a+z—---—a+z— <.

Figure 6.6: The mapping cycle.

back to the original interval [0,1 — Ka], but to a point 1 — Ka — z, which
is the reflection of = within [0,1 — Ka]. Then the next K + 1 applications
of h(z), which are identical to the first K + 1, map 1 — I{a — z back to the
reflection of 1 — Ka — z in [0,1 — Ka], i.e., to the original point z.

We can now develop a linear system in the set of 2K + 2 functions defined
as the mappings W(h'(z)), 0 <17 < 2K + 1, with z in a type-1 interval, and
a linear system in the corresponding mappings W(h'(z)), 0 < 7 < 2K — 1,
with z in a type-2 interval. Consider first the type-1 intervals and define

$i(z) =W (h N (z)) for1<i<2K+2, 0<z<1-Ka
Then by (6.18) we have ¢;(z) = W(z) and
W (T2 R(z)) for2<i<K+2,
W(TK-3RT¥ R(z)) for K +3<i<2K +2.

The symmetries illustrated in Figure 6.6 become
bivkr1(z)=di(l1 — Ka—1z) for1<i<K+1,0<z<1— Ka. (6.20)

For example, with K = 3 we would have for 0 <z <1 — 3a,

$1(z) = W(z), #s(z) = W(1 — = — 3a),
$a(z) = W(L - 2), $e(c) = W (e + 3a),
#3(z) = W(1 — z — a), #7(z) = W(z + 2a),

bu(a) =W —z—2a), dolz) = W(z+a).

6.3. ON-LINE LINEAR-TIME BIN PACKING 141
Noting that
dw (h=1(z))
_ déi(z) B dz

dw (ki ())
dx

fori=2,3,....K +2,

otherwise,

we obtain the following linear system from (6.17):

adi(z) = ¢1(z) — da(x) + 1, —a¢}{-+2(x)
—adh(z)

¢K+2(3«') - ¢K+3(3«') + 1,
$2(z) — da(x), adi1a(z) = dr4a(z) — drcya(z),

—adi(2) = ¢k(2) — ¢xn(2z), adorya(2) = baxia(z) — daxsa(a),
—adik41(2) = dr41(T) — Pr42(2), adoria(T) = dart2(x) — ().
(6.21)
This system can be solved by standard techniques. The coefficient matrix

C for (6.21) is the obvious generalization of the matrix shown below for
K =3.

I

I

Q

Il

Q|
Cooo00O =M

(6.22)

OO OO == O
I
OO O == OO
OO = = O OO
O = —_-0 OO o0

O O O OO O =
-0 OO0 O O

0
0
0
0
1
1
0
0

_ 0 0 0]
Let ®(z) = [¢1(2),...,dar42(2)]T, let I be the (2K + 2) x (2K + 2) unit

matrix, and define v as a column vector with a 1 in the first component, a
—1 in the (K + 2)th component, and 0’s in the remaining 2/ components.
Then '

®'(z) = CO(z) + 7. (6.23)

By inspection of (6.22) for K = 3, the characteristic equation for the
homogeneous system det[C — AI] = 0 generalizes to

[1— (a)?FH =1. (6.24)

The 2K +2 roots are /T — r;/a, where ry,..., x4 are the (K +1)th roots
of unity, with rg4+1 = 1. Then we have a double root at 0 and single roots

142 CHAPTER 6. BIN PACKING: HEURISTICS

at £X;, where

A ! J N f]
j_z(l—exp(1{+12m)) orl <j<K.

Then a fundamental set of solutions for the homogeneous system contains
1, z, and e*** (1 < i < K), where the 1 and z arise from the double
root at 0. It is easily verified that adding z? to this set accounts for the
nonhomogeneous term v and gives us a fundamental set for (6.23), i.e., the
¢; are given by linear combinations of the 2K 4 3 solutions in

{1,z,22 eM%, e™™= KT 7M7), (6.25)

An identical development leads to a linear system based on the type-2
intervals. Now we have an initial translation « + 1 — Ka, since the first
type-2 interval starts at 1 — Ka, so we define

Yi(z) = W (A 'z +1-Ka)) for1<i<2K, 0<a<(K+1a—1.

and hence 9,(z) = W(z + 1 — Ka) and

T ?2R(z +1— Ka) for2<:< K +1,
Pi(z) = { K2 K1 ; _ (6.26)
T RTHA'R(z+1—Ka) for K +2 <1 <2K,
with the symmetries
Yirr(z) =Pi((K+1a—-1—2z) forl1 <i< K. (6.27)

By repeating the earlier analysis, the functions ¥;(z), 1 < 1 < 2K, are
obtained as linear combinations of the functions in the fundamental set

{1,z, 22, M7, e™HM7 . etK-17 THK-1T1 (6.28)

where p; = \/T=s;/a and s1,52,...,5x-1 along with s = 1 are the Kth
roots of unity.

As the last step in determining the ¢; and ;, the unknown coefficients
in the linear combinations of the functions in the respective sets (6.25) and
(6.28) have to be evaluated. In general, these are calculated as the solutions
to linear systems determined by the boundary conditions:

1. W(0) =0, W(l) =1.

2. W(z) is continuous at the boundaries between the type-1 and type-2
intervals.

6.3. ON-LINE LINEAR-TIME BIN PACKING 143

As illustrated later, these are converted to conditions on the ¢; and ;
by (6.19), (6.20), (6.26), and (6.27). Explicit forms for the coefficients as
functions of K and a do not appear to be known, so we will not pursue the
general case further, except to note that, once the ¢; and v; are known, W(z)
can be assembled from ¢,(z), ¥1(z), and the first K + 1 and K functions,
respectively, in (6.19) and (6.26).

Explicit solutions can be expected to have rather complicated forms. This
is true even for the case K = 1, 1/2 < a < 1, which we now treat in detail.
As shown in Figure 6.5, the subintervals are [0,1 — a], [1 — a,a], and [a, 1];
as noted earlier the single type-2 interval [1 — a,a] maps into itself under

R(z) =1 — 2. From (6.19) and (6.26) we have

$1(z) = W(z)

$2(z) = W(l —2) for0<z<1-agq,
$s(z) =Wl —-z—a

¢a(z) = W(z + a)

Yi(z) =W(l —a+72)
Yalz) = W(a —2)
so from (6.25) and (6.28)

} for0<z<2a—-1,

$i(2) = @i + izt + isa? + s + aze™ for 1 <1 <4,

with A = \/§/a, and
Yi(z) = B + Bz + Bisz?.

The boundary conditions give

W(0)=0: | $1(0) = ps(1 — a) =0,
W(1)=0: $2(0) = $a(1 —a) = 1,
W((1-a))=W(1—a)*): di(l—a)=41(0) = #2(2a — 1) = $s(0),
W(a~) = W(a*): ¥1(2a — 1) = $4(0) = ¢2(1 — a) = 1(0).

A straightforward but tedious elimination, and then substitution into
() for0<z<1-a,
W(z)={ Yr(x—1+4+a) forl—a<z<a,
éo(1l —) fora<az <1,

144 CHAPTER 6. BIN PACKING: HEURISTICS

then yields the solution

'3

u(z) + % [tanhw + sinh(Az — w) w)}

for0 Lz <1 —a,

cosh w
W(z) = { 2u(z) + wtanhw | forl —a <z <a,
] B .
u(ar:)-}-——-}-2 tz:mhw——CO—S}i\m——éz fora<z <1,
{ 2 2 cosh w
(6.29)
where
?—(l—a)z l—a

u(z) = 57 , w—aﬁ, B=X—w—In(l++v2).

Substitution into (6.15) and (6.14) then proves

Theorem 6.10 ([Karm82]) For the distribution U(0,a), 1/2 < a < 1, of
ttem sizes, we have

E[NF(L,)] ~ pn as n — oo,

where

_ 1
p= 12a3

(15a3 —9a%2 4 3a — 1) +v2 (12-;a)2 tanh (1\/%:) ; (6.30)

By Theorem 5.5, the interval [0,a], 0 < a < 1, allows perfect packing, so
we can also write
EINF(L)] _pn
E[OPT(L,)] na/2

=2p/a as n — oo.

The reciprocal, n = a/2p, measures the asymptotic efficiency of NF packings.
Intuitively, one might expect that the smaller the value of a, the higher the
efficiency. Thus it is interesting to learn that, in fact, n does not decrease
monotonically as a increases [Karm82]. A numerical calculation using (6.30)
shows that n attains a minimum at a ~ 0.841 in the region 1/2 < a < 1. See
Figure 6.7.

6.3.2 Deviation from the expected behavior

In [RT87] it is shown that the monotonicity property (Section 2.6) and a
martingale inequality can be used to bound the tail of the distribution of

6.3. ON-LINE LINEAR-TIME BIN PACKING 145

0.85
il
2p
__/
0.7335""_‘—_——, —————————————————————— :
0.70 i .
0.5 0.8413 1

Figure 6.7: The asymptotic efficiency of NF packings.

the variation from the mean |H(L,) — E[H(L,)]|. We need one additional
term: say a heuristic is k-conservative if adding an item anywhere in the list
of itemns cannot increase the number of bins used by more than k. Note that
this property is not implied by monotonicity; in particular, the algorithm
which produces an optimum packing if there are ¥’ or fewer items, but packs
them one per bin if there are more than %’ items, is monotonic but not
k-conservative for any k < k'. It is, however, easy to see that OPT is 1-
conservative and Next Fit is 2-conservative.

Now suppose that H is monotonic and 1-conservative and let L) denote
list L, with X; removed. Note that then |

H(LO) < H(L,) < H(L®)+1 for all L,. (6.31)
Define the random variables
D; = E[H(L,) | Li] = E[H(Ln) | Li—] forl <i < n.

(Here the notation E[H(L.) | L;] means the random variable found by
averaging over all but the first : elements of L,; thus, in particular, E[H(L,) |
L] is just the random variable H(L,), and E[H(Ly) | Lo| = E[H(L,)].) The
sum of the D; telescopes and yields "%, D; = H(L,) — E[H(L»)]. Clearly,
E[D;] =0, 1 < i < n, so the sequence Dy,..., D, constitutes a martingale
difference sequence. Moreover, from (6.31), it is easy to verify that |D;| < 1,
1 <1 < n. We can now apply Azuma’s inequality for martingale difference
sequences. (This result can be found in [Stou74, Lemma 4-2-3 and Exercise
4-2-2]; alternatively, one can apply Theorem 2.5 (page 19).) By this result
we have

n

ZD;’ > t} < 2¢70/%m,

=1

Pr{|H(Ln) — E[H(Ln)]\ >t} = Pr{

146 CHAPTER 6. BIN PACKING: HEURISTICS

Thus the probability that the variation from the mean exceeds a multiple of
\/n can be made as small as desired.

A heuristic H enjoys the subadditive property if
H(L,oL,) < H(L,)+ H(L,), (6.32)

where L,, o L, denotes the concatenation of L,, and L,. It is easily seen
that both NF and OPT have the subadditive property. From the theory
of subadditive processes [King76], we have lim,_,o, H(L,)/n exists almost
surely; let ¢ be this limit. Thus, since H(l,)/n always lies in [0, 1], we also
have have lim, . E[H(L,)]/n = ¢, so that for any ¢ > 0, |E[H(L,)/n — ¢]|
will become an arbitrarily small fraction of ¢ for large enough n. Hence we
can use (6.32) to obtain a stronger asymptotic result:

Theorem 6.11 [RT87] For a 1-conservative subadditive monotonic heuristic
H, there exists a constant ¢ > 0 such that

H(L,)

n

Va > 2 Ve > 0 dng such that Vn > ny, Pr{

— c' > 6} < 2e~n< /o,

Note that this result can easily be extended to algorithms that are k-
conservative by a simple scaling. For example, NF(L,) is not 1-conservative,
but 2NF(L,) is, so as noted in [RT87] as a corollary we can obtain a similar
bound for Next Fit.

