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� offers free and extensive support for downloading new models from our Web sites, 
where users may contribute with their own models and may criticize existing ones. 

In summary NSL is especially suitable for the following tasks: 
� Use in an academic environment where NSL simulation and model development can 

complement theoretical courses in both biological and artificial neural networks. 
Models included in the second part of the book are examples of models that can be 
used for this purpose. Students are able to run these models and change their behav-
ior by modifying input in general or specific network parameters. 

� Use in a research environment where scientists require rapid model prototyping and 
efficient execution. NSL may easily be linked to other software tools, such as addi-
tional numerical libraries, or hardware, such as robotics, by doing direct programming 
in either Java or C++. 

� In the book we describe how to design modular neural networks in order to simplify 
modeling and simulation while providing better model extensibility. We provide 
extensive examples on how neural models should be built in general and in particular 
with NSL.  

The book is divided in two major parts, the first part is required reading for NSL 
users, while the second part provides additional model examples for those interested in 
more specific modeling domains. We define three levels of user expertise: 

� low level for running existing models�requiring no previous knowledge of software 
programming; 

� medium level for developing simple models�requiring the user to learn only the 
NSL high level programming language; 

� high level for developing complex models or linkage to other systems�requiring the 
user to have a basic understanding of Java or C++.  

Part I An Overview of NSL Modeling and Simulation 
The following table gives a brief description of each chapter in Part I of this book in its 
order of occurrence and the level of complexity involved (low, medium, high). 

Chapter Complexity Description 

1 Low Introduction to neural network modeling and simulation 

2 Low Simulation Overview�using computers to explore the 
behavior of neural networks: Examples of biological and 
artificial neural network simulation in NSL. 

3 Medium Modeling Overview�developing a neural network to 
describe a biological system or serve a technological 
application: Examples of biological and artificial neural 
networks model in NSL. 

4 Medium Describes the Schematic Capture System for designing 
neural models and libraries. 

5 Medium Describes the User Interface and Graphical Windows. 

6 Medium Describes the NSLM high level modeling language for 
writing models. 

7 Medium Describes the NSLS scripting language for specifying 
simulation interaction. 
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Figure 1.1 
The diagram above shows 
two interconnected 
modules, the Superior 
Colliculus (SC) and the 
Brainstem. Each module is 
decomposed into several 
submodules (not shown 
here) each imple-mented 
as an array of neurons 
identified by their different 
physiological response 
when a monkey makes 
rapid eye movements. 
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Structured models provide two benefits. The first is that it makes them easier to 
understand, and the second is that modules can be reused in other models. For example, 
figure 1.2 shows the two previous SC and BrainStem modules embedded into a far more 
complex model, the Crowley-Arbib model of basal ganglia. Each of these modules can be 
further broken down into submodules, eventually reaching modules that take the form of 
neural arrays. For example, figure 1.3 shows how the single Prefrontal Cortex module 
(PFC) can be further broken down into four submodules, each a crucial brain region 
involved in the control of movement. 

There are, basically, two ways to understand a complex system. One is to focus in on 
some particular subsystem, some module, and carry out studies of that in detail. The other 
is to step back and look at higher levels of organization in which the details of particular 

Figure 1.2  
The diagram shows the SC 
and BrainStem modules from 
figure 1.1 embedded in a 
much larger model of 
interacting brain regions. 
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modules are hidden. Full understanding comes as we cycle back and forth between differ-
ent levels of detail in analyzing different subsystems, sometimes simulating modules in 
isolation, at other times designing computer experiments that help us follow the dynamics 
of the interactions between the various modules.  

Thus, it is important for a neural network simulator to support modularization of 
models. This concept of modularity is best supported today by object-oriented languages 
and the underlying modeling concepts described next.  

PFCmem PFCmem

PFCgo
PFCgo

PFCseq

PFCfovea
LIPvis

LIPmem

THPFCmem

PFCfovea Figure 1.3
ThePrefrontal Cortex (PFC) 
model is further 
decomposed into 4 
submodules. 

