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Journal de Théorie des Nombres de Bordeaux.

Jeffrey Shallit is Professor of Computer Science at the University of Waterloo. He
has written 80 articles on number theory, algorithms, formal languages, combina-
torics on words, computer graphics, history of mathematics, algebra and automata
theory. He is the editor-in-chief of the Journal of Integer Sequences and coauthor
of Algorithmic Number Theory.



AUTOMATIC SEQUENCES

Theory, Applications, Generalizations

JEAN-PAUL ALLOUCHE
CNRS, LSI, Orsay

JEFFREY SHALLIT
University of Waterloo



  
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , United Kingdom

First published in print format 

isbn-13   978-0-521-82332-6  hardback

isbn-13   978-0-511-06208-7 eBook (NetLibrary)

© Jean-Paul Allouche & Jeffrey Shallit 2003

2003

Information on this title: www.cambridge.org/9780521823326

This book is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10   0-511-06208-7 eBook (NetLibrary)

isbn-10   0-521-82332-3  hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
s for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

-

-

-

-









http://www.cambridge.org/9780521823326
http://www.cambridge.org
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Preface

Goals of This Book

Sequences, both finite and infinite, are ubiquitous in mathematics and theoretical
computer science. Sloane and Plouffe’s book, The Encyclopedia of Integer Se-
quences, lists over 5,000 interesting sequences from the mathematical literature.
Sloane’s web site,
http://www.research.att.com/~njas/sequences/index.html
gives access to more than 69,000 sequences. There is a web-based scholarly journal,
the Journal of Integer Sequences, devoted to sequence-related topics, and even
a periodic international conference, SETA (Sequences and Their Applications),
devoted to the study of sequences.

Sequences come in all flavors. Some, such as periodic sequences, are highly or-
dered and very easy to describe, while others, such as random sequences, are unor-
dered and have no simple description.

The subject of this book is automatic sequences and their generalizations. Auto-
matic sequences form a class of sequences somewhere between simple order and
chaotic disorder. This class contains such celebrated sequences as the Thue–Morse
sequence (see Chapters 1 and 6) and the Rudin–Shapiro sequence (see Chapter 3),
which play important roles in many different areas of mathematics.

Automatic sequences are generated by finite automata, one of the most basic
models of computation. Finite automata and other computational models are intro-
duced in Chapter 5. Automatic sequences are also generated by iterating a simple
kind of map, called a uniform morphism; see Chapter 6. By generalizing this to ar-
bitrary morphisms, we obtain another interesting class of sequences called morphic
sequences, which are discussed in Chapter 7.

Other generalizations of automatic sequences discussed in this book include mul-
tidimensional sequences (Chapter 14), sequences over infinite alphabets (Chapter
16), and sequences that are generated by slowly growing automata (Chapter 15).

One of the main reasons to study automatic sequences and their generalizations
is the large number of interesting connections with number theory. To cite the most

xiii



xiv Preface

prominent example, methods of automata theory have recently been applied to prove
new results in transcendence theory in positive characteristic; see Chapter 12.

While hundreds of papers discussing the relationship between automata the-
ory and number theory have appeared in the literature, up to now there has been
little attempt to bring these results together in any sort of consistent framework,
using a unified notation. Books on automata theory rarely discuss results with a
number-theoretic flavor, and when they do, these applications are often relegated
to footnotes. On the other hand, the techniques of theoretical computer science
are rarely incorporated in books on number theory, since they require unfamiliar
language and notation.

Because our subject incorporates results from both mathematics and computer
science, papers are scattered widely in the literature and often use inconsistent no-
tation. Sometimes important results have appeared in obscure journals or remained
unpublished because they did not find a home in more mainstream journals devoted
to pure mathematics or theoretical computer science. Furthermore, since many re-
searchers in the area are French, some important results have appeared only in the
French language, making them less accessible to non-Francophones. Many of these
results appear in this book in English for the first time.

We have attempted to present the material in as self-contained a way as feasible.
Unfortunately, some results, such as Roth’s theorem and Ridout’s theorem, require
rather detailed and complicated proofs, and we have chosen to omit the proofs.

Since this book is intended as an introduction, we do not always present results
in the most general possible formulation. For example, in Chapter 9 we focus on
characteristic words, and do not prove many theorems on the more general case
of Sturmian words. Sometimes results are presented largely for their illustrative
and pedagogical value. In particular, material in this book intersects with symbolic
dynamics and ergodic theory, as well as other fields, but this book is not intended
to be an introduction to those fields.

Each chapter ends with sections entitled Exercises and Notes. Some exercises
are very easy, while the solution of others is a significant accomplishment. (Indeed,
researchers should not be insulted if they find their own favorite results listed as ex-
ercises.) Exercises are arranged more or less randomly, with order having no impli-
cation for difficulty. Hints and solutions to selected exercises, as well as references,
can be found in the Appendix. The Notes sections provide the reader with a de-
tailed set of over 1600 references to pursue further work. Finally, dozens of unsolved
research problems are listed in a section of each chapter entitled Open Problems.

Prerequisites

We hope the material in this book will be useful to readers at many levels, from
advanced undergraduates to experts in the area. Experts may want to turn imme-
diately to the new results in Chapters 12 and 13, for example, while novices may
first need the background material in Chapters 1–5.
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The main prerequisite is a degree of mathematical sophistication. Familiarity
with the basic concepts of formal languages and number theory will be useful, but
not absolutely essential. We have attempted to make the material self-contained
wherever feasible.

A typical graduate or advanced undergraduate course on formal languages and
number theory might cover the material in Chapters 1–6, 9, 12, and 13. Readers
familiar with number theory and algebra might plan to skip Chapter 2, while those
familiar with theoretical computer science would skip Chapter 4.

Algorithm Descriptions

Algorithms in this book are described in a pseudocode notation similar to Pascal or
C, which should be familiar to most readers. We do not provide a formal definition
of this notation.
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1

Stringology

In this chapter we introduce the basic objects of interest to this book: finite and
infinite words. A set of words forms a language, a concept introduced in Section 1.3.
Morphisms, discussed in Section 1.4, provide a way to transform words. Two of
the basic theorems on words – the theorems of Lyndon and Schützenberger – are
discussed in Section 1.5.

Repetitions in words are introduced in Section 1.6. Section 1.7 discusses the
particular case of binary words avoiding a certain type of repetition called an over-
lap; this section is rather technical and can be omitted on a first reading. Finally,
Section 1.8 briefly introduces some additional topics about repetitions.

1.1 Words

One of the fundamental mathematical objects we will study in this book is the
word. A word is made up of symbols (or letters), which are usually displayed in a
typewriter-like font like this. (We treat the notion of symbol as primitive and do
not define it further.) Let � denote a nonempty set of symbols, or alphabet; in this
book, � will almost always be finite. One alphabet is so important that we give it
a special symbol: if k is an integer ≥ 2, then we define

�k = {0,1, . . . , k − 1}.
Note that we sometimes identify symbols with the integers they represent, so that,
for example,

�2 = {0,1} = {0, 1}.
We typically denote variables whose domain is � using the lowercase italic

letters a, b, c, d . A word or string (we use the terms interchangeably) is a finite or
infinite list of symbols chosen from�. Although we usually denote words by simply
juxtaposing their symbols, such as 3245, for clarity (particularly when negative
integers are involved) we sometimes write them using an explicit concatenation
operator, e.g., Concat(3, 2, 4, 5). If unspecified, a word is assumed to be finite.

1



2 Stringology

We typically use the lowercase italic letters s, t, u, v, w, x, y, z to represent finite
words.

More precisely, let [m.. n] denote the set of integers {m,m + 1, . . . , n}. Then
a finite word is a map from either [0..n − 1] or [1..n] to �. (The choice of the
initial index gives us a little flexibility in defining words.) If n = 0, we get the
empty word, which we denote by ε. The set of all finite words made up of let-
ters chosen from � is denoted by �∗. For example, if � = {a,b}, then �∗ =
{ε,a,b,aa,ab,ba,bb,aaa, . . . }. We let �+ denote the set of all nonempty
words over �.

Ifw is a finite word, then its length (the number of symbols it contains) is denoted
by |w|. For example, if w = five, then |w| = 4. Note that |ε| = 0. We can also
count the occurrences of a particular letter in a word. If a ∈ � andw ∈ �∗, then |w|a
denotes the number of occurrences of a in w. Thus, for example, if w = abbab,
then |w|a = 2 and |w|b = 3.

One of the fundamental operations on words is concatenation. We concatenate
two finite words w and x by juxtaposing their symbols, and we denote this by wx .
For example, ifw = book and x = case, thenwx = bookcase. Concatenation
of words is, in general, not commutative; for example, we have xw = casebook.
However, concatenation is associative: we have w(xy) = (wx)y for all words
w, x, y. Notationally, concatenation is treated like multiplication, so thatwn denotes
the word www · · ·w (n times). Note that the set �∗ together with concatenation
becomes an algebraic structure called a monoid, with the empty word ε playing the
part of the identity element.

We say a word y is a subword or factor of a wordw if there exist words x, z such
thatw = xyz. We say x is a prefix ofw if there exists y such thatw = xy. We say x
is a proper prefix ofw if y �= ε. We say that z is a suffix ofw if there exists y such that
w = yz. If w = a1a2 · · · an , then for 1 ≤ i ≤ n, we define w[i] = ai . If 1 ≤ i ≤ n
and i − 1 ≤ j ≤ n, we define w[i.. j] = ai ai+1 · · · a j . Note that w[i..i] = ai and
w[i..i − 1] = ε.

A language over � is a (finite or infinite) set of words – that is, a subset of �∗.

Example 1.1.1 The following are examples of languages:

PRIMES2 = {10,11,101,111, . . . }
(the primes expressed in base 2),

EQ = {x ∈ {0,1}∗ : |x |0 = |x |1}
(words containing an equal number of each symbol).

We now define infinite words (or infinite sequences – we use the terms inter-
changeably). We let Z denote the integers, Z+ denote the positive integers, Z−

denote the negative integers, and N denote the non-negative integers. Then we will
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usually take a one-sided (or unidirectional) right-infinite word a = a0a1a2 · · · to
be a map from N to �. We can form an infinite word by concatenating infinitely
many finite words; for example,

∏

i≥1

wi

denotes a word w1w2w3 · · · , which is infinite if and only if wi �= ε infinitely often.

Example 1.1.2 The following is an example of a right-infinite word:

q = (qn)n≥0 = 11001000010000001 · · · ,
where qn = 1 if n is a square and 0 otherwise. The sequence q is called the char-
acteristic sequence of the perfect squares.

Sometimes, if subscripts become too cumbersome, we write a = a(0)a(1)
a(2) · · · instead. Also, instead of beginning indices at 0, occasionally we will use
a map from Z+ to �, beginning our indices at 1, as the following example shows.

Example 1.1.3 Define

p = (pn)n≥1 = 0110101000101 · · · ,
the characteristic sequence of the prime numbers.

The set of all one-sided right-infinite words over � is denoted by �ω. We define
�∞ = �∗ ∪�ω.

A left-infinite word · · · a−3a−2a−1 is a map from Z− to �. The set of all left-
infinite words is denoted by ω�.

A two-sided (or bidirectional) infinite word is a map from Z to �. Such a word
is of the form · · · c−2c−1c0.c1c2c3 · · · ; the decimal point is a notational convention
and not part of the word itself. We denote the set of all two-sided infinite words
over� by�Z. In this book, infinite words are typically denoted in boldface. Unless
otherwise indicated, infinite words are assumed to be one-sided and right-infinite.

We can produce one-sided infinite words from two-sided infinite words by
ignoring the portion to the right or left of the decimal point. Suppose w = · · ·
c−2c−1c0.c1c2c3 · · · . We define

L(w) = · · · c−2c−1c0,

a left-infinite word, and

R(w) = c1c2c3 · · · ,
a right-infinite word.
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The notions of subword, prefix, and suffix for finite words have evident analogues
for infinite words. Let w = a0a1a2 · · · be an infinite word. For i ≥ 0 we define
w[i] = ai . For i ≥ 0 and j ≥ i − 1, we define w[i.. j] = ai ai+1 · · · a j . We also
define w[i..∞] = ai ai+1 · · · . If

lim
n→∞

|w[0..n − 1] |b
n

exists and equals r , then the frequency of the symbol b in w is defined to be r . We
denote this frequency as Freqb(w).

Example 1.1.4 Consider the word q from Example 1.1.2. Then Freq0(q) = 1 and
Freq1(q) = 0.

Infinite words may be specified by the limit of a sequence of finite words. If
w1, w2, w3, . . . form a sequence of words with wi a proper prefix of w j for i < j ,
then limn→∞wn is the unique infinite word of which w1, w2, . . . are all prefixes.

Let k be an integer ≥ 2. A k-aligned subword of an infinite word x = a0a1a2 · · ·
is a subword of the form aki aki+1 · · · aki+k−1 for some integer i ≥ 0.

We can also concatenate a finite word on the left with an infinite word on the
right, but not vice versa. Clearly we cannot concatenate two right-infinite or two
left-infinite words, but it is possible to concatenate a left-infinite word with a right-
infinite word; see below. If x is a nonempty finite word, then xω is the right-infinite
word xxx · · · . Such a word is called purely periodic. An infinite word w of the
form x yω for y �= ε is called ultimately periodic. If w is ultimately periodic, then
we can write it in the form x yω for finite words x, y with y �= ε. Then x is called
a preperiod of w, and y is called a period. (Sometimes we abuse terminology by
calling the length |x | the preperiod and |y| the period.) If |x |, |y| are chosen as small
as possible, then x is called the least preperiod, and y is called the least period.

If L is a language, we define

Lω = {w1w2w3 · · · : wi ∈ L \ {ε} for all i ≥ 1}.
Thus, for example, �ω

2 is the set of all right-infinite words over {0,1}. Similarly,
we define

ωL = {· · ·w−2w−1w0 : wi ∈ L \ {ε} for all i ≤ 0}.
If w is a nonempty finite word, then by wZ we mean the two-sided infinite

word · · ·www.www · · · . Using concatenation, we can join a left-infinite word
w = · · · c−2c−1c0 with a right-infinite word x = d0d1d2 · · · to form a new two-
sided infinite word, as follows:

w.x := · · · c−2c−1c0.d0d1d2 · · · .
If L is a language, we define

LZ := {· · ·w−2w−1w0.w1w2 · · · : wi ∈ L \ {ε} for all i ∈ Z}.
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If w = a1a2 · · · an and x = b1b2 · · · bn are finite words of the same length, then
by wX x we mean the word a1b1a2b2 · · · anbn , the perfect shuffle of w and x .
For example, clip X aloe = calliope. A similar definition can be given for
infinite words.

If w = a1a2 · · · an is a finite word, then by wR we mean the reversal of the word
w, that is, wR = anan−1 · · · a2a1. For example, (drawer)R = reward. Note that
(wx)R = x RwR . A word w is a palindrome if w = wR . Examples of palindromes
in English include deified, rotator, repaper, and redivider.

If w = a0a1a2 · · · is a one-sided right-infinite word, then we define the shift
map S(w) to be the word a1a2a3 · · · . Similarly, for k ≥ 0, we have Sk(w) =
akak+1ak+2 · · · . For k < 0, we define Sk(w) = uw for an arbitrarily chosen word
u of length k. For two-sided infinite words and k ∈ Z, we define

Sk(· · · a−2a−1a0.a1a2a3 · · · ) = ak−2ak−1ak .ak+1ak+2ak+3 · · · .
This notation is also extended to finite words, where for k ≥ 0 we define

Sk(a0a1 · · · a j ) =
{

akak+1 · · · a j if 0 ≤ k ≤ j,

ε, otherwise.

If w = a0a1a2 · · · is an infinite word over � and x = b0b1b2 · · · is an infinite
word over �, then by w × x we mean the infinite word c0c1c2 · · · over � ×�

defined by ci = (ai , bi ). We also extend the notation × to apply to finite words of
the same length.

If � is an ordered set, we can define an ordering on words of �ω. We define a
lexicographic order �ω as follows: let w = a1a2a3 · · · and x = b1b2b3 · · · . Define
w < x if there exists an index i ≥ 0 such that a j = b j for j ≤ i and ai+1 < bi+1.
A similar definition can be given for finite words of the same length.

Let w = a0a1a2 · · · be an infinite word over �, and let k be an integer ≥ 1.
The k-block compression of w, which we write as comp(w, k), is an infinite word
b0b1b2 · · · over the alphabet �k defined by bi = (aki , aki+1, . . . , aki+k−1).

If L1, L2 are languages over �, we define L1L2 = {xy : x ∈ L1, y ∈ L2}.

1.2 Topology and Measure

Let A be a set, and let T be a collection of subsets of A. Recall that we say (A, T )
is a topological space, or just a topology, if

(i) ∅ and A are members of T ;
(ii) if (Xi )i∈I are members of T , then so is

⋃
i∈I Xi ;

(iii) if (Xi )1≤i≤n are members of T for some integer n ≥ 1, then so is
⋂

1≤i≤n Xi .

The elements of T are called open sets. A subset F ⊆ A is called closed if its
complement A \ F is open. A topology may be specified by providing a base B;
this is a collection of open sets such that each element of T may be expressed as a
union of elements of B. A topology may be also specified by providing a sub-base
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D of B; this is a collection of open sets such that each element of B can be expressed
as a nonempty finite intersection of elements of D.

Example 1.2.1 Let A = R, and let the topology T be specified by letting B, a base,
consist of the open intervals of the form (a, b) with a, b ∈ R and a < b.

Let � be a finite alphabet. We can specify a natural topology on �ω, the set of
one-sided right-infinite words over �, by specifying a sub-base D as follows:

D =
⋃

j≥0
a∈�

D j,a,

where D j,a consists of those words w such that w[ j] = a. Base elements, which are
nonempty finite intersections of the D j,a , are of the form �i1a1�

i2a2 · · ·�i j a j�
ω,

where j, i1, i2, . . . , i j ≥ 0 are integers and a1, a2, . . . , a j ∈ �. Such a set is called
a cylinder.

Theorem 1.2.2 The open sets in �ω are precisely those sets of the form L�ω, with
L ⊆ �∗.

Proof. Since by definition the D j,a form a sub-base for the topology, every base
element is of the form �i1a1�

i2a2 · · ·�i j a j�
ω, where j, i1, i2, . . . , i j ≥ 0 are in-

tegers and a1, a2, . . . , a j ∈ �. Thus every base element is of the form L�ω, where
L = �i1a1�

i2a2 · · ·�i j a j . Now by definition each open set is a union of sets of the
form Li�

ω. But
⋃

i∈I Li�
ω = (

⋃
i∈I Li )�ω.

For the converse, we need to show that L�ω is open. But L�ω = ⋃
x∈L x�ω,

and each element of the form x�ω for x ∈ �∗ is clearly a base element. �

Let (X, T ) be a topological space, and A ⊆ X . We say that x ∈ X is a limit point
of A if every open set containing x intersects A \ {x}. The set of all limit points of
A is called the derived set and is sometimes written as A′. If A = A′, we say A is
perfect.

Recall that a metric on a set A is a map d : A → R≥0 such that

(i) for x, y ∈ A we have d(x, y) = 0 if and only if x = y;
(ii) for x, y ∈ A we have d(x, y) = d(y, x);

(iii) for x, y, z ∈ A we have the triangle inequality d(x, z) ≤ d(x, y) + d(y, z).

Here by R≥0 we mean the non-negative real numbers. The pair (A, d) is called a
metric space.

A metric d induces a topology as follows: we take as a base the family of all
open balls of the form {x ∈ A : d(x, y) < r} for y ∈ A and r > 0.
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We can make �ω into a metric space by defining

d(x, y) =
{

0 if x = y,

2−n otherwise,

where n = min{i : x[i] �= y[i]}. Intuitively, two infinite sequences are “close to-
gether” if they agree on a long prefix. Note that in addition to the triangle inequality,
d satisfies the stronger ultrametric inequality

d(x, y) ≤ max(d(x, z), d(y, z))

for all x, y, z ∈ �ω. It is not difficult to see that the topology induced by d is the
same as the topology mentioned above.

The closure of a set X ⊆ �ω is defined to be the intersection of all closed subsets
of �ω containing X ; it is denoted by Cl(X ). Alternatively, w ∈ Cl(X ) if for all real
δ > 0 there exists x ∈ X such that d(w, x) < δ.

Theorem 1.2.3 Let X ⊆ �ω, and let w ∈ �ω. Then w ∈ Cl(X ) if and only if every
prefix of w is the prefix of some word in X.

Proof. We have w ∈ Cl(X ) if and only if for all k ≥ 0 there exists x ∈ X with
d(w, x) ≤ 2−k , if and only if for all k ≥ 0 there exists x ∈ X which agrees with w
on the first k terms. �

We can extend the metric d to �∞ by introducing a new symbol b, not in �, and
identifying each finite word w with the right-infinite word wbω ∈ (� ∪ {b})ω.

Finally, we can put a measure m on �ω by defining the measure of the cylinders

m(�i1a1�
i2a2 · · ·�i j a j�

ω) = k− j ,

where k = Card �.

1.3 Languages and Regular Expressions

As we have seen above, a language over � is a subset of �∗. Languages may be
of finite or infinite cardinality. We start by defining some common operations on
languages.

Let L , L1, L2 ⊆ �∗ be languages. Recall that we define the product of languages
by

L1L2 = {wx : w ∈ L1, x ∈ L2}.
We define L0 = {ε} and define Li as L Li−1 for i ≥ 1. We define

L≤i = L0 ∪ L1 ∪ · · · ∪ Li .

We define L∗ as
⋃

i≥0 Li ; the operation L∗ is sometimes called Kleene closure. We
define L+ = L L∗; the operation + in the superscript is sometimes called positive
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closure. If L is a language, then the reversed language is defined as follows: L R =
{x R : x ∈ L}. Finally, we define the quotient of languages as follows:

L1/L2 = {x ∈ �∗ : ∃ y ∈ L2 such that xy ∈ L1}.
We now turn to a common notation for representing some kinds of languages. A

regular expression over the alphabet � is a well-formed word over the alphabet

� ∪ {ε, ∅, (, ), +, *}.
(Exercise 64 makes this more precise.) In evaluating such an expression, * repre-
sents Kleene closure and has highest precedence. Concatenation is represented by
juxtaposition, and has next highest precedence. Finally, + represents union and has
lowest precedence. Parentheses are used for grouping.

If the word u is a regular expression, then L(u) represents the language that u
specifies. For example, consider the regular expression u = (0+10)*(1+ε). Then
L(u) represents all finite words of 0’s and 1’s that do not contain two consecutive
1’s. Frequently we will abuse the notation by referring to the language as the naked
regular expression without the surrounding L(). A language L is said to be regular
if L = L(u) for some regular expression u.

Theorem 1.3.1 Every finite language is regular.

Proof. If L = {w1, w2, . . . , wi }, then a regular expression for L is just w1+
w2+ · · ·+wi . �

1.4 Morphisms

In this section we introduce a fundamental tool of formal languages, the homomor-
phism, or just morphism for short. Let� and� be alphabets. A morphism is a map
h from �∗ to �∗ that obeys the identity h(xy) = h(x)h(y) for all words x, y ∈ �∗.
Typically, we use the Latin letters f, g, h and Greek letters ϕ, θ, µ, σ, ρ to denote
morphisms.

Clearly if h is a morphism, then we must have h(ε) = ε. Furthermore, once h is
defined for all elements of �, it can be uniquely extended to a map from �∗ to �∗.
Henceforth, when we define a morphism, we will always give it by specifying its
action on �.

Example 1.4.1 Let � = {e,m,o,s}, let � = {a,e,l,n,r,s,t}, and define

h(m) = ant,

h(o) = ε,

h(s) = ler,

h(e) = s.

Then h(moose) = antlers.
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If � = �, then we can iterate the application of h. We define h0(a) = a and
hi (a) = h(hi−1(a)) for all a ∈ �.

Example 1.4.2 Let � = � = {0,1}. Define the Thue–Morse morphism µ(0) =
01 and µ(1) = 10. Then µ2(0) = 0110 and µ3(0) = 01101001.

There are various parameters associated with a morphism h : �∗ → �∗. We def-
ine Width h = maxa∈� |h(a)|, Depth h = Card �, and Size h = ∑

a∈� |h(a)|.
We can classify morphisms into different groups, as follows: if there is a constant

k such that |h(a)| = k for all a ∈ �, then we say that h is k-uniform (or just uniform,
if k is clear from the context). A 1-uniform morphism is called a coding. We typically
use the Greek letters τ and ρ to denote codings. A morphism is said to be expanding
if |h(a)| ≥ 2 for all a ∈ �.

If h(a) �= ε for all a ∈ �, then h is nonerasing. If h(a) = ε for all a ∈ �, then we
say h is trivial. If there exists an integer j ≥ 1 such that h j (a) = ε, then the letter a is
said to be mortal. The set of mortal letters associated with a morphism h is denoted
by Mh . The mortality exponent of a morphism h is defined to be the least integer
t ≥ 0 such that ht (a) = ε for all a ∈ Mh . (If Mh = ∅, we take t = 0.) We write the
mortality exponent as exp(h) = t . It is easy to prove that exp(h) ≤ Card Mh; see
Exercise 3.

We also define the notion of inverse homomorphism of languages. Given h :
�∗ → �∗ and a language L , we define

h−1(L) = {x ∈ �∗ : h(x) ∈ L}.
We can also apply morphisms to infinite words. If w = c0c1c2 · · · is a right-

infinite word, then we define

h(w) = h(c0)h(c1)h(c2) · · · .
If w = · · · c−2c−1c0.c1c2 · · · is a two-sided infinite word, and h is a morphism, then
we define

h(w) := · · · h(c−2)h(c−1)h(c0).h(c1)h(c2) · · · . (1.1)

We now introduce the notion of a primitive morphism. A morphism h : �∗ → �∗

is said to be primitive if there exists an integer n ≥ 1 such that for all a, b ∈ �, a
occurs in hn(b).

One reason why primitive morphisms are of interest is that if h is primitive, then
the growth rate of |hr (a)| is essentially independent of a. We have the following

Theorem 1.4.3 Let h : �∗ → �∗ be a primitive morphism. Then there exists a
constant C (which does not depend on n but may depend on Width h and Depth h)
such that |hn(b)| ≤ C |hn(c)| for all b, c ∈ � and all n ≥ 0.
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Proof. Let W = Width h. Since h is primitive, there exists an integer e ≥ 1 such
that for all b, c ∈ � we have he(c) ∈ �∗b�∗. Thus for r ≥ 1 we have

|her (c)| = |he(r−1)(he(c))|
= |he(r−1)(xby)| for some x, y ∈ �∗

≥ |he(r−1)(b)|.
Also |her (b)| = |he(he(r−1)(b))| ≤ W e|he(r−1)(b)|. Putting these bounds together,
we get |her (b)| ≤ W e|her (c)|.

Now write n = er + i for some r ≥ 0 and 0 ≤ i < e. If r = 0, we have |hi (b)| ≤
W i ≤ W i |hi (c)|. If r ≥ 1, then

|her+i (b)| ≤ W i |her (b)|
≤ W i+e|her (c)|
≤ W i+e|her+i (c)|.

It follows that |hn(b)| ≤ W 2e−1|hn(c)|, so we may take C = W 2e−1. �

Exercise 8.8 explores how big e can be. Note: Theorem 1.4.3 is made more
precise in Proposition 8.4.1.

Let h : �∗ → �∗ be a morphism. A finite or infinite wordw such that h(w) = w

is said to be a fixed point of h. If there exists a letter a ∈ � such that h(a) = ax ,
and x �∈ M∗

h , we say h is prolongable on a. In this case, the sequence of words
a, h(a), h2(a), . . . converges, in the limit, to the infinite word

hω(a) := a x h(x) h2(x) · · · ,
which is a fixed point of h, that is, h(hω(a)) = hω(a). Furthermore, it is easy to see
that hω(a) is the unique fixed point of h which starts with a. If w = hω(a), then we
call w a pure morphic sequence. If there is a coding τ : � → � and w = τ (hω(a)),
then we call w a morphic sequence.

1.5 The Theorems of Lyndon and Schützenberger

In this section, we prove two beautiful and fundamental theorems due to Lyndon
and Schützenberger. We start with one of the simplest and most basic results on
words, sometimes known as Levi’s lemma:

Theorem 1.5.1 Let u, v, x, y ∈ �∗, and suppose that uv = xy. If |u| ≥ |x |, there
exists t ∈ �∗ such that u = xt and y = tv. If |u| < |x |, there exists t ∈ �+ such
that x = ut and v = t y.

Proof. Left to the reader. �
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Now we can state the first theorem of Lyndon and Schützenberger:

Theorem 1.5.2 Let y ∈ �∗ and x, z ∈ �+. Then xy = yz if and only if there ex-
ist u, v ∈ �∗ and an integer e ≥ 0 such that x = uv, z = vu, and y = (uv)eu =
u(vu)e.

Proof. =⇒: The proof is by induction on |y|. If |y| = 0, then we can take v = x = z,
u = ε, and e = 0. Thus suppose that |y| ≥ 1. There are two cases.

Case I: If |x | ≥ |y|, then we have a situation like the following:

x

zy

y

w

By Levi’s lemma there exists w ∈ �∗ such that x = yw and z = wy. Now take
u = y, v = w, e = 0, and we are done.

Case II: Now suppose that |x | < |y|. Then we have a situation like the following:

y z

x y

w

By Levi’s lemma there existsw ∈ �+ such that y = wz = xw. By induction (since
|w| = |y| − |z| < |y|), we know there exist u, v, e such that

x = uv,

z = vu,

w = (uv)eu = u(vu)e,

so it follows that y = u(vu)e+1 = (uv)e+1u.
⇐=: We have

xy = uv(uv)eu = (uv)e+1u,

yz = u(vu)evu = u(vu)e+1,

and these words are identical. �
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We now state and prove the second theorem of Lyndon and Schützenberger.

Theorem 1.5.3 Let x, y ∈ �+. Then the following three conditions are equivalent:

(1) xy = yx.
(2) There exist integers i, j > 0 such that xi = y j .
(3) There exist z ∈ �+ and integers k, l > 0 such that x = zk and y = zl .

Proof. We show that (1) =⇒ (3), (3) =⇒ (2), and (2) =⇒ (1).
(1) =⇒ (3): By induction on |xy|. If |xy| = 2, then |x | = |y| = 1, so x = y and

we may take z = x = y, k = l = 1.
Now assume the implication is true for all x, y with |xy| < n. We prove it for

|xy| = n. Without loss of generality, assume |x | ≥ |y|. Then we have a situation
like the following:

x

y

y

w

x

Hence there exists w ∈ �∗ such that x = wy = yw. If |w| = 0 then x = y and
we can take z = x = y, k = l = 1.

Otherwise |w| ≥ 1. We have |wy| = |x | < |xy| = n, so the induction hypothesis
applies, and there exists z ∈ �+ and integers k, l > 0 such that w = zk , y = zl . It
follows that x = wy = zk+l .

(3) =⇒ (2): By (3) there exist z ∈ �+ and integers k, l > 0 such that x = zk and
y = zl . Hence, taking i = l, j = k, we get

xi = (zk)i = zkl = (zl)k = (zl) j = y j ,

as desired.
(2)=⇒ (1): We have xi = y j . If |x | = |y| then we must have i = j and so x = y.

Otherwise, without loss of generality assume |x | > |y|. Then we have a situation
like the following:

x x x x

y y y y y y

w

That is, there exists w ∈ �+ such that x = yw. Hence xi = (yw)i = y j , and so
y(wy)i−1w = y j . Therefore (wy)i−1w = y j−1, and so, by multiplying by y on the
right, we get (wy)i = y j . Hence (yw)i = (wy)i , and hence yw = wy. It follows
that x = yw = wy and xy = (yw)y = y(wy) = yx . �
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We now make the following definition: a word w ∈ �+ is said to be primitive if
there is no solution tow = zk for k an integer ≥ 2 and z ∈ �+. For example, abcb
is primitive, but abab = ab2 is not.

Theorem 1.5.4 Every nonempty word w can be expressed uniquely in the form
w = xn, where n ≥ 1 and x is primitive.

Proof. Choose n as large as possible so thatw = xn has a solution; clearly 1 ≤ n ≤
|w|. We claim that the resulting x is primitive. For if not, we could write x = yk

for some k ≥ 2 and then w = ykn , where kn > n.
To prove uniqueness, suppose w has two representations w = xn = ym , where

both x, y are primitive and n,m ≥ 1. Then by Theorem 1.5.3, there exists z with
|z| ≥ 1 such that x = zk and y = z�. Since x, y are primitive, however, we must
have k = � = 1. But then x = y = z, and hence n = m, and the two representations
are actually the same. �

We now recall the definition of the Möbius function,

µ(n) =
{

0 if n is divisible by a square > 1,

(−1) j if n = p1 p2 · · · p j where the pi are distinct primes.
(1.2)

(Hopefully there will be no confusion with the morphismµ defined in Section 1.4.)

Theorem 1.5.5 There are
∑

d | n µ(d)kn/d distinct primitive words of length n over
a k-letter alphabet.

Proof. Let ψk(n) denote the number of primitive words of length n over a k-letter
alphabet. There are kn distinct words of length n over a k-letter alphabet, and each
such word w can, by the previous theorem, be represented uniquely in the form
w = xd , where d ≥ 1. Clearly we must have d | n. Hence

kn =
∑

d | n

ψk(d),

and by Möbius inversion (Exercise 13) we have

ψk(n) =
∑

d | n

µ(d)kn/d .
�

The following theorem, due to Fine and Wilf, can be considered a generalization
of Theorem 1.5.3:

Theorem 1.5.6 (Fine–Wilf) Let a = a0a1a2 · · · (respectively b = b0b1b2 · · · ) be
a purely periodic infinite word of period m ≥ 1 (respectively n ≥ 1), and suppose
a and b agree on a prefix of length m + n − gcd(m, n). Then a = b.
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Proof. We assume that gcd(m, n) = 1. We show how to remove this assumption at
the end of the proof.

Since a and b are purely periodic, we have ai = ai+m and bi = bi+n for all
i ≥ 0. By hypothesis we also have ai = bi for 0 ≤ i < m + n − 1. If m = n = 1
the result is trivial, so we may assume without loss of generality that m > n. Then
for 0 ≤ i < m − 1 we have

ai = bi = bi+n = ai+n, (1.3)

where the indices on a are taken mod m and the indices on b are taken mod n.
Starting with an−1 and applying Eq. (1.3) m − 1 times, it follows that

an−1 = a2n−1 = a3n−1 = · · · = a(m−1)n−1 = amn−1, (1.4)

where the indices are taken mod m. Since gcd(m, n) = 1, it follows that all m
indices (mod m) are represented in Eq. (1.4). Hence all the symbols of a equal a0,
and the same result holds for b.

Now we explain how to remove the assumption that gcd(m, n) = 1. Let g =
gcd(m, n). We assume a,b ∈ �ω. Now consider grouping the symbols of a and b
into blocks of length g, i.e., we form the g-block compression a′ = comp(a, g) and
b′ = comp(b, g). Then a′ and b′ are purely periodic infinite words of period m/g
and n/g, respectively, over the new alphabet �g. Now gcd(m/g, n/g) = 1, so by
the proof above we have a′, b′ are both purely periodic of period 1. Hence a, b are
purely periodic of period g, and these words are identical. �

1.6 Repetitions in Words

A square is a word of the form xx , such as the English word hotshots = (hots)2.
If w is a (finite or infinite) word containing no nonempty subword of this form,
then it is said to be squarefree. Note that the word square is squarefree, while the
word squarefree is not.

It is easy to verify (see Exercise 14) that there are no squarefree words of length
> 3 over a two-letter alphabet. However, there are infinite squarefree words over a
three-letter alphabet. We construct one below in Theorem 1.6.2.

Similarly, a cube is a word of the form xxx , such as the English sort-of-word
shshsh (an admonition to be quiet). Ifw contains no nonempty cube, it is said to be
cubefree. The word cubefree is not squarefree, since it contains two consecutive
occurrences of the word e, but it is cubefree.

An overlap is a word of the form cxcxc, where x is a word, possibly empty,
and c is a single letter. (The term “overlap” refers to the fact that such a word can
be viewed as two overlapping occurrences of the word cxc.) The English word
alfalfa, for example, is an overlap with c = a and x = lf. If w contains no
overlap, it is said to be overlap-free.
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In this section, we prove some simple results in the theory of repetitions in words.
We start by constructing an infinite squarefree word over a finite alphabet.

Define

tn =
{

0 if the number of 1’s in the base-2 expansion of n is even,

1 if the number of 1’s in the base-2 expansion of n is odd.

We define t = t0t1t2 · · · = 01101001 · · · . The infinite word t is usually called
the Thue–Morse word, named after two of the first mathematicians to study its
properties. We have the following theorem:

Theorem 1.6.1 The Thue–Morse infinite word t is overlap-free.

Proof. Observe that t2n = tn and t2n+1 = 1 − tn for n ≥ 0.
Assume, contrary to what we want to prove, that t contains an overlap. Then we

would be able to write t = uaxaxav for some finite words u, x , an infinite word v,
and a letter a. In other words, we would have tk+ j = tk+ j+m for 0 ≤ j ≤ m, where
m = |ax | and k = |u|. Assume m ≥ 1 is as small as possible. Then there are two
cases: (i) m is even, and (ii) m is odd.

(i) If m is even, then let m = 2m ′. Again there are two cases: (a) k is even, and (b) k is
odd.
(a) If k is even, then let k = 2k ′. Then we know tk+ j = tk+ j+m for 0 ≤ j ≤ m, so it is

certainly true that tk+2 j ′ = tk+2 j ′+m for 0 ≤ j ′ ≤ m/2. Hence t2k ′+2 j ′ = t2k ′+2 j ′+2m ′

for 0 ≤ j ′ ≤ m ′, and so tk ′+ j ′ = tk ′+ j ′+m ′ for 0 ≤ j ′ ≤ m ′. But this contradicts the
minimality of m.

(b) If k is odd, then let k = 2k ′ + 1. Then as before we have tk+2 j ′ = tk+2 j ′+m for
0 ≤ j ′ ≤ m/2. Hence t2k ′+2 j ′+1 = t2k ′+2 j ′+2m ′+1 for 0 ≤ j ′ ≤ m ′, and so tk ′+ j ′ =
tk ′+ j ′+m ′ for 0 ≤ j ′ ≤ m ′, again contradicting the minimality of m.

(ii) If m is odd, then there are three cases: (a) m ≥ 5, (b) m = 3, and (c) m = 1. For
n ≥ 1, we define bn = (tn + tn−1) mod 2. (Here by x mod y we mean the least non-
negative remainder when x is divided by y.) Note that b4n+2 = (t4n+2 + t4n+1) mod 2.
Since the base-2 representations of 4n + 2 and 4n + 1 are identical, except that the
last two bits are switched, we have t4n+2 = t4n+1, and so b4n+2 = 0. On the other
hand, b2n+1 = (t2n+1 + t2n) mod 2, and the base-2 representations of 2n + 1 and 2n are
identical except for the last bit; hence b2n+1 = 1.
(a) m odd, ≥ 5. We have bk+ j = bk+ j+m for 1 ≤ j ≤ m. Since m ≥ 5, we can choose

j such that k + j ≡ 2 (mod 4). Then for this value of k + j , we have from above
that bk+ j = 0, but k + j + m is odd, so bk+ j+m = 1, a contradiction.

(b) m = 3. Again, bk+ j = bk+ j+3 for 1 ≤ j ≤ 3. Choose j such that k + j ≡
2 or 3 (mod 4). If k + j ≡ 2 (mod 4), then the reasoning of the previous case
applies. Otherwise k + j ≡ 3 (mod 4), and then bk+ j = 1, while bk+ j+3 = 0.

(c) m = 1. Then tk = tk+1 = tk+2. Hence t2n = t2n+1 for n = �k/2�, a contradiction.

This completes the proof. �
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Using the fact that t is overlap-free, we may now construct a squarefree infinite
word over the alphabet �3 = {0,1,2}.

Theorem 1.6.2 For n ≥ 1, define cn to be the number of 1’s between the n th and
(n + 1) st occurrence of 0 in the word t. Set c = c1c2c3 · · · . Then c = 210201 · · ·
is an infinite squarefree word over the alphabet �3.

Proof. First, observe that c is over the alphabet {0,1,2}. For if there were three
or more 1’s between two consecutive occurrences of 0 in t, then t would not be
overlap-free, a contradiction.

Next, assume that c is not squarefree. Then it contains a square of the form xx ,
with x = x1x2 · · · xn and n ≥ 1. Then, from the definition of c, the word t would
contain a subword of the form

01x101x20 · · ·01xn 01x101x20 · · ·01xn 0,

which constitutes an overlap, a contradiction. �

For alternate definitions of c, see Exercise 33.

1.7 Overlap-Free Binary Words

In this section we prove the remarkable result that an infinite binary word which is a
fixed point of a morphism either has an overlap or is equal to t, the Thue–Morse
infinite word, or its complement t. (Here the overbar is shorthand for the morphism
that maps 0 to 1 and 1 to 0.) Recall that �2 = {0,1}, and recall from Example
1.4.2 the Thue–Morse morphism µ : �∗

2 → �∗
2 by µ(0) = 01, µ(1) = 10. We

first make the following easy remarks.

Let u ∈ �∗
2 . There exists v ∈ �∗

2 such that u = µ(v) if and only if u ∈ {01,10}∗.
Let u, v ∈ �∗

2 . If uv ∈ {01,10}∗ and |u| is even, then v ∈ {01,10}∗.

We start with some technical lemmas.

Lemma 1.7.1 Suppose y ∈ �∗
2 and a ∈ �2. If the word a a a y is overlap-free, then

at least one of the following holds:

(a) y begins with aa;
(b) |y| ≤ 3;
(c) y begins with a a a a.

Proof. If y begins with aa or |y| ≤ 3, then we are done. Hence assume y does not
begin with aa and |y| ≥ 4.
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Now y cannot begin with a, since a a a y is assumed to be overlap-free. Hence
y begins with a. By assumption y does not begin with aa, so it begins with a a.
Let y = a a z, where |z| ≥ 2. If z begins with a, then z = a w for a nonempty word
w, which implies a a a y = a a a a a a w. Now any choice for the first letter of w
gives an overlap. Hence z must begin with a, say z = a w for a nonempty word w.
But then a a a y = a a a a a a w, and the first letter of w must be a. �

Lemma 1.7.2 If y, y′ ∈ �∗
2 , and if there exist c, d ∈ �2 such that u = cµ(y) =

µ(y′)d, then u = c (c c)|y|.

Proof. Clearly |y| = |y′|. Let y = a1 a2 · · · at and y′ = b1 b2 · · · bt . Then we have

c a1 a1 a2 a2 · · · at−1 at−1 at at = b1 b1 b2 b2 · · · bt−1 bt−1 bt bt d.

Hence

b1 = c,

a1 = b1 = c,

b2 = a1 = c,

a2 = b2 = c,
...

bt = at−1 = c,

at = bt = c,

at = d.

Hence c = d and so u = c(c c)t . �

Lemma 1.7.3 Suppose y, z ∈ �∗
2 and µ(y) = zz. Then there exists x ∈ �∗

2 such
that z = µ(x).

Proof. Suppose that µ(y) = zz.
If |z| is even, the result is clear, since then |µ(y)| ≡ 0 (mod 4), and hence |y| is

even. Hence z = µ(w), where w is the prefix of y of length |y|/2.
Let us show that |z| cannot be odd. If it were, let z = au = vb, where a, b ∈ �2

and u and v are words of even length. Then µ(y) = zz = vbau; hence there exist
r, s ∈ �∗

2 such that u = µ(r ) and v = µ(s). Hence zz = µ(s)baµ(r ), and b = a.
But z = aµ(r ) = µ(s)b, hence by Lemma 1.7.2 we have z = a (a a)|r |. Then the
last letter of z equals a and a, a contradiction. �

We say a morphism h is overlap-free if the image under h of every finite overlap-
free word is overlap-free. Our next lemma states thatµ, the Thue–Morse morphism,
is overlap-free.
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Lemma 1.7.4 Let w ∈ �∗
2 and x ∈ �ω

2 . Then

(a) w contains an overlap if and only if µ(w) contains an overlap;
(b) x contains an overlap if and only if µ(x) contains an overlap.

Proof. (a) =⇒: Suppose w contains an overlap, say w = x c y c y c z for x, y, z ∈
�∗

2 and c ∈ �2. Then

µ(w) = µ(x)µ(c)µ(y)µ(c)µ(y)µ(c)µ(z) = µ(x) c cµ(y) c cµ(y) c cµ(z),

and so µ(w) contains the overlap c v c v c, where v = cµ(y).
⇐=: Now suppose that µ(w) contains an overlap, say µ(w) = x c v c v c y, with

c ∈ �2 and x, v, y ∈ �∗
2 . Since |µ(w)| is even, the number |x | + |y| has to be odd.

There are now two cases: (1) |x | is even and (2) |x | is odd.

Case 1: |x | is even. Hence |y| is odd. Then µ(w) = (x)(cvcv)(cy) ∈ {01,10}∗
implies that x , cvcv, and cy are all images under µ of binary words. By
Lemma 1.7.3 above, this implies that cv is the image by µ of a binary word.
Let r, s, t be words in �∗

2 such that µ(r ) = x , µ(s) = cv, and µ(t) = cy. Then
µ(w) = µ(r )µ(s)µ(s)µ(t) = µ(rsst). Hence w = rsst . But µ(s) and µ(t) both
begin with c; hence s and t both begin with c. This implies that sst (and hence w)
contains an overlap.

Case 2: |x | is odd. Hence |y| is even. Thenµ(w) = (xc)(vcvc)y, so by the same
reasoning as in case 1, there exist r, s, t ∈ �∗

2 such that µ(r ) = xc, µ(s) = vc, and
µ(t) = y. Then µ(w) = µ(r )µ(s)µ(s)µ(t) = µ(rsst); hence w = rsst . But µ(r )
and µ(s) both end in c. This implies that r and s both end in c. Hence rss contains
an overlap and so does w.

(b): The argument in part (a) easily extends to infinite words. �

This lemma will now allow us to prove the following “factorization” result, as
well as a first consequence of it.

Proposition 1.7.5

(a) If x ∈ �∗
2 is overlap-free, then there exist u, v, y with u, v ∈ {ε,0,1,00,11} and

y ∈ �∗
2 an overlap-free word, such that x = uµ(y)v. Furthermore this factorization is

unique if |x | ≥ 7, and u (v) is completely determined by the prefix (suffix) of length 7
of x. The bound 7 is best possible.

(b) If x ∈ �ω
2 is an infinite overlap-free word, then there exist u ∈ {ε,0,1,00,11} and

an infinite overlap-free word y ∈ �ω
2 such that x = uµ(y). The prefix u is completely

determined by the prefix of x of length 4, except if x begins with 0010 or 1101, in
which case the word u is completely determined by the prefix of x of length 5.

Proof. (a): First, note that if the decomposition exists, then y must be overlap-free
by Lemma 1.7.4.
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First, we show the existence of a factorization x = uµ(y)v. We prove this by
induction on |x |. The assertion is easily proved for |x | = k ≤ 2. Now suppose
it is true for all x with |x | < k; we prove it for |x | = k. Let x be an overlap-
free word of length ≥ 3. Write x = az, where a ∈ �2 and z ∈ �∗

2 . The word z
is overlap-free. Since |z| < |x |, the induction hypothesis shows that z = uµ(y)v,
where u, v ∈ {ε,0,1,00,11}.

If u = ε or if u = a, then x = (au)µ(y)v gives the desired factorization.
If u = a, then x = (aa)µ(y)v and we get the factorization x = µ(ay)v.
If u = a a, then x begins with aaa, which is impossible.
If u = a a, then x = a a a µ(y)v.

If |y| = 0, then x = a a a v. Hence v ∈ {ε, a, aa}. The three corresponding desired fac-
torizations for x are respectively x = µ(a)a, x = µ(aa), and x = µ(aa)a.
If |y| = 1, then y = a, hence x = a a a a a v. Thus, if v = ε, then x = µ(aa)a. If v = a,
then x = µ(a a a). If v = a, then x = µ(aa) a a. If v = aa, then x = µ(a a a)a. Finally,
v cannot be equal to a a, because then x would contain the overlap a a a.
If |y| ≥ 2, then |µ(y)| ≥ 4. But µ(y) cannot begin with aa; hence by Lemma 1.7.1, µ(y)
must begin with aaaa. This is not possible for the image of a word under µ; hence this
case cannot occur.

We now show that the factorization above is unique provided |x | ≥ 7. Suppose
x is an overlap-free word of length ≥ 7, and suppose

x = uµ(y)v = u′µ(y′)v′, (1.5)

where y and y′ are overlap-free words in�∗
2 , and u, v, u′, v′ ∈ {ε,0,1,00,11}. We

note that the assumption |x | ≥ 7 implies that |y|, |y′| ≥ 2, since |µ(y)|, |µ(y′)| ≥ 3.

If |u| = |u′|, then u = u′; hence µ(y)v = µ(y′)v′. Hence |v| ≡ |v′| (mod 2).
If |v| = |v′|, then v = v′; hence µ(y) = µ(y′), which gives y = y′, and the two factor-
izations of x are identical.
If |v| �= |v′|, then |v| = 2 and |v′| = 0 (or vice versa); say, µ(y)v = µ(y′). The word v
is equal to 00 or 11, and must be a suffix of the word µ(y′), and hence equal to µ(0) or
µ(1), a contradiction.

Suppose |u| �= |u′|. Without loss of generality, assume |u′| < |u|. Then u′ is a prefix of
u. Let u = u′w, with w �= ε. Then, by canceling u′ from both sides of Eq. (1.5), we get
wµ(y)v = µ(y′)v′. Since y′ is not empty, the word w is a prefix of µ(y′), and hence cannot
be equal to 00 or 11. This implies that w = a ∈ �2. Then aµ(y)v = µ(y′)v′. So we have
|v| �≡ |v′| (mod 2); hence |v| �= |v′|.

If |v| < |v′|, then v is a suffix of v′, say v′ = zv, with z �= ε. Hence aµ(y) = µ(y′)z.
Now z has odd length; hence it must be a letter b ∈ �2 (remember that |v′| ≤ 2). But
then aµ(y) = µ(y′)b, which is not possible from Lemma 1.7.2, since then aµ(y) would
be equal to a (a a)|y| and hence would contain an overlap, as |y| ≥ 2.
If |v′| < |v|, then v′ is a suffix of v, say v = zv′, with z nonempty. Hence aµ(y)z = µ(y′).
Now z has odd length, hence it must be a letter b ∈ �2. But then aµ(y)b = µ(y′). Hence
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Table 1.1.

x u x u x u x u

0010011 · · · 00 0100110 · · · 0 1001011 · · · ε 1011010 · · · 1
0010110 · · · 0 0101100 · · · ε 1001100 · · · ε 1100100 · · · 1
0011001 · · · 0 0101101 · · · ε 1001101 · · · ε 1100101 · · · 1
0011010 · · · 0 0110010 · · · ε 1010010 · · · ε 1100110 · · · 1
0011011 · · · 0 0110011 · · · ε 1010011 · · · ε 1101001 · · · 1
0100101 · · · 0 0110100 · · · ε 1011001 · · · 1 1101100 · · · 11

x v x v x v x v

· · ·0010011 1 · · ·0100110 ε · · ·1001011 1 · · ·1011010 ε
· · ·0010110 ε · · ·0101100 0 · · ·1001100 0 · · ·1100100 00
· · ·0011001 ε · · ·0101101 1 · · ·1001101 1 · · ·1100101 ε
· · ·0011010 ε · · ·0110010 0 · · ·1010010 0 · · ·1100110 ε
· · ·0011011 11 · · ·0110011 1 · · ·1010011 1 · · ·1101001 ε
· · ·0100101 ε · · ·0110100 0 · · ·1011001 ε · · ·1101100 0

y′ must begin with a, say y′ = at , with t �= ε, since |y| ≥ 2. Henceµ(y)b = a µ(t). This
is again not possible, using Lemma 1.7.2 and the fact that |y| ≥ 2.

Finally in this factorization of x , the word u (v) depends only on the prefix (suffix)
of x of length 7. This is shown in Table 1.1, which gives all possible prefixes
(suffixes) of length ≥ 7: by inspection, we see that the word u (v) is uniquely
determined, assuming the factorization does indeed exist. (Note, however, that some
of the words in the table, e.g., 0011011, might not be extendable to longer overlap-
free words.)

The bound 7 is best possible, as shown by the example x = 001011, which has
the two different factorizations x = 00µ(1)11 = 0µ(00)1.

(b): For any prefix xn of x such that, say, |xn| = n, part (a) gives the existence
of un, vn ∈ {ε,0,1,00,11} and an overlap-free word yn ∈ �∗

2 such that xn =
unµ(yn)vn . Furthermore, un does not depend on n for n ≥ 7. Define u = u7. Hence
x = limn→∞ xn = limn→∞ uµ(yn)vn . Since |µ(yn)| goes to infinity, this implies
x = limn→∞ uµ(yn). Hence limn→∞ µ(yn) exists, which gives the existence of y =
limn→∞ yn . This sequence is overlap-free, as it is a limit of overlap-free words; and
we have x = uµ(y).

Write xn = uµ(yn)vn for n ≥ 7. Now |vn| ≤ 2; henceµ(yn)vn is a prefix ofµ(yk)
for k sufficiently large. Hence vn is a prefix of the image by µ of some word. It
follows that in the factorization of xn , the word vn cannot be equal to 00 or 11,
since these two words are not images of a word by µ.

Hence vn is either empty or is equal to 0 or 1. Finally, inspecting Table 1.1 shows
that the prefix of length 4 of a 7-letter word determines the word u in all cases but
the two cases where the word begins with 0010 or 1101, when we need to look
at the prefix of length 5. �
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Lemma 1.7.6 Letw ∈ �∗
2 be an overlap-free word with |w| ≥ 52. Thenw contains

µ3(0) = 01101001 and µ3(1) = 10010110 as subwords.

Proof. Since w is overlap-free, we know by Proposition 1.7.5(a) that we can write

w = α µ(w′) η, (1.6)

with |w′| ≥ 24. Further, by the same result, we know w′ is overlap-free.
Similarly, we can write

w′ = βµ(w′′) θ, (1.7)

with w′′ overlap-free and |w′′| ≥ 10.
Finally, we can write

w′′ = γµ(y)ζ (1.8)

with y overlap-free and |y| ≥ 3.
Now, putting together Eqs. (1.6)–(1.8), we get

w = α µ(β)µ2(γ )µ3(y)µ2(ζ )µ(θ ) η

where y is overlap-free, |y| ≥ 3, and α, β, γ, ζ, η, θ ∈ {ε,0,1,00,11}. Since y is
overlap-free, it contains both 0 and 1, and thus µ3(y) contains both words µ3(0) =
01101001 and µ3(1) = 10010110. So does w. �

We can now prove the following theorem on overlap-free morphisms.

Theorem 1.7.7 Let µ be the morphism defined by µ(0) = 01 and µ(1) = 10. Let
E be the morphism defined by E(0) = 1 and E(1) = 0. Let h : �∗

2 → �∗
2 be a

nonerasing morphism. If the image by h of any overlap-free binary word of length
3 is overlap-free, then there exists an integer k ≥ 0 such that either h = µk or
h = E ◦ µk .

Proof. Let h(0) = u and h(1) = v with |u|, |v| ≥ 1. We prove the result by induc-
tion on |u| + |v|.

By hypothesis uuv = h(001) is overlap-free; hence u and v cannot begin with
the same letter. In the same way, uvv = h(011) is overlap-free; hence u and v

cannot end with the same letter. Let u = a · · · = · · · b and v = a · · · = · · · b, with
a, b ∈ �2.

Now neither u nor v can begin or end in 00 or 11: if u = aa · · · , then since
u = · · · b and v = · · · b, we have uu = · · · baa · · · and vu = · · · baa · · · . Then
one of these words contains the cube, and uu is a subword of h(001) and vu is a
subword of h(100). In the same way, u cannot end in the square of a letter in �2,
and v cannot begin or end in the square of a letter in �2.
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The base case of the induction is |u| + |v| = 2. If |u| = |v| = 1, then we are
done, and either h = µ0 or h = E ◦ µ0.

Now suppose the result is true for all u, v with |u| + |v| < j . We prove it for
|u| + |v| = j . Suppose that |u| ≥ 2. We claim that |v| ≥ 2. For if |v| = 1, sayv = b,
then, from what precedes, u begins with bb and ends with bb. Hence, h(010) = uvu
contains the overlap bbbbb.

Similarly, if |v| ≥ 2, then |u| ≥ 2. Thus we can suppose |u|, |v| ≥ 2.
Let us write u = aa · · · = · · · bb and v = aa · · · = · · · bb. We will prove that

u = µ(w) for some w ∈ �∗
2 .

If |u| = 2, then u = a a = b b = µ(a).
If |u| = 3, then a = b, whence a = b, and we have u P = aaa and v= · · · aa. Then

vu = · · · aaaaa would contain an overlap although it is a subword of vuu =
h(100).

If |u| = 4, then u = a a b b = µ(a b).
If |u| ≥ 5, then u = a a z b b for some word z ∈ �∗

2 of length ≥ 1. Hence
vuv = · · · bbaazbbaa · · · . There are now two cases to consider.

Case 1: b = a. Then vuv = · · · aaaazaaaa · · · . We know that |z| ≥ 1, and
clearly z cannot begin in a; hence let z = at , with t ∈ �∗

2 . Then vuv = · · ·
a a a a a t a a a a · · · . Now t cannot be the empty word, for otherwise vuv would
contain the cube a a a. Furthermore t cannot end in a. Let t = xa for a word
x ∈ �∗

2 . Hence vuv = · · · a a a a a x a a a a a · · · . The word a a a x a a a is a sub-
word of vuv = h(101) and thus overlap-free. Hence we can apply the existence
and uniqueness of the factorization of this word given by Proposition 1.7.5 to obtain
that a a a x a a a = εµ(y1)ε, i.e., u = µ(y1).

Case 2: b = a. Then vuv = · · · a a a a z a a a a · · · . By again applying the exis-
tence and uniqueness of the factorization given by Proposition 1.7.5, we obtain that
a a a a z a a a a = εµ(y2)ε; hence y2 begins and ends in a, say y2 = a y3a. Hence,
u = a a z a a = µ(y3).

The same reasoning shows that v is also the image by µ of a word in �∗
2 .

Hence there exist two words u′ and v′ such that u = µ(u′) and v = µ(v′). Looking
at the morphism h′ defined by h′(0) = u′ and h′(1) = v′, we see that h = µ ◦ h′;
hence the image by h′ of any overlap-free word of length 3 is overlap-free by
Lemma 1.7.4. Furthermore |u′| < |u| and |v′| < |v|. Hence the induction hypothesis
applies, and h′ = µk or h′ = E ◦ µk . (Note that E ◦ µ = µ ◦ E .) The result now
follows. �

The following corollary is easily obtained.

Corollary 1.7.8 With the same notation as above, let h be a morphism on the
alphabet �2 such that h(01) �= ε. Then the following conditions are equivalent.

(a) The morphism h is nonerasing and maps any overlap-free word of length 3 to an
overlap-free word.
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(b) There exists k ≥ 0 such that h = µk or h = E ◦ µk .
(c) The morphism h maps any infinite overlap-free word to an infinite overlap-free word.
(d) There exists an infinite overlap-free word whose image under h is overlap-free.
(e) The morphism h maps the word 01101001 to an overlap-free word.

Proof. (a) =⇒ (b) was proved in Theorem 1.7.7 above.
(b) =⇒ (c) is an easy consequence of Lemma 1.7.4.
(c) =⇒ (d): It suffices to know that there exists an infinite overlap-free word: the

Thue–Morse word is an example, by Theorem 1.6.1.
(d)=⇒ (e): The hypothesis asserts the existence of an infinite overlap-free infinite

word x whose image under h is overlap-free. Using Lemma 1.7.6 above, we see that
x contains the subword 01101001, hence the image h(01101001) is certainly
overlap-free.

(e) =⇒ (a): If h(0) = ε, then since h(01) �= ε, we know h(1) �= ε. Then
h(01101001) = h(1)4 contains an overlap, a contradiction. Similarly, h(1) �= ε.
Thus h is nonerasing. But every overlap-free word of length 3 on �2 is a subword
of 01101001, and we are done. �

We say a morphism h : �∗
2 → �∗

2 is the identity morphism if h(0) = 0 and
h(1) = 1. The following corollary completely characterizes the binary sequences
that are fixed points of non-identity morphisms.

Corollary 1.7.9 An infinite overlap-free binary word is a fixed point of a non-
identity morphism if and only if it is equal to t, the Thue–Morse word, or its
complement t.

Proof. Let h be a non-identity morphism on the alphabet �2. Let x be a fixed point
of h that is overlap-free. Using Corollary 1.7.8 above, we see that the morphism
h, mapping an overlap-free infinite word to an overlap-free infinite word, must be
of the form µk or E ◦ µk , for some k ≥ 0. Since h has a fixed point, it cannot be
of the form E ◦ µk . Since h is non-identity, h = µk for some k ≥ 1. But t and t
are the only fixed points of µk , and the corollary is proved. �

1.8 Additional Topics on Repetitions

There are many other topics dealing with repetitions in words. We content ourselves
with a brief survey.

We can define the concept of fractional power. We say a (finite or infinite) word
w contains an α-power (real α > 1) if w has a subword of the form x�α�x ′ where
x ′ is a prefix of x and |x�α�x ′| ≥ α|x |. For example, the word

2301
︷ ︸︸ ︷
01234567

︷ ︸︸ ︷
01234567

︷ ︸︸ ︷
0123 310

has a 5
2 -power. A word is α-power-free if it contains no α-power.
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Given an infinite word w it is an interesting and challenging task to determine
its critical exponent e, such that w contains α-powers for all α < e, but has no
α-powers for α > e. (It may or may not have e-powers.)

Theorem 1.8.1 The critical exponent of the Thue–Morse word t is 2.

Proof. The word t begins 011 · · · and hence contains a square. If t contained a
(2 + ε)-power for any ε > 0, then it would contain an overlap. But t is overlap-free,
by Theorem 1.6.1. �

There also exist various generalizations of squarefreeness. We say a word is an
abelian square if it is of the form ww′ where w′ is a permutation of w. A word is
abelian squarefree if it contains no abelian squares. It is possible to prove that there
exists an infinite abelian squarefree sequence on 4 symbols; see the Notes (Section
1.11) for more information.

Another generalization is to study more general pattern avoidance problems. Let
w, p be words. We say w avoids the pattern p if there does not exist a nonerasing
morphism h such that h(p) is a subword of w. For example, w avoids the pattern
xx if and only if w is squarefree, and w avoids the pattern xxx if and only if w
is cubefree. We say that pattern p is avoidable on a k-letter alphabet �k if there
exists x ∈ �ω

k such that x avoids p. Clearly x and xyx are not avoidable on finite
alphabets. However, xx is avoidable on a 3-letter alphabet, by Theorem 1.6.2, and
xyxyx is avoidable on a 2-letter alphabet, by Theorem 1.6.1.

1.9 Exercises

1. What are the shortest overlap-free words which are not subwords of t, the
Thue–Morse infinite word?

2. Show that a set S of infinite words is perfect (see Section 1.2) if, for all w ∈ S
and all integers n ≥ 0, there exists a word v ∈ S \ {w} such that v and w have
a common prefix of length ≥ n.

3. Prove that exp(h) ≤ Card Mh , where exp is the mortality exponent. (See Sec-
tion 1.4.)

4. Suppose w is a purely periodic right-infinite word, of period j and k. Show
that w is periodic of period gcd( j, k).

5. In this exercise we explore a property of two-sided infinite words. We say a
two-sided infinite word w = · · · c−2c−1c0c1c2 · · · is periodic if there exists an
integer p ≥ 1 such that ck = ck+p for all integers k ∈ Z. Show that w is periodic
if and only if there exist a right-infinite word x and an infinite sequence of
negative indices 0 > i1 > i2 > · · · such that x = ci j ci j+1ci j+2 · · · for all j ≥ 1.

6. Suppose w is an ultimately periodic infinite word. Show that the frequency of
each letter in w exists and is rational.
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7. Suppose w is an infinite word. We define its sequence of run lengths to be a word
over the alphabet N∪ {∞} giving the number of adjacent identical elements.
For example, the sequence of run lengths of 0110001111000001 · · · is
12345 · · · . Show that
(a) if w is ultimately periodic, then the sequence of run lengths of elements of w is

finite or ultimately periodic;
(b) the converse is true if w is over an alphabet with≤ 2 letters, but is false for alphabets

of size ≥ 3.

8. Suppose w1,w2, . . . ,w j are ultimately periodic infinite words over �2 =
{0,1}. Show that any integer linear combination of the wi is ultimately
periodic.

9. Let x, y ∈ �∗ be words. Show that there exists z ∈ �∗ such that x2 y2 = z2 if
and only if xy = yx .

10. In the Lyndon–Schützenberger theorems, we proved a necessary and sufficient
condition for xy = yx and xy = yz. Find similar necessary and sufficient
conditions for the following to hold:
(a) xy = y R x ;
(b) xy = y Rz.

11. Let x, y, z, w be words. Find necessary and sufficient conditions for the fol-
lowing two equations to hold simultaneously: xy = zw and yx = wz.

12. Find all solutions to the system of equations x1x2x3 = x2x3x1 = x3x1x2 in
words.

13. Recall the definition of the Möbius function µ from Section 1.5.
Prove the Möbius inversion formula: if g(n) = ∑

d | n f (d), then f (n) =
∑

d | n µ(n/d)g(d).
14. Show that there are no squarefree words of length > 3 over a 2-letter alphabet.

Show that there are no abelian squarefree words of length > 8 over a 3-letter
alphabet.

15. Show that the binary word

001001011001001011001011011 · · · ,
obtained by iterating the morphism h mapping 0 → 001 and 1 → 011, is
cubefree.

16. Show that Jacobs’s “Mephisto waltz” infinite word

001001110001001110110110001 · · · ,
obtained by iterating the morphism which maps 0 → 001 and 1 → 110, is
fourth-power-free.

17. (Berstel) A Langford string is a nonempty word over the infinite alphabet
{2,3,4, . . . } such that two consecutive occurrences of the letter a are separated
by exactly a − 1 letters. For example, 24262425262 is a Langford string.
Prove that every Langford string is squarefree.
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18. (Euwe and Morse) According to official rule (10.12) of the game of chess,
a player can claim a draw if “at least 50 consecutive moves have been made
by each side without the capture of any piece and without the movement of
any pawn”. Actually, this is not enough to accommodate checkmate for certain
positions, such as king + rook + bishop versus king + 2 knights, so the rule also
stipulates that “This number of 50 moves can be increased for certain positions,
provided that this increase in number and these positions have been clearly
announced by the organisers before the event starts.” Another rule (10.10)
allows a draw to be claimed if the same position occurs for the third time. By
“same position” we mean that the pieces are in the same position, including
the rights to castle or capture a pawn en passant. Without these two rules,
infinite games are clearly possible. However, can rule (10.10) be weakened
and still disallow infinite chess games? Consider the following alternative rule:
a draw occurs if the same sequence of moves occurs twice in succession and is
immediately followed by the first move of a third repetition. Using an infinite
overlap-free sequence, show that this formulation would permit an infinite
game of chess.

19. Find some examples of words in languages other than English that are squares,
cubes, fourth powers, overlaps, or palindromes.

20. Find an English word containing two distinct squares, each of length ≥ 4.
21. Is the decimal expansion of π squarefree? Cubefree? How about the decimal

expansion of
√

2, or e?
22. Let u(n) denote the number of overlap-free binary words of length n. Show

that u(n) is bounded by a polynomial in n.
23. Let w = c0c1c2 · · · = 0010011010010110011 · · · be the infinite word de-

fined by cn = the number of 0’s (mod 2) in the binary expansion of n. Show
that w is overlap-free.

24. Show how to extend the Thue–Morse infinite word t on the left to a two-sided
infinite word that is still overlap-free. Is there only one way to do this?

25. Show that the Thue–Morse word avoids the pattern α2βα2β.
26. Give another proof of the Fine–Wilf theorem (Theorem 1.5.6) as follows:

without loss of generality assume the symbols of a and b are chosen from Q. Let
X be an indeterminate, and let A(X ) := ∑

i≥0 ai Xi and B(X ) := ∑
i≥0 bi Xi .

Since a (respectively b) is purely periodic, we have A(X ) = (1 − Xm)−1 P(X )
and B(X ) = (1 − Xn)−1 Q(X ) for a polynomial P of degree< m (respectively
Q of degree < n). Then

H (X ) := A(X ) − B(X ) = (1 − Xgcd(m,n))(1 − Xm)−1(1 − Xn)−1 R(X )

where R is a polynomial of degree < m + n − gcd(m, n). Now the first
m + n − gcd(m, n) coefficients of H are 0, so R = 0, and hence H = 0.

27. Prove that the bound of m + n − gcd(m, n) in the Fine–Wilf theorem (Theo-
rem 1.5.6) is best possible.
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28. Prove the following theorem: for all integers m, n with 1 ≤ m ≤ n, there exist
finite words x, y, z ∈ {0,1}∗ with |x | = m, |yz| = n such that the first m +
n − 2 symbols of xω coincide with yzω, but there is a mismatch at the (m +
n − 1)th symbol. Also show that this bound of m + n − 1 is best possible.

29. Let m, n be distinct integers ≥ 0. What is the length of the longest word over Z

with the property that every subword of length m has a positive sum, but every
subword of length n has a negative sum?

30. Let h be the morphism defined by h(a) = abcab; h(b) = acabcb; and
h(c) = acbcacb. Show that limn→∞ hn(a) is squarefree.

31. Let � = {0,1}, and for w ∈ �ω let w denote the image of w under the coding
that maps 0 → 1 and 1 → 0. Let S be the shift map, as defined in Section 1.1.
Show that if w is the least non-ultimately-periodic infinite word such that
w ≤ Sk(w) ≤ w for all k ≥ 0, then w = S(t), where t is the Thue–Morse
word.

32. Let h be the morphism defined over {a,b,c,d} by h(a) = abcd, h(b) =
bacd, h(c) = cabd, and h(d) = cbad. Let (wn)n≥1 be defined by wn =
hn(a). Show that wn is squarefree for n ≥ 1.

33. In this exercise we explore some alternative constructions of c, the infinite
squarefree word introduced in Section 1.6.
(a) Let t0t1t2 . . . be the Thue–Morse word. Define bn = τ (tn, tn+1), where

τ (0,0) = 1, τ (0,1) = 2;

τ (1,0) = 0, τ (1,1) = 1.

Show that c = b0b1b2 . . . .
(b) Let f be the morphism mapping 2 → 210, 1 → 20, and 0 → 1. Show that

f (c)= c.
(c) Let g be the morphism mapping a → ab, b → ca, c → cd, d → ac, and let τ

be the coding mapping a → 2, b → 1, c → 0, d → 1. Show that c = τ (gω(a)).

34. Develop efficient algorithms to check if a finite word is squarefree, or overlap-
free.

35. Show that there are an uncountable number of infinite squarefree words over a
three-letter alphabet.

36. Define ν2(n) to be the ruler function, i.e., the exponent of the largest power of
2 that divides n. Show that the infinite word (over the infinite alphabet N)

ν2(1)ν2(2)ν2(3) · · · = 0102010301020104 · · ·
is squarefree.

37. For every real number� ≥ 2, do there exist infinite words over a finite alphabet
that have � as a critical exponent?

38. (Allouche) Let t0t1t2 · · · be the Thue–Morse sequence. Let n ≥ 1 be an integer,
and let 0 ≤ j < 2n . Let sgn x = −1 if x < 0; 0 if x = 0; and 1 if x > 0.
(a) Show that sgn

(∏
0≤i<n sin(2i x)

) = (−1)t j for all x ∈ ( jπ/2n, ( j + 1)π/2n).
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(b) Let x be a real number, and let n be an integer ≥ 1. Show that

∏

0≤l<2n

sin(2l x) = (−1)n+1

22n−1

∑

0≤ j<22n−1

(−1)t j cos((2 j + 1)x).

39. Give an O(kn2) algorithm for determining whether a word s of length n over
an alphabet � of size k contains an abelian square. Can this running time be
improved?

40. Let � be a finite alphabet, and let A be an infinite subset of �∗. Show by
means of an example that there need not be an infinite word w ∈ �ω such that
infinitely many members of A are prefixes of w.

41. Prove the following version of the König infinity lemma: let � be a finite
alphabet, and let A be an infinite subset of �∗. Prove that there exists an
infinite word w ∈ �ω such that any prefix of w is a prefix of at least one word
in A.

42. (Currie) Let w ∈ {0,1,2}+. We say w is a minimal square if w is a square
(i.e., w = xx for some x ∈ {0,1,2}+) and no proper nonempty subword of w
is a square. Show there are infinitely many distinct minimal squares.

43. A border of a finite word w is a word x �∈ {ε,w} that is both a prefix and a
suffix of w. A word w is said to be unbordered if it has no borders. Define
b0 = 1, and for n ≥ 1 define b2n+1 = kb2n , b2n = kb2n−1 − bn .
(a) Show that there are bn unbordered words of length n over a k-letter alphabet. Note:

Unbordered words are sometimes called “bifix-free” or“primary” in the literature.
(b) Prove that b2n/k2n +∑

1≤i≤n bi k−2i = 1.

44. Show that all prefixes of the Thue–Morse infinite word t are primitive. Conclude
that a primitive word of arbitrary length can be generated in linear time.

45. Show how to determine if a word w is primitive in linear time. Furthermore,
show how to determine the largest k such that w = xk in the same time bound.

46. Show how to generate a random primitive word in expected linear time.
47. Let k ≥ 2 be an integer. Show that the set of all subwords of the primes ex-

pressed in base k is {0,1, . . . , k − 1}∗.
48. Let µ : 0 → 01,1 → 10 be the Thue–Morse morphism.

(a) Show that the lexicographically least infinite overlap-free word over �2 = {0,1}
starting with 1 is µω(1).

(b) Show that the lexicographically least infinite overlap-free word starting with 0 is
001001ϕω(1).

(c) What is the lexicographically least infinite overlap-free word over �2 that can be
extended to a two-sided infinite overlap-free word?

49. Define w1 = 01, and wn+1 = wnwnw
R
n for n ≥ 1. Prove that all the words wi ,

i ≥ 1, are cubefree. Can limi→∞wi be generated as the image of the fixed point
of a uniform morphism?

50. Suppose w is a primitive word, and suppose w = uv, where u and v are both
nonempty palindromes. Show that this factorization into palindromes is in fact
unique.



1.9 Exercises 29

51. Let x, y ∈ �+. We say x is a conjugate of y, and we write x ∼ y, if there exist
u, v ∈ �∗ such that x = uv and y = vu. In other words, x is a cyclic shift of
the symbols of y.
(a) Show that ∼ is an equivalence relation.
(b) Suppose x ∈ �+, j ≥ 1, is an integer, and there exist u, v ∈ �∗ such that x j = uv.

Then there exist r, s ∈ �∗ such that x = rs, and vu = y j for y = sr .
(c) Suppose w is primitive and w ∼ x . Then x is primitive.
(d) Supposew, x are primitive words and there exist i, j ≥ 1 such thatwi ∼ x j . Then

w ∼ x .

52. Let i, j, k ≥ 2 be integers. Consider the equation in words xi y j = zk . Show
that the only solutions x, y, z to this equation are of the form x = wa , y = wb,
and z = w(ai+bj)/k , where k | ai + bj .

53. Let t = t0t1t2 · · · be the Thue–Morse sequence. Show that tn = 0 for infinitely
many integers n that are either prime or the product of two primes.

54. Let k ≥ 2 be an integer, and let �k = {0, 1, . . . , k − 1}. Show that if k = 5,
then it is possible to construct an infinite word over � that simultaneously
avoids xx and xx ′, where x ′ denotes (x + 1) mod k, while if k ≤ 4, this is not
possible.

55. Let k ≥ 2 be an integer, and let �k = {0, 1, . . . , k − 1}. Show that if k = 3, it
is possible to construct an infinite word over � that avoids xx ′, where |x | =
|x ′| ≥ 2 and x ′ ≡ x + a (mod k) for all a, while if k = 2, this is not possible.

56. Is the Thue–Morse sequence mirror-invariant, that is, if w is a finite subword
of t, need wR also be a subword of t?

57. Let M(n) be the maximum number of distinct squares occurring in any binary
word of length n. Show that �n/2� ≤ M(n) < 2n for all n > 0.

58. (Friedman) Let n(k) be the length of the longest sequence w = (a(i))1≤i≤n

over the alphabet {1, 2, . . . , k} with the following property: there do not exist
two subwords w[i..2i], w[ j..2 j] with 1 ≤ i < j ≤ n/2 such that the first is a
subsequence of the second. (We say x is a subsequence of y if we can obtain
x by striking out 0 or more letters of y.)
(a) Show that n(k) is well defined (i.e., there really is a longest sequence) for all k ≥ 1.
(b) Compute n(k) for k = 1, 2, 3, 4.

59. In analogy with Exercise 58, does there exist an infinite word x over the alphabet
�3 = {0,1,2} such that for all i, j with 1 ≤ i < j we have that x[i..2i] is not
a subword of x[ j..2 j] ?

60. Let f (n, k) denote the number of primitive words over {0, 1} of length n that
contain exactly k ones. Show that

f (n, k) =
∑

d | gcd(k,n)

µ(d)

(
n/d

k/d

)

.

61. Show that no infinite squarefree word over �3 = {0,1,2} can contain all
possible finite squarefree words.
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62. Show that if x, y ∈ �∗ with xy �= yx , then xyxxy is primitive.
63. What is the expected number of consecutive letters of an infinite word over

{0,1} that must be examined until an overlap is found? Express your answer
in terms of (g(n))n≥0, the number of distinct overlaps of length n, and estimate
it numerically.

64. Give an unambiguous context-free grammar that generates the well-formed
regular expressions over {0,1}.

65. Prove that there exists a cubefree infinite word over {0,1} without arbitrarily
large squares.

66. What name in the index to this book contains a cube?

1.10 Open Problems

1. Show that for k ≥ 5 every sufficiently long word over a k-letter alphabet con-
tains a k/(k − 1) power, and this bound is best possible. (Remark: This is
Dejean’s conjecture; see the notes to Section 1.8 in Section 1.11 below for
further information.)

2. Characterize the lexicographically least squarefree word over {0,1,2}.
3. Is there a patternwwhich is avoidable on 5 letters but not on 4 letters? (Remark:

See Baker, McNulty, and Taylor [1989]; Currie [1993].)
4. (Currie) Give a simple closed form for the number c(n) of squarefree words

of length n over the 3-letter alphabet {0,1,2}. (Remarks: See the notes to
Section 1.6 in Section 1.11 below, or Currie [1993].)

5. (Currie) Recall the definition of perfect set from Exercise 2.
(a) Is the set of cubefree infinite words over {0,1} perfect?
(b) Prove or disprove: if a pattern p is avoidable on �, then the set of infinite words

on � avoiding p is a perfect set.

6. Is there an algorithm which, given a pattern p and a natural number k, decides
whether p is avoidable on k letters? (Remark: See Bean, Ehrenfeucht, and
McNulty [1979]; Currie [1993].)

7. Suppose two morphisms ϕ, ρ commute on all elements of�. What can be said
about them?

8. Supposew, y ∈ {0,1,2}∗ with the property thatwx is squarefree for infinitely
many words x ∈ {0,1,2}∗ and xy is squarefree for infinitely many words
x ∈ {0,1,2}∗. Prove or disprove: there exists a word z ∈ {0,1,2}∗ such that
wzy is squarefree. (Remark: See, e.g., Restivo and Salemi [1985b].)

9. Letw ∈ {0,1,2}+ be a squarefree word. If there is an integer n ≥ 1 such that
(a) there exists a word y with |y| = n − 1 such that wy is squarefree, and
(b) wx is not squarefree for all x with |x | ≥ n,

then we say w is of s-index n. For example, 0102010 is of s-index 1, and

021012010201202101201020

is of s-index 2. Prove or disprove that there exist words of arbitrarily large
s-index.
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10. Let t = t0t1t2 · · · be the Thue–Morse sequence. Prove or disprove that there
exist infinitely many primes p such that tp = 0. (Remarks: This problem is
apparently due to Gelfond. Olivier [1971a] claimed a proof, but it is apparently
incomplete. See Montgomery [1994, Item 67, p. 208]. Also see Dartyge and
Mauduit [2000].)

11. Let t = t0t1t2 · · · be the Thue–Morse sequence, and define u = (tn2 )n≥0. Does
u contain arbitrarily long squares?

12. Minimal squares were defined in Exercise 42. Let sn be the number of length-n
minimal squares over {0,1,2}.
(a) Given an efficient algorithm to compute sn .
(b) Estimate sn asymptotically.
(c) Are there infinitely many indices n for which sn = 0?

1.11 Notes on Chapter 1

1.1 The books of Lothaire [1983, 2002] are good introductions to combinatorics
on words, as is Choffrut and Karhumäki [1997].

Europeans tend to use the term “factor” for what we call “subword”, and they
use “subword” to mean a word obtained by deleting some letters, not necessarily
adjacent, from a given word – what we call “subsequence”.

The notation w̃ is sometimes used in the literature to denote the reversalwR .
In the literature, an infinite word is sometimes called an ω-word.
Two-sided infinite words are also called “bi-infinite” or “doubly infinite”

in the literature. The term “bisequence” is also sometimes used. Our notation
comes from Beauquier [1985] and Nivat and Perrin [1982, 1986]. The set of
two-sided infinite words is sometimes denoted ω�ω.

For algorithms to detect palindromes in words, see, for example, Apostolico,
Breslauer, and Galil [1992, 1995].

1.2 Kelley [1955] is a good reference for topology. For topology of infinite words,
see, for example, Perrin and Pin [1993].

For measure theory, see, for example, Halmos [1950].
1.3 Hopcroft and Ullman [1979] is a good introduction to the theory of languages.

Regular expressions were invented by Kleene [1956]. For properties of regular
expressions, see Brzozowski [1962] and S. Yu [1997].

1.4 For more information about morphisms, see Hopcroft and Ullman [1979];
Harju and Karhumäki [1997].

In the literature, codings (1-uniform morphisms) are sometimes called
length-preserving morphisms. Nonerasing morphisms are sometimes called
ε-free, or propagating.

Primitive morphisms derive their name from the fact that their associated
incidence matrices M (see Section 8.2) are primitive. This means there exists
an integer e such that Me has all positive entries. For a good discussion of prim-
itive matrices, see, for example, Minc [1988].
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1.5 Levi’s lemma is due to Levi [1944].
For Theorems 1.5.2 and 1.5.3, see Lyndon and Schützenberger [1962]. The-

orem 1.5.6 is due to Fine and Wilf [1965]. For other proofs of these facts, see,
e.g., Lothaire [1983]. For another simple proof of the Fine–Wilf theorem, see
Halava, Harju, and Ilie [2000].

For generalizations of the Fine–Wilf theorem, see Giancarlo and Mignosi
[1994]; Castelli, Mignosi, and Restivo [1999]; Berstel and Boasson [1999];
Justin [2000]; Mignosi, Shallit, and Wang [2001]; Blanchet-Sadri and
Hegstrom [2002].

There is a large literature on primitive words and their properties; for an in-
troduction, see Lothaire [1983] and Shyr [1991]. The term “primitive” seems to
be due to Lyndon and Schützenberger [1962], and Theorem 1.5.4 appears there.
For other papers, see Shyr and Thierrin [1977]; M. Ito, Katsura, Shyr, and Yu
[1988]; M. Ito and Katsura [1991]; Shyr and Tu [1991]; Dömösi, Horváth, and
Ito [1993]; Grounds and Silberger [1993]; Dömösi, Horváth, Ito, Kászonyi, and
Katsura [1993, 1994a, 1994b]; Shyr and Yu [1994a, 1994b, 1994c]; Petersen
[1994, 1996]; Horváth [1995]; Chang and Shyr [1995]; Shyr [1996]; Pǎun and
Thierrin [1997]; Mitrana [1997a, 1997b]; Kászonyi and Katsura [1997]; Kari
and Thierrin [1998]; Horváth and Ito [1999]; Dömösi, Hauschildt, Horváth,
and Kudlek [1999]; Păun, Santean, Thierrin, and Yu [2002].

1.6 The literature on repetitions in words is huge. Allouche [1984] and particularly
Berstel [1984a] are surveys of the area. A reasonably complete bibliography
can be found in Guy [1994, §E21].

In the literature, the terms nonrepetitive, repeat-free, aperiodic, and strongly
primitive have sometimes been used in place of squarefree.

The Thue–Morse sequence t was introduced in Thue [1912], although it was
hinted at sixty years earlier by Prouhet [1851]. In an earlier paper, Thue [1906]
constructed an infinite squarefree word on three symbols. For a discussion,
in English, of Thue’s work, see Hedlund [1967] and especially Berstel [1992,
1995]. Morse [1921] introduced the sequence t independently, as did Mahler
[1927] and the Dutch chess master Max Euwe [1929]; see Exercise 18. (Euwe’s
work was the inspiration for some English cryptography during World War II;
see Good [1993].) Arshon [1937] introduced the Thue–Morse sequence in
a slightly disguised form (as a fixed point of the map 1 → 12, 2 → 21)
and observed that it was cubefree. Gardner [1961a, 1961b] popularized the
problem of finding an infinite squarefree string in his Mathematical Games
column; the columns were reprinted in Gardner [1967a, pp. 32–33, 90–95].
Noland [1962] proposed the problem of finding an infinite squarefree word
over three symbols, and a solution was given by Braunholtz [1963]. Istrail
[1977] rediscovered previous results. Berstel [1978] showed that constructions
of Thue, Braunholtz, and Istrail all generate the same word, up to renaming.
Also see Berstel [1980a]. Pansiot [1981a] showed that t is generated by iterating
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a morphism only if that morphism is a power of the Thue–Morse morphism µ.
Restivo and Salemi [2002] discussed patterns that occur in t.

The Danish composer Per Nørgård (1932–) independently rediscovered the
Thue–Morse sequence, and used it in some of his compositions, such as the first
movement of his Symphony No. 3. Nørgård [1999] gives percussion composi-
tions that involve the Thue–Morse sequence. For more about the Thue–Morse
sequence in music, see the beginning of the Notes to Chapter 7.

Christol, Kamae, Mendès France, and Rauzy [1980] generalized Thue’s con-
struction by considering the parity of the number of occurrences of an arbitrary
pattern in the binary expansion of n. Černý [1986] studied the repetitions in
such sequences, as did Séébold [1985a, 1986].

In the literature, overlap-free words have been called both strongly cubefree
and weakly cubefree; another term used is irreducible. The French term for
overlap is chevauchement.

Gottschalk and Hedlund [1964] described all overlap-free binary words.
Fife [1980] gave a description of all infinite overlap-free words. Carpi
[1993a] found an alternative description, using a finite-state machine. Berstel
[1994] found an alternative presentation of Fife’s results. Also see Shur
[1996b].

Karhumäki [1981] showed it is decidable whether a binary morphism gen-
erates an overlap-free word. Restivo and Salemi [1983, 1985a] showed that
the number g(n) of overlap-free words of length n over a 2-letter alphabet
is O(nlog2 15). This was improved to g(n) = O(n1.7) by Kfoury [1988a], and
to g(n) = O(n1.587) by Kobayashi [1988]. In this last paper it is also proved
that g(n) = �(n1.155). Cassaigne [1993b] proved the surprising fact that if
β = inf{r : g(n) = O(nr )} and α = sup{r : nr = O(g(n))}, then α �= β.

Kfoury [1988a, 1988b] gave an O(n) algorithm to test whether a word con-
tains an overlap.

Many writers have constructed squarefree words through iterating a mor-
phism. For example, Hawkins and Mientka [1956] considered the word which
is the fixed point of the (nonuniform) morphism

a → bacbcacbabcbaca,

b → bacbabcbacbcacbaca,

c → bacbcabacabcbaca

and proved it is squarefree. Leech [1957] proved a similar result for a fixed
point of the 13-uniform morphism

0 → 0121021201210,

1 → 1202102012021,

2 → 2010210120102.
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His results were rediscovered by Elser [1983]. Zech [1958] used the 12-uniform
morphism

a → cacbcabacbab,

b → cabacbcacbab,

c → cbacbcabcbab.

Pleasants [1970] proved a similar result for the fixed point of the morphism
a → abcab, b → acabcb, and c → acbcacb; see also Harrison [1978,
§1.8]. Allouche, Astoorian, Randall, and Shallit [1994] showed that a sequence
derived from the tower of Hanoi is squarefree; see Exercise 6.3. Also see Hinz
[1996].

The topological properties of the set of squarefree words were investigated
by Shelton [1983]. Fife [1983] investigated similar questions for the set of
overlap-free words; also see Kobayashi [1986]. Currie and Shelton [1996a,
1996b] showed that the set of infinite kth-power-free words (1 < k < 2) is a
perfect set.

Karhumäki [1983] showed it is decidable whether a binary morphism gen-
erates an infinite cubefree word. Mossé [1992] showed for an infinite word w
which is the fixed point of a primitive morphism that either w is ultimately
periodic or there exists an integer n such that w is nth-power-free.

One of the most interesting applications of squarefree words is the Burnside
problem for groups. The exponent of a multiplicative group G is the smallest
positive integer e such that ae = 1 for all a ∈ G, if it exists; otherwise we
say G is of infinite exponent. Burnside [1902] asked whether every finitely
generated group of finite exponent must necessarily be finite. Suppose G has
m generators and exponent n. Then it is easy to see that G must be finite if
m = 1 or n = 2, so it suffices to consider the case m > 1. Burnside [1902]
proved that G must be finite for n = 3. The case n = 4 was resolved positively
by Sanov [1940], and the case n = 6 by Hall [1957, 1958]. Finally, Novikov
and Adian [1968] resolved Burnside’s question in the negative, showing that
G could indeed be infinite when m > 1 and n ≥ 4381 is odd. The proof is
extremely long and difficult, and makes use of squarefree words in an essential
way. The bound 4381 was improved to 665 by Adian [1979]. Britton [1973]
attempted to provide a simpler proof of Novikov and Adian’s results, but later
acknowledged (Britton [1980]) that his proof was flawed. Later, Ol’shanskii
[1982] gave a simpler geometric proof that G could be infinite for the case of odd
n > 1010, and Ivanov [1992, 1994] and Lysënok [1992, 1996] independently
answered Burnside’s question negatively for almost all n.

For more on the Burnside problem, see Hall [1964]; Magnus, Karrass, and
Solitar [1976, §5.12, 5.13]; Adian [1980]; and Gupta [1989].

One can generalize Burnside’s question to monoids and semigroups. For
example, if S is a finitely generated semigroup for which there exist integers
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m > n ≥ 0 such that xm = xn for all x ∈ S, must S necessarily be finite?
The answer is yes for (m, n) = (2, 1), as proved by Green and Rees [1952].
However, for (m, n) = (3, 2) the answer is no, and Morse and Hedlund [1944]
observed that a counterexample can easily be constructed using the infinite
squarefree word of Theorem 1.6.2; also see Brzozowski, Culik, and Gabrielian
[1971]. For more on the Burnside question in semigroups, see McNaughton
and Zalcstein [1975]; Lallement [1979, Chapter 10]; and de Luca [1983, 1990].

If a morphism h has the property that h(w) is squarefree ifw is, then it is called
squarefree. Several writers, such as Crochemore [1982a] and Ehrenfeucht and
Rozenberg [1982b], have studied the properties of such morphisms. Carpi
[1983a, 1983b] showed that any squarefree morphism on a 3-letter alphabet
must be of size at least 18; this bound is best possible. Similarly, De Felice
[1983] showed that the minimum width of a uniform squarefree morphism
on a 3-letter alphabet is 11. Keränen [1985, 1986] and Leconte [1985] stud-
ied the properties of kth-power-free morphisms. Richomme and Wlazinksi
[2000, 2002] proved that a morphism h is cubefree over {a,b} if and only
if h(aabbababbabbaabaababaabb) is cubefree. Wlazinski [2001] dis-
cussed test sets for k-power-free morphisms.

A naive algorithm running in O(n3) steps can detect squares in a word of
length n, but this can be considerably improved. Crochemore [1981] gave an
O(n log n) algorithm for the problem, as did Apostolico and Preparata [1983].
Crochemore [1983a, 1984, 1986] improved the result to O(n) provided the al-
phabet is of fixed size. Apostolico [1984] and Main and Lorentz [1984, 1985]
obtained similar results. Rabin [1985] gave a simple efficient randomized al-
gorithm for the square detection problem. Kosaraju [1994] gave an O(n) algo-
rithm to determine the shortest square beginning at every position of a word.
Crochemore and Rytter [1991], Apostolico [1992], Apostolico, Breslauer, and
Galil [1992], and Apostolico and Breslauer [1996] gave efficient parallel algo-
rithms for the square detection problem. Karhumäki, Plandowski, and Rytter
[2000] developed an O(n log n) algorithm to find the subword with the largest
(fractional) power in a given string. For other papers on algorithmic aspects
of repetitions, see Main [1989] and Kolpakov and Kucherov [1999b]. For a
survey on algorithmic problems in repetitions, see Smyth [2000].

One may ask how a finite squarefree or overlap-free word can be extended to
get a longer word with the same property. For results in this area, see Cummings
[1978, 1981]; Shelton [1981a, 1981b]; Shelton and Soni [1982]; and Currie
[1995a, 1996].

Read [1979] proposed the problem of enumerating the squarefree words over
a 3-letter alphabet. Brinkhuis [1983] proved that if s(n) denotes the number
of such words of length n and λ = infn≥1 s(n)1/n , then 1.029 < λ < 1.316.
Elser [1983] independently found weaker bounds. The upper bound has been
improved to 1.302128 by Noonan and Zeilberger [1999]. Brandenburg [1983]
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improved the lower bound to 1.032. (He also gave a similar result for the density
of cubefree words over a 2-letter alphabet, as did Edlin [1999].) Ekhad and
Zeilberger [1998] showed λ > 1.0416. Currently, the best lower bound is due
to Grimm [2001], who showed that λ > 1.109999. For more on enumeration
of ternary squarefree words, see Baake, Elser, and Grimm [1997].

Berstel [1979] showed it was decidable that an infinite word on three let-
ters obtained as the fixed point of a morphism is squarefree. De Luca [1984]
investigated the question of when the product of squarefree words is squarefree.

Although infinite binary words cannot be squarefree, it is possible to avoid
arbitrarily long squares. Such a word is sometimes said to be of bounded
repetition. This line was pursued by Entringer, Jackson, and Schatz [1974];
Dekking [1976]; Prodinger and Urbanek [1979]; Prodinger [1983]; Allouche
[1984]; P. Roth [1991]; and Allouche and Bousquet-Mélou [1994b].

The construction of squarefree and cubefree infinite words has been used
in other areas of mathematics. For example, Burris and Nelson [1971] used
t in a theorem on lattices of equational theories satisfying x2 = x3; also see
Ježek [1976]. Brzozowski, Culik, and Gabrielian [1971]; Goldstine [1976];
Reutenauer [1981]; Gabarró [1985]; and Main, Bucher, and Haussler [1987]
used this and similar constructions in formal language theory. Autebert,
Beauquier, Boasson, and Nivat [1979] conjectured that the set of all words
containing a square subword is not a context-free language. A proof was found
by Ross and Winklmann [1982] and Ehrenfeucht and Rozenberg [1983d], in-
dependently. For applications to dynamic logic, see Stolboushkin and Taitslin
[1983]; Urzyczyn [1983]; Stolboushkin [1983]; and Kfoury [1985].

Fraenkel and Simpson [1995] investigated the longest binary string contain-
ing at most n distinct squares.

The notions of squarefree and cubefree have been extended to two-
dimensional arrays (Siromoney and Subramanian [1985]; Siromoney [1987]).

For other papers dealing with repetitions in words, see Lyndon [1951]; Dean
[1965]; Restivo [1977]; Berstel [1982]; Carpi [1984]; Carpi and de Luca [1986];
Crochemore [1982b, 1983b]; Cummings [1983]; Shelton and Soni [1985];
Keränen [1987]; Carpi and de Luca [1990]; de Luca and Varricchio [1990];
Crochemore and Goralcik [1991]; Currie and Bendor-Samuel [1992]; X. Yu
[1995]; Currie [1995b].

Our proof of Theorem 1.6.1 is based on a proof of a weaker result by D.
Bernstein (personal communication); also see Currie [1984] and Klosinski,
Alexanderson, and Larson [1993].

1.7 The results in this section are due to Séébold [1982, 1985c, 1985d]. Also see
Harju [1986]; Kfoury [1988b]; Berstel and Séébold [1993a]; and Richomme
and Séébold [1999].

1.8 Dejean [1972] introduced the notion of fractional powers. She proved that
every sufficiently long word over a three-letter alphabet contains a 7

4 power,
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and this bound is best possible. She conjectured that this repetition threshold
was equal to k/(k − 1) on alphabets of size k ≥ 5; this conjecture is still open.
Pansiot [1984c] showed that the repetition threshold for an alphabet of size
4 is 7

5 . Moulin-Ollagnier [1992] showed that Dejean’s conjecture is true for
5 ≤ k ≤ 11.

Mignosi and Pirillo [1992] proved that the critical exponent for the Fibonacci
word (discussed in Section 7.1) is

√
5+5
2

.= 3.618. For other results on critical
exponents, see Klepinin and Sukhanov [1999], Vandeth [2000], and Damanik
and Lenz [2002].

Erdős [1961, p. 240] first raised the problem of the existence of infinite
abelian squarefree words. (These words are also called strongly squarefree,
strongly nonrepetitive, and permutation-free in the literature.) Evdokimov
[1968] constructed such a sequence on 25 symbols. Pleasants [1970] im-
proved this to 5 symbols. T. Brown [1971] gave a survey on construct-
ing strongly nonrepetitive sequences. Entringer, Jackson, and Schatz [1974]
proved that every infinite word over a 2-letter alphabet contains arbitrarily
long abelian squares. Keränen [1992] solved Erdős’s problem by exhibit-
ing a strongly nonrepetitive sequence over a 4-letter alphabet. Carpi [1998]
showed that there are uncountably many abelian squarefree words over a
4-letter alphabet, and that the number of abelian squarefree words of each
length grows exponentially. Cummings [1993] found an interesting connec-
tion between Gray codes and abelian squarefree strings. Cummings and Smyth
[1997] gave a simple quadratic algorithm to compute all abelian squares
in a string of length n. Carpi [1999] studied morphisms preserving abelian
squarefreeness.

Cori and Formisano [1990, 1991] introduced the notion of partially abelian
squarefree words, which are defined with respect to a commutation relation.
Also see Justin [1972].

One can also study abelian nth-power-free words. Justin [1972] proved the
existence of infinite abelian 5th-power-free words over a 2-letter alphabet.
Dekking [1979b] proved the existence of infinite abelian cubefree words over
a 3-letter alphabet, and infinite abelian 4th-power-free words over a 2-letter
alphabet. Also see Carpi [1993b].

More general pattern avoidance problems were studied by Bean, Ehren-
feucht, and McNulty [1979] and Zimin [1982], independently. U. Schmidt
[1987a, 1989] showed that all binary patterns of length at least 13 are avoid-
able on a 2-letter alphabet. This was improved to length 6 by P. Roth [1992],
who classified all unavoidable binary patterns modulo the status of the pattern
xxyyx . Finally, Cassaigne [1993a] completed the classification of avoidable
binary patterns by proving that xxyyx is avoidable on a 2-letter alphabet;
also see Goralcik and Vanicek [1991]. For other papers on pattern avoidance,
see U. Schmidt [1987b]; Cummings and Mays [2001]; and particularly the
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influential paper of Baker, McNulty, and Taylor [1989]. Shur [1996a] deter-
mined the words avoided by the Thue–Morse sequence. A summary of some
open problems in the area can be found in Currie [1993].

It is also possible to study words avoiding specific subwords. See, for ex-
ample, Schützenberger [1964]; Crochemore, Le Rest, and Wender [1983]; and
Rosaz [1995, 1998].
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Number Theory and Algebra

This chapter is a smorgasbord of some of the basic results from algebra and number
theory that are used in the rest of this book.

2.1 Divisibility and Valuations

Let k, n be integers with k ≥ 2. We define νk(n) to be the exponent of the highest
power of k that divides n. More precisely, νk(n) = a if ka | n but ka+1|/n. We define
νk(0) = +∞.

Lemma 2.1.1 For all integers k, n, n′ with k ≥ 2 we have

νk(n + n′)

{
= min(νk(n), νk(n′)) if νk(n) �= νk(n′),
≥ νk(n) if νk(n) = νk(n′).

We also have

νk(nn′) ≥ νk(n) + νk(n′),

with equality if k = p, a prime.

Proof. Left to the reader. �

If p is a prime, the function νp is sometimes called the p-adic valuation. In this
case we sometimes write pa || n if a = νp(n).

2.2 Rational and Irrational Numbers

Let α be a real number. If α = a/b for some integers a, b, then α is said to be
rational; otherwise it is irrational.

The valuation νp can be extended to rational numbers as follows. If r = a/b for
integers a, b with b �= 0, then we define νp(r ) = νp(a) − νp(b). It is easy to see
that this definition is independent of the particular representation chosen for r .

39
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Theorem 2.2.1 The number
√

2 is irrational.

Proof. Suppose
√

2 is rational. Then
√

2 = a/b for integers a, b, with b �= 0. Hence
a2 = 2b2. But ν2(a2) is even, while ν2(2b2) is odd, a contradiction. �

Theorem 2.2.2 The number e is irrational.

Proof. Suppose e is rational. Then e = a/b for integers a, b ≥ 1. But then, since

e = 1

0!
+ 1

1!
+ 1

2!
+ · · · ,

we have

b!e = b!

(
1

0!
+ 1

1!
+ 1

2!
+ · · · + 1

b!

)

+ 1

b + 1
+ 1

(b + 1)(b + 2)
+ · · · .

Hence, using the fact that

1

b + 1
+ 1

(b + 1)(b + 2)
+ · · · < 1

b + 1
+ 1

(b + 1)2
+ · · · = 1

b

we find

b!
∑

0≤i≤b

1

i!
< b!e < b!

∑

0≤i≤b

1

i!
+ 1

b
,

so that b!e is not an integer, a contradiction. �

Theorem 2.2.3 The number π is irrational.

Proof. For integers n ≥ 0, and real a, define

In =
∫ 1

−1
(1 − x2)n cos ax dx .

Integrate by parts to obtain

In = 2n

a

∫ 1

−1
x(1 − x2)n−1 sin ax dx

= 2n

a
Hn−1

for n ≥ 1, where Hn := ∫ 1
−1 x(1 − x2)n sin(ax) dx . Now integrate Hn−1 by parts
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to obtain

Hn−1 = 1

a

∫ 1

−1
(1 − x2)n−1 cos ax dx − 2(n − 1)

a

∫ 1

−1
x2(1 − x2)n−2 cos ax dx

= 1

a
In−1 − 2(n − 1)

a

∫ 1

−1
(1 − (1 − x2))(1 − x2)n−2 cos ax dx

= 1

a
In−1 − 2(n − 1)

a
In−2 + 2(n − 1)

a
In−1

for n ≥ 2. It follows that

In = (2n)(2n − 1)

a2
In−1 − (4n)(n − 1)

a2
In−2 (2.1)

for n ≥ 2. Now define Jn = a2n+1 In for integers n ≥ 0. By direct calculation we
find J0 = 2 sin a and J1 = 4 sin a − 4a cos a. The recurrence relation (2.1) gives

Jn = 2n(2n − 1)Jn−1 − 4a2n(n − 1)Jn−2.

It now easily follows by induction that

Jn = n!(Pn sin a + Qn cos a),

where Pn, Qn are polynomials in a with integer coefficients and degree ≤ 2n.
Now take a = π/2, and suppose a = c/d for integers c, d. Then we have

c2n+1

n!
In = d2n+1 Pn.

The right side is an integer for all n ≥ 0. However, 0 < In < 2, and so

0 <
c2n+1

n!
In < 1

for large n. This is a contradiction, and so π/2, and hence π , cannot be rational.
�

2.3 Algebraic and Transcendental Numbers

We say a complex number is algebraic if it is the root of an equation of the form

anxn + an−1xn−1 + · · · + a1x + a0 = 0

where a0, a1, . . . , an ∈ Z and an �= 0. Examples of algebraic numbers include the
rational numbers, and other numbers such as i = √−1,

√
2, 3
√

2, etc. If a complex
number is not algebraic, we say it is transcendental.

Theorem 2.3.1 The set of algebraic numbers is countable.
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Proof. A number is algebraic if and only if it is the root of

anxn + an−1xn−1 + · · · + a0 = 0 (2.2)

with a0, a1, . . . , an ∈ Z and an �= 0. Define the rank of Eq. (2.2) as n + |a0| +
|a1| + · · · + |an|. For any given rank, there are clearly only a finite number of
equations, and each equation has finitely many roots. By listing the roots in order
of increasing rank, we can arrange a 1–1 correspondence between the algebraic
numbers and 1, 2, 3, . . . . �

Corollary 2.3.2 Almost all real numbers are transcendental.

Proof. The real algebraic numbers, being countable, form a set of measure 0. �

Let θ be a real number. We say that θ is approximable by rationals to order n if
there exists a constant c(θ ) such that the inequality

∣
∣
∣
∣

p

q
− θ

∣
∣
∣
∣ <

c(θ )

qn

has infinitely many distinct rational solutions p/q.

Theorem 2.3.3 A real algebraic number of degree n is not approximable to any
order greater than n.

Proof. Suppose that θ is a real number satisfying

f (θ ) = anθ
n + · · · + a1θ + a0 = 0

with a0, a1, . . . , an ∈ Z, an �= 0. Then there exists a number M(θ ) such that

| f ′(x)| < M(θ ) for θ − 1 < x < θ + 1.

Suppose that p/q is an approximation to θ . Without loss of generality we may
assume that θ − 1 < p/q < θ + 1, and that p/q is closer to θ than any other root
of f , so f (p/q) �= 0. Then

∣
∣
∣
∣ f

(
p

q

)∣
∣
∣
∣ =

|an pn + · · · + a1 p + a0|
qn

≥ 1

qn
,

and, by the mean value theorem, we have

f

(
p

q

)

= f

(
p

q

)

− f (θ ) =
(

p

q
− θ

)

f ′(x)

for some x lying between p/q and θ . Thus
∣
∣
∣
∣

p

q
− θ

∣
∣
∣
∣ =

| f (p/q)|
| f ′(x)| >

1

M(θ )qn
.

So θ is not approximable to any order higher than n. �
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Corollary 2.3.4 (Liouville, 1844) The number θ = ∑
k≥1 10−k! =

0.110001000 · · · is transcendental.

Proof. Define θn = ∑
1≤k≤n 10−k! = p/10n! = p/q. Now

0 < θ − p

q
= θ − θn =

∑

k≥n+1

10−k! < 2 · 10−(n+1)! ≤ 2q−n.

Thus θ is approximable to order n for any n. Hence by Theorem 2.3.3, θ cannot be
algebraic. �

Note that
∑

k≥1 10−k! is an example of a Liouville number, i.e., one for which
the inequality

∣
∣
∣
∣

p

q
− θ

∣
∣
∣
∣ <

1

qn

has a solution for every n ≥ 1. Not all transcendental numbers are Liouville, but
every Liouville number is transcendental.

We give the following theorem without proof.

Theorem 2.3.5 The numbers π and e are transcendental.

Here is another useful lemma.

Lemma 2.3.6 Let β be an algebraic number of degree g. For each N ≥ 1, there ex-
ists a constant C > 0 that depends only on β and N, such that, for every polynomial
Q of degree N with integer coefficients, we have

Q(β) = 0 or |Q(β)| ≥ C

‖Q‖g−1
,

where ‖∑0≤ j≤N a j X j‖ = max0≤ j≤N |a j |.

Proof. Let P be the minimal polynomial ofβ having integer coefficients and leading
coefficient ag ≥ 1. Let β1 = β, β2, . . . , βg be the conjugates of β, i.e., the roots
of P , taken with multiplicity. Let Q be a polynomial of degree N , with leading
coefficient cN , such that Q(β) �= 0, and let γ1, γ2, . . . , γN , be its roots. We note
that the βi ’s and the γ j ’s are all different. We have

0 <

∣
∣
∣
∣
∣
∣

1

aN
g

∏

1≤ j≤N

P(γ j )

∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

∏

1≤ j≤N

∏

1≤i≤g

(γ j − βi )

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∏

1≤i≤g

∏

1≤ j≤N

(γ j − βi )

∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

1

cg
N

∏

1≤i≤g

Q(βi )

∣
∣
∣
∣
∣
∣
.
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Hence

0 < |Q(β)| =

∣
∣
∣
∣
∣
∣
cg

N

∏

1≤ j≤N

P(γ j )

∣
∣
∣
∣
∣
∣

aN
g

∣
∣
∣
∣
∣
∣

∏

2≤i≤g

Q(βi )

∣
∣
∣
∣
∣
∣

. (2.3)

Now the expression
∏

1≤ j≤N P(γ j ) is a symmetric polynomial in the γ j ’s with

integer coefficients, so the quantity
∣
∣
∣c

g
N

∏
1≤ j≤N P(γ j )

∣
∣
∣ is a positive integer. Hence

we deduce from Eq. (2.3) that

Q(β) ≥ 1

aN
g

(
sup2≤i≤g |Q(βi )|

)g−1 .

Note that

sup
2≤i≤g

|Q(βi )|g−1 ≤ ‖Q‖g−1 sup
1≤i≤g

(1 + |βi | + · · · + |βi |N ).

Hence

Q(β) ≥ C

‖Q‖g−1
,

where C depends only on β and N . �

Many more advanced techniques exist for proving transcendence. One of the
most useful is Roth’s theorem, which we state without proof:

Theorem 2.3.7 Let θ be a real number, and suppose there exists a real number
ε > 0 such that

∣
∣
∣
∣θ −

p

q

∣
∣
∣
∣ <

1

q2+ε

for infinitely many distinct rational numbers p/q. Then θ is transcendental.

2.4 Continued Fractions

A finite continued fraction is an expression of the form

a0 + 1

a1 +
1

a2 +
1

a3 + . . .+ 1

an

, (2.4)
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which we abbreviate as [a0, a1, . . . , an]. If the ai are integers such that ai ≥ 1 for
1 ≤ i ≤ n, then the continued fraction is called simple.

The following result is fundamental to the theory of continued fractions.

Theorem 2.4.1 Let a0, a1, . . . , an be real numbers with ai > 0 for i ≥ 1. Define
pn and qn as follows:

p−2 = 0, q−2 = 1; p−1 = 1, q−1 = 0,

and

pk = ak pk−1 + pk−2, qk = akqk−1 + qk−2 (2.5)

for 0 ≤ k ≤ n. If α > 0 is a real number, then

[a0, a1, . . . , an, α] = αpn + pn−1

αqn + qn−1
.

Proof. The proof is by induction. The result clearly holds for n = −1, 0. Now
assume the result holds for n. We find

[a0, a1, . . . , an+1, α] =
[

a0, a1, . . . , an, an+1 + 1

α

]

=
(
an+1 + 1

α

)
pn + pn−1

(
an+1 + 1

α

)
qn + qn−1

(by the induction hypothesis)

= αpn+1 + pn

αqn+1 + qn
by (2.5),

and so the result follows. �

From (2.5) we get
[

pn pn−1

qn qn−1

] [
an+1 1

1 0

]

=
[

pn+1 pn

qn+1 qn

]

,

and hence an easy induction gives
[

pn pn−1

qn qn−1

]

=
[

a0 1
1 0

] [
a1 1
1 0

]

· · ·
[

an 1
1 0

]

. (2.6)

By taking the determinants of both sides, we get

Theorem 2.4.2

pnqn−1 − pn−1qn = (−1)n+1. (2.7)
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We now define infinite simple continued fractions. Provided the limit exists, we
may define the symbol [a0, a1, . . . , an, . . . ] as limn→∞[a0, a1, . . . , an]. If the con-
tinued fraction is simple, that is, if the ai are integers and ai ≥ 1 for i ≥ 1, then it
is easy to see that the limit exists. For by Eq. (2.7) we see that

∣
∣
∣
∣

pn

qn
− pn−1

qn−1

∣
∣
∣
∣ =

|pnqn−1 − pn−1qn|
qnqn−1

= 1

qnqn−1
.

Since qn ≥ n by (2.5), we see that pn/qn is a Cauchy sequence, and hence converges
to a limit.

Henceforth, unless otherwise stated, we assume all continued fractions are
simple.

We state the following theorem without proof.

Theorem 2.4.3 The value of a simple continued fraction is rational if and only if
the continued fraction is finite.

For example, we have

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, . . . ],

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ].

There is no known simple pattern in the partial quotients for π , but the evident pat-
tern in the expansion for e can be proved.

We now introduce some notation for continued fractions with an ultimately peri-
odic sequence of partial quotients. If an+t = an for all n > N , we write

[a0, a1, a2, . . . ] = [a0, a1, . . . , aN , aN+1, aN+2, . . . , aN+t ].

The following is a classical theorem of Lagrange, which we state without proof.

Theorem 2.4.4 The partial quotients in the continued fraction expansion for real
α are ultimately periodic if and only if α is an irrational number that satisfies a
quadratic equation with integer coefficients.

For example, we have
√

2 = [1, 2, 2, 2, 2, . . . ],

1 +√
5

2
= [1, 1, 1, 1, 1, . . . ].

We now prove some basic facts about approximation. Let α be an irrational real
number with continued fraction [a0, a1, a2, . . . ], and define ηk = (−1)k(qkα − pk)
for k ≥ −1.
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Theorem 2.4.5 We have

(a) ηk > 0 for k ≥ 0;
(b) ηk+1 < ηk for k ≥ 1;
(c) ηk+1 = −ak+1ηk + ηk−1 for k ≥ 0.

Proof. Define a′
k = [ak, ak+1, . . . ]. We have

α = [a0, a1, . . . , ak, ak+1, . . . ]

= [a0, a1, . . . , ak, [ak+1, ak+2, . . . ]]

= [a0, a1, . . . , ak, a′
k+1]

= a′
k+1 pk + pk−1

a′
k+1qk + qk−1

.

It follows that

α − pk

qk
= a′

k+1 pk + pk−1

a′
k+1qk + qk−1

− pk

qk

= pk−1qk − pkqk−1

qk(a′
k+1qk + qk−1)

= (−1)k

qk(a′
k+1qk + qk−1)

.

Hence

ηk = (−1)k(qkα − pk) = 1

a′
k+1qk + qk−1

> 0. (2.8)

This proves part (a).
To prove part (b), note that ak+1 < a′

k+1 < ak+1 + 1. Hence, by (2.8), we get

1

qk+2
≤ 1

qk+1 + qk
= 1

(ak+1 + 1)qk + qk−1
< ηk <

1

ak+1qk + qk−1
= 1

qk+1
,

i.e.,

1

qk+2
< ηk <

1

qk+1
.

Since qk+1 < qk+2 for k ≥ 1, this proves part (b).
Finally, from (2.5), we get

pk+1 = ak+1 pk + pk−1,

qk+1 = ak+1qk + qk−1.

Subtract the first equation from α times the second; we get

αqk+1 − pk+1 = ak+1(αqk − pk) + (αqk−1 − pk−1),

or, in other words, ηk+1 = −ak+1ηk + ηk−1. �
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Corollary 2.4.6 For k ≥ 1 we have

ak+1 <
ηk−1

ηk
< ak+1 + 1.

Proof. By part (c) of the preceding theorem, we have ηk−1 = ηk+1 + ak+1ηk . Div-
iding by ηk , we get

ηk−1

ηk
= ak+1 + ηk+1

ηk
.

But by parts (a) and (b), we know

0 <
ηk+1

ηk
< 1,

so the desired result follows. �

2.5 Basics of Diophantine Approximation

Let x mod y denote the least non-negative remainder when x is divided by y. Let
{x} denote x mod 1 = x − �x�, the fractional part of the real number x .

Theorem 2.5.1 (Dirichlet) For all real numbers θ and positive integers N, there
exists a positive integer n ≤ N and an integer r such that

|nθ − r | < 1

N
.

Proof. Consider the N + 1 numbers

{0}, {θ}, {2θ}, . . . , {Nθ},
and consider the N intervals

[
m
N ,

m+1
N

)
for 0 ≤ m < N . There are N + 1 numbers

in N intervals, so by the pigeonhole principle, at least two numbers, say {iθ} and
{ jθ}, 0 ≤ i < j ≤ N , fall into some interval, say

[
m
N ,

m+1
N

)
. Then define n = j − i .

Clearly 0 < n ≤ N . Also write iθ = s + {iθ}, jθ = t + { jθ}. Then ( j − i)θ =
t − s + { jθ} − {iθ}; define r = t − s, and then we get

|nθ − r | < 1

N
. �

Example 2.5.2 Find integers n, r such that |nπ − r | < 1
100 . We arrange the frac-

tional parts {kπ}, 0 ≤ k ≤ 100, into intervals of size 1/100 and look for duplicates;
we get for example

50π
.= 157.07963

57π
.= 179.07078

Thus 7π
.= 21.99115 and |7π − 22| < 1

100 .



2.5 Basics of Diophantine Approximation 49

Dirichlet’s theorem states that for any real number θ , some multiple of θ must be
an integer or arbitrarily close to an integer. The following theorem, due to Kronecker,
says that if θ is irrational, then the fractional part of some multiple of θ must be
arbitrarily close to any given number.

Theorem 2.5.3 (Kronecker) Let θ be an irrational number. For all real α and all
ε > 0, there exist integers a, c with |aθ − α − c| < ε.

We say a set S is dense in an interval I if every subinterval of I contains an
element of S. Similarly, we say a sequence (an)n≥0 is dense in I if the associated
set {a0, a1, . . . } is dense in I . Kronecker’s theorem can be expressed by saying that
the sequence ({nθ})n≥0 is dense in the interval [0, 1).

Proof. By Dirichlet’s theorem (Theorem 2.5.1), for all ε > 0 there exist integers
a, b with |aθ − b| < ε. Furthermore, since θ is irrational, 0 < |aθ − b|. Then the
series of points 0, {aθ}, {2aθ}, . . . form a chain across the interval [0, 1) whose
mesh (i.e., the distance between links in the chain) is less than ε. (Note that the
chain goes left to right if aθ − b > 0, and right to left if aθ − b < 0.) Thus {α}
must fall between links, and so there exist integers a, c with

|aθ − α − c| < ε. �

Example 2.5.4 Find a, c such that

|aπ −
√

2 − c| < 1

100
.

By the previous calculation we have that 7π
.= 21.99115. Thus {7aπ} forms a

mesh from right to left of the interval [0, 1), with width ε
.= 0.00885, and thus we

get within ε of {√2} when

a
.= 2 −√

2

22 − 7π
.= 66.1799.

Thus

|462π −
√

2 − 1450| < 1

100
.

Kronecker’s Theorem 2.5.3 is quite important, but does not tell the full story.
Not only is {nθ} dense in [0, 1), it is also uniformly distributed. By uniformly
distributed, we mean that the fraction of n for which {nθ} falls in interval I is equal
to the measure of I . More precisely, let m I (n) be the number of points {kθ}1≤k≤n
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that fall in the interval I . If

lim
n→∞

m I (n)

n
= |I |

for all I ⊆ (0, 1), we say {nθ} is uniformly distributed.

Theorem 2.5.5 (Weyl) If θ is an irrational number then {nθ} is uniformly dis-
tributed.

Proof. Let 0 < ε ≤ 1
3 . By Theorem 2.5.3 we can find a j such that 0< { jθ}= δ < ε.

Write k = � 1
δ
�. For 0 ≤ h ≤ k, define Ih to be the interval

({hjθ}, {(h + 1) jθ}].
(When h = k, this “interval” actually wraps around 1 to 0.) Define, as above,
mh(n) := m Ih (n) to be the number of points {θ}, {2θ}, . . . , {nθ} that lie in Ih . Now
if {tθ} ∈ I0 then {(t + hj)θ} ∈ Ih , and conversely. Hence

mh(n) − mh(hj) = m0(n − hj),

because for n ≥ hj , the points counted by m0(n − hj) and mh(n) − mh(hj) are in
1–1 correspondence. But mh(hj) ≤ hj , and m0(n − hj) ≥ m0(n) − hj . Hence

m0(n) − hj ≤ m0(n − hj) ≤ mh(n) = m0(n − hj) + mh(hj)

≤ m0(n) + mh(hj)

≤ m0(n) + hj.

It follows that

1 − hj

m0(n)
≤ mh(n)

m0(n)
≤ 1 + hj

m0(n)
,

as n → ∞, m0(n) → ∞; and we have

lim
n→∞

mh(n)

m0(n)
= 1, 0 ≤ h ≤ k.

Now
∑

0≤h≤k−1

mh(n) ≤ n ≤
∑

0≤h≤k

mh(n),

so we have

m0(n) + · · · + mk−1(n)

m0(n)
≤ n

m0(n)
,

so

lim inf
n→∞

m0(n) + · · · + mk−1(n)

m0(n)
≤ lim inf

n→∞
n

m0(n)
.
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But

lim inf
n→∞

m0(n) + · · · + mk−1(n)

m0(n)
= lim

n→∞
m0(n) + · · · + mk−1(n)

m0(n)

= lim
n→∞

m0(n)

m0(n)
+ · · · + mk−1(n)

m0(n)
= k.

Hence

k ≤ lim inf
n→∞

n

m0(n)
,

and so

1

k
≥ lim sup

n→∞
m0(n)

n
.

Similarly,

1

k + 1
≤ lim inf

n→∞
m0(n)

n
,

and of course

lim inf
n→∞

m0(n)

n
≤ lim sup

n→∞
m0(n)

n
.

Hence

1

k + 1
≤ lim inf

n→∞
m0(n)

n
≤ lim sup

n→∞
m0(n)

n
≤ 1

k
. (2.9)

Now let I = (α, β) with |I | = β − α ≥ ε. Then there are integers u, v such that

0 ≤ {u jθ} ≤ α ≤ {(u + 1) jθ} ≤ {(u + v) jθ} ≤ β < {(u + v + 1) jθ}
(again using the circular representation of intervals), so that

∑

u+1≤h≤u+v−1

mh(n) ≤ m I (n) ≤
∑

u≤h≤u+v
mh(n).

Hence, dividing by m0(n) and applying the reasoning that gave us inequality (2.9),
we get

v − 1 ≤ lim inf
n→∞

m I (n)

m0(n)
≤ lim sup

n→∞
m I (n)

m0(n)
≤ v + 1,

and so, multiplying by inequality (2.9),

v − 1

k + 1
≤ lim inf

n→∞
m I (n)

n
≤ lim sup

n→∞
m I (n)

n
≤ v + 1

k
.
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Now kδ ≤ 1 ≤ (k + 1)δ and (v − 1)δ < |I | < (v + 1)δ. Hence 1 + δ ≥ (k + 1)δ;
|I | − 2δ < (v − 1)δ; and so

|I | − 2δ

δ + 1
≤ (v − 1)δ

(k + 1)δ
= v − 1

k + 1
.

Similarly, |I | + 2δ > (v + 1)δ, 1 − δ ≤ kδ, and so

|I | + 2δ

1 − δ
≥ (v + 1)δ

kδ
= v + 1

k
.

Therefore

|I | − 2δ

δ + 1
≤ lim inf

n→∞
m I (n)

n
≤ lim sup

n→∞
m I (n)

m0(n)
≤ |I | + 2δ

1 − δ
.

But ε can be arbitrarily small, hence δ is also arbitrarily small, and thus

lim
n→∞

m I (n)

n
= |I |.

The proof is complete. �

Weyl also gave the following necessary and sufficient condition for uniform
distribution, which we state without proof.

Theorem 2.5.6 The sequence of real numbers (an)n≥1 is uniformly distributed if
and only if for all integers h �= 0 we have

lim
N→∞

1

N

∑

1≤n≤N

e2π ihan = 0.

We conclude this section by proving results on multiplicative independence. We
say two integers k, l ≥ 1 are multiplicatively independent if log k and log l are
linearly independent over Q. Otherwise k and l are multiplicatively dependent.

Theorem 2.5.7 Let k, l be integers ≥ 2. The following are equivalent:

(a) k and l are multiplicatively dependent.
(b) logk l is rational.
(c) logl k is rational.
(d) There exist integers r , s ≥ 1 such that kr = ls .
(e) There exist an integer n ≥ 2 and two integers b, c ≥ 1 such that k = nb and l = nc.

Proof. (a)=⇒ (b): If k and l are multiplicatively dependent, then there exist rational
numbers r, s, not both 0, such that r log k + s log l = 0. Since k, l ≥ 2, we have
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log k > 0 and log l > 0. Hence r �= 0 and s �= 0. Thus logk l = (log l)/(log k) =
−r/s, which is rational.

(b) =⇒ (c): We have logk l = (logl k)−1.
(c) =⇒ (d): By hypothesis logl k = s/r for positive integers r, s. Then k = ls/r

and hence kr = ls .
(d) =⇒ (e): Suppose kr = ls . Let g = gcd(r, s). Without loss of generality

we may assume g = 1, for otherwise kr/g = ls/g. Let p be a prime dividing k.
Then pap || k for some integer ap ≥ 1, and pbp || l for some integer bp ≥ 1. Then
apr = bps. Since gcd(r, s) = 1, we have r | bp and s | ap. Let n = ∏

p | k pap/s =
∏

p | l pbp/r . Then ns = k and nr = l, as desired.
(e) =⇒ (a): If k = nb and l = nc, then log k − b

c log l = 0, so k and l are multi-
plicatively dependent. �

Example 2.5.8 36 and 216 are multiplicatively dependent, since 363 = 2162.

We now prove

Lemma 2.5.9 If k and l are multiplicatively independent, then the set of quotients

{k p/ lq : p, q ≥ 0}
is dense in the positive reals.

Proof. We show how to get arbitrarily close to any x > 0. Let θ = log k
log l = logl k;

then θ is irrational by Proposition 2.5.7. Let α = log x
log l . By Kronecker’s theorem

(Theorem 2.5.3), for all ε > 0 there exist integers a, c ≥ 0 with |aθ − α − c| < ε.
Hence |a log k − log x − c log l| < ε log l, or a log k − c log l ∈ (log x − ε log l,
log x + ε log l). Thus ka/ lc ∈ (xl−ε, xlε), which can fit inside any open interval
around x by taking ε sufficiently small. �

2.6 The Three-Distance Theorem

In this section we sketch the proof of a theorem that was originally conjectured by
Steinhaus. It is variously called the three-distance theorem, the three-gap theorem,
or Steinhaus’s conjecture.

Let α be an irrational real number with 0 < α < 1, and let its continued
fraction expansion be α = [0, a1, a2, a3, . . . ]. As in Section 2.4, let pk/qk =
[0, a1, a2, . . . , ak] and ηk = (−1)k(qkα − pk). Let n be a positive integer. Consider
the n + 2 numbers

0, {α}, {2α}, . . . , {nα}, 1.
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Arrange these numbers in increasing order 0 = c0(n) < c1(n) < · · · < cn(n) <
cn+1(n) = 1, and for 0 ≤ i ≤ n, define the half-open interval Li (n) = [ ci (n),
ci+1(n) ). The three-distance theorem says that for fixed n, there are at most three
distinct interval lengths.

If we consider the numbers {iα} inserted consecutively, then intervals of vari-
ous lengths appear and disappear through time. With each interval length, we can
associate numbers indicating at what point in time they are introduced.

Theorem 2.6.1 Every integer n ≥ 1 can be written uniquely in the form n = mqk +
qk−1 + r , where 1 ≤ m ≤ ak+1 and 0 ≤ r < qk. Then there are only three distinct
interval lengths among the Li (n), 0 ≤ i ≤ n, and they are distributed as follows.
There are

r + 1 intervals of length ηk−1 − mηk (called type I), numbered 0, . . . , r;
n + 1 − qk intervals of length of length ηk (called type II), numbered 0, . . . , n + 1 − qk;
qk − r − 1 intervals of length ηk−1 − (m − 1)ηk (called type III), numbered r + 1, . . . ,
qk − 1.

Proof. First, some notation. As the points {α}, {2α}, . . . are inserted into the interval
[0, 1), let the segments of a given length be numbered 0, 1, . . . in order of their
appearance. By {x}+ we mean x + 1 − �x�.

Now we outline the proof of the theorem by induction on n. For our induction
hypothesis, we take the above, plus the following:

Interval number s of length {tα}, where t = mqk + qk−1 and 0 ≤ m < ak+1 and k is even
and 0 ≤ s < qk , has left endpoint {sα} and right endpoint {(s + t)α}+.
Interval number s of length 1 − {tα}, where t = mqk + qk−1 and 0 ≤ m < ak+1 and k is
odd and 0 ≤ s < qk , has left endpoint {(s + t)α} and right endpoint {sα}+.
The operation of inserting {nα} destroys interval number r of type III, and creates new
intervals number r of type I, and number n − qk of type II.

The details are left to the reader. �

Theorem 2.6.2 Let qk ≤ n < qk+1. Then

min
0≤i≤n

|Li (n)| = ηk = (−1)k(qkα − pk).

(Note that for n = 1 and a1 = 1 one must choose k = 1.)

Proof. Since the length of an interval of type III is the sum of the lengths of the
intervals of types I and II, the smallest interval must be of either type I or type II.
There are two cases to consider.

First, if qk ≤ n < qk + qk−1, then in the representation for n mentioned in Theo-
rem 2.6.1, we have n = akqk−1 + qk−2 + r , where 0 ≤ r < qk−1. In this case, the
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smallest intervals have length ηk−1 and ηk−2 − akηk−1. Now by Corollary 2.4.6, we
have ak + 1 > ηk−2/ηk−1. From this we haveηk−1 > ηk−2 − akηk−1, so the smallest
interval is of type II and has length ηk−2 − akηk−1. But by Theorem 2.4.5(c), this
equals ηk .

Second, if qk + qk−1 ≤ n < qk+1, then in the representation for n we have n =
mqk + qk−1 + r , and hence m < ak+1. Thus m ≤ ak+1 − 1, and so, using Corol-
lary 2.4.6, we have m + 1 < ηk−1/ηk . Thus ηk < ηk−1 − mηk , and so the smallest
interval is of type I and of length ηk . �

Theorem 2.6.3 Suppose n ≥ qk − 1. Then

max
0≤i≤n

|Li (n)| ≤ ηk + ηk−1.

Proof. It is easily seen that max0≤i≤n |Li (n)| is a nonincreasing function of n. Hence
it suffices to prove the result for n = qk − 1. There are two cases to consider: ak > 1
and ak = 1.

If ak > 1, then the representation for n from Theorem 2.6.1 is (ak − 1)qk−1 +
qk−2 + (qk−1 − 1). Also, there are no intervals of type III, so the longest interval
must be of length ηk−1 or ηk−2 − (ak − 1)ηk−1. But by Theorem 2.4.5(c), this last
quantity equals ηk + ηk−1.

If ak = 1, then the representation for n from Theorem 2.6.1 is ak−1qk−2 + qk−3 +
(qk−2 − 1). Again, there are no intervals of type III, so the longest interval must be
of length ηk−2 or ηk−3 − ak−1ηk−2. By Theorem 2.4.5(c) and the fact that ak = 1,
the first quantity equals ηk + ηk−1, while the second quantity equals ηk−1.

Thus in all cases, the largest interval is bounded by ηk + ηk−1. �

Corollary 2.6.4 Suppose qk ≤ n < qk+1. Then

max0≤i≤n |Li (n)|
min0≤i≤n |Li (n)| ≤ ak+1 + 2.

Proof. By Theorem 2.6.2 and 2.6.3, we have

max0≤i≤n |Li (n)|
min0≤i≤n |Li (n)| ≤ ηk + ηk−1

ηk
= 1 + ηk−1

ηk
< ak+1 + 2,

where we have used Corollary 2.4.6. �

2.7 Algebraic Structures

A semigroup is a nonempty set S together with a binary operation defined on S × S.
Further, this operation is associative: for all a, b, c ∈ S we have (ab)c = a(bc).

A monoid is a semigroup M with a special element e ∈ M , called the identity,
such that ea = ae = a for all a ∈ M . A free monoid over a finite set � is what
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we have previously called �∗, the set of all finite strings over �, together with the
operation of concatenation and the identity ε.

A group is a monoid G such that, for all a ∈ G, there exists an element a−1 ∈ G
such that aa−1 = a−1a = e. A group G is abelian if it is commutative, that is, if
ab = ba for all a, b ∈ G.

A semiring is a set S containing elements 0 and 1, together with binary opera-
tions + and · such that (S,+, 0) is a commutative monoid, (S, · , 1) is a monoid,
the additive identity 0 satisfies a · 0 = 0 · a = 0, and · distributes over +, that is,
a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c. If n ∈ N, then by na we

mean the element

n
︷ ︸︸ ︷
a + a + · · · + a.

A ring is a semiring R such that (R,+, 0) is an abelian group.
A field is a ring R such that (R \ {0}, · , 1) also forms an abelian group.

2.8 Vector Spaces

In this section we recall the basic notions about vector spaces.
A nonempty set V is called a vector space over a field F if V is an abelian group

under an operation +, and for every a ∈ F , v ∈ V , there exists an element of V
called av such that, for all a, b ∈ F , v,w ∈ V we have

(1) a(v + w) = av + aw,
(2) (a + b)v = av + bv,
(3) a(bv) = (ab)v, and
(4) 1(v) = v.

The members of V are called vectors. If W ⊆ V itself forms a vector space (under
the same operations as for V ), then W is a subspace of V .

If V is a vector space over F , and if v1, v2, . . . , vn are elements of V , then by a
linear combination over F we mean the quantity

a1v1 + a2v2 + · · · + anvn,

where a1, a2, . . . , an are elements of F . The vectors v1, v2, . . . , vn are linearly
dependent if 0 can be written as a nonzero linear combination of v1, v2, . . . , vn .
Otherwise they are linearly independent.

2.9 Fields

In this section we recall the basic facts about fields.
One typical way to obtain a field is by starting with an integral domain, i.e.,

a commutative ring R with the property that a, b ∈ R and ab = 0 =⇒ a = 0 or
b = 0. In this case we can form the field of fractions by considering all quotients
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a/b for a, b ∈ R and b �= 0, and identifying a/b with c/d if ad = bc. For example,
the field of fractions of Z is Q.

Suppose K and F are fields. Then K is called an extension of F if F ⊆ K . In
this case, it is easy to see that K forms a vector space over F . The dimension of
K as a vector space over F is called the degree of the extension, and is denoted by
[K : F].

Suppose a ∈ K . Then a is said to be algebraic over F if there exist elements
c0, c1, . . . , cn ∈ F , not all 0, such that cnan + · · · + c1a + c0 = 0. This is a general-
ization of the term “algebraic”, which was introduced in Section 2.3. More precisely,
a complex number is said to be algebraic if it is algebraic over the field Q.

Theorem 2.9.1 Let K , F be fields with K an extension of F. Let α, β be elements
of K that are algebraic over F. Then the following are all algebraic over F:

(a) −α;
(b) α−1 if α �= 0;
(c) α + β;
(d) αβ.