6.3.3 The HARMONIC algorithm
At a sacrifice in the simplicity of NF, the HARMONIC algorithm im-

proves on the expected wasted space while retaining the linear-time property.
HARMONIC partitions the items of L, on-line into subintervals (1/2,1],
(1/3,1/2], ..., (1/M,1/(M —=1)], (0,1/M] with M > 1 a given parameter.
For m < M, type-m items are those with sizes in (1/(m + 1),1/m]; items
with sizes in (0,1/M] are type-M. For each m, 1 < m < M, HARMONIC
forms a separate NF packing of the type-m items; call the bins used in this
packing type-m bins. In particular, since we are using NF, for each m there is
ouly one active type-m bin at any given time. Formally, we initialize the set
of active bins to be empty, and then iterate the following process for each X

in L,. Let m be the type of X. If there is no active type-m bin (which occurs
if X is the first type-m item), then we place X into a new active type-m bin.
If there is an active type-m bin, and X fits into it, we pack X into this bin.
If there is an active type-m bin, but X does not fit into it, we close this bin,

6.3. ON-LINE LINEAR-TIME BIN PACKING 147

Xo: 0.2 Xs: 0.5
X(;Z 0.1
X2: 0.9
Xs: 0.3 Xa: 0.7 X7: 0.8
X4I 0.4 Xloi 0.4
X]l 0.2
B, B, Bs B, B; Bg
M=3

Figure 6.8: An example for the HARMONIC algorithm. Here Lo = (X3, Xa,
...y, X10) = (0.2,0.9,0.7,0.4,0.3,0.1,0.8,0.5,0.2,0.4), and Bs, Bg, and B,
are active type-1, -2, and -3 bins, respectively.

and pack X into a new active type-m bin. Figure 6.8 shows an example.
Note that there is no upper bound to the number of items in a type-M bin,
but when such such a bin is full, it has at least M items; full type-m bins for
1 <m < M —1 have exactly m items. Note also that HARMONIC reduces
to NF when M = 1. Below we assume M > 2.

The average case for HARMONIC is easily estimated for general item-size
distributions (see [LL87]). Let p,, = Pr{#;; <X<t}forl<m< M1,
and ppr = Pr{0 < X < 1/M}, so that ¥ 1<<pr Pm = 1 and np,, is the
expected number of type-m items for 1 < m < M. Then the expected
number of type-m bins, 1 < m < M, in a HARMONIC packing is at most
np,/m + 1, and we get

M
E[HARMONIC(L,, M)] < n (Z &"-) + M.

m=1

Let Rar = limp—oo E[HARMONIC(L,,, M)]/E[OPT(L,)]. Then, since nE[X]
is a lower bound on E[OPT(L,)], we have

148 CHAPTER 6. BIN PACKING: HEURISTICS

with equality for perfectly packable distributions; indeed, for such distribu-
tions,

— Z — as M — . (6.33)
‘X] m=1

For the item-size distribution U(0,1), we have p,, = # - _17_1%I-T forl<m< M,
and ppr = 1/M. Substitution into (6.33) gives Ry ~ 72/3 —2 = 1.289868. ..
as M — oo, which may be compared with 4/3 = 1.333... for NF.

For the distribution U(0,1), the expected wasted space in bins with items
larger than 1/2is 2.1 = 2, which is a large majority of the expected wasted
space (about 0. 1449n) Thus attempts to pack even one more item along with
items larger than 1/2 can lead to marked improvements in packing efficiency.
Ramanan and Tsuga [RT89a] have analyzed such extensions to HARMONIC.

6.3.4 On-line matching

The fraction of the space wasted by NF and HARMONIC remains bounded
away from zero even in the asymptotic limits. Hoffmann [Hoff82] developed
an on-line, linear-time version of MATCH (see Section 5.1) that is asymptot-
ically optimal in the sense that the ratio of wasted space to occupied space
tends to zero as n and M, a parameter of the algorithm, tend to infinity
in the order M <« n. Lee and Lee [LL87] subsequently devised a variant
that improved the worst-case behavior while retaining the asymptotic opti-
mality. We present a somewhat simpler variant, called ONLINEMATCH;
the analysis is similar and leads to a similar result. (The algorithm and re-
sult presented here are closely related to the Interval First Fit of [CG86],
which achieves expected wasted space O(n?/3).) In particular, the key to the
analysis is a fundamental property of symmetric random walks.

For a given even parameter M > 4, ONLINEMATCH classifies items into
M types: an item in (li, 1 is of type m, 1 < m < M. Two items, one
of type m and one of type M —m, 1 < m < M, are called companions;
they can fit together (be matched) in a single bin. Note that companions
are not defined for type-M items and that any two type-M/2 items are
companions. As described below, the packings of ONLINEMATCH can be
divided, in general, into three sets of bins, one set containing only type-M
items, another set comprising an NF packing of items less than 1/2, and a
third set comprising a partial MATCH packing.

Depending on its type and the current packing, the next item, say, X, of
L, is packed according to the following case analysis. Let X be of type m.

6.3. ON-LINE LINEAR-TIME BIN PACKING 149

1. M/2 <m < M: pack X into the next (lowest-indexed) empty bin.

2. m = M/2: if there is a bin B with a type-M/2 item alone in it, then
pack X with its companion in B; otherwise, pack X into the next empty

bin.

3. 1 <m < M/2: if there is a bin B with a companion of X alone in it,
then pack X into B. If no such bin exists, then pack X into the current
NF bin, if such a bin exists and X fits in it; otherwise, pack X into the
next empty bin (which then becomes the current NF bin).

According to this algorithm, an item X < 1/2 of type m < M/2 is
matched with another item only if there is a bin with a single item X’ > 1/2
of type M — m already packed and waiting to be matched with a companion.
Otherwise, such items are packed according to Next Fit. It is easy to verify
the worst-case bound

ONLINEMATCH(L,, M) < 20PT(L,).

We now show that ONLINEMATCH is asymptotically optimal in terms of
the expected wasted space.

Let n,, be the number of type-m items in L,, so that E[n,] = n/M,
1 <m < M. In the final packing, the expected number of bins containing
items of type m is n/M for each M/2 < m < M, and at most n/2M + 1 for
m = M/2. Let K, be the total number of unmatched items (packed by NF)
of types 1 < m < M/2. Since these items can be packed at least two per
bin, they require at most 2E[K,] + 1 bins on the average, and we have

: Mn
<
E[ONLINEMATCH(Ln, M)] < 537 + 3 M 114 E[Kn]+1
< .
_2(1+M)+ ~E[K,] + 2. (6.34)

Let K, be the number of unmatched items of type m, 1 < m < M/2,
so that K, = Z%g_l K, n. Let m be any integer in the range 1 < m < M.
The analysis of K, is similar to the methods of proof used in Theorem 5.1
and Theorem 5.5, so we only briefly outline it here. The distribution of the
set of items of type-m and type-(M —m) can be described as follows: we first
pick an integer k according to a binomial distribution giving the number of
successes in n trials each with success probability 2/M, and then we pick &
i.i.d. items uniformly from the union of intervals

m—1 m)U(M—m—lM—m)
(M’M‘ M ' M)

150 CHAPTER 6. BIN PACKING: HEURISTICS

If we concentrate our attention on the manner in which these items are
packed, we see that, by an analysis somewhat like that in Section 5.1, for a
given k, the expected number of unmatched items of type-m is distributed
as the maximum excess of heads over tails in k& flips of a fair coin; thus the
expectation is bounded by cvk for some absolute constant c. However, k
itself is a random variable with mean 2n/M, so by an application of Jensen’s
inequality like that in Theorem 5.5, we may conclude that the number of
unmatched type-m items is

E[Kpmn] < cv/2n/M.

Hence
M/2-1 M
E[i,] < ,,; Kpn < (—2— - 1) c\/2n/M < ey /nM/2. (6.35)

Finally, by (6.34) the ratio of expected wasted space to expected occupied

space is bounded by
n/2M + fe\/nM[2 + 2
n/2 ’

so we obtain

Theorem 6.12 For the item-size distribution U(0,1),

E[ONLINEMATCH(L,, M)] — E[OPT(L,)] _ 1 ‘
E[OPT(L,)] < g7 HOVMIn

for some absolute constant C. In particular,

E[ONLINEMATCH(La, M)] _ |

lim lim

Moo n00 E[OPT(L,)]

6.3.5 On-line packing with limited active bins

Recall that we have defined a bin to be active if it has already received
at least one item, but is still available as a candidate to receive additional
itemns; in particular, NF satisfies the condition that it never has more than
one active bin (Section 1.4.2). It is interesting to see how far we can push
the performance of on-line packing algorithms when the number of active
bins must be bounded by a given constant throughout the running of the
algorithm.

6.3. ON-LINE LINEAR-TIME BIN PACKING 151

If we restrict the number of active bins to be at most 1, it might at first
glance seem that NF is the best we can do. However, a variation called Smart
Next Fit (SNF), introduced and analyzed in [Rama89], can bring about a
substantial improvement in the average-case behavior for some distributions.
When a new item z arrives to be packed, we pack it into the current bin B if
it fits, as in NF. If it does not fit, we pack it into a new bin B’. We then let
whichever of B and B’ has more remaining capacity become the new current
bin, and close the other of B and B’. Note that since we can decide which
of B and B’ will become the new current bin before we actually pack z into
B’, this™algorithm can be implemented so that it only has one active bin
according to the above definition. (Note that if all item sizes are bounded
by 1/2, SNF is equivalent to ordinary NF.)

The analysis of this algorithm provides another example of a situation
in which the techniques of Karmarkar [[(arm82] can be applied. Figure 6.9
illustrates the argument; there the possible outcomes are plotted as regions in
a space whose coordinates are the possible values of the level z of the current
bin, and the size z of the next item to be packed. The situations that lead to
a new current-bin level of u are shown as a dotted line. Let the distribution
of the items be F(z), as usual, with density f(z). Assuming we are at steady
state, let the cumulative distribution of the size z of the current bin be ®(z),
with density ¢(z). Then one sees from the figure that the density after this
next item is packed satisfies

(u) = /: ¢(2)f(u — 2)dz + f(u) /1 #(z) dz

max(u,1—u)
1

+é(u) / f(z)dz

max(u,1—u)

= [6(2)f(u = 2)dz + f()[1 — B({max(u, 1~ w)})]

+(u)[1 — F(max {u,1 - u})|.

Assuming a distribution uniform over (0,b), b < 1, this integral equation
can readily be converted to four simultaneous differential equations, corre-
sponding to values of ® over the intervals [0,1— 8], [1 —b,1/2], [1/2,3], [b,1];
we omit the details of the solution, but display some results. The packing
efficiency of SNF is compared to that of NF in Figure 6.10; as can be seen,
the two algorithms have identical efficiencies at b = 1/2 (as expected), but
SNF is substantially better at b = 1.

