

ЕРЕВАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ԳԻՏԱԿԱՆ ՏԵՂԵԿԱԳԻՐ

ученые записки

3.2004

ԵՐԵՎԱՆ 🔶 EPEBAH

ISSN 0132-0173

Հրատարակվում է 1925 թ.-ից (1967 թ.-ից՝ պարբերաբար)։

Издается с 1925 г. (с 1967 г.- периодически).

ԽՄԲԱԳՐԱԿԱՆ ԿՈԼԵԳԻԱ

ՀԱՐՈՒԹՅՈՒՆՅԱՆ Ռ.Մ. (գլխ. խմբագիր), ՊԵՏՐՈՍՅԱՆ Ս.Գ. (գլխ.խմբագրի տեղակալ), ՇԱՐԱՄՔԵՅԱՆ Լ.Թ. (պատ.բարտուղար)

ՔՈՅՆԱԳՐՅԱՆ Վ.Ռ., ԴԱՆԻԵԼՅԱՆ Է.Ա., ԽԱՉԱՏՐՅԱՆ Ի.Գ., ԽԱՉԱՏՐՅԱՆ Հ.Գ., ՀՈՎՍԵՓՅԱՆ Լ.Լ., ՄԱՐԳԱՐՅԱՆ Շ.Ա., ՄԱՐՏԻՐՈՍՅԱՆ Ռ.Մ., ՇՈՒՔՈՒՐՅԱՆ Ս.Կ., ՉՈՒԲԱՐՅԱՆ Է.Վ., ՍԱՐԳՍՅԱՆ Հ.Վ., ՍԱՐԳՍՅԱՆ Ս.Վ.

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

АРУТЮНЯН Р.М. (гл. редактор), ПЕТРОСЯН С.Г. (зам. гл. редактора), ШАРАМБЕЯН Л.Т. (ота. секретарь) БОЙНАГРЯН В.Р., ДАНИЕЛЯН Э.А., МАРКАРЯН Ш.А., МАРТИРОСЯН Р.М., ОСИПЯН Л.Л., САРКИСЯН О.А., САРКИСЯН С.В., ХАЧАТРЯН А.Г., ХАЧАТРЯН И.Г., ЧУБАРЯН Э.В., ШУКУРЯН С.К.

Издательство Ереванского университета © "Ученые записки" ЕГУ, естественные науки. 2004

Подписано к печати 19.10.2004 г.

Формат 70×108 1/16. 10,5 печ. л. = 14,7 усл. п. л. Заказ 152. Тираж 150. Регистрационный номер 258

Издательство Ереванского госуниверситета. Ереван, Ал. Манукяна, 1. Цех Ротапринт Ереванского госуниверситета, Ереван, Ал. Манукяна, 1.

ԵՐԵՎԱՆԻ ՊԵՏԱԿԱՆ ՀԱՄԱԼՍԱՐԱՆԻ ԳԻՏԱԿԱՆ ՏԵՂԵԿԱԳԻՐ УЧЕНЫЕ ЗАПИСКИ ЕРЕВАНСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

Բնական գիտություններ

3 (205), 2004

Естественные науки

<u>ԲՈՎԱՆԴԱԿՈՒԹՅՈՒՆ</u>

ԱԿՆԱՐԿԱՅԻՆ ՀՈԴՎԱԾՆԵՐ

Ս.Գ. Հարությունյան, Վ.Ի.	Վարդանյան, Ե.Բ. Դալյան	– ԴՆԹ-ի մակրոմոլեկո	սլի
կոմպլեքսառաջացման	առանձնահատկությունները	ցածրամոլեկուլային	
գանդների հետ			

ՄԱԹԵՄԱՏԻԿԱ

Մ.Ս. Մարտիրոսյան – Երկօրթոգոնալ վերլուծությունների հավասարաչափ գումա-	
րում ըստ ռացիոնալ ֆունկցիաների ոչ լրիվ համակարգերի Հարդիի տարածու-	
թյուններում	35
C.Ա. Գրիգորյան, Ս.Մ. Մանուկյան, Գ.Գ. Օհանյան – Կլեյնի–Գորդոնի ոչ գծային 👘	
հավասարման ճշգրիտ մասնավոր լուծումները և նրանց կիրառությունները	
հեղուկի և գացի մեխանիկայում	42
	·

ՄԵԽԱՆԻԿԱ

U.U.	Չլինգարյան		Գծային	համակարգերի	համար	m	ուռուցիկ	կոմպակտ	
p	ազմություններ	hû	բե <mark>ր</mark> ման խ	ւաղային խնդիրն	երի լուծմ	ան	կայունուլ	ទ្យាធរេត	49

ՖԻՉԻԿԱ

Ա.Մ. Գրիգորյան, Ա.Հ. Մակարյան, Ս.Ց. Ներսիսյան, Յու.Ս. Չիլինգարյան,	
Վ.Լ. Էլբակյան – Ջերմաստիճանային գրադիենտ ունեցող օդային միջավայ-	
րով անցնելիս լազերային ճառագայթի շեղման հետազոտությունը մոնիտորին-	
գի ավտոմատացված համակարգի օգնությամբ	57

ደኮሆኮሀ

Ա.Ռ. Մկրտչյան, Գ.Ն. Շապոշնիկովա, Հ.Գ. Խաչատրյան – Թիոմիզանյութի և ֆե- նիլթիոմիզանյութի հետ պալադիում(II)-ի փոխազդեցության ուսումնասիրումը սահետոսարաստահական երանակով	65
Ա.Վ. Վարդանյան, Շ.Ա. Գյույնազարյան, Ն.Մ. Դավթյան, Հ.Գ. Խաչատրյան –	
Ռենիումի ամպերաչափական որոշումը տարբեր օբյեկտներում մի քանի օր-	
գանական հիմնային ներկանյութերով։ Առաջացած քիչ լուծելի միացություն-	
ների լուծելիության արտադրյալների հաշվարկը	69
Հ.Հ. Համբարձումյան, Ա.Ս. Սաղյան, Ա.Ա. Պետրոսյան, Լ.Լ. Մանասյան,	
Գ.Մ. Մկրտչյան, Ա.Ա. Ավետիսյան, Վ.Ի. Մալեև, Յու.Ն. Բելոկոն – Դեհիդրո-	
այանինի Շիֆֆի հիմքերի հետ Ni(II) իոնի առաջացրած նոր քիրալային	
կոմպլեքսների սինթեզ	75

Հ.Հ. Համբարձումյան – (Տ)-վինիլգլիցինի ասիմնտրիկ սինթեզը (Տ)-N-(2-բենզոիլֆե-	
նիլ)-1-(3,4-դիքլորբենզիլ)պիրրոլիդին-2-կարբօքսամիդի և դեհիդրոամինակա-	
րագաթթվի Շիֆֆի հիմքի Ni(II) քիրալային կոմպլեքսի միջոցով	5

ԿԵՆՍԱԲԱՆՈՒԹՅՈՒՆ

L.U. Գաբրինլյան – Բարձր ջերմաստիճանների ազդեցությանը ենթարկված <i>Chlo-</i>	
սիրությունը	91
Ա.Խ. Աղաջանյան, Ձ.Ս. Մինասյան, Ա.Ա. Աղաջանյան, Ա.Ա. Ձախարյան,	
L.Գ. Անանյան – Պրոլինի կատաբոլիզմի ֆերմենտները և նրանց ակտիվու- _։	
թյան կարգավորումը իշխան ձկան (Salmo ischchan) տարբեր օրգաններում	95
Ա.Վ. Դայան, Ն.Ն. Քսաջիկյան, Ս.Մ. Մինասյան, Է.Ս. Գևորգյան, Ա.Ռ. Սարգսյան	
– Բարձր դասարանցիների կարդիոհեմոդինամիկ ցուցանիշների տիպաբանա-	
կան վերլուծությունը քննական լարվածության պայմաններում	100
Ռ.Ս. Հարությունյան, Ն.Ս. Հակոբյան, Ն.Յու. Ադամյան – Թթվածնաքաղցի պայ-	
մաններում հիպոկամպի CA, դաշտի դերը շնչառության կարգավորման գործ-	
րնթագում	106
Մ.Գ. Թասլախչյան – Հայաստանի միկոֆլորան: Ascochyta Lib. գեղը	111
L.U. Շուխյան – Խաղողի մի քանի սորտերի էմբրիոգենեզի սկզբնական և ուշ փույ ե -	
րի ուսումնասիրությունը	119

ԵՐԿՐԱԲԱՆՈՒԹՅՈՒՆ

Վ.Պ. Վարդանյան – Հիդրոերկրաֆիզիկական և օդատիեզերական մեթոդների հա-	
մայիրի կիրառման հիմնական սկզբունքները ստորերկրյա ջրային ռեսուրսնե-	
րի ուսումնասիրման նպատակով	124
U.Հ. Հայրոյան – Երկայնական ալիքների տարածումը կավային գրունտներում	
խոնավության փոփոխության յայն տիրույթում	128

սշխարՀԱԳՐՈՒԹՅՈՒՆ

Գ.Պ. Թադևոսյան, Բ.Պ. Մնացակ	լանյան – Ռելիեֆի ձևաչափական տարրերի դերի
գնահատումը հոսքագոյացմա	ւն պրոցեսում (Դեբեդ գետի օրինակով)133

ՀԱՂՈՐԴՈՒՄՆԵՐ

Ն.Խ. Մեսրոպյան – Գաուսյան պրոցեսի կոոելյացիոն ֆունկցիայի վերաբերյալ	
վարկածի ստուգումը	141
Ա.Ա. Կուտուզյան – Ֆեմտովայրկյանային ազդակների սպեկտրալ սեղմումը	145
Մ.Վ. Մարտիրոսյան, Լ.Ե. Սարգսյան, Ս.Կ. Գրիգորյան – Ֆազային թաղանթի կա-	
թյունների վրա	149
Գ.Բ. Համբարձումյան, Է.Գ. Մեսրոպյան, Ա.Ա. Ավետիսյան, Ա.Ս. Գալստյան, Ի.Ռ. Հարությունովա – Ֆենիլգլիցիդիլեթերի փոխազդեցությունը մի քանի ամի-	
նաթթուների հետ	153
Ֆ.Գ. Հարությունյան – Խաղողի աչքերի սաղմնային պտղաբերությունը՝ կախված սորտային՝ պատկանելությունից	157

Ճանաչվա	ծ գիտնակ	անը և	մանկավարժը	(պրոֆ.	Նորայր	Մանվելի	Բեյլերյանի	
ծ ն նդյան 🕻	/5-ամյակի	առթիվ)					161

ԱԿՆԱՐԿԱՅԻՆ ՀՈԴՎԱԾՆԵՐ

*

ОБЗОРНЫЕ СТАТЬИ

Физика

УДК 577.3

С. Г. АРУТЮНЯН, В. И. ВАРДАНЯН, Е. Б. ДАЛЯН

ОСОБЕННОСТИ КОМПЛЕКСООБРАЗОВАНИЯ МАКРОМОЛЕКУЛ ДНК С НИЗКОМОЛЕКУЛЯРНЫМИ ЛИГАНДАМИ

Настоящий обзор посвящен анализу особенностей комплексообразования ДНК с обратимо и необратимо связывающимися лигандами. В качестве обратимо связывающихся выбраны три класса низкомолекулярных лигандов. характеризующихся различными механизмами связывания. Такими лигандами. в частности, являются ионы двухвалентных металлов первого переходного ряда. порфириновые комплексы, а также аминокислоты цвиттерионного типа. В качестве необратимо связывающихся лигандов выбраны соединения Pt(II) и Ru(III). Выбор этих лигандов обусловлен тем, что они охватывают почти все возможные типы взаимодействий с ДНК, существующих в реальных системах.

В работе проводится систематизация общих закономерностей взаимодействия вышеперечисленных классов лигандов с ДНК и выявляются их специфические различия.

Конформация и стабильность ДНК в присутствии низкомолекулярных лигандов

В настоящее время имеется довольно много как экспериментальных. так и теоретических работ, свидетельствующих о том, что двухцепочечная молекула ДНК может существовать в мало отличающихся друг от друга по энергиям конформациях (А-, В-, Z- и т.д. формы ДНК) [1-3]. Эти формы отличаются расположением пар оснований и углом их наклона по отношению к оси спирали, а также знаком закрутки двойной спирали (А- и Вформы – правозакрученные, а Z-форма – левозакрученная) [1-5]. А-форма ДНК характеризуется пониженной влажностью и существует в смесях воды с органическими растворителями в волокнах [1, 4, 6]. В В-семействе форм в зависимости от величины угла спирального вращения возможно существование конформаций ДНК типа В-, С-, Т- и Д-форм. Поскольку условия существования В-формы ДНК наиболее близки к условиям среды в клетке, то В-форма считается основной.

Хотя формы В-семейства наиболее устойчивы при физиологических условиях, однако в процессе функционирования ДНК в клетке возможна реа-

лизация и других ее конформационных состояний. Некоторые из них могут стабилизироваться белками, иные возникают в качестве промежуточных состояний при функционировании ДНК. К таким формам следует отнести и левозакрученные Z- и Z'-, а также так называемые Ф-формы [4–6]. Ф-форма является наиболее компактной формой ДНК. Возникновение подобных структур обусловлено уменьшением растворимости ДНК при изменении условий среды, в результате чего происходит внутримолекулярная компактизация или же образуются холестерические жидкокристаллические структуры при агрегации ДНК [7].

Z-форма ДНК в отличие от других известных – левая регулярная спираль [4, 5, 8]. Ее повторяющаяся единица – два нуклеотида. Это, очевидно, связано с тем, что Z-форма получается в основном для чередующихся последовательностей (напр., CGCGCG). Среднее спиральное вращение в расчете на пару оснований составляет 30[°], а пары в Z-форме повернуты на 180[°] относительно сахарофосфатного остова В-формы [4]. Структуру Z-формы ДНК от других отличает также конформация сахарного кольца (С1'-экзо вместо С3'эндо для А-формы и С2'-эндо для В-формы). Конформационные переходы между семействами форм носят скачкообразный характер, а переходы внутри каждого семейства происходят плавно и непрерывно.

Существование большого разнообразия различных форм ДНК указывает на то, что в растворах ДНК все время происходят конформационные колебания. В них могут происходить локальные раскрытия двойной спирали [9]. На основе теоретического анализа опытов со сверхспиральной ДНК показано, что двойная спираль может испытывать также крутильные колебания [10].

Чрезвычайно интересным с точки зрения понимания основных процессов функционирования нуклеиновых кислот (регуляция, транскрипция, трансляция, рекомбинация) считается явление перехода спираль-клубок ДНК. Этот процесс, являющийся результатом воздействия на ДНК условий среды (температуры, pH, содержания ионов металлов в растворе, состав и структура растворителя), впервые был обнаружен Доти с сотрудниками [11] и интенсивно изучался в последующие годы многими авторами (см., напр., [12–14]).

ДНК представляет собой одномерный апериодический кристалл [12]. Одномерность обусловлена тем, что каждая элементарная ячейка (пара оснований) молекулы взаимодействует лишь с двумя соседними ячейками (координационное число равно 2), а апериодичность – тем, что молекула состоит из элементарных ячеек двух сортов АТ- и ГЦ-пар нуклеотидов, причем периодичность исключена, поскольку последовательностью нуклеотидов определяется вся генетическая информация. Выяснение особенностей плавления этих одномерных апериодических кристаллов представляется ислючительно важной задачей как для физики вообще, так и для молекулярной биофизики в частности.

В биспиральном состоянии ДНК имеет весьма жесткую структуру, ее статистический сегмент довольно велик (до 300 пар оснований). Такая цепь

обычно характеризуется гауссовым распределением расстояний между ее концами.

Молекулярные свойства и термодинамические характеристики ДНК в спиральном и клубкообразном состояниях существенно различны, что и позволяет изучать переход спираль-клубок разными методами: УФ- и ИК-спектроскопией [15-20], вискозиметрией [21, 22], микрокалориметрией [23, 24], круговым дихроизмом (КД) [1, 3, 25, 26], дисперсией оптического вращения [27] и т.д.

Стабильность двойной спирали ДНК определяется величиной свободной энергии перехода спираль-клубок. Эта величина включает в себя свободные энергии взаимодействия оснований в противоположных цепях, свободную энергию межплоскостного взаимодействия оснований (стэкинг взаимодействия), изменения свободной энергии взаимодействия фосфатных групп с противоионами и водным окружением, а также изменение конформационной свободной энергии [28–33]. С этой точки зрения несомненный интерес представляет изучение комплексов ДНК с веществами, способными изменять конформацию и стабильность макромолекулы. И это естественно, ведь огромное количество физиологических процессов в живых системах является прямым отражением взаимодействия ДНК с разными низко- (ионы металлов, аминокислоты, антибиотики и др.) и высокомолекулярными (напр., белки) веществами. По типу их связывания с ДНК эти вещества можно разделить на две группы: обратимо и необратимо связывающиеся.

При необратимом связывании вещество ковалентно сшивается с ДНК, что приводит к необратимой модификации ее структуры. К таким веществам относятся некоторые металлсодержащие препараты.

Конформация и термостабильность ДНК весьма чувствительны также к взаимодействию с обратимо связывающимися с ней веществами. Обратимо связывающиеся вещества, в свою очередь, можно подразделить на два класса: первый – это непосредственно взаимодействующие с ДНК (напр., ионы металлов, протон, порфирины и металлопорфирины и т.д.), второй – опосредованно (изменение конформации и термостабильностн ДНК происходит через изменение свойств растворителя) влияющие на макромолекулу. К последнему роду соединений можно отнести, например, мочевину, а также аминокислоты цвиттерионного типа.

Связывание большинства веществ, относящихся к первой группе, хорошо описывается двумя состояниями – связанным с макромолекулой и несвязанным с ней. В некоторых случаях связанных состояний может быть несколько типов, например, для порфиринов. Такие вещества принято называть литандами (или скрепками). К ним относятся, в первую очередь, ионы металлов, способные адсорбироваться на строго определенных центрах связывания ДНК [34-41]. Состояние лиганда (связанное с ДНК или несвязанное) зависит как от условий среды и состава растворителя, так и от концентрации самого лиганда.

Таким образом, из вышеизложенного следует, что нет единого механизма для объяснения конформационных переходов как внутри семейства

5

форм ДНК, так и между ними. Каждый случай подобного перехода имеет свои особенности, и выяснение этих особенностей может дать дополнительную информацию о природе сил, стабилизирующих ту или иную структуру. Как известно, изучение условий существования той или иной конформации и их взаимных превращений имеет большое значение для понимания механизмов функционирования различных комплексов ДНК с низко- и высокомолекулярными соединениями.

С этой точки зрения весьма интересным представляется изучение влияния ряда редких аминокислот, стехиометрических концентраций ионов металлов первого переходного ряда, порфириновых комплексов, металлсодержащих соединений на конформационное состояние и стабильность ДНК. Подбор указанных соединений оправдывается тем, что они охватывают практически все типы комплексообразования лигандов с ДНК, существующие в реальных системах.

I. Обратимо связывающиеся лиганды

а) Редкие аминокислоты-цвиттерионы. Интересным классом обратимо связывающихся с ДНК лигандов являются аминокислоты-цвиттерионы, имеющие четко разделенные заряды. К ним относятся глицин, β-аланин, γаминомасляная кислота (γ-АМК) – редкие аминокислоты, известные своими фармакологическими свойствами. Выяснение механизмов взаимодействия этих веществ с ДНК создает предпосылки для понимания ряда особенностей взаимодействия ДНК с белками, сопутствующими протеканию всех без исключения биологических процессов в клетке.

Переход спираль-клубок. В литературе имеется ограниченное число работ, посвященных изучению взаимодействия ДНК с веществами аналогичного химического строения [42-44]. Анализ этих работ показывает, что диамины типа H₂N-(CH₂)_n-NH₂ приводят к повышению температуры плавления (T_m) ДНК [43, 44]. Причем максимум эффекта достигается при n=5. Лальнейшее увеличение метиленовых групп приводит к постепенной дестабилизации ДНК. Предполагается, что уменьшение термостабильности ДНК при n>5 идентично действию органических растворителей, которые, создавая неполярную атмосферу вокруг ДНК, приводят к ее дестабилизации [43, 44]. Постепенное же увеличение Т_т при изменении п от 1 до 5 предполагается обусловленным специфическим связыванием диаминов: одна аминогруппа связывается с фосфатной группой, а другая - с азотистыми основаниями А или Т. Моноамины при малых концентрациях стимулируют дестабилизацию двойной спирали [42], а при дальнейшем повышении их содержания в растворе приводят к стабилизации ДНК. При концентрациях аминов, стабилизирующих двойную спираль, изменяется конформация ДНК – происходит В-С-подобный конформационный переход. Авторы вышеуказанных работ связывают стабилизирующее действие низкомолекулярных моноаминов с неспецифическим взаимодействием аминогрупп лигандов с фосфатными группами ДНК, а дестабилизирующее действие при малых концентрациях моноаминов - с их взаимодействием с азотистыми основаниями.

УФ-спектрофотометрическое исследование термодинамических особенностей ДНК в водных растворах глицина, β -аланина и γ -АМК показывает, что температура плавления (T_m) и ширина температурного интервала (ΔT) перехода спираль-клубок ДНК зависят от ионной силы растворителя и концентрации аминокислот (рис. 1, 2).

я

Рис. 1. Зависимость температуры плавления (а) и интервала перехода спираль-клубок (б) ДНК тимуса теленка от концентрации β-аланина при ионных силах: • - 0,02*M*, • - 0,2*M*, • -0,002*M* [Na⁺].

Характер термочувствительности ДНК зависит также от вида аминокислоты. Результаты, приведенных на рис. 3, свидетельствуют о том, что

Рис. 2. Зависимость интервала перехода спираль-клубок ДНК тимуса теленка от концентрации аминокислоты: • – глицин, о – β-аланин, × – γ-АМК.

увеличение числа метиленовых групп в аминокислотах приводит к ослаблению эффекта дестабилизации макромолекул ДНК, наблюдаемого при относительно малых концентрациях аминокислот, и к усилению их стабилизирующего действия при относительно высоких концентрациях (>1,5-2М). Дестабилизация может быть обусловлена, скорее всего, тремя обстоятельствами. Во-первых, взаимодействием положительно заряженных аминных групп аминокислот с отрицательно заряженными фосфатными группами ДНК, сопровождающимся частичным вытеснением ионов Na⁺, в результате чего ослабляется экранизация взаимного отталкивания фосфатных

групп. Во-вторых, по достижении стехиометрического соотношения ДНКаминокислота свободные (несвязанные) аминокислоты, подобно некоторым органическим соединениям, воздействуют на пространственную структуру воды, гидратированной на ДНК, изменяя межмолекулярные взаимодействия между ними и тем самым понижая стабильность ДНК. Наконец, в-третьих,

7

дестабилизация структуры может быть результатом прямого взаимодействия аминокислот с азотистыми основаниями. Чем же в основном обусловлена дестабилизация ДНК?

Рис. 3. Зависимость температуры плавления ДНК от логарифма концентрации аминокислоты в отсутствие экранировки фосфатных групп (а) и при их полной экранировке ионами Mg²⁺ ([Mg²⁺]=6·10⁻⁴M) (б): х – глицин, о – β-аланин, ● – γ-АМК.

Анализ результатов, полученных в работах [45, 46], позволяет однозначно утверждать, что глицин, β-аланин и γ-АМК непосредственно не контактируют с азотистыми основаниями. Таким образом, эффект дестабилизации ДНК не может быть обусловлен прямым взаимодействием аминокислот с азотистыми основаниями.

Сложный характер зависимости термостабильности от ионной силы раствора указывает на возможность реализации электростатического механизма дестабилизации ДНК в присутствии обсуждаемых аминокислот. Естественно думать, что при малых концентрациях аминокислот происходит взаимодействие положительно заряженных аминных групп цвиттерионов с отрицательно заряженными фосфатными группами ДНК. Однако решающий вклад в уменьшение термостабильности вносит действие аминокислот на пространственную структуру воды, непосредственно прилегающей к ДНК. Иными словами, эти аминокислоты, подобно некоторым органическим растворителям, вызывают нарушение пространственной структуры воды, непосредственно прилегающей к макромолекулам ДНК, стимулируя тем самым изменения межмолекулярных взаимодействий ДНК-растворитель. Характер изменений этих взаимодействий зависит от длины углеводородного радикала аминокислоты и степени ее разветвленности [21].

Обратимся теперь к эффекту увеличения термостабильности ДНК при высоких концентрациях аминокислоты. Известно, что стабильность ДНК

зависит от ионной силы раствора (температура денатурации линейно растет с ростом логарифма ионной силы). С учетом практически линейной зависимости T_m от логарифма концентрации аминокислот, можно убедиться, что

Рис. 4. Зависимость энтальпии перехода спираль-клубок ДНК от концентрации в-аланина. свободная энергия стабилизации нативной структуры ДНК является логарифмической функцией концентрации аминокислоты в растворе. Этот факт при постоянстве энтальпии перехода (рис. 3, 4) свидетельствует о том, что механизм стабилизации спиральной структуры ДНК цвиттерионами, как и в случае одновалентных электролитов [47], имеет энтропийную природу. Согласно Птицину [48, 49], противоионы, перешедшие в раствор из ионной «шубы» макромолекулы, определяют энтропию их смешения. Таким

образом, чем ниже концентрация противоионов в растворе, тем энтропийно более выгоден процесс плавления. При взаимодействии аминокислот с ДНК энтропия смешения противоионов и цвиттерионов будет зависеть не только от концентрации первых в растворе, но и вторых. А это значит, что чем выше концентрация аминокислот в растворе, тем энтропийно менее выгоден процесс плавления ДНК и, следовательно, выше ее термостабильность.

Конформация. Известно, что в стимулировании конформационных переходов молекул ДНК определенную роль играет изменение свойств растворителя. Действительно, основным фактором, определяющим конформацион-

ное состояние ДНК, является активность молекул воды, которая чрезвычайно чувствительна к составу растворителя [3, 50]. Весьма ценную и определенную информацию об особенностях конформационного состояния ДНК можно получить на основе исследований макромолекул ДНК в условиях частичной их дегидратации [51] и изменения полярности среды [1, 2]. С этой целью в работе [46] методом КД проведено детальное исследование конформационных превращений ДНК в водных растворах глицина, β-аланина и у-АМК, что позволяет выяснить роль дегидратации ДНК в стимулировании конформационных переходов в ней. Изменение спектров КД ДНК в присутствии глицина, β-аланина и у-АМК свидетельствует, в области концентраций аминокислот, что

Рис. 5. Спектры КД ДНК тимуса теленка в присутствии мочевины и β-аланина в 0,1SSC*: (---) – чистая ДНК, (--) – ДНК+4М мочевины, (--) – ДНК + 4М β-аланина.

стабилизирующих ДНК, происходят конформационные изменения макромолекул в пределах В-семейства форм (см., напр., рис. 5).

* 1 SSC = 0,15M NaCl + 0,015M Na цитрат.

Практически полное совпадение микрокалориметрических (высокие концентрации) и спектрофотометрических дифференциальных (низкие на порядок концентрации) кривых плавления (рис. 6) показывает, что конфор-

Рис. 6. Микрокалориметрические (а) и спектрофотометрические (b) дифференциальные кривые плавления ДНК тимуса теленка в присутствии различных концентраций β-аланина в 0,1 SSC: 1-0, 2-1,6*M*, 3-5*M*.

мационные изменения ДНК, реализуемые в водных растворах βаланина (аналогичная картина наблюдается и в случаях глицина, и γ-AMK), не связаны с межмолекулярной и внутримолекулярной агрегациями.

Из полученных результатов следует, что конформационные состояния ДНК в вод-

ных растворах глицина, а также редких аминокислот β-аланина и γ-АМК обусловлены как прямым взаимодействием аминокислот с ДНК (электростатическое взаимодействие положительно заряженных аминных групп аминокислот с отрицательно заряженными фосфатными группами ДНК при малых концентрациях веществ), так и косвенным воздействием на структуру макромолекулы путем изменения структуры и свойств воды.

Рассмотрим подробные конформационные изменения ДНК в области малых $(10^{-3}-10^{-1}M)$ и высоких концентраций (1-5M) лигандов. Как было сказано выше, при относительно малых концентрациях аминокислот обра-

зуются комплексы ДНК-цвиттерионы, в результате чего происходит частичное вытеснение связанных с ДНК ионов и нарушение пространственной структуры непосредственно В прилегающем к ДНК слое воды (гидратная вода) [45]. Последнее приводит к измене-

ниям в спектрах КД ДНК (рис. 7). Т.е., с увеличением содержания этих веществ в интервале $10^{-3}-10^{-1}M$ при неизменной концентрации ДНК в растворе происходит увеличение амплитуды положительной полосы КД $\Delta \varepsilon_{276}$.

Следует отметить, что при тех же концентрациях аминокислот происходит резкое падение энтальпии перехода спираль-клубок ДНК [25], обусловленное удалением части молекул воды, принимающих участие в построении гидратной оболочки исходной ДНК. При высоких же концентрациях аминокислот в спектрах КД происходят иные изменения — монотонно уменьшается интенсивность полосы $\Delta \varepsilon_{276}$ и увеличивается отрицательная полоса $\Delta \varepsilon_{276}$ (рис. 7). Мы склонны полагать, что конформационные изменения ДНК в водных растворах глицина, β -аланина и γ -АМК при высоких концентрациях обусловлены скорее всего их структуроразрушающим влиянием на воду.

Переходы в третичной и вторичной структурах ДНК зависят от длины углеводородного радикала молекулы и степени его разветвленности. А, как было показано в работе [26], в условиях полной экранировки фосфатных групп исследованные аминокислоты ведут себя подобно некоторым органическим веществам. Они дестабилизируют макромолекулу ДНК, нарушая пространственную структуру воды в непосредственной близости от макромолекул [52]. Таким образом, в исследуемом ряду аминокислот (H₂N-(CH₂)n--COOH) наибольшую длину имеет γ-AMK и именно он является лучшим структуроразрушающим агентом.

6) Ионы металлов первого переходного ряда. Протекающие в организме ферментативные реакции, как правило, катализируются ионами двухвалентных металлов. В активном центре любого фермента обязательно присутствуют ионы определенного металла, их наличие необходимо для нормального протекания процессов репликации и транскрипции. Ионы переходных металлов проявляют сильное мутагенное и канцерогенное действие. Ионы металлов также играют значительную роль в функционировании нуклеиновых кислот, поэтому любые данные о физических свойствах комплексов ДНК с металлами могут представлять несомненный интерес для понимания молекулярно-биологических механизмов функционирования нуклеиновых кислот (см., напр., [53]).

Современные данные о местах предпочтительного связывания нуклеиновых кислот с ионами металлов основываются на изучении кристаллических структур металл-нуклеотидных комплексов методом рентгеноструктурного анализа, а также спектров ЯМР и ЭПР растворов солей металлов с нуклеотидами [53]. На нуклеотидах имеется три типа центров связывания для ионов металлов: основание, фосфат и рибоза (или дезоксирибоза). Рибоза считается слабым лигандом и поэтому как потенциальный центр связывания не представляет интереса. Фосфатная группа из-за наличия в ней атомов кислорода, несущих значительный отрицательный заряд, является сильным лигандом по отношению к ионам щелочных и щелочно-земельных, а также переходных металлов. И наконец, азотистые основания являются сильным лигандом только для ионов переходных металлов.

На фосфатных группах имеется одно место связывания, характеризующееся высокой плотностью отрицательного заряда, на азотистых основаниях предпочтительными для связывания с ионами металлов являются места с избыточной плотностью заряда, т.е. места, обладающие большей основностью (схема 1).

Согласно схеме 1, предложенной в работе [54], потенциальные места связывания ионов металлов с азотистыми основаниями следующие (в скобках

приведены величины избыточной плотности заряда данного атома):

на гуанине – N7 (0,63), N1 (0,55), O6 и NH₂2 (0,43); на аденине – N7 (0,52), N1 (0,53), NH₂6 (0,43); на цитозине – N3 (0,66), O2 и NH₂4 (0,43); на тимине – N3 (0,32), O4 (0,35), O2 (0,33).

Однако ведущую роль в процессе комплексообразования ДНК с ионами металлов играет не столько основность, сколько стерические факторы

Схема 1. Схема комплементарных АТ- и ГЦнуклеотидных пар. Звездочкой указаны места, обладающие высокой плотностью заряда. R - места присоединения оснований к фуранозному кольцу.

конкретного места связывания. Двухвалентные ионы переходных металлов образуют наиболее устойчивые комплексы с положением N7 пуриновых нуклеотидов (особенно гуанина), причем связь N7-металл значительно более сильная, чем это следует из простого рассмотрения основности указанного места [53-56].

Ноны переходных металлов, благодаря своей незавершенной 3dэлектронной конфигурации, могут образовывать с атомами донора координационные связи. Кристаллографические данные, полученные для ионов Cu²⁺, Mn²⁺, Co²⁺ и Ni²⁺, обнаруживают хелатообразное связывание ионов с N7 гуанина и кислородом фосфатной группы. Обнаружено также комплексообразование ионов переходных металлов с положениями N1 гуанина и аденина и Об гуанина, однако устойчивость полученных

комплексов значительно ниже, чем при связывании с N7 пуриновых нуклеотидов [53].

В пиримидиновых нуклеотидах (цитозине и тимине) положение N3 является наиболее предпочтительным местом связывания двухвалентных ионов переходных металлов. Связывание же с положением O2 значительно слабее. Исключение составляют ионы Mn²⁺, предпочитающие связываться с O2 атомом цитозина [56].

В литературе обсуждается также вопрос о возможности связывания ионов металлов с аминогруппами оснований. Однако показано, что они являются плохими лигандами по той причине, что неподеленная пара π -электронов делокализована и поэтому не способна к связыванию с ионом металла. Но после депротонирования они могут участвовать в связывании металла с нуклеотидом [53]. Следовательно, активность места на нуклеотиде зависит от внешних условий, в частности от pH среды, концентрации ионов, температуры и т.д.

В зависимости от того, с каким именно местом на нуклеотиде связывается ион, структура и, следовательно, физические свойства полученных комплексов будут сильно различаться.

Весьма ценную информацию о структуре и свойствах комплексов ДНК-металл можно получить, если исследовать их температурное плавление [38, 57] и конформационные переходы в ДНК, вызываемые ионами металлов [41, 58, 59]. Все предложенные в отмеченных работах механизмы связывания ионов металлов (в частности ионов переходных металлов) предполагают избирательное связывание последних с определенными нуклеотидными парами.

Конформация. Исследование спектров КД комплексов ДНК с ионами переходных металлов показывает, что при комнатной температуре под влиянием ионов ДНК переходит в более закрученную по сравнению с В-формой «С-подобную» форму в пределах В-семейства [60–62]. Эффект достигает на-

Рис. 8. Зависимость энтальпии перехода спираль-клубок ДНК тимуса теленка от концентрации ионов Mn^{2+} (о) и Co^{2+} (•). Эксперименты проводились в 0,1 SSC, ионная сила $[Na^+]=0.2$.

сыщения при относительной концентрации ионов Mn^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} к нуклеотиду, равной 0,5М/Р. Это связано с тем, что при указанных концентрациях положительно заряженные ионы двухвалентных металлов более эффективно, чем вносимые с буфером одновалентные ионы Na⁺, экранируют отрицательный заряд фосфатных групп ДНК, причем для полной экранировки достаточен 1 ион на 2 фосфатные группы. При более высоких концентрациях ионов переходных металлов, когда весь заряд фосфатных групп практически ими экранирован, они начинают взаимодействовать с основаниями, что, естественно, приводит к ослаблению спирали ДНК.

[Na⁺]=0,2. В пользу такого заключения свидетельствуют также микрокалориметрические результаты [59]: до концентраций ~0,5*M*/*P* энтальпия плавления ДНК увеличивается, а при более высоких (до 4*M*/*P*) – уменьшается (рис. 8).

Переход спираль-клубок. На рис. 9 приведены дифференциальные кривые плавления ДНК тимуса теленка в $10^{-3}M$ NaCl в присутствиии различных концентраций ионов Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺. Из графиков рисунка следует, что в зависимости от концентрации ионов происходит значительное изменение формы кривой плавления. Поскольку наиболее сильное изменение кривой плавления происходит в высокотемпературной части (она сдвигается в сторону низких температур), то можно заключить, что имеет место преимущественная дестабилизация ГЦ-пар при концентрации ионов ~1*M*/*P*. К такому же заключению приводит анализ зависимостей T_m и Δ T ДНК с разным ГЦ-содержанием от концентрации добавляемого иона (рис. 10). Из рис.10 следует, что вплоть до концентраций ионов Mn²⁺, Co²⁺, и Ni²⁺ ~1*M*/*P* термостабильность всех ДНК растет. Для ДНК *М. Luteus* рост термостабильности наиболее значителен и продолжается до концентрации 0,5*М*/*Р*. При этих концентрациях ионы переходных металлов, подобно ионам щелочных металлов, экранируют отрицательно заряженные фосфатные группы [11, 27, 38, 54].

Рис. 9. Дифференциальные кривые плавления ДНК тимуса теленка при различных концентрациях ионов Mn^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} . Цифры у кривых – концентрации ионов в молях на моль нуклеотидов (M/P).

Далее, с повышением концентрации этих ионов термостабильность ДНК уменьшается. Особенно значительное уменьшение наблюдается для ДНК с высоким ГЦ-содержанием. Для ДНК же с высоким АТ-содержанием (Cl. Perfringens) термостабильность практически не меняется до концентрации 1*M*/*P*. При таком характере изменения термостабильности ДНК можно было ожидать инверсии относительных термостабильностей АТ- и ГЦ-пар. Однако это явление наблюдается только в случае ионов Cu²⁺. Следовательно, при стехиометрических концентрациях с ростом количества ионов Mn²⁺, Co²⁺ и Ni²⁺ наблюдается лишь тенденция к выравниванию термостабильностей АТ- и ГЦ-богатых ДНК. Причем термостабильность ГЦ-богатой ДНК остается выше АТ-богатой при всех исследованных концентрациях ионов. По эффективности сближения термостабильностей АТ- и ГЦ-пар ДНК эти ионы можно расположить в ряд $Mn^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+}$.

Интервал же плавления ДНК уменьшается при всех концентрациях добавляемых ионов (рис. 10). Только при концентрациях 1*М/P* он резко сужает-

бильностей АТ- и ГЦ-пар ДНК. Интервал же плавления всех ДНК при очень низких концентрациях ионов Cu^{2+} (<0,5*M*/*P*) ведет себя несколько аномально. Особенно сильно это наблюдается у ГЦ-богатой ДНК. До концентраций ионов $Cu^{2+}<0,5M/P$ интервал плавления этой ДНК растет до $20^{0}C$. При дальнейшем повышении концентраци ионов Cu^{2+} интервал плавления всех типов ДНК изменяется также, как и в случае ионов Mn^{2+} , Co^{2+} и Ni²⁺ (рис. 10).

ся, а при более высоких - сужение замедляется. Для ДНК с высоким ГЦ-содержанием минимальное значение интервала плавления 1,7-2,0°С, а для ДНК с высоким АТсодержанием он сужается до $0,6-0,7^{\circ}C$. Этот эффект является результатом избирательного взаимодействия ионов с ГЦ-нуклеотидными парами [63. 64]. Поскольку при одних и тех же концентрациях ионов металлов на долю ГЦ-пар в АТ-богатых ЛНК приходится больше ионов, чем в ГЦ-богатых ДНК, то их действие на первые будет эффективнее (интервал плавления уменьшается сильнее в АТ-богатых ДНК, чем в ГЦ-богатых).

Особый интерес представляют ионы Cu^{2+} . Достаточно низкие их концентрации (0,65–2,0*M*/*P*) вызывают инверсию относительных термостаНа дифференциальных кривых плавления ДНК тимуса теленка (рис. 9) при наличии до 0,5–0,6*M*/*P* ионов Cu^{2+} наблюдается уширение кривой, сопровождаемое тенденцией к появлению двухфазности плавления. При более высоких концентрациях (>0,65*M*/*P*) ионов Cu^{2+} дифференциальная кривая резко сужается, причем происходит слияние отдельных пиков в один узкий реперный, как и в случае остальных исследованных нами металлов. Таким образом, при этих концентрациях ионов Cu^{2+} интервал плавления сужается, однако остается все же достаточно большим (~3,5–4⁰*C*) [65].

При обратимом связывании лигандов известны несколько причин, приводящих к уширению и двухступенчатости кривых плавления: 1) кооперативный характер взаимодействия лигандов с ДНК [66], 2) сильные отличия в значениях констант связывания лиганда со спиральными и расплавленными участками ДНК [66], 3) внутримолекулярная агрегация ДНК [7], 4) наличие примесных ионов [67]. На первый взгляд, наиболее вероятной является первая причина, поскольку известно, что ионы Cu²⁺ кооперативно связываются с одноцепочечными полинуклеотидами polyA и polyC [38]. Однако расчеты показывают, что при столь низких концентрациях вклад кооперативности связывания Cu²⁺ с ДНК незначителен. Как показано в работах [32, 62], при низких степенях заполнения ДНК ионами меди отличия в константах связывания ионов меди со спиральными и расплавленными участками могут привести к перераспределению ионов с расплавленных на спиральные участки в процессе плавления ДНК и, следовательно, могут стать одной из причин уширения кривой. Что касается третьей причины, то обычно образование агрегатов в ДНК происходит при значительно более высоких концентрациях лигандов. Другой вероятной причиной уширения кривой плавления ДНК в присутствии ионов Cu²⁺ может быть наличие в растворе примесных ионов, действие которых не может не проявляться при столь низких концентрациях ионов Cu^{2+} .

в) Порфирины и металлопорфирины. Рассмотрение порфириновых комплексов в качестве обратимо связывающихся лигандов обусловлено тем, что эти соединения способны реализовывать совершенно особый тип обратимого связывания с ДНК – интеркаляцию.

Порфирины и металлопорфирины представляют собой плоские циклические органические соединения, основу которых составляет порфириновое ядро. В центре ядра может находиться металл, связанный с азотами ядра четырьмя или более координационными связями. Обычно это один из металлов первого переходного ряда, но возможны также комплексы с более тяжелыми металлами, например, Ag, Au, Pd, Pt и т.д. Помимо металла, порфирины могут отличаться также типом и местоположением бокового радикала (см., напр., схему 2).

Порфирины и особенно их металлопроизводные весьма распространены в природе. Они входят в состав биологических соединений (гемоглобин, хлорофилл, витамины группы В и т.д.). Как природные, так и синтезированные порфирины относятся к разряду интенсивно изучаемых соединений, химические и фотохимические свойства которых широко используются в медицине и биологии [68-72]. Благодаря способности избирательно накапливаться в опухолевых клетках, они применяются в онкологической практике в качестве диагностического теста обнаружения формы опухоли [70]. Это их качество так же, как и фотосенсибилизационные свойства [73], успешно

$K = CH_2 - CH_2 - OH$								
Me=2H	TOEPyP(4)	Me=2H	TOEPyP(3)					
Me=Cu	CuTOEPyP(4)	Me=Cu	CuTOEPyP(3)					
Me=Co	CoTOEPyP(4)	Me=Co	CoTOEPyP(3)					
Me=Zn	ZnTOEPyP(4)	Me=Zn	ZnTOEPyP(3)					
Me=Ni	NiTOEPyP(4)	Me=Ni	NiTOEPyP(3)					

Схема 2. Структурные формулы *мезо*-тетра (4-N-оксиэтилпиридил) порфирина (TOEPyP(4)) и его 3-N-замещенного аналога (TOEPyP(3)), а также их металлокомплексов (MeTOEPyP(4), MeTOEPyP(3), где Me = Co, Cu, Ni, Zn). На схеме справа находятся порфирины с боковыми радикалами, присоединенными к 3N-положению

пиридилового кольца, слева – в 4N-положении.

используются в фотодинамической терапии опухолей [70-72]. Хорошо известны также противовирусные, противогрибковые и антибактериальные свойства порфиринов [68, 69]. Поэтому многие исследователи проявляют интерес к синтезу новых порфиринов с целью создания лекарственных средств на их основе [71, 74]. Например, приведенные на схеме 2 порфирины, синтезированные на кафедре фармакологической химии Ереванского медицинского гос. университета по методу [74].

обладают противогрибковыми и антибактериальными свойствами. Хотя медико-биологическое действие синтезированных порфиринов и определено, однако механизм их взаимодействий с ДНК практически в каждом конкретном случае требует индивидуального изучения.

Установлено, что порфирины могут взаимодействовать с ДНК тремя механизмами [75-80] (рис. 11):

• <u>интеркаляцией</u>, при которой плоскость молекулы порфирина вклинивается между соседними парами оснований ДНК, при этом пиридиловые группы оказываются торчащими в желобках – по два в каждом (рис. 11, а);

• <u>внешним упорядоченным желобковым.</u> При этом способе взаимодействия происходит образование на ДНК параллельной упаковки плоскостей порфиринов друг над другом (стэкинг-взаимодействия порфиринов). Взаимодействия происходят в основном в малом желобке ДНК, но не исключено – и в большом (рис. 11, в). Основания при этом располагаются в желобках под некоторым углом к оси спирали. В частности для TMPyP(4) этот угол составляет 55⁰ (на рисунке наклон не показан);

• <u>внешним неупорядоченным желобковым</u>, при котором молекулы порфирина располагаются в большом желобке ДНК так, что плоскость порфиринового кольца оказывается параллельной оси ее спирали (рис. 11, б).

Оба типа желобкового взаимодействия происходят при непосредственном участии отрицательно заряженных фосфатных групп.

Все имеющиеся на сегодняшний день результаты по взаимодействиям

ДНК-порфирин получены в основном для одного водорастворимого порфирина – мезо-тетра-(метилпиридил)порфирина (ТМРуР). Однако известно, что механизм связывания с ДНК во многом зависит от типа бокового радикала. Например, водорастворимый мезо-тетра-(триметилпиридил)порфирин

Рис. 11. Схематическая диаграмма, иллюстрирующая механизмы связывания комплексов ДНК с ТМРуР(4): а) – интеркаляция, б) – внешнее неупорядоченное желобковое связывание и в) – внешнее упорядоченное желобковое связывание. Рисунок взят из работы [80]. (TMAP) из-за наличия трех метильных групп в боковом радикале (заметим, что в ТМРуР одна метильная группа) стерически не способен интеркалировать в ДНК и связывается с ней только внешним способом [69, 78]. В литературе имеется очень мало работ по изучению связывания с ДНК порфиринов с различными боковыми радикалами. Поэтому нашей

целью было изучить, как влияет удлинение бокового радикала пиридилового кольца порфиринов (схема 1) на механизмы связывания с ДНК.

Спектры кругового дихроизма. Наблюдаемые при внешнем и внутреннем (интеркаляция) упорядоченном связывании порфиринов межплоскостные стекинг-взаимодействия между связанными на ДНК порфиринами приводят к нетривиальному результату – на спектрах кругового дихроизма комплексов ДНК-порфирин появляется вторая полоса дихроичного поглощения [75, 76, 78, 81]. Известно, что комплексы ДНК с мезо-тетра-(4N-метилпиридил)порфиринами (TMPyP(4)) характеризуются двумя полосами КД:

1) 220-310нм, которая совпадает с полосой естественного КД ДНК;

 400-470нм – полоса индуцированного порфиринами КД, которая совпадает с одной из полос поглощения порфиринов (полосой Соре), где ДНК прозрачна.

Закономерно предположить, что полоса индуцированного КД в видимой области обусловлена только упаковкой порфиринов на ДНК, поскольку порфирины, являющиеся плоскими, симметричными соединениями, естественной оптической активностью не обладают и имеют нулевой дихроизм во всей области электронных переходов.

1. Порфирины. На рис. 12 приведены КД-спектры комплексов ДНК с ТОЕРуР(4) и ТОЕРуР(3). Увеличение относительной концентрации ($r=C_{nop\phi}/C_{nap och. ДНК}$) ТОЕРуР(4) (рис. 12, а) приводит к расщеплению положительной полосы $\Delta \varepsilon_{276}$ ДНК на две полосы, тогда как добавление ТОЕРуР(3) к ДНК (рис. 12, б) – лишь к небольшому уменьшению ее интенсивности, практически не изменяя интенсивности отрицательного пика (B-C-подобный переход). Следовательно, различия в местах присоединения бокового радикала на пиридиловом кольце порфирина оказываются весьма существенными в

плане воздействия данных порфиринов на конформацию ДНК [82, 83].

В видимой области оба комплекса имеют отрицательный КД (квадратики в верхнем правом углу рис. 12), следовательно, согласно [75, 76, 81],

Рис. 12. Спектры кругового дихроизма комплексов ДНК с TOEPyP(4) (а) и TOEPyP(3) (b) при различных относительных концентрациях порфирина: (—) – r=0; (-•-) – r=0,077; (-••-) – r=0,15; (•••) – r=0,77.

фиринами посредством интеркаляции и предполагает только внешнее связывание порфиринов на поверхности полимера. Соответствующие спектры КД приведены на рис. 13.

области В видимой спектры ТОЕРуР(4) имеют только положительную полосу при λ=435нм. Однако с увеличением концентрации порфирина в комплексах начинает вырисовываться и отрицательная полоса при λ=425нм. При низких концентрациях порфирина спектр КД ТОЕРуР(3)-ДНК комплекса в видимой области почти консервативен. Однако с увеличением концентрации порфирина положительная полоса растет в несколько раз сильнее, чем отрицательная.

В УФ-области наблюдается радикальное изменение спектров: с увеличением концентрации порфиринов поло-

можно утверждать, что эти порфирины предпочитают интеркаляционный способ связывания другим. Этот способ реализуется в ГЦ-богатых участках ДНК, а в АТ-богатых взаимодействие с порфиринами происходит посредством внешнего желобкового связывания [69, 78, 79]. Интересный результат получается в комплексах порфирины-poly(dA-dT), (poly(dA-dT), - это синтетическая двуспиральная ЛНК длиной примерно 200 пар нуклеотидов, каждая нитка которой состоит из альтернирующей АТ-последовательности). Поскольку расстояние между соседними вдоль цепи АТ-парами меньше вертикальных размеров порфиринов, то этот полимер стерически не способен взаимодействовать с пор-

Рис. 13. Спектры кругового дихроизма комплексов poly(dA-dT)₂ с TOEPyP(4) (a) и TOEPyP(3) (b) при различных относительных концентрациях порфирина: (—) – r=0; (---) – r = 0,013; (---) – r = 0,066;(----) – r=0,13; (---) – r=0.66.

жительная полоса λ=310-260*нм* меняет знак с «+» на «-». Сравнивая изме-

нения в УФ-области КД-спектра комплексов порфиринов с ДНК (рис. 12, а) и poly(dA-dT)₂ (рис. 13), можем прийти к выводу, что характерное расщепление полосы $\Delta \varepsilon_{276}$ является признаком внешнего связывания порфиринов с АТ-богатыми участками ДНК. Приведенные выводы находятся в хорошем соответствии с результатами работ [78, 84], где показано, что порфирины ТМРуР при высоких ионных силах образуют достаточно протяженные ассоциаты (агрегаты) друг с другом на поверхности poly(dA-dT)₂. Это на спектрах КД проявляется в виде аномально сильных полос в видимой области. Не исключено, что это является следствием образования порфиринами жидкокристаллических структур на полимере как на матрице.

2. Металлопорфирины. На рис. 14 и 15 приведены спектры КД ДНК с Zn-, Сu-содержащими металлопорфиринами, синтезированными на базе

Рис. 14. Спектры кругового дихроизма комплексов ДНК с ZnTOEPyP(4) (а) и ZnTOEPyP(3) (b) при различных относительных концентрациях порфирина: (—) – r=0; (---) – r=0,03; (--) – r=0,077; (---) – r=0,11; (---) – r=0,15; (+++) – r=0,77.

Рис. 15. Спектры кругового дихроизма комплексов ДНК с СиТОЕРуР(4) (а) и СиТОЕРуР(3) (b) при различных относительных концентрациях порфирина: (—) – г=0; (- · -) – г=0,027; (- · · -) – г=0,08; (· · ·) – г=0,77; (- Δ -) – г=1,35.

ТОЕРуР(4) и ТОЕРуР(3) безметальных порфиринов. Как видим, при наличии металлопорфиринов, синтезированных на базе ТОЕРуР(4), в УФ-области спектров КД наблюдается расщепление пика естественного КД ДНК при λ =275*нм*, тогда как для металлопорфиринов МеТОЕРуР(3) происходит лишь небольшое уменьшение этой полосы. Таким образом, по виду КД-спектров в УФ-области комплексов ДНК с металлопорфиринами можно однозначно судить, на базе какого безметального порфирина они получены [82].

Сильный эффект расщепления полосы $\lambda = 275$ нм наблюдается при наличии в растворе ZnTOEPyP(4) (рис. 14), что приводит к изменению знака

этой полосы с «+» на «–», как это имеет место для Z-формы или агрегированной $\Psi_{(-)}$ -формы ДНК [7, 8]. Однако подобное изменение формы ДНК может быть не единственным результатом ее взаимодействия с порфиринами. Возможна также и другая причина. Поскольку сами порфирины имеют полосу поглощения в УФ-области, совпадающую с полосой поглощения ДНК, не исключено, что в результате внешней упаковки порфиринов на ДНК образующиеся достаточно протяженные порфириновые структуры приобретают отрицательный индуцированный КД в полосе λ =260–310*нм*, который в сумме с положительным вращением ДНК в этой области дает расщепление полосы.

Образование достаточно протяженных порфириновых структур на поверхности ДНК весьма вероятно. Это следует также из экспериментов по струйному дихроизму ДНК в присутствии TMPyP(4) и его металлокомплексов. Действительно, при внешнем желобковом связывании плоскости порфиринового кольца располагаются не параллельно или перпендикулярно оси спирали, а под углом к ней [85, 86]. В частности для TMPyP(4) этот угол

Рис. 16. Спектры кругового дихроизма комплексов poly(dA-dT)₂ с CuTOEPyP(3) при различных относительных концентрациях порфирина: (--) - r=0; (- · -) - r=0,022; (-· · -) - r=0,11; (- - -) - r=0,22; (-··) r=1,1; (- Δ-) - r=3,0. составляет 55°, для ZnTMPyP(4) – 65°, а для CoTMPyP(4) – 45°.

По знаку индуцированного КД в видимой области можно утверждать, что ZnTOEPyP(4), ZnTOEPyP(3) (рис. 14) и CoTOEPyP(4), CoTOEPyP(3) реализовывают внешнее упорядоченное связывание с ДНК, a CuTOEPyP(4), CuTOEPyP(3) (рис. 15) и NiTOEPyP(4), NiTOEPyP(3) связываются с ДНК предпочтительнее интеркаляцией [82].

Теперь рассмотрим вопрос о возможности реализации внешнего связывания для второй группы металлопорфиринов. В связи с этим в работе [82] были исследованы спектры КД комплексов CuTOEPyP(3) с poly(dA-dT)₂ (рис. 16). Здесь аномально сильные изменения спектров КД в видимой области poly(dA-dT), при повышении содер-

жания CuTOEPyP(3) говорят о способности этих порфиринов взаимодействовать также с АТ-парами, что происходит только путем внешнего связывания (подобный же эффект наблюдается для CuTOEPyP(4) и Niсодержащих порфиринов).

Переход спираль-клубок. В табл. 1 выборочно приведены данные по плавлению ДНК тимуса теленка в присутствии различных концентраций порфиринов (0,001 < r <0,01).

Как видно из табл. 1, при 0,001 < r < 0,05 температура и интервал плавления слабо меняются. При столь низких концентрациях порфирина скорее всего реализуется внешнее связывание. В пользу этого предположения свидетельствует небольшой рост гипохромности (на 1–2%) до r=0,01. При концентрациях 0,05 < r < 0,3 величины T_m и Δ T растут, а при r>0,3 наблюдаются агрегационные явления (именно с этих значений начинаются радикальные изменения в спектрах КД комплексов ДНК с порфиринами).