Object-Oriented Programming  
Object-oriented technology has existed for more than thirty years. However, only in this 
past decade have we seen it applied in so many industries. What makes this technology 
special is the concept of the object as the basic modularization abstraction in a program. 
Prior to object-orientation, a complete application would be written at the data and func-
tion level of abstraction. Since data and functions are global to a program any changes to 
them could potentially affect the complete system, an undesired effect when large and 
complex systems are being modified. To avoid this problem an additional level of 
abstraction is added�the object. At the highest level, programs are made exclusively out 
of objects interacting with each other through pre-defined object interfaces. At the lowest 
level, objects are individually defined in terms of local data and functions, avoiding 
global conflicts that make systems so hard to manage and understand. Changes inside 
objects do not affect other objects in the system so long as the external behavior of the 
object remains the same. Since there is usually a smaller number of objects in a program 
than the total number of data or functions, software development becomes more manage-
able. Objects also provide abstraction and extensibility and contribute to modularity and 
code reuse. These seemingly simple concepts have great repercussion in the quality of 
systems being built and its introduction as part of neural modeling reflects this. Obvi-
ously, the use of object-orientation is only part of writing better software as well as neural 
models. How the user designs the software or neural architectures with this technology 
has an important effect on the system, an aspect which becomes more accessible by pro-
viding a simple to follow yet powerful modeling architecture such as that provided by 
NSL.

Concurrency in Neural Networks  
Concurrency can play an important role in neural network simulation, both in order to 
model neurons more faithfully and to increase processing throughput (Weitzenfeld and 
Arbib 1991). We have incorporated concurrent processing capabilities in the general 
design of NSL for this purpose. The computational model on which NSL is based has 
been inspired by the work on the Abstract Schema Language ASL (Weitzenfeld 1992), 
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where schemas (Arbib 1992) are active or concurrent objects (Yonezawa and Tokoro 
1987) resulting in the ability to concurrently process modules. The NSL software sup-
plied with this book is implemented on serial computers, emulating concurrency. Exten-
sions to NSL and its underlying software architecture will implement genuine 
concurrency to permit parallel and distributed processing of modules in the near future. 
We will discuss this more in the Future Directions chapter. 

1.3 Modeling and Simulation in NSL 
As an object-oriented system, NSL is built with modularization in mind. As a neural 
network development platform, NSL provides a modeling and simulation environment 
for large-scale general-purpose neural networks by the use of modules that can be 
hierarchically interconnected to enable the construction of very complex models. NSL 
provides a modeling language NSLM to build/code the model and a scripting language 
NSLS to specify how the simulation is to be executed and controlled. 

Modeling 
Modeling in NSL is carried out at two levels of abstraction, modules and neural net-
works, somewhat analogous to object-orientation in its different abstraction levels when 
building applications. Modules define the top-level view of a model, hiding its internal 
complexity. This complexity is only viewed at the bottom-level corresponding to the 
actual neural networks. A complete model in NSL requires the following components: (1) 
a set of modules defining the entire model; (2) neurons comprised in each neural module; 
(3) neural interconnections; (4) neural dynamics; and (5) numerical methods to solve the 
differential equations. 

Module Level 1

Module Level 2

Figure 1.4
The NSL computational 
model is based on 
hierarchi-cal modules. A 
module at a higher level 
(level 1) is decomposed 
into submod-ules (level 2). 
These sub-modules are 
themselves modules that 
may be further 
decomposed. Arrows show 
data communication among 
modules.

Modules
Modules in NSL correspond to objects in object orientation in that they specify the 
underlying computational model. These entities are hierarchically organized as shown in 
figure 1.4.  

Thus a given module may either be decomposed into a set of smaller modules or 
maybe a �leaf module� that may be implemented in different ways, where neural net-
works are of particular interest here. The hierarchical module decomposition results in 
what is known as module assemblages�a network of submodules that can be seen in 
their entirety in terms of a single higher-level module. These hierarchies enable the 
development of modular systems where modules may be designed and implemented 
independently of each other following both top-down and bottom-up development. 
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values and input patterns. Also, this process involves specifying simulation control and 
visualization aspects.  

For example, figure 1.8 shows five snapshots of the Buildup Cell activity after the 
simulation of one of the submodules in the Superior Colliculus of the Crowley and Arbib 
model shown in figure 1.1. We observe the activity of single neurons, classes of neurons 
or outputs in response to different input patterns as the cortical command triggers a 
movement up and to the right. We see that the cortical command builds up a peak of 
activity on the Buildup Cell array. This peak moves towards the center of the array where 
it then disappears (this corresponds to the command for the eye moving towards the tar-
get, after which the command is no longer required). 

� �

� �

�

Figure 1.8
An example of Buildup 
Cell activity in the 
Superior Colliculus 
model of figure 1.1. 

