

The Neural Simulation Language
A System for Brain Modeling

X V I P R E F A C E

� offers free and extensive support for downloading new models from our Web sites,
where users may contribute with their own models and may criticize existing ones.

In summary NSL is especially suitable for the following tasks:
� Use in an academic environment where NSL simulation and model development can

complement theoretical courses in both biological and artificial neural networks.
Models included in the second part of the book are examples of models that can be
used for this purpose. Students are able to run these models and change their behav-
ior by modifying input in general or specific network parameters.

� Use in a research environment where scientists require rapid model prototyping and
efficient execution. NSL may easily be linked to other software tools, such as addi-
tional numerical libraries, or hardware, such as robotics, by doing direct programming
in either Java or C++.

� In the book we describe how to design modular neural networks in order to simplify
modeling and simulation while providing better model extensibility. We provide
extensive examples on how neural models should be built in general and in particular
with NSL.

The book is divided in two major parts, the first part is required reading for NSL
users, while the second part provides additional model examples for those interested in
more specific modeling domains. We define three levels of user expertise:

� low level for running existing models�requiring no previous knowledge of software
programming;

� medium level for developing simple models�requiring the user to learn only the
NSL high level programming language;

� high level for developing complex models or linkage to other systems�requiring the
user to have a basic understanding of Java or C++.

Part I An Overview of NSL Modeling and Simulation
The following table gives a brief description of each chapter in Part I of this book in its
order of occurrence and the level of complexity involved (low, medium, high).

Chapter Complexity Description

1 Low Introduction to neural network modeling and simulation

2 Low Simulation Overview�using computers to explore the
behavior of neural networks: Examples of biological and
artificial neural network simulation in NSL.

3 Medium Modeling Overview�developing a neural network to
describe a biological system or serve a technological
application: Examples of biological and artificial neural
networks model in NSL.

4 Medium Describes the Schematic Capture System for designing
neural models and libraries.

5 Medium Describes the User Interface and Graphical Windows.

6 Medium Describes the NSLM high level modeling language for
writing models.

7 Medium Describes the NSLS scripting language for specifying
simulation interaction.

This page intentionally left blank

I N T R O D U C T I O N 3

BrainStem

Superior
Colliculus

Figure 1.1
The diagram above shows
two interconnected
modules, the Superior
Colliculus (SC) and the
Brainstem. Each module is
decomposed into several
submodules (not shown
here) each imple-mented
as an array of neurons
identified by their different
physiological response
when a monkey makes
rapid eye movements.

BrainStem

Lateral Basal
Ganglia

Medial Basal
Ganglia

Substantia
Nigra

Compacta

PreFrontal
Cortex

Frontal Eye
Field

Thalamus

Lateral Inter
Parietal

Superior
Colliculus

PFCgo

Structured models provide two benefits. The first is that it makes them easier to
understand, and the second is that modules can be reused in other models. For example,
figure 1.2 shows the two previous SC and BrainStem modules embedded into a far more
complex model, the Crowley-Arbib model of basal ganglia. Each of these modules can be
further broken down into submodules, eventually reaching modules that take the form of
neural arrays. For example, figure 1.3 shows how the single Prefrontal Cortex module
(PFC) can be further broken down into four submodules, each a crucial brain region
involved in the control of movement.

There are, basically, two ways to understand a complex system. One is to focus in on
some particular subsystem, some module, and carry out studies of that in detail. The other
is to step back and look at higher levels of organization in which the details of particular

Figure 1.2
The diagram shows the SC
and BrainStem modules from
figure 1.1 embedded in a
much larger model of
interacting brain regions.

4 C H A P T E R 1

modules are hidden. Full understanding comes as we cycle back and forth between differ-
ent levels of detail in analyzing different subsystems, sometimes simulating modules in
isolation, at other times designing computer experiments that help us follow the dynamics
of the interactions between the various modules.

Thus, it is important for a neural network simulator to support modularization of
models. This concept of modularity is best supported today by object-oriented languages
and the underlying modeling concepts described next.

