Numerical Methods for
Elliptic and Parabolic
Partial Differential
Equations

Peter Knabner
Lutz Angermann

Springer



Texts in Applied Mathematics 4:4:

Editors

J.E. Marsden
L. Sirovich
S.S. Antman

Aduisors
G. Iooss
P. Holmes
D. Barkley
M. Dellnitz
P. Newton

Springer
New York
Berlin
Heidelberg
Hong Kong
London

Milan

Paris

Tokyo



This page intentionally left blank



Peter Knabner Lutz Angermann

Numerical Methods for
Elliptic and Parabolic Partial
Differential Equations

With 67 Figures

&) Springer




Peter Knabner

Institute for Applied Mathematics
University of Erlangen
Martensstrasse 3

D-91058 Erlangen

Germany
knabner@am.uni-erlangen.de

Series Editors

J.E. Marsden

Control and Dynamical Systems, 107-81
California Institute of Technology
Pasadena, CA 91125

USA

marsden@cds.caltech.edu

S.S. Antman

Department of Mathematics

and

Institute for Physical Science
and Technology

University of Maryland

College Park, MD 20742-4015

USA

ssa@math.umd.edu

Lutz Angermann

Institute for Mathematics
University of Clausthal

Erzstrasse 1

D-38678 Clausthal-Zellerfeld
Germany
angermann@math.tu-clausthal.de

L. Sirovich

Division of Applied Mathematics
Brown University

Providence, RI 02912

USA

chico@camelot.mssm.edu

Mathematics Subject Classification (2000): 65Nxx, 66Mxx, 65F10, 656H10

Library of Congress Cataloging-in-Publication Data

Knabner, Peter.

[Numerik partieller Differentialgleichungen. English]
Numerical methods for elliptic and parabolic partial differential equations /

Peter Knabner, Lutz Angermann.

p- cm. — (Texts in applied mathematics ; 44)
Include bibliographical references and index.

ISBN 0-387-95449-X (alk. paper)

1. Differential equations, Partial-Numerical solutions. 1. Angermann, Lutz. IIL Title.

III. Series.
QA377.K575 2003
515”.353—dc21

ISBN 0-387-95449-X

© 2003 Springer-Verlag New York, Inc.

2002044522

Printed on acid-free paper.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.
987654321 SPIN 10867187
Typesetting: Pages created by the authors in IATEX 2e using Springer’s svsing6.cls macro.

www.springer—ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH



Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the classical
techniques of applied mathematics. This renewal of interest, both in re-
search and teaching, has led to the establishment of the series Texts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level
of excitement on the research frontier as newer techniques, such as numeri-
cal and symbolic computer systems, dynamical systems, and chaos, mix
with and reinforce the traditional methods of applied mathematics. Thus,
the purpose of this textbook series is to meet the current and future needs
of these advances and to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
College Park, Maryland S.S. Antman
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Preface to the English Edition

Shortly after the appearance of the German edition we were asked by
Springer to create an English version of our book, and we gratefully ac-
cepted. We took this opportunity not only to correct some misprints and
mistakes that have come to our knowledge! but also to extend the text at
various places. This mainly concerns the role of the finite difference and
the finite volume methods, which have gained more attention by a slight
extension of Chapters 1 and 6 and by a considerable extension of Chapter
7. Time-dependent problems are now treated with all three approaches (fi-
nite differences, finite elements, and finite volumes), doing this in a uniform
way as far as possible. This also made a reordering of Chapters 6-8 nec-
essary. Also, the index has been enlarged. To improve the direct usability
in courses, exercises now follow each section and should provide enough
material for homework.

This new version of the book would not have come into existence without
our already mentioned team of helpers, who also carried out first versions
of translations of parts of the book. Beyond those already mentioned, the
team was enforced by Cecilia David, Basca Jadamba, Dr. Serge Kriutle,
Dr. Wilhelm Merz, and Peter Mirsch. Alexander Prechtel now took charge
of the difficult modification process. Prof. Paul DuChateau suggested im-
provements. We want to extend our gratitude to all of them. Finally, we

1Users of the German edition may consult
http: /www.math.tu-clausthal.de/ “mala/publications/errata.pdf



viii Preface to the English Edition

thank senior editor Achi Dosanjh, from Springer-Verlag New York, Inc., for
her constant encouragement.

Remarks for the Reader and the Use in Lectures

The size of the text corresponds roughly to four hours of lectures per week
over two terms. If the course lasts only one term, then a selection is nec-
essary, which should be orientated to the audience. We recommend the
following “cuts”:

Chapter 0 may be skipped if the partial differential equations treated
therein are familiar. Section 0.5 should be consulted because of the notation
collected there. The same is true for Chapter 1; possibly Section 1.4 may
be integrated into Chapter 3 if one wants to deal with Section 3.9 or with
Section 7.5.

Chapters 2 and 3 are the core of the book. The inductive presenta-
tion that we preferred for some theoretical aspects may be shortened for
students of mathematics. To the lecturer’s taste and depending on the
knowledge of the audience in numerical mathematics Section 2.5 may be
skipped. This might impede the treatment of the ILU preconditioning in
Section 5.3. Observe that in Sections 2.1-2.3 the treatment of the model
problem is merged with basic abstract statements. Skipping the treatment
of the model problem, in turn, requires an integration of these statements
into Chapter 3. In doing so Section 2.4 may be easily combined with Sec-
tion 3.5. In Chapter 3 the theoretical kernel consists of Sections 3.1, 3.2.1,
3.3-3.4.

Chapter 4 presents an overview of its subject, not a detailed development,
and is an extension of the classical subjects, as are Chapters 6 and 9 and
the related parts of Chapter 7.

In the extensive Chapter 5 one might focus on special subjects or just con-
sider Sections 5.2, 5.3 (and 5.4) in order to present at least one practically
relevant and modern iterative method.

Section 8.1 and the first part of Section 8.2 contain basic knowledge of
numerical mathematics and, depending on the audience, may be omitted.

The appendices are meant only for consultation and may complete
the basic lectures, such as in analysis, linear algebra, and advanced
mathematics for engineers.

Concerning related textbooks for supplementary use, to the best of our
knowledge there is none covering approximately the same topics. Quite a
few deal with finite element methods, and the closest one in spirit probably
is [21], but also [6] or [7] have a certain overlap, and also offer additional
material not covered here. From the books specialised in finite difference
methods, we mention [32] as an example. The (node-oriented) finite volume
method is popular in engineering, in particular in fluid dynamics, but to
the best of our knowledge there is no presentation similar to ours in a
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mathematical textbook. References to textbooks specialised in the topics
of Chapters 4, 5 and 8 are given there.

Remarks on the Notation

Printing in dtalics emphasizes definitions of notation, even if this is not
carried out as a numbered definition.

Vectors appear in different forms: Besides the “short” space vectors
z € R? there are “long” representation vectors u € R™, which describe
in general the degrees of freedom of a finite element (or volume) approxi-
mation or represent the values on grid points of a finite difference method.
Here we choose bold type, also in order to have a distinctive feature from
the generated functions, which frequently have the same notation, or from
the grid functions.

Deviations can be found in Chapter 0, where vectorial quantities belong-
ing to R? are boldly typed, and in Chapters 5 and 8, where the unknowns
of linear and nonlinear systems of equations, which are treated in a general
manner there, are denoted by x € R™.

Components of vectors will be designated by a subindex, creating a
double index for indexed quantities. Sequences of vectors will be supplied
with a superindex (in parentheses); only in an abstract setting do we use
subindices.

Erlangen, Germany Peter Knabner
Clausthal-Zellerfeld, Germany Lutz Angermann
January 2002
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Preface to the German Edition

This book resulted from lectures given at the University of Erlangen—
Nuremberg and at the University of Magdeburg. On these occasions we
often had to deal with the problem of a heterogeneous audience composed
of students of mathematics and of different natural or engineering sciences.
Thus the expectations of the students concerning the mathematical accu-
racy and the applicability of the results were widely spread. On the other
hand, neither relevant models of partial differential equations nor some
knowledge of the (modern) theory of partial differential equations could be
assumed among the whole audience. Consequently, in order to overcome the
given situation, we have chosen a selection of models and methods relevant
for applications (which might be extended) and attempted to illuminate the
whole spectrum, extending from the theory to the implementation, with-
out assuming advanced mathematical background. Most of the theoretical
obstacles, difficult for nonmathematicians, will be treated in an “induc-
tive” manner. In general, we use an explanatory style without (hopefully)
compromising the mathematical accuracy.

We hope to supply especially students of mathematics with the in-
formation necessary for the comprehension and implementation of finite
element/finite volume methods. For students of the various natural or
engineering sciences the text offers, beyond the possibly already existing
knowledge concerning the application of the methods in special fields, an
introduction into the mathematical foundations, which should facilitate the
transformation of specific knowledge to other fields of applications.

We want to express our gratitude for the valuable help that we received
during the writing of this book: Dr. Markus Bause, Sandro Bitterlich,
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Dr. Christof Eck, Alexander Prechtel, Joachim Rang, and Dr. Eckhard
Schneid did the proofreading and suggested important improvements. From
the anonymous referees we received useful comments. Very special thanks
go to Mrs. Magdalena Thle and Dr. Gerhard Summ. Mrs. Thle transposed
the text quickly and precisely into TEX. Dr. Summ not only worked on the
original script and on the TEX-form, he also organized the complex and
distributed rewriting and extension procedure. The elimination of many
inconsistencies is due to him. Additionally he influenced parts of Sec-
tions 3.4 and 3.8 by his outstanding diploma thesis. We also want to thank
Dr. Chistoph Tapp for the preparation of the graphic of the title and for
providing other graphics from his doctoral thesis [70].

Of course, hints concerning (typing) mistakes and general improvements
are always welcome.

We thank Springer-Verlag for their constructive collaboration.

Last, but not least, we want to express our gratitude to our families for
their understanding and forbearance, which were necessary for us especially
during the last months of writing.

Erlangen, Germany Peter Knabner
Magdeburg, Germany Lutz Angermann
February 2000
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0

For Example:
Modelling Processes in Porous
Media with Differential Equations

This chapter illustrates the scientific context in which differential equation
models may occur, in general, and also in a specific example. Section 0.1
reviews the fundamental equations, for some of them discretization tech-
niques will be developed and investigated in this book. In Sections 0.2 —
0.4 we focus on reaction and transport processes in porous media. These
sections are independent of the remaining parts and may be skipped by
the reader. Section 0.5, however, should be consulted because it fixes some
notation to be used later on.

0.1 The Basic Partial Differential Equation Models

Partial differential equations are equations involving some partial deriva-
tives of an unknown function w in several independent variables. Partial
differential equations which arise from the modelling of spatial (and tempo-
ral) processes in nature or technology are of particular interest. Therefore,
we assume that the variables of u are z = (z1,...,24)T € R? for d > 1,
representing a spatial point, and possibly ¢ € R, representing time. Thus
the minimal set of variables is (x1,x2) or (x1,t), otherwise we have ordinary
differential equations. We will assume that = € €, where € is a bounded
domain, e.g., a metal workpiece, or a groundwater aquifer, and ¢t € (0,7 for
some (time horizon) T > 0. Nevertheless also processes acting in the whole
R? x R, or in unbounded subsets of it, are of interest. One may consult the
Appendix for notations from analysis etc. used here. Often the function w
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represents, or is related to, the volume density of an extensive quantity like
mass, energy, or momentum, which is conserved. In their original form all
quantities have dimensions that we denote in accordance with the Inter-
national System of Units (ST) and write in square brackets [ ]. Let a be
a symbol for the unit of the extensive quantity, then its volume density
is assumed to have the form S = S(u), i.e., the unit of S(u) is a/m3. For
example, for mass conservation a = kg, and S(u) is a concentration. For
describing the conservation we consider an arbitrary “not too bad” sub-
set Q C Q, the control volume. The time variation of the total extensive
quantity in Q is then

o, / Su(z, t))da (0.1)
Q

If this function does not vanish, only two reasons are possible due to con-
servation:

— There is an internally distributed source density Q = Q(z,t,u) [a/m3/s],
being positive if S(u) is produced, and negative if it is destroyed, i.e., one
term to balance (0.1) is [5 Q(x,t, u(x,t))dzx.

— There is a net flux of the extensive quantity over the boundary 9Q of
Q. Let J = J(z,t) [a/m?/s] denote the flux density, i.e., J; is the amount,
that passes a unit square perpendicular to the ith axis in one second in
the direction of the ith axis (if positive), and in the opposite direction
otherwise. Then another term to balance (0.1) is given by

—/J(a:,t) ~v(z)do ,
o0
where v denotes the outer unit normal on 9€2. Summarizing the conserva-
tion reads

8,5/S(u(x,t))dx: —/J(a:,t)-V(x)d0+/Q(x,t,u(a:,t))dx. 0.2)
Q Fel9) Q

The integral theorem of Gauss (see (2.3)) and an exchange of time

derivative and integral leads to

/[atS(u(m, )+ V- T, ) — Qs b, ule, £)))da = 0,

Q
and, as (0 is arbitrary, also to
OS(u(z,t)) + V- J(x,t) = Q(a, t,u(x,t)) forz € Q, t € (0,7]. (0.3)

All manipulations here are formal assuming that the functions involved
have the necessary properties. The partial differential equation (0.3) is the
basic pointwise conservation equation, (0.2) its corresponding integral form.
Equation (0.3) is one requirement for the two unknowns u and J, thus it
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has to be closed by a (phenomenological) constitutive law, postulating a
relation between J and .

Assume 2 is a container filled with a fluid in which a substance is dis-
solved. If u is the concentration of this substance, then S(u) = v and a
= kg. The description of J depends on the processes involved. If the fluid
is at rest, then flux is only possible due to molecular diffusion, i.e., a flux
from high to low concentrations due to random motion of the dissolved
particles. Experimental evidence leads to

JV = _KVu (0.4)

with a parameter K > 0 [m?/s], the molecular diffusivity. Equation (0.4)
is called Fick’s law.

In other situations, like heat conduction in a solid, a similar model occurs.
Here, u represents the temperature, and the underlying principle is energy
conservation. The constitutive law is Fourier’s law, which also has the form
(0.4), but as K is a material parameter, it may vary with space or, for
anisotropic materials, be a matrix instead of a scalar.

Thus we obtain the diffusion equation

Ou—V - (KVu)=Q. (0.5)

If K is scalar and constant — let K = 1 by scaling —, and f := Q@ is
independent of u, the equation simplifies further to

Ou—Au=f,

where Au := V-(Vu) . We mentioned already that this equation also occurs
in the modelling of heat conduction, therefore this equation or (0.5) is also
called the heat equation.

If the fluid is in motion with a (given) velocity ¢ then (forced) convection
of the particles takes place, being described by

J? = e, (0.6)

i.e., taking both processes into account, the model takes the form of the
convection-diffusion equation

Ou—V - (KVu—cu)=Q. (0.7)

The relative strength of the two processes is measured by the Péclet
number (defined in Section 0.4). If convection is dominating one may ignore
diffusion and only consider the transport equation

Ou+V-(cu)=Q. (0.8)

The different nature of the two processes has to be reflected in the models,
therefore, adapted discretization techniques will be necessary. In this book
we will consider models like (0.7), usually with a significant contribution
of diffusion, and the case of dominating convection is studied in Chapter
9. The pure convective case like (0.8) will not be treated.
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In more general versions of (0.7) dwu is replaced by 9:S(u), where S
depends linearly or nonlinearly on u. In the case of heat conduction S is
the internal energy density, which is related to the temperature u via the
factors mass density and specific heat. For some materials the specific heat
depends on the temperature, then S is a nonlinear function of w.

Further aspects come into play by the source term @ if it depends linearly
or nonlinearly on u, in particular due to (chemical) reactions. Examples for
these cases will be developed in the following sections. Since equation (0.3)
and its examples describe conservation in general, it still has to be adapted
to a concrete situation to ensure a unique solution u. This is done by the
specification of an initial condition

S(u(x,0)) = Sp(z) for =z €,

and by boundary conditions. In the example of the water filled container
no mass flux will occur across its walls, therefore, the following boundary
condition

J-v(x,t) =0 for €90, te(0,T) (0.9)

is appropriate, which — depending on the definition of J — prescribes the
normal derivative of u, or a linear combination of it and u. In Section 0.5
additional situations are depicted.

If a process is stationary, i.e. time-independent, then equation (0.3)
reduces to

V-J(z) =Qx,u(z)) for xe€Q,
which in the case of diffusion and convection is specified to
—V-(KVu—cu)=Q.

For constant K — let K = 1 by scaling —, ¢ = 0, and f := @, being
independent of u, this equation reduces to

—Au=f in Q,

the Poisson equation.
Instead of the boundary condition (0.9), one can prescribe the values of
the function u at the boundary:

u(z) =g(x) for z €.

For models , where u is a concentration or temperature, the physical reali-
sation of such a boundary condition may raise questions, but in mechanical
models, where u is to interpreted as a displacement, such a boundary con-
dition seems reasonable. The last boundary value problem will be the first
model, whose discretization will be discussed in Chapters 1 and 2.

Finally it should be noted that it is advisable to non-dimensionalise the
final model before numerical methods are applied. This means that both
the independent variables x; (and t), and the dependent one u, are replaced
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by @i/ vef, t/tret, and w/urer, Where x; ref, tref, and urer are fixed reference
values of the same dimension as x;, ¢, and u, respectively. These reference
values are considered to be of typical size for the problems under investiga-
tion. This procedure has two advantages: On the one hand, the typical size
is now 1, such that there is an absolute scale for (an error in) a quantity
to be small or large. On the other hand, if the reference values are chosen
appropriately a reduction in the number of equation parameters like K
and ¢ in (0.7) might be possible, having only fewer algebraic expressions of
the original material parameters in the equation. This facilitates numerical
parameter studies.

0.2 Reactions and Transport in Porous Media

A porous medium is a heterogeneous material consisting of a solid matriz
and a pore space contained therein. We consider the pore space (of the
porous medium) as connected; otherwise, the transport of fluids in the
pore space would not be possible. Porous media occur in nature and man-
ufactured materials. Soils and aquifers are examples in geosciences; porous
catalysts, chromatographic columns, and ceramic foams play important
roles in chemical engineering. Even the human skin can be considered a
porous medium. In the following we focus on applications in the geosciences.
Thus we use a terminology referring to the natural soil as a porous medium.
On the micro or pore scale of a single grain or pore, i.e., in a range of um
to mm, the fluids constitute different phases in the thermodynamic sense.
Thus we name this system in the case of k fluids including the solid matrix
as (k + 1)-phase system or we speak of k-phase flow.

We distinguish three classes of fluids with different affinities to the solid
matrix. These are an aqueous phase, marked with the index “w” for water,
a nonaqueous phase liquid (like oil or gasoline as natural resources or con-
taminants), marked with the index “o0,” and a gaseous phase, marked with
the index “g” (e.g., soil air). Locally, at least one of these phases has al-
ways to be present; during a transient process phases can locally disappear
or be generated. These fluid phases are in turn miztures of several com-
ponents. In applications of the earth sciences, for example, we do not deal
with pure water but encounter different species in true or colloidal solu-
tion in the solvent water. The wide range of chemical components includes
plant nutrients, mineral nutrients from salt domes, organic decomposition
products, and various organic and inorganic chemicals. These substances
are normally not inert, but are subject to reactions and transformation
processes. Along with diffusion, forced convection induced by the motion
of the fluid is the essential driving mechanism for the transport of solutes.
But we also encounter natural convection by the coupling of the dynamics
of the substance to the fluid flow. The description level at the microscale
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that we have used so far is not suitable for processes at the laboratory or
technical scale, which take place in ranges of cm to m, or even for processes
in a catchment area with units of km. For those macroscales new models
have to be developed, which emerge from averaging procedures of the mod-
els on the microscale. There may also exist principal differences among the
various macroscales that let us expect different models, which arise from
each other by upscaling. But this aspect will not be investigated here fur-
ther. For the transition of micro to macro scales the engineering sciences
provide the heuristic method of volume averaging, and mathematics the
rigorous (but of only limited use) approach of homogenization (see [36] or
[19]). None of the two possibilities can be depicted here completely. Where
necessary we will refer to volume averaging for (heuristic) motivation.

Let © ¢ R¢ be the domain of interest. All subsequent considerations are
formal in the sense that the admissibility of the analytic manipulations is
supposed. This can be achieved by the assumption of sufficient smoothness
for the corresponding functions and domains.

Let V' C Q be an admissible representative elementary volume in the
sense of volume averaging around a point = € ). Typically the shape and
the size of a representative elementary volume are selected in such a manner
that the averaged values of all geometric characteristics of the microstruc-
ture of the pore space are independent of the size of V' but depend on
the location of the point x. Then we obtain for a given variable w, in the
phase « (after continuation of w, with 0 outside of «) the corresponding
macroscopic quantities, assigned to the location x, as the extrinsic phase
average

(wa) = |17| /V v

or as the intrinsic phase average

ek
we )" = —— Wy -
o™= |,

Here V, denotes the subset of V' corresponding to «. Let ¢t € (0,T) be
the time at which the process is observed. The notation x € {2 means the
vector in Cartesian coordinates, whose coordinates are referred to by =z,
y, and z € R. Despite this ambiguity the meaning can always be clearly
derived from the context.

Let the index “s” (for solid) stand for the solid phase; then

o(x) == [V\V| / V][>0
denotes the porosity, and for every liquid phase «,

Sa(w,t) = [Va| / [V\ Vi 2 0
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is the saturation of the phase . Here we suppose that the solid phase is
stable and immobile. Thus

(Wa) = ¢Sa(wa)”

for a fluid phase « and

> Sa=1. (0.10)
a:fluid
So if the fluid phases are immiscible on the micro scale, they may be miscible
on the macro scale, and the immiscibility on the macro scale is an additional
assumption for the model.

As in other disciplines the differential equation models are derived here
from conservation laws for the extensive quantities mass, impulse, and en-
ergy, supplemented by constitutive relationships, where we want to focus
on the mass.

0.3 Fluid Flow in Porous Media

Consider a liquid phase a on the micro scale. In this chapter, for clarity, we
write “short” vectors in R? also in bold with the exception of the coordinate

vector z. Let 9, [kg/m?®] be the (microscopic) density, q,, := (Zn @,,f;n)/éa
[m/s] the mass average mizture velocity based on the particle velocity v, of
a component 1 and its concentration in solution g, [kg/m%]. The transport

theorem of Reynolds (see, for example, [10]) leads to the mass conservation
law

at@a +V- (éaqa) = foz (0.11)

with a distributed mass source density fa. By averaging we obtain from
here the mass conservation law

8t(¢sa9a) +V- (Qaqa) = fa (012)

with o4, the density of phase «, as the intrinsic phase average of g, and
q,,, the volumetric fluid velocity or Darcy velocity of the phase «, as the
extrinsic phase average of q,,. Correspondingly, f, is an average mass source
density.

Before we proceed in the general discussion, we want to consider some
specific situations: The area between the groundwater table and the imper-
meable body of an aquifer is characterized by the fact that the whole pore
space is occupied by a fluid phase, the soil water. The corresponding satu-
ration thus equals 1 everywhere, and with omission of the index equation
(0.12) takes the form

Oi(¢o) +V - (0q) = f. (0.13)
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If the density of water is assumed to be constant, due to neglecting
the mass of solutes and compressibility of water, equation (0.13) simplifies
further to the stationary equation

V.g="/, (0.14)

where f has been replaced by the volume source density f/o, keeping the
same notation. This equation will be completed by a relationship that
can be interpreted as the macroscopic analogue of the conservation of mo-
mentum, but should be accounted here only as an experimentally derived
constitutive relationship. This relationship is called Darcy’s law, which
reads as

q=—K (Vp+ gge.) (0.15)

and can be applied in the range of laminar flow. Here p [N/m?] is the intrinsic
average of the water pressure, g [m/s?] the gravitational acceleration, e, the
unit vector in the z-direction oriented against the gravitation,

K=k/u, (0.16)

a quantity, which is given by the permeability k determined by the solid
phase, and the viscosity p determined by the fluid phase. For an anisotropic
solid, the matrix k = k(z) is a symmetric positive definite matrix.

Inserting (0.15) in (0.14) and replacing K by K gg, known as hydraulic
conductivity in the literature, and keeping the same notation gives the
following linear equation for

1
h(xat) = Q_gp(xvt) +z,

the piezometric head h [m]:
V- (KVh)=f. (0.17)

The resulting equation is stationary and linear. We call a differential equa-
tion model stationary if it depends only on the location x and not on the
time t, and instationary otherwise. A differential equation and correspond-
ing boundary conditions (cf. Section 0.5) are called linear if the sum or a
scalar multiple of a solution again forms a solution for the sum, respectively
the scalar multiple, of the sources.

If we deal with an isotropic solid matrix, we have K = K I with the d xd
unit matrix I and a scalar function K. Equation (0.17) in this case reads

V- (KVh)=f. (0.18)

Finally if the solid matrix is homogeneous, i.e., K is constant, we get from
division by K and maintaining the notation f the Poisson equation

~Ah=f, (0.19)
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which is termed the Laplace equation for f = 0. This model and its more
general formulations occur in various contexts. If, contrary to the above as-
sumption, the solid matrix is compressible under the pressure of the water,
and if we suppose (0.13) to be valid, then we can establish a relationship

¢ = d(x,t) = po(x) o5 (p)

with ¢o(z) > 0 and a monotone increasing ¢ such that with S(p) := ¢ (p)
we get the equation

b0 Sp)Op+V-q=f

and the instationary equations corresponding to (0.17)—(0.19), respectively.
For constant S(p) > 0 this yields the following linear equation:

60 SOh—V - (KVh)=f, (0.20)

which also represents a common model in many contexts and is known from
corresponding fields of application as the heat conduction equation.

We consider single phase flow further, but now we will consider gas as
fluid phase. Because of the compressibility, the density is a function of the
pressure, which is invertible due to its strict monotonicity to

p="P(o).

Together with (0.13) and (0.15) we get a nonlinear variant of the heat
conduction equation in the unknown p:

O (p0) —V - (K(oVP(0) + 0°gez)) = [, (0.21)

which also contains derivatives of first order in space. If P(p) = In(ap) holds
for a constant o > 0, then oV P(p) simplifies to «Vp. Thus for horizontal
flow we again encounter the heat conduction equation. For the relationship
P(0) = ap suggested by the universal gas law, apVp = %OéVQQ remains
nonlinear. The choice of the variable u := p? would result in «'/2 in the
time derivative as the only nonlinearity. Thus in the formulation in o the
coefficient of Vg disappears in the divergence of 9 = 0. Correspondingly,
the coefficient S(u) = %d)u*l/Q of Jiu in the formulation in u becomes
unbounded for v = 0. In both versions the equations are degenerate, whose
treatment is beyond the scope of this book. A variant of this equation has
gained much attention as the porous medium equation (with convection) in
the field of analysis (see, for example, [42]).

Returning to the general framework, the following generalization of

Darcy’s law can be justified experimentally for several liquid phases:

kj?"(){

e

q, = — k (vPa + Qagez) .

Here the relative permeability k., of the phase a depends upon the
saturations of the present phases and takes values in [0, 1].
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At the interface of two liquid phases a1 and as we observe a difference of
the pressures, the so-called capillary pressure, that turns out experimentally
to be a function of the saturations:

Pcajas *= Par — Pas = FOthz (Swv Soa Sg) . (022)

A general model for multiphase flow, formulated for the moment in terms
of the variables p,, Sy, is thus given by the equations

Oy (¢Sa9a) -V (Qa)‘ak(Vpa + QageZ)) = fa (0'23)

with the mobilities Ao := kra/lia, and the equations (0.22) and (0.10),
where one of the S,’s can be eliminated. For two liquid phases w and g,
e.g., water and air, equations (0.22) and (0.10) for « = w,g read p. =
Pg — Pw = F(Sw) and Sz = 1 — S. Apparently, this is a time-dependent,
nonlinear model in the variables py, pg, Sw, where one of the variables can
be eliminated. Assuming constant densities g, further formulations based
on

V- (qw + qg) = fW/Qw + fg/@g (0.24)

can be given as consequences of (0.10). These equations consist of a sta-
tionary equation for a new quantity, the global pressure, based on (0.24),
and a time-dependent equation for one of the saturations (see Exercise 0.2).
In many situations it is justified to assume a gaseous phase with constant
pressure in the whole domain and to scale this pressure to p, = 0. Thus
for ¥ := py = —p. we have

¢3t5(¢) -V (A(?ﬂ)k(vw + Qgez)) = fW/QW (025)

with constant pressure ¢ := gy, and S(¥) = F~1(—) as a strictly
monotone increasing nonlinearity as well as .

With the convention to set the value of the air pressure to 0, the pressure
in the aqueous phase is in the unsaturated state, where the gaseous phase is
also present, and represented by negative values. The water pressure ¢ = 0
marks the transition from the unsaturated to the saturated zone. Thus
in the unsaturated zone, equation (0.25) represents a nonlinear variant
of the heat conduction equation for ¢» < 0, the Richards equation. As
most functional relationships have the property S’(0) = 0, the equation
degenerates in the absence of a gaseous phase, namely to a stationary
equation in a way that is different from above.

Equation (0.25) with S(¢) := 1 and A(¢)) := A(0) can be continued in a
consistent way with (0.14) and (0.15) also for ¢ > 0, i.e., for the case of a
sole aqueous phase. The resulting equation is also called Richards equation
or a model of saturated-unsaturated flow.
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0.4 Reactive Solute Transport in Porous Media

In this chapter we will discuss the transport of a single component in a
liquid phase and some selected reactions. We will always refer to water
as liquid phase explicitly. Although we treat inhomogeneous reactions in
terms of surface reactions with the solid phase, we want to ignore exchange
processes between the fluid phases. On the microscopic scale the mass con-
servation law for a single component 7 is, in the notation of (0.11) by
omitting the phase index w,

oy +V - (00@) +V - Ty =Qy ,
where
Jy = 0y (0 — q) [kg/m’/s] (0.26)

represents the diffusive mass flux of the component n and Qn [kg/m3/s] is
its volumetric production rate. For a description of reactions via the mass
action law it is appropriate to choose the mole as the unit of mass. The
diffusive mass flux requires a phenomenological description. The assump-
tion that solely binary molecular diffusion, described by Fick’s law, acts
between the component 1 and the solvent, means that

Jy=—0DyV (20/0) (0.27)

with a molecular diffusivity D,, > 0 [m?/s]. The averaging procedure applied
on (0.26), (0.27) leads to

0(Ocy) + V- (qey) + V- TN 4+ 7. J) = Q) 1 Q)

for the solute concentration of the component 7, ¢, [kg/m3], as intrinsic

phase average of o,. Here, we have JN as the average of J, and J(z),
the mass flux due to mechanical dispersion, a newly emerging term at the

macroscopic scale. Analogously, %1) is the intrinsic phase average of Qn,

and Q%Q) is a newly emerging term describing the exchange between the
liquid and solid phases.

The wvolumetric water content is given by © := ¢S, with the water
saturation S. Experimentally, the following phenomenological descriptions
are suggested:

JY = _—erD,Ve,
with a tortuosity factor T € (0,1],
J® = —ODyeaVey, (0.28)

and a symmetric positive definite matriz of mechanical dispersion Dech,
which depends on ¢/0. Consequently, the resulting differential equation
reads

0¢(©cy) +V - (gc,, —O©DVey) = Q, (0.29)
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with D := 7D, + Dpech, @Qn 1= %1) + ng).

Because the mass flux consists of gc,;, a part due to forced convection, and
of JM 4 J(2), a part that corresponds to a generalized Fick’s law, an equa-
tion like (0.29) is called a convection-diffusion equation. Accordingly, for
the part with first spatial derivatives like V - (g¢,) the term convective part
is used, and for the part with second spatial derivatives like —V - (©DV¢,,)
the term diffusive part is used. If the first term determines the character of
the solution, the equation is called convection-dominated. The occurrence
of such a situation is measured by the quantity Pe, the global Péclet num-
ber, that has the form Pe = ||q||L/||©D]|| | - |. Here L is a characteristic
length of the domain . The extreme case of purely convective transport
results in a conservation equation of first order. Since the common mod-
els for the dispersion matrix lead to a bound for Pe, the reduction to the
purely convective transport is not reasonable. However, we have to take
convection-dominated problems into consideration.

Likewise, we speak of diffusive parts in (0.17) and (0.20) and of (nonlin-
ear) diffusive and convective parts in (0.21) and (0.25). Also, the multiphase
transport equation can be formulated as a nonlinear convection-diffusion
equation by use of (0.24) (see Exercise 0.2), where convection often dom-
inates. If the production rate @, is independent of ¢,, equation (0.29) is
linear.

In general, in case of a surface reaction of the component 7, the kinetics of
the reaction have to be described . If this component is not in competition
with the other components, one speaks of adsorption. The kinetic equation
thus takes the general form

8t577(m5t) = knfn(xvcn(mat)vsn(x7t)) (0'30)

with a rate parameter k,, for the sorbed concentration s, [kg/kg|, which is
given in reference to the mass of the solid matrix. Here, the components
in sorbed form are considered spatially immobile. The conservation of the
total mass of the component undergoing sorption gives

QY = —0u0sy (0.31)

with the bulk density o, = 0s(1—¢), where g5 denotes the density of the solid
phase. With (0.30), (0.31) we have a system consisting of an instationary
partial and an ordinary differential equation (with z € Q) as parameter). A
widespread model by Langmuir reads

[ = kacy(Sy — sy) — kasy

with constants kg, kq that depend upon the temperature (among other
factors), and a saturation concentration s, (cf. for example [24]). If we
assume f, = f,(x,c,) for simplicity, we get a scalar nonlinear equation in

Cn,

0:(Ocy) + V - (g, — ©DVey) + ovkn fu (- cp) = QLY (0.32)
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and s, is decoupled and extracted from (0.30). If the time scales of transport
and reaction differ greatly, and the limit case k, — oo is reasonable, then
(0.30) is replaced by

fﬁ(macn(x7t)a Sn(x7t)) =0.

If this equation is solvable for s,, i.e.,

sn(,1) = (@, cn(2,1))
the following scalar equation for ¢, with a nonlinearity in the time
derivative emerges:

at(e)cn + Qb@n('a Cn)) +V- (qcn - @DVCW) = le) :

If the component 7 is in competition with other components in the sur-
face reaction, as, e.g., in ion exchange, then f, has to be replaced by a
nonlinearity that depends on the concentrations of all involved components
C1,.-.,CN, S1,---,SN- Thus we obtain a coupled system in these variables.
Finally, if we encounter homogeneous reactions that take place solely in the
fluid phase, an analogous statement is true for the source term Qg,l).

Exercises

0.1 Give a geometric interpretation for the matrix condition of k in (0.16)
and Dpecn in (0.28).

0.2 Cousider the two-phase flow (with constant g., a € {w,g})
8t(¢sa)+vqa = foza

q, = Aok (Vpoz + Qozgez) )
Sy 48, = 1,
Pg —Pw = DPc

with coefficient functions

Pc = pc(Sw) y Aa = )\a(sw) , o€ {W,g}

Starting from equation (0.23), perform a transformation to the new
variables

q = q,+t4qg, “total flow,”

1 1 9 Ag — Aw dpe
p = §(pW+pg)+§/SC )\g+)\w df

and the water saturation Sy,. Derive a representation of the phase flows in
the new variables.

d€ , “global pressure,”
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0.3 A frequently employed model for mechanical dispersion is
Diech = AL|v|2 Py + Ar|v|2(I — Py)

with parameters A, > Ar, where v = ¢/© and Py = vv’/|v|3. Here
AL and At are the longitudinal and transversal dispersion lengths. Give a
geometrical interpretation.

0.5 Boundary and Initial Value Problems

The differential equations that we derived in Sections 0.3 and 0.4 have the
common form

8:S(u) + V - (Cu) — K (Vau)) = Q(u) (0.33)

with a source term S, a convective part C, a diffusive part K, i.e., a total
flux C — K and a source term ), which depend linearly or nonlinearly
on the unknown wu. For simplification, we assume u to be a scalar. The
nonlinearities S, C, K, and () may also depend on x and ¢, which shall be
suppressed in the notation in the following. Such an equation is said to be
in divergence form or in conservative form; a more general formulation is
obtained by differentiating V - C(u) = %C(u) - Vu + (V- C)(u) or by
introducing a generalized “source term” @ = Q(u, Vu). Up to now we have
considered differential equations pointwise in z € 2 (and t € (0,7)) under
the assumption that all occurring functions are well-defined. Due to the
applicability of the integral theorem of Gauss on Q C Q (cf. (3.10)), the
integral form of the conservation equation follows straightforwardly from
the above:

/QatS(u) dx + /aQ (C(u) — K(Vu)) -vdo = /QQ(U, Vu)dx  (0.34)

with the outer unit normal v (see Theorem 3.8) for a fixed time ¢ or also
in ¢t integrated over (0,7). Indeed, this equation (on the microscopic scale)
is the primary description of the conservation of an extensive quantity:
Changes in time through storage and sources in  are compensated by the
normal flux over d€). Moreover, for 8,5, V - (C — K), and Q) continuous
on the closure of Q, (0.33) follows from (0.34). If, on the other hand, F is
a hyperplane in  where the material properties may rapidly change, the
Jump condition

[(C(u) — K(Vu))-v]=0 (0.35)

for a fixed unit normal v on F follows from (0.34), where [ - | denotes the
difference of the one-sided limits (see Exercise 0.4).

Since the differential equation describes conservation only in general,
it has to be supplemented by initial and boundary conditions in order to
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specify a particular situation where a unique solution is expected. Boundary
conditions are specifications on 02, where v denotes the outer unit normal

e of the normal component of the flux (inwards):
—(Cu) — K(Vu))-v=g1 onIy (0.36)
(flux boundary condition),
e of a linear combination of the normal flux and the unknown itself:
—(Cu)— K(Vu)) - v+au=gs onTy (0.37)
(mized boundary condition),
e of the unknown itself:
u=g3 onljy (0.38)
(Dirichlet boundary condition).
Here I'1, ', I's form a disjoint decomposition of 9€:
0N =T,UlUTls, (0.39)

where I's is supposed to be a closed subset of J€). The inhomogeneities
g; and the factor « in general depend on x € €2, and for nonstationary
problems (where S(u) # 0 holds) on t € (0,T). The boundary conditions
are linear if the g; do not depend (nonlinearly) on u (see below). If the g;
are zero, we speak of homogeneous, otherwise of inhomogeneous, boundary
conditions.

Thus the pointwise formulation of a nonstationary equation (where S
does not vanish) requires the validity of the equation in the space-time
cylinder

QT =0 X (O,T)

and the boundary conditions on the lateral surface of the space-time
cylinder

Sr =90 % (0,T)..

Different types of boundary conditions are possible with decompositions
of the type (0.39). Additionally, an initial condition on the bottom of the
space-time cylinder is necessary:

S(u(x,0)) = So(z) forxze Q. (0.40)

These are so-called initial-boundary value problems; for stationary prob-
lems we speak of boundary value problems. As shown in (0.34) and (0.35)
flux boundary conditions have a natural relationship with the differential
equation (0.33). For a linear diffusive part K(Vu) = KVu alternatively
we may require

Opu:=KVu-v=¢g1 only, (0.41)
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and an analogous mixed boundary condition. This boundary condition is
the so-called Neumann boundary condition. Since K is symmetric, 0., u =
Vu - Kv holds; i.e., 0y, u is the derivative in direction of the conormal Kuv.
For the special case K = I the normal derivative is given.

In contrast to ordinary differential equations, there is hardly any general
theory of partial differential equations. In fact, we have to distinguish dif-
ferent types of differential equations according to the various described
physical phenomena. These determine, as discussed, different (initial-)
boundary value specifications to render the problem well-posed. Well-
posedness means that the problem possesses a unique solution (with certain
properties yet to be defined) that depends continuously (in appropriate
norms) on the data of the problem, in particular on the (initial and)
boundary values. There exist also ill-posed boundary value problems for
partial differential equations, which correspond to physical and technical
applications. They require special techniques and shall not be treated here.

The classification into different types is simple if the problem is lin-
ear and the differential equation is of second order as in (0.33). By order
we mean the highest order of the derivative with respect to the variables
(1,...,24,t) that appears, where the time derivative is considered to be
like a spatial derivative. Almost all differential equations treated in this
book will be of second order, although important models in elasticity the-
ory are of fourth order or certain transport phenomena are modelled by
systems of first order.

The differential equation (0.33) is generally nonlinear due to the nonlin-
ear relationships S, C, K, and Q). Such an equation is called quasilinear if
all derivatives of the highest order are linear, i.e., we have

K(Vu) = KVu (0.42)

with a matrix K, which may also depend (nonlinearly) on z,t, and u.
Furthermore, (0.33) is called semilinear if nonlinearities are present only
in u, but not in the derivatives, i.e., if in addition to (0.42) with K being
independent of u, we have

S(u)=Su, C(u)=uc (0.43)

with scalar and vectorial functions S and ¢, respectively, which may depend
on z and t. Such variable factors standing before u or differential terms are
called coefficients in general.

Finally, the differential equation is linear if we have, in addition to the
above requirements,

Qu) =—ru+f

with functions r and f of x and ¢.

In the case f = 0 the linear differential equation is termed homoge-
neous, otherwise inhomogeneous. A linear differential equation obeys the
superposition principle: Suppose uy and ug are solutions of (0.33) with the
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source terms f; and fo and otherwise identical coefficient functions. Then
u1 + yue is a solution of the same differential equation with the source
term f1 + v fo for arbitrary v € R. The same holds for linear boundary
conditions. The term solution of an (initial-) boundary value problem is
used here in a classical sense, yet to be specified, where all the quantities
occurring should satisfy pointwise certain regularity conditions (see Defini-
tion 1.1 for the Poisson equation). However, for variational solutions (see
Definition 2.2), which are appropriate in the framework of finite element
methods, the above statements are also valid.

Linear differential equations of second order in two variables (x,y) (in-
cluding possibly the time variable) can be classified in different types as
follows:

To the homogeneous differential equation

2 2 92
Lu = a(z, y)a s+ b(z, y)a 8 u—I—c(x,y)Wu (0.4
a .
ey gt el g o) =0
the following quadratic form is assigned:
(&) = a(w,y)€ + bz, y)&n + c(x, y)n*. (0.45)

According to its eigenvalues, i.e., the eigenvalues of the matrix

(o0 den), -
§b($,y) C(xay)

we classify the types. In analogy with the classification of conic sections,
which are described by (0.45) (for fixed (x,y)), the differential equation
(0.44) is called at the point (z,y)

e elliptic if the eigenvalues of (0.46) are not 0 and have the same sign,
e hyperbolic if one eigenvalue is positive and the other is negative,
e parabolic if exactly one eigenvalue is equal to 0.

For the corresponding generalization of the terms for d + 1 variables and
arbitrary order, the stationary boundary value problems we treat in this
book will be elliptic, of second order, and — except in Chapter 8 — also
linear; the nonstationary initial-boundary value problems will be parabolic.

Systems of hyperbolic differential equations of first order require partic-
ular approaches, which are beyond the scope of this book. Nevertheless,
we dedicate Chapter 9 to convection-dominated problems, i.e., elliptic or
parabolic problems close to the hyperbolic limit case.

The different discretization strategies are based on various formulations
of the (initial-) boundary value problems: The finite difference method,
which is presented in Section 1, and further outlined for nonstationary prob-
lems in Chapter 7, has the pointwise formulation of (0.33), (0.36)—(0.38)
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(and (0.40)) as a starting point. The finite element method, , which lies in
the focus of our book (Chapters 2, 3, and 7), is based on an integral formu-
lation of (0.33) (which we still have to depict) that incorporates (0.36) and
(0.37). The conditions (0.38) and (0.40) have to be enforced additionally.
Finally, the finite volume method (Chapters 6 and 7) will be derived from
the integral formulation (0.34), where also initial and boundary conditions
come along as in the finite element approach.

Exercises
0.4 Derive (formally) (0.35) from (0.34).

0.5 Derive the orders of the given differential operators and differ-
ential equations, and decide in every case whether the operator is
linear or nonlinear, and whether the linear equation is homogeneous or
inhomogeneous:

(a) Lu = Ugy + Tuy,

) Lu = uy + uuy ,

(€) Lu:= V14 x2(cosy)ug + Uyzy — (arctan %) u = In(2? + y?),
)
)

Lu:=us + Uppge +V1+u=0,
uttfuerxQ:O.

0.6 (a) Determine the type of the given differential operator:
(1) Lu = Ugy — Ugy + 2Uy + Uyy — SUys +4du,
(i) Lu = Qugs + 6Ugy + Uyy + Uy .
(b) Determine the parts of the plane where the differential operator Lu :=
Ylze — 2Uzy + TUyy is elliptic, hyperbolic, or parabolic.
(c) (i) Determine the type of Lu := 3uy + ugy.
(ii) Compute the general solution of Lu = 0.

0.7 Consider the equation Lu = f with a linear differential operator of
second order, defined for functions in d variables (d € N) in z € Q C R<.
The transformation ® : Q — Q' C R has a continuously differentiable,
nonsingular Jacobi matrix D® := %.

Show that the partial differential equation does not change its type if it

is written in the new coordinates £ = ®(z).
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For the Beginning:
The Finite Difference Method for the
Poisson Equation

1.1 The Dirichlet Problem for the Poisson
Equation

In this section we want to introduce the finite difference method using
the Poisson equation on a rectangle as an example. By means of this ex-
ample and generalizations of the problem, advantages and limitations of
the approach will be elucidated. Also, in the following section the Poisson
equation will be the main topic, but then on an arbitrary domain. For the
spatial basic set of the differential equation Q C R% we assume as minimal
requirement that € is a domain, where a domain is a nonempty, open, and
connected set. The boundary of this domain will be denoted by 0f2, the
closure Q U 99 by Q (see Appendix A.2). The Dirichlet problem for the
Poisson equation is then defined as follows: Given functions g : 9Q — R
and f:Q — R, we are looking for a function v : Q@ — R such that

2
- Z a—u = f inQ, (L.1)
u = g ond. (1.2)

This differential equation model has already appeared in (0.19) and
(0.38) and beyond this application has an importance in a wide spectrum of
disciplines. The unknown function u can be interpreted as an electromag-
netic potential, a displacement of an elastic membrane, or a temperature.
Similar to the multi-index notation to be introduced in (2.16) (but with
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indices at the top) from now on for partial derivatives we use the following
notation.

Notation: For u:Q Cc R?* — R we set

ou = aiiu fori=1,...,d,
82

Oiju = axiaxju fori,j=1,---,d,

Au = (Onn+...+0u)u.

The expression Auw is called the Laplace operator. By means of this, (1.1)
can be written in abbreviated form as

—Au=f inQ. (1.3)
We could also define the Laplace operator by

Au=V-(Vu) ,
where Vu = (01, .. .,ﬁdu)T denotes the gradient of a function w, and

V-v = 0vy + -+ + Oquq the divergence of a vector field v. Therefore,
an alternative notation exists, which will not be used in the following:
Au = V?u. The incorporation of the minus sign in the left-hand side of
(1.3), which looks strange at first glance, is related to the monotonicity and
definiteness properties of —A (see Sections 1.4 and 2.1, respectively).

The notion of a solution for (1.1), (1.2) still has to specified more pre-
cisely. Considering the equations in a pointwise sense, which will be pursued
in this chapter, the functions in (1.1), (1.2) have to exist, and the equations
have to be satisfied pointwise. Since (1.1) is an equation on an open set €2,
there are no implications for the behaviour of « up to the boundary 9€2. To
have a real requirement due to the boundary condition, v has to be at least
continuous up to the boundary, that is, on 2. These requirements can be
formulated in a compact way by means of corresponding function spaces.
The function spaces are introduced more precisely in Appendix A.5. Some
examples are

cQ)
Q) = {u:Q—R|ueC(Q), du exists in Q,
dueC(Q)foralli=1,...,d}.

{u :Q—=R ‘ u continuous in Q} ,

The spaces C*(Q2) for k € N, C(Q), and C*(Q2), as well as C(99Q), are
defined analogously. In general, the requirements related to the (contin-
uous) existence of derivatives are called, a little bit vaguely, smoothness
requirements.

In the following, in view of the finite difference method, f and g will also
be assumed continuous in € and 952, respectively.
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Definition 1.1 Assume f € C(Q) and g € C(99). A function u is called
a (classical) solution of (1.1), (1.2) if u € C?(Q) N C(Q), (1.1) holds for all
x € Q, and (1.2) holds for all x € 9.

1.2 The Finite Difference Method

The finite difference method is based on the following approach: We are
looking for an approximation to the solution of a boundary value problem
at a finite number of points in Q (the grid points). For this reason we
substitute the derivatives in (1.1) by difference quotients, which involve
only function values at grid points in Q and require (1.2) only at grid
points. By this we obtain algebraic equations for the approximating values
at grid points. In general, such a procedure is called the discretization of the
boundary value problem. Since the boundary value problem is linear, the
system of equations for the approximate values is also linear. In general, for
other (differential equation) problems and other discretization approaches
we also speak of the discrete problem as an approzimation of the continuous
problem. The aim of further investigations will be to estimate the resulting
error and thus to judge the quality of the approximative solution.

Generation of Grid Points

In the following, for the beginning, we will restrict our attention to problems
in two space dimensions (d = 2). For simplification we consider the case
of a constant step size (or mesh width) h > 0 in both space directions.
The quantity h here is the discretization parameter, which in particular
determines the dimension of the discrete problem.

? o : ()

=38 e o o @ o o o O o: 0y

m=>5 O: far from boundary

b & close to boundary

Figure 1.1. Grid points in a square domain.

For the time being, let © be a rectangle, which represents the simplest
case for the finite difference method (see Figure 1.1). By translation of the
coordinate system the situation can be reduced to Q = (0,a) x (0,b) with
a,b > 0. We assume that the lengths a, b, and h are such that

a=1lh, b=mh for certainl,m € N. (1.4)
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We define
Qn = {(ih,jh) |i=1,...,1—-1,j=1,....m—1}
) . (1.5)
= {(z,y) €Q|z=ih, y=jhwithi,j € Z}

as a set of grid points in Q in which an approximation of the differential
equation has to be satisfied. In the same way,

O = {(ih,jh) | i€ {0,1},j€{0,...,m}orie{0,...,1}, j € {0,m}}
= {(x,y)689|a::ih, y = jh with i,j € Z}

defines the grid points on 0 in which an approximation of the boundary
condition has to be satisfied. The union of grid points will be denoted by

ﬁh = Qp UOQy,.

Setup of the System of Equations

Lemma 1.2 Let Q := (x — hyxz + h) for x € R, h > 0. Then there exists
a quantity R, depending on uw and h, the absolute value of which can be
bounded independently of h and such that

(1) for ue C?*(Q):

() = w +hR and |R|< %Hu"”oo ,

(2) for ue C?*(Q):
MO ZE=h) b ot (Rl < e

(3) for ue C3(Q):

h) — —h 1
W(p) = LEER @ =) pep g R < L)
2h 6
(4) for ue CHQ):
o () = u(z + h) — 21;1(;) + u(x — h) + 2R and |R| < 1_12||u(4)”00 .

Here the mazimum norm || - ||s (see Appendiz A.5) has to be taken over
the interval of the involved points (x,x + h), (x — h,x), or (x — h,z + h).

