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Foreword

This work brings together two streams in computer algebra: symbolic integration
and summation on the one hand, and fast algorithmics on the other hand.

In many algorithmically oriented areas of computer science, the analysis of al-
gorithms – placed into the limelight by Don Knuth’s talk at the 1970 ICM – provides
a crystal-clear criterion for success. The researcher who designs an algorithm that is
faster (asymptotically, in the worst case) than any previous method receives instant
gratification: her result will be recognized as valuable. Alas, the downside is that
such results come along quite infrequently, despite our best efforts.

An alternative evaluation method is to run a new algorithm on examples; this
has its obvious problems, but is sometimes the best we can do. George Collins, one
of the fathers of computer algebra and a great experimenter, wrote in 1969: “I think
this demonstrates again that a simple analysis is often more revealing than a ream
of empirical data (although both are important).”

Within computer algebra, some areas have traditionally followed the former
methodology, notably some parts of polynomial algebra and linear algebra. Other
areas, such as polynomial system solving, have not yet been amenable to this ap-
proach. The usual “input size” parameters of computer science seem inadequate,
and although some natural “geometric” parameters have been identified (solution
dimension, regularity), not all (potential) major progress can be expressed in this
framework.

Symbolic integration and summation have been in a similar state. There are
some algorithms with analyzed run time, but basically the mathematically oriented
world of integration and summation and the computer science world of algorithm
analysis did not have much to say to each other.

Gerhard’s progress, presented in this work, is threefold:

• a clear framework for algorithm analysis with the appropriate parameters,
• the introduction of modular techniques into this area,
• almost optimal algorithms for the basic problems.

One might say that the first two steps are not new. Indeed, the basic algorithms
and their parameters – in particular, the one called dispersion in Gerhard’s work
– have been around for a while, and modular algorithms are a staple of computer
algebra. But their combination is novel and leads to new perspectives, the almost
optimal methods among them.
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A fundamental requirement in modular algorithms is that the (solution mod-
ulo p) of the problem equal the solution of the (problem modulo p). This is gener-
ally not valid for all p, and a first task is to find a nonzero integer “resultant” r so
that the requirement is satisfied for all primes p not dividing r. Furthermore, r has
to be “small”, and one needs a bound on potential solutions, in order to limit the
size and number of the primes p required. These tasks tend to be the major technical
obstacles; the development of a modular algorithm is then usually straightforward.
However, in order to achieve the truly efficient results of this work, one needs a thor-
ough understanding of the relevant algorithmics, plus a lot of tricks and shortcuts.

The integration task is naturally defined via a limiting process, but the Old Mas-
ters like Leibniz, Bernoulli, Hermite, and Liouville already knew when to treat it as a
symbolic problem. However, its formalization – mainly by Risch – in a purely alge-
braic setting successfully opened up perspectives for further progress. Now, modular
differential calculus is useful in some contexts, and computer algebra researchers are
aware of modular algorithms. But maybe the systematic approach as developed by
Gerhard will also result in a paradigm shift in this field. If at all, this effect will not
be visible at the “high end”, where new problem areas are being tamed by algorith-
mic approaches, but rather at the “low end” of reasonably domesticated questions,
where new efficient methods will bring larger and larger problems to their knees.

It was a pleasure to supervise Jürgen’s Ph.D. thesis, presented here, and I am
looking forward to the influence it may have on our science.

Paderborn, 9th June 2004 Joachim von zur Gathen



Preface

What fascinated me most about my research in symbolic integration and symbolic
summation were not only the strong parallels between the two areas, but also the
differences. The most notable non-analogy is the existence of a polynomial-time
algorithm for rational integration, but not for rational summation, manifested by
such simple examples as 1/(x2 + mx), whose indefinite sum with respect to x has
the denominator x(x + 1)(x + 2) · · · (x + m − 1) of exponential degree m, for
all positive integers m. The fact that Moenck’s (1977) straightforward adaption of
Hermite’s integration algorithm to rational summation is flawed, as discussed by
Paule (1995), illustrates that the differences are intricate.

The idea for this research was born when Joachim von zur Gathen and I started
the work on our textbook Modern Computer Algebra in 1997. Our goal was to give
rigorous proofs and cost analyses for the fundamental algorithms in computer alge-
bra. When we came to Chaps. 22 and 23, about symbolic integration and symbolic
summation, we realized that although there is no shortage of algorithms, only few
authors had given cost analyses for their methods or tried to tune them using stan-
dard techniques such as modular computation or asymptotically fast arithmetic. The
pioneers in this respect are Horowitz (1971), who analyzed a modular Hermite in-
tegration algorithm in terms of word operations, and Yun (1977a), who gave an
asymtotically fast algorithm in terms of arithmetic operations for the same prob-
lem. Chap. 6 in this book unites Horowitz’s and Yun’s approaches, resulting in two
asymptotically fast and optimal modular Hermite integration algorithms. For modu-
lar hyperexponential integration and modular hypergeometric summation, this work
gives the first complete cost analysis in terms of word operations.
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1. Introduction

Modular algorithms are successfully employed in various areas of computer alge-
bra, e.g., for factoring or computing greatest common divisors of polynomials or
for solving systems of linear equations. They control the well-known phenomenon
of intermediate expression swell, delay rational arithmetic until the very last step of
the computation, and are often asymptotically faster than their non-modular coun-
terparts.

At the time of writing, modular algorithms only rarely occur in computational
differential and difference algebra. The goal of this work is to bring these worlds to-
gether. The main results are four modular algorithms for symbolic integration of ra-
tional and hyperexponential functions and symbolic summation of hypergeometric
terms, together with a complete cost analysis. To our knowledge, this is the first
time that a cost analysis is given at all in the case of hyperexponential integration
and hypergeometric summation.

In the remainder of this introduction, we illustrate the main ideas with a rational
integration example. The algorithm for integrating rational functions given in most
undergraduate calculus textbooks decomposes the denominator into a product of
linear – or at most quadratic – factors, performs a partial fraction decomposition,
and then integrates the latter term by term. Consider the following rational function:

f

g
=

x3 + 4x2 + x− 1
x4 + x3 − 4x2 + x + 1

∈ Q(x) .

The irreducible factorization of the denominator polynomial g over the real numbers
is

g = (x− 1)2
(
x− 3 +

√
5

2

)(
x− 3−√5

2

)
,

and the partial fraction decomposition is

f

g
=

1
(x− 1)2

+
7
5
· 1
x− 1

− 1
5
· 1

x− 3+
√

5
2

− 1
5
· 1

x− 3−√
5

2

.

Thus the integral is

∫
f

g
=

(
− 1

x− 1

)
+

7
5

ln(x− 1)− 1
5

ln
(
x− 3 +

√
5

2

)
− 1

5
ln

(
x− 3−√5

2

)
.

J. Gerhard: Modular Algorithms, LNCS 3218, pp. 1-5, 2004.
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2 1. Introduction

This method has some computational drawbacks: it requires the complete factor-
ization of the denominator into irreducible factors, and it may involve computation
with algebraic numbers. Therefore the symbolic integration algorithms that are im-
plemented in modern computer algebra systems pursue a different approach, which
goes back to Hermite (1872). The idea is to stick to rational arithmetic as long as
possible. Hermite’s algorithm computes a decomposition

f

g
=

( c

d

)′
+

a

b
, (1.1)

where a, b, c, d ∈ Q[x] are such that the rational function a/b has only simple
poles, i.e., the polynomial b has only simple roots if a and b are coprime. The
remaining task of integrating a/b is handled by methods due to Rothstein (1976,
1977); Trager (1976); and Lazard & Rioboo (1990). In general, the latter algo-
rithms cannot completely avoid computations with algebraic numbers, but they re-
duce them to a minimum.

Hermite’s algorithm can be executed using arithmetic operations on polynomi-
als in Q[x] only. Moreover, it does not require the complete factorization of the
denominator, but only its squarefree decomposition

g = gn
n · · · g2

2g1 , (1.2)

with squarefree and pairwise coprime polynomials gn, . . . , g1 ∈ Q[x]. The square-
free decomposition splits the irreducible factors according to their multiplicities, but
factors with the same multiplicity are not separated: gi is the product of all distinct
irreducible factors of multiplicity i in g. The gi’s can be computed by using essen-
tially gcd computations in Q[x]. In our example, the squarefree decomposition is

g = (x − 1)2(x2 + 3x + 1),

so that g2 = x−1 and g1 = x2+3x+1. Hermite’s method first computes the partial
fraction decomposition of f/g along this partial factorization of the denominator
and then integrates term by term:

f

g
=

1
(x− 1)2

+
7
5
· 1
x− 1

− 1
5
· 2x + 3
x2 + 3x + 1

=
(
− 1

x− 1

)′
+

7
5
· 1
x− 1

− 1
5
· 2x + 3
x2 + 3x + 1

(1.3)

or equivalently,
∫

f

g
= − 1

x− 1
+

∫
7
5
· 1
x− 1

+
∫
−1

5
· 2x + 3
x2 + 3x + 1

.

Computing the second remaining integral by the method of Lazard, Rioboo and
Trager leads to the closed form

∫
f

g
= − 1

x− 1
+

7
5

ln(x − 1)− 1
5

ln(x2 + 3x + 1) ,

which does not involve any algebraic numbers.
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In general, both the partial fraction decomposition and the term by term inte-
gration require arithmetic with rational numbers. With a modular approach, rational
numbers show up only in the very last step of the computation. The idea of the small
primes modular algorithm is to choose “sufficiently many” “lucky” prime numbers
p1, p2, . . . ∈ N, to perform Hermite’s algorithm modulo each pi independently, and
to reconstruct a, b, c, d from their modular images by the Chinese Remainder Algo-
rithm and rational number reconstruction.

During the term by term integration, we need to divide by integers of absolute
value at most max{deg f, deg g}, so we require our primes to exceed this lower
bound. In the example, the bound is 4, and we choose p1 = 19 as our first prime.
When we use symmetric representatives between −9 and 9, the image of f/g mod-
ulo 19 is just f/g. The squarefree decomposition of g modulo 19 is

g ≡ (x− 1)2 · (x2 + 3x + 1) mod 19 .

(Note that x2 + 3x + 1 ≡ (x − 3)(x + 6) mod 19 is reducible modulo 19, but the
algorithm does not need this information.) We compute the partial fraction decom-
position and integrate the first term:

f

g
≡ 1

(x− 1)2
+

9
x− 1

+
−8x + 7

x2 + 3x + 1

=
(
− 1

x− 1

)′
+

9
x− 1

+
−8x + 7

x2 + 3x + 1
mod 19 . (1.4)

This, in fact, is the image modulo 19 of the decomposition (1.3).
Now let us take p2 = 5. Again, we take symmetric representatives, this time

between −2 and 2, and the image of f/g modulo 5 is

x3 − x2 + x− 1
x4 + x3 + x2 + x + 1

.

The squarefree decomposition of g modulo 5 is

g ≡ (x− 1)4 mod 5 ,

and partial fraction decomposition and term by term integration yield

f

g
≡ 2

(x− 1)3
+

2
(x− 1)2

+
1

x− 1
=

(
− 1

(x− 1)2
− 2

x− 1

)′
+

1
x− 1

mod 5 .

This is not the image modulo 5 of the decomposition (1.3), so what went wrong?
The reason is that the squarefree decomposition of g mod 5 is not the image mod-
ulo 5 of the squarefree decomposition of g: 1 is only a double root of g, but it is
a quadruple root of g mod 5. We say that 5 is an “unlucky” prime with respect to
Hermite integration.
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Our next try is p3 = 7. Then f/g modulo 7 is

x3 − 3x2 + x− 1
x4 + x3 + 3x2 + x + 1

.

The squarefree decomposition of g mod 7 is

g ≡ (x− 1)2 · (x2 + 3x + 1) mod 7 ,

so 7 is a “lucky” prime. Again, we compute the partial fraction decomposition and
do a term by term integration:

f

g
≡ 1

(x− 1)2
+

x− 2
x2 + 3x + 1

=
(
− 1

x− 1

)′
+

x− 2
x2 + 3x + 1

. (1.5)

Although there seems to be a term missing, this decomposition is the image mod-
ulo 7 of the decomposition (1.3); the missing term is to be interpreted as 0/(x− 1).

When we have sufficiently many lucky primes, we reconstruct the result. We as-
sume that we have computed the squarefree decomposition (1.2) of the denominator
in advance; this can also be used to detect unlucky primes. (In fact, the squarefree
decomposition can also be computed by a modular algorithm). If deg f < deg g,
then the decomposition (1.1) is unique if we take b = g1 · · · gn and d = g/b as
denominators and stipulate that deg a < deg b and deg c < deg d. Using the partial
fraction decomposition of a/b, we therefore know that the decomposition (1.3) in
our example, which we want to reconstruct, has the form

f

g
=

(
c

x− 1

)′
+

a1

x− 1
+

a2x + a3

x2 + 3x + 1
,

with rational numbers c, a1, a2, a3. From our two successful modular computations
(1.4) and (1.5), we obtain the congruences

c≡−1 mod 19 ,
c≡−1 mod 7 ,

a1 ≡ 9 mod 19 ,
a1 ≡ 0 mod 7 ,

a2 ≡−8 mod 19 ,
a2 ≡ 1 mod 7 ,

a3 ≡ 7 mod 19 ,
a3 ≡−2 mod 7 .

With the Chinese Remainder Algorithm, we find

c ≡ −1 mod 133, a1 ≡ 28 mod 133, a2 ≡ −27 mod 133, a3 ≡ 26 mod 133 .

Finally, we apply rational number reconstruction with the bound 8 = �√133/2�
on the absolute values of all numerators and denominators, and obtain the unique
solution

c = −1, a1 =
7
5
, a2 = −2

5
, a3 = −3

5
.

Thus we have found the decomposition (1.3) by our modular algorithm.
The example shows two main tasks that usually have to be addressed when de-

signing a modular algorithm:
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• Determine an a priori bound on the size of the coefficients of the final result. This
is necessary to determine the maximal number of required prime moduli in order
to reconstruct the result correctly from its modular images.
• Find a criterion to recognize “unlucky” primes, and determine an a priori bound

on their number. When we choose our moduli independently at random, then this
provides a lower bound on the success probability of the resulting probabilistic
algorithm.

We address these two tasks for all the modular algorithms presented in this book,
and give rigorous correctness proofs and running time estimates, for both classical
and asymptotically fast arithmetic. Often the latter estimates are – up to logarithmic
factors – asymptotically optimal.



2. Overview

Differential Algebra and Symbolic Integration. The main objects of investiga-
tion in differential algebra are symbolic ordinary differential equations of the form
f(y(n), . . . , y′, y, x) = 0, where n is the order of the differential equation, x is the
independent variable, f is some “nice” function that can be described in algebraic
terms, and y is a unary function in the independent variable x. Of particular inter-
est are linear differential equations, where f is a linear function of its first n + 1
arguments. The general form of an nth order linear differential equation is

any(n) + · · ·+ a1y
′ + a0y = g , (2.1)

where the coefficients an, . . . , a0, the perturbation function g, and the unknown
function y are all unary functions of the independent variable x. It is convenient to
rewrite (2.1) in terms of an nth order linear differential operator L = anDn + · · ·+
a1D + a0, where D denotes the usual differential operator mapping a function y to
its derivative y′:

Ly = g .

The letter L is both an abbreviation for “linear” and a homage to Joseph Liouville
(1809–1882; see Lützen 1990 for a mathematical biography), who may be regarded
as the founder of the algebraic theory of differential equations.

Differential algebra studies the algebraic structure of such linear differential op-
erators and their solution manifolds. In contrast to numerical analysis, the focus
is on exact solutions that can be represented in a symbolic way. Usually, one re-
stricts the coefficients, the perturbation function, and the unknown function to a
specific subclass of functions, such as polynomials, rational functions, hyperexpo-
nential functions, elementary functions, or Liouvillian functions.

The algebraic theory of differential equations uses the notion of a differential
field. This is a field F with a derivation, i.e., an additive function ′: F −→ F satis-
fying the Leibniz rule

(fg)′ = fg′ + f ′g

for all f, g ∈ F . A differential extension field K of F is an extension field in the
algebraic sense such that the restriction of the derivation on K to the subfield F coin-
cides with ′. Usually the derivation on K is denoted by ′ as well. An element f ∈ K
is hyperexponential over F if f ′ = a · f for some a ∈ F . An element is hyperexpo-
nential if it is hyperexponential over the field Q(x) of univariate rational functions.

J. Gerhard: Modular Algorithms, LNCS 3218, pp. 7-25, 2004.
 Springer-Verlag Berlin Heidelberg 2004
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For example, if ′ is the usual derivation, then f = exp(x2) and f =
√

x are both
hyperexponential, as shown by exp(x2)′ = 2x · exp(x2) and (

√
x)′ =

√
x/2x. On

the other hand, f = ln(x) is not hyperexponential, since f ′/f = 1/(x ln(x)) is not
a rational function. Trivially, every element of F is hyperexponential over F .

In this work, we discuss the special case of symbolic integration, where we are
given an element g in a differential field F and look for a closed form representation
of

∫
g. More precisely, this is an antiderivative, or indefinite integral, f in F or in

some differential extension field of F , such that f ′ = g, i.e., y = f is a solution of
the very special linear first order differential equation

Dy = g .

(In general, f belongs to a proper extension field of F .) We study algorithms for ra-
tional integration, where F = Q(x) and D is the usual derivative with Dx = 1 and
the integral is always a rational function plus a sum of logarithms, and for hyper-
exponential integration, where we are looking for a hyperexponential antiderivative
of a hyperexponential element over Q(x). Solving the latter problem also involves
finding polynomial solutions of linear first order differential equations with polyno-
mial coefficients, i.e., computing a y ∈ Q[x] that satisfies

(aD + b)y = c

for given a, b, c ∈ Z[x].
We also discuss algorithms for the related problem of squarefree factorization

in Z[x]. A nonzero polynomial f ∈ Z[x] is squarefree if it has no multiple complex
roots. Given a polynomial f ∈ Z[x] of degree n > 0, squarefree factorization
computes squarefree and pairwise coprime polynomials f1, . . . , fn ∈ Z[x] such
that

f = f1f
2
2 · · · fn

n ,

i.e., the roots of fi are precisely the roots of f of multiplicity i. This is a subtask in
algorithms for rational function integration.

Difference Algebra and Symbolic Summation. Difference algebra is the discrete
analog of differential algebra, where the difference operator ∆ plays the role of the
differential operator D. The difference operator is defined by (∆f)(x) = f(x+1)−
f(x) for a unary function f . If E denotes the shift operator satisfying (Ef)(x) =
f(x+1) and I is the identity operator, then ∆ = E−I . A linear difference equation
of order n has the form

bn∆ny + · · ·+ b1∆y + b0 = g ,

where the coefficients bn, . . . , b0, the perturbation function g, and the unknown
function y are unary functions in the independent variable x. Such difference equa-
tions occur naturally as discretizations of differential equations. Using the relation
∆ = E − I , each such difference equation can be equivalently written as a recur-
rence equation

anEny + · · ·+ a1Ey + a0 = g ,
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or, even shorter,
Ly = g ,

where L is the linear difference operator or linear recurrence operator

L = bn∆n + · · ·+ b1∆ + b0 = anEn + · · ·+ a1E + a0 .

The discrete analog of the notion of differential field is the difference field. This
is a field F together with an automorphism E. A difference extension field of F is
an algebraic extension field K with an automorphism extending E, which is usually
also denoted by E. An element f ∈ K is hypergeometric over F if Ef = a · f for
some a ∈ F , and it is hypergeometric if a ∈ Q(x). For example, if E is the shift
operator, then f = Γ (x) and f = 2x are both hypergeometric, since (EΓ )(x) =
Γ (x + 1) = x · Γ (x) and (E2x) = 2x+1 = 2 · 2x. On the other hand, f = 2x2

is not hypergeometric, since the ratio (Ef)/f = 22x+1 is not a rational function.
Trivially, every element of F is hypergeometric over F . The class of hypergeometric
terms includes products of rational functions, factorials, binomial coefficients, and
exponentials.

The discrete analog of symbolic integration is symbolic summation, where an
element g in a difference field F is given and we look for an antidifference, or
indefinite sum, f in F or some difference extension field of F . This is a solution for
y of the special difference equation

∆y = (E − I)y = g .

The name “indefinite sum” comes from the following elementary fact. When E is
the shift operator and f satisfies this difference equation, then

∑

0≤k<n

g(k) = f(n)− f(0)

for all n ∈ N, so f provides a closed form for the sum on the left hand side. This is
the discrete analog of the fundamental theorem of calculus, which says that

∫ b

a

g(x)dx = f(b)− f(a)

holds for all a, b ∈ R if f is an antiderivative of g.
In this work, we consider algorithms for hypergeometric summation, more pre-

cisely, for finding hypergeometric antidifferences of hypergeometric elements over
Q(x), where E is the shift operator on Q(x). As in the differential case, this
also involves the computation of a polynomial solution of a linear first order dif-
ference equation with polynomial coefficients, also known as key equation: given
a, b, c ∈ Z[x], find a polynomial y ∈ Q[x] satisfying

(aE + b)y = c .
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We also discuss the greatest factorial factorization, introduced by Paule (1995),
which is the discrete analog of squarefree factorization. The goal is to write a poly-
nomial f ∈ Z[x] of degree n > 1 as a product

f = f1f
2
2 · · · fn

n

of falling factorial powers of polynomials f1, . . . , fn ∈ Z[x] in a unique way. Here,
the ith falling factorial power is defined as gi = g·(E−1g) · · · (E1−ig) for g ∈ Z[x].
To achieve uniqueness, additional conditions analogous to f1, . . . , fn being square-
free and pairwise coprime in the case of squarefree factorization are necessary; see
Sect. 5.2.

Modular Algorithms. Exact computation with symbolic objects of arbitrary pre-
cision, such as integers, rational numbers, or multivariate polynomials, often faces
the severe problem of intermediate expression swell: the coefficients of intermedi-
ate results of such a computation, and often also of the final result, tend to be very
large and often involve fractions even if the input does not contain fractions (see,
e.g., Chap. 6 in von zur Gathen & Gerhard 1999). Most algorithms normalize their
intermediate results by rewriting the coefficients as fractions of two coprime poly-
nomials or integers whenever possible. Experience shows that these normalizations
make arithmetic with fractions computationally costly.

There is an important paradigm for overcoming both the problem of intermediate
expression swell and arithmetic with fractions: homomorphic imaging or modular
computation (see, e.g., Lipson 1981). The idea is to transform the original task, such
as the computation of a greatest common divisor of two polynomials, the solution
of a system of linear equations, or the factorization of a polynomial into a prod-
uct of irreducible polynomials, into one or several tasks over coefficient domains
where the two problems above do not exist, namely finite fields. Elements of a finite
field can be represented as univariate polynomials of bounded degree with integer
coefficients of bounded size, and the representation of the result of an arithmetic
operation of two elements can be computed very efficiently. In this respect, sym-
bolic computations with coefficients from a finite field are comparable to numerical
computations with floating point numbers of a fixed precision. The transformation
works by substituting values for indeterminates and reducing integral coefficients
modulo prime numbers.

There are two main schemes of modular computation. The first one uses several
moduli, i.e., evaluation points or prime numbers, independently performs the com-
putation for each modulus, and reconstructs the result via the Chinese Remainder
Algorithm or interpolation. Following Chap. 6 in von zur Gathen & Gerhard (1999),
we call this the small primes modular computation scheme. The second scheme uses
a single modulus, performs the computation for that modulus, and then lifts the re-
sult modulo powers of the modulus by techniques known as Newton iteration and
Hensel lifting. We call this the prime power modular computation scheme. There
are also mixed forms of both schemes.

Both modular computation schemes have the advantage that fractions occur only
in the very last step of the computation, namely the reconstruction of the final result
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from its modular image(s), and that the size of the intermediate results never exceeds
the size of the final result. Often modular algorithms are asymptotically faster than
the corresponding non-modular variants. In the small primes scheme, the intuitive
reason is that it is cheaper to solve many problems with “small” coefficients instead
of one problem with “big” coefficients.

Modular techniques are successfully employed in many areas of symbolic com-
putation and are implemented in many computer algebra systems. The most im-
portant applications have already been mentioned: polynomial gcd computation
(Brown 1971), linear system solving (McClellan 1973; Moenck & Carter 1979;
Dixon 1982), and polynomial factorization (Zassenhaus 1969; Loos 1983). How-
ever, up to now the modular paradigm appears not very often in algorithms for sym-
bolic solutions of differential and difference equations, symbolic integration, and
symbolic summation in the literature; some examples are Horowitz (1971) and Li
& Nemes (1997). The goal of this work is to bring the two worlds closer together.

We only discuss modular algorithms for the basic case of integral coefficients
and give asymptotic O-estimates for their running times in the worst case. It is
usually not difficult to adapt our algorithms to problems where the coefficients are
polynomials with coefficients in a finite field or an algebraic number field. How-
ever, with the exception of the case of univariate polynomials over a finite field, the
analysis of such an adaption is usually more complicated. For reasons of practical
efficiency, we choose our moduli as primes that fit into one machine word of our
target computer whenever possible.

The algorithms that we discuss in this book work on polynomials. We mostly
give two kinds of cost analysis: a high-level running time estimate in terms of arith-
metic operations in the coefficient ring, and a refined estimate in terms of word op-
erations in case the coefficients are integers. In principle, however, most of our mod-
ular algorithms can be easily adapted to other coefficient rings as well, in particular,
to rings of (multivariate) polynomials. In the important case where the coefficients
are univariate polynomials over an infinite field, we can choose linear polynomials
as our prime moduli, and the cost analyses become much simpler than in the case of
integer coefficients, due to the absence of carries.

At first thought, solving differential and difference equations modulo prime
numbers may seem strange, at least in the differential case, since the concepts of
derivative and integral are defined in terms of limits, which are analytical objects
that do not make sense in a finite field. However, as stated above, the notion of
derivative can be defined in a purely algebraic way, without any limit. Nevertheless,
algorithms in differential algebra and difference algebra are often restricted to co-
efficient rings of characteristic zero. This is due to the fact that unexpected things
may happen in positive characteristic: for example, the nonconstant polynomial xp

has derivative zero modulo a prime number p, and similarly the difference of the
pth falling factorial power, namely ∆(xp), vanishes modulo p. However, these phe-
nomenons can only happen when the degree of the polynomials involved exceeds
the characteristic. In our modular algorithms, we choose the primes so as to be larger
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than the degrees of all input polynomials, and then the algorithms for characteristic
zero usually work literally modulo all prime moduli.

Often the dominant cost of a modular algorithm is the reconstruction of the final
result from its modular images by Chinese remaindering and rational number recon-
struction. We usually prove a worst case upper bound on the size of the coefficients
of the output, and our algorithm uses as many single precision primes as to cover
this guaranteed upper bound. Often our cost estimate with fast arithmetic agrees –
up to logarithmic factors – with the bound on the output size. Then we say that our
algorithm is asymptotically optimal up to logarithmic factors.

Moreover, most of our algorithms are output sensitive, in the following statical
sense. If it is possible to improve the order of magnitude of the upper bound on the
output size, then a better cost estimate, which is asymptotically optimal with respect
to the improved bound, follows immediately.

Sometimes it is also possible to make our algorithms output sensitive in a dy-
namical sense, by choosing the primes in an adaptive fashion, checking correctness
of the final result, and adding more primes in case of failure, say by doubling their
number. This guarantees that for each individual input, never than twice as many
primes as needed are used, at the expense of logarithmically many additional cor-
rectness checks.

2.1 Outline

Chap. 3 collects some technical results for later use and may be skipped at first
reading.

In Chap. 4, we discuss and analyze several algorithms for polynomial basis
conversion. The main applications are the conversion between the monomial ba-
sis 1, x, x2, x3, . . ., the shifted monomial basis 1, x − b, (x − b)2, (x− b)3, . . .,
for some constant b, and the falling factorial basis 1, x, x2, x3, . . ., where xi =
x(x− 1)(x− 2) · · · (x− i + 1) denotes the ith falling factorial, for all i ∈ N. These
conversions will be put to use in Chap. 9. We also present and analyze new modular
variants of these methods.

In Chap. 5, we discuss and analyze new modular algorithms for squarefree fac-
torization and its discrete analog, the greatest factorial factorization. We also discuss
a new asymptotically fast algorithm for greatest factorial factorization, which is an
adaption of Yun’s (1976) squarefree factorization algorithm.

The main results in Chap. 6 through 10 are new modular algorithms, includ-
ing a cost analysis in terms of word operations, for symbolic integration of rational
functions in Q(x), hypergeometric summation over Q(x), and hyperexponential in-
tegration over Q(x). These algorithms and their analysis form the core of this book.
To our knowledge, this is the first time that a complete cost estimate for any of these
problems is given.

In Chap. 6, we discuss and analyze two new modular variants of Hermite’s
(1872) integration algorithm for rational functions in Q(x).
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An important subtask in the algorithms for rational and hyperexponential inte-
gration and for hypergeometric summation, whose modular variants we discuss, is
to compute the squarefree decomposition or all integral roots of a certain resultant.
This problem is addressed in Chap. 7. Moreover, we give and analyze a new mod-
ular variant of the method by Lazard & Rioboo (1990) and Trager (unpublished;
according to Bronstein (1997), Trager implemented the algorithm in SCRATCHPAD,
but did not publish it) for the integration of rational functions with only simple
poles. Together with the results from Chap. 6, we obtain a complete cost estimate
for modular integration of rational functions in Q(x).

Gosper’s (1978) algorithm for hypergeometric summation and its continuous
analog, Almkvist & Zeilberger’s (1990) algorithm for hyperexponential integration,
each comprise essentially two steps, namely the computation of the denominator
and of the numerator of a rational function that satisfies a certain linear first order
difference or differential equation with rational coefficients, respectively. In Chap. 8,
we employ the results from the previous chapter to obtain new modular algorithms
for computing the denominator.

Chap. 9 tackles the second step of Gosper’s algorithm and of Almkvist & Zeil-
berger’s algorithm, namely the computation of the numerator. This amounts to com-
puting a polynomial solution y ∈ F [x] of a linear first order difference equation
(aE + b)y = c or differential equation (aD + b)y = c with given polynomial co-
efficients a, b, c ∈ F [x], where F is an arbitrary field. We discuss and analyze six
algorithms for the latter problem, among them a new asymptotically fast variant of
Newton’s method of indeterminate coefficients. Moreover, we present and analyze
new modular variants of these algorithms.

Finally, Chap. 10 collects the results of the preceding two chapters and gives a
complete cost analysis of our modular variants of Gosper’s algorithm for hypergeo-
metric summation over Q(x) and Almkvist & Zeilberger’s algorithm for hyperex-
ponential integration over Q(x).

Fig. 2.1 illustrates the dependencies between the various algorithms.

2.2 Statement of Main Results

Chap. 4 discusses algorithms for polynomial basis conversion. The conversion be-
tween the monomial basis and the shifted monomial basis is known as Taylor shift,
since it amounts to computing the coefficients of the Taylor expansion of a given
polynomial f around the point b, which in turn is equivalent to computing the
coefficients of the “shifted” polynomial f(x + b) with respect to the monomial
basis. In Sect. 4.1, which follows closely von zur Gathen & Gerhard (1997), we
discuss six known algorithms for the Taylor shift (due to Horner 1819; Shaw &
Traub 1974; Paterson & Stockmeyer 1973; von zur Gathen 1990; and Aho, Stei-
glitz & Ullman 1975) and analyze them in terms of arithmetic operations in the
coefficient ring, and also in terms of word operations if the coefficients are inte-
gers. It turns out that the asymptotically fastest method, due to Aho, Steiglitz &
Ullman (1975), takes O(M(n)) arithmetic operations for polynomials of degree n
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(Theorem 4.5). (Here and in what follows, M denotes a multiplication time for in-
tegers and polynomials, such that two polynomials of degrees at most n or two
integers of length at most n can be multiplied with O(M(n)) arithmetic opera-
tions or word operations, respectively. Classical arithmetic has M(n) = n2, and the
asymptotically fastest of the currently known algorithms, by Schönhage & Strassen
(1971), yields M(n) = n log n loglog n. See also Sect. 8.3 in von zur Gathen &
Gerhard 1999.) When the coefficients and b are integers bounded by 2λ in absolute
value, then we obtain a cost estimate of O(M(n2(λ + log n))) word operations for
Aho, Steiglitz & Ullman’s algorithm with fast arithmetic (Theorem 4.5). Moreover,
we present and analyze new small primes modular algorithms for the Taylor shift
(Algorithm 4.7). The modular variant of Aho, Steiglitz & Ullman’s algorithm takes
O(n M(nλ) log(nλ)) word operations with fast arithmetic (Theorem 4.8). Both the



2.2 Statement of Main Results 15

non-modular algorithm of Aho, Steiglitz & Ullman and our new modular variant are
– up to logarithmic factors – asymptotically optimal, since the output size for the
Taylor shift is Θ(n2λ) machine words. We have implemented various Taylor shift
algorithms and give tables of running time experiments.

In Sect. 4.2, we discuss and analyze two variants of Horner’s rule for converting
polynomials from the monomial basis to a common generalization of the shifted
monomial basis and the falling factorial basis, and also vice versa. The asymptoti-
cally fast variant seems to be new, but is closely related to the methods of Borodin
& Moenck (1974) (see also Strassen 1973, and Strassen 1974 and §4.5 in Borodin
& Munro (1975) for a survey) for evaluation of a polynomial at many points and
for interpolation. With fast arithmetic, the cost is O(M(n) log n) arithmetic opera-
tions for polynomials of degree n (Theorems 4.15 and 4.16), so the estimate for the
general case is slower by a factor of log n than the estimate for the special case of a
Taylor shift. We also show that the conversion between the monomial basis and the
falling factorial basis takes O(M(n2 log n + nλ) log n) word operations if the inte-
ger coefficients are bounded by 2λ in absolute value (Corollary 4.17). Moreover, we
present and analyze new small primes modular algorithms for this basis conversion
(Algorithms 4.18 and 4.19), taking O(n M(n log n+λ) log(n+λ)+λM(n) logn)
word operations with fast arithmetic (Corollary 4.22). Both the non-modular algo-
rithms and their modular variants with fast arithmetic are – up to logarithmic factors
– asymptotically optimal for those inputs where the upper bound O(n2 log n + nλ)
on the output size is reached.

Sect. 4.3 discusses asymptotically fast algorithms for multiplication and for Tay-
lor shift of polynomials, when both the input and the output are represented with re-
spect to the falling factorial basis. These algorithms are not needed later, but may be
of independent interest. In principle, both problems can be solved by converting the
input polynomial(s) into the monomial basis, applying the corresponding algorithm
for this representation, and converting the result again into the falling factorial basis.
However, the cost for this approach for polynomials of degree at most n is domi-
nated by the O(M(n) log n) arithmetic operations for the two basis conversions,
while our algorithms take only O(M(n)) operations (Theorems 4.27 and 4.28). The
multiplication algorithm seems to be new, and the algorithm for the Taylor shift is
an adaption of Aho, Steiglitz & Ullman’s algorithm for the monomial basis. The
material of Sect. 4.2 and 4.3 first appeared in Gerhard (2000).

In Chap. 5, we discuss and analyze new modular algorithms for squarefree fac-
torization and greatest factorial factorization. The small primes modular squarefree
factorization algorithm 5.6 in Sect. 5.1, from Gerhard (2001), is a modular vari-
ant of Yun’s (1976) method, which takes O(M(n) log n) arithmetic operations for
a polynomial of degree n and is the asymptotically fastest of the currently known
squarefree factorization algorithms. We show that our modular variant uses

O(n M(n + λ) log(n + λ) + λM(n) log n)

word operations with fast arithmetic if the polynomial has coefficients bounded by
2λ in absolute value (Theorem 5.10). We also analyze a prime power modular algo-
rithm due to Yun (1976) (Algorithm 5.12), and show that it takes
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O((M(n) log n + n logλ)M(n + λ))

word operations with fast arithmetic (Theorem 5.14). In the diagonal case where
n ≈ λ, both algorithms are – up to logarithmic factors – asymptotically optimal,
since then the input size is Θ(n2) machine words.

We discuss and analyze a new algorithm for the greatest factorial factorization
in Sect. 5.2 (Algorithm 5.20), which is an adaption of Yun’s method, and show
that it also takes O(M(n) log n) arithmetic operations with fast arithmetic (Theo-
rem 5.21). This is faster by a factor of n than the algorithm given by Paule (1995).
Moreover, we present and analyze a small primes modular variant of this algorithm
(Algorithm 5.24) and show that it takes O(n M(n + λ) log(n + λ) + λM(n) log n)
word operations with fast arithmetic (Theorem 5.28). This is the same estimate as
for our small primes modular algorithm for the squarefree factorization. Again, this
algorithm is – up to logarithmic factors – asymptotically optimal in the diagonal
case where n ≈ λ and the input size is Θ(n2) machine words. The presentation in
this section follows Gerhard (2000).

In Chap. 6, we discuss and analyze two new modular variants of Hermite’s
(1872) integration algorithm for rational functions in Q(x) (Algorithms 6.4 and 6.9).
Given two nonzero coprime polynomials f, g ∈ Z[x] with n = deg g ≥ 1, plus a
squarefree decomposition g = g1g

2
2 · · · gn

n , with all gi ∈ Z[x] nonzero, squarefree,
and pairwise coprime, this algorithm computes polynomials h, cij , and ai in Q[x]
for 1 ≤ j < i ≤ n such that

f

g
= h′ +

∑

1≤j<i≤n

(
cij

gj
i

)′
+

∑

1≤i≤n

ai

gi
.

Thus it reduces the problem of integrating an arbitrary rational function to the inte-
gration of rational functions with squarefree denominator. If n ≤ m, deg f < m,
and the coefficients of f and g are absolutely less than 2λ, then our modular algo-
rithms take O(m3(n2 + log2 m + λ2)) word operations with classical arithmetic.
The cost with fast arithmetic is

O(m M(m(n + log m + λ)) log(m(n + λ))) or O∼(m2(n + λ))

for the small primes modular variant and O∼(m2(n2 + λ2)) for the prime power
modular variant, where the O∼ notation suppresses logarithmic factors (Corol-
lary 6.7 and Theorem 6.10). The small primes modular algorithm is from Gerhard
(2001). Horowitz (1971) has also given a small primes modular algorithm, based on
linear algebra. Our estimate for classical arithmetic is better by about two orders of
magnitude than the estimate of Horowitz. Our estimate for the small primes modular
algorithm with fast arithmetic is – up to logarithmic factors – asymptotically opti-
mal for those inputs where the upper bound O(m2(n + log m + λ)) on the output
size is reached. The prime power modular variant with fast arithmetic is slower by
about one order of magnitude. We also report on an implementation of both modular
algorithms and give some running time experiments in Sect. 6.3.
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Chap. 7 contains algorithms for computing integral roots of certain resultants. In
Sect. 7.1 and 7.2, we discuss two quite different modular approaches to compute all
integral roots of the resultant r = resx(f(x), g(x+y)) ∈ Z[y] for given nonconstant
polynomials f, g ∈ Z[x]. This is major subtask for hypergeometric summation.

The idea of the first approach, which seems to be new, is as follows. The roots
of r are precisely the differences of the roots of f and the roots of g, and they are
considerably smaller than the coefficients of r. In order to compute all integral roots
of r, it would therefore be too costly to compute its coefficients, and we compute
them only modulo a prime power that is just slightly larger than the roots. This
leads to a new probabilistic algorithm of Monte Carlo type (Algorithm 7.12), i.e.,
it may return a wrong result, with small probability. We show that for polynomials
of degree at most n with integer coefficients absolutely bounded by 2λ, the cost is
O(n4(λ2 + log n)) word operations with classical arithmetic and

O((n2 M(n) + M(n2) log n)(log n)M(λ) log λ) or O∼(n3λ)

with fast arithmetic (Theorem 7.18).
The second approach is a modular variant of an algorithm by Man & Wright

(1994), which does not compute the resultant r at all, but instead computes the irre-
ducible factorizations of f and g. Our modular variant only computes the irreducible
factorizations modulo a sufficiently large prime power (Algorithm 7.20). We show
that it takes O(n3λ+n2λ2) word operations with classical arithmetic and O∼(n2λ)
with fast arithmetic (Theorem 7.21). These estimates are faster than the correspond-
ing estimates for the first approach by at least one order of magnitude. This method
also appears in Gerhard, Giesbrecht, Storjohann & Zima (2003).

In Sect. 7.3, we analyze a small primes modular algorithm for computing all
integral roots of the resultant r = resx(g, f − yg′) ∈ Z[y] for given nonzero poly-
nomials f, g ∈ Z[x] (Algorithm 7.25). This is a subtask for hyperexponential inte-
gration. In this case, the roots of r have about the same length as its coefficients in
the worst case, and we therefore compute the coefficients of r exactly by a modular
approach. We show that for polynomials of degree at most n with integer coeffi-
cients absolutely bounded by 2λ, the cost is O(n4(λ2 + log2 n)) word operations
with classical arithmetic and O∼(n3λ) with fast arithmetic (Theorem 7.26).

Sect. 7.4 contains a new small primes modular variant of the algorithm of
Lazard, Rioboo and Trager for integrating a rational function f/g ∈ Q(x) with
only simple poles, where f, g ∈ Z[x] are nonzero coprime and g is squarefree (Al-
gorithm 7.29). If the degrees of f and g are at most n and their coefficients are
bounded by 2λ in absolute value, then our algorithm takes O(n4(λ2 + log n)) word
operations with classical arithmetic and

O(n2 M(n(λ + log n)) log(nλ)) or O∼(n3λ)

with fast arithmetic (Theorem 7.31). The output size is O(n3(λ + log n)) machine
words in the worst case, and hence our modular algorithm with fast arithmetic is –
up to logarithmic factors – asymptotically optimal for those inputs where this upper
bound is reached. Together with the results from Chap. 6, we obtain a small primes
modular algorithm for integrating a rational function in Q(x) (Theorem 7.32):
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Theorem. Let f, g ∈ Z[x] be nonzero polynomials with deg f, deg g ≤ n and
‖f‖∞, ‖g‖∞ < 2λ. We can compute a symbolic integral of f/g using

O(n8 + n6λ2)

word operations with classical arithmetic and

O(n2 M(n3 + n2λ) log(nλ)) or O∼(n5 + n4λ)

with fast arithmetic.

A cost estimate of a non-modular variant of this algorithm in terms of arithmetic
operations also appears in the 2003 edition of von zur Gathen & Gerhard (1999),
Theorem 22.11.

In Chap. 8, we discuss modular variants of the first step of the algorithms of
Gosper (1978) for hypergeometric summation and of Almkvist & Zeilberger (1990)
for hyperexponential integration. In each case, the first step can be rephrased as
the computation of a certain “normal form” of a rational function in Q(x). In the
difference case, this is the Gosper-Petkovšek form: Gosper (1978) and Petkovšek
(1992) showed that for a field F of characteristic zero and nonzero polynomials
f, g ∈ F [x], there exist unique nonzero polynomials a, b, c ∈ F [x] such that b, c are
monic and

f

g
=

a

b
· Ec

c
, gcd(a, Eib) = 1 for i ∈ N, gcd(a, c) = gcd(b, Ec) = 1 .

We discuss and analyze two new small primes modular variants of Gosper’s and
Petkovšek’s algorithm (Algorithm 8.2) for computing this normal form in the case
F = Q. Our algorithms employ the methods from Sect. 7.2 to compute all integral
roots of the resultant resx(f(x), g(x + y)). It is well-known that the degree of the
polynomial c in general is exponential in the size of the coefficients of f and g. For
example, if f = x and g = x − e for some positive integer e, then the Gosper-
Petkovšek form is (a, b, c) = (1, 1, (x − 1)e), and e = deg c is exponential in the
word size Θ(log e) of the coefficients of f and g. Thus there is no polynomial time
algorithm for computing this normal form. However, if we do not explicitly need
the coefficients of c in the usual dense representation with respect to the monomial
basis, but are satisfied with a product representation of the form

c = h
z1

1 · · ·h
z1
t ,

where h1, . . . , h1 ∈ Q(x) are monic and z1, . . . , zt are nonnegative integers, then it
is possible to compute a, b, and c in polynomial time. If deg f, deg g ≤ n and the
coefficients of f and g are absolutely bounded by 2λ, then both of our two modular
algorithms take O(n4 + n2λ2) word operations with classical arithmetic, and the
faster variant uses

O(n2 M(n + λ) log(n + λ) + nλM(n) log n + M(n2) log n)
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or O∼(n2(n + λ)) word operations with fast arithmetic (Theorem 8.18). The addi-
tional cost for explicitly computing the coefficients of c is polynomial in n, λ, and
the dispersion

e = dis(f, g) = max{i ∈ N: i = 0 or res(f, Eig) = 0}
of f and g, which was introduced by Abramov (1971). If nonzero, the dispersion is
the maximal positive integer distance between a root of f and a root of g. Using a
standard small primes modular approach, we show that the cost is O(e3(n3 +nλ)2)
word operations with classical arithmetic and

O((en M(e(n + λ)) + eλM(en)) log(e(n + λ)))

or O∼(e2n(n + λ)) with fast arithmetic. The latter estimate is – up to logarith-
mic factors – asymptotically optimal for those inputs where the upper bounds
O(e2n(n + λ)) on the size of c are achieved (Theorem 8.18). As a corollary, we
obtain an algorithm for computing rational solutions of homogeneous linear first
order difference equations with polynomial coefficients within the same time bound
(Corollary 8.19).

In Sect. 8.1, we introduce the continuous analog of the Gosper-Petkovšek form,
which we call the GP ′-form. Given nonzero polynomials f, g ∈ F [x], where F is
a field of characteristic zero, we show that there exist unique polynomials a, b, c ∈
F [x] such that b, c are nonzero monic and

f

g
=

a

b
+

c′

c
, gcd(b, a− ib′) = 1 for i ∈ N, gcd(b, c) = 1

(Lemma 8.23). Moreover, we discuss two new modular algorithms for computing
this normal form when F = Q. As in the difference case, the degree of c is expo-
nential in the size of the coefficients of f and g in general. For example, if f = e
and g = x for a positive integer e, the GP′-form is (a, b, c) = (0, 1, xe). However,
we can compute a, b and a product representation of c of the form

c = hz1
1 · · ·hzt

t

in polynomial time. If deg f, deg g ≤ n and the coefficients of f and g are less than
2λ in absolute value, then both our modular algorithms take O(n4(λ2 + log2 n))
word operations with classical arithmetic and O∼(n3λ) with fast arithmetic (The-
orem 8.42). The additional cost for explicitly computing the coefficients of c is
polynomial in n, λ, and the continuous analog of the dispersion

e = ε(f, g) = max{i ∈ N: i = 0 or res(g, f − ig′) = 0} .

If nonzero, ε(f, g) is the maximal positive integer residue of the rational function
f/g at a simple pole. Using a small primes modular approach, we obtain the same
cost estimates for computing the coefficients of c and the same bounds on the output
size as in the difference case, and the estimate for fast arithmetic is – up to logarith-
mic factors – asymptotically optimal for those inputs where the upper bounds on
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the output size are achieved (Theorem 8.42). As in the difference case, we also
obtain an algorithm computing rational solutions of homogeneous linear first or-
der differential equations with polynomial coefficients within the same time bound
(Corollary 8.43).

Chap. 9 tackles the second step of Gosper’s algorithm and of Almkvist & Zeil-
berger’s algorithm. It amounts to computing a polynomial solution y ∈ F [x] of
a linear first order difference equation (aE + b)y = c or differential equation
(aD + b)y = c with given polynomial coefficients a, b, c ∈ F [x], where F is an
arbitrary field. We discuss and analyze six algorithms for the latter problem: New-
ton’s well-known method of undetermined coefficients (Sect. 9.1) together with a
new asymptotically fast divide-and-conquer variant (Sect. 9.5 and 9.6), taken from
von zur Gathen & Gerhard (1997), and the algorithms of Brent & Kung (1978)
(Sect. 9.2); Rothstein (1976) (Sect. 9.3); Abramov, Bronstein & Petkovšek (1995)
(Sect. 9.4); and Barkatou (1999) (Sect. 9.7). It turns out that the cost for all algo-
rithms in terms of arithmetic operations is essentially the same, namely quadratic
in the sum of the input size and the output size when using classical arithmetic,
and softly linear with fast arithmetic. More precisely, if deg a, deg b, deg c ≤ n
and deg y = d, then the cost for the algorithms employing classical arithmetic
is O(n2 + d2) arithmetic operations, and the asymptotically fast algorithms take
O(M(n+d) log(n+d)). There are, however, minor differences, shown in Table 9.2.

In Sect. 9.8, we discuss new small primes modular algorithms in the case
F = Q. Under the assumptions that d ∈ O(n) and the coefficients of a, b, c are
bounded by 2λ in absolute value, the cost estimates in the differential case are
O(n3(λ2 + log2 n)) word operations with classical arithmetic and

O(n M(n(λ + log n)) log(nλ)) or O∼(n2λ)

with fast arithmetic (Corollaries 9.59 and 9.69). The cost estimates in the dif-
ference case are O(n3(λ2 + n2)) word operations with classical arithmetic and
O(n M(n(λ+n)) log(nλ)) or O∼(n2(λ+n)) with fast arithmetic (Corollaries 9.63
and 9.66).

We can associate to a linear difference operator L = aE + b a “number” δL ∈
Q ∪ {∞}, depending only on the coefficients of a and b, such that either deg y =
deg c−max{1+dega, deg(a+b)} or deg y = δL (Gosper 1978). (The element δL

is the unique root of the indicial equation of L at infinity.) This δL plays a similar
role as the dispersion in the preceding chapter: there are examples where the degree
of the polynomial y is equal to δL and is exponential in the size of the coefficients
of a and b; some are given in Sect. 10.1. One can define a similar δL for a linear
differential operator L = aD + b, and then analogous statements hold.

Chap. 10 collects the results of the preceding two chapters and gives a complete
cost analysis of our modular variants of Gosper’s algorithm (Algorithm 10.1) for
hypergeometric summation over Q(x) and Almkvist & Zeilberger’s algorithm (Al-
gorithm 10.4) for hyperexponential integration over Q(x). Gosper (1978) showed
that a hypergeometric element u in an extension field of Q(x) has a hypergeometric
antidifference if and only if the linear first order difference equation
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f

g
· Eσ − σ = 1 ,

where f, g ∈ Z[x] are nonzero such that (Eu)/u = f/g, has a rational solution
σ ∈ Q(x), and then σu is an antidifference of u. The algorithms of Chap. 8 and 9
essentially compute the denominator and the numerator of σ, respectively. The fol-
lowing is proven as Theorem 10.2:

Theorem. Let L = fE − g = f∆ + f − g, and assume that f, g have degree at
most n and coefficients absolutely bounded by 2λ. If e = dis(f, g) is the dispersion
of f and g and δ = max({0, δL} ∩ N), then e < 2λ+2, δ < 2λ+1, and Algorithm
10.1 takes

O(e5n5 + e3n3λ2 + δ5 + δ3λ2) and O∼(e3n3 + e2n2λ + δ3 + δ2λ)

word operations with classical and fast arithmetic, respectively.

Similarly, a hyperexponential element u in an extension field of Q(x) has a hy-
perexponential antiderivative if and only if the linear first order differential equation

Dσ +
f

g
σ = 1

has a rational solution σ ∈ Q(x), where f, g ∈ Z[x] are nonzero such that
(Du)/u = f/g, and then σu is an antiderivative of u. The following is proven
as Theorem 10.5:

Theorem. Let L = gD + f , and assume that f, g have degree at most n and
coefficients absolutely bounded by 2λ. If e = ε(f, g) and δ = max({0, δL} ∩ N),
then e ≤ (n + 1)n22nλ, δ ≤ 2λ, and Algorithm 10.4 takes

O((e3n5 + δ3n2)(λ2 + log2 n)) and O∼(e2n3λ + δ2nλ)

word operations with classical and fast arithmetic, respectively.

In Sect. 10.1, we give some examples where a hypergeometric antidifference or
a hyperexponential antiderivative, respectively, of a non-rational element u exists
and the degree of the numerator or the denominator of σ are exponential in the input
size. Some of these examples appear in Gerhard (1998). We also exhibit a subclass
of the hyperexponential elements for which the bounds δ and e are polynomial in
the input size.

2.3 References and Related Works

Standard references on ordinary differential equations are, e.g., Ince (1926) and
Kamke (1977). Differential Galois theory classifies linear differential operators in
terms of the algebraic group of differential automorphisms, called the differential
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Galois group, of the corresponding solution spaces, and also provides algorithms
for computing solutions from some partial knowledge about this group. Classical
texts on differential Galois theory and differential algebra are Ritt (1950); Kaplansky
(1957); and Kolchin (1973); see also van der Put & Singer (2003).

There are many algorithms for computing symbolic solutions of higher order lin-
ear differential equations, e.g., by Abramov (1989a, 1989b); Abramov & Kvansenko
(1991); Singer (1991); Bronstein (1992); Petkovšek & Salvy (1993); Abramov,
Bronstein & Petkovšek (1995); Pflügel (1997); Bronstein & Fredet (1999); or Fak-
ler (1999). The special case of the first order equation, also known as Risch differ-
ential equation since it plays a prominent role in Risch’s algorithm, is discussed,
e.g., by Rothstein (1976); Kaltofen (1984); Davenport (1986); and Bronstein (1990,
1991).

Classical works on rational function integration are due to Johann Bernoulli
(1703); Ostrogradsky (1845); and Hermite (1872). The latter two algorithms write
a rational function as the sum of a rational function with only simple poles plus
the derivative of a rational function. Horowitz (1969, 1971); Mack (1975); and Yun
(1977a) stated and analyzed modern variants of these algorithms. Rothstein (1976,
1977); Trager (1976); and Lazard & Rioboo (1990) and Trager (unpublished) gave
algorithms for the remaining task of integrating a rational function with only simple
poles.

Rational and hyperexponential integration are special cases of Risch’s (1969,
1970) famous algorithm for symbolic integration of elementary functions. Variants
of his algorithm are implemented in nearly any general purpose computer algebra
system. See Bronstein (1997) for a comprehensive treatment and references.

Already Gauß (1863), article 368, contains an algorithm for computing the
squarefree part of a polynomial. The first “modern” works on squarefree factor-
ization are – among others – Tobey (1967); Horowitz (1969, 1971); Musser (1971);
and Yun (1976, 1977a, 1977b). The latter papers contain the fastest currently known
algorithm when counting arithmetic operations in the coefficient field. Most of these
algorithms only work in characteristic zero; see Gianni & Trager (1996) for a dis-
cussion of the case of positive characteristic. Bernardin (1999) discusses a variant of
Yun’s algorithm for multivariate polynomials. Diaz-Toca & Gonzales-Vega (2001)
give an algorithm for parametric squarefree factorization.

Classical references on difference algebra are, e.g., Boole (1860); Jordan (1939);
or Cohn (1965). Difference Galois theory studies the algebraic group of difference
automorphisms of the solution space of such a linear difference operator; see van der
Put & Singer (1997) for an overview.

The first algorithms for rational summation are due to Abramov (1971, 1975)
and Moenck (1977), and Gosper (1978) first solved the hypergeometric summa-
tion problem. Karr (1981, 1985) presented an analog of Risch’s integration algo-
rithm for summation in ΣΠ-fields, which correspond to the Liouvillian fields in
the case of integration; see Schneider (2001). More recent works on rational and
hypergeometric summation and extensions of Gosper’s algorithm are due to Li-
soněk, Paule & Strehl (1993); Man (1993); Petkovšek (1994); Abramov (1995b);



2.3 References and Related Works 23

Koepf (1995); Pirastu & Strehl (1995); Paule (1995); Pirastu (1996); Abramov
& van Hoeij (1999); and Bauer & Petkovšek (1999). Paule & Strehl (1995) give
an overview. Algorithms for solving higher order linear difference equations are
given, e.g., by Abramov (1989a, 1989b, 1995a); Petkovšek (1992); van Hoeij (1998,
1999); Hendriks & Singer (1999); and Bronstein (2000).

The problem of definite summation is, given a bivariate function g such that
g(n, ·) is summable for each n ∈ N, to compute a “closed form” f such that

∑

k∈Z

g(n, k) = f(n) for n ∈ N .

If g is hypergeometric with respect to both arguments, such that both

g(n + 1, k)
g(n, k)

and
g(n, k + 1)

g(n, k)

are rational functions of n and k, then in many cases the algorithm of Zeilberger
(1990a, 1990b, 1991), employing a variant of Gosper’s (1978) algorithm for in-
definite hypergeometric summation as a subroutine, computes a linear difference
operator L with polynomial coefficients that annihilates f . Then any algorithm for
solving linear difference equations with polynomial coefficients can be used to find
a closed form for f . For example, the algorithms of Petkovšek (1992) or van Hoeij
(1999) decide whether there is a hypergeometric element f such that Lf = 0. The
related method of Wilf & Zeilberger (1990) is able to produce routinely short proofs
of all kinds of combinatorial identities, among them such famous ones as Dixon’s
theorem (Ekhad 1990) and the Rogers-Ramanujan identities (Ekhad & Tre 1990;
Paule 1994). Recent work related to Zeilberger’s method includes Abramov (2002);
Abramov & Le (2002); Abramov & Petkovšek (2002b); Le (2002); Le (2003b); and
Le (2003a).

There is also a continuous variant of Zeilberger’s algorithm, due to Almkvist &
Zeilberger (1990). Given a bivariate function g that is hyperexponential with respect
to both arguments, such that both ratios

(∂g/∂x)(x, y)
g(x, y)

and
(∂g/∂y)(x, y)

g(x, y)

are rational functions of x and y, this algorithm employs a variant of the continuous
analog of Gosper’s algorithm for hyperexponential integration to find a linear dif-
ferential operator with polynomial coefficients annihilating the univariate function
f defined by

f(x) =
∫

y∈R

g(x, y) .

Then any algorithm for solving linear differential equations with polynomial co-
efficients can be used to find a closed form for f . Generalizations of these algo-
rithms are discussed in Wilf & Zeilberger (1992); Chyzak (1998a, 1998b, 2000);
and Chyzak & Salvy (1998). Graham, Knuth & Patashnik (1994) and Petkovšek,
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Wilf & Zeilberger (1996) give nice introductions to Gosper’s and Zeilberger’s algo-
rithm, and Koepf (1998) discusses also their continuous variants.

Besides the shift operator E with (Ef)(x) = f(x + 1), another interesting
automorphism in difference algebra is known as the q-shift operator Q. For a fixed
element q and a unary function f , it is defined by (Qf)(x) = f(qx). See Koepf
(1998) for an overview and references on q-analogs of various symbolic summation
algorithms.

There are many analogies between differential algebra and difference alge-
bra, and also between the corresponding algorithms. There are several attempts
at providing a unified framework. Ore rings, invented by Ore (1932a, 1932b,
1933), cover the similarities between the algebraic properties of linear differential
operators and linear difference operators (see also Bronstein & Petkovšek 1994).
Pseudo-linear algebra (Jacobson 1937; Bronstein & Petkovšek 1996) focuses on
the solution space of such operators. Umbral calculus (Rota 1975; Roman & Rota
1978; Roman 1984) studies the connection between linear operators, comprising
the differential operator and the difference operator as special cases, and sequences
of polynomials that are uniquely characterized by certain equations involving the
linear operator and the elements of the sequence.

Differential equations in positive characteristic occur also in a different area
of computer algebra: Niederreiter (1993a, 1993b, 1994a, 1994b); Niederreiter &
Göttfert (1993, 1995); Göttfert (1994); and Gao (2001) employ differential equa-
tions to factor polynomials over finite fields.

Throughout this book, we often refer to von zur Gathen & Gerhard (1999),
where appropriate pointers to the original literature are provided.

2.4 Open Problems

We conclude this introduction with some problems that remain unsolved in this
book.

• Give a cost analysis for a modular variant of a complete algorithm for rational
summation, i.e., including the computation of the transcendental part of the anti-
difference of a rational function.
• Give a cost analysis for a modular variant of Zeilberger’s algorithm for definite

hypergeometric summation and its continuous analog for definite hyperexponen-
tial integration, due to Almkvist & Zeilberger.
• The methods presented in this book essentially provide rational function solu-

tions of linear first order differential or difference equations with polynomial co-
efficients. Generalize the modular algorithms in this book to equations of higher
order.
• A major open problem in the area of symbolic integration and summation is to

provide a complete cost analysis of Risch’s and Karr’s algorithms. In light of the
fact that a general version of the symbolic integration problem is known to be
unsolvable (see, e.g., Richardson 1968), it is not even clear that these algorithms
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are primitive recursive, i.e., can be written in a programming language using just
for loops but not general while loops.
• An open question related to the problems discussed in this book is whether the

resultant of two bivariate polynomials over and abstract field can be computed
in pseudo-linear time, when counting only arithmetic operations in the field. If
the degrees of the input polynomials in the two variables are at most n and d,
respectively, then the degree of the resultant is at most nd, so that is conceivable
that there is an O∼(nd) algorithm for computing the resultant. However, the best
known algorithms so far take time O∼(n2d); see Theorem 7.7.



3. Technical Prerequisites

This chapter summarizes some technical ingredients for later use and may be
skipped at first reading. More background on these can also be found in von zur
Gathen & Gerhard (1999).

We say that a nonzero polynomial in Z[x] is normalized if it is primitive, so that
its coefficients have no nontrivial common divisor in Z, and its leading coefficient
is positive. Then each nonzero polynomial f ∈ Z[x] can be uniquely written as
f = cg with a nonzero constant c ∈ Z and a normalized polynomial g ∈ Z[x].
We call c = lu(f) = ±cont(f), which is a unit in Q, the leading unit and g =
normal(f) = ±pp(f) the normal form of f . Then the following properties hold for
all nonzero polynomials f, g ∈ Z[x] and all nonzero constants c ∈ Z.

• normal and lu are both multiplicative: normal(fg) = normal(f)normal(g) and
lu(fg) = lu(f)lu(g).
• normal(c) = 1 and lu(c) = c, and hence normal(cf) = normal(f) and

lu(cf) = c lu(f).
• f is normalized if and only if f = normal(f), or equivalently, lu(f) = 1.
• There exist nonzero constants a, b ∈ Q such that af = bg if and only if

normal(f) = normal(g).

We use the following norms for a vector f = (fi)0≤i<n ∈ C
n or a polynomial

f =
∑

0≤i<n fix
i ∈ C[x]:

• the max-norm ‖f‖∞ = max
0≤i<n

|fi|,
• the one-norm ‖f‖1 =

∑

0≤i<n

|fi|, and

• the two-norm or Euclidean norm ‖f‖2 =




∑

0≤i<n

|fi|2




1/2

.

Each of the three norms satisfies

‖f + g‖ ≤ ‖f‖+ ‖g‖, ‖cf‖ ≤ |c| · ‖f‖
for all vectors (polynomials) f, g ∈ C

n and all scalars c ∈ C. The three norms are
related by the well-known inequalities

‖f‖∞ ≤ ‖f‖2 ≤ ‖f‖1 ≤ n‖f‖∞, ‖f‖2 ≤ n1/2‖f‖∞ .

J. Gerhard: Modular Algorithms, LNCS 3218, pp. 27-40, 2004.
 Springer-Verlag Berlin Heidelberg 2004
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The one-norm has the distinguished property of being sub-multiplicative:

‖fg‖1 ≤ ‖f‖1 · ‖g‖1
for all vectors (polynomials) f, g ∈ C

n.

3.1 Subresultants and the Euclidean Algorithm

Lemma 3.1 (Determinant bounds). (i) Let A = (aij)1≤i,j≤n ∈ C
n×n and

a1, . . . , an ∈ C
n be the columns of A. Then | detA| ≤ ‖a1‖2 · · · ‖an‖2 ≤

nn/2‖A‖∞.
(ii) Let R be a ring, A ∈ R[y1, y2, . . .]n×n, and a1, . . . , an ∈ C

n be the columns
of A. Moreover, for 1 ≤ i ≤ n let deg A and deg ai denote the maximal total
degree of a coefficient of A or ai, respectively, and define degyj

A and degyj
ai

similarly for j ≥ 1. Then deg(det A) ≤ deg a1 + · · ·+deg an ≤ n deg A, and
similarly for degyj

(det A).
(iii) With R = C and A as in (ii), we have ‖ detA‖∞ ≤ ‖ detA‖1 ≤ n! Bn, where

B ∈ R is the maximal one-norm of an entry of A.

Proof. (i) is Hadamard’s well-known inequality (see, e.g., Theorem 16.6 in von zur
Gathen & Gerhard 1999) and (ii) is obvious from the definition of the determinant
as a sum of n! terms:

detA =
∑

π∈Sn

sign(π) · a1π1 · · · anπn ,

where Sn denotes the symmetric group of all permutations of {1, . . . , n} and
sign(π) = ±1 is the sign of the permutation π. Finally, (iii) follows from

‖ detA‖1 ≤
∑

π∈Sn

‖a1π1‖1 · · · ‖anπn‖1 ≤ n! Bn . �

Of course, all these bounds are valid for rows instead of columns as well.
Let R be a ring, f =

∑
0≤i≤n fix

i and g =
∑

0≤i≤m gix
i in R[x] two nonzero

polynomials of degree n and m, respectively, and 0 ≤ d ≤ min{n, m}. The dth
subresultant σd(f, g) is the determinant of the submatrix of the Sylvester matrix
depicted in Figure 3.1 (coefficients with negative indices are considered to be zero).
(See Sect. 6.10 in von zur Gathen & Gerhard 1999.) In particular, for d = 0 this
matrix is the Sylvester matrix of f and g and σ0(f, g) = res(f, g) is their resultant.
If n = m = d, then the matrix above is the empty 0 × 0 matrix, and σd(f, g) = 1.
For convenience, we define σd(f, g) = 0 for min{n, m} < d < max{n, m}, and
σd(f, 0) = 0 and σd(0, g) = 0 if d < n and d < m, respectively.

Corollary 3.2 (Subresultant bounds). (i) Let f, g ∈ Z[x] be nonzero polyno-
mials with degree at most n and max-norm at most A. Moreover, let 0 ≤
d ≤ min{deg f, deg g} and σ ∈ Z be the dth subresultant of f, g. Then
|σ| ≤ (‖f‖2‖g‖2)n−d ≤ ((n + 1)A2)n−d.
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n−d

Fig. 3.1. The dth submatrix of the Sylvester matrix

(ii) Let R be a ring, f, g ∈ R[y1, y2, . . .][x] with 0 ≤ d ≤ min{degx g, degx f}
and max{degx f, degx g} ≤ n, and let σ ∈ R[y1, y2, . . .] be the dth subresul-
tant of f and g with respect to x. If degy denotes the total degree with respect
to all variables yj , then degy σ ≤ (n− d)(degy f + degy g), and similarly for
degyj

σ.

(iii) With R = Z and f, g as in (ii), we have ‖σ‖∞ ≤ ‖σ‖1 ≤ (2n− 2d)! B2n−2d,
where B ∈ N is the maximal one-norm of a coefficient in Z[y1, y2, . . .] of f
or g.

The following well-known fact is due to Mignotte (1989), Theorème IV.4.4.

Fact 3.3 (Mignotte’s bound). Let f, f1, . . . , ft ∈ Z[x] be nonconstant such that
(f1 · · · ft) | f and deg(f1 · · · ft) = n. Then

‖f1‖1 · · · ‖ft‖1 ≤ 2n‖f‖2 .

The famous Euclidean Algorithm computes the greatest common divisor of two
univariate polynomials with coefficients in a field (see, e.g., von zur Gathen & Ger-
hard 1999, Chap. 4). In Chap. 7, we use the following variant, which works over
an arbitrary commutative ring. In contrast to the usual notation, the indices of the
intermediate results are the degrees of the corresponding remainder.

We use the convention that the zero polynomial has degree −∞ and leading
coefficient 1. If R is a ring and f, g ∈ R[x] are nonzero polynomials such that the
leading coefficient lc(f) is invertible, then there exist unique polynomials q, r ∈
R[x] with f = qg + r and deg r < deg g, and we denote them by q = f quo g and
r = f rem g.

Algorithm 3.4 (Monic Extended Euclidean Algorithm).
Input: Polynomials f, g ∈ R[x], where R is a commutative ring, such that f �= 0,

deg f, deg g ≤ n, and lc(f), lc(g) ∈ R×.
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Output: The Euclidean length � of f, g, their degree sequence deg f ≥ d1 > d2 >
· · · > d� ≥ 0, and the values γdi ∈ R and rdi , sdi , tdi ∈ R[x] for 2 ≤ i ≤ � as
computed below.

1. d0 ←−∞, d1 ←− deg g
ρd0 ←− lc(f), ρd1 ←− lc(g)
rd0 ←− ρ−1

d0
f , rd1 ←− ρ−1

d1
g

sd0 ←− ρ−1
d0

, sd1 ←− 0
td0 ←− 0, td1 ←− ρ−1

d1

βd1 ←− ρd0ρd1 , γd1 ←− ρdeg f−deg g
d1

i←− 0
2. while rdi+1 �= 0 do

i←− i + 1
di+1 ←− deg(rdi−1 rem rdi)
adi+1 ←− rdi−1 rem rdi , ρdi+1 ←− lc(adi+1)
if ρdi+1 �∈ R× then goto 3
qdi ←− rdi−1 quo rdi

rdi+1 ←− ρ−1
di+1

adi+1

sdi+1 ←− ρ−1
di+1

(sdi−1 − qdisdi)
tdi+1 ←− ρ−1

di+1
(tdi−1 − qditdi)

βdi+1 ←− βdiρdi+1

γdi+1 ←− (−1)(di−di+1)(deg f−di+1+i+1)β
di−di+1
di+1

· γdi

3. �←− i

In step 2, we let di+1 = −∞ and ρdi+1 = 1 if adi+1 = 0. If R is a field, then the
above algorithm always terminates with rd�

| rd�−1 , and rd�
is the monic gcd of f

and g in R[x]. Otherwise, it may happen that the algorithm terminates prematurely
when the “if” condition in step 2 is true. If this is not the case, then we say that the
monic EEA terminates regularly.

Example 3.5. Let R = Z/8Z, f = x3+2x+1, and g = x2. Then r∞ = f , r2 = g,
a1 = r∞ rem r2 = 2x + 1, and ρ1 = lc(a1) = 2. The latter is not invertible in R,
and the monic EEA does not terminate regularly.

Remark 3.6. One of our main applications of Algorithm 3.4 in Chap. 7 is when
R = Z/pk

Z for a prime p ∈ N and some k ≥ 2. Suppose that the condition in step 2
is true, so that lc(adi+1) is divisible by p, and assume additionally that adi+1 is not
divisible by p. Using Hensel lifting, one can compute a unique unit u ∈ R[x] with
deg u ≤ di+1 such that adi+1/u is monic of degree di+1−deg u (see Corollary 3.17
in von zur Gathen & Hartlieb 1998). One might then proceed with adi+1/u instead
of adi+1 . For example, we might choose u = a1 in Example 3.5. However, we are
not aware of such workaround if adi+1 is divisible by p.