152 CHAPTER 6. BIN PACKING: HEURISTICS

1 T

]

\

]

]

]

J)
ur N e

N\
\\
. . B remains current
\\
N\
N\
N\
N\
N\
N\
N\
~
N\
\\
Size of z N B’ becomes current
\\
N\
N\
AN
N\
N\
N\
N\
N\
N
N\
N\
N\
N\
N\
N\
N\
N\
N\
N\
\\
z fits into B N
\\
\\

0 3

0 U 1
Level z of B

Figure 6.9: Illustration of the argument leading to an integral equation for
Smart Next Fit. Assume that B is the current bin, and we are about to pack
an item z. Below the main diagonal, z fits into B. Above the main diagonal,
we need to allocate a new bin B’. The cases in which the level of the new
current bin is equal to u are shown as dashed lines.

6.3. ON-LINE LINEAR-TIME BIN PACKING 153

0.85

/

0.70

1

0.5

Figure 6.10: Comparison of the efficiency of Next Fit and Smart Next Fit.
Assuming the item sizes are i.i.d. uniform over [0, b], the asymptotic average
level of the packed bins is plotted versus 6. The bold curve is for SNF; the
lighter curve is for NF, for comparison.

One might wonder whether we can achieve asymptotic expected optimal-
1ty with an algorithm that requires only a bounded number of active bins.
The answer is no, as the theorem below will show.

Theorem 6.13 ([CSa]) Let H be a bin-packing heuristic that is limited to r
active bins. Then for item sizes i.i.d. over [0,1], the expected wasted space
in a packing of n items is

Proof. Say that a bin B is w-tight at some point in time if the unused
capacity in B is at most w; here w is a parameter whose value will be chosen
later. To facilitate the counting of such bins, we will define an item X; to be
w-tight if, just after X; is packed, the bin into which it is packed is w-tight.

Suppose we are about to pack X;. Let A;, with |4;] = s < r +1, be
the current set of active bins together with the next available empty bin.
Thus we are assured that X; will be packed into some element of A;. Let [;,
1 < 7 < s, be the current levels of the bins in .A;; in particular, assuming I,
corresponds to the empty bin, we have [; = 0. Now, by definition, a necessary
condition for X; to be w-tight is that there be some bin B in A; such that X;
fills B to within w of its capacity. Hence, using Boole’s inequality, we have

Pr{X; is w-tight} <Pr{dj, 1 <j<s, 1-w<[;+ X; <1}
<Y Pr{l-w<+X: <1}

i=1

154 CHAPTER 6. BIN PACKING: HEURISTICS

= ZPI‘{X{ € [1 —w—10,1 —lj]}
j=1

SZw:wsSw(r—i—l).
Jj=1

Summing over all items, we can bound the expected number of w-tight items
by nw(r + 1); note that this is also a bound on the expected number of w-
tight bins at the end of the packing, since the last item to go into a w-tight
bin must be a w-tight item. The total expected number of bins is at least
n/2, since this is the expected total size of the items. Thus, on average, at
least n/2 — nw(r + 1) bins waste at least w of their capacity, so the expected
total waste is at least w(n/2 — nw(r + 1)) It is routine to see that this is

maximized at w = (4(1‘ + 1)) _1, giving the bound of the theorem. |

Actually, we do not need to restrict the number of active bins in order
to achieve such a bound—the crucial condition needed is that whenever we
are about to pack an item X}, there is always some set A; of bins, that does
not depend on X;, such that |4;| < r + 1, and we are guaranteed that X;
will be packed into an element of A;. Note that A; can be allowed to depend
on X1, Xs,...,X;_1. The statement of the theorem in [CSa] uses this more
general context.

Chapter 7

Packings in Two Dimensions

In two dimensions we study strip packing and its variant, two-dimensional bin
packing. (For a recent survey on this subject see [CS90].) In the first problem,
the rectangles in a given list L, have sides no greater than 1; they must be
packed into a semi-infinite strip of width 1. Packings of the strip, which we
draw vertically by convention, must be such that (i) rectangles do not overlap
each other or the boundaries of the strip; (ii) the rectangles are packed with
their sides parallel to the sides of the strip; and (iii) the height of the packing
(the maximum height of the top of any rectangle) is minimized. Figure 7.1
shows an example. The dimensions of a rectangle R; will be denoted by X;
and Y;, for the horizontal and vertical sides, respectively. Unless specified
otherwise, rectangles must be packed in their given orientations, i.e., no
rotations are allowed.

Now suppose horizontal boundaries are also placed at the integer heights -
of the strip, and no rectangle is allowed to overlap any of these boundaries.
Then we have two-dimensional bin packing; the square region between suc-
cessive integer heights is a “bin.” In this problem, the “size” of the packing
is taken to be the ceiling of the height of the packing, i.e., the number of bins
used.

We present the analysis of bounds on optimum packings and the per-
formance of several heuristics. We begin with off-line algorithms and then
study on-line algorithms. The terms “item” and “rectangle” will be used
interchangeably in this chapter.

7.1 Off-line algorithms

Our first problem is strip packing when the items are squares. Tight bounds
are derived for this special case, and serve as an example of the “bound that

155

156 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

Packing height

L= (R, Ry, ... R

Figure 7.1: A strip-packing example.

usually holds” technique of Section 2.5. Next, we study bounds for optimum
strip packings of rectangles. Finally, we present and analyze a matching
algorithm for two-dimensional bin packing.

7.1.1 Packing squares into a strip

In this section, we study the problem of packing squares into a strip; this
problem is interesting partly because of the biased random walk that arises
in the analysis. A square (X;, X;) is denoted simply by X;. A phrase such
as “a square X; in [0,1]” has the obvious meaning of a square all of whose
sides are in [0,1]. Let the X; be independently and uniformly distributed
over [0,1]. Figure 7.2 shows an example. A brief study of the sample L,, will
convince the reader that the packing in Figure 7.2 is optimum.

Let the sum of the square sizes exceeding 1/2 be denoted by
Hl/g' = Hl/g(Ln) = Z X,'. (71)
:X;>1/2
The average total area of the squares is

n

1
nE[X?] = n/ ridx = 3
0

7.1. OFF-LINE ALGORITHMS 157

X10 Xe

Xll
X4 = X*

X12
Xi3
14
X14
0
0 1

Lo = (X1, X2, X14)
= (0.12,0.19,0.21,0.34,0.36, 0.40, 0.43, 0.45, 0.49, 0.55, 0.60, 0.70, 0.77, 0.83)

Figure 7.2: A square-packing example.

158 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

but

ElHip] =5 7=+ (7.2)

Thus, since OPT(L,) > Hy/z, even an optimum algorithm must waste at
least 3n/8 — n/3 = n/24 space on the average. In this sense, packings of
squares drawn uniformly from [0, 1] are not particularly efficient. A more
detailed explanation of this fact is as follows. Opposite each square X in
[1—a,1] we could pack |(1 — a)/a] squares no larger than a without extending
beyond the bottom or top of X. However, in our probabilistic model the
expected numbers of squares in [0, a] and in [1 — a, 1] are equal. Then for a
moderately smaller than 1/2 we can expect to have more space than we need
for the efficient packing of squares in [0, a], even when we allow for probable
variations in the square sizes of L,. Indeed, we prove later that if all squares
in L, with sizes in [0,1/3] are removed, then with a probability that quickly
approaches 1 as n — oo, the optimum packing height remains unchanged.
Note that the squares no larger than 1/3 in Figure 7.2 (namely, X1, X2, X3)
could be removed without affecting the height of the packing.

We now look for a lower bound better than OPT(L,) > H,/, that
concentrates on the larger squares, in hopes that we can prove that the
bound “usually holds.”

Consideration of Figure 7.2, and the fact that no two squares with sizes
above 1/2 can be alongside each other, suggests the following algorithm for
packing squares.

Algorithm A

1. Stack the squares with widths greater than 1/2 along the left edge of the
strip in order of decreasing width.

2. Starting at height Hy/,, stack the remaining squares along the right edge
of the strip in order of increasing width.

3. Slide the stack on the right edge down until it rests on the bottom of
the strip, or a square in the right stack comes in contact with a square
in the left stack, whichever occurs first.

4. Repack the squares lying entirely above Hy /2 into two stacks, one against
the left edge of the strip and the other against the right edge. Pack these
squares in decreasing order of size, with the ith square being placed on
the shorter of the two stacks created by the first ¢ — 1 of these squares.

7.1. OFF-LINE ALGORITHMS 159

Figure 7.3 shows the packing of L,, in Figure 7.2 after the first three steps
of Algorithm A. After Step 4 we obtain the packing in Figure 7.2. Note that
Step 4 is an adaptation of the two-processor LPT rule defined in Section 1.4.1.

To formalize ideas, it is convenient to define §(y) as the total height of
squares in [1/2 — y,1/2] minus the total height of squares in (1/2,1/2 + y],
ie., 6(0) = 0 (almost surely) and

§(y) = Z X; — Z X; for0<y<1/2 (7.3)
:1/2—y<X;<1/2 1:1/2<X<1/24y
Let
A=A(L,) = 02X, 8(y), (7.4)

and define X™* as the largest value such that the maximum in (7.4) is achieved
at y = 1/2 — X*. A is illustrated in Figure 7.3, where X* = X,. Note that
A can never be negative, since §(0) > 0. It is quite possible, however, that
A is equal to 0, in which case X* must be 1/2; for example, consider the list
in Figure 7.3 but with squares X5, X7, X3, and Xg removed.

The following lemma gives a lower bound on OPT(L,) in terms of A and
X*; as we will soon see, OPT(L,) is usually close to this bound.

Lemma 7.1 For anyy € [0,1/6), we have OPT(L,) > Hy/2 + 6(y)/2. This
means that, if X* > 1/3, then

OPT(L,) = Hyjpp + A/2.

Proof. Fix y € [0,1/6) and let Sy, S;, and S3 be the total sizes of items
in [1/2 —y,1/2], (1/2,1/2 + y], and (1/2 + y,1], respectively. Note that
Hypy = S;+ S3 and é(y) = S1 — Sz2. Now if we consider only squares in
[1/2 — y,1], it is clear that no square fits alongside those in S3, and that
those in S; U Sy can fit at most two abreast. Hence

S1— 52

OPT(Ly,) > 5

+ 53 = (S2 + S3) +

51t 5 ! 5 = Hyjp+6(y)/2. W

The main theorem of this section will show. that X* > 1/3 holds, and
hence the lower bound holds, with very high probability. We now show that
Algorithm A comes very close to this bound.

Lemma 7.2 For all L, we have

A(L,) < Hiyp+ A/2+1/4.

160 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

A'(Ln)

AL

X0 Xe

Xll

X12
X13
1 4
X1
0
0 1

Ln = (Xl, Xg, e ,X14)
= (0.12,0.19,0.21,0.34,0.36,0.40, 0.43,0.45, 0.49, 0.55, 0.60, 0.70,0.77, 0.83)

Figure 7.3: Example for the first three steps of Algorithm A.

7.1. OFF-LINE ALGORITHMS 161

Proof. Let A’ denote the algorithm consisting of the first three steps of
Algorithm A. Then A'(L,) = Hy; + A (see Figure 7.3). If A = 0, we are
~done. Otherwise, the average height of the left and right stacks is Hy/,+A/2;
this average is not changed by the repacking in Step 4. After that repacking,
we know that the stacks must be within 1/2 of each other in height. Thus the
maximum height is at most 1/4 more than the average height, so we obtain

the desired bound. |

Combining Lemmas 7.1 and 7.2, we see that A(L,)— OPT(L,) < 1/4 for
all L, such that X* > 1/3. Clearly, Algorithm A is designed to do well only
when all squares packed above H,/, exceed 1/3, since such squares must be
limited to two stacks. The main theorem below shows that the fraction of
instances L, for which this property does not hold tends to 0 very fast as
n — oo.

