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Abstract

In this tutorial we give an overview of the basic ideas under-
lying Support Vector (SV) machines for function estimation.
Furthermore, we include a summary of currently used algo-
rithms for training SV machines, covering both the quadratic
(or convex) programming part and advanced methods for
dealing with large datasets. Finally, we mention somemodifi-
cations and extensions that have been applied to the standard
SV algorithm, and discuss the aspect of regularization from a
SV perspective.

1 Introduction

The purpose of this paper is twofold. It should serve as a self-
contained introduction to Support Vector regression for read-
ers new to this rapidly developing field of research.1 On the
other hand, it attempts to give an overview of recent develop-
ments in the field.

To this end, we decided to organize the essay as follows.
We start by giving a brief overview of the basic techniques in
sections 1, 2, and 3, plus a short summary with a number of
figures and diagrams in section 4. Section 5 reviews current al-
gorithmic techniques used for actually implementing SV ma-
chines. This may be of most interest for practitioners. The
following section covers more advanced topics such as exten-
sions of the basic SV algorithm, connections between SV ma-
chines and regularization and briefly mentions methods for
carrying out model selection. We conclude with a discussion
of open questions and problems and current directions of SV
research. Most of the results presented in this review paper al-
ready have been published elsewhere, but the comprehensive
presentations and some details are new.

1.1 Historic Background

The SV algorithm is a nonlinear generalization of the Gener-
alized Portrait algorithm developed in Russia in the sixties2

[Vapnik and Lerner, 1963, Vapnik and Chervonenkis, 1964].
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1Our use of the term ’regression’ is somewhat lose in that it also includes
cases of function estimation where one minimizes errors other than the mean
square loss. This is done mainly for historical reasons [Vapnik et al., 1997].

2A similar approach, however using linear instead of quadratic program-
ming, was taken at the same time in the USA, mainly by Mangasarian [1965,
1968, 1969].

As such, it is firmly grounded in the framework of statistical
learning theory, or VC theory, which has been developed over
the last three decades by Vapnik and Chervonenkis [1974],
Vapnik [1982, 1995]. In a nutshell, VC theory characterizes
properties of learning machines which enable them to gener-
alize well to unseen data.

In its present form, the SV machine was largely devel-
oped at AT&T Bell Laboratories by Vapnik and co-workers
[Boser et al., 1992, Guyon et al., 1993, Cortes and Vapnik, 1995,
Schölkopf et al., 1995, Schölkopf et al., 1996, Vapnik et al.,
1997]. Due to this industrial context, SV research has up to
date had a sound orientation towards real-world applications.
Initial work focused on OCR (optical character recognition).
Within a short period of time, SV classifiers became competi-
tive with the best available systems for both OCR and object
recognition tasks [Schölkopf et al., 1996, 1998a, Blanz et al.,
1996, Schölkopf, 1997]. A comprehensive tutorial on SV clas-
sifiers has been published by Burges [1998]. But also in re-
gression and time series prediction applications, excellent per-
formances were soon obtained [Müller et al., 1997, Drucker
et al., 1997, Stitson et al., 1999, Mattera and Haykin, 1999]. A
snapshot of the state of the art in SV learning was recently
taken at the annual Neural Information Processing Systems con-
ference [Schölkopf et al., 1999a]. SV learning has now evolved
into an active area of research. Moreover, it is in the process
of entering the standard methods toolbox of machine learn-
ing [Haykin, 1998, Cherkassky and Mulier, 1998, Hearst et al.,
1998]. [Schölkopf and Smola, 2002] contains a more in-depth
overview of SVM regression. Additionally, [Cristianini and
Shawe-Taylor, 2000, Herbrich, 2002] provide further details on
kernels in the context of classification.

1.2 The Basic Idea

Suppose we are given training data {(x1, y1), . . . , (x�, y�)} ⊂
X × R, where X denotes the space of the input patterns (e.g.
X = R

d). These might be, for instance, exchange rates for
some currency measured at subsequent days together with
corresponding econometric indicators. In ε-SV regression
[Vapnik, 1995], our goal is to find a function f(x) that has at
most ε deviation from the actually obtained targets yi for all
the training data, and at the same time is as flat as possible. In
other words, we do not care about errors as long as they are
less than ε, but will not accept any deviation larger than this.
This may be important if you want to be sure not to lose more
than ε money when dealing with exchange rates, for instance.

For pedagogical reasons, we begin by describing the case of
linear functions f , taking the form

f(x) = 〈w, x〉 + b with w ∈ X, b ∈ R (1)
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where 〈 · , · 〉 denotes the dot product in X. Flatness in the case
of (1) means that one seeks a small w. One way to ensure this
is to minimize the norm,3 i.e. ‖w‖2 = 〈w, w〉. We can write
this problem as a convex optimization problem:

minimize 1
2
‖w‖2

subject to
j

yi − 〈w, xi〉 − b ≤ ε
〈w, xi〉 + b − yi ≤ ε

(2)

The tacit assumption in (2) was that such a function f actually
exists that approximates all pairs (xi, yi) with ε precision, or
in other words, that the convex optimization problem is feasi-
ble. Sometimes, however, this may not be the case, or we also
may want to allow for some errors. Analogously to the “soft
margin” loss function [Bennett and Mangasarian, 1992] which
was adapted to SVmachines by Cortes and Vapnik [1995], one
can introduce slack variables ξi, ξ

∗
i to cope with otherwise in-

feasible constraints of the optimization problem (2). Hence we
arrive at the formulation stated in [Vapnik, 1995].

minimize 1
2
‖w‖2 + C

�P
i=1

(ξi + ξ∗i )

subject to

8<
:

yi − 〈w, xi〉 − b ≤ ε + ξi

〈w, xi〉 + b − yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(3)

The constant C > 0 determines the trade-off between the flat-
ness of f and the amount up to which deviations larger than
ε are tolerated. This corresponds to dealing with a so called
ε–insensitive loss function |ξ|ε described by

|ξ|ε :=

j
0 if |ξ| ≤ ε
|ξ| − ε otherwise. (4)

Fig. 1 depicts the situation graphically. Only the points out-
side the shaded region contribute to the cost insofar, as the
deviations are penalized in a linear fashion. It turns out that
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Figure 1: The soft margin loss setting for a linear SVM.

inmost cases the optimization problem (3) can be solvedmore
easily in its dual formulation.4 Moreover, as we will see in
Sec. 2, the dual formulation provides the key for extending
SV machine to nonlinear functions. Hence we will use a stan-
dard dualization method utilizing Lagrange multipliers, as
described in e.g. [Fletcher, 1989].

3See [Smola, 1998] for an overview over other ways of specifying flatness of
such functions.

4This is true as long as the dimensionality of w is much higher than the
number of observations. If this is not the case, specialized methods can offer
considerable computational savings [Lee and Mangasarian, 2001].

1.3 Dual Problem and Quadratic Programms

The key idea is to construct a Lagrange function from the ob-
jective function (it will be called the primal objective function
in the rest of this article) and the corresponding constraints,
by introducing a dual set of variables. It can be shown that
this function has a saddle point with respect to the primal and
dual variables at the solution. For details see e.g. [Mangasar-
ian, 1969, McCormick, 1983, Vanderbei, 1997] and the expla-
nations in section 5.2. We proceed as follows:

L :=
1

2
‖w‖2 + C

�X
i=1

(ξi + ξ∗i ) −
�X

i=1

(ηiξi + η∗
i ξ∗i ) (5)

−
�X

i=1

αi(ε + ξi − yi + 〈w, xi〉 + b)

−
�X

i=1

α∗
i (ε + ξ∗i + yi − 〈w, xi〉 − b)

Here L is the Lagrangian and ηi, η
∗
i , αi, α

∗
i are Lagrange mul-

tipliers. Hence the dual variables in (5) have to satisfy positiv-
ity constraints, i.e.

α
(∗)
i , η

(∗)
i ≥ 0. (6)

Note that by α
(∗)
i , we refer to αi and α∗

i .
It follows from the saddle point condition that the par-

tial derivatives of L with respect to the primal variables
(w, b, ξi, ξ

∗
i ) have to vanish for optimality.

∂bL =
P�

i=1(α
∗
i − αi) = 0 (7)

∂wL = w − P�
i=1(αi − α∗

i )xi = 0 (8)

∂
ξ
(∗)
i

L = C − α
(∗)
i − η

(∗)
i = 0 (9)

Substituting (7), (8), and (9) into (5) yields the dual optimiza-
tion problem.

maximize

8>><
>>:

− 1
2

�P
i,j=1

(αi − α∗
i )(αj − α∗

j )〈xi, xj〉

−ε
�P

i=1

(αi + α∗
i ) +

�P
i=1

yi(αi − α∗
i )

subject to
�P

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]

(10)

In deriving (10) we already eliminated the dual variables
ηi, η

∗
i through condition (9) which can be reformulated as

η
(∗)
i = C − α

(∗)
i . Eq. (8) can be rewritten as follows

w =

�X
i=1

(αi − α∗
i )xi, thus f(x) =

�X
i=1

(αi − α∗
i )〈xi, x〉 + b.

(11)
This is the so-called Support Vector expansion, i.e.w can be com-
pletely described as a linear combination of the training pat-
terns xi. In a sense, the complexity of a function’s representa-
tion by SVs is independent of the dimensionality of the input
space X, and depends only on the number of SVs.

Moreover, note that the complete algorithm can be de-
scribed in terms of dot products between the data. Even when
evaluating f(x) we need not compute w explicitly. These ob-
servations will come in handy for the formulation of a nonlin-
ear extension.
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1.4 Computing b

So far we neglected the issue of computing b. The latter can be
done by exploiting the so called Karush–Kuhn–Tucker (KKT)
conditions [Karush, 1939, Kuhn and Tucker, 1951]. These state
that at the point of the solution the product between dual vari-
ables and constraints has to vanish.

αi(ε + ξi − yi + 〈w, xi〉 + b) = 0
α∗

i (ε + ξ∗i + yi − 〈w, xi〉 − b) = 0
(12)

and
(C − αi)ξi = 0
(C − α∗

i )ξ
∗
i = 0.

(13)

This allows us tomake several useful conclusions. Firstly only
samples (xi, yi) with corresponding α

(∗)
i = C lie outside the

ε–insensitive tube. Secondly αiα
∗
i = 0, i.e. there can never be

a set of dual variables αi, α
∗
i which are both simultaneously

nonzero. This allows us to conclude that

ε − yi + 〈w, xi〉 + b ≥ 0 and ξi = 0 if αi < C (14)

ε − yi + 〈w, xi〉 + b ≤ 0 if αi > 0 (15)

In conjunction with an analogous analysis on α∗
i we have

max {−ε + yi − 〈w, xi〉|αi < C or α∗
i > 0} ≤ b ≤ (16)

min {−ε + yi − 〈w, xi〉|αi > 0 or α∗
i < C}

If some α
(∗)
i ∈ (0, C) the inequalities become equalities. See

also [Keerthi et al., 2001] for further means of choosing b.
Another way of computing b will be discussed in the con-

text of interior point optimization (cf. Sec. 5). There b turns
out to be a by-product of the optimization process. Further
considerations shall be deferred to the corresponding section.
See also [Keerthi et al., 1999] for further methods to compute
the constant offset.

A final note has to be made regarding the sparsity of the SV
expansion. From (12) it follows that only for |f(xi) − yi| ≥ ε
the Lagrange multipliers may be nonzero, or in other words,
for all samples inside the ε–tube (i.e. the shaded region in
Fig. 1) the αi, α

∗
i vanish: for |f(xi) − yi| < ε the second fac-

tor in (12) is nonzero, hence αi, α
∗
i has to be zero such that

the KKT conditions are satisfied. Therefore we have a sparse
expansion of w in terms of xi (i.e. we do not need all xi to
describe w). The examples that come with nonvanishing coef-
ficients are called Support Vectors.