Proposition 3.7 (Invariants of the monic EEA). Let f, g be as in Algorithm 3.4
and σd be the dth subresultant of f, g, for 0 ≤ d ≤ min{n, m}. The following hold
for 0 ≤ i ≤ �.
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(i) di < di−1 if i ≥ 1,
(ii) sdif + tdig = rdi ,

(iii) sditdi−1 − sdi−1tdi = (−1)i(ρd0 · · · ρdi)−1 if i ≥ 1,
(iv) deg rdi = di if i ≥ 1, deg sdi = deg g − di−1 if i ≥ 2, and deg tdi =

deg f − di−1 if i ≥ 2,
(v) βdi = (ρd0 · · · ρdi), and γdi = σdi if i ≥ 2.

With the convention that d�+1 = −∞, rd�+1 = 0, and ρd�+1 = 1, claims (i) through
(iv) are also valid for i = � + 1 in case the monic EEA terminates regularly.

Proof. All proofs can be found in von zur Gathen & Gerhard (1999) (where they
are stated only for the case when R is a UFD or even a field): (i) through (iii) are
from Lemma 3.8, (iv) is Lemma 3.10, and (v) follows from Theorem 11.13 (ii); the
numbering corresponds to the 1999 edition. �

Definition 3.8. Let R be a ring and s, t ∈ R. We say that s and t are coprime if
there exist a, b ∈ R such that sa + tb = 1.

The following lemma shows the relation between subresultants and the Eu-
clidean Algorithm.

Lemma 3.9. Let R be a ring and f, g ∈ R[x] nonzero polynomials of degrees n
and m. Moreover, let 0 ≤ d ≤ min{n, m} and σ ∈ R be the dth subresultant of f
and g.

(i) If R is a field, then d occurs in the degree sequence of the monic Euclidean
Algorithm of f, g in R[x] if and only if σ �= 0.

(ii) Suppose that d < max{m, n}. If σ is a unit, then there are unique polynomials
s, t ∈ R[x] such that deg s < m − d, deg t < n − d, and sf + tg is a monic
polynomial of degree d.

(iii) There exist polynomials s, t ∈ R[x], not both zero, such that deg s < m − d,
deg t < n− d, and deg(sf + tg) < d, if and only if σ is a zero divisor in R.

Proof. Let S ∈ R(n+m−2d)×(n+m−2d) be the square submatrix of the Sylvester
matrix of f and g whose determinant is σ (Figure 3.1).

(i) is Corollary 6.49 (i) in von zur Gathen & Gerhard (1999).
(ii) For polynomials s, t with the given degree constraints, sf + tg is a monic

polynomial of degree d if and only if the coefficient vector v of sxn−d + t
satisfies Sv = (0, . . . , 0, 1)T . Since σ = detS is a unit, there is a unique such
vector v, and hence there are unique such polynomials s, t.

(iii) Let s, t be as assumed, v ∈ Rn+m−2d the coefficient vector of sxn−d + t, and
T ∈ R(n+m−2d)×(n+m−2d) the adjoint of S. Then σv = TSv = 0 and σ is
a zero divisor. Conversely, if σ is a zero divisor, then McCoy’s theorem (see,
e.g., Theorem 3.5.1 in Balcerzyk & Józefiak 1989 or Satz 49.2 in Scheja &
Storch 1980) implies that there exists a nonzero vector v ∈ Rn+m−2d such
that Sv = 0, and if we let s, t ∈ R[x] with deg s < m− d and deg t < n− d
be such that v is the coefficient vector of sxn−d + t, then deg(sf + tg) < d. �
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Corollary 3.10. Let R be a UFD with field of fractions K and f, g ∈ R[x] nonzero
polynomials.

(i) gcd(f, g) is nonconstant if and only if res(f, g) = 0 in R.
(ii) If K is a perfect field, then g is squarefree (in K[x]) ⇐⇒ gcd(g, g′) is constant
⇐⇒ res(g, g′) �= 0.

The next lemma investigates the relation between the Extended Euclidean Algo-
rithm for two polynomials on the one hand and for a homomorphic image of them
on the other hand.

Lemma 3.11. Let R be an integral domain with field of fractions K , f, g ∈ R[x]
nonzero with deg g ≤ deg f = n, and I ⊆ R an ideal coprime to lc(f). Moreover,
let a bar denote reduction modulo I and let σd ∈ R be the dth subresultant of f
and g, for 0 ≤ d ≤ deg g.

(i) Let 0 ≤ d ≤ deg g, d < deg f , and d ≥ d� if the monic Euclidean Algorithm for
f, g in R[x] does not terminate regularly, where � is its length. Then d occurs in
the degree sequence of f, g if and only if σd is a unit modulo I . In that case, the
denominators of the polynomials r∗d, s∗d, t

∗
d ∈ K[x] in the monic EEA of f, g in

K[x] divide σd, so that they are invertible modulo I , and their images modulo
I are equal to the polynomials rd, sd, td in the monic EEA of f, g in R[x].

(ii) If the monic Euclidean Algorithm for f, g in R[x] does not terminate regularly,
then there is some d ∈ {0, . . . , d� − 1} such that σd is nonzero and σd is not a
unit.

Proof. (i) Let m = deg g, and suppose that d = di for some i ∈ {1, . . . , �}.
Then d ≥ 0 implies that g �= 0. We have deg sd = m − di−1 < m − d,
deg td = n − di−1 < n − d, the polynomial rd = sdf + tdg is monic of
degree d, and sd, td are coprime, by Proposition 3.7. Since lc(f) is invertible,
the dth subresultant of f, g is σd divided by a power of lc(f), and Proposition
3.7 (v) implies that σd is a unit in R. The denominators of the polynomials
r∗d, s∗d, t

∗
d in the monic EEA of f, g in K[x], which exist by Lemma 3.9 (i), are

divisors of σd, by Corollary 6.49 (ii) in von zur Gathen & Gerhard (1999) and
Cramer’s rule. Moreover, we have deg t∗d < n − d, and s∗d f + t∗d g = r∗d is
monic of degree d. Thus deg s∗d < m − d, and Lemma 3.9 (ii) yields r∗d = rd,
s∗d = sd, and t∗d = td.
Conversely, assume that di−1 > d > di for some i ∈ {1, . . . , � + 1}, with the
convention that d�+1 = −∞ and rd�+1 = 0 if the monic Euclidean Algorithm
terminates regularly. If i ≥ 2, then deg sdi = m − di−1 < m − d, deg tdi =
n− di−1 < n− d, and deg(sdif + tdig) = deg rdi = di < d. By Proposition
3.7 (iv), tdi is nonzero. As before, the dth subresultant of f, g is σd divided by
a power of lc(f), and Lemma 3.9 (iii) implies that σd is a zero divisor in R, so
that σd is not invertible modulo I .
If i = 1, then

deg f = deg f ≥ deg g ≥ d > deg g = d1 .
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If d < deg g, then all g-columns in the matrix from Figure 3.1, whose deter-
minant is σd, vanish modulo I on and above the diagonal, and hence σd = 0.
If d = deg g, then d < deg f = deg f and σd = lc(g)deg f−deg g . Since
d > deg g, we have lc(g) = 0. Thus σd = 1 if deg f = d = deg g and σd = 0
if deg f > d = deg g, and the claims follow in all cases.

(ii) Since σd�−1 and σd�
are nonzero in R, by (i), the degrees d�−1 and d� occur

(not necessarily consecutively) in the degree sequence of the monic EEA of
f, g in K[x], by Lemma 3.9 (i). So let r∗d�−1

, r∗d�
∈ K[x] be the corresponding

remainders of degrees d�−1 and d�, respectively. Division with remainder yields
q, r ∈ K[x] with deg r < d� and r∗d�−1

= qr∗d�
+ r. Now r∗d�−1

and r∗d�
are

monic and defined modulo I and their images modulo I are equal to rd�−1

and rd�
, respectively, again by (i), so that we can take this equation modulo I ,

and the uniqueness of division with remainder implies that r = ad�+1 �= 0.
Hence r∗d�

� r∗d�−1
, and Proposition 3.7 (ii) implies that r∗d�

is not the gcd of f
and g. Thus there exists a nonzero remainder of degree d < d� in the monic
EEA of f and g in K[x], and Lemma 3.9 (i) yields σd �= 0.
Since the “if” condition in step 2 is true, ρd�+1 is not a unit in R. Let J ⊆ R be
a maximal ideal containing ρd�+1 . Then lc(f) is a unit modulo J and d does not
occur in the degree sequence of the monic Euclidean Algorithm over the field
R/J . Now Lemma 3.9 (i) with R replaced by R/J implies that σd ∈ J �= R,
and hence it is not a unit. �

Corollary 3.12. Let R be a UFD, f, g ∈ R[x] nonzero, d = deg gcd(f, g), and
I ⊆ R a maximal ideal not containing lc(f). Moreover, let σd ∈ R be the dth
subresultant of f and g. Then deg gcd(f mod I, g mod I) ≥ d, with equality if
and only if σd �∈ I .

Proof. Let h = gcd(f, g) and denote reduction modulo I by a bar. Then h | f and
h | g, and hence h | gcd(f, g). Now lc(h) | lc(f), which implies that lc(h) �= 0 and
deg h = deg h, and the first claim follows. Lemma 3.11 (i) yields the subsequent
claims. �

3.2 The Cost of Arithmetic

In the remainder of this chapter, we collect some cost estimates for basic arithmetic
tasks. We denote by ω the word size of our processor, i.e., the number of bits that a
machine word occupies; common values are 32 or 64. The word length of a nonzero
integer a ∈ Z is the number of machine words that it occupies in memory, namely
�(log2 |a|)/ω� + 1. A nonnegative integer a is called single precision if it fits into
one machine word, so that 0 ≤ a < 2ω. In our cost estimates, we count word
operations, which the reader may imagine as processor instructions, operating on
single precision data. A single precision prime is a prime p ∈ N fitting precisely
into one machine word, so that 2ω−1 < p < 2ω. Thus an arithmetic operation in the
field Fp takes O(1) word operations.



34 3. Technical Prerequisites

We let M be a multiplication time for integers and polynomials, so that integers
of word length at most n and polynomials of degree at most n can be multiplied us-
ing O(M(n)) word operations or coefficient additions and multiplications, respec-
tively. Using classical arithmetic corresponds to M(n) = n2, Karatsuba’s (1962)
algorithm has M(n) = n1.59, and the asymptotically fastest currently known algo-
rithm of Schönhage & Strassen (1971), which is based on the Fast Fourier Trans-
form, leads to M(n) = n log n loglog n. We assume that M is sub-additive, so that
M(m) + M(n) ≤ M(m + n), and that m M(n) ≤ M(mn) ≤ m2M(n), for all
m, n ∈ N.

We will freely use the following facts, whose proofs or references can be found
in Aho, Hopcroft & Ullman (1974) or von zur Gathen & Gerhard (1999).

Fact 3.13 (Basic arithmetic). For integers of word length at most n or polynomials
of degree at most n, we have the following cost estimates in word operations or
arithmetic operations on coefficients, respectively.

(i) Division with remainder: O(M(n)),
(ii) Extended Euclidean Algorithm: O(M(n) log n),

(iii) Reduction modulo n single precision integers or simultaneous evaluation at n
points: O(M(n) log n),

(iv) Chinese Remainder Algorithm for n pairwise coprime single precision integers
or interpolation at n points: O(M(n) log n).

In fact, when M(n) ∈ Ω(n1+ε) for some positive ε, as for the classical and Karat-
suba’s (1962) algorithm, then the cost for (ii), (iii), and (iv) is O(M(n)) as well. In
particular, the cost for all four tasks is O(n2) when using classical arithmetic.

We note that the cost estimates above are also valid for Algorithm 3.4. In par-
ticular, there is an asymptotically fast variant of this algorithm that computes an
arbitrary row of the output with running time O(M(n) log n) (see Reischert 1997).

Remark 3.14 (Kronecker substitution). Let f, g ∈ Z[x] be of degree at most n
and max-norm less than 2λ. Then we have ‖fg‖∞ < (n + 1)22λ. Let t =
2λ + log2(n + 1)�. Using the Kronecker substitution x = 2t, we can read off the
coefficients of the product polynomial fg from the integer f(2t)g(2t). Thus we can
compute fg at a cost of O(M(n(λ + log n))) word operations with fast arithmetic.

Kronecker (1882) introduced in §4 a closely related concept to reduce the fac-
torization of multivariate polynomials to factorization of univariate polynomials, by
substituting suitable powers of the first variable for all other variables.

Lemma 3.15. Let R be a ring, f1, . . . , fr ∈ R[x] nonconstant polynomials, f =
f1 · · · fr, and n = deg f .

(i) Given f1, . . . , fr, we can compute f at a cost of O(n2) additions and multipli-
cations in R with classical arithmetic and O(M(n) log n) with fast arithmetic.

(ii) If R = Z and
∏

1≤i≤r ‖fi‖1 < 2λ, then the cost is O(n2λ2) word operations
with classical arithmetic and O(M(nλ) log r) or O∼(nλ) with fast arithmetic.
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(iii) By using a modular algorithm, the cost drops to O(n2λ+nλ2) word operations
with classical arithmetic and O(λM(n) log r + n M(λ) log λ) with fast arith-
metic, if we assume that there are sufficiently many single precision primes and
ignore the cost for prime finding.

Proof. Let ni = deg fi for 1 ≤ i ≤ r. With classical arithmetic, we successively
compute gi = f1 · · · fi, for 2 ≤ i ≤ r. This takes O(nin) additions and multiplica-
tions in R to compute gi from gi−1, in total O(n2). If R = Z, then

‖gi‖∞ ≤ ‖gi‖1 ≤
∏

1≤j≤i

‖fi‖1 < 2λ ,

so that the coefficients of all intermediate results have word size at most λ, and
hence one multiplication in Z takes O(λ2) word operations.

With fast arithmetic, we think of a binary tree of depth log2 r� with f1, . . . , fr

at the leaves, f at the root, and such that each inner vertex is the product of its
two children. The arithmetic cost estimate is due to Strassen (1973) and Borodin &
Moenck (1974) in the case when all fi are linear; see Lemma 10.4 in von zur Gathen
& Gerhard (1999) for the general case. Now let g ∈ Z[x] be an inner vertex and m =
deg g. By a similar argument as above, we have ‖g‖∞ < 2λ. By using the Kronecker
substitution x = 2λ, we can reduce the computation of g to the multiplication of two
integers of word size O(mλ), taking O(M(mλ)) word operations. The sum of the
degrees at one fixed level of the tree is at most n, so that the overall cost for that
level is O(M(nλ)), by the sub-additivity of M, and the claim follows since there are
O(log r) levels. This concludes the proof of (i) and (ii).

The modular algorithm reduces all fi modulo O(λ) single precision primes, tak-
ing O(nλ2) word operations with classical arithmetic and O(n M(λ) log λ) with fast
arithmetic. Then it computes the modular products for each prime independently, at
a cost of λn2 word operations with classical arithmetic and O(λM(n) log r) with
fast arithmetic, by (i). Finally, the coefficients of f are reconstructed by Chinese
remaindering from their O(λ) modular images. This takes O(λ2) word operations
per coefficient with classical arithmetic, in total O(nλ2), and O(n M(λ) log λ) with
fast arithmetic. Now (iii) follows by adding up costs. �

In fact, by balancing the binary tree with respect to the degree, the factor log r
in the above lemma can be replaced by the entropy

H(deg f1, . . . , deg fr) =
∑

1≤i≤r

−deg ri

n
log2

deg ri

n
(3.1)

(Theorem 2.2 in Strassen 1983).
The following fact can be found in von zur Gathen & Gerhard (1999), Theorem

5.31 and Exercise 10.18.

Fact 3.16 (Partial fraction decomposition). Let F be a field, f, g ∈ F [x] nonzero
and coprime with deg f < deg g = n, and g = ge1

1 · · · get
t , with nonconstant and
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pairwise coprime polynomials g1, . . . , gt ∈ F [x] and positive integers e1, . . . , et.
Then we can compute the partial fraction decomposition

f

g
=
∑

1≤i≤t

∑

1≤j≤ei

γij

gj
i

,

i.e., the unique polynomials γij ∈ F [x] of degree less than deg gi for all i, j, using
O(n2) arithmetic operations in F with classical arithmetic and O(M(n) log n) with
fast arithmetic.

Lemma 3.17. Let R be a ring and n ∈ N.

(i) Let g1, . . . , gr, a1, . . . , ar ∈ R[x], g = g1 · · · gr, and assume that deg g =
n ≥ r and deg ai < deg gi for 1 ≤ i ≤ r. Then we can compute

f =
∑

1≤i≤r

ai
g

gi

using O(M(n) log r) arithmetic operations in R. If R = Z, ‖ai‖1 ≤ A for all i,
and ‖h‖1 ≤ B for all divisors h of g, then ‖f‖1 ≤ rAB, and the computation
of f takes O(M(n log(nAB)) log r) word operations.

(ii) Let h, c0, . . . , cr−1 ∈ R[x] and assume that r deg h = n and deg ci < deg h
for all i. Then we can compute

p =
∑

0≤i<r

cih
i

using O(M(n) log r) arithmetic operations in R. If R = Z, ‖ci‖1 ≤ A and
‖hi‖1 ≤ B for all i, then ‖p‖1 ≤ rAB, and the computation of p takes
O(M(n log(nAB)) log r) word operations.

Proof. (i) For the arithmetic cost estimate see, e.g., Theorem 10.21 in von zur
Gathen & Gerhard (1999). If R = Z, then

‖f‖1 ≤
∑

1≤i≤r

‖ai‖1 ·
∥
∥
∥
∥

g

gi

∥
∥
∥
∥

1

≤ rAB .

The intermediate results in the divide-and-conquer algorithm described in von
zur Gathen & Gerhard (1999) are either divisors of g or of a similar form as f ,
so that rAB is an upper bound on the one-norm of any intermediate result. The
cost estimate now follows from Remark 3.14.

(ii) The arithmetic cost estimate follows, e.g., from Exercise 9.20 in von zur Gathen
& Gerhard (1999). The estimates for R = Z follow by similar arguments as in
the proof of (i). �

For a proof of the following fact and references, see von zur Gathen & Gerhard
(1999), Sect. and Notes 5.10, and Wang & Pan (2003).
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Fact 3.18 (Rational number reconstruction). Given n pairwise coprime single
precision primes p1, . . . , ps, an integer c with 2|c| < p1 · · · ps, and a bound
C < p1 · · · ps, we can decide whether there exist coprime integers a, b such that
|a| < C, 0 < b < p1 · · · ps/2C, none of the primes divides b, and ab−1 ≡ c mod pi

for 1 ≤ i ≤ s, and if so, compute these unique a, b. This amounts to essentially
one application of the Chinese Remainder Algorithm and one application of the Ex-
tended Euclidean Algorithm, so that it takes O(s2) word operations with classical
arithmetic, and O(M(s) log s) with fast arithmetic.

Remark 3.19. We often want to reconstruct a vector of rational coefficients that is
the unique solution of a square system of linear equations with integer coefficients.
In this case Cramer’s (1750) rule implies that the determinant of the coefficient ma-
trix is a common denominator of all coefficients of the solution vector. Heuristically,
one may then expect that the denominator b of the first reconstructed coefficient is
already very close to a common denominator. If we multiply any other coefficient
by b, then this is likely to be a rational number with a “small” denominator, for
which rational reconstruction via the Extended Euclidean Algorithm works faster
than for a rational number with “large” denominator. This heuristic is sometimes
useful to speed up the whole rational reconstruction process.

Fact 3.20 (Hensel lifting). Let f ∈ Z[x] of degree n ≥ 1 be primitive and square-
free, k, r ∈ N≥1, p ∈ N a prime not dividing lc(f) such that f mod p is squarefree,
and

f ≡ lc(f)g1 · · · gr mod p

a factorization of f modulo p into nonconstant monic polynomials g1, . . . , gr ∈ Z[x]
that are pairwise coprime modulo p. Then there exist nonconstant monic polynomi-
als f1, . . . , fr ∈ Z[x] with

f ≡ lc(f)f1 · · · fr mod pk, fi ≡ gi mod p for 1 ≤ i ≤ r .

These polynomials are unique modulo pk. If p is single precision and ‖f‖∞ < pk,
then they can be computed using O(n2k2) word operations with classical arithmetic
and O(M(n) log r · (M(k) + log n)) with fast arithmetic.

Proof. The uniqueness follows from Theorem 15.14 in von zur Gathen & Ger-
hard (1999), and Theorem 15.18 in the 1999 edition gives a cost estimate of
O(M(n)M(k) log r) word operations. This does not include the cost for setting up a
factor tree modulo p, which amounts to O(M(n)(log n) log r) and O(n2 log r) word
operations with fast and classical arithmetic, respectively, and the estimate for fast
arithmetic follows. As in Lemma 3.15, a finer analysis shows that the factor log r
can be replaced by the entropy (3.1). For classical arithmetic, where M(n) = n2, the
above estimate leads to a bound of O(n2k2 log r) word operations. We now show
how to shave off the factor log r.

We consider one lifting step from a factor tree modulo p2j−1
to a factor tree

modulo p2j

, for some j ≥ 0. For each vertex v ∈ Z[x] in the factor tree, let pv =
(deg v)/n. We assume that the factor tree is balanced with respect to the degree,
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so that i < 1 − log2 pv holds for all leaves at level i (see Exercise 10.5 in von zur
Gathen & Gerhard 1999). Topological induction along the factor tree shows that this
inequality is valid for the inner vertices as well. With classical arithmetic, the cost at
an inner vertex v is at most c(deg v)2 arithmetical operations modulo p2j

, for some
positive real constant c. Summing over all inner vertices, we find that the cost for
lifting the complete tree is at most

∑

v

c(deg v)2 = cn2
∑

v

p2
v = cn2

∑

i≥0

∑

v at level i

p2
v < cn2

∑

i≥0

∑

v at level i

22−2i

≤ 4cn2
∑

i≥0

2i · 2−2i = 4cn2
∑

i≥0

2−i = 8cn2

arithmetic operations modulo p2j

or O(n222j) word operations. Summing over all
j ≤ log2 k� gives a total cost estimate of O(n2k2). By a similar argument, the cost
for setting up the factor tree modulo p is O(n2) word operations, and the estimate
for classical arithmetic follows. �

See von zur Gathen (1984) and Bernardin (1999) for other Hensel lifting algo-
rithms and Notes 15.4 in von zur Gathen & Gerhard (1999) for historical notes and
more references.

Fact 3.21 (Factorization over finite fields). Let p ∈ N be a prime and f ∈ Fp[x]
of degree n ≥ 1.

(i) We can compute all roots of f in Fp with an expected number of O(n2 log n ·
log p) arithmetic operations in Fp with classical arithmetic and O(M(n) ·
log(pn) log n) or O∼(n log p) with fast arithmetic.

(ii) We can compute the irreducible factorization of f in Fp[x] with an expected
number of O(n3 + n2 log p) arithmetic operations in Fp with classical arith-
metic and O(M(n2) log n + M(n) log n · log p) or O∼(n2 + n log p) with fast
arithmetic.

See Corollaries 14.16 and 14.30 and Theorem 14.32 in von zur Gathen & Ger-
hard (1999) for proofs and the notes to Chap. 14 for references.

The following lemma says that there are sufficiently many single precision
primes for all practical purposes. A similar result is in Theorem 1.8 of Giesbrecht
(1993).

Lemma 3.22. For an integer ω ≥ 7, the number πω of primes between 2ω−1 and
2ω is at least

πω >
2ω log2 e

2ω

(

1− 1 + log2 e

ω − 1

)

.

For example, we have π32 > 8.9 · 108 and π64 > 1.99 · 1018.

Proof. By the prime number theorem, the number π(x) of primes less than x ∈ R>0

is about x/ ln x, and more precisely
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x

ln x

(

1 +
1

2 lnx

)

< π(x) <
x

ln x

(

1 +
3

2 lnx

)

if x ≥ 59

(Rosser & Schoenfeld 1962). Using this for x = 2ω and x = 2ω−1, we obtain, after
some calculation, the claim about πω = π(2ω)− π(2ω−1). �

Remark 3.23. • We stress that the cost estimates for all our modular algorithms
are not strictly asymptotic estimates, since they require a certain number of single
precision primes and there are only finitely many of them for a fixed ω. It is
possible to derive proper asymptotic estimates by allowing for primes of arbitrary
precision and using the prime number theorem to bound their word length. The
corresponding estimates are usually slower by a logarithmic factor, and we do
not state them in what follows.
• There are several possible ways how to find random single precision primes for

our modular algorithms. In our analyses, we do not discuss this and also ignore
the cost. Suppose that we need s distinct random single precision primes. In prin-
ciple, we can find them by repeatedly choosing random integers between 2ω−1

and 2ω, subjecting them to a probabilistic primality test (like the ones of Solo-
vay & Strassen 1977 or Miller 1976 and Rabin 1976, 1980), and stop as soon as
sufficiently many “probable” primes are found. Since we are looking for primes
of a fixed precision, the cost for one primality test is O(1) word operations, and
the expected number of trials until a prime is found is also O(1), provided that
there are sufficiently many of them, say at least 2s (one has to be a bit careful
about getting s distinct primes here). Thus the cost for randomly and indepen-
dently choosing s single precision primes is O(s) word operations. The prime
number theorem (see Lemma 3.22) guarantees that there are sufficiently many
single precision primes for all practical purposes.
A second possibility is to use the well-known sieve of Eratosthenes to compute all
primes below 2ω, at a cost of O(2ω · ω log ω) word operations (see, e.g., von zur
Gathen & Gerhard (1999), Theorem 18.10). When ω is fixed, then this is O(1),
at least in theory, but in practice this is probably too expensive for ω ≥ 32, in
particular too memory-consuming.
In practice, however, it is useful to maintain a list of precomputed single precision
primes and then to choose randomly from this list if there are sufficiently many of
them or simply to take the first s primes from the list otherwise. In the last case,
we no longer have a guaranteed bound on the error probability of our algorithms;
in principle, it may happen that all primes from our list are “unlucky”.
Nevertheless, using such a precomputed list is very attractive, for two reasons.
Firstly, the prime list can be reused for many different kinds of modular algo-
rithms, such as gcd computations and linear algebra. Secondly, we may choose
all primes p to be Fourier primes, so that p− 1 is divisible by a “large” power of
two, say 2ω/2. This allows for very efficient implementations of FFT-based poly-
nomial arithmetic, as has been shown by Shoup (1995) with his software package
NTL, at the expense of reducing the number of suitable primes.
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The final lemma in this chapter is about probability and will be put to use in
Chap. 5.

Lemma 3.24. Consider the following random experiment. An urn contains b black
and w white balls, and we draw k ≤ w + b balls without replacement.

(i) If w ≥ b, then the probability that at most k/2 balls are white is at most 1/2.
(ii) If w ≥ 4b and k ≥ 8, then the probability that at most k/2 balls are white is at

most 1/4.

Proof. We only prove (ii); see, e.g., Exercise 6.31 in von zur Gathen & Gerhard
(1999) for a proof of (i). Let X denote the random variable counting the number of
white balls after k trials. Then X has a hypergeometric distribution

prob(X = i) =

(
w

i

)(
b

k − i

)

(
w + b

k

)

for 0 ≤ i ≤ k, with mean

µ = EX =
∑

0≤i≤k

k · prob(X = k) =
kw

w + b
≥ 4

5
k .

We want to prove that prob(X ≤ k/2) ≤ 1/4. For 0 < t ≤ µ/k, the following tail
inequality holds:

prob(X − µ ≤ −tk) ≤ e−2kt2 (3.2)

(see, e.g., Chvátal 1979). We let c =
√

ln 4 and t =
√

c/2k. Then

k

2
− µ ≤ − 3

10
k ≤ −3

√
2

5

√
k < −

√
c

2

√
k = −tk ,

since k ≥ 8, and (3.2) implies that

prob
(
X ≤ k

2

)
= prob

(
X − µ ≤ k

2
− µ

)
≤ prob(X − µ ≤ −tk) ≤ e−2kt2

= e− ln 4 =
1
4

. �



4. Change of Basis

In this chapter, we discuss conversion algorithms for univariate polynomials in R[x],
where R is a commutative ring with 1. These algorithms convert between a basis of
the form

Mb =
(

(x− b0)(x− b1) · · · (x− bi−1)
)

i∈N

,

where b = (b0, b1, . . .) ∈ RN is an infinite sequence of arbitrary constants from R,
and the usual monomial basis M = M0 = (xi)i∈N. This comprises important
special cases such as the shifted monomial basis ((x − b)i)i∈N, for some b ∈ R,
the falling factorial basis F = (xi)i∈N, where xi = x(x − 1) · · · (x− i + 1) is the
ith falling factorial, and the rising factorial basis (xi)i∈N, where xi = x(x + 1) · · ·
(x + i − 1) is the ith rising factorial. We give cost estimates for our algorithms in
terms of arithmetic operations in R and, in the case R = Z, also in word operations.
For the shifted monomial basis, the conversion is simply a Taylor shift, which we
discuss in the following section.

Umbral calculus (Rota 1975; Roman & Rota 1978; Roman 1984) covers the sim-
ilarities between various polynomial bases, comprising all of the special cases men-
tioned above, and relates monomial bases and linear operators on polynomials that
commute with the differential operator. For example, the relations Dxn = nxn−1

and ∆(xn) = nxn−1 for n ∈ N say that the monomial basis M and the falling
factorial basis F are the associated sequences of the differential operator D and the
difference operator ∆, respectively. One of the nice results of umbral calculus is
the following. Given a sequence (pn)n∈N of monic polynomials with deg pn = n
for all n and pn(0) = 0 if n > 0, the linear operator T defined by Tpn = npn−1

for n ∈ N, such that (pn)n∈N is the associated sequence of T , commutes with the
differential operator D if and only if the sequence satisfies a binomial theorem of
the form

pn(x + y) =
∑

0≤i≤n

(n

i

)
pi(x)pn−i(y) for n ∈ N .

(See Chap. 2 in Roman 1984.) We use this binomial theorem for the falling factorial
basis F in Sect. 4.3 below.

J. Gerhard: Modular Algorithms, LNCS 3218, pp. 41-60, 2004.
 Springer-Verlag Berlin Heidelberg 2004
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4.1 Computing Taylor Shifts

In this section, we discuss algorithms for converting between M and M(b,b,...)

for some fixed b ∈ R. Given the coefficients f0, . . . , fn ∈ R of the polyno-
mial f =

∑
0≤i≤n fix

i ∈ R[x], we want to find g0, . . . , gn ∈ R such that
f(x) =

∑
0≤i≤n gi · (x − b)i, or vice versa. If we let g =

∑
0≤i≤n gix

i, then

f(x) = g(x− b), or equivalently,

g(x) =
∑

0≤k≤n

gkxk = f(x + b) =
∑

0≤i≤n

fi · (x + b)i , (4.1)

so that the conversions in both directions can be reduced to computing Taylor shifts
by b and −b, respectively. This is a basic operation in many computer algebra sys-
tems (e.g., translate in MAPLE).

Problem 4.1 (Taylor shift). Let R be a ring. Given b ∈ R and the coefficients of a
nonzero polynomial f ∈ R[x] of degree n, compute the coefficients of f(x+ b) with
respect to the monomial basis.

Writing out (4.1) explicitly, for 0 ≤ k ≤ n we have

gk =
∑

k≤i≤n

(
i

k

)
fib

i−k . (4.2)

An important special case is b = ±1. The following lemma says how the coefficient
size of a polynomial increases at most by a Taylor shift in the case R = Z.

Lemma 4.2. Let f ∈ Z[x] be nonzero of degree n ∈ N and b ∈ Z. Then

‖f(x + b)‖∞ ≤ ‖f(x + b)‖1 ≤ (|b|+ 1)n‖f‖1 ≤ (n + 1)(|b|+ 1)n‖f‖∞ .

For b = ±1, the following sharper bound is valid:

‖f(x± 1)‖∞ ≤ ‖f(x± 1)‖1 ≤ 2n+1‖f‖∞ .

Proof. Let f =
∑

0≤i≤n fix
i. Then

‖f(x + b)‖1 =

∥∥∥∥∥∥
∑

0≤i≤n

fi · (x + b)i

∥∥∥∥∥∥
1

≤
∑

0≤i≤n

|fi|(1 + |b|)i ≤ (|b|+ 1)n‖f‖1 .

Moreover, we have

‖f(x + b)‖1 ≤ ‖f‖∞
∑

0≤i≤n

(1 + |b|)i = ‖f‖∞ (1 + |b|)n+1 − 1
|b| ,

and the claim for |b| = 1 follows. �
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For all b, B, n ∈ N>0, the polynomial f = B
∑

0≤i≤n xi achieves the first
bound within a factor of at most n + 1:

‖f(x + b)‖1 = B
∑

0≤i≤n

(b + 1)i ≥ ‖f‖∞(b + 1)n .

We now discuss several computational methods for computing Taylor shifts and
analyze their costs. The presentation follows closely von zur Gathen & Gerhard
(1997). We start with algorithms employing classical arithmetic.

A. Horner’s (1819 method): We compute

g(x) = f0 + (x + b)
(
f1 + · · ·+ (x + b)

(
fn−1 + (x + b)fn

)
· · ·

)

in n steps

g(n) = fn, g(i) = (x + b) · g(i+1) + fi for i = n− 1, . . . , 0 ,

and obtain g = g(0).
B. Shaw & Traub’s (1974) method (if b is not a zero divisor): Compute f∗(x) =

f(bx), g∗(x) = f∗(x + 1), using A, and then g(x) = g∗(x/b). (See also de
Jong & van Leeuwen 1975; Schönhage 1998; and §4.6.4 in Knuth 1998.)

C. Multiplication-free method (if R = Z): Suppose that b > 0. We denote by
Eb the shift operator acting as (Ebf)(x) = f(x + b) on polynomials. We
write b =

∑
0≤j<d bj2j in binary, with bj ∈ {0, 1} for all j. Then Eb =

Ebd−12
d−1 ◦ · · · ◦ Eb1·2 ◦ Eb0 . For j = 0, 1, . . . , d − 1, successively apply

method A with bj2j . The case b < 0 is handled by noting that Eb = ME−bM ,
where M denotes the operator (Mf)(x) = f(−x).

Method C seems to be new. We note that both methods B and C boil down to
Horner’s method if b = ±1.

Theorem 4.3. Let R be a ring, f ∈ R[x] of degree n ≥ 1, and b ∈ R nonzero. Then
method A solves the Taylor shift problem 4.1 with O(n2) additions and multiplica-
tions in R, method B takes O(n2) additions plus O(n) multiplications and divisions
in R, and method C uses O(n2d) additions in R = Z.

More precisely, if R = Z, ‖f‖∞ < 2λ, and |b| < 2d, then the cost in word
operations to compute (Ebf)(x) = f(x + b) ∈ Z[x] for the three methods above is

A: O(n2d(nd + λ)) with classical and O(n2 M(nd + λ)) with fast integer arith-
metic,

B: O(n2d(nd + λ)) with classical and O(n2(nd + λ) + n M(nd + λ)) with fast
integer arithmetic,

C: O(n2d(nd + λ)).

Proof. A. In step n − i, we have at most i − 1 additions and i multiplications
by b, in total O(n2) additions and multiplications in R each. In the integer case,
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the word size of the integers involved is O(nd + λ), by Lemma 4.2. Thus the
cost for one addition is O(nd + λ), and the cost for one multiplication by b is
O(d(nd + λ)) with classical multiplication and O(M(nd + λ)) with fast mul-
tiplication. Thus we get a total cost of O(n2d(nd + λ)) and O(n2 M(nd + λ))
word operations, respectively.

B. We have n − 1 multiplications, of size O(d) × O(nd) in the integer case, for
the computation of b2, . . . , bn, plus n multiplications, of size O(λ)×O(nd) in
the integer case, for the computation of f1b, . . . , fnbn which yields f∗. In using
method A to compute f∗(x + 1), no multiplications are required, and the cost
is O(n2) additions in R. In the case R = Z, Lemma 4.2 implies that all addi-
tions involve integers of size O(nd + λ), and hence the cost is O(n2(nd + λ))
word operations. Finally, we have n exact divisions by b, b2, . . . , bn in R. In
the integer case, the dividends are of size O(nd + λ) and the divisors of size
O(nd). The cost for such a division is O(nd(nd + λ)) word operations with
classical integer arithmetic and O(M(nd + λ)) with fast arithmetic. We obtain
a total of O(n2d(nd+λ)) word operations with classical integer arithmetic and
O(n2(nd + λ) + n M(nd + λ)) with fast arithmetic.

C. When ±b is a power of two, a multiplication by ±b is – up to sign – just a
shift in the binary representation, yielding a total cost of O(n2) additions or
O(n2(nd + λ)) word operations for A. Applying this special case at most d
times gives a total running time of O(n2d) additions or O(n2d(nd + λ)) word
operations. �

Corollary 4.4. With the assumptions of Theorem 4.3 in the case R = Z, the cost
for the three algorithms in word operations is

(i) O(n2(n + λ)) if b = ±1,
(ii) O(n3λ2) with classical integer arithmetic if d ∈ O(λ),

(iii) O∼(n3λ) for A and O(n3λ) for B, respectively, with fast integer arithmetic if
d ∈ O(λ).

Table 4.1. Running times in CPU seconds with method A for b = 1, degree n − 1, “small”
coefficients between −n and n, and “large” coefficients between −2n and 2n

n small large
128 0.001 0.002
256 0.005 0.010
512 0.030 0.068

1024 0.190 0.608
2048 2.447 8.068
4096 22.126 65.758
8192 176.840 576.539

Tables 4.1, 4.2, and 4.3 show the performances of methods A, B, and C in our ex-
periments. Running times are given in average CPU seconds for 10 pseudorandomly
chosen inputs on a Linux PC with an 800 MHz Pentium III CPU. Our software
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Table 4.2. Running times in CPU seconds with methods A,B,C for degree n− 1 and “small”
coefficients and values of b between −n and n

n A B C
128 0.009 0.005 0.013
256 0.067 0.044 0.102
512 0.541 0.494 0.802

1024 5.897 7.053 9.786
2048 48.386 57.504 98.722
4096 499.149 601.716 1078.450

Table 4.3. Running times in CPU seconds with methods A,B,C for degree n − 1 and “large”
coefficients and values of b between −2n and 2n

n A B C
128 0.302 0.298 1.653
256 7.840 8.931 65.840
512 279.988 259.658 2232.080

is written in C++. For arithmetic in Z, we have used Victor Shoup’s highly opti-
mized C++ library NTL version 5.0c for integer and polynomial arithmetic, parts
of which are described in Shoup (1995). It uses Karatsuba’s (Karatsuba & Ofman
1962) method for multiplying large integers.

Next we discuss three methods employing fast polynomial arithmetic.

D. Paterson & Stockmeyer’s (1973) method: We assume that (n + 1) = m2

is a square (padding f with leading zeroes if necessary), and write f =∑
0≤i<m f (i)xmi, with polynomials f (i) ∈ R[x] of degree less than m for

0 ≤ i < m.
1. Compute (x + b)i for 1 ≤ i ≤ m.
2. For 0 ≤ i < m, compute f (i)(x + b) as a linear combination of

1, (x + b), (x + b)2, . . . , (x + b)m−1.
3. Compute

g(x) =
∑

0≤i<m

f (i)(x + b) · (x + b)mi

in a Horner-like fashion.
E. Divide & conquer method (von zur Gathen 1990; see also Bini & Pan 1994):

We assume that n + 1 = 2m is a power of two. In a precomputation stage,
we compute (x + b)2

i

for 0 ≤ i < m. In the main stage, we write f = f (0) +
x(n+1)/2f (1), with polynomials f (0), f (1) ∈ R[x] of degree less than (n+1)/2.
Then

g(x) = f (0)(x + b) + (x + b)(n+1)/2f (1)(x + b) ,

where we compute f (0)(x + b) and f (1)(x + b) recursively.
F. Convolution method (Aho, Steiglitz & Ullman 1975; see also Schönhage,

Grotefeld & Vetter 1994, §9.3): This only works if n! is not a zero divisor in R.
After multiplying both sides of (4.2) by n! k!, we obtain
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n!k! gk =
∑

k≤i≤n

(i! fi) · n! bi−k

(i− k)!

in R. If we let u =
∑

0≤i≤n i! fix
n−i and v = n!

∑
0≤j≤n bjxj/j! in R[x],

then n!k! gk is the coefficient of xn−k in the product polynomial uv.

Theorem 4.5. Let R be a ring, f ∈ R[x] of degree n ≥ 1, and b ∈ R nonzero.
Then method D solves the Taylor shift problem 4.1 with O(n1/2M(n)) additions and
multiplications in R, method E takes O(M(n) log n) additions and multiplications
in R, and method F uses O(M(n)) additions and multiplications plus O(n) divisions
in R.

More precisely, if R = Z, ‖f‖∞ < 2λ, and |b| < 2d, then the cost in word
operations to compute (Ebf)(x) = f(x + b) ∈ Z[x] for the three methods above is

D: O(n M(n3/2d + n1/2λ)) or O∼(n2.5λ),
E: O(M(n2d + nλ) log n) or O∼(n2λ),
F: O(M(n2 log n + n2d + nλ)) or O∼(n2λ),

where the O∼-estimates are valid if d ∈ O∼(λ).

Proof. We first note that by using Kronecker substitution (Remark 3.14), we can
multiply two polynomials of degree at most n and with coefficients of word size at
most k using O(M(n(k + log n))) word operations.

D. In step 1, we have O(m2) multiplications and additions, of size O(md) in the
integer case, by Lemma 4.2, or O(n M(n1/2d)) word operations. The compu-
tation of each f (i)(x + b) for 0 ≤ i < m in step 2 uses O(m2) multiplications
and additions, of size O(md + λ) in the case R = Z, and the total cost of
step 2 is O(n3/2) additions and multiplications in R or O(n3/2 M(n1/2d + λ))
word operations. Finally, we have at most m polynomial multiplications and
additions of degree m × O(n), with coefficients of size O(nd + λ) in the
integer case. By dividing the larger polynomial into blocks of size m, each
such multiplication can be performed with O(m M(m)) arithmetic operations,
or O(m M(m(nd + λ))) word operations in the integer case. Thus the over-
all cost for step 3 is O(n M(n1/2)) additions and multiplications in R or
O(n M(n3/2d + n1/2λ)) word operations if R = Z. This dominates the cost of
the other two steps.

E. The cost of the precomputation stage is at most

∑
1≤i<m

M(2i−1) ≤ M(n)

additions and multiplications in R. If R = Z, then the size of the coefficients of
the polynomials in the precomputation stage is O(nd), by Lemma 4.2, and the
cost is ∑

1≤i<m

O(M(2i−1nd)) ⊆ O(M(n2d))
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word operations. Let T (n + 1) denote the cost of the main stage in ring opera-
tions for polynomials of degree less than n + 1. Then

T (1) = 0 and T (n + 1) ∈ 2T ((n + 1)/2) + O(M(n)) ,

and unraveling the recursion yields T (n+1) ∈ O(M(n) log n), dominating the
cost for the precomputation stage. Similarly, if we let T (n + 1) denote the cost
of the main stage in word operations for polynomials of degree less than n + 1
and with coefficients of word size at most k, with k independent of n, we find

T (1) = 0 and T (n + 1) ∈ 2T ((n + 1)/2) + O(M(n(k + log n))) ,

and unraveling the recursion yields T (n+1) ∈ O(M(n(k+log n)) log n). The
result follows from k ∈ O(nd + λ).

F. Computing uv takes O(M(n)) additions and multiplications in R. The cost for
calculating i! and bi for 2 ≤ i ≤ n, for computing u, v from f and these
data, and for determining the gk’s from uv amounts to O(n) multiplications
and divisions in R.
In the integer case, the size of the coefficients of u and v is O(n log n + λ) and
O(n(log n + d)), respectively. Hence the word size of the coefficients of uv
is O(n(log n + d) + λ), and computing uv takes O(M(n2 log n + n2d + nλ))
word operations. Using O(n M(n(log n + d)+ λ)) word operations, the coeffi-
cients of u and v can be computed, and the same number suffices to recover the
gk from the coefficients of uv. Thus the total cost is O(M(n2 log n+n2d+nλ))
word operations. �

We note that the input size is Θ(nλ + d), and by Lemma 4.2 and the discussion
following it, the size of the output f(x + b) is Θ(n(nd + λ)) words, or Θ(n2λ) if
d ∈ Θ(λ). Thus Algorithms E and F are – up to logarithmic factors – asymptotically
optimal. For b = ±1, the output size is Θ(n(n + λ)).

If we want to compute integral shifts of the same polynomial for several
b1, . . . , bk ∈ Z of absolute value 2Θ(d), then the output size is Θ(kn(nd + λ)),
and hence the simple idea of applying method E or F k times independently is – up
to logarithmic factors – asymptotically optimal.

Corollary 4.6. Let f ∈ Z[x] be of degree n ≥ 1 with ‖f‖∞ < 2λ. Then the cost
in word operations for computing (Ef)(x) = f(x + 1) or (E−1f)(x) = f(x− 1)
using the above algorithms is

D: O(n1/2M(n2 + nλ)) or O∼(n1.5(n + λ)),
E: O(M(n2 + nλ) log n) or O∼(n2 + nλ),
F: O(M(n2 log n + nλ)) or O∼(n2 + nλ).

Tables 4.4 and 4.5 give running times of methods D,E, and F in our experiments
in average CPU seconds for 10 pseudorandomly chosen inputs on a Linux PC with
an 800 MHz Pentium III CPU. Integer and polynomial arithmetic is again taken
from NTL, which implements FFT-multiplication modulo Fermat numbers 22k

+ 1,
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Table 4.4. Running times in CPU seconds with methods D,E,F for degree n − 1 and “small”
coefficients and values of b between −n and n

n D E F
128 0.010 0.010 0.044
256 0.072 0.072 0.290
512 0.602 0.432 2.007

1024 6.364 2.989 13.958
2048 57.744 16.892 98.807
4096 722.757 125.716 787.817

Table 4.5. Running times in CPU seconds with methods D,E,F for degree n − 1 and “large”
coefficients and values of b between −2n and 2n

n D E F
128 0.700 0.489 0.524
256 14.894 9.566 13.262
512 420.562 166.138 234.087

as used by Schönhage & Strassen (1971), for polynomials with large coefficients,
and Karatsuba’s (Karatsuba & Ofman 1962) algorithm as well as a modular Chi-
nese remaindering approach, as described by Pollard (1971), for polynomials with
moderately sized coefficients.

Fig. 4.6 compares the timings from Tables 4.2 and 4.4. The conclusion is that
in our computing environment method B is the best choice for small problems, and
method E for large ones.

Our final algorithm that we discuss is a new modular method for computing
Taylor shifts in Z[x]. We recall that ω is the word size of our processor.

Algorithm 4.7 (Small primes modular Taylor shift).
Input: A polynomial f ∈ Z[x] of degree n ≥ 1 and max-norm ‖f‖∞ < 2λ, and

b ∈ Z with 0 < |b| < 2d.
Output: The coefficients of f(x + b) ∈ Z[x].

1. r ←− �log2((n + 1)2nd+λ+1)/(ω − 1)	
choose odd single precision primes p1 < · · · < pr

2. for 1 ≤ j ≤ r compute gj ∈ Z[x] of max-norm less than pj/2 such that
gj ≡ f(x + b) mod pj

3. use the Chinese Remainder Algorithm to compute g ∈ Z[x] of max-norm less
than (

∏
1≤j≤r pj)/2 such that g ≡ gj mod pj for 1 ≤ j ≤ r

4. return g

Theorem 4.8. Algorithm 4.7 solves the Taylor shift problem 4.1 correctly as spec-
ified. Steps 2 and 3 take O(n3d2 + n2dλ + nλ2) word operations with classical
arithmetic and O(λM(n) + n M(nd + λ) log(nd + λ)) or O∼(n2d + nλ) with fast
arithmetic.

Proof. Let m =
∏

1≤j≤r pj > 2(ω−1)r ≥ (n + 1)2nd+λ+1. Then f(x + b) ≡
g mod m, both sides of the congruence have max-norms less than m/2, by Lem-
ma 4.2, and hence they are equal. In step 2, we first reduce f and b modulo
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Fig. 4.6. Comparison of the running times of methods A through F for degree n − 1 and
“small” coefficients and values of b between −n and n. The vertical axis corresponds to the
ratio of the computing time by the computing time of method A.

all primes, taking O(r(nλ + d)) word operations with classical arithmetic and
O(n M(r) log r) with fast arithmetic. Then we perform the Taylor shift modulo each
prime, taking O(rn2) word operations with classical arithmetic and O(r M(n)) with
fast arithmetic, by Theorems 4.3 and 4.5. Finally, the cost for the Chinese remain-
dering in step 3 is O(r2) per coefficient with classical arithmetic and O(M(r) log r)
with fast arithmetic, in total O(nr2) and O(n M(r) log r), respectively. The esti-
mates now follow from r ∈ O(nd + λ). �

Corollary 4.9. Let f ∈ Z[x] of degree n ≥ 1 and b ∈ Z\ {0} with ‖f‖∞, |b| < 2λ.
If we ignore the cost for prime finding, then the cost in word operations for comput-
ing (Ebf)(x) = f(x + b) using Algorithm 4.7 is

(i) O(n3λ2) with classical and O(n M(nλ) log(nλ)) or O∼(n2λ) with fast arith-
metic,

(ii) O(n3+nλ2) with classical arithmetic and O(λM(n)+n M(n+λ) log(n+λ))
or O∼(n2 + nλ) with fast arithmetic if b = ±1.

Theorem 4.8 and Corollary 4.9 indicate that the modular algorithm 4.7 with
classical arithmetic is slower than methods A, B, and C.

4.2 Conversion to Falling Factorials

In this section, we address algorithms for converting between the usual monomial
basisM and the falling factorial basis F = (xi)i∈N. Since the algorithms are the
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same in the general case of arbitrary interpolation points, we discuss them in the
more general setting and give corollaries for the special case of falling factorials.
Other special cases are the conversion betweenM and

• the rising factorial basis (xi)i∈N, where xi = x(x + 1) · · · (x + i − 1) =
(−1)i(−x)i, or
• the generalized factorial basis (x(x − h)(x − 2h) · · · (x − (i − 1)h))i∈N, where

h ∈ R is arbitrary, or
• the shifted falling factorial basis ((x − b)i)i∈N, where b ∈ R is arbitrary,

or more generally, the shifted generalized factorial basis. The presentation in this
and the following section follows closely Gerhard (2000).

Given the coefficients f0, . . . , fn ∈ R of a polynomial f =
∑

0≤i≤n fix
i ∈

R[x], and arbitrary elements b0, . . . , bn−1 ∈ R, we want to find g0, . . . , gn ∈ R
such that

f =
∑

0≤i≤n

gi · (x− b0) · · · (x− bi−1) , (4.3)

or vice versa. If all bi’s are distinct, then the right hand side in (4.3) is the rep-
resentation of f that we obtain from Newton interpolation at the sample points
b0, . . . , bn−1, and the gi’s are the divided differences with respect to these points.
If all bi’s are equal, then this is exactly the problem of Taylor shift discussed in the
previous section.

Problem 4.10 (Change of basis: forward conversion). Let R be a ring. Given b0,
. . . , bn−1 ∈ R and the coefficients of a nonzero polynomial f ∈ R[x], compute
g0, . . . , gn ∈ R satisfying (4.3).

Problem 4.11 (Change of basis: backward conversion). Let R be a ring. Given
b0, . . . , bn−1 ∈ R and g0, . . . , gn ∈ R, compute the coefficients of the polynomial
(4.3) with respect to the monomial basis.

The main idea of the following algorithms is to employ the following variant of
Horner’s rule (method A in Sect. 4.1):

f = g0 + (x− b0)
(
g1 + · · ·+ (x− bn−2)

(
gn−1 + (x − bn−1)gn

)
· · ·

)
. (4.4)

To analyze the bit cost of the algorithms, we need some upper bounds. If h is a
polynomial and i ∈ Z, then we denote the coefficient of xi in h by [xi]h, with the
convention that it be zero if i < 0 or i > deg h.

Lemma 4.12. Let R = Z, n ∈ N≥1, and b0, . . . , bn−1 ∈ Z of absolute value at
most b. Moreover, let un = (x− b0) · · · (x− bn−1), u∗

n = rev(un) = (1− b0x) · · ·
(1 − bn−1x), and vn ∈ Z[x] of degree at most n such that u∗

nvn ≡ 1 mod xn+1.

(i) ‖u∗
n‖∞ = ‖un‖∞ ≤ ‖un‖1 ≤ (b + 1)n and ‖vn‖∞ ≤ (4b)n.

(ii) If f0, . . . , fn, g0, . . . , gn ∈ Z are such that (4.3) holds, A∞ = max{|fi|:
0 ≤ i ≤ n}, B∞ = max{|gi|: 0 ≤ i ≤ n}, and B1 =

∑
0≤i≤n |gi|, then

A∞ ≤ (b + 1)nB1 ≤ (n + 1)(b + 1)nB∞ and B∞ ≤ (n + 1)(4b)nA∞.
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Proof. The claim about ‖un‖1 follows since the one-norm is sub-multiplicative. We
have vn ≡

∏
0≤i<n hi mod xn+1, where hi = 1/(1− bix) =

∑
j≥0 bj

ix
j ∈ R[[x]]

for 0 ≤ i < n. Let vn =
∑

0≤k≤n wkxk, with all wk ∈ Z. Then

|wk| =
∣∣∣∣∣∣

∑
j0+···+jn−1=k

bj0
0 · · · bjn−1

n−1

∣∣∣∣∣∣ ≤
(

n + k − 1
n− 1

)
bk ≤

(
2n− 1
n− 1

)
bn ≤ (4b)n

for 0 ≤ k ≤ n. This concludes the proof of (i).
For (ii), we obtain from (4.3) and (i) that

A∞ = ‖f‖∞ ≤
∑

0≤i≤n

|gi| ‖ui‖∞ ≤ (b + 1)nB1 ≤ (n + 1)(b + 1)nB∞ .

Let f∗ = rev(f) and 0 ≤ j < n. To prove the second inequality, we claim that
gj = [xn−j ](f∗vj+1). If n ≥ i > j, then

u∗
i vj+1 ≡ (1− b0x) · · · (1− bi−1x)

(1− b0x) · · · (1 − bjx)
= (1 − bj+1x) · · · (1− bi−1x) mod xn+1 ,

and hence [xi−j ](u∗
i vj+1) = 0. If i = j, then [xi−j ](u∗

i vj+1) = u∗
j (0)vj+1(0) = 1,

and if i < j, then [xi−j ](u∗
i vj+1) = 0, by definition. Thus (4.3) yields

[xn−j ](f∗vj+1) = [xn−j ]
∑

0≤i≤n

giu
∗
i x

n−ivj+1 =
∑

0≤i≤n

gi[xn−j ](u∗
i vj+1x

n−i)

=
∑

0≤i≤n

gi[xi−j ](u∗
i vj+1) = gj ,

and the claim is proved. Finally,

|gj| ≤ ‖f∗vj+1‖∞ ≤ (n + 1)‖f‖∞ ‖vj+1‖∞ ≤ (n + 1)(4b)nA∞ ,

by (i). The second inequality in (ii) now follows since |gn| = |fn| ≤ A∞. �

Theorem 4.13. Let R be a ring, f ∈ R[x] of degree n ≥ 1, and b = (b0, b1, . . .)
in RN. Using classical arithmetic, we can solve both conversion problems 4.10 and
4.11 with O(n2) additions and multiplications in R.

If R = Z, |bi| < 2d for all i ≤ n, and ‖f‖∞ < 2λ, then the cost for solving the
forward conversion problem is O(n2d(nd+λ)) word operations. The same estimate
is valid for the backward conversion problem if |gi| < 2λ for all i.

Proof. For computing the usual coefficients from g0, . . . , gn, we employ the Horner-
like scheme (4.4). In n steps, we compute

f (n) = gn, f (i) = (x− bi)f (i+1) + gi for i = n− 1, . . . , 0 , (4.5)

and obtain f = f (0). Then the invariant
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f = f (i) · (x− b0) · · · (x − bi−1) +
∑

0≤j<i

gj · (x− b0) · · · (x− bj−1) (4.6)

holds for 0 ≤ i ≤ n. The cost for step n− i is i multiplications and i− 1 additions
in R, and summing up yields a total cost of O(n2) ring operations.

For the other conversion, we reverse the scheme (4.5), by letting f (0) = f , ob-
taining f (i+1) and gi as quotient and remainder in the division of f (i) by x + bi+1,
and finally gn = f (n). This takes exactly the same number of arithmetic operations
as the Horner-like scheme (each addition in the former corresponds to a subtraction
in the latter).

If R = Z, then we have to estimate the size of the coefficients of the f (i). By
(4.6), we have

f (i) =
∑

i≤j≤n

gj · (x− bi) · · · (x− bj−1) (4.7)

for all i. If we start with g0, . . . , gn of absolute value less than 2λ, then Lemma
4.12 (ii) shows that ‖f (i)‖∞ < (n + 1)2nd+λ, and hence the word length of the
coefficients of all f (i) is O(nd + λ). Thus in step n− i, we have i integer multipli-
cations of size O(d)×O(nd+λ) and i−1 additions of integers of length O(nd+λ),
for 0 ≤ i ≤ n. This yields a total cost of O(n2d(nd + λ)) word operations.

For the reverse transformation, when the usual coefficients of f are given
and of absolute value less than 2λ, then Lemma 4.12 (ii) implies that |gi| <
(n + 1)2n(d+2)+λ for 0 ≤ i ≤ n. Now (4.7) together with another application
of the same lemma shows that ‖f (i)‖∞ ≤ (n + 1)222n(d+1)+λ, and hence the coef-
ficients of all f (i) are of word length O(nd+λ). This yields an overall cost estimate
of O(n2d(nd + λ)) word operations. �

For the falling (or rising) factorial coefficients, we have bi = ±i for all i, so that
may take d = �log2(n− 1)	.
Corollary 4.14. Let f ∈ R[x] of degree n ≥ 1. Using classical arithmetic, we can
compute the falling (or rising) factorial coefficients g0, . . . , gn of f from its usual
coefficients, and also vice versa, with O(n2) additions and multiplications in R. If
R = Z and ‖f‖∞ < 2λ, then the cost for computing the falling (or rising) factorial
coefficients from the usual coefficients is O(n2 log n·(n log n+λ)) word operations.
The same estimate is valid for computing the usual coefficients from the falling (or
rising) factorial coefficients if |gi| < 2λ for all i.

The following two theorems analyze new conversion algorithms applying the
divide-and-conquer technique from the fast evaluation and interpolation algorithms
by Borodin & Moenck (1974) (see also Strassen 1973; and Strassen 1974 and §4.5
in Borodin & Munro (1975) for a survey) to the Horner-like scheme (4.4). They are
analogous to method E in Sect. 4.1.

Theorem 4.15. Let R be a ring, f ∈ R[x] of degree less than n ≥ 2, and
b = (b0, b1, . . .) in RN. Using fast arithmetic, we can solve the forward conver-
sion problem 4.10 – with n replaced by n + 1 – using O(M(n) log n) additions and
multiplications in R.
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If R = Z, ‖f‖∞ < 2λ, and |bi| < 2d for i < n − 1, then the cost in word
operations is O(M(n2d + nλ) log n) or O∼(n2d + nλ), where the O∼ notation
suppresses logarithmic factors.

Proof. We assume that n = 2k is a power of two. In a precomputation stage, we
first compute recursively the subproducts

mij = (x− bj2i) · · · (x− b(j+1)2i−1) (4.8)

of (x − b0) · · · (x − bn−1), for 0 ≤ i < k and 0 ≤ j < 2k−i. This takes
O(M(n) log n) ring operations, by (the proof of) Lemma 3.15. In the main stage,
we divide f with remainder to obtain f (0), f (1) ∈ R[x] of degrees less than n/2
such that f = f (0) + mk−1,0 · f (1), and proceed recursively to compute the coeffi-
cients with respect toMb of

f (0) =
∑

0≤i<n/2

gi · (x− b0) · · · (x− bi−1) ,

f (1) =
∑

0≤i<n/2

gn/2+i · (x + bn/2) · · · (x + bn/2+i−1) .
(4.9)

Then

f = f (0) + (x− b0) · · · (x − bn/2−1) · f (1)

=
∑

0≤i<n/2

gi · (x− b0) · · · (x− bi−1)

+
∑

0≤i<n/2

gn+i · (x− b0) · · · (x− bn/2+i−1)

=
∑

0≤i<n

gi · (x− b0) · · · (x− bi−1) .

The cost for the division with remainder is O(M(n)) ring operations. If T (n) de-
notes the cost of the main stage, then we have T (1) = 0 and T (n) ∈ 2T (n/2) +
O(M(n)), and unraveling the recursion yields T (n) ∈ O(M(n) log n). This domi-
nates the cost for the precomputation stage.

If R = Z, then ‖mij‖1 ≤ 2nd, by Lemma 4.12 (i), for all i, j. Thus we can
compute all mij with O(M(n2d) log n) word operations, by Lemma 3.15. Lemma
4.12 (ii) shows that |gi| < n2n(d+2)+λ for all i. As in the proof of Theorem 4.13,
another application of the same lemma yields ‖f (0)‖∞, ‖f (1)‖∞ < n222n(d+1)+λ,
and hence the coefficients of f (0) and f (1) are of word size O(nd + λ). We per-
form the division with remainder by first computing rev(mk−1,0)−1 modulo xn/2

using Newton iteration, then multiplying the result by rev(f) modulo xn/2 to get
rev(f (1)), and finally obtain f (0) = f − mk−1,0f

(1), as described, for example,
in Sect. 9.1 of von zur Gathen & Gerhard (1999). Lemma 4.12 (i) implies that
the coefficients of rev(mk−1,0)−1 mod xn/2 have word length O(nd), and hence
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the coefficients of all intermediate results in the computation have word length
O(nd + λ). Thus the cost for the division with remainder is O(M(n2d + nλ))
word operations. If T (n) denotes the cost in word operations for the main stage,
then T (1) = 0 and T (n) ∈ 2T (n/2) + O(M(n2d + nλ)), and we obtain
T (n) ∈ O(M(n2d + nλ) log n). �

Theorem 4.16. Let R be a ring, n ≥ 2, and b0, . . . , bn−1, g0, . . . , gn−1 ∈ R. We
can solve the backward conversion problem 4.11 – with n replaced by n + 1 – with
O(M(n) log n) additions and multiplications in R, using fast arithmetic.

If R = Z, |gi| < 2λ, and |bi| < 2d for all i < n − 1, then the cost in word
operations is O(M(n2d + nλ) log n) or O∼(n2d + nλ).

Proof. The proof parallels the proof of Theorem 4.15. Again, we assume that n =
2k is a power of two, and precompute the coefficients of the subproducts mij for
0 ≤ i < k and 0 ≤ j < 2k−i, as defined in (4.8), using O(M(n) log n) ring
operations. In the main stage, we recursively compute the coefficients of f (0), f (1)

as in (4.9), and then obtain f = f (0) + mk−1,0 · f (1). Multiplying mk−1,0 by f (1)

and adding f (0) takes O(M(n)) additions and multiplications in R. If T (n) denotes
the cost of the main stage, then we have T (1) = 0 and T (n) ∈ 2T (n/2)+O(M(n)),
and unraveling the recursion yields T (n) ∈ O(M(n) log n). This dominates the cost
for the precomputation stage.

If R = Z, then ‖mij‖1 ≤ 2nd for all i, j, and computing all mij takes
O(M(n2d) log n) word operations, as in the proof of Theorem 4.15. Now ‖f (0)‖∞
and ‖f (1)‖∞ are less than n2nd+λ, by Lemma 4.12 (ii), and their word size is
O(nd+λ). Thus multiplying mk−1,0 by f (1) and adding f (0) uses O(M(n2d + nλ))
word operations. If now T (n) denotes the cost of the main stage in word operations,
then T (1) = 0 and T (n) ∈ 2T (n/2) + O(M(n2d + nλ)), and, as usual, we find
T (n) ∈ O(M(n2d + nλ) log n). �

The output size for both conversion problems is O(n2d + nλ) if the input size
is Θ(nλ), by Lemma 4.12 (ii), and hence the estimates of Theorems 4.15 and 4.16
are – up to logarithmic factors – optimal for those inputs where the output size is
close to the upper bound.

Corollary 4.17. Let f ∈ R[x] of degree less than n ≥ 2. Using fast arithmetic, we
can compute the falling (or rising) factorial coefficients of f from the usual ones
using O(M(n) log n) ring operations. If R = Z and ‖f‖∞ < 2λ, then the cost is
O(M(n2 log n + nλ) log n) or O∼(n2 + nλ) word operations. The same estimates
are valid for computing the usual coefficients from the falling (or rising) factorial
coefficients if the latter are absolutely less than 2λ.

The arithmetic cost estimate of O(M(n) log n) from Corollary 4.17 is the same
as for arbitrary interpolation points. Although the interpolation points 0, 1, 2, . . . are
very special in the case of the falling factorials, it seems that there is neither a faster
algorithm known for this special case, nor a nontrivial lower bound. We mention
some related interesting results. In the proofs of Theorems 4.15 and 4.16, we have
seen that the coefficients of the polynomial xn, i.e., the Stirling numbers of the first
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kind, can be computed with O(M(n) log n) or O∼(n) coefficient additions and mul-
tiplications. If we do not need the coefficients of this polynomial explicitly, but only
want an algorithm for evaluating it at some point x = u ∈ R, the this can be done
with only O∼(n1/2) additions and multiplications in R, by Strassen (1976). Shub
& Smale (1995) obtain the following surprising result. Let S ⊆ Z[x]N be the set
of all sequences (fn)n∈N such that fn �= 0 and xn | fn for all n ∈ N. If for all
sequences (fn)n∈N ∈ S there is a lower bound of Ω(nε), with ε ∈ R>0, for evalu-
ating fn at a point, then PC �= NPC. These complexity classes are defined similarly
to the well-known classes P andNP , but they allow for algorithms to work exactly
with arbitrary complex numbers and perform arithmetic operations on them with
unit cost (Blum, Shub & Smale 1989; Blum, Cucker, Shub & Smale 1998). In fact,
there is a relation between the two types of complexity classes: Cucker, Karpinski,
Koiran, Lickteig & Werther (1995) prove that PC = NPC implies NP ⊆ BPP.
Heintz & Morgenstern (1993) show in their Theorem 18 that evaluating the poly-
nomial fn =

∏
0≤i<n(x − i1/2) ∈ R[x] at a point requires at least Ω(

√
n/ logn)

nonscalar multiplications. Now xn = (−1)n · fn(x1/2) · fn(−x1/2), but this does
of course not yield a lower bound for evaluating xn.

We now present new modular algorithms for converting betweenM andMb.
We recall that ω is the word size of our hypothetical processor.

Algorithm 4.18 (Modular conversion fromM toMb).
Input: A polynomial f ∈ Z[x] of degree n ≥ 1 and max-norm less than 2λ, and

b0, . . . , bn−1 ∈ Z of absolute value less than 2d.
Output: Integers g0, . . . , gn such that f(x) =

∑
0≤i≤n gi · (x + b0) · · · (x + bi−1).

1. C ←− (n + 1)2n(d+2)+λ, r←− �(log2 2C)/(ω − 1)	
choose odd single precision primes p1 < · · · < pr

2. for 1 ≤ j ≤ r compute g0j , . . . , gnj ∈ Z of absolute value less than pj/2 such
that f(x) ≡∑

0≤i≤n gij · (x− b0) · · · (x − bi−1) mod pj

3. for 0 ≤ i ≤ n use the Chinese Remainder Algorithm to compute gi ∈ Z of
absolute value less than (

∏
1≤j≤r pj)/2 such that gi ≡ gij mod pj for 1 ≤

j ≤ r
4. return g0, . . . , gn

Algorithm 4.19 (Modular conversion fromMb toM).
Input: Integers g0, . . . , gn of absolute value less than 2λ, for some n ≥ 1, and

b0, . . . , bn−1 ∈ Z of absolute value less than 2d.
Output: The coefficients of the polynomial

∑
0≤i≤n gi · (x − b0) · · · (x − bi−1).

1. C ←− (n + 1)2nd+λ, r←− �(log2 2C)/(ω − 1)	
choose odd single precision primes p1 < · · · < pr

2. for 1 ≤ j ≤ r compute fj ∈ Z[x] of max-norm less than pj/2 such that
fj ≡

∑
0≤i≤n gi · (x − b0) · · · (x − bi−1) mod pj

3. use the Chinese Remainder Algorithm to compute f ∈ Z[x] of max-norm less
than (

∏
1≤j≤r pj)/2 such that f ≡ fj mod pj for 1 ≤ j ≤ r

4. return f
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Theorem 4.20. Algorithms 4.18 and 4.19 solve the forward conversion problem
4.10 and the backward conversion problem 4.11, respectively, correctly as speci-
fied. Steps 2 and 3 take O(n3d2 + n2dλ + nλ2) word operations with classical
arithmetic and O(λM(n) log n+n M(nd+λ) log(nd+λ)) or O∼(n2d+nλ) with
fast arithmetic.

Proof. Let m =
∏

1≤i≤r pi > 2(ω−1)r ≥ 2C. In Algorithm 4.19, we have f(x) ≡∑
0≤i≤n gi ·(x−b0) · · · (x−bi−1) mod m, both sides of the congruence have max-

norms less than m/2, by Lemma 4.12 (ii), and hence they are equal. The proof that
Algorithm 4.18 works correctly is completely analogous.

In step 2 of both algorithms, we first reduce the gi or the coefficients of f ,
respectively, and the bi modulo all primes, taking O(nr(λ + d)) word operations
with classical arithmetic and O(n M(r) log r) with fast arithmetic. Then we perform
the corresponding conversion modulo each prime, taking O(rn2) word operations
with classical arithmetic and O(r M(n) log n) with fast arithmetic, by Theorems
4.14, 4.15, and 4.16. Finally, the cost for the Chinese remaindering in step 3 is O(r2)
per coefficient with classical arithmetic and O(M(r) log r) with fast arithmetic, in
total O(nr2) and O(n M(r) log r), respectively. The estimates now follow from r ∈
O(nd + λ). �

We note that for particular basesMb, the bound C in Algorithms 4.18 and 4.19,
arising from the estimate in Lemma 4.12, may be much too large. For example,
for the falling factorials, we may take d ≈ log2 n, and then the bound C is about
(n + 1)nn22n+λ for Algorithm 4.18 and about (n + 1)nn2λ for Algorithm 4.19. In
fact, the following lemma shows that C = (n + 1)! 2λ is sufficient in both cases.