PFCmem PFCmem

PFCgo
PFCgo

PFCseq

PFCfovea
LIPvis

LIPmem

THPFCmem

PFCfovea Figure 1.3
ThePrefrontal Cortex (PFC)
model is further
decomposed into 4
submodules.

Object-Oriented Programming
Object-oriented technology has existed for more than thirty years. However, only in this
past decade have we seen it applied in so many industries. What makes this technology
special is the concept of the object as the basic modularization abstraction in a program.
Prior to object-orientation, a complete application would be written at the data and func-
tion level of abstraction. Since data and functions are global to a program any changes to
them could potentially affect the complete system, an undesired effect when large and
complex systems are being modified. To avoid this problem an additional level of
abstraction is added�the object. At the highest level, programs are made exclusively out
of objects interacting with each other through pre-defined object interfaces. At the lowest
level, objects are individually defined in terms of local data and functions, avoiding
global conflicts that make systems so hard to manage and understand. Changes inside
objects do not affect other objects in the system so long as the external behavior of the
object remains the same. Since there is usually a smaller number of objects in a program
than the total number of data or functions, software development becomes more manage-
able. Objects also provide abstraction and extensibility and contribute to modularity and
code reuse. These seemingly simple concepts have great repercussion in the quality of
systems being built and its introduction as part of neural modeling reflects this. Obvi-
ously, the use of object-orientation is only part of writing better software as well as neural
models. How the user designs the software or neural architectures with this technology
has an important effect on the system, an aspect which becomes more accessible by pro-
viding a simple to follow yet powerful modeling architecture such as that provided by
NSL.

Concurrency in Neural Networks
Concurrency can play an important role in neural network simulation, both in order to
model neurons more faithfully and to increase processing throughput (Weitzenfeld and
Arbib 1991). We have incorporated concurrent processing capabilities in the general
design of NSL for this purpose. The computational model on which NSL is based has
been inspired by the work on the Abstract Schema Language ASL (Weitzenfeld 1992),

I N T R O D U C T I O N 5

where schemas (Arbib 1992) are active or concurrent objects (Yonezawa and Tokoro
1987) resulting in the ability to concurrently process modules. The NSL software sup-
plied with this book is implemented on serial computers, emulating concurrency. Exten-
sions to NSL and its underlying software architecture will implement genuine
concurrency to permit parallel and distributed processing of modules in the near future.
We will discuss this more in the Future Directions chapter.

1.3 Modeling and Simulation in NSL
As an object-oriented system, NSL is built with modularization in mind. As a neural
network development platform, NSL provides a modeling and simulation environment
for large-scale general-purpose neural networks by the use of modules that can be
hierarchically interconnected to enable the construction of very complex models. NSL
provides a modeling language NSLM to build/code the model and a scripting language
NSLS to specify how the simulation is to be executed and controlled.

Modeling
Modeling in NSL is carried out at two levels of abstraction, modules and neural net-
works, somewhat analogous to object-orientation in its different abstraction levels when
building applications. Modules define the top-level view of a model, hiding its internal
complexity. This complexity is only viewed at the bottom-level corresponding to the
actual neural networks. A complete model in NSL requires the following components: (1)
a set of modules defining the entire model; (2) neurons comprised in each neural module;
(3) neural interconnections; (4) neural dynamics; and (5) numerical methods to solve the
differential equations.

Module Level 1

Module Level 2

Figure 1.4
The NSL computational
model is based on
hierarchi-cal modules. A
module at a higher level
(level 1) is decomposed
into submod-ules (level 2).
These sub-modules are
themselves modules that
may be further
decomposed. Arrows show
data communication among
modules.

Modules
Modules in NSL correspond to objects in object orientation in that they specify the
underlying computational model. These entities are hierarchically organized as shown in
figure 1.4.