2 Kernels

2.1 Nonlinearity by Preprocessing

The next step is to make the SV algorithm nonlinear. This,
for instance, could be achieved by simply preprocessing the
training patterns xi by a map Φ : X → F into some feature
space F, as described in [Aizerman et al., 1964, Nilsson, 1965]
and then applying the standard SV regression algorithm. Let
us have a brief look at an example given in [Vapnik, 1995].

Example 1 (Quadratic features in R
2) Consider the map Φ :

R
2 → R

3 with Φ(x1, x2) =
`
x2

1,
√

2x1x2, x
2
2

´
. It is understood

that the subscripts in this case refer to the components of x ∈ R
2.

Training a linear SV machine on the preprocessed features would
yield a quadratic function.

While this approach seems reasonable in the particular ex-
ample above, it can easily become computationally infeasible
for both polynomial features of higher order and higher di-
mensionality, as the number of different monomial features of
degree p is

`
d+p−1

p

´
, where d = dim(X). Typical values for

OCR tasks (with good performance) [Schölkopf et al., 1995,
Schölkopf et al., 1997, Vapnik, 1995] are p = 7, d = 28 · 28 =
784, corresponding to approximately 3.7 · 1016 features.

2.2 Implicit Mapping via Kernels

Clearly this approach is not feasible and we have to find a
computationally cheaper way. The key observation [Boser
et al., 1992] is that for the feature map of example 1 we haveD“

x2
1,
√

2x1x2, x
2
2

”
,
“
x′2

1,
√

2x′
1x

′
2, x

′2
2

”E
= 〈x, x′〉2. (17)

As noted in the previous section, the SV algorithm only de-
pends on dot products between patterns xi. Hence it suf-
fices to know k(x, x′) := 〈Φ(x), Φ(x′)〉 rather than Φ explicitly
which allows us to restate the SV optimization problem:

maximize

8>><
>>:

− 1
2

�P
i,j=1

(αi − α∗
i )(αj − α∗

j )k(xi, xj)

−ε
�P

i=1

(αi + α∗
i ) +

�P
i=1

yi(αi − α∗
i )

subject to
�P

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]

(18)

Likewise the expansion of f (11) may be written as

w =

�X
i=1

(αi − α∗
i )Φ(xi) and f(x) =

�X
i=1

(αi − α∗
i )k(xi, x) + b.

(19)
The difference to the linear case is that w is no longer given
explicitly. Also note that in the nonlinear setting, the opti-
mization problem corresponds to finding the flattest function
in feature space, not in input space.

2.3 Conditions for Kernels

The question that arises now is, which functions k(x, x′) corre-
spond to a dot product in some feature space F. The following
theorem characterizes these functions (defined on X).

Theorem 2 (Mercer [1909]) Suppose k ∈ L∞(X2) such that the
integral operator Tk : L2(X) → L2(X),

Tkf(·) :=

Z
X

k(·, x)f(x)dµ(x) (20)

is positive (here µ denotes a measure on X with µ(X) finite and
supp(µ) = X). Let ψj ∈ L2(X) be the eigenfunction of Tk as-
sociated with the eigenvalue λj 
= 0 and normalized such that
‖ψj‖L2 = 1 and let ψj denote its complex conjugate. Then

1. (λj(T ))j ∈ �1.

2. ψj ∈ L∞(X) and supj ‖ψj‖L∞ < ∞.
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3. k(x, x′) =
P
j∈N

λjψj(x)ψj(x
′) holds for almost all (x, x′),

where the series converges absolutely and uniformly for almost
all (x, x′).

Less formally speaking this theorem means that ifZ
X×X

k(x, x′)f(x)f(x′)dxdx′ ≥ 0 for all f ∈ L2(X) (21)

holds we can write k(x, x′) as a dot product in some feature
space. From this conditionwe can conclude some simple rules
for compositions of kernels, which then also satisfy Mercer’s
condition [Schölkopf et al., 1999a]. In the following we will
call such functions k admissible SV kernels.

Corollary 3 (Positive Linear Combinations of Kernels)
Denote by k1, k2 admissible SV kernels and c1, c2 ≥ 0 then

k(x, x′) := c1k1(x, x′) + c2k2(x, x′) (22)

is an admissible kernel. This follows directly from (21) by virtue of
the linearity of integrals.

More generally, one can show that the set of admissible ker-
nels forms a convex cone, closed in the topology of pointwise
convergence Berg et al. [1984].

Corollary 4 (Integrals of Kernels) Let s(x, x′) be a symmetric
function on X × X such that

k(x, x′) :=

Z
X

s(x, z)s(x′, z)dz (23)

exists. Then k is an admissible SV kernel.

This can be shown directly from (21) and (23) by rearrang-
ing the order of integration. We now state a necessary
and sufficient condition for translation invariant kernels, i.e.
k(x, x′) := k(x − x′) as derived in [Smola et al., 1998c].

Theorem 5 (Products of Kernels) Denote by k1 and k2 admissi-
ble SV kernels then

k(x, x′) := k1(x, x′)k2(x, x′) (24)

is an admissible kernel.

This can be seen by an application of the “expan-
sion part” of Mercer’s theorem to the kernels k1 and
k2 and observing that each term in the double sumP

i,j λ1
i λ

2
jψ

1
i (x)ψ1

i (x′)ψ2
j (x)ψ2

j (x′) gives rise to a positive co-
efficient when checking (21).

Theorem 6 (Smola, Schölkopf, and Müller [1998c]) A trans-
lation invariant kernel k(x, x′) = k(x − x′) is an admissible SV
kernels if and only if the Fourier transform

F [k](ω) = (2π)−
d
2

Z
X

e−i〈ω,x〉k(x)dx (25)

is nonnegative.

We will give a proof and some additional explanations to this
theorem in section 7. It follows from interpolation theory
[Micchelli, 1986] and the theory of regularization networks
[Girosi et al., 1993]. For kernels of the dot–product type, i.e.
k(x, x′) = k(〈x, x′〉), there exist sufficient conditions for being
admissible.

Theorem 7 (Burges [1999]) Any kernel of dot–product type
k(x, x′) = k(〈x, x′〉) has to satisfy

k(ξ) ≥ 0, ∂ξk(ξ) ≥ 0 and ∂ξk(ξ) + ξ∂2
ξ k(ξ) ≥ 0 (26)

for any ξ ≥ 0 in order to be an admissible SV kernel.

Note that the conditions in theorem 7 are only necessary but
not sufficient. The rules stated above can be useful tools for
practitioners both for checking whether a kernel is an admis-
sible SV kernel and for actually constructing new kernels. The
general case is given by the following theorem.

Theorem 8 (Schoenberg [1942]) A kernel of dot–product type
k(x, x′) = k(〈x, x′〉) defined on an infinite dimensional Hilbert
space, with a power series expansion

k(t) =
∞X

n=0

antn (27)

is admissible if and only if all an ≥ 0.

A slightly weaker condition applies for finite dimensional
spaces. For further details see [Berg et al., 1984, Smola et al.,
2001].

2.4 Examples

In [Schölkopf et al., 1998b] it has been shown, by explicitly
computing the mapping, that homogeneous polynomial ker-
nels k with p ∈ N and

k(x, x′) = 〈x, x′〉p (28)

are suitable SV kernels (cf. Poggio [1975]). From this observa-
tion one can conclude immediately [Boser et al., 1992, Vapnik,
1995] that kernels of the type

k(x, x′) =
`〈x, x′〉 + c

´p (29)

i.e. inhomogeneous polynomial kernels with p ∈ N, c ≥ 0
are admissible, too: rewrite k as a sum of homogeneous ker-
nels and apply corollary 3. Another kernel, that might seem
appealing due to its resemblance to Neural Networks is the
hyperbolic tangent kernel

k(x, x′) = tanh
`
ϑ + φ〈x, x′〉´ . (30)

By applying theorem 8 one can check that this kernel does not
actually satisfy Mercer’s condition [Ovari, 2000]. Curiously,
the kernel has been successfully used in practice; cf. Schölkopf
[1997] for a discussion of the reasons.
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Translation invariant kernels k(x, x′) = k(x − x′) are quite
widespread. It was shown in [Aizerman et al., 1964, Micchelli,
1986, Boser et al., 1992] that

k(x, x′) = e
− ‖x−x′‖2

2σ2 (31)

is an admissible SV kernel. Moreover one can show [Smola,
1996, Vapnik et al., 1997] that (1X denotes the indicator func-
tion on the set X and ⊗ the convolution operation)

k(x, x′) = B2n+1(‖x − x′‖) with Bk :=

kO
i=1

1[− 1
2 , 1

2 ] (32)

B–splines of order 2n+1, defined by the 2n+1 convolution of
the unit inverval, are also admissible. We shall postpone fur-
ther considerations to section 7 where the connection to regu-
larization operators will be pointed out in more detail.

3 Cost Functions

So far the SV algorithm for regression may seem rather
strange and hardly related to other existing methods of func-
tion estimation (e.g. [Huber, 1981, Stone, 1985, Härdle, 1990,
Hastie and Tibshirani, 1990, Wahba, 1990]). However, once
cast into a more standard mathematical notation, we will ob-
serve the connections to previous work. For the sake of sim-
plicity we will, again, only consider the linear case, as exten-
sions to the nonlinear one are straightforward by using the
kernel method described in the previous chapter.

3.1 The Risk Functional

Let us for a moment go back to the case of section 1.2. There,
we had some training data X := {(x1, y1), . . . , (x�, y�)} ⊂ X×
R. We will assume now, that this training set has been drawn
iid (independent and identically distributed) from some prob-
ability distribution P (x, y). Our goal will be to find a function
f minimizing the expected risk (cf. [Vapnik, 1982])

R[f ] =

Z
c(x, y, f(x))dP (x, y) (33)

(c(x, y, f(x)) denotes a cost function determining howwewill
penalize estimation errors) based on the empirical data X.
Given that we do not know the distribution P (x, y) we can
only use X for estimating a function f that minimizes R[f ]. A
possible approximation consists in replacing the integration
by the empirical estimate, to get the so called empirical risk
functional

Remp[f ] :=
1

�

�X
i=1

c(xi, yi, f(xi)). (34)

A first attempt would be to find the empirical risk minimizer
f0 := argminf∈H Remp[f ] for some function class H . How-
ever, if H is very rich, i.e. its “capacity” is very high, as for in-
stance when dealing with few data in very high-dimensional
spaces, this may not be a good idea, as it will lead to over-
fitting and thus bad generalization properties. Hence one
should add a capacity control term, in the SV case ‖w‖2, which

leads to the regularized risk functional [Tikhonov and Ars-
enin, 1977, Morozov, 1984, Vapnik, 1982]

Rreg[f ] := Remp[f ] +
λ

2
‖w‖2 (35)

where λ > 0 is a so called regularization constant. Many algo-
rithms like regularization networks [Girosi et al., 1993] or neu-
ral networks with weight decay networks [e.g. Bishop, 1995]
minimize an expression similar to (35).

3.2 Maximum Likelihood and Density Models

The standard setting in the SV case is, as already mentioned
in section 1.2, the ε-insensitive loss

c(x, y, f(x)) = |y − f(x)|ε. (36)

It is straightforward to show that minimizing (35) with the
particular loss function of (36) is equivalent to minimizing (3),
the only difference being that C = 1/(λ�).

Loss functions such like |y − f(x)|pε with p > 1 may not
be desirable, as the superlinear increase leads to a loss of the
robustness properties of the estimator [Huber, 1981]: in those
cases the derivative of the cost function growswithout bound.
For p < 1, on the other hand, c becomes nonconvex.