Theorem 7.3 ([CL89]) There is a constant ¢ > 0 such that Pr{X* < 1/3} =
O(e™*"), and, consequently,

Pr{A(L,) — OPT(L,) < 1/4} =1— O(e™").

Furthermore,

E[A(L,)] = E[OPT(L,)] + O(1).

Proof. Clearly, for the first part of the theorem it is enough to show
that §(y) < 0 for all 1/6 < y < 1/2 with probability 1 — O(e™*") for some
¢ > 0. In the analysis below it is convenient to view §(y) as a random process
on [0,1/2], as illustrated in Figure 7.4. The points (square sizes) selected in
[0,1/2] are reflected about the midpoint 1/2 onto the interval [1/2,1]. These
reflected points are labeled with a plus, whereas those falling originally in
(1/2,1] are labeled minus. The pluses and minuses are then mapped by a
simple translation onto [0,1/2]. Sample functions for {6(y)}o<cy<1/2 are step
functions, as illustrated in Figure 7.4. A square X € [0,1/2] becomes a plus
at y = 1/2 — X and creates a positive step of size X < 1/2 in §(y). A
square X € (1/2,1] becomes a minus at y = X — 1/2 and creates a negative
step of size X > 1/2 in §(y). The event locations comprise n independent
uniform random draws from the interval 0 < y < 1/2 in Figure 7.4 (i.e., the
mappings y = 1/2 — X for X <1/2 and y = X —1/2 for X > 1/2 produce
uniform random draws from [0, 1/2], since X is a uniform random draw from
[0,1]). The sign of each event is equally likely to be + or —, independent of
its location.

162 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

L. = (0.15, 0.22, 0.35, 0.45, 0.6, 0.7, 0.96)

¢ ¢ ——f——0—o—0—o o— folding
1

o-

—
~

8]

+-+- + + - _
—o—e—0—0—o—o e— translation
0 1/2

y—}

04 +

0.2 +
0.0 _Jl— 1}2

—-0.4 —+

—-0.6 —+

—-0.8 +

-1.2 +

Figure 7.4: The function §(y).

7.1. OFF-LINE ALGORITHMS 163

Now choose fixed a and f satisfying 0 < a < 1/36, 2/3 < 8 < 1. Let
N(y) denote the number of events in the interval [1/2 — y,1/2 + y], and
consider those samples L, such that

8(1/6) < —an and N(1/6) < fn (7.5)

(We verify later that (7.5) holds with very high probability.) For convenience,
assume that 1/3« is an integer and that it divides n — N(1/6), the number of
squares in [0,1/3) plus the number in (2/3,1]. It will be easy to check that
these assumptions have no effect on our asymptotic results for large n.

For any list satisfying (7.5) divide up the at least n—N(1/6) events of §(y)
at locations 1/6 < y < 1/2 into 1/3a blocks of k = 3a(n - N(1/6)) < 3an
events each. Let §; denote the value of §(y) just after the last event of block 7,
1 <7 <1/3a,andlet é = 6§(1/6). The sizes of positive steps are at most 1/3
and are decreasing as y varies from 1/6 to 1/2. Therefore, no block of at most
dan events starting at §;-; < —an can include a zero crossing, where 6(y)
would become positive. Thus for é(y) to become positive in 1/6 <y < 1/2
there must be at least one j > 1 such that 6;_; < —an and §; > —an. But
at any y in [1/6,1/2] the magnitude (1/2 + y) of a negative jump is at least
twice the magnitude (1/2 — y) of a positive jump. Hence, for any j > 1, the
final value é; can be greater than the starting value §;_; only if the number
of pluses, Nj, was greater than twice the number of minuses, N;, in the jth
block. Hence, if §(1/6) < —an and Ni < 2N7 for all j > 1, then §(y) < 0
for 1/6 <y < 1/2.

If p,s denotes the probability that an arbitrary L, satisfies both inequal-
ities in (7.5), then by the above argument and Boole’s inequality

Pr{X" <1/3} < Pr{é(y) < 0forally €[1/6,1/2]}

1/3c

< (1= pap) + Y_ Pr{N} >2N;}
Jj=1
< (1= pap) + §larnja,x Pr{N; >2N; }. (7.6)

To bound the term 1 — p,p in (7.6), first express §(y) as a sum of i.i.d.
random variables (see (7.3)), 6(y) = 1=, Zi, where |Z;] < 1,1 <1 < n,and

X; it X; € [1/2_%1/2],
~X; if X:€[1/2,1/2 +], (7.7)

0 otherwise.

Z;

164 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

A simple calculation yields
E[Z] = 9% E[8(y)] = —y’n, (7.8)
so that E[§(1/6)] = —n/36 and
Pr{§(1/6) > —an} = Pr{8(1/6) — E[§(1/6)] > (1/36 — a)n}.

Then, by the Hoeffding bound of Theorem 2.5 (page 19) and our assumption
a < 1/36, there exists a ¢ > 0 such that

Pr{6(1/6) > —an} < e™*". (7.9)

(7

Similarly, we can write N(y) = ¥, Y; with |Y;| £ 1,1 <7 < n, where

={1 fX;ell/2—-y,1/2+y], (7.10)
0 otherwise,
and
E[Yi] = 2y, E[N(y)] = 2yn.
Then E[N(1/6)] =n/3 and £ > 2/3 imply
Pr{N(l/G) > fn} =Pr{N(1/6) —n/3 > (8 —1/3)n}
<Pr{N(1/6) —n/3 > n/3},
whereupon the Hoeffding bound yields
Pr{N(1/6) > Bn} < e™™/*8, | (7.11)

Applying Boole’s inequality with (7.9) and (7.11), we have the desired esti-
" mate for the first term in (7.6): there exists a ¢ > 0 such that

1 — pag = O(e™). (7.12)

For the second term in (7.6), observe that there will be more than twice
as many pluses as minuses in a block if and only if the number of pluses
exceeds 2/3 the total of k signs. Then

Pr{N;} > 2N} = Pr{N} — k/2 > k/6} forj > 1. (7.13)

Note that N7 can be expressed as a sum of k 0-1 random variables, so the
bound of Theorem 2.5 can again be used. Since k£ > 3a(l — B)n — 1, this
bound and B < 1 imply that there exists a ¢ > 0 such that

Pr{N} > 2N;} < O(e™™). (7.14)

7.1. OFF-LINE ALGORITHMS 165

Substituting (7.12) and (7.14) into (7.6), we obtain as desired a ¢ > 0 such
that Pr{X* <1/3} = O(e~").

The expected-height result is easy. We need only use the trivial bound
A(L,) < n in order to write, by the use of a bound that usually holds,

E[A(L.) — OPT(L,)] < 2(1 —0(e™™) + O(ne=™) = 0(1). M

An asymptotic estimate for large n can also be determined for the ex-
pected difference between A(L,) and the lower bound 3n/8; by Theorem 7.3
such a result and E[OPT(L,)—3n/8] must agree within an additive constant.
By applying standard limit theorems, it is not difficult to discover the form
such a result is likely to take. The following heuristic argument leads only
to an educated guess, but as such it illustrates the original conception of a
result, which is often obscured by the details of a rigorous proof.

Expressing A, = A(L,) as an explicit function of n, it is clear from
Lemma 7.1, Lemma 7.2, and Theorem 7.3 that E[A(L,) — 3n/8] = O(E[A,]).
By the definition of A(L,), we seek a largest function of n, say f(n), such
that for some sequence y1,y2,... we have Pr{é(y.) > f(n)} bounded away
from 0 for all n sufficiently large. Then E[6(y,)] = ©(f(n)) will be taken as

the proposed result for E[A(L,) — 3n/8].
| Consider any fixed y and recall that §(y) can be expressed as the sum of
i.i.d. random variables Z; as given in (7.7), with the mean

E[6(y)] = —y*n (7.15)
and standard deviation
ol6(y)] = /n(y/2 +243/3 — y*). (7.16)

Therefore, for large n, 6(y) is approximately normally distributed. Now
suppose that the normal limit law also applies when y varies according to
the desired sequence {y,}; i.e., for any fixed z, '

5(yn)—E[5(yn)] S ~1—®(x as n — co. .
pr{ Sl > -0 >0 T

Then we want the sequence {y,} to yield a largest f(n) such that for some
constant ¢ > 0

f(n) — E[8(yn)] _ f(r) + nyz
o[é(yn)] Vr(ua/2 +293/3 — yi)

~ C as n — Q.

166 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

Ignoring lower-order terms in the denominator, we take f(n) = O(\/ynn) -
and maximize y, subject to the constraint \/y.n = Q(E[6(yn)]) = Q(ny2).
This last constraint requires that y, = O(n~1/3), so we choose y, = n~1/3

and f(n) = ©(n'/3). Then E[A(L,) — 3n/8] = ©(n!/3), and hence
E[OPT(L,) — 3n/8] = ©(n'/?) (7.18)

becomes the proposed result.

The estimate (7.18) has, in fact, been proven rigorously in [CL89]; the
details of the above approach are worked out in a proof of the lower bound
Q(n'/3), and a technique similar to Theorem 7.3 is used to prove the upper

bound O(n!/3).

7.1.2 Packing rectangles into a strip

The result corresponding to (7.18) in the case of rectangles is easier to derive,
assuming that all dimenstons are independent uniform random draws from
[0,1]. In the remainder of this chapter this will be referred to as the uniform
model of rectangles. A lower bound can be found by a simple generalization
of the one-dimensional argument in Section 5.1. First, note that the height
of the packing must be at least as large as the total area of the squares; it
must also be at least as large as the total height of the squares with width
exceeding 1/2. Thus an analysis like that leading to Theorem 5.2 yields

E[OPT(L,)] = % + Q(V/7). (7.19)

Next, return to Algorithm A and adapt it to rectangles as follows (Fig-
ure 7.5 illustrates the algorithm). Let H;/, denote the sum of the heights of
the rectangles with widths exceeding 1/2.

Algorithm B

1. Stack the rectangles with widths greater than 1/2 along the left edge of
the strip in order of decreasing width.

2. Starting at height Hy,, stack the remaining squares along the right edge
of the strip in order of increasing width.

3. Slide the stack on the right edge down until it rests on the bottom of the
strip, or a rectangle in the right stack comes in contact with a rectangle
in the left stack, whichever occurs first.

7.1.

OFF-LINE ALGORITHMS

oJhax, 6(y)

Ry
R4
Rio
R
R,
Ry

Figure 7.5: A packing produced by Algorithm B.

167

168 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

In analogy with the case of squares, define §(0) = 0 and

1
F-v<Xi<t F<Xi<i+y
It is clear from the definition of Algorithm B that
B(Ln) = Hys + o 2x, 5(y). (7.21)

(See the example in Figure 7.5.) Here, the process §(y) is easier to analyze
than in the case of squares, for the step sizes are now i.i.d. random variables.
Indeed, we may confine ourselves to the following random walk with a
symmetric step distribution. In order of increasing y, let Z; be the ith step
in §(y), and define the random walk ¢; = /-, Z;, 1 < j < n, with { = 0.
Since the Y; are independent, each with the distribution U(0,1), we have
from (7.20) that the Z; are independent uniform random draws from [—1, 1].
Clearly, '

max £; = max ¢
0jn€‘7 0<y<1/2 (y)a

so from (7.21),

E[B(L.)] = E[Hy;2] + E [olélja,s)%fj] = % +E [rna,x fj] .