It is not only important to design a good model, it is also important to design differ-
ent kinds of graphical output to make clear how the model behaves. Additionally, an 
experiment may examine the effects of changing parameters in a model, just as much as 
changing the inputs. One of the reasons for studying the basal ganglia is to understand 
Parkinson�s disease, in which the basal ganglia are depleted of a substance called dopa-
mine, whose depletion is a prime correlate of Parkinson�s disease. The model of figure 
1.2 (at a level of detail not shown) includes a parameter that represents the level of 
dopamine. The �normal� model, yields two saccades, one each in turn to the positions at 
which the two targets appeared; the �low-dopamine� model only shows a response to the 
first target, a result which gives insight into some of the motor disorders of Parkinson�s 
disease patients. The actual model is described in detail in chapter 15. We shall describe 
the simulation process in more detail in chapter 2. 

1.4 The NSL System 
The Neural Simulation Language (NSL) has evolved for over a decade. The original 
system was written in C (NSL 1) in 1989, with a second version written in C++ (NSL 2) 
in 1991 and based on object-oriented technology. Both versions were developed at USC 
by Alfredo Weitzenfeld, with Michael Arbib involved in the overall design. The present 
version NSL 3 is a major release completely restructured over former versions both as a 
system as well as the supported modeling and simulation, including modularity and con-
currency. NSL 3 includes two different environments, one in Java (NSLJ, developed at 
USC by Amanda Alexander�s team) and the other in C++ (NSLC, developed at ITAM in 
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Mexico by Alfredo Weitzenfeld�s team), again with Arbib involved in the overall design. 
Both environments support similar modeling and simulation, where each one offers dif-
ferent advantages to the user. 

The advantages with Java are  
� portability: Code written in Java runs without changes �everywhere�;  
� maintainability: Java code requires maintaining one single software version for 

different operating systems, compilers and other software on different platforms.  
� web-oriented: Java code runs on the client side of the web, simplifying exchange of 

models without the owner of the model having to provide a large server on which 
other people can run simulations.  

The advantages with C++ are  
� efficiency: Since C++ is an extension to C, C++ models get simulated on top of one 

of the most efficient execution languages;  
� integration: C++ code may be directly integrated with a large number of software 

packages already in existence written in C++;  
� linkage to hardware: Currently most linkages to robots are done through C and C++; 

however, more and more of these systems are moving to Java. 

The great advantage on having support for both environments is the ability to switch 
between the two of them to get the best of each world with minimum effort. 

The complete NSL system is made of three components: the Simulation System, the 
Schematic Capture System and the Model/Module Libraries , as shown in figure 1.9. 
Three file types are used as communication between the three modules: 

� mod files describing NSL models, executed by the Simulation System, stored in the 
Model Library and optionally generated from SCS, 

� nsl files describing NSL model simulation, executed by the Simulation System and 
stored in the Model/Module Libraries, 

� sif files storing schematic information about the model stored in the Model/Module 
Libraries as well. 

Simulation
System

BMW

sif files

modfiles

Main Components of the NSL System

mod and nsl files

Model/Module
Libraries

Schematic
Capture

System (SCS)

Figure 1.9
Schematic Capture System 
and its relation to the NSL 
System.1

Simulation System 
The NSL Simulation System comprises several subsystems: the Simulation subsystem
where model interaction and processing takes place and the Window Interface subsystem
where all graphics interaction takes place, as shown in figure 1.10. Note that we are now 
discussing the subsystems or modules that comprise the overall simulation system, not 
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Basic BookLib 

MaxSelectorModel HopfieldModel BackPropModel

1_1_1 1_1_1 1_2_1 1_1_1

io src doc io src doc io src doc io src doc

Extended Hierarchy 
In the extended hierarchy, the directory structure for the library is almost identical to the 
basic one except for the fact that each module is versioned, and there is an extra exe 
directory. There may be multiple libraries, and it is up to the model builder to decide 
what modules and models will go into each. Also, each library may contain multiple 
models and modules, identified by their corresponding name. Each model and module 
must have a unique name. Also, each model and module is then associated with different 
implementations identified by its corresponding numerical version, (version numbers 
start at 1_1_1). Obviously, many versions of a model or module may exist in a library, 
thus we identify versions using a version identification number composed of three digits 
denoting the model or module release number, revision number, and modification num-
ber, respectively. All numbers are initialized to 1. At the end of the directory hier-archy, 
the last level down contains the directories where the actual model or module files are 
stored: input/output files (io), source module files (src), documentation (doc), and the 
executable files (exe). Typically the io and exe directories are empty except for model 
directories. In table 1.3, we illustrate the MaxSelectorModel hierarchy previously shown 
in table 1.2 in the basic architecture and now shown with modules in the extended library. 