Proof: The proof follows immediately by Taylor expansion. As an example
we consider statement 3: From

h? h3
w(z+h) =u(z)+h(x) + 71/’(:3) + Fu’”(m + &) for certain &4 € (0, h)

the assertion follows by linear combination. a
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Notation: The quotient in statement 1 is called the forward difference
quotient, and it is denoted by d%u(x). The quotient in statement 2 is
called the backward difference quotient (0~ u(x)), and the one in statement
3 the symmetric difference quotient (0°u(z)). The quotient appearing in
statement 4 can be written as 9~ 9T u(z) by means of the above notation.

In order to use statement 4 in every space direction for the approximation
of d11u and dxpu in a grid point (ih, jh), in addition to the conditions of
Definition 1.1, the further smoothness properties 9%y, 940y e c(Q)
and analogously for the second coordinate are necessary. Here we use, e.g.,
the notation 93y := 93u/dx} (see (2.16)).

Using these approximations for the boundary value problem (1.1), (1.2),
at each grid point (ih, jh) € Q) we get

7 (u ((i + D)h, jh) — 2u(ih, jh) + u ((i — 1)h, jh)
2
LU (ih,(j +1)h) — 2u(i:2,jh) +u (ih, (j — 1)h))

= (1.6)
= f(ih,jh) + R(ih, jh)h>.

Here R is as described in statement 4 of Lemma 1.2, a function depending
on the solution v and on the step size h, but the absolute value of which can
be bounded independently of h. In cases where we have less smoothness of
the solution u, we can nevertheless formulate the approximation (1.6) for
—Au, but the size of the error in the equation is unclear at the moment.

For the grid points (ih,jh) € 9 no approximation of the boundary
condition is necessary:

u(ih, jh) = g(ih, jh) .

If we neglect the term RA? in (1.6), we get a system of linear equations
for the approximating values u;; for u(z,y) at points (z,y) = (ih, jh) € Q.
They have the form

1
75 (= i1 =i Ay = iy — i) = i (L.7)
fori=1,...;0—1,5=1,....m—1,
Uij = Gij ifie{0,i},j=0,...,morje{0,m},i=0,...,01. (1.8)

Here we used the abbreviations

fij = f(lhvjh)v Gij = g(lhajh) : (19)

Therefore, for each unknown grid value u;; we get an equation. The grid
points (ih, jh) and the approximating values u;; located at these have a
natural two-dimensional indexing.

In equation (1.7) for a grid point (4,5) only the neighbours at the four
cardinal points of the compass appear, as it is displayed in Figure 1.2. This
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interconnection is also called the five-point stencil of the difference method
and the method the five-point stencil discretization.

Yy (i,§+1)
[ ]

(ifl’j) (11]) (’L+1,j)
[ ] [ ] [ ]

(ifjfl)
[ ]

Figure 1.2. Five-point stencil.

At the interior grid points (z,y) = (ih,jh) € Qp, two cases can be
distinguished:

(1) (¢,7) has a position such that its all neighbouring grid points lie in
Qp, (far from the boundary).

(2) (i,7) has a position such that at least one neighbouring grid point

(r,s) lies on 99y, (close to the boundary). Then in equation (1.7) the
value uys is known due to (1.8) (urs = grs), and (1.7) can be modified
in the following way:
Remove the values u,s with (rh, sh) € 9y, in the equations for (7, j)
close to the boundary and add the value g,s/h? to the right-hand
side of (1.7). The set of equations that arises by this elimination of
boundary unknowns by means of Dirichlet boundary conditions we
call (1.7)*; it is equivalent to (1.7), (1.8).

Instead of considering the values u;;, i =1,...,01—-1,7=1,...,m —1,
one also speaks of the grid function up : Qn — R, where up(ih, jh) = u;;
fori=1,...,1—1, j=1,...,m — 1. Grid functions on 99, or on €, are
defined analogously. Thus we can formulate the finite difference method
in the following way: Find a grid function u; on Qj such that equations
(1.7), (1.8) hold, or, equivalently find a grid function up on € such that

equations (1.7)* hold.

Structure of the System of Equations
After choosing an ordering of the u;; for ¢ = 0,...,1, 7 = 0,...,m, the
system of equations (1.7)* takes the following form:

Apup = qy, (1.10)

with Ay, € RMuMand wy, g, € RM1) where My = (I — 1)(m — 1).

This means that nearly identical notations for the grid function and its
representing vector are chosen for a fixed numbering of the grid points.
The only difference is that the representing vector is printed in bold. The
ordering of the grid points may be arbitrary, with the restriction that the
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points in €2, are enumerated by the first M; indices, and the points in 02y,
are labelled with the subsequent M = 2(I + m) indices. The structure of
Ap, is not influenced by this restriction.

Because of the described elimination process, the right-hand side g;, has
the following form:

a,=—Ang+ 1, (1.11)
where g € RM2 and f € RM: are the vectors representing the grid functions
frn:Qp—=R and g,:00, —R

according to the chosen numbering with the values defined in (1.9). The
matrix A;, € RM1M2 hag the following form:

. N if the node 7 is close to the boundary
(Apn)i; = and j is a neighbour in the five-point stencil,

0 otherwise .
(1.12)
For any ordering, only the diagonal element and at most four further entries
in a row of Ay, defined by (1.7), are different from 0; that is, the matrix is
sparse in a strict sense, as is assumed in Chapter 5.
An obvious ordering is the rowwise numbering of € according to the
following scheme:

(h,b—h) (2h,b—h) . (a—hb—h)
(-1)(m-2)+1  (I-1)(m—2)+2 (I-1)(m—1)
(h,b—2h) (2h,b—2h) . (a—hb—2h)
(I-1)(m=3)+1  (I-1)(m—3)+2 (I-1)(m—2)
: : : (1.13)
(h,2h) (2h,2h) ... (a—h2n)
l +1 2[—-2
(h,h) (2h,h) ... (a=hh)
1 2 -1

Another name of the above scheme is lexicographic ordering. (However,
this name is better suited to the columnwise numbering.)

In this case the matrix Ay has the following form of an (m—1) x (m—1)
block tridiagonal matrix:

T —I
I T —I 0
Ay = h~2 R (1.14)
0 I T —I

-1 T
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with the unit matrix I € RI-11-1 and
4 -1

T = e RI-LL,
0 -1 4 -1
-1 4
We return to the consideration of an arbitrary numbering. In the fol-

lowing we collect several properties of the matrix A, € RMuMi and the
extended matrix

Ay = (Ah ‘ Ah) e RMuM

where M_:: M; + M. The matrix flh takes into account all the grid
points in 2. It has no relevance with the resolution of (1.10), but with the
stability of the discretization, which will be investigated in Section 1.4.

. (Ap),, >0 forallr=1,..., M,
. (Ap)ps <0 forallr=1,...,M;, s=1,..., M such that r # s,

M, >0 forallr=1,..., M,
i Z (An), if r belongs to a grid point close to (1.15)
— >0
s=1 the boundary,
M ~
° Z(Ah)Ts:O forall r =1,..., My,
s=1

° Ay, is irreducible,

° Ayj, is regular.

Therefore, the matrix Aj is weakly row diagonally dominant (see Ap-
pendix A.3 for definitions from linear algebra). The irreducibility follows
from the fact that two arbitrary grid points may be connected by a path
consisting of corresponding neighbours in the five-point stencil. The reg-
ularity follows from the irreducible diagonal dominance. From this we
can conclude that (1.10) can be solved by Gaussian elimination without
pivot search. In particular, if the matrix has a band structure, this will be
preserved. This fact will be explained in more detail in Section 2.5.
The matrix Ay has the following further properties:

e A is symmetric,
e Ay is positive definite.

It is sufficient to verify these properties for a fixed ordering, for example the
rowwise one, since by a change of the ordering matrix, A is transformed
to PA,PT with some regular matrix P, by which neither symmetry nor
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positive definiteness is destroyed. Nevertheless, the second assertion is not
obvious. One way to verify it is to compute eigenvalues and eigenvectors
explicitly, but we refer to Chapter 2, where the assertion follows naturally
from Lemma 2.13 and (2.36). The eigenvalues and eigenvectors are specified
in (5.24) for the special case | = m = n and also in (7.60). Therefore, (1.10)
can be resolved by Cholesky’s method, taking into account the bandedness.

Quality of the Approximation by the Finite Difference Method
We now address the following question: To what accuracy does the grid
function wy, corresponding to the solution wj, of (1.10) approximate the
solution w of (1.1), (1.2)?

To this end we consider the grid function U : Q) — R, which is defined
by

U(ih,jh) := u(ih, jh). (1.16)

To measure the size of U — uy,, we need a norm (see Appendix A.4 and also
A5 for the subsequently used definitions). Examples are the mazimum
norm

lun — Ullow = _max|(u, — U) (ih, jh)| (1.17)

and the discrete L2-norm

- 1/2
llun — Ullo.n := h(Z ((up — U)(ih,jh))2> . (1.18)

Both norms can be conceived as the application of the continuous norms
| - ||loo of the function space L>(2) or || - ||o of the function space L?(£2)
to piecewise constant prolongations of the grid functions (with a special
treatment of the area close to the boundary). Obviously, we have

lonllo.n < Vab [lvn o

for a grid function vy, but the reverse estimate does not hold uniformly in
h, so that || - || is a stronger norm. In general, we are looking for a norm
Il - |5 in the space of grid functions in which the method converges in the
sense

lup = Ul|lp — 0 for h —0

or even has an order of convergence p > 0, by which we mean the existence
of a constant C' > 0 independent of h such that

||uh — U||h <ChP.
Due to the construction of the method, for a solution u € C*(Q) we have

AU =q, + R,
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where U and R € RM1 are the representations of the grid functions U and
R according to (1.6) in the selected ordering. Therefore, we have:

Ap(up, —U) = —h*R
and thus
|Ap(up — U)|,, = h?|R| = Ch?

with a constant C(= |R|s) > 0 independent of h.
From Lemma 1.2, 4. we conclude that

1
0 = 35 (194 Vu]oo + 10 Dullsc) -

That is, for a solution u € C*(Q) the method is consistent with the bound-
ary value problem with an order of consistency 2. More generally, the notion
takes the following form:

Definition 1.3 Let (1.10) be the system of equations that corresponds to
a (finite difference) approximation on the grid points €2, with a discretiza-
tion parameter h. Let U be the representation of the grid function that
corresponds to the solution u of the boundary value problem according to
(1.16). Furthermore, let || - ||, be a norm in the space of grid functions
on €, and let | - |;, be the corresponding vector norm in the space RMin,
where M7, is the number of grid points in €. The approximation is called
consistent with respect to || - || if

|[AnU — gp|ln — 0 for h—0.
The approximation has the order of consistency p > 0 if
|[ApU — gyl < ChP
with a constant C' > 0 independent of h.

Thus the consistency or truncation error ApU — q;, measures the quality
of how the exact solution satisfies the approximating equations. As we have
seen, in general it can be determined easily by Taylor expansion, but at
the expense of unnaturally high smoothness assumptions. But one has to
be careful in expecting the error |up, — U, to behave like the consistency
error. We have

|up, — U‘h = |A;1Ah(uh - U)|h < HA;IHh | An(un — U)|h , o (1.19)

where the matrix norm || - ||, has to be chosen to be compatible with the
vector norm |-|,. The error behaves like the consistency error asymptotically
in h if HA;1 ||h can be bounded independently of h; that is if the method
is stable in the following sense:

Definition 1.4 In the situation of Definition 1.3, the approximation is
called stable with respect to || - || if there exists a constant C' > 0
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independent of h such that
4z, = ©-

From the above definition we can obviously conclude, with (1.19), the
following result:

Theorem 1.5 A consistent and stable method is convergent, and the order
of convergence is at least equal to the order of consistency.

Therefore, specifically for the five-point stencil discretization of (1.1),
(1.2) on a rectangle, stability with respect to || - ||oo is desirable. In fact, it
follows from the structure of Aj: Namely, we have

1
4, < 1—6(a2 +b?) . (1.20)
This follows from more general considerations in Section 1.4 (Theo-

rem 1.14). Putting the results together we have the following theorem:

Theorem 1.6 Let the solution u of (1.1), (1.2) on a rectangle Q be
in C*(Q). Then the five-point stencil discretization has an order of
convergence 2 with respect to || - ||, more precisely,

1
[un = Ul < 155(0® +6) (04Oulloc + 00Dl ) b

Exercises

1.1 Complete the proof of Lemma 1.2 and also investigate the error of
the respective difference quotients, assuming only u € C?[x — h,z + h.

1.2 Generalize the discussion concerning the five-point stencil discretiza-
tion (including the order of convergence) of (1.1), (1.2) on a rectangle for
h1 > 0 in the x7 direction and hs > 0 in the x5 direction.

1.3 Show that an irreducible weakly row diagonally dominant matrix
cannot have vanishing diagonal elements.

1.3 Generalizations and Limitations of the Finite
Difference Method

We continue to consider the boundary value problem (1.1), (1.2) on a rect-
angle §2. The five-point stencil discretization developed may be interpreted
as a mapping —Ay, from functions on €2 into grid functions on €2, which
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is defined by
1
—Apvp(z1, 32) 1= j{: cijun(z1 + th, 22 + jh) (1.21)

ij=—1

where coo = 4/h? co1 = c10 = co,—1 = c—10 = —1/h?, and ¢;; = 0 for
all other (7, 7). For the description of such a difference stencil as defined
in (1.21) the points of the compass (in two space dimensions) may also
be involved. In the five-point stencil only the main points of the compass
appear.

The question of whether the weights c;; can be chosen differently such
that we gain an approximation of —Aw with higher order in h has to be
answered negatively (see Exercise 1.7). In this respect the five-point stencil
is optimal. This does not exclude that other difference stencils with more
entries, but of the same order of convergence, might be worthwhile to con-
sider. An example, which will be derived in Exercise 3.11 by means of the
finite element method, has the following form:

8

C00= 573 Cii = g3 for all other i,j € {—1,0,1} . (1.22)

This nine-point stencil can be interpreted as a linear combination of the
five-point stencil and a five-point stencil for a coordinate system rotated by
T (with step size V2 h), using the weights 3 and 2 in this linear combina-
tion. Using a general nine-point stencil a method with order of consistency
greater than 2 can be constructed only if the right-hand side f at the point
(x1,x2) is approximated not by the evaluation f(x1,x2), but by applying
a more general stencil. The mehrstellen method (“Mehrstellenverfahren”)
defined by Collatz is such an example (see, for example, [15, p. 66]).

Methods of higher order can be achieved by larger stencils, meaning
that the summation indices in (1.21) have to be replaced by k and —Fk,
respectively, for k& € N. But already for k& = 2 such difference stencils
cannot be used for grid points close to the boundary, so that there one has
to return to approximations of lower order.

If we consider the five-point stencil to be a suitable discretization for
the Poisson equation, the high smoothness assumption for the solution in
Theorem 1.6 should be noted. This requirement cannot be ignored, since
in general it does not hold true. On the one hand, for a smoothly bounded
domain (see Appendix A.5 for a definition of a domain with C!-boundary)
the smoothness of the solution is determined only by the smoothness of the
data f and g (see for example [13, Theorem 6.19]), but on the other hand,
corners in the domain reduce this smoothness the more, the more reentrant
the corners are. Let us consider the following examples:

For the boundary value problem (1.1), (1.2) on a rectangle (0,a) x (0, b)
we choose f = 1 and g = 0; this means arbitrarily smooth functions.
Nevertheless, for the solution u, the statement u € C?(f2) cannot hold,
because otherwise, —Au(0,0) = 1 would be true, but on the other hand,
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we have 01 1u(z,0) = 0 because of the boundary condition and hence also
01,1u(0,0) = 0 and 92 2u(0,y) = 0 analogously. Therefore, 93 2u(0,0) = 0.
Consequently, —Au(0,0) = 0, which contradicts the assumption above.
Therefore, Theorem 1.6 is not applicable here.

In the second example we consider the domain with reentrant corner (see
Figure 1.3)

Q:{(x,y)€R2|m2+y2<1,x<00ry>0}.

In general, if we identify R? and C, this means (x,y) € R? and z = z +iy €
C, we have that if w: C — C is analytic (holomorphic), then both the real
and the imaginary parts Rw, Sw : C — R are harmonic, which means that
they solve —Au = 0.

YA

Figure 1.3. Domain Q2 with reentrant corner.

We choose w(z) := 2%/3. Then the function u(z,y) := S ((z +iy)*/?)
solves the equation

—Au=0 in Q.

In polar coordinates, x = r cos ¢, y = rsin ¢, the function u takes the form

u(z,y) =S ((rew)2/3) — 12/3gin <§¢> .

Therefore, u satisfies the boundary conditions

; 2
u(e'¥) = sin <§<p> for 0 < < 3; , (1.23)
u(z,y) = 0 otherwise on 0f .

But note that w'(z) = 2271/3 is unbounded for z — 0, so that 9iu, Gau

z
are unbounded for (z,y) — 0. Therefore, in this case we do not even have
u e CHQ).

The examples do not show that the five-point stencil discretization is not
suitable for the boundary value problems considered, but they show the ne-
cessity of a theory of convergence, which requires only as much smoothness
as was to be expected.

In the following we discuss some generalizations of the boundary value
problems considered so far.
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General Domains Q2

We continue to consider (1.1), (1.2) but on a general domain in R?, for

which the parts of the boundary are not necessarily aligned to the coor-

dinate axes. Therefore we can keep the second equation in (1.5) as the

definition of Qp, but have to redefine the set of boundary grid points 0€2,.
For example, if for some point (z,y) € Q) we have

(z —h,y) ¢ Q,
then there exists a number s € (0, 1] such that
(x —dh,y) €Q forall ¥ €]0,s) and (x—sh,y)¢ Q.
Then (z — sh,y) € 01, and therefore we define
(x — sh,y) € Oy, .

The other main points of the compass are treated analogously. In this
way the grid spacing in the vicinity of the boundary becomes variable; in
particular, it can be smaller than h.

For the quality of the approximation we have the following result:

Lemma 1.7 Let Q = (x — hy,x + ha) for x € R, hy, ha > 0.
(1) Then for u € C3(%),
W) = 2 <u(:c +he) —u(z)  u(r) —ulr - hl))
hi + ho ho hy
+max {hi,h2} R,

where R is bounded independently of hy, ho.
(2) There are no a, 8,y € R such that
u’ () = au(x — hy) + Bu(x) + yu(x + he) + Rih? + Roh3
for all polynomials w of degree 3 if hy # hs.

Proof: Exercises 1.4 and 1.5. O

This leads to a discretization that is difficult to set up and for which the
order of consistency and order of convergence are not easily determined.

Other Boundary Conditions
We want to consider the following example. Let 02 = I'y UT's be divided
into two disjoint subsets. We are looking for a function u such that

—Au = f inQ,
ou:=Vu-v = g only, (1.24)
u = 0 onlyg,

where v : 9Q — R? is the outer unit normal, and thus d,u is the normal
derivative of u.
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For a part of the boundary oriented in a coordinate direction, d,u is
just a positive or negative partial derivative. But if only grid points in
Qy, are to be used, only £0Tu and 40~ u respectively (in the coordinates
orthogonal to the direction of the boundary) are available directly from
the above approximations with a corresponding reduction of the order of
consistency. For a boundary point without these restrictions the question
of how to approximate J,u appropriately is open.

As an example we consider (1.24) for a rectangle Q = (0, a) x (0, b), where

Iy = {(a,y) | Yy € (O,b)}, I's:=T \ I'y. (125)

At the boundary grid points (a,jh), j = 1,...,m — 1, du = Vu-v
is prescribed, which can be approximated directly only by 0~ u. Due to
Lemma 1.2, 2 this leads to a reduction in the consistency order (see Ex-
ercise 1.8). The resulting system of equations may include the Neumann
boundary grid points in the set of unknowns, for which an equation with
the entries 1/h in the diagonal and —1/h in an off-diagonal corresponding
to the eastern neighbour (a — h, jh) has to be added. Alternatively, those
boundary points can be eliminated, leading for the eastern neighbour to a
modified difference stencil (multiplied by h?)

~1
-1 3 (1.26)
~1

for the right-hand side h%f(a — h, jh) + hg(a, jh). In both cases the matrix
properties of the system of equations as collected in (1.15) still hold, with
the exception of Ziw:ll(Ah)rs = 0, both for the Neumann boundary points
and their neighbours, if no Dirichlet boundary point is involved in their
stencil. Thus the term “close to the boundary” has to be interpreted as
“close to the Dirichlet boundary.”

If one wants to take advantage of the symmetric difference quotient 9%u,
then “artificial” values at new external grid points (a + h, jh) appear.

To keep the balance of unknowns and equations, it can be assumed that
the differential equation also holds at (a,jh), and thus it is discretized
with the five-point stencil there. If one attributes the discrete boundary
condition to the external grid point, then again the properties (1.15) hold
with the abovementioned interpretation. Alternatively, the external grid
points can be eliminated, leading to a modified difference stencil (multiplied
by h?) at (a, jh):

-1
—2 4 (1.27)
-1

for the right-hand side h%f(a, jh)+2hg(a, jh), with the same interpretation
of properties (1.15).
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More General Differential Equations
As an example we consider the differential equation

—V-(kVu)=f onQ (1.28)

with a continuous coefficient function k : Q — R, which is bounded from
below by a positive constant on 2. This equation states the conservation
of an extensive quantity u whose flux is —kVu (see Section 0.5). This
should be respected by the discretization, and therefore the form of (1.28)
obtained by working out the derivatives is not recommended as a basis for
the discretization. The differential expression in (1.28) can be discretized
by a successive application of central difference quotients, but then again
the order of consistency has to be investigated.

In addition, one has to take into account the fact that the smoothness of
u depends on the smoothness of k. If processes in heterogeneous materials
have to be described, then k is often discontinuous. In the simplest example
k is assumed to take two different values: Let 2 = Q1 U Q9 and

k‘|91:/€1>0, k|92:k2>0

with constants ki # ko. o
As worked out in Section 0.5, on the interior boundary S := 2; Ny a
transmission condition has to be imposed:

e 1 is continuous,

e (kVu) - v is continuous, where v is the outer normal on 0, for
example.

This leads to the following conditions on u;, being the restrictions of u on
Q; fori=1,2:

—kiAuy = f inQq, (1.29)
—koAus = f in sy,
up = ug on S, (1.30)
kiO,u1 = koOy,us onS.

In this case the question of an appropriate discretization is also open.

Summarizing, we have the following catalogue of requirements: We are
looking for a notion of solution for (general) boundary value problems with
nonsmooth coefficients and right-hand sides such that, for example, the
transmission condition is fulfilled automatically.

We are looking for a discretization on general domains such that, for
example, the (order of) convergence can also be assured for less smooth
solutions and also Neumann boundary conditions as in (1.24) can be treated
easily.

The finite element method in the subsequent chapters will fulfil these
requirements to a large extent.
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Exercises

1.4 Prove Lemma 1.7, 1.

1.5 Under the assumption that u : Q@ C R — R is a sufficiently smooth
function, determine in the ansatz

au(z — h1) + pu(x) + yu(z + h2) , hi,he >0,
the coefficients o = «a(hy, he), 8 = B(h1, ha), ¥ = v(h1, ha), such that

(a) for z € Q, u/(z) will be approximated with the order as high as
possible,

(b) for x € Q, u”(z) will be approximated with the order as high as
possible,

and in particular, prove 1.7, 2.
Hint: Determine the coefficients such that the formula is exact for
polynomials with the degree as high as possible.

1.6 Let Q C R? be a bounded domain. For a sufficiently smooth function
u : 2 — R determine the difference formula with an order as high as
possible to approximate d11u(z1,z2), using the 9 values u(xy + y1h, z2 +
72h)7 where V1,72 € {71,07 1}

1.7 Let Q@ C R? be a bounded domain. Show that in (1.21) there exists
no choice of ¢;; such that for an arbitrary smooth function u : 2 — R,

|Au(z) — Apu(z)| < Ch3

is valid with a constant C' independent of h.

1.8 For the example (1.24), (1.25), investigate the order of consistency
both for the discretization (1.26) and (1.27) in the maximum norm. Are
there improvements possible considering the discrete L2-norm? (See (1.18).)

1.9 Consider example (1.24) with

I'yi={(a,y) |y € (0,0)} U{(z,0) [z € (0,a]},
Fg =T \ Fl,

and discuss the applicability of the one-sided and the symmetric differ-
ence quotients for the approximation of the Neumann boundary condition,
in particular with respect to properties (1.15). In which way does the
boundary condition at (a,b), where no unique normal exists, have to be
interpreted?
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1.10 Generalize the discussion concerning the five-point stencil dis-
cretization (including the order of convergence) to the boundary value
problem

—Au+ru = f in§,
u = g ondf,

for r > 0 and Q := (0,a) x (0,b). To approximate the reactive term ru, the
following schemes in the notation of (1.21) are to be used:

(a) co0 =1, ¢ij =0 otherwise,

(b) co0 > 0, ¢o01,¢1,0,¢0,—1,¢—10 > 0, ¢;; = 0 otherwise, and
1
E:%j=_16w'4—1.

1.4 Maximum Principles and Stability

In this section the proof of the stability estimate (1.20), which is still miss-
ing, will be given. For this reason we develop a more general framework, in
which we will then also discuss the finite element method (see Section 3.9)
and the time-dependent problems (see Section 7.5). The boundary value
problem (1.1), (1.2) satisfies a (weak) maximum principle in the following
sense: If f is continuous and f(x) <0 for all x € Q (for short f <0), then

max u(z) < max u(zx) .

z€Q €00

This mazimum principle is also strong in the following sense: The maxi-

mum of u on Q can be attained in Q only if u is constant (see, for example,
[13], also for the following assertions). By exchanging u, f, g by —u, — f, —g,
respectively, we see that there is an analogous (strong) minimum principle.
The same holds for more general linear differential equations as in (1.28),
which may also contain convective parts (this means first-order deriva-
tives). But if the equation contains a reactive part (this means without
derivatives), as in the example

—Au+ru=f inQ

with a continuous function r : 2 — R such that r(x) > 0 for = € €, there
is a weak maximum principle only in the following form: If f <0, then

max u(z) < max{m@x u(x), O} .
zeQ z€0Q

The weak maximum principle directly implies assertions about the de-
pendence of the solution u of the boundary value problem on the data f
and g; this means stability properties. One can also follow this method in
investigating the discretization. For the basic example we have
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Theorem 1.8 Let uy, be a grid function on Qy, defined by (1.7), (1.8) and
suppose fi; <0 foralli=1,...,1-1,5=1,...,m—1. Then if up, attains
its mazimum on Qp U 0Q} at a point (igh, joh) € Qp, then the following
holds:

up, is constant on Qp, U 082, .
Here
o = 00, \ {(0,0), (a,0), (0,b), (a,b)} .
In particular, we have

max up(x < max up(x )
(z,y)€Q h( ay) _(x,y)eaﬂ;'; h( ,y)

Proof: Let @ := up(ioh, joh). Then because of (1.7) and f;; < 0 we have
< Y up(kh,lh) < A4a,
(k’l)eN(iOajo)
since in particular up(kh,lh) < u for (k,1) € N
notation
N(io’jo) = {((20 - 1))j0)a ((ZO + 1)7j0)7 (i07 (.70 + 1))7 (iOa (.70 - 1))}

for the set of indices of neighbours of (igh, joh) in the five-point stencil.
From these inequalities we conclude that

up(kh,lh) =u for (k,1) € N, jo) -

io,jo)- Here we used the

If we apply this argument to the neighbours in €, of the grid points (kh, [h)
for (k,1) € N, j,) and then continue in the same way to the sets of neigh-
bours in €2, arising in every such step, then finally, for each grid point
(ih, jh) € Q, U 0Q;, the claimed identity up(ih, jh) = @ is achieved. |

The exceptional set of vertices 9€y, \ 082} does not participate in any
difference stencil, so that the values there are of no relevance for uy,.

We want to generalize this result and therefore consider a system of
equations as in (1.10), (1.11):

Apup, = q), = —Apay, + f, (1.31)

where A;, € RM1M1 a5 in (1.10), Aj, € RMuM:2 yg i (1.11), up, f € RM1,
and 4, € RM2. This may be interpreted as the discretization of a bound-
ary value problem obtained by the finite difference method or any other
approach and without restrictions on the dimensionality of the domain.
At least on one part of the boundary Dirichlet boundary conditions are re-
quired. Then the entries of the vector uy, can be interpreted as the unknown
values at the grid points in 5 U 8(221), where 8(221) correspond to a part
of 9 (with flux or mixed boundary condition). Analogously, the vector iy,
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(indexed from M; + 1 to My + M>) corresponds to the values fixed by the
Dirichlet boundary conditions on 89;12). Again let M = M7 + M> and

Ay = (Ah ‘ /Alh) e RMuM

This means in particular that the dimensions M; and Ms are not fixed,
but are in general unbounded for h — 0.

Oriented on (1.15) we require the following general assumptions for the
rest of the section:

(1) (Ap)rr >0 forallr=1,..., M,
(2) (Ap)rs <0 forall r,s=1,...,M; such that r # s,

M
3) () S (Ap)ys >0 forallr=1,..., M,
s=1
(ii) for at least one index the strict inequality holds,
(4) Ay, is irreducible, (1.32)
(5) (Ah)mgo forallr=1,..., My, s=M;+1,...,M,
Mo
(6) > (Ap)rs >0 forallr=1,...,M;,
s=1

(7) for every s = M7 +1,..., M there exists r € {1,..., M}
such that (Ah)rs #0.

Generalizing the notation above for r € {1,...,M;}, the indices s €
{1,..., M} \ {r} are called neighbours, for which (Ap,),s # 0, and they are
assembled to form the set N,.. Therefore, the irreducibility of A; means
that arbitrary r,s € {1,...,M;} can be connected by neighbourhood
relationships.

The condition (7) is not a restriction: It only avoids the inclusion of
known values (@y)s that do not influence the solution of (1.31) at all. For
the five-point stencil on the rectangle, these are the values at the corner
points. Because of the condition (7), every index r € {M; + 1,..., M}
is connected to every index s € {1,..., M1} by means of neighbourhood
relationships.

The conditions (2) and (3) imply the weak diagonal dominance of Ap,.
Note that the conditions are formulated redundantly: The condition (3)
also follows from (5) through (7).

To simplify the notation we will use the following conventions, where u,
v and A, B are vectors and matrices, respectively, of suitable dimensions:

u > 0 if and only if (u); > 0 for all indices i,

u > v ifandonlyif w—v > 0, (1.33)
A > 0 ifandonlyif (A);; > 0 for all indices (¢,5), ’

A > B ifandonlyif A—B > 0.
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Theorem 1.9 We consider (1.31) under the assumptions (1.32). Fur-
thermore, let f < 0. Then a strong maximum principle holds: If the

components of up = (g’h) attain a nonnegative maximum for some in-
dex r € {1,..., M}, then all the components are equal. In particular, a

weak maximum principle is fulfilled:

up)r < ; wn)r ¢ - 1.34
e 22 () < maX{O re i (8 } (134
Proof: Let & = maxseq, . my(@n)s, and 4 = (up), where r €

{1,..., M}. Because of (1.32) (2), (5), (6) the rth row of (1.31) implies

(At < = > (An),(@n)s = Y |(An), | (@n)s
SEN, . SEN, (1.35)
< 2 (), Ju < (An)na,
SEN,

where the assumption @ > 0 is used in the last estimate. Therefore, ev-
erywhere equality has to hold. Since the second inequality is valid also
for every single term and (Ay),s # 0 by the definition of N,., we finally
conclude that

(ap)s =u forall s € N, .

This allows us to apply this argument to all s € N, N {1,..., M}, then
to the corresponding sets of neighbours, and so on, until the assertion is
proven. O

The requirement of irreducibility can be weakened if instead of (1.32) (6)
we have

Mo
(6)* > (An),, =0 forallr=1,...,M .
s=1
Then condition (4) can be replaced by the requirement

(4)* For every r; € {1,..., M;} such that

My
Z(Ah)ms =0 (1'36)
s=1

there are indices rg, ..., 741 such that

(Ap)rir 70 fori=1,...,1

and
My

D (An)ryrs >0 (1.37)

s=1

These modified conditions without (7) will be denoted by (1.32)".
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Motivated by the example above we call a point r € {1,..., M1} far from
the boundary if (1.36) holds, and close to the boundary if (1.37) holds, and
the points r € {M; + 1,..., M} are called boundary points.

Theorem 1.10 We consider (1.31) under the assumption (1.32)*.
If f <0, then

7 < u . 1.38
ey B0 S (B e

Proof: We use the same notation and the same arguments as in the
proof of Theorem 1.9. In (1.35) in the last estimate equality holds, so that
no sign conditions for @ are necessary. Because of (4)* the maximum will
also be attained at a point close to the boundary and therefore also at
its neighbours. Because of (6)* a boundary point also belongs to these
neighbours, which proves the assertion. O

From the maximum principles we immediately conclude a comparison
principle:
Lemma 1.11 We assume (1.32) or (1.32)*.
Let wpy, unz € RM1 be solutions of
Apupy = — At + f; fori=1,2
for given f1, fy € RM1, du ity € RM2, which satisfy f, < fy, itn1 <

ﬁhg . Then

upy < Up2 .

Proof: From Ap(upi —upe) = —Ah(ﬂhl —tp2)+ f1 — fo we can conclude
with Theorem 1.9 or 1.10 that
— »<0.
- {rl?‘ijch}(uM Up2)r <
O

This implies in particular the uniqueness of a solution of (1.31) for
arbitrary u, and f and also the regularity of Aj.

In the following we denote by 0 and 0 the zero vector and the zero
matrix, respectively, where all components are equal to 0. An immediate
consequence of Lemma 1.11 is the following

Theorem 1.12 Let A;, € RMM be o matriz with the properties (1.32)
(1)-(3) (i), (4)*, and uj, € RM:. Then

Apup >0 implies up > 0. (1.39)

Proof: To be able to apply Lemma 1.11, one has to construct a matrix
A € RM1Mz gych that (1.32)* holds. Obviously, this is possible. Then one
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can choose

Up2 :=Up,  fo:=Apunz,  Up2:=0,

up =0, fi1=0, Up1 =0
to conclude the assertion. Because of up; := 0 for ¢ = 1,2 the specific
definition of A plays no role. ]

A matrix with the property (1.39) is called inverse monotone. An
equivalent requirement is

v, >0 = A 'v,>0,
and therefore by choosing the unit vectors as vy,
-1
A >0.

Inverse monotone matrices that also satisfy (1.32) (1), (2) are called M-
matrices.

Finally, we can weaken the assumptions for the validity of the comparison
principle.

Corollary 1.13 Suppose that A, € RMuMi s inyerse monotone and
(1.32) (5) holds. Let up1,unz € RM be solutions of

Apupy = — At + f; fori=1,2

for given fi, fo € RM duy,1, tty0 € RM2 that satisfy f1 < fo, tn1 < @pa.
Then

upy < Up2 .

Proof: Multiplying the equation
Ap(unt — un2) = —Ap (@1 — @n2) + f1 — fo
from the left by the matrix A;l, we get

upt — upe = — Ay Ay (i — ane) + A (F — fa) <0.
~ N — e —
>0 <0 <0 >0 <0

O
The importance of Corollary 1.13 lies in the fact that there exist
discretization methods, for which the matrix A, does not satisfy, e.g., con-
dition (1.32) (6), or (6)* but A, > 0. A typical example of such a method
is the finite volume method described in Chapter 6.
In the following we denote by 1 a vector (of suitable dimension) whose
components are all equal to 1.

Theorem 1.14 We assume (1.32) (1)—(3), (4)*, (5). Furthermore, let

wg), 'wf) € RM1 be given such that

Apw'V > 1, Aw? > 4,1 (1.40)
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Then a solution of Apupn, = —Ahﬂh + f satisfies
(1) =(|Flooew + ] ow'®) < wp, < |Flocwl) + Jin|oow'?
1 2 .
(2) [unloo < [w}] [ Floo + |[w57] it |oo -

Under the assumptions (1.32) (1)—(3), (4)*, and (1.40) the matriz norm
| - lloo induced by | - |oo satisfies

143l < fw] -

Proof: Since —|f|xl < f < |fleo1 and the analogous statement for iy,

(2)

is valid, the vector vy, := |f|oo'w(1) + |Up|ow),’ — uy, satisfies

Apvp, > |Flool = f = Ap ([ttn]ool — @) > 0,

where we have also used fflh > 0 in the last estimate. Therefore, the right
inequality of (1) implies from Theorem 1.12 that the left inequality can be
proven analogously. The further assertions follow immediately from (1). O

Because of the inverse monotonicity and from (1.32) (5) the vectors pos-

tulated in Theorem 1.14 have to satisfy whz > 0 necessarily for ¢ = 1, 2.
Thus stability with respect to || - [« of the method defined by (1.31) as-
suming (1.32) (1)—(3), (4)* is guaranteed if a vector 0 < wj;, € RM! and a
constant C > 0 independent of h can be found such that

Apbwp >1 and  |wpleo < C. (1.41)

Finally, this will be proven for the five-point stencil discretization (1.1),
(1.2) on the rectangle © = (0,a) x (0,b) for C = 1=(a* + b?).
For this reason we define polynomials of second degree wy, ws by

1 1
wy(z) = 1 z(a—z) and wa(y):= - y(b —y). (1.42)
It is clear that wy(x) > 0 for all x € [0,a] and wg(y) 0 for all y € [0,].
Furthermore, we have w1(0) = 0 = wy(a) and w2(0) = 0 = ws(b), and
1 1

"
w)(z) =—= and w} =——.
() = —3 1) =3
Therefore wy, and wsy are strictly concave and attain their maximum in %

and £, respectively. Thus the function w(z,y) := w; (z) + wa(z) satisfies

—Aw 1 inQ,

w > 0 onodf. (1.43)

Now let wj;, € RM be, for a fixed ordering, the representation of the grid
function wy, defined by

(wp)(ih, jh) == w(ih,jh) fori=1,...;0—1,j=1,....m—1.
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Analogously, let i, € RM2 be the representation of the function y, de-
fined on 9€2}. As can be seen from the error representation in Lemma 1.2,
statement 4, the difference quotient 9~ 9 u(x) is exact for polynomials of
second degree. Therefore, we conclude from (1.43) that

Ahwh = 7Ah’ﬁ)h+1 2 1,

which finally implies

a b 1
whloo = llwnllos < o = w1 (5) +uz(3) = 1(a® +2).
This example motivates the following general procedure to construct wy, €
RM: and a constant C such that (1.41) is fulfilled.
Assume that the boundary value problem under consideration reads in
an abstract form

(Lu)(z) = f(x) for x €,

(Ru)(z) = g(x) for e dQ. (1.44)

Similar to (1.43) we can consider — in case of existence — a solution w
of (1.44) for some f, g, such that f(z) > 1 for all x € , g(x) > 0 for all
x € Q. If w is bounded on 2, then

(wp); =w(x;), i=1,..., M,
for the (non-Dirichlet) grid points x;, is a candidate for wy. Obviously,
[whloo < [wloo -
Correspondingly, we set
(wp); =w(z;) >0, i=M +1,..., M,

for the Dirichlet-boundary grid points.

The exact fulfillment of the discrete equations by wj, cannot be expected
anymore, but in case of consistency the residual can be made arbitrarily
small for small h. This leads to

Theorem 1.15 Assume that a solution w € C(2) of (1.44) exists for data
[ >1and g > 0. If the discretization of the form (1.31) is consistent with
(1.44) (for these data), and there exists H > 0 so that for some & > 0 :

—Apwp + f>al for h<H, (1.45)
then for every 0 < a < & there exists H > 0, so that

Apwp > al for h< H.

Proof: Set

Th = Apwy, + Ah’ll]h —f
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for the consistency error, then

|Thleo = 0 for h—0.

Thus
Apwy, = Thffihﬁ)h+f
> —|Thleel+al for h<H
> ol for h<H
and some appropriate H > 0. O

Thus a proper choice in (1.41) is

1 1
—wp, and C:= —|w| e - (1.46)
a a

The condition (1.45) is not critical: In case of Dirichlet boundary conditions
and (1.32) (5) (for corresponding rows i of Ay,) then, due to (f); > 1, we
can even choose @ = 1. The discussion of Neumann boundary conditions
following (1.24) shows that the same can be expected.

Theorem 1.15 shows that for a discretization with an inverse monotone
system matrix consistency already implies stability.

To conclude this section let us discuss the various ingredients of (1.32)
or (1.32)* that are sufficient for a range of properties from the inverse
monotonicity up to a strong maximum principle: For the five-point stencil
on a rectangle all the properties are valid for Dirichlet boundary conditions.
If partly Neumann boundary conditions appear, the situation is the same,
but now close and far from the boundary refers to its Dirichlet part. In
the interpretation of the implications one has to take into account that the
heterogeneities of the Neumann boundary condition are now part of the
right-hand side f, as seen, e.g., in (1.26). If mixed boundary conditions are
applied, as

Out+au=g on Iy (1.47)

for some I'y C T" and o = () > 0, then the situation is the same again
if au is approximated just by evaluation, at the cost that (4)* no longer
holds. The situation is similar if reaction terms appear in the differential
equation (see Exercise 1.10).

Exercises

1.11 Give an example of a matrix A, € RM1-M2 that can be used in the
proof of Theorem 1.12.

1.12 Show that the transposition of an M-matrix is again an M-matrix.
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1.13 In the assumptions of Theorem 1.9 substitute (1.32) (4) by (4)* and
amend (6) to

(6)% Condition (1.32) (6) is valid and
M, N
> (Ap)rs > 0= there exists s € {My, ..., M} such that (Ap),s < 0.

s=1

Under these conditions prove a weak maximum principle as in Theorem 1.9.

1.14 Assuming the existence of w;, € RMt such that A,w;, > 1 and
|wp|eo < C for some constant C' independent of h, show directly (without
Theorem 1.14) a refined order of convergence estimate on the basis of an
order of consistency estimate in which also the shape of wj, appears.
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The Finite Element Method
for the Poisson Equation

The finite element method, frequently abbreviated by FEM, was devel-
oped in the fifties in the aircraft industry, after the concept had been
independently outlined by mathematicians at an earlier time. Even today
the notions used reflect that one origin of the development lies structural
mechanics. Shortly after this beginning, the finite element method was ap-
plied to problems of heat conduction and fluid mechanics, which form the
application background of this book.

An intensive mathematical analysis and further development was started
in the later sixties. The basics of this mathematical description and analy-
sis are to be developed in this and the following chapter. The homogeneous
Dirichlet boundary value problem for the Poisson equation forms the
paradigm of this chapter, but more generally valid considerations will be
emphasized. In this way the abstract foundation for the treatment of more
general problems in Chapter 3 is provided. In spite of the importance of the
finite element method for structural mechanics, the treatment of the linear
elasticity equations will be omitted. But we note that only a small expense
is necessary for the application of the considerations to these equations.
We refer to [11], where this is realized with a very similar notation.

2.1 Variational Formulation for the Model Problem

We will develop a new solution concept for the boundary value problem
(1.1), (1.2) as a theoretical foundation for the finite element method. For
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such a solution, the validity of the differential equation (1.1) is no longer re-
quired pointwise but in the sense of some integral average with “arbitrary”
weighting functions ¢. In the same way, the boundary condition (1.2) will
be weakened by the renunciation of its pointwise validity.

For the present, we want to confine the considerations to the case of
homogeneous boundary conditions (i.e., g = 0), and so we consider the
following homogeneous Dirichlet problem for the Poisson equation: Given
a function f: Q — R, find a function u : @ — R such that

—Au = f inQ, (2.1)
u = 0 onodQ. (2.2)

In the following let 2 be a domain such that the integral theorem of
Gauss is valid, i.e. for any vector field g : 2 — R? with components in
C(Q) N CH(Q) it holds

/QV ~q(x)dr = /89 v(z)-q(z)do. (2.3)

Let the function u : Q — R be a classical solution of (2.1), (2.2) in the
sense of Definition 1.1, which additionally satisfies u € C1(Q) to facili-
tate the reasoning. Next we consider arbitrary v € C§°(Q2) as so-called test
functions. The smoothness of these functions allows all operations of differ-
entiation, and furthermore, all derivatives of a function v € C§°(2) vanish
on the boundary 9€2. We multiply equation (2.1) by v, integrate the result
over (2, and obtain

F)y = | fa@) de = —/QV-(Vu)(a:)U(a:) dx

I
S— 55—

Vu(z) - Vo(z) de — /aQ Vu(z) - v(z)v(z)do (2.4)

= /QVu(x)~Vv(:c) dx .

The equality sign at the beginning of the second line of (2.4) is obtained
by integration by parts using the integral theorem of Gauss with g = vVu .
The boundary integral vanishes because v = 0 holds on 0f).

If we define, for u € C*(Q), v € C§°(2), a real-valued mapping a by

a(u,v) = /Vu(a:) -Vo(z)de,
Q

then the classical solution of the boundary value problem satisfies the
identity

a(u,v) = (f,v), forallveC5(Q). (2.5)
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The mapping a defines a scalar product on C§°(£2) that induces the norm

full = Valew = { [ |w|2dx}1/2 (2.6

(see Appendix A.4 for these notions). Most of the properties of a
scalar product are obvious. Only the definiteness (A4.7) requires further
considerations. Namely, we have to show that

a(u,u):/Q(Vu~Vu)(x)dx:O — u=0.

To prove this assertion, first we show that a(u,u) = 0 implies Vu(z) = 0
for all z € Q. To do this, we suppose that there exists some point € 2
such that Vu(z) # 0. Then (Vu-Vu)(z) = |Vul?(Z) > 0. Because of
the continuity of Vu, a small neighbourhood G of Z exists with a positive
measure |G| and |Vu|(x) > o > 0 for all z € G. Since |Vu|?(z) > 0 for all
x € (Q, it follows that

/ Vul? () dz > a2 |G| > 0,
Q

which is in contradiction to a(u,u) = 0. Consequently, Vu(z) = 0 holds
for all x € Q; i.e., u is constant in Q. Since u(xz) = 0 for all z € 9, the
assertion follows.

Unfortunately, the space C§°(€2) is too small to play the part of the basic
space because the solution u does not belong to C§°(£2) in general. The
identity (2.4) is to be satisfied for a larger class of functions, which include,
as an example for v, the solution u and the finite element approximation
to u to be defined later.

For the present we define as the basic space V,

Vi={u: Q>R ‘ u € C(Q), d;u exists and is piecewise

continuous for allt =1,...,d, u =0 on 8(2}. (2.7)

To say that 0;u is piecewise continuous means that the domain €2 can be
decomposed as follows:
a=Jo,
J

with a finite number of open sets Q;, with Q; N1 Q; = 0 for j # k, and d;u
is continuous on §2; and it can continuously be extended on ;.
Then the following properties hold:

. a is a scalar product also on V,
° Ce () CV,
. C5°(Q) is dense in V with respect to ||-||q; i.e., foranyu € V' (2.8)

a sequence (Un )nen in CF° () exists such that ||up,—ullq — 0
for n — oo,
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. C§°(9) is dense in V' with respect to || - ||o. (2.9)

The first and second statements are obvious. The two others require a
certain technical effort. A more general statement will be formulated in
Theorem 3.7.

With that, we obtain from (2.5) the following result:

Lemma 2.1 Let u be a classical solution of (2.1), (2.2) and let u € C1(Q).
Then

a(u,v) = (f,v), forallveV. (2.10)

Equation (2.10) is also called a variational equation.

Proof: Let v € V. Then v, € C3°(f2) exist with v, — v with respect
to || - ||o and also to || - ||4. Therefore, it follows from the continuity of the
bilinear form with respect to |- || (see (A4.22)) and the continuity of the
functional defined by the right-hand side v — (f,v)o with respect to || - ||
(because of the Cauchy—Schwarz inequality in L?(£2)) that

(f,on)o — (f,v)o and a(u,v,) — a(u,v) forn — oo.
Since a(u,vy,) = (f, vn)o, we get a(u,v) = (f,v)o. a

The space V in the identity (2.10) can be further enlarged as long as (2.8)
and (2.9) will remain valid. This fact will be used later to give a correct
definition.

Definition 2.2 A function u € V' is called a weak (or variational) solution
of (2.1), (2.2) if the following variational equation holds:

a(u,v) = (f,v), forallveV.

If w models e.g. the displacement of a membrane, this relation is called
the principle of virtual work.

Lemma 2.1 guarantees that a classical solution u is a weak solution.
The weak formulation has the following properties:

e It requires less smoothness: 9;u has to be only piecewise continuous.

e The validity of the boundary condition is guaranteed by the definition
of the function space V.

We now show that the variational equation (2.10) has exactly the same
solution(s) as a minimization problem:

Lemma 2.3 The variational equation (2.10) has the same solutions u € V
as the minimization problem

F(v) - min forallveV, (2.11)
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where

P) = gato0) — Uody (= 5ol = ()

Proof: (2.10) = (2.11):

Let u be a solution of (2.10) and let v € V be chosen arbitrarily. We define
w:=v—u €V (because V is a vector space), i.e., v = u + w. Then, using
the bilinearity and symmetry, we have

P) = salutwutw)— (futw),
= %a(u,u) + a(u,w) + %a(w,w) —(fiu)y — (fyw), (2.12)
— Flu)+ %a(w,w) > Flu),

where the last inequality follows from the positivity of a; i.e., (2.11) holds.
(2.10) < (2.11):

Let u be a solution of (2.11) and let v € V, & € R be chosen arbitrarily. We

define g(¢) := F(u + ev) for € € R. Then

ge) = F(u+ev) > F(u) =g(0) foralle e R,

because u + v € V; i.e., g has a global minimum at ¢ = 0.
It follows analogously to (2.12):

1 g2

9(e) = alu, u) = {f,u)g + € (a(u, v) = (f,v)o) + Fa(v,v).

Hence the function g is a quadratic polynomial in e, and in particular,
g € CY(R) is valid. Therefore we obtain the necessary condition

0=4g'(e) = a(u,v) — (f,v),

for the existence of a minimum at ¢ = 0. Thus u solves (2.10), because
v € V has been chosen arbitrarily. O

For applications e.g. in structural mechanics as above, the minimization
problem is called the principle of minimal potential energy.

Remark 2.4 Lemma 2.3 holds for general vector spaces V if a is a sym-
metric, positive bilinear form and the right-hand side (f, v), is replaced by
b(v), where b : V — R is a linear mapping, a linear functional. Then the
variational equation reads as

find u eV with a(u,v) =b(v) forallveV, (2.13)
and the minimization problem as

findu €V with F(u)=min{F(v)|veV}, (2.14)
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where F(v) := %a(v,v) —b(v).

Lemma 2.5 The weak solution according to (2.10) (or (2.11)) is unique.

Proof: Let ui,us be two weak solutions, i.e.,

a(ulav) = <fa v>0 )
G(UQ,U) = <fa 'U>0 )

forallve V.

By subtraction, it follows that
a(u; —ug,v) =0 forallveV.

Choosing v = u; — ug implies a(u; — ug,u; — uz) = 0 and consequently
u1 = ug, because a is definite. O

Remark 2.6 Lemma 2.5 is generally valid if a is a definite bilinear form
and b is a linear form.

So far, we have defined two different norms on V: || - ||, and || - |lo. The
difference between these norms is essential because they are not equivalent
on the vector space V defined by (2.7), and consequently, they generate
different convergence concepts, as will be shown by the following example:

Example 2.7 Let = (0,1), i.e.