0<j<n
Now
tlam o] = [P > oh ae o v e > o) e

The Z; are i.i.d. and bounded by 1 in absolute magnitude, so Theorem 2.7
(page 20) applies to maxocj<n &; and shows that the integral in (7.21) con-
verges. In conjunction with (7.19) we therefore have the following tight bound
on optimum packings.

Theorem 7.4 ([CSa]) For a strip packing of n rectangles with each width
and height i.i.d. from U(0,1), we have

E[OPT(Ly)] = 7 +O(VA).

7.1. OFF-LINE ALGORITHMS 169

7.1.3 Two-dimensional bin packing

Consider the probabilistic analysis of algorithms for packing unit squares
(bins) with a list L, of rectangles described by the uniform model. Again, a
lower bound can be found by a simple generalization of the one-dimensional
argument in Section 5.1. The height of the packing must be at least as large
as the total area of the squares; it must also be at least as large as the number
of squares with both height and width exceeding 1/2, since clearly no two

such items can fit together in a bin. Then an analysis like that leading to
Theorem 5.2 yields the following result of [KLMS84]:

E[OPT(L,)] = g + (V7). (7.22)

(Note in fact that this argument holds even in the case in which we are
allowed to rotate the items by 90°.)

We now define the extension of one-dimensional matching to two dimen-
sions, which provides the basis for a two-dimensional bin-packing algorithm
[KLMS84]. The algorithm first divides the items into the sets Sy, Sz, S3, and
S4 containing items with dimensions in the quadrants of the unit square in
the order [0,1/2]%, [0,1/2] x [1/2,1], [1/2,1] x [0,1/2], and [1/2,1]?, respec-
tively. The algorithm then attempts to pack as many bins as possible with
four items, one from each set. This is done by producing 3 one-dimensional
(pairwise) matchings, M2, Mas, and My, as follows. Let I; = (X;,Y;) denote
the sth item. M;, provides a maximum matching of items in S; with those
from S, such that for all (I;,I;) € My, with I; € S; and I; € S; we have

Y +Y; <1 (the vertical dimensions fit) (7.23)
and
X; < X; (the taller item is at least as wide as the shorter item). (7.24)

Similarly, Mas4 is a maximum matching of items in S3 and S4 such that if
(I;,I;) € Msq with I; € S and I; € Sy, then (7.23) and (7.24) hold. Finally,
M, is a maximum matching of items in Sz and Sy such that if (I;, I;) € Moy
with I; € S; and I; € Sy, then

X; + X; <1 (the horizontal dimensions fit), (7.25)

i.e., M4 is a simple matching of the type described for MATCH in Section 5.1.
A detailed example is shown in Figure 7.6.

170 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

L: 03 x03

I,: 0.55 x0.35

Is: 0.35 x0.65

Is: 0.6 x0.6

I5 : 0.15 x0.1

Is: 0.55 x0.15

Ir: 0.2 x0.85
Is: 0.7 x0.8
Iy: 0.35 x 0.75

Iio: 0.55 %x0.9

Iy : 0.25 x0.45

Sy = {hL,Is,I1;}
Sy = {I5, I, Iy}
S3 = {12, I}

Sa = {I4, Is, I1o}

2 B’ Miz = (1 1), (s, I1)}
My = {(I3a I4)a (I7a18)a (I£
My = {(I2, Is), (I,1s)}

I I

0

0 1
Figure 7.6: Example for Algorithm KLM.

7.1. OFF-LINE ALGORITHMS 171

For the analysis of this algorithm it is convenient to assume that the
item sizes are generated by a Poisson process in two dimensions with rate
parameter n (see Section 2.7.1). Thus, the number N of items is Poisson
distributed with mean n and the (X,,Y;) are independent random points
uniform over the unit square [0, 1]2. By this means we will be able to exploit
the property that the numbers of points generated in disjoint regions of [0, 1]
are independent.

Clearly, any pair of items matched in My, May, or M3y can be packed
into a single bin. However, if (I;,I;) € My, and (Ii, I;) € Msy, then by
conditions (7.24) and (7.25) all four of these items can be placed into a bin if
(I;,Ie) € Ma4. Thus we define Algorithm KLM by the procedure that packs
items I; and I; into the same bin if and only if either (I;, I;) is in one of the
three matchings or there is a pair (I}, I}) € M4 such that (I, I]) € My; and
(I, I}) € May; in this last case, the bin will contain the four items I;, I;, I,
I’ (e.g., in Figure 7.6, (I1, I2) is not in any matching but I; and I; occupy
the same bin as I3 and I4, because (I, I3), (I2, I4), and (I3, I4) are in Mo,
M3y, and M4, respectively).

Now let Ujq, Usg, and Uzy denote the numbers of items unmatched by
My, Mss, and Moy, respectively. Since any bin with fewer than four items
has at least one item counted in Ujs, Usy, or ‘U24, we have the bound

KLM(L,) < % + Usz + Uss + Usa.
Thus, since U, and Usy are identically distributed,
E[KLM(L,)] < % + 2E[Usa] + E[Usd].

By the analysis in Section 5.1 we have E[U.4] = ©(y/n), so it remains to find
the asymptotics of E[Uy2].

For this analysis consider the square [0,1/2]?. For each I; in Sy we place
a point (X;,Y;) in [0,1/2]® and indicate it by a minus. Next, for each item
I; in S; we place a point (X;,1—Y;) and indicate it by a plus. Now observe
that in [0,1/2]? a minus (X,Y) and a plus (X’,Y’) correspond to items in
S, and S, that can be selected for M, if and only if the plus is to the right
of the minus (i.e., X < X’ so that the item in S, is at least as wide as the
one in S;) and above the minus (i.e., Y’ > Y or (1 —Y") +Y < 1, so that
the vertical dimensions of the corresponding items sum to no more than 1).

It remains to observe that 1 — Y is uniformly distributed over [0,1/2],
since Y is uniform over [1/2,1]. It follows easily that, with suitable rescaling,
a random instance of the matching problem producing M2 is a random

172 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

instance of maximum up-right matching (see Section 3.2). By Theorem 3.2
(page 43) we have E[Uy,] = ©(v/nlog¥*n), and hence the following result.

Theorem 7.5 ([KLMS84]) Let n rectangles be drawn according to the uni-
form model. Then

E[KLM(L,)] = 7 + O(Valog"*n). (7.26)

(Our analysis leading to this theorem follows that of [KLMS84], except
that we use the stronger bounds which have since been proven on up-right
matching to state a stronger result.)

The discrepancy between (7.22) and (7.26) shows that there is room for
improvement in one or the other.

7.2 On-line algorithms

In an early paper on the average-case analysis of strip packing, Hofri [Hofr80]
analyzed an extension of the NF rule to two dimensions. In packing L., this
Next Fit Level (NFL) algorithm starts out by placing items left-justified
along level 1, i.e.; the bottom of the strip. If an item I; is encountered
that is too wide to fit in the remaining space, I; is placed left-justified on a
horizontal baseline drawn through the top of the tallest rectangle on level 1.
Items I;ty, I;42,... are then placed on this new level, level 2, until an item
I;, 5 2 141, is found not to fit. Level 3 with I; as its first item is then
established on a baseline through the tallest item on level 2; this process
continues until all items are packed.

Hofri also studies two variants: Rotatable Next Fit (RNF) and NF De-
creasing Height (NFDH). RNF always places the larger of the two dimensions
along the baseline, rotating items 90° where necessary. NFDH is the same
as NFL except that L is assumed to be ordered by decreasing height; thus
NFDH is not on-line.

Noting the correspondence between the levels of NFL strip packings and
the bins of one-dimensional NF bin packing, we see that for NFL and NFDH
the random variables W; (the width of the first item in level z), N; (the
number of items in level 7), and £; (the occupancy on the baseline of level 7)
all follow the same probability laws derived for the corresponding quantities
in the one-dimensional problem. In making use of this observation, the
analysis of NFL and NFDH strip packing follows lines similar to those in
[CSHYS80, Hofr84]. Of particular interest is the random variable W with the
limiting distribution of the unused space W; in level z as ¢ — oo.

7.2. ON-LINE ALGORITHMS 173

Consider the behavior of NFL under the uniform model of rectangles. Let
I, Lig, . .., Iin; denote the items in level ¢ > 1, where I;; = (X;;,Y;), and
where N; > 1 is the number of items on level :. The strip width is 1 and the
height of the level is max;<;<n; Yij, so

N
W = B8, Y - ;Xin}j-
If the two dimensions of a rectangle are independent, then

E[Wi] = E [max. Y,J] E[V]E[L],

where E[Y] is the mean height of the rectangles in L,, and
Ni
L=> Xy
1=1

corresponds to the bin level in the one-dimensional case. Now Theorem 6.9
shows that E[l;] ~ 3/4, and hence E[Y]E[l;] ~ 3/8 as ¢ — oco. Given N,
we have that max;<;<n; Yi; is the largest of N; independent uniform random
draws from [0, 1]. Given N; = m, the expectation is m/(m + 1), so

E[W]=Z>1 +1

Pr{N =m} — (7.27)

where N has the stationary distribution of the N; given in (6.13), namely,
gm = 3(m? +3m +1)/(m + 3)!, m > 1, with the generating function

N(z) = ZPr{N=m}zm=%(eZ(z_1)2—(1—z—§+§)).

m2>1
(7.28)
Routine manipulations show that the first term on the right of (7.27) is
1 — f3 N(2)dz, so

5 1
EW] =3 - /0 N(z)d=. (7.29)
From (7.28), N(z) dz can be rewritten as
-1
N(z)dz = dK(2) - §e dz,

where
31 — 91 —¢*
I(z)—— + z e J € _

z
22 T2 2 2°

174 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

Substitution into (7.29) leads to
e’ —1

E[W] = ——3e+2/

By [AST70, formula (5.1.40)] the integral is equal to Ei(1) — «y, where Ei(1) is
the exponential integral function evaluated at 1 (from tables in [AS70] this
is 1.8951...), and where v = 0.5772... is Euler’s constant. Substitutions
produce

E[W] = 0.19701.... (7.30)

By Theorem 6.9 the expected number of levels is asymptotically 2n/3; the
expected level height is E[W] 4+ 3/8 = 0.57201... from (7.27), so

E[NFL(L,)] ~ (0.38134...)n.

Note that the expected occupied space (n/4) is about 2/3 of the expected
space used.

NFL is just one algorithm in the class of level algorithms, i.e., algorithms
that pack rectangles on levels, where level 1 is the bottom of the strip and level
2,¢ > 2, 1s a horizontal baseline drawn through the top of the tallest rectangle
on level 2 — 1. The First Fit Level algorithm figures to be substantially more
efficient than NFL, although it gives up the linear-time property. According
to this rule, the next rectangle is packed on the lowest level where it will
fit, creating a new level when necessary; only the width needs to fit for a
rectangle to be placed on the currently highest level, but both the width
and height must fit for it to be placed on any other current level. The one-
dimensional Best Fit rule can also be extended in obvious ways in order to
define a Best Fit Level algorithm.