Extended BookLib 

MaxSelectorModel MaxSelector MaxSelectorStimuli MaxSelectorOutput ULayer VLayer 

1_1_1 1_1_1 1_1_1 1_1_1 1_1_1 1_1_1
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SCS manipulates the model and module library allowing the user to create new 
libraries as well as add new revisions to existing models and modules. The user can 
browse and search the libraries for particular models or modules. When building a sche-
matic, the user has the choice of choosing the most recent modification of a model or 
module, or sticking with a fixed version of that model or module. If the user chooses a 
specific version this is called �using the fixed version.� If the user specifies �0_0_0� the 
most current version of the module would be used instead and whenever there is a more 
recent version of the module, that version will be used. This is called �using the floating 
version.� Each individual library file stores metadata describing the software used to 
create the corresponding model/module.  

1.5 Summary 
In this first chapter we have introduced modeling and simulation of neural networks in 
general and in relation to NSL. We also gave an overview of the NSL system components 
including a description of the technology used to build the system as well as simulate 
models using NSL. 

Table 1.3
The extended library structure for 
the basic book library showing 
one of its models, the 
MaxSelector, and its children. 

Table 1.2  
The basic hierarchy organization 
for the book models. 
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Again, the range of i is 0 � i � n-1 where n corresponds to the number of neurons in 
the neural array u.

Note that the actual simulation will use some numerical method to transform each 
differential equation of the form �  dm/dt = f(m,s,t) into some approximating difference 
equation m(t+� t) = f(m(t), s(t), t) which transforms state m(t) and input s(t) at time t into 
the state m(t+� t) of the neuron one �simulation time step� later. 

As the model equations get repeatedly executed, with the right parameter values, ui
values receive positive input from both their corresponding external input and local feed-
back. At the same time negative feedback is received from v. Since the strength of the 
negative feedback corresponds to the summation of all neuron output, as execution pro-
ceeds only the strongest activity will be preserved, resulting in many cases in a �single 
winner� in the network. 

Simulation Interaction 
To execute the simulation, having chosen a differential equation solver (approximation method) 
and a simulation time step (or having accepted the default values), the user would simply select 
�Run� from the NSL Executive�s Run menu as shown in figure 2.7. We abbreviate this as 
Run� Run.

Figure 2.7 
The �Run �  Run� menu 
command.

The output of the simulation would be that as shown in figure 2.8.  
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Figure 2.10 
Loading a �NSLS� script 
file into the Executive. 

From the file selection pop-up window we first choose the �nsl� directory and then 
MaxSelectorModel, as shown in figure 2.11. Alternatively, the commands found in the 
file could have been written directly into the Script Window but it is more convenient 
the previous way.  

Figure 2.11 
The MaxSelectorModel script 
loaded into the Executive. 

Simulation Control 
Simulation control involves setting the duration of the model execution cycle (also known as the 
delta-t or simulation time step). In all of the models we will present, we will provide default values 
for the simulation control parameters within the model. However, to override these settings the user 
can select from System� Set� RunEndTime and System�  Set� RunDelta as shown in figure 
2.12.

Figure 2.12 
Setting system control 
parameters. 
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A pop-up window appears showing the current parameter value that may be modi-
fied by the user. In this model we have set the runEndTime to 10.0, as shown in figure 
2.13, and runDelta to 0.1 giving a total of 100 execution iterations. These values are long 
enough for the model to stabilize on a solution. 

Figure 2.13 
RunEndTime parameter 
setting. 

To execute the actual simulation we select �Run� from the �Run� menu, as we did in 
figure 2.7. 

The user may stop the simulation at any time by selecting the �Run� menu and then 
selecting �Break.� We abbreviate this as Run� Break. To resume the simulation from 
the interrupt point select Run� Continue.

Visualization 
The model output at the end of the simulation is shown in figure 2.8. The display shows input array 
sout with an Area type graph, i.e., the area of the black rectangle codes the size of the 
corresponding input, while array up, with a Temporal type graph, shows the time course for up.
The last canvas shows another Area type graph for uf at the end of the simulation. The largest input 
in sout determines the only element of sout whose activity is still positive at the end of the 
simulation as seen in uf�the network indeed acts as a maximum selector. 