Thus a given module may either be decomposed into a set of smaller modules or
maybe a �leaf module� that may be implemented in different ways, where neural net-
works are of particular interest here. The hierarchical module decomposition results in
what is known as module assemblages�a network of submodules that can be seen in
their entirety in terms of a single higher-level module. These hierarchies enable the
development of modular systems where modules may be designed and implemented
independently of each other following both top-down and bottom-up development.

8 C H A P T E R 1

values and input patterns. Also, this process involves specifying simulation control and
visualization aspects.

For example, figure 1.8 shows five snapshots of the Buildup Cell activity after the
simulation of one of the submodules in the Superior Colliculus of the Crowley and Arbib
model shown in figure 1.1. We observe the activity of single neurons, classes of neurons
or outputs in response to different input patterns as the cortical command triggers a
movement up and to the right. We see that the cortical command builds up a peak of
activity on the Buildup Cell array. This peak moves towards the center of the array where
it then disappears (this corresponds to the command for the eye moving towards the tar-
get, after which the command is no longer required).

� �

� �

�

Figure 1.8
An example of Buildup
Cell activity in the
Superior Colliculus
model of figure 1.1.

It is not only important to design a good model, it is also important to design differ-
ent kinds of graphical output to make clear how the model behaves. Additionally, an
experiment may examine the effects of changing parameters in a model, just as much as
changing the inputs. One of the reasons for studying the basal ganglia is to understand
Parkinson�s disease, in which the basal ganglia are depleted of a substance called dopa-
mine, whose depletion is a prime correlate of Parkinson�s disease. The model of figure
1.2 (at a level of detail not shown) includes a parameter that represents the level of
dopamine. The �normal� model, yields two saccades, one each in turn to the positions at
which the two targets appeared; the �low-dopamine� model only shows a response to the
first target, a result which gives insight into some of the motor disorders of Parkinson�s
disease patients. The actual model is described in detail in chapter 15. We shall describe
the simulation process in more detail in chapter 2.

1.4 The NSL System
The Neural Simulation Language (NSL) has evolved for over a decade. The original
system was written in C (NSL 1) in 1989, with a second version written in C++ (NSL 2)
in 1991 and based on object-oriented technology. Both versions were developed at USC
by Alfredo Weitzenfeld, with Michael Arbib involved in the overall design. The present
version NSL 3 is a major release completely restructured over former versions both as a
system as well as the supported modeling and simulation, including modularity and con-
currency. NSL 3 includes two different environments, one in Java (NSLJ, developed at
USC by Amanda Alexander�s team) and the other in C++ (NSLC, developed at ITAM in

I N T R O D U C T I O N 9

Mexico by Alfredo Weitzenfeld�s team), again with Arbib involved in the overall design.
Both environments support similar modeling and simulation, where each one offers dif-
ferent advantages to the user.

The advantages with Java are
� portability: Code written in Java runs without changes �everywhere�;
� maintainability: Java code requires maintaining one single software version for

different operating systems, compilers and other software on different platforms.
� web-oriented: Java code runs on the client side of the web, simplifying exchange of

models without the owner of the model having to provide a large server on which
other people can run simulations.

The advantages with C++ are
� efficiency: Since C++ is an extension to C, C++ models get simulated on top of one

of the most efficient execution languages;
� integration: C++ code may be directly integrated with a large number of software

packages already in existence written in C++;
� linkage to hardware: Currently most linkages to robots are done through C and C++;

however, more and more of these systems are moving to Java.

The great advantage on having support for both environments is the ability to switch
between the two of them to get the best of each world with minimum effort.

The complete NSL system is made of three components: the Simulation System, the
Schematic Capture System and the Model/Module Libraries , as shown in figure 1.9.
Three file types are used as communication between the three modules:

� mod files describing NSL models, executed by the Simulation System, stored in the
Model Library and optionally generated from SCS,

� nsl files describing NSL model simulation, executed by the Simulation System and
stored in the Model/Module Libraries,

� sif files storing schematic information about the model stored in the Model/Module
Libraries as well.