For the case of c(x, y, f(x)) = (y − f(x))2 we recover the
least mean squares fit approach, which, unlike the standard
SV loss function, leads to a matrix inversion instead of a
quadratic programming problem.

The question is which cost function should be used in (35).
On the one hand we will want to avoid a very complicated
function c as this may lead to difficult optimization problems.
On the other hand one should use that particular cost function
that suits the problem best. Moreover, under the assumption
that the samples were generated by an underlying functional
dependency plus additive noise, i.e. yi = ftrue(xi) + ξi with
density p(ξ), then the optimal cost function in a maximum
likelihood sense is

c(x, y, f(x)) = − log p(y − f(x)). (37)

This can be seen as follows. The likelihood of an estimate

Xf := {(x1, f(x1)), . . . , (x�, f(x�))} (38)

for additive noise and iid data is

p(Xf |X) =

�Y
i=1

p(f(xi)|(xi, yi)) =

�Y
i=1

p(yi − f(xi)). (39)

Maximizing P (Xf |X) is equivalent to minimizing
− log P (Xf |X). By using (37) we get

− log P (Xf |X) =

�X
i=1

c(xi, yi, f(xi)). (40)

However, the cost function resulting from this reasoning
might be nonconvex. In this case one would have to find a
convex proxy in order to deal with the situation efficiently (i.e.
to find an efficient implementation of the corresponding opti-
mization problem).
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If, on the other hand, we are given a specific cost function
from a real world problem, one should try to find as close a
proxy to this cost function as possible, as it is the performance
wrt. this particular cost function that matters ultimately.

Table 1 contains an overview over some common density
models and the corresponding loss functions as defined by
(37).

The only requirement we will impose on c(x, y, f(x)) in the
following is that for fixed x and y we have convexity in f(x).
This requirement is made, as we want to ensure the existence
and uniqueness (for strict convexity) of a minimum of opti-
mization problems [Fletcher, 1989].

3.3 Solving the Equations

For the sake of simplicity we will additionally assume c to be
symmetric and to have (at most) two (for symmetry) discon-
tinuities at ±ε, ε ≥ 0 in the first derivative, and to be zero in
the interval [−ε, ε]. All loss functions from table 1 belong to
this class. Hence c will take on the following form.

c(x, y, f(x)) = c̃(|y − f(x)|ε) (41)

Note the similarity to Vapnik’s ε–insensitive loss. It is rather
straightforward to extend this special choice to more general
convex cost functions. For nonzero cost functions in the in-
terval [−ε, ε] use an additional pair of slack variables. More-
over we might choose different cost functions c̃i, c̃∗i and dif-
ferent values of εi, ε∗i for each sample. At the expense of ad-
ditional Lagrange multipliers in the dual formulation addi-
tional discontinuities also can be taken care of. Analogously
to (3) we arrive at a convex minimization problem [Smola and
Schölkopf, 1998a]. To simplify notation we will stick to the
one of (3) and use C instead of normalizing by λ and �.

minimize 1
2
‖w‖2 + C

�P
i=1

(c̃(ξi) + c̃(ξ∗i ))

subject to

8<
:

yi − 〈w, xi〉 − b ≤ ε + ξi

〈w, xi〉 + b − yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(42)

Again, by standard Lagrangemultiplier techniques, exactly in
the same manner as in the | · |ε case, one can compute the dual
optimization problem (the main difference is that the slack
variable terms c̃(ξ

(∗)
i ) now have nonvanishing derivatives).

We will omit the indices i and ∗, where applicable to avoid

tedious notation. This yields

maximize

8>>>>>><
>>>>>>:

− 1
2

�P
i,j=1

(αi − α∗
i )(αj − α∗

j )〈xi, xj〉

+
�P

i=1

yi(αi − α∗
i ) − ε(αi + α∗

i )

+C
�P

i=1

T (ξi) + T (ξ∗i )

where

8<
: w =

�P
i=1

(αi − α∗
i )xi

T (ξ) := c̃(ξ) − ξ∂ξ c̃(ξ)

subject to

8>>>><
>>>>:

�P
i=1

(αi − α∗
i ) = 0

α ≤ C∂ξ c̃(ξ)
ξ = inf{ξ |C∂ξ c̃ ≥ α}
α, ξ ≥ 0

(43)

3.4 Examples

Let us consider the examples of table 1. We will show ex-
plicitly for two examples how (43) can be further simplified
to bring it into a form that is practically useful. In the ε–
insensitive case, i.e. c̃(ξ) = |ξ| we get

T (ξ) = ξ − ξ · 1 = 0. (44)

Morover one can conclude from ∂ξ c̃(ξ) = 1 that

ξ = inf{ξ |C ≥ α} = 0 and α ∈ [0, C] . (45)

For the case of piecewise polynomial loss we have to distin-
guish two different cases: ξ ≤ σ and ξ > σ. In the first case
we get

T (ξ) =
1

pσp−1
ξp − 1

σp−1
ξp = −p − 1

p
σ1−pξp (46)

and ξ = inf{ξ |Cσ1−pξp−1 ≥ α} = σC− 1
p−1 α

1
p−1 and thus

T (ξ) = −p − 1

p
σC− p

p−1 α
p

p−1 . (47)

In the second case (ξ ≥ σ) we have

T (ξ) = ξ − σ
p − 1

p
− ξ = −σ

p − 1

p
(48)

and ξ = inf{ξ |C ≥ α} = σ, which, in turn yields α ∈ [0, C].
Combining both cases we have

α ∈ [0, C] and T (α) = −p − 1

p
σC

− p
p−1 α

p
p−1 . (49)

Table 2 contains a summary of the various conditions on α and
formulas for T (α) (strictly speaking T (ξ(α))) for different cost
functions.5 Note that the maximum slope of c̃ determines the
region of feasibility of α, i.e. s := supξ∈R+ ∂ξc̃(ξ) < ∞ leads
to compact intervals [0, Cs] for α. This means that the influ-
ence of a single pattern is bounded, leading to robust estima-
tors [Huber, 1972]. One can also observe experimentally that
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loss function density model
ε–insensitive c(ξ) = |ξ|ε p(ξ) = 1

2(1+ε)
exp(−|ξ|ε)

Laplacian c(ξ) = |ξ| p(ξ) = 1
2

exp(−|ξ|)
Gaussian c(ξ) = 1

2
ξ2 p(ξ) = 1√

2π
exp(− ξ2

2
)

Huber’s robust loss c(ξ) =

j
1
2σ

(ξ)2 if |ξ| ≤ σ
|ξ| − σ

2
otherwise p(ξ) ∝

j
exp(− ξ2

2σ
) if |ξ| ≤ σ

exp(σ
2
− |ξ|) otherwise

Polynomial c(ξ) = 1
p
|ξ|p p(ξ) = p

2Γ(1/p)
exp(−|ξ|p)

Piecewise polynomial c(ξ) =

(
1

pσp−1 (ξ)p if |ξ| ≤ σ

|ξ| − σ p−1
p

otherwise
p(ξ) ∝

(
exp(− ξp

pσp−1 ) if |ξ| ≤ σ

exp(σ p−1
p

− |ξ|) otherwise

Table 1: Common loss functions and corresponding density models

ε α CT (α)

ε–insensitive ε 
= 0 α ∈ [0, C] 0

Laplacian ε = 0 α ∈ [0, C] 0

Gaussian ε = 0 α ∈ [0,∞) − 1
2
C−1α2

Huber’s
robust loss ε = 0 α ∈ [0, C] − 1

2
σC−1α2

Polynomial ε = 0 α ∈ [0,∞) − p−1
p

C− 1
p−1 α

p
p−1

Piecewise
polynomial ε = 0 α ∈ [0, C] − p−1

p
σC− 1

p−1 α
p

p−1

Table 2: Terms of the convex optimization problemdepending
on the choice of the loss function.

the performance of a SV machine depends significantly on the
cost function used [Müller et al., 1997, Smola et al., 1998b].

A cautionary remark is necessary regarding the use of cost
functions other than the ε–insensitive one. Unless ε 
= 0 we
will lose the advantage of a sparse decomposition. This may
be acceptable in the case of few data, but will render the pre-
diction step extremely slow otherwise. Hence one will have
to trade off a potential loss in prediction accuracy with faster
predictions. Note, however, that also a reduced set algorithm
like in [Burges, 1996, Burges and Schölkopf, 1997, Schölkopf
et al., 1999b] or sparse decomposition techniques [Smola and
Schölkopf, 2000] could be applied to address this issue. In a
Bayesian setting, Tipping [2000] has recently shown how an
L2 cost function can be used without sacrificing sparsity.

4 The Bigger Picture

Before delving into algorithmic details of the implementation
let us briefly review the basic properties of the SV algorithm
for regression as described so far. Figure 2 contains a graphi-
cal overview over the different steps in the regression stage.

The input pattern (for which a prediction is to be made)
is mapped into feature space by a map Φ. Then dot prod-
ucts are computed with the images of the training patterns
under the map Φ. This corresponds to evaluating kernel func-
tions k(xi, x). Finally the dot products are added up using
the weights νi = αi −α∗

i . This, plus the constant term b yields
the final prediction output. The process described here is very

5The table displaysCT (α) instead of T (α) since the former can be plugged
directly into the corresponding optimization equations.

Σ

Σ Σ Σ

output   Σ Σi k (x,xi) + b

weightsΣΣ ΣΣ  Σ l

Σ Σ Σ

Σ Σ Σ

test vector x

support vectors x1 ... xl

mapped vectors Σ (xi), Σ (x)Σ (x) Σ (xl)

dot product (Σ (x).Σ (xi)) =  k (x,xi)( . ) ( . ) ( . )

Σ (x1) Σ (x2)

Figure 2: Architecture of a regressionmachine constructed by
the SV algorithm.

similar to regression in a neural network, with the difference,
that in the SV case the weights in the input layer are a subset
of the training patterns.

Figure 3 demonstrates how the SV algorithm chooses the
flattest function among those approximating the original data
with a given precision. Although requiring flatness only in
feature space, one can observe that the functions also are very
flat in input space. This is due to the fact, that kernels can be
associated with flatness properties via regularization opera-
tors. This will be explained in more detail in section 7.

Finally Fig. 4 shows the relation between approximation
quality and sparsity of representation in the SV case. The
lower the precision required for approximating the original
data, the fewer SVs are needed to encode that. The non-SVs
are redundant, i.e. even without these patterns in the training
set, the SV machine would have constructed exactly the same
function f . One might think that this could be an efficient
way of data compression, namely by storing only the sup-
port patterns, from which the estimate can be reconstructed
completely. However, this simple analogy turns out to fail in
the case of high-dimensional data, and even more drastically
in the presence of noise. In [Vapnik et al., 1997] one can see
that even for moderate approximation quality, the number of
SVs can be considerably high, yielding rates worse than the
Nyquist rate [Nyquist, 1928, Shannon, 1948].
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Figure 3: Left to right: approximation of the function sinc x with precisions ε = 0.1, 0.2, and 0.5. The solid top and the bottom
lines indicate the size of the ε–tube, the dotted line in between is the regression.

Figure 4: Left to right: regression (solid line), datapoints (small dots) and SVs (big dots) for an approximationwith ε = 0.1, 0.2,
and 0.5. Note the decrease in the number of SVs.

5 Optimization Algorithms

While there has been a large number of implementations of
SV algorithms in the past years, we focus on a few algorithms
which will be presented in greater detail. This selection is
somewhat biased, as it contains these algorithms the authors
are most familiar with. However, we think that this overview
contains some of the most effective ones and will be useful for
practitioners who would like to actually code a SV machine
by themselves. But before doing so we will briefly cover ma-
jor optimization packages and strategies.