1
a(u,v) ::/ u'v' dx
0
and let v, : Q@ — R for n > 2 be defined by (cf. Figure 2.1)
nx, for 0<zx< %,
vp(x) = 1, for %gxglf%,

n—nx, for 17%§x§1.

Figure 2.1. The function wv,,.

Then
1/2

1
lonlle < {/ 1dq:} _1,
0
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1 1 1/2
lonlla = {/ n2dx+/ nde} =V2n — oo for n — 0o.
0 1-1

Therefore, there exists no constant C' > 0 such that ||v], < C|v]|o for all
veV.

However, as we will show in Theorem 2.18, there exists a constant C' > 0
such that the estimate

[vflo < Cllv]la forallve V

holds; i.e., || - || is the stronger norm.

It is possible to enlarge the basic space V' without violating the previous
statements. The enlargement is also necessary because, for instance, the
proof of the existence of a solution of the variational equation (2.13) or
the minimization problem (2.14) requires in general the completeness of V.
However, the actual definition of V' does not imply the completeness, as
the following example shows:

Example 2.8 Let Q = (0,1) again and therefore

1
a(u,v) := / u'v' dx .
0
For u(z) := 2®(1—x)* with o € (3, 1) we consider the sequence of functions

u(x) for z € [l,l — %] ,

n

Un(z) =4 nu(d)z for z€e0,1],

nu(l—L1)(1—-2) for ze[1-211].
Then

lten, — tm]la — O for n,m — oo,

|t — ullg — O for n — oo,
but u ¢ V, where V is defined analogously to (2.7) with d = 1.

In Section 3.1 we will see that a vector space V normed with || - ||, exists
such that v € V and V C V. Therefore, V is not complete with respect
to || - |la; otherwise, v € V must be valid. In fact, there exists a (unique)
completion of V' with respect to ||-||q (see Appendix A.4, especially (A4.26)),
but we have to describe the new “functions” added by this process. Besides,
integration by parts must be valid such that a classical solution continues to
be also a weak solution (compare with Lemma 2.1). Therefore, the following
idea is unsuitable.

Attempt of a correct definition of V:
Let V be the set of all u with the property that 0;u exists for all z €
without any requirements on d;u in the sense of a function.
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For instance, there exists Cantor’s function with the following properties:
f:100,1] = R, f € C([0,1]), f # 0, f is not constant, f'(x) exists with
f(xz) =0 for all x € [0, 1].

Here the fundamental theorem of calculus, f(z fo f'(s)ds+ f(0), and
thus the principle of integration by parts, are no longer Vahd

Consequently, additional conditions for d;u are necessary.

To prepare an adequate definition of the space V, we extend the definition
of derivatives by means of their action on averaging procedures. In order
to do this, we introduce the multi-index notation.

A vector a = (a1,...,aq) of nonnegative integers «; € {0,1,2,...} is
called a multi-indez. The number |a| := Z?Zl a; denotes the order (or
length) of a.

For z € R let

¥ =t agt . (2.15)

A shorthand notation for the differential operations can be adopted by this:
For an appropriately differentiable function u let

0% == 07" -+ 07w (2.16)

We can obtain this definition from (2.15) by replacing = by the symbolic
vector

\% :(ala"'aad)T

of the first partial derivatives.
For example, if d = 2 and a = (1, 2), then |a| = 3 and
PPu
0% = 010%u = —— .
Y 10 Oz1023

Now let o be a multi-index of length k and let u € C*(2). We then
obtain for arbitrary test functions ¢ € C5°(2) by integration by parts

/80‘u<pdx— (—1)* /u@o‘(pdaﬁ

The boundary integrals vanish because 9%¢ = 0 on 9 for all multi-indices
8.

Therefore, we make the following definition:

Definition 2.9 v € L?() is called the weak (or generalized) derivative
0%u of u € L?(Q) for the multi-index « if for all ¢ € C§°(Q),

/vapdx:(—l)lo“/uaagadx.
Q Q
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The weak derivative is well-defined because it is unique: Let vy,vy €
L?(£2) be two weak derivatives of u. It follows that

/Q(vl —v2)pdr =0 forall p € C5°(Q).

Since C§°(Q) is dense in L?(£2), we can furthermore conclude that
/Q (v1 —va) pdx =0 for all p € L*(Q).

If we now choose specifically ¢ = v; — v9, we obtain
Jor = vl = [ (o1 = va) (01 = ) dz =0,

and v; = vy (a.e.) follows immediately. In particular, u € C*(Q) has weak
derivatives 0%u for o with || < k, and the weak derivatives are identical
to the classical (pointwise) derivatives.

Also the differential operators of vector calculus can be given a weak
definition analogous to Definition 2.9. For example, for a vector field g
with components in L2(), v € L?(2) is the weak divergence v =V - q if

for all ¢ € C§°(2)
/Ugadx:—/q-Vgodx.
Q Q

The correct choice of the space V is the space H{(£2), which will be
defined below. First we define

HY Q) = {u:Q—R|ue L), uhas weak derivatives

2.17
diue L*(Q) foralli=1,...,d}. (2.17)
A scalar product on H'(Q) is defined by
(u,v); == [ w(@)v(z)dr+ / Vu(z) - Vo(z) dz (2.18)
Q Q

with the norm

el = /(o) —{ [P+ [ |w<x>|2dx}1/2 (2.19)

induced by this scalar product.

The above “temporary” definition (2.7) of V takes care of the boundary
condition uw = 0 on 9N by conditions for the functions. L.e. we want to
choose the basic space V analogously as:

Hy(Q) :={ue H'(Q) |u=0 ondQ}. (2.20)
Here H'(Q) and H}(2) are special cases of so-called Sobolev spaces.

For Q C R, d > 2, H'(Q2) may contain unbounded functions. In par-
ticular, we have to examine carefully the meaning of ulsq (02 has the
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d-dimensional measure 0) and, in particular, v = 0 on 9. This will be
described in Section 3.1.

Exercises

2.1

(a) Consider the interval (—1,1); prove that the function u(z) = |z| has
the generalized derivative u'(z) = sign(x).
(b) Does sign(z) have a generalized derivative?

2.2 Let Q = Uf\il Q;, N € N, where the bounded subdomains €; C R?
are pairwise disjoint and possess piecewise smooth boundaries. Show that
a function u € C(Q) with ulg, € C'(), 1 <1 < N, has a weak derivative

Osu € L2(Q), i = 1,2, that coincides in Ul]i1 Q; with the classical one.

2.3 Let V be the set of functions that are continuous and piecewise con-
tinuously differentiable on [0, 1] and that satisfy the additional conditions
u(0) = u(1) = 0. Show that there exist infinitely many elements in V that
minimize the functional

Flu) = /0 (1 - W/ (2))° d.

2.2 The Finite Element Method
with Linear Elements

The weak formulation of the boundary value problem (2.1), (2.2) leads to
particular cases of the following general, here equivalent, problems:

Let V be a vector space, let a : V x V — R be a bilinear form, and let
b:V — R be a linear form.

Variational equation:
Find wu e V. with a(u,v) =b(v) foralveV. (2.21)
Minimization problem:

Findu €V with F(u) = min {F(U) ‘ CAS V} )
) (2.22)
where F(v) = 5&(0,1}) —b(v).

The discretization approach consists in the following procedure: Replace
V by a finite-dimensional subspace V4; i.e., solve instead of (2.21) the finite-
dimensional variational equation,

find up, € V3, with a(up,v) =b(v) forallveV,. (2.23)
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This approach is called the Galerkin method. Or solve instead of (2.22) the
finite-dimensional minimization problem,

find up, € Vi, with  F(us) = min { F(v) ‘ vEVL}. (2.24)
This approach is called the Ritz method.

It is clear from Lemma 2.3 and Remark 2.4 that the Galerkin method
and the Ritz method are equivalent for a positive and symmetric bilinear
form. The finite-dimensional subspace V}, is called an ansatz space.

The finite element method can be interpreted as a Galerkin method (and
in our example as a Ritz method, too) for an ansatz space with special
properties. In the following, these properties will be extracted by means of
the simplest example.

Let V be defined by (2.7) or let V = HZ ().

The weak formulation of the boundary value problem (2.1), (2.2)
corresponds to the choice

a(u,v) :z/QVu-Vvda:, b(v) :z/ﬂfvda:.

Let © C R? be a domain with a polygonal boundary; i.e., the boundary
I' of © consists of a finite number of straight-line segments as shown in
Figure 2.2.

Figure 2.2. Domain with a polygonal boundary.
Let 7, be a partition of € into closed triangles K (i.e., including the
boundary 0K) with the following properties:
(1) @ =Uker K;
(2) For K,K' € Tp,, K # K’,
int (K)Nint (K") =0, (2.25)
where int (K) denotes the open triangle (without the boundary 0K).

(3) If K # K' but KNK' # 0, then KN K’ is either a point or a common
edge of K and K’ (cf. Figure 2.3).

A partition of Q with the properties (1), (2) is called a triangulation
of Q. If, in addition, a partition of ) satisfies property (3), it is called a
conforming triangulation (cf. Figure 2.4).
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not
allowed:

allowed:

Figure 2.3. Triangulations.

The triangles of a triangulation will be numbered Ki,..., Ky. The
subscript h indicates the fineness of the triangulation, e.g.,

h := max {diam (K) | K € Tp,} ,

where diam (K) := sup {|z —y| | #,y € K} denotes the diameter of K.
Thus here h is the maximum length of the edges of all the triangles.
Sometimes, K € 7}, is also called a (geometric) element of the partition.

The vertices of the triangles are called the nodes, and they will be
numbered

a1, a2,...,ap,
ie., a; = (vi,y:), 1 =1,..., M, where M = My + M5 and

ai,...,an; € Qv (2 26)
AMi+1y .-, AM S 0. '

This kind of arrangement of the nodes is chosen only for the sake
of simplicity of the notation and is not essential for the following
considerations.

Figure 2.4. A conforming triangulation with N =12, M =11, M, = 3, M> = 8.

An approximation of the boundary value problem (2.1), (2.2) with linear
finite elements on a given triangulation 7, of Q is obtained if the ansatz
space V}, is defined as follows:

Vi i={u € C(Q) | ulx € P1(K) for all K € Tp,, u=0o0n 0Q} . (2.27)
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Here P;(K) denotes the set of polynomials of first degree (in 2 variables)
on K;ie, pe€Pi(K)<S p(x,y) = a+ Bz + vy for all (z,y) € K and for
fixed a, 5,7 € R.

Since p € P1(K) is also defined on the space R x R, we use the short but
inaccurate notation P; = P1(K); according to the context, the domain of
definition will be given as R x R or as a subset of it.

We have

Vi, CV.

This is clear for the case of definition of V' by (2.7) because 0 u|x = const,
Oyulk = const for K € Ty, for all u € Vj,. If V = H(Q), then this inclusion
is not so obvious. A proof will be given in Theorem 3.20 below.

An element u € V} is determined uniquely by the values wu(a;), i =
1,..., My (the nodal values).

In particular, the given nodal values already enforce the continuity of the
piecewise linear composed functions. Correspondingly, the homogeneous
Dirichlet boundary condition is satisfied if the nodal values at the boundary
nodes are set to zero.

In the following, we will demonstrate these properties by an unnecessar-
ily involved proof. The reason is that this proof will introduce all of the
considerations that will lead to analogous statements for the more general
problems of Section 3.4.

Let X} be the larger ansatz space consisting of continuous, piecewise
linear functions but regardless of any boundary conditions, i.e.,

Xn:={ueCQ)|ulxk €Pi(K) forall K €T} .

Lemma 2.10 For given values at the nodes aq,...,ap, the interpolation
problem in Xy, is uniquely solvable. That is, if the values uy,...,upr are
given, then there exists a uniquely determined element

u€ Xy such that w(a;)) =u;, i=1,...,M.
Ifuj =0 for j =My +1,...,M, then it is even true that
u € V.

Proof: (1) For any arbitrary K € 7, we consider the local interpolation
problem:

Find p = px € P1 such that p(a;) =u,;, i=1,2,3, (2.28)

where a;, 1 = 1,2, 3, denote the vertices of K, and the values u;, i = 1,2, 3,
are given. First we show that problem (2.28) is uniquely solvable for a
particular triangle.

A solution of (2.28) for the so-called reference element K (cf. Figure 2.5)
with the vertices 4, = (0,0), a2 = (1,0), as = (0,1) is given by

p(x,y) = uiN1(z,y) +u2Na(z,y) + uzN3(z, y)
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Figure 2.5. Reference element K.

with the shape functions

Nl(.]%:lj) = 1_x_ya
No(zy) = (2.29)
NS(xvy) = Y.

Evidently, V; € P;1, and furthermore,
y_ <« _J 1 fori=yj, —
Ni(aj)—(sw—{o fori ], for i,7=1,2,3,

and thus
3
p(a;) => wiNi(a;) =u; forall j=1,2,3.
i=1

The uniqueness of the solution can be seen in the following way: If p1, p2
satisfy the interpolation problem (2.28) for the reference element, then for
p:=p1 — p2 € P we have

p(a;)=0, i=1,23.

Here p is given in the form p(z,y) = a + Bz + vy. If we fix the second
variable y = 0, we obtain a polynomial function of one variable

p(z,0) = a+ Bz =:q(z) € P1(R).

The polynomial ¢ satisfies ¢g(0) = 0 = ¢(1), and ¢ = 0 follows by the
uniqueness of the polynomial interpolation in one variable; i.e., « = 3 = 0.
Analogously, we consider

q(y) == p(0,y) = a+yy =y,

and we obtain from ¢(1) = 0 that v = 0 and consequently p = 0.

In fact, this additional proof of uniqueness is not necessary, because the
uniqueness already follows from the solvability of the interpolation problem
because of dim P; = 3 (compare with Section 3.3).

Now we turn to the case of a general triangle K. A general triangle K is
mapped onto K by an affine transformation (cf. Figure 2.6)

F:K— K, F(i)=Bi+d, (2.30)
where B € R?2, d € R? are such that F (a;) = a;.
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B = (b1,b2) and d are determined by the vertices a; of K as follows:

an = F(an)=F0)=d,
ay = F(a)=bi+d=b1+a1,
a3 = F(az)=ba+d=ba+as;

i.e., by = az —aj and by = a3 —a;. The matrix B is regular because as — a1
and ag — a; are linearly independent, ensuring F'(a;) = a;.
Since

3 3
K = conv {a1,az2,as} := {Z)\iai ‘ 0< N\ <1, Z)‘i = 1}
i=1 i=1

and especially K = conv {a1, as, a3}, F[K] = K follows from the fact that
the affine-linear mapping F' satisfies

3 3 3
i=1 i=1 i=1

for 0 <A <1, 507 A =1
In particular, the edges (where one )\; is equal to 0) of K are mapped
onto the edges of K.

Figure 2.6. Affine-linear transformation.

Analogously, the considerations can be applied to the space R¢ word for
word by replacing the set of indices {1,2,3} by {1,...,d+ 1}. This will be
done in Section 3.3.

The polynomial space P; does not change under the affine transforma-
tion F.

(2) We now prove that the local functions u|x can be composed
continuously:

For every K € T, let px € Py be the unique solution of (2.28), where
the values w1, us, us are the values w;, , u;,, g (i1, 42,13 € {1,..., M}) that
have to be interpolated at these nodes.

Let K, K’ € T, be two different elements that have a common edge E.
Then pxg = pgs on E is to be shown. This is valid because E can be
mapped onto [0,1] x {0} by an affine transformation (cf. Figure 2.7). Then
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¢1(z) = pk(x,0) and g2(x) := pk:(x,0) are elements of P;(R), and they
solve the same interpolation problem at the points x = 0 and x = 1; thus
q1 = q2-

Figure 2.7. Affine-linear transformation of E on the reference element [0, 1].

Therefore, the definition of u by means of
u(z) =pr(x) forxze KeT, (2.31)
is unique, and this function satisfies u € C(Q2) and u € X,.

(3) Finally, we will show that v = 0 on 02 for u defined by (2.31) if
u; =00 =M +1,...,M) for the boundary nodes.
The boundary 02 consists of edges of elements K € 7;. Let E be such
an edge; i.e., E has the vertices a;,,a;, with i; € {M; +1,...,M}. The
given boundary values yield u(a;;) = 0 for j = 1,2. By means of an affine
transformation analogously to the above one we obtain that u|g is a poly-
nomial of first degree in one variable and that u|g vanishes at two points.
So u|g = 0, and the assertion follows. |

The following statement is an important consequence of the unique solv-
ability of the interpolation problem in X} irrespective of its particular
definition: The interpolation conditions

Cpi(aj):(;ij, j:]-v"'aM7 (232)

uniquely determine functions ¢; € Xy, for i = 1,..., M. For any u € X,
we have

M
u(z) = Zu(az)%(m) for €, (2.33)

because both the left-hand side and the right-hand side functions belong
to X}, and are equal to u(a;) at x = a;.

The representation u = Zi\il a;; is unique, too, for otherwise, a func-
tion w € Xp, w # 0, such that w(a;) = 0 for all ¢ = 1,..., M would
exist. Thus {®1,...,0nm} is a basis of X}, especially dim X, = M. This
basis is called a nodal basis because of (2.33). For the particular case of a
piecewise linear ansatz space on triangles, the basis functions are called
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pyramidal functions because of their shape. If the set of indices is re-
stricted to {1,..., M1}; i.e., we omit the basis functions corresponding to
the boundary nodes, then a basis of V}, will be obtained and dim V}, = M;.

Summary: The function values u(a;) at the nodes aq,...,ap are the de-
grees of freedom of u € X}, and the values at the interior points aq, ..., anr
are the degrees of freedom of u € V.

The following consideration is valid for an arbitrary ansatz space V}, with
a basis {¢1,...,om}. The Galerkin method (2.23) reads as follows: Find
up = Zf‘il &pi € Vi such that a(up,v) = b(v) for all v € Vj,. Since
v = Zi\il nip; for m; € R, this is equivalent to

a(up, ;) = bly;) foralli=1,....M <=

M
ij%‘a%‘
j=1

b(p;) foralli=1,...,.M <=

M
Za (pj )& = bly;) foralli=1,...,.M <=
7j=1

A€ = qy (2.34)

with Ajp = (a(goj,goi))ij € RM’M, £ = (gl,...,gM)T and q; = (b((pz))z
Therefore, the Galerkin method is equivalent to the system of equations
(2.34).

The considerations for deriving (2.34) show that, in the case of equiva-
lence of the Galerkin method with the Ritz method, the system of equations
(2.34) is equivalent to the minimization problem

Fu(€) = min {F,(n) |[n e RM} | (2.35)
where
1
Fy(n) = §nTAm7 —qin.

Because of the symmetry and positive definiteness, the equivalence of (2.34)
and (2.35) can be easily proven, and it forms the basis for the CG methods
that will be discussed in Section 5.2.

Usually, Ap, is called stiffness matriz, and q;, is called the load vector.
These names originated from mechanics. For our model problem, we have

(An)y; = a(SOijPi):/QVSOj'VSOi dz,

(an); = b(sﬁi):/ﬂfcpidx.

By applying the finite element method, we thus have to perform the
following steps:

(1) Determination of Ay, q,. This step is called assembling.
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(2) Solution of Ap€ = gq,.

If the basis functions ¢; have the property ¢;(a;) = d;;, then the solution
of system (2.34) satisfies the relation & = up(a;), i.e., we obtain the vector
of the nodal values of the finite element approximation.

Using only the properties of the bilinear form a, we obtain the following
properties of Ap:

e Aj is symmetric for an arbitrary basis {(;} because a is symmetric.
e Aj is positive definite for an arbitrary basis {y;} because for v =
M
21':1 fi@iv
M M M
Eh A = Yo Gale, e =2, Ga (%azizl &sﬁi)
M M
= a(T)L 69 T Gp) = alww) > 0
(2.36)

for £ # 0 and therefore u # 0.
Here we have used only the positive definiteness of a.

Thus we have proven the following lemma.

Lemma 2.11 The Galerkin method (2.23) has a unique solution if a is a
symmetric, positive definite bilinear form and if b is a linear form.

In fact, as we will see in Theorem 3.1, the symmetry of a is not necessary.

e For a special basis (i.e., for a specific finite element method), Ay, is a
sparse matrix, i.e., only a few entries (Ap);; do not vanish. Evidently,

(0 #0 & [ Vo Veudo 0.

This can happen only if supp ¢; Nsupp¢; # 0, as this property is
again necessary for supp Vi, Nsupp Vi, # 0 because of

(supp V; Nsupp Vip;) C (supp @; Nsupp ¢;) -

The basis function ¢; vanishes on an element that does not contain
the node a; because of the uniqueness of the solution of the local
interpolation problem. Therefore,

suppp; = | J K,

KeTy,
a; EK
cf. Figure (2.8), and thus
(An)y; #0 = aj,a; € K for some K € T ; (2.37)

i.e., a;,a; are neighbouring nodes.
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If we use the piecewise linear ansatz space on triangles and if a; is an interior
node in which L elements meet, then there exist at most L nondiagonal
entries in the ith row of Aj. This number is determined only by the type
of the triangulation, and it is independent of the fineness h, i.e., of the
number of unknowns of the system of equations.

Figure 2.8. Support of the nodal basis function.

Example 2.12 We consider again the boundary value problem (2.1), (2.2)
on Q= (0,a) x (0,b) again, i.e.

—Au = f inQ,
v = 0 ondQ,

under the condition (1.4). The triangulation on which the method is based
is created by a partition of € into squares with edges of length h and by
a subsequent uniform division of each square into two triangles according
to a fixed rule (Friedrichs—Keller triangulation). In order to do this, two
possibilities (a) and (b) (see Figures 2.9 and 2.10) exist.

(a) (b)

Figure 2.9. Possibilities of Friedrichs—Keller triangulation.

In both cases, a node ay belongs to six elements, and consequently, it
has at most six neighbours:
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GNW___aN
for (a): for (b): II I
a I\ ay, g
IVIN VI
A%
as asg

Figure 2.10. Support of the basis function.

Case (a) becomes case (b) by the transformation z — a — z,y — y.
This transformation leaves the differential equation or the weak formula-
tion, respectively, unchanged. Thus the Galerkin method with the ansatz
space V}, according to (2.27) does not change, because P; is invariant with
respect to the above transformation. Therefore, the discretization matrices
Ay, according to (2.34) are seen to be identical by taking into account the
renumbering of the nodes by the transformation.

Thus it is sufficient to consider only one case, say (b). A node which is
far away from the boundary has 6 neighbouring nodes in {aq,...,an, },
a node close to the boundary has less. The entries of the matrix in the
row corresponding to az depend on the derivatives of the basis function
w7 as well as on the derivatives of the basis functions corresponding to the
neighbouring nodes. The values of the partial derivatives of 7 in elements
having the common vertex az are listed in Table 2.1, where these elements
are numbered according to Figure 2.10.

| I | O |II|IV]|V]| VI
1z, —% 0 % % 0 _%
Oapz | —3 | =5 | 0| 5 1%]0

Table 2.1. Derivatives of the basis functions.

Thus for the entries of the matrix in the row corresponding to az we
have

(An)y z=alpz, z) =/ Viz|” da = 2/ [(0102)° + (0202)? ] da,
IU...UVI TUITUIIT

because the integrands are equal on I and IV, on II and V, and on III and
VI. Therefore

(Ah)Z,Z = 2/ (814,02)2 dzr + 2/ (82@2)2 dzx = 2h2h? + 2h2h% = 4,
TUIIT TUII

(Ah)Z7N =a(pN,¢z) = / Vn - Vg dx
1UII

= O2oNOapy, dx = / (—hfl) htde = -1,
Tull TuIl
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because d1¢pz = 0 on II and d1¢on = 0 on I. The element I for ¢y corre-
sponds to the element V for ¢yz; i.e., d1¢on = 0 on I, analogously, it follows
that 2oy = h~! on I U IL. In the same way we get

(Ah)Z,E = (Ah)z’w = (Ah)z’s =-1

as well as

(An)z nw = a(pnw, pz) = / Oronw 019z + O2onw Oapz dr = 0.
TIUIIT
The last identity is due to d1onw = 0 on IIT and dyonw = 0 on III,
because the elements V and VI for ¢z agree with the elements III and II
for wNw, respectively.
Analogously, we obtain for the remaining value

(Ah)z,SE =0,

such that only 5 (instead of the maximum 7) nonzero entries per row exist.

The way of assembling the stiffness matrix described above is called node-
based assembling. However, most of the computer programs implementing
the finite element method use an element-based assembling, which will be
considered in Section 2.4.

If the nodes are numbered rowwise analogously to (1.13) and if the equa-
tions are divided by k2, then h =2 A, coincides with the discretization matrix
(1.14), which is known from the finite difference method. But here the
right-hand side is given by

2 (an); = h_Q/ foide =h~? foidx
Q

Iu...uVI

for az = a; and thus it is not identical to f(a;), the right-hand side of the
finite difference method.
However, if the trapezoidal rule, which is exact for g € Py, is applied to
approximate the right-hand side according to
1 3
z)dr ~ =vol (K a; 2.38
/ot vl () 2 o) (2.39)
for a triangle K with the vertices a;, ¢ = 1,2,3 and with the area vol (K),
then
1

[ fovde % 5302 (Flaz) 1+ fao) -0+ flax) -0) = 5h S (az).

Analogous results are obtained for the other triangles, and thus

h*2/ foide =~ f(az).
1U...UVI

In summary, we have the following result.
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Lemma 2.13 The finite element method with linear finite elements on a
triangulation according to Figure 2.9 and with the trapezoidal rule to ap-
prozimate the right-hand side yields the same discretization as the finite
difference method from (1.7), (1.8).

We now return to the general formulation (2.21)—(2.24). The approach
of the Ritz method (2.24), instead of the Galerkin method (2.23), yields an
identical approximation because of the following result.

Lemma 2.14 If a is a symmetric and positive bilinear form and b is a
linear form, then the Galerkin method (2.23) and the Ritz method (2.24)
have identical solutions.

Proof: Apply Lemma 2.3 with V}, instead of V. O

Hence the finite element method is the Galerkin method (and in our
problem the Ritz method, too) for an ansatz space Vj, with the following
properties:

e The coefficients have a local interpretation (here as nodal values).
The basis functions have a small support such that:

e the discretization matrix is sparse,

e the entries of the matrix can be assembled locally.

Finally, for the boundary value problem (2.1), (2.2) with the correspond-
ing weak formulation, we consider other ansatz spaces, which to some extent
do not have these properties:

(1) In Section 3.2.1, (3.28), we will show that mixed boundary conditions
need not be included in the ansatz space. Then we can choose the fi-
nite dimensional polynomial space V;, = span {1, x,y, 2y, 2, y%, .. }
for it. But in this case, Ay, is a dense matrix and ill-conditioned. Such
ansatz spaces yield the classical Ritz—Galerkin methods.

(2) Let Vi, = span{¢1,...,pon} and let ¢; # 0 satisfy, for some \;,
a(pi,v) = X (pi,v), forallveV,
i.e., the weak formulation of the eigenvalue problem
—Au = Mdu in Q,
u = 0 on 01,

for which eigenvalues 0 < A1 < Ao < ... and corresponding eigen-
functions ¢; exist such that (i, ;), = di; (e.g., see [12, p. 335]). For
special domains €2, (A, ;) can be determined explicitly, and

(Ah)ij = a(pj, i) = Aj (¢, %>0 = Aj0ij
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is obtained. Thus Ay, is a diagonal matrix, and the system of equations
A€ = q;, can be solved without too great expense. But this kind of
assembling is possible with acceptable costs for special cases only.

(3) The (spectral) collocation method consists in the requirement that
the equations (2.1), (2.2) be satisfied only at certain distinct points
x; € Q, called collocation points, for a special polynomial space V,.

The above examples describe Galerkin methods without having the typical
properties of a finite element method.

2.3 Stability and Convergence of the Finite
Element Method

We consider the general case of a variational equation of the form (2.21)
and the Galerkin method (2.23). Here let a be a bilinear form, which is not
necessarily symmetric, and let b be a linear form.

Then, if

e=u—up(eV)
denotes the error, the important error equation
ale,v) =0 forallv eV (2.39)

is satisfied. To obtain this equation, it is sufficient to consider equation
(2.21) only for v € V}, C V and then to subtract from the result the
Galerkin equation (2.23).

If, in addition, a is symmetric and positive definite, i.e.,

a(u,v) =a(v,u), alu,u) >0, a(u,u)=0=u=0

(i.e., a is a scalar product), then the error is orthogonal to the space V},
with respect to the scalar product a.

Therefore, the relation (2.39) is often called the orthogonality of the error
(to the ansatz space). In general, the element u;, € V}, with minimal distance
to u € V with respect to the induced norm || - ||, is characterized by (2.39):

Lemma 2.15 Let V;, C V be a subspace, let a be a scalar product on V,
and let ||ulq := a(u,u)? be the norm induced by a. Then for uy, € Vi, it
follows that

alu—up,v) = 0 foralveV, <& (2.40)

llu — uplla min {[lu —vlla | v € Vi} . (2.41)

Proof: For arbitrary but fixed u € V, let b(v) := a(u,v) for v € V.
Then b is a linear form on V}, so (2.40) is a variational formulation on V},.
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According to Lemma 2.14 or Lemma 2.3, this variational formulation has
the same solutions as

F(up) = min{F(v)|veV}
with  F(v) := %a(v,v) —b(v) = %a(v, v) — a(u,v).

Furthermore, F' has the same minima as the functional
1/2 1/2
(2F(v) + a(u, u)) = (a(v, v) — 2a(u,v) + a(u, u))

= (a(u—v,uf’u))l/2 = |lu—a,

because the additional term a(u,u) is a constant. Therefore, F' has the
same minima as (2.41). O

If an approximation u of u is to be sought exclusively in V},, then the
element uy, determined by the Galerkin method, is the optimal choice with
respect to || - ||4.

A general, not necessarily symmetric, bilinear form a is assumed to satisfy

the following conditions, where || - || denotes a norm on V:
e a is continuous with respect to || -||; i.e., there exists M > 0 such that
la(u,v)| < M|ul|||v|| for all u,v e V; (2.42)

e a is V-elliptic; i.e., there exists a > 0 such that
a(u,u) > aljul|* forueV. (2.43)

If a is a scalar product, then (2.42) with M = 1 and (2.43) (as equality)
with @ = 1 are valid for the induced norm || - || := || - || due to the
Cauchy—Schwarz inequality.

The V-ellipticity is an essential condition for the unique existence of a
solution of the variational equation (2.21) and of the boundary value prob-
lem described by it, which will be presented in more detail in Sections 3.1
and 3.2. It also implies — without further conditions — the stability of the
Galerkin approximation.

Lemma 2.16 The Galerkin solution wup, according to (2.23) is stable in
the following sense:

1
llup|| < a||b|| independently of h, (2.44)

where
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Proof: In the case up, = 0, there is nothing to prove. Otherwise, from
a(up,v) = b(v) for all v € V},, it follows that

b Up,
allunl* < aun.un) = b(un) < T8 ] < 8] .
Dividing this relation by «|lu||, we get the assertion. O

Moreover, the approximation property (2.41) holds up to a constant:

Theorem 2.17 (Céa’s lemma)
Assume (2.42), (2.43). Then the following error estimate for the Galerkin
solution holds:

M
lu — up|| < Emm{”uf’u” |veVn}. (2.45)

Proof: If ||lu — up| = 0, then there is nothing to prove. Otherwise, let
v € V}, be arbitrary. Because of the error equation (2.39) and up — v € V,

alu —up,up, —v) =0.
Therefore, using (2.43) we have
allu —up|* < alu—up,u—up) = alu —up,u—up) + alu — wp, up — v)
= a(u —up,u—v).
Furthermore, by means of (2.42) we obtain
allu —upl|? < alu —up,u —v) < M|u—up| |u— v| for arbitrary v € Vj, .
Thus the assertion follows by division by «a|lu — us||. O
Therefore also in general, in order to get an asymptotic error estimate
in h, it is sufficient to estimate the best approximation error of Vy, i.e.,
min { [lu — v|| ‘ veV,}.

However, this consideration is meaningful only in those cases where M/«
is not too large. Section 3.2 shows that this condition is no longer satisfied
for convection-dominated problems. Therefore, the Galerkin approach has
to be modified, which will be described in Chapter 9.

We want to apply the theory developed up to now to the weak formula-
tion of the boundary value problem (2.1), (2.2) with V according to (2.7)
or (2.20) and V4 according to (2.27). According to (2.4) the bilinear form
a and the linear form b read as

a(u,v)z/QVu-Vvda:, b(v):/ﬂfvdx.

In order to guarantee that the linear form b is well-defined on V it is suffi-
cient to assume that the right-hand side f of the boundary value problem
belongs to L2(Q).
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Since a is a scalar product on V/,

1/2
Jull =l = ( [ 9u?as)
Q

is an appropriate norm. Alternatively, the norm introduced in (2.19) for
V = H}(Q) can be taken as

llully = (/Q IU(x)IQd:c+/Q|VU(w)I2d$> - :

In the latter case, the question arises whether the conditions (2.42) and
(2.43) are still satisfied. Indeed,
|a(u, 0)| < [lullal[vlle < [lullifjolli for all u,v e V.

The first inequality follows from the Cauchy—Schwarz inequality for the
scalar product a, and the second inequality follows from the trivial estimate

1/2
ulla = </ |Vu(x)|2dx> <full forallueV.
Q

Thus a is continuous with respect to || - ||1 with M = 1.
The V-ellipticity of a, i.e., the property

a(u,u) = ||lul|?> > a|lu|? for some a >0 and all u € V,

is not valid in general for V = H!(Q). However, in the present situation
of V.= H}(Q) it is valid because of the incorporation of the boundary
condition into the definition of V' :

Theorem 2.18 (Poincaré) Let Q@ C R™ be open and bounded. Then a
constant C' > 0 exists (depending on Q) such that

1/2
lullo < C (/ |Vu(z)|? dx) for allu € H} ().
Q

Proof: Cf. [13]. For a special case, see Exercise 2.5. O

Thus (2.43) is satisfied, for instance with

1
a=——-::
1+C?’

(see also (3.26) below) and thus in particular

allull? < a(u,u) = ||ul|? < ||lul|? forallueV, (2.46)
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i.e., the norms || - ||; and || - ||, are equivalent on V' = H}(Q) and therefore
they generate the same convergence concept:

up, — u with respect to || - ||1 < |Jup —uljl1 = 0

& |lup — ulle = 0 < up — u with respect to || - || -
In summary the estimate (2.45) holds for || - || = || - || with the constant

1/a.
Because of the Cauchy—Schwarz inequality for the scalar product on
L?(Q) and

(o) = [ Fla)ota) da.

i, [6(0)| < Ifllollvllo < 1l llells, and thus 5] < [|fllo, the stability
estimate (2.44) for a right-hand side f € L?(f2) takes the particular form

1
llunlls < = fllo-
«

Up to now, our considerations have been independent of the special form
of V},. Now we make use of the choice of V}, according to (2.27). In order
to obtain an estimate of the approximation error of V}, it is sufficient to
estimate the term ||u —o|| for some special element © € V},. For this element
v € V,, we choose the interpolant Ij, (u), where

In:{ueCQ)|u=00nd} — V,, (2.47)
w — Ip(u) with Iy (u)(a;) = u(a;) . '

This interpolant exists and is unique (Lemma 2.10). Obviously,

min {[|u —v|1 [v € Vi} < [lu—Iy(u)lly for ue C(Q) and u =0 on 0N.

If the weak solution u possesses weak derivatives of second order, then for
certain sufficiently fine triangulations 75, i.e., 0 < h < h for some h > 0,
an estimate of the type

[u—In(w)llh < Ch (2.48)

holds, where C depends on u but is independent of i (cf. (3.88)). The
proof of this estimate will be explained in Section 3.4, where also sufficient
conditions on the family of triangulations (7,); will be specified.

Exercises

2.4 Let a(u,v) := fol x2u'v'dz for arbitrary u,v € HZ(0,1).
(a) Show that there is no constant C; > 0 such that the inequality

1
a(u,u) > Cy / (u')* dz for all u € HL(0,1)
0
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is valid.
(b) Now let 7, := {(mi_l,xi)}i]\il, N € N, be an equidistant partition of
(0,1) with the parameter h = 1/N and V}, := span {apz}i\gl , where

(m—xi_l)/h n (xi_l,a:i),
ei(2) = ¢ (@ip1 —x)/h in (25, @i41),
0 otherwise.

Does there exist a constant Cy > 0 with

1
a(up, up) > Cg/ (up)? dz for all uy, €V, ?
0

2.5

(a) For Q := (o, 8) X (v,9) and V according to (2.7), prove the inequality
of Poincaré: There exists a positive constant C' with

lullo < Cllulle for allu e V.

T
Hint: Start with the relation u(z,y) = [ dyu(s,y)ds.

(b) For Q := (a,) and v € C([a,]) with a piecewise continuous
derivative v" and v(y) = 0 for some v € [«, §], show that

lvllo < (8 =a)llvllo-

2.6 Let Q := (0,1)x(0,1). Given f € C(Q), discretize the boundary value
problem —Awu = f in ©, v = 0 on 0f2, by means of the usual five-point
difference stencil as well as by means of the finite element method with
linear elements. A quadratic grid as well as the corresponding Friedrichs—
Keller triangulation will be used.

Prove the following stability estimates for the matrix of the linear system
of equations:

@) 14, e < g O) 147 2 < 350 (@) 14, o <1,
where || - |0, || - ||2 denote the maximum row sum norm and the spectral
norm of a matrix, respectively, and || 4 (o := sup,, ey, [[vnllg/lvnl|2 with
lvallZ = Jo [Vl da.
Comment: The constant in (c) is not optimal.

2.7 Let Q be a domain with polygonal boundary and let 73, be a conform-
ing triangulation of 2. The nodes «a; of the triangulation are enumerated
from 1 to M.

Let the triangulation satisfy the following assumption: There exist
constants C7,Cy > 0 such that for all triangles K € 7}, the relation

C1h? < vol (K) < Cyh?
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is satisfied. h denotes the maximum of the diameters of all elements of 7j,.

(a) Show the equivalence of the following norms for up € V4, in the space
V3, of continuous, piecewise linear functions over 2 :

1/2 M
Junllo :={ / |uh|2dx}  Junllo = h{zum}
Q i=1

(b) Consider the special case Q := (0, 1) x (0, 1) with the Friedrichs—Keller
triangulation as well as the subspace V;, N H}(Q) and find “as good
as possible” constants in the corresponding equivalence estimate.

1/2

2.4 The Implementation of the Finite Element
Method: Part 1

In this section we will consider some aspects of the implementation of
the finite element method using linear ansatz functions on triangles for
the model boundary value problem (1.1), (1.2) on a polygonally bounded
domain Q C R2. The case of inhomogeneous Dirichlet boundary conditions
will be treated also to a certain extent as far as it is possible up to now.

2.4.1 Preprocessor

The main task of the preprocessor is to determine the triangulation.
An input file might have the following format:
Let the number of variables (including also the boundary nodes for
Dirichlet boundary conditions) be M. We generate the following list:
z-coordinate of node 1 y-coordinate of node 1

xz-coordinate of node M  y-coordinate of node M

Let the number of (triangular) elements be N. These elements will be
listed in the element-node table. Here, every element is characterized by the
indices of the nodes corresponding to this element in a well-defined order
(e.g., counterclockwise); cf. Figure 2.11.

11

!

4

Figure 2.11. Element no. 10 with nodes nos. 4, 11, 7.
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For example, the 10th row of the element-node table contains the entry
4 11 7

Usually, a triangulation is generated by a triangulation algorithm. A short
overview on methods for the grid generation will be given in Section 4.1.
One of the simplest versions of a grid generation algorithm has the following
structure (cf. Figure 2.12):

Figure 2.12. Refinement by quartering.

Prescribe a coarse triangulation (according to the above format) and
refine this triangulation (repeatedly) by subdividing a triangle into 4 con-
gruent triangles by connecting the midpoints of the edges with straight
lines.

If this uniform refinement is done globally, i.e., for all triangles of the
coarse grid, then triangles are created that have the same interior angles as
the elements of the coarse triangulation. Thus the quality of the triangu-
lation, indicated, for example, by the ratios of the diameters of an element
and of its inscribed circle (see Definition 3.28), does not change. However,
if the subdivision is performed only locally, the resulting triangulation is
no longer admissible, in general. Such an inadmissible triangulation can be
corrected by bisection of the corresponding neighbouring (unrefined) tri-
angles. But this implies that some of the interior angles are bisected and
consequently, the quality of the triangulation becomes poorer if the bisec-
tion step is performed too frequently. The following algorithm circumvents
the depicted problem. It is due to R. Bank and is implemented, for example,
in the PLTMG code (see [4]).
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A Possible Refinement Algorithm

Let a (uniform) triangulation 7 be given (e.g., by repeated uniform refine-
ment of a coarse triangulation). The edges of this triangulation are called
red edges.

(1) Subdivide the edges according to a certain local refinement criterion
(introduction of new nodes) by successive bisection (cf. Figure 2.13).

S

Figure 2.13. New nodes on edges.

(2) If a triangle K € T has on its edges in addition to the vertices two
or more nodes, then subdivide K into four congruent triangles.
Iterate over step 2 (cf. Figure 2.14).

(3) Subdivide the triangles with nodes at the midpoints of the edges into
2 triangles by bisection. This step introduces the so-called green edges.

(4) If the refinement is to be continued, first remove the green edges.

2.4.2  Assembling

Denote by ¢1, ..., @ the global basis functions. Then the stiffness matrix
Ap, has the following entries:

(An);; = / Vj - Vo, de = Z A(m)

m=1
with
A = / Ve, - Vi da.
K
Let ai,...,ap denote the nodes of the triangulation. Because of the
implication

Agn) 75 0 = i, a5 € K,,
(cf. (2.37)), the element K, yields nonzero contributions for Az(.;n) only if
ai,a; € Ky, at best. Such nonzero contributions are called element entries
of Aj,. They add up to the entries of Ay,.
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green edges

Figure 2.14. Two refinement sequences.

In Example 2.12 we explained a node-based assembling of the stiffness
matrix. In contrast to this and on the basis of the above observations, in
the following we will perform an element-based assembling of the stiffness
matrix.

To assemble the entries of A, we will start from a local numbering
(cf. Figure 2.15) of the nodes by assigning the local numbers 1, 2, 3 to the
global node numbers 71,9, r3 (numbered counterclockwise). In contrast to
the usual notation adopted in this book, here indices of vectors according to
the local numbering are included in parentheses and written as superscripts.
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I3 3

r 2

Figure 2.15. Global (left) and local numbering.

Thus in fact, we generate

A) (A
(”” i,j=1,2,3 s ) ,5=1,2,3

To do this, we first perform a transformation of K,, onto some reference
element and then we evaluate the integral on this element exactly.
Hence the entry of the element stiffness matriz reads as

fl(.m / Vo, -V, dz.
The reference element K is transformed onto the global element K, by
means of the relation F(Z) = B + d, therefore
D;u(F(z)) = Dyu(F (&) D; F (&) = Dyu(F(2)) B,

where D,u denotes the row vector (O1u, dau), i.e., the corresponding dif-
ferential operator. Using the more standard notation in terms of gradients
and taking into consideration the relation B=7 := (B~1)T we obtain

Vou (F(#) = BTVa (u(F(2)) (2.49)

and thus
A = [ Vagr, (P@)- Vupr, (P(@) [det(DF (@) di
= [ BTV (e (F@)) - BTV (g, (F@) det(B)| di
- / B TVig,,(#) - B~V (2) |det(B)| di (2.50)
= /KB—TWNJ«(@)-B—TWM(J&) |det(B)| di,

where the transformed basis functions ¢, ¢(2) := ¢(F'(2)) coincide with
the local basis functions on K, i.e., with the shape functions N;:

@p, (&) = Ni(2) forie K.

The shape functions N; have been defined in (2.29) (where (, y) there must
be replaced by (#1,%2) here) for the standard reference element defined
there.
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Introducing the matrix C := (B’l) (B’l)T = (BTB)fl, we can write

AT = [ CViN;(#) - VaNi(#) |det(B)| di . (2.51)
K

Denoting the matrix B by B = (b(l), b(z)) , then it follows that

p(M L pM) (1) L p(2) -1 1 b2 . p(2) _p(1) L p(2)
e D . p2  p2 . p2) T det(B)2 | b . p@  p) . p(D)
because det(BT B) = det(B)2. The previous considerations can be eas-

ily extended to the computation of the stiffness matrices of more general
differential operators like

| K@) Voo da

(cf. Section 3.5). For the standard reference element, which we use from
now on, we have b = ¢ — o b2 =4 — ¢ Here o), i =1,2,3,
are the locally numbered nodes of K interpreted as vectors of R2.

From now on we make also use of the special form of the stiffness matrix
and obtain

AT =y / 93, N; 0z, N; di
K
+ 72 /A 8@»1]\7]' 0z, N; + 8@»2]\7]- 0z, N; dz (2.52)
K

+ 3 /A 8@»2]\7]' 8@»2]\71 dz
K

with
1
= = (a® D). (4B D
n enldet(B)] = 5 (0 = a) - (o = a®) .
1
= ——— = (a@ ). (® D
Yo = c12|det(B)] Tdet(B)] (a a ) (a a ),
1
- 022|d€t(3)|=m(a(2)—a(1))-(a(Q)—a(l)).

In the implementation it is advisable to compute the values ~; just once
from the local geometrical information given in the form of the vertices
a” = a,, and to store them permanently.

Thus we obtain for the local stiffness matrix

A = 418 + 7285 + 7353 (2.53)
with

Sl = </ 8@»1Nj8j1Ni di‘) 9
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So </ 8¢1Nj8552Ni + &gzNj&glNi d.f?) R
K

ij
S3 = </ 8@»2]\7]’8@2]\71' diﬁ) .

An explicit computation of the matrices S; is possible because the
integrands are constant, and also these matrices can be stored permanently:

1-1 0 L 2-1-1 1 0-1
Si=g(-1 10 ). S=z(-10 1] S=5[000
000 11 0 1 0 1

The right-hand side (q;,); = [, f(2)pi(z) dz can be treated in a similar
manner:

N
)
m=1
with
q(m) / f@)pi(x)de (#0 = a; € Kp,) .

Again, we transform the global numbering (q,(«:n))izl 23

for the triangle
K,, = conv {a,,,a,,,a,,} into the local numbering (qz(m))i:l 54 Anal-
ogously to the determination of the entries of the stiffness matrix, we

have

@™ = | F(F@®) ¢ (F(@)) |det(B)| di

K
| 76 Ni(@) | den()]
K

where f(2) := f(F(z)) for & € K.

In general, this integral cannot be evaluated exactly. Therefore, it has to
be approximated by a quadrature rule.

A quadrature rule for [ % 9(&) d# is of the type

R ~
3w g (6
k=1

with certain weights wy, and quadrature points b*) . As an example, we take
the trapezoidal rule (cf. (2.38)), where

b =, = (0,0), b =ay=(1,0), b® =az=(0,1),
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Thus for arbitrary but fixed quadrature rules, we have
R
@™~ 3w f(0P) N; (b8 | det(B)] . (2.54)
k=1

Of course, the application of different quadrature rules on different elements
is possible, too. The values N; (l;(k)), 1 =1,2,3,k=1,...,R, should be
evaluated just once and should be stored. The discussion on the use of
quadrature rules will be continued in Sections 3.5.2 and 3.6.

In summary, the following algorithm provides the assembling of the
stiffness matrix and the right-hand side:

Loop over all elements m =1,...,N:

e Allocating a local numbering to the nodes based on the element-node
table: 1 +— 7y, 2+ r9, 31— r3.

e Assembling of the element stiffness matrix A(™) according to (2.51)
or (2.53).
Assembling of the right-hand side according to (2.54).

e Loop over i,j5 =1,2,3:

L T(m)
(Ah)nrj = (Ah)”” + A
(@), = (an),, + qu) .
For the sake of efficiency of this algorithm, it is necessary to adjust the
memory structure to the particular situation; we will see how this can be
done in Section 2.5.

2.4.8 Realization of Dirichlet Boundary Conditions: Part 1

Nodes where a Dirichlet boundary condition is prescribed must be labeled
specially, here, for instance, by the convention M = M; + M5, where the
nodes numbered from M; + 1 to M correspond to the Dirichlet boundary
nodes. In more general cases, other realizations are to be preferred.

In the first step of assembling of stiffness matrix and the load vector, the
Dirichlet nodes are treated like all the other ones. After this, the Dirichlet
nodes are considered separately. If such a node has the number j, the
boundary condition is included by the following procedure:

Replace the jth row and the jth column (for conservation of the sym-
metry) of A;, by the jth unit vector and (g,,); by g(a;), if u(z) = g(z) is
prescribed for z € 9Q. If the jth column is replaced by the unit vector, the
right-hand side (g;,); for ¢ # j must be modified to (g,); — (4r)ij9(a;). In
other words, the contributions caused by the Dirichlet boundary condition
are included into the right-hand side. This is exactly the elimination that
led to the form (1.10), (1.11) in Chapter 1.
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2.5 Solving Sparse Systems of Linear Equations
by Direct Methods

Let A be an M x M matrix. Given a vector q € RM, we consider the system
of linear equations

A =q.

The matrices arising from the finite element discretization are sparse; i.e.,
they have a bounded number of nonzero entries per row independent of
the dimension of the system of equations. For the simple example of Sec-
tion 2.2, this bound is determined by the number of neighbouring nodes
(see (2.37)). Methods for solving systems of equations should take advan-
tage of the sparse structure. For iterative methods, which will be examined
in Chapter 5, this is easier to reach than for direct methods. Therefore, the
importance of direct methods has decreased. Nevertheless, in adapted form
and for small or medium size problems, they are still the method of choice.

Elimination without Pivoting using Band Structure
In the general case, where the matrix A is assumed only to be nonsingular,
there exist M x M matrices P, L, U such that

PA=LU.

Here P is a permutation matrix, L is a scaled lower triangular matrix, and
U is an upper triangular matrix; i.e., they have the form

1 0 Uil Uqj
U =

Ui 1 0 UM M

L =

This decomposition corresponds to the Gaussian elimination method with
pivoting. The method is very easy and has favourable properties with re-
spect to the sparse structure, if pivoting is not necessary (i.e., P = I,
A = LU). Then the matrix A is called LU factorizable.

Denote by Ay the leading principal submatrix of A of dimension k x k,
ie.,

aixz - Aalg
ag1 -+ Okk

and suppose that it already has been factorized as Ay = LjUy. This is
obviously possible for £k = 1: A; = (a11) = (1)(a11). The matrix Agi1 can
be represented in the form of a block matrix

N Ak |b
k+1 = 2y
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with b,c € R¥, d € R.
Using the ansatz

I LkO U Uku
o) T T Lo

with unknown vectors u,! € R* and s € R, it follows that
Apy1 = Lip41Ugy1 <= Liyu=0>, U]zﬂlzc7 Tu+s=d. (2.55)
From this, we have the following result:

Let A be nonsingular. Then lower and upper triangular matrices
L,U exist with A = LU if and only if Aj is nonsingular for all (2.56)
1 <k < M. For this case, L and U are determined uniquely.

Furthermore, from (2.55) we have the following important consequences:
If the first [ components of the vector b are equal to zero, then this is valid
for the vector u, too:

Ifb = (%) , then u also has the structure u = (%) .

0 0
c= <—> implies the structure | = <—> .
5y A

For example, if the matrix A has a structure as shown in Figure 2.16,
then the zeros outside of the surrounded entries are preserved after the
LU factorization. Before we introduce appropriate definitions to generalize
these results, we want to consider the special case of symmetric matrices.