Input Assignment  
The Maximum Selector model example is quite simple in that the input sout is constant. In the 
example chosen, is consists of only two different positive values (set to 0.5 and 1.0) while the rest 
are set to zero (total of 10 elements in the vector). In general, input varies with time. Since input is 
constant in the present case, it may be set similarly to any model parameter. To assign values to 
parameters, we use the �nsl set� command followed by the variable and value involved. For 
example, to specify all ten-element values for sout we would do:1

nsl set maxSelectorModel.stimulus.sout { 0 0 0 1 0 1 0 0 0 0 } 

Since all variables are stored within modules, being themselves possibly stored in 
other modules until reaching the top level model, it is necessary to provide a full �path� 
in order to assign them with new values. (These hierarchies will be made clear in chapter 
3. For the moment simply provide the full specified path.) Note that arrays are set by 
specifying all values within curly brackets. Individual array elements may be set by using 
parentheses around a specific array index, e.g. to set the value of only array element 3 we 
would do (array indices starting with 0): 

nsl set maxSelectorModel.stimulus.sout(3) 1

As previously mentioned, this model is atypical in that the input is constant. In gen-
eral, input varies with time as will be shown in most of the other models in the book. If 
we are dealing with dynamic input we have different alternatives for setting input. One is 
to specify a �nsl set� command with appropriate input values every time input changes. 
Another alternative is to specify the input directly inside the model description or through 
a custom interface. Both Hopfield and Backpropagation models give examples on how to 
dynamically modify input at the script level and through the use of training files 
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Figure 2.14 
The Hopfield network is fully 
connected with the 
restriction that no unit may 
connect to itself. 

Model Description 
A Hopfield network is a discrete-time model consisting of a group of neurons projecting to all other 
neurons in the network with the restriction that no neuron connects to itself and weights are 
symmetric throughout the network, as shown in figure 2.14. The Hopfield model is based on 
asynchronous updating of states: only a single unit, randomly chosen, has its state updated at any 
given time. As a result the state of the chosen unit may change to reflect prior changes in the states 
of other units or may remain the same if those changes �cancel out.� 

The image to be processed does not, as might be expected, provide input to the net-
work throughout processing. But rather the input pattern is used to set the initial states of 
the neurons of the network. To this end, we use double indexing for units m in order to 
make each unit correspond to a single picture element in a two-dimensional image. The 
dynamics of the network is then to convert the original pattern into some desired trans-
formation thereof. Each element in the connection matrix w is then specified through four 
indices. If wklij is the connection between unit mij and unit mkl, then the activity mpkl of 
unit mkl is computed directly from the input from all other connections where mfij is the 
output from neuron mij. The computation is given by 

� �=+
i j

ijklijkl tmfwtmp )()1( (2.4)

Note that unlike the leaky integrator model, the state of a neuron in this discrete-time 
model does not depend on its previous state�it is completely determined by the input to 
the neuron at that time step. For our example, we concentrate on binary Hopfield net-
works using discrete neurons whose values can be either +1 or -1. The state of a neuron is 
given by 

�
�
�
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Thenetwork configuration consists of neurons organized into at least three different 
layers: an input layer, one or more hidden or middle layers and an output layer (figure 
2.23). The network processes information in two distinct modes, a feedforward and a 
backpropagation mode. The feedforwardmode is just the normal mode of operation of a 
neural network without loops: activity is fed forward from one layer to the next (input to 
hidden layer, hidden to additional hidden layers if more than one exists, and finally hid-
den to output layer). There are no loops in strong contrast to the fully recurrent Hopfield
network. In the backpropagation mode, learning propagates backwards by adjusting 
synaptic weights from output to input layers. The most common configuration is a three-
layer network with all possible connections from each layer to the next. Implementing 
four or more layers is usually discouraged because of the computational burden of the 
backpropagation training process. Both mathematical proof and practical uses of back-
propagation show that three-layer networks are sufficient for solving most problems 
(Rumelhart, et al. 1986).  

In designing the network configuration, the most important parameter is the network 
size and the number of units used in the hidden layer to represent features of the problem. 
There are tradeoffs to consider. With too large a number of hidden units, the network will 
have the ability to memorize each element of the training set separately, and thus will not 
generalize well. With too small a number of hidden units, there may not be enough mem-
ory to store the knowledge (refer to Smith (1993) on how to build appropriate network 
configurations). 

Backpropagation has been applied to a large number of applications in many domain 
areas, from handwriting recognition and speech synthesis to stock market prediction and 
on. 

Model Description 
As we have seen, Backpropagation is a typical multi-layer neural network model consisting of an 
input layer, hidden or middle layer(s), one in this case, and an output layer (figure 2.23). The 
network is fully connected from one layer to the next, but lacks any connectivity between neurons 
belonging to the same layer, or back to previous layers.  

TheBackPropagation algorithm works in two phases, as in Hopfield. First, a training 
phase adjusts network weights and then a running phase matches patterns against those 

Figure 2.23 
The Backpropagation network 
architecture is made of an input 
layer connected to a hidden 
layer that is then connected to 
an output layer. Units are fully 
connected between layers 
without any interconnection to 
other units in the same layer. 
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