Proof. Let α be algebraic of degree m, i.e., there exist a0, a1, . . . , am−1, am with
am �= 0 such that

a0 + a1α + · · · + amα
m = 0

and β be algebraic of degree n, i.e., there exist b0, b1, . . . , bn−1, bn with bn �= 0
such that

b0 + b1β + · · · + bnβ
n = 0.

By dividing by am and bn respectively, we may assume that am = bn = 1.
(a): −α satisfies the polynomial

a0 − a1 X + a2 X2 − a3 X3 + · · · + (−1)mam Xm .

(b): α−1 satisfies the polynomial

a0 Xm + a1 Xm−1 + · · · + am−1 X + 1.

(c): Let v be the vector

(1, α, . . . , αm−1, β, βα, . . . , βαm−1, . . . , βn−1, βn−1α, . . . , βn−1αm−1).

Then (α + β)v is a linear combination of elements of v, i.e., there exists a matrix
M such that (α + β)v = Mv. Hence, letting x = α + β, we have (M − I x)v = 0,
where I is the identity matrix. Since v �= 0, it follows that det(M − I x) = 0. This
gives a polynomial for which X = α + β is a root.

(d): The same proof as in (c) works. �
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Example 2.9.2 Show that
√

2 +√
3 is algebraic over Q.

Let v = (1,
√

2,
√

3,
√

6). Then if α = √
2 +√

3 we have

αv =







0 1 1 0
2 0 0 1
3 0 0 1
0 2 2 0













1√
2√
3√
6







and

det







−X 1 1 0
2 −X 0 1
3 0 −X 1
0 3 2 −X





 = X4 − 10X2 + 1,

so α is a root of X4 − 10X2 + 1.

We say a field F is of positive characteristic if there exists an integer n ≥ 1 such
that na = 0 for all a ∈ F . It is easy to see that if F is of positive characteristic n,
then n must be a prime.

Theorem 2.9.3 In a field F of characteristic p, we have (a + b)p = a p + bp for
all elements a, b ∈ F.

Proof. By the binomial theorem,

(a + b)p =
∑

0≤i≤p

(
p

i

)

ai bp−i .

But it is easy to see that p | (p
i

)
, except when i = 0, p. The result follows. �

The following theorem is stated without proof.

Theorem 2.9.4 A finite field with n elements exists if and only if n = pk, where p
is a prime and k is a positive integer. In this case, there is only one such field, up to
isomorphism.

2.10 Polynomials, Rational Functions, and Formal Power Series

Let R be a commutative ring with unit element. Then R[X ], the set of polynomials
in the indeterminate X over R, is the set of all expressions of the form

a0 + a1 X + · · · + an Xn

together with the operations of addition and multiplication as usually defined. It is
easy to see that R[X ] is a commutative ring with unit element 1.
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Now suppose R = K , a field. Then it is easy to see that K [X ] is an integral
domain. Hence we may consider the field of fractions of K [X ], denoted K (X ),
which consists of all fractions f/g where f, g ∈ K [X ] and g �= 0. The field K (X )
is called the field of rational functions over K .

There are similar definitions for R[X1, X2, . . . , Xn] and K (X1, X2, . . . , Xn).
Next, we discuss formal power series in a single indeterminate X . A formal

power series is an expression of the form

A(X ) =
∑

0≤i<∞
ai Xi

where the ai take their values in some commutative ring with unit, R. (By formal we
mean that we do not think of A(X ) as a “function” of the “variable” X , and we are not
concerned with the “convergence” or “divergence” of the series.) We define addition
and multiplication as follows: if A(X ) = ∑

i≥0 ai Xi and B(X ) = ∑
i≥0 bi Xi , then

A(X ) + B(X ) :=
∑

i≥0

(ai + bi )Xi

and

A(X )B(X ) :=
∑

n≥0

Xn
∑

i+ j=n

ai b j .

It is not hard to verify that, with these operations, the set of all formal power
series in one variable over R is a commutative ring with unit element. We denote
this ring by R[[X ]].

Theorem 2.10.1 If R is an integral domain, then so is R[[X ]].

Proof. Let A(X ) and B(X ) be formal power series, neither of them zero, with co-
efficients in R. Let ai Xi be the least index term in A(X ) with ai �= 0, and let b j X j

be the term of least index in B(X ) with b j �= 0. Then the coefficient of the term
Xi+ j of A(X )B(X ) is

∑

i ′+ j ′=i+ j
i ′≥0
j ′≥0

ai ′b j ′ = ai b j �= 0,

since R is an integral domain, and ai ′ = 0 for i ′ < i , b j ′ = 0 for j ′ < j . �

We will be mainly interested in the case where R = K , a field. Let us first deter-
mine the units, or invertible elements, in K [[X ]].

Theorem 2.10.2 Let K be a field. Then the units in K [[X ]] are those formal power
series A(X ) = ∑

i≥0 ai Xi with a0 �= 0.
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Proof. There exists a B = ∑
j≥0 b j X j ∈ K [[X ]] such that A(X )B(X ) = 1 if and

only if
∑

n≥0

Xn
∑

i+ j=n

ai b j = 1.

Hence we find that

a0b0 = 1,

a0b1 + a1b0 = 0,

a0b2 + a1b1 + a2b0 = 0,
...

The first equation is satisfied if and only if a0 �= 0. If a0 �= 0, then b0 is uniquely
determined. Then in the next equation, b1 is uniquely determined. In general we
have that

bn = −a−1
0

∑

1≤i≤n

ai bn−i . �

Example 2.10.3 Compute the inverse of 1 − X − X2 (considered as a formal pow-
er series) over Q[[X ]].

We must solve A(X )B(X ) = 1 for A(X ) = 1 − X − X2. We find that

bn = −a−1
0

∑

1≤i≤n

ai bn−i = −(−bn−1 − bn−2) = bn−1 + bn−2.

Thus we have bn = Fn+1, the (n + 1)th Fibonacci number. Hence

(1 − X − X2)(1 + X + 2X2 + 3X3 + 5X5 + · · · ) = 1.

Formal power series are particularly pleasant to work with when the underlying
field K equals G F(q), where q = pn , p is prime, and n ≥ 1. In this case we have

Theorem 2.10.4 Let A(X ) = ∑
n≥0 an Xn. Then A(Xq) = A(X )q .

Proof. Left to the reader as Exercise 16. �

Let K be a field. As we have seen, K [[X ]] is an integral domain. Hence we may
consider the field of fractions of K [[X ]], which is denoted by K ((X )). This field
coincides with the field of formal Laurent series, which are expressions of the form

∑

i≥a

ai Xi

for some integer a ∈ Z. Notice that such an expression may have infinitely many
nonzero positive powers of X , but only finitely many negative powers.
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Indeed, if we are given two formal power series, say

A(X ) = a0 + a1 X + a2 X2 + · · ·
and

B(X ) = b0 + b1 X + b2 X2 + · · · ,
then we may compute the Laurent series expansion of A(X )/B(X ) by long division.

Example 2.10.5 Let A(X )= 1+ 2X + 3X2 + 4X3 + · · · and B(X ) = X + X2 +
X4 + X8 + · · · . Then in Q((X )) we have

A(X )/B(X ) = X−1 + 1 + 2X + X2 + 3X3 + X4 + 5X5 − X6 + · · · .

When working with formal Laurent series, some writers prefer setting X = 1/T ,
where T is an indeterminate. In this case, the analogy with the base-k expansion of
a real number becomes more obvious, since if we set T = k, a real number has an
expansion with only finitely many positive powers of k, but potentially infinitely
many negative powers. The distinction between K ((X )) and K ((1/T )) is similar
to the distinction between the Taylor (or Laurent) expansion of a function around
x = 0 and that around x = ∞. For example, in K ((X )) we have

1

1 − X
= 1 + X + X2 + X3 + · · · ,

while in K ((1/T )) we have

1

1 − T
= − 1

T
− 1

T 2
− 1

T 3
− · · · .

In this book, we will sometimes use K ((X )) and sometimes K ((1/T )), depending
on which is more customary in the literature.

As we have seen in Section 2.4, every real number can be expanded as a continued
fraction in an essentially unique way. This fact also holds for formal Laurent series.
We state the following two theorems, leaving the proof to the reader as Exercise 31.

Theorem 2.10.6 Let t(X ) = ∑
k≥−k0

ak X−k be a formal Laurent series in
K ((X−1)), where K is a field. Then t(X ) has a unique expansion as a finite or infi-
nite continued fraction [a0, a1, a2, . . . ] where ai ∈ K [X ] for i ≥ 0 and deg ai > 0
for i > 0.

As usual for continued fractions, we define the numerators pn and denominators
qn of the convergents as follows: p−2 := 0, p−1 := 1, q−2 := 1, q−1 := 0, and

pn = an pn−1 + pn−2,

qn = anqn−1 + qn−2

for n ≥ 0.
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Example 2.10.7 Here is an example in Q((X−1)). Define

f (X ) := 1√
X2 − 1

=
∑

k≥0

2−2k

(
2k

k

)

X−2k−1

= X−1 + 1

2
X−3 + 3

8
X−5 + 5

16
X−7 + 35

128
X−9 + · · · .

Then it is not hard to see that

f (X ) = [0, X, −2X, 2X, −2X, 2X, −2X, . . . ].

Here are the first few convergents to the continued fraction for f :

n 0 1 2 3 4
an 0 X −2X 2X −2X
pn 0 1 −2X −4X2 + 1 8X3 − 4X
qn 1 X −2X2 + 1 −4X3 + 3X 8X4 − 8X2 + 1

In fact, it can be proved that

pn(X ) = (−1)�n/2� Un−1(X ),

qn(X ) = (−1)�n/2� Tn(X ),

where T and U are the Chebyshev polynomials of the first and second kinds, respec-
tively.

The following theorem is about Diophantine approximation in K ((X−1)).

Theorem 2.10.8 Let t(X ) be a formal Laurent series with continued fraction ex-
pansion [a0, a1, a2, . . . ]. Let pn/qn be the nth convergent, and let p, q be polyno-
mials. Then

(a) deg(qnt − pn) = − deg qn+1 < − deg qn;
(b) if deg(qt − p) < − deg q, then p/q is a convergent to t .

2.11 p-adic Numbers

Let p be a prime number. The field of p-adic numbers, denoted by Qp, is the set
of all formal expressions of the form

a−m p−m + · · · + a−1 p−1 + a0 + a1 p + a2 p2 + · · ·
where 0 ≤ ai < p for i ≥ 0. In this field, the four operations of addition, subtraction,
multiplication, and division are defined as in base p, with the notational difference
that carries go to the right instead of the left.
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Alternatively, for x ∈ Q we first define the map |x |p as follows:

|x |p =
{

p−νp(x) if x �= 0,

0 otherwise.
(2.10)

Then we consider the set of Cauchy sequences of rational numbers for | |p, i.e.,
the set of sequences (ai )i≥0 such that for all ε > 0 there exists an N such that
|ai − a j |p < ε for all i, j ≥ N . We now define an equivalence relation on Cauchy
sequences as follows: (ai )i≥0 and (bi )i≥0 are equivalent if |ai − bi |p → 0 as i → ∞.
The field Qp is now defined to be the set of equivalence classes of Cauchy sequences.
The norm |a|p of an equivalence class a is defined to be limi→∞ |ai |p, where (ai )i≥0

is any representative of a.
We define the p-adic integers as follows:

Zp = {x ∈ Qp : |x |p ≤ 1}.
Another way to say this is that Zp is the set of all p-adic numbers for which the
p-adic expansion involves only non-negative powers of p. It is easy to see that Zp

is a subring of Qp.

Example 2.11.1 Let p = 3. We have

−1 = 2 + 2 · 3 + 2 · 32 + 2 · 33 + 2 · 34 + 2 · 35 + 2 · 36 + · · · ,
1

2
= 2 + 1 · 3 + 1 · 32 + 1 · 33 + 1 · 34 + 1 · 35 + 1 · 36 + · · · ,

√
7 = ±(1 + 1 · 3 + 1 · 32 + 0 · 33 + 2 · 34 + 0 · 35 + 0 · 35 + · · · ).

2.12 Asymptotic Notation

We reminder the reader of the standard notation for asymptotic estimates.
We write f = O(g) if there exist constants c > 0, n0 ≥ 0 such that f (n) ≤ cg(n)

for all n ≥ n0.
We write f = �(g) if there exist constants c > 0, n0 > 0 such that f (n) ≥ cg(n)

for all n ≥ n0.
We write f = o(g) if limn→∞ f (n)/g(n) = 0.
Finally, we write f = �(g) if f = O(g) and g = O( f ).

2.13 Some Useful Estimates

In this section we state, without proof, some estimates from analytic number theory.
These will prove useful for Chapter 15.

Theorem 2.13.1 Let ϕ(n) be the Euler ϕ-function. Then ϕ(n) ≥ n
5 log log n for n ≥ 3.
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Theorem 2.13.2 Let π (x) denote the number of primes ≤ x. Then π (x) <
1.25506 x

log x for x > 1.

Theorem 2.13.3 Let a, b be integers with 1 ≤ a < b and gcd(a, b) = 1. Then there
exists a prime p ≡ a (mod b) with p = O(b11/2).

Theorem 2.13.4 Let ϑ(x) = ∑
p≤x log p, where the sum is over primes only. Then

ϑ(x) < 1.000081x for x > 0 and ϑ(x) ≥ 0.84x for x ≥ 101.

Theorem 2.13.5 Let x > 1. Then

e−γ

log x

(

1 − 1

(log x)2

)

<
∏

p≤x

(

1 − 1

p

)

<
e−γ

log x

(

1 + 1

2(log x)2

)

. (2.11)

2.14 Exercises

1. Prove the division theorem: given integers a and b with b > 0, there exists a
unique pair of integers q and r such that

a = qb + r with 0 ≤ r < b.

Moreover, r = 0 if and only if b | a.
2. Prove Kummer’s theorem: if p is a prime and pe || (m

n

)
, then e is the number

of carries that occur when adding m − n to n in base p.
3. Show that

{x} − {y} =
{
{x − y} if {x} ≥ {y},
{x − y} − 1 if {x} < {y}.

4. Show that Dirichlet’s theorem (Theorem 2.5.1) is in fact true for all real N ≥ 1.
5. A partial order is a relation ≤ that is reflexive, transitive, and antisymmetric.

Consider a relation on Nk defined as follows: a ≤ b if and only if ai ≤ bi for
1 ≤ i ≤ k.
(a) Prove that ≤ is a partial order.
(b) An antichain in a set with a partial order is a set of mutually incomparable items.

Show that Nk possesses no infinite antichains under the ≤ ordering.

6. Suppose (an)n≥0 is an integer-valued sequence that satisfies a linear recurrence
over Q. Show that it satisfies a linear recurrence over Z.

7. Fill in the details of the following proof of the irrationality of
√

2: if
√

2
were rational, say

√
2 = m/n with n minimal, then

√
2 = (2n − m)/(m − n),

contradicting the minimality of the denominator.
8. Generalize the proof in the preceding exercise to apply to the irrationality of

all
√

k where k is not a perfect square.
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9. Find an infinite set of positive integers with the property that no finite subset
sums to a nontrivial integer power.

10. Show that ν2(1 + 1/2 + 1/3 + · · · + 1/n) = −�log2 n�.
11. Compute ν2(1 + 1/3 + 1/5 + · · · + 1/(2n − 1)).
12. We can generalize simple continued fractions to the case where the numerators

are not necessarily 1. Suppose
[

pn pn−1

qn qn−1

]

=
[

X0 1
1 0

] [
X1 1
Y1 0

]

· · ·
[

Xn 1
Yn 0

]

.

Then show that
pn

qn
= X0 + Y1

X1 + Y2

X2 + . . .+ Yn

Xn

.

(This form of continued fraction is sometimes written as

X0 + Y1

X1 +
Y2

X2 + · · · +
Yn

Xn
.)

13. Show that
∏

i≥1

(Xi + 1) = 1

+ X1

1 −
X2(X1 + 1)

X1 + X2 + X1 X2 −
X1 X3(X2 + 1)

X2 + X3 + X2 X3 −
X2 X4(X3 + 1)

X3 + X4 + X3 X4 − · · · .

14. Define

An =
∑

0≤k≤n

(F2k )−1,

where Fj is the j th Fibonacci number. Show that for n ≥ 3 the continued
fraction expansion of An is given by

[2, 2,

2n−5
︷ ︸︸ ︷
1, . . . , 1, 2].

Conclude that limn→∞ An = 7−√
5

2 .
15. Let K be an algebraically closed field of characteristic 0. What is the algebraic

closure of K ((X ))?
16. Prove that if A(X ) is a formal power series over the finite field G F(q), then

A(Xq) = A(X )q .
17. Give an example of two formal power series A, B ∈ K [[X1, X2, . . . , Xn]] for

n ≥ 2 such that the quotient A/B is not expressible as a single formal power
series, even allowing negative exponents.

18. Prove that, for any field K , X1/2 cannot be expressed as a formal Laurent series
in K ((X )).
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19. (Erdős) Suppose n1 < n2 < · · · is a strictly increasing sequence of positive
integers with

lim
k→∞

nk

n1n2 · · · nk−1
= ∞.

Show that
∑

i≥1 1/ni is irrational.
20. Let fq(n) be the probability that an n × n matrix with entries chosen uniformly

at random from G F(q) is invertible.
(a) Show that limn→∞ fq (n) = ∏

k≥1(1 − q−k).
(b) Show that the quantity in (a) is irrational for all integers q ≥ 2.

21. An integer n is said to be squarefree if it is not divisible by a square > 1.
Let r2(n) be the number of squarefree integers j with 1 ≤ j ≤ n. Show that
limn→∞ r2(n)/n = 6

π2 .
22. Let q be an integer ≥ 2, and let k, n be integers ≥ 1. Show that qk − 1 | qn − 1

if and only if k | n.
23. Using Theorem 2.13.4, show that if 0 ≤ i < j ≤ n, and n ≥ 2, then there exists

a prime p ≤ 4.4 log n such that i �≡ j (mod p).
24. An integral domain R is called a Euclidean ring if for all nonzero a ∈ R there

exists an integer d(a) ≥ 0 such that (i) for all a, b ∈ R \ {0} we have d(a) ≤
d(ab); (ii) for all a, b ∈ R \ {0}, there exist t, r ∈ R such that a = tb + r ,
where r = 0 or d(r ) < d(b). Show that if F is a field, then F[X ] is a Euclidean
ring, where X is an indeterminate.

25. Let R be an integral domain. An element a ∈ R is called irreducible if a = bc
with b, c ∈ R implies either b or c is a unit. Two elements a, b are called
associates if a = cb for some unit c. Then R is called a unique factorization
domain if any nonzero element of R is either a unit or can be written as the
product of a finite number of irreducible elements of R, and the decomposition
is unique up to the order and associates of the irreducible elements. Show
that if R is a unique factorization domain, then so is R[X ], where X is an
indeterminate.

26. Show that every finitely generated group of exponent 2 with m generators is of
cardinality at most 2m .

27. Give an example of an infinite semigroup S on three generators such that
x3 = x2 for all x ∈ S.

28. Prove that

∑

t≥0

(
2t

t

)

Xt = (1 − 4X )−
1
2 .

29. Let p be a prime number. Show that (1 + X )p� ≡ (1 + X p)p�−1
(mod p�).

30. Let α, β be transcendental real numbers. Show that either α + β or αβ is
transcendental.
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31. Prove Theorems 2.10.6 and 2.10.8.
32. Let (un)n≥1 be a sequence with values in C. Its Cesáro mean is the sequence

(vn)n≥1 defined by

vn := u1 + u2 + · · · + un

n
.

Show that if (un)n≥1 tends to a limit �, then its Cesáro mean converges and its
limit is �. Is the converse true?

33. Let a, c0, c1, c2, . . . be positive integers. Show that

1

a
[ac0, c1, ac2, c3, ac4, c5, . . . ] = [c0, ac1, c2, ac3, c4, ac5, . . . ].

2.15 Open Problems

1. Is log log 2 irrational? Is it transcendental? (Remark: See Baker [1990, Theorem
12.2, p. 119].)

2. Let α be a real algebraic number of degree > 2. Are the partial quotients in
the continued fraction expansion of α unbounded? (Remarks: This is one of
the outstanding open problems in the theory of continued fractions. See Shallit
[1992] for more information.)

2.16 Notes on Chapter 2

2.1 In the literature, especially the p-adic literature, νp(x) is often written as |x |p.
For more on valuations and p-adic numbers, see Koblitz [1984] or Gouvêa
[1993].

2.2 Niven [1963] is a delightful introduction to the theory of irrational numbers.
Also see Perron [1960].

For other proofs of the irrationality of
√

2 and similar numbers, see Bloom
[1995].

Lambert [1761] proved the irrationality of π and e. For other proofs of
the irrationality of π , see, for example, Niven [1947] or Breusch [1954]. Our
proof for π is due to M. Cartwright, and is taken from Jeffreys [1973, p. 268].

2.3 For an introduction to the theory of transcendental numbers, see Mahler
[1976a]; Baker [1990]. Theorem 2.3.3 and Corollary 2.3.4 are due to
Liouville [1844]. Our presentation is based on that in Hardy and Wright
[1985].

The transcendence of e is due to Hermite [1873]. The transcendence of π
is due to Lindemann [1882].

Lemma 2.3.6 is from LeVeque [1956, pp. 167–168]. Theorem 2.3.7 is due
to K. Roth [1955].
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2.4 For an introduction to the theory of continued fractions, see, for example,
Hardy and Wright [1985] or Rockett and Szüsz [1992]. Our presentation,
based on 2 × 2 matrices, is due to Hurwitz; see Hurwitz and Kritikos [1986].
It was rediscovered by Frame [1949] and Kolden [1949], independently. For
a more recent treatment, see, for example, van der Poorten [1990].

2.5 For more on Diophantine approximation, see Koksma [1936], Cassels [1957],
Mahler [1961], W. Schmidt [1980], and Lang [1995].

Our proof of Kronecker’s theorem (Theorem 2.5.3), including the “chain”
and “mesh” terminology, is based on that in Hardy and Wright [1985,
§23.2].

Our proof of Weyl’s theorem (Theorem 2.5.5) is taken nearly verbatim from
Hardy and Wright [1985, §23.10].

For the proof of Theorem 2.5.6, see, for example, Kuipers and Niederreiter
[1974].

2.6 The three-distance theorem was apparently first noticed by H. Steinhaus. The
first proofs were published by Sós [1957, 1958], Świerczkowski [1958], and
Surányi [1958]. Our presentation is taken nearly verbatim from Knuth [1973,
§6.4, Exercise 8].

For other papers on this and related theorems, see Slater [1950]; Florek
[1951]; Slater [1964]; Halton [1965]; Slater [1967]; Graham and van Lint
[1968]; van Ravenstein [1985, 1988, 1989]; van Ravenstein, Winley, and
Tognetti [1990]; Langevin [1991]; Fraenkel and Holzman [1995]. Berthé
[1996] and Alessandri and Berthé [1998] found interesting connections be-
tween the three-distance theorem and formal language theory.

Graham conjectured a generalization of the three-distance theorem; see
Knuth [1973, §6.4, Exercise 10]. This generalization was proved by Chung
and Graham [1976]. Later, Liang [1979] found an extremely simple proof of
this theorem.

A 2-dimensional version of Steinhaus’s theorem was obtained by Geelen
and Simpson [1993]. Fried and Sós [1992] generalized the theorem to groups.

Corollary 2.6.4 is due to Mukherjee and Karner [1998].
2.7 For an introduction to semigroups, with emphasis on languages and machines,

see Arbib [1968]. For an introduction to groups and rings, see, for example,
Herstein [1975]. For semirings, see Kuich and Salomaa [1986].

2.8 For an introduction to vector spaces, see, for example, Herstein [1975].
2.9 For an introduction to fields, see, for example, Herstein [1975] or Jacobson

[1974].
2.10 For a brief introduction to formal power series, see, for example, Hungerford

[1974] or Niven [1969]. A much more detailed treatment is given in Zariski
and Samuel [1960].

2.11 Gouvêa [1993] and Koblitz [1984] are good introductions to p-adic numbers.
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2.13 Theorem 2.13.1 is due to Rosser and Schoenfeld [1962, Theorem 15], and
Theorem 2.13.2 is from Rosser and Schoenfeld [1962, Corollary 1]. Theo-
rem 2.11 is also from Rosser and Schoenfeld [1962].

Theorem 2.13.3, a version of Linnik’s theorem, is due to Heath-Brown
[1992].

The upper bound in Theorem 2.13.4 is due to Schoenfeld [1976, p. 360],
and the lower bound is due to Rosser and Schoenfeld [1962, Theorem 10].
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Numeration Systems

In this chapter, we discuss how numbers can be represented by strings over a finite
alphabet. Our emphasis is on the representation of integers, although we briefly
discuss representations for real numbers in Section 3.4.

We start with the classical base-k representation, and then discuss less familiar
representations such as representation in base −k, Fibonacci representation, and
representation in complex bases.

3.1 Numeration Systems

A numeration system is a way of expressing an integer n (or, more generally, an
element of a given semiring S) as a finite linear combination n = ∑

0≤i≤r ai ui of
base elements ui . The ai are called the generalized digits, or just digits. The finite
string of digits ar ar−1 · · · a1a0 is then said to be a representation of the number n.
Note that our convention is to write representations starting with the most significant
digit, although admittedly this choice is somewhat arbitrary.

For example, in ordinary decimal notation the base elements are the powers of 10.
As is certainly familiar to most readers, every non-negative integer can be expressed
as a non-negative integer linear combination

∑
0≤i≤r ai 10i with 0 ≤ ai < 10.

The leading-zeros problem is a minor annoyance we must deal with. For example,
each of the strings 101, 0101, 00101, . . . is a different way to express the number
5 in base 2. In this book, we will assume unless stated otherwise that the leading
digit of a representation, if it exists, is nonzero. In particular, the empty string ε is
the usual representation for 0 in every numeration system.

More formally, we define a numeration system N for a semiring S to be a triple
N = (U, D, R), where U = {u0, u1, u2, . . . } is an infinite sequence of elements of
S called the base sequence, D is a (usually finite) subset of S, called the digit set,
and R ⊆ D∗ is the set of valid representations. (For an example of a numeration
system with unbounded digits, see Exercise 37.) We define a mapping [w]U from
D∗ to S as follows: if w = atat−1 · · · a1a0, then [w]U = ∑

0≤i≤t ai ui .

70
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Two desirable properties of a numeration system N are

(a) that there be at least one valid representation for every element of the underlying
semiring – in which case we say N is complete; and

(b) that every element have no more than one valid representation – in which case we say
N is unambiguous.

If N is both complete and unambiguous, we say it is perfect. In this case, the map-
ping [w]U is invertible. Given U , we are particularly interested in specifying D and
R in such a way that the resulting numeration system (U, D, R) is perfect.

Numeration systems can be specified in a number of ways. One way is to fix D
and then agree that the set R is some simple subset of D∗. For example, a common
choice for R is {ε} ∪ (D \ {0})D∗; that is to say, any sequence of digits chosen from
D is permissible provided the leading digit is nonzero. Another way to specify a
numeration system is to choose U and then specify R with a method called the
greedy algorithm; it produces greedy representations. For purposes of concreteness
assume that S = N, and let

u0 < u1 < u2 < · · ·
be an infinite increasing sequence of positive integers. We also assume that u0 =
1. The following algorithm expresses any integer N ≥ 1 as a linear combination
∑

0≤i≤t ai ui .

Greedy(N )
t := 0
while ut+1 ≤ N do

t := t + 1
for i = t downto 0 do

ai := �N/ui�
N := N − ai ui

output(ai )

Since we have assumed that u0 = 1, the algorithm Greedy always terminates.
If Greedy(N ) = atat−1 · · · a1a0 then we clearly have

N =
∑

0≤i≤t

ai ui . (3.1)

We define the set of valid representations by

R = {Greedy(N ) : N ≥ 1} ∪ {ε}.
In this case, the digit set D is defined implicitly, through the output of the algorithm.
It is easy to see that ai < ui+1/ui . If c = supi≥0 ui+1/ui is finite, then D is finite,
and we may take D = ��c�+1 = {0, 1, . . . , �c�}.
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One nice property of greedy representations is that they are order-preserving.
By order-preserving, we mean the following: let w (respectively, x) be the greedy
representation of m (n). Then pad the shorter of w and x with leading zeros so the
representations are of the same length, obtaining w′ (x ′). Then w′ precedes x ′ in
lexicographic order if and only if m < n.

The greedy algorithm clearly produces a perfect numeration system. However,
it is often useful instead to find some easily computable condition that exactly
characterizes R. The following theorem accomplishes this when the underlying
semiring is N.

Theorem 3.1.1 Let u0 < u1 < u2 < · · · be an increasing sequence of integers with
u0 = 1. Every non-negative integer N has exactly one representation of the form
∑

0≤i≤s ai ui where as �= 0, and for i ≥ 0, the digits ai are non-negative integers
satisfying the inequality

a0u0 + a1u1 + · · · + ai ui < ui+1. (3.2)

Proof. For N = 0, the result is true, since then N is represented by the empty sum
over 0 terms.

First, we show that the greedy algorithm produces a representation satisfying
(3.2). The computations of the greedy algorithm may be represented as follows:

N = at ut + rt (0 ≤ rt < ut ),

rt = at−1ut−1 + rt−1 (0 ≤ rt−1 < ut−1),

rt−1 = at−2ut−2 + rt−2 (0 ≤ rt−2 < ut−2),
...

r2 = a1u1 + r1 (0 ≤ r1 < u1),

r1 = a0u0.

Now one easily sees by induction that

ri+1 = ai ui + ai−1ui−1 + · · · + a0u0,

and furthermore we have ri+1 < ui+1, so (3.2) is satisfied.
Next, we prove uniqueness of the representation. Suppose N has two distinct re-

presentations

N = asus + · · · + a0u0

= bsus + · · · + b0u0,

where the ai and bi are non-negative integers and the shorter representation has
been padded with zeros, if necessary, to make the representations have the same
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length. Note that s can be chosen such that at least one of as, bs is nonzero. Let
i be the largest integer such that ai+1 �= bi+1. Without loss of generality, assume
ai+1 > bi+1. Then

ui+1 ≤ (ai+1 − bi+1)ui+1

= (bi − ai )ui + · · · + (b0 − a0)u0

≤ bi ui + · · · + b0u0,

contradicting condition (3.2). �

As a corollary to Theorem 3.1.1, we obtain the fundamental theorem of base-k
representation. Let�k = {0,1, . . . , k − 1}, and define Ck to be the regular language

Ck := {ε} ∪ (�k \ {0})�∗
k .

Then the next theorem states that every non-negative integer has a unique repre-
sentation by a word in Ck .

Corollary 3.1.2 Let k ≥ 2 be an integer. Then every non-negative integer has a
unique representation of the form

N =
∑

0≤i≤t

ai k
i ,

where at �= 0 and 0 ≤ ai < k for 0 ≤ i ≤ t .

Proof. In fact, this representation is obtained from the greedy algorithm. By (3.2)
with ui = ki we have ai ki < ki+1, so ai < k.

On the other hand, every string ar ar−1 . . . a0 with ar �= 0 and 0 ≤ ai < k for
0 ≤ i ≤ r represents a valid output of the greedy algorithm, since clearly

a0 + a1k + · · · + ar kr ≤ (k − 1)(1 + k + · · · + kr ) = kr+1 − 1 < kr+1. �

We now define the canonical base-k representation. We have proved that
for each non-negative integer N there is a unique representation of the form
N = ∑

0≤i≤t ai ki with at �= 0 and 0 ≤ ai < k. In this case, we define (N )k =
atat−1 · · · a1a0 ∈ Ck . Thus, for example, (19)2 = 10011.

We also define an inverse operation. For w = b1b2 · · · br , define [w]k =
∑

1≤i≤r bi kr−i . Clearly we have [(N )k]k = N .
Although we have defined base-k expansion for integers k ≥ 2, it is possible to

define it for k = 1. In this case we get the so-called unary representation in which
an integer n is represented by the string

1n =
n

︷ ︸︸ ︷
11 · · ·1 .
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3.2 Sums of Digits

Let k be an integer ≥ 2. We now define two natural functions based on (n)k , the
canonical base-k representation of a non-negative integer. If (n)k = br br−1 · · · b0,
we define �k(n) = r + 1, the base-k length function. Clearly we have

�k(n) =
{

1 + �logk n� if n ≥ 1,

0 if n = 0.

We also define sk(n), the base-k sum-of-digits function, as follows:

sk(n) :=
∑

0≤i≤r

bi .

The functions �k(n) and sk(n) appear in many different areas of mathematics,
particularly number theory. In this section we focus on some properties of sk(n).

We start with the following theorem. Recall that νk(r ) denotes the exponent of
the highest power of k dividing r .

Theorem 3.2.1 Let k, n be integers with k ≥ 2, n ≥ 0. Then

∑

1≤m≤n

νk(m) = n − sk(n)

k − 1
.

Proof. The result is clearly true for n = 0. Let m ≥ 1 be an integer, and suppose
the base-k representation of m is w c 0a for some w ∈ �∗

k , c ∈ �k \ {0}, and inte-
ger a ≥ 0. Note a = νk(m). Then the base-k representation of m − 1 is Concat(w,
(c − 1), (k − 1)a) where the exponent denotes repetition. Thus we have

sk(m) − sk(m − 1) = 1 − (k − 1)νk(m). (3.3)

Now, summing both sides from m = 1 to m = n, we get

sk(n) = n − (k − 1)
∑

1≤m≤n

νk(m),

from which the desired result follows for n ≥ 1. �

As a corollary we get the following classic result of Legendre:

Corollary 3.2.2 Let p be a prime number. Then for all n ≥ 0 we have

νp(n!) = n − sp(n)

p − 1
.
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Proof. The result follows from Theorem 3.2.1 and the fact that
∑

1≤m≤n νp(m) =
νp(n!). �

The function sk(n) is not terribly well behaved; infinitely often it can be as
large as (k − 1) logk(n + 1), or as small as 1. In order to discuss the “average”
behavior of sk(n) as n → ∞, we introduce the summatory function Sk(x), defined
as follows:

Sk(x) :=
∑

0≤i<x

sk(i).

It is easy to see that

Sk(kn) = k − 1

2
knn, (3.4)

which suggests that Sk(x) ≈ k−1
2 log k x log x . In fact, this is true, as the following

theorem shows:

Theorem 3.2.3 Let k be an integer ≥ 2. Then

Sk(x) = k − 1

2 log k
x log x + O(x),

where the constant in the big-O term depends on k but not on x.

Proof. Suppose that 0 ≤ t < k and j ≥ 0. Define ε(k)
j (n) to be the coefficient of k j

in the base-k representation of n. Then ε(k)
j (n) = t if and only if there exist m, u ≥ 0

such that

n = mk j+1 + u,

where m ≥ 0 and tk j ≤ u < (t + 1)k j . Now define f (x, j, t) to be the number of
positive integers n < x such that ε(k)

j (n) = t . Then

f (x, j, t) =
∑

m,u≥0
mk j+1+u<x

tk j≤u<(t+1)k j

1

=
∑

tk j≤u<(t+1)k j

( x

k j+1
+ O(1)

)

= x

k
+ O(k j ).
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Then

Sk(x) =
∑

0≤ j< log x
log k

0≤t<k

t f (x, j, t)

=
∑

0≤ j< log x
log k

0≤t<k

t
( x

k
+ O(k j )

)

= k(k − 1)

2

(
log x

log k
+ O(1)

)
x

k
+ k(k − 1)

2

∑

0≤ j< log x
log k

O(k j )

= k − 1

2 log k
x log x + O(x) + k(k − 1)

2
O

(
kx − 1

k − 1

)

= k − 1

2 log k
x log x + O(x). �

The next theorem shows that the result in Theorem 3.2.3 is, in some sense, best
possible.

Theorem 3.2.4 There exists an infinite increasing sequence of positive integers
(xn)n≥1 and a real constant C > 0 such that

∣
∣
∣
∣Sk(xn) − k − 1

2 log k
xn log xn

∣
∣
∣
∣ ≥ Cxn

for all n ≥ 1.

Proof. Let xn = (k + 1)kn−1. Then

Sk((k + 1)kn−1) − Sk(kn) = kn−1 + Sk(kn−1),

and from (3.4) we know that

Sk(kn) = k − 1

2
· kn · n.

Hence

Sk((k + 1)kn−1) = kn−1 + k − 1

2
knn + k − 1

2
kn−1(n − 1).

Now define

C(k) =
k−1

2 log k xn log xn − Sk(xn)

xn
;
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Figure 3.1: Graph of the Function S2(x) − x log x
2 log 2 for 1 ≤ x ≤ 4096.

we will see below that C(k) does not depend on n. In fact, we have

C(k) = k − 1

2 log k
log(kn−1(k + 1)) −

(
kn−1 + k−1

2 knn + k−1
2 kn−1(n − 1)

(k + 1)kn−1

)

= k − 1

2
logk(k + 1) + k − 1

2
(n − 1) − nk2 − n + 3 − k

2(k + 1)

= k − 1

2
logk(k + 1) + (k2 − 1)(n − 1) − nk2 + n − 3 + k

2(k + 1)

= 1

2

(

(k − 1) logk(k + 1) − k2 − k + 2

k + 1

)

.

It is not hard to see that C(k) ≥ 1
8 for k ≥ 2 (see Exercise 17), so we may take

C = 1
8 , and the theorem is proved. �

Figure 3.1 shows a plot of the difference S2(x) − x log x
2 log 2 for 1 ≤ x ≤ 4096. In

Section 3.5, we study this difference in more detail.

3.3 Block Counting and Digital Sequences

In the previous section, we examined the properties of the sum-of-digits function,
sk(n). In the case k = 2, the function s2(n) can also be thought of as counting the
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number of occurrences of the digit 1 in the base-2 representation of n. This leads
to a natural generalization where we count the number of occurrences of any block
of digits in the base-k representation of n.

Let P ∈ {0, 1, . . . , k − 1}+. We define ek;P (n) to be the number of (possibly
overlapping) occurrences of P in the canonical base-k representation of n. The
resulting sequence (ek;P (n))n≥0 is sometimes called the pattern sequence for the
pattern P . For example, e2;11(7) = e2;11(27) = 2. If P = 0i for some i ≥ 1, we
say that P is a zero pattern sequence; otherwise it is a nonzero pattern sequence.
Some clarification is needed in the case where P begins with a zero. If P contains
at least one nonzero symbol, then in evaluating ek;P (n) we assume that the base-k
representation of n starts with an arbitrarily long string of zeros. Thus, for example,
e2;010(5) = 1. On the other hand, if P is a zero pattern sequence, then P = 0i for
some i ≥ 1, and we just count the number of occurrences of P in the canonical
base-k representation of n. For example, e2;00(36) = 2.

Example 3.3.1 Consider the function e2;11(n), which counts the number of (pos-
sibly overlapping) occurrences of the block 11 in the base-2 expansion of n. If
for n ≥ 0 we let rn = (−1)e2;11(n), then we get r, the celebrated Rudin–Shapiro
sequence, whose first few terms are as follows:

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·
rn = 1 1 1 −1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 · · ·

The Rudin–Shapiro sequence was first studied because of an interesting rela-
tionship with the maxima of certain functions. Define the L2 norm of a function as
follows:

‖ f ‖2 =
(

1

2π

∫ 2π

0
| f (t)|2dt

) 1
2

.

Then it is not hard to show that, for any sequence (an)n≥0 over {−1,+1}, we
have

sup
θ∈R

∣
∣
∣
∣
∣

∑

0≤n<N

aneinθ

∣
∣
∣
∣
∣
≥
∥
∥
∥
∥
∥

∑

0≤n<N

aneinθ

∥
∥
∥
∥
∥

2

=
√

N ;

see Exercise 18.
On the other hand, it can be shown that for “almost all” sequences (an)n≥0 over

{−1,+1}, we have

sup
θ∈R

∣
∣
∣
∣
∣

∑

0≤n<N

aneinθ

∣
∣
∣
∣
∣
= O(

√
N log N ). (3.5)

For the Rudin–Shapiro sequence, however, we have the following result.
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Theorem 3.3.2 The Rudin–Shapiro sequence r has the square-root property, i.e.,
there exists a positive constant C such that for all N ≥ 0

sup
θ∈R

∣
∣
∣
∣
∣

∑

0≤n<N

rneinθ

∣
∣
∣
∣
∣
≤ C

√
N . (3.6)

Furthermore we can take C = 2 +√
2.

Proof. Define the 2-dimensional vector Vn and the 2 × 2 matrices A0 and A1 by

Vn :=
(

rn

r2n+1

)

, A0 :=
(

1 0
1 0

)

, A1 :=
(

0 1
0 −1

)

.

Using the relations r2n = rn , r4n+1 = rn , and r4n+3 = −r2n+1, we have for all n ≥ 0

V2n = A0Vn,

V2n+1 = A1Vn.

If we now define

R(N , θ ) :=
∑

0≤n<2N

Vneinθ ,

M(θ ) := A0 + eiθ A1,

we easily obtain the following: for all N ≥ 1

R(N , θ ) =
∑

0≤n<2N

Vneinθ

=
∑

0≤n<2N−1

V2nei(2n)θ +
∑

0≤n<2N−1

V2n+1ei(2n+1)θ

=
∑

0≤n<2N−1

A0Vnei(2n)θ +
∑

0≤n<2N−1

A1Vnei(2n+1)θ

= A0




∑

0≤n<2N−1

Vnei(2n)θ



+ A1




∑

0≤n<2N−1

Vnei(2n+1)θ



 .

Hence

R(N , θ ) = A0 R(N − 1, 2θ ) + eiθ A1 R(N − 1, 2θ ) = M(θ )R(N − 1, 2θ ).

Iterating, this gives

R(N , θ ) = M(θ ) R(N − 1, 2θ )

= M(θ ) M(2θ ) R(N − 2, 4θ )

= · · ·
= M(θ ) M(2θ ) · · · M(2N−1θ) R(0, 2Nθ )

= M(θ ) M(2θ ) · · · M(2N−1θ) V0. (3.7)
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We now make a brief digression to discuss norms of vectors and matrices. Let
us start with some notation. If v = (v1, v2, . . . , vr ) is a vector of real or complex
numbers, then by ‖v‖ we mean the Euclidean norm (

∑
1≤i≤r |vi |2)1/2. Let M be

a square matrix of dimension d with entries in R or C. By ‖M‖ we mean the L2

norm, which is the matrix norm associated with the usual Euclidean norm on Rd or
Cd by the formula ‖M‖ = sup‖x‖=1 ‖Mx‖. If M is a matrix, then its spectral radius
ρ(M) is defined to be the largest absolute value of its eigenvalues. The following
theorem is well known:

Theorem 3.3.3 The square of the L2 norm of M equals ρ(M M∗), where M∗ is the
conjugate transpose of M.

We can now return to the proof of Theorem 3.3.2. Taking the L2 norm of both
sides of (3.7), we obtain
∣
∣
∣
∣
∣
∣

∑

0≤n<2N

rneinθ

∣
∣
∣
∣
∣
∣
≤ ‖R(N , θ )‖ = ‖M(θ )M(2θ ) · · · M(2N−1θ )V0‖

≤ ‖M(θ )M(2θ ) · · · M(2N−1θ )‖‖V0‖

≤



∏

0≤ j<N

‖M(2 jθ )‖



√

2 =
√

2
∏

0≤ j<N

√
ρ(M(2 jθ )M∗(2 jθ )).

An easy calculation shows that for any real number α,

ρ

((
1 eiα

1 −eiα

)(
1 eiα

1 −eiα

)∗)

= ρ

((
2 0
0 2

))

= 2.

Thus
∣
∣
∣
∣
∣
∣

∑

0≤n<2N

rneinθ

∣
∣
∣
∣
∣
∣
≤

√
2(2N/2).

This gives the square-root property when the range of summation for the sum in
Theorem 3.3.2 is [0, 2N − 1]. In order to bound the full sum

S(N , θ ) =
∑

0≤n<N

rneinθ

we let the binary expansion of N be 2N0 + 2N1 + · · · , where N0 > N1 > · · · ≥ 0.
Hence, abbreviating

∑
a≤n<b rneinθ by

∑
a≤n<b, we have

∑

0≤n<N

=
∑

0≤n<2N0

+
∑

2N0≤n<2N0+2N1

+
∑

2N0+2N1≤n<2N0+2N1+2N2

+ · · · .

Each of these sums has the form
∑

K≤n<K+2J where 2J+1 divides K . But it is easy
to see that if n belongs to [0, 2J − 1] and if 2J+1 divides K , then rn+K = rnrK .
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Thus
∑

K≤n<K+2J

rneinθ =
∑

0≤n<2J

rn+K ei(n+K )θ =
∑

0≤n<2J

rnrK einθei K θ .

Hence
∣
∣
∣
∣
∣
∣

∑

K≤n<K+2J

rneinθ

∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

∑

0≤n<2J

rneinθ

∣
∣
∣
∣
∣
∣
≤

√
2(2J/2).

Going back to the sum S(N , θ ) we thus have

|S(N , θ )| ≤
∣
∣
∣
∣
∣
∣

∑

0≤n<2N0

∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣

∑

2N0≤n<2N0+2N1

∣
∣
∣
∣
∣
∣
+ · · · ≤

√
2(2N0/2 + 2N1/2 + · · · ).

In order to finish this proof we only need to show that

(2N0/2 + 2N1/2 + · · · ) ≤ (1 +
√

2)(2N0 + 2N1 + · · · )1/2.

Define the functions h j by h j (x) := (x + 2N j )1/2 − x1/2. These functions are
clearly decreasing for x ≥ 0. Hence, remembering that N0 > N1 > · · · , we have
for all j that

h j (2
N j ) ≤ h j (2

N j+1 + 2N j+2 + · · · ),

i.e.,

(2N j + 2N j )1/2 − (2N j )1/2 ≤ (2N j + 2N j+1 + · · · )1/2 − (2N j+1 + 2N j+2 + · · · )1/2.

Thus

(
√

2 − 1)2N j/2 ≤ (2N j + 2N j+1 + · · · )1/2 − (2N j+1 + 2N j+2 + · · · )1/2.

Summing over j , we obtain

(
√

2 − 1)(2N0/2 + 2N1/2 + · · · ) ≤ (2N0 + 2N1 + · · · )1/2,

i.e.,

(2N0/2 + 2N1/2 + · · · ) ≤ (
√

2 + 1)(2N0 + 2N1 + · · · )1/2. �

We now turn to a different topic, namely, sums of pattern sequences.

Theorem 3.3.4 Let (S(n))n≥0 be a sequence of real numbers with S(0) = 0, and let
k ≥ 2 be an integer. Then we can express S uniquely as a sum of pattern sequences
as follows:

S(n) =
∑

i≥1

Ŝ(i)ek;(i)k (n), (3.8)

where the Ŝ(i) are real numbers. Furthermore, if S is integer-valued, then so is the
sequence Ŝ.
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The map (S(n)) → (Ŝ(n)) is called the pattern transform of the sequence S.

Proof. Note that the sum (3.8) is well defined, since for any particular n there are
only a finite number of terms.

To see that the coefficients Ŝ(i) exist, we note that we may take Ŝ(1) = S(1),
since ek;1(1) = 1. Now consider the function S(n) − Ŝ(1)ek;1(n). This function is
0 at n = 0, 1. Hence we may choose Ŝ(2) to be S(2) − Ŝ(1)ek;1(2). Now consider
S(n) − Ŝ(1)ek;1(n) − Ŝ(2)ek;(2)k (n), etc.

To see that the expansion (3.8) is unique, note that Ŝ(1) is completely determined
by setting n = 1. Once Ŝ(1) is determined, Ŝ(2) is completely determined by setting
n = 2, etc.

The coefficients Ŝ(i) are integer-valued, if S is integer-valued, since at each step
we only perform subtractions, never divisions. �

We now give a closed form for the sequence Ŝ. Define

λk(n) =
{

n − a · k j if a · k j ≤ n < (a + 1) · k j for some j ≥ 0, 1 ≤ a < k,

0 if n = 0.

In other words, λk(n) is the number that results from removing the most significant
digit in the base-k representation of n. Define the function xk;w(n) to be 1 if the
base-k expansion of n ends in the string w, and 0 otherwise. Finally, define the
relation m�n to be true if (m)k is a suffix of (n)k , and false otherwise.

Theorem 3.3.5 For all integers r ≥ 1 we have

Ŝ(r ) = S(r ) − S(�r/k�) − S(λk(r )) + S(�λk(r )/k�).

Proof. For all n ≥ 0 and 0 ≤ a < k we have

S(kn + a) = S(0) +
∑

j≥1

Ŝ( j)ek;( j)k (kn + a)

= S(0) +
∑

j≥1

Ŝ( j)(ek;( j)k (n) + xk;( j)k (kn + a))

= S(n) +
∑

j≥1

Ŝ( j)xk;( j)k (kn + a)

= S(n) +
∑

m≥1
m�kn+a

Ŝ(m)

= S(n) + Ŝ(a) +
∑

m≥1
m�n

Ŝ(km + a).



3.3 Block Counting and Digital Sequences 83

It follows that

S(kn + a) − S(n) = Ŝ(a) +
∑

m≥1
m�n

Ŝ(km + a)

= Ŝ(a) + Ŝ(kn + a) +
∑

m≥1
m�λk (n)

Ŝ(km + a).

But we also have

S(kλk(n) + a) − S(λk(n)) = Ŝ(a) +
∑

m≥1
m�λk (n)

Ŝ(km + a).

Hence it follows that

S(kn + a) − S(n) = Ŝ(kn + a) + S(kλk(n) + a) − S(λk(n)),

and therefore, setting r = kn + a, we get

Ŝ(r ) = S(r ) − S(�r/k�) − S(λk(r )) + S(�λk(r )/k�). �

Example 3.3.6 Let k = 2. Consider the function s2(3n), or, in other words, e2;1(3n).
Letting fw(n) = e2;w(n), we find

f1(3n) = 2 f1(n) − 2 f11(n) + f111(n) − 2 f1011(n)

+ f11011(n) − 2 f101011(n) + f1101011(n) − · · ·
= 2 f1(n) − 2

∑

i≥0

f(10)i 11(n) +
∑

i≥0

f11(01)i 1(n).

For a proof, see Exercise 21.

We now turn to the concept of digital sequence. Informally, a sequence is said to
be digital if it can be defined as the sum, over all length-r windows in the base-k
representation of n, of some function of those windows.

More formally, if the base-k representation of n is n = ∑
0≤i≤t ai ki , then, as in

the proof of Theorem 3.2.3 above, define ε(k)
i (n) = ai . (If the base is clear from the

context, we will often omit the superscript.) Note that

ε
(k)
i (n) = �n/ki� − k�n/ki+1�.

Then a sequence (b(n))n≥0 is said to be a digital sequence if there exist an integer
r ≥ 1 and a function F from Zr → C such that F(0, 0, . . . , 0) = 0 and

b(n) =
∑

i≥0

F(εi (n), . . . , εi+r−1(n)).

Note that the sum is well defined because F(0, 0, . . . , 0) = 0.
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Example 3.3.7 The sequence sk(n) is digital. It corresponds to the case r = 1 and
F(x) = x .

Example 3.3.8 Let Bk(n) denote the number of blocks of adjacent identical digits in
the base-k representation of n. For example, the number B10(3331000022) = 4.
Then Bk(n) is digital, since we may take r = 2 and F(x, y) = 1 if x �= y, and 0
otherwise.

Theorem 3.3.9 A sequence (b(n))n≥0 is digital if and only if it can be expressed as
a finite linear combination of nonzero pattern sequences.

Proof. Let �k = {0,1, . . . , k − 1}. Suppose (b(n))n≥0 is digital. Then

b(n) =
∑

i≥0

F(εi (n), . . . , εi+r−1(n)).

It is now easy to see that

b(n) =
∑

(t0,...,tr−1)∈�r
k

F(t0, t1, . . . , tr−1)ek;tr−1tr−2···t0 (n).

On the other hand, suppose (b(n))n≥0 is a finite linear combination of nonzero
pattern sequences, say

b(n) =
∑

P∈P
aPek;P (n).

If r is the length of the longest string in P , we can write

b(n) =
∑

i≥0

F(εi (n), . . . , εi+r−1(n)),

where

F(t0, t1, . . . , tr−1) =
∑

P∈P
P�tr−1 ···t1 t0

aP . �

3.4 Representation of Real Numbers

In previous sections, we considered the representation of integers in base k. In this
section, we briefly discuss representations for real numbers, focusing on represen-
tation in base k.

Theorem 3.4.1 Let k be an integer ≥ 2. Every real number x can be represented
in the form

�x� +
∑

i≥1

ai k
−i ,
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where 0 ≤ ai < k. If x is not of the form b/kr for some integers b, r with r ≥ 0,
then the representation is unique. If x is of the form b/kr with r ≥ 0, then there
are two different representations, one where ai = 0 for i > r , and another where
ai = k − 1 for i > r .

Proof. The following algorithm provides one base-k representation for x0:

RealRep(k, x0)
a0 := �x0�
i := 0
while ai �= xi do

xi+1 := k(xi − ai )
i := i + 1
ai := �xi�
output(ai )

If the algorithm terminates on input (k, x), then it is clear that x = a0 +∑
1≤i≤r ai k−i for some r ≥ 0. On the other hand, if the algorithm does not ter-

minate, then it is easy to see that the sequence (a0 +
∑

1≤i≤r ai k−i )r≥1 tends to x
from below. Hence every number has at least one representation.

Suppose there are integers b, r such that x = b/kr . Then we can write x =
�x� + {x}, where {x} = c/kr for some integer c ≥ 0. Let the base-k representation
of the integer c bew = (c)k , and letw′ = 0r−|w|w. Then ifw′ = d1d2 · · · dr , we have

x = a0 +
∑

i≥1

ai k
−i = a′

0 +
∑

i≥1

a′
i k

−i ,

where a0 = �x�, and ai = di for 1 ≤ i ≤ r , and ai = 0 for i > r , and a′
i = di for

1 ≤ i < r ; a′
r = dr − 1, and a′

i = k − 1 for i > r . Finally, a′
0 = a0 unless r = 0,

in which case a′
0 = a0 − 1. We leave it to the reader to verify that these two

representations are the only ones possible.
Now suppose that there exist no integers b, r such that x = b/kr , and assume

that x has at least two different representations, say

x = a0 +
∑

i≥1

ai k
−i

and

x ′ = a′
0 +

∑

i≥1

a′
i k

−i ,

where x = x ′. Since these representations differ, there must exist a smallest index
j ≥ 0 such that a j �= a′

j . Without loss of generality assume a j < a′
j . Then there ex-

ists an index l > j such that al < k − 1; for if not, we would have x = b/kr for some
integers b, r . Then x ′ − x > k−l , contradicting the assumption that x ′ = x . �
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Theorem 3.4.2 Let k be an integer ≥ 2, and let {x} = 0.a1a2a3 · · · be the base-k
representation of the fractional part of x. Then x is a rational number if and only
if the infinite word

a = a1a2a3 · · ·

is ultimately periodic.

Proof. Suppose a is ultimately periodic. Then we can write

{x} = .a1a2 · · · ar (ar+1 · · · ar+s)ω

for some integers r, s with r ≥ 0 and s > 0. Then it is easy to verify that

{x} = k−r

(

[a1a2 · · · ar ]k + [ar+1ar+2 · · · ar+s]k

ks − 1

)

,

so x is rational.
On the other hand, if x is rational, then {x} = b/c for some integers b, c with

b ≥ 0, c > 0. Each step of the algorithm RealRep produces a new digit ai and an
xi of the form bi/c, with 0 ≤ bi < c. If bi = 0, the algorithm terminates, which
corresponds to an ultimately periodic representation with period equal to the single
digit 0. If the algorithm does not terminate, there are at most c different possibilities
for bi ; when one occurs for the second time, the output of the algorithm becomes
ultimately periodic. �

Let k ≥ 2 be an integer. Let w, x ∈ �∗
k be finite words with w = a1a2 . . . ai ,

x = b1b2 · · · b j . We define [w.x]k = [w]k + k− j [x]k . Similarly, if x ∈ �ω
k and

x = b1b2 · · · , then we define [w.x]k = limn→∞([w]k + k− j [xn]k), where xn =
b1b2 · · · bn .

3.5 Sums of Sums of Digits

In Section 3.2 we showed that Sk(x) = ((k − 1)/(2 log k))x log x + O(x), where Sk

is the summatory function of the sum-of-digits function. In this section, we prove
even more; namely, that the error term is a continuous, nowhere differentiable
periodic function of (log x)/(log k). Actually, we prove a more general result below
in Theorems 3.5.1 and 3.5.3 for certain well-behaved sums of the form

∑

0≤n<x

f (n),

where f is some function of the base-k digits of n.



3.5 Sums of Sums of Digits 87

We define the exponential of a matrix as follows:

exp M =
∑

i≥0

Mi

i!
;

it is easy to see that this sum always converges. Let I be the identity matrix. We
define the logarithm as follows:

log(I + M) =
∑

i≥1

(−1)i+1

i
Mi+1;

this is well defined if limi→∞ ‖Mi‖ = 0. Finally, assuming that log M is well
defined, we define Mx for a real number x as exp(x log M).

Theorem 3.5.1 Let k ≥ 2 be an integer. Suppose there exist an integer d ≥ 1, a
sequence of vectors (Vn)n≥0, Vn ∈ Cd , defined by

Vn =








V (1)
n

V (2)
n
...

V (d)
n







,

and k square matrices !0,!1,. . . , !k−1 of dimension d such that

(a) Vkn+r = !r Vn for all n ≥ 0 and all r , 0 ≤ r < k;
(b) ‖Vn‖ = O(log n); and
(c) there exist a d × d matrix " and a constant c > 0 such that either ‖"‖ < c or "

is nilpotent, i.e., "τ = 0 for some integer τ , such that ! := !0 + !1 + · · · + !k−1 =
cI +". Furthermore, ! being clearly invertible, we assume that ‖!−1‖ < 1.

Then there exists a continuous function G : R → Cd of period 1 such that if
A(N ) := ∑

0≤n<N Vn, then

A(N ) = N
log c
log k (I + c−1")

log N
log k G

(
log N

log k

)

. (3.9)

Proof. Here is an outline of the proof. First, we prove the existence of a function
G such that (3.9) holds. Next, we show that G is of period 1. Finally, we show it is
continuous.

Note that the conditions on " imply that ! is invertible and

!−1 = c−1(I + c−1")−1 =
∑

i≥0

(−1)i c−i−1"i .
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We turn to the computation of A(k N + r ) for 0 ≤ r < k. We first compute A(k N )
for any integer N . We have

A(k N ) =
∑

0≤n<k N

Vn =
∑

0≤r<k

∑

kn+r<k N

Vkn+r

=
∑

0≤r<k

∑

0≤n<N

Vkn+r =
∑

0≤r<k

∑

0≤n<N

!r Vn

=
∑

0≤r<k

!r

∑

0≤n<N

Vn =
(
∑

0≤r<k

!r

)(
∑

0≤n<N

Vn

)

= !A(N ).

Now we note that, for every r with 0 ≤ r < k, we have

A(k N + r ) = A(k N ) +
∑

0≤l<r

Vk N+l .

Then for 0 ≤ r < k we have

A(k N + r ) = !A(N ) +
(
∑

0≤l<r

!l

)

VN . (3.10)

Let x be a positive real number. We now define three sequences associated with
x . Let the base-k representation of x be

x = ε0 +
∑

r≥1

εr k−r ,

where ε0 is a non-negative integer, 0 ≤ εr < k, for all r ≥ 1, and the εr ’s are not
all eventually equal to k − 1. Let

xi := �ki x� =
∑

0≤r≤i

εr ki−r ,

and, finally, let

Ti (x) := !−i A(xi ).

Since xi = kxi−1 + εi , we have, by Eq. (3.10), that

Ti (x) − Ti−1(x) = !−i (A(xi ) − !A(xi−1)) = !−i

(
∑

0≤l<εi

!l

)

Vxi−1 . (3.11)

Hence

‖Ti (x) − Ti−1(x)‖ ≤ ‖!−1‖i

(

sup
0≤r≤k−1

∥
∥
∥
∥
∥

∑

0≤l<r

!l

∥
∥
∥
∥
∥

)

‖Vxi−1‖.
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But ‖Vxi−1‖ = O(log xi−1) = O(i log x). Hence for any x > 0, the series
∑

i≥0

‖Ti (x) − Ti−1(x)‖

converges for any x > 0. Then, by telescopic cancellation, the sequence (Ti (x))i≥0

converges.
Let

#(x) := lim
i→∞

Ti (x). (3.12)

Summing the equalities (3.11) and letting i go to infinity, we obtain

#(x) = T0(x) +
∑

i≥1

(Ti (x) − Ti−1(x)) .

Hence

#(x) = A(�x�) +
∑

i≥1

!−i

(
∑

0≤l<εi

!l

)

Vxi−1 . (3.13)

Furthermore, if x = N is an integer, then εi = 0 for all i ≥ 1, Hence Eq. (3.13)
reduces to

#(N ) = A(N ). (3.14)

Now if x ′ = kx , then x ′
i := �ki x ′� = �ki+1x� = xi+1. Hence

Ti (kx) = Ti (x
′) = !−i A(x ′

i ) = !−i A(xi+1) = !Ti+1(x).

Letting i go to infinity, we obtain

#(kx) = !#(x). (3.15)

We now define the function G : R −→ Cd by

G(y) := c−y(I + c−1")−y#(ky). (3.16)

Property (3.15) implies immediately that G is periodic, of period 1, and

#(x) = c
log x
log k (I + c−1")

log x
log k G

(
log x

log k

)

= x
log c
log k (I + c−1")

log x
log k G

(
log x

log k

)

.

(3.17)

In particular, if x = N is an integer, then, using (3.14), we find

A(N ) = #(N ) = N
log c
log k (I + c−1")

log N
log k G

(
log N

log k

)

. (3.18)

It remains to show that G is continuous. Of course, in view of (3.16), it suffices
to prove that # is continuous. We first need a lemma on the digits of a converging
sequence.
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Lemma 3.5.2 Let x be a number in R>0, and let the base-k representation of x be
x = ε0 +

∑
r≥1 εr k−r , with ε0 a non-negative integer, 0 ≤ εr < k for all r ≥ 1, and

the εr ’s not all eventually equal to k − 1. Let y tend to x−, (i.e., y tends to x and
y ≤ x), and y = α0 +

∑
r≥1 αr k−r , with α0 ∈ N, the digits αr ∈ [0, k − 1] for all

r ≥ 1, and the αr ’s not all eventually equal to k − 1. Define as before xi := �ki x�
and yi := �ki y�. Then

Case 1. If x is not of the form a
kb , then the sequence (αr )r≥0 converges to the

sequence (εr )r≥0 and yi tends to xi for every i .
Case 2. If x = a/kb, where a and b are integers ≥ 0 and b is minimal, i.e.,

x = ε0 +
∑

1≤r≤b εr k−r , and εb �= 0, then the sequence (αr )r≥0 converges to the
sequence (ε̃r )r≥0 defined by

ε̃r =






εr if r < b,

εr − 1 if r = b,

k − 1 if r > b.

Furthermore we have

yi =
{

xi if i < b,

xi − 1 = ki−bxb − 1 if i ≥ b

for all y sufficiently close to x−.

Proof. The proof is left to the reader. �

In order to prove the continuity of our function # at the point x , it suffices to
prove left continuity and right continuity. The right continuity is straightforward.
For the left continuity, we distinguish three cases.

Case 1. If x is not of the form a/kb with a and b integers, and if y tends to
x−, then, from Lemma 3.5.2, the sequence of digits of y in base k converges to
the sequence of digits of x in base k. On the other hand, x is not an integer; hence
A(�y�) tends to A(�x�), and Eq. (3.12) shows that #(y) tends to #(x).

Case 2. If x = a/kb, let (εr )r≥0 and (ε̃ )r≥0 be the sequences defined in
Lemma 3.5.2. If y tends to x+, then #(y) tends to #(x). Let y tend to x−, and
let y = α0 +

∑
r≥1 αr k−r with α0 ∈ N and, for r ≥ 1, the digits αr in [0, k − 1] not

all eventually equal to k − 1. Also let yi = �ki y�. We have from Eq. (3.13)

#(y) = A(�y�) +
∑

i≥1

!−i

(
∑

0≤l<αi

!l

)

Vyi−1 .

Using Lemma 3.5.2, and supposing that x is not an integer (hence b �= 0), we obtain
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that

∑

i≥1

!−i

(
∑

0≤l<αi

!l

)

Vyi−1

−→
∑

0≤i<b

!−i

(
∑

0≤l<εi

!l

)

Vxi−1 + !−b

(
∑

0≤l≤εb−2

!l

)

Vxb−1

+
∑

i≥b+1

!−i

(
∑

0≤l≤k−2

!l

)

Vxi−1−1. (3.19)

But xi−1 − 1 = ki−1−bxb − 1, since x = a/kb. Then

Vxi−1−1 = Vki−1−bxb−1 = !i−1−b
k−1 Vxb−1.

Hence

∑

i≥b+1

!−i

(
∑

0≤l≤k−2

!l

)

Vxi−1−1 =
∑

i≥b+1

!−i (! − !k−1)!i−1−b
k−1 Vxb−1.

By telescoping cancellation, this last quantity equals

!−bVxb−1 = !−bVkxb−1+εb−1 = !−b!εb−1Vxb−1,

which finally shows, using (3.19),

∑

i≥1

!−i

(
∑

0≤l<αi

!l

)

Vyi−1 −→
∑

0≤i≤b

!−i

(
∑

0≤l<εi

!l

)

Vxi−1 .

This last quantity equals

∑

i≥1

!−i

(
∑

0≤l<εi

!l

)

Vxi−1,

since the εi are zero for i ≥ b + 1. On the other hand, since x is not integer,
A(�y�) −→ A(�x�) and the continuity of # at x is proven.

Case 3. It remains to handle the case where x is an integer. This is done by
looking at the argument above in case 2, when b = 0. We have

∑

i≥1

!−i

(
∑

0≤l<αi

!l

)

Vyi−1 −→
∑

i≥1

!−i

(
∑

0≤l≤k−2

!l

)

Vxi−1−1,

since previously xi−1 − 1 = ki−1−bxb − 1 = ki−1x − 1 and Vxi−1−1 =
!i−1−b

k−1 Vxb−1 = !i−1
k−1Vx−1. Hence

∑

i≥1

!−i

(
∑

0≤l≤k−2

!l

)

Vxi−1−1 =
∑

i≥1

!−i (! − !k−1)!i−1
k−1Vx−1 = Vx−1.
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Now, since x is an integer, A(�y�) −→ A(x − 1), and hence

#(y) −→ A(x − 1) + Vx−1 = A(x) = #(x)

using (3.14). �

We now state a proposition about the nondifferentiability of these sums.

Theorem 3.5.3 Let (an)n≥0 be a sequence of complex numbers such that there exist
a function L, a continuous function F with period 1, and a positive real number
α ≤ 1 with

∑

0≤n<N

an = L(N ) + NαF

(
log N

log k

)

. (3.20)

Let λ and e be two integers ≥ 1. Let x be a real number in (0, 1). Define

kx = ∑
r≥0 εr k−r , with εr ∈ [0, k − 1],

and the εr not all eventually equal to k − 1,

Ni := kλ
∑

0≤r≤i εr ki−r + e,

xi := log Ni

log k − i − λ,

yi := log(Ni+1)
log k − i − λ.

(3.21)

Then

aNi = L(Ni + 1) − L(Ni ) + F(yi ) − F(xi )

((yi − xi ) log k)α
+ αNα−1

i F(x) + o(Nα−1
i ).

(3.22)
In particular:

(i) If α < 1, L = 0 and if there exists a constant γ such that for all n, an ≥ γ > 0, then
the function F is nowhere differentiable. More precisely, we have

F(x + h) − F(x) = �(|h|α) when h → 0.

(ii) If α = 1, L(x) = δx log x, and there exist an integer λ1 ≥ 1 and an integer e1 such that
for all n, akλ1 n+e1

− akλ1 n = ae1 − a0 �= 0, then F is nowhere differentiable.

Proof. Using (3.20) and the fact that F has period 1 and is bounded, we have

aNi =
∑

0≤n<Ni+1

an −
∑

0≤n<Ni

an

= L(Ni + 1) − L(Ni ) + (Ni + 1)αF( log(Ni+1)
log k ) − Nα

i F( log Ni

log k )

= L(Ni + 1) − L(Ni ) + Nα
i (F(yi ) − F(xi )) + ((Ni + 1)α − Nα

i )F(yi )

= L(Ni + 1) − L(Ni ) + Nα
i (F(yi ) − F(xi )) + αNα−1

i F(x) + o(Nα−1
i ),
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since

(Ni + 1)α − Nα
i = αNα−1

i + o(Nα−1
i )

and F is continuous. But

yi − xi = log(Ni + 1)

log k
− log Ni

log k
= 1

Ni log k
(1 + O(1/Ni )).

Hence, since F is continuous,

aNi = L(Ni + 1) − L(Ni ) + F(yi ) − F(xi )

((yi − xi ) log k)α
+ αNα−1

i F(x) + o(Nα−1
i ).

(3.23)

Let us prove assertion (i). Suppose that α < 1 and L = 0. Then we deduce from
Eq. (3.22)

aNi =
F(yi ) − F(xi )

((yi − xi ) log k)α
+ o(1).

Hence, if furthermore an ≥ γ > 0, we have

F(yi ) − F(xi )

((yi − xi ) log k)α
# 1.

Since

|kx − kxi | =
∣
∣
∣
∣k

x − Ni

ki+λ

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∑

r≥i+1

εr k−r − ek−i−λ
∣
∣
∣
∣
∣
≤ (1 + ek−λ)k−i ,

we have |x − xi | = O(k−i ), and similarly |x − yi | = O(k−i ). Hence the property
|F(x + h) − F(x)| = o(|h|α) when h → 0 does not hold.

Let us now prove (ii). Suppose that α = 1, L(x) = δx log x , and there exist two
integers λ1, e1 ≥ 1 such that akλ1 n+e1

− akλ1 n = ae1 − a0 �= 0 for all n. Then, from
Eq. (3.22), we have

aNi = δ(1 + log Ni ) + F(yi ) − F(xi )

(yi − xi ) log k
+ F(x) + o(1).

Hence, if F is differentiable at x , we have

aNi = δ(1 + log Ni ) + F ′(x)

log k
+ F(x) + o(1)

= δ(1 + (i + xi + λ) log k) + F ′(x)

log k
+ F(x) + o(1)

= δ(1 + (i + x + λ) log k) + F ′(x)

log k
+ F(x) + o(1). (3.24)



94 Numeration Systems

Recall that

Ni = Ni (λ, e) = kλ
∑

0≤r≤i

εr ki−r + e,

and observe that the dominant term in the right-hand side of Eq. (3.24) does not
depend on e. Hence, writing this formula for e �= 0 and e = 0,

aNi (λ,e) − aNi (λ,0) = o(1).

Now take λ = λ1, e = e1, and note that Ni (λ1, e1) = kλ1n(i) + e1 and Ni (λ1, 0) =
kλ1n(i), with n(i) = ∑

0≤r≤i εr ki−r . Using the property of λ1 and e1, we obtain

ae1 − a0 = akλ1 n(i)+e1
− akλ1 n(i) = aNi (λ1,e1) − aNi (λ1,0) = o(1).

Hence

ae1 − a0 = 0,

which contradicts the hypothesis. �

We now apply our results to three celebrated sums. First, we handle the case
Sk(N ) = ∑

0≤n<N sk(n):

Theorem 3.5.4 Let k be an integer ≥ 2. Then there exists a continuous nowhere
differentiable function F = Fk of period 1 such that for all N ≥ 0 we have

∑

0≤n<N

sk(n) = k − 1

2
N

log N

log k
+ N Fk

(
log N

log k

)

. (3.25)

Proof. Define the sequence of vectors (Vn)n≥0 in (Rk)N by

Vn :=










sk(n)
1
2
...

k − 1










.

Let us define k square matrices of dimension k by

!0 := I :=










1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
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and, for 1 ≤ r ≤ k − 1,

!r := I +








0 . . . 0 1 0 . . . 0
0 . . . . . . . . . 0
...

...
0 . . . . . . . . . 0







,

the only 1 in the above matrix being in row 1 and in column r + 1. Then, for
1 ≤ r ≤ k − 1,

Vkn+r = !r Vn,

and

! =
∑

0≤r<k

!r = k I +








0 1 . . . 1 . . . 1
0 0 . . . . . . . . . 0
...

...
...

0 0 . . . . . . . . . 0







.

Hence we can apply Theorem 3.5.1, with d = k, c = k, and

" =








0 1 . . . 1 . . . 1
0 0 . . . . . . . . . 0
...

...
...

0 0 . . . . . . . . . 0







.

Now ‖"‖ = √
(k − 1) < k and "2 = 0. Hence

log(I + k−1") = k−1"

and, for any real number x ,

(I + k−1")x = I + xk−1".

Hence, writing Eq. (3.9), we find that there exists a continuous (vector) function G
of period 1 such that

A(N ) =
∑

0≤n<N

Vn = N

(

I + log N

k log k
"

)

G

(
log N

log k

)

. (3.26)
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But, inverting Eq. (3.26), we have

G

(
log N

log k

)

= 1

N

(

I − log N

k log k
"

)

A(N )

= A(N )

N
− log N

k N log k








0 1 . . . 1 . . . 1
0 0 . . . . . . . . . 0
...

...
...

0 0 . . . . . . . . . 0








A(N )

= A(N )

N
− log N

k N log k








0 1 . . . 1 . . . 1
0 0 . . . . . . . . . 0
...

...
...

0 0 . . . . . . . . . 0




























∑

0≤n<N

sk(n)

N

2N

...

(k − 1)N





















Hence

G

(
log N

log k

)

= 1

N





















∑

0≤n<N

sk(n) − (k − 1)N log N

2 log k

N

2N

...

(k − 1)N





















,

which implies

"G

(
log N

log k

)

= k(k − 1)

2








1
0
...
0







.
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Figure 3.2: Graph of the Function F2(x) for x ∈ [0, 1].

Now, going back to Eq. (3.26), we obtain

A(N ) =
∑

0≤n<N

Vn = N

(

I + k−1 log N

log k
"

)

G

(
log N

log k

)

= N G

(
log N

log k

)

+ k − 1

2 log k
N log N








1
0
...
0







.

Hence, if F is the first component of G, this is a continuous function with period
1, and

∑

0≤n<N

sk(n) = k − 1

2 log k
N log N + N F

(
log N

log k

)

.

To show the non-differentiability of the function F , we apply Theorem 3.5.3,
with λ1 = e1 = 1. �

Figure 3.2 is a graph of the function F2.
Next, we consider the sum

∑
0≤n<N (−1)s2(3n). This sum originally arose follow-

ing an observation of Moser. He noted that among the first few multiples of 3, those
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with an even number of 1’s in their base-2 representation predominated over those
with an odd number. Coquet explained this by proving the following theorem.

Theorem 3.5.5 There exists a continuous nowhere differentiable function G0 of
period 1 such that, for all integers N ≥ 1, we have

∑

0≤n<N

(−1)s2(3n) = N
log 3
log 4 G0

(
log N

log 4

)

+ η(N ), (3.27)

where

η(N ) =





0 if N is even,

1
3 (−1)s2(3N−1) if N is odd.

Proof. Let χ be the characteristic function of the integers that are congruent to zero
modulo 3. If j is the cube root of unity defined by j = −1+i

√
3

2 , a simple computation
shows that χ (n) = 1

3 + 2
3 Re j n . Hence

∑

0≤n<N

(−1)s2(3n) =
∑

0≤n<3N

(−1)s2(n)χ (n) = 1

3

∑

0≤n<3N

(−1)s2(n)(1 + 2 Re j n)

= 1

3

∑

0≤n<3N

(−1)s2(n) + 2

3
Re

∑

0≤n<3N

(−1)s2(n) j n.

Defining the sequence (a(n))n≥0 by an = (−1)s2(n) j n , we easily obtain

a4n = an,

a4n+1 = − jan,

a4n+2 = − j2an,

a4n+3 = an.

Hence we can apply Theorem 3.5.1 with k = 4, d = 1, !0 = 1, !1 = − j , !2 =
− j2, and !3 = 1, so that ! = !0 + !1 + !2 + !3 = 3. This gives c = 3 and
" = 0. Hence there exists a continuous function G with period 1 such that

A(N ) =
∑

0≤n<N

an =
∑

0≤n<N

(−1)s2(n) j n = N
log 3
log 4 G

(
log N

log 4

)

. (3.28)

Hence, if we define

G0(x) = 2

31− log 3
log 4

Re G

(

x + log 3

log 4

)

, (3.29)
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Figure 3.3: Graph of the Function G0(x) for x ∈ [0, 1].

then G0 is continuous, has period 1, and satisfies the equation

∑

0≤n<N

(−1)s2(3n) = 1

3

∑

0≤n<3N

(−1)s2(n) + N
log 3
log 4 G0

(
log N

log 4

)

. (3.30)

Finally, since (−1)s2(n) and (−1)s2(2n+1) always have opposite signs, we get

∑

0≤n<3N

(−1)s2(n) =





0 if N is even,

(−1)s2(3N−1) if N is odd.
(3.31)

Now, to show that G0 is nowhere differentiable, it suffices to show that G is
nowhere differentiable. This is a straightforward consequence of Theorem 3.5.3(i)
with α = log 3

log 4 . �

Figure 3.3 is a graph of the function G0.
Finally, we apply the technique to the Rudin–Shapiro sequence.

Theorem 3.5.6 Let e2;11(n) be the number of (possibly overlapping) 11’s in the
base-2 representation of the integer n, and define rn = (−1)e

2;11(n). Then there
exists a continuous nowhere differentiable function G1 of period 1 such that, for
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Figure 3.4: Graph of the Function G1(x) for x ∈ [0, 1].

all integers N ≥ 1 we have

∑

0≤n<N

rn =
√

N G1

(
log N

log 4

)

. (3.32)

Proof. Define the sequence of vectors (Vn)n≥0 in (R2)N by

Vn =



rn

r2n+1



 .

Then for 0 ≤ i ≤ 3 we have V4n+i = !i Vn , where

!0 =
(

1 0
1 0

)

, !1 =
(

1 0
−1 0

)

,

!2 =
(

0 1
0 1

)

, !3 =
(

0 −1
0 1

)

.

Note that ! = !0 + !1 + !2 + !3 = 2I . Hence, applying Theorem 3.5.1 with
k = 4, the !’s above, and " = 0, there exists a continuous (vector) function G
of period 1 such that

A(N ) =
∑

0≤n<N

Vn =
√

N G

(
log N

log 4

)

.
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Hence, taking the first projection, there exists a continuous function G1 of period
1 such that

∑

0≤n<N

rn =
√

N G1

(
log N

log 4

)

.

To show that G1 is nowhere differentiable, we apply Theorem 3.5.3(i) with
α = 1

2 . �

Figure 3.4 is a graph of the function G1.

3.6 Base-k Representation with Alternate Digit Sets

The previous two sections discussed representation in base k using the digit set�k =
{0,1, . . . , k − 1}. This gives rise to a numeration system for the non-negative inte-
gers where the valid representations are given by the set Ck = {ε} ∪ (�k \ {0})�∗

k .
In this section, we examine the use of alternate digit sets.

We begin by examining the digit set Ek = {1,2, . . . , k}. This digit set has the
pleasant property of avoiding the leading-zeros problem. As the following theorem
shows, this gives rise to a perfect numeration system for the non-negative integers,
where the set of valid representations is simply E∗

k .

Theorem 3.6.1 Let k be an integer ≥ 2. Every integer n ≥ 0 can be represented
uniquely in the form

n =
∑

0≤i≤r

ai k
i ,

where the ai are integers chosen from {1, 2, . . . , k}.

Proof. Left to the reader as Exercise 28. �

This representation is called the bijective representation.
We next turn to digit sets that include both positive and negative digits. The

inclusion of negative digits means there is the potential to represent all integers,
not just the non-negative ones. Probably the most famous example of this type
of numeration system is the so-called balanced ternary system, which represents
numbers in base 3 using the digit set F = {−1, 0, 1}. This is a perfect numera-
tion system for Z whose corresponding set of valid representations is given by
{ε} ∪ (F \ {0})F∗.

Call a finite set D of integer digits basic for base k ≥ 2 if 0 ∈ D and

((1, k, k2, . . . ), D, {ε} ∪ (D \ {0})D∗)
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is a perfect numeration system. Then the following natural question arises: given a
base k, which digit sets are basic? The following theorem provides an answer.

We say a set S is a complete residue system (mod k) if Card S = k and for all
integers n there exists m ∈ S such that m ≡ n (mod k).

Theorem 3.6.2 Let k ≥ 2 be an integer. Then the digit set D containing 0 is basic
for k if and only if the following two conditions hold:

(a) D forms a complete residue system (mod k);
(b) for all n ≥ 1 and all w ∈ Dn, [w]k is never equal to any nonzero multiple of kn − 1.

Before we prove the theorem, we state and prove some lemmas.

Lemma 3.6.3 If D is basic for k, then |D| ≤ k.

Proof. Suppose |D| > k. Let m = maxd∈D |d|; clearly m ≥ 1. Consider the strings
in S = (D \ {0})Dn . There are at least k(k + 1)n such strings, and if w, x ∈ S, we
must have [w]k �= [x]k , since D is basic. But for w ∈ S we have

|[w]k | ≤ mkn + · · · + mk + m ≤ m(kn+1 − 1).

Hence there are at most 2m(kn+1 − 1) + 1 ≤ 2mkn+1 possible different values for
representations of length exactly n + 1. But there are k(k + 1)n different represen-
tations. Since k(k + 1)n > 2mkn+1 for n sufficiently large, some number must have
at least two different representations. Hence D cannot be basic. �

Lemma 3.6.4 If D is basic for k then D must be a complete residue system mod k.

Proof. Since D is basic for k, for all i with 0 ≤ i < k there must be a representation
w such that [w]k = i . Suppose w = ar ar−1 · · · a1a0. Then i = ar kr + · · · + a1k +
a0, so taking both sides modulo k, we find i ≡ a0 (mod k). Since by Lemma 3.6.3
D contains at most k members, the result follows. �

Lemma 3.6.5 If D is basic for k, then j(k − 1) �∈ D for all j �= 0.

Proof. Assume D is basic, and assume there exists a j �= 0 such that j(k − 1) ∈
D. Since D is basic, there exists a string w such that [w]k = − j . Let w =
ar ar−1 · · · a1a0. Then since a0 ≡ − j (mod k), we have, by Lemma 3.6.4, that
a0 = j(k − 1). Hence

[ar ar−1 · · · a1]k = (− j) − a0

k
= − j − jk + j

k
= − j,

so − j has two different representations, a contradiction. �
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Lemma 3.6.6 For any integer t ≥ 1 the digit set D is basic for k if and only if the
digit set {[w]k : w ∈ Dt} is basic for kt .

Proof. Left to the reader. �

We are now ready to prove Theorem 3.6.2.

Proof. If D is a basic digit set, then claim (a) follows by Lemma 3.6.4, and claim
(b) follows by combining Lemmas 3.6.5 and 3.6.6.

Now suppose that conditions (a) and (b) hold. We wish to conclude that D is basic
for k. Define f ( j) = ( j − j)/k, where j is the unique member of D congruent
to j (mod k). Define f 0( j) = j , and f s( j) = f ( f s−1( j)) for s ≥ 1. Clearly, if
f s+1( j) = 0 for some s, then

j = j + f ( j)k + · · · + f s( j)ks .

Now for | j | sufficiently large we have f ( j) < j . Hence either there exists an s with
f s( j) = 0, or there exist s ≥ 0, t ≥ 1 with f s( j) = f s+t ( j) = a for some a �= 0.
In the former case, we get a representation for j that is necessarily unique. In the
latter case, we have f t (a) = a. Hence

a = a + · · · + f t−1(a)kt−1 + akt ,

and so

−a(kt − 1) = a + · · · + f t−1(a)kt−1.

It follows that −a(kt − 1) ∈ Dt , which contradicts (b). �

Example 3.6.7 Let k, l be positive integers. The (k, l) numeration system is de-
fined to be a form of base-(k + l + 1) representation using the digit set {−k, 1 − k,
2 − k, . . . ,−1, 0, 1, 2, . . . , l − 1, l}. (Balanced ternary is the (1, 1) numeration sys-
tem.) By Theorem 3.6.2 these numeration systems are perfect.

3.7 Representations in Negative Bases

In some of the previous sections we examined the properties of various representa-
tions of non-negative integers in base k, k ≥ 2. In this section, we briefly examine
representations for all integers in base −k. First, we prove a general result about
representations for rings.

Let S be a commutative ring with unit element, let k ∈ S, and let U =
(1, k, k2, . . . ). We usually specify a digit set D containing 0 and then define the set
of valid representations to be

R = {ε} ∪ (D \ {0})D∗.
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We now generalize concept of complete residue systems, introduced in the pre-
vious section, to arbitrary commutative rings. We say that D constitutes a complete
residue system for S (mod k) if D satisfies the following two conditions.

(a) For each s ∈ S, there exists d ∈ D such that s ≡ d (mod k).
(b) If d, d ′ ∈ D and d �= d ′, then d �≡ d ′ (mod k).

We then have the following useful lemma.

Lemma 3.7.1 Let S be a ring with D ⊆ S and k ∈ S. Let N = (U, D, R) be a
numeration system with U = (1, k, k2, . . . ) and R = {ε} ∪ (D \ {0})D∗.

(a) If N is complete then D contains a complete residue system for S (mod k).
(b) If D is a complete residue system with 0 ∈ D, and if kx = ky in S implies x = y and

N is complete, then N is unambiguous.

Proof. (a): Since D is complete, any s ∈ S has a representation s = ∑
0≤i≤r ai ki .

Then the set of all possible values for a0 contains a complete residue system, since
s ≡ a0 (mod k).

(b): Suppose D is a complete residue system for S (mod k). Let
∑

0≤i≤r ai ki

and
∑

0≤ j≤r ′ a′
j k

j be two different representations for some s ∈ S, with ai , a′
j ∈ D

for 0 ≤ i ≤ r , 0 ≤ j ≤ r ′. Without loss of generality, we may assume that r ≤ r ′

and r is the smallest among all elements with two different representations. Then
we have s ≡ a0 (mod k), and s ≡ a′

0 (mod k), so a0 ≡ a′
0 (mod k), and hence

a0 = a′
0. Now consider x := ∑

1≤i≤r ai ki−1 and y = ∑
1≤ j≤r ′ a′

j k
j−1. We see that

kx = ky = s − a0. By the cancellation property, x = y. But then x has two different
representations and one is of shorter length than before, a contradiction. �

As an application, we prove the following:

Theorem 3.7.2 Let k ≥ 2 be an integer. Then every integer N ∈ Z has a unique
base-(−k) representation of the form

N =
∑

0≤i≤t

ai (−k)i ,

where at �= 0 and 0 ≤ ai < k for 0 ≤ i ≤ t .

Proof. First, we prove that every integer can be represented in base (−k) using the
digits �k = {0,1, . . . , k − 1}. We do so with the following algorithm:

NegBaseRep(N , k)
i := 0
while N �= 0 do
(1) ai := N modk
(2) N := (N − ai )/(−k)
(3) i := i + 1
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It is easy to see that if the algorithm terminates, then there exists r such that

N =
∑

0≤i≤r

ai (−k)i .

It remains to see that NegBaseRep terminates. We do this by induction on |N |. It
is easy to see that the algorithm terminates if |N | ≤ 1. Otherwise, in step (2) we
replace N with N ′ = −(N − ai )/k. Now if N �∈ {0,−1}, we have |N ′| < |N |, and
the proof is complete.

To see that the representation is unique, we just apply Lemma 3.7.1. �

If N = ∑
0≤i≤r ai (−k)i and ar �= 0, we define (N )−k to be the string

ar ar−1 · · · a1a0. Also, if w = c1c2 · · · ct , we write [w]−k for the integer
∑

1≤i≤t ci (−k)t−i .

3.8 Fibonacci Representation

We now turn to examine another exotic numeration system, based on the Fibonacci
numbers. Recall that the Fibonacci numbers are defined by F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2. We have the following:

Theorem 3.8.1 Every integer n ≥ 0 can be uniquely expressed as n = ∑
2≤i≤r ai Fi

with ai ∈ �2 = {0, 1}, ar �= 0, and ai ai+1 = 0 for 2 ≤ i < r .

This representation is called the Fibonacci representation.

Proof. We use Theorem 3.1.1. Suppose ai ∈ {0, 1}. It suffices to see that at Ft +
at−1 Ft−1 + · · · + a2 F2 < Ft+1 for all t if and only if ai ai+1 = 0 for 2 ≤ i < r .

Suppose that there is an index i with ai ai+1 = 1, i.e., ai = ai+1 = 1. Then
ai+1 Fi+1 + ai Fi + · · · + a2 F2 ≥ Fi + Fi+1 = Fi+2, a contradiction for t = i + 1.

On the other hand, suppose ai ai+1 = 0 for 2 ≤ i < r . Then the maximum pos-
sible value of at Ft + · · · + a2 F2 clearly occurs when at = 1, at−1 = 0, at−2 = 1,
at−3 = 0, etc. But it is easy to prove by induction that Ft + Ft−2 + · · · + F2 =
Ft+1 − 1 if t is even, and Ft + Ft−2 + · · · + F3 = Ft+1 − 1 if t is odd. �

It follows from Theorem 3.8.1 that there is a one–one correspondence between the
non-negative integers and representations of the form

∑
2≤i≤r ai Fi with ai ai+1 = 0

for 2 ≤ i < r . We write (n)F for ar ar−1 · · · a2, the Fibonacci representation of n,
and if w = a1a2 · · · a j ∈ {0,1}∗, we write [w]F = ∑

1≤i≤ j ai Fj−i+2.
The set of all valid Fibonacci representations is given by the regular expression

ε + 1(0 + 01)∗.
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3.9 Ostrowski’s α-Numeration System

In this section we introduce a numeration system, originally due to Ostrowski,
which is based on continued fractions. It can be viewed as a generalization of the
Fibonacci numeration system discussed in the previous section.

As we have seen in Section 2.4, every irrational real number α can be expressed
uniquely as an infinite simple continued fraction α = [a0, a1, a2, . . . ]. Further, if
we define p−2 = 0, p−1 = 1, q−2 = 1, q−1 = 0, and pn = an pn−1 + pn−2, qn =
anqn−1 + qn−2 for n ≥ 0, then pn/qn = [a0, a1, . . . , an]. The sequence (qn)n≥0 of
the denominators of the convergents then forms the basis for a numeration system
based on α.

We have the following theorem:

Theorem 3.9.1 Let α be an irrational real number, and let (qn)n≥0 be the sequence
of the denominators of the convergents to the continued fraction for α. Then every
non-negative integer N can be represented uniquely in the form

N =
∑

0≤i≤ j

bi qi ,

where the bi are integers satisfying the following three conditions:

1. 0 ≤ b0 < a1.
2. 0 ≤ bi ≤ ai+1 for i ≥ 1.
3. For i ≥ 1, if bi = ai+1 then bi−1 = 0.

Proof. We use Theorem 3.1.1. It suffices to show that the inequality

b0q0 + b1q1 + · · · + bi qi < qi+1 (3.33)

is equivalent to the three stated conditions.
Assume that (3.33) holds. Then, since q0 = 1 and q1 = a1, we see that the in-

equality b0q0 < q1 implies condition 1.
Now we prove condition 2. Inequality (3.33) implies that bi qi < qi+1 = ai+1qi +

qi−1. Dividing by qi , we get bi < ai+1 + qi−1/qi . Since qi−1 ≤ qi , we get bi ≤ ai+1.
To prove condition 3, note that if bi = ai+1 and bi−1 ≥ 1, then

b0q0 + · · · + bi−1qi−1 + bi qi ≥ ai+1qi + qi−1 = qi+1,

contradicting inequality (3.33).
It remains to see that conditions 1–3 imply (3.33). We prove this by induction on

i . For i = 0, we know by condition 1 that b0 < a1. Hence b0q0 < q1. For i = 1, we
know by conditions 2 and 3 that b1 ≤ a2 and b0 = 0 if b1 = a2; hence b0q0 + b1q1 =
b0 + b1a1 ≤ a1a2 < a1a2 + 1 = q2.

Now assume the implication for i < r ; we prove it for i = r . We know br ≤ ar+1

by condition 2; if br ≤ ar+1 − 1, then br qr ≤ (ar+1 − 1)qr ≤ qr+1 − qr . Together
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with the hypothesis b0q0 + · · · + br−1qr−1 < qr , this yields b0q0 + · · · + br qr <

qr+1.
On the other hand, if br = ar+1 then by condition 3 we know br−1 = 0. It fol-

lows that br−1qr−1 + br qr = ar+1qr = qr+1 − qr−1. Together with the hypothesis
b0q0 + · · · + br−2qr−2 < qr−1, this gives b0q0 + · · · + br qr < qr+1, as desired.

�

3.10 Representations in Complex Bases

In previous sections we have considered representations for integers or positive
integers. In this section, we turn to representation of the Gaussian integers,

Z[i] = {a + bi : a, b ∈ Z},
where i = √−1. We confine our discussion to base sets consisting of the powers
of a single Gaussian integer, θ . As in previous sections, we seek representations
that are natural and that represent each integer exactly once.

As we have seen in Section 3.1, in order to get a complete numeration system,
we need a digit set that is a complete residue system. For θ = d + ei , we define the
norm N (θ ) = d2 + e2.

The next lemma tells us how to compute the representative of a particular element.

Lemma 3.10.1 Let d, e be integers with gcd(d, e) = 1. Define θ = d + ei . Let d
be an integer such that dd ≡ 1 (mod N (θ )). Then for all integers a, b there exists a
unique integer c, 0 ≤ c < N (θ ), such that a + bi ≡ c (mod d + ei). Furthermore,
we may take c = (a + bed)mod N (θ ).

Proof. It is easy to verify that, for all c ∈ Z, we have

(a + bi − c)(d − ei) = (a − c)d + be + (bd + (c − a)e)i.

It follows that

a + bi − c = ( f + gi)(d + ei),

where

f = (a − c)d + be

d2 + e2

and

g = bd + (c − a)e

d2 + e2
.

Now let c ≡ a + bed (mod d2 + e2). For this choice of c, it is clear that f ∈ Z. To
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see that g ∈ Z, note that

bd + (c − a)e ≡ bd + be2d (mod d2 + e2)

≡ bd(d2 + e2) (mod d2 + e2)

≡ 0 (mod d2 + e2).

Hence a + bi ≡ c (mod d + ei).
To see that c is unique, assume that for two distinct integers c, c′ with 0 ≤ c, c′ <

N (θ ) we have c ≡ c′ (mod d + ei). Then if h = c − c′, we have h ≡ 0 (mod d + ei),
and furthermore

1 ≤ h < N (θ ). (3.34)

Hence there exist integers r, s such that h = (r + si)(d + ei) = rd − es + (ds +
er )i . Since h is a real integer, it follows that ds + er = 0. Since gcd(d, e) = 1,
there exists an integer k such that s = −ek and r = dk. Hence h = rd − es =
(d2 + e2)k = N (θ )k. But this contradicts (3.34). �

Example 3.10.2 Find an integer c such that 17 + 23i ≡ c (mod θ ), where θ =
31 + 45i . In this case we have a = 17, b = 23, d = 31, e = 45, and N (θ ) = 2986.
Then d = 289. Thus we can take c = (a + bed)mod N (θ ) = 532. Indeed, we have
a + bi − c = (−5 + 8i)(d + ei).

Lemma 3.10.3 Let d, e be integers with gcd(d, e) = λ > 0. Given integers a, b,
there exists a unique pair of integers (x, y) with 0≤ x < (d2 + e2)/λ and 0≤ y <λ

such that a + bi ≡ x + yi (mod d + ei).

Proof. Let A, B be integers with 0 ≤ A, B < λ such that A ≡ a (mod λ) and B ≡
b (mod λ). By Lemma 3.10.1 there is a unique c with 0 ≤ c < N (θ )/λ2 such that

a − A

λ
+ b − B

λ
i ≡ c (mod

d + ei

λ
) (3.35)

Hence, multiplying by λ, we get

a − A + (b − B)i ≡ λc (mod d + ei).

It follows that

a + bi ≡ λc + A + Bi (mod d + ei),

so we may take x = λc + A and y = B. Since 0 ≤ c ≤ N (θ )/λ2 − 1, it follows
that 0 ≤ x < N (θ )/λ.

To prove uniqueness, assume there are integers x, x ′, y, y′ with 0 ≤ x, x ′ <
N (θ )/λ, 0 ≤ y, y′ < λ, and (x, y) �= (x ′, y′) such that

x + yi ≡ x ′ + y′i (mod d + ei).
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Then, letting m = x − x ′ and n = y − y′, there must exist integers r, s such that
m + ni = (d + ei)(r + si). It follows that m = dr − es and n = ds + er , and 0 ≤
|m| < N (θ )/λ, 0 ≤ |n| < λ. Since λ = gcd(d, e), we have λ | n, so it follows that
n = 0. Hence ds = −er , and there exists an integer k such that r = kd/λ and
s = −ke/λ. Hence m = k(d2 + e2)/λ, and hence k = 0. But this means x = x ′

and y = y′, a contradiction. �

We have now proved the following result:

Theorem 3.10.4 Let d, e be integers with gcd(d, e)= λ> 0, and define θ = d + ei .
Then the set

{

x + yi : 0 ≤ x <
N (θ )

λ
, 0 ≤ y < λ

}

forms a complete residue system (mod θ ).

Let U = (1, θ, θ2, . . . ) and D = {0, 1, . . . , N (θ ) − 1}. We now investigate the
following natural question: for which Gaussian integers θ is the numeration system
(U, D, {ε} ∪ (D \ {0})D∗) perfect?

Theorem 3.10.5 Let θ ∈ Z[i]. The numeration system N = (U, D, {ε} ∪ (D \
{0})D∗), where U = {1, θ, θ2, . . . } and D = {0, 1, . . . , N (θ ) − 1}, is perfect if and
only if θ = −A ± i for some integer A ≥ 1.

Proof. First, we show that if θ is not of the form −A ± i , then some element of
Z[i] has no representation.

Let θ = a + bi . Suppose a ≥ 1. Then we prove that the number α := (1 − a) +
bi is not represented by N . Suppose it were. Then we would have

α = c0 + c1θ + c2θ
2 + · · · + ckθ

k .

Define ρ := α(1 − θ ) = a2 + b2 − 2a + 1. We now have

ρ = c0 + (c1 − c0)θ + · · · + (ck − ck−1)θ k − ckθ
k+1. (3.36)

It follows that ρ ≡ c0 (mod θ ). Since 0 ≤ ρ < N (θ ), it follows that ρ = c0. Now,
from (3.36), we get

(c1 − c0)θ + · · · + (ck − ck−1)θ k − ckθ
k+1 = 0.

Dividing by θ , we get

(c1 − c0) + (c2 − c1)θ + · · · + (ck − ck−1)θ k−1 − ckθ
k = 0.

Taking both sides mod θ , we see that c1 ≡ c0 (mod θ). Hence c1 = c0. Similarly c2 =
c1, . . . , ck = ck−1, and finally ck = 0. Hence c0 = c1 = c2 = · · · = ck = 0 and ρ =
0. It follows that θ = 1, which is clearly not the base of a perfect numeration system.
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Next we show that b = ±1. From the binomial theorem, we easily see that b is
a divisor of Im θ j = Im (a + bi) j for each j ≥ 0. It follows that if

α = c0 + c1θ + · · · + ckθ
k,

then

Im α = c1Im θ + · · · + ckIm θ k .

Hence b | Im α. Since α was arbitrary, we must have b = ±1, a contradiction.
The remaining possibility, θ = ±i , is easily seen not to be the base of a perfect

numeration system.
It now remains to see that if θ = −A ± i , then the associated numeration system

N is perfect. By Lemma 3.7.1 and Theorem 3.10.4, it suffices to show that each
Gaussian integer possesses at least one representation. We first consider the case
where θ = −A + i .

The idea behind the proof is the following: we first show how to express any
α = Z[i] in the form

∑
0≤i≤r ciθ

i where the ci are non-negative integers that are
not necessarily less than N (θ ). We call such a representation unnormalized. Next,
we show how to convert this representation to a normalized one where the digits ci

satisfy 0 ≤ ci < N (θ ) by a series of steps called the clearing algorithm.
We start by obtaining an unnormalized representation. Let α = e + f i . Let c =

e + A f . Then a simple computation shows that c + f θ = e + f i = α. Now it is
easy to see that θ2 + 2Aθ + A2 = −1, so if c < 0 we may replace c with (−c)(θ2 +
2Aθ + A2). Similarly, if f < 0 we may replace f with (− f )(θ2 + 2Aθ + A2).
Hence, we get a representation

α = d0 + d1θ + d2θ
2 + d3θ

3,

where d0, d1, d2, d3 are non-negative integers.
This representation may not be normalized, so we now show how to convert it

to a normalized one by a series of steps. Each step will preserve the invariant that
the digits are all non-negative, while not increasing the sum of those digits.

More generally, consider a representation

α = d0 + d1θ + · · · + dkθ
k (3.37)

where k ≥ 3 and di ≥ 0 for 0 ≤ i ≤ k. Define t0 = ∑
0≤ j≤k d j . Then t0 is a non-

negative integer, and t0 = 0 if and only if α = 0. By the division theorem (Exercise
2.1), we may write

d0 = q(A2 + 1) + u0, (3.38)

where 0 ≤ u0 ≤ A2 and q ≥ 0. An easy computation shows that

A2 + 1 = (A − 1)2θ + (2A − 1)θ2 + θ3. (3.39)
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Now we substitute (3.39) in (3.38) and get

d0 = u0 + q((A − 1)2θ + (2A − 1)θ2 + θ3). (3.40)

We substitute this expression for d0 in (3.37) to get

α = u0 + (d1 + q(A − 1)2)θ + (d2 + q(2A − 1))θ2

+(d3 + q)θ3 + d4θ
4 + · · · + dkθ

k

= d ′
0 + d ′

1θ + · · · + d ′
kθ

k .

If we set t ′0 = ∑
0≤ j≤k d ′

j , then we find

t ′0 − t0 = u0 − d0 + q(A − 1)2 + q(2A − 1) + q

= q(−(A2 + 1) + (A − 1)2 + (2A − 1) + 1)

= 0,

so t ′0 = t0.
Now write α = d ′

0 + θα1. We see that

α1 = d ′
1 + d ′

2θ + · · · + d ′
kθ

k−1.

If we define t1 = d ′
1 + d ′

2 + · · · + d ′
k , then clearly t1 ≤ t ′0 = t0 with equality if and

only if u0 = 0. Now continue this process. We thus obtain

α = α1θ + u0, α1 = α2θ + u1, · · ·

and the corresponding sums of digits t0, t1, t2, . . . . Since this latter sequence is
non-increasing and non-negative, eventually we find tq = tq+1 = tq+2 · · · for some
q ≥ 0. It follows that 0 = uq = uq+1 = uq+2 = · · · . Hence αq = αq+1θ , αq+1 =
αq+2θ , . . . , which implies that θ k |αq for all k ≥ 0. Hence αq = 0. Thus we obtain
the normalized representation

α = u0 + u1θ + · · · + uq−1θ
q,

which completes the proof for −A + i .
To handle the case of representation in base (−A − i), simply expand the complex

conjugate α in base (−A + i) as before. With θ = −A + i , we obtain

α = u0 + u1θ + · · · + uq−1θ
q .

Now take the complex conjugate of both sides to obtain the representation of α in
base −A − i . �
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3.11 Exercises

1. Show that for integers n,m ≥ 0:

(i) νp(n!) =
∞∑

k=1

⌊
n

pk

⌋

;

(ii) the binomial coefficients
(m

n

)
:= m!

n!(m − n)!
are integers for m ≥ n.

2. Show that if p is a prime number and n ≥ 1 is an integer, then

n

p − 1
− log(n + 1)

log p
≤ νp(n!) ≤ n − 1

p − 1
.

3. Show that for a prime p and real numbers x > 1 we have

Sp(x) ≤ p − 1

log p







∑

p′≤x+1
p′ prime

log p′

p′ +
∑

j≤x+1

log j

j( j − 1)





 (x + 1).

4. Let b ≥ 2 be an integer, and let p be a prime such that p|/b − 1. Let a and c be
any residues modulo p. Show that if N (x) is the number of positive integers
n < x for which n ≡ a (mod p) and sb(n) ≡ c (mod p), then

lim
x→∞

N (x)

x
= 1

p2
.

5. Let k be an integer ≥ 2, and let N be a non-negative integer.
(a) Show that Sk(k N ) = kSk(N ) + k(k − 1)N/2.
(b) Let 0 < a < k. Show that Sk(k N + a) = Sk(k N ) + ask(N ) + a(a − 1)/2.
(c) Conclude that Sk(N ) can be computed in time polynomial in log k and log N .

6. Show that sk(n) ≡ n (mod k − 1) for all integers k ≥ 2, n ≥ 0.
7. Let k be an integer ≥ 2, and let m, n be non-negative integers. Prove that

sk(m + n) ≤ sk(m) + sk(n), with equality if and only if there are no carries if
m is added to n in base k.

8. Let k ≥ 2 be an integer. Show that (sk(n))n≥0 does not satisfy a linear recurrence
with constant rational coefficients.

9. Let k,m be integers with k ≥ 2, m ≥ 1.
(a) Show that (sk(n)modm)n≥0 is ultimately periodic if and only if m | k − 1.
(b) Prove the following generalization of Thue’s result on overlap-free words: the

sequence (sk(n)modm)n≥0 is overlap-free if and only if m ≥ k.

10. Does there exist an integer n ≥ 0 such that s10(2n) = s10(2n+1)?
11. Let ak(n) denote the alternating sum of digits, base k. More precisely, let (n)k =

bt bt−1 · · · b0. Define ak(n) = ∑
0≤i≤t (−1)i bi . Show that ak(n) ≡ n (mod k + 1)

for all integers k ≥ 2, n ≥ 0.
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12. Let k be an integer ≥ 2, and for n ≥ 0 define fk(n) = ∑
1≤i≤n i · νk(i). Show

that

fk(n) = n(n + 1)/2 − nsk(n) + Sk(n)

k − 1
.

13. (D. Wilson) Let a > b > 0 be integers, and consider expansion in “base a/b”.
(Note that gcd(a, b) need not be 1.) In this base, normalization is defined by
subtracting a from a digit position until the result lies in [0, a), and adding b
for each subtraction to the digit immediately to the left.
(a) Prove that every positive integer has exactly one representation in this system.
(b) For which pairs (a, b) is the set of all valid representations for all positive integers

a regular language?

14. Define G(1) = 0, and G(n) = max1≤i≤n/2(G(i) + G(n − i) + i) for n > 1.
Show that G(n) = S2(n).

15. (Clements and Lindström) If m, n are integers, let the base-2 representa-
tions of m and n (possibly with leading zeros) be m = ∑

0≤i≤r ai 2i and n =
∑

0≤i≤r bi 2i . Then define α(m, n) = ∑
0≤i≤r ai bi . Finally, define the n × n

matrix M(n) = [(−1)α(i, j)]0≤i, j<n . Show that | det M(n)| = 2S2(n).
16. (Roberts) Let ε j (n) be the j th least significant digit in the base-2 representation

of n (as in Section 3.3). Show that, for all n ≥ 0,

∑

0≤i≤n

((
n

i

)

mod2

)

2i =
∏

j
ε j (n)=1

(22 j + 1).

17. Consider the function C(k) in the proof of Theorem 3.2.4 as a function of
k. Show that C(k) ≥ 1

8 for all k ≥ 2. Also show that C is minimized when
k
.= 85.34646.

18. Show that for any sequence (an)n≥0 over {−1,+1}, we have

sup
θ

∣
∣
∣
∣
∣

∑

0≤n<N

aneinθ

∣
∣
∣
∣
∣
≥
∥
∥
∥
∥
∥

∑

0≤n<N

aneinθ

∥
∥
∥
∥
∥

2

=
√

N .

19. Let k be an odd integer ≥ 3. Show that every integer can be represen-
ted uniquely in the form

∑
0≤i≤r ai ki , where ai ∈ {k, 1, 2, 3, . . . , (k − 1)/2,

−1,−2,−3, . . . ,−(k − 1)/2}. This is a representation for all integers that
does not use the digit 0.

20. Let the representation of n ≥ 0 in base −2 be

n =
∑

k≥0

ek(n)(−2)k .

Prove that

ek(n) ≡
⌊

3n + 2(4� 1
2 (k−1)� − 1)

3 · 2k

⌋

(mod 2).
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21. Let fw(n) = e2;w(n). Show that

f1(3n) = 2 f1(n) − 2 f11(n) + f111(n) − 2 f1011(n)

+ f11011(n) − 2 f101011(n) + f1101011(n) − · · ·
= 2 f1(n) − 2

∑

i≥0

f(10)i 11(n) +
∑

i≥0

f11(01)i 1(n).

22. Define two sequences of polynomials Pn(x) and Qn(x) as follows: P0(x) =
Q0(x) = 1, and for n ≥ 1,

Pn+1(x) = Pn(x) + x2n
Qn(x),

Qn+1(x) = Pn(x) − x2n
Qn(x).

Prove the following:
(a) Qn(x) = (−1)n x2n−1

Pn(−1/x) for n ≥ 0.
(b) Pn+1(x) = Pn(x2) + x Pn(−x2) for n ≥ 0.
(c) Qn+1(x) = Qn(x2) + x Qn(−x2) for n ≥ 1.
(d) |Pn(eiθ )|2 + |Qn(eiθ )|2 = 2n+1 for n ≥ 0, θ real.
(e) Pm+n+1(x) = Pm(x)Pn(x2m+1

) + x2m
Qm(x)Pn(−x2m+1

) for m, n ≥ 0.
(f) Qm+n+1(x) = Pm(x)Qn(x2m+1

) + x2m
Qm(x)Qn(−x2m+1

) for m ≥ 0, n ≥ 1.
(g) Pn−1(x)P2n−1(−x) − Pn−1(−x)P2n−1(x) = (−2)n x2n−1 Pn−1(−x2n

) for n ≥ 1.
(h) Pn+2(x) = (1 − x2n+1

)Pn+1(x) + 2x2n+1
Pn(x) for n ≥ 0.

(i) Qn+2(x) = (1 − x2n+1
)Qn+1(x) + 2x2n

Qn(x) for n ≥ 0.
(j) Pn(x)Pn(1/x) + Qn(x)Qn(1/x) = 2n+1 for n ≥ 0.

23. (Brillhart and Morton) Let rn = (−1)e2;11(n) be the Rudin–Shapiro sequence.
Consider the sequence of partial sums defined by pn = ∑

0≤i≤n rn . Then in the
sequence (pn)n≥0 prove that 0 occurs 0 times, 1 occurs once, 2 occurs twice,
and in general n occurs n times.

24. Prove the existence of a bijection f : N → Q such that f and f −1 are both
polynomial-time computable. (Note that f is polynomial-time computable if
there exists a constant c such that f (n) is computable using O((log n)c) steps,
and f −1 is polynomial-time computable if there exists a constant d such that
f −1(p/q) is computable using O((log p + log q)d) steps.)

25. Let k be an integer ≥ 2. Show that
∑

1≤i≤n

�logk i� = (n + 1)�logk n� − k(k�logk n� − 1)/(k − 1).

26. Consider the Barbier infinite word

B = b1b2b3 · · · = 1234567891011121314151617181920212223 · · ·
over the alphabet �10 defined by concatenating the base-10 representation of
the natural numbers together. Compute b101000 .

27. The Cantor ternary set C is defined to be the set of all real numbers in [0, 1] that
can be written using only the digits 0 and 2 in base 3. Show that C + C = [0, 2],
where by C + C we mean the set {c + c′ : c, c′ ∈ C}.
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28. Prove Theorem 3.6.1: if k ≥ 2 is an integer, then every non-negative integer
can be represented uniquely in the form

∑
0≤i≤r bi ki , where bi ∈ {1, 2, . . . , k}.

29. (Lenard) Let S be the set of non-negative real numbers whose representation
in base 4 uses only the digits 0 and 1.
(a) Prove that if x ∈ S and y ∈ S, and x �= y, then (x + y)/2 �∈ S.
(b) Suppose that T is a set with S ⊆ T, S �= T . Show that there exist x, y ∈ T with

x �= y such that (x + y)/2 ∈ T .

30. Show that the integers {0, 1, . . . , ak − 1} can be partitioned into a disjoint sets
S1, S2, . . . , Sa such that for each i (0 ≤ i < k) the sum

∑
s∈Sj

si is independent
of j .

31. Consider representing a positive integer n as the sum of squares using the
greedy algorithm.
(a) Let rn be the least positive integer whose representation requires n squares. Show

that r1 = 1, r2 = 2, r3 = 3, and

rn+1 =
(

rn + 1

2

)2

+ rn for n ≥ 3.

(b) Conclude that the greedy algorithm provides a representation using O(log log n)
squares.

32. (Trigg) Let k be an integer≥ 2. Do there exist any wordsw ∈ Ck = {ε} ∪ (�k \
{0})�∗

k such that [w] j
k = [w j ]k for some j > 1?

33. (Samborski) Let
∑

k≥1 2−nk be the binary representation of (
√

5 − 1)/2. Show
that nk ≤ 2k−1 − 2 for k ≥ 4.

34. Show that every power of 5 has a multiple whose representation in base 10 con-
tains no zeros.

35. (Knuth) Let m and n be non-negative integers, with Fibonacci representations
∑

2≤i≤r ai Fi and
∑

2≤ j≤s b j Fj , respectively. Show that the operation ◦ defined
by

m ◦ n =
∑

2≤i≤r

∑

2≤ j≤s

ai b j Fi+ j

is associative.
36. (Glaisher) Show that the number of odd binomial coefficients

(n
j

)
with 0 ≤

j ≤ n is 2s2(n).
37. Show that every positive integer can be represented uniquely in the form

∑
1≤i≤r ai · i!, where 0 ≤ ai < i .

38. Find a function h : N → N such that
(a) h(1) = 2;
(b) h(h(n)) = h(n) + n;
(c) h(n + 1) > h(n).

39. (Bateman and Bradley) Let k be an integer ≥ 1, and let X be an indeterminate.
Prove that

∑

0≤ j<2k

(−1)s2( j)(X + j)k+1 = (−1)k · (k + 1)! · 2k(k−1)/2

(

X + 2k − 1

2

)

.
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40. Let k be an integer ≥ 1, and let X be an indeterminate. Show that
∑

0≤ j<2k

(−1)s2( j)(X + j)k = (−1)k · k! · 2k(k−1)/2.

41. (a) Give a simpler proof of Theorem 3.10.5 in the case of representation in base
−1 + i , following the sketch below: First, prove that a representation

g =
∑

0≤k≤r

ak(−1 + i)k (3.41)

exists by showing that a0 and a1 are determined by the following rule:

a0 ≡ Re g + Im g (mod 2),

a1 ≡ Im g (mod 2).

Now define

g′ = g − (a0 + (−1 + i)a1)

−2i
.

Then g′ is a Gaussian integer, and |g′| < |g| if |g| > √
2. Thus we can recursively

expand g′ as br br−1 · · · b0; the expansion for g is then (br br−1 · · · b0)(a1a0). It
remains to see expansions exist for |g| ≤ √

2.
(b) Using a similar technique, prove that there exist constants c, c′ such that

2 log2(|z|) + c < �−1+i (z) < 2 log2(|z|) + c′,

for all z �= 0, where �−1+i (z) denotes the length of the canonical representation of
z in base −1 + i .

42. Let k ≥ 2 be an integer. Show that

∑

n≥1

1

n(�k(n))2
∼ π2

6
log k.

Here �k is the base-k length function, defined in Section 3.2.
43. Let g(n) denote the number of digits greater than 4 in the base-10 representation

of n. Show that
∑

n≥1 g(n)/2n = 2
9 .

44. (Segal and Lepp) Let f (n) = ∑
1/k, where the sum is over all integers k ≥ 1

having no 0 in their base-n representation. Show that f (n) = n log n + O(1/n).
45. (Graham and Pollak) Let u1 = 1, and for n ≥ 1 define un+1 = �√2(un + 1

2 )�.
Prove that if the base-2 representation of

√
2 is 1.a1a2a3· · · , then an = u2n+1 −

2u2n−1.
46. (Knuth) Let m, n be positive integers. Simplify the expression

∑

0≤k≤2mn−1

(
km

n

)

(−1)s2(k).
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47. (M. Golomb) Show that

∑

n≥1

1

4�log2 n�s2(n)
= 4 log 3

2 .

48. Let T be a set with n elements. Call a collection C of subsets of T a separating
collection if for all pairs of elements (x, y) ∈ T × T with x �= y there exists
S ∈ C such that |S ∩ {x, y}| = 1. Show that, for all n ≥ 1, there exists a sepa-
rating collection of size �log2 n�, and that this bound is best possible.

49. Suppose S is a collection of subsets of Gn = {1, 2, . . . , n} such that every sub-
set of Gn can be obtained by taking some number of intersections and unions
of sets of S. How small can S be, as a function of n?

50. Consider a numeration system with U = {2, 3, 5, 9, . . . , 2k + 1, . . . } and D =
{0, 1}. Show that there exists a constant c > 0 such that infinitely many positive
integers n have ≥ c log∗ n different representations. Here log∗ x is defined
recursively as follows:

log∗ x =
{

0 if x ≤ 1,

1 + log∗(log x) otherwise.

51. (Olivier) Show that the density of the integers n such that gcd(n, s2(n)) = 1 is
6/π2.

52. Let k ≥ 2 be an integer. Show that

∑

n≥1

sk(n)

n(n + 1)
= k

k − 1
log k.

Generalize.
53. Let j be a fixed integer ≥ 2. Show that lim supn→∞ s2(n j )/(log2 n) = j .
54. (D. Bowman) Suppose (n)k = ar ar−1 · · · a0. As usual, let sk(n) = ∑

0≤i≤r ai .
Define hk(n) = ∑

0≤i≤r iai . Show that

∑

n≥1

(−1)s2(n)

h2(2n)
= 6 − 4π

√
3

3
.

55. Show that every positive integer can be written as the sum of terms of the form
2a3b for some a, b ≥ 0, such that no summand divides another.

56. Consider representations of integers in base 2, using only the digits D =
{−1, 0, 1}.
(a) Show that every integer n has such a representation without leading zeros, subject

to the restriction that no two consecutive digits are nonzero.
(b) Show this representation (called the Reitwiesner representation) is unique.
(c) Show that the Reitwiesner representation has the smallest number of nonzero digits

over all representations in base 2 using the digit set D.
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(d) Give a finite-state transducer that converts a number represented in (ordinary)
base-2 representation to the Reitwiesner representation.

57. Show that the Rudin–Shapiro sequence contains subwords of length 1, 2,
3, 4, 5, 6, 7, 8, 10, 12, 14 that are palindromes, but palindromes of no other
lengths.

58. Let a ≥ b ≥ 0 be integers. Show that the solution to the recurrence

Sn = min
1≤k≤n/2

aSn−k + bSk

for n ≥ 2 is

Sn = S1 + (a + b − 1)S1

∑

1≤i≤n−1

ae2;0(i)be2;1(i)−1.

59. (Hickerson) Let a, x be integers with a ≥ 2, x ≥ 1. Prove that

a + 1

a

∑

1≤n≤x

a−νa(n) = x + [(x)R
a ]a

a|(x)a | .

60. Estimate the minimum of the function F2(x) defined in Section 3.5.
61. Are there integers a, b, c ≥ 0 such that s10(a + b) < 5, s10(a + c) < 5,

s10(b + c) < 5, but s10(a + b + c) > 50?

3.12 Open Problems

1. Find a closed form for or efficient way to compute
∑

0≤n<N sk(n2). (Remark:
See, e.g., Agronomof [1926].)

2. Is there an algorithm to compute sk(an) in time polynomial in log k, log a, and
log n?

3. (Kamae) Let α(n) = (−1)tn where t0t1t2 · · · is the Thue–Morse word. Prove or
disprove that

lim
n→∞

1

n

n−1∑

i=1

α(3i ) = 0.

(Remark: See Kamae [1990].)
4. Is the sequence ({3n/2n})n≥1 uniformly distributed? (Remark: See, for example,

Mahler [1968]; Choquet [1980]; Kamae [1990].)

5. (Demaine) Is there a simple closed form for s2

((2n
n

)
/(n + 1)

)
?

6. (Sloane) Let ar ar−1 · · · a1a0 be the base-k representation of n. Define pk(n) =
∏

0≤i≤r ai and p j
k to be the j-fold iterate of pk . Define Pk(n), the base-k persis-

tence of n to be the least j such that p j
k (n) ≤ k.

(a) Is there a number with base-k persistence > 11?
(b) Is the following true? For all bases k ≥ 2 there exists a number d(k) such that

Pk(n) ≤ d(k) for all n.

(Remarks: See Gottlieb [1969]; Sloane [1973].)
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7. (Selfridge and Lacampagne) Can every k ≡ ±1 (mod 3) be written as a/b, where
a, b have representations in base 3 using digits 1,−1, but not 0? (Remark: See
Guy [1994, p. 267].)

8. Let s = (s(n))n≥0 be an integer sequence over�2 = {0, 1}with s(0) = 0. Define
T0 = s, and for i ≥ 1, define Ti = T̂i−1, where Ŝ denotes the pattern transform
of a sequence S. Prove or disprove: T2i agrees with s, modulo 2, on the first
22i − 1 terms. (Remark: Here is an alternative form of the problem. For n ≥ 1,
create a matrix M = (mi, j )1≤i, j≤22n where mi, j = e2;( j)2 (i). Then the conjecture
is that M2n ≡ I + E22n

,1 (mod 2), where I is the 22n × 22n
identity matrix, and

Ei, j is a 22n × 22n
matrix of all zeros except for a lone 1 in row i and column j .)

3.13 Notes on Chapter 3

3.1 Theorem 3.1.1 is a “folk theorem” whose precise origins are unknown to us.
It can be found, for example, in Yaglom and Yaglom [1967, pp. 13–14]. Also
see Fraenkel [1985, 1989].

Base-k representation apparently originated with the Babylonians, who
preferred k = 60. The Maya Indians used k = 20. Modern decimal represen-
tation (i.e., k = 10) apparently originated with the Hindus c. 600 c.e. Binary
representation (i.e., k = 2) was used by Francis Bacon in 1605; see Heath
[1972]. For a good survey of the origins of base-k representation, see Knuth
[1981, §4.1].

For more on greedy numeration systems, see Frougny [1986, 1988, 1989a,
1989b, 1992a]; Shallit [1994]; Loraud [1995]; and Hollander [1998].

3.2 In a famous passage, Hardy [1967, p. 105] denigrated the mathematics of
digital problems such as find all positive integers equal to the sum of the
cubes of their decimal digits:

These are odd facts, very suitable for puzzle columns and likely to amuse amateurs,
but there is nothing in them which appeals much to a mathematician. The proofs
are neither difficult nor interesting – merely a little tiresome. The theorems are not
serious; and it is plain that one reason (though perhaps not the most important) is the
extreme speciality of both the enunciations and the proofs, which are not capable of
significant generalization.

Hardy’s criticism has merit, but there are ways of answering his objections.
We can, for example, try to make our theorems more general, working in an
arbitrary base k whenever possible.

Corollary 3.2.2 is due to Legendre [1830, Vol. I, p. 10]. The function s2(n)
is sometimes called Hamming weight, after Hamming [1950].

Bush [1940] seems to have been the first to examine Sk(x) = ∑
0≤n<x sk(x).

He proved that Sk(x) ∼ ((k − 1)/(2 log k))x log x . Bellman and Shapiro
[1948] improved this for k = 2 by showing that S2(x) = (x log x)/(2 log 2) +
O(x log log x), and stated in a footnote that they could improve the error term
to O(x). Theorem 3.2.3 is due to Mirsky [1949]; we have followed his proof.
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Theorem 3.2.3 was also discovered by Cheo and Yien [1955]. The paper of
Tang [1963] (in English) appears to be virtually word for word the same as
the paper in Chinese of Cheo and Yien [1955].

Drazin and Griffith [1952] found bounds for the error term Sk(x) − ((k −
1)/(2 log k))x log x . They also discussed sums of powers of digits, as did
Porges [1945] and B. Stewart [1960]. Clements and Lindström [1965],
Trollope [1968], McIlroy [1974], and Shiokawa [1974b] found bounds for
the error term S2(x) − (x log x)/(2 log x). Foster [1987] found bounds for

Sk(n)

n
− k − 1

2

⌊
log n

log k

⌋

,

for k = 2, 3. See also Foster [1991, 1992] and the Notes to Section 3.5.
Trollope [1967] generalized Bush’s result to the more general numeration

systems discussed in Section 3.1.
Fine [1965] examined the distribution of sk(n) in different residue classes,

as did Gelfond [1968]. Also see Bésineau [1972], Solinas [1989], and Mauduit
and Sárközy [1996]. Thuswaldner [2000] discussed this problem for complex
bases, and Hoit [1999] for other numeration systems.

Bellman and Shapiro [1948] and Gelfond [1968] introduced the notion of
k-additive function (one for which f (akr + b) = f (akr ) + f (b) for 1 ≤ a <

k and 0 ≤ b < kr ). It is also possible to study k-multiplicative functions (as
before, but with multiplication replacing addition). These were first studied by
Mendès France [1967, 1970, 1973b, 1973c] and later by by Delange [1972]. A
sequence is strongly k-additive (or strongly k-multiplicative, respectively) if in
addition we have f (ak) = f (a) for 1 ≤ a < k. For other papers on the topics
of k-additive and k-multiplicative functions, see Shiokawa [1974], Coquet and
Mendès France [1977], Coquet, Kamae, and Mendès France [1977], Coquet
[1979], Kawai [1984], Mauclaire [1987, 1997], Murata and Mauclaire [1988],
Grabner [1993a], Bassily and Kátai [1995], Toshimitsu [1997, 1998], and
Uchida [1999].

D. Newman and Slater [1975] examined the distribution of sk(a(n)) (mod 2)
for some “naturally defined” sequences a(n). Coquet and Toffin [1981] studied
the statistical independence of the sum of digits in base k and Fibonacci
representation.

It follows from a theorem of Senge and Straus [1973] that if a > 1 is an odd
integer, then s2(a j ) → ∞ as j → ∞. See also C. Stewart [1980]. Stolarsky
[1978] studied the ratio s2(a j )/s2(a).

Kátai [1967] discussed the analogue of the sum Sk(x) where the sum is
taken over prime terms only. His bound depended on the assumption of
the Riemann hypothesis. Also see Kátai and Mogyoródi [1968]. Shiokawa
[1974a] improved the bound and removed the dependence on the Riemann
hypothesis. Also see Heppner [1976]; Kátai [1977a].
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Èminyan [1991] studied the quantity
∑

n≤x
s2(n)≡0 (mod 2)

τ (n), where τ is the

number-of-divisors function. Èminyan [1994] later studied the quantity
∑

n≤x
s2(n)≡0 (mod 2)

r2(n), where r2 counts the number of representations as a sum

of two squares.
Bellman and Shapiro [1948] studied the summatory function of iterates of

s2(n). Also see Stein and Stux [1978]; Stein [1982].
Several authors have studied the distribution of {αsk(n)} where α is an

irrational number. See, for example, Mendès France [1967]; Coquet [1980];
Tichy and Turnwald [1986]; Drmota and Larcher [2001].

McIlroy [1974] discussed the relationship of S2(n) to several merging al-
gorithms; see Exercise 14. Also see Li and Reingold [1989].

Problems associated with sums of digits have attracted much atten-
tion in the recreational mathematics literature. For example, the notion of
“self-number” – a positive integer that cannot be represented in the form
n + s10(n) – was popularized by Kaprekar [1956], although some earlier ref-
erences exist, e.g., Goormaghtigh [1949]. Similar notions can be defined for
bases other than 10. For papers on self-numbers and generalizations, see
Makowski [1966], A. Rao [1966], Vaidya [1969], Joshi [1971], Recamán
[1973], Gardner [1975a, 1975b], Zannier [1982], Patel [1990, 1991a, 1991b],
Troi and Zannier [1995], and Cai [1996b].

Another notion is that of the Niven number – a positive integer n such that
s10(n) | n. There is an evident generalization to bases other than 10. For papers
on this topic, see Kennedy, Goodman, and Best [1980], Kennedy [1982],
Kennedy and Cooper [1984, 1989a], Cooper and Kennedy [1985, 1988, 1989,
1993], Grundman [1994], and Cai [1996a].

Finally, Wilansky [1982] introduced the concept of a Smith number – a
positive integer n such that s10(n) = ∑

1≤i≤r ei s10(pi ), where the prime fac-
torization of n is pe1

1 · · · p
e j

j . See, for example, Oltikar and Wayland [1983];
McDaniel and Yates [1989]. There is an evident generalization to bases other
than 10. For a critical appraisal of the Smith-number literature, see Dudley
[1994].

Terr [1996] discussed those indices k for which s10(Fk) = k, where Fk is
the k th Fibonacci number.

3.3 The Rudin–Shapiro sequence was studied by Shapiro [1952] and later Rudin
[1959]; they obtained the square-root property. However, the sequence ap-
peared previously (in a somewhat disguised form) in papers of Golay [1949,
1951]. The Rudin–Shapiro polynomials appear in Problem 19 in Littlewood’s
delightful book of unsolved problems [1968]. Edwards and Price [1970],
Figà-Talamanca and Price [1973], McMullen and Price [1976], Allouche
and Liardet [1991], and Mauclaire [1994] studied various generalizations of
the Rudin–Shapiro construction to compact groups and to locally compact
groups. Körner [1979] studied a generalization to finite abelian groups.
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The connection between the Rudin–Shapiro sequence and paperfolding was
first observed by Mendès France and Tenenbaum [1981]; also see Mendès
France [1990b]. Another family of sequences with the Rudin–Shapiro prop-
erty was described in Allouche and Liardet [1991]: following a suggestion
of Mendès France, they studied a generalization of the Rudin–Shapiro
sequence, where instead of counting the number of 11’s in the binary expan-
sion of n, one counts the total number of occurrences of patterns of the form
1w1, where w is any string of fixed length.

Coifman, Geshwind, and Meyer [2001] studied noiselets, which are
certain complex-valued functions and distributions closely related to the
Rudin–Shapiro sequence.

Brillhart and Carlitz [1970] studied discriminants and resultants involving
the Rudin–Shapiro polynomials, as well as some of the formulas in Exer-
cise 22. (Additional identities of interest can be found in Brillhart [1973];
Brillhart, Lomont, and Morton [1976]; and Morton [1981].)

Brillhart and Morton [1978] and Brillhart, Erdős, and Morton [1983] stud-
ied the summatory function of the Rudin–Shapiro sequence. An exposition
of their work is Brillhart and Morton [1996]. Also see Blecksmith and Laud
[1995].

The exponent 1
2 of N in (3.6) is optimal; see Exercise 18. The constant

C = 2 +√
2 in (3.6) was improved to C = (2 +√

2)
√

3
5 by Saffari [1986];

also see Saffari [1987]. Brillhart and Morton [1978] proved that C ≥ √
6.

Probably
√

6 is the optimal value for C ; in fact, Saffari announced a proof
of this fact c. 1995, but it has not yet been published.

The estimate (3.6) was generalized to sequences taking values in
1, e2π i/r , · · · , e2π i(r−1)/r by Rider [1966]. We may also consider sequences
of modulus-1 complex numbers satisfying (3.6). For this, see Littlewood
[1966], Byrnes [1977], Körner [1980], Kahane [1980], and Beck [1991].
Allouche and Mendès France [1985b] generalized (3.6) to all unimodular
2-multiplicative sequences. Also see Alzer [1995].

The last part of our proof of Theorem 3.3.2, which gives a bound for the sum
2N0/2 + 2N1/2 + · · · , is adapted from a proof due to Balazard. This inequality
was generalized by Allouche, Mendès France, and Tenenbaum [1988].

It can be asked whether similar inequalities hold for other automatic
sequences with values ±1. The following bound is due to Gelfond [1968]:
Let t = (tn)n≥0 be the Thue–Morse sequence. Then

∣
∣
∣
∣
∣
sup
θ∈R

∑

0≤n<N

(−1)tn eiθn

∣
∣
∣
∣
∣
≤ C N (log 3)/(log 4),

and the exponent (log 3)/(log 4) is optimal.
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Kervaire, Saffari, and Vaillancourt [1986] found non-Rudin–Shapiro
polynomials satisfying the Rudin–Shapiro identity |P(eiθ )|2 + |Q(eiθ )|2 =
constant.

Queffélec [1987a] studied the spectral properties of the dynamical system
associated with the Rudin–Shapiro sequence.

Newman and Byrnes [1990] studied the L4 norm of the Rudin–Shapiro
polynomials; also see Borwein and Mossinghoff [2000].

Allouche and Mendès France [1985a] studied a physical interpretation of
the Rudin–Shapiro sequence in connection with the Ising model; also see
Mendès France [1990b] and Chapter 17.

The Rudin–Shapiro sequence seems to be particularly useful in constructing
certain kinds of counterexamples. Rider [1969] used it to construct a coun-
terexample in Banach algebras. (He also gave a characterization of the Rudin–
Shapiro sequence in terms of the number of occurrences of the pattern 11, but
only for odd n. This was generalized to all n by Brillhart and Carlitz [1970].)
Bazinet and Siddiqi [1972] used the Rudin–Shapiro sequence to construct an
almost periodic matrix that does not satisfy a Borel property. Gupta, Madan,
and Tewari [1994] used it to construct a counterexample in Fourier analysis.

Shepherd, Van Eetvelt, Wyatt-Millington, and Barton [1995] used the
Rudin–Shapiro polynomials in a coding scheme.

The estimate (3.5) is due to Salem and Zygmund [1954].
The notion of expansion as a sum of pattern sequences was introduced

by Morton and Mourant [1989]. Theorem 3.3.5 is from Allouche and Shallit
[1992]. Also see Allouche, Morton, and Shallit [1992].

Digital sequences were studied by Cateland [1992], where Theorem 3.3.9
can be found.

Blecksmith, Filaseta, and Nicol [1993] studied the number of blocks of
adjacent identical digits in the base-k expansion of n. Also see Blecksmith
and Laud [1995].

Prodinger [1982] studied the summatory function of e2;11···1(n), and
Kirschenhofer [1983] studied the summatory functions for any binary block
not starting with a zero. Also see Flajolet, Grabner, Kirschenhofer, Prodinger,
and Tichy [1994].

3.4 We have covered only a tiny part of a very large area. For example, there is
a natural generalization to expansion in base β, where β is a real number> 1,
not necessarily an integer. The interested reader will want to explore the
vast literature on β-expansions. To list just a few references, see Rényi
[1957]; Parry [1960]; Galambos [1973]; Bertrand-Mathis [1989]; Blanchard
[1989]; Frougny [1989b, 1992b, 1992d]; Solomyak [1992]; Frougny and
Solomyak [1992]; Berend and Frougny [1994]; Akiyama [1999, 2000];
Burdı́k, Frougny, Gazeau, and Krejcar [2000]; and S. Ito and Sano [2001].
Frougny [2000] and Lothaire [2002, §7] give surveys of β-expansions.
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Ribenboim [1985] discussed representations for positive real numbers in
terms of series involving powers of Fibonacci numbers.