Similarly,

o x x|oo

*****|

Figure 2.16. Profile of a matrix.

If A is as before nonsingular and LU factorizable, then U = DLT with a
diagonal matrix D = diag (d;), and therefore

A=LDL".

This is true because A has the form A = LDU, where the upper triangular
matrix U satisfies the scaling condition 4;; = 1 for all ¢ = 1,..., M. Such
a factorization is unique, and thus

A= AT implies LT = U, therefore A = LDL" .



84 2. Finite Element Method for Poisson Equation

If in particular A is symmetric and positive definite, then also d; > 0 is
valid. Thus exactly one matrix L of the form

111 0
L= with I;; >0 for all i
li I
exists such that
A=LL", the so-called Cholesky decomposition.
We have
ZChol = LGauSS\/ﬁ, where VD := diag (\/di) .
This shows that the Cholesky method for the determination of the Cholesky
factor L also preserves certain zeros of A in the same way as the Gaussian
elimination without pivoting.
In what follows, we want to specify the set of zeros that is preserved by
Gaussian elimination without pivoting. We will not consider a symmetric

matrix; but for the sake of simplicity we will consider a matrix with a
symmetric distribution of its entries.

Definition 2.19 Let A € RM*M be a matrix such that a; # 0 for i =
1,..., M and

a;; #0 ifand only if aj; #0 foralli,j=1,...,M. (2.57)
We define, for i =1,..., M,
fi(A) :==min{j | a; #0, 1 <j <i}.
Then
mi(A) :==i— fi(A)

is called the ith (left-hand side) row bandwidth of A.
The bandwidth of a matrix A that satisfies (2.57) is the number

m(A) := 122};/17711(14) =max {i — j ‘ aij #0, 1< j<i< M} .
The band of the matrix A is
B(A) :={(i,7), (j,i) | i —m(A) < j<i, 1<i< M} .
The set
Env (4) = {(i,5), (j,1) | fi(A) <j <i, 1<i< M}
is called the hull or envelope of A. The number

M
p(A) =M + 2Zmi(A)

is called the profile of A.
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The profile is the number of elements of Env(A).

For the matrix A in Figure 2.16 we have (mi(A),...,ms(4)) =
(0,0,2,1,3), m(A) = 3, and p(A) = 17.

Summarizing the above considerations, we have proved the following
theorem:

Theorem 2.20 Let A be a matriz with the symmetric structure (2.57).
Then the Cholesky method or the Gaussian elimination without pivoting
preserves the hull and in particular the bandwidth.

The hull may contain zeros that will be replaced by (nonzero) entries during
the decomposition process. Therefore, in order to keep this fill-in small, the
profile should be as small as possible.

Furthermore, in order to exploit the matrix structure for an efficient
assembling and storage, this structure (or some estimate of it) should be
known in advance, before the computation of the matrix entries is started.

For example, if A is a stiffness matrix with the entries

aij = a(pj, pi) = /QVsoj -V dx,

then the property
ai; #0 = a4, a; are neighbouring nodes

can be used for the definition of an (eventually too large) symmetric matrix
structure. This is also valid for the case of a nonsymmetric bilinear form
and thus a nonsymmetric stiffness matrix. Also in this case, the definition
of fi(A) can be replaced by

fi(A) := min {j ‘ 1< j <1, jis a neighbouring node ofi}.

Since the characterization (2.56) of the possibility of the Gaussian elim-
ination without pivoting cannot be checked directly, we have to specify
sufficient conditions. Examples for such conditions are the following (see
[34]):

e A is symmetric and positive definite,

e A is an M-matrix.

Sufficient conditions for this property were given in (1.32) and (1.32)".
In Section 3.9, geometrical conditions for the family of triangula-
tions (73)n will be derived that guarantee that the finite element
discretization considered here creates an M-matrix.

Data Structures

For sparse matrices, it is appropriate to store only the components within
the band or the hull. A symmetric matrix A € RM*M with bandwidth
m can be stored in M(m + 1) memory positions. By means of the index
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conversion a;; ~ b; k—i+m+1 for k <4, the matrix

a11 @12 et A1l,mH41
as1 aso s . . 0
— MxM
A - am+1,1 am+1,2 et am+1,m+1 € R
0
aAM,M—-m " GM,M—-1 OM,M
is mapped to the matrix
0 cee 0 ar
0 s 0 a1 a2
O a DR DR a
B— m,1 m,m c RMx(m-i-l)
Gm+41,1 te t Amlm Am41l,m+1 ’
apM,M—m " GM,M—1 an,m

The unused elements of B, i.e., (B);j fori=1,...,m,j=1,....,m+1—1,
are here filled with zeros.

For a general band matrix, the matrix B € RM*(2m+1) ghtained by the
above conversion has the following form:

0 cee 0 ail ai12 a1,m+1
0 S am a2 . . a2.m42
0 Am,1 - m,2m
Am+1,1 Gm41,2m+1
B =
AM—m,M—2m QM —m, M
QM —m+1,M—2m+1 s s ©rr QM —m+1,M 0
anM,M—m v amm O 0

Here, in the right lower part of the matrix, a further sector of unused
elements arose, which is also filled with zeros.

If the storage is based on the hull, additionally a pointer field is needed,

which points to the diagonal elements, for example. If the matrix is sym-
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metric, again the storage of the lower triangular matrix is sufficient. For
the matrix A from Figure 2.16 under the assumption that A is symmetric,
the pointer field could act as shown in Figure 2.17.

a1 22 as1 a32 ass @43 Q44 as52 as3 a54 as55

S~ | S

1 2 ) 7 11

Figure 2.17. Linear storage of the hull.

Coupled Assembling and Decomposition
A formerly popular method, the so-called frontal method, performs
simultaneously assembling and the Cholesky factorization.

We consider this method for the example of the stiffness matrix A, =
(aij) € RMXM with bandwidth m (with the original numbering).

The method is based on the kth step of the Gaussian or Cholesky method
(cf. Figure 2.18).

Figure 2.18. kth step of the Cholesky method.

Only the entries of By, are to be changed, i.e., only those elements a;
with k£ <i,57 < k4 m. The corresponding formula is

(k)
(1) _ (0 _ %k ()

af) " ap), i j=k+1,... k+m. (2.58)

- (k)
O
Here, the upper indices indicate the steps of the elimination method, which
we store in a;;. The entries a;; are generated by summation of entries of
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the element stiffness matrix of those elements K that contain nodes with
the indices 4, j.

Furthermore, to perform the elimination step (2.58), only agz), a,(;;) for

1,7 =k,..., k+m must be completely assembled; agf),i,j =k+1,...,k+
m, can be replaced by dg;-c) Z(-;-cﬂ) is later defined by az(-fﬂ) = dz(-fﬂ) +
ag?) — &,Ef). That is, for the present, a;; needs to consist of only a few
contributions of elements K with nodes ¢, in K.

From these observations, the following algorithm is obtained. The kth
step for k= 1,..., M reads as follows:

if a

e Assemble all of the missing contributions of elements K that contain
the node with index k.

e Compute A**D by modification of the entries of B according to
(2.58).

e Store the kth row of A*+1) also out of the main memory.
e Define Byy1 (by a south-east shift).

Here the assembling is node-based and not element-based.

The advantage of this method is that Ay need not be completely assem-
bled and stored in the main memory, but only a matrix By, € R(m+1x(m+1),
Of course, if M is not too large, there may be no advantage.

Bandwidth Reduction
The complexity, i.e., the number of operations, is crucial for the application
of a particular method:

The Cholesky method, applied to a symmetric matrix A € RM*M with
bandwidth m, requires O(m? M) operations in order to compute L.

However, the bandwidth m of the stiffness matrix depends on the num-
bering of the nodes. Therefore, a numbering is to be found where the
number m is as small as possible.

We want to consider this again for the example of the Poisson equation on
the rectangle with the discretization according to Figure 2.9. Let the inte-
rior nodes have the coordinates (ih, jh) withi =1,...k—1,j=1,...,1—1.
The discretization corresponds to the finite difference method introduced
beginning with (1.10); i.e., the bandwidth is equal to k — 1 for a rowwise
numbering or [ — 1 for a columnwise numbering.

For k < [ or k > [, this fact results in a large difference of the bandwidth
m or of the profile (of the left triangle), which is of size (k—1)(I—1)(m+1)
except for a term of m2. Therefore, the columnwise numbering is preferred
for k > [; the rowwise numbering is preferred for k < [.

For a general domain (2, a numbering algorithm based on a given tri-
angulation 7;, and on a basis {¢;} of V3 is necessary with the following
properties:
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The structure of A resulting from the numbering must be such that the
band or the profile of A is as small as possible. Furthermore, the numbering
algorithm should yield the numbers m(A) or f;(A), m;(A4) such that the
matrix A can also be assembled using the element matrices A%).

Given a triangulation 75 and a corresponding basis {cpz- ‘ 1<i:< M } of
Vi, we start with the assignment of some graph G to this triangulation as
follows:

The nodes of G coincide with the nodes {aq, ..., ap} of the triangulation.
The definition of its edges is:

(ai,a;) is an edge of G «—
there exists a K € 7, such that ¢;|x Z0, ¢j|lxk Z0.

In Figure 2.19 some examples are given, where the example (2) will be
introduced in Section 3.3.

triangulation:
@ @ ]

linear ansatz on triangle (bi)linear ansatz on quadrilateral
Graph:

Figure 2.19. Triangulation and assigned graph.

If several degrees of freedom are assigned to some node of the triangu-
lation 73, then also in G several nodes are assigned to it. This is the case,
for example, if so-called Hermite elements are considered, which will be
introduced in Section 3.3. The costs of administration are small if the same
number of degrees of freedom is assigned to all nodes of the triangulation.

An often-used numbering algorithm is the Cuthill-McKee method. This
algorithm operates on the graph G just defined. Two nodes a;, a; of G are
called neighboured if (a;,a;) is an edge of G. The degree of a node a; of G
is defined as the number of neighbours of a;.

The kth step of the algorithm for k = 1,..., M has the following form:

k = 1: Choose a starting node, which gets the number 1. This starting
node forms the level 1.

k > 1: If all nodes are already numbered, the algorithm is terminated.
Otherwise, the level k is formed by taking all the nodes that are not num-
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bered yet and that are neighbours of a node of level kK — 1. The nodes of
level k will be consecutively numbered.

Within a level, we can sort, for example, by the degree, where the node
with the smallest degree is numbered first.

The reverse Cuthill-McKee method consists of the above method and the
inversion of the numbering at the end; i.e.,

new node number = M + 1 — old node number.

This corresponds to a reflection of the matrix at the counterdiagonal. The
bandwidth does not change by the inversion, but the profile may diminish
drastically for many examples (cf. Figure 2.20).

E Pk ok k! % : Pk
ORI ! Tk ok k! Lk
'.___:.___' : ' ' : 1
Dk ; Lk i Pk

L * Kk * Pkl
: ; IR
'k * Kk ko ] i
Dk * Kk k| Pk % % * !

Figure 2.20. Change of the hull by reflection at the counterdiagonal.

The following estimate holds for the bandwidth m of the numbering
created by the Cuthill-McKee algorithm:

D+

<m < max (Nk,1+Nk71) .
2<k<v

Here D is the maximum degree of a node of G, v is the number of levels, and
N, is the number of nodes of level k. The number 7 is equal to 0 if D is even,
and 7 is equal to 1 if D is odd. The left-hand side of the above inequality is
easy to understand by means of the following argument: To reach a minimal
bandwidth, all nodes that are neighbours of a; in the graph G should also
be neighbours of a; in the numbering. Then the best situation is given if the
neighboured nodes would appear uniformly immediately before and after
a;. If D is odd, then one side has one node more than the other.

To verify the right-hand side, consider a node a; that belongs to level
k —1 as well as a node a; that is a neighbour of a; in the graph G' and that
is not yet numbered in level £ — 1. Therefore, a; will get a number in the
kth step. The largest bandwidth is obtained if a; is the first node of the
numbering of level £ — 1 and if a; is the last node of level k. Hence exactly
(Nk—1 — 1) + (N — 1) nodes lie between both of these; i.e., their distance
in the numbering is Ny_1 + N — 1.

It is favourable if the number v of levels is as large as possible and if all
the numbers Ny are of the same size, if possible. Therefore, the starting
node should be chosen “at one end” of the graph G if possible; if all the



2.5. Direct Methods for Sparse Linear Systems 91

starting nodes are to be checked, the expense will be O(M M), where M
is the number of edges of G. One possibility consists in choosing a node
with minimum degree for the starting node. Another possibility is to let
the algorithm run once and then to choose the last-numbered node as the
starting node.

If a numbering is created by the (reverse) Cuthill-McKee algorithm, we
can try to improve it “locally”, i.e., by exchanging particular nodes.

Exercise
2.8 Show that the number of arithmetic operations for the Cholesky

method for an M x M matrix with bandwidth m has order Mm?2/2;
additionally, M square roots have to be calculated.



3

The Finite Element Method for Linear

Elliptic Boundary Value Problems of
Second Order

3.1 Variational Equations and Sobolev Spaces

We now continue the definition and analysis of the “correct” function spaces
that we began in (2.17)—(2.20). An essential assumption ensuring the exis-
tence of a solution of the variational equation (2.13) is the completeness of
the basic space (V, ] - ||). In the concrete case of the Poisson equation the
“preliminary” function space V according to (2.7) can be equipped with
the norm || - |1, defined in (2.19), which has been shown to be equivalent to
the norm || - |4, given in (2.6) (see (2.46)). If we consider the minimization
problem (2.14), which is equivalent to the variational equation, the func-
tional F' is bounded from below such that the infimum assumes a finite
value and there exists a minimal sequence (v,), in V, that is, a sequence
with the property

lim F(v,) = inf {F(v) ‘ veV}.

n—oo

The form of F' also implies that (v, ), is a Cauchy sequence. If this sequence
converges to an element v € V', then, due to the continuity of F with respect
to || - ||, it follows that v is a solution of the minimization problem. This
completeness of V' with respect to || - ||4, and hence with respect to || - |1, is
not satisfied in the definition (2.7), as Example 2.8 has shown. Therefore,
an extension of the basic space V, as formulated in (2.20), is necessary.
This space will turn out to be “correct,” since it is complete with respect
to || - [|1.
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In what follows we use the following general assumption:

V is a vector space with scalar product (-,-)and the norm || - ||
induced by (,-) (for this, ||v| := (v, v>1/2 for v € Vissatis fied) ;
V is complete with respect to || - ||, i.e. a Hilbert space; (3.1)
a:V xV — Ris a (not necessarily symmetric) bilinear form;

b:V — R is a linear form.

The following theorem generalizes the above consideration to nonsym-
metric bilinear forms:

Theorem 3.1 (Lax—Milgram) Suppose the following conditions are sat-
isfied:

e a is continuous (cf. (2.42)); that is, there exists some constant
M > 0 such that

la(u,v)] < Mlul||v]]  for all u,v € V; (3.2)

e a is V-elliptic (¢f. (2.43)); that is, there exists some constant o > 0
such that

a(u,u) > alul®* forallueV; (3.3)
e b is continuous; that is, there exists some constant C > 0 such that
b(w)] < Cllul| forallueV. (3.4)
Then the variational equation (2.21), namely,
find w € V such that  a(@,v) =bv) forallveV, (3.5)

has one and only one solution.
Here, one cannot avoid the assumptions (3.1) and (3.2)—(3.4) in general.

Proof: See, for example, [26]; for an alternative proof see Exercise 3.1. O

Now returning to the example above, the assumptions (3.2) and (3.3) are
obviously satisfied for ||-|| = || - ||a. However, the “preliminary” definition of
the function space V' of (2.7) with norm ||-||, defined in (2.19) is insufficient,
since (V|| - ||lo) is not complete. Therefore, the space V' must be extended.
Indeed, it is not the norm on V that has been chosen incorrectly, since V'
is also not complete with respect to another norm || - || that satisfies (3.2)
and (3.3). In this case the norms || - || and || - || would be equivalent (cf.
(2.46)), and consequently,

(Vi - la) complete < (V.|| -]|) complete.

Now we extend the space V and thereby generalize definition (2.17).
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Definition 3.2 Suppose 2 C R? is a (bounded) domain.
The Sobolev space H*(9) is defined by

H*Q):={v:Q—R|ve L), the weak derivatives 9*v exist
in L?(2) and for all multi-indices o with |o| < k}.

A scalar product (-, -), and the resulting norm || - || in H*(£2) are defined
as follows:

(v,w), = / Z 0% 0%wdx , (3.6)

a multi—index
la| <k

1/2
lolle = 1/2 </ Z ‘8av|2dx> (3.7)

a multi—index
|| <k

/2 1/2
=( [1f dx) (o e)
a multi—index a multi—index

|| <k la| <k

Greater flexibility with respect to the smoothness properties of the func-
tions that are contained in the definition is obtained by requiring that v
and its weak derivatives should belong not to L?(Q) but to LP(£2). In the
norm denoted by || - ||k, the L2(Q2) and f2 norms (for the vector of the
derivative norms) have to be replaced by the LP({) and ¢, norms, respec-
tively (see Appendices A.3 and A.5). However, the resulting space, denoted
by Wf (Q), can no longer be equipped with a scalar product for p # 2. Al-
though these spaces offer greater flexibility, we will not use them except in
Sections 3.6, 6.2, and 9.3.

Besides the norms || - ||, there are seminorms |- |; for 0 <1 < k in H*(Q),

defined by
1/2
=S i)

a multi—index
|| =1

i 1/2
[vll = <Z |v|?> :
1=0

In particular, these definitions are compatible with those in (2.18),

such that

(v, w), ::/vaer-dex,
Q

and with the notation | - [|p for the L?(£2) norm, giving a meaning to this
one.
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The above definition contains some assertions that are formulated in the
following theorem:

Theorem 3.3 The bilinear form (-,-), is a scalar product on H*(Q); that
is, || - |x is @ norm on HF(Q).
H*(Q) is complete with respect to || - ||k, and is thus a Hilbert space.

Proof: See, for example, [37]. a

Obviously,
H*Q) c H(Q) for k>1,
and the embedding is continuous, since
vl < |vllx for all v € H*(S). (3.8)
In the one-dimensional case (d = 1) v € H*(Q) is necessarily continuous:

Lemma 3.4
H'(a,b) C Cla,b],

and the embedding is continuous, where Cla,b] is equipped with the norm
Il - loo; that is, there exists some constant C' > 0 such that

[v]lco < Cllv|l1 for allv € Hl(a,b). (3.9)

Proof: See Exercise 3.2. O

Since the elements of H*(2) are first of all only square integrable func-
tions, they are determined only up to points of a set of (d-dimensional)
measure zero. Therefore, a result as in Lemma 3.4 means that the func-
tion is allowed to have removable discontinuities at points of such a set of
measure zero that vanish by modifying the function values.

However, in general, H'(Q2) ¢ C(€Q).

As an example for this, we consider a circular domain in dimension d = 2:
Q=DBr(0)={zecR?||Jz| <R}, R<I1.
Then the function
v(z) = |log|z||”  for some v < %

is in H(Q), but not in C(Q) (see Exercise 3.3).

The following problem now arises: In general, one cannot speak of a
value v(x) for some = € Q because a set of one point {z} has (Lebesgue)
measure zero. How do we then have to interpret the Dirichlet boundary
conditions? A way out is to consider the boundary (pieces of the boundary,
respectively) not as arbitrary points but as (d — 1)-dimensional “spaces”
(manifolds).
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The above question can therefore be reformulated as follows: Is it possible
to interpret v on 9 as a function of L2(9Q) (99 “C” R4~1) ?

It is indeed possible if we have some minimal regularity of 9 in the
following sense: It has to be possible to choose locally, for some boundary
point & € 91, a coordinate system in such a way that the boundary is
locally a hyperplane in this coordinate system and the domain lies on one
side. Depending on the smoothness of the parametrisation of the hyperplane
we then speak of Lipschitz, C*- (for k € N), and C°°- domains (for an exact
definition see Appendix A.5).

Examples:

(1) A circle @ = {z € R? ‘ |z — x| < R} is a C*-domain for all k € N,
and hence a C°*°-domain.

(2) A rectangle Q = {x € R4 | O<z;<ag;,i=1,.. .,d} is a Lipschitz
domain, but not a C'*-domain.

(3) A circle with a cut @ = {z € R? ‘ |z —xo| < R, © # xo+ Aey for 0 <

A< R} is not a Lipschitz domain, since {2 does not lie on one side of
00 (see Figure 3.1).

Q

Circle Rectangle Circle with cut

Figure 3.1. Domains of different smoothness.

Hence, suppose () is a Lipschitz domain. Since only a finite number of
overlapping coordinate systems are sufficient for the description of 0f,
using these, it is possible to introduce a (d — 1)-dimensional measure on
09 and define the space L%(9f2) of square integrable functions with respect
to this measure (see Appendix A.5 or [37] for an extensive description). In
the following, let 92 be equipped with this (d — 1)-dimensional measure
do, and integrals over the boundary are to be interpreted accordingly. This
also holds for Lipschitz subdomains of €2, since they are given by the finite
elements.

Theorem 3.5 (Trace Theorem) Suppose Q is a bounded Lipschitz do-
main. We define
C¥RYq = {v:Q—R|v can be extended to v : R* — R and
v e C®(RY}.
Then, C>=(R%)|q is dense in H'(Q); that is, with respect to ||-||1 an arbitrary
w € HY(Q) can be approzimated arbitrarily well by some v € C*(R%)]q .
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The mapping that restricts v to 0€,
70 (C¥®RNla, |- 1) —  (E209).]- o) »

v o~ e,

18 continuous.
Thus there exists a unique, linear, and continuous extension

Yo (HH ), - 11) — (L2(092), ] - llo) -
Proof: See, for example, [37]. o

Therefore, in short form, vo(v) € L%(09), and there exists some constant
C > 0 such that

o (v)llo < C|lv|ly for all v € H*(Q).

Here yo(v) € L?(99) is called the trace of v € H ().
The mapping 7o is not surjective; that is, {yo(v) | v € H'(Q)} is a real
subset of L2(99). For all v € C*°(R4)|q we have

Yo(v) = v|oq -

In the following we will use again v|gn or “v on 9Q” for 7y(v), but in
the sense of Theorem 3.5. According to this theorem, definition (2.20) is
well-defined with the interpretation of u on 9f) as the trace:

Definition 3.6 H}(Q2) := {ve H'(Q) | 70(v) = 0 (as a function on 99)}.

Theorem 3.7 Suppose 2 C R? is a bounded Lipschitz domain. Then
C§e(Q2) is dense in Hi(Q).

Proof: See [37]. O

The assertion of Theorem 3.5, that C*°(R%)|q is dense in H'(Q), has
severe consequences for the treatment of functions in H'(€2) which are in
general not very smooth. It is possible to consider them as smooth functions
if at the end only relations involving continuous expressions in ||-||1 (and not
requiring something like ||0;v||~) arise. Then, by some “density argument”
the result can be transferred to H'(Q) or, as for the trace term, new terms
can be defined for functions in H*(Q). Thus, for the proof of Lemma 3.4
it is necessary simply to verify estimate (3.9), for example for v € C'|a, b].
By virtue of Theorem 3.7, analogous results hold for H{ (€2).

Hence, for v € H'(Q)) integration by parts is possible:

Theorem 3.8 Suppose Q C RY is a bounded Lipschitz domain. The outer

unit normal vector v = (v;)i=1,....a : 00 — R? s defined almost everywhere
and v; € L>(0R).
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Forv,w € HY(Q) andi=1,....,d,

/8vwdm——/v8iwdx+/ vwy;do.
o0

Proof: See, for example, [14] or [37]. m

If v € H%(Q), then due to the above theorem, v|sq := vo(v) € L?(90)
and 0;v|aq = Y0 (0;v) € L%(9N), since also ;v € H'(Q). Hence, the normal
derivative

d
duvloa =Y Owloavi

i=1
is well-defined and belongs to L?(99).
Thus, the trace mapping

Vi H2Q) —  L2(0Q) x LX(09),
v o= (v|aq, 0uvlaq) ,

is well-defined and continuous. The continuity of this mapping follows from
the fact that it is a composition of continuous mappings:

v e HA(Q) MO g e HY(Q) MO guaq € L2(0Q)
continuous vl vs € L2(09).
Corollary 3.9 Suppose Q C R? is a bounded Lipschitz domain.
(1) Letw e HY(Q), ¢i € HY(Q),i=1,...,d. Then

/q'dex:f/Vw]wder/ q-vwdo. (3.10)
Q Q o0

(2) Let v e H?(Q), w e H (). Then

/Vszwdx:f/Avwder O,vwdo .
Q Q le)

The integration by parts formulas also hold more generally if only it is
ensured that the function whose trace has to be formed belongs to H' ().
For example, if K = (ki;);;, where k;; € WL (Q) and v € H%(Q), w €
H'(Q), it follows that

/KV%defc:f/V'(KVU)wder KVv-vwdo  (3.11)
Q Q a0

with conormal derivative (see (0.41))

d
Opv:=KVv-v=Vuv- KTy = Z ki;0;vv;.

ij=1
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Here it is important that the components of K Vv belong to H!(£2), using
the fact that for v € L?(Q), k € L>(Q),

kve L*(Q) and [[kvflo < [|kllo]lv]lo-

Theorem 3.10 Suppose Q C R? is a bounded Lipschitz domain.
If k > d/2, then

H*(Q) € C(9),

and the embedding is continuous.
Proof: See, for example, [37]. a

For dimension d = 2 this requires £ > 1, and for dimension d = 3 we
need k > % Therefore, in both cases k = 2 satisfies the assumption of the
above theorem.

Exercises

3.1 Prove the Lax—Milgram Theorem in the following way:

(a) Show, by using the Riesz representation theorem, the equivalence of
(3.5) with the operator equation

Al = f
for A€ L[V,V]and f € V.

(b) Show, for T, € L[V,V], Tev := v — e(Av — f) and € > 0, that for
some ¢ > 0, the operator T is a contraction on V. Then conclude
the assertion by Banach’s fixed-point theorem (in the Banach space
setting, cf. Remark 8.5).

3.2 Prove estimate (3.9) by showing that even for v € H'(a,b),

[v(x) —v(y)| < [olilz —y[Y/? for 2,y € (a,b).

3.3 Suppose Q C R? is the open disk with radius % and centre 0. Prove
that for the function u(z) := |In|z||", = € @\ {0}, @ € (0,3) we have

u € HY(Q), but u cannot be extended continuously to z = 0.

3.4 Suppose 2 C R? is the open unit disk. Prove that each u € H'(Q)
has a trace ul,, € L2(09) satistying [|lullo,00 < V8|ull1,0-
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3.2 Elliptic Boundary Value Problems of Second
Order

In this section we integrate boundary value problems for the linear, sta-
tionary case of the differential equation (0.33) into the general theory of
Section 3.1.

Concerning the domain we will assume that €2 is a bounded Lipschitz
domain.

We consider the equation

(Lu)(z) :== =V - (K (z)Vu(x)) + c(z) - Vu(z) + r(x)u(z) = f(x) for z € Q
(3.12)
with the data

K:Q-R¥ ¢:Q—-RY rf:Q—R

Assumptions about the Coefficients and the Right-Hand Side
For an interpretation of (3.12) in the classical sense, we need

aikijaciarafec(ﬁ)a ivje{]-a"'vd}v (313)

and for an interpretation in the sense of L?(£2) with weak derivatives, and
hence for a solution in H?((),

Oikij,ci,r € L(Q), feL*(Q), 4,j€{l,...,d}. (3.14)

Once we have obtained the variational formulation, weaker assumptions
about the smoothness of the coefficients will be sufficient for the verifica-
tion of the properties (3.2)—(3.4), which are required by the Lax—Milgram,
namely,

k‘ij,Ci,V'C,TGLOO(Q),fGLQ(Q), i,je{l,...,d},

. (3.15)
and if Ty UT3]g—1 >0, wv-ce L>®(T;UTy).

Here we refer to a definition of the boundary conditions as in (0.36)—(0.39)
(see also below). Furthermore, the uniform ellipticity of L is assumed: There
exists some constant kg > 0 such that for (almost) every = € Q,

d

Z kij (l‘)ngj > k0|§|2 for all § S Rd (316)

i,j=1
(that is, the coefficient matrix K is positive definite uniformly in z).
Moreover, K should be symmetric.

If K is a diagonal matrix, that is, k;;(x) = k;(x)d;; (this is in particular

the case if k;(x) = k(z) with k : Q@ — R, ¢ € {1,...,d}, where KVu
becomes kVu), this means that

(3.16) < ki(z) > ko for (almost) every z € Q, i€ {l,...,d}.
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Finally, there exists a constant ry > 0 such that

r(zr) — %V -c(z) > ro for (almost) every x € 2. (3.17)

Boundary Conditions
As in Section 0.5, suppose I'1,I'5,T's is a disjoint decomposition of the
boundary 92 (cf. (0.39)):

8Q:F1UF2UF3,

where I's is a closed subset of the boundary. For given functions g; : I'; —
R,j=1,2,3,and a: I's — R we assume on 0f)

e Neumann boundary condition (cf. (0.41) or (0.36))
KVu-v=0,,u=¢1 only, (3.18)
e mixed boundary condition (cf. (0.37))
KVu-v+ou=0,,u+au=gs only, (3.19)
e Dirichlet boundary condition (cf. (0.38))
u=g3 onlj. (3.20)

Concerning the boundary data the following is assumed: For the classical
approach we need

g, €CTy), j=1,2,3, aecCTy), (3.21)
whereas for the variational interpretation,
g; € L*(Ty), j=1,2,3, acL™{y) (3.22)

is sufficient.

3.2.1 Variational Formulation of Special Cases

The basic strategy for the derivation of the variational formulation of
boundary value problems (3.12) has already been demonstrated in Sec-
tion 2.1. Assuming the existence of a classical solution of (3.12) the
following steps are performed in general:

Step 1: Multiplication of the differential equation by test functions that
are chosen compatible with the type of boundary condition and
subsequent integration over the domain €.

Step 2: Integration by parts under incorporation of the boundary condi-
tions in order to derive a suitable bilinear form.

Step 3: Verification of the required properties like ellipticity and continuity.
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In the following the above steps will be described for some important special
cases.

(I) Homogeneous Dirichlet Boundary Condition
00N =T3,93=0,V :=H}Q)

Suppose u is a solution of (3.12), (3.20); that is, in the sense of classical
solutions let u € C%(Q) N C(Q) and the differential equation (3.12) be
satisfied pointwise in 2 under the assumptions (3.13) as well as u = 0
pointwise on 9€). However, the weaker case in which u € H?(2) NV and
the differential equation is satisfied in the sense of L?(£2), now under the
assumptions (3.14), can also be considered.

Multiplying (3.12) by v € C5°(2) (in the classical case) or by v € V,
respectively, then integrating by parts according to (3.11) and taking into
account that v = 0 on 9Q by virtue of the definition of C§°(2) and H}(Q),
respectively, we obtain

a(u,v) = /{KVu-Vv—i—c-Vuv—l—ruv} dx (3.23)
Q
= b(v) :z/fvdx forallv e C5°(Q) orv e V.
Q

The bilinear form a is symmetric if ¢ vanishes (almost everywhere).
For f € L?(Q),

b is continuous on (V|- ||1) - (3.24)

This follows directly from the Cauchy—Schwarz inequality, since

lb(v)] < /Q [f1lvlde <[ fllol[ollo < [Iflloflvlly  for ve V.

Further, by (3.15),
a is continuous (V| - ||1) - (3.25)

Proof: First, we obtain
la(u, v)| < /Q{IKVUI Vol + le| [Vul|v] + [r[ |ul |v]} da.

Here | - | denotes the absolute value of a real number or the Euclidean
norm of a vector. Using also || - ||z for the (associated) spectral norm, and
| loo for the L°°(€2) norm of a function, we further introduce the following
notations:

Cr = max { 1K o] . 7l } < 00, Cai= |lell], < o0
By virtue of
K (2)Vu(e)| < [|K(2)]2 [Vu(z)],
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we continue to estimate as follows:

la(u, v)| SCl/{|Vu||Vv|+|u| |v|}dx+C’2/ IVl o] de
Q Q

=:A; =:As

The integrand of the first addend is estimated by the Cauchy—Schwarz
inequality for R?, and then the Cauchy-Schwarz inequality for L?(Q) is
applied:

A < ¢ / (9l + [uf2} 72 {90l + o2} /? da
Q

1/2 1/2
< cl{ / |u|2+|w|2dx} { / |v|2+|w|2dx} — Culufl [l
Q Q

Dealing with Ay, we can employ the Cauchy—Schwarz inequality for L?(£2)

directly:
1/2 1/2
Ay < Oy {/ |Vu|2dx} {/ |v|? dx}
Q Q
< Collullil|vllo < Collullx |lv|ln - for all u,v € V.
Thus, the assertion follows. O

Remark 3.11 In the proof of the propositions (3.24) and (3.25) it has not
been used that the functions u, v satisfy homogeneous Dirichlet boundary
conditions. Therefore, under the assumptions (3.15) these properties hold
for every subspace V C H' ().

Conditions for the V-Ellipticity of a

(A) a is symmetric; that is ¢ = 0 (a.e.): Condition (3.17) then has the
simple form r(z) > r¢ for almost all x € Q.

(A1) ¢=0, 7ro>0:

Because of (3.16) we directly get

a(u,u) > /{k‘o|Vu|2 +rolul?y dx > Csl|u||? for allu € V,
Q

where C3 := min{kg,ro}. This also holds for every subspace V C H!().
(A2) ¢=0, ro>0:

According to the Poincaré inequality (Theorem 2.18), there exists some
constant Cp > 0, independent of u, such that for u € H}(Q)

1/2
lullo < cp{/ |Vu|2da:} .
Q
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Taking into account (3.16) and using the simple decomposition kg =
ko 2

T 0123 + I 0123 ko we can further conclude that

alu,u) > /k0|Vu|2dx (3.26)
Q
ko 2 ng) 1 / 2 2
> - 0 —a =
> 1JrC1%/9|Vu| dx + T+ 2 k’oC‘% Q|u| dx = Cy||ullf,
ko
where Cy := 1—1—0%_, >0.

For this estimate it is essential that u satisfies the homogeneous Dirichlet
boundary condition.
®) el >0
First of all, we consider a smooth function u € C§° (). From uVu = $Vu?
we get by integrating by parts

1 1
/C-V’U,udl‘:—/C-VU,QCZJ):——/V-C’U,de.
Q 2 Jo 2 Jo

Since according to Theorem 3.7 the space C§°(f2) is dense in V, the above
relation also holds for u € V. Consequently, by virtue of (3.16) and (3.17)
we obtain

a(u,u) = /Q{KVu-Vu+(T—%V-c)u2}dx

(3.27)
/{k0|w|2 +roluf’ydz forallu e V.
Q

Y

Hence, a distinction concerning 79 as in (A) with the same results
(constants) is possible.

Summarizing, we have therefore proven the following application of the
Lax-Milgram Theorem (Theorem 3.1):

Theorem 3.12 Suppose Q C R? is a bounded Lipschitz domain. Under
the assumptions (3.15)—(3.17) the homogeneous Dirichlet problem has one
and only one weak solution u € H}(Q).

(IT) Mixed Boundary Conditions
0N =Ty, V=H'(Q)

Suppose u is a solution of (3.12), (3.19); that is, in the classical sense
let u € C%(Q) N CYQ) and the differential equation (3.12) be satisfied
pointwise in © and (3.19) pointwise on 92 under the assumptions (3.13),
(3.21). However, the weaker case can again be considered, now under the
assumptions (3.14), (3.22), that u € H%(2) and the differential equation is
satisfied in the sense of L2(f2) as well as the boundary condition (3.19) in
the sense of L?(99).
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As in (I), according to (3.11),
a(u,v) := /{KVu Vv +c-Vuv+ruvkde + / auvdo (3.28)
Q a0

= b(v):z/fvda:—i—/ govdo forallveV.
Q o0

Under the assumptions (3.15), (3.22) the continuity of b and a, respec-
tively, ((3.24) and (3.25)) can easily be shown. The additional new terms
can be estimated, for instance under the assumptions (3.15), (3.22), by
the Cauchy—Schwarz inequality and the Trace Theorem (Theorem 3.4) as
follows:

/ govdo
o0
and

/ auv do
o0

respectively, for all u,v € V, where C' > 0 denotes the constant appearing
in the Trace Theorem.

< llgz2llo,00llvloallo.00 < Cllgz2ll0.0allv|li  for allv e V

< lellos,00llulocllo,00llvloello.00 < C%llallssallullillv]:,

Conditions for the V-Ellipticity of a

For the proof of the V-ellipticity we proceed similarly to (I)(B), but now
taking into account the mixed boundary conditions. For the convective
term we have

1 1 1
/C~Vuudx:—/c~Vu2dx:f—/V~cu2dx+—/ v-culdo,
Q 2 Ja 2 Ja 2 Jaq

and thus

1 1
a(u,u)z/ {KVu-Vu—l— (r—av-c) u2}da:—|—/ (a+§y-c> u?do.
Q o9

This shows that « + %1/ - ¢ > 0 on 012 should additionally be assumed. If
ro > 01n (3.17), then the V-ellipticity of a follows directly. However, if only
ro > 0 is valid, then the so-called Friedrichs’ inequality, a refined version
of the Poincaré inequality, helps (see [25, Theorem 1.9]).

Theorem 3.13 Suppose Q C R? is a bounded Lipschitz domain and let
the set I' C 9Q have a positive (d — 1)-dimensional measure. Then there
exists some constant Cr > 0 such that for all v € H'(Q),

1/2
lv]1 < Cp {[02 d0+/ | Vo2 dx} . (3.29)
r )

If Oz—l—%l/-c > aqg > 0forz € I c Iy and I has a positive (d—-1)-
dimensional measure, then ry > 0 is already sufficient for the V-ellipticity.
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Indeed, using Theorem 3.13, we have
a(u,u) > kolul? + ag /~ u? do > min{ko, ag} {|u|% + [ u? da} > Cs|lul?
r t

with C5 = C;Q min{kg, ap}. Therefore, we obtain the existence and
uniqueness of a solution analogously to Theorem 3.12.

(III) General Case
First, we consider the case of a homogeneous Dirichlet boundary
condition on I's with [I's|4—1 > 0. For this, we define

Vi={ve H(Q): 1(v)=00nTs} . (3.30)

Here V is a closed subspace of H!()), since the trace mapping 7o :
H(Q) — L%*(99) and the restriction of a function from L?(9Q) to L?(T'3)
are continuous.

Suppose u is a solution of (3.12), (3.18)—(3.20); that is, in the sense
of classical solutions let u € C?(€2) N C1() and the differential equation
(3.12) be satisfied pointwise in Q and the boundary conditions (3.18)—
(3.20) pointwise on their respective parts of 92 under the assumptions
(3.13), (3.21). However, the weaker case that u € H?(Q) and the differential
equation is satisfied in the sense of L?(Q2) and the boundary conditions
(3.18)—(3.20) are satisfied in the sense of L*(T;), j = 1,2,3, under the
assumptions (3.14), (3.22) can also be considered here.

As in (I), according to (3.11),

a(u,v) = /{KVu-Vv—l—c-Vuv—l—ruv}da:—l—/ auv do (3.31)
Q r

2

= b(v):z/fvdx—i—/ gwda—i—/ govdo forallveV.
Q I s

Under the assumptions (3.15), (3.22) the continuity of @ and b, (3.25)) and
((3.24) can be proven analogously to (IT).

Conditions for V-Ellipticity of a

For the verification of the V-ellipticity we again proceed similarly to (II),
but now the boundary conditions are more complicated. Here we have for
the convective term

1 1
/c-Vuudxz——/V-chdx—l——/ v-culdo,
Q 2 Q 2 I'iul's

and therefore

a(u,u) = /{KVU-Vqu(r%Vw)uQ}dx
Q
1 2 1 2
+ = v-cu“do + a+—-v-clu‘do.
2 T s 2
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In order to ensure the V-ellipticity of a we need, besides the obvious
conditions

1
v-c>0 onIi and a+§y-020 on Iy, (3.32)

the following corollary from Theorem 3.13.

Corollary 3.14 Suppose Q C R? is a bounded Lipschitz domain and T C
00 has a positive (d — 1)-dimensional measure. Then there exists some
constant Cp > 0 such that for all v € H' () with v|z = 0,

1/2
[lvlo SCF{/ |VU|2da:} = Cplvl; .
Q

This corollary yields the same results as in the case of homogeneous
Dirichlet boundary conditions on the whole of 0.

If T's|lq—1 = 0, then by tightening conditions (3.32) for ¢ and «, the
application of Theorem 3.13 as done in (IT) may be successful.

Summary
We will now present a summary of our considerations for the case of
homogeneous Dirichlet boundary conditions.

Theorem 3.15 Suppose Q C R? is a bounded Lipschitz domain. Under the
assumptions (3.15), (3.16), (3.22) with g3 = 0, the boundary value problem
(3.12), (3.18)—(3.20) has one and only one weak solution u € V, if

(1) r—=3V-c>0inQ.

(2) v-ce>0onTy.

(3) a+3v-c>0o0nTs.

(4) Additionally, one of the following conditions is satisfied:
(a) |F3|d_1 >0.

(b) There exists some S:) C Q with |Qq > 0 and ro > 0 such that
rf%V@Zro on €.

(c) There exists some~f‘1 c I'y with |1~“1|d,1 > 0 and cg > 0 such
that v-c> co on I'y.

(d) There exists some Iy C I'y with |f2|d_1 > 0 and ag > 0 such
thata+%u~02ao on I's.

Remark 3.16 We point out that by using different techniques in the proof,
it is possible to weaken conditions (4)(b)—(d) in such a way that only the
following has to be assumed:

(b)) {ze€Q:r—3V-c>0},>0,
(¢) |[{zeTr:v-ec>0}|, , >0,
(d) |{x€F2:a+%u-c>0}|d71>0.
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However, we stress that the conditions of Theorem 3.15 are only suffi-
cient, since concerning the V-ellipticity, it might also be possible to balance
an indefinite addend by some “particular definite” addend. But this would
require conditions in which the constants C'p and Cg are involved.

Note that the pure Neumann problem for the Poisson equation

—Au = f inQ,

d,u = g ondN (3:33)

is excluded by the conditions of Theorem 3.15. This is consistent with the
fact that not always a solution of (3.33) exists, and if a solution exists, it
obviously is not unique (see Exercise 3.8).

Before we investigate inhomogeneous Dirichlet boundary conditions, the
application of the theorem will be illustrated by an example of a natural
situation described in Chapter 0.

For the linear stationary case of the differential equation (0.33) in the
form

V-(cu—KVu)+7u=f
we obtain, by differentiating and rearranging the convective term,
—V-(KVu)+c-Vu+(V-e+F)u=f,

which gives the form (3.12) with r := V-c¢+7 . The boundary 9 consists
only of two parts I'y and I's. Therein, I'y an outflow boundary and I's an
inflow boundary; that is, the conditions

c-v>0 onI'y and c¢c-v<0 only
hold. Frequently prescribed boundary conditions are

—(cu—KVu)-v = —v-cu only,
—(cu—KVu)-v = g onTIy.
They are based on the following assumptions: On the inflow boundary T'y
the normal component of the total (mass) flux is prescribed but on the

outflow boundary I'y, on which in the extreme case K = 0 the boundary
conditions would drop out, only the following is required:

e the normal component of the total (mass) flux is continuous over I'y,

e the ambient mass flux that is outside Q consists only of a convective
part,

e the extensive variable (for example, the concentration) is continuous
over I'1, that is, the ambient concentration in x is also equal to u(z).

Therefore, after an obvious reformulation we get, in accordance with the
definitions of T'y and T’z due to (3.18), (3.19), the Neumann boundary
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condition (3.18), and the mixed boundary condition (3.19),

KVu-v = 0 only,
KVu-v+au = go only,

where a := —v - c.

Now the conditions of Theorem 3.15 can be checked:

We have r— %V-c =7+ %V-c; therefore, for the latter term the inequality
in (1) and (4)(b) must be satisfied. Further, the condition v -¢ > 0 on
I'y holds due to the characterization of the outflow boundary. Because of
o+ %1/ ¢ = —21v ¢, the condition (3) is satisfied due to the definition of

2
the inflow boundary.

Now we address the case of inhomogeneous Dirichlet boundary
conditions (|T's|4—1 > 0).

This situation can be reduced to the case of homogeneous Dirich-
let boundary conditions, if we are able to choose some (fixed) element
w € H'(Q) in such a way that (in the sense of trace) we have

Yo(w) =gs onTj. (3.34)

The existence of such an element w is a necessary assumption for the exis-
tence of a solution @ € H'(2). On the other hand, such an element w can
exist only if g3 belongs to the range of the mapping

HY(Q) 30 — Yo(v)|rs € LQ(Fg).

However, this is not valid for all g3 € L?(I'3), since the range of the trace
operator of H!()) is a proper subset of L?(99).

Therefore, we assume the existence of such an element w. Since only
the homogeneity of the Dirichlet boundary conditions of the test functions
plays a role in derivation (3.31) of the bilinear form a and the linear form
b, we first obtain with the space V', defined in (3.30), and

V= {ve H' () : y()=gsonls} ={ve H(Q):v—weV}

the following~ variational formulation:
Find % € V such that

a(t,v) =b(v) forallveV.

However, this formulation does not fit into the theoretical concept of
Section 3.1 since the space V is not a linear one.

If we put @ := u 4 w, then this is equivalent to the following:

Find v € V such that

a(u,v) = b(v) — a(w,v) =: b(v) forallveV. (3.35)

Now we have a variational formulation for the case of inhomogeneous
Dirichlet boundary conditions that has the form required in the theory.
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Remark 3.17 In the existence result of Theorem 3.1, the only assumption
is that b has to be a continuous linear form in V.

For d = 1 and Q = (a, b) this is also satisfied, for instance, for the special
linear form

5, (v) :==v(y) forve H'(a,b),

where v € (a,b) is arbitrary but fixed, since by Lemma 3.4 the space
H'(a,b) is continuously embedded in the space Cla,b]. Thus, for d = 1
point sources (b = d,) are also allowed. However, for d > 2 this does not
hold since H(Q) ¢ C(Q).

Finally, we will once again state the general assumptions under which the
variational formulation of the boundary value problem (3.12), (3.18)—(3.20)
in the space (3.30),

V={veH(Q): v()=0onTs},

has properties that satisfy the conditions of the Lax—Milgram Theorem
(Theorem 3.1):
e O C R?is a bounded Lipschitz domain.
o kij,c;,V -c,r € L®(Q), f € L2(Q), i,j € {1,...,d}, and, if
Ty UTslg1 >0, v-ce L®(TUTy) (ie., (3.15)).
e There exists some constant kg > 0 such that in , we have {- K (z)§ >
kol£|? for all ¢ € R? (i.e., (3.16)),
® g; € LQ(F]-), i=1,23 a€ L>*(T2) (ie., (3.22)).
e The following hold:
(1) r—3V-c>0in Q.
(2) v.e>0onTy.
(3) a+iv-c>0o0onT,.
(4) Additionally, one of the following conditions is satisfied:
(a) |T'slg—1 > 0. i i
(b) There exists some 2 C  with [Q2[g > 0 and ro > 0 such
thatr—%v-czro on .
(c¢) There exists some I, C T'y with |f‘1|d_1 > 0and ¢g > 0
such that v-c¢ > ¢g on I'y.
(d) There exists some I'y C Ty with |f2|d_1 >0and ag > 0
such that « + %V -¢c > ag on I's.
e If T3], , > 0, then there exists some w € H*(Q) with vo(w) = g3
on I's (i.e., (3.34)).
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3.2.2  An Example of a Boundary Value Problem of Fourth
Order

The Dirichlet problem for the biharmonic equation reads as follows:
Find u € C*(Q) N C1(Q) such that

A%y = in Q,
v =/ (3.36)
d,u = u=0 ondf,
where
d
A%y = A (Au) = Z 0? (8]2u) .
ij=1

In the case d = 1 this collapses to A%u = u(¥.

For u,v € H?(Q) it follows from Corollary 3.9 that

/ (uAv — Auw) dx = / {udyv — dyuv}do
Q o9

and hence for u € H*(Q2), v € H*(Q) (by replacing u with Au in the above
equation),

/AuAvdxz/AQUUda:— O, Auvdo + Aud,vdo.
Q Q le) le)

For a Lipschitz domain €2 we define
H§(Q) == {ve H*(Q) | v=08,v =0 on 09}

and obtain the variational formulation of (3.36) in the space V := HZ(Q):
Find v € V, such that

a(u,v) ::/AuAvdx:b(v) ::/fvdac forallve V.
Q Q

More general, for a boundary value problem of order 2m in conservative
form, we obtain a variational formulation in H™ () or H"(2).

3.2.8 Regularity of Boundary Value Problems

In Section 3.2.1 we stated conditions under which the linear elliptic bound-
ary value problem admits a unique solution w (@, respectively) in some
subspace V of H'(Q). In many cases, for instance for the interpolation of
the solution or in the context of error estimates (also in norms other than
the || - ||v norm) it is not sufficient that w (&, respectively) have only first
weak derivatives in L%(Q).

Therefore, within the framework of the so-called regularity theory, the
question of the assumptions under which the weak solution belongs to
H?(Q), for instance, has to be answered. These additional conditions
contain conditions about
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e the smoothness of the boundary of the domain,
e the shape of the domain,

e the smoothness of the coefficients and the right-hand side of the
differential equation and the boundary conditions,

e the kind of the transition of boundary conditions in those points,
where the type is changing,

which can be quite restrictive as a whole. Therefore, in what follows we
often assume only the required smoothness. Here we cite as an example
one regularity result ([13, Theorem 8.12]).

Theorem 3.18 Suppose Q is a bounded C?-domain and T's = OS). Further,
assume that ki; € CH(Q), ¢;,r € L>=(Q), f € L*Q), i,j € {1,...,d},
as well as (3.16). Suppose there exists some function w € H?*(Q) with
Yo(w) = gs on T's. Let & = u+ w and let u be a solution of (3.35). Then
@€ H?(Q) and

all2 < C{llullo + I fllo + [[wll2}
with a constant C > 0 independent of u, f, and w.

One drawback of the above result is that it excludes polyhedral domains.
If the convexity of €2 is additionally assumed, then it can be transferred
to this case. Simple examples of boundary value problems in domains with
reentrant corners show that one cannot avoid such additional assumptions
(see Exercise 3.5).

Exercises

3.5 Consider the boundary value problem (1.1), (1.2) for f = 0 in the
sector Q := {(z,y) € R? | T=rcosp, y=rsinpwith0<r<1,0<p<
a} for some 0 < o < 27, thus with the interior angle a. Derive as in (1.23),
by using the ansatz w(z) := z'/%, a solution u(x,y) = Sw(zx + iy) for an
appropriate boundary function g. Then check the regularity of u, that is,
u € H*(Q), in dependence of a.

3.6 Consider the problem (1.29) with the transmission condition (1.30)
and, for example, Dirichlet boundary conditions and derive a variational

formulation for this.

3.7 Consider the variational formulation:
Find u € H*(9) such that

/Vu-Vvdx:/fvdm—i—/ gvdo  for all v € HY(Q), (3.37)
Q Q o0
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where  is a bounded Lipschitz domain, f € L?(Q) and g € L?(09).