5.1 Implementations

Most commercially available packages for quadratic program-
ming can also be used to train SVmachines. These are usually
numerically very stable general purpose codes, with special
enhancements for large sparse systems. While the latter is a
feature that is not needed at all in SV problems (there the dot
product matrix is dense and huge) they still can be used with
good success.6

OSL This package was written by [IBM Corporation, 1992].
It uses a two phase algorithm. The first step consists of
solving a linear approximation of the QP problem by the
simplex algorithm [Dantzig, 1962]. Next a related very
simple QP problem is dealt with. When successive ap-

6The high price tag usually is the major deterrent for not using them. More-
over one has to bear in mind that in SV regression, one may speed up the so-
lution considerably by exploiting the fact that the quadratic form has a special
structure or that there may exist rank degeneracies in the kernel matrix itself.

proximations are close enough together, the second sub-
algorithm, which permits a quadratic objective and con-
verges very rapidly from a good starting value, is used.
Recently an interior point algorithm was added to the
software suite.

CPLEX by CPLEX Optimization Inc. [1994] uses a primal-
dual logarithmic barrier algorithm [Megiddo, 1989] in-
stead with predictor-corrector step (see eg. [Lustig et al.,
1992, Mehrotra and Sun, 1992]).

MINOS by the Stanford Optimization Laboratory [Murtagh
and Saunders, 1983] uses a reduced gradient algorithm
in conjunction with a quasi-Newton algorithm. The con-
straints are handled by an active set strategy. Feasibility
is maintained throughout the process. On the active con-
straint manifold, a quasi–Newton approximation is used.

MATLAB Until recently the matlab QP optimizer delivered
only agreeable, although below average performance on
classification tasks and was not all too useful for regres-
sion tasks (for problems much larger than 100 samples)
due to the fact that one is effectively dealing with an op-
timization problem of size 2� where at least half of the
eigenvalues of the Hessian vanish. These problems seem
to have been addressed in version 5.3 / R11. Matlab now
uses interior point codes.

LOQO by Vanderbei [1994] is another example of an interior
point code. Section 5.3 discusses the underlying strate-
gies in detail and shows how they can be adapted to SV
algorithms.
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Maximum Margin Perceptron by Kowalczyk [2000] is an al-
gorithm specifically tailored to SVs. Unlike most other
techniques it works directly in primal space and thus does
not have to take the equality constraint on the Lagrange
multipliers into account explicitly.

Iterative Free Set Methods The algorithm by Kaufman
[Bunch et al., 1976, Bunch and Kaufman, 1977, 1980,
Drucker et al., 1997, Kaufman, 1999], uses such a tech-
nique starting with all variables on the boundary and
adding them as the Karush Kuhn Tucker conditions
become more violated. This approach has the advantage
of not having to compute the full dot product matrix
from the beginning. Instead it is evaluated on the fly,
yielding a performance improvement in comparison
to tackling the whole optimization problem at once.
However, also other algorithms can be modified by
subset selection techniques (see section 5.5) to address
this problem.

5.2 Basic Notions

Most algorithms rely on results from the duality theory in con-
vex optimization. Although we already happened to mention
some basic ideas in section 1.2 we will, for the sake of conve-
nience, briefly review without proof the core results. These
are needed in particular to derive an interior point algorithm.
For details and proofs see e.g. [Fletcher, 1989].

Uniqueness Every convex constrained optimization problem
has a unique minimum. If the problem is strictly convex
then the solution is unique. This means that SVs are not
plagued with the problem of local minima as Neural Net-
works are.7

Lagrange Function The Lagrange function is given by the
primal objective function minus the sum of all products
between constraints and corresponding Lagrange mul-
tipliers (cf. e.g. [Fletcher, 1989, Bertsekas, 1995]). Opti-
mization can be seen as minimzation of the Lagrangian
wrt. the primal variables and simultaneousmaximization
wrt. the Lagrange multipliers, i.e. dual variables. It has a
saddle point at the solution. Usually the Lagrange func-
tion is only a theoretical device to derive the dual objec-
tive function (cf. Sec. 1.2).

Dual Objective Function It is derived by minimizing the La-
grange function with respect to the primal variables and
subsequent elimination of the latter. Hence it can be writ-
ten solely in terms of the dual variables.

Duality Gap For both feasible primal and dual variables
the primal objective function (of a convex minimization
problem) is always greater or equal than the dual objec-
tive function. Since SVMs have only linear constraints

7For large and noisy problems (e.g. 100.000 patterns and more with a sub-
stantial fraction of nonbound Lagrange multipliers) it is impossible to solve the
problem exactly: due to the size one has to use subset selection algorithms,
hence joint optimization over the training set is impossible. However, unlike in
Neural Networks, we can determine the closeness to the optimum. Note that
this reasoning only holds for convex cost functions.

the constraint qualifications of the strong duality theo-
rem [Bazaraa et al., 1993, Theorem 6.2.4] are satisfied and
it follows that gap vanishes at optimality. Thus the dual-
ity gap is a measure how close (in terms of the objective
function) the current set of variables is to the solution.

Karush–Kuhn–Tucker (KKT) conditions A set of primal and
dual variables that is both feasible and satisfies the KKT
conditions is the solution (i.e. constraint · dual variable =
0). The sum of the violated KKT terms determines exactly
the size of the duality gap (that is, we simply compute the
constraint ·Lagrangemultiplier part as done in (55)). This
allows us to compute the latter quite easily.

A simple intuition is that for violated constraints the dual
variable could be increased arbitrarily, thus rendering the
Lagrange function arbitrarily large. This, however, is in
contradition to the saddlepoint property.

5.3 Interior Point Algorithms

In a nutshell the idea of an interior point algorithm is to com-
pute the dual of the optimization problem (in our case the
dual dual of Rreg[f ]) and solve both primal and dual simul-
taneously. This is done by only gradually enforcing the KKT
conditions to iteratively find a feasible solution and to use
the duality gap between primal and dual objective function
to determine the quality of the current set of variables. The
special flavour of algorithm we will describe is primal–dual
path–following [Vanderbei, 1994].

In order to avoid tedious notation we will consider the
slightly more general problem and specialize the result to the
SVM later. It is understood that unless stated otherwise, vari-
ables like α denote vectors and αi denotes its i–th component.

minimize 1
2
q(α) + 〈c, α〉

subject to Aα = b and l ≤ α ≤ u
(50)

with c, α, l, u ∈ R
n, A ∈ R

n·m, b ∈ R
m, the inequalities be-

tween vectors holding componentwise and q(α) being a con-
vex function of α. Now we will add slack variables to get rid
of all inequalities but the positivity constraints. This yields:

minimize 1
2
q(α) + 〈c, α〉

subject to Aα = b, α − g = l, α + t = u,
g, t ≥ 0, α free

(51)

The dual of (51) is

maximize 1
2
(q(α) − 〈�∂q(α), α)〉 + 〈b, y〉 + 〈l, z〉 − 〈u, s〉

subject to 1
2
�∂q(α) + c − (Ay)� + s = z, s, z ≥ 0, y free

(52)
Moreover we get the KKT conditions, namely

gizi = 0 and siti = 0 for all i ∈ [1 . . . n]. (53)

A necessary and sufficient condition for the optimal solution
is that the primal / dual variables satisfy both the feasibil-
ity conditions of (51) and (52) and the KKT conditions (53).
We proceed to solve (51) – (53) iteratively. The details can be
found in appendix A.
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5.4 Useful Tricks

Before proceeding to further algorithms for quadratic opti-
mization let us briefly mention some useful tricks that can
be applied to all algorithms described subsequently and may
have significant impact despite their simplicity. They are in
part derived from ideas of the interior-point approach.

Training with Different Regularization Parameters For sev-
eral reasons (model selection, controlling the number of
support vectors, etc.) it may happen that one has to train
a SVmachine with different regularization parametersC,
but otherwise rather identical settings. If the parameters
Cnew = τCold is not too different it is advantageous to
use the rescaled values of the Lagrange multipliers (i.e.
αi, α

∗
i ) as a starting point for the new optimization prob-

lem. Rescaling is necessary to satisfy the modified con-
straints. One gets

αnew = ταold and likewise bnew = τbold. (54)

Assuming that the (dominant) convex part q(α) of the
primal objective is quadratic, the q scales with τ 2 where
as the linear part scales with τ . However, since the lin-
ear term dominates the objective function, the rescaled
values are still a better starting point than α = 0. In
practice a speedup of approximately 95% of the overall
training time can be observed when using the sequen-
tial minimization algorithm, cf. [Smola, 1998]. A similar
reasoning can be applied when retraining with the same
regularization parameter but different (yet similar) width
parameters of the kernel function. See [Cristianini et al.,
1998] for details thereon in a different context.

Monitoring Convergence via the Feasibility Gap In the
case of both primal and dual feasible variables the
following connection between primal and dual objective
function holds:

Dual Obj. = Primal Obj. −
X

i

(gizi + siti) (55)

This can be seen immediately by the construction of the
Lagrange function. In Regression Estimation (with the
ε–insensitive loss function) one obtains for

P
i gizi + siti

X
i

2
664

+ max(0, f(xi) − (yi + εi))(C − α∗
i )

−min(0, f(xi) − (yi + εi))α
∗
i

+ max(0, (yi − ε∗i ) − f(xi))(C − αi)
−min(0, (yi − ε∗i ) − f(xi))αi

3
775 . (56)

Thus convergence with respect to the point of the solu-
tion can be expressed in terms of the duality gap. An
effective stopping rule is to requireP

i gizi + siti

|Primal Objective| + 1
≤ εtol (57)

for some precision εtol. This condition is much in the
spirit of primal dual interior point path following algo-
rithms, where convergence is measured in terms of the
number of significant figures (which would be the dec-
imal logarithm of (57)), a convention that will also be
adopted in the subsequent parts of this exposition.

5.5 Subset Selection Algorithms

The convex programming algorithms described so far can
be used directly on moderately sized (up to 3000) samples
datasets without any further modifications. On large datasets,
however, it is difficult, due to memory and cpu limitations,
to compute the dot product matrix k(xi, xj) and keep it in
memory. A simple calculation shows that for instance stor-
ing the dot product matrix of the NIST OCR database (60.000
samples) at single precision would consume 0.7 GBytes. A
Cholesky decomposition thereof, which would additionally
require roughly the same amount of memory and 64 Teraflops
(counting multiplies and adds separately), seems unrealistic,
at least at current processor speeds.

A first solution, which was introduced in [Vapnik, 1982] re-
lies on the observation that the solution can be reconstructed
from the SVs alone. Hence, if we knew the SV set beforehand,
and it fitted into memory, then we could directly solve the re-
duced problem. The catch is that we do not know the SV set
before solving the problem. The solution is to start with an
arbitrary subset, a first chunk that fits into memory, train the
SV algorithm on it, keep the SVs and fill the chunk up with
data the current estimator would make errors on (i.e. data ly-
ing outside the ε–tube of the current regression). Then retrain
the system and keep on iterating until after training allKKT –
conditions are satisfied.

The basic chunking algorithm just postponed the underly-
ing problemof dealingwith large datasets whose dot–product
matrix cannot be kept in memory: it will occur for larger train-
ing set sizes than originally, but it is not completely avoided.
Hence the solution is [Osuna et al., 1997] to use only a subset
of the variables as a working set and optimize the problem
with respect to them while freezing the other variables. This
method is described in detail in [Osuna et al., 1997, Joachims,
1999, Saunders et al., 1998] for the case of pattern recognition.8

An adaptation of these techniques to the case of regression
with convex cost functions can be found in appendix B. The
basic structure of the method is described by algorithm 1.