3.5 For Theorem 3.3.3, see, for example, Atkinson [1978].
The first person to recognize the oscillatory behavior of the error term in

Sk(n) (Theorem 3.5.4) was apparently Trollope [1968], for the case k = 2.
Delange [1975] made this connection more precise, and also obtained the
Fourier expansion of the function Fk(x). Delange’s work was generalized to
the k-additive functions by Murata and Mauclaire [1988].

Stolarsky [1977] and Coquet [1986] studied
∑

0≤k<x (s2(x))d . Also see
Kennedy and Cooper [1991, 1993]; T. Brown [1994]; Okada, Sekiguchi, and
Shiota [1995].

Kirschenhofer [1990] studied the variance of S2(x). The higher moments
were studied by Grabner, Kirschenhofer, Prodinger, and Tichy [1993].
Flajolet, Grabner, Kirschenhofer, Prodinger, and Tichy [1994] showed how
to obtain these estimates, and many others, using the powerful technique of
the Mellin transform.

Moser observed empirically that if n is an integer divisible by 3, then
s2(n) is more likely to be odd than even. This was explained by D. Newman
[1969], who showed that if R(n) = ∑

0≤i<n(−1)s2(3i), then R(n) > 0 and
is approximately nlog4 3. Coquet [1983] obtained more precise results. Also
see Cateland [1992]; Flajolet, Grabner, Kirschenhofer, Prodinger, and Tichy
[1994]. Grabner [1993b] examined similar questions where the number 3 is
replaced by 5. For related papers, see Dumont [1983]; Goldstein, Kelly, and
Speer [1992]; Drmota and Skalba [1995, 2000b]; and Leinfellner [1999].

Osbaldestin [1991] is a survey of digital summations with oscillatory
behavior.

Kátai [1977b] discussed the difference s2(3n) − s2(n), and Stolarsky [1980]
examined the numbers n for which s2( jn) ≥ s2(n) for all j ≥ 1. Also see
Dringó and Kátai [1981]. Stolarsky [1979] discussed s2(

∏
1≤i≤r (2ai − 1)).

Dumont and Thomas [1993] obtained estimates similar to those in our
Section 3.5 for more general numeration systems. Also see Dumont and
Thomas [1997]. Grabner, Kirschenhofer, and Prodinger [1998] found similar
estimates for bases −A + i , and Thuswaldner [1998a, 1999a] obtained
results on sums of digits for number fields.

Our exposition has been based heavily on the article of Tenenbaum [1997].
3.6 Colson [1726] suggested the use of both positive and negative digits in

base-10 representation, and Cauchy [1840] did the same for arbitrary bases.
Lalanne [1840] followed up on Cauchy’s discussion to develop what is now
called the balanced ternary system, and stated without proof that the resulting
system is perfect. De Morgan [1840] reported on a calculating machine
invented by Thomas Fowler that worked with balanced ternary.
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Shannon [1950] discussed numeration systems using both negative digits
and positive digits. Tompkins and Wakelin [1950, pp. 287–289] discussed
addition circuits based on balanced ternary.

Theorem 3.6.1 is a “folk theorem” whose precise origins are unknown to
us. Knuth [1969, Solution to Exercise 4.1-24, p. 495] mentioned the result
for base 10. Salomaa [1973, Note 9.1, pp. 90–91] discussed the result for all
bases k ≥ 2. It has been rediscovered many times; for example, see Davis
and Weyuker [1983, pp. 70–76], Forslund [1995], and Boute [2000].

Theorem 3.6.2 is due to Matula [1976, 1978, 1982]. Matula [1982] also
obtained results for representation of real numbers, as did Odlyzko [1978].

3.7 Grünwald [1885] appears to have been the first to discuss representations in
negative bases. Kempner [1936] mentioned the possibility in a footnote. The
idea again became popular with the advent of electronic digital computers;
see, for example, Songster [1956, 1962, 1963]; Pawlak and Wakulicz [1957];
Balasiński and Mrówka [1957]; Wadel [1957, 1961]; Pawlak [1959, 1960];
Lazarkiewicz and Balasiński [1961]; Wells [1963]; Dietmeyer [1963];
Twaddle [1963]; Penney [1964]; A. Nelson [1967]; Zohar [1970]; Gardner
[1973]; Sankar, Chakrabarti, and Krishnamurthy [1973a, 1973b]; Kanani
and O’Keefe [1973]; Houselander [1974]; G. Rao, Rao, and Krishnamurthy
[1974]; Agrawal [1974a, 1974b, 1975a, 1975b, 1975c, 1977, 1978]; Yuen
[1975]; Murugesan [1977]; Gilbert and Green [1979]. The term “negabinary”
for base −2 was introduced by de Regt [1967]. Knuth [1981, §4.1] provides
valuable technical and historical remarks. For sums of digits in negative
bases, see Grabner and Thuswaldner [2000].

3.8 Theorem 3.8.1 first appeared in print in the article of Lekkerkerker [1952],
although the result is due to Zeckendorf in 1939; see Zeckendorf [1972].
For this reason Fibonacci representation is sometimes called Zeckendorf
representation. For a biography of Zeckendorf, see Kimberling [1998b].

For applications of Fibonacci representation and its generalizations, see
Daykin [1960]; J. Brown [1961, 1963, 1964, 1965]; Erdős [1962]; Ferns
[1965]; Carlitz [1968]; Hoggatt [1972]; Keller [1972]; Carlitz, Scoville, and
Hoggatt [1972a, 1972b]; Filipponi [1986].

Freitag and Phillips [1996] found the Fibonacci representation for differ-
ences and quotients of Fibonacci numbers.

For applications to coding theory, see Kautz [1965]; Apostolico and
Fraenkel [1987]; Capocelli [1989].

Frougny [1986] discussed normalization of Fibonacci representations.
Frougny [1991] discussed addition in the Fibonacci numeration system. For
generalizations, see Frougny [1988, 1992a, 1992b]. Frougny and Sakarovitch
[1999] found a beautiful connection between expansion in base (1 +√

5)/2
and Fibonacci representation.
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In analogy with the sum-of-digits function defined in Section 3.2, if n =
∑

2≤i≤r ai Fi , one can define sF (n) = ∑
2≤i≤r ai , the sum of the Fibonacci

digits. Similarly, one can define SF (n) = ∑
0≤i<n sF (i) and study its asymp-

totic properties. Coquet and van den Bosch [1986] proved the following theo-
rem: there exists a continuous, nowhere differentiable real-valued function
G of period 1 such that

SF (n) = 3 − α

5 logα
n log n + nG

(
log n

logα

)

+ O(log n),

where α = (1 +√
5)/2. The parity of the sum of the Fibonacci digits was

studied by Drmota and Skalba [2000].
3.9 Theorem 3.9.1 is due to Ostrowski [1922]. Also see Fraenkel [1985, Theorem

3]; Berthé [2001]. There are many applications. For example, Dupain
[1979] and Ramshaw [1981] used Ostrowski representations to compute the
discrepancy of the sequence (kθ )k≥0, where θ is irrational. Also see Dupain
and Sós [1980].

3.10 Theorem 3.10.4 is essentially due to Gauss [1832]. Other complete residue
systems are discussed in Davio, Deschamps, and Gossart [1978].

Knuth [1960] discussed representation in base 2i , using the digits 0, 1, 2, 3.
In this system, every complex number has a unique representation, but
Gaussian integers with odd imaginary part cannot be represented without
the use of negative powers, i.e., digits to the right of the radix point. For ex-
ample, the representation of i is 10.2. Nadler [1961] developed algorithms for
division and square root in this system. See also Slekys and Avizienis [1978].

Theorem 3.10.5 is due to Kátai and Szabó [1975]. Earlier, Penney [1965]
stated without proof that −1 + i was a suitable base for a perfect numeration
system for Z[i]. Theorem 3.10.5 was generalized by Kátai and Kovács
[1980], who proved an analogous result for real quadratic fields, and Kátai
and Kovács [1981], who proved a result for imaginary quadratic fields.
These results were also obtained independently by Gilbert [1981a]. Kovács
[1981a], Kovács and Pethö [1991], and Akiyama and Pethö [2002] obtained
some results for more general algebraic number fields. Grossman [1985]
studied the lengths of representations in quadratic number fields. Körmendi
[1986b] studied representations in a particular cubic number field.

Davio, Deschamps, and Gossart [1978] explored digit sets other than
{0, 1, . . . , N (θ ) − 1} for base θ ∈ Z[i]. Among other things, they proved that
every θ with N (θ ) ≥ 5 has a digit set leading to a perfect numeration system.

We can also consider representations of complex numbers (not just
Gaussian integers) using positive and negative powers of a complex base.
Kátai and Szabó [1975] proved that every complex number can be so
represented in base −A + i , where A ≥ 2 is an integer. However, the
expansions need not be unique; for example, (1 − 2i)/5 has three different
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representations in base −1 + i . Gilbert [1982b] described all numbers with
multiple representations in base −A + i .

For general complex bases (not necessarily of the form −A + i) the set
of representable complex numbers often has a fractal structure, and in some
cases it is possible to explicitly compute the fractal dimension. For papers
along these lines, see Gilbert [1981b, 1982a, 1986, 1987], S. Ito [1989],
and Thuswaldner [1998b]. For topological properties, see Akiyama and
Thuswaldner [2000].

Robert [1994] studied a numeration system for Q(
√−3) with base

√−3
and digits {0, 1, (1 +√−3)/2}.



4

Finite Automata and Other Models of Computation

In this chapter, we introduce some simple models of computation, focusing partic-
ularly on finite automata and their variants.

4.1 Finite Automata

A deterministic finite automaton, or DFA, is one of the simplest possible models
of computation. It is an acceptor; that is, strings are given as input and are either
accepted or rejected.

A DFA starts in an initial state and after reading the input can be in one of a finite
number of states. The DFA takes as input a string w and – based on the symbols
of w, read in order from left to right – moves from state to state. If after reading
all the symbols of w the DFA is in a distinguished state called an accepting state
(or final state), then the string is accepted; otherwise, it is rejected. The language
accepted by the DFA is the set of all accepted strings.

A DFA can be represented by a directed graph called a transition diagram. A
directed edge labeled with a letter indicates the new state of the machine if the
given letter is read. By convention, the initial state is drawn with an unlabeled
arrow entering the state, and accepting states are drawn with double circles.

For example, Figure 4.1 shows the transition diagram of a finite automaton that
accepts all strings over {0,1} that do not contain two consecutive 1’s.

More formally, a DFA M is defined to be a 5-tuple

M = (Q, �, δ, q0, F)

where

Q is a finite set of states,
� is the finite input alphabet,
δ : Q ×� → Q is the transition function,
q0 ∈ Q is the initial state, and
F ⊆ Q is the set of accepting states.

128
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0
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1
q2q1

q0

0, 1

Figure 4.1: DFA Accepting Strings with No Two Consecutive 1’s.

Note that a DFA is assumed to be complete, i.e., δ is defined for all pairs in its range.
In order to formally define acceptance by a DFA, we need to extend the domain of
δ to Q ×�∗. We do this as follows: first, we define δ(q, ε) = q for all q ∈ Q, and
define δ(q, xa) = δ(δ(q, x), a) for all q ∈ Q, x ∈ �∗, and a ∈ �. Then L(M), the
language accepted by M , is defined to be

L(M) = {w ∈ �∗ : δ(q0, w) ∈ F}.
We call a state q of a DFA reachable if there exists x ∈ �∗ such that δ(q0, x) = q,

and unreachable otherwise. Clearly, unreachable states may be deleted without
changing the language accepted by a DFA.

In Section 1.3, we defined the class of regular languages. Below we will prove
Kleene’s theorem, which shows that every regular language is accepted by some
DFA, and vice versa. Hence DFAs accept exactly the regular languages.

First, however, we prove some closure properties of the languages accepted by
DFAs:

Theorem 4.1.1 Let L be accepted by a DFA with m states. Then L = �∗ \ L is
accepted by a DFA with m states.

Proof. Suppose L = L(M) for M = (Q, �, δ, q0, F). Define a new DFA M ′ that
is identical to M , except that accepting and nonaccepting states have had their roles
interchanged. More formally, let M ′ = (Q, �, δ, q0, Q \ F). Then it is easy to see
that L(M ′) = L . �

Theorem 4.1.2 Let L1, L2 ⊆ �∗ be languages accepted by DFAs with m states
and n states, respectively. Then L1 ∩ L2 and L1 ∪ L2 can be accepted by DFAs with
mn states.

Proof. Let L1 = L(M1) and L2 = L(M2), where M1 = (Q1, �, δ1, q1, F1) and
M2 = (Q2, �, δ2, q2, F2). We construct a new DFA M whose state set is the direct
product of the state sets of M1 and M2. Hence, states of M are ordered pairs of
the form [p, q]. In the first component, we simulate the computation of M1, and in
the second component, we simulate the computation of M2. More formally, let
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0,10,10,1

0,1

1q0 q1 q2 qk+1...

Figure 4.2: NFA Accepting Lk = {0,1}∗1{0,1}k .

M = (Q1 × Q2, �, δ, [q1, q2], F), where δ([p, q], a) = [δ1(p, a), δ2(q, a)] and
F = F1 × F2. It is now easy to see that L(M) = L1 ∩ L2.

The proof for union is similar, except now we define F = (F1 × Q2)∪
(Q1 × F2). �

We claim that the concept of finite automaton is very natural. As evidence, we
argue that the definition is robust: small changes to the model do not change the
class of languages accepted. For example, we now generalize the DFA concept to
allow nondeterminism, and show that nondeterministic finite automata accept the
same class of languages as deterministic finite automata.

A nondeterministic finite automaton, or NFA, is like a DFA, but we also allow
the possibility of zero or two or more distinct transitions on a state-input symbol
pair. We accept an input string if there exists any choice of transitions that leads
to an accepting state. More formally, an NFA is a 5-tuple M = (Q, �, δ, q0, F),
where δ : Q ×� → 2Q . (By 2Q we mean the set of all subsets of Q.)

Nondeterminism is useful in part because it allows more succinct representation
of some languages. As an example, consider the NFA represented in Figure 4.2. This
NFA has k + 2 states and accepts the language Lk = {0,1}∗1{0,1}k . Exercise 6
asks you to prove the fact that no DFA with fewer than 2k+1 states can accept Lk .

Theorem 4.1.3 If L is accepted by an NFA with n states, then L is accepted by a
DFA with at most 2n states.

Proof. Let L be accepted by the NFA M = (Q, �, δ, q0, F). We construct a simu-
lating DFA whose states are subsets of the state set for M ; this is often called the
“subset construction”. More precisely, let M ′ = (2Q, �, δ′, q ′

0, F ′) with

δ′(S, a) =
⋃

s∈S

δ(s, a),

and

q ′
0 = {q0}, F ′ = {

S ∈ 2Q : S ∩ F �= ∅} .

It is now easy to prove by induction w is accepted by M if and only if it is accepted
by M ′. �
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Figure 4.3: Base Case for Theorem 4.1.4.

A generalization of the NFA commonly found in the literature is the NFA-ε; this
is an NFA in which we allow the machine to spontaneously move from one state
to another without consuming any input. Such a move is called an ε-transition,
and is denoted by δ(p, ε) = q. A further generalization of NFAs allows transitions
labeled with any regular expression. A generalized finite automaton, or GFA, is
a 5-tuple M = (Q, �, f, q0, F), where f : Q × Q → 2�

∗
is a mapping such that

f (p, q) is a regular language for all p, q ∈ Q. In this more general model, an input
x is accepted if and only if there exists a sequence of states q0, q1, . . . , qi where
qi ∈ F and x ∈ f (q0, q1) f (q1, q2) · · · f (qi−1, qi ).

Theorem 4.1.4 If L is accepted by a GFA, then L is accepted by an NFA.

Proof. First, we show how to replace a transition from state p to state q, labeled
with a regular expression r , with a subautomaton where the labels are either single
symbols or ε. This is done inductively, where the induction is on the number of
operator symbols in r .

The base case is where r contains no operator symbols. In this case, either
(a) r = ∅, or (b) r = ε, or (c) r = a for some a ∈ �. We use the appropriate
subautomaton in Figure 4.3.

In the general case, we can write either (a) r = s + t , (b) r = st , or (c) r = s∗,
where s, t are regular expressions containing fewer operators. In this case, we use
the appropriate subautomaton in Figure 4.4.

Hence, we may assume without loss of generality that every transition is labeled
with a subset of � ∪ {ε}. Suppose M = (Q, �, f, q0, F) is a GFA with f (p, q) ∈
� ∪ {ε} for all p, q ∈ Q. Then we define an NFA M ′ = (Q, �, δ, q0, F ′) as follows.
For q ∈ Q and a ∈ �, let δ(q, a) be the set of all states qi such that there exist
q1, q2, . . . , qi−1 with a ∈ f (q, q1) f (q1, q2) · · · f (qi−1, qi ). Also define F ′ to be F
unless there exist q1, q2, . . . , qi such that ε ∈ f (q0, q1) f (q1, q2) · · · f (qi−1, qi ) and
qi ∈ F , in which case we let F ′ = F ∪ {q0}.

Clearly M ′ is an NFA. We leave it to the reader to show that L(M ′) = L(M).
�
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Figure 4.4: Induction Step for Theorem 4.1.4.

We are now ready to prove the fundamental theorem linking regular expressions
and automata.

Theorem 4.1.5 (Kleene’s Theorem) A language is accepted by a DFA if and only
if it can be specified by a regular expression.

Proof. Suppose L is specified by a regular expression r . Then we can create a GFA
M accepting L(r ) with exactly two states, q0 and q1, where f (q0, q1) = L(r ) (and
f (p, q) = ∅ otherwise), and F = {q1}. By Theorem 4.1.4, L can be accepted by
an NFA, and by Theorem 4.1.3, L can be accepted by a DFA.

On the other hand, suppose L is accepted by a DFA M . Then we can find a regular
expression for L as follows. Treat M as a GFA M ′ = (Q, �, f, q0, F). First, we
ensure that all transitions into the initial state are labeled ∅, by creating a new initial
state q ′

0, if necessary, and adding a transition from q ′
0 to q0 labeled ε. Next, we

ensure that there is exactly one final state, and that all transitions out of this final
state are labeled ∅, by creating a new final state q f , and adding transitions labeled
ε from all q ∈ F to q f . We make our new set of final states {q f }.

Now eliminate states successively, one by one, as follows. Choose a state q other
than the initial or final state to eliminate. For all other states p, r , if f (p, q) =
r1, f (q, q) = r2, and f (q, r ) = r3, then update f (p, r ) by setting f (p, r ) ←
f (p, r ) + r1r∗2 r3. Now eliminate state q and all transitions associated with it.

We leave it to the reader to verify that this process eventually produces a GFA
with exactly two states, one initial, and one final, with a transition connected them
labeled with a regular expression specifying L . �
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Recall the definition of quotient of languages from Section 1.3:

L1/L2 = {x ∈ �∗ : ∃y ∈ L2 such that xy ∈ L1}.
Then we have the following theorem:

Theorem 4.1.6 If L1 is regular and L2 is arbitrary, then L1/L2 is regular.

Proof. Let M = (Q, �, δ, q0, F) be a DFA accepting L1. Define M ′ =
(Q, �, δ, q0, F ′) as follows:

F ′ = {q ∈ Q : ∃y ∈ L2 such that δ(q, y) ∈ F}.
Then δ(q0, x) ∈ F ′ if and only if there exists y ∈ L2 such that xy ∈ L1. �

Recall the definition of inverse morphism of languages from Section 1.4:

h−1(L) = {x ∈ �∗ : h(x) ∈ L}.
Then we have the following theorem:

Theorem 4.1.7 If L is regular and h is a morphism, then h−1(L) is regular.

Proof. Let M = (Q,�, δ, q0, F) be a DFA accepting L ⊆ �∗. Then define M ′ =
(Q, �, δ′, q0, F) as follows: δ′(q, a) = δ(q, h(a)). It is easy to prove by induction on
x that δ(q0, h(x)) = δ′(q0, x), and hence M ′ accepts x if and only if M accepts h(x).

�

We now turn to the Myhill–Nerode theorem, an interesting characterization of
regular languages based on equivalence relations. A relation R on a set S is a subset
of S × S. If (x, y) ∈ R, we write x R y. A relation is said to be reflexive if x R x
for all x ∈ S. If x R y implies y R x for all x, y ∈ S, then R is symmetric. Finally,
if x R y and y R z implies x R z for all x, y, z ∈ S, then R is said to be transitive.
If a relation is reflexive, symmetric, and transitive, then it is called an equivalence
relation.

An equivalence relation R partitions a set S into a number of disjoint equivalence
classes. If x ∈ S, then by [x] we mean the equivalence class containing x . If there
are only a finite number of equivalence classes, then R is said to be of finite index.

An equivalence relation on�∗ is said to be right-invariant if x R y implies xz R yz
for all z ∈ �∗. A particularly important right-invariant equivalence relation, called
the Myhill–Nerode equivalence relation, is the relation RL defined as follows:
x RL y if and only if for all z ∈ �∗ one has xz ∈ L if and only if yz ∈ L . It is easy
to see RL is right-invariant: Suppose x RL y, and let v ∈ �∗. Then, for all w ∈ �∗,
xw ∈ L if and only if yw ∈ L . Now let w = vz. We see xvz ∈ L if and only if
yvz ∈ L . It follows that xv RL yv.
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Theorem 4.1.8 (Myhill–Nerode) The following three statements are equivalent:

(a) L is a regular language;
(b) There exists a right-invariant equivalence relation E of finite index such that L is the

union of some of E’s equivalence classes;
(c) The Myhill–Nerode equivalence relation RL is of finite index.

Proof. (a) =⇒ (b): Let L be accepted by a DFA M , where M = (Q, �, δ, q0, F).
Let E be the equivalence relation defined by x E y if and only if δ(q0, x) = δ(q0, y).
Then E is right-invariant, since

δ(q0, xz) = δ(δ(q0, x), z) = δ(δ(q0, y), z) = δ(q0, yz)

for all z ∈ �∗. The relation E is of finite index, since it is bounded above by Card Q.
Also, we have L = ⋃

δ(q0,x)∈F [x], where [x] is the equivalence class containing x .
(b) =⇒ (c): We show that E is a refinement of RL ; that is, each equivalence class

of E is contained in some equivalence class of RL . Thus the index of RL is less
than or equal to the index of E , and hence RL is finite.

Let x E y. Since E is right-invariant, we have xz E yz. Since L is the union of
some of E’s equivalence classes, we have xz ∈ L if and only if yz ∈ L . Hence
x RL y. Hence each equivalence class of E is contained in an equivalence class of
RL .

(c) =⇒ (a): We build a DFA M = (Q, �, δ, q0, F) accepting L . Let Q be the
finite set of equivalence classes of RL , and define δ([x], a) = [xa] for x ∈ �∗, a ∈
�. Let q0 = [ε] and F = {[x] : x ∈ L}. Since RL is right-invariant, the definition
is consistent, and it is easy to see that M accepts L . �

Corollary 4.1.9 The DFA with the minimum number of states accepting a regular
language L is given by M in the last paragraph of the previous proof, and is unique
up to renaming of the states.

Proof. Left to the reader as Exercise 4. �

We finish this section with a technical lemma that will prove useful in Chapter 11.
We say a DFA M is minimal if it has the smallest number of states among all DFAs
M ′ with L(M ′) = L(M).

Lemma 4.1.10 Let L be a regular language, and A = (Q, �, δ, q0, F) a minimal
DFA accepting L. Define Aq = {x ∈ �∗ : δ(q0, x) = q}. Then each Aq can be
expressed as a finite boolean combination of sets of the form L/{w} for w ∈ �∗.
Moreover, L = ⋃

q∈F Aq.

Proof. Since A is minimal, for each pair of distinct states (q, q ′) there exists a string
w=wqq ′ such that δ(q, w) ∈ F and δ(q ′, w) �∈ F , or δ(q, w) �∈ F and δ(q ′, w) ∈ F .
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Figure 4.5: Minimal DFA for L = {0,1}∗1{0,1}.

Otherwise, we could identify q and q ′ and obtain a smaller DFA. Then we claim
that

Aq =
⋂

q ′ �=q

Bqq ′,

where

Bqq ′ =
{

L/{wqq ′ } if δ(q, wqq ′) ∈ F,
(

L/{wqq ′ }) if δ(q, wqq ′) �∈ F .

To see this, let us prove that Aq ⊆ ⋂
q ′ �=q Bqq ′ . Then let x ∈ Aq , i.e., δ(q0, x) = q.

Choose a state q ′ �= q. Then if δ(q, wqq ′) ∈ F , we must show that x ∈ L/{wqq ′ }.
But if δ(q0, xwqq ′) = δ(δ(q0, x), wqq ′) ∈ F , so indeed x ∈ L/{wqq ′ }.

If δ(q, wqq ′) �∈ F , then we must show that x �∈ L/{wqq ′ }. But δ(q0, xwqq ′) �∈ F ,
so indeed x �∈ L/{wqq ′ }.

Now let us show that

Aq ⊆
⋃

q ′ �=q

Bqq ′ .

Let x ∈ Aq . Then δ(q0, x) = p �= q. Consider Bpq . If δ(p, wpq) ∈ F , then Bpq =
L/{wpq}. Then δ(q0, xwpq) ∈ F , so indeed x ∈ Bpq . Similarly if δ(p, wpq) �∈
F , then Bpq = L/{wpq}. But δ(q0, xwpq) �∈ F , so indeed xwpq �∈ L , and x �∈
L/{wpq}. �

Example 4.1.11 Let L = {0,1}∗1{0,1}. Then the minimal DFA for L is given in
Figure 4.5.
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It is easy to verify that

L/ε = A10 + A11,

L/0 = A01 + A11,

L/1 = A01 + A11,

L/00 = ∅,
L/10 = A00 + A01 + A10 + A11 = {0,1}∗.

Then we have

A00 = L/0
⋂

L/ε,

A01 = L/0
⋂

L/ε,

A10 = L/ε
⋂

L/1,

A11 = L/ε
⋂

L/0.

4.2 Proving Languages Nonregular

The following property of regular languages, known as the pumping lemma, is
often an effective tool for proving languages nonregular.

Lemma 4.2.1 Let L ⊆ �∗ be a regular language. Then there exists a constant
n ≥ 1 such that for all strings z ∈ L with |z| ≥ n, there exists a decomposition
z = uvw, where u, v, w ∈ �∗ and |uv| ≤ n and |v| ≥ 1, such that uviw ∈ L for
all i ≥ 0. Furthermore, the constant n can be taken to be the number of states in
the minimal DFA for L.

Proof. If L is regular, then there exists a DFA with r states accepting L . Now
choose n = r . Let z ∈ L with |z| ≥ n, and write z = z1z2 . . . zm with each z j ∈ �.
Consider the n + 1 states

q0, δ(q0, z1), . . . , δ(q0, z1z2 · · · zn).

By the pigeonhole principle, some state must occur at least twice in this list. Let
q be the first state that occurs at least twice on the list, and let δ(q0, z1z2 · · · zs)
and δ(q0, z1z2 · · · zt ) be the first two occurrences. Then if we take u = z1z2 · · · zs ,
v = zs+1 · · · zt , and w = zt+1 · · · zm , the result easily follows. �

Example 4.2.2 Let us prove that the language

L = {1 j 0 j : j ≥ 0}
is not regular. Suppose it were, and let n be the pumping lemma constant. Then
let z = 1n0n . Write z = uvw with |uv| ≤ n and |v| ≥ 1; then u = 1r , v = 1s , and
w = 1n−(r+s)0n . Then uv0w = uw = 1n−s0n �∈ L , since s ≥ 1.
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Another effective tool for proving languages nonregular is the Myhill–Nerode
theorem (Theorem 4.1.8). Let us reprise the previous example, but this time with
an alternate proof.

Example 4.2.3 Let us prove that

L = {1 j 0 j : j ≥ 0}
is not regular, using the Myhill–Nerode theorem. Then we claim that, for j ≥ 0,
the equivalence classes {[1 j ] : j ≥ 0} of the relation RL are pairwise distinct. To
see this, let k �= j . Then 1 j 0 j ∈ L , but 1k0 j �∈ L . Since there are infinitely many
equivalence classes, L cannot be regular.

Finally, it may sometimes be useful to apply the fact that regular languages are
closed under intersection and inverse morphism. Consider the following example.

Example 4.2.4 Let us prove that

L = {x x R w : x, w ∈ {a,b}+}
is not regular. Suppose it were. Then

L ′ = L ∩ (ab)+(ba)+

would also be regular. But it is not hard to see that

L ′ = {(ab)m (ba)n : 1 ≤ m < n}.
Define ϕ(c) = ab and ϕ(d) = ba. Then by Theorem 4.1.7,

ϕ−1(L ′) = {cm dn : 1 ≤ m < n}
would be regular. But a simple argument using the pumping lemma shows it is not.

4.3 Finite Automata with Output

In Section 4.1 we introduced the basic finite automaton model, which either accepts
or rejects any given input string. Another way to look at this model is that a given
DFA computes a function f : �∗ → {0,1}, where 1 represents acceptance and 0
rejection. We are now interested in more general models of function computation
by finite automata.

Informally, this is how an automaton computes a function: the string w is input,
and the automaton moves from state to state according to its transition function δ,
while reading the symbols ofw. When the end of the string is reached, the automaton
halts in a state q . At this point the automaton outputs the symbol τ (q), where τ is
the output mapping.
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Figure 4.6: DFAO Computing the mod-2 Sum of its Input Bits.

More formally, a deterministic finite automaton with output (DFAO) is defined
to be a 6-tuple

M = (Q, �, δ, q0,�, τ )

where Q, �, δ, q0 are as in the definition of DFA in Section 4.1, � is the output
alphabet, and τ : Q → � is the output function. Such a machine M defines a
function from �∗ to �, which we denote as fM (w), as follows:

fM (w) = τ (δ(q0, w)).

If a function f : �∗ → � can be computed in this fashion, it is called a finite-state
function.

We can represent a DFAO with a transition diagram, much the same way we did
for DFAs; the only difference is that a state labeled q/a indicates that the output
associated with the state q is the symbol a.

As an example, consider the DFAO represented in Figure 4.6. It computes the
sum, modulo 2, of the bits of the input string w ∈ {0,1}∗.

DFAOs clearly are strongly related to DFAs. The following two theorems make
this relationship more precise.

First, we prove that if M is a DFAO, then the words that result in a given output
form a regular language.

Theorem 4.3.1 Let M = (Q, �, δ, q0,�, τ ) be a DFAO. Then for all d ∈ �, the
set

Id(M) = {w ∈ �∗ : τ (δ(q0, w)) = d}
is a regular language.

Proof. Let Lq be the language accepted by the DFA Mq = (Q, �, δ, q0, {q}). Then
it is easy to see that

Id(M) =
⋃

q∈Q
τ (q)=d

Lq .

Since regular languages are closed under finite unions, Id(M) is regular. �
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Next we prove the converse: a DFAO can be constructed by “gluing together”
the DFAs for different regular languages.

Theorem 4.3.2 Let �,� be finite alphabets. Let r be an integer ≥ 1, and let
L1, L2, . . . , Lr be r regular languages that partition �∗, i.e.,

⋃
1≤i≤r Li = �∗

and Li
⋂

L j = ∅ for i �= j . Let � = {a1, a2, . . . , ar }. Then there exists a DFAO
M = (Q, �, δ, q0,�, τ ) such that τ (δ(q0, w)) = ai if and only if w ∈ Li .

Proof. Since Li is regular for 1 ≤ i ≤ r , there exists a DFA Mi = (Qi , �, δi ,

q0i , Fi ) accepting Li for 1 ≤ i ≤ r .
Define Q = Q1 × Q2 × · · · × Qr , q0 = [q01, q02, . . . , q0r ], and

δ([q1, q2, . . . , qr ], a) = [δ1(q1, a), δ2(q2, a), . . . , δr (qr , a)]

for all q1 ∈ Q1, q2 ∈ Q2, . . . , qr ∈ Qr , a ∈ �. Also define τ ([q1, q2, . . . , qr ]) =
a j if there exists a unique index j such that q j ∈ Fj and (say) a1 otherwise. The
map τ is well defined, since the Li partition �∗. It is now easy to see that M is a
DFAO with the desired property. �

We now prove that a finite-state function remains finite-state when its input is
read in reverse order.

Theorem 4.3.3 Let f : �∗ → � be a finite-state function. Then so is the function
f R defined by f R(w) = f (wR).

Proof. If f is a finite-state function, then there is a DFAO M = (Q, �, δ, q0,�, τ )
such that f = fM . Define a new DFAO M ′ = (S, �, δ′, q ′

0,�, τ
′), where S = �Q

(so that elements of S are functions g mapping Q to �). We let q ′
0 be the function

that maps q to τ (q), τ ′(g) = g(q0) for all g ∈ S, and for g ∈ S, a ∈ �, we have
δ′(g, a) = h, where h(q) = g(δ(q, a)).

We now prove by induction on |w| that δ′(q ′
0, w) = h, where h is the function

mapping q to τ (δ(q, wR)). This is clearly true for |w| = 0. Now suppose the re-
sult is true for |w| = n; we prove it for |w| = n + 1. Let w = xa, where |x | = n.
Then δ′(q ′

0, xa) = δ′(δ′(q ′
0, x), a) = δ′(g, a) = h, where, by induction, g is the

function that maps q to τ (δ(q, x R)). Then h(q) = g(δ(q, a)) = τ (δ(δ(q, a), x R)) =
τ (δ(q, ax R)) = τ (δ(q, (xa)R)) = τ (δ(q, wR)).

Since τ ′(h) = h(q0), it now follows that M ′ computes the function f R . �

Corollary 4.3.4 If f : �∗ → � is a finite-state function computable by a DFAO
with n states, then f R is computable with a DFAO with at most |�|n states.

Corollary 4.3.5 If L is a regular language, then so is L R.
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Figure 4.7: A Finite-State Transducer.

Proof. Regular languages correspond to an output alphabet � = {0,1}. �

Next, we examine another model of automata with output, the finite-state trans-
ducer. A finite-state transducer is a machine

T = (Q, �, δ, q0,�, λ)

where Q is a finite set of states,� is is the input alphabet, δ is the transition function,
q0 is the initial state,� is the output alphabet, and λ is the output function, mapping
Q ×� to �∗. If there exists an integer k ≥ 1 such that |λ(q, a)| = k for all q ∈ Q,
a ∈ �, then the transducer is said to be k-uniform. Transducers can be represented
graphically in a form similar to finite automata; an arrow labeled a/y from state p
to state q corresponds to δ(p, a) = q and λ(p, a) = y.

A transducer can be viewed as a means to define functions: on input w =
w1w2 · · ·wr the transducer enters states δ(q0, ε), δ(q0, w1), . . . , δ(q0, w1 · · ·wr )
and produces the outputs

λ(q0, w1), λ(δ(q0, w1), w2), . . . , λ(δ(q0, w1w2 · · ·wr−1), wr ).

The function T (w) is then defined to be

T (w) =
∏

0≤ j≤r−1

λ(δ(q0, w1w2 · · ·w j ), w j+1).

If L ⊆ �∗ and L ′ ⊆ �∗ are languages, we define

T (L) := {T (w) : w ∈ L},
T −1(L ′) := {w ∈ �∗ : T (w) ∈ L ′}.

As an example, consider the transducer defined by Q = {q0, q1}, � = {a,b},
δ(q0,a) = δ(q1,a) = q1, δ(q0,b) = δ(q1,b) = q0, � = {a,b,c}, λ(q0,a) =
λ(q1,a) = a, λ(q0,b) = b, λ(q1,b) = bc. This transducer inserts a c after every
occurrence of ab in the input string, and is represented graphically in Figure 4.7.

Theorem 4.3.6 If L is a regular language, and T is a finite-state transducer, then
T (L) is regular.
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Proof. Let M = (Q, �, δ, q0, F) be a DFA accepting L . Let T = (Q′, �, δ′, q ′
0,

�, λ) be a finite-state transducer, with output alphabet �, and λ : Q ×� → �∗

the output function. We want to show that T (L) is regular.
We do this by constructing an NFA-ε for T (L). Define M ′′ = (Q′′,�, δ′′, q ′′

0 , F ′′)
as follows:

Q′′ = Q × Q′ × (� ∪ {ε}) × {0, 1, . . . , k},
where k = max

a∈�, q∈Q′ |λ(q, a)|,
q ′′

0 = [q0, q ′
0, ε, 0],

δ′′([q, q ′, ε, 0], ε) = {[q, q ′, b, 0] : b ∈ �},
δ′′([q, q ′, a, i − 1], yi ) = {[q, q ′, a, i]} for 1 ≤ i ≤ j

if λ(q ′, a) = y1 y2 · · · y j ,

δ′′([q, q ′, a, j], ε) = {[δ(q, a), δ′(q ′, a), ε, 0]} if λ(q ′, a) = y1 y2 · · · y j ,

F ′′ = {[q, q ′, ε, 0] : q ∈ F}.
The idea behind this construction is as follows: ifw ∈ T (L), then there is a word

x ∈ L such that w = T (x). Let x = x1x2 · · · xr , with xi ∈ �, and let wi ∈ �∗ be
the output of T on xi , so that w = w1w2 · · ·wr . On input wi , M ′′ simulates M
on the (guessed) word x ; this is done in the first component of states of M ′′. M ′′

also simulates the computation of T on x ; this is done in the second component
of states of M ′′. The third component is used to keep track of what letters of x
have been guessed; it is initially ε. When a letter a is guessed, it changes to a. The
fourth component keeps track of how many letters of wi have been seen so far; it
is initially 0, and is incremented each time the next letter of wi is seen. Eventually
the fourth component becomes |wi |; at this point, there is an ε-transition that resets
the third component to ε and the fourth component to 0, advancing the states in the
first and second components at the same time.

The formal proof is a bit messy. Here is just a sketch: we claim that T (L) =
L(M ′′). First, let us prove that T (L) ⊆ L(M ′′). If w ∈ T (L), then there exists an
x ∈ L such that w = T (x). Let ki = |wi |. Now on input x , M successively enters
states p0 = q0, p1, . . . , pr , and pr ∈ F . Also, T enters states p′

0 = q ′
0, p′

1, . . . , p′
r

and emits outputs w1, w2, . . . , wr , where wi = λ(p′
i−1, xi ). Then, on input w, M ′′

enters states

q ′′
0 = [p0, p′

0, ε, 0], [p0, p′
0, x1, 0], . . . , [p0, p′

0, x1, k1],

[p1, p′
1, ε, 0], [p1, p′

1, x2, 0], . . . , [p1, p′
1, x2, k2],

...

[pr−1, p′
r−1, ε, 0], [pr−1, p′

r−1, xr , 0], . . . , [pr−1, p′
r−1, xr , kr ],

[pr , p′
r , ε, 0],

and this last state is an accepting state.
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Similarly, let us prove that L(M ′′) ⊆ T (L). Let w ∈ L(M ′′). We claim that if
there is an accepting computation for w, then it is of the form mentioned in the
previous paragraph, and then, using this computation, we can trace out the value
of x = x1x2 · · · xr for which w = T (x), by examining the third components of the
states encountered. �

Corollary 4.3.7 Let L ⊆ �∗ be a regular language, and let ϕ : �∗ → �∗ be a
morphism. Then ϕ(L) = {ϕ(w) : w ∈ L} is regular.

Proof. This follows immediately from Theorem 4.3.6, as a morphism can be im-
plemented as a finite-state transducer with exactly one state. �

Theorem 4.3.8 If T is a finite-state transducer and L is a regular language, then
T −1(L) is regular.

Proof. Let L ⊆ �∗ be accepted by a DFA M = (Q,�, δ, q0, F), and T = (Q′, �,
δ′, q ′

0,�, λ) be a finite-state transducer. We define a DFA M ′′ = (Q′′, �, δ′′, q ′′
0 ,

F ′′) accepting T −1(L). The idea is simple: on input w we simulate T on w, getting
string x , and we simulate M on x , accepting if M accepts.

More precisely, let Q′′ = Q′ × Q, q ′′
0 = [q ′

0, q0], F ′′ = Q′ × F , and
δ′′([q ′, q], a) = [δ′(q ′, a), δ(q, λ(q ′, a))]. It is now easy to prove by induction that
the construction works. �

Here are some applications.

Lemma 4.3.9 Let S ⊆ N. If {(n)k : n ∈ S} is a regular language, then so is
{(n + 1)k : n ∈ S}.

Proof. Let L = {(n)k : n ∈ S}. Since L is regular, so is L R = {(n)R
k : n ∈ S}. We

design a finite-state transducer T to “add one” to the k-ary expansion of (n)R
k . One

small problem is that (n + 1)R
k may have one more digit than (n)R

k . To get around
this problem we feed the transducer with L R0, and then adjust the results.

Our transducer has two states. Let Q = {0, 1}. Then let � = {0,1, . . . , k − 1},
q0 = 1, and � = {0,1, . . . , k − 1}. We have

δ(c, a) =
{

0 if c = 0 or (c = 1 and a ≤ k − 2),

1 if c = 1 and a = k − 1,

and

λ(c, a) ≡ a + c (mod k).
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Then if T = (Q, �, δ, q0,�, λ), we leave it to the reader to verify that

T ((n)R
k 0) = w,

where [wR]k = n + 1. Let L ′ = T (L R0). By Theorems 4.3.5 and 4.3.6 we know

that L ′ is regular. Then so is
(

L ′/0*
)R

∩Ck = {(n + 1)k : n ∈ S}, where Ck is

defined as in Section 3.1. �

Corollary 4.3.10 For all integers c ≥ 0, if {(n)k : n ∈ S} is a regular language,
then so is {(n + c)k : n ∈ S}.

Lemma 4.3.11 Let S ⊆ N. Suppose that {(n)k : n ∈ S} is a regular language. Then
so is {(bn)k : n ∈ S} for any integer b ≥ 0.

Proof. As in the previous lemma, we construct a finite-state transducer that “mul-
tiplies by b”. The construction is similar to that in the previous lemma, except now
we allow carries as much as b − 1. Let M = (Q, �, δ, q0,�, λ), where

� = � = {0,1,2, . . . , k − 1},
Q = {0, 1, 2, . . . , b − 1},
q0 = 0;

δ(c, a) =
⌊

c + ba

k

⌋

,

λ(c, a) ≡ c + ba modk.

As before, we feed the transducer with (n)R
k 0�logk b�, and then strip off the extra

zeros. �

4.4 Context-Free Grammars and Languages

In this section, we briefly introduce the concept of context-free grammars (CFGs)
and context-free languages (CFLs).

A context-free grammar is a type of rewriting system on two kinds of symbols:
variables and terminals. Whenever a variable appears, it can be rewritten using
one of the rewriting rules. Terminals, however, are never rewritten, and when the
rewriting rules produce a string of all terminals, the process stops.

More formally, a context-free grammar is a quadruple G = (V, �, P, S) where:

V is a finite set of variables.
� is a finite set of terminals.
P is a set of rewriting rules called productions; it consists of finitely many pairs of the
form (A, α) where A ∈ V and α ∈ (V ∪�)∗. Productions are typically written in the form
A → α.
S is a distinguished variable called the start symbol.
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Rewriting takes place as follows: if A → α is a production of G, and βAγ is a
member of (V ∪�)∗, then we may replace A with α to obtain βαγ . In this case we
write βAγ =⇒

G
βαγ . If the grammar G is clear from the context, we may simply

write βAγ =⇒ βαγ . If α1 =⇒ α2 =⇒ · · · =⇒ αn , then we write α1
n=⇒ αn . If

α
n=⇒ β for some n ≥ 0, we write α

∗=⇒ β.
The language generated by a context-free grammar is defined to be

L(G) = {x ∈ �∗ : S
∗=⇒
G

x}.

Example 4.4.1 The following grammar generates the language {anbn : n ≥ 1}:
G = ({S}, {a,b}, P, S), where P is the set of productions

S → aSb,

S → ab.

We typically combine productions that have the same left-hand side using the
following notation:

S → aSb | ab.

A language is said to be context-free if it is generated by a context-free grammar.
A derivation of a word w ∈ L(G) is a series of steps

S =⇒ α1 =⇒ α2 =⇒ · · · =⇒ αn =⇒ w.

If at each step, the variable in αi that gets rewritten is the rightmost one, then the
derivation is said to be rightmost. A grammar G is said to be unambiguous if, for
each word w ∈ L(G), there is exactly one rightmost derivation of w. Otherwise G
is said to be ambiguous. A context-free language with no unambiguous grammar
is said to be inherently ambiguous.

With any language L ⊆ �∗ we can associate a power series eL (X ) = ∑
n≥0

Card (L ∩�n) Xn that counts the number of words of each length in L . We state
the following classical theorem without proof.

Theorem 4.4.2 (Chomsky–Schützenberger) If L is a context-free language, and
there is at least one unambiguous context-free grammar G with L = L(G), then
its associated formal power series eL (X ) is algebraic over Q(X ).

Example 4.4.3 Consider the unambiguous grammar

S → M | U,

M → 0M1M | ε,
U → 0S | 0M1U,

which represents strings of “if–then–else” clauses. This grammar has the following
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commutative image:

S = M + U,

M = x2 M2 + 1,

U = Sx + x2 MU.

This system of equations has the following power series solutions:

M = 1 + x2 + 2x4 + 5x6 + 14x8 + 42x10 + · · · ,
U = x + x2 + 3x3 + 4x4 + 10x5 + 15x6 + 35x7 + · · · ,
S = 1 + x + 2x2 + 3x3 + 6x4 + 10x5 + 20x6 + · · · .

By Theorem 4.4.2, each variable satisfies an algebraic equation over Q(x). We have

x2 M2 − M + 1 = 0,

x2(2x − 1)U 2 + (x + 1)(2x − 1)U + x = 0,

x(2x − 1)S2 + (2x − 1)S + 1 = 0.

As in the case of regular languages, which we defined first in terms of regular
expressions, there is a machine model that accepts precisely the context-free lan-
guages. This model is called the pushdown automaton, or PDA. Roughly speaking,
a pushdown automaton is an NFA equipped with a potentially infinite stack.

Formally, a PDA M is a 7-tuple (Q, �, !, δ, q0, Z0, F) where

Q is a finite set of states;
� is the finite input alphabet;
! is the finite stack alphabet;
δ, which maps Q × (� ∪ {ε}) × ! into finite subsets of Q × !∗ is the transition function;
q0 is the initial state;
Z0 is the initial stack symbol;
F ⊆ Q is the set of final states.

To formally describe how a PDA functions, we must introduce the notion of
configuration. A configuration is a triple (q, w, α) where q ∈ Q is the current
state, w is the unexpended input (the input not yet read), and α ∈ !∗ is the current
stack contents. For a ∈ � ∪ {ε} and X ∈ !, we say (q, aw, Xα) & (p, w, βα) if

(p, β) ∈ δ(q, a, X ). We write
∗& for the reflexive, transitive closure of &. Then the

language accepted by M is

L(M) = {x ∈ �∗ : (q0, x, Z0)
∗& (q, ε, α) for some q ∈ F and α ∈ !∗}.

The following classical theorem relates PDAs and CFGs. We state it without
proof.

Theorem 4.4.4 If L is generated by a CFG, then it is accepted by some PDA, and
vice versa.
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4.5 Context-Sensitive Grammars and Languages

In this section we introduce a new type of grammar, the context-sensitive grammar
(CSG). In such a grammar, the left-hand side of a production no longer needs to
be a single variable; now it can be any nonempty string of variables and terminals.
However, we insist in any production of the form α → β that |β| ≥ |α|. Such a
production is, for historical reasons, called context-sensitive, and a grammar is
context-sensitive if all of its productions are of this form.

A language is said to be a context-sensitive language (CSL) if it is generated by
a CSG.

Example 4.5.1 The following context-sensitive grammar generates the language
L = {anbncn : n ≥ 1}.

S → abc | aY bc,

Y b → bY,

Y c → Zbcc,

bZ → Zb,

aZ → aaY,

aZ → aa.

To see why it works, consider a derivation starting from the sentential form
anY bncn . The only possibility is to apply the production Y b → bY n times, getting
anbnY cn . Now the production Y c → Zbcc must be used, getting anbn Zbcn+1.
Now the production bZ → Zb must be used n times, getting an Zbn+1cn+1. Now
we have a choice. If we use aZ → aa, we generate the string an+1bn+1cn+1. If
we use aZ → aaY , then we get an+1Y bn+1cn+1, which is the same as the starting
sentential form with the exception that the numbers of a’s, b’s, and c’s have each
increased by 1.

4.6 Turing Machines

A Turing machine is a very general model of computation. Informally, a Turing
machine consists of a tape divided into cells, and a finite control with a tape head
that can read and write the tape. The tape has a leftmost cell, called cell 0, but is
potentially infinite to the right. The tape cells all initially hold a special symbol B,
the blank symbol, with the exception of cells 1 through n for some n ≥ 0, which
hold the input.

The finite control, based on the current symbol being scanned and its own internal
state, rewrites the current symbol, moves to either the left or right, and changes its
internal state.

There is a special halting state h, and the Turing machine accepts its input if it
eventually reaches the halting state. There are two ways a Turing machine can fail
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to accept its input: it can crash (either by attempting to move left from cell 0, or by
entering a state from which no move is defined), or it can enter an infinite loop.

More formally, a Turing machine is a 7-tuple M = (Q, �, !, δ, q0, B, h). Here
Q is a finite set of states, � is the finite input alphabet, ! is the tape alphabet, q0

is the initial state, B is the special blank symbol, and h is the special halting state.
Note that h �∈ Q and B �∈ �. However, B ∈ ! and� ⊆ !. Finally, δ is the transition
function, which is a partial function from Q × ! to (Q ∪ {h}) × ! × {L , R}. The
meaning of a transition such as δ(q, a) = (p, b, D) is that if the Turing machine is
in state q , scanning a tape symbol a, then it rewrites a as b, moves in the direction
specified by D, and changes its state to state p.

A configuration of a Turing machine is a triple of the form (p, α, bβ) and rep-
resents the current state of the Turing machine. Here p is the state, α represents
the contents of the tape to the left of the tape head, and bβ consists of the symbol
currently being scanned, followed by the tape contents to the right of the symbol
being scanned. Since the tape is infinite to the right, any suffix of β that consists of
infinitely many B’s is truncated by convention.

We write (p, α, bβ) & (p′, α′, b′β ′) if the second configuration is reached by one

move of the Turing machine starting in the first configuration, and
∗& is the reflexive,

transitive closure of &. Then L(M), the language accepted by the Turing machine
M , is defined to be

{x ∈ �∗ : (q0, ε, Bx)
∗& (h, α, bβ) for some α, b, β}.

A language L is said to be recursively enumerable if L = L(M) for some Turing
machine M . A language L is said to be recursive if L = L(M) for some Turing
machine M that, all inputs, either halts or crashes (never enters an infinite loop).

We now turn to the solvability of decision problems. A decision problem is a
problem with at least one parameter that takes infinitely many values, and for which
the answer is always “yes” or “no”.

We can associate a language with a decision problem as follows: we take the
set of all encodings of instances of the decision problem for which the answer is
“yes”. Of course, this raises the question of what encoding to use, but often there
is a “natural” encoding that suggests itself.

Example 4.6.1 Consider the decision problem: given an integer n, to decide
whether or not n is a prime number. The input n can take infinitely many val-
ues (all n ≥ 2, for example), and the answer is “yes” (the number is prime) or “no”
(the number is not).

A natural encoding of an integer n is representation in base 2. The language
associated with the previous decision problem is therefore

PRIMES2 = {10,11,101,111, . . . }.
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We say a decision problem is solvable if its associated language is recursive.
Note that a solvable decision problem corresponds to what we ordinarily think of
as solvable by mechanical means: there exists a finite deterministic procedure that,
given an instance of the problem, will halt in a finite amount of time and answer
either “yes” or “no”.

Turing’s fundamental paper of 1936 proved that there exist unsolvable decision
problems:

Theorem 4.6.2 The decision problem “Given a Turing machine T and an inputw,
does T halt on w?” is unsolvable.

The problem in the previous theorem is known as the halting problem.
Other decision problems P can be proved unsolvable by showing that the halting

problem reduces to them, that is, if you could solve problem P , then you could
solve the halting problem.

A very famous problem, known as Hilbert’s tenth problem, is the following:
given a multivariate polynomial equation with integer coefficients, does there exist
an integer solution?

Theorem 4.6.3 Hilbert’s tenth problem is unsolvable.

4.7 Exercises

1. Use the pumping lemma to prove that the following languages are not regular.
(a) {a2n

: n ≥ 1}.
(b) {an2

: n ≥ 1}.
(c) {ap : p is prime}.
(d) {ai b j : gcd(i, j) = 1}.
(e) {x ∈ {a,b,c}∗ : x is squarefree }.

2. Prove the pumping lemma for context-free languages: if L is a CFL, then there
exists a constant n such that for all z ∈ L with |z| ≥ n, there exists a way of
writing z = uvwxy with |vwx | ≤ n and |vx | ≥ 1 such that uviwxi y ∈ L for
all i ≥ 0. Apply it to prove the following languages not CFLs:
(a) {ai bi ci : i ≥ 1}.
(b) {xx : x ∈ {a,b}∗}.
(c) {ai b j ai b j : i, j ≥ 1}.

3. Complete the proof of Theorem 4.3.8.
4. Prove Corollary 4.1.9.
5. Let M = (Q, �, δ, q0, F) be a DFA. We say two states p, q ∈ Q are distin-

guishable if there exists x ∈ �∗ such that exactly one of δ(p, x), δ(q, x) is in
F ; otherwise they are indistinguishable. We say p, q are k-distinguishable if
there exists such an x with |x | ≤ k; otherwise they are k-indistinguishable.
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(a) If p, q are states that are k-indistinguishable, then p, q are (k + 1)-indistinguish-
able if and only if δ(p, a), δ(q, a) are k-indistinguishable for all a ∈ �.

(b) The states p, q are indistinguishable if and only if they are k-indistinguishable,
where k = (Card Q) − 2.

(c) If M1 = (Q2, �, δ1, q1, F1) and M2 = (Q2, �, δ2, q2, F2) are two DFAs such that
L(M1) �= L(M2), then there exists a string x ∈ �∗ accepted by exactly one of M1,
M2 such that |x | ≤ (Card Q1) + (Card Q2) − 2 .

6. Show that if Lk = {0,1}∗1{0,1}k , then no DFA with fewer than 2k+1 states
can accept Lk .

7. Show that the bound of 2n in Theorem 4.1.3 is best possible, in the sense that
for all n there exists an NFA with n states such that the smallest equivalent
DFA has 2n states.

8. Let w = a1a2a3 · · · be an infinite word. Show that the language L of prefixes
of w,

L = {ε, a1, a1a2, a1a2a3, . . . }
is regular if and only if a1a2a3 · · · is ultimately periodic.

9. Let � be an alphabet with at least 3 symbols. Show that the set of strings
containing a square, i.e., {xyyz : x, z ∈ �∗ and y ∈ �+}, is not contextfree.

10. Give an example of a context-free language L ⊆ {0,1,2}∗ such that L , the
complement of L , is infinite and contains only squarefree strings.

11. Give an example of a language L that is factorial (i.e., each subword of a word
in L is also contained in L) and contains no infinite regular subset.

12. Let L ⊆ �∗ be a regular language, and suppose there exists a set of pairs of
words P = {(xi , wi ) : 1 ≤ i ≤ n} such that
(a) xiwi ∈ L for 1 ≤ i ≤ n;
(b) x jwi �∈ L for 1 ≤ i, j ≤ n and i �= j .

Show that any NFA accepting L has at least n states.
13. Use the state elimination technique of Theorem 4.1.5 to find regular expres-

sions for the set of strings over {0,1} having an even (resp., odd) number of
occurrences of the subword 11. (As in Section 3.3, these occurrences may be
overlapping.)

14. Given a DFA M , describe an efficient procedure for determining tn :=
|�n ∩ L(M)|. Also describe an efficient procedure for computing the i th string
of length n in L(M), in lexicographic order.

15. Give a context-sensitive grammar, using as few productions as possible, for the
language {0Fn : n ≥ 1}, where Fn is the nth Fibonacci number.

16. Give a context-sensitive grammar generating the prime numbers.
17. Prove the following generalization of the Myhill–Nerode theorem. Let f be a

finite-state function, and define the equivalence relation R f as follows: x R f y if
and only if for all z we have f (xz) = f (yz). Show that the minimum number
of states in any DFAO computing f is equal to the number of equivalence
classes of R f .
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4.8 Open Problems

1. Suppose you are given two distinct words u, v with |u|, |v| ≤ n. What is the size
of the smallest DFA that accepts u but rejects v, or vice versa? If u and v are of
different lengths, then a simple argument gives a O(log n) bound. How about
if u and v are of the same length? (Remark: It is known that a machine of size
O(n2/5(log n)3/5) exists. See Robson [1989].)

2. Determine if the following language is context-free: the set of words over a
4-letter alphabet that contain an abelian square. (Remark: See Main, Bucher,
and Haussler [1987].)

3. Is the set of primitive words over {0,1} context-free? (Remarks: This is a long-
standing difficult problem in the theory of context-free languages. Some partial
results are known; see, for example, M. Ito and Katsura [1991]; Petersen [1994,
1996]; Kászonyi and Katsura [1997]; Dömösi, Hauschildt, Horváth, and Kudlek
[1999].)

4.9 Notes on Chapter 4

For a good introduction to finite automata and other models of computation, see
Hopcroft and Ullman [1979].

4.1 McCulloch and Pitts [1943] studied finite-state systems that today would be
called finite automata. Huffman [1954], Mealy [1955], and E. Moore [1956]
discussed simple computational models equivalent to finite automata. Kleene
[1956] introduced regular expressions and proved the languages they repre-
sented were the same as languages accepted by finite automata. Rabin and
Scott [1959] introduced nondeterministic finite automata.

For an historical survey of automata theory, see Perrin [1995a].
Theorem 4.1.6 (closure of regular languages under quotient) is due to

Ginsburg and Spanier [1963].
Theorem 4.1.8 is due to Myhill [1957] and Nerode [1958], independently.
Our proof of Lemma 4.1.10 is due to A. Lubiw.

4.2 Lemma 4.2.1, the “pumping lemma”, is due to Bar-Hillel, Perles, and Shamir
[1961]. In French it is known as the “théorème de l’étoile”.

4.3 Mealy [1955] introduced automata with outputs on the transitions, a specific
case of our more general concept of finite-state transducer. E. Moore [1956]
introduced automata with outputs on the states, similar to our model of DFAO,
except that our DFAO model only outputs one symbol per string, based on the
last state reached. What we call a finite-state transducer is called a “finitary
sequential transformation” by Cobham [1972].

4.4 Context-free grammars were introduced by Chomsky [1956, 1959]. Theo-
rem 4.4.2 was stated by Chomsky and Schützenberger [1963]. The only known
complete proof of this theorem, including all details, seems to be in Kuich and
Salomaa [1986, Chapter 16]. Also see Kuich [1997, §10].
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Oettinger [1961] introduced the pushdown automaton. Theorem 4.4.4 is due
to Chomsky [1962] and Evey [1963], independently.

4.5 Context-sensitive languages were introduced by Chomsky [1956, 1959].
Our example, the context-sensitive grammar for L = {anbncn : n ≥ 1}, is

from Salomaa [1973, p. 11], where it is attributed to M. Soittola.
4.6 The Turing-machine model was introduced by Turing [1936]. For Hilbert’s

tenth problem, see, for example, Matiyasevich [1993].
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Automatic Sequences

In this chapter, we introduce the fundamental concept of this book: the automatic
sequence.

5.1 Automatic Sequences

In Section 4.3, we introduced the concept of finite-state function. In this book, we
will be particularly interested in the case where the input represents a number in
base k, i.e., when the input alphabet � = �k := {0, 1, . . . , k − 1} for an integer
k ≥ 2. We call a DFAO a k-DFAO if this is the case.

We are now ready to define the fundamental notion of this book: the concept
of k-automatic sequence. Informally, a sequence (an)n≥0 is k-automatic if an is
a finite-state function of the base-k digits of n. More precisely, we compute an

by feeding a finite automaton with the base-k representation of n, starting with
the most significant digit, and then applying an output mapping τ to the last state
reached.

Definition 5.1.1 We say the sequence (an)n≥0 over a finite alphabet � is k-
automatic if there exists a k-DFAO M = (Q, �k, δ, q0,�, τ ) such that an =
τ (δ(q0, w)) for all n ≥ 0 and all w with [w]k = n.

If M is as above, we say M generates the sequence (an)n≥0. Note that our defini-
tion requires that the automaton return the correct answer even if the input possesses
leading zeros; we will relax this requirement in Section 5.2.

Dozens of sequences of mathematical interest turn out to be k-automatic for some
integer k ≥ 2, including some that we already have seen in this book. We consider
some examples.

Example 5.1.2 (The Thue–Morse Sequence) This sequence t = (tn)n≥0, al-
ready introduced in Section 1.6, counts the number of 1’s (mod 2) in the base-2

152
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Figure 5.1: Automaton Generating the Thue–Morse Sequence.

representation of n. Here are the first few terms:

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

tn = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 . . .

The Thue–Morse sequence is 2-automatic, since it can be generated by the DFAO
in Figure 5.1.

To see that this DFAO indeed generates t, note that being in state q0 means that
the bits of the input seen so far sum to 0 (mod 2), while being in state q1 means
that the bits of the input seen so far sum to 1 (mod 2). This can easily be proved by
induction.

The ubiquitous Thue–Morse sequence appears in many different fields of math-
ematics. Here are just two examples:

Example 5.1.3 (Multigrades) Let A, B be disjoint sets of non-negative integers.
A multigrade is an identity of the form

∑

a∈A

ai =
∑

b∈B

bi

for i = 0, 1, 2, . . . , c. Suppose we define

An = {0 ≤ j < 2n+1 : t j = 0},
Bn = {0 ≤ j < 2n+1 : t j = 1}.

Then
∑

a∈An
ai = ∑

b∈Bn
bi for i = 0, 1, 2, . . . , n. For example,

0i + 3i + 5i + 6i = 1i + 2i + 4i + 7i

for i = 0, 1, 2. See Exercise 1.

Example 5.1.4 (Unusual Infinite Products) We have

∏

k≥0

(
2k + 1

2k + 2

)(−1)tk

=
√

2

2
.
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11/ -1 10/ -101/ 100/ 1

Figure 5.2: DFAO Generating the Rudin–Shapiro Sequence.

Figure 5.3: Space-filling Curve Derived from the Rudin–Shapiro Sequence.

Now let’s look at other examples of automatic sequences.

Example 5.1.5 (The Rudin–Shapiro Sequence) Recall that the Rudin–Shapiro
sequence (rn)n≥0, introduced in Example 3.3.1, is defined by the formula rn =
(−1)e2;11(n). In other words, rn is 1 (or −1) according as the number of (possibly
overlapping) occurrences of “11” in the binary expansion of n is even (or odd).
Then (rn)n≥0 is 2-automatic, since it is generated by the DFAO in Figure 5.2.

Here the meaning of a state labeled ab/c is that the running sum of the number
of occurrences of “11” so far is congruent to a modulo 2, the last digit input was b,
and the output is c. The transitions have been chosen to preserve these meanings.

Here is another interesting feature of the Rudin–Shapiro sequence. Suppose we
consider a path visiting lattice points in the plane. We start at the origin and make
a first move to (0, 1). At step n, for n ≥ 1, we decide to turn left (L) or right (R)
according to the following rule:

dn =
{

L if rnrn−1 = (−1)n,

R if rnrn−1 = −(−1)n.
(5.1)
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+1

Figure 5.4: Building the Regular Paperfolding Sequence: One Fold.

+1

+1

-1

Figure 5.5: Building the Regular Paperfolding Sequence: Two Folds.

The first few terms of this sequence are given below:

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

rn = 1 1 1 −1 1 1 −1 1 1 1 1 −1 −1 −1 +1 −1 · · ·
dn+1 = R L L R R R L L R L L L R R L R . . .

We then get a space-filling curve that visits every lattice point in 1
8 of the plane;

see Figure 5.3.

Example 5.1.6 (The Regular Paperfolding Sequence) First, take a rectangular
piece of paper and fold it in half lengthwise, then fold the result in half again, etc.,
ad infinitum, taking care to make the folds in the same direction each time. Next,
unfold the paper. The sequence (Ri )i≥1 of “hills” (+1) and “valleys” (−1) that
results is called the regular paperfolding sequence. (For aesthetic reasons, made
clear in Section 6.5, we index the sequence starting at 1, not 0.)

For example, after one fold, and unfolding to 90◦, we get the pattern in Figure 5.4.
After two folds, and unfolding to 90◦, we get the pattern in Figure 5.5. After twelve
folds, we get the interesting “dragon curve” in Figure 5.6 (where corners have been
rounded off for clarity).

Here are the first few terms of the limiting sequence R:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
Rn = 1 1 −1 1 1 −1 −1 1 1 1 −1 −1 1 −1 −1 1 1 1 −1 1 . . .

As we will see in Section 6.5, the regular paperfolding sequence R = (Ri )i≥1 is
generated by the 2-DFAO in Figure 5.7.
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Figure 5.6: Building the Regular Paperfolding Sequence: Twelve Folds.

Figure 5.7: 2-DFAO for the Paperfolding Sequence.

There is another interesting method to generate the regular paperfolding se-
quence, called the Toeplitz construction. Start with the following infinite periodic
word, of period length 4, over {−1, 0,+1},

w = +1 0 −1 0 +1 0 −1 0 · · · .

Now replace all the 0’s consecutively by the terms of w. We get

w′ = +1 +1 −1 0 +1 −1 −1 0 · · · .

Continue iterating this transformation; in the limit we get the paperfolding sequence
R. For a proof, see Exercise 7.

Example 5.1.7 (The Baum–Sweet Sequence) This sequence b = (bn)n≥0 takes
the value 1 if the binary representation of n contains no block of consecutive 0’s of
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Figure 5.8: 2-DFAO for the Baum–Sweet Sequence.

odd length, and 0 otherwise. Here are the first few terms of this sequence:

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
bn = 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 . . .

The 2-DFAO in Figure 5.8 generates this sequence.
Here the meaning of the states is as follows:

A: reading the leading zeros of the input;
B: all blocks of zeros (including current one) are of even length;
C : the last block of zeros seen has odd length so far, but all previous ones have even length;
D: we’ve seen a block of zeros of odd length.

5.2 Robustness of the Automatic Sequence Concept

In this section we consider some simple variations on the automatic sequence con-
cept, and show that none of these variations change the class of sequences described.
In other words, the definition of automatic sequences is robust. Here are some of
the variations we consider:

(a) the input number is processed starting with the least significant digit, rather than the
most significant digit;

(b) the input number is represented with alternate digit sets; and
(c) the input number is represented in base −k.

We start by relaxing a condition in the definition of automatic sequence. Orig-
inally, we demanded that our machine M compute an correctly no matter which
base-k representation of n is input. More precisely, M must give the same answer
even if the input has leading zeros. This is a strong requirement, but as the next
theorem shows, it is not necessary. In fact, it suffices that the DFAO compute the
correct output just for the canonical representations of n in base k (those lacking
leading zeros).

Theorem 5.2.1 The sequence (an)n≥0 is k-automatic if and only if there exists a
k-DFAO M such that an = τ (δ(q0, (n)k)) for all n ≥ 0. Moreover, we may choose
M such that δ(q0,0) = q0.
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Figure 5.9: Automaton Generating a Variant of the Thue–Morse Sequence.

Figure 5.10: Automaton Generating a Variant of the Thue–Morse Sequence.

Proof. =⇒: Trivial.
⇐=: Let M = (Q, �k, δ, q0,�, τ ). Define M ′ = (Q′, �k, δ

′, q ′
0,�, τ

′) as
follows:

Q′ = Q ∪ {q ′
0},

δ′(q, a) = δ(q, a) for all q ∈ Q, a ∈ �k,

δ′(q ′
0, a) =

{
δ(q0, a) if a �= 0,

q ′
0 if a = 0,

τ ′(q ′
0) = τ (q0),

τ ′(q) = τ (q) for all q ∈ Q.

Then we claim that

τ ′(δ′(q ′
0,0i (n)k)) = τ (δ(q0, (n)k)) for all i ≥ 0.

For we have, for n �= 0, δ′(q ′
0,0i (n)k) = δ′(q ′

0, (n)k) = δ(q0, (n)k). �

Example 5.2.2 Consider the 2-DFAO in Figure 5.9.
This 2-DFAO computes the sequence (t ′n)n≥0 that counts the number of 0’s,

modulo 2, in the binary expansion of n:

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

t ′n = 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 . . .

Note that the output of the automaton in Figure 5.9 is correct in the case where
the input has no leading zeros, but may be incorrect otherwise. To fix this problem,
we introduce a new state q ′

0, as shown in Figure 5.10.
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Another variation on the automatic sequence concept is to allow the DFAO to
process the base-k representation of the input integer n starting with the least
significant digit. We have the following theorem.

Theorem 5.2.3 The following three conditions are equivalent:

(1) (an)n≥0 is a k-automatic sequence.
(2) There exists a k-DFAO M = (Q, �k, δ, q0,�, τ ) such that an = τ (δ(q0, w

R)) for all
n ≥ 0 and all w ∈ �∗

k such that [w]k = n.
(3) There exists a k-DFAO M ′ = (Q′, �k, δ

′, q ′
0,�, τ

′) such that an = τ (δ(q0, (n)R
k )) for

all n ≥ 0.

Proof. (1) =⇒ (2): Let (an)n≥0 be a k-automatic sequence. By Theorem 4.3.3, the
function f R that maps wR to a[w]k is a finite-state function, so there exists a DFAO
that computes it.

(2) =⇒ (3): Follows trivially.
(3) =⇒ (1): Condition (3) implies that there is a finite-state function g that maps

(n)R
k to an . Hence by Theorem 4.3.3, the function gR is a finite-state function, and it

maps (n)k to an . Hence there exists a DFAO that computes gR . By Theorem 5.2.1,
this implies that (an)n≥0 is k-automatic. �

Yet another variation is to allow DFAOs (processing inputs starting with the least
significant digit) that return the correct result when sufficiently many trailing zeros
are appended.

Theorem 5.2.4 Suppose M = (Q, �k, δ, q0,�, τ ) is a DFAO such that for all w
the sequence (τ (δ(q0, w0i )))i≥0 is eventually constant. Let f (w) be this constant.
Then the sequence ( f ((n)R

k ))n≥0 is k-automatic.

Proof. We may assume without loss of generality that all states of Q are reachable.
Since for allw the sequence (τ (δ(q0, w0i )))i≥0 is eventually constant, it follows that
there exists a map τ ′ : Q → � such that for all q ∈ Q we have τ (δ(q,0i )) = τ ′(q)
for all sufficiently large i . Now define M ′ = (Q, �k, δ, q0,�, τ

′). It now follows
from Theorem 5.2.3 that ( f ((n)R

k ))n≥0 is k-automatic. �

Next, we consider cases where the input integer n is expressed in a representation
other than ordinary base-k representation. First, we prove two useful lemmas. The
first concerns the removal of leading and trailing zeros from strings in a regular
language. If

w ∈ �∗
k = {0,1, . . . , k − 1}∗,
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andw = 0i a1a2 · · · ar where a1 �= 0, then we write rlz(w) = a1a2 · · · ar . Similarly,
if w = a1a2 · · · ar 0i where ar �= 0, then we write rtz(w) = a1a2 · · · ar .

For a language L we write rlz(L) = {rlz(w) : w ∈ L} and rtz(L) = {rtz(w) :
w ∈ L}.

Lemma 5.2.5 If L is a regular language, then so are rlz(L) and rtz(L).

Proof. We have rlz(L) = (L R/0∗)R ∩Ck , where Ck := {ε} ∪ (�k \ {0})�∗
k , and

regular languages are closed under intersection, reversal, and quotient.
Similarly, rtz(L) = (L/0∗)∩ (Ck)R . �

Our second lemma provides a useful alternate characterization of automatic
sequences. Let a = (an)n≥0 be a sequence over �, let k be an integer ≥ 2, and
let d ∈ �. We define the k-fiber Ik(a, d) to be the set {(n)k : an = d}.

Lemma 5.2.6 Let a = (an)n≥0. Then a is k-automatic if and only if each of the
fibers Ik(a, d) is a regular language for all d ∈ �.

Proof. =⇒: Let (an)n≥0 be generated by the k-DFAO M = (Q, �k, δ, q0,�, τ ).
Then the language

Jk(d) = {w ∈ �∗
k : τ (δ(q0, w)) = d}

is evidently regular, as it is the union of regular languages:

Jk(d) =
⋃

q
τ (q)=d

{w ∈ �∗
k : δ(q0, w) = q}.

Now Jk(d)∩Ck is a regular language, by Theorem 4.1.2, and Ik(a, d) = Jk(d)∩Ck .
⇐=: Suppose that Ik(a, d) = {(n)k : an = d} is regular for all d ∈ � =

{1,2, . . . , r}, (renaming if necessary). Then so is I ′k(i) := 0∗ Ik(a, i), and the I ′k(i)
are disjoint and partition �∗

k . Using Theorem 4.3.2, we conclude that (an)n≥0 is
k-automatic. �

We are now ready to prove a theorem on bijective base-k representations.

Theorem 5.2.7 Let 〈n〉k denote the bijective representation of n in base k using the
digits in {1, 2, . . . , k}, as discussed in Theorem 3.6.1. Then a = (an)n≥0 is a
k-automatic sequence if and only if there exists a DFAO M = (Q, {1,2, . . . , k},
δ, q0,�, τ ) such that an = τ (δ(q0, 〈n〉k)) for all n ≥ 0.

Proof. Here is an overview of the proof. We use Lemma 5.2.6 to look at the fibers
Ik(a, d) corresponding to the base-k expansions of the integers n for which an = d.
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carry
no

carry

Figure 5.11: Transducer from Bijective to Ordinary Base-k Representation.

We then show that (more or less) the representations using digits {1,2, . . . , k} can
be transduced, using a finite-state transducer, into the ordinary representations using
digits {0,1, . . . , k − 1}. (Of course this is not exactly true, since the representations
can be of different lengths.) We then use Lemma 5.2.6 again to get the desired
conclusion.

=⇒: Suppose there exists a DFAO M = (Q, {1, 2 . . . , k}, δ, q0,�, τ ) such that
an = τ (δ(q0, 〈n〉k)) for all n ≥ 0. Then, just as in the proof of Lemma 5.2.6, it
follows that each of the languages

I ′k(a, d) := {〈n〉k : an = d}
is regular.

Now we claim that the transducer T in Figure 5.11 converts from the bijective
base-k representation, starting with the least significant digit, to the ordinary base-k
representation. More precisely, if the input to T is a string of the form 〈n〉R

k 0, then
the output is a string of the form (n)R

k 0i where i = 0 or 1. We leave this to the
reader to verify.

It now follows that

Ik(a, d) = {(n)k : an = d}
= rlz(T (I ′k(a, d)R 0)R)

and hence Ik(a, d) is regular. By Lemma 5.2.6, (an)n≥0 is a k-automatic sequence.
⇐=: Similarly, if (an)n≥0 is k-automatic, then Ik(a, d) = {(n)k : an = d} is reg-

ular for all d. We then have

I ′k(a, d) = {〈n〉k : an = d}
= rlz(T −1(Ik(a, d)R)R),

and it follows from Theorem 4.3.8 that I ′k(d) is regular for all d. In analogy with the
proof of Lemma 5.2.6 it follows that there exists a DFAO with an = τ (δ(q0, 〈n〉k))
for all n ≥ 0. �

5.3 Two-Sided Automatic Sequences

We have defined a sequence (an)n≥0 to be k-automatic if there exists a DFAO
such that an = τ (δ(q0, (n)k)). As usually defined, automatic sequences are indexed
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by N = {0, 1, 2, . . . } and hence are “unidirectional”. In this section we examine
two different ways to extend the domain of an automatic sequence to Z and their
consequences.

As we have seen in Theorem 3.7.2, if k ≥ 2 is an integer, then every integer can be
uniquely represented (up to leading zeros) in the form

∑
0≤i≤r ai (−k)i , where ai ∈

{0,1, . . . , k − 1}. This leads to the following generalization of automatic sequences
to the two-sided case:

Definition 5.3.1 We say a two-sided infinite sequence (an)n∈Z is k-automatic if
there exists a k-DFAO M = (Q, �k, δ, q0,�, τ ) such that an = τ (δ(q0, (n)−k)) for
all n ∈ Z.

We then have the following theorem:

Theorem 5.3.2 A two-sided infinite sequence (an)n∈Z is (−k)-automatic if and only
if both subsequences (an)n≥0 and (a−n)n≥0 are k-automatic.

Proof. We first note that an analogue of Lemma 5.2.6 also holds when k ≤ −2; i.e.,
a two-sided sequence (an)n∈Z is (−k)-automatic (k ≥ 2) if and only if the each of
the fibers

I−k(a, d) = {(n)−k : an = d}
is a regular language for all d ∈ �.

We will now exhibit a finite-state transducer that will convert the representation of
a number in base k to its representation in base −k. The input will be given starting
with the least significant digit. Moreover, since a number’s base-(−k) representation
can be as much as 2 digits longer than that of its base-k representation, we may
have to prefix the base-k representation with 2 leading zeros to obtain the correct
result. The output in this case may contain trailing zeros.

More precisely, the input to our transducer will be (n)R
k 00, and the output is

in (n)R
−k{ε,0,00}. Figure 5.12 illustrates two transducers in one diagram. The

transducer T works for positive inputs, and the transducer T ′ works for negative
ones; they differ only in the specification of the initial states.

Figure 5.12: Transducers for Converting from Base-k to Base-(−k) Representation.
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We leave it to the reader to verify that the transducer T does indeed map (n)R
k 00

to one of (n)R
−k{ε,0,00}, for n ≥ 0. (It may be helpful to observe that T keeps track

of the parity of the position, as well as the “carry” to the next place.) Similarly,
by starting at the indicated state, the transducer T ′ converts (n)R

k 00 to one of
(−n)R

−k{ε,0,00}.
Now suppose that (an)n≥0 and (an)−n≥0 are k-automatic. Then the sets

Ik(a, c) = {(n)k : an = c; n ≥ 0},
I ′k(a, c) = {(n)k : a−n = c; n ≥ 0}

are regular for all c ∈ �. Then so are Ik(a, c)R00 and I ′k(a, c)R00. Then so are

B = T (Ik(a, c)R00)R and B ′ = T ′(I ′k(a, c)R00)R.

Now

rlz(B) = {(n)−k : an = c and n ≥ 0},
rlz(B ′) = {(n)−k : an = c and n ≤ 0}.

Thus the sets {(n)−k : an = c and n ≥ 0} and {(n)−k : an = c and n ≤ 0} are both
regular; hence so is their union. It follows that (an)n∈Z is (−k)-automatic.

For the converse, assume that

K (c) = {(n)−k : an = c; n ∈ Z}
is a regular language for all c ∈ �. Then so are

K1(c) = {(n)−k : an = c; n ≥ 0}
= K (c)∩ ((�k \ {0})(�2

k )∗ ∪ {ε})
and

K2(c) = {(n)−k : an = c; n ≤ 0}
= K (c)∩ ((�k \ {0})�k(�2

k )∗ ∪ {ε}).
Now, by an argument similar to the one given above,

rlz((T −1(K1(c)R00))R) = {(n)k : an = c; n ≥ 0}
is regular, and so is

rlz((T ′−1(K2(c)R00))R) = {(n)k : a−n = c; n ≥ 0},
which shows that both (an)n≥0 and (a−n)n≥0 are k-automatic. This completes the
proof. �

Example 5.3.3 We present an analogue to the Thue–Morse sequence in base −2.
Define s−2(n) to be the sum of the base-(−2) digits of n. Then s−2(n)mod2 is
(−2)-automatic, and is generated by the DFAO in Figure 5.13.
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Figure 5.13: Automaton for an Analogue of the Thue–Morse Sequence.

Figure 5.14: Transducer for Positive Numbers.

Here are the first few terms of s−2(n):

n −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 . . .

s−2(n) 3 1 2 3 4 2 3 1 2 0 1 2 3 1 2 3 4 2 3 . . .

Then the subsequences (s−2(n)mod2)n≥0 and (s−2(−n)mod2)n≥0 are both 2-
automatic. The construction of the 2-automata is left to the reader in Exercise 3.

Recall the (k, l) numeration systems from Example 3.6.7: these are represen-
tations in base m = k + l + 1 using the digits in � = {−k, 1 − k, 2 − k, . . . ,−1,
0, 1, 2, . . . , l − 1, l}. We use (n)k,l to denote this type of representation. We say a
two-sided infinite sequence (an)n∈Z is (k, l)-automatic if there exists a DFAO M =
(Q, �, δ, q0,�, τ ) such that an = τ (δ(q0, (n)k,l)) for all integers n.

Theorem 5.3.4 A sequence (an)n∈Z is (k, l)-automatic if and only if (an)n≥0 and
(a−n)n≥0 are m-automatic.

Proof. We mimic the proof of Theorem 5.3.2. All the steps should be clear ex-
cept perhaps the finite-state transducers mapping base-m expansions to (k, l)-
expansions. These transducers are given in the accompanying figures. Figure 5.14
illustrates a transducer converting (n)m to (n)k,l . For negative numbers, we simply
observe that for n ≥ 0, (−n)k,l = −(n)l,k , where by −(n)k,l we mean negate each
term of the (k, l)-expansion. Figure 5.15 gives the transducer converting (n)m to
(−n)k,l .

The proof of the result goes through unchanged. (Note that it is easy to deduce
whether a (k, l)-expansion denotes a positive or negative number, since this depends
only on the sign of the most significant digit.) �
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Figure 5.15: Transducer for Negative Numbers.

5.4 Basic Properties of Automatic Sequences

Theorem 5.4.1 If a sequence (vn)n≥0 differs only in finitely many terms from a
k-automatic sequence (an)n≥0, then it is k-automatic.

Proof. This follows easily from Lemma 5.2.6. �

Theorem 5.4.2 If (an)n≥0 is an ultimately periodic sequence, then it is k-automatic
for all k ≥ 2.

Proof. From Theorem 5.4.1 it suffices to show this is the case where (an)n≥0 is
purely periodic of period t , i.e., atn+i = ai for 0 ≤ i < t and n ≥ 0. Define the
k-automaton M = (Q, �, δ, q0,�, τ ), where � = {0,1, . . . , k − 1}, as follows:

Q = {0, 1, . . . , t − 1},
δ(q, b) = (kq + b)mod t for all q ∈ Q, b ∈ �,

τ (q) = aq for 0 ≤ q < t.

Then it is easy to see by induction that

δ(q, b0b1 · · · b j ) = [b0b1 · · · b j ]k mod t

and the result follows. �

Theorem 5.4.3 Let u = (un)n≥0 be a k-automatic sequence, and let ρ be a coding.
Then the sequence ρ(u) is also k-automatic.

Proof. By the definition of k-automatic, there exists a k-DFAO M = (Q, �, δ,
q0, !, τ ) such that un = τ (δ(q0, (n)k)) for all n ≥ 0. Now consider the k-DFAO
M ′ = (Q, �, δ, q0, !, ρ ◦ τ ). Clearly this DFAO generates ρ(u). �

Theorem 5.4.4 Let a = (an)n≥0 and b = (bn)n≥0 be two k-automatic sequences
with values in � and �′, respectively. Then a × b = ([an, bn])n≥0 is k-automatic.

Proof. Let M = (Q, �, δ, q0,�, τ ) generate (an)n≥0 and M ′ = (Q′, �, δ′, q ′
0,

�′, τ ′) generate (bn)n≥0. Then M ′′ = (Q × Q′, �, δ′′, [q0, q ′
0],�×�′, τ ′′)
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generates a × b, where

δ′′([q, q ′], c) = [δ(q, c), δ′(q ′, c)] for all q ∈ Q, q ′ ∈ Q′, c ∈ �

and

τ ′′([q, q ′]) = [τ (q), τ ′(q ′)]. �

Corollary 5.4.5 Let a = (an)n≥0 and b = (bn)n≥0 be two k-automatic sequences
with values in finite sets � and �′, respectively. Let f : �×�′ → �′′ be any
function into a finite set �′′. Then the sequence ( f (an, bn))n≥0 is k-automatic.

Proof. Combine the previous two theorems. �

5.5 Nonautomatic Sequences

To prove a sequence is automatic, it suffices to exhibit a DFAO generating it. But
how can we prove a sequence nonutomatic? One method is to use the pumping
lemma for regular languages in combination with Lemma 5.2.6.

Example 5.5.1 Let us prove that q = 1100100001 · · · , the characteristic se-
quence of the squares, is not a 2-automatic sequence.

First, we observe that the only solutions in positive integers to the equation

y2 = (22m − 1)22n+2 + 1

are given by m = n, y = 22m+1. For if y2 − 1= (22m − 1)22n+2, then 22n+2 || (y − 1)
(y + 1). However, if 4 | y − 1, then 2 || y + 1. If 4 | y + 1, then 2 || y − 1. Hence
22n+1 || y − 1 or 22n+1 || y + 1. Thus we can write y = 22n+1r ± 1, where r ≥ 1
is odd. Now y2 − 1 = 24n+2r2 ± r22n+2 = (22m − 1)22n+2. Dividing by 22n+2, we
get 22nr2 ± r = 22m − 1. Hence 22m − 1 ≥ 22nr2 − r ≥ 22n − 1, and so m ≥ n.

Now m > n if and only if m + n + 2 > 2n + 2, if and only if 2m+n+2 > 22n+2,
if and only if 22m+2n+2 − 2m+n+2 + 1 < 22m+2n+2 − 22n+2 + 1, if and only if
(2m+n+1 − 1)2 < y2, and clearly y2 < (2m+n+1)2. Hence if m > n, then y2 lies
strictly between two consecutive squares, a contradiction.

Hence m = n, and y = 22m+1 − 1.
Now assume that the characteristic sequence of the squares is 2-automatic. It

follows from Lemma 5.2.6 that the language

SQUARES = {x ∈ 1{0,1}∗ : [x]2 is a square}
is regular. But by the remarks above,

SQUARES∩ (11)∗(00)∗01 = {12m02m+11 : m ≥ 1},
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and since regular languages are closed under intersection, {12m02m+11 : m ≥ 1}
must be regular. But an easy argument using the pumping lemma shows this last lan-
guage is not regular, a contradiction.

The following theorem can often be used to show that some sequences are not
automatic.

Theorem 5.5.2 Let k ≥ 2 be an integer, and let a = (an)n≥0 be an automatic sequ-
ence generated by the k-DFAO (Q, �, δ, q0,�, τ ). Let v,w ∈ {0,1, · · · , k − 1}∗.
Then the sequence (a[vwi ]k )i≥0 is ultimately periodic.

Proof. Clearly this is true for |w| = 0; hence assume |w| ≥ 1 and put w =
w0w1 · · ·wr−1 for some r ≥ 1. Also put v = v0v1 · · · vs−1 for some s ≥ 0, and
define

x0x1x2 · · · := v0v1v2 · · · vs−1(w0w1 · · ·wr−1)ω.

Now for i ≥ 1 define qi := δ(q0, x0x1 · · · xi−1). Since a is automatic, the set
{qi : i ≥ 0} is finite. Similarly, the set of pairs {(qi , i modr ) : i ≥ s} is finite. But
for i ≥ s, the next state qi+1 is completely determined by qi and i modr , since

qi+1 = δ(q0, x0x1 · · · xi )

= δ(δ(q0, x0x1x2 · · · xi−1), xi )

= δ(qi , xi )

= δ(qi , w(i−s)modr ).

There are at most |Q| · r possibilities for (qi , i modr ), so eventually there is a re-
petition, after which the same sequence repeats (with period at most |Q| · r ). �

Corollary 5.5.3 If (an)n≥0 is k-automatic, then the subsequences (akn )n≥0 and
(akn−1)n≥0 are ultimately periodic.

Proof. (kn)k = 1

n
︷ ︸︸ ︷
0 · · ·0, which corresponds to v = 1, w = 0; and (kn − 1)k =

n
︷ ︸︸ ︷
1 · · ·1, which corresponds to v = ε,w = 1. �

Example 5.5.4 Consider the sequence bn := s2(�2(n)), where s2 is (as usual) the
sum-of-digits function and �2 is the length function introduced in Section 3.2.
We show that (bn mod2)n≥0 is not 2-automatic. For if it were, by Corollary 5.5.3
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we would have (b2n−1 mod2)n≥0 ultimately periodic. But b2n−1 = s2(�2(2n − 1)) =
s2(n), so b2n−1 mod2 = tn , the Thue–Morse sequence. This sequence is not ulti-
mately periodic, since we proved in Theorem 1.6.1 that it is overlap-free.

5.6 k-Automatic Sets

In this section, we define what it means for a set of non-negative integers to be
k-automatic, and prove some simple properties of these sets.

Let S be a set of non-negative integers. Then we say that S is k-automatic if its
characteristic function

χ
S
(n) =

{
1 if n ∈ S,

0 otherwise

defines a k-automatic sequence.

Example 5.6.1 The set of powers of 2, {1, 2, 4, 8, 16, . . . }, forms a 2-automatic
set.

Example 5.6.2 By Theorem 5.4.2, any arithmetic progression of integers forms a
2-automatic set.

Theorem 5.6.3 The class of k-automatic sets is closed under the operations

(a) intersection;
(b) union;
(c) complement;
(d) set addition, i.e., the operation R + S = {r + s : r ∈ S, s ∈ S};
(e) non-negative integer multiplication, i.e., the operation nT = {nt : t ∈ T };
(f) the operation defined by Ja,b(S) = {x : ax + b ∈ S}, where a ∈ N, b ∈ Z.

Proof. Parts (a)–(c) follow immediately from the definition of automatic sequence
and Corollary 5.4.5. To see (d), we construct an NFA that, on input w = (n)R

k ,
accepts w if and only if there exist integers r ∈ R and s ∈ S such that n = r + s.
The idea is to guess the base-k digits of r and s, starting with the least significant
digit. We then add these two numbers and compare to the input n, accepting if
r ∈ R, s ∈ S, and n = r + s.

Here are more details. Let MR = (Q R, �k, δR, qR,0, FR) be a DFA accepting
{(r )R

k 0∗ : r ∈ R}, and let MS = (QS, �k, δS, qS,0, FS) be a DFA accepting {(s)R
k 0∗ :

s ∈ S}. We then define an NFA

M = (Q R × QS × {0, 1} × {a, r}, �k, δ, q0, F)
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where q0 = [qR,0, qS,0, 0, a], and

δ([q, q ′, c, x], v) =
{[

δR(q, t), δS(q ′, u),

⌊
t + u + c

k

⌋

, y

]

: 0 ≤ t, u < k

}

,

where

y =
{

q if x = a and v = (t + u + c)modk,

r otherwise,

and F = FR × FS × {0} × {a}. The meaning of the states of M , represented as
4-tuples, is that the first component records what state we are are currently in for
the guessed r , the second component records what state we are currently in for the
guesses s, the third component records whether or not there was a carry in adding
r to s occurring from the immediately preceding digit, and the fourth component
records whether or not the digits of the input seen so far match the digits of the sum
r + s, where a indicates that it has (“accept”) and r indicates it has not (“reject”).
This NFA can now be converted, using the subset construction (Theorem 4.1.3), to
a DFA that shows that R + S is k-automatic.

For (e), use Lemma 4.3.11 and Lemma 5.2.6. Now (f) is similar to (d); as x is
input, it is transduced to ax + b, and the result is accepted if it is S. �

5.7 1-Automatic Sequences

As we have noted in Chapter 3, it is sometimes convenient to represent integers
in “base 1”, or unary. The unary representation of n is defined to be the string

1n =
n

︷ ︸︸ ︷
11 · · ·1. In analogy with our definition for k-automatic sequences (k ≥ 2),

we say a sequence (an)n≥0 is 1-automatic if there exists a DFAO (Q, �, δ, q0,�, τ ),
with � = {1}, such that an = τ (δ(q0,1n)).

Theorem 5.7.1 A sequence (an)n≥0 is 1-automatic if and only if it is ultimately
periodic.

Proof. =⇒: We have an = τ (δ(q0,1n)) for some 1-DFAO M = (Q, �, δ, q0,

�, τ ). Now there are only finitely many states; hence there exist r, s such that s > 0
and δ(q0,1r ) = δ(q0,1r+s). Then

δ(q0,1r+2s) = δ(δ(q0,1r+s),1s) = δ(δ(q0,1r ),1s) = δ(q0,1r+s),

and in a similar fashion it follows that δ(q0,1r+ js) = δ(q0,1r ) for all j ≥ 0. Hence
an+ js = an for all n ≥ r and j ≥ 0.
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⇐=: Suppose an+ js = an for all n ≥ r and j ≥ 0. Then we construct a 1-DFAO
generating (an)n≥0 as follows:

Q = {q0, q1, . . . , qr+s−1},
δ(qi ,1) = qi+1 for 0 ≤ i ≤ r + s − 2,

δ(qr+s−1,1) = qr ,

τ (qi ) = ai for 0 ≤ i ≤ r + s − 1.

Then it is easy to see that M = (Q, �, δ, q0,�, τ ) generates (an)n≥0. �

5.8 Exercises

1. Prove the assertion in Example 5.1.3 about multigrades and the Thue–Morse
sequence.

2. Let k,m be integers with k ≥ 2, m ≥ 1. Show that each of the following se-
quences defined in Section 3.2 is k-automatic:
(a) (sk(n)modm)n≥0;
(b) (Sk(n)modm)n≥0;
(c) (�k(n)modm)n≥0;
(d) (νk(n)modm)n≥0.

3. Give explicitly the 2-DFAO generating the sequences (s−2(n)mod2)n≥0 and
(s−2(−n)mod2)n≥0.

4. Show that the sequence (dn)n≥0 introduced in Eq. (5.1) is 2-automatic.
5. Show that the following conditions are equivalent:

(a) The two-sided sequence (an)n∈Z is k-automatic.
(b) There exists an integer N such that (an+N )n≥0 and (aN−n)n≥0 are both k-automatic.
(c) For all integers N , the sequences (an+N )n≥0 and (aN−n)n≥0 are both k-automatic.

6. Give an example of an automatic sequence (an)n≥0 such that its summa-
tory function (

∑
0≤i≤n ai )n≥0 contains every non-negative integer infinitely

often.
7. Prove the Toeplitz characterization of the regular paperfolding sequence given

in Example 5.1.6.
8. Let Sn be the nth Schröder number, defined to be the number of paths in Z × Z

from (0, 0) to (n, n) using the steps {(0, 1), (1, 0), (1, 1)}, and that contain no
points above the line y = x .
(a) Show that Sn+1 = 3Sn +

∑
1≤k≤n−1 Sk Sn−k .

(b) Show that (Sn mod3)n≥0 is a 3-automatic sequence, and characterize this sequence
in terms of the base-3 expansion of n.

9. Show that (ski (n)modm)n≥0 is a k-automatic sequence for all integers i,m ≥ 1,
where s j (n) is the sum of the base- j digits of n.

10. Show that the class of k-automatic sets is not closed under set multiplication,
i.e., under the operation

ST = {st : s ∈ S, t ∈ T }.
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11. Let w, x be nonempty strings, and define w0 = w, and wn+1 = wnxwR
n for

n ≥ 0. Let z = limn→∞wn be the infinite string of which w0, w1, . . . are all
prefixes.
(a) Show that the sequence z = z0z1z2 . . . is 2-automatic.
(b) Show that if x is a palindrome (i.e., x = x R), then z is ultimately periodic.
(c) Show that if z is ultimately periodic, then x is a palindrome.

12. Show that the characteristic sequence of the prime numbers is not a k-automatic
sequence for any k ≥ 2.

13. Let T be the set of non-negative integers that can be expressed as the sum of
three integer squares. Prove that T is a 2-automatic set, and give a 2-DFAO
generating the characteristic sequence χT .

14. Prove that (ts2(i))i≥0 is not a 2-automatic sequence, where (tn)n≥0 is the Thue–
Morse sequence.

15. Is the sequence (t ′n)n≥0 of Example 5.2.2 overlap-free?

5.9 Open Problems

1. What is the critical exponent e of the Rudin–Shapiro sequence r = (rn)n≥0?
(Remarks: We have r[7..10] = 1111, so e ≥ 4. On the other hand, Séébold
[1986] has shown that e ≤ 5.)

2. Given a k-DFAO with n states, can one determine in time polynomial in n
whether the k-automatic sequence it generates is ultimately periodic? (Remark:
For a decision procedure that does not run in polynomial time, see Pansiot
[1986]; Honkala [1986]; Harju and Linna [1986].)

3. Explore the theory of automatic graphs: graphs on the non-negative inte-
gers in which an edge (i, j) exists if and only if the automaton M accepts the input
0i #0 j , where # is a new symbol (or similar input coded in other ways). What pro-
perties (e.g., connectivity) are decidable? (Remark. See, for example, Ly [2000].)

4. Which of the commonly used statistical tests fail to distinguish automatic
sequences from truly random sequences? Which succeed?

5.10 Notes on Chapter 5

5.1 The origins of automatic sequences can be found in a paper of Büchi [1960],
who attempted to prove (in modern language) that the set of powers of an integer
n ≥ 2 is k-automatic if and only if n and k are multiplicatively dependent. (This
is a special case of Cobham’s theorem, discussed in Chapter 11.) However,
Büchi’s proof was flawed; see McNaughton [1963]. Ritchie [1963] proved that
the characteristic sequence of the integer squares is not a 2-automatic sequence.
Minsky and Papert [1966] studied the characteristic sequence of the primes and
showed it was not 2-automatic; also see Allen [1968]; Schützenberger [1968];
Hartmanis and Shank [1968, 1969].
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Cobham [1972] was the first to systematically study k-automatic sequences.
He called them “uniform tag sequences”, in analogy with Post’s process of
tag; see Post [1965, §3]. Eilenberg [1974] also studied k-automatic sequences,
but called them “k-recognizable sequences”, terminology that still persists in
some circles today.

The first occurrence of the term “automatic sequence” (in French) appears
to be in a paper of Deshouillers [1979, pp. 5–21]; also see the thèse d’état of
Allouche [1983] and Mendès France [1984b]. The review journals Mathemat-
ical Reviews and Zentralblatt für Mathematik have assigned the classification
11B85 to “automata sequences”.

For more information on multigrades, see, for example, Lehmer [1947];
Wright [1948]; Roberts [1958]; Wright [1959]; Rokicki and Knuth [1987];
Borwein and Ingalls [1994].

For the unusual infinite products involving
√

2, and some generalizations, see
Woods [1978]; Shallit [1985]; Allouche and Cohen [1985]; Allouche, Cohen,
Mendès France, and Shallit [1987].

Generalizations of automatic sequences can be found, for example, in Shallit
[1988a], Rigo [2000, 2001, 2002], and Lecomte and Rigo [2001].

For the Baum–Sweet sequence, see Baum and Sweet [1976].
For more details about the examples in this section, see, for example, the

survey paper of Allouche [1987].
5.2 Theorem 5.2.7 (and much more) is proved in a different way in Allouche,

Cateland, Gilbert, Peitgen, Shallit, and Skordev [1997].
5.3 Example 5.3.3 is from Allouche, Cateland, Gilbert, Peitgen, Shallit, and

Skordev [1997].
5.4 Theorem 5.4.1 is from Cobham [1972, p. 174]. Theorem 5.4.2 is due to Büchi

[1960, p. 88]. Theorem 5.4.4 is from Cobham [1972, p. 177].
5.5 Example 5.5.1, the fact that the squares do not form a 2-automatic set, is due

to Ritchie [1963].
5.6 The study of k-automatic sets originated with Büchi [1960], Ritchie [1963],

and Minsky and Papert [1966], who called them “recognizable” or “regular”.
Cobham called such sets “n-regular” [1968b] and “n-recognizable” [1969].
This last term was also used by Eilenberg [1974].

5.7 See, for example, Bruyère, Hansel, Michaux, and Villemaire [1994].
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Uniform Morphisms and Automatic Sequences

In this chapter we begin our study of the properties of fixed points of morphisms,
focusing on the case where the morphism is k-uniform for some integer k ≥ 2.
A fundamental idea is the k-kernel, introduced in Section 6.6. We also study the
closure properties of k-automatic sequences.

6.1 Fixed Points of Uniform Morphisms

Recall from Chapter 1 that a morphism is a map ϕ from �∗ to �∗ satisfying
ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ �∗. In this chapter, unless otherwise indicated, we
suppose that � = �, and that there exists an integer k ≥ 2 such that |ϕ(a)| = k for
all a ∈ �. In other words, ϕ is k-uniform.

If there exists a letter a such that ϕ(a) = ax for some x ∈ �∗ with |x | = k − 1,
then ϕ is prolongable on a. In this case, the infinite word

w = ϕω(a) := a x ϕ(x)ϕ2(x)ϕ3(x) · · ·
is the unique infinite fixed point of ϕ starting with a. As we will see below, the
infinite sequences that are images (under a coding) of an infinite fixed point of a
k-uniform morphism are precisely the k-automatic sequences.

6.2 The Thue–Morse Infinite Word

As an example, let us recall the Thue–Morse infinite word t = t0t1t2 · · · introduced
in Chapter 1. This word was defined by ti = s2(i)mod2, where s2 is the base-2
sum-of-digits function.

However, there are many other ways to define t. For example, the relations t0 = 0,
t2n = tn , and t2n+1 = 1 − tn , noted in Chapter 1, suffice to define t.

As we saw in Section 5.1, t is a 2-automatic sequence, and can be generated
by the 2-DFAO in Figure 6.1. As we saw in Section 1.7, the Thue–Morse word t
can also be generated as the fixed point of a morphism. Consider the 2-uniform
morphismµ defined byµ(0) = 01 andµ(1) = 10. Thenµ is prolongable on both

173



174 Uniform Morphisms and Automatic Sequences

Figure 6.1: Automaton Generating the Thue–Morse Sequence.

0 and 1. We find

µω(0) = t = 01101001 · · · ,
µω(1) = t = 10010110 · · · .

Yet another definition is as follows. Set X0 = 0, and for i ≥ 0 define Xi+1 =
Xi Xi , where w is a coding that sends 0 → 1 and 1 → 0. We find X1 = 01, X2 =
0110, and limn→∞ Xn = t.

Finally, here is a somewhat mysterious way to generate t. As we saw in Sec-
tion 5.1, we have

∏

i≥0

(
2i + 1

2i + 2

)(−1)ti

=
√

2

2
.

Consider trying to determine the ti iteratively, through the greedy algorithm. More
precisely, set u0 = 0, and for i ≥ 0 set

ui+1 =





0 if
∏

0≤ j≤i

(
2i+1
2i+2

)(−1)ui

>
√

2
2 ,

1 otherwise.

Then ui = ti for all i ≥ 0. We leave the proof to the reader as Exercise 6.

6.3 Cobham’s Theorem

In this section, we prove a basic result about fixed points of k-uniform morphisms,
known as Cobham’s theorem. First, we prove a lemma.

Lemma 6.3.1 Suppose that w = a0a1a2 · · · is an infinite word with w = ϕ(w) for
some k-uniform morphism ϕ. Then ϕ(ai ) = aki aki+1aki+2 · · · aki+k−1.

Proof. Since w = ϕ(w), we have

ϕ(a0a1 · · · ai ) = a0a1 · · · aki+k−1.

Now

ϕ(a0a1 · · · ai−1)ϕ(ai ) = (a0 · · · aki−1)(aki aki+1 · · · aki+k−1),
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so we get

ϕ(ai ) = aki aki+1 · · · aki+k−1. �

We are now ready to prove a beautiful description of k-automatic sequences in
terms of k-uniform morphisms.

Theorem 6.3.2 (Cobham) Let k ≥ 2. Then a sequence u = (un)n≥0 is k-automatic
if and only if it is the image, under a coding, of a fixed point of a k-uniform morphism.

Proof. ⇐=: Suppose u is the image of a fixed point of a k-uniform morphism.
More precisely, suppose u = τ (w) for a coding τ : � → �′, and w = ϕ(w) for a k-
uniform morphism ϕ : �∗ → �∗. Write w = w0w1w2 · · · where eachwi ∈ �, and
let q0 := w0. Now define a k-DFAO M = (�,�k, δ, q0,�

′, τ ) where δ(q, b) :=
the bth letter of ϕ(q).

We now claim that wn = δ(q0, (n)k) for all n ≥ 0. We prove this by induction on
n. Clearly the result is true for n = 0. Assume for all i < n; we prove it for n. Let
(n)k = n1n2 · · · nt where n = kn′ + nt , 0 ≤ nt < k. Then

δ(q0, (n)k) = δ(q0, n1n2 · · · nt )

= δ(δ(q0, n1n2 · · · nt−1), nt )

= δ(δ(q0, (n′)k), nt )

= δ(wn′, nt ) (definition of ϕ)

= the nt ’th symbol of ϕ(wn′)

= wkn′+nt (by Lemma 6.3.1)

= wn.

It follows that, if u = (un)n≥0, that

un = τ (wn) = τ (δ(q0, (n)k)).

=⇒: If (un)n≥0 is k-automatic, then it is generated by a k-DFAO (Q, �k,

δ, q0,�, τ ). By Theorem 5.2.1 we may assume without loss of generality that
δ(q0, 0) = q0. Now define the morphism ϕ as follows:

ϕ(q) := δ(q, 0)δ(q, 1) · · · δ(q, k − 1)

for each q ∈ Q.
Let w = w0w1w2 · · · be the fixed point, starting with q0, of ϕ. (It exists because

δ(q0, 0) = q0.) We now claim that δ(q0, y) = w[y]k for all y ∈ �∗.
We prove this by induction on |y|. When |y| = 0 we have δ(q0, ε) = q0 = w0.

Now assume the induction hypothesis is true for all |y| < i ; we prove it when
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|y| = i . Write y = xa, a ∈ �k . Then

δ(q0, y) = δ(q0, xa) = δ(δ(q0, x), a)

= δ(w[x]k , a) (by induction)

= ϕ(w[x]k )a (definition of ϕ)

= wk[x]k+a (by Lemma 6.3.1)

= w[xa]k

= w[y]k .

Hence,

un = τ (δ(q0, (n)k))

= τ (wn),

and so (un)n≥0 is the image (under τ ) of the fixed point of ϕ. �

Example 6.3.3 Consider the Baum–Sweet sequence b = (bn)n≥0, which is defined
in Example 5.1.7. A DFAO generating this sequence was given in Figure 5.8. From
this we deduce that b = τ (hω(A)), where

h(A) = AB, τ (A) = 1,

h(B) = CB, τ (B) = 1,

h(C) = BD, τ (C) = 0,

h(D) = DD, τ (D) = 0.

Example 6.3.4 Consider the period-doubling sequence d = (dn)n≥0 =
0100010101000100 · · · . This sequence is defined by dn := ν2(n + 1)mod2,
where the function ν2, introduced in Section 2.1, is the exponent of the high-
est power of 2 dividing its argument. Alternatively, we have d = hω(0), where
h(0) = 01 and h(1) = 00. A DFAO generating this sequence is given in Fig-
ure 6.2. For more discussion, see Chapter 17.

If u = τ (ϕω(a)) for some k-uniform morphism ϕ : �∗ → �∗ that is prolongable
on a and some coding τ , then ϕω(a) is sometimes called an interior sequence of

Figure 6.2: DFAO for the Period-Doubling Sequence.
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u. If Depth ϕ = |�| is as small as possible, then ϕω(a) is called a minimal interior
sequence.

Theorem 6.3.5 The minimal interior sequence is unique, up to renaming of the
symbols.

Proof. Left to the reader as Exercise 11. �

6.4 The Tower of Hanoi and Iterated Morphisms

In this section, we give an detailed example of Cobham’s theorem relating automatic
sequences to fixed points of morphisms.

The tower of Hanoi puzzle consists of three numbered pegs and N disks. Initially,
the disks, which have radii 1, 2, . . . , N , are all placed on peg 1 in decreasing order
of size, so that the smallest disk is on top, and the largest disk is at the bottom. See
Figure 6.3.

A move of the puzzle consists of taking the top disk off one peg and moving it to
another. A move is called legal if it does not involve covering a smaller disk with

Figure 6.3: The tower of Hanoi puzzle: reprinted with permission from Ed. Lucas,
Récréations Mathématiques, Editions Albert Blanchard, Paris.
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a larger one. The object of the puzzle is to transfer all of the disks from peg 1 to
one of the other two pegs, using only legal moves. We are most interested in the
optimal solutions to the puzzle; that is, solutions for N disks that use the smallest
number of legal moves.

At each step there are at most six possible moves: moving a disk from peg 1 to
peg 2, from peg 2 to peg 3, and from peg 3 to peg 1; and their inverses. (Of course,
not all of these may be legal at any given time.) We code these moves using the
letters a,b,c and a,b,c respectively.

Thus, for example, we can transfer 3 disks from peg 1 to peg 2 using the following
sequence of moves:

a c b a c b a.

This sequence is optimal – no shorter sequence of legal moves will work. Actually,
it is easy to construct an optimal solution for any number of disks; we discuss this
further below.

We now describe the classical solution to the puzzle, which has the virtue of
being optimal. To move N disks from peg 1 to peg 2, say, first move N − 1 disks
(recursively) from peg 1 to peg 3, using peg 2 as intermediate storage. Once this is
completed, move disk N from peg 1 to peg 2, and then finally move the N − 1 disks
on peg 3 to peg 2 (recursively), using peg 1 as intermediate storage. Letting TN be
the number of moves in this solution, we see that T1 = 1, and TN = 2TN−1 + 1. By
induction, one can easily prove that TN = 2N − 1.

That the classical solution is indeed optimal is not hard to see: to transfer N
disks from one peg to another, we must at some point move disk N at least once.
In order to move disk N , it must be alone on its peg, and some other peg must be
empty; hence the remaining peg must contain the N − 1 smaller disks. Hence no
algorithm can do better than to (i) move the first N − 1 disks to the same peg, using
the optimal strategy, (ii) move disk N , and (iii) move the N − 1 disks again, using
the optimal strategy, and covering disk N . Hence, if T ′(N ) denotes the total number
of moves used by the optimal strategy to transfer N disks, we see that T ′(N ) ≥
1 + 2T ′(N − 1). Since T ′(1) = 1, we see that T ′(N ) ≥ 2N − 1, as desired.

We now define a coding σ on the alphabet {a,b,c,a,b,c} as follows:

σ (a) = b, σ (a) = b,

σ (b) = c, σ (b) = c,

σ (c) = a, σ (c) = a.

This particular morphism has the following interpretation in terms of the tower of
Hanoi puzzle: if a string x has the effect of moving some disks from peg 1 to peg 2,
using peg 3 as intermediate storage, then σ (x) moves the same configuration of
disks from peg 2 to peg 3, using peg 1 as intermediate storage.
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We define the coding σ−1 as the inverse of σ , namely:

σ−1(a) = c, σ−1(a) = c,

σ−1(b) = a, σ−1(b) = a,

σ−1(c) = b, σ−1(c) = b.

As we have seen above, for each integer N ≥ 0, there exists a sequence of 2N − 1
moves that constitutes an optimal solution to the tower of Hanoi puzzle with N disks.
Actually, there are two different solutions: one that results in the disks ending up
on peg 2, and another that leaves all the disks on peg 3.

As above, we can code these solutions as strings of symbols, where each symbol
represents a move. In what follows, we only consider the solution to the puzzle that
takes the disks from peg 1 to peg 2 if N , the number of disks, is odd, and from peg 1
to peg 3 if N is even. This choice might at first seem unnatural, but its advantage is
that the sequence of moves for N + 1 disks begins with the sequence of moves for
N disks. Hence there is an infinite string

H = h0h1h2 · · · = a c b a c b a c b a c b a c b · · ·

that codes the solution to the puzzle for N = 1, 2, 3, . . . disks. Another interpreta-
tion is that H solves the puzzle for an infinite number of disks.

The infinite string H can be described as the limit of the sequence of strings
(Hi )i≥0, where each Hi is a string of length 2i − 1 that gives the solution to the
puzzle for i disks. We can obtain a recursive formula for the Hi using the description
of the optimal solution obtained previously:

Proposition 6.4.1 We have H0 = ε, the empty string, and

H2N+1 = H2N a σ−1(H2N ) for N ≥ 0, (6.1)

H2N = H2N−1 c σ (H2N−1) for N ≥ 1. (6.2)

For example, Eq. (6.2) says in order to solve the puzzle for 2N disks, first move
2N − 1 disks from peg 1 to peg 2. Then, using the move c, move the 2N th disk
from peg 1 to peg 3. Finally, move 2N − 1 disks from peg 2 to peg 3; note this is
accomplished using the morphism σ .

Using these recursion formulas, we get, for example,

H1 = a,

H2 = a c b,

H3 = a c b a c b a,

H4 = a c b a c b a c b a c b a c b.
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We now observe that we can describe the Hanoi sequence H as the fixed point
of a certain 2-uniform morphism ϕ, defined below:

ϕ(a) = ac, ϕ(a) = ac,

ϕ(b) = cb, ϕ(b) = cb,

ϕ(c) = ba, ϕ(c) = ba.

First, we prove a lemma:

Lemma 6.4.2 Let � = {a,b,c,a,b,c}. Then for w ∈ �∗, we have

ϕ(σ (w)) = σ−1(ϕ(w)), (6.3)

ϕ(σ−1(w)) = σ (ϕ(w)). (6.4)

Proof. It suffices to verify the two equations for each letter in �. �

We now prove the following:

Lemma 6.4.3 For all i ≥ 0, we have

ϕ(H2i ) a = H2i+1,

ϕ(H2i+1) b = H2i+2.

Proof. By induction on i . The assertions are easily verified for i = 0. Then for all
i > 0,

ϕ(H2i ) a = ϕ(H2i−1 c σ (H2i−1)) a (by (6.2))

= ϕ(H2i−1) ba ϕ(σ (H2i−1)) a

= ϕ(H2i−1) b a σ−1(ϕ(H2i−1) b) (by (6.3))

= H2i a σ−1(H2i ) (by induction)

= H2i+1 (by (6.1)).

Similarly,

ϕ(H2i+1) b = ϕ(H2i a σ−1(H2i )) b (by (6.1))

= ϕ(H2i ) ac ϕ(σ−1(H2i )) b

= ϕ(H2i ) a c σ (ϕ(H2i ) a) (by (6.4))

= H2i+1 c σ (H2i+1) (by above)

= H2i+2 (by (6.2)).

This completes the proof of Lemma 6.4.3. �
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Figure 6.4: The Tower of Hanoi Automaton.

As a corollary, we have

Corollary 6.4.4 The tower of Hanoi sequence H is a fixed point of the map ϕ; i.e.,
H = ϕ(H).

Proof. It suffices to give an infinite sequence of prefixes of H that are mapped by ϕ
into longer prefixes of H. But this follows from Lemma 6.4.3, for we see that ϕ(H2i )
is a prefix of length 22i+1 − 2 of H2i+1, hence a prefix of H. A similar statement
holds for ϕ(H2i+1). �

Of course, by Theorem 6.3.2 it follows that that iterating ϕ starting with the letter
a also produces the infinite sequence H. For more details, see Exercise 37. Thus,
for example, we have that

ϕ(a) = a c = H1 c,

ϕ2(a) = a c b a = H2 a,

ϕ3(a) = a c b a c b a c = H3 c,

ϕ4(a) = a c b a c b a c b a c b a c b a = H4 a.

Theorem 6.3.2 also tells us that the nth term of the sequence H can be computed
by the 2-DFAO with six states that is shown in Figure 6.4. The input is (n)2, and
the output is the name of the state.

6.5 Paperfolding and Continued Fractions

In this section we discuss paperfolding sequences, and give a remarkable connection
with continued fractions.

Recall that in Example 5.1.6 we introduced the notion of iterated paperfolding.
In that example, we always folded in such a way to introduce a hill. But in folding
n times, we can actually choose our fold to introduce a hill or a valley at each step.
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If we denote a hill by +1 and a valley by −1, then we have the following:

Observation 6.5.1 Let the folding map Fa : {1,−1}∗ → {1,−1}∗ be defined as
follows: Fa(w) = Concat(w, a,−wR). (Note that Fa is not a morphism, and that
by −x for a word x ∈ {+1,−1}∗ we mean the word obtained by negating each
symbol in x.) Then if we fold a piece of paper successively with folding instructions
a1, a2, . . . , an, we get the pattern of folds

Fa1 (Fa2 (· · · (Fan (ε)) · · · ))

upon unfolding.

Proof. By induction on n. Clearly the result is true for n = 1, since Fa1 (ε) = a1.
Assume the result is true for n = m − 1; we wish to prove it for n = m. Fold the
paper once with instruction a1, but pretend it has not been folded. Next fold the
folded paper m − 1 times with instructions a2, a3, . . . , am . Finally, unfold it up to,
but not including, the first fold. By induction the sequence of folds one sees is

w = Fa2 (Fa3 (· · · (Fan (ε)) · · · )).

Now unfold the last fold, corresponding to instruction a1. The new sequence of
folds is w, followed by a1, followed by −wR , which is simply Fa1 (w). �

We denote Fa1 (Fa2 (· · · (Fan (ε)) · · · )) by Fold(an, an−1, . . . , a1), and call the se-
quence

an, an−1, . . . , a1

the unfolding instructions.
Now we would like to fold an infinite number of times. In this case, we can

specify an infinite sequence b0, b1, b2, · · · of unfolding instructions. The resulting
sequence of folds is then given by

Fold(b0, b1, b2, . . . ).

For example, the regular paperfolding sequence is

R := (Ri )i≥1 = Fold(1, 1, 1, . . . ) = Concat(1, 1,−1, 1, 1,−1,−1, . . . ).

Our first theorem characterizes the terms of an infinite folding.

Theorem 6.5.2 Let ( fi )i≥1 = Fold(b0, b1, b2, . . . ). Let n = 2k(2 j + 1) for some
integers j, k ≥ 0. Then fn = (−1) j bk .

Proof. By induction on n. Clearly the result is true for n = 1, since then k = j = 0
and f1 = b0. Now assume the result is true for all n < 2m ; we prove it for 2m ≤
n < 2m+1. If n = 2m , then from the definition of the folding map it is easy to see
that fn = bm . Otherwise 2m < n < 2m+1. In this case, by the folding map it is clear
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that fn = − f2m+1−n . If n = 2k(2 j + 1), then 2m+1 − n = 2k(2 j ′ + 1), where j ′ =
2m−k − j − 1. Now 2m+1 − n < n, so by induction we have f2m+1−n = (−1) j ′bk .
But k < m, so j ′ ≡ j + 1 (mod 2). Hence fn = (−1) j bk , as desired. �

This theorem explains the DFAO in Figure 5.7: for the regular paperfolding
sequence (Ri )i≥1, we have Ri = 1 if and only if the base-2 representation of i is
10 j or ends in 010 j for some j ≥ 0.

As a consequence, we can prove

Theorem 6.5.3 No paperfolding sequence ( fi )i≥1 is ultimately periodic.

Proof. Suppose ( fi )i≥1 is ultimately periodic. Then there exist integers m, N such
that fn = fm+n for all n ≥ N . Let m = 2a(2b + 1). Define the sequence (ni )i≥1 by
ni = 2a+1(2i + 1). Then ( fni )i≥1 is purely periodic of period 2 by Theorem 6.5.2.
But

m + ni = 2a(2b + 1) + 2a+1(2i + 1) = 2a(2(b + 2i + 1) + 1),

so ( fm+ni )i≥1 is purely periodic of period 1 by Theorem 6.5.2, a contradiction. �

Another consequence is the following:

Theorem 6.5.4 The paperfolding sequence ( fi )i≥1 = Fold(b0, b1, b2, . . . ) is 2-
automatic if and only if the sequence (bi )i≥0 is ultimately periodic.

Proof. =⇒: By Theorem 6.5.2, we know that f2i = bi . But, by Corollary 5.5.3, if
( fi )i≥1 is automatic, then f2i is ultimately periodic.

⇐=: By Theorem 6.5.2, if n = 2 j (2k + 1), then fn = (−1)kb j . Suppose the
sequence (b j ) j≥0 is ultimately periodic. Then it is easy to construct an automaton
that on input n determines b j and the parity of k, and hence fn . �

Now we explain a surprising connection between paperfolding and certain con-
tinued fraction expansions of formal power series. We start with the following
lemma, known as the folding lemma.

Lemma 6.5.5 Suppose pn/qn = [c0, c1, c2, . . . , cn], and let w represent the word
c1, c2, . . . , cn. Then

[c0, w, t, −wR] = pn

qn
+ (−1)n

tq2
n

.

Proof. By Eq. (2.6) we have
[

c0 1
1 0

] [
c1 1
1 0

]

· · ·
[

cn 1
1 0

]

=
[

pn pn−1

qn qn−1

]

.
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Similarly, it is easily proved by induction that
[−c0 1

1 0

] [−c1 1
1 0

]

· · ·
[−cn 1

1 0

]

=
[

(−1)n+1 pn (−1)n pn−1

(−1)nqn (−1)n−1qn−1

]

. (6.5)

Now take the transpose of both sides of Eq. (6.5); we get
[−cn 1

1 0

] [−cn−1 1
1 0

]

· · ·
[−c0 1

1 0

]

=
[

(−1)n+1 pn (−1)nqn

(−1)n pn−1 (−1)n−1qn−1

]

. (6.6)

Now multiply Eq. (6.6) on the right by
[−c0 1

1 0

]−1

=
[

0 1
1 c0

]

to get
[−cn 1

1 0

] [−cn−1 1
1 0

]

· · ·
[−c1 1

1 0

]

=
[

(−1)nqn ∗
(−1)n−1qn−1 ∗

]

, (6.7)

where the asterisks represent entries that do not concern us. Hence we find
[

c0 1
1 0

] [
c1 1
1 0

]

· · ·
[

cn 1
1 0

] [
t 1
1 0

] [−cn 1
1 0

] [−cn−1 1
1 0

]

· · ·
[−c1 1

1 0

]

=
[

pn pn−1

qn qn−1

] [
t 1
1 0

] [
(−1)nqn ∗

(−1)n−1qn−1 ∗
]

=
[

(tpn + pn−1)(−1)nqn + (−1)n−1 pnqn−1 ∗
(tqn + qn−1)(−1)nqn + (−1)n−1qnqn−1 ∗

]

.

It follows that

[c0, c1, . . . , cn, t,−cn,−cn−1, . . . ,−c1] = (−1)n(tpnqn + pn−1qn − pnqn−1)

(−1)n(tq2
n + qn−1qn − qnqn−1)

= tpnqn + (−1)n

tq2
n

= pn

qn
+ (−1)n

tq2
n

,

where we have used Theorem 2.4.2. �

Theorem 6.5.6 Let (ei )i≥0 be an infinite sequence of ±1’s, with e0 = 1. Let f (X )
be the formal power series X

∑
i≥0 ei X−2i

. Then the continued fraction expansion
of f is given by [1,Fold(e1 X,−e2 X,−e3 X,−e4 X, . . . )].

Proof. It suffices to prove that

X
∑

0≤i≤n

ei X−2i = [1,Fold(e1 X,−e2 X,−e3 X, . . . ,−en X )].

This is easily established by induction on n, using the folding lemma. �
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Example 6.5.7 Take ei = 1 for all i ≥ 0. Then we have

1 + X−1 + X−3 + X−7 + X−15 + · · ·
= [1, X, −X, −X, −X, X, X, −X, −X, X, −X, −X, X,

X, X,−X, . . .]. (6.8)

6.6 The k-Kernel

Let u = (un)n≥0 be an infinite sequence. We define the k-kernel of u to be the set
of subsequences

Kk(u) = {(uki · n+ j )n≥0 : i ≥ 0 and 0 ≤ j < ki }.

Example 6.6.1 Let t = (tn)n≥0 be the Thue–Morse sequence. The 2-kernel consists
of two sequences: t and t, since we have t2n = tn and t2n+1 = (tn + 1)mod2.

Theorem 6.6.2 Let k ≥ 2. The sequence u = (un)n≥0 is k-automatic if and only if
Kk(u) is finite.

Proof. =⇒: By Theorem 5.2.3 it follows that there exists a k-DFAO (Q, �k,

δ, q0,�, τ ) such that

un = τ (δ(q0, (n)R
k 0t )) ∀t ≥ 0.

Now let q = δ(q0, w
R) where |w| = i and [w]k = j . Since

(ki · n + j)k = (n)kw

except possibly when n = 0, it follows that, for n > 0,

δ(q0, (ki · n + j)R
k ) = δ(δ(q0, w

R), (n)R
k )

= δ(q, (n)R
k ).

In the case when n = 0 we have

(ki · n + j)k = ( j)k,

and w = 0t ( j)k for some t ≥ 0. Then

δ(q0, (ki · n + j)R
k ) = δ(q0, ( j)R

k )

= δ(q0, ( j)R
k 0t )

= δ(q0, w
R)

= q

= δ(q, (0)R
k ).

It follows that the subsequence (uki · n+ j )n≥0 is generated by the k-DFAO (Q, �k,

δ, q,�, τ ). Since there are only finitely many choices for q, the finiteness of Kk(u)
follows.
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⇐=: Suppose that Kk(u) is finite. Then �∗
k is partitioned into a finite number of

disjoint equivalence classes under the equivalence relation

w ≡ x if and only if uk|w| · n+[w]k = uk|x | · n+[x]k

for all n ≥ 0.
Make a k-DFAO as follows:

Q = {[x] : x ∈ �∗
k },

δ([x], a) = [ax],

τ ([w]) = u[w]k ,

q0 = [ε],

where [x] is the equivalence class containing x . We need to see that this definition
is meaningful, i.e., if [x] = [w], then δ([x], a) = δ([w], a) and τ ([x]) = τ ([w]).
For the first, we need to see that [ax] = [aw]. Now if [x] = [w] then

uk|w| · n+[w]k = uk|x | · n+[x]k ∀n ≥ 0.

Now upon setting n = km + a it follows that

uk|aw| · m+[aw]k = uk|ax | · m+[ax]k ∀m ≥ 0.

For the second assertion we need to see that if

uk|w| · n+[w]k = uk|x | · n+[x]k

then

u[w]k = u[x]k .

To do this, set n = 0. We now claim that τ (δ(q0, w
R)) = u[w]k for all w ∈ �∗

k . First
we show that δ(q0, w

R) = [w]. This is an easy induction on |w|, and is omitted. By
definition of τ the result now follows. �

Example 6.6.3 Let’s compute the 2-kernel for the Rudin–Shapiro sequence r =
(r (n))n≥0. Since r (n) is +1 or −1 according to whether the number of occurrences
of 11 in (n)2 is even or odd, we clearly have

r (2n) = r (n),

r (4n + 1) = r (n),

r (8n + 7) = r (2n + 1),

r (16n + 3) = r (8n + 3),

r (16n + 11) = r (4n + 3).

It follows that

K2(r) = {(r (n))n≥0, (r (2n + 1))n≥0, (r (4n + 3))n≥0, (r (8n + 3))n≥0}.
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Theorem 6.6.4 For all m ≥ 1, a sequence a = (ai )i≥0 is k-automatic if and only
if it is km-automatic.

Proof. =⇒: We know from Theorem 6.3.2 that if a is k-automatic, it can be ex-
pressed as the image (under a coding τ ) of the fixed point of a k-uniform morphism
ϕ. Thus

a0a1a2 · · · = τ (ϕ∞(a))

for some letter a. Defining γ = ϕm , we easily see that

a0a1a2 · · · = τ (γ∞(a)).

Hence (ai )i≥0 is km-automatic.
⇐=: If a is km-automatic, then by Lemma 5.2.6, each of the fibers

Ik(a, d) = {(n)km : an = d}
is regular. Now consider the morphism defined by β( j) = w for all integers j ,
0 ≤ j < km , where |w| = m and [w]k = j . Then by Corollary 4.3.7,β(Id) is regular
for all d . But

(
(β(Id))R /0∗)R ∩Ck = {(n)k : an = d},

and so (ai )i≥0 is k-automatic. �

6.7 Cobham’s Theorem for (k, l)-Numeration Systems

In Section 6.3 we proved Cobham’s theorem relating k-automatic sequences and
the images of fixed points of k-uniform morphisms. In this section we show how
to do the same thing for (k, l)-morphisms, which upon iteration generate two-sided
infinite sequences. If k, l ≥ 1 are integers, then a (k, l)-morphism is a uniform
morphism h for which there exists a letter a such that h(a) = wax , for some strings
w, x such that |w| = k and |x | = l. In this case, anticipating a notion discussed more
fully in Section 7.4, we define

←→
hω (a) := · · · h2(w) h(w)w.a x h(x) h2(x) · · · ,

a two-sided infinite word.

Example 6.7.1 Consider the map defined by

h(0) = 201,

h(1) = 012,

h(2) = 120.



188 Uniform Morphisms and Automatic Sequences

Figure 6.5: A (1, 1)-Automaton for
←→
hω (0).

Then
←→
hω (0) = · · · a−3a−2a−1.a0a1a2a3 · · ·

= · · ·0121202011202.01012201012120, · · · .
Furthermore, this sequence is (1, 1)-automatic, since it is generated by the (1, 1)-
automaton in Figure 6.5.

From this it is easy to see that the fixed point

· · · a−3a−2a−1.a0a1a2a3 · · · = · · ·202.0101 · · ·
counts, modulo 3, the sum of digits in the balanced ternary representation of n.

More generally we have

Theorem 6.7.2 Let · · · a−3a−2a−1.a0a1a2 · · · be a two-sided infinite sequence with
values in a finite set �′. Then · · · a−3a−2a−1.a0a1a2 · · · is (k, l)-automatic if and
only if it can be expressed as the image, under a coding τ : � → �′, of

←→
hω (a)

where h : �∗ → �∗ is a (k, l)-morphism.

Proof. Suppose that · · · a−3a−2a−1.a0a1a2 · · · is (k, l)-automatic, generated by
the DFAO M = (Q, �, δ, q0,�

′, τ ), where� = {−k, 1 − k, . . . ,−1, 0, 1, . . . , l}.
Furthermore assume that M reads its input starting with the most significant digit,
and that it tolerates leading zeros. (By that we mean δ(q0, 0) = q0.) Then define

h(q) = δ(q,−k)δ(q,−(k − 1)) · · · δ(q, 0) · · · δ(q, l)

for all q ∈ Q. It is now easy to see that · · · a−3a−2a−1.a0a1a2 · · · is the image (under
the coding τ ) of

←→
hω (q0.)
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For the converse, assume that · · · a−3a−2a−1.a0a1a2 · · · is the image, under the
coding τ : � → �′, of

←→
hω (a), where h : �∗ → �∗ such that h(a) = wax , |w| =

k, |x | = l. Then define M = (�,�, δ, q0,�
′, τ ) by setting� = {−k, . . . , l}, q0 =

a, and letting δ(q, i) = the (i + k)th symbol of h(q). The result now follows. �

6.8 Basic Closure Properties

In this section we explore some of the basic kinds of modifications to automatic
sequences that result in automatic sequences, in other words, closure properties.

Our first theorem shows that certain subsequences of k-automatic sequences are
still k-automatic.

Theorem 6.8.1 Let u = (u(n))n≥0 be a k-automatic sequence. Then for all integers
a, b ≥ 0, the subsequence (u(an + b))n≥0 is also k-automatic.

Proof. If a = 0 then u(an + b) = u(b), so the sequence (u(an + b))n≥0 is constant
and hence trivially k-automatic. Now assume a ≥ 1. We use the characterization in
terms of the k-kernel. Since u = (u(n))n≥0 is k-automatic, it has a finite k-kernel,
say

Kk(u) = {(u1(n))n≥0, (u2(n))n≥0, . . . , (ur (n))n≥0}.
Now consider the set of r (a + b) sequences

S = {(ui (an + c))n≥0 : 1 ≤ i ≤ r, 0 ≤ c < a + b}.
We claim that each element of the k-kernel of v = (v(n))n≥0 is in S, where v(n) :=
u(an + b). To see this, consider (v(ke · n + j))n≥0 where 0 ≤ j < ke and e ≥ 0.
Using the division algorithm, write

ja + b = d · ke + f, 0 ≤ f < ke, 0 ≤ d < a + b.

Then, for all n ≥ 0, we have

v(ke · n + j) = u(a(ke · n + j) + b)

= u(ke(an + d) + f ).

Now

(u(ke · m + f ))m≥0 = (ui (m))m≥0

for some i , 1 ≤ i ≤ r , so (putting m = an + d) we get

(u(ke(an + d) + f ))n≥0 = (ui (an + d))n≥0

and hence

(v(ke · n + j))n≥0 = (ui (an + d))n≥0.
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Thus

(v(ke · n + j))n≥0 ∈ S

and so Kk(v) ⊆ S. Thus Kk(v) is finite, and the result follows. �

The next theorem is a kind of converse to Theorem 6.8.1. Roughly speaking, it
says that the a-way merge, for an integer a ≥ 1, of k-automatic sequences is still
k-automatic.

Theorem 6.8.2 Let a > 0 be an integer, and let (u(n))n≥0 be a sequence taking
values in � such that (u(an + i))n≥0 is k-automatic for 0 ≤ i < a. Then (u(n))n≥0

is itself k-automatic.

Proof. Define ti (n) = u(an + i) for 0 ≤ i < a, n ≥ 0. It then follows from
Lemma 5.2.6 that each of the fibers

{(n)k : ti (n) = d}
is regular for all d ∈ �, 0 ≤ i < a. Then using Lemmas 4.3.9 and 4.3.11 with
Corollary 4.3.10 it follows that

Xi,d = {(an + i)k : ti (n) = d}
= {(an + i)k : u(an + i) = d}

is a regular language for all d ∈ �, 0 ≤ i < a. Now define, for each d ∈ �,

yd =
⋃

0≤i<a

Xi,d .

Since yd is a union of regular languages, it is itself a regular language, and yd =
{(n)k : u(n) = d}. Thus by Lemma 5.2.6, (u(n))n≥0 is a k-automatic sequence. �

As a consequence we get the following corollary:

Corollary 6.8.3 Let u = (u(n))n≥0 be a k-automatic sequence, and let h be an
a-uniform morphism for some a ≥ 1. Then h(u) is also k-automatic.

Proof. It is easy to see that h(u) is the a-way merge of sequences obtained by
applying a coding to u. Each of these sequences is automatic, by Theorem 5.4.3.
The result now follows by Theorem 6.8.2. �

The next theorem shows that the class of k-automatic sequences is closed under
right shifts.
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Theorem 6.8.4 Let u = (u(n))n≥0 be a k-automatic sequence. Then so is v =
(v(n))n≥0, where

v(n) =
{

u(n − 1) if n ≥ 1,

a if n = 0.

Proof. Let Kk(u) = {(u1(n))n≥0, (u2(n))n≥0, . . . , (ur (n))n≥0} be the k-kernel. Then
for 1 ≤ i ≤ r define

vi (n) =
{

ui (n − 1) if n ≥ 1,

a if n = 0.

Then we claim that

Kk(v) ⊆ {(u1(n))n≥0, . . . (ur (n))n≥0, (v1(n))n≥0, (v2(n))n≥0, . . . , (vr (n))n≥0}.
To see this, consider the subsequences

(v(ke · n + j))n≥0, k ≥ 0, 0 ≤ j < ke.