(a) Let u € H(Q) be a solution of this problem. Show that —Au exists
in the weak sense in L?(Q2) and

—Au=f.
(b) If additionally u € H?(2), then d,u|sq exists in the sense of trace in
L2(09) and
du=yg

where this equality is to be understood as

/ (Oyu—g)vdo =0 forallve H(Q).
19)

3.8 Consider the variational equation (3.37) for the Neumann problem
for the Poisson equation as in Exercise 3.7.

(a) If a solution u € H' () exists, then the compatibility condition

/fda:—l—/ gdo =0 (3.38)
Q o0
has to be fulfilled.

(b) Consider the following bilinear form on H*(Q) :

i(u, v) ::/QVu-Vvda:—i— (/Qudx)(/ﬂvdx) .

Show that a is V-elliptic on H' ().
Hint: Do it by contradiction using the fact that a bounded sequence in
H'(Q) possesses a subsequence converging in L?(2) (see, e.g., [37]).

(c) Consider the unique solution @ € H'(Q) of

&(u,v):/ﬂf’uder/anvdcf for all v € H'(Q).

|Q|/ﬁdx:/fdx+/ gdo.
Q Q 19)

Furthermore, if (3.38) is valid, then @ is a solution of (3.37) (with
Joudz =0).

Then:

3.9 Show analogously to Exercise 3.7: A weak solution u € V C H(Q)

of (3.31), where V is defined in (3.30), with data satisfying (3.14) and
(3.22), fulfills a differential equation in L?(£2). The boundary conditions
are fulfilled in the following sense:

/ a,,K’U,’UdO'—l-/ (Oputau)vdo z/ g1v da—l—/ govdo forallve V.
I I IS} 2
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3.3 Element Types and Affine Equivalent
Triangulations

In order to be able to exploit the theory developed in Sections 3.1 and 3.2
we make the assumption that  is a Lipschitz domain.

The finite element discretization of the boundary value problem (3.12)
with the boundary conditions (3.18)—(3.20) corresponds to performing a
Galerkin approximation (cf. (2.23)) of the variational equation (3.35) with
the bilinear form a and the linear form b, supposed to be defined as in
(3.31), and some w € H*(2) with the property w = g3 on I's. The solution
of the weak formulation of the boundary value problem is then given by
@ := u + w, if u denotes the solution of the variational equation (3.35).

Since the bilinear form «a is in general not symmetric, (2.21) and (2.23),
respectively (the variational equation), are no longer equivalent to (2.22)
and (2.24), respectively (the minimization problem), so that in the following
we pursue only the first, more general, ansatz.

The Galerkin approximation of the variational equation (3.35) reads as
follows: Find some u € V}, such that

a(up,v) = b(v) — a(w,v) = b(v) for allv € V. (3.39)

The space V}, that is to be defined has to satisfy V;, C V. Therefore, we
speak of a conforming finite element discretization, whereas for a mon-
conforming discretization this property, for instance, can be violated. The
ansatz space is defined piecewise with respect to a triangulation 75 of Q2
with the goal of getting small supports for the basis functions. A trian-
gulation in two space dimensions consisting of triangles has already been
defined in definition (2.25). The generalization in d space dimensions reads
as follows:

Definition 3.19 A triangulation T;, of a set Q C R consists of a finite
number of subsets K of ) with the following properties:

(T1) Every K € Ty, is closed.

(T2) For every K € Tj, its nonempty interior int (K') is a Lipschitz domain.

(T4) For different K; and Ko of 7}, the intersection of int (K1) and int (K3)
is empty.

The sets K € 7T, which are called somewhat inaccurately elements in the
following, form a nonoverlapping decomposition of Q. Here the formulation
is chosen in such a general way, since in Section 3.8 elements with curved
boundaries will also be considered. In Definition 3.19 some condition, which
corresponds to the property (3) of definition (2.25), is still missing. In the
following this will be formulated specifically for each element type. The
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parameter h is a measure for the size of all elements and mostly chosen as
h = max {diam (K) | K € T, } ;

that is, for instance, for triangles h is the length of the triangle’s largest
edge.
For a given vector space V}, let

Pr ={v|g|ve W} for KeT, (3.40)
that is,
Vi C{v:Q—>R|v|x € P forall K € T, } .

In the example of “linear triangles” in (2.27) we have Px = Pi, the poly-
nomials of first order. In the following definitions the space Px will always
consist of polynomials or of smooth “polynomial-like” functions, such that
we can assume Px C H'(K) N C(K). Here, H'(K) is an abbreviation for
H!(int (K)). The same holds for similar notation.

As the following theorem shows, elements v € V}, of a conforming ansatz
space V3, C V have therefore to be continuous :

Theorem 3.20 Suppose Px C H*(K)NC(K) for all K € Ty,. Then
Vi CC(Q) < V, c H(Q)
and, respectively, for Vpp, := {U ey ‘ v=20 on 5‘9},
Von C C(Q) <= Von C Hy(92) .

Proof: See, for example, [9, Theorem 5.1 (p. 62)] or also Exercise 3.10. O

If Vi, € O(£2), then we also speak of C-elements. Hence with this notion
we do not mean only the K € 7, but these provided with the local ansatz
space P (and the degrees of freedom still to be introduced). For a bound-
ary value problem of fourth order, V;, C H?(f2) and hence the requirement
Vi, € CH(9Q) are necessary for a conforming finite element ansatz. There-
fore, this requires, analogously to Theorem 3.20, so-called C'-elements. By
degrees of freedom we denote a finite number of values that are obtained
for some v € Pk from evaluating linear functionals on Pg. The set of
these functionals is denoted by Y. In the following, these will basically
be the function values in fixed points of the element K, as in the example
of (2.27). We refer to these points as nodes. (Sometimes, this term is used
only for the vertices of the elements, which at least in our examples are
always nodes.) If the degrees of freedom are only function values, then we
speak of Lagrange elements and specify ¥ by the corresponding nodes of
the element. Other possible degrees of freedom are values of derivatives in
fixed nodes or also integrals. Values of derivatives are necessary if we want
to obtain C'-elements.
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As in the example of (2.27) (cf. Lemma 2.10), V}, is defined by specifying
Pk and the degrees of freedom on K for K € 7;. These have to be chosen
such that, on the one hand, they enforce the continuity of v € V}, and,
on the other hand, the satisfaction of the homogeneous Dirichlet bound-
ary conditions at the nodes. For this purpose, compatibility between the
Dirichlet boundary condition and the triangulation is necessary, since it
will be required in (T6).

As can be seen from the proof of Lemma 2.10, it is essential

that the interpolation problem, locally defined on K €

(F1) Tr, by the degrees of freedom, is uniquely solvable in Py, (3.41)
that this also holds on the (d — 1)-dimensional boundary
surfaces I’ of K € 7}, for the degrees of freedom from F'

(F2) and the functions v|p where v € Pg; this then ensures (3.42)

the continuity of v € Vj, if Px and Pgs match in the
sense of Pi|p = Pg/|p for K, K’ € Tj, intersecting in F
(see Figure 3.2).

i Re= P ‘Fm

Figure 3.2. Compatibility of the ansatz space on the boundary surface and the
degrees of freedom there.

The following finite elements defined by their basic domain K(€ Tp),
the local ansatz space Pg, and the degrees of freedom Y satisfy these
properties.

For this, let P (K) be the set of mappings p : K — R of the following
form:

p(x) =p(z1,...,24) = Z Yar..agllt TGt = Z Yoz,  (3.43)

|| <k lo| <k

hence the polynomials of order k in d variables. The set Pj(K) forms
a vector space, and since p € Py (K) is differentiable arbitrarily often,
Pr(K) is a subset of all function spaces introduced so far (provided that
the boundary conditions do not belong to their definition).

For both, K € 75, and K = R¢ we have

dim Py (K) = dim Py (R?) = (d ;: k) : (3.44)

as even Py (RY)| ¢ = Pi(K) (see Exercise 3.12). Therefore, for short we will
use the notation P; = P1(K) if the dimension of the basic space is fixed.
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We start with simplicial finite elements, that is, elements whose basic
domain is a regular d-simplex of R%. By this we mean the following:

Definition 3.21 A set K C R? is called a regular d-simplex if there exist
d + 1 distinct points a1, ...,aq11 € RY, the vertices of K, such that

as — a1, ...,04+1 — a1 are linearly independent (3.45)
(that is, a1, ..., aq4+1 do not lie in a hyperplane) and
K = conv{ay,...,a441}
d+1 d+1
= {sz)\iai 0<N(< 1), ZA1:1} (3.46)
i=1 i=1
d+1 d+1
= {xzal—l—Z)\z(az—al) ‘ A >0, z:)\z Sl}
=2 =2

A face of K is a (d — 1)-simplex defined by d points of {a1,...,a441}-
The particular d-simplex

K :=conv {ay,... 4441} withay =0, g1 =e;,i=1,...,d, (3.47)
is called the standard simplicial reference element.

In the case d = 2 we get a triangle with dim P; = 3 (cf. Lemma 2.10). The
faces are the 3 edges of the triangle. In the case d = 3 we get a tetrahedron
with dimP; = 4, the faces are the 4 triangle surfaces, and finally, in the
case d = 1 it is a line segment with dimP; = 2 and the two boundary
points as faces.

More precisely, a face is not interpreted as a subset of R%, but of a
(d — 1)-dimensional space that, for instance, is spanned by the vectors
as —ai,...,aq — ay in the case of the defining points aq, ..., aq.

Sometimes, we also consider degenerate d-simplices, where the assump-
tion (3.45) of linear independence is dropped. We consider, for instance,
a line segment in the two-dimensional space as it arises as an edge of a
triangular element. In the one-dimensional parametrisation it is a regular
1-simplex, but in R? a degenerate 2-simplex.

The unique coefficients A\; = \;(x), i =1,...,d+ 1, in (3.46), are called
barycentric coordinates of x. This defines mappings A; : K — R, i =
1,...,d+ 1.

We consider a; as a column of a matrix; that is, for j = 1,...,d, a; =
(@ij);—,. 4 The defining conditions for A; = A;(z) can be written as a
(d+1) x (d+ 1) system of equations:

Z aij)\j = X
= & BA = ( Qf > (3.48)
Ao =1

ng ’
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for
air - Ald+1
B=| + - . (3.49)
ad1 -+ Qd,d+1
1 .- 1

The matrix B is nonsingular due to assumption (3.45); that is, A(z) =
B~1(7), and hence

d
Ai(x) = Zcij:cj +cigyr forall i=1,...,d+1,
j=1
where C' = (¢;),; == B~
Consequently, the \; are affine-linear, and hence \; € P;. The level
surfaces {x e K | Ai(z) = u} correspond to intersections of hyperplanes
with the simplex K (see Figure 3.3). The level surfaces for distinct pq and
1o are parallel to each other, that is, in particlular, to the level surface for
@ = 0, which corresponds to the triangle face spanned by all the vertices
apart of a;.

Figure 3.3. Barycentric coordinates and hyperplanes.

By (3.48), the barycentric coordinates can be defined for arbitrary = € R¢
(with respect to some fixed d-simplex K'). Then

reK <= 0< \(z)<1 foralli=1,...,d+1.

Applying Cramer’s rule to the system B\ = (glc), we get for the ith
barycentric coordinate

ail T a1’d+1

det

1
Ai(x) =
det(B) Gqr - Ta oo Gaay

1 e 1 ... 1
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Here, in the ith column a; has been replaced with z. Since in general,

vol (K) = vol (K) | det(B)| (3.50)
for the reference simplex K defined by (3.47) (cf. (2.50)), we have for the
volume of the d-simplex K = conv{a1,...,a441},

aix - G1d+1
1 o :
vol (K) = — |det : ‘ : ,
d. aq1 - a/d,d+1
1 ... 1
and from this,
M) = vol (conv {ay,...,2,...,ad4+1}) . (3.51)
vol (conv {a1,...,a;,...,aq+1})

The sign is determined by the arrangement of the coordinates.
In the case d = 2 for example, we have

vol (K) = det(B)/2
<= a1, az, as are ordered positively (that is, counterclockwise).

Here, conv {a1,...,x,...,aq+1} is the d-simplex that is generated by re-
placing a; with = and is possibly degenerate if x lies on a face of K (then
Ai(z) = 0). Hence, in the case d = 2 we have for z € K that the barycentric
coordinates \;(z) are the relative areas of the triangles that are spanned by
x and the vertices other than a;. Therefore, we also speak of surface coordi-
nates (see Figure 3.4). Analogous interpretations hold for d = 3. Using the
barycentric coordinates, we can now easily specify points that admit a ge-
ometric characterization. The midpoint a;; := % (a; + aj) of a line segment
that is given by a; and a; satisfies, for instance,
1
M) = A(a) = 5

By the barycentre of a d-simplex we mean

d+1

1
Zai; thus A;(ag) = —— foralli=1,...,d+1. (3.52)
i=1

1
e
o d+1

T A1

A geometric interpretation follows directly from the above considerations.
In the following suppose conv {ai,...,aq4+1} to be a regular d-simplex.
We make the following definition:

Finite Element: Linear Ansatz on the Simplex
K = conv {as,...,as1}
P= PuK), (3.53)
Y o= {pla),i=1,...,d+1} .
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conv{x,a,,as}

conv{a; x,az} conv{a, ,a,,x}

Figure 3.4. Barycentric coordinates as surface coordinates.

The local interpolation problem in P, given by the degrees of freedom X,
namely,

find some p € P for uy,...,uq+1 € R such that
pla;)=wu; forall i=1,....d+1,
can be interpreted as the question of finding the inverse image of a linear
mapping from P to RI*|. By virtue of (3.44),
X|=d+1=dimP.

Since both vector spaces have the same dimension, the solvability of the
interpolation problem is equivalent to the uniqueness of the solution. This
consideration holds independently of the type of the degrees of freedom (as
far as they are linear functionals on P). Therefore, we need only to ensure
the solvability of the interpolation problem. This is obtained by specifying

Ni,...,Ng41 € P with Ni(aj) :(5” foralli,j=1,...,d+1,
the so-called shape functions (see (2.29) for d = 2). Then the solution of
the interpolation problem is given by

d+1

p(z) = Z u; N; () (3.54)

and analogously in the following; that is, the shape functions form a basis
of P and the coefficients in the representation of the interpolating function
are exactly the degrees of freedom uq, ..., ug41.

Due to the above considerations, the specification of the shape functions
can easily be done by choosing

Finite Element: Quadratic Ansatz on the Simplex
Here, we have

K = conv{ay,...,a441} ,
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P = Py(K), (3.55)
E = {p(ai)ap(aij)v Z:1,7d+1,l<]§d+1},

where the a;; denote the midpoints of the edges (see Figure 3.5).
Since here we have

(d+1)(d+2)
2
it also suffices to specify the shape functions. They are given by
)\i(Z)\i—l), i=1,...,d+1,
4NN, h,j=1,....,d+1,i<j.

|2 = =dim P,

d=2 d=3

dim=10
dm=6

Figure 3.5. Quadratic simplicial elements.
If we want to have polynomials of higher degree as local ansatz functions,
but still Lagrange elements, then degrees of freedom also arise in the interior

of K:

Finite Element: Cubic Ansatz on the Simplex

K = conv{ai,...,a441},
P = P3(K), (3.56)
Y = {plai)plaii;) plaijk)},
where
2 1 o o,
Qi = gaiJrgaj for i,j=1,...,d+1,i#j,
1 o .
aijr = glaitajtap) for dgk=1....d+1,i<j<k.

Since here |X| = dim P also holds, it is sufficient to specify the shape
functions, which is possible by

1
5)\1'(3)\1'*1)(?»\1'*2), i=1,...,d+1,

g)\i)\j(g)\i_l); ,j=1,....,d+1,i#j,



122 3. Finite Element Methods for Linear Elliptic Problems

27)\7,)\_])\k7 Z7J7k:177d+152<.7<k

Thus for d = 2 the value at the barycentre arises as a degree of freedom.
This, and in general the a;;x,7 < j < k, can be dropped if the ansatz
space P is reduced (see [9, p. 70]).

All finite elements discussed so far have degrees of freedom that are
defined in convex combinations of the vertices. On the other hand, two
regular d-simplices can be mapped bijectively onto each other by a unique
affine-linear F', that is, F' € P; such that as defining condition, the vertices
of the simplices should be mapped onto each other. If we choose, besides
the general simplex K, the standard reference element K defined by (3.47),
then F = Fg : K — K is defined by

F(&) = Bé +ay (3.57)

where B = (ag — a1, ...,044+1 — a1).
Since for F' we have

d+1 d+1 d+1
F <Z Mu) =Y NF(a;) for X\ >0,> A=1,

i=1 i=1 i=1
F'is indeed a bijection that maps the degrees of freedom onto each other as
well as the faces of the simplices. Since the ansatz spaces P and P remain
invariant under the transformation Fk, the finite elements introduced so
far are (in their respective classes) affine equivalent to each other and to
the reference element.

Definition 3.22 Two Lagrange elements (K, P, ), (K,P, f]) are called
equivalent if there exists a bijective ' : K — K such that

{F(&) |ae K generates a degree of freedom on K'}
= {a | a € K generates a degree of freedom on K} (3.58)
and '

P

{p:KHR‘poFEP}.
They are called affine equivalent if F' is affine-linear.

Here we have formulated the definition in a more general way, since in
Section 3.8 elements with more general F' will be introduced: For isopara-
metric elements the same functions F' as in the ansatz space are admissible
for the transformation. From the elements discussed so far only the simplex
with linear ansatz is thus isoparametric. Hence, in the (affine) equivalent
case a transformation not only of the points is defined by

& =F"(z),

but also of the mappings, defined on K and K, (not only of P and 13) is
given by

0K —R, 92):=0vF(%)
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for v: K — R and vice versa.

We can also use the techniques developed so far in such a way that only
the reference element is defined, and then a general element is obtained
from this by an affine-linear transformation. As an example of this, we
consider elements on a cube

Suppose K := [0 1]4 {mERd|O<m1§1 1=1,. d} is the unit
cube. The faces of K are defined by setting a coordlnate to 0 or 1; thus for
instance,

1:[[0, 1] x {0} x [Jl0,1].
i=1 Jj+1

Let Q(K) denote the set of polynomials on K that are of the form

a1 (e 7]
E Yer,oaqly” Ty

0<a; <k
i=1,...,d

Hence, we have Pr, C Qr C Pax.
Therefore, we define a reference element generally for £ € N as follows:

Finite Element: d-polynomial Ansatz on the Cuboid

= [ 1] ;
= Qu(K), (3.59)

: AN _
by {p(a:) x—(k,...,k),zje{o,...,k},] 1,...,6[}7

which is depicted in Figure 3.6. Again, we have |f)| = dim P, such that
for the unique solvability of the local interpolation problem we have only
to specify the shape functions. They are obtained on K as the product of
the corresponding shape functions for the case d = 1, thus of the Lagrange
basis polynomials

o

. d k k':c] z;-
Pin,nia(2) ::| I I]: |
j=1 il =0 J
.7
i

Interior degrees of freedom arise from k = 2 onward. Hence the ansatz
space on the general element K is, according to the definition above,

= {;aongl \ﬁe@k(f{)}.

In the case of a general rectangular cuboid, that is, if B in (3.57) is a
diagonal matrix, then P = Qy(K) holds, analogously to the simplices.
However, for a general B additional polynomial terms arise that do not
belong to Qy (see Exercise 3.14).
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d=2, dm=4 »
3 d=3
| dim=8
bilinear ansatz trilinear ansatz
d=2, dm=9 ‘
3 d=3
[ "
. . . | dm=27
/// 777777; 77777 ~
biquadratic ansatz triquadratic ansatz

Figure 3.6. Quadratic and cubic elements on the cube.

An affine-linear transformation does not generate general cuboids but
only d-epipeds, thus for d = 3 parallelepipeds and for d = 2 only parallelo-
grams. To map the unit square to an arbitrary general convex quadrilateral,
we need some transformation of @1, that is, isoparametric elements (see
(3.142)).

Let 75, be a triangulation of d-simplices or of affinely transformed d-
unit cubes. In particular, Q = int(Uxe7, K) is polygonally bounded. The
condition (F1) in (3.41) is always satisfied. In order to be able to satisfy
the condition (F2) in (3.42) as well, a further assumption in addition to
(T1)—(T4) has to be made about the triangulation:

(T5) Every face of some K € 7 is either a subset of the boundary I' of €
or identical to a face of another K € 7j,.

In order to ensure the validity of the homogeneous Dirichlet boundary
condition on I'g for the v, € V} that have to be defined, we additionally
assume the following:

(T6) The boundary sets I'y, I'y, I's decompose into faces of elements K €
Th.

A face F of K € T, that is lying on 02 is therefore only allowed to contain
a point from the intersection I'; N I'; for 7 # j, if and only if the point is a
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boundary point of F. We recall that the set I's has been defined as being
closed in 9f2.
In the following, we suppose that these conditions are always satisfied.
A triangulation that also satisfies (T5) and (T6) is called conforming.
Then, for all of the above finite elements,

° If K,K’' € 7}, have a common face F, then the degrees of (3.60)
freedom of K and K’ coincide on F.

. F itself becomes a finite element (that is, the local interpo- (3.61)
lation problem is uniquely solvable) with the ansatz space
Pk |r and the degrees of freedom on F.

We now choose V}, as follows:

Vi, = {v:QHR‘MKGPKforKETh

. . . . (3.62)
and v is uniquely given in the degrees of freedom} .

Analogously to the proof of Lemma 2.10, we can see that v € V}, is con-
tinuous over the face of an element; thus Vj, C C(Q), that is, Vi, € H'()
according to Theorem 3.20.

Further, u|p = 0 if F is a face of K € T, with F' C 9 and the specifica-
tions in the degrees of freedom of F' are zero (Dirichlet boundary conditions
only in the nodes); that is, the homogeneous Dirichlet boundary conditions
are satisfied by enforcing them in the degrees of freedom. Due to the as-
sumption (T6), the boundary set T's is fully taken into account in this
way.

Consequently, we the following theorem:

Theorem 3.23 Suppose Ty, is a conforming triangulation of d-simplices
or d-epipeds of a domain Q C R%. The elements are defined as in one of
the examples (3.53), (3.55), (3.56), (3.59).

Let the degrees of freedom be given in the modes ai,...,ap. Suppose
they are numbered in such a way that ai,...,ap, € QUTIT; U2 and
ap, 41, - - -sapn € T's. If the ansatz space Vi, is defined by (3.62), then an
element v € V}, is determined uniquely by specifying v(a;),i = 1,..., M,
and

ve HY(Q).
Ifv(a;) =0 fori= My +1,...,M, then we also have
v=0 onlg.

Exactly as in Section 2.2 (see (2.32)), functions ¢; € V; are uniquely
determined by the interpolation condition

vila;) =065, 4,j=1,...,M.

By the same consideration as there and as for the shape functions (see
(3.54)) we observe that the ¢; form a basis of V3, the nodal basis, since
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each v € V}, has a unique representation

M
(@) =) v(ai)pi(w). (3.63)
i=1
If for Dirichlet boundary conditions, the values in the boundary nodes
a;,t =My +1,..., M, are given as zero, then the index has to run only up
to M1 .

The support supp ; of the basis functions thus consists of all elements
that contain the node a;, since in all other elements ; assumes the value 0
in the degrees of freedom and hence vanishes identically. In particular, for
an interior degree of freedom, that is, for some a; with a; € int (K) for an
element K € 7, we have suppy; = K.

Different element types can also be combined (see Figure 3.7) if only
(3.60) is satisfied, thus, for instance for d = 2 (3.59), k = 1, can be combined
with (3.53) or (3.59), k = 2, with (3.55).

Figure 3.7. Conforming combination of different element types.

For d = 3 a combination of simplices and parallelepipeds is not possible,
since they have different types of faces. Tetrahedra can be combined with
prisms at their two triangular surfaces, whereas their three quadrilateral
surfaces (see Exercise 3.17) allow for a combination of prisms with paral-
lelepipeds. Possibly also pyramids are necessary as transition elements (see
[57)).

So far, the degrees of freedom have always been function values (Lagrange
elements). If, additionally, derivative values are specified, then we speak of
Hermite elements. As an example, we present the following:

Finite Element: Cubic Hermite Ansatz on the Simplex

K = conv{ay,...,a441},
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P = P3(K), (3.64)
S ={pla;),i=1,...,d+1, plaijr), i,5,k=1,...,d+1,i<j<k,
Vpla;) (a; —a;), i,j=1,...,d+1, i#j}.

Instead of the directional derivatives we could also have chosen the par-
tial derivatives as degrees of freedom, but would not have generated
affine equivalent elements in that way. In order to ensure that directional
derivatives in the directions & and é are mapped onto each other by the
transformation, the directions have to satisfy

§= B¢,
where B is the linear part of the transformation F according to (3.57). This
is satisfied for (3.64), but would be violated for the partial derivatives, that
is, £ = é = ¢;. This has also to be taken into account for the question of
which degrees of freedom have to be chosen for Dirichlet boundary con-
ditions (see Exercise 3.19). Thus, the desired property that the degrees of
freedom be defined “globally” is lost here. Nevertheless, we do not have a

C'-element: The ansatz (3.64) ensures only the continuity of the tangential,
not of the normal derivative over a face.

Finite Element: Bogner—Fox—Schmit Rectangle
The simplest C!-element is for d = 2 :

K =10, 1]2 )
P o= QuK), (3.65)
S = {pla), dip(a), Dap(a), drap(a) for all vertices a} ;

that is, the element has 16 degrees of freedom.

In the case of Hermite elements, the above propositions concerning the
nodal basis hold analogously with an appropriate extension of the identity
(3.63).

Further, all considerations of Section 2.2 concerning the determination
of the Galerkin approximation as a solution of a system of equations (2.34)
also hold, since there only the (bi)linearity of the forms is supposed. There-
fore using the nodal basis, the quantity a(y;, ;) has to be computed as
the (4, j)th matrix entry of the system of equations that has to be set up
for the bilinear form a. The form of the bilinear form (3.31) shows that
the consideration of Section 2.2, concerning that there is at most a nonzero
entry at position (4, 7) if,

supp p; Nsupp p; # 0, (3.66)

still holds.

Since in the examples discussed, supp y; consists of at most of those
elements containing the node a; (see Figure 3.10), the nodes have to be
adjacent, for the validity of (3.66); that is, they should belong to some
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common element. In particular, an interior degree of freedom of some ele-
ment is connected only with the nodes of the same element: This can be
used to eliminate such nodes from the beginning (static condensation).

The following consideration can be helpful for the choice of the element
type: An increase in the size of polynomial ansatz spaces increases the
(computational) cost by an increase in the number of nodes and an increase
in the population of the matrix.

As an example for d = 2 we consider triangles with linear (a) and
quadratic (b) ansatz (see Figure 3.8).

triangle with P; triangle with P,

=

Figure 3.8. Comparison between linear and quadratic triangles.
In order to have the same number of nodes we compare (b) with the

discretization parameter h with (a) with the discretization parameter h/2
(one step of “red refinement”) (see Figure 3.9).

~—

Figure 3.9. Generation of the same number of nodes.

However, this shows that we have a denser population in (b) than in (a).

Figure 3.10. Supports of the basis functions.
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To have still an advantage by using the higher polynomial order, the
ansatz (b) has to have a higher convergence rate. In Theorem 3.29 we will
prove the following estimate for a regular family of triangulations 7, (see
Definition 3.28):

o If u € H%(Q), then for (a) and (b) we have the estimate

lu —upllr < Cih. (3.67)
e If u € H3(Q), then for (b) but not for (a) we have the estimate

lu —uplls < Coh?. (3.68)

For the constants we may in general expect Cy > C.

In order to be able to make a comparison between the variants (a) and
(b), we consider in the following the case of a rectangle Q = (0,a) x (0, b).
The number of the nodes is then proportional to 1/h? if the elements are
all “essentially” of the same size.

However, if we consider the number of nodes M as given, then h is
proportional to 1/v/M.

Using this in the estimate (3.67), we get for a solution u € H?(2),

. 1

in the case (a) for h/2: lu—uppli < C ik
= 1

in the case (b) for h: lu—wuplt < Cy

If both constants are the same, this means an advantage for the variant
(a).

On the other hand, if the solution is smoother and satisfies u € H3((2),
then the estimate (3.68), which can be applied only to the variant (b),
yields

. 1

in the case (a) for h/2: lu—uppli < C ik
1

in the case (b) for h: lu —upls < CQM .

By an elementary reformulation, we get

! — M > (>)4022
2vVM c?’

which gives an advantage for (b) if the number of variables M is chosen,
depending on C3/C1, sufficiently large. However, the denser population of
the matrix in (b) has to be confronted with this.

Hence, a higher-order polynomial ansatz has an advantage only if the
smoothness of the solution leads to a higher convergence rate. Especially
for nonlinear problems with less-smooth solutions, a possible advantage of
the higher-order ansatz has to be examined critically.

1
Cy T (<)
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Exercises

3.10 Prove the implication “=" in Theorem 3.20.
Hint: For v € V3 define a function w; by wi|ine(k) := Osv, i = 1,...,d,
and show that w; is the ith partial derivative of v.

3.11 Construct the element stiffness matrix for the Poisson equation on
a rectangle with quadratic bilinear rectangular elements. Verify that this
finite element discretization of the Laplace operator can be interpreted as
a finite difference method with the difference stencil according to (1.22).

3.12 Prove that:
(3) dim Pu(®) = (*11).
(b) Pe(RY)|x = Pr(K) if int (K) # 0.

3.13 Prove for given vectors ai,...,aq+1 € R9 that as — a1, ..., ag+1 —
a; are linear independent if and only if a1 — a,...,a;—1 — a5, 0,41 —
@j,...,aq+1 — a; are linearly independent for some i € {2,...,d}.

3.14 Determine for the polynomial ansatz on the cuboid as reference
element (3.59) the ansatz space P that is obtained by an affine-linear
transformation to a d-epiped.

3.15 Suppose K is a rectangle with the (counterclockwise numbered) ver-
tices ai,...,a4 and the corresponding edge midpoints a1z, as3, as4, a41.
Show that the elements f of Q1(K) are not determined uniquely by the
degrees of freedom f(a12), f(az2s), f(ass), f(aa1).

3.16 Check the given shape functions for (3.55) and (3.56).

3.17 Define a reference element in R? by

) 1
K = conv {&1, &2, &3} X [0, ].] with dl = <8>7 d2 = <0>; &3 = (?)a
P = {pi(z1,22) pa(x3) ‘ p1 € Pi(R?), py € PLR)} .

{p(@) | &= (ai,j), 1=0,1,2, j=0,1} .

Show the unique solvability of the local interpolation problem and describe
the elements obtained by affine-linear transformation.

™
Il

3.18 Suppose d + 1 points a;, 7 =1,...,d+ 1, 1in R? are given with the
property as in Exercise 3.13. Additionally, we define as in (3.48), (3.49) the
barycentric coordinates A\; = A;(x;.S) of x with respect to the d-simplex
S generated by the points a;. Show that for each bijective affine-linear



3.4. Convergence Rate Estimates 131

mapping ¢ : RY — R9 \;(z;9) = X\;(¢();£(S)), which means that the
barycentric coordinates are invariant under such transformations.

3.19 Discuss for the cubic Hermite ansatz (3.64) and Dirichlet boundary
conditions the choice of the degrees of freedom with regard to the angle
between two edges of boundary elements that is either o # 27 or o = 27.

3.20 Construct a nodal basis for the Bogner—Fox—Schmit element in
(3.65).

3.4 Convergence Rate Estimates

In this section we consider further a finite element approximation in the
framework described in the previous section: The bounded basic domain
Q C R of the boundary value problem is decomposed into conforming tri-
angulations 75, which may also consist of different types of elements. Here,
by an element we mean not only the set K € 7y, but this equipped with
some ansatz space Px and degrees of freedom Y. . However, the elements
are supposed to decompose into a fixed number of subsets, independent
of h, each consisting of elements that are affine equivalent to each other.
Different elements have to be compatible with each other such that the
ansatz space Vj, introduced in (3.62), is well-defined. The smoothness of
the functions arising in this way has to be consistent with the boundary
value problem, in so far as V; C V is guaranteed. In the following we
consider only one element type; the generalization to the more general sit-
uation will be obvious. The goal is to prove a priori estimates of the form

|lu — up| < Clulh® (3.69)

with constants C' > 0, @ > 0 and norms and seminorms || - || and | - |,
respectively.

We do not attempt to give the constant C' explicitly, although in prin-
ciple, this is possible (with other techniques of proof). In particular, in
the following C' has to be understood generically; that is, by C' we denote
at different places different values, which, however, are independent of h.
Therefore, the estimate (3.69) does not serve only to estimate numerically
the error for a fixed triangulation 7j,. It is rather useful for estimating what
gain in accuracy can be expected by increasing the effort, which then corre-
sponds to the reduction of h by some refinement (see the discussion around
(3.67)). Independently of the convergence rate c, (3.69) provides the cer-
tainty that an arbitrary accuracy in the desired norm | - || can be obtained
at all. In the following, we will impose some geometric conditions on the
family (73)p, which have always to be understood uniformly in h. For a
fixed triangulation these conditions are always trivially satisfied, since here
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we have a finite number of elements. For a family (7)), with h — 0, thus for
increasing refinement, this number becomes unbounded. In the following
estimates we have therefore to distinguish between “variable” values like
the number of nodes M = M (h) of 7, and “fixed” values like the dimen-
sion d or the dimension of Pg or equivalence constants in the renorming
of Pk, which can all be included in the generic constant C.

3.4.1 Energy Norm Estimates

If we want to derive estimates in the norm of the Hilbert space V underlying
the variational equation for the boundary value problem, concretely, in the
norm of Sobolev spaces, then Céa’s lemma (Theorem 2.17) shows that for
this purpose it is necessary only to specify a comparison element v, € Vj,
for which the inequality

lu — vp]| < Clu|h® (3.70)
holds. For || - || = || - ||1, these estimates are called energy norm estimates
due to the equivalence of || - ||; and || - ||la (cf. (2.46)) in the symmetric

case. Therefore, the comparison element v has to approximate u as well
as possible, and in genera,l it is specified as the image of a linear operator
Ih:

Vh = Ih(u) .

The classical approach consists in choosing for I}, the interpolation oper-
ator with respect to the degrees of freedom. To simplify the notation, we
restrict ourselves in the following to Lagrange elements, the generalization
to Hermite elements is also easily possible.

We suppose that the triangulation 7; has its degrees of freedom in the

nodes aq, . .., ap with the corresponding nodal basis @1, ..., @p. Then let
M

Ih(u) = Zu(ai)% cV,. (371)
i=1

For the sake of I, (u) being well-defined, u € C() has to be assumed in
order to ensure that u can be evaluated in the nodes. This requires a certain
smoothness assumption about the solution u, which we formulate as

u € HL(Q).

Thus, if we assume again d < 3 for the sake of simplicity, the embedding
theorem (Theorem 3.10) ensures that I, is well-defined on H**1(Q) for
k > 1. For the considered C%-elements, we have I;,(u) € H(Q) by virtue
of Theorem 3.20. Therefore, we can substantiate the desired estimate (3.70)
to

llu = In(w)]ly < Ch™[ulpta - (3.72)
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Sobolev (semi) norms can be decomposed into expressions over subsets of
Q, thus, for instance, the elements of 7p,

i = [ S0P d= 3 [ ST (0l da= 3 Juft
@ jal=t KeT, 'K o=t KeT,
and, correspondingly,
lullf = > Nullx
KeTy,

where, if € is not basic domain, this will be included in the indices of
the norm. Since the elements K are considered as being closed, K should
more precisely be replaced by int (K). By virtue of this decomposition, it
is sufficient to prove the estimate (3.72) for the elements K. This has some
analogy to the (elementwise) assembling described in Section 2.4.2, which
is also to be seen in the following. On K, the operator Ij, reduces to the
analogously defined local interpolation operator. Suppose the nodes of the
degrees of freedom on K are a;,,...,a;,, where L € N is the same for all
K € T}, due to the equivalence of elements. Then

In(u)|k = Ik (u|lg) foru e C(Q),
where

I (u) := Zu(aij)wij for u e C(K),

Jj=1

since both functions of Pk solve the same interpolation problem on K (cf.
Lemma 2.10). Since we have an (affine) equivalent triangulation, the proof
of the local estimate

lu = Ik (W)l ¢ < Chulptr,x (3.73)
is generally done in three steps:
e Transformation to some reference element K ,
e Proof of (3.73) on K,
e Back transformation to the element K.

To be precise, the estimate (3.73) will even be proved with hx instead of
h, where

hi = diam (K) for K € 7p,,

and in the second step, the fixed value h is incorporated in the constant.
The powers of hi are due to the transformation steps.

Therefore, let some reference element K with the nodes ai,...,ar be
chosen as fixed. By assumption, there exists some bijective, affine-linear
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mapping

F =Fx :K—>K
: S (3.74)
F(#) =Bi+d,

(cf. (2.30) and (3.57)). By this transformation, functions v : K — R are
mapped to functions v : K — R by

0(2) == v(F(2)). (3.75)

This transformation is also compatible with the local interpolation operator
in the following sense:

—

Ix(v) =1z (0) forveC(K). (3.76)

This follows from the fact that the nodes of the elements as well as the
shape functions are mapped onto each other by F'.
For a classically differentiable function the chain rule (see (2.49)) implies

V.u(F(#)) = B~TV;0(), (3.77)
and corresponding formulas for higher-order derivatives, for instance,
Div(F(2)) = B~'D30(2)B7",

where D2v(x) denotes the matrix of the second-order derivatives. These
chain rules hold also for corresponding v € H'(K) (Exercise 3.22).

The situation becomes particularly simple in one space dimension (d =
1). The considered elements reduce to a polynomial ansatz on simplices,
which here are intervals. Thus

F:K=[0,1 — K=la,a;),

T — hgZT+a;,,
where hg := a;, — a;, denotes the length of the element. Hence, for [ € N,
dyu(F(2)) = hig 950(%).

By the substitution rule for integrals (cf. (2.50)) an additional factor
|det(B)| = hx arises such that, for v € H'(K), we have

1 20—-1
b= (7)) IoBg

Hence, for 0 < m < k + 1 it follows by (3.76) that

) 1 2m—1
T
K

Thus, what is missing, is an estimate of the type

0 — I (0)

m,K

|0 = 15(®)],, 5 < Clolyr & (3.78)
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for v € H k+1(f( ). In specific cases this can partly be proven directly but
in the following a general proof, which is also independent of d = 1, will be
sketched. For this, the mapping

G:HMY(K) — H™K), (3.79)
0 = 0 —1Ig(0), ’
is considered. The mapping is linear but also continuous, since
L
1@, < |20 0@
=1 k+1LE (3.80)
< D Millir i 19l < Cllol & »
i=1

where the continuity of the embedding of H*t'(K) in H™(K) (see
(3.8)) and of H*'(K) in C(K) (Theorem 3.10) is used, and the norm
contribution from the fixed basis functions ¢; is included in the constant.

If the ansatz space P is chosen in such a way that Py C P, then G has
the additional property

G(p)=0 forpePy,

since these polynomials are interpolated then exactly. Such mappings sat-
isfy the Bramble—Hilbert lemma, which will directly be formulated, for
further use, in a more general way.

Theorem 3.24 (Bramble—Hilbert lemma)
Suppose K C R% is open, k € Ng, 1 < p < 00, and G : Wj‘”(K) —Risa
continuous linear functional that satisfies

G(q) =0 forallge Py. (3.81)

Then there exists some constant C > 0 independent of G such that for all
ve WT(K)

[G()| < CNGI olkt1,p,x -
Proof: See [9, Theorem 28.1]. a

Here ||G|| denotes the operator norm of G (see (A4.25)). The estimate
with the full norm || - ||g+1,p,x on the right-hand side (and C = 1) would
hence only be the operator norm’s definition. The condition (3.81) allows
the reduction to the highest seminorm.

For the application of the Bramble-Hilbert lemma (Theorem 3.24), which
was formulated only for functionals, to the operator G according to (3.79)
an additional argument is required (alternatively, Theorem 3.24 could be
generalized):
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Generally, for @ € H™(K) (as in every normed space) we have

@], g = sup (), (3.82)
PE(H™ (K))/
el <1
where the norm applying to ¢ is the operator norm defined in (A4.25).
For any fixed ¢ € (H™(K))' the linear functional on H**!(K) is defined

by

é(@) = o(G(d)) for ©e HY(K). (3.83)
According to (3.80), G is continuous and it follows that
IGI < llell G-

Theorem 3.24 is applicable to G and yields

GO < Clel 1G] 1olyp1 i -
By means of (3.82) it follows that

GO m,ic < CNGI0]p1,k -

The same proof can also be used in the proof of Theorem 3.31 (3.94).
Applied to G defined in (3.79), the estimate (3.80) shows that the
operator norm ||Id -1 KH can be estimated independently from m (but
dependent on k and the ;) and can be incorporated in the constant that
gives (3.78) in general, independent of the one-dimensional case.
Therefore, in the one-dimensional case we can continue with the
estimation and get

2m—1
1
|v—IK(v)|72n}K < (E) C|U|k+1K Clhg)'~ 2m+2(k+1)— 1|U|2+1K

Since due to I, (v) € H*(Q) we have for m = 0,1

> o= Ik @)k = v = In()]5,

KeTy,
we have proven the following Theorem:
Theorem 3.25 Consider in one space dimension Q = (a,b) the polyno-
mial Lagrange ansatz on elements with maximum length h and suppose that
for the respective local ansatz spaces P, the inclusion P, C P is satisfied

for some k € N. Then there exists some constant C' > 0 such that for all
ve H Y Q) and 0 <m <k +1,

1/2
( > - IK(U)|$n,K> < CRFH ™o)1

KeTy,

If the solution u of the boundary value problem (3.12), (3.18)—(3.20) belongs
to H**1(Q), then we have for the finite element approzimation uy, according
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to (3.39),
lu = unli < Ch*fulps -

Note that for d =1 a direct proof is also possible (see Exercise 3.21).
Now we address to the general d-dimensional situation: The seminorm
| - |1 is transformed, for instance, as follows (cf. (2.49)):

IinK=/ |va|2da:=/A B~ TV;0- B TV |det(B)|dz.  (3.84)
K K

From this, it follows for & € H'(K) that
ol < C 1B | det(B)[2 [0, g -

Since d is one of the mentioned “fixed” quantities and all norms on R%¢
are equivalent, the matrix norm || - || can be chosen arbitrarily, and it is
also possible to change between such norms. In the above considerations K
and K had equal rights; thus similarly for v € H YK), we have

6,5 < C Bl det(B)| ™2 |v]1,k -
In general, we have the following theorem:

Theorem 3.26 Suppose K and K are bounded domains in RY that are
mapped onto each other by an affine bijective linear mapping F, defined in
(3.74). If v € WL(K) for l € N and p € [1,00], then we have for © (defined

in (3.75)), v € Wlﬁ(f%), and for some constant C > 0 independent of v,

ol < CUBI [ det(B) 7 [olipx (3.85)
Wlipac < CUBTHI [ det(B)[VP 12, 4 - (3.86)
Proof: See [9, Theorem 15.1]. O

For further use, also this theorem has been formulated in a more general
way than would be necessary here. Here, only the case p = 2 is relevant.

Hence, if we use the estimate of Theorem 3.24, then the value ||B|| (for
some matrix norm) has to be related to the geometry of K. For this, let
for K € Ty,

ox = sup {diam (5) ‘ Sisaballin R? and S C K} .

Hence, in the case of a triangle, hx denotes the longest edge and px the
diameter of the inscribed circle. Similarly, the reference element has its
(fixed) parameters h and 6. For example, for the reference triangle with
the vertices @1 = (0,0), a2 = (1,0), as = (0,1) we have that h =212 and
o=2—212
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Theorem 3.27 For F = Fk according to (3.74), in the spectral norm ||-||2,
we have

h h
IBllo < == and |B™Y2 < —.
0 0K

Proof: Since K and K have equal rights in the assertion, it suffices to
prove one of the statements: We have (cf. (A4.25))

1
5(5)

o
For every ¢ € R? with |£]y = ¢ there exist some points g, 2 € K such that

§—2%2 = ¢. Since B = F(§)—F (%) and F(3), F(2) € K, we have |B¢|2 < h.
Consequently, by the above identity we get the first inequality. a

1
= sup | B¢ .

B2 = sup
6 2 Q¢=0

[E]l2=0

If we combine the local estimates of (3.78), Theorem 3.26, and
Theorem 3.27, we obtain for v € H**1(K) and 0 <m <k + 1,

h m
o~ Ik ()], < C (Q—jj) BT e, (3.87)

where ¢ and h are included in the constant C. In order to obtain some
convergence rate result, we have to control the term hg /ox. If this term is
bounded (uniformly for all triangulations), we get the same estimate as in
the one-dimensional case (where even h /ox = 1). Conditions of the form

or > ohi

for some 0 > 0 and 0 < a < — 1 for m > 1 would also lead to
convergence rate results. Here we pursue only the case a = 0.

k+1
m

Definition 3.28 A family of triangulations (73);, is called regular if there
exists some ¢ > 0 such that for all h > 0 and all K € 7y,

ok > ohk .
From estimate (3.87) we conclude directly the following theorem:

Theorem 3.29 Consider a family of Lagrange finite element discretiza-
tions in R for d < 3 on a regular family of triangulations (Tp,)n in the
generality described at the very beginning. For the respective local ansatz
spaces P suppose Py, C P for some k € N.

Then there exists some constant C' > 0 such that for all v € H*1(Q)
and 0 <m<k+1,

1/2
(Z |vIK<v>|$n,K> < R 17 [o s (3.88)

KeTn
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If the solution u of the boundary value problem (3.12), (3.18)—(3.20) belongs
to H*1(Q), then for the finite element approzimation uy defined in (3.39),
it follows that

||u — uh||1 § Chk|u|k+1 . (389)

Remark 3.30 Indeed, here and also in Theorem 3.25 a sharper estimate
has been shown, which, for instance for (3.89), has the following form:

1/2
[u—unllh <C < >, h??lﬂliH,K) - (3.90)

KeTn

In the following we will discuss what the regularity assumption means in
the two simplest cases:

For a rectangle and the cuboid K, whose edge lengths can be assumed,
without any loss of generality, to be of order hy < ha[< hs], we have

(e G ))

This term is uniformly bounded if and only if there exists some constant
a(> 1) such that

hi < hy < ahg,

ho< hs < ah. (3.91)

In order to satisfy this condition, a refinement in one space direction has
to imply a corresponding one in the other directions, although in certain
anisotropic situations only the refinement in one space direction is recom-
mendable. If, for instance, the boundary value problem (3.12), (3.18)—(3.20)
with ¢ = r = 0, but space-dependent conductivity K, is interpreted as the
simplest ground water model (see (0.18)), then it is typical that K varies
discontinuously due to some layering or more complex geological structures
(see Figure 3.11).

K1

K2

K1

Figure 3.11. Layering and anisotropic triangulation.

If thin layers arise in such a case, on the one hand they have to be resolved,
that is, the triangulation has to be compatible with the layering and there
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have to be sufficiently many elements in this layer. On the other hand, the
solution often changes less strongly in the direction of the layering than over
the boundaries of the layer, which suggests an anisotropic triangulation,
that is, a strongly varying dimensioning of the elements. The restriction
(3.91) is not compatible with this, but in the case of rectangles this is
due only to the techniques of proof. In this simple situation, the local
interpolation error estimate can be performed directly, at least for P =
Q1(K), without any transformation such that the estimate (3.89) (for k =
1) is obtained without any restrictions like (3.91).

The next simple example is a triangle K: The smallest angle apin =
amin(K) includes the longest edge hk, and without loss of generality, the
situation is as illustrated in Figure 3.12.

Figure 3.12. Triangle with the longest edge and the height as parameters.

For the 2 x 2 matrix B = (a2 — a1, ag—aq), in the Frobenius norm || - || ¢
(see (A3.5)) we have

1

B Y r=——|B
15" = ey 151
and further, with the height hy over hg,
det(B) = hiha, (3.92)

since det(B)/2 is the area of the triangle, as well as
IBI% = laz — a1[3 + las — a1[3 > b,
such that
IBIlFI B~ |F = hic/ha

and thus by virtue of cot amin < hi/ha,

IBIl7 B~ ||F > cot dmin -
Since we get by analogous estimates

1Bl B~ ||F < 4 cot amin ,

it follows that cot aumin describes the asymptotic behavior of || B||||[B~!|| for
a fixed chosen arbitrary matrix norm. Therefore, from Theorem 3.27 we
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get the existence of some constant C' > 0 independent of h such that for
all K € 7y,

hx

— > C cot amin(K) . (3.93)

0K
Consequently, a family of triangulations (73);, of triangles can only be reg-
ular if all angles of the triangles are uniformly bounded from below by
some positive constant. This condition sometimes is called the minimum
angle condition. In the situation of Figure 3.11 it would thus not be al-
lowed to decompose the flat rectangles in the thin layer by means of a
Friedrichs—Keller triangulation. Obviously, using directly the estimates of
Theorem 3.26 we see that the minimum angle condition is sufficient for the
estimates of Theorem 3.29. This still leaves the possibility open that less
severe conditions are also sufficient.

3.4.2  The Maximum Angle Condition on Triangles

In what follows we show that the condition (3.93) is due only to the tech-
niques of proof, and at least in the case of the linear ansatz, it has indeed
only to be enssured that the largest angle is uniformly bounded away from
7. Therefore, this allows the application of the described approach in the
layer example of Figure 3.11.

The estimate (3.87) shows that for m = 0 the crucial part does not arise;
hence only for m = k = 1 do the estimates have to be investigated. It turns
out to be useful to prove the following sharper form of the estimate (3.78):

Theorem 3.31 For the reference triangle K with linear ansatz functions
there exists some constant C' > 0 such that for all € H*(K) and j = 1,2,

o ) 0
Ha@j (0= 15 (2) 0i;

0

0,K

<o

1,K

Proof: In order to simplify the notation, we drop the hat " in the notation
of the reference situation in the proof. Hence, we have K = conv {a1, as, as}
with a1 = (0,0)7, az = (1,0)T, and a3 = (0,1)”. We consider the following
linear mappings: Fy : H'(K) — L?(K) is defined by

Fiw= | (s, 0)ds,

and, analogously, F» as the integral over the boundary part conv {a1,as}.
The image is taken as constant function on K. By virtue of the Trace The-
orem (Theorem 3.5), and the continuous embedding of L%(0,1) in L*(0, 1),
the F; are well-defined and continuous. Since we have for w € Py(K),

Fi(w) =w,
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the Bramble-Hilbert lemma (Theorem 3.24) implies the existence of some
constant C' > 0 such that for w € H*(K),

[ Fi(w) — wllo,x < Clwli,xk - (3.94)

This can be seen in the following way: Let v € H'(K) be arbitrary but
fixed, and for this, consider on H!(K) the functional

G(w) = (Fi(w) — w, F;(v) —v) forw e HY(K).
We have G(w) = 0 for w € Py(K) and
G(w)] < [[Fi(w) —wllox[[Fi(v) — vllo.x < ClFi(v) = vllo,x w1,
by the above consideration. Thus by Theorem 3.24,
|G(w)] < C|Fi(v) = vllo.x [wh k-

For v = w this implies (3.94). On the other hand, for w := dyv it follows
that

Fi(0iv) = 0(1,0) = 0(0,0) = (Ix (v))(1,0) — (I (v))(0,0) =
= O1(Ix())(z1,22)

for (x1,22) € K and, analogously, F2(0v) = O2(Ix (v))(x1,2z2). This,
substituted into (3.94), gives the assertion. m

Compared with estimate (3.78), for example in the case j = 1 the term
%@ does not arise on the right-hand side: The derivatives and thus the
space directions are therefore treated “more separately.”