Lemma 4.21. Let R = Z and n ≥ 1. If f0, . . . , fn, g0, . . . , gn ∈ Z are such that

∑
0≤i≤n

fix
i =

∑
0≤i≤n

gix
i , (4.10)

A = max{|fi|: 0 ≤ i ≤ n}, and B = max{|gi|: 0 ≤ i ≤ n}, then A ≤ (n + 1)! B
and B ≤ (n + 1)! A.

Proof. For 0 ≤ j ≤ i, we denote by [ i
j ] and { i

j } the Stirling numbers of the first
and second kind, counting the number of permutations on i elements having exactly
j cycles and the number of partitions of a set of i elements having exactly j blocks,
respectively. We use the following obvious inequalities:

{
i

j

}
≤

[
i

j

]
≤

∑
0≤k≤i

[
i

k

]
= i! .

It is well-known that

xi =
∑

0≤j≤i

(−1)i−j

[
i

j

]
xj , xi =

∑
0≤j≤i

{
i

j

}
xj
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for all i ∈ N. Plugging the two equalities into (4.10), we find

|fj| =

∣∣∣∣∣∣
∑

j≤i≤n

(−1)i−j

[
i

j

]
gi

∣∣∣∣∣∣ ≤
∑

j≤i≤n

[
i

j

]
|gi| ≤ (n− j + 1)n!B ,

|gj| =

∣∣∣∣∣∣
∑

j≤i≤n

{
i

j

}
fi

∣∣∣∣∣∣ ≤
∑

j≤i≤n

{
i

j

}
|fi| ≤ (n− j + 1)n!A

for 0 ≤ j ≤ n, and the claim follows. �

Corollary 4.22. Let f ∈ Z[x] of degree n ≥ 1. If we ignore the cost for prime
finding, then we have a modular algorithm for computing the falling (or rising)
factorial coefficients of f from the usual coefficients. If ‖f‖∞ < 2λ, then it takes
O(n3 log2 n + n2 log n · λ + nλ2) word operations with classical arithmetic and
O(λM(n) log n+n M(n logn+λ) log(n+λ)) or O∼(n2+nλ) with fast arithmetic.
The same estimate is valid for computing the usual coefficients from the falling (or
rising) factorial coefficients if the latter are absolutely less than 2λ.

Table 4.7 summarizes the cost estimates for the basis conversion algorithms that
we have presented so far. The costs are to be read as O-estimates for polynomials
of degree n with λ bit coefficients, and d is the bit size of the bi. For the modular
algorithms, we have neglected the cost for prime finding. We note that the estimates
for the modular algorithms are not asymptotic estimates; see Remark 3.23. The last
two rows are only valid for the Taylor shift, where all bi’s are equal.

Table 4.7. Cost estimates for polynomial basis conversion

Algorithm Cost n = d = λ

classical (Theorem 4.13) n3d2 + n2dλ n5

classical modular (Theorem 4.20) n3d2 + n2dλ + nλ2 n5

fast (Theorems 4.15, 4.16) M(n2d + nλ) log n M(n3) log n

λ M(n) log n +
fast modular (Theorem 4.20)

n M(nd + λ) log(nd + λ)
n M(n2) log n

fast Taylor shift (Theorem 4.5) M(n2 log n + n2d + nλ) M(n3)

λM(n)+
fast modular Taylor shift (Theorem 4.8)

n M(nd + λ) log(nd + λ)
n M(n2) log n

4.3 Fast Multiplication in the Falling Factorial Basis

In this section, we give some new fast algorithms for polynomials in the falling
factorial basis

F = (xi)i∈N =M(0,1,2,3,...) ,
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namely for multiplication and Taylor shift. The algorithms are not used later, but
may be of independent interest. In principle, both problems can be solved by first
converting the input polynomial(s) to the monomial basis M, applying the corre-
sponding fast algorithm for the monomial basis, and finally converting back to the
falling factorial basis. However, the following algorithms are more direct and faster
by a logarithmic factor. We note that the algorithms can be easily generalized to the
basisMb, where b = (b0, b0 + h, b0 + 2h, . . .) is an arbitrary arithmetic progres-
sion, so in particular to the rising factorial basisM(0,−1,−2,−3,...). Our algorithms
assume that the characteristic of the coefficient ring R is zero or “big enough”. We
give cost estimates in arithmetic operations.

We start with the fast multiplication algorithm. The idea is to use the well-known
evaluation-interpolation scheme: evaluate the input polynomials at a suitable set of
points, multiply the results pointwise, and interpolate the product polynomial. The
most profitable use of this scheme is in FFT multiplication algorithms, where the
points are the powers of a primitive root of unity (see, e.g., Chap. 8 in von zur
Gathen & Gerhard 1999). In our case of the falling factorial basis representation,
it is not surprising that the integers 0, 1, 2, 3, . . . (in the more general case: the ring
elements b0, b0 + h, b0 + 2h, . . .) are a suitable set of evaluation points.

Algorithm 4.23 (Evaluation in the falling factorial basis).
Input: f0, . . . , fn ∈ R, where n ≥ 1 and R is a ring of characteristic zero or coprime

to n!.
Output: The values f(0), f(1), . . . , f(n), where f =

∑
0≤i≤n fix

i.

1. for 0 ≤ i ≤ n do gi ←− 1/i!

2.
∑

0≤i≤2n

hix
i ←−

( ∑
0≤i≤n

fix
i

)
·
( ∑

0≤i≤n

gix
i

)

3. return h0, h1, 2h2, . . . , n! · hn

Theorem 4.24. Algorithm 4.23 works correctly as specified and takes O(M(n))
additions and multiplications plus O(n) divisions by integers in R.

Proof. Let 0 ≤ k ≤ n. Then

f(k) =
∑

0≤i≤n

fik
i =

∑
0≤i≤k

fi
k!

(k − i)!
= k!

∑
0≤i≤k

figk−i = k! · hk , (4.11)

and the correctness follows. The cost for steps 1 and 3 is O(n) divisions and multi-
plications, respectively, and step 2 takes O(M(n)) additions and multiplications. �

Algorithm 4.25 (Interpolation in the falling factorial basis).
Input: u0, . . . , un ∈ R, where n ∈ N and R is a field of characteristic zero or co-

prime to n!.
Output: The falling factorial coefficients f0, . . . , fn ∈ R of the interpolating poly-

nomial f =
∑

0≤i≤n fix
i such that ui = f(i) for 0 ≤ i ≤ n.
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1. for 0 ≤ i ≤ n do hi ←− ui/i!, vi ←− (−1)i/i!

2.
∑

0≤i≤2n

wix
i ←−

( ∑
0≤i≤n

hix
i

)
·
( ∑

0≤i≤n

vix
i

)

3. return w0, w1, . . . , wn

Theorem 4.26. Algorithm 4.25 works correctly as specified and takes O(M(n))
additions and multiplications plus O(n) divisions by integers in R.

Proof. Let g =
∑

0≤i≤n xi/i! and v =
∑

0≤i≤n(−1)ixi/i!. For 1 ≤ k ≤ n, the
coefficient of xk in gv is

∑
0≤i≤k

(−1)k−i

i! (k − i)!
=

1
k!

∑
0≤i≤k

(−1)k−i
(k

i

)
=

(1 + (−1))k

k!
= 0 ,

and hence gv ≡ 1 mod xn+1. (This also follows from the fact that g and v are initial
segments of the formal exponential series and its inverse, respectively.) If we now
let h =

∑
0≤i≤n hix

i and w =
∑

0≤i≤n wix
i, then (4.11) shows that

∑
0≤k≤n

w(k)
k!

xk ≡ gw ≡ gvh ≡ h =
∑

0≤k≤n

uk

k!
xk mod xn+1 ,

and the correctness follows from the uniqueness of the interpolating polynomial.
The cost for step 1 is O(n) multiplications and divisions, and step 2 takes O(M(n))
additions and multiplications. �

Theorem 4.27. Let f0, . . . , fn, g0, . . . , gn ∈ R, where n ∈ N and R is a ring of
characteristic zero or coprime to (2n)!. Then we can compute h0, . . . , h2n ∈ R
such that ∑

0≤i≤2n

hix
i =

( ∑
0≤i≤n

fix
i

)( ∑
0≤i≤n

gix
i

)

using O(M(n)) additions and multiplications plus O(n) divisions by integers in R.

Proof. We use Algorithm 4.23 to compute f(i) and g(i) for 0 ≤ i ≤ 2n and
then call Algorithm 4.25 to compute h ∈ R[x] of degree at most 2n such that
h(i) = f(i)g(i) for 0 ≤ i ≤ 2n. By Theorems 4.24 and 4.26, the cost for the
two evaluations and the interpolation is O(M(n)) additions and multiplications plus
O(n) divisions, and this dominates the additional cost for the 2n + 1 pointwise
multiplications to compute the values h(i). �

Our last algorithm in this section is for Taylor shift in the falling factorial basis.
It is a straightforward adaption of the convolution method (method F in Sect. 4.1).
More generally, this method works for any polynomial basis satisfying a binomial
identity.
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Theorem 4.28. Let f0, . . . , fn, b ∈ R, where n ∈ N and R is a ring of characteris-
tic zero or coprime to n!. Then we can compute g0, . . . , gn ∈ R such that

∑
0≤k≤n

gkxk =
∑

0≤i≤n

fi · (x + b)i (4.12)

using O(M(n)) additions and multiplications plus O(n) divisions by integers in R.

Proof. We apply Vandermonde’s convolution (see, e.g., Exercise 23.9 in von zur
Gathen & Gerhard 1999)

(x + b)i = i!
(

x + b

i

)
= i!

∑
0≤k≤i

(x

k

)(
b

i− k

)
= i!

∑
0≤k≤i

(
b

i− k

)
xk

k!

to (4.12) and find

gk =
∑

k≤i≤n

i! fi

k!

(
b

i− k

)

for 0 ≤ k ≤ n. If we now let u =
∑

0≤i≤n i!fix
n−i and v =

∑
0≤j≤n( b

j )xj , then

k! gk is the coefficient of xn−k in the product polynomial uv. Using the recursion
formula (

b

j + 1

)
=

b− j

j + 1

(
b

j

)

for j ∈ N, computing the coefficients of u and v takes O(n) additions, multipli-
cations, and divisions in R. The same estimate is valid for recovering the gk from
the coefficients of the product polynomial uv, and the multiplication itself takes
O(M(n)) additions and multiplications. �



5. Modular Squarefree and Greatest Factorial
Factorization

5.1 Squarefree Factorization

The presentation in this section follows Gerhard (2001). Let Z be a UFD and f ∈
Z[x] nonzero primitive of degree n. Then f has a decomposition

f =
∏

1≤i≤n

f i
i (5.1)

into nonzero primitive polynomials f1, . . . , fn ∈ Z[x] such that each fi is square-
free and gcd(fi, fj) = 1 if i �= j. We call this a primitive squarefree decomposi-
tion of f , and f1 · · · fn is a primitive squarefree part of f . Both are unique up to
multiplication by units. If Z = Z, then we can make them unique by requiring f
and f1, . . . , fn to have positive leading coefficients, and call them the normalized
squarefree decomposition and the normalized squarefree part, respectively. If Z is
a field and f, f1, . . . , fn are all monic, then the decomposition (5.1) is unique as
well, and we call it the monic squarefree decomposition and f1 · · · fn the monic
squarefree part of f .

Problem 5.1 (Squarefree factorization). Let Z be a UFD. Given a nonzero prim-
itive polynomial f ∈ Z[x] of degree n, compute nonzero primitive squarefree and
pairwise coprime polynomials f1, . . . , fn ∈ Z[x] satisfying

f = f1f
2
2 · · · fn

n .

If Z has characteristic zero or prime characteristic greater than n and f1, . . . , fn

is a primitive (or monic) squarefree decomposition of f , then we have the following
well-known equality

gcd(f, f ′) = f2f
2
3 · · · fn−1

n (5.2)

for the primitive (or monic) gcd of f and its formal derivative f ′, which conse-
quently has the primitive (or monic) squarefree decomposition f2, . . . , f1+deg g.
This immediately leads to a simple algorithm for computing the squarefree decom-
position. A more efficient algorithm has been given by Yun (1976, 1977a). We re-
state it for completeness and later reference.

Algorithm 5.2 (Yun’s squarefree factorization).
Input: A nonzero monic polynomial f ∈ F [x] of degree n, where F is a field of

characteristic zero or greater than n.
Output: The squarefree decomposition of f .

J. Gerhard: Modular Algorithms, LNCS 3218, pp. 61-77, 2004.
 Springer-Verlag Berlin Heidelberg 2004
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1. g ←− gcd(f, f ′), u1 ←− f

g
, v1 ←− f ′

g
2. for 1 ≤ i ≤ n do

3. hi ←− gcd(ui, vi − u′
i), ui+1 ←− ui

hi
, vi+1 ←− vi − u′

i

hi
4. return h1, . . . , hn

Proposition 5.3. Let f1, . . . , fn ∈ F [x] be the squarefree decomposition of f . Then
the invariants

ui =
∏

i≤j≤n

fj , vi =
∑

i≤j≤n

(j − i + 1)
ui

fj
f ′

j , hi = fi

hold for 1 ≤ i ≤ n and imply that Algorithm 5.2 works correctly. It takes O(n2)
and O(M(n) log n) arithmetic operations in F with classical and fast arithmetic,
respectively.

For a proof, see Yun (1976, 1977a) or von zur Gathen & Gerhard (1999), The-
orem 14.23, for fast arithmetic. A similar reasoning also yields the estimate for
classical arithmetic.

The following lemma, which is the key tool for our modular algorithm, says
when the modular image of a squarefree decomposition is again a squarefree de-
composition.

Lemma 5.4. Let n ∈ N, Z be a UFD of characteristic zero or prime characteristic
greater than n, f ∈ Z[x] nonzero primitive of degree n, and f1, . . . , fn ∈ Z[x] a
primitive squarefree decomposition of f . Moreover, let I ⊆ Z be a maximal ideal
not containing lc(f), denote reduction modulo I by a bar, and assume that Z = Z/I
has characteristic zero or greater than n as well. Finally, assume that g1, . . . , gn ∈
Z[x] is the monic squarefree decomposition of f/lc(f). Then

deg gcd(f, f ′) ≤ deg gcd(f, f
′
) and deg(g1 · · · gn) ≤ deg(f1 · · · fn) , (5.3)

and for each of the two inequalities, we have equality if and only if lc(fi)gi =
fi for 1 ≤ i ≤ n.

Proof. Since Z has characteristic zero or prime characteristic greater than n, we
have

gcd(f, f ′) ∼ f2f
2
3 · · · fn−1

n ,
f

gcd(f, f ′)
∼ f1 · · · fn ,

gcd(f ′, f1 · · · fn) ∼ gcd(gcd(f, f ′), f1 · · · fn) ∼ f2 · · · fn ,
(5.4)

where ∼ denotes equality up to associates. Similarly,

gcd(f, f
′
) ∼ g2g

2
3 · · · gn−1

n ,
f

gcd(f, f
′
)
∼ g1 · · · gn ,

gcd(f
′
, g1 · · · gn) ∼ gcd(gcd(f, f

′
), g1 · · · gn) ∼ g2 · · · gn .

(5.5)
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Now gcd(f, f ′) is a common divisor of f and f ′, and hence

gcd(f, f ′) | gcd(f, f
′
) and g1 · · · gn | f1 · · · fn . (5.6)

This proves the first assertion.
The “if” direction of the second claim is clear, and we prove the “only if” part by

induction on n. There is nothing to prove if n = 0. Otherwise, f2, f3, . . . is a prim-
itive squarefree decomposition of gcd(f, f ′) and g2, g3, . . . is the monic squarefree
decomposition of gcd(f, f

′
). If equality holds in (5.3), then (5.6) implies that

g2g
2
3 · · · gn−1

n ∼ gcd(f, f
′
) ∼ gcd(f, f ′) ∼ f2f2

3 · · · fn−1
n

and g1 · · · gn ∼ f1 · · · fn. Applying (5.6) to gcd(f, f ′) instead of f , we find that
g2 · · · gn divides f2 · · · fn. On the other hand, we have

f2 · · · fn ∼ gcd(f ′, f1 · · · fn) | gcd(f
′
, f1 · · · fn) ∼ gcd(f

′
, g1 · · · gn) ∼ g2 · · · gn ,

by (5.4) and (5.5). Thus g1 ∼ f1 and g2 · · · gn ∼ f2 · · · fn, and the induction hy-
pothesis, applied to gcd(f, f ′), shows that gi ∼ fi for 2 ≤ i ≤ n. �

Corollary 5.5. With the assumptions of Lemma 5.4, let δ = deg gcd(f, f ′), and let
σ ∈ Z be the δth subresultant of f and f ′. Then the following are equivalent.

(i) σ �= 0,
(ii) lc(f) �= 0 and deg gcd(f, f

′
) = δ,

(iii) lc(f) �= 0 and lc(fi)gi = fi for 1 ≤ i ≤ n.

Proof. Since lc(f) divides the first row of the matrix in Figure 3.1 for g = f ′, it
divides σ. The claims now follow from Corollary 3.12 and Lemma 5.4. �

We now present a new modular algorithm for squarefree factorization, based on
the Chinese Remainder Theorem. We recall that ω is the word size of our processor.
We will assume that our polynomials have degree at most 2ω−1, which is not a
serious restriction in practice for ω ≥ 32. The cardinality of a finite set S is denoted
by #S.

Algorithm 5.6 (Small primes modular squarefree factorization).
Input: A normalized polynomial f ∈ Z[x] of degree 1 ≤ n ≤ 2ω−1 and max-norm
‖f‖∞ < 2λ.

Output: The normalized squarefree decomposition of f , or “FAIL”.

1. b←− lc(f), B ←− 	(n + 1)1/22n+λ
, s←− �(log2 2bB)/(ω − 1)�
2. choose a set S0 of 2s single precision primes

S1 ←− {p ∈ S0: p � b}
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3. for all p ∈ S1 do
4. call Yun’s algorithm 5.2 to compute the monic squarefree decomposition

f ≡ b
∏

1≤i≤n

gi
p,i mod p

of f/b modulo p, with monic polynomials gp,1, . . . , gp,n ∈ Z[x] of max-
norm less than p/2 that are squarefree and pairwise coprime modulo p

5. /∗ remove unlucky primes from S1 ∗/
d←− max{deg gp,1 + · · ·+ deg gp,n: p ∈ S1}
S2 ←− {p ∈ S1: deg gp,1 + · · ·+ deg gp,n = d}
if #S2 ≥ s then remove #S2 − s primes from S2 else return “FAIL”

6. for 1 ≤ i ≤ n do
7. use the Chinese Remainder Algorithm to compute f∗

i ∈ Z[x] of max-
norm less than (

∏
p∈S2

p)/2 such that f∗
i ≡ bgp,i mod p for all p ∈ S2

8. if
∏

1≤i≤n ‖normal(f∗
i )‖i1 > B then return “FAIL”

9. if
∏

1≤i≤n lc(normal(f∗
i ))i = lc(f)

then return normal(f∗
1 ), . . . , normal(f∗

n) else return “FAIL”

Definition 5.7. Let Z = Z and f ∈ Z[x] nonzero primitive. We say that a prime
p ∈ N is lucky with respect to the squarefree factorization problem 5.1 if p � lc(f)
and deg gcd(f, f ′) = deg gcd(f mod p, f ′ mod p).

Thus if p is a prime not dividing lc(f) and greater than deg f , then p is an
unlucky prime with respect to squarefree factorization if and only if the image mod-
ulo p of the squarefree decomposition of f is not a squarefree decomposition, by
Lemma 5.4.

Theorem 5.8. Algorithm 5.6 succeeds if and only if at most s ∈ Θ(n+λ) of the ini-
tial primes are unlucky with respect to squarefree factorization, and then it correctly
returns the normalized squarefree decomposition of f .

Proof. Let f1, . . . , fn ∈ Z[x] be the normalized squarefree decomposition of f .
Then f1 · · · fn is its normalized squarefree part. We first show that unless all
2s initial primes in S0 are unlucky, a prime p ∈ S1 is lucky if and only if
deg(gp,1 · · · gp,n) = d in step 5. Lemma 5.4 implies that deg(gp,1 · · · gp,n) ≤
deg(f1 · · · fn), with equality if and only if p is lucky. Thus if at least one prime
is lucky, we have deg(f1 · · · fn) = d, and the claim follows.

Now assume that at least s of the initial primes in S0 are lucky. Then S2 contains
s primes after step 5, all lucky. Let m =

∏
p∈S2

p and 1 ≤ i ≤ n. Since fi divides f ,
also lc(fi) divides b, and hence bfi/lc(fi) ≡ f∗

i mod m, by Lemma 5.4. Mignotte’s
bound (Fact 3.3) implies that ‖fi‖∞ ≤ B, and hence

‖bfi/lc(fi)‖∞ ≤ bB ≤ 2(ω−1)s−1 <
m

2
.

Thus the coefficients of bfi/lc(fi) and of f∗
i are at most m/2 in absolute value,

so that both polynomials are equal. Since fi is normalized, it follows that fi =
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normal(f∗
i ), and again by Mignotte’s bound, we find that the condition in step 8 is

false, the condition in step 9 is true, and the algorithm returns the correct result.
Conversely, suppose that the condition in step 8 is false. Then

∥∥∥∥∥∥

∏

1≤i≤n

normal(f∗
i )i

∥∥∥∥∥∥
∞

≤
∥∥∥∥∥∥

∏

1≤i≤n

normal(f∗
i )i

∥∥∥∥∥∥
1

≤
∏

1≤i≤n

‖normal(f∗
i )‖i1

≤ B <
m

2
.

By construction,
∏

1≤i≤n normal(f∗
i )i and f agree modulo m up to a multiplicative

constant. If the condition in step 9 is true, then
∏

1≤i≤n normal(f∗
i )i ≡ f mod m,

and since the coefficients of both polynomials are absolutely bounded by m/2, they
are equal. The normal(f∗

i ) are squarefree and pairwise coprime in Z[x], since they
are so modulo each prime in S2 after step 5, and since they are normalized, we
find that fi = normal(f∗

i ) ≡ lc(fi)gp,i mod p for all i ≤ n and p ∈ S2, by the
uniqueness of the normalized squarefree decomposition. Hence all s primes in S2

are lucky after step 5, by Lemma 5.4. �

Theorem 5.9. Let δ = deg gcd(f, f ′) and r ∈ Z be the δth subresultant of f
and f ′. Then r is a nonzero integer with |r| ≤ D = (n2 +n)n22nλ, and the number
of single precision primes that are unlucky with respect to squarefree factorization
is at most 	(log2 D)/(ω − 1)
 ∈ Θ(n(λ + log n)). If n ≥ 2 and λ ≥ 1, the number
of single precision primes exceeds 2	(log2 D)/(ω − 1)
, and the set S0 in step 2 is
chosen uniformly at random from among all subsets of cardinality 2s of the single
precision primes, then Algorithm 5.6 returns “FAIL” with probability at most 1/2.

Proof. The first claim follows from Lemma 3.9 (i). We have ‖f ′‖2 ≤ n‖f‖2, and
the subresultant bound (Corollary 3.2) shows that |r| ≤ D. Corollary 5.5 implies
that the unlucky primes greater than n are precisely those dividing r. We have
2Bb ≤ D under the assumptions of the theorem, so that it is possible to find 2s
single precision primes in step 2. By assumption, at least half of the single preci-
sion primes are lucky. Therefore the probability that at least half of the primes of
a randomly chosen set of 2s single precision primes are lucky is at least 1/2, by
Lemma 3.24, and the claim follows from Theorem 5.8. �

Theorem 5.10. If we neglect the cost for choosing primes in step 2, then Algo-
rithm 5.6 takes O(n3 + nλ2) word operations when using classical arithmetic, and
O(n M(n + λ) log(n + λ) + λM(n) log n) or O∼(n2 + nλ) word operations when
using fast arithmetic, where the O∼-notation suppresses logarithmic factors.

Proof. Reducing a coefficient of f , of word length O(λ), modulo at most 2s sin-
gle precision primes takes O(λs) word operations with classical arithmetic and
O(M(s) log s) with fast arithmetic. There are at most n + 1 coefficients, and hence
the overall cost for this is O(nλs) and O(n M(s) log s) word operations, respec-
tively.
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Step 4 takes O(n2) arithmetic operations in Fp with classical arithmetic and
O(M(n) log n) with fast arithmetic, by Proposition 5.3. Since p is single preci-
sion, one arithmetic operation in Fp takes O(1) word operations. There are at most
2s primes in S1, and hence the overall cost of steps 3 and 4 is O(sn(n + λ)) or
O(s M(n) log n + n M(s) log s) word operations when using classical or fast arith-
metic, respectively.

Let m =
∏

p∈S2
p < 2ωs. Then the cost for computing one coefficient of some

f∗
i in step 7 by Chinese remaindering is O(s2) word operations with classical arith-

metic and O(M(s) log s) with fast arithmetic. Since n =
∑

1≤i≤n i deg f∗
i , the total

number of non-leading coefficients of all nonconstant f∗
i is at most n, and the overall

cost of steps 6 and 7 is O(ns2) and O(n M(s) log s) word operations, respectively.
(In the unlikely event that all primes in S2 are unlucky, it may happen that not all
degree sequences deg gp,1, . . . , deg gp,n for p ∈ S2 are equal, but we can detect this
during the Chinese remaindering stage in step 7 and then report “FAIL”.)

The cost for normalizing all f∗
i in step 8 is O(n) gcd’s and divisions of integers

of word length at most s, taking O(ns2) word operations with classical arithmetic
and O(n M(s) log s) with fast arithmetic. Computing the products in steps 8 and 9
takes O(s2) word operations with classical arithmetic and O(M(s) log n) with fast
arithmetic.

The cost for all other steps is negligible, the claims follow by adding costs and
using s ∈ O(n + λ), and taking M(n) = n log n loglog n gives the O∼-estimate. �

Remark 5.11. • When M(n) ∈ Ω(n1+ε) for some positive ε, then we can drop the
logarithmic factors in the cost estimate for Algorithm 5.6.
• When using fast arithmetic, Algorithm 5.6 is – up to logarithmic factors – asymp-

totically optimal in the diagonal case where n ≈ λ, since its running time is
essentially linear in the input size, which is about n2 words.
• Yun (1976) states an estimate of O(k4(ν2δ + νδ2)) word operations for his al-

gorithm for univariate polynomials over Z, employing modular gcd techniques.
Here k ≤ n is the largest index such that fk is nonconstant, and δ and ν are up-
per bounds on the degrees and the bit size of the coefficients of all fi, respectively.
This result cannot be directly compared with ours, since it is expressed in terms
of a different set of parameters. For example, in the case when k is small, we have
the approximate correspondences n ≈ δ and λ ≈ ν, and then his estimate agrees
with our estimate for classical arithmetic, and our result for fast arithmetic is –
up to logarithmic factors – better by one order of magnitude.
• The number 2s of initial primes in step 2 of Algorithm 5.6 is often much too

large in practice, for two reasons. On the one hand, the estimate for the failure
probability in Theorem 5.9 is too pessimistic when there are considerably more
single precision primes than required by the theorem. On the other hand, the
coefficients of the gi are often significantly smaller than guaranteed by Mignotte’s
bound. One solution to overcome this is to work in an adaptive fashion: start with
a reasonable number of primes (say about d/ω or even fewer), check whether∏

1≤i≤n normal(g∗i )i = g, and add more new primes in case of failure. In this
way, the algorithm will never use more primes than needed, at the expense of
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an additional check after each new prime. Heuristically, most of the checks can
even be avoided by first checking whether the equation holds for x = 0. This
strategy has been successfully implemented by Shoup (1995) for computing gcd’s
of integer polynomials in his software package NTL.

The method above can be adapted to bivariate polynomials over a field when we
count coefficient operations. Both the algorithm and its analysis are then much easier
due to the absence of carries, and in particular when the field is large enough such
that all moduli may be chosen linear. If the degree bounds in x and y for the input
polynomials are n and m, respectively, then the cost for this algorithm is O(n2m)
arithmetic operations with classical arithmetic and O∼(nm) with fast arithmetic.

A similar approach yields also fast modular algorithms (with the cost estimate
from Theorem 5.10) for factor refinement: given one (or several) nontrivial partial
factorizations f = g1 · · · gt in Z[x], compute the finest partial factorization f =∏

i fei

i , with positive integers ei and fi ∈ Z[x] pairwise coprime, but not necessarily
squarefree, that you can obtain from the given factorization by gcd computations.
See Bach, Driscoll & Shallit (1993) for algorithms in the integer case.

Yun (1976) gives a modular algorithm for the squarefree factorization of multi-
variate polynomials based on Hensel lifting, but does not state a time estimate. We
now analyze a variant of Yun’s algorithm for univariate integer polynomials (see
also Exercise 15.27 in von zur Gathen & Gerhard 1999).

Algorithm 5.12 (Prime power modular squarefree factorization).
Input: A normalized polynomial f ∈ Z[x] of degree 1 ≤ n ≤ 2ω−1 and max-norm
‖f‖∞ < 2λ.

Output: The normalized squarefree decomposition of f , or otherwise “FAIL”.

1. g ←− normal(gcd(f, f ′)), u←− f

g
, v ←− f ′

g
2. repeat

choose a single precision prime 2ω−1 < p < 2ω

until p � lc(f) and deg g = deg gcd(f mod p, f ′ mod p)
3. b←− lc(u), B ←− 	(n + 1)1/22λ+deg u
, s←− �(log2 2bB)/(log2 p)�
4. call steps 2 and 3 of Yun’s algorithm 5.2 to compute the monic squarefree de-

composition
f ≡ lc(f)

∏

1≤i≤n

gi
i mod p

of f/lc(f) modulo p, with monic polynomials g1, . . . , gn ∈ Z[x] of max-norm
less than p/2 that are squarefree and pairwise coprime modulo p

5. use Hensel lifting to compute a factorization

bn−1u ≡
∏

1≤i≤n

hi mod ps

with polynomials h1, . . . , hn ∈ Z[x] of max-norm less than ps/2 such that
hi ≡ bgi mod p for all i

6. return normal(h1), . . . , normal(hn)
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Theorem 5.13. Algorithm 5.12 correctly computes the normalized squarefree de-
composition of f .

Proof. Let f1, . . . , fn ∈ Z[x] be the normalized squarefree decomposition of f .
Step 2 ensures that p is a lucky prime, and Lemma 5.4 implies fi ≡ lc(fi)gi mod p
for all i and

bn−1u =
bf1

lc(f1)
· · · bfn

lc(fn)
≡ (bg1) · · · (bgn) mod p .

Now the gi are pairwise coprime modulo p and bfi/lc(fi) ≡ bgi ≡ hi mod p, and
the uniqueness of Hensel lifting (Fact 3.20) yields bfi/lc(fi) ≡ hi mod ps for all i.
Let 1 ≤ i ≤ n. Mignotte’s bound 3.3 shows that ‖fi‖∞ ≤ B and ‖bfi/lc(fi)‖∞ ≤
bB < ps/2. Thus both bfi/lc(fi) and hi have max-norm less than ps/2, whence
they are equal. Since fi is normalized, it follows that fi = normal(hi). �

Theorem 5.14. If the number of single precision primes exceeds

2	log2((n
2 + n)n22nλ)/(ω − 1)
 ∈ Θ(n(λ + log n)) ,

then the expected number of iterations of step 2 is at most two. If we neglect the
cost for step 2, then Algorithm 5.12 takes O(n4 + n2λ2)) word operations with
classical arithmetic and O((M(n) log n+n logλ)M(n+λ)) or O∼(n2 +nλ) with
fast arithmetic.

Proof. As in the proof of Theorem 5.9, at most 	log2((n
2 + n)n22nλ)/(ω − 1)


single precision primes are unlucky, and since there are at least twice as many of
them, the expected number of iterations to find a lucky prime is at most two.

Using a modular gcd algorithm based on Chinese remaindering, like Algorithm
8.6 below with b = 0, the (expected) cost for step 1 is O(n3 +nλ2) word operations
with classical arithmetic and O(λM(n) log n + n M(n + λ) log(n + λ)) with fast
arithmetic, by Theorem 8.10. (Yun’s original algorithm employs Hensel lifting for
the gcd computation as well.) In step 4, we first reduce u and v modulo p, taking
O(n log B) word operations. The cost for Yun’s algorithm is O(n2) word operations
with classical arithmetic and O(M(n) log n) with fast arithmetic, by Proposition 5.3.
The cost for the Hensel lifting is O(n2s2) and O(M(n) log n (M(s) + log n)) with
classical and fast arithmetic, respectively, by Fact 3.20. Finally, the cost for the
normalization in step 6 is O(ns2) and O(n M(s) log s) word operations with clas-
sical and fast arithmetic, respectively. The claims now follow from s, log B ∈
O(n + λ). �

The estimate above for classical arithmetic is slower by a factor of n than the
corresponding estimate for Algorithm 5.6, and the time bounds for fast arithmetic
agree up to logarithmic factors.

5.2 Greatest Factorial Factorization

In this section, we adapt Yun’s (1976) algorithm (Algorithm 5.12) for squarefree
factorization to its discrete analog, the greatest factorial factorization, which was
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introduced by Paule (1995). We also discuss a new modular algorithm for computing
this factorization. It is quite analogous to the modular algorithm 5.6 for computing
the squarefree factorization. The presentation follows closely Gerhard (2000). In the
following, E denotes the shift operator, which acts by (Ef)(x) = f(x + 1) on a
polynomial f in the indeterminate x.

Definition 5.15. Let F be a field and f ∈ F [x] nonzero monic of degree n.
A greatest factorial factorization (or gff) of f is a sequence of monic polynomials
f1, . . . , fn ∈ F [x] with the following properties.

(i) f =
∏

1≤i≤n

f
i
i ,

(ii) gcd(f i
i , Efj) = gcd(f i

i , E
−jfj) = 1 for 1 ≤ i ≤ j ≤ n.

The intuition is that fi collects all maximal falling factorials of length i. We note

that (ii) is not equivalent to gcd(f i
i , f

j

j ) = 1 for all i, j. For example, the sequence
x, x + 1, 1 is a gff of x3 + x2 but does not satisfy the latter condition.

Paule (1995) has shown that every nonzero polynomial has a unique gff when
F has characteristic zero (see also Lemma 23.10 in von zur Gathen & Gerhard
1999). This is false in positive characteristic: for example, the polynomial xp−x =
xp ∈ Fp[x] has no gff. Existence and uniqueness of the gff still hold if we require
in addition that the degree of the polynomial be less than the characteristic. An
alternative would be to modify the definition, namely to require (ii) only for i < j
and to add the property gcd(fi, Efi) = 1 for 1 ≤ i ≤ n, in analogy to the squarefree
decomposition. Then the gff is still not unique: for example, (x+1)p is also a gff of
xp − x. However, since we do not need the concept of gff when the degree exceeds
the characteristic, we will stick to the original definition. The gff of the constant
polynomial 1 is the empty sequence.

There are strong analogies between the squarefree factorization and the gff.
Bauer & Petkovšek (1999) discuss a common generalization of both types of factor-
izations. A different analog and generalization of the squarefree decomposition, the
shiftless decomposition, is discussed in Gerhard, Giesbrecht, Storjohann & Zima
(2003)

The following lemma, which we quote without proof, is due to Paule (1995);
see also Theorem 23.12 in von zur Gathen & Gerhard (1999). It is the analog of the
well-known property (5.2) of the squarefree decomposition.

Lemma 5.16 (Fundamental Lemma). Let F be a field of characteristic zero or
greater than n ∈ N and f ∈ F [x] nonzero monic of degree n. If f1, . . . , fn is the
gff of f and g = gcd(f, Ef), then

g = f2f
2
3 · · · fn−1

n ,
f

g
= f1(E−1f2) · · · (E−n+1fn),

Ef

g
= E(f1 · · · fn) .

Moreover, f2, . . . , f1+deg g is the gff of g.



70 5. Modular Squarefree and Greatest Factorial Factorization

The following technical lemma about the gff will be used later.

Lemma 5.17. Let F be a field, f ∈ F [x] a nonzero monic polynomial of degree n,
and f1, . . . , fn ∈ F [x] the gff of f . Moreover, let h ∈ F [x] be an irreducible divisor
of f .

(i) Let i, j, k, l ∈ N be such that 0 ≤ k < i ≤ j and 0 ≤ l < j ≤ n. If h | E−kfi

and h | E−lfj , then 0 ≤ l − k ≤ j − i.
(ii) Let 1 ≤ e, i ≤ n be such that he | f i

i . Then there is a unique k ∈ {0, . . . , i−1}
such that he | E−kfi.

(iii) Assume that e ≥ 1 is such that he | (f/f1) = f2
2 · · · fn

n . Then Ehe | (f/f1) or
E−1he | (f/f1). If in addition h | f1 and he+1

� (f/f1), then Ehe+1
� (f/f1)

and E−1he+1
� (f/f1).

Proof. (i) If 0 > l − k, then El+1h | El−k+1fi | f
i
i and El+1h | Efj .

Thus El+1h | gcd(f i
i , Efj), contradicting Definition 5.15 (ii). Similarly, if

l − k > j − i, then El−jh | El−k−jfi | f
i
i and El−jh | E−jfj . Thus

El−jh | gcd(f i
i , E

−jfj), again contradicting Definition 5.15 (ii).
(ii) This follows from (i) with i = j.

(iii) Let ej ∈ N be the multiplicity of h in f
j

j , for 1 ≤ j ≤ n. Then e ≤ e2+· · ·+en.
Moreover, let i ∈ N be minimal with i ≥ 2 and ei > 0. By (ii), there is a unique
k ∈ {0, . . . , i − 1} with hei | E−kfi. Assume first that k = 0. Then i ≥ 2
implies that E−1hei | E−1fi | f i

i . If e ≤ ei, then we are done. Otherwise, let
j > i be such that ej ≥ 1. Again by (ii), there is a unique l ∈ {0, . . . , j − 1}
such that hej | E−lfj . Then (i) shows that l ≤ j − i < j − 1, and hence

E−1hej | E−l−1fj | f
j

j . Since this holds for all j > i, we conclude that

E−1hej | f
j

j for 2 ≤ j ≤ n, and the first claim follows. Similar arguments

show that Ehej | f j

j for 2 ≤ j ≤ n if k > 0.
For the remaining claim, we first note that the additional assumptions imply
e = e2+· · ·+en. Suppose that the claim is wrong and Ehe+1 | (f/f1), and let
i ∈ {2, . . . , n} be such that Ehei+1 | f i

i . Then (ii) yields k ∈ {0, . . . , i− 1}
satisfying Ehei+1 | E−kfi. If k < i − 1, then hei+1 | E−k+1fi | f

i
i , a

contradiction to the definition of ei. Thus k = i−1 and Ehei+1 | fi, and hence
h | E−ifi. By assumption, h | f1 = f

1
1 , and therefore h | gcd(f1

1 , E−ifi),
which contradicts Definition 5.15 (ii). We conclude that Ehe+1

� (f/f1), and
the other remaining claim follows by similar arguments. �

We now present two algorithms for computing the gff. The first one is due to
Paule (1995). The second one seems to be new and is analogous to Yun’s (1976)
algorithm for computing the squarefree decomposition.

Algorithm 5.18 (Gff computation).
Input: A nonzero monic polynomial f ∈ F [x] of degree n, where F is a field of

characteristic zero or greater than n.
Output: The gff of f .
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0. if f = 1 then return the empty sequence
1. g ←− gcd(f, Ef), m←− deg g
2. call the algorithm recursively to compute the gff g1, . . . , gm of g

3. h←− f

g · (E−1g1)(E−2g2) · · · (E−mgm)
4. return h, g1, . . . , gm, 1, . . . , 1

Theorem 5.19. Algorithm 5.18 works correctly and takes O(n3) field operations
with classical arithmetic and O(n M(n) log n) with fast arithmetic.

Proof. Let f1, f2, . . . , fn be the gff of f . Then g = f2f
2
3 · · · fn−1

n , by the Funda-
mental Lemma 5.16, and by induction, we have fi = gi−1 for 2 ≤ i ≤ m + 1 and
fi = 1 for m + 2 ≤ i ≤ n. Finally, f/g = f1 · (E−1f2) · · · (E−n+1fn), again by
the Fundamental Lemma, so that h = f1, and the correctness is proved.

Let T (n) denote the cost of the algorithm. Including the cost for the Taylor shift
to compute (Ef)(x) = f(x + 1) (Theorems 4.3 and 4.5), step 1 takes O(n2) field
operations with classical arithmetic and O(M(n) log n) with fast arithmetic. The
cost for step 2 is T (m). Step 3 takes O(n2) operations with classical arithmetic,
by Lemma 3.15 and Theorem 4.3. By Theorem 4.5, we can compute E−igi with
O(M(deg gi)) operations, for each i, together O(M(m)), by the sub-additivity of M.
Computing the product in the denominator takes O(M(m) log m), and the division
with remainder takes O(M(n)), by Lemma 3.15 and Fact 3.13, respectively. Thus
the cost for step 3 with fast arithmetic is O(M(n) + M(m) log m). The claims now
follow from m ≤ n− 1 and unraveling the recursion for T . �

The cost estimate for fast arithmetic appears also in Theorem 23.14 of von
zur Gathen & Gerhard (1999). The upper bounds of the theorem are achieved for
f = xn, up to a factor of log n in the case of fast arithmetic. The following method
improves this by an order of magnitude.

Algorithm 5.20 (Gff computation à la Yun).
Input: A nonzero monic polynomial f ∈ F [x] of degree n, where F is a field of

characteristic zero or greater than n.
Output: The gff of f .

0. if f = 1 then return the empty sequence

1. g ←− gcd(f, Ef), u1 ←− f

E−1g
, v1 ←− f

g
2. for 1 ≤ i ≤ n do
3. hi ←− gcd(ui, vi), ui+1 ←− ui

hi
, vi+1 ←− E

vi

hi
4. return h1, . . . , hn

Clearly the algorithm may be aborted as soon as ui = 1 (= vi).

Theorem 5.21. Algorithm 5.20 works correctly and takes O(n2) field operations
with classical arithmetic and O(M(n) log n) with fast arithmetic.
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Proof. Let 1 ≤ i < j, k ≤ n and f1, . . . , fn ∈ F [x] be the gff of f . We

have Ei−j+1fj | f
j

j , and the properties of the gff imply that gcd(fk, Ei−jfj) =
E−1 gcd(Efk, Ei−j+1fj) = 1 if j ≤ k. Similarly, we have E−ifk | f

k
k and

gcd(fk, Ei−jfj) = Ei gcd(E−ifk, E−jfj) = 1 if j ≤ k. From these observa-
tions, the invariants

ui =
∏

i≤k≤n

fk, vi =
∏

i≤j≤n

Ei−jfj , hi = fi

for 1 ≤ i ≤ n follow easily by induction, and the correctness is proved.
The cost for step 1 is O(n2) field operations with classical arithmetic and

O(M(n) log n) with fast arithmetic. Similarly, one execution of step 3 takes
O((deg ui)2) and O(M(deg ui) log(deg ui)) field operations with classical and fast
arithmetic, respectively. If nj = deg fj for all j, then deg ui =

∑
i≤j≤n nj for

all i and
∑

1≤i≤n deg ui = n, and the cost estimates follow by the sub-additivity
of M. �

In positive characteristic p, Algorithms 5.18 and 5.20 may get into an infinite
loop or return the wrong result if p ≤ n. For example, when f = xp − x = xp,
then gcd(f, Ef) = f , and Algorithm 5.18 does not terminate, while Algorithm 5.20
incorrectly returns h1 = f and h2 = · · · = hn = 1.

We now discuss a modular gff algorithm. Let Z be a UFD with field of frac-
tions F . We say that a sequence f1, . . . , fn ∈ Z[x] of primitive polynomials is
a primitive gff if f =

∏
i f

i
i and f1/lc(f1), . . . , fn/lc(fn) is the (monic) gff of

f/lc(f) in F [x]. The primitive gff is unique up to multiplication by units in Z×.
For Z = Z, we can make the primitive gff unique by requiring f, f1, . . . , fn to be
normalized, and then call it the normalized gff .

Problem 5.22 (Greatest factorial factorization). Let Z be a UFD. Given a non-
zero primitive polynomial f ∈ Z[x] of degree n, compute nonzero primitive polyno-
mials f1, . . . , fn ∈ Z[x] satisfying

f = f1f
2
2 · · · fn

n ,

gcd(f i
i , Efj) = gcd(f i

i , E
−jfj) = 1 for 1 ≤ i ≤ j ≤ n .

We first investigate when the modular image of a gff is again a gff. Interestingly,
the straightforward analog of Lemma 5.4 for the gff, where f ′ is replaced by Ef ,
does not hold. For example, let I = 7Z and f = (x + 8)(x + 7)x(x − 1)(x− 2) ∈
Z[x]. The primitive and monic gff of f is 1, x + 8, x, 1, 1 and gcd(f, Ef) =
(x + 8)x(x− 1). Now gcd(f, Ef) = (x + 1)x(x− 1) mod 7Z = gcd(f, Ef)),
but the monic gff of f is x, 1, 1, x + 1, 1, and this is not the modular image of
the gff of f . The problem here is that the two factors x + 7 and x are coprime in
Z[x], but not modulo I . Under the additional assumption that any two distinct irre-
ducible factors of f remain coprime modulo I , we can prove the following analog
of Lemma 5.4.
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Lemma 5.23. Let Z be a UFD of characteristic zero or prime characteristic greater
than n, f ∈ Z[x] be a nonzero primitive polynomial of degree n, and f1, . . . , fn ∈
Z[x] be a primitive gff of f . Moreover, let I ⊆ Z be a maximal ideal not containing
lc(f), denote the residue class map modulo I by a bar, and assume that Z = Z/I
has characteristic zero or greater than n as well. Finally, assume that g1, . . . , gn ∈
Z[x] is the monic gff of f/lc(f). Then

deg gcd(f, Ef) ≤ deg gcd(f, Ef) and deg(g1 · · · gn) ≤ deg(f1 · · · fn) . (5.7)

If in addition
deg gcd(f, f ′) = deg gcd(f, f ′) , (5.8)

then for each of the two inequalities, equality holds if and only if lc(fi)gi = fi for
1 ≤ i ≤ n.

We note that the condition (5.8) alone is not is not sufficient to ensure that the
modular image of the gff is again a gff, as the example f = x2(x + 8) ∈ Z[x] and
I = 7Z shows. On the other hand, the, example f = x(x + 7) ∈ Z[x] and I = 7Z

illustrates that (5.8) is not necessary.

Proof. Let F be the field of fractions of Z . We first note that

gcd(f, Ef) ∼ f2f
2
3 · · · fn−1

n , E(f1 · · · fn) ∼ Ef

gcd(f, Ef)
,

by the Fundamental Lemma 5.16, where∼ denotes equality up to associates in F [x],
and similarly

gcd(f, Ef) ∼ g2g
2
3 · · · gn−1

n , E(g1 · · · gn) ∼ Ef

gcd(f, Ef)
. (5.9)

Now gcd(f, Ef) is a common divisor of f and Ef , which implies that

gcd(f, Ef) | gcd(f, Ef) and g1 · · · gn | f1 · · · fn , (5.10)

and (5.9) shows that either both inequalities in (5.7) are strict or both are equalities.
This proves the first claim.

The “if” direction of the second claim is true without the additional assumptions.
We prove the “only if” part by induction on n. There is nothing to prove if n = 0. If
n > 0, then f2, f3, . . . is a gff of gcd(f, Ef) and g2, g3, . . . is a gff of gcd(f, Ef),
by the Fundamental Lemma 5.16. If equality holds in (5.7), then (5.10) yields

g2g
2
3 · · · gn−1

n ∼ gcd(f, Ef) ∼ gcd(f, Ef) ∼ f2f
2
3 · · · fn−1

n

and g1 · · · gn ∼ f1 · · · fn. Applying (5.10) to gcd(f, Ef) instead of f , we find that
g2 · · · gn divides f2 · · · fn. We show below that also g1 | f1. Thus g1 ∼ f1 and
g2 · · · gn ∼ f2 · · · fn. Lemma 5.4 together with the property (5.2) implies that the
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condition (5.8) holds for gcd(f, Ef) as well, and the induction hypothesis, applied
to gcd(f, Ef), yields gi ∼ fi for 2 ≤ i ≤ n.

To prove that g1 | f1, let t ∈ Z[x] be an irreducible factor of g1 of multiplicity
i > 0, and let j ≥ 0 be its multiplicity in f/g1. Moreover, let h ∈ Z[x] be the unique
primitive irreducible factor of f such that t | h, and let e ≥ 1 be its multiplicity in f .
Equation (5.8) and Lemma 5.4 imply that the distinct irreducible factors of f in Z[x]
remain squarefree and pairwise coprime modulo I . Thus t2 � h and t � (f/h

e
), and

hence e = i + j. Now assume that hi
� f1. Then hj+1 | (f/f1) = f

2
2 · · · fn

n , and
Lemma 5.17 implies that Ehj+1 | (f/f1) or E−1hj+1 | (f/f1). For simplicity,
we assume that Ehj+1 | (f/f1); the arguments for the other case are analogous.
Then Etj+1 | f , but Et � g1, by Definition 5.15 (ii), such that Etj+1 | (f/g1).
Now Lemma 5.17 (iii) yields tj+1 | (f/g1). This contradiction to the definition of
j proves that our assumption is wrong, hi | f1, and ti | f1. Since this holds for any
irreducible factor of g1, we conclude that g1 | f1. �

Lemma 5.23 is the main tool for the following modular gff algorithm, which is
based on the Chinese Remainder Theorem. We assume that ω is the word size of
our processor. For a nonzero polynomial f ∈ Z[x], normal(f) denotes the unique
normalized polynomial that divides f and has the same degree.

Algorithm 5.24 (Small primes modular gff computation).
Input: A normalized polynomial f ∈ Z[x] of degree 1 ≤ n ≤ 2ω−1 and max-norm
‖f‖∞ < 2λ.

Output: The normalized gff of f , or otherwise “FAIL”.

1. b←− lc(f), B ←− 	(n+1)1/22n+λ
, s←− �log2(2 ·3n/3bB)/(ω−1)�
2. choose a set S0 of 2s single precision primes

S1 ←− {p ∈ S0: p � b}
3. for all p ∈ S1 do
4. call Algorithm 5.20 to compute the monic gff

f ≡ b
∏

1≤i≤n

g
i
p,i mod p

of f/b modulo p, with monic polynomials gp,1, . . . , gp,n ∈ Z[x] of max-
norm less than p/2
ep ←− deg gcd(f mod p, f ′ mod p)

5. /∗ remove unlucky primes from S1 ∗/
d←− max{deg gp,1 + · · ·+ deg gp,n: p ∈ S1}
e←− min{ep: p ∈ S1}
S2 ←− {p ∈ S1: deg gp,1 + · · ·+ deg gp,n = d and ep = e}
if #S2 ≥ s then remove #S2 − s primes from S2 else return “FAIL”

6. for 0 ≤ j < i ≤ n do
7. use the Chinese Remainder Algorithm to compute f∗

ij ∈ Z[x] of max-
norm less than (

∏
p∈S2

p)/2 such that f∗
ij ≡ bgp,i(x− j) mod p for all

p ∈ S2
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8. if
∏

0≤j<i≤n ‖normal(f∗
ij)‖1 > B then return “FAIL”

9. if
∏

1≤i≤n lc(normal(f∗
i0))

i = lc(f)
then return normal(f∗

10), . . . , normal(f∗
n0) else return “FAIL”

Definition 5.25. Let Z = Z and f ∈ Z[x] nonzero primitive. A prime p ∈
N is lucky with respect to the greatest factorial factorization problem 5.22 if
p � lc(f) and deg gcd(f, f ′) = deg gcd(f mod p, f ′ mod p) (i.e., p is lucky
with respect to the squarefree factorization problem 5.1) and deg gcd(f, Ef) =
deg gcd(f mod p, Ef mod p).

For a prime p > deg f , Lemma 5.23 implies that the image modulo p of a
greatest factorial factorization of f is again a greatest factorial factorization if p is a
lucky prime with respect to greatest factorial factorization, but not vice versa.

Theorem 5.26. Algorithm 5.24 succeeds if at least s ∈ Θ(n + λ) of the initial
primes in S0 are lucky. If the algorithm does not return “FAIL”, then it correctly
returns the normalized gff of f .

Proof. Let f1, . . . , fn ∈ Z[x] be the normalized gff of f , let h = gcd(f, f ′), and
let p ∈ S1. Lemmas 5.23 and 5.4 imply that deg(gp,1 · · · gp,n) ≤ deg(f1 · · · fn)
and ep ≥ deg h, respectively. By definition, we have equality in both cases if and
only if p is a lucky prime. Thus, if at least one prime in S0 is lucky, then we have
d = deg(f1 · · · fn) and e = deg h in step 5, and all primes in S2 are lucky.

If at least s of the primes in S0 are lucky, then S2 contains s lucky primes
after step 5. Let m =

∏
p∈S2

p and 0 ≤ j < i ≤ n. Then Lemma 5.23 implies
that bfi(x − j)/lc(fi) ≡ f∗

ij mod m. Since fi(x − j) divides f , Mignotte’s bound
(Fact 3.3) implies that ‖fi(x − j)‖∞ ≤ B and ‖bfi(x − j)/lc(fi)‖∞ < m/2.
Thus the coefficients of bfi(x− j)/lc(fi) and f∗

ij are both absolutely less than m/2,
and hence they are equal. Since fi is normalized, so is fi(x − j), and we have
fi(x − j) = normal(f∗

ij). Again by Mignotte’s bound, the condition in step 8 is
false, the condition in step 9 is true, and the algorithm does not return “FAIL”. This
proves the first assertion.

To prove the second claim, suppose that the condition in step 8 is true. Then
∥∥∥∥∥∥

∏

0≤j<i≤n

normal(f∗
ij)

∥∥∥∥∥∥
∞

≤
∥∥∥∥∥∥

∏

0≤j<i≤n

normal(f∗
ij)

∥∥∥∥∥∥
1

≤
∏

0≤j<i≤n

‖normal(f∗
ij)‖1 ≤ B <

m

2
.

Let 0 ≤ j < i ≤ n. Then

‖f∗
ij‖∞ ≤ ‖f∗

ij‖1 ≤ b ‖normal(f∗
ij)‖1 ≤ bB <

m

2
,

‖f∗
i0(x− j)‖∞ ≤ (j + 1)deg f∗

i0‖f∗
i0‖1 ≤ in/ib ‖normal(f∗

i0)‖1 ≤ in/ibB <
m

2
,
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where we have used Lemma 4.2 and the fact that i1/i ≤ 31/3 for all i ∈ N≥1. Thus
the congruence f∗

ij ≡ f∗
i0(x − j) mod m is in fact an equality and normal(f∗

ij) =
E−jnormal(f∗

i0). The polynomials
∏

1≤i≤n normal(f∗
i0)

i and f agree modulo m
up to a multiplicative constant. If the condition in step 9 is true, then

∏

1≤i≤n

normal(f∗
i0)

i =
∏

0≤j<i≤n

normal(f∗
ij) ≡ f mod m ,

and since both polynomials have max-norms less than m/2, they are equal. Now
the normal(f∗

i0) are a gff of f , since the required gcd conditions hold modulo each
prime in S2. Since these polynomials are normalized, the uniqueness of the normal-
ized gff implies that fi = normal(f∗

i0) for all i, and the algorithm returns the correct
result. �

We recall from Sect. 3 that for two polynomials f, g ∈ R[x] and 0 ≤ δ ≤
min{deg f, deg g}, σδ(f, g) ∈ R denotes the δth subresultant of f and g.

Theorem 5.27. Let δ = deg gcd(f, Ef), δ∗ = deg gcd(f, f ′), let r = σδ(f, Ef),
and let r∗ = σδ∗(f, f ′). Then 0 < |rr∗| ≤ D = n3n/2(n+1)n2n(4λ+n+1), and the
number of single precision primes that are unlucky with respect to greatest factorial
factorization is at most 	(log2 D)/(ω − 1)
 ∈ Θ(n2 + nλ). If the number of single
precision primes exceeds 2	(log2 D)/(ω − 1)
 and the set S0 in step 2 is chosen
uniformly at random from among all subsets of cardinality 2s of the single precision
primes, then Algorithm 5.24 returns “FAIL” with probability at most 1/2.

Proof. The claim that r and r∗ are nonzero is clear from Lemma 3.9 (i). We have
‖f‖2 ≤ (n + 1)1/2‖f‖∞, ‖Ef‖2 < 2n+1‖f‖∞, by Lemma 4.2, and

‖f ′‖2 ≤ n1/2‖f ′‖∞ ≤ n3/2‖f‖∞ ,

and Corollary 3.2 implies that

|r| ≤ ‖f‖n−δ
2 ‖Ef‖n−δ

2 ≤ (n + 1)n/22n2+n‖f‖2n
∞ ,

|r∗| ≤ ‖f‖n−δ∗−1
2 ‖f ′‖n−δ∗

2 ≤ (n + 1)n/2n3n/2‖f‖2n
∞ .

We conclude that |rr∗| < D. Now 2bB ≤ D, so that under the assumptions of the
theorem, we can indeed choose 2s primes in step 2. A prime is unlucky if and only
if it divides rr∗, by Corollary 3.12, and hence there are at most 	(log2 D)/(ω− 1)

unlucky single precision primes. By assumption, there are at least twice as many
single precision primes. Therefore the probability that at least half of the primes
of a randomly chosen set of 2s single precision primes are lucky is at least 1/2
(Lemma 3.24), and the claim follows from Theorem 5.26. �

Theorem 5.28. If we neglect the cost for choosing primes in step 2, then Algo-
rithm 5.24 takes O(n3 + nλ2) word operations when using classical arithmetic,
and O(n M(n + λ) log(n + λ) + λM(n) log n) or O∼(n2 + nλ) word operations
when using fast arithmetic, where the O∼-notation suppresses logarithmic factors.
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Proof. We first reduce lc(f) and all other coefficients of f modulo all primes in
S0 and S1, respectively. This takes O(nλs) and O(n M(s) log s) word operations
with classical and fast arithmetic, respectively. The cost for step 4 is O(n2) and
O(M(n) log n) word operations for each of the O(s) primes with classical and fast
arithmetic, respectively, by Theorem 5.21 and Fact 3.13. Computing a coefficient
of some f∗

ij in step 7 takes O(s2) word operations with classical arithmetic and
O(M(s) log s) with fast arithmetic. There are n non-leading coefficients in total,
and hence the cost for steps 6 and 7 is O(ns2) and O(n M(s) log s), respectively.
The cost for normalizing all f∗

ij in step 8 is O(n) gcd’s and divisions of integers
of word length at most s, taking O(ns2) word operations with classical arithmetic
and O(n M(s) log s) with fast arithmetic. Computing the products in steps 8 and 9
takes O(s2) word operations with classical arithmetic and O(M(s) log n) with fast
arithmetic, by Lemma 3.15. The claims now follow from s ∈ O(n + λ) and using
M(n) = n log n loglog n by adding costs. �

We could also think of a modular algorithm for computing the gff f1, . . . , fn

of f based on Hensel lifting. A direct adaption of Yun’s algorithm 5.12 is not ob-
vious since the fi are not necessarily coprime and Hensel lifting cannot be applied.
However, we could first compute the squarefree decomposition g1, . . . , gn of f , next
compute the gff of gigi+1 · · · gn for all i, and finally put things together. As in the
case of squarefree factorization, this would lead to similar or even worse time esti-
mates than those of Theorem 5.28, and we do not analyze this algorithm here.

Remark 5.29. (i) When M(n) ∈ Ω(n1+ε) for some positive ε, then we can drop
the factor log(n + d) in the cost estimate of Theorem 5.28.

(ii) When using fast arithmetic, then Algorithm 5.24 is – up to logarithmic factors
– asymptotically optimal in the diagonal case where n ≈ λ, since its running
time is essentially linear in the input size, which is about n2 words.

(iii) The number 2s of initial primes in step 2 of Algorithm 5.24 is often much too
large in practice; see Remark 5.11 for a discussion.

(iv) See Remark 3.23 for a discussion how to find random single precision primes
in step 2 of Algorithm 5.24 and what this costs.



5. Modular Squarefree and Greatest Factorial
Factorization

5.1 Squarefree Factorization

The presentation in this section follows Gerhard (2001). Let Z be a UFD and f ∈
Z[x] nonzero primitive of degree n. Then f has a decomposition

f =
∏

1≤i≤n

f i
i (5.1)

into nonzero primitive polynomials f1, . . . , fn ∈ Z[x] such that each fi is square-
free and gcd(fi, fj) = 1 if i �= j. We call this a primitive squarefree decomposi-
tion of f , and f1 · · · fn is a primitive squarefree part of f . Both are unique up to
multiplication by units. If Z = Z, then we can make them unique by requiring f
and f1, . . . , fn to have positive leading coefficients, and call them the normalized
squarefree decomposition and the normalized squarefree part, respectively. If Z is
a field and f, f1, . . . , fn are all monic, then the decomposition (5.1) is unique as
well, and we call it the monic squarefree decomposition and f1 · · · fn the monic
squarefree part of f .

Problem 5.1 (Squarefree factorization). Let Z be a UFD. Given a nonzero prim-
itive polynomial f ∈ Z[x] of degree n, compute nonzero primitive squarefree and
pairwise coprime polynomials f1, . . . , fn ∈ Z[x] satisfying

f = f1f
2
2 · · · fn

n .

If Z has characteristic zero or prime characteristic greater than n and f1, . . . , fn

is a primitive (or monic) squarefree decomposition of f , then we have the following
well-known equality

gcd(f, f ′) = f2f
2
3 · · · fn−1

n (5.2)

for the primitive (or monic) gcd of f and its formal derivative f ′, which conse-
quently has the primitive (or monic) squarefree decomposition f2, . . . , f1+deg g.
This immediately leads to a simple algorithm for computing the squarefree decom-
position. A more efficient algorithm has been given by Yun (1976, 1977a). We re-
state it for completeness and later reference.

Algorithm 5.2 (Yun’s squarefree factorization).
Input: A nonzero monic polynomial f ∈ F [x] of degree n, where F is a field of

characteristic zero or greater than n.
Output: The squarefree decomposition of f .

J. Gerhard: Modular Algorithms, LNCS 3218, pp. 61-77, 2004.
 Springer-Verlag Berlin Heidelberg 2004
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1. g ←− gcd(f, f ′), u1 ←− f

g
, v1 ←− f ′

g
2. for 1 ≤ i ≤ n do

3. hi ←− gcd(ui, vi − u′
i), ui+1 ←− ui

hi
, vi+1 ←− vi − u′

i

hi
4. return h1, . . . , hn

Proposition 5.3. Let f1, . . . , fn ∈ F [x] be the squarefree decomposition of f . Then
the invariants

ui =
∏

i≤j≤n

fj , vi =
∑

i≤j≤n

(j − i + 1)
ui

fj
f ′

j , hi = fi

hold for 1 ≤ i ≤ n and imply that Algorithm 5.2 works correctly. It takes O(n2)
and O(M(n) log n) arithmetic operations in F with classical and fast arithmetic,
respectively.

For a proof, see Yun (1976, 1977a) or von zur Gathen & Gerhard (1999), The-
orem 14.23, for fast arithmetic. A similar reasoning also yields the estimate for
classical arithmetic.

The following lemma, which is the key tool for our modular algorithm, says
when the modular image of a squarefree decomposition is again a squarefree de-
composition.

Lemma 5.4. Let n ∈ N, Z be a UFD of characteristic zero or prime characteristic
greater than n, f ∈ Z[x] nonzero primitive of degree n, and f1, . . . , fn ∈ Z[x] a
primitive squarefree decomposition of f . Moreover, let I ⊆ Z be a maximal ideal
not containing lc(f), denote reduction modulo I by a bar, and assume that Z = Z/I
has characteristic zero or greater than n as well. Finally, assume that g1, . . . , gn ∈
Z[x] is the monic squarefree decomposition of f/lc(f). Then

deg gcd(f, f ′) ≤ deg gcd(f, f
′
) and deg(g1 · · · gn) ≤ deg(f1 · · · fn) , (5.3)

and for each of the two inequalities, we have equality if and only if lc(fi)gi =
fi for 1 ≤ i ≤ n.

Proof. Since Z has characteristic zero or prime characteristic greater than n, we
have

gcd(f, f ′) ∼ f2f
2
3 · · · fn−1

n ,
f

gcd(f, f ′)
∼ f1 · · · fn ,

gcd(f ′, f1 · · · fn) ∼ gcd(gcd(f, f ′), f1 · · · fn) ∼ f2 · · · fn ,
(5.4)

where ∼ denotes equality up to associates. Similarly,

gcd(f, f
′
) ∼ g2g

2
3 · · · gn−1

n ,
f

gcd(f, f
′
)
∼ g1 · · · gn ,

gcd(f
′
, g1 · · · gn) ∼ gcd(gcd(f, f

′
), g1 · · · gn) ∼ g2 · · · gn .

(5.5)
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Now gcd(f, f ′) is a common divisor of f and f ′, and hence

gcd(f, f ′) | gcd(f, f
′
) and g1 · · · gn | f1 · · · fn . (5.6)

This proves the first assertion.
The “if” direction of the second claim is clear, and we prove the “only if” part by

induction on n. There is nothing to prove if n = 0. Otherwise, f2, f3, . . . is a prim-
itive squarefree decomposition of gcd(f, f ′) and g2, g3, . . . is the monic squarefree
decomposition of gcd(f, f

′
). If equality holds in (5.3), then (5.6) implies that

g2g
2
3 · · · gn−1

n ∼ gcd(f, f
′
) ∼ gcd(f, f ′) ∼ f2f2

3 · · · fn−1
n

and g1 · · · gn ∼ f1 · · · fn. Applying (5.6) to gcd(f, f ′) instead of f , we find that
g2 · · · gn divides f2 · · · fn. On the other hand, we have

f2 · · · fn ∼ gcd(f ′, f1 · · · fn) | gcd(f
′
, f1 · · · fn) ∼ gcd(f

′
, g1 · · · gn) ∼ g2 · · · gn ,

by (5.4) and (5.5). Thus g1 ∼ f1 and g2 · · · gn ∼ f2 · · · fn, and the induction hy-
pothesis, applied to gcd(f, f ′), shows that gi ∼ fi for 2 ≤ i ≤ n. �

Corollary 5.5. With the assumptions of Lemma 5.4, let δ = deg gcd(f, f ′), and let
σ ∈ Z be the δth subresultant of f and f ′. Then the following are equivalent.

(i) σ �= 0,
(ii) lc(f) �= 0 and deg gcd(f, f

′
) = δ,

(iii) lc(f) �= 0 and lc(fi)gi = fi for 1 ≤ i ≤ n.

Proof. Since lc(f) divides the first row of the matrix in Figure 3.1 for g = f ′, it
divides σ. The claims now follow from Corollary 3.12 and Lemma 5.4. �

We now present a new modular algorithm for squarefree factorization, based on
the Chinese Remainder Theorem. We recall that ω is the word size of our processor.
We will assume that our polynomials have degree at most 2ω−1, which is not a
serious restriction in practice for ω ≥ 32. The cardinality of a finite set S is denoted
by #S.

Algorithm 5.6 (Small primes modular squarefree factorization).
Input: A normalized polynomial f ∈ Z[x] of degree 1 ≤ n ≤ 2ω−1 and max-norm
‖f‖∞ < 2λ.

Output: The normalized squarefree decomposition of f , or “FAIL”.

1. b←− lc(f), B ←− 	(n + 1)1/22n+λ
, s←− �(log2 2bB)/(ω − 1)�
2. choose a set S0 of 2s single precision primes

S1 ←− {p ∈ S0: p � b}
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3. for all p ∈ S1 do
4. call Yun’s algorithm 5.2 to compute the monic squarefree decomposition

f ≡ b
∏

1≤i≤n

gi
p,i mod p

of f/b modulo p, with monic polynomials gp,1, . . . , gp,n ∈ Z[x] of max-
norm less than p/2 that are squarefree and pairwise coprime modulo p

5. /∗ remove unlucky primes from S1 ∗/
d←− max{deg gp,1 + · · ·+ deg gp,n: p ∈ S1}
S2 ←− {p ∈ S1: deg gp,1 + · · ·+ deg gp,n = d}
if #S2 ≥ s then remove #S2 − s primes from S2 else return “FAIL”

6. for 1 ≤ i ≤ n do
7. use the Chinese Remainder Algorithm to compute f∗

i ∈ Z[x] of max-
norm less than (

∏
p∈S2

p)/2 such that f∗
i ≡ bgp,i mod p for all p ∈ S2

8. if
∏

1≤i≤n ‖normal(f∗
i )‖i1 > B then return “FAIL”

9. if
∏

1≤i≤n lc(normal(f∗
i ))i = lc(f)

then return normal(f∗
1 ), . . . , normal(f∗

n) else return “FAIL”

Definition 5.7. Let Z = Z and f ∈ Z[x] nonzero primitive. We say that a prime
p ∈ N is lucky with respect to the squarefree factorization problem 5.1 if p � lc(f)
and deg gcd(f, f ′) = deg gcd(f mod p, f ′ mod p).

Thus if p is a prime not dividing lc(f) and greater than deg f , then p is an
unlucky prime with respect to squarefree factorization if and only if the image mod-
ulo p of the squarefree decomposition of f is not a squarefree decomposition, by
Lemma 5.4.

Theorem 5.8. Algorithm 5.6 succeeds if and only if at most s ∈ Θ(n+λ) of the ini-
tial primes are unlucky with respect to squarefree factorization, and then it correctly
returns the normalized squarefree decomposition of f .

Proof. Let f1, . . . , fn ∈ Z[x] be the normalized squarefree decomposition of f .
Then f1 · · · fn is its normalized squarefree part. We first show that unless all
2s initial primes in S0 are unlucky, a prime p ∈ S1 is lucky if and only if
deg(gp,1 · · · gp,n) = d in step 5. Lemma 5.4 implies that deg(gp,1 · · · gp,n) ≤
deg(f1 · · · fn), with equality if and only if p is lucky. Thus if at least one prime
is lucky, we have deg(f1 · · · fn) = d, and the claim follows.

Now assume that at least s of the initial primes in S0 are lucky. Then S2 contains
s primes after step 5, all lucky. Let m =

∏
p∈S2

p and 1 ≤ i ≤ n. Since fi divides f ,
also lc(fi) divides b, and hence bfi/lc(fi) ≡ f∗

i mod m, by Lemma 5.4. Mignotte’s
bound (Fact 3.3) implies that ‖fi‖∞ ≤ B, and hence

‖bfi/lc(fi)‖∞ ≤ bB ≤ 2(ω−1)s−1 <
m

2
.