Algorithm 1 Basic structure of a working set algorithm.
Initialize αi, α

∗
i = 0

Choose arbitrary working set Sw

repeat
Compute coupling terms (linear and constant) forSw (see
Appendix B)
Solve reduced optimization problem
Choose new Sw from variables αi, α

∗
i not satisfying the

KKT conditions
untilworking set Sw = ∅

5.6 SequentialMinimal Optimization

Recently an algorithm — Sequential Minimal Optimization
(SMO)—was proposed [Platt, 1999] that puts chunking to the

8A similar technique was employed by Bradley and Mangasarian [1998] in
the context of linear programming in order to deal with large datasets.
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extreme by iteratively selecting subsets only of size 2 and op-
timizing the target function with respect to them. It has been
reported to have good convergence properties and it is easily
implemented. The key point is that for a working set of 2 the
optimization subproblem can be solved analytically without
explicitly invoking a quadratic optimizer.

While readily derived for pattern recognition by Platt
[1999], one simply has to mimick the original reasoning to
obtain an extension to Regression Estimation. This is what
will be done in Appendix C (the pseudocode can be found in
[Smola and Schölkopf, 1998b]). The modifications consist of
a pattern dependent regularization, convergence control via
the number of significant figures, and a modified system of
equations to solve the optimization problem in two variables
for regression analytically.

Note that the reasoning only applies to SV regression with
the ε insensitive loss function — for most other convex cost
functions an explicit solution of the restricted quadratic pro-
gramming problem is impossible. Yet, one could derive an
analogous non-quadratic convex optimization problem for
general cost functions but at the expense of having to solve
it numerically.

The exposition proceeds as follows: first one has to derive
the (modified) boundary conditions for the constrained 2 in-
dices (i, j) subproblem in regression, next one can proceed to
solve the optimization problem analytically, and finally one
has to check, which part of the selection rules have to be mod-
ified to make the approach work for regression. Since most of
the content is fairly technical it has been relegated to appendix
C.

The main difference in implementations of SMO for regres-
sion can be found in the way the constant offset b is deter-
mined [Keerthi et al., 1999] and which criterion is used to se-
lect a new set of variables. We present one such strategy in
appendix C.3. However, since selection strategies are the fo-
cus of current research we recommend that readers interested
in implementing the algorithm make sure they are aware of
the most recent developments in this area.

Finally, we note that just as we presently describe a general-
ization of SMO to regression estimation, other learning prob-
lems can also benefit from the underlying ideas. Recently,
a SMO algorithm for training novelty detection systems (i.e.
one-class classification) has been proposed [Schölkopf et al.,
2001].

6 Variations on a Theme

There exists a large number of algorithmic modifications of
the SV algorithm, to make it suitable for specific settings (in-
verse problems, semiparametric settings), different ways of
measuring capacity and reductions to linear programming
(convex combinations) and different ways of controlling ca-
pacity. We will mention some of the more popular ones.

6.1 Convex Combinations and �1–norms

All the algorithms presented so far involved convex, and at
best, quadratic programming. Yet onemight think of reducing

the problem to a case where linear programming techniques
can be applied. This can be done in a straightforward fash-
ion [Mangasarian, 1965, 1968, Weston et al., 1999, Smola et al.,
1999] for both SV pattern recognition and regression. The key
is to replace (35) by

Rreg[f ] := Remp[f ] + λ‖α‖1 (58)

where ‖α‖1 denotes the �1 norm in coefficient space. Hence
one uses the SV kernel expansion (11)

f(x) =

�X
i=1

αik(xi, x) + b

with a different way of controlling capacity by minimizing

Rreg[f ] =
1

�

�X
i=1

c(xi, yi, f(xi)) + λ

�X
i=1

|αi|. (59)

For the ε–insensitive loss function this leads to a linear pro-
gramming problem. In the other cases, however, the problem
still stays a quadratic or general convex one, and therefore
may not yield the desired computational advantage. There-
fore we will limit ourselves to the derivation of the linear pro-
gramming problem in the case of | · |ε cost function. Reformu-
lating (59) yields

minimize
�P

i=1

(αi + α∗
i ) + C

�P
i=1

(ξi + ξ∗i )

subject to

8>>>><
>>>>:

yi −
�P

j=1

(αj − α∗
j )k(xj , xi) − b ≤ ε + ξi

�P
j=1

(αj − α∗
j )k(xj , xi) + b − yi ≤ ε + ξ∗i

αi, α
∗
i , ξi, ξ

∗
i ≥ 0

Unlike in the classical SV case, the transformation into its
dual does not give any improvement in the structure of the
optimization problem. Hence it is best to minimize Rreg[f ]
directly, which can be achieved by a linear optimizer, e.g.
[Dantzig, 1962, Lustig et al., 1990, Vanderbei, 1997].

In [Weston et al., 1999] a similar variant of the linear SV ap-
proach is used to estimate densities on a line. One can show
[Smola et al., 2000] that one may obtain bounds on the gen-
eralization error which exhibit even better rates (in terms of
the entropy numbers) than the classical SV case [Williamson
et al., 1998].

6.2 Automatic Tuning of the Insensitivity Tube

Besides standard model selection issues, i.e. how to spec-
ify the trade-off between empirical error and model capacity
there also exists the problem of an optimal choice of a cost
function. In particular, for the ε-insensitive cost function we
still have the problem of choosing an adequate parameter ε in
order to achieve good performance with the SV machine.

Smola et al. [1998a] show the existence of a linear depen-
dency between the noise level and the optimal ε-parameter
for SV regression. However, this would require that we know
something about the noise model. This knowledge is not
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available in general. Therefore, albeit providing theoretical
insight, this finding by itself is not particularly useful in prac-
tice. Moreover, if we really knew the noise model, we most
likelywould not choose the ε–insensitive cost function but the
corresponding maximum likelihood loss function instead.

There exists, however, a method to construct SV machines
that automatically adjust ε and moreover also, at least asymp-
totically, have a predetermined fraction of sampling points as
SVs [Schölkopf et al., 2000]. We modify (35) such that ε be-
comes a variable of the optimization problem, including an
extra term in the primal objective function which attempts to
minimize ε. In other words

minimize Rν [f ] := Remp[f ] +
λ

2
‖w‖2 + νε (60)

for some ν > 0. Hence (42) becomes (again carrying out the
usual transformation between λ, � and C)

minimize 1
2
‖w‖2 + C

„
�P

i=1

(c̃(ξi) + c̃(ξ∗i )) + �νε

«

subject to

8<
:

yi − 〈w, xi〉 − b ≤ ε + ξi

〈w, xi〉 + b − yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(61)

Note that this holds for any convex loss functions with an ε–
insensitive zone. For the sake of simplicity in the exposition,
however, we will stick to the standard |·|ε loss function. Com-
puting the dual of (61) yields

maximize

8>><
>>:

− 1
2

�P
i,j=1

(αi − α∗
i )(αj − α∗

j )k(xi, xj)

+
�P

i=1

yi(αi − α∗
i )

subject to

8>>>><
>>>>:

�P
i=1

(αi − α∗
i ) = 0

�P
i=1

(αi + α∗
i ) ≤ Cν�

αi, α
∗
i ∈ [0, C]

(62)
Note that the optimization problem is thus very similar to the
ε-SV one: the target function is even simpler (it is homoge-
neous), but there is an additional constraint. For information
on how this affects the implementation, cf. [Chang and Lin,
2001].

Besides having the advantage of being able to automatically
determine ε, (62) also has another advantage. It can be used
to pre–specify the number of SVs:

Theorem 9 (Schölkopf et al. [2000])

1. ν is an upper bound on the fraction of errors.

2. ν is a lower bound on the fraction of SVs.

3. Suppose the data has been generated iid from a distribution
p(x, y) = p(x)p(y|x) with a continuous conditional distribu-
tion p(y|x). With probability 1, asymptotically, ν equals the
fraction of SVs and the fraction of errors.

Essentially, ν-SV regression improves upon ε-SV regression
by allowing the tube width to adapt automatically to the data.
What is kept fixed up to this point, however, is the shape of the
tube. One can, however, go one step further and use paramet-
ric tube models with non-constant width, leading to almost
identical optimization problems [Schölkopf et al., 2000].

Combining ν-SV regression with results on the asymptoti-
cal optimal choice of ε for a given noise model [Smola et al.,
1998a] leads to a guideline how to adjust ν provided the class
of noise models (e.g. Gaussian or Laplacian) is known.

Remark 10 (Optimal Choice of ν) Denote by p a probability
density with unit variance, and by P a famliy of noise models gen-
erated from p by P :=

˘
p

˛̨
p = 1

σ
p

`
y
σ

´ ¯
. Moreover assume that

the data were drawn iid from p(x, y) = p(x)p(y − f(x)) with
p(y − f(x)) continuous. Then under the assumption of uniform
convergence, the asymptotically optimal value of ν is

ν = 1 − R ε

−ε
p(t)dt

where ε := argminτ (p(−τ ) + p(τ ))−2
“
1 − R τ

−τ
p(t)dt

”
(63)

For polynomial noise models, i.e. densities of type exp(−|ξ|p)
onemay compute the corresponding (asymptotically) optimal
values of ν. They are given in figure 5. For further details see
[Schölkopf et al., 2000, Smola, 1998]; an experimental valida-
tion has been given by Chalimourda et al. [2000].
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Optimal                        
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Figure 5: Optimal ν and ε for various degrees of polynomial
additive noise.

We conclude this section by noting that ν-SV regression is re-
lated to the idea of trimmed estimators. One can show that
the regression is not influenced if we perturb points lying out-
side the tube. Thus, the regression is essentially computed by
discarding a certain fraction of outliers, specified by ν, and
computing the regression estimate from the remaining points
[Schölkopf et al., 2000].
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7 Regularization

So far we were not concerned about the specific properties of
the map Φ into feature space and used it only as a convenient
trick to construct nonlinear regression functions. In some
cases the map was just given implicitly by the kernel, hence
the map itself and many of its properties have been neglected.
A deeper understanding of the kernel map would also be use-
ful to choose appropriate kernels for a specific task (e.g. by
incorporating prior knowledge [Schölkopf et al., 1998a]). Fi-
nally the feature map seems to defy the curse of dimensional-
ity [Bellman, 1961] by making problems seemingly easier yet
reliable via a map into some even higher dimensional space.

In this section we focus on the connections between SV
methods and previous techniques like Regularization Net-
works [Girosi et al., 1993].9 In particular we will show that
SV machines are essentially Regularization Networks (RN)
with a clever choice of cost functions and that the kernels are
Green’s function of the corresponding regularization opera-
tors. For a full exposition of the subject the reader is referred
to [Smola et al., 1998c].

7.1 RegularizationNetworks

Let us briefly review the basic concepts of RNs. As in (35)
we minimize a regularized risk functional. However, rather
than enforcing flatness in feature space we try to optimize some
smoothness criterion for the function in input space. Thus we
get

Rreg[f ] := Remp[f ] +
λ

2
‖Pf‖2. (64)

Here P denotes a regularization operator in the sense of
[Tikhonov and Arsenin, 1977], i.e. P is a positive semidefinite
operatormapping from the Hilbert space H of functions f un-
der consideration to a dot product space D such that the ex-
pression 〈Pf ·Pg〉 is well defined for f, g ∈ H . For instance by
choosing a suitable operator that penalizes large variations of
f one can reduce the well–known overfitting effect. Another
possible setting also might be an operator P mapping from
L2(Rn) into some Reproducing Kernel Hilbert Space (RKHS)
[Aronszajn, 1950, Kimeldorf and Wahba, 1971, Saitoh, 1988,
Schölkopf, 1997, Girosi, 1998].