Таблица І

– Температура плавления (Т _т), интервал плавления (ΔГ) и гипохромный эффект (Δh) по.	посы
2=260нм ДНК тимуса теленка в комплексе с некоторыми порфиринами. Концентраци.	а ДНК
5-10 ⁵ М пар нуклеотидов	

r	TOEPyP(4)		ZnTOEPyP(4)			CuTOEPyP(4)			
	T _m , ⁰ C	Δ Τ, ⁰ <i>C</i>	∆h, %	T _m , ⁰ C	ΔT, ⁰ C	Δh, %	T _m , ⁰C	ΔT, ⁰ C	∆h, %
0	71,8	9,8	37	71,8	9,8	37	71,8	9,8	37
0,001	72,8	9,3	38	-	-	-	-	-	-
0,002	70,6	9,6	39	71,4	9,9	37	71,9	9,6	37
0,01	71,6	9,4	36	-	-	1	-		-
0,02	-	-	-	72,8	11,5	37,5	72,5	10,2	37
0,05	73,3	9,5	34	-		-	_	-	_
0,1	75,6	11,8	33	80,6	13,6	39	80,9	12,2	28
>0,3	агрегация								

В табл. 2 приведены данные по плавлению ДНК с различными металлопорфиринами при одной концентрации r=0,1

Таблица 2

T _m , ⁰ C	Δ Τ, ⁰ <i>C</i>	Δh, %
71,8	9,8	37
75,8	11,8	33
80,6	13,6	39
78,6	14,3	35
80,9	12,2	28
82,9	13,1	25
75,0	14,9	32
77,2	10,5	40
77,8	11,8	36
72,6	10,4	25
73,0	12,0	30
	Tms °C 71,8 75,8 80,6 78,6 80,9 82,9 75,0 77,2 77,8 72,6 73,0 73,0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Параметры кривых плавления комплексов ДНК тимуса теленка с различными порфиринами/металлопорфиринами (r=0,1)

Как видим из табл. 2, гипохромный эффект (Δh) весьма чувствителен к типу центрального металла. По изменению гипохромного эффекта металлопорфирины можно разделить на две группы:

 металлокомплексы Zn и Co с обоими типами безметальных порфиринов, не меняющие (Co) или незначительно увеличивающие (Zn) гипохромный эффект ДНК;

2) металлокомплексы Си и Ni с этими порфиринами, сильно уменьшающие гипохромный эффект ДНК (для Си ∆h равно 28% и 25%, а для Ni – 25% и 30% для TOEPyP(4) и TOEPyP(3) соответственно).

Интересные закономерности наблюдаются при концентрации порфирина r=0,1. При этой концентрации температура и интервал плавления ДНК растут для всех типов порфиринов. Однако это увеличение зависит от наличия и типа металла, а также от положения (3N или 4N) бокового радикала на пиридиловом кольце. Действительно, T_m и ΔT изменяются сильнее для TOEPyP(4) и его металлокомплексов, чем для TOEPyP(3).

Уменьшение гипохромного эффекта Δh полосы $\lambda = 260$ *нм* ДНК при плавлении комплексов ДНК с некоторыми порфиринами говорит об ослаблении межплоскостных стэкинг-взаимодействий между парами оснований. Это может произойти, если между ними интеркалируют плоскости порфириновых колец. В результате, в местах интеркалирования порфиринов взаимодействия между соседними вдоль цепи парами азотистых оснований ДНК ослабляются. Т.е. для безметальных, а также Сu- и Ni-содержащих порфиринов реализуется преимущественно интеркаляционный способ связывания. Внешнее же связывание не мешает стэкинг-упаковке пар оснований ДНК друг над другом, и поэтому гипохромный эффект не уменьшается, как это происходит для порфиринов с Zn и Co.

Проведенные исследования комплексов ДНК с порфиринами показали, что механизм их предпочтительного связывания определяется типом цент-

Рис. 17. Способы координирования металлов в металлопорфиринах MeTMPyP(4): а) Me=Cu²⁺, b) Me=Zn²⁺, c) Me=Mn³⁺, Ni²⁺. Рисунок взят из работы [78].

рального металла, точнее его стереометрией. А стереометрия металлокомплексов порфиринов очень сильно зависит от такого параметра, как число атомов, с которыми переходной металл координирует [81]. Координационное число для Си – 4. Си-содержащий порфирин образует 4 координационные связи с четырьмя атомами азота порфиринового ядра. Вследствие этого, не образуя аксиального лиганда, металл располагается в плоскости порфиринового кольца [69, 81] (рис. 17).

К этой же группе можно отнести Ni, который также не вылезает из плоскости порфиринового кольца, хотя он может образовывать 4- или 6-координационные соединения (во втором случае образует два аксиальных лиганда, расположенных перпендикулярно плоскости порфирина, которые как бы нейтрализуют друг друга). Ni-содержащие порфирины TMPyP, например, способны образовать оба типа координации примерно в равных пропорциях [87].

Координационное число для Zn и Co равно 5 [69, 78]. Порфирины с этими металлами имеют один аксиальный лиганд, расположенный в центре порфиринового ядра перпендикулярно плоскости порфирина, благодаря чему они выталкиваются из плоскости порфиринового кольца. В результате, эти металлопорфирины не могут вследствие стерических причин интеркалировать между парами оснований ДНК и образуют только внешний тип связывания (рис. 17).

Проведенный анализ показывает [82, 83], что:

• удлинение бокового радикала в пиридиловом кольце принципиально не меняет механизма связывания порфиринов с ДНК. ТОЕРуР(4) и ТОЕРуР(3) связываются с ДНК как посредством образования внешнего, так и внутреннего стэкинга (интеркаляция);

• в зависимости от места прикрепления оксиэтилгруппы в пиридиловом кольце меняется механизм их предпочтительного взаимодействия с ДНК: (4N-оксиэтилпиридил)порфирины предпочитают интеркаляцию в структуру ДНК, но хуже реализовывают внешнее связывание, чем 3N-порфирины;

• механизм взаимодействия порфиринов с ДНК зависит от типа центрального металла. По этому признаку металлопорфирины можно разделить на две группы:

1) металлопорфирины, предпочитающие интеркаляционный способ связывания с ДНК, – это Си- и Ni-содержащие металлопорфирины;

2) металлопорфирины, предпочитающие внешнее упорядоченное связывание с ДНК, – это Zn- и Со-содержащие металлопорфирины.

II. Необратимо связывающиеся лиганды

Как уже говорилось выше, необратимое ковалентное связывание лигандов с ДНК приводит к химической модификации ее структуры [85–95]. Известно, что в результате прямого ковалентного связывания с ДНК формируются три основных типа аддуктов:

1. Монофункциональные аддукты, связанные с одним нуклеотидом двойной спирали [90, 96].

2. Внутрицепочечные сшивки, которые формируются путем бифункционального связывания с двумя нуклеотидами одной цепи. Это могут быть как соседние нуклеотиды, так и нуклеотиды, разделенные последовательностями различной длины [91, 92].

3. Межцепочечные сшивки, которые формируются путем бифункционального связывания с двумя нуклеотидами, принадлежащими различным цепям двойной спирали. Это могут быть комплементарные нуклеотиды одной пары оснований или нуклеотиды разных пар – соседних или разделенных последовательностями различной длины и состава [93, 96, 97].

Все типы химических модификаций структуры ДНК влияют на характер ее плавления [95–97], поскольку они изменяют свободную энергию спиральных и расплавленных пар оснований в точках своего расположения и смежных с ними областях. Следовательно, информация о влиянии сшивок на стабильность ДНК важна как для выявления механизмов биологической активности сшивающих агентов, так и для понимания свойств двойной спирали.

В качестве необратимо связывающихся лигандов рассмотрены два

Рt(II)-содержащих комплекса - цисдиаминдихлорплатина(II) (цис-ДДП) и транс-ДДП и два Ru(III)-содержащих комплекса – NAMI и RAP. Структурные формулы этих соединений приведены ниже (см. схему 3).

а) Платиновые комплексы цис-ДДП и транс-ДДП. Интерес к платиновым комплексам достаточно высок, поскольку большинство из них обладает сильной противоопухолевой активностью [90, 91, 98]. Среди этих препаратов особый интерес представляют цис-ДДП и ее стереоизомер – транс-ДДП. Интерес к первой из них объясняется тем, что ДНК является клеточной мишенью для этого сильного противоопухолевого препарата [90–95, 99]. Она ковалентно связывается с клеточной ДНК и ингибирует ее репликацию. Стереоизомер же транс-ДДП также ковалентно связывается с ДНК, однако он клинически инактивен и менее цитотоксичен, чем цис-ДДП [100–102]. Решающую роль в реализации клеточных процессов играет целенаправленное воздействие платиновых комплексов на определенные нуклеотиды.

Основной тип взаимодействия цис-ДДП с ДНК - это бифункциональное взаимодействие с положениями N7 двух соседних гуаниновых оснований в одной и той же цепи в последовательностях типа d(GpG) в большой бороздке двойной спирали [103-105]. Этот тип взаимодействия составляет почти 65% от общей платинации при $r_b < 0.01$ (здесь $r_b = C_{\Pi\Pi\Pi}/C_{\text{пар нука}}$). Существенно меньше бифункциональных взаимодействий происходит в последовательностях типа d(ApG) (почти 23% от общей платинации [106]). Причем подобного типа взаимодействия происходят только при достижении насыщения взаимодействий в последовательностях типа d(GpGp) (при 0,02<rb<0,1). Следующий тип взаимодействий – это бифункциональные взаимодействия цис-ДДП с двумя гуанинами одной и той же цепи, разделенными любым другим нуклеотидом (последовательности типа d(GpXpG)). Этот тип взаимодействия составляет ~7% от общей платинации [92, 105]. Цис-ДДП может образовывать также хелаты, соединяя N7 с Об одного гуанинового основания [107]. Монофункциональное связывание цис-ДДП и связывание межцепочечного типа относительно малы (соответственно 5% и 1% от общей платинации) [90, 95].

Транс-ДДП также предпочтительнее связывается с положениями N7 гуанина. Однако имеются данные о связывании достаточно высоких концентрациий транс-ДДП с адениновыми основаниями. Исходя из своих стереохимических особенностей, транс-ДДП может образовывать 1–3-внутрицепочечный тип связывания в участках d(GpXpG) [101].

Следует отметить, что при низких концентрациях как цис-ДДП, так и транс-ДДП происходит монофункциональное комплексообразование с ДНК, которое превращается в один из бифункциональных типов связывания с увеличением концентрации платинового комплекса. Естественно, что все указанные виды связывания цис-ДДП и транс-ДДП приводят к изменениям температуры и интервала перехода спираль-клубок, деформации двойной спирали, а также однонитевым и двунитевым разрывам при достаточно высоких концентрациях (r_b >0,1) [89, 104, 108]. В присутствии цис-ДДП и транс-ДДП происходит и существенное изменение конформации ДНК [109].

Попытаемся проанализировать эти результаты и полученные нами УФ-

и КД-данные с учетом того факта, что до сих пор нет единого стройного подхода к объяснению особенностей комплексообразования этих веществ с ДНК.

Таблица З

r _b	Cl.Perfr	ringens	Тимус теленка		
	$T_m, {}^{\circ}C$	$\Delta T, {}^{o}C$	$T_m, {}^{\diamond}C$	$\Delta T, {}^{0}C$	
0	58,5 (58,5)	5,5 (5,5)	68,0 (68,0)	10,0 (10,0)	
0,003	60,0 (59,5)	6,8 (6,8)	68,5 (69,2)	10,3 (12,1)	
0,03	58,5 (61,5)	7,2 (12,5)	66.7 (70,0)	12,0 (14,3)	
0,3	58,5 (63,5)	7,3 (12,5)	66,0 (72,3)	12,6 (18,2)	
3	45,0 (42,5)	7,5 (7,5)	51,6 (53,5)	13,8 (11,0)	
	E. C	oli	M. Luteus		
	$T_m, {}^0\overline{C}$	$\Delta T, {}^{0}C$	$T_m, {}^{\mathrm{o}}C$	$\Delta T, {}^{o}C$	
0	74,5 (74,5)	5,8 (5,8)	85,5 (85,5)	4,2 (4,2)	
0,003	72,5 (76,5)	8,7 (8,1)	81,0 (89,0)	10,7 (7,0)	
0,03	71,0 (77,8)	12,5 (14,0)	83,0 (91,8)	10,6 (9,2)	
0,3	68,5 (80,0)	13,0 (15,8)	80,0 (-)	12,7 (-)	
3	49,5 (51,5)	13,5 (11,0)	52,0 (-)	15,7 (-)	

Значения T_m и ΔT разных ДНК при различных относительных концентрациях r_b цис-ДДП и транс-ДДП (в скобках). Все измерения проводились в растворе 0,01M NaClO₄+0,001M NaCl

Результаты, приведенные в табл. 3, показывают, что в случае цис-ДДП имеет место дестабилизация АТ- и ГЦ-нуклеотидных пар. Причем дестабилизация ГЦ-пар несколько выше. В случае ДНК с высоким АТ-содержанием (*Cl.Perfringens* и тимус теленка) имеет место незначительное увеличение температуры плавления (на $2-3^{\circ}C$). Изменение ΔT также существенным образом зависит от ГЦ-содержания ДНК. Этот результат легко понять, если учесть, что для ГЦ-богатых ДНК бифункциональные взаимодействия в последова-

Рис. 18. Кривые плавления pdGpdC (a) и pdApdT (b): $1-r_b=0,003; 2-r_b=0,03; 3-r_b=0,3.$

тельностях типа d(GpG) более эффективны и насыщение этим основным типом взаимодействия в ГЦ-богатых реализуется при более низких концентрациях цис-ДДП, чем в АТ-богатых ДНК.

Интересные результаты получаются в комплексах цис-ДДП-рdGpdC (рис. 18). Как и следовало

ожидать, дестабилизация pdGpdC в присутствии цис-ДДП наиболее эффективна и, следовательно, процесс деградации ДНК наступает при достаточно низких концентрациях цис-ДДП (рис. 18). Начиная с $r_b \sim 0.3$, кривая плавления pdGpdC принимает двуступенчатый вид, что указывает на присутствие сильного антикооперативного характера взаимодействия между лигандами, адсорбированными на ДНК [110]. Для pdApdT двухступенчатость плавления не наблюдается. В случае же транс-ДДП независимо от ГЦ-содержания ДНК при концентрациях $0,3 > r_b > 0,003$ происходит рост термостабильности всех ДНК. К такому выводу приводит анализ данных табл. 3. Согласно [34], при концентрациях $0,003 < r_b < 0,03$ транс-ДДП монофункционально связывается с положением N7 гуанина, в результате ДНК переходит в более упорядоченную спиральную форму с более высокой термостабильностью. В случае же цис-ДДП при этих концентрациях преобладает 1-2 бифункциональное связывание с положениями N7 соседних гуанинов одной и той же цепи в последовательностях типа d(GpG) в большой бороздке двойной спирали [103, 104]. Скорее всего именно этим и определяется различное действие цис-ДДП и транс-ДДП на параметры плавления ДНК. При этом как в случае цис-ДДП, так и транс-ДДП в ДНК происходят существенные конформационные изменения.

Известно, что связывание цис-ДДП с ДНК приводит к конформационному изменению сахарного кольца от С₂'-эндо к С₃'-эндо [103]. Это свидетельствует о локальных В-А-конформационных изменениях в местах связывания. Однако только монофункциональным связыванием транс-ДДП с ДНК при столь низких концентрациях платинового комплекса (0,003 < r_b <0,03) и 1-2 внутрицепочечным связыванием цис-ДДП при тех же концентрациях лиганда невозможно объяснить достаточно сильное изменение T_m и ΔT ДНК при $r_b=0,003$ (см. табл. 3).

С учетом того, что при столь низких концентрациях лигандов невозможны высокие степени заполнения ДНК, ожидаемое увеличение δT_m можно оценить с помощью соотношения Д. Ю. Ландо [30,110]:

$$\delta T_m = \frac{RT_0}{\Delta H \cdot l_1} \ln\left(1 - r_b\right),$$

где T_0 – температура плавления ДНК для $r_b \approx 0$, ΔH – энтальпия перехода спираль-клубок, R – газовая постоянная, l_1 – количество пар оснований, соответствующих одному центру связывания. Это соотношение справедливо при высоких степенях заполнения и высоких константах связывания лигандов с ДНК.

Расчеты показывают, что количество пар оснований l_1 между центрами связывания приблизительно равно 300. Это значит, что ковалентное связывание платиновых комплексов с редкими центрами связывания может приводить к существенным изменениям температуры плавления. В реальных системах количество этих центров может быть много меньше 300, поскольку возможны также и другие механизмы связывания цис-ДДП и транс-ДДП с ДНК [111, 112].

Другой вероятной причиной, приводящей к столь «экзотичным» изменениям поведения ДНК при комплексообразовании с платиновыми комплексами могут быть локальные В-А-переходы в макромолекуле в окрестности центра связывания [106]. Этот вопрос достаточно подробно исследован нами теоретически и экспериментально, а переходы В-А и спираль-клубок рассматривались на языке модели Зимма-Брегга [113]. Расчеты показали, что при столь низких концентрациях цис-ДДП (r_b =0,003) локальный В-А-переход, индуцируемый платинацией ДНК, может привести к изменению T_m ДНК максимум на 0,1°C [13, 110]. Столь несущественное изменение T_m не может объяснить экспериментально наблюдаемое сильное изменение в стабильности ДНК (реально наблюдается $\delta T_m = 4^{\circ}C$).

И наконец, следующей вероятной причиной, способной привести к подобным серьезным изменениям характеристик плавления ДНК, может быть значительное изменение вторичной и третичной структур ДНК, которые, как и в случае ионов двухвалентных металлов [19, 54], приводят к изменению потенциала дальнодействия между адсорбированными лигандами и его зависимости от степени спиральности [114]. Подобного рода эффекты возникают при существенном изменении суммарного заряда ДНК при ее комплексообразовании с лигандами [19, 54, 55, 110], что невозможно при столь низких концентрациях платинового комплекса. Действительно, в данном случае высокие степени насыщения ДНК лигандами достигаются уже при очень малых концентрациях последних (r_b=0,003). При этом, как мы показали, существуют крайне редкие центры связывания, расстояния между которыми достаточно велики (~300 нуклеотидных пар). Эти центры очень чувствительны к нуклеотидным последовательностям в ГЦ-богатых участках гетерогенной ДНК [34, 109]. Нам представляется, что наиболее вероятной причиной столь «экзотического» изменения структуры ДНК при платинации могут быть агрегационные эффекты в макромолекуле [115]. В [34] нами было показано, что при комплексообразовании ДНК с цис-ДДП и транс-ДДП, кроме специфического связывания лигандов с ДНК, имеются также неспецифические факторы, влияющие на переход спираль-клубок (напр., локальные В-А-переходы, формирование внутримолекулярных или межмолекулярных агрегатов, процессы деградации ДНК и др.). Среди указанных неспецифических факторов при низких концентрациях лиганда (~0,003) могут быть как локальные В-А-переходы, так и образования межмолекулярных и внутримолекулярных агрегатов в процессе плавления ДНК. Процессы же деградации ДНК происходят при существенно более высоких концентрациях $(1 < r_b < 0, 1)$ платиновых комплексов [108].

Мы полагаем, что при низких концентрациях платиновых комплексов не исключается возможность образования внутримолекулярных сшивок ДНК посредством бидентальных взаимодействий платиновых комплексов с N7 позициями гуанинов, расстояние между которыми вдоль цепи может составить несколько сот нуклеотидов. Такого рода взаимодействия платиновых комплексов с ДНК должны приводить к образованию кольцевых структур внутри макромолекулы и ее компактизации. Поскольку указанный эффект должен быть связан с молекулярной массой ДНК, то для низкомолекулярной ДНК изменения характеристик перехода спираль-клубок должны быть менее выражены. Результаты по плавлению фрагментированной ДНК (молекулярная масса которой на два порядка меньше) в присутствии цис-ДДП и транс-ДДП подтверждают это [110].

Таким образом, суммируя вышеизложенное, можно заключить, что для лигандов типа цис-ДДП и транс-ДДП существуют крайне редкие центры

связывания на ДНК в виде определенных нуклеотидных последовательностей, которые находятся в ГЦ-богатых участках гетерогенной ДНК. Эти лиганды уже при достаточно низких концентрациях способны серьезно влиять на структуру ДНК, что является крайне неожиданным результатом. Причины столь серьезных изменений структуры ДНК могут быть разными, и пока они однозначно не определены. Мы полагаем, что наиболее вероятными из них могут быть образование внутримолекулярных сшивок в ДНК и ее компактизация [110].

6) Рутениевые соединения. Другим классом необратимо связывающихся с ДНК лигандов являются соединения рутения. Некоторые комплексы Ru(III) проявляют ярко выраженную противоопухолевую активность,

Схема 3. Ru(III)-содержащие комплексы RAP (а) и NAMI (б).

причем по сравнению с платиновыми комплексами обладают значительно меньшей токсичностью [116-118]. Этим и определяется фармакологический интерес к данным соединениям. В отличие от платиновых, комплексы рутения практически не изучены. Мы взаимодействие с исследовали двух комплексов Ru(III) ДНК (Na-транс-(диметилсуль-NAMI

фоксид)(имидазол)тетрахлорид рутения(III)) и RAP (дихлоро-1,2-пропилендиаминтетраацетат рутения(III)) (схема 3).*

Как видно из табл. 4, комплексы рутения вызывают увеличение как термостабильности двойной спирали ДНК (изменение температуры плавления $\delta T_m \approx 1-4^\circ C$), так и интервала плавления ΔT . Причем стабилизация возрастает с увеличением концентрациии комплексов рутения. Как показывают дифференциальные кривые плавления ДНК, в присутствии этих комплексов наблюдается избирательность их связывания по отношению к ГЦ-богатым участкам ДНК [59].

Таблица 4

	днк	NAMI +ДНК		RAP	+ДНК
[$r_b=0$	$r_b = 0,01$	$r_{b}=0,1$	$r_b = 0.01$	$r_{b}=0,1$
$T_m, {}^{\circ}C$	67,3	69,5	71,1	67,5	68,3
$\Delta T, ^{\circ}C$	9,8	9,9	14,1	10,2	11,5

Значения температуры (T_m) и интервала (ΔТ) плавления ДНК тимуса теленка при различных концентрациях комплексов рутения

Согласно данным, полученным по изучению этих комплексов методами кругового дихроизма и гель-электрофореза (см., напр., [119, 120]), изменения конформации и термостабильности при комплексообразовании с ДНК

NAMI и RAP были синтезированы на химическом факультете Флорентийского университета и любезно предоставлены нам заведующим лабораторией неорганической химии проф. П. Ориоли.

значительно малы по сравнению с таковыми для цис-ДДП. В частности проведенные нами измерения спектров КД ДНК показали, что ни один из исследованных комплексов рутения практически не меняет спектры кругового дихроизма ДНК даже при высоких концентрациях ($r_b=0,1$) [121].

Известно, что большое влияние на процесс плавления оказывает межцепочечное сшивание нитей молекулы ДНК (это обусловлено топологическими ограничениями полного расхождение нитей ДНК) в результате ее плавления. Даже при низких степенях заполнения ДНК лигандами подобные взаимодействия могут привести к существенному увеличению температуры плавления. Исследование кривых ренатурации ДНК тимуса теленка при добавлении комплексов NAMI, RAP и цис-ДДП при *r*=0,1 показало, что ренатурация комплексов ДНК-лиганд составляет 27% для NAMI, 31% для RAP, 43% для цис-ДДП [121]. Отметим, что ренатурация чистой ДНК равна 7%. Относительно высокий процент ренатурации ДНК в присутствии комплексов рутения связан скорее всего с образованием межнитевых сшивок между гуаниновыми основаниями, расположенными в противоположных нитях биспирали ДНК.

Сравнение сшивающего действия металлоорганических соединений Pt(II) и Ru(III) показало, что по эффективности сшивания нитей ДНК их можно расположить в ряд: RAP<NAMI<цис-ДДП.

Работа выполнена при частичной поддержке грантов ISTC A301.2, NFSAT MB 078-02 / CRDF 12027, NATO LST.CLG 979777.

Кафедра молекулярной физики

Поступила 29.06.2004

ЛИТЕРАТУРА

- 1. Иванов В.И. Мол. биол., 1983, т. 17, вып. 3, с. 616-621.
- 2. Arnott S., Dover S.D., Wonacoff A.I. Acta Crystallogr., 1969, v. 25, № 11, p. 2192-2206.
- Ivanov V.I., Minchenkova L.E., Minyat E.E., Frank-Kamenetski M.D. J. Mol. Biol., 1974. v. 87, p. 817–833.
- 4. Arnott S., Chandrasecharan R., Birdsall D.L., Leslic A.G.W., Ratiff R.F. Nature, 1975, v. 283, № 5449, p. 743-745.
- Sindlenton C.K., Klysik I., Stirdivant S.M., Wells R.O. Nature, 1982, v. 229, № 5881, p. 312-316.
- 6. Gray D.M., Ratliff R.L. Biopolymers, 1975, v. 14, № 3, p. 487-497.
- 7. Ruth H., Scott M.C. Biopolymers, 1981, v. 20, Nº 12, p. 2532-2552.
- Wang A.H.J., Quigley G.I., Kolpak F.J., Cranford J.L., Boom I.H., Van-der Marel G., Reich A. -- Nature. 1979, v. 282, № 5740, p. 680-686.
- 9. Франк-Каменецкий М.Д. Мол. биол., 1983, т. 17, вып. 3, с. 639-652.
- 10. Vologodskii A.V., Anshelevich V.V., Lazurkin Yu. S., Frank-Kamenetskii M.D. Nature, 1979, v. 280, № 5720, p. 294-298.
- 11. Rice S.A., Doty P. J. Am. Chem. Soc., 1957, v. 79, № 15, p. 3937-3947.
- 12. Веденов А.А., Дыхне А.М., Франк-Каменецкий М.Д. Успехи физ. наук, 1971, т. 105, вып. 3, с. 479–519.
- Haroutiunian I.S., Sarkisyan Sh.A., Antonyan A.P., Haroutiunian S.G., Dalyan Y.B., Vardevanyan P.O. – J. Biomol. Struct. Dyn., 2003, v. 20, № 6, p.886.
- 14. Асланян В.М., Арутюнян С.Г. Биофизика, 1985, т. 30, вып. 5, с. 746-749.
- 15. Асланян В.М., Бабаян Ю.С., Арутюнян С.Г. Биофизика, 1984, т. 29, с. 372-376.

- 16. Воскобойник А.Д., Монаселидзе Д.Р., Мгеладзе Г.М., Чанчалашвили З.Н., Лазуркин Ю.С., Франк-Каменецкий М.Д. Мол. биол., 1975, т. 9, вып. 5, с. 783–789.
- 17. Арутюнян С.Г., Далян Е.Б., Хачикян Р.Э., Асланян В.М. Биофизика, 1990, т. 35, вып. 4, с. 588-591.
- 18. Асланян В.М., Далян Е.Б., Шпаковский А.Г. Биофизика, 1988, т. 33, вып. 4, с. 430-436.
- 19. Haroutiunian S.G., Dalian E.B., Aslanian V.M., Lando D.Yu., Akhrem A.A. Nucl. Acids Res., 1990, v. 18, № 21, p. 6413-6417.
- 20. Семенов М.А., Кашпур В.А., Больбух Т.В., Малеев В.Я. Биополимеры и клетка, 1987, т. 3, №1, с. 18-21.
- 21. Слоннцкий В.В., Фрисман Э.В. Мол. биол., 1980, т. 14, вып. 3, с. 496-506.
- 22. Frisman E.V., Veselkov A.N., Slonitsky S.V., Karateev L.S., Vorobev V.I. Biopolymers, 1979. v. 13, p. 2169–2178.
- 23. Привалов П.Л. Мол. биол., 1969, т. 3, № 5, с. 690-695.
- 24. Привалов П.Л., Монаселидзе Д.Р., Мревлишвили Г.М., Магаладзе В.А. ЖЭТФ, 1964, т. 47, вып. 6 (12). с. 2073-206.
- 25. Асланян В.М., Арутюнян С.Г. Биофизика, 1985, т. 30, вып. 5, с. 741-746.
- 26. Асланян В.М., Арутюнян С.Г. Биофизика, 1984, т. 29, вып. 1, с. 148-149.
- 27. Daune M., Dekker C.A., Schachman H.K. Biopolymers, 1966, v. 4, № 1, p. 51-76.
- 28. Белннцев Б.Н., Вологодский А.В., Франк-Каменецкий М.Д. Мол. биол., 1976, т. 10, № 4, с. 764–769.
- 29. Нечипуренко Ю. Д., Крылов А.С., Заседателев А.С., Гурский Г.В. Мол. биол., 1984, т. 18, № 2, с. 332–342.
- 30. Ахрем А.А., Ландо Д.Ю. Мол. биол., 1981, т. 15, вып. 5, с. 1083-1091.
- 31. Бирштейн Т.М., Птицин О.Б. Конформация макромолекул. М.: Наука, 1964, с. 270.
- 32. Ландо Д.Ю., Крот В.И., Франк-Каменецкий М.Д. Мол. биол., 1975, т. 9, вып. 5, с. 856–860.
- 33. Франк-Каменецкий М.Д. Мол. биол., 1968, т. 2, № 3, с. 408-419.
- 34. Haroutiunian S.G., Bruni B., Monnanni R., Mangani S., Orioly P. Inorganica Chimica Acta, 1991, v. 184, p. 127–132.
- 35. Иванов В.И., Минченкова Л.Е., Тимофеев В.М. Мол. биол. 1967, т. 1, вып. 5, с. 682–688.
- 36. Zimmer Ch., Luck G., Fritzsch H., Treibel H. Biopolymers, 1971, v. 10, p. 441-463.
- 37. Blagoi Yu.P., Sorokin V.A., Valeev V.A., Gladchenco G.O. Biopolymers, v. 22, № 7, p. 1641–1656.
- 38. Eichorn G.L., Shin Y.A. J. Am. Chem. Soc., 1968, v. 90, № 26, p. 7323-7328.
- 39. Luck K.F.S., Maki A.H., Hoover R.J. J. Amer. Chem. Soc., 1975, v. 97, № 5, p. 1241-1242.
- 40. Föster W., Bauer E., Schütz b., Berg H., Acimenko M.M. Biopolymers, 1979, v. 18, p. 625-661.
- 41. Zimmer Ch., Luck G., Trieble H. Biopolymers, v. 15, № 3, p. 425–453.
- 42. Целикова С.В., Лобачев В.М., Мандругин А.А., Иванов В.И. Мол. биол., 1976, т.10, вып. 5. с.1153–1158.
- 43. Mahler H.R., Mehrotra B.D. Biochem. Biophys. Acta, 1963, v. 68, p. 211-233.
- 44. Mehrotra B.O., Mahler H.R. Biochem. Biophys. Acta, 1964. v. 91, p. 78-91.
- 45. Aslanian V.M., Babaian Yu.S., Haroutiunian S.G., Tatevosian V.O. Studia Biophysica, 1982, v. 87, № 2/3, p. 209-210.
- 46. Арутюнян С.Г. Влияние лигандов на структуру и стабильность ДНК как одномерного кристалла: Автореф. дисс. на соискание уч. ст. докт. физ.-мат. наук. Ер., 1993.
- 47. Привалов П.Л. Биофизика, 1970, т. 15, вып. 2, с. 206-214.
- 48. Privalov P.L., Ptitsyn O.B., Birstein T.M. Biopolymers. 1969, v. 8, p. 559-571.
- 49. Ptitsyn O.B., Birstein T.M. Biopolymers. 1969, v. 7, p. 435-449.
- 50. Malenkov G.G., Minchenkova L.E., Minyat E.E., Schyolkina A.K., Ivanov V.I. FEBS Letters, 1975, v. 51, № 1, p. 38-42.
- 51. Бабаян Ю.С. Влияние мочевины на конформационное состояние молекулы ДНК: Автореф. дисс. на соискание уч. ст. канд. физ.-мат. наук. Харьков, 1980, с. 116.

- 52. Ахрем А.А., Арутюнян С.Г., Ландо Д.Ю., Асланян В.М. Докл. АН БССР, 1984, т. 28, № 3, с. 272–2757.
- 53. Зигель Ц. Ионы металлов в биологических системах. М.: Мир, 1982, с. 55.
- 54. Daune M. Studia Biophis., 1970, B-24-25, p.287-297.
- 55. Yurgaitis A.P., Lazurkin Yu.S. Biopolymers, 1981, v. 20, p. 967-975.
- 56. Shin J. et al. Biopolymers, 1973, v. 12, № 11, p. 2459-2475.
- 57. Ott G.S., Bastia D., Bauer W.R. Biochim. Biophys. Acta, 1978, v. 58, p. 216-232.
- 58. Clement R.M., Sturm J., Daune M.P. Biopolymers, 1973, v. 12, p. 405-421.
- 59. Далян Е.Б. Структурообразование в комплексах ДНК-лиганд. Обратимое и необратимое связывание: Автореф. дисс. на соискание уч. ст. докт. физ.-мат. наук. Ер., 2002.
- Eichhorn G.L., Shin Y.A., Butzov I.I. Transitions induced by metal complexes among several forms of DNA. N. Y.: Cold Spring Harbor, 1983, p.125–127.
- 61. Luck G., Zimmer Ch. Eur. J. Bioochem., 1972, v. 29, p. 528-536.
- Rifkind J., Shin Y. A., Heim J. M., Eichhorn G. L. Biopolymers, 1976, v. 15, №10, p. 1879–1902.
- 63. Арутюнян С.Г., Асланян В.М., Ландо Д.Ю., Далян Е.Б., Шпаковский А.А. Биофизика, 1988. т. 33. № 3, с. 430–436.
- 64. Корнилова С.В., Сорокин В.А., Гладченко Г.А., Благой Ю.П., Арутюнян С.Г. Мол. биол., 1991, т. 25, с. 648–654.
- 65. Далян Е.Б. Известия НАН РА, сер. Физика, 2002, вып. 3, т. 37, с.186-190.
- 66. Nordheim A., Lafer E.M., Peck L.J., Wang A.H.J., Stollar B., Rich A. Cell, 1982, v. 31, № 1, p. 309–318.
- 67. Благой Ю.П., Сорокни В.А., Божко Г.Х., Валеев В.А., Хоменко С.А. Studia Biophys., 1977, v. 65, № 1, p. 55–67.
- 68. Asanaka M., Kurimura T., Toya H., Ogaki K., Kato Y. AIDS, 1989, v. 3, p. 403-404.
- 69. Marzilli L.G. New J.Chem., 1990, v. 14, p. 409-420.
- 70. Baguley B.C. Biophys.Chem., 1990, v. 35, p. 203-212.
- Cuzzocrea S., Zingarelli B., Costantino G., Caputi A.P. Free Radical Biology & Medicine, 1999, v. 26, № 1/2, p. 25-33.
- 72. Richard G., Geier III, Sasaki, T. Tetrahedron, 1999, v. 55, p.1859-1870.
- 73. McMillin D.R., McNett K.M. Chem. Rev., 1998. v. 98, p. 1201-1219.
- 74. Хачоян В.И., Ордян М.Б., Мадакян В.Н., Казарян Р.К., Степанян А.С. Ж. экспер. и клинич. медицины, 1985, т. 25, № 1, с. 28–31.
- 75. Fiel R.J., Howard J.C., Mark E.H., Datta-Gupta N. Nucl.Acids Res., 1979, v. 6, № 9, p. 3093-3118.
- 76. Carvlin M.J., Datta-Gupta N., Fiel R.J. Biochem. Biophys. Res. Commun., 1982, v.108, № 1, p. 66-73.
- 77. Kuroda R., Takahashi E., Austin K.A. Fisher L.M. FEBS Letters, 1990, v. 262, № 2, p. 293–298.
- Pasternack R.F., Gibbs E.J. In: Metal ions in biological systems (ed. A. Sigel & H. Sigel), 1996, v. 33, p. 367-397.
- 79. Perree-Fauvet M., Gresh N. J. Biomol. Struct. Dyn., 1994, v. 11, № 6, p. 1203-1224.
- 80. Hui X., Gresh N., Pullman B. Nucl. Acids Res., 1990, v. 18, p.1109-1114.
- Pasternack R.F., P.R.Hubber, P.Boyd, G.Engasser, L.Francesconi, E.Gibbs, P.Fasella, G.C.Venturo, L.de C.Hinds – J. Amer. Chem. Soc., 1972, v. 94, p. 4511-4517.
- Balyan Y.B., Haroutiunian S.G., Ananyan G.V., Vardanyan V.I., Lando D.Yu., Madakyan V.N., Kazaryan R.K., Messori L., Orioli P., Benight A.S. – J. Biomol. Struct. Dyn., 2001, v. 18, № 5, p. 677–687.
- 83. Далян Е.Б. Биофизика, 2002. № 47, р. 253-258.
- Gandini Sh.C.M., Yushmanov V.E., Perussi J.R., Tabak M., Borissevitch I.E. J. Inorg. Biochem., 1999, v. 73, p. 35-40.
- 85. Barnes N.R., Schreiner A.F., Finnegan M.G., Jonson M.K. Biospectroscopy, 1999, v. 4, issue 5. p. 341-352.
- Sehlstedt U., Kim S.K., Carter P., Goodisman J., Vollano J., Norden B., Dabrowiak J.C. Biochemistry, 1994, v. 33, p. 417–426.
- 87. Kuroda R. and Tanaka H. J. Chem. Soc., Chem. Commun., 1994, p.1575-1576.

- 88. Brabec V., Leng M. Proc. Natl. Acad. Sci. USA, 1993, v. 90, № 11, p. 5345-5349.
- 89. Lippard S.J. Science, v. 218, № 4577, p. 1075-1082.
- 90. Brabec V., Reedijk J., Leng M. Biochemistry, 1992, v. 31, № 49, p. 12397-12402.
- 91. Takahara P.M., Rosenzweig A.C., Frederick C.A. and Lippard S.J. Nature, 1995, № 377(6550), p. 649-652.
- 92. van Boom S.S.G.E., Yang D., Reedijk J., van der Marel G.A., Wang A.H.J. J. Biomol. Struct. Dyn., 1996, v. 13, № 6, p. 989–998.
- 93. Malinge J.M. and Leng M. In: Cisplatin. Chemistry and Biochemistry of a Leading Anticancer Drug. 1999, p. 159–180.
- 94. Breslauer K.J. Methods in Enzymology, 1995, v. 258, p. 221-242.
- 95. Poklar N., Pilch D.S., Lippard S.J., Redding E.A., Dunham S.U., Breslauer K.J. Proc. Natl. Acad. Sci., USA, 1996, v. 93, № 15, p. 7606–7611.
- 96. Urata H., Ueno M., Yamasaki F., Akagi M. Biochem. Biophys. Res. Com., 1991, v. 175, № 2, p. 537-542.
- Haroutiunian S.G., Dalyan Y.B., Mamasachlissov Eu.Sh., Lando D.Yu. In: Modern problems of cellular and molecular biophysics (eds. S. Ayrapetyan and A. North). Erevan: Noyan Tapan, 2001, p. 291-307.
- Komess K.M., Lippard S.J. In: Molecular Aspects of Anticancer Drug-DNA Interactions, 1993, № 1, p.134-168.
- 99. Paquet F., Perez C., Leng M., Lancelot G., Malinge J.M. J. Biomol. Struct. Dyn., 1996, v. 14, № 1, p. 67-77.
- 100. Schwartz A., Leng M. J. Mol. Biol., 1994, 236(4), p. 969-974.
- 101. Boudvillain M., Dalbies R., Aussourd C., Leng M. Nucl. Acids Res., 1995, v. 23, № 13, p. 2381-2388.
- 102. Brabec V., Sip M., Leng M. Biochemistry, 1993, v. 32, № 43, p. 11676-11681.
- 103. Macquet J.P., Teophanides T. Bioinorg. Chem., 1975, v. 5, p. 59-66.
- 104. Macquet J.P., Butour J.L. Biochimie, 1978, v. 60, p. 601-614.
- 105. Kasparkova J., Mellish K.J., Qu Y., Brabec V., Farrell N. Biochemistry, 1996, v. 35, № 51, p. 16705-16713.
- 106. Sherman S.E., Lippard S.J. Chemical Reviews, 1987, v. 87, № 5, p. 1153-1181.
- 107. Boogard N., Redijk I. J. Inorg. Biochem., 1991, v. 43, p. 428.
- 108. Eastman A. Biochemistry, 1985, v. 24, p. 5027-5032.
- 109. Miller D.P., Ho K.M., Aroney H.Y. Biochemistry, 1988, v. 27, p. 8599-8606.
- 110. Haroutiunian S.G., Dalian E.B., Morozov V.F., Mamasachlissov Eu.Sh., Shahinian M.S., Akhrem A.A., Lando D.Y., Messori L., Orioli P. – Inorganica Chimica Acta, 1998, pp. 275-276, 510-514.
- 111. Lando D.Yu., Fridman A.S., Haroutiunian S.G., Benight A.S., Collery Ph. J. Biomol. Struct. Dyn., 2000, v. 17, № 4, p. 2000–2015.
- 112. Haroutiunian S.G., Vorob'ev V.I., Lando D.Yu. J. Biomol. Struct. Dyn., 2000, v. 17, № 4, p. 2000-2015.
- 113. Zimm B.R., Bragg J.K. J. Chem. Phys., 1949, v. 317, № 2, p. 526-533.
- 114. Fridman A.S., Brabec V., Haroutiunian S.G., Watell R.M., Lando D.Yu. J. Biomol. Struct. Dyn.. 2003, v. 20, № 4, p.1020-1036.
- 115. Haroutiunian S.G., Dalyan Y.B., Mamasachlissov Y.Sh., Morozov V.F., Khachikyan R.E., Vardevanyan P.O., Orioli P., Bruni B. – Biophysics, 1997, v. 42, № 2, p.353-357.
- 116. Kratz F., Keppler B.K., Hartmann M. et al. Metal Based Drugs, 1996, v. 3, p. 15-23.
- Keppler BK, Lipponer K G, Stenzel B, Kratz F. In: Metal Complexes in Cancer Chemotherapy (BK Keppler ed.); Weinheim: Verlag Chemie VCH, 1993, p. 187–220.
 Alessio E., Mestroni G., Sava G., Bergamo A., Coluccia M., Messori L. – In: Hadjiliadis D.
- 118. Alessio E., Mestroni G., Sava G., Bergamo A., Coluccia M., Messori L. In: Hadjiliadis D. (Ed.) – Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment, NATO ASI Series, Kluwer, 1997.
- 119. Barca A., Pani B., Tamaro M., Russo E. Mutat. Res., 1999, v. 423, p. 171-181.
- 120. Alessio E., Balducci G., Lutman A., Mestroni G., Calligaris M., Attia W.M. Inorganica Chimica Acta, 1993, v. 203. p. 205-217.
- 121. Messori L., Casini A., Vullo D., Haroutiunian S.G., Dalyan Y.B., Orioli P. Inorganica Chimica Acta, 2000, v. 303, p. 283–286.

ԴՆԹ-Ի ՄԱԿՐՈՄՈԼԵԿՈՒԼԻ ԿՈՄՊԼԵՔՍԱՌԱՋԱՑՄԱՆ ԱՌԱՆՁՆԱՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ ՑԱԾՐԱՄՈԼԵԿՈՒԼԱՅԻՆ ԼԻԳԱՆԴՆԵՐԻ ՀԵՏ

Ամփոփում

Ակնարկը նվիրված է ԴՆԹ-ի հետ դարձելի և ոչ դարձելի կապվող լիգանդների կոմպլեքսառաջացման առանձնահատկությունների ուսումնասիրությանը։ Որպես դարձելի կապվող՝ ընտրված են կապման տարբեր մեխանիզմներով բնութագրվող երեք տիպի ցածրամոլեկուլային լիգանդներ։ Այդպիսիք են, մասնավորապես, առաջին անցումային շարքի երկվալենտ մետաղների իռնները, պորֆիրինային կոմպլեքսները, ինչպես նաև ցվիտերիոնային տիպի ամինաթթուները։ Որպես ոչ դարձելի կապվող լիգանդներ ընտրված են Pt(II) և Ru(III)-ի միացությունները։ Դրանց ընտրությունը պայմանավորված է այն բանով, որ նրանք ընդգրկում են կենսաբանական համակարգերում գոյություն ունեցող հնարավոր բոլոր տիպերի փոխազդեցությունները։

Աշխատանքում համակարգվում են ԴՆԹ-ի կրկնակի պարույրի հետ վերը նշված լիգանդների փոխազդեցությունների ընդհանուր օրինաչափությունները և բացահայտվում դրանց յուրահատուկ առանձնահատկությունները։

S. G. HAROUTIUNIAN, V. I. VARDANYAN, Y. B. DALYAN

THE PECULIARITIES OF COMPLEXATION OF DNA MACROMOLECULE WITH LOW MOLECULAR LIGANDS

Summary

The present review is devoted to the analysis of peculiarities of DNA complexation with reversibly and irreversibly binding ligands. Three classes of low molecular ligands with different types of binding were discussed. These types of ligands particularly are: bivalent transitional metal ions, porphyrin complexes, and zwitterionic amino acids. As irreversible binding ligands some Pt(II) and Ru(III) complexes were used.

The systematization of the general patterns and revealing of specific differences in interaction of above mentioned ligands with double helix DNA is presented.

34
Բնական գիտություններ

Естественные науки

Математика

УДК 517.53

М. С. МАРТИРОСЯН

РАВНОМЕРНОЕ СУММИРОВАНИЕ БИОРТОГОНАЛЬНЫХ РАЗЛОЖЕНИЙ ПО НЕПОЛНЫМ СИСТЕМАМ РАЦИОНАЛЬНЫХ ФУНКЦИЙ В ПРОСТРАНСТВАХ ХАРДИ

Биортогональные разложения функций класса Харди HP(1<p<~) по неполной системе рациональных функций равномерно суммируются на компактных подмножествах комплексной плоскости, лежащих на положительном расстоянии от множества полюсов функций данной системы.

Введение. Рассмотрим систему рациональных функций

$$e_{ks}(z) = \frac{s!}{2\pi i} \frac{1}{\left(z - \overline{\lambda_k}\right)^{s+1}}, \ k = 1, 2, ...; \ s = 0, 1, ..., m_k - 1,$$
(1)

где $\{\lambda_k\}_{k=1}^{\infty}$ — последовательность различных комплексных чисел из открытой верхней полуплоскости $\mathbf{G}^{(+)} = \{z : \text{Im } z > 0\}$ такая, что

$$\sum_{k=1}^{\infty} \frac{m_k \operatorname{Im} \lambda_k}{1 + |\lambda_k|^2} < \infty.$$
⁽²⁾

Пусть $\mathbf{H}_{+}^{\mathbf{p}}$ – пространство Харди в верхней полуплоскости. Существует ряд работ (см., напр., [1-4]), посвященных различным задачам интерполирования и вопросу базисности системы (1) в своей замкнутой линейной оболочке в пространствах $\mathbf{H}_{+}^{\mathbf{p}}(1 . В частности известно$ (см. [1]), что условие (2) необходимо и достаточно для неполноты $системы (1) относительно любого из пространств <math>\mathbf{H}_{+}^{\mathbf{p}}(1 .$

Порожденная неполной системой (1), биортогональная система в \mathbf{H}^2_+ была введена и систематически использована М.М. Джрбашяном (см. [2-4]). В работе [5] В.Х. Мусояном получено интегральное представление указанной биортогональной системы { φ_{kx} } и с использованием гильбертовой структуры пространства \mathbf{H}^2_+ предложен метод суммирования

$$\sum_{k=1}^{\infty} \sum_{s=0}^{m_k-1} a_{ks}(f) e_{ks}(z)$$
(3)

к проекции $f \in \mathbf{H}^2_+$ на подпространство, порожденное системой (1). Коэффициенты биортогонального разложения определяются по формуле $a_{ks}(f) = \int_{-\infty}^{\infty} f(x)\overline{\varphi_{ks}(x)}dx$, где f(x) и $\varphi_{ks}(x)$ – функции граничных значений (см., напр., [6]) f и φ_{ks} . Доказано также [7], что если $f \in \mathbf{H}^p_+$ (1 < $p < \infty$),

то суммирующая последовательность [5]

$$\frac{1}{2\pi i} \sum_{k=1}^{n} \sum_{s=0}^{m_k-1} a_{ks}(f) \left\{ \frac{d^s}{d\lambda^s} \frac{r_n(\lambda)}{\overline{z} - \lambda} \right\}_{\lambda = \lambda_k}$$
(4)

(где $r_n - n$ -ый остаток произведения Бляшке в $G^{(+)}$) сходится по норме пространства H^p_+ и восстанавливает каждую функцию, принадлежащую замыканию линейной оболочки (1) в H^p_+ .

Обозначим через \mathbf{E}_{p} замыкание линейной оболочки системы (1) в пространстве \mathbf{H}_{+}^{p} . Рассматривая вопрос базисности систем $\{e_{ks}\}$ и $\{\varphi_{ks}\}$ в подпространствах \mathbf{E}_{p} , Джрбашян [3] доказал, что при условиях (2) и

$$\inf_{k\geq 1}\left\{\prod_{\substack{j=1\\j\neq k}}^{\infty}\left|\frac{\lambda_k-\lambda_j}{\lambda_k-\overline{\lambda_j}}\right|\right\}\geq\delta>0, \quad \sup_{k\geq 1}m_k<\infty$$
(5)

биортогональное разложение (3) равномерно сходится на любом компакте, лежащем вне $\overline{\Lambda}$ – замыкания множества точек $\{\overline{\lambda_k}\}_{k=1}^{\infty}$.

Аналогичный результат получен Айрапетяном [8] для системы

$$e_{ks}^{*}(z) = \frac{s!}{2\pi i} \frac{z^{3}}{\left(1 - \overline{\alpha_{k}}z\right)^{s+1}}, \quad k = 1, 2, ...; \quad s = 0, 1, ..., m_{k} - 1, \quad (1')$$

рассмотренной в пространствах Харди $\mathbf{H}^{p}(1 в единичном круге <math>\mathbf{D} = \{z : |z| < 1\}$, где последовательность различных комплексных чисел $\alpha_{k} \in \mathbf{D}$ удовлетворяет не только условию неполноты (см. также [9])

$$\sum_{k=1}^{\infty} m_k \left(1 - \left| \alpha_k \right| \right) < \infty , \qquad (2')$$

но и условию Л. Карлесона

$$\inf_{k\geq 1}\left\{ \frac{\sum_{\substack{j=1\\j\neq k}}^{\infty} \left| \frac{\alpha_k - \alpha_j}{1 - \alpha_j \alpha_k} \right| \right\} \geq \delta > 0, \quad \sup_{k\geq 1} m_k < \infty.$$
 (5')

36

Постановка задачи. Если рассматривать результат [3] с точки зрения задачи нахождения области аналитического продолжения функций класса \mathbf{E}_p , то следует отметить, что и без дополнительных условий (5) каждую функцию класса \mathbf{E}_2 можно аналитически доопределить на множестве $\mathbf{C}\setminus\overline{\Lambda}$ [4]. При этом [5] суммирующая последовательность (4) равномерно сходится внутри множества $\mathbf{C}\setminus\overline{\Lambda}$. Более того, справедлива следующая [5]

Teopema. Если последовательность конечных линейных комбинаций функций из неполной системы (1) $\sum_{k=1}^{p_n} \sum_{s=0}^{m_k-1} a_{ks}^{(n)} e_{ks}(z)$ сходится по норме $L^2(-\infty,\infty)$, то она сходится равномерно на каждом компактном подмножестве множества $C \setminus \overline{\Lambda}$.

В настоящей работе ставится задача доказать равномерную сходимость суммирующей последовательности (4) внутри $\mathbb{C}\setminus\overline{\Lambda}$ в общем случае, когда $f \in \mathbf{H}^{p}_{+}(1 . С учетом [7] для этого достаточно получить <math>L^{p}$ -аналог вышеприведенной теоремы.

Ставится также аналогичная задача для системы (1'). Пусть \mathbf{E}_{p}^{*} замыкание линейной оболочки неполной системы (1') в пространстве $\mathbf{H}^{p}(\mathbf{D}), 1 , а <math>\mathbf{A}$ – замыкание множества $\{\overline{1/\alpha_{k}}\}_{k=1}^{\infty}$. Известно, что если $f \in \mathbf{E}_{p}^{*}$, то по норме $\mathbf{H}^{p}(\mathbf{D})$ [9–10]

$$f(z) = \frac{1}{2\pi i} \lim_{n \to \infty} \sum_{k=1}^{n} \sum_{s=0}^{m_k - 1} a_{ks}(f) \left\{ \frac{\overline{d^s}}{d\alpha^s} \frac{r_n(\alpha)}{1 - \alpha \overline{z}} \right\}_{\alpha = \alpha_k}, \quad (4')$$

где $a_{ks}(f)$ – коэффициенты биортогонального разложения функции f по системе (1'), а $r_n - n$ -ый остаток произведения Бляшке в **D**.

Результат. Пусть l .

Теорема 1. Если последовательность конечных линейных комбинаций функций из неполной системы (1) $\sum_{k=1}^{p_n} \sum_{s=0}^{m_k-1} a_{ks}^{(n)} e_{ks}(z)$ сходится по норме $L^p(-\infty,\infty)$, то она сходится равномерно на каждом компактном подмножестве множества $C \setminus \overline{\Lambda}$.

Следствие 1.1. Если множество предельных точек последовательности $\{\lambda_k\}_{k=1}^{\infty}$ не охватывает всю вещественную ось, то функции класса \mathbf{E}_p аналитически продолжаются из $\mathbf{G}^{(+)}$ в $(\mathbf{C} \setminus \mathbf{G}^{(+)}) \setminus \overline{\Lambda}$.

Следствие 1.2. Если $f \in \mathbf{E}_{p}$, то последовательность (4) равномерно сходится на каждом компактном подмножестве множества $\mathbf{C} \setminus \overline{\Lambda}$ к

некоторой функции F такой, что $F(z) = f(z), z \in \mathbf{G}^{(+)}$.

Теорема 2. Если последовательность конечных линейных комбинаций функций из неполной системы (1') $\sum_{k=1}^{p_n} \sum_{s=0}^{m_k-1} a_{ks}^{(n)} e_{ks}^*(z)$ сходится по норме L^p на единичной окружности, то она сходится равномерно на каждом компактном множестве, лежащем вне \overline{A} .

Следствие 2.1. Если множество предельных точек последовательности $\{\alpha_k\}_{k=1}^{\infty}$ не занимает всю единичную окружность, то функции класса \mathbf{E}_n^* аналитически продолжаются из **D** в (**C****D**)\ $\overline{\mathbf{A}}$.

Следствие 2.2. Если $f \in \mathbf{E}_{p}^{*}$, то последовательность (4') равномерно сходится на каждом компактном подмножестве множества $\mathbf{C} \setminus \overline{\mathbf{A}}$ к некоторой функции F такой, что $F(z) = f(z), z \in \mathbf{D}$.

Приведенные две последние теоремы доказываются одним и тем же методом, поэтому ограничимся доказательством первой из них.

Доказательство теоремы 1. Как известно, условие (2) необходимо и достаточно для существования произведения Бляшке $B(z) = \prod_{k=1}^{\infty} \left(\frac{z - \lambda_k}{z - \overline{\lambda_k}} v_k \right)^{m_k}$, где $v_k = \frac{\left| 1 + \lambda_k^2 \right|}{1 + \lambda_k^2}$ при $\lambda_k \neq i$ и $v_k = 1$ при $\lambda_k = i$.

Произведение B(z) равномерно сходится на каждом компактном подмножестве множества $C \setminus \overline{A}$.

Пусть $B_n(z) - n$ -ое частичное произведение B(z). Положим

$$K_n(z,t) = \frac{1}{2\pi i} \frac{B_n(z) - B_n(t)}{B_n(t)(z-t)}, \quad K(z,t) = \frac{1}{2\pi i} \frac{B(z) - B(t)}{B(t)(z-t)}.$$

Ниже символом $\|\cdot\|_{L^{\infty}}$ обозначена норма в пространстве $L'(-\infty,\infty)$.

Лемма 1. Пусть $1 < r < \infty$ и **К** – компактное множество, лежащее в С\ $\overline{\Lambda}$. Тогда $\|K_n(z, \cdot) - K(z, \cdot)\|_r \stackrel{\Rightarrow}{\to} 0$ равномерно для $z \in \mathbf{K}$.