Thus the coefficients of bfi/lc(fi) and of f∗
i are at most m/2 in absolute value,

so that both polynomials are equal. Since fi is normalized, it follows that fi =
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normal(f∗
i ), and again by Mignotte’s bound, we find that the condition in step 8 is

false, the condition in step 9 is true, and the algorithm returns the correct result.
Conversely, suppose that the condition in step 8 is false. Then

∥∥∥∥∥∥

∏

1≤i≤n

normal(f∗
i )i

∥∥∥∥∥∥
∞

≤
∥∥∥∥∥∥

∏

1≤i≤n

normal(f∗
i )i

∥∥∥∥∥∥
1

≤
∏

1≤i≤n

‖normal(f∗
i )‖i1

≤ B <
m

2
.

By construction,
∏

1≤i≤n normal(f∗
i )i and f agree modulo m up to a multiplicative

constant. If the condition in step 9 is true, then
∏

1≤i≤n normal(f∗
i )i ≡ f mod m,

and since the coefficients of both polynomials are absolutely bounded by m/2, they
are equal. The normal(f∗

i ) are squarefree and pairwise coprime in Z[x], since they
are so modulo each prime in S2 after step 5, and since they are normalized, we
find that fi = normal(f∗

i ) ≡ lc(fi)gp,i mod p for all i ≤ n and p ∈ S2, by the
uniqueness of the normalized squarefree decomposition. Hence all s primes in S2

are lucky after step 5, by Lemma 5.4. �

Theorem 5.9. Let δ = deg gcd(f, f ′) and r ∈ Z be the δth subresultant of f
and f ′. Then r is a nonzero integer with |r| ≤ D = (n2 +n)n22nλ, and the number
of single precision primes that are unlucky with respect to squarefree factorization
is at most 	(log2 D)/(ω − 1)
 ∈ Θ(n(λ + log n)). If n ≥ 2 and λ ≥ 1, the number
of single precision primes exceeds 2	(log2 D)/(ω − 1)
, and the set S0 in step 2 is
chosen uniformly at random from among all subsets of cardinality 2s of the single
precision primes, then Algorithm 5.6 returns “FAIL” with probability at most 1/2.

Proof. The first claim follows from Lemma 3.9 (i). We have ‖f ′‖2 ≤ n‖f‖2, and
the subresultant bound (Corollary 3.2) shows that |r| ≤ D. Corollary 5.5 implies
that the unlucky primes greater than n are precisely those dividing r. We have
2Bb ≤ D under the assumptions of the theorem, so that it is possible to find 2s
single precision primes in step 2. By assumption, at least half of the single preci-
sion primes are lucky. Therefore the probability that at least half of the primes of
a randomly chosen set of 2s single precision primes are lucky is at least 1/2, by
Lemma 3.24, and the claim follows from Theorem 5.8. �

Theorem 5.10. If we neglect the cost for choosing primes in step 2, then Algo-
rithm 5.6 takes O(n3 + nλ2) word operations when using classical arithmetic, and
O(n M(n + λ) log(n + λ) + λM(n) log n) or O∼(n2 + nλ) word operations when
using fast arithmetic, where the O∼-notation suppresses logarithmic factors.

Proof. Reducing a coefficient of f , of word length O(λ), modulo at most 2s sin-
gle precision primes takes O(λs) word operations with classical arithmetic and
O(M(s) log s) with fast arithmetic. There are at most n + 1 coefficients, and hence
the overall cost for this is O(nλs) and O(n M(s) log s) word operations, respec-
tively.
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Step 4 takes O(n2) arithmetic operations in Fp with classical arithmetic and
O(M(n) log n) with fast arithmetic, by Proposition 5.3. Since p is single preci-
sion, one arithmetic operation in Fp takes O(1) word operations. There are at most
2s primes in S1, and hence the overall cost of steps 3 and 4 is O(sn(n + λ)) or
O(s M(n) log n + n M(s) log s) word operations when using classical or fast arith-
metic, respectively.

Let m =
∏

p∈S2
p < 2ωs. Then the cost for computing one coefficient of some

f∗
i in step 7 by Chinese remaindering is O(s2) word operations with classical arith-

metic and O(M(s) log s) with fast arithmetic. Since n =
∑

1≤i≤n i deg f∗
i , the total

number of non-leading coefficients of all nonconstant f∗
i is at most n, and the overall

cost of steps 6 and 7 is O(ns2) and O(n M(s) log s) word operations, respectively.
(In the unlikely event that all primes in S2 are unlucky, it may happen that not all
degree sequences deg gp,1, . . . , deg gp,n for p ∈ S2 are equal, but we can detect this
during the Chinese remaindering stage in step 7 and then report “FAIL”.)

The cost for normalizing all f∗
i in step 8 is O(n) gcd’s and divisions of integers

of word length at most s, taking O(ns2) word operations with classical arithmetic
and O(n M(s) log s) with fast arithmetic. Computing the products in steps 8 and 9
takes O(s2) word operations with classical arithmetic and O(M(s) log n) with fast
arithmetic.

The cost for all other steps is negligible, the claims follow by adding costs and
using s ∈ O(n + λ), and taking M(n) = n log n loglog n gives the O∼-estimate. �

Remark 5.11. • When M(n) ∈ Ω(n1+ε) for some positive ε, then we can drop the
logarithmic factors in the cost estimate for Algorithm 5.6.
• When using fast arithmetic, Algorithm 5.6 is – up to logarithmic factors – asymp-

totically optimal in the diagonal case where n ≈ λ, since its running time is
essentially linear in the input size, which is about n2 words.
• Yun (1976) states an estimate of O(k4(ν2δ + νδ2)) word operations for his al-

gorithm for univariate polynomials over Z, employing modular gcd techniques.
Here k ≤ n is the largest index such that fk is nonconstant, and δ and ν are up-
per bounds on the degrees and the bit size of the coefficients of all fi, respectively.
This result cannot be directly compared with ours, since it is expressed in terms
of a different set of parameters. For example, in the case when k is small, we have
the approximate correspondences n ≈ δ and λ ≈ ν, and then his estimate agrees
with our estimate for classical arithmetic, and our result for fast arithmetic is –
up to logarithmic factors – better by one order of magnitude.
• The number 2s of initial primes in step 2 of Algorithm 5.6 is often much too

large in practice, for two reasons. On the one hand, the estimate for the failure
probability in Theorem 5.9 is too pessimistic when there are considerably more
single precision primes than required by the theorem. On the other hand, the
coefficients of the gi are often significantly smaller than guaranteed by Mignotte’s
bound. One solution to overcome this is to work in an adaptive fashion: start with
a reasonable number of primes (say about d/ω or even fewer), check whether∏

1≤i≤n normal(g∗i )i = g, and add more new primes in case of failure. In this
way, the algorithm will never use more primes than needed, at the expense of
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an additional check after each new prime. Heuristically, most of the checks can
even be avoided by first checking whether the equation holds for x = 0. This
strategy has been successfully implemented by Shoup (1995) for computing gcd’s
of integer polynomials in his software package NTL.

The method above can be adapted to bivariate polynomials over a field when we
count coefficient operations. Both the algorithm and its analysis are then much easier
due to the absence of carries, and in particular when the field is large enough such
that all moduli may be chosen linear. If the degree bounds in x and y for the input
polynomials are n and m, respectively, then the cost for this algorithm is O(n2m)
arithmetic operations with classical arithmetic and O∼(nm) with fast arithmetic.

A similar approach yields also fast modular algorithms (with the cost estimate
from Theorem 5.10) for factor refinement: given one (or several) nontrivial partial
factorizations f = g1 · · · gt in Z[x], compute the finest partial factorization f =∏

i fei

i , with positive integers ei and fi ∈ Z[x] pairwise coprime, but not necessarily
squarefree, that you can obtain from the given factorization by gcd computations.
See Bach, Driscoll & Shallit (1993) for algorithms in the integer case.

Yun (1976) gives a modular algorithm for the squarefree factorization of multi-
variate polynomials based on Hensel lifting, but does not state a time estimate. We
now analyze a variant of Yun’s algorithm for univariate integer polynomials (see
also Exercise 15.27 in von zur Gathen & Gerhard 1999).

Algorithm 5.12 (Prime power modular squarefree factorization).
Input: A normalized polynomial f ∈ Z[x] of degree 1 ≤ n ≤ 2ω−1 and max-norm
‖f‖∞ < 2λ.

Output: The normalized squarefree decomposition of f , or otherwise “FAIL”.

1. g ←− normal(gcd(f, f ′)), u←− f

g
, v ←− f ′

g
2. repeat

choose a single precision prime 2ω−1 < p < 2ω

until p � lc(f) and deg g = deg gcd(f mod p, f ′ mod p)
3. b←− lc(u), B ←− 	(n + 1)1/22λ+deg u
, s←− �(log2 2bB)/(log2 p)�
4. call steps 2 and 3 of Yun’s algorithm 5.2 to compute the monic squarefree de-

composition
f ≡ lc(f)

∏

1≤i≤n

gi
i mod p

of f/lc(f) modulo p, with monic polynomials g1, . . . , gn ∈ Z[x] of max-norm
less than p/2 that are squarefree and pairwise coprime modulo p

5. use Hensel lifting to compute a factorization

bn−1u ≡
∏

1≤i≤n

hi mod ps

with polynomials h1, . . . , hn ∈ Z[x] of max-norm less than ps/2 such that
hi ≡ bgi mod p for all i

6. return normal(h1), . . . , normal(hn)
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Theorem 5.13. Algorithm 5.12 correctly computes the normalized squarefree de-
composition of f .

Proof. Let f1, . . . , fn ∈ Z[x] be the normalized squarefree decomposition of f .
Step 2 ensures that p is a lucky prime, and Lemma 5.4 implies fi ≡ lc(fi)gi mod p
for all i and

bn−1u =
bf1

lc(f1)
· · · bfn

lc(fn)
≡ (bg1) · · · (bgn) mod p .

Now the gi are pairwise coprime modulo p and bfi/lc(fi) ≡ bgi ≡ hi mod p, and
the uniqueness of Hensel lifting (Fact 3.20) yields bfi/lc(fi) ≡ hi mod ps for all i.
Let 1 ≤ i ≤ n. Mignotte’s bound 3.3 shows that ‖fi‖∞ ≤ B and ‖bfi/lc(fi)‖∞ ≤
bB < ps/2. Thus both bfi/lc(fi) and hi have max-norm less than ps/2, whence
they are equal. Since fi is normalized, it follows that fi = normal(hi). �

Theorem 5.14. If the number of single precision primes exceeds

2	log2((n
2 + n)n22nλ)/(ω − 1)
 ∈ Θ(n(λ + log n)) ,

then the expected number of iterations of step 2 is at most two. If we neglect the
cost for step 2, then Algorithm 5.12 takes O(n4 + n2λ2)) word operations with
classical arithmetic and O((M(n) log n+n logλ)M(n+λ)) or O∼(n2 +nλ) with
fast arithmetic.

Proof. As in the proof of Theorem 5.9, at most 	log2((n
2 + n)n22nλ)/(ω − 1)


single precision primes are unlucky, and since there are at least twice as many of
them, the expected number of iterations to find a lucky prime is at most two.

Using a modular gcd algorithm based on Chinese remaindering, like Algorithm
8.6 below with b = 0, the (expected) cost for step 1 is O(n3 +nλ2) word operations
with classical arithmetic and O(λM(n) log n + n M(n + λ) log(n + λ)) with fast
arithmetic, by Theorem 8.10. (Yun’s original algorithm employs Hensel lifting for
the gcd computation as well.) In step 4, we first reduce u and v modulo p, taking
O(n log B) word operations. The cost for Yun’s algorithm is O(n2) word operations
with classical arithmetic and O(M(n) log n) with fast arithmetic, by Proposition 5.3.
The cost for the Hensel lifting is O(n2s2) and O(M(n) log n (M(s) + log n)) with
classical and fast arithmetic, respectively, by Fact 3.20. Finally, the cost for the
normalization in step 6 is O(ns2) and O(n M(s) log s) word operations with clas-
sical and fast arithmetic, respectively. The claims now follow from s, log B ∈
O(n + λ). �

The estimate above for classical arithmetic is slower by a factor of n than the
corresponding estimate for Algorithm 5.6, and the time bounds for fast arithmetic
agree up to logarithmic factors.

5.2 Greatest Factorial Factorization

In this section, we adapt Yun’s (1976) algorithm (Algorithm 5.12) for squarefree
factorization to its discrete analog, the greatest factorial factorization, which was
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introduced by Paule (1995). We also discuss a new modular algorithm for computing
this factorization. It is quite analogous to the modular algorithm 5.6 for computing
the squarefree factorization. The presentation follows closely Gerhard (2000). In the
following, E denotes the shift operator, which acts by (Ef)(x) = f(x + 1) on a
polynomial f in the indeterminate x.

Definition 5.15. Let F be a field and f ∈ F [x] nonzero monic of degree n.
A greatest factorial factorization (or gff) of f is a sequence of monic polynomials
f1, . . . , fn ∈ F [x] with the following properties.

(i) f =
∏

1≤i≤n

f
i
i ,

(ii) gcd(f i
i , Efj) = gcd(f i

i , E
−jfj) = 1 for 1 ≤ i ≤ j ≤ n.

The intuition is that fi collects all maximal falling factorials of length i. We note

that (ii) is not equivalent to gcd(f i
i , f

j

j ) = 1 for all i, j. For example, the sequence
x, x + 1, 1 is a gff of x3 + x2 but does not satisfy the latter condition.

Paule (1995) has shown that every nonzero polynomial has a unique gff when
F has characteristic zero (see also Lemma 23.10 in von zur Gathen & Gerhard
1999). This is false in positive characteristic: for example, the polynomial xp−x =
xp ∈ Fp[x] has no gff. Existence and uniqueness of the gff still hold if we require
in addition that the degree of the polynomial be less than the characteristic. An
alternative would be to modify the definition, namely to require (ii) only for i < j
and to add the property gcd(fi, Efi) = 1 for 1 ≤ i ≤ n, in analogy to the squarefree
decomposition. Then the gff is still not unique: for example, (x+1)p is also a gff of
xp − x. However, since we do not need the concept of gff when the degree exceeds
the characteristic, we will stick to the original definition. The gff of the constant
polynomial 1 is the empty sequence.

There are strong analogies between the squarefree factorization and the gff.
Bauer & Petkovšek (1999) discuss a common generalization of both types of factor-
izations. A different analog and generalization of the squarefree decomposition, the
shiftless decomposition, is discussed in Gerhard, Giesbrecht, Storjohann & Zima
(2003)

The following lemma, which we quote without proof, is due to Paule (1995);
see also Theorem 23.12 in von zur Gathen & Gerhard (1999). It is the analog of the
well-known property (5.2) of the squarefree decomposition.

Lemma 5.16 (Fundamental Lemma). Let F be a field of characteristic zero or
greater than n ∈ N and f ∈ F [x] nonzero monic of degree n. If f1, . . . , fn is the
gff of f and g = gcd(f, Ef), then

g = f2f
2
3 · · · fn−1

n ,
f

g
= f1(E−1f2) · · · (E−n+1fn),

Ef

g
= E(f1 · · · fn) .

Moreover, f2, . . . , f1+deg g is the gff of g.
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The following technical lemma about the gff will be used later.

Lemma 5.17. Let F be a field, f ∈ F [x] a nonzero monic polynomial of degree n,
and f1, . . . , fn ∈ F [x] the gff of f . Moreover, let h ∈ F [x] be an irreducible divisor
of f .

(i) Let i, j, k, l ∈ N be such that 0 ≤ k < i ≤ j and 0 ≤ l < j ≤ n. If h | E−kfi

and h | E−lfj , then 0 ≤ l − k ≤ j − i.
(ii) Let 1 ≤ e, i ≤ n be such that he | f i

i . Then there is a unique k ∈ {0, . . . , i−1}
such that he | E−kfi.

(iii) Assume that e ≥ 1 is such that he | (f/f1) = f2
2 · · · fn

n . Then Ehe | (f/f1) or
E−1he | (f/f1). If in addition h | f1 and he+1

� (f/f1), then Ehe+1
� (f/f1)

and E−1he+1
� (f/f1).

Proof. (i) If 0 > l − k, then El+1h | El−k+1fi | f
i
i and El+1h | Efj .

Thus El+1h | gcd(f i
i , Efj), contradicting Definition 5.15 (ii). Similarly, if

l − k > j − i, then El−jh | El−k−jfi | f
i
i and El−jh | E−jfj . Thus

El−jh | gcd(f i
i , E

−jfj), again contradicting Definition 5.15 (ii).
(ii) This follows from (i) with i = j.

(iii) Let ej ∈ N be the multiplicity of h in f
j

j , for 1 ≤ j ≤ n. Then e ≤ e2+· · ·+en.
Moreover, let i ∈ N be minimal with i ≥ 2 and ei > 0. By (ii), there is a unique
k ∈ {0, . . . , i − 1} with hei | E−kfi. Assume first that k = 0. Then i ≥ 2
implies that E−1hei | E−1fi | f i

i . If e ≤ ei, then we are done. Otherwise, let
j > i be such that ej ≥ 1. Again by (ii), there is a unique l ∈ {0, . . . , j − 1}
such that hej | E−lfj . Then (i) shows that l ≤ j − i < j − 1, and hence

E−1hej | E−l−1fj | f
j

j . Since this holds for all j > i, we conclude that

E−1hej | f
j

j for 2 ≤ j ≤ n, and the first claim follows. Similar arguments

show that Ehej | f j

j for 2 ≤ j ≤ n if k > 0.
For the remaining claim, we first note that the additional assumptions imply
e = e2+· · ·+en. Suppose that the claim is wrong and Ehe+1 | (f/f1), and let
i ∈ {2, . . . , n} be such that Ehei+1 | f i

i . Then (ii) yields k ∈ {0, . . . , i− 1}
satisfying Ehei+1 | E−kfi. If k < i − 1, then hei+1 | E−k+1fi | f

i
i , a

contradiction to the definition of ei. Thus k = i−1 and Ehei+1 | fi, and hence
h | E−ifi. By assumption, h | f1 = f

1
1 , and therefore h | gcd(f1

1 , E−ifi),
which contradicts Definition 5.15 (ii). We conclude that Ehe+1

� (f/f1), and
the other remaining claim follows by similar arguments. �

We now present two algorithms for computing the gff. The first one is due to
Paule (1995). The second one seems to be new and is analogous to Yun’s (1976)
algorithm for computing the squarefree decomposition.

Algorithm 5.18 (Gff computation).
Input: A nonzero monic polynomial f ∈ F [x] of degree n, where F is a field of

characteristic zero or greater than n.
Output: The gff of f .
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0. if f = 1 then return the empty sequence
1. g ←− gcd(f, Ef), m←− deg g
2. call the algorithm recursively to compute the gff g1, . . . , gm of g

3. h←− f

g · (E−1g1)(E−2g2) · · · (E−mgm)
4. return h, g1, . . . , gm, 1, . . . , 1

Theorem 5.19. Algorithm 5.18 works correctly and takes O(n3) field operations
with classical arithmetic and O(n M(n) log n) with fast arithmetic.

Proof. Let f1, f2, . . . , fn be the gff of f . Then g = f2f
2
3 · · · fn−1

n , by the Funda-
mental Lemma 5.16, and by induction, we have fi = gi−1 for 2 ≤ i ≤ m + 1 and
fi = 1 for m + 2 ≤ i ≤ n. Finally, f/g = f1 · (E−1f2) · · · (E−n+1fn), again by
the Fundamental Lemma, so that h = f1, and the correctness is proved.

Let T (n) denote the cost of the algorithm. Including the cost for the Taylor shift
to compute (Ef)(x) = f(x + 1) (Theorems 4.3 and 4.5), step 1 takes O(n2) field
operations with classical arithmetic and O(M(n) log n) with fast arithmetic. The
cost for step 2 is T (m). Step 3 takes O(n2) operations with classical arithmetic,
by Lemma 3.15 and Theorem 4.3. By Theorem 4.5, we can compute E−igi with
O(M(deg gi)) operations, for each i, together O(M(m)), by the sub-additivity of M.
Computing the product in the denominator takes O(M(m) log m), and the division
with remainder takes O(M(n)), by Lemma 3.15 and Fact 3.13, respectively. Thus
the cost for step 3 with fast arithmetic is O(M(n) + M(m) log m). The claims now
follow from m ≤ n− 1 and unraveling the recursion for T . �

The cost estimate for fast arithmetic appears also in Theorem 23.14 of von
zur Gathen & Gerhard (1999). The upper bounds of the theorem are achieved for
f = xn, up to a factor of log n in the case of fast arithmetic. The following method
improves this by an order of magnitude.

Algorithm 5.20 (Gff computation à la Yun).
Input: A nonzero monic polynomial f ∈ F [x] of degree n, where F is a field of

characteristic zero or greater than n.
Output: The gff of f .

0. if f = 1 then return the empty sequence

1. g ←− gcd(f, Ef), u1 ←− f

E−1g
, v1 ←− f

g
2. for 1 ≤ i ≤ n do
3. hi ←− gcd(ui, vi), ui+1 ←− ui

hi
, vi+1 ←− E

vi

hi
4. return h1, . . . , hn

Clearly the algorithm may be aborted as soon as ui = 1 (= vi).

Theorem 5.21. Algorithm 5.20 works correctly and takes O(n2) field operations
with classical arithmetic and O(M(n) log n) with fast arithmetic.
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Proof. Let 1 ≤ i < j, k ≤ n and f1, . . . , fn ∈ F [x] be the gff of f . We

have Ei−j+1fj | f
j

j , and the properties of the gff imply that gcd(fk, Ei−jfj) =
E−1 gcd(Efk, Ei−j+1fj) = 1 if j ≤ k. Similarly, we have E−ifk | f

k
k and

gcd(fk, Ei−jfj) = Ei gcd(E−ifk, E−jfj) = 1 if j ≤ k. From these observa-
tions, the invariants

ui =
∏

i≤k≤n

fk, vi =
∏

i≤j≤n

Ei−jfj , hi = fi

for 1 ≤ i ≤ n follow easily by induction, and the correctness is proved.
The cost for step 1 is O(n2) field operations with classical arithmetic and

O(M(n) log n) with fast arithmetic. Similarly, one execution of step 3 takes
O((deg ui)2) and O(M(deg ui) log(deg ui)) field operations with classical and fast
arithmetic, respectively. If nj = deg fj for all j, then deg ui =

∑
i≤j≤n nj for

all i and
∑

1≤i≤n deg ui = n, and the cost estimates follow by the sub-additivity
of M. �

In positive characteristic p, Algorithms 5.18 and 5.20 may get into an infinite
loop or return the wrong result if p ≤ n. For example, when f = xp − x = xp,
then gcd(f, Ef) = f , and Algorithm 5.18 does not terminate, while Algorithm 5.20
incorrectly returns h1 = f and h2 = · · · = hn = 1.

We now discuss a modular gff algorithm. Let Z be a UFD with field of frac-
tions F . We say that a sequence f1, . . . , fn ∈ Z[x] of primitive polynomials is
a primitive gff if f =

∏
i f

i
i and f1/lc(f1), . . . , fn/lc(fn) is the (monic) gff of

f/lc(f) in F [x]. The primitive gff is unique up to multiplication by units in Z×.
For Z = Z, we can make the primitive gff unique by requiring f, f1, . . . , fn to be
normalized, and then call it the normalized gff .

Problem 5.22 (Greatest factorial factorization). Let Z be a UFD. Given a non-
zero primitive polynomial f ∈ Z[x] of degree n, compute nonzero primitive polyno-
mials f1, . . . , fn ∈ Z[x] satisfying

f = f1f
2
2 · · · fn

n ,

gcd(f i
i , Efj) = gcd(f i

i , E
−jfj) = 1 for 1 ≤ i ≤ j ≤ n .

We first investigate when the modular image of a gff is again a gff. Interestingly,
the straightforward analog of Lemma 5.4 for the gff, where f ′ is replaced by Ef ,
does not hold. For example, let I = 7Z and f = (x + 8)(x + 7)x(x − 1)(x− 2) ∈
Z[x]. The primitive and monic gff of f is 1, x + 8, x, 1, 1 and gcd(f, Ef) =
(x + 8)x(x− 1). Now gcd(f, Ef) = (x + 1)x(x− 1) mod 7Z = gcd(f, Ef)),
but the monic gff of f is x, 1, 1, x + 1, 1, and this is not the modular image of
the gff of f . The problem here is that the two factors x + 7 and x are coprime in
Z[x], but not modulo I . Under the additional assumption that any two distinct irre-
ducible factors of f remain coprime modulo I , we can prove the following analog
of Lemma 5.4.
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Lemma 5.23. Let Z be a UFD of characteristic zero or prime characteristic greater
than n, f ∈ Z[x] be a nonzero primitive polynomial of degree n, and f1, . . . , fn ∈
Z[x] be a primitive gff of f . Moreover, let I ⊆ Z be a maximal ideal not containing
lc(f), denote the residue class map modulo I by a bar, and assume that Z = Z/I
has characteristic zero or greater than n as well. Finally, assume that g1, . . . , gn ∈
Z[x] is the monic gff of f/lc(f). Then

deg gcd(f, Ef) ≤ deg gcd(f, Ef) and deg(g1 · · · gn) ≤ deg(f1 · · · fn) . (5.7)

If in addition
deg gcd(f, f ′) = deg gcd(f, f ′) , (5.8)

then for each of the two inequalities, equality holds if and only if lc(fi)gi = fi for
1 ≤ i ≤ n.

We note that the condition (5.8) alone is not is not sufficient to ensure that the
modular image of the gff is again a gff, as the example f = x2(x + 8) ∈ Z[x] and
I = 7Z shows. On the other hand, the, example f = x(x + 7) ∈ Z[x] and I = 7Z

illustrates that (5.8) is not necessary.

Proof. Let F be the field of fractions of Z . We first note that

gcd(f, Ef) ∼ f2f
2
3 · · · fn−1

n , E(f1 · · · fn) ∼ Ef

gcd(f, Ef)
,

by the Fundamental Lemma 5.16, where∼ denotes equality up to associates in F [x],
and similarly

gcd(f, Ef) ∼ g2g
2
3 · · · gn−1

n , E(g1 · · · gn) ∼ Ef

gcd(f, Ef)
. (5.9)

Now gcd(f, Ef) is a common divisor of f and Ef , which implies that

gcd(f, Ef) | gcd(f, Ef) and g1 · · · gn | f1 · · · fn , (5.10)

and (5.9) shows that either both inequalities in (5.7) are strict or both are equalities.
This proves the first claim.

The “if” direction of the second claim is true without the additional assumptions.
We prove the “only if” part by induction on n. There is nothing to prove if n = 0. If
n > 0, then f2, f3, . . . is a gff of gcd(f, Ef) and g2, g3, . . . is a gff of gcd(f, Ef),
by the Fundamental Lemma 5.16. If equality holds in (5.7), then (5.10) yields

g2g
2
3 · · · gn−1

n ∼ gcd(f, Ef) ∼ gcd(f, Ef) ∼ f2f
2
3 · · · fn−1

n

and g1 · · · gn ∼ f1 · · · fn. Applying (5.10) to gcd(f, Ef) instead of f , we find that
g2 · · · gn divides f2 · · · fn. We show below that also g1 | f1. Thus g1 ∼ f1 and
g2 · · · gn ∼ f2 · · · fn. Lemma 5.4 together with the property (5.2) implies that the
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condition (5.8) holds for gcd(f, Ef) as well, and the induction hypothesis, applied
to gcd(f, Ef), yields gi ∼ fi for 2 ≤ i ≤ n.

To prove that g1 | f1, let t ∈ Z[x] be an irreducible factor of g1 of multiplicity
i > 0, and let j ≥ 0 be its multiplicity in f/g1. Moreover, let h ∈ Z[x] be the unique
primitive irreducible factor of f such that t | h, and let e ≥ 1 be its multiplicity in f .
Equation (5.8) and Lemma 5.4 imply that the distinct irreducible factors of f in Z[x]
remain squarefree and pairwise coprime modulo I . Thus t2 � h and t � (f/h

e
), and

hence e = i + j. Now assume that hi
� f1. Then hj+1 | (f/f1) = f

2
2 · · · fn

n , and
Lemma 5.17 implies that Ehj+1 | (f/f1) or E−1hj+1 | (f/f1). For simplicity,
we assume that Ehj+1 | (f/f1); the arguments for the other case are analogous.
Then Etj+1 | f , but Et � g1, by Definition 5.15 (ii), such that Etj+1 | (f/g1).
Now Lemma 5.17 (iii) yields tj+1 | (f/g1). This contradiction to the definition of
j proves that our assumption is wrong, hi | f1, and ti | f1. Since this holds for any
irreducible factor of g1, we conclude that g1 | f1. �

Lemma 5.23 is the main tool for the following modular gff algorithm, which is
based on the Chinese Remainder Theorem. We assume that ω is the word size of
our processor. For a nonzero polynomial f ∈ Z[x], normal(f) denotes the unique
normalized polynomial that divides f and has the same degree.

Algorithm 5.24 (Small primes modular gff computation).
Input: A normalized polynomial f ∈ Z[x] of degree 1 ≤ n ≤ 2ω−1 and max-norm
‖f‖∞ < 2λ.

Output: The normalized gff of f , or otherwise “FAIL”.

1. b←− lc(f), B ←− 	(n+1)1/22n+λ
, s←− �log2(2 ·3n/3bB)/(ω−1)�
2. choose a set S0 of 2s single precision primes

S1 ←− {p ∈ S0: p � b}
3. for all p ∈ S1 do
4. call Algorithm 5.20 to compute the monic gff

f ≡ b
∏

1≤i≤n

g
i
p,i mod p

of f/b modulo p, with monic polynomials gp,1, . . . , gp,n ∈ Z[x] of max-
norm less than p/2
ep ←− deg gcd(f mod p, f ′ mod p)

5. /∗ remove unlucky primes from S1 ∗/
d←− max{deg gp,1 + · · ·+ deg gp,n: p ∈ S1}
e←− min{ep: p ∈ S1}
S2 ←− {p ∈ S1: deg gp,1 + · · ·+ deg gp,n = d and ep = e}
if #S2 ≥ s then remove #S2 − s primes from S2 else return “FAIL”

6. for 0 ≤ j < i ≤ n do
7. use the Chinese Remainder Algorithm to compute f∗

ij ∈ Z[x] of max-
norm less than (

∏
p∈S2

p)/2 such that f∗
ij ≡ bgp,i(x− j) mod p for all

p ∈ S2
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8. if
∏

0≤j<i≤n ‖normal(f∗
ij)‖1 > B then return “FAIL”

9. if
∏

1≤i≤n lc(normal(f∗
i0))

i = lc(f)
then return normal(f∗

10), . . . , normal(f∗
n0) else return “FAIL”

Definition 5.25. Let Z = Z and f ∈ Z[x] nonzero primitive. A prime p ∈
N is lucky with respect to the greatest factorial factorization problem 5.22 if
p � lc(f) and deg gcd(f, f ′) = deg gcd(f mod p, f ′ mod p) (i.e., p is lucky
with respect to the squarefree factorization problem 5.1) and deg gcd(f, Ef) =
deg gcd(f mod p, Ef mod p).

For a prime p > deg f , Lemma 5.23 implies that the image modulo p of a
greatest factorial factorization of f is again a greatest factorial factorization if p is a
lucky prime with respect to greatest factorial factorization, but not vice versa.

Theorem 5.26. Algorithm 5.24 succeeds if at least s ∈ Θ(n + λ) of the initial
primes in S0 are lucky. If the algorithm does not return “FAIL”, then it correctly
returns the normalized gff of f .

Proof. Let f1, . . . , fn ∈ Z[x] be the normalized gff of f , let h = gcd(f, f ′), and
let p ∈ S1. Lemmas 5.23 and 5.4 imply that deg(gp,1 · · · gp,n) ≤ deg(f1 · · · fn)
and ep ≥ deg h, respectively. By definition, we have equality in both cases if and
only if p is a lucky prime. Thus, if at least one prime in S0 is lucky, then we have
d = deg(f1 · · · fn) and e = deg h in step 5, and all primes in S2 are lucky.

If at least s of the primes in S0 are lucky, then S2 contains s lucky primes
after step 5. Let m =

∏
p∈S2

p and 0 ≤ j < i ≤ n. Then Lemma 5.23 implies
that bfi(x − j)/lc(fi) ≡ f∗

ij mod m. Since fi(x − j) divides f , Mignotte’s bound
(Fact 3.3) implies that ‖fi(x − j)‖∞ ≤ B and ‖bfi(x − j)/lc(fi)‖∞ < m/2.
Thus the coefficients of bfi(x− j)/lc(fi) and f∗

ij are both absolutely less than m/2,
and hence they are equal. Since fi is normalized, so is fi(x − j), and we have
fi(x − j) = normal(f∗

ij). Again by Mignotte’s bound, the condition in step 8 is
false, the condition in step 9 is true, and the algorithm does not return “FAIL”. This
proves the first assertion.

To prove the second claim, suppose that the condition in step 8 is true. Then
∥∥∥∥∥∥

∏

0≤j<i≤n

normal(f∗
ij)

∥∥∥∥∥∥
∞

≤
∥∥∥∥∥∥

∏

0≤j<i≤n

normal(f∗
ij)

∥∥∥∥∥∥
1

≤
∏

0≤j<i≤n

‖normal(f∗
ij)‖1 ≤ B <

m

2
.

Let 0 ≤ j < i ≤ n. Then

‖f∗
ij‖∞ ≤ ‖f∗

ij‖1 ≤ b ‖normal(f∗
ij)‖1 ≤ bB <

m

2
,

‖f∗
i0(x− j)‖∞ ≤ (j + 1)deg f∗

i0‖f∗
i0‖1 ≤ in/ib ‖normal(f∗

i0)‖1 ≤ in/ibB <
m

2
,
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where we have used Lemma 4.2 and the fact that i1/i ≤ 31/3 for all i ∈ N≥1. Thus
the congruence f∗

ij ≡ f∗
i0(x − j) mod m is in fact an equality and normal(f∗

ij) =
E−jnormal(f∗

i0). The polynomials
∏

1≤i≤n normal(f∗
i0)

i and f agree modulo m
up to a multiplicative constant. If the condition in step 9 is true, then

∏

1≤i≤n

normal(f∗
i0)

i =
∏

0≤j<i≤n

normal(f∗
ij) ≡ f mod m ,

and since both polynomials have max-norms less than m/2, they are equal. Now
the normal(f∗

i0) are a gff of f , since the required gcd conditions hold modulo each
prime in S2. Since these polynomials are normalized, the uniqueness of the normal-
ized gff implies that fi = normal(f∗

i0) for all i, and the algorithm returns the correct
result. �

We recall from Sect. 3 that for two polynomials f, g ∈ R[x] and 0 ≤ δ ≤
min{deg f, deg g}, σδ(f, g) ∈ R denotes the δth subresultant of f and g.

Theorem 5.27. Let δ = deg gcd(f, Ef), δ∗ = deg gcd(f, f ′), let r = σδ(f, Ef),
and let r∗ = σδ∗(f, f ′). Then 0 < |rr∗| ≤ D = n3n/2(n+1)n2n(4λ+n+1), and the
number of single precision primes that are unlucky with respect to greatest factorial
factorization is at most 	(log2 D)/(ω − 1)
 ∈ Θ(n2 + nλ). If the number of single
precision primes exceeds 2	(log2 D)/(ω − 1)
 and the set S0 in step 2 is chosen
uniformly at random from among all subsets of cardinality 2s of the single precision
primes, then Algorithm 5.24 returns “FAIL” with probability at most 1/2.

Proof. The claim that r and r∗ are nonzero is clear from Lemma 3.9 (i). We have
‖f‖2 ≤ (n + 1)1/2‖f‖∞, ‖Ef‖2 < 2n+1‖f‖∞, by Lemma 4.2, and

‖f ′‖2 ≤ n1/2‖f ′‖∞ ≤ n3/2‖f‖∞ ,

and Corollary 3.2 implies that

|r| ≤ ‖f‖n−δ
2 ‖Ef‖n−δ

2 ≤ (n + 1)n/22n2+n‖f‖2n
∞ ,

|r∗| ≤ ‖f‖n−δ∗−1
2 ‖f ′‖n−δ∗

2 ≤ (n + 1)n/2n3n/2‖f‖2n
∞ .

We conclude that |rr∗| < D. Now 2bB ≤ D, so that under the assumptions of the
theorem, we can indeed choose 2s primes in step 2. A prime is unlucky if and only
if it divides rr∗, by Corollary 3.12, and hence there are at most 	(log2 D)/(ω− 1)

unlucky single precision primes. By assumption, there are at least twice as many
single precision primes. Therefore the probability that at least half of the primes
of a randomly chosen set of 2s single precision primes are lucky is at least 1/2
(Lemma 3.24), and the claim follows from Theorem 5.26. �

Theorem 5.28. If we neglect the cost for choosing primes in step 2, then Algo-
rithm 5.24 takes O(n3 + nλ2) word operations when using classical arithmetic,
and O(n M(n + λ) log(n + λ) + λM(n) log n) or O∼(n2 + nλ) word operations
when using fast arithmetic, where the O∼-notation suppresses logarithmic factors.
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Proof. We first reduce lc(f) and all other coefficients of f modulo all primes in
S0 and S1, respectively. This takes O(nλs) and O(n M(s) log s) word operations
with classical and fast arithmetic, respectively. The cost for step 4 is O(n2) and
O(M(n) log n) word operations for each of the O(s) primes with classical and fast
arithmetic, respectively, by Theorem 5.21 and Fact 3.13. Computing a coefficient
of some f∗

ij in step 7 takes O(s2) word operations with classical arithmetic and
O(M(s) log s) with fast arithmetic. There are n non-leading coefficients in total,
and hence the cost for steps 6 and 7 is O(ns2) and O(n M(s) log s), respectively.
The cost for normalizing all f∗

ij in step 8 is O(n) gcd’s and divisions of integers
of word length at most s, taking O(ns2) word operations with classical arithmetic
and O(n M(s) log s) with fast arithmetic. Computing the products in steps 8 and 9
takes O(s2) word operations with classical arithmetic and O(M(s) log n) with fast
arithmetic, by Lemma 3.15. The claims now follow from s ∈ O(n + λ) and using
M(n) = n log n loglog n by adding costs. �

We could also think of a modular algorithm for computing the gff f1, . . . , fn

of f based on Hensel lifting. A direct adaption of Yun’s algorithm 5.12 is not ob-
vious since the fi are not necessarily coprime and Hensel lifting cannot be applied.
However, we could first compute the squarefree decomposition g1, . . . , gn of f , next
compute the gff of gigi+1 · · · gn for all i, and finally put things together. As in the
case of squarefree factorization, this would lead to similar or even worse time esti-
mates than those of Theorem 5.28, and we do not analyze this algorithm here.

Remark 5.29. (i) When M(n) ∈ Ω(n1+ε) for some positive ε, then we can drop
the factor log(n + d) in the cost estimate of Theorem 5.28.

(ii) When using fast arithmetic, then Algorithm 5.24 is – up to logarithmic factors
– asymptotically optimal in the diagonal case where n ≈ λ, since its running
time is essentially linear in the input size, which is about n2 words.

(iii) The number 2s of initial primes in step 2 of Algorithm 5.24 is often much too
large in practice; see Remark 5.11 for a discussion.

(iv) See Remark 3.23 for a discussion how to find random single precision primes
in step 2 of Algorithm 5.24 and what this costs.



7. Computing All Integral Roots of the Resultant

In this chapter, we discuss modular algorithms for the following problem. Given
two bivariate polynomials f, g ∈ Z[x, y], compute all integral roots of the resultant
r = resx(f, g) ∈ Z[y] with respect to y. The straightforward solution is to com-
pute the coefficients of r, either by linear algebra or by a variant of the Euclidean
Algorithm, and then to compute all linear factors of r in Z[y]. In one of our main
applications, namely Gosper’s (1978) algorithm for hypergeometric summation, the
resultant is of the form r = resx(f(x), g(x + y)) for two univariate polynomials
f, g ∈ Z[x]. In this case, the straightforward algorithm is inefficient, since the co-
efficients of the linear factors of r are much smaller than the coefficients of r itself.
For that reason, we pursue a different approach. We choose a suitable single preci-
sion prime p and compute the coefficients of r modulo pk, were k ∈ N is an integer
such that pk bounds the absolute value of all integral roots of r. Then we find all
roots of r modulo pk via Hensel lifting. To compute r modulo pk, we employ the
monic Extended Euclidean Algorithm 3.4 over the ring Z/pk

Z. Since this ring has
zero divisors when k ≥ 1, the analysis of our algorithm is somewhat intricate. It is
easy to modify our algorithm so as to compute all rational roots of r. We also dis-
cuss an alternative approach for the hypergeometric case, which does not compute
the resultant r at all, but instead computes the irreducible factorizations of f and g
modulo pk. This approach turns out to be faster than the resultant-based approach.

Besides hypergeometric summation, we also discuss applications of our algo-
rithm to the continuous analog, namely hyperexponential integration. Moreover,
we give a complete cost analysis of a modular variant of the algorithm by Lazard,
Rioboo and Trager for computing the logarithmic part of the integral of a rational
function in Q(x). This algorithms requires not only the computation of the resultant,
but also of certain subresultants. It turns out that in the worst case, the cost estimate
dominates the cost for the Hermite integration discussed in the previous chapter.

The idea of our modular algorithm is to choose a single precision prime p and a
sufficiently large set U of integers, to compute r(u) mod pk for all u ∈ U , where k
is as described above, and then to recover r mod pk by interpolation. The following
definition formalizes when a prime p and an evaluation point u are suitable.

Definition 7.1. Let f, g ∈ Z[x, y] be nonzero polynomials, and for 0 ≤ d <
min{degx f, degx g}, let σd ∈ Z[y] be the dth subresultant of f and g with respect
to x.

J. Gerhard: Modular Algorithms, LNCS 3218, pp. 97-120, 2004.
 Springer-Verlag Berlin Heidelberg 2004
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(i) A prime p ∈ N is lucky (for f, g) if p neither divides lcx(fg) nor σd, for all
integers d with 0 ≤ d < min{degx f, degx g} and σd �= 0.

(ii) A point u ∈ Z is lucky (for f, g) with respect to a prime p if lcx(fg) �≡ 0 mod
〈p, y − u〉 and σd �≡ 0 mod 〈p, y − u〉 holds for all integers d with 0 ≤ d <
min{degx f, degx g} and σd �= 0.

Obviously every u ∈ Z is unlucky with respect to p if p itself is unlucky.
Here is the modular algorithm for computing the resultant of two bivariate poly-

nomials modulo a prime power. In fact, it computes all intermediate results of the
Extended Euclidean Algorithm. It works by computing the intermediate results of
the EEA for f(x, u) mod pk and g(x, u) mod pk for sufficiently many points u and
reconstructing the intermediate results of f(x, y) mod pk and g(x, y) mod pk by
interpolation with respect to y. For k = 1, the algorithm boils down to Algorithm
6.36 in von zur Gathen & Gerhard (1999).

Algorithm 7.2 (Modular bivariate EEA).
Input: Nonzero polynomials f, g ∈ Z[x, y] with degx g = m ≤ degx f = n and

degy g, degy f ≤ ν, where nν ≥ 2, a prime p ≥ 5(n+1)2ν not dividing lcx(fg),
and k ∈ N>0.

Output: The Euclidean length � of f, g, considered as polynomials in the main vari-
able x, their degree sequence d1 = m > · · · > d� ≥ 0, and the images modulo
pk of the subresultants σdi ∈ Z[y] and the polynomials σdirdi , σdisdi , σditdi in
Z[x, y], where rdi , sdi , tdi is the row of degree di in the monic EEA of f, g in
Q(y)[x], for 2 ≤ i ≤ �, or “FAIL”.

1. let U ⊆ {0, 1, . . . , 5(n + 1)2ν − 1} be a set of 4nν evaluation points
remove those u from U with

degx f(x, u) mod p < degx f(x, y) or degx g(x, u) mod p < degx g(x, y)

2. for u ∈ U do
3. fu ←− f(x, u) mod pk, gu ←− g(x, u) mod pk

4. call the monic Extended Euclidean Algorithm 3.4 over Zpk with input
fu and gu

if it returns regularly
then let �u, du,i ∈ N, γu,di ∈ Zpk and ru,di , su,di , tu,di ∈ Zpk [x] for
2 ≤ i ≤ �u be its results
else remove u from U and continue the loop 2

5. if #U ≤ 2nν then return “FAIL”
6. let d1 = degx g > d2 > · · · > d�∗ be all degrees that occur in the degree

sequence of fu, gu for some u ∈ U
7. for 2 ≤ i ≤ �∗ do
8. let Udi = {u ∈ U : di occurs in the degree sequence of fu, gu}

if #Udi ≤ 2(n− di)ν then return “FAIL”
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9. remove #Udi − 2(n− di)ν − 1 points from Udi and compute by inter-
polation γdi ∈ Zpk [y] and r∗di

, s∗di
, t∗di
∈ Zpk [x, y] of degrees at most

2(n− di)ν in y such that the following holds for all u ∈ Udi :

γdi(u) = γu,di , r∗di
(x, u) = γu,di ru,di ,

s∗di
(x, u) = γu,di su,di, t∗di

(x, u) = γu,di tu,di .

10. return γdi , r∗di
, s∗di

, t∗di
for 2 ≤ i ≤ �∗

Theorem 7.3 (Correctness of Algorithm 7.2). Let f, g be as in Algorithm 7.2, and
for 0 ≤ d < m, let σd ∈ Z[y] be the dth subresultant of f, g with respect to x. If
Algorithm 7.2 returns “FAIL”, then at most 2nν of the initial points in U are lucky
for f, g with respect to p. Otherwise, for each d < m, the degree d occurs in the
degree sequence d2, . . . , d�∗ of the output if and only if p � σd, and in that case we
have

γd = σd mod pk, r∗d = σd rd mod pk ,
s∗d = σd sd mod pk, t∗d = σd td mod pk .

If p is lucky for f, g, then � = �∗ and the algorithm returns the correct results.

Proof. By Lemma 3.11 (ii) with I = 〈pk, y − u〉, we have σd(u) ≡ 0 mod p for
some nonzero σd if the monic EEA for f, g does not return regularly in step 4. Thus
a point u that is removed from U either in step 1 or in step 4 is unlucky with respect
to p, and at most 2nν of the initial points in U are lucky if the algorithm returns
“FAIL” in step 5. Let 2 ≤ i ≤ �∗. Since there exists some v ∈ U such that di occurs
in the degree sequence of fv and gv, Lemma 3.11 (i) implies that σdi �= 0. If now
di does not occur in the degree sequence of fu and gu for some other point u ∈ U ,
then the same Lemma implies that u is unlucky with respect to p. Therefore at most
2nν of the initial points in U are lucky if the algorithm returns “FAIL” in step 8.

We now assume that the algorithm does not return “FAIL”, and let rd, sd, td in
Q(y)[x] be a row in the monic EEA of f, g over Q(y), such that sf + tg = r is
monic of degree d < m in x. Then σd �= 0, by Lemma 3.9 (i). If p | σd, then
all points in U are roots of σd modulo p, and Lemma 3.11 (i) implies that d does
not occur in the degree sequence of fu, gu for any u ∈ U . Thus d �∈ {d2, . . . , d�∗}.
Otherwise, if p � σd, then degy σd ≤ 2(n−d)ν implies that at most 2(n−d)ν points
in U are roots of σd modulo p, and the degree d occurs in the degree sequence of
fu, gu for at least #U − 2(n− d)ν > 0 points in U after step 5, by Lemma 3.11 (i).
Thus d ∈ {d2, . . . , d�∗}. In particular, if p is lucky, then p | σd ⇐⇒ σd = 0, so
that d occurs in the degree sequence of f, g over Q(y)[x] if and only if it occurs in
the degree sequence of the output of Algorithm 7.2, and hence � = �∗.

Now let 2 ≤ i ≤ � be such that d = di in step 6, and let u ∈ Udi in step 9 for
that value of i. Then σd(u) mod pk is the dth subresultant of fu, gu, and Proposition
3.7 (v) yields σd(u) mod pk = γu,d. By Corollary 6.49 (ii) in von zur Gathen &
Gerhard (1999) and Cramer’s rule, the denominators of rd, sd, td are divisible by σd,
so that σdrd, σdsd, σdtd are in Z[x, y], and the degrees in y of the latter polynomials
are less than 2(n − d)ν. By Lemma 3.11 (i), we have rd(x, u) mod pk = ru,d,
and similarly for sd, td. Since we have assumed that the algorithm does not return
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“FAIL” in step 8, there are #Ud = 2(n− d)ν +1 interpolation points. These points
are distinct modulo p, and hence we can indeed reconstruct σd, σdrd, σdsd, σdtd
modulo pk by interpolation. �

Theorem 7.4. Let n, ν ∈ N with nν ≥ 2, f, g ∈ Z[x, y] with degx f, degx g ≤ n
and degy f, degy g ≤ ν, and p ∈ N a prime that is lucky for f, g. If p ≥ 5(n + 1)2ν
and U is a uniformly randomly chosen subset of S = {0, 1, . . . , 5(n + 1)2ν − 1}
of cardinality #U = 4nν, then with probability at least 3/4, more than 2nν of the
points u ∈ U are lucky for f, g with respect to p.

Proof. Let m = min{degx f, degx g} and σd ∈ Z[y] be the dth subresultant of
f, g with respect to x for 0 ≤ d < m, and let σ = lcx(fg)

∏
σd �=0 σd ∈ Z[y]. By

Corollary 3.2, we have deg σd ≤ 2(n − d)ν for 0 ≤ d < m. Since p is lucky for
f, g, we find that σ mod p ∈ Fp[y] is a nonzero polynomial of degree at most

2ν + 2ν
∑

0≤d<m

(n− d) ≤ 2ν + 2ν
∑

1≤d≤n

d = (n2 + n + 2)ν ≤ (n + 1)2ν .

Thus σ mod p has at most (n + 1)2ν roots in Fp, and at least 4/5 of the points in
S are lucky for f, g with respect to p. Now Lemma 3.24 (ii) with b = (n + 1)2ν,
w = 4b, and k = 4nν shows that for a randomly chosen subset U ⊆ S of cardinality
#U = k, the probability that at most half of the points u ∈ U are unlucky is at most
1/4. �

Theorem 7.5 (Success probability of Algorithm 7.2). Let f, g be as in Algorithm
7.2. If p is lucky for f, g and U in step 1 is chosen uniformly at random from among
all subsets of {0, 1, . . . , 5(n + 1)2ν − 1} of cardinality #U = 4nν, then Algorithm
7.2 returns “FAIL” with probability at most 1/4.

Proof. This follows immediately from Theorems 7.3 and 7.4. �

Remark 7.6. Algorithm 7.2 can be turned into a deterministic algorithm if k = 1,
as follows (see also Sect. 6.7 and 11.2 in von zur Gathen & Gerhard 1999). We
choose a set U of (4n + 2)ν arbitrary distinct evaluation points in step 1. By as-
sumption, lcx(fg) mod p is a nonzero polynomial in Fp[y] of degree at most 2ν.
Then U has at least 4nν points after step 1. The Euclidean Algorithm always ter-
minates regularly over the field Fp, and hence #U ≥ 4nν and Algorithm 7.2 does
not return “FAIL” in step 5. (Thus step 5 may be omitted.) Now let 2 ≤ i ≤ �∗.
Since di occurs in the degree sequence of the EEA of fu and gu for some u ∈ U , the
dith subresultant σdi of f mod p and g mod p is a nonzero polynomial in Fp[y], by
Lemma 3.11 (i), which has degree at most 2(n − di)ν, by Corollary 3.2. Thus the
dith subresultant of fu and gu, which equals σdi(u), vanishes for at most 2(n−di)ν
values u ∈ U , and hence di occurs in the degree sequence of the EEA of fu and gu

for at least 2(n+di)ν points from U . Thus #Udi ≥ 2nν for all i, and the algorithm
does not return “FAIL” in step 8. (This means that the “if” statement in step 8 may
be omitted as well.)
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Theorem 7.7 (Cost of Algorithm 7.2). Let f, g ∈ Z[x, y] be as in Algorithm 7.2,
and assume that the integer coefficients of f and g are absolutely bounded by pk.

(i) Algorithm 7.2 takes O(n4ν2) arithmetic operations in Zpk with classical poly-
nomial arithmetic and O(n2M(nν) log(nν)) or O∼(n3ν) operations with fast
arithmetic.

(ii) If only one row in the EEA is required, then the cost is O(n3ν2) with classical
and O(n M(nν) log(nν)) or O∼(n2ν) with fast arithmetic.

(iii) The cost for computing only the resultant is O(n2ν(n + ν)) with classical
arithmetic and

O(n2 M(ν) log ν + nν M(n) log n + M(nν) log(nν))

or O∼(n2ν) with fast arithmetic.

Proof. In steps 1 and 3, we evaluate the at most 2n coefficients in Zpk [y] of
f mod pk and g mod pk, each of degree at most ν, at at most 4nν points. This
takes O(n2ν2) operations with classical arithmetic and O(n2 M(ν) log ν) with fast
arithmetic. The cost for one execution of the monic EEA in step 4 is O(n2) op-
erations, both with classical and fast arithmetic, in total O(n3ν). Interpolating one
coefficient in Zpk [y], of degree at most 2nν, in step 9 takes O(n2ν2) operations
with classical arithmetic and O(M(nν) log(nν)) with fast arithmetic, by Fact 3.13.
There are O(n2) coefficients in total, and hence the overall cost for the loop in step 7
is O(n4ν2) with classical arithmetic and O(n2M(nν) log(nν)) with fast arithmetic.
This dominates the cost for the other steps.

If only one row in the EEA is required, then the overall cost for step 4 with fast
arithmetic drops to O(nν M(n) log n), by employing the fast Euclidean Algorithm,
and the cost for the interpolation is O(n3ν2) with classical and O(n M(nν) log(nν))
with fast arithmetic. Again, the cost for the interpolation dominates the cost for the
other steps.

If only the resultant σ0 is required, then the cost for the interpolation is only
O(n2ν2) with classical and O(M(nν) log(nν)) with fast arithmetic. �

We note that in the generic case, where � = n and di = n − i for all i and the
degrees in y of the numerators and denominators in the ith row of the monic EEA
are close to the upper bound 2(n − di)ν = 2iν, the output size is Θ(n2ν) for one
row and Θ(n3ν) for all rows, so that the algorithm is – up to logarithmic factors –
asymptotically optimal when using fast arithmetic.

The following corollary applies Algorithm 7.2 in the case of hypergeometric
summation.

Corollary 7.8. Let n ∈ N≥2, f, g ∈ Z[x] be nonconstant of degrees at most n,
� ∈ N the Euclidean length and d1 = deg g > · · · > d� the degree sequence of
f(x) and g(x + y) with respect to x, and let σdi ∈ Z[y] and rdi , sdi , tdi ∈ Z[x, y]
for 2 ≤ i ≤ � be the subresultants and the results of the monic EEA in Q(x)[y] of
f(x) and g(x + y), respectively. Moreover, let p ≥ 5n(n + 1)2 be a prime that is
lucky for f(x), g(x + y).
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(i) There is a probabilistic Las Vegas algorithm which for a given k ≥ 1 com-
putes �, the di, and the images of σdi , σdirdi , σdisdi , σditdi modulo pk for
2 ≤ i ≤ �. This algorithm takes O(n6) arithmetic operations in Zpk with
classical polynomial arithmetic and O(n2M(n2) log n) or O∼(n4) with fast
arithmetic, and it succeeds with probability at least 3/4.

(ii) If only one row in the EEA is required, then the cost is O(n5) with classical
and O(n M(n2) log n) or O∼(n3) with fast arithmetic.

(iii) If only the resultant is required, then the cost is O(n4) with classical and
O((n2 M(n) + M(n2)) log n) or O∼(n3) with fast arithmetic.

Proof. Correctness and the bound on the success probability follow from Theorems
7.3 and 7.5. We do not need the coefficients of the polynomial g(x + y) explicitly,
since we only want to evaluate it at several points y = u, and hence the coefficients
of g(x) are sufficient. For the cost analysis, we thus have to estimate the cost for
computing g(x + u) mod pk for all u ∈ U in step 3. Per point u, this takes O(n2)
additions and multiplications modulo pk with classical arithmetic, and O(M(n))
with fast arithmetic, by Theorems 4.3 and 4.5. Thus the overall cost is O(n4) and
O(n2M(n)), respectively. This agrees with the cost estimate for step 3 from Theo-
rem 7.7 with ν = n, up to a factor log n in the case of fast arithmetic, and the claims
follow from this theorem. �

In the special case of Corollary 7.8, there are better bounds on the degrees
of the intermediate results in the EEA. More precisely, Corollary 3.2 implies that
degy σd ≤ n(n − d) for all d, and the same bound is valid for the degree in y
of σdrd, σdsd, σdtd. Thus about half the number of evaluation points are sufficient,
namely #U = 2n2 out of 5(n + 1)2n/2 in step 1 of Algorithm 7.2.

The next corollary is the application of Algorithm 7.2 to the case of hyperexpo-
nential integration.

Corollary 7.9. Let n ∈ N≥2, f, g ∈ Z[x] be nonconstant of degrees at most n,
� ∈ N the Euclidean length and d1 > · · · > d� the degree sequence of g and f−yg′

with respect to x, and let σdi ∈ Z[y] and rdi , sdi , tdi ∈ Z[x, y] for 2 ≤ i ≤ � be
the subresultants and the results of the monic EEA in Q(x)[y] of g and f − yg′,
respectively. Moreover, let p ≥ 5(n+1)2 be a prime that is lucky for g and f − yg′.

(i) There is a probabilistic Las Vegas algorithm which for a given k ≥ 1 com-
putes �, the di, and the images of σdi , σdirdi , σdisdi , σditdi modulo pk for
2 ≤ i ≤ �. This algorithm takes O(n4) arithmetic operations in Zpk with clas-
sical polynomial arithmetic and O(n2M(n) log n) or O∼(n3) with fast arith-
metic, and it succeeds with probability at least 3/4.

(ii) The cost for computing only one row is O(n3) operations with classical and
O(n M(n) log n) or O∼(n2) with fast arithmetic, and the same estimate is valid
for computing the resultant.

Proof. Correctness and the bound on the success probability follow from Theorems
7.3 and 7.5. The cost for computing g′ and evaluating f−yg′ at y = u for all u ∈ U
in step 3 is O(n2) additions and multiplications in Zpk . This agrees with the cost
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estimate for step 3 from Theorem 7.7 with ν = 1, and the cost estimates follow
from the latter theorem. �

By a similar argument as after Corollary 7.8, we may reduce the number of
evaluation points to #U = 2n out of 5(n + 1)2/2 in step 1 of Algorithm 7.2 in this
special case.

7.1 Application to Hypergeometric Summation

We now return to hypergeometric summation and discuss a new modular algorithm
for computing all integral roots of the resultant r = resx(f(x), g(x + y)) ∈ Z[y]
for two given nonzero polynomials f, g ∈ Z[x].

Problem 7.10 (Integral root distances). Given nonzero polynomials f, g ∈ Z[x]
of degree at most n, compute at most n2 integers containing all z ∈ Z such that
gcd(f(x), g(x + z)) is nonconstant.

The following factorization is due to Euler; see Notes 6.8 and Exercise 6.12 in
von zur Gathen & Gerhard (1999).

Fact 7.11. Let F be a field and f = lc(f)
∏

1≤i≤n

(x− αi), g = lc(g)
∏

1≤j≤m

(x− βj)
be nonzero polynomials in F [x].

(i) resx(f, g) = lc(f)m
∏

1≤i≤n

g(αi) = lc(f)mlc(g)n
∏

1≤i≤n
1≤j≤m

(αi − βj).

(ii) resx(f(x), g(x + y)) = lc(f)mlc(g)n
∏

1≤i≤n
1≤j≤m

(y + αi − βj).

(iii) If f and g are integral polynomials with coefficients absolutely less than 2λ,
then any z ∈ Z with resx(f(x), g(x + z)) = 0 satisfies |z| < 2λ+2.

The third statement follows, for example, from Exercise 6.23 (ii) in von zur
Gathen & Gerhard (1999).

This fact implies that each root of r is the difference of a root of g and a root
of f . If f, g have integral coefficients, then (iii) says that the integral roots of r are
“small”, of about the same word size as the coefficients of f and g. On the other
hand, Corollary 3.2 yields an upper bound of about n + m times the size of the
coefficients of f and g for the size of the coefficients of r. For that reason, we do
not want to compute the coefficients of r exactly.

The following probabilistic algorithm, of Monte-Carlo type, computes all inte-
gral roots of r. First, it chooses a single precision prime p. Then it calls Algorithm
7.2 to compute r modulo pk for a suitable k, determines all roots of r modulo p
in Fp, and simultaneously lifts them to roots of r modulo pk. If p is lucky, then all
integral roots of r are found in this way, and possibly also some non-roots of r. If p
is unlucky, then there is no guarantee that all integral roots of r are found.
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Algorithm 7.12 (Prime power modular integral root distances).
Input: Nonzero polynomials f, g ∈ Z[x] with deg g ≤ deg f ≤ n, where n ≥ 2,

and ‖f‖∞, ‖g‖∞ < 2λ.
Output: A list of at most (deg f)(deg g) integers containing all z ∈ Z such that

gcd(f(x), g(x + z)) is nonconstant, or “FAIL”.

1. choose a single precision prime p > n2 not dividing lcx(fg)
k ←− (λ + 3)/ log2 p�

2. call Algorithm 7.2 with input f(x), g(x+y), p, and k, to compute σ ∈ Z[y] with
σ ≡ resx(f(x), g(x + y)) mod pk, degy σ ≤ (deg f)(deg g), and ‖σ‖∞ <

pk/2
if the algorithm returns “FAIL” or 0 does not occur in the degree sequence of
the output then return “FAIL”

3. use root finding over finite fields to compute the distinct roots a1, . . . , at ∈
{−(p − 1)/2, . . . , (p − 1)/2} of σ modulo p, with 0 ≤ t ≤ deg σ and multi-
plicities e1, . . . , et ∈ N≥1, such that

σ ≡ (y − a1)e1 · · · (y − at)etv mod p ,

where v ∈ Z[y] has no roots modulo p
4. use Hensel lifting to lift the factorization from 3 to a factorization σ ≡

w1 · · ·wtw mod pk, with wi ∈ Z[x] monic of degree ei and of max-norm less
than pk/2 and wi ≡ (y − ai)ei mod p, for all i

5. for 1 ≤ i ≤ t do
let zi ∈ {−(pk− 1)/2, . . . , (pk− 1)/2} be such that−eizi is congruent
modulo pk to the coefficient of xei−1 in wi

if (y − zi)ei �≡ wi mod pk then return “FAIL”
6. return z1, . . . , zt

The last check in step 5 is not necessary for the estimate of the algorithm’s
correctness probability below. However, in some cases it prevents that a wrong result
is returned; see Remark 7.19 below.

To prove correctness of the above algorithm, we need the following technical
lemma about Hensel lifting.

Lemma 7.13. Let r ∈ Z[y] be nonconstant and p ∈ N be a prime that is lucky
with respect to the squarefree factorization of r. Moreover, let s, u1, v1 ∈ Z[y] and
e, j ∈ N be such that s is an irreducible factor of r of multiplicity e, u1 mod p is
an irreducible factor of s mod p and coprime to v1 mod p, and r ≡ uj

1v1 mod p.
Then the following hold.

(i) e = j.
(ii) For every k ∈ N≥1, there exists a factorization r ≡ ue

kvk mod pk with poly-
nomials uk, vk ∈ Z such that uk ≡ u1 mod p and vk ≡ v1 mod p.

(iii) If r ≡ UV mod pk, with U, V ∈ Z[y], is any factorization such that U ≡
ue

1 mod p and V ≡ v1 mod p, then U ≡ ue
k mod pk and V ≡ vk mod pk.
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Proof. Let t, w1 ∈ Z[y] be such that r = set and s ≡ u1w1 mod p. Then s and
t are coprime in Q[y] and uj

1v1 ≡ r = set ≡ ue
1w

e
1t mod p. Since p is lucky

with respect to the squarefree factorization of r, Lemma 5.4 implies that s mod p is
squarefree and coprime to t mod p. Thus u1 divides modulo p neither w1 nor t, and
hence j ≤ e. On the other hand, u1 and v1 are coprime modulo p, which implies that
j = e and v1 ≡ we

1t mod p. By Hensel’s lemma (Theorem 15.12 in von zur Gathen
& Gerhard 1999), we obtain a factorization s ≡ ukwk mod pk, with uk, wk ∈ Z[y]
such that uk ≡ u1 mod p and wk ≡ w1 mod p. Letting vk = we

kt, we arrive at
the required factorization r = set ≡ ue

kwe
kt = ue

kvk mod pk. The third statement
follows from the uniqueness of Hensel lifting (Fact 3.20). �

Theorem 7.14 (Correctness of Algorithm 7.12). Let f, g be as in Algorithm 7.12
and r = resx(f(x), g(x+y)) ∈ Z[y]. If the algorithm returns “FAIL” in step 2, then
p is unlucky for f(x), g(x + y). If the algorithm does not return “FAIL” in step 2,
then σ ≡ r mod pk, p � lc(r), and t ≤ deg σ = deg r = (deg f)(deg g) ≤ n2 in
step 3. Moreover, if p is lucky with respect to the squarefree factorization of r, then
the algorithm does not return “FAIL” in step 5 and correctly solves the integral root
distances problem 7.10.

Proof. Fact 7.11 implies that r is not the zero polynomial. If Algorithm 7.2 returns
“FAIL” or 0 does not occur in the degree sequence of its output, then Theorem 7.3
implies that p is unlucky for f(x), g(x + y). Otherwise, and if Algorithm 7.2 does
not return “FAIL”, then the same theorem shows that σ ≡ r mod pk. Fact 7.11
implies that deg r = (deg f)(deg g) ≤ n2 and that lc(r) = lc(f)deg glc(g)deg f .
Thus deg σ = deg r and p � lc(r).

Now we assume that the algorithm does not return “FAIL” in step 2. For 1 ≤
i ≤ t, Lemma 7.13 for U = wi and u1 = y − ai, together with the assumption that
p is lucky with respect to the squarefree factorization of r, implies that wi is an eith
power modulo pk, and the algorithm does not return “FAIL” in step 5.

By Fact 7.11 (ii), each root of r is less than 2λ+2 in absolute value. Let z ∈ Z

be a root of r of multiplicity e ≥ 1. Then there is a unique i ∈ {1, . . . , t} such that
z ≡ ai mod p and (y − z)ei ≡ (y − ai)ei mod p. Lemma 7.13 with s = y − z,
u1 = y−ai, and U = (y−z)e implies that e = ei and (y−z)ei ≡ (y−zi)ei mod pk.
Comparing coefficients of xei−1, we find that eiz ≡ eizi mod pk, and since p >
n2 ≥ ei > 0, we can cancel ei and conclude that z ≡ zi mod pk. Both sides are
less than pk/2 in absolute value, and hence they are equal. Thus all integral roots of
r occur among the zi. �

Note that z ∈ Z is a root of the resultant r = resx(f(x), g(x + y) if and only if
gcd(f(x), g(x + z)) is nonconstant, by Corollary 3.12.

Lemma 7.15. Let f, g ∈ Z[x] with 0 < deg g ≤ deg f ≤ n and max-norm less
than 2λ. For 0 ≤ d < deg g, let σd ∈ Z[y] be the dth subresultant of f(x) and
g(x + y) with respect to x. Then ‖σd‖1 < (n2n+λ+3/2)2n−2d.
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Proof. We have

B = ‖g(x + y)‖1 < 2λ

∥
∥
∥
∥
∥
∥

∑

0≤i≤n

(x + y)i

∥
∥
∥
∥
∥
∥

1

= 2λ
∑

0≤i≤n

2i < 2n+λ+1 ,

and this is also a bound on the maximal one-norm of a coefficient in Z[y] of f(x) or
g(x + y). Then Corollary 3.2 implies that

‖σd‖1 ≤ (2n− 2d)!B2n−2d ≤ 2n−d(nB)2n−2d < (n2n+λ+3/2)2n−2d . �

Definition 7.16. Let f, g ∈ Z[x] be nonzero. A prime p ∈ N is lucky with respect
to the integral root distances problem 7.10 if it is lucky for f(x), g(x+ y) and lucky
with respect to the squarefree factorization of resx(f(x), g(x + y)).

Theorem 7.17 (Correctness probability of Algorithm 7.12). Let n, λ be as in Al-
gorithm 7.12, ω the precision of our processor, C = (n2n+λ+3/2)4n3+(n+1)2 , and
γ = �(log2 C)/(ω − 1)� ∈ Θ(n3(n + λ)). The number of single precision primes
that are unlucky with respect to the integral root distances problem 7.10 is at most γ.
If p is chosen uniformly at random from among at least 4γ single precision primes
between 2ω−1 and 2ω in step 1, then Algorithm 7.12 returns the correct result with
probability at least 1/2.

Proof. For 0 ≤ d < deg g, let σd ∈ Z[y] be the dth subresultant of f(x), g(x + y)
with respect to x, let r = σ0 = resx(f(x), g(x + y)) ∈ Z[y] \ {0}, let δ =
deg gcd(r, r′) ≤ n2, and let τ ∈ Z \ {0} be the δth subresultant of r and r′.
A prime p > n is lucky with respect to the integral root distances problem 7.10
if and only if it is lucky for f(x), g(x + y) and does not divide τ , by Corol-
lary 5.5. By Theorem 7.14, the algorithm returns the correct result if p is such a
lucky prime. Let σ = lc(fg)

∏
d<deg g, σd �=0 σd. Lemma 7.15 yields |lc(σd)| ≤

‖σd‖∞ < (n2n+λ+3/2)2n−2d for all d. If h =
∑

0≤d<deg g(2n− 2d) ≤ n2 +n and
B is as in the proof of Lemma 7.15, then

|lc(σ)| = |lc(fg)| ·
∏

d<deg g, σd �=0

|lc(σd)| < 22λ(n2n+λ+3/2)h

≤ (n2n+λ+3/2)(n+1)2 ,

‖r‖2 ≤ ‖r‖1 ≤ (2n)! B2n ≤ n2n−12(2n+2λ+3)n ,

|τ | ≤ ‖r‖n2

2 ‖r′‖n
2

2 ≤ (n‖r‖2)2n2 ≤ (n2n+λ+3/2)4n3
,

|lc(σ)τ | < (n2n+λ+3/2)4n3+(n+1)2 = C ,

by Corollary 3.2. A single precision prime p is lucky for f(x), g(x+y) if it does not
divide lc(σ), and hence it is lucky for the integral root distances problem if it does
not divide lc(σ)τ . The above estimate shows that at most γ single precision primes
are unlucky with respect to the integral root distances problem, and since there are
at least four times as many of them, the probability that a randomly chosen prime is
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lucky is at least 3/4. By Theorem 7.5, the conditional probability that Algorithm 7.2
does not return “FAIL” if p is lucky is at least 3/4 as well, and hence the probability
that Algorithm 7.12 returns the correct result is at least (3/4)2 ≥ 1/2. �

Theorem 7.18 (Cost of Algorithm 7.12). If we neglect the cost for prime finding in
step 1, then Algorithm 7.12 takes O(n4(log n+λ2)) word operations with classical
arithmetic and O((n2 M(n) + M(n2) log n)(log n)M(λ) log λ) or O∼(n3λ) with
fast arithmetic.