Level algorithms are especially appropriate when there is no information
available about the rectangles to be packed, and the packing must be on-line.
When size distributions and the numbers of items to be packed are known
in advance, asymptotically optimum algorithms are easily constructed from
one-dimensional analogues. For example, with height distributions known
in advance, the shelf algorithms can eliminate much of the space wasted
vertically between items. A class of such algorithms is defined by a set of
shelf heights, 0 < sy < s3 < -++ < sk, which are essentially preset levels.
Rectangles with heights in (s;_1,s;] are packed left-justified on shelves of
height s;, 1 < 7 < k, where so = 0. Within each category of shelves, any
one-dimensional bin-packing algorithm can be adopted to control the gaps
(space wasted horizontally) in the shelves; each shelf can be interpreted as a

bin.

7.2. ON-LINE ALGORITHMS 175

For example, a linear-time algorithm is provided by the Next Fit Shelf
algorithm (see [BVZ89]). As in the one-dimensional case, the Best Fit Shelf
(BFS) algorithm is much more efficient asymptotically. An example is pic-
tured in Figure 7.7. By exploiting one-dimensional results, the asymptotics
of BFS are easily found for the width (length) distributions assumed in the
one-dimensional case. The analysis is illustrated below in the uniform model
of rectangles.

Let the shelf sizes be s; = i/k, 1 < 7 < k, and let n; be the number
of rectangles in L, with heights in (s;_1,s;]. For each ¢, n; is binomially
distributed with parameters 1/k and n, and with mean E[n;] = n/k. To
obtain the expected number E[S;] of shelves of height 7/k in the BFS packing
of L,, we merely use the one-dimensional BF result (Section 6.2) in terms of
the mean n/k; i.e., there exists an a > 0, independent of both k and n, such
that

E[S:] < — + ary/n/klog¥*(n/k), forl <i <k, (7.31)

for all n sufficiently large. Here, we have made use of the fact that the
asymptotic result for up-right matching still holds for the binomial distribu-
tion governing the number of items. From (7.31) we find for n large enough

E[BFS(L.)] < 2_; LE[S] < z (1 +) + 2(k+1)y/n/klog™*(n/k). (7.32)
Along with the corresponding lower bound supplied by the upright matching
results, (7.32) leads to the following result.

Theorem 7.6 ([CSa]) Let rectangles be described as in the uniform model. If
k = [n/3] shelf sizes for BFS are chosen to be s; =i/[n'/3], 1 < i < [n'/?],
then n

E[BFS(Ly)] = 7 + O(n*3log®*n).

We remark that the shelf algorithms in the uniform model of rectangles
are easily adapted to on-line two-dimensional bin-packing. For k odd we
simply assign shelves of heights i/k and 1 —3/k to the same bins. The above
analysis is éasily modified to yield the same result as in Theorem 7.6 (only
the constants hidden by the ©-notation change).

176 CHAPTER 7. PACKINGS IN TWO DIMENSIONS

— BFS(L,)
3/4
Ry: 0.24 x 0.83
3/8 R, 0.59 % 0.20
3/8 Rs: 0.58 x 0.76
R4 0.50 x 0.77
3/4{[
? Rs: 0.15 x 0.85
(Re: 0.20 x 0.24
R 0.72 x 0.44
1<
Rg: 0.50 x 0.32
Ro: 0.25 x 0.25
3/8
Rloi 0.70 x 0.25
R11: 0.40 x 0.55
1
j Rl R3 Rs

Figure 7.7: A BFS packing.

References

[AKTS84]

[AST0]

[BC81]

[BDS8S5]

[BDS6]

[Berg91]

[Bill65]

[BJLMS3]

Each bibliography entry is followed by a list, in square brack-
ets, of the pages on which it is referenced.

M. Ajtai, J. Komléds, and G. Tusnady. On optimal matchings.
Combinatorica, 4:259-264, 1984. [41, 44, 45, 51, 56]

M. Abramowitz and 1. A. Stegun, editors. Handbook of Math-
ematical Functions With Formulas, Graphs, and Mathemati-
cal Tables. Applied Mathematics Series 55. National Bureau
of Standards, Washington, D.C., 1970. [11, 12, 83, 93, 174]

B. S. Baker and E. G. Coffman, Jr. A tight asymptotic
bound for next-fit decreasing bin-packing. SIAM Journal on
Algebraic and Discrete Methods, 2:147-152, 1981. [9]

J. L. Bruno and P. J. Downey. Probabilistic bounds for dual
bin packing. Acta Informatica, 22:333-345, 1985. [35]

J. L. Bruno and P. J. Downey. Probabilistic bounds on the

performance of list scheduling. SIAM Journal on Computing,
15:409-417, 1986. [35]

B. Berger. The fourth moment method. In Proceedings
of the Second Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 373-383, 1991. [37]

P. Billard. Séries de fourier aléatoirement bornées, contin-
ues, uniformémente convergentes. Annales Scientifiques Ecole
Normale Superieure, 82:131-179, 1965. [37]

J. L. Bentley, D. S. Johnson, F. T. Leighton, and C. C. Mc-
Geoch. An experimental study of bin packing. In Proceedings
of the 21st Annual Allerton Conference on Communication,

177

178

[BJLMM84]

[BMT6]

[Boxm84]

[Boxm85]

[Brei68]

[BT89]

[BVZ89]

[CCF84]

[CCGIM&91]

REFERENCES

Control, and Computing, pages 51-60. University of Illinois,
Urbana, 1983. [12, 126, 127]

J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch,
and L. A. McGeoch. Some unexpected expected behavior
results for bin packing. In Proceedings of the Sixteenth Annual

ACM Symposium on Theory of Computing, pages 279-288,
1984. [122-124, 127]

J. A. Bondy and U. S. R. Murty. Graph Theory with Appli-
cations. North-Holland, New York, 1976. [57]

O. J. Boxma. A probabilistic analysis of the LPT scheduling
rule. In E. Gelenbe, editor, Performance ’84: Proceedings of
the Tenth International Symposium on Models of Computer

System Performance, pages 475~490, Paris, France, December
1984. North-Holland. [80, 83]

O. J. Boxma. A probabilistic analysis of multiprocessor list
scheduling: the Erlang case. Stochastic Models, 1:209-220,
1985. [26]

L. Breiman. Probability. Addison-Wesley Series in Statistics.
Addison-Wesley, Reading, MA, 1968. [20]

K. H. Borgwardt and B. Tremel. The average quality of
greedy algorithms for the subset-sum-maximization problem.
Preprint number 198, Institut fiir Mathematik, University of
Augsburg, 1989. [121]

J. J. Bartholdi, J. H. Vande Vate, and J. Zhang. Expected
performance of the shelf heuristic for two-dimensional packing.
Operations Research Letters, 8:11-16, 1989. [175]

A. R. Calderbank, E. G. Coffman, Jr., and L. Flatto. Opti-
mum head separation in a disk system with two read/write
heads. Journal of the ACM, 31(4):826-838, October 1984.
[138]

E. G. Coffman, Jr., C. A. Courcoubetis, M. R. Garey, D. S.
Johnson, L. A. McGeogh, P. W. Shor, R. R. Weber, and
M. Yannakakis. Average-case performance of one-dimensional
bin packing algorithms under discrete uniform distributions.

REFERENCES 179

[CFFGRS6]

[CFGR]
[CFJR90]

[CFL84a]

[CFL84b]

[CFWS8T]
[CG85]
[CG86]

[CGI84]

In Proceedings of the 23rd Annual ACM Symposium on The-
ory of Computing, 1991. To appear. [132]

J. Csirik, J. B. G. Frenk, A. Frieze, G. Galambos, and A. H. G.
Rinnooy Kan. A probabilistic analysis of the next fit decreas-

ing bin packing heuristic. Operations Research Letters, 5:233—-
236, 1986. [27] '

J. Gsirik, J. B. G. Frenk, G. Galambos, and A. H. G. Rinnooy
Kan. Probabilistic analysis of algorithms for dual bin packing
problems. Journal of Algorithms. To appear. [39, 101, 103]

E. G. Coffman, Jr., G. Fayolle, P. Jacquet, and P. Robert.
Largest-first sequential selection with a sum constraint. Op-
erations Research Letters, 9:141-146, 1990. [121]

E. G. Coffman, Jr., L. Flatto, and G. S. Lueker. Ex-
pected makespans for largest-first multiprocessor scheduling.
In E. Gelenbe, editor, Performance ’84: Proceedings of the
Tenth International Symposium on Models of Computer Sys-

tem Performance, pages 475-490, Paris, France, December
1984. North-Holland. 77, 81]

E. G. Coffman, Jr., G. N. Frederickson, and G. S. Lueker. A
note on expected makespans for largest-first sequences of inde-

pendent tasks on two processors. Mathematics of Operations
Research, 9(2):260-266, May 1984. [33]

E. G. Coffman, Jr., L. Flatto, and R. R. Weber. Optimal se-
lection of stochastic intervals under a sum constraint. Journal

of Applied Probability, 19:454-473, 1987. [121]

E. G. Coffman, Jr. and E. N. Gilbert. On the expected relative
performance of list scheduling. Operations Research, 33:548-
561, 1985. [26]

J. Csirik and G. Galambos. An O(n) bin-packing algorithm
for uniformly distributed data. Computing, 36:313-319, 1986.
[148]

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approx-
imation algorithms for bin-packing—an updated survey. In
G. Ausiello, M. Lucertini, and P. Serafini, editors, Algorithm

180

[Cher52]

[Cinl75]

[CKWWS89)

[CL89)

[CLRSS]

[Coff76]

[Coff82]

[Cox62]

[CSa]

REFERENCES

Design for Computer System Design, pages 49-106, Wein,
1984. Springer-Verlag. CISM Courses and Lectures Number
284. [3]

H. Chernoff. A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations. The Annals of
Mathematical Statistics, 23:493-507, 1952. [16]

E. Cinlar. Introduction to Stochastic Processes. Prentice-Hall,
Englewood Cliffs, NJ, 1975. [32]

C. Courcoubetis, P. Konstantopoulous, J. Walrand, and R. R.
Weber. Stabilizing an uncertain production system. Queueing
Systems: Theory and Applications, 5(1-3):37-54, 1989. [120]

E. G. Coffman, Jr. and J. C. Lagarias. A probabilistic analysis
of square packing. SIAM Journal on Computing, 18:166-185,
1989. [161, 166]

E. G. Coffman, Jr., G. S. Lueker, and A. H. G. Rinnooy Kan.
Asymptotic methods in the probabilistic analysis of sequenc-
ing and packing heuristics. Management Science, 34(3):266—
290, March 1988. Focussed Issue on Heuristics. [viii]

E. G. Coffman, Jr. Computer and Job-Shop Scheduling The-
ory. John Wiley & Sons, 1976. [7]

E. G. Coffman, Jr. An introduction to proof techniques for
bin-packing approximation algorithms. In M. A. H. Dempster,
J. K. Lenstra, and A. H. G. Rinnooy Kan, editors, Determin-
istic and Stochastic Scheduling, pages 245-270, Dordrecht,
Holland, 1982. D. Reidel Publishing Co. Proceedings of the
NATO Advanced Study and Research Institute on Theoret-
ical Approaches to Scheduling Problems, Durham, England,
July 6-17, 1981. [107]

D. R. Cox. Renewal Theory. Methuen’s Monographs on
Applied Probability and Statistics. Methuen & Company Ltd.,
science paperback edition 1967 edition, 1962. Distributed in
the USA by Barnes and Noble Inc. [39]

E. G. Coffman, Jr. and P. W. Shor. Packing in two dimensions:
Asymptotic average-case analysis of algorithms. Algorithmica.
To appear. [153, 154, 168, 175]