Доказательство. Обозначим через $\mathbf{G}^{(0)}$ вещественную ось. Так как почти для всех $t \in \mathbf{G}^{(0)}$ выполняется $|B_n(t)| = |B(t)| = 1$, то

$$|K_n(z,t) - K(z,t)| \le \frac{|B_n(z) - B(z)|}{|z - t|} + \frac{|B(z)||B_n(t) - B(t)|}{|z - t|}, \ (z,t) \in (\mathbb{C} \setminus \overline{\Lambda}) \times \mathbb{G}^{(0)}. \ (6)$$

В случае, когда К не имеет общих точек с $G^{(0)}$, расстояние dist $(K, G^{(0)})$ положительно. Тогда функция $U(z,t) = \frac{1+|t|}{|z-t|}$, непрерывная на $K \times G^{(0)}$, стремится к единице при $|t| \to \infty$ равномерно относительно $z \in K$. Поэтому функция U(z,t) ограничена сверху на $\mathbf{K} \times \mathbf{G}^{(0)}$, т.е. существует постоянная U > 0 такая, что

$$\frac{1}{|z-t|} \leq \frac{U}{1+|t|}, (z,t) \in \mathbf{K} \times \mathbf{G}^{(0)}.$$
(7)

Поскольку для любой функции $\varphi \in L^{1}(-\infty,\infty)$ справедливо предельное соотношение [3]

$$\int_{-\infty}^{\infty} |B_n(t) - B(t)|^r |\varphi(t)| dt \xrightarrow[n \to \infty]{} 0, \qquad (8)$$

то при выборе $\varphi(t) = \left(\frac{1}{1+|t|}\right)^r$ и с учетом равномерной сходимости $B_n(z)$

к ограниченной функции B(z) на К утверждение леммы вытекает из (6), (7) и (8).

Пусть теперь множество $\mathbf{K} \cap \mathbf{G}^{(0)}$ непусто и лежит в некотором конечном интервале (-E, E). Повторяя рассуждения, проведенные в первом рассмотренном случае, получим

$$\int_{|z|>E} |K_n(z,t) - K(z,t)|' dt \stackrel{\Rightarrow}{\Rightarrow} 0, \ z \in \mathbf{K}$$

Остается доказать, что

$$\int_{-E}^{E} \left| K_n(z,t) - K(z,t) \right|^r dt \stackrel{\Rightarrow}{\underset{n \to \infty}{\Rightarrow}} 0, \ z \in \mathbf{K} \,. \tag{9}$$

Для произвольного положительного числа ε выберем открытое ограниченное множество V такое, чтобы $\mathbf{K} \subset \mathbf{V} \subset \overline{\mathbf{V}} \subset \mathbf{C} \setminus \overline{\mathbf{A}}$, а расстояние $d \equiv dist(\mathbf{K}, \partial \mathbf{V})$ было меньше ε ($\overline{\mathbf{V}}$ – замыкание V, а $\partial \mathbf{V}$ – граница V). В силу равномерной сходимости $B_n(z) \rightrightarrows B(z), z \in \mathbf{K}$, и предельного соотношения (8) существует натуральное число N, не зависящее от z, такое, что при $n \ge N$ выполняются неравенства

$$|B_n(z) - B(z)| < d^2, \ z \in \mathbf{K},$$

$$\left\{ \int_{-E}^{E} |B_n(t) - B(t)|^r dt \right\}^{\frac{1}{r}} < d^2.$$
(10)

Пусть \mathbf{K}_{d} – множество точек из \mathbf{K} , расстояние которых от интервала (-*E*, *E*) меньше *d*. Положим $M = \max_{z \in \mathbf{K}} |B(z)|$. Если множество $\mathbf{K} \setminus \mathbf{K}_{d}$ непусто и $z \in \mathbf{K} \setminus \mathbf{K}_{d}$, то, согласно (6) и (10), имеем

$$\int_{-E}^{E} |K_n(z,t)-K(z,t)|' dt \leq \int_{-E}^{E} \left(d+M\frac{|B_n(t)-B(t)|}{d}\right)' dt \leq$$

39

$$\leq 2^{r-1} \int_{-E}^{E} \left(d^{r} + \frac{M^{r}}{d^{r}} \left| B_{n}(t) - B(t) \right|^{r} \right) dt \leq 2^{r} E d^{r} + 2^{r-1} M^{r} d^{r} \leq \left(E + \frac{M^{r}}{2} \right) (2\varepsilon)^{r}, \ n \geq N,$$

следовательно,

$$\int_{-E}^{E} \left| K_n(z,t) - K(z,t) \right|^r dt \stackrel{\Rightarrow}{\Rightarrow} 0, \ z \in \mathbf{K} \setminus \mathbf{K}_{\mathbf{d}}.$$
(11)

С любой точкой $z \in \mathbf{K}_d$ ассоциируем отрезок вещественной оси $T_z = \{t \in [-E, E]: |z - t| \le d\}$. Так как $B_n'(z)$ сходится к B'(z) равномерно на $\overline{\mathbf{V}}$, то последовательность функций $|B'(z)|, |B_1'(z)|, |B_2'(z)|, ..., |B_n'(z)|, ...$ равномерно ограничена сверху на $\overline{\mathbf{V}}$ некоторым числом B > 0. Тогда

$$|B(z) - B(t)| = \left| \int_{Y_{zt}} B'(u) du \right| \le B |z - t|, \ (z,t) \in \mathbf{K}_{d} \times T_{z},$$

где γ_{zt} – прямолинейный отрезок с концами в точках z и t, целиком лежащий в компакте \overline{V} . Совершенно аналогично получаем $|B_n(z) - B_n(t)| \le B |z - t|, n = 1, 2, ...; (z,t) \in \mathbf{K}_d \times T_z$. Поэтому, положив $K(t,t) = \frac{1}{2\pi i} \frac{B'(t)}{B(t)}, K_n(t,t) = \frac{1}{2\pi i} \frac{B_n'(t)}{B_n(t)}, t \in T_z, z \in \mathbf{K}_d$, приходим к оценкам $|K(z,t)| \le B, |K_n(z,t)| \le B, (z,t) \in \mathbf{K}_d \times T_z, n = 1, 2,$

Следовательно, при $z \in \mathbf{K}_d$ и $n \ge N$ имеем

$$\int_{-E}^{E} |K_{n}(z,t) - K(z,t)|^{r} dt = \int_{T_{z}} |K_{n}(z,t) - K(z,t)|^{r} dt + \int_{[-E,E]\setminus T_{z}} |K_{n}(z,t) - K(z,t)|^{r} dt \le (2B)^{r} |T_{z}| + \int_{-E}^{E} \left(d + M \frac{|B_{n}(t) - B(t)|}{d} \right)^{r} dt \le (2B)^{r} 2\varepsilon + \left(E + \frac{M^{r}}{2} \right) (2\varepsilon)^{r}$$

и в результате

$$\int_{-E}^{E} |K_n(z,t) - K(z,t)|^r dt \stackrel{\Rightarrow}{\Rightarrow} 0, \ z \in \mathbf{K}_{\mathbf{d}}.$$
(12)

Соотношение (9) вытекает из (11) и (12). Лемма доказана.

Замечание. Норма $\|K(z, \cdot)\|_r$ ограничена на **K** за счет ограниченности функции K(z,t) на декартовом произведении $\mathbf{K} \times [-E, E]$. Последнее имеет место ввиду оценок

$$|K(z,t)| \le \frac{M+1}{d}$$
 при $|z-t| \ge d$ и $|K(z,t)| \le B$ при $|z-t| < d$.
Положим $Q_n(z) = \sum_{k=1}^{p_n} \sum_{s=0}^{m_k-1} a_{ks}^{(n)} e_{ks}(z)$. Известно [5], что

$$Q_n(z) = \int_{-\infty}^{\infty} Q_n(t) K_m(z,t) dt, \ m \ge p_n, \ z \in \mathbb{C} \setminus \left\{ \overline{\lambda_1}, \overline{\lambda_2}, ..., \overline{\lambda_m} \right\}.$$
(13)

В силу леммы 1, в равенстве (13) при фиксированном *n*, устремив *m* в бесконечность, получим

$$Q_n(z) = \int_{-\infty}^{\infty} Q_n(t) K(z,t) dt, \ z \in \mathbb{C} \setminus \overline{\Lambda}.$$

Пусть К – компакт из С \ $\overline{\Lambda}$. Согласно неравенству Гелдера $|Q_n(z) - Q_m(z)| \le ||Q_n - Q_m||_p ||K(z, \cdot)||_q$, $z \in \mathbf{K}$, pq = p + q

для любой пары натуральных чисел *n* и *m*. Но поскольку функция $\|K(z, \cdot)\|_r$ ограничена на **K**, то из последней оценки вытекает, что сходимость последовательности Q_n по норме $L^p(-\infty, \infty)$ гарантирует ее равномерную сходимость на **K**.

Кафедра математического анализа

Поступила 29.04.2004

ЛИТЕРАТУРА

- 1. Мартиросян В.М. Изв. АН Арм. ССР, Матем., 1978, т. 13, № 5-6, с. 490-531.
- 2. Джрбашян М.М. Мат. сборник, 1974, т. 95 (137), с. 418-444.
- 3. Джрбашян М.М. Изв. АН СССР, Матем., 1978, т. 42, № 6, с. 1323-1384.
- 4. Джрбашян М.М. Мат. сборник, 1981, т. 114 (156), № 1, с. 3 84.
- 5. Мусоян В.Х. Изв. АН Арм. ССР, Матем., 1986, т. 21, № 2, с. 163-186.
- 6. Гофман К. Банаховы пространства аналитических функций, М.: ИЛ, 1975.
- 7. Мартиросян М.С. Изв. НАН РА, Матем., 1997, т. 32, № 6, с. 30 38.
- 8. Айрапетян Г.М. Изв. АН Арм. ССР, Матем., 1975, т. 10, № 2, с. 133–152.
- 9. Мартиросян М.С., Мусоян В.Х. Изв. НАН РА, Матем., 1997, т. 32, № 5, с. 32-44.
- 10. Геворгян Н.А., Мусоян В.Х. Ученые записки ЕГУ, 1990, № 2.

Մ. Ս. ՄԱՐՏԻՐՈՍՅԱՆ

ԵՐԿՕԳՈԳՈՆԱԼ ՎԵՐՎՈՇՅՎՈՇՅՎՈՇՅՎՈՇՅՎՈՇՅՈՆԱՆԳՈԳՈՅԴՅԻ ՉՍՏ ԱԳԳԳԱՆԱՆԵՐԻ ՈՉ ԼՐԻՎ ՀԱՄԱԿԱԳԳԵԻ ՀԱԲԴԻ ՆՎՈՐՅՅՎՈՇՅՎՈՇՅՎՈԾՅԱՆԵՐԻ

Ամփոփում

Հարդիի HP(1<p<∞) դասի ֆունկցիայի երկօրթոգոնալ վերլուծությունն ըստ ոացիոնալ ֆունկցիաների ոչ լրիվ համակարգի հավասարաչափ գումարվում է կոմպլեքս հարթությունում համակարգի ֆունկցիաների բևեռների բազմությունից դրական հեռավորության վրա գտնվող կոմպակտ բազմությունների վրա:

M. S. MARTIROSYAN

THE UNIFORMLY SUMMATION OF BIORTHOGONAL EXPANSIONS BY THE INCOMPLETE SYSTEM OF RATIONAL FUNCTIONS IN HARDY'S SPACES

Summary

The biorthogonal expansions in Hardy's $H^p(1 spaces by the incomplete system of rational functions are uniformly summated on the compact subsets of complex plane on positive distance from the set of poles of system's functions.$

Բնական գիտություններ

3, 2004

Естественные науки

Математика

УДК 517.946:532.591

Ш. А. ГРИГОРЯН, С. М. МАНУКЯН, Г. Г. ОГАНЯН

ТОЧНЫЕ ЧАСТНЫЕ РЕШЕНИЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ КЛЕЙНА-ГОРДОНА И ИХ ПРИЛОЖЕНИЯ В МЕХАНИКЕ ЖИДКОСТИ И ГАЗА

Получено новое аналитическое решение уравнения Клейна-Гордона, которое описывает известную эволюцию уединенной волны, перемещающейся, однако, с меньшей амплитудой и со сверхзвуковой скоростью. Для того же уравнения с диссипацией (вязкостью) построены точные частные решения структуры ударных волн.

1. Основные уравнения. Рассматривается монодисперсная смесь вязкой сжимаемой жидкости с малым объемным содержанием пузырьков калорически совершенного газа. Предполагается отсутствие процессов дробления, слипания и образования новых пузырьков. В таких средах общий механизм диссипации формируется из составляющих за счет межфазного теплообмена, вязкости и сжимаемости [1–4]. При адиабатическом предельном режиме термодинамического поведения газа в пузырьках, размеры которых достаточно велики, межфазный теплообмен отсутствует. Тогда нелинейное распространение волны давления в смеси опишется двухволновым уравнением [2–3]:

$$\frac{\partial^{2} p}{\partial t^{2}} - a_{0}^{2} \frac{\partial^{2} p}{\partial x^{2}} - \alpha \frac{\partial^{2} p^{2}}{\partial t^{2}} - \frac{4}{3} \frac{\mu}{\rho_{0}} \left(1 + \frac{\rho_{0} a_{0}^{2}}{\gamma p_{0}} \right) \frac{\partial^{3} p}{\partial t \partial x^{2}} + \frac{4}{3} \frac{\mu}{\gamma p_{0}} \frac{\rho_{0} a_{0}^{2}}{\rho_{10} a_{10}^{2}} \frac{\partial^{3} p}{\partial t^{3}} + \frac{1}{\omega_{r}^{2}} \cdot \frac{\rho_{0} a_{0}^{2}}{\rho_{10} a_{10}^{2}} \cdot \frac{\partial^{2}}{\partial t^{2}} \left(\frac{\partial^{2} p}{\partial t^{2}} - \frac{\rho_{10} a_{10}^{2}}{\rho_{0}} \frac{\partial^{2} p}{\partial x^{2}} \right) = 0, \quad (1.1)$$

$$\alpha = \frac{\gamma + 1}{2\gamma} \cdot \frac{\beta_{0} \rho_{0} a_{0}^{2}}{\gamma p_{0}} + m \frac{(1 - \beta_{0}) p_{0}}{\rho_{10} a_{10}^{2}} \cdot \frac{\rho_{0} a_{0}^{2}}{\rho_{10} a_{10}^{2}}, \quad m = \frac{1}{a_{10}} \left[\frac{\partial}{\partial \rho_{1}} (\rho_{1} a_{1}) \right]_{0}, \quad \omega_{r}^{2} = \frac{3\gamma p_{0}}{\rho_{10} R_{0}^{2}}, \quad \frac{1}{a_{0}^{2}} = \frac{(1 - \beta_{0}) \rho_{0}}{\rho_{10} a_{10}^{2}} + \frac{\beta_{0} \rho_{0}}{\gamma p_{0}}, \quad \rho_{0} = (1 - \beta_{0}) \rho_{10} + \beta_{0} \rho_{20}.$$

Здесь t – время, x – пространственная координата, $p = \frac{P}{p_0 - 1}$ – избыточное значение давления P, ρ – плотность, R – раднус пузырька, a – скорость звука, $\gamma = \frac{c_p}{c_v}$ – показатель адиабаты газа, c_p и c_v – удельные теплоемкости при постоянном давлении и объеме, $\beta_0 << 1$ – объемное газосодержание. Индексы «1», «2» и «0» отнесены соответственно к параметрам жидкости, газа и состоянию равновесия (покоя) смеси, ω_r – адиабатическая резонансная частота пузырька (частота Миннаерта).

При другом предельном режиме изотермического поведения газа в достаточно мелких пузырьках межфазный теплообмен опять-таки отсутствует. Распространение волн вновь опишется уравнением (1.1), в котором формально можно полагать $\gamma = 1$.

Особенностью газожидкостной смеси является иерархия процесса распространения волн. В линейном приближении, после вхождения исходного возмущения в смесь, его высокочастотная ($\omega > \omega_r$) составляющая распространяется в виде предвестника – быстрой волны [2–3] – со скоростью, почти совпадающей со скоростью звука a_{10} в чистой жидкости. Вслед за ней перемещается низкочастотная часть импульса в виде медленной волны ($\omega < \omega_r$) со скоростью звука в смеси a_0 , что подтверждается структурой уравнения (1.1).

Исследуем поведение быстрой волны. Не теряя общности в постановке задачи, примем упрощающие предположения, облегчающие последующие выкладки и приводяющие к наглядным результатам. При определении коэффициента нелинейности α пренебрегается составляющей, которая характеризует сжимаемость. Поскольку масса газа ничтожно мала в сравнении с массой жидкости, т.е. $\rho_{20}\beta_0 << \rho_{10}(1-\beta_0)$, постольку и $\rho_0 = (1-\beta_0)\rho_{10}$. В силу малости исходного объемного газосодержания β_0 понятия плотности смеси и жидкости отождествляются: $\rho_0 \approx \rho_{10}$. Тогда

$$\alpha = \frac{\gamma + 1}{2\gamma} \cdot \frac{\beta_0 \rho_0 a_0^2}{\gamma p_0}, \quad \frac{1}{a_0^2} = \frac{1}{a_{10}^2} + \frac{\beta_0 \rho_0}{\gamma p_0}.$$

В рассматриваемой постановке в уравнении (1.1) главным является волновой оператор высшего порядка, из которого следует $\partial^2/\partial t^2 \approx a_{10}^2/\partial x^2$. Использование этой связи в остальных членах уравнения и последующее двукратное интегрирование по *t* позволяют привести его к виду

$$\frac{\partial^2 p}{\partial t^2} - a_{10}^2 \frac{\partial^2 p}{\partial x^2} - \frac{4}{3} \cdot \frac{\mu}{\rho} \cdot \frac{\omega_r^2}{a_0^2} \frac{\partial p}{\partial t} + \omega_r^2 \frac{\beta_0 \rho_0 a_{10}^2}{\gamma p_0} \left(p - \frac{\gamma + 1}{2\gamma} p^2 \right) = 0,$$

где константы интегрирования взяты равными нулю. Вводя новые переменные

$$u = \frac{\gamma + 1}{2\gamma} p, \quad t = \sqrt{\frac{\gamma p_0}{\beta_0 \rho_0}} \cdot \frac{1}{a_{10} \omega_r} t', \quad x = \sqrt{\frac{\gamma p_0}{\beta_0 \rho_0}} \cdot \frac{1}{\omega_r} x', \quad (1.2)$$

перепишем уравнение в безразмерном виде:

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - \delta \frac{\partial u}{\partial t} + u - u^2 = 0, \qquad \delta = \frac{4}{3} \cdot \frac{\mu}{\rho_0} \sqrt{\frac{\gamma p_0}{\beta_0 \rho_0 a_0^2} \cdot \frac{\omega_r}{a_0 a_{10}}}.$$
 (1.3)

Здесь штрихи над безразмерными координатами опущены.

Перейдем к построению точных решений уравнения (1.3). Воспользуемся методом, предложенным в [5] и использованным в [6, 7], при решении нелинейных уравнений, неинтегрируемых методом обратной задачи теории рассеяния. Представим искомое решение уравнения (1.3) в виде разложения Лорана:

$$u(x,t) = u_1 F^{-2} + u_2 F^{-1} + u_3 + \sum_{j=4}^{\infty} u_j F^{j-3}, \qquad (1.4)$$

где функцин $u_i(x,t)$ и F(x,t) подлежат нахождению (i=1,2,3). Подставляя (1.4) в (1.3), приравняем к нулю коэффициенты при соответствующих степенях функции F:

при
$$F^{-4}$$
 $u_1 = 6(F_t^2 - F_x^2),$ (1.5)

при
$$F^{-3}$$
 $u_2 = -\frac{6}{5}(F_{tt} - F_{xx}) - \frac{24}{5} \cdot \frac{F_t^2 F_{tt} - 2F_t F_x F_{tx} + F_x^2 F_{xx}}{F_t^2 - F_x^2} + \frac{6}{5}\delta F_t.$

Здесь F_t, F_x, F_{tx} и т.д. – частные производные от F(x,t). Для нахождения u_3, u_i $(j \ge 4)$ получаем рекуррентные соотношения.

Однако оказалось, что функция $u_7(x,t)$, определяемая из приравненного нулю коэффициента при F^2 , выпадает в силу определения u_1 из получаемого соотношения. Поскольку рекуррентность нарушается, в (1.4) можно полагать $u_j = 0$ для $j \ge 7$. В связи с этим из выражений коэффициентов при F^5 , F^4 и F соответственно получим $u_6 = u_5 = u_4 = 0$. Из совокупности свободных членов (коэффициент при F^0) выясняется, что функция $u_3(x,t)$ удовлетворяет уравнению, по виду совпадающему с (1.3), откуда следуют тривиальные решения $u_3 = 0$, $u_3 = 1$. Тогда из коэффициента при F^{-1} получим линейное уравнение

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - \delta \frac{\partial u_2}{\partial t} \pm u_2 = 0.$$
 (1.6)

Из приравненного к нулю коэффициента при F^{-2} , в соответствии с полученными значениями u_3 , будем иметь

$$\frac{\partial^2 u_1}{\partial t^2} - 2 \frac{\partial u_2}{\partial t} F_t - u_2 F_{tt} - \frac{\partial^2 u_1}{\partial x^2} + 2 \frac{\partial u_2}{\partial x} F_x + u_2 F_{xx} - \delta \left(\frac{\partial u_1}{\partial t} - u_2 F_t \right) - u_2^2 \pm u_1 = 0.$$
(1.7)

В уравнениях (1.6), (1.7) верхний и нижний знаки (±) отнесены соответственно к значениям $u_3 = 0$ и $u_3 = 1$. Подставляя формулы (1.5) в (1.6), (1.7) и комбинируя получаемые соотношения, придем к уравнению, откуда определится явный вид функции F:

$$F(x,t) = 1 + \exp(k\alpha - \omega t), \qquad (1.8)$$

где безразмерные постоянные величины ω и k играют соответственно роли частоты и волнового числа.

Рассмотрим разные варианты уравнения (1.3) и, в соответствии с ними, получим их точные частные решения.

2. Уравнение Клейна–Гордона ($\delta = 0$).

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + u - u^2 = 0.$$

Уравнение играет фундаментальную роль также в исследованиях различных моделей теории поля, линейной динамики кристаллической решетки [1, 8]. Решение линейного варианта приведено, напр., в [2].

Случай $u_3 = 0$. Подставляя (1.8) в формулы (1.5) и уравнение (1.6), будем иметь

$$u_{1} = 6(\omega^{2} - k^{2}) \exp[2(kx - \omega t)], \qquad (2.1)$$
$$u_{2} = -6(\omega^{2} - k^{2}) \exp(kx - \omega t), \quad \omega^{2} - k^{2} + 1 = 0.$$

Решение (1.4), записанное в размерных координатах (1.2), предстанет, согласно (2.1), в виде

$$p = \frac{3\gamma}{\gamma+1} ch^{-2} \left(\frac{\omega_r}{2} \sqrt{\frac{\beta_0 \rho_0}{\gamma p_0}} k\xi \right) = \frac{3\gamma}{\gamma+1} ch^{-2} \left(\frac{k_0}{2} \xi \right),$$

$$k_0 = \frac{\sqrt{a_{10}^2 - a_0^2}}{a_{10} a_0} \omega_r k, \quad \xi = x - Vt, \quad V = a_{10} \frac{\omega}{k} = \pm a_{10} \sqrt{1 - \frac{1}{k^2}}. \quad (2.2)$$

Здесь и далее ξ – стационарная координата, связанная с фронтом волны ($\xi = 0$), V – скорость его распространения. Решение (2.2), иным путем полученное впервые Корпелом [1], описывает поведение уединенной волны (солитона) с амплитудой $3\gamma/(\gamma+1)$. Очевидно, что скорость распространения солитона является дозвуковой, поскольку $V < a_{10}$, и для сверхкоротких волн ($k \to \infty$) ее величина стремится к значению скорости звука в чистой жидкости: $V \to a_{10}$.

Случай $u_3 = 1$. Формулы (2.1) сохраняют свою силу, а дисперсионное уравнение будет отличаться от предыдущего: $\omega^2 - k^2 - 1 = 0$. Тогда, в силу представления (1.4) и первых двух формул из (2.1), новым и вторым точным решением будет функция

$$p = \frac{2\gamma}{\gamma + 1} \left[1 - \frac{3}{2} c h^{-2} \left(\frac{\omega_r}{2} \sqrt{\frac{\beta_0 \rho_0}{\gamma p_0}} \, k \xi \right) \right], \, V = \pm a_{10} \sqrt{1 + \frac{1}{k^2}} \,.$$
(2.3)

45

Решение (2.3) описывает распространение уединенной волны (солито-

вой скоростью $V > a_{10}$, и при $k \to \infty$ вновь имеем $V \to a_{10}$. На рис. 1 в сопутствующей системе координат приведены профили солитонов, описываемых решениями (2.2) – кр. 2 и (2.3) –

на) с амплитудой $\frac{\gamma}{\gamma+1}$, пере-

мещающейся со сверхзвуко-

3. Структуры волн (учет вязкости). Пусть $u_3 = 1$.

Подставляя (1.8) в формулы (1.5) и уравнение (1.6), будем иметь $u_1 = 6(\omega^2 - k^2) \exp[2(kx - \omega t)],$

$$u_{2} = -6\left(\omega^{2} - k^{2} + \frac{\delta\omega}{5}\right) \exp(kx - \omega t), \qquad (3.1)$$
$$\omega^{2} + \delta\omega - k^{2} - 1 = 0.$$

кр. 1.

Подстановка формул (3.1) в уравнение (1.7) и последующее комбинирование с дисперсионным соотношением из (3.1) приводят к связям

$$\omega^2 - k^2 = \frac{1}{6}, \quad \omega = \frac{5}{6} \cdot \frac{1}{\delta}, \quad k = \pm \frac{5}{6} \cdot \frac{1}{\delta} \sqrt{1 - \frac{6}{25}} \delta^2$$

Согласно полученным связям и формулам (3.1) и в силу представления решения в виде (1.4), получим

$$u(x',t') = [1 + \exp(kx' - \omega t')]^{-2}.$$
 (3.2)

Простой подстановкой проверяется, что функция (3.2), действительно, является точным решением уравнения (1.3). Переход к размерным координатам (1.2) позволяет записать его в виде

$$p = \frac{2\gamma}{\gamma + 1} \left[1 + \exp(k_1 \xi) \right]^{-2}, \quad \xi = x - Vt, \quad (3.3)$$
$$k_1 = \sqrt{\frac{\beta_0 \rho_0}{\gamma \rho_0}} \omega_r k, \quad V = a_{10} \frac{\omega}{k} = \pm a_{10} \left(1 - \frac{6}{25} \delta^2 \right)^{-\frac{1}{2}},$$

где верхний и нижний знаки (±) отнесены к волнам, перемещающимся со сверхзвуковой скоростью $V > a_{10}$ соответственно вдоль положительного и отрицательного направлений оси x. Для первой из них вдали от фронта $\xi = 0$ из (3.3) следуют асимптотические значения

$$p(-\infty) = \frac{2\gamma}{\gamma+1} , \quad p(\infty) = 0 , \qquad (3.4)$$

определяющие равновесные однородные состояния смеси в областях позади $(\xi < 0)$ и впереди $(\xi > 0)$ фронта. Поскольку решение (3.3) непрерывно соединяет эти предельные состояния, следовательно, оно описывает структуру ударной волны.

Исследуем поведение решения (3.3) в области позади ($\xi < 0$) фронта волны. Полагая $p = p(-\infty) + z$, где z – малое возмущение, и проводя стандартную процедуру по выявлению явного вида функции $z(\xi)$, получим $z \sim \exp(5\xi/\delta)$, откуда при $\xi \rightarrow -\infty$ следует z = 0. Таким образом, в области $\xi < 0$ решение (3.3) устойчиво к малым возмущениям.

Случай $u_3 = 0$. Формулы (3.1) для u_1 и u_2 останутся без изменения, а дисперсионное соотношение примет вид $\omega^2 - k^2 + \delta \omega + 1 = 0$.

Для связей, соответствующих рассматриваемому случаю, будем иметь

$$\omega^2 - k^2 = -\frac{1}{6}, \ \omega = -\frac{5}{6} \cdot \frac{1}{\delta}, \ k = \pm \frac{5}{6} \cdot \frac{1}{\delta} \sqrt{1 + \frac{6}{25} \delta^2}$$

Тогда решение уравнения (1.3), записанное через давление в размерных координатах (1.2), предстанет в виде функции

$$p = \frac{2\gamma}{\gamma + 1} \left[1 - (1 + \exp k_2 \xi)^{-2} \right], \quad \xi = x - Vt , \qquad (3.5)$$
$$k_2 = \sqrt{\frac{\beta_0 \rho_0}{\gamma \rho_0}} \omega_r k , \quad V = \pm a_{10} \left(1 + \frac{6}{25} \delta^2 \right)^{-\frac{1}{2}} .$$

Решение (3.5), как и (3.3), описывает структуры ударных волн, которые, однако, распространяются с дозвуковой скоростью ($V < a_{10}$) вдоль по-

ложительного (нижний знак) и отрицательного (верхний знак) направлений оси x.

На рис. 2 представлены структуры однонаправленных ударных волн, перемещающихся вдоль положительного направления оси X, описываемые решениями (3.3) – кр. 1 и (3.5) – кр 2.

Заключение. Нелинейное уравнение Клейна-Гордона описывает эволюцию вы-

сокочастотных уединенных волн (солитонов) с разными амплитудами, перемещающихся не только с дозвуковой (ранее известное), но и со сверхзвуковой скоростями, ненамного отличающимися от скорости звука в чистой жидкости. Учет вязкости позволяет определить структуры ударных воли.

РАУ, ЕГУ. Институт механики НАН РА

Поступила 22.12.2003

ЛИТЕРАТУРА

- 1. Корпел А., Бенерджи П.П. ТИИЭР, 1984, т. 32, № 9, с. 6–30.
- 2. Накоряков В.Е., Покусаев Б.Г., Шрейбер И.Р. Волновая динамика газо- и парожидкостных сред. М.: Энергоатомиздат, 1990, 248 с.
- 3. Нигматулин Р.И. Динамика многофазных сред, ч. II. М.: Наука, 1987, 360 с.
- 4. Оганян Г.Г. Изв. РАН, МЖГ, 1994, № 6, с. 75-83.
- 5. Weiss J., Tabor M., Carnevale G. J. Math. Phis., 1983, v. 24, №3, p. 522-536.
- 6. Кудряшов Н.Н. ПММ, 1988, т. 52, № 3, с. 465-470.
- 7. Кудряшов Н.А., Сухарев М.Б. ПММ, 2001, т. 65, № 5, с. 884-894.
- 8. Whitham G.B. Linear and nonlinear waves. New-York-London: Wiley Intersc, Publ. (Рус. перев.: Линейные н нелинейные волны. М.: Мир, 1977, 623 с.)

Շ. Ա. ԳՐԻԳՈՐՅԱՆ, Ս. Մ. ՄԱՆՈՒԿՅԱՆ, Գ. Գ. ՕՀԱՆՅԱՆ

ԿԼԵՅՆԻ–ԳՈՌԴՈՆԻ ՈՉ ԳՇԱԾԻ ՀԱՎԱՍԱՐԱԴՈՌ– ԾԱՄՆԱՎՈՐ ԼՈՒԾՈՒՄՆԵՐԸ ԵՎ ՆՐԱՆՑ ԿԻՐԱՈՒՅՈՒՄՆԵՐԸ ՀԵՂՈՒԵԿ ԵՎ ԳԱՉԻ ՄԵԽԱՆԻԿԱՅՈՒՄ

Ամփոփում

Ուսումնասիրված է գազի պղպջակներով հեղուկի խառնուրդում տարածվող արագ ալիքի վարքը։ Ալիքի նկարագրման համար ստացված է Կլեյնի–Գորդոնի ոչ գծային հավասարումը դիսիպատիվ գումարելիներով։ Կառուցված են նրա մասնավոր ճշգրիտ լուծումները, որոնք նկարագրում են սոլիտոնների տեղափոխությունները (միացյալ ալիքներ) ինչպես մինչձայնային (նախկինում հայտնի), այնպես էլ գերձայնային արագություններով։ Դիսիպացիայի հաշվառումը հանգեցնում է լուծումների, որոնք դիտարկվող խառնուրդում նկարագրում են հարվածային ալիքների կառուցվածքը։ Ստացված անալիտիկ լուծումները որակապես ճիշտ են նկարագրում փորձնական ճանապարհով դիտարկված ալիքների տարածման պրոցեսը։

Sh. A. GRIGORYAN, S. M. MANUKYAN, G. G. OHANYAN

EXACT PARTICULAR SOLUTIONS OF NONLINEAR KLEIN-GORDON EQUATION AND THEIR APPLICATION IN FLUID MECHANICS

Summary

The behavior of a rapid wave (the precursor) spreading in a liquid with gas bubbles has been studied. For its description, the nonlinear Klein-Gordon equation with dissipative components was modeled. Its exact partial solutions were constructed, describing the displacement of solitons (solitary waves), both at a subsonic speed (known earlier) and at a supersonic speed. Record of dissipation (viscosity) leads to solutions that describe the structures of shock waves in the examined mixture. The obtained analytic solutions correctly reflect the process of dissemination of waves observed in the experiment. Բնական գիտություններ

3, 2004

Естественные науки

Механика

удк 519.95

А. С. ЧЛИНГАРЯН

УСТОЙЧИВОСТЬ РЕШЕНИЯ ИГРОВЫХ ЗАДАЧ НАВЕДЕНИЯ НА m-Bыпуклые компактные множества для линейных систем

Рассматривается устойчивость решения нгровых задач наведения на m-выпуклые компактные множества, когда объекты подчиняются системам обыкновенных линейных нестационарных дифференциальных уравнений с постоянной и переменной динамикой. Доказывается, что решения устойчивы относительно малого возмущения параметров системы и относительно малого возмущения начальных значений.

§ 1. Пусть имеем управляемый объект, движение которого описывается системой линейных дифференциальных уравнений с непрерывными коэффициентами, определенными на $[t_0, \theta]$:

$$\dot{x} = A(t)x + B(t)u + C(t)v,$$
 (1.1)

где A(t) — матрица размерности $(n \times n)$, x = n-мерный вектор-столбец, матрицы $B(t) - (n \times p)$, $C(t) - (n \times q)$; u, v — векторы управляющих воздействий, допустимые реализации которых предполагаются измеримыми и стеснены ограничениями $u \in P \subset \mathbb{R}^p$, $v \in Q \subset \mathbb{R}^q$, где P и Q — ограниченные и замкнутые множества [1]. Пусть заданы моменты времени $t_{\alpha}, \alpha = 1, 2, ..., m$, удовлетворяющие условию $t_0 \leq t_1 \leq t_2 \leq ... \leq t_m = \vartheta$, и заданы выпуклые, компактные множества $M_{\alpha} \subset \mathbb{R}^{(n)}$, $\alpha = 1, 2, ..., m$. Цель первого игрока решить задачу наведения на множества M_{α} , $\alpha = 1, 2, ..., m$, в соответствующие моменты времени t_{α} , $\alpha = 1, 2, ..., m$. Т.е. первый игрок должен выбрать такую стратегию $U \div u(t)$, чтобы в каждый момент времени t_{α} , $\alpha = 1, 2, ..., m$, выполнялось условие $x[t_{\alpha}] \in M_{\alpha}$ при упорном сопротивлении второго игрока. Цель второго игрока помешать этому, т.е. выбрать такую стратегию $V \div v(t)$, чтобы хотя бы для одного t_{α} , $\alpha = 1, 2, ..., m$, выполнялось условие $x[t_{\alpha}] \notin M_{\alpha}$, $\alpha = 1, 2, ..., m$, при упорном сопротивлении первого игрока. Исследуем устойчивость решения вышепоставленной игровой задачи относительно малого изменения параметров системы (1.1). Для этого одновременно с (1.1) рассмотрим возмущенную систему

$$\dot{x}^{*} = A^{*}(t)x^{*} + B^{*}(t)u + C^{*}(t)v, \qquad (1.2)$$

где матрицы $A^{*}(t), B^{*}(t), C^{*}(t)$ мало отличаются от A(t), B(t), C(t),т.е.

$$\begin{cases} \left| \begin{array}{c} a_{js}^{*}(t) - a_{js}(t) \right| \leq \Delta \\ \left| \begin{array}{c} b_{js}^{*}(t) - b_{js}(t) \right| \leq \Delta \end{array} \right. \text{ при } t \in [t_{0}, \vartheta], \qquad (1.3) \\ \left| \begin{array}{c} c_{js}^{*}(t) - c_{js}(t) \right| \leq \Delta \end{array} \end{cases}$$

где $\Delta > 0$ – малая величина [2]. Рассматриваем устойчивость движений, порождаемых экстремальными стратегиями U_e или V_e , определяемыми из принципа максимума [1], по отношению к малым возмущениям $\Delta A = A^* - A$, $\Delta B = B^* - B$, $\Delta C = C^* - C$ параметров системы. Обозначим семейство движений { x[t] } ($t_0 \le t \le 9$) системы (1.1), отвечающее исходной позиции { t_0, x_0 } при управлениях $u[t] \in P$, v = v[t] ($v[t] \in Q$), через $X[U,v;t_0, x_0]$.

Семейство движений $\{x^{*}[t]\}$ $(t_{0} \le t \le \vartheta)$ системы (1.2) при той же исходной позиции $\{t_{0}, x_{0}\}$ и при тех же управлениях $u[t] \in P$, v = v[t] $(v[t] \in Q)$ обозначим через $X^{*}[U, v; t_{0}, x_{0}]$.

Определение. Скажем, что стратегия U обеспечивает устойчивость движений $\{x[t]\}$ из $X[U,v;t_0,x_0]$ $(t_0 \le t_1 \le t_2 \le ... \le t_m = \vartheta)$, если для любого $\varepsilon > 0$ можно указать число $\Delta(\varepsilon) \succ 0$ (при $\varepsilon \to 0$, $\Delta \to 0$), такое, что для каждого . α ($\alpha = 1, 2, ..., m$) всякое движение $\{x^*[t]\}$ ($t_0 \le t_1 \le t_2 \le ... \le t_m = 9$) из семейства $X^*[U,v;t_0,x_0]$ будет находится в ε -окрестности семейства движений $X[U, v; t_0, x_0]$, как только будут выполнены неравенства (1.3). Иначе говоря, если стратегия U обеспечивает устойчивость движений $\{\mathbf{x}[t]\}$ ИЗ $X[U, v; t_0, x_0]$, то при выполнении неравенств (1.3) для любого движения $\{x^{*}[t]\}$ из семейства $X^{*}[U,v;t_{0},x_{0}]$ найдется такое движение $\{x[t]\}$ $X[U,v;t_0,x_0]$, которое будет удовлетворять неравенству ИЗ $\|\{x[t]\}-\{x^{\bullet}[t]\}\|<\varepsilon$ для каждого $t\in[t_0, \mathcal{G}]$. Аналогичным образом определяется устойчивость движений $\{x[t]\}$ из $X[u,V;t_0,x_0]$, порождаемых управлениями u = u[t] $(u[t] \in P)$, $v[t] \in Q$.

Теорема 1.1. Допустимые стратегии U и V обеспечивают устойчивость движений $\{x[t]\}$ семейства X, порожденных соответственно управлениями $u[t] \in P$, v = v[t] $(v[t] \in Q)$ или u = u[t] $(u[t] \in P)$, $v[t] \in Q$.

Доказательство. Приведем доказательство методом от противного для движения $X[U,v;t_0,x_0]$. Пусть теорема неверна для какой-то стратегии U при исходной позиции $\{t_0,x_0\}$ и при реализации v[t]. Это означает, что среди всех $\alpha = 1, 2, ..., m$ существует хотя бы одно α_* , такое, что выполняются условия (1.3), но при этом в семействе $X[u,V;t_0,x_0]$ существует хотя бы одно движение $\{x[t]\}$, для которого выполняется неравенство $\|\{x[t]\}-\{x^*[t]\}\| \ge \varepsilon$ на некотором множестве $E_{a.} \in [t_0, \vartheta)$ положительной меры.

Тогда соответственно разным возмущениям параметров системы можно построить последовательности матриц $A_s^*(t), B_s^*(t), C_s^*(t)$ (s = 1, 2, ...), таких, что равномерно по t будут выполнены соотношения $\lim_{s\to\infty} A_s^*(t) = A(t), \lim_{s\to\infty} B_s^*(t) = B(t), \lim_{s\to\infty} C_s^*(t) = C(t)$ при $t_0 \le t \le \vartheta$, но тем не менее каждое семейство X_s^* движений $\{x^*[t]\}^{(s)}$ не будет находиться в какой-то определенной ε -окрестности семейства $X[u,V;t_0,x_0]$, т.е. $\|\{x[t]\} - \{x^*[t]\}^{(s)}\| \ge \varepsilon$ на $E_{\alpha_s} \subset [t_0,\vartheta); \ \mu(E_{\alpha_s}) > 0.$

Элементы последовательности $\{x^*[t]\}^s$ являются абсолютно непрерывными функциями. Тогда по лемме Кантора из этой последовательности функций можно выбрать подпоследовательность $\{x^*[t]\}^{(y)}$ (j = 1, 2, ...), которая при $t_0 \le t \le 9$ будет сходится к некоторой вектор-функции $\{x[t]\}^{(0)}$, причем каждое из движений $\{x^*[t]\}^{(y)}$ не будет лежать в ε -окрестности семейства X, т.е. $\|\{x[t]\} - \{x^*[t]\}^y\| \ge \varepsilon$ на $E_{\alpha, r} \mu(E_{\alpha, r}) > 0$.

Так как в нашем случае движения являются абсолютно непрерывными функциями, то компактность множества движений не нарушается [3]. Тогда, с одной стороны, вследствие компактности предел $\{x[t]\}^{(0)}$ построенной подпоследовательности принадлежит семейству $X^*[U,v;t_0,x_0]$, с другой стороны, т.к. $\lim_{s\to\infty} A_s^*(t) = A(t)$, $\lim_{s\to\infty} B_s^*(t) = B(t)$, $\lim_{s\to\infty} C_s^*(t) = C(t)$

при $t_0 \le t \le 9$, то предел есть элемент семейства $X[U,v;t_0,x_0]$. Таким образом, получаем противоречие, т.е. стратегия U при исходной позиции $\{t_0, x_0\}$ и реализации v[t] при любом α ($\alpha = 1, 2, ..., m$) обеспечивает устойчивость движений $\{x[t]\}$ семейства $X[U,v;t_0,x_0]$. Для движения $X[u,V;t_0,x_0]$ доказательство аналогично.

В регулярном случае экстремальные стратегии U_e и V_e , определяемые из принципа максимума [1], являются допустимыми. Тогда по доказанной теореме они обеспечивают устойчивость движений $\{x[t]\}$, т.е., подставляя эти управляющие воздействия в систему (1.1), получаем в качестве решения абсолютно непрерывные кривые, которые в моменты времени t_{α} проходят через множества M_{α} .

§ 2. Пусть теперь движение управляемого объекта описывается следующей системой:

$$\dot{x}_{k} = A_{k}(t)x_{k} + B_{k}(t)u_{k} + C_{k}(t)v_{k}, \quad k = 1, 2, ..., m, \qquad (2.1)$$

где $A_i(t)$, $B_i(t)$, $C_i(t)$ – матрицы с непрерывными элементами при $t \in [t_0, \vartheta)$ и с размерностями, соответственно равными $(n \times n)$, $(n \times p_i)$ и $(n \times q_i)$; $u_i \in P_i, v_i \in Q_i$; множества $P_i \subset R^{p_i}$, $Q_i \subset R^{q_i}$ – заданные компакты, $i \in I$ (I = 1, 2, ..., m) [4].

Пусть заданы выпуклые, замкнутые и ограниченные множества M_i , $i \in I$, в пространстве $x \in \mathbb{R}^n$ и моменты времени $t_0 \le t_1 \le ... \le t_m = 9$.

Задача 2.1. Даны начальная позиция (t_0, x_0) и моменты времени $t_i, t \in [t_{k-1}, t_k)$. Требуется найти экстремальные программные управления $u_j^0(t)$ и $v_j^0(t)$, которые удовлетворяют следующему условию:

$$\max_{\{\mathbf{v}_{j}(\cdot)\}} \min_{\{\mathbf{u}_{j}(\cdot)\}} \left[\sum_{j=1}^{k-1} \min_{p_{j} \in \mathcal{M}_{j}(t_{j})} \left\| \mathbf{x}_{j} - \mathbf{p}_{j} \right\|^{2} + \sum_{j=k}^{m} \min_{p_{j} \in \mathcal{M}_{j}(t_{j})} \left\| \mathbf{x}(t_{j}, t_{0}, \mathbf{x}_{0}, \mathbf{u}_{j}(\cdot), \mathbf{v}_{j}(\cdot)) - \mathbf{p}_{j} \right\|^{2} \right]^{1/2} = \varepsilon^{(0)} (t_{0}, \mathbf{x}_{0}, \mathbf{x}_{1}, \dots, \mathbf{x}_{k-1}, \{t_{j}\}),$$

где $t_0 \in [t_{k-1}, t_k)$, k = 1, ..., m, [4]. Здесь под $u_j(t)$ и $v_j(t)$ следует понимать любые интегрируемые по Лебегу функции, удовлетворяющие почти везде включениям $u_j(t) \in P_j$, $v_j(t) \in Q_j$ на промежутке $t \in [t_{j-1}, t_j)$ $(j \in I)$; $x(t, t_0, x_0, u_j(.), v_j(.))$ – решение системы (2.1), которое состоит из абсолютно непрерывных кривых.

Для этой задачи в [4] выделяется регулярный случай и дается решение. Рассмотрим устойчивость решения этой задачи, одновременно с (2.1) рассмотрим возмущенную систему

$$\dot{x}_{k}^{\bullet} = A_{k}^{\bullet}(t) x_{k}^{\bullet} + B_{k}^{\bullet}(t) u_{k} + C_{k}^{\bullet}(t) v_{k}, \qquad k = 1, 2, ..., m, \qquad (2.2)$$

где матрицы $A_{k}^{*}(t), B_{k}^{*}(t), C_{k}^{*}(t)$ несколько отличаются от $A_{k}(t), B_{k}(t), C_{k}(t), \tau.e.$

$$\begin{cases} \left| \begin{array}{l} a_{js}^{k} {}^{\bullet}(t) - a_{js}^{k}(t) \right| \leq \Delta \\ \left| \begin{array}{l} b_{js}^{k} {}^{\bullet}(t) - b_{js}^{k}(t) \right| \leq \Delta \end{array} \right| \text{ при } t \in [t_{0}, \mathcal{G}] \text{ и любом } k \in I, \quad (2.3) \\ \left| \begin{array}{l} c_{js}^{k} {}^{\bullet}(t) - c_{js}^{k}(t) \right| \leq \Delta \end{array} \end{cases}$$

где *Δ* > 0 – малая величина.

Исследуем устойчивость движений $x[t] = x[t,t_0,x_0,U^{(0)}]$ по отношению к малым возмущениям $\Delta A_k = A_k^* - A_k$, $\Delta B_k = B_k^* - B_k$, $\Delta C_k = C_k^* - C_k$ параметров системы. Эти движения порождаются экстремальными стратегиями $U^{(0)} \div u^{(0)}(t)$, определяемыми из принципа максимума [4].

Обозначим семейство движений $\{x[t]\}$ $(t_0 \le t \le 9)$ системы (2.1), отвечающее исходной позиции $\{t_0, x_0\}$ при управлениях $u_j(t) \in P_j$, $v_j = v_j(t)$ $(v_j(t) \in Q_j)$, через $X[U, v, t_0, x_0, x_1, ..., x_k, \{t_j\}]$.

Семейство движений $\{x^*[t]\}\ (t_0 \le t \le \vartheta)$ системы (2.2) при той же исходной позиции $\{t_0, x_0\}$ и при тех же управлениях $u_j(t) \in P_j, v_j = v_j(t)$ $(v_j(t) \in Q_j)$ обозначим через $X^*[U, v; t_0, x_0, x_1, ..., x_k, \{t_j\}].$

Определение. Скажем, что кусочно-программная стратегия $U \div u(t)$ обеспечивает устойчивость движений $\{x[t]\}$ из X $(t_0 \le t_1 \le t_2 \le ... \le t_m = 9)$, если для любого $\varepsilon > 0$ можно указать число $\Delta(\varepsilon) > 0$ (при $\varepsilon \to 0$, $\Delta \to 0$), такое, что для каждого j (j = 1, 2, ..., m) всякое движение $\{x^*[t]\}$ $(t_0 \le t_1 \le t_2 \le ... \le t_m = 9)$ из семейства $X^*[U, v; t_0, x_0, x_1, ..., x_k, \{t_j\}]$ будет находиться в ε -окрестности семейства движений $X[U, v, t_0, x_0, x_1, ..., x_k, \{t_j\}]$, как только будут выполнены неравенства (2.3).

Иначе говоря, если кусочно-программная стратегия U обеспечивает устойчивость движений $\{x[t]\}$ из X, то при выполнении неравенств (2.3) для любого движения $\{x^{*}[t]\}$ из семейства X^{*} найдется такое движение $\{x[t]\}$ из X, которое будет удовлетворять неравенству $\|\{x[t]\} - \{x^{*}[t]\}\| < \varepsilon$ для каждого $t \in [t_0, \vartheta]$. Верна следующая теорема. *Теорема 2.1.* Допустимые стратегии *U* обеспечивают устойчивость движений $\{x[t]\}$ семейства $X[U, v, t_0, x_0, x_1, ..., x_k, \{t_j\}]$, порожденных управлениями $u_j(t) \in P_j$, $v_j = v_j(t)$ $(v_j(t) \in Q_j)$.

Доказательство этой теоремы мы не приводим, т.к. на каждом этапе оно аналогично доказательству теоремы из предыдущего параграфа.

§ 3. Теперь исследуем устойчивость решения системы (1.1) относительно изменения начальных значений $\{t_0, x_0\}$. При этом под устойчивостью мы понимаем се определение по Ляпунову [5].

Предположим, что имеет место регулярный случай игры. Возьмем начальные значения $x(t_0) = x_0$ и соответственно им единственным способом из принципа максимума [1] определим экстремальные стратегии (u^0, v^0) . Подставив их в (1.1), получим систему

$$\dot{x} = A(t)x + B(t)u^{0} + C(t)v^{0}, \qquad (3.1)$$

правые части которой зависят только от (t,x). Тогда, по теореме Каратеодори, существует единственное абсолютно непрерывное решение системы (3.1). Обозначим это решение через $x(t;t_0,x_0,u^0,v^0) = x^0(t)$, $t \in (t_0,\mathcal{P})$ (оно соответствует начальным значениям $x(t_0) = x_0$). Причем это решение в зависимости от начальных условий меняется непрерывно. Покажем, что это решение будет устойчивым.

Из формулы (2.11) [1] следует, что функция $\varepsilon^{(0)}(t_0, x_0, \vartheta)$ непрерывно зависит от x_0 , а по t_0 – везде непрерывна, кроме точек t_{α} ($\alpha = 1, 2, ..., m$), где она имеет разрывы только первого рода. Вследствие этого в точках t_{α} ($\alpha = 1, 2, ..., m$) решение $x^0(t)$ имеет изломы. Начальным значениям дадим приращение Δx_0 , т.е. возьмем $x(t_0) = x_0 + \Delta x_0$. Пусть ($u^0 + \Delta u, v^0 + \Delta v$) – соответствующие им экстремальные стратегии. Подставив их в (1.1), получим систему

$$\dot{x} = A(t)x + B(t)(u^0 + \Delta u) + C(t)(v^0 + \Delta v). \qquad (3.2)$$

И пусть $x(t;t_0, x_0 + \Delta x_0, u^0 + \Delta u, v^0 + \Delta v) = x^0(t) + \Delta x(t)$ $(t \in (a, \infty))$ есть решение системы (3.2), соответствующее начальным значениям $x(t_0) = x_0 + \Delta x_0$.

Предположим, что $\varepsilon^{(0)}(t_0, x_0 + \Delta x_0, \vartheta)$ – гипотетическое рассогласование, соответствующее начальным значениям $x(t_0) = x_0 + \Delta x_0$. Из-за непрерывности функции $\varepsilon^{(0)}(t_0, x_0, \vartheta)$ по x_0 следует, что при малом изменении начальных условий она также меняется на малую величину [2]. И т.к. в точках t_{α} ($\alpha = 1, 2, ..., m$) она имеет разрывы только первого рода, т.е. совершает

скачки ограниченной величины, то в этих точках изменения функции $\varepsilon^{(0)}(t_0, x_0, \vartheta)$ будут малыми [1]. В данной задаче мы рассматриваем только конечное число целевых множеств и для каждого множества имеем малое изменение функции $\varepsilon^{(0)}(t_0, x_0, \vartheta)$, но т.к. сумма конечного числа малых величин дает опять малую величину, то в результате получается, что при малом изменении начальных условий функция $\varepsilon^{(0)}(t_0, x_0, \vartheta)$ на всем интервале (t_0, ϑ) тоже меняется мало. Т.е. получаем следующий вывод.

Теорема 3.1. В регулярном случае решение $x^0(t)$ системы (1.1), соответствующее экстремальным стратегиям, которые решают третью игровую задачу, устойчиво относительно малых изменений начальных значений.

Так как гипотетическое рассогласование $\varepsilon^{(0)}(t_0, x_0, x_1, ..., x_{k-1}, \{t_j\})$, определяемое из [4], обладает теми же свойствами, что и функция $\varepsilon^{(0)}(t_0, x_0, \mathcal{G})$ из [1], то решение задачи 2.1 удовлетворяет следующей теореме.

Теорема 3.2. В регулярном случае решение $x^{0}(t)$ системы (2.1), соответствующее экстремальным стратегиям, устойчиво относительно малых изменений начальных значений.

Кафедра теоретической механики

Поступила 23.10.2003

ЛИТЕРАТУРА

1. Габриелян М.С. – Ученые записки ЕГУ, 1976, № 1, с. 34–39.

2. Красовский Н.Н. Игровые задачи о встрече движений. М.: Наука, 1970, с. 157-163.

3. Ли Э.Б., Маркус Л. Основы теории оптимального управления. М.: Наука, 1972, 572 с.

- 4. Габриелян М.С. Межвуз. сб. научных трудов. Математика. Ер., ЕГУ, 1985, вып. 5, с. 124–134.
- 5. Демидович Б.П. Лекции по математической теории устойчивости. М.: Наука, 1967, с. 63-69.

Ա. Ս. ՉԼԻՆԳԱՐՅԱՆ

ԳԾԱՅԻՆ ՀԱՄԱԿԱՐԳԵՐԻ ՀԱՄԱՐ ՠ ՈՒՌՈՒՅԻԿ ԿՈՄՊԱԿՏ ՔԱՁՄՈՒԹՅՈՒՆՆԵՐԻՆ ԲԵՐՄԱՆ ԽԱՂԱՅԻՆ ԽՆԴԻՐՆԵՐԻ ԼՈՒԾՄԱՆ ԿԱՅՈՒՆՈՒԹՅՈՒՆԸ

Ամփոփում

Դիտարկվում է ղեկավարվող օբյեկտի բերման խնդրի լուծման կայունութունը կոմպակտ ուռուցիկ բազմութունների վրա, երբ օբյեկտը ենթարկվում է հաստատուն և փոփոխական դինամիկայով սովորական գծային ոչ ստացիոնար դիֆերենցիալ հավասարումների համակարգին։ Ապացուցվում է, որ լուծումները կայուն են ըստ համակարգի պարամետրերի փոքր շեղումների և ըստ սկզբնական պայմանների փոքր շեղումների։

A.S. CHLINGARYAN

STABILITY OF THE SOLUTION OF GAME PROBLEMS ON GUIDANCE TO m CONVEX AND COMPACT SETS FOR LINEAR SYSTEMS

Summary

The stability of solution of game problems on guidance to convex and compact sets when objects follow the systems of ordinary linear nonstationary differential equations with constant and variable dynamics is considered. It is proved that solutions are stable with respect to small perturbation of system parameters and small perturbation of initial values. Բնական գիտություններ

3, 2004

Естественные науки

Физика

удк 535. 311; 50. 53

А. М. ГРИГОРЯН, А. А. МАКАРЯН, С. Ц. НЕРСИСЯН, Ю. С. ЧИЛИНГАРЯН, В. Л. ЭЛБАКЯН

ИССЛЕДОВАНИЕ ОТКЛОНЕНИЯ ЛАЗЕРНОГО ЛУЧА ПРИ ПРОХОЖДЕНИИ ЧЕРЕЗ ВОЗДУШНУЮ СРЕДУ С ТЕМПЕРАТУРНЫМ ГРАДИЕНТОМ С ПОМОЩЬЮ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ МОНИТОРИНГА

В работе описана автоматизированная экспериментальная установка, моделирующая работу оптической системы регистрации малых деформаций мюонных датчиков на спектрометре в ЦЕРНе с учетом прохождения лазерного луча через воздушную среду с тепературным градиентом. Провелено сравнение полученных экспериментальных данных с теоретическими расчетами.