If j ≥ 1, then

v(ke · n + j) = u(ke · n + j − 1) for all n ≥ 0.

But u(ke · n + j − 1) = ui (n) for some i , 1 ≤ i ≤ r . Hence v(ke · n + j) = ui (n).
If j = 0, then we observe that, for some i , 1 ≤ i ≤ r we have

u(ke · n + ke − 1) = ui (n)

for all n ≥ 0 and hence

u(ke · n − 1) = ui (n − 1)

for all n ≥ 1. Thus

v(ke · n) =
{

u(ke · n − 1) if n ≥ 1,

a if n = 0

=
{

ui (n − 1) if n ≥ 1,

a if n = 0

= vi (n). �

Corollary 6.8.5 Let u be a k-automatic sequence. Then so is the shifted sequence
S i (u), for any integer i ∈ Z.

Proof. For i ≥ 0, we use Theorem 6.8.1. For i < 0, we apply Theorem 6.8.4 i
times. �
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Finally, we show that if (an)n≥0 is k-automatic and generated by a k-DFAO M ,
then so is the sequence obtained by applying a transducer to the base-k digits of n
before processing by M .

Theorem 6.8.6 Let�k = {0, 1, . . . , k − 1}, and let T = (Q′, �k, δ
′, q ′

0, �k, τ
′) be

a finite-state transducer. Let M = (Q, �k, δ, q0,�, τ ) be a k-DFAO such that an =
τ (δ(q0, (n)k)) for all n ≥ 0. Then the sequence (bn)n≥0 defined by bn = a[T ((n)k )]k is
also k-automatic.

Proof. We construct a new k-DFAO M ′ = (Q × Q′, �k, δ
′′, [q0, q ′

0],�, τ ′′) as
follows: we let δ′′([p, q], a) = [δ(p, τ ′(a)), δ′(q, a)] for all p ∈ Q, q ∈ Q′, and
a ∈ �k , and we let τ ′′([p, q]) = τ (p) for all p ∈ Q, q ∈ Q′.

An easy induction now shows that on input c1c2 · · · ci , the machine M ′ computes
the output

τ (δ(q0, T (c1c2 · · · ci ))),

as desired. �

6.9 Uniform Transduction of Automatic Sequences

We have seen that some automatic sequences, such as the Thue–Morse sequence,
can be represented as fixed points of uniform morphisms. For others, however, such
as the Rudin–Shapiro sequence, we applied a coding to a fixed point to obtain the
sequence. This naturally raises the question of whether the coding can be dispensed
with.

In general, the answer is no. It can be shown, for example, that the Rudin–Shapiro
sequence is not the pure fixed point of any uniform morphism; see Exercise 24.

However, suppose we group the terms of the Rudin–Shapiro sequence into blocks
of two consecutive symbols, treating each block as a single symbol. Then it is not
hard to see (see Exercise 25) that the resulting sequence is a fixed point of a
morphism, namely:

[1, 1] → [1, 1] [1, −1],

[1, −1] → [1, 1] [−1, 1],

[−1, 1] → [−1, −1] [1, −1],

[−1, −1] → [−1, −1] [−1, 1].

One might conjecture that every k-automatic sequence can be so represented,
that is, that such a sequence can be represented as a fixed point of a map that sends
blocks of size ka into blocks of size kb, for some b > a ≥ 0. The following lemma
shows this is true.
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Lemma 6.9.1 Let �′ be a finite set of symbols and let x = (xi )i≥0 be a sequence
taking values in �′. Then x is k-automatic if and only if there exist integers q, r
with 0 ≤ q < r such that for all non-negative integers i, j we have

x[ikq ..(i + 1)kq − 1] = x[ jkq ..( j + 1)kq − 1]

implies

x[ikr ..(i + 1)kr − 1] = x[ jkr ..( j + 1)kr − 1].

Proof. ⇒: Let x = (xi )i≥0 be a k-automatic sequence. Then by Theorem 6.3.2 we
know that (xi )i≥0 is the image, under a coding τ : � → �′, of the fixed point of a
k-uniform morphism ϕ : � → �k ; in other words, x = τ (ϕ∞(b)) for some symbol
b ∈ �. Now each ks-aligned subword of x has the form

τ (ϕs(c)) for some c ∈ �.

(Recall the definition of k-aligned subword from Section 1.1.)
Let s be fixed and for a, a′ ∈ � define a ∼s a′ if and only if τ (ϕs(a)) = τ (ϕs(a′)).

Clearly ∼s is an equivalence relation on�, and since there are only a finite number
of such relations (see Exercise 26) we know there exist integers q, r with q < r
and ∼q coincides with ∼r . Now if

x[ikq ..(i + 1)kq − 1] = x[ jkq ..( j + 1)kq − 1],

then, letting y = ϕ∞(b) (so that x = τ (y)), we have

τ (ϕq(yi )) = τ (ϕq(y j )),

so yi ∼q y j . But then yi ∼r y j , so

τ (ϕr (yi )) = τ (ϕr (y j ))

and hence

x[ikr ..(i + 1)kr − 1] = x[ jkr ..( j + 1)kr − 1].

⇐=: Now suppose that x = (xi )i≥0 is a sequence taking values in �′, such that
there exist integers q, r with the stated properties. For non-negative integers i, j
we say i ∼ j if

x[iks ..(i + 1)ks − 1] = x[ jks ..( j + 1)ks − 1] (6.9)

for s = 0, 1, 2, . . . , r − 1. Clearly ∼ is an equivalence relation on N, and since �′

is finite, the number of distinct equivalence classes given by ∼ is also finite. (Each
class is determined by its values at 1 + k + · · · + kr−1 = kr−1

k−1 different positions,
giving a bound of |�′|(kr−1)/(k−1) on the number of equivalence classes.)

Let C be this set of equivalence classes, and for i ∈ N let i denote the equivalence
class to which i belongs. If i ∼ j , then (6.9) holds and so it holds for s = q. Then
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by hypothesis, Eq. (6.9) also holds for s = r . Hence

x[iks+1..(i + 1)ks+1 − 1] = x[ jks+1..( j + 1)ks+1 − 1]

for s = 0, 1, 2, . . . , r − 1. Now for any l with 0 ≤ l < k,

x[(ik + l)ks ..(ik + l + 1)ks − 1]

and

x[( jk + l)ks ..( jk + l + 1)ks − 1]

are subwords in corresponding positions of

x[iks+1..(i + 1)ks+1 − 1]

and

x[ jks+1..( j + 1)ks+1 − 1],

respectively, and hence equal for 0 ≤ s < r . Therefore ik + l ∼ jk + l. In other
words, we have shown that if i = j then ik + l = jk + l for 0 ≤ l < k. Now if we
set

ϕ(i) = ik ik + 1 · · · (i + 1)k − 1,

then we have a well-defined map ϕ from C into Ck , and ϕ(0) begins with 0. Simi-
larly, if we define τ (i) = x[i], then if i = j we have (setting s = 0 in Eq. (6.9))
x[i] = x[ j], and so τ is also well defined.

We now claim that x = τ (ϕ∞(0)). We prove this by induction. Our induction hy-
pothesis is: if y = ϕ∞(0) then y[i] = i for all i < ks . Clearly this is true for s = 0.
Now assume it is true for s; we prove it for s + 1. Then we have

y[ik · · · (i + 1)k − 1] = ϕ(y[i])

= ϕ(i)

= (ik) · · · (i + 1)k − 1

for all i < ks ; hence y[i] = i for all i < ks+1. By induction, y[i] = i for all i ≥ 0,
and x[i] = τ (yi ) = τ (i). This completes the proof. �

We are now ready to prove the main theorem of this section: that the class
of automatic sequences is closed under uniform transductions, that is, under the
transducers where every transition outputs a string of the same length. This result
generalizes the theorems of Section 6.8. Without loss of generality we may assume
that the transducer T is 1-uniform; if not, let us say it is a-uniform. Then, using
the result proved below, the outputs of the a different transducers Ti on input x (an
automatic sequence) that mimic T except only for the i th symbol (0 ≤ i < a) are
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all k-automatic, and we can put them together to get an automatic, sequence using
Theorem 6.8.2.

Now let us prove:

Theorem 6.9.2 Automatic sequences are closed under 1-uniform transducers.

Proof. Let (xi )i≥0 be a k-automatic sequence, given by x = τ (ϕ∞(a)) for ϕ : � →
�k , a ∈ �, and τ : � → �′. Let T = (Q,�′, δ, q0,�

′′, λ) be a transducer as in
Chapter 4. We must show that

x′ := T (x) = λ(q0, x0)λ(δ(q0, x0), x1) . . .

is a k-automatic sequence.
Without loss of generality, by “absorbing” the coding τ into T , we may assume

that τ is actually the identity map. More formally, set

δ′(q, a) = δ(q, τ (a)),

λ′(q, a) = λ(q, τ (a)),

and then replace δ, λ in the transducer T by δ′, λ′. As a result, we can assume
x = ϕ∞(a).

We may also assume without loss of generality that �′′ = Q ×� and that λ is
the identity map. (For if not, we set �′′ = Q ×� and let λ be the identity map,
and then apply a coding to the result.) Hence we may assume that

T = (Q,�, δ, q0, Q ×�, identity).

Let x′ = T (x). Now define δk(q, a) = δ(q, ϕk(a)) for k ∈ N, q ∈ Q, and a ∈ �.
Since there are only finitely many functions from Q ×� into Q, there must be
integers r, s ≥ 0 with 0 ≤ r < s such that δr = δs , i.e., δ(q, ϕr (a)) = δ(q, ϕs(a)).

Hence, in particular,

δ(q0, ϕ
r (x[0..i − 1])) = δ(q0, ϕ

s(x[0..i − 1]))

for all i ≥ 0, and so

δ(q0, x[0..ikr − 1]) = δ(q0, x[0..iks − 1]) (6.10)

for all i ≥ 0. The idea is to use Lemma 6.9.1. Suppose that (i, j) is a pair such that

x′[ikr ..(i + 1)kr − 1] = x′[ jkr ..( j + 1)kr − 1].

Then, since

x[k ′] = 〈δ(q0, x[0..k − 1]), x[k]〉,
we have, by projection on the first component, that

δ(q0, x[0..ikr − 1]) = δ(q0, x[0.. jkr − 1]). (6.11)
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Furthermore, by projection on the second component, we see that

x′[ikr ..(i + 1)kr − 1] = x[ jkr ..( j + 1)kr − 1]. (6.12)

Now

δ(q0, x[0..iks − 1]) = δ(q0, x[0..ikr − 1]) (by (6.10))

= δ(q0, x[0.. jkr − 1]) (by (6.11))

= δ(q0, x[0.. jks − 1]) (by (6.10)). (6.13)

Applying ϕs−r to both sides of (6.12), we get

x[iks ..(i + 1)ks − 1] = x[ jks ..( j + 1)ks − 1]. (6.14)

Combining (6.13) and (6.14), we get

δ(q0, x[0..iks + t − 1]) = δ(q0, x[0.. jks + t − 1]) (6.15)

for 0 ≤ t ≤ ks . Now, combining (6.14) and (6.15), we get

x′[iks + t] = x′[ jks + t]

for 0 ≤ t < ks ; hence

x′[iks ..(i + 1)ks − 1] = x′[ jks ..( j + 1)ks − 1].

Thus, by Lemma 6.9.1, x′ is k-automatic. �

Corollary 6.9.3 Let a = (ai )i≥0 be a k-automatic sequence taking values in �r =
{0,1,. . . , r − 1} for some integer r ≥ 2. Then the following sequences are also
k-automatic:

(a) the running sum sequence ((
∑

0≤ j≤i a j )modr )i≥0;
(b) the running product sequence ((

∏
0≤ j≤i a j )modr )i≥0.

Proof. It is easy to construct 1-uniform transducers that on input a will compute
the desired sequences. �

Here is another application of Theorem 6.9.2. Given a k-automatic set S, of
positive integers and 0, we may enumerate its members as S = {s1, s2, . . .} where
s1 < s2 < · · · . The following theorem says that “periodic selection” still results in
a k-automatic set:

Theorem 6.9.4 The set {saj+b : j ≥ 0} is also k-automatic if S = {s1, s2, . . .} is
k-automatic.

Proof. Use Theorem 6.9.2 on the underlying (automatic) characteristic sequence.
It is easy to construct a transducer that changes the 1’s to 0’s (except the 1’s whose
occurrence number is congruent to b modulo a) in this sequence. �
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6.10 Sums of Digits, Polynomials, and Automatic Sequences

In Section 5.5, we explored some techniques for proving sequences not automatic.
In this section, we discuss a new technique, which is exemplified in the following
theorem.

Theorem 6.10.1 Let k,m be integers with k ≥ 2, m ≥ 1, and let p(X ) be a poly-
nomial in X with non-negative integer coefficients. Then the sequence

(sk(p(n))modm)n≥0

is k-automatic if and only if either deg p ≤ 1 or m | k − 1.

Proof. Suppose deg p ≤ 1. Then p(X ) = a X + b for integers a, b ≥ 0. The se-
quence (sk(n)modm)n≥0 is k-automatic by Exercise 5.2(a). Hence, by Theo-
rem 6.8.1, the subsequence (sk(an + b)modm)n≥0 is k-automatic.

Now suppose m | k − 1. By Exercise 3.6 we know sk(n) ≡ n (mod k − 1). It
follows that sk(p(n)) ≡ p(n) (mod k − 1). Let r ≥ 1 be an integer. By the binomial
theorem p(n + cr ) ≡ p(n) (mod r ) for all c ≥ 0, so setting r = k − 1 and reducing
modulo m, we see that (sk(p(n))modm)n≥0 is periodic with period length dividing
k − 1. By Theorem 5.4.2 we know (sk(p(n))modm)n≥0 is k-automatic.

The converse is harder. If deg p ≤ 1 we are done, so assume deg p ≥ 2. Here
is a rough outline of the proof: we show in Lemma 6.10.3 that if s := (sk(p(n))
modm)n≥0 is k-automatic, then the coefficients of p(X ) must satisfy a certain
relation. However, any affine subsequence (sk(p(un + v))modm)n≥0 of s would
also be k-automatic, and hence the coefficients of p(u X + v) must satisfy the same
relation. By combining enough of these relations we show m | k − 1. We begin by
stating a technical lemma.

Lemma 6.10.2 Suppose (a(n))n≥0 is a k-automatic sequence. Then there exist inte-
gers n0 ≥ 0, T ≥ 1 such that a(kn j + 1) = a(kn+T c j + 1) for all integers n ≥ n0,
j ≥ 0, c ≥ 0.

Proof. Clearly the result is true for j = 0. Otherwise assume j ≥ 1. Assume M =
(Q, �k, δ, q0,�, τ ) is a k-DFAO that, on input the reversed base-k expansion of n,
produces an . (Such a machine exists by Theorem 5.2.3.)

Now for j ≥ 1 we have

(kn j + 1)k = [ j]k 0n−1 1,

(kn+T c j + 1)k = [ j]k 0n+T c−1 1.

Take the machine M , and consider what happens when we feed it with 1 followed
by a string of 0’s: eventually some state is repeated. In other words, defining
q1 := δ(q0,1), there exist integers r ≥ 0, T ≥ 1 such that δ(q1,0r ) = δ(q1,0r+T ).
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Hence

δ(q0,1 0n−1 [ j]k) = δ(q0,1 0n+T c−1 [ j]k)

for n ≥ r + 1, c ≥ 0. Since the automaton M reaches the same state on these two
inputs, it produces the same output, and the lemma follows. �

The next lemma is crucial for our argument.

Lemma 6.10.3 Suppose p(X ) = ∑
0≤i≤d ai Xi for some non-negative integers

ai with ad �= 0, and d ≥ 2. Let k,m be integers with k ≥ 2, m ≥ 1.
If (sk(p(n))modm)n≥0 is k-automatic, then sk(ad−1 + (d + 1)ad) ≡ sk(ad) +
sk(ad−1 + dad) (mod m).

Proof. Define j = k(d−1)n + k(d−2)n . Since d ≥ 2, the number j is an integer. Using
the binomial theorem twice, we have

sk(p(kn j + 1)) = sk

(
∑

0≤i≤d

ai (k
dn + k(d−1)n + 1)i

)

= sk

(
∑

0≤i≤d

ai

∑

0≤l≤i

(
i

l

)

k(d−1)nl(kn + 1)l

)

= sk

(
∑

0≤i≤d

∑

0≤l≤i

∑

0≤r≤l

ai

(
i

l

)(
l

r

)

k(d−1)nl+nr

)

= sk

(
∑

0≤l≤d

∑

0≤r≤l

bl,r k(d−1)nl+nr

)

, (6.16)

where bl,r := ∑
l≤i≤d ai

(i
l

)(l
r

)
.

Now the sum (6.16) is over various powers of k that could coincide. Let us
determine when this happens. Suppose

(d − 1)nl + nr = (d − 1)nl ′ + nr ′

for (l, r ) �= (l ′, r ′), l ′ ≤ l, 0 ≤ r ≤ l ≤ d, and 0 ≤ r ′ ≤ l ′ ≤ d. This holds if and
only if (d − 1)(l − l ′) = (r ′ − r ), which holds if and only if r = 0, l = d, r ′ =
d − 1, l ′ = d − 1. It follows that

∑

0≤l≤d

∑

0≤r≤l

bl,r k(d−1)nl+nr = (bd,0 + bd−1,d−1)k(d−1)dn

+
∑

0≤l≤d
0≤r≤l

(l,r ) �∈{(d,0),(d−1,d−1)}

bl,r k(d−1)nl+nr . (6.17)
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Note that all the exponents in the right-hand side are distinct, and since they are
multiples of n, they differ by at least n. It follows that

sk





(bd,0 + bd−1,d−1)k(d−1)dn +

∑

0≤l≤d
0≤r≤l

(l,r )�∈{(d,0),(d−1,d−1)}

bl,r k(d−1)nl+nr







=





∑

0≤l≤d
0≤r≤l

sk(bl,r )




− sk(bd,0) − sk(bd−1,d−1) + sk(bd,0 + bd−1,d−1) (6.18)

for all n sufficiently large so that kn > 2 maxl,r bl,r . Hence, combining Eqs. (6.16)–
(6.18), we find

sk(p(kn j + 1)) =





∑

0≤l≤d
0≤r≤l

sk(bl,r )




− sk(bd,0) − sk(bd−1,d−1) + sk(bd,0 + bd−1,d−1)

(6.19)
for all n sufficiently large.

In a similar fashion we can expand sk(p(kn+T c j + 1)) to find

sk(p(kn+T c j + 1)) = sk

(
∑

0≤l≤d

∑

0≤r≤l

bl,r k((d−1)n+T c)l+nr

)

. (6.20)

Once again we try to determine which exponents of k coincide. Suppose (l, r ) �=
(l ′, r ′) with 0 ≤ r ≤ l ≤ d, 0 ≤ r ′ ≤ l ′ ≤ d. Now

((d − 1)n + T c)l + nr = ((d − 1)n + T c)l ′ + nr ′

if and only if

T c(l − l ′) = n((r ′ − r ) + (d − 1)(l ′ − l)).

If (r ′ − r ) + (d − 1)(l ′ − l) = 0, then (l, r ) = (l ′, r ′), a contradiction. Hence
(r ′ − r ) + (d − 1)(l ′ − l) �= 0. It follows that for all n sufficiently large we have

|T c(l − l ′) − n((r ′ − r ) + (d − 1)(l ′ − l))| ≥ n − |T c(l − l ′)|
≥ n − T cd

≥ T c.

Now choose a c sufficiently large so that kT c > maxl,r bl,r . We find

sk

(
∑

0≤l≤d

∑

0≤r≤l

bl,r k((d−1)n+T c)l+nr

)

=
∑

0≤l≤d
0≤r≤l

sk(bl,r ) (6.21)
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for all n sufficiently large. Hence

sk(p(kn+T c j + 1)) =
∑

0≤l≤d
0≤r≤l

sk(bl,r ) (6.22)

for all n sufficiently large.
Now by Lemma 6.10.2 we know sk(kn j + 1) ≡ sk(kn+T c j + 1) (mod m) for

all sufficiently large n. By Eqs. (6.19) and (6.22) we obtain sk(bd,0 + bd−1,d−1) ≡
sk(bd,0) + sk(bd−1,d−1) (mod m). Now a simple computation shows that bd,0 = ad

and bd−1,d−1 = ad−1 + dad , and the result follows. �

Lemma 6.10.4 Let a, b, b′ be non-negative integers with a ≥ 1 and b − b′ ≥ a.
Then the sequence

((sk(an + b) − sk(an + b′))modm)n≥0

is eventually constant if and only if m | k − 1.

Proof. Suppose m | k − 1. From Exercise 3.6 we have sk(n) ≡ n (mod m). Hence

sk(an + b) − sk(an + b′) ≡ b − b′ (mod m).

For the converse, suppose ((sk(an + b) − sk(an + b′))modm)n≥0 is eventually
constant. Since b − b′ ≥ a, there exists an integer r ≥ 1 such that b′ < ar ≤ b. Let
n = kt − r . For all t large enough we have

sk(an + b) − sk(an + b′) = sk(akt + b − ar ) − sk(akt + b′ − ar )

= sk(a) + sk(b − ar ) − sk(akt − (ar − b′)).

Now fix an integer s < t such that ks > ar − b′. We obtain

sk(a) + sk(b − ar ) − sk(akt − (ar − b′))
= sk(a) + sk(b − ar ) − sk((a − 1)kt + kt − ks + ks − (ar − b′))
= sk(a) + sk(b − ar ) − sk(a − 1) − sk(kt − ks) − sk(ks − (ar − b′)). (6.23)

Note that all the quantities in this last expression are constants, with the possible ex-
ception of sk(kt − ks) = (k − 1)(t − s). But ((k − 1)(t − s)modm)t≥0 is eventually
constant if and only if k − 1 ≡ 0 (mod m). �

We can now complete the proof of Theorem 6.10.1. Let u, v be positive inte-
gers with u > d . If (sk(p(n))modm)n≥0 is k-automatic, then by Theorem 6.8.1
so is the affine subsequence (sk(p(un + v))modm)n≥0. Then Lemma 6.10.3 holds
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for the polynomial p(u X + v). But p(u X + v) = ∑
0≤i≤d ai (u X + v)i , and by the

binomial theorem the coefficient of Xd in p(u X + v) is adud , while the coeffi-
cient of Xd−1 is adud−1v + ad−1ud−1. By Lemma 6.10.3 we have sk(av + b) −
sk(av + b′) = e, where

a = adud−1,

b = ad−1ud−1 + (d + 1)adud,

b′ = ad−1ud−1 + dadud,

e = sk(adud).

Since u > d, we have b − b′ ≥ a, and so by Lemma 6.10.4 we have m | k − 1, as
desired. �

Exercise 32 provides a small generalization of Theorem 6.10.1.

6.11 Exercises

1. Consider the first differences of the Thue–Morse sequence, taken modulo 2.
More precisely, define dn = (tn+1 − tn)mod2 for n ≥ 0. Show that d =
d0d1d2 · · · is the fixed point of the morphism that sends 1 → 10, 0 → 11.

2. Show that the sequence s = (sn)n≥0 consisting of the first digit in the base-k
representation of n is k-automatic, for all integers k ≥ 2, and explicitly write
down a k-uniform morphism h such that s = hω(0).

3. Show that H, the tower of Hanoi sequence on six symbols, is squarefree.
4. Find a 2-uniform morphism ϕ and coding τ such that τ (ϕω(0)) = (S2(n)

mod2)n≥1, where S2(n) is the function defined in Section 3.2.
5. (Niederreiter and Vielhaber) Given a sequence (an)n≥1, define B(h) for h ≥ 0

to be the set of all finite subsequences of the form

(ak, a2k, a2k+1, a4k, a4k+1, a4k+2, a4k+3, . . . , a2hk, . . . , a2hk+2h−1)

where k ranges over all integers ≥ 1. Also define K (h) = |B(h)|. Show that
(an)n≥1 is 2-automatic if and only if K (h) = O(1).

6. Define u0 = 0, and for i ≥ 0 set

ui+1 =





0 if
∏

0≤ j≤i

(
2i+1
2i+2

)(−1)ui

>
√

2
2 ,

1 otherwise.

Show that ui = ti for all i ≥ 0, where t = t0t1t2 · · · is the Thue–Morse
sequence.
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Figure 6.6: Third Iteration in the Construction of Peano’s Space-Filling Curve.

7. Consider the morphism f defined as follows:

S1 → S1R1R2,

S2 → S2L1L2,

R1 → S2L1L2,

R2 → S1S2S1,

L1 → S1R1R2,

L2 → S2S1S2,

and let τ be a coding that removes the subscripts. Letwi = τ ( f 2i (S1)) with the
last two characters removed, and interpret the letters in wi as drawing instruc-
tions, where S means move straight one unit in the direction you are already
traveling, R means turn right and move one unit, and L means turn left and move
one unit. Show that under this interpretation, the words wi code the i th iter-
ation in the construction of Peano’s famous space-filling curve. For example,
Figure 6.6 shows the graphic interpretation of w3.

8. Consider the morphism g defined as follows:

R → RLLSRRLR,

L → RLLSRRLL,

S → RLLSRRLS.

Define xi = gi (RRRR), and consider the figures specified by xi , where the
interpretations are as in the previous exercise. Show that xi codes the i th itera-
tion in the construction of von Koch’s famous snowflake curve. The first four
iterations are shown in Figure 6.7.

9. Consider the sequence (an)n≥0 = 1264224288 · · · that gives the least signi-
ficant nonzero digit in the base-10 expansion of n!.
(a) Show that (an)n≥0 is a 5-automatic sequence.
(b) Give a 5-uniform morphism h and a coding τ such that (an)n≥0 = τ (hω(0)).
(c) Show that (an)n≥0 is not ultimately periodic.
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Figure 6.7: Four Iterations in the Construction of the von Koch Curve.

10. Let u = (un)n≥0 be an infinite sequence over a finite alphabet. Suppose u is k-
automatic and k ′-automatic, for integers k, k ′ ≥ 2. Show that u is kk ′-automatic.
(Note: A much stronger result is proved in Chapter 11.)

11. Prove Theorem 6.3.5. Hint: Use a suitable generalization of Corollary 4.1.9.
12. Let t = (tn)n≥0 be the Thue–Morse sequence. We have seen in Example 6.6.1

that its 2-kernel consists of two sequences, t and t. Show that as k → ∞, the
size of the 2-kernel of the shifted sequence Sk(t) goes to ∞.

13. Let R = (Rn)n≥1 be the regular paperfolding sequence.
(a) Show that

∑
1≤k≤n Rk is always positive.

(b) Show the converse: if a paperfolding sequence (vk)k≥1 has the property that
∑

1≤k≤n vk > 0 for all n ≥ 1, then (vk)k≥1 is the regular paperfolding sequence.

14. Consider the paperfolding curves formed by iterated folding, followed by un-
folding to 90◦. Show that the resulting curves are always self-avoiding; that is,
they may meet at a point, but the curve never crosses itself.

15. Let x = Fold(1,2,3,4, . . . ) = (12131214 . . . ), where by x we mean −x .
Show that this sequence is the fixed point of the map

1 → 1 2, 1 → 1 2,

2 → 1 3, 2 → 1 3,

3 → 1 4, 3 → 1 4,

4 → 1 5, 4 → 1 5,
...

...

16. Let ( fi )i≥1 be any paperfolding sequence with f1 = 1. Show that f is multi-
plicative; that is, fmn = fm fn for all m, n ≥ 1 with gcd(m, n) = 1.

17. (a) Suppose we are looking for a partition of the set

{0, 1, . . . , 2n − 1}
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into two disjoint sets S and T such that
∑

s∈S si = ∑
t∈T t i for 0 ≤ i < n. Explain

how this problem is related to the following: find a univariate polynomial pn(X )
of degree 2n − 1 and coefficients in {−1,+1} such that (X − 1)n divides pn(X ).

(b) Prove or disprove: there exists exactly one way to partition the set

{0, 1, . . . , 2n − 1}
into two disjoint sets, S and T , such that

∑
s∈S si = ∑

t∈T t i for 0 ≤ i < n.

18. Show that a paperfolding sequence is k-automatic for some k ≥ 2 if and only
if it is 2-automatic.

19. (a) Let In = ∫ π/2
0 (sin x)n dx . Using integration by parts, prove that In+2 = n+1

n+2 In .
Deduce that (n + 2)In+2 In+1 = (n + 1)In+1 In = · · · = π

2 .
(b) Noting that the sequence (In)n≥0 is nonincreasing, prove that In+2/In ≤ In+1/In ≤

1. Deduce that In+1 ∼ In , and that In ∼ √
π/2n.

(c) Using the recurrence above, prove that I2n = (π/2)1 · 3 · · · (2n − 1)/2 · 4 · · · 2n.
Deduce that

∏

n≥1

(2n − 1)(2n + 1)

(2n)2
= 4

π
.

(d) Let t = (tn)n≥0 = 01101001 · · · be the Thue–Morse sequence. Prove that

∏

n≥0

(
2n + 1

2n + 2

)2tn (2n + 3

2n + 2

)

= 4
√

2

π
,

∏

n≥0

(
2n + 1

2n + 2

)2(1−tn ) (2n + 3

2n + 2

)

= 2
√

2

π
.

20. With any paperfolding sequence (vk)k≥1 we can associate the real number
∑

k≥1 vk2−k . Show that the set of real numbers specified by all paperfolding
sequences is of Lebesgue measure 0.

21. Let w = a0a1a2 · · · be an infinite word. Define its prefix language Pref(w) to
be the set {a0a1 · · · ai : i ≥ 0}.
(a) Let h be a morphism that is prolongable on a, and let w = hω(a). Show that the

prefix language Pref(w) is a co-CFL, that is, Pref(w) is a CFL.
(b) Give an explicit example of an infinite word w such that Pref(w) is not a co-CFL.

22. Define

g(n) =






g(3n + 1) + 1 if n > 1 is odd,

g(n/2) if n is even,

0 if n = 1.

The Collatz conjecture states that g is well defined for each n ≥ 1. For i ≥ 0
define Si = {k ≥ 1 : g(k) = i}. Show that for each i ≥ 0, Si is a 2-automatic
set.

23. Show that the class of k-automatic sequences is not closed under arbitrary
finite-state transductions.
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24. Show that the Rudin–Shapiro sequence is not the fixed point of any nontrivial
morphism.

25. Let (rn)n≥0 be the Rudin–Shapiro sequence. Show that the sequence (vn)n≥0

defined by vi = [r2i , r2i+1] is the fixed point of a 2-uniform morphism.
26. The proof of Lemma 6.9.1 used the fact that the number Bn of distinct equiva-

lence relations on a finite set is finite. In this exercise we explore the properties
of this sequence.
(a) Show Bn is the total number of ways to distribute n labeled balls onto labeled plates,

such that each plate contains at least one ball. The numbers Bk are sometimes called
Bell numbers.

(b) Show that B1 = 1, B2 = 2, B3 = 5, B4 = 15, and B5 = 52.
(c) Show that if

eeX−1 =
∑

n≥0

an Xn

n!

then an = Bn .
(d) Define B0 = 1. Show that

Bn+1 =
∑

0≤i≤n

(
n

i

)

Bi

for all n ≥ 0.
(e) Show that

∑

n≥0

nk

n!
= Bk · e.

(f) Show that Bk can be efficiently computed using the Bell triangle:

Determine the rule behind this triangle, and prove that it works.
(g) Show that the sequence (ν2(Bk))k≥0 is periodic with period 12.

27. (von Haeseler, Allouche) Let (Rn)n≥1 be the regular paperfolding sequence.
Let s be a complex number such that *(s) > 0. Prove that

∑

n≥1

Rn

ns
= 2s

2s − 1

∑

n≥0

(−1)n

(2n + 1)s
.



206 Uniform Morphisms and Automatic Sequences

Deduce as a special case that

∑

n≥1

Rn

n
= π

2
.

28. Let (Rn)n≥1 denote the regular paperfolding sequence. Define gn = ∑
1≤i≤n Ri .

Show that gn = e2;10(n) + e2;01(n). Conclude that gn = O(log n).
29. Let (Rn)n≥1 denote the regular paperfolding sequence. Find the expansion of

Rn in terms of pattern functions (see Section 3.3).
30. The generalized Arshon word of order n is an infinite word over the n-letter

alphabet�n = {0, 1, . . . , n − 1} that is generated as follows: for a single letter
i ∈ �n define

α0(i) = (i, i + 1, i + 2, . . . , n − 2, n − 1, 0, 1, . . . , i − 1)

and

α1(i) = α0(i)R,

where the entries are taken mod n. Given a stringw = c0c1c2 · · · cr−1 we define

α(w) =
∏

0≤i<r

αi mod 2(ci ).

(Note that α is not a morphism, in general.) Finally, define an = αω(0).
(a) Show that an is n-automatic.
(b) Show that an is pure morphic (i.e., the fixed point of a morphism without coding)

if n is even, but not pure morphic if n is odd.
(c) Show that a3 avoids 7

4 powers.

31. (Gunturk) Define the running sum map RS(x1, x2, . . . , xr ) to be (x1, x1 +
x2, . . . , x1 + x2 + · · · + xr ), and let RSt (x) be the map iterated t times. Prove
or disprove: the first 2n symbols of the Thue–Morse sequence on ±1 achieve
the minimum value of |RSn(x)|∞, where |x |∞ is the L∞ norm of the vector x ,
defined by max1≤i≤r |xi |.

32. Prove that Theorem 6.10.1 holds if we allow the coefficients of p(X ) to be
rational numbers, provided p(N) ⊆ N.

33. Let x ≥ 1 be a real number, and for n ≥ 1 define xn = �xn� − x�xn−1�. Show
that (xn)n≥1 is ultimately periodic if and only if x is an integer.

34. Give a 4-uniform morphism h and coding τ such that τ (hω(0)) generates the
characteristic sequence for those numbers that are the sums of three squares.

35. Show that the following number-theoretic functions are not k-automatic for
any k ≥ 2:
(a) (σ (n)modv)n≥0 for integers v ≥ 3, where σ (n) denotes the sum of the divisors

of n;
(b) (ϕ(n)modv)n≥0 for integers v ≥ 3, where ϕ(n) denotes the Euler ϕ-function;
(c) (µ(n)modv)n≥0 for integers v ≥ 3, where µ(n) denotes the Möbius function.



6.12 Open Problems 207

36. The classical van der Waerden theorem asserts that for every mapping α : N →
�, where � is a finite alphabet, and every finite S ⊆ N, there exist integers
a ≥ 1, b ≥ 0 and a letter t ∈ � such that α(as + b) = t for all s ∈ S. Consider
the following variant on this: let S be a finite subset of N, and let k ≥ 1. We say
the property V W (S, k) holds if for every mapping α : N → � with |�| = k
there exist integers a ≥ 1, b ≥ 0 and a letter t ∈ � such that α(a(s + b)) = t
for all s ∈ S. Show that V W ({0, 1, 2}, 2) does not hold. Hint: Consider the
mapping α : i → w[i], where w = 001001101 · · · is a fixed point of the
morphism h(0) = 001 and h(1) = 101.

37. Prove that for all i ≥ 0 we have

ϕ2i (a) = H2i a,

ϕ2i+1(a) = H2i+1 c,

where ϕ and Hj are defined as in Section 6.4.
38. Let (a(n))n≥1 be a sequence over a finite alphabet. Let k be an integer≥ 2. Then

(a(νk(n)))n≥1 is k-automatic if and only if (a(n))n≥1 is ultimately periodic.
39. Let (a(n))n≥0 be a sequence over a finite alphabet. Let k be an integer ≥ 2.

For n ≥ 0 define b(kn) = a(n), and b(i) = 0 for i not a power of k. Show that
(a(n))n≥0 is ultimately periodic if and only if (b(n))n≥0 is k-automatic.

40. Let t = (tn)n≥0 be the Thue–Morse sequence. Define Z (n) to be the number of
real zeros of the polynomial

∑
0≤i<n ti X i . Show that limn→∞ 1

n

∑
0≤t<n Z (t) =

11
4 .

41. Let (di )i≥0 be the period-doubling sequence introduced in Example 6.3.4. Let
(a2(n))n≥0 be the alternating sum of the binary digits, as discussed in Exer-
cise 3.11. Show that

∑
0≤i<n di = (n − a2(n))/3.

42. Define g(n) = ∑
0≤i<n

( n
i+1

)(2i
i

)
/(i + 1). Show that g(n) ≡ tn (mod 2), where

(tn)n≥0 is the Thue–Morse sequence.

6.12 Open Problems

1. Decide whether or not the number

∏

n≥1

(
2n

2n + 1

)(−1)tn

.= 1.6281601297189

is algebraic.
2. Discuss the speed of convergence of

R(m) :=
∏

0≤n<m

(
2n + 1

2n + 2

)(−1)tn

to
√

2/2. In particular, give a sharp estimate on
√

2/2 − R(2m) as a function of
m. (Remark: From Allouche and Cohen [1985] a weak estimate can be derived.)
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3. As we have seen in Lemma 5.2.6, automatic sequences may be defined in terms
of k-fibers. This suggests a generalization to what we might call k-context-free
sequences. We say a sequence a = (an)n≥0 taking values in � is k-context-
free if for all a ∈ � the k-fiber Ik(a, a) is a context-free language. Explore the
properties of these sequences, particularly with regard to subword complexity.

4. Find a simple closed form for the determinants of the Hankel matrices given
by Mn = (mi, j )0≤i, j<n , where mi, j = ti+ j and t0t1t2 · · · is the Thue–Morse
sequence, and M ′

n = (m ′
i, j )0≤i, j<n , where mi, j = s2(i + j), the sum-of-bits

function.
5. Prove or disprove: The Thue–Morse partition of Example 5.1.3 is the unique par-

tition of {0, 1, . . . , 2n − 1} for which
∑

s∈S si = ∑
t∈T t i for 0 ≤ i < n and for

which
∑

s∈S sn −∑
t∈T tn is minimized.

6. Show that the limit of the sequence specified by x1 = 12, xn+1 = xnxnx R
n x R

n 2
is not 2-automatic. Is it k-automatic for any k? (Remark: The sequence is a fixed
point of the map 1 → 12122121, 2 → 2.)

7. Letw ∈ {0,1}∗ \ 0∗. Consider the morphism defined by f (0) = 0w, f (1) = 1.
Give simple necessary and sufficient conditions for the fixed point of f starting
with 0 to be a 2-automatic sequence.

8. Does the result of Exercise 21(a) above still hold if we define w = τ (hω(a)) for
some coding τ?

9. The Liouville function λ(n) is defined as follows for integers n ≥ 1: if the prime
factorization of n is pe1

1 · · · pet
t , then λ(n) = (−1)e1+···+et . For which k ≥ 2 is

(λ(n))n≥1 a k-automatic sequence? (Remark: See Yazdani [2001].)

6.13 Notes on Chapter 6

6.1 Morphisms are sometimes called “substitutions” in the literature, especially
the ergodic-theory literature. We have avoided this terminology in this book
because “substitution” has a different meaning in the computer science lit-
erature; namely, a substitution is a language-valued homomorphism. In the
physics literature morphisms are often called “inflation rules”.

6.2 The Thue–Morse sequence was introduced by Thue [1912] and Morse [1921]
independently; it appears implicitly in an earlier paper of Prouhet [1851]. For
a translation of Thue’s work into English, see Berstel [1995].

The Thue–Morse sequence appears in many areas of mathematics, such
as construction of magic squares (Adler and Li [1977]); bifurcation theory
(Parry [1981]); partially ordered sets (Trotter and Winkler [1987]); hook num-
bers (Grassl and Mullhaupt [1989]); the maximum of the Knopp function
(Dubuc and Elqortobi [1990]); and group theory (Boffa and Point [1991,
1992]; Wantiez [1994, 1995]).

For generalizations of the Thue–Morse sequence, see Keane [1968]; J.
Martin [1976, 1977]; Nürnberg [1983]; Černý [1984]; Séébold [1986, 2000];
and Yao [1997b].
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Allouche, Peyrière, Wen, and Wen [1998] studied Hankel determinants
formed from the terms of the Thue–Morse sequence. (For other work on
Hankel determinants, see Tamura [1999]; Kamae, Tamura, and Wen [1999].)

Allouche and Shallit [1999] and Mauduit [2001] are surveys about the
Thue–Morse sequence.

For other papers on the Thue–Morse sequence, see Pirillo [1991]; Dekking
[1992]; Ferenczi [1992]; Fredricksen [1992].

6.3 For Cobham’s theorem, see Cobham [1972].
For the Baum–Sweet sequence, see Baum and Sweet [1976].
Properties of the period-doubling sequence were studied by Damanik

[2000]. The name “period-doubling sequence” is derived from the rela-
tionship of this sequence to the “period-doubling scenario” (also called the
Feigenbaum cascade). When iterating the function fλ : [0, 1] → R, where
( fλ)λ∈" is a family of continuous unimodal (i.e., increasing then decreasing)
functions, the following universal scenario occurs for many families of such
functions – including the “typical” family fλ(x) := λx(1 − x): there exist
successive intervals for the parameter λ such that fλ has first an attractive
fixed point (i.e., a point pλ such that f (pλ) = pλ, and limn→∞ f (n)

λ (x) = pλ
for all x ∈ (0, 1)), then an attractive 2-cycle (i.e., two points pλ and qλ such
that fλ(pλ) = qλ and f (2)

λ (pλ) = pλ, and the limit set of the sequence f (n)
λ (x)

is the set {pλ, qλ}), then an attractive 4-cycle, then an attractive 8-cycle, and so
on. Now a binary coding of the orbit f (n)

λ (xλ) (where xλ is the point where fλ
takes its maximum) gives a periodic sequence that tends to the period-doubling
sequence as λ increases. This phenomenon was discovered by Feigenbaum
[1978]. Also see Collet and Eckmann [1980]; Peitgen, Jürgens, and Saupe
[1992, Chap. 11].

6.4 This section is taken largely verbatim from the article of Allouche, Astoorian,
Randall, and Shallit [1994], with permission.

The tower of Hanoi puzzle was invented by Lucas [1884]. The results in this
section first appeared in Allouche, Bétréma, and Shallit [1989] and Allouche
and Dress [1990].

For other papers on the tower of Hanoi, see de Parville [1884]; Scorer,
Grundy, and Smith [1944]; Crowe [1956]; Hayes [1977]; Buneman and Levy
[1980]; Wood [1981, 1983]; Walsh [1982, 1983b, 1998]; Er [1982, 1983a,
1983b, 1984a, 1985b, 1985c, 1986b, 1987b, 1987c, 1989]; Leiss [1983a,
1983b, 1984]; Lavallée [1985]; Pettorossi [1985]; Cull and Ecklund [1985];
Cull and Gerety [1985]; Gault and Clint [1987]; Chan [1989]; Hinz [1989a,
1992a, 1992b, 1999]; Fournier [1990]; Noland [1990]; Minsker [1991]; J. Wu
and Chen [1992]; Poole [1992, 1994]; C. Klein and Minsker [1993]; Lu and
Dillon [1994]; Ray and Majumdar [1995a].

For generalizations to n > 3 pegs, see Dudeney [1908]; B. Stewart [1939];
T. Roth [1974]; Brousseau [1976]; Cull and Ecklund [1982]; Bendisch [1985];
Boardman, Garrett, and Robson [1986]; Rohl and Gedeon [1986]; Lunnon
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[1986]; Er [1987a]; Lu [1988, 1989]; Hinz [1989b]; I. Chu and Johnsonbaugh
[1991]; Gedeon [1992]; van de Liefvoort [1992]; Stockmeyer [1994];
Majumdar [1994a, 1994b, 1995, 1996]; Lu and Dillon [1995, 1996]; Mallol,
López, and Serrato [1996]; Klavžar and Milutinović [1997]; Sarkar [2000].

In 1975, Knuth (unpublished) suggested a variant of the tower of Hanoi
problem in which disks are permitted to move only in one cyclic direction; see
Lunnon [1986]. It was first published by Atkinson [1981]. For more on this
variant, see Walsh [1983a]; Er [1984b, 1984c, 1984d, 1985a, 1986a, 1986c];
J. Wu and Chen [1993]; Allouche [1994b]; Ray and Majumdar [1995b].

6.5 The paperfolding sequence was apparently first discovered by J. E. Heighway
around 1966; see Gardner [1967b]. Davis and Knuth [1970] gave a detailed
study of these sequences. The three-part survey of Dekking, Mendès France,
and van der Poorten [1982] provides a delightful introduction to the topic.

For more on paperfolding, see Mendès France [1981, 1984c, 1989, 1990a];
Mendès France and Tenenbaum [1981]; Mendès France and van der Poorten
[1981]; Blanchard and Mendès France [1982]; Dekking, Mendès France, and
van der Poorten [1982]; and Bercoff [1995, 1997].

The folding lemma is from van der Poorten and Shallit [1992]. Earlier ver-
sions include Mendès France [1973a]; Shallit [1979, 1982a, 1982b]; Kmošek
[1979]; and Dekking, Mendès France, and van der Poorten [1982]. The papers
of Leighton and Scott [1939] and Scott and Wall [1940] contain similar results,
but in a disguised form. The connection between paperfolding and continued
fractions was noticed first by Mendès France [1981]. The convergents of
folded continued fractions were studied by Allouche, Lubiw, Mendès France,
van der Poorten, and Shallit [1996] and Mendès France, van der Poorten, and
Shallit [1999].

For other interesting papers on continued fractions of formal power series,
see Baum and Sweet [1976]; Mills and Robbins [1986]; Buck and Robbins
[1995]; Lasjaunias [1997, 1999, 2000a, 2000b]; Thakur [1999]; W. Schmidt
[2000]. Mkaouar [1995] and Yao [1997a] showed that the partial quotients
of the continued fraction for the Baum–Sweet power series do not form an
automatic sequence.

Mendès France and Shallit [1989] considered the analogue of paperfolding
sequences in three dimensions.

Davis and Knuth [1970] discussed paperfolding curves resulting from fold-
ing into three pieces or more at each step, instead of folding in half. Other pa-
pers along these lines include Razafy Andriamampianina [1989, 1992, 1996];
Bercoff [1996]; Koskas [1996].

Prodinger and Urbanek [1979] showed that the regular paperfolding se-
quence contains no squaresw2 with |w| > 5; hence it is of bounded repetition.
Allouche [1984] observed that in fact all paperfolding sequences have this
property; for a detailed proof see Allouche and Bousquet-Mélou [1994b].
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Allouche [1992] discussed the subword complexity of paperfolding se-
quences. For other aspects of this topic, see Allouche and Bousquet-Mélou
[1994a].

6.6 Theorem 6.6.2 is due to Eilenberg [1974, Prop. V.3.3] and Christol [1979].
Theorem 6.6.4 is due to Eilenberg [1974, Prop. V.3.5].
The term “k-kernel” is due to O. Salon.

6.7 The results in this section can be found, in a much more general setting, in
Allouche, Cateland, Gilbert, Peitgen, Shallit, and Skordev [1997].

6.8 Theorem 6.8.1 is due to Cobham [1972, p. 174]. Our proof is based on that
in Allouche and Shallit [1992]; also see Allouche [1982].

6.9 Theorem 6.9.2 is due to Cobham [1972].
6.10 Theorem 6.10.1 is essentially due to Allouche [1982], who proved it for the

case k = p, a prime number. For a generalization, see Allouche and Salon
[1993].
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Morphic Sequences

In Chapter 6 we began our study of sequences that are fixed points of morphisms.
There we concentrated on uniform morphisms, where each letter is sent to a word of
the same length. In this chapter, we study the more general case where the morphism
need not be uniform.

Recall from Section 1.4 that if there exists an integer j ≥ 1 such that h j (a) = ε,
then the letter a is said to be mortal, and the set of mortal letters associated with a
morphism h is denoted by Mh . Recall that the mortality exponent of a morphism h
is defined to be the least integer t ≥ 0 such that ht (a) = ε for all a ∈ Mh; we write
the mortality exponent as exp(h) = t . Also recall the notion of morphic sequence
from Section 1.4: let h : �∗ → �∗ be a morphism, and suppose there exists a letter
a ∈ � with h(a) = ax , x �∈ M∗

h . Then h is prolongable on a, and the sequence of
words a, h(a), h2(a) . . . converges, in the limit, to the infinite word

hω(a) := a x h(x) h2(x) · · · ,
which is a fixed point of h, that is, h(hω(a)) = hω(a). If w = hω(a), then w is a
pure morphic sequence. If there is a coding τ : � → � and w = τ (hω(a)), then w
is a morphic sequence.

In order to build intuition, the next section explores some of the basic properties
of one of the most famous morphic sequences, the infinite Fibonacci word.

7.1 The Infinite Fibonacci Word

Let ϕ be the morphism that maps 0 → 01, 1 → 0; we call ϕ the Fibonacci mor-
phism. One of the simplest examples of a pure morphic sequence is the infinite
Fibonacci word

f := ϕω(0) = 010010100100101001010 · · · ,
which is the infinite fixed point of ϕ. In this section, we explore some of the basic
properties of this word.

212
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First, we observe that f can be computed as the limit of a certain sequence of
words.

Theorem 7.1.1 Define #1 = 1, #2 = 0, and #n = #n−1#n−2 for n ≥ 3. Then
ϕn(1) = #n+1 and ϕn(0) = #n+2 for n ≥ 0. Hence f = limn→∞#n. Furthermore,
for n ≥ 1 we have |#n| = Fn, the n th Fibonacci number.

The words #n are sometimes called the (finite) Fibonacci words.

Proof. We prove the two assertions aboutϕn by induction on n. They are clearly true
for n = 0, 1. Now assume they are true for all m < n; we prove them for m = n:

ϕn(1) = ϕn−1(0) = #n+1,

ϕn(0) = ϕn−1(01) = ϕn−1(0)ϕn−1(1)

= #n+1#n = #n+2.

It now follows that f = limn→∞#n .
The assertion about |#n| also follows easily by induction. �

One of the most useful features of the finite Fibonacci words is the following
“almost commutative” property:

Theorem 7.1.2 For any string w ∈ {0,1}∗ with |w| ≥ 2, define the map c(w) that
interchanges the last two characters of w. Then #n#n+1 = c(#n+1#n) for all
n ≥ 1.

Proof. By induction on n. The base cases n = 1, 2 are left to the reader. Assume
the result is true for all m ≤ n; we prove it for m = n + 1.

We have

#n+1#n+2 = #n+1(#n+1#n) = #n+1c(#n#n+1)

= (#n+1#n)c(#n+1) = #n+2c(#n+1) = c(#n+2#n+1),

where we have used the fact that c(xy) = xc(y) for |y| ≥ 2. �

7.2 Finite Fixed Points

As we have seen above, a morphic sequence is the image, under a coding, of a
word hω(a) that is the fixed point of a morphism. This raises the natural question,
are there fixed points of morphisms not of the form hω(a) ? In this section we
characterize the finite fixed points of a morphism.
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Lemma 7.2.1 Let h : �∗ → �∗ be a morphism. Let w ∈ �+ be a finite nonempty
word such that w is a subword of h(w). Then there exists a letter a ∈ � occurring
in w such that a occurs in h(a).

Proof. Let w = c1c2 · · · cn , where ci ∈ � for 1 ≤ i ≤ n. For 0 ≤ i ≤ n define
sw(i) = |h(c1c2 · · · ci )|. (If the context is clear, we omit the subscript on s.) In
particular, s(0) = 0.

Let h(w) = d1d2 · · · ds(n), where di ∈ � for 1 ≤ i ≤ s(n). Hence

h(ci ) = ds(i−1)+1 · · · ds(i)

for 1 ≤ i ≤ n. Since w is a subword of h(w), we know there must exist an integer
t , 0 ≤ t ≤ s(n) − n, such that w = dt+1 · · · dt+n . Hence ci = dt+i for 1 ≤ i ≤ n.

Consider the least index j ≥ 1 for which s( j) ≥ t + j . Such an index must exist,
since the inequality holds for j = n. There are now two cases to consider.

Case 1: j = 1: Then h(c1) = d1d2 · · · ds(1) and s(1) ≥ t + 1. Hence h(c1) con-
tains dt+1 = c1. Let a = c1.

Case 2: j > 1: Then by the definition of j we must have s( j − 1) < t + j − 1.
Hence s( j − 1) + 1 < t + j ≤ s( j), and since h(c j ) = ds( j−1)+1 · · · ds( j), we know
h(c j ) contains dt+ j−1dt+ j = c j−1c j as a subword. Let a = c j . �

Corollary 7.2.2 If w ∈ �+ is a nonempty finite word with h(w) = w, then there
exist words w1, w2, w3, w4 ∈ �∗ and a letter a ∈ � such that w = w1w2aw3w4,
h(w1w2) = w1, h(a) = w2aw3, and h(w3w4) = w4.

Proof. If h(w) = w, then, using the notation in the proof of Lemma 7.2.1, we have
t = 0 and s(n) = n. Define

w1 := d1 · · · ds( j−1),

w2 := ds( j−1)+1 · · · d j−1,

a := d j ,

w3 := d j+1 · · · ds( j),

w4 := ds( j)+1 · · · dn.

The reader can now easily verify that h(w1w2) = w1, h(a) = w2aw3, and
h(w3w4) = w4. �

Now define

Ah = {a ∈ � : ∃ x, y ∈ M∗
h such that h(a) = xay}

and

Fh = {ht (a) : a ∈ Ah and t = exp(h)}.
Note that there is at most one way to write h(a) in the form xay with x, y ∈ M∗

h .
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Theorem 7.2.3 Let h : �∗ → �∗ be a morphism. Then a finite word w ∈ �∗ has
the property that w = h(w) if and only if w ∈ F∗

h .

Proof. ⇐=: Suppose w ∈ F∗
h . Then we can write w = w1w2 · · · wr , where each

wi ∈ �∗, and there exist letters a1, a2, . . . , ar ∈ Ah such that wi = ht (ai ), with
t = exp(h).

Since ai ∈ Ah , we know that there exist xi , yi with xi , yi ∈ M∗
h such that h(ai ) =

xi ai yi . Since t = exp(h), we have ht (xi ) = ht (yi ) = ε. Hence

ht+1(ai ) = ht (xi ) ht (ai ) ht (yi ) = ht (ai ).

Thus h(wi ) = wi for 1 ≤ i ≤ r , and so h(w) = w.
=⇒: We prove the result by contradiction. Suppose h(w) = w, and assume w is

the shortest such word with w �∈ F∗
h . Clearly w �= ε.

By Corollary 7.2.2 there exist w1, w2, w3, w4, a such that w = w1w2aw3w4,
h(w1w2) = w1, h(a) = w2aw3, and h(w3w4) = w4.

Now a is a subword of w, so h(a) is a subword of h(w) = w, and hence by an
easy induction, it follows that

hi (a) is a subword of w for all i ≥ 0. (7.1)

Then we must have w2w3 ∈ M∗
h , since otherwise the length of

hi (a) = hi−1(w2) · · · h(w2)w2 a w3 h(w3) · · · hi−1(w3)

would grow without bound as i → ∞, contradicting (7.1). It follows that
ht (w2w3) = ε, where t = exp(h).

Now we have w1 = h(w1w2), so by applying ht to both sides, we see

ht (w1) = ht+1(w1w2) = ht+1(w1) ht+1(w2) = ht+1(w1).

Hence, defining y1 = ht (w1), we have h(y1) = y1. In a similar fashion, if we set
y2 = ht (w4), then h(y2) = y2. Since |y1|, |y2| < |w|, it follows by the minimality
of w that y1, y2 ∈ F∗

h . Now

w = ht (w) = ht (w1) ht (w2) ht (a) ht (w3) ht (w4) = y1 ht (a) y2,

and hence w ∈ F∗
h , a contradiction. �

7.3 Morphic Sequences and Infinite Fixed Points

Let w = c1c2c3 · · · be a one-sided right-infinite word over �, and let h be a mor-
phism. In this section we characterize those w for which h(w) = w.

Recall that �ω denotes the set of all right-infinite words over the alphabet �. If
w = a1a2a3 · · · , then h(w) = h(a1)h(a2)h(a3) · · · . If L ⊆ �∗ is a language, then



216 Morphic Sequences

we define

Lω = {w1w2w3 · · · : wi ∈ L \ {ε} for all i ≥ 1}.
Perhaps slightly less obviously, we can also define the word hω(a) for a letter
a, provided h(a) = xay and x ∈ M∗

h . In this case, there exists t ≥ 0 such that
ht (x) = ε. Then we define

hω(a) = ht−1(x) · · · h(x) x a y h(y) h2(y) · · · ,
which is infinite if and only if y �∈ M∗

h .

Theorem 7.3.1 The right-infinite word w is a fixed point of h if and only if at least
one of the following two conditions holds:

(a) w ∈ Fω
h ; or

(b) w ∈ F∗
h hω(a) for some a ∈ �, and there exist x ∈ M∗

h and y �∈ M∗
h such that h(a) =

xay.

Note that there is at most one way to write h(a) = xay with x ∈ M∗
h and y �∈ M∗

h .

Proof. ⇐=: First, suppose condition (a) holds. Then we can write w = w1w2w3 · · · ,
where each wi ∈ Fh . Then by Theorem 7.2.3 we have h(wi ) = wi . It follows that
h(w) = w.

Second, suppose condition (b) holds. Then we can write w = v z, where v ∈ F∗
h

and z = hω(a), where h(a) = xay for some x ∈ M∗
h , y �∈ M∗

h . Then from Theo-
rem 7.2.3, we have h(v) = v.

Since x ∈ M∗
h , we have ht (x) = ε where t = exp(h), and hence

z = hω(a) = ht−1(x) · · · h(x) x a y h(y) h2(y) h3(y) · · · .
Since y �∈ M∗

h , it follows that |hi (y)| ≥ 1 for all i ≥ 0, and hence z is indeed an
infinite word. We then have

h(z) = ht (x) · · · h(x) x a y h(y) h2(y) h3(y) · · · = z

and so h(w) = h(vz) = vz = w.
=⇒: Now suppose w = c1c2c3 · · · is an infinite word, with ci ∈ � for i ≥ 1,

and h(w) = w. As before, we define sw(i) = |h(c1c2 · · · ci )| for i ≥ 0, and if the
context is clear, we omit the subscript on s. There are several cases to consider.

Case 1: sw(i) = i for infinitely many integers i ≥ 1. Suppose s(i) = i for i =
i0, i1, i2, . . . . Clearly we may take i0 = 0. Then we can write

w = y1 y2 y3 · · · ,
where y j = ci j−1+1 · · · ci j and h(y j ) = y j for j ≥ 1. It follows that w ∈ Fω

h .
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Case 2: sw(i) = i for finitely many i ≥ 1, and at least one such i . Let i0 =
0, i1, . . . , ir , r ≥ 1, be all the indices i for which s(i) = i . Then we can write

w = y1 y2 y3 · · · yr x,

where y j = ci j−1+1 · · · ci j , and h(y j ) = y j for 1 ≤ j ≤ r , and h(x) = x. Further-
more, if we write x = d1d2d3 · · · for di ∈ �, i ≥ 1, then

s(i) �= i for all i ≥ 1. (7.2)

If we can show that (7.2) implies that x = hω(a), where h(a) = xay for some
x ∈ M∗

h , y �∈ M∗
h , we will be done. This leads to case 3.

Case 3: sw(i) �= i for all i ≥ 1. Suppose there exist i, j with 1 ≤ i < j and

s(i) > i but s( j) < j. (7.3)

Among all pairs (i, j) with 1 ≤ i < j satisfying (7.3), choose one with j − i min-
imal. Suppose there exists an integer k with i < k < j . If s(k) < k, then (i, k)
has a smaller difference, while if s(k) > k, then (k, j) has a smaller difference. It
follows that j = i + 1. Then s(i) > i , but s(i + 1) < i + 1, a contradiction, since
s(i) ≤ s(i + 1). It follows that either (a) s(i) < i for all i ≥ 1, or (b) there exists an
integer r ≥ 1 such that s(i) < i for 1 ≤ i < r and s(i) > i for all i ≥ r .

Case 3a: sw(i) < i for all i ≥ 1. Since this is true for i = j0 := 1, in particular
we see that h(c1) = ε. Now let j1 be the least index such that

h(c j1 ) contains c1; (7.4)

such an index must exist, since h(w) = w. We then have h(c2) = h(c3) = · · · =
h(c j1−1) = ε, so the first occurrence of c j1 in w is at position j1.

Now inductively assume that we have constructed a strictly increasing sequence
j0 < j1 < · · · < jt such that the first occurrence of c ji in w is at position ji , for 1 ≤
i ≤ t . Let jt+1 be the least index such that h(c jt+1 ) contains c jt . Assume jt ≥ jt+1.
Since s(i) < i for all i , we have h(c jt+1 ) = ck · · · cl with l < jt+1 ≤ jt . Since h(c jt+1 )
contains c jt , this implies that c jt occurs to the left of position jt , a contradiction.
Hence jt < jt+1.

Thus we can construct an infinite strictly increasing sequence j0 < j1 < · · · such
that the first occurrence of c ji in w is at position ji . It follows that the letters
c j0, c j1, . . . in � are all distinct. But � is finite, a contradiction. Hence this case
cannot occur.

Case 3b: There exists an integer r ≥ 1 such that

sw(i) < i for 1 ≤ i < r and sw(i) > i for all i ≥ r. (7.5)

Put a = cr . Then h(a) = xay for some x, y ∈ �∗, and |y| ≥ 1. Furthermore, the
conditions (7.5) on s imply that we can write w = u a v and h(w) = h(u) x a y h(v)
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such that u = h(u)x . An easy induction now gives

hi (w) = hi (u) hi−1(x) · · · h(x) x a y h(y) · · · hi−1(y) hi (v) (7.6)

and

u = hi (u) hi−1(x) · · · h(x) x (7.7)

for all i ≥ 0. Since |u| < ∞, it follows from letting i → ∞ in Eq. (7.7) that there
exists an integer j ≥ 0 such that h j (x) = ε. Hence x ∈ M∗

h , and so ht (x) = ε, where
t = exp(h).

Now u = h(u)x , so ht (u) = ht+1(u)ht (x) = ht+1(u). Define u′ = ht (u); then
h(u′) = u′. Hence, putting j = |u′|, it follows that s( j) = j . Hence j = 0 and
u′ = ε.

Now, to get a contradiction, suppose that y ∈ M∗
h . Then ht (y) = ε. Define z =

ht (a). Then

h(z) = ht+1(a) = ht (h(a)) = ht (xay) = ht (x) ht (a) ht (y) = ht (a) = z.

Hence, putting j = |z|, we see that s( j) = j , a contradiction since |z| ≥ 1. Hence
y �∈ M∗

h .
Now, letting i → ∞ in (7.6), we see that w = hω(a). �

We can also characterize the left-infinite words that are fixed points of morphisms.
Suppose h(a) = xay with x �∈ M∗

h and y ∈ M∗
h . Then there exists t ≥ 0 such that

ht (x) = ε. We define

←
hω(a) = h2(x) h(x) x a y h(y) · · · ht−1(y).

Theorem 7.3.2 The left-infinite word w is a fixed point of h if and only if at least
one of the following two conditions holds:

(a) w ∈ ωFh; or

(b) w ∈ ←
hω(a)F∗

h for some a ∈ �, and there exist x �∈ M∗
h and y ∈ M∗

h such that h(a) =
xay.

Proof. Exactly like the proof of Theorem 7.3.1. �

7.4 Two-Sided Infinite Fixed Points

Recall �Z denotes the set of all two-sided infinite words over the alphabet �,
which are of the form · · · c−2c−1c0.c1c2 · · · . (We use a decimal point to the left of
the character c1, to indicate how the word is indexed.) Recall that S is the shift
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function, where

Sk( · · · c−2c−1c0.c1c2c3 · · · ) = · · · ck−1ck .ck+1ck+2 · · ·
for all k ∈ Z. If w, x are 2 two-sided infinite words, and there exists an integer k
such that x = Sk(w), then we call w and x conjugates, and we write w ∼ x. It is
easy to see that ∼ is an equivalence relation. We extend this notation to sets of
infinite words, as follows: if L is a set of two-sided infinite words, then by w ∼ L
we mean there exists x ∈ L such that w ∼ x.

If i = |wa|, h(a) = wax , and w, x �∈ M∗
h , then we define

←→
hω;i (a) := · · · h2(w) h(w)w.a x h(x) h2(x) · · · ,

a two-sided infinite word. Note that in this case the factorization of h(a) as wax is
not necessarily unique, and we use the superscript i to indicate which a is being
chosen.

We assume h : �∗ → �∗ is a morphism that is extended to the domain �Z as
follows:

h(· · · c−2c−1c0.c1c2 · · · ) = · · · h(c−2)h(c−1)h(c0).h(c1)h(c2) · · · .
We first consider the equation h(w) = w for two-sided infinite words.

Proposition 7.4.1 The equation h(w) = w has a solution if and only if at least one
of the following conditions holds:

(a) w ∈ FZ
h ; or

(b) w ∈ ←
hω(a)F∗

h .F
ω
h for some a ∈ �, and there exist x �∈ M∗

h , y ∈ M∗
h such that h(a) =

xay; or
(c) w ∈ ωFh .F∗

h hω(a) for some a ∈ �, and there exist x ∈ M∗
h , y �∈ M∗

h such that h(a) =
xay; or

(d) w ∈ ←
hω(a) F∗

h .F
∗
h hω(b) for some a, b ∈ �, and there exist x, z �∈ M∗

h , y, w ∈ M∗
h , such

that h(a) = xay and h(b) = wbz.

Proof. Let w = · · · c−2c−1c0.c1c2c3 · · · . By definition, we have

h(w) = · · · h(c−2)h(c−1)h(c0).h(c1)h(c2)h(c3) · · · ,
so if h(w) = w, then we have h(c1c2c3 · · · ) = c1c2c3 · · · and h(· · · c−2c−1c0) =
· · · c−2c−1c0.

We may now apply Theorem 7.3.1 (Theorem 7.3.2) to R(w) = c1c2c3 · · · (to
L(w) = · · · c−2c−1c0). There are 2 cases to consider for each side, giving 2 × 2 = 4
total cases. �

Example 7.4.2 Let µ be the Thue–Morse morphism, which maps 0 → 01
and 1 → 10. Define g = µ2. Then g(0) = 0110, g(1) = 1001. Let t =
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01101001 · · · , the one-sided Thue–Morse infinite word. Then there are exactly 4
two-sided infinite fixed points of g, as follows:

tR.t = · · ·10010110.01101001 · · · ,
tR
.t = · · ·01101001.01101001 · · · ,

tR
.t = · · ·01101001.10010110 · · · ,

tR.t = · · ·10010110.10010110 · · · .
All of these fall under case (d) of Proposition 7.4.1. Incidentally, all four of these
words are overlap-free.

Now we characterize the two-sided infinite fixed points of a morphism in the
“unpointed” case. That is, our goal is to characterize the solutions to h(w) ∼ w.
The following theorem is the first of our two main results.

Theorem 7.4.3 Let h be a morphism. Then the two-sided infinite word w satisfies
the relation h(w) ∼ w if and only if at least one of the following conditions holds:

(a) w ∼ FZ
h ; or

(b) w ∼ ←
hω(a) . Fω

h for some a ∈ �, and there exist x �∈ M∗
h and y ∈ M∗

h such that h(a) =
xay; or

(c) w ∼ ωFh .hω(a) for some a ∈ �, and there exist x ∈ M∗
h and y �∈ M∗

h such that h(a) =
xay; or

(d) w ∼ ←
hω(a) . F∗

h hω(b) for some a, b ∈ � and there exist x, z �∈ M∗
h , y, w ∈ M∗

h , such
that h(a) = xay and h(b) = wbz; or

(e) w ∼
←→
hω;i (a) for some a ∈ �, and there exist x, y �∈ M∗

h such that h(a) = xay with
|xa| = i ; or

(f) w = (xy)Z for some x, y ∈ �+ such that h(xy) = yx.

Before we begin the proof of Theorem 7.4.3, we state three useful lemmas.

Lemma 7.4.4 Suppose w, x are 2 two-sided infinite words with w ∼ x, and suppose
h is a morphism. Then h(w) ∼ h(x).

Proof. Left to the reader as Exercise 2. �

Our second lemma concerns periodicity of infinite words. We say a two-sided
infinite word

w = · · · c−2c−1c0.c1c2 · · ·
is periodic if there exists a nonempty word x such that w = xZ, i.e., if there exists
an integer p ≥ 1 such that w = S p(w). The integer p is called a period of w.
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Lemma 7.4.5 Suppose w = · · · c−2c−1c0.c1c2 · · · is a two-sided infinite word such
that there exists a one-sided right-infinite word x and infinitely many negative
indices 0 > i1 > i2 > · · · such that

x = ci j ci j+1ci j+2 · · ·
for j ≥ 1. Then w is periodic.

Proof. Left to the reader as Exercise 1.5. �

Our third lemma concerns the growth functions of iterated morphisms.

Lemma 7.4.6 Let h : �∗ → �∗ be a morphism. Then

(a) there exist integers i, j with 0 ≤ i < j and |hi (w)| ≤ |h j (w)| for all w ∈ �∗; and
(b) there exists an integer M, depending only on k = Card �, such that for all h : �∗ →

�∗, there exists i, j with 0 ≤ i < j < M such that |hi (w)| ≤ |h j (w)| for all w ∈ �∗.

Proof. (a): Suppose � = {a1, a2, . . . , ak}. First, choose i1,1 to be the
least index such that |hi1,1 (a1)| = mini≥0 |hi (a1)|. Next, successively choose
i1,2, i1,3, i1,4, . . . such that |hi1,n+1 (a1)| = mini>i1,n |hi (a1)| for n ≥ 1. Clearly
|hi1,n (a1)| ≤ |hi1,n+1 (a1)| for all n ≥ 1. Let S1 = {i1,1, i1,2, i1,3, . . . }.

Now, choose i2,1 to be the least index i ∈ S1 such |hi2,1 (a2)| = mini∈S1 |hi (a2)|.
Next, successively choose i2,2, i2,3, i2,4, . . .∈ S1 such that |hi2,n+1 (a2)| =
mini∈S1;i>i2,n |hi (a2)| for n ≥ 1. Clearly |hi2,n (a j )| ≤ |hi2,n+1 (a j )| for j = 1, 2 and
all n ≥ 1. Let S2 = {i2,1, i2,2, i2,3, . . . }. Note that S2 ⊆ S1.

Continuing in this fashion, we produce an infinite sequence of indices ik,1, ik,2,

ik,3, . . . such that |hik,n (a j )| ≤ |hik,n+1 (a j )| for j = 1, 2, . . . , k and all n ≥ 1. We can
then choose i = ik,1 and j = ik,2.

(b): In fact, we can take M = 2k ; see Exercise 8.9. �

Now we can prove Theorem 7.4.3.

Proof. ⇐=: Suppose case (a) holds, and w ∼ FZ
h . Then there exists x ∈ FZ

h with
w ∼ x. Since x ∈ FZ

h , we can write x = · · · x−2x−1x0.x1x2 · · · , where xi ∈ Fh for
all i ∈ Z. Since xi ∈ Fh , we have h(xi ) = xi for all i ∈ Z. It follows that h(x) = x.
Now, applying Lemma 7.4.4, we conclude that h(w) ∼ h(x) = x ∼ w.

Next, suppose case (b) holds, and w ∼ ←
hω(a).Fω

h . Then w ∼ x for some x of the
form

x =
←
hω(a).x1x2x3 · · · ,

where xi ∈ Fh for all i ≥ 1, and h(a) = xay with x �∈ M∗
h and y ∈ M∗

h . Then we
have h(x) = x, and by Lemma 7.4.4, we conclude that h(w) ∼ h(x) = x ∼ w.
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cs(1)cs(0)+1 . . . . . .cs(0)cs(−1)+1 . . .. . .

c1 c2c0c−1. . . . . .

h

w =

w =h(   ) 

Figure 7.1: Interpretation of the Function s.

Cases (c) and (d) are similar to case (b).

For case (e), if w ∼
←→
hω;i (a), then by Lemma 7.4.4 we have

h(w) ∼ h(
←→
hω;i (a))

= · · · h3(w) h2(w) h(w) . h(a)h(x)h2(x)h3(x) · · ·
= · · · h3(w) h2(w) h(w) . xayh(x)h2(x)h3(x) · · ·
∼ · · · h3(w) h2(w) h(w) x . ayh(x)h2(x)h3(x) · · ·
=

←→
hω;i (a)

∼ w.

Finally, if case (f) holds, then

h(w) = h(· · · xyxy.xyxy · · · ) = · · · yxyx .yxyx · · · ,
and so h(w) = Sk(w) for k = |x |.

=⇒: Suppose w = · · · c−2c−1c0.c1c2 · · · , and there exists k such that h(w) =
Sk(w). Define

s(i) :=
{
|h(c1c2 · · · ci )| + k if i ≥ 0,

k − |h(ci+1ci+2 · · · c0)| if i < 0.
(7.8)

Then it is not hard to see that

h(ci ) = cs(i−1)+1 · · · cs(i) (7.9)

for i ∈ Z; see Figure 7.1. Note that s(0) = k.
We define the set C as follows: C = {i ∈ Z : s(i) = i}. Our argument is divided

into two major cases, depending on whether or not C is empty.

Case 1: C �= ∅. In this case, there exists j such that s( j) = j . Now consider the
pointed word x = · · · c j−2c j−1c j .c j+1c j+2 · · · . We have x ∼ w, and by Eq. (7.9)
we have h(x) = x. Then, by Proposition 7.4.1, one of cases (a)–(d) must hold.

Case 2: C = ∅. There are several subcases to consider.
Case 2a: There exist integers i, j with i < j such that

s(i) > i but s( j) < j. (7.10)

Among all pairs (i, j) satisfying (7.10), choose one with j − i minimal. Suppose



7.4 Two-Sided Infinite Fixed Points 223

there exists an integer k with i < k < j . If s(k) < k, then (i, k) is a pair satisfying
(7.10) with smaller difference, while if s(k) > k, then (k, j) is a pair satisfying (7.10)
with smaller difference. Hence s(k) = k. But this is impossible by our assumption.
It follows that j = i + 1. Then s(i) > i , but s(i + 1) < i + 1, a contradiction, since
s(i) ≤ s(i + 1). Hence this case cannot occur.

Case 2b: There exists an integer r such that s(i) < i for all i < r , and s(i) > i
for all i ≥ r . Then h(cr ) = cs(r−1)+1 · · · cs(r ), which by the inequalities contains
cr−1cr cr+1 as a subword. Therefore, letting a = cr , it follows that

w ∼ u x . a y v,

where u = · · · cs(r−1)−1cs(r−1) is a left-infinite word, x = cs(r−1)+1 · · · cr−1 and y =
cr+1 · · · cs(r ) are finite words, and v = cs(r )+1cs(r )+2 · · · is a right-infinite word.
Furthermore, we have h(ux) = u, h(a) = xay, and h(yv) = v.

Now the equation h(yv) = v implies that h(y) is a prefix of v, and by an easy
induction we have h(y)h2(y)h3(y) · · · is a prefix of v. Suppose this prefix is fi-
nite. Then y ∈ M∗

h , and so h(y)h2(y)h3(y) · · · = h(y)h2(y) · · · ht (y), where t =
exp(h). Define z = h(y)h2(y) · · · ht (y); then h(yz) = z. Now w[1..r + |y| + |z|] =
w[1..s(r − 1)]xayz, and h(w[1..s(r − 1)]xayz) = w[k + 1..s(r − 1)]xayz. It fol-
lows that s(r + |y| + |z|) = r + |y| + |z|, a contradiction, since we have assumed
C = ∅. It follows that z := h(y)h2(y)h3(y) · · · is right-infinite and hence y �∈ M∗

h .
By exactly the same reasoning, we find that · · · h3(x) h2(x) h(x) is a left-infinite

suffix of u. We conclude that w ∼
←→
hω;i (a), and hence case (e) holds.

Case 2c: s(i) > i for all i ∈ Z. Let w = · · · c−2c−1c0.c1c2 · · · .
Now consider the following factorization of certain conjugates of w, as follows:

for i ≤ 0, we have w ∼ xi yi . zi , where xi = · · · ci−2ci−1 (a left-infinite word), yi =
ci · · · cs(i−1) (a finite word), and zi = cs(i−1)+1cs(i−1)+2 · · · (a right-infinite word).
Note that i − 1 < s(i − 1) by assumption, so i ≤ s(i − 1); hence yi is nonempty.
Evidently we have

h(xi ) = xi yi ,
(7.11)

h(yi zi ) = zi .

Now the equation h(yi zi ) = zi implies that h(yi ) is a prefix of zi . Now an easy
induction, as in case 2b, shows that v := h(yi )h2(yi )h3(yi ) · · · is a prefix of zi .
If v were finite, then we would have yi ∈ M∗

h , and so h(w[i.. j]) = h(yiv) = v.
Thus s( j) = j for j = s(i − 1) + |v|, a contradiction, since C = ∅. Hence v is
right-infinite, and so yi �∈ M∗

h . There are now two further subcases to consider: (i)
supi≤0(s(i) − i) < +∞, and (ii) supi≤0(s(i) − i) = +∞.

Case 2c(i): Suppose supi≤0(s(i) − i) = d < +∞. It then follows that |yi | ≤ d.
Hence there is a finite word u such that yi = u for infinitely many indices i ≤ 0.
From the above argument we see that the right-infinite word h(u)h2(u)h3(u) · · · is
a suffix of w, beginning at position s(i − 1) + 1, for infinitely many indices i ≤ 0.
We now use Lemma 7.4.5 to conclude that w is periodic.
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Thus we can write w = · · · c−2c−1c0.c1c2 · · · , and w = · · · vvv.vvv · · · , where
v = c1c2 · · · cp for some integer p ≥ 1. Without loss of generality, we may assume
p is minimal.

We claim |h(v)| = p. For if not we must have |h(v)| = q, for q �= p, and then,
since h(w) ∼ w, we would have that w is periodic with periods p and q, hence
periodic of period gcd(p, q). But since p was minimal, we must have p | q. Hence
q ≥ 2p. Now let s(p) = l; since s(i) > i for all i , we must have l > 0. Then

h(c1c2 · · · cp) = cs(0)+1 · · · cs(p) = cl−q+1 · · · cl .

It now follows that

s(i p) = l − q + iq (7.12)

for all integers i . Now p < q, so p ≤ q − 1, and hence p < q − 1 + q/ l. Hence,
multiplying by −l, we get −lp > l − ql − q. Now take i = −l in Eq. (7.12); we
obtain

s(−lp) = l − q − lq < −lp,

a contradiction, since s(i) > i for all i . It follows that |h(v)| = p.
Recall that h(c1c2 · · · cp) = ck+1ck+2 · · · ck+p. Using the division theorem, write

k = j p + r , where 0 ≤ r < p. Define

y = ck+1 · · · c( j+1)p = cr+1 · · · cp,

x = c( j+1)p+1 · · · ck+p = c1 · · · cr .

We have h(xy) = yx and v = xy. Then w = vZ = (xy)Z.
By the above we know |v| ≥ 1, so xy �= ε. Suppose y = ε. Then h(x) = x , and

so x ∈ F∗
h . It follows that w ∈ FZ

h . A similar argument applies if x = ε. However,
if w ∈ FZ

h , then C �= ∅, a contradiction. Thus x, y �= ε, and case (f) holds.
Case 2c(ii): supi≤0(s(i) − i) = +∞. Recall that s(i) > i for all i ∈ Z and w =

· · · c−2c−1c0.c1c2 · · · . Define

x := · · · c−2c−1c0,

y := c1c2 · · · cs(0),

z := cs(0)+1cs(0)+2 · · · .
Then w = x.yz and h(x) = xy, h(yz) = z.

For all integers n define B j (n) := s j (n) − s j−1(n), where s j denotes the j-fold
composition of the function s with itself. First we prove the following technical
lemma.

Lemma 7.4.7 For all integers r, t ≥ 1 there exists an integer n ≤ 0 such that
B j (n) > r for 1 ≤ j ≤ t .
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Proof. By induction on t . For t = 1 the result follows, since

sup
i≤0

B1(i) = sup
i≤0

(s(i) − i) = +∞.

Now assume the result is true for t ; we prove it for t + 1. Define m :=
maxa∈� |h(a)|. By induction there exists an integer n1 such that B j (n1) > mr +
mt+1 for 1 ≤ j ≤ t . Then, by the definition of m there exist an integer n2 ≤ n1 with
n1 − n2 < m, and an integer n3 such that s(n3) = n2.

Now h(cn3+1 · · · cn2 ) = cs(n3)+1 · · · cs(n2), so s(n2) − s(n3) ≤ m(n2 − n3). Simi-
larly, we have

s j (n2) − s j (n3) ≤ m j (n2 − n3) (7.13)

for all j ≥ 0. By the same reasoning, we have

s j (n1) − s j (n2) ≤ m j (n1 − n2) ≤ m j (m − 1) (7.14)

for all j ≥ 0. Thus we find

B1(n3) = s(n3) − n3

= n2 − n3

≥ s(n2) − s(n3)

m
(by Eq. (7.13))

= s(n2) − n2

m

= (s(n1) − n1) − ((s(n1) − s(n2)) − (n1 − n2))

m

= B1(n1) − ((s(n1) − s(n2)) − (n1 − n2))

m

>
mr + mt+1 − m(m − 1)

m
(by induction and Eq. (7.14))

> r.

Similarly, for 2 ≤ j ≤ t + 1, we have

B j (n3) = s j (n3) − s j−1(n3)

= s j−1(n2) − s j−2(n2)

= (s j−1(n1) − s j−2(n1))

−((s j−1(n1) − s j−1(n2)) − (s j−2(n1) − s j−2(n2)))

= B j−1(n1) − ((s j−1(n1) − s j−1(n2)) − (s j−2(n1) − s j−2(n2)))

> mr + mt+1 − m j−1(m − 1) (by Eq. (7.14))

≥ r.

It thus follows that we can take n = n3. This completes the proof of Lemma 7.4.7.
�
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Now let M be the integer specified in Lemma 7.4.6, and define r :=
sup1≤i≤M Bi (0). By Lemma 7.4.7 there exists an integer n ≤ 0 such that B j (n) > r
for 1 ≤ j ≤ M . Define w := cn+1 · · · c0. We have

|h j (w)| = s j (0) − s j (n),

|h j−1(w)| = s j−1(0) − s j−1(n).

It follows that

|h j (w)| = (s j (0) − s j−1(0)) − (s j (n) − s j−1(n)) + |h j−1(w)|
= B j (0) − B j (n) + |h j−1(w)|
< B j (0) − r + |h j−1(w)|
≤ |h j−1(w)|

for 1 ≤ j ≤ M . But this contradicts Lemma 7.4.6. This contradiction shows that
case 2c(ii) cannot occur.

Case 2d: s(i) < i for all i ∈ Z. This case is the mirror image of case 2c,1 and
the proof is identical. The proof of Theorem 7.4.3 is complete. �

Example 7.4.8 Consider the morphism f defined by a → bb, b → ε, c → aad,
d → c. Let

w = · · ·aadbbbbcaadbbbbc.aadbbbbcaadbbbbc · · · .
Then

f (w) = · · ·bbbbcaadbbbbcaad.bbbbcaadbbbbcaad · · · .
This falls under case (f) of Theorem 7.4.3, with x = bbbbc and y = aad.

Example 7.4.9 Consider the morphism ϕ defined by 0 → 201, 1 → 012, and
2 → 120. Then if

w =
←→
ϕω;2 (0) = · · · c−2c−1.c0c1c2 · · · = · · ·1202.01012 · · · ,

we have ϕ(w) ∼ w. This falls under case (e) of Theorem 7.4.3. Incidentally, ci

equals the sum of the digits, modulo 3, in the balanced ternary representation of i ;
see Example 6.7.1.

7.5 More on Infinite Fixed Points

We start with the following theorem, which shows that every infinite fixed point of
the form gω(a) is the image (under a coding) of a nonerasing morphism.

1 Note that s(i) > i for all i implies that s(i − 1) > i − 1. Therefore s(i − 1) + 1 > i , and hence case 2d really
is the mirror image of case 2c.
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Theorem 7.5.1 Suppose g : �∗ → �∗ is a morphism prolongable on the letter
a ∈ �. Then there exists an alphabet �, a letter b ∈ �, a nonerasing morphism
f : �∗ → �∗, and a coding h : � → � such that gω(a) = h( f ω(b)).

Proof. Let � = {a1, a2, . . . , ar } and let a = a1.
By Lemma 7.4.6 there exist non-negative integers j, k with j < k such that

|g j (ai )| ≤ |gk(ai )| for 1 ≤ i ≤ r . Now for 1 ≤ i ≤ r define ti = |g j (ai )|. Let � =
{bi,m : 1 ≤ i ≤ r, 1 ≤ m ≤ ti }, where the bi,m are new symbols.

Let ϕ : �∗ → �∗ be the map sending ai to bi,1bi,2 · · · bi,ti . Then |ϕ(w)| =
|g j (w)| for all w ∈ �∗. Now gk(ai ) = g j (gk− j (ai )), so

|ϕ(gk− j (ai ))| = |g j (gk− j (ai ))| = |gk(ai )| ≥ |g j (ai )| = ti .

Hence ϕ(gk− j (ai )) can be arbitrarily decomposed as the product of ti nonempty
words, say

ϕ(gk− j (ai )) = wi,1wi,2 · · · wi,ti .

Since |g j (a1)| < |gk(a1)|, we may choose w1,1 such that |w1,1| ≥ 2. Now let f :
�∗ → �∗ be the map that sends bi,m to wi,m . Note that b1,1 is a prefix of w1,1, and
so f is prolongable on b1,1. By our construction, f is nonerasing, and we see that
f ◦ ϕ = ϕ ◦ gk− j . Hence, applying f to both sides, we see that

f 2 ◦ ϕ = f ◦ ϕ ◦ gk− j

= ϕ ◦ gk− j ◦ gk− j

= ϕ ◦ g2(k− j).

Similarly, we get

f n ◦ ϕ = ϕ ◦ gn(k− j) (7.15)

for all n ≥ 0.
Now define the coding h : � → � to send bi,m to the mth symbol of g j (ai ). We

see that

h ◦ ϕ = g j . (7.16)

Hence we have

h ◦ f n ◦ ϕ = h ◦ ϕ ◦ gn(k− j) (by Eq. (7.15))

= g j ◦ gn(k− j) (by Eq. (7.16))

= g j+n(k− j)

for all n ≥ 0. In particular, then,

h( f n(ϕ(a1))) = g j+n(k− j)(a1). (7.17)
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for all n ≥ 0. But ϕ(a1) = b1,1 · · · b1,t1 . Hence, letting n → ∞ in (7.17), and re-
calling that f is nonerasing and | f (b1,1)| ≥ 2, we see

h( f ω(b1,1)) = gω(a1).

Take b = b1,1. This completes the proof. �

Example 7.5.2 Consider the morphism g sending 0 → 01, 1 → 202, and 2 → ε.
Hence

gω(0) = 012020101202 · · · .
We find

i g0(i) g1(i) g2(i) g3(i)

0 0 01 01202 0120201
1 1 202 01 01202
2 2 ε ε ε

Thus we may take j = 1, k = 3. We then have ϕ(0) = b01b02, ϕ(1) = b11b12b13,
and ϕ(2) = ε. Then ϕ(g2(0)) = b01b02b11b12b13b01b02, so we can (arbitrar-
ily) choose w01 = b01b02b11 and w02 = b12b13b01b02. Similarly, ϕ(g2(1)) =
b01b02b11b12b13, so we can choose w11 = b01b02, w12 = b11, and w13 = b12b13.
Now define f (b01) = w01, f (b02) = w02, f (b11) = w11, f (b12) = w12, and
f (b13) = w13. Also set h(b01) = 0, h(b02) = 1, h(b11) = 2, h(b12) = 0, h(b13) =
2. We have

f ω(b01) = b01b02b11b12b13b01b02b01b02 · · ·
and hence

h( f ω(b01)) = 012020101 · · · .

7.6 Closure Properties

We next turn to the closure properties of morphic sequences. In particular, this class
of words is closed under shifts. We first consider the case of a left shift.

Theorem 7.6.1 Let g : �∗ → �∗ be a morphism prolongable on a letter a ∈ �.
Let τ : � → � be a coding, and write τ (gω(a)) = a0a1a2 · · · . Then there exists an
alphabet !, a morphism h : !∗ → !∗ prolongable on a letter c ∈ !, and a coding
ρ : ! → � such that ρ(hω(c)) = a1a2a3 · · · .

Proof. We have gω(a) = a x g(x) g2(x) g3(x) · · · for some x �∈ M∗
g . Let x = by

with b ∈ � and y ∈ �∗.



7.6 Closure Properties 229

Let c �∈ � be a new symbol, and define! = � ∪ {c}. Let h : !∗ → !∗ be defined
by

h(d) =
{

g(d) if d ∈ �,

c y g(b) if d = c.

Then we have

hω(c) = c y g(b) g(y) g2(b) g2(y) g3(b) · · ·
= c y g(x) g2(x) g3(x) · · · .

Note that x �∈ M∗
g , so either b �∈ Mg or y �∈ M∗

g . Hence yg(b) �∈ M∗
g , so h is pro-

longable on c.
Now define ρ : ! → � as follows:

ρ(d) =
{
τ (d) if d ∈ �,

τ (b) if d = c.

It follows that

ρ(hω(c)) = S(τ (gω(a))),

where S is the shift function. �

Example 7.6.2 Consider the Thue–Morse word t, generated by the map 0 → 01,
1 → 10. Then S(t) can be generated as the image under ρ of the fixed point of
2 → 210, 0 → 01, 1 → 10, where ρ maps 2 → 1, 1 → 1, and 0 → 0.

Next, we consider the case of a right shift.

Theorem 7.6.3 Let g : �∗ → �∗ be a morphism prolongable on a letter a ∈ �.
Let τ : � → � be a coding, and write τ (gω(a)) = x. Letw ∈ �∗. Then there exists
an alphabet!, a morphism h : !∗ → !∗ prolongable on a letter c ∈ !, and a coding
ρ : ! → � such that ρ(hω(c)) = w x.

Proof. Let w = b1b2 · · · br . Introduce r + 1 new symbols c1, c2, . . . , cr , c �∈ �,
and set ! = � ∪ {c1, c2, . . . , cr , c}. Define

h(d) =






c1 c2 · · · cr c if d = c1,

ε if d = ci with 2 ≤ i ≤ r,

x if d = c,

g(d) if d ∈ �.

Since g is prolongable on a, we have

gω(a) = a x g(x) g2(x) · · ·
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for some x �∈ M∗
g , and by construction

hω(c1) = c1 c2 · · · cr c x g(x) g2(x) · · · .
Finally, define ρ : ! → � as follows:

ρ(d) =






bi if d = ci ,

τ (a) if d = c,

τ (d) if d ∈ �.

It follows that

ρ(hω(c1)) = w1w2 · · · wrτ (gω(a)) = w x. �

Finally, we show that the class of morphic words is closed under direct product
with a shift of the original word.

Theorem 7.6.4 Let g : �∗ → �∗ be a morphism prolongable on the letter a ∈ �.
Let τ : � → � be a coding, and write τ (gω(a)) = a0a1a2 · · · . Then there exists an
alphabet !, a morphism h : !∗ → !∗ prolongable on a letter c ∈ !, and a coding
ρ : ! → �×� such that ρ(hω(c)) = [a0, a1][a1, a2][a2, a3] · · · .

Proof. By Theorem 7.5.1 we may, without loss of generality, assume that g is non-
erasing. Suppose gω(a) = b0b1b2 · · · .

Let ! = � ×�. Intuitively speaking, the meaning of the ordered pair [c, d] is
“the symbol c is followed by d”. If g(c) = c1c2 · · · cr and g(d) = d1d2 · · · ds , then
we define h([c, d]) = [c1, c2][c2, c3] · · · [cr , d1]. Let ρ([c, d]) = [τ (c), τ (d)], and
define a′ = [b0, b1].

Now it is easy to see that if gn(a) = b0b1b2 · · · bt for some n ≥ 1, then

hn(a′) = [b0, b1][b1, b2][b2, b3] · · · [bt , bt+1].

From this the result easily follows. �

Example 7.6.5 Consider the Fibonacci word on {a,b}. It is generated by a → ab
and b → a. Writing the pairs [c, d] in the proof of Theorem 7.6.4 as cd , we get the
following morphism h:

ab → abba,

ba → aa,

aa → abba.

If we now define τ (cd) = d for c, d ∈ {a,b}, then τ (hω(ab)) generates the shifted
Fibonacci word.
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Theorem 7.6.6 The class of words that are images of fixed points of morphisms is
not closed under direct product.

Proof. (Sketch.) Let α, β, γ be any three linearly independent quadratic irrationals
with purely periodic continued fraction expansion, and consider the associated
Sturmian words (see Chapter 9). These are generated as the fixed points of mor-
phisms. However, the direct product of the three words has subword complexity
(n + 1)3, which means it cannot be generated as the image of a fixed point of a
morphism; see Corollary 10.4.9. �

7.7 Morphic Images of Morphic Words

In this section we prove a result that generalizes Theorem 7.5.1: namely, that if
f and g are arbitrary morphisms with f (gω(a)) an infinite word, then there exists
a nonerasing morphism h and a coding τ such that f (gω(a)) = τ (hω(a)). This is
Corollary 7.7.5.

Theorem 7.7.1 Let u = (un)n≥0 be a sequence defined on a finite alphabet �. Let
e = Card �. Then the following conditions are equivalent:

(a) the sequence u is morphic;
(b) the sequence u is morphic, and the morphism that generates it can be taken to be

nonerasing;
(c) there exist an integer d > 1 and d-automatic sets S1, . . . , Se such that if T = ⋃e

j=1

Sj = {t1, t2, . . . } and t1 < t2 < · · · , then T is infinite, and for all a ∈ �, un = a if and
only if tn ∈ Sa;

(d) there exist a finite alphabet �′ = � ∪ {�} with � /∈ �, an integer d > 1, and a d-
automatic sequence z (defined over �′) that is not ultimately equal to �, and such that
the sequence u equals the sequence obtained from z by erasing all occurrences of the
letter �.

Proof. (a) ⇔ (b): proved in Theorem 7.5.1.
(c) ⇒ (d): We note that the set N \ T is d-automatic (see Theorem 5.6.3). Next,

we introduce a new letter � that does not belong to �, and we define the sequence
z = (zn)n≥0 on the alphabet �′ = � ∪ {�} as follows:

zn =
{

un for all n ∈ T ,

� for all n ∈ N \ T .

Since the sets Si and N \ T are d-automatic, it follows that the sequence z is d-
automatic.

(d) ⇒ (c): It suffices to define the sets Si as the sets where the sequence z is
constant and not equal to the letter �.
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(a)⇒ (d): It suffices to prove that every pure morphic sequence v can be obtained
by erasing all occurrences of a given letter in some automatic sequence. Let � be a
finite alphabet, µ be a morphism prolongable on a letter a ∈ �, and let v = µω(a).
Let h = max{|µ(b)| : b ∈ �}. Take a new letter � not in�, and define the morphism
ϕ on �′ = � ∪ {�} as follows:

ϕ(b) =
{
µ(b)�h−|µ(b)| if b ∈ �,

bh if b �∈ �.

Then ϕ is a morphism of length h that is prolongable on a. Furthermore, the se-
quence obtained from ϕω(a) by erasing all occurrences of the letter � is equal to the
sequence v.

(d) ⇒ (b): Proved below in the more general Theorem 7.7.4. �

Before stating the next theorem, we need some definitions and a lemma.

Definition 7.7.2 Let µ be a morphism on the finite alphabet �, and let ! ⊆ �. We
classify the letters in � into three types, as follows. We say that a letter x ∈ � is

(µ,!)-dead if for all k ≥ 0 the word µk(x) ∈ !∗. (Of course, any dead letter belongs to !,
and for any dead letter x and for any k ≥ 0, all letters of µk(x) are also (µ,!)-dead.)
(µ,!)-moribund if there exists k ≥ 0 such that the word µk(x) contains at least one letter
in � \ !, and for all j > k, the word µ j (x) ∈ !∗.
(µ,!)-robust if there exist infinitely many k ≥ 0 such that the word µk(x) contains at least
one letter in � \ !.

Remark. If ! = ∅, the definition above gives:

there is no (µ,∅)-dead letter;
a letter is (µ,∅)-moribund if and only if it is mortal (see Section 1.4);
a letter is (µ,∅)-robust if and ony if it is immortal (see Section 1.4).

Lemma 7.7.3 Let µ be a morphism defined on the alphabet �. Let ! ⊆ �. Then
there exists an integer T ≥ 1 such that the morphism ϕ = µT satisfies the following
properties:

(a) If x is (ϕ, !)-moribund, then for all j > 0 the word ϕ j (x) contains only (ϕ, !)-dead
letters. Furthermore x ∈ � \ !.

(b) If x is (ϕ, !)-robust, then for all j > 0 the word ϕ j (x) contains at least one letter in
� \ !.

Proof. For all j ≥ 0 let U ( j) = {x ∈ � : µ j (x) contains at least one letter in
� \ !}. We note that x ∈ U ( j + 1) if and only ifµ(x) contains at least one letter that
belongs to U ( j). Hence, if U ( j) = U (k), then U ( j + 1) = U (k + 1). Since all the
sets U ( j) are subsets of �, the sequence of sets (U ( j)) j≥0 is ultimately periodic.
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Then there exists some multiple T of the period such that U (T ) = U (2T ) = · · · =
U (kT )= · · · . Define ϕ = µT .

(a): If x is (ϕ, !)-moribund, then there exists k such that ϕk(x) contains at least
one letter in � \ !, and for all j > k the word ϕ j (x) contains only letters in !.
Since ϕk = µkT , we see that x ∈ U (kT ). If k �= 0, this implies x ∈ U (T ) =
U (2T ) = · · · . Hence for all j > k, the word ϕ j (x) = µ jT (x) contains at least one
letter in � \ !, which is not the case. Hence k = 0, and thus x ∈ � \ !.

(b): If x is (ϕ, !)-robust, then there exist infinitely many k’s such that ϕk(x)
contains at least one letter that belongs to� \ !. Choose such a k > 0. ThenµkT (x)
contains at least one letter belonging to � \ !. This means x ∈ U (kT ). Hence, as
above, x ∈ U ( jT ) for all j > 0, which is exactly our claim. �

We are now ready for our next theorem.

Theorem 7.7.4 Let u be a morphic sequence defined on the finite alphabet �. Let
! ⊆ �. Let v be the sequence obtained from u by erasing all occurrences of the
letters belonging to !. Then the sequence v is either finite or morphic.

Proof. First we give two reductions of the problem, and next we give the proof of
the restricted case.

First reduction. We can suppose that the sequence u is itself a pure morphic
sequence, and the first letter of u does not belong to !. For if all letters of the
sequence u are in !, the sequence obtained by erasing them is empty, hence finite,
and we are done. Otherwise the sequence begins with, say, k letters that are in !,
followed by a letter not in !. The sequence obtained by shifting the sequence u k
times is still morphic (by Theorem 7.6.1). Thus it is the image under a coding, say
τ , of some pure morphic sequence, say v. It now suffices to prove that the sequence
obtained from v by erasing the letters in the set τ−1(!) is morphic.

Second reduction. Up to replacing the morphism by a power (that is still pro-
longable on the same letter, and generates the same fixed point), we can suppose
that the morphism µ that generates u has the properties listed for ϕ in Lemma 7.7.3
above.

Proof of the restricted case. We now suppose we have a morphism µ on the
finite set �, and it is prolongable on a0 ∈ �. We have a subset ! ⊆ � that does not
contain the letter a0. The morphism µ and the set ! have the properties listed in
Lemma 7.7.3 above. We define the morphisms λ�, λM , and λ!, by

if b is (µ,!)-dead, then λ�(b) = ε, otherwise λ�(b) = b;
if b is (µ,!)-moribund, then λM (b) = ε, otherwise λM (b) = b;
if b ∈ !, then λ!(b) = ε, otherwise λ!(b) = b.

We know from the hypotheses on µ that, for any b that is (µ,!)-robust, the word
µ(b) contains at least one letter in � \ !. Since any (µ,!)-dead letter clearly
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belongs to !, we thus have that λ�(µ(b)) contains at least one letter in � \ !.
Define, for each b that is (µ,!)-robust,

λ�(µ(b)) := w(b, 1)w(b, 2) · · · w(b, �b),

where each of the words w(b, i) contains exactly one letter in � \ !. Of course
�b ≥ 1. Now any of the words λ!(w(b, i)) consists of a single letter (and this letter
belongs to � \ !). Let a(b, i) := λ!(w(b, i)) be this letter.

For each (µ,!)-robust letter b, and for each i with 1 ≤ i ≤ �b, write

λM (w(b, i)) = c(b, i, 1)c(b, i, 2) · · · c(b, i, nb,i ),

where the c(b, i, j)’s are letters in �. Since a moribund letter is in � \ !, we know
that λM (w(b, i)) either is equal to w(b, i), or is obtained from w(b, i) by erasing
exactly one moribund letter. Note that λM (w(b, i)) may be empty; this is the case
if and only if w(b, i) contains exactly one letter that is moribund.

We note the easy commutation relations

λ! ◦ λ� = λ!,

λ� ◦ µn ◦ λM = λ� ◦ µn for all n > 0,

λ! ◦ µn ◦ λM = λ! ◦ µn for all n > 0,

λ! ◦ µk ◦ λ� = λ! ◦ µk for all k ≥ 0.

The first one is a consequence of the fact that any dead letter belongs to !. The
second one is clear for any non-moribund letter, whereas both sides give ε for a
moribund letter (remember that µ satisfies the hypotheses of the second reduction
step). The third relation is an easy consequence of the first two. The last relation is
clear for any non-dead letter, whereas both sides give ε for a dead letter.

We now define an alphabet A of new symbols associated with the words w(b, i),
by

A = {α(b, i) : b is (µ,!)-robust, 1 ≤ i ≤ �b}.

Note that Card A = ∏
b �b, where b runs through the (µ,!)-robust letters.

We define, for each (µ,!)-robust letter b, for each i and j with 1 ≤ i ≤ �b and
1 ≤ j ≤ nb,i , the words z(b, i, j) on the alphabet A by

z(b, i, j) = α(c(b, i, j), 1)α(c(b, i, j), 2) · · · α(c(b, i, j), �c(b,i, j)).

We finally define the morphism θ on A, and the map p from A to � as follows: for
all b that is (µ,!)-robust, for all i with 1 ≤ i ≤ �b,

θ (α(b, i)) = z(b, i, 1)z(b, i, 2) · · · z(b, i, nb,i ),

p(α(b, i)) = a(b, i).
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We prove by induction on n that

(p ◦ θn)(α(b, 1)α(b, 2) · · · α(b, �b)) = (λ! ◦ µn+1)(b) (7.18)

for all (µ,!)-robust letters b. We have p(α(b, i)) = a(b, i) = λ!(w(b, i)). Hence

p(α(b, 1) · · · α(b, �b)) = a(b, 1) · · · a(b, �b) = λ!(w(b, 1)) · · · λ!(w(b, �b))
= λ!(w(b, 1) · · · w(b, �b)) = (λ! ◦ λ� ◦ µ)(b)
= (λ! ◦ µ)(b),

which gives the case n = 0 of the induction. Suppose now that, for each (µ,!)-
robust letter b, we have

(p ◦ θn)(α(b, 1)α(b, 2) · · · α(b, �b)) = (λ! ◦ µn+1)(b).

Then, for all b, i , j for which z(b, i, j) is defined, we have

(p ◦ θn)(z(b, i, j)) = (p ◦ θn)(α(c(b, i, j), 1) · · · α(c(b, i, j), �c(b,i, j)))

= (λ! ◦ µn+1)(c(b, i, j)).

Hence

(p ◦ θn)(z(b, i, 1) · · · z(b, i, nb,i )) = (λ! ◦ µn+1)(c(b, i, 1) · · · c(b, i, nb,i ))

= (λ! ◦ µn+1 ◦ λM )(w(b, i))

= (λ! ◦ µn+1)(w(b, i)).

This in turn gives

(p ◦ θn+1)(α(b, 1)α(b, 2) · · · α(b, �b)) = (p ◦ θn)(θ (α(b, 1)) · · · θ (α(b, �b)))

= (p ◦ θn)(z(b, 1, 1) · · · z(b, 1, nb,1)z(b, 2, 1) · · · z(b, 2, nb,2) · · ·
z(b, �b, 1) · · · z(b, �b, nb,�b ))

= [(λ! ◦ µn+1)(w(b, 1))][(λ! ◦ µn+1)(w(b, 2))] · · · [(λ! ◦ µn+1)(w(b, �b))]

= (λ! ◦ µn+1 ◦ λ�)(µ(b))

= (λ! ◦ µn+1)(µ(b)) = (λ! ◦ µn+2)(b).

Now, taking b = a0 in (7.18), we obtain

(p ◦ θn)(α(a0, 1)α(a0, 2) · · · α(a0, �a0 )) = (λ! ◦ µn+1)(a0).

We know that µ(a0) begins with a0, and we clearly have that a0 is (µ,!)-robust.
Hencew(a0, 1) begins with a0. This gives a(a0, 1) = a0 and c(a0, 1, 1) = a0. Hence

z(a0, 1, 1) = α(c(a0, 1, 1), 1)α(c(a0, 1, 1), 2) · · · α(c(a0, 1, 1), �c(a0,1,1))

= α(a0, 1)α(a0, 2) · · · α(a0, �a0 ).

Let

θ (α(a0, 1)) = z(a0, 1, 1)z(a0, 1, 2) · · · z(a0, 1, na0,1)

:= z(a0, 1, 1)z̃.
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We can write

p(θn+1(α(a0, 1)))

= [p(θn(z(a0, 1, 1)))][p(θn(z̃))]

= [p(θn(α(c(a0, 1, 1), 1) · · · α(c(a0, 1, 1), �c(a0,1,1))))][p(θn(z̃)))]

= [λ!(µn+1(a0))][p(θn(z̃))].

Since we know that λ!(µn+1(a0)) tends to a limit that is exactly the (infinite)
sequence obtained from u by erasing the letters that belong to !, we deduce that
p(θn+1(α(a0, 1))) has a limit, and that

p(θω(α(a0, 1))) = λ!(µω(a0)). �

Corollary 7.7.5 If a sequence is morphic, then the image of this sequence by any
morphism is either finite or morphic.

Proof. Let u be a morphic sequence defined on the finite alphabet �. Let " be a
finite alphabet, and let ϕ be a morphism ϕ : �∗ → "∗. We want to prove that the
sequence ϕ(u) is finite or morphic.

Using Theorem 7.7.1, we know that there exist a finite alphabet �′ = � ∪ {�},
with � /∈ �, an integer d > 1, and a d-automatic sequence z on �′ that is not
ultimately equal to � and is such that u = λ�(z), where λ� is the morphism defined
on �′ by

λ�(a) = a for all a ∈ �,

λ�(�) = ε.

Let e = max{|(ϕ ◦ λ�)(b)| : b ∈ �′}. Let �′ /∈ " and let "′ := " ∪ {�′}. Define
the morphism ψ : �′∗ → "′∗ by, for all a ∈ �′,

ψ(a) = [(ϕ ◦ λ�)(a)][(�′)e−|(ϕ◦λ�)(a)|].

Note that ψ is a morphism of constant length e. Denoting by λ�′ the morphism de-
fined by

λ�′(a) = a for all a ∈ ",

λ�′(�
′) = ε,

we clearly have λ�′ ◦ ψ = ϕ ◦ λ�.
Now, ϕ(u) = (ϕ ◦ λ�)(z) = (λ�′ ◦ ψ)(z). The sequence ψ(z) is the image of a

d-automatic sequence by a morphism of constant length; hence it is d-automatic
(see Corollary 6.8.3). Hence the sequence (λ�′ ◦ ψ)(z) is finite or morphic from
Theorem 7.7.4. �
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7.8 Locally Catenative Sequences

In this section we prove a theorem that shows that a large class of sequences gen-
erated by recursion is morphic.

Definition 7.8.1 We say a sequence of words (Xi )i≥0 over � is locally catenative
if there exist an integer N ≥ 0, N + 1 nonempty words X0, X1, . . . , X N , an integer
t ≥ 1, t integers 1 ≤ c1, . . . , ct ≤ N + 1, and t codings µ1, µ2, . . . , µt such that

Xn = Xn−1 µ1(Xn−c1 ) · · · µt (Xn−ct )

for all n > N .

Thus a sequence is locally catenative if it satisfies the analogue of a linear re-
currence over the rationals, where the codings µs play the role of the constant
coefficients.

Example 7.8.2 Let the Fibonacci representation of n be (n)F = et−1 · · · e0. We
define gn = (

∑
0≤i<t ei )mod2, i.e., the parity of the sum of digits of n expressed in

the Fibonacci representation. Then g = (gn)n≥0 = 01110100100011 · · · is an
analogue of the Thue–Morse sequence for Fibonacci representation.

Define X0 = 0, X1 = 01, and Xn = Xn−1 Xn−2 for n ≥ 2, where the overbar is a
morphism sending 0 → 1 and 1 → 0. Then it is easy to see that limn→∞ Xn = g.
The sequence of words (Xi )i≥0 is locally catenative, with N = 1, t = 1, c1 = 2,
and µ1 defined by the map 0 → 1, 1 → 0.

Theorem 7.8.3 Suppose (Xi )i≥0 is a locally catenative sequence of words. Then
limn→∞ Xn exists and is a morphic infinite word.

Proof. Clearly X = limn→∞ Xn exists and is infinite. Define ui = |Xi | for i ≥ 0.
To see that X is morphic, we construct a morphism ϕ, a coding τ , and a letter a
such that X = τ (ϕω(a)).

We can write

Xn =
∏

0≤s≤t

µs(Xn−cs ) (7.19)

where c0 = 1 and µ0 is defined to be the identity map.
First, consider the monoid M generated by all the codingsµs under composition.

Clearly M is finite, since the set of all functions from� to� is of finite cardinality.
Then we can write M = {λ0, λ1, . . . , λr }, where λ0 is the identity map. We also
adopt the following notation for composition of the codings: We write µh0h1 ··· hq in
place of µh0 ◦ µh1 ◦ · · · ◦ µhq , and we define µε to be the identity map.
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We now introduce some new symbols not in �, namely those in the alphabet

! = {ai, j,k : 0 ≤ i ≤ N , 0 ≤ j < ui , 0 ≤ k ≤ r}.

We also introduce “aliases” for the ai, j,k as follows: we let ai, j,k = a(h)
i, j for h ∈ T ∗

if λk = µh , where T = {0, 1, . . . , t}∗. Note that each symbol has infinitely many
aliases.

We next extend the domain of the codings µs to � ∪! as follows: we define

µl(a
(h)
i, j ) = a(lh)

i, j

for 0 ≤ i ≤ N , 0 ≤ j < ui , and 0 ≤ l ≤ t .
Now define

Y (h)
i = a(h)

i,0 · · · a(h)
i,ui−1

for 0 ≤ i ≤ N and h ∈ T ∗. It follows that µl(Y
(h)
i ) = Y (lh)

i for all l, h ∈ T ∗, 0 ≤
i ≤ N .

We define ϕ on ! implicitly by requiring that

ϕ(Y (h)
i ) = Y (h)

i+1, 0 ≤ i < N , h ∈ T ∗, (7.20)

ϕ(Y (h)
N ) =

∏

0≤s≤t

Y (hs)
N−cs+1, h ∈ T ∗. (7.21)

Of course, since we are using the aliased representation, we must check that these
definitions are consistent. This is implied by the associativity of composition. The
definitions are meaningful because each Y (h)

i is nonempty, so we are free to choose
any one of a number of possible definitions of ϕ on members of ! such that (7.20)
and (7.21) hold; the particular choice of how the Y (h)

i are partitioned is irrelevant.
Furthermore, we can also require that |ϕ(a(h)

N ,0)| ≥ 2 for all h ∈ T ∗.

Define τ (Y (h)
i ) = µh(Xi ) for h ∈ T ∗, 0 ≤ i ≤ N . We claim τ commutes with

µl for l ∈ T ∗. For we have τ (µl(Y
(h)
i )) = τ (Y (lh)

i ) = µlh(Xi ), while µl(τ (Y (h)
i )) =

µl(µh(Xi )) = µlh(Xi ).
We now claim that τ (ϕn(Y (h)

0 )) = µh(Xn) for all n ≥ 0, h ∈ T ∗. We prove this
by induction on n. For 0 ≤ n ≤ N , we have τ (ϕn(Y (h)

0 )) = τ (Y (h)
n ) = µh(Xn). Now

assume n ≥ N . Then

ϕN+1(Y (h)
0 ) = ϕ(ϕN (Y (h)

0 ))

= ϕ(Y (h)
N ) (by (7.20))

=
∏

0≤s≤t

Y (hs)
N−cs+1 (by (7.21))

=
∏

0≤s≤t

ϕN−cs+1(Y (hs)
0 ) (by (7.20)),
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so, applying ϕn−N to both sides, we get

ϕn+1(Y (h)
0 ) =

∏

0≤s≤t

ϕn−cs+1(Y (hs)
0 ) (7.22)

for all n ≥ N . Thus

τ (ϕn+1(Y (h)
0 )) = τ

(
∏

0≤s≤t

ϕn−cs+1(Y (hs)
0 )

)

(by (7.22))

=
∏

0≤s≤t

τ (ϕn−cs+1(Y (hs)
0 ))

=
∏

0≤s≤t

µhs(Xn−cs+1) (by induction)

= µh

(
∏

0≤s≤t

µs(Xn−cs+1)

)

= µh(Xn+1) (by (7.19)).

Now set h = ε, and write Y (ε)
N = a(ε)

N ,0 · · · a(ε)
N ,uN−1. We get

lim
n→∞ τ (ϕn(Y (ε)

0 )) = lim
n→∞ τ (ϕn−N (Y (ε)

N ))

= lim
n→∞ τ (ϕn−N (a(ε)

N ,0))τ (ϕn−N (a(ε)
N ,1 · · · a(ε)

N ,uN−1))

= lim
n→∞ τ (ϕn(a(ε)

N ,0)),

so, taking a = a(ε)
N ,0, we get the desired result. �

Example 7.8.4 Let us continue Example 7.8.2. We find M = {λ0, µ1}. We define

! = {a0,0, a1,0, a1,1, a′
0,0, a′

1,0, a′
1,1},

and ϕ as follows:

a0,0 → a1,0a1,1,

a1,0 → a1,0a1,1,

a1,1 → a′
0,0,

a′
0,0 → a′

1,0a′
1,1,

a′
1,0 → a′

1,0a′
1,1,

a′
1,1 → a0,0.

Define τ (a0,0) = τ (a1,0) = τ (a′
1,1) = 0 and τ (a1,1) = τ (a′

1,0) = τ (a′
0,0) = 1. Then

we have g = τ (ϕω(a1,0)).
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7.9 Transductions of Morphic Sequences

In this section we prove the analogue of Theorem 6.9.2 for morphic sequences:
namely, that the finite-state transduction of a morphic sequence is still morphic,
even if the transducer is nonuniform. More precisely, we prove the following:

Theorem 7.9.1 Let M = (Q, �, δ, q0,�, λ) be a finite-state transducer. Let x be
a morphic sequence. Then M(x) is morphic or finite.

Proof. Without loss of generality, we may assume that x is pure morphic (by ab-
sorbing the coding into M , if necessary). Let h : �∗ → �∗ be a morphism, pro-
longable on a ∈ �, such that x = hω(a). Let x = a1a2a3 · · · . For w ∈ �∗, define
τw(q) = δ(q, w). We thus have

τwx (q) = δ(q, wx) = δ(δ(q, w), x) = τx (τw(q)) = (τx ◦ τw)(q),

so τwx = τx ◦ τw for all w, x ∈ �∗.
Define θh(w) = (τw, τh(w), τh2(w), . . . ). Let

�′ = {(c, θh(w)) : c ∈ �, w ∈ �∗}.
The alphabet �′ is not finite, but we will see below that �′ can be replaced by a
finite alphabet.

Now define the morphism g : �′∗ → �′∗ as follows:

g((c, θh(w))) = d1d2 · · · dr , (7.23)

where h(c) = c1c2 · · · cr , and di = (ci , θh(h(w)c1 · · · ci−1)) for 1 ≤ i ≤ r . (Note
that we could have θh(w) = θh(w′) forw �= w′, but this does not affect the definition
of the di .) Furthermore, set y = gω((a, θh(ε))) and assume y = b1b2b3 · · · . We
claim

b j = (a j , θh(a1a2 · · · a j−1)) (7.24)

for j ≥ 1.
We first prove that Eq. (7.24) holds for 1 ≤ j ≤ |hn(a)| by induction on n. For

n = 1 this follows from the definition (7.23) and the fact that a = a1. Now suppose
n ≥ 1. Since hn+1(a) = h(hn(a)), it follows that for each j with 1 ≤ j ≤ |hn+1(a)|
there exist integers i, k, such that 1 ≤ i ≤ |hn(a)|, 1 ≤ k ≤ |h(ai )| such that

a1a2 · · · a j = h(a1a2 · · · ai−1)(h(ai ))[1..k]. (7.25)

Hence, by the definition of g, the fact that y = g(y), and the fact that
|g((c, θh(w)))| = |h(c)| for c ∈ �, w ∈ �∗, we get

b1b2 · · · b j = g(b1b2 · · · bi−1)(g(bi ))[1..k]. (7.26)
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Then we have

b j = g(bi )[k]

= (g((ai , θh(a1a2 · · · ai−1))))[k] (by (7.24) and induction)

= (h(ai )[k], θh(h(a1a2 · · · ai−1)(h(ai ))[1..k − 1])) (by the definition of g)

= (a j , θh(a1a2 · · · a j−1)) (by (7.25)),

which completes the proof.
Recall that y is pure morphic (modulo the inconvenience that �′ is not finite).

Now apply the coding ρ defined by ρ((c, θh(w))) = (c, τw(q0)). Then

ρ(b j ) = ρ((a j , θh(a1a1 · · · a j−1)))

= (a j , τa1a2 ··· a j−1 (q0))

= (a j , δ(q0, a1a2 · · · a j−1)).

It follows that the sequence

((a j , δ(q0, a1a2 · · · a j−1))) j≥1

is morphic. Now apply the morphism λ′, where λ′((c, b)) = λ(b, c) for b, c ∈ Q.
Then

λ′((a j , δ(q0, a1a2 · · · a j−1))) = λ(δ(q0, a1a2 · · · a j−1), a j ).

By Corollary 7.7.5, the resulting sequence is morphic or finite.
It now remains to see that �′ may be replaced with a finite alphabet.

Lemma 7.9.2 The sequence θh(w) = (τw, τh(w), τh2(w), . . . ) is uniformly ultimately
periodic, i.e., there exist integers p ≥ 1, N ≥ 0 such that for all w ∈ �∗ we have
τhi (w) = τhi+p(w) for all i ≥ N.

Proof. Without loss of generality we may assume � = {0, 1, . . . , s − 1}. Define a
map H : (QQ)s → (QQ)s as follows:

H (( f0, f1, . . . , fs−1)) = ( fh(0), . . . , fh(s−1)).

Then H n(τ0, . . . , τs−1) = (τhn(0), . . . , τhn(s−1)). Since H is a map on a finite set, H n

is ultimately periodic with period length p and preperiod length N . Hence each
of the sequences (τhn( j))n≥0 with 0 ≤ j < s is ultimately periodic with the same
period length p and preperiod length N . Now if w = c1c2 · · · ct , then

τhi (c1 ··· ct ) = τhi (ct ) ◦ · · · ◦ τhi (c1)

= τhi+p(ct ) ◦ · · · ◦ τhi+p(c1)

= τhi+p(c1c2 ··· ct ),

so the result follows. It follows that we may replace the infinite alphabet �′ by the
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finite alphabet

�̂ = {(c, τw, τh(w), . . . , τhN+p−1(w)) : c ∈ �, w ∈ �∗}. �

The proof of Theorem 7.9.1 is now complete. �

7.10 Exercises

1. Let h : �∗ → �∗ be a morphism. Consider the following algorithm for com-
puting Mh . Define S1 = {a ∈ � : h(a) = ε}. Compute Si for i ≥ 2 inductively
as follows: Si+1 = {a ∈ � : h(a) ∈ S∗

i }. Eventually we must have Sn = Sn+1.
Show that Mh = Sn , exp(h) = n, and a ∈ Si if and only if hi (a) = ε.

2. Prove Lemma 7.4.4: if w, x are 2 two-sided infinite words with w ∼ x, then
h(w) ∼ h(x).

3. Define v0 = ab and vi+1 = av0v1 · · · vi b for i ≥ 0.
(a) Show that hi (v0) = vi , where h is the morphism defined by a → aab, b → b.
(b) Show that

hi (a) = abν2(1)abν2(2)abν2(3) · · ·abν2(2i )

for i ≥ 0, where ν2 is defined as in Section 2.1.
(c) Let w = w0w1w2 · · · be the infinite fixed point of h starting with the symbol a,

so w = aabaabb · · · . Show that the following are equivalent:
(1) wn = a;
(2) there exists e j ∈ {0, 1} such that n = ∑

j≥1 e j (2 j − 1);
(3) there exists an integer m ≥ 0 such that n = m − s2(m);
(4) there exists an integer r ≥ 0 such that n = r + ν2(r !).

(d) Prove that w is not 2-automatic.

4. Consider the mapping ϕ : c→cab, a→aa, b→b. Show that |ϕn(c)| =
2n + n.

5. Give an explicit example of a sequence (sn) for which all the sequences in the
2-kernel are distinct.

6. Recall that in the proof of Theorem 7.5.1 we showed there exist j, k with j < k
such that |g j (ai )| ≤ |gk(ai )| for 1 ≤ i ≤ r .
(a) Show how to construct g such that k = e�(

√
r log r ).

(b) Show that k ≤ 2r .

7. Show the following: given a morphism h : �∗ → �∗ that is prolongable on a
letter a ∈ �, and a subset � ⊆ �, it is decidable if there exists an e ≥ 1 such
that he(a) ∈ �∗.

8. We say that a word w ∈ �∗ is expressible as a straight-line program or word
chain if there exist words X1, X2, . . . , Xr = w such that either Xi = b for
some b ∈ � or Xi = X j Xk with 1 ≤ j, k < i . The length of the program is
defined to be r .
(a) Let ϕ be a morphism prolongable on the letter a, and let τ be a coding. Show that,

for any n ≥ 0, the word τ (ϕn(a)) is expressible as a straight-line program of length
O(n).
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(b) Show that the shortest straight-line program computing aba2ba3b · · ·anb has
length �(n).

9. Show that if h : {0,1}∗ → �∗ is any morphism, then h(t) is 2-automatic, where
t = 0110 · · · is the Thue–Morse sequence. Show, more generally, that the
same result is true if t is replaced by any fixed point p of a morphism f : �∗ →
�∗ in which | f (a)|b is a constant for all letters a, b ∈ �∗. Is the converse true?

10. Give an example of a morphism (other than the identity) with an uncountable
number of infinite fixed points.

11. (Hamm) Show that it is possible for the number of subwords of length r in
the fixed point of a morphism of depth m and width n to be larger than any
polynomial in r,m, n.

12. (de Luca) Show that, for n ≥ 5, each finite Fibonacci word#n can be expressed
as the product of two nonempty palindromes, and this expression is unique.
The lengths of these palindromes are Fn−1 − 2 and Fn−2 + 2.

13. (Cummings, Moore, and Karhumäki) Recall that a border of a word w is a
proper subword that is both a prefix and suffix of w. Show that the longest
border of #n is #n−2, where #n is the nth Fibonacci word.

14. (Allouche) Consider the tower of Hanoi problem as discussed in Section 6.4,
with the following variation, known as the cyclic tower of Hanoi: we demand
that only the moves a,b, and c be used. Show that a solution of minimal length
is given by the prefixes of τ ( f ω(a1)), where f is the nonuniform morphism
that sends

a1 → a1b2a1,

b1 → b1c2b1,

c1 → c1a2c1,

a2 → b1a1,

b2 → c1b1,

c2 → a1c1,

and τ is a coding that removes the subscripts.
15. Suppose h : �∗ → �∗ is a morphism, and suppose there exist a word w ∈ �∗

and a constant c such that c = |w| = |h(w)| = · · · = |hn(w)|, where n = |�|.
(a) Show that c = |hi (w)| for all i ≥ 0.
(b) Show that the result does not necessarily hold if n is replaced by n − 1.

16. Let ϕ be a morphism, and let a be a growing letter (i.e., |ϕi (a)| is unbounded
as i → ∞). Show that the characteristic sequence of the sequence (|ϕn(a)|)n≥0

is morphic.
17. In the proof of Theorem 7.8.3, show that ϕ commutes with the µl on the sym-

bols of !.
18. Show that every purely periodic sequence can be written as hω(a) for some

primitive morphism h.
19. Suppose h possesses a nonempty finite fixed pointw. How long can the shortest

w be, as a function of Width h and Depth h?
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20. Let h : �∗ → �∗ be a morphism such that there exists a letter a with h(a) =
xayaz, with x, z �∈ M∗

h . In this case there are at least two distinct two-sided
infinite words of the form hω;i (a), one corresponding to i = |xa| and the other
to i = |xaya|. Give an example where these two words are conjugate, and give
an example where they are not.

21. Characterize all solutions to the equation h(y) = xy, where h is a morphism,
y is a one-sided (right-)infinite word, and x is a finite word.

22. Suppose h is a k-uniform morphism satisfying h(y) = xy, where y is an infinite
word and x is a finite word. Show that y is k-automatic.

23. Give an example of an infinite word x that is a fixed point of an erasing mor-
phism, but not the fixed point of any nonerasing morphism.

24. Give an algorithm for the following problem: given two morphisms g and h,
decide if there exist integers i, j ≥ 1 such that gi = h j .

25. Let k be an integer ≥ 2. Let a0, a1, · · · , ak−1 be distinct symbols and let � =
{a0, a1, · · · , ak−1}. Consider the morphismϕ : �∗ → �∗ defined below, which
generalizes the Fibonacci morphism:

ϕ(a0) = a0a1,

ϕ(a1) = a0a2,
...

ϕ(ak−2) = a0ak−1,

ϕ(ak−1) = a0.

(a) Define A j := |ϕ j (a0)|. Show that A0 = 1, A1 = 2, A2 = 4, . . . , Ak−1 = 2k−1,
and An = An−1 + An−2 + · · · + An−k for n ≥ k.

(b) Define X j = ϕ j (a0) for j = 0, 1, 2, . . . , k − 1. Thus, for example, X0 = a0 and
X1 = a0a1. Define Xn = Xn−1 Xn−2 · · · Xn−k for n ≥ k. Prove that Xn = ϕn(a0)
for all n ≥ 0.

(c) Show that every integer n ≥ 0 can be written uniquely in the form
n = ∑

i≥0 εi (n)Ai where εi (n) ∈ {0, 1}, subject to the condition
εi (n)εi+1(n) · · · εi+k−1(n) = 0.

(d) Define Xm = b0b1b2 · · · bAm−1. for m ≥ 0. Prove that, for all n ≥ 0, bn = a j if
and only if ε0(n) = 1, ε1(n) = 1, . . . , ε j−1(n) = 1, and ε j (n) = 0.

7.11 Open Problems

1. Given two morphisms f and g, prolongable on a and b, respectively, and two
codings τ , ρ, is it decidable whether τ ( f ω(a)) = ρ(gω(b)) ? (Remarks: For the
same problem without codings, see Culik and Harju [1984].)

2. Is the following problem decidable: given a morphism ϕ prolongable on a, is
ϕω(a) k-automatic for some k? How about if k is given as part of the input?

3. Is the following problem decidable: given a morphism h, and a letter a,
do there exist integers i1, i2, . . . , it and an integer n such that hn(a) =
hn−i1 (a) · · · hn−it (a) ? (Remarks: For partial results see Choffrut [1992].)
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0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

Figure 7.2: Melodic transcription of the Thue–Morse sequence, c© 1996 Tom Johnson. Used
by permission.

7.12 Notes on Chapter 7

Morphic sequences are sometimes called substitutive in the literature.
Iterated morphisms and their properties are studied in the literature under several

different names, including D0L (and CD0L) sequences and tag systems.
A D0L sequence is specified a triple (�, h, w) where � is a finite alphabet,

h : �∗ → �∗ is a morphism, and w is a finite word. Given such a triple, the cor-
responding D0L sequence is w, h(w), h2(w), . . . . A CD0L sequence is specified
by a 4-tuple (�, h, w, τ ), where τ is a coding, and the corresponding sequence
is τ (w), τ (h(w)), τ (h2(w)), . . . . If limn→∞ hn(w) exists, it is sometimes called
the ω-word of the D0L system. Many of the properties of morphisms we discuss
in this book appear, in suitably translated form, in papers devoted to D0L sys-
tems. Incidentally, the term “D0L system” is an abbreviation for “deterministic
Lindenmayer system with 0 symbols of context”, named after the mathematical
biologist A. Lindenmayer.

For tag systems, see Cobham [1968b, 1972].
Culik and Karhumäki [1994b] explored alternative methods for generating infi-

nite words. Also see Lepistö [1996].
For the use of iterated morphisms in musical composition, see Allouche and

Johnson [1995, 1996]; Laakso [1996]. In Figure 7.2 we display some music written
by the Paris-based composer Tom Johnson, inspired by the Thue–Morse sequence.
Here 1 is coded as a descending semitone, and 0 as a rising semitone.

7.1 It is hard to pin down precisely who first introduced the Fibonacci words. The
infinite Fibonacci word f is a simple example of a Sturmian word, discussed
further in Chapter 9. Sturmian words were studied prior to 1900 by Bernoulli,
Christoffel, Smith, and Markoff.

The earliest reference we know where Fibonacci words appear explicitly
is Recht and Rosenman [1947]. Also see Pennington [1956], Knuth [1968,
Exercise 1.2.8-36], Cohn [1974], and Stolarsky [1976]. In the paper of Knuth,
Morris, and Pratt [1977], Fibonacci strings appear as the worst case of a pattern-
matching algorithm.

Berstel [1980b, 1986b] was the first to systematically study Fibonacci words.
Crochemore [1981] used Fibonacci words to show the optimality of an algo-
rithm for computing square subwords.
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Karhumäki [1983] proved that f contains cubes, but no fourth powers. This
result was strengthened by Mignosi and Pirillo [1992], who showed that f has
a critical exponent of (5 +√

5)/2
.= 3.61803. Pirillo [1993] studied maximal

powers in Fibonacci strings. Iliopoulos, Moore, and Smyth [1996, 1997] char-
acterized the squares appearing in Fibonacci strings.

Factorizations of Fibonacci words were studied by Wen and Wen [1994a],
de Luca [1995], and Pirillo [1999].

Other papers on Fibonacci words include Higgins [1987]; Turner [1988];
Séébold [1991]; Chuan [1992, 1993a, 1993b, 1995a, 1995b]; Hendel and
Monteferrante [1994]; Droubay [1995]; Grytczuk [1996a].

For generalizations of the Fibonacci word, see Pansiot [1983b] and Exer-
cise 25. Chekhova, Hubert, and Messaoudi [2001] studied the properties of the
so-called “Tribonacci” morphism, a generalization of the Fibonacci morphism.

For generalizations to two-dimensional arrays, see Apostolico and Brimkov
[2000].

7.2 Theorem 7.2.3 is due to Head [1981].
7.3 Theorem 7.3.1 is due to Head and Lando [1986]. Our presentation is from

Hamm and Shallit [1999].
Shallit and Swart [1999] showed how, given a prolongable morphism h, to

compute the i th letter of hn(a) in time polynomial in log i , log n, and the de-
scription size of h. A similar problem for fixed points of finite-state transducers,
however, is exptime-hard.

7.4 Theorem 7.4.3 is due to Shallit and Wang [2002]; our presentation is taken
more or less verbatim from that paper, with permission from Elsevier Science.

7.5 Theorem 7.5.1 was proved by Cobham [1968b].
7.6 The construction in Theorem 7.6.4 is apparently due to B. Klein [1972, p. 115].

A similar construction was given by Peyrière [1978].
7.7 Cobham [1968b] was apparently the first to observe that the morphic image of

a morphic word is still morphic, although his proof is rather sketchy. Another
proof was given by Pansiot [1983a]. Our presentation is loosely based on
Cobham’s ideas.

7.8 Locally catenative sequences were introduced by Rozenberg and Lindenmayer
[1973]. Their definition was less general than ours and did not include codings.
Our presentation is based on Shallit [1988a].

Other papers on locally catenative formulas include Herman, Lindenmayer,
and Rozenberg [1975]; Kobuchi [1977]; Ehrenfeucht and Rozenberg
[1978]; Kobuchi and Wood [1981]; Seki and Kobuchi [1991]; Choffrut [1992].

7.9 Theorem 7.9.1 is from Dekking [1994]. For an analogous result on primitive
morphic words, see Holton and Zamboni [2000].
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Frequency of Letters

Our goal in this chapter is to prove theorems about the frequency of letters in auto-
matic and morphic sequences. These theorems can be used, for example, to show
that certain sequences are not k-automatic for any k.

8.1 Some Examples

Recall that the frequency of a letter a in an infinite word t was defined in Section 1.1
as follows:

Freqt(a) = lim
n→∞

|t[0..n − 1]|a
n

,

if this limit exists.
We start with some examples:

Example 8.1.1 Let t = t0t1t2 · · · be the Thue–Morse sequence – the fixed point,
starting with 0, of the morphism µ which maps 0 → 01, 1 → 10. Then it is easy
to see that, for all k ≥ 0, the subword t[2k..2k + 1] has one 0 and one 1. Hence
Freqt(0) = Freqt(1) = 1

2 .

Example 8.1.2 The frequency of a letter in a k-automatic sequence may not always
exist. Consider the following morphism:

h : a → ab

b → cc

c → bb.

It is easy to see that

|hn(a)|a = 1,

|hn(a)|b =
{

2n−1
3 if n is even,

2n+1−1
3 if n is odd,

|hn(a)|c =
{

2n+1−2
3 if n is even,

2n−2
3 if n is odd.

247
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Hence

lim
n→∞

|hn(a)|b
2n

=
{

1
3 if n ranges over even integers only,
2
3 if n ranges over odd integers only,

and so the limit does not exist.

Example 8.1.3 The frequency of a letter in a morphic sequence may be irrational.
For example, consider the fixed point f of

ϕ : 1 → 10

0 → 1.

i.e., the infinite Fibonacci word of Section 7.1. Then

ϕω(1) = 10110101 · · · = f1 f2 f3 · · · ;

and, as we will see in Section 9.1, we have

fi = �(i + 1)α� − �iα�,
where α = 1

2 (
√

5 − 1)
.= 0.61803. Now it is easy to see that |f[1..n]|1 =∑

1≤i≤n fi = �(n + 1)α�. Hence Freqf(1) =
√

5−1
2 .

8.2 The Incidence Matrix Associated with a Morphism

Given a morphismϕ : �∗ → �∗ for some finite set� = {a1, a2, . . . , ad}, we define
the incidence matrix M = M(ϕ) as follows:

M = (mi, j )1≤i, j≤d,

where mi, j is the number of occurrences of ai in ϕ(a j ), i.e., mi, j = |ϕ(a j )|ai .