Proof. The cost for step 2 is O(n4) arithmetic operations modulo pk or O(n4λ2)
word operations with classical arithmetic, and O((n2 M(n) + M(n2)) log n) arith-
metic operations or O((n2 M(n)+M(n2))(log n)M(λ) log λ) word operations with
fast arithmetic, by Corollary 7.8. In step 3, we perform a squarefree factorization to
determine the multiplicities, taking O(n4) word operations with classical arithmetic
and O(M(n2) log n) with fast arithmetic, by Proposition 5.3, and then compute all
roots of all polynomials in the squarefree decomposition. Since the degrees of all
these polynomials sum to at most n2, the latter task takes an expected number of
O(n4 log n) word operations with classical arithmetic and O(M(n2) log2 n) with
fast arithmetic, by Fact 3.21 (i). The cost for step 4 is O(n4λ2) word operations with
classical arithmetic and O(M(n2)(log n)(log n + M(λ))) with fast arithmetic, by
Fact 3.20. Computing (y−zi)ei mod pk in step 5 by repeated squaring takes O(e2

i )
additions and multiplications modulo pk with classical arithmetic and O(M(ei))
with fast arithmetic. Since

∑
1≤i≤t ei ≤ deg σ ≤ n2, this amounts to a total of

O(n4λ2) word operations with classical arithmetic and O(M(n2)M(λ)) with fast
arithmetic. �

Remark 7.19. (i) Since the roots of r are the differences of the roots of f and g,
it is sufficient to apply Algorithm 7.12 to the squarefree parts of f and g.

(ii) We note that the algorithm is not Las Vegas if k ≥ 2: For example, if σ =
y(y − 2p) and k = 2, then σ ≡ y2 mod p and σ ≡ (y − p)2 mod p2, and
the algorithm incorrectly returns z1 = p. In fact, there are exponentially many
possible factorizations of σ modulo p2: we have σ ≡ (y − kp)(y − (2 + k)p)
mod p2 for 0 ≤ k < p (see also von zur Gathen & Hartlieb 1998). However,
σ �≡ (y − p)2 mod p3, and hence the last check in step 5 of Algorithm 7.12
would prevent that an incorrect result is returned if k ≥ 3.
This nuisance goes away if we choose k = 1 and a (possibly multiprecision)
prime p > 2λ+3 in step 1 and return a1, . . . , at after step 3. Then the condi-
tion that p should not divide the δth subresultant of r and r′ can be dropped,
and the bit length of the bound corresponding to C in Theorem 7.17 is only
O(n2(n + λ)), which is smaller by a factor of about n. However, the cost for
root finding in step 3 is an expected number of O(n4 log n · λ3) word opera-
tions with classical arithmetic and O(M(n2)(λ + log n) log n ·M(λ) log λ) or
O∼(n2λ2) with fast arithmetic, and this introduces an additional factor of λ in
the running time estimate of Theorem 7.18.
Another possibility to make the algorithm Las Vegas would be to compute r
exactly, not only modulo pk, and then compute its roots (or the roots of its
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squarefree part). Since the bit length of the bound on the integer coefficients
of r is Θ(n2 + nλ), as in the proof of Theorem 7.17, this would introduce an
additional factor of at least n in the timing estimates.

(iii) Instead of computing the resultant modulo pk, one might think about comput-
ing it modulo p and then lifting it somehow modulo pk. Currently, there is
apparently no algorithm known for lifting the resultant, but all we need is some
factor of the resultant having the same roots, such as the least common mul-
tiple of the denominators of the Bézout coefficients s, t ∈ Q(y)[x] satisfying
s · f(x) + t · g(x + y) = 1. One may imagine various ways of computing these
s, t modulo pk, by performing substitution of one point (or several points) u for
y plus (y−u)-adic lifting (or interpolation), p-adic lifting, and rational recon-
struction. in any order. (See Lauer (2000) for an analysis in the case y = 0.)
Some of these tasks would have to be performed over rings with zero divisors,
which makes the correctness proofs quite complicated, as we have already seen
for Algorithm 7.2. We do not analyze any of these combinations, since we ex-
pect that none of them would yield an essential improvement on the estimate
of Theorem 7.18, by the following heuristic argument. The number of coeffi-
cients in Q of s, t is of order n3 in the worst case, so that we expect a running
time which is at least cubic in n, even with fast arithmetic, and Theorem 7.18
already achieves this bound up to logarithmic factors.

(iv) We compare the cost estimate from Theorem 7.18 with an estimate for a modu-
lar algorithm that computes the resultant r exactly. By Lemma 7.15, the co-
efficients of r are of word length O(n2 + nλ). Thus we would call Algo-
rithm 7.2 with k = 1 for O(n2 + nλ) distinct single precision primes and
then reconstruct r via Chinese remaindering. The cost for the modular com-
putation is then O(n6 + n5λ) word operations with classical arithmetic and
O∼(n5 + n4λ) with fast arithmetic, by Corollary 7.8 (iii). The resultant r has
O(n2) coefficients, and reconstructing all of them from their O(n2 +nλ) mod-
ular images takes O(n6 +n4λ2) word operations with classical arithmetic and
O∼(n4 + n3λ) with fast arithmetic. The cost for all other steps is negligible,
and hence the overall cost is O(n6 + n4λ2) with classical and O∼(n5 + n4λ)
with fast arithmetic. Thus the estimate of Theorem 7.18 for fast arithmetic is
better by a factor of about n. The estimate for classical arithmetic is about the
same in the diagonal case where n ≈ λ, but the exponent of n is smaller by 2.
For comparison, Loos (1983) states in his Theorem 9 a running time estimate
of O(n10 + n8λ2) word operations for computing all rational zeroes of the
resultant resx(f(x), g(x + y)). His analysis uses classical arithmetic, and the
estimate of Theorem 7.18 is better by a factor of about n4.

(v) It may be advantageous to choose p in step 1 of Algorithm 7.12 in such a way
that p− 1 is divisible by a large power 2t of two. Then there is a primitive 2tth
root of unity modulo pk, and fast FFT-based polynomial arithmetic modulo pk

can be implemented very efficiently for degrees not exceeding 2t−1.



7.2 Computing All Integral Roots Via Factoring 109

7.2 Computing All Integral Roots Via Factoring

In this section, we discuss an alternative to Algorithm 7.12, turning out to be faster.
One disadvantage of Algorithm 7.12 is that the resultant r = resx(f(x), g(x + y))
has quadratic degree (deg f)(deg g). Man & Wright (1994) analyze an algorithm
which determines the roots of r by computing the irreducible factorizations of f
and g. The idea is as follows. If p is an irreducible factor of f and q is an irreducible
factor of g such that q(x) = p(x + z) for some z ∈ Z, then deg p = deg q = m,
lc(p) = lc(q), and qm−1 = pm−1 + mz lc(p), where pm−1 and qm−1 are the
coefficients of xm−1 in p and q, respectively. Thus we check for all pairs (p, q)
of irreducible factors with deg p = deg q = m and lc(p) = lc(q) whether
z = (qm−1 − pm−1)/m lc(p) is an integer, and if so, whether q(x) = p(x + z),
and return all successful such z’s.

The modern algorithms for factoring polynomials with integer coefficients use
a modular approach, proceeding in three stages (see Chap. 15 and 16 in von zur
Gathen & Gerhard 1999):

1. factorization modulo a small prime,
2. factorization modulo a prime power via Hensel lifting,
3. reconstruction of the factors in Z[x] from the modular factors.

The last stage is the dominant step in the worst case, and it is comparatively expen-
sive. There are essentially two alternatives: factor combination and short vectors. It
is well-known that there exist polynomials of degree n for which factor combination
takes time at least 2n/2, for infinitely many n. Lenstra, Lenstra & Lovàsz’ (1982)
replace the factor combination stage by an algorithm for computing short vectors in
lattices, taking O∼(n9 + n7λ2) word operations with fast arithmetic if the coeffi-
cients of f are absolutely less than 2λ. Schönhage (1984) improved this bound to
O∼(n6 +n4λ2). Recently, van Hoeij (2002) has found a very efficient algorithm by
combining the ideas of factor combination and short vectors.

However, for our problem at hand, it is not necessary that we perform the third
stage at all. We simply take the factorization modulo a prime power and execute
Man & Wright’s algorithm modulo that prime power. If the prime power is large
enough, then we are guaranteed to find all integral roots of r, plus possibly some
additional integers that are not roots of r. For our intended application in Chap. 8,
these additional non-roots do not increase the worst case cost estimates. Note that
Algorithm 7.12 from the previous section may also return such additional non-roots.

We assume that our polynomials have degree at most 2ω−1, where ω is the word
size of our processor, as usual.

Algorithm 7.20 (Prime power modular Man & Wright algorithm).
Input: Nonzero polynomials f, g ∈ Z[x] of degree at most n ≤ 2ω−1 and max-norm

less than 2λ.
Output: A set of at most (deg f)(deg g) integers containing all z ∈ Z such that

gcd(f(x), g(x + z)) is nonconstant.
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1. compute the squarefree parts f∗ and g∗ of f and g, respectively
2. repeat

choose a single precision prime p
until p does not divide lc(f∗g∗) and f∗ mod p and g∗ mod p are squarefree
in Fp[x]
k ←− (λ + 3)/ log2 p�

3. compute the irreducible factorizations

f∗ ≡ lc(f∗)f1 · · · fs mod p, g∗ ≡ lc(g∗)g1 · · · gt mod p ,

with monic polynomials f1, . . . , fs, g1, . . . , gt ∈ Z[x] of max-norm less than
p/2, such that f1, . . . , fs are distinct and g1, . . . , gt are distinct and all are irre-
ducible modulo p

4. use Hensel lifting to compute a factorization

f∗ ≡ lc(f∗)F1 · · ·Fs mod pk, g∗ ≡ lc(g∗)G1 · · ·Gt mod pk ,

with monic polynomials F1, . . . , Fs, G1, . . . , Gt ∈ Z[x] of max-norm less than
pk/2, such that Fi ≡ fi mod p for 1 ≤ i ≤ s and Gj ≡ gj mod p for 1 ≤
j ≤ t

5. S ←− ∅
for 1 ≤ i ≤ s and 1 ≤ j ≤ t do

6. m←− deg Fi

if deg Gj = m then
let zij ∈ Z with |zij | < pk/2 be such that zij mod pk is the
coefficient of xm−1 in ((Gj − Fi)/m) mod pk

if Gj(x) ≡ Fi(x + zij) mod pk then S ←− S ∪ {zij}
7. return S

Theorem 7.21. Algorithm 7.20 solves the integral root distances problem 7.10 cor-
rectly as specified. Let C = (n + 1)2n24nλ. The number of single precision primes
that are unlucky with respect to the squarefree factorization of both f and g is at
most �(log2 C)/(ω − 1)� ∈ Θ(n(λ + log n)). If p is chosen uniformly at random
from among at least 2�(log2 C)/(ω−1)� single precision primes, then the expected
number of iterations of step 2 is at most two, and the expected cost for the algorithm
is O(n3λ + n2λ2) word operations with classical arithmetic and

O(n M(n + λ) log(n + λ) + M(n2) log n + n M(n)M(λ) + n2 M(λ) log λ)

or O∼(n2λ) with fast arithmetic, if we ignore the cost for prime finding.
If we omit the check whether Gj(x) ≡ Fi(x + zij) mod pk holds in step 6

and add zij to S anyway, then the algorithm is still correct, and the cost drops to
O(n3 + n2(log n)λ + n2λ2) word operations with classical arithmetic and

O(n M(n + λ) log(n + λ) + M(n2) log n + n2(M(λ) + λ log n))

or O∼(n2λ) with fast arithmetic.
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Proof. Let z ∈ Z be such that gcd(f(x), g(x + z)) is nonconstant. Then also
h(x) = gcd(f∗(x), g∗(x + z)) is nonconstant. Let i ∈ {1, . . . , s} be such that
fi divides h modulo p. Then fi(x) divides g∗(x + z) modulo p, and hence fi(x) ≡
gj(x + z) mod p for a unique j. The uniqueness of Hensel lifting (Fact 3.20)
implies that Fi and Gj(x + z) both divide h modulo pk. Now both h ≡ Fi ·
(h/Fi) mod pk and h ≡ Gj(x+z) ·(h/Gj(x+z)) mod pk are liftings of the same
factorization modulo p, and again the uniqueness of Hensel lifting yields Fi(x) ≡
Gj(x + z) mod pk. Thus deg Fi = deg Gj and z ≡ zij mod pk, and since
|zij | < pk/2 and |z| < 2λ+2 < pk/2, by Fact 7.11 (iii), we have z = zij ∈ S.
This is true in any case, whether the check in step 6 is omitted or not.

Let d = deg gcd(f, f ′) and e = deg gcd(g, g′). By Lemma 5.4, a prime p is
lucky with respect to the squarefree factorization of both f and g if and only if
the condition in step 2 is satisfied. Corollary 5.5 implies that p is lucky if and only
if it divides neither the dth subresultant of f and f ′ nor the eth subresultant of g
and g′. By Corollary 3.2 (i), the product of these two subresultants is absolutely
at most C, and hence the number of unlucky single precision primes is at most
�log2 C/(ω − 1)�. By assumption, at most half of the single precision primes are
unlucky. Thus the condition in step 2 is satisfied is with probability at least 1/2.

Step 1 takes O(n3 + nλ2) and O(n M(n + λ) log(n +λ) + λM(n) log n) word
operations with classical and fast arithmetic, respectively, by Theorem 5.10. By
Mignotte’s bound 3.3, the coefficients of f∗ and g∗ are at most (n + 1)1/22n+λ

in absolute value, and reducing them modulo p in step 2 takes O(n2 + nλ) word
operations. We check squarefreeness by computing gcd(f∗ mod p, (f∗)′ mod p)
and gcd(g∗ mod p, (g∗)′ mod p), taking O(n2) and O(M(n) log n) word opera-
tions with classical and fast arithmetic, respectively. Thus the expected cost of step 2
is O(n2 + nλ) word operations.

The modular factorization in step 3 takes O(n3) word operations with classical
arithmetic and O(M(n2) log n) with fast arithmetic, by Fact 3.21 (ii). Hensel lifting
in step 4 uses O(n2λ2) and O((M(λ) + log n)M(n) log n) word operations with
classical and fast arithmetic, respectively, by Fact 3.20.

The cost for one execution of step 6 is dominated by the cost for the Taylor
shift, taking O(m2) additions and O(m) multiplications and divisions modulo pk,
together O(m2λ+mλ2) word operations with classical arithmetic, by Theorem 4.3.
With fast arithmetic, the cost is O(M(m)M(λ)+m M(λ) log λ) word operations, by
Theorem 4.5. Summing over all i and j, we find that the overall cost for steps 5 and 6
is O(n3λ+n2λ2) word operations with classical arithmetic and O(n M(n)M(λ)+
n2 M(λ) log λ) with fast arithmetic.

If we omit the check in step 6, then the cost for one execution of step 6 is
O(λ2+λ log n) word operations for the computation of zij with classical arithmetic,
and O(M(λ)+λ log n) with fast arithmetic. Then the overall cost for steps 5 and 6 is
O(n2(λ2 +λ log n)) and O(n2(M(λ)+λ log n)) with classical and fast arithmetic,
respectively. The O∼-estimates follow from taking M(n) = n log n loglog n. �

In the diagonal case where n ≈ λ, the cost estimates for classical arithmetic
above are better by a factor of about n2 than the estimate from Theorem 7.18.
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For fast arithmetic, the estimates are better by a factor of about n, up to logarithmic
factors. Another advantage of Algorithm 7.20 is that its output is always correct,
while Algorithm 7.12 is of Monte-Carlo type: it may err with probability at most
1/2.

Remark 7.22. (i) Although the check in step 6 is not necessary for the algorithm
to be correct, it sorts out some of the non-roots of resx(f(x), g(x+y)). A good
compromise in practice is to replace this check by the cheaper check whether
the constant coefficients Gj(0) and Fi(zij) or the coefficients of xm−2 in Gj

and Fi(x+ zij) agree modulo pk. Heuristically, this should rule out almost all
non-roots as well, within the same time bound.

(ii) We may decrease the cost for step 6 to O(λ log n) by slightly increasing the
lifting bound k to �(λ+3+log2 n)/ log2 p�. Then we would compute the coef-
ficient of xm−1 in Gj−Fi, discard it if it is greater than m2λ+2 or not divisible
by m, and add its quotient by m to S otherwise. This increases the cost of step 4
to n2(λ2 + log2 n) with classical arithmetic and O(M(n)M(λ + log n) log n)
with fast arithmetic.

(iii) In some applications, the polynomials f and g may already be given in factored
form. Then the cost of the algorithm is essentially the cost of steps 5 and 6.

(iv) Man & Wright (1994) state an average case estimate of O(n4(n + λ)2) word
operations for their algorithm, based on classical arithmetic. In the diagonal
case where n ≈ λ, our estimate from Theorem 7.21 beats this by a factor of
about n2.

7.3 Application to Hyperexponential Integration

We now give an analog of Algorithm 7.12 for hyperexponential integration. Given
f, g ∈ Z[x], the relevant resultant is r = resx(g, f − yg′) ∈ Z[y].

Problem 7.23 (Integral residues). Given nonzero coprime polynomials f, g in Z[x]
of degree at most n, compute the at most n integers z ∈ Z such that gcd(g, f − zg′)
is nonconstant.

The following factorization is a consequence of Fact 7.11.

Fact 7.24. Let F be a field, f and g = lc(g)
∏

1≤i≤n(x − βi) be nonzero polyno-
mials in F [x], m = degx(f − yg′), and r = resx(g, f − yg′) ∈ F [y].

(i) r = lc(g)m
∏

1≤i≤n

(f(βi)− yg′(βi)).

(ii) r(0) = lc(g)m−deg f resx(g, f) = (−1)n·deg f lc(g)m−deg f resx(f, g).
(iii) Assume that β1, . . . , βd are precisely the simple roots of g, let g1 ∈ F [x] be a

squarefree polynomial with roots β1, . . . , βd, and let h = g/g1. Then r �= 0 if
and only if f and h are coprime, and in that case we have deg r = d and

lc(r) = (−1)dlc(g1)m−deg g′
lc(h)m−deg f resx(g1, g

′)resx(h, f) .
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In particular, if g is squarefree, then deg r = n and

lc(r) = (−1)nlc(g)m−deg g′
resx(g, g′) .

If f and g are coprime, then the factorization (i) implies that every root of r has
the form f(β)/g′(β) for a simple root β of g, i.e., the roots of r are precisely the
residues of the rational function f/g at its simple poles.

There are several notable differences to the hypergeometric situation. If the de-
grees of f and g are less than n, then the degree of r, and hence also the number
of roots of r, is at most n, in contrast to at most n2 in the hypergeometric case. On
the other hand, the word size of the integral roots of r is smaller than the size of
the coefficients of r by a factor of about n in the hypergeometric case. In the hy-
perexponential case, however, we are not aware of a better bound for the word size
of the roots of r than the bound on the word size of the coefficients of r. For that
reason, we can afford to compute the coefficients of r exactly, by computing them
modulo sufficiently many single precision primes and reconstructing them via the
Chinese Remainder Theorem. As a consequence, we obtain an algorithm for finding
all integral roots of r which is of Las Vegas type, with the exception of the prime
finding stages. As usual, ω denotes the word size of our processor.

Algorithm 7.25 (Small primes modular integral residues).
Input: Nonzero coprime polynomials f, g ∈ Z[x] with deg f, deg g ≤ n ≤ 2ω−1

and ‖f‖∞, ‖g‖∞ < 2λ.
Output: The set of at most n integers z ∈ Z for which gcd(g, f−zg′) is nonconstant.

1. C ←− (2n)!(n + 1)2n22nλ, k ←− log2(2C)/(ω − 1)�
s←− log2(2λ)/(ω − 1)�
choose a set S0 of k + s single precision primes
S1 ←− {p ∈ S0: p � lcx(fg)}

2. for p ∈ S1 do
3. call Algorithm 7.2 with input g, f − yg′, p, and 1, to compute σp ∈ Z[y]

with σp ≡ resx(g, f − yg′) mod p, degy σp ≤ n, and ‖σp‖∞ < p/2
if 0 does not occur in the degree sequence of the output
then σp ←− 0

4. use the Chinese Remainder Algorithm to compute σ ∈ Z[y] with ‖σ‖∞ <
1
2

∏
p∈S1

p and σ ≡ σp mod p for all p ∈ S1

5. call Algorithm 5.6 to compute the squarefree part σ∗ ∈ Z[y] of σ
6. choose an odd single precision prime p ∈ N not dividing lc(σ∗) and such that

σ∗ mod p is squarefree
7. use root finding over finite fields to compute all roots a1, . . . , at ∈ Z of σ∗

modulo p, with 0 ≤ t ≤ deg σ∗ and |ai| < p/2 for all i, such that

σ∗ ≡ (y − a1) · · · (y − at)v mod p ,

where v ∈ Z[y] has no roots modulo p
8. use Hensel lifting to lift the factorization from 6 to a factorization σ∗ ≡

(y − z1) · · · (y − zt)w mod pk, with zi ∈ Z absolutely less than pk/2 for all i
9. return {zi: 1 ≤ i ≤ t and σ(zi) = 0}



114 7. Computing All Integral Roots of the Resultant

In fact, one might compute the complete squarefree decomposition of σ in step 6
and then perform steps 7 through 9 for each of the factors in the squarefree decom-
position. This is more efficient in practice, but it does not improve the order of
magnitude of our running time estimate, and therefore we only discuss the simpler
algorithm above.

Theorem 7.26. If there are at least k + s ∈ Θ(n(λ + log n)) single precision
primes, then Algorithm 7.25 solves the integral residues problem 7.23 correctly as
specified. If we choose the prime p in step 6 uniformly at random from among at
least �n log2(nC2)/(ω − 1)� ∈ Θ(n2(λ + log n)) single precision primes, then
the expected number of iterations of step 6 is at most two, and the cost for steps 2
through 9 is O(n4(λ2 + log2 n)) word operations with classical arithmetic and

O(n2(M(n(λ + log n)) + (λ + log n)M(n) log n)
+M(n(λ + log n))(M(n) log n + n logλ))

or O∼(n3λ) word operations with fast arithmetic.

Proof. We first note that with the modifications mentioned in Remark 7.6, the
call to Algorithm 7.2 in step 3 of Algorithm 7.25 does not return “FAIL”. We
have |lcx(fg)| < 22λ ≤ 2(ω−1)s, and hence S1 contains at least k primes. Let
r = res(g, f − yg′) ∈ Z[y] and p ∈ S1. By Lemma 3.11 (i), 0 occurs in the de-
gree sequence of the Euclidean Algorithm for g mod p and f − yg′ mod p if and
only if p � r. Thus we have r ≡ σp mod p for all p ∈ S1. Let m =

∏
p∈S1

p.
Then r ≡ σ mod m. The maximal one-norm of a coefficient of g or f − yg′, re-
garded as polynomials in x, is less than (n + 1)2λ. We have ‖r‖∞ ≤ ‖r‖1 < C ≤
2(ω−1)k−1 < m/2, by Corollary 3.2 (iii), and ‖σ‖∞ < m/2, by construction, and
hence r = σ.

Now let z ∈ Z be a root of r. Then z ≡ ai mod p for a unique i ∈ {1, . . . , t}.
By the choice of p, the factorization in step 7 is a factorization into coprime poly-
nomials modulo p, and the uniqueness of Hensel lifting (Fact 3.20) implies that
z ≡ zi mod pk. We have |zi| < pk/2, by construction. Since z is an integral root
of r, it divides the constant coefficient of r. Fact 7.24 (ii) implies that this con-
stant coefficient is res(g, f) times a power of lc(g), and since f and g are coprime,
Corollary 3.10 implies that it is nonzero. Thus |z| ≤ ‖r‖∞ ≤ 2(ω−1)k−1 < pk/2,
and hence z = zi. Moreover, Fact 7.24 (i) implies that t ≤ deg r ≤ n, and the
correctness follows from Corollary 3.12.

In step 2, we first reduce all coefficients of f and g modulo all primes in S1.
With classical arithmetic, this takes O(λ) word operations for each coefficient and
each prime, in total O(nkλ). With fast arithmetic, the cost is O(M(k) log k) per
coefficient, or O(n M(k) log k) in total.

One execution of step 3 takes O(n3) word operations with classical arithmetic
and O(n M(n) log n) with fast arithmetic, by Corollary 7.9, and there are O(k) iter-
ations. Step 4 takes O(k2) operations per coefficient of σ with classical arithmetic
and O(M(k) log k) with fast arithmetic, and there are at most n+1 coefficients. The
coefficients of σ are of word size O(k). Since n ∈ O(k), computing the squarefree
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part in step 5 takes O(k2n) with classical and O(M(k) log k ·n) with fast arithmetic,
by Theorem 5.10.

By Mignotte’s bound 3.3, the coefficients of σ∗ are of word size O(k). Reducing
all coefficients modulo p thus takes O(kn) word operations. The cost for computing
the gcd of σ∗ mod p with its derivative in step 6 is O(n2) and O(M(n) log n) word
operations with classical and fast arithmetic, respectively.

Lemma 5.4 implies that a single precision prime p is lucky with respect to the
squarefree factorization of r = σ if and only if p � lc(r) and σ∗ mod p is squarefree.
If δ = deg gcd(r, r′), then Corollary 5.5 implies that p is lucky if and only if it does
not divide the δth subresultant of r and r′. Since deg r ≤ n, ‖r‖2 ≤ ‖r‖1 < C,
and ‖r′‖2 ≤ n · ‖r‖2 < nC, this subresultant is nonzero of absolute value at most
nnC2n, by Corollary 3.2, and the number of unlucky single precision primes is at
most �n log2(nC2)/(ω−1)�. By assumption, there are at least twice as many single
precision primes, and hence the expected number of iterations of step 6 is at most
two.

The root finding in step 7 takes O(n2 log n) word operations with classical arith-
metic and O(M(n) log2 n) with fast arithmetic, by Fact 3.21 (i). The cost for the
Hensel lifting in step 8 is O(k2n2) and O((M(k) + log n)M(n) log n) word opera-
tions with classical and fast arithmetic, respectively, by Fact 3.20.

In step 9, for each i we divide σ by x − zi with remainder to check whether
σ(zi) = 0. If this is the case, then the coefficients of the quotient σ/(x − zi) are
at most nC in absolute value, by Exercise 14.21 in von zur Gathen & Gerhard
(1999). Thus we may abort the computation as soon as we encounter a coefficient
that exceeds this bound. Then the cost for one check is O(nk2) word operations
with classical arithmetic and O(n M(k)) with fast arithmetic, and there are O(n)
checks. The claims now follow from k ∈ O(n(λ + log n)) by summing up costs. �

We might employ fast multipoint evaluation techniques in step 9. This would
reduce the cost for step 9 to O∼(n2λ) word operations with fast arithmetic, but
the overall estimate would still be dominated by the O∼(n3λ) word operations for
step 3.

We note that the cost estimates for Algorithm 7.25 agree with those for Al-
gorithm 7.12, up to logarithmic factors. Since the product of all integral roots of r
divides its constant coefficient, the output size of Algorithm 7.25 is O(n(λ+log n)).
By a similar argument, the output size of Algorithm 7.12 is O(n2 + nλ).

Remark 7.27. (i) In practice, one would test whether zi divides the constant coef-
ficient of σ∗ before checking whether zi is a root of σ. Heuristically, this should
already rule out all non-roots.

(ii) By Fact 7.24 (ii), the constant coefficient of r is lc(g)min{0,deg g−deg f−1} ·
resx(g, f). Since each integral root z of r divides this constant coefficient,
Corollary 3.2 (i) implies that |z| ≤ (n + 1)n22nλ. This bound is much smaller
than the bound C on the absolute value of the coefficients of r from step 1 of
Algorithm 7.25. Thus it makes sense to compute the resultant not exactly, but
only modulo a prime power pk > 2(n + 1)n22nλ, similarly to Algorithm 7.12.
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Since the word size of the smaller bound differs from the word size of C only
by a constant factor, we do not analyze this variant.

(iii) We give an example showing that the word size of at least one of the integral
roots of r may be Ω(n) times the word size of the input polynomials. Let β, n
be integers with β ≥ 2 and n ≥ 4, f = β2xn−1, and g = xn−2(x − β)2 +
β(x − β). Then ‖f‖∞ = ‖g‖∞ = β2. Now g(β) = 0, g′(β) = β, and f(β) =
βn+1. Thus γ = βn is a root of r, by Fact 7.24 (i), and ‖γ‖∞ = ‖g‖n/2

∞ .

7.4 Modular LRT Algorithm

The final algorithm in this chapter is a modular variant of the algorithm by Lazard,
Rioboo and Trager to compute the logarithmic part of the symbolic integral of a
rational function. We briefly recapitulate the idea of the algorithm.

Let f, g ∈ Z[x] be nonzero with deg f < deg g = n and g squarefree, and let
r = resx(g, f − yg′) (this is the same resultant as in the previous section). Fact 7.24
(iii) implies that deg r = n. Let gγ = gcd(g, f − γg′), for all γ ∈ C. Rothstein
(1976, 1977) and Trager (1976) proved that

f

g
=

∑

r(γ)=0

γ
g′γ
gγ

.

Moreover, Lazard & Rioboo (1990) have shown that the degree of gγ is equal to
the multiplicity of γ as a root of r, for all γ. Let γ be a root of r, let i = deg gγ ,
and let τi ∈ Z[y] be the ith subresultant of g and f − yg′. Lemma 3.11 (i) implies
that τi(γ) �= 0, i occurs in the degree sequence of the monic EEA of g and f − yg′

in Q(x)[y], τiπi ∈ Z[x, y] holds for the monic remainder πi ∈ Q(y)[x] of degree
i in the monic EEA of g and f − yg′, and gγ and (τiπi)(x, γ) agree up to leading
coefficients. If r = c

∏
1≤i≤n ri

i is a squarefree decomposition of r, with squarefree
and pairwise coprime polynomials r1, . . . , rn ∈ Z[y], then the preceding discussion
implies that

f

g
=

∑

1≤i≤n

∑

ri(γ)=0

γ
(τiπi)(x, γ)′

(τiπi)(x, γ)
.

This formula was found independently by Lazard & Rioboo (1990) and Trager (un-
published). See also Mulders 1997.

Problem 7.28 (Rational integration with squarefree denominator). Given non-
zero coprime polynomials f, g ∈ Z[x] with g squarefree and deg f < deg g = n,
compute squarefree and pairwise coprime polynomials r1, . . . , rn ∈ Z[y] and poly-
nomials v1, . . . , vn ∈ Z[x, y] satisfying

f

g
=

∑

1≤i≤n

∑

ri(γ)=0

γ
v(x, γ)′

v(x, γ)
,

where ′ denotes the formal derivative with respect to x.
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Our modular algorithm proceeds as follows. As in the previous section, we first
compute the resultant exactly. However, we do not need the integral roots of r,
but instead compute its squarefree decomposition. Finally, we use Algorithm 7.2 to
compute all required τi and τiπi modulo several primes p and reconstruct them via
Chinese remaindering.

Algorithm 7.29 (Small primes modular LRT algorithm).
Input: Nonzero polynomials f, g ∈ Z[x] such that g is squarefree, with deg f <

deg g = n and ‖f‖∞, ‖g‖∞ < 2λ.
Output: Polynomials r1, . . . , rn ∈ Z[x] and v1, . . . , vn ∈ Z[x, y] such that the ri are

squarefree and pairwise coprime, res(g, f−yg′) = c
∏

1≤i≤n ri
i for some nonzero

c ∈ Z, and
f

g
=

∑

1≤i≤n

∑

ri(γ)=0

γ
vi(x, γ)′

vi(x, γ)
.

1. C ←− (2n)!(n + 1)2n22nλ, k ←− log2(2C)/(ω − 1)�,
s←− log2(2λ)/(ω − 1)�
choose a set S0 of 2k + s single precision primes
S1 ←− {p ∈ S0: p � lcx(fg)}

2. for p ∈ S1 do
3. call Algorithm 7.2 with input g, f − yg′, p, and 1, to compute σp ∈ Z[y]

with deg σp ≤ n, ‖σp‖∞ < p/2, and σp ≡ resx(g, f − yg′) mod p
if 0 does not occur in the degree sequence of the output
then σp ←− 0

4. use the Chinese Remainder Algorithm to compute σ ∈ Z[y] with ‖σ‖∞ <
1
2

∏
p∈S1

p and σ ≡ σp mod p for all p ∈ S1

5. call Algorithm 5.6 to compute the normalized squarefree decomposition
normal(σ) =

∏
1≤i≤n ri

i of σ
6. for p ∈ S1 do
7. for 1 ≤ i ≤ n such that deg ri > 0 do
8. call Algorithm 7.2 with input g, f − yg′, p, and 1, to compute

vi,p ∈ Z[x, y] with degy vi,p ≤ n− i, degx vi,p ≤ i, ‖vi,p‖∞ <
p/2, and such that lcx(vi,p) mod p is the ith subresultant and
vi,p/lcx(vi,p) mod p is the monic remainder of degree i in the
EEA of g mod p and f − yg′ mod p with respect to x
if i does not occur in the degree sequence then vi,p ←− 0

9. for 1 ≤ i ≤ n do
10. if deg ri = 0 then vi ←− 1

else
Ti ←− {p ∈ S1: vi,p �= 0}
use the Chinese Remainder Algorithm to compute vi ∈ Z[x, y]
with ‖vi,p‖∞ < 1

2

∏
p∈Ti

p and vi ≡ vi,p mod p for all p ∈ Ti

11. return r1, . . . , rn and v1, . . . , vn
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Theorem 7.30 (Correctness of Algorithm 7.29). If there are at least 2k + s ∈
Θ(n(λ + log n)) single precision primes, then Algorithm 7.29 solves the problem
7.28 of rational integration with squarefree denominator correctly as specified.

Proof. Let r = resx(g, f − yg′) ∈ Z[y]. With the modifications mentioned in
Remark 7.6, the calls to Algorithm 7.2 in steps 3 and 8 of Algorithm 7.29 do not
return “FAIL”. As in the proof of Theorem 7.26, we find that S1 contains at least 2k
single precision primes, and that r = σ in step 4.

Now let 1 ≤ i ≤ n be such that deg ri > 0, let τi ∈ Z[y] \ {0} be the ith
subresultant of g and f − yg′, and let πi ∈ Q(y)[x] be the monic remainder of
degree i in the EEA of g and f − yg′ with respect to x. By the discussion preceding
the algorithm, all we have to show for the correctness is that vi = τiπi.

Let p ∈ S1. Lemma 3.11 (i) implies that i occurs in the degree sequence of the
EEA of g mod p and f − yg′ mod p if and only if p � τi, and in that case we have
vi,p ≡ τiπi mod p. Otherwise, if p | τi, we have vi,p = 0 after step 8. Thus Ti =
{p ∈ S1: p � τi}, vi,p ≡ τiπi mod p for all p ∈ Ti, and hence vi ≡ τiπi mod m,
where m =

∏
p∈Ti

p. Now all primes in S1 \ Ti divide the leading coefficient of τi,
which has absolute value at most C, by Corollary 3.2, and hence Ti contains at least
k primes. The polynomial τiπi is equal to the ith “subresultant” of g and f − yg′ in
the sense of Collins (1966, 1967) and Brown & Traub (1971) (see, e.g., Proposition
3.11 in von zur Gathen & Lücking 2002). Therefore each coefficient of τiπi can be
written as the determinant of a certain square (n+degx(f−yg′)−2i)-dimensional
submatrix of the Sylvester matrix of g and f − yg′, and Lemma 3.1 (iii) implies that
‖τiπi‖∞ ≤ C < m/2. Thus both sides of the congruence vi ≡ τiπi mod m are
absolutely less than m/2, and hence they are equal. �

Theorem 7.31 (Cost of Algorithm 7.29). The cost for steps 2 through 11 of Algo-
rithm 7.29 is O(n4(λ2 + log2 n)) word operations with classical arithmetic and
O(n2M(n(λ + log n)) log(nλ)) or O∼(n3λ) with fast arithmetic.

Proof. As in the proof of Theorem 7.26, the cost for steps 2–5 is O(n3k + nk2)
word operations with classical arithmetic and O(kn M(n) log n+n M(k) log k) with
fast arithmetic.

In steps 7 and 8, we modify Algorithm 7.2 so as to compute only those interme-
diate results that are needed. Since

∑
deg ri>0 deg ri ≤ deg σ = n, the total number

of coefficients in Z[y] that have to be reconstructed is only O(n), and not O(n2),
as for the coefficients of all intermediate results. With classical arithmetic, the cost
estimate for this is the same as for computing one row in the EEA, namely O(n3)
word operations, by the proof of Theorem 7.7.

With fast arithmetic, we proceed as follows. Let n ≥ d1 > d2 > · · · > dt ≥ 1
be such that {d1, . . . , dt} = {i: 1 ≤ i ≤ n and deg ri > 0}. We may assume
that we have already computed all subresultants in step 3 of Algorithm 7.29; the
additional cost for this is negligible. In step 4 of Algorithm 7.2, we use the fast
Euclidean Algorithm to compute first πd1 and the subsequent remainder of degree
less than d1. Then we call the fast Euclidean Algorithm with these two polynomials
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as input to compute πd2 and the subsequent remainder of degree less than d2, and
so on. In this way, step 4 of Algorithm 7.2 takes

O(M(n) log n + M(d1) log d1 + M(d2) log d2 + · · ·)
word operations. Since d1 +d2 + · · · ≤ n, this yields a total of O(M(n) log n). This
is the same estimate as for computing only one specific row in the EEA, and hence
the cost estimate for steps 7 and 8 of Algorithm 7.29 with fast arithmetic is the same
as the cost estimate for computing only one row in the EEA of g and f−yg′, namely
O(n M(n) log n) word operations, by Corollary 7.9.

Thus the overall cost for steps 6 through 8 is O(kn3) word operations with
classical arithmetic and O(kn M(n) log n) with fast arithmetic. Finally, the cost for
reconstructing one coefficient in Z of some vi is O(k2) word operations with clas-
sical arithmetic and O(M(k) log k) with fast arithmetic. Since degx vi = i and
degy vi ≤ n− i, by Lemma 3.2 (ii), we have at most (i + 1)(n− i + 1) coefficients
for each i with deg ri > 0, and the total number of coefficients is

∑

deg ri>0

(i + 1)(n− i + 1) ≤ n
∑

deg ri>0

(i + 1) ≤ 2n2 .

Thus steps 9 and 10 take O(n2k2) word operations with classical arithmetic and
O(n2 M(k) log k) with fast arithmetic. The claims follow from k ∈ O(n(λ + log n))
by adding up costs. �

All ri together have O(n) coefficients in Z, of word size O(n(λ + log n)), by
Mignotte’s bound 3.3. The proof above shows that all vi together have O(n2) coef-
ficients in Z, each of word size O(n(λ + log n)). Thus the output size of Algorithm
7.29 is O(n3(λ + log n)) words, and the algorithm with fast arithmetic is – up to
logarithmic factors – asymptotically optimal for those inputs where the output size
is close to the upper bound.

The final result of this chapter is a cost estimate for a modular variant of the
complete algorithm for symbolic integration of rational functions.

Theorem 7.32. Let f, g ∈ Z[x] be nonzero polynomials with deg f, deg g ≤ n
and ‖f‖∞, ‖g‖∞ < 2λ. We can compute a symbolic integral of the rational
function f/g using O(n8 + n6λ2) word operations with classical arithmetic and
O(n2 M(n3 + n2λ) log(nλ)) or O∼(n5 + n4λ) with fast arithmetic.

Proof. The algorithm works as follows. We first compute the squarefree decom-
position g =

∏
1≤i≤n gi

i of g, taking O(n3 + nλ2) word operations with classical
arithmetic and O(n M(n + λ) log(n + λ) + λM(n) log n) with fast arithmetic, by
Theorem 5.10.

Then we call Algorithm 6.4 to perform the Hermite reduction, leaving the task
to compute symbolic integrals of ai/gi for 1 ≤ i ≤ n, where deg ai < deg gi and
ai is of the form pi/qi for some pi ∈ Z[x] and qi ∈ Z with coefficients of word
size O(n2 + nλ), by Lemma 6.3. The pi and qi can be computed from the ai via
O(n) divisions and gcd computations in Z, on integers of word size O(n2 + nλ),
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and the cost for this is dominated by the cost for the other steps. The cost for the
Hermite reduction is O(n5 + n3λ2) word operations with classical arithmetic and
O(n M(n2 + nλ) log(nλ)) with fast arithmetic, by Theorem 6.6.

Finally, for 1 ≤ i ≤ n we call Algorithm 7.29 with input pi and qigi. If we
let di = deg gi, then Theorem 7.31, with n and λ replaced by di and O(n2 + nλ),
respectively, implies that this takes O(d4

i (n
4+n2λ2)) word operations with classical

arithmetic and O(d2
i M(di(n2+nλ)) log(nλ)) with fast arithmetic, for each i. Since∑

1≤i≤n di ≤ n, the overall cost for this is O(n8 + n6λ2) with classical arithmetic
and O(n2 M(n3 + n2λ) log(nλ)) with fast arithmetic. This dominates the cost for
the other steps. �

The algorithm described above is probabilistic, and the cost estimate ignores the
cost for prime finding and assumes that there are sufficiently many single precision
primes. There may be better bounds for the coefficient sizes of the output than the
ones implied by the proof above.



8. Modular Algorithms for the Gosper-Petkovšek
Form

Let F be a field. The shift operator E acts on polynomials in F [x] via (Ef)(x) =
f(x + 1). For i ∈ Z, the ith power of E acts via (Eif)(x) = f(x + i).

Definition 8.1. Let F be a field and f, g ∈ F [x] \ {0} be polynomials. A triple
(a, b, c) ∈ F [x]3 is called a Gosper form of the rational function f/g if

f

g
=

a

b

Ec

c
and gcd(a, Eib) = 1 for i ∈ N .

If in addition
gcd(a, c) = gcd(b, Ec) = 1 ,

then (a, b, c) is a Gosper-Petkovšek form of f/g.

Gosper (1978) has first given the algorithm below to compute a Gosper form.
Petkovšek (1992) has shown that it even computes a Gosper-Petkovšek form, and
that the latter is unique up to multiplication by constants: if (A, B, C) is another
Gosper-Petkovšek form for f/g, then lc(A)a = lc(a)A, lc(B)b = lc(b)B, and
lc(C)c = lc(c)C. See also Paule (1995) and Petkovšek, Wilf & Zeilberger (1996),
Chap. 5.

Abramov & Petkovšek (2001, 2002a) extend the definition of the Gosper-
Petkovšek form and define a strict rational normal form of a rational function
f/g ∈ Q(x) as a quintuple (z, r, s, u, v) ∈ F × F [x]4, such that gcd(r, Eis) = 1
for all i ∈ Z, gcd(r, u · Ev) = gcd(s, (Eu)v) = 1, the polynomials r, s, u, v are
monic, and

f

g
= z

r

s

E(u/v)
u/v

.

In contrast to the Gosper-Petkovšek form, however, this normal form is not unique;
see Abramov & Petkovšek (2001) for examples.

Algorithm 8.2 (Gosper-Petkovšek form).
Input: Nonconstant polynomials f, g ∈ Z[x] of degree at most n and max-norm less

than 2λ.
Output: A Gosper-Petkovšek form of f/g.

1. compute a list z1 < . . . < zt < 2λ+2 of nonnegative integers, with t ≤ n2,
containing all integers z ∈ N such that gcd(f, Ezg) is nonconstant

J. Gerhard: Modular Algorithms, LNCS 3218, pp. 121-148, 2004.
 Springer-Verlag Berlin Heidelberg 2004
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2. f0 ←− normal(f), g0 ←− normal(g)
3. for 1 ≤ i ≤ t do

4. hi ←− gcd(fi−1, E
zigi−1), fi ←− fi−1

hi
, gi ←− gi−1

E−zihi

5. return a = lu(f)ft, b = lu(g)gt, and c = E−1(h
z1

1 · · ·h
zt

t )

Correctness of the algorithm has been established in the literature. It is a crucial
step in Gosper’s hypergeometric summation algorithm. Clearly, the algorithm may
be stopped as soon as fi = 1 or gi = 1 in step 4.

We now discuss two new modular versions of Algorithm 8.2. Both use the mod-
ular Man & Wright algorithm 7.20 in step 1. The first variant uses reduction modulo
several single precision primes and the Chinese Remainder Theorem for each gcd
in step 4 separately. The second variant is an all-modular approach, where f0 and
g0 are reduced modulo several primes only once before step 3 and steps 3 and 4 are
executed independently modulo each prime. This variant is advantageous since we
need not compute the intermediate results f1, g1, . . . , ft−1, gt−1.

Problem 8.3 (Shift gcd). Given two nonzero polynomials f, g ∈ Z[x] of degree at
most n and z ∈ Z, compute

h = gcd(f, Ezg), w = E−zh, u =
f

h
, and v =

g

w
.

Problem 8.4 (Gosper-Petkovšek form). Given two nonzero normalized polynomi-
als f = f0 and g = g0 in Z[x] of degree at most n and a list z1 < z2 < · · · < zt

of t ≤ n2 nonnegative integers containing all z ∈ N such that gcd(f, Ezg) is
nonconstant, compute

hi = gcd(fi−1, E
zigi−1), fi =

fi−1

hi
, gi =

gi−1

E−zihi

for 1 ≤ i ≤ t.

We start by analyzing a modular algorithm that computes gcd(f, Ezg) for given
polynomials f, g ∈ Z[x] and z ∈ Z. The algorithm is an extension of the well-
known modular gcd algorithm appearing in Brown (1971) (see also Algorithm 6.38
in von zur Gathen & Gerhard 1999), which essentially corresponds to the case
z = 0. In addition to the gcd h, our algorithm also computes w = E−zh and the
cofactors f/h and g/w. In order to obtain a Las Vegas algorithm, it is necessary to
check that w = E−zh. In general, the word size of the coefficients of E−zh is larger
than the word size of the coefficients of h by a factor of O(deg h), by Lemma 4.2.
The following lemma says that if both h and E−zh have “small” coefficients, then
z is “small” as well.

Lemma 8.5. Let h ∈ Z[x] be nonzero of degree d, z ∈ Z, w = E−zh, and
‖h‖2, ‖w‖2 ≤ B. Then |z|d ≤ 2dB2.
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Proof. We may assume that d ≥ 1 and |z| ≥ 2, and write h = c
∏

1≤i≤d(x − ai),
with c = lc(h) ∈ Z and all ai ∈ C. We partition the roots of h into those of “big”
and those of “small” absolute value, by letting I1 = {1 ≤ i ≤ d: |ai| ≥ |z|/2}
and I2 = {1 ≤ i ≤ d: |ai| < |z|/2}. Moreover, we employ the Mahler measure
(named after Mahler 1960) of h defined by M(h) = |c|∏1≤i≤d max{1, |ai|}. Us-
ing Landau’s (1905) inequality (Theorem 6.31 in von zur Gathen & Gerhard 1999),
we find

B ≥ ‖h‖2 ≥M(h) ≥
∏

i∈I1

max{1, |ai|} ≥
( |z|

2

)#I1

.

The roots of w are ai + z for 1 ≤ i ≤ d, and hence

B ≥ ‖w‖2 ≥M(w) = |c|
∏

1≤i≤d

max{1, |ai + z|} ≥
∏

i∈I2

max{1, |ai + z|}

>

( |z|
2

)#I2

.

Now one of I1 and I2 has at least d/2 elements, so that B ≥ (|z|/2)d/2, and the
claim follows. �

In the following algorithm, we assume that ω is the word size of our processor,
as usual.

Algorithm 8.6 (Small primes modular shift gcd).
Input: Nonconstant normalized polynomials f, g ∈ Z[x] of degrees at most n and

max-norm less than 2λ, and z ∈ Z with |z| < 2λ+2.
Output: Normalized polynomials h, u, v, w ∈ Z[x] such that h = gcd(f, Ezg),

w = E−zh, f = uh, and g = vw.

1. c←− gcd(lc(f), lc(g)), B ←− �(n + 1)1/22n+λ�
k ←− �log2(2

2n+1cB3)/(ω − 1)	
2. choose a set S0 of 2k odd single precision primes

S1 ←− {p ∈ S0: p � c}
3. for all p ∈ S1 compute the polynomials hp, up, vp, wp ∈ Z[x] of max-norms

less than p/2 and with lc(up) ≡ lc(f) mod p, lc(vp) ≡ lc(g) mod p, and
lc(hp) ≡ lc(wp) ≡ c mod p, such that c−1hp mod p is the monic gcd of
f mod p and Ezg mod p, wp ≡ E−zhp mod p, cf ≡ uphp mod p, and
cg ≡ vpwp mod p

4. d←− min{deg hp: p ∈ S1}, S2 ←− {p ∈ S1: deg hp = d}
if #S2 ≥ k and |z|d ≤ 2dB2

then remove #S2 − k primes from S2 else goto 2
5. use the Chinese Remainder Algorithm to compute h∗, u∗, v∗, w∗ ∈ Z[x] of

max-norm less than (
∏

p∈S2
p)/2 such that

u∗ ≡ up mod p, v∗ ≡ vp mod p, h∗ ≡ hp mod p, w∗ ≡ wp mod p

holds for all p ∈ S2
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6. if ‖u∗‖1‖h∗‖1 ≤ cB and ‖v∗‖1‖w∗‖1 ≤ cB
then return normal(h∗), normal(u∗), normal(v∗), normal(w∗)
else goto 2

Definition 8.7. Let f, g ∈ Z[x] be nonzero and z ∈ Z. A prime p ∈ N is lucky with
respect to the shift gcd problem 8.3, if p � gcd(lc(f), lc(g)) and deg gcd(f, Ezg) =
deg gcd(f mod p, Ezg mod p).

Theorem 8.8 (Correctness of Algorithm 8.6). The algorithm terminates if and
only if at most k ∈ Θ(n + λ) primes in S0 are unlucky with respect to the shift
gcd problem, and in that case, it returns the correct results.

Proof. We first show that the condition in step 6 is false if and only if u∗h∗ = cf
and v∗w∗ = cg. The “if” part follows from Mignotte’s bound (Fact 3.3). For the
converse, let m =

∏
p∈S2

p. Then u∗h∗ ≡ cf mod m, and

‖u∗h∗‖∞ ≤ ‖u∗h∗‖1 ≤ ‖u∗‖1‖h∗‖1 ≤ cB ≤ 2(ω−1)k−1 <
m

2

implies that the coefficients of both sides of the congruence are less than m/2 in
absolute value, so that they are equal. Similarly, we find that v∗w∗ = cg.

Let h be the normalized gcd of f and Ezg in Z[x] and w = E−zh. We note that
lc(h) = lc(w) divides both lc(f) and lc(g), so that it divides c, and let u = f/h and
v = g/w. Since f, g, h are normalized, so are u, v, w.

Assume now first that at least k primes in S0 are lucky. Then these primes
are contained in S1 as well. It is clear that deg hp ≥ deg h for all p ∈ S1, and
hence also d ≥ deg h. By definition, we have deg hp = deg h for all lucky primes
in S1, and therefore d = deg h and #S2 ≥ k. Since h | f and E−zh | g,
Mignotte’s bound (Fact 3.3) implies that ‖h‖2, ‖E−zh‖2 ≤ B, and Lemma 8.5
yields |z|d ≤ 2dB2. By Corollary 3.12, we have hp ≡ (c/lc(h))h mod p for
all p ∈ S2, and hence h∗ ≡ (c/lc(h))h mod m, w∗ ≡ (c/lc(h))E−zh mod m,
u∗ ≡ (lc(f)/lc(u))u mod m, and v∗ ≡ (lc(g)/lc(v))v mod m. The left hand sides
of these congruences have max-norms less than m/2 by construction, the right hand
sides enjoy the same property by Mignotte’s bound, and hence all four congruences
are in fact equalities. However, then u∗h∗ = cf and v∗w∗ = cg, and the condition
in step 6 is false.

Conversely, if the condition in step 6 is false, the initial discussion shows that
u∗h∗ = cf and v∗w∗ = cg. Mignotte’s bound (Fact 3.3) yields ‖h∗‖1, ‖w∗‖1 ≤ cB,
and we have

‖E−zh∗‖∞ = ‖h∗(x− z)‖∞ ≤ (|z|+ 1)d‖h∗‖1 ≤ |2 z|d‖h∗‖1
≤ 22dcB3 ≤ 2(ω−1)k−1 < m/2 ,

if z �= 0, by Lemma 4.2 and the condition in step 4, and trivially ‖E−zh∗‖∞ ≤
cB < m/2 if z = 0. Now w∗ ≡ E−zh∗ mod m, both sides of the congruence have
max-norms less than m/2, and hence they are equal. Thus h∗ is a common divisor
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of cf and cEzg, so that d = deg h∗ ≤ deg h, and in fact d = deg h and h∗ =
(c/lc(h))h. This also implies that w∗ = (c/lc(h))E−zh, u∗ = (lc(f)/lc(u))u,
and v∗ = (lc(g)/lc(v))v. Moreover, we have deg h = deg h∗ = deg hp for all
p ∈ S2, so that at least k of the initial primes in S0 are lucky. Finally, we find
that h = normal(h) = normal((c/lc(h))h) = normal(h∗), and similarly also
u = normal(u∗), v = normal(v∗), and w = normal(w∗). �

Theorem 8.9 (Success probability of Algorithm 8.6). Let

C = (n + 1)3n/22n(nλ+2n+2λ) and s = �(log2 C)/(ω − 1)� ∈ Θ(n2λ) .

The number of single precision primes that are unlucky with respect to the shift
gcd problem 8.3 is at most s. Suppose that k ≤ s and that the number of single
precision primes, between 2ω−1 and 2ω, is at least 2s. If we choose the set S0 in
step 2 uniformly at random from among at least 2s single precision primes, then the
expected number of iterations of the algorithm is at most two.

Proof. Let h be the normalized gcd of f and Ezg in Z[x] and σ ∈ Z the (deg h)th
subresultant of f and Ezg. Exercise 6.41 in von zur Gathen & Gerhard (1999) and
Corollary 3.12 imply that a prime p ∈ N is unlucky if and only if it divides σ.

By Theorem 8.8, the choice of S0 in step 2 is successful if and only if at least
k primes in S0 do not divide σ. By Lemma 3.9 (i), σ is a nonzero integer. We have
‖f‖2 < (n + 1)1/22λ and

‖Ezg‖2 = ‖g(x + z)‖2 ≤ (|z|+ 1)n‖g‖1 < (n + 1)2nλ+2n+λ ,

by Lemma 4.2, and Corollary 3.2 implies that 0 < |σ| ≤ C. Thus the number
of single precision primes dividing σ, i.e., the number of unlucky single precision
primes, is at most s. Since there are at least twice as many of them, the probability
that least half of the primes in S0 are lucky is at least 1/2, by Lemma 3.24. �

Theorem 8.10 (Cost of Algorithm 8.6). The cost for one execution of steps 2–6
of Algorithm 8.6 is O(n3 + nλ2) word operations with classical arithmetic and
O(λM(n) log n + n M(n + λ) log(n + λ)) or O∼(n2 + nλ) with fast arithmetic.

Proof. The cost for reducing lc(f) and lc(g) modulo all primes in S0 in step 2
is dominated by the cost for step 3. There, we first reduce f, g, and z modulo all
primes in S1. This takes O(nkλ) word operations with classical arithmetic and
O(n M(k) log k) with fast arithmetic. Then, for each p, we compute g(x+z) mod p,
taking O(n2) word operations with classical arithmetic and O(M(n)) with fast
arithmetic, by Theorems 4.3 and 4.5. The cost for the EEA to calculate hp and
for computing up, vp, wp is O(n2) word operations with classical arithmetic and
O(M(n) log n) with fast arithmetic. Thus the overall cost of step 3 is O(kn(n+λ))
word operations with classical arithmetic and O(n M(k) log k + k M(n) log n) with
fast arithmetic. The Chinese remaindering in step 5 takes O(k2) word operations per
coefficient with classical arithmetic and O(M(k) log k) with fast arithmetic. There
are O(n) coefficients, and hence the cost for step 5 is O(nk2) with classical arith-
metic and O(n M(k) log k) with fast arithmetic. Finally, in step 6 we compute O(n)
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gcd’s of k-word integers, each taking O(k2) or O(M(k) log k) with classical or fast
arithmetic, respectively, and this cost is dominated by the cost for step 5. Thus the
overall cost for one pass through steps 2 through 6 is O(nk(n+k)) word operations
with classical arithmetic and O(k M(n) log n + n M(k) log k) with fast arithmetic.
Now the claims follow from k ∈ O(n + λ). �

We note that Algorithm 8.6 is more efficient than the direct way of computing
Ezg and using a standard modular algorithm to compute the gcd, since the coef-
ficients of Ezg are in general much larger than the coefficients of the output of
Algorithm 8.6, by Lemma 4.2 and the discussion following it.

Corollary 8.11. Let f, g, z be as in Algorithm 8.6, and assume that gcd(f, Ezg) is
constant. Under the assumptions of Theorem 8.9, Algorithm 8.6 can detect this with
an expected number of O(n2 + nλ) word operations with classical arithmetic and
O(n M(n + λ) log(n + λ)) or O∼(n2 + nλ) with fast arithmetic.

Proof. Let σ be as in Theorem 8.8. We know that the gcd is constant and we may
stop the algorithm as soon as hp is constant for some p ∈ S1, which happens if
and only if p � σ. If at most half of the single precision primes to choose from
divide σ, as in Theorem 8.9, then we expect this to happen after at most two primes.
Thus with classical arithmetic, the expected cost is O(n2 + nλ) word operations.
With fast arithmetic, we still have the cost of O(n M(k) log k) for reducing z and
all coefficients of f and g simultaneously modulo all primes in S1, but the expected
cost until we find deg hp = 0 is only O(M(n) log n). �

It is surprising that the cost estimate in Corollary 8.11 for classical arithmetic
is smaller than for fast arithmetic. In practice, one would first reduce f, g, and z
modulo some small number of the primes in S0, using classical arithmetic, and then
compute the gcd of f and Ezg modulo these small primes. The additional cost
involved is then O(n2 + nλ), and with high probability, at least one of the modular
gcd’s will be constant.

Before analyzing Algorithm 8.2 when step 4 is performed by Algorithm 8.6, we
present a variant for steps 3 and 4 where modular reduction and Chinese remainder-
ing takes place only once.

Algorithm 8.12 (Small primes modular Gosper-Petkovšek form).
Input: Nonconstant normalized polynomials f, g ∈ Z[x] with deg g ≤ deg f ≤ n

and ‖f‖∞, ‖g‖∞ < 2λ, and distinct integers z1, . . . , zt ∈ Z of absolute value less
than 2λ+2, where t ≤ n2.

Output: Normalized polynomials ft, gt, h1, . . . , ht ∈ Z[x] with f = h1 · · ·ht · ft,
g = (E−z1h1) · · · (E−ztht) · gt, and

hi = gcd
(

f

h1 · · ·hi−1
, Ezi

( g

(E−z1h1) · · · (E−zi−1hi−1)

))

(8.1)

for 1 ≤ i ≤ t, or “FAIL”.
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1. c←− gcd(lc(f), lc(g)), B ←− �(n + 1)1/22n+λ�
k ←− �log2(2

2n+λ+1B3)/(ω − 1)	
2. choose a set S of 2k odd single precision primes

S0 ←− {p ∈ S: p � lc(fg)}
3. for all p ∈ S0 do

f0,p ←− f rem p, g0,p ←− g rem p
4. for 1 ≤ i ≤ t do
5. for all p ∈ Si−1 do
6. compute polynomials fi,p, gi,p, hi,p in Z[x] of max-norm less

than p/2 such that hi,p mod p is the monic gcd of fi−1,p mod p
and Ezigi−1,p mod p in Fp[x], fi−1,p ≡ hi,pfi,p mod p, and
gi−1,p ≡ (E−zihi,p)gi,p mod p

7. di ←− min{deg hi,p: p ∈ Si−1}
if |zi|di > 2diB2 then return “FAIL”

8. Si ←− {p ∈ Si−1: deg hi,p = di}
if #Si−1 < k then return “FAIL”

9. use the Chinese Remainder Algorithm to compute h∗
i , w

∗
i ∈ Z[x] of

max-norm less than (
∏

p∈S2
p)/2 such that h∗

i ≡ chi,p mod p and w∗
i ≡

c ·E−zihi,p mod p for all p ∈ Si

Hi ←− normal(h∗
i ), Wi ←− normal(w∗

i )
10. use the Chinese Remainder Algorithm to compute f∗

t , g∗t ∈ Z[x] of max-norm
less than (

∏
p∈S2

p)/2 such that f∗
t ≡ ft,p mod p and g∗t ≡ gt,p mod p for all

p ∈ St

Ft ←− normal(f∗
t ), Gt ←− normal(g∗t )

11. if lc(H1 · · ·Ht · Ft) �= lc(f) or lc(W1 · · ·Wt ·Gt) �= lc(g)
then return “FAIL”

12. if ‖H1‖1 · · · ‖Ht‖1 · ‖Ft‖1 ≤ B and ‖W1‖1 · · · ‖Wt‖1 · ‖Gt‖1 ≤ B
then return Ft, Gt, Ht, . . . , Ht else return “FAIL”

Definition 8.13. Let f, g ∈ Z[x] \ {0} be normalized, r = resx(f(x), g(x + y)) ∈
Z[y], and r1 = r ·∏1≤i≤t(y − zi). We say that a prime p ∈ N is lucky with re-
spect to the Gosper-Petkovšek form problem 8.4 if p � lc(fg) and deg gcd(r1, r

′
1) =

deg gcd(r1 mod p, r′1 mod p).

The leading coefficient of r and r1 is lc(f)deg glc(g)deg f , by Fact 7.11 (ii). To-
gether with Lemma 5.4, the following hold for a lucky prime:

• r mod p = resx(f(x) mod p, g(x + y) mod p),
• any two distinct roots of r1 remain distinct modulo p,
• the multiplicities of the roots of r1 do not change modulo p, and
• r(zi) = 0 if and only if r(zi) ≡ 0 mod p, for all i.

Theorem 8.14 (Correctness of Algorithm 8.12). If the set S0 in step 2 contains at
least k ∈ Θ(n+λ) primes that are lucky with respect to the Gosper-Petkovšek form
problem 8.4, then Algorithm 8.12 does not return “FAIL”. If the algorithm does not
return “FAIL”, then it returns the correct result.
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Proof. Let h1 be the normalized gcd of f and Ez1g, and let p ∈ S0 be a lucky
prime. We first show that h1 ≡ lc(h1)h1,p mod p. If r(z1) �= 0, then h1 = 1,
by Corollary 3.12, and the discussion preceding the theorem implies that r(z1) �≡
0 mod p and h1,p = 1 as well. Thus we may assume that r(z1) = 0 and h1 is
nonconstant. The following proof uses some valuation theory; see Fröhlich (1967)
for proofs of some facts that we use.

Let K ⊆ C be the splitting field of fg over Q, and let α1, . . . , αl ∈ K and
β1, . . . , βm ∈ K be the roots of f and g, respectively, repeated with multiplicities.
Let w: K → Q be any valuation extending the p-adic valuation on Q. Since p �

lc(fg), we have w(αu), w(βu) ≥ 0 for all u. Thus all αu and all βu belong to the
valuation ring Kw ⊆ K of all elements of K with nonnegative value of w. Similarly,
let Qw be the ring of all rational numbers with denominator not divisible by p. We
can extend the canonical epimorphism : Qw −→ Fp to an epimorphism Kw −→ E
onto an extension field E of Fp over which fg splits into linear factors. We denote
this extended morphism by as well. Thus α1, . . . , αl and β1, . . . , βm are the roots
of f and g, respectively, repeated with multiplicities.

For a polynomial h ∈ Z[y] and a number γ ∈ K , we denote by µγ(h) the
multiplicity of γ as a root of h. In particular, µγ(h) = 0 if h(γ) �= 0. We define
µγ(h) for h ∈ Fp[y] and γ ∈ E accordingly. By Fact 7.11 (ii), r splits in Kw[y] as
well. Let γ ∈ Kw be a root of r1,

Sγ = {(u, v): αu − βv = γ}, and Sγ = {(u, v): αu − βv = γ} .

Clearly Sγ ⊆ Sγ , and by Fact 7.11 (ii) and the discussion preceding the theorem,
we have

#Sγ = µγ(r) = µγ(r) = #Sγ ,

and hence Sγ = Sγ . Thus, for any fixed root γ ∈ Kw of r1,

αu − βv = γ ⇐⇒ αu − βv = γ (8.2)

holds for all 1 ≤ u ≤ l and 1 ≤ v ≤ m.
We claim that the images in E of any two distinct αu are distinct, and similarly

for the βu. Assume to the contrary that αu = αv for some u, v with αu �= αv , and
let γ = αu − β1. Then αv − β1 �= γ and αv − β1 = γ, contradicting (8.2). By
symmetry, the same also holds for the βu, and the claim is proved. Similarly, we
find that

g(αu − γ) = 0 ⇐⇒ g(αu − γ) = 0

holds for all 1 ≤ u ≤ l and all roots γ ∈ Kw of r1. Thus

µαu(f) = µαu
(f) and µαu−γ(g) = µαu−γ(g) (8.3)

for all 1 ≤ u ≤ l and all roots γ ∈ Kw of r1.
By reordering the αu if necessary, we may assume that α1, . . . , αq are precisely

the distinct roots of f , for some q ≤ l. Then (8.3) implies that α1, . . . , αq are the
distinct roots of f . Finally, we have
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h1 = gcd(f(x), g(x + z1)) = lc(h1)
∏

1≤u≤q

(x − αu)min{µαu (f), µαu−z1 (g)} ,

h1,p = gcd(f(x), g(x + z1)) =
∏

1≤u≤q

(x− αu)min{µαu
(f), µαu−z1

(g)} ,

and (8.3) for γ = z1 implies that h1 ≡ lc(h1)h1,p mod p.
Let h1, . . . , ht, ft, gt be as in (8.1). Proceeding inductively with f/h1 and

g/E−z1h1 instead of f and g, we find that

hj ≡ lc(hj)hj,p mod p for 1 ≤ j ≤ t ,

lc(f)ft ≡ lc(ft)ft,p mod p, and lc(g)gt ≡ lc(gt)gt,p mod p

for each lucky prime p. In particular, if S contains at least one lucky prime, then

dj = deg hj = deg hj,p for 1 ≤ j ≤ i (8.4)

holds for all lucky primes p ∈ Si and 1 ≤ i ≤ t. Conversely, if (8.4) holds for a
prime p ∈ Si, then this implies

hj ≡ lc(hj)hj,p mod p for 1 ≤ j ≤ i . (8.5)

Now assume that S contains at least k lucky primes. Then Si contains at least k
lucky primes as well, for all i, and (8.4) and (8.5) hold for all p ∈ Si. In partic-
ular, the algorithm does not return “FAIL” in step 8. Moreover, since hi | f and
E−zihi | g, Mignotte’s bound implies that ‖hi‖1, ‖E−zihi‖2 ≤ B, and the algo-
rithm does not return “FAIL” in step 7 either, by Lemma 8.5.

Let 1 ≤ i ≤ t and m =
∏

p∈Si
p. Then

c/lc(hi) · hi ≡ h∗
i mod m and c/lc(hi) ·E−zihi ≡ w∗

i mod m .

The right hand sides in these congruences have max-norms less than m/2, by
construction. The left hand sides are divisors of cf , and hence they have max-
norms at most 2λB ≤ 2(ω−1)k−1 < m/2 as well, by Mignotte’s bound 3.3. Thus
both congruences are in fact equalities. It follows that hi = normal(h∗

i ) = Hi

and E−zihi = normal(w∗
i ) = Wi for all i. By similar arguments, we find

ft = normal(f∗
t ) = Ft and gt = normal(g∗t ) = Gt. Thus the algorithm does

not return “FAIL” in step 11. By Mignotte’s bound, it neither returns “FAIL” in
step 12.

On the other hand, if the algorithm does not return “FAIL” in steps 7 and 8,
then the polynomials H1 · · ·Ht · Ft and f agree modulo m =

∏
p∈St

p up to a
multiplicative constant. If the algorithm does not return “FAIL” in step 11, then this
constant is 1. If, in addition, it does not return “FAIL” in step 12, then

‖H1 · · ·Ht · Ft‖1 ≤ ‖H1‖1 · · · ‖Ht‖1 · ‖Ft‖1 ≤ B ≤ 2(ω−1)k−1 < m/2 ,

and hence the congruence H1 · · ·Ht · Ft ≡ f mod m is in fact an equality. Sim-
ilarly, we find W1 · · ·Wt · Gt = g. Let 1 ≤ i ≤ t. By construction, we have



130 8. Modular Algorithms for the Gosper-Petkovšek Form

Wi ≡ E−ziHi mod m. Since the algorithm does not return “FAIL” in step 7,
Lemma 4.2 implies that

‖E−ziHi‖∞ ≤ (|zi|+ 1)di‖Hi‖1 ≤ |2zi|di‖Hi‖1 ≤ 22diB3 ≤ 2(ω−1)k−1 < m/2

if zi �= 0, and trivially ‖E−ziHi‖∞ ≤ B < m/2 if zi = 0. Thus the congruence
Wi ≡ E−ziHi mod m is in fact an equality. Finally, the gcd conditions (8.1) hold
for all i, since they are valid modulo at least one prime in St. �

Theorem 8.15 (Success probability of Algorithm 8.12). Let

C = n8n3+4n2
24n4λ+16n4+8n3λ+12n3+2n2

and s = �(log2 C)/(ω−1)� ∈ Θ(n4λ). The number of single precision primes that
are unlucky with respect to the Gosper-Petkovšek problem 8.4 is at most s. Suppose
that the number of single precision primes, between 2ω−1 and 2ω, is at least 2s. If
we choose the set S in step 2 uniformly at random from among at least 2s single
precision primes, then the success probability of the algorithm is at least 1/2.