1. Введение. Задача измерения малых перемещений (~1*мкм*) на относительно больших расстояниях часто возникает при проведении физических экспериментов. В частности, на мюонном спектрометре в ЦЕРНе (эксперименты ATLAS и ALICE) [1] требуется мониторинг возможных деформаций датчиков высокоэнергетических мюонных треков для определения истинных координат мюонов. Для этой цели используется оптическая система, данные, полученные от которой, содержат погрешность зачастую порядка измеряемых величин, вызванную отклонением самого пучка при прохождении через воздушную среду с тепературным градиентом.

Цель настоящей работы – создание автоматизированной системы регистрирации малых перемещений с учетом прохождения лазерного пучка через воздушную среду с тепературным градиентом и сравнение полученных результатов с расчетными.

2. Описание экспериментальной установки. Реальная оптическая система регистрации деформаций механических смещений мюонных датчиков, установленная на мюонном спектрометре, состоит из источников оптического излучения и последовательно расположенных координатных датчиков [1]. Для моделирования работы этой оптической системы была создана экспериментальная установка (рис. 1).

Рис. 1. Схема экспериментальной установки.

Лазерный пучок с He-Ne лазера после прохождения телескопа (L) и полевой диафрагмы (C) поступает на первый координатный датчик (R1). После этого луч проходит через систему создания температурного градиента (H) и попадает на второй координатный датчик (R2). Смещение лазерного луча в воздухе под влиянием температурного градиента определяется как разность отклонений по соответствующим осям X и Y первого и второго датчиков. В работе были использованы полупрозрачные датчики позиционного контроля нескольких объектов выравнивания RELMY (Reflected Light Monitor Of Yerevan Physics Institute) [2] (рис. 2).

Рис. 2. Полупрозрачный датчик позиционного контроля RELMY: a) схема датчика, б) расположение светового пучка на фотоприемниках.

RELMY представляет из себя алюминиевую призму с натянутой полупрозрачной зеркальной пленкой (а). Часть светового пучка отражается от зеркала и падает на фотодетектор, активная часть которого представляет собой 4 идентичных кремниевых фотодиода, собранных в круглую фотобатарею с диаметром 20_{MM} (б). Напряжение V_i от каждого сектора пропорционально интенсивности света, падающего на этот сектор. Сигналы после усиления оцифровываются и передаются в компьютер для анализа. Напряжения, пропорциональные смещению пучка от оптической оси датчика соответственно в направлениях X и Y (оптический пучок проходит параллельно оси Z), определяются из соотношений:

$$V_x = V_2 + V_4 - V_1 - V_3, \quad V_y = V_1 + V_2 - V_3 - V_4.$$
 (1)

Для исключения влияния флуктуации интенсивности лазерного пучка

на точность расчетов использовалось нормирование сигналов:

$$\|V_i\| = V_i / \sum_{i=1}^4 V_i$$
 (2)

Блок создания температурного градиента представляет из себя расположенные горизонтально один над другим холодильник и нагреватель. Температурный градиент в вертикальном и горизонтальном направлениях определяется при соответствующем сканировании хромель-алюмелевой термопары в области прохождения лазерного пучка.

Измерительная часть экспериментальной установки выполнена на оборудовании в стандарте «САМАС». Для измерения напряжения фотодатчиков был использован 16-входовой релейный мультиплексор, с выхода которого измеряемый сигнал поступает на 14-разрядный АЦП. Точность измерения составляет 1–2мВ, что при характерных напряжениях на фотодиодах дает относительную ошибку порядка 1%. Разброс коэффициентов усиления предварительных усилителей фотоприемников (порядка 1%) в расчетах не учитывался.

Программы сбора и обработки экспериментальных данных были написаны в среде «LabView». Программа сбора данных производит поочередное сканирование восьми фотоприемников с двух датчиков, а также значения термо-ЭДС термопары. Поскольку мультиплексор построен на механических реле, программа обеспечивает временную задержку после переключения на каждый следующий канал, исключая тем самым влияние дребезга контактов реле на результаты измерений. В программе предусмотрена цифровая фильтрация измеряемого сигнала, исключающая случайные ошибки, вызванные нестабильностью электронных трактов измерительной системы. Программа обеспечивает сбор и запись данных в файлы на жесткий диск для их последующей статистической обработки. При обработке полученных данных используются усреднение измеряемых сигналов в заданных интервалах времени и сглаживание экспериментальных зависимостей с помощью полиномов.

3. Теория и модели расчетов. Предполагается, что дисперсия обусловлена температурными неоднородностями воздуха. Тогда для коэффициента преломления *n*(*λ*,*T*) можно воспользоваться эмпирической формулой [3, 4]

$$n(\lambda,T) = 1 + 10^{-4} \left[\frac{77,6p}{T} + \frac{5,84 \cdot 10^{11} p}{T\lambda^2} - 0,06p_{ws} \right],$$
(3)

где λ – длина волны в метрах, p – атмосферное давление, p_{ws} – парциальное давление водяных паров в среде ($p_{ws} \approx 1500 - 2000 \Pi a$). Для оптического диапазона волн вклад последнего члена очень незначительный и им можно пренебречь. В этом случае для индекса рефракции имеем мультипликативную формулу

$$N_{\lambda}(T) = \frac{p}{T} \left(77, 6 + \frac{5, 84 \cdot 10^{11}}{\lambda^2} \right) \equiv f(T)\varphi(\lambda).$$
(4)

Нахождение смещения луча при известном коэффициенте преломле-

ния $n(\lambda,T)$ в приближении геометрической оптики, в общем случае, сводится к решению уравнения эйконала. Однако его можно достаточно упростить рассмотрением модельных задач [5].

3.1. Модель вертикальной однородной полосы. Подогретую область воздуха рассмотрим в виде вертикальной полосы шириной d, границами которой являются параллельные плоскости, а температура T внутри этой полосы постоянна и превосходит температуру окружающей среды T_0 (рис. 3).

Рис. 3. Прохождение лазерного луча через температурный градиент.

Первичный луч, падающий под углом α_0 на точку с координатами (y_0, z_0) , в области $[z_0, z_0 + d]$ распространяется прямолинейно (пунктирная линия на рис. 3) и покидает эту область под тем же углом α_0 в точке $(y, z_0 + d)$ и с некоторым отклонением Δy от падающего луча:

$$\Delta y(\lambda) = d\left(\frac{n_0 \sin \alpha_0}{\sqrt{n^2(\lambda) - n_0^2 \sin \alpha_0}} - tg\alpha_0\right),$$
 (5)

где $n_0 \equiv n(\lambda, T_0)$.

3.2. Модель горизонтального граднента температуры. Пусть начало системы координат помещено в точке падения луча и в интервале [0,d] находится подогретый воздух с постоянным градиентом температуры g_z по направлению 0Z. Разбивая [0,d] на однородные слои толщиной dz с постоянным коэффициентом преломления n_i , для области $[z_i, z_i + dz]$, имеем

$$\begin{cases} n_0 \sin \alpha_0 = n_i (z_i, y_i) \sin \beta_i (z_i, y_i), \\ dz = ctg \beta dy. \end{cases}$$
(6)

Система (6) позволяет определять как направление выхода светового луча, так и отклонение от направления падения. Ограничиваясь линейным

приближением, для $n(T, \lambda)$ получим:

$$n(T(y),\lambda) = \overline{n} + \frac{\partial n}{\partial T}\Big|_{(0,0)} \frac{dT}{dy} = \overline{n} - \frac{f(0,0)\varphi_{\lambda}g_{y}y}{T} - \frac{f(0,0)\varphi_{\lambda}g_{z}z}{T}, \qquad (7)$$

где $\overline{n} = 1 + f[T(0,0)]\varphi(\lambda)$ – коэффициент преломления первой полосы шириной dz. Для модели горизонтального градиента температуры в выражение (7) надо подставить $g_y = 0$. Тогда можно определить «траекторию» луча на плоскости Y0Z:

$$y = \frac{c_0 T^2 10^4}{p_0 \varphi_{\lambda} g_z} \left[arcch \frac{\bar{n}}{c_0} - arcch \frac{\bar{n} - \frac{10^{-4} p_0 \varphi_{\lambda} g_z}{T^2} z}{c_0} \right],$$
(8)

где $c_0 \equiv n_0 \sin \alpha_0$, $p_0 = 1,013 \cdot 10^5 \Pi a$ – нормальное атмосферное давление.

3.3. Модель вертикального градиента температуры. В этой модели рассматривается случай, когда температурное поле равномерно изменяется по направлению 0*Y*. Тогда горизонтальный слой воздуха в полосе $[y_i, y_i + dy]$ имеет постоянный коэффициент преломления n_i . В этом случае система (6) приобретает следующий вид:

$$\begin{cases} n_0 \cos \alpha_0 = n_i (z_i, y_i) \sin \beta_i (z_i, y_i), \\ dz = ctg \beta dy. \end{cases}$$
(6*)

Для получения коэффициента преломления для этой модели в выражении (7) надо учесть, что градиент по направлению OZ равен нулю и

$$n(y,\lambda) = \overline{n} - \frac{f(0,0)\varphi_{\lambda}g_{y}y}{T}.$$
(7*)

Решение уравнений (6*) и (7*) имеет вид, похожий на выражение (8), с переставленными координатами z и y. А для численных расчетов можно пользоваться более простым выражением, полученным из этого решения при сохранении первых двух слагаемых в фурье-разложениях функций арксинусов:

$$z = \frac{y}{\left(\frac{\bar{n}^2}{c^2} - 1\right)} + \frac{\frac{\bar{n}}{c}}{2\left(\frac{\bar{n}^2}{c^2} - 1\right)^{\frac{3}{2}}} \cdot \frac{p_0 10^{-4} \varphi_{\lambda} g_y}{c T^2} y^2 , \qquad (8^*)$$

где $c \equiv n_0 \cos \alpha_0$.

4. Обсуждение результатов. На рис. 4,а приведены изменения сигналов с двух секторов датчика R2 во времени под воздействием градиента температуры без нормировки. Результаты, полученные после нормировки для этих же сигналов, приведены на рис. 4,6. Из сравнения этих графиков следует, что кажущиеся колебания лазерного луча спровоцированы не его пространственным смещением, а изменением его интенсивности. Зависимости смещения «центра тяжести» лазерного луча от времени, рассчитанные по формулам (1) и (2) по осям X и Y, приведены на рис. 4, в. Начальный

горизонтальный участок (~45мин) соответствует времени до включения системы создания температурного градиента. После включения этой системы одновременно с возрастанием смещения луча по оси У возрастает шумовая дорожка: с ростом градиента температуры пропорционально BO3растает ширина дорожки как по оси У, так и по оси Х. Увеличение шумов по обеим осям. очевидно, связано с возникновением турбулентных потоков воздуха на вертикальных границах системы нагреватель-холодильник.

Влияние турбулентности изза определенных трудностей в теоретических расчетах не учитывалось, а экспериментальные данные подвергались статистической обработке. Ограничение смещения по оси *Y*, наблюдаемое на графике для больших градиентов, связано с тем, что отклонение луча больше диапазона измеряемых смещений датчика.

Следует подчеркнуть, что приведенные зависимости (рис. 4) получены при очень больших градиентах температуры (порядка нескольких десятков *град/см*). Это намного больше, чем в условиях реального эксперимента ATLAS,

однако дает возможность более наглядно демонстрировать эффект.

Тепловой градиент, град/см	Эксперимент, мкм	Теория, мкм
8	58±5	68
14	85±5	97

Для градиентов же, близких к условиям ATLAS, получены экспериментальные смещения лазерного луча и рассчитаны его теоретические значения. Результаты приведены в таблице. График смещения при градиенте 8град/см приведен на рис. 5.

Рис. 5. Зависимости смещения «центра тяжести» лазерного луча от времени.

Экспериментальные данные наиболее близки к расчетным значениям, полученным при использовании модели вертикального градиента температуры.

Кафедра оптики

Поступила 10.02.2004

ЛИТЕРАТУРА

- 1. ALICE Experiment, CERN/LHCC 95-71, LHCC/P3, 15 December, 1995.
- 2. Danielyan V.D., Margaryan V.H. ALICE/99-27, Internal Note/DIM, May 28, 1999.
- 3. Edlen B. Journal of Optical Society of America, v. 43, Nov., 1953, p. 339.
- 4. Гурвич А.С. и др. Лазерное излучение в турбулентной атмосфере. М.: Наука, 1976.
- 5. Асатрян Р.С., Караян Г.С., Макарян А.А., Чилингарян Ю.С. ЖТФ, 2002, т. 72, вып. 10, с. 103.

Ա. Մ. ԳՐԻԳՈՐՅԱՆ, Ա. Հ. ՄԱԿԱՐՅԱՆ, Ս. Ց. ՆԵՐՍԻՍՅԱՆ, Յու. Ս. ՉԻԼԻՆԳԱՐՅԱՆ, Վ. Լ. ԷԼՔԱԿՅԱՆ

ՋԵՐՄԱՍՏԻճԱՆԱՅԻՆ ԳՐԱԴԻԵՆՏ ՈՒՆԵՑՈՂ ՕԴԱՅԻՆ ՄԻՋԱՎԱՅՐՈՎ ԱՆՑՆԵԼԻՍ ԼԱՁԵՐԱՅԻՆ ճԱՌԱԳԱՅԹԻ ՇԵՂՄԱՆ ՀԵՏԱՁՈՏՈՒԹՅՈՒՆԸ ՄՈՆԻՏՈՐԻՆԳԻ ԱՎՏՈՄԱՏԱՑՎԱԾ ՀԱՄԱԿԱՐԳԻ ՕԳՆՈՒԹՅԱՄԲ

Ամփոփում

Աշխատանքում նկարագրված է ավտոմատացված փորձարարական համակարգ, որը մոդելավորում է ЦЕРН-ում գտնվող մյուոնային սպեկտրոմետրի վրա տեղադրված օպտիկական համակարգը` հաշվի առնելով լազերային փնջի տարածումը ջերմաստիճանային գրադիենտ ունեցող օդային միջավայրով։ Կատարված է ստացված փորձարարական տվյալների և տեսական հաշվարկների համեմատություն։

A. M. GRIGORYAN, A. H. MAKARYAN, S. C. NERSISYAN, U. S. CHILINGARYAN, V. L. ELBAKYAN

LASER BEAM REJECTION INVESTIGATION PASSING THROUGH AIR WITH TEMPERATURE GRADIENT USING THE MONITORING AUTOMATED SYSTEM

Summary

In this work was describe the automated experimental assembly, which simulate the optical system of muon registration detectors for small deformations in CERN spectrometer experiment with calculation of laser beam passing through a thermal gradient in air. Comparison of experimental results with theory is carried out. Բնական գիտություններ

3, 2004

Естественные науки

Химия

УДК 546.98+543.25+668.8

А. Р. МКРТЧЯН, Г. Н. ШАПОШНИКОВА, А. Г. ХАЧАТРЯН

ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ ПАЛЛАДИЯ(II) С ТИОМОЧЕ-ВИНОЙ И ФЕНИЛТИОМОЧЕВИНОЙ СПЕКТРОФОТОМЕТРИЧЕСКИМ МЕТОДОМ

Выявлены оптимальные условия взаимодействия (λ_{max} , кислотность среды, пределы подчиняемости основному закону фотометрии). Мстодами молярных отношений и сдвига равновесия определены составы образующихся соединений.

Разработаны методики определения палладия(II) в электролите палладирования.

Для колориметрического определения палладия(II) предложены в основном органические реагенты – α -фурилдиоксим, паранитрозодиметиланилин, нитрозодифениламин и др. Между тем ни один из них не может быть применен для определения палладия(II) в растворах с высокой концентрацией нейтральных солей, так как при этом уменышается интенсивность окраски, сужается интервал оптимальной кислотности, необходимо длительное выдерживание растворов для достижения максимальной окраски [1].

Данные по взаимодействию палладия(II) с тиомочевиной, представленные рядом авторов, довольно противоречивы. Состав тиомочевинных комплексов палладия(II) колеблется от 1:1 до 1:4 [2]. Методами потенциометрии и амперометрии установлено, что в сернокислой среде образуются соединения с мольным отношением реагирующих компонентов 1:2 и 1:4 [3].

Целью настоящей работы является изучение взанмодействия палладия(II) с тиомочевиной (TM) и фенилтиомочевиной (ФТМ) в солянокислых растворах.

Эксвериментальная часть. Стандартный раствор палладия(II) готовили растворением металлического палладия в концентрированной азотной кислоте с последующей денитрацией серной кислотой. Рабочие растворы ТМ и ФТМ были получены растворением точных навесок реагентов, перекристаллизованных соответственно в дистиллированной воде и этаноле.

Оптическую плотность полученных окрашенных соединений измеряли на спектрофотометре СФ-4А. Предварительными опытами было установлено, что в сернокислых растворах палладий(II) образует окрашенные осадки с ТМ и ФТМ, что делает невозможным их изучение спектрофотометрическим методом.

Изучение электронных спектров светопоглощения соединений палладия(II) с ТМ и ФТМ в солянокислых растворах показало, что при сливании реагентов спектры поглощения существенно отличаются от спектров светопоглощения исходных компонентов, что свидетельствует об образовании нового индивидуального соединения комплексного характера. Наблюдаются четко выраженные максимумы при 330 и 400*нм*. С повышением концентрации органических реагентов второй максимум исчезает при мольном отношении Pd(II):R=1:1, а первый – увеличивается и достигает максималь-

Спектры поглощения. 1 – 0,5мл 1,0·10⁻² MPd(II) на фоне 2,0 MHCl; 2 – [Pd(II)] : [ФТМ]=1:1 на фоне 2,0 MHCl; 3 – [Pd(II)] : [ФТМ]=1:3 на фоне 2,0 MHCl.

ного значения при Pd(II):R=1:3 (см. рис.). Указанные мольные отношения не изменяются в пределах концентрации соляной кислоты 0,1-7,0*моль/л*.

Растворы с меньшей кислотностью не изучались из-за возможного гидролиза хлорида паладия(II), а использование более кислых растворов нецелесообразно из технических соображений. В дальнейшем все измерения оптической плотрастворов ности проводили при концентрации соляной 2,0моль/л. кислоты Окраска образующихся в системе соединений развивается сразу же

после сливания реагентов и остается постоянной в течение 24 часов. Реагенты (ТМ и ФТМ) добавлялись в десятикратном избытке по отношению к палладию(II).

Подчиняемость основному закону фотометрии наблюдается в следующем интервале концентраций палладия(II): 0,865–21,6*мкг/мл* (TM) и 0,210–21,6*мкг/мл* (ФТМ). Средние значения кажущихся мольных коэффициентов светопоглощения составляют соответственно $\varepsilon_{330} \approx 4000$ моль⁻¹ · $n \cdot cm^{-1}$ (TM) и $\varepsilon_{330} \approx 5000$ моль⁻¹ · $n \cdot cm^{-1}$ (ФТМ).

Увеличение чувствительности определения палладия(II) следует объяснить появлением в молекуле фенилтиомочевины группировки –NH–C₆H₅, повышающей интенсивность окраски образующихся соединений.

Исследование состава образующегося соединения палладия(II) с ТМ и ФТМ было проведено методами молярных отношений и сдвига равновесия. В обоих случаях подтверждается образование комплексных соединений при мольных отношениях Pd(II):R=1:1 и Pd(II):R=1:3. Для палладия(II) характерно образование квадратно-планарных комплексов с координационным числом 4 [4]. Известно, что палладий(II) образует комплексные соединения с нейтральными молекулами, содержащими атомы азота, серы, кислорода и других элементов со свободной неподеленной парой электронов. Таковыми являются, в частности, соединения моно-, ди-, три- и тетрааминогого типа [5].

В случаях с ТМ и ФТМ комплексообразование происходит за счет координации через атом серы, поэтому соединения, образующиеся при взаимодействии палладия(II) с ТМ и ФТМ, можно представить следующим образом: H[PdRCl₃] и [PdR₃Cl]Cl, где R – ТМ или ФТМ.

На основании полученных данных предложен метод определения палладия в электролите палладирования. С этой целью к аликвотному объему электролита добавляли соляную кислоту до концентрации 2,0моль/л в конечном растворе, 1мл 0,5%-го раствора ТМ или ФТМ, доводили до 25,0мл дистиллированной водой и измеряли оптическую плотность при длине волны 330нм (l=1см). Данные представлены в таблице.

Определено Pd(II)					
амперометрическим методом,	фотометрическим методом				
	мг/мл	погрешность,	мг/мл	погрешность,	
мг/мл (TM)	(TM)	% отн. (TM)	(ΦTM)	% отн. (ФTM)	
0,2605	0,2839	8,25	0,2918	2,9	

Определение палладия(II) в электролите палладирования

Как видно из приведенных данных, погрешность определения находится в допустимых пределах, а тиомочевина и особенно фенилтиомочевина могут быть использованы для определения палладия(II) фотометрическим методом в солянокислых растворах палладирования.

Кафедра аналитической химии

Поступила 12.06.2003

ЛИТЕРАТУРА

- 1. Сендел Е. Колориметрические методы определения следов металлов. М.: Мир, 1964, с. 640.
- 2. Бардин М.Б. Журнал аналитической химии, 1964, т. 19, № 10, с. 1228.
- 3. Мкртчян А.Р., Дарбинян Г.Г., Шапошникова Г.Н., Хачатрян А.Г. Информационные технологии и управление. Ер., 2003, т. 1, № 2, с. 194.
- 4. Перрин Д. Органические аналитические реагенты. М.: Мир, 1967, с. 344.
- 5. Химическая энциклопедия (гл. ред. И.Л. Кнунянц). М.: Научное изд-во «Большая российская энциклопедия», 1998, т. 3, с. 441.

Ա. Ռ. ՄԿՐՏՉՅԱՆ, Գ. Ն. ՇԱՊՈՇՆԻԿՈՎԱ, Հ. Գ. ԽԱՉԱՏՐՅԱՆ

ՇԵՆ ՊᲢՎՈՅՄԱՉՄՍՈՎԹ⅃ՎՄԵՆ ԻԵ ՎԹՎՈՅՄԱՉՄԱԳՊ ՊԱԼԱԴՈՎՍԱՄԱՈՒՄ ՆԱՅԹՎՈՑԵԴԸԱՄԱՈՒ Վ-(II) ՄՊԵԿՏՐԱԱՂԱՉԱՓԱԿԱՆ ԵՂԱՆԱԿՈՎ

Ամփոփում

Սպեկտրալուսաչափական եղանակով ուսումնասիրվել է թիոմիզանյութի և ֆենիլթիոմիզանյութի հետ պալադիում(II)-ի փոխազդեցությունը։ Հաստատվել են փոխազդեցության օպտիմալ պայմանները (λ_{max}, միջավայրի թթվությունը, լուսաչափության հիմնական օրենքին ենթարկվելու սահմանները)։ Մոլային հարաբերոությունների և հավասարակշռության տեղաշարժի եղանակներով որոշվել է գոյացող միացությունների բաղադրությունը։

Մշակվել են պալադիումապատման էլեկտրոլիտում պալադիումի սպեկտրալուսաչափական քանակական որոշման եղանակներ։

A. R. MKRTCHYAN, G. N. SHAPOSHNIKOVA, H. G. KHACHATRYAN

INVESTIGATION OF INTERACTION OF PALLADIUM(II) WITH THIOUREA AND PHENYLTHIOUREA USING SPECTROPHOTOMETRIC METHOD

Summary

The interaction of palladium(II) with thiourea and phenylthiourea has been studied using spectrophotometric method. Optimal conditions for this interaction have been estimated (λ_{max} , medium acidity, the range of Submittance to the photometry main law). The composition of compounds formed in the system has been determined by means of the two methods: molar ratio and equilibrium shift methods.

Some methods have been elaborated for spectrophotometric determination of palladium in the galvanic electrolyte.

բնական գիտություններ

3, 2004

Естественные науки

Химия

УДК 546.23 + 547.496.3

С. В. ВАРТАНЯН, Ш. А. ГЮЛЬНАЗАРЯН, Н. М. ДАВТЯН, А. Г. ХАЧАТРЯН

АМПЕРОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ РЕНИЯ В РАЗЛИЧНЫХ ОБЪЕКТАХ НЕКОТОРЫМИ ОСНОВНЫМИ КРАСИТЕЛЯМИ. РАСЧЕТ ПРОИЗВЕДЕНИЙ РАСТВОРИМОСТИ ОБРАЗУЮЩИХСЯ МАЛОРАСТВОРИМЫХ СОЕДИНЕНИЙ

Показано, что возможно определение рения в различных ренийсодержащих объектах методом амперометрического титрования с использованием в качестве аналитических реагентов органических основных красителей (родамин Ж(РЖ), родамин 6Ж(Р6Ж)). Титрование проводили в 0,8–1,0Mфосфорнокислой среде на платиновом индикаторном микроэлектроде при потенциале +1,4B (РЖ, Р6Ж) и при нулевом потенциале (сафранин T).

Двумя независимыми методами определены значения произведений растворимости малорастворимых соединений, образующихся при взаимодействии перренат-ионов с катионами вышеуказанных органических основных красителей (а также кристаллического фиолетового и метилового фиолетового).

Ранее нами было показано, что органические основные красители сафранин T(CT), родамин $\mathcal{M}(P\mathcal{M})$, родамин 6 $\mathcal{M}(P6\mathcal{M})$, метиловый фиолетовый ($M\Phi$) и кристаллический фиолетовый ($K\Phi$) могут быть использованы в качестве аналитических реагентов для амперометрического определения рения [1–4]. При взаимодействии рения (VII) с этими красителями образуются малорастворимые соединения, представляющие собой так называемые ионные ассоциаты.

Целью настоящей работы является применение разработанных методик для амперометрического определения рения в различных ренийсодержащих объектах и расчет значений произведений растворимости (ПР) образующихся малорастворимых ионных ассоциатов.

В литературе описаны различные методы расчета ПР малорастворимых соединений. В данной работе использованы два из них – амперометрический метод, разработанный З.А. Галлай с сотрудниками [5] (в несколько видоизмененном нами варианте), а также гравиметрический метод [6]. По [5], значения ПР рассчитываются из предварительно построенного калибровочного графика зависимости диффузионного тока от концентрации того компонента малорастворимого соединения, который в растворе дает электродную реакцию на платиновом микроэлектроде. Поскольку изученные нами труднорастворимые соединения содержат интенсивно окрашенный катион органического основного красителя, при растворении растворы приобретают окраску соответствующего красителя. Данное обстоятельство позволяет использовать фотометрический метод для определения концентрации красителя в насыщенных растворах малорастворимых соединений на основании амперометрического метода, рекомендуемого в [5].

Экспериментальная часть. Стандартный раствор рения (VII) (1,0·10⁻²моль/л) готовили растворением в дистиллированной воде точной навески перрената аммония ч.д.а., а рабочие растворы красителей (1,0·10⁻²моль/л) – в дистиллированной воде точных навесок препаратов той же квалификации.

Амперометрическое титрование проводили на собранной амперометрической установке с платиновым индикаторным электродом (проволока длиной 4*мм*). Электрод сравнения – меркур-йодидный. Титровали на фоне 0,8–1,0*моль/л* фосфорной кислоты.

Фотометрические определения проводили на спектрофотометре СФ-16.

Определение рения в различных ренийсодержащих объектах. Для определения рения использовали молибденовые концентраты Агарака и Каджарана, ренийсодержащий препарат ВИРГ, а также рениевые сплавы различного качественного состава.

Ход анализа концентратов и препарата ВИРГ. Навески молибденовых концентратов массой 5,0г (по три пробы от каждого образца) тщательно смешивали путем их растирания с 15,0r оксида кальция и 1,0r перманганата калия. Смесь переносили в фарфоровый тигель и покрывали тонким слоем оксида кальция. Тигель с содержимым нагревали при температуре $650^{\circ}C$ в течение 1,0-1,5v. После охлаждения спеки объединяли, переносили в химический стакан, заливали 50,0mn дистиллированной воды и кипятили в течение примерно получаса. Затем отфильтровывали водную вытяжку, промывали остаток на фильтре и доводили конечный объем до 50,0mn дистиллированной водой (фильтрат упаривали, если объем после промывания получался больше 50,0mn).

При анализе препарата ВИРГ навеску 2,0г тщательно смешивали путем ее растирания с 6,0г оксида кальция и 0,6г перманганата калия. Дальнейшие операции аналогичны вышеописанным.

Для амперометрического определения рения брали аликвотные объемы по 15,0*мл*, переносили их в химический стакан вместимостью 50,0*мл* и добавляли фосфорную кислоту с таким расчетом, чтобы ее концентрация в конечном растворе (25,0*мл*) составила 0,8–1,0*моль/л*.

При использовании в качестве реагента РЖ и Р6Ж амперометрическое титрование проводили при +1,4*B*, сафранина Т – при нулевом потенциа-
ле. Так как паспортные данные о содержании рения в образцах концентратов были представлены интервалами (0,030–0,035% (Агарак) и 0,020–0,025% (Каджаран)), то параллельно было проведено также титрование методом лобавок. Полученные данные приведены в табл. 1.

Таблица I

	Родамин Ж	Родамин 6Ж	Сафранин Т	
Наименование	содержание рения, %,	содержание рения, %,	содержание рения, %,	
объекта	прямое определение прямое определение		прямое определение	
	методом добавок	методом добавок	методом добавок	
молибденовый	0,0332±0,0018	0,0340±0,0010	0,0340±0,0020	
концентрат (Агарак)	0,0330±0,0018	0,0340±0,0010	0,0330±0,0020	
молибденовый кон-	0,0240±0,0020	0,0232±0,0018	-	
центрат (Каджаран)	0,0240±0,0020	0,0235±0,0010		
препарат ВИРГ	0,01235±0,0005	0,1230±0,0010	_	
(0,125% рения)	0,1240±0,0007	0,1235±0,0008		

<u>1мперометрическое</u>	определение рения	в некоторых	ренийсодержащих	объектах
	(P = 0,95; n	$= 5; t_a = 2.76$	8)	

Относительная погрешность определения при анализе препарата ВИРГ не превышает 1,5%.

Ход анализа рениевых сплавов. При анализе сплавов мы располагали информацией только о качественном их составе. Правильность наших результатов была косвенно подтверждена также методом добавок.

Разложение проб. Навески порошков сплавов массой 0,7-2,0г (по пять параллельных проб от каждого образца) растворяли в смеси концентрированных азотной (5,0мл) и соляной (5,0мл) кислот. При необходимости объем добавляемых кислот увеличивали до полного растворения взятых навесок. Полученные растворы выпаривали на водяной бане до «влажных солей», добавляли немного дистиллированной воды и 2,0мл концентрированной серной кислоты и продолжали выпаривание до прекращения выделения густых паров оксида серы (VI). Полученный остаток растворяли в небольшом объеме дистиллированной воды, после чего фильтровали, затем перенесли фильтрат в мерные колбы объемом 50,0мл. Добавляли фосфорную кислоту с таким расчетом, чтобы ее концентрация в конечном растворе составила 0,8-1,0моль/л.

Амперометрическое титрование проводили как описано выше, с той лишь разницей, что брались аликвотные объемы 1,0-5,0мл. Поскольку паспортное содержание рения в сплавах не было известно, во всех случаях проводилось также титрование по методу добавок. Полученные результаты приведены в табл. 2.

Исходя из данных таблиц 1 и 2, можно предложить РЖ и Р6Ж в качестве аналитических реагентов для определения рения в различных

Таблица 2

	Macca				
Качественный		родамин Ж	родамнн 6Ж	сафранин Т	Содержание
состав сплава	пробы,	прямое определение	прямое определение	прямое определение	рения в
	2	методом добавок	методом добавок	методом добавок	сплаве, %
Ni, Fe, Re	0,7485	9,30	<u>9,30</u>	_	1,24 ± 0,03
		9,10	9,50		
Mo, Al, Re	0,7730	27.90	<u>27,90</u>	<u>27,90</u>	3,61 ± 0,01
		27,80	28,00	27,80	
Mo, Al, Mn, Cr, Re	2,0050	-	<u>1,85</u> 1,82	-	0,092 ± 0,001

Амперометрическое определение рения в рениевых сплавах (P = 0.95; n = 5; $t_a = 2.78$)

Расчет значений ПР малорастворимых соединений рения (VII) с органическими основными красителями. Фотометрический метод. Для нахождения длин волн максимумов светопоглощения были сняты спектры светопоглошения растворов с концентрацией 1,010⁻⁴моль/л (l=1см). Эти максимумы наблюдались при следующих длинах волн: СТ - 510нм; РЖ и Р6Ж -520нм; КФ и МФ – 520нм. Далее были построены калибровочные графики: в мерных колбах объемом 25,0мл готовили стандартные растворы красителей с известной концентрацией и измеряли значения оптической плотности при соответствующих длинах волн. Для получения осадков труднорастворнмых соединений к 5,0мл 1,0 10.2 моль/л раствора перрената аммония добавляли 5.0мл 1.0.10⁻²моль/л раствора красителя и оставляли на ночь. На следующий день, отцентрифугировав осадки, промывали их 5-6 раз дистиллированной водой, переносили в колбы, доводя объем раствора до 1л дистиллированной водой. Растворы встряхивали на качалке в течение 54 при температуре 20°С. При этом устанавливалось равновесие осадок-раствор и образовывались насыщенные растворы. Измеряли оптическую плотность полученных растворов при соответствующих длинах волн, а по калибровочному графику определяли концентрацию красителя. Поскольку малорастворимые нонные ассоциаты перрената с органическими основными красителями бинарны, эта концентрация численно равна также растворимости соответствующего ионного ассоциата. Естественно, эти же расчеты могут быть выполнены после определения концентрации перрената в насышенных растворах, которая также численно равна растворимости осадка монного ассоциата.

Значения ПР рассчитывали из уравнения ПР=s², где s – растворнмость ионного ассоциата.

Пъжиметрический метод. Для определения значений ПР гравиметрическим методом получение осадков, промывание и встряхивание их было проведено как описано выше. Далее растворы были тщательно отфильтрованы и осторожно выпарены в предварительно прокаленных и взвешенных фарфоровых чашках на водяной бане путем добавления их небольшими порциями. Осадки высушивали в сушильном шкафу при температуре $120^{\circ}C$ в течение 1ч, после чего охлаждали в эксикаторе до комнатной температуры, взвешивали. Процедура повторялась до достижения постоянной массы осадка. Из массы осадков малорастворимых ионных ассоциатов рассчитывали концентрацию насыщенного раствора, а затем по приведенному выше уравнению – значения ПР.

Таблица З

Краситель	Концентрация красителя, <i>моль/я</i> (фотометриче- ский метод)	Концентрация соединения, моль/л (гравиметриче- ский метод)	Значснис ПР ионного ассоциата (фотометриче- ский метод)	Значение ПР ионного ассоциата (гравиметриче- ский метод)	Среднее значение ПР
сафранин Т	5,0 · 10-6	5,0 · 10 ⁻⁶	2,50 · 10 ⁻¹¹	2,50 · 10 ⁻¹¹	2,50 · 10 ⁻¹¹
родамнн Ж	1,75 - 10-6	1,80 · 10 ⁻⁶	3,06 · 10 ⁻¹²	3,24 · 10 ⁻¹²	3,15 · 10 ⁻¹²
родамин 6Ж	1,5 - 10-6	1,5 · 10 ⁻⁶	2,25 · 10 ⁻¹²	2,25 · 10 ⁻¹²	2,25 · 10 ⁻¹²
кристалличес- кий фиолетовый	2,05 · 10 ⁻⁶	2,90 · 10 ⁻⁶	4,20 · 10 ⁻¹²	8,41 · 10 ⁻¹²	6,30 · 10 ⁻¹²
метиловый фиолетовый	2,95 · 10 ⁻⁶	3 ,20 · 10 ⁻⁶	8,70 · 10 ⁻¹¹	10,24 · 10 ⁻¹²	9,47 · 10 ⁻¹²

Расчет значений ПР малорастворимых ионных ассоциатов перрената с органическими основными красителями (P = 0,95; n = 5; t_a= 2,78)

Полученные данные приведены в табл. 3.

Кафедра аналитической химит

Поступила 25.01.2004

ЛИТЕРАТУРА

- 1. Гильназаран Ш.А., Вартания С.В., Хачатрин А.Г. Կառավարում (հատուկ բողարկում։ Քիմիա, քիմիական տեխնոլոգիաներ և ինժեներական էկոլոգիա, 2001, с. 83-85.
- 2. Вартания С.В., Гильназарин Ш.А., Хачатрян А.Г. Информационные технологии и управление (сб. статей) Ер.: Энциклопедия-Арменика, 2003, № 1-2, с. 199-204.
- 3. Гюльназарин Ш.А., Вартания С.В., Дарбниян Г.Г., Хачатрян А.Г. Хим. ж. Арменин, 2003. т. 45. № 1-2, с. 48-51.
- 4. Гюльнязария Ш.А. Ученые записки ЕГУ, 2004, № 1, с.71-75.
- 5. Fazzañ 3.A., Illenns H.M., Hudenrons H.B., Sogarna B.B. WAX, 1974, r. 25, M 10, c. 1851-1853
- 6. Логинов Н.Я. и пр. Аналитическая химпи. М.: Просвещение, 1975, с. 100.

ՌԵՆԻՈՒՄԻ ԱՄՊԵՐԱՉԱՓԱԿԱՆ ՈՐՈՇՈՒՄԸ ՏԱՐՔԵՐ ՕՔՅԵԿՏՆԵ-ՐՈՒՄ ՄԻ ՔԱՆԻ ՕՐԳԱՆԱԿԱՆ ՀԻՄՆԱՅԻՆ ՆԵՐԿԱՆՅՈՒԹԵՐՈՎ։ ԱՌԱՋԱՑԱԾ ՔԻՉ ԼՈՒԾԵԼԻ ՄԻԱՅՈՒԹՅՈՒՆՆԵՐԻ ԼՈՒԾԵԼԻՈՒ-ԹՅԱՆ ԱՐՏԱԴՐՅԱԼՆԵՐԻ ՀԱՇՎԱՐԿԸ

Ամփոփում

Ապացուցվել է, որ ռենիում պարունակող տարբեր օբյեկտներում հնարավոր է ռենիումի որոշումն ամպերաչափական տիտրման եղանակով մի շարք օրգանական հիմնային ներկանյութերով (ռոդամին Ժ, ռոդամին 6Ժ, սաֆրանին Տ)։ Տիտրումը կատարվել է 0,8–1,0*Մ* ֆոսֆորական թթվի միջավայրում։ Որպես ինդիկատորային էլեկտրոդ կիրառվել է պլատինե լարային միկրոէլեկտրոդը՝ +1,4*Վ* պոտենցիալով ոոդամին Ժ-ի, ռոդամին 6Ժ-ի դեպքում և զրոյական պոտենցիալով` սաֆրանին Տ-ի դեպքում։

Հիմնվելով ստացված արդյունքների վրա՝ ռոդամին Ժ-ն և ռոդամին 6Ժ-ն կարելի է առաջարկել որպես ռեագենտներ մոլիբդենային խտանյութերում և համաձուլվածքներում ռենիումի ամպերաչափական որոշման համար։

Երկու իրարից անկախ եղանակներով՝ ֆոտոմետրական և կշռաչափական, որոշվել են վերը նշված հիմնային օրգանական ներկանյութերի (ինչպես նաև բյուրեղային մանուշակագույնի և մեթիլային մանուշակագույնի) կատիոնների հետ պերռենատ-իոնների առաջացրած քիչ լուծելի միացությունների լուծելիության արտադրյալների արժեքները։

S. V. VARTANYAN, Sh. A. GYULNAZARYAN, N. M. DAVTYAN, H. G. KHACHATRYAN

AMPEROMETRIC DETERMINATION OF RHENIUM IN DIFFERENT OBJECTS BY SOME ORGANIC BASIC DYES. CALCULATION OF SOLUBILITY PRODUCTS FOR OBTAINING INSOLUBLE COMPOUNDS

Summary

Possibility of rhenium determination in different rhenium-containing objects by amperometric titration method using some organic basic dyes as analytical reagents (Rhodamine G, Rhodamine 6G, Safranine T) has been shown. Titrations have been carried out in 0.8-1.0M phosphoric acid medium on the platinum indicating microelectrode at +1.4V(Rhodamine G, Rhodamine 6G) and 0.0V (Safranine T) potentials.

Solubility products values (SP) for compounds forming during interaction between perrhenate-ions and cations of the mentioned organic basic dyes (as well as Crystal Violet and Methyl Violet) have been calculated by means of two independent methods (photometric and gravimetric). Բնական գիտություններ

3,2004

Естественные науки

Химия

УДК 547.294.31.07

А. А. АМБАРЦУМЯН, А. С. САГИЯН, А. А. ПЕТРОСЯН, Л. Л. МАНАСЯН, Г. М. МКРТЧЯН, А. А. АВЕТИСЯН, В. И. МАЛЕЕВ, Ю. Н. БЕЛОКОНЬ

СИНТЕЗ НОВЫХ ХИРАЛЬНЫХ Ni(II) КОМПЛЕКСОВ ОСНОВАНИЙ ШИФФА ДЕГИДРОАЛАНИНА

Разработаны методы синтеза новых хиральных реагентов (S)-N-(2бензоилфенил)-1-(3,4-дихлорбензил)пирролидин-2-карбоксамида и (S)-N-(2-(2',5'-диметилфенил)бензоил)-1-пирролидин-2-карбоксамида (BBX), а на их основе – хиральных Ni²⁺ комплексов основания Шиффа с дегидроаланином. В случае комплексов на основе хирального реагента BBX как конечный комплекс дегидроаланина, так и промежуточные комплексы глицина и серина получаются в виде двух атропоизомеров. Все атропоизомерные комплексы были выделены и охарактеризованы спектральными методами анализа.

В природе синтез многих α -аминокислот происходит под действием пиридоксалевых ферментов через промежуточное образование на активном центре прочной системы шиффового основания дегидроаминокислот с активной электрофильной C=C связью, нуклеофильное присоединение к которой приводит к асимметрическому образованию (S)- α -аминокислот с различными заместителями в α -положении (триптофан, треонин, цистеин, цистатионин и т.д.) [1, 2].

Ранее были синтезированы Ni²⁺ комплексы оснований Шиффа дегидроаминокислот (дегидроаланина и дегидроаминомасляной кислоты) с хиральными карбонильными соединениями (S)-2-N-(N'-бензилпролил)аминоацетофеноном (BPA) [3] и (S)-2-N-(N'-бензилпролил)аминобензофеноном (BPB) [4] и испытаны в реакциях асимметрического синтеза β -замещенных (S)- α аминокислот [5, 6]. Было показано, что в этих системах стереоселективность асимметрической индукции обусловлена пространственным экранированием дегидроаминокислотного остатка фенильной группой бензилпролинового фрагмента и объемистым заместителем альдиминного атома углерода хиральных реагентов. Этим объясняется увеличение стереоселективности асимметрического синтеза β -замещенных α -аминокислот при переходе от комплексов на основе BPA к комплексу, содержащему BPB.

75

В настоящей работе с целью увеличения пространственного экранирования дегидроаминокислотного остатка со сторон фенильной группы N-бензилпролинового остатка и альдиминного заместителя были синтезированы хиральные комплексы иона Ni^{2*} оснований Шиффа дегидроаланина с хиральными реагентами (S)-N-(2-бензоилфенил)-1-(3,4-дихлорбензил)пирролидин-2-карбоксамидом (СРВ) и (S)-O-N-(N-бензилпролил)-2-амино-2',5'-диметилбензофеноном (BBX).

Хиральный реагент СРВ и его хиральный Ni²⁺ комплекс оснований Шиффа с глицином (Ni-CPB-Gly) были синтезированы согласно [7]. Схема 1 иллюстрирует синтез хирального реагента BBX (2) из тозилантраниловой кислоты через промежуточное образование 2-амино-2',5'-диметилбензона (1).

CXEMA I.

Схема 2 иллюстрирует синтез хиральных Ni^{2+} комплексов оснований Шиффа глицина с хиральными карбонильными соединениями СРВ и BBX (Ni-CPB-Gly (3) и Ni-BBX-Gly (4)). Реакции синтеза комплексов 3 и 4 протекают медленно по сравнению с синтезом комплекса на основе хирального реагента BPB, что, по-видимому, является следствием стерических факторов, обусловленных наличием электроакцепторных заместителей в аминобензофеноновом и N-бензилпролиновом фрагментах. Синтез BBX (2) осуществляют при комнатной температуре в CH₂Cl₂; продукт перекристаллизуют из гептана. Комплекс Ni-Gly-BBX (4) образуется в виде двух атропоизомеров (A и B), которые были разделены хроматографированием (SiO₂, CHCl₃-CH₃COOC₂H₅ (1:5)) и охарактеризованы методом ¹H-ЯМР.

Gły, KOH

NI(NO)) MeOH

X = Cl, Y = H, CPB X = H, Y = CH,, BBX (<u>2</u>)

X = CI, Y = H, NI-CPB-Gly (<u>1</u>) X = H, Y = CH₂, NI-BBX-Gly (<u>1</u>)

Cxcma 2.

Ni-CPB-Gly (2) Ni-BBX-Gly (4)

Ni-CPB-(S)-Ser Ni-BBX-(S)-Ser

Carenta 3

Схема 3 иллюстрирует синтез хиральных комплексов (R)-серина -Ni-CPB-(R)-Ser (5) и Ni-BBX-(R)-Ser (6). Конденсация комплексов глицина (Ni-CPB-Gly (3) и Ni-BBX-Gly (4)) с параформом идет при нагревании в щелочной среде. По ходу реакции диастереомерные комплексы (S)-серина (Ni-CPB-(S)-Ser и Ni-BBX-(S)-Ser) полностью переходят в комплексы (R)-серина (5 и 6). Как было показано ранее на примере синтеза комплексов серина на основе хирального реагента ВРВ, при увеличении основности среды происходит ионизация В-ОН группы остатка серина, что сопровождается внутримолекулярной перегруппировкой комплекса с координацией иона металла по ионизированной гидроксильной группе. В полученном комплексе термодинамически более выгодным оказывается диастереомер, содержащий фрагмент (R)-серина. В присутствии слабого основания (Et₃N) предпочтительно происходит образование комплексов (S)-серина. Комплекс Ni-BBX-(R)-Ser (6) получается в виде двух атропоизомеров, которые были разделены хроматографически и охарактеризованы спектральными методами.

Схема 4.

Как видно из схемы 4, комплексы <u>5</u> и <u>6</u> были использованы для синтеза комплексов дегидроаланина через промежуточное ацетилирование серинового фрагмента и α , β -элиминирование остатка уксусной кислоты О-ацетилсериновых комплексов. Ацетилирование <u>5</u> и <u>6</u> в среде ацетонитрила в присутствии Na₂CO₃ происходит медленно и ускоряется при увеличении избытка уксусного ангидрида. В случае Ni-CPB-(R)-Ser (5) ацетилирование по сравнению с комплексом (R)-серина на основе хирального реагента ВРВ происходит медленно (в течение 8–10ч). Сравнительно неактивен по отношению к реакции α , β -элиминирования также полученный О-ацетильный производный комплекса серина на основе хирального реагента CPB (Ni-CPB-(R)-O-AcSer). Реакционная смесь подвергается полному деацетилированию только после полного ацетилирования фрагмента (R)-серина при нагревании в течение 3–4ч.

При ацетилировании комплекса Ni-BBX-(R)-Ser ($\underline{6}$) фрагмент серина полностью ацетилируется в течение 5–6ч. Выяснилось, что в этом случае реакция деацетилирования полученного комплекса О-ацетилсерина, в отличие от реакции ацетилирования, происходит очень легко. Ацетилированный производный комплекса в процессе его образования параллельно подвергается деацетилированию. Полное ацетилирование и деацетилирование комплекса <u>6</u> происходит при трехкратном избытке (CH₃CO)₂O в течение 24.

В результате реакции ацетилирования и деацетилирования образуются хиральные Ni²⁺ комплексы основания Шиффа дегидроаланина с хиральными реагентами СРВ и BBX (Ni-CPB- Δ -Ala (7) и Ni-BBX- Δ -Ala (8)). При этом комплекс дегидроаланина на основе хирального реагента BBX (8) образуется в виде двух атропоизомеров (**A** и **B**). Атропоизомеры комплекса 8 были разделены на колонке с SiO₂, дополнительно очищены на сефадексе LH-20 и охарактеризованы спектральными методами анализа. Атропоизомерные комплексы дегидроаланина сильно отличаются друг от друга по физикохимическим параметрам.

Экспериментальная часть. Спектры ¹Н-ЯМР регистрировались на приборах «Bruker WP 200» и «Bruker XP 400». Оптическое вращение измеряли на поляриметре «Perkin-Elmer 341». Все использованные растворители были свежеперегнанными. Бензилпролин получили по ранее разработанной методике [8]. В работе использовались глицин, параформ, уксусный ангидрид, *n*-ксилол, бензилбромид, этаноламин, имидазол и другие реактивы фирмы «Aldrich» и «Peaxим». Ni-CPB-Gly (3) синтезировали согласно [7].

Синтез 2-амино-2',5'-диметилбензона (1). В сухую круглодонную колбу помещают 36,5г (0,125моль) сухой Тs-антраниловой кислоты, 350мл безводного *n*-ксилола и 30г (0,142моль) PCl₅. Смесь перемешивают при 50°С в течение 5ч. Раствор охлаждают до 20–25°С, прибавляют к нему 72,5г (0,55 моль) AlCl₃, температуру реакционной смеси поднимают до 80–90°С и перемешивают в течение 8ч. Затем при комнатной температуре реакционную смесь выливают в литровую колбу со смесью 120г льда и 10мл 12N HCl. Раствор упаривают, осадок тщательно промывают последовательно 0,5N HCl, H₂O, 5% Na₂CO₃ и H₂O для полного удаления примесей антраниловой кислоты и других исходных реагентов.

Неочищенный, влажный сульфамид растворяют при нагревании на паровой бане в течение 3ч в 400*мл* концентрированной H₂SO₄. Сернокислый раствор выливают в литровый стакан, охлаждают в бане со льдом и к

содержимому медленно при перемешивании прибавляют 800г льда. Во время этой операции выделяется фенил-*n*-тулоилсульфон. Затем прибавляют 15г активированного угля, перемешивают в течение 10*мин* и фильтруют. Фильтрат нейтрализуют 12*N* NH₄OH до pH 4–5, выпавший при этом осадок отфильтровывают, промывают водой. Продукт получается в виде желтых кристаллов. Выход 40% (11,25г, 0,05*моль*). T_{nn} = 99–101°C. Найдено, %: С 79,98; H 6,80; N 6,15. $C_{15}H_{15}ON$. Вычислено, %: С 79,97; H 6,71; N 6,21. ¹H-ЯМР (CDCl₃, δ , м.д.): 2,16 (с., 3H, CH₃); 2,29 (с., 3H, CH₃); 6,31 (с., 2H, NH₂); 6,46–7,27 (м., 7H, Ar).

(S)-N-(2-(2',5'-фенилбензоил))-1-пирролидин-2-карбоксамид (BBX) (2). К раствору 4.5г (0.022моль) бензилпролина в 20мл CH₂Cl₂ при охлаждении до -10°C добавляют 4,57г (0,022моль) PCl₅ и перемешивают 10мин. Затем температуру реакционной смеси поднимают до комнатной и при перемешивании добавляют 4.8г (0.022моль) 2-амино-2',5'-диметилбензофенона. За ходом реакции следят методом TCX (SiO₂, (C₂H₅)₂O-MeOH (3:1)) до полной конверсии кетона. Через 3 ч к реакционной смеси при интенсивном перемешивании добавляют насыщенный раствор технической соды до щелочной реакции рН. Затем органический слой отделяют, промывают водой и упаривают досуха. Продукт кристаллизуют из гептана. Получают кристаллы ВВХ бурого цвета. Выход 90% (8,17г, 0,019моль). Т_{пл}=96-98°С. Найдено, %: С 78.38; Н 6,90; N 6,81. С27H28N2O2. Вычислено, %: С 78,61; Н 6,84; N 6,79. ¹H-ЯМР (CDCl₃, δ , м.д.): 1,76 (м., 1H, γ -H Pro); 1,98 (м., 1H, β -H Pro); 2,01 (m., 1H, β-H Pro); 2,22 (c., 3H, CH₃); 2,26 (c., 3H, CH₃); 2,38 (m., 2H, δ -H Pro); 3,32 (м., 2H, δ -, α -H Pro); 3,64 и 3,98 (AB, 2H, NCH₂Ph, $J_{AB} = 13\Gamma \mu$; 6,97-7,48 (m., 6H, Ar); 8,73 (m., 1H, Ar); 12,43 (c., 1H, NH).

Синтез Ni-BBX-Gly (4). К раствору 2,7г (6,5ммоль) BBX, 3,8г (13ммоль) Ni(NO₃)₂·6H₂O и 2,4г (32ммоль) Gly в 20мл MeOH добавляют раствор 3,2г (58ммоль) KOH в 15мл MeOH. Смесь перемешивали при 55-65°C в течение 1ч. За ходом реакции следят методом TCX (SiO₂, CHCl₃-CH₃COOEt (1:5)). После окончания реакции смесь нейтрализуют CH₃COOH до pH 5-6 и разбавляют водой до объема 200мл. Выпавший осадок комплекса Ni-BBX-Gly отфильтровывают и сушат под вакуумом. Небольшую часть комплекса (1г) хроматографировали на SiO₂ в системе растворителей CHCl₃-CH₃COOEt (1:5). Получено 2,4г (4,55ммоль) Ni-BBX-Gly (70%). T_{nn} =98-100°C. [α]_D²⁵= +1304° (c=0,05; CHCl₃). Найдено, %: C 66,03; H 5,42; N 8,18. C₂₉H₂₉N₃O₃Ni. Вычислено, %: C 66,18; H 5,55; N 7,98. Продукт существует в виде двух атропоизомеров (*A* и *B*). ¹H-ЯМР (CDCl₃, δ , м.д.):

A. 1,86 (c., 3H, CH₃); 2,04 (м., 2H, β -H Pro); 2,26 (c., 3H, CH₃); 2,45 (м., 2H, γ -H Pro); 2,50 (м., 1H, δ -H Pro); 3,335 и 3,725 (AB, 2H, CH<u>CH₂</u>, J_{AB} = =22Γψ); 3,41 (м., 2H, δ -, α -H Pro); 3,58 и 4,35 (AB, 2H, NCH₂Ph, J_{AB} =11,5Γψ); 6,01–6,85 (м., 3H, Ar); 7,05–7,48 (м., 6H, Ar); 8,08–8,34 (м., 3 H, Ar).

B. 1,98 (c., 3H, CH₃); 2,06 (M., 2H, β -H Pro); 2,31 (c., 3H, CH₃); 2,46 (M., 2H, γ -H Pro); 2,48 (M., 1H, δ - H Pro); 3,43 (M., 2H, δ -, α -H Pro); 3,515 μ 3,69 (AB, 2H, CH<u>CH</u>₂, J_{AB}=20Гµ); 3,515 и 4,41 (AB, 2H, NCH₂Ph, J_{AB}=11,5Гµ); 6,01–6,85 (м., 3H, Ar); 7,05–7,48 (м., 6H, Ar); 8,08–8,34 (м., 3H, Ar).