Using an expansion of f in terms of some symmetric func-
tion k(xi, xj) (note here, that k need not fulfill Mercer’s condi-
tion and can be chosen arbitrarily since it is not used to define
a regularization term),

f(x) =
�X

i=1

αik(xi, x) + b, (65)

and the ε–insensitive cost function, this leads to a quadratic
programming problem similar to the one for SVs. Using

Dij := 〈(Pk)(xi, .) · (Pk)(xj , .)〉 (66)

9Due to length constraints we will not deal with the connection between
Gaussian Processes and SVMs. See Williams [1998] for an excellent overview.

we get α = D−1K(β − β∗), with β, β∗ being the solution of

minimize 1
2
(β∗ − β)�KD−1K(β∗ − β)

−(β∗ − β)�y − ε
�P

i=1

(βi + β∗
i )

subject to
�P

i=1

(βi − β∗
i ) = 0 and βi, β

∗
i ∈ [0, C].

(67)

Unfortunately, this setting of the problem does not preserve
sparsity in terms of the coefficients, as a potentially sparse de-
composition in terms of βi and β∗

i is spoiled by D−1K, which
is not in general diagonal.

7.2 Green’s Functions

Comparing (10) with (67) leads to the question whether and
under which condition the two methods might be equivalent
and therefore also under which conditions regularization net-
works might lead to sparse decompositions, i.e. only a few
of the expansion coefficients αi in f would differ from zero.
A sufficient condition is D = K and thus KD−1K = K (if K
does not have full rank we only need that KD−1K = K holds
on the image of K):

k(xi, xj) = 〈(Pk)(xi, .) · (Pk)(xj, .)〉 (68)

Our goal now is to solve the following two problems:

1. Given a regularization operator P , find a kernel k such
that a SV machine using k will not only enforce flatness
in feature space, but also correspond tominimizing a reg-
ularized risk functional with P as regularizer.

2. Given an SV kernel k, find a regularization operator P
such that a SV machine using this kernel can be viewed
as a Regularization Network using P .

These two problems can be solved by employing the concept
of Green’s functions as described in [Girosi et al., 1993]. These
functions were introduced for the purpose of solving differen-
tial equations. In our context it is sufficient to know that the
Green’s functions Gxi(x) of P ∗P satisfy

(P ∗PGxi)(x) = δxi(x). (69)

Here, δxi(x) is the δ–distribution (not to be confused with the
Kronecker symbol δij) which has the property that 〈f · δxi〉 =
f(xi). The relationship between kernels and regularization
operators is formalized in the following proposition:

Proposition 11 (Smola, Schölkopf, and Müller [1998b])
Let P be a regularization operator, and G be the Green’s function of
P ∗P . Then G is a Mercer Kernel such that D = K. SV machines
using G minimize risk functional (64) with P as regularization op-
erator.

In the followingwe will exploit this relationship in both ways:
to compute Green’s functions for a given regularization oper-
ator P and to infer the regularizer, given a kernel k.

13



7.3 Translation Invariant Kernels

Let us now more specifically consider regularization opera-
tors P̂ that may be written as multiplications in Fourier space

〈Pf · Pg〉 =
1

(2π)n/2

Z
Ω

f̃(ω)g̃(ω)

P (ω)
dω (70)

with f̃(ω) denoting the Fourier transform of f(x), and P (ω) =
P (−ω) real valued, nonnegative and converging to 0 for
|ω| → ∞ and Ω := supp[P (ω)]. Small values of P (ω) cor-
respond to a strong attenuation of the corresponding frequen-
cies. Hence small values of P (ω) for largeω are desirable since
high frequency components of f̃ correspond to rapid changes
in f . P (ω) describes the filter properties of P ∗P . Note that
no attenuation takes place for P (ω) = 0 as these frequencies
have been excluded from the integration domain.

For regularization operators defined in Fourier Space by
(70) one can show by exploiting P (ω) = P (−ω) = P (ω) that

G(xi, x) =
1

(2π)n/2

Z
Rn

eiω(xi−x)P (ω)dω (71)

is a corresponding Green’s function satisfying translational
invariance, i.e.

G(xi, xj) = G(xi − xj) and G̃(ω) = P (ω). (72)

This provides us with an efficient tool for analyzing SV ker-
nels and the types of capacity control they exhibit. In fact the
above is a special case of Bochner’s theorem [Bochner, 1959]
stating that the Fourier transform of a positive measure con-
stitutes a positive Hilbert Schmidt kernel.

Example 12 (Gaussian kernels)
Following the exposition of [Yuille and Grzywacz, 1988] as de-
scribed in [Girosi et al., 1993], one can see that for

‖Pf‖2 =

Z
dx

X
m

σ2m

m!2m
(Ômf(x))2 (73)

with Ô2m = ∆m and Ô2m+1 = ∇∆m, ∆ being the Laplacian and
∇ the Gradient operator, we get Gaussians kernels (31). Moreover,
we can provide an equivalent representation of P in terms of its

Fourier properties, i.e. P (ω) = e−
σ2‖ω‖2

2 up to a multiplicative
constant.

Training an SV machine with Gaussian RBF kernels
[Schölkopf et al., 1997] corresponds to minimizing the specific
cost function with a regularization operator of type (73). Re-
call that (73) means that all derivatives of f are penalized (we
have a pseudodifferential operator) to obtain a very smooth
estimate. This also explains the good performance of SV ma-
chines in this case, as it is by nomeans obvious that choosing a
flat function in some high dimensional space will correspond
to a simple function in low dimensional space, as shown in
[Smola et al., 1998c] for Dirichlet kernels.

The question that arises now is which kernel to choose. Let
us think about two extreme situations.

1. Suppose we already knew the shape of the power spec-
trum Pow(ω) of the function we would like to estimate.
In this case we choose k such that k̃ matches the power
spectrum [Smola, 1998].

2. If we happen to know very little about the given data a
general smoothness assumption is a reasonable choice.
Hence we might want to choose a Gaussian kernel. If
computing time is important one might moreover con-
sider kernels with compact support, e.g. using the Bq–
spline kernels (cf. (32)). This choice will cause many ma-
trix elements kij = k(xi − xj) to vanish.

The usual scenario will be in between the two extreme cases
and wewill have some limited prior knowledge available. For
more information on using prior knowledge for choosing ker-
nels see [Schölkopf et al., 1998a].

7.4 Capacity Control

All the reasoning so far was based on the assumption that
there exist ways to determine model parameters like the reg-
ularization constant λ or length scales σ of rbf–kernels. The
model selection issue itself would easily double the length of
this review and moreover it is an area of active and rapidly
moving research. Therefore we limit ourselves to a presenta-
tion of the basic concepts and refer the interested reader to the
original publications.

It is important to keep in mind that there exist several fun-
damentally different approaches such as Minimum Descrip-
tion Length (cf. e.g. [Rissanen, 1978, Li and Vitányi, 1993])
which is based on the idea that the simplicity of an estimate,
and therefore also its plausibility is based on the information
(number of bits) needed to encode it such that it can be recon-
structed.

Bayesian estimation, on the other hand, considers the
posterior probability of an estimate, given the observations
X = {(x1, y1), . . . (x�, y�)}, an observation noise model, and
a prior probability distribution p(f) over the space of esti-
mates (parameters). It is given by Bayes Rule p(f |X)p(X) =
p(X|f)p(f). Since p(X) does not depend on f , one can maxi-
mize p(X|f)p(f) to obtain the so-calledMAP estimate.10 As a
rule of thumb, to translate regularized risk functionals into
Bayesian MAP estimation schemes, all one has to do is to
consider exp(−Rreg[f ]) = p(f |X). For a more detailed dis-
cussion see e.g. [Kimeldorf and Wahba, 1970, MacKay, 1991,
Neal, 1996, Rasmussen, 1996, Williams, 1998].

A simple yet powerful way of model selection is cross val-
idation. This is based on the idea that the expectation of the
error on a subset of the training sample not used during train-
ing is identical to the expected error itself. There exist several
strategies such as 10-fold crossvalidation, leave-one out error
(�-fold crossvalidation), bootstrap and derived algorithms to
estimate the crossvalidation error itself. See e.g. [Stone, 1974,
Wahba, 1980, Efron, 1982, Efron and Tibshirani, 1994, Wahba,
1999, Jaakkola and Haussler, 1999] for further details.

10Strictly speaking, in Bayesian estimation one is not so much concerned
about the maximizer f̂ of p(f |X) but rather about the posterior distribution
of f .
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Finally, one may also use uniform convergence bounds
such as the ones introduced by Vapnik and Chervonenkis
[1971]. The basic idea is that one may bound with probability
1−η (with η > 0) the expected riskR[f ] by Remp[f ]+Φ(F, η),
where Φ is a confidence term depending on the class of func-
tions F. Several criteria for measuring the capacity of F exist,
such as the VC-Dimensionwhich, in pattern recognition prob-
lems, is given by the maximum number of points that can be
separated by the function class in all possible ways, the Cov-
ering Numberwhich is the number of elements from F that are
needed to cover F with accuracy of at least ε, Entropy Numbers
which are the functional inverse of Covering Numbers, and
many more variants thereof. See e.g. [Vapnik, 1982, 1998, De-
vroye et al., 1996, Williamson et al., 1998, Shawe-Taylor et al.,
1998].

8 Conclusion

Due to the already quite large body of work done in the field
of SV research it is impossible to write a tutorial on SV regres-
sion which includes all contributions to this field. This also
would be quite out of the scope of a tutorial and rather be rel-
egated to textbooks on the matter (see [Schölkopf and Smola,
2002] for a comprehensive overview, [Schölkopf et al., 1999a]
for a snapshot of the current state of the art, [Vapnik, 1998]
for an overview on statistical learning theory, or [Cristianini
and Shawe-Taylor, 2000] for an introductory textbook). Still
the authors hope that this work provides a not overly biased
view of the state of the art in SV regression research. We de-
liberately omitted (among others) the following topics.

8.1 Missing Topics

Mathematical Programming Starting from a completely dif-
ferent perspective algorithms have been developed that
are similar in their ideas to SV machines. A good primer
might be [Bradley et al., 1998]. Also see [Mangasarian,
1965, 1969, Street and Mangasarian, 1995]. A compre-
hensive discussion of connections between mathematical
programming and SV machines has been given by Ben-
nett [1999].

Density Estimation with SV machines [Weston et al., 1999,
Vapnik, 1999]. There onemakes use of the fact that the cu-
mulative distribution function is monotonically increas-
ing, and that its values can be predicted with variable
confidence which is adjusted by selecting different val-
ues of ε in the loss function.

Dictionaries were originally introduced in the context of
wavelets by Chen et al. [1999] to allow for a large class of
basis functions to be considered simultaneously, e.g. ker-
nels with different widths. In the standard SV case this is
hardly possible except by defining new kernels as linear
combinations of differently scaled ones: choosing the reg-
ularization operator already determines the kernel com-
pletely [Kimeldorf andWahba, 1971, Cox and O’Sullivan,
1990, Schölkopf et al., 2000]. Hence one has to resort to
linear programming [Weston et al., 1999].

Applications The focus of this review was on methods and
theory rather than on applications. Thiswas done to limit
the size of the exposition. State of the art, or even record
performancewas reported in [Müller et al., 1997, Drucker
et al., 1997, Stitson et al., 1999, Mattera and Haykin, 1999].

In many cases, it may be possible to achieve similar per-
formance with neural network methods, however, only
if many parameters are optimally tuned by hand, thus
depending largely on the skill of the experimenter. Cer-
tainly, SV machines are not a “silver bullet.” However,
as they have only few critical parameters (e.g. regular-
ization and kernel width), state-of-the-art results can be
achieved with relatively little effort.

8.2 Open Issues

Being a very active field there exist still a number of open is-
sues that have to be addressed by future research. After that
the algorithmic development seems to have found a more sta-
ble stage, one of the most important ones seems to be to find
tight error bounds derived from the specific properties of ker-
nel functions. It will be of interest in this context, whether SV
machines, or similar approaches stemming from a linear pro-
gramming regularizer, will lead to more satisfactory results.