Simulation
System

BMW

sif files

modfiles

Main Components of the NSL System

mod and nsl files

Model/Module
Libraries

Schematic
Capture

System (SCS)

Figure 1.9
Schematic Capture System
and its relation to the NSL
System.1

Simulation System
The NSL Simulation System comprises several subsystems: the Simulation subsystem
where model interaction and processing takes place and the Window Interface subsystem
where all graphics interaction takes place, as shown in figure 1.10. Note that we are now
discussing the subsystems or modules that comprise the overall simulation system, not

I N T R O D U C T I O N 1 3

Basic BookLib

MaxSelectorModel HopfieldModel BackPropModel

1_1_1 1_1_1 1_2_1 1_1_1

io src doc io src doc io src doc io src doc

Extended Hierarchy
In the extended hierarchy, the directory structure for the library is almost identical to the
basic one except for the fact that each module is versioned, and there is an extra exe
directory. There may be multiple libraries, and it is up to the model builder to decide
what modules and models will go into each. Also, each library may contain multiple
models and modules, identified by their corresponding name. Each model and module
must have a unique name. Also, each model and module is then associated with different
implementations identified by its corresponding numerical version, (version numbers
start at 1_1_1). Obviously, many versions of a model or module may exist in a library,
thus we identify versions using a version identification number composed of three digits
denoting the model or module release number, revision number, and modification num-
ber, respectively. All numbers are initialized to 1. At the end of the directory hier-archy,
the last level down contains the directories where the actual model or module files are
stored: input/output files (io), source module files (src), documentation (doc), and the
executable files (exe). Typically the io and exe directories are empty except for model
directories. In table 1.3, we illustrate the MaxSelectorModel hierarchy previously shown
in table 1.2 in the basic architecture and now shown with modules in the extended library.

Extended BookLib

MaxSelectorModel MaxSelector MaxSelectorStimuli MaxSelectorOutput ULayer VLayer

1_1_1 1_1_1 1_1_1 1_1_1 1_1_1 1_1_1

i
o

s
r
c

d
o
c

e
x
e

i
o

s
r
c

d
oc

e
x
e

i
o

s
r
c

d
o
c

e
x
e

i
o

s
r
c

d
o
c

e
x
e

i
o

s
r
c

d
o
c

e
x
e

i
o

s
r
c

d
oc

e
x
e

SCS manipulates the model and module library allowing the user to create new
libraries as well as add new revisions to existing models and modules. The user can
browse and search the libraries for particular models or modules. When building a sche-
matic, the user has the choice of choosing the most recent modification of a model or
module, or sticking with a fixed version of that model or module. If the user chooses a
specific version this is called �using the fixed version.� If the user specifies �0_0_0� the
most current version of the module would be used instead and whenever there is a more
recent version of the module, that version will be used. This is called �using the floating
version.� Each individual library file stores metadata describing the software used to
create the corresponding model/module.

1.5 Summary
In this first chapter we have introduced modeling and simulation of neural networks in
general and in relation to NSL. We also gave an overview of the NSL system components
including a description of the technology used to build the system as well as simulate
models using NSL.

Table 1.3
The extended library structure for
the basic book library showing
one of its models, the
MaxSelector, and its children.

Table 1.2
The basic hierarchy organization
for the book models.

2 0 C H A P T E R 2

Again, the range of i is 0 � i � n-1 where n corresponds to the number of neurons in
the neural array u.

Note that the actual simulation will use some numerical method to transform each
differential equation of the form � dm/dt = f(m,s,t) into some approximating difference
equation m(t+� t) = f(m(t), s(t), t) which transforms state m(t) and input s(t) at time t into
the state m(t+� t) of the neuron one �simulation time step� later.

As the model equations get repeatedly executed, with the right parameter values, ui
values receive positive input from both their corresponding external input and local feed-
back. At the same time negative feedback is received from v. Since the strength of the
negative feedback corresponds to the summation of all neuron output, as execution pro-
ceeds only the strongest activity will be preserved, resulting in many cases in a �single
winner� in the network.