Синтез Ni-CPB-(R)-Ser (5). К раствору 23г (0,04моль) комплекса Ni-CPB-Gly в 200мл метанола добавляют 40мл 4N CH₃ONa и 13г (0,4моль) параформа. Реакционную смесь перемешивают в атмосфере Ar при температуре $40-50^{\circ}C$ в течение 5ч до полного превращения комплекса Ni-CPB-(S)-Ser в комплекс Ni-CPB-(R)-Ser. За ходом реакции следят методом TCX в системе C₆H₅CH₃ –CH₃COCH₃ (2:3). Далее реакционную смесь нейтрализуют CH₃COOH до pH 5–6 и разбавляют водой в 5 раз. Выпавший осадок отфильтровывают, промывают водой и сушат под вакуумом.

Получен 17г (0,028*моль*) Ni-CPB-(R)-Ser (70%). $T_{nn}=242-243^{\circ}C$. Найдено, %: С 56,33; H 4,24; N 6,58. $C_{28}H_{25}O_4N_3Cl_2Ni$. Вычислено, %: С 56,90; H 4,61; N 6,86. Спектр ¹H-ЯМР (CDCl₃, δ , м.д.): 1,85 (м., 1H, β -H Pro); 2,08 (м., 3H, β -, α -, γ -H Pro); 2,49 (с., 1H, OH); 3,18–4,30 (AB, 2H, NCH₂Ar, J=12,4 Γ µ); 3,38 (м., 1H, α -H Pro); 3,62 (м., 3H, δ -H Pro, <u>CH</u>₂OH); 4,08 (м., 1H, δ -H Pro); 6,60 (м., 1H, Ar); 6,69 (м., 1H, Ar); 7,1 (м., 4H, Ar); 7,40 (м., 2H, Ar); 7,49 (м., 1H, Ar); 8,09 (с., 1H, Ar); 8,25 (м., 1H, Ar); 8,35 (м., 1H, Ar). [α]_D²⁵= -2116⁰ (с=0,3; MeOH).

Синтез Ni-BBX-(R)-Ser (<u>6</u>). К раствору 1,8г (3,4ммоль) Ni-BBX-Gly в 10мл MeOH в атмосфере Ar при постоянном перемешивании добавляют 0,5г (17ммоль) (CH₂O)п и 2,15мл 4N MeONa. Перемешивание продолжают в атмосфере Ar при комнатной температуре в течение 2ч. За ходом реакции следили методом TCX на SiO₂ в системе растворителей CHCl₃-CH₃COCH₃ (1:1). При этом происходит как конверсия комплекса глицина в комплекс серина, так и переход Ni-BBX-(S)-Ser в Ni-BBX-(R)-Ser. После этого реакционную смесь нейтрализуют CH₃COOH до pH 5-6, добавляют 20мл CHCl₃ и 100мл H₂O, органический слой отделяют, промывают водой. Продукт чистят хроматографически на колонке с SiO₂ (CHCl₃-CH₃COCH₃ (4:1)). Получено 1,23г (2,21ммоль) Ni-BBX-(R)-Ser (65%). T_{nn} =147-149⁰C. [α]_D²⁵= -1708⁰ (с=0,05; CHCl₃). Найдено, %: C 62,74; H 5,78; N 6,82. C₃₀H₃₁N₃O₄Ni H₂O. Вычислено, %: C 6,74; H 5,79; N 7,32. Продукт существует в виде двух атропоизомеров (A и B). ¹H-ЯМР (CDCl₃, δ , м.д.):

A. 1,823 (c., 3H, CH₃); 1,93 (м., 2H, β-H Pro); 2,322 (c., 3H, CH₃); 2,586 (м., 2H, γ-H Pro); 3,45 (м., 1H, δ-H Pro); 3,48 и 4,48 (AB, 2H, NCH₂Ph, $J_{AB}=12\Gamma \mu$); 3,50 (м., 1H, α-H Pro); 3,59 и 3,62 (AB часть ABX системы, 2H м, <u>CH</u>₂OH, J_{AB} =6); 4,02 (м., 1H, δ-H Pro); 4,08 (X часть ABX системы, 1H м, <u>CH</u>CH₂OH); 6,67–6,71 (м., 3H, Ar); 6,82 (c., 1H, OH); 7,15 (м., 2H, Ar); 7,45– 7,50 (м., 4H, Ar); 8,04 (м., 2H, Ar); 8,48 (м., 1H, Ar).

B. 1,93 (M., 2H, β -H Pro); 2,12 (c., 3H, CH₃); 2,29 (c., 3H, CH₃); 2,64 (M., 2H, γ -H Pro); 3,45 (M., 1H, δ -H Pro); 3,50 и 4,42 (AB, 2H, NCH₂Ph, J_{AB}= =12Γμ); 3,52 (M., 1H, δ -H Pro); 3,60 (M., 1H, α -H Pro); 3,61 и 3,64 (AB часть ABX системы, 2H, <u>CH</u>₂OH, J_{AB}=6Γμ); 4,05 (M., 1H, δ -H Pro); 4,12 (M., X часть ABX системы, 1H, <u>CH</u>CH₂OH); 6,67–6,71 (M., 3H, Ar); 6,83 (c., 1H, OH); 7,15 (M., 2H, Ar); 7,45–7,50 (M., 4H, Ar); 8,04 (M., 2H, Ar); 8,48 (M., 1H, Ar).

Синтез Ni-CPB- A-Ala (7). К раствору 22,2г (0,037моль) Ni-CPB-(R)-Ser в 60мл CH₃CN в атмосфере Ar и при постоянном перемешивании добавляют 20г (0.018моль) Na2CO3 и по частям 6,4г (0.062моль) уксусного ангидрида. Ацетилирование Ni-CPB-(R)-Ser продолжается в течение 84. Затем реакционную смесь нагревают до 50-60°С в течение 3-4ч до полного деацетилирования комплекса Ni-CPB-(R)-O-AcSer. За ходом реакции ацетилирования и деацетилирования следят методом TCX (SiO₂, СНСІ₁--(СН₁)₂СО (5:1)) по исчезновению пятна исходного комплекса (R)-серина. После окончания реакции элиминирования осадок неорганических солей отфильтровывают, раствор упаривают досуха, остаток растворяют в минимальном количестве СНС1, очищают хроматографированием на колонке с SiO₂ в системе растворителей CHCl₃-(CH₃)₂CO (5:1). Получено 212 (0,036моль) комплекса Ni-CPB- △ -Ala (98%). Т_{пл}=235-237⁰C. Найдено, %: С 55,90; Н 4,27; N 6,98. С28Н23О3N3NiCl21,25 Н2О. Вычислено, %: С 55,84; H 4,24; N 6,90. Спектр ¹H-ЯМР (CDCl₃, δ, м.д.): 2,08 (м., 1H, β-H Pro); 2,23 (m., 1H, γ-H Pro); 2,60 (m., 1H, β-H Pro); 2,69 (m., 1H, γ-H Pro); 3,19 H 4.25 (AB, 2H, NCH₂Ar, $J_{AB}=12,4\Gamma \mu$); 3,40 (m., 1H, α -H Pro); 3,58 (m., 1H, δ-H Pro); 3,72 (м., 1H, δ-H Pro); 4,17 (м., 1H, CHCH₂); 5,64 (м., 1H, CHCH₂); 6,72 (m., 1H, Ar); 6,85 (m., 1H, Ar); 7,20 (m., 2H, Ar); 7,38 (m., 1H, Ar); 7,48 (M., 4H, Ar); 7,82 (M., 1H, Ar); 8,06 (M., 1H, Ar); 8,86 (c., 1H, Ar). $[\alpha]_{D}^{25} = +2865,0^{\circ}$ (c = 0,052, CHCl₃).

Синтез Ni-BBX- Δ -Ala (8). К раствору 2,3г (4ммоль) Ni-BBX-(R)-Ser в 20мл CH₃CN в атмосфере Ar добавляют 2г (20ммоль) Na₂CO₃ и 1,2г (12ммоль) уксусного ангидрида. За ходом реакции следят методом TCX (SiO₂, CHCl₃-CH₃COCH₃ (5:1)) по исчезновению следов исходного комплекса серина. Через 2ч после добавления уксусного ангидрида исходный комплекс Ni-BBX-(R)-Ser через промежуточное ацетилирование полностью подвергается α , β -элиминированию с образованием двух атропоизомерных комплексов Ni-BBX- Δ -Ala. Реакционную смесь фильтруют, осадок промывают хлороформом, органический слой упаривают досуха. Два атропоизомера комплекса дегидроаланина были разделены на колонке с силикагелем (SiO₂, CHCl₃-CH₃COCH₃ (10:1)) и дополнительно очищены на сефадексе LH-20 (бензол-этанол (3:1)).

Атропоизомер А. Выход 40% (0,86г, 1,6ммоль). $T_{nn}=85-87^{0}C$. [α]_D²⁵=+2375,0⁰ (c=0,056; CHCl₃). Найдено, %: C 67,31; H 5,50; N 7,28. C₃₀H₂₉N₃O₃Ni. Вычислено, %: C 66,94; H 5,43; N 7,81. ¹H-ЯМР (CDCl₃, δ , м.д.): 1,85 (c., 3H, CH₃); 2,09 (м., 2H, β -H Pro); 2,34 (c., 3H, CH₃); 2,53 (м., 1H, γ -H Pro); 3,17 (м., 1H, γ -H Pro); 3,45 и 4,385 (AB, 2H, NCH₂Ph, J_{AB}=12 Γ μ); 3,49 (м., 1H, α -H Pro); 3,62 (м., 2H, δ -H Pro); 4,21 (м., 1H, =CH₂); 5,65 (c., 1H, =CH₂); 6,67 (м., 1H, Ar); 6,78 (м., 2H, Ar); 7,15 (м., 2H, Ar); 7,06-7,2 (м., 2H, Ar); 7,32-7,36 (м., 2H, Ar); 8,1-8,15 (м., 3H, Ar).

Атропоизомер **В**. Выход 50% (1г, 2ммоль). $T_{nn}=233-235^{\circ}C.$ [α]_D²⁵=+3147,5[°] (c=0,061; CHCl₃). Найдено, %: C 67,22; H 5,52; N 7,42. C₃₀H₂₉N₃O₃Ni. Вычислено, %: C 66,94; H 5,43; N 7,81. ¹H - ЯМР (CDCl₃, δ , м.д.): 2,07 (м., 1H, β-H Pro); 2,11 (c., 3H, CH₃); 2,15 (м., 1H, β-H Pro); 2,28 (c., 3H, CH₃); 2,56 (м., 1H, γ-H Pro); 2,63 (м., 1H, γ-H Pro); 3,39 и 4,32 (AB, 2H, NCH₂Ph, J_{AB}=12Γμ); 3,48 (м., 1H, α-H Pro); 3,55 (м., 1H, δ-H Pro); 3,71 (м., 1H, δ-H Pro); 4,23 (м., 1H, =CH₂); 5,59 (м., 1H, =CH₂); 6,71 (м., 2H, Ar); 6,78 (м., 1H, OH); 7,12–7,84 (м., 6H, Ar); 8,15 (м., 3H, Ar).

Работа выполнена при финансовой поддержке Международного научно-технического центра (грант ISTC A-356).

ЕГУ, ИНЭОС РАН

Поступила 25.02.2003

ЛИТЕРАТУРА

- 1. Radahhisman A.N. J. Biochem., 1970, v. 1, p. 117.
- 2. Davis L. and Metzler D.E. The Enzymes, ed. P.D. Boyer, New York, Acad. Press 3rd Ed., 1972, v. 7, p. 33.
- 3. Белоконь Ю.Н., Джамгарян С.М., Сагиян А.С., Иванов А.С., Беликов В.М. Изв. АН СССР, сер. хим., 1988, № 7, с. 1617.
- 4. Belokon' Y.N. Janssen Chimica Acta, 1992, v. 2, p. 4.
- 5. Belokon' Yu.N., Saghiyan A.S., Djamgaryan S.M., Bakhmutov V.I., Belikov V.M. Tetrahedron, 1988, v. 44, № 17, p. 5507-5514.
- 6. Saghiyan A.S., Geolchanyan A.V., Djamgaryan S.M., Vardapetyan S.M., Tararov V.I., N.A.Kuz'mina, Ikonnikov N.S., Belokon' Yu.N. and Nort M. Rass. Chem. Bull., Intern. Edition. 2000, v. 49, № 8, p. 1460.
- 7. Сагнян А.С., Петросян А.А., Амбарцумян А.А., Малеев В.И., Белоконь Ю.Н. Хим. журн. Армении, 2002, т. 55, № 3, с. 150.

Հ. Հ. ՀԱՄԲԱՐՉՈՒՄՅԱՆ, Ա. Ս. ՍԱՂՅԱՆ, Ա. Ա. ՊԵՏՐՈՍՅԱՆ, Լ. Լ. ՄԱՆԱՍՅԱՆ, Գ. Մ. ՄԿՐՏՉՅԱՆ, Ա. Ա. ԱՎԵՏԻՍՅԱՆ, Վ. Ի. ՄԱԼԵԵՎ, Յու. Ն. ԲԵԼՈԿՈՆ

ԴԵՀԻԴՐՈԱԼԱՆԻՆԻ ՇԻՖՖԻ ՀԻՄՔԵՐԻ ՀԵՏ Ni(II) ԻՈՆԻ ԱՌԱՋԱՅՐԱԾ ՆՈՐ ՔԻՐԱԼԱՅԻՆ ԿՈՄՊԼԵՔՍՆԵՐԻ ՍԻՆԹԵՉ

Ամփոփում

Մշակվել են (S)-N-(2-բենզոիլֆենիլ)-1-(3,4-դիքլորբենզիլ)պիրոլիդին-2կարբօքսամիդ(СРВ) և (S)-N-(2-(2',5'-դիմեթիլֆենիլ)բենզոիլ)-1-պիրոլիդին-2կարբօքսամիդ (BBX) քիրալային ռեագենտների և նրանց հիման վրա կառուցված դեհիդրոալանինի նիկելային քիրալային կոմպլեքսների (Ni-CPB-Δ-Ala և Ni-BBX- Δ-Ala) սինթեզի մեթոդներ։ BBX քիրալային ռեագենտի դեպքում բոլոր սինթեզված կոմպլեքսները՝ դեհիդրոալանինի և միջանկյալ գլիցինի ու սերինի, առաջանում են երկու ատրոպոիզոմերների ձևով, որոնք անջատվել և հետազոտվել են ժամանակակից սպեկտրալ անալիզի մեթոդներով։

H. H. HAMBARDZUMYAN, A. S. SAGHIYAN, A. A. PETROSYAN, L. L.MANASYAN, G. M. MKRTCHYAN, A. A. AVETISYAN, V. I. MALEEV, Yu. N. BELOKON'

SYNTHESIS OF NEW CHIRAL Ni(II) COMPLEXES OF SCHIFF'S BASE OF DEHYDROALANINE

Summary

New methods for the synthesis of the chiral reagents (S)-N-(2--benzoylphenyl)-1-(3,4-dichlorbenzyl)pirrolydin-2-carboxamide (CPB) and (S)-N--(2-(2',5'-dimethylphenyl)benzoyl)-1-benzylpirrolydin-2-carboxamide (BBX) and their chiral Ni²⁺ complexes of Schiff's bases with dehydroalanine (Ni-CPB- Δ --Ala and Ni-BBX- Δ -Ala) has been elaborated. All the complexes derived from BBX are formed as atropoisomers. These atropoisomers were isolated and subjected to spectral analysis. Բնական գիտություններ

Естественные науки

Химия

УДК 547.294.314.07

А. А. АМБАРЦУМЯН

АСИММЕТРИЧЕСКИЙ СИНТЕЗ (S)-ВИНИЛГЛИЦИНА ЧЕРЕЗ ХИРАЛЬНЫЙ Ni(II) КОМПЛЕКС ОСНОВАНИЯ ШИФФА ДЕГИДРОАМИНОМАСЛЯНОЙ КИСЛОТЫ С (S)-N-(2-БЕНЗОИЛ-ФЕНИЛ)-1-(3,4-ДИХЛОРБЕНЗИЛ)-ПИРРОЛИДИН-2-КАРБОКСАМИДОМ

Разработан новый метод асимметрического синтеза (S)-винилглицина нуклеофильным присоединением бензиламина к C=C связи дегидроаминомасляной кислоты в ее Ni(II) комплексе основания Шиффа с хиральным карбонильным реагентом (S)-N-(2-бензоилфенил)-1-(3,4-дихлорбензил)пирролидин-2-карбоксамидом. После непосредственного разложения реакционнной смеси выделена целевая аминокислота (S)-винилглицин с 48% энантиомерной чистотой.

Поиск новых методов асимметрического синтеза небелковых аминокислот – актуальная задача [1–4]. Многие небелковые α -аминокислоты являются продуктами вторичного метаболизма или образовываются как промежуточные соединения в реакциях метаболизма белковых аминокислот. Это те аминокислоты, которые не обнаруживаются в белковой цепи и не имеют соответствующих т-РНК и кодового триплета. Они достаточно широко распространены в природе: известно более 700 небелковых аминокислот [5, 6]. Благодаря повышенной специфичности и продолжительности действия многие небелковые α -аминокислоты, как необратимые ингибиторы ферментов, успешно применяются в медицине и фармакологии [7–16]. К числу этих соединений относится и винилглицин [17].

Ранее был разработан многостадийный метод асимметрического синтеза (S)-винилглицина из метионина через хиральный Ni(II) комплекс основания Шиффа с хиральным карбонильным реагентом (S)-2-N-(N'-бензилпролил)аминобензофеноном ((S)-BPB) [18]. С использованием этого хирального реагента было обнаружено также образование винилглицина (до 10%) при присоединении бензилмеркаптана к хиральному Ni(II) комплексу шиффового основания дегидроаминомасляной кислоты [19].

В настоящей работе сообщается об асимметрическом синтезе (S)винилглицина с использованием нового хирального Ni(II) комплекса основания Шиффа дегидроаминомасляной кислоты с хиральным карбонильным соединением (S)-N-(2-бензоилфенил)-1-(3,4-дихлорбензил)пирролидин-2-карбоксамидом ((S)-CPB). Нами уже сообщалось о возможности высокоселективного асимметрического синтеза α- и β-замещенных (S)-α-аминокислот при использовании хирального реагента (S)-CPB [20, 21].

Исходные хиральные Ni(ll) комплексы основания Шиффа (S)-CPB с Еи Z-дегидроаминомасляной кислотой – Ni-(S)-CPB-(E)- Δ -ABA (E-<u>1</u>) и Ni-(S)--CPB-(Z)- Δ -ABA (Z-<u>1</u>) – были синтезированы из соответствующих комплексов (R)-треонина по аналогичной методике синтеза комплексов дегидроаминомасляной кислоты на основе хирального реагента (S)-BPB [22]. При этом в количестве до 5–7% образуется комплекс винилглицина (<u>2</u>).

Схема 1 иллюстрирует асимметрический синтез (S)-винилглицина присоединением бензиламина к С=С связи комплекса E-<u>1</u>.

При этом в качестве основного продукта образуется комплекс винилглицина (2), однако реакция присоединения сопровождается образованием примесей комплекса Z-дегидроаминомасляной кислоты (Z-1) (до 35%). Присоединение нуклеофила протекает при нагревании 50–60°C за 5ч За ходом реакции легко следить методом TCX на SiO₂ в системе растворителей CHCl₃--CH₃COOEt (1:3) или CHCl₃--CH₃COCH₃ (7:1). Выход комплекса винилглицина (2) составляет 50%. С целью установления структуры и абсолютной конфигурации основного диастереомера после завершения реакции присоединения реакционная смесь была хроматографирована на пластинках с SiO₂ (25*cm*×25*cm*) в системе растворителей CHCl₃---CH₃COCH₃ (7:1). Диастереомерная чистота синтезированного комплекса винилглицина, по данным ¹H-ЯМР спектроскопии, составляет 48%.

Целевая аминокислота была выделена разложением комплекса <u>2</u> обработкой 2N HCl при температуре 45–50°C с последующей деминерализацией с помощью катионита Ky-2×8 в H⁺-форме [18]. Энантиомерная чистота выделенной аминокислоты (S)-винилглицина, по данным хирального ГЖХ анализа, составляет 48%.

Образование винилглицина не может быть объяснено простой схемой аллильной перегруппировки, так как в отсутствие нуклеофила в условиях реакции получение комплекса винилглицина не наблюдается. Причиной его образования может быть элиминирование аминобензильного остатка из продукта присоединения (см. схему 2).

Схема 2.

Движущей силой такого элиминирования может быть значительное стерическое напряжение, наблюдаемое как в продукте присоединения бензиламина к комплексу Е-дегидроаминомасляной кислоты, так и в исходном комплексе Е-<u>1</u>.

В случае использования комплекса Z-дегидроаминомасляной кислоты (Z-<u>1</u>) реакция присоеднения амина не протекает, что, по-видимому, является следствием стерических затруднений со стороны CH₃ группы дегидроаминомасляного фрагмента.

Экспериментальная часть. Спектры ¹Н-ЯМР регистрировали на приборах Bruker WP 200 и Bruker XP 400. Оптическое вращение измеряли на поляриметре PerkinElmer 341. Энантиомерный ГЖХ анализ винилглицина в виде н-пропилового эфира N-трифторацетильного производного проводили на хиральной фазе типа ChirasilVal (капиллярная кварцевая колонка $40 M \times 0,23 MM$ с толщиной пленки 0,12 M KM) при температуре $125^{\circ}C$, газноситель – гелий. В работе использовались глицин, 3,4-дихлорбензилхлорид и другие реагенты фирм «Aldrich» и «Реахим».

Синтез комплексов E-1 и Z-1 проводили по ранее разработанной методике [22], с использованием (S)-СРВ вместо (S)-ВРВ. Структуру комп-

лексов Е-1 и Z-1 устанавливали физико-химическими методами анализа.

Комплекс Е-<u>1</u>. $T_{nn}=248-250^{\circ}$ С. $[\alpha]_D^{25}=+2146,2^{\circ}$ (c=0,052; CHCl₃). Найдено, %: C 55,39; H 4,00; N 6,21. $C_{29}H_{25}O_3N_3NiCl_2\cdot0,25CCl_4$. Вычислено, %: C 55,63; H 3,99, N 6,65. ¹H-ЯМР (CDCl₃, δ , м. д.): 1,71 (д., 3H, CH₃); 2,03 (м., 1H, β-H Pro); 2,21 (м., 1H, γ-H Pro); 2,57 (м., 1H, β-H Pro), 2,67 (м., 1H, γ-H Pro); 3,13 и 4,23 (AB, 2H, NCH₂Ar, J=12,64*Hz*); 3,39 (м., 1H, α-H Pro); 3,55 (м., 1H, δ -H Pro); 3,72 (м., 1H, δ -H Pro); 5,08 (м., 1H, <u>CH</u>-CH₃); 6,69–6,85 (д., 2H, Ar); 7,15–7,41 (м., 7H, Ar); 7,81–8,04 (м., 2H, Ar); 8,837 (с., 1H, Ar).

Комплекс Z-<u>1</u>. T_{nn} =235–236⁰C. $[\alpha]_D^{25}$ =+712,5⁰ (c=0,048; CHCl₃). Найдено, %: C 58,73; H 4,25; N 7,08. $C_{29}H_{25}O_3N_3NiCl_2$. Вычислено, %: C 58,68; H 4,02, N 6,97. ¹H-ЯМР (CDCl₃, δ , м.д.): 0,81 (д., 3H, CH₃); 2,06 (м., 1H, β -H Pro); 2,24 (м., 1H, γ -H Pro); 2,61 (м., 1H, γ -H Pro); 2,74 (м., 1H, β -H Pro); 3,098 и 4,14 (AB, 2H, NCH₂Ar, J=12,64*Hz*); 3,42 (м., 2H, α -, δ -H Pro); 3,87 (м., 1H, δ -H Pro); 5,83 (м., 1H, <u>CH</u>-CH₃); 6,72–6,98 (д., 2H, Ar); 7,16–7,41 (м., 7H, Ar); 7,85–8,08 (м., 2H, Ar); 8,79 (с., 1H, Ar).

Присоединение бензиламина к комплексу $E-\underline{1}$ и выделение (S)-винилглицина (<u>3</u>). К раствору 2г (3,4ммоль) комплекса $E-\underline{1}$ в 40мл CH₃CN добавляли 1,1 мл (10 ммоль) бензиламина и перемешивали в течении 5ч в атмосфере Ar при температуре 50–60°C. За ходом реакции следили методом TCX (SiO₂, CHCl₃-CH₃COOEt (1:3)). После исчезновения пятна исходного комплекса $E-\underline{1}$ к реакционной смеси добавляли 2мл CHCl₃ и 10мл H₂O, органический слой отделяли и промывали водой (2 раза по 10мл). Смесь хроматографировали на SiO₂ (50см × 3см, CHCl₃-(CH₃)₂CO (2:1)), основную фракцию охарактеризовали спектральными методами анализа.

Комплекс <u>2</u>. Выход 1,25г (2,1ммоль), 62,5%. $T_{nn}=252-254^{9}$ С. $[\alpha]_{D}^{2^{5}}=$ =+1475° (c=0,05; CHCl₃). Найдено, %: C 57,58; H 4,24; N 6,86. C₂₉H₂₅O₃N₃NiCl₂·0,5 H₂O. Вычислено, %: C 57,85; H 4,35; N 6,98. ¹H-ЯМР (CDCl₃, δ , м.д.): 2,21 (м., 2H, β -H Pro); 2,60 (м., 1H, δ -H Pro); 2,69 (м., 2H, γ -H Pro); 3,25 и 4,29 (AB, 2H, NCH₂Ar, J=12,64*Hz*); 3,38 (м., 1H, α -H Pro); 3,47 (м., 1H, δ -H Pro); 5,39–5,55 (AB часть ABX системы, 2H, CH₂, J_{AB}=0,2*Hz*, J_{AX}=7,8*Hz*, J_{BX}=16,72*Hz*); 6,04 (X часть ABX системы, N-CH-); 6,71-5,79 (м., 3H, Ar); 7,26–7,48 (м., 6H, Ar); 7,82–8,05 (м., 2H, Ar); 8,83 (с., 1H, Ar).

Выделение целевой аминокислоты (S)-винилглицина из реакционной смеси проводили следующим образом: реакционную смесь продуктов присоединения упаривали досуха, сухой остаток растворяли в 20 Mn CH₃OH и при перемешивании медленно добавляли к 20 Mn 2N HCl, нагретого до $50^{\circ}C$. После исчезновения характерной для комплексов красной окраски раствор концентрировали под вакуумом, добавляли 20 Mn воды, фильтровали, из фильтрата остатки исходного (S)-CPB дополнительно экстрагировали хлороформом. Из водной фракции аминокислоту выделяли на колонке с катионитом Ky-2 × 8 в H⁺-форме ($30 cm \times 3 cm$) при использовании в качестве элюента 5% водно-спиртового раствора NH₄OH (H₂O-C₂H₅OH (5:1)). Элюат концентрировали под вакуумом и кристаллизовали аминокислоту из смеси H₂O-C₂H₅OH (1:4). Получили 0,16*г* (1,65*ммоль*) (S)-винилглицина (<u>3</u>), что соответствует 79 % химического выхода.

88

(S)-винилглицина (<u>3</u>). $T_{nn}=181-182^{\circ}C.$ [α]_D²⁵=+48,9⁰ (c=0,4; H₂O). Найдено, %: C 43,54; H 7,24; N 12,68. C₄H₇O₂N·0,5 H₂O. Вычислено, %: C 43,63; H 7,27; N 12,72. ¹H-ЯМР (D₂O+DCC*, δ , м.д.): 4,26 (д., 1H, α -H, J= 7,1*Hz*); 5,48 (м.,2H, γ -H, J_{транс}=16,6*Hz*, J_{цис}=9,5*Hz*); 5,97 (м., 1H, β -H). Энантиомерная чистота, по данным хирального ГЖХ анализа, составляет 48%.

Работа выполнена при финансовой поддержке Международного научно-технического центра (Грант ISTC № А-356).

Кафедра фармацевтической химии

Поступила 16.12.2003

ЛИТЕРАТУРА

- Abellan T., Chinchilla R., Galindo N., Guillena G., Najera, Sansano J.M.- Eur. J. Org. Chem., 2000, v. 15, p. 2689.
- 2. Myers A.G. J. Org. Chem., 1999, v. 64, p. 3322.
- 3. Cativiela C., Diaz-de-Villegas M.D. Tetrahedron: Asymmetry, 1998, v. 9, p. 3517.
- 4. Ooi T., Kameda M., Maruoka K. J. Am. Chem. Soc., 1999, v. 121, p. 6519.
- Barrett G. Chemistry and Biochemistry of the Amino Acids, Chapman and Hall. London, 1985.
- 6. Reinhold D.F., Sletzinger M. Pat USA № 3344023; C.A., 1968, v. 68, p. 96127.
- 7. Чипенс Г.И., Славинская В.И., Силе Д.Е., Крейле Д.П., Корчагова Э.Х., Страутиня А.К. – Изв. АН Латв. ССР., Химия, 1985, v. 3, с. 259.
- Groodson L.H., Honigberg J.L., Lehman J.J., Burton W.H. J. Org. Chem., 1960, v. 25, p. 1920.
- 9. William L. Патент США, кл. 260-501 (С 07 С101/04), № 379674, 1971.
- 10. Ragahhisman A.N. J. Biochem., 1970, v. 1, p. 117.
- Clark W.G. In: Metabolic Inhibitors. Ed. R.M. Hochster and J.H. Quartel. Academic Press, New-York, London, 1963, v. 1, p. 315.
- 12. Wolfender R. Acc. Chem. Res., 1972, v. 5, p. 10.
- 13. Abiles R.H. and Maycock A.L. Acc. Chem. Res., 1976, v. 9, p. 313.
- Seiler N., Jung M.J. and Koch-Weser J. Enzyme-Activated Irreversible Inhibitors. -Elsevier/North Holland, Amsterdam, 1978.
- 15. Tate S.S., Relyea N. and Meister A. Biochemistry, 1969, v. 8, p. 5016.
- 16. Rando R.R. Acc. Chem. Res., 1975, v. 8, p. 281.
- 17. Marrotte P. and Walsh C. Biochem. Biophys. Res. Commun., 1975, v. 62, p. 64.
- Сагыян А.С., Белоконь Ю.Н., Джамгарян С.М., Каграманян С.Р., Григорян С.К. -Ученные записки ЕГУ, 1991, № 2. с 110.
- Belokon' Yu.N., Saghiyan A.S., Djamgaryan S.A., Bakhmutov V.L., Vitt S.V., Batsanov A.S., Struchkov Yu.T. and Belikov V.M. - J. Chem. Soc. Perkin Trans., 1990, v. 1, p. 2301.
- 20. Белоковь Ю.Н., Малеев В.Н., Петросли А.А., Савельева Т.Ф., Икониннов И.С., Перегулов А.С., Сагиян А.С. – Изв РАН, Химия, 2002. № 8. с. 1464.
- Сагиян А.С., Петросян А.А., Амбариумян А.А., Малеем В.И., Белеконь Ю.И. Хим. жур. Армении. 2002, т. 55, № 3. с. 150.
- 22. Сагиан А.С., Джангаран С.М., Белоконь Ю.Н., Аветисан А.Э., Бакмутов В.М., Стручкав Ю.Т. - Хин. жур. Армении, 1996, т. 49. № 1-2, с. 82.

Натрисвая соль 3-(триметилсилия)-1-пронансульфоновой инслоти.

Հ. Հ. ՀԱՄԲԱՐՉՈՒՄՅԱՆ

(S)-ՎԻՆԻԼԳԼԻՑԻՆԻ ԱՍԻՄԵՏՐԻԿ ՍԻՆԹԵՉԸ (S)-N-(2-ԲԵՆՉՈԻԼ-ՖԵՆԻԼ)-1-(3,4-ԴԻՔԼՈՐԲԵՆՉԻԼ)ՊԻՐՐՈԼԻԴԻՆ-2-ԿԱՐԲՕՔՍԱՄԻԴԻ ԵՎ ԴԵՀԻԴՐՈԱՄԻՆԱԿԱՐԱԳԱԹԹՎԻ ՇԻՖՖԻ ՀԻՄՔԻ Ni(II) ՔԻՐԱԼԱՅԻՆ ԿՈՄՊԼԵՔՍԻ ՄԻՋՈՑՈՎ

Ամփոփում

Մշակված է (S)-վինիլգլիցինի ասիմետրիկ սինթեզի նոր եղանակ՝ հիմնված Ni(II) իոնի հետ դեհիդրոամինակարագաթթվի և (S)-N-(2-բենզոիլֆենիլ)-1-(3,4-դիքլորբենզիլ)պիրրոլիդին-2-կարբօքսամիդի քիրալային ոեագենտի Շիֆֆի հիմքի առաջացրած կոմպլեքսի դեհիդրոամինաթթվային մնացորդի կրկնակի C=C կապին բենզիլամինի ասիմետրիկ միացման ոեակցիայի վրա։ Ռեակցիոն խառնուրդի աղաթթվային քայքայմամբ և լուծույթի հետագա աղազրկմամբ անջատվել է օպտիկապես ակտիվ նպատակային ամինաթթու (S)-վինիլգլիցինը՝ 48% էնանտիոմերային մաքրությամբ։

H. H. HAMBARDZUMYAN

ASYMMETRIC SYNTHESIS OF (S)-VINYLGLYCINE VIA CHIRAL Ni(II) COMPLEX SCHIFF'S BASE OF DEHYDROAMINOBUTANOIC ACID WITH (S)-N-(2-BENZOYLPHENYL)-1-(3,4-DICHLOR-BENZYL)PYRROLYDIN-2-CARBOXAMIDE

Summary

A new method for asymmetric synthesis of (S)-vinylglycine via nucleophile addition of benzylamine to C=C bond of dehydroaminobutanoic acid in Ni(II) complex of Schiff's base with a chiral auxiliare (S)-N-(2-benzoylphenyl)-1-(3,4dichlorbenzyl)pyrrolydin-2-carboxamide has been elaborated. After decomposition of the reaction mixture amino acid (S)-vinylglycine has been isolated with *ee* 48%. Բնական գիտություններ

Естественные науки

Биология

УДК 58.03+ 581.174.1

Л. С. ГАБРИЕЛЯН

СПЕКТРОФОТОМЕТРИЧЕСКИЙ АНАЛИЗ ПИГМЕНТОВ ВОДОРОСЛИ *CHLORELLA PYRENOIDOSA*, ПОДВЕРГНУТОЙ ДЕЙСТВИЮ ПОВЫШЕННЫХ ТЕМПЕРАТУР

Для оценки функционального состояния фотосинтетического аппарата исследовали влияние высоких температур на пигментную систему хлореллы. Установлено, что под действием температур уменьшается содержание пигментов. Причем наиболсе чувствительны хлорофилл *а* и каротиноиды. Концентрация хлорофилла *b* изменяется незначительно, что свидетельствует об устойчивости светособирающего комплекса (поскольку в нем практически находится весь хлорофилл *b*).

Температура выступает как регулятор скорости фотосинтеза в физиологическом диапазоне температур, а также в качестве стресс-фактора. Повышенные температуры оказывают многостороннее действие на функционирование фотосинтетического аппарата (ФСА) и первичные реакции фотосинтеза [1–5].

Исследования показали, что изменения фотосинтетической активности коррелируют со специфическими повреждениями мембран хлоропластов и подавлением активности ферментов при некоторой пороговой температуре, причем при температурах выше пороговой эти повреждения необратимы [1, 2, 4].

Ряд авторов пытается раскрыть природу теплового повреждения фотосинтетических мембран [2, 4]. На основании результатов этих работ можно заключить, что нагревание существенно влияет на организацию мембранных белков, входящих в состав фотосинтетического аппарата, в частности, на пигмент-белковый комплекс (ПБК), белки реакционного центра (РЦ) и кислородвыделяющую систему фотосистемы 2 (ФС2) [1, 3, 4]. При действии субоптимальных температур также происходят изменение жирнокислотного состава мембран и перераспределение липидов при фракционировании, что и свидетельствует о нарушении структуры мембран, в том числе липид-белковых взаимодействий [3, 6]. Содержание хлорофиллов и каротиноидов является чувствительным показателем физиологического состояния объекта, отражающим интенсивность фотосинтеза при стрессовых воздействиях, изменениях в онтогенезе и адаптивных перестройках [6-8].

Целью настоящей работы является исследование изменения содержания пигментов (хлорофиллов и каротиноидов) зеленой водоросли *Chlorella* при действии высоких температур.

Объект и методы исследования. В качестве объекта исследования использовалась одноклеточная зеленая водоросль *Chlorella pyrenoidosa*. Хлорелла культивировалась в 500*мл* колбах на питательной среде Тамия при $25^{\circ}C$ и естественном освещении (500–800лк). Суспензия хлореллы одинаковой плотности и одинакового объема подвергалась тепловому воздействию (45 и $50^{\circ}C$) в течение 15*мин* в ультратермостате ТУ–1. Затем объект адаптировали к комнатной температуре. Определение содержания хлорофиллов *а* и *b* в хлорелле проводили путем экстрагирования 80% раствором ацетона с последующим измерением оптической плотности экстракта на спектрофотометре СФ–10. Концентрации хлорофиллов рассчитывали по уравнениям Вернона (см. [9], стр. 130). При определении концентрации каротинондов в суммарной вытяжке пигментов использовалась формула Веттштейна (см. [9], стр. 132). Количество пигментов приведено в отношении сухого веса хлореллы. Полученные данные подвергались статистической обработке [10]. Биологическая повторность опытов 3-кратная.

Результаты и обсуждение. Согласно существующим представлениям, непосредственное участие в первичных процессах преобразования энергии в фотосинтезе принимает только 1% хлорофилла, а остальная масса пигментов служит для поглощения энергии и передачи ее соответствующим РЦ. Известно, что весь хлорофилл тилакоидов локализован в трех мембранных структурах – в комплексах ФС2, ФС1, а также светособирающем комплексе (ССК) [11]. В состав РЦ обеих фотосистем входит главным образом хлорофилл *a*, а в состав ССК, функционально сопряженного с ФС2, в основном хлорофилл *b*.

Пигментная система является критерием взаимодействия фотосинтезирующего объекта с окружающей средой [2, 6, 8]. В данной работе определяли содержание хлорофиллов *a* и *b*, а также содержание каротиноидов для оценки степени повреждения тилакоидных мембран при действии повышенных температур. Результаты приведены в таблице.

Температура,	Хлорофиял а,	Хлорофилл b,	a/b	Каротинонды,
°C	ME/2 CYX. BOCA	ма/а сух. веса		мг/г сух. всса
25 (контроль)	3,13±0,11	1,81±0.05	1,73±0,11	1,0 6± 0,04
45	2,71±0.16	1.69±0,02	1,59±0,08	0,85±0,07
50	2,41±0,15	1,56±0,02	1,53±0,07	0,71±0,02

Изменение содержания пигментов при различных температурах

Исследование пигментного состава ФСА хлореллы показало, что с повышением температуры наблюдается падение содержания хлорофиллов.

При этом изменения в пигментном комплексе под влиянием температуры происходят главным образом за счет снижения содержания хлорофилла a, количество же хлорофилла b понижается в меньшей степени. Так, концентрация хлорофилла a уменьшается на 13 и 23%, хлорофилла b – на 7 и 14% (при 45 и 50°C соответственно) по сравнению с контролем. Это свидетельствует о том, что РЦ более подвержены действию высоких температур, чем ССК.

Что же касается содержания каротиноидов, то данный пигмент оказался более чувствительным к действию повышенных температур. Его концентрация уменьшается на 20 и 33% по сравнению с контролем.

Таким образом, повышенные температуры снижают общее количество пигментов. Эти изменения в пигментном комплексе отражают подавление фотосинтетической активности хлореллы, что подтверждает полученные нами ранее данные [12, 13].

Кафедра биофизики

Поступила 25.11.2003

ЛИТЕРАТУРА

- 1. Ilik P. et al. J. Photochem. Photobiol. B: Biol., 2000, v. 59, p. 103-114.
- 2. Mohanty P. et al. Z. Naturforsch, 2002, 57 c, p. 836-842.
- 3. Morgan-Kiss R. et al. Biochim. Biophys. Acta, 2002, v. 1561, p. 251-265.
- 4. Yamane Y. et al. Photosynth. Res., 1997, v. 52, p. 57-64.
- 5. Yamane Y. et al. Photosynth. Res., 1998, v. 57, p. 51-59.
- 6. Клячко-Гурвич Г.Л. и др. Физиология растений, 1997, т. 44, № 2, с. 212-221.
- 7. Мерзляк М.Н. и др. Там же, 1996, т. 43, № 6, с. 926–936.
- 8. Фомин В.В. и др. Там же, 2001, т. 48, № 5, с. 760-765.
- 9. Гавриленко В.Ф. и др. Большой практикум по физиологии растений. М.: Высшая школа, 1975, 392 с.
- 10. Лакин Г.Ф. Биометрия. М.: Высшая школа, 1990, 352 с.
- 11. Фотосинтез. Под ред. Говинджи. М.: Мир, 1987, т. 1, 728 с.
- Габриелян Л.С., Джавршян Дж.М. Материалы 7-й Пущинской школы-конференции молодых ученых: Биология – наука XXI века. Пущино, 2003, с.56-57.
- 13. Джавршин Дж.М., Габриелян Л.С. Ученые записки ЕГУ, 2004, № 1, с. 86-93.

L. Ս. ԳԱԲՐԻԵԼՅԱՆ

ԲԱՐՉՐ ՁԵՐՄԱՍՏԻճԱՆՆԵՐԻ ԱՉԴԵՅՈՒԹՅԱՆԸ ԵՆԹԱՐԿՎԱԾ CHLORELLA PYRENOIDOSA ՁՐԻՄՈՒՌԻ ՊԻԳՄԵՆՏՆԵՐԻ ՍՊԵԿՏՐԱԼՈՒՄԱՉԱՓԱԿԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ

Ամփոփում

Ֆուռոսինթետիկ ապարատի ֆունկցիոնալ վիճակի գնահատման համար ուսումնասիրվել է բարձր ջերմաստիճանների ազդեցությունը քլորելայի պիզմենտային համակարգի վրա։ Այդ ազդեցությունը հանգեցնում է պիգմենտների քանակության նվազման։ Քլորոֆիլ *a*-ն և կարոտինոիդները առավել զգայուն են։ Իսկ գրեթե ամբողջությամբ լույս հավաքող համալիրում գտնվող քլորոֆիլ *b* -ի կոնցենտրացիայի աննշան փոփոխությունը վկայում է այդ համալիրի կայունության մասին։

L. S. GABRIELYAN

THE SPECTROPHOTOMETRIC ANALYSIS OF PIGMENTS OF ALGA CHLORELLA PYRENOIDOSA, SUBJECTED TO ACTION OF INCREASED TEMPERATURES

Summary

For an evaluation of a functional state of the photosynthetic apparatus investigated the effect of high temperatures on pigments system *Chlorella pyrenoidosa*. It is established, that under action of temperatures the contents of pigments decreases. Chlorophyll a and carotenoids are more sensitive. Concentration of chlorophyll b changes insignificantly, that testifies the stability of lightharvesting complex LHC (in fact all chlorophyll b is in LHC). Բնական գիտություններ

3,2004

Естественные науки

Կենսաբանություն

УДК 533.9.57

Ա.Խ. ԱՂԱՋԱՆՅԱՆ, Չ. Ս. ՄԻՆԱՍՅԱՆ, Ա.Ա. ԱՂԱՋԱՆՅԱՆ, Ա.Ա. ՉԱԽԱՐՅԱՆ, Լ.Գ. ԱՆԱՆՅԱՆ

ՊՐՈԼԻՆԻ ԿԱՏԱԲՈԼԻՉՄԻ ՖԵՐՄԵՆՏՆԵՐԸ ԵՎ ՆՐԱՆՅ ԱԿՏԻՎՈՒԹՅԱՆ ԿԱՐԳԱՎՈՐՈՒՄԸ ԻՇԽԱՆ ՁԿԱՆ (SALMO ISCHCHAN) ՏԱՐԲԵՐ ՕՐԳԱՆՆԵՐՈՒՄ

Ներածություն։ Պրոլինի վերածումը գլյուտամատի տեղի է ունենում պրոլինօքսիդազ (ՊO) և պիրոլին-5-կարբօքսիլատ-դեհիդրոգենազ (Պ5ԿԴ) ֆերմենտների մասնակցությամբ։ Պրոլինի օքսիդացման պրոցեսին մասնակցում է նաև ցիտոքրոմ c-ն` որպես էլեկտրոնների ակցեպտոր [1]։ Ռեակցիան գրեթե չի ընթանում օքսիդացված ՆԱԴՖ-ով։ Կապույտ ճանճի (*Phormia regina*) միտոքոնդրիումներում պրոլինի օքսիդացման պրոցեսը խթանվում է ԱԿՖ-ով, ռոտենոնով և արսենատով [2]։ *E.coli*-ի բջիջներից ստացված ՊՏԿԴ ֆերմենտը մաքրման է ենթարկվել 350 անգամ [3]։

Ինչպես վկայում են [4]-ի հեղինակները, CATCH-22 սինդրոմով հիվանդ մարդկանց արյան պլազմայում հայտնաբերվել է պրոլինի բարձր քանակություն։ Սինդրոմը արտահայտվում է էպիլեպսիայով, գիրությամբ, հիպոկալցինեմիայով և արտաքին դիմորֆիզմով։ Պրոլինօքսիդազի թույլ ակտիվությունը հանգեցնում է պրոլինի կատաբոլիզմի խախտմանը։ Հեղինակները գալիս են այն եզրակացության, որ CATCH-22 սինդրոմը պայմանավորված է ՊO-ի քրոմոսոմի 22g11 գենի էքսպրեսիայով։

Հետազոտման օբյեկտը և մեթոդները։ Աշխատանքում ուսումնասիրվել է ՊՕ-ի և Պ5ԿԴ-ի ակտիվությունը լճերում աճեցված իշխան ձկան (Salmo ischchan) տարբեր օրգաննրում։ Պրոլինի կատաբոլիզմի ֆերմենտների ակտիվության որոշման համար պատրաստվել է 10%-ոց հոմոգենատ։ Հոմոգենացման համար որպես միջավայր է ծառայել կալիում-նատրիում-ֆոսֆատային բուֆերը (pH=8,0)։ Հոմոգենացումը կատարկել է Պոտեր--Էլվեջիեմի ապակյա հոմոգենատորով։

Պրոլինի կատաբոլիզմի ֆերմենտների ակտիվության դրոլումը։ Պատրաստվել է ինկուբացիոն խառնուրդ, որը պարունակել է 53*մՄ* կալիումնատրիում-ֆոսֆատային բուֆեր (pH=8,0), 0,2*մՄ* L-պրոլին, 1,6*մկՄ* ցիտոքրոմ-c, $4d\mu U$ ՆԱԴ⁺, 0,5 d_l հոմոգենատ և յուրաքանչյուր տարբերակում համապատասխան քանակներով էֆեկտորներ։ Ինկուբացիան կատարվել է $37^{\circ}C$ ջերմաստիճանում՝ 1 ժամ տևողությամբ։ Ինկուբացիայից հետո ռեակցիան կանգնեցվել է 96%-ոց էթիլային սպիրտով։ Նմուշները ցենտրիֆուգվել են 8000g արագացումով 10 րոպե։ ՊО-ի և Պ5ԿԴ-ի ակտիվությունները որոշվել են ըստ առաջացած գլյուտամատի քանակության։ Գլյուտամատը որոշվել է քրոմատոգրաֆիկ եղանակով [5]։ Վերջինիս քանակությունը որոշելու համար կատարվել է էլյուցիա 0,1%-ոց CdCl₂-ի 60%-ոց սպիրտային լուծույթով 1 ժամ տևողությամբ։ Գունաչափումը կատարվել է ֆոտոէլեկտրակոլորիմետրով։

Միտոքոնդրիումների անջատումը։ Միտոքոնդրիումները անջատելու համար հոմոգենատը սառը պայմաններում ցենտրիֆուգվել է 10 րոպե 500g-ով։ Նստվածքը թափվել է, իսկ վերնստվածքը լուծվել է $4 u_l$ 0,01*Մ*-ոց տրիս-HCl բուֆերում և ցենտրիֆուգվել է 30 րոպե 15 000*պտ/ր* արագությամբ։ Այդ պրոցեսը կրկնվել է 3 անգամ։ Վերջին անգամ նստվածքին ավելացվել է 10%-ոց էթիլային սպիրտ, սառեցվել է, ապա հալեցվել և ցենտրիֆուգվել 30 րոպե 15 000*պտ/ր* արագությամբ։ 0,01*Մ*-ոց տրիս-HCl բուֆերում (pH=8,2) ստացված նստվածքը իրենից ներկայացնում է միտոքոնդրիումների ֆրակցիան։ Տվյալների վիճակագրական մշակումը իրականացվել է Վոզնեսենսկու կողմից նկարագրված մեթոդով [6]։

Փորձերի արդյունքները։ Մինչև բեղմնավորումը կատարված ուսումնասիրությունների տվյալները (տես աղ. 1) ցույց են տալիս, որ ՊՕ-ի ամենաբարձր ակտիվությունը հայտնաբերվել է իշխան ձկան սրտում (5,21*մկմոլ*), իսկ ամենացածր ակտիվությունը՝ երիկամներում (1,19*մկմոլ*)։

Աղյուսակ 1

Օրգանները	ՊՕ-ի և ՊՏԿԴ-ի	ՊՕ-ի և ՊՏԿԴ-ի ակտիվությունը ձվադրման շրջանում		
	ավուրվություսը	արու էգ		
երիկամներ	1,19±0,08	4,02±0,29	16,98±0,98	
Սարդ	2,12±0,14	4,42±0,30	8,47±0,61	
սիրտ	5,21±0,037	6,2±0,40	11,30±0,76	
խոիկն եր	2,74±0,11	5,32±0,38	28,47±1,05	
ուղեղ	2,67±0,19	4,64±0,31	5,19±0,37	
ձկնկիթ	1,26±0,32	~	7,79±0,55	

ПО-ի և Պ54Դ-ի ակտիվությունը իշխան ձկան տարբեր օրգաններում (մկմոլ գլյուտամատ 1 գ թարմ հյուսվածքում, n=5, М±т)

Ձվադրման շրջանում արու և էգ ձկների տարբեր օրգանների ՊՕ-ի և Պ5ԿԴ-ի ուսումնասիրությունները վկայում են, որ նրանց բոլոր օրգաններում պրոլինի կատաբոլիզմի ֆերմենտների ակտիվությունը նախորդ տվյալներից բարձր է։

Ձվադրման շրջանում արուների երիկամների ֆերմենտների ակտիվությունը ավելանում է 3,5 անգամ, իսկ էգերինը՝ 13 անգամ։ Էգերի խոիկների ֆերմենտների ակտիվությունը ավելանում է ավելի քան 10 անգամ։ Էգերի և արուների ֆերմենտների ակտիվությունների տարբերությունները բացատրվում են սեռական դիմորֆիզմով։ Ակնհայտ է, որ օրգանիզմի ֆիզիոլոգիական փոփոխությունների ժամանակ տեղի է ունենում մետաբոլիկ պրոցեսների վերակառուցում և պրոլինը գլյուտամատի միջոցով ակտիվ ներգրավվում է փոխանակային պրոցեսների մեջ` լրացնելով բջջի էներգետիկ պահանջները։

Ուսումնասիրվել է նաև իշխան ձկան տարբեր օրգանների միտոքոնդրիումներում պրոլինի ձեղքման ֆերմենտների ակտիվությունը։ Ստացված տվյալները բերված են աղ. 2-ում։

Աղյուսակ 2

Օրգանները	ՊՕ-ի և Պ5ԿԴ-ի ակտիվությունը
երիկամներ	3,18±0,22
Սարդ	3,61±0,28
սիրտ	5,42±0,38
խոիկներ	4,76±0,32
ուղեղ	3,76±0,29

ՊО-ի և Պ5ԿԴ-ի ակտիվությունը իշխան ձկան տարբեր օրգանների միտոքոնդրիումներում (մկմոլ գլյուտամատ Iգ թարն հյուսվածքում, n=5, М±т)

Տվյալները ցույց են տալիս, որ պրոլինի <mark>ձեղքման ֆերմենտները</mark> ունեն հիմնականում միտոքոնդրիալ տեղակայում։

Հաջորդ շարքի փորձերը նվիրված են տարբեր էֆեկտորների ազդեցությանը պրոլինի օքսիդացման ֆերմենտների ակտիվության վրա իշխան ձկան տարբեր օրգաններում։ Տվյալները ամփոփված են աղ. 3-ում։

Էֆեկտորների ընտրությունը կատարվել է այն փաստից, որ նրանցից երկուսը հանդիսանում են գլիկոլիզի առանցքային ֆերմենտներից մեկի՝ ֆոսֆոֆրուկտոկինազի ինհիբիտորներ (ցիտրատ և ԱԵՖ), իսկ մյուսները այդ ֆերմենտի համար համարվում են ակտիվատորներ (ԱՄՖ և ԱԿՖ)։

Ինչպես ցույց են տալիս աղ. 3-ի տվյալները, ցիտրատը իշխան ձկան միայն երիկամներում և լյարդում է խթանում պրոլինի կատաբոլիզմի ֆերմենտների ակտիվությունը, մինչդեռ ծածան ձկան դեպքում [7] այն խթանում է նշված ֆերմենտների ակտիվությունը բոլոր օրգաններում։ Ըստ երևույթին, ցիտրատը, ճնշելով գլիկոլիզի պրոցեսը, միաժամանակ խթանում է այլ ուղիների գործունեությունը։ Իշխան ձկան տարբեր օրգանների ֆերմենտների ակտիվությունների (ցիտրատով խթանված) տարբերությունները, հավանաբար, պայմանավորված են այդ ֆերմենտների ֆիզիկաքիմիական հատկությունների տարբերությամբ։ Ինչ վերաբերում է ծածան ձկան համապատասխան օրգանների ֆերմենտների ակտիվությունների հետ ունեցած տարբերություններին, ապա դա, ամենայն հավանականությամբ, պայմանավորված է իշխանի քաղցրահամ ջրերում բնակվելու հանգամանքով (քաղցրահամ ջրերում բնակվող ձկները՝ ի տարբերություն աղի ջրերում բնակվողների, առավել զգայուն են արտաքին միջավայրի ազդակների հանդեպ)։

		and the second
Oneurfiften	-stunne(ten*	ՊՕ-ի և Պ5ԿԴ-ի
Olutinnnninli	է ֆսվասիսսին՝	ակտիվությունը
	առանց էֆեկտոր	3,93±0,28
	ցիտրատ	12,30±0,75
երիկամներ	ցիտրատ+ԱԵՖ	1,89±0,12
	ստծ	0
	ԱԿՖ	0
	ԱԵՖ	0
	առանց էֆեկտոր	4,51±0,31
	ցիտրատ	7,61±0,53
Սարդ	ցիտրատ+ԱԵՖ	2,82±0,20
Γ	ፈሆን	5,24±0,37
	ԱԿՖ	19,60±0,97
	ԱԵՖ	6,55±0,45
	առանց էֆեկտոր	6,35±0,43
-	ցիտրատ	0
սիրտ	ցիտրատ+ԱԵՖ	0
	ԱՄՖ	2,62±0,19
	ԱԿՖ	5,24±0,37
Γ	ԱԵՖ	7,86±0,54
	առանց էֆեկտոր	5,24±0,37
	ցիտրատ	0
խոիկներ	ցիտրատ+ԱԵՖ	. 0
	ԱՄՖ	1,31±0,09
	ԱԿՖ	5,24±0,37
	ԱԵՖ	0
	առանց էֆեկտոր	4,97±0,33
ուղեղ	ԱՄՖ	0
	ԱԿՖ	7,86±0,54
_	ԱԵՖ	10,48±0,72

Տարբեր էֆեկտորների ազդեցությունը ՊՕ-ի և Պ5ԿԴ-ի ակտիվության վրա իշխան ձկան տարբեր օրգաններում (մկմոլ գլյուտամատ Iq թարմ հյուսվածքում, n=5, M±m)

* ԱԵՖ-ի, ԱՄՖ-ի և ԱԿՖ-ի կոնցենտրացիաները՝ 10⁻⁶Ư, ցիտրատինը՝ 3·10⁻⁵Ư.