Example 8.2.1 Consider the morphism ϕ defined by

ϕ : a → ab

b → cc

c → bb.

Then

M(ϕ) =




a b c

a 1 0 0
b 1 0 2
c 0 2 0





The matrix M(ϕ) is useful because of the following proposition.
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Proposition 8.2.2







|ϕ(w)|a1

|ϕ(w)|a2

...
|ϕ(w)|ad







= M(ϕ)








|w|a1

|w|a2

...
|w|ad







.

Proof. Clearly we have

|ϕ(w)|ai =
∑

1≤ j≤d

|ϕ(a j )|ai |w|a j .

From this, the desired equation easily follows. �

Now an easy induction gives M(ϕ)n = M(ϕn), and hence

Corollary 8.2.3







|ϕn(w)|a1

|ϕn(w)|a2

...
|ϕn(w)|ad







= (M(ϕ))n








|w|a1

|w|a2

...
|w|ad







.

Hence we find

Corollary 8.2.4

|ϕn(w)| = [
1 1 1 · · · 1

]
M(ϕ)n








|w|a1

|w|a2

...
|w|ad







.

8.3 Some Results on Non-negative Matrices

In this section we recall some theorems concerning the eigenvalues of non-negative
matrices. We also address the asymptotic behavior of the sequence (Mn)n≥0, where
M is a non-negative matrix. We begin with some definitions. In what follows we
let I denote the identity matrix whose dimension is clear from the context.

Definition 8.3.1 Let M = (mi, j )1≤i, j≤d be a d × d matrix over a field. We define
the adjoint matrix adj(M) to be the transpose of the d × d matrix whose (i, j)th
term is equal to (−1)i+ j times the determinant of the matrix obtained from M by
erasing the i th row and j th column. In particular M · adj(M) = (det M)I .
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If MV = λV for a vector V �= 0 and a number λ, we call V an eigenvector of
M and λ an eigenvalue of M .

The characteristic polynomial of the matrix M is defined by Q(λ) := det(λI −
M). The minimal polynomial of M is defined as the monic polynomial q(λ) of
smallest degree such that q(M) = 0.

Let g(λ) be the monic greatest common divisor of all the (polynomial) coeffi-
cients of the matrix adj(λI − M). The reduced adjoint of λI − M is defined by
C(λ) := adj(λI − M)/g(λ). Note that C(λ) is also a matrix with coefficients that
are polynomials in λ.

If M is a d × d matrix, and P(λ) is a polynomial: P(λ) = α0 + α1λ+
α2λ

2 + · · · + αeλ
e, we denote by P(M) the matrix obtained by replacing λ j by

M j for j = 0, 1, 2, . . . , e, i.e., P(M) := α0 I + α1 M + α2 M2 + · · · + αe Me.
A permutation matrix is a matrix of 0’s and 1’s such that there is exactly one 1

in each row, and exactly one 1 in each column.
Let us now consider matrices and vectors with rational (or real) coefficients.

A matrix M is said to be non-negative (positive) if all its entries are non-negative
(positive); we write M ≥ 0 (M > 0). Similarly, a vector v is said to be non-negative
(positive) if all its entries are non-negative (positive); we write v ≥ 0 (v > 0). A
non-negative matrix M is said to be reducible if there exists a permutation matrix
S such that the matrix S−1 M S can be written in the form

S−1 M S =
[

B C
0 D

]

where B and D are square matrices, and C and 0 are rectangular matrices such
that all dimensions fit. A non-negative matrix M is said to be irreducible if it is not
reducible. A non-negative matrix M is said to be primitive if there exists an integer
k ≥ 1 such that all the entries of Mk are positive. Finally, a matrix M is said to be
(row-)stochastic if it is non-negative and if the sum of the entries of each row of M
is equal to 1.

Lemma 8.3.2 Let M be a d × d matrix with entries in a (commutative) field K .
Let P(λ) = α0 + α1λ+ α2λ

2 + · · · + αeλ
e be a polynomial with coefficients in K .

Then the following conditions are equivalent:

(i) P(M) = 0.
(ii) There exists a d × d matrix T (λ) whose entries are polynomials in λ such that the

relation (λI − M)T (λ) = P(λ)I holds.

Proof. First note that a d × d matrix T (λ) whose entries are polynomials in
λ can be written T (λ) = T0 + λT1 + λ2T2 + · · · + λe−1Te−1 where the Tj ’s are
d × d matrices with constant coefficients. The existence of a d × d matrix T (λ)
such that (λI − M)T (λ) = P(λ)I is equivalent to the existence of d × d matrices
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T0, T1, . . . , Te−1 such that

(λI − M)(T0 + λT1 + λ2T2 + · · · + λe−1Te−1)

= (α0 + α1λ+ α2λ
2 + · · · + αeλ

e)I,

i.e.,

−MT0 = α0 I,
T0 − MT1 = α1 I,
T1 − MT2 = α2 I,

...
Te−2 − MTe−1 = αe−1 I,
Te−1 = αe I.

Starting from the last equation, we find successively Te−1 = αe I , Te−2 = αe M +
αe−1 I, . . . , up to the second equation, which gives T0 =αe Me−1 +αe−1 Me−2 + · · ·
+ α1 I . Hence the first equation is satisfied if and only if α0 I = −MT0 = αe Me +
αe−1 Me−1 + · · · + α1 M , which is equivalent to P(M) = 0. �

For our next proposition, we need a definition. If ‖ ‖ is a norm on the vector
space of n × n complex matrices that satisfies ‖M N‖ ≤ ‖M‖ ‖N‖ for all matrices
M, N , then we say that ‖ ‖ is submultiplicative. Operator norms, which are norms
on the vector space of complex n × n matrices given by ‖M‖ = sup‖X‖=1 ‖M X‖,
where ‖X‖ is a norm on Cn , are submultiplicative.

Proposition 8.3.3 Let M be a matrix with complex coefficients. Let Q(λ) be its
characteristic polynomial, and let q(λ) be its minimal polynomial. Let g(λ) be the
greatest common divisor of the (polynomial) coefficients of the matrix adj(λI − M),
and let C(λ) = adj(λI − M)/g(λ). Then:

(a) The complex number λ is an eigenvalue of M if and only if Q(λ) = 0.
(b) Q(M) = 0 (the Cayley–Hamilton theorem).
(c) The minimal polynomial q(λ) divides the polynomial Q(λ). Furthermore, any root of

Q(λ) in C, i.e., any eigenvalue of M, is a root of q(λ).
(d) q(λ) = Q(λ)/g(λ), and hence C(λ)/q(λ) = adj(λI − M)/Q(λ). Furthermore, the re-

lation (λI − M)C(λ) = C(λ)(λI − M) = q(λ)I holds.
(e) Q′(λ) = tr(adj(λI − M)), where Q′ is the derivative of Q.
(f) Let ‖ ‖ be a submultiplicative norm on the vector space of n × n complex matrices.

Let M be a complex matrix such that ‖M‖ ≤ 1. If the minimal polynomial of M has a
root of modulus 1, this root is simple.

Proof. (a): The complex number λ is an eigenvalue of the matrix M if and only if
there exists a nonzero vector V such that (M − λI )V = 0. This happens if and only if
the matrix M − λI is not invertible, which is equivalent to having det(M − λI ) = 0.
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(b): (λI − M) adj(λI − M) = det(λI − M) I = Q(λ)I . Since adj(λI − M) is
clearly a matrix whose entries are polynomials inλ of degree at most d − 1, there ex-
ist d × d matrices B0, B1, . . . , Bd−1 such that adj(λI − M) = B0 + λB1 + λ2 B2 +
· · · + λd−1 Bd−1. Hence

(λI − M)(B0 + λB1 + λ2 B2 + · · · + λd−1 Bd−1) = Q(λ)I.

It now suffices to apply Lemma 8.3.2.
(c): Dividing the characteristic polynomial Q by the minimal polynomial q, we

have Q(λ) = S(λ)q(λ) + T (λ), where either deg T < deg q or T = 0. Replacing λ
by the matrix M gives 0 = 0 + T (M). If T were different from 0, we would have
deg T < deg q and T (M) = 0, contradicting the minimality of q. Hence T = 0,
and q divides Q. Note that the same proof shows that any polynomial q1 such that
q1(M) = 0 is divisible by the minimal polynomial q.

Let λ0 be an eigenvalue, i.e., a root of Q(λ) = 0. Dividing q by the polynomial
λ− λ0, we have q(λ) = R(λ)(λ− λ0) + q(λ0). Replacing λ by M gives

0 = q(M) = R(M)(M − λ0 I ) + q(λ0)I.

Now, let V �= 0 be an eigenvector of the matrix M for the eigenvalue λ0. Applying
the matrix equality above to the vector V we obtain

0 = R(M)(MV − λ0V ) + q(λ0)V = 0 + q(λ0)V .

Hence q(λ0) = 0.
(d): Expanding the determinant det(λI − M) = Q(λ) with respect to the first

row, we see easily that the polynomial g divides Q. Let q1 be the polynomial de-
fined by q1(λ) := Q(λ)/g(λ). Dividing the equality

(λI − M) adj(λI − M) = det(λI − M) I = Q(λ)I

by g(λ), we get

(λI − M)C(λ) = q1(λ)I.

Using Lemma 8.3.2 we have q1(M) = 0. Hence, as in the proof of the first assertion
of (c), the polynomial q1 is divisible by q, say q1 = qq2. Hence

(λI − M)C(λ) = q(λ)q2(λ)I.

On the other hand, since q(M) = 0, we have from Lemma 8.3.2 that there exists a
matrix with polynomial entries C̃(λ) such that (λI − M)C̃(λ) = q(λ)I . Hence for
all sufficiently large real numbers λ we have

C̃(λ)

q(λ)
= (λI − M)−1 = C(λ)

q(λ)q2(λ)
.
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Hence, for all sufficiently large real numbers λ,

q2(λ)C̃(λ) = C(λ).

This equality is thus true when we consider both sides as matrices with polynomial
entries. In particular, q2(λ) must be a constant polynomial, since the gcd of the
(polynomial) entries of C(λ) is 1. Looking at the leading coefficients shows that q2 =
1. Hence q1 = q , which gives (λI − M)C(λ) = C(λ)(λI − M) = q(λ)I , q(λ) =
Q(λ)/g(λ), and C(λ)/q(λ) = adj(λI − M)/Q(λ).

(e): The proof is straightforward when M is a diagonal matrix; see Exercise 5.
We deduce from this the result when M is diagonalizable: suppose M = P D P−1

where D is a diagonal matrix. Take λ to be a large real number. Then

(λI − M)−1 = (P(λI − D)P−1)−1 = P(λI − D)−1 P−1.

Hence by multiplying by Q(λ), which is also equal to the characteristic polynomial
of λI − D, we get

P adj(λI − M) P−1 = P adj(λI − D) P−1.

Hence

Q′(λ) = tr(adj(λI − D)) = tr(adj(λI − M)).

To end the proof it suffices to remember that the set of diagonalizable matrices is
dense (see Exercise 6) in the set of all matrices, and that the trace, the adjoint, and
the determinant are all continuous functions of the entries of a matrix.

(f): Let λ be a complex number of modulus 1. To show that λ cannot be a multiple
root of the minimal polynomial of the matrix M , it suffices to show that for any
matrix B we have

(M − λI )2 B = 0 implies that (M − λI )B = 0,

and to apply this statement when B is a polynomial in M . Note that this implication
can also be written

M(M − λI )B = λ(M − λI )B implies that (M − λI )B = 0.

Suppose that M(M − λI )B = λ(M − λI )B holds. Then

M B = (M − λI )B + λB,
M2 B = M(M − λI )B + λM B = λ(M − λI )B + λ((M − λI )B + λB)

= 2λ(M − λI )B + λ2 B,
...

Mk B = kλk−1(M − λI )B + λk B for any integer k.
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Hence

k‖(M − λI )B‖ = ‖kλk−1(M − λI )B‖
= ‖Mk B − λk B‖ ≤ ‖M‖k‖B‖ + ‖B‖ ≤ 2‖B‖.

Since the right-hand term is bounded, the left-hand term is bounded; hence we have
‖(M − λI )B‖ = 0, i.e., (M − λI )B = 0. �

Proposition 8.3.4

(a) If M is an irreducible non-negative d × d matrix (d ≥ 2), and if y is a non-negative
vector of dimension d with exactly k positive entries (1 ≤ k ≤ d − 1), then (I + M)y
has strictly more than k positive entries.

(b) If M is an irreducible non-negative d × d matrix, and if y �= 0 is a non-negative vector
of dimension d, then all the entries of (I + M)d−1 y are positive.

(c) A non-negative d × d matrix is irreducible if and only if all the entries of the matrix
(I + M)d−1 are positive.

(d) A non-negative eigenvector of a non-negative irreducible matrix must have positive
entries.

(e) Let M = (mi, j )i, j be a non-negative d × d matrix, and let Mk = (m(k)
i, j )i, j be its k th

power. The matrix M is irreducible if and only if for each i, j there exists k = k(i, j)
such that m(k)

i, j > 0 (and there is such a k with k ≤ d). In particular, any primitive matrix
is irreducible.

Proof. (a): Let P be a permutation matrix such that the first k entries of Py are
positive and the others are zero. We have (I + M)y = y + My, and M ≥ 0; hence
(I + M)y cannot have strictly more than d − k zero entries. If (I + M)y has exactly
d − k zero entries, then yi = 0 implies that (My)i = 0. Hence (Py)i = 0 implies
that (P My)i = 0, and so we have (P My)i = 0 for i = k + 1, k + 2, . . . , d. Let N
be the non-negative matrix defined by N := (ni, j )i, j := P M P−1, and z := Py. We
thus have (N z)i = (P My)i = 0 for i = k + 1, k + 2, . . . , d, i.e.,

∑
1≤ j≤d ni, j z j =

0 for i = k + 1, k + 2, . . . , d. Since z1, z2, . . . , zk > 0, we have ni, j = 0 for i =
k + 1, k + 2, . . . , d and j = 1, 2, . . . , k, and hence M is reducible.

(b): It suffices to iterate property (a) above.
(c): If M is irreducible, then for each vector e j of the canonical basis, we have

(I + M)d−1e j > 0. Hence all columns of (I + M)d−1 are positive. The converse
is straightforward: the reader can easily prove that, if a non-negative matrix N is
such that N q is irreducible for some integer q ≥ 1, then N itself is irreducible,
and that a non-negative matrix N is irreducible if and only if the matrix I + N is
irreducible.

(d): Let Mx = λx where M is non-negative and irreducible, x ≥ 0 and x �= 0.
Since (I + M)x = (1 + λ)x , if x had k ≥ 1 zero entries, then (1 + λ)x would also
have k zero entries, although (I + M)x would have strictly less than k zero entries
by property (a) above.
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(e): Suppose that M is irreducible. We know by property (c) above that all the
entries of the matrix (I + M)d−1 are positive. Hence all the entries of the matrix
M(I + M)d−1 are positive (if an entry were zero, that would imply that a row of
the matrix M is zero and M would be reducible). It now suffices to look at the entry
(i, j) of the matrix M(I + M)d−1 to conclude that there exists a k (and this k is at
most equal to d) such that m(k)

i, j > 0.
The converse is easy: if the matrix M is not irreducible, then there exists a

permutation matrix S such that

S−1 M S =
[

B C
0 D

]

.

Hence, for all k ≥ 0,

S−1 Mk S =
[

Bk Ck

0 Dk

]

where Ck is some rectangular matrix. In particular the entry in the lower left corner
of the matrix S−1 Mk S is equal to 0 for any k ≥ 0. But this entry is equal to m(k)

i, j

for some index i, j independent of k. �

Definition 8.3.5 Let M be an irreducible d × d non-negative matrix. The Collatz–
Wielandt function associated with M is the function fM defined on the vectors
x �= 0 of dimension d with non-negative entries by

fM (x) := min
xi �=0

(Mx)i

xi
.

Proposition 8.3.6 Let M be an irreducible d × d non-negative matrix. Let fM be
its Collatz–Wielandt function.

(a) The function fM satisfies fM (t x) = fM (x) for all t > 0.
(b) Let x �= 0 be a vector of dimension d with non-negative entries. Then fM (x) is the

largest real number ρ for which the vector (M − ρ I )x has non-negative entries.
(c) Let x �= 0 be a vector of dimension d with non-negative entries. Let y = (I + M)d−1x;

then fM (y) ≥ fM (x).
(d) The function fM attains its maximum on the set E of vectors of dimension d with

non-negative entries and such that the sum of their entries is equal to 1.

Proof. (a) and (b): The proofs are straightforward and left to the reader.
(c): All the entries of Mx − fM (x)x are non-negative. Multiplying on the

left by the matrix (I + M)d−1, we see that all the entries of (I + M)d−1 Mx −
fM (x)(I + M)d−1x are non-negative. But M and (I + M)d−1 commute; hence
all entries of M(I + M)d−1x − fM (x)(I + M)d−1x are non-negative, i.e., all the
entries of My − fM (x)y are non-negative. Using property (b), this implies that
fM (y) ≥ fM (x).
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(d): Let F = {(I + M)d−1x : x ∈ E}, where E is defined in the statement of
property (d). The set F is compact, and by Proposition 8.3.4(b), all the entries of
any vector in F are positive. This implies that fM is continuous on F . Since F is
compact, the function fM attains its maximum onF at some point z. Using property
(a), we may suppose that the sum of the entries of z is equal to 1, i.e., that z belongs
to E . Now if x is any vector in E and if y = (I + M)d−1x , then:

fM (x) ≤ fM (y) by property (c),
fM (y) ≤ fM (z) by the maximality of fM (z) on F .

This implies that fM attains its maximum on E at z. �

Theorem 8.3.7 (Perron–Frobenius) Let M = (mi, j )i, j be a d × d irreducible
non-negative matrix. Let r = max{ fM (x), x ∈ E}, where fM is defined in Defi-
nition 8.3.5, and E is defined in Proposition 8.3.6(d) above. Then the number r ,
called the Perron–Frobenius eigenvalue of M, has the following properties.

(a) r is a positive eigenvalue of the matrix M. Furthermore, any (complex) eigenvalue of
M satisfies |λ| ≤ r . If M has exactly h eigenvalues of modulus r , the number h is called
the index of imprimitivity of the matrix M.

(b) There exists an eigenvector corresponding to the eigenvalue r which has positive en-
tries. More precisely, any vector ξ ∈ E for which fM (ξ ) = r is an eigenvector for the
eigenvalue r , and it has positive entries. Furthermore, any eigenvector corresponding
to the eigenvalue r is a multiple of this vector.

(c) r is a simple root of the characteristic polynomial of M.

Proof. (a): We know by Proposition 8.3.6(d) that there exists a vector z ∈ E
such that, for each vector x ∈ E , we have fM (z) ≥ fM (x). Let r := fM (z) (=
max{ fM (x), x ∈ E}). Let u be the d-dimensional vector having all its entries equal
to 1/d. Now

r ≥ fM (u) = min
i

(Mu)i

ui
= min

i

∑

0≤ j≤d

mi, j > 0,

since the matrix M cannot have a row of zeros.
Now, for z as above we have that Mz − r z = Mz − fM (z)z has all its en-

tries non-negative. If Mz − r z �= 0, then, from Proposition 8.3.4(b), the vector
(I + M)d−1(Mz − r z) has all its entries positive. Let y := (I + M)d−1z. We thus
have that My − r y has all its entries positive. Hence there exists ε > 0 such that the
vector My − (r + ε)y has all its entries non-negative. This implies that fM (y) ≥
r + ε by Proposition 8.3.6(b). Hence r < fM (y), which contradicts the maximal-
ity of r . Hence Mz − r z = 0. Thus r is an eigenvalue of M , and z is a non-
negative eigenvector of M corresponding to the eigenvalue r . We know by Propo-
sition 8.3.4(d) that z must have positive entries.
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Suppose now λ is an eigenvalue of the matrix M . Then there exists a vec-
tor x �= 0 such that Mx = λx . This implies, for all i = 1, 2, . . . , d, that λxi =∑

1≤ j≤d mi, j x j . Hence |λ||xi | ≤
∑

1≤ j≤d mi, j |x j |. In other words, if we denote by
x ′ the vector having the |xi |’s as entries, the vector Mx ′ − |λ|x ′ has non-negative
entries. Hence

|λ| ≤ fM (x ′) ≤ r.

(b): We have just seen that there exists an eigenvector z corresponding to the
eigenvalue r that has positive entries. To prove that the eigenspace of the matrix M
corresponding to the eigenvalue r has dimension 1, we take the vector z as in (a):
this is an eigenvector of the matrix M corresponding to the eigenvalue r , and z has
positive entries. Now let y be an eigenvector of M for the eigenvalue r . Let y′ be
the vector whose entries are the moduli of the entries of y. Note that, by applying
the inequalities at the end of the proof of (a) above, we have fM (y′) = r . Since
My = r y and y �= 0, we have that My′ − r y′ is non-negative and y′ �= 0. Then, as
in the proof of (a), the vector My′ − r y′ equals 0, and y′ must have positive entries.
Hence all entries of y are nonzero. Hence all entries of any eigenvector of M for
the eigenvalue r are nonzero. Now take x and y two eigenvectors of M for the
eigenvalue r . Let xi and yi be their i th entries. The vector y1x − x1 y either is equal
to 0 or is an eigenvector of M for the eigenvalue r . But its first entry is 0: it thus
cannot be an eigenvector for r . Hence y1x − x1 y = 0, i.e., the vectors x and y are
linearly dependent.

(c): Let Q(λ) = det(λI − M) be the characteristic polynomial of M . We want
to show that Q′(r ) �= 0. We have by Proposition 8.3.3(e) the relation Q′(r ) =
tr(adj(r I − M)). Let B(λ) := adj(λI − M). We have

(λI − M) adj(λI − M) = det(λI − M) I = Q(λ)I ;

hence (r I − M)B(r ) = Q(r )I = 0. Hence each column of B(r ) is either 0 or an
eigenvector of M for the eigenvalue r , and thus a real multiple of a vector hav-
ing all its entries positive. Hence each column of B(r ) either is 0 or has all its
entries positive or all its entries negative. Since the transpose of M is irreducible
and has r as its Perron–Frobenius eigenvalue, each row of B(r ) either is 0 or
has all its entries positive or all its entries negative. Furthermore at least one of
the columns and one of the rows of B(r ) is nonzero: we have seen in (b) that the
eigenspace of M corresponding to the eigenvalue r has dimension 1, hence the ma-
trix r I − M has rank d − 1, and its adjoint B(r ) cannot be zero. Finally, this implies
that all entries of B(r ) are positive or all entries of B(r ) are negative. Hence, using
Proposition 8.3.3(e), we have Q′(r ) = tr(B(r )) �= 0. (Note that looking at B(λ) for
λ → ∞ shows that actually all entries of B(r ) are positive.) �

Theorem 8.3.8 Let M = (mi, j )i, j be a d × d irreducible non-negative matrix. Let
B = (bi, j )i, j be a d × d complex matrix, such that, for all i, j , we have |bi, j | ≤ mi, j
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(M is said to dominate B). Let r be the Perron–Frobenius eigenvalue of M. Then,
for every eigenvalue s of B, we have |s| ≤ r .

Furthermore, there exists an eigenvalue s of B such that |s| = r if and only if
B = eiϕD−1 M D, where s = reiϕ and D is a diagonal matrix with all its diagonal
entries of modulus 1.

Proof. Let y �= 0 such that By = sy. Hence for all i we have
∑

1≤ j≤d bi, j y j = syi ,
which implies

|s||yi | ≤
∑

1≤ j≤d

|bi, j ||y j | ≤
∑

1≤ j≤d

mi, j |y j |. (8.1)

Hence, denoting by y′ the vector with entries |yi |, we have My′ − |s|y′ ≥ 0. Us-
ing Proposition 8.3.6(b), Theorem 8.3.7, and Proposition 8.3.6(a), this implies the
inequalities

|s| ≤ fM (y′) ≤ r. (8.2)

Suppose that B = eiϕD−1 M D. Then B and eiϕM are similar. Since r is an
eigenvalue of M , then reiϕ is an eigenvalue of B of modulus r .

Suppose now that s = reiϕ is an eigenvalue of the matrix B. We deduce from
Eq. (8.2) that

|s| = fM (y′) = r. (8.3)

Hence y′ is an eigenvector of M for the Perron–Frobenius eigenvalue r (use Theo-
rem 8.3.7(b) and Proposition 8.3.6(a)), i.e., My′ = r y′. Hence, using Eq. (8.1), we
have for every i

r |yi | = |s||yi | ≤
∑

1≤ j≤d

|bi, j ||y j | ≤
∑

1≤ j≤d

mi, j |y j | = r |yi |,

which implies
∑

1≤ j≤d

(mi, j − |bi, j |)|y j | = 0.

Since mi, j ≥ |bi, j | by hypothesis, and since y′ is a positive vector, we then have
mi, j = |bi, j | for all i, j . Let D be the diagonal matrix whose diagonal entries are

y1

|y1| ,
y2

|y2| , . . . ,
yd

|yd | ,

and let G = (gi, j )i, j := e−iϕD−1 B D. Since By = sy and Dy′ = y, we have

Gy′ = e−iϕD−1 B Dy′ = e−iϕD−1 By = se−iϕD−1 y = r y′ = My′.
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Hence, for all i ,
∑

1≤ j≤d

(gi, j − mi, j )|y j | = 0. (8.4)

Since

gi, j = e−iϕ |yi |
yi

bi, j
y j

|y j | for all i, j,

we have |gi, j | = |bi, j |. But we have seen that mi, j = |bi, j |, hence mi, j = |gi, j |.
Using Eq. (8.4), we thus have for all i

∑

1≤ j≤d

(|gi, j | − gi, j )|y j | = 0.

Taking the real part and the imaginary part, and using that |y j | > 0 for all j ,
we deduce that |gi, j | = gi, j for all i, j . Hence gi, j = mi, j for all i, j , i.e., B =
eiϕDM D−1. �

Theorem 8.3.9 Let M be a d × d irreducible non-negative matrix, with index of
imprimitivity h. Let λd + a1λ

d1 + a2λ
d2 + · · · + akλ

dk , with d > d1 > d2 > · · · >
dk and a j �= 0 for all j , be its characteristic polynomial.

(a) The relation

h = gcd(d − d1, d − d2, d − d3, . . . , d − dk)
= gcd(d − d1, d1 − d2, d2 − d3, . . . , dk−1 − dk)

holds.
(b) If the trace of the matrix M is positive, then its index of imprimitivity h is equal to 1.

Proof. (a): Let θ be a complex number. The matrices M and θM have the same
spectrum if and only if their characteristic polynomials are equal, i.e.,

λd + a1λ
d1 + a2λ

d2 + · · · + akλ
dk

= λd + a1θ
d−d1λd1 + a2θ

d−d2λd2 + · · · + akθ
d−dkλdk .

Hence a j = a jθ
d−d j for all j . Now taking θ = e2iπ/m with m ≥ 1 integer, the

matrices M and e2iπ/m M have the same spectrum for m = h and not for m > h
(Theorem 8.3.10(a)). Since a j = a j e2iπ (d−d j )/m for all j , we see that

h = gcd(d − d1, d − d2, d − d3, . . . , d − dk).

Of course this gives immediately

h = gcd(d − d1, d1 − d2, d2 − d3, . . . , dk−1 − dk).

(b): If the trace of M is > 0, then d1 = d − 1. Hence, from (a), h = gcd(d −
(d − 1), . . . ) = 1. �
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Theorem 8.3.10 (Perron–Frobenius) Let M be a d × d non-negative matrix.

(a) If M is irreducible, and if its Perron–Frobenius eigenvalue is equal to r and its index of
imprimitivity is equal to h, then the h eigenvalues of M of modulus r are the numbers
e2i�π/hr , where � = 0, 1, 2, . . . , h − 1. These eigenvalues are simple. Furthermore the
whole set of eigenvalues of M is closed under multiplication by e2iπ/h, and not closed
under multiplication by eiα , where α is any positive number smaller than 2π/h.

(b) The matrix M is primitive if and only if it is irreducible and its index of imprimitivity
h is equal to 1.

Proof. (a): Let λt = reiϕt , with t = 1, 2, . . . , h, be the eigenvalues of M of modulus
r . Using Theorem 8.3.8 with B = M , there exists for each t = 1, 2, . . . , h a diagonal
matrix Dt (with diagonal entries of modulus 1) such that

M = eiϕt Dt M D−1
t .

Hence M and eiϕt M are similar. Since r is a simple eigenvalue of M , the complex
number λt = reiϕt is a simple eigenvalue of eiϕt M , hence of M . Now for each t
and s we have

M = eiϕt Dt M D−1
t = eiϕt Dt (e

iϕs Ds M D−1
s )D−1

t = ei(ϕt+ϕs )(Dt Ds)M(Dt Ds)−1.

This shows that M and ei(ϕt+ϕs ) M are similar. Hence rei(ϕt+ϕs ) is an eigenvalue of
M (of modulus r ), which implies that ei(ϕt+ϕs ) ∈ S := {eiϕ1, eiϕ2, . . . , eiϕh }. Hence
the set S is closed under multiplication. This implies that this set is exactly the set
of hth roots of 1.

Since we have just seen that M and e2iπ/h M are similar, the spectrum of M is
closed under multiplication by e2iπ/h . It cannot be closed under multiplication by
eiα where α is any positive number smaller than 2π/h, since what precedes shows
that the set of eigenvalues of M of modulus r itself is not closed under multiplication
by eiα.

(b): Suppose that Mm has positive entries for some integer m. Then M is irre-
ducible (if it were reducible, Mm would also be reducible and would not have posi-
tive entries). Since M is irreducible, it cannot have a row of zeros; hence the matrix
Mm+1 = M Mm also has positive entries. Let r be the Perron–Frobenius eigenvalue
of M , and let h be its index of imprimitivity. We know by Theorem 8.3.10(a) that
the eigenvalues of M of modulus r are re2iπ t/h for t = 1, 2, . . . , h − 1. Hence the
numbers rme2imπ t/h are eigenvalues of Mm of modulus rm . Since Mm is irreducible
and has positive entries, its trace is positive; hence its index of imprimitivity is equal
to 1 (Theorem 8.3.9(b)). The eigenvalues rme2imπ t/h must then all be equal to rm .
Hence h divides m. But we have seen that Mm+1 also has positive entries, and so
h |m + 1. Hence h = 1.

Suppose now that the matrix M is irreducible, and that its index of imprimitivity
is equal to 1. Up to dividing M by its Perron–Frobenius value r , we may suppose that
r = 1. Then, from properties (c) in Theorem 8.3.7 and (a) in Theorem 8.3.10, we
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know that this eigenvalue is simple and that no other eigenvalue of M has modulus
1. Hence M admits a Jordan form of the type M = S(J1 + B)S−1 where J1 is the
matrix defined by (J1)1,1 = 1 and (J1)i, j = 0 for (i, j) �= (1, 1), and B is a matrix
such that, in particular, (J1 + B)k = J k

1 + Bk = J1 + Bk and limk→∞ Bk = 0. Fur-
thermore the first column of S is an eigenvector of M corresponding to the Perron–
Frobenius eigenvalue 1, and the first row of S−1 is an eigenvector of the trans-
pose of M for the Perron–Frobenius eigenvalue 1. Hence this column and this row
have no zero entry. Then limk→∞ Mk = S J1S−1. For all i, j the entry of index (i, j)
of S J1S−1 is (S−1)i,1S1, j and hence is not zero. Since limk→∞ Mk is non-negative,
we see that all the entries of this limit are actually positive. Hence Mk has positive
entries for large k. �

Theorem 8.3.11 Let M be a non-negative d × d matrix. Then there exists a real
number r ≥ 0 (called the Perron–Frobenius eigenvalue of M) such that:

(a) r is an eigenvalue of M. Furthermore, any (complex) eigenvalue of M satisfies |λ| ≤ r .
(b) There exists a non-negative eigenvector corresponding to the eigenvalue r .
(c) There exists a positive integer h such that any eigenvalue of M with |λ| = r satisfies

λh = rh.

Proof. Take any matrix N with positive entries (for example the matrix whose all
entries are equal to 1), and consider the matrix M + εN , where ε is a positive real
number. The matrix M + εN has clearly positive entries. We apply Theorem 8.3.7
to M + εN . Hence M + εN has a Perron–Frobenius eigenvalue rε, all its other
eigenvalues λε satisfy |λε| ≤ rε, and there exists a positive vector xε ∈ E such that
(M + εN )xε = rεxε. Now, letting ε tend to zero, and using the fact that eigenvalues
and eigenvectors are continuous functions of the entries of a matrix, we see that the
eigenvalues λε tend to the eigenvalues of M (and all eigenvalues of M are limits of
eigenvalues of Mε), that rε tends to a real non-negative eigenvalue r of M , and that
all the moduli of all eigenvalues of M are at most equal to r . Furthermore xε tends
to a vector x ∈ E : hence x �= 0, Mx = r x , and hence x is a non-negative vector of
the matrix M for the eigenvalue r . This gives assertions (a) and (b). For assertion
(c), see Exercise 7. �

Theorem 8.3.12 Let M be a primitive d × d matrix, and r be its Perron–Frobenius
eigenvalue. Let C(λ) be the reduced adjoint matrix of λI − M, and q(λ) be the
minimal polynomial of M. Then

(a) The columns of C(r ) are all proportional. More precisely, let x be an eigenvector of M
for the eigenvalue r , and similarly let y be a (row) left eigenvector for the matrix M
and the eigenvalue r . Suppose that x and y are normalized by yx = 1. Then we have

C(r ) = q ′(r )xy.

In particular, all the entries of the matrix C(r )/q ′(r ) are positive.
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(b) The relation

lim
n→∞

Mn

rn
= C(r )

q ′(r )

holds. In particular, if M is a matrix with rational coefficients, then limn→∞ Mn/rn

also has rational coefficients.

Proof. (a): First we write, using Proposition 8.3.3(d),

(λI − M)C(λ) = C(λ)(λI − M) = q(λ)I.

Hence (r I − M)C(r ) = 0. In other words, MC(r ) = rC(r ). This means that each
column of the matrix C(r ) is an eigenvector of M associated with the Perron–
Frobenius eigenvalue r . Hence all columns of C(r ) are proportional to some positive
eigenvector x for the eigenvalue r (Theorem 8.3.7(b)).

Similarly each row of the matrix C(r ) is a left eigenvector for the matrix M and
the (Perron–Frobenius) eigenvalue r . Hence all the rows of C(r ) are proportional
to some positive (row) eigenvector y for the eigenvalue r .

We suppose that x and y are normalized so that yx = 1. The properties of the
columns and rows of C(r ) show that C(r ) = cxy, where c is some positive con-
stant. Now from Proposition 8.3.3(d), we have (λI − M)C(λ) = q(λ)I . Hence, by
differentiating with respect to λ,

C(λ) + (λI − M)C ′(λ) = q ′(λ)I.

Multiplying by y on the left and putting λ = r gives

yC(r ) = yC(r ) + y(r I − M)C ′(r ) = q ′(r )y.

Now replacing C(r ) by cxy, we obtain

cy(xy) = q ′(r )y.

But yx = 1 and y �= 0, and hence q ′(r ) = c.
(b): We have seen in the proof of Theorem 8.3.10(b) that the limit

limn→∞ Mk/rk := L exists. This implies that, for each real number λ > 1, the ma-
trix (M/rλ)k converges (elementwise) to 0 at least geometrically. Hence the series
∑

k≥0 Mk/rkλk converges. We claim that the following limit exists and equals L:

lim
λ→1+

λ− 1

λ

∑

k≥0

Mk

rkλk
.

Namely, given ε > 0, take k0 such that all entries of Mk/rk − L are smaller than
ε/2 for k ≥ k0. Then all entries of

λ− 1

λ

∑

k≥k0

Mk

rk − L

λk
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are bounded by

ε

2

(
λ− 1

λ

∑

k≥k0

1

λk

)

≤ ε

2

(
λ− 1

λ

∑

k≥0

1

λk

)

= ε

2
.

Now note that Mk/rk − L has all its entries uniformly bounded by some constant
c1 independent of k, since all its entries converge to 0. Then, k0 being fixed, take
α > 0 such that when |λ− 1| ≤ α, then

∣
∣
∣
∣
λ− 1

λ

∣
∣
∣
∣ ≤

ε

2c1k0
,

so that for such λ’s we have that all entries of

λ− 1

λ

∑

0≤k<k0

Mk

rk − L

λk

are bounded by

ε

2c1k0
c1

∑

0≤k<k0

1

λk
≤ ε

2
(remember that λ > 1).

Hence
(
λ− 1

λ

∑

k≥0

Mk

rkλk

)

− L = λ− 1

λ

∑

k≥0

Mk

rk − L

λk

= λ− 1

λ

∑

0≤k<k0

Mk

rk − L

λk
+ λ− 1

λ

∑

k≥k0

Mk

rk − L

λk

has all its entries bounded by ε.
Now, using again Proposition 8.3.3(d), (λI − M)C(λ) = q(λ)I , hence, for all

λ > 1, we have (rλI − M)C(rλ) = q(rλ)I . Hence

λ− 1

λ

∑

k≥0

Mk

rkλk
= λ− 1

λ

(

I − M

rλ

)−1

= r (λ− 1)(rλI − M)−1 = r (λ− 1)

q(rλ)
C(rλ).

Letting λ tend to 1, we deduce

lim
k→∞

Mk

rk
= L = lim

λ→1+

λ− 1

λ

∑

k≥0

Mk

rkλk
= 1

q ′(r )
C(r ).

�

Theorem 8.3.13 Let M be a stochastic d × d matrix. Then its Perron–Frobenius
eigenvalue is equal to 1. This eigenvalue, and all other eigenvalues of modulus 1
if any, are simple roots of the minimal polynomial of M. If furthermore M has no
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eigenvalue λ �= 1 such that |λ| = 1, then

lim
n→∞ Mn = C(1)

q ′(1)
,

where C(λ) is the reduced adjoint matrix of λI − M, and q(λ) the minimal polyno-
mial of M. In particular, if M is a matrix with rational coefficients, then limn→∞ Mn

also has rational coefficients.

Proof. Let M = (mi, j )i, j be a stochastic matrix. Then 1 is an eigenvalue of M , since
the vector V whose entries are all equal to 1 clearly satisfies MV = V . Now, if λ
is an eigenvalue associated with the vector W whose entries are w1, w2, . . . , wd ,
then the relation MW = λW gives

|λ||wi | = |λwi | =
∣
∣
∣
∣
∣
∣

∑

1≤ j≤d

mi, jw j

∣
∣
∣
∣
∣
∣

≤
∑

1≤ j≤d

|mi, j ||w j | =
∑

1≤ j≤d

mi, j |w j |

≤ max
j

|w j |
∑

1≤ j≤d

mi, j = max
j

|w j |.

Taking i = i0 such that |wi0 | = max j |w j |, and noting that |wi0 | �= 0 (since the
vector W is not zero), we have

|λ| ≤ 1.

Hence 1 is the Perron–Frobenius value of the matrix M .
We now prove that 1, as well as all eigenvalues of M of modulus 1 (if any), are

simple roots of the minimal polynomial of M . Define ‖B‖ for a d × d matrix B by

‖B‖ := max
1≤i≤d

∑

1≤ j≤d

|bi, j |.

It is straightforward to prove that ‖ ‖ is a submultiplicative norm. Furthermore
‖M‖ = 1 since M is stochastic. Since 1 is an eigenvalue of M , it is a root of the
minimal polynomial (see Proposition 8.3.3(c)). By Proposition 8.3.3(f) it is a simple
root. The same result shows that any eigenvalue of M of modulus 1 (if any) is a
root and hence a simple root of the minimal polynomial.

The assertion about Mn , with the extra hypothesis that M has no eigenvalue
λ �= 1 of modulus 1, is proved exactly as in Theorem 8.3.12 for the existence of the
limit and the value C(1)/q ′(1). �

Theorem 8.3.14 Let M = (mi, j )i, j be a non-negative d × d matrix, and let Mn =
(m(n)

i, j )i, j be its n th power. Denote by r the Perron–Frobenius eigenvalue of M.
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(a) If M has no eigenvalue λ such that |λ| = r and λ �= r , then there exist an integer p > 0
and constants ei, j ≥ 0, such that, as n → ∞,

m(n)
i, j = ei, j n

p−1rn + o(n p−1rn).

Furthermore there exist i, j such that ei, j > 0.
(b) If the matrix M has its entries in Q, then the quantities ei, j and r are algebraic numbers.

Proof. We already know by Theorem 8.3.11 that M admits a Perron–Frobenius
eigenvalue r , and (with the extra hypothesis that M has no eigenvalue λ such that
|λ| = r and λ �= r ) that any other eigenvalue λ of M satisfies |λ| < r . We now
reduce M to Jordan normal form. There exists an invertible matrix T such that the
matrix J = T −1 MT is a Jordan matrix, i.e., J has square blocks M1, . . . , Mt on
its diagonal, and 0’s elsewhere, Mk is a dk × dk matrix

Mk =










λk 1 0 · · · 0
0 λk 1 · · · 0
...

. . . . . .
...

0 0 · · · λk 1
0 0 0 · · · λk










,

and the set of λk’s with multiplicities dk is exactly the set of eigenvalues of M with
their multiplicities.

Since Mn = T J nT −1, the entries of Mn are linear combinations with coefficients
independent of n of the entries of J n . Since J n has the blocks Mn

1 , . . . , Mn
t on its

diagonal and 0’s elsewhere, and since

Mn
k =











λn
k nλn−1

k

(n
2

)
λn−2

k · · · ( n
dk−2

)
λ

n−dk+2
k

( n
dk−1

)
λ

n−dk+1
k

0 λn
k nλn−1

k · · · ( n
dk−3

)
λ

n−dk+2
k

( n
dk−2

)
λ

n−dk+1
k

...
...

...
...

...
0 0 0 · · · λn

k nλn−1
k

0 0 0 · · · 0 λn
k











,

we see that there exist constants ck,�
i, j independent of n, such that, for all n ≥ 1,

m(n)
i, j =

∑

1≤k≤t

∑

0≤�<dk

ck,�
i, j

(
n

�

)

λn−�
k .

Let p = max{dk : λk = r}. Then there exist constants ei, j , independent of n, such
that

m(n)
i, j = ei, j n

p−1rn + o(n p−1rn).

Since m(n)
i, j ≥ 0, we have ei, j ≥ 0.
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To prove that there exist i, j such that ei, j > 0, let us suppose that ei, j = 0 for all
i, j . Then all entries of the matrix Mn are o(n p−1rn) as n → ∞. This implies that
all entries of the matrix J n are also o(n p−1rn) as n → ∞. But this is not possible,
since one of the entries of J n is equal to

( n
p−1

)
rn−p+1, which is not o(n p−1rn) as

n → ∞.
The assertion that r and the ei, j are algebraic is a straightforward consequence

of the fact that all computations in the proof take place in the field generated by Q

and the eigenvalues of the matrix M . �

8.4 Frequencies of Letters and Words in a Morphic Sequence

Before studying frequencies of letters in a morphic sequence, we begin with a
proposition about the growth of the length of the nth iterate of a primitive morphism.
The proof is a simple example of the methods used later in this section.

Proposition 8.4.1 Let ϕ : �∗ → �∗ be a primitive morphism on the finite set� =
{a1, a2, . . . , ad}. Let M(ϕ) be the incidence matrix of ϕ, and let r be the Perron–
Frobenius eigenvalue of M(ϕ). Then

(a) the incidence matrix M(ϕ) is primitive;
(b) for each nonempty word w on �, there exists a positive constant c(w) such that

lim
n→∞

|ϕn(w)|
rn

= c(w).

Proof. The first assertion is clear. In order to prove the second assertion, we have,
using Corollary 8.2.4 and Theorem 8.3.12(b), that for each nonempty wordw ∈ �∗

the limit limn→∞ |ϕn(w)|/rn exists and

c(w) := lim
n→∞

|ϕn(w)|
rn

= [
1 1 1 · · · 1

] C(r )

q ′(r )








|w|a1

|w|a2

...
|w|ad







.

Since the morphism ϕ is primitive, there exists an integer k > 0 such that, for
each i = 1, 2, . . . , d, we have |ϕk(w)|ai > 0. Hence

c(w) = lim
n→∞

|ϕn+k(w)|
rn+k

= lim
n→∞

|ϕn(ϕk(w))|
rn+k

= [
1 1 1 · · · 1

] C(r )

rkq ′(r )








|ϕk(w)|a1

|ϕk(w)|a2

...
|ϕk(w)|ad







.
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Since we know by Theorem 8.3.12(a) that C(r )/q ′(r ) is positive, we thus have
c(w) > 0. �

The ordinary frequency of letters was defined in Section 1.1. A related concept,
the logarithmic frequency, often proves useful.

Definition 8.4.2 We say that a letter a occurs in the sequence x = x1x2x3 · · · with
logarithmic frequency LogFreqx(a) if the sequence

1

log N

∑

1≤n≤N
xn=a

1

n
→ LogFreqx(a) as N → ∞.

Example 8.4.3 Consider the word x = x1x2x3 · · · defined by taking xi to
be the most significant digit in the base-3 expansion of i . Thus x =
12111222111111111 · · · . We prove that the logarithmic frequency of the letter
1 in x exists and is equal to log 2/ log 3. Let us define E = {i ≥ 1 : xi = 1}. Let

B� =
∑

3�≤ j<3�+1, j∈E

1

j
.

Clearly

B� =
∑

3�≤ j<2.3�

1

j
.

When n goes to infinity, we have

∑

1≤ j≤n

1

j
= log n + γ + o(1),

where γ is the Euler constant. An easy consequence is that, when � goes to infinity,
B� goes to log 2.

Let n ≥ 1 be an integer, and let k be the integer such that 3k ≤ n < 3k+1. Then

1

log n

∑

1≤ j≤n, j∈E

1

j
= 1

log n

∑

1≤ j<3k , j∈E

1

j
+ 1

log n

∑

3k≤ j≤n, j∈E

1

j

= 1

log n

∑

1≤�<k

B� + 1

log n

∑

3k≤ j≤n, j∈E

1

j
.

The last sum is bounded by 1
log n Bk , and hence tends to 0 when n tends to ∞.

The first sum is equivalent to

1

log 3k

∑

1≤�<k

B� = 1

log 3

(
1

k

∑

1≤�<k

B�

)

.
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This sum tends to log 2
log 3 . More precisely, B� tends to log 2 when � tends to infinity;

hence its Cesáro mean (see Exercise 2.32) also converges to log 2.

We now state a proposition, without proof, about the existence of the logarithmic
frequency.

Proposition 8.4.4

(a) If the frequency of a in the sequence x exists, then the logarithmic frequency of a in x
also exists, and these two frequencies are equal.

(b) The letter a occurs in the sequence x with logarithmic frequency if and only if

lim
s→1+

∑

n≥1; xn=a

1

ns
.

exists. Furthermore the logarithmic frequency and this limit are then equal.

We are now ready to give results on frequencies of letters in a morphic sequence.

Theorem 8.4.5

(a) Let x = (xn)n≥0 be a morphic sequence. If the frequency of a letter exists, then it is an
algebraic number.

(b) Let x = (xn)n≥0 be an automatic sequence. If the frequency of a letter exists, then it is
a rational number.

Proof. Let x = (xn)n≥0 be a morphic sequence on the alphabet �. From Theo-
rem 7.5.1 we can suppose that there exists an alphabet !, a nonerasing morphism
µ on !, prolongable on a1 ∈ !, and a coding τ : ! → �, such that

x = τ (µω(a1)).

Let ! = {a1, . . . , ad}. We suppose that all letters of ! occur in µω(a1). Let M be
the incidence matrix of the morphism µ. Up to replacing M by a power of M , we
can suppose, using Theorem 8.3.11, that every eigenvalue λ of M (if any) that is
different from the Perron–Frobenius eigenvalue r satisfies |λ| < r .

Suppose that the frequency of some letter a ∈ � exists. Let ! = !′ ∪ !′′, where

!′′ = {b ∈ ! : for all n ≥ 0, τ (µn(b)) ∈ (� \ {a})∗}

and !′ = ! \ !′′.
Up to replacing M by T −1 MT , where T is a permutation matrix, we can suppose

that the letters in ! are ordered in such a way that the first d ′ letters are precisely
the letters in !′ and the remaining letters are the letters in !′′. Hence the matrix M



8.4 Frequencies of Letters and Words in a Morphic Sequence 269

can be written

M =
[

M ′ 0
N M ′′

]

where M ′ is a d ′ × d ′ matrix, M ′′ is a d ′′ × d ′′ matrix, d ′ + d ′′ = d, and N and 0
are rectangular matrices of appropriate size. We also have

Mn =
[

(M ′)n 0
Nn (M ′′)n

]

where Nn is some rectangular matrix.
We apply Theorem 8.3.14 to the matrix M . Let M = (mi, j )i, j , and let Mn =

(m(n)
i, j )i, j be its nth power. There exist an integer p > 0 and constants ei, j ≥ 0, such

that, as n → ∞,

m(n)
i, j = ei, j n

p−1rn + o(n p−1rn).

We can also apply Theorem 8.3.14 to the matrix M ′. Since (m ′
i, j )

(n) = m(n)
i, j for all

i, j for which m ′
i, j is defined, we obtain exactly the above asymptotic behavior. But,

since we are now dealing with the matrix M ′, we can say that there exist i0, j0 ∈ !′

such that ei0, j0 > 0. Since a1 belongs to !′, and since a j0 occurs in µω(a1), there
exists v ≥ 1 such that m(v)

j0,1 ≥ 1. Now, since i0 ∈ !′, there exist � ∈ !′ and u ≥ 1

such that � occurs in µu(ai0 ). Hence m(u)
�,i0

≥ 1. For all n ≥ 0 we have

m(u+n+v)
�,1 ≥ m(u)

�,i0
m(n)

i0, j0m
(v)
j0,1 ≥ m(n)

i0, j0 .

Now, replacing the m’s by their asymptotic behaviors given above, we see that
e�,1 > 0. The number of a occurring in τ (µn(a1)) is exactly

∑
1≤i≤d ′, τ (ai )=a m(n)

i,1

and the total number of letters in τ (µn(a1)) is equal to
∑

1≤i≤d m(n)
i,1 . The first sum

satisfies
∑

1≤i≤d ′, τ (ai )=a

m(n)
i,1 = en p−1rn + o(n p−1rn),

where e = ∑
1≤i≤d ′ ei,1. The second sum satisfies

∑

1≤i≤d

m(n)
i,1 = ẽn p−1rn + o(n p−1rn),

where ẽ = ∑
1≤i≤d ei,1, which is bounded from below by e�,1 > 0. Hence ẽ > 0.

Finally we see that the frequency of a in x equals

lim
n→∞

|τ (µn(a1))|a
|τ (µn(a1))| = e

ẽ
.

This frequency is an algebraic number by Theorem 8.3.14.
Now let x be an automatic sequence on the alphabet �. Then there exist an

alphabet !, a morphism of constant length µ on !, a letter b ∈ !, and a coding
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τ : ! → �, such that x = τ (µω(b)). Let a be a letter in �. We suppose that the
frequency of a in x exists and is equal to α. This implies that

lim
n→∞

|τ (µn(b))|a
|τ (µn(b))| = α.

Let h ≥ 1 be an integer to be fixed later on. We clearly have

lim
n→∞

|τ (µhn(b))|a
|τ (µhn(b))| = α.

Let bi1, . . . , bit be all the letters of ! such that τ (bi j ) = a. It suffices to prove that

lim
n→∞

|µhn(b)|bi j

|µhn(b)|

exists and is rational for each i j to conclude that α, which is the sum of all these
limits, is rational. Let r be the length of the morphism µ (i.e., the maximum over
|µ(c)| for c ∈ !). Let M be the incidence matrix of µ. The matrix MT /r is a
stochastic matrix. Hence its Perron–Frobenius eigenvalue is 1 by Theorem 8.3.13.
From Theorem 8.3.11 there exists an integer h ≥ 1 such that (MT /r )h has no
eigenvalue λ such that |λ| = 1 and λ �= 1. Using Theorem 8.3.13 once more, we
have

lim
n→∞

((MT )h)n

rhn
= C̃(1)

q̃ ′(1)
,

where C̃(λ) is the reduced adjoint of λI − (MT /r ) and q̃ the minimal polynomial
of MT /r . Hence

lim
n→∞

(Mh)n

rhn
= C̃(1)T

q̃ ′(1)
.

Furthermore this matrix has rational coefficients by Theorem 8.3.13. Finally, if
! = {b1, b2, . . . , bd}, we have

1

rhn
Mhn








1
0
...
0







= 1

|µhn(b)|








|µhn(b)|b1

|µhn(b)|b2

...
|µhn(b)|bd







.
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Hence all the limits lim
n→∞

|µhn(b)|bi

|µhn(b)| exist, and they are rational, since














lim
n→∞

|µhn(b)|b1

|µhn(b)|
lim

n→∞
|µhn(b)|b2

|µhn(b)|
...

lim
n→∞

|µhn(b)|bd

|µhn(b)|














= lim
n→∞

1

rhn
Mhn








1
0
...
0







= C̃(1)T

q̃ ′(1)








1
0
...
0







.

�

Theorem 8.4.6 Let x = (xn)n≥0 be a pure morphic sequence, generated by a mor-
phism µ. If the frequencies of all letters exist, then the vector of frequencies is a
non-negative normalized eigenvector of the incidence matrix of µ, associated with
the Perron–Frobenius eigenvalue of this matrix.

Proof. Let µ : !∗ → !∗ be a morphism prolongable on a1 ∈ !, such that x =
µω(a1). Write x = (xn)n≥0. Let M = (mi, j )i, j be the incidence matrix of µ. Since
all frequencies of letters occurring in x exist, we have in particular

lim
n→∞

1

|µn(a1)|Mn








1
0
...
0







=








Freqx(a1)
Freqx(a2)

...
Freqx(ad)







.

Hence

M








Freqx(a1)
Freqx(a2)

...
Freqx(ad)







= M lim

n→∞
1

|µn(a1)|Mn








1
0
...
0








= lim
n→∞

|µn+1(a1)|
|µn(a1)|

1

|µn+1(a1)|Mn+1








1
0
...
0







.

Since we have

lim
n→∞

1

|µn+1(a1)|Mn+1








1
0
...
0







=








Freqx(a1)
Freqx(a2)

...
Freqx(ad)
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and since at least one of the Freqx(ai )’s is not zero (since the Freqx(ai )’s sum to 1),
we see that |µn+1(a1)|/|µn(a1)| tends to a limit, say λ, for n → ∞, and that

M








Freqx(a1)
Freqx(a2)

...
Freqx(ad)







= λ








Freqx(a1)
Freqx(a2)

...
Freqx(ad)







.

Let r be the Perron–Frobenius eigenvalue of the matrix M . Using Theorem 8.3.11,
there exists an integer h ≥ 1 such that Mh (whose Perron–Frobenius eigenvalue is
rh) has no eigenvalue ξ satisfying |ξ | = rh and ξ �= rh . We then easily obtain from
the proof of the first part of Theorem 8.4.5 that there exist an integer p ≥ 1 and a
number ẽ > 0 such that |µhn(a1)| = ẽn p−1rhn + o(n p−1rhn). Hence

λ = lim
n→∞

|µn+1(a1)|
|µn(a1)| = lim

n→∞

( |µh(n+1)(a1)|
|µhn(a1)|

)1/h

= r. �

Theorem 8.4.7 Let x = (xn)n≥0 be a primitive morphic sequence, that is the image
by a coding of a fixed point of a primitive morphism. Then the frequencies of all
letters exist, and are nonzero. Furthermore, the vector of frequencies of the letters
occurring in the fixed point itself is the positive normalized vector associated with
the Perron–Frobenius eigenvalue of the incidence matrix and is equal to

C(r )








1
0
...
0








[
1 1 · · · 1

]
C(r )








1
0
...
0








,

where r is the Perron–Frobenius eigenvalue of the incidence matrix of the morphism,
and C(λ) the reduced adjoint matrix.

Proof. We can first clearly restrict ourselves to the case where the sequence is a
fixed point of a prolongable primitive morphism. Using Theorem 8.3.12 we see
that, if the frequencies exist, then they are given by the formula above, and hence
are positive. Let us now prove that the frequencies exist for the fixed point of a
prolongable primitive morphism.

Let x = (xn)n≥0 be a sequence over the alphabet !. We suppose that x is the fixed
point of a primitive morphism µ prolongable on x0. Let ! = {a0, a1, . . . , ad} with
a0 = x0. For any letter a j ∈ ! and for any n ≥ 0, we have, defining E j to be the
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vector whose all entries are 0 except the j th, which is equal to 1,

1

|µn(a j )|








|µn(a j )|a1

|µn(a j )|a2

...
|µn(a j )|ad







= Mn E j
[

1 1 · · · 1
]

Mn E j
=

Mn

rn E j
[

1 1 · · · 1
]

Mn

rn E j
.

Hence the limit for n → ∞ of the left-hand side exists and

lim
n→∞

1

|µn(a j )|








|µn(a j )|a1

|µn(a j )|a2

...
|µn(a j )|ad







= C(r )E j
[

1 1 · · · 1
]

C(r )E j
:= D j .

Furthermore, this limit does not depend on j : by Theorem 8.3.12 the columns of
C(r ), i.e., the vectors C(r )E j , are all proportional. Hence the normalized vectors
D j are all equal to

D1 :=








α1

α2
...
αd







,

and we have, for all i, j , limn→∞ |µn(a j )|ai/|µn(a j )| = αi .
Define, for n ≥ 0, �n := maxb∈! |µn(b)|. If N ≥ �n , then there exist j(n, N ) ≥ 0

and a word Bn,N such that |Bn,N | < �n and

x0 . . . xN−1 = µn(x0)µn(x1) . . . µn(x j(n,N ))Bn,N .

This implies

N = |x0 . . . xN−1| =
∑

0≤i≤ j(n,N )

|µn(xi )| + |Bn,N |

and for any letter ai ∈ !

|x0 . . . xN−1|ai =
∑

0≤i≤ j(n,N )

|µn(xi )|ai + |Bn,N |ai .

We know from what precedes that for all ε > 0 and for all b ∈ !, there exists
n0(b, ε) such that for all n ≥ n0(b, ε)

∣
∣
∣|µn(b)|ai − αi |µn(b)|

∣
∣
∣≤ ε|µn(b)|.

Let us fix ε > 0. Since ! is finite, there exists n1 = n1(ε) such that for all b, at ∈ !

we have
∣
∣
∣|µn1 (b)|at − αt |µn1 (b)|

∣
∣
∣ ≤ ε|µn1 (b)|.
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Hence
∣
∣
∣|x0 . . . xN−1|at − αt |x0 . . . xN−1|

∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

0≤i≤ j(n1,N )

(|µn1 (xi )|at − αt |µn1 (xi )|) + |Bn1,N |at − αt |Bn1,N |
∣
∣
∣
∣
∣
∣
,

which gives
∣
∣
∣|x0 . . . xN−1|at − αt N

∣
∣
∣ ≤

∑

0≤i≤ j(n1,N )

∣
∣
∣|µn1 (xi )|at − αt |µn1 (xi )|

∣
∣
∣+ 2|Bn1,N |

≤ ε




∑

0≤i≤ j(n1,N )

|µn1 (xi )|


+ 2|Bn1,N | ≤ εN + 2�n1 .

Thus
∣
∣
∣

1

N
|x0 . . . xN−1|at − αt

∣
∣
∣ ≤ ε + 2

�n1

N
.

It then suffices to choose N > �2�n1/ε� to have
∣
∣
∣ 1

N |x0 . . . xN−1|at − αt

∣
∣
∣ ≤ 2ε.

Hence we have that 1
N |x0 . . . xN−1|at tends to αt for N → ∞. �

We now prove that the logarithmic frequencies always exist for an automatic
sequence. Actually, we prove a more general theorem.

Theorem 8.4.8 Let x = (xn)n≥0 be an automatic sequence with values in C. Then
the limit

lim
s→1+

(s − 1)
∑

n≥1

xn

ns

exists. Furthermore this limit is explicitly given by the following converging se-
ries: let x be k-automatic, and let x(1) = x = (x (1)

n )n≥0, x(2) = (x (2)
n )n≥0, . . . , x(d) =

(x (d)
n )n≥0 be the (finitely many) sequences of the k-kernel of x (see Theorem 6.6.2).

Defining V (n)T := (x (1)
n , x (2)

n , . . . , x (d)
n ), there exist k matrices of size d × d,

say M0, . . . , Mk−1 such that, for any j = 0, 1, . . . , k − 1 we have V (kn + j) =
M j V (n). Let M = (

∑
0≤ j≤k M j )/k, let C(λ) be the reduced adjoint matrix of

λI − M, and let q(λ) be the minimal polynomial of M. Then

lim
s→1+

(s − 1)
∑

n≥1

xn

ns

= C(1)

q ′(1) log k




∑

1≤ j<k

V ( j)

j
−

∑

1≤ j<k

j M j

∑

n≥1

V (n)
1

kn(kn + j)



 .
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Proof. Since the sequence x is automatic, say k-automatic, its k-kernel is finite
by Theorem 6.6.2. In particular, there exists a finite set of sequences {x(1) =
(x (1)

n )n≥0, . . . , x(d) = (x (d)
n )n≥0} such that x(1) = x, and for any sequence y = (yn)n≥0

belonging to this set and for any j = 0, 1, . . . , k − 1, the sequence (ykn+ j )n≥0

also belongs to this set. In other words, there exist k matrices of size d × d, say
M0, . . . , Mk−1, such that for any j = 0, 1, . . . , k − 1 we have

V (kn + j) = M j V (n), where V (n) :=








x (1)
n

x (2)
n
...

x (d)
n







.

Let G(s) := ∑
n≥1 V (n)/ns . The Dirichlet vector G(s) converges for *(s) > 1,

since V (n) takes only finitely many values. For such an s we can write

G(s) =
∑

n≥1

V (n)

ns
=
∑

n≥1

V (kn)

ksns
+

∑

1≤ j<k

∑

n≥0

V (kn + j)

(kn + j)s

= k−s M0

∑

n≥1

V (n)

ns
+

∑

1≤ j<k

M j

∑

n≥0

V (n)

(kn + j)s

= k−s M0

∑

n≥1

V (n)

ns
+

∑

1≤ j<k

V ( j)

j s
+

∑

1≤ j<k

M j

∑

n≥1

V (n)

(kn + j)s
.

Hence


I − k−s
∑

0≤ j<k

M j



G(s)

=
∑

1≤ j<k

V ( j)

j s
+

∑

1≤ j<k

M j

∑

n≥1

V (n)

(
1

(kn + j)s
− 1

ksns

)

.

Let W (s) be the right-hand member of this equality, and let M := 1
k

∑
0≤ j<k M j .

Since for each j = 0, 1, . . . , k − 1 the matrix M j has only 0’s and 1’s and exactly
one 1 in each row, the matrix M is stochastic. Hence its Perron–Frobenius eigenvalue
is 1, and 1 is a simple root of the minimal polynomial (see Theorem 8.3.13 above).
Denoting by C(λ) the reduced adjoint matrix of λI − M , and by Q(λ) and q(λ)
the characteristic and the minimal polynomial of M , we have for real s > 1, using
Proposition 8.3.3,

G(s) = ks−1(ks−1 I − M)−1W (s) = ks−1 adj(ks−1 I − M)

Q(ks−1)
W (s)

= ks−1 C(ks−1)

q(ks−1)
W (s).
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But as s → 1+, the vector W (s) tends to

W (1) =
∑

1≤ j<k

V ( j)

j
−

∑

1≤ j<k

j M j

∑

n≥1

V (n)
1

kn(kn + j)
.

Furthermore

s − 1

q(ks−1)
= s − 1

ks−1 − 1

ks−1 − 1

q(ks−1) − q(1)
;

hence lim
s→1+

s − 1

q(ks−1)
exists and

lim
s→1+

s − 1

q(ks−1)
= 1

q ′(1) log k
.

Hence the limit of (s − 1)G(s) for s → 1+ exists, and

lim
s→1+

(s − 1)G(s) = C(1)

q ′(1) log k
W (1). �

Corollary 8.4.9 Let x be an automatic sequence. Then all letters occurring in x
have a logarithmic frequency. Furthermore, the logarithmic frequencies are explic-
itly given by a converging series analogous to the one above.

Proof. Let x be an automatic sequence on the alphabet �. Let a ∈ �. Define
τ : � → {0, 1} by τ (b) = 0 if b ∈ � \ {a}, and τ (a) = 1. Then the sequence y :=
τ (x) is also automatic. It then suffices to apply Theorem 8.4.8 above to y. �

8.5 An Application

In Exercise 7.14 we considered a variation on the tower of Hanoi problem called
the cyclic tower of Hanoi. This gives rise to an infinite sequence c = τ ( f ω(a1)),
where f is the nonuniform morphism defined by

f (a1) = a1b2a1,

f (b1) = b1c2b1,

f (c1) = c1a2c1,

f (a2) = b1a1,

f (b2) = c1b1,

f (c2) = a1c1,

and τ is the coding that removes the subscripts. We now prove that c is not an
automatic sequence.

Theorem 8.5.1 The sequence τ ( f ω(a1)) is not d-automatic for any d ≥ 1.
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Proof. First, we note that the word aba in the sequence τ ( f ω(a1)) can only occur
as τ (a1b2a1). For aba is necessarily of the form τ (ai b j ak), where i, j, k ∈ {1, 2}.
Looking at the images of each letter under f 2, we see that the only subword of
the form ai b j ak that occurs in τ ( f ω(a1)) is a1b2a1. This implies that the number
of times the subword aba = τ (a1b2a1) occurs in τ ( f ω(a1))[0..N − 1] is equal to
the number of times the subword a1b2a1 occurs in f ω(a1)[0..N − 1].

Since the letter b2 must be preceded and followed by a1, we also see that the num-
ber of times the subword a1b2a1 occurs in f ω(a1)[0..N − 1] is equal either to the
number of times the letter b2 occurs in f ω(a1)[0..N − 1] or to this number minus 1.

Suppose now that the sequence c = c0c1c2 · · · is automatic. Then, by combining
the results of Theorems 5.4.4 and 6.8.1, we see that the sequence

c′ := [c0, c1, c2][c1, c2, c3][c2, c3, c4] · · ·
of its 3-letter subwords is also automatic. Hence, if the frequency of a “letter” of
this new sequence c′ exists, it is rational by Theorem 8.4.5 above. In particular, if
the frequency of the “letter” aba exists, it must be rational. But from the argument
above, the frequency of this “letter” exists if and only if the frequency of the letter
b2 exists in the sequence f ω(a1), and the two frequencies are equal.

To conclude, we note that the incidence matrix of the morphism f is

M :=












2 0 0 1 0 1
0 2 0 1 1 0
0 0 2 0 1 1
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0












.

It is easy to compute the characteristic polynomial of this matrix: Q(λ) = (λ−
1)4(λ2 − 2λ− 2). Hence the Perron–Frobenius eigenvalue of this matrix is equal
to 1 +√

3. Furthermore, the matrix M is primitive, since M4 > 0. Therefore, we
know that all frequencies exist, and the vector of frequencies is the normalized
non-negative vector associated with the Perron–Frobenius value of the matrix. It is
easy to find this vector:

V =














√
3−1
3√
3−1
3√
3−1
3

2−√
3

3
2−√

3
3

2−√
3

3














.

Hence the frequency of b2 equals 2−√
3

3 , which is an irrational number. This yields
the desired contradiction. �
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8.6 Gaps

In this section we discuss the gaps between consecutive occurrences of a letter in
an automatic sequence. If x = (xn)n≥0 is an infinite sequence over the alphabet �,
we define the occurrence function

occx(a, i) = (sup{n ≥ −1 : |x[0..n]|a < i}) + 1,

where a ∈ � and i ≥ 1. Thus occx(a, i) gives the position of the i th occurrence of
the letter a in x (or +∞ if a does not occur i times).

Our first theorem says that if x is a k-automatic sequence and a is a letter that
occurs sufficiently often, then the smallest gaps between successive occurrences of
a cannot be too large.

Theorem 8.6.1 Let x be a k-automatic sequence taking values in�, and let a ∈ �.
If

lim sup
n→∞

|x[0..n − 1]|a
log n

= ∞,

then

lim inf
j→∞

(occx(a, j + 1) − occx(a, j)) < ∞.

Proof. Since x is k-automatic, we can write x = τ (y), where y = ϕω(b), where τ
is a coding, b is a single symbol, and ϕ is a k-uniform morphism prolongable on b.

Let u be the smallest integer such that every letter that appears in y′ := y[ku ..∞]
occurs infinitely often in y′. Now suppose for all integers i, r with r ≥ 0 and ku ≤
i < ku+1 we have |τ (ϕr (y[i]))|a ≤ 1. Then for all r ≥ 0 we have

|τ (ϕr (y[ku ..ku+1 − 1]))|a ≤ ku+1 − ku

and

x[0..ku+r+1 − 1] = x[0..ku − 1]
∏

0≤t≤r

τ (ϕt (y[ku ..ku+1 − 1])).

Combining these, we have

|x[0..ku+r+1 − 1]|a ≤ ku + (r + 1)(ku+1 − ku)

for all r ≥ 0. Now take n such that ku+r ≤ n < ku+r+1. Then

|x[0..n − 1]|a
log n

≤ ku + (r + 1)(ku+1 − ku)

(u + r ) log k
.

Now, letting r → ∞, we find

lim sup
n→∞

|x[0..n − 1]|a
log n

≤ ku+1 − ku

log k
< ∞.

This contradicts the hypothesis.



8.6 Gaps 279

So it must be that in fact there exist integers i, r with |τ (ϕr (y[i]))|a ≥ 2 with
ku ≤ i < ku+1 and r ≥ 0. But y[i] occurs infinitely often in y, so τ (ϕr (y[i])) oc-
curs infinitely often in x = τ (ϕr (y)). Thus there are infinitely many consecutive
occurrences of a in x that are separated by at most kr < ∞. This is the desired
result. �

Example 8.6.2 In Example 5.5.1 we proved that q = 1100100001 · · · , the char-
acteristic sequence of the squares, was not 2-automatic. Using Theorem 8.6.1, how-
ever, it easily follows that this sequence is not k-automatic for any k ≥ 2. For we
have

|q[0..n − 1]|1 = 1 + �√n − 1�,
but

occq(a, j + 1) − occq(a, j) = 2 j − 1.

Our next theorem discusses when the frequency of a symbol in an automatic
sequence can be 0. Recall the definition of ek;P from Section 3.3: ek;P (n) counts
the number of occurrences of the word P in the word 0|P|−1 (n)k .

Theorem 8.6.3 Let x be a k-automatic sequence over an alphabet�, and let a ∈ �.
Then Freqx(a) = 0 if and only if there exists a word P ∈ �+

k such that x[n] �= a
for all n with ek;P (n) > 0.

Proof. Suppose there exists such a word P . Then by Exercise 2, the symbol a is of
frequency 0.

Otherwise there is no such word P . Suppose x is generated by the k-DFAO
M = (Q, �k, δ, q0,�, τ ). By Theorem 5.2.1 we may assume δ(q0,0) = q0. Then
for all P ∈ �+

k there exist words y = y(P), z = z(P) such that τ (δ(q0, y Pz)) = a.
Now we claim that in fact we can choose y, z such that |y|, |z| < |Q|. For consider
the shortest prefix y′ of y such that δ(q0, y′) = δ(q0, y). By the pigeonhole principle,
we have |y′| < |Q|. Similarly, by considering the shortest prefix z′ of z such that
δ(q0, y Pz′) = δ(q0, ypz) we get |z′| < |Q|. Hence δ(q0, y Pz) = δ(q0, y′Pz′) = a,
as desired.

Now let us estimate |x[0..n − 1]|a for large n. Write ku+2|Q|−2 ≤ n < ku+2|Q|−1,
and for each integer m with ku−1 ≤ m < ku consider the word P = (m)k of length u.
From the above, there exist words y = y(P), z = z(P) such that τ (δ(q0, y Pz)) = a
and |y|, |z| < |Q|. Without loss of generality we may assume y has no leading zeros.
Consider the map sending P to P ′ := y Pz; then |P ′| ≤ u + 2|Q| − 2 and P ′ is the
base-k representation of an integer < n. This map could be many–one, but since
P is a length-u subword of P ′, and there are at most 2|Q| − 1 such subwords, at
most 2|Q| − 1 different words P can get mapped to the same P ′. It follows that
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|x[0..n − 1]|a ≥ (ku − ku−1)/(2|Q| − 1). Hence

|x[0..n − 1]|a
n

≥ ku − ku−1

ku+2|Q|−1(2|Q| − 1)

= k − 1

k2|Q|(2|Q| − 1)
,

and so Freqx(a) > 0. �

Example 8.6.4 Consider p = (pn)n≥1 = 01101010001 · · · , the characteristic
sequence of the prime numbers introduced in Example 1.1.3. From the prime num-
ber theorem we know the number of primes ≤ n is asymptotically n/ log n, and
hence Freqp(1) = 0. On the other hand, for any P ∈ �+

k , there exists a prime
q ≡ k[P]k + 1 (mod k|P|+1) by Dirichlet’s theorem. For this q we have that
p[q] = 1 and P is a subword of (q)k . Hence by Theorem 8.6.3, p is not k-automatic
for any k ≥ 2.

Corollary 8.6.5 Let x be a k-automatic sequence over the alphabet �, and let
a ∈ �. If Freqx(a) = 0 and a occurs infinitely often in x, then

lim sup
n→∞

occx(a, n + 1)

occx(a, n)
> 1.

Proof. By Theorem 8.6.3, if Freqx(a) = 0, then there exists a word P ∈ �+
k such

that x[n] �= a if P is a subword of (n)k . By replacing P with 1P if necessary, we
may assume P has no leading zeros. Let y = [P]k . Then x[n] �= a for ykr ≤ n <

(y + 1)kr . Setting j = |x[0..ykr ]|a , we have

occx(a, j + 1)

occx(a, j)
≥ y + 1

y
.

Hence

lim sup
n→∞

occx(a, n + 1)

occx(a, n)
≥ y + 1

y
> 1. �

8.7 Exercises

1. Prove that the characteristic sequence of the squarefree numbers is not morphic.
2. Let P ∈ �+

k , and let aP = (an)n≥0 be a sequence over �2 defined as
follows: an = 1 if ek;P (n) > 0, and 0 otherwise. (See Section 3.3 for
the definition of ek;P .) For example, if k = 2 and P = 11, then aP =
0001001100011111 · · · .
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(a) Show that aP is k-automatic for all P .
(b) Show that FreqaP

(0) = 0.

3. Suppose a sequence is the image of a fixed point of a (not necessarily uniform)
morphism, and all its subwords for which a frequency exists occur with rational
frequency. Is it true that the sequence is k-automatic for some k?

4. Let M be a d × d matrix with non-negative entries. Suppose that M is irreducible.
Let r be the Perron–Frobenius eigenvalue of M . Supose that x is an eigenvector
of the matrix M for an eigenvalue λ. Prove that if the entries of x are positive,
then λ = r .

5. Let M be a diagonal complex d × d matrix. Let m1, . . . ,md be its diagonal
terms. Prove that the adjoint of λI − M is the d × d diagonal matrix whose
diagonal entries are Q(λ)

λ−m1
, . . . , Q(λ)

λ−md
, where Q(λ) = ∏d

j=1(λ− m j ) is the char-
acteristic polynomial of the matrix D. Deduce that Q′(λ) = tr(adj(λI − M)).

6. Prove that the set of diagonalizable complex matrices is dense in the set of all
complex matrices.

7. Let M be a non-negative d × d complex matrix. Let r be its Perron–Frobenius
eigenvalue. Prove that there exists a positive integer h such that any eigenvalue
λ of M such that |λ| = r satisfies λh = rh .

8. Let M = (mi, j )1≤i, j≤d be a d × d matrix with non-negative entries.
(a) Define G(M) to be the directed graph with vertices {1, 2, . . . , d} such that there is

a directed edge from i to j if and only if mi, j > 0. Show that M is primitive if and
only if there exists an integer e such that for all vertices i, j there exists a walk of
length exactly e from i to j .

(b) Suppose M is primitive and there exists i such that mi,i > 0. Show that all the entries
of Me are positive for e = 2(d − 1), and this bound is best possible. Conclude
that if h is a primitive morphism prolongable on a, and Depth h = d, then h2(d−1)

(b) ∈ �∗c�∗ for all b, c ∈ �.
(c) Let γ (M) be the least integer e such that Me has all positive entries. Prove that, for

all primitive matrices M , we have γ (M) ≤ (d − 1)2 + 1.
(d) Prove that the bound γ (M) ≤ (d − 1)2 + 1 is best possible.

9. In this exercise we outline a proof of the result mentioned in the proof of
Lemma 7.4.6: if A is an n × n matrix with non-negative integer entries then
there exist integers r, s with 0 ≤ r < s ≤ 2n such that Ar ≤ As . (By M ≤ M ′

we mean that each entry of M is ≤ the corresponding entry of M ′.)
(a) Let A be an irreducible n × n matrix. Define β(A) to be the least integer e ≥ 1

such that the entries of the diagonal of Ae are all positive. Define β(n) = supβ(A)
where the supremum is taken over all irreducible n × n matrices A. Show that
β(n) ≤ n(n − 1) for n ≥ 2.

(b) Suppose A is an n × n non-negative integer matrix of the form

[
B C
0 D

]

with B, D square matrices and D has nonzero entries on its diagonal. For l ≥ 0
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define Cl by

Al =
[

Bl Cl

0 Dl

]

.

Show that Cl ≤ Cl+1 and Dl ≤ Dl+1.
(c) Now prove the result by induction on n.

8.8 Open Problems

1. For a morphic sequence w, must the logarithmic frequencies of each letter exist?
2. Must the logarithmic frequency of a letter occurring in an automatic sequence

be of the form logα/ logβ, where α and β are rational numbers?

8.9 Notes

8.2 What we call “incidence matrix” is sometimes called “transition matrix” or
“substitution matrix” in the literature.

8.3 For the original papers on the Perron–Frobenius theorem, see Perron [1907a,
1907b] and Frobenius [1908, 1912]. Our presentation is based on the books of
Gantmacher [1960] and Minc [1988]. For applications of the Perron–Frobenius
theorem, see MacCluer [2000].

The proof of the assertion in Proposition 8.3.3(f) is a simplification by Al-
louche of a proof due to B. Randé (personal communication).

8.4 For an interesting discussion of logarithmic frequencies and the first-digit prob-
lem, see Raimi [1976].

For the proof of Proposition 8.4.4, see, for example, Tenenbaum [1995,
Theorem 2 (p. 272) and Theorem 3 (p. 274)].

Theorem 8.4.5(b) is due to Cobham [1972]. In the particular case that the
automatic sequence is uniformly recurrent, this result is also due to B. Klein
[1972].

Theorem 8.4.7 is due to Michel [1975, 1976a].
For Theorem 8.4.8 see Allouche, Mendès France, and Peyrière [2000].

For Corollary 8.4.9, see Cobham [1972] and Allouche, Mendès France, and
Peyrière [2000].

8.5 Theorem 8.5.1 is due to Allouche [1994b].
8.6 Theorems 8.6.1 and 8.6.3 is due to Cobham [1972]. Corollary 8.6.5 is due to

Minsky and Papert [1966].
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Characteristic Words

In this chapter we introduce a special class of infinite words over {0, 1} with many
remarkable properties, the so-called characteristic words. These infinite words are
of great number-theoretic interest, and can be viewed as generalizations of the
infinite Fibonacci word introduced in Section 7.1.

Additional properties of characteristic words (and their generalizations) are dis-
cussed in Sections 10.5 and 10.6.

9.1 Definitions and Basic Properties

Let θ be a real number with 0 < θ < 1. For n ≥ 1, define

fθ (n) := �(n + 1)θ� − �nθ� (9.1)

and

fθ = fθ (1) fθ (2) fθ (3) · · · .
Then fθ is called a characteristic word with slope θ . Note that fθ is an infinite word
over the alphabet {0,1}.

Alternatively, we could define

fθ (n) :=
{

1 if {nθ} ∈ [1 − θ, 1),

0 otherwise.

It is easy to see that the two definitions are identical.
By telescoping cancellation applied to Eq. (9.1), we have

∑

1≤i≤n

fθ (i) = �(n + 1)θ�. (9.2)

Example 9.1.1 Consider the case where θ = (
√

5 − 1)/2
.= .61803. Then we have

fθ = 1011010110 · · · ,

283
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which, as we will see below, is (up to a coding) the infinite Fibonacci word of Sec-
tion 7.1.

There is a natural generalization of characteristic words called Sturmian words.
If θ, ρ are real numbers with 0 < θ < 1, we define, for n ≥ 1,

sn := �(n + 1)θ + ρ� − �nθ + ρ�,
s ′n := �(n + 1)θ + ρ� − �nθ + ρ�.

Then

sθ,ρ := s1s2s3 · · · ,
s′θ,ρ := s ′1s ′2s ′3 · · ·

are said to be Sturmian words with slope θ . Again, both sθ,ρ and s′θ,ρ are words over
the alphabet {0,1}.

Define the coding r as follows: r (0) = 1 and r (1) = 0. Then we have

Lemma 9.1.2 If 0 < θ < 1 is an irrational real number, then

f1−θ = r (fθ ).

Proof. We know that

fθ (n) = �(n + 1)θ� − �nθ�
and

f1−θ (n) = �(n + 1)(1 − θ )� − �n(1 − θ )�
= �−(n + 1)θ� − �−nθ� + 1,

and so

fθ (n) + f1−θ (n) = �x� + �−x� − �y� − �−y� + 1,

where x = (n + 1)θ , y = nθ . Now, using Exercise 9.1, we find fθ (n)+ f1−θ (n)= 1.
�

We now define a related infinite word. Let α be a real number, and define

gα(n) :=
{

1 if n = �kα� for some integer k,

0 otherwise.

Also define

gα := gα(1)gα(2)gα(3) · · · .

Lemma 9.1.3 Let α > 1 be an irrational real number. Then gα = f1/α.
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Proof.

gα(n) = 1 ⇐⇒ ∃k such that n = �kα�
⇐⇒ ∃k such that n ≤ kα < n + 1

⇐⇒ ∃k such that
n

α
≤ k <

n + 1

α

⇐⇒ ∃k such that
⌊n

α

⌋
= k − 1 and

⌊
n + 1

α

⌋

= k

⇐⇒
⌊

n + 1

α

⌋

−
⌊n

α

⌋
= 1

⇐⇒ f1/α(n) = 1. �

We now define the characteristic morphisms hn : {0,1}∗ → {0,1}∗, as follows:

hn(0) = 0n−11; hn(1) = 0n−110

for n ≥ 1.

Lemma 9.1.4 Let α be an irrational real number with 0 < α < 1, and let k be an
integer ≥ 1. Then hk(fα) = f1/(k+α).

Proof. Define the words di = hk( fα(i)) for i ≥ 1. Then clearly

hk(fα) = d1d2d3 · · · .
Let m be arbitrary, and let n be the position of the mth 1 in hk(fα). Since each di

contains exactly one 1, this means that we are interested in the 1 in dm . Then

|d1d2 · · · dm−1| = (m − 1)k + fα(1) + fα(2) + · · · + fα(m − 1)

= (m − 1)k + �mα�,
where we have used Eq. (9.2). It follows that

n = |d1d2 · · · dm−1| + k = mk + �mα� = �m(k + α)�.
Hence

(hk(fα))(n) = 1 ⇐⇒ ∃m such that n = �m(k + α)�
⇐⇒ gk+α(n) = 1,

and the result follows by Lemma 9.1.3. �

Theorem 9.1.5 Letα be an irrational real number, 0 < α < 1, with continued frac-
tion expansion α = [0, a1, a2, . . . ]. For n ≥ 1 define βn = [0, an, an+1, an+2, . . .].
Then for all n ≥ 0 we have

fα = (ha1 ◦ ha2 ◦ · · · ◦ han )(fβn+1 ).
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Proof. By induction on n. Since α = β1, the theorem is clearly true for n = 0.
Now assume the theorem is true for all m < n; we prove it for m = n. From

Lemma 9.1.4, we have

han (fβn+1 ) = f1/(an+βn+1) = fβn .

It follows that

fα = (ha1 ◦ ha2 ◦ · · · ◦ han−1 )(fβn )

= (ha1 ◦ ha2 ◦ · · · ◦ han−1 )(han (fβn+1 ))

= (ha1 ◦ ha2 ◦ · · · ◦ han )(fβn+1 ).
�

Recall from Section 2.4 that [a0, a1, . . . , an, an+1, . . . , an+t ] denotes a continued
fraction with an ultimately periodic sequence of partial quotients.

Corollary 9.1.6 Let 0 < α < 1 be an irrational real number with purely periodic
continued fraction expansion, i.e.,

α = [0, a1, a2, . . . , an ].

Then the characteristic word fα is a fixed point of the morphism

ha1 ◦ ha2 · · · ◦ han .

As an example, consider the case where α = [0, 1 ] = [0, 1, 1, 1, . . . ] =
(
√

5 − 1)/2. In this case

fα = 10110 · · ·
and fα is a fixed point of the map 1 → 10, 0 → 1. Hence fα is, up to a coding
reversing 0 and 1, the infinite Fibonacci word introduced in Section 7.1.

We now turn to examining the prefixes of fα. For n ≥ 0 define

Xn = (ha1 ◦ ha2 ◦ · · · ◦ han )(0),

Yn = (ha1 ◦ ha2 ◦ · · · ◦ han )(1).

The string Xn is sometimes called the nth characteristic block.

Lemma 9.1.7 For n ≥ 1 we have Yn = Xn Xn−1.

Proof.

Yn = (ha1 ◦ ha2 ◦ · · · ◦ han )(1)

= (ha1 ◦ ha2 ◦ · · · ◦ han−1 )(han (1))

= (ha1 ◦ ha2 ◦ · · · ◦ han−1 )(han (0)0)

= (ha1 ◦ ha2 ◦ · · · ◦ han )(0)(ha1 ◦ ha2 ◦ · · · ◦ han−1 )(0)

= Xn Xn−1. �
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Theorem 9.1.8 We have X0 = 0, X1 = 0a1−11, and Xn = Xan
n−1 Xn−2 for n ≥ 2.

Proof. We prove the result by induction on n. Clearly it is correct for n = 0, 1. Now
assume the result is true for all m < n; we prove it for n:

Xn = (ha1 ◦ ha2 ◦ · · · ◦ han )(0)

= (ha1 ◦ ha2 ◦ · · · ◦ han−1 )(han (0))

= (ha1 ◦ ha2 ◦ · · · ◦ han−1 )(0
an−11)

= Xan−1
n−1 Yn−1

= Xan−1
n−1 Xn−1 Xn−2 (by Lemma 9.1.7)

= Xan
n−1 Xn−2. �

Lemma 9.1.9 For n ≥ 0 we have

(1) |Xn|0 = qn − pn, |Xn|1 = pn,
(2) |Yn|0 = qn − pn + qn−1 − pn−1, |Yn|1 = pn + pn−1,

where pn/qn = [0, a1, a2, . . . , an].

Proof. The result is clearly true for n = 0, since X0 = 0 and Y0 = 1, while p0 =
q−1 = 0 and p−1 = q0 = 1.

Similarly, the result is true for n = 1, since X1 = 0a1−11 and Y1 = 0a1−110,
while p1 = 1, q1 = a1.

Now assume the result is true for all k < n, where n ≥ 2. We prove it for n.
By Theorem 9.1.8 we have Xn = Xan

n−1 Xn−2. It follows that |Xn|0 = an|Xn−1|0 +
|Xn−2|0. Hence, by induction, |Xn|0 = an(qn−1 − pn−1) + (qn−2 − pn−2) = qn −
pn , as desired. Similarly, |Xn|1 = an|Xn−1|1 + |Xn−2|1, so by induction |Xn|1 =
an pn−1 + pn−2 = pn .

Finally, using Lemma 9.1.7, we have |Yn|0 = |Xn Xn−1|0 = qn − pn + qn−1 −
pn−1 and |Yn|1 = |Xn Xn−1|1 = pn + pn−1. �

The next theorem explains the importance of the characteristic blocks.

Theorem 9.1.10 For n ≥ 1, Xn is exactly the prefix of fα of length qn.

Proof. By Theorem 9.1.5, either

Xn = (ha1 ◦ ha2 ◦ · · · ◦ han )(0)

or

Yn = (ha1 ◦ ha2 ◦ · · · ◦ han )(1)

is a prefix of fα. By Lemma 9.1.7, Xn is a prefix of both Xn and Yn . Hence Xn is a
prefix of fα, and by Lemma 9.1.9, |Xn| = qn . �



288 Characteristic Words

Note that Theorem 9.1.10 is not necessarily true for n = 0. In fact, it is easy to
see that X0 is a prefix of fα if and only if α < 1

2 .
In Section 7.1, we saw that the consecutive Fibonacci words satisfied an “almost

commutative” property. The same is true for the words Xn . Recall that, if |w| ≥ 2,
c(w) is the map that interchanges the last two symbols of w and leaves the other
symbols unchanged.

Theorem 9.1.11 For n ≥ 1 we have Xn Xn−1 = c(Xn−1 Xn).

Proof. We prove the result by induction on n. The result is clearly true for n = 1,
since then

X1 X0 = 0a1−11 0 = c(0a1−101) = c(0 0a1−11) = c(X0 X1).

Now assume the result is true for all k with 1 ≤ k < n, and n ≥ 2. We have

Xn Xn−1 = (Xan
n−1 Xn−2)Xn−1 = Xan

n−1c(Xn−1 Xn−2)

= c(Xan
n−1 Xn−1 Xn−2) = c(Xn−1 Xan

n−1 Xn−2) = c(Xn−1 Xn). �

An interesting corollary of the previous result is that Xn starts with a large power.

Corollary 9.1.12 For n ≥ 5, Xe
n−2 is a prefix of Xn, where e = an−1 + 1 + (qn−3 −

2)/qn−2.

Proof. We have Xn = Xan
n−1 Xn−2 = (Xan−1

n−2 Xn−3)an Xn−2. Since an ≥ 1, it follows
that Xan−1

n−2 Xn−3 Xn−2 is a prefix of Xn . Since n ≥ 5, we have |Xn−3| = qn−3 ≥ 2,
and so

Xan−1
n−2 Xn−3 Xn−2 = Xan−1

n−2c(Xn−2 Xn−3)

= Xan−1
n−2 Xn−2c(Xn−3)

= Xan−1+1
n−2 c(Xn−3).

Now Xn−3 is a prefix of Xn−2, so the result follows. �

Finally, we observe an interesting connection between the characteristic words
fα and the Ostrowski α-representation introduced in Section 3.9. The next theorem
gives a factorization of every prefix of fα in terms of characteristic blocks.

Theorem 9.1.13 Let 0 < α < 1 be an irrational real number with continued frac-
tion expansion α = [0, a1, a2, . . . ]. Let m ≥ 0 be an integer, and let bsbs−1 · · · b0

be the Ostrowski α-representation of m. Then

fα(1) fα(2) · · · fα(m) = Xbs
s Xbs−1

s−1 · · · Xb0
0 .
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Proof. By induction on m. The result is clearly true for m = 0, since then both
sides are ε. It is also true if 0 < m < q1 = a1, since then b0 = m, X0 = 0, and
fα(1) · · · fα(q1) = 0a1−11, so fα(1) · · · fα(m) = 0m = Xb0

0 .
Now fix s ≥ 1, and suppose the result is true for all m < qs . We prove it for

all m < qs+1. Suppose qs ≤ m < qs+1. Write m = bsqs + r , where 1 ≤ bs ≤ as+1,
and 0 ≤ r < qs .

By induction we have r = ∑
0≤i≤s−1 bi qi , and fα(1) · · · fα(r ) = Xbs−1

s−1 · · · Xb0
0 .

There are two cases to consider: bs < as+1 and bs = as+1.

Case 1: bs < as+1. Then fα(1) · · · fα(m) is a prefix of Xs+1 = Xas+1
s Xs−1. But

m = bsqs + r , so m < qs+1. Hence fα(1) · · · fα(m) is a prefix of Xbs+1
s = Xbs

s Xs .
Then

fα(1) · · · fα(m) = Xbs
s fα(1) · · · fα(r )

= Xbs
s Xbs−1

s−1 · · · Xb0
0 .

Case 2: bs = as+1. Now m < qs+1 by hypothesis, and so m = bsqs + r =
as+1qs + r < qs+1. Thus r < qs−1, and hence fα(1) · · · fα(r ) is a prefix of Xs−1.
But fα(1) · · · fα(m) is a prefix of Xs+1 = Xas+1

s Xs−1. Therefore

fα(1) · · · fα(m) = Xas+1
s fα(1) · · · fα(r )

= Xbs
s Xbs−1

s−1 · · · Xb0
0 . �

Corollary 9.1.14 Let 0 < α < 1 be an irrational real number with continued frac-
tion expansion α = [0, a1, a2, . . . ]. Let m ≥ 1 be an integer, and let bsbs−1 · · · b0

be the Ostrowski α-representation of m. Then

�(m + 1)α� =
∑

0≤i≤s

pi bi ,

where pi is the i th numerator in the continued fraction expansion for α.

Proof. Combine Theorem 9.1.13 with Lemma 9.1.9. �

Theorem 9.1.15 For n ≥ 1, we have that fα(n) = 1 if and only if bsbs−1 · · · b0,
the Ostrowski α-representation for n, ends in an odd number of zeros.

Proof. It is clear, from the definition of hk and Theorem 9.1.10, that for n ≥ 1 we
have

fα(qn) =
{

1 if n is odd,

0 if n is even.
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Figure 9.1: A Cutting Sequence for θ = (
√

5 − 1)/2.

Let i be the least index for which bi > 0. Then by Theorem 9.1.13, fα(n) is the
last symbol of Xi . But the last symbol of Xi is fα(qi ). Hence fα(n) = 1 if and only
if i is odd if and only if bi−1 · · · b0 = 0i is an odd number of zeros. �

9.2 Geometric Interpretation of Characteristic Words

In this section we examine a useful geometric characterization of characteristic
words.

Let θ > 0 be an irrational real number, and consider the line Lθ : y = θx through
the origin with slope θ , as pictured in Figure 9.1 for θ = (

√
5 − 1)/2.

Now consider this line for x > 0, and as it travels to the right, write

ci =
{

0 if L intersects a vertical line,

1 if L intersects a horizontal line.

Call the resulting infinite word

cθ = c1c2c3 · · · .
The infinite word cθ is sometimes called a cutting sequence.

For example, for θ = (
√

5 − 1)/2 we get

cθ = 01001010 · · · ,
which can be factored as

0 · 10 · 0 · 10 · 10 · · · .
Now assume 0 < θ < 1. Note that, as x increases from n to n + 1, we get

an extra 0 if �(n + 1)θ� = �nθ�;
an extra 10 if �(n + 1)θ� > �nθ�.
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It follows that, for 0 < θ < 1, we have

cθ = h(0fθ )

where h(0) = 0, h(1) = 10. Hence, by Exercise 9.2, we have

cθ = h′(fθ ),

where h′(0) = 0, h′(1) = 01.
Now notice that h′ = r ◦ h1, where r is the map r (0) = 1, r (1) = 0 introduced in

Lemma 9.1.2, and h1 is the characteristic morphism introduced after Lemma 9.1.3.
Hence we have cθ = r (h1(fθ )). Now use Lemma 9.1.4, and we have proved

Theorem 9.2.1 Let 0 < θ < 1 be an irrational real number. Then

cθ = fθ/(θ+1).

9.3 Application: Unusual Continued Fractions

In this section, we apply our theory of characteristic words to prove a theorem on
continued fractions. The simplest example of our theorem is the following identity:

∑

n≥1

2−�n/α� = [0, 20, 21, 21, 22, 23, 25, 28, 213, 221, 234, . . . ].

Here α = (
√

5 − 1)/2, and the exponents in the right-hand side are the Fibonacci
numbers.

The following definitions will hold throughout this section. Let α be an irrational
real number with 0 < α < 1. Let the continued fraction expansion of α be α =
[0, a1, a2, . . . ], and let pn/qn = [0, a1, a2, . . . , an] be the nth convergent. Let fα =
fα(1) fα(2) fα(3) · · · be the characteristic word with slope α.

We now define xn as the integer whose base-b representation is given by the
string Xn of the previous section, where b is an integer ≥ 2; that is, xn = [Xn]b. In
other words, for n ≥ 1 define

xn = fα(1)bqn−1 + fα(2)bqn−2 + · · · + fα(qn)b0

= bqn
∑

1≤k≤qn

fα(k)b−k .

Also define yn = (bqn − 1)/(b − 1).

Lemma 9.3.1 Define t0 = 0 and

tn = bqn − bqn−2

bqn−1 − 1

for n ≥ 1. Then

[0, t1, t2, . . . , tn] = xn

yn
.
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Proof. The result is easily verified for n = 0, 1. For n ≥ 2, the result will follow if
we can show that xn = tnxn−1 + xn−2 and yn = tn yn−1 + yn−2 for n ≥ 2. We have

xn = [Xn]b

= [Xan
n−1 Xn−2]b

= bqn−2 xn−1(1 + bqn−1 + · · · + bqn−1(an−1)) + xn−2

= bqn−2 · bqn−1an − 1

bqn−1 − 1
· xn−1 + xn−2

= bqn − bqn−2

bqn−1 − 1
· xn−1 + xn−2

= tnxn−1 + xn−2,

where we have used Theorem 9.1.8.
Similarly,

tn yn−1 + yn−2 = bqn − bqn−2

bqn−1 − 1
· yn−1 + yn−2

= bqn − bqn−2

bqn−1 − 1
· bqn−1 − 1

b − 1
+ bqn−2 − 1

b − 1

= (bqn − bqn−2 )(bqn−1 − 1) + (bqn−2 − 1)(bqn−1 − 1)

(bqn−1 − 1)(b − 1)

= bqn+qn−1 − bqn − bqn−1 + 1

(bqn−1 − 1)(b − 1)

= bqn − 1

b − 1
= yn. �

Theorem 9.3.2 We have

(b − 1)
∑

k≥1

fα(k)b−k = [0, t1, t2, t3, . . . ].

Proof. From the previous lemma, we have

[0, t1, t2, . . . , tn] = xn

yn

= bqn
∑

1≤k≤qn
fα(k)b−k

bqn−1
b−1

= bqn

bqn − 1
· (b − 1) ·

∑

1≤k≤qn

fα(k)b−k .

To obtain the result, let n → ∞. �
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We will show in Section 13.6 that the numbers (b − 1)
∑

k≥1 fα(k)b−k are all
transcendental.

Corollary 9.3.3 Let b ≥ 2 be an integer, and let Fi denote the i th Fibonacci
number. Let f = f1 f2 · · · be the Fibonacci word. Then [0, bF0, bF1, bF2, . . . ] =
(b − 1)

∑
k≥1 fkb−k .

Proof. Choose α = [0, 1, 1, 1, . . . ] = (
√

5 − 1)/2. Then in Theorem 9.3.2 we have
qn = Fn+1, and an easy calculation gives tn = bFn−1 . �

9.4 Exercises

1. Show that

�x� + �−x� =
{

0 if x ∈ Z,

−1 if x �∈ Z.

2. Let h(0) = 0, h(1) = 10, and h′(0) = 0, h′(1) = 01. Prove that h(0w) =
h′(w0) for all w ∈ {0,1}∗. Conclude that h(0w) = h′(w) for all w ∈ {0,1}ω.

3. Let 0 < θ, ρ < 1 be real numbers. Show that sθ,ρ is ultimately periodic if and
only if θ is a rational number. Conclude that there exists k such that sθ,ρ is
k-automatic if and only if θ is rational.

4. Let α > 1 be an irrational number, let 0 < β < 1 be a real number, and let n be
an integer. Show that there exists an integer k such that n = �kα + β� if and
only if {(β − n)/α} < 1/α.

5. Let 0 < α, β, γ, ρ < 1 be real numbers with α, β irrational. Show that sα,γ =
sβ,ρ if and only if (α, γ ) = (β, ρ).

6. Can the nth term of the characteristic sequence of α be computed in time
polynomial in log n, where α is an algebraic number?

7. Suppose you are given an oracle that returns the j th character in the continued
fraction for α with cost proportional to j . Show how to determine the nth term
of the characteristic sequence for α in time polynomial in log n.

8. Let α and β be positive irrational numbers satisfying the equation

1

α
+ 1

β
= 1.

Define A = {�αn� : n ≥ 1} and B = {�βn� : n ≥ 1}. Show that A∩ B = ∅
and A∪ B = {1, 2, 3, . . . }.

9. Suppose α1, α2, . . . , αr are r distinct positive real numbers such that every
positive integer occurs in exactly one of the sequences (�nαi�)n≥1. Show that
r < 3.

10. Wythoff’s game is a game for two players who take turns. Two piles of counters
are placed on a table, each with an arbitrary number of counters. At each turn,
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a player can remove any number of counters from a single pile, or the same
number of counters from both piles. A player wins when, after completing a
turn, there are no counters left. Prove that if τ = (1 +√

5)/2, then the second
player has a forced win if and only if the numbers of counters in the piles are
initially �nτ� and �nτ 2�.

11. Define g(0) = 0, and g(n) = n − g(g(n − 1)) for n ≥ 1. Prove that g(n) =
�(n + 1)α� for α = (

√
5 − 1)/2.

12. Let 0 < α < 1 be an irrational real number, and let X be an indeterminate.
Prove the following power series identities:

∑

k≥1

fα(k)X−k =
∑

n≥1

X−�n/α� = (X − 1)
∑

j≥1

� jα�X− j .

13. (Komatsu) Let a be a positive integer, and let 0 < α < 1 be an irrational
real number. Determine the continued fraction for

∑
n≥1 X−�n/α�. Hint: Ex-

ercise 2.33 may be useful.
14. Define a sequence of linear polynomials as follows: g1(x) = x/2, g2(x) =

(x + 1)/2, and gn(x) = gn−1(gn−2(x)) for n ≥ 3. Find an expression for gn(x),
and compute limn→∞ gn(0).

15. Show that if 0 < α < 1 is an irrational real number, then the characteristic
sequence fα has arbitrarily large prefixes that are palindromes.

16. Recall that �k(n) denotes the number of digits in the base-k representation of
n. Is it true that

∑

n≥1

�10(2n)

2n
= 1169

1023
?

17. Develop an efficient algorithm that, given a finite sequence of integers (ai )1≤i≤n ,
will determine whether there exist real numbers α and β such that ai = �iα +
β� for 1 ≤ i ≤ n.

18. Define a function σ : N × N → {0,1}∗ as follows: for 0 ≤ h ≤ k we have

σ (h, k) :=






0k if h = 0,

0k−11 if h | k,

σ (r, h)qσ (h, r ) if k = qh + r , 0 ≤ r < h.

For h > k we define σ (h, k) := σ (h mod k, k).
(a) Show that σ (h, k) is a string of length k.
(b) For h, k ≥ 1, show that σ (h, k)ω and σ (k, h)ω agree on the first h + k −

gcd(h, k) − 1 symbols, but differ at the h + k − gcd(h, k)th symbol.
(c) In parts (c)–(f) assume gcd(h, k) = 1. Let h/k = [0, a1, a2, . . . , at ]. Show that

σ (h, k) = (hat ◦ hat−1 ◦ · · · ◦ ha1 )(0),

where the hn are the characteristic morphisms introduced in Section 9.1.
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(d) Compute the number of 1’s in σ (h, k). Hint: The number depends on h−1 mod k
and the length of the continued fraction for h/k.

(e) (Jenkinson and Zamboni) Consider the k × k array A formed by taking the conju-
gates of σ (h, k) in increasing lexicographic order. Show that successive rows of A
can be obtained by cyclically shifting by the same amount. Prove the same thing
for the columns.

(f) (Gambaudo, Lanford, and Tresser) Show that the lexicographically least conjugate
of σ (h, k) is lexicographically ≥ the lexicographically least conjugate of any other
word over {0,1} of the same length with the same number of 1’s.

19. Let α be irrational with continued fraction expansion α = [0, a1, a2, . . . ], and
let pn/qn be the nth convergent. Show that

∑
1≤i≤qn

�iα� = 1
2 (pnqn − qn +

pn + (−1)n).

9.5 Open Problems

1. Let 0 < α < 1 be an irrational real number, and let n ≥ 1 be an integer. Consider
the permutation that orders 0, {α}, {2α}, . . . , {nα}, 1 into ascending order. What
can you say about the cycle structure, the number of cycles, or the number of
inversions in this permutation? (Remark. Ellis and Steele [1981] and Devroye
and Goudjil [1998] have studied certain properties of this permutation.)

9.6 Notes on Chapter 9

9.1 Johann (Jean) Bernoulli III (1744–1807) was apparently the first to investigate
what are now generally called Sturmian words. In our notation, he studied
sα,1/2 and found a connection with continued fractions; see Bernoulli [1772].
However, he did not provide any proofs.

Christoffel [1875, 1888] and Smith [1876] independently found similar re-
sults for sα,0.

Markoff [1882] proved Bernoulli’s assertions about sα,1/2. An exposition of
Markoff’s work in English can be found in Venkov [1970, pp. 65–68].

The term “Sturmian” was introduced by Morse and Hedlund [1940] in their
work on symbolic dynamics. (The term is rather unfortunate in that Sturm
apparently never worked on these sequences.) Also see Hedlund [1944].

Uspensky published a four-part paper on Bernoulli’s problem [1946a,
1946b]. This paper is a detailed study of the sequences �nα� for both rational
and irrational α.

Stolarsky [1976] wrote an influential paper that gave several different de-
scriptions of characteristic words. This paper also has a large bibliography. For
related papers, see Fraenkel, Mushkin, and Tassa [1978]; Porta and Stolarsky
[1990]; and Lunnon and Pleasants [1992].

Sturmian words appear in other areas of mathematics. For an application to
linear filters, see Kieffer [1988]. For an application to routing in networks, see
Altman, Gaujal, and Hordijk [2000].
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Lemma 9.1.3, the fact that gα = f1/α, appears in Fraenkel, Mushkin, and
Tassa [1978].

The “characteristic morphisms” hk were introduced by Stolarsky [1976].
Similar maps had been previously studied by Markoff [1882]; also see Venkov
[1970, pp. 65–68]. Cohn [1974] studied similar maps. Lemma 9.1.4 is due to
T. Brown [1991].

Corollary 9.1.6, the fact that reduced quadratic irrationals have characteristic
words that are fixed points of morphisms, is due independently to S. Ito and
Yasutomi [1990], S. Ito [1991], T. Brown [1991], and Shallit [1991b]. Corol-
lary 9.1.6 does not completely characterize the quadratic irrationals whose
characteristic words are fixed points of morphisms; the complete characteri-
zation has been given by Crisp, Moran, Pollington, and Shiue [1993]. Other
proofs were given by Berstel and Séébold [1993b] and Komatsu and van der
Poorten [1996]. Also see Allauzen [1998].

Theorem 9.1.8, the recurrence relation for prefixes of fα, is due to Smith
[1876]. Also see Shallit [1991b]; Nishioka, Shiokawa, and Tamura [1992,
Thm. 2].

Borel and Laubie [1993] linked morphisms on characteristic words (which
they call infinite Christoffel words) with the action of homographies on the
projective line; also see Borel and Laubie [1991] and Laubie [1991]. Laubie and
Laurier [1995] and Borel [1997, 2001] studied homographic transformations
and sums of the slopes of characteristic words.

Theorem 9.1.13, giving a factorization of prefixes of the characteristic word
fα in terms of the Ostrowski α-representation, is due to T. Brown [1993].
Corollary 9.1.14 can be found in Fraenkel, Levitt, and Shimshoni [1972]. Our
proof follows T. Brown [1993]. Theorem 9.1.15 is due to Fraenkel, Levitt, and
Shimshoni [1972].

Berstel and Pocchiola [1996] showed how to generate a “random” Sturmian
word.

A Sturmian morphism essentially maps Sturmian words to Sturmian words.
For more on this concept, see Berstel and Séébold [1993b, 1994a, 1994b];
Mignosi and Séébold [1993b]; de Luca [1996, 1997]; Séébold [1998]; Chuan
[1999]; Richomme [1999].

9.2 For cutting sequences, see Series [1985] and Lunnon and Pleasants [1992].
Because of the geometric interpretation, Sturmian words have received some

attention in the computer graphics and image processing literature. Four prob-
lems have received particular attention: (1) efficient methods for drawing an
approximation to a line on a raster display, (2) efficient specifications for dig-
itized straight lines, (3) characterization and recognition of digitized straight
lines, and (4) counting the number of essentially different digitized straight
lines. For surveys, see Bruckstein [1990, 1991].

For the first problem, Bresenham [1965] gave an algorithm for digital
line drawing. For variations on Bresenham’s method, see Bresenham [1982,
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1985]; Pitteway and Green [1982]; Sproull [1982]; Pitteway [1985]; Castle
and Pitteway [1985]; Angel and Morrison [1991]. Berstel [1990] explained
Bresenham’s algorithm and its variations in terms of formal language theory.

Earlier, Freeman [1961a, 1961b] had described a method for encoding a
figure made up of straight lines that he called a “chain code”. Also see Freeman
[1970]; Bongiovanni, Luccio, and Zorat [1975].

For the second problem (efficient specification of digitized straight lines),
see Brons [1974, 1985] and Rothstein and Weiman [1976].

For the third problem (characterization and recognition of digitized straight
lines), see Rosenfeld [1974]; Gaafar [1977]; Arcelli and Massarotti [1978]; L.
Wu [1980, 1982]; Rosenfeld and Kim [1982]; Dorst and Smeulders [1984];
McIlroy [1984]; Ronse [1985]; Voss [1991]; Lindenbaum and Bruckstein
[1993].

The fourth problem (counting the number of essentially different digitized
straight lines) corresponds to counting the number of subwords of length n
in all Sturmian words. Dulucq and Gouyou-Beauchamps [1990] studied this
problem and conjectured a formula that was later proven by Mignosi [1991].
For other proofs, see Berstel and Pocchiola [1993] and de Luca and Mignosi
[1994].

In the graphics literature, less complete analysis was done by Sundar
Raj and Koplowitz [1986]; Berenstein, Kanal, Lavine, and Olson [1987];
Berenstein and Lavine [1988]; Koplowitz, Lindenbaum, and Bruckstein [1990];
Lindenbaum and Koplowitz [1991].

9.3 Theorem 9.3.2 is originally due to Böhmer [1926]. It was independently re-
discovered by Danilov [1972], Davison [1977], Adams and Davison [1977],
Bullett and Sentenac [1994], and Shiu [1999]. Our presentation is based on
the paper of Anderson, Brown, and Shiue [1995]. Also see Gould, Kim, and
Hoggatt [1977]; Bundschuh [1980]; Adams [1985]; Bowman [1988]; Graham,
Knuth, and Patashnik [1989, pp. 293–295]. Tamura [1992, 1995] generalized
Theorem 9.3.2 to multidimensional continued fractions.
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Subwords

10.1 Introduction

An infinite word u may be partially understood by studying its finite subwords.
Among the types of natural questions that arise are:

How many distinct subwords of u of length n are there, and what is the growth rate of this
quantity as n tends to infinity?
Does every subword of u occur infinitely often in u, and if so, how big are the gaps between
successive occurrences?

We start with the first question, which refers to a measure of complexity for in-
finite words, called subword complexity. This measure is of particular interest be-
cause automatic sequences and, more generally, morphic sequences have relatively
low subword complexity, while the typical “random” sequence has high subword
complexity.

Definition 10.1.1 Let w = a0a1a2 · · · be an infinite word over a finite alphabet
�. We define Subw(n) to be the set of all subwords of length n of w. We define
Sub(w) to be the set of all finite subwords of w. Finally, we define pw(n), the
subword complexity function of w, to be the function counting the number of
distinct length-n subwords of w.

Example 10.1.2 If w is an ultimately periodic word, then it is easy to see (Theo-
rem 10.2.6 below) that pw(n) = O(1).

Example 10.1.3 Consider f = 0100101001001 · · · , the Fibonacci word intro-
duced in Section 7.1. Then a short computation shows

Subf(0) = {ε}, pf(0) = 1,

Subf(1) = {0,1}, pf(1) = 2,

Subf(2) = {00,01,10}, pf(2) = 3,

Subf(3) = {001,010,100,101}, pf(3) = 4,

298
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and this suggests the conjecture pf(n) = n + 1. We prove this conjecture – and
much more – in Section 10.5 below.

Example 10.1.4 The Barbier infinite word B=
123456789101112131415161718192021 · · · , introduced in Exercise 3.26,
consists of the concatenation of the decimal expansions of the positive integers,
written in increasing order. For this word we have pB(n) = 10n for all n ≥ 0.

Example 10.1.5 The infinite word p =
2357111317192329313741434753596167 · · · consists of the concatena-
tion of the decimal expansions of the prime numbers, written in increasing order.
In Exercise 2 you are asked to prove that pp(n) = 10n for all n ≥ 0.

The subword complexity in Examples 10.1.4 and 10.1.5 is actually typical of a
“random” infinite word, as we now prove.

Theorem 10.1.6 Almost all sequences w over a finite alphabet � satisfy pw(n) =
|�|n for all n ≥ 0.

Proof. Let k = |�|. Without loss of generality, assume � = {0, 1, . . . , k − 1}. Let

Y = {w ∈ �ω : ∃ i ≥ 1 such that pw(i) < ki }.

We need to show that m(Y ) = 0, where m is the measure introduced in Section 1.2.
Let d ∈ �, and define

Td = {w ∈ �ω : w[i] �= d ∀ i ≥ 0}.

Hence

Td = �ω \ Td = {w ∈ �ω : ∃ i such that w[i] = d}.

Also define

Ud(i) = {w ∈ �ω : min{ j : w[ j] = d} = i}.

Then Td = ⋃
i≥0 Ud(i), and this union is disjoint.

Now

m(Ud(i)) =
(

k − 1

k

)i

· 1

k
,

since the first factor gives the measure of those sequences w for which the symbols
w[0..i − 1] all differ from d, while the second factor gives the measure of those
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sequences for which w[i] = d. Hence

m(Td) =
∑

i≥0

m(Ud(i)) =
∑

i≥0

(
k − 1

k

)i

· 1

k
=
(

1

1 − k−1
k

)

· 1

k
= 1.

Thus we have m(Td) = 0. That is, almost all sequences contain an occurrence of
d somewhere.

Now let x ∈ �+, and, generalizing the definition of Td , let

Tx = {w ∈ �ω : w[i..i + |x | − 1] �= x ∀ i ≥ 0}.
Then we can compute m(Tx ) by grouping the terms of w into blocks of size |x |.

If w = a0a1a2 · · · , then let B(w, r ) = b0b1b2 · · · where bi = [air air+1 · · ·
air+r−1]k . In other words, B(w, r ) is the infinite word over {0, 1, . . . , kr − 1} result-
ing from grouping the terms of w into blocks of size r , and treating each block as
a base-k number. Let |x | = r , and define d = [x]k , so 0 ≤ d < kr . For 0 ≤ j < r
define

Vr, j = {w ∈ �ω : B(S j (w), r )[i] �= d ∀ i ≥ 0},
where S denotes the shift map. Thus Vr, j is the set of those w not containing any
occurrences of the word x that occur beginning at a position congruent to j (mod r ).
Hence

Tx =
⋃

0≤ j<r

Vr, j ;

this union is not disjoint. But, by analogy with Td , we have m(Vr, j ) = 0 for 0 ≤
j < r . Hence m(Tx ) = 0.

Finally, we have

Y =
⋃

x∈�+
Tx .

Then Y is the countable union of sets of measure 0, and hence m(Y ) = 0. �

10.2 Basic Properties of Subword Complexity

Let w be an infinite word over a finite alphabet�. In this section we study the basic
properties of pw(n).

Theorem 10.2.1 For all n ≥ 0 we have pw(n) ≥ 1 and pw(n) ≤ |�|n.

Proof. Clear. �

Theorem 10.2.2 Let w be an infinite word over an alphabet � of cardinality k.
Then pw(n) ≤ pw(n + 1) ≤ kpw(n) for all n ≥ 0.
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Proof. Let X = {x1, x2, . . . , x j } be the set of all subwords of length n in w. For
1 ≤ i ≤ j , let ai be any letter that follows some occurrence of xi in w. Then
the words xi ai for 1 ≤ i ≤ j are all distinct, and each is of length n + 1. Hence
pw(n) ≤ pw(n + 1).

On the other hand, any subword of length n + 1 must be of the form xi a for some
xi ∈ X and a ∈ �. Hence pw(n + 1) ≤ kpw(n). �

Theorem 10.2.3 Let w be an infinite word over an alphabet � of cardinality k.
Then pw(n + 1) − pw(n) ≤ k(pw(n) − pw(n − 1)) for all n ≥ 1.

Proof. For 1 ≤ i ≤ k and n ≥ 0, define Ti (n) to be the set of all subwords x of
length n of w for which there exist at least i distinct symbols a ∈ � such that xa is
a subword of w. Also define ti (n) = Card Ti (n).

Each x ∈ Ti (n) can be written as x = bw, where |b| = 1 and |w| = n − 1.
Furthermore, w ∈ Ti (n − 1). Since there are k choices for b, it follows that
ti (n) ≤ kti (n − 1).

Now pw(n) = t1(n) and pw(n + 1) = t1(n) + t2(n) + · · · + tk(n). Hence

pw(n + 1) − pw(n) = t2(n) + · · · + tk(n)

and, substituting n − 1 for n, we get

pw(n) − pw(n − 1) = t2(n − 1) + · · · + tk(n − 1).

Since ti (n) ≤ kti (n − 1), the desired result follows. �

Our next theorem describes how subword complexity is affected by nonerasing
morphisms. The case of erasing morphisms is discussed in Exercise 32.

Theorem 10.2.4 Let u be an infinite word over�. Let h : �∗ → �∗ be a noneras-
ing morphism, and define v = h(u). Then pv(n) ≤ W pu(n), where W = Width h.

Proof. Let x ∈ �∗ be a subword of length n of v = b0b1b2 · · · , say x =
bi bi+1 · · · bi+n−1. Let us now definew = a j a j+1 · · · a j+n−1, where j is chosen to be
the largest integer such that |h(a0a1 · · · a j−1)| ≤ i . Since h is nonerasing, it follows
that x is a subword of h(w). Further, the string x is completely determined by the
pair (w, k), where k := i − |h(a0a1 · · · a j−1)|. Now 0 ≤ k < |h(a j )| ≤ Width h, so
it follows that pv(n) ≤ W pu(n), as desired. �

In particular, this shows that if v is the image of u under a coding, then pv(n) ≤
pu(n).
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Lemma 10.2.5 Let w be an infinite word. Then for integers m, n ≥ 0 we have
pw(m + n) ≤ pw(m)pw(n).

Proof. Every subword of length m + n can be expressed as a subword of length
m followed by a subword of length n. There are at most pw(m)pw(n) possibilities.

�

Theorem 10.2.6 Let w = b0b1b2 · · · be an infinite word over a finite alphabet �.
Then the following are equivalent:

(a) There exists a non-negative integer N such that for all integers n ≥ 0 we have pw(n) ≤
N.

(b) There exists a non-negative integer n0 such that for all integers n ≥ n0 we have pw(n) =
pw(n0).

(c) There exists a non-negative integer k such that pw(k) ≤ k.
(d) There exists a non-negative integer m such that pw(m) = pw(m + 1).
(e) w is ultimately periodic.

Proof. (a) =⇒ (b): Choose N as small as possible; then there exists n0 such that
pw(n0) = N . By Theorem 10.2.2, pw(n) ≥ N for all n ≥ n0. But pw(n) ≤ N for
n ≥ n0 by hypothesis. Hence pw(n) = N = pw(n0) for all n ≥ n0.

(b) =⇒ (c): Let k = pw(n0). If k ≤ n0, then by Theorem 10.2.2, pw(k) ≤
pw(n0) = k. If k > n0, then by hypothesis pw(k) = pw(n0) = k.

(c) =⇒ (d): If pw(k) ≤ k, then since pw(0) = 1, by Theorem 10.2.2 and the pi-
geonhole principle there must exist an integer m ≤ k for which pw(m)= pw(m + 1).

(d) =⇒ (e): Suppose pw(m) = pw(m + 1), and let pw(m) = r . Consider a fixed
subword of length m in w, say x = a1a2 · · · am . Then

every occurrence of x in w must be followed by the same letter; (10.1)

for if not, we would have pw(m + 1) > pw(m). Now consider the r + 1 strings

b0b1 · · · bm−1,

b1b2 · · · bm,

b2b3 · · · bm+1,

...

br br+1 · · · br+m−1.

Since pw(m) = r , these r + 1 subwords cannot all be distinct; thus there must
exist indices i, j such that 0 ≤ i < j ≤ r and

bi · · · bi+m−1 = b j · · · b j+m−1.
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By our earlier observation (10.1), we must have bi+m = b j+m . Hence

bi+1 · · · bi+m = b j+1 · · · b j+m .

Again by (10.1), we have bi+m+1 = b j+m+1, and continuing in this fashion, we get
that bi+l = b j+l for all l ≥ 0. It follows that w is ultimately periodic, and its period
length is j − i ≤ k.

(e) =⇒ (a): If w is an ultimately periodic word, say w = xyω with x ∈ �∗,
y ∈ �+, then pw(n) ≤ |x | + |y| for all n ≥ 0. This follows because any subword
begins at a position inside x or a position inside a repetition of y, and there are at
most |x | + |y| such distinct positions. �

Subword complexity is related to the concept of (topological) entropy. Let w be
an infinite word over the finite alphabet �. The entropy h(w) of w is defined as
follows:

h(w) := lim
n→∞

log|�| pw(n)

n
. (10.2)

To see that this definition makes sense, we first need to see that this limit exists.
First, a definition: we say a sequence (A(n))n≥0 is subadditive if for all m, n ≥ 0
we have A(m + n) ≤ A(m) + A(n).

Lemma 10.2.7 Let (A(n))n≥0 be a sequence such that A(n) ≥ 0 for all n ≥ 0, and
A is subadditive. Then limn→∞ 1

n A(n) exists and equals infn≥1
1
n A(n).

Proof. Define t = infn≥1
A(n)

n . Note that t exists and is non-negative. Fix b ≥ 1;
then for all N there exist n, r such that N = bn + r with 0 ≤ r < b. Now

A(N ) = A(bn + r ) ≤ A(bn) + A(r ) ≤ n A(b) + A(r ).

Hence

A(N )

N
≤ n A(b)

bn + r
+ A(r )

bn + r
.

Then

lim sup
N→∞

A(N )

N
≤ A(b)

b
.

But this is true for every b, so

lim sup
N→∞

A(N )

N
≤ t.

But clearly

t ≤ lim inf
N→∞

A(N )

N
,
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so

lim sup
N→∞

A(N )

N
= lim inf

N→∞
A(N )

N
,

and the limit exists. �

Now to see that the limit (10.2) exists, put A(n) = log|�| pu(n). Then A(n) sat-
isfies the hypothesis of Lemma 10.2.7 by Lemma 10.2.5.

10.3 Results for Automatic Sequences

In this section we give a linear upper bound on the subword complexity of an auto-
matic sequence.

Theorem 10.3.1 Let h : �∗ → �∗ be a t-uniform morphism prolongable on a ∈
�, and let τ : � → � be a coding. Let u = τ (hω(a)). Then pu(n) ≤ tk2n for all
n ≥ 1, where k = Card �.

Proof. By Theorem 10.2.4, it suffices to prove the upper bound for v = hω(a). Let
v = v0v1v2 · · · . Let n ≥ 1, let r be such that tr−1 ≤ n < tr , and let vivi+1 · · · vi+n−1

be any subword of v of length n. Let j = �i/tr�; then vivi+1 · · · vi+n−1 is a
subword of v j tr · · · v( j+1)tr · · · v( j+2)tr−1. But v j tr · · · v( j+2)tr−1 = hr (v jv j+1), so
vi · · · vi+n−1 is completely determined by i (mod tr ), v j and v j+1. There are tr

possibilities for i (mod tr ), and k2 possibilities for v j and v j+1. Hence pv(n) ≤
tr k2 ≤ tk2n. �

Now, combining this result with Theorem 10.2.6, we get

Corollary 10.3.2 If u is a k-automatic sequence that is not ultimately periodic,
then pu(n) = �(n).

Example 10.3.3 Let us now compute the subword complexity for a particular au-
tomatic sequence. Let a = (an)n≥0 be the sequence, over the alphabet {A,B,C,D},
that is the fixed point of the map defined by

ϕ(A) = AB,

ϕ(B) = CB,

ϕ(C) = AD,

ϕ(D) = CD.

(This is the interior sequence for the paperfolding sequence.) We have

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .
an = A B C B A D C B A B C D A D C B A B C B A . . .
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We find

Suba(1) = {A,B,C,D}, pa(1) = 4,

Suba(2) = {AB,AD,BA,BC,CB,CD,DA,DC}, pa(2) = 8,

Suba(3) = {ABC,ADC,BAB,BAD,BCB,BCD,CBA,CDA,

DAB,DAD,DCB,DCD}, pa(3) = 12.

We might guess that pa(n) = 4n for all n ≥ 1. This is in fact correct.

Theorem 10.3.4 Let a = (an)n≥0 be the fixed point of ϕ, where ϕ(A) = AB,
ϕ(B) = CB, ϕ(C) = AD, ϕ(D) = CD. Then pa(n) = 4n for n ≥ 1.

Proof. We split the set of subwords into two groups: the odd and even subwords. An
even subword f = ar ar+1 · · · ar+k corresponds to an even r , and an odd subword
is defined analogously. Note that since the letters in a alternate, that is, since a ∈
((A + C)(B + D))ω, the sets of odd and even subwords are disjoint. Let on denote
the number of odd subwords of length n, and en the number of even subwords of
length n. We claim that

(i) on = en+1 (n ≥ 3);

(ii) e2n = en + on (n ≥ 1);

(iii) e2n = e2n+1 (n ≥ 1).

(i): Let f be an odd subword,

f = a2r−1a2r a2r+1 · · · a2r+n−2 (r ≥ 1),

of length n ≥ 3. We claim that a2r−2 is uniquely determined by (a2r , a2r+1), ac-
cording to the following table:

a2r a2r+1 a2r−2

AB C
CB A
AD C
CD A

For example, suppose that a2r a2r+1 = AB; then ar = A. Hence ar−1 ∈ {B,D}.
Then ϕ(ar−1) = a2r−2a2r−1 ∈ {CB,CD}, and in any event a2r−2 = C. The other
cases are similar. It follows that the odd subword f , of length n, can be uniquely
extended (on the left) to an even subword of length n + 1. Similarly, by deleting
the first symbol, an even subword g, of length n + 1, corresponds to a unique odd
subword of length n. Hence on = en+1.

(ii): An even subword f = a2r a2r+1 · · · a2r+2n−1 of length 2n is the image of a
subword

ar ar+1 · · · ar+n−1

of length n in exactly one way.
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(iii): We claim that an even subword f = a2r a2r+1 · · · a2r+2n−1 of length 2n can
be extended uniquely on the right to an even subword of length 2n + 1, for n ≥ 1.
For we have

ϕ(ar ar+1 · · · ar+n−1) = a2r a2r+1 · · · a2r+2n−1,

and ar ar+1 · · · ar+n−1 is unique. We claim that a2r+2n is uniquely determined by
a2r+2n−2a2r+2n−1, as given in the following table:

a2r+2n−2a2r+2n−1 a2r+2n

AB C
CB A
AD C
CD A

For example, suppose that a2r+2n−2a2r+2n−1 = AB; then ar+n−1 = A. Hence
ar+n ∈ {B,D}. Then ϕ(ar+n) = a2r+2na2r+2n+1 ∈ {CB,CD}, and in any event
a2r+2n = C. Hence, as before, e2n = e2n+1. Using (i),(ii),(iii), and the fact that
e1 = o1 = 2 and e2 = o2 = 4, we can easily prove by induction that

o2n = 4n,

o2n+1 = 4n + 4,

e2n = 4n,

e2n+1 = 4n,

on + on+1 = 4n + 4,

en + on = 4n,

for n ≥ 1. �

10.4 Subword Complexity for Morphic Words

Our goal in this section is to prove a bound on the subword complexity of morphic
words. Our arguments are based on a certain infinite tree associated with the iteration
of a morphism.

Let h : �∗ → �∗ be a nonerasing morphism, and let w ∈ �+. For i ≥ 0, define
hi (w) = ai,1 · · · ai,li , where li := |hi (w)|. We think of the words hi (w) arranged in
an infinite tree T (h, w) (or more precisely, a forest) rooted at the letters of w. If
v′ := |h(ai,1 · · · ai,v−1)| and v′′ := |h(ai,v)|, then the children of the node ai,v are
ai+1,v′+1, . . . , ai+1,v′+v′′ .

Example 10.4.1 Consider the morphism h defined by

a → abd,

b → bb,

c → c,

d → dc.

Then the first few levels of T (h,a) are shown in Figure 10.1.
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a b d  b b d c b b b b d c

a d b d c

c

a b d

a

bb

Figure 10.1: The Tree T (h,a).

Definition 10.4.2 Let h : �∗ → �∗ be a morphism. We say a letter c ∈ � is grow-
ing if for each integer n ≥ 0 there exists an integer i such that |hi (c)| ≥ n.

Definition 10.4.3 Let G(n) denote Landau’s function, the maximum order of a per-
mutation on n elements.

Since every permutation may be written as the product of disjoint cycles, we
have

G(n) = max
c1,c2,...,ci ≥1

c1+c2+···+ci =n

lcm(c1, c2, . . . , ci ).

Then we have the following theorem, due to Landau, which we state without
proof:

Theorem 10.4.4 We have log G(n) ∼ √
n log n.

First, we prove a useful result on the prefixes and suffixes of words arising by
iterating a morphism.

Definition 10.4.5 If w = a1a2 · · · as , where each ai ∈ �, then for t ≥ 0 we define
Preft (w) = a1a2 · · · amin(s,t) and Sufft (w) = amax(1,s−t+1) · · · as .

Lemma 10.4.6 Let h : �∗ → �∗ be a nonerasing morphism, and let k = Card �.
Let w ∈ �+. Then there exist integers g, g′ with 1 ≤ g, g′ ≤ G(k) such that for all
integers t ≥ 1, j ≥ tk, and n ≥ 0 we have

Preft (h
j (w)) = Preft (h

j+ng(w)), (10.3)

Sufft (h
j (w)) = Sufft (h

j+ng′
(w)). (10.4)

Proof. We prove the result (10.3) for prefixes. The result (10.4) for suffixes follows
by a similar argument.

In fact, we prove a slightly stronger statement by induction on t . For each letter
c ∈ �, consider the sequence (Pref1(h j (c))) j≥0. Clearly this sequence is ultimately
periodic; let its period length be pc. We have 1 ≤ pc ≤ k. Further, there exists an
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integer 0 ≤ ic < k such that Pref1(h j (c)) = Pref1(h j+pc (c)) for all j ≥ ic. Then we
prove that (10.3) holds with g = lcmc∈� pc. It is now easy to see that g ≤ G(k).

The base case of the argument is t = 1. Let a1 be the first letter of w. Then there
exists an integer i , 0 ≤ i < k, such that Pref1(h j (a1)) = Pref1(h j+pa1 (a1)) for all
j ≥ i . Since h is nonerasing, we have Pref1(h j (w)) = Pref1(h j (a1)) for all j ≥ 0.
Moreover pa1 | g. Thus Pref1(h j (w)) = Pref1(h j+ng(w)) for all j ≥ k and all n ≥ 0.
Hence the result holds for t = 1.

Now assume the result is true for t = 1, 2, . . . , r . We prove it for t = r + 1.
By induction we have Prefr (h j (w)) = Prefr (h j+ng(w)) for j ≥ rk, n ≥ 0. There

are three cases to consider. Recall that li := |hi (w)|.

Case 1: l(r+1)k < r + 1. Since h is nonerasing, this means that au,r+1 does not
exist for u ≤ (r + 1)k. Then by Exercise 33 we have l j < r + 1 for all j ≥ 0, and
so, trivially, we have Prefr+1(h j (w)) = Prefr+1(h j+ng(w)).

Case 2: There exists u with rk < u ≤ (r + 1)k such that au,r+1 exists, and the
parent of au,r+1 is one of au−1,1, . . . , au−1,r . Then by induction

au−1,1 · · · au−1,r = au−1+ng,1 · · · au−1+ng,r

for n ≥ 0, so applying he to both sides, and recalling that h is nonerasing, we get

Prefr+1(h j (w)) = Prefr+1(h j+ng(w))

for j ≥ u.
Case 3: For all u with rk < u ≤ (r + 1)k the parent of au,r+1 exists and is

equal to au−1,r+1. Then, by the pigeonhole principle, among ark,r+1, . . . , a(r+1)k,r+1

there must be a repeated letter. Choose i ′,m ′ minimal with 0 ≤ i ′ < m ′ ≤ k such
that ark+i ′,r+1 = ark+m ′,r+1. Put s ′ = m ′ − i ′. Then by an argument similar to that
in case 2, we get Prefr+1(h j (w)) = Prefr+1(h j+nĝ(w)) where ĝ = lcm(g, s ′). But
lcm(g, s ′) = g. This completes the proof. �

We are now ready to prove the main result of this section:

Theorem 10.4.7 Let h : �∗ → �∗ be a nonerasing morphism, prolongable on the
letter a. Let u = hω(a). Let k = Card �, W = maxc∈� |h(c)|. Then for all n > W ,
we have

pu(n) < k
W (W − 1)

2
(kn2 + 2nG(k)2 + 2kn(n − 1) + W k(G(k) + k)).

Proof. Let n > W and let u be a subword of length n of hω(a). Then u is a subword
of hr (a) for some r ≥ 1.

Once more, as in the proof of Lemma 10.4.6, we think of the words a =
h0(a), h1(a), . . . , hr (a) arranged in a tree T (h, a) with root a.
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u = u0

u1

u2

uj−1

uj

hr(a) =

hr−2(a) =

hr−1(a) =

hr−j+1(a) = 

hr−j(a) = 

.

.

.

.

.

.

Figure 10.2: Tree of Substrings, T .

We now define a finite sequence of subwords of hi (a), i ≤ r , as follows: let
u0 = u, and for i ≤ r , let ui be the subword of hr−i (a) corresponding to the parents
of ui−1 in T (h, a). Thus h(ui ) covers ui−1, and in fact ui is the minimal subword of
hr−i (a) that does so. We continue this procedure, ascending the tree T (h, a), until
we discover an index j such that |u j | = 1. We then get a picture as in Figure 10.2.
Since we chose |u| > W , we must have u1 ≥ 2 and so j ≥ 2.

Now let

B = {β ∈ �∗ : |β| > 1 and β is a subword of h(c) for some c ∈ �}.
For each β ∈ B, define L(n, β) as follows:

L(n, β) = {u ∈ �∗ : u is a subword of length n of hω(a) and u j−1 = β}.
Here j is the index defined above.

Now we estimate Card L(n, β). There are four cases to consider:

Case 1: β contains no growing letter. Then S = {hi (β) : i ≥ 0} must be finite.
By Exercise 35(b) we have Card S ≤ G(k) + k, and by Exercise 35(a) we know that
each element of S is bounded in length by |β|W k−1. It follows that Card L(n, β) ≤
W k(G(k) + k).