Next, the effect of the transformation will be estimated more precisely.
For this, let amax = max(K) be the largest angle arising in K € 7p,
supposed to include the vertex aj, and let h1 = hix := |ags — a1|2, ha =

hor = |ag — a1] (see Figure 3.13).

az
a

Figure 3.13. A general triangle.

As a variant of (3.86) (for I = 1) we have the following:
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Theorem 3.32 Suppose K is a general triangle. With the above notation
for v e HY(K) and the transformed © € H*(K),

ok < V2| det(B)| 712 (hg

X1
Proof: We have

b b
B:(ag—al,ag—al)::( 1 12)

bar b2

)| = 1G]
—h — hs. 3.95
‘ (b21 ! bao 2 (8.95)

gr_ 1 b —ba
B det(B) —bi2 b1

and (3.84) it thus follows that

b22 _b21
ol = |det |/‘( bm) 04 +(b11)

and from this the assertion. O

and hence

From

dz

0

T

In modification of the estimate (3.85) (for I = 2) we prove the following
result:

Theorem 3.33 Suppose K is a general triangle with diameter hx =
diam (K). With the above notation for © € H?*(K) and the transformed
v e H*(K),

9 .

5.0 < 4| det(B)|"Y2hihk|v]ox  fori=1,2.

1,K

Proof: According to (3.84) we get by exchanging K and K,
|zi)|ik = /KBTVIw-BTVzwdﬂdet(B)rl

and, consequently, for w = a%if), thus by (3.77) for w = (BTV,v);,

2

0 0
0%

:/K‘BTVm((BTVIv)i)fdm|det(B)|_1

1,K

According to (3.95), the norm of the ith row vector of BT is equal to h;,
which implies the assertion. O
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Instead of the regularity of the family of triangulations and hence
the uniform bound for cot amin(K) (see (3.93)) we require the following
definition:

Definition 3.34 A family of triangulations (7},);, of triangles satisfies the
mazximum angle condition if there exists some constant @ < 7 such that for
all h > 0 and K € 7, the maximum angle o (K) of K satisfies

amax(K) <@.

Since amax(K) > 7/3 is always satisfied, the maximum angle condition
is equivalent to the existence of some constant § > 0, such that

sin(amax(K)) > 5§ forall K € 7, and h > 0. (3.96)
The relation of this condition to the above estimates is given by (cf. (3.92))
det(B) = hihs sin amax - (3.97)

Inserting the estimates of Theorem 3.32 (for v — Ix(v)), Theorem 3.31,
and Theorem 3.33 into each other and recalling (3.96), (3.97), the following
theorem follows from Céa’s lemma (Theorem 2.17):

Theorem 3.35 Consider the linear ansatz (3.53) on a family of triangu-
lations (Tp,)p of triangles that satisfies the mazimum angle condition. Then
there exists some constant C > 0 such that for v € H*(Q),

[o = In()[i < Chlola.

If the solution u of the boundary value problem (3.12), (3.18)—(3.20) belongs
to H%(Q)), then for the finite element approximation uy defined in (3.39)
we have the estimate

llu — unlly < Chluls . (3.98)

Exercise 3.26 shows the necessity of the maximum angle condition. Again,
a remark analogous to Remark 3.30 holds. For an analogous investigation
of tetrahedra we refer to [58].

With a modification of the above considerations and an additional
condition anisotropic error estimates of the form

d
|’U — Ih(’U)|1 S Cth |81-v|1

i=1
can be proven for v € H?(Q2), where the h; denote length parameter de-

pending on the element type. In the case of triangles, these are the longest
edge (h1 = h) and the height on it as shown in Figure 3.12 (see [41]).

3.4.3 L? Error Estimates

The error estimate (3.89) also contains a result about the approximation
of the gradient (and hence of the flux), but it is linear only for k = 1, in
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contrast to the error estimate of Chapter 1 (Theorem 1.6). The question is
whether an improvement of the convergence rate is possible if we strive only
for an estimate of the function values. The duality argument of Aubin and
Nitsche shows that this is correct, if the adjoint boundary value problem
is regular, where we have the following definition:

Definition 3.36 The adjoint boundary value problem for (3.12), (3.18)—
(3.20) is defined by the bilinear form

(u,v) — a(v,u) foru,v eV

with V from (3.30). It is called regular if for every f € L%(Q) there exists
a unique solution u = uy € V of the adjoint boundary value problem

a(v,u) = (f,v)g forallveV

and even uy € H%(Q) is satisfied, and for some constant C' > 0 a stability
estimate of the form

lugla < C||fllo for given f € LQ(Q)
is satisfied.

The V-ellipticity and the continuity of the bilinear form (3.2), (3.3) di-
rectly carry over from (3.31) to the adjoint boundary value problem, so
that in this case the unique existence of uy € V is ensured. More pre-
cisely, the adjoint boundary value problem is obtained by an exchange of
the arguments in the bilinear form, which does not effect any change in its
symmetric parts. The nonsymmetric part of (3.31) is fQ ¢ - Vuwvdz, which
becomes [, ¢- Vv udz. By virtue of

/C'Vvudx:f/v'(cu)vder/ c-vuvdo
Q Q 19)

the transition to the adjoint boundary value problem therefore means the
exchange of the convective part ¢ - Vu by a convective part, now in diver-
gence form and in the opposite direction —¢, namely V - (—cu), with the
correponding modification of the boundary condition. Hence, in general we
may expect a similar regularity behavior to that in the original boundary
value problem, which was discussed in Section 3.2.3. For a regular adjoint
problem we get an improvement of the convergence rate in || - ||o:

Theorem 3.37 (Aubin and Nitsche)

Consider the situation of Theorem 3.29 or Theorem 3.35 and suppose the
adjoint boundary value problem is regular. Then there exists some constant
C > 0 such that for the solution u of the boundary value problem (3.12),
(3.18)—(3.20) and its finite element approzimation uy defined by (3.39),

(1) lu—unllo < Chllu — unlly,

(2) lw = unllo < Chllullx,
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(3) lu—upllo < CRE Y ulpyr, if u € HEFYH(Q).

Proof: The assertions (2) and (3) follow directly from (1). On the one
hand, by using ||u — up||1 < ||ull1 4 ||unl]1 and the stability estimate (2.44),
on the other hand directly from (3.89) and (3.98), respectively.

For the proof of (1), we consider the solution us of the adjoint problem
with the right-hand side f = u — u, € V C L?(Q). Choosing the test
function v — up, and using the error equation (2.39) gives

I = wnll§ = (u = wn, u—un)o = alu — un, ug) = a(u — un,us — va)

for all v, € V. If we choose specifically v, = I5(uys), then from the con-
tinuity of the bilinear form, Theorem 3.29, and Theorem 3.35, and the
regularity assumption it follows that

< Cllu—wupllihluglz < Cllu — up|[1h]|u = upllo-

lu—unlld < Cllu—unlliluy — In(ug)lh

Division by ||u — uplo gives the assertion, which is trivial in the case |ju —
uh”o =0. O

Thus, if a rough right-hand side in (3.12) prevents convergence from
being ensured by Theorem 3.29 or Theorem 3.35, then the estimate (2) can
still be used to get a convergence estimate (of lower order).

In the light of the considerations from Section 1.2, the result of Theo-
rem 3.37 is surprising, since we have only (pointwise) consistency of first
order. On the other hand, Theorem 1.6 also raises the question of conver-
gence rate results in || - ||oc which then would give a result stronger, in
many respects, than Theorem 1.6. Although the considerations described
here (as in Section 3.9) can be the starting point of such L estimates, we
get the most far-reaching results with the weighted norm technique (see [9,
pp. 155 ff.]), whose description is not presented here.

The above theorems contain convergence rate results under regularity
assumptions that may often, even though only locally, be violated. In fact,
there also exist (weaker) results with less regularity assumptions. However,
the following observation seems to be meaningful: Estimate (3.90) indicates
that on subdomains, where the solution has less regularity, on which the
(semi) norms of the solutions thus become large, local refinement is advan-
tageous (without improving the convergence rate by this). Adaptive mesh
refinement strategies on the basis of a posteriori error estimates described
in Chapter 4 provide a systematical approach in this direction.

Exercises

3.21 Prove for the linear finite element ansatz (3.53) in one space di-
mension that for K € 7, and v € H?(K), the following estimate
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holds:
v = Ik (V)1 < hi|v)2,K -

Hint: Rolle’s theorem and Exercise 2.5 (b) (Poincaré inequality).
Generalize the considerations to an arbitrary polynomial ansatz P = Py,
in one space dimension by proving

|U — IK(’U)|1’K < h];(|v|k+1’[( for v € HkJrl(K).
3.22 Prove the chain rule (3.77) for v € H'(K).

3.23 Derive analogously to Theorem 3.29 a convergence rate result for
the Hermite elements (3.64) and (3.65) (Bogner—Fox—Schmit element) and
the boundary value problem (3.12) with Dirichlet boundary conditions.

3.24 Derive analogously to Theorem 3.29 a convergence rate result for
the Bogner—Fox—Schmit element (3.65) and the boundary value problem
(3.36).

3.25 Let a triangle K with the vertices a1, as,a3 and a function u €
C?(K) be given. Show that if u is interpolated by a linear polynomial
Ik (u) with (Ix (v))(a;) = u(a;), ¢ = 1,2, 3, then, for the error the estimate

h2
sup |u(x) — (Ix (u))(x)| + hsup |V(u — Ik (u))(z)| < 2M ———
sup fu(e) = (T () (@) + e sup V(0= T (1)) < 20—
holds, where h denotes the diameter, a the size of the largest interior angle
of K and M an upper bound for the maximum of the norm of the Hessian
matrix of u on K.

3.26 Counsider a triangle K with the vertices a; := (—h,0), a2 := (h,0),
az = (0,¢), and h, € > 0. Suppose that the function u(z) := z? is linearly
interpolated on K such that (Ip(u))(a;) = u(a;) for i = 1,2, 3.

Determine ||02(In(u) — u)||2,x as well as ||02(In(u) — u)|loo,x and discuss
the consequences for of different orders of magnitude of h and e.

3.27 Suppose that no further regularity properties are known for the
solution u € V of the boundary value problem (3.12). Show under the
assumptions of Section 3.4 that for the finite element approximation
up € Vi

lu —up|ls = 0 for h— 0.
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3.5 The Implementation of the Finite Element
Method: Part 2

3.5.1 Incorporation of Dirichlet Boundary Conditions: Part 2

In the theoretical analysis of boundary value problems with inhomogeneous
Dirichlet boundary conditions u = g3 on I's, the existence of a function
w € HY(Q) with w = g3 on I's has been assumed so far. The solution
u € V (with homogeneous Dirichlet boundary conditions) is then defined
according to (3.31) such that & = u + w satisfies the variational equation
with test functions in V:

a(u+w,v) =b(v) forallveV. (3.99)

For the Galerkin approximation uy, which has been analyzed in Section 3.4,
this means that the parts —a(w, ;) with nodal basis functions ¢;, i =
1,..., My, go into the right-hand side of the system of equations (2.34), and
then i, := up+w has to be considered as the solution of the inhomogeneous
problem

a(up +w,v) =b(v) forallve V. (3.100)

If we complete the basis of V}, by the basis functions @, +1, . .., @ar for the

Dirichlet boundary nodes aar, +1, - -.,an and denote the generated space
by Xp,

Xh:Span {9017"'7<»OM1;50M1+17'-~790M} ; (3101)

that is the ansatz space without taking into account boundary conditions,
then in particular, u;, € X} does not hold in general. This approach does
not correspond to the practice described in Section 2.4.3. That practice,
applied to a general variational equation, reads as follows:

For all degrees of freedom 1,..., My, M7 + 1,...,M the system of
equations is built with the components

a(%‘a%ﬁi)a iajzla"'7M7 (3102)
for the stiffness matrix and
bp;), i=1,...,M, (3.103)

for the load vector. The vector of unknowns is therefore

g—<§) with £ eRM | £ eRM:.

For Dirichlet boundary conditions the equations M;+1, ..., M are replaced
by

gi:g3(ai)7 i:M1+17"'7M7
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and the concerned variables are eliminated in equations 1,...,M;. Of
course, it is assumed here that g3 € C(I's). This procedure can also be
interpreted in the following way: If we set

Ah::(a(‘Pj"Pi))i,j:l,...,Ml , An=(aly;, @i))i=1,...,M1,j=M1+1,...,Mv
then the first M; equations of the generated system of equations are

A+ A€ =q,,

where g, € RM consists of the first M; components according to (3.103).
Hence the elimination leads to

Ang = q), — Ané (3.104)
with é = (93(ai))i=M1+1,...,M2' Suppose
M
wh = Y gsa;) @i € X (3.105)
i=Mi+1

is the ansatz function that satisfies the boundary conditions in the Dirichlet
nodes and assumes the value 0 in all other nodes. The system of equations
(3.104) is then equivalent to

a(tp + wp,v) =b(v) forallv eV, (3.106)

for 1y, = Zi]\ill &ipi € Vi, (that is, the “real” solution), in contrast to the
variational equation (3.100) was used in the analysis. This consideration
also holds if another h-dependent bilinear form a; and analogously a lin-
ear form by instead of the linear form b is used for assembling. In the
following we assume that there exists some function w € C(£) that sat-
isfies the boundary condition on I's. Instead of (3.106), we consider the
finite-dimensional auxiliary problem of finding some 2y, € V4, such that

a(ty, + In(w),v) = b(v) forallv e V. (3.107)
Here I, : C(Q) — X, is the interpolation operator with respect to all
degrees of freedom,

Mi+M>

Liw):= Y vlai)ei,

i=1
whereas in Section 3.4 we considered the interpolation operator Ij, for func-

tions that vanish on I's. In the following, when analyzing the effect of
quadrature, we will show that — also for some approximation of a and b

Ay, := Up + In(w) € X, (3.108)

is an approximation of u + w of the quality established in Theorem 3.29
(see Theorem 3.42). We have wp, — I, (w) € Vj, and hence also @y, + wp, —
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I (w) € V. If (3.107) is uniquely solvable, which follows from the general
assumption of the V-ellipticity of a (3.3), we have

Un + wp, — In(w) =
and hence for 4y, according to (3.108),
Up = Up + W - (3.109)

In this way the described implementation practice for Dirichlet boundary
conditions is justified.

3.5.2  Numerical Quadrature

We consider again a boundary value problem in the variational formulation
(3.31) and a finite element discretization in the general form described
in Sections 3.3 and 3.4. If we step through Section 2.4.2 describing the
assembling within a finite element code, we notice that the general element-
to-element approach with transformation to the reference element is here
also possible, with the exception that due to the general coefficient functions
K,c,r and f, the arising integrals can not be evaluated exactly in general.

If K., is a general element with degrees of freedom in a,,,...,a,,, then
the components of the element stiffness matrix for 4,7 =1,..., L are
A / KN @r; - Npn, + ¢ Vpr, @ry + 10r,0r, da
+ / Q. pr,do (3.110)
KNz

=: / vij(x) d$+/ wij(a) do
Ko KNl

_ / 04, (@) dit | det(B)| + / iy (6) dér | det(B)) .
K K’

Here, K, is affine equivalent to the reference element K by the mapping
F(&) = B& + d. By virtue of the conformity of the triangulation (T6), the
boundary part K,, NIy consists of none, one, or more complete faces of
K ,,. For simplicity, we restrict ourselves to the case of one face that is affine
equivalent to the reference element K’ by some mapping F (6) = Bé+d
(cf. (3.42)). The generalization to the other cases is obvious. The functions
0;; and analogously ;; are the transformed functions defined in (3.75).

Correspondingly, we get as components for the right-hand side of the
system of equations, that is, for the load vector,

/f #) di | det(B)| (3.111)
//gl( )Ni(6 )doldet(Bl)|+/Kl G2(6)N;(6) d& | det(By)| .
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1 =1,...,L. Here, the N;, i = 1,..., L, are the shape functions; that is,
the local nodal basis functions on K.

If the transformed integrands contain derivatives with respect to x, they
can be transformed into derivatives with respect to Z. For instance, for the
first addend in AZ(-;n) we get, as an extension of (2.50),

/;z K(F(2))B~TV3N;(2) - B-TV:N;(2) di | det(B)] .

The shape functions, their derivatives, and their integrals over K are known
which has been used in (2.52) for the exact integration. Since general coef-
ficient functions arise, this is in general, but also in the remaining special
cases no longer possible, for example for polynomial K(z) it is also not
recommendable due to the corresponding effort. Instead, one should ap-
proximate these integrals (and, analogously, also the boundary integrals)
by using some quadrature formula.

A quadrature formula on K for the approximation of [ # 0(2) d has the
form

R
> @i () (3.112)
i=1

with weights @; and quadrature or integration points b € K. Hence, ap-
plying (3.112) assumes the evaluability of ¢ in l;i, which is in the following
ensured by the continuity of ©. This implies the same assumption for the
coefficients, since the shape functions NV; and their derivatives are continu-
ous. In order to ensure the numerical stability of a quadrature formula, it
is usually required that

w; >0 forall i=1,...,R, (3.113)

which we will also do. Since all the considered finite elements are such
that their faces with the enclosed degrees of freedom represent again a fi-
nite element (in R471) (see (3.42)), the boundary integrals are included
in a general discussion. In principle, different quadrature formulas can be
applied for each of the above integrals, but here we will disregard this pos-
sibility (with the exception of distinguishing between volume and boundary
integrals because of their different dimensions).

A quadrature formula on K generates a quadrature formula on a general
element K, recalling

/I(v(m)dx:/ﬁ(i)di|det(3)|

K

R
> wikv(bix),
=1
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where w; = w; k = &;|det(B)] and b; = b; g = F(I;z) are dependent on
K. The positivity of the weights is preserved. Here, again F(&) = BZ +d
denotes the affine-linear transformation from K to K. The errors of the
quadrature formulas

R
E(®) /Kﬁ(fc)dit—z:d)iﬁ(i)z)

- (3.114)
Ex(v) = / v(x)dx — Zwi v(b;)
K i=1
are related to each other by
Ex(v) = | det(B)|E(d) . (3.115)

The accuracy of a quadrature formula will be defined by the requirement
that for [ as large as possible,

E(p) =0 for p e P(K)

is satisfied, which transfers directly to the integration over K. A quadrature
formula should further provide the desired accuracy by using quadrature
nodes as less as possible, since the evaluation of the coefficient functions is
often expensive. In contrast, for the shape functions and their derivatives
a single evaluation is sufficient. In the following we discuss some exam-
ples of quadrature formulas for the elements that have been introduced in
Section 3.3.

The most obvious approach consists in using nodal quadrature formu-
las, which have the nodes a1, ..., ar, of the reference element (K P Z) as
quadrature nodes. The requirement of exactness in P is then equivalent to

& = / Ni(3) di, (3.116)
K

so that the question of the validity of (3.113) remains.
We start with the unit simplex K defined in (3.47). Here, the weights

of the quadrature formulas can be given directly on a general simplex K: If

the shape functions are expressed by their barycentric coordinates A;, the

integrals can be computed by

arlag! - agyq! vol (K)

~ 3.117
(o + a4+ agyr +d)! vol (K) ( )

/K APAG - AT (1) di =

(see Exercise 3.28).
If P = P1(K) and thus the quadrature nodes are the vertices, it follows
that

i = | Ni(x)dz =
w /K (x)dx PR

vol(K) foralli=1,...,d+1. (3.118)
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For P = P2(K) and d = 2 we get, by the shape functions \;(2\; — 1), the
weights O for the nodes a; and, by the shape functions 4A;;, the weights

1
wizgvol(K) for bj=aiy,i,5=1,...,3,i>j,

so that we have obtained here a quadrature formula that is superior to
(3.118) (for d = 2). However, for d > 3 this ansatz leads to negative weights
and is thus useless. We can also get the exactness in P (K) by a single
quadrature node, by the barycentre (see (3.52)):

d+1
w1 =vol(K) and b =ag= m;am
which is obvious due to (3.117).
As a formula that is exact for P2 (K) and d = 3 (see [53]) we present
R=4, w, = ivol (K), and the b; are obtained by cyclic exchange of the
barycentric coordinates:

<5\/5 5-v5 5-5 5+3\/3>

20 7 20 20 20

On the unit cuboid K we obtain nodal quadrature formulas, which are
exact for Qg (K), from the Newton—Cotes formulas in the one-dimensional
situation by

N N N - 1 7
wil___id = wil---wid fOI' bilmid:(i,...,f) (3.119)

for i; €{0,...,k} and j=1,...,d.

Here the w;; are the weights of the Newton—Cotes formula for fol f(z)dx
(see [30, p. 128]). As in (3.118), for k = 1 we have here a generalization
of the trapezoidal rule (cf. (2.38), (8.31)) with the weights 27¢ in the 2¢
vertices. From k = 8 on, negative weights arise. This can be avoided and
the accuracy for a given number of points increased if the Newton—Cotes
integration is replaced by the Gauss—(Legendre) integration: In (3.119), i, /k
has to be replaced by the jth node of the kth Gauss—Legendre formula
(see [30, p. 156] there on [—1,1]) and analogously @;,. In this way, by
(k+1)% quadrature nodes the exactness in Qa1 (K), not only in Qx(K),
is obtained.

Now the question as to which quadrature formula should be chosen arises.
For this, different criteria can be considered (see also (8.29)). Here, we re-
quire that the convergence rate result that was proved in Theorem 3.29
should not be deteriorated. In order to investigate this question we have
to clarify which problem is solved by the approximation @y € V}, based on
quadrature. To simplify the notation, from now on we do not consider
boundary integrals, that is, only Dirichlet and homogeneous Neumann
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boundary conditions are allowed. However, the generalization should be
clear. Replacmg the integrals in (3.111) and (3.111) by quadrature formu-
las ZRZI @;0(b;) leads to some approximation Aj of the stiffness matrix
and g;, of the load vector in the form

z‘_lh = (%(‘F’jv@i))i,j y qQp = (bh(%))i )

for i,j =1,..., M. Here the ¢; are the basis functions of X} (see (3.101))
without taking into account the Dirichlet boundary condition and

R
ap(v,w) = Z ZWZ,K(KV'U . V’w)(bl,K)

KeTy 1=1
R
+ Z Zwl,K(c - Vow) (b k) + Z sz,K(va)(bl,K)
KeT, I=1 KeT, =1
for v,w € Xy, (3.120)
bh(v) = Z ZWZ,K(fU)(bl,K) for v e Xy
KeTy 1=1

The above-given mappings ay, and by, are well-defined on X x X}, and X,
respectively, if the coeflicient functions can be evaluated in the quadrature
nodes. Here we take into account that for some element K, Vv for v €
X}, can have jump discontinuities on K. Thus, for the quadrature nodes
bk € OK in Vu(b; i) we have to choose the value “belonging to b; x” that
corresponds to the limit of sequences in the interior of K. We recall that
in general a; and by are not defined for functions of V. Obviously, aj is
bilinear and by, is linear. If we take into account the analysis of incorporating
the Dirichlet boundary conditions in (3.99)—(3.106), we get a system of
equations for the degrees of freedom € = (&1, .., &, )T, which is equivalent

to the variational equation on V}, for u, = Zij\ill & €V
ap(tp,v) = bp(v) — ap(wp,v) for allv eV, (3.121)

with wp, according to (3.105). As has been shown in (3.109), (3.121) is
equivalent, in the sense of the total approximation @y + wp of u+w, to the
variational equation for uy € Vp,

an(tn,v) = by (v) := bp(v) — an(In(w),v) for all v € Vj,, (3.122)

if this system of equations is uniquely solvable.

Exercises

3.28 Prove equation (3.117) by first proving the equation for K = K
and then deducing from this the assertion for the general simplex by
Exercise 3.18.
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3.29 Let K be a triangle with vertices a1, ag, az. Further, let a2, a13, as3
denote the corresponding edge midpoints, aj23 the barycenter and |K| the
area of K. Check that the quadrature formula

K
Q = | | 32 (lz +8Z a” +27u a123)

i<J

computes the integral Q(u) := [ udz exactly for polynomials of third
degree.

3.6 Convergence Rate Results in the Case of
Quadrature and Interpolation

The purpose of this section is to analyze the approximation quality of a
solution 1y, + I, (w) according to (3.122) and thus of 4y, + wy, according to
(3.121) of the boundary value problem (3.12), (3.18)—(3.20).

Hence, we have left the field of Galerkin methods, and we have to
investigate the influence of the errors

a—ap, b—alw,-)—>by+an(lh(w),).

To this end, we consider in general the variational equation in a normed
space (V. |- |)

u € V satisfies a(u,v) =1l(v) forallveV, (3.123)
and the approximation in subspaces V, C V for A > 0,
up, € V, satisfies  ap(up,v) =1l (v) forallv eV,. (3.124)

Here a and ay, are bilinear forms on V' x V and V}, x V},, respectively, and
[, 1 are linear forms on V and V},, respectively. Then we have the following
theorem

Theorem 3.38 (First Lemma of Strang)
Suppose there exists some a > 0 such that for all h >0 and v € Vy,

allvl? < an(v,v), (3.125)

and let a be continuous in V x V.
Then, there exists some constant C' independent of Vi, such that

lu—up|| < C{ inf {||u1)|| + sup la(v, w) ah(v,w)|}
VeV, weVi, ]l

- mp Ll

wevi |l

(3.126)
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Proof: Let v € V}, be arbitrary. Then it follows from (3.123)—(3.125) that
allup, —v||? < an(un — v, up —v)
= a(u—v,up—v)+ (a(v, up — v) — ap(v,up — v))
+ (In(un = v) = l(un — v))
and moreover, by the continuity of a (cf. (3.2)),

la(v, w) — ap(v, w)|

allup —v|| < M|u—v| 4+ sup
weVy [Jw]|

4 s ln0) = lw)

forve V.
weVy, ”w”

By means of ||u — up|| < ||u — v|| + ||up, — v|| and taking the infimum over
all v € V},, the assertion follows. a

For ap, = a and [, = [ the assertion reduces to Céa’s lemma (Theo-
rem 2.17), which was the initial point for the analysis of the convergence
rate in Section 3.4. Here we can proceed analogously. For that purpose, the
following conditions must be fulfilled additionally:

e The uniform Vi -ellipticity of ap, according to (3.125) must be ensured.

e For the consistency errors

Ap(v) := sup la(v, w) = an(v, w) (3.127)
wEV, HwH

for an arbitrarily chosen comparison function v € V}, and for

l —1
up 1100) = 1)
wet, Tl

the behavior in h must be analyzed.

The first requirement is not crucial if only a itself is V-elliptic and Ay,
tends suitably to 0 for h — 0 :

Lemma 3.39 Suppose the bilinear form a is V-elliptic and there exists
some function C(h) with C(h) — 0 for h — 0 such that

Ap(v) < C(h)||v]|  forve V.
Then there exists some h > 0 such that aj, is uniformly Vj,-elliptic for
h <h.
Proof: By assumption, there exists some a > 0 such that for v € V3,
al[v]|? < an(v,v) + a(v,v) — ap(v,v)
and

la(v,v) = an(v,v)] < Ap()|lv]| < C(R)]lv]*.
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Therefore, for instance, choose h such that C(h) < a/2 for h < h. O

We concretely address the analysis of the influence of numerical quadra-
ture, that is, aj, is defined as in (3.120) and I;, corresponds to by, in (3.122)
with the approximate linear form b, according to (3.120). Since this is an
extension of the convergence results (in || - ||1) given in Section 3.4, the as-
sumptions about the finite element discretization are as summarized there
at the beginning. In particular, the triangulations 7} consist of elements
that are affine equivalent to each other. Furthermore, for a simplification of
the notation, let again d < 3 and only Lagrange elements are considered. In
particular, let the general assumptions about the boundary value problems
which are specified at the end of Section 3.2.1 be satisfied.

According to Theorem 3.38, the uniform Vj,-ellipticity of a; must be
ensured and the consistency errors (for an appropriate comparison element
v € V3,) must have the correct convergence behavior. If the step size h is
small enough, the first proposition is implied by the second proposition
by virtue of Lemma 3.39. Now, simple criteria that are independent of this
restriction will be presented. The quadrature formulas satisfy the properties
(3.112), (3.113) introduced in Section 3.5; in particular, the weights are
positive.

Lemma 3.40 Suppose the coefficient function K satisfies (3.16) and let
c=01nQ, let |Ts|lg—1 > 0, and let r > 0 in Q. If P C Py(K) for the
ansatz space and if the quadrature formula is exact for Paog_o(K), then ay,
is uniformly Vi -elliptic.

Proof: Let a > 0 be the constant of the uniform positive definiteness of
K (z). Then we have for v € V},:

R
an(w0) 2 a 3 S [VoP (k) =a [ Vol (a)dz = alof?,

KeT, 1=1 Q

since |Vu[?| . € Pag_2(K). The assertion follows from Corollary 3.14. O

Further results of this type can be found in [9, pp. 194]. To investigate
the consistency error we can proceed similarly to the estimation of the
interpolation error in Section 3.4: The error is split into the sum of the errors
over the elements K € 7, and there transformed by means of (3.115) into
the error over the reference element K. The derivatives (in &) arising in the
error estimation over K are backtransformed by using Theorem 3.26 and
Theorem 3.27, which leads to the desired hx-factors. But note that powers
of ||B~1|| or similar terms do not arise. If the powers of det(B) arising in
both transformation steps cancel each other (which will happen), in this
way no condition about the geometric quality of the family of triangulations
arises. Of course, these results must be combined with estimates for the
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approximation error of Vj, for which, in particular, both approaches of
Section 3.4 (either regularity or maximum angle condition) are admissible.

For the sake of simplicity, we restrict our attention in the following to the
case of the polynomial ansatz space P = Py (K). More general results of
similar type, in particular for triangulations with the cuboid element and
P= Qk(f() as reference element, are summarized in [9, p. 207].

We recall the notation and the relations introduced in (3.114), (3.115)
for the local errors. In the following theorems we make use of the Sobolev
spaces W on Q and on K with the norms ||-||;,c0 and ||-||;,00. 1, Tespectively,
and the seminorms | - |; 00 and | - |;,00,k, respectively. The essential local
assertion is the following:

Theorem 3.41 Suppose k € N and P = Pp(K) and the quadrature

formula is ezact for Poj_2(K):
E(®) =0 for all b € Pay,_o(K). (3.128)

Then there exist some constant C' > 0 independent of h > 0 and K € T,
such that for | € {1,k} the following estimates are given:

(1) |Ex(apq)] < Chlcllallkoo,x lIPlli-1,x llgllo,x
fora e WE(K), p,q € Pr_1(K),

(2) |Exk (cpq)l < Chlcllcllkoo,kllpli-1.x lall1
fOT cec Wc?o(K)v p S ,Pkfl(K)v q S Pk(K) )

(3) |Ex(rpg)] < Chigllrlli,co,x [Pl lldll1 i
fOT e Wfo(K)v p,q € Pk(K)a

(4) [Bx(f)l < CRillfllk,o0,iv0l () [lall 1.5
for f e WEL(K), q € Pr(K).

The (unnecessarily varied) notation of the coefficients already indicates
the field of application of the respective estimate. The smoothness assump-
tion concerning the coefficients in (1)—(3) can be weakened to some extent.
We prove only assertion (1). However, a direct application of this proof to
assertions (2)—(4) leads to a loss of convergence rate (or higher exactness
conditions for the quadrature). Here, quite technical considerations includ-
ing the insertion of projections are necessary, which can be found to some
extent in [9, pp. 201-203]. In the following proof we intensively make use
of the fact that all norms are equivalent on the “fixed” finite-dimensional
ansatz space Py, (K ). The assumption (3.128) is equivalent to the same con-
dition on a general element. However, the formulation already indicates an
assumption that is also sufficient in more general cases.
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Proof of Theorem 3.41, (1): We consider a general element K € 7},
and mappings a € W (K), p,q € Pr_1(K) on it and, moreover, mappings
a e WE(K), p,q € Pr_1(K) defined according to (3.75). First, the proof
is done for [ = k. On the reference element K, for o € W% (K) and ¢ €
Pr_1(K)), we have

R
|E(0§)] = / 0Gdi =Y @ (69)(bi)| < C 104l i < C 0]l i ldllo 4 »

K =1

where the continuity of the embedding of W% (K) in C(K) is used (see [8,

p. 181]). Therefore, by the equivalence of | - ||, g and [|- ||, z on Pr_1(K),
it follows that

| E(0q)
If a fixed ¢ € Pkfl(K’ ) is chosen, then a linear continuous functional G is
defined on WX (K) by © — E(9q) that has the following properties:
IGII < Cldllyz and G(®) =0 for &€ Pr1(K)

by virtue of (3.128).
The Bramble-Hilbert lemma (Theorem 3.24) implies

|E(6¢)

< Clollk,00,i lldllo, -

< Ol oo,k o, -
According to the assertion we now choose
v=ap for aeWF?(K), pePr1(K),
and we have to estimate |ap|, . g (thanks to the Bramble-Hilbert lemma

not ||apl|, ., z)- The Leibniz rule for the differentiation of products implies
the estimate

k
@Bl s, ic < C YNl 1D 0, (3.129)
=0

Here the constant C' depends only on k, but not on the domain K.
Since p € Px—1(K), the last term of the sum in (3.129) can be omitted.
Therefore, we have obtained the following estimate holding for a € Wk (K),

ﬁ7qA S Pk—l(K):

k—1
E(apg)| < C{ |d|k_j,oo,f( |ﬁ|j,oo,i(} ”(j”()j(
7=0
= (3.130)
< C { Z |a’|k7j,oo,f( |ﬁ|],K} ”(j”o,k-

7=0

The last estimate uses the equivalence of || - [|o and | - [[o on Pr_1(K).

We suppose that the transformation F of K to the general element K
has, as usual, the linear part B. The first transformation step yields the
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factor |det(B)| according to (3.115), and for the backtransformation it
follows from Theorem 3.26 and Theorem 3.27 that

~ k—j
|a|k—j,oo,f< < ChK ’ |a|k*j,00,Ka

A

1l < Chie|det(B)[ ™2 [pljx, (3.131)

IN

lallo, & C'| det(B)| /2 [lqllo.x

for 0 < j < k — 1. Here a,p, ¢ are the mappings a, p, G (back)transformed
according to (3.75). Substituting these estimates into (3.130) therefore
yields

k—1
|Ex(apg)| < C bl { D lalk—joo i |p|j,K} llqllo, x

Jj=0

and from this, assertion (1) follows for [ = k.
If I = 1, we modify the proof as follows. Again, in (3.130) we estimate
by using the equivalence of norms:

E(apq)

IN

k—1
C { laly_j oo i ||ﬁ||j,oo,f<} ldllo &
=0
-1

¢ { |d|k—j,oo,f(} ||13||0,i< ||(j||o,i< :
§=0

The first and the third estimates of (3.131) remain applicable; the second
estimate is replaced with the third such that we have

IN
RS

k—1

|Ex (apg)| < Chk { > |a|k—j,oo,K} pllo,x llallo,x
j=0

since the lowest hg-power arises for j = k — 1. This estimate yields the
assertion (1) for [ =1 . a

Finally, we can now verify the assumptions of Theorem 3.38 with the
following result:

Theorem 3.42 Consider a family of affine equivalent Lagrange finite el-
ement discretizations in R%, d < 3, with P = Py, for some k € N as local
ansatz space. Suppose that the family of triangulations is regular or sat-
isfies the mazimum angle condition in the case of triangles with k = 1.
Suppose that the applied quadrature formulas are exact for Pop_o. Let the
function w satisfying the Dirichlet boundary condition and let the solution
u of the boundary value problem (3.12), (3.18)—(3.20) (with g5 = 0) belong
to H*1(Q).

Then there exist some constants C > 0, h > 0 independent of v and w
such that for the finite element approzimation up,+wy, according to (3.105),
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(3.121), it follows for h < h that

d
|+ w — (@, +ws)|, < CH* {|u|k+1 + [wlkr + < > kijlloe
ij=1

d
3 leillimo + ||r||k,oo> <||U||k+1 n ||w||k+1) n ||f||k,oo} |
=1

Proof: According to (3.108), we aim at estimating ||u+w — (T, +In (w
where 1y, satisfies (3.122).

By virtue of Theorem 3.29 or Theorem 3.35 (set formally I's = (}) we
have

iy

lw— In(w)|y < Ch¥|w|py . (3.132)

For the bilinear form aj, defined in (3.120), it follows from Theorem 3.41
for v,w € Vj, and [ € {0, k} that

d
la(v,w) — an(v,w)] < > { > Bk (kij05(v] )i (wlk))| (3.133)

KeTn \ij=1

d
+Z | Ex (ci0i(v] i )w)| + |EK(rvw)|}

< Czhl[({ Z ||kzj||kooK+Z||Cz||kooK+ ||T||kooK}

KeTy, i,7=1

ol xllwll,x

< Chl{ D lkisllaco +leczllkoo + IITIIkoo}
3,j=1
1/2
X <Z IIUII?,K> [[wll1,

KeTy,

by estimating the || - ||x,00, k-norms in terms of norms on the domain Q and
then applying the Cauchy—Schwarz inequality with “index” K € 7p.
From this we obtain for [ = 1 an estimate of the form

|a(v, w) — an (v, w)| < Chljv]l1]lwl

such that the estimate required in Lemma 3.39 holds (with C'(h) = C - h).
Therefore, there exists some h > 0 such that a; is uniformly Vj-elliptic
for h < h. Hence, the estimate (3.126) is applicable, and the first addend,
the approximation error, behaves as asserted according to Theorem 3.29 or
Theorem 3.35 (again, choose v = I (u) for the comparison element).

In order to estimate the consistency error of ap, a comparison element
v € V} has to be found for which the corresponding part of the norm in
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(3.133) is uniformly bounded. This is satisfied for v = Iy (u), since

1/2 1/2
< > 1 (u ||kK> < ||U||k+{ > u—In(u ”kK}
KeTh, KeTh,
< ulle + Chlulpsr < [lullk+1

due to Theorem 3.29 or Theorem 3.35.
Hence, the consistency error in a behaves as asserted according to (3.133),
so that only the consistency error of [ has to be investigated: We have

I —1p=b—"by —alw,)+ an(In(w),-),
where by, is defined in (3.120).
If v € V},, then
‘a(w,v)—ah(fh(w),v)‘ < ‘a(w,v) a(In(w |—|—| (In(w )—ah(fh(w),v)|.
For the first addend the continuity of a 1mphes
la(w,v) — a(Tn(w), v)] < C Jw = Tu@)]], loll

so that the corresponding consistency error part behaves like Hw —1I (w)Hl,
which has already been estimated in (3.132). The second addend just cor-
responds to the estimate used for the comsistency error in a (here, the
difference between I;, and I}, is irrelevant), so that the same contribution to
the convergence rate, now with ||u||g+1 replaced by ||w||k+1, arises. Finally,
Theorem 3.41, (4) yields for v € Vj,,

b(v) = blon)l < D ER(fo)l <C Y R vol ()2 | fllioo ¢ 0]l

KeT, KeTy,

IN

CRE QY2 (| f k.o Il

by proceeding as in (3.133). This implies the last part of the asserted
estimate. O

If the uniform Vj,-ellipticity of aj, is ensured in a different way (perhaps
by Lemma 3.40), one can dispense with the smallness assumption about h.
If estimates as given in Theorem 3.41 are also available for other types of
elements, then triangulations consisting of combinations of various elements
can also be considered.
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3.7 The Condition Number of Finite Element
Matrices

The stability of solution algorithms for linear systems of equations as de-
scribed in Section 2.5 depends on the condition number of the system
matrix (see [28, Chapter 1]). The condition number also plays an impor-
tant role for the convergence behavior of iterative methods, which will be
discussed in Chapter 5. Therefore, in this section we shall estimate the
spectral condition number (see Appendix A.3) of the stiffness matrix

A = (a(so].ﬂsai))i’j:l’“.’JW (3134)
and also of the mass matrix (see (7.45))
B = ({¢5,%)0); j—1. . (3.135)

which is of importance for time-dependent problems. Again, we consider a
finite element discretization in the general form of Section 3.4 restricted to
Lagrange elements. In order to simplify the notation, we assume the affine
equivalence of all elements. Further we suppose that

e the family (7,);, of triangulations is regular.

We assume that the variational formulation of the boundary value problem
leads to a bilinear form a that is V-elliptic and continuous on V' C H' ().

As a modification of definition (1.18), let the following norm (which is
also induced by a scalar product) be defined in the ansatz space V;, =

span{1, ..., oM}

1/2
lollon == <Z h Z |U(ai)|2> . (3.136)

KeTy, a; €K

Here, a1, ..., ap denote the nodes of the degrees of freedom, where in order
to simplify the notation, M instead of M; is used for the number of degrees
of freedom. The norm properties follow directly from the corresponding
properties of | - | except for the definiteness. But the definiteness follows
from the uniqueness of the interpolation problem in V};, with respect to
degrees of freedom a;.

Theorem 3.43 (1) There exist constants C1,Cs > 0 independent of h
such that for v € Vi,:

Cilvllo < lvllo,n < Callvllo-

(2) There exists a constant C' > 0 independent of h such that for v € Vj,,

KeT,

—1
ol < (gaip e ) Iollo
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Proof: As already known from Sections 3.4 and 3.6, the proof is done
locally in K € 7, and there transformed to the reference element K by
means of F(z) = B% +d.

Ad (1): All norms are equivalent on the local ansatz space ]5, thus also
| - lo,z and the Euclidean norm in the degrees of freedom. Hence, there

exist some Cy,Cy > 0 such that for ¢ € P,

I 1/2
Cillollg, & < <Z |ﬁ(&i)l2> < Callollg & -
i=1

Here, a1, . ..,ay are the degrees of freedom in K. Due to (3.50) we have
vol (K) = vol (K) | det(B)|,

and according to the definition of hxc and the regularity of the family (7 ),
there exist constants C; > 0 independent of h such that

él hc]l{ S 03 chl{ S |det(B)| S 02 h?(

By the transformation rule we thus obtain for v € Pk, the ansatz space on
K, that

L 1/2
Culllose = Crldet(B)Y2 ol < (Coh)? (Zlﬁ(a»f)
=1

e ) , 1/2 e I o 1/2
= G, Z h%|v(a;)] Z(Cth) Z'U(ai)l

a; €K

IN

- /2 . - /2 3
(Cont) " Collillg g = (Cotk)  Caldet(B) ™2 Jullo.x
Cy Co O Jullo.xc

This implies assertion (1).

N

Ad (2): Arguing as before, now using the equivalence of || - ||; x and
-l 5 in P, it follows by virtue of (3.86) for v € Pk (with the generic
constant C) that

lollx < Cldet(B)? B~ |2 19llo,z < C 1B~ 2 lvllo.x < C hit [vllox
by Theorem 3.27 and the regularity of (73,)x, and from this, the assertion
(2). |

In order to make the norm | - |jp,, comparable with the (weighted)
Euclidean norm we assume in the following:

e There exists a constant C'4 > 0 independent of h
such that for every node of 7}, the number of elements (3.137)
to which this node belongs is bounded by Cy4.
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This condition is (partly) redundant: For d = 2 and triangular elements,
the condition follows from the uniform lower bound (3.93) for the smallest
angle as an implication of the regularity. Note that the condition need not
be satisfied if only the maximum angle condition is required.

In general, if C € RM™M is a matrix with real eigenvalues \; < --- <
Am and an orthonormal basis of eigenvectors &;,...,&,,, for instance a
symmetric matrix, then it follows for & € RM \ {0} that

\ < Eloe
GG

and the bounds are assumed for £ = &; and £ = &,,.

<Am, (3.138)

Theorem 3.44 There exists a constant C > 0 independent of h such that

we have
L d
B) < -
Ai( )_C(minhK>

KeTy,

for the spectral condition number of the mass matriz B according to (3.135).

Proof: k(B) = Ay/A1 must be determined. For arbitrary & € RM \ {0}
we have

£'Be _ €"BE vl

e g, €T¢
where v := Zi\il i € Vi, By virtue of ¢ B€ = (v, v)o, the first factor on
the right-hand side is uniformly bounded from above and below according

to Theorem 3.43. Further, by (3.137) and € = (v(a1), ..., v(an))? it follows
that

)

min h €17 < [[vllg.n < Cah? €,
KEeT,
and, thus the second factor is estimated from above and below. This leads
to estimates of the type
AL > Cl;?éi%h?f’ A < Co b,
and from this, the assertion follows. a
Therefore, if the family of triangulations (7,)p is quasi-uniform in the
sense that there exists a constant C' > 0 independent of h such that
h<Chyi forall K €T, (3.139)

then x(B) is uniformly bounded.
In order to be able to argue analogously for the stiffness matrix, we
assume that we stay close to the symmetric case:
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Theorem 3.45 Suppose the stiffness matriz A (3.134) admits real eigen-
values and a basis of eigenvectors. Then there exists a constant C > 0
independent of h such that the following estimates for the spectral condition
number k hold:

-2
—1 .
k(B7TA) < C (}{rg% hK> ,
-2
k(A) < C (Igél% hK) k(B).

Proof: With the notation of (3.138), we proceed analogously to the proof
of Theorem 3.44. Since

§Ae  ¢TALETBE
¢'¢  ¢'Be £'¢
it suffices to bound the first factor on the right-hand side from above and

below. This also yields a result for the eigenvalues of B~ A, since we have
for the variable n := B/?¢,

€TA€ _ ,’7TB71/2ABfl/2,’7
' Be n'n

Y

and the matrix B~Y/2AB~1/2 possesses the same eigenvalues as B~ A by
virtue of B~Y/2(B~Y/2AB~1/?)B'/?2 = B~'A. Here, BY/? is the symmet-
ric positive definite matrix that satisfies BY/2B'/2 = B, and B~/2 is its
inverse.

Since ¢7 A¢ /€7 B¢ = a(v,v)/(v,v)o and

Vv

a(v,v) al[vll} = allvlF,

(3.140)
a(v,v)

IN

-2
2 < in h 2
Clivlli =€ <z?él% K) 113

with a generic constant C' > 0 (the last estimate is due to Theorem 3.43,
2), it follows that

a(v,v)  €TAE  a(v,v)
=), €BE (o

-2
< i .
<C (Ir(rg% hK> , (3.141)
and from this the assertion. O

The analysis of the eigenvalues of the model problem in Example 2.12
shows that the above-given estimates are not too pessimistic.



3.8. General Domains and Isoparametric Elements 167
3.8 General Domains and Isoparametric Elements

All elements considered so far are bounded by straight lines or plane sur-
faces. Therefore, only polyhedral domains can be decomposed exactly by
means of a triangulation. Depending on the application, domains with a
curved boundary may appear. With the available elements the obvious way
of dealing with such domains is the following (in the two-dimensional case):
for elements K that are close to the boundary put only the nodes of one
edge on the boundary 9f2. This implies an approximation error for the
domain, for Qp := UKET}L K, there holds in general neither Q C €} nor
Qp, C Q (see Figure 3.14).

Figure 3.14. Q and Q.

As the simplest example, we consider homogeneous Dirichlet boundary
conditions, thus V = HJ(£2), on a convex domain for which therefore 2}, C
Q is satisfied. If an ansatz space V}, is introduced as in Section 3.3, then
functions defined on €2, are generated. Therefore, these functions must be
extended to 2 in such a way that they vanish on 0f2, and consequently, for
the generated function space Vi, Vi, C V. This is supposed to be done by
adding the domains B whose boundary consists of a boundary part of some
element K € 7}, close to the boundary and a subset of 0 to the set of
elements with the ansatz space P(B) = {0}. Céa’s lemma (Theorem 2.17)
can still be applied, so that for an error estimate in || - |1 the question of
how to choose a comparison element v € V;, arises. The ansatz v = I (u),
where Ij,(u) denotes the interpolation on €, extended by 0 on the domains
B, is admissible only for the (multi-)linear ansatz: Only in this case are all
nodes of an edge “close to the boundary” located on 92 and therefore have
homogeneous degrees of freedom, so that the continuity on these edges is
ensured. For the present, let us restrict our attention to this case, so that
|l — Ip(u)||; has to be estimated where u is the solution of the boundary
value problem.

The techniques of Section 3.4 can be applied to all K € 73, and by the
conditions assumed there about the triangulation, this yields

IN

C(llu = In(u)ll1.0n + lullon0,)
C(hlul2,0, + lulli,o\0,) -

[l = unllx

IN
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If 09 € C?, then we have the estimate

[ully,ove, < Chllull2,0

for the new error part due to the approximation of the domain, and thus
the convergence rate is preserved. Already for a quadratic ansatz this is no
longer satisfied, where only

lu = unlly < CH*2ull3

holds instead of the order O(h?) of Theorem 3.29 (see [31, pp. 194 ff]).
One may expect that this decrease of the approximation quality arises only
locally close to the boundary, however, one may also try to obtain a better
approximation of the domain by using curved elements. Such elements can
be defined on the basis of the reference elements (K' P, f)) of Lagrange type
introduced in Section 3.3 if a general element is obtained from this one by
an isoparametric transformation; that is, choose an

F e (P)? (3.142)

that is injective and then

K:=F(K), Pw={poF '|peP}, ¥:={F@a)|aecs}.

Since the bijectivity of F' : K — K is ensured by requirement, a finite
element is thus defined in terms of (3.58). By virtue of the unique solvability
of the interpolation problem, F' can be defined by prescribing ai,...,ar,
L= |i|, and requiring

F(di):(li, Z:].,,L

However, this does not in general ensure the injectivity. Since, on the other
hand, in the grid generation process elements are created by defining the
nodes (see Section 4.1), geometric conditions about their positions that
characterize the injectivity of F' are desirable. A typical curved element
that can be used for the approximation of the boundary can be generated
on the basis of the unit simplex with P = Py(K) (see Figure 3.15).

a, as
as
A a
415 2 F € (Py(K)) o
a,
A n " a,
a; da, as a,

Figure 3.15. Isoparametric element: quadratic ansatz on triangle.

Elements with, in general, one curved edge and otherwise straight edges
thus are suggested for the problem of boundary approximation. They are
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combined with affine “quadratic triangles” in the interior of the domain.
Subparametric elements can be generated analogously to the isoparametric
elementsif (the components of) the transformations in (3.142) are restricted
to some subspace Pp C P. If Pp = Pi(K ), we again obtain the affine
equivalent elements.

However, isoparametric elements are also important if, for instance, the
unit square or cube is supposed to be the reference element. Only the
isoparametric transformation allows for “general” quadrilaterals and hex-
ahedra, respectively, which are preferable in anisotropic cases (for instance
in generalization of Figure 3.11) to simplices due to their adaptability to
local coordinates. In what follows, let K = [0,1]%, P = Q,(K).

In general, since also a finite element (in R~ 1) is defined for every face
& P the “faces” of K, that is, F[S], are already
uniquely defined by the related nodes.

Consequently, if d = 2, the edges of the general quadrilateral are straight
lines (see Figure 3.16), but if d = 3, we have to expect curved surfaces
(hyperbolic paraboloids) for a general hexahedron.

. . as
ay

F e (Qi(K))?

ay 253 a as

Figure 3.16. Isoparametric element: bilinear ansatz on rectangle.