Աղյուսակ 3-ի տվյալները նաև վկայում են, որ ԱՄՖ-ի առկայությամբ պրոլինի օքսիդացման պրոցեսը ընդհանրապես ճնշվում է՝ բացառությամբ լյարդի և սրտի ֆերմենտների։ Ըստ երևույթին, դա բացատրվում է նրանով, որ անաերոբ գլիկոլիզը, այդ էֆեկտորով խթանվելով, մրցակցում է պրոլինի օքսիդացման պրոցեսի հետ՝ առավել էֆեկտիվ ապահովելով բջջի էներգետիկ պահանջները։

Կենսաքիմիայի ամբիոն

<u>ԳՐԱԿԱՆՈՒԹՅՈՒՆ</u>

- 1. Johnson A.B., Strcker H.J. J. Biol. Chem., 1962, v. 237, p. 1876-1881.
- 2. Hansford R.G., Sacktor B. J. Biol. Chem., 1970, v. 245, p. 991-994.
- 3. Scarpulia R.C., Soffer R.L. J. Biol. Chem., 1978, v. 253, p. 5997-6001.
- 4. Jaeken J., Gocmans N., Fryns J.P., Franois I., de Zegher F. J. Inherit. Metab. Dis., 1996, v. 19, № 3, p. 275–277.
- 5. Lissitzky S., Laurent S. Bull. Soc. Chim. Biol., 1955, p. 1137-1142.
- 6. Вознесенский В.Л. Первичная обработка экспериментальных данных. Л., 1969.
- 7. Агаджанян А.Х., Минасян З.С., Давтян М.А. Биолог. ж. Армении, 2001, с. 87-89.

А. Х. АГАДЖАНЯН, З. С. МИНАСЯН, А. А. АГАДЖАНЯН, А. А. ЗАХАРЯН, Л. Г. АНАНЯН

ФЕРМЕНТЫ КАТАБОЛИЗМА ПРОЛИНА И РЕГУЛЯЦИЯ ИХ АКТИВНОСТИ В РАЗЛИЧНЫХ ОРГАНАХ ФОРЕЛИ (SALMO ISCHCHAN)

Резюме

Изучены активности пролиноксидазы (ПО) и пиролин-5-карбоксилатдегидрогеназы (П5КД) в различных органах форели. Высокая активность ферментов обнаружена в сердце рыбы по сравнению с таковой в остальных органах. В период откладки икринок в почках самок активность ферментов окисления пролина возрастает в 13 раз, а в почках самцов-в 3,5 раза. Во всех изученных органах, за исключением сердца и жабр, цитрат значительно стимулирует активность ПО и П5КД. Комплекс цитрат+АТФ в печени стимулирует активность указанных ферментов более чем в 4 раза.

> A. Kh. AGHAJANYAN, Z. S MINASYAN, A. A. AGHAJANYAN, A. A. ZAKHARYAN, L. G. ANANYAN

ENZYMES OF PROLINE DEGRADATION AND THEIR REGULATION IN DIFFERENT ORGANS OF SALMO ISCHCHAN

Summary

Activation of proline oxidaze(PO) and pirolin-5-caroxilate-dehidrogenaze (P5KD) in the organs of *Salmo ischchan* has been investigated. In comparison with other organs high activity of the enzymes has been found in the heart of fish. The activity of proline degradation enzymes in kidney increases 13 times during laying of hardroe of the females and in the kidney of the male – 3,5 times. Citrate stimulates the activity of PO and P5KD in all organs, except the gills and the heart. The complex of citrate and ATP in liver stimulates the activity of the mentioned enzymes over 4 times.

Բնական գիտություններ

3, 2004

Естественные науки

Биология

УДК 616.088.61

А. В. ДАЯН, Н. Н. КСАДЖИКЯН, С. М. МИНАСЯН, Э. С. ГЕВОРКЯН, А. Р. САРКИСЯН

ТИПОЛОГИЧЕСКИЙ АНАЛИЗ КАРДИОГЕМОДИНАМИКИ У СТАРШЕКЛАССНИКОВ В УСЛОВИЯХ ЭКЗАМЕНАЦИОННОГО НАПРЯЖЕНИЯ

Анализ изученных показателей выявил выраженное влияние экзаменационного стресса на здоровье учеников специализированных школ. Ученики с симпатическим типом регуляции составляли «группу риска». Их состояние характеризовалось наибольшими изменениями интегральных показателей механизма регуляции ритма сердца.

Известно, что период школьного обучения, являясь стрессонасыщенным этапом жизнедеятельности, вносит свои коррективы в процесс онтогенетического развития [1, 2]. В связи с этим объективная оценка функциональных возможностей растущего организма при умственно-эмоциональной деятельности, определение интенсивности и продолжительности учебных нагрузок, вызывающих напряжение функций в физиологически допустимых пределах, приобретают важное научно-практическое значение. Напряженный режим дня, значительный объем учебной нагрузки, дефицит времени, необходимого для усвоения информации, характерные для учебных заведений нового типа (лицеи, гимназии, школы с углубленным изучением ряда предметов и др.), являются выраженными психотравмирующими факторами для подростков [3, 4]. Несмотря на это, данные о влиянии экспериментальных форм обучения на здоровье школьников довольно противоречивы. Недостаточно освещено также состояние физиологических функций школьников специализированных школ при умственноэмоциональном напряжении, каковым является экзаменационный период.

Целью настоящего исследования являлось проведение индивидуально-групповой типизации вегетативных и психологических показателей учеников, обучающихся в образовательных учреждениях нового типа, в условиях экзаменационного психоэмоционального напряжения.

Материал и методы исследования. В исследованиях принимали участие 113 учеников. Обследуемые группы были сформированы следующим образом: первая – из 47 учеников (возраст 14–16 лет), обучающихся в VIII и Х классах гимназии «Нейрон» г. Еревана с дифференцированным обучением (экспериментальная группа), где занятия проводятся в режиме 6-дневной учебной недели с обязательными экзаменами в январе и конце учебного года; вторая – из 66 учеников того же возраста общеобразовательной школы № 10 им. М. Хоренаци (контрольная группа).

Для выявления личностных особенностей испытуемых перед экспериментами осуществлялось компьютерное психологическое тестирование с определением уровня тревожности (УТ) по опроснику Спилбергера. Степень самочувствия (С), активности (А), настроения (Н) определялась согласно показателям САН, а нейротизма – по Айзенку.

Во всех группах определялись основные показатели кардио- и гемодинамики: пульс, артериальное давление (систолическое - САД, диастолическое – ДАД, пульсовое – ПД, среднединамическое – СДД). Артериальное давление (АД) измерялось методом Короткова. По формуле Старра рассчитывались систолический и минутный объемы крови (СО и МОК). Для анализа ритма сердца школьников на двухканальном электрокардиографе ЭК 2Т-02 регистрировалась ЭКГ. Сигналы ЭКГ, модулированные звуковой частотой, записывались на портативный магнитофон и через автоматический цифровой преобразователь подавались на монитор компьютера IBM-486. Математический анализ ритма сердца проводился методом вариационной пульсометрии по критериям Р.М. Баевского и др. [5] с помощью компьютерной программы «Cardio», разработанной в лаборатории Института физиологии имени Л.А. Орбели НАН РА. Программа обеспечивала автоматическую регистрацию и анализ R-R интервалов с построением кардиоинтервалограмм (КИГ). В математическом блоке программы полученные КИГ подвергались специальной обработке, в результате чего выдавался ряд показателей, характеризующих статистические, гистографические, автокорреляционные и спектральные параметры динамики сердечного ритма. Вычислялись следующие интегральные показатели ритма сердца: АМо амплитуда моды, Мо – мода, Δx – вариационный размах, Vk – коэффициент вариации кардиоинтервалов, ИН - индекс напряжения, ИВР - индекс вегетативного равновесия, ПАПР - показатель адекватности процессов регуляции, ВПР – вегетативный показатель ритма.

Полученные данные подвергались статистической обработке на компьютере IBM-486 с учетом *t* критерия по Стьюденту.

Результаты и обсуждение. Сравнительный анализ психофизиологического статуса и параметров сердечного ритма школьников контрольной и экспериментальной групп выявил разную степень напряжения регуляторных систем, определяющих «цену» адаптации к экзаменационному напряжению. Относительно высокая степень напряжения механизмов регуляции сердечного ритма и УТ была характерна для учащихся гимназии. Характер и глубина развития экзаменационного стресса определялись типом вегетативной регуляции сердечного ритма, который условно оценивался как ваготонический при ИН<60 усл.ед., нормотонический – ИН=60–150 усл.ед., симпатотонический – ИН>150 усл.ед.

Экзамены сопровождались выраженными эмоциональными реакциями учеников. Степень и продолжительность эмоционального возбуждения зависели от объективно действующих факторов и психологических особенностей личности. Тестирование школьников по Айзенку выявило принадлежность почти всех обследуемых к экстравертам, 5 учеников были интравертами. Состояние учеников контрольной группы характеризовалось. в основном, низким уровнем нейротизма, а экспериментальной группы средним и высоким. В предэкзаменационный период в контрольной группе наблюдалось понижение показателя САН (до 5,10±0,25 баллов, при норме 5,24±0,22, p<0,05), продолжающееся и в постэкзаменационный период за счет уменьшения уровня самочувствия и активности. Чувство ответственности за результаты экзаменов обусловливало относительно низкий уровень активности и настроения в экспериментальной группе. В предэкзаменационный период показатели САН у последних понижались до 4,85±0,17 баллов (при норме 5,09±0,19 баллов, p<0,05), в постэкзаменационный – до 4,95±0,29 баллов. По субъективным показателям школьников, наиболее выраженный страх перед экзаменом испытывали симпатотоники. В предэкзаменационный период в интегральных показателях сердечного ритма наиболее выраженные сдвиги отмечались у десятиклассников экспериментальной группы. Увеличивалось число симпатотоников - 60% (при 35% в контрольной группе), ваготоники отсутствовали. Среди восьмиклассников симпатотоники составляли 27% (см. рис.).

Наряду с изучением градаций по ИН, проведен также анализ характера реагирования на экзаменационный стресс. Выявлено два типа реакций: І - с достоверным повышением ИН до экзаменов и сохранением повышенного или восстановлением исходного уровня в постэкзаменационный период; II с достоверным понижением ИН до и после экзамена. В экспериментальной группе І тип реагирования был характерен для 65% восьмиклассников и 82% десятиклассников; II тип реагирования наблюдался соответственно у 35% и 18% испытуемых. Подобная картина свидетельствует об активации симпатического отдела вегетативной нервной системы (ВНС) и механизмов центральной регуляции сердечной деятельности у гимназистов [6]. В пользу данного утверждения говорят и изменения, наблюдаемые на гисто-, скаттери автокоррелограммах: сдвиг кардиоинтервалов в сторону тахикардии с тенденцией к пароксизмальной тахикардии; увеличение кучности, принимающей вид элипса, на скаттерграммах; увеличение на автокоррелограммах мощности спектра низко- и среднечастотных компонентов. Величина Мо/Дх указывала на доминирование влияния адренергических структур и участие гуморального звена в регуляции синусного ритма сердца. У ряда школьников экспериментальной группы (ваго- и нормотоники) величина ИН выходила за условные границы нормы и зоны адаптации, достигая показателя зоны напряжения (до 267,86 усл.ед.). У симпатотоников ИН повышался до 318,15 усл.ед. Перед экзаменом наблюдался также рост интегральных показателей механизма регуляции сердечного ритма (ИВР, ВПР, ПАПР), наиболее выраженный у испытуемых экспериментальной группы. Выявленные в I группе изменения отражают состояние гиперсимпатотонии. Данный тип реагирования считается наименее благоприятным при эмоциональном стрессе.

Изменение процентного соотношения учеников с различным типом вегетативной регуляции ритма сердца в экзаменационный период. I – обычный учебный день (фон), II – до экзамена, III – после экзамена. A, Б – VIII и X классы контрольной группы; B, Г – VIII и X классы экспериментальной группы.

У испытуемых II типа реагирования величина ИН до экзамена понижалась. Эта тенденция сохранялась также в постэкзаменационный период, что свидетельствует о доминировании парасимпатического отдела ВНС и низкой активности механизмов центральной регуляции сердечного ритма. На это указывают и наблюдаемые в подобных случаях на гистограммах увеличение вариационного размаха, понижение кучности на скаттерграммах, а также усиление спектра высокочастотных компонентов сердечного ритма на автокоррелограммах. Согласно теоретическим положениям, при понижении ИН и АМо, повышении Δx , наблюдаемых во II группе, автономный контур регуляции сердечного ритма «справляется» с имеющейся нагрузкой, которая вызывает функциональное напряжение, но не приводит к выраженному утомлению [2]. Активация парасимпатических механизмов носит, по-видимому, регуляторный характер, направленный на предупреждение избыточных эффектов симпатической системы. Предэкзаменационное напряжение приводило также к изменениям кардио- и гемодинамических показателей гимназистов. При этом значимые сдвиги в частоте сердечного сокращения наблюдались у девочек. Эта закономерность сохранялась и в постэкзаменационный период. Психоэмоциональное напряжение отражалось и на показателях АД, что проявлялось в гиперсимпатотоническом типе кровообращения. Повышение всех составляющих АД (САД, ДАД, ПД, СДД) накануне экзаменов было обусловлено преимущественно активацией работы сердца. Последнее подтверждается и показателями центральной гемодинамики. МОК у восьмиклассниц перед экзаменами возрастал на 44%, у девятиклассниц – на 28%, у десятиклассниц – на 31,5% (р<0,001).

После экзамена у большинства учеников наблюдалось восстановление исходного фона (нормо- и ваготоники), что свидетельствует о тесном взаимодействии эрго- и трофотропной систем организма. Отмечалось также понижение УТ. У девочек, среди которых 35% восьмиклассницы, 53% девятии 48% десятиклассницы, после экзаменов АД имело тенденцию к повышению (симпатотоники). Психоэмоциональное напряжение, испытываемое накануне экзаменов, сохранялось на протяжении всей сессии, претерпевая при этом динамические изменения от одного экзамена к другому.

Таким образом, анализ полученных данных позволяет заключить, что экзамен является сильным стрессорным фактором, влияющим на уровень психологических и вегетативных показателей старшеклассников, свидетельством чего является и динамика изменений ИН. Сравнительный анализ изменений параметров сердечного ритма контрольной и экспериментальной групп выявил повышенную напряженность регуляторных механизмов учеников школ с дифференцированным обучением. Усвоение учащимися гимназий в экзаменационный период большого объема информации дается высокой «физиологической ценой» - напряжением и перенапряжением центральной нервной системы и систем вегетативного обеспечения. Подтверждением последнего является увеличение числа школьников-симпатотоников. Ученики с повышенным уровнем тревожности, симпатическим тонусом регуляции сердечного ритма нуждаются в специальном контроле со стороны профилактической службы. В связи с этим рекомендуется проведение периодического психологического и медицинского обследования учащихся для предотвращения процессов перенапряжения и срыва адаптации.

Кафедра физиологии человека и животных

Поступила 26.12.2003

ЛИТЕРАТУРА

- І. Алифанова Л.А. Гиг. и сан., 2002, № 3, с. 56-59.
- 2. Rosch H.J. Health and stress., 1996, v. 12, p.1-8.
- 3. Степанова М.И., Куниджи Н.Н., Ильин А.Г. и др. Гиг. и сан., 2000, № 1, с. 40-44.
- 4. Стунева Г.И., Карюшин В.А., Цурган А.М. Там же, 2000, № 3, с.45-52.
- 5. Баевский Р.М., Кириллов О.И., Клицкин С.3. Математический анализ изменений сердечного ритма при стрессе. М.: Наука, 1984, 221 с.
- 6. Поборский А.Н. Гиг. и сан., 2001, № 4, с. 49-51.

Ա. Վ. ԴԱՅԱՆ, Ն. Ն. ՔՍԱՋԻԿՅԱՆ, Ս. Մ. ՄԻՆԱՍՅԱՆ, Է. Ս. ԳԵՎՈՐԳՅԱՆ, Ա. Ռ. ՍԱՐԳՍՅԱՆ

ՔԱՐՁՐ ԴԱՍԱՂԱՅԵՆԵՐԻ ԿԱՐԴՈՎԵՆԱԳԱՆ ԴՇԴԱԳ ՅՈՒՅԱՆԵՇՆԵՐԻ ՏԻՊԱԲԱՆԱԿԱՆ ՎԵՐԼՈՒԾՈՒԹՅՈՒՆԸ ՔՆՆԱԿԱՆ ԼԱՐՎԱԾՈՒԹՅԱՆ ՊԱՅՄԱՆՆԵՐՈՒՄ

Ամփոփում

Ուսումնասիրված ցուցանիշների վերլուծությունը բացահայտել է քննական լարվածության առավել արտահայտված ազդեցությունը մասնագիտացված դպրոցների աշակերտների առողջական վիճակի վրա։ Քննական լարվածության պայմաններում սիմպաթոտոնիկ տիպի կարգավորում ունեցող սովորողները կազմել են ռիսկի խումբ, որոնց համար գրանցվել է սրտի ռիթմի կարգավորման ինտեգրալ ցուցանիշների առավել փոփոխություն։

A. V. DAYAN, N. N. KSADJIKYAN, S. M. MINASYAN, E. S. GEVORKYAN, A. R. SARKISYAN

TYPOLOGICAL ANALYSIS OF CARDIOGEMODINAMIC AMONG PUPILS OF HIGH CLASSES IN TERMS OF EXAMINATION EFFORT

Summary

The analysis of investigated exponents has revealed a deeper effect of examination stress on specialized school pupils' health conditions. Increase of central regulation mechanisms' activity was revealed in conditions of examination tension loading of sympathetic nervous system. The pupils, who have sympathotonic regulation, have formed a «risk» group and have more changes in integral exponents of heart rhythm regulation. Բնական գիտություններ

3,2004

Естественные науки

Կենսաբանություն

УДК 612.8+591.18

Ռ. Ս. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Ն. Ս. ՀԱԿՈՔՅԱՆ, Ն. Յու. ԱԴԱՄՅԱՆ

ԹԹՎԱԾՆԱՔԱՂՑԻ ՊԱՅՄԱՆՆԵՐՈՒՄ ՀԻՊՈԿԱՄՊԻ CA, ԴԱՇՏԻ ԴԵՐԸ ՇՆՉԱՌՈՒԹՅԱՆ ԿԱՐԳԱՎՈՐՄԱՆ ԳՈՐԾԸՆԹԱՅՈՒՄ

Ներածություն։ Թթվածնաքաղցի պայմաններում շնչառական նուրբ փոփոխություններն իրականանում են երկարավուն ուղեղի (կոճղեզային) շնչառական կենտրոնի և վերկոճղեզային գոյացությունների բարդ փոխազդեցության հետևանքով։ Գրականության մեջ կան մի շարք աշխատանքներ, որոնք վերաբերում են երկարավուն ուղեղի շնչառական կենտրոնի գործառական վիճակի վրա լիմբիական համակարգի կարևոր գոյացություններից մեկի՝ հիպոկամպի (ծովաձիու) CA₁ դաշտի ազդեցությանը [օրինակ, 1, 2]։

Ուսումնասիրության մեթոդիկան: Ուսումնասիրությունները կատարվել են սուր փորձի պայմաններում 180–230q քաշ ունեցող սպիտակ առնետների վրա, որոնք թմրեցվել են քլորալոզի (30dq/4q) և նեմբուտալի (10dq/4q) կառնուրդով։ Ծովաձիու CA₁ դաշտը էլեկտրախթանվել է կոնստանտանն երկբևեռ էլեկտրողներով (տրամագիծը 0,2*մմ*, միջէլեկտրոդային հեռավորությունը 0,2–0,3*մմ*), որոնց ստերեոտաքսիկ կողմնորոշումը կատարվել է ըստ Ֆիֆկովայի և Մարշալի ատլասի [3]։

Շնչառական նեյրոնների ակտիվության արտածման նպատակով ուղեղիկի մասնակի հեռացումից հետո միկրոէլեկտրոդը իջեցվել է երկարավուն ուղեղի շնչառական կենտրոնի (obex) շրջան։ Արտաշնչական (էքսպիրատոր) և ներշնչական (ինսպիրատոր) նեյրոնների տարբերակման, ինչպես նաև շնչառության ընդհանուր ռեակցիայի գնահատման նպատակով գրանցվել է կենդանու արտաքին շնչառությունը։ Նեյրոնների իմպուլսային ակտիվության արտաբջջային գրանցումը իրականացվել է ապակյա միկրոէլեկտրոդներով։

Փորձերը կատարվել են թթվածնաքաղցի ազդեցության դինամիկայում։ Այդ նպատակով ստերեոտաքսիկ սարքավորմանը ֆիքսված կենդանին տեղադրվել է ճնշախցիկում։ Ուսումնասիրվող ցուցանիշների գրանցումը կատարվել է գրգռումից առաջ և հետո. նորմօքսիայի պայմաններում՝ pO₂=142*մմ սնդ. սյ.*, 4000–5000*մ* «բարձրության» վրա՝ pO₂=109– 85*մմ սնդ. սյ.*, 7500–8000*մ*-ի վրա՝ pO₂=64–58*մմ սնդ. սյ.* և «իջեցումից» հետո՝ դարձյալ նորմօքսիայի պայմաններում։
Ստացված տվյալների վիճակագրական մշակումը կատարվել է Ա.Օյվինի մեթոդով [4]։

Գրանցվել է երկարավուն ուղեղի շնչառական կենտրոնի 40 փուլային նեյրոնների ակտիվություն, որոնցից 22-ը եղել են արտաշնչական, 18-ը՝ ներշնչական։

Ըստ ծովածիու CA₁ դաշտի գրգռման նկատմամբ պատասխան ռեակցիաների նեյրոնները բաժանվել են երկու խմբի՝ ակտիվացող և արգելակվող։ Ե՛վ նորմօքսիայում, և՛ թթվածնաքաղցի ազդեցության դինամիկայում արգելակվող նեյրոնների քանակությունը գերակշոել է ակտիվացվողների քանակին (աղ. 1):

Աղյուսակ 1

Փորձի պայմանները	Նեյրոնների սկզբնա- կան քանակը (%)	Արգելակվող նեյրոններ (%)	Ակտիվացող նեյրոններ (%)						
արտաշնչական նեյրոններ									
նորմա	22 (100)	14 (63,6)	8 (36,4)						
4000-5000 <i>u</i>	18 (81,8)	12 (66,7)	6 (33,3)						
75008000 	13 (59)	10 (76,9)	3 (23,1)						
«իջեցում»	21 (95,4)	14 (66,6)	7 (33,3)						
ներշնչական նեյրոններ									
նորմա	18 (100)	11 (61,1)	7 (38,8)						
4000-5000 <i>u</i>	15 (83,3)	10 (66,6)	5 (33,3)						
7500-8000 <i>u</i>	10 (55,5)	7 (70)	3 (30)						
«իջեցում»	17 (94,4)	11 (64,7)	- 6 (35,3)						

Թթվածնաքաղցի պայմաններում ծովածիու CA։ դաշտի էլեկտրախթանման նկաամամբ երկարավուն ուղեղի շնչառական նեյրոնների քանակական փոփոխությունը

Թթվածնաքաղցի ազդեցության դինամիկայում փուլային նեյրոնների քանակական փոփոխություններին զուգահեռ դիտվել են նաև այլ ցուցանիշների՝ համազարկի տևողության, իմպուլսների քանակի, հաճախության փոփոխություններ։ Նորմալ մթնոլորտային ճնշման պայմաններում ծովաձիու CA₁ դաշտի գրգոման ժամանակ արգելակվող արտաշնչական և ներշնչական նեյրոնների համազարկում նկատվել է իմպուլսների քանակի կրճատում, հետևաբար և իմպուլսների միջին հաճախության փոքրացում, իսկ ակտիվացվող նեյրոնների համազարկում՝ իմպուլսների քանակի ավելացում, հետևաբար և իմպուլսների միջին հաճախության մեծացում։ Նեյրոնների իմպուլսային ակտիվության վրա ծովածիու CA₁ դաշտի արգելակող ազդեցությունը գերակշոել է գրգոող ազդեցությանը։ Աղյուսակ 2-ում ներկայացված է նորմայում և հիպօքսիայի ազդեցության դինամիկայում ծովածիու CA₁ դաշտի էլեկտրախթանման ժամանակ արտաշնչական և ներշնչական նեյրոնների իմպուլսային ակտիվության փոփոխությունը։

Թթվածնաքաղցի ազդեցության առաջին փուլում (4000–5000*d*) թO₂-ի իջեցումը հանգեցրել է շնչառական նեյրոնների ակտիվության բարձրացման։ Այս փուլում դիտվել է արգելակվող և ակտիվացող նեյրոնների համազարկի տևողության փոքրացում, դրանցում ինպուլսների քանակի ավելացում, իմպուլսների միջին հաճախության մեծացում։ Նման հեշտացված ֆոնի վրա ծովաձիու CA₁ դաշտի էլեկտրախթանումը առաջացրել է արտահայտված արգելակող ազդեցություն։ Թթվածնաքաղցի ծանր փուլում (7500–8000*մ*) արտաշնչական և ներշնչական նեյրոնների համազարկում դիտվել է իմպուլսների քանակի խիստ նվազում։ Նման ճնշված ֆոնի վրա CA₁ դաշտի էլեկտրախթանումը վերոհիշյալ նեյրոններին բնորոշ ռեակցիա չի առաջացրել:

Աղյուսակ 2

	Արգելակվող նեյրոններ				Ակտիվացող նեյրոններ					
Փորձի պայմանները	հաճախություն, <i>իմպ/վ</i>			փոփոխու-	հաճախություն, <i>իմպ/ վ</i>		-	փոփոխու-		
	մինչ գրգռումը	գրգռումից հետո	P	שותנו, %	մինչ գրգռումը	գրգոումից հետո	þ	թյուսը, %		
արտաշնչական նեյրոններ										
նորմա	42±3,1	26±1,9	0,001	38	31±2,3	41±3,2	0,02	32		
40005000 <i>u</i>	54±4,3	30±2,3	0,001	44	42±3,9	57±4,3	0,02	36		
7500-8000 <i>L</i>	24±1,9	20±1,1	0,05	16	21±1,8	24±1,9	0,2	13		
«իջեցում»	43±3,3	27±1,8	0,001	36	32 ±2 ,9	42±3,1	0,05	31		
ներշնչական նեյրոններ										
նորմա	46±3,9	27±2,0	0,001	41	45±3,9	60±5,3	0,05	33		
40005000 <i>u</i>	57±4,5	30±2,7	0,001	47	50±4,3	70±5,7	0,01	40		
7500-8000 <i>ú</i>	26±1,7	21±1,3	0,05	19	30±2,1	35±2,7	0,2	15		
«իջեցում»	45±4,1	27±2,1	0,001	39	43±3,3	58±4,2	0,05	37		

Թթվածնաքաղցի պայմաններում ծովաձիու CA, դաշտի էլեկտրախթանման նկատմամբ երկարավուն ուղեղի շնչառական նեյրոնների իմպուլսային ակտիվության փոփոխությունը

Կենդանիներին «իջեցնելուց» հետո (նորմալ մթնոլորտային ճնշման պայմաններում) որոշ ժամանակ անց (15–20 րոպե) դիտվել է ինչպես ելակետային ցուցանիշների, այնպես էլ գրգռման նկատմամբ նեյրոնների ռեակցիաների վերականգնում (աղ. 2)։

Եզրակացություն: Վերը նկարագրված փորձարարական տվյալները շնչառական նեյրոնների իմպուլսային ակտիվության վրա թթվածնաքաղցի և ծովաձիու CA₁ դաշտի էլեկտրական գրգոման համակցված ազդեցության արդյունք են: Նման դեպքում թթվածնաքաղցի փուլերը ծառայել են որպես ֆոն, որի վրա հետո ավելացել է ծովաձիու ազդեցությունը։ Նորմօքսիայում ծովաձիու CA₁ դաշտի գրգոման ժամանակ ստացված տվյալները հիպօքսիայի պայմաններում կատարվող փորձերի համար ծառայել են որպես ստուգիչ։ Կենդանիների «բարձրացման» առաջին փուլում (4000– 5000*մ*) շնչառական նեյրոնների ակտիվության բարձրացումը պայմանավորված է նյարդային բջիջների վրա ինչպես ռեֆլեկտոր, այնպես էլ PO_2 -ի իջեցման անմիջական ազդեցությամբ և բջջային թաղանթների ապաբևեռացմամբ [5, 6]: Երկրորդ փուլում (7500–8000*մ*) տեղի է ունենում շնչառական նեյրոնների ակտիվության ճնշում, որը կապված է բջջային թաղանքների կառուցվածքաֆունկցիոնալ կազմավորման, կալիում-նատրիումական պոմպի ֆունկցիայի խանգարման, ինչպես նաև բջջային ացիդոզի զարգացման հետ [7]։

Շնչառական նեյրոնների վրա ծովաձիու CA₁ դաշտի բարդ ազդեցությունը կարելի է բացատրել նրանով, որ ծովաձիու այդ հատվածում տարաբաշխված են ոչ միայն արգելակվող նեյրոններ (գերակշռող), այլև ակտիվացողներ։

Մեր նախկին ուսումնասիրություններում [8, 9] շնչառական նեյրոնների վրա լիմբիական համակարգի մյուս գոյացությունների՝ ենթատեսաթմբի, նշահամալիրի կեղևամիջային կորիզների ազդեցության ուսումնասիրման ժամանակ դիտվել է հակառակ երևույթը՝ ակտիվացող նեյրոնների քանակը գերակշոել է արգելակվողներին։ Այստեղից հետևում է, որ շնչաոության պրոցեսի կարգավորման մեխանիզմներում ընդգրկված են գլխուղեղի տարբեր մակարդակներում գտնվող գոյացություններ։ Եվ միայն դրանց գումարային ազդեցությունը կարող է ապահովել շնչառության առավել հստակ կարգավորումը և օրգանիզմի հուսալի հարմարվողականությունը շրջապատող միջավայրի փոփոխվող պայմաններին։

Մարդու և կենդանիների ֆիզիոլոգիայի ամթիոն

Ստացվել է 01.04.2004

ԳՐԱԿԱՆՈՒԹՅՈՒՆ

- 1. Буклина С.Б., Филатова Ю.М., Элиава Ш. Ш. Вопросы нейрохирургия, 1998, № 4, с. 1-7.
- 2. Коваль И.Н., Саркисов Г.Т., Гамбарян Л.С. Септо-гиппокампальная система и организация поведения. Ер.: Изд- во АН Арм. ССР, 1986, 126 с.
- 3. Бурет Я., Петрань М., Захар И. Электрофизиологические методы исследования. М.: ИЛ, 1962, 456 с.
- 4. Ойвин И.А. Ж. патол. физиол. и экспер. терапии, 1960, т. 4, № 4, с. 76-85.
- 5. Власова И.Г. Нервная клетка и гипоксия. Матер. VII междунар. симпоз. «Экологофизиологические проблемы адаптания». М., 1994, с. 54.
- 6. Лукьянова Л.Д. Бюлл. экспер. биол. н медицины, 1997, т. 124 (9), с. 244-254.
- 7. Самойлов М.О. Реакция нейронов мозга на гипоксию. Л.: Наука, 1985, с. 190.
- 8. Карапетин М.А., Баклаваджин О.Г., Аконин Н.С. Физиолог. ж. СССР, 1987, т.13, № 7. с. 926.
- 9. Аконян Н.С., Бакланаджан О.Г., Саркисан Н.В. Физиолог. ж. СССР, 1991, т. 77, № 12, с. 41-48.

P. C. APYTIOHSH, H. C. AKOTISH, H. K. AJAMSH

РОЛЬ СА, ПОЛЯ ГИППОКАМПА В РЕГУЛЯЦИИ ДЫХАНИЯ ПРИ ГИПОКСИИ

Резюме

В норме и в условиях кислородной недостаточности изучено влияние СА₁ поля гиппокампа на импульсную активность дыхательных нейронов продолговатого мозга. В условиях нормального атмосферного давления до «подъема» животных электрическое раздражение CA₁ поля гиппокампа оказывало преимущественно тормозящее влияние. В начальной фазе гипоксии на «высоте» 4–5 тыс. *м* имела место активация частотного разряда нейронов. На этом фоне тормозящее влияние стимуляции CA₁ поля гиппокампа было более выражено, чем в условиях нормоксии. Во второй фазе (7,5–8 тыс. *м*) наблюдалось угнетение активности дыхательного центра продолговатого мозга и CA₁ поля гиппокампа. В условиях тяжелой гипоксии наблюдалось угнетение импульсной активности нейронов, при этом тормозящее влияние CA₁ поля гиппокампа было незначительным.

R. S. ARUTUNYAN, N. S. HAKOPYAN, N. J. ADAMYAN

THE CA1 AREA OF HIPPOCAMPUS REACTION IN RESPIRATORY REGULATION IN HYPOXIA CONDITIONS

Summary

In the normal as well as in the oxygen deficiency conditions research has been made to study the influence of CA_1 area of hippocampus on impulse activity of respiratory neurons of medulla oblongata.

In conditions of normal atmospheric pressure the electrical stimulation of CA₁ area has had mainly inhibiting influence. In the initial phase, on 4–5 thousand meter altitude, activation of frequent discharge of neurons occurred. In this situation the inhibiting influence of stimulation of CA₁ area of hippocampus was more accentuated than in conditions of normoxia. In the second phase, 7,5–8 thousand meters on the reduction of the impulse activity of neurons, stimulation of CA₁ area induced uncharacteristic reactions of those neurons.

Բնական գիտություններ

3,2004

Естественные науки

Биология

УДК 582. 28

М. Г. ТАСЛАХЧЬЯН

МИКОФЛОРА АРМЕНИИ. РОД ASCOCHYTA LIB.

В статье приведен конспект обнаруженных в Армении видов рода Ascochyta Lib. Для каждого из них дается латинское название, указывается автор, первоисточник, литературная ссылка, питающее растение, место и дата сбора.

В рамках многолетних плановых исследований микофлоры Армении автором настоящей статьи изучены видовой состав, экология и распространение грибов 92 видов из рода *Ascochyta* в Армении. Грибы в конспекте расположены в алфавитном порядке видовых наименований. Для каждого вида, помимо латинского названия, указаны авторы, первоисточник, литературная ссылка, питающее растение, место и дата сбора [1, 2]*.

Грибы рода Ascochyta являются паразитами высших растений из многих ботанических семейств и вызывают пятнистость листьев, реже стеблей, плодов, чашелистиков и других зеленых частей. Пятна бывают самой разнообразной формы – округлые, продолговатые или бесформенные, одиночные или сливающиеся, часто захватывающие большую часть листовой пластинки, неокаймленные или ограниченные коричневыми, черными, пурпурными или другого цвета ободками, часто с концентрической зональностью. Окраска иных - от светло-серого или беловатого до бурого, темнопурпурного, почти черного цвета. Пикниды шаровидные, шаровидно-конические, шаровидно-приплюснутые, линзовидные, рассеянные по всему пятну либо концентрическими кругами на одной или обеих сторонах пятна. Устьице округлое или слегка продолговатое. Конидии цилиндрические, удлиненно-эллипсоидальные, широковеретеновидные, реже булавовидные, яйцевидные, с одной перегородкой, с перетяжкой или без нее. Молодые незрелые конидии одноклеточные, бесцветные, реже очень слабо окрашенные зеленоватые или оливковые.

С целью максимального сокращения объема статьи в качестве литературной ссылки приводится только книга [1], которая является монографической обработкой всех опубликованных видов этого рода и в которую вошли также армянские виды. Часть первоисточников уточнена по сборнику [2].

При сильном поражении многие виды наносят серьезный вред сельскохозяйственным культурам, древесным и кустарниковым породам, декоративным растениям.

Конспект видов рода Ascochyta

Ascochyta acericola Massa. Ann. Mycol., 10 (3), 1912:290. На Acer negundo L. – Горис, 23.10.1963; на Acer platanoides L. – Ванадзор, 14. 07.1998. Ascochyta amorphae Allesch. Ber. Bayer. Bot. Ges., 4, 1896:34. На Amorpha fruticosa L. – Алавердский р-н, 21.09.1966; лесопарк «Сосняки», 11.09.1958; Степанаван, 24.04.1989.

Аscochyta aquilegiae (Roum. et Pat.) Sacc. Ann. Mycol., 3, 1905:406; Мельник, 1977:77. На Aquilegia vulgaris L. – лесопарк «Сосняки», 16.08.1955; Ереванский бот. сад, 17.07.1957; на Aquilegia olympica Boiss. – окрестности с. Анкаван, 16.07.1961; на Delphinium araraticum (N. Busch) Grossh. – Ереванский бот. сад, 13.08.1960; Арагац, 17.09.1987.

Ascochyta asclepiadearum Trav. Ann. Mycol., 1, 1903:312; Мельник, 1977:88. На Asclepias syriaca L. – лесопарк «Сосняки», 9.07.1975; Кироваканский бот. сад, 24.09.1990.

Ascochyta babajaniae Taslakhchyan. Микол. и фитопатол., 1, 1, 1967:113. На Ocimum basilicum L. – Кировакан, 15.08.1962; Ереван, 28.08.1992.

Ascochyta balsamitae Taslakhchyan. Микол. и фитопатол., 1, 1, 1967:113. На Pyrethrum balsamita (L.) W. – Кировакан, 14. 07. 1965; Степанаван, 7.08. 1979.

Ascochyta betae Prill. et Del. Bull. Soc. Mycol. France, 7, 1891:24; Мельник, 1977:98. На Beta vulgaris L. – Кировакан, сортоучасток совхоза им. Шаумяна, 10.18.1963; Сисиан, с. Нораван, 20.09.1973; Спитак, 20.08.1981.

Ascochyta boltshauseri Sacc. F. pflanzenkrankh, 1, 1891:136; Мельник, 1977:70. На Vicia faba L. – повсеместно в районах выращивания бобов; на Onobrychis sativa Lam. – Кировакан, 1951; на Onobrychis hajastana Grossh.– Ленинакан, 10.10.1955; Мартуни, 10.07.1967; на Trifolium ambiguum Bieb. – лесопарк «Сосняки», 20.05.1959; на Trifolium pratense L. – Кировакан, 1963.

Ascochyta bondarceviana Meln. Новости сист. низш. раст., 1957:204; Мельник, 1977:78. На Ribes alba L. – Степанаван, 15.08.1962.

Ascochyta borjomi Bond. Известия Императорского Санкт-Петербургского бот. сада, 12,1912:102. На Caragana arborescens Lam.-Кироваканский бот. сад, 3.07.1962; 7.08.1965.

Ascochyta boydii Grove. J. Bot., 56, 1918:315; Мельник, 1977:83. На Alisma plantago-aquatica L.- окрестности Степанавана, на болоте, 8.08.1962; Ереван, окрестности озера Айгер, 24.07.1993.

Ascochyta calamagrostidis Brun. Mat. Mycol. Saint., 25; Мельник, 1977:113. Ha Calamagrostis epigeios (L.) Roth. – Степанаван, 1962; Анкаван, 23.07.1972.

Ascochyta calystegiae Sacc. Michelia, 1, 1878:169; Мельник, 1977:103. На Calystegia sepium (L.) R. Br. – Ноемберян, близ с. Арчис, 26.09.1964; на Convolvulus arvensis L. – Шамшадин, урочище «Мисхана», 15.09.1968. Ascochyta caricae Rabenh. Bot. Leitung, Berlin, 1851:445; Мельник, 1977:74. На Ficus carica L. – совхоз Зейтун Ноемберянского р-на, 23.08.1964; Мегри, 17.08. 1988.

Ascochyta caulicola Laub. Arb. d. Biol. f. Land und Forst. Wirtsch. K. Gesund, 3,1903:441. Ha Meililotus officinalis. (L.) Pall. – Басаргечар, близ с. Гейсу, 23.08.1961; Севан, 25.05.1962; Анкаван, 22.06.1972.

Ascochyta chenopodii Rostr. Botanisk Tidskrift, 26, 1905:311. На Chenopodium album L. – с. Норадуз, район им. Камо, 26.07.1969; Абовян, 27.08.1987.

Ascochyta chlorospora Sped. Michelia, 1, 1878:483. На Cerasus vulgaris Mill. – Кировакан, 17.07.1963; с. Жданов, 28.08.1969; Аштарак, 12.06.1986.

Ascochyta citri Penz. Michelia, 2, 1882:445. На живых листьях комнатного лимона – Citrus limon (L.) Burm. fit. – Кировакан, 14.07.1965.

Ascochyta compositarum J. J. Davis. Trans. Wisconsin Acad. Sci, 19, 2,1919:695; Мельник, 1977:99. На Aster alpinus L. – Кироваканский бот. сад, 15.07 1965; на Rudbeckia hirta L. – лесопарк «Сосняки», 06.09.1969.

Ascochyta cornicola Sacc. Michelia, 1(2), 1878:169. На Cornus mas L. – лесопарк «Сосняки», 15.07.1969; Ошакан, 17.08.1986; Иджеван, 24.09.1992.

Ascochyta crategicola Allesch. Ber. Bayer. Bot.Ges., 5, 1897:6. На Crataegorus caucasica C. Koch. – Кировакан, лесопарк, 5.08.1962; Дилижан, 18.08.1988.

Ascochyta cucumeris Fautr. et Roum. Rev. Mycol.(Tolouse), 13, 1891:79; Мельник, 1977:67. На Bryonia dioica Jacq. – Кировакан, лес, 15.08.1963; на Cucumis sativus L. – окрестности Ванадзора, 24.08.1983; Иджеван, Шамшадин, Дилижан.

Ascochyta cytisi Lib. Pl. Crypt. Ard. 156, 1832; Мельник, 1977:125. На Laburnum anagyroides Medik. – лесопарк «Сосняки», 24.05.1959; Кироваканский бот. сад, 29.06.1960; 30.09.1959; 6.09.1969.

Ascochyta daturae Sacc. Michelia, 1, 1878:163; Мельник, 1977:164. На Datura stramonium L. – Кировакан, лес близ с. Шагали, 17.08.1963; окрестности Иджевана, 23.08.1958; На Capsicum annum L. – Сисиан, огороды, 19.10.1963; на Lycopersicum esculentum Mill. – Сисиан, 26.09.1963; Кировакан, 14.08.1959; Ахундов, 20.07.1979.

Ascochyta davidii Taslakhchyan. Микол. и фитопатол., 1, 1967:112; Мельник, 1977:133. На Buddleja davidii Franch. – лесопарк «Сосняки», 19.09.1962.

Ascochyta dentariae Brezhn. Бот. мат. отд. спор. раст. Бот. инст. АН СССР, 7, 1951:186; Мельник, 1977:105. На Cardamine uliginosa Bieb. – Западные отроги Цахкуняцкого хребта, дубовый лес близ с. Лусагюх, 5.09.1957; Анкаван, 24.07.1969.

Ascochyta deutziae Bres. Hedwigia, 39, 1900:326. На Deutzia gracilis Sleb. et Fuck. – лесопарк «Сосняки», 29.04.1969.

Ascochyta dispaci Bub. Ann. K.K. Naturhist. Hofmus., 23, 1909:104; Мельник, 1977:108. На Dipsacus strigosus W. – Кировакан, Ванадзор, лес, 23.08.1961; 15.07.1963. Аscochyta doronici Allesch. Hedwigia, 36, 1897:162; Мельник, 1977:99. На Arctium tomentosum Mill. – парк Бюраканской обсерватории, 16.04.1973; на Callistephus chinesis (L.) Wees. – Джермук, дендропарк, 23.07.1974; на Doronicum oblongifolium DC – Кироваканский бот. сад, 19.07.1939; на Zinnia elegans Jasq. – Кироваканский бот. сад, 18.07.1958.

Ascochyta erevanica D. Bab. et Simonian. Stud. cercet. Biol. ser. bot., 1964:446; Мельник, 1977:172. На Centhranthus ruber DC – Ереванский бот. сад, 10.07.1959.

Ascochyta euphrasiae Oud. Contr. Fl. Mycol. Pays-Bas, 16:68; Мельник, 1977:161. Ha Digitalis nervosa Steud. et Hochst. ex Berth. – лесопарк «Сосняки», 21.07.1960.

Ascochyta evonymicola Allesch. Hedwigia, 36, 1897:162. На Evonymus sempervirens Rupr. ex Boiss. – Кировакан, лес, 7.07.1963; Ереванский бот. сад, 24.07.1992.

Ascochyta fabae Speg. An. del Museo Nacional de Buenos Aires ser., 26, 1899:321. На Vicia faba L. – повсеместно в районах выращивания бобов.

Ascochyta fagi Woronich. Вестн. Тифлисского бот. сада, 28, 1913:22; Мельник, 1977:110. На Fagus orientalis Lipsky – Степанаван, лесничество, 15.08.1950; Иджеван, лесничество, 11.08.1972.

Ascochyta ferdinandi Bub et Malk. Ann. Mycol., 6, 1908:24; Мельник, 1977:93. На Sambucus nigra L. – окрестности Дилижана, 1969.

Ascochyta forsythiae (Sacc.) Hoehn. sec. H. Zimm. Verh. Naturf. Vereins Вгипп., 47, 1909:36; Мельник, 1977:138. На Forsythia viridissima Linde – лесопарк «Сосняки», 14.07.1959; на Forsythia indermedia Fab. – Кироваканский бот. сад, 24.07.1959.

Ascochyta graminicola Sacc. Michelia, 1(2), 1878:127. На Agropyron repens (L.) Beauv. – Эчмиадзин, 22.07.1963; Ереван, 27.07.1965; Ахундов, 16.04.1967; на Agrostis stolonifera L. – Сисиан, 24.09.1969.

Ascochyta humuliphila Melnik. Новости сист. низш. раст., 1972:210. На Humulus lupulus L. – Кировакан, лес, 19.09.1963.

Ascochyta hyoscyami Pat. Cat. rais pl. cell. Tunisie, 1897:121. На Hyoscyamus niger L. – Кировакан, лес, 22.08.1963; Анкаван, 07.07.1992.

Ascochyta idaei Oud. Hedwigia, 41, 1898:178; Мельник, 1977:153. На Rubus caesius L. – Кировакан, с. Шагалы, 15.07.1963; на Rubus idaeus L. – Горис, 24.07.1969.

Ascochyta impatientis Bres. Hedwigia, 1900:326; Мельник, 1977:88. На Impatiens balsamina L. – Ереванский бот. сад, 13.07.1972.

Ascochyta ischami Sacc. Michelia, 1878:164. На Poa compressa L. – Ереванский бот. сад, отдел армянской флоры, 25.07.1964; на Agropyron repens L. – Ереван, окрестности, 16.04.1950; 21.07.1975.

Ascochyta juglandis Boltsh. Z. ptlanzenkrankh, 8, 1898:263; Мельник, 1977:120. На Juglans regia L. – Дилижан, 10.07.1964; 20.09.1982; Аштарак, Сагмосаван, 28.08.1992.

Ascochyta kabatiana Trott. in Sacc. Et Trott., Syll. Fung., 25, 1931:330. На Laburnum anagyroides Med. – лесопарк «Сосняки», 15.08.1959; Кироваканский бот. сад, 29.04.1960; 30.08.1965; Ереванский бот. сад, 12.04.1989. Ascochyta lagochili Byzova. Фл. спор. раст. Казахстана, 5, 2, 1968:267;

Мельник, 1977:70. На Betonica officinalis L. – Ереванский бот. сад, 23.09.1959. Ascochyta lamiorum Sacc. Michelia, 1, 1878:170: Мельник, 1977:122. На

Lamium tomentosum W. – Кировакан, ущелье р. Ванадзор, лес, 21.07.1961. Ascochyta lathyri Trail. Scott. Naturalist (Perth.), 3, 1887:87: Мельник.

Азсосную Гамун Гган. Scott. Naturanst (Регн.), 3, 1887; Мельник, 1977:127. На Lathyrus odoratus L. – лесопарк «Сосняки», 15.08.1958; на Lathyrus miniatus Bieb.: Stev. – Камо, 15.07.1960; долина р. Мармарик, 06.08.1968; на Lahyrus roseus stev. – дубовый лес с. Лусагюх, 17.09.1967.

Ascochyta ligustri Sacc. et Speg. Michelia, 1, 1878:185; Мельник, 1977:139. На Ligustrum vulgare L. – Кировакан, дендропарк, 19.04.1965.

Ascochyta lupinicola Petr. Ann. Mycol., 19, 1922:145. На Lupinus hirsulus L. – Кироваканский бот. сад, 22.07.1963; Дилижан, 24.07.1987.

Ascochyta malvicola Sacc. Michelia, 1, 1878:161; Мельник, 1977:134. На Malva neglecta Wallr. – Кировакан, 1961; на Althaea officinalis L. – там же, 15.08.1963.

Ascochyta marginata J. J. Davis. Trans. Wisconsin Acad. Sci., 18, 1915:263; Мельник, 1977:86. На Aralia marginata L. – лесопарк «Сосняки», 29.04.1959.

Ascochyta martianoffianum (Thuem.) Sacc. Hedwigia, 16, 1882:170. На Salix sp. – Мартуни, 07.09.1969; Норадуз, 14.08.1994.

Ascochyta mattiolae Oud. Contr. Fl. Mycol. Pays-Bas, 16:69; Мельник, 1977:106. На Mattiola incana (L.) R. Br. – лесопарк «Сосняки», 10.09.1958; На Brassicaceae sp. – Степанаван, сухие сорные места, 11.07.1962; Кировакан, 24.09.1963.

Ascochyta meliloti Trucs. На Melilotus officinalis Desr., – Кировакан, 10.10.1963; Анкаван, 08.07.1989.

Ascochyta metulispora Berk. et Br. Ann. Nat. Hist., 1, 1878:30; Мельник, 1977:139. Ha Fraxinus excelsior L. – Кировакан, лесопарк, 15.08.1963.

Ascochyta moelleriana Wint. Contr. Fl. Mycol. Lus. Ha Digitalis nervosa Stend. Hachst. – Степанаван, 21.07.1959; Ахундов, 17.08.1969.

Ascochyta mori R. Mre. Ann. Mycol., 2, 1913:354; Мельник, 1977:137. На Morus alba L. – Кировакан, 21.081964.

Ascochyta nicotianae Pass. Atti Soc. Crittog. Ital., 3, 1881:14. На Nicotiana tabacum L. – лесопарк «Сосняки», 10.09.1959; Степанаван, 8.07.1960; Илжеван, 22.07.1969.

Ascochyta nobilis Kab. et Bub. Oesterr. Bot. Z., 54, 1904:24; Мельник, 1977:157. На Dictamnus sp. – лесопарк «Сосняки», 6.09.1969; на Ptelea trifoliata L. – там же, 10.09.1958.

Ascochyta obdusens Fuck. Symb. Mycol., 1869:388. На Filipenchula ulmariae (L.) Max. – Кировакан, 1970; Анкаван, 22.07.1996.

Ascochyta orni Sacc.et Speg, Michelia, 1, 1878:168; Мельник, 1977:140. На Fraxinus excelsior L. – южная Армения, 15.08.1952; лесопарк «Сосняки», 20.07.1959.

Ascochyta orientalis Bond. Acta Horti Petropol., 26, 1906:43; Мельник,

1977:140. На Syringa vulgaris L. – Кироваканский бот. сад, 22.07.1963; Дилижан, парк, 25.08.1966.

Ascochyta oudemansii Sacc. et P. Syd. Sylloge Fungorum, 14(2), 1898:947; Мельник, 1977:97. На Evonymus sempervirens Rupr. ex Boiss. – Кировакан, лес, 07.08.1963.

Ascochyta pallida Kab. et Bub. Hedwigia, 47, 1908:357; Мельник, 1977:82. На Ace negundo L. – Горис, 23.10.1963.

Ascochyta paliuri Sacc. Michelia, 1, 1878:166; Мельник, 1977:153. На Paliurus spina-christi Mill. – окрестности Кафана, 24.09.1963; Ереван, Цицернакаберд, 16.10.1986.

Ascochyta phaseolorum Sacc. Michelia, 1, 1878:169; Мельник, 1977:127. На Phaseolus vulgaris L. – Кировакан, 20.08.1963; на Caragana arborescens Lam. – Кироваканский бот. сад, 03.08.1967; 07.08.1965; на Lupinus hirsutus L. – Кироваканский бот сад, 22.07.1963.

Ascochyta philadelphi Sacc. et Speg. Michelia, 2, 1881:622; Мельник, 1977:160. На Philadelphus coronarius L. – Кироваканский бот. сад, 15.08.1963; на Philadelphus caucasicus Koehne. – лесопарк «Сосняки», 08.07.1959; на Philadelphus grandiflora Wild. – Кировакан, 16.07.1952; на Deutzia gracilis Bieb. et Fucc. – лесопарк «Сосняки», 29.04.1959.

Ascochyta phlogis Vogl. Atti Ann. Reale Accad. Agric. Torino, 51, 1908:20; Мельник, 1977:145. На Phlox paniculata L. – Кироваканский бот. сад, 30.09.1969.

Ascochyta physalina Sacc. Michelia, 1, 1878:93; Мельник, 1977:79. На Нуовсуатия niger L. – Кировакан, 22.08.1963.

Ascochyta pinodes L. K. Jones, New York State Agric. Exp. Sta. (Geneva) Bull., 547, 1927:4; Мельник, 1977:71. На Onobrychis sativa Lam. – Кировакан, 20.08.1951; на Onobrychis hajastana A. Grossh. – Ленинакан, 20.10.1955; Мартуни, 10.07.1967; на Pisum sativum L. – повсеместно.

Ascochyta piricola Sacc. Nuovo Giornale Botanico Italiano, 7, 1875:311. На Ругиз communis L. – Кировакан, 1970; Шамшадин, 22.08.1981.

Ascochyta pisi Lib. Pl. Crypt. Ard., 12, 1830; Мельник, 1977:72. На Pisum sativum L. – повсеместно в районах выращивания гороха.

Ascochyta potentillarum Sacc. Michelia, 1, 1978:197; Мельник, 1977:154. На Potentilla recta L. – Кировакан, берег р. Ванадзор, 15.08.1969.

Ascochyta pteleae Bub. et Kab. Hedwigia, 52, 1912:348. Ha Ptelea trifoliate L. – лесопарк «Сосняки», 10.09.1958; 12.10.1969; Ереванский бот. сад, 06.08.1984.

Ascochyta quercus Sacc. et Speg. Michelia, 1878:162; Мельник, 1977:110. На Quercus occidentalis J. Gay – с. Шагалы близ Кировакана, 1970; на Quercus macranthera Fisch. et Mey. ex Hohen. – Кировакан, лес, 1978.

Ascochyta rabiei (Pass.) Labr. Rev. Pathol. Veg. Entomol. Agric. Fance, 18, 1931:230; Мельник, 1977:128. На Cicer arietinum L. – повсеместно в районах выращивания нута.

Ascochyta ribesia Sacc. et Fantr. Bull. Soc. Mycol. France, 16, 1900:22. Ha Ribes rubrum L. – Севанский бот. сад, 5.09.1969; на Grossularia reclinata (L.) Mill. - Кировакан, приусадебный участок, 26.08.1969.

Ascochyta rosicola Sacc. Michelia, 1,1878:164. На Rosa canina L. – Кироваканский бот. сад, 22.07.1963; Иджеван, 09.05.1965; Ахундов, 10.09.1969.

Ascochyta sanicula J. J. Davis. Trans. Wisconsin Acad. Sci, 18, 1918:105; Мельник, 1977:170. На Smyrniopsis armenia Schischk. – Ереванский бот. сад, отдел армянской флоры, 30.05.1972.