Case 2: β = cα where c is a growing letter and α ∈ �+. Write β = cbα′,
where α′ ∈ �∗. By construction each u ∈ L(n, β) contains a descendant of c and a
descendant of b; if not, β would not be minimal. Hence any subword of length
n of hi (β) in L(n, β), for i ≥ 0, must straddle the boundary between hi (c) and
hi (b). It follows that hi (β) contains at most n subwords of length n in L(n, β).
Now by Lemma 10.4.6 we know that the sequence (Suffn−1(hi (c)))i≥0 is ultimately
periodic with preperiod length bounded by k(n − 1) and period length bounded by
G(k). Similarly, (Prefn−1(hi (bα′)))n≥0 is ultimately periodic with preperiod length
bounded by k(n − 1) and period length bounded by G(k). Putting these results
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together, it follows that the subword of length 2n − 2 centered at the boundary
between hi (c) and hi (b) takes on at most G(k)2 + k(n − 1) different values. Thus
in this case Card L(n, β) ≤ nG(k)2 + kn(n − 1).

Case 3: β = αc where c is a growing letter and α ∈ �+. This case can be
handled similarly to case 2, and again we get Card L(n, β) ≤ nG(k)2 + kn(n − 1).

Case 4: β = α1cα2, where c is a growing letter and α1, α2 ∈ �+. Since α1, α2 �=
ε, and β is minimal, it follows that h j−1(c) is a subword of u. Thus n = |u| >
|h j−1(c)|. But |h j−1(c)| > ( j − 1)/k by Exercise 33. It follows that n > ( j − 1)/k,
and so j ≤ kn. Hence all the elements in L(n, β) must be derived fromβ by applying
h at most kn times. But, by considering the position of hi (c) within hi (β), we see
that there are at most n subwords of length n of hi (β) that have hi (c) as a subword.
Hence Card L(n, β) ≤ kn2.

It follows that Card L(n, β) ≤ kn2 + 2nG(k)2 + 2kn(n − 1) + W k(G(k) + k).
Now Card B ≤ k(1 + 2 + · · · + W − 1) = kW (W − 1)/2. It follows that for n >

W we get pu(n) < k W (W−1)
2 (kn2 + 2nG(k)2 + 2kn(n − 1) + W k(G(k) + k)). �

An estimate on pu(n) not involving G can be obtained using the following result
of Massias, which we state without proof:

Theorem 10.4.8 For all integers n ≥ 1 we have G(n) ≤ 2.87
√

n log n.

As a corollary to Theorem 10.4.7, we get

Corollary 10.4.9 If u is a morphic word, then pu(n) = O(n2).

Proof. If u is morphic, then by Theorem 7.5.1 there exist a letter b, a nonerasing
morphism g prolongable on b, and a coding λ such that u = λ(gω(b)). By The-
orem 10.4.7 the subword complexity of gω(b) is O(n2), and hence the subword
complexity of u = λ(gω(b)) is also O(n2). �

Example 10.4.10 Let us continue with Example 10.4.1. Let

u = hω(a) = a
∏

i≥0

b2i
d ci .

Then it is easy to see that u contains a subword of the form
bi d c j b {b,c,d}n−(i+ j+2) for 0 ≤ i ≤ j ≤ (n − 2)/2, and all of these subwords
are distinct. It follows that pu(n) = �(n2).

The form of the upper bound in Theorem 10.4.7 suggests that it should be possible
to construct morphic infinite words that have extremely high subword complexity
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for short subwords. (Of course, as n → ∞ this behavior cannot persist, since the
subword complexity is O(n2).) This is true, as the following example shows.

Example 10.4.11 Let p1 = 2, p2, p3, . . . be the sequence of prime numbers. Let
k ≥ 1 be a fixed integer, and define a morphism h as follows: c → c c1,0 c2,0 · · · ck,0,
and ci, j → ci, j+1 mod pi for 1 ≤ i ≤ k and 0 ≤ j < pi . Then h is defined over an
alphabet with Ak := 1 +∑

1≤i≤k pi symbols. By the prime number theorem, it
follows that Ak ∼ (k2 log k)/2. On the other hand, if u = hω(a), then it is easy to
see that pu(k) ≥ ∏

1≤i≤k pi , which by the prime number theorem is ek(1+o(1)).

While general morphic words have subword complexity O(n2), for certain types
of morphic words this bound can be improved.

Theorem 10.4.12 Let h : �∗ → �∗ be a primitive morphism, prolongable on the
letter a ∈ �. Let u = hω(a). Then pu(n) = O(n).

Proof. Let k = Card �. The result is clearly true if k = 1, so we assume k ≥ 2.
Since h is a primitive morphism, there exists an integer e ≥ 1 such that for

all c, d ∈ � we have he(c) ∈ �∗d�∗. (In fact, by Exercise 8.8(b), we may take
e = 2(k − 1).) Let g = he, and define Ŵ := Width g and W := Width h. Then
Ŵ ≤ W 2(k−1).

Since g(c) contains at least one occurrence of each symbol in�, we have |g(c)| ≥
k for all c ∈ �. By Theorem 1.4.3 we have |gn(c)| ≤ Ŵ |gn(d)| for all c, d ∈ � and
n ≥ 0.

Let u be a subword of length ≥ 4 of u. Then u is a subword of gr (a) for some
integer r ≥ 1. As in the proof of Theorem 10.4.7, consider forming the sequence of
subwords u = u0, u1, . . . , where ui+1 is the shortest word such that h(ui+1) covers
ui . Let j be the largest index such that |u j | ≥ 4, and write u j = αvβ for letters
α, β ∈ � and v ∈ �∗. Since |u j | ≥ 4, we have |v| ≥ 2.

Now |u j+1| ≤ 3, and u is a subword of g j+1(u j+1), so |u| ≤ |g j+1(u j+1)| ≤
3|g j+1(c)| for some c ∈ �. On the other hand, g j (v) is a subword of u, so |u| ≥
2|g j (d)| for some d ∈ �. Thus u is completely specified by u j+1 (for which there
are at most k3 distinct choices) and the position of u within g j+1(u j+1). But we
have |g j+1(u j+1)| ≤ 3|g j+1(c)| ≤ 3Ŵ |g j (c)| ≤ 3Ŵ 2|g j (d)| ≤ 3

2 Ŵ 2|u|. It follows
that pu(n) ≤ 3

2 W 4k−2k3n for n ≥ 4. �

Example 10.4.13 We continue with Examples 10.4.1 and 10.4.10. Let

u = hω(a) = a
∏

i≥0

b2i
d ci .

Then from Example 10.4.10, we know that pu(n) = �(n2). By Theorem 10.4.12, u



312 Subwords

cannot be primitive morphic (i.e., the image, under a coding, of a word of the form
gω(a) where g is a primitive morphism prolongable on a), since then its subword
complexity would be O(n).

10.5 Sturmian Words

In this section we continue our study of Sturmian words, begun in Chapter 9, and
we prove a basic result about the subword complexity of these words.

Up to now infinite words were indexed by the integers {0, 1, 2, . . . }. However,
Sturmian characteristic words are traditionally indexed by the positive integers
{1, 2, . . . }. It will be understood here that two infinite words are equal if and only
if their letters are respectively equal. More precisely, if w = a0a1a2 · · · , and s =
s1s2s3 · · · , then w = s means that ai = si+1 for all i ≥ 0.

Let α be an irrational real number. For integers i ≥ 0 and real numbers α and x ,
define vi (x) = �(i + 1)α + x� − �iα + x�. Then, as a function of x , the function
vi (x) is periodic of period 1. Note that if

sα,θ = s1s2s3 · · · ,
then

vi ( jα + θ ) = si+ j .

Now consider the n + 2 numbers

0, {−α}, {−2α}, . . . , {−nα}, 1,

where (as in Chapter 2) {x} denotes the fractional part of the number x and α is ir-
rational. Arrange these numbers in increasing order:

0 = c0(n) < c1(n) < · · · < cn(n) < cn+1(n) = 1.

For 0 ≤ j ≤ n, define the half-open interval L j (n) = [c j (n), c j+1(n)).

Lemma 10.5.1 The word-valued function of x

Vn(x) = v0(x)v1(x) · · · vn−1(x)

is constant on L j (n).

Proof. It suffices to show that for each integer i with 0 ≤ i ≤ n, the quantity iα + x
is never an integer for any x in the range c j (n) < x < c j+1(n). If this is the case,
then for 0 ≤ i ≤ n, �iα + x� is constant on L j (n). Hence for 0 ≤ i ≤ n − 1, the
word-valued function vi (x) is constant on L j (n).

So assume, contrary to what we want to prove, that there exists x0, 0 < x0 < 1,
such that iα + x0 = r for some integer r , with c j (n) < x0 < c j+1(n). Then −iα =
x0 − r , so {−iα} = {x0}. But this equality contradicts our definition of c j (n) and
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c j+1(n). It follows that if x ∈ L j (n), then Vn(x) = v0(x)v1(x) · · · vn−1(x) has a
fixed value B j (n) depending only on j and n, not on x . �

We now apply our result to prove

Theorem 10.5.2 Let α, θ be real numbers with α irrational and 0 < α < 1. Then
every Sturmian word sα,θ = s1s2s3 · · · has n + 1 distinct subwords of length n; that
is, psα,θ (n) = n + 1.

Proof. Let w = sα,θ [m..m + n − 1] be a subword of length n of sα,θ . Then we
have w = v0(x)v1(x) · · · vn−1(x) for x = {mα + θ}. By Lemma 10.5.1, we have
w = B j (n) for some j , 0 ≤ j ≤ n, where x ∈ L j (n). Hence psα,θ (n) ≤ n + 1 for
all n ≥ 0.

To see that psα,θ (n) ≥ n + 1 for all n ≥ 0, assume the contrary. Then there exists
an n such that psα,θ (n) < n + 1, i.e., psα,θ (n) ≤ n. But then, by Theorem 10.2.6,
the sequence sα,θ is ultimately periodic. But, by Exercise 1.6, every letter in an
ultimately periodic sequence has rational density. However, the density of 1’s in
sα,θ is easily seen to be α, which by assumption is irrational. This is a contradiction.
It follows that psα,θ (n) = n + 1 for all n ≥ 0, and a similar argument proves the
same result for ps′α,θ (n). �

Finally, we observe that the set of subwords of sα,θ is independent of θ .

Theorem 10.5.3 Let 0 < α < 1 be irrational, and θ, ρ be any real numbers. The
finite subwords of sα,θ coincide with the finite subwords of sα,ρ .

Proof. By the remarks above, the length-n subwords of sα,θ are given by {B j (n) :
0 ≤ j ≤ n}. But this depends only on n and not on θ . �

We now introduce the notion of binary balanced infinite words. These words have
the property that the numbers of occurrences of a given letter in any two subwords
of the same length differ at most by 1. We first establish some properties of these
words. The section ends with Theorem 10.5.8 showing that the set of Sturmian
words, the set of non-ultimately-periodic balanced words, and the set of words of
subword complexity p(n) = n + 1 for all n ≥ 0 are identical.

Definition 10.5.4 An infinite word u = (u(n))n≥0 on �2 = {0,1} is called bal-
anced if and only if for any two subwords x and y of u, we have

|x | = |y| =⇒ ∣
∣|x |1 − |y|1

∣
∣ ≤ 1.
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Remark. The condition above is clearly equivalent to the condition

|x | = |y| =⇒ ∣
∣|x |0 − |y|0

∣
∣ ≤ 1.

We first give an equivalent definition of binary balanced infinite words.

Proposition 10.5.5 An infinite word u = (u(n))n≥0 on �2 = {0,1} is balanced if
and only if for any two nonempty subwords x and y of u, we have

∣
∣|x |1|y| − |y|1|x |

∣
∣ ≤ |x | + |y| − gcd(|x |, |y|). (10.5)

Proof. First suppose the inequality (10.5) holds. Then if x and y are subwords of
the word u, and |x | = |y|, either x and y are empty and

∣
∣|x |1 − |y|1

∣
∣ = 0, or they

are nonempty and we have, letting � = |x | = |y|,
∣
∣|x |1�− |y|1�

∣
∣ ≤ �+ �− � = �, i.e.,

∣
∣|x |1 − |y|1

∣
∣ ≤ 1.

Suppose now that the word u is balanced. We prove by induction on |x | + |y|
that the inequality (10.5) holds for any nonempty words x and y that are subwords
of u. It clearly holds if |x | + |y| = 2. Suppose it holds for any nonempty subwords
x and y such that |x | + |y| ≤ k, and let x and y be two subwords of u such that
|x | + |y| = k + 1. If |x | = |y|, the inequality (10.5) is an immediate consequence
of the definition of balanced words. Otherwise, let us suppose that |x | > |y|. Hence
there exist two nonempty words z and t (that are subwords of u) such that x = zt
and |z| = |y|. We then have

∣
∣|x |1|y| − |y|1|x |

∣
∣

= ∣
∣(|z|1 + |t |1)|y| − |y|1(|z| + |t |)∣∣

= ∣
∣(|z|1|y| − |y|1|z|) + (|t |1|y| − |y|1|t |)

∣
∣

= ∣
∣(|z|1 − |y|1)|z| + (|t |1|y| − |y|1|t |)

∣
∣ (since |y| = |z|)

≤ ∣
∣|z|1 − |y|1

∣
∣|z| + ∣

∣|t |1|y| − |y|1|t |
∣
∣ (by the triangle inequality)

≤ |z| + ∣
∣|t |1|y| − |y|1|t |

∣
∣ (since |z| = |y| and u is balanced)

≤ |z| + (|y| + |t | − gcd(|y|, |t |)) (from the induction hypothesis)

= |z| + |t | + |y| − gcd(|y|, |y| + |t |)
= |x | + |y| − gcd(|y|, |z| + |t |)
= |x | + |y| − gcd(|y|, |x |). �
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Corollary 10.5.6 Let u be an infinite balanced word on the alphabet {0,1}. Then
the following properties hold:

(a) The frequency of 1 and the frequency of 0 in the word u exist.
(b) Let α be the frequency of 1 in u. Then either for each subword z of the word u

we have −1 < |z|1 − α|z| ≤ 1, or for each subword z of the word u we have −1 ≤
|z|1 − α|z| < 1.

(c) The word u is ultimately periodic if and only if α is rational.
(d) For all real β we have either |wn|1 ≤ �αn + β� for all n ≥ 0 or |wn|1 ≥ �αn + β� for

all n ≥ 0, where wn := u[0..n − 1].

Proof. We first prove (a). For each n ≥ 0, let wn := u[0..n − 1] be the prefix of
length n of the word u. From Proposition 10.5.5 we have, for any m, n ≥ 1,

∣
∣|wn|1|wm | − |wm |1|wn|

∣
∣ ≤ |wm | + |wn| − gcd(|wm |, |wn|) < |wm | + |wn|.

Hence
∣
∣
∣
∣
|wn|1
|wn| − |wm |1

|wm |
∣
∣
∣
∣ ≤

1

|wn| +
1

|wm | =
1

n
+ 1

m
.

This implies that the sequence |wn|1/n is a Cauchy sequence, and hence it con-
verges. Denote its limit by α. Hence the frequency of 1 in u exists and is equal to
α. Clearly the frequency of 0 in u also exists, and it is equal to 1 − α.

To prove (b), we first apply Proposition 10.5.5 to the words z and wn , where z is
any subword of u, and wn is defined as above. This yields the inequality

∣
∣|z|1|wn| − |wn|1|z|

∣
∣≤ |z| + |wn| − gcd(|z|, |wn|).

Hence, dividing by |wn| = n,
∣
∣
∣
∣|z|1 − |wn|1

n
|z|
∣
∣
∣
∣ ≤

|z|
n

+ 1 − gcd(|z|, n)

n
.

Letting n tend to ∞ gives
∣
∣|z|1 − α|z|∣∣ ≤ 1,

i.e.,

−1 ≤ |z|1 − α|z| ≤ 1.

If (b) does not hold, this implies that there exist two subwords z and w of u such
that

|z|1 − α|z| = −1 and |w|1 − α|w| = 1.
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Hence
∣
∣|w|1|z| − |z|1|w|

∣
∣ = ∣

∣(α|w| + 1)|z| − (α|z| − 1)|w|∣∣ = |z| + |w|,
which contradicts Proposition 10.5.5.

We prove (c): first note that if the word u is ultimately periodic, then trivially the
frequency of 1 in u is rational. Let us now suppose that the frequency of 1 in u is
rational, say equal to p/q. We suppose, from (b), that for each subword z of the
word u, we have

−1 < |z|1 − p

q
|z| ≤ 1,

(the other case is analogous). Hence, for any subword z of u of length q, we have
−1 < |z|1 − p ≤ 1. Hence |z|1 ∈ {p, p + 1}. We claim that there exist a finite
wordw and an infinite word v such that u = wv and all subwords z of v of length q
satisfy |z|1 = p. For if not, there would exist infinitely many subwords z of u such
that |z| = q and |z|1 = p + 1. In particular there would exist two non-overlapping
such words, i.e., there would exist a subword zxz′ of u such that |z| = |z′| = q and
|z|1 = |z′|1 = p + 1. Hence

2(p + 1) + |x |1 = |zxz′|1 ≤ p

q
|zxz′| + 1 = 2p + p

q
|x | + 1.

This would imply

|x |1 ≤ p

q
|x | − 1,

which contradicts

−1 < |x |1 − p

q
|x | ≤ 1.

Now, since all subwords z of length q of v satisfy |z|1 = p, we have that the first
and the last symbols of each subword of length q + 1 of v must be equal. Namely,
let ayb be any subword of v such that a and b are letters and y is a word of length
q − 1. Since |ay| = |yb| = q, we have |ay|1 = |yb|1 = p; hence a = b. It clearly
follows that v is periodic and q is a period of v. Hence u is ultimately periodic (see
also Exercise 52).

To prove (d) we suppose to the contrary that there exist two integers m > n such
that

either

{
|wm |1 < �αm + β�, i.e., |wm |1 ≤ �αm + β� − 1 and

|wn|1 > �αn + β�, i.e., |wn|1 ≥ �αn + β� + 1,

or

{
|wm |1 > �αm + β�, i.e., |wm |1 ≥ �αm + β� + 1 and

|wn|1 < �αn + β�, i.e., |wn|1 ≤ �αn + β� − 1.
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Defining the word z by wm = wnz, this implies that either

|z|1 = |wm |1 − |wn|1 ≤ �αm + β� − �αn + β� − 2

< (αm + β) − (αn + β − 1) − 2

and hence

|z|1 < α(m − n) − 1 = α|z| − 1,

or

|z|1 = |wm |1 − |wn|1 ≥ �αm + β� − �αn + β� + 2

> (αm + β − 1) − (αn + β) + 2

and hence

|z|1 > α(m − n) + 1 = α|z| + 1.

In either case this contradicts assertion (b). �

The following proposition will prove useful. It relates balanced binary infinite
words to palindromes.

Proposition 10.5.7 Let u be an infinite word with values in �2 = {0,1}. Then the
following properties are equivalent:

(i) The word u is balanced.
(ii) For each subword w of u, either 0w0 or 1w1 is not a subword of u.

(iii) For each palindromic subword w of u, either 0w0 or 1w1 is not a subword of u.

Proof. The proof of (i) =⇒ (ii) follows from the definition of balanced words. The
implication (ii) =⇒ (iii) is trivial. Let us prove that (iii) =⇒ (i) by proving that,
if a word u is not balanced, then there exists a palindromic subword of w such
that both 0w0 and 1w1 are subwords of u. Since u is not balanced there exist two
subwords y and z of u, such that

∣
∣|y|1 − |z|1

∣
∣ ≥ 2 and such that |y| = |z| = �. We

can suppose that these subwords are chosen so that � is minimal. Since � is minimal,
the words y and z cannot begin with the same letter, nor can they end with the same
letter. Suppose y begins with 0 and z begins with 1. Let w be the longest word
(possibly empty) such that 0w is a prefix of y and 1w a prefix of z. Since the last
letters of y and z are different, we see that y �= 0w, z �= 1w. Since w is the longest
word such that 0w is a prefix of y and 1w a prefix of z, the letters following w in
y and z must be different. Then, there exist two words (possibly empty) y′ and z′,
and two distinct letters a, b in �2, such that

y = 0way′ and z = 1wbz′.
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Of course |y′| = |z′|. If a = 1 and b = 0, then
∣
∣|y′|1 − |z′|1

∣
∣ = ∣

∣|y|1 − |z|1
∣
∣ ≥ 2,

which would contradict the minimality of �. Hence a = 0 and b = 1. Hence

y = 0w0y′ and z = 1w1z′.

Using the minimality of � again we see that y′ and z′ must be empty, i.e.,

y = 0w0 and z = 1w1.

It remains to prove that w is a palindrome. Let x be the (possibly empty) longest
prefix of w such that x R is a suffix of w. If w is not a palindrome, then |x | �= |w|,
and there exists a letter a ∈ �2 such that xa is a prefix of w and ax R is a suffix of
w, where, as usual, 0 = 1 and 1 = 0. Hence 0xa is a prefix of y, and ax R1 is a
suffix of z.

If a = 0, then 0x0 and 1x R1 are two subwords of u of length < � such that∣
∣|0x0|1 − |1x R1|1

∣
∣ = 2, which contradicts the minimality of �. Hence a = 1, so

0x1 is a prefix of y and 0x R1 is a suffix of z. Their common length is < �; hence
there exist two nonempty words y′′ and z′′ such that

y = 0x1y′′ and z = z′′0x R1.

We clearly have
∣
∣|y′′|1 − |z′′|1

∣
∣ = ∣

∣|y|1 − |z|1
∣
∣ ≥ 2, contradicting once more the

minimality of �. Hence w is a palindrome, and we are done. �

We now give the main result of this section.

Theorem 10.5.8 Let u = (un)n≥0 with values in �2 = {0,1}. Then the following
conditions are equivalent:

(i) the subword complexity of the word u satisfies pu(n) = n + 1 for all n ≥ 1;
(ii) the word u is balanced and non-ultimately-periodic;

(iii) the word u is Sturmian, i.e., u is equal either to sα,θ or to s′α,θ for some irrational α in
(0, 1) and θ in [0, 1).

Furthermore, the frequency of 1 in the word u exists, and it is equal to the num-
ber α that occurs in (iii).

Proof. We first prove that (i) =⇒ (ii). Since the complexity of u satisfies pu(n) =
n + 1 for all n, the word u cannot be ultimately periodic from Theorem 10.2.6. We
suppose that u is not balanced, and get a contradiction. If u is not balanced, we
have, using Proposition 10.5.7, that there exists a palindromic subwordw of u such
that both 0w0 and 1w1 are subwords of u. We see in particular that both words
w0 and w1 are subwords of u. Since pu(n) = n + 1 for all n, then for each word
z �= w such that |z| = |w|, each occurrence of z in u must be always followed by
the same letter, say az ∈ �2. For the same reason there exists exactly one subword
of u of length |w| + 1 whose occurrences in u can be followed either by 0 or by 1.
Furthermore w must be a suffix of this word. Without loss of generality, suppose
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this word is 0w. Hence 0w0, 0w1, and 1w1 are subwords of u, and 1w0 is not.
In other words, each occurrence of 1w in u must be followed by 1.

Let 1w1x be a subword of u such that |x | = |w|. We claim that 0w is not a
subword of 1w1x . For if it is, let 1w1x = z′0wz′′. The word z′ must begin with
1, say z′ = 1y. This gives 1w1x = 1y0wz′′, and hence w1x = y0wz′′. Note that
|y| + |z′′| = |x | = |w|.

If z′′ is empty, then w1x = y0w and |y| = |w|. This is impossible, because
1 �= 0.

If z′′ is not empty, then |y| = |w| − |z′′| ≤ |w| − 1, and w1x = y0wz′′ shows
that there exists a word t (prefix ofw) such thatw = y0t . Hence y0t1x = y0wz′′,
i.e., t1x = wz′′. Since |t | < |w|, we see that the (|t | + 1)th letter of w is 1. But
w = wR = (y0t)R = t R0y R . Hence the (|t | + 1)th letter of w is 0. This gives the
desired contradiction, and the word 1w1x does not contain the subword 0w. Hence
each subword of 1w1x of length |w| + 1 is a subword of u whose every occurrence
in u is always followed by the same letter. This implies that u is ultimately periodic
(see Exercise 52), which is not the case.

We now prove that (ii) =⇒ (iii). For each n ≥ 0 let wn be the prefix of length
n of the word u. Using Corollary 10.5.6, we know that the frequency of 1 in the
word u exists and is irrational. Let α be this frequency. Let θ be defined by

θ := inf{β : |wn|1 ≤ �αn + β� for all n ≥ 0}.
We have that θ is finite: more precisely, θ belongs to [0, 1] from its definition (take
n = 0) and from assertion (b) in Corollary 10.5.6. Also note that, by taking in the
set defining θ a sequence (β j ) j that converges to θ , we have |wn|1 ≤ �αn + θ� ≤
αn + θ for all n ≥ 0. On the other hand, we have |wn|1 ≥ αn + θ − 1 for all
n ≥ 0. For if not, there would be an n0 such that |wn0 |1 < αn0 + (θ − 1). Let
θ ′ := |wn0 |1 + 1 − αn0. Hence θ ′ < θ and |wn0 |1 < αn0 + θ ′. From assertion (d)
in Corollary 10.5.6 this would imply that the inequality |wn|1 ≤ αn + θ ′ holds for
all n ≥ 0, which would contradict the definition of θ . Hence we have

|wn|1 ≤ αn + θ ≤ |wn|1 + 1 for all n ≥ 0. (10.6)

Since α is irrational, the quantity αn + θ can be an integer for at most one value of
n. Hence either

(αn + θ ) is different from |wn|1 + 1 for all n ≥ 0 and Eq. (10.6) implies

∀n ≥ 0, |wn|1 ≤ αn + θ < |wn|1 + 1,

i.e., ∀n ≥ 0, |wn|1 = �αn + θ�, which clearly implies that u = sρ,θ ; or
there exists a unique integer n0 such that αn0 + θ = |wn0 | + 1, and then, for any other
integer n, the quantity αn + θ cannot be an integer and Eq. (10.6) implies

∀n ≥ 0, n �= n0, |wn|1 < αn + θ < |wn|1 + 1,

i.e., finally, |wn|1 = �αn + θ� − 1 for all n ≥ 0, which clearly implies u = s′ρ,θ .

Finally, (iii) =⇒ (i) was proved in Theorem 10.5.2 above. �
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10.6 Sturmian Words and kth-Power-Freeness

In this section, we apply the results of Section 10.5 to prove the following beautiful
theorem due to F. Mignosi about repetitions in Sturmian words.

Theorem 10.6.1 Let 0 < α < 1 be irrational, and let θ be a real number. Then
there exists an integer k ≥ 2 such that the Sturmian word sα,θ is k th-power-free if
and only if α has bounded partial quotients.

Proof. The proof consists of several steps. First, by the result of Theorem 10.5.3,
the set of subwords of sα,θ coincides with the set of finite subwords of sα,0. Thus we
may restrict our attention to characteristic words. Next, it is an easy consequence of
the results in Section 9.1 that if α has unbounded partial quotients, then fα = sα,0
contains arbitrarily large powers. Finally, in the most difficult part of the proof, we
show that if α has bounded partial quotients, then there exists an integer k such that
fα is kth-power-free.

Lemma 10.6.2 If the continued fraction for α has unbounded partial quotients,
then the characteristic word fα = f (1) f (2) f (3) · · · contains arbitrarily large
powers.

Proof. Let k be a given integer. Since α = [0, a1, a2, . . . ] has unbounded partial
quotients, there exists an index i ≥ 2 such that ai ≥ k. Then by Theorem 9.1.8, we
have Xi = Xai

i−1 Xi−2, where Xi = f (1) f (2) · · · f (qi ) is a prefix of fα. It follows
that fα begins with a kth power. �

Lemma 10.6.3 Let x, y be real numbers such that {x}, {x + y}, and {x + 2y} are
all contained in some interval I , where |I | < 1

2 . Then either

{x} ≤ {x + y} ≤ {x + 2y}

or

{x} ≥ {x + y} ≥ {x + 2y}.

Proof. Case (i): {x} ≤ {x + y}. Then

{y} = {x + y} − {x} < 1
2

by Exercise 2.3. Suppose, contrary to what we want to prove, that {x + 2y} <
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{x + y}. Then

{−y} = {x + y} − {x + 2y} < 1
2 ,

again by Exercise 2.3. Hence {y} < 1
2 and {−y} < 1

2 . It follows that {y} = 0, which
contradicts our assumption that {x + 2y} < {x + y}. Hence {x + 2y} ≥ {x + y}.

Case (ii), where {x} > {x + y}, is handled similarly. �

Lemma 10.6.4 Let k be a positive integer, and let m, n be positive integers. Define
xi = {(n + im)α}. Let h be an integer with 0 ≤ h ≤ m. Suppose xi ∈ Lh(m) for
0 ≤ i < k, and suppose |Lh(m)| < 1

2 . Then either

x0 ≤ x1 ≤ · · · ≤ xk−1

or

x0 ≥ x1 ≥ · · · ≥ xk−1.

Proof. By induction on k. For k = 1, 2 the result is vacuously true. For k = 3 it
follows from Lemma 10.6.3. Now assume true for k ≥ 3; we prove it for k + 1. By
induction we have either

x0 ≤ x1 ≤ · · · ≤ xk−1 (10.7)

or

x0 ≥ x1 ≥ · · · ≥ xk−1. (10.8)

Similarly, by applying the induction hypothesis to the range 1 ≤ i ≤ k, we have
either

x1 ≤ x2 ≤ · · · ≤ xk (10.9)

or

x1 ≥ x2 ≥ · · · ≥ xk . (10.10)

Since k ≥ 3, Eqs. (10.7) and (10.10) cannot hold simultaneously. Similarly, Eqs.
(10.8) and (10.9) cannot hold simultaneously. The desired conclusion now follows.

�

Lemma 10.6.5 Let w = Bh(m), the length-m subword of fα associated with the
interval Lh(m), 0 ≤ h ≤ m. Suppose |Lh(m)| < 1

2 . If wk is a subword of fα, then

k − 1 ≤ |Lh(m)|
min({−mα}, {mα}) .

Proof. Suppose wk is a subword of fα = f (1) f (2) f (3) · · · , and |w| = m. Then
there exists an integer n ≥ 1 such that wk = f (n) f (n + 1) · · · f (n + km − 1).
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Since the words Bh(m) (0 ≤ h ≤ m) are distinct, it follows by Lemma 10.5.1 that
{(n + im)α} ∈ Lh(m) for 0 ≤ i < k. Then, by Lemma 10.6.4, either

{nα} < {(n + m)α} < · · · < {(n + (k − 1)m)α}
or

{nα} > {(n + m)α} > · · · > {(n + (k − 1)m)α}.
Without loss of generality, assume the former holds. Since all these points
are in Lh(m), it follows that at least one of the implied intervals, say I =
[{(n + im)α}, {(n + (i + 1)m)α}), is of length ≤ |Lh(m)|/(k − 1). The result now
follows. �

We define the index of a finite subwordw of an infinite word x to be k, wherewk

is the highest power of w that occurs as a subword of x. If arbitrarily high powers
of w occur in x, then we say w is of infinite index.

Corollary 10.6.6 Every finite subword of sα,0 is of finite index.

Proof. Suppose, contrary to what we want to prove, that w is a subword of sα,0 of
infinite index. Choose an integer j ≥ 1 sufficiently large so that |Lh(m)| < 1

2 for
all h with 0 ≤ h ≤ m for m := j |w|.

Then, by assumption, w jk is a subword of sα,0 for all k ≥ 1. It then follows from
Lemma 10.6.5 that

jk − 1 ≤ max0≤h≤m |Lh(m)|
min({−mα}, {mα})

for all k ≥ 1. But this is clearly absurd, since the quantity on the right is finite. �

We are now ready to complete the proof of Mignosi’s theorem.
Suppose the partial quotients in the continued fraction for α are bounded; say

ai ≤ K for all i ≥ 1. Let w be a subword of fα. By Corollary 10.6.6, w has finite
index, so let k be the largest integer such that wk is a subword of fα. Let m := |w|;
as in the proof of Theorem 10.5.2, we know that w = Bh(m) for some h with
0 ≤ h ≤ m.

Define

C(α) =
{

a1/2 if a1 > 1,

(a2 + 1)/2 if a1 = 1.
(10.11)

Then by Exercise 28 we know that max0≤h≤m |Lh(m)| < 1
2 if m > C(α). Hence

Lemma 10.6.5 applies, and we have

k − 1 ≤ |Lh(m)|
min({−mα}, {mα}) . (10.12)
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But clearly

min({−mα}, {mα}) ≥ min
0≤h≤m

|Lh(m)|,

so we may use Corollary 2.6.4 to conclude that

|Lh(m)|
min({−mα}, {mα}) ≤ ak+1 + 2 ≤ K + 2

if qk ≤ m < qk+1. Combining this inequality with (10.12), we have k − 1 ≤ K + 2,
and so k ≤ K + 3.

On the other hand, if m ≤ C(α), then there are only a finite number of different
subwords of length m contained in sα,0, and by Corollary 10.6.6, each of these
subwords has finite index. The proof of Mignosi’s theorem is now complete. �

10.7 Subword Complexity of Finite Words

Up to now we have been largely concerned with the subword complexity of infinite
words. However, it is also of interest to study the subword complexity of finite
words. Here, the main questions are the following (let u be an infinite word):

What is the length of the shortest finite word w = w(n) for which pw(i) = pu(i) for i =
0, 1, 2, . . . , n?
How many such words are there?
What is an efficient method for generating such words?

In this section we examine the first question in one simple case: where the
alphabet is {0, 1} and the infinite word u has maximum complexity.

Theorem 10.7.1 For all n ≥ 0 there exists a word w = w(n) over {0, 1}, of length
2n + n − 1, such that pw(i) = 2i for i = 0, 1, 2, . . . , n.

Such a word is often called a de Bruijn sequence in the literature.
Let u be an infinite word over the alphabet �. In order to prove Theorem 10.7.1,

we introduce a useful family of directed graphs (Gu(n))n≥1, called word graphs. The
vertices of Gu(n) are the subwords of u of length n. The edges of Gu(n) correspond
to the subwords of u of length n + 1: if a, b ∈ �, z ∈ �n−1, and azb is a subword
of length n + 1, then we create a directed edge (az, zb).

In the particular case of sequences of maximum complexity over {0,1}, we easily
see that B(n) := Gu(n) is a directed graph with 2n vertices and 2n+1 edges. Fur-
thermore, the indegree (number of edges entering a vertex) and outdegree (number
of edges leaving a vertex) of each vertex is 2. For example, Figure 10.3 illustrates
B(3).

We can now prove Theorem 10.7.1.
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Figure 10.3: The Word Graph B(3).

Proof. It suffices to show that B(n) possesses an Eulerian cycle: a path that traverses
every edge exactly once and begins and ends at the same vertex. For, given such a cy-
cle, we can form a word a1a2 · · · am of length m = 2n+1 + n where ai ai+1 · · · ai+n−1

is the label of the i th vertex visited. We use the following lemma:

Lemma 10.7.2 A directed graph G possesses an Eulerian cycle if and only if it is
strongly connected (i.e., there is a directed path connecting any two vertices) and
the indegree of every vertex equals its outdegree.

Proof. Suppose G has an Eulerian cycle. Then it is clearly strongly connected.
Also, if the indegree of a vertex v differed from its outdegree, then our Eulerian
cycle would be forced to repeat an edge.

Now suppose G is strongly connected and satisfies the condition on the degrees
of the vertices. Let P be a longest closed path with the property that every edge
it traverses, it traverses at most once. If there is an edge of G not in P , then by
strong connectivity P must omit some edge incident to a vertex of P . Consider
such an edge leaving a vertex x on P and entering a vertex v; by the condition on
degrees there must be an edge not in P leaving v. Follow this edge. Continuing in
this fashion, we encounter other edges not in P , and again, by the degree condition,
we must return eventually to x . We have now found a new path P ′, and we can add
P ′ to P to obtain a longer closed path, a contradiction. �

Example 10.7.3 Let us use the graph B(3) in Figure 10.3 to create a word w of
length 19 such that pw(4) = 16. We find 0000111101001011000.

10.8 Recurrence

We now begin our study of the second of the two questions mentioned in the
introduction: namely, whether all of the finite subwords of a given infinite word
appear infinitely often. A subword that occurs infinitely often is said to be recurrent.
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Example 10.8.1 Consider the characteristic sequence c of the powers of 2, i.e.,

c = 1101000100000001 · · · .
Then it is clear that any subword of c that contains at least two 1’s appears only
once in c. Thus, c possesses infinitely many subwords that are not recurrent. On the
other hand, the subword 0 is clearly recurrent.

Example 10.8.2 Every subword of the Thue–Morse sequence t is recurrent. For
let w be any subword of t. Then w is a subword of some prefix of t of the form
µn(0), where µ maps 0 → 01 and 1 → 10. But t = µn(t), and 0 clearly occurs
infinitely often in t. Therefore µn(0) occurs infinitely often, and hence so does w.

We say an infinite word x is recurrent if every finite subword of x is recurrent.

Example 10.8.3 Every purely periodic infinite word is recurrent. On the other
hand, if a recurrent infinite word is ultimately periodic, then it is purely periodic;
see Exercise 37.

Proposition 10.8.4 An infinite word x is recurrent if and only if every finite subword
of x occurs at least twice.

Proof. One direction is clear. For the other direction, assume every finite subword
of x occurs at least twice. Let w be such a subword. Assume, contrary to what we
want to prove, that w occurs only finitely many times in x. Let w′ be the shortest
prefix of x containing all occurrences of w in x. Then w′ is itself a subword of
x, so it must occur twice in x. Let w′′ be the shortest prefix of x containing two
occurrences of w′. Then w′′ contains at least one occurrence of w not contained in
w′, a contradiction. �

Let rw(n) denote the number of distinct recurrent subwords of w of length n. Note
that every recurrent subword x of length m is a prefix of some recurrent subword
of length m + 1; for if not, x would not be recurrent, because the total number of
occurrences of xa, for a letter a, would be finite. Keeping this observation in mind,
it is not hard to prove the following result.

Theorem 10.8.5 Theorems 10.2.1–10.2.6 hold for rw(n) in place of pw(n).

Proof. Left to the reader. (See Exercise 8.) �

We now examine some transformations which, when applied to recurrent words,
produce recurrent results.
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Theorem 10.8.6 Let x ∈ �ω be a recurrent infinite word, and let h : �∗ → �∗ be
a morphism that is nontrivial on the alphabet of x, i.e., there exists at least one
letter a occurring in x for which h(a) �= ε. Then h(x) is a recurrent infinite word.

Proof. Since x is recurrent, every letter occurring in x occurs infinitely often. Since
h is nontrivial on the alphabet of x, h(x) is infinite. Now let w be a finite subword
of h(x). Then there exists a finite subword y = x[m..n] that covers w, i.e., w is a
subword of h(y). Since x is recurrent, y occurs infinitely often in x, and hence w
occurs infinitely often in h(x). �

We now consider the case of k-block compression. Recall that the k-block com-
pression of a sequence is formed by grouping the terms into blocks of size k, and
recoding this new sequence with a symbol for each distinct block.

Theorem 10.8.7 Let w be an infinite recurrent sequence, and let k ≥ 2 be an
integer. Then the k-block compression of w is recurrent.

Proof. First we need the following lemma:

Lemma 10.8.8 Let a, k be integers with k ≥ 2 and 0 ≤ a < k. Suppose w =
c0c1c2 · · · is a recurrent infinite word, and suppose u is a finite subword of w
that occurs at least once in w at some position i ≡ a (mod k). Then u occurs
infinitely often in w at positions congruent to a (mod k).

Proof. Suppose, contrary to what we want to prove, that u occurs only finitely many
times in w at positions congruent to a (mod k). Suppose the last such occurrence
of u in w is c j c j+1 · · · c j+r−1. Define

S = {i : 0 ≤ i < k and u occurs infinitely often

in w in positions congruent to i (mod k)}.
Since w is recurrent, we know that S is nonempty, and by above a �∈ S. Let v be a
subword of w beginning at position j and extending to the right sufficiently far to
include at least one occurrence of u starting at positions congruent to each of the
elements of S, modulo k.

Since w is recurrent, v itself must occur infinitely often in w, and hence must occur
infinitely often starting at a position congruent to some fixed b (mod k). It follows
that b ∈ S, and further that S is stable under the operation of adding b − a to each
element of S. Hence b + (k − 1)(b − a) ∈ S. But b + (k − 1)(b − a) ≡ a (mod k),
so a ∈ S, a contradiction. �

Now we can prove Theorem 10.8.7. Let x be the k-block compression of w, and
let t be a finite subword of x. Then t corresponds to a subword of w that occurs
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starting at a position congruent to 0 (mod k). By Lemma 10.8.8 this subword must
occur infinitely often at positions congruent to 0 (mod k), and hence t must occur
infinitely often in x. �

We now turn to a topological interpretation of recurrence. Recall that the orbit of a
one-sided infinite word x = a0a1a2 · · · is the set of all shifted words {Sk(x) : k ≥ 0},
i.e., the set of all suffixes of x. We denote this set by Orb(x). The orbit closure,
Cl(Orb(x)), is the closure of Orb(x) under the usual topology. The following simple
proposition gives two alternative characterizations of Cl(Orb(x)):

Proposition 10.8.9 Let x, y be infinite words over a finite alphabet�. Then the fol-
lowing properties are equivalent:

(a) y ∈ Cl(Orb(x));
(b) every finite prefix of y is a subword of x;
(c) Sub(y) ⊆ Sub(x).

Proof. (a) ⇐⇒ (b) follows easily from the definition of the topology on infinite
words.

(b) =⇒ (c): Every subword of y is contained in some prefix of y.
(c) =⇒ (b): Every prefix of y is a subword of y. �

Example 10.8.10 Continuing Example 10.8.1, let c = 011010001 · · · be the
characteristic sequence of the powers of 2. As we have seen, c is not recurrent. The
orbit closure of c consists of all suffixes of c, together with the set {0i 10ω : i ≥ 0}.

The orbit closure of an infinite word may at first sight be a somewhat mysterious
object. The following interpretation may make it somewhat easier to understand.
Suppose we are given an infinite word x. We now construct an infinite tree T = T (x)
as follows: the root of T is labeled ε. If a node of T is labeled w, then it has
children labeled wa for each subword wa occurring in x. Furthermore, we arrange
the children from left to right so that if the children of the node labeled w are
labeled wa1, wa2, . . . , wak , then the first occurrence of wa1 in x precedes the first
occurrence of wa2, which precedes the first occurrence of wa3, etc. We label the
edge from w to wai with the symbol ai . We say an infinite word y belongs to T
if there is an infinite path, descending from the root, with edge labels given by the
symbols of y. Then Cl(Orb(x)), the orbit closure of x, is the set of all infinite words
belonging to T (x).

Example 10.8.11 Consider the Thue–Morse sequence t. As we have seen above in
Example 10.8.2, t is recurrent. Figure 10.4 gives the first few levels in the tree T (t).

In particular, t is a sequence that is in the orbit closure of t, but not in the orbit
of t.
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Figure 10.4: First Few Levels of the Tree T (t).

One consequence of this interpretation is the following:

Theorem 10.8.12 Suppose x is a recurrent infinite word. Then Cl(Orb(x)) is un-
countable if and only if x is not purely periodic.

Proof. One direction is clear. Now suppose x is not purely periodic. Since x is
recurrent, by Exercise 15 every prefix p of x can be extended to a (possibly longer)
prefix p′ such that p′a and p′b are both subwords of x, for some a �= b. This
means every path in T (x) encounters infinitely many levels where at least two
distinct choices can be made, each of which results in a distinct member of the orbit
closure. It follows that Cl(Orb(x)) is uncountable. �

10.9 Uniform Recurrence

As we have seen in the previous section, recurrent words have several pleasant
properties that make them worthy of study. In this section, we focus on infinite
words which, in addition to being recurrent, have the property that successive
occurrences of words are not widely separated.

We say an infinite word x is uniformly recurrent if, corresponding to every
finite subword w of x, there exists an integer k such that every subword of length
k of x contains w. Clearly a uniformly recurrent word is recurrent. We define
Rx(w), the recurrence function, to be the smallest such k, or ∞, if no such k exists.
If x is clear from the context, we may omit the subscript on R. We also define
Rx(n) = maxw∈Subx(n) Rx(w). Thus Rx(n) is the least integer m such that every
block of m consecutive symbols in x contains at least one occurrence of every
length-n subword that appears anywhere in x.

Example 10.9.1 We saw in Example 10.8.3 that every purely periodic infinite word
is recurrent. Suppose x is purely periodic of period length k. Let w be a subword of
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x of length n. By the periodicity of x, for any a ≥ 0 there exists an occurrence of w
beginning at one of the positions a, a + 1, . . . a + k − 1 of x. Thus w is a subword
of x[a..a + n + k − 2], and so

Rx(n) ≤ n + k − 1. (10.13)

Hence purely periodic words are uniformly recurrent, and recurrence can be viewed
as a generalization of periodicity.

Notice that the inequality (10.13) cannot, in general, be replaced by an equality.
For example, if x = (abba)ω, then k = 4, but Rx(1) = 3. However, see Exercise 53.

The following theorem gives some of the basic properties of the recurrence
function.

Theorem 10.9.2 Let x be a uniformly recurrent infinite word. Then we have

(a) Rx(n + 1) > Rx(n) for all n ≥ 0;
(b) Rx(n) ≥ px(n) + n − 1 for all n ≥ 0;
(c) Rx(n) ≥ 2n for all n if and only if x is not purely periodic.

Proof. (a): Let t = Rx(n). Then from the definition of Rx(n) there exists an in-
teger j ≥ 0 such that x[ j.. j + t − 1] contains all of the length-n subwords of x,
but x[ j.. j + t − 2] fails to contain at least one length-n subword. In fact, it fails
to contain w := x[ j + t − n.. j + t − 1]. Let a = x[ j + t]. Then wa does not ap-
pear in x[ j.. j + t − 1], for if it did, w would be a subword of x[ j.. j + t − 2], a
contradiction. It follows that Rx(n) ≥ t + 1.

(b): A subword of any length � ≥ n contains at most �− n + 1 distinct subwords
of length n. But x contains px(n) subwords of length n. Therefore px(n) ≤ Rx(n) −
n + 1, which gives the desired inequality.

(c): Suppose x is not periodic. Since it is recurrent, it cannot be ultimately pe-
riodic, by Exercise 37. Thus by Theorem 10.2.6 we have px(n) ≥ n + 1 for all n.
Hence by part (b) we have Rx(n) ≥ 2n for all n. On the other hand, if x is periodic
with period length p, then as we remarked in Example 10.9.1, Rx(n) ≤ n + p − 1.
Hence for n = p we have Rx(n) ≤ 2n − 1 < 2n. �

Example 10.9.3 As usual, let t = t0t1t2 · · · denote the Thue–Morse sequence. We
show

Rt(n) =






3 if n = 1,

9 if n = 2,

9 · 2k + n − 1 if k ≥ 0 and 2k + 2 ≤ n ≤ 2k+1 + 1.

First, we observe that the subwords of t of length ≥ 4 can be classified into two
disjoint sets: those that occur only at an even-indexed position in t, and those that
occur only at an odd-indexed position in t. (We call the former “even” and the latter
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“odd”. To see this, note that the even subwords of length 4 are {0110,1010,
1001,0101} and the odd subwords of length 4 are {1101,0100,0011,
1100,0010,1011}. Then no even subword can be odd, or vice versa, since if
one were, we would either have 11 or 00 as the image of a letter under µ (the
Thue–Morse morphism), or have 000 or 111 as a subword of t, contradicting
Theorem 1.6.1. For words of length > 4, simply consider a prefix of length 4.

We start by showing that R(2n) ≤ 2R(n + 1) − 1 for n ≥ 2. It suffices to show
that every subword x of length 2n of t appears in every subword B of t of length
2R(n + 1) − 1. There are two cases to consider: x is even and x is odd.

Case 1: If x is even, then we can write x = µ(y), where y is a subword of t of
length n. Then |B| = 2R(n + 1) − 1 ≥ 2R(n) + 1 by Theorem 10.9.2(a). Thus B
contains an even subword z of length 2R(n). Then we can write z = µ(w), where
w is a subword of t of length R(n). By the definition of R, w must contain every
subword of t of length n, and so it contains y. Then x = µ(y) is a subword of
z = µ(w), and hence a subword of B.

Case 2: If x is odd, then there exist a, b ∈ {0,1} and a subword y of t of length
n + 1 such that axb = µ(y).

If B itself is odd, then let c be a symbol that immediately precedes B in t.
Then cB is an even subword of t of length 2R(n + 1). It follows that we can write
cB = µ(w) where w is a subword of t of length R(n + 1). By the definition of
R, w must contain every subword of t of length n + 1, and so it contains y. Then
cB = µ(w) contains axb = µ(y), and since B and x are both odd, we have that B
contains x .

If B itself is even, then we let d be a symbol that immediately follows B in t,
and repeat the previous argument with Bd in place of cB.

We have now shown that every subword of length 2n of t appears in every subword
of length 2R(n + 1) − 1 of t, and so the inequality R(2n) ≤ 2R(n + 1) − 1 follows.

Next, we show R(2n + 1) ≤ 2R(n + 1) for n ≥ 2. As before, it suffices to show
that every subword x of length 2n + 1 of t appears in every subword B of t of
length 2R(n + 1). There are two cases to consider:

Case 1: B is even. If x is odd, then x = cµ(y) for some subword cy of t of
length n + 1. Now |B| = 2R(n + 1), so B = µ(w) for a subword w of t of length
R(n + 1). By the definition of R, w must contain every subword of t of length
n + 1, and so it contains cy. Thus B = µ(w) contains µ(cy) = ccµ(y) = cx .

If x is even, then we write x = µ(y)c and repeat the previous argument.
Case 2: B is odd. If x is odd, then x = cµ(y) for some subword cy of t of length

n + 1. As before B = aµ(w)b for some subword awb of t of length R(n + 1) + 1.
Then aw contains every subword of t of length n + 1; hence it contains cy. Then
µ(cy) is a subword of µ(aw); since both are even, it follows that x = cµ(y) is a
subword of aµ(w), hence a subword of B.
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If x is even, then we write x = µ(y)c and repeat the previous argument.
We have now shown that every subword of length 2n + 1 of t appears in every

subword of length 2R(n + 1) of t, and so the inequality R(2n + 1) ≤ 2R(n + 1)
follows.

Next, we argue that R(2n) ≥ 2R(n + 1) − 1 for n ≥ 2. Call a subword u of t an
n-minimax block if u contains all subwords of length n of t, but no proper subword
of u does. It follows that |u| = R(n). Now let g be an (n + 1)-minimax block of
length R(n + 1), and write g = g′axb, where |x | = n − 1 and a, b ∈ {0,1}. Then
axb is not a subword of g′ax , for otherwise g would not be minimax. We claim
the subword µ(g′ax) omits the subword v := aµ(x)b. Now v is clearly odd, and
since |v| ≥ 4, it cannot also be even. If v appears in µ(g′ax), then since µ(g′ax)
is even, it must be that µ(g′ax) contains avb = aaµ(x)bb = µ(axb). Hence g′ax
contains axb, a contradiction. It follows that R(2n) > 2(R(n + 1) − 1), and so
R(2n) ≥ 2R(n + 1) − 1. Now R(2n + 1) > R(2n) by Theorem 10.9.2(a), and so
R(2n + 1) ≥ R(2n) + 1 ≥ 2R(n + 1).

We have now shown

R(2n) = 2R(n + 1) − 1,

R(2n + 1) = 2R(n + 1)

for n ≥ 2. In view of the equalities R(1) = 3, R(2) = 9, R(3) = 11, the proofs of
which are left to the reader, the desired result now follows by an easy induction.

Uniformly recurrent infinite words have many interesting properties, and can be
defined in several equivalent ways. Suppose T is a set of infinite words. We say T
is closed under the shift if, for all x ∈ T and all k ≥ 0, we have Sk(x) ∈ T .

An infinite word x is said to be minimal if the only closed subsets of Cl(Orb(x))
that are closed under the shift are ∅ and Cl(Orb(x)) itself. We show in a moment
that an infinite word is minimal if and only if it is uniformly recurrent.

Suppose x = a0a1a2 · · · is recurrent, and w is an arbitrary subword of x begin-
ning at positions i1 < i2 < · · · . We define γx(w) = supn≥0(in+1 − in), where i0 :=
−1. Thus, γx(w) measures the maximum distance between successive occurrences
of w in x. We define γx(n) = maxw∈Subx(n) γx(w). If γx(n) < ∞ for all n, then we
say x has the bounded gap property.

We now show that a sequence is uniformly recurrent if and only if it is minimal,
if and only if it has the bounded gap property.

Theorem 10.9.4 Let x = a0a1a2 · · · be an infinite sequence over a finite alphabet.
Then the following properties are equivalent:

(a) The sequence x is minimal.
(b) For every sequence y, if y ∈ Cl(Orb(x)), then x ∈ Cl(Orb(y)).
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(c) For every sequence y, if y has arbitrarily long prefixes in Sub(x), then x has arbitrarily
long prefixes in Sub(y).

(d) For every sequence y, if Sub(y) ⊆ Sub(x), then Sub(x) ⊆ Sub(y).
(e) For every sequence y, if Sub(y) ⊆ Sub(x), then Sub(x) = Sub(y).
(f) For every sequence y, we have y ∈ Cl(Orb(x)) ⇔ Sub(y) = Sub(x).
(g) The sequence x has the bounded gap property.
(h) The sequence x is uniformly recurrent.

Proof. To prove that (a) ⇔ (b), we note that the sequence x is minimal if and
only if for any sequence y ∈ Cl(Orb(x)) we have Cl(Orb(y)) = Cl(Orb(x)). This is
equivalent to saying x ∈ Cl(Orb(y)), since Cl(Orb(y)) is closed, and closed under
the shift.

The equivalences between (b), (c), and (d) are easy consequences of Proposi-
tion 10.8.9. The equivalence between (d) and (e) is trivial.

To prove that (e)⇔ (f), we first note that (e) can be rephrased under the equivalent
form: Sub(y) ⊆ Sub(x) if and only if Sub(y) = Sub(x). It then suffices to apply
Proposition 10.8.9.

We now prove (g) ⇔ (h). In fact, we prove that γx(n) = Rx(n) − n + 1 for all
n ≥ 0.

Suppose x has the bounded gap property, and let g = γx(n). Then g < ∞. Now
consider any subword y of x of length g + n − 1, say y = x[i..i + g + n − 2]. Let
w be a subword of length n of x. We claimw occurs in y. For if not, there can be no
occurrence ofw in x beginning at any position p ∈ {i, i + 1, i + 2, . . . , i + g − 1}.
It follows that γx(n) ≥ g + 1, a contradiction. Thus Rx(n) ≤ g + n − 1.

Now suppose x is uniformly recurrent, and let r = Rx(n). Then r < ∞. Let w
be a subword of length n of x, and let x[i..i + n − 1], x[i ′..i ′ + n − 1] be any
two consecutive occurrences of w with i < i ′; we permit i = −1, in which case
x[i ′..i ′ + n − 1] is the first occurrence ofw in x. Then x[i + 1..i ′ + n − 2] contains
no occurrences of w, so it follows that Rx(n) ≥ i ′ − i + n − 1. Since Rx(n) < ∞,
it follows that i ′ − i < ∞; since i, i ′ were the starting positions of arbitrary con-
secutive occurrences of w, we have γx(n) ≤ Rx(n) − n + 1.

To prove that (h) implies (d), let y be a sequence such that Sub(y) ⊆ Sub(x), and
let x ∈ Sub(x). Take any subword y of y, such that |y| = Rx(|x |). Since Sub(y) ⊆
Sub(x), the word y is also a subword of x. Since it has length Rx(|x |), it contains
all subwords of x of length |x |, in particular x itself. Hence x is a subword of y,
and so x is a subword of y.

It remains to prove, for example, that (d) implies (g). We prove that if the sequence
x does not have the bounded gap property, then it does not satisfy condition (d). If
there is a subword x of x that occurs only a finite number of times in x, then there
exists a sequence y obtained by applying a power of the shift to x, and that does
not contain the word x . Hence condition (d) is not satisfied. Suppose now that a
word x occurs infinitely often in x, but with unbounded gaps. Then there exists an
increasing sequence (n j ) j such that, denoting the shift by S, any sequence Sn j (x)



10.10 Appearance 333

begins with a wordw j x , wherew j does not contain x as a subword, and the lengths
|w j | are not bounded. Up to replacing the sequence (n j ) j by a subsequence, we can
suppose that the sequence of lengths (|w j |) j tends to infinity. Now the sequence
(Sn j (x)) j admits an accumulation point, whose subwords are all in Sub(x), but that
misses the word x , contradicting (d). �

Theorem 10.9.5 Let h : �∗ → �∗ be a primitive morphism, prolongable on a.
Then hω(a) is uniformly recurrent.

Proof. Let k = Card �. Since h is primitive, there exists an integer e such for all
c, d ∈ �, we have he(c) ∈ �∗d�∗. (In fact, by Exercise 8.8(b), we may take e =
2(k − 1).)

Let u = hω(a), and let w be a subword of u. Then w is a subword of hn(a)
for some n ≥ 1. Now u is a fixed point of h, so if u = a0a1a2 · · · with each
ai ∈ �, then we also have u = hn+e(a0)hn+e(a1)hn+e(a2) · · · . However, hn+e(ai ) =
hn(he(ai )) = hn(xi ayi ) for all i ≥ 0. It follows that every subword of length 2W n+e

of u contains an occurrence of hn(a), and hence an occurrence of w. �

10.10 Appearance

There are two other related functions of interest dealing with infinite words. The
first is called appearance, and denotes the starting position of the last subword of
length n to appear for the first time in w = a0a1a2 · · · . More precisely, we define
αw(n) to be the least index i such that every length-n subword of w appears in the
prefix a0a1 · · · ai · · · ai+n−1.

The second function is similar to recurrence, except instead of handling all blocks,
we consider only prefixes. If x is an infinite word, and w is a subword of x, we
define R′

x(w) to be the smallest integer k such that w is a subword of x[0..k − 1].
Notice that R′ is defined on all infinite words x, not just uniformly recurrent ones.
Further, we define

R′
x(n) = max

w∈Subx(n)
R′

x(w).

Hence R′
x(n) is the length of the shortest prefix of x that contains at least one oc-

currence of each length-n subword.
Note that R′ and α are related by R′

x(n) = αx(n) + n.

Example 10.10.1 Let x be an ultimately periodic word, with preperiod of length k
and period of length p. Then αx(n) = k + p − 1 and R′

x(n) = k + p + n − 1.

Theorem 10.10.2 Let x be an infinite word. Then

(a) R′
x(n + 1) > R′

x(n) for all n ≥ 0;
(b) R′

x(n) ≥ px(n) + n − 1 for all n ≥ 0;
(c) R′

x(n) ≥ 2n for all n if and only if x is not ultimately periodic.
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Proof. (a): Let t = R′
x(n). Then x[0..t − 1] contains all subwords appearing in x

of length n. Furthermore, if we let w = x[t − n..t − 1], then the first occurrence
of w in x begins at position t − n of x; if not, we would have R′

x(n) < t . Hence, if
we let a = x[t], then wa is a word of length n + 1 that occurs for the first time at
position t − n of x, and so R′

x(n + 1) > t .
(b): If there are px(n) distinct subwords of length n in x, then in the “worst case”

they could appear consecutively (overlapping) in x, in which case we would need
px + n − 1 positions to cover them all.

(c): Suppose x is not ultimately periodic. Then by Theorem 10.2.6 we have
px(n) ≥ n + 1 for all n. Hence by part (b) we have R′

x ≥ n + 1 + n − 1 = 2n.
On the other hand, if x is ultimately periodic, then by Example 10.10.1 we have
R′

x(n) = C + n − 1 for some integer constant C , so taking n = C we get R′
x(n) =

2n − 1 < 2n. �

Example 10.10.3 We compute α and R′ for t = t0t1t2 · · · , the Thue–Morse se-
quence.

We use the terminology of “even” and “odd” subwords introduced in Exam-
ple 10.9.3.

Now consider a subword of length 2n ≥ 4 of t. If it is even, it must be the image
under µ of a unique subword of length n of t. If it is odd, it must be formed by
dropping the first and last characters of the image under µ of a unique subword
of length n + 1. It now easily follows that αt(2n) = 2αt(n + 1) + 1 for n ≥ 2. A
similar argument shows αt(2n + 1) = 2αt(n + 1) + 1 for ≥ 2.

Now by induction we get, for n ≥ 3, that αt(n) = 3 · 2k+1 − 1 if 2k + 2 ≤ n ≤
2k+1 + 1. Thus, for n ≥ 3, we have R′

t(n) = 3 · 2k+1 + n − 1 if 2k + 2 ≤ n ≤
2k+1 + 1.

Note that for k ≥ 1, the above result implies that R′
t(2

k + 1) = 2k+2. Furthermore
by Exercise 10 we know that pt(2k + 1) = 3 · 2k . It follows that the first 2k+2 sym-
bols of t contain all the 3 · 2k subwords of length 2k + 1, and each subword appears
exactly once. For example, the first 16 symbols of t are 0110100110010110,
and the 12 length-5 subwords of t are 01101, 11010, 10100, 01001, 10011,
00110, 01100, 11001, 10010, 00101, 01011, and 10110.

10.11 Exercises

1. What is the subword complexity of the word 1101000100000001 · · · , the
characteristic sequence of the powers of 2?

2. Show that p = 235711131719232931 · · · , the concatenation of the deci-
mal expansions of the prime numbers, has subword complexity pp(n) = 10n .
Hint: Use Theorem 2.13.3.

3. In Theorem 10.3.1, we proved that if u = hω(a) for some t-uniform morphism
h of depth k, then pu(n) ≤ tk2n for all n ≥ 1. Is this bound attainable?
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4. Suppose that |�| ≥ 2. Give an explicit example of an infinite word w ∈ �ω

such that pw(n) = |�|n for all n ≥ 0.
5. Suppose thatwn := �(n + 1)α + β� − �nα + β�. Show thatwn = 0 ⇔ {nα +

β} ∈ [0, 1 − α).
6. Show how, for all real numbers 0 ≤ α ≤ 1, to construct a sequence over {0,1}

with entropy α.
7. Show how to construct an infinite word w over {0,1}with complexity pw(n) =

Fn+2, where Fn is the nth Fibonacci number.
8. Prove Theorem 10.8.5.
9. A three-dimensional analogue to Sturmian words is the following. Let α1, α2,

α3 be totally irrational (rationally independent). Consider the sequence on three
letters {0,1,2} defined by the path of the ray with parameterization x = α1t,
y = α2t, z = α3t for t ≥ 0 through the integer lattice in R3. Show that these
words have subword complexity n2 + n + 1.

10. Let t be the Thue–Morse infinite word. Show that for n ≥ 2

pt(n + 1) =
{

4n − 2a if n = 2a + b, where a ≥ 1, 0 ≤ b < 2a−1,

4n − 2a − 2b if n = 2a + 2a−1 − b, where a ≥ 1, 0 ≤ b < 2a−1.

11. Show that if t is the Thue–Morse sequence, then (pt(n) − pt(n − 1))n≥1 is a
2-automatic sequence, and give a DFAO computing it.

12. Let k ≥ 2 be an integer. The generalized Thue–Morse sequence tk =
tk(0)tk(1) · · · is defined as follows: for n ≥ 0, set tk(n) = s2(n) mod k. Show that
the generalized Thue–Morse word has subword complexity

ptk (n + 1) =





k if n = 0,

k2 if n = 1,

k(kn − 2a−1) if n = 2a + b, where a ≥ 1, 0 ≤ b < 2a−1,

k(kn − 2a−1 − b) if n = 2a + 2a−1 + b, where a ≥ 1, 0 ≤ b < 2a−1.

13. Show that there is no infinite binary word w for which pw(0) = 1, pw(1) = 2,
pw(2) = 3, pw(3) = 5, and pw(4) = 9. Conclude that the conditions in Theo-
rems 10.2.2 and 10.2.3 are necessary, but not sufficient, for a function to be the
subword complexity function of an infinite word.

14. Suppose a language L is infinite and factorial, i.e., every subword of a word in
L is also in L . Show there is a two-sided infinite word whose subwords are all
contained in L .

15. Suppose x is a recurrent infinite word such that if x[0..n − 1] = x[k..k +
n − 1], then x[n] = x[k + n]. Show that x is periodic.
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16. Let pk/qk be the convergents of the golden ratio 1
2 (
√

5 − 1), and let w be the
infinite word defined by

w =
∞∏

k=1

0pk 1qk .

Show that pw(n) = O(n), and determine when 2 | pw(n).
17. Exercise 16 may be generalized as follows. Let 0 < α < 1 be irrational. Let

pn/qn be the partial quotients of α. Let

wα =
∞∏

k=1

0pk 1qk

Show that pwα
(n) = O(n).

18. Consider the generalized Fibonacci word w generated by the morphism ϕ

defined by 0 → 0m1n and 1 → 0, where m and n are fixed positive integers.
Let x ∈ �∗ (here� = {0,1}), and let P(x) denote the frequency of occurrence
of the word x in the word generated by ϕ. In other words,

P(x) = lim
n→∞

# of times x occurs in the first n letters of w
n − |x | + 1

.

Define P(a | y) (where y ∈ �∗, a ∈ �) to be the frequency of the subword y of
w occurring somewhere in w immediately followed by the letter a. Determine
for w:
(a) P(0), P(1), P(00), P(11), P(01), P(10);
(b) P(1 | 1), P(1 | 0), P(0 | 1), P(0 | 0);
(c) P(1 | 11), P(0 | 11).

19. Do the previous exercise, but for the Thue–Morse sequence t.
20. Consider the Barbier infinite word

B = 12345678910111213141516171819202122 · · ·
defined in Exercise 3.26.
(a) Show B is not morphic.
(b) Show that the orbit closure of B includes every sequence over �10.

21. Let A = {1,2}, and let h1 and h2 be two morphisms on A∗ defined by

h1 : 1 → 1

2 → 11,

h2 : 1 → 2

2 → 22.

Define the mapping h from A∗ into itself as follows: Forw = a1a2 · · · an , where
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ai ∈ A,

h(w) = hi1 (a1)hi2 (a2) · · · hin (an),

where ik ≡ k (mod 2). Now starting at the word w = 2 and iterating the map-
ping h, we obtain the sequence

w, h(w), h2(w), . . . .

Now the word h2(w) = 12 is a proper prefix of the word h3(w), and therefore

Kol = lim
n→∞ hn(w)

exists; it is referred to as the Kolakoski word.
(a) Show that in Kol all square subwords have lengths in {2, 4, 6, 18, 54}, and each

of these possibilities can occur.
(b) Show that the Kolakoski word is cubefree.
(c) Show that the Kolakoski word is not pure morphic.
(d) Does there exist a morphism ϕ such that Kol = ϕ(t), where t is the Thue–Morse

sequence?

22. Prove Furstenberg’s theorem: Let t be an infinite word over a finite alphabet
�. Then there exists a uniformly recurrent infinite word r such that Sub(r) ⊆
Sub(t).

23. Suppose x is a uniformly recurrent infinite word such that there is a constant
C such that successive occurrences of any subword are separated by distance
≤ C . Show that x is purely periodic.

24. Give an example of a uniformly recurrent word that is not k-automatic for any
k ≥ 2.

25. Let 0 < θ < 1 be an irrational real number. Show that the characteristic word
fθ is uniformly recurrent.

26. Let u be a binary sequence, and suppose there exists k such that pu(k) < 2k .
Show that there exists a real number α < 2 such that pu(n) = O(αn).

27. Show that for any uniformly recurrent word x over an alphabet of size k ≥ 2,
there exists a constant c such that px(n) < kn for all n ≥ c.

28. Recall the definition of C from Eq. (10.11). Define

C(α) =
{

a1/2 if a1 > 1,

(a2 + 1)/2 if a1 = 1.

Show that max0≤h≤m |Lh(m)| < 1
2 if m > C(α).

29. For a word w ∈ {0,1}∗, define T0(w) = ww and T1(w) = ww, where w is
the coding that sends 0 → 1, 1 → 0. Extend the domain of T as follows:
Tε(w) = w, and if x = ya, with a ∈ {0,1}, define Tx (w) = Ta(Ty(w)). For an
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infinite word z, define Tz(w) = lim Tx (w), where x runs through the prefixes
of z.
(a) Show that |Tx (w)| = |w| · 2|x |.
(b) Show that Tz(w) is ultimately periodic if and only if there exists a finite word y

with z = y 0ω.
(c) Let x = ar−1 · · · a1a0 for some integer r ≥ 0, and let Tx (0) = b0b1 · · · b2r−1. Let

0 ≤ n < 2r , and let the base-2 representation of n be cr−1 · · · c1c0, where c0 is the
least significant digit. Then bn ≡ ∑

0≤i<r ai ci (mod 2).
(d) The lexicographically greatest word of the form Tx(0) is the Thue–Morse word t,

corresponding to the case x = 111 · · · . The lexicographically least word of the
form Tx(1) is t, corresponding to the case x = 111 · · · .

(e) For all words w and infinite words x, the infinite word Tx(w) is recurrent.
(f) Tx(w) is uniformly recurrent if and only if the distance between consecutive oc-

currences of the symbol 1 in x is bounded.

30. Show that the orbit closure of any morphic word has measure 0.
31. (Hamm) Show that it is possible for the first occurrence of a particular subword

of a pure morphic word to be exponentially far out (in terms of the description
size of the morphism).

32. Give an example of an infinite word w over {0,1,2} with subword complexity
O(n), such that if the 2’s are deleted from w, the resulting word has subword
complexity 2n .

33. Suppose h : �∗ → �∗ is a morphism and a is a growing letter. Suppose k =
Card �. Show that hrk(a) contains at least r + 1 immortal letters for all integers
r ≥ 0.

34. Suppose h : �∗ → �∗ is a morphism and a ∈ � is a letter such that the set
Dh = {hi (a) : i ≥ 0} is finite.
(a) Show that if k = Card � and W = maxc∈� |h(c)|, then |hi (a)| ≤ W k−1 for all

i ≥ 0. Also show this bound is best possible.
(b) Show that Card Dh ≤ G(k) + k, where G is Landau’s function. Also show this

bound is essentially optimal.

35. Give an example of a morphic word u with subword complexity O(n) and a
morphism g such that g(u) has subword complexity �(n2).

36. Give an example of a nonprimitive morphism h that is prolongable on a letter
a, yet such that hω(a) is uniformly recurrent.

37. Suppose x is a recurrent infinite word that is ultimately periodic. Show that x
is purely periodic.

38. Suppose x is a recurrent (respectively, uniformly recurrent) infinite word. Let
h be a morphism. Show that h(x) is finite or recurrent (respectively, finite or
uniformly recurrent). Is the converse true?

39. Suppose we consider choosing the terms of an infinite sequence x over {0,1}
uniformly at random. What is the expected value of R′

x(n)?
40. Show that for any sequence of positive integers a1, a2, a3, . . . there exists an

infinite word u over the alphabet {0,1,2} and an erasing morphism g such
that R′

u(n) = O(n), but R′
g(u)(n) ≥ an for all n ≥ 1.
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41. Let θ be an irrational real number, and define a sequence x = a0a1a2 · · · as
follows:

an =
{

0 if {nθ} < 1
2 ,

1 if {nθ} > 1
2 .

Here {θ} means, as usual, the fractional part of x . Show that px(n) = 2n for all
n ≥ 1.

42. Consider the following generalization of the Toeplitz construction mentioned
in Example 5.1.6. Let� be a finite alphabet, and let , be a new symbol not in�.
For infinite words u ∈ (� ∪ {,})ω and x ∈ �(� ∪ {,})∗, define Fx (u) to be the
word that results from replacing the occurrences of , in u successively with the
elements of xω. Define T0(x) = ,ω, and for i ≥ 1 define Ti+1(x) = Fx (Ti (x)).
Clearly T (x) = limi→∞ Ti (x) exists. It is called the Toeplitz word generated
by x . Show that Toeplitz words are uniformly recurrent.

43. Let t be the Thue–Morse sequence andµ the Thue–Morse morphism. Let k ≥ 1
be an integer, and let a = k mod 2. Show that the subword w of length 2k + 2
that maximizes R′

t(w) is a µk(0)1.
44. Let Fi denote the i th Fibonacci number. Show that the shortest finite word

w = w(n) for which pw(i) = Fi+2 for 0 ≤ i ≤ n is of length Fn+2 + Fn , and
give an efficient algorithm to construct such words.

45. Let B(n) be the de Bruijn graph on 2n vertices.
(a) Show that for each i , 2n ≤ i ≤ 2n+1, there exists a closed walk of length i in B(n),

with no repeated edges and visiting every vertex at least once.
(b) Find a tight upper bound on

max
|w|=n

∑

0≤i≤n

pw(i),

the largest total number of subwords of a binary string of length n.

46. For each of the following sequences, determine if they are recurrent, uniformly
recurrent, or neither. Find an expression for R′(n) and, if the sequence is uni-
formly recurrent, an expression for R(n):
(a) the Rudin–Shapiro sequence;
(b) the regular paperfolding sequence;
(c) the infinite Fibonacci word;
(d) the Barbier infinite word.

47. Prove that there exists a constant C such that every paperfolding sequence f
(see Section 6.5) is uniformly recurrent with Rf(n) ≤ Cn.

48. Let w be a uniformly recurrent infinite word. Show that if Sub(w) is a context-
free language, then w is periodic.

49. Let p = 0110101000101 · · · be the characteristic sequence of the prime
numbers. Estimate pp(n) and show that p has entropy 0.

50. We say an infinite word x is mirror-invariant if whenever w is a subword of x,
then so is wR .
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(a) Show that if an infinite word is mirror-invariant, then it is recurrent.
(b) Show that the converse is not true.

51. The arithmetic complexity aw(n) of an infinite word w = a0a1a2 · · · is the car-
dinality of the set {ar ar+kar+2k · · · ar+(n−1)k : r ≥ 0, k ≥ 1}. In other words,
the function aw(n) counts the number of distinct length-n words obtained by
choosing from w the symbols at positions given by an arithmetic progression.
(a) Show that if t = 0110 · · · is the infinite Thue–Morse sequence, then at(n) = 2n

for n ≥ 0.
(b) Show that if f is the paperfolding sequence, then af(n) = 8n + 4 for n ≥ 14.

52. Let u be a word having exactly m subwords of length n. Suppose each of
these m subwords has the property that any of its occurrences in u is always
followed by the same letter. Further suppose that these m words are subwords
of a subword x of u of length m + n. Prove that u is ultimately periodic.

53. Suppose x is purely periodic of period k. Show that Rx(n) = n + k − 1 for
n ≥ k.

10.12 Open Problems

1. Determine the subword complexity of Kol, the Kolakoski word.
2. Is it true that Kol contains exactly two palindromic subwords of each length?
3. Is there a k-context-free sequence with bounded gaps that is not k-automatic?

(For the definition of k-context-free, see Open Problem 6.3.)
4. Improve the upper bound in Theorem 10.4.7.
5. Give necessary and sufficient conditions for a morphism h, prolongable on a, to

be such that hω(a) is uniformly recurrent.
6. Compute good upper and lower bounds for the subword complexity of the char-

acteristic word of the squarefree numbers 111011100110 · · · .
7. Consider the infinite word u = (tn2 )n≥0, where t = t0t1t2 · · · is the Thue–Morse

sequence. Is it true that pu(n) = 2n?

10.13 Notes on Chapter 10

10.1 In this chapter we have focused on the subword complexity of infinite
words. However, it is also possible to study the subword complexity of
languages; Rozenberg [1981] is a brief survey of this area. For other papers
in this vein, see de Luca and Varricchio [1989b] and Baron and Urbanek
[1989].

Subword complexity for infinite words over a finite alphabet was appar-
ently first studied by Morse and Hedlund [1938, p. 825 et seq.].

Although subword complexity has been actively studied, the terminology
and notation have not been standardized. For example, Morse and Hedlund
[1938] used the terms “symbolic trajectory” and “ray” for what we call an in-
finite word, and “permutation number” for what we call subword complexity.
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Many papers in the literature refer to subword complexity simply as “com-
plexity”.

Theorem 10.1.6 tells only a small part of the story. For other results on
the distribution of subwords of a “random” infinite word, see, for example,
Bender and Kochman [1993].

For generalizations of subword complexity, see Avgustinovich, Fon-Der-
Flaass, and Frid [2001]; Kamae [2001]; Kamae and Zamboni [2001].

10.2 Theorem 10.2.4 essentially appears, in a more general form, in Ehrenfeucht
and Rozenberg [1982a].

For Theorem 10.2.6, see Morse and Hedlund [1938], Bush [1955], and
Coven and Hedlund [1973]. For a generalization to subword complexity of
languages, see Ehrenfeucht and Rozenberg [1982a].

After the pioneering work of Morse and Hedlund, the subject of subword
complexity lay dormant until the independent work of Cobham [1972] (who
proved Theorem 10.3.1), Coven and Hedlund [1973], and Ehrenfeucht and
Rozenberg [1973].

Allouche [1994a] and Ferenczi and Kása [1999] are surveys on subword
complexity, the former in French. Berthé [2000b] surveys sequences of low
complexity. For a survey explaining connections to dynamical systems, see
Ferenczi [1999].

Tijdeman [1999] proved an interesting general lower bound on the com-
plexity of infinite words.

For other papers on subword complexity, see Tapsoba [1987, 1994];
Bleuzen-Guernalec and Blanc [1989]; Mouline [1990]; Allouche and Shallit
[1993]; Ferenczi [1995, 1996]; Arnoux and Mauduit [1996]; Mossé [1996a];
Yasutomi [1996]; Cassaigne [1996, 1997a]; Frid [1997a, 1998]; Frid and
Avgustinovich [1999]; Fraenkel, Seeman, and Simpson [2001]; Aberkane
[2001]; Heinis [2002].

Theorem 10.2.3 appears to be new. For the second difference of the sub-
word complexity function, see Cassaigne [1997a].

10.3 The exact subword complexity of the Thue–Morse sequence t was com-
puted independently by Brlek [1989], de Luca and Varricchio [1989a], and
Avgustinovich [1994]. For a generalization, see Tromp and Shallit [1995]
and Exercise 12. Another generalization was given by Frid [1997b]. The
“bispecial” subwords of t (those subwords x such that 0x , 1x , x0, and x1
are also all subwords of t) were discussed by de Luca and Mione [1994].

Theorem 10.3.1 is due to Cobham [1972]. Bleuzen-Guernalec [1985]
generalized this result to the case of fixed points of uniform transducers.

10.4 The function G(n) was first studied by Landau [1903], who proved The-
orem 10.4.4. Nicolas [1969a] gave an algorithm for computing G(n).
Nathanson [1972] gave an elementary proof that G(n) is not bounded by
any power of n.

Theorem 10.4.8, the estimate on G(n), is due to Massias [1984].
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Miller [1987] gives a nice survey of work on G(n).
Corollary 10.4.9 is due to Ehrenfeucht, Lee, and Rozenberg [1975]. Actu-

ally, they proved a more general result on the subword complexity of a D0L
language. The proof can also be found in Rozenberg and Salomaa [1980,
Thm. IV.4.4, p. 210]. The explicit version with constants (Theorem 10.4.7)
is new.

Ehrenfeucht and Rozenberg [1981a, 1981c] proved that if a morphic word
x is squarefree, then px(n) = O(n log n). Sajo [1984] discussed the subword
complexity of context-free languages.

Cassaigne and Karhumäki [1995a, 1995b], and independently Koskas
[1998], discussed the subword complexity of Toeplitz words. Toeplitz se-
quences were introduced by Jacobs and Keane [1969] and were based on a
construction of Toeplitz [1928].

Other papers on subword complexity of D0L and related languages include
Ehrenfeucht, Lee, and Rozenberg [1975, 1976]; Ehrenfeucht and Rozenberg
[1981b, 1981c, 1983a, 1983b, 1983c].

Theorem 10.4.12 (subword complexity for primitive morphic words) can
be essentially found in Michel [1975, 1976a]. Our proof is based on the paper
of Pansiot [1984a]. Also see Queffélec [1987b, Prop. V.19, pp. 105–106].

Primitive morphic words were also studied by Queffélec [1987b];
Ferenczi, Mauduit, and Nogueira [1996]; Holton and Zamboni [1999].

Pansiot [1984a, 1984b] characterized the subword complexity functions
for morphic words. Also see Pansiot [1985].

10.5 The subword complexity of Sturmian words was first considered by Morse
and Hedlund [1940], and later, independently, by Bloom [1971]. Coven and
Hedlund [1973] and Coven [1975] proved many combinatorial properties.
Also see Stolarsky [1976], Fraenkel, Mushkin, and Tassa [1978], and Porta
and Stolarsky [1990].

Our treatment of balanced sequences, in particular the equivalence given
in Theorem 10.5.8, was inspired by Morse and Hedlund [1940], Coven and
Hedlund [1973], Parvaix [1998], and Berstel and Séébold [2002]. This last
paper is an excellent survey of Sturmian words.

For generalizations of the concept of balance, see, for example, Hubert
[2000]; Berthé and Tijdeman [2002]; and Fagnot and Vuillon [2002].

Arnoux and Rauzy [1991] constructed infinite words with subword com-
plexity 2n + 1. For more on the Arnoux–Rauzy sequences, see Risley and
Zamboni [2000]; Cassaigne, Ferenczi, and Zamboni [2000]; Wozny and
Zamboni [2001]; Mignosi and Zamboni [2002]. Rote [1994] constructed
infinite words with subword complexity 2n. Both constructions have in-
teresting similarities to Sturmian words. Arnoux, Mauduit, Shiokawa, and
Tamura [1994a, 1994b] constructed sequences with subword complexity
n2 + n + 1; these have an interesting geometric interpretation in terms of



10.13 Notes on Chapter 10 343

billiards in the cube. They conjectured a formula for billiards in higher di-
mensions, which was later proved by Baryshnikov [1995]. For other papers
on billiards and subword complexity, see Hubert [1995a, 1995b]. For two-
dimensional generalization of Sturmian words, see Vuillon [1998]; Berthé
and Vuillon [2001].

As we have seen, Sturmian words can be generated through rotations on
the unit circle. For more on rotations, see Keane [1970]; Alessandri [1993];
Blanchard and Kurka [1998]; Didier [1998a, 1998b]; Arnoux, Ferenczi,
and Hubert [1999]; Chekhova [2000]; Berthé and Vuillon [2000b]. Al-
ternatively, Sturmian words can be generated through interval exchange
transformations. Interval exchange was introduced by Katok and Stepin
[1967] and later studied by Keane [1975], Rauzy [1979], and Veech [1984a,
1984b, 1984c]. For discussions of interval exchange and its relation to sym-
bolic sequences, see Arnoux and Rauzy [1991]; Santini-Bouchard [1997];
Didier [1997]; Lopez and Narbel [2001]; Ferenczi, Holton, and Zamboni
[2001].

Instead of complexity n + 1, one can study infinite words of complexity
n + c for a fixed constant c. It is known that pu(n) = n + c for all n ≥ n0 if
and only if u = wh(v), where w is a finite word, v is a Sturmian sequence
on the alphabet {0,1}, and h : {0,1}∗ → �∗ is a morphism with h(01) �=
h(10). This result is due to Paul [1975] in the case of uniformly recurrent
words, and Coven [1975] for the general case. Also see Cassaigne [1998]
and Didier [1999].

10.6 Theorem 10.6.1 is due to Mignosi [1989]. Another proof was given by Berstel
[1999]. For more information about repetitions in Sturmian sequences, see
Franěk, Karaman, and Smyth [2000]; Vandeth [2000]; Justin and Pirillo
[2001]; Damanik and Lenz [2002].

10.7 The existence of de Bruijn sequences was apparently first proved by Flye
Sainte-Marie [1894], and later rediscovered by M. Martin [1934], de Bruijn
[1946], and Good [1946]. The technical report of de Bruijn [1975] gives an
interesting history of this problem.

There is a vast literature on de Bruijn sequences; see, for example,
Fredricksen [1982].

The graphs we have called word graphs are also called “factor graphs” or
“Rauzy graphs” in the literature, the latter usage arising from Rauzy [1983].
For more on word graphs, see, for example, Frid [1999a].

10.8 The important paper of Morse and Hedlund [1938] introduced many concepts
dealing with recurrence.

For an advanced treatment of recurrence in number theory, see Furstenberg
[1981].

Theorem 10.9.5, the uniform recurrence of primitive morphic words, is
due to Gottschalk [1963].
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Rauzy [1983] is an influential survey on subword complexity and recur-
rence.

10.9 Theorem 10.9.2 is due to Morse and Hedlund [1938, §7].
Theorem 10.9.4 is due to Morse and Hedlund [1938, Thm. 7.2]. Note:

they used the term “recurrent” for what we call uniformly recurrent. Other
terms for uniformly recurrent in the literature include “almost periodic”,
“minimal”, and (infrequently) “repetitive” and “primitive”.

For more on uniform recurrence in number theory, see, for example,
Furstenberg [1981].

For the recurrence function of Sturmian sequences, see Cassaigne [1999a].
10.10 For more on the appearance function, see Section 15.3 and Allouche and

Bousquet-Mélou [1995]. Frid [1999b] computed the appearance function of
a large class of infinite words.
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Cobham’s Theorem

As we have seen (Theorem 5.4.2), every ultimately periodic sequence is k-automatic
for all integers k ≥ 2. In this chapter we prove a beautiful and deep theorem due
to Cobham, which states that if a sequence s = (s(n))n≥0 is both k-automatic and
l-automatic and k and l are multiplicatively independent, then s is ultimately peri-
odic. (Recall that Theorem 2.5.7 discusses when two integers are multiplicatively
independent.)

11.1 Syndetic and Right Dense Sets

In this section, we prove some useful preliminary results.
We say that a set X ⊆ �∗ is right dense if for any word u ∈ �∗ there exists a

v ∈ �∗ such that uv ∈ X (that is, any word appears as a prefix of some word in X ).

Lemma 11.1.1 Let k, l ≥ 2 be multiplicatively independent integers, and let X
be an infinite k-automatic set of integers. Then 0∗(X )l = 0∗{(n)l : n ∈ X} is right
dense.

Proof. Since X is infinite and k-automatic, by the pumping lemma there exist strings
t, u, v with u nonempty such that tu∗v ⊆ (X )k . Let x ∈ {0, 1, . . . , l − 1}∗. Our goal
is to construct y such that xy ∈ 0∗(X )l . Then define

g = |u|,
h = |v|,
a = kg,

b = l,

d = kh

(

[t]k + [u]k

kg − 1

)

,

k1 = [x]l + 1
4

d
,

k2 = [x]l + 1
2

d
.

345
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By Lemma 2.5.9 there exist arbitrarily large integers p, q > 0 such that k1 <

a p/bq < k2. Hence there exist arbitrarily large integers p, q > 0 with

[x]l + 1

4
<

kgp+h

lq

(

[t]k + [u]k

kg − 1

)

< [x]l + 1

2
. (11.1)

But for q sufficiently large we have

−1

4
<

[v]k − kh [u]k
kg−1

lq
<

1

2
. (11.2)

Adding Eqs. (11.1) and (11.2) we get, after multiplying by lq ,

[x]l l
q < kgp+h[t]k + [u]k · kgp − 1

kg − 1
· kh + [v]k < ([x]l + 1) lq,

or, in other words,

[x]l l
q < [tu pv]k < ([x]l + 1)lq .

Thus there exists an integer j , 0 < j < lq such that

[x]l l
q + j = [tu pv]k .

Hence there exists a word y such that [xy]l = [tu pv]k ∈ X , and hence xy ∈ 0∗

(X )l . �

We now discuss another property of sets of integers. A set X ⊆ N is called
d-syndetic if X ∩ [n, n + d) �= ∅ for all sufficiently large integers n ≥ 0. If there
exists a d such that X is d-syndetic, then X is said to be syndetic.

Lemma 11.1.2 If X is a k-automatic set and 0∗(X )k is right dense, then X is
syndetic.

Proof. Let X be a k-automatic set such that 0∗(X )k is right dense. Then, by definition
of what it means to be right dense, for all integers n ≥ 0 there exist integers p and
t , 0 ≤ t < k p, such that nk p + t ∈ X . Since X is k-automatic, we can choose p so
it is bounded above by the number s of states in any DFA accepting 0∗(X )k . Thus
X is 2ks-syndetic. �

Corollary 11.1.3 Let k, l ≥ 2 be multiplicatively independent integers. If an infinite
set of integers is both k- and l-automatic, then it is syndetic.

Proof. Combine Lemma 11.1.1 and Lemma 11.1.2. �

Now we prove a sort of converse to Lemma 11.1.2.
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Lemma 11.1.4 If X is a syndetic set, then 0∗(X )k is right dense.

Proof. Assume that X is d-syndetic. Then it is k p-syndetic for any p with k p ≥ d.
Choose an integer q large enough such that for all n ≥ 0 the interval [nkq, (n + 1)kq)
contains an element of X . Hence there exists a t such that nkq + t ∈ X , and so
0∗(X )k is right dense. �

Next we prove a technical result on syndetic sets.

Lemma 11.1.5 Let X be a d-syndetic set of integers. Then for all positive integers
K , L , h and each real a > 0 such that K < L < K + a, there exists an x ∈ X and
an integer y such that yL ≤ x K + h ≤ yL + ad.

Proof. Let r be the smallest integer such that r K + h < r L . Then for all integers
i ≥ 1, we have (r − i)L ≤ (r − i)K + h by the minimality of r , and also

(r − i)K + h = r K + h − i K < r L − i K < r L − i L + ia = (r − i)L + ia.

Thus, for 1 ≤ i ≤ d , we have

(r − i)L ≤ (r − i)K + h < (r − i)L + da. (11.3)

Let j be an integer such that j L + r − d ≥ x for some x ∈ X , and j K + r − d ≥ 0.
Add j K L to Eq. (11.3) to obtain

( j K + r − i)L ≤ ( j L + r − i)K + h < ( j K + r − i)L + da

for all i , 1 ≤ i ≤ d . Since X is d-syndetic, we may choose j sufficiently large that
there is an x ∈ X of the form x = j L + r − i for some i with 1 ≤ i ≤ d, and the
proof is complete. �

11.2 Proof of Cobham’s Theorem

We are now ready to prove the theorem

Theorem 11.2.1 Suppose k, l ≥ 2 are multiplicatively independent integers. If a
set of integers X is both k- and l-automatic, then its characteristic word is ultimately
periodic.

Proof. If X is finite, the symbols of its characteristic word are all 0 from some point
on.

Hence assume X is infinite and both k- and l-automatic. Then by Theorem 5.6.3(f)
we know that the set

Et j = {y ∈ Z : yk j + t ∈ X}
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is l-automatic for all t, j ≥ 0. Now, choosing u ∈ {0, 1, . . . , k − 1}∗ such that |u| =
j and [u]k = t , we have

(Et j )k = (X )k/u

so [(X )k/u]k is l-automatic.
Now defineρk to be the equivalence relation on N given by the minimal automaton

accepting (X )k . In other words, x ∼ y (mod ρk) if and only if for all w ∈ �∗

we have (x)kw ∈ (X )k ⇔ (y)kw ∈ (X )k . It follows from Lemma 4.1.10 that the
equivalence classes of ρk can be written as a Boolean combination of the sets
(X )k/u; hence each equivalence class E of ρk is l-automatic. Now X is the union
of some of the equivalence classes of ρk .

Now we can construct a single automaton with input alphabet�l = {0, 1, . . . , l −
1} that sends two inputs to different states if they are the base-l representations
of elements of different equivalence classes of ρk . This automaton has a natural
equivalence relation θ ′ on �∗

l associated with it:

w ∼ x (mod θ ′) if and only if δ(q0, w) = δ(q0, x),

and θ ′ is right-invariant. Hence there is an equivalence relation θ that is a refinement
of ρk and which is l-stable, i.e., which satisfies

x ∼ y (mod θ ) ⇒ xl j + t ∼ yl j + t (mod θ )

for j ≥ 0, 0 ≤ y < l j . Let c denote the number of equivalence classes of θ . Let v
be the infinite word

v = v0v1v2 · · · ,
where vn is the equivalence class of n (mod ρk). Let u be the infinite word

u = u0u1u2 · · · ,
where un is the equivalence class of n (mod θ ).

To show that the characteristic word of X is ultimately periodic, it suffices to
show that v is ultimately periodic, because X is the union of some of the equivalence
classes of ρk . We will prove this by showing that there exists an integer m such that
the number of recurrent subwords of length m of v is bounded by m. The result will
then follow from Theorem 10.8.5.

Now for all recurrent subwords w = w1w2 of length 2 of v, the set of indices n
such that vn = w1 and vn+1 = w2 is both k- and l-automatic, and therefore syndetic.
Hence there exists an integer d > 0 such that any recurrent subword of length 2 of
v has a second occurrence at distance at most d. Now choose a real number ε such
that 0 < ε < 1 and cε/(1 − ε) < 1

2 . By Lemma 2.5.9 we can find integers p, q ≥ 0
such that

1 <
lq

k p
< 1 + ε

d
.

Let K = k p, L = lq , and m = �K (1 − ε)�.
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. . .  . ..

Figure 11.1: Illustration of the Lemma.

We now claim that for any recurrent subword w (of length m) of v, there exists
an integer y such that

vyLvyL+1 · · · v(y+1)L−1 = v[yL ..(y + 1)L − 1] = swt

and |s| ≤ εK .
To see this, observe that w is a recurrent subword of length at most K ,

and so appears infinitely often at the same position in subwords of the form
v[x K ..(x + 2)K − 1], x ≥ 0. Since ρk is k-stable, v[x K ..(x + 2)K − 1] is com-
pletely determined by v[x ..x + 1]. By definition of d, every recurrent subword of
length 2 of v has a second occurrence at distance at most d, so there exists a strictly
increasing sequence of integers (xn)n≥1 such that xn+1 − xn ≤ d and

v[xn K ..(xn + 2)K − 1] = w′ww′′.

Let h = |w′|. Now apply Lemma 11.1.5 with a = K ε/d and X = {x1, x2, . . . }.
The lemma says there exist xn, yn such that yn L ≤ xn K + h ≤ yn L + K ε. Thus
we have a situation as in Figure 11.1. (Note that xn K + h ≤ yn L + K ε, so

xn K + h + K (1 − ε) ≤ yn L + K < (yn + 1)L ,

xn K + h + m < (yn + 1)L ,

so the picture is accurate.) Hence there exists a yn such that v[yn L ..(yn + 1)L −
1] = swt with |s| ≤ da = K ε.

This proves the claim. Now let us count the number of subwords of v of the
form v[yL ..(y + 1)L − 1]. We claim this number is bounded by the number of
subwords of u of the form u[yL ..(y + 1)L − 1]. But this number is bounded by c,
since this subword is completely determined by the equivalence class of y, since θ
is an l-stable refinement of ρk . Thus the number of recurrent subwords of length m
of v is at most equal to

(K ε)c ≤ 1

2
K (1 − ε) ≤ 1

2
(m + 1) ≤ m,

which by Theorem 10.8.5 shows v is ultimately periodic. �

As a corollary we get
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Theorem 11.2.2 Let k, l ≥ 2 be multiplicatively independent integers, and suppose
the sequence s = (sn)n≥0 is both k- and l-automatic. Then u is ultimately periodic.

Proof. Suppose s takes its values in a finite set�. Without loss of generality we may
assume � = {0, 1, . . . , e − 1} for some integer e ≥ 1. For each a ∈ �, consider
the set Sa = {n ∈ Z : sn = a}. Since s is k- and l-automatic, each set Sa is both k-
and l-automatic. From Theorem 11.2.1, it follows that the characteristic word wa

of Sa is ultimately periodic. From this, it follows that s = ∑
a∈� awa is ultimately

periodic (see Exercise 1.8). �

11.3 Exercises

1. Give a purely “algebraic” proof that a formal power series with coefficients tak-
ing only finitely many distinct integer values is either rational or transcendental
over Q(X ).

2. Let j, k be integers ≥ 2. Prove that the characteristic sequence of the powers of
k is j-automatic if and only if j and k are multiplicatively dependent.

11.4 Notes on Chapter 11

11.1 The term “syndetic” comes from Gottschalk and Hedlund [1955].
11.2 Cobham’s original paper, in which Theorem 11.2.1 is proved, is Cobham

[1969]. The proof is quite difficult. Earlier, Büchi [1960] found connections
with mathematical logic, but McNaughton [1963] pointed out several errors
in his work.

Our proof is based on one by Hansel; see Hansel [1982] and particularly
Perrin [1990, pp. 39–43].

There are some very interesting connections with logic. For these, see
Semenov [1977]; Hodgson [1983]; Michaux and Point [1986]; Villemaire
[1992a, 1992b, 1992c]; Michaux and Villemaire [1993, 1996a, 1996b]; Bès
[1997]; Maes [1999]. The survey by Bruyère, Hansel, Michaux, and Ville-
maire [1994] is particularly useful.

Randé [1993] extended Cobham’s theorem to the case of certain Mahler
equations. Fabre [1994] found an extension to certain morphic sequences.
His results were improved by Durand [1998a]. For other generalizations, see
Point and Bruyère [1997]; Fagnot [1997]; Hansel [1998]; Durand [1998c].
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Formal Power Series

Recall the definitions of formal power series and formal Laurent series from Sec-
tion 2.10: The ring K [[X ]] of formal power series with coefficients in a field K is
defined by

K [[X ]] :=
{
∑

n≥0

an Xn : an ∈ K

}

,

where
(
∑

n≥0

an Xn

)

+
(
∑

n≥0

bn Xn

)

:= ∑
n≥0(an + bn)Xn,

(
∑

n≥0

an Xn

)

×
(
∑

n≥0

bn Xn

)

:=
∑

n≥0




∑

i+ j=n

ai b j



 Xn.

The ring K [[X ]] is a subring of the field K ((X )) of formal Laurent series defined
by

K ((X )) =
{
∑

n≥−n0

an Xn : n0 ∈ Z, an ∈ K

}

,

where the addition and the multiplication are defined in a similar way.
Since this field contains the field of rational functions K (X ), we can define alge-

braicity over K (X ). We recall that a formal Laurent series F(X ) = ∑
n≥−n0

an Xn

is said to be algebraic over the field K (X ), or just algebraic, if there exist an integer
d ≥ 1 and polynomials A0(X ), A1(X ), . . . , Ad(X ), with coefficients in K and not
all zero, such that

A0 + A1 F + A2 F2 + · · · + Ad Fd = 0.

This chapter is devoted to studying algebraicity and transcendence of formal
power series when the ground field K is finite, and their relations with finite

351
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automata. The basic result is a theorem of Christol (Theorem 12.2.5), which gives
an equivalence between an algebraic property of a formal power series on a finite
field and a combinatorial property of the sequence of its coefficients. We begin with
some examples.

12.1 Examples

Example 12.1.1 Let f be the formal power series on G F(2) defined by

f (X ) = X + X2 + X4 + · · · =
∑

i≥0

X2i
.

This series is algebraic over G F(2)(X ), since

f (X2) = f (X ) − X,

which implies, over G F(2), that

f (X )2 + f (X ) + X = 0.

Example 12.1.2 Let T (X ) = ∑
n≥0 tn Xn where (tn)n≥0 is the Thue–Morse se-

quence. Then

T (X ) = X + X2 + X4 + X7 + X8 + X11 + · · · .

Now

T (X ) =
∑

n≥0

tn Xn =
∑

n≥0

t2n X2n +
∑

n≥0

t2n+1 X2n+1

=
∑

n≥0

tn X2n + X
∑

n≥0

(tn + 1)X2n

= T (X2) + XT (X2) + X
1

1 − X2
.

Hence we have, over G F(2),

(1 + X )3T (X )2 + (1 + X )2T (X ) + X = 0.

Thus T (X ) is algebraic over G F(2)(X ).

Example 12.1.3 Generalizing the previous example, let p be a prime number, let
tp(n) = sp(n) mod p, and let Tp(X ) = ∑

n≥0 tp(n)Xn .
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Then we have

Tp(X ) =
∑

0≤a<p

∑

n≥0

tp(pn + a)X pn+a =
∑

0≤a<p

∑

n≥0

(tp(n) + a)X pn+a

=



∑

0≤a<p

XaTp(X )p



+



∑

0≤a<p

aXa

(
∑

n≥0

Xn

)p




= Tp(X )p




∑

0≤a<p

Xa



+ 1

(1 − X )p




∑

0≤a<p

aXa





= Tp(X )p 1 − X p

1 − X
+ X

(1 − X )2
.

It follows that

(1 − X )p+1Tp(X )p − (1 − X )2Tp(X ) + X = 0,

which proves that Tp is algebraic over G F(p)(X ). Exercise 35 asks you to prove
that (1 − X )p+1Y p − (1 − X )2Y + X is irreducible.

Example 12.1.4 Let (sn)n≥0 denote the Rudin–Shapiro sequence on {0, 1}, i.e.,
sn = e2;11(n) mod 2. Let S(X ) = ∑

n≥0 sn Xn and T (X ) = ∑
n≥0 s2n+1 Xn . Split-

ting these sums into even and odd indices and recalling that the equalities are taken
modulo 2, we have

S(X ) =
∑

n≥0

sn X2n + X
∑

n≥0

s2n+1 X2n = S(X )2 + XT (X )2, (12.1)

T (X ) =
∑

n≥0

s4n+1 X2n +
∑

n≥0

s4n+3 X2n+1 =
∑

n≥0

sn X2n + X
∑

n≥0

(s2n+1 + 1)X2n

= S(X )2 + XT (X )2 + X

(1 + X )2
.

Adding together the two relations for S and T , we get S(X ) + T (X ) = X/(1 + X )2.
Squaring, we get S(X )2 + T (X )2 = X2/(1 + X )4. Substituting back in (12.1), we
get S(X ) = S(X )2 + X (S(X )2 + X2/(1 + X )4). Therefore (1 + X )5S(X )2 + (1 +
X )4S(X ) + X3 = 0.

Example 12.1.5 Here is an example over G F(3). Let (ci )i≥0 be the Cantor se-
quence, i.e., ci = 1 if the base-3 expansion of i contains only 0’s and 2’s, and
0 otherwise. Define the Cantor formal power series C(X ) = ∑

i≥0 ci Xi . Then
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we have

C(X ) =
∑

i≥0

ci X3i +
∑

i≥0

ci X3i+2 = C(X3) + X2C(X3),

and so we get (1 + X2)C(X )3 − C(X ) = 0. Since C(X ) �= 0, this gives (1 + X2)
C(X )2 − 1 = 0, and so C(X ) =

√
1/(1 + X2).

These examples are not isolated and a general result explains them, as shown in
the next section.

12.2 Christol’s Theorem

Before stating the main theorem of this chapter, we need to define operators on the
formal power series and prove two lemmas.

Definition 12.2.1 We define, for 0 ≤ r < q, a linear transformation

"r : G F(q)[[X ]] → G F(q)[[X ]]

as follows:

"r

(
∑

i≥0

ai Xi

)

=
∑

i≥0

aqi+r X i .

Lemma 12.2.2 We have the following properties

(a) Let A be a formal power series in G F(q)[[X ]]. Then

A(X ) =
∑

i≥0

ai Xi =
∑

0≤r<q

Xr"r (A(X ))q . (12.2)

(b) Let G and H be two formal power series in G F(q)[[X ]]. Then

"r (Gq H ) = G"r (H ). (12.3)

Proof. (a): We have

A(X ) =
∑

i≥0

ai Xi =
∑

0≤r<q

∑

i≥0

aqi+r Xqi+r =
∑

0≤r<q

Xr
∑

i≥0

aqi+r X iq .

Hence

A(X ) =
∑

0≤r<q

Xr

(
∑

i≥0

aqi+r X i

)q

=
∑

0≤r<q

Xr"r (A(X ))q .
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(b): We have

"r (Gq H ) = "r





(
∑

k≥0

gk Xk

)q



∑

j≥0

h j X j









= "r





(
∑

k≥0

gk Xqk

)


∑

j≥0

h j X j







 .

Hence

"r (Gq H ) = "r







∑

i≥0

Xi
∑

k, j≥0
qk+ j=i

gkh j





 =

∑

i≥0

Xi







∑

k, j≥0
qk+ j=qi+r

gkh j







=
∑

i≥0

Xi

(
∑

0≤k≤i

gkhq(i−k)+r

)

=
∑

k≥0

gk Xk

(
∑

i≥k

hq(i−k)+r X i−k

)

=
∑

k≥0

gk Xk

(
∑

i≥0

hqi+r X i

)

=
(
∑

k≥0

gk Xk

)(
∑

i≥0

hqi+r X i

)

= G ·"r (H ). �

Lemma 12.2.3 Let A(X ) = ∑
i≥0 ai Xi be a formal power series with coefficients

in G F(q), with q = pn. Then A is algebraic over G F(q)(X ) if and only if there
exist polynomials B1(X ), . . . , Bt (X ), not all equal to zero, such that

B0 A + B1 Aq + B2 Aq2 + · · · + Bt Aqt = 0.

Furthermore we can suppose that B0 �= 0.

Proof. The first part of this lemma is known as Ore’s theorem. If A is algebraic,
the series A, Aq , Aq2

, . . . , cannot be all linearly independent. Hence there exists a
nontrivial linear relation

B0 A + B1 Aq + B2 Aq2 + · · · + Bt Aqt = 0.

On the other hand, if such a nontrivial relation holds, the series A is clearly algebraic.
Now let us prove that we can find such a relation with B0 �= 0. Assume that

B0 A + B1 Aq + B2 Aq2 + · · · + Bt Aqt = 0

with t minimal, and let j be the smallest non-negative integer such that B j (X ) �= 0.
We show that j = 0. Since

B j =
∑

0≤r<q

Xr ("r (B j ))
q
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by (12.2), it follows that there exists an r with "r (B j ) �= 0. Now, since
∑

j≤i≤t Bi A(X )qi = 0, we have
∑

j≤i≤t

"r (Bi Aqi
) = 0,

and, using (12.3), we see that, if j �= 0,
∑

j≤i≤t

"r (Bi )Aqi−1 = 0,

which gives a new relation with the coefficient of Aq j−1 �= 0, a contradiction. Hence
j = 0. We thus have the relation

∑

0≤i≤t

Bi Aqi = 0,

with B0 �= 0. �

Lemma 12.2.4 Suppose a = (ai )i≥0 is a sequence over G F(q). Then a is q-
automatic if and only if there exists a finite collection of formal power series F
such that (a) A ∈ F , where A(X ) := ∑

i≥0 ai Xi ; and (b) for all g ∈ F , 0 ≤ r < q,
we have "r (g) ∈ F .

Proof. Let Kq(a) = {a(1), a(2), . . . , a(r )} be the q-kernel of the sequence a, with
a = a(1). Write a(i) = (a(i)

n )n≥0.
=⇒: It is easy to see that we may take

F =
{
∑

n≥0

a(i)
n Xn : 1 ≤ i ≤ r

}

.

⇐=: It is easy to see that
∑

n≥0 a(i)
n Xn ∈ F . It follows that |Kq(a)| ≤ |F |, so the

q-kernel is finite. �

We are now ready for one of the most important theorems of this book.

Theorem 12.2.5 (Christol) Let � be a (nonempty) finite set, and let a = (ai )i≥0

be a sequence over �. Let p be a prime number. Then a is p-automatic if and only
if there exists an integer n ≥ 1 and an injective map β : � → G F(pn) such that
the formal power series

∑
i≥0 β(ai )Xi is algebraic over G F(pn)(X ).

Proof. =⇒: Choose an integer n sufficiently large that |�| ≤ pn , and an injection
β : � → G F(pn). We may therefore assume, without loss of generality, that � ⊆
G F(pn). Let us then show that

∑
i≥0 ai Xi is algebraic over G F(pn)(X ).

Since (ai )i≥0 is p-automatic, we know from Theorem 6.6.4 that it is q-automatic,
where q = pn . By Theorem 6.6.2 we know that the q-kernel Kq(a) is finite, say



12.2 Christol’s Theorem 357

Kq(a) = {a(1), a(2), . . . , a(d)}, with a(1) = a. Write a(i) = (a(i)
n )n≥0. Define

A j (X ) =
∑

n≥0

a( j)
n Xn for 1 ≤ j ≤ d.

Then, for 1 ≤ j ≤ d,

A j (X ) =
∑

0≤r≤q−1

∑

m≥0

a( j)
qm+r Xqm+r

=
∑

0≤r≤q−1

Xr
∑

m≥0

a( j)
qm+r Xqm .

But the sequence (a( j)
qm+r )m≥0 is one of the a(i)’s, which shows that A j (X ) is a

G F(q)[X ]-linear combination of the power series Ai (Xq). In other words A j (X )
belongs to the G F(q)(X )-vector space generated by the series Ai (Xq):

∀ j ∈ [1, d], A j (X ) ∈ 〈A1(Xq), A2(Xq), . . . , Ad(Xq)〉.
But this implies that

∀ j ∈ [1, d], A j (Xq) ∈ 〈A1(Xq2
), A2(Xq2

), . . . , Ad(Xq2
)〉,

and also, by transitivity, that

∀ j ∈ [1, d], A j (X ) ∈ 〈A1(Xq2
), A2(Xq2

), . . . , Ad(Xq2
)〉.

Hence

∀ j ∈ [1, d], A j (X ), A j (Xq) ∈ 〈A1(Xq2
), A2(Xq2

), . . . , Ad(Xq2
)〉.

This implies that

∀ j ∈ [1, d], A j (Xq), A j (Xq2
) ∈ 〈A1(Xq3

), A2(Xq3
), . . . , Ad(Xq3

)〉.
Hence

∀ j ∈ [1, d], A j (X ), A j (Xq), A j (Xq2
) ∈ 〈A1(Xq3

), A2(Xq3
), . . . , Ad(Xq3

)〉.
Iterating the reasoning, we finally have

∀ j ∈ [1, d], ∀k ∈ [0, d], A j (Xqk
) ∈ 〈A1(Xqd+1

), A2(Xqd+1
), . . . , Ad(Xqd+1

)〉.
But the dimension of 〈A1(Xqd+1

), A2(Xqd+1
), . . . , Ad(Xqd+1

)〉 as a vector space over
G F(q)(X ) is at most d, the number of generators, so for any j ∈ [1, d], the formal
power series

A j (X ), A j (Xq), . . . , A j (Xqd
)

are linearly related over G F(pn)(X ). In particular for j = 1, this gives that A1(X ) =
∑

i≥0 a(1)
i X i is algebraic over G F(pn)(X ).
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⇐=: Suppose that A(X ) = ∑
i≥0 ai Xi is algebraic over G F(q)(X ). Then there

exist polynomials B0(X ), . . . , Bt (X ) such that
∑

0≤i≤t

Bi (X )A(X )qi = 0,

and B0 �= 0 (Lemma 12.2.3). Put G = A(X )/B0(X ); then

G =
∑

1≤i≤t

Ci G
qi
, where Ci = −Bi Bqi−2

0 .

Now let

N = max(deg B0,max
i

deg Ci ),

and let H be defined as follows:

H =
{

H ∈ G F(q)[[X ]] : H =
∑

0≤i≤t

Di G
qi

with

Di ∈ G F(q)[X ] and deg Di ≤ N

}

.

Now H is a finite set and A = B0G belongs to H. We now show that H is mapped
into itself by "r . Let H ∈ H. Then

"r (H ) = "r

(

D0G +
∑

1≤i≤t

Di G
qi

)

= "r

(
∑

1≤i≤t

(D0Ci + Di )G
qi

)

=
∑

1≤i≤t

"r (D0Ci + Di )G
qi−1

.

Since deg D0, deg Di , deg Ci ≤ N , it follows that deg(D0Ci + Di ) ≤ 2N , and so

deg("r (D0Ci + Di )) ≤ 2N

q
≤ N .

By Lemma 12.2.4, the sequence (ai )i≥0 is q-automatic. �

Here is an application of Christol’s theorem. Suppose F = ∑
i≥0 fi X i and G =

∑
i≥0 gi Xi are two formal power series in K [[X ]]. The Hadamard product is defined

to be F - G = ∑
i≥0 fi gi X i .

Theorem 12.2.6 If F,G are algebraic over G F(q)(X ), then so is F - G.

Proof. Suppose F and G are algebraic over G F(q)(X ). Then, by Christol’s theorem,
the sequences ( fi )i≥0 and (gi )i≥0 are q-automatic. Then, by Corollary 5.4.5, the
sequence ( fi gi )i≥0 is q-automatic. Hence, by Christol’s theorem, F - G is algebraic
over G F(q)(X ). �
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Notice that Theorem 12.2.6 is not true, in general, for characteristic 0. For ex-
ample,

F =
∑

n≥0

(
2n

n

)

Xn = (1 − 4X )−1/2

is algebraic over any field K , but it can be shown that F - F is transcendental over
Q(X ).

12.3 First Application to Transcendence Results

Let (an)n≥0 be a sequence with values in a finite set A, let G F(q1) and G F(q2) be
two finite fields, and let ϕ1 (respectively, ϕ2), be an injective map from A to G F(q1)
(respectively, G F(q2)). Now suppose that the formal power series

∑
ϕ1(an)Xn is al-

gebraic over the field G F(q1)(X ). Under what conditions can the series
∑

ϕ2(an)Xn

also be algebraic, i.e., algebraic over the field G F(q2)(X )?
To make the question more concrete, let (tn)n≥0 be the Thue–Morse sequence. The

formal power series
∑

n≥0 tn Xn can be considered both as a series with coefficients
in G F(2) and as a series with coefficients in G F(3). Can these two series both be
algebraic? Here, by algebraic we mean, of course, over G F(2)(X ) for the first one,
and over G F(3)(X ) for the second one.

The answer is no. Using Christol’s theorem (Theorem 12.2.5) above, we can
reformulate the theorems of Cobham previously given, i.e., Theorems 11.2.2 and
6.6.4, and state the following.

Theorem 12.3.1 Let (an)n≥0 be a sequence with values in a finite set A, let G F(q1)
and G F(q2) be two finite fields, and let ϕ1 (respectively, ϕ2) be an injective map
from A to G F(q1) (respectively, G F(q2)).

(a) If q1 and q2 are multiplicatively dependent, then the series
∑

ϕ1(an)Xn is algebraic
over the field G F(q1)(X ) if and only if the series

∑
ϕ2(an)Xn is algebraic over the

field G F(q2)(X ).
(b) If q1 and q2 are multiplicatively independent, and the series

∑
ϕk(an)Xn is algebraic

over the field G F(qk)(X ) for k = 1, 2, then both series are rational, i.e., the sequence
(an)n≥0 is ultimately periodic.

12.4 Formal Laurent Power Series and Carlitz Functions

In this section we consider expressions of the form

∑

n≥−t

an

(
1

X

)n

,

where an belongs to a finite field G F(q) of characteristic p > 0. These are formal
Laurent series in the variable X−1. Changing the variable X into X−1 in Christol’s
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theorem (Theorem 12.2.5), we easily see that the series
∑

n≥−t an
(

1
X

)n
is algebraic

over G F(q)(X ) if and only if the sequence (an−t )n≥0 is p-automatic.
Carlitz introduced functions in positive characteristic that resemble the usual

exponential function, the logarithm function, and the Riemann zeta function. We
describe the Carlitz zeta function. Recall the definition of the Riemann zeta function
for *(s) > 1:

ζ (s) =
∑

n≥1

1

ns
.

It is known that if s is even, then ζ (s) = π s · r where r is a rational number. For
example, ζ (2) = π2/6 and ζ (4) = π4/90. No such expression is known for odd s;
however, Apéry showed that ζ (3) is irrational.

Consider the following analogue in formal power series. Define for n ≥ 1

ζq(n) =
∑

P monic
P∈G F(q)[X ]

1

Pn
.

Thus, for example,

ζ2(1) = 1

1
+ 1

X
+ 1

X + 1
+ 1

X2
+ 1

X2 + 1
+ 1

X2 + X
+ 1

X2 + X + 1
+ · · ·

= 1 + X−2 + X−3 + X−4 + X−5 + X−9 + X−10 + · · ·
∈ G F(2)[[X−1]].

This function ζq , now called the Carlitz zeta function, has many properties similar
to those of the Riemann zeta function. For example, it admits the following Euler
product:

ζq(n) =
∏

P monic and irreducible
P∈G F(q)[X ]

1

1 − 1
Pn

.

Carlitz also showed that if q − 1 | n, then ζq(n) = πn
q · r where r is a rational func-

tion and

πq :=
∏

k≥1

(

1 − Xqk − X

Xqk+1 − X

)

.

Note, by the way, that q − 1 = |G F(q)∗|, just as in the real case we have 2 = |Z∗|.
A proof that πq is transcendental was given by Wade. We now present a proof of
Wade’s result based on Christol’s theorem (Theorem 12.2.5).

Theorem 12.4.1 Let q = pk, p prime, k ≥ 1. Then πq is transcendental over
G F(q)(X ).
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Proof. By Exercise 17 we have

π ′
q

πq
=
∑

k≥1



 1

1 − Xqk −X
Xqk+1−X





(
(Xqk+1 − X ) − (Xqk − X )

(Xqk+1 − X )2

)

=
∑

k≥1

1

Xqk+1 − X

(12.4)

=
(
∑

k≥1

1

Xqk − X

)

− 1

Xq − X
. (12.5)

Now suppose that πq is algebraic over G F(q)(X ). Then, by Exercise 18, so is π ′
q .

Hence, by Theorem 2.9.1, so is π ′
q/πq . But then, by (12.5) so is

B :=
∑

k≥1

1

Xqk − X
=
∑

k≥1

1

[k]
,

the so-called bracket series introduced by Wade, who defined [k] := Xqk − X .
Thus it suffices to show that B is transcendental. We have

B =
∑

k≥1

1

Xqk − X
=
∑

k≥1

1

Xqk
(

1 − (
1
X

)qk−1
) =

∑

k≥1

1

Xqk

∑

n≥0

(
1

X

)n(qk−1)

.

Hence

B = 1

X

∑

k≥1

1

Xqk−1

∑

n≥0

(
1

X

)n(qk−1)

= 1

X

∑

k≥1
n≥0

(
1

X

)(n+1)(qk−1)

= 1

X

∑

k≥1
n≥1

(
1

X

)n(qk−1)

= 1

X

∑

m≥1

(
1

X

)m ∑

k,n≥1
n(qk−1)=m

1

= 1

X

∑

m≥1

(
1

X

)m ∑

k≥1
qk−1 |m

1 = 1

X

∑

m≥1

(
1

X

)m

c(m),

where

c(m) :=
∑

k≥1
qk−1 |m

1.

Now, by virtue of Christol’s theorem (Theorem 12.2.5), in order to show that
∑

k≥1 1/(Xqk − X ) is transcendental over G F(q)(X ), it suffices to prove that
(c(m))m≥1 is not q-automatic.
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If the sequence (c(m))m≥1 were q-automatic, then by Corollary 5.5.3, the subse-
quence (c(qn − 1))n≥0 would be ultimately periodic. But

c(qn − 1) =
∑

k≥1
qk−1 | qn−1

1 =
∑

k≥1
k | n

1 = d(n)

by Exercise 2.22, where d(n) is the number of positive integral divisors of n.
Now q = p j for some j ≥ 1, where p is a prime, so it suffices to show that

(d(n) mod p)n≥1 is not ultimately periodic. If it were, then there would exist integers
t ≥ 1, n0 ≥ 0 such that for all n ≥ n0 and i ≥ 1 we have

d(n + i t) ≡ d(n) (mod p).

Choose i = ni ′. Then

d(n(1 + i ′t)) ≡ d(n) (mod p).

for all i ′ ≥ 1. Now by Dirichlet’s theorem we can find i ′ ≥ 1 such that p′ = 1 + i ′t
is a prime. Choose n = p′; we find

d(p′2) ≡ d(p′) (mod p).

and hence 3 ≡ 2 (mod p). This contradiction completes the proof. �

12.5 Transcendence of Values of the Carlitz–Goss Gamma Function

In this section, we prove the transcendence of certain values of the Carlitz–Goss
gamma function, which is a p-adic interpolation of the ordinary gamma function.

Let q = pk , with p prime and k an integer ≥ 1. For j ≥ 1 define

D j = (Xq j − X )(Xq j − Xq) · · · (Xq j − Xq j−1
);

note that deg D j = jq j .
Let n be a p-adic integer, i.e., a formal expression of the form

n =
∑

j≥0

a j p j (12.6)

with 0 ≤ a j < p. Note that n is a natural number if and only if there exists an
integer R ≥ 0 such that a j = 0 for all j ≥ R.

We can group the expansion (12.6) into k bits at a time:

n =
∑

j≥0

n j q
j ,

where 0 ≤ n j < q . Then we make the following definition:

n! =
∏

j≥1

(
D j

Xdeg D j

)n j

∈ G F(q)[[X−1]].
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As an example, consider the case p = q = 2, and set n = −1, i.e., n j = 1 for
all j ≥ 0. Then over G F(2) we find

(−1)! = X2 − X

X2
· (X4 − X2)(X4 − X )

X8
· (X8 − X4)(X8 − X2)(X8 − X )

X24
· · ·

= (1 + X−1)(1 + X−2 + X−3 + X−5)

× (1 + X−4 + X−6 + X−7 + X−10 + X−11 + · · · ) · · ·
= 1 + X−1 + X−2 + X−6 + X−9 + X−12 + X−14 + X−15 + · · · .

We now state the theorem of Mendès France and Yao:

Theorem 12.5.1 Let n be a p-adic integer. Then n! is transcendental over
G F(q)(X ) if and only if n is not a natural number.

We need two technical lemmas:

Lemma 12.5.2 Let a, b, c, q be integers with a, b, c ≥ 1 and q ≥ 2. Then qc − 1
| qa(qb − 2) + 1 if and only if c | gcd(a, b).

Proof. ⇐=: Suppose c | gcd(a, b). Then qc ≡ 1 (mod qc − 1), and since a/c is an
integer, we can raise both sides to the a/c power to get qa ≡ 1 (mod qc − 1).
Similarly, qb ≡ 1 (mod qc − 1). Hence

qa(qb − 2) + 1 ≡ (1)(1 − 2) + 1 ≡ 0 (mod qc − 1).

=⇒: Suppose qc − 1 | qa(qb − 2) + 1. Define c1 = (a + b) mod c and a1 =
a mod c, so that 0 ≤ a1, c1 < c. Then there exist natural numbers s, t such that
a + b = sc + c1 and a = tc + a1. It follows that

qc1 − 2qa1 + 1 = (qa(qb − 2) + 1) − qc1 (qsc − 1) + 2qa1 (qtc − 1).

Since qc − 1 divides the right-hand side of this equation, it follows that qc − 1
| qc1 − 2qa1 + 1.

Now if c1 > a1, we have

0 ≤ qc1 − 2qa1 + 1 ≤ qc1 − 2 + 1 < qc−1 − 1,

while if a1 ≥ c1 we have

0 ≤ −(qc1 − 2qa1 + 1) ≤ 2(qa1 − 1) < 2(qc−1 − 1).

Hence |qc1 − 2qa1 + 1| < qc − 1. But qc − 1 | qc1 − 2qa1 + 1; hence qc1 − 2qa1 +
1 = 0. Considering both sides modulo q, we see that a1 = c1 = 0. It follows that
c | a and c | b. �
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Lemma 12.5.3 Let q = pk, and let n ∈ Zp \ N be a p-adic integer with q-adic
expansion

∑
l≥0 nlql . For 1 ≤ j ≤ k define

E j (n) = {l ≥ 0 : nl �≡ 0 (mod p j )}.
Then there exists m ∈ Zp \ N such that E1(m) is infinite, and n! is transcendental
over G F(q)(X ) if and only if m! is transcendental over G F(q)(X ).

Proof. Let n ∈ Zp \ N. Let h be the least integer j , with 1 ≤ j < k, such that
E j (n) is infinite. Note that h exists because by hypothesis n �∈ N implies that Ek(n)
is infinite.

If h = 1, we may take m = n.
Otherwise h ≥ 2. Then Eh−1(n) is finite. Let L ≥ 0 be the greatest element of

Eh−1(n). Hence for all l > L , the quantity ml = nl/ph−1 is an integer. Now define

m =
∑

L<i<∞
mlq

l .

Then we have

n! =
∏

1≤i≤L

(
Di

Xdeg Di

)ni ∏

L<i<∞

(
Di

Xdeg Di

)ni

=
(

∏

1≤i≤L

(
Di

Xdeg Di

)ni
)

(m!)ph−1

Also, it is clear that E1(m) is infinite. �

Now we are ready to prove Theorem 12.5.1.

Proof. By Lemma 12.5.3 we may suppose that E1(n) is infinite. Now for all integers
j ≥ 1 we have

D′
j

D j
=

∑

0≤i< j

(Xq j − Xqi
)′

Xq j − Xqi = −1

Xq j − X
.

From this we deduce

(n!)′

n!
= −

∑

j≥1

n j

Xq j − X
= −

∑

j≥1

n j

Xq j

(

1 −
(

1

X

)q j−1
)−1

= −
∑

j≥1

n j

Xq j

(
∑

l≥0

(
1

X

)l(q j−1)
)

= −
∑

j≥1

∑

l≥0

n j

Xq j

(
1

X

)l(q j−1)

.

Hence we find

−X
(n!)′

n!
=
∑

j,l≥1

n j

(
1

X

)l(q j−1)

=
∑

m≥1

c(m)X−m,
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where

c(m) =






∑

j,l≥1
l(q j −1)=m

n j




 mod p =






∑

j≥1
q j −1 |m

n j




 mod p.

Suppose n! is algebraic. Then, by Exercise 18, so is (n!)′. Then, by Theorem 2.9.1,
so is −X (n!)′

n! . Hence, if we can show −X (n!)′
n! is transcendental, it follows that n! is

too. We do this by showing that Kq(c), the q-kernel of the sequence c, is infinite.
For m ≥ 0, define

dl(m) = c(qlm + 1).

Now choose any two distinct elements a, b ∈ E1(n). Without loss of generality we
may suppose a > b. We show that the sequences da and db are different. Define

E = {l ≥ 0 : nl �≡ 0 (mod p), l | a, l|/b}.
Note a ∈ E , so E �= ∅. Let h = mine∈E e. Suppose there exists t , 1 ≤ t < h, with
t | a and t |/b. Then from the definition of E , we must have nt ≡ 0 (mod p). It follows
that, using Lemma 12.5.2,

da(qh − 2) − db(qh − 2) ≡
∑

l≥1
ql−1 | qa(qh−2)+1

nl −
∑

l≥1
ql−1 | qb(qh−2)+1

nl

≡
∑

l≥1
l | (a,h)

nl −
∑

l≥1
l | (b,h)

nl,

where the congruences are mod p. Hence

da(qh − 2) − db(qh − 2) ≡
∑

l | gcd(a,h)
l |/ gcd(b,h)

nl −
∑

l |/ gcd(a,h)
l | gcd(b,h)

nl ≡
∑

l | h
l |/b

nl ≡ nh �≡ 0 (mod p).

Thus the subsequences da and db differ at qh − 2, and hence are different. But a, b
were arbitrary elements of E1(n), which we supposed to be infinite. Hence the q-
kernel of the sequence c is infinite, and thus c is not q-automatic. By Theorem 12.2.5,
it follows that n! is transcendental. �

12.6 Application to Transcendence Proofs over Q(X)

Christol’s theorem may also be fruitfully applied to give easy proofs of transcen-
dence of formal power series over Q(X ). The basic principle is the following:

Theorem 12.6.1 Let F(X ) = ∑
i≥0 fi X i ∈ Z[[X ]] be a formal power series with

integer coefficients, and let p be a prime number. Let Fp(X ) = ∑
i≥0( fi mod

p)Xi ∈ G F(p)[[X ]] be the reduction of F modulo p. If F is algebraic over Q(X ),
then Fp is algebraic over G F(p)(X ).
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Proof. Suppose F is algebraic over Q(X ). Then there exists an integer d ≥ 1 and
d + 1 polynomials B0, B1, . . . , Bd ∈ Q[X ] such that

B0 + B1 F + · · · + Bd Fd = 0. (12.7)

By clearing denominators, we may in fact assume that Bi ∈ Z[X ] for 0 ≤ i ≤ d.
We can also assume that the greatest common divisor e of the coefficients of all
the Bi is 1; for if not, we could divide (12.7) by e. Now consider (12.7) modulo p.
Since not all the coefficients of the polynomials are divisible by p, the reduction
of (12.7) modulo p gives a nontrivial relation for Fp (of possibly lower degree). It
then follows that Fp is algebraic over G F(p)(X ). �

We now apply Theorem 12.6.1 to some series of interest. Define

θ3(X ) =
∑

−∞<n<∞
Xn2

,

the classical theta series.

Theorem 12.6.2 θ3(X ) is transcendental over Q(X ).

Proof. Suppose θ3(X ) is algebraic over Q(X ). Then since θ3(X ) = 1 + 2
∑

n≥1 Xn2
,

the series g(X ) = ∑
n≥1 Xn2

would be algebraic over Q(X ). By Theorem 12.6.1,
g would be algebraic over G F(2)(X ). But by Theorem 12.2.5, this means that
the characteristic sequence of the squares is 2-automatic, which we have seen in
Example 5.5.1 is not the case. �

For our second application, we consider the following problem. Recall from
Section 1.5 that a nonempty word w is said to be primitive if it cannot be written in
the form w = xk where k ≥ 2 is an integer. Let Pk be the set of all primitive words
over {0,1, . . . , k − 1}. For example,

P2 = {0,1,01,10,001,010,011,100,101,110, . . . }.
It is currently a major open problem in formal languages to show that Pk is

not context-free for any k ≥ 2; see Open Problem 4.3. Although this problem is
unsolved, it is possible to prove the following weaker result:

Theorem 12.6.3 For k ≥ 2, if Pk is context-free, then it is inherently ambiguous.

Proof. Let ψk(n) be the number of primitive words of length n over an alphabet of
size k. From Theorem 1.5.5 we have

ψk(n) =
∑

d | n

µ(d)kn/d .
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Suppose Pk is context-free and possesses an unambiguous grammar. Then by the
theorem of Chomsky-Schützenberger (Theorem 4.4.2), we know that

R(X ) :=
∑

n≥1

ψk(n)Xn

is algebraic over Q(X ). Then

R̃(X ) :=
∑

n≥1

ψk(n)

k
Xn

is also algebraic over Q(X ). Note that ψk(n)/k is an integer for any n ≥ 1.
Let p be a prime dividing k. Then by Theorem 12.6.1, we know that

R̃ p(X ) =
∑

n≥1

(
ψk(n)

k
mod p

)

Xn

is algebraic over G F(p)(X ). But

ψk(n)

k
=
∑

d | n

µ(d)kn/d−1 = µ(n) +
∑

d | n
d �=n

µ(d)kn/d−1 ≡ µ(n) (mod p).

It follows that

R̃ p(X ) =
∑

n≥1

µ(n)Xn

and so the sequence (µ(n) mod p)n≥0 must be p-automatic. But then (µ(n)2

mod p)n≥0 would be p-automatic. However, µ(n)2 ≡ 1 (mod p) if and only if n is
squarefree. By a classical theorem (see Exercise 2.21), the density of the squarefree
numbers exists and is equal to 6/π2, an irrational number. But by Theorem 8.4.5,
the frequency of a symbol in automatic sequences (if it exists) must be rational, a
contradiction. �

12.7 Furstenberg’s Theorem

We now show that algebraic series can be easily obtained from rational power series
in higher dimension. Let us begin with an example.

Example 12.7.1 Consider the rational function in two variables in G F(2)(X ) de-
fined by

R(X, Y ) = Y

1 + Y (1 + XY ) + X
(1+XY )2

.
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Since the relation X/(1 + XY )2 = X
∑

i≥0(XY )2i holds over G F(2)(X ), we have

R(X, Y ) = Y

1 + Y (1 + XY ) + X
∑

i≥0(XY )2i

=
∑

j≥0

Y

(

Y (1 + XY ) + X
∑

i≥0

(XY )2i

) j

=
∑

j,k≥0

(
j

k

)

Y k+1(1 + XY )k X j−k

(
∑

i≥0

(XY )2i

) j−k

:=
∑

m,n≥0

am,n XmY n.

Now let us compute the diagonal of R, i.e., the formal power series (DR)(X ) =
∑

n≥0 an,n Xn . In the expression

∑

j,k≥0

(
j

k

)

Y k+1(1 + XY )k X j−k

(
∑

i≥0

(XY )2i

) j−k

the only indices j, k that can give equal exponents for X and Y should satisfy
k + 1 = j − k. Hence j is odd, and j = 2k + 1. Then

(DR)(X ) =
∑

k≥0

(
2k + 1

k

)

Xk+1(1 + X )k

(
∑

i≥0

X2i

)k+1

=
∑

k≥0

(
2k + 1

k

)

Xk+1(1 + X )−k−2.

Now, splitting into odd and even indices, we obtain

(DR)(X ) =
∑

k≥0

(
4k + 1

2k

)

X2k+1(1 + X )−2k−2

+
∑

k≥0

(
4k + 3

2k + 1

)

X2k+2(1 + X )−2k−3.

Using Exercise 12, we have

∀k ≥ 0,

(
4k + 3

2k + 1

)

≡
(

2k + 1

k

)

(mod 2)

and

∀k ≥ 1,

(
4k + 1

2k

)

≡
(

2k

k

)

≡ 0 (mod 2).
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Hence

(DR)(X ) = X (1 + X )−2 +
∑

k≥0

(
2k + 1

k

)

X2k+2(1 + X )−2k−3

= X (1 + X )−2 + (1 + X )(DR)2(X ).

Hence (DR)(X ) satisfies the same quadratic equation as the Thue–Morse series
T (X ) in Example 12.1.2. Since both series have 0 as constant term, they coincide.
In other words, we have obtained the Thue–Morse series as the diagonal of a rational
function in two variables.

Definition 12.7.2 Let

F(X, Y ) =
∑

m≥m0
n≥n0

am,n XmY n,

where m0, n0 ∈ Z, be a formal Laurent series in the two variables X and Y . The
diagonal DF is the formal Laurent series in one variable defined by

DF(X ) = D
(

∑

m≥m0, n≥n0

am,n XmY n

)

:=
∑

k≥max{m0,n0}
ak,k Xk .

Theorem 12.7.3 (Furstenberg) A formal Laurent series over a finite field is al-
gebraic if and only if it is the diagonal of a rational formal Laurent series in two
variables over that field.

Proof. The first part of the proof consists of showing that the diagonal of a double
rational formal power series on a finite field is algebraic. This proof is postponed
until Chapter 14, where we will prove that, more generally, the diagonal of a double
algebraic formal power series in two variables is algebraic (Theorem 14.4.2).