Proof. The resultant r is a nonzero polynomial of degree at most n2, by Fact 7.11,
and r1 is a nonzero polynomial of degree at most 2n2. Lemma 7.15 yields ‖r‖1 <
(n2n+λ+3/2)2n. Thus

‖r1‖1 ≤ ‖r‖1 ·
∏

1≤i≤t

‖y − zi‖1 ≤ (n2n+λ+3/2)2n · 2n2(λ+2)

= n2n2n2λ+4n2+2nλ+3n .

Let d = deg gcd(r, r′), and let σ ∈ Z \ {0} be the dth subresultant of r and r′. By
Corollary 3.2, we have

|σ| ≤ ‖r1‖2n2−d
2 ‖r′1‖2n2−d

2 ≤ (2n2‖r1‖22)2n2 ≤ C .

The leading coefficient of r is lc(f)deg glc(g)deg f , by Fact 7.11 (ii). Thus, by Corol-
lary 5.5, a prime is unlucky if and only if it divides σd, and the number of unlucky
single precision primes is at most s. Hence the probability that a uniformly randomly
chosen single precision prime is unlucky is as most 1/2, and the claim follows from
Lemma 3.24 (i). �

Theorem 8.16 (Cost of Algorithm 8.12). If we ignore the cost for prime finding,
then Algorithm 8.12 takes O(n4 +n3λ+nλ2) word operations with classical arith-
metic and O(n2 M(n+λ) log(n+λ)+nλM(n) log n) or O∼(n3 +n2λ) with fast
arithmetic.

Proof. The cost for reducing all coefficients of f and g modulo all primes p in
S and S0 in steps 2 and 3, respectively, is O(knλ) word operations with classical
arithmetic and O(n M(k) log k) with fast arithmetic.

In step 6, we perform a gcd computation, two divisions, and two Taylor shifts.
Using Fact 3.13 and Theorems 4.3 and 4.5, this takes O(n2) operations in Fp with
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classical arithmetic and O(M(n) log n) with fast arithmetic. Reducing one zi mod-
ulo p takes O(λ) with classical arithmetic, and reducing it modulo all primes in
Si−1 with fast arithmetic takes O(M(k) log k).

At most n of the t gcd’s are nontrivial, and we can expect to detect a triv-
ial gcd with a constant number of primes, by modifying the algorithm in a sim-
ilar way as described in the proof of Corollary 8.11. Thus the expected cost for
steps 5 and 6 with classical arithmetic is O(n2 + λ) if the gcd is constant, and
O(k(n2 + λ)) otherwise. With fast arithmetic, the expected cost for steps 5 and
6 is O(M(k) log k + M(n) log n) when the gcd is trivial, and O(M(k) log k +
k M(n) log n) otherwise. Thus the expected total cost of steps 5 and 6 for all
gcd’s is O((n2 + nk)(n2 + λ)) word operations with classical arithmetic and
O((n2 + nk)M(n) log n + n2 M(k) log k) with fast arithmetic.

The cost for the Chinese remaindering and the subsequent normalizations in
steps 9 and 10 is O(k2) and O(M(k) log k) word operations per coefficient with
classical and fast arithmetic, respectively, and there are O(n) coefficients in total.
The claims now follow from k ∈ O(n + λ) by adding up costs. �

We are now ready to analyze the two modular variants of Algorithm 8.2. The
following parameter, which has been introduced by Abramov (1971), enters our
cost analysis.

Definition 8.17. Let f, g ∈ Z[x] be nonzero. The dispersion of f and g is

dis(f, g) = max{i ∈ N: i = 0 or res(f, Eig) = 0} .

By Corollary 3.12, the dispersion is 0 or the maximal nonnegative integer root
of resx(f(x), g(x + y)) ∈ Z[y], or equivalently, the maximal nonnegative integer
distance between a root of f and a root of g. The example f = x and g = x − e,
for a positive integer e, shows that the dispersion, which is e in this case, can be
exponential in the size of the coefficients of f and g in the worst case.

Theorem 8.18 (Cost of Algorithm 8.2). (i) If we use Algorithm 7.20 in step 1
and Algorithm 8.6 in step 4, then the expected cost of steps 1 through 4 is
O(n4 + n2λ2) word operations with classical arithmetic and

O(n3 M(n + λ) log(n + λ) + nλM(n) log n)

or O∼(n3(n + λ)) with fast arithmetic.
(ii) If we use Algorithm 7.20 in step 1 and Algorithm 8.12 in steps 3 and 4, then

the cost of steps 1 through 4 is O(n4 + n2λ2) word operations with classical
arithmetic and

O(n2 M(n + λ) log(n + λ) + nλM(n) log n + M(n2) log n)

or O∼(n2(n + λ)) with fast arithmetic.



132 8. Modular Algorithms for the Gosper-Petkovšek Form

(iii) If e = dis(f, g) is the dispersion of f and g, then e < 2λ+2, and the cost for
step 5 is O(e3(n3 + nλ2)) word operations with classical arithmetic and

O((en M(e(n + λ)) + eλM(en)) log(e(n + λ)))

or O∼(e2n(n + λ)) with fast arithmetic. The polynomial c has degree at most
en and its coefficients are of word size O(e(n + λ)).

Proof. Step 1 takes O(n3 + n2(log n)λ + n2λ2) word operations with classical
arithmetic and O(n M(n+λ) log(n+λ)+M(n2) log n+n2(M(λ)+λ log n)) with
fast arithmetic, by Theorem 7.21. The cost for step 2 is O(nλ2) or O(n M(λ) log λ)
with classical or fast arithmetic, respectively. Inductively, we find that

fihi · · ·h1 = f0 and gi(E−zihi) · · · (E−z1h1) = g0 (8.6)

for all i. Thus deg fi−1, deg gi−1 ≤ n and ‖fi−1‖∞, ‖gi−1‖∞ < (n+1)1/22n+λ in
step 4, by Mignotte’s bound (Fact 3.3), and Theorem 8.10 implies that the expected
cost for one execution of step 4 with Algorithm 8.6 is O(n3 +nλ2) word operations
with classical arithmetic and O(λM(n) log n + n M(n + λ) log(n + λ)) with fast
arithmetic. In fact, at most n of the hi are nonconstant, and for all other i we detect
that hi is constant with an expected number of only O(n2 + nλ) word operations
with classical arithmetic and O(n M(n + λ) log(n + λ)) with fast arithmetic, by
Corollary 8.11. This proves (i). The estimate (ii) follows from Theorem 8.16.

Fact 7.11 (iii) yields the upper bound on e. By definition of e, we have zi ≤ e
for all i such that hi is nonconstant. Let ni = deg hi for 1 ≤ i ≤ t. Then

deg c =
∑

1≤i≤t

zini ≤ e
∑

1≤i≤t

ni ≤ en .

Let 1 ≤ i ≤ t such that hi is nonconstant, 1 ≤ j ≤ zi, and Bi = ‖hi‖1 ·‖E−zihi‖1.
Then Lemma 8.5 implies that jni ≤ 2niB2

i , and (8.6) and Mignotte’s bound show
that

∏
1≤i≤t Bi ≤ (n + 1)4n+λ. Lemma 4.2 yields

‖E−jhi‖1 = ‖hi(x− j)‖1 ≤ (j + 1)ni‖hi‖1 ≤ (2j)niBi ≤ 22niB3
i .

Thus

log2 ‖c‖∞ ≤ log2 ‖h‖1 ≤
∑

1≤i≤t
1≤j≤zi

log2 ‖E−jhi‖1 ≤
∑

1≤i≤t

zi · (2ni + 3 log2 Bi)

≤ e
∑

1≤i≤t

(2ni + 3 log2 Bi) ∈ O(e(n + λ)) .

For each i, the cost for computing all E−jhi = hi(x − j) for 1 ≤ j ≤ zi by
iterated application of E−1 is O(en2

i (ni + log Bi)) word operations with classical
arithmetic and O(e(ni M(ni + log Bi) log(ni + log Bi) + log Bi · M(ni))) with
fast arithmetic, by Theorems 4.3 and 4.8, in total O(en2(n + λ)) with classical or
O(e(n M(n + λ) log(n + λ) + λM(n))) with fast arithmetic. Now Lemma 3.15
implies the cost estimate for step 5. �
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The estimate (ii) with fast arithmetic is better by a factor of about n than the cor-
responding estimate in (i). This is mainly due to the fact that modular reduction and
Chinese remaindering happens only once in the variant (ii), namely at the beginning
and at the end of Algorithm 8.12, while it is performed each time when Algorithm
8.6 is called in the variant (i).

Using Algorithm 8.2, we can compute rational solutions of homogeneous linear
first order difference equations with polynomial coefficients.

Corollary 8.19. Given two nonconstant polynomials f, g ∈ Z[x] of degree at most
n and max-norm less than 2λ, we can decide whether the homogeneous linear first
order difference equation

g · Eρ− f · ρ = 0

has a nonzero solution ρ ∈ Q(x), and if so, compute one, using O(n4 +n2λ2) word
operations with classical arithmetic and

O(n2 M(n + λ) log(n + λ) + nλM(n) log n + M(n2) log n)

or O∼(n2(n + λ)) with fast arithmetic.

Proof. We call Algorithm 8.2 to compute a Gosper-Petkovšek form (a, b, u) ∈
Z[x]3 of the rational function f/g. Then we call the algorithm again to compute
a Gosper-Petkovšek form (b∗, a∗, v) ∈ Z[x]3 of the rational function b/a. (In fact,
if we compute not only the nonnegative integers z ∈ Z such that gcd(f, Ezg) �= 1
in step 1, but also the negative ones and adapt the remaining steps suitably, then we
can compute both u and v with only one call to the modified algorithm.)

If a∗/b∗ = 1, then

g ·E u

v
=

gu

v
· v

Ev
· Eu

u
=

gu

v
· a

b
· Eu

u
=

gu

v
· f

g
= f · u

v
,

and ρ = u/v solves the difference equation.
Conversely, assume that ρ ∈ Q(x) \ {0} solves the difference equation. Then a

similar calculation as above shows that ρ∗ = ρ · v/u satisfies

Eρ∗

ρ∗
=

a∗

b∗
.

If we write ρ∗ = u∗/v∗, with coprime polynomials u∗, v∗ ∈ Z[x], then

a∗

b∗
=

Eu∗

u∗ ·
v∗

Ev∗
.

The properties of the Gosper-Petkovšek form imply that gcd(a∗, Eib∗) = 1 for all
i ∈ Z. If u∗ is not constant, then it has a nonconstant irreducible factor p ∈ Z[x]
such that E−1p � u∗. Then, since u∗ and v∗ are coprime, p does not divide (Eu∗)v∗,
and hence p divides b∗. Now let i ≥ 1 be maximal such that Ei−1p | u∗. Then
Eip | Eu∗, but Eip � u∗ · Ev∗, and hence Eip | a∗. We arrive at the contradiction
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that the nonconstant polynomial Eip divides gcd(a∗, Eib∗) = 1, and conclude that
u∗ is constant. A similar argument shows that v∗ is constant as well, whence

a∗

b∗
=

Eρ∗

ρ∗
= 1 .

Thus the difference equation is unsolvable if a∗/b∗ �= 1.
If we do not expand the product representation of u step 5 of Algorithm 8.2, then

the cost for computing (a, b, u) is given by Theorem 8.18 (ii). Since a | f and b | g,
Mignotte’s bound (Fact 3.3) implies that their coefficients are of word size O(n+λ),
and another application of the same theorem, with λ replaced by O(n + λ), shows
that we can compute (a∗, b∗, v) within the same time bound. �

The proof also shows that if the homogenous difference equation has a rational
solution ρ ∈ Q(x), then any other solution is a constant multiple of ρ, i.e., the
solution space is Qρ.

8.1 Modular GP′-Form Computation

In this section, we discuss the differential analog of Algorithm 8.2. The prime ′

denotes the usual differential operator.

Definition 8.20. Let F be a field and f, g ∈ F [x] be nonzero polynomials. In the
style of Definition 8.1, we say that a triple (a, b, c) ∈ F [x]3 is a differential Gosper
form or G′-form of the rational function f/g if

f

g
=

a

b
+

c′

c
and gcd(b, a− ib′) = 1 for all i ∈ N . (8.7)

If in addition gcd(b, c) = 1, then (a, b, c) is a differential Gosper-Petkovšek form
or GP ′-form of f/g.

In particular, the condition (8.7) for i = 0 implies that a and b are coprime.
Bronstein (1990, 1997) calls a rational function a/b with gcd(b, a− ib′) = 1 for

all i ∈ N weakly normalized. Before we state an algorithm for computing a GP′-
form, we show that the GP′-form is unique up to multiplication by constants. The
following concepts are useful for the proof.

Definition 8.21. Let F be a field, f, g ∈ F [x] nonzero, and p ∈ F [x] irreducible.

(i) The p-adic valuation of f is

vp(f) = max{e ∈ N: pe | f} ,

and vp(0) = ∞. The p-adic valuation of the rational function f/g ∈ F (x) is
vp(f/g) = vp(f)− vp(g).
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(ii) We can expand the rational function f/g as a unique generalized p-adic Lau-
rent series

f

g
=
∑

i≥m

aip
i ∈ F (x)(p) ,

with m = vp(f/g) ∈ Z and all ai ∈ F [x] of degree less than deg p. Here
F (x)(p) is the p-adic completion of F (x). The p-adic residue of f/g is the coef-
ficient of p−1 in this expansion: Resp(f/g) = a−1. In particular, Resp(0) = 0.

If F = C and p = x − λ is a linear polynomial, then Resx−λ(f/g) is just
the residue of f/g at the point λ ∈ C known from complex analysis. To avoid
confusion with the resultant, we denote the residue by Res and the resultant by res.
The valuation and the residue have some well-known properties:

Lemma 8.22. Let F be a field of characteristic c, f, g ∈ F (x), and p ∈ F [x]
irreducible.

(i) vp(1) = 0, vp(f) =∞ ⇐⇒ f = 0.
(ii) vp(f + g) ≥ min{vp(f), vp(g)}, with equality if vp(f) �= vp(g).

(iii) vp(fg) = vp(f) + vp(g), and vp(f/g) = vp(f)− vp(g) if g �= 0.
(iv) vp(f ′) = vp(f)− 1 if c � vp(f), and vp(f ′) ≥ vp(f) if c | vp(f).
(v) Resp(f) = 0 if vp(f) ≥ 0.

(vi) Resp(f + g) = Resp(f) + Resp(g).
(vii) Resp(fg) ≡ f · Resp(g) mod p if vp(g) = −1 and vp(f) ≥ 0.

(viii) Resp(f ′/f) = (vp(f) mod c) if f �= 0.
(ix) If f, g are nonzero polynomials such that vp(f) ≥ 0 and vp(g) = 1, then

r = Resp(f/g) ⇐⇒ p | gcd(g, f − rg′) ,

for all r ∈ F [x] of degree less than deg p.

Proof. We only show the last three claims and refer to Chap. 4 in Bronstein (1997)
for a proof of the other statements. For the proof of (vii), let r = Resp(g) and
q = g − rp−1. Then vp(q) ≥ 0, vp(fr) ≥ 0, and vp(fq) ≥ 0. There exist unique
s ∈ F (x) and t ∈ F [x] such that fr = sp + t, vp(s) ≥ 0, and deg t < deg p, and
hence

Resp(fg) = Resp(fq + frp−1) = Resp(fq + s + tp−1)
= Resp(fq) + Resp(s) + Resp(tp−1) = t ≡ fr mod p ,

by (v). This proves (vii).
For (viii) let e = vp(f) ∈ Z and h = fp−e. Then vp(h) = vp(f)+vp(p−e) = 0.

Thus

Resp

(f ′

f

)
= Resp

( (hpe)′

hpe

)
= Resp

(h′

h

)
+ Resp

((pe)′

pe

)

= 0 + Resp(ep−1) = e in F [x] ,
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where we have used the linearity of the logarithmic derivative and the fact that
vp(h′/h) = vp(h′)− vp(h) = vp(h′) ≥ 0. This proves (viii).

Finally, for (ix) we have vp(g′/g) = −1 and

Resp

(f − rg′

g

)
≡ Resp

(f

g

)
− r · Resp

(g′

g

)
= Resp

(f

g

)
− r mod p , (8.8)

by (vi), (vii), and (viii). Since the degree of both sides is less than deg p, the con-
gruence is in fact an equality. If p | (f − rg′), then vp((f − rg′)/g) ≥ 0, and (v)
implies that both sides in (8.8) are zero. Conversely, if r = Resp(f/g), then (8.8)
and

vp

(f − rg′

g

)
≥ max{vp(f)− vp(g), vp(r) + vp(g′)− vp(g)} ≥ −1

imply that vp((f − rg′)/g) ≥ 0. Hence p is a common divisor of g and f − rg′. �

Lemma 8.23. Let F be a field of characteristic zero and (a, b, c), (A, B, C) in
F [x]3 be two GP′-forms of the same rational function, and assume that b, B, c, C
are monic. Then (a, b, c) = (A, B, C).

Proof. We have
a

b
+

c′

c
=

A

B
+

C′

C
. (8.9)

Condition (8.7) for i = 0 implies that both a, b and A, B are coprime. Let p ∈ Z[x]
be an irreducible factor of c of multiplicity e = vp(c) ≥ 1. Since b and c are
coprime, we have vp(b) = 0, vp(a/b) ≥ 0, and

e = Resp

(a

b

)
+ Resp

(c′

c

)
= Resp

(A

B

)
+ Resp

(C′

C

)
,

by Lemma 8.22 (v) and (viii). Assume that p | B. Then vp(A) = 0. Since B and
C are coprime, we have vp(C) = 0, vp(C′/C) ≥ 0, and Resp(C′/C) = 0. Thus
Resp(A/B) = e. If vp(B) > 1, then vp(c′/c) = −1 and vp(C′/C) ≥ 0 imply that

vp

(a

b

)
= vp

(A

B
+

C′

C
− c′

c

)

= min
{

vp

(A

B

)
, vp

(C′

C

)
, vp

(c′

c

)}

= vp

(A

B

)
= −vp(B) ,

contradicting vp(a/b) ≥ 0. Thus vp(B) = 1. Then Lemma 8.22 (xi) shows that
p | gcd(B, A− eB′), which contradicts (8.7). Thus our assumption was wrong and
p � B, vp(A/B) ≥ 0, Resp(A/B) = 0, and vp(C) = Resp(C′/C) = e. Since
this holds for all irreducible factors of c, we conclude that c | C. By a symmetric
reasoning also C | c, and since both polynomials are monic, they are equal. Finally,
(8.9) implies that a/b = A/B. Since both a, b and A, B are coprime and b, B are
monic, we conclude that b = B and a = A. �
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The uniqueness statement is wrong in positive characteristic: for example, both
(0, 1, 1) and (0, 1, xp) are GP′-forms of the rational function 1.

Let f, g ∈ F [x] \ {0} be coprime. In analogy to Abramov & Petkovšek (2001)
and Geddes, Le & Li (2004), we might call a quadruple (a, b, c, d) ∈ Z[x]4 satisfy-
ing

f

g
=

a

b
+

c′

c
− d′

d

a strict differential rational normal form of the rational function f/g, if b, c, d are
pairwise coprime and gcd(b, a− ib′) = 1 for all i ∈ Z. In contrast to the difference
case, however, similar arguments as in the proof of Lemma 8.23 show that this
normal form is unique up to multiplication by constants.

The following decomposition of a rational function is a generalization of the
GP′-form.

Definition 8.24. Let F be a field and f, g ∈ F [x] be nonzero coprime polynomials.
A GP′-refinement of the rational function f/g is a decomposition

f

g
=

a

b
+
∑

1≤i≤t

zi
h′

i

hi
, (8.10)

where

(i) z1, . . . , zt ∈ F are nonzero and distinct,
(ii) h1, . . . , ht ∈ F [x] are nonconstant, squarefree, and pairwise coprime,

(iii) a, b ∈ F [x] and b is coprime to h1, . . . , ht,
(iv) g = bh1 · · ·ht.

Lemma 8.25. With the assumptions as in Definition 8.24, the polynomials a and b
are coprime.

Proof. Let p ∈ F [x] be a common divisor of a and b. Then p divides g and
f −∑1≤i≤t zih

′
ig/hi. By (iii), p is coprime to hi for all i, so that it divides all g/hi.

Hence p | f , and the coprimality of f and g implies that p is constant. �

Similarly to Lemma 8.23, one can show that the GP′-refinement for given
z1, . . . , zt – if one exists – is unique, up to leading coefficients, but we will not
need this in what follows. Lemma 8.22 implies that zi is the p-adic residue of f/g
for every irreducible factor p of hi, and that hi divides gcd(g, f − zig

′). Thus a
necessary condition for the existence of a GP′-refinement is that all of these gcd’s
are nonconstant. These observations lead to the following algorithm for computing
a GP′-refinement, due to Almkvist & Zeilberger (1990) (see also Algorithm Weak-
Normalizer in §6.1 of Bronstein 1997 and Algorithm 11.1 in Koepf 1998).

Algorithm 8.26 (GP ′-refinement computation).
Input: Nonzero coprime polynomials f, g ∈ F [x] of degrees at most n, where F

is a field of characteristic greater than n, and a list of distinct nonzero elements
z1, . . . , zt ∈ F such that gcd(g, f − zig

′) is nonconstant for all i.
Output: A GP ′-refinement of f/g as in Definition 8.24.
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1. for 1 ≤ i ≤ t compute hi ←− gcd(g, f − zig
′)

2. b←− g

h1 · · ·ht
, a←− f −∑1≤i≤t zih

′
ig/hi

h1 · · ·ht
3. return a, b, h1, . . . , ht

In practice, it is more efficient to replace g and f by g/hi and (f − zig
′)/hi

after computing hi. Bronstein’s Algorithm WeakNormalizer first performs a partial
fraction decomposition

f

g
=

f1

g1
+

h

g/g1
,

where g1 is the product of all irreducible factors of g of multiplicity one. Since these
modifications do not improve the order of magnitude of the worst case running time
estimate, we only discuss the simpler algorithm above.

Theorem 8.27. Algorithm 8.26 works correctly as specified. It takes O(tn2) arith-
metic operations in F with classical arithmetic and O(t M(n) log n) with fast arith-
metic.

Proof. By assumption, all hi are nonconstant. Equation (8.10) and property (iv) in
Definition 8.24 are satisfied by construction; but we still need to show that a and
b are in fact polynomials. Let 1 ≤ i ≤ t and p ∈ F [x] be an irreducible factor
of hi. If p2 | g, then p | zig

′, and hence p | f . Since f and g are coprime, this
is a contradiction, and we conclude that vp(g) = 1. This in turn implies that hi is
squarefree and coprime to g/hi. Now assume that p divides hj for some j �= i. Then
p divides f−zjg

′−(f−zig
′) = (zi−zj)g′. Since vp(g) = 1 and the characteristic of

F is greater than deg g, we have p � g′, and hence p divides the nonzero field element
zi − zj . This contradiction proves that hi and hj are coprime, which concludes the
proof of (ii). Moreover, we conclude that h1 · · ·ht | g, and b is a polynomial coprime
to all hi. By construction, hi divides f − zig

′ = f − zih
′
ig/hi − zihi(g/hi)′, and

hence it divides f−zih
′
ig/hi. Since hi and hj are coprime for i �= j, hi divides g/hj

for all such j, and we see that hi | (f −
∑

1≤i≤t zih
′
ig/hi). Again the coprimality

of the hi implies that a is a polynomial.
The cost for step 1 is O(tn2) with classical and O(t M(n) log n) with fast arith-

metic. In step 2, we first compute h1 · · ·ht. Since this product divides f , it has de-
gree at most n, and the cost is O(n2) and O(M(n) log t) with classical and fast arith-
metic, respectively. Using classical arithmetic, we can compute g/hi and multiply
the result by h′

i with O(n · deg hi) field operations for each i, together O(n2). The
linear combination of these products with the zi can be computed within the same
time bound. With fast arithmetic, Algorithm 10.20 in von zur Gathen & Gerhard
(1999) takes O(M(n) log t) operations to compute the linear combination. Finally,
the cost for dividing by h1 · · ·ht to compute b and a is another O(n2) operations
with classical and O(M(n)) with fast arithmetic. Thus the cost for step 2 is O(n2)
and O(M(n) log t), respectively. This is dominated by the cost for step 1, and the
claim follows. �

Using Algorithm 8.26, we obtain the following algorithm for computing a G′-
form in Z[x]. In fact, it even computes a GP′-form.
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Algorithm 8.28 (GP ′-form computation).
Input: Nonzero coprime polynomials f, g ∈ Z[x] of degree at most n and max-norm

less than 2λ.
Output: A GP ′-form of f/g.

1. compute a list 0 < z1 < . . . < zt ∈ N, with t ≤ n, of all positive integers
k ∈ N such that gcd(g, f − kg′) is nonconstant

2. compute a GP′-refinement of f/g with respect to z1, . . . , zt, as in Definition
8.24

3. return a, b, and c = hz1
1 · · ·hzt

t

Theorem 8.29 (Correctness of Algorithm 8.28). Algorithm 8.28 correctly com-
putes a GP ′-form of f/g.

Proof. We first note that the zi are roots of the resultant resx(g, f − yg′) ∈ Z[y],
by Corollary 3.12, and Fact 7.24 implies that t ≤ n. The decomposition

f

g
=

a

b
+

c′

c

follows from the linearity of the logarithmic derivative. Property (iii) in Definition
8.24 implies that b and c are coprime. It remains to show that a/b is weakly normal-
ized. Let z ∈ N, and assume that p ∈ Z[x] is an irreducible common divisor of b
and a− zb′. Then Lemma 8.25 implies that z > 0, and Lemma 8.22 yields

z = Resp

(a

b

)
= Resp

(f

g

)
−
∑

1≤i≤t

ziResp

(h′
i

hi

)
= Resp

(f

g

)
,

since p � hi for all i. By the same lemma, we have p | gcd(g, f − zg′), and hence
z = zi and p | hi for some 1 ≤ i ≤ t. This contradiction proves that b and a − zb′

are coprime. �

Corollary 8.30. Let F be a field of characteristic zero and f, g ∈ F [x] coprime
polynomials such that g �= 0 is monic. There exists a nonzero polynomial h ∈ F [x]
with f/g = h′/h if and only if deg f < deg g and g =

∏

i≥1

gcd(g, f − ig′). In fact,

we may choose h =
∏

i≥1

gcd(g, f − ig′)i.

Proof. The GP′-form of f/g is (0, 1, h), and the claims follow from Theorems 8.27
and 8.29, since the latter theorem holds for an arbitrary field of characteristic zero. �

The following fact is a consequence of Fact 7.24 (i).

Fact 8.31. Let f, g ∈ F [x]\ {0} be coprime polynomials, where F is a perfect field
of characteristic zero or greater than deg f . Let g1 ∈ F [x] be the product of all
monic irreducible factors of multiplicity 1 in g, r = resx(g, f − yg) ∈ F [y], and
suppose that r splits into linear factors in F and z1, . . . , zt ∈ F are the distinct
roots of r. Then

g1 =
∏

1≤i≤t

gcd(g, f − zig
′) .
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We now analyze two modular variants of Algorithm 8.26. The first one uses
Chinese remainder techniques, and the second one uses Hensel lifting. We assume
that our polynomials have degree at most 2ω−1, where ω is the word size of our
processor.

Algorithm 8.32 (Small primes modular GP ′-refinement).
Input: Nonzero coprime polynomials f, g ∈ Z[x] with deg f, deg g ≤ n ≤ 2ω−1

and ‖f‖∞, ‖g‖∞ < 2λ, and a list of distinct positive integers z1, . . . , zt, where
t ≤ n and gcd(g, f − zig

′) is nonconstant for all i.
Output: A GP ′-refinement of f/g as in Definition 8.24, or otherwise “FAIL”.

1. B ←− �(n + 1)1/22n+λ�, C ←− (n + 1)n22nλ, D ←− (n2 + 1)2nBC
k ←− �log2(2λ+1B)/(ω − 1)	, s←− �log2(2D)/(ω − 1)	

2. choose a set S0 of 2k odd single precision primes
S1 ←− {p ∈ S0 : p � lc(fg) and gcd(f mod p, g mod p) = 1 and zi �≡
zj mod p for all i �= j}

3. for 1 ≤ i ≤ t and all p ∈ S1 compute hi,p ∈ Z[x] of max-norm less than
p/2 such that hi,p mod p is the monic gcd of g mod p and (f − zig

′) mod p in
Fp[x]

4. d←− min{deg(h1,p · · ·ht,p): p ∈ S1}
S2 ←− {p ∈ S1: deg(h1,p · · ·ht,p) = d}
if #S2 < k then return “FAIL”

5. for 1 ≤ i ≤ t do
6. use the Chinese Remainder Algorithm to compute h∗

i ∈ Z[x] of max-
norm less than (

∏
p∈S2

p)/2 such that h∗
i ≡ lc(g)hi,p mod p for all

p ∈ S2

hi ←− normal(h∗
i )

7. use the Chinese Remainder Algorithm to compute b ∈ Z[x] of max-norm less
than (

∏
p∈S2

p)/2 such that

g ≡ b · h1 · · ·ht mod p for all p ∈ S2

8. if ‖b‖1 · ‖h1‖1 · · · ‖ht‖1 > B then return “FAIL”
9. choose a set S3 of s single precision primes not dividing lc(g)

10. reduce f, g, z1, . . . , zt, h1, . . . , ht modulo all primes in S3

11. for all p ∈ S3 compute ap ∈ Z[x] of max-norm less than p/2 such that

aph1 · · ·ht ≡ f −
∑

1≤i≤t

zih
′
i

g

hi
mod p

12. use the Chinese Remainder Algorithm to compute a ∈ Z[x] of max-norm less
than (

∏
p∈S3

p)/2 such that a ≡ ap mod p for all p ∈ S3

13. if ‖a‖1 · ‖h1‖1 · · · ‖ht‖1 > D then return “FAIL”
14. return a, b, h1, . . . , ht

Definition 8.33. Let f, g ∈ Z[x] be nonzero coprime, z1, . . . , zt ∈ Z nonzero and
distinct, and let r = resx(g, f − yg′) ∈ Z[y]. We say that a single precision prime
p ∈ N is lucky with respect to GP ′-refinement if it satisfies the following conditions:
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a. p � lc(fg),
b. f mod p and g mod p are coprime in Fp[x],
c. deg gcd(g, g′) = deg gcd(g mod p, g′ mod p), i.e., p is lucky with respect to

the squarefree factorization of g,
d. deg gcd(r, r′) = deg gcd(r mod p, r′ mod p), i.e., p is lucky with respect to

the squarefree factorization of r.

The third condition implies that any two distinct roots of g remain distinct mod-
ulo p, so that the squarefree decomposition of g mod p is the image modulo p of
the squarefree decomposition of g in Z[x] (Lemma 5.4). Similarly, the last condition
says that any two distinct roots of r remain distinct modulo p. In particular, since
r(zi) = 0 for all i, by Corollary 3.12, the zi remain distinct modulo p.

Theorem 8.34 (Correctness of Algorithm 8.32). If the set S0 in step 2 contains at
least k ∈ Θ(n + λ) lucky primes, then Algorithm 8.32 does not return “FAIL”. If
the algorithm does not return “FAIL”, then it returns the correct result.

Proof. For 1 ≤ i ≤ t, let ui ∈ Q[x] be the monic gcd of g and f − zig
′. We claim

that lc(hi)ui = hi for all i. Let p ∈ S0 be a lucky prime, and denote reduction
modulo p by a bar. Then p ∈ S1, by the discussion preceding the theorem. Since p >
2ω−1 ≥ n, p divides neither lcx(g) nor lcx(f−yg′), and hence r is the resultant of g
and f−yg′ in Fp[x]. We claim that the decomposition from Fact 8.31 corresponding
to f and g is the modular image of the analogous decomposition corresponding
to f and g. The precise formulation of this statement and its proof, which now
follows, are somewhat technical, since they take place in the splitting fields of r
and r, respectively. The proof is quite similar to the proof of Theorem 8.14.

Let K ⊆ C be the splitting field of r, and let zt+1, . . . , zτ ∈ K be such that
z1, . . . , zτ are the distinct complex roots of r. Moreover, let ui ∈ K[x] be the
monic gcd of g and f − zig

′ for t < i ≤ τ . Let v: K → Q be any valuation on K
extending the p-adic valuation on Q. Conditions b) and c) together with Fact 7.24
(iii) imply that the leading coefficient of r is nonzero modulo p, and hence v(zi) ≥ 0
for all i. Condition d) implies that p does not divide the discriminant of K , so that
it is unramified in K and v(K) = v(Q) = Z. Let Kv be the ring of all elements
of K with nonnegative v-valuation, and similarly let Qv be the ring of all rational
numbers whose denominator is not divisible by p. We can extend the epimorphism
: Qv → Fp to an epimorphism from Kv onto a finite extension E of Fp, which we

also denote by . Since r splits into linear factors in Kv[x], E contains the splitting
field of r. The ring Kv is local, so in particular a UFD. Gauß’ Theorem (Theorem
6.8 in von zur Gathen & Gerhard 1999) implies that Kv[x] is a UFD as well, and
that a nonconstant irreducible polynomial in Kv[x] remains irreducible in K[x]. The
leading coefficient of g is not divisible by p, and hence it is a unit in Kv. Thus the
irreducible factorizations of g/lc(g) in Kv[x] and in K[x] coincide. In particular, all
ui lie in Kv[x].

Now let hi,p ∈ E[x] be the monic gcd of g and f − zig
′ for t < i ≤ τ . More-

over, let g1 ∈ Qv[x] be the product of all monic irreducible factors of multiplicity 1
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in g. Condition c) implies that the product of all monic irreducible factors of mul-
tiplicity 1 in g is equal to g1. Fact 8.31 says that g1 =

∏
1≤i≤τ ui in Kv[x] and

g1 =
∏

1≤i≤τ hi,p in E[x]. Thus

∑

1≤i≤τ

deg ui = deg g1 =
∑

1≤i≤τ

deg hi,p . (8.11)

On the other hand, ui divides hi,p, for all i. This together with (8.11) implies that
ui = hi,p for all i, and hence in particular ui ≡ hi,p mod p for 1 ≤ i ≤ t.

What we just have shown is true for all lucky primes p ∈ S0. Since S0 contains
at least one lucky prime, we have d = deg(u1 · · ·ut) and ui ≡ hi,p mod p for all
p ∈ S2 in step 4. Moreover, all lucky primes in S0 are also in S2, and the algorithm
does not return “FAIL” in step 4. Let m =

∏
p∈S2

p. Then h∗
i ≡ lc(g)ui mod m

in step 6. For all i, the polynomial lc(g)ui is in Z[x] and divides lc(g)g, and hence
‖lc(g)ui‖∞ ≤ |lc(g)|B ≤ 2(ω−1)k−1 < m/2, by Mignotte’s bound (Fact 3.3). The
polynomial h∗

i has max-norm less than m/2 as well, by construction, and hence
h∗

i = lc(g)ui and hi = lc(hi)ui ∈ Z[x]. The latter polynomial is primitive and
divides g. By a similar reasoning, we have b = g/h1 · · ·ht, and again Mignotte’s
bound implies that the algorithm does not return “FAIL” in step 8.

Now let f∗ = f −∑1≤i≤t zih
′
ig/hi ∈ Z[x] and m∗ =

∏
p∈S3

p. Definition
8.24 implies that f∗ is divisible by h1 · · ·ht. Each zi is a root of r and divides r(0),
and hence |zi| ≤ |r(0)| < C for all i, by Corollary 3.2 (i). Thus

‖zih
′
ig/hi‖2 ≤ |zi| · ‖h′

i‖1‖g/hi‖1 ≤ nBC ,

by Mignotte’s bound. Thus ‖f∗‖2 < (n + 1)1/22λ + n2BC ≤ (n2 + 1)BC, and
Mignotte’s bound implies that

‖f∗/h1 · · ·ht‖∞ ≤ 2n‖f∗‖2 ≤ D ≤ 2(ω−1)s < m∗/2 .

We have a ≡ f∗/h1 · · ·ht mod m∗ after step 12, and since both sides of the con-
gruence have max-norms less than m∗/2, they are equal. Finally, Mignotte’s bound
implies that

‖a‖1 · ‖h1‖1 · · · ‖ht‖1 ≤ 2n‖f∗‖2 ≤ D ,

and the algorithm does not return “FAIL” in step 13.
It remains to prove the second part of the theorem. Since the algorithm does not

return “FAIL” in step 4, we have B ≤ 2(ω−1)k−1 < m/2. Since it does not return
“FAIL” in step 8, we have

‖bh1 · · ·ht‖∞ ≤ ‖bh1 · · ·ht‖1 ≤ ‖b‖1 · ‖h1‖1 · · · ‖ht‖1 ≤ B < m/2 .

Thus the congruence bh1 · · ·ht ≡ g mod m is in fact an equality. Similarly, the fact
that the algorithm does not return “FAIL” in step 13 implies that

‖ah1 · · ·ht‖∞ ≤ ‖ah1 · · ·ht‖1 ≤ ‖a‖1 · ‖h1‖1 · · · ‖ht‖1 ≤ D ≤ 2(ω−1)s−1

< m∗/2 .
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Thus the congruence ah1 · · ·hr ≡ f∗ mod m∗ is in fact an equality as well. The hi

are nonconstant, squarefree, pairwise coprime, and coprime to b, since they are so
modulo at least one in S2, by Theorem 8.27. �

Theorem 8.35 (Success probability of Algorithm 8.32). Let

A = (2n)!2n(n + 1)4n2+4n2(4n2+4n+2)λ

and w = �(log2 A)/(ω − 1)� ∈ Θ(n2(λ + log n)). There are at most w single
precision primes that are unlucky with respect to GP ′-refinement. Suppose that the
number of single precision primes, between 2ω−1 and 2ω, is at least 2w. If we choose
the set S0 in step 2 uniformly at random from among at least 2w single precision
primes, then the failure probability of the algorithm is at most 1/2.

Proof. Let r = resx(g, f − yg′) ∈ Z[y] \ {0}. Then Fact 7.24 (i) implies that
deg r ≤ n. Let ϕ ∈ Z \ {0} be the resultant of f and g, let γ ∈ Z \ {0} be the
deg gcd(g, g′)-th subresultant of g and g′, and let ρ ∈ Z\{0} be the deg gcd(r, r′)-th
subresultant of r and r′. Finally, let R = lc(fg)ϕγρ ∈ Z\ {0}. We now show that a
prime p ∈ N not dividing R is a lucky prime, |R| ≤ A, and the number of unlucky
single precision primes is at most w.

Let p be a prime not dividing R. Then deg f = deg(f mod p) and deg g =
deg(g mod p). Thus p � ϕ and Corollary 3.12 imply that f mod p and g mod p are
coprime. Similarly, since p > 2ω−1 ≥ n, we have deg(g′ mod p) = deg g′, and
p � γ and Corollary 3.12 imply that deg gcd(g mod p, g′ mod p) = deg gcd(g, g′).
Finally, lcy(r) is a divisor of lc(g)| deg g−deg f−1|ϕγ, by Fact 7.24 (iii), so that
deg(r mod p) = deg r and deg(r′ mod p) = deg r′, and again p � ρ and Corol-
lary 3.12 imply that deg gcd(r mod p, r′ mod p) = deg gcd(r, r′). Thus p is a
lucky prime.

The one-norm of any coefficient of g or f − yg′ in Z[y] is less than (n + 1)2λ.
Corollary 3.2 shows that ‖r‖2 ≤ ‖r‖1 ≤ (2n)!(n + 1)2n22nλ and

|ρ| ≤ ‖r‖n2 · ‖r′‖n2 ≤ nn‖r‖2n
2 ≤ (2n)!2n(n + 1)4n2+n24n2λ .

The same corollary also shows that |ϕ| ≤ (n + 1)n22nλ and |γ| ≤ (n2 + n)n22nλ.
Thus |lc(fg)ϕγ| ≤ (n + 1)3n2(4n+2)λ, and we conclude that |R| ≤ A. We clearly
have k ≤ w, so that we can choose 2k single precision primes in step 2. By the
choice of w, the number of single precision primes dividing R, and hence also the
number of unlucky single precision primes, is at most w. Thus the probability that
a uniformly randomly chosen single precision prime is unlucky is at most 1/2, and
the last claim follows from Lemma 3.24 (i) and Theorem 8.34. �

Theorem 8.36 (Cost of Algorithm 8.32). If we ignore the cost for prime finding,
then Algorithm 8.32 takes O(n4 + n3λ2) word operations with classical arithmetic
and O(n2 M(n) log n + n M(n(λ + log n)) log(nλ)) or O∼(n3 + n2λ) with fast
arithmetic.
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Proof. Let r = resx(g, f − yg′) ∈ Z[y]. Then the product of all zi divides the
constant coefficient of r, which is of absolute value at most C. Thus the sum of the
word sizes of all zi is O(log C) or O(s).

We reduce f , g, and the zi modulo all primes in S0, at a cost of O(k(nλ + s))
word operations with classical arithmetic and O(n M(k) log k + M(s) log s) with
fast arithmetic. Computing the set S1 in step 2 takes O(kn2) and O(k M(n) · log n)
word operations with classical and fast arithmetic, respectively; checking whether
zi �≡ zj mod p is done by sorting the residues of the zi. For each i and each prime,
step 3 takes O(n2) and O(M(n) log n) word operations with classical and fast arith-
metic, respectively, and the number of iterations is O(nk). The Chinese remainder-
ing in steps 6 and 7 uses O(k2) word operations with classical arithmetic for each
coefficient of some h∗

i or of b except the leading coefficients, and there are at most n
coefficients in total. Thus the overall cost for steps 5 through 7 with classical arith-
metic is O(nk2) word operations, including the cost for the normalization. The cost
with fast arithmetic is O(n M(k) log k).

The cost for step 10 is O(snk + s2) word operations with classical arithmetic
and O(n M(s) log s) with fast arithmetic. The modular computation in step 11 with
classical arithmetic takes O(n2) for each of the s primes, as in the proof of The-
orem 8.27. The cost with fast arithmetic is O(s M(n) log n). Finally, step 12 takes
O(s2) and O(M(s) log s) per coefficient with classical and fast arithmetic, respec-
tively, and there are O(n) coefficients. The claims now follow from k ∈ O(n + λ)
and s ∈ O(n(λ + log n)) by adding up costs. �

We note that the coefficients of a are of word size O(s), and hence the output size
of the algorithm is O(n2(λ + log n)). In the diagonal case where n ≈ λ, Algorithm
8.32 is asymptotically optimal – up to logarithmic factors – for those inputs where
the upper bound on the output size is achieved.

Algorithm 8.37 (Prime power modular GP ′-refinement).
Input: Nonzero coprime polynomials f, g ∈ Z[x] with deg f, deg g ≤ n ≤ 2ω−1

and ‖f‖∞, ‖g‖∞ < 2λ, and a list of distinct positive integers z1, . . . , zt, where
t ≤ n and gcd(g, f − zig

′) is nonconstant for all i.
Output: A GP ′-refinement of f/g as in Definition 8.24, or otherwise “FAIL”.

1. B ←− �(n + 1)1/22n+λ�, k ←− �log2(2λ+1B)/(ω − 1)	
2. choose an odd single precision prime p ∈ N

if p | lc(fg) or gcd(f mod p, g mod p) �= 1 or zi ≡ zj mod p for some i �= j
then return “FAIL”

3. for 1 ≤ i ≤ t compute hi ∈ Z[x] of max-norm less than p/2 such that
lc(hi) = lc(g) and lc(g)−1hi mod p is the monic gcd in Fp[x] of g mod p
and (f − zig

′) mod p
4. compute b ∈ Z[x] of max-norm less than p/2 with b h1 · · ·ht ≡ g mod p
5. use Hensel lifting to lift the factorization of g from step 4 to a factorization

b∗h∗
1 · · ·h∗

t ≡ g mod pk, with b∗, h∗
1, . . . , h

∗
t ∈ Z[x] of max-norm less than

pk/2 that are congruent modulo p to b, h1, . . . , ht, respectively
6. for 1 ≤ i ≤ t do hi ←− normal(h∗

i )
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7. compute b ∈ Z[x] of max-norm less than pk/2 with bh1 · · ·hr ≡ g mod pk

if ‖b‖1 · ‖h1‖1 · · · ‖ht‖1 > B then return “FAIL”

8. compute a such that ah1 · · ·ht = f −
∑

1≤i≤t

zih
′
i

g

hi

9. if a �∈ Z[x] then return “FAIL”
10. return a, b, h1, . . . , ht

Theorem 8.38 (Correctness of Algorithm 8.37). If p is lucky with respect to GP ′-
refinement, then Algorithm 8.37 does not return “FAIL”. If the algorithm does not
return “FAIL”, then it returns the correct result.

Proof. As in the proof of Theorem 8.34, we find that the algorithm does not return
“FAIL” in step 2, and that lc(g)ui ≡ hi mod p for 1 ≤ i ≤ t, where ui is the monic
gcd of g and f − zig

′ in Q[x]. Since p is a lucky prime, the hi are pairwise coprime
and coprime to b, and Hensel lifting can be applied in step 5. The uniqueness of
Hensel lifting (Fact 3.20) implies that lc(g)ui ≡ h∗

i mod pk for 1 ≤ i ≤ t. As in the
proof of Theorem 8.34, Mignotte’s bound implies that both sides of the congruence
above are equal. Thus h∗

i = lc(g)ui, and hi = lc(hi)ui ∈ Z[x] is a normalized
divisor of g, for 1 ≤ i ≤ t. Similarly, we find that b = g/h1 · · ·ht, and Mignotte’s
bound implies that the algorithm does not return “FAIL” in step 7. By Theorem 8.29,
the algorithm neither returns “FAIL” in step 9. The proof of the second claim is
analogous to the proof of Theorem 8.34. �

The proof of the following theorem is completely analogous to the proof of
Theorem 8.35.

Theorem 8.39 (Success probability of Algorithm 8.37). Let

A = (2n)!2n(n + 1)4n2+4n2(4n2+4n+2)λ ,

w = �(log2 A)/(ω − 1)� ∈ O(n2(λ + log n)), and suppose that the number of
single precision primes, between 2ω−1 and 2ω, is at least 2w. If we choose p in
step 2 uniformly at random from among at least 2w single precision primes, then
the failure probability is at most 1/2.

Theorem 8.40 (Cost of Algorithm 8.37). If we ignore the cost for prime finding,
then Algorithm 8.37 takes O(n3(n log n+nλ+λ2)) word operations with classical
arithmetic and

O(M(n2(λ + log n)) log n + n M(n(λ + log n)) log λ + M(n + λ)M(n) log n)

or O∼(n2λ) with fast arithmetic.

Proof. Let D = (n2 + 1)(n + 1)n22nλ+nB and s = �log2(2D)/(ω − 1)	, as in
Algorithm 8.32. As in the proof of Theorem 8.36, the sum of the word sizes of all
zi is O(s). Thus the cost for reducing all coefficients of f and g and all zi mod-
ulo p is O(nλ + s) word operations. As in the proof of Theorem 8.36, the expected
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cost for steps 2 through 4 is O(n3) word operations with classical arithmetic and
O(n M(n) log n) with fast arithmetic.

Hensel lifting in step 5 takes O(k2n2) word operations with classical arith-
metic and O((M(k) + log n)M(n) log n) with fast arithmetic, by Fact 3.20. The
normalization in step 6 takes O(nk2) operations with classical arithmetic and
O(n M(k) log k) with fast arithmetic. In step 7, we just multiply b by a constant
modulo pk; this is dominated by the cost for step 6.

With classical arithmetic, we first compute g/hi and h′
ig/hi for all i in step 8.

By Mignotte’s bound 3.3, the coefficients of hi and g/hi have word size O(k),
and hence this takes O(n(deg hi)k2) word operations, together O(n2k2) for all i.
The same bound suffices to compute h1 · · ·ht, by Lemma 3.15. Let f∗ = f −∑

1≤i≤t zih
′
ig/hi. As in the proof of Theorem 8.34, we have |zi|, ‖f∗‖∞ ≤ D.

Thus multiplying h′
igi/hi by zi for all i, adding all t factors, and subtracting the

result from f to get f∗ takes O(n2ks) word operations. Finally, dividing the poly-
nomial f∗, with coefficients of word size O(s), by the polynomial h1 · · ·ht, with
coefficients of word size O(k), takes O(n2ks) word operations as well.

With fast arithmetic, we first compute zih
′
i for all i, taking O(n M(s)) word

operations. Using Algorithm 10.20 in von zur Gathen & Gerhard (1999) and Re-
mark 3.14, we can compute f∗ at a cost of O(M(n log(nD)) log n) word operations.
By Fact 3.15, we can compute h1 · · ·hk with O(M(n(k+log n)) log n) word opera-
tions. Using a modular algorithm based on Chinese remaindering similar to steps 10
through 12 of Algorithm 8.32 (see also Exercise 10.21 in von zur Gathen & Gerhard
1999), we can check whether h1 · · ·ht | f∗, and if so, compute the quotient a using
O(n M(s) log s + s M(n)) word operations.

The claims now follow from k ∈ O(n + λ) and s ∈ O(n(λ + log n)). �

The classical estimate above for the variant with Hensel lifting is slightly worse
than the corresponding estimate from Theorem 8.36 for the variant with Chinese
remaindering. Up to logarithmic factors, the exponent of n in the fast arithmetic
estimates is lower by one for Hensel lifting, although both estimates are about cubic
in the diagonal case where n ≈ λ.

We now analyze Algorithm 8.28 when we use Algorithm 7.25 in step 1 and
Algorithm 8.32 or 8.37 for step 2.

Definition 8.41. Let f, g ∈ Z[x] be nonzero and coprime. In analogy to the defini-
tion of the dispersion, we let

ε(f, g) = max{i ∈ N: i = 0 or res(g, f − ig′) = 0} .

By Corollary 3.12, ε(f, g) is 0 or the maximal nonnegative integer root of
resx(g, f − yg′) ∈ Z[y], or equivalently, the maximal positive integer residue of
the rational function f/g at a simple pole. The example f = e and g = x, for
e ∈ N, shows that ε(f, g) may be exponential in the size of the coefficients of f and
g in the worst case.

Theorem 8.42 (Cost of Algorithm 8.28). If we use Algorithm 7.25 in step 1 and
Algorithm 8.32 (or Algorithm 8.37) in step 2, then the cost for steps 1 and 2 of
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Algorithm 8.28 is O(n4(λ2 + log2 n)) word operations with classical arithmetic
and

O(n2(M(n(λ + log n)) + (λ + log n)M(n) log n)
+M(n(λ + log n))(M(n) log n + n logλ))

or O∼(n3λ) with fast arithmetic. If e = ε(f, g), then e ≤ (n + 1)n22nλ, and the
cost for step 3 is O(e3(n3 + nλ2)) word operations with classical arithmetic and

O((en M(e(n + λ)) + eλM(en)) log(e(n + λ)))

or O∼(e2n(n + λ)) with fast arithmetic. The polynomial c has degree at most en
and its coefficients are of word size O(e(n + λ)).

Proof. The first statement follows from Theorems 7.26, 8.36, and 8.40. Let r =
resx(g, f − yg′) ∈ Z[y]. If e �= 0, then it is a root of r, and hence it divides the
constant coefficient of r. The upper bound on e now follows from Fact 7.24 (ii)
and Corollary 3.2 (i). Let B = (n + 1)1/22n+λ. By Mignotte’s bound 3.3, we have
‖hi‖1 ≤ B for all i. Thus ‖hz

i ‖∞ ≤ ‖hz
i ‖1 ≤ ‖hi‖z1 ≤ Bz for all z ∈ N. By using

a similar modular approach as in the proof of Lemma 3.15, the computation of hzi

i

takes O(z3
i log2 B · deg hi) word operations with classical arithmetic and

O(zi(deg hi)M(zi log B) log(zi log B) + zi(log B)M(zi deg hi))

with fast arithmetic, together O(e3n(n2 + λ2)) and

O(en M(e(n + λ)) log(e(n + λ)) + eλM(en)) ,

respectively. Finally, we have deg c =
∑

1≤i≤t zi deg hi ≤ en and

‖c‖∞ ≤ ‖c‖1 ≤
∏

1≤i≤t

‖hzi

i ‖1 ≤



∏

1≤i≤t

‖hi‖




e

≤ Be ,

again by Mignotte’s bound, and Lemma 3.15 yields the cost estimates. �

One might think about combining steps 1 and 2 of Algorithm 8.2 in a similar way
as described in Sect. 7.4, by computing not only the resultant of g and f − yg′, but
also some appropriate subresultants, and plugging in y = zi to obtain hi. However,
a comparison of the estimates above with those from Theorem 7.31 indicates that
there would be no benefit when using classical arithmetic, and at most a gain of
logarithmic factors when using fast arithmetic.

As in the difference case, we can use Algorithm 8.28 to compute rational solu-
tions of homogeneous linear first order differential equations with polynomial coef-
ficients (see Corollary 8.30).
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Corollary 8.43. Given two nonconstant coprime polynomials f, g ∈ Z[x] of degree
at most n and max-norm less than 2λ, we can decide whether the homogeneous
linear first order differential equation

g · ρ′ − f · ρ = 0

has a solution ρ ∈ Q(x) \ {0}, and if so, compute one, using O(n4(λ2 + log2 n))
word operations with classical arithmetic and

O(n2(M(n(λ + log n)) + (λ + log n)M(n) log n)
+M(n(λ + log n))(M(n) log n + n logλ))

or O∼(n3λ) with fast arithmetic.

Proof. We first call Algorithm 8.28 to compute a GP ′-form (a, b, u) ∈ Z[x]3 of
the rational function f/g. Then we call the same algorithm to compute a GP ′-form
(A, B, v) ∈ Z[x]3 of the rational function−a/b. If A = 0, then

g
(u

v

)′
=

gu

v
·
(

u′

u
− v′

v

)

=
gu

v

(
u′

u
+

a

b

)

=
gu

v

f

g
= f · u

v
,

and ρ = u/v solves the differential equation.
Conversely, if ρ ∈ Q(x) \ {0} solves the differential equation and we let σ =

ρ · v/u, then a similar calculation as above shows that

σ′

σ
=

A

B
.

The properties of the GP ′-form imply that gcd(B, A − iB′) = 1 for all i ∈ Z, i.e.,
the rational function A/B has no integer residues at simple poles. Let σ = U/V
with coprime polynomials u, v ∈ Z[x]. Then

A

B
=

U ′

U
− V ′

V
.

Assume first that U is not constant, and let p ∈ Z[x] be a nonconstant irreducible
factor, of multiplicity i ∈ N. Then p � V , since U and V are coprime, and
Lemma 8.22 (viii) shows that Resp(V ′/V ) = 0. However, then Resp(A/B) =
Resp(U ′/U) = i, and part (ix) of the same Lemma leads to the contradiction that
p | gcd(B, A − iB′). A similar argument shows that V is constant as well, and
hence A = Bσ′/σ = 0. Thus the differential equation is unsolvable if A �= 0.

To prove the cost estimate, we do not proceed as described above, but instead
compute all integers z ∈ Z such that gcd(g, f − zg′) is nonconstant in step 1 of
Algorithm 8.28. The modified algorithm directly computes A, B, u, v ∈ Z[x] such
that

f

g
=

A

B
+

u′

u
− v′

v
,

within the same time bound as given by the first part of Theorem 8.42, if we do not
expand the product representations of u and v in step 5 of the modified algorithm. �



9. Polynomial Solutions of Linear First Order
Equations

In this chapter, we discuss several algorithms for computing polynomial solutions
of linear first order differential and difference equations with polynomial coeffi-
cients. We start with several non-modular algorithms, in historical order. Finally, in
section 9.8, we present new modular algorithms.

Let F be a field. A linear first order differential equation with polynomial co-
efficients is an equation of the form a Du + bu = c, where D is the differential
operator Du = u′ and a, b, c ∈ F [x] are given polynomials. We are looking for
a solution u which may – in principle – be an arbitrary function, but we will con-
fine ourselves to polynomials in this chapter. A linear first order difference equation
with polynomial coefficients is an equation of the form a ∆u + bu = c, where
a, b, c ∈ F [x] are given polynomials and u ∈ F [x] is sought. Here, ∆ denotes the
difference operator (∆u)(x) = u(x + 1) − u(x). Often difference equations are
given in the equivalent form of recurrences, in terms of the shift operator E with
(Eu)(x) = u(x + 1). For example, the difference equation above is equivalent to
the recurrence a Eu + (b − a)u = c. Algorithms for finding polynomial solutions
of linear first order difference or differential equations play an important role in
symbolic summation and symbolic integration algorithms; see Chap. 10.

There are strong analogies between the theory of linear differential equations
and the theory of linear difference equations, which become most clearly visible if
we think of the difference operator ∆ as being the discrete analog of the differen-
tial operator. These analogies lead to the concepts of Ore rings and pseudo-linear
algebra (Ore 1932a, 1932b, 1933; Jacobson 1937; Bronstein & Petkovšek1994,
1996; Abramov, Bronstein & Petkovšek 1995; Bronstein 2000). In order to cover
the similarities, we rephrase both differential and difference equations in terms of
linear operators on polynomials. In the differential case, we let L = aD + b be the
linear operator with Lu = au′ + bu, and in the difference case, we let L = a∆ + b,
with Lu = a ∆u + bu, or equivalently, L = aE + b − a. Then both the differen-
tial equation and the difference equation can be conveniently written as Lu = c.
We denote the solution space in F [x] of the latter equation by L−1c. In particular,
kerL = L−10 is the kernel of L. The following result is well-known for character-
istic zero (see, e.g., Lisoněk, Paule & Strehl 1993).

Lemma 9.1. Let F be a field of characteristic p, a, b ∈ F [x] not both zero, and
L = aD + b or L = a∆ + b. Moreover, let kerL = {u ∈ F [x]: Lu = 0} denote the
kernel of L.

J. Gerhard: Modular Algorithms, LNCS 3218, pp. 149-193, 2004.
 Springer-Verlag Berlin Heidelberg 2004
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(i) If p = 0, then kerL is either {0} or a one-dimensional F -subspace of F [x].
(ii) If p > 0, we let V = {u ∈ F [x]: deg u < p}. If V ∩ kerL �= {0}, then it is a

one-dimensional F -subspace of V .

Proof. If a = 0, then kerL = {0}, and we may assume that a �= 0. We first assume
that we can choose a point s ∈ F such that a(x + s) has no integer roots (this
is always possible if p = 0), and consider the linear map ϕ: kerL −→ F which
evaluates a polynomial at x = s. We show that ϕ is injective on kerL if p = 0, and
on V ∩ kerL if p > 0. Let u ∈ kerL be such that ϕ(u) = u(s) = 0. We claim that
u(i)(s) = 0 for all i ∈ N in the differential case, and u(s+i) = 0 for all i ∈ N in the
difference case. The proof proceeds by induction on i. The case i = 0 is clear, and
we assume that i ≥ 1. In the differential case, we differentiate the equation Lu = 0
(i− 1) times and find polynomials g0, . . . , gi−1 ∈ F [x] such that

au(i) +
∑

0≤j<i

gju
(j) = 0 .

Substituting x = s yields a(s)u(i)(s) = 0, by the induction hypothesis, and the
assumption a(s) �= 0 finishes the induction step. In the difference case, we substitute
x = s + i− 1 in the equation Lu = 0 and obtain

a(s + i− 1)u(s + i) + (b(s + i− 1)− a(s + i− 1))u(s + i− 1) = 0 .

By induction, we have u(s + i− 1) = 0, and the assumption that a(s + i− 1) �= 0
yields u(s− i) = 0. This proves the claim.

If p = 0, then a nonzero polynomial u ∈ F [x] has u(deg u)(s) �= 0 and at most
deg u roots, and hence the only element u ∈ kerL with ϕ(u) = u(s) = 0 is the
zero polynomial. Thus dim kerL = dim kerϕ + dim imϕ ≤ 1.

If p > 0, then a nonzero polynomial u ∈ F [x] of degree less than p has
u(deg u)(s) �= 0, and since s, s + 1, . . . , s + deg u are distinct elements of F , at
least one of them is not a root of u. If we denote by ϕV the restriction of ϕ to
the subspace V , then we see that dim kerϕV = dim(V ∩ kerϕ) = 0, and hence
dim(V ∩ kerL) = dim kerϕV + dim imϕV ≤ 1.

It remains to prove the case where p > 0 and there is no s ∈ F such that a(x+s)
has no integer roots. However, we can always find such an s in an extension field
E of F (for example, any proper algebraic extension of the splitting field of a over
F will do). If VE = {u ∈ E[x]: deg u < p} and kerLE denotes the kernel of the
operator L over E[x], then dimE(VE ∩ kerLE) ≤ 1, by what we just have shown.
However, any F -basis of V ∩ kerL is also linearly independent over E, and hence
dimF (V ∩ kerL) ≤ 1 as well. �

We note that kerL may be infinite-dimensional in positive characteristic. For
example, if F is a field of characteristic p > 0, then the solution space of the differ-
ential equation u′ = 0 in F [x] is F [xp].

Definition 9.2. Let a, b ∈ F [x] be polynomials, not both zero. The degree deg L of
the linear differential (or difference) operator L = aD + b (or L = a∆ + b) is
max{deg a− 1, deg b}.
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The motivation for this definition of degree is given by the following well-known
lemma. We use the convention that the zero polynomial has degree−∞ and leading
coefficient 1.

Lemma 9.3. Let F be a field of arbitrary characteristic, a, b ∈ F [x] not both zero,
u ∈ F [x] nonzero, L = aD+b or L = a∆+b, n = deg L, and let an+1, bn ∈ F be
the coefficients of xn+1 in a and of xn in b, respectively. Then deg(Lu) ≤ n+deg u
and the coefficient of xn+deg u in Lu is lc(u)(an+1 deg u + bn).

Proof. We only give the proof in the difference case; the differential case is com-
pletely analogous. We have

deg(Lu) = deg(a ∆u + bu)
≤ max{deg a + deg u− 1, deg b + deg u} = n + deg u .

Write a =
∑

0≤i≤n+1 aix
i, b =

∑
0≤i≤n bix

i, and u =
∑

0≤i≤d uix
i, with d =

deg u and ud = lc(u) �= 0. We note that by definition of n, at least one of an+1 and
bn is nonzero. Multiplying out and using the fact that ∆xd has degree at most d− 1
and the coefficient of xd−1 is d, we find that

Lu = a ∆u + bu = an+1x
n+1 · dudx

d−1 + · · ·+ bnxn · udx
d + · · ·

= ud(an+1d + bn)xn+d + · · · ,

where the dots hide terms of degree less than n + d. �

Definition 9.4. Let a, b ∈ F [x] be polynomials, not both zero, and L = aD + b or
L = a∆ + b with n = deg L. We associate to L an element δL ∈ F ∪ {∞}, as
follows:

δL =






0 if deg a− 1 = n > deg b ,

− lc(b)
lc(a)

if deg a− 1 = n = deg b ,

∞ if deg a− 1 < n = deg b .

The equation an+1d + bn = 0, with an+1, bn as in Lemma 9.3, is called the
indicial equation at infinity of the linear operator L in the theory of linear differential
or difference equations (see, e.g, Part A, Sect. 18.1 in Kamke 1977 or Chap. VII
in Ince 1926 for the differential case). Thus δL is the unique root of this indicial
equation, if δL �=∞. If δL is different from 0 and∞, then it can also be considered
as the residue at infinity of the rational function−b/a, i.e., the coefficient of x in its
x−1-adic expansion.

Corollary 9.5. Let F be a field of characteristic p, L = aD + b or L = a∆ + b
a linear differential or difference operator, respectively, with a, b ∈ F [x] not both
zero, and u ∈ F [x] nonzero. Then

deg(Lu) ≤ deg L + deg u ,

deg(Lu) < deg L + deg u ⇐⇒ (deg u) mod p = δL in F .
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The following well-known corollary (see, e.g., Gosper 1978 for the difference
case) gives a degree bound for a polynomial solution u ∈ F [x] of Lu = c in
characteristic zero.

Corollary 9.6. Let F be a field of characteristic zero and L = aD+b or L = a∆+b
be a linear differential or difference operator, respectively, with a, b ∈ F [x] not
both zero, and u, c ∈ F [x] nonzero polynomials satisfying Lu = c. Then δL �=
deg c− deg L. Moreover,

(i) deg u = deg c− deg L if δL �∈ N or δL < deg c− deg L,
(ii) deg u ∈ {deg c− deg L, δL} if δL ∈ N and δL > deg c− deg L.

In particular, we have the degree bound deg u ≤ max({deg c− deg L, δL} ∩ Z). If
c = 0, then deg u = δL ∈ N.

We note that the degree bound of Corollary 9.6 may be exponentially large in
the bit size of a, b, and c. For example, if a = x and b = −t for some t ∈ N≥1 and
c has “small” degree and “small” coefficients as well, then deg L = 0, δL = t, and
the bound is d = max{deg c, δ} = δ = t. If F = Q, then this is exponential in the
bit size of a and b, which is about log t.

Here is the analog of Corollary 9.6 in positive characteristic.

Corollary 9.7. Let F be a field of characteristic p > 0 and L = aD + b or L =
a∆ + b be a linear differential or difference operator, respectively, with a, b ∈ F [x]
not both zero, and u, c ∈ F [x] nonzero polynomials satisfying Lu = c. Then δL �=
(deg c− deg L) mod p. Moreover,

(i) deg u = deg c− deg L if δL �∈ Fp,
(ii) deg u = deg c− deg L or (deg u) mod p = δL if δL ∈ Fp.

If c = 0, then (deg u) mod p = δL ∈ Fp.

The following lemma says how the degree and the indicial equation change
when we multiply a linear operator L by a polynomial.

Lemma 9.8. Let F be a field and L = aD + b or L = a∆ + b a linear differential
or difference operator, respectively, with a, b ∈ F [x] not both zero. Let z ∈ F [x] be
nonzero and define new operators M and K by Mu = L(zu) and Ku = zLu for
all u ∈ F [x]. Then deg M = deg K = deg L + deg z and δM + deg z = δK = δL,
with the convention that δM =∞ if δL =∞.

Proof. We carry out the proof only for the differential case; the difference case is
shown analogously. First, we note that

Mu = aD(zu) + bzu = azDu + (az′ + bz)u = azDu + Lz · u ,

holds for all polynomials u, and hence M = (az)D + Lz. Thus

deg M = max{(deg az)− 1, deg Lz}
≤ max{deg a− 1 + deg z, deg L + deg z} = deg L + deg z ,

(9.1)



9. Polynomial Solutions of Linear First Order Equations 153

with equality if deg z �= δL in F , by Corollary 9.5. If deg z = δL, then in particular
δL �= ∞, and hence deg L = deg a − 1 and we have equality in (9.1) as well.
Similarly, K = (az)D + bz, and hence

deg K = max{(deg az)− 1, deg bz} = max{deg a− 1, deg b}+ deg z

= deg L + deg z .

If δL = ∞, then deg a − 1 < deg L, deg Lz = deg L + deg z, and hence
(deg az) − 1 < deg L + deg z = deg M = deg K and δM = δK = ∞. Other-
wise, if δL �= ∞, then deg a − 1 = deg L. The coefficient of xdeg L+deg z in Lz is
lc(az)(deg z − δL), by Lemma 9.3. Dividing this equality by −lc(az), we find that
δM = δL − deg z. Similarly, the coefficient of xdeg L+deg z in bz is lc(z) times the
coefficient of xdeg L in b, i.e., −lc(az)δL, and hence δK = δL. �

The next two lemmas give cost estimates for applying a linear difference or
differential operator, respectively.

Lemma 9.9. Let L = aE + b be a linear difference operator, with a, b ∈ F [x] not
both zero, u ∈ F [x], n = deg L, d = deg u, and k ≤ n + d. If F has characteristic
zero or greater than k, then we can compute the lowest k coefficients of Lu using
O((d+min{k, n})·min{k, d}) arithmetic operations in F with classical arithmetic
and O(M(k) + M(d)) with fast arithmetic.

Proof. Computing Eu takes O(d2) and O(M(d)) with classical and fast arithmetic,
respectively, by Theorems 4.3 and 4.5. If k < d, then we successively compute
u(1), u′(1), . . . , u(k−1)(1)/(k − 1)! at a cost of O(kd) with classical arithmetic.
We can compute the products a · Eu and b · u modulo xk and add them with
O(min{k, n} ·min{k, d}) and O(M(k)) arithmetic operations, respectively. �

Lemma 9.10. Let L = aD + b be a linear differential operator, with a, b ∈ F [x]
not both zero, u ∈ F [x], n = deg L, d = deg u, and k ≤ n + d. Then we can
compute the lowest k coefficients of Lu using O(min{k, n} ·min{k, d}) arithmetic
operations in F with classical arithmetic and O(M(k)) with fast arithmetic.

Proof. We can compute the products a · u′ and b · u modulo xk and add them with
O(min{k, n} ·min{k, d}) and O(M(k)) arithmetic operations, respectively. �

In the following sections we present several algorithms for solving first order
linear differential and difference equations with polynomial coefficients, in histori-
cal order.

Let L be a first order linear differential or difference operator with coefficients
in F [x], n = deg L, and c ∈ F [x]. Many known algorithms to solve the equation
Lu = c in characteristic zero determine first an upper bound d on the degree of
a possible solution u, via Corollary 9.6. Then they set up a system of n + d + 1
linear equations in the d+1 unknown coefficients of u with respect to some suitable
basis which is equivalent to the original equation. The most commonly used basis
is the monomial basis 1, x, x2, . . .. This is known as the method of undetermined
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coefficients and first appears in Proposition VII “Ex aequatione quantitates duas
fluentes vel solas vel una cum earum fluixionibus involvente quantitatem alterutram
in series convergente extrahere.” of Newton (1691/92). The coefficient matrix of
the linear system is triangular with at most one nonzero diagonal entry, and the
standard linear algebra approach takes O(nd + d2) field operations. We discuss this
method in the following section. In later sections, we will present asymptotically
fast algorithms with only O∼(n + d) operations.

If δL ∈ N, then either kerL = {0} or it is a one-dimensional F -subspace
of F [x], generated by a unique monic polynomial of degree δL, by Lemma 9.1 and
Corollary 9.6. Then the solution u of the equation Lu = c may not be unique, i.e.,
there may be one degree of freedom. There are two natural ways to handle this.
The degree of freedom may either correspond to the choice of the coefficient of xδL

in u, or to the value u(s) at some suitably chosen point s ∈ F , as in the proof of
Lemma 9.1.

In those algorithms presented below that pursue the first approach, there is at
most one polynomial w ∈ F [x] of degree at most d satisfying the upper d+1 linear
equations of the system equivalent to Lw = c and such that the coefficient of xδL

in w vanishes. If no such w exists, then Lu = c is unsolvable. Similarly, there is
a unique monic polynomial h ∈ F [x] of degree δL satisfying the upper δL + 1
linear equations of the system equivalent to Lh = 0. The algorithms compute these
polynomials w and h, and then try to determine κ, the coefficient of xδL in u, in
such a way that u = w + κh satisfies the lower n linear equations of the system
equivalent to Lu = c. Then kerL is Fh if Lh = 0 and {0} otherwise, and the
solution space L−1c of the inhomogeneous equation is u + kerL, if a suitable κ
exists, and empty otherwise.