REFERENCES 181

(CSb]
[0S90]
(CSHYS0]

[CW86a]

[CWS6b]

[CW90]

[Durb73]

[Dyck90]

[ES74]

[Fell68]

E. G. Coffman, Jr. and P. W. Shor. A simple proof of the

O(y/nlog®* n) up-right matching bound. SIAM Journal on
Discrete Mathematics. To appear. [56]

E. G. Coffman, Jr. and P. W. Shor. Average-case analysis of
cutting and packing in two dimensions. FEuropean Journal of
Operational Research, 44:134-144, 1990. [155]

E. G. Coffman, Jr., K. So, M. Hofri, and A. C. Yao. A
stochastic model of bin-packing. Information and Control,
44(2):105-115, February 1980. [135, 136, 172]

C. Courcoubetis and R. R. Weber. A bin-packing system for
objects with sizes from a finite set: Necessary and sufficient
conditions for stability and some applications. In Proceedings
of the 25th IEEE Conference on Decision and Control, pages
16861691, Athens, Greece, December 1986. [32, 120]

C. Courcoubetis and R. R. Weber. Necessary and sufficient
conditions for stability of a bin packing system. Journal of
Applied Probability, 23:989-999, 1986. [119]

C. Courcoubetis and R. R. Weber. Stability of on-line
bin packing with random arrivals and long-run average con-
straints. Probability in the Engineering and Information Sci-
ences, 1990. To appear. [120]

J. Durbin. Distribution Theory for Tests Based on the Sample
Distribution Function. Regional Conference Series in Applied
Mathematics, 9. Society for Industrial and Applied Mathe-
matics, Philadelphia, 1973. [34, 35]

H. Dyckhoff. A typology of cutting and packing problems.
European Journal of Operational Research, 44:145-159, 1990.

3]

P. Erdés and J. Spencer. Probabilistic Methods in Combina-
torics. Academic Press, New York, 1974. [37]

W. Feller. An Introduction to Probability Theory and Its
Applications, volume 1. John Wiley & Sons, New York, third
edition, 1968. [11, 14, 39, 40]

182

[Fell71]

[FF62]

[FK]

[FR87]

[Fred80]

[FV89]

[GI79]

[Glic78]

[Grah66]

[Grah69]

[HKS86]

REFERENCES

W. Feller. An Introduction to Probability Theory and Its
Applications, volume II. John Wiley & Sons, New York,
second edition, 1971. [11, 13, 14, 34, 92, 97]

L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks.
Princeton University Press, 1962. [45]

S. Floyd and R. M. Karp. FFD bin packing for item sizes with
distributions on [0,1/2]. Algorithmica. To appear. An earlier
version appeared as Proceedings of the 27th Symposium on
Foundations of Computer Science, 1986, pp. 322-330. [124,
127]

J. B. G. Frenk and A. H. G. Rinnooy Kan. The asymptotic
optimality of the LPT rule. Mathematics of Operations Re-
search, 12(2):241-254, May 1987. [76, 83]

G. N. Frederickson. Probabilistic analysis for simple one-
and two-dimensional bin packing algorithms. Information
Processing Letters, 11(4-5):156-161, December 1980. [99, 122]

D. P. Foster and R. V. Vohra. Probabilistic analysis of a
heuristics for the dual bin packing problem. Information
Processing Letters, 31:287-290, 1989. [121]

M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
New York, 1979. [2]

N. Glick. Breaking records and breaking boards. American
Mathematical Monthly, 85:2-26, 1978. [121]

R. L. Graham. Bounds for certain multiprocessing anomalies.
Bell System Technical Journal, 45:1563-1581, 1966. [7]

R. L. Graham. Bounds on multiprocessing timing anomalies.
SIAM Journal on Applied Mathematics, 17:263-269, 1969. [§]

M. Hofri and S. Kamhi. A stochastic analysis of the NFD bin-
packing algorithm. Journal of Algorithms, 7:489-509, 1986.
27)

REFERENCES 183

[Hoef63]

[Hoff82]

[Hofr80]

[Hofr84]
[Hofr87]

[Jack41]

[JDUGGT4]

[John]
[John73]

[John74]

[Karm82]

[Karp72]

W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Asso-
ciation, 58:13-30, 1963. [16, 19]

U. Hoffman. A class of simple stochastic online bin packing
algorithms. Computing, 29:227-239, 1982, [148]

M. Hofri. Two dimensional packing: Expected performance
of simple level algorithms. Information and Control, 45:1-17,
1980. [172]

M. Hofri. A probabilistic analysis of the next fit bin packing
algorithm. Journal of Algorithms, 5:547-556, 1984. [172]

M. Hofri. Probabilistic Analysis of Algorithms. Springer-
Verlag, New York, 1987. [11, 137]

D. Jackson. Fourier series and orthogonal polynomials, vol-
ume 6 of The Carus Mathematical Monographs. The Mathe-
matical Association of America, Oberlin, Ohio, 1941. [68]

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and
R. L. Graham. Worst-case performance bounds for simple
one-dimensional packing algorithms. SIAM Journal on Com-
puting, 3(4):299-325, December 1974. [9]

D. S. Johnson. Private communication. [122]

D. S. Johnson. Near-Optimal Bin Packing Algorithms.
Ph.D. thesis, Massachusetts Institute of Technology, Depart-
ment of Mathematics, Cambridge, 1973. [30]

D. S. Johnson. Fast algorithms for bin packing. Journal of
Computer and System Sciences, 8:272-314, 1974. [§]

N. Karmarkar. Probabilistic analysis of some bin-packing
algorithms. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, pages 107-111, 1982.
[104, 105, 137, 138, 144, 151]

R. M. Karp. Reducibility among combinatorial problems.
In R. E. Miller and J. W. Thatcher, editors, Complexity of
Computer. Computations, pages 85-103. Plenum Press, New
York, 1972. (2]

184

[Karp82]

[Karp85]
[King76]

[KK82]

[KKLOS6]

[Klei76]

[KLMRS4]

[KLMS84]

[KLV8T]

[Knodsl]

REFERENCES

R. M. Karp. Lecture notes. Computer Science Division
(EECS), University of California, Berkeley, 1982. [100, 105,
122] |

R. M. Karp. Private communication, 1985. f87]

J. F. C. Kingman. Subadditive Processes, volume 539 of Lec-
ture Notes in Mathematics, pages 167-223. Springer-Verlag,
Berlin, 1976. Ecole d’Eté de Probabilitiés de Saint-Flour V—
1976. [146]

N. Karmarkar and R. M. Karp. The differencing method of set
partitioning. Technical Report UCB/CSD 82/113, Computer
Science Division (EECS), University of California, Berkeley,
December 1982. [83, 86]

N. Karmarkar, R. M. Karp, G. S. Lueker, and A. M. Odlyzko.
Probabilistic analysis of optimum partitioning. Journal of
Applied Probability, 23(3):626-645, 1986. [90, 91, 96, 97]

L. Kleinrock. Queueing Systems, volume I. John Wiley &
Sons, New York, 1975-76. [127]

R. M. Karp, J. K. Lenstra, C. J. H. McDiarmid, and A. H. G.
Rinnooy Kan. Probabilistic analysis of combinatorial algo-
rithms. Technical Report OS-R8411, Centre for Mathematics
and Computer Science, Amsterdam, 1984. [3]

R. M. Karp, M. Luby, and A. Marchetti-Spaccamela. A prob-
abilistic analysis of multidimensional bin packing problems.
In Proceedings of the Sixteenth Annual ACM Symposium on
Theory of Computing, pages 289-298, 1984. [43, 100, 101, 130,
169, 172]

K. Krause, L. Larmore, and D. Volper. Packing items from
a triangular distribution. Information Processing Letters,

25:351-361, 1987. [28]

W. Kndédel. A Bin Packing Algorithm with Complexity
O(nlogn) and Performance 1 in the Stochastic Limit, vol-
ume 118 of Lecture Notes in Computer Science, pages 369-
378. Springer-Verlag, Berlin, 1981. Mathematical Foundations
of Computer Science 1981, Proceedings, 10th Symposium, J.

REFERENCES 185

[Knut73]

[Knut76]

[KT81]

[LL82]

[LL87]

[Loul84a]

[Loul84b]

[LS89]

[Luek80]

[Luek82]

Gruska and M. Chytil, eds., Strbské Pleso, Czechoslovakia,
August 31-September 4, 1981. [35, 100, 104, 105]

D. E. Knuth. Fundamental Algorithms, volume I of The Art

of Computer Programming. Addison-Wesley, Reading, MA,
second edition, 1973. [9, 15, 40, 93]

D. E. Knuth. Big omicron and big omega and big theta.
SIGACT News, pages 18-24, April-June 1976. [6]

S. Karlin and H. M. Taylor. A Second Course in Stochastic
Processes. Academic Press, New York, 1981. [33]

F. T. Leighton and C. E. Leiserson. Wafer-scale integration of
systolic arrays. In Proceedings of the 23rd Annual Symposium
on Foundations of Computing, pages 297-311, 1982. [43]

C. C. Lee and D. T. Lee. Robust on-line bin packing al-
gorithms. Technical report, Department of Electrical En-

gineering and Computer Science, Northwestern University,
Evanston, IL, 1987. [147, 148]

R. Loulou. Tight bounds and probabilistic analysis of two
heuristics for parallel processor scheduling. Mathematics of
Operations Research, 9:142-150, 1984. [75, 76]

R. Loulou. Probabilistic behavior of optimal bin-packing so-
lutions. Operations Research Letters, 3(3):129-135, August
1984. [105, 113]

T. Leighton and P. Shor. Tight bounds for minimax grid
matching with applications to the average case analysis of
algorithms. Combinatorica, 9(2):161-187, 1989. [41, 56]

G. S. Lueker. Some techniques for solving recurrences. ACM
Computing Surveys, 12(4):419-436, December 1980. [40]

G. S. Lueker. An average-case analysis of bin packing with
uniformly distributed item sizes. Technical Report 181, Uni-
versity of California at Irvine, Department of Information and
Computer Science, 1982. [100, 101, 122]

186

[Luek83]

[Luek87]

[Manb89]

[McGe87]

[Murg88|

[OMW84]

[PBS85)

[Pipp77]

[Ramag9]

[RF86]

[Rhee87]

REFERENCES

G. S. Lueker. Bin packing with items uniformly distributed
over intervals [a, b]. In Proceedings of the 24th Annual Sym-

posium on Foundations of Computer Science, pages 289-297,
1983. [28, 107]

G. S. Lueker. A note on the average-case behavior of a simple
differencing method for partitioning. Operations Research
Letters, 6(6):285-287, December 1987. [87, 90]

U. Manber. Introduction to Algorithms: A Creative Ap-

proach. Addison-Wesley, Reading, MA, 1989. [57]

C. C. McGeoch. Experimental Analysis of Algorithms.
Ph.D. thesis, Carnegie-Mellon University, Department of
Computer Science, 1987. [12]

F. D. Murgolo. Anomalous behavior in bin packing algo-
rithms. Discrete Applied Mathematics, 21:229-243, 1988. [30,
128]

H. L. Ong, M. J. Magazine, and T. S. Wee. Probabilistic anal-
ysis of bin packing heuristics. Operations Research, 32:993-
998, 1984. [12]

P. W. Purdom, Jr. and C. A. Brown. The Analysis of Algo-
rithms. Holt, Rinehart and Winston, New York, 1985. [40]

N. Pippenger. An information-theoretic method in combina-
torial theory. Journal of Combinatorial Theory, 23(1):99-104,
July 1977. [95]