A geometric characterization of the injectivity of F is still unknown (to
our knowledge) for d = 3, but it can be easily derived for d = 2: Let the
nodes a1, as, as, a4 be numbered counterclockwise and suppose that they
are not on a straight line, and thus (by rearranging) T' = conv (a1, ag, a4)
forms a triangle such that

2vol(T) = det(B) > 0.

Here Fr(i) = BZ + d is the affine-linear mapping that maps the refer-
ence triangle conv (a1, Gz2,a4) bijectively to T. If a3 := Fy.'(a3), then the
quadrilateral K with the vertices a1, a2, @s, G4 is mapped bijectively to K
by FT.

The transformation F' can be decomposed into

F=FroFy,
where I € (Ql(IA{))2 denotes the mapping defined by
Fo(a;))=a;, i=1,2,4, Fg(as)=as
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(see Figure 3.17).

A

1= p
d, d,

~>

a,

Figure 3.17. Decomposition of the bilinear isoparametric mapping.

Therefore, the bijectivity of F' is equivalent to the bijectivity of Fi.
We characterize a “uniform” bijectivity which is defined by
det (DF(Z1,%2)) # 0 for the functional matrix DF (%1, Z2):

Theorem 3.46 Suppose @ is a quadrilateral with the vertices aq,...,a4
(numbered counterclockwise). Then,

det (DF(21,%2)) #0 for all (#1,42) € [0,1]> <+
det (DF(21,%2)) >0 for all (#1,42) €[0,1]> <+—

Q is convex and does not degenerate into a triangle or straight line.

Proof: By virtue of
det (DF(Z1,%2)) = det(B) det (DFg(%1,%2))
and det(B) > 0, F' can be replaced with Fg in the assertion. Since

A~ A _ i‘l d371 -1 PN
Fo(&1,22) = ( . ) + ( o — 1 )3313?27
it follows by some simple calculations that
det, (DFQ(JAH,JAJQ)) =1+ (d372 — 1)@‘1 + (dg,l — 1).132

is an affine-linear mapping because the quadratic parts just cancel each
other. This mapping assumes its extrema on [0, 1]? at the 4 vertices, where
we have the following values:

(0,0) : 1, (1,0) 26372, (0,1) Idg,l, (1,1) Id3,1—|—d372—1.

A uniform sign is thus obtained if and only if the function is everywhere
positive. This is the case if and only if

as,1, G32, 031+ az2—1 >0,

which just characterizes the convexity and the nondegeneration of K. By
the transformation Fr this also holds for K. O
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According to this theorem it is not allowed that a quadrilateral degener-
ates into a triangle (now with linear ansatz). But a more careful analysis [55]
shows that this does not affect negatively the quality of the approximation.

In general, for isoparametric elements we have the following:

From the point of view of implementation, only slight modifications have
to be made: In the integrals (3.111), (3.111) transformed to the reference
element or their approximation by quadrature (3.120), |det B| has to be
replaced with |det (DF(Z))| (in the integrand).

The analysis of the order of convergence can be done along the same
lines as in Section 3.4 (and 3.6), however, the transformation rules for the
integrals become more complex (see [9, pp. 237 f1.]).

3.9 The Maximum Principle for Finite Element
Methods

In this section maximum and comparision principles that have been intro-
duced for the finite difference method are outlined for the finite element
method.

In the case of two-dimensional domains 2 the situation has been well
investigated for linear elliptic boundary value problems of second order
and linear elements. For higher-dimensional problems (d > 2) as well as
other types of elements, the corresponding assumptions are much more
complex, or there does not necessarily exist any maximum principle.

From now on, let 2 C R? be a polygonally bounded domain and let X},
denote the finite element space of continuous, piecewise linear functions
for a conforming triangulation 7, of Q where the function values in the
nodes on the Dirichlet boundary I's are included in the degrees of freedom.
First, we consider the discretization developed for the Poisson equation
—Au = f with f € L?(Q). The algebraization of the method is done
according to the scheme described in Section 2.4.3. According to this, first
all nodes inside 2 and on I'y and I'; are numbered consecutively from 1
to a number Mj. The nodal values uyp(a,) for r = 1,..., M; are arranged
in the vector wy. Then, the nodes that belong to the Dirichlet boundary
are numbered from M; + 1 to some number M; + Ms, the corresponding
nodal values generate the vector @y. The combination of w, and @y gives
the vector of all nodal values u;, = (g;) eRM, M = M, + M.

This leads to a linear system of equations of the form (1.31) described
in Section 1.4:

Apuy, = —Apay, + f

with A, € RMl’Ml, Ah € RMl’Mz, up, f € RM:t and up, € RMz,
Recalling the support properties of the basis functions ¢;,¢; € Xp,
we obtain for a general element of the (extended) stiffness matrix A, :=
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(Ah ‘ Ah) € RMu:M following the relation

(A = [ Vo, Vondo = | Ve, Vi da.
Q2 Supp ¢;Nsupp ¢,

Therefore, if i # j, the actual domain of integration consists of at most
two triangles. Hence, for the present it is reasonable to consider only one
triangle as the domain of integration .

Lemma 3.47 Suppose Tp, is a conforming triangulation of Q. Then for
an arbitrary triangle K € T;, with the vertices a;,a; (i # j), the following
relation holds:

1
/ Vo, -V dx = —§cotaf§,
K

where ag denotes the interior angle of K that is opposite to the edge with
the boundary points a;,a;.

Proof: Suppose the triangle K has the vertices a;, a;, ar (see Figure 3.18).
On the edge opposite to the point a;, we have
Y = 0.

Therefore, V; has the direction of a normal vector to this edge and — by
considering in which direction ¢; increases — the orientation opposite to
the outward normal vector vy;, that is,

V; = — |Voj| vk with  |vp| = 1. (3.143)

g
Figure 3.18. Notation for the proof of Lemma 3.47.
In order to calculate |V;| we use the following: From (3.143) we obtain

Vil = =Vp; - vki;

that is, we have to compute a directional derivative. By virtue of ¢;(a;) = 1,
we have
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where h; denotes the height of K with respect to the edge opposite a;.
Thus we have obtained the relation

1
Vo, h—jy;ﬂ- .
Hence we have
K
Since
2|K| = hjlar — a;| = hila; — ax| = |lax — a;| |a; — ax] sinafj(»,
we obtain
Vo, -V = 7—5 lar, — a;|la; — ax| = flcotaf{ 1 ,
4|K? 2 7K
so that the assertion follows by integration. |

Corollary 3.48 If K and K’ are two triangles of T, which have a common
edge spanned by the nodes a;,a;, then

1 sin(a-K-JraK-')
Ap)ii = Vo, Vo, dr=—= 2 CUNCEIN
(An)ij /KuK, Yi Vg ar 2 (sin ag)(sinaf](-)

Proof: The formula follows from the addition theorem for the cotangent
function. O

Lemma 3.47 and Corollary 3.48 are the basis for the proof of the as-
sumption (1.32)* in the case of the extended system matrix Aj. Indeed,
additional assumptions about the triangulation 7; are necessary:

Angle condition: For any two triangles of 7; with a common edge, the
sum of the interior angles opposite to this edge does not exceed the
value 7. If a triangle has an edge on the boundary part I'y or I's, then
the angle opposite this edge must not be obtuse.

Connectivity condition: For every pair of nodes both belonging to 2 U
I'y UTs there exists a polygonal line between these two nodes such
that the polygonal line consists only of triangle edges whose boundary
points also belong to QUT; UT; (see Figure 3.19).

Discussion of assumption (1.32)*: The proof of (1), (2), (5), (6)* is rather
elementary. For the “diagonal elements,”

(Ah)rT=/|V<pr|2dx= Z /|V<p,«|2daz:>07 r=1,..., M,
Q K Csupp ¢r

which already is (1). Checking the sign conditions (2) and (5) for the
“nondiagonal elements” of A, requires the analysis of two cases:
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Figure 3.19. Example of a nonconnected triangulation (I's = 09).

(i) For r = 1,...,M; and s = 1,..., M with r # s, there exist two
triangles that have the common vertices a.., as.

(ii) There exists only one triangle that has a, as well as a, as vertices.

In case (i), Corollary 3.48 can be applied, since if K, K’ just denote the two
triangles with a common edge spanned by a..,as, then 0 < o + osz; <m
and thus (Ap)rs <0, 7 # s. In case (ii), Lemma 3.47, due to the part of
the angle condition that refers to the boundary triangles, can be applied
directly yielding the assertion.

Further, since Zivil ws = 1 in , we obtain

M

M M
s=1 Q Q

s=1 s=1

This is (6)*.
The sign condition in (3) now follows from (6)* and (5), since we have

My M ~ M .
D (A)es =D (An)es— Y (An)rs 0. (3.144)
s=1 s=1 s=M;+1

=0

The difficult part of the proof of (3) consists in showing that at least one of
these inequalities (3.144) is satisfied strictly. This is equivalent to the fact
that at least one element (Ah)rs, r=1,...,My and s =M, +1,..., M,
is negative, which can be shown in terms of an indirect proof by using
Lemma 3.47 and Corollary 3.48, but is not done here in order to save
space. Simultaneously, this also proves the condition (7).

The remaining condition (4)* is proved similarly. First, due to the con-
nectivity condition, the existence of geometric connections between pairs of
nodes by polygonal lines consisting of edges is obvious. It is more difficult
to prove that under all possible connections there exists one along which
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the corresponding matrix elements do not vanish. This can be done by the
same technique of proof as used in the second part of (3), which, however,
is not presented here.

If the angle condition given above is replaced with a stronger angle con-
dition in which stretched and right angles are excluded, then the proof of
(3) and (4)* becomes trivial.

Recalling the relations

maxup(z) = max (@),
z€Q re{l,...,M}
and
max up(xr) = ma; u
vels n(@) TE{M1+1},(...,M}( nrs

which hold for linear elements, the following result can be derived from
Theorem 1.10.

Theorem 3.49 If the triangulation Ty, satisfies the angle condition and
the connectivity condition, then we have the following estimate for the finite
element solution uy, of the Poisson equation in the space of linear elements
for a nonpositive right-hand side f € L?(Q):

max up(x) < maxup(x).

€0 zel's
Finally, we make two remarks concerning the case of more general
differential equations.

If an equation with a variable scalar diffusion coefficient k& : 2 — R is con-
sidered instead of the Poisson equation, then the relation in Corollary 3.48
loses its purely geometric character. Even if the diffusion coefficient is
supposed to be elementwise constant, the data-dependent relation

- 1 /
(An)i; = —3 {kK cot af](- + kg cot af](- }

would arise, where kx and ki denote the constant restriction of k£ to the
triangles K and K’, respectively. The case of matrix-valued coefficients
K : Q — R%4 is even more problematic.

The second remark concerns differential expressions that also contain
lower-order terms, that is, convective and reactive parts. If the diffusive
term —V - (KVu) can be discretized in such a way that a maximum
principle holds, then this maximum principle is preserved if the discretiza-
tion of the other terms leads to matrices whose “diagonal elements” are
nonnegative and whose “nondiagonal elements” are nonpositive. These ma-
trix properties are much simpler than the conditions (1.32) and (1.32)*.
However, satisfying these properties causes difficulties in special cases,
e.g., for convection-dominated equations (see Chapter 9), unless additional
restrictive assumptions are made or special discretization schemes are used.
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Grid Generation and A Posteriori
Error Estimation

4.1 Grid Generation

As one of the first steps, the implementation of the finite element method
(and also of the finite volume method as described in Chapter 6) requires
a “geometric discretization” of the domain 2.

This part of a finite element program is usually included in the so-called
preprocessor (see also Section 2.4.1). In general, a finite element program
consists further of the intrinsic kernel (assembling of the finite-dimensional
system of algebraic equations, rearrangement of data (if necessary), solution
of the algebraic problem) and the postprocessor (editing of the results, ex-
traction of intermediate results, preparation for graphic output, a posteriori
error estimation).

4.1.1 Classification of Grids

Grids can be grouped according to different criteria: One criterion considers
the geometric shape of the elements (triangles, quadrilaterals, tetrahedra,
hexahedra, prisms, pyramids; possibly with curved boundaries). A further
criterion distinguishes the logical structure of the grid (structured or un-
structured grids). Beside these rough classes, in practice one can find a large
number of variants combining grids of different classes (combined grids).
A structured grid in the strict sense is characterized by a regular arrange-
ment of the grid points (nodes), that is, the connectivity pattern between
neighbouring nodes is identical everywhere in the interior of the grid. The
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only exceptions of that pattern may occur near the boundary of the domain
Q.

Typical examples of structured grids are rectangular Cartesian two- or
three-dimensional grids as they are also used within the framework of the
finite difference methods described in Chapter 1 (see, e.g., Figure 1.1).

A structured grid in the wider sense is obtained by the application of a
piecewise smooth bijective transformation to some “reference grid”, which
is a structured grid in the strict sense. Grids of this type are also called
logically structured, because only the logical structure of the connectivity
pattern is fixed in the interior of the grid. However, the edges or faces of
the geometric elements of a logically structured grid are not necessarily
straight or even.

Logically structured grids have the advantage of simple implementation,
because the pattern already defines the neighbours of a given node. Fur-
thermore, there exist efficient methods for the solution of the algebraic
system resulting from the discretization, including parallelized resolution
algorithms.

In contrast to structured grids, unstructured grids do not have a self-
repeating node pattern. Moreover, elements of different geometric type can
be combined in unstructured grids.

Unstructured grids are suitable tools for the modelling of complex ge-
ometries of 2 and for the adjustment of the grid to the numerical solution
(local grid adaptation).

In the subsequent sections, a survey of a few methods for generating
unstructured grids will be given. Methods to produce structured grids can
be found, for instance, in the books [23] or [33].

4.1.2  Generation of Simplicial Grids

A simplicial grid consists of triangles (in two dimensions) or tetrahedra (in
three dimensions). To generate simplicial grids, the following three types
of methods are widely used:

e overlay methods,
e Delaunay triangulations,

e advancing front methods.

Overlay Methods

The methods of this type start with a structured grid (the overlay grid)
that covers the whole domain. After that, this basic grid is modified near
the boundary to fit to the domain geometry. The so-called quadtree (in
two dimensions) or octree technique (in three dimensions) forms a typical
example of an overlay method, where the overlay grid is a relatively coarse
rectangular Cartesian two- or three-dimensional grid. The substantial part
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of the algorithm consists of fitting routines for those parts of the starting
grid that are located near the boundary and of simplicial subdivisions of
the obtained geometric elements. The fitting procedures perform recursive
subdivisions of the boundary rectangles or rectangular parallelepipeds in
such a way that at the end every geometric element contains at most one
geometry defining point (i.e., a vertex of Q or a point of 92, where the
type of boundary conditions changes). Finally, the so-called smoothing step,
which optimizes the grid with respect to a certain regularity criterion, can
be supplemented; see Section 4.1.4.

Typically, grids generated by overlay methods are close to structured
grids in the interior of the domain. Near the boundary, they lose the
structure. Further details can be found in the references [68] and [72].

Delaunay Triangulations

The core algorithm of these methods generates, for a given cloud of isolated
points (nodes), a triangulation of their convex hull. Therefore, a grid gen-
erator based on this principle has to include a procedure for the generation
of this point set (for example, the points resulting from an overlay method)
as well as certain fitting procedures (to cover, for example, nonconvex
domains, t00).

The Delaunay triangulation of the convex hull of a given point set in
R? is characterized by the following property (empty sphere criterion, Fig-
ure 4.1): Any open d-ball, the boundary of which contains d + 1 points
from the given set, does not contain any other points from that set. The
triangulation can be generated from the so-called Voronoi tesselation of R?
for the given point set. In two dimensions, this procedure is described in
Chapter 6, which deals with finite volume methods (Section 6.2.1). How-

Figure 4.1. Empty sphere criterion in two dimensions (d = 2).
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ever, practical algorithms ([48] or [71]) apply the empty sphere criterion
more directly.

The interesting theoretical properties of Delaunay triangulations are one
of the reasons for the “popularity” of this method. In two dimensions, the
so-called maz-min-angle property is valid: Among all triangulations of the
convex hull G of a given point set, the Delaunay triangulation maximizes
the minimal interior angle over all triangles. In the case d = 3, this nice
property does not remain true. In contrast, even badly shaped elements (the
so-called sliver elements) may occur. A further important property of a two-
dimensional Delaunay triangulation is that the sum of two angles opposite
an interior edge is not more than 7. For example, such a requirement is a
part of the angle condition formulated in Section 3.9.

Advancing Front Methods

The idea of these methods, which are also known in the literature (see, e.g.,
[50], [56], [60], [62]) as moving front methods, is to generate a triangulation
recursively from a discretization of the current boundary. The methods
start with a partition of the boundary of G := ). For d = 2, this “initial
front” is a polygonal line, whereas in d = 3 it is a triangulation of a curved
surface (the so-called “2.5-dimensional triangulation”). The method con-
sists of an iteration of the following general step (Figure 4.2): An element
of the current front (i.e., a straight-line segment or a triangle) is taken
and then, either generating a new inner point or taking an already existing
point, a new simplex K; that belongs to GH is defined. After the data of
the new simplex are saved, the simplex is deleted from 6]-,1. In this way,
a smaller domain G; with a new boundary 0G; (a new “current front”)
results. The general step is repeated until the current front is empty. Of-
ten, the grid generation process is supplemented by the so-called smoothing
step; see Section 4.1.4.

A -

Figure 4.2. Step j of the advancing front method: The new simplex Kj is deleted
from the domain G;_;.
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4.1.83  Generation of Quadrilateral and Hexahedral Grids

Grids consisting of quadrilaterals or hexahedra can also be generated by
means of overlay methods (e.g., [66]) or advancing front methods (e.g.,
[46], [47]). An interesting application of simplicial advancing front meth-
ods in the two-dimensional case is given in the paper [73]. The method is
based on the simple fact that any two triangles sharing a common edge
form a quadrilateral. Obviously, a necessary condition for the success of
the method is that the triangulation should consist of an even number of
triangles. Unfortunately, the generalization of the method to the three-
dimensional situation is difficult, because a comparatively large number of
adjacent tetrahedra should be united to form a hexahedron.

Multiblock Methods

The basic idea of these methods is to partition the domain into a small num-
ber of subdomains (“blocks”) of simple shape (quadrilaterals, hexahedra,
as well as triangles, tetrahedra, prisms, pyramids, etc.) and then generate
structured or logically structured grids in the individual subdomains (see,
e.g., [23], [33]).

In multiblock grids, special attention has to be devoted to the treatment
of common boundaries of adjacent blocks. Unless special discretization
methods such as, for example, the so-called mortar finite element method
(cf. [45]) are used in this situation, there may be a conflict between certain
compatibility conditions at the common block interfaces (to ensure, e.g.,
the continuity of the finite element functions across the interfaces) on the
one hand and the output directives of an error estimation procedure that
may advise to refine a block-internal grid locally on the other hand.

Hierarchically Structured Grids

These grids are a further, hybrid variant of structured and unstructured
grids, though not yet very widespread. Starting with a logically structured
grid, hierarchically structured grids are generated by a further logically
structured refinement of certain subdomains. As in multiblock methods,
the interfaces between blocks of different refinement degrees have to be
treated carefully.

Combined Grids

Especially in three-dimensional situations, the generation of “purely” hexa-
hedral grids may be very difficult for complicated geometries of the domain.
Therefore, the so-called combined grids that consist of hexahedral grids in
geometrically simple subdomains and tetrahedral, prismatic, pyramidal,
etc. grids in more critical subregions are used.

Chimera Grids
These grids are also called overset grids (see, e.g., [51]). In contrast to the
multiblock grids described above, here the domain is covered by a compar-
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atively small number of domains of simple shape, and then structured or
logically structured grids are generated on the individual domains. That is,
a certain overlapping of the blocks and thus of the subgrids is admitted.

4.1.4  Grid Optimization

Many grid generation codes include “smoothing algorithms” that optimize
the grid with respect to certain regularity criteria. In the so-called r-method
(relocation method) the nodes are slightly moved, keeping the logical struc-
ture (connectivities) of the grid fixed. Another approach is to improve the
grid connectivities themselves.

A typical example for r-methods is given by the so-called Laplacian
smoothing (or barycentric smoothing), where any inner grid point is moved
into the barycentre of its neighbours (see [50]). A local weighting of selected
neighbours can also be used (weighted barycentric smoothing). From a for-
mal point of view, the application of the Laplacian smoothing corresponds
to the solution of a system of linear algebraic equations that is obtained
from the equations of the arithmetic (or weighted) average of the nodes.
The matrix of this system is large but sparse. The structure of this matrix
is very similar to the one that results from a finite volume discretization
of the Poisson equation as described in Section 6.2 (see the correspond-
ing special case of (6.9)). In general, there is no need to solve this system
exactly. Typically, only one to three steps of a simple iterative solver (as
presented in Section 5.1) are performed. When the domain is almost con-
vex, Laplacian smoothing will produce good results. It is also clear that for
strongly nonconvex domains or other special situations, the method may
produce invalid grids.

Among the methods to optimize the grid connectivities, the so-called
2:1-rule and, in the two-dimensional case, the edge swap (or diagonal swap,
[59]) are well known. The 2:1-rule is used within the quadtree or octree
method to reduce the difference of the refinement levels between neighbour-
ing quadrilaterals or hexahedra to one by means of additional refinement
steps; see Figure 4.3.

In the edge swap method, a triangular grid is improved. Since any two
triangles sharing an edge form a convex quadrilateral, the method decides
which of the two diagonals of the quadrilateral optimizes a given criterion.
If the optimal diagonal does not coincide with the common edge, the other
configuration will be taken; i.e., the edge will be swapped.

Finally, it should be mentioned that there exist grid optimization
methods that delete nodes or even complete elements from the grid.

4.1.5 Grid Refinement

A typical grid refinement algorithm for a triangular grid, the so-called
red/green refinement, has previously been introduced in Section 2.4.1. A
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Figure 4.3. 2:1-rule.

further class of methods is based on bisection, that is, a triangle is divided
by the median of an edge. A method of bisection is characterized by the
number of bisections used within one refinement step (stage number of the
method of bisection) and by the criterion of how to select the edge where
the new node is to be located. A popular strategy is to take the longest of
the three edges. The general (recursive) refinement step for some triangle
K is of the following form:

(i) Find the longest edge of K and insert the median connecting the
midpoint of that edge with the opposite vertex.

(ii) If the resulting new node is not a vertex of an already existing triangle
or is not a boundary point of the domain €2, then the adjacent triangle
that shares the refined edge has to be divided, too.

Since the longest edge of the adjacent triangle need not coincide with the
common edge, the application of this scheme leads to a nonconforming
triangulation, in general. To obtain a conforming triangulation, all new
nodes resulting from substep (i) have to be detected, and then certain
closure rules have to be applied.

The red/green refinement as well as the method of bisection can be gener-
alized to the three-dimensional case. However, since the number of different
configurations is significantly larger than in the case d = 2, only a few
illustrative examples will be given.

The red/green refinement of a tetrahedron K (see Figure 4.4) yields a
partition of K into eight subtetrahedra with the following properties: All
vertices of the subtetrahedra coincide either with vertices or with edge mid-
points of K. At all the faces of K, the two-dimensional red/green refinement
scheme can be observed.

In addition to the difficulties arising in the two-dimensional situation,
the (one-stage) bisection applied to the longest edge of a tetrahedron also
yields faces that violate the conformity conditions. Therefore, the closure
rules are rather complicated, and in practice, multistage (often three-stage)
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Figure 4.4. Representation of the red/green refinement of a tetrahedron.

methods of bisection are used to circumvent these difficulties (see Figure
4.5).

Figure 4.5. Representation of the bisection of a tetrahedron.

Grid refinement may be necessary in those parts of the domain where
the weak solution of the variational equation has low regularity. The figure
of the front cover (taken from [70]) shows the domain for a density-driven
flow problem, where the inflow and the outflow pass through very small,
nearly point-sized surfaces. The refinement is the result of a grid adaptation
strategy based on a posteriori error estimators (see Section 4.2). In time-
dependent problems, where those parts of the grid in which a refinement is
needed may also vary, grid coarsening is necessary to limit the expense. A
simple grid coarsening can be achieved, for example, by cancelling former
refinement steps in a conforming way.

Exercises

4.1 For a given triangle K, the circumcentre can be computed by finding
the intersection of the perpendicular bisectors associated with two edges
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of K. This can be achieved by solving a linear system of equations with
respect to the coordinates of the circumcentre.

(a)
(b)

Give such a system.
How can the radius of the circumcircle be obtained from this solution?

4.2 Given a triangle K, denote by h; the length of edge 4, i € {1,2,3}.
Prove that the following expression equals the radius of the circumcircle
(without using the circumcentre!):

hihahs
4K

4.3 Let K, K5 be two triangles sharing an edge.

(a)

Show the equivalence of the following edge swap criteria:

Angle criterion: Select the diagonal of the so-formed quadrilateral
that maximizes the minimum of the six interior angles among the
two configurations.

Circle criterion: Choose the diagonal of the quadrilateral for which
the open circumcircle disks to the resulting triangles do not contain
any of the remaining vertices.

If a1, as denote the two interior angles that are located opposite the
common edge of the triangles K7 and Ks, respectively, then the circle
criterion states that an edge swap is to be performed if

a1 + oo > T

Prove this assertion.

The criterion in (b) is numerically expensive. Show that the following
test is equivalent:

[(a1,1 —az1)(az,1 —as 1) + (a12 — az2)(az2 — az2)]
#[(az1 —aq1)(a1,2 — as2) — (a1,1 — as1)(az2 — as2)]
< [(a21 —ag1)(a1n —aq1) + (@22 — as2)(a1,2 — aq2)]
)

*#[(az,1 —az;1)(a1,2 — azz2) — (a1,1 —az;1)(az2 — az2)].

2

s

Here a; = (a;1,a:2)7, i € {1,2,3}, denote the vertices of a triangle
ordered clockwise, and a4 = (a4,1, a4’2)T is the remaining vertex of
the quadrilateral, the position of which is tested in relation to the
circumcircle defined by a1, as, as.

Hint: Addition theorems for the sin function.
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4.2 A Posteriori Error Estimates and Grid
Adaptation

In the practical application of discretization methods to partial differential
equations, an important question is how much the computed approximative
solution uy, deviates from the weak solution u of the given problem.

Typically, a certain norm of the error u — uy is taken as a measure of
this deviation. For elliptic or parabolic differential equations of order two,
a common norm to quantify the error is the energy norm (respectively an
equivalent norm) or the L?-norm. Some practically important problems
involve the approximation of the so-called derived quantities which can be
mathematically interpreted in terms of values of certain linear functionals
of the solution w. In such a case, an estimate of the corresponding error is
also of interest.

Example 4.1

J(u) = fFo v-Vudo: flux of u through a part of the boundary I'g C 99,
J(u) = fQo udx: integral mean of u on some subdomain Qg C Q.

In the following we will consider some estimates for a norm | - || of the

error u — up, and explain the corresponding terminology. Similar statements
remain true if |ju — up|| is replaced by |J(u) — J(up)|.

The error estimates given in the previous chapters are characterized by
the fact that no information about the computed solution wu; is needed.
Estimates of this type are called a priori error estimates.

For example, consider a variational equation with a bilinear form that
satisfies (for some space V such that H}(Q) C V. .C HY(Q) and ||| := || - [|1)
the assumptions (2.42), (2.43) and use numerically piecewise linear, con-
tinuous finite elements. Then Céa’s lemma (Theorem 2.17) together with
the interpolation error estimate from Theorem 3.29 implies the estimate

M M
lu —unlly < — llu = In(w)ll, < —Ch, (4.1)

where the constant C' depends on the weak solution u of the variational
equality.
Here C' has the special form

1/2
c—c{/ > |aau|2dx} (4.2)
Q

|a]=2

with C' > 0 independent of w. Unfortunately, the structure of the bound
(4.2) does not allow an immediate numerical application of (4.1).

But even if the constant C' could be estimated and (4.1) could be used
to determine the discretization parameter h (maximum diameter of the
triangles in 73,) for a prescribed tolerance, in general this would lead to
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a grid that is too fine. This corresponds to an algebraic problem that is
too large. The reason is that the described approach determines a global
parameter, whereas the true error measure may have different magnitudes
in different regions of the domain (.

So we should aim at error estimates of type

lu —up|| < Dn (4.3)
or
Dyn < [Ju — un|| < Dan, (4.4)

where the constants D, D1, Dy > 0 do not depend on the discretization
parameters and

1/2
n= { > nfq} : (4.5)

KeTy,

Here the quantities nx should be computable using only the data —
including possibly up|x — which are known on the particular element K.
If the bounds 7 (or the terms 7ng, respectively) in (4.3) (respectively
(4.4)) depend on wuy, i.e., they can be evaluated only if u, is known, then
they are called (local) a posteriori error estimators in the wider sense.

Often the bounds also depend on the weak solution u of the variational
equality, so in fact, they cannot be evaluated immediately. In such a case
they should be replaced by computable quantities that do not depend on
in a direct way. So, if the bounds can be evaluated without knowing u but
using possibly up, then they are called (local) a posteriori error estimators
in the strict sense.

Inequalities of the form (4.3) guarantee, for a given tolerance € > 0, that
the inequality n < e implies that the error measure does not exceed € up
to a multiplicative constant. In this sense the error estimator 7 is called
reliable. Now, if the computed approximative solution wuy is sufficiently
precise in the described sense, then the computation can be finished. If uy,
is such that n > e, then the question of how to modify the discretization
in order to achieve the tolerance or, if the computer resources are nearly
exhausted, how to minimize the overshooting of 7, arises. That is, the
information given by the evaluation of the bounds has to be used to adapt
the discretization and then to perform a new run of the solution process.
A typical modification is to refine or to coarsen the grid.

Error estimators may overestimate the real error measure significantly;
thus a grid adaptation procedure based on such an error estimate gener-
ates a grid that is too fine, and consequently, the corresponding algebraic
problem is too large.

This effect can be reduced or even avoided if the error estimator satisfies
a two-sided inequality like (4.4). Then the ratio D2/D; is a measure of the
efficiency of the error estimator.
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An error estimator 7 is called asymptotically exact if for an arbitrary con-
vergent sequence of approximations {up} with ||u — up|| — 0 the following
limit is valid:

n

— — 1.
[l — un|

Usually, a posteriori error estimators are designed for a well-defined class
of boundary or initial-boundary value problems. Within a given class of
problems, the question regarding the sensitivity of the constants D in (4.3)
or Dy, Dy in (4.4), with respect to the particular data of the problem (e.g.,
coefficients, inhomogeneities, geometry of the domain, grid geometry, ... ),
arises. If this dependence of the data is not crucial, then the error estimator
is called robust within this class.

Grid Adaptation

Let us assume that the local error estimators ng composing an efficient er-
ror estimator 7 for an approximate solution u;, on some grid 7j, really reflect
the error on the element K and that this local error can be improved by a
refinement of K (e.g., following the principles of Section 4.1.5). Then the
following grid adaptation strategies can be applied until the given tolerance
¢ is reached or the computer resources are exhausted.

Equidistribution strategy: The objective of the grid adaptation (refinement
or coarsening of elements) is to get a new grid 7,"°¥ such that the
local error estimators 73" for this new grid take one and the same

value for all elements K € 7,"V; that is (cf. (4.5))

5
ey ~ W for all K € 7,°%.

Since the number of elements of the new grid enters the right-hand
side of this criterion, the strategy is an implicit method. In practical
use, it is approximated iteratively.

Cut-off strategy: Given a parameter k € (0,1), a threshold value k7 is
defined. Then the elements K with ng > xn will be refined.

Reduction strategy: Given a parameter k € (0,1), an auxiliary toler-
ance €, := k7 is defined. Then a couple of steps following the
equidistribution strategy with the tolerance ¢, are performed.

In practice, the equidistribution strategy may perform comparatively slowly
and thus may reduce the efficiency of the complete solution process. The
cut-off method does not allow grid coarsening. It is rather sensitive to the
choice of the parameter k. Among all three strategies, the reduction method
represents the best compromise.
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Design of A Posteriori Error Estimators

In the following, three basic principles of the design of a posteriori error
estimators will be described. In order to illustrate the underlying ideas and
to avoid unnecessary technical difficulties, a model problem will be treated:
Consider a diffusion-reaction equation on a polygonally bounded domain
Q C R? with homogeneous Dirichlet boundary conditions

—Au+ru = f in 0,
u = 0 on 0,

where f € L*(Q) and r € C(Q) with r(x) > 0 for all x € Q. The problem
is discretized using piecewise linear, continuous finite element functions as
described in Section 2.2.

Setting a(u,v) := [(Vu - Vo + ruv) da for u,v € V := H}(Q), we have
the following variational (weak) formulation:

Find u € V such that a(u,v) = (f,v)o for all v € V.
The corresponding finite element method reads as follows:

Find up, € V, such that a(up,vn) = (f, vn)o for all v, € V.

Residual Error Estimators
Similar to the derivation of the a priori error estimate in the proof of Céa’s
lemma (Theorem 2.17), the V-ellipticity of a (2.43) implies that

ollu —upl|? < alu—up,u—up).

Without loss of generality we may suppose u — up € V' \ {0}, hence

1 a(u— _ 1 _
fu—uply < 22t w) L, oluwne) g
o lu —wunll1 Q yev [[v]lx
We observe that the term
a(u —up,v) = a(u,v) — alup,v) = (f,v)0 — alup,v) (4.7

is the residual of the variational equation; i.e., the right-hand side of in-
equality (4.6) can be interpreted as a certain norm of the variational
residual.

In a next step, the variational residual will be split into local terms
according to the given grid, and these terms are transformed by means of
integration by parts. For arbitrary v € V, from (4.7) it follows that

a(u —up,v) = Z {/Kfvdx/K(Vuh'Verruhv)dx}

KeTy,

- Z {/K[f(Athrruh)]vdx/

v - Vupv do} .
KET, oK
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The first factor in the integrals over the elements K is the classical
elementwise residual of the differential equation:

ric(up) == [f — (—Aup + er)HK

All quantities entering rx (up) are known. In the case considered here we
even have —Awup, =0 on K, hence rg(un) = [f — ruh]‘K.

The integrals over the boundary of the elements K are further split into
a sum over the integrals along the element edges ¥ C 0K:

v-Vupvdo = /1/~Vu vdo.
/8K 4 Z E h

ECOK

Since v = 0 on 912, only the integrals along edges lying in €2 contribute to
the sum. Denoting by &, the set of all interior edges of all elements K € 7p,
and assigning a fixed unit normal vg to any of those edges, we see that in
the summation of the split boundary integrals over all K € 7}, there occur
exactly two integrals along one and the same edge E € &,. This observation
results in the relation

v-Vupvdo = /1/ -Vuplgvdo,
Z/{)K h > E[E nlE

KeTy, Ecé&y,

where, for a piecewise continuous function w : Q — R, the term
[wlg(x) = lim w(x+ ovg)— lim w(z —ovE), z€F,
o——+0 o—+0

denotes the jump of the function w across the edge E. If w is the normal
derivative of uy, in the fixed direction vg, i.e., w = vg - Vuy, then its jump
does not depend on the particular orientation of vg (see Exercise 4.6).

In summary, we have the following relation:

alu — up,v) = Z / ri (up)vde — Z /[VE-Vuh]Evda.
KeT, VK Eee, ' E

Using the error equation (2.39), we obtain for an arbitrary element vy, € V},
the fundamental identity

a(u—up,v) = alu—up,v—vp)

which is the starting point for the construction of further estimates.
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Figure 4.6. The triangular neighbourhoods A(K) (left) and A(E) (right).

First we see that the Cauchy—Schwarz inequality immediately implies

a(u—un,v—vn) < > |re(un)loxlv—vnllox
KeTy, ( 8)
+ 2 e Vunlelly gllv —onllo.e-
Ee€é&y,

To get this bound as small as possible, the function vy € V} is chosen such
that the element v € V is approximated adequately in both spaces L?(K)
and L?(E). One suggestion is the use of an interpolating function according
to (2.47). However, since V ¢ C(f), this interpolant is not defined. There-
fore other approximation procedures have to be applied. Roughly speaking,
suitable approximation principles, due to Clément [52] or Scott and Zhang
[67], are based on taking certain local integral means. However, at this place
we cannot go further into these details and refer to the cited literature. In
fact, for our purposes it is important only that such approximations exist.
Their particular design is of minor interest.

We will formulate the relevant facts as a lemma. To do so, we need some
additional notation (see Figure 4.6):

triangular neighbourhood of a triangle K :  A(K) := UK,:K,QK?&@ K’,

triangular neighbourhood of an edge E : A(E) == Uk kim0 K-

Thus A(K) counsists of the union of the supports of those nodal basis
functions that are associated with the vertices of K, whereas A(E) is formed
by the union of those nodal basis functions that are associated with the
boundary points of E. Furthermore, the length of the edge E is denoted
by hg := |E|.

Lemma 4.2 Let a regular family (Tr,) of triangulations of the domain Q
be given. Then for any v € V there exists an element Qpv € Vy, such that
for all triangles K € Ty, and all edges E € &y, the following estimates are
valid:

v —Qnrollo,.x < Chklvli k)
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[v—Qnvllo.e < CVhe|vliawm),
where the constant C' > 0 depends only on the family of triangulations.

Now, setting v, = Qpv in (4.8), the discrete Cauchy-Schwarz inequality
yields

a(u—up,v) < C Y hillrg (un)lloxvham)

KeTy,
+C Z \/hEH[VE'Vuh]EHO’E|U|1,A(E)
Ee€&y,
1/2 1/2

{ Z Iy wllrx (un ||o K} { Z |U|%,A(K)}

KeTy, KeTy,

1/2 1/2
C{ Z hEH[VE'VUh]EH;E} { Z |U|%,A(E)} .
E€Ey E€€y

A detailed investigation of the two second factors shows that we can
decompose the integrals over A(K), A(FE), according to

/A(K) K'CA(K) /K /A(E) K'CA(E) /K

This leads to a repeated summation of the integrals over the single elements
K. However, due to the regularity of the family of triangulations, the mul-
tiplicity of these summations is bounded independently of the particular
triangulation (see (3.93)). So we arrive at the estimates

Z [0} acx) < ClolT, Z 0} Agmy < Clol}

KET, Eeé&y,
Using the inequality a + b < /2(a? + b2) for a,b € R, we get
a(u — up,v)
1/2
< C{ > Wlr@n)lls e+ > hellve - vuh]EHg,E} v -
KeTy, Eeé&y,

Finally, (4.6) yields

lu—unly <Dn  with n*:= > nk
KeT,

and

1
M =Wl f —ruli i+ 5 Y hellve- Vulsly o (49)
ECOK\0Q
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Here we have taken into account that in the transformation of the edge

sum
Z ... into the double sum Z Z

Ec&y, KET, ECOK\0Q

the latter sums up every interior edge twice.

In summary, we have obtained an a posteriori error estimate of the form
(4.3). By means of refined arguments it is also possible to derive lower
bounds for ||u — upl||;. For details, we refer to the literature, for example
[35].

Error Estimation by Gradient Recovery

If we are interested in an estimate of the error u — u, € V = HZ ()
measured in the H!- or energy norm || ||, this problem can be simplified by
means of the fact that both norms are equivalent on V to the H'-seminorm

1/2
lu —uply = {/ |[Vu — Vuh|2dx} =: ||Vu — Vupllo .
Q

This is a simple consequence of the definitions and the Poincaré inequality
(see Theorem 2.18). That is, there exist constants C7,Cy > 0 independent
of h such that

Cilu —upl1 < JJu — up|| < Colu —uply (4.10)

(cf. Exercise 4.8). Consequently, Vu remains the only unknown quantity in
the error bound.

The idea of error estimation by means of gradient recovery is to replace
the unknown gradient of the weak solution u by a suitable quantity Rpup
that is computable from the approximative solution u; at moderate ex-
pense. A popular example of such a technique is the so-called Z?2estimate.
Here we will describe a simple version of it. Further applications can be
found in the original papers by Zienkiewicz and Zhu, e.g., [74].

Similar to the notation introduced in the preceding subsection, for a
given node a the set

Afa) := U K’
K’:a€dK'
denotes the triangular neighbourhood of a (see Figure 4.7). This set co-
incides with the support of the piecewise linear, continuous basis function
associated with that node.

The gradient Vuy, of a piecewise linear, continuous finite element function
up, is constant on every triangle K. This suggests that at any node a of
the triangulation 7;, we define the average Rpuyp(a) of the values of the
gradients on those triangles sharing the vertex a:

1
= Y. Vunlg|K].

Rhuh(a) : |A(a)| KCA(a)



4.2. A Posteriori Error Estimates and Grid Adaptation 193

Figure 4.7. The triangular neighbourhood A(a).

Interpolating the two components of these nodal values of R uy, separately
in V},, we get a recovery operator Ry : Vi, — Vi X Vj,.

Now a local error estimator can be defined by the simple restriction of
the quantity 7 := || Rpun — Vusllo onto a single element K

Ni = ||Rhuh — Vuh||07K.

A nice insight into the properties of this local estimator was given by
Rodriguez ([64], see also [35]), who compared it with the corresponding
residual estimator (4.9). Namely, neglecting in the residual estimator just
the residual part, i.e., setting

1
=5 > helve-Vulslly, and 7= Y ik,
ECOK\oQ KeT,

then the following result is true:

Theorem 4.3 There exist two constants c1,ca > 0 depending only on the
family of triangulations such that

cn <n < can.

The motivation for the method of gradient recovery is to be seen in the
fact that Rpuj possesses special convergence properties. Namely, under
certain assumptions the recovered gradient Rjuj converges asymptoti-
cally to Vu faster than Vuy does. In such a case Rpup is said to be a
superconvergent approximation to Vu.

If superconvergence holds, the simple decomposition

Vu — Vup, = Ryup, — Vuyp + Vu — Rpup

demonstrates that the first difference on the right-hand side represents
the asymptotically dominating, computable part of the gradient error
Vu — Vuy. In other words, if we could define, for the class of problems
under consideration, a superconvergent gradient recovery Ryuy that is com-
putable with moderate expense, then the quantities 77, and 77 defined above
may serve as a tool for a posteriori error estimation.
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Unfortunately, such superconvergence properties are valid only under
rather restrictive assumptions (especially with respect to the grid and to the
regularity of the weak solution). Thus it is difficult to obtain a full math-
ematical foundation in practice. Nevertheless, gradient recovery is often
applied and yields satisfactory results in many situations.

The following example, which is due to Repin [63], shows that a recovered
gradient does not have to reflect the real behaviour of the error.

Example 4.4 Consider the following boundary value problem for d = 1
and Q = (0,1):

—u"=f inQ, u0)=ul)-1=0.

If f is constant, the exact solution reads u(x) = x(2+ (1 —xz)f)/2. Suppose
we have found the function v, = x as an approximate solution. For an
arbitrary partition of €2 into subintervals, this function is piecewise linear
and it satisfies the boundary conditions formulated above. Now let Ry be
an arbitrary gradient recovery operator that is able to reproduce at least
constants. Since v}, = 1, we have v}, — Rpv, = 0, whereas the real error is
vp —u' = (z—4)f.

An interpretation of this effect is that the function v; does not solve the
corresponding discrete (Galerkin) equations. But this property of wy, is used
for the proof of superconvergence. This property also plays an important
role in the derivation of the residual error estimates, because the error
equation is used therein.

Dual-Weighted Residual Error Estimators

The aforementioned a posteriori error estimates have two disadvantages:
On the one hand, certain global constants, which are not known in general,
are part of the bounds. Typical examples are a1 in (4.6) and the constants
C1,Cs in the equivalence relation (4.10). On the other hand, we obtained
scaling factors like hx and v/hg simply by using a particular approximation
operator.

In the following, we will outline a method that attempts to circumvent
these drawbacks. It is especially appropriate for the estimation of errors of
functionals depending linearly on the solution.

Solet J : V — R denote a linear, continuous functional. We are interested
in an estimate of |J(u) — J(up)|. Therefore, the following auxiliary dual
problem is considered:

Find w € V such that a(v,w) = J(v) for all v € V.
Taking v = u — up, we get immediately
J(u) — J(up) = J(u — up) = a(u — up, w) .
If wy, € Vj, is an arbitrary element, the error equation (2.39) yields

J(u) — J(up) = a(u — up, w — wp) .
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Obviously, the right-hand side is of the same structure as in the derivation
of the estimate (4.8). Consequently, by using the same arguments it follows
that

[J(w) = Tl < Y N (un)lloxllw — whllo,x
KeTy,

+ Z H[’/E : V“h]EHO pllw —wnlloz-
Ee€é&y, ’

In contrast to the previous approaches, here the norms of w — wy, will not
be theoretically analyzed but numerically approximated. This can be done
by an approximation of the dual solution w. There are several (more or less
heuristic) ways to do this.

(1) Estimation of the approximation error: Here, the norms of w — wy,
are estimated as in the case of residual error estimators. Since the
result depends on the unknown H'-seminorm of w, which is equiva-
lent to the L?-norm of Vw, the finite element solution wy, € Vj, of the
auxiliary problem is used to approximate Vw. It is a great disadvan-
tage of this approach that again global constants enter in the final
estimate through the estimation of the approximation error. Further-
more, the discrete auxiliary problem is of similar complexity to that
of the original discrete problem.

(2) Higher-order discretizations of the auxiliary problem: The auxiliary
problem is solved numerically by using a method that is more accu-
rate than the original method to determine a solution in Vj,. Then
w is replaced by that solution and w; € Vj;, by an interpolant of
that solution. Unfortunately, since the discrete auxiliary problem is
of comparatively large dimension, this approach is rather expensive.

(3) Approximation by means of higher-order recovery: This method
works similarly to the approach described in the previous subsection;
w is replaced by an element that is recovered from the finite element
solution wy € Vj, of the auxiliary problem. The recovered element
approximates w with higher order in both norms than wy does. This
method exhibits two problems: On the one hand, the auxiliary prob-
lem has to be solved numerically, and on the other hand, ensuring
the corresponding superconvergence properties may be difficult.

At the end of this section we want to mention how the method could be
used to estimate certain norms of the error. In the case where the norms
are induced by particular scalar products, there is a simple, formal way.
For example, for the L?-norm we have

(U — wup,u — up)o
[[w —unllo

[l —unllo =
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Keeping u and uy, fixed, we get with the definition
J(v) (v,u —up)o

T Jlu—wallo

a linear, continuous functional J : H*(Q) — R such that J(u) — J(up) =
[[u = unllo-

The practical difficulty of this approach consists in the fact that to be
able to find the solution w of the auxiliary problem we have to know the
values of J, but they depend on the unknown element u — up. The idea
of approximating these values immediately implies two problems: There is
additional expense, and the influence of the approximation quality on the
accuracy of the obtained bounds has to be analyzed.

Exercises

4.4 Let © C R? be a bounded domain with a polygonal, Lipschitz con-
tinuous boundary and V := H}(Q). Now consider a V-elliptic, continuous
bilinear form a and a continuous linear form b. The problem

weV: a(u,v)=bv) forallveV

is discretized using piecewise linear, continuous finite elements. If E; de-
notes the support of the nodal basis functions of V}, associated with the
vertex a;, show that the abstract local error indicators

ni = sup
vEHL(E;) o]l

can be estimated by means of the solutions e; € H{(FE;) of the local
boundary value problems

e; € HYE) :  a(ei,v) = b(v) — a(up,v) for all v € HY(E;)

as follows (M and « denote the constants appearing in the continuity and
ellipticity conditions on a):

alle]| < < Mei] -

If necessary, the elements of H}(FE;) are extended by zero to the whole
domain 2.

4.5 A linear polynomial on some triangle is uniquely defined either by
its values at the vertices or by its values at the edge midpoints. For a
fixed triangulation of a polygonally bounded, simply connected domain
Q C R2, there can be defined two finite element spaces by identifying
common degrees of freedom of adjacent triangles.
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(a) Show that the dimension of the space defined by the degrees of free-
dom located at the vertices is less than the dimension of the other
space (provided that the triangulation consists of more than one
triangle).

(b) How can one explain this “loss of degrees of freedom”?

4.6 Denote by 7, a triangulation of the domain Q C R?. Show that for
a function v : Q — R that is continuously differentiable on each element
the jump [vg - Vu]|g of the normal derivative of v across an element edge
FE does not depend on the orientation of the normal vg.

4.7 Let a regular family of triangulations (75,) of a domain Q C R? be
given. Show that there exist constants C' > 0 that depend only on the
family (7,) such that

Z |U|c2),A(K) < COlvl3 for all v € L*() ,
KeT,

S liam < Clvl3 for all v € L2(Q).
Ee€&y

4.8 Let Q C RY be a bounded domain. Show that there are constants
C1,Cy > 0 such that for all v € H& (Q),

Ciloh < flolly < Calvly
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[terative Methods
for Systems of Linear Equations

We consider again the system of linear equations
Az =50 (5.1)

with nonsingular matrix A € R"™™, right-hand side b € R™, and solution
x € R™. As shown in Chapters 2 and 3, such systems of equations arise
from finite element discretizations of elliptic boundary value problems. The
matrix A is the stiffness matrix and thus sparse, as can be seen from (2.37).
A sparse matrix is vaguely a matrix with so many vanishing elements that
using this structure in the solution of (5.1) is advantageous. Taking advan-
tage of a band or hull structure was discussed in Section 2.5. More precisely,
if (5.1) represents a finite element discretization, then it is not sufficient to
know the properties of the solution method for a fixed m. It is on the con-
trary necessary to study a sequence of problems with growing dimension
m, as it appears by the refinement of a triangulation. In the strict sense we
understand by the notion sparse matrices a sequence of matrices in which
the number of nonzero elements per row is bounded independently of the
dimension. This is the case for the stiffness matrices due to (2.37) if the un-
derlying sequence of triangulations is regular in the sense of Definition 3.28,
for example. In finite element discretizations of time-dependent problems
(Chapter 7) as well as in finite volume discretizations (Chapter 6) systems
of equations of equal properties arise, so that the following considerations
can be also applied there.

The described matrix structure is best applied in iterative methods that
have the operation matrix x vector as an essential module, where either
the system matrix A or a matrix of similar structure derived from it is
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concerned. If the matrix is sparse in the strict sense, then O(m) elementary
operations are necessary. In particular, list-oriented storage schemes can be
of use, as pointed out in Section 2.5.

The effort for the approximative solution of (5.1) by an iterative method
is determined by the number of elementary operations per iteration step
and the number of iterations k£ that are necessary in order to reach the
desired relative error level € > 0, i.e., to meet the demand

Ha:(k) — a:|| < EHJU(O) — xH . (5.2)

Here (:c(k))k is the sequence of iterates for the initial value z(9), ||-|| a fixed
norm in R™, and z = A~'b the exact solution of (5.1).

For all methods to be discussed we will have linear convergence of the
kind

2% — 2| < o*[}2"* — ]| (5:3)

with a contraction number o with 0 < p < 1, which in general depends on
the dimension m. To satisfy (5.2), k iterations are thus sufficient, with

(o) /(o)

The computational effort of a method obviously depends on the size of ¢,
although this will be seen as fixed and only the dependence on the dimen-
sion m is considered: often ¢ will be omitted in the corresponding Landau’s
symbols. The methods differ therefore by their convergence behaviour, de-
scribed by the contraction number o and especially by its dependence
on m (for specific classes of matrices and boundary value problems). A
method is (asymptotically) optimal if the contraction numbers are bounded
independently of m:

olm)<o<1. (5.5)

In this case the total effort for a sparse matrix is O(m) elementary opera-
tions, as for a matrix x vector step. Of course, for a more exact comparison,
the corresponding constants, which also reflect the effort of an iteration
step, have to be exactly estimated.