Simulation Interaction
To execute the simulation, having chosen a differential equation solver (approximation method)
and a simulation time step (or having accepted the default values), the user would simply select
�Run� from the NSL Executive�s Run menu as shown in figure 2.7. We abbreviate this as
Run� Run.

Figure 2.7
The �Run � Run� menu
command.

The output of the simulation would be that as shown in figure 2.8.

2 2 C H A P T E R 2

Figure 2.10
Loading a �NSLS� script
file into the Executive.

From the file selection pop-up window we first choose the �nsl� directory and then
MaxSelectorModel, as shown in figure 2.11. Alternatively, the commands found in the
file could have been written directly into the Script Window but it is more convenient
the previous way.

Figure 2.11
The MaxSelectorModel script
loaded into the Executive.

Simulation Control
Simulation control involves setting the duration of the model execution cycle (also known as the
delta-t or simulation time step). In all of the models we will present, we will provide default values
for the simulation control parameters within the model. However, to override these settings the user
can select from System� Set� RunEndTime and System� Set� RunDelta as shown in figure
2.12.

Figure 2.12
Setting system control
parameters.

S I M U L A T I O N I N N S L 2 3

A pop-up window appears showing the current parameter value that may be modi-
fied by the user. In this model we have set the runEndTime to 10.0, as shown in figure
2.13, and runDelta to 0.1 giving a total of 100 execution iterations. These values are long
enough for the model to stabilize on a solution.

Figure 2.13
RunEndTime parameter
setting.

To execute the actual simulation we select �Run� from the �Run� menu, as we did in
figure 2.7.

The user may stop the simulation at any time by selecting the �Run� menu and then
selecting �Break.� We abbreviate this as Run� Break. To resume the simulation from
the interrupt point select Run� Continue.

Visualization
The model output at the end of the simulation is shown in figure 2.8. The display shows input array
sout with an Area type graph, i.e., the area of the black rectangle codes the size of the
corresponding input, while array up, with a Temporal type graph, shows the time course for up.
The last canvas shows another Area type graph for uf at the end of the simulation. The largest input
in sout determines the only element of sout whose activity is still positive at the end of the
simulation as seen in uf�the network indeed acts as a maximum selector.

Input Assignment
The Maximum Selector model example is quite simple in that the input sout is constant. In the
example chosen, is consists of only two different positive values (set to 0.5 and 1.0) while the rest
are set to zero (total of 10 elements in the vector). In general, input varies with time. Since input is
constant in the present case, it may be set similarly to any model parameter. To assign values to
parameters, we use the �nsl set� command followed by the variable and value involved. For
example, to specify all ten-element values for sout we would do:1

nsl set maxSelectorModel.stimulus.sout { 0 0 0 1 0 1 0 0 0 0 }

Since all variables are stored within modules, being themselves possibly stored in
other modules until reaching the top level model, it is necessary to provide a full �path�
in order to assign them with new values. (These hierarchies will be made clear in chapter
3. For the moment simply provide the full specified path.) Note that arrays are set by
specifying all values within curly brackets. Individual array elements may be set by using
parentheses around a specific array index, e.g. to set the value of only array element 3 we
would do (array indices starting with 0):

nsl set maxSelectorModel.stimulus.sout(3) 1

As previously mentioned, this model is atypical in that the input is constant. In gen-
eral, input varies with time as will be shown in most of the other models in the book. If
we are dealing with dynamic input we have different alternatives for setting input. One is
to specify a �nsl set� command with appropriate input values every time input changes.
Another alternative is to specify the input directly inside the model description or through
a custom interface. Both Hopfield and Backpropagation models give examples on how to
dynamically modify input at the script level and through the use of training files

S I M U L A T I O N I N N S L 2 5

mp

mpi-1, j-1 mpi-1, j

mfi-1, j-1

mpi-1,j+1

mfi-1,j+1mfi-1, j

mfi+1, j

mpi+1, j

mpi, j-1
mfi, j-1

wk,l,i-1,j-1

wk,l,i,j-1

wk,l,i+1,j-1

wk,l,i+1,j+1

wk,l,i,j+1

wk,l,i-1,j+1

wk,l,i+1,j

wk,l,i-1,j

mpi+1, j-1
mfi+1, j-1 mpi+1, j+1

mfi+1, j+1

mpi, j+1
mfi, j+1

Figure 2.14
The Hopfield network is fully
connected with the
restriction that no unit may
connect to itself.