The algorithms choosing the second possibility usually first perform a Taylor
shift x �−→ x+s on L and c, thus transforming the evaluation point s into the origin.
Next, they compute the unique solutions w with w(0) = 0 and h with h(0) = 1 of
the lower d + 1 and δL + 1 linear equations equivalent to Lw = c and Lh = 0,
respectively. As in the first case, such a polynomial w need not exist, in which
case Lu = c is unsolvable. Then they try to determine κ, the constant coefficient
of u, in such a way that u + κh also satisfies the upper n equations of the linear
system equivalent to Lu = c. Finally, they transform u and h via the Taylor shift
x �−→ x − s to obtain a solution of the original equation. As above, kerL is Fh
if Lh = 0 and {0} otherwise, and the solution space L−1c of the inhomogeneous
equation is u+kerL, if a suitable κ exists, and empty otherwise. The first approach
has the advantage that no Taylor shifts are necessary.

Remark 9.11. We note that we can employ the techniques from the previous chap-
ter for computing all polynomial solutions of a homogeneous first order equation
Lu = 0. If L = aE + b or L = aD + b, respectively, with a, b ∈ F [x], then we
compute a Gosper-Petkovšek form or a GP′-form, respectively, (f, g, u) ∈ F [x]3 of
the rational function −b/a, as described in Chap. 8. If f and g are constant, then
kerL = Fu, and otherwise kerL = {0}. (See also Corollaries 8.19 and 8.43.)
In contrast to the algorithms presented in this chapter, these algorithms have the
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advantage that they yield a representation of u of polynomial size in the input size,
if the coefficients of u are not explicitly needed. For that reason, we concentrate on
the inhomogeneous case in what follows, i.e., on determining L−1c for a nonzero
polynomial c ∈ F [x].

9.1 The Method of Undetermined Coefficients

In the spirit of Newton (1691/92), we do not state this method as an algorithm
working on matrices, but rather as a recursive algorithm working with polyno-
mials. This view is also taken, e.g., by Abramov (1971) and Rothstein (1976,
1977). So let F be a field of characteristic zero, L be a nonzero linear first order dif-
ferential or difference operator with coefficients in F [x], n = deg L, and c ∈ F [x].
Given the degree bound d ∈ N from Corollary 9.6 on a possible solution u ∈ F [x]
of the equation Lu = c, the idea is to equate the coefficients of xn+d in Lu and c in
order to determine the coefficient ud of xd in u and then proceed recursively with
c − L(udx

d) instead of c. The following algorithm finds a polynomial u ∈ F [x]
such that deg(Lu− c) < n, if one exists.

Algorithm 9.12 (Method of undetermined coefficients: part I).
Input: A linear differential operator L = aD + b or linear difference operator L =

aE + b, with a, b ∈ F [x] not both zero and n = deg L, a polynomial c ∈ F [x],
where F is a field of characteristic zero, an integer d ∈ Z, and the polynomials
Lxi for 0 ≤ i ≤ d.

Output: Polynomials u, r ∈ F [x] with deg u ≤ d, deg r < n, and r = Lu − c, or
otherwise “unsolvable”.

1. if deg c < n then return 0 and −c
2. if d < deg c− n or δL = deg c− n then return “unsolvable”
3. if d = δL then ud ←− 0

else let l ∈ F be the coefficient of xn+d in Lxd and ud ∈ F be the coefficient
of xn+d in c/l

4. call the algorithm recursively with input L, c − udLxd, and d − 1, to obtain
v, r ∈ F [x] with deg v ≤ d− 1, deg r < n, and r = L(udx

d + v)− c
5. if the recursive call returns “unsolvable” then return “unsolvable”

else return udx
d + v and r

In practice, one would divide a, b, c by their greatest common divisor before
applying any algorithm to solve the first order differential or difference equation.
Paule (1995) remarks that we may even achieve that a, b, c are pairwise coprime in
the difference case. For example, if g = gcd(a, c) is nonconstant and coprime to
b and u satisfies a Eu + bu = c, then necessarily g divides u, and u∗ = u/g is a
solution of the linear difference equation

a Eg

g
·Eu∗ + bu∗ =

c

g
,
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whose right hand side has smaller degree than the right hand side of the original
equation. Similar simplifications work in the difference case if gcd(b, c) is noncon-
stant and coprime to a, and in the differential case.

The following lemma investigates the solution space determined by the output
specification of Algorithm 9.12.

Lemma 9.13. Let L = aD + b or L = a∆ + b be a linear differential or difference
operator, with a, b ∈ F [x] not both zero, n = deg L, and c ∈ F [x] \ {0} of degree
at most n + d. Consider the sets S0 = {u ∈ F [x]: deg u ≤ d and deg(Lu) < n}
and Sc = {u ∈ F [x]: deg u ≤ d and deg(Lu− c) < n}.
(i) S0 is an F -linear subspace of F [x]. We have S0 = {0} if and only if δL �∈
{0, . . . , d}, and otherwise S0 is one-dimensional and generated by a unique
monic polynomial of degree δL.

(ii) If δL �∈ {0, . . . , d}, then Sc = {u} for a unique polynomial u ∈ F [x] of degree
deg c−n. Otherwise, either Sc = ∅ or there exists a unique nonzero polynomial
u ∈ Sc of degree at most d such that the coefficient of xδL in u vanishes, and
Sc = u + S0.

Proof. By Corollary 9.5, we have deg(Lu) ≤ n + deg u ≤ n + d for all u ∈ F [x]
of degree at most d.

(i) We have deg Lu < n if and only if the coefficients of xn+d, . . . , xn+1, xn in
Lu vanish. If we regard the coefficients of u as indeterminates, then we can
rephrase this condition as a homogeneous system of d + 1 linear equations
in these d + 1 indeterminates. This proves that S0 is a linear subspace. Let
R = (rij)0≤i,j≤d be the (d + 1) × (d + 1) coefficient matrix of this system,
where rij ∈ F is the coefficient of xn+i in Lxj for all i, j. Then Lemma 9.3
implies that R is lower triangular, such that rij = 0 if i < j, and the diagonal
entries are rii = an+1j + bn, where an+1, bn ∈ F are the coefficients of xn+1

in a and of xn in b, respectively. In the differential case, R comprises the upper
d + 1 rows of the matrix in Fig. 9.1 below.
By definition of δL, we have rii = an+1(δL − i) if deg a = n + 1, and rii =
bn �= 0 and δL = ∞ if deg a < n + 1. Thus R is regular and S0 = {0} if
and only if δL �∈ {0, . . . , d}. If this is not the case, then R has rank d and S0

is one-dimensional. We have one degree of freedom in choosing the coefficient
of xδL in u, so that S0 contains a unique monic polynomial u ∈ F [x] of degree
δL and S0 = F · u.

(ii) If deg c < n, then Sc = S0, and we may assume that deg c ≥ n. Then
deg(Lu− c) < n implies that deg(Lu) = deg c, and Corollary 9.5 shows that
deg u = deg c − n if δL �∈ {0, . . . , d}. If we let v be the vector with the coef-
ficients of xn+d, . . . , xn+1, xn in c and identify u ∈ F [x] with its coefficient
vector in F d+1, then u ∈ Sc if and only if Ru = c, and the claims follow
from (i). �

Theorem 9.14. Algorithm 9.12 works correctly as specified and uses O(nd + d2)
arithmetic operations in F .
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Proof. By similar arguments as in the proof of Corollary 9.6, the algorithm returns
the correct result in steps 1 or 2. So we may assume that δL �= deg c − n and
d ≥ deg c−n ≥ 0. If d �= δL, then deg(Lxd) = n+ d, by Corollary 9.5, and hence
l �= 0 and ud is well-defined. Since the algorithm terminates in step 2 if d < 0, we
may conclude by induction on d that the recursive call returns the correct result. If
the algorithm does not return “unsolvable”, then we have deg(udx

d + v) ≤ d and
deg(L(udx

d+v)−c) < n, and the result returned is correct. Conversely, assume that
there exists a polynomial u ∈ F [x] of degree at most d satisfying deg(Lu− c) < n.
By Lemma 9.13, we may assume that deg u < d if d = δL. Thus the coefficient
of xd in u is equal to ud in the latter case. Otherwise, this follows from comparing
the coefficients of xn+d in Lu and c. In any case, deg(u − udx

d) ≤ d − 1 and
deg(L(u − udx

d)− (c− udLxd)) = deg(Lu − c) < n, and hence deg v ≤ d− 1
and deg(Lv − (c − udLuxd)) < n has the solution v = u − udx

d. We conclude
that the output of the algorithm is correct if the recursive call returns “unsolvable”.

Step 3 costs one division in F . If the algorithm does not stop in step 2, then
deg c ≤ n + d, and Corollary 9.5 shows that deg(Lxd) ≤ n + d as well. Thus the
cost for computing c − udLxd is at most n + d additions and the same number of
multiplications in F . Hence the total cost is at most

∑

0≤i≤d

(1 + 2(n + i)) = (d + 1)(2n + 1 + d/2) ∈ O(nd + d2) . �

The following algorithm uses Corollary 9.6 to determine a degree bound d, com-
putes all Lxi required by Algorithm 9.12, calls this algorithm, and then essentially
checks whether the returned solution u in fact satisfies Lu = c. Things are a bit
more involved if δL ∈ N, since then the solution may not be unique.

Algorithm 9.15 (Method of undetermined coefficients: part II).
Input: A linear differential operator L = aD + b or linear difference operator

L = aE + b, with a, b ∈ F [x] not both zero and n = deg L, and a polyno-
mial c ∈ F [x], where F is a field of characteristic zero.

Output: A nonzero polynomial u ∈ F [x] such that Lu = c, or otherwise “unsolv-
able”.

0. use Corollary 9.6 to determine a degree bound d for u
if d < 0 then return “unsolvable”

1. compute Lxi for 0 ≤ i ≤ d
2. call Algorithm 9.12 to compute w, w∗ ∈ F [x] with deg w ≤ d, deg w∗ < n,

and w∗ = Lw − c
if the algorithm returns “unsolvable” then return “unsolvable”

3. if δL �∈ N then h←− 0, h∗ ←− 0
else

call Algorithm 9.12 to compute v, h∗ ∈ F [x] with deg v ≤ δL − 1,
deg h∗ < n, and h∗ = Lv + LxδL

h←− xδL + v
4. if there exists some κ ∈ F such that w + κh �= 0 and w∗ + κh∗ = 0

then return w + κh else return “unsolvable”
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If δL ∈ N, then there are several possibilities to choose the constant κ, the
coefficient of xδL . Natural choices are, e.g., to set κ to zero, or to determine κ in
such a way that the degree of w + κh is minimal if d = δL.

Theorem 9.16. Algorithm 9.15 works correctly as specified and uses O(nd + d2)
arithmetic operations in F .

Proof. It is clear that the result returned is correct if the algorithm returns “unsolv-
able” in step 0 or 2. Otherwise, if the algorithm does not return “unsolvable” in
step 4, then L(w + κh) − c = w∗ + κh∗ = 0, and the result returned is correct.
Conversely, suppose that u ∈ F [x] \ {0} satisfies Lu = c. Then Corollary 9.6 im-
plies that deg u ≤ d. If δL �∈ N, then this u is unique, Lemma 9.13 implies that
w = u is computed in step 2, w∗ = 0, and the algorithm does not return “unsolv-
able” in step 4. Now suppose that δL ∈ N. Then Lemma 9.13 implies that u belongs
to the space Sc, so that the algorithm does not return “unsolvable” in step 2, and
u − w ∈ S0. The lemma also implies that Algorithm 9.12 does not return “un-
solvable” in step 3 of Algorithm 9.15 and S0 = {κh: κ ∈ F}. Thus there exists a
suitable κ in step 4, and the algorithm does not return “unsolvable”.

In the differential case, computing Lxi = iaxi−1 + bxi takes O(n) opera-
tions for each i, in total O(nd). In the difference case, we compute a · (x + 1),
. . . , a · (x + 1)d by iterated multiplication with x + 1, and then add bxi to obtain
Lxi. This takes O(n + d) operations for each i, in total O(nd + d2). Since δL ≤ d
if δL ∈ N, the cost for steps 2 and 3 is O(nd + d2) operations, by Theorem 9.14.
Finally, finding a suitable κ in step 4 takes O(n) operations. �

In Sect. 9.5 and 9.6 below, we discuss asymptotically fast variants of the method
of undetermined coefficients.

9.2 Brent and Kung’s Algorithm for Linear Differential
Equations

The algorithm for solving first order differential equations that we describe in this
section is due to Brent & Kung (1978). In their paper, the algorithm is stated for
power series, and also a generalization of it for higher order equations. When count-
ing only arithmetic operations, it is the fastest currently known algorithm, with a
running time of O(M(n + d)) field operations when the input has degree n and the
solution has degree d. It is based on the following facts, which we quote from Brent
& Kung’s article without proofs.

Definition 9.17. Let F be a field of characteristic zero. The differential operator D
and the integral operator I are defined for a formal power series f =

∑
i≥0 fix

i ∈
F [[x]] by

Df =
∑

i≥0

(i + 1)fi+1x
i, If =

∑

i≥1

fi−1

i
xi .
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If f0 = 0, then the exponential of f is exp(f) =
∑

i≥0 f i/i!, and the logarithm of
1− f is log(1− f) = −∑i≥1 f i/i.

Fact 9.18. Let F be a field of characteristic zero, f =
∑

i≥0 fix
i, g =

∑
i≥0 gix

i

in F [[x]] two formal power series, with f ≡ g mod xn for some n ∈ N≥1.

(i) DIf = f , IDf = f − f0, Df ≡ Dg mod xn−1, and If ≡ Ig mod xn+1.
(ii) If f0 = 0, then

exp(log(1− f)) = 1− f, log(exp(f)) = f ,

D(exp(f)) = (Df) · exp(f), D(log(1− f)) = −(Df) · (1− f)−1 .

Moreover, exp(f) ≡ exp(g) mod xn and log(1− f) ≡ log(1− g) mod xn.

Fact 9.19. Let F be a field of characteristic zero, f =
∑

i≥0 fix
i, g ∈ F [[x]] two

formal power series, and n ∈ N≥1.

(i) We can compute f + g mod xn from f mod xn and g mod xn with n addi-
tions in F .

(ii) We can compute Df mod xn from f mod xn+1 with n − 1 multiplications
in F .

(iii) We can compute If mod xn from f mod xn−1 with n− 2 divisions by posi-
tive integers below n in F .

(iv) We can compute f · g mod xn from f mod xn and g mod xn with M(n)
additions and multiplications in F .

(v) If f0 = 1, then we can compute f−1 mod xn from f mod xn with O(M(n))
additions and multiplications in F .

(vi) If f0 = 0, then we can compute

log(1− f) mod xn = −I((Df) · (1− f)−1) mod xn

from f mod xn with n − 2 divisions by positive integers below n plus
O(M(n)) additions and multiplications in F .

(vii) If f0 = 0, then we can compute g = exp(f) mod xn from f mod xn by the
following Newton iteration for the equation (log g)− f = 0:

g0 = 1, gi+1 = gi − gi

(
I((Dgi) · g−1

i )− f
)

rem x�2i+1−kn�

for 0 ≤ i < k = �log2 n�, and finally g = gk mod xn. This takes O(n) divi-
sions by positive integers below n and O(M(n)) additions and multiplications
in F .

The following algorithm implements the well-known method of “variation of
the constant” for solving inhomogeneous linear differential equations.

Algorithm 9.20 (Brent & Kung’s algorithm).
Input: Polynomials a, b, c =

∑
i cix

i ∈ F [x], where F is a field of characteristic
zero, with a(0) �= 0.

Output: A nonzero polynomial u ∈ F [x] solving au′ + bu = c, or otherwise “un-
solvable”.
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0. use Corollary 9.6 to determine a degree bound d for u
if d < 0 then return “unsolvable”

1. f ←− ba−1 rem xd, g ←− ca−1 rem xd

2. h←− exp(−If) rem xd+1, w←− h · I(gh−1) rem xd+1

3. if there exists κ ∈ F such that w+κh �= 0 and a · (w′ +κh′)+b · (w+κh) = c
then return w + κh else return “unsolvable”

The constant κ is the constant coefficient of u. The following theorem is also
proven by Brent & Kung (1978).

Theorem 9.21. Algorithm 9.20 works correctly and uses O(M(n) + M(d)) arith-
metic operations in F .

Proof. We first note that au′ + bu ≡ c mod xd if and only if u′ + fu ≡ g mod xd

holds, for all u ∈ F [x] of degree at most d, and similarly for the corresponding
homogeneous equations. Now

h′ = Dh ≡ D(exp(−If)) = −(DIf) · exp(−If) = −hf mod xd ,

and hence ah′ + bh ≡ 0 mod xd. Similarly,

w′ = Dw ≡ D(h·I(gh−1)) = (Dh)·I(gh−1)+h·DI(gh−1) = −fw+g mod xd ,

so that aw′ + bw ≡ c mod xd. By construction, we have h(0) = 1 and w(0) = 0.
Let

H = {u ∈ F [x]: deg u ≤ d and au′ + bu ≡ 0 mod xd} ,

W = {u ∈ F [x]: deg u ≤ d and au′ + bu ≡ c mod xd} .

Then clearly h ∈ H \ {0} and W = w + H . The d× (d + 1) coefficient matrix of
the linear system au′ + bu ≡ 0 mod xd for deg u ≤ d with respect to the monomial
basis 1, x, x2, . . . is triangular, with diagonal entries equal to a(0) (see the matrix R∗
in Fig. 9.1 below), and hence it has full rank d. Thus its kernel H is one-dimensional,
and we find that H = {κh: κ ∈ F}.

By Corollary 9.6, the answer “unsolvable” is correct in step 0 if d < 0, and it is
clear that the algorithm answers correctly if it does not return “unsolvable” in step 3.
Conversely, suppose that there exists an u ∈ F [x], which has degree at most d, by
Corollary 9.6, such that au′ + bu = c. However, such a u clearly belongs to W , so
that u = w+κh for κ = u(0), and hence the algorithm does not return “unsolvable”
in step 3.

Steps 1 and 2 take O(M(d)) field operations, by Fact 9.19. Since the lower d
coefficients of ah′ + bh and aw′ + bw− c are zero, by construction, it is sufficient to
compute the upper n+1 coefficients in step 3. By a similar proof as for Lemma 9.10,
this takes O(M(n)) field operations, and finding a suitable κ or proving its nonexis-
tence takes O(n) operations. �
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With classical arithmetic, Theorem 9.21 yields a cost estimate of O(n2 + d2)
arithmetic operations. However, we recommend to use the simpler Algorithm 9.15
for classical arithmetic.

Van der Hoeven (1997) discusses an algorithm for lazy multiplication of formal
power series modulo xd with running time O(M(d) log d). This algorithm can be
used to find power series solutions of linear first order differential equations within
the same time bound. This bound is slower by a factor of log d than the bound for
Brent & Kung’s algorithm. It is not clear whether there is an efficient analog of
Algorithm 9.20 for or whether the lazy multiplication technique can be applied to
first order difference equations.

The restriction that a(0) be nonzero can be easily removed by shifting everything
by a suitable field element.

Corollary 9.22. Let F be a field of characteristic zero, L = aD + b a linear dif-
ferential operator, with a, b ∈ F [x], a �= 0, and n = deg L, let c ∈ F [x], and
assume that the degree bound d = max({deg c− n, δL} ∩Z) from Corollary 9.6 is
nonnegative and #F ≥ 2n + 2. Using Algorithm 9.20, we can decide whether the
differential equation au′ + bu = c has a solution u ∈ F [x], and if so, compute one,
using an expected number of O(M(n + d)) operations in F with fast arithmetic.

Proof. We choose some s ∈ F such that a(s) �= 0. Then u ∈ F [x] solves the origi-
nal difference equation if and only if a(x+s)u(x+s)′+b(x+s)u(x+s) = c(x+s),
since u′(x + s) = u(x + s)′. Now a(x + s) does not have 0 as a root, and we can
apply Algorithm 9.20. If we choose s uniformly at random from a finite subset of F
of cardinality at least 2n+2, then we will find a suitable s after an expected number
of at most 2 trials, at an expected cost of O(n) additions and multiplications. The
degrees of a, b, c, u are at most n + d, and hence the additional cost for computing
the Taylor shifts is O(M(n + d)) with fast arithmetic, by Theorem 4.5. �

9.3 Rothstein’s SPDE Algorithm

The algorithm that we discuss in this section is due to Rothstein (1976, 1977) (see
also Bronstein 1990). In fact, Rothstein gives an algorithm for the general case of
elementary differential fields, and we will only use the base case of rational func-
tions.

The idea is as follows. Let F be a field and L = aD + b be a linear differential
operator, with a, b ∈ F [x] not both zero, c, u ∈ F [x] such that Lu = c, and assume
that d = deg u ≥ deg a > 0. Rothstein’s algorithm successively computes the
a-adic expansion of u. We can write u = qa+r with unique polynomials q, r ∈ F [x]
such that deg r < deg a. Plugging this into the differential equation, we find

c = Lu = a(q′a + qa′ + r′) + b(qa + r) = a(aq′ + (b + a′)q + r′) + br

= az + br ,
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where z = aq′ + (b + a′)q + r′. The polynomial q has degree at most d − deg a
and satisfies the first order differential equation Mq = aq′ + (b + a′)q = z − r′,
where M = L+a′. Conversely, if a and b are coprime, then there exist polynomials
z, r ∈ F [x] satisfying az + br = c and deg r < deg a. Such polynomials can
be obtained from the Extended Euclidean Algorithm, which computes s, t ∈ F [x]
with as + bt = 1, and then we may take r = tc rem a and z = (c − bz)/a.
If z1, r1 is another pair of polynomials with az1 + br1 = c and deg r1 < deg a,
then a(z − z1) = b(r1 − r), the coprimality of a and b implies that a | (r1 − r),
and deg(r1 − r) < deg a yields r1 = r and z1 = z. Thus the polynomials z and
r are unique. If there is a solution q ∈ F [x] of degree at most d − deg a of the
equation Mq = z − r′, then a similar calculation as above shows that u = qa + r
is a solution of degree at most d of the original equation Lu = c. Thus, to find u,
we may compute z and r as described above, solve for q recursively, and finally put
u = qa + r.

For simplicity, we only analyze the algorithm for the case where deg a − 1 ≥
deg b, since otherwise it may happen that deg a = 0 and b �= 0 during the recursion,
and a different algorithm would have to be called to handle this case. (Rothstein
then uses the method of indeterminate coefficients.)

Algorithm 9.23 (Rothstein’s SPDE algorithm).
Input: Polynomials a, b, c ∈ F [x], where F is a field of characteristic zero, such that

a �= 0 and deg a− 1 ≥ deg b, and d ∈ Z.
Output: A polynomial u ∈ Z[x] of degree at most d solving au′ + bu = c, or

otherwise “unsolvable”.

1. if c = 0 and d < 0 then return 0
2. if d < 0 or d + deg a− 1 < deg c then return “unsolvable”
3. call the Extended Euclidean Algorithm to compute s, t, g ∈ F [x] such that

as + bt = g = gcd(a, b), deg s < deg b − deg g, and deg t < deg a− deg g
4. if g � c then return “unsolvable”
5. A←− a/g, B ←− b/g, C ←− c/g
6. if deg A = 0 then return

∫
A−1C

7. r ←− tC rem A, z ←− (C −Br)/A
8. call the algorithm recursively with input A, B + A′, z − r′, and d − deg A to

compute q ∈ F [x] of degree at most d− deg A satisfying Aq′ + (B + A′)q =
z − r′

9. if the recursive call returns “unsolvable” then return “unsolvable”
else return qA + r

The only choice in the algorithm is for the constant coefficient of
∫

A−1C in
step 6. In the homogeneous case, where c = 0, we may obtain a nonzero solution of
au′ + bu = 0 if this constant coefficient is nonzero.

Theorem 9.24. If Algorithm 9.23 returns “unsolvable”, then the differential equa-
tion au′ + bu = c has no polynomial solution of degree at most d. Otherwise, the
polynomial returned is a solution of degree at most d of this equation. If n = deg a,
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then the cost for the algorithm with classical arithmetic is O(n2 + d2) arithmetic
operations in F .

Proof. It is clear that the result returned is correct if the algorithm returns in steps
1, 2, or 4, by Corollary 9.5. So we may assume that c �= 0, d ≥ 0, and g | c.
Clearly, the two equations au′ + bu = c and Au′ + Bu = C are equivalent,
and we have As + Bt = 1. If deg A = 0, then deg a − 1 ≥ deg b implies that
−1 = deg A − 1 ≥ deg B, and hence b = B = 0. Then the differential equa-
tion degenerates to Au′ = C, or equivalently, u′ = A−1C, and the result re-
turned in step 6 is correct. We now assume that deg A ≥ 1. Then A �= 0 and
deg(B + A′) ≤ max{deg B, deg A − 1} ≤ deg A − 1, and by induction, the re-
cursive call in step 8 returns the correct result. If it does not return “unsolvable”,
then the discussion preceding the algorithm implies that u = qA + r has degree at
most d and solves the differential equation au′ + bu = c. Similarly, if the recursive
call returns “unsolvable”, then the discussion preceding the algorithm shows that
the equation au′ + bu = c has no polynomial solution of degree at most d.

Let m = deg c and k = deg A. Steps 3 through 5 take O(n2 + mn) field
operations. The cost for step 6 is O(m), and step 7 takes O(k(m + k)) operations.
We have

deg z ≤ max{deg B + deg r, deg C − deg A} ∈ O(m + n) ,

so that computing B+A′ and z−r′ in step 8 takes O(m+n) operations. Finally, the
cost for step 9 is O(kd). Using m ≤ n + d− 1 when the algorithm does not return
in step 2, we find that the overall cost for the algorithm is O(n2 + nd) plus the cost
for the recursive call, with the parameters n, d replaced by k, d− k. If the recursion
stops in steps 1, 2, 4, or 6, then the cost is O(n2 + nd) as well. Inductively, we find
that the total cost of the algorithm is O((n + d)2) or O(n2 + d2) field operations. �

We do not state a cost estimate for fast arithmetic, since then the cost is still
Ω(d2) in the worst case, e.g., when deg a = 1 throughout the recursive process.
It is not clear whether divide & conquer techniques can be applied to obtain an
asymptotically fast variant.

However, there is a variant of Algorithm 9.23 for difference equations, which
seems to be new. We denote by Σ the formal inverse of the difference operator ∆,
such that ∆Σf = f and Σ∆f − f is a constant, for all polynomials f .

Algorithm 9.25 (Rothstein’s SPDE algorithm for difference equations).
Input: Polynomials a, b, c ∈ F [x], where F is a field of characteristic zero, such that

a �= 0 and deg a− 1 ≥ deg(a + b), and d ∈ Z.
Output: A polynomial u ∈ Z[x] of degree at most d solving a · Eu + b · u = c, or

otherwise “unsolvable”.

1. if c = 0 and d < 0 then return 0
2. if d < 0 or d + deg a− 1 < deg c then return “unsolvable”
3. call the Extended Euclidean Algorithm to compute s, t, g ∈ F [x] such that

as + bt = g = gcd(a, b), deg s < deg b − deg g, and deg t < deg a− deg g
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4. if g � c then return “unsolvable”
5. A←− a/g, B ←− b/g, C ←− c/g
6. if deg A = 0 then return ΣA−1C
7. r ←− tC rem A, z ←− (C −Br)/A
8. call the algorithm recursively with input EA, B, z − Er, and d − deg A to

compute q ∈ F [x] of degree at most d − deg A satisfying EA · Eq + B · q =
z − Er

9. if the recursive call returns “unsolvable” then return “unsolvable”
else return qA + r

Theorem 9.26. If Algorithm 9.25 returns “unsolvable”, then the difference equa-
tion a ·Eu + bu = c has no polynomial solution of degree at most d. Otherwise, the
polynomial returned is a solution of degree at most d of this equation. If n = deg a,
then the cost for the algorithm with classical arithmetic is O(n2 + d2) arithmetic
operations in F .

Proof. It is clear that the result returned is correct if the algorithm returns in steps
1, 2, or 4, by Corollary 9.5. So we may assume that c �= 0, d ≥ 0, and g | c.
The two equations a · Eu + bu = c and A · Eu + Bu = C are equivalent, and
we have As + Bt = 1. If deg A = 0, then deg a − 1 ≥ deg(a + b) implies that
−1 = deg A−1 ≥ deg(A+B), and hence a+b = A+B = 0. Then the differential
equation degenerates to A(Eu − u) = C, or equivalently, ∆u = A−1C, and the
result returned in step 6 is correct. We now assume that deg A ≥ 1. Then A �= 0
and deg(B + A) = deg(b + a)− deg g ≤ deg a− 1− deg g = deg A− 1, and by
induction, the recursive call in step 8 returns the correct result. If it does not return
“unsolvable”, then u = qA + r has degree at most d and

A · Eu + Bu = A(EA · Eq + Bq + Er) + Br = Az + Br = c . (9.2)

Conversely, if A · Eu + Bu = C has a polynomial solution of degree at most d
and we divide u by A with remainder, yielding q, r ∈ F [x] with deg r < deg A and
u = qA + r, then (9.2) implies that EA · Eq + bq = z − Er. Thus the equation
A · Eu + Bu = C has no polynomial solution of degree at most d if the recursive
call returns “unsolvable”.

Let m = deg c and k = deg A. Steps 3 through 5 take O(n2 + mn) field op-
erations. In step 6, we convert A−1C into the falling factorial basis, use Σxi =
xi+1/(i + 1) to compute the antidifference, and convert back to the usual mono-
mial basis. This takes O(m2) field operations, by Corollary 4.14. Step 7 costs
O(k(m + k)) operations. As in the proof of Theorem 9.24, we have deg z ∈
O(m+n), and hence computing EA and z−r′ in step 8 takes O(k2 +m+n) oper-
ations, by Theorem 4.3. Finally, the cost for step 9 is O(kd). Using m ≤ n + d− 1
when the algorithm does not return in step 2, we find that the overall cost for the
algorithm is O(n2 + nd) plus the cost for the recursive call, with the parameters
n, d replaced by k, d− k. If the recursion stops in steps 1, 2, 4, or 6, then the cost is
O((n + d)2). Inductively, we find that the total cost of the algorithm is O((n + d)2)
or O(n2 + d2) field operations. �
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9.4 The ABP Algorithm

In this section, we present and analyze the special case of an algorithm due to
Abramov, Bronstein & Petkovšek (1995) for linear difference and differential equa-
tions with polynomial coefficients, namely the case of first order equations. The key
idea is what Graham, Knuth & Patashnik (1994), §1.3, call the “repertoire method”.
Suppose that L is a linear differential or difference operator with polynomial coef-
ficients and we want to solve Lu = c. Compute r(j) = Lu(j) for several “simple”
polynomials u(j) (for example, u(j) = xj is suitable in the differential case), and
then try to represent c as a linear combination of the r(j). If the u(j) are suitably
chosen, then this transforms the linear system corresponding to the original equation
into an equivalent one whose coefficient matrix is banded triangular, and therefore
the transformed system is particularly easy to solve. Since it is easier, we start to de-
scribe the algorithm in the differential case, which is closely related to the method
of undetermined coefficients.

Algorithm 9.27 (ABP algorithm for first order differential equations).
Input: Polynomials a, b, c =

∑
i cix

i ∈ F [x], where F is a field of characteristic 0,
with a(0) �= 0.

Output: A nonzero polynomial u ∈ F [x] solving au′ + bu = c, or otherwise “un-
solvable”.

0. use Corollary 9.6 to determine a degree bound d for u
if d < 0 then return “unsolvable”

1. for 0 ≤ j ≤ d compute r(j) =
∑

i rijx
i = ajxj−1 + bxj

2. w0 ←− 0, h0 ←− 1
for 1 ≤ i ≤ d do

wi ←− (ci−1 −
∑

j<i rijwj)/ia(0), hi ←− −
∑

j<i rijhj/ia(0)
3. h←−∑0≤i≤d hix

i, w ←−∑0≤i≤d wix
i

if there is a κ ∈ F such that w + κh �= 0 and a · (w′ + κh′) + b · (w + κh) = c
then return w + κh else return “unsolvable”

The constant κ is the constant coefficient of u.

Theorem 9.28. Algorithm 9.27 works correctly as specified. If L = aD + b has
degree n, then the algorithm takes O(nd) additions and multiplications and O(d)
divisions in F .

Proof. If the algorithm returns “unsolvable” in step 0, then this is correct, by Corol-
lary 9.6. If the algorithm does not return “unsolvable”, then it clearly returns a so-
lution of the differential equation. It remains to show that the algorithm returns a
solution if there exists one. We let u =

∑
0≤i≤d uix

i ∈ F [x], possibly with ud = 0,
be a solution of the differential equation Lu = c. Since L is linear, we have

∑

0≤j≤d

ujr
(j) =

∑

0≤j≤d

ujLxj = Lu = c .
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Let e = d+degL, R = (rij) ∈ F (e+1)×(d+1), identify u and c with their coefficient
vectors in F d+1 and F e+1, respectively, and let R∗, c∗ and R∗, c∗ be the lower d
rows and the upper e − d + 1 rows of R and c, respectively. This is illustrated in
Fig. 9.1. Then R is the coefficient matrix of the linear system Lu = c with respect
to the monomial basis xe, xe−1, . . . , x, 1. Thus Ru = c, and hence also R∗u = c∗.
The matrix R is banded triangular, with ri,i+1 = (i + 1)a(0) �= 0 and ri,j = 0 for
0 ≤ i < d and i + 2 ≤ j ≤ d, and the rank of R∗ is equal to d.

R∗






R∗










re,d 0 · · · · · · · · · 0
re−1,d re−1,d−1 0 · · · · · · 0

...
. . .

. . .
. . .

...
rd,d rd,d−1 · · ·

rd−1,d rd−1,d−1 · · ·
0 rd−2,d−1 · · ·
...

. . .
. . .

. . .
. . .

...
0 · · · 0 r1,2 r1,1 r1,0

0 · · · · · · 0 r0,1 r0,0









ud

...

...

...

...
u0





=





ce

ce−1

...
cd

cd−1

cd−2

...
c1

c0









c∗






c∗

Fig. 9.1. The linear system Lu = c with respect to the monomial basis

If we identify h and w with their coefficient vectors in F d+1, then we see that
R∗h = 0 and R∗w = c∗. Since R∗ has rank d, its kernel is one-dimensional and
consists of all scalar multiples of h, and w + Fh is the solution space of the linear
system R∗y = c∗. In particular, since R∗u = c∗, we find that u = w + u(0)h. Thus
there exists a κ ∈ F such that L(w + κh) = c, and the algorithm correctly returns
a solution of the differential equation.

The cost for step 0 is negligible. Computing r(j) in step 1 takes O(n) additions
and multiplications in F for each j, in total O(nd). Since the bandwidth of the
matrix is e − d + 2 = n + 1, the cost for the ith iteration of the loop in step 2 is
O(n) additions and multiplications in F plus one division, in total O(nd) additions
and multiplications and O(d) divisions. Finally, in step 3 we only need to find a
κ ∈ F such that κR∗h = c∗ − R∗w. Computing R∗h and c∗ − R∗w amounts to
another O(nd) additions and multiplications, and we can determine a suitable κ (or
its non-existence) and compute w + κh from these two vectors with one division
and O(n) additions and multiplications. �

Corollary 9.29. Let F be a field of characteristic zero, L = aD + b a linear dif-
ferential operator, with a, b ∈ F [x], a �= 0, and n = deg L, let c ∈ F [x], and
assume that the degree bound d = max({deg c − n, δL} ∩ Z) from Corollary
9.6 is nonnegative. Using Algorithm 9.27, we can decide whether the differential
equation au′ + bu = c has a solution u ∈ F [x], and if so, compute one, using
an expected number of O(n2 + d2) operations in F with classical arithmetic and
O(nd + M(n + d)) with fast arithmetic.
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Proof. The proof for fast arithmetic is completely analogous to the proof of Corol-
lary 9.22. The cost for the Taylor shifts is O(n2 + d2) operations with classical
arithmetic, by Theorem 4.3. �

In order to describe the analog of the ABP algorithm for difference equations,
we assume that our input polynomials a, b, c are given in the falling factorial basis
and we want to find the solution u in the same basis as well. The conversions be-
tween this and the usual monomial basis can be easily achieved with the algorithms
from Chap. 4. Before presenting the algorithm, we need a technical lemma from
Abramov, Bronstein & Petkovšek (1995).

Lemma 9.30. Let j ∈ N.

(i) For all l ∈ N, we have

xlxj =
∑

max{l,j}≤i≤l+j

( l

i− j

)( j

i− l

)
(l + j − i)! xi .

(ii) If f =
∑

0≤l≤n flx
l, then the falling factorial coefficient rij of xi in f · xj is

rij =
∑

i−j≤l≤i

fl

( l

i− j

)( j

i− l

)
(l + j − i)! , (9.3)

for 0 ≤ i ≤ n + j. In particular, rij = 0 if i < j and rii = f(j).

Proof. (i) We start with the Vandermonde identity (see, e.g., Exercise 23.9 in von
zur Gathen & Gerhard 1999), rewritten as the binomial convolution formula for
the falling factorials: if y is another indeterminate, then

(x + y)l =
∑

0≤i≤l

( l

i

)
xiyl−i .

Substituting x = x− j and y = j, multiplying both sides by xj , and noting that
jl−i = 0 if j < l − i, we obtain

xlxj =
∑

max{l−j,0}≤i≤l

( l

i

)
xj(x− j)ijl−i =

∑

max{l−j,0}≤i≤l

( l

i

)
jl−ixi+j

=
∑

max{l,j}≤i≤l+j

( l

i− j

)( j

i− l

)
(l + j − i)! xi .

(ii) This follows by plugging (i) into
∑

i rijx
i =

∑
0≤l≤n flx

lxj , exchanging the

two summation signs, and comparing coefficients. The sum in (9.3) is empty if
i < j, and for i = j it has the value

∑

0≤l≤i

fl

( i

i− l

)
l! =

∑

0≤l≤i

fli
l = f(i) . �
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Algorithm 9.31 (ABP algorithm for first order difference equations).
Input: Polynomials a, b, c =

∑
i cix

i ∈ F [x] in the falling factorial basis, where
F is a field of characteristic zero, and the degree bound d for L = a∆ + b from
Corollary 9.6, such that d ∈ N and a(0), . . . , a(d− 1) �= 0.

Output: A nonzero polynomial u ∈ F [x] solving a ∆u − bu = c, or otherwise
“unsolvable”.

1. for 0 ≤ j ≤ d compute r(j) =
∑

i rijx
i = ajxj−1 + bxj

2. w0 ←− 0, h0 ←− 1
for 1 ≤ i ≤ d do

wi ←− (ci−1 −
∑

j<i rijwj)/ia(i− 1)
hi ←− −

∑
j<i rijhj/ia(i− 1)

3. h←−∑0≤i≤d hix
i, w ←−∑0≤i≤d wix

i

if there is a κ ∈ F such that w+κh �= 0 and a ·(∆w+κ ∆h)+b ·(w+κh) = c
then return w + κh else return “unsolvable”

Theorem 9.32. Algorithm 9.31 works correctly as specified. If deg L = n, then the
algorithm takes O(nd) additions and multiplications and O(d) divisions in F .

Proof. The proof parallels the proof of Theorem 9.28. If the algorithm does not
return “unsolvable”, then it clearly returns a solution of the difference equation, and
it remains to show that the algorithm returns a solution if there exists one. We let
u =

∑
0≤i≤d uix

i ∈ F [x], possibly with ud = 0, be a solution of the difference
equation Lu = c. Since L is linear, we have

∑

0≤j≤d

ujr
(j) =

∑

0≤j≤d

ujLxj = Lu = c .

Let e = d+degL, R = (rij) ∈ F (e+1)×(d+1), identify u and c with their coefficient
vectors in F d+1 and F e+1 with respect to the falling factorial basis F , respectively,
and let R∗, c∗ and R∗, c∗ be the lower d rows and the upper e − d + 1 rows of R
and c, respectively. Then R is the coefficient matrix of the linear system Lu = c
with respect to the falling factorial basis xe, xe−1, . . . , x1, 1, and we have Ru = c
and R∗u = c∗. Lemma 9.30 implies that the matrix R is banded triangular, with
ri,i+1 = (i + 1)a(i) �= 0 and ri,j = 0 for 0 ≤ i < d and i + 2 ≤ j ≤ d, and the
rank of R∗ is equal to d. Thus we have the same picture as in Fig. 9.1.

If we identify h and w with their coefficient vectors in F d+1 with respect to F ,
then we find that R∗h = 0 and R∗w = c∗. As in the proof of Theorem 9.28, we
conclude that u = w + u(0)h and the algorithm correctly returns a solution of the
difference equation.

In step 1, we recursively compute axj = (x − j + 1) · axj−1 and bxj+1 =
(x − j) · bxj , and calculate r(j+1) from these polynomials, for 0 ≤ j < d. Using
Lemma 9.30 with j = 1, this takes O(n) additions and multiplications in F for
each j, in total O(nd). The cost for steps 2 and 3 is O(nd) additions and multipli-
cations plus O(d) divisions, as in the proof of Theorem 9.28. �
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Corollary 9.33. Let F be a field of characteristic zero, L = a∆ + b a linear dif-
ference operator, with a, b ∈ F [x], a �= 0, and n = deg L, let c ∈ F [x], and
assume that the degree bound d = max({deg c − n, δL} ∩ Z) of Corollary 9.6
is nonnegative. Using Algorithm 9.31, we can decide whether the difference equa-
tion a ∆u + bu = c has a solution u ∈ F [x], and if so, compute one, using an
expected number of O(n2 + d2) operations in F with classical arithmetic and
O(nd + M(n + d) log(n + d)) with fast arithmetic, if F has cardinality at least
2(n + 1)d.

Proof. First, we find a point s ∈ F such that the values a(s), a(s − 1), . . .,
a(s− d + 1) are all nonzero. If we choose s uniformly at random from a finite
subset S ⊆ F of cardinality at least 2n + 2 such that {s, s − 1, . . . , s − d + 1} ∩
{s∗, s∗ − 1, . . . , s∗ − d + 1} = ∅ for all distinct s, s∗ ∈ S, then we can expect to
find a suitable s with at most two trials. For each trial, we can check the condition
by evaluating a using O(nd) additions and multiplications in F , as in the proof of
Theorem 9.32. Since the shift by s is an automorphism of the polynomial ring F [x],
we have ∆(u(x + s)) = (∆u)(x + s) for all u ∈ F [x], and u is a solution of the
original difference equation if and only if

a(x + s)∆u(x + s) + b(x + s)u(x + s) = c(x + s) .

Thus we shift a, b, c by s and convert the shifted polynomials to the falling fac-
torial basis. Then, since a(x + s) does not vanish at x = 0, . . . , d − 1, we can
apply Algorithm 9.31, and finally we convert u back to the monomial basis. The
polynomials a, b, c, u have degrees at most n + d, whence the conversions take
O(n2 + d2) operations with classical arithmetic, by Theorems 4.3 and 4.14, and
O(M(n + d) log(n + d)) with fast arithmetic, by Theorems 4.5, 4.15, and 4.16, and
the estimate follows from Theorem 9.28. �

9.5 A Divide-and-Conquer Algorithm: Generic Case

In this section and the following one, we discuss an algorithm by von zur Gathen &
Gerhard (1997) for solving linear first order difference and differential equations. It
works by writing the equation as a linear system with respect to the monomial basis;
no change of basis is necessary. The algorithm is essentially a divide & conquer
version of the method of undetermined coefficients.

Let a, b, c ∈ F [x] be polynomials, and let L = aD+b or L = aE +b. The main
observation for the algorithm is that the highest coefficients of a possible solution
u ∈ F [x] of Lu = c depend only on the highest coefficients of a, b, and c. This
is due to the fact that the coefficient matrix is lower triangular, as illustrated in
Fig. 9.1 for the differential case. The idea is now, similarly to the asymptotically
fast Euclidean Algorithm (see Aho, Hopcroft & Ullman 1974; Strassen 1983), to
write u = Uxm + V , with m = �(deg u)/2� and polynomials U, V ∈ F [x] such
that deg V < m. Then we compute first the upper half U , using only the upper halfs
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of a, b, and c, plug the partial solution obtained into the original equation, yielding
LV = c− L(Uxm), and recursively solve the latter equation for the lower half V .
For m = deg u, this idea is precisely Algorithm 9.12.

We first illustrate this in an example. For a polynomial f ∈ F [x] and an in-
teger k, we denote by f � k the polynomial part of x−kf . Thus f � k is equal
to the quotient of f on division by xk if k ≥ 0, and to x−kf if k < 0, and
lc(f � k) = lc(f) if both polynomials are nonzero. We have deg(f � k) = deg f−k
if f � k �= 0, and deg(xk(f � k)− f) < k.

Example 9.34. We study the generic example of a linear first order difference
equation with deg a = deg b = 3 and deg c = 6. So let a =

∑
0≤i≤3 aix

i,
b =

∑
0≤i≤3 bix

i, c =
∑

0≤i≤6 cix
i and u =

∑
0≤i≤3 uix

i in F [x] such that
Lu = a Eu+ bu = c. Comparing coefficients on both sides yields the linear system

c6 = b∗3u3 ,

c5 = b∗3u2 + (3a3 + b∗2)u3 ,

c4 = b∗3u1 + (2a3 + b∗2)u2 + (3a3 + 3a2 + b∗1)u3 ,

c3 = b∗3u0 + (a3 + b∗2)u1 + (a3 + 2a2 + b∗1)u2

+(a3 + 3a2 + 3a1 + b∗0)u3 ,

c2 = b∗2u0 + (a2 + b∗1)u1 + (a2 + 2a1 + b∗0)u2

+(a2 + 3a1 + 3a0)u3 ,

c1 = b∗1u0 + (a1 + b∗0)u1 + (a1 + 2a0)u2 + (a1 + 3a0)u3 ,

c0 = b∗0u0 + a0u1 + a0u2 + a0u3 ,

where b∗i = ai + bi for 0 ≤ i ≤ 3. If we have b∗3 �= 0, then the first four equations
uniquely determine u0, . . . , u3, and u2 and u3 can already be computed from the
first two equations. Let U = u � 2 = u3x+u2, A = (x+1)2a � 4 = a3x+2a3+a2,
B = x2b � 4 = b3x + b2, and C = c � 4 = c6x

2 + c5x + c4. Then

A · EU + B · U = b∗3u3x
2 +

(
b∗3u2 + (3a3 + b∗2)u3

)
x + · · ·

= c6x
2 + c5x + · · · ,

i.e., U is the unique polynomial satisfying deg(A ·EU + B ·U −C) ≤ deg C − 2,
or equivalently, deg(a ·E(Ux2) + b · Ux2 − c) ≤ deg c− 2.

If we have determined U , we write u = Ux2 +V , with V = u1x+u0, and plug
this into Lu = c:

a · EV + b · V = a(EU · (x + 1)2 + EV ) + b(Ux2 + V )
−((x + 1)2a ·EU + x2b · U)

= c− ((x + 1)2a ·EU + x2b · U) .

This is again a linear first order difference equation for V which can then be solved.
In general, the degrees of U and V are about half the degree of u, and they can be
determined recursively.
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In general, the operator L may not be injective. Lemma 9.1 shows that its ker-
nel is one-dimensional in that case, and hence the solution space of Lu = c is
either empty or one-dimensional as well. Corollary 9.6 implies that any nonzero
polynomial in the kernel of L has degree δL, and hence kerL = {0} if δL �∈ N.
If the last condition is true, then we call this the generic case. The following al-
gorithm works in the generic difference case and computes u ∈ F [x] such that
deg(Lu− c) < deg L.

Algorithm 9.35 (Difference divide & conquer: generic case).
Input: A linear difference operator L = aE + b = a∆ + (a + b), where a, b ∈ F [x]

satisfy a + b �= 0 and F is a field of characteristic zero, and c ∈ F [x] with
deg a− 1 ≤ deg(a + b) = deg L = n, d = deg c− n, and δL �∈ {0, . . . , d}.

Output: A polynomial u ∈ F [x] with u = 0 or deg u = d if d ≥ 0, such that
deg(Lu− c) < n.

1. if d < 0 then return u = 0
2. if d = 0 then return u = lc(c)/lc(a + b)
3. m←− �d/2�, t←− n− (d−m)

A1 ←− (x+1)ma � (t+m), B1 ←− xmb � (t+m), C1 ←− c � (t+m)
4. call the algorithm recursively with input L1 = A1E + B1 and C1 to obtain

U ∈ F [x] such that deg(L1U − C1) < d−m
5. A2 ←− a � (n−m), B2 ←− b � (n−m),

C2 ←− (c− a(x + 1)m EU − bxmU) � (n−m)
6. call the algorithm recursively with input L2 = A2E + B2 and C2, yielding

V ∈ F [x] with deg(L2V − C2) < m
7. return Uxm + V

We note that, by definition, δL �= 0 already implies that a+b �= 0 and deg a−1 ≤
deg(a + b).

Theorem 9.36. Algorithm 9.35 works correctly and uses O(M(d) log d) arithmetic
operations in F with fast arithmetic.

Proof. We prove correctness by induction on d = deg c − deg L. The output is
clearly correct of d ≤ 0, and we may assume that d > 0. Then 0 ≤ d − m =
�d/2� ≤ �d/2� = m ≤ d, and at least one of the last two inequalities is strict.

In step 3, we find that for i ≥ t + m, the coefficients of xi in xt+m(A1 + B1)
and a · (x + 1)m + bxm = Lxm coincide. Since δL �= m, Corollary 9.5 implies
that deg Lxm = deg L + deg xm = n + m, and since n + m ≥ t + m, we find
that deg(xt+m(A1 + B1)) = n + m and deg(A1 + B1) = n− t = d−m ≥ 0. In
particular, A1 + B1 is nonzero. Now

deg A1 − 1 ≤ deg a− 1− t ≤ n− t = d−m = deg(A1 + B1) = deg L1 .

We claim that δL1 �∈ {0, . . . , d − m}. This is clear if A1 = 0 or deg a − 1 <
deg L = n, since then deg A1 − 1 < deg L1 and δL1 =∞. Otherwise, we have

lc(A1 + B1) = lc(Lxm) = lc(a)(m− δL) = −lc(A1)(δL −m) ,
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by Lemma 9.3. Thus δL1 = δL −m, and the claim is proved. Now

deg C1 = deg c− (t + m) = n− t + d−m = 2(d−m) ,

deg C1 − deg L1 = 2(d−m)− (d−m) = d−m < d ,

and by induction, the output of the recursive call in step 4 is correct, i.e., deg U =
deg C1 − deg L1 = d−m and deg(L1U − C1) < deg L1 = d −m (we note that
U �= 0 since otherwise d−m = deg C1 = deg(L1U − C1) < d−m).

In step 5, we have

deg A2 − 1 ≤ deg a− 1− (n−m) ≤ m ,

deg(A2 + B2) = deg(a + b)− (n−m) = m = deg L2 .

Similarly as above, we find that δL2 = ∞ if A2 = 0 or deg a − 1 < n and
δL2 = δL otherwise, so that δL2 �∈ {0, . . . , m− 1}. Let c∗ = c− L(Uxm), so that
C2 = c∗ � (n−m). By the definition of �, the degrees of (x + 1)ma − xt+mA1,
xmb− xt+mB1, and c− xt+mC1 are less than t + m, and we conclude that

deg c∗ = deg(L(Uxm)− c) = deg((x + 1)ma EU + xmbU − c)

= deg
(
xt+m(L1U − C1) + ((x + 1)ma− xt+mA1)EU

+(xmb− xt+mB1)U − (c− xt+mC1)
)

< t + m + d−m = n + m .

Hence
deg C2 − deg L2 ≤ deg c∗ − (n−m)−m < m ≤ d ,

and by induction, the output of the recursive call in step 6 is correct as well, i.e.,
deg V ≤ deg C2 − deg L2 < m and deg(L2V − C2) < deg L2 = m.

Finally,

deg u = deg(Uxm + V ) = deg U + m = d ,

Lu− c = L(Uxm) + LV − (c∗ + L(Uxm)) = LV − c∗ ,

and

deg(Lu− c) = deg(LV − c∗)

= deg
(
xn−m(L2V − C2) + (a−A2x

n−m)EV

+(b−B2x
n−m)V − (c∗ − C2x

n−m)
)

< n−m + m = n ,

where we have used that the degrees of a−A2x
n−m, b−B2x

n−m, and c−C2x
n−m

are less than n−m.
We denote the cost of the algorithm for inputs with deg c− deg L = d by T (d).

The cost of steps 1 and 2 is O(1). In step 3, we first compute (x+1)m with repeated
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squaring, and then compute the leading d−m+1 coefficients of (x+1)ma, at a cost
of O(M(d)) operations. This is the total cost for step 3, since the computation of B1

and C1 requires no arithmetic operations. In step 4, we have deg C1 − deg L1 =
d −m = �d/2�, and hence the cost for the recursive call is at most T (�d/2�). In
step 5, we compute the coefficients of xn−m, . . . , xn+d in c∗, similarly to step 3,
at a cost of O(M(d + m)) operations. The computation of A2 and B2 is for free.
Finally, in step 6 we have deg C2 − deg L2 ≤ m− 1 ≤ �d/2�, and the cost for the
recursive call is at most T (�d/2�). Step 7 is essentially free. Summarizing, we have

T (0) ∈ O(1) and T (d) ≤ 2T (�d/2�) + O(M(d)) if d ≥ 1 .

The running time bound now follows from unraveling the recursion. �

With classical arithmetic, similar arguments show that the running time is
O(d2). However, we recommend to use the simpler Algorithm 9.12 for classical
arithmetic.

Corollary 9.37. Let F be a field of characteristic zero, L = aE+b = a∆+(a+b)
be a linear difference operator, with a, b ∈ F [x], a + b �= 0, and deg a − 1 ≤
deg(a + b) = n, and c ∈ F [x] with d = deg c − n ≥ 0 and δL �∈ N. Then we
have an algorithm that either computes the unique polynomial u ∈ F [x] satisfying
Lu = c, which has degree d, or correctly asserts that no solution exists. It uses
O(M(d) log d + M(n)) arithmetic operations in F .

Proof. We apply algorithm 9.35 and check its output by computing a Eu + bu− c.
For the check, we need only compute the lower n coefficients of Lu, and Theorem
9.36 and Lemma 9.9 yield the claim. �

Here is the analog of Algorithm 9.35 in the differential case. If L = aD + b is a
linear differential operator, then δL �= 0 implies that b �= 0 and deg a − 1 ≤ deg b,
as in the difference case.

Algorithm 9.38 (Differential divide & conquer: generic case).
Input: A linear differential operator L = aD+b, where a, b ∈ F [x] with b �= 0 for a

field F of characteristic zero, and c ∈ F [x] with deg a− 1 ≤ deg b = n = deg L,
d = deg c− n, and δL �∈ {0, . . . , d}.

Output: A polynomial u ∈ F [x] with u = 0 or deg u = d if d ≥ 0, such that
deg(Lu− c) < n.

1. if d < 0 then return u = 0
2. if d = 0 then return u = lc(c)/lc(b)
3. m←− �d/2�, t←− n− (d−m)

A1 ←− xma � (t + m), B1 ←− (mxm−1a + xmb) � (t + m)
C1 ←− c � (t + m)

4. call the algorithm recursively with input L1 = A1D + B1 and C1 to obtain
U ∈ F [x] such that deg(L1U − C1) < d−m

5. A2 ←− a � (n−m), B2 ←− b � (n−m),
C2 ←− (c− axmU ′ − (amxm−1 + bxm)U) � (n−m)
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6. call the algorithm recursively with input L2 = A2D + B2 and C2, yielding
V ∈ F [x] with deg(L2V − C2) < m

7. return Uxm + V

The proofs of the following theorem and corollary are completely analogous to
the proofs of Theorem 9.36 and Corollary 9.37 and therefore omitted.

Theorem 9.39. Algorithm 9.38 works correctly and uses O(M(d) log d) arithmetic
operations in F with fast arithmetic.

Corollary 9.40. Let F be a field of characteristic zero, L = aD + b be a linear
difference operator, with a, b ∈ F [x], b �= 0, and deg a − 1 ≤ deg b = n, and
c ∈ F [x] with d = deg c − n ≥ 0 and δL �∈ N. Then we have an algorithm that
either computes the unique polynomial u ∈ F [x] satisfying Lu = c, which has
degree d, or correctly asserts that no solution exists. It uses O(M(d) log d + M(n))
arithmetic operations in F .

9.6 A Divide-and-Conquer Algorithm: General Case

Let

a =
∑

0≤i≤n+1

aix
i, b =

∑

0≤i≤n+1

bix
i, u =

∑

0≤i≤d

uix
i, and c =

∑

0≤i≤k

cix
i ,

with n + 1 = deg a = deg b, d = deg u, k ∈ N, and assume that (deg a) − 1 ≥
deg(a + b) (i.e., an+1 + bn+1 = 0). The coefficient matrix of the linear system in
the coefficients of u equivalent to the linear difference equation Lu = a Eu + bu =
a ∆u + (a + b)u = c is triangular, with the coefficient of ui in the equation corre-
sponding to xn+i equal to an+1i+an + bn = an+1(i− δL), by Lemma 9.3. For ex-
ample, if a3 = b3 in Example 9.34, then n = deg L = deg a−1 = 2 ≥ deg(a+ b),
δL = −(a3 + b3)/a3, and the linear system reads

c6 = 0 ,

c5 = (3a3 + b∗2)u3 ,

c4 = (2a3 + b∗2)u2 + (3a3 + 3a2 + b∗1)u3 ,

c3 = (a3 + b∗2)u1 + (a3 + 2a2 + b∗1)u2

+(a3 + 3a2 + 3a1 + b∗0)u3 ,

c2 = b∗2u0 + (a2 + b∗1)u1 + (a2 + 2a1 + b∗0)u2

+(a2 + 3a1 + 3a0)u3 ,

c1 = b∗1u0 + (a1 + b∗0)u1 + (a1 + 2a0)u2 + (a1 + 3a0)u3 ,

c0 = b∗0u0 + a0u1 + a0u2 + a0u3 ,

where again b∗i = ai + bi for 0 ≤ i ≤ 3. In general, at most one of the subdiagonal
entries an(i− δL) vanishes, and this can only happen if δL is a nonnegative integer.
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Then there may be a degree of freedom in the choice of uδL (corresponding to
a nonzero solution of the homogeneous equation a · Eu + b · u = 0), in which
case we might simply choose uδL = 0. However, it may happen that δL ∈ N and
kerL = {0}, and in that case uδL has to be chosen consistently with the other
equations.

We now use Algorithm 9.35 to solve the difference equation Lu = a Eu+bu =
a ∆u + (a + b)u = c in the case where δL ∈ N. We first compute the coefficients
of xi in u for i > δL and then take care of a possible freedom in choosing the
coefficient of xδL . The idea is to compute polynomials U, V, W ∈ F [x] such that
deg U < d− δL, deg V, deg W < δL, and the set of all solutions of deg(Lu− c) <
deg L is {UxδL+1 + V + κ(xδL + W ): κ ∈ F}, using Algorithm 9.35, and then to
check whether some (or every) κ ∈ F gives a solution of Lu = c (this corresponds
to the checking in Corollary 9.37).

Algorithm 9.41 (Difference divide & conquer: general case).
Input: A linear difference operator L = aE + b = a∆ + (a + b), where a, b ∈ F [x]

and a �= 0 for a field F of characteristic zero, and c ∈ F [x] with deg(a + b) ≤
deg a− 1 = n = deg L, δL ∈ N, and d = max{deg c− n, δL}.

Output: A polynomial u ∈ F [x] of degree at most d such that Lu = c, or otherwise
“unsolvable”.

1. if d = δL then U ←− 0, goto 4
2. m←− δL + 1, t←− n− (d−m)

A←− (x + 1)ma � (t + m), B ←− xmb � (t + m), C ←− c � (t + m)
3. call Algorithm 9.35 with input L1 = AE + B and C to obtain U ∈ F [x] such

that deg(L1U − C) < d−m
4. c∗ ←− c− L(Uxm), if δL = deg c∗ − n then return “unsolvable”
5. call Algorithm 9.35 with input L and c∗ to obtain V ∈ F [x] such that

deg(LV − c∗) < n
6. h∗ ←− LV − c∗, if h∗ = 0 then return Uxm + V
7. c∗∗ ←− LxδL

call Algorithm 9.35 with input L and −c∗∗ to obtain W ∈ F [x] such that
deg(LW + c∗∗) < n

8. h∗∗ ←− LW + c∗∗

if there exists some κ ∈ F such that h∗ + κh∗∗ = 0 in F [x]
then return Uxm + V + κ(xδL + W ) else return “unsolvable”

We note that by definition, δL ∈ N already implies that a �= 0 and deg a− 1 ≥
deg(a + b). The constant κ is the coefficient of xδL in u.

Theorem 9.42. Algorithm 9.41 works correctly, using O(M(d) log d + M(n + d))
arithmetic operations in F .

Proof. If the algorithm returns Uxm + V in step 6, then L(Uxm + V ) − c =
LV − c∗ = h∗ = 0, and Uxm + V solves the difference equation. If the algorithm
returns u = Uxm + V + κ(xδL + W ) in step 8, then
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Lu− c = LV + κ(LxδL + LW )− c∗ = h∗ + κ(c∗∗ + LW ) = h∗ + κh∗∗ = 0 ,

and the output is correct as well.
Conversely, suppose that there exists a polynomial u ∈ F [x] with deg u ≤ d

such that Lu = c. If δL < d, then we have δL < m ≤ d in step 2. As in the proof of
Theorem 9.36, the coefficients of xi in xt+m(A+B) and Lxm mod xt+m coincide
for i ≥ t + m, Corollary 9.5 shows that deg(Lxm) = n + m, and n ≥ t implies
that deg(A + B) = d−m ≥ 0. Now

deg A− 1 = deg a− 1− t = n− t = d−m = deg L1 ,

deg C = deg c− (t + m) = n− t + d−m = 2(d−m) ,

deg C − deg L1 = 2(d−m)− d−m = d−m .

As in the proof of Theorem 9.36, Lemma 9.3 implies that δL1 = δL −m = −1.
Thus Algorithm 9.35 returns the correct result in step 3, so that we have deg U =
deg C − deg L1 = d−m and deg(L1U − C) < deg L1 = d−m. Since this U is
unique, by Lemma 9.13, and U∗ = u � m satisfies deg(L1U

∗ − C) < d −m, we
find that U = U∗. If δL = d in step 2, then U = U∗ = 0.

In step 4, we have L(u − Uxm) = c∗. As in the proof of Theorem 9.35, we
get deg c∗ < n + m, and hence δL ≥ d∗ = deg c∗ − n. Corollary 9.6 shows
that δL �= d∗, and therefore δL > d∗. Then Algorithm 9.35 correctly computes
V ∈ F [x] of degree d∗ such that deg(LV − c∗) < deg L = n. We find

L(Uxm + V )− c = LV + L(Uxm − u) = LV − c∗ = h∗

in step 6. If h∗ = 0, then the algorithm correctly returns the solution Uxm + V .
Otherwise, if h∗ �= 0, then Corollary 9.5 shows that deg c∗∗ < n + δL, and

Algorithm 9.35 correctly computes W ∈ F [x] of degree deg c∗∗ − n < δL such
that deg(L(xδL + W )) < deg L = n in step 7. In step 8, we then have h∗∗ =
L(xδL +W ). If h∗∗ = 0, then kerL = F · (xδ +W ), by Lemma 9.1, and otherwise
kerL = {0}. Since deg c∗ < n + δL, Lemma 9.13 implies that the space Sc∗ of
all polynomials y ∈ F [x] of degree at most δL satisfying deg(Ly − c∗) < n is
one-dimensional, and we find Sc∗ = V +F · (xδL +W ). Now u−Uxm ∈ Sc∗ , and
we conclude that u − Uxm = V + σ · (xδL + W ), where σ ∈ F is the coefficient
of xδL in u. Then

h∗ + σh∗∗ = L(V + σ(xδL + W ))− c∗ = L(u− Uxm)− c∗ = 0 ,

and there exists a suitable κ in step 8. If kerL = {0}, then this κ is unique, namely
κ = σ. Otherwise xδL + W generates kerL and Uxm + V is a solution of the
difference equation Ly = c. However, the algorithm would have already stopped in
step 6 in that case.

As in the proof of Theorem 9.36, the cost for step 2 is O(M(d)) arithmetic
operations. Step 3 takes O(M(d − δL) log(d − δL)), by Theorem 9.36. Computing
L(Uxm) and c∗ in step 4, h∗ in step 6, LxδL in step 7, and h∗∗ in step 8 takes
O(M(n+d)) operations, by Lemma 9.9. The cost for the two calls to Algorithm 9.35
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in steps 5 and 7 is O(M(δL) log δL). Finally, finding a suitable κ in step 8 takes O(n)
operations. The cost estimate now follows by adding up costs. �

In the nonunique case, where kerL �= {0}, Algorithm 9.41 stops in step 6 if
Lu = c is solvable, but may need to proceed until step 8 to find out that the dif-
ference equation is unsolvable (see Example 9.43 (ii) below). If we know somehow
in advance that kerL �= {0}, then we may already return “unsolvable” in step 6 if
h∗ �= 0, since then kerL = F · (xδ +W ) and h∗∗ = 0 in step 8. This may be useful
in Gosper’s (1978) algorithm, since Lisoněk, Paule & Strehl (1993) have shown that
the condition kerL �= {0} corresponds to the case where Gosper’s algorithm is used
to compute the antidifference of a rational function.

Example 9.43. In the following examples, we use Algorithms 9.35 and 9.41 to solve
Lu = c for the linear difference operator L = aE + b = a∆ + a + b, and write
n = deg L and δ = δL for short.

(i) Let a = x2 and b = −x2 + x/2− 1. Then n = 1 and δ = −1/2 �∈ N. If we let
c = x− 2, then we obtain u = 2 in step 1 of Algorithm 9.35. We check that

Lu = x2 · 2 +
(
− x2 +

1
2
x− 1

)
· 2 = x− 2 ,

and u solves the difference equation. On the other hand, for c = x, we also get
u = 2 in step 1, but now Lu = c− 2 �= c, and Lu = c is unsolvable.

(ii) Let a = x2 and b = −x2−2x−1, so that n = 1 and δ = 2. For c = x2+x, we
have d = max{deg c−n, δ} = δ = 2. Thus U = 0 in step 4 of Algorithm 9.41,
c∗ = c and deg c∗ − n = 1 < δ, and in step 5 we obtain V = −x. Then

LV = x2(−x− 1) + (−x2 − 2x− 1)(−x) = x2 + x ,

whence h∗ = 0 in step 6, and u = −x solves the difference equation.
On the other hand, for c = x2 + x + 1 we have d, U , c∗, and V as before, but
now h∗ = −1 in step 6. Then

c∗∗ = Lxδ = x2(x + 1)2 + (−x2 − 2x− 1)x2 = 0

and W = 0 in step 7, and h∗∗ = 0 in step 8. Thus h∗ + κh∗∗ = −1 �= 0 for
all κ ∈ F , and Lu = c is unsolvable.
In fact, kerL = F · (xδ + W ) = F · x2, and the set of all solutions of Lu =
x2 + x is

Uxδ+1 + V + kerL = {κx2 − x: κ ∈ F} .

(iii) Let a = x2 and b = −x2 − x − 1/4. Then n = 1 and δ = 1, and for
c = 4x3 + 3x2 + x, we have d = max{deg c − n, δ} = 2 > δ. Thus m = 2,
t = 1, A = (x+1)2a � 3 = x+2, B = x2b � 3 = −x−1, and C = c � 3 = 4
in step 2, and in step 3 we obtain U = 4. Next, we have

c∗ = c− L(Uxm)

= 4x3 + 3x2 + x− x2 · 4(x + 1)2 −
(
− x2 − x− 1

4

)
· 4x2

= x ,
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and deg c∗ − n = 0 < δ. Now we compute V = −1 in step 5, and

h∗ = LV − c∗ = −x2 −
(
− x2 − x− 1

4

)
− x =

1
4
�= 0

in step 6. In step 7, we get

c∗∗ = Lxδ = x2(x + 1) +
(
− x2 − x− 1

4

)
x = −1

4
x ,

and W = −1/4. Finally,

h∗∗ = LW + c∗∗ = −1
4
x2 − 1

4

(
− x2 − x− 1

4

)
− 1

4
x =

1
16

in step 8, and h∗ + κh∗∗ = 1/4 + κ/16 = 0 if and only if κ = −4. Then
u = 4x2 − 1− 4 · (x − 1/4) = 4x(x− 1), and we check that

Lu = x2 · 4(x + 1)x +
(
− x2 − x− 1

4

)
· 4x(x− 1)

= 4x3 + 3x2 + x ,

and u solves Lu = c.
If we take c = 4x3 +4x2 +x, then d and U are as before, but now c∗ = x2 +x,
deg c∗ − n = 1 = δ, and the algorithm returns “unsolvable” in step 4.
In fact, the homogeneous equation Lu = 0 only has the trivial solution u = 0.

Here is the analog of Algorithm 9.35 in the differential case.

Algorithm 9.44 (Differential divide & conquer: general case).
Input: A linear differential operator L = aD + b, where a, b ∈ F [x] and a �= 0 for a

field F of characteristic zero, and c ∈ F [x] with deg b ≤ deg a− 1 = n = deg L,
δL ∈ N, and d = max{deg c− n, δL}.

Output: A polynomial u ∈ F [x] of degree at most d such that Lu = c, or otherwise
“unsolvable”.

1. if d = δL then U ←− 0, goto 4
2. m←− δL + 1, t←− n− (d−m)

A←− xma � (t + m), B ←− (mxm−1a + xmb) � (t + m)
C ←− c � (t + m)

3. call Algorithm 9.38 with input L1 = AD + B and C to obtain U ∈ F [x] such
that deg(L1U − C) < d−m

4. c∗ ←− c− L(Uxm), if δL = deg c∗ − n then return “unsolvable”
5. call Algorithm 9.38 with input L and c∗ to obtain V ∈ F [x] such that

deg(LV − c∗) < n
6. h∗ ←− LV − c∗, if h∗ = 0 then return Uxm + V
7. c∗∗ ←− LxδL

call Algorithm 9.38 with input L and −c∗∗ to obtain W ∈ F [x] such that
deg(LW + c∗∗) < n
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8. h∗∗ ←− LW + c∗∗

if there exists some κ ∈ F such that h∗ + κh∗∗ = 0 in F [x]
then return Uxm + V + κ(xδL + W ) else return “unsolvable”

As in the difference case, δL ∈ N implies that a �= 0 and deg a − 1 ≥ deg b.
The proof of the following theorem is analogous to the proof of Theorem 9.42.