Let us give the second part of the proof. Let p be a prime and n ≥ 1 be an integer,
and set q = pn . Let F(X ) = ∑

i ai X i be a formal Laurent series with coefficients
in G F(q) that is algebraic over G F(q)(X ). We can suppose that F is a formal
power series, i.e., the exponents are all non-negative, up to subtracting a rational
function from F . Then, from Lemma 12.2.3, we can find polynomials B j (X ), not
all equal to zero, such that

B0 F + B1 Fq + · · · + Bt Fqt = 0,

with B0 �= 0. This relation shows that there exist relations of the form

C0 H + C1 Hq + · · · + Ct Hqt + E(X ) = 0, (12.8)

with E a polynomial and F(X ) = R(X ) + Xh H (X ), where h ≥ 0, R is a polyno-
mial, H is a formal power series, and each of the Ci are polynomials. We claim that
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we can find such a relation (12.8) with C0(0) �= 0, and H (0) = 0. (The notation H (0)
stands for the constant term of H .) Suppose that we have such a relation with r the
largest integer for which Xr divides C0 and Xr+1 does not divide C0, and r minimal
among all such relations. Then let H (X ) = ∑

j≥0 λ j X j = λ0 + X K (X ). We have

C0 X K + C1 Xq K q + · · · + Ct Xqt
K qt + Ẽ = 0, (12.9)

with Ẽ = E + λ0C0 + λ
q
0C1 + · · · + λ

qt

0 Ct and F(X ) = R(X ) + λ0 Xh + Xh+1 K .
Now, defining s = min(r + 1, q), we see that Xs divides all terms other than Ẽ
of the equality (12.9); hence it also divides Ẽ . If r �= 0, then 0 ≤ r − s + 1 < r .
Dividing (12.9) by Xs we obtain an equality of type (12.8) such that Xr−s+1

divides the coefficient analogous to C0, and Xr−s+2 does not divide this coef-
ficient, a contradiction. The claim follows if H (0) = 0. If H (0) �= 0, putting
H̃ = H − H (0), we obtain a relation of type (12.8), with H replaced by H̃ ,
E replaced by E + H (0)C0 + · · · + Ct H (0)qt

and the Ci ’s (in particular C0)
unchanged. Furthermore, F = (R + H (0)Xh) + Xh H̃ , and we are done.

Now, define

P(X, Y ) = C0(X )Y + C1(X )Y q + · · · + Ct (X )Y qt + E(X ), (12.10)

so that P(X, H (X )) = 0. Noticing that P(X, Y ) can be considered as a poly-
nomial in G F(q)((X ))[Y ], and using factorization of polynomials over the field
G F(q)((X )), we can write

P(X, Y ) = (Y − H (X ))Q(X, Y ), (12.11)

where Q(X, Y ) is a polynomial in Y with coefficients in G F(q)((X )). Now no-
tice from Eq. (12.10) that ∂P

∂Y (0, 0) = C0(0) �= 0. But from Eq. (12.11) we have
∂P
∂Y (0, 0) = Q(0, 0) − H (0) ∂Q

∂Y (0, 0) = Q(0, 0). Hence Q(0, 0) �= 0. Now, taking
the partial logarithmic derivative with respect to Y of Eq. (12.11), we get

1

P

∂P

∂Y
(X, Y ) = 1

Y − H (X )
+ 1

Q

∂Q

∂Y
(X, Y ).

Now, since Q(0, 0) �= 0, the term 1
Q
∂Q
∂Y (X, Y ) can be expanded as a formal Laurent

series in two variables. Multiplying by Y 2, replacing X by XY , and taking diagonals,
we have

D
(

Y 2

P(XY, Y )

∂P

∂Y
(XY, Y )

)

= D
(

Y 2

Y − H (XY )

)

+ D
(

Y 2

Q(XY, Y )

∂Q

∂Y
(XY, Y )

)

.

The termD
(

Y 2

Q(XY,Y )
∂Q
∂Y (XY, Y )

)
is the diagonal of a series in XY and Y multiplied
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by Y 2 and so is zero. On the other hand

D
(

Y 2

Y − H (XY )

)

= D
(

Y
(
1 − Y−1 H (XY )

)−1
)

= D
(
∑

i≥0

Y 1−i H (XY )i

)

= H (X ),

and

Y 2

P(XY, Y )

∂P

∂Y
(XY, Y )

is a rational function, which concludes the proof. �

12.8 Exercises

1. What is the power series solution to the functional equation f (X ) f (X2) =
1/(1 − X )?

2. Consider the sequence (an)n≥0 that is the fixed point of the morphism 0 → 01,
1 → 00. Define A(X ) = ∑

n≥0 an Xn . Find an equation over G F(2) that the
power series A(X ) satisfies.

3. Consider the sequence a11 = (an)n≥0 introduced in Exercise 8.2. Find the equa-
tion over G F(2) satisfied by

∑
n≥0 an Xn .

4. Let the Taylor series expansion of
√

5x+1
x+1 − 1

2(x + 1)

at x = 0 be
∑

n≥0 anxn . Show that an ≡ tn (mod 2), where (tn)n≥0 is the Thue–
Morse sequence.

5. Show that if R is a commutative ring with unit element, then R[[X ]], the ring
of formal power series over R, is a commutative ring with unit element. (The
only nontrivial part is the associativity of multiplication.)

6. Give an example of two rings, R and S with R ⊆ S such that the cardinality of
the algebraic elements of S over R is uncountable.

7. Suppose f (X ) and g(X ) are two algebraic formal power series in K [[X ]], and
suppose g(0) = 0. Show that f (g(X )) is algebraic.

8. Let α be a real number, and let g be a polynomial of degree ≥ 1. Then
∑

n≥0 g(�αn�)Xn is a rational function if and only if α is rational.
9. Observe that

∏
n≥0(1 − X2n

) = ∑
k≥0(−1)s2(k) Xk . Let f (X ) =

∑
k≥0(−1)s2(k) Xk . Show that

X

1 − X
− X f ′(X )

f (X )
= 2

∑

k≥1

2ν2(k) Xk .
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10. Show that
∏

k≥0(1 + X2k
)−(k+1) = ∑

i≥0(−1)s2(i) Xi . Conclude that

∫ 1

0

d X
∏

k≥0(1 + X2k )k+1
=
∑

n≥1

(−1)s2(n−1)

n
.

11. Prove Lucas’s formula: if m = pa + i and n = pb + j , where p is a prime
number, and 0 ≤ i, j ≤ p − 1, then

(
m

n

)

≡
(

a

b

)(
i

j

)

(mod p).

Deduce that, if the base-p expansions of m and n are m = ∑
mi pi and n =

∑
ni pi with the mi ’s and the ni ’s in [0, p − 1] and ultimately equal to zero,

then
(

m

n

)

≡
∏

i

(
mi

ni

)

(mod p).

12. Prove that
(2k

k

) ≡ 0 (mod 2) for every k ≥ 1. Exercise 2.28 may prove
useful.

13. (Allouche and Laubie) Let (an)n≥0 be a sequence with values in G F(q). Prove
that the formal power series

∑
n≥0 an Xn is a rational function (i.e., belongs

to G F(q)(X )) if and only if the formal power series
∑

n≥0 an Xqn
is algebraic

over G F(q)[X ].
14. (C. Moore) Consider the generating function of Pascal’s triangle, taken modulo

2, with variables X and Y indicating the position of each term:

f (X, Y ) = 1

+ Y + XY

+ Y 2 + X2Y 2

+ Y 3 + XY 3 + X2Y 3 + X3Y 3

+ Y 4 + X4Y 4 + · · ·

Show that f (X, Y ) is algebraic over G F(2)[X, Y ], but not algebraic over
Z[X, Y ].

15. Prove Euler’s formula relating π2n , ζ (2n), and the Bernoulli numbers. That is,
show that if n is a positive number, then

2(2n)!ζ (2n) = (−1)n+1(2π )2n B2n,

where Bt is the t th Bernoulli number.
16. Prove that eX = ∑

k≥0 Xk/k! is transcendental over Q[X ].
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17. Let f (X ) = ∏
k≥1 fk(X ). Compute f ′(X )/ f (X ), the formal logarithmic deri-

vative.
18. Show that if f (X ) ∈ G F(pn)[[X ]] is a formal power series that is algebraic

over G F(pn)(X ), then so is f ′(X ), its formal derivative. Give a proof that works
for the finite field G F(pn), and give another proof that works when G F(pn)
is replaced by any commutative field K .

19. (Thakur) Let p be a prime number, and define f = ∑
n≥0 X pn

. Show that f is
the diagonal of the rational expression

X

1 − (X p−1 + Y )
.

20. Show that the power series f (z) = ∑
n≥0 z2n

has the unit circle as a natural
boundary. Show that f has precisely two real zeros, and give good approxi-
mations to them. Find some complex zeros of f . Does f have zeros in every
neighborhood of the unit circle?

21. Give a counterexample to the converse of Theorem 12.6.1. More precisely, give
an example of a formal power series in Q[[X ]] transcendental over Q[X ], such
that for all primes p, its reduction modulo p is algebraic over G F(p)[X ].

22. For each integer n ≥ 0 give an example of a formal power series
∑

i≥0 ai Xi

such that the coefficients of (
∑

i≥0 ai Xi )k are bounded above by a constant for
0 ≤ k < n, but unbounded for k = n.

23. As in Section 12.6, let

θ3(X ) =
∑

−∞<n<∞
Xn2

.

Show that

θ3(x)2 = 1 + 4
∑

n≥0

(−1)n X2n+1

1 − X2n+1
.

24. Prove that the Hadamard product of two algebraic series over G F(p) need not
be of bounded degree. More precisely, prove that for all integers a ≥ 1, there
exists a prime p and a formal power series modulo p that is the Hadamard
product of two quadratic series and whose degree is > a.

25. Define an analogue of the Baum–Sweet sequence as follows: an = 1 if there
is a nonempty block of 0’s of even length in (n)2, and 0 otherwise. Thus, for
example, a12 = 1 and a49 = 0. It is easy to see that (an)n≥0 is a 2-automatic
sequence. Define A(X ) = ∑

n≥0 an Xn , so

A(X ) = X4 + X9 + X12 + · · · .
Find an algebraic equation satisfied by A over G F(2)[X ].
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26. Show that for all n ≥ 1 there exist 2-automatic sequences u = (ui )i≥0 such that
Card K2(u) ≥ n, while the degree of the algebraic equation of which

∑
i≥0 ui Xi

is a root is 2.
27. (Bowman) Let t(X ) = ∑

n≥0(−1)s2(n) Xn be the Thue–Morse power series on
{−1,+1}. Show that t(X ) has continued fraction expansion

1

1 +
X

1 −
X + X2

1 + X + X2 −
1 + X2

2 + X2 −
X2 + X4

1 + X2 + X4 −
1 + X4

2 + X4 −
1 + X4

2 + X4 −
X4 + X8

1 + X4 + X8 −
1 + X8

2 + X8 −
1 + X8

2 + X8 −
1 + X8

2 + X8 − · · ·

Hint: Apply Exercise 2.13.
28. Let T (X ) = ∑

n≥0 tn X−n be the Thue–Morse power series over G F(2)[[1/X ]].
(a) Show that the continued fraction expansion of T is

T (X ) = [0, X + 1, X, X, X3 + X, X ]

where the vinculum denotes the periodic portion.
(b) Similarly, let U (X ) := ∑

n≥0(1 + tn)X−n . Show that

U (X ) = [1, X3 + X + 1, X, X, X, X3 + X ].

29. Let (sn)n≥0 denote the Rudin–Shapiro sequence on {0, 1}, i.e., sn = e2;11(n)
mod 2. Let S(X ) = ∑

n≥0 sn X−n be the Rudin–Shapiro power series over
G F(2)[[1/X ]]. Compute the continued fraction expansion of S(X ).

30. Let C(X ) = ci X−i be the Cantor formal power series in G F(3)[[1/X ]], where
ci = 1 if the base-3 expansion of i contains only 0’s and 2’s, and ci = 0 other-
wise. Compute the continued fraction expansion of C(X ).

31. Let p be a prime. In this exercise we give an algebraic construction of fi-
nite words of length pr + r − 1 over the alphabet G F(p) that contain every
subword of length r . Let f be an irreducible polynomial of degree r over
G F(p).
(a) Show that f divides X pr − X .
(b) Prove that for every prime p and r ≥ 1 there exists a primitive polynomial g, i.e.,

an irreducible polynomial for which a root of g generates G F(pr ).
(c) Suppose g is primitive, of degree r . Show that the coefficients of the formal power

series for 1/g are purely periodic with period pr − 1, and contain every subword
of length r except 0r .

(d) Show how to modify the word consisting of the first pr + r − 2 coefficients of the
formal power series for 1/g to get the desired word.

32. Let a0 = 0, a1 = 1, and for n ≥ 0 define a4n = an , a2n+1 = an+1, and
a4n+2 = 0.
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(a) Show that (ai )i≥0 is 2-automatic and is the image under n → n (mod 2) of the
fixed point of ϕ, where ϕ is defined as follows:

0 → 01,

1 → 20,

2 → 34,

3 → 24,

4 → 44.

(b) Show that
∑

i≤2n ai = Fn+1, the (n + 1)st Fibonacci number.
(c) Let f (X ) = ∑

i≥0 ai X−i ∈ G F(2)[[X−1]]. Show that f 3 + X f + 1 = 0.
(d) Prove that the continued fraction expansion of f is [0, X, X2, X4, X8, . . . ].
(e) Show that if g2n+1 + Xg + 1 = 0, then the continued fraction expansion of g is

[0, X, X2n
, X22n

, X23n
, . . . ].

33. Use the folding lemma (Lemma 6.5.5) to describe the continued fraction ex-
pansion for the formal power series

∑
i≥0 X−ai over G F(2)[[X−1]], provided

that ai+1 ≥ 2ai . In particular, deduce that

[0, X, X2, X, X3, X, X2, X, X4, . . . , X1+ν2(i), . . . ] =
∑

n≥2

Xn+1−2n

and

[0, X, X2, X, X4, X, X2, X, X8, . . . , X2ν2(i)
, . . . ] =

∑

n≥1

X−(n+1)2n
.

34. Let C(n) = (2n
n

)
/(n + 1) be the nth Catalan number. Let p be a prime ≥ 2. Is

the sequence (C(n) mod p)n≥0 p-automatic?
35. Show that (1 − X )p+1Y p − (1 − X )2Y + X is irreducible for all primes p.
36. Suppose

∑
n≥0 fn Xn ∈ G F(q)[[X ]] is algebraic over G F(q)(X ). Show that

for all a ≥ 1, b ≥ 0 the formal power series
∑

n≥0 fan+b Xn is algebraic over
G F(q)(X ).

12.9 Open Problems

1. Prove or disprove: the continued fraction [0, X, X2, X3, X4, . . . ] is transcen-
dental over G F(q)(X ) for all prime powers q.

2. Prove or disprove: the continued fraction [0, X, X3, X7, X15, X31, X63, . . . ]
is transcendental over G F(2)(X ).

3. (Thakur) Let p be a prime number, and consider

F(X ) = exp(X + X p/p + X p2
/p2 + X p3

/p3 + · · · )

=
∏

p|/n

(1 − Xn)−µ(n)/n,

where µ is the Möbius function. It can be shown that, writing F(X ) = ∑
ak Xk ,
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no ak has a denominator congruent to zero modulo p. Hence it makes sense to
consider F(X ) reduced modulo p. Is it algebraic over G F(p)(X )?

12.10 Notes on Chapter 12

12.1 In the literature, the series
∑

n≥0 X2n
in Example 12.1.1 is sometimes called

the Fredholm series, but Fredholm apparently never studied it.
Many other examples of algebraic formal power series can be found in

the paper of Christol, Kamae, Mendès France and Rauzy [1980]. Also see
Allouche [1987].

12.2 The operators introduced in Definition 12.2.1 are called Cartier operations or
Cartier operators; see Christol [1970, 1972].

Theorem 12.2.5 was first given by Christol [1979] for sequences taking
only the values 0 and 1, then completed by Christol, Kamae, Mendès France,
and Rauzy [1980].

Algebraic formal power series whose coefficients are p-adic integers and
their diagonals were studied by Christol [1986] and by Denef and Lipshitz
[1987].

Christol’s theorem (Theorem 12.2.5) in the case of a finite field was general-
ized to the multidimensional case by Salon [1987, 1989b]. The generalization
to an infinite field of positive characteristic for formal power series with a fi-
nite number of variables was done independently by Sharif and Woodcock
[1988] and Harase [1988]. Both generalizations are discussed in Chapter 14.

The Hadamard product was introduced by Hadamard [1899]. Theo-
rem 12.2.6 was proved by Furstenberg [1967]. Fliess [1969, 1974a] noted
that Furstenberg’s proof works for perfect fields of positive characteristic,
i.e., fields of characteristic p that contain pth roots of all of their elements.

Hadamard products and diagonals of power series are related; see the
notes on Section 12.7 below, in particular those concerning papers of Deligne
[1984], Denef and Lipshitz [1987], Harase [1988], and Sharif and Woodcock
[1988].

Harase [1989] found bounds for the size of minimal polynomial of the
Hadamard product of two algebraic functions in positive characteristic.

Borel showed that the Hadamard product of two rational functions in one
variable over a field of characteristic 0 is again a rational function; see Jungen
[1931, Thm. 7]. (This result is actually true over any field.) Woodcock and
Sharif [1990] considered the Hadamard product of two rational functions in
several variables.

For surveys of these results and others, see Allouche [1989] and Sharif
[1993].

Beals and Thakur [1998] generalized automatic formal power series in
finite characteristic to the case where the set of base-q expansions of the coef-
ficients lies in some language classes other than the class of regular languages.
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12.3 It is not known whether the real-number analogue of Theorem 12.3.1 holds.
See Open Problem 13.11 for more information.

12.4 Allouche [1982] used Christol’s theorem to prove the transcendence of the
formal power series

∑
n≥0 sp(P(n))Xn , where sp(n) is the value modulo p

of the sum of digits of n in base p and P is any polynomial of degree ≥ 2
such that P(N) ⊆ N; see Section 6.10.

Allouche [1990] used Christol’s theorem to give a new proof of the tran-
scendence of the formal power series πq (first proved by Wade [1941]). Other
results for the Carlitz functions are described below. We mention a result due
to Becker [1993]: let g, h ≥ 2 be natural integers, and let (an(g, h))n≥1 be the
sequence obtained by concatenating the base-h expansions of the numbers
1, g, g2, g3, . . . in order. Then the formal power series

∑
n≥1 an(g, h)Xn is

transcendental over G F(p)(X ) for p > h. This result is a natural analogue
of a result of Mahler [1937a, 1937b, 1976b] in characteristic zero.

12.5 Berthé [1992, 1993] proved (via automata) that ζ (n)/πn
q is transcendental for

1 ≤ n ≤ q − 2; the result was previously proved by J. Yu [1991] for every n
such that (q − 1)|/n, but Berthé’s proof is elementary. Recher [1992] obtained
transcendence results, via automata, for periods of generalized Carlitz expo-
nentials, i.e., of generalizations of πq . Berthé [1994], still using finite auto-
mata, also proved transcendence results for the Carlitz logarithm. Berthé
[1995] also gave results on linear expressions in ζ (n)/πn

q for 1 ≤ n ≤ q − 2.
To prove the transcendence of values of Carlitz functions four methods

were used. The first goes back to Wade [1941, 1943, 1944, 1946] and mimics
one of the methods for proving transcendence of real numbers over Q.
Also see Spencer [1952] and Damamme and Hellegouarch [1988, 1991].
A second method uses Drinfeld modules and can be compared to studying
periods of elliptic functions. For a survey of these topics, see J. Yu [1992].
A third method uses Diophantine approximation; see, for example, the paper
of Chérif and de Mathan [1993]. The last method, explained in this chapter,
uses automata theory and Christol’s theorem. These methods are competing,
with the most powerful seeming to be the Drinfeld module method.

The following results, however, are not known to be obtainable using the
Drinfeld module approach: Allouche [1996] proved, via automata, the trans-
cendence of the values of the Carlitz–Goss gamma function for all p-adic
rational arguments that are not natural numbers; also see Thakur [1996c].
Mendès France and Yao [1997] extended the result to all the values of
the Carlitz–Goss gamma function at p-adic arguments that are not natural
numbers. Wen and Yao [2002] proved that a value of the T -adic Carlitz–Goss
gamma function is transcendental over G F(q)(T ) if and only if the q-adic
coefficients of the argument are not ultimately constant.

Recent work of Koskas shows that the Diophantine approximation method
and the automaton method can be unified; in particular a paper of Fresnel,
Koskas, and de Mathan [2000] gives a quantitative version of Christol’s
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theorem. Finally, we cite a proof via automata that the period of the Tate
elliptic curve is transcendental, due to Thakur [1996b]. Also see Thakur
[1998]; Allouche and Thakur [1999].

12.6 Theorem 12.6.3 was first proved by Petersen [1994, 1996]. Our proof is due
to Allouche [1997a].

For the use of the Chomsky–Schützenberger theorem to prove that certain
context-free languages are inherently ambiguous, see Flajolet [1985, 1987].
For related results see Allouche [1999].

Cucker and Gabarró [1989] proved that if
∑

n≥0 f (n)Xn is algebraic over
Q(X ), then f is primitive recursive.

For other transcendence results obtained by reducing formal power series
modulo primes see Woodcock and Sharif [1989] and Allouche, Gouyou-
Beauchamps, and Skordev [1998].

12.7 Furstenberg [1967] was basically interested in the algebraicity of the
Hadamard product of two formal power series, which is defined by (see the
definition preceding Theorem 12.2.6)

(
∑

n≥0

an Xn

)

-
(
∑

n≥0

bn Xn

)

=
∑

n≥0

anbn Xn.

Of course, this question is related to diagonals of formal power series. We
have the following relations:

D
((

∑

n≥0

an Xn

)(
∑

m≥0

bmY m

))

=
∑

n≥0

anbn Xn

=
(
∑

n≥0

an Xn

)

-
(
∑

n≥0

bn Xn

)

and
(

1

1 − XY

)

-
((

∑

n≥0

an Xn

)(
∑

m≥0

bmY m

))

=
∑

n≥0

anbn(XY )n.

Deligne [1984] proved that any diagonal of an algebraic Laurent series in
several variables is itself algebraic provided the ground field has positive
characteristic. Christol [1986] studied algebraic series and diagonals of
rational series. Denef and Lipshitz [1987] generalized Furstenberg’s theorem.
In the same paper they gave an elementary proof of Deligne’s result, and they
proved the corresponding result in the p-adic case. Harase [1988] and Sharif
and Woodcock [1988] also gave an elementary proof of Deligne’s result.

Other papers dealing with diagonals of formal power series include Hautus
and Klarner [1971], Gessel [1981], and Fagnot [1996].
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Automatic Real Numbers

In his famous 1936 paper, Alan Turing discussed the computability of real numbers.
Roughly speaking, a real number α is computable if there is a Turing machine that,
on input i , will compute a rational approximation to α good to within 2−i .

In this chapter, we discuss an analogous concept: the automatic real numbers.
More precisely, we consider associating a single real number x with a DFAO as
follows: on input n represented in base k, the automaton outputs the nth digit of the
base-b expansion of the fractional part of x . We then investigate the properties of
such numbers. It turns out that the set of such numbers forms a vector space over
the rational numbers. It is also conjectured, but not yet proved, that no irrational
algebraic real number can be an automatic real.

13.1 Basic Properties of the Automatic Reals

In this section we prove some basic properties of the automatic real numbers. In
particular, we show the automatic reals form a vector space over Q.

Let k, b be integers ≥ 2. Let r be a real number, and suppose

r = a0 +
∑

i≥1

ai b
−i

for ai ∈ Z for i ≥ 0 and 0 ≤ ai < b for i ≥ 1. We say r is (k, b)-automatic if the
sequence of digits (ai )i≥0 is a k-automatic sequence. We let L(k, b) denote the set
of all (k, b)-automatic reals.

Our first result shows that Q ⊆ L(k, b) for all k, b ≥ 2.

Theorem 13.1.1 If r is rational, then r ∈ L(k, b) for all k, b ≥ 2.

Proof. Let r be a rational number. Then by Theorem 3.4.2 the expansion of r in
base b is ultimately periodic. Hence by Theorem 5.4.2, the sequence (ai )i≥0 is
k-automatic. �

379
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The following theorem is a sort of converse to the preceding one.

Theorem 13.1.2 Let j, k ≥ 2 be multiplicatively independent integers. Then
L( j, b)∩ L(k, b) = Q.

Proof. For one direction, we use Theorem 13.1.1. The other direction follows im-
mediately from Cobham’s theorem, Theorem 11.2.2. �

Theorem 13.1.3 Let k, b be integers ≥ 2. If x ∈ L(k, b), then −x ∈ L(k, b).

Proof. The result is clearly true for x ∈ Z. For x �∈ Z, write x = a0 +
∑

i≥1 ai b−i

with 0 ≤ ai < b for i ≥ 1. Then by hypothesis (ai )i≥0 is a k-automatic se-
quence. Now consider the coding h : {0, 1, 2, . . . , b − 1} → {0, 1, 2, . . . , b − 1}
defined as follows: h(i) = b − 1 − i . Let ci = h(ai+1) for i ≥ 0, and define y =
∑

i≥0 ci b−(i+1). A simple calculation now gives y = a0 + 1 − x .
By Theorem 6.8.1, the shifted sequence (ai+1)i≥0 is k-automatic. By Theorem

5.4.3, (ci )i≥0 is k-automatic. Now define

di =
{
−(a0 + 1) if i = 0,

ci−1 if i ≥ 1.

Then (di )i≥0 is k-automatic by Theorem 6.8.4, and
∑

i≥0 di b−i = −x . �

We now prove a useful normalization lemma.

Lemma 13.1.4 Let C be a positive integer, and let (ai )i≥0 be a k-automatic se-
quence of integers with 0 ≤ ai ≤ C for all i ≥ 1. Then y := ∑

i≥0 ai b−i is a (k, b)-
automatic real number.

Proof. Without loss of generality we may assume a0 = 0.
The result is trivial if C < b, for then the digits in the base-b expansion of y

are precisely ai . The only difficulty occurs when the carries are taken into account,
since carries may come from arbitrarily far to the right.

The idea of the proof is as follows: first, in a bounded number of steps, we rewrite
y = ∑

i≥1 a′
i b

−i in such a way that 0 ≤ a′
i ≤ b. Next, we show how to perform the

potential carries resulting from the digits equal to b.
For the first step, define gi = ai mod b and hi = �ai+1/b� for i ≥ 0. Then clearly

y = ∑
i≥0 a′

i b
−i , where a′

i = gi + hi . Now (gi )i≥0 is easily seen to be k-automatic,
and the fact that (hi )i≥0 is k-automatic follows from Theorems 5.4.3 and 6.8.1.
Hence (a′

i )i≥0 is k-automatic.
Now if ai ≤ C for all i ≥ 1, then a′

i ≤ b − 1 + �C/b� for all i ≥ 1. If C ≥ b + 2,
then C ≥ b2/(b − 1). Hence b2 ≤ bC − C , and so, adding −b + C to both sides,
we get b2 − b + C ≤ bC − b. Now, dividing by b, we get a′

i ≤ b − 1 + C/b ≤
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C − 1. On the other hand, if C = b + 1, then a′
i ≤ b. Finally, if C ≤ b, then a′

i ≤ b.
Hence applying this transformation repeatedly, we eventually reach a k-automatic
sequence, say (ei )i≥0, whose terms are all ≤ b, and y = ∑

i≥0 ei b−i .
The second step of the construction involves determining the carry bits that arise

from the terms of ei that equal b. Define the carry sequence (ci )i≥0 as follows:

ci =
{

1 if there exists j > i with et = b − 1 for i < t < j, and e j = b,

0 otherwise.

Then it is easy to see that if fi = ((ei + ci ) mod b)i≥0, then y = ∑
i≥0 fi b−i , and

0 ≤ fi < b. Thus it suffices to create a DFAO M that generates (ci )i≥0.
Our construction of M = M5 goes in several stages. Let M0 = (Q, �,

δ, q0,�, τ ) be a DFAO generating (ei )i≥0; here � = {0, 1, . . . , k − 1}. First, we
create a nondeterministic finite automaton (NFA) M1 = (Q′, � ×�, δ′, q ′

0, F)
that, roughly speaking, has two non-negative integer inputs, i and j , and accepts if
there exists n, i < n < j , such that en �= b − 1. The inputs i and j are, of course,
provided in base k, starting with the most significant digit, with the shorter padded
by 0’s in the front if necessary to make the lengths of the expansions the same.
The NFA M1 functions by nondeterministically guessing the base-k digits of n, and
maintaining the relationship of the current guessed n with i and j .

The states of M1 are triples of the form [q, u, v], where q ∈ Q, and u, v ∈ {<,=}.
The meaning of the state [q, u, v] is that the guessed expansion of n seen so far
would take us to state q in M0, and furthermore the relationship of n to the currently
seen inputs i and j is given by i u n v j (e.g., i < n = j). The start state of M1 is
q ′

0 = [q0,=,=]. The transition function δ′ is given by

δ′([q, u, v], [c, d])

=






[δ(q, c),=,=] if (u, v) = (=,=) and c = d,

[δ(q, c),=,<]∪ [δ(q, d),<,=] if (u, v) = (=,=) and c < d,

∪ ⋃
c<z<d[δ(q, z),<,<]

[δ(q, d),<,=]∪ ⋃
0≤z<d[δ(q, z),<,<] if (u, v) = (<,=),

[δ(q, c),=,<]∪ ⋃
c<z<k[δ(q, z), <,<] if (u, v) = (=,<),

⋃
0≤z<k[δ(q, z),<,<] if (u, v) = (<,<).

Here c should be thought of as the next base-k digit of i ; d, as the next digit of j ;
and z, as the “guessed” next digit of n. The set of final states is given by

F = {[q, <,<] : τ (q) �= b − 1}.

We leave it to the reader to verify that M1 really behaves as we have claimed.
Now, using the standard construction, we convert M1 to a deterministic finite

automaton (DFA) M2 accepting the same set. Then, by interchanging accepting and
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nonaccepting states of M2, we get a DFA M3 that accepts the base-k representations
of pairs (i, j) such that for all n, with i < n < j , we have en = b − 1.

Next, we create a new NFA M4 that, on input i , “guesses” the base-k digits of j
and simulates M3 on input (i, j). Our NFA M4 also simulates M0 on input j , and
accepts if and only if M3 accepts (i, j) and M0 outputs b on input j . Now M4 can
be easily converted to a DFAO M5 that (essentially) generates the carry sequence
(ci )i≥0. We say “essentially” because the base-k representation of j may have
substantially more digits than that of i ; hence only those base-k representations of i
that have sufficiently many leading zeros will result in the correct output. However,
this problem may be easily dealt with; see Exercise 22. This completes the proof
of the lemma. �

We can now prove that L(k, b) is closed under addition.

Theorem 13.1.5 (Lehr) If r, s ∈ L(k, b), then so is r + s.

Proof. We can add the base-b expansions of r and s digit by digit, using Theo-
rem 5.4.4 and the function f (a, c) = a + c. This gives us an “unnormalized” base-b
expansion

∑
n≥0 unb−n with ui ∈ {0, 1, . . . , 2b − 2} for i ≥ 1. The result then

follows from Lemma 13.1.4. �

Theorem 13.1.6 Let x ∈ L(k, b), i.e., the set of numbers whose base-b expansions
are k-automatic. If c is a nonzero integer, then x/c ∈ L(k, b).

Proof. We construct a 1-uniform transducer that transforms the sequence x1,

x2, . . . , xi , . . . into the sequence y1, y2, . . . , y j , . . . , where x = .x1x2 · · · , y =
x/c = y1 y2 · · · in base b. It then follows from Theorem 6.9.2 that y = x/c is in
L(k, b).

Define the transducer T = (Q, �, δ, q0,�, p) by Q = {0, 1, 2, . . . , c − 1},
� = {0, 1, 2, . . . , b − 1}, δ(d, a) = (bd + a) mod c for d ∈ Q, a ∈ �, q0 = 0,
� = {0, 1, . . . , b − 1}, p(d, a) = ⌊

bd+a
c

⌋
. Then this transducer essentially divides

its input by c using the ordinary pencil-and-paper method of long division. �

Corollary 13.1.7 The set L(k, b) forms a vector space over the rational numbers.

13.2 Non-closure Properties of L(k, b)

It is natural to wonder, after seeing the results of the previous section, whether
L(k, b) forms a multiplicative group. It does not, as the following result shows.

Theorem 13.2.1 L(k, b) is not closed under multiplication.
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Proof. Let k ≥ 2 be an integer, and define

f (X ) =
∑

r≥0

Xkr = X + Xk + Xk2 + · · ·

and

g(X ) =
∑

m≥1, n≥0

X (km−1)kn
.

Let b ≥ 2 be an integer, and define y = f (1/b), z = g(1/b). Then y ∈ L(k, b),
since the base-b representation of y has 1’s in those positions whose base-k rep-
resentation is given by the regular language 10∗. Similarly, z ∈ L(k, b), since the
base-b representation of z has 1’s in those positions whose base-k representation is
given by the regular language (k − 1)+0∗. We will show that yz �∈ L(k, b).

First, note that

f (X )g(X ) =
∑

m≥1, n≥0, r≥0

Xkr · X (km−1)kn =
∑

m≥1, n≥0, r≥0

Xkr+(km−1)kn

=
∑

r<n
m≥1, n≥0, r≥0

Xkr+(km−1)kn +
∑

r=n
m≥1, n≥0, r≥0

Xkr+(km−1)kn

+
∑

r>n
m≥1, n≥0, r≥0

Xkr+(km−1)kn

= S(X ) + T (X ) + U (X ).

Second, note that

S(X ) =
∑

r<n
m≥1, n≥0, r≥0

Xkr+(km−1)kn =
∑

r<n
m≥1, n≥0, r≥0

Xkr (1+kn−r (km−1))

=
∑

m≥1, p≥1, r≥0

Xkr (1+k p(km−1)) =
∑

m≥1, p≥1, r≥0

Xkr (k p+m−k p+1).

Now (kr (k p+m − k p + 1))k = (k − 1)m 0p−1 1 0r , so it follows that S(X ) =
∑

i≥0 si X i , where

si =
{

1 if (i)k ∈ (k − 1)+ 0∗ 1 0∗,
0 otherwise.

Hence (si )i≥0 is a k-automatic sequence, and therefore S(1/b) ∈ L(k, b).
Third, note that

U (X ) =
∑

r>n
m≥1, n≥0, r≥0

Xkr+(km−1)kn =
∑

r>n
m≥1, n≥0, r≥0

Xkn(kr−n+km−1)

=
∑

m≥1, n≥0, q≥1

Xkn(kq+km−1).
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Now

(kn(kq + km − 1))k =






1 0q−m (k − 1)m 0n if m < q,

1 (k − 1)m 0n if m = q,

1 0m−q (k − 1)q 0n if m > q.

Hence U (x) = ∑
i≥0 ui Xi , where

ui =






2 if (i)k ∈ 1 0+ (k − 1)+ 0∗,
1 if (i)k ∈ 1 (k − 1)+ 0∗,
0 otherwise.

It follows that (ui )i≥0 is a k-automatic sequence, and by the normalization lemma
we have U (1/b) ∈ L(k, b).

Finally, note that

T (X ) =
∑

r=n
m≥1, n≥0, r≥0

Xkr+(km−1)kn

=
∑

r≥0, m≥1

Xkm+r =
∑

n≥1

nXkn
.

Now consider the base-b expansion of T (1/b), say (T (1/b))b = 0.c0c1c2 · · · . Ev-
idently the base-b digits immediately to the left of position kn are just (n)b. It
follows that every element of {0, 1, . . . , b − 1}∗ eventually appears as a subword
of the infinite sequence

c = c0c1c2 · · · .
Recall that the subword complexity pd(n) of an infinite sequence d = (di )i≥0 is
the number of distinct subwords of length n that appear in d. Then we have shown
that pc(n) = bn . But, by Theorem 10.3.1, if c were k-automatic, we would have
pc(n) = O(n). This gives a contradiction, and so T (1/b) �∈ L(k, b).

It follows that yz �∈ L(k, b), since yz = S(1/b) + T (1/b) + U (1/b). �

Corollary 13.2.2 The set L(k, b) is not closed under the map x → x2.

Proof. Suppose it were. Then, since for all y, z ∈ L(k, b) we have

yz = 1

4
((y + z)2 − (y − z)2),

it would follow that L(k, b) is closed under multiplication, a contradiction. �

Actually, using the same method as used to prove Theorem 13.2.1, we can prove
the following:

Theorem 13.2.3 We have g(1/b)2 �∈ L(k, b), where g(X ) = ∑
m≥1, n≥0 X (km−1)kn

.
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Proof. Left to the reader as Exercise 13. �

Furthermore, the set L(k, b) is not closed under reciprocal.

Corollary 13.2.4 The set L(k, b) is not closed under the map x → 1/x.

Proof. Suppose it were. Then, since

y2 = y + 1
1

y−1 − 1
y

for all y ∈ L(k, b) \ {0, 1}, we would have that L(k, b) is closed under squaring, a
contradiction. �

13.3 Transcendence: An Ad Hoc Approach

We now turn to questions about transcendence of real numbers. We begin gently,
using an ad hoc method to prove a simple transcendence result about the automatic
real number F = ∑

n≥0 B−2n
. More general techniques are given in the next section.

Theorem 13.3.1 The real number F = ∑
n≥0 B−2n

is transcendental for all inte-
gers B ≥ 2.

Proof. Assume F is algebraic and satisfies the polynomial equation

ce Fe + · · · + c1 F + c0 = 0 (13.1)

with ci ∈ Z for 0 ≤ i ≤ e and ce > 0. Let H = max0≤i≤e |ci |.
Now rewrite (13.1) as follows:

ce Fe + · · · = bs Fs + · · · , (13.2)

where the coefficients on both sides are non-negative and 0 ≤ s < e.
Now define f (X ) = ∑

n≥0 X2n
. For r, k ≥ 0 let a(r, k) denote the coefficient of

Xr in f (X )k . Note that a(r, k) is the number of ways that r can be written as a sum
of k powers of 2, where different orderings are counted as distinct.

Lemma 13.3.2 Let e,m be fixed integers, and let k be an integer with 1 ≤ k ≤ e.
Define N = (2e − 1) · 2m. Then for N − (2m−1 − 1) ≤ r ≤ N + 2m − 1 we have

a(r, k) =
{

e! if r = N and k = e,

0 otherwise.
(13.3)
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Proof. We have (N )2 = 1e 0m . Then for N − (2m−1 − 1) ≤ r < N we have

(r )2 = 1e−1 01 x,

where the string x contains at least one 1.
For N < r ≤ N + (2m − 1) we have

(r )2 = 1e x ′

where the string x ′ also has at least one 1. Hence for all r �= N in the specified
range, r has at least e + 1 1’s in its binary expansion, and hence a(r, k) = 0.

If, on the other hand, r = N , then a(r, k) = 0 for 1 ≤ k < e. If k = e, then
a(r, k) = e!, since then N can be written as the sum of e distinct powers of 2, and
all e! permutations of these will work. �

Now consider Eq. (13.2) as a number in base B, with both sides thought of for the
moment without carries. The left-hand side will have, in digit positions specified
by the interval I := [N − (2m−1 − 1), N + (2m − 1)], all zeros, except at position
N . The right-hand side will have all zeros in these positions.

It now remains to consider the effect of the carries.

Lemma 13.3.3 For integers k, r ≥ 1 we have

a(r, k) ≤ (1 + log2 r )k .

Proof. We can use powers from 20 up to 2�log2 r� in the summands to represent
r , which gives 1 + �log2 r� different choices; each choice can be used at most k
times. �

We now show that, for m sufficiently large, the carries do not extend significantly
into the positions in I .

The term at digit N , on the left-hand side of (13.2), is ce · e!, which is independent
of m. Hence for all large m, its carries are bounded by 1 + �logB(ce · e!)�, which
occupies only a small portion of I .

On the other hand, the carries occurring in positions to the right of those in I will
never come close to position N . For we have, considering a single term in (13.2),

∑

r≥N+2m

a(r, k)

Br
≤

∑

r≥N+2m

(1 + log2 r )k

Br

≤
∑

r≥N+2m

r

Br
(for m sufficiently large)

≤ N + 2m

B N+2m−2
,



13.4 Transcendence of the Thue–Morse Number 387

which gives carries to at most �logB(N + 2m)� + 3 positions to the left of posi-
tion N + 2m . Now multiply by H and sum e + 1 terms, to get carries at most to
position

�logB(N + 2m)� + 4 + �logB H (e + 1)�.

As m → ∞, these cannot come close to position N .
It follows that the left-hand side of (13.2) looks, in base B, like

0’s 0’s
Expression of
c     e!e

.

Spillover from
positions to 
right of N+2m

The positions
in interval I

...

while the right-hand side of (13.2) looks like

0’s 0’s
Spillover from
positions to 
right of N+2m

The positions
in interval I

... 0’s

so they cannot be equal. �

13.4 Transcendence of the Thue–Morse Number

We prove in this section that the Thue–Morse number is transcendental. Our proof
uses the following theorem on analytic functions, which we state without proof.

Theorem 13.4.1 Suppose f is an analytic function on some nonempty connected
open subset � of C. Let

Z ( f ) = {z ∈ � : f (z) = 0}.

Then either Z ( f ) = �, or Z ( f ) has no limit point in �.

Theorem 13.4.2 Let (an)n≥0 be the Thue–Morse sequence with values 0 and 1.
Then the Thue–Morse number T = ∑

n≥0 an2−n is transcendental.
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Proof. First, we replace the sequence (an)n≥0 by the sequence (bn)n≥0, where bn =
1 − 2an . Now the sequence (bn)n≥0 takes the values ±1, and it suffices to show
that the number

∑
n≥0 bn2−n = 2 − 2

∑
n≥0 an2−n is transcendental. We define for

|z| < 1

B(z) =
∑

n≥0

bnzn, (13.4)

so that the number
∑

n≥0 bn2−n is equal to B( 1
2 ).

The proof consists of three steps. First, we show that the function B satisfies a
functional equation, and can be expressed as an infinite product. Next, we show
that B is a transcendental function over Q(z). Finally, we show that the number
B( 1

2 ) is transcendental.
Let us first show that the function B satisfies a functional equation. Since the

Thue–Morse sequence (an)n≥0 satisfies, for all n ≥ 0, the relations a2n = an and
a2n+1 = 1 − an , we have, for all n ≥ 0, that b2n = bn and b2n+1 = −bn . Hence

B(z) =
∑

n≥0

bnzn =
∑

n≥0

b2nz2n + z
∑

n≥0

b2n+1z2n =
∑

n≥0

bnz2n − z
∑

n≥0

bnz2n.

Hence

B(z) = (1 − z)B(z2). (13.5)

Let us define, for m ≥ 1 and |z| < 1,

Wm(z) =
∏

0≤ j≤m−1

(1 − z2 j
). (13.6)

Then, iterating Eq. (13.5), we have

B(z) = Wm(z)B(z2m
) (13.7)

for all m ≥ 1, and for all z with |z| < 1. Since |z| < 1, limm→∞ z2m = 0, and since
B is continuous we have limm→∞ B(z2m

) = B(0) = 1. Thus we find

B(z) = lim
m→∞ Wm(z) =

∏

j≥0

(1 − z2 j
) (13.8)

for all z with |z| < 1. In particular,

B( 1
2 ) = lim

m→∞ Wm( 1
2 ) =

∏

j≥0

(1 − 2−2 j
). (13.9)

Now we prove that the function B(z) is transcendental over Q(z). Although the
transcendence of B can be seen as a consequence of more general results (see the
Notes for more details), we give a direct elementary proof based upon the functional
equation (13.5) satisfied by B.
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Suppose that B is algebraic over Q(z). Then there exist an integer d ≥ 1 and
d + 1 polynomials Q0, Q1, . . . , Qd , not all zero, such that

∑

0≤k≤d

Qk(z)Bk(z) = 0 (13.10)

for all z with |z| < 1. We can suppose that d is minimal, which implies that Q0 �= 0.
Now, replacing z by z2 in Eq. (13.10) above and using Eq. (13.5) gives

∑

0≤k≤d

Qk(z2)Bk(z2) =
∑

0≤k≤d

Qk(z2)(1 − z)−k Bk(z),

and so, multiplying by (1 − z)d , we get
∑

0≤k≤d

Qk(z2)(1 − z)d−k Bk(z) = 0 (13.11)

for all z with |z| < 1. Now, multiplying Eq. (13.10) by Qd(z2) and Eq. (13.11) by
Qd(z), and subtracting, we obtain

∑

0≤k≤d−1

(Qd(z)Qk(z2)(1 − z)d−k − Qd(z2)Qk(z))Bk(z) = 0 (13.12)

for all z with |z| < 1. Since d was chosen to be minimal, this implies that all the
coefficients in the sum (13.12) are in fact 0, and in particular, setting k = 0, we get

Qd(z)Q0(z2)(1 − z)d = Qd(z2)Q0(z) (13.13)

for all z with |z| < 1. If we define the non-negative integers u and v and the polyno-
mials P0 and Pd by Q0(z) = (1 − z)u P0(z), Qd(z) = (1 − z)vPd(z) and P0(1) �= 0,
Pd(1) �= 0, then Eq. (13.13) implies that

(1 − z)u+v+d Pd(z)(1 + z)u P0(z2) = (1 − z)u+v(1 + z)vPd(z2)P0(z),

giving a contradiction when we divide this identity by (1 − z)u+v and set z = 1.
�

We are now ready to show that the number B( 1
2 ) is transcendental.

Let us suppose that B( 1
2 ) is algebraic of degree g. Let N be a fixed integer such

that N > 2g. We claim that it is possible to find N + 1 polynomials P0, P1, . . . ,
PN , with integer coefficients and not all 0, such that deg Pk ≤ N for all k ≤ N and

∑

0≤k≤N

Pk(z)B(z)k = R(z)

for all z with |z| < 1, where the formal power series R can be written R(z) =
zN 2 ∑

k≥0 rkzk , i.e., the first N 2 coefficients of R are zero. This is indeed possible,
since the coefficients of the Pk’s are (N + 1)2 unknowns, and the condition on R
gives rise to N 2 linear homogeneous equations with integer coefficients.
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Now we define polynomials Pm,k , for m ≥ 1 and 0 ≤ k ≤ N , by

Pm,k(z) = Pk(z2m
).

The polynomials Pm,k have integer coefficients, and from Eq. (13.7) we have, for
all m ≥ 1 and for all z such that |z| < 1,

∑

0≤k≤N

Pm,k(z)Wm(z)−k B(z)k =
∑

0≤k≤N

Pm,k(z)B(z2m
)k

=
∑

0≤k≤N

Pk(z2m
)B(z2m

)k = R(z2m
). (13.14)

Now for a polynomial P , define the norm ‖P‖ as follows

‖a0 + a1z + a2zd + · · · + ad zd‖ = max
j

|a j |.

Also define the number M by

M = max
0≤k≤N

max
0≤x≤ 1

2

|Pk(x)|.

If for m ≥ 1 we define the polynomials

P̃m(z) = 2N2m+1
∑

0≤k≤N

Pm,k( 1
2 )W N−k

m ( 1
2 )zk, (13.15)

then these polynomials P̃m have their coefficients in Z, since Pm,k is a polynomial
with integer coefficients of degree ≤ N22m

, and Wm is a polynomial with integer
coefficients of degree 2m − 1. Hence the product Pm,k W N−k

m is a polynomial with
integer coefficients of degree < N22m+1

. Furthermore the polynomials P̃m satisfy
‖P̃m‖ ≤ M2N2m+1

for m ≥ 1.
Then, defining β = B( 1

2 ), and putting z = 1
2 in Eq. (13.14) and z = B( 1

2 ) = β

in Eq. (13.15), we have

P̃m(β) = 2N2m+1
∑

0≤k≤N

Pm,k( 1
2 )W N−k

m ( 1
2 )B( 1

2 )k = 2N2m+1
W N

m ( 1
2 )R(2−2m

). (13.16)

Since the formal power series R(z) begins with a term in zN 2
, we can define

M ′ = max
0≤x≤ 1

2

|R(x)|
x N 2 .

Then we have

‖P̃m‖g−1|P̃m(β)| ≤ (M2N2m+1
)g−12N2m+1

W N
m ( 1

2 )|R(2−2m
)|

≤ Mg−1 M ′2gN2m+1
2−2m N 2

Hence

‖P̃m‖g−1|P̃m(β)| ≤ Mg−1 M ′2(2g−N )N2m
. (13.17)
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Since we chose N > 2g, Eq. (13.17) shows that

lim
m→∞‖P̃m‖g−1|P̃m(β)| = 0. (13.18)

But P̃m(β) �= 0 for m large enough. For if P̃m(β) were equal to zero for infinitely
many m, then Eq. (13.16) would imply that R(2−2m

) was zero for infinitely many
values of m. Then, by Theorem 13.4.1, R would be zero, which, in view of the
definition of R, would contradict the transcendence of the function B. This fact, the
fact that deg P̃m = N , Eq. (13.18), and Lemma 2.3.6 together prove that β cannot
be an algebraic number of degree g. �

13.5 Transcendence of Morphic Real Numbers

In this section, we prove that any irrational real number whose base-k expansion
consists of 0’s and 1’s, and is a fixed point of a morphism that is either primitive
or has constant length ≥ 2, is transcendental. We begin with a generalization of
Roth’s theorem, due to Ridout, that we state without proof.

Theorem 13.5.1 (Ridout) Let ξ �= 0 be a real algebraic number. Let ρ, c1, c2,

c3 be positive constants, and let λ and µ satisfy 0 ≤ λ,µ ≤ 1. Let r ′, r ′′ ≥ 0 be
integers, and suppose ω1, ω2, . . . , ωr ′+r ′′ are finitely many distinct primes. Assume
there exist infinitely many fractions pn/qn in lowest terms such that

∣
∣
∣
∣

pn

qn
− ξ

∣
∣
∣
∣ ≤ c1 |qn|−ρ .

Furthermore, suppose that pn and qn are not zero and can be written in the form

pn = p′
n

r ′∏

j=1

ω
e j

j , qn = q ′
n

r ′+r ′′∏

j=r ′+1

ω
e j

j ,

where the ei are non-negative integers that may depend on n, and the p′
n’s and q ′

n’s
are positive integers that may depend on n. Finally, suppose that

0 <
∣
∣p′

n

∣
∣ ≤ c2 |pn|λ , 0 <

∣
∣q ′

n

∣
∣ ≤ c3 |qn|µ

for all n ≥ 0. Then

ρ ≤ λ+ µ.

Note that the same hypotheses without the irreducibility of the fractions pn/qn

(i.e., there are infinitely many fractions pn/qn but they may be not irreducible) yield
the same conclusion.

Corollary 13.5.2 Let ξ be an irrational number. Suppose that, for every in-
teger n ≥ 0, the base-k expansion of ξ begins with 0.UnVnVnV ′

n, where Un

belongs to {0, 1, . . . , k − 1}∗, Vn belongs to {0, 1, . . . , k − 1}+, and the word V ′
n
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is a prefix of Vn. Furthermore suppose that limn→∞ |Vn| = ∞, and that there ex-
ist real numbers 0 ≤ α < ∞ and β > 0 such that lim supn→∞ |Un|/|Vn| = α and
lim infn→∞ |V ′

n|/|Vn| = β. Then ξ is a transcendental number.

Proof. Let rn = |Un|, sn = |Vn|, and s ′n = |V ′
n|, so lim supn→∞ rn/sn = α and

lim infn→∞ s ′n/sn = β. Define tn to be the rational number whose base-k expansion
is tn = 0.UnVnVnVn · · · . Hence tn = pn/krn (ksn − 1) for some integer pn . Note that

|ξ − tn| < 1

krn+2sn+s ′n
.

Now,

lim inf
n→∞

sn

rn + sn
=
(

lim sup
n→∞

rn + sn

sn

)−1

= 1

1 + α

and

lim inf
n→∞

rn + 2sn + s ′n
rn + sn

= 1 + lim inf
n→∞

sn

rn + sn
+ lim inf

n→∞
s ′n

rn + sn

≥ 1 +
(

1 + lim inf
n→∞

s ′n
sn

)(

lim inf
n→∞

sn

rn + sn

)

= 1 + (1 + β)
1

1 + α
.

Hence there exist two positive real numbers µ, ρ such that

1 + sn

rn + sn
< 1 + µ < ρ <

rn + 2sn + s ′n
rn + sn

(13.19)

for infinitely many n. With this choice of µ and ρ, let us take p′
n = pn , λ = 1,

c2 = 1, q ′
n = ksn − 1. Let us choose the primes ωr ′+1, · · · , ωr ′+r ′′ to be the prime

divisors of k. Finally, defining er ′+1, . . . , er ′+r ′′ by krn = ∏r ′+r ′′
i=r ′+1 ω

e j

j , we can apply
Ridout’s theorem and deduce that ρ ≤ λ+ µ, which contradicts Eq. (13.19). Hence
ξ is transcendental. (Note that the tn’s are not necessarily in their irreducible forms,
but there are an infinite number of them, since the sequence (tn)n converges to ξ ,
which is irrational from the hypothesis.) �

Now we are ready for a theorem giving the transcendence of some real numbers
whose base-k expansions are fixed points of morphisms.

Theorem 13.5.3 If the expansion of the real number ξ in some integer base k ≥ 2
is a non-ultimately-periodic fixed point of a morphism σ that either has constant
length or is primitive, and if furthermore this expansion contains an overlap, then
the number ξ is transcendental.

Proof. First, we note that we can suppose without loss of generality that 0 < ξ < 1.
We then write the base-k expansion of ξ as ξ = 0.U V V a, · · · , where U and V
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are finite words, and a is the first letter of V . Since the expansion of ξ is a fixed
point of the morphism σ , this expansion also begins with σ n(U )σ n(V )σ n(V )σ n(a)
for every n ≥ 1. We can apply the previous corollary with Un = σ n(U ), Vn =
σ n(V ), and V ′

n = σ n(a). What remains to prove is that |Vn| tends to infinity, that
lim supn→∞ |Un|/|Vn| < +∞, and that lim infn→∞ |V ′

n|/|Vn| > 0. These results are
consequences of the asymptotic behavior |σ n(W )| ∼ c(W )�n , where c(W ) is a
positive constant and � is the dominant eigenvalue of the incidence matrix of the
morphism σ , when σ is primitive; see Proposition 8.4.1. In the case where σ has
constant length d ≥ 2, then easily � = d, and c(W ) = |W |. �

We can now state a transcendence result for positive real numbers whose base-k
expansions are certain fixed points of morphisms.

Theorem 13.5.4 Let x be a positive irrational real number whose base-k expansion
is a fixed point of a morphism on the alphabet {0, 1}. If the morphism either has
constant length ≥ 2 or is primitive, then the number x is transcendental.

Proof. We can suppose that the number x satisfies 0 < x < 1. Let us suppose that x
is irrational. If the sequence of base-k digits of x contains an overlap, we can apply
Theorem 13.5.3, and the number x is transcendental. If this sequence contains no
overlap, we can apply Theorem 1.7.9 to conclude that this sequence is either the
Thue–Morse sequence beginning with 0 or the Thue–Morse sequence beginning
with 1: the morphism that fixes the sequence of digits of x is either of constant
length ≥ 2 or primitive, hence nontrivial. But then the number x is either the Thue–
Morse number t = 0.110100110010110 · · · or 2 − t , and we proved the number t
transcendental in Section 13.4 above. �

13.6 Transcendence of Characteristic Real Numbers

As we have seen in Section 9.1, with each irrational real number θ , 0 < θ < 1, we
can associate an infinite word of 0’s and 1’s, called the characteristic word. We can
consider the characteristic word as defining the base-b expansion of a real number.
A natural question is, are these numbers transcendental? The following theorem
shows that the answer is yes.

Theorem 13.6.1 Let θ be an irrational real number with 0 < θ < 1. Let its asso-
ciated characteristic word be

fθ = f1 f2 f3 · · · .
Let b be an integer ≥ 2, and define

α =
∑

i≥1

fi b
−i .

Then α is a transcendental number.
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Proof. The idea is to show thatα can be well approximated by rationals. The rational
numbers we use are those whose base-b expansions are of the form

0.Xi Xi Xi · · · ,

where Xi is the i th characteristic block, as defined in Section 9.1.
More precisely, let θ = [0, a1, a2, . . . ]. Define ci = [Xi ]b and di = b|Xi | − 1.

Then the base-b expansion of ci/di is easily seen to be 0.Xi Xi Xi · · · . Now we
know from Corollary 9.1.12 that for i ≥ 3 we have Xei

i is a prefix of Xi+2, where
ei = ai+1 + 1 + (qi−1 − 2)/qi . Hence we have

∣
∣
∣
∣α − ci

di

∣
∣
∣
∣ ≤ b−ei |Xi | ≤ (b|Xi | − 1)−ei = d−ei

i .

Now there are two cases to consider: (a) when ai+1 ≥ 2 for infinitely many i , and
(b) when ai+1 = 1 for all i sufficiently large.

In case (a), since ei ≥ ai+1 + 1, we have ei ≥ 3 for infinitely many i . Hence by
Roth’s theorem (Theorem 2.3.7), α is transcendental.

In case (b), we have ai+1 = 1 for all i sufficiently large. In this case, it is easy
to see that limi→∞ qi−1/qi = (

√
5 − 1)/2

.= 0.61803. Hence (qi−1 − 2)/qi ≥ 1
2 for

all sufficiently large i , and hence ei ≥ 5
2 for all sufficiently large i . Again by Roth’s

theorem, α is transcendental. �

13.7 The Thue–Morse Continued Fraction

An old, still-unsolved conjecture asserts that a positive real number whose contin-
ued fraction expansion has bounded partial quotients cannot be algebraic of degree
≥ 3, even in the case where the quotients are, say 1 and 2. In the case where these
quotients satisfy extra conditions some results are known. We will prove here
that the continued fraction [0, 1, 2, 2, 1, 2, 1, 1, 2, . . . ], whose partial quotients
are given by the Thue–Morse sequence on the alphabet {1, 2}, is transcendental.

First, we state (without proof) a theorem of W. Schmidt that we will need. We
recall the following definition: if ξ is a root of the minimal equation aξ 2 + bξ + c =
0, with a, b, c ∈ Z and gcd(|a|, |b|, |c|) = 1, the height H (ξ ) of ξ is defined by
H (ξ ) = max(|a|, |b|, |c|).

Theorem 13.7.1 (W. Schmidt) Let x be a real number in (0, 1). We suppose that
x is neither rational nor quadratic irrational. If there exist a real number B > 3
and infinitely many quadratic irrational numbers ξk such that

|x − ξk | < H (ξk)−B,

then x is transcendental.
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The following proposition will prove useful.

Proposition 13.7.2

(a) Let ξ ∈ (0, 1) be a number with periodic continued fraction expansion

ξ = [0, a1, a2, . . . , ak, a1, a2, . . . , ak, . . . ].

Then the (quadratic irrational) number ξ satisfies H (ξ ) ≤ qk.
(b) If x, y ∈ (0, 1] have the same first k partial quotients a1, a2, . . . , ak, then

|x − y| ≤ 1

q2
k

.

Proof. (a): We have ξ = [0, a1, a2, . . . , ak, ξ ]. Hence ξ = (ξpk + pk−1)/
(ξqk + qk−1), which gives

qkξ
2 + ξ (qk−1 − pk) − pk−1 = 0.

Since ξ ∈ (0, 1), we have pn ≤ qn for every n ≥ 1; hence

H (ξ ) ≤ max(qk, |qk−1 − pk |, pk−1) ≤ qk .

(b): Since pk/qk = [0, a1, a2, · · · , ak], we have |x − pk/qk | ≤ 1/qkqk+1 and
also |y − pk/qk | ≤ 1/qkqk+1. Furthermore x − pk/qk and y − pk/qk have the
same sign, and this sign depends only on k. Hence

|x − y| =
∣
∣
∣
∣

∣
∣
∣
∣x − pk

qk

∣
∣
∣
∣−

∣
∣
∣
∣y − pk

qk

∣
∣
∣
∣

∣
∣
∣
∣ ≤

1

q2
k

. �

Together with Schmidt’s theorem, Proposition 13.7.2 permits us to prove the
following theorem.

Theorem 13.7.3 Let ξ ∈ (0, 1) be an irrational number with continued fraction
expansion ξ = [0, a1, a2, . . . , an, . . . ]. We suppose that, for an infinite number
of k’s, the sequence (an)n≥1 begins with the word Uk Vk, where limk→∞ |Uk | =
+∞, the word Vk is a prefix of Uk, and lim infk→∞ (|Uk | + |Vk |)/|Uk | = γ ≥ 1.
Let M = lim supk→∞ q1/|Uk |

|Uk | and m = lim infk→∞ q1/|Uk Vk |
|Uk Vk | . If the inequality γ >

(3 log M)/(2 log m) holds, then the number ξ is transcendental.

Proof. Define ξk by the periodic continued fraction expansion

ξk = [0, a1, a2, . . . , a|Uk |, a1, a2, . . . , a|Uk |, . . . ].

Then by Proposition 13.7.2(a) we have H (ξk) ≤ q|Uk |. But the continued fraction
expansion of ξk actually begins with [0, a1, a2, . . . , a|Uk |, a1, a2, . . . , a|Vk |, . . . ], as
does the expansion of ξ . Hence by Proposition 13.7.2(b), we have |x − ξk | ≤
1/q|Uk Vk |2 .
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To apply Schmidt’s theorem, it suffices to show that there exists a B > 3 such
that q B

|Uk | < q2
|Uk Vk |. Namely, we then have

|x − ξk | ≤ 1

q2
|Uk Vk |

<
1

q B
|Uk |

≤ H (ξk)−B .

To prove the existence of such a B, it suffices to show that 3 log q|Uk | < 2 log q|Uk Vk |.
Indeed, this inequality is a consequence of the following inequalities:

2 lim inf
k→∞

log q|Uk Vk |
log q|Uk |

= 2 lim inf
k→∞

log q|Uk Vk |
|Uk Vk |

|Uk |
log q|Uk |

|Uk Vk |
|Uk |

≥ 2 lim inf
k→∞

log q|Uk Vk |
|Uk Vk |

1

lim sup
n→∞

log q|Uk |
|Uk |

lim inf
n→∞

|Uk Vk |
|Uk |

≥ 2γ log m

log M
> 3. �

Before applying the result to the Thue–Morse continued fraction, we prove two
properties of its denominators.

Proposition 13.7.4 Let pn/qn be the n th convergent to the continued fraction

[0, 1, 2, 2, 1, 2, 1, 1, 2, . . . ],

where the sequence of 1’s and 2’s is the Thue–Morse sequence on the alphabet
{1, 2} that begins with 1. Define the norm ‖ · ‖ to be the L2-norm on the 2 × 2
matrices. Define the matrices A and B by

A =
[

1 1
1 0

]

, B =
[

2 1
1 0

]

.

Then we have

(a) lim supn→∞ q1/n
n ≤ √‖AB‖;

(b) lim infn→∞ q1/5·2k

5·2k ≥ √
ρ(AB), where ρ(AB) is the spectral radius of the matrix AB,

as defined in Section 3.3.

Proof. (a): We have q0 = 1 and q−1 = 0, and hence
[

qn

qn−1

]

=
[

an 1
1 0

] [
an−1 1

1 0

]

· · ·
[

a1 1
1 0

] [
1
0

]

.

Since

∥
∥
∥
∥

[
1
0

]∥
∥
∥
∥ = 1, it follows that

∥
∥
∥
∥

[
q2n

q2n−1

]∥
∥
∥
∥ ≤

∥
∥
∥
∥

[
a2n 1
1 0

] [
a2n−1 1

1 0

]∥
∥
∥
∥ · · ·

∥
∥
∥
∥

[
a2 1
1 0

] [
a1 1
1 0

]∥
∥
∥
∥ .
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Now, since the Thue–Morse sequence on the alphabet {A, B} is a fixed point of the
morphism A −→ AB, B −→ B A, each of these products of two matrices is equal
either to AB or to B A. Noting that ‖B A‖ = ‖(AB)T ‖ = ‖AB‖, we see that the
corresponding norms are all equal to ‖AB‖. Hence

q2n, q2n−1 ≤
∥
∥
∥
∥

[
q2n

q2n−1

]∥
∥
∥
∥ ≤ ‖AB‖n.

We thus have

lim sup
n→∞

q1/(2n)
2n ≤

√
‖AB‖

and

lim sup
n→∞

q1/(2n−1)
2n−1 ≤

√
‖AB‖.

Hence assertion (a) is proved.
(b): First, notice that the set of 2 × 2 matrices M defined by

M =
{

M =
[

x y
z t

]

: x, y, z, t ∈ N, x ≥ y ≥ t, and x ≥ z ≥ t

}

is stable under multiplication and contains the matrices A and B; hence it contains
any product built with these two matrices.

Now, if we define the matrix C j to be A for j = 1 and B for j = 2, we see that
[

qn

qn−1

]

= Can Can−1 · · ·Ca1

[
1
0

]

.

Hence, if

Can Can−1 · · ·Ca1 =
[
αn βn

γn δn

]

,

then

2qn > qn + qn−1 = αn + γn ≥ αn + δn = Tr(Can Can−1 · · ·Ca1 ).

Let us define the matrices Yn and Zn by Y0 = A, Z0 = B, and, for n ≥ 0,
Yn+1 = Yn Zn and Zn+1 = ZnYn . Hence Y1 = AB, Z1 = B A, Y2 = AB B A, Z2 =
B AAB · · · . In particular Yn = Ca1Ca2 · · ·Ca2n , and Zn is obtained from Yn by in-
terchanging the A’s and B’s. We also note that

a1a2 · · · a5·2k = (a1 · · · a2k+1 )(a2k+1+1 · · · a2k+1+2k )

× (a2k+1+2k+1 · · · a2k+2 )(a2k+2 · · · a2k+2+2k+1 ),

so we have

Ca1Ca2 · · ·Ca5·2k = Yk+1 ZkYk Zk = Yk+1 ZkYk+1.
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We thus have

2q5·2k > Tr(Ca5·2k Ca5·2k−1
· · ·Ca1 ) = Tr((Ca1Ca2 · · ·Ca5·2k )T ) = Tr(Yk+1 ZkYk+1),

and to finish up the proof of assertion (b), it will suffice to prove that

lim inf
n→∞ (Tr(Yk+1 ZkYk+1))1/5·2k ≥

√
ρ(AB).

This is the purpose of the next lemma. �

Lemma 13.7.5 With the notation above, we have

lim inf
n→∞ (Tr(Yk+1 ZkYk+1))1/5·2k ≥

√
ρ(AB).

Proof. Let tk = Tr(Yk). We easily see that Tr(Zk) = tk for k ≥ 1. Since Yk and Zk

are 2 × 2 matrices of determinant 1 for k ≥ 1, the Cayley-Hamilton theorem gives,
for k ≥ 1,

Y 2
k = tkYk − I and Z2

k = tk Zk − I, where I =
[

1 0
0 1

]

.

Hence

Tr(Yk+1 ZkYk+1) = Tr(Y 2
k+1 Zk) = Tr((tk+1Yk+1 − I )Zk)

= tk+1Tr(Yk+1 Zk) − Tr(Zk)

= tk+1Tr(Yk Zk Zk) − Tr(Zk)

= tk+1Tr(Yk(tk Zk − I )) − Tr(Zk)

= tk+1tkTr(Yk Zk) − tk+1Tr(Yk) − Tr(Zk)

= tk+1tkTr(Yk+1) − tk+1tk − Tr(Zk)

= t2
k+1tk − tk+1tk − tk .

It is easily checked that matrices in M have two real eigenvalues, one of which
is non-negative. Since Yk has determinant +1 for k ≥ 1, we see that Yk has two
positive eigenvalues. Hence tk = Tr(Yk) ≥ ρ(Yk), where ρ(Yk) is the spectral radius
of the matrix Yk . In order to conclude, it suffices to prove that ρ(Yk) ≥ ρ(AB)2k−1

,
since this will imply first that tk goes to infinity, second that Tr(Yk+1 ZkYk+1) is
equivalent to t2

k+1tk when k goes to infinity, third that this last quantity is larger than
((ρ(AB))2k

)2(ρ(AB))2k−1 = (
√
ρ(AB))5·2k

, and we will be done.
The assertion ρ(Yk) ≥ ρ(AB)2k−1

is now proved by induction, using two re-
marks: first, for any symmetric matrix S we have ‖S‖ =

√
ρ(ST S) =

√
ρ(S2) =

ρ(S); hence for any matrix M and its transpose MT , we have ρ(M) ≤ ‖M‖ =√
ρ(MT M) =

√
‖MT M‖. Second, if k is odd, then Zk = Y T

k . Suppose we have
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proved that ρ(Y j ) ≥ ρ(AB)2 j−1
for all j ≤ 2k. Then, on one hand,

ρ(Y2k+1) = ρ(Y2k Z2k) = ρ(Y2k−1 Z2k−1 Z2k−1Y2k−1)

= ρ(Y 2
2k−1 Z2

2k−1)

= ρ(Y 2
2k−1(Y T

2k−1)2)

= ρ((Y 2
2k−1)(Y 2

2k−1)T )

≥ (ρ(Y 2
2k−1))2 = (ρ(Y2k−1))4

≥ (ρ(AB)22k−2
)4 = (ρ(AB))22k = (ρ(AB))2(2k+1)−1

,

and on the other hand

ρ(Y2k+2) = ρ(Y2k+1 Z2k+1)

= ρ(Y2k+1(Y T
2k+1))

≥ (ρ(Y2k+1))2

≥ ((ρ(AB))22k
)2

= (ρ(AB))2(2k+2)−1
. �

We are now ready for the main theorem of this section.

Theorem 13.7.6 Let x = [0, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, . . . ] ∈ (0, 1) be the
real number whose partial quotients a1, a2, . . . are given by the Thue–Morse se-
quence on {1, 2} that begins with 1. Then the number x is transcendental.

Proof. The Thue–Morse sequence we are looking at begins with 12212 and is the
fixed point beginning with 1 of the morphism σ defined by σ (1) = 12, σ (2) =
21. Hence, for any k ≥ 0, this sequence begins with σ k(12212) = σ k(122)σ k(12).
Define the words Uk and Vk by Uk = σ k(122) and Vk = σ k(12). Then Vk is a prefix
of Uk , since 12 is a prefix of 122. Furthermore |Uk | = 3.2k and |Vk | = 2k+1. Hence
|Uk | tends to infinity when k goes to infinity, and

γ = lim
k→∞

|Uk | + |Vk |
|Uk | = 5

3
.

Now the partial quotients of x have the property that

M = lim sup
k→∞

q1/|Uk |
|Uk | = lim sup

k→∞
q1/3.2k

3.2k ≤ lim sup
k→∞

q1/k
k ≤

√
‖AB‖

and

m = lim inf
k→∞

q1/|Uk Vk |
|Uk Vk | = lim inf

k→∞
q1/5·2k

5·2k ≥
√
ρ(AB),

by Proposition 13.7.4.
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To apply Theorem 13.7.3 and conclude, we only have to check that γ >

(3 log M)/(2 log m). But γ = 5
3 , M ≤ √‖AB‖, and m ≥ √

ρ(AB). We compute

AB =
[

3 1
2 1

]

.

Hence ρ(AB) = 2 +√
3 and

‖AB‖ =
√
ρ((AB)(AB)T ) =

√

ρ

([
10 7
7 5

])

=
√

15 +√
221

2
.

Hence

3 log M

2 log m
≤ 3 log

√‖AB‖
2 log

√
ρ(AB)

= 3 log ‖AB‖
2 log ρ(AB)

=
3
2 log

(
15+√

221
2

)

2 log(2 +√
3)

< 1.5397 < γ. �

13.8 Exercises

1. Let b, n be integers ≥ 2, and let a be an integer relatively prime to n with
1 ≤ a < n. Discuss the mean value and variance of the period of the base-b
expansion of a/n.

2. Let r = ∑
k≥0 2−2k

. Show r2 is a 2-automatic real.
3. Give an example of an irrational 2-automatic real number whose reciprocal is

also 2-automatic.
4. Show there are uncountably many Liouville numbers.
5. Find a quadratic equation with coefficients ≤ 30 in absolute value that has a

root α within 10−4 of
(a)

∑
n≥0 2−2n

;
(b)

∑
n≥0 10−2n

.

6. (Plouffe) Define x1 = 1
2 , and xn+1 = 2xn/(1 − x2

n ) for n ≥ 1. Define

f (x) =
{

1 if x < 0,

0 if x ≥ 0.

Show that
∑

i≥1 f (xi )/2i = arctan( 1
2 )/π .

7. Consider the set T of real numbers x that satisfy (a) 0 < x < 1 and (b) 1 − x ≤
{2k x} ≤ x for all k ≥ 0. Show that the Thue–Morse real number T is the
smallest accumulation point of T , as well as the smallest irrational point.

8. (D. Wilson) Compute the appearance function R′(n), n = 1, 2, 3, for the dec-
imal expansions of the fractional parts of π and e. What 1, 2, and 3-digit
sequences w maximize R′(w)?
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9. LetP be the probability that a randomly chosen language L over {0, 1} contains
at least one word of length i for all i ≥ 0. Here by “randomly chosen” we mean
that each word w appears in L with probability 1

2 . Show that P and T (the
Thue–Morse real number) are related.

10. Consider a game in which each of two players takes turns alternately specifying
the decimal digit of a number. Suppose the goal of one player is to specify an
irrational number. Then this player can win, for example, by specifying any
nonperiodic sequence. Suppose the goal is to specify a transcendental number.
Is there a winning strategy?

11. Suppose Ak := ∑
n≥1 1/(kn − 1) = ∑

n≥1 τ (n)/kn where τ is the number-of-
divisors function. Show that Ak is irrational for every integer k ≥ 2.

12. (Vanden Eynden)
(a) Give an example of a rational number x such that neither x nor

√
x contains the

digit 0 in its decimal expansion.
(b) Give an example of an irrational number with the same properties.

13. Show that g(1/b)2 �∈ L(k, b), where g(X ) = ∑
m≥1, n≥0 X (km−1)kn

.

14. Show that
∫∞

1 (
∑

k≥1 1/x2k
) dx

x+1 = γ , where γ
.= 0.57721566 is Euler’s

constant.
15. Fix an integer b ≥ 2. Define a real number to be primitive morphic real number

if some suffix of its base-b expansion is generated as the fixed point of some
primitive morphism.
(a) Show that the class of primitive morphic real numbers is closed under multiplica-

tion by a rational number.
(b) Show that the class of primitive morphic real numbers is not closed under

addition.

16. Give an example of a transcendental function that takes algebraic values at all
algebraic arguments.

17. Fix an integer k ≥ 2, and let α be a real number with 0 ≤ α < 1. Define Lα =
{w ∈ �∗

k : [0.w]k ≤ α}. Show that Lα is a regular language if and only if α is
rational.

18. Let k ≥ 2 be an integer, and let M = (Q, �k, δ, q0, F) be a DFA. Let D(M)
be the set of real numbers α, 0 ≤ α ≤ 1, such that M accepts every prefix of
the base-k representation of α. Show that the measure of D(M) is a rational
number.

19. Let k be an integer ≥ 2. A real number α is said to be normal to base k if in
its base-k representation every finite sequence of digits x occurs with limiting
frequency k−|x |.
(a) Suppose k, l are integers ≥ 2 that are multiplicatively dependent. Show that if α

is normal to base k, then it is normal to base l.
(b) Show that the real number 0.123456789101112131415 · · · obtained by concate-

nating the base-10 representations of the integers together in increasing order is
normal to base 10.
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(c) Show that the real number 0.2357111317192329 · · · obtained by concatenating
the base-10 representations of the prime numbers together in increasing order is
normal to base 10.

(d) Show that the number
∑

n≥0 3−2n
2−32n

is normal to base 2, and give an explicit
description of its continued fraction expansion.

(e) Construct an irrational real number that is not normal to any base k ≥ 2.

20. Prove that
∑

n≥1
n squarefree

n2−n is irrational.

21. Let t = t0t1t2 · · · be the Thue–Morse sequence, and let α be the unique real
root in the interval (1, 2) of the equation 1 = ∑

n≥1 ti x−i . Prove that α is trans-
cendental.

22. Show how to handle the small problem at the end of the proof of Lemma 13.1.4.
23. In analogy with the set of real numbers L(k, b), define P(k, p) to be the

set of p-adic numbers
∑

i≥−i0
ai pi such that the sequence (ai )i≥0 is k-

automatic. Prove the analogues of Theorems 13.1.3, 13.1.5, and 13.1.6 for
P(k, p).

13.9 Open Problems

1. Prove or disprove: every number whose base-b expansion is a morphic sequence
is either rational or transcendental. (Remarks: This conjecture, together with its
more restricted form where we consider only k-automatic sequences instead of
general morphic sequences, is the most difficult and important open problem
in the area. Partial results have been given above in Section 13.5. See the Notes
to Section 13.4 below for more information about the k-automatic case.)

2. Provide an explicit example of an automatic real r �= 0 such that 1/r is not auto-
matic. (Remark: Applying Corollary 13.2.4 gives three numbers, at least one
of which fulfills the desired conditions, but currently we do not know which.)

3. Show that log 2 is not a 2-automatic real. (Remark: Perhaps the identity log 2 =
∑

n≥1 1/(n · 2n) will prove useful.)
4. Show that π is not a 2-automatic real. (Remark: Perhaps the identity

π =
∑

n≥0

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)(
1

16

)n

,

due to Bailey, Borwein, and Plouffe [1997], will prove useful.)
5. In the novel Microserfs by Douglas Coupland, there is a scene where the two

main characters recite the decimal digits of π in unison. The digits they say
are 470183890341. Where is the first occurrence of this block of digits in the
decimal expansion of π? (Remark: The web site http://pi.nersc.gov
allows you to search for patterns in the base-2 expansion of π .)

6. Consider the class of real numbers whose base-k expansion is a morphic se-
quence. Is it true that this class is closed under addition? Multiplication?
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7. Let b1, b2 ≥ 2 be multiplicatively independent integers. Prove or disprove:
L(k, b1)∩ L(k, b2) = Q.

8. Consider the real number r whose base-2 expansion is given by hω(0), where
h maps 0 → 010, and 1 → 11. Is r transcendental?

9. Consider the Thue–Morse real number T , with expansion
0.0110100110010110 · · · in base 2. Let the continued fraction expansion of T
be [a0, a1, a2, . . . ]. Are the ai unbounded? (Remark. A calculation reveals the
large partial quotient a95 = 867374.)

10. Consider the number
∑

n≥0 (−1)tn/(n + 1)
.=

0.39876108810841881240743054 · · · , where (tn)n≥0 is the Thue–Morse sequ-
ence. Find an expression for this number in terms of known constants.

11. (Mahler) Let (ei )i≥1 be an infinite sequence over {0, 1} that is not ultimately
periodic. Prove or disprove: at least one of the two numbers

∑
n≥1 en2−n ,

∑
n≥1 en3−n is transcendental. (Remarks: See Mendès France [1980]; in con-

versation he attributes this question to Mahler.)
12. Prove or disprove: the numbers Ak of Exercise 11 are normal in base k. Are

these numbers k-automatic?
13. Prove or disprove: the number

∑
n≥0 tn/n! is transcendental, where t =

t0t1t2 · · · is the Thue–Morse sequence.
14. Find an explicit example of a k-automatic real number x such that 1/x is not

k-automatic.

13.10 Notes on Chapter 13

Turing’s paper is Turing [1936]. For more on Turing computable reals, see, for
example, Pour-El and Richards [1989]. Hartmanis and Stearns [1965] suggested
that real numbers could be classified according to the computational complexity
of their base-k expansions. They asked whether there exist any irrational algebraic
numbers that can be computed in real time, a question that is still open.

13.1 Corollary 13.1.7, the fact that the k-automatic reals form a vector space over
Q, is due to Lehr [1993]. Also see Lehr, Shallit, and Tromp [1996].

For alternative models of real numbers accepted by finite automata, see
Even [1964] and Hartmanis and Stearns [1967].

13.2 For Theorem 13.2.1, see Lehr, Shallit, and Tromp [1996].
13.3 The number F = ∑

n≥0 2−2n
is sometimes called the “Fredholm number”,

although Fredholm apparently never studied it. Our proof of the transcendence
of F is due to Knight [1991]. For other proofs, see Kempner [1916]; Blumberg
[1926]; Mahler [1929]; Loxton and van der Poorten [1978]; Nishioka [1996,
Thm. 1.1.2]. Nishioka [2001] proved more general results about algebraic
independence.

13.4 For Theorem 13.4.1 see, e.g., Rudin [1966, Thm. 10.18].
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Mahler [1929] proved that if F(x) := ∏
n≥0

(
1 − x2n)

, then F(α) is tran-
scendental for all algebraic numbers α with 0 < α < 1. In particular, this
gives Theorem 13.4.2. Our proof is essentially that of Dekking [1977], as
corrected with a personal communication from Dekking. As mentioned by
Dekking in his paper, this proof was inspired by a paper of Cobham [1968a],
which was a step towards proving that all numbers in L(k, b) are either ratio-
nal or transcendental. This last assertion was approached by Cobham [1968b]
(who incorrectly claimed a proof) and Loxton and van der Poorten [1982,
1988], but the general result has not been fully proved yet. Unfortunately,
some papers (e.g., Morton and Mourant [1991]) and books (e.g., Wolfram
[2002]) cite Loxton and van der Poorten’s work as if it constituted a complete
proof of the assertion about the nonalgebraic character of numbers in L(k, b).

Note that the transcendence over Q(X ) of the Thue–Morse power series
B(X ) can be deduced from more general results. Carlson [1921] proved that
a power series with integer coefficients that converges inside the unit disk
either is a rational function or has the unit circle as natural boundary, and
hence cannot be algebraic irrational. Another result, due to Szegő [1922],
states that a power series with only finitely many different coefficients that
converges inside the unit disk either is a rational function or has the unit circle
as natural boundary.

Mahler [1987] proved that, for any polynomial P , with P(0) = 1 and
P(1) = 0, and for any integer g ≥ 2, the infinite product

∏
k≥0 P(zgn

) con-
verges, for |z| < 1, to a function admitting the unit circle as natural boundary,
and hence transcendental.

13.5 For Ridout’s theorem, see Ridout [1957] or Mahler [1961, p. 147] The results
in this section are based on the work of Ferenczi and Mauduit [1997] and
Allouche and Zamboni [1998]. Portions of these results were obtained inde-
pendently, using a different method, by Nishioka, Tanaka, and Wen [1999].

13.6 Theorem 13.6.1 is due to Böhmer [1926]. It has been rediscovered many
times. For more details, see the Notes to Section 9.3. A weaker result was
found by Knuth [1964]; compare Corollary 9.3.3.

Using Exercise 9.12, the series in Theorem 13.6.1 is closely related to
∑

n≥1�nθ�Xn , which was studied by Hecke [1921], Hardy and Littlewood
[1923a, 1923b], Mahler [1929], Loxton and van der Poorten [1977c, 1977d],
and Masser [1999].

13.7 For Schmidt’s theorem, see W. Schmidt [1967]. The results in this section
are based on work of Queffélec [1998, 2000]. Also see Allouche [2000] and
Allouche, Davison, Queffélec, and Zamboni [2001].
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Multidimensional Automatic Sequences

In Chapter 5 we defined the notion of automatic sequence, and in later chapters we
explored the properties of these sequences. By definition, an automatic sequence
is a one-sided, one-dimensional sequence. But one-dimensional infinite arrays of
items are not the only such objects studied in mathematics; two-dimensional arrays
(also called tables or double sequences; we use these terms interchangeably) are
studied, as well as higher-dimensional objects. In this chapter we will examine a
generalization of automatic sequences to a multidimensional setting, concentrating
on the two-dimensional case. The interested reader will have no problem extending
the results to the multidimensional case.

14.1 The Sierpiński Carpet

We start with an example.

Example 14.1.1 Consider the two-dimensional Sierpiński carpet array s =
(si, j )i, j≥0 over {0,1}, defined as follows: si, j = 0 if and only if the base-3 ex-
pansions of i and j share at least one 1 in an identical position. More precisely,
let 0 ≤ i, j < 3n , and let x = an−1 · · · a0, y = bn−1 · · · b0 be strings of length n
such that [x]3 = i , [y]3 = j . Then si, j = 0 if and only if there exists an index s,
0 ≤ s < n, such that as = bs = 1.

Here are the first 9 rows and columns of this array:

A =


















1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1


















. (14.1)
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Figure 14.1: The Array s, the Sierpiński Carpet.

The Sierpiński carpet has a visually interesting pictorial interpretation, if we let
0 represent a white square and 1 represent a black square. Figure 14.1 displays the
first 243 rows and columns of s.

The array s can be generated by a deterministic finite automaton with output that
takes as input the base-3 expansions of i and j , and outputs si, j . Of course, we have
to say more precisely how two different numbers can be simultaneously fed into
the automaton.

Consider the automaton given in Figure 14.2. It accepts as input a string of
pairs of symbols chosen from {0,1}. The input is intended to represent the base-3
expansion of i (in the first entries) and j (in the second entries). Note that here
representations are input starting with the most significant digit, and the shorter of
the two representations is padded with leading zeros if necessary.

For example, to determine s4,11, we expand 4 and 11 in base 3, obtaining 011
and 102, respectively. Then we input

[0,1][1,0][1,2]

and get 1 as output.
The array s can also be generated by iterating a morphism. Now, however, our

morphism must be two-dimensional, that is, it must map every symbol to a square
array of symbols.
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Figure 14.2: Automaton for the Sierpiński Carpet.

Figure 14.3: Iterating Haferman’s Morphism.

Consider the morphism h defined as follows:

1 →



1 1 1
1 0 1
1 1 1



 , 0 →



0 0 0
0 0 0
0 0 0





Then s can be generated by iterating h, starting with the symbol 1; that is, s = hω(1).
For example, h2(1) gives the array in Eq. (14.1).

Example 14.1.2 Even simple two-dimensional morphisms, when iterated, can pro-
duce astounding results. Consider the following example, due to J. Haferman: let a
matrix-valued morphism be defined by

0 →



1 1 1
1 1 1
1 1 1



 , 1 →



0 1 0
1 0 1
0 1 0



 .

We then obtain, after five iterations, the picture in Figure 14.3.
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14.2 Formal Definitions and Basic Results

In this section we formally define our model of multidimensional automatic se-
quence. First, we extend our notation (n)k and [w]k , introduced in Section 3.1, to
pairs of integers and pairs of strings.

Let k, l be integers ≥ 2, and let w be a string over the alphabet

�k ×�l = {0,1, . . . , k − 1} × {0,1, . . . , l − 1}.
If

w = [a1, b1][a2, b2] · · · [a j , b j ],

then we define [w]k,l = ([a1 · · · a j ]k, [b1 · · · b j ]l). Similarly, we define (m, n)k,l as
follows: if (m)k = a1 · · · ai , and (n)l = b1 · · · b j , then

(m, n)k,l =
{

[0, b1] · · · [0, b j−i ][a1, b j−i+1] · · · [ai , b j ] if j ≥ i,

[a1,0] · · · [ai− j ,0][ai− j+1, b1] · · · [ai , b j ] if i > j .

We can also generalize the notion of k-fiber to two dimensions (and higher). If
a = (am,n)m,n≥0 is a double sequence defined over �, then Ik,l(a, d) = {(m, n)k,l :
am,n = d}.

A two-dimensional [k, l]-DFAO is a 6-tuple M = (Q, �, δ, q0,�, τ ), where

Q is a finite nonempty set of states;
� = {0, 1, . . . , k − 1} × {0, 1, . . . , l − 1};
δ : Q ×� → Q is the transition function;
q0 is the initial state;
� is the output alphabet; and
τ : Q → � is the output mapping.

If k = l then we sometimes write k-DFAO as shorthand for [k, k]-DFAO.
We say that such a DFAO generates the two-dimensional array (ui, j )i, j≥0 if

for all m, n ≥ 0, and all w ∈ �k ×�l such that [w]k,l = (m, n), we have um,n =
τ (δ(q0, w)). We say a two-dimensional array u is [k, l]-automatic if there is a [k, l]-
DFAO generating it. If k = l, then we sometimes say u is k-automatic.

Just as in Section 5.2, we can show that this definition is robust, in the sense
that it does not matter whether the input is read beginning with the least- or most-
significant digit. More precisely, we have

Theorem 14.2.1 The two-dimensional array (ui, j )i, j≥0 is [k, l]-automatic if
and only if there exists a DFAO (Q, �k ×�l, δ, q0,�, τ ) such that ui, j =
τ (δ(q0, (i, j)R

k,l)) for all i, j ≥ 0.

Proof. Left to the reader. �
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We can also generalize the notion of k-kernel to two-dimensional arrays. We
write

Kk,l(u) = {(uka ·m+r,la ·n+s)m,n≥0 : a ≥ 0, 0 ≤ r < ka, 0 ≤ s < la}

for a two-dimensional array u = (un,m)m,n≥0. If k = l, we sometimes write Kk

instead of Kk,k .

Theorem 14.2.2 The two-dimensional array u = (un,m)m,n≥0 is [k, l]-automatic if
and only if the [k, l]-kernel Kk,l(u) is finite.

Proof. (Sketch.) =⇒: Suppose that (un,m)m,n≥0 is [k, l]-automatic. Then it can be
proved (in analogy with Theorem 5.2.3) that there exists a DFAO (Q, �, δ, q0,�, τ )
such that

um,n = τ
(
δ
(
q0, (m, n)R

k,l[0, 0]t
))

for all t ≥ 0. Now let w be a word over ({0, 1, 2, . . . , k − 1} × {0, 1, . . . , l − 1})∗
such that

|w| = a and [w]k,l = (i, j).

Define q = δ(q0, w
R). Since for (m, n) �= (0, 0) we have

((ka · m + i, la · n + j))k,l = (m, n)k,lw,

it follows that

δ(q0, (ka · m + i, la · n + j)R
k,l) = δ(δ(q0, w

R), (m, n)R
k,l)

= δ(q, (m, n)R
k,l),

except possibly when (m, n) = (0, 0).
Hence, except possibly at (m, n) = (0, 0), the subsequence (uka ·m+i,la ·n+ j )m,n≥0

is accepted by the same [k, l]-DFAO, but with q replacing q0 as the start state.
Hence |Kk,l(u)| is finite.

⇐=: Follow Theorem 6.6.2. �

Similarly, we can generalize the notion of uniform morphism to two dimensions
(and higher). If

A = (ai j ) 0≤i<m
0≤ j<n

is an m × n matrix with entries in�, and ϕ : � → �k×l is a [k, l]-uniform matrix-
valued morphism, i.e., a map sending each letter in � to an k × l matrix, then ϕ(A)
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is a km × ln matrix given by







ϕ(a00) ϕ(a01) · · · ϕ(a0,n−1)
ϕ(a10) ϕ(a11) · · · ϕ(a1,n−1)

...
...

. . .
...

ϕ(am−1.0) ϕ(am−1,1) · · · ϕ(am−1,n−1)







.

Theorem 14.2.3 The sequence (um,n)m,n≥0 is [k, l]-automatic if and only if it is the
image (under a coding) of a fixed point of a [k, l]-morphism.

Proof. Imitate the proof of Theorem 6.3.2. �

The following theorem gives a method for generating [k, l]-automatic two-
dimensional arrays:

Theorem 14.2.4 Let (am)m≥0 be a k-automatic sequence over an alphabet �1,
and (bn)n≥0 be an l-automatic sequence over an alphabet �2. Let f be any func-
tion mapping�1 ×�2 → �. Then c = ( f (am, bn))m,n≥0 is a [k, l]-automatic two-
dimensional array.

Proof. Since a = (am)m≥0 is k-automatic, it follows that Kk(a) is finite, say Kk(a) =
{(aki m+r )m≥0 : (i, r ) ∈ S} for some finite set S. Similarly, since b = (bn)n≥0, it fol-
lows that Kl(b) is finite, say Kl(b) = {(bl j n+s)n≥0 : ( j, s) ∈ T } for some finite set
T . It now follows immediately that

Kk,l(c) ⊆ {( f (aki m+r , bl j n+s))m,n≥0 : (i, r ) ∈ S, ( j, s) ∈ T },
which is clearly finite. �

Example 14.2.5 Consider the sequence w := 010110010110011010 · · · from
Exercise 1.49. If we define f (x, y) = (x + y) mod 2, then we get a two-dimen-
sional 3-automatic sequence A = (ai, j )i, j≥0, part of which is portrayed in Fig-
ure 14.4. Wegner called this “Reverend Back’s abbey floor”.

We now show that the class of k-automatic two-dimensional arrays is closed
under periodic indexing. We also show that taking the generalized diagonal of a
k-automatic two-dimensional array yields a k-automatic sequence.

Theorem 14.2.6 Let s = (sm,n)m,n≥0 be a k-automatic two-dimensional array.
Then:

(a) If a, b, c, d, e, f are integers with a, b, d, e ≥ 0, the two-dimensional array

(sam+bn+c,dm+en+ f )m,n≥0
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Figure 14.4: Reverend Back’s Abbey Floor.

is also k-automatic (where, as usual, entries corresponding to negative indexes are
deemed to be 0).

(b) If a, b, c, d are integers with a, c ≥ 0, the sequence (san+b,cn+d )n≥0 is k-automatic.

Proof. (a): It is possible to prove this using a method similar to the proof of Theo-
rem 6.8.1, but here we sketch a different proof.

The idea is to use the technique of Theorem 6.8.6. Roughly speaking, on in-
put (m, n)R

k , we transduce the input to (am + bn + c, dm + en + f )R
k before pro-

cessing it with the DFAO for s. A slight complication comes from the fact that
am + bn + c, for example, may have more digits than m. We can get around this
problem by simulating an input followed by some fixed number of trailing zeros
(that may depend on a, b, c, d, e, f ), and using a theorem similar to Theorem 5.2.4.

(b): The same idea used for (a) works. On input (n)R
k , we transduce the input to

(an + b, cn + d)R
k before processing it with the DFAO for s. �

We give a sort of converse of this theorem below.

Theorem 14.2.7 Let (sm,n)m,n≥0 be a two-dimensional array with values in a fi-
nite set such that there exist two integers a ≥ 1 and b ≥ 1 for which all the se-
quences (sam+c,bn+d)m,n≥0 with c ∈ {0, 1, . . . , a − 1}, d ∈ {0, 1, . . . , b − 1} are k-
automatic for some integer k ≥ 2. Then the two-dimensional array (sm,n)m,n≥0 itself
is k-automatic.

Proof. Our proof will mimic the proof of the analogous claim for the one-dimen-
sional case. We first note that it suffices to prove the following assertions.

(a) If (wam+c,n)m,n≥0 is k-automatic for every c ∈ {0, 1, . . . , a − 1}, then (wm,n)m,n≥0 is
k-automatic.
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(b) If (wm,bn+d )m,n≥0 is k-automatic for every d ∈ {0, 1, . . . , b − 1}, then (wm,n)m,n≥0 is
k-automatic.

If (a) and (b) are proved, let (sm,n)m,n≥0 be a sequence that has the prop-
erty given in Theorem 14.2.7 above. Then for every fixed d ∈ [0, b − 1] the se-
quence (sam+c,bn+d)m,n≥0 is k-automatic for any c ∈ [0, a − 1]. By (a) the sequence
(sm,bn+d)m,n≥0 is k-automatic for all d ∈ [0, b − 1]. Now, (b) implies that (sm,n)m,n≥0

is k-automatic.
We conclude the proof by showing the validity of (a) and (b). It suffices to prove

(a). Suppose that, for some integer k ≥ 2, for some integer a ≥ 2, and for every
c ∈ {0, 1, . . . , a − 1}, the sequence (wam+c,n)m,n≥0 is k-automatic. To prove that the
sequence w = (wm,n)m,n≥0 itself is k-automatic, we have to prove that its k-kernel,
i.e., the set of subsequences

{(wkαm+β,kαn+γ )m,n≥0 : α ≥ 0, 0 ≤ β, γ ≤ kα − 1}
is finite. Therefore it suffices to prove that there are only finitely many sequences
of the form

(wkα(am+c)+β,kαn+γ )m,n≥0

with c ∈ {0, 1, . . . , a − 1}, α ≥ 0, and 0 ≤ β, γ ≤ kα − 1. Write kαc + β = ax +
y, with 0 ≤ y ≤ a − 1. We have ax ≤ ax + y = kαc + β < kα(c + 1) ≤ akα.
Hence x < kα, i.e., x ≤ kα − 1. Then wkα(am+c)+β,kαn+γ = wakα(m+x)+y,kαn+γ . The
numbers x and y do not depend on (m, n), but only on α, β, and c. Furthermore,
y ≤ a − 1 and x ≤ kα − 1.

Hence the sequence (wa(kαm+x)+y,kαn+γ )m,n≥0 is in the k-kernel of the sequence
(wam+y,n)m,n≥0, which ensures there are only finitely many possibilities. More pre-
cisely, there are finitely many sequences (wam+y,n)m,n≥0 (0 ≤ y ≤ a − 1), and each
of them is k-automatic. �

Here is another method for generating [k, l]-automatic two-dimensional arrays
in the case k = l:

Theorem 14.2.8 Let s = (si )i≥0 be a k-automatic sequence. Then (sam+bn+c)m,n≥0

is a k-automatic two-dimensional array.

Proof. As in the proof of Theorem 14.2.6, on input (m, n)R
k , we transduce this input

to (am + bn + c)R
k before feeding it into the DFAO for s. �

14.3 Subword Complexity

One can generalize the notion of subword complexity for infinite sequences, as dis-
cussed in Chapter 10, to the two-dimensional case. If x is an infinite two-dimensional
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array, then for integers m, n ≥ 0 we define px(m, n) to be the number of distinct
m × n blocks appearing in x.

Theorem 14.3.1 Let h be a [k, l]-uniform matrix-valued morphism, prolongable
on a letter a ∈ �. Let τ : � → � be a coding, and define x = τ (hω(a)). Given
integers m, n ≥ 1, define c = 1 + max(� log m

log k �, � log n
log l �). Then px(m, n) ≤ d4kclc,

where d = Card �.

Proof. Let r, s be integers such that kr−1 ≤ m < kr and ls−1 ≤ n < ls . Then c =
max(r, s). Let b = x[i..i + m − 1, j.. j + n − 1] be any subblock of dimension m ×
n. Define e = �i/kc� and f = � j/ lc�. If M is defined to be the 2 × 2 matrix x[e..e +
1, f.. f + 1], then hc(M) = x[kce..kc(e + 2) − 1, lc f..lc( f + 2) − 1], and hence
contains b as a subblock. It follows that b is completely determined by the 4 entries
of M and the position of b within hc(M). Hence we find px(m, n) ≤ d4kclc, as
desired. �

Corollary 14.3.2 The subword complexity of the two-dimensional k-automatic ar-
ray x satisfies px(m, n) = O(max(m, n)2).

Proof. Let k = l. Then from Theorem 14.3.1 we get px(m, n) ≤ d4k2c. But

k2c = k2 max(r,s) ≤ k2 max(1+ log m
log k ,1+ log n

log k ) ≤ k2 max(m, n)2.

It follows that px(m, n) ≤ d4k2 max(m, n)2. �

14.4 Formal Power Series

We can also generalize Theorem 12.2.5, the Christol theorem, to the multidi-
mensional case. The proper generalization uses multivariate power series. Let
(um,n)m,n≥0 be a double sequence over a field F ; then its associated formal power
series is

G(X, Y ) =
∑

m≥0
n≥0

um,n XmY n ∈ F[[X, Y ]].

We say that G is algebraic if (as before) there exist polynomials p0, p1, . . . , pr ∈
F[X, Y ] such that

∑

0≤i≤r

pi (X, Y )Gi (X, Y ) = 0.

Theorem 14.4.1 Let p be a prime number. The sequence (um,n)m,n≥0, over �,
is p-automatic if and only if there exists an integer n ≥ 1 and an injective map
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b : � → G F(pa) such that
∑

m≥0
n≥0

b(um,n)XmY n

is algebraic over G F(pa)[X, Y ].

Proof. Mimic the proof of Theorem 12.2.5. �

We give an interesting corollary:

Theorem 14.4.2 Let q = pt , p prime, t ≥ 1. Let

G(X, Y ) =
∑

m≥0
n≥0

gm,n XmY n

be a formal power series in G F(q)[[X, Y ]] representing an algebraic function
(algebraic over G F(q)[X, Y ]). Then the diagonal series

D(Z ) =
∑

m≥0

gm,m Zm

is also algebraic (over G F(q)[Z ]).

Proof. Let G be algebraic. Then the double sequence g = (gm,n)m,n≥0 is p-
automatic. Hence the p-kernel

K p(g) = {(gpa ·m+r,pa ·n+s)m,n≥0 : a ≥ 0, 0 ≤ r < pa, 0 ≤ s < pa}
is finite. Hence the set

S = {(gpa ·m+r,pa ·m+r )m≥0 : a ≥ 0, 0 ≤ r < pa}
is finite. Define um = gm,m and u = (um)m≥0. Then K p(u) = S is finite. Hence u
is automatic, and so, from Theorem 12.2.5,

∑

m≥0

um Zm =
∑

m≥0

gm,m Zm

is algebraic over G F(q)[Z ]. �

14.5 Automatic Sequences in Base −1 + i

As we have seen in Theorem 3.10.5, every Gaussian integer x + yi can be repre-
sented essentially uniquely in the form

x + yi =
∑

0≤ j<r

e j (−1 + i) j ,
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where e j ∈ �2 = {0,1}. (By “essentially uniquely”, we mean that er−1 �= 0 if
(x, y) �= (0, 0).)

Thus for sequences defined over Z[i] we can define a notion of (−1 + i)-
automatic sequence, in analogy with k-automatic sequences for integer k ≥ 2. Such
a sequence is accepted by an automaton that takes as input the expansion of x + yi
in base−1 + i and outputs an element of�. Similarly, for a sequence a = (az)z∈Z[i]

defined over � and an element d ∈ �, we can can define the fiber I−1+i (a, d) to be
the set {(z)−1+i : az = d}.

In this section we sketch a proof of the following

Theorem 14.5.1 The sequence (az)z∈Z[i] from the Gaussian integers to a finite set
� is computable by a finite automaton (i.e., is (−1 + i)-“automatic”) if and only
if each of the four double sequences

a1 := (am+ni )m,n≥0;
a2 := (a−m+ni )m,n≥0;
a3 := (am−ni )m,n≥0;
a4 := (a−m−ni )m,n≥0

is 2-automatic.

Proof. As in the proof of Theorem 5.3.2, it suffices to

(a) create a transducer to convert from two base-2 representations to a single base-(−1 + i)
representation; and

(b) show that we can determine, using a finite-state machine, to which quadrant a given
(−1 + i)-representation belongs.

Here is an outline of the argument assuming (a) and (b) have been completed. If
(az)z∈Z[i] is (−1 + i)-automatic over an alphabet �, then the fibers I−1+i (a, d) are
regular languages for d ∈ �. Further, the partitions of these fibers corresponding
to each quadrant, e.g.,

I++
−1+i = {(z)−1+i : az = d and *(z) ≥ 0,.(z) ≥ 0},

I+−
−1+i = {(z)−1+i : az = d and *(z) ≥ 0,.(z) ≤ 0},

I−+
−1+i = {(z)−1+i : az = d and *(z) ≤ 0,.(z) ≥ 0},

I−−
−1+i = {(z)−1+i : az = d and *(z) ≤ 0,.(z) ≤ 0}

are also regular. Now, the inverse transduction of each of these sets (converting
each representation in base −1 + i to a pair of base-2 representations) is regular.
Hence each of the double sequences a1, a2, a3, and a4 is 2-automatic.

On the other hand, if the four double sequences are 2-automatic, then each of the
fibers I2(a1, d), I2(a2, d), I2(a3, d), and I2(a4, d) is regular, for all d ∈ �. Hence the
transductions of these sets into the corresponding representations in base −1 + i



416 Multidimensional Automatic Sequences

are regular. The unions of the fibers corresponding to the four quadrants are regular,
and hence the sequence (az)z∈Z[i] is (−1 + i)-automatic. This completes the sketch
of the argument.

Now we describe a transducer M = (Q, �, δ, q0,�, τ ) that converts its input
from base 2 to base−1 + i . (Actually, there are four separate transducers, depending
on the quadrant of the input. These transducers differ only in the choice of the initial
state. However, it is easier to speak of there being only one transducer.)

The transducer is fed with the the base-2 expansion of the absolute values of x
and y, least significant bit first, and it outputs the base-(−1 + i) representation of
z := x + iy, least significant bit first. We write

|x | = [ar−1ar−2 · · · a1a0]2,

|y| = [br−1br−2 · · · b1b0]2,

and the input to the transducer is a sequence of pairs of bits:

[a0, b0] [a1, b1] · · · [ar−1, br−1].

The output is e0e1 · · · e2r−1, where

z =
∑

0≤ j<2r

e j (−1 + i) j .

This transducer has 32 states. We define

Q = {0, 1} × {−1, 1} × {−1, 1} × {0, 1} × {0, 1},
� = �2 ×�2,

� = �2.

Each state of Q is of the form (d, sx , sy, cx , cy), where d governs whether the
first entry (x) or the second entry (y) is the real part, sx governs the sign of x , sy

governs the sign of y, cx is the carry bit for x , and cy is the carry bit for y. The
initial state depends on the sign of x and y, as follows:

q0 =






(0,+1,+1, 0, 0) if x ≥ 0, y ≥ 0,

(0,−1,+1, 0, 0) if x < 0, y ≥ 0,

(0,+1,−1, 0, 0) if x ≥ 0, y < 0,

(0,−1,−1, 0, 0) if x < 0, y < 0.

The idea is for the automaton to keep track of z j , where z0 = z and

z j+1 = z j − t j

−2i
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for j ≥ 0. Here t j is defined as follows, where z j = x j + y j i :

t j =






0 if x j ≡ 0, y j ≡ 0 (mod 2),

i if x j ≡ 0, y j ≡ 1 (mod 2),

1 if x j ≡ 1, y j ≡ 0 (mod 2),

−1 + i if x j ≡ 1, y j ≡ 1 (mod 2).

In fact, the transducer is designed so that the automaton has read

[a0, b0] [a1, b1] · · · [as−1, bs−1]

(with

[as, bs] [as+1, bs+1] · · · [ar−1, br−1]

yet to be read), then we are in state (d, sx , sy, cx , cy), where

zs =
{

([ar−1 · · · as]2 + cx )sx + ([br−1 · · · bs]2 + cy)syi if d = 0,

([ar−1 · · · as]2 + cx )sx i + ([br−1 · · · bs]2 + cy)sy if d = 1.

Note that it is possible to compute ts from knowledge of as, cx , bs, cy alone. For
we have, for d = 0,

xs ≡ as + cx (mod 2),

ys ≡ bs + cy (mod 2),

while for d = 1 we have

xs = bs + cy (mod 2),

ys = as + cx (mod 2).

We define

δ
((

0, sx , sy, cx , cy
)
, [as, bs]

)
:= (

1, s ′x , s ′y, c′x , c′y
)
,

where

(s ′x , s ′y) =






(1,−1) if (sx , sy) = (1, 1),

(1, 1) if (sx , sy) = (1,−1),

(−1,−1) if (sx , sy) = (−1, 1),

(−1, 1) if (sx , sy) = (−1,−1),

and

(as + cx )sx + (bs + cy)syi − ts
−2i

= c′x s ′x i + c′ys ′y.

We also define

δ
((

1, sx , sy, cx , cy
)
, [as, bs]

)
:= (

0, s ′x , s ′y, c′x , c′y
)
,
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where

(s ′x , s ′y) =






(−1, 1) if (sx , sy) = (1, 1),

(−1,−1) if (sx , sy) = (1,−1),

(1, 1) if (sx , sy) = (−1, 1),

(1,−1) if (sx , sy) = (−1,−1),

and

(as + cx )sx i + (bs + cy)sy − ts
−2i

= c′x s ′x + c′ys ′yi.

It can be verified that 0 ≤ c′x , c′y ≤ 1. The output map τ is given by

τ
((

0, sx , sy, cx , cy
)
, [as, bs]

) =






00 if as + cx ≡ 0; bs + cy ≡ 0 (mod 2),

11 if as + cx ≡ 0; bs + cy ≡ 1 (mod 2),

10 if as + cx ≡ 1; bs + cy ≡ 0 (mod 2),

01 if as + cx ≡ 1; bs + cy ≡ 1 (mod 2),

and

τ
((

1, sx , sy, cx , cy
)
, [as, bs]

) =






00 if as + cx ≡ 0; bs + cy ≡ 0 (mod 2),

11 if as + cx ≡ 1; bs + cy ≡ 0 (mod 2),

10 if as + cx ≡ 0; bs + cy ≡ 1 (mod 2),

01 if as + cx ≡ 1; bs + cy ≡ 1 (mod 2).

Note that the base-(−1 + i) expansion of a Gaussian integer x + iy may be
slightly longer than twice the length of the base-2 expansion of max(x, y). This
means that in order to properly convert from base 2 to base −1 + i , we need to
append leading zeros to the expansion (or, since we work with the least significant
digit first, trailing zeros). However, by Exercise 3.41(b), we only need to append a
constant number of zeros.

To complete the proof, it suffices to show that we can determine the sign of the
real and imaginary parts of z with a finite automaton, given the expansion (z)−1+i

in base −1 + i .
To do this, we break the representation (z)R

−1+i = e0e1e2 · · · er−1 into groups of
size 8, possibly padding with leading zeros at the right (most significant bit), if
necessary:

e0e1 · · · e7
∥

A0

e8 · · · e15
∥

A1

e16 · · · e23
∥

A2

· · ·

· · ·

e8k · · · e8k+7
∥

Ak

Next, we create a dictionary mapping each 8-bit pattern f = f0 f1 f2 · · · f7 to

(sgn*([ f ]−1+i ), sgn.([ f ]−1+i ))
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as follows:

1 −1 + i −2i 2 + 2i −4 4 − 4i 8i −8 − 8i sgn* sgn.
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 1 0 0 +1
0 0 0 0 0 0 1 1 −1 0
0 0 0 0 0 1 0 0 +1 −1
...

...
...

...
...

...
...

...
...

1 1 1 1 1 1 1 1 −1 −1

Next, we build a finite automaton that computes the above mapping for each 8-bit
group A0 A1 · · · Ak . Then the correct quadrant is given by the last (i.e., rightmost)
nonzero sign in each component. For example,

A0

(0,+1)

A1

(+1,−1)

A2

(0,−1)

A3

(0,+1) → (+1,+1).

The proof is easy and is left to the reader. �

Example 14.5.2 Use the transducer above to convert 43 + 24i to base −1 + i :

(43)2 = 101011,

(24)2 = 011000.

The input is then

[1,0] [1,0] [0,0] [1,1] [0,1] [1,0],

and the states and outputs are:

State zi Input Output

(0, 1, 1, 0, 0) z0 = 43 + 24i [1,0] 10
(1, 1,−1, 0, 0) z1 = 21i − 12 [1,0] 11

(0,−1,−1, 0, 0) z2 = −10 − 6i [0,0] 00
(1,−1, 1, 0, 0) z3 = −5i + 3 [1,1] 01
(0, 1, 1, 1, 1) z4 = 3 + 2i [0,1] 10

(1, 1,−1, 0, 1) z5 = i − 1 [1,0] 01
(0,−1,−1, 0, 0) z6 = 0

Hence the representation of 43 + 24i in base −1 + i is 100110001101.

Example 14.5.3 Convert 1 − i . The input is (note that we need to add leading
zeros)

[1,1] [0,0] [0,0],
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and the states and inputs are:

State zi Input Output

(0, 1,−1, 0, 0) z0 = 1 − i [1,1] 01
(1, 1, 1, 1, 1) z1 = i + 1 [0,0] 01

(0,−1, 1, 0, 1) z2 = i [0,0] 11
(1,−1,−1, 0, 0) z3 = 0

Hence the representation of 1 − i in base −1 + i is 111010.

14.6 The Pascal Triangle Modulo d

In this section we study the two-dimensional array defined by taking the Pascal
triangle modulo d, where d is an integer ≥ 2, i.e., the two-dimensional sequence((m

n

))
m,n≥0

, with as usual
(m

n

) = 0 if m < n. We begin with a general theorem.

Theorem 14.6.1 Let R(X ), G(X ) be two polynomials in R[X ], where R is a finite
commutative ring with unit element. Suppose that there exists an integer k ≥ 2
such that R(Xk) = Rk(X ). Then the sequence (sm,n)m,n≥0 defined by G(X )R(X )n =
∑

m≥0 sm,n Xm is k-automatic.

Proof. The sequence s = (sm,n)m,n≥0 is k-automatic if and only if its k-kernel is
finite. Clearly, this is equivalent to the existence of a set of sequences S such that:

the set S is finite;
the sequence s belongs to S;
the set S is invariant under the maps ϕu,v defined for 0 ≤ u, v ≤ k − 1 and any sequence
w = (wm,n)m,n≥0 by

ϕu,v
(
(wm,n)m,n≥0

) = (
(wkm+u,kn+v)m,n≥0

)
.

Now, if H is a polynomial in R(X ), say H (X ) = ∑
bn Xn , define "u(H ),

for 0 ≤ u ≤ k − 1, to be the polynomial "u(H )(X ) = ∑
bkn+u Xn (see Defini-

tion 12.2.1). Note that deg "u(H ) ≤ deg H
k , and for two polynomials A and B we

have "u(A(X )B(Xk)) = B(X )"u(A(X )) (see Eq. (12.3)).
Now the sequence s = (sm,n)m,n≥0 is defined by G(X )R(X )n = ∑

m≥0 sm,n Xm .
Let M = deg G + (k − 1)deg R, and let S be the set

S :=
{

a = (am,n)m,n≥0; ∃H ∈ R[X ], deg H ≤ M ;

∑

m≥0

am,n Xm = H (X )R(X )n

}

.
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As H belongs to a finite set of polynomials (the ring R is finite), the set S is
finite. This set contains the sequence R (take H = G). Let us prove that S is stable
under the maps ϕu,v. Let a = (am,n)m,n≥0 be a sequence in S, and let H be such
that H (X )R(X )n = ∑

m≥0 am,n Xm for all n ≥ 0. Then for all v ≤ k − 1 and for all
integers n we have that

H (X )R(X )kn+v =
∑

m

am,kn+vXm =
∑

0≤u<k

Xu
∑

m

akm+u,kn+vXkm .

On the other hand, H (X )R(X )kn+v = (H (X )R(X )v)(R(Xk))n . Hence

"u(H Rv)Rn =
∑

m

akm+u,kn+vXm .

Since deg"u(H Rv) ≤ M+(k−1)deg R
k ≤ M , and k ≥ 2, we deduce that the sequence

(akm+u,kn+v)m,n≥0 belongs to S. �

We now state the main theorem of this section.

Theorem 14.6.2 The sequence
((n

m

)
mod d

)
m,n≥0

is k-automatic if and only if the
integers d and k are powers of the same prime number p. In this case the sequence
is p j -automatic for any j ≥ 0.

Proof. We first prove that, if d = p� for some prime number p and some � ≥ 1,
then the sequence

((n
m

)
mod d

)
m,n≥0

is p-automatic (and thus p j -automatic for

any j ≥ 1). We know (see Exercise 2.29) that the polynomial R(X ) := (1 + X )p�−1

has the property that R(X p) ≡ R p(X ) (mod p�). Hence, applying Theorem 14.6.1
with R := Z/p�Z, R(X ) := (1 + X )p�−1

, G(X ) := (1 + X )t , and k := p, we get

∑

m

sm,n Xm ≡ G(X )R(X )n ≡ (1 + X )p�−1n+t ≡
∑

m

(
p�−1n + t

m

)

Xm (mod p�),

and the sequence

((
p�−1n + t

m

)

mod p�
)

m,n≥0

is p-automatic for every t ≥ 0. This holds in particular for every t ∈ [0, p�−1 − 1].
Hence, applying Theorem 14.2.7, we have that the sequence

((n
m

)
mod p�

)
m,n≥0

is
p-automatic.

Let us now prove that the sequence
((n

m

)
mod d

)
m,n≥0

is not k-automatic for any
k ≥ 2 if d ≥ 2 is not a prime power. We distinguish two cases.
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Case 1: The integer d is divisible by two distinct odd primes. We note the follow-
ing formula, valid on the rational numbers (see Exercise 2.28):

∑

t≥0

(
2t

t

)

Xt = (1 − 4X )−
1
2 .

Hence, defining the formal power series F(X ) := ∑
t≥0

(2t
t

)
Xt , we have

(1 − 4X )F(X )2 − 1 = 0.

As this relation holds in Z[[X ]], it also holds in Z/pZ[[X ]] for every prime number
p. This proves that the series F is algebraic over the field of rational functions
Z/pZ(X ). Furthermore, if p �= 2, this series is not rational: if we had F = P

Q for

two polynomials P and Q in Z/pZ[X ], P and Q coprime, then (1 − 4X )P2 = Q2,
hence Q2 would divide 1 − 4X . This would imply that Q is a constant polynomial,
and give the desired contradiction.

Hence, from Theorem 12.2.5, the sequence (
(2t

t

)
mod p)t≥0 is p-automatic, and

it is not ultimately periodic if p is an odd prime number.
Now suppose that the sequence (

(n
m

)
mod d)m,n≥0 is k-automatic for some inte-

ger k ≥ 2. Therefore the one-dimensional sequence (
(2t

t

)
mod d)t≥0 is k-automatic

(Theorem 14.2.6(b)). Let p1 and p2 be two different odd prime divisors of d. By
“projection”, (i.e., using the canonical map from Z/dZ to Z/p1Z that consists
of “re-reducing” modulo p1), the sequence (

(2t
t

)
mod p1)t≥0 is k-automatic. From

what precedes we know that this sequence is p1-automatic and not ultimately pe-
riodic. Hence, from Theorem 11.2.2, k is necessarily a power of p1.

In the same way k must be a power of p2, which is a contradiction.
Case 2: The integer d is equal to 2a pb, where p is an odd prime, and a, b ≥ 0.

Here we will study the coefficients
(3t

t

)
mod 2. The previous method does not work,

since the sequence (
(2t

t

)
mod 2)t≥0 is ultimately periodic.

Remember that Lucas’s theorem asserts that if n and t have binary expansions
respectively given by n = ∑

q≥0 nq2q with nq ∈ {0, 1}, and t = ∑
q≥0 tq2q with

tq ∈ {0, 1}, then
(

t

n

)

≡
∏

q≥0

(
tq
nq

)

mod 2.

Using this theorem and defining the sequence u = (ut )t≥0 by

ut :=
(

3t

t

)

mod 2,

the reader can check that the following relations hold for all t :

u2t = ut , u4t+1 = ut , u4t+3 = 0.
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Hence the sequence is 2-automatic, since its 2-kernel is equal to

{(ut )t≥0, (u2t+1)t≥0, 0}.

Furthermore, defining the formal power series G in Z/2Z[[X ]] by

G(X ) =
∑

t≥0

ut X t ,

the previous relations imply that

XG3 + G + 1 = 0.

This proves that the formal power series G is algebraic over the field of rational
functions Z/2Z(X ), which is not a surprise (Theorem 12.2.5). We can use this
relation to prove that G is not a rational function (i.e., the sequence u is not ultimately
periodic). If we had G = P

Q for two polynomials in Z/2Z[X ], P and Q coprime,
then

X P3 + P Q2 + Q3 = 0.

Hence Q divides X . If Q is constant, we obtain

X P3 + P + 1 = 0,

which is not possible (compute the degrees). If Q = X , we get

X P3 + X2 P + X3 = 0;

hence

P3 + X P + X2 = 0.

That would imply that X divides P , which is not possible, since P and Q are
coprime.

Now suppose that the sequence (
(n

m

)
mod d)m,n≥0 is k-automatic for some integer

k ≥ 2, and remember that d = 2a pb. By the same reasoning as in the first case,
k must be a power of p. On the other hand, the hypothesis implies that the one-
dimensional sequence (

(3t
t

)
mod d)t≥0 is k-automatic (Theorem 14.2.6(b)). Hence,

by projection, the sequence (
(3t

t

)
mod 2)t≥0 is k-automatic. Since it is 2-automatic

and not ultimately periodic, using Cobham’s theorem again, we have that k must
be a power of 2, which is impossible. �
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14.7 Exercises

1. A two-dimensional infinite array A

a00 a01 a02 a03 · · ·
a10 a11 a12 a13 · · ·
a20 a21 a22 a23 · · ·
a30 a31 a32 a33 · · ·

...
...

...
...

. . .

can be “linearized” as follows:

A′ = a00a01a10a02a11a20a03a12a21a30 · · ·
Show that if A is two-dimensional k-automatic, then the sequence A′ need not
necessarily be k-automatic.

2. Give an example of a two-dimensional infinite array such that all its rows and
columns are k-automatic, but the array itself is not k-automatic.

3. Suppose A = (Ai, j )i, j≥0 is the table of 0’s and 1’s such that the i th row is the
base-2 representation of i , starting with the least significant digit. The first six
rows and columns are as below:

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
1 0 1 0 0 0

Show that A is not k-automatic for any k.
4. Consider the matrix-valued morphism on {−1, 1} defined by

ϕ(1) =
(

1 1
1 −1

)

, ϕ(−1) =
(−1 −1
−1 1

)

.

(a) Define Hn = ϕn(1) = (mi, j )0≤i, j<2n . Show that mi, j = (−1)e, where e =
∑

0≤t<n it jt and [in−1 · · · i1i0]2 = i , [ jn−1 · · · j1 j0]2 = j .
(b) Show that Hn is a Hadamard matrix, i.e., that Hn H T

n = 2n I , where I is the identity
matrix. Conclude that det Hn = ±2n·2n−1

.
(c) Show that 2n/2 is an eigenvalue of Hn .
(d) Suppose vn = [a0a1 · · · a2n−1], where ai = (−1 +√

2)s2(i), and s2 as usual denotes
the sum of the base-2 digits. Show that vn is an eigenvector of Hn .

(e) Define maps T0 and T1 that take k-element vectors to 2k-element vectors as follows:
T0([v]) = [Concat(v, v)], T1([v]) = [Concat(v,−v)]. Let vn,i denote the i th row
of the matrix Hn (we index starting with row 0). Suppose [in−1 · · · i1i0]2 = i . Show
that vn,i = Tin−1 (Tin−2 (· · · Ti1 (Ti0 ([1])) · · · )).
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5. Show how to construct an infinite square array over {0,1,2} such that each of
its rows and columns constitutes an infinite squarefree word.

6. Show how to construct an infinite square array over {0,1,2,3,4} such that
each of its rows, columns, and diagonals constitutes an squarefree word.

7. Suppose we define the generalized k-kernel of an infinite array (am,n)m,n≥0 to
be all subarrays of the form (aki m+a,k j n+b)m,n≥0 for i, j ≥ 0 and 0 ≤ a < ki ,
0 ≤ b < k j . Give an example of a k-automatic sequence whose generalized
k-kernel is infinite.

8. Consider the matrix-valued morphism ϕ, where

0 →
[

0 0
0 1

]

, 1 →
[

0 0
0 0

]

.

Let M be the fixed point of ϕ. Show that for i ≥ 0, row i of M is purely periodic
with minimal period length 2ν2(i+1).

9. Give an example of a two-dimensional infinite array over a finite alphabet in
which each row and column is purely periodic, but the array is not k-automatic
for any k.

10. Prove a two-dimensional analogue of Cobham’s theorem (Theorem 11.2.1).
11. Let � = {0,1} and let ϕ be the matrix-valued morphism defined by

0 →
[

1 0
0 1

]

, 1 →
[

0 1
1 0

]

.

Let w be the infinite array obtained by iterating ϕ on 0. Let pw(n), the “subarray
complexity”, be defined as the number of distinct n × n subarrays contained
in w. Let t be the Thue–Morse sequence; then determine if pw(n) = npt(n) for
all positive integers n.

12. Show that the Sierpiński carpet s cannot be obtained as the outer product
( f (am, bn))m,n≥0 for two 3-automatic sequences (am)m≥0 and (bn)n≥0.

14.8 Open Problems

1. Can an analogue of Theorem 14.5.1 be proved for base-(−k + i), k ≥ 2?
2. (Currie) Does there exist an infinite two-dimensional array over a finite alphabet,

a = (ai, j )−∞<i, j<∞, such that every line (aci+d,ei+ f )i∈Z (where c, d, e, f are
integers with c, e �= 0) is squarefree?

3. A finite or infinite two-dimensional array over {0,1} is rectilinearly connected
if there is a finite path of 1’s from every 1 to every other 1 using only horizontal
or vertical steps. Given a two-dimensional morphism h that is prolongable on a
letter a, is it decidable whether hω(a) is rectilinearly connected?
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14.9 Notes on Chapter 14

14.1 The Sierpiński carpet can be found in Sierpiński [1916] and Mandelbrot [1983,
p. 144]. For generalizations, see Reiter [1994].

For applications of two-dimensional automatic sequences to computer
graphics, see Shallit [1988b]; Berstel and Nait Abdallah [1989]; Berstel and
Morcrette [1989]; Mozes [1989]; Shallit and Stolfi [1989]; Barbé [1993].

For applications to tiling problems, see Salon [1989a]; Allouche and Salon
[1990].

14.2 Array-valued morphisms were studied by Siromoney and Subramanian [1985]
and Siromoney [1987].

For Reverend Back’s abbey floor, see Wegner [1982]; Siromoney and
Subramanian [1983].

Theorem 14.2.3, the extension of Cobham’s theorem to the two-dimen-
sional case, was proved by Černý and Gruska [1986a, 1986b] (who called
two-dimensional automatic sequences “modular trellises”) and Salon [1986,
1987, 1989b], independently.

For another generalization of multidimensional automatic sequences, see
Tamura [2000].

14.3 Allouche and Berthé [1997] studied the subword complexity of the two-
dimensional array (

(m
n

)
mod d)m,n≥0. This was generalized by Berthé [2000a]

to the subword complexity of the two-dimensional patterns generated by one-
dimensional linear cellular automata. Also see Berthé and Vuillon [2000a].

Nivat has conjectured the following analogue of Theorem 10.2.6: if there
exists a pair (m, n) that pw(m, n) ≤ mn, then w has a periodicity vector.
This conjecture is still open; for partial results see Epifanio, Koskas, and
Mignosi [1999]. Cassaigne [1999b] classified the two-dimensional arrays
with subword complexity mn + 1. Also see Cassaigne [2000].

Peyrière [1987] studied the frequencies with which particular blocks appear
in automatic two-dimensional arrays.

14.4 The material in this section is due to Salon [1986, 1987, 1989b]. Theorem
14.4.2 is originally due to Deligne [1984], who proved the result for any
field of positive characteristic; our proof is due to Salon. A proof using a
generalization of the notion of kernel in the case of an infinite field of positive
characteristic was given independently by Sharif and Woodcock [1988] and
Harase [1988]; see also the survey of Allouche [1989].

For rational functions defined over Z/mZ and two-dimensional automatic
sequences, see von Haeseler and Petersen [1998].

14.5 Theorem 14.5.1 is taken nearly verbatim from Allouche, Cateland, Gilbert,
Peitgen, Shallit, and Skordev [1997].

Previously, Salon [1989b] had proved a special case of Theorem 14.5.1:
namely, that the sum-of-digits function in base −1 + i is two-dimensional
2-automatic, when reduced modulo 2.
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14.6 Theorem 14.6.2 was originally proved (with different terminology) by Korec
[1990]; a different proof was given by Allouche, von Haeseler, Peitgen, and
Skordev [1996]. This was generalized to the two-dimensional patterns gener-
ated by one-dimensional linear cellular automata by Allouche, von Haeseler,
Lange, Petersen, and Skordev [1997]. The reader can also consult the papers
of von Haeseler, Peitgen and Skordev [1993, 1995]; Barbé, von Haeseler,
Peitgen, and Skordev [1995]; and Barbé, Peitgen, and Skordev [1999].



15

Automaticity

In this chapter we consider approximation of formal languages by regular languages,
and approximation of sequences by automatic sequences.

15.1 Basic Notions

Most functions are not polynomials, but we can approximate a function by poly-
nomials. In the limit, we get a power series expansion for the function.

Similarly, most languages are not regular, but we can approximate languages by
regular languages. More precisely, we say a language L ′ is an nth-order approxi-
mation to a language L if

L ∩�≤n = L ′ ∩�≤n;

we recall that �≤n = {ε} ∪� ∪ · · · ∪�n . We define AL (n), the automaticity of
L , to be the number of states in a smallest DFA accepting some nth-order ap-
proximation to L .1 We measure the size of a DFA by counting the number of its
states.

Example 15.1.1 Let L = {0n1n : n ≥ 0}. The automaton in Figure 15.1 shows that
AL (6) ≤ 8. (In fact, one can show that AL (6) = 7.)

Our first theorem proves some basic results about automaticity.

Theorem 15.1.2 Let L ⊆ �∗ be a language. Then:

(a) For all n ≥ 0 we have AL (n) ≤ AL (n + 1).
(b) L is regular if and only if AL (n) = O(1).
(c) AL (n) = AL (n).

1 We say “a smallest” rather than “the smallest” because there may be many such DFAs.

428
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0 0 0

110, 1
0, 1

1 1 11

0

0
0

Figure 15.1: Automaton Accepting 6th-Order Approximation to {0n1n : n ≥ 0}.

Proof. (a): If L ′ is an (n + 1)th-order approximation to L , then it is also an nth-order
approximation to L .

(b): Suppose L is regular. Then L is accepted by a DFA with r states for some
r ≥ 1. Then AL (n) ≤ r for all n ≥ 0, so AL (n) = O(1).

On the other hand, if AL (n) = O(1), then by part (a) we know that there exist
r, n0 such that AL (n) = r for all n ≥ n0. Hence for all n ≥ n0 there exists a DFA
Mn with r states such that L(Mn) is an nth-order approximation to L . Since there
are only a finite number of distinct DFAs with r states and input alphabet �, there
must be a DFA M such that Mn = M for infinitely many n. Then L(Mn) = M for
infinitely many n, and hence L(M) is an nth-order approximation to L for infinitely
many n. Thus L(M) = L .

(c): If M = (Q, �, δ, q0, F) is a DFA with r states accepting an nth-order ap-
proximation to L , then M ′ = (Q, �, δ, q0, Q \ F) is a DFA with r states accepting
an nth-order approximation to L . �

We now introduce the notion of n-similar and n-dissimilar strings. Let x, y ∈ �∗.
We say x is n-similar to y, and write x ∼n y, if for all z ∈ �∗ with |xz|, |yz| ≤ n
we have xz ∈ L if and only if yz ∈ L . If x, y are not n-similar, then they are n-
dissimilar. Note that ∼n is, in general, not an equivalence relation; see Exercise 1.
However, under some conditions ∼n behaves like an equivalence relation, as the
following lemma shows.

Lemma 15.1.3 If x ∼n w and x ∼n y and |x | ≤ max(|w|, |y|), then w ∼n y.

Proof. Assume, contrary to what we want to prove, that there exists z with
|wz|, |yz| ≤ n, and without loss of generality, that wz ∈ L and yz �∈ L . There are
two cases to consider, depending on whether |x | ≤ |w| or |x | ≤ |y|.

If |x | ≤ |w|, then |xz| ≤ |wz|. But |wz| ≤ n by hypothesis, so |xz| ≤ n. Now
x ∼n w by hypothesis, and wz ∈ L , so xz ∈ L . But then x �∼n y, a contradiction.
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If |x | ≤ |y|, then |xz| ≤ |yz|. Again, |yz| ≤ n by hypothesis, so |xz| ≤ n. But
x ∼n y by hypothesis, and yz �∈ L , so xz �∈ L . But wz ∈ L and |wz| ≤ n, so x �∼n

w, a contradiction. �

Theorem 15.1.4 Let � be a finite alphabet and let L ⊆ �∗. Then for all integers
n ≥ 0, AL (n) is the maximum possible cardinality of a set of pairwise n-dissimilar
strings.

Proof. Let r be the maximum possible cardinality of a set of pairwise n-dissimilar
strings. Then there exists a set S = {w1, w2, . . . , wr } of pairwise n-dissimilar
strings.

First we prove that r ≤ AL (n). This inequality is clearly true if r = 1, since
every DFA has at least one state. Hence assume r > 1. Suppose there is a DFA
M = (Q, �, q0, δ, F) such that L(M) is an nth-order approximation to L and M
has < r states. Then there exist distinct i, j such that δ(q0, wi ) = δ(q0, w j ). But
then for all z we have δ(q0, wi z) = δ(q0, w j z), so for all z we have wi z ∈ L if and
only if w j z ∈ L . Hence wi ∼n w j , a contradiction.

Now we prove r ≥ AL (n). We show how to construct a DFA M with r states
such that L(M)∩�≤n = L ∩�≤n . For 1 ≤ i ≤ r we define w′

i to be a shortest
word such that w′

i ∼n wi ; then |w′
i | ≤ |wi |.

We claim there is no word w′′
i such that |w′′

i | < |w′
i | and w′′

i ∼n w
′
i . For if there

were, then by Lemma 15.1.3 we would havewi ∼n w
′′
i , contradicting the definition

of w′
i . Next, we prove that for all i, j with i �= j we have w′

i �∼n w
′
j . Assume

w′
i ∼n w

′
j . Then by Lemma 15.1.3 wi ∼n w

′
j . But w′

j ∼n w j and Lemma 15.1.3
together give wi ∼n w j , a contradiction. Thus S′ = {w′

1, w
′
2, . . . , w

′
r } is also a set

of pairwise n-dissimilar words.
We observe that |w′

i | ≤ n for 1 ≤ i ≤ r . For if not, then |w′
i | > n and hence

trivially w′
i ∼n ε. But 0 = |ε| < |w′

i |, a contradiction.
We now define a DFA M = (Q, �, δ, q0, F) as follows: we set Q =

{q1, q2, . . . , qr }. We define δ as follows: for each i , 1 ≤ i ≤ r , and each a ∈ �,
we choose a j , 1 ≤ j ≤ r , such that w′

i a ∼n w
′
j . Such a j always exists because S′

is a maximal set of pairwise n-dissimilar words. There may be more than one such j ,
in which case we choose one arbitrarily. We then define δ(qi , a) := q j . We choose
a k such that ε ∼n wk , and define q0 := qk . Finally, we define F := {qi :w′

i ∈ L}.
We claim that L(M)∩�≤n = L ∩�≤n .

First, we extend the domain of δ to Q ×�∗ in the usual way. We now prove
by induction of |w| that if δ(q0, w) = q j , then w ∼n w

′
j . This is clear for |w| = 0.

Now assume the result is true for all strings of length < i ; we prove it for |w| = i .
Writew = xa with x ∈ �∗, a ∈ �. By induction δ(q0, x) = q j , where x ∼n w

′
j . We

also have |w′
j | ≤ |x |. Now xa ∼n w

′
j a and |w′

j a| ≤ |xa|. We have δ(q j , a) = qk for
some k, 1 ≤ k ≤ r . Thenw′

j a ∼n w
′
k . Now from Lemma 15.1.3 we havew′

k ∼n xa.
But δ(q0, xa) = qk , and the result follows.
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Now suppose w ∈ L(M)∩�≤n . By the definition of acceptance in a DFA, there
exists q j ∈ F such that δ(q0, w) = q j . From the preceding paragraph we have
w ∼n w

′
j , and sowz ∈ L if and only ifw′

j z ∈ L , for all z with |wz|, |w′
j z| ≤ n. Set

z = ε, and observe that q j ∈ F implies that w′
j ∈ L . Since |w| ≤ n, it follows that

w ∈ L .
On the other hand, suppose w ∈ L ∩�≤n . Then there exists an integer i such

that qi = δ(q0, w), sow ∼n w
′
i . Hencewz ∈ L if and only ifw′

i z ∈ L , for all z with
|wz|, |w′

i z| ≤ n. Take z = ε. Then w′
i ∈ L , so qi ∈ F , and w ∈ L(M). The proof

is now complete. �

As an application of Theorem 15.1.4, consider the following.