Model Description
A Hopfield network is a discrete-time model consisting of a group of neurons projecting to all other
neurons in the network with the restriction that no neuron connects to itself and weights are
symmetric throughout the network, as shown in figure 2.14. The Hopfield model is based on
asynchronous updating of states: only a single unit, randomly chosen, has its state updated at any
given time. As a result the state of the chosen unit may change to reflect prior changes in the states
of other units or may remain the same if those changes �cancel out.�

The image to be processed does not, as might be expected, provide input to the net-
work throughout processing. But rather the input pattern is used to set the initial states of
the neurons of the network. To this end, we use double indexing for units m in order to
make each unit correspond to a single picture element in a two-dimensional image. The
dynamics of the network is then to convert the original pattern into some desired trans-
formation thereof. Each element in the connection matrix w is then specified through four
indices. If wklij is the connection between unit mij and unit mkl, then the activity mpkl of
unit mkl is computed directly from the input from all other connections where mfij is the
output from neuron mij. The computation is given by

� �=+
i j

ijklijkl tmfwtmp)()1((2.4)

Note that unlike the leaky integrator model, the state of a neuron in this discrete-time
model does not depend on its previous state�it is completely determined by the input to
the neuron at that time step. For our example, we concentrate on binary Hopfield net-
works using discrete neurons whose values can be either +1 or -1. The state of a neuron is
given by

�
�
�

<�
�

=
0if1
0if1

kl

kl
kl mp

mp
mf (2.5)

3 2 C H A P T E R 2

in0 in1 ins insmax-1Input Layer

Hidden Layer

Output Layer

mpp0

mfp0

mpp1

mpq1 mpqj mpqjmax-1

mfqjmax-1mfqjmfq1

mppiwp0i

wp1i wpsi

mppimax-1
wpsmax-1i

mfpimax-1

mfpimfp1

mp

mf

�

�

�

�

� �

Thenetwork configuration consists of neurons organized into at least three different
layers: an input layer, one or more hidden or middle layers and an output layer (figure
2.23). The network processes information in two distinct modes, a feedforward and a
backpropagation mode. The feedforwardmode is just the normal mode of operation of a
neural network without loops: activity is fed forward from one layer to the next (input to
hidden layer, hidden to additional hidden layers if more than one exists, and finally hid-
den to output layer). There are no loops in strong contrast to the fully recurrent Hopfield
network. In the backpropagation mode, learning propagates backwards by adjusting
synaptic weights from output to input layers. The most common configuration is a three-
layer network with all possible connections from each layer to the next. Implementing
four or more layers is usually discouraged because of the computational burden of the
backpropagation training process. Both mathematical proof and practical uses of back-
propagation show that three-layer networks are sufficient for solving most problems
(Rumelhart, et al. 1986).

In designing the network configuration, the most important parameter is the network
size and the number of units used in the hidden layer to represent features of the problem.
There are tradeoffs to consider. With too large a number of hidden units, the network will
have the ability to memorize each element of the training set separately, and thus will not
generalize well. With too small a number of hidden units, there may not be enough mem-
ory to store the knowledge (refer to Smith (1993) on how to build appropriate network
configurations).

Backpropagation has been applied to a large number of applications in many domain
areas, from handwriting recognition and speech synthesis to stock market prediction and
on.