While direct methods solve the system of equations (5.1) with machine
precision, provided it is solvable in a stable manner, one can freely choose
the accuracy with iterative methods. If (5.1) is generated by the discretiza-
tion of a boundary value problem, it is recommended to solve it only with
that accuracy with which (5.1) approximates the boundary value prob-
lem. Asymptotic statements hereto have, among others, been developed in
(3.89), (7.129) and give an estimation of the approximation error by Ch®,
with constants C,« > 0, whereby h is the mesh size of the corresponding
triangulation. Since the constants in these estimates are usually unknown,
the error level can be adapted only asymptotically in m, in order to gain
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an algorithmic error of equal asymptotics compared to the error of ap-
proximation. Although this contradicts the above-described point of view
of a constant error level, it does not alter anything in the comparison of
the methods: The respective effort always has to be multiplied by a fac-
tor O(Inm) if in d space dimensions m ~ h~% is valid, and the relations
between the methods compared remain the same.

Furthermore, the choice of the error level ¢ will be influenced by the
quality of the initial iterate. Generally, statements about the initial iterate
are only possible for special situations: For parabolic initial boundary value
problems (Chapter 7) and a one-step time discretization it is recommended
to use the approximation of the old time level as initial iterate. In the
case of a hierarchy of space discretizations, a nested iteration is possible
(Section 5.6), where the initial iterates will naturally result.

5.1 Linear Stationary Iterative Methods

5.1.1 General Theory

We begin with the study of the following class of affine-linear iteration
functions,

O(x) := Mx + Nb, (5.6)

with matrices M, N € R™™ to be specified later. By means of ® an iter-
ation sequence (9, 2 () is defined through a fized-point iteration

AGRRDRPSS q)(x(k)) , k=0,1,..., (57)

from an initial approximation z(?). Methods of this kind are called linear
stationary, because of their form (5.6) with a fixed iteration matriz M. The
function ® : R™ — R™ is continuous, so that in case of convergence of z(*¥)
for k — oo, for the limit x we have

x=®(xr) =Mz + Nb.

In order to achieve that the fixed-point iteration defined by (5.6) is con-
sistent with Az = b, i.e., each solution of (5.1) is also a fixed point, we
must require

A7 = MA b+ Nb for arbitrary b € R™,
ie., A7/ = MA~' + N, and thus
I=M+NA. (5.8)

On the other hand, if N is nonsingular, which will always be the case in
the following, then (5.8) also implies that a fixed point of (5.6) solves the
system of equations.
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Assuming the validity of (5.8), the fixed-point iteration for (5.6) can also
be written as

2G50 _ N (Az®) — )| (5.9)

because
Mz™® + Nb= (I - NA)z® + Nb.
If N is nonsingular, we have additionally an equivalent form given by
W(:c(kH) - :c(k)) = f(A:c(k) —b) (5.10)

with W := N—1. The correction ¥+ —z(*) for £(*) is given by the residual

g® = Az® —p

through (5.9) or (5.10), possibly by solving a system of equations. In order
to compete with the direct method, the solution of (5.10) should require
one order in m fewer elementary operations. For dense matrices no more
operations than O(m?) should be necessary as are already necessary for
the calculation of ¢(*). The same holds for sparse matrices, for example
band matrices. On the other side the method should converge, and that as
quickly as possible.

In the form (5.6) @ is Lipschitz continuous for a given norm || - || on
R™ with Lipschitz constant ||M||, where || - || is a norm on R"™ that is
consistent with the vector norm (see (A3.9)).

More precisely, for a consistent iteration the error

e®) o g ) _
with o = A7!b still denoting the exact solution, even satisfies
e = pre®)
because (5.7) and (5.8) imply
et — g+ _ g — Ma® 4 Nb— Mo — NAz = Me™® | (5.11)

The spectral radius of M, that is, the maximum of the absolute values of
the (complex) eigenvalues of M, will be denoted by o(M).
The following general convergence theorem holds:

Theorem 5.1 A fized-point iteration given by (5.6) to solve Az = b is
globally and linearly convergent if

o(M) < 1. (5.12)

This is satisfied if for a matriz norm || || on R™™ induced by a norm || - ||
on R™ we have

M| <1. (5.13)
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If the consistency condition (5.8) holds and the matriz and vector norms
applied are consistent, then the convergence is monotone in the following
sense:

e < [l ][l (5.14)

Proof: Assuming (5.12), then for e = (1 — o(M)) /2 > 0 there is a norm
Il - [|s on R™ such that the induced norm || - || s on R™™ satisfies

[Ml|s < o(M)+e<1

(see [16, p. 34]). The function ® is a contraction with respect to this special
norm on R™. Therefore, Banach’s fixed-point theorem (Theorem 8.4) can
be applied on X = (R™,| - |ls), which ensures the global convergence of
the sequence (:c(k))k to a fixed point z of ®.

If (5.13) holds, ® is a contraction even with respect to the norm || - ||
on R™ and ||M]|| is the Lipschitz constant. Finally relation (5.14) follows
from (5.11). a

In any case, we have convergence in any norm on R™, since they are all
equivalent. Linear convergence for (5.12) holds only in the generally not
available norm || - ||s with ||M]|s as contraction number.

As termination criterion for the concrete iteration methods to be
introduced, often

ls®1 =< 8119 (5.15)
is used with a control parameter § > 0, abbreviated as ||g*)|| = 0. The

connection to the desired reduction of the relative error according to (5.2)
is given by

le®] o™
< r(a) 1 5.16
@] =" ] o
where the condition number k(A) = ||A||[|A7}] is to be computed with

respect to a matrix norm that is consistent with the chosen vector norm.
Relation (5.16) follows from

@1 = [l ™ ] < A7l
lg®@1 = (4 < A [l

Therefore, for the selection of § in (5.15) we have to take into account the
behaviour of the condition number.
For the iteration matrix M, according to (5.8), we have

M=1-NA,
or according to (5.10) with nonsingular W,

M=I-WTA.
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To improve the convergence, i.e. to reduce o(M) (or || M]]), we need
N~Aland W= A,
which is in contradiction to the fast solvability of (5.10).

5.1.2  Classical Methods
The fast solvability of (5.10) (in O(m) operations) is ensured by choosing
W=D, (5.17)

where A = L + D 4 R is the unique partition of A, with a strictly lower
triangular matrix L, a strictly upper triangular matrix R, and the diagonal
matrix D:

0 -+ -+ 0 0 a12 -+ aim
az,1 0 0
L:= . 5 R:= ’
’ - 0 0 Qm—1,m
am,1 Am,m—1 0 0 0
a1
a9 0
D =
0
Amm,
(5.18)
Assume a;; # 0 for all ¢ = 1,...,m, or equivalently that D is nonsingular,

which can be achieved by row and column permutation.
The choice of (5.17) is called the method of simultaneous displacements
or Jacobi’s method. In the formulation form (5.6) we have

N = D',
My = I-NA=I-D'A=-D"Y(L+R).
Therefore, the iteration can be written as
D(x(k'-H) _ x(k)) — ,(Ax(k) _ b)
or
2* ) = D71 (— La®™ — Ra®) +b) (5.19)

or

i—1 m
(1) _ 1 (k) (k) _
x; 7a_m' fZaijxj 7-2: QijT; +b;| foralle=1,...,m.
j=1 j=i+1
On the right side in the first sum it is reasonable to use the new iterate
1) where it is already calculated. This leads us to the iteration

x(kJrl) — Dil( _ Lm(k+1) _ Rl‘(k) + b) (520)
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or
(D + L) z* D = —Rz® 4 p
or
(D + L) (a2 — ) = — (Az® —p), (5.21)

the so-called method of successive displacements or Gauss—Seidel method.
According to (5.21) we have here a consistent iteration with

W=D+1L.

Since D is nonsingular, W is nonsingular. Written in the form (5.6) the
method is defined by

N = Wl=D»+L)",
Mgs = I-NA=I—-(D+L) "A=—(D+L)""'R.

In contrast to the Jacobi iteration, the Gauss—Seidel iteration depends on
the order of the equations. However, the derivation (5.20) shows that the
number of operations per iteration step is equal,

Jacobi becomes Gauss—Seidel,

if 251 is stored on the same vector as z(*).

A sufficient convergence condition is given by the following theorem:

Theorem 5.2 Jacobi’s method and the Gauss—Seidel method converge

globally and monotonically with respect to | - || if the strict row sum
criterion
m
Z|a¢j| <lay| foralli=1,...,m (5.22)
j=1
J#

18 satisfied.

Proof : The proof here is given only for the Jacobi iteration. For the other
method see, for example, [16].

The inequality (5.22) is equivalent to ||Mj|lec < 1 because of My =
—D71 (L + R) if || - || oo is the matrix norm that is induced by | - || s, Which
means the maximum-row-sum norm (see (A3.6)). m

It can be shown that the Gauss—Seidel method converges “better” than
Jacobi’s method, as expected: Under the assumption of (5.22) for the
respective iteration matrices,

[Masllo < [IMyllo, <1

(see, for example, [16]).
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Theorem 5.3 If A is symmetric and positive definite, then the Gauss—
Seidel method converges globally. The convergence is monotone in the

energy norm || - || a, where ||z]| 4 := (27 Ax) 1/2 for z e R™.
Proof: See [16, p. 90]. ]

If the differential operator, and therefore the bilinear form, is symmet-
ric, that is, if (3.12) holds with ¢ = 0, then Theorem 5.3 can be applied.
Concerning the applicability of Theorem 5.2, even for the Poisson equation
with Dirichlet boundary conditions (1.1), (1.2) requirements for the finite
element discretization are necessary in order to satisfy at least a weaker
version of (5.22). This example then satisfies the weak row sum criterion
only in the following sense:

m

> laij| <law| foralli=1,...,m;

T

“<” holds for at least one i € {1,...,m}.

(5.23)

In the case of the finite difference method (1.7) for the rectangular do-
main or the finite element method from Section 2.2, which leads to the
same discretization matrix, (5.23) is satisfied. For a general triangulation
with linear ansatz functions, conditions for the angles of the elements must
be required (see the angle condition in Section 3.9). The condition (5.23)
is also sufficient, if A is irreducible (see Appendix A.3).

Theorem 5.4 If A satisfies the condition (5.23) and is irreducible, then
Jacobi’s method converges globally.

Proof: See [28, p. 111]. ]

The qualitative statement of convergence does not say anything about
the usefulness of Jacobi’s and the Gauss—Seidel method for finite element
discretizations. As an example we consider the Dirichlet problem for the
Poisson equation on a rectangular domain as in (1.5), with the five-point
stencil discretization introduced in Section 1.2. We restrict ourselves to
an equal number of nodes in both space directions for simplificity of the
notation. This number is denoted by n + 1, differently than in Chapter 1.
Therefore, A € R™™ according to (1.14), with m = (n — 1)? being the
number of interior nodes. The factor h=2 can be omitted by multiplying
the equation by hZ.

In the above example the eigenvalues and therefore the spectral radius
can be calculated explicitly. Due to D = 41 we have for Jacobi’s method

1 1
M=—=(A-4l)=1—--A,
4 4
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and therefore A and M have the same eigenvectors, namely,

ik il
(zk’l)..zsinusinﬂ, 1<i4,5,k,l<n-—1,
1] n n

with the eigenvalues

k l
2 (2 — cos 2 — cos —ﬂ) (5.24)
n n
for A and
1 kr 1 I
~ cos % 4 = cos =~ 2
2cosn—|—2cosn (5.25)

for M with 1 <k, [ <n — 1. This can be proven directly with the help of
trigonometric identities (see, for example, [15, p. 53]). Thus we have
(n—1)m T 72 4
———=cos—=1——+0(n . 5.26
n 2n? +0(n) (526)
With growing n the rate of convergence becomes worse. The effort to gain
an approximative solution, which means to reduce the error level below a
given threshold e, is proportional to the number of iterations x operations
for an iteration, as we discussed at the beginning of this chapter. Due to
(5.4) and (5.12) the number of necessary operations is calculated as follows:

o(M) = — cos

In(1/¢) -0(m) = hl% ) (nQ) -O(m) =In 1 O(mQ) .

—In(o(M)) €

Here the well-known expansion In(1 + z) = z + O(z?) is employed in the

determination of the leading term of —1/(In(o(M)). An analogous result
with better constants holds for the Gauss—Seidel method.

In comparison to this, the elimination or the Cholesky method requires

0 (band—width2 -m) = O(m?)

operations; i.e., they are of the same complexity. Therefore, both methods
are of use for only moderately large m.

An iterative method has a superior complexity to that of the Cholesky
method if

o(M)=1-0(n"") (5.27)

with o < 2. In the ideal case (5.5) holds; then the method needs O(m)
operations, which is asymptotically optimal.

In the following we will present a sequence of methods with increasingly
better convergence properties for systems of equations that arise from finite
element discretizations.

The simplest iteration is the Richardson method, defined by

M=I-A, ie, N=W=1I. (5.28)
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For this method we have
o(M) = max {|1 — Apax(A)], [T = Amin(A)[}

with Apax(A) and Amin(A) being the largest and smallest eigenvalues of A,
respectively. Therefore, this method is convergent for special matrices only.
In the case of a nonsingular D, the Richardson method for the transformed
system of equations

D 'Axz =D

is equivalent to Jacobi’s method.

More generally, the following can be shown: If a consistent method is
defined by M, N with I = M+ N A, and N nonsingular, then it is equivalent
to the Richardson method applied to

NAz = Nb. (5.29)
The Richardson method for (5.29) has the form

gD _ k) — _N (NAx(k) — Nb)

with N = I, which means the form (5.9), and vice versa.

Equation (5.29) can also be interpreted as a preconditioning of the system
of equations (5.1), with the aim to reduce the spectral condition number
k(A) of the system matrix, since this is essential for the convergence be-
haviour. This will be further specified in the following considerations (5.33),
(5.73). As already seen in the aforementioned examples, the matrix N A will
not be constructed explicitly, since N is in general densely occupied, even
if N1 is sparse. The evaluation of y = N Az therefore means solving the
auxiliary system of equations

N ly=Ax.
Obviously, we have the following:

Lemma 5.5 If the matrix A is symmetric and positive definite, then for
the Richardson method all eigenvalues of M are real and smaller than 1.

5.1.3 Relaxation

We continue to assume that A is symmetric and positive definite. Therefore,
divergence of the procedure can be caused only by negative eigenvalues of
I — A less than or equal to —1. In general, bad or nonconvergent iterative
methods can be improved in their convergence behaviour by relazation if
they meet certain conditions.

For an iteration method, given in the form (5.6), (5.7), the corresponding
relazation method with relaxation parameter w > 0 is defined by
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which means
M, = wM+(1-w)I, N,:=wN, (5.31)
or if the condition of consistency M = I — N A holds,
g D) = w (z® — N (42®) — b)) + (1 — w)z®
z®) — N (Ax(k) —b) .

Let us assume for the procedure (5.6) that all eigenvalues of M are real.
For the smallest one An;, and the largest one A\, We assume

)\min § )\max <1 ;

this is, for example, the case for the Richardson method. Then also the
eigenvalues of M, are real, and we conclude that

)\z(Mw) = w)\i(M) +1l1—-w=1- w(l — Az(M))
if the A;(B) are the eigenvalues of B in an arbitrary ordering. Hence
o(M.,) = max{“*W(lfAmin(M)”vH*W(l* max |}
—w(1 = A) is a straight line for a fixed w (with f(1) =1

M
p( m)A 1+ (1 - An)

1-o(1—Amax)

[ U S W ——
i
v

1-®(1~2min)
f(A) for o;<1and w,>1
Figure 5.1. Calculation of @.
For the optimal @, i.e., © with
o(Mg) = min o(M,,) ,
w>0
we therefore have, as can be seen from Figure 5.1,

1=® (1= Amax(M)) = =1+ @& (1 = Amin(M))
2

— Y= 2*)\maxuw-)*>\min(J\4-).

Hence @ > 0 and

o(Mz) =1—=a&(1 — Apax(M)) < 15



5.1. Linear Stationary Iterative Methods 209

consequently, the method converges with optimal w even in cases where
it would not converge for w = 1. But keep in mind that one needs the
eigenvalues of M to determine w.

Moreover, we have

o<1l & Adpax(M)+Amin(M) <0.

If Apin(M) # —Amax (M), that is, @ # 1, we will achieve an improvement
by relaxation:

o(Mg) < o(M).

The case of w < 1 is called underrelazation, whereas in the case of w > 1
we speak of an overerrelaxation.

In particular, for the Richardson method with the iteration matrix M =
I— A, due to Apin(M) =1 — Apax(A) and Apax(M) = 1 — Apin(A), the
optimal @ is given by

2

= () (5.32)

Hence

M) = 1= Ain(4) = LS B 1 (53

with the spectral condition number of A

)\max(A)
A= ——=
H( ) )\min(A)
(see Appendix A.3).
For large x(A) we have
k(A) -1 2

the variable of the proportionality being k(A). For the example of the
five-point stencil discretization, due to (5.24),

)\min(A) + )\max(A) =1 (2 — COS n= 171' — COS E> = 8,
n n

and thus due to (5.32),

w =

-

Hence the iteration matrix Mg = 1 f% is identical to the Jacobi iteration:
We have rediscovered Jacobi’s method.
By means of (5.33) we can estimate the contraction number, since we

know from (5.24) that
4(1fcos"7717r)_1+cos% 4n?

4(1—005%) a 1 —cos T T ope

Kk(A) =

(5.34)
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This shows the stringency of Theorem 3.45, and again we can conclude that
2
o7
Due to Theorem 3.45 the convergence behaviour seen for the model problem

is also valid in general for quasi-uniform triangulations.

o(My) = cos% ~1— (5.35)

5.1.4 SOR and Block-Iteration Methods

We assume again that A is a general nonsingular matrix. For the relaxation
of the Gauss—Seidel method we use it in the form

Dzt = — LD _ Re(®) 4

instead of the resolved form (5.20).
The relaxed method is then

Da* D) = o ( — La® ) — Ra® 4 5) + (1 — w)Dz® (5.36)
with a relaxation parameter w > 0. This is equivalent to
(D 4+ wL) 2"+ = (—wR+ (1 —w)D) 2™ 4+ wb. (5.37)
Hence
M, = (D+wL) ' (—~wR+(1—-w)D),
N, == (D+ wh) 'w.

In the application to discretizations of boundary value problems, nor-
mally we choose w > 1, which means overrelaxation. This explains the
name of the SOR method as an abbreviation of successive overrelaxation.
The effort to execute an iteration step is hardly higher than for the Gauss—
Seidel method. Although we have to add 3m operations to the evaluation
of the right side of (5.36), the forward substitution to solve the auxiliary
system of equations in (5.37) is already part of the form (5.36).

The calculation of the optimal @ here is more difficult, because M,
depends nonlinearly on w. Only for special classes of matrices can the opti-
mal © minimizing o(M,,) be calculated explicitly in dependence on (M),
the convergence rate of the (nonrelaxed) Gauss—Seidel method. Before we
sketch this, we will look at some further variants of this procedure:

The matrix N, is nonsymmetric even for symmetric A. One gets a sym-
metric N, if after one SOR step another one is performed in which the
indices are run through in reverse order m, m — 1,...,2, 1, which means
that L and R are exchanged. The two half steps

DzF+3)  — w( - La(+3) — Rp(e) b) + (1 - w)Dx*) |

Dz = (- Lak+3) — Ryp(k+1) 4 b) + (1 - w)Dzkt+2)
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make up one step of the symmetric SOR, the SSOR method for short. A
special case is the symmetric Gauss—Seidel method for w = 1.

We write down the procedure for symmetric A, i.e., R = L7 in the form
(5.6), in which the symmetry of N becomes obvious:

M = (D+wLl®) ' [(1-w)D—-wL](D+wL) ™ [(1—w)D —wL"]
N = w2-w)(D+wLl") ' D(D+wl)™". (5.38)

The effort for SSOR is only slightly higher than for SOR if the vectors
already calculated in the half steps are stored and used again, as for example
La(k+1/2)

Other variants of these procedures are created if the procedures are not
applied to the matrix itself but to a block partitioning

A= (Aij)i,j with Aij € R™mi , ,j=1,...,p, (539)

with Y°7_, m; = m. As an example we get the block-Jacobi method, which
is analogous to (5.19) and has the form

i—1 P
G =t | =20 Aug = 0 Aug | foralli=1 .
j=1 j=i+1l

(5.40)
Here z = (£1,...,&,)T and b= (B4, ...,8,)T, respectively, are correspond-

ing partitions of the vectors. By exchanging §](.k) with §§k+1) in the first
sum one gets the block-Gauss—Seidel method and then in the same way
the relaxed variants. The iteration (5.40) includes p vector equations. For
each of them we have to solve a system of equations with system matrix
A;;. To get an advantage compared to the pointwise method a much lower
effort should be necessary than for the solution of the total system. This
can require — if at all possible — a rearranging of the variables and equa-
tions. The necessary permutations will not be noted explicitly here. Such
methods are applied in finite difference methods or other methods with
structured grids (see Section 4.1) if an ordering of nodes is possible such
that the matrices A;; are diagonal or tridiagonal and therefore the systems
of equations are solvable with O(m;) operations.

As an example we again discuss the five-point stencil discretization of
the Poisson equation on a square with n + 1 nodes per space dimension.
The matrix A then has the form (1.14) with [ = m = n. If the nodes are
numbered rowwise and we choose one block for each line, which means
p=n—1and m; =n—1forall i =1,...,p, then the matrices A;; are
tridiagonal. On the other hand, if one chooses a partition of the indices of
the nodes in subsets .S; such that a node with index in S; has neighbours
only in other index sets, then for such a selection and arbitrary ordering
within the index sets the matrices A;; become diagonal. Neighbours here
denote the nodes within a difference stencil or more generally, those nodes
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— OOk = OFOO

OR Rk OOoOHOOO
\
R R, O, OO OO

\
A m OO0 OO O

m = 3 X 3: rowwise ordering.

4000 0|-1-1 0 0
00400 0|-10-10
0040 0-1-1-1-1
0004 0] 0-1 0-1
0000 4] 0 0-1-1
~1-1-1 0 0] 4 0 0 0
~1 0-1-1 0] 0 4 0 0
0-1-1 0-1| 0 0 4 0
0 0-1—-1-1| 0 0 0 4

red-black ordering:
red: node 1, 3, 5, 7, 9 from rowwise ordering
black: node 2, 4, 6, 8 from rowwise ordering

Figure 5.2. Comparison of orderings.

that contribute to the corresponding row of the discretization matrix. In
the example of the five-point stencil, starting with rowwise numbering, one
can combine all odd indices to a block S; (the “red nodes”) and all even
indices to a block Sy (the “black” nodes). Here we have p = 2. We call this
a red-black ordering (see Figure 5.2). If two “colours” are not sufficient, one

can choose p > 2.

We return to the SOR method and its convergence: In the following the
iteration matrix will be denoted by Msor(.) with the relaxation parameter
w. Likewise, Mj and Mcag are the iteration matrices of Jacobi’s and the
Gauss—Seidel method, respectively. General propositions are summarized

in the following theorem:
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Theorem 5.6 (of Kahan; Ostrowski and Reich)

(1) 0 (Msorw)) = |1 —w| for w #0.
(2) If A is symmetric and positive definite, then

0 (MSOR(Q,)) <1 forwe(0,2).
Proof: See [16, pp. 91 f]. ]

Therefore, we use only w € (0,2). For a useful procedure we need more
information about the optimal relaxation parameter wqpt, given by

0 (MsoR(wep)) = Ogi}ngQ (Msor(w)) >

and about the size of the contraction number. This is possible only if the
ordering of equations and unknowns has certain properties:

Definition 5.7 A matrix A € R™™ is consistently ordered if for the
partition (5.18), D is nonsingular and

Cla):=a'D'L+aD™'R
has eigenvalues independent of « for a € C\{0}.

There is a connection to the possibility of a multi-colour ordering, because
a matrix in the block form (5.39) is consistently ordered if it is block-
tridiagonal (i.e., A;; = 0 for |[i — j| > 1) and the diagonal blocks A;; are
nonsingular diagonal matrices (see [28, pp. 114 {.]).

In the case of a consistently ordered matrix one can prove a relation
between the eigenvalues of My, Mgs, and MgsoRr(w)- From this we can see
how much faster the Gauss—Seidel method converges than Jacobi’s method:

Theorem 5.8 If A is consistently ordered, then
o(M;3)? = o(Mgs) -

Proof: For a special case see Remark 5.5.2 in [16]. m

Due to (5.4) we can expect a halving of the number of iteration steps,
but this does not change the asymptotic statement (5.27).

Finally, in the case that Jacobi’s method converges the following theorem
holds:

Theorem 5.9 Let A be consistently ordered with nonsingular diagonal ma-
triz D, the eigenvalues of M being real and 8 := o(My) < 1. Then we have
for the SOR method:

(1) wopt = W ;
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1 292\ 1/2
17w+5w262+wﬂ <1w+wf )
(2) o(Msor(w)) = Jor 0 < w < wopt
w—1 for wopt <w < 2,
62

(3) 0 (MsOR(wep)) =

(141 =22

Proof: See [18, p. 216].

p(Msor@))

0 1 @ opt 2 ®

Figure 5.3. Dependence of o (MSOR(W)) on w.

If o(Mj3) is known for Jacobi’s method, then wept, can be calculated. This
is the case in the example of the five-point stencil discretization on a square:
From (5.26) and Theorem 5.9 it follows that

T 2 4
o(Mgs) = (COS ﬁ) =1- 2 +0(n™%);
hence
Wopt = 2/ (1+Sin %) s
0 (MSOR(wep)) = Wopt —1=1-2F+0(n"?).

Therefore, the optimal SOR method has a lower complexity than all
methods described up to now.

Correspondingly, the number of operations to reach the relative er-
ror level € > 0 is reduced to In % O(m?/?) operations in comparison to
In % O(m?) operations for the previous procedures.

Table 5.1 gives an impression of the convergence for the model problem.
It displays the theoretically to be expected values for the numbers of iter-
ations of the Gauss—Seidel method (mgg), as well as for the SOR method
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n mas MSOR
8 43 8
16 178 17
32 715 35
64 2865 70
128 | 11466 140
256 | 45867 281

Table 5.1. Gauss—Seidel and optimal SOR method for the model problem.

with optimal relaxation parameter (mgor). Here we use the very moderate
termination criterion € = 1072 measured in the Euclidean norm.

The optimal SOR method is superior, even if we take into account the
almost doubled effort per iteration step. But generally, wopt is not known
explicitly. Figure 5.3 shows that it is probably better to overestimate wqpt
instead of underestimating. More generally, one can try to improve the
relaxation parameter during the iteration:

If o(Mj) is a simple eigenvalue, then this also holds true for the spectral
radius o(Mgsog(w))- The spectral radius can thus be approximated by the
power method on the basis of the iterates. By Theorem 5.9 (3) one can
approximate o(Mj), and by Theorem 5.9 (1) then also wop.

This basic principle can be extended to an algorithm (see, for example,
[18, Section 9.5]), but the upcoming overall procedure is no longer a linear
stationary method.

5.1.5  FEaxtrapolation Methods

Another possibility for an extension of the linear stationary methods, re-
lated to the adaption of the relaxation parameter, is the following: Starting
with a linear stationary basic iteration #¢*1 := & (50’“) we define a new

iteration by

URRE wkq)(:c(k)) + (1 — wp)z® (5.41)
with extrapolation factors wy to be chosen. A generalization of this defi-
nition is to start with the iterates of the basic iteration #(®, (1) .. .. The

iterates of the new method are to be determined by

k
20 = S 70,
=0

with ag; defined by a polynomial p, € Pg, with the property pi(t) =

Z?:o ag; tJ and pg(1) = 1. For an appropriate definition of such extrapola-
tion or semi-iterative methods we need to know the spectrum of the basic
iteration matrix M, since the error e®®) = z(¥) — z satisfies

e = pp(M)e®
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where M is the iteration matrix of the basic iteration. This matrix should
be normal, for example, such that

lpx(M) ]2 = o(pr(M))

holds. Then we have the obvious estimation
}e(k)|2 < |pk(M)e(O)|2 < Hpk(M)||2|e(0)}2 < Q(pk(M))}e(O)}Q' (5.42)
If the method is to be defined in such a way that
o(p(M)) = max {|pr(\)| | A € o(M)}

is minimized by choosing py, then the knowledge of the spectrum o (M) is
necessary. Generally, instead of this, we assume that suitable supersets are
known: If o(M) is real and

a<A<b forall Aeo(M),
then, due to

®)] < A e©
e max e
€O, < max O] [,
it makes sense to determine the polynomials p; as a solution of the
minimization problem on [a, b],

)\Iél[a}%)] [pk(A)] — min  for all pe P, with p(1)=1. (5.43)
a,
In the following sections we will introduce methods with an analogous
convergence behaviour, without control parameters necessary for their
definition.

For further information on semi-iterative methods see, for example, [16,
Chapter 7].

Exercises

5.1 Investigate Jacobi’s method and the Gauss—Seidel method for solving
the linear system of equations Az = b with respect to their convergence if
we have the following system matrices:

1 2 -2 L[ 2 -1
a) A=|111 |, ) A=g| 2 2 2
2 2 1 -1 -1 2

5.2 Prove the consistency of the SOR method.

5.3 Prove Theorem 5.6, (1).
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5.2 Gradient and Conjugate Gradient Methods

In this section let A € R™™ be symmetric and positive definite. Then the
system of equations Ax = b is equivalent to the problem

1
Minimize f(z) := EchA:c —bTx forx € R™, (5.44)
since for such a functional the minima and stationary points coincide, where
a stationary point is an x satisfying
0=Vf(z)=Az—b. (5.45)

In contrast to the notation x - y for the “short” space vectors z,y € R? we
write here the Euclidean scalar product as matrix product x7y.

For the finite element discretization this corresponds to the equivalence
of the Galerkin method (2.23) with the Ritz method (2.24) if A is the
stiffness matrix and b the load vector (see (2.34) and (2.35)). More generally,
Lemma 2.3 implies the equivalence of (5.44) and (5.45), if as bilinear form
the so-called energy scalar product

(x,y)a = 2T Ay (5.46)

is chosen.
A general iterative method to solve (5.44) has the following structure:

Define a search direction d® .

Minimize a— f(a) := f(:c(k) + ad(k)) (5.47)
exactly or approximately, with the solution ay .

Define 2D = ) 4 g, dR) (5.48)

If f is defined as in (5.44), the exact a can be computed from the condition
/(o) =0 and

Fa) = V® + ad®)Tq®

as
BT k)
p=—L (5.49)
d®T Aqk)
where
9" = Az® — b=V f(2W). (5.50)

The error of the kth iterate is denoted by e(*):
e®) = g0 _

Some relations that are valid in this general fromework are the following:
Due to the one-dimensional minimization of f, we have

g+ g — (5.51)
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and from (5.50) we can conclude immediately that
Ae®) = gk), e = M 4 apd® (5.52)
g =g 4 0 AdP). (5.53)
We consider the energy norm
1/2
|24 = (27 Az)" (5.54)

induced by the energy scalar product. For a finite element stiffness matrix
A with a bilinear form a we have the correspondence

1/2

[e]la = a(u,u)”" = [[ulla

for u =" x;p; if the p; are the underlying basis functions. Comparing

the solution = A~'b with an arbitrary y € R™ leads to

Flo) = 1)+ 3y~ 2l (55)

so that condition (5.44) also minimizes the distance to = in || - ||4. The
energy norm will therefore have a special importance. Measured in the
energy norm we have, due to (5.52),

2 T T _
[e® |2 = 0T g = g®T 4=1g0)
and therefore due to (5.52) and (5.51),

He(’““)Hi — DT (k)

g

The vector —V f (:c(k)) in (¥ points in the direction of the locally steepest
descent, which motivates the gradient method, i.e.,

dR) = gk (5.56)
and thus
AT g6
= . (5.57)
d®T Aqk)

The above identities imply for the gradient method

. . FIORFI
||e(k+1)|| _ (g(k) +akAd(k)) e® = le®|% (1 — oy T T A-1g®)

and thus by means of the definition of ay, from (5.57)
(d<k>Td<k>)2

Cd®T 4qk) g T g1 4k

2 2
o= =2y = [l =2l {1

With the inequality of Kantorovich (see, for example, [28, p. 132]),

2l AvaT Az <1H1/2 1 1/2>2

+ oK
(a:Tx)2 2 2
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where k := k(A) is the spectral condition number, and the relation

4 —1)?
1-— 2:(a )2 fora >0,
(al/2 + a=1/2) (a+1)

we obtain the following theorem:

Theorem 5.10 For the gradient method we have

k
o~ ], < (557) 1 =l (5.58)

This is the same estimate as for the optimally relaxed Richardson method
(with the sharper estimate |[|[M]a < ”—_& instead of o(M) < Z—:) The
essential difference lies in the fact that this is possible without knowledge
of the spectrum of A.

Nevertheless, for finite element discretizations we have the same poor

convergence rate as for Jacobi’s or similar methods. The reason for this
deficiency lies in the fact that due to (5.51), we have g(’”l)Tg(k) =0, but

in general not g(k+2)Tg(k) = 0. On the contrary, these search directions are
very often almost parallel, as can be seen from Figure 5.4.

= f = constant

U VU PO PO PN /(contourlm&s)

Figure 5.4. Zigzag behaviour of the gradient method.

The reason for this problem is the fact that for large s the search di-
rections ¢ and ¢t can be almost parallel with respect to the scalar
products (-,-)4 (see Exercise 5.4), but with respect to || - |4 the distance
to the solution will be minimized (see (5.55)).

The search directions d*) should be orthogonal with respect to (-, D>
which we call conjugate.

Definition 5.11 Vectors d(®), ..., d® € R™ are conjugate if they satisfy
(dD,d9)) =0 fori,j=0,...,0,i#j.

If the search directions of a method defined according to (5.48), (5.49) are
chosen as conjugate, it is called a method of conjugate directions.

Let d@,...,d™=1 be conjugate directions. Then they are also linearly
independent and thus form a basis in which the solution x of (5.1) can be
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represented, say by the coefficients 7 :

m—1

T = Z A d®) .

k=0
Since the d®) are conjugate and Az = b holds, we have
d® "
T dwT Aqee

and the 4 can be calculated without knowledge of z. If the d*) would by
given a priori, for example by orthogonalization of a basis with respect to
(-,-) 4, then x would be determined by (5.59).

If we apply (5.59) to determine the coefficients for x — 2 in the form

m—1
v—2® = ¥ pd®
k=0

Vi (5.59)

which means replacing b with b — Az(®) in (5.59), then we get
g@7T k)

Ca®T Aqk)
For the kth iterate we have, according to (5.48);

V& =

k—1

2 =20 13" 4,
i=0
and therefore (see (5.50))
k—1
0¥ = 6 £ 3" 0Ad)
i=0

For a method of conjugate directions this implies
g®Tq®) — T gk)

and therefore

g T g
k= — =0,
T T AT g
which means that 2 = (™). A method of conjugate directions therefore
is exact after at most m steps. Under certain conditions such a method
may terminate before reaching this step number with ¢*) = 0 and the
final iterate (¥ = z. If m is very large, this exactness of a method of
conjugate directions is less important than the fact that the iterates can
be interpreted as the solution of a minimization problem approximating
(5.44):
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Theorem 5.12 The iterates z¥) that are determined by a method of con-
Jugate directions minimize the functional f from (5.44) as well as the error
Hx(k) — x”A on 2 + Ki(A; g©), where

Kk(A;g(O)) := span {d(o), cee d(k_l)} .
This is due to

d®TAD =0 fori=0,... k—1. (5.60)

Proof: It is sufficent to prove (5.60). Due to the one-dimensional mini-
mization this holds for £ = 1 and for i = k—1 (see (5.51) applied to k—1).
To conclude the assertion for k from its knowledge for k — 1, we note that
(5.53) implies, for 0 < i < k — 1,

d(z‘)T(g(k) — gDy = ap_1d®" AdRD =0 5

In the method of conjugate gradients, or CG method, the d®) are
determined during the iteration by the ansatz

d*HD = gkt 4 g q®) (5.61)
Then we have to clarify whether
k) )\ _ -
(d® dD) =0 fork>i
can be obtained. The necessary requirement <d(k+1),d(k)>A =0 leads to
— <g(k+1)7 d(k)>A + B <d(’“), d(k)>A =0 —
k+1)T 4 qk)
= % (5.62)
d®) Aqk)

In applying the method it is recommended not to calculate g(*+1) directly
but to use (5.53) instead, because Ad¥) is already necessary to determine
ay and O.

The following equivalences hold:

Theorem 5.13 In case the CG method does not terminate prematurely

with =1 being the solution of (5.1), then we have for 1 <k <m
Ki(A;9'9) = span {g(9, Ag©), ... AF=1g(0} (5.63)
= span {g(o),...,g(kfl)} . .

Furthermore,

g™ g = 0 for i=0,....k—1, and

5.64
dim K1, (A4; ) = k. (5.64)
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The space Kj(4;9®) = span{g®, Ag®, ... AF=1¢@} is called the
Krylov (sub)space of dimension k of A with respect to g(%).

Proof: The identities (5.64) are immediate consequences of (5.63) and
Theorem 5.12. The proof of (5.63) is given by induction:

For k£ = 1 the assertion is trivial. Let us assume that for k > 1 the identity
(5.63) holds and therefore also (5.64) does. Due to (5.53) (applied to k —1)
it follows that

g e A[Kk (A;g(o))} C span {g(o), cee Akg(o)}
and thus
span {g©,..., g} = span {g©, ..., A"gV}

because the left space is contained in the right one and the dimension of
the left subspace is maximal (= k + 1) due to (5.64) and g # 0 for all
1 =0,...,k. The identity

span {d(o), o ,d(k)} = span {9(0), . ag(k)}

follows from the induction hypothesis and (5.61). ad

The number of operations per iteration can be reduced to one matrix
vector, two scalar products, and three SAXPY operations, if the following
equivalent terms are used:

g7 k) gD T gk+1)
ap=—m——, =" (5.65)
d®)* Adk) gk g(k)
Here a SAXPY operation is of the form

2=+ oy

for vectors z,y, z and a scalar a.
The identities (5.65) can be seen as follows: Concerning oy, we note that
because of (5.51) and (5.61),

T T _ T
_g(k) d® = _g(k) (_ g(k) + 6k_1d(k 1)) — g(k) g(k) 7

and concerning f, because of (5.53), (5.64), (5.62), and the identity (5.49)
for oy, we have

T T T T
gD gD = gD T (109 4 o AG0) = g DT 4GP = g T g®)

and hence the assumption. The algorithm is summarized in Table 5.2.
Indeed, the algorithm defines conjugate directions:

Theorem 5.14 If g¢*=1 £ 0, then d*~Y #£ 0 and the d, ..., d*=1 are
conjugate.
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Choose any z(°) € R™ and calculate
d9 = —gO =p_— 42O
For k=0,1,... put

d®) " Adk)
2D = )y d®)
P N C P
g(k+1)Tg(k+1)
o= T
AR+ — —g(k'H) + Bkd(k) ,

until the termination criterion (“|gt**1 |y = 0”) is fulfilled.

Table 5.2. CG method.

Proof: The proof is done by induction:
The case k = 1 is clear. Assume that d(@,... d*=1 are all nonzero and
conjugate. Thus according to Theorem 5.12 and Theorem 5.13 the identities
(5.60)—(5.64) hold up to index k. Let us first prove that d(®) # 0:

Due to g + d® = gp_1d* D € Kj(A;¢g®) the assertion d¥) =
would imply directly ¢ € Kj(A;¢(®). But relations (5.63) and (5.64
imply for the index k,

0
)

g(k)Ta; =0 forallxe Kk(A§g(O))7

which contradicts g(¥) 7é 0.

In order to prove d* T AdD =0 for i = 0,...,k—1, according to (5.62)
we have to prove only the case : < k — 2. We have

dDT 4d® — _q®T 4g® 4 g, d®T 4qk-1)

The first term disappears due to Ad®) € A (Kk,l (A; g(O))) C Ky (A; g(o)),
which means that Ad®) € span {d®,...,d*=Y}, and (5.60). The second
term disappears because of the induction hypothesis. O

Methods that aim at minimizing the error or residual on Kj (A; g(O))
with respect to a norm | - || are called Krylov subspace methods. Here the
error will be minimized in the energy norm || - || = || - || 4 according to (5.55)
and Theorem 5.12.

Due to the representation of the Krylov space in Theorem 5.13 the
elements y € z(0 + K (A;g(o)) are exactly the vectors of the form

y =20 +¢(A)g?, for any ¢ € Pr_, (for the notation g(A) see Appendix
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A.3). Hence it follows that
y—a=a"—z+q(A)A? —2) = p(4) (2" ~2),

with p(z) = 1+ q(2)z, i.e., p € P and p(0) = 1. On the other hand,
any such polynomial can be represented in the given form (define ¢ by
q(z) = (p(z) — 1) /z). Thus Theorem 5.12 implies

2 —a]| , < lly — 2]l = [|[p(4) (= ~ )], (5.66)
for any p € Py, with p(0) = 1.
Let z1,..., 2, be an orthonormal basis of eigenvectors, that is,
Azj = Njz; and zlz; =0, fori,j=1,...,m. (5.67)

Then we have 2(0) — z = E;n:l c;z; for certain ¢; € R, and hence

p(A) (e —z) =Y p () ¢z
=1
and therefore
m
||x(0) — xHi = (x(o) — ) 2 — Z Cicjz; Azj Z)\j |cj|2
ig=1 i=1

and analogously

2
Ip(a) (=0 —2) |, = ZA O < (g 1) [ = o

(5.68)
Relations (5.66), (5.68) imply the following theorem:

Theorem 5.15 For the CG method and any p € Py satisfying p(0) = 1,
we have

o0 ] < s, O 2

with the eigenvalues A1, ..., Ay of A.

If the eigenvalues of A are not known, but their location is, i.e., if one
knows a,b € R such that

a<A,... An <b, (5.69)
then only the following weaker estimate can be used:
k 0
||x( ) — xHA < )\rgﬁﬁ} Ip(A)] Ha:( ) — a:||A. (5.70)

Therefore, we have to find p € P, with p(0) = 1 that minimizes
max {|p(A)| | A € [a,0]}.
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This approximation problem in the maximum norm appeared already in
(5.43), because there is a bijection between the sets {p € Py | p(1) =1}
and {p € P, ‘ p(0) =1} through

p=p , pt):=pl-1). (5.71)

Its solution can represented by using the Chebyshev polynomials of the
first kind (see, for example, [38, p. 302]). They are recursively defined by

To(z) =1, Ti(z)=xz, Tiyi(x):=22Tk(x) —Tr-1(z) forxz eR
and have the representation
Ty (x) = cos(k arccos(x))
for |z| < 1. This immediately implies
|Te(z)| <1 for |z| <1.

A further representation, valid for z € R, is

1 1/2\* 1/2\ %
Ti(z) = 3 ((x + (2% 1) ) + (x —(2* = 1) ) . (5.72)
The optimal polynomial in (5.70) is then defined by

Tk ((b+a—22)/(b—a))
P& = T G a6 — )

This implies the following result:

for zeR.

Theorem 5.16 Let k be the spectral condition number of A and assume
k> 1. Then

172 _ 1\ *
ol < ——so® —ally < 2 (57 )o@ =l (573
T (H_Jri) w

K—

Proof: Choose a as the smallest eigenvalue Api, and b as the largest one
)\max-

The first inequality follows immediately from (5.70) and x = b/a. For
the second inequality note that due to (k +1)/(k—1)=14+2/(k—1) =:
1+2n>1, (5.72) implies

K41 1 2 1/2\F
> - _
Tk(ﬂl) > S (1+2m+(@+2m? 1))
1 1/2\*
- 5(1+2n+2(n(n+1)) ) :
Finally,
5 1/2 1/2
n+1 +n
1+ +2mm+1)" = (02 +m+1)"?) :En+1;1/2—n1/2
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1+1/m?+1
(1+1/m)? =1’
which concludes the proof because of 1 4+ 1/n = k. |

For large x we have again

RZ-1 2
KU/241 7 5 g2

Compared with (5.58), x has been improved to x!/2.
From (5.4) and (5.34) the complexity of the five-point stencil discretiza-
tion of the Poisson equation on the square results in

In (é) O(/@l/Q) O(m) = O(n)O(m) = O(m3/2) .

This is the same behaviour as that of the SOR method with optimal re-
laxation parameter. The advantage of the above method lies in the fact
that the determination of parameters is not necessary for applying the
CG method. For quasi-uniform triangulations, Theorem 3.45 implies an
analogous general statement.

A relation to the semi-iterative methods follows from (5.71): The estimate
(5.66) can also be expressed as

||e(k)HA < ||p(I - A)e(O)HA (5.74)

for any p € Py, with p(1) = 1.

This is the same estimate as (5.42) for the Richardson iteration (5.28) as
basis method, with the Euclidean norm |- |5 replaced by the energy norm |-
|la. While the semi-iterative methods are defined by minimization of upper
bounds in (5.42), the CG method is optimal in the sense of (5.74), without
knowledge of the spectrum o(I — A). In this manner the CG method can
be seen as an (optimal) acceleration method for the Richardson iteration.

Exercises

5.4 Let A € R™™ be a symmetric positive definite matrix.

(a) Show that for z,y with 27y = 0 we have

<£C, y>A < k—1
lzllallylla = r+1"
where x denotes the spectral condition number of A.

Hint: Represent x,y in terms of an orthonormal basis consisting of
eigenvectors of A.
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(b) Show using the example m = 2 that this estimate is sharp. To this
end, look for a positive definite symmetric matrix A € R*? as well
as vectors x,y € R? with 27y = 0 and

<$ay>A k—1

lzllallyla  m+1°

5.5 Prove that the computation of the conjugate direction in the CG
method in the general step k > 2 is equivalent to the three-term recursion
formula

d™Y = [ag A+ (B + 1)1 dP — B_1d*D.

5.6 Let A € R"™™ be a symmetric positive definite matrix with spectral
condition number k. Suppose that the spectrum o(A) of the matrix A
satisfies ag € o(A) as well as 0(A) \ {ao} C [a,b] with 0 < ag < a < b.

Show that this yields the following convergence estimate for the CG

method:
k—1
b— k—1
o) — ol <2200 (V2 2 .,
ap VE+1

where & :=b/a (< k).

5.3 Preconditioned Conjugate Gradient Method

Due to Theorem 5.16, x(A) should be small or only weakly growing in m,
which is not true for a finite element stiffness matrix.

The technique of preconditioning is used — as already discussed in Sec-
tion 5.1 — to transform the system of equations in such a way that the
condition number of the system matrix is reduced without increasing the
effort in the evaluation of the matrix vector product too much.

In a preconditioning from the left the system of equations is transformed
to

Cl'Az=C""

with a preconditioner C; in a preconditioning from the right it is transformed
to

AC™ly =0,

such that x = C~1y is the solution of (5.1). Since the matrices are generally
sparse, this always has to be interpreted as a solution of the system of
equations C'z = y.

If A is symmetric and positive definite, then this property is generally
violated by the transformed matrix for both variants, even for a symmetric
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positive definite C. We assume for a moment to have a decomposition of
C with a nonsingular matrix W as

c=wwt.
Then Az = b can be transformed to W TAW-TW Ty = W~1b, ie., to
By=c with B=W 1AW T c=W'b. (5.75)

The matrix B is symmetric and positive definite. The solution z is then
given by x = W~Ty. This procedure is called split preconditioning.

Dueto W TBWT =C~'Aand WBW ! = AC~!, B,C~'A and AC™!
have the same eigenvalues, and therefore also the same spectral condition
number k. Therefore, C' should be “close” to A in order to reduce the
condition number. The CG method, applied to (5.75) and then back trans-
formed, leads to the preconditioned conjugate gradient method (PCG):
The terms of the CG method applied to (5.75) will all be marked by 7,
with the exception of oy and F.

Due to the back transformation

r=WTz
the algorithm has the search direction
AR .— =T 4%
for the transformed iterate
e® = wTzk) (5.76)
The gradient ¢(*) of (5.44) in z(®) is given by
g® = Az®) —p = W(Bi:(k) —c) = wgh
and hence
gF ) = ¢ Lo, WBA® = ¢ 4 ap Ad*) |

so that this formula remains unchanged compared with the CG method
with a new interpretation of the search direction. The search directions are
updated by

d(k+1) _ 7W7walg(k+1) + Bkd(k) _ 7cflg(k+1) + Bkd(k) ,

so that in each iteration step additionally the system of equations
Ch+1 = g(*+1) has to be solved.
Finally, we have

~ (k)T ~ T _,_ T
g Gk = g7 om1gk) = ()7 R (k)
and
A" Bd® = g gq*)
so that the algorithm takes the form of Table 5.3.
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Choose any z(°) € R™ and calculate
g = Az _p, 4O .= _pO .= 14O
For k=0,1,... put

g® T Rk

ap = ——,

g AT Aq()
2D — ) g d®
gD = g®) g, AdR)
pl+1) C—lg(k+1) ,

5 gD T k1)

T T TR
dED = _ptD 4o g qtk)

up to the termination criterion (¢|g(*+V], = 07) .

Table 5.3. PCG method.

The solution of the additional systems of equations for sparse matrices
should have the complexity O(m), in order not to worsen the complexity
for an iteration. It is not necessary to know a decomposition C' = WW T,

Alternatively, the PCG method can be established by noting that C~1A
is self-adjoint and positive definite with respect to the energy scalar product
(-, )¢ defined by C:

(C Az, y)o = (C Az) " Oy = 2T Ay = 27 C(C" Ay) = (2, C~* Ay)e

and hence also (C~'Ax,z)c > 0 for z # 0.

Choosing the CG method for (5.75) with respect to (-,-)c, we obtain
precisely the above method.

In case the termination criterion “|g(k+1) |2 = 07 is used for the iteration,
the scalar product must be additionally calculated. Alternatively, we may
use “ g(k“)Th(k‘H)‘ = 0”. Then the residual is measured in the norm
- flo-r.

Following the reasoning at the end of Section 5.2, the PCG method can be
interpreted as an acceleration of a linear stationary method with iteration
matrix

M=I-C"1A.

For a consistent method, we have N = C~! or, in the formulation (5.10),
W = (. This observation can be extended in such a way that the CG
method can be used for the acceleration of iteration methods, for example
also for the multigrid method, which will be introduced in Section 5.5. Due
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to the deduction of the preconditioned CG method and the identity
Hm(k) —af, = Hj(k) — |,

which results from the transformation (5.76), the approximation properties
for the CG method also hold for the PCG method if the spectral condition
number x(A) is replaced by x(B) = k(C~!A). Therefore,

k12 Z1\"

with kK = k(C~LA).

There is a close relation between those preconditioning matrices C, which
keep x(C~1A) small, and well-convergent linear stationary iteration meth-
ods with N = C71 (and M = I — C~!A) if N is symmetric and positive
definite. Indeed,

K(CTTA) < (14 o(M))/(1 — o(M))

if the method defined by M and N is convergent and N is symmetric for
symmetric A (see Exercise 5.7).

From the considered linear stationary methods because of the required
symmetry we may ta