Ascochyta sarmenticia Sacc. Michelia, 2 (6), 1880:110. На Lonicera caprifolium L. – лесопарк «Сосняки», 27.08.1963; Кировакан, дендропарк, 25.07.1962.

Ascochyta solanicola Oud. Contr. Fl.Mycol. Pays-Bas, 17, 1902:264. На Solanum nigrum L. – Кировакан, лес по берегу р. Ванадзор, 20.04.1960; 17.09.1963.

Ascochyta spiraeae Kab. et Bub. Hedwigia, 43, 1908:359; Мельник, 1977:155. Ha Filipendula ulmariae (L.) Maxim.— с. Агверан, дубово-грабовый лес, 4.10.1967; на Spiraea arenata L.— Кироваканский бот. сад, 22.07.1963.

Ascochyta syringae Bres. Hedwigia, 34, 1894:207; Мельник, 1977:140. На Syringa vulgaris L. – лесопарк «Сосняки», 17.08.1959; Кировакан, 30.09.1969.

Аscochyta tenerrima Sacc. et Roum. Michelia, 1, 1881:622; Мельник, 1977:94. Ha Lonicera caucasica Pall.- лес близ с. Лусагюх, 18.09.1969; на Lonicera caprifolium L. – лесопарк «Сосняки», 27.08.1963; на Viburnum lantana L. – лесопарк «Сосняки», 3.07.1959; на Viburnum opulus L.-Кироваканский бот. сад, 6.09.1969; на Sambucus nigra L. – Кироваканский бот. сад, 14.07.1969.

Ascochyta triliae Bub. et Kab. Hedwigia, 46, 1907:293. Ha Tilia cordata Mill. – лесопарк «Сосняки», 23.04.1959; Кировакан, лес, 24.08.1979.

Ascochyta tremulae (Thuem.) Sacc. Mycoth. Univ., 1895. На Populus nigra L. – лесопарк «Сосняки», 14.10.1963; Дилижан, лес, 14.09.1991.

Ascochyta trifolii Bond. et Trus. Болезни раст., 7, 1913:215. На Trifolium ambiguum M. B. – Степанаван, 20.05.1969; на Trifolium pratense L. – Кировакан, 20.07. 1960; Ошакан, 16.08.1972.

Ascochyta ulmella Sacc. Michelia, 1(2), 1878:169. Ulmus elliptica C. Косh. – Кировакан, дендропарк, 04.08.1964.

Ascochyta viciae Lib. Pl. Crypt. Ard., 356, 1837; Мельник, 1977:129. На Vicia sativa L. – Кировакан, 22.08.1962; 10.10.1963; на Melilotus officinalis (L.) Pall. – Басаргечар, близ с. Тейсу, 23.08.1961; Севан, 25.05.1961.

Ascochyta violae Sacc. et Speg. Michelia, 1, 1878:163; Мельник, 1977:173. На Viola odorata L. – Иджеван, лес близ с. Верин-Агдан, 16.09.1962; Кировакан, 15.08.1984.

Ascochyta weigeliae Sacc. et Sped. Michelia, 1, 1878:170. На Weigelia говеа Lindl. – лесопарк «Сосняки», 25.07.1963.

Ascochyta zeina Sacc. Michelia, 1, 1878:165; Мельник, 1977:118. На Zea mays L. – Кировакан, 1958.

Кафедра ботаники

Поступила 12.12.2003

ЛИТЕРАТУРА

1. Мельник В.А. Определитель грибов рода Ascochyta Lib. Л.: Наука, 1977, 245 с.

 Minter D.W., Dudka I.O. Fungi of Ukraine – a preliminary checklist. International Mycological Institute, Bakeham Lane, Egham, Surrey, M.G. Kholodny Institute of Botany, National Ukrainian Academy of Sciences. Kiev, 1996, 361 p.

U. A. BUULUWOSUV

ՀԱՅԱՍՏԱՆԻ ՄԻԿՈՖԼՈՐԱՆ: ASCOCHYTA LIB. ՑԵՂԸ

Ամփոփում

Կատարված ուսումնասիրությունների արդյունքում Հայաստանում հայտնաբերվել են Ascochyta Lib. ցեղին պատկանող 92 տեսակ։ Հոդվածում ամևն տեսակի համար բերվում է նրա լատիներեն անվանումը, հեղինակը, սնող բույսի անվանումը, հավաքման վայրը և ամսաթիվը։

M. G. TASLAKHCHYAN

MYCOFLORA OF ARMENIA. GENUS ASCOCHYTA LIB.

Summary

As a result of the resarches in Armenia there have been found 92 species belonging to genus Ascochyta. In the list included in the article besides the latin names of the species there are also pointed the authors, the names of the host plants, the places of collection and the dates. Բնական գիտություններ

Естественные науки

Կենսաբանություն

УДК 583.337

լ. Ս. ՇՈՒԽՅԱՆ

ԽԱՂՈՂԻ ՄԻ ՔԱՆԻ ՍՈՐՏԵՐԻ ԷՄԲՐԻՈԳԵՆԵՉԻ ՍԿՉՔՆԱԿԱՆ ԵՎ ይሪዛበሮዓዛበባብሀፓህሪዛበሀዛስ ዋባይ/ዛበቅ ጋዛበ

Ներածություն։ Խաղողը մարդկությանը հայտնի է հնագույն ժամանակներից։ Vitaceae ընտանիքի ներկայացուցիչների առաջին հնէաքանական մնացորդները հանդիպում են դեռևս ստորին կավճային նստվածքներում։ Ծագումով ավելի երիտասարդ Vitis ցեղը, որին հիմնականում պատկանում են խաղողագործության մեջ տնտեսական կարևոր նշանակություն ունեցող խաղողի սորտերը, հանդես է եկել երրորդական չրջանում։

Հայաստանը պատմականորեն համարվում է զարգացած խաղողագործական կենտրոններից մեկը, որտեղ այժմ էլ մշակվում են մեծ քանագությամբ խաղողի նոր և արժեքավոր սորտեր։

Սելեկցիոն աշխատանքների հաջողությունը գերազանցապես պայմանավորված է ծնողական ձևերի ճիշտ ընտրությամբ։ Կարևոր նշանակություն ունի ելակետային ձևերի վերարտադրողական համակարգում մեյոզի տարբեր փուլերի՝ սպորոգենեզի, գամետոգենեզի և բեղմնավորման պրոցեսի ուսումնասիրությունը։ Այն կարող է օգնել բավականին լայն տարածում ունեցող այնպիսի երևույթների պարզաբանմանը, ինչպիսիք են պտղաթափը, մանր պտղայնությունը և այլն, որոնք իջեցնում են խաղողի բերքատվությունը։

Հայաստանում խաղողի առաջին բջջասաղմնաբական ուսումնասիրությունները կատարվել են Ե.Գ. Սիմոնյանի կողմից [1]։

Սեռական պրոսեցների ուսումնասիրությունը սովորաբար սկսվում է ծաղկի կազմությունից և զարգացումից։ Խաղողի վազը հիմնականում ունի ծաղիկների հետևյալ տիպերը՝ արական, երկսեռ և հազվադեպ հանդիպող մաքուր իգական։ Ըստ Ա. Պ. Բարանովի [2], խաղողի ծաղիկների տիպերի մասին խոսելիս պետք է առաջնորդվել հետևյալ սկզրունքներով, առաջին, որ խաղողը երկտուն բույս է և երկրորդ, որ նրա ծաղիկները հիմնականում լինում են երկու տիպի, իգականը ներթև իջած առէջներով, առերիլ փոշեհատիկներով, իսկ արականը թերգարգացած փարասնորվ։ Հետազոտության մեթոդիկան։ Աշխատանքի նպատակն է եղել ուսումնասիրել խաղողի տնտեսական նշանակություն ունեցող հինգ սորտերի (Մսխալի, Շահումյանի, Դեղին Երևանի, Փարվանա և Չարենցի) էմբրիոգենեզի սկզբնական և ուշ փուլերը։ Բեղմնավորման պրոցեսի վաղ փուլերը ուսումնասիրելու համար օգտագործել ենք Նավաշինի ֆիքսատորը՝ նախապես ծաղկաբողբոջները մշակելով քացախաթթվային լուծույթով 3:1 հարաբերությամբ։ Սերմնաբողբոջների զարգացման ուշ փուլերն ուսումնասիրելու համար օգտագործել ենք Բրոդսկու ֆիքսաժը, որը բաղկացած է երեք մաս չեզոք ֆորմալինի, մեկ մաս 96% սպիրտի և 0,3 մաս սաոցաքացախաթթվի խառնուրդից։ Վաղ փուլերից ստացված մշտական պրեպարատները [1] պատրաստվել են 5–12 միկրոն, իսկ ուշ փուլերինը՝ 25–35 միկրոն հաստությամբ և ներկվել են երկաթի հեմոտոքսիլինով (ըստ Հայդենհայնի)։

Արդյունքները և քննարկում։ Ուսումնասիրվել է Մսխալի, Շահումյանի, Դեղին Երևանի, Փարվանա և Չարենցի սորտերի 3000 փոշեհատիկների ֆերտիլությունը և ստերիլությունը, ինչպես նաև կենսունակությունը։ Վերջինի որոշման համար պատրաստել ենք ժամանակավոր պրեպարատներ՝ փոշեհատիկները ներկելով ացետոկարմինով։ Ֆերտիլ փոշեհատիկները ունենում են վարդագույն երանգ, թափանցիկ ցիտոպլազմա, սպերմիաները ներկվում են մուգ ացետոկարմինային գույնով, իսկ ստերիլ փոշեհատիկները գրեթե չեն ներկվում կամ շատ թույլ են ներկվում։ Ստացված արդյունքները բերված են աղյուսակում։

Սորտի	Նմուշի վերցնելու	Ֆերտիլ փո	շեհատիկների	Ստերիլ փոշեհատիկների			
անվանումը	վայրը	թիվը	տոկոսը	թիվը	տոկոսը		
Մսխալի	Աշտարակ	2852	95,06	148	4,93		
Շահումյանի	Աշտարակ	2624	87,46	376	12,53		
Դեղին Երևանի	Աշտարակ	2547	84,90	453	15,10		
Փարվանա	Մերձավան	2412	80,40	588	19,60		
Չարենցի	Աշտարակ	2749	91,63	251	8,36		

Խաղողի փոչնհատիկների ֆերտիլության և ստերիլության կենսունակության պարամետրերը

Խաղողի փոշանոթներում նորմալ ձևավորված փոշեհատիկների կողքին կան նաև անպտղաբեր փոշեհատիկներ, որոնք պատճառ են դառնում խաղողի ծաղիկների ստերիլությանը։ Փոշեհատիկների ստերիլությունը վեգետատիվ և գեներատիվ կորիզների ցիտոպլազմայի վաղ դեգեներացիայի արդյունք է [3]։ Նրանց կենսունակության վրա բացասաբար է անդրադառնում նաև ջերմաստիճանը և օդի հարաբերական խոնավությունը։ Խաղողի կուլտուրային բնորոշ են ծաղկաթափի և պտղաթափի երևույթները, որոնք սովորաբար լինում են ծաղկման ավարտից հետո։ Իսկ պտղակոթի հիմքի մոտ գտնվող կոկոնները, ծաղիկները և տարբեր մեծության սերմնարաններն ու մանր պտուղները կարող են թափվել ծաղկման ողջ ընթացքում։ Ծաղկաթափը բացասաբար է անդրադառնում բերքատվության վրա, երբեմն տեղի է ունենում բերքի մասնակի կամ լրիվ կորուստ [1, 3]։ Ծաղկաթափի պատճառ կարող է հանդիսանալ նաև առէջների և ծաղկափոշու թերի զարգացումը, իգական գամետոֆիտի ստերիլությունը։

Դեղին Երևանի, Փարվանա սորտերի անսերմության պատճառ կարող է համարվել ինչպես սերմերի քայքայումն ու թերի զարգացումը, այնպես էլ վերարտադրող օրգանների ոչ նորմալ զարգացումը, իգական գամետոֆիտի բջիջների վաղ ոչնչացումը և այլն։

Որոշ սորտերին բնորոշ է կուսածնության (պարթենոկարպիկ) ճանապարհով պտուղներ առաջացնելը, որի պատճառները մի քանիսն են. 1. ձվաբջիջը ընդունակ չէ բեղմնավորման, 2. փոշեխողովակները սերմնարան մտնել չեն կարողանում, 3. ձվաբջիջը չունի զարգանալու ընդունակություն, 4. ձվաբջիջը ընդունակ է բեղմնավորման, բայց ծաղկափոշին ստերիլ է։ Խաղողի սորտերը տարբերվում են միմյանցից կուսածնությամբ պտուղներ առաջացնելու իրենց հատկությամբ (պտուղների առաջացում առանց սերմերի, դատարկ սերմերով, դատարկ և նորմալ սերմերով)։ Խաղողի երկսեռ ծաղիկներ ունեցող սորտերի կուսածնությունը հիմնականում բեղմնավարման պրոցեսի բացակայության հետևանք է, բայց ոչ միշտ։ Անսերմ սորտերը նշված եղանակով պտուղներ են առաջացնում մի դեպքում առանց բեղմնավորման և առանց սաղմի զարգացման, մի ուրիշ դեպքում՝ առկա մանր և փափուկ թաղանթով սերմերի բեղմնավորումից հետո։

Խաղողի նշված սորտերի սերմնաբողբոջներից ոչ բոլորում է զարգանում սաղմնապարկ և, բացի այդ, զարգացած ոչ բոլոր սաղմնապարկերն են ֆունկցիոնալ տեսակետից լիարժեք լինում։ Դրանց մի մասը աստիճանաբար քայքայվում է, իսկ մյուսները զարգանում են, բայց ոչ լիարժեք, որի հետևանքով պտուղների մի մասը լինում է առանց սերմերի, մյուս մասը՝ սերմերով, որոնց մեջ սաղմը կամ էնդոսպերմը բացակայում է կամ լինում է թերզարգացած։

Մսխայի, Շահումյանի և Չարենցի սորտերի սաղմնային պարկերի մեծ մասում ձվաբջջային ապարատի էլեմենտները կարող են քայքայվել, իսկ կենտրոնական բջիջը ընդհակառակը՝ կարող է բեղմնավորվել և առաջազնել հզոր էնդոսպերմ։ Էնդոսպերմի զարգացումը մինչև բջջայինի վերածվելը միշտ չէ, որ ընթանում է նորմալ։ Հաճախ կորիզները դառնում են չորս, երբեմն ութ հատ, սակայն հետագայում դադարում է էնդոսպերմի կորիզների ձևավորման ընթացքը։ Երբեմն նկատվում են առանց սաղմի և առանց էնդոսպերմի սերմեր, որոնց առկայությունը խոսում է այն մասին, որ սերմերի մեծ մասը առաջանում է առանց բեղմնավորության։ Էնդոսպերմի բացակալության պայմաններում անհետանում է աճող սաղմի խթանող ազդեգությունը, որի հետևանքով պտուղները թեև հասունանում են, բայց չեն հասնում նորմալ մեծության, մնում են մանր, սերմնազուրկ։ Սերմերի անսաղմ զարգացումը կարող է լինել ձվաբջջային ապարատի զարգացման նորմալ ընթացքի խախտումների հետևանք։ Երբեմն բեղմնավորությունից հետո էլ ձվաբջիջը սկսում քայքայվել։ Նրա պարունակությունը հատիկավորվում է և վրա է հասնում սաղմնային պարկի ողջ ձվաբջջային ապարատի էլեմենտների քայքայումը։ Այդ ժամանակ սաղմնապարկը լցված է լինում բջջային էնդոսպերմով։ Ձևավորված սերմերը զարգանում են նորմալ, ունենում են էնդոսպերմ,բայց սաղմ չեն ունենում, այսինքն՝ հետազոտված սերմերի ստերիլության պատճառը լինում է սերմերի անսաղմ զարգացումը [5]։

Հայտնի է, որ սերմի ամենակարևոր մասերի՝ սաղմի և էնդոսպերմի մեջ կա նուրբ կարգավորող ֆիզիոլոգիական փոխհարաբերություն։ Սկզբում էնդոսպերմը ֆիզիոլոգիապես ավելի ակտիվ է գործում, արգելակելով սաղմի զարգացումը, ավելի ուշ ակտիվ է դառնում նաև սաղմը, ինչը մեծ մասամբ ճնշում է էնդոսպերմի աճը։

Բջջարանության և գենետիկայի ամբիոն

Ստացվել է 13.11. 2003

ԳՐԱԿԱՆՈՒԹՅՈՒՆ

- 1. Сямонян Е.Г. Цито-эмбриологическое исследование начальных и поздних стадий эмбриогенеза иекоторых сортов винограда (Vitis vinifera), возделываемых в условиях Арм. ССР. Автореф. дисс. на соискание уч. ст. канд. биолог. наук. Ер., 1973.
- 2. Баранов Л.А. Строение виноградной лозы. М.: Ампелография СССР, 1946, 327 с.
- 3. Ервандан С.Г., Симонан Е.Г. Ученые записки ЕГУ, 2001, № 3.
- Негруль А.М., Чигрин В.Н. и др. Культура винограда. М.: Гос. изд-во сельхоз. литерат., 1958.
- 5. Хизанцян С.М. Характер наследования бессемянности в гибридном потомстве винограда. Автореф. дисс. на соискание уч. ст. канд. биолог. наук. Ер., 1965.

Л.С. ШУХЯН

ИЗУЧЕНИЕ НАЧАЛЬНЫХ И ПОЗДНИХ СТАДИЙ ЭМБРИОГЕНЕЗА НЕКОТОРЫХ СОРТОВ ВИНОГРАДА

Резюме

Стерильность вегетативных и генеративных ядер пыльцы сортов Мсхали, Шаумяни, Дегин Еревани, Парвана и Чаренци результат ранней дегенерации цитоплазмы. У сортов без семян возможны опыление и оплодотворение, но нормальное семяобразование отсутствует в результате неправильного хода эмбриогенеза. Из-за стерильности образовавшиеся бессемянные плоды винограда в хозяйственном отношении положительное явление, и семена не то что не развиваются, а разрушаются в процессе развития или остаются недоразвитыми. Причиной бессемянности может быть ненормальное развитие репродуктивных органов, раннее разрушение клеток женского гаметофита и др.

У сортов Дегин Еревани, Парвана разрушения семенных почек происходит в поздних циклах развития, в результате чего сформировавшиеся плоды бывают с недоразвитыми семенами.

У всех остальных сортов причиной опадания цветов является отклонение в женском половом аппарате.

L. S. SHUKHIAN

THE STUDY OF SOME SORTS OF GRAPES IN THE PRIMARY AND LATE STAGES OF EMBRYOGENESIS

Summary

Primary and late stages of embryogenesis of grapes Mskhali, Shahumyani, Deghin Yerevani, Parvana and Charentsi sorts were studied considering the crop capacity and the economic significance.

Success of selection work is conditioned by the right choice of parental forms. The sterilization of the pollens of the mentioned sorts is the result of vegetative and generative seeds' early degeneration in the cell of plasma. In barren sorts pollination and fecundation are possible, bit normal fertility lads, because of normal course of embryogenesis. In the result of sterilization fruits of grapes are barren and economical, it's a normal phenomenon and grains either don't develop but decay during the process of development or remain undeveloped.

The reason that grapes are barren can be also considered as abnormal development of reproductive organs, early destruction of female cells gametophase.

In the sorts of Deghin Erevani, Parvana decay of buds takes place in the late stages of development, the result of which formed fruits can have undeveloped grains.

The reason of grapes falling can be the alterations taking place in the system of female genitals.

Բնական գիտություններ

Естественные науки

Геология

УДК 551. 491. 4

В. П. ВАРДАНЯН

ОСНОВНЫЕ ПРИНЦИПЫ КОМПЛЕКСИРОВАНИЯ ГИДРОГЕОФИЗИЧЕСКИХ И АЭРОКОСМИЧЕСКИХ МЕТОДОВ ИССЛЕДОВАНИЙ С ЦЕЛЬЮ ИЗУЧЕНИЯ РЕСУРСОВ ПОДЗЕМНЫХ ВОД

Одним из важнейших вопросов комплексирования дистанционных методов исследований является выяснение соотношения разрешающей способности и масштабов аэрокосмофотоснимков и гидрогеофизических данных при характеристике условий формирования подземного стока и построении соответствующих карт и разрезов, составляемых для истолкования природы аномальных объектов. Эффективность комплексирования дистаиционных методов рассмотрена на территории Арагацского массива. Комплекс рекомендован и для других вулканических областей.

Одним из важнейших вопросов комплексирования дистанционных методов исследований является соотношение разрешающей способности и масштабов фотоизображений (аэрокосмофотоснимков), используемых при характеристике условий (объектов) формирования подземного стока и построения карт и разрезов, составленных по гидрогеофизическим данным для истолкования природы этих условий (объектов). Дистанционные исследования (аэрокосмические и гидрогеологические) показывают, что определенная часть получасмой космической информации не находит отображения на обычных геолого-геофизических картах. Как показывает опыт работ, подобное положение, главным образом, объясняется недостаточной детальностью геолого-геофизических материалов, что не позволяет обнаружить отдешифрированные объекты на картах масштаба менее 1:200 000 [1]. Работы, выполненные на специальных аэрокосмических полигонах, показали, что информация, полученная с космического снимка масштаба 1:1 000 000 с разрешающей способностью менее 100м, может быть проинтерпретирована только на 60-80%, если анализируются геолого-геофизические материалы масштаба 1:50 000, и почти на 100% - при использовании более крупномасштабных материалов.

Таким образом, мелко- и среднемасштабные космоснимки по информативности соответствуют крупномасштабным геолого-геофизическим материалам.

При изучении вулканических районов для целей поиска ресурсов подзомных вод нами выполнена комплексная интерпретация данных дис-

танционных зондирований. Это позволило выявить строение отдельных вулканических комплексов, их структурно-текстурные особенности, расположение погребенных водоразделов, фациальные разновидности водоупорных пород, т.е. в целом вопросы, способствующие решению задач о формировании и распределении подземного стока региона.

Основные принципы комплексной интерпретации данных дистанционных методов рассмотрим на примере Арагацского массива. Установлено, что молодые вулканические породы Арагаца выделяются темной окраской, имеют густую своеобразную сеть трещин и следы течения лавовых потоков. Существующие приемы гидрогеологического дешифрирования аэрокосмофотоснимков тесно связаны с глубиной залегания подземных вод. По этому признаку подземные воды Арагацского массива разделены на три группы [2].

К первой относятся неглубокозалегающие подземные воды, активно влияющие на формирование свойств физиономических компонентов ланд-

Схема районирования массива горы Арагац по дешифрированию аэрокосмических снимков и геофизическим данным: 1 и 2 – участки формирования сосредоточенного стока, транзита и разгрузки подземных вод; 3 – приповерхностные дренирующие линейные гидрогеологические структуры; 4 – глубинные дренирующие линейные гидрогеологические структуры; 5 – основные направления движения подземных вод (по данным гидрогеофизических исследований). шафта. Здесь глубинность гидроиндикации определяется глубиной проникновения корневых систем растений – гидроиндикаторов – реже с процессами, связанными с подземными водами.

Вторая группа включает в себя подземные воды, находящиеся ниже границы корневых систем и практически не влияющие на растительность и рельеф территории. Здесь гидроиндикация основывается на оценке инфильтрации атмосферных осадков, влияющих на минерализацию и водный баланс подземных вод. Такая оценка определяется выявлением отрицательных форм рельефа (в том числе погребенного), густоты сети временных водотоков, поисками коррелятивных связей между физиономическими компонентами и воднофизическими свойствами пород. Глубинность гидроиндикации этой группы практически определяется глубиной залегания уровня грун-

товых вод. Третья группа включает в себя напорные воды, отделенные от поверхности водоупором. Их гидроиндикацию невозможно провести прямым методом, и основной методический прием здесь – это анализ воздействия выявляемых по аэрокосмофотоснимкам тектонических структур на инфильтрацию осадков и фильтрацию подземного стока.

В целом с помощью аэрокосмических и гидрогеофизических [3] методов получен большой объем информации, способствующей решению конкретных задач об условиях формирования и распределения подземного стока исследуемой территории. По результатам дешифрирования аэрокосмофотоснимков в пределах массива горы Арагац установлен ряд линиаментов. многие из которых связываются с разрывными нарушениями (см. рисунок). Индикация обводненности установленных разрывных нарушений позволяет определить их роль в распределении подземных вод, закономерности их формирования, движения и разгрузки. При типизации отдешифрированных на космофотосъемках линеаментов как разрывных нарушений они классифицированы по геометрическим, структурным, ландшафтным и дешифровочным признакам [2]. По геометрическим признакам выявлены несколько групп разрывных нарушений, каждая из которых характеризуется определенными показателями (протяженностью, шириной, азимутом простирания). Выделены диаганально пересекающиеся системы разломов субмеридиального и субширотного простираний, имеющих большую протяженность (иногда более 150км); их линеаменты выражаются в ландшафте в виде спрямленных отрезков речных долин, уступов рельефа, а также рядом потухших вулканов. Условно они отнесены к разломам I порядка. При этом среди них наиболее водоносными являются разломы субмеридиональной ориентировки, относящиеся, как правило, к сбросам. Эта группа разрывных нарушений массива дренирует не только местный подземный сток, но и глубоко залегающие подземные воды из смежных регионов, направленные в сторону Араратского артезианского бассейна. Разломы, относящиеся ко второй и третьей группам, выделяются преимущественно по ландшафтным индикаторам. На местности с ними совпадают спрямленные участки глубоко врезанных речных долин, резкие перегибы склона, цепочки шлаковых конусов. К таким разломам приурочены менее мощные подземные потоки (по сравнению с разломами I порядка), формирующиеся в пределах одной гидрогеологической структуры. Примером может служить поток, приуроченый к разрывному нарушению, идущему по линии пос. Апаран - с. Базмахпюр. На участке совпадения разлома с известной погребенной долиной р. Палеокасах наблюдаются выходы родников Апаранской, Назреванской и Базмахпюрской групп.

Одним из важных факторов, влияющих на условия образования подземного стока массива, является трещиноватость вулканических пород. Так, например, общий анализ аэрофотосъемок и геоэлектрических данных позволил в пределах восточных склонов массива Арагац выделить отдельные зоны повышенной трещиноватости. Здесь длина таких зон колеблется от нескольких метров до первых сотен. Для трещин характерны северо-западное (320–330⁰), северо-восточное (50–60⁰) и субширотное (270–280⁰) простирания. Наибольшую выраженность в ландшафте имеют трещины, связанные с новейшими и современными тектоническими нарушениями. В целом совместная обработка данных дистанционных методов позволила на Арагацском массиве выделить погребенные долины и локальные водосборные участки: 1) бассейны с хорошо развитой гидросетью, сложенные на поверхности преимущественно слабопроницаемыми отложениями с преобладанием поверхностного стока над инфильтрацией атмосферных осадков (это восточные и западные склоны); 2) бассейны, сложенные преимущественно трещиноватыми лавовыми покровами с большим количеством замкнутых отрицательных форм рельефа и преобладанием подземного стока над поверхностным (это южные и частично юго-западные склоны).

Эффективность комплексирования дистанционных аэрокосмических и гидрогеофизических методов на территории Арагацского массива позволила использовать этот комплекс для других вулканических областей.

Кафедра геофизических методов поиска и разведки месторождений полезных ископаемых Поступила 6.05.2004

ЛИТЕРАТУРА

- 1. Аэрокосмические и геолого-географические исследования закрытых платформенных территорий (под редакцией Б. А. Богословского). М.: Недра, 1986.
- 2. Садов А.В., Химичев Л.Г. Изв. вызов: Геология и разведка. М., 1976, № 11.
- 3. Минасян Р.С., Варданян В.П. Палеорельеф и распределение подземного стока центрального вулканического нагорья Армении. Ер.: Асогик, 2003.

Վ. Պ. ՎԱՐԴԱՆՅԱՆ

ՀԻԴՐՈԵՐԿՐԱՖԻՋԻԿԱԿԱՆ ԵՎ ՕԴԱՏԻԵՋԵՐԱԿԱՆ ՄԵԹՈԴՆԵՐԻ ՀԱՄԱԼԻՐԻ ԿԻՐԱՌՄԱՆ ՀԻՄՆԱԿԱՆ ՍԿՋԲՈՒՆՔՆԵՐԸ ՍՏՈՐԵՐԿՐՅԱ ՋՐԱՅԻՆ ՌԵՍՈՒՄՆԵՐԻ ՈՒՍՈՒՄՆԱՍԻՐՄԱՆ ՆՊԱՏԱԿՈՎ

Ամփոփում

Ստորերկրյա ջրահոսքերի ձևավորման պայմանների բնութագրման, ինչպես նաև համապատասխան քարտեզների և կտրվածքների կառուցման համար արդյունավետ է օդատիեզերական և հիդրոերկրաֆիզիկական մեթոդների համալիր կիրառումը։ Որպես օրինակ բերված են Արագածի լեռնազանգվածի տարածքում ուսումնասիրությունների արդյունքները, որոնք կարելի է կիրառել նմանատիպ հրաբխային զանգվածների ուսումասիրման ժամանակ։

V. P. VARDANYAN

APPLICATION OF GENERAL PRINCIPLES OF HYDROGEOPHYSICAL AND AEROCOSMIC COMPLEX METHODS FOR INVESTIGATION OF GROUND WATER RESOURCES

Summary

The aerocosmic and hydrogeopysical complex methods are effective in investigation of ground water runoff as well as for compiling corresponding maps and logs. As an example, Aragats massif territory investigation results have been discussed in this article, which permits to apply these methods in analogue volcanic regions. Բնական գիտություններ

3, 2004

Естественные науки

Երկրաբանություն

УДК 624. 131

U. L. LUBUUD

ԵՐԿԱՅՆԱԿԱՆ ԱԼԻՔՆԵՐԻ ՏԱՐԱԾՈՒՄԸ ԿԱՎԱՅԻՆ ԳՐՈՒՆՏՆԵՐՈՒՄ ԽՈՆԱՎՈՒԹՅԱՆ ՓՈՓՈԽՈՒԹՅԱՆ ԼԱՅՆ ՏԻՈՒՅԹՈՒՄ

Ներածություն։ Կավային գրունտները (կավ, ավազակավ, կավավազ) կազմում են ամբողջ նստվածքային ապարների 65–82%-ը՝ հիմնականում հանդիսանալով հիմնատակ կամ միջավայր ինժեներային կառույցների համար։ Նրանք իրենցից ներկայացնում են բարդ դինամիկ ֆիզիկաքիմիական համակարգեր, ժայռային, խոշորաբեկոր և ավազային գրունտներից տարբերվում են առաձգական հատկությունների յուրահատուկ փոփոխություններով։ Հայտնի է, որ խոշորաբեկոր և ավազային գրունտներում խոնավության, ջրահագեցվածության աստիճանի ավելացումը միանշանակ հանգեցնում է երկայնական ալիքի տարածման արագության (V_p) աճին։

Կավային գրունտներում երկայնական ալիքի տարածման արագությունը խոնավության, ջրահագեցվածության աստիճանի հետ ունի կախվածություն, որի պարզաբանումը մեծ նշանակություն ունի, մասնավորապես կավային գրունտների տարածման շրջանների սեյսմիկ միկրոշրջանացման համար։

Այս խնդրի լուծման ուղղությամբ ներկայումս հայտնի են սահմանափակ թվով աշխատանքներ՝ Ն.Ի. Կրիգերի, Ն.Ն. Գորյաինովի, Ա.Վ. Նիկոլաևի և այլն [1–6], որոնց համաձայն կավային գրունտների համար գոյություն ունի խոնավության փոփոխության որոշակի տիրույթ, որի սահմաններում խոնավության կամ ջրահագեցման աստիճանի աճը հանգեցնում է երկայնական ալիքի տարածման արագության նվազման։ Խոնավության այդ տիրույթը, նրանք անվանել են «պարադոքսալ», քանի որ բացահայտված չէ, թե վերջինիս ստորին և վերին սահմանները ինչպիսի բնութագրիչ խոնավությունների հետ են կապված։

Ի տարբերություն խոշորաբեկոր և ավազային գրունտների՝ կավային գրունտների առաձգական հատկությունների վրա խոնավությունն ունի երկակի ազդեցություն։ Մի կողմից` խոնավության, ջրահագեցվածության աստիճանի ավելացումը, պայմանավորված նրանում դատարկությունների ծավալների փոքրացմամբ, հանգեցնում է երկայնական ալիքների արագության աճին, մյուս կողմից` կարող է հանգեցնել ինչպես ամրության (սահքի դիմադրության) նվազմանը` այնպես էլ արագության փոքրացմանը։

Բնականաբար, այս երկու գործոնների ինտեգրալ ազդեցությամբ կկանխորոշվի երկայանական ալիքի տարածման արագության աճը կամ նվազումը։

Հետազոտության մեթոդիկան և արդյունքները։ Ներկայացված աշխատանքի նպատակն է բացահայտել կավային գրունտների առաձգական հատկությունների փոփոխության օրինաչափությունների առանձնահատկությունները խոնավության փոփոխության լայն տիրույթում, գրունտի կմախքի խտության անփոփոխելիության պայմաններում՝ ρ_d = const

Որպես ուսումնասիրության օբյեկտ ծառայել են Իջևանի Մարիգյուղի բարձր կոլոիդ ակտիվության մոնտմորիլոնիտային կազմ ունեցող բենտոնիտային և Երևանի Էրեբունիի շրջանի միոցենի հասակի կարմրավուն կավերը։

Կավեր	W	ρ , q/ud^{2}	$ ho_d$,q/uu ²	$ ho_{s}$, q /ud	Е	G	W _L	W _P	I _P	IL
Էրերունիի	0,122	1,59	1,42	2,70	0,901	0,366	0,519	0,208	0,311	< 0
	0,158	1,64	1,42	2,70	0,901	0,473	_	-	-	< 0
	0,198	1,70	1,42	2,70	0,901	0,593	-	-	· _	< 0
	0,223	1,74	1,42	2,70	0,901	0,668	-	-		0,113
	0,261	1,79	1,42	2,70	0,901	0,782	-	-	-	0,235
	0,292	1,83	1,42	2,70	0,901	0,875	_	-	-	0,270
թենտոնիտային	0,282	1,34	1,046	2,75	1,629	0,476	1,705	0,404	1,301	< 0
	0,338	1,40	1,046	2,75	1,629	0,571	-	_	+	< 0
	0,388	1,45	1,046	2,75	1,629	0,655	-	-	_	< 0
	0,465	1,53	1,046	2,75	1,629	0,789	-		-	0,047
	0,527	1,60	1,046	2,75	1,629	0,890	-	-	1	0,094
	0,587	1,66	1,046	2,75	1,629	0,991	-	-	-	0,141

Յուրաքանչյուր գրունտի փորձարկման համար պատրաստվել են հինգ տարբեր խոնավությունների խառնուրդներ՝ պլաստիկության ստորհն սահմանից բարձր $(W \ge W_p)$ և ցածր $(W < W_p)$ ։ Աղյուսակում բերված են ուսունասիրվող նմուշների ջրաֆիզիկական հատկությունների հետևյալ ցուցանիշները. W – սկզբնական խոնավություն, ρ – խտություն, ρ_d – կմախքի խտություն, ρ_s – միներալային մասնիկների խտություն, ε – ծակոտկենության գործակից, G – ջրահագեցվածության աստիճան, W_L – խոնավության հոսունության սահման, W_p – խոնավության պլաստիկության ստորհն սահման, I_L – կոնսիստենցիայի ցուցիչ, I_p – պլաստիկության թիվ։

Քանի որ գրունտների առաձգական հատկությունները որոշվում են ինչպես ջրահագեցվածության աստիճանով, այնպես էլ ամրությամբ (սահքի դիմադրություն), ապա ուլտրաձայնային մեթոդով երկայնական ալիքների տարածման արագության որոշման փորձերի հետ մեկտեղ իրականացվել են նաև սահքի դիմադրության որոշման փորձեր, տարբեր խտությամբ և խոնավությամբ գրունտների համար։ Այս նպատակով օգտագործվել է միահարթակ սահքի սարք $\tau_z = 0.1; 0.2; 0.3 Umu$ ուղղաձիգ խասացնող լարումների կիրառմամբ։ Նկար 1-ում բերված են բենտոնիտային և Լրեբունիի կարմրավուն կավերի սահքի դիմադրության կախման կորերը այդ կավերի խոնավությունից։ Սահքի դիմադրությունը ներկայացված է ներքին շփման գործակցով՝ $tg \varphi$ և կապակցվածությամբ՝ C:

Նկ. I։ Բենտոնիտային (ա) և Էրեբունիի (բ) կավերի սահքի դիմադրության կախումը նրանց խոնավությունից․ I – *էքզ*, 2 – C (*ՄՊա*)։

Ինչպես երևում է նկ. 1-ից, կմախքի հաստատուն խտության դեպքում խոնավության աճը մինչև պլաստիկության ստորին սահմանին համապատասխանող խոնավությունը հանգեցնում է սահքի դիմադրության նվազմանը, իսկ խոնավության ստորին սահմանից բարձր արժեքների դեպքում սահքի դիմադրությունը գործնականորեն չի նվազում։ Նշենք, որ առանձին նմու ների փորձարկվող ջրահագեցվածության աստիճանը՝ G > 0,850։ Քանի որ փորձարկված գրունտները գտնվում են կիսապինդ կոնսիստենցիայի վիճակում ($0 < I_L < 0,25$), նրանցում պարունակվող ջուրը հանդես է բերում մոլեկուլային և օսմոտիկ հատկություններ։ Նման պայմաններում սահքի դիմադրության վրա ծակոտկենային (չեզոք) ճնչումը ազդեցություն չի գործում։

Նկար 2-ում բերված են բենտոնիտային և Էրեբունիի կարմրավուն կավերում երկայնական ալիքների տարածման արագության կախման կորերը սահբի դիմադրությունից (*C*, *թզ*,) և խոնավությունից։

Ստացման ավյալները թույլ են տալիս եզրակացնելու, որ խոնավության աձր մինչև պատտիկության ստորին սահմանին համապատասխանող իտնավությունը (ծակուսկենության գործակցի անփոփոխելիության և ջրահազեցվածության սատիճանի աճի պայմաններում) հանգեցնում է երկայնական ալիքների տարածման արագության նվազման, մինչդեռ պլաստիկության ստորին սահմանին համապատասխանող խոնավությունից բարձր արժեքների դեպքում (միենույն կոնսիստենցիայի պայմաններում) նկատվում է առաձգական երկայնական ալիքի տարածման արագության աճ։

Նկ. 2։ Բենտոնիտային (ա) և Էրեբունիի (բ) կավերում երկայնական այիքի տարածման այապության կախումը սածքի դիմադրության պարամետրերից՝ C-ից (1), *էցա*-ից (2) և իսոնավությունից (3)։

Ստացված արդյունքները թուր են տալիս անել հետևյալ եզրակացությունները։

 Խոնավության, ջրահագեցվածության աստիճանի աճը կավերում երկայանական աղիքների տարածման արագության վրա ունենում է երկակի ազդեցություն։

2. Առավելագույն մոլեկուլային խոնավությունից ցածր խոնավության դեպքում վերջինիս աճը հաստատուն ծակոտկենության գործակցի պայմաններում հանգեցնում է ամրության և երկայնական ալիքի տարածման արագության նվազմանը։

3. Առավելագույն մոլեկուլային խոնավատարությունից բարձր խոնավության դեպքում վերջինիս աճը, որը պայմանավորված է օսմոտիկ թաղանթային ջրի գոյացումով, հաստատուն ծակոտկենության գործակցի պայմաններում չի հանգեցնում սահքի դիմադրության նվազման, մինչդեռ նկատվում է երկայնական ալիքի տարածման արագության աճ։

Ընդհանուր և կիրառական երկրարանության անթիոն

Umugyla t 27.06.2003

<u>ԳՐԱԿԱՆՈՒԹՅՈՒՆ</u>

- Герлинев Н.Н., Ляхевищий Ф.М. Сейсмические методы в инженерной геологии. М.: Недра, 1979, с. 144.
- 2. Критер Н.И., Кожевников А.Д. Сейсмическое грунтоведение и вопросы сейсмического микрорайонирования. Кишинев, 1979, с. 81-89.
- Критер Н.И., Кожевников А.Д. Скорость распространения сейсмических воли и «парадоксальный интервал влажности» в дисперсных породах. В кн.: Инженерно-сейсмическая основа детального сейсмического районирования и сейсмического микрорайонирования. Ташкент: Фан, 1983, с. 14–16.
- Месчан С.Р. Реологические процессы в гланистых грунтах с учетом особых воздействий. Ер.: Айастан, 1992, с. 393.

5. Никитин В.Н. Основы инженерной сейсмики. М.: Изд-во МГУ, 1981, с. 175.

6. Николаев А.В. Сейсмические свойства грунтов. М.: Наука, 1981, с. 184.

С. Г. АЙРОЯН

РАСПРОСТРАНЕНИЕ ПРОДОЛЬНЫХ ВОЛН В ГЛИНИСТЫХ ГРУНТАХ ПРИ ШИРОКОМ ИНТЕРВАЛЕ ВЛАЖНОСТИ

Резюме

Увеличение влажности глинистых грунтов имеет двойное воздействие на скорость распространения продольных волн (V_p). С одной стороны, это приводит к уменьшению объема пор, в результате чего увеличивается скорость V_p . С другой стороны, увеличение влажности в зависимости от начальной влажности и степени ее водонасыщения может привести к уменьшению прочности грунта, следовательно, к уменьшению скорости V_p .

Характерные показатели влажности грунтов, когда ее увеличение приводит к постоянству или изменению сопротивления сдвигу и скорости распространения продольных волн, установлены экспериментальными исследованиями.

На основании этих результатов установлено, что верхний предел «парадоксального» интервала влажности соответствует влажности максимальной молекулярной влагоемкости.

S. H. HAYROYAN

TRANSMISSION OF LONGITUDINAL WAVES IN LOAMY SOILS UNDER THE WIDE RANGE OF HUMIDITY

Summary

The increase of humidity in loamy soils generally has a double influence on velocity of transmission of longitudinal waves (V_p) . On the one hand the increase of soil humidity brings to reduction of the volume of pores the result of which is the increase of V_p velocity through the soil medium. On the other hand the increase of humidity depending on initial humidity and degree of saturation might result in reduction of soil solidity and consequently to reduction of velocity V_p .

Characteristic indexes of soil humidity, when increase of those brings to the constancy of modification of the slip resistance (shear strength) and changes the velocity of transmission of longitudinal waves (V_p) have been stated by experimental investigations.

Basing these experiments, the correspondence of the upper limit of «paradoxical» interval of humidity and the lower limit of plasticity has been established. Բնական գիտություններ

3, 2004

Естественные науки

U2humphmqpnipjniû

УДК 556-512

Գ. Պ. ԹԱԴԵՎՈՍՅԱՆ, Բ. Պ. ՄՆԱՑԱԿԱՆՅԱՆ

ՌԵԼԻԵՖԻ ՁԵՎԱՉԱՓԱԿԱՆ ՏԱՐՐԵՐԻ ԴԵՐԻ ԳՆԱՀԱՏՈՒՄԸ ՀՈՍՔԱԳՈՅԱՅՄԱՆ ՊՐՈՅԵՍՈՒՄ (ԴԵԲԵԴ ԳԵՏԻ ՕՐԻՆԱԿՈՎ)

Հոսքագոյացումը բարդ պրոցես է՝ հատկապես լեռնային տարածքներում, որտեղ նրա ձևավորման վրա միաժամանակ կարող են ազդել բազմաթիվ գործոններ։ Հոսքի ձևավորման վրա ազդող գործոնների դերի գնահատման վերաբերյալ կատարված ուսումնասիրությունները շատ չեն, իսկ եղածներն էլ նվիրված են պարամետրերից որևէ մեկի ազդեցության գնահատմանը [1, 2]:

Մեր աշխատանքում որպես հոսքագոյացման գլխավոր գործոններ րնտրված են ռելիեֆի ձևաչափական մի շարք պարամետրեր։ Քանի որ ռելիեֆի ձևաչափական տարրերի որակական և քանակական ցուցանիչների մանրակրկիտ և բազմակողմանի հետազոտումը հնարավորություն է տայիս ուսումնասիրել լանդշաֆտում ընթացող բնական պրոցեսների բնույթըն ու առանձնահատկությունները և ի հայտ բերել օրինաչափություններ, որոնք կարևոր են լանդշաֆտագիտական և ջրաբանական մի շարք կիրառական նշանակություն ունեցող խնդիրների պարզաբանման համար, ուստի առաջին անգամ Դեբեդ գետի օրինակով փորձ է արվել համալիր կերպով գնահատել հոսքագոյացման վրա ազդող գործոնների դերը։ Լեռնային շրջաններում, ինչպիսին Դեբեդ գետի ավազանն է, որտեղ ռելիեֆը աչքի է ընկնում բարձրությունների զգալի տատանումներով, հորիզոնական և խորքային մեծ մասնատվածությամբ և մակերևույթի զգալի թեքություններով, լանդշաֆտների վերընթաց դասավորությունն ու նրանցում ընթացող բնական պրոցեսները բնութագրվում են բազմազանությամբ և խիստ բարդությամբ։ Այս առումով ռելիեֆը, որպես լանդշաֆտի բաղադրիչների գործունեության արդյունք, գործուն մասնակցություն ունի բնական պրոցեսներում։ Եթե մակերևույթի ռելիեֆը դիտարկենք որպես ինքնուրույն համակարգ, ապա լանդշաֆտագիտական, ջրաբանական և երկրաձևաբանական խնդիրների պարզաբանման համար պետք է հաչվի առնել նաև՝ տարածքի երկրաբանական կառուցվածքը որպես ռելիեֆի հիմք, լեռնալանջերը կազմող ապարների լիթոլոգիական կազմը և ջրաերկրաբանական հատկանիշները,

որոնք լեռնային երկրներում ոչ միայն պայմանավորում են ռելիեֆի ձևաչափական և ձևաբանական տարրերի առանձնահատկությունները, այլև կարևոր դեր ունեն հոսքագոյացման պրոցեսում։ Այս խնդիրների ուսումնասիրման գործում կարևոր է նաև գնահատել հողաբուսական ծածկույթի դերը, որը կարգավորում է լանդշաֆտում ընթացող ջրաջերմային պրոցեսների արագությունը և, հետևաբար, որոշակիորեն ազդում է լանդշաֆտի ամբողջ համալիրի վրա։

Հոսքագոյացման պրոցեսի վրա ռելիեֆի ձևաչափական տարրերի ազդեցությունը գնահատելու համար կատարել ենք Դեբեդ գետի ջրհավաք ավազանի ռելիեֆի ձևաչափական առանձին տարրերի քարտեզագրում (1:200000 մասշտաբի քարտեզների օգնությամբ), որի հիման վրա էլ իրականացվել են քարտեզաչափական աշխատանքներ և վերլուծություններ։ Առանձնահատուկ ուշադրություն ենք դարձրել ռելիեֆի այնպիսի բաղադրիչներին, ինչպիսիք են ջրհավաք ավազանի միջին բարձրությունը, մակերևույթի թեքությունը, լանջերի կողմնադրությունը, հորիզոնական և խորքային մասնատվածությունը։ Դիտարկվել են նաև գետավազանի անտառապատվածությունը և տարածքը կազմող ապարների լիթոլոգիական կազմը։ Ստացված արդյունքների վերյուծությունը գույց է տվել, որ ոելիեֆի ձևաչափական բնութագրիչների և գետերի հոսքի միջև գոյություն որոշակիորեն արտահայտված կապերը հնարավորություն են **ո**ւնեզող տալիս գնահատել ռելիեֆի բաղադրիչներից յուրաքանչյուրի դերը հոսքագոյացման պրոցեսում։ Պարզվել է, որ հոսքագոյացման պրոցեսի վրա ազդող ռելիեֆի բաղադրիչներից գլխավոր դերը պատկանում է ջրհավաք ավազանների միջին բարձրությանը, քանի որ լեռնային երկրներում, ինչպիսին ուսումնասիրվող տարածքն է, հոսքագոյացման պրոցեսների վերընթաց բաշխման գործում դիտվում է հստակ արտահայտված որոշակի օրինաչափություն։ Յածրադիր շրջաններից դեպի լեռների կատարները փոխվում է բնական պայմանների ողջ համալիրը, հետևաբար նաև ջրային հաշվեկշռի տարրերի հարաբերակցությունը, որոնք արտահայտված են որոշակի քանակական ցուցանիշներով։ Որպես ընդհանուր օրինաչափություն՝ ըստ բարձրության տեղումերի քանակը ավելանում է, իսկ գոլորշացումը նվազում, հետևաբար հոսքի գործակիցը մեծանում է։

Քանի որ տարբեր վերընթաց գոտիներում հոսքի ձևավորման պայմանները տարբեր են, ուստի ուսումնասիրվող տարածքում առանձնացվում են մի քանի բարձրաչափական մակարդակներ, որոնցում հոսքագոյացման պրոցեսի վրա ազդող գործոնների բնույթը փոխվում է։ Ընդհանուր առմամբ 2000*մ*-ից բարձր գոտում դիտվում են հոսքագոյացման նպաստավոր պայմաններ՝ տեղումների միջին տարեկան քանակն ավելի քան 600 dd է, գումարային գոլորշացումը մեծ չէ՝ մինչև 300 dd, հոսքի գործակիցը բարձր է՝ ավելի քան 0,5։ Դրան հակառակ՝ բարձրաչափական ցածր գոտին բնութագրվում է ոչ մեծ միջին տարեկան մթնոլորտային տեղումներով (մոտ 450 dd), շատ գոլորշացմամբ (մոտ 500 dd) և, հետևաբար, թույլ արտահայտված հոսքագոյացմամբ։

Դեբեդ գետի ջրհավաք ավազանի 10*կմ* և ավելի երկարություն ունեցող 52 գետավազանների համար (նկ. 1) մեր կողմից հաշվարկված են ռելիեֆի նշված ձևաչափական տարրերի արժեքները։ Հոսքը բնութագրող գործոններից որպես հաշվարկային ընտրված է հոսքի գործակիցը, որի օգնությամբ էլ բացահայտվել է հոսքագոյացման պրոցեսի վրա ազդող հիմնական գործոնների դերը։ Կազմվել են կախումներ ոչ միայն միջին բարձրությունից, այլ նաև հոսքի գործակցից և ոելիեֆի ձևաչափական այլ տարրերից (նկ. 2), սակայն դրանց վերլուծությունը ցույց է տվել, որ առավել ակնբախը ջրհավաք ավազանի միջին բարձրության և հոսքի գործակցի միջև կապն է։

Նկ. 1: Դեբեդ գետի ջրիավաք ավազանի լեոնագրական քարտեզ–սխեմա։ I – բարձրադիր լեռնաշղթաներ (2500 /- ից բարձր), II – միջին բարձրության լեռնաշղթաներ (1500–2500 /), III – ցածրադիր լեռնաշղթաներ (մինչև 1500 /), IV – լեռնագագաթներ, V – միջին գոգավորություններ, VI – գետավազանների հերթական համարը։ Թվերը քարտեզի վրա՝ գոգավորություններ. I – Լոռոս սարահարթ, 2 – Վերին Փամբակի (Նայբանդ), 3 – Սաիտակի, 4 – Վանաձորի։

Նկ. 2-ից երևում է, որ հոսքի գործակցի և միջին բարձրության կապը արտահայտող կետերը հանդես են գալիս ցրված տեսքով, սակայն ջրհավաք ավազանի միջին բարձրության ավելացմանը զուգընթաց բաշխվում են որոշակի օրինաչափությամբ։ Պարզվել է, որ կետերը հիմնականում դասավորվել են 3 առանձին կախումների տեսքով։

Նկ. 2, ա-ի կախումը կազմող 19–22 և 24–31 համարներ ունեցող գետերի ջրհավաք ավազանների ջրային հաշվեկշոի վերլուծությունը ցույց է տալիս, որ չնայած այդ տարածքում մթնոլորտային տեղումների բարձր ցուցանիշներին` 750–850*մմ* [3], դրանք ունեն հոսքի և ռելիեֆի հորիզոնական ու խորքային մասնատման փոքր գործակից։ Դա բացատրվում է այս գետավազաններում մեծ տարածում ունեցող հրաբխածին ապարների ջրաերկրաբանական հատկանիշներով։ Այստեղ տարածված ապարները հիմնականում խիստ ծակոտկեն և ճեղքավորված են, որի պատճառով մթնոլորտային տեղումների զգալի մասը ներծծվում է, սնելով ինչպես Ստեփանավանի արտեզյան ավազանը, այնպես էլ Լոռու սարահարթի հարավային մասում` Տաշիրի և Ձորագետի կանիոններում և Մեծառուի ավազանում բեռնաթափվող հզոր աղբյուրները [4]։ Այս գետավազաններում հոսքի գործակցի մեծ տարբերությունները` 0,07–0,36, առաջին հերթին պայմանավորված են գետավազանների միջին բարձրությունների մեծ տատանումներով` 1592*մ*-ից մինչև 2271*մ*։

Հոսքի գործակից

Նկ. 2։ Դեբեդ գետի վտակների ջրհավաք ավազանների միջին բարձրության կախումը հոսքի գործակցից։ ա) Ձորագետի վերին հոսանքի ձախ վտակներ, բ) Փամբակի վերին հոսանքի վտակներ, գ) Ձորագետի և Փամբակի ստորին հսանքների և Դեբեդի ավազանի վտակներ։

Ընդ որում, նշված գետավազաններում ջրային հաշվեկչոի բացասական անկապքը ևս մեծ է՝ մթնոլորտային տեղումների նկատմամբ այն կազմում է 24–40%: Ավելի հարավ գտնվող Մեծառու գետի (23) հոսքի գործակիցը 5,28 է: Սա խոսում է նշված 19–22, 24–31 գետավազանների կետերին համապատասխանող տարածքից դեպի Մեծառուի ավազան շարժվող խորքային հոսքի մասին, որի պատճառով էլ 23 կետը (գ) կախումից զգալի աջ է տեղադրված, որը բերված նկարի մասշտաբից դուրս է մնում։ (գ) կախումը ձևավորող կետերն աչքի են ընկնում հոսքի գործակցի բարձր ցուցանիշներով, ընդ որում միջին բարձրության ավելացմանը զուգընթաց դրանք ևս աճում են` 0,33–0,64: Այս կախումը կազմող կետերի ջրհավաք ավազանների ջրային հաշվեկշռում ևս դիտվում է մինչև 10% և ավելի անկապք, որի պատճառը առանձին գետավազաններում խորքային հոսքի ձևավորումն է: Այս գետավազանների մակերևույթը կազմող ապարները հիմնականում ջրամերժ կամ թույլ ջրաթափանց են, հետևաբար, այստեղ ստորերկրյա հոսքի և համեմատաբար մեծ ելք ունեցող աղբյուրների գոյությունը պայմանավորված է տեկտոնական ճեղքերի և կոտրատումների առկայությամբ, որոնց միջոցով էլ հիմնականում կատարվում է մթնոլորտային տեղումների մի զգայի մասի ներծծումը։ Դրա մասին է վկայում Փամբակի գոգավորությունում գտնվող ոչ մեծ (Նալբանդի, Սպիտակի և Վանաձորի) արտեզյան ավազանների գոյությունը։