Model Description
As we have seen, Backpropagation is a typical multi-layer neural network model consisting of an
input layer, hidden or middle layer(s), one in this case, and an output layer (figure 2.23). The
network is fully connected from one layer to the next, but lacks any connectivity between neurons
belonging to the same layer, or back to previous layers.

TheBackPropagation algorithm works in two phases, as in Hopfield. First, a training
phase adjusts network weights and then a running phase matches patterns against those

Figure 2.23
The Backpropagation network
architecture is made of an input
layer connected to a hidden
layer that is then connected to
an output layer. Units are fully
connected between layers
without any interconnection to
other units in the same layer.

	Antony_10002.tif
	Antony_10004.tif
	Antony_10005.tif
	Antony_10006.tif
	Antony_10007.tif
	Antony_10008.tif
	Antony_10009.tif
	Antony_10010.tif
	Antony_10012.tif
	Antony_10013.tif
	Antony_10014.tif
	Antony_10015.tif
	Antony_10016.tif
	Antony_10017.tif
	Antony_10018.tif
	Antony_10019.tif
	Antony_10020.tif
	Antony_10021.tif
	Antony_10022.tif
	Antony_10023.tif
	Antony_10024.tif
	Antony_10026.tif
	Antony_10027.tif
	Antony_10028.tif
	Antony_10029.tif
	Antony_10030.tif
	Antony_10031.tif
	Antony_10032.tif
	Antony_10033.tif
	Antony_10034.tif
	Antony_10035.tif
	Antony_10036.tif
	Antony_10037.tif
	Antony_10038.tif
	Antony_10039.tif
	Antony_10040.tif
	Antony_10041.tif
	Antony_10042.tif
	Antony_10043.tif
	Antony_10044.tif
	Antony_10045.tif
	Antony_10046.tif
	Antony_10047.tif
	Antony_10048.tif
	Antony_10049.tif
	Antony_10050.tif
	Antony_10051.tif
	Antony_10052.tif
	Antony_10053.tif
	Antony_10054.tif
	Antony_10055.tif
	Antony_10056.tif
	Antony_10058.tif
	Antony_10059.tif
	Antony_10060.tif
	Antony_10061.tif
	Antony_10062.tif
	Antony_10063.tif
	Antony_10064.tif
	Antony_10065.tif
	Antony_10066.tif
	Antony_10067.tif
	Antony_10068.tif
	Antony_10069.tif
	Antony_10070.tif
	Antony_10071.tif
	Antony_10072.tif
	Antony_10073.tif
	Antony_10074.tif
	Antony_10075.tif
	Antony_10076.tif
	Antony_10077.tif
	Antony_10078.tif
	Antony_10079.tif
	Antony_10080.tif
	Antony_10081.tif
	Antony_10082.tif
	Antony_10083.tif
	Antony_10084.tif
	Antony_10085.tif
	Antony_10086.tif
	Antony_10087.tif
	Antony_10088.tif
	Antony_10089.tif
	Antony_10090.tif
	Antony_10091.tif
	Antony_10092.tif
	Antony_10093.tif
	Antony_10094.tif
	Antony_10095.tif
	Antony_10096.tif
	Antony_10097.tif
	Antony_10098.tif
	Antony_10099.tif
	Antony_10100.tif
	Antony_10101.tif
	Antony_10102.tif
	Antony_10103.tif
	Antony_10104.tif
	Antony_10105.tif
	Antony_10106.tif
	Antony_10107.tif
	Antony_10108.tif
	Antony_10109.tif
	Antony_10110.tif
	Antony_10111.tif
	Antony_10112.tif
	Antony_10113.tif
	Antony_10114.tif
	Antony_10115.tif
	Antony_10116.tif