P. Ramanan. Average-case analysis of the smart next fit
algorithm. Information Processing Letters, 31:221-225, June
12 1989. [151]

A. H. G. Rinnooy Kan and J. B. G. Frenk. On the rate of
convergence to optimality of the LPT rule. Discrete Applied
Mathematics, 14:187-198, 1986. [76, 80, 83]

W. T. Rhee. Probabilistic analysis of the next fit decreas-
ing algorithm for bin packing. Operations Research Letters,
6(4):189-191, 1987. [27]

REFERENCES 187

[Rheess]
[Rhee90]
[RT87]

[RT88a]
[RT88b]
[RT89a]
[RT89b)]
[RT89c]
[RT89d]
[RTS89€]

[RT89]

W. T. Rhee. Optimal bin packing with items of random
sizes. Mathematics of Operations Research, 13(1):140-151,
February 1988. [110, 113, 114]

W. T. Rhee. A note on optimal bin packing and optimal
bin covering with items of random size. SIAM Journal on
Computing, 19(4):705-710, 1990. [36, 40]

W. T. Rhee and M. Talagrand. Martingale inequalities and
NP-complete problems. Mathematics of Operations Research,
12(1):177-181, February 1987. [144, 146]

W. T. Rhee and M. Talagrand. Exact bounds for the stochas-
tic upward matching problem. Transactions of the American
Mathematical Society, 307(1):109-125, May 1988. [41, 56]

W. T. Rhee and M. Talagrand. Some distributions that allow
perfect packing. Journal of the ACM, 35(3):564-578, July
1088. [28, 110, 114-117]

P. Ramanan and K. Tsuga. Average-case analysis of the
modified harmonic algorithm. Algorithmica, 4(4):519-533,
1989. [148]

W. T. Rhee and M. Talagrand. The complete convergence of
best fit decreasing. SIAM Journal on Computing, 18(5):909-
918, 1989. [35, 128, 129]

W. T. Rhee and M. Talagrand. The complete convergence of
first it decreasing. SIAM Journal on Computing, 18(5):919-
938, 1989. [35, 128, 129]

W. T. Rhee and M. Talagrand. Optimal bin covering
with items of random size. SIAM Journal -on Computing,
13(3):487-498, 1989. [40]

W. T. Rhee and M. Talagrand. Optimal bin packing with
items of random sizes—II. SIAM Journal on Computing,
18(1):139-151, 1989. [110, 113, 114]

W. T. Rhee and M. Talagrand. Optimal bin packing with
items of random sizes—III. SIAM Journal on Computing,
18(3):473-486, 1989. [36, 110] -

188

[RT91]

[ScheT1]
[Serf80]
[ShepT72al]

[Shep72b]

[Shor85a)
[Shor85b)

[Shor86]
[Shor90]

[Stan80]
[Stou74]

[Talad1]

[Ts2i90]

REFERENCES

W. T. Rhee and M. Talagrand. On line bin packing with
items of random size. Manuscript, The Ohio State University,

Columbus, OH, 1991. [133]

M. Schechter. Principles of Functional Analysis. Academic
Press, New York, 1971. [110, 111]

R. Serfling. Approximation Theorems of Mathematical Statis-
tics. Wiley, New York, 1980. [22, 76]

L. A. Shepp. Covering the circle with random arcs. Israel
J. Math., 11:328-345, 1972. [37]

L. A. Shepp. Covering the line with random intervals.
Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Ge-
biete, 23:163-170, 1972. [37]

P. W. Shor. Private communication, 1985. [117]

P. W. Shor. Random Planar Matching and Bin Packing.
Ph.D. thesis, Massachusetts Institute of Technology, Cam-
bridge, September 1985. [43, 44]

P. W. Shor. The average-case analysis of some on-line algo-
rithms for bin packing. Combinatorica, 6(2):179-200, 1986.
[viii, 41, 53, 54, 56, 129, 130, 132]

P. W. Shor. How to do better than best-fit: An improved on-
line bin packing algorithm. Extended abstract, AT&T Bell
Laboratories, Murray Hill, NJ 07974, 1990. [56, 133]

T. A. Standish. Data Structure Techniques. Addison-Wesley,
Reading, MA, 1980. [9]

'W. F. Stout. Almost Sure Convergence. Academic Press, New

York, 1974. [145]

M. Talagrand. Matching theorems and empirical discrepancy

computations using majorizing measures. Manuscript, The
Ohio State University, Columbus, OH, 1991. [51, 56]

L.-H. Tsai. Asymptotic analysis of an algorithm for balanced
parallel-processor scheduling. Manuscript, 1990. Department
of Decision and Information Sciences, University of Florida,
Gainesville 32611. [90]

Index

Numbers in boldface indicate pages on which an index entry is defined.

absolute error, 75
active bin, 8

limited number of, 150-154
average idle time, 75

Bernstein’s bound, 19, 64, 66
Berry-Esséen theorem, 13
Best Fit, 8, 30, 120, 129-132
Best Fit Decreasing, 9, 30,
122-123, 128-129
Best Fit Level, 174
Best Fit Shelf, 175, 175
BF, see Best Fit
BFD, see Best Fit Decreasing
BFS, see Best Fit Shelf
bin covering, 39, 39-40
bin packing, 1
applications, 4
heuristics, 8-9, 26-30, 121-154
optimum solution, 99-120
two-dimensional, see two-
dimensional bin packing
binomial distribution, 14-15, 23,
41, 66, 149, 175
Boole’s inequality, 11, 30, 164
bound that usually holds, 27-30,
68

Cauchy-Schwarz inequality, 11
centered partial sum, 13
central limit theorem, 12-15

189

characteristic function, 13, 92, 97
Chebyshev’s inequality, 11, 37
Chernoff estimates, 15-16, 77
closed bin, 8

closed-end algorithm, 7

coin flips, 100

companion squares, 46
conditioning, 3

configuration, 31

Covering Next Fit, 39

differencing method, 83-90
discrete distributions, 119

DM*, 86, 86-87
dominating algorithm, 26, 26-27,
122, 124, 129
dual-feasible function, 107, 108,
110 -

vs. subadditive function, 113

Edgeworth expansion, 14, 92
ellipsoid, volume of, 71
Euclidean matching, see matching
problems, Euclidean
Euler’s constant, 174
Euler’s summation formula, 14
even partition, 90
experimentation, 11, 107
exponential distribution
and uniform, 32, 33, 77, 87,
100

190

order statistics, 34, 87

exponential integral function Ei,
174

FF, see First Fit
FFD, see First Fit Decreasing
First Fit, 8, 30, 132
First Fit Decreasing, 9, 30,
122-129

First Fit Level, 174
first-bin problem, 121
Fourier analysis, 66
fourth moment method, 37
functional, 111

linear, 111

sublinear, 111

gamma function, 82
generating function, 40, 173
geometric-arithmetic mean

inequality, 11, 19
greedy method, 8

Hahn-Banach theorem, 111
geometric form, 110
Hall’s matching theorem, 57
HARMONIC algorithm, 146,
146-148
Hoeffding bound, 16-21, 30, 164
Holder’s inequality, 37

indicator, 15
Interval First Fit, 148

Jensen’s inequality, 11, 74, 106

k-conservative, 145
Kolmogorov-Smirnov statistic, 34,
100, 128
one-sided, 34

large deviations, 15-21

INDEX

Largest Differencing Method, 84,
85

Largest Processing Time first, 8,
33, 75-83, 90

rates of convergence, 76-83

law of large numbers, 36

LDM, see Largest Differencing
Method

level algorithms, 174

linear programming, 43, 45

linear programming relaxation,
31, 36

dual of, 106

linear-time algorithm, 8, 121,
133-154, 174, 175

Lipschitz condition, 86

List Scheduling, 7, 24, 25, 75

lower layer, 57

LPT, see Largest Processing Time
first

LS, see List Scheduling

makespan scheduling, see
scheduling
Markov chain, 23-25, 135-144,
172-174
martingale, 16, 19, 144
MATCH algorithm, 100, 122
matching problems, 4174
Euclidean, 41, 43-53
rightward, 43, 53-56, 132-133
total-edge-length, see
matching problems,
Euclidean
up-right, 41, 43, 56-74,
129-132, 172
MBF, see Modified Best Fit
median of a distribution, 81, 91-98
MFFD, see Modified First Fit

Decreasing

INDEX

minimum total flow time, 33

Minkowski functional, 111

Modified Best Fit, 129

Modified First Fit Decreasing, 124

monotonic algorithm, 30, 30-32,
123, 128, 129, 144

multiprocessor system, 1

Next Fit, 8, 30, 133-146
adapted to bin covering, see
Covering Next Fit
Next Fit Decreasing, 9, 26-27, 106
Next Fit Level, 172
Next Fit Shelf, 175
NF, see Next Fit
NF Decreasing Height, 172
NFD, see Next Fit Decreasing
NFDH, see NF Descreasing Height
NFL, see Next Fit Level
normal distribution, 12, 92, 102,
121, 165
normalized partial sum, 13
notation for growth rates, 6
NP-completeness, 2

off-line algorithm, 7, 9, 155-172

on-line algorithm, 7, 8-9, 119,
129-154, 172-175

ONLINEMATCH, 148, 148-150

open-end algorithm, 7, 121,
132-133

optimum packing ratio, 104

Optimum Restricted Completion,
122

ORC, see Optimum Restricted
Completion

packing constant, 35, 105, 110
Paired Differencing Method, 84,
87-90

191

Paired Largest Processing Time
first, 33
Parseval’s relation, 97
partial sum, 12
partition problem, 1, 75-98
applications, 4
heuristics, 24-26, 33-34, 75-90
optimum solution, 90-98
PDM, see Paired Differencing
Method
perfect packing, 104, 105, 104-120
PLPT, see Paired Largest
Processing Time first
plus discrepancy, 45
Poisson distribution, 32-34, 57
Poisson process, 32, 33, 77, 87, 171

queueing theory, 124-127

random walk, 20

biased, 156
randomization, 63, 119
record-breaking problem, 121
relative error, 25
renewal theory, 38-40
resampling, 87
rightward matching, see matching

problems, rightward

RNF, see Rotatable Next Fit
Rotatable Next Fit, 172

sample distance, 128

sample distribution function, 34,
128

scheduling, 1, see partition
problem

Schwarz’ inequality, 11, 37

second moment method, 37, 93

shelf algorithms, 174

Skorohod’s inequality, 20

sliced NFD, 27

192

Smart Next Fit, 151, 150-151

Smirnov estimate, 35 '

smoothness condition, 86

SNF, see Smart Next Fit

SNFD,, see sliced NFD

spray paint, 115

Stirling’s formula, 71

strip packing, 4, 155, 155-168

subadditive function, 113

subadditive heuristic, 146

sums of random variables, 12-23

swallow polynomials

approach zero fast enough to,

14, 94

symmetrization, 91

symmetry independence, 44,
48-50

Taylor’s theorem, 19, 95
trim loss, 4
two-dimensional bin packing, 3,
43, 155, 169-172

U(a,b), 6
uniform distribution, 6
order statistics, 32

uniform model of rectangles, 166,
166-175

uniformly integrable, 22

up-right matching, see matching
problems, up-right

w-tight, 153

weak convergence, 114, 118, 119
weakly closed, 114, 119

whp, see with high probability
with high probability, 64

INDEX