Moreover some sort of “luckiness framework” [Shawe-
Taylor et al., 1998] for multiple model selection parameters,
similar to multiple hyperparameters and automatic relevance
detection in Bayesian statistics [MacKay, 1991, Bishop, 1995],
will have to be devised to make SV machines less dependent
on the skill of the experimenter.

It is also worth while to exploit the bridge between regu-
larization operators, Gaussian processes and priors (see e.g.
[Williams, 1998]) to state Bayesian risk bounds for SV ma-
chines in order to compare the predictions with the ones from
VC theory. Optimization techniques developed in the context
of SV machines also could be used to deal with large datasets
in the Gaussian process settings.

Prior knowledge appears to be another important ques-
tion in SV regression. Whilst invariances could be included
in pattern recognition in a principled way via the virtual SV
mechanism and restriction of the feature space [Burges and
Schölkopf, 1997, Schölkopf et al., 1998a], it is still not clear
how (probably) more subtle properties, as required for regres-
sion, could be dealt with efficiently.

Reduced set methods also should be considered for speed-
ing up prediction (and possibly also training) phase for large
datasets [Burges and Schölkopf, 1997, Osuna and Girosi, 1999,
Schölkopf et al., 1999b, Smola and Schölkopf, 2000]. This topic
is of great importance as data mining applications require al-
gorithms that are able to deal with databases that are often at
least one order of magnitude larger (1 million samples) than
the current practical size for SV regression.

Many more aspects such as more data dependent general-
ization bounds, efficient training algorithms, automatic kernel
selection procedures, and many techniques that already have
made their way into the standard neural networks toolkit, will
have to be considered in the future.

Readers who are tempted to embark upon a more detailed
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exploration of these topics, and to contribute their own ideas
to this exciting field,may find it useful to consult the web page
www.kernel-machines.org.
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A Solving the Interior-Point Equations

A.1 Path Following

Rather than trying to satisfy (53) directly we will solve a mod-
ified version thereof for some µ > 0 substituted on the rhs in
the first place and decrease µ while iterating.

gizi = µ, siti = µ for all i ∈ [1 . . . n]. (74)

Still it is rather difficult to solve the nonlinear system of equa-
tions (51), (52), and (74) exactly. However we are not in-
terested in obtaining the exact solution to the approxima-
tion (74). Instead, we seek a somewhat more feasible solu-
tion for a given µ, then decrease µ and repeat. This can be
done by linearizing the above system and solving the result-
ing equations by a predictor–corrector approach until the du-
ality gap is small enough. The advantage is that we will get
approximately equal performance as by trying to solve the
quadratic system directly, provided that the terms in ∆2 are
small enough.

A(α + ∆α) = b
α + ∆α − g − ∆g = l
α + ∆α + t + ∆t = u

c + 1
2
∂αq(α) + 1

2
∂2

αq(α)∆α − (A(y + ∆y))�

+s + ∆s = z + ∆z

(gi + ∆gi)(zi + ∆zi) = µ
(si + ∆si)(ti + ∆ti) = µ

Solving for the variables in ∆ we get

A∆α = b − Aα =: ρ
∆α − ∆g = l − α + g =: ν
∆α + ∆t = u − α − t =: τ

(A∆y)� + ∆z − ∆s c − (Ay)� + s − z
− 1

2
∂2

αq(α)∆α = + 1
2
∂αq(α) =: σ

g−1z∆g + ∆z = µg−1 − z − g−1∆g∆z =: γz

t−1s∆t + ∆s = µt−1 − s − t−1∆t∆s =: γs

where g−1 denotes the vector (1/g1, . . . , 1/gn), and t analo-
gously. Moreover denote g−1z and t−1s the vector generated
by the componentwise product of the two vectors. Solving for

∆g, ∆t, ∆z, ∆s we get

∆g = z−1g(γz − ∆z) ∆z = g−1z(ν̂ − ∆α)
∆t = s−1t(γs − ∆s) ∆s = t−1s(∆α − τ̂ )

where ν̂ := ν − z−1gγz

τ̂ := τ − s−1tγs

(75)

Now we can formulate the reduced KKT–system (see [Vander-
bei, 1994] for the quadratic case):» −H A�

A 0

– »
∆α
∆y

–
=

»
σ − g−1zν̂ − t−1sτ̂

ρ

–
(76)

where H :=
`

1
2
∂2

αq(α) + g−1z + t−1s
´
.

A.2 Iteration Strategies

For the predictor–corrector method we proceed as follows. In
the predictor step solve the system of (75) and (76) with µ = 0
and all ∆–terms on the rhs set to 0, i.e. γz = z, γs = s. The
values in ∆ are substituted back into the definitions for γz

and γs and (75) and (76) are solved again in the corrector step.
As the quadratic part in (76) is not affected by the predictor–
corrector steps, we only need to invert the quadratic matrix
once. This is done best by manually pivoting for the H part,
as it is positive definite.

Next the values in ∆ obtained by such an iteration step are
used to update the corresponding values in α, s, t, z, . . .. To
ensure that the variables meet the positivity constraints, the
steplength ξ is chosen such that the variables move at most
1 − ε of their initial distance to the boundaries of the positive
orthant. Usually [Vanderbei, 1994] one sets ε = 0.05.

Another heuristic is used for computing µ, the parameter
determining how much the KKT–conditions should be en-
forced. Obviously it is our aim to reduce µ as fast as possible,
however if we happen to choose it too small, the condition
of the equations will worsen drastically. A setting that has
proven to work robustly is

µ =
〈g, z〉 + 〈s, t〉

2n

„
ξ − 1

ξ + 10

«2

. (77)

The rationale behind (77) is to use the average of the satisfac-
tion of the KKT conditions (74) as point of reference and then
decrease µ rapidly if we are far enough away from the bound-
aries of the positive orthant, to which all variables (except y)
are constrained to.

Finally one has to come up with good initial values. Anal-
ogously to [Vanderbei, 1994] we choose a regularized version
of (76) in order to determine the initial conditions. One solves» − `

1
2
∂2

αq(α) + 1
´

A�

A 1

– »
α
y

–
=

»
c
b

–
(78)

and subsequently restricts the solution to a feasible set

x = max
`
x, u

100

´
g = min (α − l, u)
t = min (u − α, u)

z = min
“
Θ

“
1
2
∂αq (α) + c − (Ay)�

”
+ u

100
, u

”
s = min

“
Θ

“
− 1

2
∂αq (α) − c + (Ay)�

”
+ u

100
, u

”
(79)
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Θ(.) denotes the Heavyside function, i.e. Θ(x) = 1 for x > 0
and Θ(x) = 0 otherwise.

A.3 Special considerations for SV regression

The algorithm described so far can be applied to both SV pat-
tern recognition and regression estimation. For the standard
setting in pattern recognition we have

q(α) =
�X

i,j=0

αiαjyiyjk(xi, xj) (80)

and consequently ∂αiq(α) = 0, ∂2
αiαj

q(α) = yiyjk(xi, xj),
i.e. the Hessian is dense and the only thing we can do
is compute its Cholesky factorization to compute (76). In
the case of SV regression, however we have (with α :=
(α1, . . . , α�, α

∗
1 , . . . , α∗

� ))

q(α) =
�X

i,j=1

(αi−α∗
i )(αj−α∗

j )k(xi, xj)+2C
�X

i=1

T (αi)+T (α∗
i )

(81)
and therefore

∂αiq(α) = d
dαi

T (αi)

∂2
αiαj

q(α) = k(xi, xj) + δij
d2

dα2
i
T (αi)

∂2
αiα∗

j
q(α) = −k(xi, xj)

(82)

and ∂2
α∗

i α∗
j
q(α), ∂2

α∗
i αj

q(α) analogously. Hence we are deal-

ing with a matrix of type M :=

»
K + D −K
−K K + D′

–
where

D, D′ are diagonal matrices. By applying an orthogonal trans-
formation M can be inverted essentially by inverting an � × �
matrix instead of a 2� × 2� system. This is exactly the ad-
ditional advantage one can gain from implementing the op-
timization algorithm directly instead of using a general pur-
pose optimizer. One can show that for practical implemen-
tations [Smola et al., 1998b] one can solve optimization prob-
lems using nearly arbitrary convex cost functions as efficiently
as the special case of ε–insensitive loss functions.

Finally note that due to the fact that we are solving the pri-
mal and dual optimization problem simultaneously we are
also computing parameters corresponding to the initial SV op-
timization problem. This observation is useful as it allows us
to obtain the constant term b directly, namely by setting b = y.
See [Smola, 1998] for details.

B Solving the Subset Selection Problem

B.1 Subset Optimization Problem

We will adapt the exposition of Joachims [1999] to the case of
regression with convex cost functions. Without loss of gener-
ality we will assume ε 
= 0 and α ∈ [0, C] (the other situations
can be treated as a special case). First wewill extract a reduced
optimization problem for the working set when all other vari-
ables are kept fixed. Denote Sw ⊂ {1, . . . , �} the working set

and Sf := {1, . . . , �}\Sw the fixed set. Writing (43) as an opti-
mization problem only in terms of Sw yields

maximize

8>>>><
>>>>:

− 1
2

P
i,j∈Sw

(αi − α∗
i )(αj − α∗

j )〈xi, xj〉

+
P

i∈Sw

(αi − α∗
i )

“
yi − P

j∈Sf

(αj − α∗
j )〈xi, xj〉

”
+

P
i∈Sw

(−ε (αi + α∗
i ) + C (T (αi) + T (α∗

i )))

subject to

( P
i∈Sw

(αi − α∗
i ) = − P

i∈Sf

(αi − α∗
i )

αi ∈ [0, C]
(83)

Hence we only have to update the linear term by the coupling
with the fixed set − P

i∈Sw

(αi − α∗
i )

P
j∈Sf

(αj − α∗
j )〈xi, xj〉 and

the equality constraint by − P
i∈Sf

(αi − α∗
i ). It is easy to see

that maximizing (83) also decreases (43) by exactly the same
amount. If we choose variables for which the KKT–conditions
are not satisfied the overall objective function tends to de-
crease whilst still keeping all variables feasible. Finally it is
bounded from below.

Even though this does not prove convergence (unlike the
statement in Osuna et al. [1997]) this algorithm proves very
useful in practice. It is one of the fewmethods (besides [Kauf-
man, 1999, Platt, 1999]) that can deal with problems whose
quadratic part does not completely fit into memory. Still in
practice one has to take special precautions to avoid stalling
of convergence (recent results of Chang et al. [1999] indicate
that under certain conditions a proof of convergence is possi-
ble). The crucial part is the one of Sw.

B.2 A Note on Optimality

For convenience the KKT conditions are repeated in a
slightly modified form. Denote ϕi the error made by the cur-
rent estimate at sample xi, i.e.

ϕi := yi − f(xi) = yi −
"

mX
j=1

k(xi, xj)(αi − α∗
i ) + b

#
. (84)

Rewriting the feasibility conditions (52) in terms of α yields

2∂αiT (αi) + ε − ϕi + si − zi = 0
2∂α∗

i
T (α∗

i ) + ε + ϕi + s∗i − z∗
i = 0

(85)

for all i ∈ {1, . . . , m} with zi, z
∗
i , si, s

∗
i ≥ 0. A set of dual

feasible variables z, s is given by

zi = max (2∂αiT (αi) + ε − ϕi, 0)
si = −min (2∂αiT (αi) + ε − ϕi, 0)
z∗

i = max
`
2∂α∗

i
T (α∗

i ) + ε + ϕi, 0
´

s∗i = −min
`
2∂α∗

i
T (α∗

i ) + ε + ϕi, 0
´ (86)

Consequently the KKT conditions (53) can be translated into

αizi = 0 and (C − αi)si = 0
α∗

i z∗
i = 0 and (C − α∗

i )s∗i = 0
(87)

All variables αi, α
∗
i violating some of the conditions of (87)

may be selected for further optimization. In most cases, espe-
cially in the initial stage of the optimization algorithm, this set
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of patterns is much larger than any practical size of Sw. Un-
fortunately [Osuna et al., 1997] contains little information on
how to select Sw. The heuristics presented here are an adapta-
tion of [Joachims, 1999] to regression. See also [Lin, 2001] for
details on optimization for SVR.