	Antony_10117.tif
	Antony_10118.tif
	Antony_10119.tif
	Antony_10120.tif
	Antony_10121.tif
	Antony_10122.tif
	Antony_10123.tif
	Antony_10124.tif
	Antony_10125.tif
	Antony_10126.tif
	Antony_10127.tif
	Antony_10128.tif
	Antony_10129.tif
	Antony_10130.tif
	Antony_10131.tif
	Antony_10132.tif
	Antony_10133.tif
	Antony_10134.tif
	Antony_10135.tif
	Antony_10136.tif
	Antony_10137.tif
	Antony_10138.tif
	Antony_10139.tif
	Antony_10140.tif
	Antony_10141.tif
	Antony_10142.tif
	Antony_10143.tif
	Antony_10144.tif
	Antony_10145.tif
	Antony_10146.tif
	Antony_10147.tif
	Antony_10148.tif
	Antony_10150.tif
	Antony_10151.tif
	Antony_10152.tif
	Antony_10153.tif
	Antony_10154.tif
	Antony_10155.tif
	Antony_10156.tif
	Antony_10157.tif
	Antony_10158.tif
	Antony_10159.tif
	Antony_10160.tif
	Antony_10161.tif
	Antony_10162.tif
	Antony_10163.tif
	Antony_10164.tif
	Antony_10165.tif
	Antony_10166.tif
	Antony_10167.tif
	Antony_10168.tif
	Antony_10169.tif
	Antony_10170.tif
	Antony_10171.tif
	Antony_10172.tif
	Antony_10173.tif
	Antony_10174.tif
	Antony_10175.tif
	Antony_10176.tif
	Antony_10177.tif
	Antony_10178.tif
	Antony_10179.tif
	Antony_10180.tif
	Antony_10181.tif
	Antony_10182.tif
	Antony_10183.tif
	Antony_10184.tif
	Antony_10185.tif
	Antony_10186.tif
	Antony_10187.tif
	Antony_10188.tif
	Antony_10189.tif
	Antony_10190.tif
	Antony_10191.tif
	Antony_10192.tif
	Antony_10193.tif
	Antony_10194.tif
	Antony_10195.tif
	Antony_10196.tif
	Antony_10197.tif
	Antony_10198.tif
	Antony_10199.tif
	Antony_10200.tif
	Antony_10201.tif
	Antony_10202.tif
	Antony_10203.tif
	Antony_10204.tif
	Antony_10205.tif
	Antony_10206.tif
	Antony_10207.tif
	Antony_10208.tif
	Antony_10209.tif
	Antony_10210.tif
	Antony_10211.tif
	Antony_10212.tif
	Antony_10213.tif
	Antony_10214.tif
	Antony_10215.tif
	Antony_10216.tif
	Antony_10218.tif
	Antony_10220.tif
	Antony_10221.tif
	Antony_10222.tif
	Antony_10223.tif
	Antony_10224.tif
	Antony_10225.tif
	Antony_10226.tif
	Antony_10227.tif
	Antony_10228.tif
	Antony_10229.tif
	Antony_10230.tif
	Antony_10231.tif
	Antony_10232.tif
	Antony_10233.tif
	Antony_10234.tif
	Antony_10235.tif
	Antony_10236.tif
	Antony_10237.tif
	Antony_10238.tif
	Antony_10239.tif
	Antony_10240.tif
	Antony_10241.tif
	Antony_10242.tif
	Antony_10243.tif
	Antony_10244.tif
	Antony_10245.tif
	Antony_10246.tif
	Antony_10247.tif
	Antony_10248.tif
	Antony_10249.tif
	Antony_10250.tif
	Antony_10251.tif
	Antony_10252.tif
	Antony_10253.tif
	Antony_10254.tif
	Antony_10255.tif
	Antony_10256.tif
	Antony_10257.tif
	Antony_10258.tif
	Antony_10259.tif
	Antony_10260.tif
	Antony_10261.tif
	Antony_10262.tif
	Antony_10263.tif
	Antony_10264.tif
	Antony_10265.tif
	Antony_10266.tif
	Antony_10267.tif
	Antony_10268.tif
	Antony_10269.tif
	Antony_10270.tif
	Antony_10271.tif
	Antony_10272.tif
	Antony_10273.tif
	Antony_10275.tif