Theorem 9.45. Algorithm 9.44 works correctly, using O(M(d) log d + M(n + d))
arithmetic operations in F .

9.7 Barkatou’s Algorithm for Linear Difference Equations

The algorithm that we will discuss in this section is due to Barkatou (1999), who
used it for the solution of linear first order matrix difference equations. The idea
is to evaluate the coefficients of the difference equation at the points 0, 1, 2, . . ..
This gives a linear system for the values of the solution at these points, and we can
recover the solution by interpolation. The algorithm bears strong similarities to the
ABP algorithm: both transform the original linear system into an equivalent one
which is nicely structured, by performing a suitable change of basis. The coefficient
matrix of the transformed system in Barkatou’s algorithm is even simpler than for
the ABP algorithm: it is banded triangular, but the bandwidth is only two.

Algorithm 9.46 (Barkatou’s algorithm).
Input: Polynomials a, b, c ∈ F [x], where F is a field of characteristic zero, and the

degree bound d from Corollary 9.6 for L = aE + b = a∆ + (a + b), such that
d ∈ N and a(0), . . . , a(d− 1) �= 0.

Output: A nonzero polynomial u ∈ F [x] solving a Eu + bu = c, or otherwise
“unsolvable”.

1. for 0 ≤ i < d do αi ←− a(i), βi ←− b(i), γi ←− c(i)
2. ω0 ←− 0, η0 ←− 1

for 0 ≤ i < d do ωi+1 ←− (γi − βiωi)/αi, ηi+1 ←− −βiηi/αi

3. compute by interpolation polynomials w, h ∈ F [x] of degrees at most d such
that w(i) = ωi and h(i) = ηi for 0 ≤ i ≤ d

4. if there is a κ ∈ F such that w+κh �= 0 and a ·(Ew+κ Eh)+b ·(w+κh) = c
then return w + κh else return “unsolvable”

The constant κ is the constant coefficient of u.

Theorem 9.47. Algorithm 9.46 works correctly as specified. If deg L = n, then it
takes O(nd + d2) field operations with classical arithmetic and O(M(d) log d +
M(n + d)) with fast arithmetic.

Proof. It is clear that the algorithm returns a solution of the difference equation if
it does not return “unsolvable”. So we assume that u ∈ F [x] of degree at most d
satisfies Lu = c. Then

αiu(i + 1) + βiu(i) = a(i)u(i + 1) + b(i)u(i) = c(i) = γi
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for 0 ≤ i < d. This is a linear system of d equations for the d + 1 values
u(0), . . . , u(d). By assumption, we have αi �= 0 for all i, and hence the solu-
tion space of this linear system is one-dimensional. By construction, the vector
ω = (ω0, . . . , ωd) belongs to this solution space, and η = (η0, . . . , ηd) is a nonzero
solution of the corresponding homogeneous system, where all γi are zero. Thus the
solution space is precisely ω + Fη, and hence u(i) = ωi + u(0)ηi for 0 ≤ i ≤ d.
Since interpolation is a linear operation in the coefficients and deg u ≤ d, we find
that u = w + u(0)h, and the algorithm returns a solution of the difference equation.

We have deg a, deg b ≤ n + 1 and deg c ≤ n + d. With classical arithmetic, we
can evaluate a, b, c at all points 0, . . . , d − 1 in step 1 using O(nd + d2) arith-
metic operations in F . With fast arithmetic, we first compute c rem xd, taking
O(M(d) log d+M(n)) operations, by Lemma 3.15, and then evaluate this remainder
and a, b at all points using O(M(d) log d) operations. Computing the ωi, ηi in step 2
takes O(d) field operations. The cost for the interpolation in step 3 is O(d2) field op-
erations with classical arithmetic and O(M(d) log d) with fast arithmetic. In step 4,
we check whether c−a Ew−bw is proportional to a Eh+bh. This takes O(nd+d2)
with classical arithmetic and O(M(n + d)) with fast arithmetic, by Lemma 9.9. Fi-
nally, we can find a proportionality factor κ (or prove its nonexistence) and compute
w + κh with another O(n + d) operations. �

As in Sect. 9.4, the restriction that a(0), . . . , a(d− 1) be nonzero is not severe.

Corollary 9.48. Let F be a field of characteristic zero, L = aE + b = a∆ + a + b
a linear difference operator, with a, b ∈ F [x], a �= 0, and n = deg L, let c ∈ F [x],
and assume that the degree bound d = max({deg c − n, δL} ∩ Z) of Corollary
9.6 is nonnegative. Using Algorithm 9.46, we can decide whether the difference
equation a Eu + bu = c has a solution u ∈ F [x], and if so, compute one, using
an expected number of O(n2 + d2) operations in F with classical arithmetic and
O(M(d) log d + M(n + d)) with fast arithmetic.

The proof is analogous to the proof of Corollary 9.33; the additional conversion
cost is only O(M(n + d)) with fast arithmetic since no conversion to the falling
factorial basis is required.

An analog of Barkatou’s algorithm for linear differential equations would be
to evaluate the coefficients of the equation and their derivatives at zero. This gives
a system of linear equations for the derivatives of the solution at zero. However,
this is essentially the same as writing the differential equation as a system of linear
equations with respect to the monomial basis.

9.8 Modular Algorithms

In this section, we present new modular algorithms for finding polynomial solutions
of linear first order differential or difference equations with coefficients in Z[x]. The
idea is to reduce the inputs modulo several single precision primes, perform one of
the algorithms from the previous sections modulo each prime, and reconstruct the
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result in Q[x] via Chinese remaindering and rational number reconstruction. If p
is a prime greater than the degrees of the input and the output polynomials, then
the algorithms from the previous sections, which were specified for characteristic
zero, work literally modulo p. However, it may still happen that p is an unlucky
prime, namely if the equation in Q[x] has a unique solution, and the equation taken
modulo p has several solutions.

Let L be a linear first order differential or difference operator with coefficients
in Z[x], and let c ∈ Z[x]. As we have already noted, the equation Lu = c for
u ∈ Q[x] with deg u ≤ d is equivalent to a certain system of linear equations in
the d + 1 unknown coefficients of u. Thus the coefficients of u can be expressed
as quotients of certain minors of the coefficient matrix of this linear system, by
Cramer’s rule. Since there may be several possible solutions u, we introduce below
the notion of a normalized solution and show that it is unique. Later we show that if
u is the normalized solution of Lu = c and p is a “lucky” prime, then u mod p is the
normalized solution of Lu ≡ c mod p, which allows us to reconstruct u correctly
from its modular images.

Definition 9.49. Let R be a ring, f ∈ R[x], and n ∈ N. We denote the coefficient
of xn in f by [xn]f .

Definition 9.50. Let F be a field, a, b ∈ F [x] not both zero, L = aD + b or
L = a∆ + b a linear differential or difference operator, respectively, u ∈ F [x],
and c = Lu. We say that u is a normalized solution of the equation Lu = c if
[xdeg v]u = 0 for all nonzero v ∈ kerL.

Lemma 9.51. With the notation as in Definition 9.50, there is at most one normal-
ized solution of the equation Lu = c.

Proof. Let v ∈ F [x] be another normalized solution. Then u− v ∈ kerL. Suppose
that u �= v and let d = deg(u − v). By assumption, the coefficient of xd in u and v
vanishes, and hence so does the coefficient of xd in u− v. This contradiction proves
that u = v. �

In particular, u = 0 is the normalized solution of the homogeneous equation
Lu = 0.

Problem 9.52 (Polynomial solutions of first order equations). Given a first or-
der linear difference or differential operator L with coefficients in Z[x] and a non-
zero polynomial c ∈ Z[x], decide if L−1c is non-empty, and if so, compute the
unique normalized solution u ∈ Q[x].

See Remark 9.11 for the homogeneous case.
The following theorem is the basis for our modular algorithm. It says when the

modular image of a normalized solution of the differential or difference equation is
a normalized solution of the modular equation.

Theorem 9.53. Let Z be an integral domain of characteristic zero with field of frac-
tions Q, a, b ∈ Z[x] not both zero, L = aD+b or L = a∆+b a linear differential or
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difference operator, respectively, and c ∈ Z[x]. Let d ∈ N be the bound from Corol-
lary 9.6 on the degree of a polynomial solution u ∈ Q[x] of Lu = c. Moreover, let
I ⊆ Z be a maximal ideal coprime to lc(abc), denote reduction modulo I by a bar
and the residue class field Z/I by Z , and suppose that Z has positive characteristic
p > d. Finally, let V = {v ∈ Z[x]: deg v < p}.
(i) If dim kerL = dim(V ∩ kerL) = 0 and u ∈ Q[x] satisfies Lu = c, then u

is normalized, the denominators of u are invertible modulo I , and v = u is the
unique normalized solution of the equation Lv = c.

(ii) If dim kerL = 1, then δL ∈ {0, . . . , d} and dim(V ∩kerL) = 1. If the equation
Lu = c is solvable, then it has a unique normalized solution u ∈ Q[x], the
denominators of u are invertible modulo I , and v = u is the unique normalized
solution of the equation Lv = c.

Proof. Let e = deg L+ d and R = (rij) be the (e+1)× (d+1) coefficient matrix
of the linear system Lu = c for deg u ≤ d with respect to the usual monomial
basis 1, x, x2, . . ., as illustrated in Fig. 9.1 on p. 166 for the differential case. Then
rankR = d + 1 − dim kerL ∈ {d, d + 1}, by Lemma 9.1 and Corollary 9.6.
Similarly, R = R mod I is the coefficient matrix of the linear system Lv = c
when deg v ≤ d, and Lemma 9.1 implies that dim(V ∩ kerL) ≤ 1 and rankR ∈
{d, d + 1}.
(i) We first note that deg u ≤ d, by Corollary 9.6, and that both R and R have full

column rank d + 1. Since kerL = {0}, u is clearly normalized. Let A be any
(d + 1)× (d + 1) submatrix of R such that detA �≡ 0 mod I , comprising rows
0 ≤ i0 < i1 < · · · < id ≤ e of R, and let w ∈ Zd+1 be the column vector with
the coefficients of xi0 , xi1 , . . . , xid in c. If we identify u with its coefficient
vector in Qd+1, then Au = w, and Cramer’s rule implies that (detA)u ∈
Zd+1. Since detA is a unit modulo I , so are the denominators of u. Thus u is
well defined, and taking the equation Lu = c modulo I yields Lu = c. If w ∈
kerL is nonzero, then dim(V ∩kerL) = 0 implies that deg w ≥ p > deg u, so
that the coefficient of xdeg w in u is zero. Thus v = u is a normalized solution
of Lv = c, and uniqueness follows from Lemma 9.51.

(ii) The first assertion was shown in Corollary 9.6. Since dim kerL = 1, we have
rankR = d, and all (d+1)× (d+1) minors of R, and hence also of R, vanish.
Thus rankR = d and dim(V ∩ kerL) = d + 1− rankR = 1.
All nonzero polynomials in kerL and V ∩ kerL have degree δL, by Corol-
laries 9.6 and 9.7, respectively. Thus, if we augment the matrix R by the row
(0, . . . , 0, 1, 0, . . . , 0), whose only nonzero entry is a 1 at the position corre-
sponding to xδL , and denote the resulting (e + 2)× (d + 1) matrix by R∗, then
both R∗ and R∗ have full column rank d + 1.
By adding a suitable element of kerL to u if necessary, we may assume that u
is normalized. As in (i), let A be any nonsingular (d + 1)× (d + 1) submatrix
of R∗ such that detA �≡ 0 mod I , and let w ∈ Z

d+1 be the corresponding
subvector of the coefficient vector of c augmented by a single entry 0. Then the
remaining claims follow from similar arguments as in (i). �
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Definition 9.54. Let L be a linear first order difference or differential operator with
coefficients in Z[x], and let c ∈ Z[x] be nonzero. For a prime p ∈ N, let V =
{u ∈ Fp[x]: deg u < p} and denote reduction modulo p by a bar. Then p is unlucky
with respect to problem 9.52 if dim(V ∩ kerL) > dim kerL or both L−1c = {0}
and V ∩ L

−1
c �= {0}. Otherwise, p is lucky.

The following corollary gives a condition when a prime is lucky, and expresses
the coefficients of a normalized solution of the differential or difference equation as
quotients of determinants.

Corollary 9.55. With the assumptions as in Theorem 9.53, let Z = Z, Q = Q,
and I = 〈p〉 for a prime p > d. Moreover, let e = deg L + d and R be the
(e + 1) × (d + 1) coefficient matrix of the linear system Lu = c with respect to
the monomial basis, and let S be the matrix R augmented by the column vector in
Z

e+1 with the coefficients of c. We define two matrices R∗ and S∗, as follows. If
kerL = {0}, then R∗ = R and S∗ = S. Otherwise, if dim kerL = 1, then we
obtain R∗ and S∗ from R and S by augmenting a row vector (0, . . . , 0, 1, 0, . . . , 0)
in Z

d+1 and Z
d+2, respectively, with the entry 1 at the position corresponding to the

coefficient of xδL in u. Then rankS∗ ≥ rankR∗ = d + 1. Finally, we let A be any
nonsingular (d+1)× (d+1) submatrix of R∗ and w ∈ Z

d+1 be the corresponding
subvector of the coefficient vector of c, and if rankS∗ > rankR∗, we let B be any
nonsingular (d + 2)× (d + 2) submatrix of S∗.

(i) If Lu = c is solvable, then the coefficient of xi in the normalized solution u is
(detAi)/ detA, where Ai is the matrix A with the ith column replaced by w
for 0 ≤ i ≤ d. If furthermore p � detA, then p is a lucky prime and we are in
one of the two cases of Theorem 9.53.

(ii) If Lu = c has no solution, then rankS∗ = d+2 > rankR∗, and if furthermore
p � detB, then p is a lucky prime and Lu ≡ c mod p has no solution of degree
at most d.

Proof. (i) follows from the proof of Theorem 9.55. The first statement of (ii) fol-
lows by a standard linear algebra argument. If p � detB, then rankS∗ = rankS∗ >
rankR∗ ≥ rankR∗, and the second claim follows by the same linear algebra argu-
ment. �

We start with a modular algorithm for the differential case. We assume that the
input polynomials have degree less than 2ω−2 and the degree bound on the output
polynomial is less than 2ω−1, where ω is the word size of our processor. This is
sufficient in practice, since otherwise the input or the output would be so large that
it probably would not fit into main memory in a dense representation.

Algorithm 9.56 (Modular Brent & Kung / ABP algorithm).
Input: Polynomials a, b, c ∈ Z[x], with a, b not both zero, ‖a‖∞, ‖b‖∞ < 2λ,
‖c‖∞ < 2γ , n = max{deg a− 1, deg b} < 2ω−2, and m = deg c.

Output: The normalized polynomial u ∈ Q[x] solving au′ + bu = c, or otherwise
“unsolvable”.
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0. use Corollary 9.6 to determine a degree bound d for u
if d < 0 then return “unsolvable”
if d ≥ 2ω−1 then return “output too large”

1. α←− �(log2((d + 1)3/22λ)d+1)/(ω − 1)�
β ←− �(log2 2((d + 2)3/22λ)d+22γ)/(ω − 1)�
η ←− �(2λ + γ)/(ω − 1)�, r←− α + 2β + η
choose single precision primes 2ω−1 < p1 < . . . < pr

S ←− {pi: 1 ≤ i ≤ r and pi � lc(abc)}
2. for all p ∈ S do
3. repeat

choose s ∈ {0, . . . , 2n + 1} uniformly at random
until a(s) �≡ 0 mod p

4. M ←− a(x + s)D + b(x + s)
ap ←− a(x + s) mod p, bp ←− b(x + s) mod p
cp ←− c(x + s) mod p

5. call steps 1 and 2 of Brent & Kung’s algorithm 9.20 or steps 1 and 2 of
the ABP algorithm 9.27 for F = Fp with input ap, bp, cp and the degree
bound d, yielding wp, hp ∈ Z[x] with hp �≡ 0 mod p and the following
properties:
• Mhp ≡ 0 mod p if this homogeneous equation has a nontrivial solu-

tion modulo p of degree at most d,
• the inhomogeneous equation Mv ≡ c(x + s) mod p has a solution

v ∈ Z[x] of degree at most d if and only if there exists κ ∈ Z such
that M(wp + κhp) ≡ c(x + s) mod p

6. if Mhp ≡ 0 mod p then
rp ←− 1
if deg hp �= δM then remove p from S
else if Mwp ≡ c(x + s) mod p

then choose κ ∈ {0, . . . , p−1} such that the coefficient of
xδM in wp(x− s) + κhp(x− s) vanishes,
up ←− wp(x− s) + κhp(x− s)
else up ←−“unsolvable”

7. else
rp ←− 0
if there exists κ ∈ {0, . . . , p − 1} such that M(wp + κhp) ≡
c(x + s) mod p
then up ←− wp(x− s) + κhp(x − s) else up ←−“unsolvable”

8. if up =“unsolvable” for less than α + β primes p ∈ S
then remove all such primes from S else return “unsolvable”

9. if there exist primes p ∈ S with rp = 0
then remove all p with rp = 1 from S

10. use Chinese remaindering and rational number reconstruction to compute u ∈
Q[x] with u ≡ up mod p for all p ∈ S

11. return u
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For classical arithmetic, we use the ABP algorithm in step 5, and Brent & Kung’s
algorithm for fast arithmetic.

Theorem 9.57 (Correctness of Algorithm 9.56). If d < 2ω−1, then Algorithm
9.56 correctly solves Problem 9.52 for linear first order differential equations.

Proof. Let d ≥ 0 be as computed in step 0 and L = aD + b. Then (Lv)(x + s) =
M(v(x + s)) for all v ∈ Q[x] and s ∈ Z. Now let p ∈ S and s be as in step 3.
Then p > 2ω−1 > d. We consider the reductions L and M of the linear differential
operators L and M , respectively, modulo p and their actions on polynomials in
Fp[x]. If we let V = {v ∈ Fp[x]: deg v < p}, then Lemma 9.1 implies that

• dim(V ∩ kerL) = dim(V ∩ kerM) ≤ 1,
• all nonzero polynomials h ∈ V with Lh = 0 or with Mh = 0 have degree

δL mod p = δM mod p,
• the differential equation Mv = c(x + s) mod p has a solution v ∈ V if and only

if the equation Lv = c mod p has.

Let A, Ai, B be as in Corollary 9.55. The corollary implies that all primes that
are unlucky with respect to Problem 9.52 divide detA or detB if L−1c �= ∅
or L−1c = ∅, respectively. The coefficients of A and of all but one column of
Ai and B are coefficients of ajxj−1 + bxj with 0 ≤ j ≤ d. Therefore they
are of absolute value less than (d + 1)2λ, and the coefficients of the remain-
ing column are absolutely bounded by 2γ . Using Hadamard’s inequality (Lemma
3.1 (i)), we find | detA| ≤ ((d + 1)3/22λ)d+1 ≤ 2(ω−1)α and | detAi|, | detB| ≤
(d+2)(d+2)/2((d+1)2λ)d+12γ ≤ 2(ω−1)β−1. Thus the number of single precision
primes between 2ω−1 and 2ω dividing det A or detB is at most α or β, respec-
tively. In particular, since α ≤ β, the number of unlucky single precision primes is
at most β. Moreover, we have |lc(abc)| ≤ 22λ+γ ≤ 2(ω−1)η, so that at most η single
precision primes divide lc(abc). Since we start with r = α + 2β + η primes, the set
S contains at least α + 2β of them after step 2. We claim that S contains at least
α + β primes in step 10, and that all of them are lucky.

If deg hp �= δM in step 6, then Corollaries 9.6 and 9.7 imply that δL = δM is
not in N, dim kerL = dim kerM = 0, and dim(V ∩ kerL) = dim(V ∩ kerM) =
rp = 1. Thus only unlucky primes are removed from S in step 6.

If L−1c = ∅, then all primes p such that Lv ≡ c mod p has a solution v of
degree at most d are unlucky. There are at most β unlucky single precision primes.
Thus for at least α+β primes in S, neither Lv ≡ c mod p nor Mv ≡ c(x+s) mod p
has a solution of degree at most d, and the algorithm returns the correct result in
step 8.

Now assume that L−1c �= ∅ and u ∈ L−1c is the normalized solution. We
have rp = dim(V ∩ kerL) = dim(V ∩ kerM) after step 7. The primes for which
Lu ≡ c mod p is unsolvable or dim kerL < rp are removed from S in steps 8 or 9,
respectively, and only the lucky primes survive.

We have shown that the primes that were removed from S in steps 6, 8, or 9 are
unlucky. Since there are at most β unlucky primes, there remain at least α+β primes
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in S after step 9, all lucky. For each such prime p, up is the normalized solution of
Lv ≡ c mod p, and Theorem 9.53 implies that up is the modular image of u.

By Corollary 9.55, the coefficients of u are of the form (det Ai)/ detA. The
product all primes in S in step 10 exceeds 2(α+β)(ω−1) > 2| detAi| · | detA| for
all i, and hence the numerators and denominators of the coefficients of u can be
uniquely reconstructed from their modular images in step 10, by Fact 3.18. �

If c = 0, then Algorithm 9.56 always returns u = 0. To obtain a nonzero solution
of the homogeneous equation, if one exists, one would assume that hp is monic in
step 5 and reconstruct u ≡ hp mod p for all p ∈ S in step 10, if all p ∈ S have
rp = 1, and otherwise there is no nonzero solution. See also Remark 9.11.

Theorem 9.58 (Cost of Algorithm 9.56). If we assume that there exist sufficiently
many single precision primes in step 1 and ignore the cost for finding them, then
Algorithm 9.56 uses O((nλ + mγ + n2 + dr)r) word operations with classical
arithmetic and O((n + d)M(r) log r + M(n + d)r) with fast arithmetic, where r ∈
Θ(d(λ + log d) + γ).

Proof. The cost for reducing lc(abc) modulo pi in step 2 is O(η) word opera-
tions for each i, together O(rη) word operations with classical arithmetic, and
O(M(r) log r) with fast arithmetic. This is dominated by the cost for the other steps.

In step 3, we first reduce the polynomials a, b, c modulo p, taking O(nλ + mγ)
word operations for each p, together O((nλ + mγ)r) with classical arithmetic, and
O((n+m)M(r) log r) for all primes with fast arithmetic. Computing a(s) mod p by
Horner’s rule takes O(n) arithmetic operations in Fp. We have 2n+2 ≤ 2ω−1 < p,
so that the elements 0, 1, . . . , 2n + 1 are distinct modulo p, and since a has at most
n + 1 roots modulo p, the expected number of iterations of the loop in step 3 is at
most two. Thus the expected cost of the repeat loop is O(n) word operations per
prime.

The cost for the three Taylor shifts in step 4 is O(n2 +m2) word operations with
classical arithmetic and O(M(n) + M(m)) with fast arithmetic per prime, by Theo-
rems 4.3 and 4.5. With classical arithmetic, we use the ABP algorithm in step 5, at a
cost of O(nd) word operations per prime, by Theorem 9.28. With fast arithmetic, we
call Brent & Kung’s algorithm, taking O(M(n + d)) word operations per prime, by
Theorem 9.21. In step 6, we compute Mhp mod p and Mwp mod p, taking O(nd)
word operations with classical arithmetic and O(M(n + d)) with fast arithmetic for
each prime, by Lemma 9.10. The cost for computing the Taylor shifts by−s in steps
6 and 7 is O(d2) and O(M(d)) word operations per prime with classical and fast
arithmetic, respectively, and the cost for finding κ is O(n + d) for each prime. Thus
the overall cost for steps 2 through 7 is O((nλ+mγ +n2 +m2 +d2)r) word oper-
ations with classical arithmetic and O((n + m)M(r) log r + (M(n + d)+ M(m))r)
with fast arithmetic.

Finally, the cost for Chinese remaindering and rational number reconstruction
in step 10 is O(r2) and O(M(r) log r) word operations per coefficient with classical
and fast arithmetic, respectively, together O(dr2) and O(d M(r) log r) word opera-
tions, respectively. Now m ≤ d + n, and the claims follow by adding up costs. �
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Corollary 9.59. With the assumptions of Theorem 9.58 and the additional assump-
tions m, d ∈ O(n) and γ ∈ O(λ), Algorithm 9.56 takes O(n3(λ2 + log2 n))
word operations with classical arithmetic and O(n M(n(λ + log n)) log(nλ)) or
O∼(n2λ) with fast arithmetic.

Here is an analog of Algorithm 9.56 in the difference case, which uses Barka-
tou’s algorithm 9.46 for the modular computation.

Algorithm 9.60 (Modular Barkatou algorithm).
Input: Polynomials a, b, c ∈ Z[x], with a, b not both zero, ‖a‖∞, ‖b‖∞ < 2λ,
‖c‖∞ < 2γ , n = max{deg a− 1, deg(a + b)}, and m = deg c.

Output: The normalized polynomial u ∈ Q[x] solving a Eu + bu = c, or otherwise
“unsolvable”.

0. use Corollary 9.6 to determine a degree bound d for u
if d < 0 then return “unsolvable”
if 2(n + 1)d ≥ 2ω−1 then return “input or output too large”

1. α←− �(λ + d + log2(d + 1)/2 + 1)(d + 1)/(ω − 1)�
β ←− �((λ + d + log2(d + 2)/2 + 1)(d + 2) + γ + 1)/(ω − 1)�
η ←− �(2λ + γ + 1)/(ω − 1)�, r←− α + 2β + η
choose single precision primes 2ω−1 < p1 < . . . < pr

S ←− {pi: 1 ≤ i ≤ r and pi � lc(a(a + b)c)}
2. for all p ∈ S do
3. repeat

choose s ∈ {d−1, 2d−1, 3d−1, . . . , 2(n+1)d−1} uniformly
at random

until a(s), a(s− 1), . . . , a(s− d + 1) are all nonzero modulo p
4. M ←− a(x + s)E + b(x + s)

ap ←− a(x + s) mod p, bp ←− b(x + s) mod p
cp ←− c(x + s) mod p

5. call steps 1-3 of Barkatou’s algorithm 9.46 for F = Fp with in-
put ap, bp, cp and the degree bound d, yielding wp, hp ∈ Z[x] with
hp �≡ 0 mod p and the following properties:
• Mhp ≡ 0 mod p if this homogeneous equation has a nontrivial solu-

tion modulo p of degree at most d,
• the inhomogeneous equation Mv ≡ c(x + s) mod p has a solution

v ∈ Z[x] of degree at most d if and only if there exists κ ∈ Z such
that M(wp + κhp) ≡ c(x + s) mod p

6. if Mhp ≡ 0 mod p then
rp ←− 1
if deg hp �= δM then remove p from S

else if Mwp ≡ c(x + s) mod p
then choose κ ∈ {0, . . . , p − 1} such that the coefficient of
xδM in wp(x− s) + κhp(x− s) vanishes,
up ←− wp(x− s) + κhp(x− s)
else up ←−“unsolvable”
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7. else
rp ←− 0
if there exists κ ∈ {0, . . . , p − 1} such that M(wp + κhp) ≡
c(x + s) mod p
then up ←− wp(x− s) + κhp(x − s) else up ←−“unsolvable”

8. if up =“unsolvable” for less than α + β primes p ∈ S
then remove all such primes from S else return “unsolvable”

9. if there exist primes p ∈ S with rp = 0
then remove all p with rp = 1 from S

10. use Chinese remaindering and rational number reconstruction to compute u ∈
Q[x] with u ≡ up mod p for all p ∈ S

11. return u

Theorem 9.61 (Correctness of Algorithm 9.60). If 2(n+1)d < 2ω−1, then Algo-
rithm 9.60 correctly solves Problem 9.52 for linear first order difference equations.

Proof. Let L = aE + b. The proof is completely analogous to the proof of Theo-
rem 9.57, with the following exceptions. Let A, Ai, B be as in Corollary 9.55. Each
column of A contains some coefficients of Lxj = a · (x+1)j +bxj for some j ≤ d.
If a =

∑
0≤i≤n+1 aix

i, then the coefficient of xk in a · (x + 1)j has absolute value

∣∣∣∣∣
∑

i+l=k

ai

( j

l

)∣∣∣∣∣ < 2λ
∑

i+l=k

(j

l

)
≤ 2λ+j .

Thus all entries of A are of absolute value less than 2λ+d+1. The same is true
for all but one column of Ai and B, and the entries in the remaining column are
absolutely bounded by 2γ . Thus Hadamard’s inequality (Lemma 3.1 (i)) yields
| detA| ≤ (d + 1)(d+1)/22(λ+d+1)(d+1) ≤ 2(ω−1)α and | detAi|, | detB| ≤
(d + 2)(d+2)/22(λ+d+1)d+γ ≤ 2(ω−1)β−1. �

Theorem 9.62 (Cost of Algorithm 9.60). If we assume that there exist sufficiently
many single precision primes in step 1 and ignore the cost for finding them, then
Algorithm 9.60 uses O((nλ + mγ + n2 + dr)r) word operations with classical
arithmetic and O((n+d)M(r) log r+(M(d) log d+M(n+d))r) with fast arithmetic,
where r ∈ Θ(d(λ + d) + γ).

Proof. We proceed as in the proof of Theorem 9.58. As in Algorithm 9.56, the cost
for reducing lc(a(a + b)c) modulo all pi in step 1 is dominated by the cost for the
other steps.

The cost for reducing a, b, c modulo all primes p in step 3 is the same as in the
proof of Theorem 9.58. In addition, computing a(s), a(s − 1), . . . , a(s− d + 1)
modulo p in step 3 takes O(nd) word operations per prime with classical arithmetic
and O(M(n) + M(d) log d) with fast arithmetic. Since 2(n + 1)d < 2ω−1 < p, the
elements 0, 1, . . . , 2(n + 1)d − 1 are distinct modulo p. Now a has at most n + 1
roots modulo p, and hence at least n + 1 of the sets {jd, jd + 1, . . . , (j + 1)d− 1}
for 0 ≤ j ≤ 2n + 1 contain no root of a modulo p. Thus the expected number of
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iterations of the repeat loop is at most two, and the expected cost is O(ndr) word
operations for all primes with classical arithmetic and O((M(n) + M(d) log d)r)
with fast arithmetic.

The cost for step 5 is O(nd + d2) word operations per prime with classical
arithmetic and O(M(d) log d+M(n+d)) with fast arithmetic, by Theorem 9.47. In
steps 6 and 7, we compute Mhp mod p and Mwp mod p, taking O(nd + d2) word
operations with classical arithmetic and O(M(n + d)) with fast arithmetic for each
prime, by Lemma 9.9. The cost for step 4 and for the Taylor shifts and for finding
κ in steps 6 and 7 is the same as in the proof of Theorem 9.58. Thus the overall
cost for steps 3 through 7 is O((nλ + mγ + n2 + m2 + d2)r) word operations with
classical arithmetic and

O((n + m)M(r) log r + (M(d) log d + M(n + d) + M(m))r)

with fast arithmetic.
The cost for step 10 is O(dr2) and O(d M(r) log r) word operations with classi-

cal and fast arithmetic, respectively, as in the proof of Theorem 9.58, and the claims
follow from m ≤ n + d by adding up costs. �

Corollary 9.63. With the assumptions of Theorem 9.62 and the additional assump-
tions m, d ∈ O(n) and γ ∈ O(λ), Algorithm 9.60 takes O(n3(λ2 + n2)) word
operations with classical arithmetic and

O(n M(n(λ + n)) log(nλ)) or O∼(n2(λ + n))

with fast arithmetic.

Under the assumptions of Corollaries 9.59 and 9.63, the output size of Algo-
rithms 9.56 and 9.60 is O(n2(λ + log n)) and O(n2(λ + n)) words, respectively.
Hence both algorithms with fast arithmetic are – up to logarithmic factors – asymp-
totically optimal for those inputs where these upper bounds are achieved.

We now discuss modular versions of the method of undetermined coefficients
and its asymptotically fast variants, the divide-and-conqueralgorithms from Sect. 9.5
and 9.6. We start with the difference case.

Algorithm 9.64 (Modular difference divide & conquer).
Input: Polynomials a, b, c ∈ Z[x], with a, b not both zero, ‖a‖∞, ‖b‖∞ < 2λ,
‖c‖∞ < 2γ , n = max{deg a− 1, deg(a + b)}, and m = deg c.

Output: The normalized polynomial u ∈ Q[x] solving Lu = c, where L = aE+b =
a∆ + a + b, or otherwise “unsolvable”.

0. use Corollary 9.6 to determine a degree bound d for u
if d < 0 then return “unsolvable”
if d ≥ 2ω−1 then return “output too large”

1. α←− �(λ + d + log2(d + 1)/2 + 1)(d + 1)/(ω − 1)�
β ←− �((λ + d + log2(d + 2)/2 + 1)(d + 2) + γ + 1)/(ω − 1)�
η ←− �(2λ + γ + 1)/(ω − 1)�, r←− α + 2β + η
choose single precision primes 2ω−1 < p1 < . . . < pr

S ←− {pi: 1 ≤ i ≤ r and pi � lc(a(a + b)c)}
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2. for all p ∈ S do
3. call Algorithm 9.15, 9.35, or 9.41 for F = Fp with input a mod p,

b mod p, c mod p and the degree bound d, yielding the dimension rp ∈
{0, 1} of the kernel of L mod p on polynomials of degree at most d and
up ∈ Z[x] of degree at most d such that up is the normalized solution of
Lv ≡ c mod p, or otherwise up =“unsolvable”

4. if up =“unsolvable” for less than α + β primes p ∈ S
then remove all such primes from S else return “unsolvable”

5. if there exist primes p ∈ S with rp = 0
then remove all p with rp = 1 from S

6. use Chinese remaindering and rational number reconstruction to compute u ∈
Q[x] with u ≡ up mod p for all p ∈ S

7. return u

The algorithm that is called in step 3 has to be modified to meet the required
specifications, as follows. Algorithm 9.15, which is called when classical arithmetic
is used, need not compute d in step 0 and should only return “unsolvable” in that step
when c �= 0. The rank rp is one if h∗ = 0 and zero otherwise. Finally, κ = 0 should
be chosen in step 4 if possible. If fast arithmetic is used, then one of the two other
algorithms is called. Algorithm 9.35 is only called when deg a − 1 < deg(a + b),
and then δL = ∞ and the solution is unique, so that rp = 0. The algorithm should
check whether L(Uxm + V ) = 0, and return “unsolvable” otherwise. Algorithm
9.41 should in addition return rp = 1 if h∗∗ = 0, and rp = 0 otherwise. The value
of κ in Algorithm 9.41 should be chosen to be zero if possible.

If c = 0 and a nonzero solution of the homogeneous equation Lu = 0 is desired,
then Algorithm 9.64 can be modified as follows. There is no such solution if δL �∈ N.
Otherwise, the call to Algorithm 9.15 in step 3 should return h if h∗ = 0 and
“unsolvable” otherwise. Similarly, the call to Algorithm 9.41 in step 3 should return
xδL + W if h∗∗ = 0 and “unsolvable” otherwise. See also Remark 9.11.

Theorem 9.65. If d < 2ω−1 then Algorithm 9.64 correctly solves Problem 9.52
for linear first order difference equations. If we assume that there exist sufficiently
many single precision primes in step 1 and ignore the cost for finding them, then the
algorithm uses O((nλ+mγ+nd+dr)r) word operations with classical arithmetic
and O((n + d)M(r) log r + (M(d) log d + M(n + d))r) with fast arithmetic, where
r ∈ Θ(d(λ + d) + γ).

Proof. Correctness follows as in the proof of Theorem 9.61. For the cost analysis,
we proceed as in the proof of Theorem 9.62. As in the proof of Theorem 9.61, the
cost for reducing lc(a(a + b)c) modulo all pi in step 1 is negligible.

Reducing a, b, c modulo all primes p ∈ S in step 3 takes O((nλ + mγ)r)
word operations with classical arithmetic and O((n+m)M(r) log r) with fast arith-
metic, as in the proof of Theorem 9.61. For each prime, computing rp and up

takes O(nd + d2) word operations with classical arithmetic, by Theorem 9.16, and
O(M(d) log d + M(n + d)) word operations with fast arithmetic, by Corollary 9.37
and Theorem 9.42. Thus the overall cost for steps 2 and 3 is O((nλ+mγ+nd+d2)r)
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with classical arithmetic and O((n + m)M(r) log r + (M(d) log d + M(n + d))r)
with fast arithmetic. Finally, step 6 takes O(dr2) with classical and O(d M(r) log r)
with fast arithmetic, as in the proof of Theorem 9.61, and the claim follows from
m ≤ n + d. �

Corollary 9.66. With the assumptions of Theorem 9.65 and the additional assump-
tions m, d ∈ O(n) and γ ∈ O(λ), Algorithm 9.64 takes O(n3(λ2 + n3)) word
operations with classical arithmetic and

O(n M(n(λ + n)) log(nλ)) or O∼(n2(λ + n))

with fast arithmetic.

Here is the analogous algorithm in the differential case.

Algorithm 9.67 (Modular differential divide & conquer).
Input: Polynomials a, b, c ∈ Z[x], with a, b not both zero, ‖a‖∞, ‖b‖∞ < 2λ,
‖c‖∞ < 2γ , n = max{deg a− 1, deg b} < 2ω−2, and m = deg c.

Output: The normalized polynomial u ∈ Q[x] solving Lu = c, where L = aD + b,
or otherwise “unsolvable”.

0. use Corollary 9.6 to determine a degree bound d for u
if d < 0 then return “unsolvable”
if d ≥ 2ω−1 then return “output too large”

1. α←− �(log2((d + 1)3/22λ)d+1)/(ω − 1)�
β ←− �(log2 2((d + 2)3/22λ)d+22γ)/(ω − 1)�
η ←− �(2λ + γ)/(ω − 1)�, r←− α + 2β + η
choose single precision primes 2ω−1 < p1 < . . . < pr

S ←− {pi: 1 ≤ i ≤ r and pi � lc(abc)}
2. for all p ∈ S do
3. call Algorithm 9.15, 9.38, or 9.44 for F = Fp with input a mod p,

b mod p, c mod p and the degree bound d, yielding the dimension rp ∈
{0, 1} of the kernel of L mod p on polynomials of degree at most d and
up ∈ Z[x] of degree at most d such that up is the normalized solution of
Lv ≡ c mod p, or otherwise up =“unsolvable”

4. if up =“unsolvable” for less than α + β primes p ∈ S
then remove all such primes from S else return “unsolvable”

5. if there exist primes p ∈ S with rp = 0
then remove all p with rp = 1 from S

6. use Chinese remaindering and rational number reconstruction to compute u ∈
Q[x] with u ≡ up mod p for all p ∈ S

7. return u

We omit the proof of the following theorem, since it is analogous to the proofs
of Theorems 9.57 and 9.65.

Theorem 9.68. If d < 2ω−1, then Algorithm 9.67 correctly solves Problem 9.52
for linear first order differential equations. If we assume that there exist sufficiently
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many single precision primes in step 1 and ignore the cost for finding them, then the
algorithm uses O((nλ+mγ+nd+dr)r) word operations with classical arithmetic
and O((n + d)M(r) log r + (M(d) log d + M(n + d))r) with fast arithmetic, where
r ∈ Θ(d(λ + log d) + γ).

Corollary 9.69. With the assumptions of Theorem 9.68 and the additional assump-
tions m, d ∈ O(n) and γ ∈ O(λ), Algorithm 9.67 takes O(n3(λ2 + log2 n))
word operations with classical arithmetic and O(n M(n(λ + log n)) log(nλ)) or
O∼(n2λ) with fast arithmetic.

Table 9.2. Cost estimates in field operations for various algorithms computing polynomial
solutions of linear first order differential or difference equations with polynomial coefficients

Algorithm Classical Fast
method of undetermined coefficients, 9.15 nd + d2

Brent & Kung, 9.20 (differential) n2 + d2 M(n) + M(d)

Rothstein, 9.23, 9.25 n2 + d2

ABP, 9.27 (differential),
n2 + d2 nd + M(n + d)

9.31 (difference) nd + M(n + d) log(n + d)

divide & conquer, 9.41, 9.44 M(d) log d + M(n + d)

Barkatou, 9.46 (difference) n2 + d2 M(d) log d + M(n + d)

Table 9.2 gives a survey of the arithmetic cost estimates for the algorithms from
Sect. 9.1 through 9.7, both for classical and for fast arithmetic. All entries are up-
per bounds in the O-sense. A missing entry indicates that we did not analyze the
corresponding variant.

Table 9.3. Cost estimates in word operations for various modular algorithms computing poly-
nomial solutions of linear first order differential or difference equations with coefficients
in Z[x]

Algorithm Classical Fast

9.56 (differential) (nλ + mγ + n2 + dr)r
(n + d) M(r) log r+

M(n + d)r

9.60 (difference) (nλ + mγ + n2 + dr)r
(n + d) M(r) log r+

(M(d) log d + M(n + d))r

9.67 (differential) (nλ + mγ + nd + dr)r
(n + d) M(r) log r+

(M(d) log d + M(n + d))r

9.64 (difference) (nλ + mγ + nd + dr)r
(n + d) M(r) log r+

(M(d) log d + M(n + d))r

Table 9.3 gives an overview of the cost estimates in word operations for the
modular algorithms from this section, both for classical and for fast arithmetic. All
entries are upper bounds in the O-sense. We have r ∈ Θ(d(λ + log d) + γ) in the
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differential case and r ∈ Θ(d(λ+d)+γ) in the difference case. For the special case
where m, d ∈ O(n) and γ ∈ O(λ), the dominant cost in all modular algorithms is
for the rational number reconstruction. Then the cost estimates for all algorithms are
O(n3(λ2 + log2 n)) with classical arithmetic and O(n M(n(λ + log n)) log(nλ))
with fast arithmetic in the differential case, and O(n3(λ2 +n2)) with classical arith-
metic and O(n M(n(λ + n)) log(nλ)) in the difference case.



10. Modular Gosper and Almkvist & Zeilberger
Algorithms

Putting the results from Chap. 8 and 9 together, we obtain the following cost analysis
for our new modular variant of Gosper’s algorithm.

Algorithm 10.1 (Modular Gosper algorithm).
Input: Nonzero polynomials f, g ∈ Z[x] of degree at most n and max-norm less

than 2λ.
Output: Polynomials w ∈ Q[x] and v ∈ Z[x] solving

f

g
· Ew

Ev
− w

v
= 1, or other-

wise “unsolvable”.

1. call Algorithm 8.2 to compute a Gosper-Petkovšek form a, b, v of f/g
2. call Algorithm 9.64 (or Algorithm 9.60) with input a,−E−1b, v to compute

u ∈ Q[x] with a ·Eu− E−1b · u = v
if it returns “unsolvable” then return “unsolvable”

3. return w = E−1b · u and v

Correctness of the algorithm has been shown by Gosper (1978).

Theorem 10.2. Let M = fE − g = f∆ + f − g. If e = dis(f, g) is the dispersion
of f and g and δ = max({0, δM} ∩ N), then e < 2λ+2, δ < 2λ+1, and Algorithm
10.1 takes

O(e5n5 + e3n3λ2 + δ5 + δ3λ2)

word operations with classical arithmetic, and the cost with fast arithmetic is

O((en + δ)M((en + δ)(en + δ + λ)) log(eδnλ))

or
O∼(e3n3 + e2n2λ + δ3 + δ2λ) .

Proof. The bound on e follows from Theorem 8.18. If δM �=∞, then

δM =
gdeg M − fdeg M

lc(f)
≤ |gdeg M |+ |fdeg M | < 2λ+1 .

Theorem 8.18 says that deg v ≤ en and log2 ‖v‖∞ ∈ O(e(n+λ)) and that the cost
for step 1 is O(n4 +n2λ2+e3(n3+nλ2)) word operations with classical arithmetic
and

J. Gerhard: Modular Algorithms, LNCS 3218, pp. 195-205, 2004.
 Springer-Verlag Berlin Heidelberg 2004
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O
(
(n2 M(n + λ) + nλM(n) + M(n2)) log(n + λ)

+(en M(e(n + λ)) + eλM(en)) log(e(n + λ))
)

with fast arithmetic.
Now let L = aE − E−1b. Then

M
(E−1b

v
u
)

= g
a ·Ev

b · v ·
b

Ev
Eu − g

E−1b

v
u

=
g

v
(a · Eu− E−1b · u) =

g

v
Lu

for all u ∈ F [x], and Lemma 9.8, which holds more generally when z is a ra-
tional function or even a formal Laurent series in x−1, implies that deg L =
deg M − (deg g − deg b) ≤ n and δL = δM − deg b + deg v.

Since a divides f and b divides g, their degrees are at most n and their coef-
ficients are of word size O(n + λ), by Mignotte’s bound (Fact 3.3), and the same
is true for the coefficients of E−1b, by Lemma 4.2. Corollary 9.6 yields the degree
bound d = deg v− deg L = deg v− deg b− (deg M − deg g) for u if δM �∈ Z and

d = max{δL, deg v − deg L} = deg v − deg b + max{δM ,−(deg M − deg g)}
if δM ∈ Z, and hence d ∈ O(en+δ). Now Theorems 9.65 and 9.62 with λ replaced
by O(n + λ), m = deg v ≤ en, and γ = 1 + �log2 ‖v‖∞� ∈ O(e(n + λ)) imply
that the cost for step 2 is O((en + δ)3(en + δ +λ)2) word operations with classical
arithmetic and

O((en + δ)M((en + δ)(en + δ + λ)) log(eδnλ))

with fast arithmetic. Step 3 can be incorporated in the modular computation in
step 2. The additional cost for this is negligible, and the claims follow by adding
up costs. �

The dominant step for Algorithm 10.1 is the rational reconstruction in the last
step of the modular algorithm for computing u. The output size of Algorithm 10.1
is essentially the size of u, namely O((en + δ)2(en + δ + λ)) words, and hence
the algorithm with fast arithmetic is – up to logarithmic factors – asymptotically
optimal for those inputs where the output size is close to the upper bound.

Corollary 10.3. If e, δ ∈ O(n), then Algorithm 10.1 takes O(n10 + n6λ2) word
operations with classical arithmetic, and the cost with fast arithmetic is

O(n2 M(n2(n2 + λ)) log(nλ)) or O∼(n6 + n4λ) .

Here is the analog of Algorithm 10.1 in the differential case.

Algorithm 10.4 (Modular Almkvist & Zeilberger algorithm).
Input: Nonzero coprime polynomials f, g ∈ Z[x] of degree at most n and max-norm

less than 2λ.
Output: Polynomials w ∈ Q[x] and v ∈ Z[x] solving

(w

v

)′
+

f

g
· w

v
= 1, or other-

wise “unsolvable”.
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1. call Algorithm 8.28 to compute a GP′-form a, b, v of f/g
2. call Algorithm 9.67 (or Algorithm 9.56) with input b, a + b′, v to compute u ∈

Q[x] such that bu′ + (a + b′)u = v
if it returns “unsolvable” then return “unsolvable”

3. return w = bu and v

Correctness of the algorithm is proved in Almkvist & Zeilberger (1990).

Theorem 10.5. Let M = gD + f . If e = ε(f, g) and δ = max({0, δM} ∩N), then
e ≤ (n + 1)n22nλ, δ ≤ 2λ, and Algorithm 10.4 takes

O((e3n5 + δ3n2)(λ2 + log2 n))

word operations with classical arithmetic, and the cost with fast arithmetic is

O
(
(en + δ)M((en + δ)n(λ + log n)) log(eδnλ) + M(n(λ + log n))M(n) log n

)

or
O∼(e2n3λ + δ2nλ) .

Proof. The bound on e follows from Theorem 8.42, and the bound on δ is imme-
diate from the definition of δM . Moreover, Theorem 8.42 says that deg v ∈ O(en),
log2 ‖v‖∞ ∈ O(e(n + λ)), and that the cost for step 1 is

O(n4(λ2 + log2 n) + e3(n3 + nλ2))

word operations with classical arithmetic and

O
(
n2(M(n(λ + log n)) + (λ + log n)M(n) log n)

+M(n(λ + log n))(M(n) log n + n log λ))

+(en M(e(n + λ)) + eλM(en)) log(e(n + λ)
)

with fast arithmetic. Let L = bD + a + b′. Then

M(bu/v) = g

(
bu

v

)′
+ f

ub

v

= g

(
bu′

v
+

b′u
v
− buv′

v2
+

(a

b
+

v′

v

)bu

v

)

=
g

v

(
bu′ + (a + b′)u

)
=

g

v
Lu

for all u ∈ F [x]. As in the proof of Theorem 10.2, Lemma 9.8 implies that deg L =
deg M − (deg g − deg b) and δL = δM − deg b + deg v.

By the remark following the proof of Theorem 8.36, the coefficients of a are of
word size O(n(λ + log n)). Since b divides g, Mignotte’s bound (Fact 3.3) implies
that the coefficients of b are of word size O(n + λ), and hence the coefficients of b
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and a+b′ are of word size O(n(λ+log n)) as well. As in the proof of Theorem 10.2,
the degree bound d for u is d = deg v− deg L = deg v− deg b− (deg M − deg g)
if δM �∈ Z and d = deg v − deg b + max{δM ,−(deg M − deg g)} otherwise, by
Corollary 9.6. Thus d ∈ O(en + δ), and Theorems 9.68 and 9.58 with λ replaced
by O(n(λ + log n)), m = deg v ≤ en, and γ = 1 + �log2 ‖v‖∞� ∈ O(e(n + λ))
imply that step 2 takes O((en+ δ)3n2(λ2 +log2 n)) word operations with classical
arithmetic and

O
(
(en + δ)M((en + δ)n(λ + log n)) log(eδnλ)

)

with fast arithmetic, respectively. As in the proof of Theorem 10.2, the cost for step 3
is negligible, and the claims follow by adding up costs. �

As for Algorithm 10.1, the dominant step is the rational reconstruction in the
last step of the modular algorithm for computing u. The output size of Algorithm
10.4 is essentially the size of u, namely O((en+δ)2n(λ+logn)) words, and hence
the algorithm with fast arithmetic is – up to logarithmic factors – asymptotically
optimal for those inputs where the output size is close to the upper bound.

Corollary 10.6. If e, δ ∈ O(n), then Algorithm 10.4 takes O(n8(λ2+log2 n)) word
operations with classical arithmetic, and the cost with fast arithmetic is

O(n2 M(n3(λ + log n)) log(nλ) + M(n(λ + log n))M(n) log n) or O∼(n5λ) .

10.1 High Degree Examples

In this section, we report on a particular class of solutions of the key equation

Lu = a ·Eu− (E−1b)u = a ·∆u + (a− E−1b)u = v (10.1)

in Gosper’s algorithm 10.1, where L = aE − E−1b = a∆ + a− E−1b. Corollary
9.6 shows that there are two essentially different possibilities for the degree of such
a solution u: it can be expressed either solely in terms of the degrees of a, b, v, or
solely in terms of certain coefficients of a and b. Up to now, there seem to be known
only few nontrivial examples (where a, b, v result from a proper, i.e., nonrational
hypergeometric summation problem) leading to the second case; Lisoněk, Paule &
Strehl (1993) give two. Since the degree of u affects the running time of Gosper’s
algorithm, it is interesting to know whether the second case is of real impact or
merely a curiosity.

The main contribution of this section is that we exhibit a certain class of proper
hypergeometric summation problems leading to a key equation with degrees of
a, b, v at most two and a unique solution u of arbitrarily high degree (Theorem 10.7).
We also consider similar classes for the differential case (Theorem 10.12) and give
examples in both cases. We also give classes of examples where the denominators
v in Gosper’s and Almkvist & Zeilberger’s algorithm have arbitrarily high degree.
The material is based on Gerhard (1998).
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Lisoněk, Paule & Strehl (1993) have shown that the key equation (10.1) has
at most one solution in every case when it originates from the summation of a
non-rational hypergeometric term. The case where deg u = δL in Corollary 9.6
is surprising at first sight, since then the degree of the solution u to (10.1) does
not depend on the degree of a, b, v but only on the coefficients of a and b. For the
case where Gosper’s algorithm is used to compute the antidifference of a rational
function, Lisoněk, Paule & Strehl have shown that the solution space of (10.1) is
either one-dimensional or empty (see also Lemma 9.1). In the former case, there is
a unique solution u of degree deg v − deg L, and all other solutions are of the form
u + κh for a constant κ ∈ F , where h is a nonzero solution of degree δL of the
corresponding homogeneous difference equation Lh = 0, or equivalently,

E−1b

a
=

Eh

h
, (10.2)

which then is the Gosper-Petkovšek representation of (E−1b)/a. Lisoněk, Paule &
Strehl conclude that in the rational case, the case deg u = δL need not be considered.

In the non-rational hypergeometric case, it is not clear at first sight whether
the key equation admits solutions of degree δL at all. Examples for this situation
have been given by Lisoněk, Paule & Strehl (1993). We will now exhibit a class
of hypergeometric expressions for which we show that (10.1) always has a unique
solution of degree δL, which may be arbitrary large.

Let F be a field of characteristic zero and

f

g
=

x2 + f1x + f0

x2 + (f1 + d)x + g0
, (10.3)

with f1, f0, g0 ∈ F and d ∈ N such that d ≥ 2. We say that f and g are
shift-coprime if gcd(f, Eig) = 1 for all i ∈ Z, or equivalently, the resultant
r = resx(f(x), g(x + y)) ∈ F [y] has no integer zeroes. When f1 = f0 = 0,
for example, then r = (y2 + dy + g0)2, and f and g are shift-coprime if and only if
g0 �= i(d− i) for all integers i.

Theorem 10.7. Let F be a field of characteristic zero and f = x2 + f1x + f0,
g = x2 + (f1 + d)x + g0 in F [x], with f1, f0, g0 ∈ F and d ∈ N≥2, and let
a, b, v ∈ F [x] be a Gosper-Petkovšek form of f/g. If f and g are shift-coprime,
then we have deg v = 0, and there is a unique polynomial u ∈ F [x] of degree d− 2
solving (10.1).

Proof. Substituting x−f1/2 for x is an automorphism of F (x) and does not change
our arguments in the sequel, and we may assume that f1 = 0. The fact that f and
g are shift-coprime implies that (10.3) is already in Gosper-Petkovšek form, i.e.,
we have – up to multiplication by constants – a = f , b = g, and v = 1. Let
L = a∆ + a − E−1b. Then δL = d − 2 and Corollary 9.6 implies that deg u =
δL = d− 2 ≥ 0 if a solution u of the key equation (10.1) exists. (If d < 2 or d �∈ N,
then Corollary 9.6 implies that (10.1) is unsolvable.)
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We note that (10.1) reads Lu = 1. If u = ud−2x
d−2 + · · ·+ u1x + u0 ∈ F [x],

then the coefficients of xd and xd−1 in Lu = a · Eu− E−1b · u cancel, and hence
L maps the (d − 1)-dimensional vector space Pd−1 ⊆ F [x] of all polynomials of
degree less than d− 1 to itself. Since f and g are shift-coprime, so are a and E−1b,
whence (10.2) is unsolvable. By Lemma 9.1, it follows that L is injective, and hence
the restriction of L to Pd−1 is an automorphism of the vector space Pd−1. This
implies that the key equation has a unique solution u, and Corollary 9.6 implies that
deg u = δL = d− 2. �

If we regard d as an indeterminate, then δL = d− 2 �∈ N, we are in the first case
of Corollary 9.6, and deg v − deg L = −1 implies that (10.1) is unsolvable.

We note that the proof of Theorem 10.7 hinges upon the fact that deg f =
deg g = 2. If f = x and g = x + d, then f and g are not shift-coprime, and if
f = xk + fk−2x

k−2 + · · · and g = xk + dxk−1 + gk−2x
k−2 + · · · for some k > 2,

then we can only show that the linear operator L maps polynomials of degree less
than d− 1 to polynomials of degree less than d + k − 3 > d− 1.

Example 10.8. Let t ∈ N≥2, and define the hypergeometric expression q by

q = 24x

(
x + t

x

)−2 (
2x + 2t

x + t

)−2

.

Its term ratio is

Eq

q
=

(x + 1)2(
x +

2t + 1
2

)2 .

If we let d = 2t + 1, then

f

g
=

(x + 1)2(
x +

d

2

)2 =
x2 + 2x + 1

x2 + dx +
d2

4

,

so that f and g are shift-coprime since d is odd. Theorem 10.7 implies that there is
a unique polynomial u ∈ F [x] of degree d − 4 = 2t − 3 solving (10.1) for a = f ,
b = g, and v = 1, and thus the hypergeometric expression p = u ·E−1b · q satisfies
∆p = q and

∑
0≤k<n q(k) = p(n)− p(0) for all n ∈ N.

For example, when t = 6 we obtain

u =
4

281302875
(4x + 7)(8388608x8 + 117440512x7 + 658767872x6

+1881800704x5 + 2862755840x4 + 2179846144x3

+648167040x2 + 504000x− 496125) ,
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∆p = ∆
((4x2 + 44x + 121)(4x + 7)

281302875
(8388608x8 + 117440512x7

+ 658767872x6 + 1881800704x5 + 2862755840x4

+ 2179846144x3 + 648167040x2 + 504000x− 496125)q
)

= q .

Example 10.9. This is a variant of an example from Lisoněk, Paule & Strehl (1993).
We let

q =

(
(−5/2)x+1

)2

(−1/3)x+1(−2/3)x+1
,

where cx+1 = Γ (c + x + 1)/Γ (c) for all c, x ∈ C. In particular, we have cx+1 =
c(c + 1) · · · (c + x) for x ∈ N. The term ratio is

f

g
=

(
x− 5

2

)2

(
x− 1

3

) (
x− 2

3

) =
x2 − 5x +

25
4

x2 − x +
2
9

,

and f and g are shift-coprime. Theorem 10.7 with d = 4 says that (10.1) has a
unique polynomial solution u ∈ F [x] of degree d − 2 = 2 for a = f , b = g, and
v = 1. In fact, we have u = 4(2592x2 − 12888x + 15985)/11025 and

∆

(
4

11025
(2592x2 − 12888x + 15985)

(
x− 4

3

)(
x− 5

3

)
q

)
= q .

The following theorem shows that there are also cases where the denominator v
in Gosper’s algorithm 10.1 has high degree.

Theorem 10.10. Let F be a field of characteristic zero, c ∈ F and c �= 1, d ∈ N,
and q = (x − 1)dcx. Then q has term ratio

Eq

q
=

cx

x− d
,

a = c, b = 1, and v = (x − 1)d is a Gosper-Petkovšek form of (Eq)/q, and the key
equation (10.1) has a unique solution u ∈ F [x] of degree d.

Proof. We have
cx

x− d
=

c

1
· xd

(x − 1)d
,

and a, b, v is a Gosper-Petkovšek form as claimed. The key equation (10.1) reads

c · Eu− u = (x− 1)d .

Since c �= 1, the linear difference operator L = cE − 1 = c∆ + c − 1 maps
polynomials of degree k to polynomials of degree k, for all k ∈ N. Thus L is
bijective on F [x], and the last claim follows. �
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Example 10.11. For c = 2 and d = 10, we obtain

u = x10 − 75x9 + 2580x8 − 54270x7 + 785253x6 − 8316315x5 + 66478670x4

−401800380x3 + 1770720696x2− 5140078560x+ 7428153600 .

If we let p = u · E−1b · q/v = u2x, then

∆p = (2 Eu− u)2x = v2x = q .

In the following, we give some high degree examples in the differential case.
Here, we consider the key equation

Lu = b ·Du + (a + Db)u = v , (10.4)

which we solve in step 2 of Algorithm 10.4, the continuous variant of Gosper’s
algorithm.

The analog of (10.3) is to take f = −dx + f0 and g = x2 + g1x + g0 in F [x],
with f0, g1, g0 ∈ F and d ∈ N≥2.

Theorem 10.12. Let F be a field of characteristic zero, f = −dx + f0 and g =
x2 + g1x+ g0 in F [x], with f0, g1, g0 ∈ F and d ∈ N≥2, and let a, b, v ∈ F [x] be a
GP ′-form of f/g. If gcd(g, f − ig′) = 1 for all integers i ∈ Z, then we have a = f ,
b = g, and v = 1, and (10.4) has a unique polynomial solution u ∈ F [x] of degree
d− 2.

Proof. The proof parallels the proof of Theorem 10.7. After performing a suitable
shift of variable if necessary, we may assume that g1 = 0. The assumption that
gcd(g, f − ig′) = 1 for all i ∈ Z implies that the resultant resx(g, f − yg′) has no
integer roots, and hence Algorithm 8.28 returns the GP′-form a = f , b = g, and
v = 1. Let L = bD + a + b′. Then δL = d − 2, and Corollary 9.6 says that every
solution u ∈ F [x] of the key equation (10.4) has deg u = δL = d − 2 ≥ 0. As
in the proof of Theorem 10.7, we find that L maps the (d − 1)-dimensional vector
space Pd−1 of all polynomials of degree less than d − 1 to itself. The assumptions
imply that gcd(b,−a − b′ − ib′) = 1 for all i ∈ Z, and Corollary 8.30 implies
that the homogeneous equation Lh = 0 has no polynomial solution. It follows that
L is injective on F [x] and hence a linear F -automorphism of Pd−1. This in turn
implies that the key equation has a unique solution u, and Corollary 9.6 says that
deg u = δL = d− 2. �

As in the difference case, the differential equation is unsolvable if d is an inde-
terminate.

Example 10.13. Let d ∈ N≥3 be odd and q = (x2 + 1)−d/2. Then

Dq = −d

2
(x2 + 1)−(d+2)/2 · 2x =

−dx

x2 + 1
q ,

so that g = x2 + 1 and f = −dx. Since d is odd, we have gcd(g, f − ig′) =
gcd(x2 + 1,−(d + 2i)x) = 1 for all i ∈ Z. Obviously q is not rational, and
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Theorem 10.12 implies that the differential equation (10.4) has a unique solution
u ∈ F [x] of degree d− 2 for b = g = x2 + 1, a = f = −dx, and v = 1, and hence
p = ubq = u · (x2 + 1)−(d−2)/2 satisfies Dp = q.

For example, if d = 11 then

u =
x

315
(128x8 + 576x6 + 1008x4 + 840x2 + 315)

and

Dp = D
(x(128x8 + 576x6 + 1008x4 + 840x2 + 315)

315(x2 + 1)9/2

)
=

1
(x2 + 1)11/2

.

We may write the integrand as q = (x2 + 1)−(d+1)/2
√

x2 + 1, and the degree of
the “rational part” (x2 + 1)−(d+1)/2 seems to determine the degree of u. A similar
remark applies to Example 10.8, where we may split off a factorial power.

The example illustrates that the “frontier” between rational and non-rational hy-
perexponential problems is thin: for even d, we obtain a rational integrand, which
has no hyperexponential integral.

The next result, which is analogous to Theorem 10.10, is well-known (see, e.g,
Kaltofen 1984). It implies that there are non-rational hyperexponential inputs for
which the continuous analog of Gosper’s algorithm returns a solution with a de-
nominator of arbitrarily high degree.

Theorem 10.14. Let F be a field of characteristic zero, c ∈ F nonzero, d ∈ N, and
q = xdecx. Then q has logarithmic derivative

Dq

q
=

cx + d

x
=

c

1
+

d

x
,

(a, b, v) = (c, 1, xd) is a GP ′-form of (Dq)/q, and the key equation (10.4) has a
unique solution u ∈ F [x] of degree d.

Proof. The key equation (10.4) reads u′ + cu = xd. The linear operator L = D + c
maps a polynomial of degree k to a polynomial of degree k, for all k ∈ N, and hence
there is a unique polynomial u ∈ F [x] of degree d with Lu = xd. �

Example 10.15. For c = 1 and d = 10, we have

u = x10 − 10x9 + 90x8 − 720x7 + 5040x6 − 30240x5 + 151200x4

−604800x3 + 1814400x2− 3628800x + 3628800 .

Thus for p = ubq/v = uex, we have Dp = (u′ + u)ex = vex = q, or equivalently,∫
x10ex = uex.

In the following theorem, we exhibit a subclass of the class of hyperexponential
terms over Q(x) for which the values e and δ from Theorem 10.5 can be expressed
in terms of degrees of the input polynomials. A slightly weaker result was proven by
Kaltofen (1984). For a rational function f/g ∈ Q(x), where f, g ∈ Z[x] are nonzero
and coprime, we let deg(f/g) = deg f − deg g, d(f/g) = max{deg f, deg g}, and
lc(f/g) = lc(f)/lc(g).
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Theorem 10.16. Let c ∈ C be an arbitrary constant, m ∈ N≥1, and w, z ∈ Q(x)
with deg w �= 0.

(i) q = c·exp(w)z1/m is hyperexponential over Q(x), with logarithmic derivative

q′

q
= w′ +

z′

mz
=

f

g
,

where f, g ∈ Z[x] are coprime in Q[x].
(ii) All roots of the resultant r = resx(g, f−yg′) ∈ Z[y] are in 1

mZ and absolutely
less than d(z)/m.

(iii) Let M = gD + f . If deg w > 0, then δM =∞. Otherwise, if deg w < 0, then
δM = −(deg z)/m.

The restriction that deg w be nonzero is not severe: If deg w = 0, then there is
a constant v ∈ Q and a rational function w∗ ∈ Q(x) with deg w∗ < 0 such that
exp(w) = exp(v + w∗) = exp(v) exp(w∗), and we can incorporate the constant
exp(v) into c.

Proof. Statement (i) follows from q′/q = (exp(w))′/ exp(w)+(z1/m)′/z1/m. For
the proof of (ii), we note that the complex roots of r are the residues of f/g at its
simple poles, by the remark following Fact 7.24. Since w′ is the derivative of a
rational function, its poles have order at least two, and hence the simple poles of
f/g are the simple poles of z′/mz. Lemma 8.22 (viii) implies that

Resp

(
z′

mz

)
=

1
m

Resp

(
z′

z

)
=

vp(z)
m

for all irreducible polynomials p in Q[x], and (ii) follows from |vp(z)| ≤ d(z).
We have deg z′ ≤ deg z− 1, and hence deg(z′/mz) ≤ −1, with equality if and

only if deg z �= 0. The assumption deg w �= 0 implies that deg w′ = deg w − 1 �=
−1. Thus deg f − deg g = deg(f/g) ≤ max{deg w − 1, deg(z′/mz)}, with
equality if deg w > 0. In this case, we have deg f ≥ deg g and δM = ∞.
Now assume that deg w < 0. Then deg f ≤ deg g − 1, with equality if and
only if deg z �= 0. If deg z = 0, then deg f < deg g − 1 and δM = 0. If
deg z �= 0, then δM = −lc(f/g). Now deg w′ < −1 = deg(z′/mz) implies that
lc(f/g) = lc(z′/mz) = lc(z′)/m lc(z) = (deg z)/m, and the claim (iii) follows. �

If a hyperexponential term is given as in Theorem 10.16, then Algorithm 10.4
runs in polynomial time in the degrees and the coefficient lengths of the numerators
and denominators of w and z, which, however, may be exponentially large in the
degrees and the coefficients lengths of f and g, as Examples 10.14 and 10.13 show.

Koepf (1998) shows in Lemma 10.1 that any hyperexponential term over C(x)
is of the form

q = exp(w)
∏

1≤j≤k

(x− xj)αj ,

with w ∈ C(x) and xj , αj ∈ C for all j. Thus any hyperexponential term over Q(x)
is of the form
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q = c · exp(w)
∏

1≤j≤k

(x− xj)αj ,

with c ∈ C, w ∈ Q(x), and algebraic numbers xj , αj for all j such that the product
on the right is invariant under the Galois group of Q over Q. The class from Theorem
10.16 is a proper subclass of all hyperexponential terms over Q(x). For example,
q = (x − √2)

√
2(x +

√
2)−

√
2 is hyperexponential over Q(x), with logarithmic

derivative q′/q = 4/(x2 − 2), but not of the form as stated in the theorem: the
residues of q′/q at

√
2 and −√2 are

√
2 and −√2, respectively.
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MAURICE MIGNOTTE (1989), Mathématiques pour le calcul formel. Presses Universitaires
de France, Paris. English translation: Mathematics for Computer Algebra, Springer-Verlag,
New York, 1992.

GARY L. MILLER (1976), Riemann’s Hypothesis and Tests for Primality. Journal of Com-
puter and System Sciences 13, 300–317.

ROBERT MOENCK (1977), On computing closed forms for summation. In Proceedings of
the 1977 MACSYMA Users Conference, Berkeley CA, NASA, Washington DC, 225–236.

ROBERT T. MOENCK and JOHN H. CARTER (1979), Approximate algorithms to derive exact
solutions to systems of linear equations. In Proceedings of EUROSAM ’79, Marseille,
France, ed. EDWARD W. NG. Lecture Notes in Computer Science 72, Springer-Verlag,
Berlin Heidelberg New York, 65–73.

THOM MULDERS (1997), A note on subresultants and the Lazard/Rioboo/Trager formula in
rational function integration. Journal of Symbolic Computation 24(1), 45–50.

THOM MULDERS and ARNE STORJOHANN (1999), Diophantine Linear System Solving. In
Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computa-
tion ISSAC ’99, Vancouver, Canada, ed. SAM DOOLEY, ACM Press, 181–188.

DAVID R. MUSSER (1971), Algorithms for Polynomial Factorization. PhD thesis, Computer
Science Department, University of Wisconsin. Technical Report #134, 174 pages.

ISAAC NEWTON (1691/92), De quadratura Curvarum. The revised and augmented treatise.
Unpublished manuscript. In: DEREK T. WHITESIDE, The mathematical papers of Isaac
Newton vol. VII, Cambridge University Press, Cambridge, UK, 1976, pp. 48–128.

HARALD NIEDERREITER (1993a), A New Efficient Factorization Algorithm for Polynomi-
als over Small Finite Fields. Applicable Algebra in Engineering, Communication and
Computing 4, 81–87.

H. NIEDERREITER (1993b), Factorization of Polynomials and Some Linear Algebra Prob-
lems over Finite Fields. Linear Algebra and its Applications 192, 301–328.

HARALD NIEDERREITER (1994a), Factoring polynomials over finite fields using differential
equations and normal bases. Mathematics of Computation 62(206), 819–830.

HARALD NIEDERREITER (1994b), New deterministic factorization algorithms for polyno-
mials over finite fields. In Finite fields: theory, applications and algorithms, eds. G. L.
MULLEN and P. J.-S. SHIUE. Contemporary Mathematics 168, American Mathematical
Society, 251–268.
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classe physico-mathématique de l’Académie Impériale des Sciences de Saint-Péters-
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MARKO PETKOVŠEK (1992), Hypergeometric solutions of linear recurrences with polyno-
mial coefficients. Journal of Symbolic Computation 14, 243–264.
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