B.3 Selection Rules

Similarly to a merit function approach [El-Bakry et al., 1996]
the idea is to select those variables that violate (85) and (87)
most, thus contribute most to the feasibility gap. Hence one
defines a score variable ζi by

ζi := gizi + siti

= αizi + α∗
i z∗

i + (C − αi)si + (C − α∗
i )s

∗
i

(88)

By construction,
P

i ζi is the size of the feasibility gap (cf. (56)
for the case of ε–insensitive loss). By decreasing this gap, one
approaches the the solution (upper bounded by the primal
objective and lower bounded by the dual objective function).
Hence, the selection rule is to choose those patterns for which
ζi is largest. Some algorithms use

ζ′
i := αiΘ(zi) + α∗

i Θ(z∗
i )

+(C − αi)Θ(si) + (C − α∗
i )Θ(si)

or ζ ′′
i := Θ(αi)zi + Θ(α∗

i )z
∗
i

+Θ(C − αi)si + Θ(C − α∗
i )si.

(89)

One can see that ζi = 0, ζ ′
i = 0, and ζ′′

i = 0 mutually imply
each other. However, only ζi gives a measure for the contri-
bution of the variable i to the size of the feasibility gap.

Finally, note that heuristics like assigning sticky–flags (cf.
[Burges, 1998]) to variables at the boundaries, thus effectively
solving smaller subproblems, or completely removing the cor-
respondingpatterns from the training set while accounting for
their couplings [Joachims, 1999] can significantly decrease the
size of the problem one has to solve and thus result in a no-
ticeable speedup. Also caching [Joachims, 1999, Kowalczyk,
2000] of already computed entries of the dot product matrix
may have a significant impact on the performance.

C Solving the SMO Equations

C.1 Pattern Dependent Regularization

Consider the constrained optimization problem (83) for two
indices, say (i, j). Pattern dependent regularization means
that Ci may be different for every pattern (possibly even dif-
ferent for αi and α∗

i ). Since at most two variables may become
nonzero at the same time and moreover we are dealing with a
constrained optimization problemwemay express everything
in terms of just one variable. From the summation constraint
we obtain

(αi−α∗
i )+(αj−α∗

j ) = (αold
i −α∗

i
old

)+(αold
j −α∗

j
old

) := γ (90)

for regression. Exploiting α
(∗)
j ∈ [0, C

(∗)
j ] yields α

(∗)
i ∈ [L, H ]

This is taking account of the fact that there may
be only four different pairs of nonzero variables:
(αi, αj), (α

∗
i , αj), (αi, α

∗
j ), and (α∗

i , α∗
j ). For convenience

define an auxiliary variables s such that s = 1 in the first and
the last case and s = −1 otherwise.

αj α∗
j

αi
L
H

max(0, γ − Cj)
min(Ci, γ)

max(0, γ)
min(Ci, C

∗
j + γ)

α∗
i

L
H

max(0,−γ)
min(C∗

i ,−γ + Cj)
max(0,−γ − C∗

j )
min(C∗

i ,−γ)

C.2 Analytic Solution for Regression

Next one has to solve the optimization problem analytically.
We make use of (84) and substitute the values of φi into the
reduced optimization problem (83). In particular we use

yi−
X

j 	∈Sw

(αi −α∗
i )Kij = ϕi +b+

X
j∈Sw

(αold
i −α∗

i
old

)Kij . (91)

Moreover with the auxiliary variables γ = αi − α∗
i + αj − α∗

j

and η := (Kii + Kjj − 2Kij) one obtains the following con-
strained optimization problem in i (after eliminating j, ig-
noring terms independent of αj , α

∗
j and noting that this only

holds for αiα
∗
i = αjα

∗
j = 0):

maximize − 1
2
(αi − α∗

i )
2η − ε(αi + α∗

i )(1 − s)

+(αi − α∗
i )(φi − φj + η(αold

i − α∗
i
old))

subject to α
(∗)
i ∈ [L(∗), H(∗)].

(92)

The unconstrained maximum of (92) with respect to αi or α∗
i

can be found below.

(I) αi, αj αold
i + η−1(ϕi − ϕj)

(II) αi, α
∗
j αold

i + η−1(ϕi − ϕj − 2ε)

(III) α∗
i , αj α∗

i
old − η−1(ϕi − ϕj + 2ε)

(IV) α∗
i , α∗

j α∗
i
old − η−1(ϕi − ϕj)

The problem is that we do not know beforehand which of the
four quadrants (I)-(IV) contains the solution. However, by
considering the sign of γ we can distinguish two cases: for
γ > 0 only (I)-(III) are possible, for γ < 0 the coefficients sat-
isfy one of the cases (II)-(IV). In case of γ = 0 only (II) and (III)
have to be considered. See also the diagram below.

IV

III I

αi

αj

α∗
j

α∗
j

γ > 0

γ < 0

II

For γ > 0 it is best to start with quadrant (I), test whether the
unconstrained solution hits one of the boundaries L, H and
if so, probe the corresponding adjacent quadrant (II) or (III).
γ < 0 can be dealt with analogously.

Due to numerical instabilities, it may happen that η < 0. In
that case η should be set to 0 and one has to solve (92) in a
linear fashion directly.11

11Negative values of η are theoretically impossible since k satisfies Mercer’s
condition: 0 ≤ ‖Φ(xi) − Φ(xj)‖2 = Kii + Kjj − 2Kij = η.
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C.3 Selection Rule for Regression

Finally, one has to pick indices (i, j) such that the objective
function is maximized. Again, the reasoning of SMO [Platt,
1999, sec. 12.2.2] for classification will be mimicked. This
means that a two loop approach is chosen to maximize the
objective function. The outer loop iterates over all patterns
violating the KKT conditions, first only over those with La-
grange multipliers neither on the upper nor lower boundary,
and once all of them are satisfied, over all patterns violating
the KKT conditions, to ensure self consistency on the complete
dataset.12 This solves the problem of choosing i.

Now for j: To make a large step towards the minimum, one
looks for large steps in αi. As it is computationally expen-
sive to compute η for all possible pairs (i, j) one chooses the
heuristic to maximize the absolute value of the numerator in
the expressions for αi and α∗

i , i.e. |ϕi −ϕj | and |ϕi −ϕj ± 2ε|.
The index j corresponding to the maximum absolute value is
chosen for this purpose.

If this heuristic happens to fail, in other words if little
progress is made by this choice, all other indices j are looked
at (this is what is called “second choice hierarcy” in [Platt,
1999]) in the following way:

1. All indices j corresponding to non–bound examples are
looked at, searching for an example to make progress on.

2. In the case that the first heuristic was unsuccessful, all
other samples are analyzed until an example is found
where progress can be made.

3. If both previous steps fail proceed to the next i.

For a more detailed discussion see [Platt, 1999]. Unlike inte-
rior point algorithms SMO does not automatically provide a
value for b. However this can be chosen like in section 1.4 by
having a close look at the Lagrange multipliers α

(∗)
i obtained.

C.4 Stopping Criteria

By essentially minimizing a constrained primal op-
timization problem one cannot ensure that the dual
objective function increases with every iteration
step.13 Nevertheless one knows that the minimum
value of the objective function lies in the interval
[dual objective

i
,primal objective

i
] for all steps i, hence also

in the interval
h
(maxj≤i dual objectivej

),primal objective
i

i
.

One uses the latter to determine the quality of the current
solution.

12It is sometimes useful, especially when dealing with noisy data, to iterate
over the complete KKT violating dataset already before complete self consis-
tency on the subset has been achieved. Otherwise much computational re-
sources are spent on making subsets self consistent that are not globally self
consistent. This is the reason why in the pseudo code a global loop is initiated
already when only less than 10% of the non bound variables changed.

13It is still an open question how a subset selection optimization algorithm
could be devised that decreases both primal and dual objective function at the
same time. The problem is that this usually involves a number of dual variables
of the order of the sample size, which makes this attempt unpractical.

The calculation of the primal objective function from the
prediction errors is straightforward. One uses

X
i,j

(αi −α∗
i )(αj −α∗

j )kij = −
X

i

(αi −α∗
i )(ϕi +yi − b), (93)

i.e. the definition of ϕi to avoid the matrix–vector multiplica-
tion with the dot product matrix.
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W. Härdle. Applied nonparametric regression, volume 19 of
Econometric Society Monographs. Cambridge University
Press, 1990.

T. J. Hastie and R. J. Tibshirani. Generalized Additive Models,
volume 43 ofMonographs on Statistics and Applied Probability.
Chapman and Hall, London, 1990.

S. Haykin. Neural Networks : A Comprehensive Foundation.
Macmillan, New York, 1998. 2nd edition.

M. A. Hearst, B. Schölkopf, S. Dumais, E. Osuna, and J. Platt.
Trends and controversies—support vector machines. IEEE
Intelligent Systems, 13:18–28, 1998.

R. Herbrich. Learning Kernel Classifiers: Theory and Algorithms.
MIT Press, 2002.

P. J. Huber. Robust statistics: a review. Annals of Statistics, 43:
1041, 1972.

P. J. Huber. Robust Statistics. John Wiley and Sons, New York,
1981.

IBM Corporation. IBM optimization subroutine library guide
and reference. IBM Systems Journal, 31, 1992. SC23-0519.

T. S. Jaakkola and D. Haussler. Probabilistic kernel regression
models. In Proceedings of the 1999 Conference on AI and Statis-
tics, 1999.

T. Joachims. Making large-scale SVM learning practical. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods—Support Vector Learning, pages
169–184, Cambridge, MA, 1999. MIT Press.

W. Karush. Minima of functions of several variables with
inequalities as side constraints. Master’s thesis, Dept. of
Mathematics, Univ. of Chicago, 1939.

L. Kaufman. Solving the quadratic programming problem
arising in support vector classification. In B. Schölkopf,
C. J. C. Burges, and A. J. Smola, editors, Advances in Ker-
nel Methods—Support Vector Learning, pages 147–168, Cam-
bridge, MA, 1999. MIT Press.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K.
Murthy. Improvements to Platt’s SMO algorithm for SVM
classifier design. Technical Report CD-99-14, Dept. of Me-
chanical and Production Engineering, Natl. Univ. Singa-
pore, Singapore, 1999.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K.
Murty. Improvements to platt’s SMO algorithm for SVM
classifier design. Neural Computation, 13:637–649, 2001.

G. S. Kimeldorf and G. Wahba. A correspondence between
Bayesian estimation on stochastic processes and smooth-
ing by splines. Annals of Mathematical Statistics, 41:495–502,
1970.

G. S. Kimeldorf and G. Wahba. Some results on Tchebychef-
fian spline functions. J. Math. Anal. Applic., 33:82–95, 1971.

A. Kowalczyk. Maximal margin perceptron. In A. J. Smola,
P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors,Ad-
vances in Large Margin Classifiers, pages 75–113, Cambridge,
MA, 2000. MIT Press.

H. W. Kuhn and A. W. Tucker. Nonlinear programming. In
Proc. 2nd Berkeley Symposium on Mathematical Statistics and
Probabilistics, pages 481–492, Berkeley, 1951. University of
California Press.

Y.J. Lee and O.L. Mangasarian. SSVM: A smooth support vec-
tormachine for classification. Computational optimization and
Applications, 20(1):5–22, 2001.
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