Example 15.1.5 Let L = {0n1n : n ≥ 0}. Then AL (k) ≥ 2n + 1 for k = 2n, 2n +
1, because {ε,0,00, . . . ,0n} forms a pairwise (2n + 1)-dissimilar set of strings.
To see this, consider 0 j and 0k for 0 ≤ j < k ≤ n. Then 0 j 1 j ∈ L , but 0 j 1k �∈ L .

The following is a basic result on automaticity.

Theorem 15.1.6 Let L ⊆ �∗ be a nonregular language. Then AL (n) ≥ (n + 3)/2
for infinitely many non-negative integers n.

Proof. Assume the contrary. Since AL (n) is an increasing function of n by Theo-
rem 15.1.2 (a), there exists an integer n0 such that AL (n) < (n + 3)/2 for all n > n0.
Since n is an integer, AL (n) ≤ (n + 2)/2 for all n > n0. By Theorem 15.1.2(b) we
know AL (n) is unbounded, so there exists r > n0 such that AL (r + 1) > AL (r ).
Let Mr and Mr+1 be DFAs with AL (r ) and AL (r + 1) states, respectively, such
that L(Mr ) is an r th-order approximation to L and L(Mr+1) is an (r + 1)th-
order approximation to L . Since AL (r + 1) > AL (r ), there must be a shortest
word w accepted by one of Mr , Mr+1 that is rejected by the other. Clearly
|w| = r + 1. By Exercise 4.5 we have r + 1 ≤ AL (r ) + AL (r + 1) − 2. Hence
r + 1 ≤ (r + 2)/2 + (r + 3)/2 − 2 = r + 1

2 , a contradiction. �

15.2 Nondeterministic Automaticity

We may define an analogue of deterministic automaticity for nondeterministic au-
tomata. We define NL (n) to be the number of states in a smallest NFA accepting
some nth-order approximation to L .

The following theorem gives the basic properties of nondeterministic automa-
ticity:

Theorem 15.2.1 Let L be a language. Then

(a) for all n ≥ 0 we have NL (n) ≤ NL (n + 1);
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(b) L is regular if and only if NL (n) = O(1);
(c) for all n ≥ 0 we have NL (n) ≤ AL (n) ≤ 2NL (n).

Proof. Left to the reader as Exercise 4. �

It is indeed possible for NL to be exponentially smaller than AL , as the following
example shows:

Example 15.2.2 Let PAL = {x ∈ {0,1}∗ : x = x R}, the language of palindromes
over {0,1}, and let UNPAL = PAL, the language of nonpalindromes. Then
APAL(n) = �(2n/2), as it is easy to see that all strings of length �n/2� form a pair-
wise n-dissimilar set. Hence AUNPAL(n) = �(2n/2) by Theorem 15.1.4. However,
we can prove NUNPAL(n) = �(n). The lower bound comes from Theorem 15.2.1
(c). For the upper bound, we can create a DFA with O(n) states that accepts an
nth-order approximation to UNPAL, as follows: we use a “counter” in the range
[0, n/2] to guess a position of a symbol in the first half of the string that is different
from the corresponding symbol in the second half. Once a position is guessed, the
input symbols are processed until we guess and verify that a mismatch has actually
occurred. The construction for n = 9 is given in Figure 15.2.
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Figure 15.2: Plan for NFA Accepting nth-Order Approximation to UNPAL.
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Often number theory is useful in bounding NL (n). Consider the following
example.

Example 15.2.3 Let EQ = {x ∈ {0,1}∗ : |x |0 = |x |1}, the language of strings
with the same number of 0’s as 1’s, and let UNEQ = EQ. It is easy to prove
that AEQ(n) = AUNEQ(n) = n + 1 for n ≥ 0. We now prove that NUNEQ(n) =
O((log n)2/(log log n)). To nondeterministically accept an nth-order approxima-
tion, it suffices to guess a small prime p, and compute |x |0 − |x |1 (mod p) by
using a counter modulo p. The counter is implemented with a cycle of states, in-
creasing the state number when a 0 is encountered, and decreasing it when a 1 is
encountered. By Exercise 2.23 if |x |0 �= |x |1 then there is a prime p ≤ 4.4 log n
with |x |0 �≡ |x |1 (mod p). The total number of states used by this construc-
tion is 1 +∑

p≤4.4 log n p = O((log n)2/(log log n)), using the estimate given in
Theorem 2.13.2.

15.3 Unary Automaticity

In this section we examine properties of automaticity for languages over a 1-letter
alphabet.

Definition 15.3.1 Let w = a0a1a2 · · · be an infinite word. We define sw(n) to be
the length of the longest suffix of a0a1 · · · an that is also a subword of a0a1 · · · an−1.

Lemma 15.3.2 Let � = {0}, and let L ⊆ �∗. Let w = w(L) = a0a1a2 · · · be the
characteristic word of L, i.e., ai = 1 if 0i ∈ L, and 0 otherwise. Then AL (n) =
n + 1 − sw(n).

Proof. Let t = sw(n), and suppose an−t+1 · · · an is the longest suffix of a0 · · · an

that appears as a subword of a0a1 · · · an−1. Suppose an−t+1 · · · an = au · · · au+t−1

for some u ≤ n − t . Then we can create a DFA M = (Q, �, δ, q0, F) accepting
an nth-order approximation to L as follows: Q = {0, 1, . . . , n − t}, q0 = 0, F =
{i : 0 ≤ i ≤ n − t and 0i ∈ L}, and

δ(i, 0) =
{

i + 1 if 0 ≤ i < n − t ,

u if i = n − t .

It is easy to see that M accepts an nth-order approximation to L , and hence AL (n) ≤
n − t + 1.

Now consider the strings ε, 0, . . . ,0n−t . We claim these are pairwise n-dissimilar.
For if not, then 0i ∼n 0 j for some 0 ≤ i < j ≤ n − t . But then 0i+k ∈ L if and
only if 0 j+k ∈ L for 0 ≤ k ≤ n − j . It follows that ai · · · ai+n− j = a j · · · an , con-
tradicting the maximality of t . �
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There is a very interesting connection between unary automaticity and the func-
tion R′ introduced in Section 10.10. More specifically, the functions sw(n) and R′

w
are (weak) inverses of each other.

Theorem 15.3.3 For n ≥ 0 we have

(a) R′
w(sw(n) + 1) ≥ n + 1;

(b) sw(R′
w(n)) = n;

(c) (lim infn→∞ sw(n)/n)−1 = lim supn→∞ R′
w(n)/n.

Proof. (a): Let w = a0a1a2 · · · , and let t = sw(n). Then an−t · · · an is a suffix of
a0 · · · an of length t + 1, and hence is not a subword of a0 · · · an−1. It follows that
R′

w(t + 1) > n.
(b): Let v = R′

w(n). Then a0 · · · av−1 contains all subwords of w of length n,
but a0 · · · av−2 does not. Hence av−n · · · av−1 is not a subword of a0 · · · av−2. Thus
av−n · · · av is not a subword of a0 · · · av−1. It follows that sw(v) < n + 1.

On the other hand, av−n+1 · · · av is a subword of length n and hence a subword
of a0 · · · av−1. Thus sw(v) ≥ n. Putting this together with the last paragraph, we
obtain sw(v) = n.

(c): Let A = lim infn→∞ sw(n)/n and B = lim supn→∞ R′
w(n)/n. Using (b), we

have

A ≤ lim inf
n→∞

sw(R′
w(n))

R′
w(n)

= lim inf
n→∞

n

R′
w(n)

= 1

B
.

On the other hand, let (ni )i≥0 be a strictly increasing sequence such that
limi→∞ sw(ni )/ni = A. Now the sequence (sw(ni ))i≥0 is unbounded, for if it were
bounded, (R′

w(sw(ni ) + 1))i≥0 would be bounded, but by (a) we have R′
w(sw(ni ) +

1) ≥ ni + 1. Hence, replacing the sequence (ni )i≥0 by a subsequence if necessary,
we can assume that the sequence (sw(ni ))i≥0 is strictly increasing. Then by (a) we
have

B ≥ lim sup
i→∞

R′
w(sw(ni ) + 1)

sw(ni ) + 1
≥ lim sup

i→∞

ni + 1

sw(ni ) + 1
= lim

i→∞
ni + 1

sw(ni ) + 1
= 1

A
.

It follows that A = 1/B, as desired. �

15.4 Automaticity of Sequences

In the previous section we discussed the automaticity of languages. We can gen-
eralize this notion to sequences as follows: let s = (s(i))i≥0 be a sequence over
a (possibly infinite) alphabet �. Let k ≥ 2 be an integer. We define Ak

s (n) to be
the smallest number of states in any k-DFAO M that correctly computes s(i) for
0 ≤ i ≤ n. More precisely, we demand that for M = (Q, �,�, δ, q0, τ ), we have
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τ (δ(q0, w
R)) = s(i) for all i with 0 ≤ i ≤ n and all w with [w]k = i . Notice here

that we are feeding the automaton with the least significant digit first.
If s = (s(i))i≥0 is a sequence with Ak

s (n) = O(log n), then we say that s
is k-quasiautomatic. In addition to the k-automatic sequences, the class of k-
quasiautomatic sequences contains many sequences that closely resemble automatic
sequences, but are not automatic.

We can also generalize automaticity to sets S ⊆ N. By Ak
S(n) we mean Ak

χS
(n),

where χS is the characteristic sequence associated with the set S.
We now prove

Theorem 15.4.1 Every paperfolding sequence is 2-quasiautomatic.

Proof. Let ( f (n))n≥1 be a paperfolding sequence. By Theorem 6.5.2 we know that
f (n) = (−1) j f (2k) if n = 2k(2 j + 1) for integers j, k ≥ 0. It follows that we can
compute f (n) with a machine that, given an input w with [wR] = n, records the
number of leading 0 bits and the two bits that follow. For n ≤ N this can be done
using O(log N ) states. �

It is possible for a sequence that is k-automatic to have large automaticity relative
to other bases. We give an example in a moment; first we prove the following lemma.

Lemma 15.4.2 Let s = (s(i))i≥0 be a sequence, and suppose there exists a constant
d > 0 such that for all i ≥ 0 and all a, b with 0 ≤ a, b < ki and a �= b there ex-
ists m = O(kid) such that s(ki m + a) �= s(ki m + b). ThenAk

s (n) = �(n1/(d+1)/k),
where the implied constant in the � does not depend on k.

Proof. If m = O(kid) then there exists a constant c such that m ≤ ckid − 1. Let
i = �(logk n − logk c)/(d + 1)�. Then

1

k

(n

c

)1/(d+1)
< ki ≤

(n

c

)1/(d+1)
.

By hypothesis there exists m ≤ ckid − 1 such that s(ki m + a) �= s(ki m + b). How-
ever,

ki m + a < (ckid − 1)ki + ki = cki(d+1) ≤ c(n/c) = n,

and a similar bound holds for ki m + b. It follows that if a DFAO M computes
s( j) correctly for all j ≤ n, then it must compute different values for ki m + a and
ki m + b. Then, by Exercise 4.17 we have that M must have at least ki different
states. Hence Ak

s (n) ≥ ki = �(n1/(d+1)/k). �

Recall that ν2(n) is the exponent of the highest power of 2 that divides n.
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Theorem 15.4.3 Let s(i) := ν2(i + 1) mod 2. Then s = (s(i))i≥0 is 2-automatic.
However, if k ≥ 3 is odd, then Ak

s (n) = �(n1/2/k).

Proof. We leave it to the reader to verify that (s(i))i≥0 is 2-automatic. Otherwise
assume k ≥ 3 is odd. If we can show that for all a, b with 1< a < b≤ ki there exists
m < 4ki such that ν2(mki + a) �≡ ν2(mki + b) (mod 2), then the desired result will
follow by Lemma 15.4.2.

To see this, let b − a = 2c · t , where t is odd, and let r = ki . Let

m ≡ (2c+1 − b)r−1(mod 2c+2);

this definition is meaningful, since r is odd. Then rm + b ≡ 2c+1 (mod 2c+2), so
ν2(rm + b) = c + 1. On the other hand,

rm + a ≡ 2c+1 + a − b (mod 2c+2)

≡ 2c+1 − 2c · t (mod 2c+2)

≡ 2c(2 − t) (mod 2c+2).

Since t is odd, we have ν2(rm + a) = c. Now 0 ≤ m < 2c+2 = 4 · 2c < 4r . �

15.5 Exercises

1. Show, by giving an example, that ∼n is not an equivalence relation.
2. Show that the bound of (n + 3)/2 in Theorem 15.1.6 is best possible, in the sense

that the result is not true if 2 is replaced by any smaller positive real number, or
if the 3 is replaced by any larger real number.

3. Show that given any unbounded function g(n), there exists a unary nonregular
language L such that AL (n) ≤ g(n) for infinitely many n.

4. Prove Theorem 15.2.1.
5. Show that if L is a unary language, then AL (n) ≤ n + 1 − �log2 n� infinitely

often.
6. (L. Hellerstein) Consider the unary language L = {02·3·5···pn : n ≥ 1}, where pn

is the nth prime, p1 = 2. Show that NL (n) = O((log n)5).
7. Give an example of a language L such that NL (n) = O((log n)2) but AL (n) �=

O(nc) for any c.
8. Give an example of a nonregular language L with NL (n) = O(log n).
9. Using Theorem 15.4.3, show that if k ≥ 3 and t = (ti )i≥0 is the Thue–Morse

sequence, then Ak
t (n) = �(n1/4k−1/2).

15.6 Open Problems

1. Let L = {0i : i is squarefree}. Find good upper and lower bounds on NL (n) and
NL (n).

2. Does there exist a unary language L such that NL (n) = O((log n)2/(log log n))?
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15.7 Notes on Chapter 15

15.1 Automaticity has a long history, with many investigators proving the same
results independently. The basic idea of automaticity apparently was first
introduced by Trakhtenbrot [1964]. However, he used a slightly different
model of computation of finite-state functions, where outputs are associated
with transitions rather than states. His results were improved by Grinberg and
Korshunov [1966]. Later, Karp [1967] introduced the notion of automaticity
as we have defined it here. He also proved Theorem 15.1.6. Breitbart [1971]
studied the p-automaticity of the characteristic sequence of kth powers, where
p is a prime. Additional results appeared in Breitbart [1973, 1976]. Wolfram
[1984] studied the automaticity of cellular automata. Chytil [1986] studied an
analogue of automaticity for context-free languages. Dwork and Stockmeyer
[1989, 1990] introduced the concept of n-similarity, and proved one direction
of Theorem 15.1.4. Kaneps and Freivalds [1990] independently studied n-
similarity, and gave a complete proof of Theorem 15.1.4. Condon, Hellerstein,
Pottle, and Wigderson [1994, 1998] found a relationship between AL (n) and
deterministic communication complexity. Shallit and Breitbart [1996] wrote
a survey in which the above results were summarized and many new results
proved.

15.2 The results in this section are from Shallit and Breitbart [1996].
15.3 Pomerance, Robson, and Shallit [1997] studied descriptional complexity of

unary languages. Also see Cassaigne [1997b]. Theorem 15.3.3 is due to
Allouche and Bousquet-Mélou [1995].

Glaister and Shallit [1998] studied the closure properties of various classes
associated with automaticity; also see Shallit [2000].

15.4 Some of the material in this section is taken, more or less verbatim, from
Shallit and Breitbart [1996], with permission from Elsevier Science. For The-
orem 15.4.3, see Shallit [1996].
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k-Regular Sequences

Up to now in this book we have dealt almost exclusively with sequences over a finite
alphabet. While many interesting sequences, such as the Thue–Morse sequence, are
of this form, there are also a large number of well-studied sequences over infinite
alphabets such as Z. This naturally suggests the question of how the class of k-
automatic sequences can be fruitfully generalized to the case of infinite alphabets.

In this chapter we examine one such possible generalization, called the class of
k-regular sequences.

16.1 Basics

Recall that a sequence is k-automatic if and only if its k-kernel is finite. We say a
sequence is k-regular if the Z-module generated by its k-kernel is finitely generated.
(More general definitions are possible, but we do not cover them here.)

Example 16.1.1 Consider the function s2(n) introduced in Chapter 3, which counts
the sum of the bits in the binary expansion of n. If i ≥ 0 and 0 ≤ b < 2i , then we
have s2(2i n + b) = s2(n) + s2(b). It follows that every element of the 2-kernel of
the sequence (s2(n))n≥0 can be written as a Z-linear combination of the sequence
(s2(n))n≥0 and the constant sequence 1. This is a prototypical example of a k-regular
sequence.

Let R be a Z-module, i.e., an abelian group, written additively, and let k be an inte-
ger≥ 2. We say that a sequence (a(n))n≥0 taking values in R is a k-regular sequence
if there exist a finite number of sequences over R, {(a1(n))n≥0, . . . , (as(n))n≥0}, such
that every sequence in Kk(a) is a Z-linear combination of the ai . More precisely:

Definition 16.1.2 We say a sequence (a(n))n≥0 is k-regular if for every integer
i ≥ 0 and 0 ≤ b < ki there exist c1, c2, . . . , cs ∈ Z such that for all integers n ≥ 0
we have

a(ki n + b) =
∑

1≤ j≤s

c j a j (n).

438
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We then have the following theorem, which gives several alternative character-
izations of the class of k-regular sequences.

Theorem 16.1.3 Let �k = {0,1, . . . , k − 1}. The following are equivalent:

(a) a = (a(n))n≥0 is k-regular.
(b) The Z-module generated by the k-kernel of (a(n))n≥0 is generated by a finite number

of its subsequences of the form (a(k f n + b))n≥0, where f ≥ 0 and 0 ≤ b < k f .
(c) There exists an integer E such that for all integers e > E, each subsequence of the

form (a(ken + b))n≥0 with 0 ≤ b < ke can be expressed as a Z-linear combination of
subsequences of the form (a(k f n + c))n≥0 with 0 ≤ f ≤ E and 0 ≤ c < k f .

(d) There exist an integer r and r sequences ai = (ai (n))n≥0, 1 ≤ i ≤ r , with a = a1, such
that for each i , 1 ≤ i ≤ r , the k subsequences (ai (kn + b))n≥0 are Z-linear combina-
tions of the ai .

(e) There exist an integer r , r sequences ai = (ai (n))n≥0, and a matrix-valued morphism
µ : �k → Zr×r such that if

V (n) :=








a1(n)
a2(n)

...
ar (n)







,

then V (kn + b) = µ(b)V (n) for 0 ≤ b < k.

Proof. (a) =⇒ (b): Let K denote the k-kernel of (a(n))n≥0. Then 〈K〉, the Z-module
generated by K, is finitely generated. Hence there exist sequences a1, a2, . . . , a j

such that 〈K〉 = 〈a1, a2, . . . , a j 〉. But then each ai is a Z-linear combination of
elements from K, and there are only finitely many ai . Thus 〈K〉 is generated by
finitely many members of K.

(b) =⇒ (c): Let 〈K〉 be the Z-module generated by K. Suppose 〈K〉 =
〈a1, a2, . . . , as〉 where ai (n) = a(k fi n + bi ) and fi ≥ 0 for n ≥ 0, 1 ≤ i ≤ s, and
0≤ bi < k fi for 1≤ i ≤ s. Let E = max1≤i≤s fi . Then for all e> E and 0≤ b< ke,
there exist c1, c2, . . . , ci such that a(ken + b) = ∑

1≤i≤s ci ai (n), as desired.
(c) =⇒ (d): Take as the r sequences the set T of subsequences ai (n) = a(k fi n +

bi ) with 0 ≤ fi ≤ E and 0 ≤ bi < k fi . Then

ai (kn + a) = a(k fi (kn + a) + bi ) = a(k fi+1n + ak fi + bi ),

which, if fi + 1 ≤ E , is an element of T , and if fi + 1 > E , is a linear combination
of elements of T .

(d) =⇒ (e): Follows trivially.
(e) =⇒ (a): We show that a(ken + b) can be expressed as a linear combination

of the ai . Express b in base k, possibly with leading zeros, as
∑

0≤i<e bi ki . Then an
easy induction shows that V (ken + b) = µ(b0b1 · · · be−1)V (n), and this expresses
a(ken + b) as a linear combination of the ai . �
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Example 16.1.4 Recall from Section 3.7 that s−2(n) denotes the sum of the digits
of n when expressed in base −2. We show that (s−2(n))n≥0 is a 2-regular sequence.
It is readily verified that for all strings x ∈ {0,1}∗ we have

[x1]−2 = 2n + 1

[x00]−2 = 4n

[x110]−2 = 8n + 2

[x0010]−2 = 16n + 14

[x11010]−2 = 32n + 6

[x01010]−2 = 32n + 22

⇔
⇔
⇔
⇔
⇔
⇔

[x0]−2 = 2n,

[x]−2 = n,

[x1]−2 = 2n + 1,

[x1010]−2 = 16n + 6,

[x1]−2 = 2n + 1,

[x010]−2 = 8n + 6.

It follows that

s−2(2n + 1) = s−2(2n) + 1,

s−2(4n) = s−2(n),

s−2(8n + 2) = s−2(2n + 1) + 1,

s−2(16n + 14) = s−2(16n + 6) − 1,

s−2(32n + 6) = s−2(2n + 1) + 2,

s−2(32n + 22) = s−2(8n + 6) + 1.

Hence the Z-module generated by the 2-kernel of (s−2(n))n≥0 is generated by

{(s−2(n))n≥0, (s−2(2n))n≥0, (s−2(4n+2))n≥0, (s−2(8n+6))n≥0, (s−2(16n+6))n≥0},
together with the constant sequence 1.

If we now let

V (n) =












s−2(n)
s−2(2n)

s−2(4n + 2)
s−2(8n + 6)

s−2(16n + 6)
1












,

then V (2n) = µ(0)V (n) and V (2n + 1) = µ(1)V (n), where

µ(0) =












0 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 2
0 0 0 0 1 0
0 1 0 0 0 3
0 0 0 0 0 1












, µ(1) =












0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 −1
0 0 0 1 0 1
0 0 0 0 0 1












.

In a similar fashion, it can be shown that (s−2(−n))n≥0 is a 2-regular sequence.

The next theorem gives a connection between k-regular and k-automatic se-
quences.
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Theorem 16.1.5 A sequence is k-regular and takes on only finitely many values if
and only if it is k-automatic.

Proof. Suppose (a(n))n≥0 is k-automatic. Then by definition it takes finitely many
values. By Theorem 6.6.2 its k-kernel is finite, and so the Z-module generated by
its k-kernel is finitely generated.

Now suppose (a(n))n≥0 is k-regular and takes on finitely many values. By Theo-
rem 16.1.3 there exist r sequences a1 = a, a2, . . . , ar , which can be taken to be in
the k-kernel of (a(n))n≥0, and a matrix-valued morphism µ : �k → Zr×r such that

V (n) =








a1(n)
a2(n)

...
ar (n)








satisfies V (kn + b) = µ(b)V (n) for 0 ≤ b < k. Let V be the finite set of values of
(V (n))n≥0, and define the k-uniform morphism σ by σ (v) = c0c1· · · ck−1, where
v ∈ V and cb = µ(b)v for 0 ≤ b < k. Then the infinite word

V (0)V (1)V (2) · · ·
is a fixed point of σ , and a = a1 is an image of this fixed point. By Theorem 6.3.2,
it follows that a is k-automatic. �

Corollary 16.1.6 If the integer sequence (a(n))n≥0 is k-regular, then for all integers
m ≥ 1, the sequence (a(n)modm)n≥0 is k-automatic.

The converse, however, does not hold; see Exercise 2.

16.2 Robustness of the k-Regularity Concept

In this theorem we show that several variations on the definition of k-regular se-
quences still result in the same class of sequences.

Theorem 16.2.1 Let s = (s(n))n≥0 and t = (t(n))n≥0 be k-regular sequences, and
let λ be an integer. Then the sequences s + t = (s(n) + t(n))n≥0, λs = (λs(n))n≥0,
and st = (s(n)t(n))n≥0 are all k-regular.

Proof. Let s1 = s, s2, . . . , sm be sequences generating the Z-module generated by
the k-kernel of s, and let t1 = t, t2, . . . , tn be sequences generating the Z-module
generated by the k-kernel of t. Then the m + n sequences s1, s2, . . . , sm,

t1, t2, . . . , tn generate the Z-module generated by the k-kernel of s + t. Similarly,
the mn sequences si t j with 1 ≤ i ≤ m, 1 ≤ j ≤ n generate the Z-module generated
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by the k-kernel of st. Finally, the sequences λsi , 1 ≤ i ≤ m, generate the Z-module
generated by the k-kernel of λs. �

Theorem 16.2.2 Let (s(n))n≥0 be a k-regular sequence. Then for a ≥ 1, b ≥ 0, the
sequence (s(an + b))n≥0 is k-regular.

Proof. The proof is analogous to the proof of Theorem 6.8.1, and is left to the
reader. �

Theorem 16.2.3 Let �k = {0,1, . . . , k − 1}.
(a) If a sequence (s(n))n≥0 taking values in a Z-module R is k-regular, then there exist a

matrix-valued morphism µ : �k → Zr×r and vectors λ, κ with entries in R such that
s(n) = λµ(ae · · · a2a1)κ for all integers n ≥ 0 and all strings w = a1a2 · · · ae ∈ �∗

k

such that [w]k = n.
(b) If there exist a matrix-valued morphism µ : �k → Zr×r and vectors λ, κ with entries

in R such that s(n) = λµ(ae · · · a2a1)κ for all integers n ≥ 0, where (n)k = a1a2 · · · ae

is the canonical base-k representation of n, then (s(n))n≥0 is k-regular.

Proof. (a): By Theorem 16.1.3(e), there exists µ such that if

V (m) =






s1(m)
...

sr (m)






with s1 = s, then V (km + a) = µ(a)V (m) for all m ≥ 0 and 0 ≤ a < k. Sup-
pose w = a1a2 · · · ae and [w]k = n. Then a simple induction gives V (kem + n) =
µ(ae · · · a1)V (m) for all m ≥ 0. Now set m = 0, and let λ = [1 0 0 · · · 0] and
κ = V (0). The result follows.

(b): Now suppose that s(n) = λµ(ae · · · a1)κ where (n)k = a1a2 · · · ae is the ca-
nonical base-k representation of n.

Define V (n) = µ(ae · · · a1)κ , and let v1, v2, . . . , vr be such that

V (n) =






v1(n)
...

vr (n)




 .

Then from our construction of V , it follows that V (kn + a) = µ(aaeae−1 · · · a1)κ =
µ(a)V (n), except possibly when n = 0 and a = 0. (This special case arises because
the canonical representation of kn is a1a2 · · · ae0 for n ≥ 1, but not for n = 0.) Set
v′ = V (0) − µ(0)V (0); then V (kn) = µ(0)V (n) + v′u(n), where (u(n))n≥0 is the
sequence defined by u(0) = 1 and u(i) = 0 for all i ≥ 1. By Theorem 16.1.3(d),
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each of the sequences vi (n), 1 ≤ i ≤ n, is k-regular, and hence λV (n) is k-regular,
by Theorem 16.2.1. �

The following corollary shows that our characterization of k-regular sequences
is robust, in the sense that it does not depend on the order in which base-k expansion
is processed (left to right or right to left):

Corollary 16.2.4 Let �k = {0,1, . . . , k − 1} and R be a Z-module. A sequence
(s(n))n≥0 taking values in R is k-regular if and only if there exist a matrix-valued
morphism µ′ : �k → Zr×r and vectors λ′, κ ′ with values in R such that s(n) =
λ′µ′(a1 · · · ae)κ ′ for all w = a1a2 · · · ae ∈ �∗

k such that [w]k = n.

Proof. Take the transpose of the identity s(n) = λµ(ae · · · a1)κ , and set λ′ = κT ,
κ ′ = λT , and µ′(i) = µ(i)T for 0 ≤ i < k. �

Finally, we show that, similar to the situation for automatic sequences in Theo-
rem 6.8.6, a sequence remains k-regular if we transduce an input’s digits before
applying the matrix product.

Theorem 16.2.5 Let T = (Q, �k, δ, q0, �k, τ ) be a finite-state transducer. Sup-
pose there exist a matrix-valued morphism µ : �k → Zr×r and two vectors λ, κ
such that sn := λµ(b1 · · · bi )κ , where b1b2 · · · bi = T ((n)k). Then the sequence
(sn)n≥0 is k-regular.

Proof. The basic idea is to show how to simulate the computations of T while
accumulating the matrix product at the same time. To do so, for a ∈ �k we de-
fine µ′(a) to be a square matrix of dimension r |Q| as follows: if τ (qi , a) =
c1 · · · cs , and δ(qi , a) = q j then the entries in rows (i − 1)r, . . . , ir − 1 and columns
( j − 1)r, . . . , jr − 1 equal µ(c1 · · · cs). A simple induction now shows that if on
input w = d1 · · · du the machine T enters state δ(q0, w) = ql and outputs T (w) =
e1 · · · ev, then the entries in rows 0, . . . , r − 1 and columns (l − 1)r, . . . , lr − 1 of
µ′(d1 · · · du) equal µ(e1 · · · ev).

Now define λ′ = [λ 0 0 · · · 0] and

κ ′ =








κ

κ
...
κ







.

It now follows that if b1b2 · · · bi = T ((n)k), then λµ(b1 · · · bi )κ = λ′µ(e1 · · · eh)κ ′,
where e1e2 · · · eh = (n)k . �
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16.3 Further Results

Theorem 16.3.1 Let (s(n))n≥0 be a k-regular sequence over Z. Then there exists a
constant c such that s(n) = O(nc).

Proof. Let the base-k expansion of n be n = ∑
0≤i<t ai ki . Then t ≤ 1 + logk n. We

use the characterization of Theorem 16.1.3(e). Then V (n) = µ(a0a1 · · · at−1)V (0).
If v is a d-dimensional vector, define the norm

‖v‖ =
∑

1≤i≤r

|vi |,

and if M is a r × r matrix, define

‖M‖ = max
1≤i≤r

∑

1≤ j≤r

|Mi j |.

Then it is easy to see that ‖Mv‖ ≤ ‖M‖‖v‖. Thus

s(n) ≤ ‖V (n)‖ ≤ ‖µ(a0)‖ ‖µ(a1)‖ · · · ‖µ(at−1)‖ ‖V (0)‖.
Now let e = max0≤i<t ‖µ(i)‖ and d = ‖V (0)‖. Then we have s(n) ≤ e1+logk nd ≤
ednlogk e = O(nc), where c = logk e. �

Theorem 16.3.2 Let F be a field with a ∈ F. Then the sequence of powers (an)n≥0

is k-regular if and only if a = 0 or a is a root of unity.

Proof. One direction is simple, since if a = 0 or a root of unity, the sequence of
powers is periodic, and hence k-regular.

For the other direction, assume (an)n≥0 is k-regular. Then there exist an integer
r < ∞ and integers λ0, λ1, . . . , λr−1, not all zero, such that

∑
0≤ j<r λ j ak j ·n = 0

for all n ≥ 0.
Now we use the Vandermonde determinant identity (see Exercise 1), which states

that

det








1 b0 b2
0 · · · bm

0

1 b1 b2
1 · · · bm

1
...

...
...

. . .
...

1 bm b2
m · · · bm

m







=

∏

0≤i< j≤m

(b j − bi ). (16.1)

It follows that the sequences (bn
j )n≥0 are linearly independent if and only if the num-

bers b0, b1, . . . , bm are distinct. Hence the numbers 1, ak, ak2
, . . . , akr

are not all
distinct, and we must have ak j = akl

for some j �= l. Thus either a = 0 or a is a
root of unity. �

We now prove a weak analogue of Cobham’s theorem (Theorem 11.2.1) for k-
regular sequences.
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Proposition 16.3.3 Let k and l be integers ≥ 2. Let x be a sequence that is both
k-regular and l-regular. Then x is kl-regular.

Proof. Suppose x = (xn)n≥0 is both k-regular and l-regular, for k, l ≥ 2. Since x is
k-regular, we know there exist sequences (x (1)

n )n≥0, . . . , (x (d)
n )n≥0, each of the form

(xkαn+β)n≥0 where α ≥ 0 and 0 ≤ β < kα, such that (x (1)
n )n≥0 = (xn)n≥0, and any

sequence (xkγ n+δ)n≥0 with γ ≥ 0 and 0 ≤ δ < kγ is a Z-linear combination of the
sequences (x (i)

n )n≥0 for i = 1, 2, . . . , d.
Since the sequence (xn)n≥0 is l-regular, it follows from Theorem 16.2.2 that the

sequences (x (i)
n )n≥0 are also l-regular, for each of them is of the form (xkαn+β)n≥0.

Hence for each i = 1, 2, . . . , d there exist sequences (x (i,1)
n )n≥0, (x (i,2)

n )n≥0, . . . ,
(x (i,ei )

n )n≥0, each of the form (x (i)
lαn+β)n≥0, where α ≥ 0 and 0 ≤ β < lα, such that

(x (i,1)
n )n≥0 = (x (i)

n )n≥0. Further, any sequence (x (i)
lγ n+δ)n≥0 with γ ≥ 0 and 0 ≤ δ < lγ

is a linear combination of the sequences (x (i, j)
n )n≥0, for j = 1, 2, . . . , ei .

Now let α ≥ 0 and 0 ≤ β < (kl)α, and consider the sequence (x(kl)αn+β)n≥0.
Let β = kαq + r , with q ≥ 0 and 0 ≤ r < kα. Then kαq ≤ kαq + r = β < (kl)α.
Hence q < lα.

We then have x(kl)αn+β = xkα(lαn+q)+r . The sequence (xkαn+r )n≥0 is a Z-linear
combination of the sequences (x (i)

n )n≥0, with i = 1, 2, . . . , d. Hence the sequence
(x(kl)αn+β)n≥0 is the same linear combination of the sequences (x (i)

lαn+q), and hence,
since q < lα, a linear combination of the sequences (x (i, j)

n )n≥0, with i = 1, 2, . . . , d
and j = 1, 2, . . . , ei . �

16.4 k-Regular Power Series

In this section we consider the properties of power series whose coefficients form
a k-regular sequence.

First we discuss convolution. If a = (a(n))n≥0 and b = (b(n))n≥0 are two se-
quences taking values in a Z-module R, we define their convolution c = a ( b as
follows: if c = (c(n))n≥0, then

c(n) =
∑

i+ j=n

a(i)b( j).

Theorem 16.4.1 Let a = (a(n))n≥0 and b = (b(n))n≥0 be k-regular sequences.
Then c = a ( b is k-regular.

Proof. Since a and b are k-regular, there exist sequences a1, a2, . . . , ap that generate
the Z-module generated by the k-kernel of a, and sequences b1,b2, . . . , bq that
generate the Z-module generated by the k-kernel of b. We want to find a basis
for C, the Z-module generated by the k-kernel of c. We write ui, j = ai ( b j for
1 ≤ i ≤ p, 1 ≤ j ≤ q, and ui, j = (ui j (n))n≥0.
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We claim that the set M of the 2pq sequences (ui j (n))n≥0 and (ui j (n − 1))n≥0,
1 ≤ i ≤ p, 1 ≤ j ≤ q, generates C. (We define ui j (−1) = 0.)

Let us write Ae,s = (a(ken + s))n≥0 and B f,t = (b(k f n + t))n≥0. Now every se-
quence of the form Ae,s for e ≥ 0, 0 ≤ s < ke is a linear combination of the ai , and
every subsequence of the form B f,t for f ≥ 0, 0 ≤ t < k f is a linear combination
of the bi . It follows that 〈M〉 contains all sequences of the form

Ae,s ( B f,t , (16.2)

where e, f ≥ 0 and 0 ≤ s < ke, 0 ≤ t < k f . Similarly, 〈M〉 contains all sequences
of the form

S−1(Ae,s ( B f,t ), (16.3)

where S is the shift operator introduced in Section 1.1. Thus to prove the claim it
suffices to show how to write all sequences of the form (c(kgn + d))n≥0 as linear
combinations of the sequences in Eqs. (16.2) and (16.3).

We do this as follows:

c(kgn + d) =
∑

0≤i≤d

(Ag,i ( Bg,d−i )[n] +
∑

d< j<kg

(Ag, j ( Bg,kg+d− j )[n − 1].

Verification is left to the reader. �

Let R be a ring. We say a power series in R[[X ]] is k-regular if its sequence of
coefficients forms a k-regular sequence.

Corollary 16.4.2 The set of k-regular power series forms a ring.

Proof. If A(X ) and B(X ) are two k-regular formal power series, then A + B is k-
regular by Theorem 16.2.1 and AB is k-regular by Theorem 16.4.1. �

Theorem 16.4.3 Let F be an algebraically closed field (e.g., C). Let (s(n))n≥0 be
a sequence with values in F. Let f (X ) = ∑

n≥0 s(n)Xn be a formal power series
in F[[X ]]. Assume that f represents a rational function of X, i.e., there exist
polynomials p, q such that f (X ) = p(X )/q(X ). Then (s(n))n≥0 is k-regular if and
only if the poles of f are roots of unity.

Proof. Note that by assumption, 0 is not a pole of f .
Suppose the poles of f are roots of unity. Then, using expansion by partial frac-

tions, we can write

f (X ) =
∑

i

ci

(1 − ζi X )ei
,
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where ci ∈ F , the ei are non-negative integers, and each ζi is a root of unity. To
prove that (s(n))n≥0 is k-regular, it suffices to show that the power series (1 −
ζi X )−1 is k-regular. But this power series has periodic coefficients and hence is
k-regular.

For the converse, suppose f (X ) = p(X )/q(X ) for polynomials p, q, and f is
k-regular. Let 1/ζ be one of the poles of f ; we may assume ζ �= 0. We can then
write

f (X ) = p(X )

q(X )
= r (X )

s(X )(1 − ζ X )e
,

where r, s are polynomials, and r (X ) and 1 − ζ X are relatively prime. Then there
exist two polynomials u, v such that u(X )r (X ) + v(X )(1 − ζ X )e = 1. Now

u(X ) f (X )s(X ) + v(X ) = (1 − ζ X )−e (16.4)

is also a k-regular power series. But (1 − ζ X )e−1 is a polynomial, and hence a
k-regular power series, so its product with (16.4) is k-regular, and thus (1 − ζ X )−1 is
k-regular. But the coefficients of this power series are ζ n , which, by Theorem 16.3.2,
is k-regular if and only if ζ is a root of unity. �

16.5 Additional Examples

In this section we give some additional examples of k-regular sequences.
Let us start with some of the sequences defined in Section 3.2.

Example 16.5.1 Recall that Sk(n) = ∑
0≤i<n sk(i), where sk(n) is the sum of the

base-k digits of n. It follows from Theorem 16.4.1 that (Sk(n))n≥0 is k-regular, but
this can also be established directly. From Exercise 3.5, it follows that

Sk(kn + a) = kSk(n) + ask(n) + k(k − 1)n/2 + a(a − 1)/2.

Hence the k-kernel of (Sk(n))n≥0 is generated by the sequences (Sk(n))n≥0,
(sk(n))n≥0, (n)n≥0, and the constant sequence 1.

Example 16.5.2 Gauss proved that an integer n ≥ 0 is the sum of three integer
squares if and only if n is not of the form 4a(8k + 7) for integers a, k ≥ 0. It is easy
to prove that the sequence (t(n))n≥0 defined by

t(n) =
{

0 if there exist a, k such that n = 4a(8k + 7),

1 otherwise

is 2-automatic; see Exercise 6.34. Hence, the sequence Q(n) := ∑
1≤i≤n t(i), which

counts the number of positive integers ≤ n that are the sum of the three squares, is
2-regular.
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Example 16.5.3 The Danish composer Per Nørgård (1932–) used a particular
mathematical sequence (cn)n≥0, called by some commentators the “infinity series”,
in many of his musical compositions. Here (cn)n≥0 is defined by c0 = 0, and for
n ≥ 0 we have c2n = −cn and c2n+1 = cn + 1. The first few values of this sequence
are given in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cn 0 1 −1 2 1 0 −2 3 −1 2 0 1 2 −1 −3 4 1
mn G A) F* A A) G F B) F* A G A) A F* E B A)

For example, the first 1024 notes of the second movement of his symphony
Voyage into the Golden Screen (1968) are defined as follows: the nth note of the com-
position mn is the note offset by cn halftones of the chromatic scale from G (sol).
The sequence (cn)n≥0 is 2-regular. Note that tn = cn mod 2, where t = (tn)n≥0 is
the Thue–Morse sequence.

Example 16.5.4 Consider Kimberling’s sequence (cn)n≥1 defined by cn =
1
2

(
n/2ν2(n) + 1

)
. The first few terms are

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, . . . .

This sequence has the pleasant property that deleting the first occurrence of each
positive integer in it leaves the sequence unchanged. It is easily verified that c(2n) =
c(n) and c(2n − 1) = n for n ≥ 1, and hence (c(n))n≥1 is 2-regular.

It is also possible to define the notion of k-regular two-dimensional array (in anal-
ogy with Chapter 14). Roughly speaking, a two-dimensional array (a(m, n))m,n≥0

is k-regular if there exist a finite number of two-dimensional arrays (ai (m, n))m,n≥0

such that each subarray of the form (a(kem + a, ken + b))m,n≥0 with e ≥ 0 and
0 ≤ a, b < ke can be written as a Z-linear combination of the ai .

Example 16.5.5 Let r, s be non-negative integers with base-2 representation given
by

∑
0≤i<t ci 2i and

∑
0≤i<t di 2i , respectively. Define the nim sum of two integers,

r ⊕ s, to be the integer given by
∑

0≤i<t ((ci + di )mod2)2i . Consider the two-
dimensional array N = (m ⊕ n)m,n≥0. The first few rows and columns of this array
are given in Table 16.1.

It is easily seen that N is 2-regular, as we find

N[2i, 2 j] = N[2i + 1, 2 j + 1] = 2N[i, j],

N[2i + 1, 2 j] = N[2i, 2 j + 1] = 2N[i, j] + 1.



16.6 Exercises 449

Table 16.1.

⊕ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 0 3 2 5 4 7 6 9 8
2 2 3 0 1 6 7 4 5 10 11
3 3 2 1 0 7 6 5 4 11 10
4 4 5 6 7 0 1 2 3 12 13
5 5 4 7 6 1 0 3 2 13 12
6 6 7 4 5 2 3 0 1 14 15
7 7 6 5 4 3 2 1 0 15 14
8 8 9 10 11 12 13 14 15 0 1
9 9 8 11 10 13 12 15 14 1 0

16.6 Exercises

1. Prove the Vandermonde identity, Eq. (16.1).
2. Give an example of a sequence (an)n≥0 over Z such that (an modm)n≥0 is

2-automatic for all m ≥ 1, but (an)n≥0 is not 2-regular.
3. Let α be a real number. Show that (�nα�)n≥0 is k-regular if and only if α is

rational.
4. (a) Show there is a unique monotone infinite sequence d = (d(n))n≥0 of non-negative

integers such that d(d(n)) = 2n for n �= 1.
(b) Show that d is 2-regular.

5. (a) Show there is unique monotone infinite sequence e = (e(n))n≥0 of non-negative
integers such that e(e(n)) = 3n for n ≥ 0.

(b) Show that e is 3-regular.

6. Give an example of a 2-regular power series f (X ) with zero constant term such
that f ( f (X )) is not 2-regular.

7. Let U (X ) = ∑
i≥0 ui Xi be a 2-regular power series with u0 = 0. Show that

V (X ) := U (X ) + U (X2) + U (X4) + · · · is also 2-regular.
8. Give an example of a 2-regular power series f (X ) such that f (1/2) �∈ L(2, 2).

(For the definition of L(k, b), see Section 13.1.)
9. Recall that e2;P (n) counts the number of occurrences of the pattern P in the bi-

nary expansion of n. Show that e2;P (n) is 2-regular for all nonzero patterns P .
10. Show that a sequence (S(n))n≥0 is 2-regular if and only if its pattern transform

(cf. Section 3.3) (Ŝ(n))n≥0 is 2-regular.
11. Recall that sk(n) counts the sum of the digits in the base-k expansion of n.

Show that (sk(sk(n)))n≥0 is not a k-regular sequence. Hint: Use Exercise 3.8.
12. Let f (n) be the number of representations of n as a sum of 3 triangular numbers,

where order matters. (A triangular number is an integer of the form n(n + 1)/
2.) Thus, for example, t(15) = 6, since we may take 15 + 0 + 0 and its rear-
rangements and 6 + 6 + 3 and its rearrangements.
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(a) Show that

f (27n + 12) = 3 f (n + 1),

f (27n + 21) = 5 f (3n + 2),

f (81n + 3) = 4 f (9n),

f (81n + 57) = 4 f (9n + 6)

for n ≥ 0.
(b) Show that, despite the identities in part (a), the sequence ( f (n))n≥0 is not 3-regular.

13. As in Example 3.3.8, define Bk(n) to be the number of blocks of adjacent ide-
ntical digits in the binary expansion of n. Thus, for example, B2(118687) = 5,
since (118687)2 = 11100111110011111. Prove that (Bk(n))n≥0 is k-
regular. Also find its expansion as a sum of pattern sequences, as in Section 3.3.

14. Define h(n) to be the length of the longest block of contiguous 1’s in the binary
expansion of n.
(a) Show that h(2n) = h(n) and h(2n + 1) = max(h(n), ν2(n + 1) + 1) for n ≥ 0.
(b) Show that h is not 2-regular.

15. Define a0 = 0, a1 = 1, and, for n ≥ 1, a2n = an and a2n+1 = an + an+1. Set
A(X ) = ∑

n≥0 an Xn . Find a functional equation for A(X ).
16. Suppose (n)k = ar ar−1 · · · a0. As usual, let sk(n) = ∑

0≤i≤r ai . Define hk(n) =
∑

0≤i≤r iai . Show that

∑

n≥0

(−1)s2(n) Xh2(2n+1) = 1 +
∑

n≥1

(−1)n(Xn(3n−1)/2 + Xn(3n+1)/2).

17. Show that (an)n≥0 is a 2-regular sequence if and only if the transformed se-
quence

a0, a0, a0, a1, a0, a1, a2, a3, a0, a1, . . . , a23−1, a0, a1, . . . , a24−1, . . .

is 2-regular.
18. (M. LeBrun) Consider the sequence (mn)n≥0 defined as follows: if (n)k =

ar ar−1 · · · a0, then mn = [a0ar ar−1 · · · a1]k . Show that (mn)n≥0 is k-regular.
19. (N. J. A. Sloane) Consider the sequence (dn)n≥0 defined as follows: if (n)k =

ar ar−1 · · · a0, then dn = [br−1 · · · b0]k , where bi = (ai+1 + ai ) mod k. Show
that (dn)n≥0 is k-regular.

20. If s = (si )i≥0 is a sequence of real numbers, let �s denote the first difference
sequence (si+1 − si )i≥0. Similarly, let �ns be the nth iterated difference se-
quence. Give an example of a k-regular sequence s such that�ns is unbounded
for all n ≥ 0.

21. Nim is a two-player game, with each player moving alternately. The initial
configuration consists of three piles of counters, with no two piles containing
the same number. A player moves by selecting a pile and removing any number
of counters from it. A player wins when, at the conclusion of his/her turn, no
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counters are left. Show that the second player has a forced win if and only if
the number of counters is initially (i, j, i ⊕ j), where ⊕ is the nim sum defined
in Example 16.5.5.

22. Suppose the sequence (an)n≥0 is 2-regular. Prove that the two-dimensional
array given by (ai⊕ j )i, j≥0 is 2-regular. Here ⊕ is the nim sum defined in Ex-
ample 16.5.5.

23. Let M(n) be the array formed by the first 2n rows and columns of the nim-sum
array N introduced in Example 16.5.5. Let M = limn→∞ M(n).
(a) Show that M(n) = gn([0]), where g is the map that sends a k × k array [A] to the

2k × 2k array given by
[

[A] [A] + k
[A] + k [A]

]

,

where by [A] + k we mean the array obtained by adding k to each element of [A].
(b) Show that M is a fixed point of the matrix-valued morphism h that sends n to the

2 × 2 array
[

2n 2n + 1
2n + 1 2n

]

.

(c) Let L be the infinite array generated by the following greedy algorithm: set L0,0 =
0, and fill in subsequent entries Li, j in order of increasing sum i + j . Once all
elements above and to the left of row i and column j have been filled in, define
Li, j to be the least non-negative integer that does not appear previously in either
row i or column j . Then L = M .

(d) Let H (n) be the Hadamard matrix introduced in Exercise 14.4. Show that the col-
umns of H (n) span the eigenspace of the matrix M(n).

(e) Show that M(n) is of rank n + 1 and its characteristic polynomial is X2n−n−1(X −
2n−1(2n − 1))

∏
0≤r<n(X + 2n+r−1).

24. Show that (s2(m + n))m,n≥0 is a 2-regular array. How about (s2(mn))m,n≥0?
25. For n ≥ 1 define u(n) = ∑

0≤i<n

(2i
i

)
.

(a) Show that ν3(
(2n

n

)
) = s3(n) − 1

2 s3(2n).
(b) Show that ν3(u(n)) = ν3(

(2n
n

)
) + 2ν3(n).

(c) Prove that (ν3(u(n)))n≥1 is a 3-regular sequence.

26. Give an example of a 2-regular sequence (an)n≥0 such that (sgn(an))n≥0 is not
2-automatic.

27. Suppose one is given a k-regular sequence (s(n))n≥0, say, by being provided
with λ,µ, κ in its linear representation. Show that the following problems are
unsolvable. Hint: Use Hilbert’s tenth problem (Theorem 4.6.3).
(a) There exists i such that s(i) = 0.
(b) For all i we have s(i) ≥ 0.

28. Define a(0) = 2, a(1) = 3, and let a(n) be the least integer > a(n − 1) such
that a(n) �= a(k) + a(k − 1) for all k with 1 ≤ k < n.
(a) Show that a(2n) = 3n + 1 + (�log2 n�mod2) for n ≥ 1 and a(2n + 1) = 3n + 3

for n ≥ 0. Conclude that (a(n))n≥0 is 2-regular.
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(b) Let b(n) = a(n) + a(n − 1) for n ≥ 1. Show that b(n) = 3n + 2 − (�log2 n�
mod2) for n ≥ 1.

(c) Show that {a(n) : n ≥ 0} ∪ {b(n) : n ≥ 1} = {2, 3, 4, . . . }.
29. Let (a(n))n≥0 be a k-regular sequence with 0 < a(0) < a(1) < a(2) · · · , and

let b be an integer ≥ 2. Show that the number

.(a(0))b(a(1))b(a(2))b · · ·

is irrational.
30. (D. Fux) Define b(n) = ∑

0≤k≤n

((n
k

)
mod3

)
.

(a) Show that b(n) = 2a−1(3b+1 − 1), where a is the number of occurrences of the
digit 1 and b is the number of occurrences of the digit 2 in the base-3 expansion
of n.

(b) Conclude that (b(n))n≥0 is a 3-regular sequence.

31. (Morton and Mourant) Let G be an abelian group, written additively, and let
a = (a(n))n≥0 be a sequence of elements of G. For n, q ≥ 0 we define a sub-
word of a of length kq as follows:

Xq
n = (a(nkq), a(nkq + 1), . . . , a(nkq + kq − 1)).

For a subword v = b1b2 · · · bt , we define v − c = d1d2 · · · dt , where di = bi − c
for 1 ≤ i ≤ t . Define the group !k(G) to be the set of all sequences a for which
the sequence of blocks (Xq

n − a(n))n≥0 is purely periodic, for all q ≥ 0. In
other words, a sequence a is in !k(G) if there exists an integer M ≥ 1 such
that Xq

m − a(m) = Xq
n − a(n) if m ≡ n (mod M).

(a) Show that a ∈ !k(Z) if and only if the sequence (a(n) − a(�n/k�))n≥0 is purely
periodic, and conclude that every sequence in !k(Z) is k-regular.

(b) Let a be a sequence in !k(G), i.e., if m ≡ n (mod M), then Xq
m − a(m) =

Xq
n − a(n) for all q ≥ 0. Then there exist a morphism ϕ : (G × Z/MZ) →

(G × Z/MZ)k and a coding τ : G × Z/MZ → G such that a = τ (ϕω([a(0), 0])).
Conclude that if G is finite, the sequence a is k-automatic.

32. Define x0 = 0 and xn+1 = 1/(1 + 2�xn� − xn). Define the sequences (pn)n≥0,

(qn)n≥0 by pn/qn = xn , where qn ≥ 1 and gcd(pn, qn) = 1.
(a) Show that qn = pn+1 for n ≥ 0.
(b) Show that (pn)n≥0 and (qn)n≥0 are 2-regular.
(c) Show that the sequence (xn)n≥0 enumerates every non-negative rational number

exactly once.

33. Let (bn)n≥0 be a k-regular sequence with b0 = 0. Show that (cn)n≥0 is a k-regular
sequence, where cn := ∑

j≥0 b�n/k j �.
34. Let s−k(n) denote the sum of the digits of n when expressed in base−k (see The-

orem 3.7.2). Show that the sequences (s−k(n))n≥0 and (s−k(n) − s−k(−n))n≥0

are both k-regular sequences.
35. Show that the sequence (kn)n≥0, which counts the number of partitions of

n into Fibonacci number parts, can be computed as follows: there exist a
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matrix-valued morphism µ :�k → Zr×r and vectors λ, κ with integer entries
such that k(n) = λµ((n)F )κ , where (n)F denotes Fibonacci representation.

36. Show that the following problem is unsolvable: given the matrix representation
of a k-regular sequence (an)n≥0, decide if there exists an index n such that
an = 0. Hint: Use Theorem 4.6.3.

16.7 Open Problems

1. (F. Beukers) Define the Apéry numbers un = ∑
0≤k≤n

(n
k

)2(n+k
k

)2
.

(a) Prove or disprove: 5e5;1(n)+e5;3(n) | un .
(b) Define bn = ν5(un). Is (bn)n≥0 a 5-regular sequence?

(Remark: See, for example, Coster [1988, p. 42].)
2. Let

a(n) =
∑

0≤k≤n

(
n

k

)(
n + k

k

)

.

Let b(n) = ν3(a(n)). Prove or disprove that

b(n) =
{

b(�n/3�) + (�n/3�mod2) if n ≡ 0, 2 (mod 3),

b(�n/9�) + 1 if n ≡ 1 (mod 3).

3. Let f be a polynomial with rational coefficients. Prove or disprove:
(νp( f (n)))n≥0 is a p-regular sequence.

4. Define f (n) = mink≥n+1(k − ν2(k)). Is ( f (n))n≥0 a 2-regular sequence? (Re-
mark: See Lengyel [1994].)

5. Suppose (an)n≥0 and (bn)n≥0 are 2-regular sequences taking non-negative in-
teger values. Must (an ⊕ bn)n≥0 be 2-regular? Here ⊕ is the nim sum defined
in Example 16.5.5. How about the two-dimensional array (ai ⊕ b j )i, j≥0?

6. The nim product m ⊗ n is defined as follows:
(a) If m = 22a

for some integer a ≥ 0 and n < m, then m ⊗ n = mn.
(b) If m = 22a

for some integers a ≥ 0, then m ⊗ m = 3m/2.
(c) For other products, use the fact that ⊗ is associative and distributes over ⊕.

Prove or disprove: the sequence (n ⊗ n)n≥0 is 2-regular. How about the two-
dimensional array (m ⊗ n)m,n≥0?

7. Determine all the units (invertible elements) of the ring of k-regular power
series.

8. Suppose (S(n))n≥0 and (T (n))n≥0 are k-regular sequences over Z and T (n) �= 0
for all n. Prove or disprove: if S(n)/T (n) is always an integer, then
(S(n)/T (n))n≥0 is k–regular.

9. Prove or disprove: if S(n) is a k-regular sequence over Z and unbounded, then
it takes on infinitely many composite values. (A integer ≥ 2 is composite if it
is not a prime.)



454 k-Regular Sequences

10. Prove or disprove: (� 1
2 + log2 n�)n≥1 is not a 2-regular sequence.

11. Consider expanding n in Fibonacci representation instead of base k. Gener-
alizing Exercise 35, develop an analogous theory of “Fibonacci-regular” se-
quences, and prove analogues of some of the theorems in this chapter. (Remark:
See, for example, Allouche, Scheicher, and Tichy [2000].)

12. Let (a(n))n≥0 be a k-regular sequence with 0 < a(0) < a(1) < a(2) · · · , and
let b be an integer ≥ 2. Prove that the number

.(a(0))b(a(1))b(a(2))b · · ·
is transcendental.

16.8 Notes on Chapter 16

16.1 Allouche and Shallit [1992] coined the term k-regular. Their paper contains
thirty examples of k-regular sequences from the literature, some of which
are reproduced in this chapter. The sequences we study in this chapter are
(Z, k)-regular in the notation of the original paper.

The theory of k-regular sequences is closely linked to the theory of rational
series, for which see Berstel and Reutenauer [1988].

16.2 Theorems 16.2.1–16.2.3 are from Allouche and Shallit [1992].
16.3 Theorem 16.3.3 is a weak analogue of Cobham’s theorem (Theorem 11.2.1). It

seems reasonable to conjecture that if a sequence (sn)n≥0 is both k1-regular and
k2-regular, with k1 and k2 multiplicatively independent, then the associated
power series

∑
n≥0 sn Xn ∈ Z[[X ]] must be a rational function. See Randé

[1993].
16.4 Dumas [1993b] studied the algebraic properties of k-regular sequences and

the asymptotic properties of the corresponding power series on C.
Randé [1993] also studied the properties of k-regular power series. He ob-

tained partial results on their hypertranscendence and a Cobham-like theorem.
It is known that k-regular power series satisfy Mahler functional equations;

see Randé [1992], Dumas [1993a], and Becker [1994]. Becker [1994] also
obtained transcendence results on the values of k-regular power series at alge-
braic points.

Nishioka [1996, Chapter 5] discussed transcendence and k-regular se-
quences.

16.5 For the “infinity series” of Per Nørgård, see Kullberg [1996].
Example 16.5.4 is due to Kimberling [1995, 1997].
For the game of nim (Example 16.5.5), see, for example, Bouton [1902];

E. H. Moore [1909]; Ball [1939]; Uspensky and Heaslet [1939]; Pedoe [1958];
Yaglom and Yaglom [1967, p. 19]; Conway [1976, Chapter 6]; and Berlekamp,
Conway, and Guy [1982].
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Physics

Quasicrystals, discovered by the materials scientist Dan Shechtman in April 1982,
are materials that are intermediate between crystalline and random structures
(glasses). They are formed, for example, in certain alloys of aluminum with other
metals, such as copper or manganese.

After their experimental discovery, it was proposed that a certain tiling of the
plane, known as the Penrose tiling, could serve as a theoretical model of the structure
of these alloys. The Penrose tiling is not periodic, but possesses fivefold symmetry
and looks “regular”; see Figures 17.1 and 17.2. Figure 17.1 illustrates a partial
Penrose tiling of the plane by two kinds of pieces: kites and darts. A local fivefold
symmetry can be seen (local invariance under a rotation of 2π/5). In Figure 17.2,
some pieces have been glued together to form bow ties that are either long or short.
If such an infinite line, or worm, of short and long bow ties can be found in a
Penrose tiling, the bow ties are arranged according to the infinite Fibonacci word
f = 010010100100101001010 · · · introduced in Section 7.1, where a short
bow tie is replaced by 0 and a long one by 1.

Because the Fibonacci word is associated with the Penrose tiling, theoretical
physicists began to study the properties of f. This word being both morphic and
Sturmian, physicists became more generally interested in morphic sequences –
including automatic sequences – and Sturmian sequences. Such sequences, when
they are not ultimately periodic, are somewhere between periodicity (order) and
chaos (disorder). They might correspond to (one-dimensional) materials having
physical properties between crystals and glasses, and might be a good theoretical
model of one-dimensional quasicrystals.

In this chapter we present a few examples of the use of automatic and morphic
sequences in physics. Many more occurrences of these sequences can be found in
the literature.

455
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Figure 17.1: A Partial Penrose Tiling of the Plane.

Figure 17.2: A Fibonacci Worm of Bow Ties in a Penrose Tiling.
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17.1 The One-Dimensional Ising Model

The Ising model is a relatively simple model that describes the magnetic properties
of matter. We restrict ourselves to the one-dimensional case; this corresponds to
one-dimensional samples.

Definition 17.1.1 An Ising chain of N sites consists of the set {0, 1, . . . , N − 1}
and a finite sequenceη = (η0, . . . , ηN−1) of±1’s of length N . A configuration of the
Ising chain is a finite sequence of N spins, i.e., of±1’s, say σ = (σ0, σ1, . . . , σN−1).

To describe the magnetic properties of matter, we imagine that neighboring sites
are interacting in that σq and σq+1 create an interaction field proportional to the
product −σqσq+1. We also suppose there is an external field whose action at each
site q is proportional to σq . The following definition is more precise.

Definition 17.1.2 The Hamiltonian or energy of a configuration σ is defined by

Hη(σ ) = −J
∑

0≤q<N

ηqσqσq+1 − H
∑

0≤q<N

σq,

where the chain is cyclic, i.e., σN = σ0, where J > 0 is a given parameter called
the coupling constant or binding energy, and where H is a real parameter called the
external field. Let T > 0 be a parameter called the temperature, and let β := 1/kT ,
where k is a universal constant called the Boltzmann constant. The partition function
Z N (η, J, H, β) is defined by

Z N (η, J, H, β) :=
∑

σ∈{−1,+1}N

exp(−βHη(σ )).

Finally, the transfer matrix of the Ising chain at site q is the matrix Mq defined
by

Mq :=
(

eβH+β Jηq eβH−β Jηq

e−βH−β Jηq e−βH+β Jηq

)

.

Recall that the trace of a matrix M , denoted by tr(M), is the sum of the diagonal
entries of the matrix M . We now give a theorem showing how to compute the
partition function using transfer matrices.

Theorem 17.1.3 We have

Z N (η, J, H, β) = tr




∏

0≤q≤N−1

Mq



 .
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Proof. We write

Z N (η, J, H, β) =
∑

σ∈{−1,+1}N

exp(−βHη(σ ))

=
∑

σ∈{−1,+1}N

∏

0≤q<N

exp(β Jηqσqσq+1 + βHσq)

=
∑

σ0=±1

∑

σ1=±1,...,σN−1=±1

∏

0≤q≤N−1

exp(β Jηqσqσq+1 + βHσq)

Denote the entries of Mq by (Mq)u,v, with 1 ≤ u, v ≤ 2. We then have

eβ Jηqσqσq+1+βHσq =






eβ Jηq+βH = (Mq)1,1 if σq = +1, σq+1 = +1,

e−β Jηq+βH = (Mq)1,2 if σq = +1, σq+1 = −1,

e−β Jηq−βH = (Mq)2,1 if σq = −1, σq+1 = +1,

eβ Jηq−βH = (Mq)2,2 if σq = −1, σq+1 = −1.

In other words,

eβ Jηqσqσq+1+βHσq = (Mq) 3−σq
2 ,

3−σq+1
2

.

Hence

Z N (η, J, H, β) =
∑

σ0=±1

∑

σ1=±1,...,σN−1=±1

∏

0≤q≤N−1

(Mq) 3−σq
2 ,

3−σq+1
2

=
∑

1≤τ0≤2

∑

1≤τ1,τ2,...,τN−1≤2

∏

0≤q≤N−1

(Mq)τq ,τq+1

=
∑

1≤τ0≤2

∑

1≤τ1,τ2,...,τN−1≤2

(M0)τ0,τ1 (M1)τ1,τ2 · · · (MN−1)τN−1,τ0,

where we have used the fact that that σn = σ0, and hence τn = τ0. Note that the inner
sum is the (τ0, τ0) entry of the matrix M0 M1 · · · MN−1, and hence Z N (η, J, H, β)
is the trace of this matrix product. �

The Ising model is called homogeneous if all the ηq are equal; that is, if ηq =
η0 = ±1 for all q . In this case all the matrices Mq are equal, and the partition func-
tion is easily computed.

Theorem 17.1.4 The partition function of the N-site homogeneous Ising chain,
with coupling constant J and external field H, and where ηq = η for all q, is given
by

Z N (η, J, H, β) = λN
1 + λN

2 ,
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where λ1 and λ2 are the (not necessarily distinct) complex eigenvalues of the matrix

M :=
(

zα+η zα−η

z−α−η z−α+η

)

,

the complex numbers z and α being defined by z := eβ J and α := H/J .

Proof. Using Theorem 17.1.3, we have Z N (η, J, H, β) = tr(M N ), where

M :=
(

zα+η zα−η

z−α−η z−α+η

)

.

Let λ1 and λ2 be the (not necessarily distinct) complex eigenvalues of the matrix
M . We know there exists an invertible matrix P such that M = P D P−1, where

D =
(
λ1 a
0 λ2

)

for some complex number a.

We thus have M N = P DN P−1. Hence tr(M N ) = tr(DN ) = λN
1 + λN

2 , and the the-
orem follows. �

17.2 The Rudin–Shapiro Sequence and the One-Dimensional Ising Model

In this section we prove that the one-dimensional Ising model and the Rudin–
Shapiro sequence are closely linked. More precisely, define the complete Rudin–
Shapiro sequence (u(n))n≥0 by

u(n) := e2;11(n) =
∑

q≥0

ε(2)
q (n)ε(2)

q+1(n),

where n = ∑
q≥0 ε

(2)
q (n)2q , with ε(2)

q (n) ∈ {0, 1}. Note that the ordinary Rudin–
Shapiro sequence (rn)n≥0 (defined in Example 5.1.5) is actually the sequence
((−1)u(n))n≥0. Also note the following useful relation:

u(2m + 1) = 1

2
(1 − (−1)m) + u(m).

Let us change the definition of (u(n)) slightly. For a fixed N ≥ 1 and any integer
n ∈ [0, 2N − 1], we define

ε̃q(n) :=
{
ε(2)

q (n) if q ≤ N − 1,

ε
(2)
0 (n) if q = N .

We then define the quantity u(n, N ) by

u(n, N ) :=
∑

0≤q<N

ε̃q(n)ε̃q+1(n).
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Note that u(n, N ) counts the number of occurrences of the word 11 in the “cyclic”
binary expansion of n, and that, easily,

u(n, N ) =
{

u(n) if 0 ≤ n < 2N−1,

u(n) + 1
2 (1 − (−1)n) if 2N−1 ≤ n < 2N .

Let µq(n) be defined by µq(n) := 1 − 2ε̃q(n). Note that µq(n) = ±1. The proof
of the following lemma is straightforward.

Lemma 17.2.1 We have

u(n, N ) = N

4
− 1

2




∑

0≤q<N

µq(n)



+ 1

4




∑

0≤q<N

µq(n)µq+1(n)



 .

We are now ready for the main result of this section. Define R(N , x) and S(N , x)
by

R(N , x) :=
∑

0≤n<2N

exp(2iπxu(n)) and S(N , x) :=
∑

0≤n<2N

exp(2iπxu(n, N )).

We have

Theorem 17.2.2 Let x be a real number. Then

(a) S(N , x) − R(N , x) = (exp(2iπx) − 1)(S(N − 1, x) − R(N − 2, x));
(b) S(N , x) = exp( iπN x

2 ) Z N (1, 1
2 ,−1, iπx), where Z N (1, 1

2 ,−1, iπx) is the partition
function of the homogeneous Ising model with all ηi equal to 1, with J = 1

2 , H = −1,
and where the temperature T is a purely imaginary number such that 1/kT =
β = iπx.

Proof. We prove assertion (a) as follows:

S(N , x) − R(N , x)

=
∑

0≤n<2N

exp(2iπxu(n, N )) −
∑

0≤n<2N

exp(2iπxu(n))

=
∑

2N−1≤n<2N

exp(2iπxu(n))

(

exp

(

2iπx

(
1

2
(1 − (−1)n)

))

− 1

)

= (exp(2iπx) − 1)
∑

2N−2≤m<2N−1

exp(2iπxu(2m + 1))

= (exp(2iπx) − 1)
∑

2N−2≤m<2N−1

exp

(

2iπx

(
1

2
(1 − (−1)m

)

+ u(m)

)
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= (exp(2iπx) − 1)
∑

2N−2≤m<2N−1

exp(2iπxu(m, N − 1))

= (exp(2iπx) − 1)(S(N − 1, x) − R(N − 2, x)).

Assertion (b) is a consequence of the observation that there is a bijection between
the set {−1,+1}N of all possible configurations of an N -dimensional Ising chain
and all the integers in [0, 2N − 1]. Hence

S(N , x)

=
∑

0≤n<2N

exp(2iπxu(n, N ))

= exp(

(
iπN x

2

) ∑

0≤n<2N



exp iπx



1

2

∑

0≤q<N

µq(n)µq+1(n) −
∑

0≤q<N

µq(n)









= exp

(
iπN x

2

)

Z N (1, 1
2 ,−1, iπx)

with the notation used in Definition 17.1.2. �

Remark. The reader should note that although the temperature in Theorem 17.2.2 is
a purely imaginary complex number, the transfer matrix method of Theorem 17.1.3
and Theorem 17.1.4 is still valid.

Corollary 17.2.3 Let x be a real number. Define the complex numbers λ1(x), λ2(x)
and γ = γ (x) by

λ1(x) := (
cos(πx) + (− sin2(πx) + exp(−2iπx))1/2

)
exp(iπx/2),

λ2(x) := (
cos(πx) − (− sin2(πx) + exp(−2iπx))1/2

)
exp(iπx/2).

γ (x) :=
{
λ1(x) if |λ1(x)| ≥ λ2(x),

λ2(x) if |λ1(x)| < λ2(x).

(Here U 1/2 is any complex square root of U.)

(a) If x ≡ 1
2 (mod 1), then S(N , x) = (1 + (−1)N )2N/2.

(b) If x �≡ 1
2 (mod 1), then S(N , x) = exp(iπN x/2)(λ1(x)N + λ2(x)N ) ∼ (eiπxγ )N (when

N goes to ∞).
(c) We have

√
2 ≤ |γ | ≤ 2. Furthermore |γ | = √

2 if and only if x ≡ 1
2 (mod 1), and

|γ | = 2 if and only if x ≡ 0 (mod 1).

Proof. Parts (a) and (b) follow directly from Theorem 17.2.2 and Theorem 17.1.4
above. The corresponding transfer matrix is

M :=
(

e−iπx/2 e−3iπx/2

eiπx/2 e3iπx/2

)

,
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and the eigenvalues of M are
(
cos(πx) ± (− sin2(πx) + exp(−2iπx))1/2

)

exp(iπx/2). Note for (b) that if x �≡ 1
2 (mod 1), then |λ1(x)| �= |λ2(x)|.

Part (c) is a consequence of the relation

|γ |2 = 1 + (1 + 4T 4)1/2 +√
2(1 − 2T 2 + (1 + 4T 4)1/2)1/2

1 + T 2
,

where T := tan(πx). �

17.3 Distribution Results for the Rudin–Shapiro Sequence

We now apply the connection between the Rudin–Shapiro sequence and the quantity
u(n, N ) defined at the beginning of Section 17.2 to prove distribution results for
the complete Rudin–Shapiro sequence.

Theorem 17.3.1 Let (un)n≥0 be the complete Rudin–Shapiro sequence. Let x be
a real number that is not an integer. Then there exists α = α(x) ∈ (0, 1) such
that

∑
n<N exp(2iπxu(n)) = O(Nα). In particular, the sequence (xu(n))n≥0 is uni-

formly distributed modulo 1 for all irrational numbers x.

Proof. In order to prove the uniform distribution property, it suffices, using
Weyl’s theorem (Theorem 2.5.6), to prove that for all integers h �= 0 we have
limN→∞ 1

N

∑
n<N e2π ihxu(n) = 0. Hence it suffices to prove the O(Nα) estimate of

the theorem. This is done in two steps: first, we assume that N is a power of 2, and
second, we deduce the result for any N .

We first prove that, for x �≡ 1
2 (mod 1), we have R(N , x) =

∑
0≤n<2N exp(2iπxu(n)) ∼ c(x)(γ (x)eiπx )N , where c(x) is a nonzero constant de-

pending only on x , and γ = γ (x) was defined in Corollary 17.2.3.
Define for j = 1, 2 the numbers y j by y j := λ j exp(iπx/2), where λ1 and λ2

were defined in Corollary 17.2.3. Let E := exp(2iπx) − 1. Using Theorem 17.2.2
and Corollary 17.2.3, we have

R(N , x) − E R(N − 2, x) = yN−1
1 (y1 − E) + yN−1

2 (y2 − E).

Hence

∑

0≤k<�N/2�
Ek(R(N − 2k, x) − E R(N − 2k − 2, x))

= (y1 − E)




∑

0≤k<�N/2�
yN−2k−1

1 Ek



+ (y2 − E)




∑

0≤k<�N/2�
yN−2k−1

2 Ek



 .
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This gives, using that E �= y2
1 and E �= y2

2 (since x is not an integer and E = y1 y2),

R(N , x) − E�N/2�R(N − 2�N/2�, x)

= y1 − E

y2
1 − E

yN+1
1 + y2 − E

y2
2 − E

yN+1
2 − W E�N/2�,

where

W := y1 − E

y2
1 − E

yN+1−2�N/2�
1 + y2 − E

y2
2 − E

yN+1−2�N/2�
2 .

To compute W , it suffices to use that y1 y2 = E and y1 + y2 = exp(iπx/2)(λ1 +
λ2) = E + 2. This gives easily W = 1 if N is even, and W = 2 if N is odd. Noting
that R(0, x) = 1 and R(1, x) = 2, we thus have

R(N , x) = y1 − E

y2
1 − E

yN+1
1 + y2 − E

y2
2 − E

yN+1
2 .

Using the number γ defined in Corollary 17.2.3, we see that, for x �≡ 1
2 (mod 1) we

have

R(N , x) ∼ c(γ exp(iπx))N

when N goes to∞. Here c = c(x) is a constant that depends only on x . Furthermore,
for every x we have

R(N , x) = O(γ (x)N ).

To extend this bound to the general sum T (N , x) := ∑
0≤n<N exp(2iπxu(n)),

we proceed by splitting this sum according to the binary expansion of N .
More precisely, let N = 2M0 + 2M1 + · · · , where M0 > M1 > M2 > · · · . We write
T (N , x) = ∑

1 +
∑

2 +· · · , where

�1 :=
∑

0≤n<2M0

exp(2iπxu(n)),

�2 :=
∑

2M0≤n<2M0+2M1

exp(2iπxu(n)),

�3 :=
∑

2M0+2M1≤n<2M0+2M1+2M2

exp(2iπxu(n)),

...

Each of the sums �� has the form
∑

K≤n<K+2M exp(2iπxu(n)), where 2M+1 | K .
But, if 0 ≤ n < 2M and 2M+1 | K , then u(n + K ) = u(n) + u(K ). Hence

∑

K≤n<K+2M

exp(2iπxu(n)) = exp(2iπxu(K )) R(M, x).
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Thus, using the first part of this proof, we obtain

|T (N , x)| ≤ |R(M0, x)| + |R(M1, x)| + |R(M2, x)| + · · ·
≤ c′(|γ (x)|M0 + |γ (x)|M1 + |γ (x)|M2 + · · · )

≤ c′(|γ (x)|M0 + |γ (x)|M0−1 + |γ (x)|M0−2 + · · · )

≤ c′′|γ (x)|M0 ≤ c′′|γ (x)|log N/ log 2.

This finally gives

|T (N , x)| ≤ c′′Nα(x), where α(x) := log |γ (x)|
log 2

. �

Remark. Note that the exponentα(x) is< 1 if x is not an integer. Also note that this
exponent is optimal. Of course, we have γ ( 1

2 ) = √
2, and hence α( 1

2 ) = 1
2 . Hence

the case x = 1
2 gives the classical bound in

√
N for the sum

∑
0≤k<N (−1)u(n).

17.4 The One-Dimensional Schrödinger Operator

Another example of the occurrence of automatic and morphic sequences in physics
is given by the study of one-dimensional Schrödinger operators. Schrödinger oper-
ators were introduced to describe vibrations of atoms, considered roughly as masses
separated by springs.

Let (un)n≥0 be a uniformly recurrent sequence. We associate with this sequence
the set � (also called the hull or induced subshift) that consists of all infinite words
(or sometimes two-sided infinite words) that have the same (finite) subwords as the
sequence (un)n≥0.

With such a structure is associated a family of discrete one-dimensional
Schrödinger operators (Hω)ω∈� as follows: if ω = (ωn)n≥0 belongs to �, then

(Hωφ)(n) := φ(n + 1) + φ(n − 1) + ωnφ(n).

Studying the spectrum of the operator Hω leads one to look at the tight-binding
Schrödinger equation in one dimension,

Eφ(n) = φ(n + 1) + φ(n − 1) + ωnφ(n),

where E is a (usually) real number, the energy. Note that this equation can also be
written as:

G(n) = TnG(n − 1),

where G(n) :=
(
φ(n + 1)
φ(n)

)

and Tn :=
(

E − ωn −1
1 0

)

.

By iterating,

G(n) = (TnTn−1 · · · T0)G(0).
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Since the determinants of all matrices Tn are equal to 1, all these matrices as well
as their products satisfy Cayley-Hamilton equations of the form

M2 − tr(M)M + I = 0, where I =
(

1 0
0 1

)

.

Hence it is of interest to find easy ways to compute quantities such as
tr(TnTn−1 · · · T0). In particular, if the sequence (ωn)n≥0 is a fixed point of a mor-
phism, then the same property holds for the sequence of matrices (Tn)n≥0. If the
sequence (Tn)n≥0 is a fixed point of a morphism σ , the computation of the trace
of the product TnTn−1 · · · T0, when n + 1 = |σ k(T0)| for some integer k, leads to
recurrence relations and to trace maps, an example of which is given below.

Example 17.4.1 Let f = ( fn)n≥0 = 010010100100101001010 · · · be the
Fibonacci word of Section 7.1. Suppose that the sequence of matrices (Tn)n≥0

takes two values A and B, and that there exists a map θ from {0,1} to {A, B} such
that Tn = θ ( fn) for each n ≥ 0. Define the matrix Mk by Mk = TFk−1TFk−2 · · · TF0 ,
where Fk is the kth Fibonacci number. An easy consequence of Theorem 7.1.1 is
that, for k ≥ 3,

Mk+1 = Mk−1 Mk .

Hence

tr(Mk+2) = tr(Mk Mk+1) = tr(Mk Mk−1 Mk)
= tr((Mk)2 Mk−1) = tr((tr(Mk)Mk − I )Mk−1)
= tr(Mk)tr(Mk Mk−1) − tr(Mk−1) = tr(Mk)tr(Mk−1 Mk) − tr(Mk−1)
= tr(Mk)tr(Mk+1) − tr(Mk−1).

In other words, defining �(k) := tr(Mk), the following recurrence relation holds
for k ≥ 3:

�(k + 2) = �(k)�(k + 1) −�(k − 1).

Let us return to the family of discrete one-dimensional Schrödinger operators
(Hω)ω∈� defined above by

(Hωφ)(n) = φ(n + 1) + φ(n − 1) + ωnφ(n).

With this operator is associated a measure called its spectral measure. The Lebesgue
decomposition allows to write this measure as the sum of three measures: one is
absolutely continuous (i.e., proportional to the Lebesgue measure), and one is sin-
gular continuous (i.e., every point has measure 0, and the support of the measure
has zero Lebesgue measure), and one is pure point (i.e., it is a sum of Dirac mea-
sures). The spectral properties of Hω then determine the “conductivity properties”
of the given structure. Informally, a structure corresponding to an absolutely contin-
uous spectrum behaves like a conductor, while a structure corresponding to a pure
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point spectrum behaves like an insulator. It is generally expected that the interme-
diate spectral case – singular continuous spectrum – corresponds to intermediate
transport properties.

Although singular continuous spectra do not occur for periodic structures, it
seems that they do typically occur for one-dimensional quasicrystals. One important
result in this respect is Theorem 17.4.2 below. Note that this theorem deduces a sin-
gular continuous spectrum from combinatorial properties of the sequence (un)n≥0.
Suppose that the subwords of u occur with well-defined, positive frequencies. (This
is the case for a large class of sequences, including Sturmian sequences and se-
quences generated by primitive morphisms.) Then the following theorem holds,
which we state without proof.

Theorem 17.4.2 Let (un)n≥0 be a non-ultimately-periodic sequence on a finite
alphabet. We suppose that (un)n≥0 contains arbitrarily long palindromic subwords.
Furthermore we suppose that the frequency of occurrence of every subword of
(un)n≥0 exists and is positive. Then, for uncountably many ω ∈ �, the operator Hω

has purely singular continuous spectrum.

Remarks. Note that, since the sequence (un)n≥0 is uniformly recurrent, it suffices
to assume that (un)n≥0 is not periodic.

Theorem 17.4.2 applies to any sequence that is generated by a primitive morphism
and contains arbitrarily long palindromic subwords. Furthermore, it applies to all
Sturmian sequences, and, more generally, to all sequences defined by circle maps.

Finally, there is a similar, purely combinatorial sufficient condition for singular
continuous spectrum in terms of the powers occurring in the sequence (un)n≥0.

In view of Theorem 17.4.2 above, it is interesting to know whether a given
sequence contains arbitrarily long palindromic subwords. More precisely, we can
define the palindrome complexity of a sequence u = (un)n≥0 on a finite alphabet as
follows: palu(k) is defined to be the number of different palindromic subwords of
length k that occur in the sequence u. Several examples are given in the exercises
at the end of this chapter.

17.5 Exercises

1. (a) Prove that the palindrome complexity v of the Fibonacci sequence f is given by
palv(k) = 2 if k is odd, and palv(k) = 1 if k is even.

(b) Prove that the same result as above holds for any Sturmian sequence.
(c) Prove the converse. Hence a sequence z is Sturmian if and only if its palindrome

complexity satisfies palz(k) = 2 if k is odd, and palz(k) = 1 if k is even.

2. Show that no paperfolding sequence on two symbols contains palindromes of
length 14 or larger.
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3. Define the class of generalized Rudin–Shapiro sequences as follows: let (un)n≥1

be any paperfolding sequence. Then the associated generalized Rudin–Shapiro
sequence is the sequence (vn)n≥1 defined by

vn :=
(
∑

1≤k≤n

uk

)

mod 2.

Show that no generalized Rudin–Shapiro sequence has palindromes of length
15 or larger.

4. Let d be the period-doubling sequence of Example 6.3.4.
(a) Prove that d contains no palindromic subword of even length ≥ 4.
(b) Prove that, for every odd k ≥ 5, we have pald(k) = pald(2k − 1) = pald(2k + 1).
(c) Prove that the sequence (pald(k))k≥0 is 2-automatic.

5. Prove that the palindrome complexity of a fixed point of a primitive morphism
is bounded.

17.6 Notes on Chapter 17

In 1974, Penrose [1974] introduced a nonperiodic tiling of the plane with fivefold
symmetry, now called the Penrose tiling. It was popularized by Gardner [1977].
Another early reference on this tiling is Penrose [1979].

De Bruijn [1981b, 1981c] studied the algebraic properties of the Penrose tiling.
(Three other papers of de Bruijn [1986, 1987, 1997] were devoted later to the study
of Penrose or related tilings.)

In 1984 a paper of Shechtman, Blech, Gratias, and Cahn [1984] appeared, relating
how they built an alloy of aluminum and manganese that has fivefold symmetry.
Since this is not possible for a crystal, and since this alloy is not a glass (an X-ray
diffraction picture shows Bragg peaks), the term quasicrystal was coined for such
materials (by Levine and Steinhardt [1984]). This discovery led several physicists
to begin studying one-dimensional structures based on the Fibonacci sequence f.
The papers of Kohmoto, Kadanoff, and Tang [1983] and Ostlund, Pandit, Randit,
Schellnhuber, and Siggia [1983] on Schrödinger equations with an almost periodic
potential appeared in the same issue of Physical Review Letters. Interesting early
papers on quasicrystallography include Pleasants [1985] and Lunnon and Pleasants
[1987]. The book of Senechal [1995] is a worthwhile survey.

17.1 The Ising model was first described in a paper by E. Ising [1925]. A general
presentation is given, for example, in the book of Huang [1987].

17.2 It seems that the first time that “physical” properties of automatic sequences
(i.e., pointwise images of fixed points of uniform morphisms) were studied
was in Allouche and Mendès France [1985a]. This section is essentially taken
verbatim from that paper. Schrödinger equations with an automatic potential



468 Physics

were first studied (in the case where the potential is given by the Thue–
Morse sequence) by Axel, Allouche, Kleman, Mendès France, and Peyrière
[1986]. This was done in more detail in Axel and Peyrière [1989] and Bellis-
sard [1990]. Many results for automatic sequences, morphic sequences, and
other sequences were published at the end of the 1980s and the beginning
of the 1990s. See, in particular, Bellissard, Iochum, Scoppola, and Testard
[1989]; Bellissard, Bovier, and Ghez [1991, 1992, 1993]; Bellissard [1992];
and Bovier and Ghez [1993a, 1993b, 1995].

17.3 Theorem 17.3.1 is due to Allouche and Mendès France [1985a]. It can also be
proved without the Ising formalism, but a feature of this presentation is to em-
phasize the relations between two very different objects, the one-dimensional
Ising model and the Rudin–Shapiro sequence. Related results for the Rudin–
Shapiro sequence are given in Allouche and Mendès France [1985b].

A small sample of other papers on the one-dimensional Ising model in rela-
tion with morphic sequences is Allouche and Mendès France [1986a; 1986b];
Mendès France [1986, 1990a, 1991]; Hermisson, Grimm, and Baake [1997];
and Kamae and Mendès France [1996].

17.4 Theorem 17.4.2 is due to Hof, Knill, and Simon [1995]. They conjectured
in particular that the Rudin–Shapiro sequence does not have arbitrarily long
subwords that are palindromes. This was later proved by Allouche [1997b]
and by Baake [1999].

Palindrome complexity was introduced by Allouche, Baake, Cassaigne,
and Damanik [2001].

For a neat mathematical treatment of Schrödinger operators, see Guille-Biel
[1997].

The trace map was studied by Allouche and Peyrière [1986], Kolář and
Nori [1990]; Peyrière [1991]; Baake, Grimm, and Joseph [1993]; Grimm
and Baake [1994]; Roberts and Baake [1994a, 1994b]; and Avishai, Berend,
and Glaubman [1994]. Among other references we mention the survey of
Peyrière [1995].

For Schrödinger equations or related one-dimensional structures we men-
tion only a few papers. Aubry, Godrèche, and Luck [1987, 1988] studied
structures intermediate between quasiperiodicity and randomness. Quasiperi-
odicity and one- and two-dimensional tilings were studied in particular by
Godrèche and Luck [1989a, 1989b]; Godrèche [1990]; and Godrèche, Luck,
Janner, and Janssen [1993].

The Fibonacci sequence f and generalizations occur, for example, in Gumbs
and Ali [1998a, 1988b, 1989], Kolář and Ali [1990], Salejda [1995a], and
Baake, Hermisson, and Pleasants [1997].

The Thue–Morse sequence and generalizations occur, for example, in van
Enter and Miȩkisz [1990]; Lin and Tao [1990]; Delyon and Peyrière [1991];
Axel and Terauchi [1991] (see comment in Kolář [1994] and reply to comment
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in Axel and Terauchi [1994]); Zhong, Yan, and You [1991]; Huang, Gumbs,
and Kolář [1992] (see comment in Liviotti and Erdős [1995], and reply to com-
ment in Huang, Gumbs, and Kolar [1995]); Lin and Tao [1992]; van Enter
and Miȩkisz [1992]; Zhong, You, and Yan [1992]; Roy and Khan [1994b,
1994c]; Tao [1994] (where the Fibonacci sequence is also discussed); Turban,
Berche, and Berche [1994]; Roy, Khan, and Basu [1995]; Roy, Basu, and Khan
[1995]; Chakrabarti, Karmakar, and Moitra [1995] (see comment in Fan and
Lin [1995]); Gumbs, Dubey, Salman, Mahmoud, and Huang [1995] (where the
Fibonacci sequence is also discussed); de Brito, da Silva, and Nazareno [1995]
(where the Fibonacci sequence is also discussed); Gasparian, Ruiz, Ortuño,
and Cuevas [1996] (where the Fibonacci sequence is also discussed); Liv-
iotti [1996]; Deych, Zaslavsky, and Lisyansky [1997]; Liu [1997]; Musikhin,
Il’in, Rabizo, and Bakueva [1997]; Tong [1997]; Gazeau and Miȩkisz [1998];
Ghosh and Karmakar [1998]; and Pan, Jiao, Jin, Hu, and Jiang [1998].

Riklund, Severin, and Liu [1987], Qin, Ma, and Tsai [1990], and Ryu, Oh,
and Lee [1993] are other papers on the Thue–Morse sequence in physics. For
an appraisal of these and other papers, see Bovier and Ghez [1995], where it
is pointed out that some results are in error.

The Rudin–Shapiro sequence occurs, for example, in Dulea, Johansson, and
Riklund [1992a, 1992b]; Axel, Allouche, and Wen [1992]; de Oliveira [1995]
(where the Fibonacci and the Thue–Morse sequences are also discussed);
Lin and Goda [1997] (where the Thue–Morse sequence is also discussed);
Hörnquist and Ouchterlony [1998] (where the Fibonacci and the Thue–Morse
sequences are also discussed); Lindquist and Riklund [1998]; Pinho, Haddad,
and Salinas [1998]; and Lennholm and Hörnquist [1999] (where the Fibonacci
and the Thue–Morse sequences are also discussed).

Other examples of morphic sequences are given in Karevski and Turban
[1996].

More results and references can be found in Axel and Gratias [1995].
For quasicrystals in botany, see Rivier [1986].





Appendix

Hints, References, and Solutions
for Selected Exercises

In this appendix we provide some hints, references, and solutions for certain exercises in
the main text.

A.1 Chapter 1

5. See Shallit and Wang [1999].
14. Cummings [1996] showed there are exactly 117 distinct abelian squarefree strings

over a 3-letter alphabet.
15. See I. Stewart [1995].
16. See Jacobs [1992, p. 104].
17. See Berstel [1989a]. For other papers on Langford strings, see Langford [1958];

Priday [1959]; Davies [1959]; Marcus and Pǎun [1989]; Pǎun [1992].
18. See Euwe [1929]; Morse [1938]; MacMurray [1938]; Morse and Hedlund [1944]; I.

Stewart [1995].
19. Here are some squares in English: atlatl, murmur, testes, and tartar. The

uncommon word tratratratra is the name of an extinct lemur from
Madagascar – a fourth power!

A square in German is nennen, which is the verb “to call”.
A square in Italian is restereste, which means “you would remain”. An

overlap in Italian is intinti, which is, e.g., bread dipped into soup. Palindromes in
Italian include avallava (agree) and onorarono (to give honor).

An overlap in French is entente.
Some squares in Spanish include arar (to plow); enarenar (to run aground);

and adorador (worshipper). The overlap adoradora means a female worshipper.
The Spanish verb reconocer (to recognize) is a palindrome.

The Danish words farfar, mormor, and purpur are squares. The Danish
words sneppens, snerrens, and regninger are palindromes.

The Dutch words enen, kerker, and tenten are squares, while koekoek is an
overlap.

The Swedish word rattar is a palindrome that means “steering wheels”.
21. Zech [1958] observed that the decimal expansion of e is not squarefree.
24. See Kfoury [1988b].
26. See Fine and Wilf [1965].
31. See Allouche and Cosnard [1983].
32. See Shyr [1977].
43. For more information about borders, see Silberger [1971], Harborth [1974], Nielsen

[1973], and Blom [1994].

471
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45. Given a word w, use any linear-time pattern-matching algorithm to find the first
occurrence of w in w′w, where w′ is w with the first character removed. The position
j where w first matches w′w is the length of the shortest x such that w = xk . If this
position is |w|, then w is primitive.

49. See Wegner [1982]; Istrail [1983]; Keranen [1983]; Arnold [1983]; Boasson [1983];
Crochemore [1983c]; Ehrenfeucht and Rozenberg [1983e]; Harju [1983]; Klop
[1983]; Skyum [1983]; and Verraedt, De Bra, and Gyssens [1983].

51. See Shyr and Thierrin [1977].
52. See Lyndon and Schützenberger [1962] and D. Chu and Town [1978].
54. See Loftus, Shallit, and Wang [2000].
56. Yes, for if w is a subword, it appears as a subword of µ2t (0) for some t . But this is a

palindrome.
57. See Fraenkel and Simpson [1998].
58. See Friedman [2001].
59. See Shallit and Wang [2001].
61. It must contain 0102010, which is squarefree. Then it cannot continue with any

symbol and still be squarefree.
62. See Xie [1996, p. 6].

A.2 Chapter 2

5. (b): We prove the claim by induction on k. Clearly the result is true for k = 1. Now
assume the result is true for k < r ; we prove it for k = r . Assume there was an
infinite antichain a1, a2, . . . . Since a2, a3, . . . are incomparable with a1, each ai has a
coordinate where it is less than the corresponding coordinate of a1. Since there are
only a finite number of possible coordinates, some coordinate has the property that
infinitely many of the ai are less than a1 in that coordinate. Without loss of generality,
assume the first coordinate has that property, and number the infinitely many elements
as b1, b2, b3, . . . . Now there are only a finite number of non-negative integers less
than a1(1), so there exists some non-negative integer such that infinitely many of the
bi have bi (1) = d for some integer d < a1(1). Number these infinitely many elements
as c1, c2, c3, . . . . All of these are incomparable, and all have the first coordinate the
same. By removing the first coordinate we get an infinite number of incomparable
elements in Nk−1, a contradiction.

6. This is a version of Fatou’s lemma. See, for example, Fatou [1904]; Salem [1963,
Chapter 1, §3, Lemma 2]; van der Waerden [1986].

7. See Bloom [1995].
10. See, for example, Parent [1984].
11. See Selfridge [1960].
15. See, e.g., Woodcock and Sharif [1990, Theorem 4.1].
19. See Erdős [1948].
26. Let x, y be generators. Then xy = xy(yx)2 = x(yy)xyx = xxyx = yx , since the

exponent is 2.
27. See Morse and Hedlund [1944]; Restivo and Reutenauer [1985].
30. See Brubaker [1971].
31. See, for example, Artin [1924, §12]; de Mathan [1970]; Baum and Sweet [1976];

Mendès France and van der Poorten [1991]; W. Schmidt [2000].

A.3 Chapter 3

2. See Berndt and Bhargava [1993].
4. See Fine [1965].
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5. For a similar formula for k = 10, see d’Ocagne [1886].
8. Suppose (sk(n))n≥0 did satisfy a linear recurrence. Then there would be a j and

integers a0, a1, . . . , a j , a0 �= 0, such that a0sk(n) = a1sk(n + 1) + · · · + a j sk(n + j)
for all n sufficiently large. Now consider n of the form kt − 1 as t → ∞. Then the
absolute value of the left-hand side grows without bound, but the right-hand side is
eventually constant.

9. (a) Suppose (sk(n)modm)n≥0 were ultimately periodic. But
sk(n − 1) − sk(n) + 1 = (k − 1)νk(n), so ((k − 1)νk(n)modm)n≥0 would also be
ultimately periodic. Assume it is, with period d, for all n ≥ c. Write d = ka · r ,
with k|/r . Choose n = ks + ka+1 with s such that ks > c, s > a + 1. Then
n + d = ks + ka+1 + d , so νk(n) = a + 1. But νk(n + d) = a. Now
(k − 1)(a + 1) ≡ (k − 1)a (mod m) implies k − 1 ≡ 0 (mod m).

For the other direction, use Exercise 3.6. See Morton and Mourant [1991].
(b) See Allouche and Shallit [2000]. For an interesting generalization, see Frid

[2001].
15. See Clements and Lindström [1965]; Lindström and Zetterström [1967]; Wilf [1968];

Kano and Shiokawa [1988]; and Kano [1991].
16. See Granville [1995].
22. (a)–(c) See Brillhart and Carlitz [1970].

(d) See Rudin [1959].
(e)–(f) See Brillhart [1973].
(g)–(j) See Brillhart, Lomont, and Morton [1976].

23. See Brillhart and Morton [1978].
24. See Shallit [1999].
26. See Barbier [1887a, 1887b] and Thompson [1959].
27. See Shallit [1991a].
29. See Lenard [1991].
32. See Trigg [1949].
33. See Samborski [1977].
35. See Knuth [1988]; Arnoux [1989].
36. See Glaisher [1899a, 1899b]; Fine [1947]; Stolarsky [1977].
39. See Bateman and Bradley [1997].
40. See Klosinski, Alexanderson, and Larson [1985, Prob. B-5].
42. See S. Golomb [1975].
43. See Levine [1988] and Bowman and White [1989].
44. See Segal and Lepp [1969].
45. See Graham and Pollak [1970] and Rabinowitz and Gilbert [1991].
46. See Knuth [1989].
47. See M. Golomb [1993].
51. See Olivier [1975, 1976]. Also see Cooper and Kennedy [1997] for the s10 case.
52. See Klosinski, Alexanderson, and Hillman [1982]; Shallit [1984]; Allouche and

Shallit [1990].
53. See Lindström [1997].
55. See Erdős [1994]; Dombi and Valko [1997]; Blecksmith, McCallum, and Selfridge

[1998].
56. See Reitwiesner [1960]; Güntzer and Paul [1987]; Jedwab and Mitchell [1989]. For

applications, see, e.g., Morain and Olivos [1990] and Koblitz [1992]. For further
analysis see Thuswaldner [1999b]; O’Connor [1999]; Prodinger [2000]; Bosma
[2001]. For generalizations to other bases, see Clark and Liang [1973]; Arno and
Wheeler [1993]; Heuberger [1999].

57. See Allouche [1997b] and Baake [1999].
58. See Chang and Tsai [2000].
59. See Hickerson [1974].
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A.4 Chapter 4

1. (d): Choose z = apb(p−1)! where p is a prime > n, the pumping-lemma constant.
7. See, for example, Moore [1971].

10. See Main [1985].
11. Take L to be the language of all finite subwords of t, the Thue–Morse word. Then L is

clearly factorial. Assume L has an infinite regular subset. Then by the pumping
lemma there would be a word in L of the form uv3w with v �= ε. But t contains no
cubes, a contradiction.

12. See Birget [1992] or Glaister and Shallit [1996].
13. One regular expression for the set of strings over {0,1} having an even number of

occurrences of the subword 11 is 0*+0*1(1(00*1)*1+00*1)*0*.
15. See Mootha [1993] and Holzer and Rossmanith [1996].
16. This question was raised by Marcus [1964] and answered by Friant [1969].

A.5 Chapter 5

1. See, for example, Lehmer [1947].
3. The following DFAO generates the sequence (s−2(n)mod2)n≥0. Let

Q = {0, 1, . . . , 11}, � = � = {0,1}, q0 = 0, and δ, τ be as defined in Table A.1.
6. Let (a(n))n≥0 be the sequence generated by the 2-DFAO given in Figure A.1.
8. See de Weger [1991].

10. Consider S = T = {2, 3, . . . , }.
11. See Shallit [1982b].

A.6 Chapter 6

3. See Allouche, Astoorian, Randall, and Shallit [1994]; Hinz [1996].
5. See Niederreiter and Vielhaber [1996].
6. See Allouche and Cohen [1985].
9. (a) See, for example, Kakutani [1967]; Dekking [1979a].

13. (a): See Davis and Knuth [1970, p. 74].
14. See Davis and Knuth [1970, p. 136].

Table A.1. DFAO for Exercise 3

q δ(q,0) δ(q,1) τ (q)

0 0 1 0
1 2 3 1
2 4 5 0
3 6 7 1
4 2 6 1
5 0 8 0
6 9 10 1
7 5 3 0
8 11 8 1
9 9 11 1

10 1 10 0
11 4 7 0
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Figure A.1: A 2-DFAO.

16. This property was observed by Davis and Knuth [1970] for the regular paperfolding
sequence, and by Dekking, Mendès France, and van der Poorten [1982] for the
general case.

17. A counterexample can be deduced using the work of Boyd [1997, 2001]. Here is one
solution: let one partition be

[0,1,6,7,9,12,14,15,16,17,18,21,24,27,30,31,32,33,36,39,42,45,46,47,48,49,51,54,56,57,62,63]

and the other be

[2,3,4,5,8,10,11,13,19,20,22,23,25,26,28,29,34,35,37,38,40,41,43,44,50,52,53,55,58,59,60,61].

21. (a): See Main [1985]; Berstel [1986a]; Main, Bucher, and Haussler [1987].
(b): See Grazon [1987].

22. See Wilson and Shallit [1992].
24. See Séébold [1986].
26. See Shallit [1980]; Lunnon, Pleasants, and Stephens [1979].
29. Define ak(n) := e2;(k)2 (n). We have

Rn = a1(n) − 3a3(n) −
∑

n≥2

a2n+1(n) + 2
∑

n≥2

a2n+2n−1+1(n).

30. See Arshon [1937]; Berstel [1979]; Kitaev [2000a]; Currie [2001]; Séébold [2001].
31. This is true for n ≤ 4, but for n = 5 there is the following counterexample:

[1,−1,−1,1,−1,1,−1,1,1,1,−1,−1,−1,1,−1,1,−1,1,1,−1,1,−1,−1,1,−1,1,1,−1,−1,−1,−1,−1].

35. See Yazdani [2001].
36. See Compton [1999].
40. See Doche and Mendès France [2000].

A.7 Chapter 7

3. See Allouche, Bétréma, and Shallit [1989].
5. The characteristic sequence of (2n + n)n≥0 has this property.
6. See Wang and Shallit [1999].
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8. See Berstel and Brlek [1987]. For more about word chains, see Diwan [1986]; Arnold
and Brlek [1989]; Althöfer [1990]; P. Roth [1989]; Bousquet-Mélou [1992]; Merekin
[1998].

12. See de Luca [1981].
13. See Cummings, Moore, and Karhumäki [1996].
14. See Allouche and Dress [1990].
24. See Pansiot [1981b].

A.8 Chapter 8

4. See Minc [1988, p. 16, Theorem 4.4].
7. See, for example, Cobham [1972, p. 186].
9. See Wang and Shallit [1999].

A.9 Chapter 9

4. See Szüsz [1985] for β = 0 and Bowman [1995] for the general case.
8. This exercise is about Beatty sequences, and there is a large literature. The result was

apparently first stated by Rayleigh [1877], without proof; see Schoenberg [1982]. The
sequences were named after Beatty [1926]; also see Bricard [1926] and Faucheux
[1926]. For additional papers, see Sprague [1938]; Lambek and Moser [1954];
Skolem [1957]; Bang [1957]; Komatsu [1995a].

9. See Uspensky [1927] and Graham [1963].
10. See, for example, Wythoff [1907]; Ahrens [1910]; Coxeter [1953]. For additional

results on and generalization of Wythoff’s game, see Connell [1959]; Fraenkel and
Borosh [1973]; Silber [1976]; Horadam [1978]; Fraenkel [1984]; Turner [1989];
Stolarsky [1991]; Porta and Stolarsky [1991].

11. See Downey and Griswold [1984]; Granville and Rasson [1988]; Gault and Clint
[1988]; Dilcher [1993]; Grytczuk [1996b].

12. See Anderson, Brown, and Shiue [1995].
14. See Anderson, Brown, and Shiue [1995]; Anderson [1997].
15. See Kimberling [1998a].
16. See Diamond [1989].
17. See Boshernitzan and Fraenkel [1984].
18. For parts (a) and (b), see, for example, Knuth, Morris, and Pratt [1977]; Berstel and

Séébold [2002]. For part (f) see Gambaudo, Lanford, and Tresser [1984].
19. See T. Brown and Shiue [1995]; T. Brown [2002].

A.10 Chapter 10

6. See Grillenberger [1973].
7. Let L ⊆ {0,1}∗ be the language of all words not containing two consecutive 1’s, and

write L = {w1, w2, . . . }. Then consider w = w10w20w30 · · · .
10. See Brlek [1989]; de Luca and Varricchio [1989a].
12. See Tromp and Shallit [1995].
18. See Gumbs and Ali [1988a, 1988b, 1989].
22. For more on the Kolakoski word, see Kolakoski [1965]; Kimberling [1979]; Dekking

[1979a, 1997]; Weakley [1989]; Keane [1991]; Culik and Karhumäki [1992]; Culik,
Karhumäki, and Lepistö [1992]; Păun [1993]; Carpi [1993c, 1994]; Lepistö [1994];
Chvátal [1994]; Shen and Huang [1996]; Steacy [1996].
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23. See Justin and Pirillo [1991]; de Luca and Varricchio [1991a, 1991b]; Pirillo and
Varricchio [1996].

28. Suppose px(n) = kn . Then the string 0 cannot occur with bounded gaps, since the
string 1n must appear somewhere.

30. This construction is mentioned in Cobham [1972, pp. 169–170]; he attributes it to
Keane [1968]. Also see Allouche and Shallit [1993].

33. See Ehrenfeucht and Rozenberg [1982a].
36. See Ehrenfeucht and Rozenberg [1982a].
37. See Durand [1998b, p. 91].
40. See Benczur [1986].
42. See Rauzy [1983]; Rote [1994].
43. See Cassaigne and Karhumäki [1995a, 1995b].
45. See Wang and Shallit [1998].
46. See Shallit [1993].
48. See Allouche and Bousquet-Mélou [1994a, p. 264].
52. See Avgustinovich, Fon-Der-Flaass, and Frid [2001].

A.11 Chapter 11

2. Suppose j and k are multiplicatively dependent. Then by Theorem 2.5.7 we know
there exist integers l ≥ 2, a, b ≥ 1 such that j = la , k = lb. Then it is easy to construct
an l-DFAO accepting the powers of k. Hence by Theorem 6.6.4 the characteristic
sequence of the powers of k is j-automatic.

On the other hand, the characteristic sequence of the powers of k is clearly
k-automatic. If it were also j-automatic for j, k multiplicatively independent, then by
Theorem 11.2.1 it would be ultimately periodic, which it isn’t.

A.12 Chapter 12

2. The equation is X3(1 + X )4 A4 + (1 + X )4 A + X = 0.
8. See M. Newman [1960]. For generalizations, see Mordell [1961, 1965a, 1965b];

Meijer [1963]; Popken [1963].
20. See Mahler [1980].
23. This is a classical result due to Jacobi; see, for example, Hardy and Wright [1985,

Chapter XVII].
24. See Woodcock and Sharif [1989]; Allouche, Gouyou-Beauchamps, and Skordev

[1998]; Allouche [1999].
30. We have C(X ) = [1, X2, 2X2 + 1, X2 + 2].
31. See Rees [1946].
32. See Baum and Sweet [1976].

A.13 Chapter 13

1. See Girstmair [1997].
6. See Borwein and Girgensohn [1995].

11. See Erdős [1948]; Borwein [1991]; Duverney [1996].
12. See Vanden Eynden [1995].
15. See Ketkar and Zamboni [1998].
17. See Even [1964].
18. See Hartmanis and Stearns [1967].
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19. (a) See W. Schmidt [1960].
(b) See Champernowne [1933]. This number was proved transcendental by Mahler

[1937b]. Amou [1991] proved that the irrationality measure of this number is 10.
(c) See Copeland and Erdős [1946].
(d) See Korobov [1990].
(e) See G. Martin [2001].

20. See Chen and Ruzsa [1999].
21. See Allouche and Cosnard [2000].
22. See Eilenberg [1974, Proposition 3.1, p. 106]; Wilson and Shallit [1992].

A.14 Chapter 14

2. Define a(m, n) := sk(mn). Then every row and column of a := (a(m, n))m,n≥0 is
k-automatic, but a is not k-automatic. If it were, then its diagonal would be
k-automatic, by Theorem 14.2.6. But the diagonal is sk(n2), which is not k-automatic,
by Theorem 6.10.1.

4. See Yarlagadda and Hershey [1982].
5. See Bean, Ehrenfeucht, and McNulty [1979]; Currie and Simpson [2002].
6. See Currie and Simpson [2002].

10. See Bruyère, Hansel, Michaux, and Villemaire [1994].

A.15 Chapter 15

2. See, for example, Shallit and Breitbart [1996].
3. See Dwork and Stockmeyer [1990].
7. See Shallit [2000].
8. See Shallit and Breitbart [1996].
9. See Shallit [1996].

A.16 Chapter 16

5. See Propp [1979].
6. Let f (X ) = X + X2 + X4 + X8 + · · · ; this is 2-regular. Assume f ( f (X )) is

2-regular. Then the coefficient of Xn in f ( f (X )) is just the number of ways to write n
as a sum of r powers of 2, where r itself is some power of 2. Now consider n = 22t

;
then there are at least (2t − 1)! such representations. But this contradicts
Theorem 16.3.1.

10. See Allouche and Shallit [1992].
12. (a): See Hirschhorn and Sellers [1996, 1999].
15. See Mullhaupt [1986]; Becker [1994].
23. (c): See, for example, Yaglom and Yaglom [1967].
25. See Strauss and Shallit [1990].
27. (a) See Allouche and Shallit [1992].
29. This follows from Martinez [2001].
31. See Morton and Mourant [1989, 1991].
32. Here (pn)n≥0 is the Stern-Brocot sequence. See Allouche and Shallit [1992]; Calkin

and Wilf [2000].
35. This result was found by Shallit in 1996 and published in Shallit [1999]. Also see

Berstel [2001]. For related material, see Carlitz [1968]; Klarner [1968]; Robbins
[1996]; Ardila [2002].
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A.17 Chapter 17

1. See Droubay [1995] for the palindrome complexity of the Fibonacci sequence, and
Droubay and Pirillo [1999] for the palindrome complexity of general Sturmian
sequences.

2. See Allouche [1997b] and Baake [1999].
3. For generalized Rudin–Shapiro sequences, see Mendès France and Tenenbaum [1981].

For the solution to the exercise, see Allouche [1997b].
4. See Damanik [2000].
5. See Damanik and Zare [2000].
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(2000), 69–79.

[Alessandri 1993] P. Alessandri. Codage des rotations. Technical report, Mémoire de
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Math. Z. 19 (1924), 153–246. Reprinted in Collected Papers, pp. 1–104.

[Atkinson 1978] K. E. Atkinson. An Introduction to Numerical Analysis. Wiley, 1978.
[Atkinson 1981] M. D. Atkinson. The cyclic towers of Hanoi. Inform. Process. Lett. 13

(1981), 118–119.
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H.-O. Peitgen, and G. Skordev. Coarse-graining invariant patterns of
one-dimensional two-state linear cellular automata. Int. J. Bifur. Chaos Appl. Sci.
Engrg. 5 (1995), 1611–1631.
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morphisms. In A. Borzyszkowski and S. Sokolowski, editors, Proc. 18th Symposium,
Mathematical Foundations of Computer Science 1993, Vol. 711 of Lecture Notes in
Computer Science, pp. 281–290. Springer-Verlag, 1993.
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Bordeaux 5 (1993), 53–77.
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complexité. J. Théorie Nombres Bordeaux 12 (2000), 179–208.



Bibliography 491
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1997.

[Bruyère, Hansel, Michaux, and Villemaire 1994] V. Bruyère, G. Hansel, C. Michaux,
and R. Villemaire. Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc. 1
(1994), 191–238. Corrigendum, Bull. Belg. Math. Soc. 1 (1994), 577.

[Brzozowski 1962] J. Brzozowski. A survey of regular expressions and their
applications. IEEE Trans. Electrol. Comput. 11 (1962), 324–335.



Bibliography 495

[Brzozowski, Culik, and Gabrielian 1971] J. A. Brzozowski, K. Culik II, and
A. Gabrielian. Classification of noncounting events. J. Comput. System Sci. 5 (1971),
41–53.
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Tribonacci. J. Théorie Nombres Bordeaux 13 (2001), 371–394.

[Chen and Ruzsa 1999] Y.-G. Chen and I. Z. Ruzsa. On the irrationality of certain
series. Period. Math. Hung. 38 (1999), 31–37.

[Cheo and Yien 1955] P.-H. Cheo and S.-C. Yien. A problem on the k-adic
representation of positive integers. Acta Math. Sinica 5 (1955), 433–438.

[Chérif and de Mathan 1993] H. Chérif and B. de Mathan. Irrationality measures of
Carlitz zeta values in characteristic p. J. Number Theory 44 (1993), 260–272.

[Choffrut 1992] C. Choffrut. Iterated substitutions and locally catenative systems: a
decidability result in the binary case. In G. Rozenberg and A. Salomaa,
editors, Lindenmayer Systems: Impacts on Theoretical Computer Science,
Computer Graphics, and Developmental Biology, pp. 49–92. Springer-Verlag,
1992.



498 Bibliography
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caractéristique nulle. C. R. Acad. Sci. Paris 271 (1970), 1–3.

[Christol 1972] G. Christol. Opération de Cartier et vecteurs de Witt. Séminaire
Delange-Pisot-Poitou 12 (1972), 13.1–13.7.

[Christol 1979] G. Christol. Ensembles presque périodiques k-reconnaissables. Theoret.
Comput. Sci. 9 (1979), 141–145.

[Christol 1986] G. Christol. Fonctions et éléments algébriques. Pacific J. Math. 125
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transcendance des valeurs de la fonction zéta de Carlitz. C. R. Acad. Sci. Paris 307
(1988), 635–637.

[Damamme and Hellegouarch 1991] G. Damamme and Y. Hellegouarch.
Transcendence of the values of the Carlitz zeta function by Wade’s method. J.
Number Theory 39 (1991), 257–278.

[Damanik 2000] D. Damanik. Local symmetries in the period-doubling sequence.
Discrete Appl. Math. 100 (2000), 115–121.

[Damanik and Lenz 2002] D. Damanik and D. Lenz. The index of Sturmian sequences.
Eur. J. Combin. 23 (2002), 23–29.

[Damanik and Zare 2000] D. Damanik and D. Zare. Palindrome complexity bounds for
primitive substitution sequences. Discrete Math. 222 (2000), 259–267.

[Danilov 1972] L. V. Danilov. Some classes of transcendental numbers. Mat. Zametki 12
(1972), 149–154. In Russian. English translation in Math. Notes Acad. Sci. USSR 12
(1972), 524–527.

[Dartyge and Mauduit 2000] C. Dartyge and C. Mauduit. Nombres presque premiers
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[Èminyan 1991] K. M. Èminyan. On the Dirichlet divisor problem in some sequences of
natural numbers. Izv. Akad. Nauk SSSR Ser. Mat 55 (1991), 680–686. In Russian.
English translation in Math. USSR Izvestiya 38 (1992), 669–675.
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Közl. 6 (1961), 221–254.
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France 102 (1974), 181–191.

[Florek 1951] K. Florek. Une remarque sur la répartition des nombres nξ (mod 1).
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[Frougny 1989b] C. Frougny. Systèmes de numération lineaires et automates finis
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[Hubert 2000] P. Hubert. Suites équilibrées. Theoret. Comput. Sci. 242 (2000), 91–108.
[Huffman 1954] D. A. Huffman. The synthesis of sequential switching circuits.

J. Franklin Inst. 257 (1954), 161–190; 275–303.
[Hungerford 1974] T. W. Hungerford. Algebra. Springer-Verlag, 1974.
[Hurwitz and Kritikos 1986] A. Hurwitz and N. Kritikos. Lectures on Number Theory.

Springer-Verlag, 1986.
[Iliopoulos, Moore, and Smyth 1996] C. S. Iliopoulos, D. Moore, and W. F. Smyth. A

linear algorithm for computing all the squares of a Fibonacci string. In M. E. Houle
and P. Eades, editors, Proceedings of CATS ’96 (Computing: The Australasian
Theory Symposium), Vol. 18 of Austral. Comput. Sci. Commun., pp. 57–63,
1996.

[Iliopoulos, Moore, and Smyth 1997] C. S. Iliopoulos, D. Moore, and W. F. Smyth. A
characterization of the squares in a Fibonacci string. Theoret. Comput. Sci. 172
(1997), 281–291.

[Ising 1925] E. Ising. Beitrag zur Theorie der Ferromagnetismus. Z. Physik 31 (1925),
253–258.



Bibliography 519

[Istrail 1977] S. Istrail. On irreductible languages and nonrational numbers. Bull. Math.
Soc. Sci. Math. R. S. Roumanie 21 (1977), 301–308.

[Istrail 1983] S. Istrail. A solution to Wegner’s problem P12. Bull. Eur. Assoc. Theor.
Comput. Sci., No. 19 (February 1983), 20–24.

[M. Ito and Katsura 1991] M. Ito and M. Katsura. Context-free languages consisting of
non-primitive words. Int. J. Comput. Math. 40 (1991), 157–167.

[M. Ito, Katsura, Shyr, and Yu 1988] M. Ito, M. Katsura, H. J. Shyr, and S. S. Yu.
Automata accepting primitive words. Semigroup Forum 37 (1988), 45–52.

[S. Ito 1989] S. Ito. On the fractal curves induced from the complex radix expansion.
Tokyo J. Math. 12 (1989), 299–320.

[S. Ito 1991] S. Ito. On a dynamical system related to sequences [nx + y]−
[(n − 1)x + y]n = 1, 2, . . . . In Dynamical Systems and Related Topics (Nagoya,
1990), Vol. 9 of Adv. Ser. Dyn. Syst., pp. 192–197. World Scientific, 1991.

[S. Ito and Sano 2001] S. Ito and Y. Sano. On periodic β-expansions of Pisot numbers
and Rauzy fractals. Osaka J. Math. 38 (2001), 349–368.

[S. Ito and Yasutomi 1990] S. Ito and S. Yasutomi. On continued fractions, substitutions
and characteristic sequences [nx + y] − [(n − 1)x + y]. Japanese J. Math. 16
(1990), 287–306.

[Ivanov 1992] S. V. Ivanov. On the Burnside problem on periodic groups. Bull. Amer.
Math. Soc. 27 (1992), 257–260.

[Ivanov 1994] S. V. Ivanov. The free Burnside groups of sufficiently large exponents.
Int. J. Algebra Comput. 4 (1994), 1–308.

[Jacobs 1992] K. Jacobs. Invitation to Mathematics. Princeton University Press,
1992.

[Jacobs and Keane 1969] K. Jacobs and M. Keane. 0–1-sequences of Toeplitz type. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 123–131.

[Jacobson 1974] N. Jacobson. Basic Algebra I. W. H. Freeman, San Francisco, 1974.
[Jedwab and Mitchell 1989] J. Jedwab and C. J. Mitchell. Minimum weight modified

signed-digit representations and fast exponentiation. Electron. Lett. 25 (1989),
1171–1172.

[Jeffreys 1973] H. Jeffreys. Scientific Inference. Cambridge University Press, 1973.
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algébrico-logarithmiques sur leur cercle de convergence. Comment. Math. Helvetici
3 (1931), 266–306.

[Justin 1972] J. Justin. Characterization of the repetitive commutative semigroups. J.
Algebra 21 (1972), 87–90.

[Justin 2000] J. Justin. On a paper by Castelli, Mignosi, Restivo. Theoret. Inform. Appl.
34 (2000), 373–377.

[Justin and Pirillo 1991] J. Justin and G. Pirillo. Shirshov’s theorem and
ω-permutability of semigroups. Adv. Math. 87 (1991), 151–159.

[Justin and Pirillo 2001] J. Justin and G. Pirillo. Fractional powers in Sturmian words.
Theoret. Comput. Sci. 255 (2001), 363–376.

[Kahane 1980] J.-P. Kahane. Sur les polynômes à coefficients unimodulaires. Bull.
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Bertin, editor, Séminaire de Théorie des Nombres, Paris 1979–80, pp. 77–98.
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[Moulin-Ollagnier 1992] J. Moulin-Ollagnier. Proof of Dejean’s conjecture for alphabets
with 5, 6, 7, 8, 9, 10 and 11 letters. Theoret. Comput. Sci. 95 (1992), 187–205.

[Mozes 1989] S. Mozes. Tilings, substitutions systems and dynamical systems
generated by them. J. d’Analyse Math. 53 (1989), 139–186.

[Mukherjee and Karner 1998] M. Mukherjee and G. Karner. Irrational numbers of
constant type – a new characterization. New York J. Math. 4 (1998), 31–34.

[Mullhaupt 1986] A. Mullhaupt. Discrete self-similarity. Unpublished manuscript, dated
June 27, 1986.

[Murata and Mauclaire 1988] L. Murata and J.-L. Mauclaire. An explicit formula for the
average of some q-additive functions. In T. Mitsui, K. Nagasaka, and T. Kano,
editors, Prospects of Mathematical Science, pp. 141–156. World Scientific, 1988.

[Murugesan 1977] S. Murugesan. Negabinary arithmetic circuits using binary
arithmetic. IEE J. Electronic Circuits and Systems 1(2) (1977), 77–78.

[Musikhin, Il’in, Rabizo, and Bakueva 1997] S. F. Musikhin, V. I. Il’in, O. V. Rabizo,
and L. G. Bakueva. Optical and electrical properties of the CdS/PbS Thue-Morse and
Fibonacci superlattices at visible and UV regions. In Proc. 23rd Int. Symp.
Compound Semiconductors, Vol. 155 of Inst. Phys. Conf. Ser., pp. 141–143, 1997.

[Myhill 1957] J. Myhill. Finite automata and the representation of events. Technical
Report WADD TR-57-624, Wright Patterson Air Force Base, Ohio, 1957.

[Nadler 1961] M. Nadler. Division and square root in the quater-imaginary number
system. Comm. ACM 4 (1961), 192–193.

[Nathanson 1972] M. Nathanson. On the greatest order of an element of the symmetric
group. Amer. Math. Monthly 79 (1972), 500–501.

[Nelson 1967] A. H. Nelson. Investigation to discovery with a negative base. Math.
Teacher 60 (1967), 723–726.

[Nerode 1958] A. Nerode. Linear automaton transformations. Proc. Amer. Math. Soc. 9
(1958), 541–544.

[D. Newman 1969] D. J. Newman. On the number of binary digits in a multiple of three.
Proc. Amer. Math. Soc. 21 (1969), 719–721.

[D. Newman and Byrnes 1990] D. J. Newman and J. S. Byrnes. The L4 norm of a
polynomial with coefficients ±1. Amer. Math. Monthly 97 (1990), 42–45.

[D. Newman and Slater 1975] D. J. Newman and M. Slater. Binary digit distribution
over naturally defined sequences. Trans. Amer. Math. Soc. 213 (1974), 71–78.



Bibliography 535

[M. Newman 1960] M. Newman. Irrational power series. Proc. Amer. Math. Soc. 11
(1960), 699–702.

[Nicolas 1969a] J.-L. Nicolas. Calcul de l’ordre maximum d’un élément du groupe
symétrique Sn . RAIRO Inform. Théor. App. 3 (1969), 43–50.
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context-free. RAIRO Inform. Théor. Appl. 16 (1982), 191–199.

[Rosser and Schoenfeld 1962] J. B. Rosser and L. Schoenfeld. Approximate formulas
for some functions of prime numbers. Illinois J. Math. 6 (1962), 64–94.

[Rote 1994] G. Rote. Sequences with subword complexity 2n. J. Number Theory 46
(1994), 196–213.

[K. Roth 1955] K. F. Roth. Rational approximations to algebraic numbers. Mathematika
2 (1955), 1–20. Corrigendum, p. 168.

[P. Roth 1989] P. Roth. A note on word chains and regular languages. Inform. Process.
Lett. 30 (1989), 15–18.

[P. Roth 1991] P. Roth. l-occurrences of avoidable patterns. In C. Choffrut and
M. Jantzen, editors, STACS 91, Proc. 8th Symp. Theoretical Aspects of Comp.
Sci., Vol. 480 of Lecture Notes in Computer Science, pp. 42–49. Springer-Verlag,
1991.



Bibliography 543

[P. Roth 1992] P. Roth. Every binary pattern of length six is avoidable on the two-letter
alphabet. Acta Inform. 29 (1992), 95–107.

[T. Roth 1974] T. Roth. The Tower of Brahma revisited. J. Recreational Math. 7 (1974),
116–119.

[Rothstein and Weiman 1976] J. Rothstein and C. Weiman. Parallel and sequential
specification of a context sensitive language for straight lines on grids. Computer
Graphics and Image Processing 5 (1976), 106–124.

[Roy, Basu, and Khan 1995] C. L. Roy, C. Basu, and A. Khan. Density of states of
generalised Thue-Morse lattice and related issues. Phys. Lett. A 198 (1995), 424–432.

[Roy and Khan 1994b] C. L. Roy and A. Khan. Relativistic impact on the Landauer
resistance of Thue-Morse lattices. J. Phys.: Condens. Matter 6 (1994), 4493–4504.

[Roy and Khan 1994c] C. L. Roy and A. Khan. Landauer resistance of Thue–Morse and
Fibonacci lattices and some related issues. Phys. Rev. B 49 (1994), 14979–14983.

[Roy, Khan, and Basu 1995] C. L. Roy, A. Khan, and C. Basu. A study of Landauer
resistance and related issues of the generalized Thue–Morse lattice. J. Phys.:
Condens. Matter 7 (1995), 1843–1853.

[Rozenberg 1981] G. Rozenberg. On subwords of formal languages. In F. Gécseg,
editor, Fundamentals of Computation Theory: Proceedings of the 1981 International
FCT Conference, Vol. 117 of Lecture Notes in Computer Science, pp. 328–333.
Springer-Verlag, 1981.

[Rozenberg and Lindenmayer 1973] G. Rozenberg and A. Lindenmayer. Developmental
systems with locally catenative formula. Acta Inform. 2 (1973), 214–248.

[Rozenberg and Salomaa 1980] G. Rozenberg and A. Salomaa. The Mathematical
Theory of L Systems, Vol. 90 of Pure and Applied Mathematics. Academic Press,
1980.

[Rudin 1959] W. Rudin. Some theorems on Fourier coefficients. Proc. Amer. Math. Soc.
10 (1959), 855–859.

[Rudin 1966] W. Rudin. Real and Complex Analysis. McGraw-Hill, 1966.
[Ryu, Oh, and Lee 1993] C. S. Ryu, G. Y. Oh, and M. H. Lee. Electronic properties of a

tight-binding and a Kronig–Penney model of the Thue-Morse chain. Phys. Rev. B 48
(1993), 132–141.

[Saffari 1986] B. Saffari. Une fonction extrémale liée à la suite de Rudin–Shapiro. C. R.
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[Séébold 1982] P. Séébold. Morphismes itérés, mot de Morse, et mot de Fibonacci. C. R.
Acad. Sci. Paris 295 (1982), 439–441.
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[Séébold 2000] P. Séébold. On some generalizations of the Thue–Morse morphism.
Technical Report 2000-14, Laboratoire de Recherche en Informatique, Amiens,
France, November 2000.
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Franěk, F., 343
Fredholm number, 403
Fredholm series, 376
Fredholm, I., 376, 403
Fredricksen, H., 209, 343
free monoid, 55
Freeman, H., 297
Freitag, H. T., 125
Freivalds, R., 437
frequency, 4

logarithmic, 267
frequency of letters, 247–280
Fresnel, J., 377
Friant, J., 474
Frid, A. E., xv, 341, 343, 344, 473, 477
Fried, E., 68
Friedman, H. M., 29, 472
Frobenius, G., 282
Frougny, C., 119, 123, 125
function, finite-state, 138
Furstenberg, H., 343, 344, 376, 378

Gaafar, M., 297
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Szüsz, P., 68, 476

t (Thue–Morse infinite word), 15, 16, 23, 24, 26–29,
31, 32, 36

tables, 405
Taitslin, M. A., 36
Tamura, J.-I., 209, 296, 297, 342, 426
Tanaka, T.-A., 404
Tang, C., 467
Tang, S. C., 120
Tao, R., 468, 469
Tapsoba, T., 341
tartar, 471
Tassa, U., 295, 296, 342
Taylor, W., 30, 38
temperature, 457
Tenenbaum, G., 122, 124, 210, 282, 479
Terauchi, H., 468, 469
terminals, 143
Terr, D. C., 121
Testard, D., 468
testes, 471
Tewari, U. B., 123
Thakur, D. S., 210, 373, 375–378
�, 63
Thierrin, G., 32, 472
Thomas, A., 124
Thompson, G. C., 473
three squares, sums of, 206, 447
three-distance theorem, 53
three-gap theorem, 53
Thue, A., 32, 208
Thue–Morse continued fraction, 394
Thue–Morse formal power series, 352

as diagonal of rational function, 369
Thue–Morse morphism, 9, 28, 33, 339
Thue–Morse partition, 208
Thue–Morse real number, 387, 400, 401, 403

transcendence of, 387



570 Index

Thue–Morse sequence, 15, 23, 122, 152, 173, 192,
201, 203, 204, 206–208, 327, 336, 338–340,
371, 425, 436

appearance, 334
automaton for, 174
chess and, 32
complexity of, 335

generalized, 335
critical exponent of, 24
first differences, 201
generalized, 208, 335
history of, 32
mirror invariance of, 29
music and, 33, 245, 448
origins, 208
physics and, 469
polynomials and, 207
prefixes are primitive, 28
recurrence function of, 329
recurrent subwords of, 325
two-sided, 26
unusual infinite products and, 174

Thue–Morse word, 15
Thuswaldner, J. M., 120, 124, 125, 127, 473
Tichy, R. F., 121, 123, 124, 454
Tijdeman, R., 341, 342
Toeplitz construction, 156
Toeplitz word, 339
Toeplitz, O., 342
Toffin, P., 120
Tognetti, K., 68
Tompkins, C. B., 125
Tong, P., 469
topological space, 5
topology, 5
Toshimitsu, T., 120
tower of Hanoi, 177

cyclic, 210
more than three pegs, 209
optimal solution, 178

Town, H.-S., 472
trace of a matrix, 457
trace maps, 465
Trakhtenbrot, B. A., 437
transcendence

of π , 43, 67
of e, 43, 67
of characteristic real numbers, 393
of Thue–Morse continued fraction, 394
of Thue–Morse real number, 387

transcendental, 41
transducer

finite-state, 140
k-uniform, 140, 194

transfer matrix, 457
transition diagram, 128
transition function, 128
transition matrix, 282
transitive, 133
tratratratra, 471
Tresser, C., 476
triangle inequality, 6
triangular numbers, 449
Tribonacci morphism, 246

Trigg, C. W., 115, 473
trivial morphism, 9
Troi, G., 121
Trollope, J. R., 120, 124
Tromp, J., 341, 403, 476
Trotter, W. T., 208
Tsai, C.-H., 469
Tsai, S.-C., 473
Tu, F. K., 32
Turban, L., 469
Turing machine, 146
Turing, A. M., 151, 379, 403
Turner, J. C., 246, 476
Turnwald, G., 121
Twaddle, R. D., 125
two-dimensional array, 405
two-dimensional [k, l]-DFAO, 408
two-sided infinite words, 3, 218

periodic, 24, 220

Uchida, Y., 120
Ullman, J. D., 31, 150
ultimately periodic, 4

subword complexity, 298
ultrametric inequality, 7
unambiguous grammar, 144
unambiguous numeration system, 71
unary representation, 73
unbordered, 28
unexpended input, 145
unfolding instructions, 182
unidirectional infinite word, 3
uniform, morphism, 9
uniform tag sequences, 172
uniformly distributed, 49
uniformly recurrent, 328
unique factorization domain, 66
unit, 59
unnormalized, 110
unreachable state, 129
Urbanek, F. J., 36, 210, 340
Urzyczyn, P., 36
Uspensky, J. V., 295, 454, 476

Vaidya, A. M., 121
Vaillancourt, R., 123
valid representation, 70
valuation, 39
Vanden Eynden, C., 401, 477
Vandermonde identity, 444, 449
Vandeth, D., xv, 37, 343
Vanicek, T., 37
variable, 143

in a context-free grammar, 143
Varricchio, S., 36, 340, 341, 476, 477
Vasiga, T. M. J., xv
vector

non-negative, 250
positive, 250

vector space, 56
Veech, W. A., 343
Venkov, B. A., 295, 296
Verraedt, R., 472
Vielhaber, M., 201, 474



Index 571

Villemaire, R., 172, 350, 478
Voss, K., 297
Vuillon, L., 342, 343, 426

Wade, L. I., 361, 377
Wadel, L. B., 125
van der Waerden, B. L., 472
van der Waerden theorem, 207
Wakelin, J. H., 125
Wakulicz, A., 125
Wall, H. S., 210
Walsh, T. R., 209, 210
Wang, M.-w., xv, 32, 246, 471, 472, 475–477
Wantiez, P., 208
wax, 187, 189, 219
Wayland, K., 121
Weakley, W. D., 476
weakly cubefree, 33
de Weger, B. M. M., 474
Wegner, L., 426, 472
Weiman, C., 297
Wells, Jr., C. H., 125
Wen, Z.-X., 209, 246
Wen, Z.-Y., 209, 246, 377, 404, 469
Wender, P., 38
Weyl’s theorem, 50, 462
Weyuker, E. J., 125
Wheeler, F. S., 473
White, T., 473
width, 9
Wigderson, A., 437
Wilansky, A., 121
Wilf, H. S., 13, 32, 471, 473, 478
Wilson, D., xv, 113, 400, 475, 478
Winkler, P., 208
Winklmann, K., 36
Winley, G., 68
Wlazinski, F., 35
Wolfram, S., 404, 437
Wood, D., 209, 246
Woodcock, C. F., 376, 378, 426, 472, 477
Woods, D. R., 172
word chain, 242
word graphs, 323, 343
words, 1

bi-infinite, 31
binary balanced, 313
doubly infinite, 31
infinite, 2

one-sided, 3
two-sided, 3

left-infinite, 3
length of, 2
primitive, 13, 32
right-infinite, 3
Toeplitz, 339
unbordered, 28

worm in Penrose tiling, 455
Wozny, N., 342
Wright, E. M., 67, 68, 172, 477
Wu, J.-S., 209, 210
Wu, L.-D., 297
Wyatt-Millington, C. W., 123
Wythoff’s game, 293
Wythoff, W. A., 476

Xie, H., 472

Yaglom, A. M., 119, 454, 478
Yaglom, I. M., 119, 454, 478
Yan, J. R., 469
Yao, J.-Y., xv, 208, 210, 363, 377
Yarlagadda, R., 478
Yasutomi, S., 296
Yates, S., 121
Yazdani, S., 208, 475
Yeung, D., xv
Yien, S.-C., 120
You, J. Q., 469
Yu, J., 377
Yu, S., 31, 32
Yu, S. S., 32
Yu, X., 36
Yuen, C. K., 125

Zalcstein, Y., 35
Zamboni, L. Q., xv, 246, 341–343, 404,

477
Zannier, U., 121
Zare, D., 479
Zariski, O., 68
Zaslavsky, D., 469
Zech, T., 34, 471
Zeckendorf, E., 125
Zeilberger, D., 35, 36
zero pattern sequence, 78
Zetterström, H.-O., 473
Zhong, J. X., 469
Zimin, A. I., 37
Zohar, S., 125
Zorat, A., 297
Zygmund, A., 123