Այս կերպ են ձևավորվում նաև Ստեփանավանի արտեզյան ավացանը հյուսիս-արևեյքից սնող ստորերկրյա ջրերը [5], որոնք հիմնականում ձևավորվում են Նորաշեն (29) և Մեդովկա (31) գետերի ջրհավաք ավազաններում, որի պատճառով նրանք բնութագրվում են հոսքի փոքր գործակցով։ Նկ. 2-ի վերլուծությունը ցույց է տայիս, որ 3 կախումների առաջագումը պայմանավորված է ռեյիեֆի խորքային մասնատվածությամբ, քանի որ այն ապարների ջրաերկրաբանական հատկանիշների հետ միասին ստորերկրյա սնման չափը որոշող հիմնական գուզանիշներից է։ Այդ պատճառով էլ խորքային մասնատվածությունը ընտրվել է որպես հոսքագոյազման երկրորդ գլխավոր գործոն։ Փոքր ջրհավաք ավազան ունեցող գետերը (1, 3, 5, 6) ընդհանուր առմամբ ունեն ոչ խորը մասնատում, որի պատճառով սրանք չեն հասնում ավելի խորքում գտնվող ջրատար հորիզռններին, ուստի այս ավազաններում ստորերկրյա հոսքերի բեռնաթափում, որպես կանոն, չի կատարվում։ Դրան հակառակ՝ խորքային մասնատման բարձր ցուցանիշներ ունեցող գետերի սնման մեջ որոշակի դեր ունի նաև ստորերկըյա սնումը, որը սովորաբար ջրհավաք ավազանի մակերեսի փոքրացմանը զուգընթաց աճում է [6]։ Այստեղից հետևում է, որ ուսումնասիրվող տարածքում բազմաթիվ այլ գործոնների հետ մեկտեղ հոսքի գործակցի մեծ տարբերությունները պայմանավորված են նաև այդ գետերի հոսքի մեջ ստորերկրյա սնման առկայությամբ։ Հետևաբար, այստեղ կարևոր դեր են ստանում ջրհավաք ավազանի ջրաերկրաբանական առանձնահատկությունները՝ ջրատար հորիզոնների քանակը, նրանց տեղադրման պայմանները, հզորությունը և այլն։ Վերը նշված օրինաչափությունը հաստատվում է ուսումնասիրվող տարածքում ձևավորված արտեզյան ավազանների և հզոր ելք ունեցող աղբյուրների խմբերի տարածական բաշխվածությամբ [6-8] (տես նկ. 3)։

Նկ. 2-ից երևում է, որ ընդհանուր առմամբ մինչև 200*մ* խորքային մասնատման ցուցանիշ ունեցող կետերը բաշխված են (ա) կախման շրջակայքում, 200–350*մ* ցուցանիշով կետերը՝ (բ) կախման, իսկ ավելի քան 350*մ* ցուցանիշ ունեցողները՝ (գ) կախման շրջակայքում։ Սակայն նշված օրինաչափությունից մի շարք կետերի շեղումն անհնար է բացատրել միայն խորքային մասնատվածությամբ։ Այստեղ պետք է նկատի առնել, որ բարդ

երկրաբանական կառուցվածք ունեցող շրջաններում, ինչպիսին ուսումնասիրվող տարածքն է, ըստ խորքային մասնատման զուզանիշի աճի ստորերևուա սնման ավելազման օրինաչափությունը կարող է խախտվել և երբեմն էլ կարող է դիտվել հակառակ պատկերը։ Ռեյիեֆի ձևաչափական այլ տարրերի մանրակրկիտ ուսումնասիրությունից պարզվել է, որ սրանց մի մասը ընդհանուր օրինաչափությունից շեղվում է մեկ, երբեմն էլ միաժամանակ մի քանի գործոնների ազդեցության տակ (ինչպես օրինակ Գարգաո գեmn): Ujuwtu onhawu, 2, 4, 7, 8, 9, 12 utuntinn' saujud wultih pwa 350*d* խորքային մասնատմանը, տեղաբաշխված են (բ) կախման շրջակայքում. որը բազատրվում է Փամբակի վերին հոսանքի շրջանում կլիմալի չորությամբ, նշված գետավազաններում հարավահայաց լեռնայանջերի գերակշռությամբ և ինտենսիվ ֆիզիկական հողմնահարությամբ, քանի որ 4, 7, 9 գետավազանների մակերևույթների թեքությունը գերազանցում է 12° -ը, իսկ 2, 8, 12 գետաduquuններինը՝ 10⁰-ը։ Uju գետերի ջրհավաք ավազաններում ձևավորված խորքային հոսքի մի մասը ստորերկրյա ճանապարհով սնում է Նալբանդի, Սպիտակի և Վանաձորի արտեզյան ավազանները։ Այդ մասին է վկայում մեր կողմից կազմած այս գետավազանների ջրային հաշվեկշիռների նաև համեմատաբար մեծ անկապքի առկայությունը։ Ընդ որում, Նայբանդի արտեսյան ավազանը սնվում է Ծաղկաշեն և Չիչխան գետերի, Սպիտակինը, որը համեմատաբար թույլ է ուսումնասիրված [4, 6]՝ Որդնավաջուր, Շենավան, Oshann, Lupwann, huy Luuuwannhun' Awgnus L Swuanun abuntրի ջրհավաք ավազաններից։ Բոլորովին այլ կերպ է բացատրվում 19,21, 22, 30 կետերի տեղաշարժը դեպի (ա) կախումը։

Ujumեղ hnuքի գործակցի փոքր ցուցանիշները պայմանավորված են նշված գետավազաններում ծակոտկեն և խիստ ճեղքավորված իրաբխածին ապարների շրջանում կատարվող մթնոլորտային ջրերի ինտենսիվ ներծծմամբ և ստորերկրյա hnuքերի աոկայությամբ, որոնք հիմնականում բեռնաթափվում են Մեծառուի (23) ավազանում, ուստի նրա hnuքի գործակիցը 5,28 է։ 34 կետի տեղաշարժը (բ) կախումից դեպի աջ ցույց է տալիս, որ այստեղ ստորերկրյա hnuքը բացակայում է։ Հոսքի գործակցի համեմատաբար մեծ ցուցանիշը պայմանավորված է նրանով, որ hnuքն ավելանում է hnրիզոնական մասնատման խտության աճին զուգընթաց (0,9 μ մ/ μ մ² և ավելի)։ Դա բացատրվում է այս գետավազանների hnuքի ձևավորման մեջ ձնապաշարների մեծ դերով և hnuքի ներտարեկան բաշխման սեզոնային մեծ տարрերություններով։ Նույնն են ապացուցում նաև Ղազախստանի չոր տափաստանային շրջաններում կատարված դիտարկումները [1]։ Այդ կերպ է բացատրվում նաև 42, 43 կետերի տեղաշարժը դեպի (գ) կախումը, որոնց ավազաններում հորիզոնական մասնատվածությունն ավելի քան 1,15 μ մ/ μ մ² է:

Ռուսական հարթավայրի անտառատափաստանային գոտու ջրհավաք ավազաններում կատարված դիտարկումները ցույց են տվել, որ անտառապատվածության աճի հետ հոսքը նվազում է 35–55%-ով [1]։ Դա բացատրվում է անտառային գորշ հողերի ինֆիլտրացիոն բարձր հատկանիշներով, որի պատճառով մակերևութային հոսքի մի մասը վերածվում է ստորերկրյա հոսքի։ Ընդ որում, անտառի ազդեցությունը խորքային մասնատման ցուցանիշի ավելացմանը զուգընթաց նվազում է։ 16, 18, 46 գետերի ջրհավաք ավազաններում անտառապատվածությունը կազմում է համապատասխանաբար 64, 36 և 79%, իսկ խորքային մասնատումը գերազանցում է 350*մ*-ը, որի պատճառով այս կետերը (գ) կախումից շեղվել են փոքր ինչ դեպի ծախ։

Նկ. 3: Դեթեդ գետի ջրհավաք ավազանի ջրածրկրաթանական սխծմատիկ թարտեզ [7]: Հիմնական ջրատար հորիզոններ. 1 – նեոգեն-չորորդական էլյուվիալ-դելյուվիալ, ալյուվիալ-պրոլյուվիալ, լճա-գետային և ատցադաշտային նատվածքներ. 2 - նեոգեն-չորրորդական լավաներ, 3 – պալեոզոյի և մեզոկայնոզոյի կրաքարային-մերգելային ապարներ։ Հողմնահարված կեղևի հետ կապված լոկալ (տեղական) ջրատար հորիզոններ. 4 – մեզոզոյի և կայնոզոյի հրաբխածին-նառվածքային ապարներ, 5 -Նեոպալեոզոյի փոխակերպային ապարներ, 6 – պալեոզոյի և կայնոզոյի ներժայթուկային ապարներ, 7 – ստորերկրյա ջրերի կուտակման շրջաններ, 8 – տեկառնական խախաումներ։

Այսպիսով, բերված տվյալները վկայում են, որ ուսումնասիրվող տա րածքի ջրհավաք ավազաններում անտառապատվածությունը հոսքի նվազման կարևոր գործոն է։ Կատարած վերլուծությունները ցույց են տալիս, որ հոսքի գործակցի մեծության վրա բացի ջրհավաք ավազանի բարձրությունից առանձին-առանձին կամ միաժամանակ ազդում են նաև մի շարք այլ գործոններ։ Վերջիններիս թվում առավել զգալի են ռելիեֆի ձևաչափական մյուս տարրերը՝ խորքային և հորիզոնական մասնատվածությունը, լեռնալանջերի թեքությունը, կողմնադրությունը և այլն, որոնց ազդեցության տակ հասքի գործակցի արժեքները Դերեդ գետի ջրհավաք ավազանում տատանվում են 0,07– 0,64-ի միջակայքում։ Հոսքի գործակցի դերի գնահատումն ունի կիրառական մեծ նշանակություն։ Բերված կորերի միջոցով կարելի է գնահատել չուսումնասիրված գետերի հոսքի բնութագրիչները։

Ֆիզիկական աշխարհագրության ամբիոն

Ստացվել է 27.05.2004

ԳՐԱԿԱՆՈՒԹՅՈՒՆ

- 1. Воскресенский К.П. Гидрогеологические расчеты при проектировании сооружений на малых реках, ручьях и временных водотоках. Л.: Гидрометиздат, 1965, 468 с.
- 2. Соколовский Д.Л. Речной сток. Л.: Гидрометиздат, 1968, 539 с.
- 3. Александрян Г.А., Акопян А.С., Мнацаканян Б.П., Тамазян А.А. Современный водный баланс Армянской ССР. Сб. работ гидрометцентра Арм. УГМ, 1990, вып. 5, с. 78–166.
- 4. Гидрогеология СССР, т. XI, Армянская ССР. М.: Недра, 1968, 351 с.
- 5. Минасян Р.С. Варданян В.П. Палеорельеф и распределение подземного стока центрального вулканического нагорья Армении. Ер.: Асогик, 2003, 152 с.
- 6. Вегуни В.Т. Ресурсы подземных вод Арм. ССР и перспективы их ипользования. Ер.: Изд.-во АН Арм. ССР, 1986, 156 с.
- 7. Атлас природных условий и естественных ресурсов РА, Гидрология. Ер.: Изд.-во АН Арм. ССР, 1990.
- 8. Геология Арм. ССР, т. VIII, Гидрогеология. Ер.: Изд.-во АН Арм. ССР, 1974, 392 с.

Г. П. ТАДЕВОСЯН, Б. П. МНАЦАКАНЯН

ОЦЕНКА РОЛИ МОРФОМЕТРИЧЕСКИХ ЭЛЕМЕНТОВ РЕЛЬЕФА В ПРОЦЕССЕ СТОКООБРАЗОВАНИЯ (НА ПРИМЕРЕ Р. ДЕБЕД)

Резюме

В статье обсуждается вопрос оценки влияния ряда морфометрических параметров рельефа на процесс стокообразования. Получены локальные зависимости между коэффициентами стока и средней высоты водосбора, горизонтальными и глубинными расчлененностями, экспозициями и уклонами склонов. Эти зависимости можно использовать при расчетах характеристики стока неизученных рек.

G. P. TADEVOSYAN, B. P. MNATSAKANYAN

EVALUATION OF THE MORPHOMETRICAL ELEMENTS OF RELIEF IN THE PROCESS OF RUNOFF (ON THE EXAMPLE OF DEBED RIVER)

Summary

In the article the point of issue is the evaluation of influence of the morphometrical elements of relief in the process of runoff. The local correlations between the coefficient of low and middle elevations of water intake, horizontal and deep dissections, expositions and slopes are received. These correlations can be used while giving the characteristic of runoff of the unexamined rivers.

Математика

УДК 519. 22

Н. Х. МЕСРОПЯН

ПРОВЕРКА ГИПОТЕЗЫ ОТНОСИТЕЛЬНО КОРРЕЛЯЦИОННОЙ ФУНКЦИИ ГАУССОВСКОГО ПРОЦЕССА

В статье приводится критерий проверки гипотезы относительно корреляционной функции наблюдаемого стационарного гауссовского процесса $\xi(t), t \in [0, T]$, с нулевым средним.

1. Пусть наблюдается стационарный гауссовский процесс $\xi(t)$, $t \in [0,T]$, с нулевым средним и корреляционной функцией B(t). Требуется построить модель, с помощью которой можно было бы осуществить проверку гипотезы H_0 о том, что корреляционная функция процесса $\xi(t)$ имеет вид

$$B(t) = 1 - ct^{2} + |t|^{2+\alpha} + o(|t|^{2+\alpha}), \quad t \to 0, \quad 0 \langle \alpha \langle 2, \rangle$$
(1)

против гипотезы H₁:

$$B(t) = 1 - c|t|^{\alpha} + o(|t|^{\alpha}), \quad t \to 0, \ 0 \langle \alpha \langle 2.$$
 (2)

Допустим, справедлива гипотеза H_0 . Из (1) следует, что B(t)дважды дифференцируема, при этом для корреляционной функции процесса $\xi'(t)$ имеет место соотношение $\Delta_h \Delta_{-h} B''(o) = c |h|^{\alpha}$, $0 \langle \alpha \langle 2, r \rangle$ где Δ_h – оператор взятия разности: $\Delta_h B(t) = B(t+h) - B(t)$. Тогда, по [1], существует эквивалентный гауссовский процесс $\tilde{\xi}'(t)$, для каждой траектории которого при достаточно малых h равномерно по t в каждом конечном интервале $|\Delta_h \tilde{\xi}'(t)| \leq c |h|^{\alpha} |\ln|h|^{1/2}$, где c – некоторая постоянная. Отсюда следует, что $\tilde{\xi}'(t)$ непрерывен. Поэтому случай-

ная величина
$$V_N = h \sum_{k=0}^{N-1} \left[\frac{\xi(h(k+1)) - \xi(kh)}{h} \right]^2$$
, где $h = \frac{T}{N}$, имеет такое же предельное распределение, что и $h \sum_{k=0}^{N-1} (\xi'(kh))^2$. Поскольку $\xi'(t)$

непрерывен, $h \sum_{k=0}^{N-1} (\xi'(kh))^2$ сходится к $\int_{0}^{T} (\xi'(t))^2 dt$ почти всюду. Таким образом, V_N в пределе имеет то же распределение, что и $\int_{0}^{T} (\xi'(t))^2 dt$. Если ввести статистику $W_{1N} = \sum_{k=0}^{N-1} [\xi(h(k+1)) - \xi(kh)]^2 = h \cdot V_N$, $h = \frac{T}{N}$, то в условиях гипотезы H_0 получаем, что статистика $W = \frac{W_{1N}}{h\sigma^2}$, где $\sigma^2 = E \int_{0}^{T} (\xi'(t))^2 dt$, асимптотически $(N \to \infty)$ эквивалентна $\int_{0}^{T} (\xi'(t))^2 dt$.

Пусть теперь справедлива гипотеза H_1 , т.е. $B(t) = 1 - c|t|^{\alpha} + o(|t^{\alpha}|)$. Тогда имеет место следующее предельное соотношение в смысле сходимости в среднем [1]:

$$\lim_{h \to 0} \frac{1}{N} \sum_{k=0}^{N-1} \frac{(\Delta_h \xi(kh))^2}{\Delta_h \Delta_{-h} B(o)} = 1.$$
 (3)

Учитывая, что в условии (2)

$$\Delta_{h}\Delta_{-h}B(o) = O(|h|^{\alpha}), \qquad (4)$$

имеем $\frac{W_{1N}}{h} = \frac{W_{1N}}{N|h|^{\alpha}} \cdot \frac{N|h|^{\alpha}}{h} \approx \frac{\sum_{k=0}^{N-1} (\Delta_h \xi(kh))^2}{N \Delta_h \Delta_{-h} B(o)} \cdot \frac{T|h|^{\alpha}}{h^2}$, где \approx означает порядок

функции.

В силу (3), (4) и условия $0\langle \alpha \langle 2$ будем иметь $\frac{W_{1N}}{h} \approx h^{\alpha-2} \xrightarrow[h \to 0]{} \infty$. Таким образом, проверку гипотезы относительно корреляционной функции рассматриваемого процесса можно осуществить с помощью следующего критерия: если статистика $W = \frac{W_{1N}}{h\sigma^2} \xrightarrow[h \to 0]{} \infty$ почти всюду, то справедлива гипотеза H_1 , если же $W = \frac{W_{1N}}{h\sigma^2}$ асимптотически эквивалентна $\int_{0}^{T} (\xi'(t))^2 dt$, то справедлива гипотеза H_0 . Заметим, что если через P_0 и P_1 обозначить вероятностные P-меры, соответствующие корреляционным функциям процесса при H_0 и H_1 , то из сказанного будет следовать, что меры P_0 и P_1 взаимно сингулярны.

2. Опишем модель проверки гипотезы. Обозначим корреляционную функцию процесса $\xi'(t)$ через R(t,s) – ядро вполне непрерывного положи-
тельного оператора [2]. Тогда, по теореме Мерсера, она допускает разложение $R(t,s) = \sum_{k=1}^{\infty} \lambda_k \varphi_k(t) \overline{\varphi}_k(s)$, где λ_k - собственные значения, а $\varphi_k(t)$ - ортонормированная система собственных функций:

$$\int_{0}^{T} \varphi_{i}(t) \overline{\varphi}_{j}(t) dt = \delta_{ij}, \quad \int_{0}^{T} R(t,s) \varphi_{j}(s) ds = \lambda_{j} \varphi_{j}(t), \quad \sum |\lambda_{j}|^{2} \langle \infty \rangle.$$

Разложим $\xi'(t)$ в ряд по ортонормированной системе $\varphi_k(t)$: $\xi'(t) = \sum_{k=1}^{\infty} x_k \varphi_k(t)$, где $x_k = \int_0^T \xi'(t) \varphi_k(t) dt$ – гауссовские случайные величины,

для которых $Ex_h = 0$, $Ex_i \overline{x}_j = \lambda_j \delta_{ij}$. Тогда,

$$\int_{0}^{T} \left(\xi'(t)\right)^{2} dt = \sum_{i,j} x_{i} \overline{x}_{j} \cdot \int_{0}^{t} \varphi_{i}(t) \overline{\varphi}_{j}(t) dt = \sum_{i=1}^{\infty} |x_{i}|^{2}$$

Нормируя случайные величины x_k , получим независимые стандартные $\eta_k = \frac{1}{\sqrt{\lambda_k}} \mathbf{x}_k$, k = 1, 2, ..., в тогда $\int_0^E (\xi'(t))^2 dt = \sum_{i=1}^\infty |x_i|^2 = \sum_{i=1}^\infty \lambda_i |\eta_i|^2$.

Таким образом, задача сводится к нахождению такого C, чтобы для статистики $W = \sum_{k=1}^{\infty} \lambda_k \eta_k^2$ выполнялось условие $P\{W > C\} \langle 1 - \gamma, \Gamma ge \gamma \rangle 0$ – заданный уровень значимости.

Обозначим
$$X_n = \sum_{k=1}^n \lambda_k \eta_k^2$$
, $Y_n = \sum_{k=n+1}^\infty \lambda_k \eta_k^2$. Для ε)0 имеем
 $P\{X_n + Y_n \le C\} \ge P\{X_n \le C - \varepsilon, Y_n \le \varepsilon\}$.
Тогда $P\{X_n + Y_n)C\} = 1 - P\{X_n + Y_n \le C\} \le 1 - P\{X_n \le C - \varepsilon, Y_n \le \varepsilon\} =$
 $= 1 - P\{X_n \le C - \varepsilon\} \cdot P\{Y_n \le \varepsilon\} =$

$$= \lfloor 1 - P\{X_n \le C - \varepsilon\} \rfloor + P\{X_n \le C - \varepsilon\} \cdot \lfloor 1 - P\{Y_n \le \varepsilon\} \rfloor =$$
$$= P\{X_n \ge C - \varepsilon\} + P\{X_n \le C - \varepsilon\} \cdot P\{Y_n \rangle \varepsilon\} \le P\{X_n \rangle C - \varepsilon\} + P\{Y_n \rangle \varepsilon\},$$
$$\text{T.e.} \quad P\{X_n + Y_n \rangle C\} \le P\{X_n \rangle C - \varepsilon\} + P\{Y_n \rangle \varepsilon\}.$$

Заметим, что по неравенству Чебышева $P\{Y_n\rangle\varepsilon\} \leq \frac{1}{\varepsilon}EY_n = \frac{1}{\varepsilon}\sum_{k=n+1}^{\infty}\lambda_k$. Пусть γ – заданный уровень значимости и δ – его погрешность, $C = C_k$ – такая постоянная, что $P\{X_n + Y_n\rangle C\} = 1 - \gamma$.

Обозначни через $\tilde{C} = \tilde{C}_{\gamma}$ такую постоянную, для которой $P\{X_n\rangle\tilde{C}\} = 1 - \gamma$. Из неравенства $1 - \gamma = P\{X_n\rangle\tilde{C}\} \leq P\{X_n + Y_n\rangle\tilde{C}\}$ следует, что $\tilde{C}_{\gamma}\langle C_{\gamma}\rangle$.

Оценны разность

$$P\left\{X_{n}+Y_{n}\rangle\tilde{C}\right\}-P\left\{X_{n}+Y_{n}\rangle C\right\}=P\left\{X_{n}+Y_{n}\rangle\tilde{C}\right\}-\left(1-\gamma\right)=$$
$$=P\left\{X_{n}+Y_{n}\rangle\tilde{C}\right\}-P\left\{X_{n}\rangle\tilde{C}\right\}\leq P\left\{X_{n}\rangle\tilde{C}-\varepsilon\right\}+P\left\{Y_{n}\rangle\varepsilon\right\}-P\left\{X_{n}\rangle\tilde{C}\right\}.$$

Таким образом,

 $0\langle P\{X_n+Y_n\rangle\tilde{C}\}-P\{X_n+Y_n\rangle C\}\leq P\{X_n\rangle\tilde{C}-\varepsilon\}+P\{Y_n\rangle\varepsilon\}-P\{X_n\rangle\tilde{C}\}\leq\delta.$

По заданному δ найдем такое ε , чтобы $P\{X_n \rangle \tilde{C} - \varepsilon\} - -P\{X_n \rangle \tilde{C}\} = \frac{\delta}{2}$. Если при этом окажется, что $\frac{1}{\varepsilon} \sum_{j=n+1}^{\infty} \lambda_j \leq \frac{\delta}{2}$, то \tilde{C} –

искомое. Если $\frac{1}{\varepsilon} \sum_{j=n+1}^{\infty} \lambda_j \ge \frac{\delta}{2}$, то нужно положить n+1 вместо n и

проделать этот процесс до тех пор, пока $\frac{1}{\varepsilon} \sum_{j=n+1}^{\infty} \lambda_j \leq \frac{\delta}{2}$.

Найденная таким образом постоянная $\tilde{C} \in [C_{r+\delta}, C_{r-\delta}].$

Кафедра теории вероятностей и математической статистики Поступило 04.12.2003

ЛИТЕРАТУРА

- 1. Ибрагимов И.А., Розанов Ю.А. Гауссовские стационарные процессы. М.: Наука, 1970.
- Сохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряженных операторов. М., 1965.

Ն. Խ. ՄԵՍՐՈՊՅԱՆ

ԳԱՈՒՍՅԱՆ ՊՐՈՑԵՍԻ ԿՈՌԵԼՅԱՑԻՈՆ ՖՈՒՆԿՑԻԱՅԻ ՎԵՐԱԲԵՐՅԱԼ ՎԱՐԿԱԾԻ ՍՏՈՒԳՈՒՄԸ

Ամփոփում

Հոդվածում բերվում է զրոյական միջինով *ξ(t),t*∈[0,*T*], ստացիոնար գաուսյան պրոցեսի կոռելյացիոն ֆունկցիայի վերաբերյալ վարկածի ստուգման հայտանիշը։

N. Ch. MESROPYAN

VERIFYING HYPOTHESIS ON THE CORRELATIVE FUNCTION OF GAUSSIAN PROCESS

Summary

The paper presents a criterion of verifying hypothesis on the correlative function observed by stationary Gaussian process with zero average value.

3,2004

Естественные науки

Ֆիզիկա

УДК 621.373

Ա.Ա.ԿՈՒՏՈՒՉՅԱՆ

ՖԵՄՏՈՎԱՅՐԿՅԱՆԱՅԻՆ ԱՋԴԱԿՆԵՐԻ ՍՊԵԿՏՐԱԼ ՍԵՂՄՈՒՄԸ

Սպեկտրալ սեղմման երևույթի նկատմամբ աճող հետաքրքրությունը պայմանավորված է վերջերս բացահայտված նրա մի շարք հնարավորություններով` որոնք առնչվում են լազերային ֆիզիկայի հրատապ խնդիրներ հանդիսացող գերկարճ ազդանշանի գրանցման և կառավարման [1--3], ինչպես նաև մութ սոլիտոնի գեներացումով պայմանավորված օպտիկական կապի խնդիրների հետ [4, 5]։ Այս երկու կիրառությունների տեսանկյունից ավելի կարևոր է երևույթի հետազոտումը օպտիկական ազդանշանի հնարավոր կարճ տևողությունների դեպքում։

Սպեկտրալ սեղմման երևույթի իրականացման համակարգը բաղկացած է դիսպերսիոն հապաղման գծից (ԴՀԳ) և օպտիկական միամոդ լուսատարից [6]: Անոմալ դիսպերսիայով ԴՀԳ-ում ազդակը երկարում է ժամանակի մեջ և ստանում բացասական չիրպ։ Լուսատարում ազդակի ոչ գծային ինքնազդեցությունը հանգեցնում է չիրպի մարման և սպեկտրի սեղմման։ Տևողությունների ֆեմտովայրկյանային տիրույթում դիֆրակցիոն ցանցերի կամ պրիզմաների զույգ հանդիսացող ԴՀԳ-ն կարող է դրսևորել բարձր կարգի դիսպերսիոն, իսկ լուսատարը նաև բարձր կարգի ոչ գծային հատկություններ [7]: [8] հոդվածում առանձին վերլուծվել է խմբային արագությունների դիսպերսիայի դերը սպեկտրալ սեղմման պրոցեսում։ Այս աշխատանքում ներկայացված են սպեկտրալ սեղմման վրա բարձր կարգի ոչ գծային և դիսպերսիոն գործոնների ազդեցությունների թվային հետազոտման արդյունքները։

Հետազոտության մեթոդիկան։ Աշխատանքը կատարվել է սպեկտրալ սեղմման գործընթացը նկարագրող հավասարումների թվային լուծման միջոցով։ Լուսատարում ճառագայթման ինքնազդեցությունը ֆեմտովայրկյանային տիրույթում նկարագրվում է Շրեդինգերի ընդհանրացված հավասարումով [9].

$$i\frac{\partial\psi}{\partial\zeta} = -\frac{1}{2}\frac{\partial^2\psi}{\partial\eta^2} + i\mu_1\frac{1}{6}\frac{\partial^3\psi}{\partial\eta^3} + R|\psi|^2\psi - R\mu_2\psi\frac{\partial|\psi|^2}{\partial\eta} - i\mu\frac{\partial|\psi|^2\psi}{\partial\eta}, \quad (1)$$

որտեղ $\psi(\varsigma, \eta)$ -ն դանդաղ փոփոխվող ամպլիտուդն է՝ նորմավորված համակարգի մուտքում ունեցած իր առավելագույն արժեքով, $L_D^{(2)} = \tau^2 / k_2$ – հարաբերական հեռավորությունը ($L_D^{(2)} = \tau^2 / k_2$ – դիսպերսիոն երկարությունը, τ -ն ժամանակային կիսալայնությունն է իմպուլսի 1/e մակարդակի վրա,

 $k_j = |d^j k/d\omega^j|$, որտեղ *k*-ն ալիքային վեկտորն է, ω-ն` հաճախությունը), $\eta = (t - z/u)/\tau_0 - \eta uqnη$ σωνωμωμμα (z-μ տարածական կոօրդինատն է, *u*-ն՝ խմբային արագությունը, τ_0 -ն՝ իմպուլսի սկզբնական տևողությունը)։ Ոչ գծայնության բնութագիրը որոշվում է $R \equiv L_D / L_{NL}$ նույնությամբ, որտեղ ոչ գծայնության գործակիցը, I₀-ն` ճառագայթման մուտքային ինտենսիվությունը։ Յուրաքանչյուր գործոնի ներդրման չափը որոշվում է համապատասխան գործակցով. երրորդ կարգի դիսպերսիան՝ $\mu_1 = k_3 / (k_2 \tau_0)$ -ով, ոչ գծային արձագանքի իներցիոնությունը՝ $\mu_2 = \tau_R / \tau_0$ -ով, ալիքային ոչ ստացիոնարությունը՝ $\mu = T/(\pi \tau_0)$ -ով։ Ինչպես երևում է, գործակիցների արժեքների որոշման մեջ իմպույսի տևողությունը կարևոր բնութագրերից է։ ԴՀԳ-ում ճառաαμιρύωն վարքի նկարագիրը հանգեզնում t (1) հավասարմանը՝ R = 0, $\varsigma = -Z$ պայմաններով, որտեղ Z-p $\Omega \prec \Phi$ -ի երկարությունն է (pաqա): (1) հավասարման թվային լուծման ընթացքում կիրառվել է ֆիզիկական գործոններով բարդատման մեթոդը, դիսպերսիոն քայլում կիրառվել է Ֆուրիեի արագ ձևափոխության ալգորիթմը։ Որպես սկզբնական պայմաններ ընտրվել են իմպուլսի գաուսյան տեսքը և սպեկտրալ սահմանափակությունը։ Որոշվել են ժամանակային և սպեկտրալ բաշխումնները` $I(\eta)=\left|\psi(\eta)
ight|^2$ և S(arOmega)= $=\left|f(arOmega)
ight|^{2}$ (f(arOmega)-ն կոմպլեքս ամպլիտուդի ֆուրիե-պատկերն է, arOmega-ն՝ հարաբերական հաճախությունը) ԴՀԳ-իգ հետո և համակարգի ելքում։ Բերված արդյունքները վերաբերում են իմպուլսի $\Delta t = 30 - 35 \, p \mu (\tau_0 = 20 \, p \mu)$ տևողությանը ($\Delta t = 2\left(\ln\left(2\right)^{1/2}\right)\tau_0$, Δt -ն ժամանակային լայնությունն է իմպուլսի 1/2 մակարդակի վրա), որին համապատասխանում են գործակիցների հետևյալ արժեքները. ԴՀԳ-ում $\mu_1 = 0,4$, լուսատարում $\mu_1 = 0,05$, $\mu_2 = 0,3$, $\mu = 0,043$: ԴՀԳ-ի և յուսատարի երկարությունները՝ Z = 6, f = 3 համապատասխանաբար։

Արդյունքները։ Նկարի ա, p-ում պատկերված 1 և 2 կորերի համեմատումից երևում է, որ դիսպերսիոն ռեժիմում Դ-ՀԳ-ի երրորդ կարգի դիսպերսիայի հետևանքով առաջացած ասիմետրիկ դեֆորմացիաները ժամանակային և սպեկտրալ պատկերներում ավելի թույլ են արտահայտված, քան ոչ գծային ռեժիմում։ Երկրորդ կարգի դիսպերսիան լուսատարում ոչ միայն հարթեցնում է պատկերը, այլ նաև նվազեցնում է (10–20%) սպեկտրալ սեղմման չափը, իսկ երրորդ կարգի դիսպերսիան ազդեցություն չի ունենում այդ գործընթացի վրա։ Նրա ազդեցությունը սկսում է ի հայտ գալ *f*-ի մեծ արժեքների դեպքում սպեկտրի ոչ գծային հարստացման ժամանակ։ Բարձր կարգի ոչ գծային գործոնները իրենց ազդեցությունը թողնում են ինքնազդեցության առաջին իսկ փուլում։ Լուսատարում ոչ գծայնության էլեկտրոնային բնույթի շնորհիվ ոչ գծային արձագանքը գրեթե ակնթարթային է՝ $\tau_R = 3 \, {}\mu I (9]: \mu_2$ գործակցի փոքրության պատճառով նրա ներդրումը նույնպես էական չէ։ Լուսատարում ալիքային ոչ ստացիոնարությունը հանգեցնում է իմպուլսի գագաթի ուշացման՝ ընդհուպ մինչև հարվածային ալիքի ձևավորում, միաժամանակ սպեկտրը ենթարկելով ասիմետրիկ դեֆորմացիայի՝ գ և դ։ Այս գործոնի

ճառագայթման ինտենսիվության ժամանակային (ա, գ, և) և սպեկտրալ թաշխումները (բ, դ, զ). կետերոով՝ համակարգի մուտքում, գծիկներով՝ ԴՀԳ-ից հետո, հոծ գծով՝ համակարգի ելքում; I-ը՝ սպեկտրալ սեղմման ոչ գծային, 2-ը՝ դիսպերսիոն ռեժիմներում։ Բնութագրերի արժեքները ա, բ, գ, դ-ի համար ընտրվել են՝ *f*=3, *Z*=6, ոչ գծային ռեժիմում *R*=12, դիսպերսիոնում՝ *R*=9: ԴՀԳ-ում μ_1 =0,4, լուսատարում μ_1 = μ_2 = μ =0 (ш, р), ԴՀԳ-ում μ_1 =0, լուսատարում μ_1 = μ_2 =0, μ =0,1 (q, դ), *R*=39, *f*=3, *Z*=12, ԴՀԳ-ում μ_1 =0,4, լուսատարում μ_1 = μ_2 = μ =0 (b, q):

ազդեցությունը տեսանելի դարձնելու համար նկարում ցուցադրված է $\mu = 0,1$ դեպքը ($\Delta t = 10 - 20 \,$ //)։ Լուսատարում երկրոդ կարգի դիսպերսիայի ազդեցությունը նվազում է` ընդհուպ մինչև լրիվ վերացում, երբ մեծացնում ենք ԴՀԳ-ի բազան [8]։ Պարզվում է, որ նույն կերպ խուսափել բարձր կարգի գործոններից չի հաջողվում ստացված կորերը ունենում են թույլ, սակայն նկատելի ասիմետրիկություն։ ԴՀԳ-ի բազայի մեծ արժեքների դեպքում մեծանում է նրա երրորդ կարգի դիսպերսիայի ազդեցությունը (ե, զ)։ Բացի ասիմետրիկ դեֆորմացիայից, իմպուլսի սպեկտրում նկատվում է նաև հաճախականային շեղում` գագաթը կենտրոնից շեղվում է։

Եզրակացություն։ Ազդակների տևողությունների ֆեմտովայրկյանային տիրույթում առկա են բարձր կարգի դիսպերսիոն և ոչ գծային գործոնները. ԴՀԳ-ում երրորդ կարգի դիսպերսիայի ներդրումը նկատելի է տևողությունների ~50*ֆվ* տիրույթում։ Նրա ազդեցությունը նվազում է լուսատարի երկրորդ կարգի դիսպերսիայի առկայության դեպքում։ Լուսատարում բարձր կարգի ֆիզիկական գործոններից էական ներդրում ունի ալիքային ոչ ստացիոնարությունը, որը նկատելի է տևողությունների ավելի կարճ տիրույթում՝ 10–20*ֆվ*։

Հեղինակը շնորհակալություն է հայտնում Գ. Լ. Եսայանին և Լ. Խ. Մուրադյանին աշխատանքի նկատմամբ հատուկ ուշադրության և արդյունավետ քննարկումների համար։

Գերարագ օպտիկայի լաբորատորիա

Սաացվել է 09.07. 2004

ԳՐԱԿԱՆՈՒԹՅՈՒՆ

- 1. Маркарян Н.Л., Мурадян Л.Х. Квант. Электрон., 1995, т. 22, № 7, с. 695-697.
- 2. Mouradian L.Kh., Zohrabyan A.V., Ninoyan V.J., Kutuzian A.A., Froehly C., Louradour F., Barthelemy A. – SPIE Proc., 1998, v. 3418, p. 78–85.
- 3. Mouradian L.Kh., Froehly C., Louradour F., Barthelemy A. IEEE J. Quantum Electronics, 2000, v. 36, № 7, p.795-801.
- 4. Кутузян А.А., Киракосян А.А., Мурадян Л.Х. Изв. НАН РА, Физика, 2002, т. 37, № 6, с. 350–353.
- 5. Kutuzyan A.A, Mansuryan T.G., Kirakosyan A.A., Mouradian L.Kh. SPIE Proc., 2003, v. 5135, p. 156-160.
- 6. Маркарян Н.Л., Мурадян Л.Х. Квант. Электрон., 1991, т. 18, № 7, с. 865-867.
- 7. Kutuzian A.A., Mouradian L.Kh., Zadoyan R., Apkarian A.V. Digest of International Conference Lasers 97, FC9, New Orleans, USA, 1997.
- 8. Кутузян А.А., Манукян Г.С., Есаян Г.Л., Мурадян Л.Х. Изв. НАН РА, Физика, т. 39, № 5, с. 310–314.
- 9. Agrawal G.P. Nonlinear Fiber Optics. San Diego, Calif.: Academic, 1995.

А. А. КУТУЗЯН

СПЕКТРАЛЬНАЯ КОМПРЕССИЯ ФЕМТОСЕКУНДНЫХ ИМПУЛЬСОВ

Резюме

Исследовано влияние дисперсионных и нелинейных эффектов высшего порядка на процесс спектральной компрессии. Показано, что влияния этих эффектов проявляются в области длительностей $\leq 50\phi c$.

A. A. KUTUZIAN

SPECTRAL COMPRESSION OF FEMTOSECOND PULSES

Summary

The influence of high-order dispersion and nonlinear effects on the spectral compression process is studied. This influence is revealed in the ≤ 50 fs time scale.

3, 2004

Естественные науки

Химия

УДК 541.135.52

М. В. МАРТИРОСЯН, Л. Е. САРГСЯН, С. К. ГРИГОРЯН

ВЛИЯНИЕ СТРУКТУРЫ ФАЗОВОЙ ПЛЕНКИ НА КОРРОЗИОННЫЕ СВОЙСТВА НЕРАСТВОРИМЫХ АНОДОВ НА ОСНОВЕ СВИНЦА

Исследована коррозионная стойкость свинцово-серебряных и свинцово-сурьмянистых нерастворимых анодов в серно-кислых растворах. Выявлено определенное различие в структурах и свойствах фазовых слоев, формирующихся на поверхности этих анодов. Лучшими защитными свойствами обладают фазовые слои свинцово-серебряных анодов. Показано, что модифицированием кристаллического строения фазового слоя (путем легирования) можно дополнительно повышать коррозионную стойкость этих анодов.

Введение. Повышение коррозионной стойкости нерастворимых анодов является одной из наиболее важных проблем при электролитическом осаждении ряда цветных металлов из серно-кислых растворов. В процессе электролиза такие аноды подвергаются коррозии и продукты разрушения загрязняют катодный осадок. Кроме того, высокое перенапряжение, вызывающее дополнительное расходование тока на растворение их компонентов, является непроизводительной составляющей в балансе напряжения электролизеров.

На коррозионную стойкость нерастворимых анодов наиболее существенное влияние оказывает защитный фазовый слой, формирующийся во время электролиза, на поверхности и в порах которого происходит основной анодный процесс – выделение кислорода. На защитное свойство фазового слоя сильно влияет легирование анода различными элементами, эффективность которых определяется их электрохимическими свойствами.

Целью настояшей работы является изучение влияния структуры поверхностного фазового слоя (защитной пленки) на коррозионную стойкость нерастворимых свинцовых анодов, легированных серебром и сурьмой, при анодной поляризации в серно-кислом растворе.

Методика экспериментов. Опытные электроды были изготовлены из бинарных сплавов на основе свинца марки СО. В качестве легирующих добавок использовались серебро и сурьма. Коррозионным испытаниям подверглись сплавы свинца с содержанием (по массе) 0,8% Ад марки Ср 999,9 и 6% Sb марки Су 0000, которые были получены по стандартной методике [1]. Для сравнения испытывались также электроды из чистого свинца. Коррозионная стойкость образцов определялась по методу потери массы при анодной поляризации в серно-кислом растворе при комнатной температуре. До проведения опытов испытуемые аноды подвергались предварительной подготовке в течение 22–244 с целью формирования защитной пленки из двуокиси свинца. Толщину фазового слоя определяли микроскопическим методом, а пористость – коррозионным методом [2] с использованием кровяной соли (10г/л) и хлористого натрия (5г/л).

Результаты и их обсуждения. Результаты испытаний коррозионной стойкости анодов из свинца и его сплавов в серно-кислых растворах различного состава при $22^{\circ}C$ приведены в табл. 1, из которой следует, что с увеличением концентрации серной кислоты усиливается коррозия как у чистого свинца, так и у сплавов на его основе. Однако анод из сплава свинца с 0,8% серебра проявляет наибольшую стойкость по сравнению с другими анодами. Это объясняется тем, что серебро, обладая более высокой электропроводностью, чем основа сплава – свинец, очевидно, принимает на себя некоторую часть тока. В результате плотность тока и поляризация на свинце уменьшаются и поэтому повышается его коррозионная стойкость.

Таблица І

Состав электролита,	Потеря массы анодов, мг (на 1 см ²)						
г/л H ₂ SO ₄	Pb	Pb - 0,8%Ag	Pb - 6%Sb				
49	98	14	59				
98	153	21	75				
196	184	32	94				
240	208	47	112				

Изменение массы анодов в серно-кислых растворах за 168ч при плотности поляризующего тока і =0,075А/см²

Скорость коррозии определяется суммой стационарных скоростей роста фазового слоя, его осыпанием и переходом ионов в раствор. С этой точки зрения для оценки скорости коррозии электрода за основной показатель анодного окисления можно принять скорость изменения массы за единицу времени.

Коррозионные показатели анодов из свинца и сплавов на его основе приведены в табл. 2. Из них следует, что скорость коррозии анода из свинца с 0,8% серебра существенно меньше, чем из сплава свинца с 6% сурьмы и, тем более – чистого свинца. В результате поляризации на свинцово-серебряном аноде фазовый слой из двуокиси свинца не только замедляет коррозионные процессы, но и отличается прочной сцепляемостью с поверхностью электрода, чем и объясняется небольшое осыпание продуктов коррозии в виде шлама.

Однако фазовая пленка обладает определенной пористой структурой (табл. 3), поэтому она не сможет полностью задержать ионы анодного

металла. По этой причине двухвалентные ионы свинца могут попасть в электролит, а в дальнейшем разряжаться на катоде.

Таблица 2

Время, ч	168	336	504	168	336	504
аноды	изменение массы, мг (на 1см ²)			количество выделившего шлама, <i>мг</i> (на 1см ²)		
РЪ	153	253	348	133	225	324
Pb 0,8%Ag	21	42	74	15	40	73
Pb - 6%Sb	75	140	216	69	128	201

Коррозионные показатели различных анодов, поляризованных при i=0,075А/см² в растворе серной кислоты (98г/л) при 22°С

Из табл. З видно, что пористость защитной пленки почти не зависит от состава анодного материала, но состав сплава существенно влияет на толщину фазового слоя. Сплав свинца с 6%Sb при анодной поляризации покрывается фазовой пленкой, которая в 2 раза толще, чем пленка у сплава Pb с 0,8%Ag. Однако стойкость этого анода против коррозии значительно уступает стойкости анода с 0,8%Ag. Вероятно, при формировании и стабилизации фазовой пленки ионы серебра специфическим образом модифицируют кристаллическое строение двуокиси свинца, а также каталитически действуют на анодные реакции.

Таблица З

Аноды	Пористость, %	Толщина фазового слоя, мкм
Pb	15	72
Pb - 0,8%Ag	16	84
Pb - 6%Sb	14	195

Характеристики защитного слоя различных анодов, поляризованных при i=0,075 Л/см² в растворе серной кислоты (98 мг/л) и 22⁰С в течение 168ч

Промышленные серно-кислые электролиты часто содержат в значительном количестве ионы двухвалентного марганца $(2-4\epsilon/n)$. Поэтому дополнительную серию экспериментов проводили с целью выявления влияния пленки из двуокиси марганца на характеристики защитного слоя. При этом аноды из сплава Pb – 0,8%Ag поляризовали в растворе с добавлением соли из серно-кислого марганца $(3\epsilon/n)$. После анодной поляризации в течение 168ч при i= 0,075 A/cm^2 и 22°C пористость защитного слоя составила 14%, а толщина – 115*мкм*. Потеря массы этих анодов составила в среднем 16*мг/см*². Повышенная стойкость такого защитного слоя, вероятно, обусловлена смешанным составом (Pb0₂/Mn0₂), отличающимся хорошей электропроводностью [3], причем образование двуокиси марганца термодинамически возможно как электрохимическим, так и химическим путем [4, 5]. При электролизе с такими анодами в значительной степени уменьшается и количество свинца в катодном осадке.

Таким образом, на коррозионную стойкость нерастворимых свинцовых анодов решающее влияние оказывает структура поверхностного фазового слоя. Дополнительное повышение стойкости анодов за счет их легирования, возможно, связано с модифицированием кристаллического строения двуокиси свинца при анодной поляризации.

ГИУА, ЕГУ

Поступило 23.12.2003

ЛИТЕРАТУРА

- 1. Schiere Th., Hein K. Erzmetall, 1993, v. 46, № 3, p. 164.
- 2. Ваграмян А.Т., Соловьева З.А. Методы исследования электроосаждения металлов. М.: АН СССР, 1960, 446 с.
- 3. Fukushima S. The 121th Report of the Research Institute of Mineral Dressing and Metallurgy. 1996, p. 457.
- 4. Krauss C.J., Kerby R.C., Willians R.D.H., Ybena D. The AIME Annual Meeting in Los-Angeles, CA, 1984, v. 28, p. 37.
- 5. Wark I.W. J. Appl Electrocem., 1979, v. 9, p.721.

Մ. Վ. ՄԱՐՏԻՐՈՍՅԱՆ, Լ. Ե. ՍԱՐԳՍՅԱՆ, Ս. Կ. ԳՐԻԳՈՐՅԱՆ

ՖԱՉԱՅԻՆ ԹԱՂԱՆԹԻ ԿԱՌՈՒՑՎԱԾՔԻ ԱՉԴԵՑՈՒԹՅՈՒՆԸ ՉԼՈՒԾՎՈՂ ԿԱՊԱՐԵ ԱՆՈԴՆԵՐԻ ԿՈՌՈՉԻՈՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ՎՐԱ

Ամփոփում

Հետազոտված է կապար-արծաթային և կապար-անտիմոնային չլուծվող անոդների կոռոզիոն կայունությունը ծծմբաթթվային լուծույթներում։ Բացահայտված է որոշակի տարբերություն այդ անոդների մակերևույթին գոյացող ֆազային շերտերի կառուցվածքի և հատկությունների միջև։ Լավագույն պաշտպանիչ հատկություններով են օժտված կապար-արծաթային անոդների ֆազային շերտերը։ Յույց է տրված, որ ֆազային շերտի բյուրեղային կառուցվածքի մոդիֆիկացումով լեգիրման միջոցով կարելի է բարձրացնել այդ անոդների կոռոզիոն կայունությունը։

M. V. MARTIROSYAN, L. Ye. SARGSYAN, S. K. GRIGORYAN

INFLUENCE OF PHASE LAYER ON THE CORROSIVE STABILITY OF LEAD BASED INSOLUBLE ANODES

Summary

The corrosive stability of lead-silver and lead-antimony insoluble anodes in sulfuric acid solutions have been investigated. A definite difference between the structures and properties of these anodes have been carried out. The phase layers of lead-silver anodes possess the best protective properties. It's shown that the corrosive stability of these anodes can be additionally increased by modification of crystal structure of phase layer.

Естественные науки

Химия

УДК 547.583.5

Г. Б. АМБАРЦУМЯН, Э. Г. МЕСРОПЯН, А. А. АВЕТИСЯН, А. С. ГАЛСТЯН, И. Р. АРУТЮНОВА

ВЗАИМОДЕЙСТВИЕ ФЕНИЛГЛИЦИДИЛЭФИРА С НЕКОТОРЫМИ АМИНОКИСЛОТАМИ

Изучено взаимодействие фенилглицидилэфира с аминокислотами, а именно, с N-фенилантраниловой кислотой, гидрохлоридом антраниловой кислоты, а также гидрохлоридами метиловых эфиров лейцина и глицина.

Реакция между окисями и аминокислотами мало изучена [1-4]. С целью получения новых биологически активных веществ, содержащих широко известные высокоактивные фармакофорные фрагменты [5-7], нами исследовано взаимодействие фенилглицидилэфира с N-фенилантраниловой кислотой и гидрохлоридом антраниловой кислоты.

Показано, что реакция фенилглицидилэфира с N-фенилантраниловой кислотой протекает по правилу Красуского с образованием 2'-гидрокси-3'феноксипропилового эфира N-фенилантраниловой кислоты(1). Взаимодействием гидрохлорида антраниловой кислоты с фенилглицидилэфиром выделены 3-хлор-1-феноксипропанол-2(II) [8] и антраниловая кислота. Из белковых аминокислот выбраны гидрохлориды метиловых эфиров глицина и L-лейлина [9].

Для выявления оптимальных условий реакции исследовано влияния среды и температуры, продолжительность реакции и соотношение концентраций исходных компонентов.

Реакция фенилглицидилэфира с гидрохлоридом метилового эфира L-лейцина проведена как в апротонном (диоксан), так и в протонном (вода, этанол) растворителях. В диоксане при температуре 85-98°С в течение 2-34 разрыв оксидного кольца протекает за счет хлористого водорода с образованием 3-хлор-1-феноксипропанола-2(1). То же самое замечается, когда реакция ведется в этаноле в вышеуказанных условиях. При проведении реакция в воде при температуре 105-110°С в течение 144 из реакционной среды, отделив маслянистый слой и обработав его эфиром, получили белов кристаллическое вещество – гидрохлорид 3-изобутил-6-фенилоксиматилморфолин-2-она(IV). После выпаривания водного слоя извлечено кристаллическое вещество, которое перекристаллизовали из этанола. Получен гидрохлорид метилового эфира N-(2'-гидрокси-3'-феноксипропил)-лейцина(III).

Взаимодействие гидрохлорида метилового эфира глицина с фенилглицидилэфиром проведено в воде при температуре $105-110^{\circ}C$ в течение 14ч. Отделив и выпарив воду, выделили белое кристаллическое вещество, которое перекристаллизовали из этанола. Получен гидрохлорид метилового эфира N-(2'-гидрокси-3'-феноксипропил)глицина(V).

Экспериментальная часть. Спектры ЯМР ¹Н получены на спектрометре *Mercury*-300 фирмы *Varian* с рабочей частотой 300*MГ*4, растворитель – ДМСО-d₆ t = 30^oC.

ИК-спектры сняты на спектрофотометре Specord IR-75.

3'-Фенокси-2'-оксипропилового эфира N-фенилантраниловой кислоты(I). К 1,8г (8,45ммоль) N-фенилантраниловой кислоты в бензоле(10мл) добавляют 1,7г (8,45ммоль) фенилглицидилэфира. Смесь нагревают в течение 6ч при температуре 95–100°С. После удаления растворителя остаток перегоняют под вакуумом (табл. 1, 2).

3-Хлор-1-феноксипропанол-2(II). К 3,47г (0,02моль) гидрохлорида антраниловой кислоты в бензоле (10мл) небольшими порциями добавляют раствор – 3г (0,02моль) фенилглицидилэфира в бензоле (5мл). Смесь нагревают в течение 8ч на водяной бане. После удаления растворителя, остаток перегоняют под вакуумом.

3, 2004

Естественные науки

Химия

УДК 547.583.5

Г.Б. АМБАРЦУМЯН, Э.Г. МЕСРОПЯН, А. А. АВЕТИСЯН, А. С. ГАЛСТЯН, И. Р. АРУТЮНОВА

ВЗАИМОДЕЙСТВИЕ ФЕНИЛГЛИЦИДИЛЭФИРА С НЕКОТОРЫМИ АМИНОКИСЛОТАМИ

Изучено взаимодействие фенилглицидилэфира с аминокислотами, а именно, с N-фенилантраниловой кислотой, гидрохлоридом антраниловой кислоты, а также гидрохлоридами метиловых эфиров лейцина и глицина.

Реакция между окисями и аминокислотами мало изучена [1-4]. С целыю получения новых биологически активных веществ, содержащих широко известные высокоактивные фармакофорные фрагменты [5-7], нами исследовано взаимодействие фенилглицидилэфира с N-фенилантраниловой кислотой и гидрохлоридом антраниловой кислоты.

Показано, что реакция фенилглицидилэфира с N-фенилантраниловой кислотой протекает по правилу Красуского с образованием 2'-гидрокси-3'феноксипропилового эфира N-фенилантраниловой кислоты(I). Взаимодействием гидрохлорида антраниловой кислоты с фенилглицидилэфиром выделены 3-хлор-1-феноксипропанол-2(II) [8] и антраниловая кислота. Из белковых аминокислот выбраны гидрохлориды метиловых эфиров глицина и L-лейцина [9].

Для выявления оптимальных условий реакции исследовано влияние среды и температуры, продолжительность реакции и соотношение концентраций исходных компонентов.

Реакция фенилглицидилэфира с гидрохлоридом метилового эфира L-лейцина проведена как в апротонном (диоксан), так и в протонном (вода, этанол) растворителях. В диоксане при температуре $85-98^{\circ}C$ в течение 2-34разрыв оксидного кольца протекает за счет хлористого водорода с образованием 3-хлор-1-феноксипропанола-2(II). То же самое замечается, когда реакция ведется в этаноле в вышеуказанных условиях. При проведении реакции в воде при температуре $105-110^{\circ}C$ в течение 144 из реакционной среды, отделив маслянистый слой и обработав его эфиром, получили белое кристаллическое вещество – гидрохлорид 3-изобутил-6-фенилоксиметилморфолин-2-она(IV). Гидрохлорид метилового эфира N-(3'-фенокси-2'-оксипропил)-лейцина(III) и гидрахлорид З-изобутил-6-фенилоксиметилморфолин-2-она(IV). Эквимольную смесь (8,3ммоль) гидрохлорида метилового эфира лейцина в 10мл воды и фенилглицидилэфира нагревают в течение 14ч при температуре 105–110⁶C. Затем, отделив маслянистый слой от водного, к первому добавляют эфир, после чего осаждаются белые кристаллы IV (табл. 1, 2).

Таблица І

C HHC		Т _{пл} ,	ł вы	Найдено числено), <u>%</u>), %	-		Раство	оримо	сть	Provon
Соеді ни	рт. ст.) (n _D ²⁰)	℃	с	H	N	формула	вода	этанол	эфир	дмсо	ыход, %
I	222–224 (1,5840)	-	<u>72,89</u> 72,71	<u>5,73</u> 5,82	<u>3,98</u> 3,85	C ₂₂ H ₂₁ NO ₄	нр	р	нр	р	84
III	-	246–248	<u>60,01</u> 60,10	<u>7,23</u> 7,40	<u>4,46</u> 4,67	C ₁₅ H ₂₁ NO ₃ × HCl	нр	нр	нр	р	36
IV	-	287–289	<u>58,16</u> 57,91	<u>7,99</u> 7,90	<u>4,46</u> 4,22	C ₁₆ H ₂₅ NO ₄ × HCl	р	нр	нр	р	25
v	-	183	<u>52,39</u> 52,27	<u>6,69</u> 6,58	<u>5,36</u> 5,08	C ₁₂ H ₁₇ NO ₄ × HCl	р	нр	нр	р	38

Характеристики синтезированных соединений (I–V)

После выпаривания водного слоя образованные кристаллы промывают спиртом, затем эфиром. Получаются кристаллы III (табл. 1, 2).

Таблица 2

Соеди- нение	Спектр ИК: v, <i>см</i> ⁻¹	Спектр ЯМР ¹ Н: б, м. д.
I	3330–3350(OH, NH); 3030,1580, 1560(C=C, Ar); 1675(C=O); 1220, 1280(Ar-O-C)	8,5ш.с.(H, NH); 8,3м(14H, Ar); 6,5д(2H, OCH ₂); 4,58ш.с.(H, OH); 4,5д(2H, <u>CH₂OC₆H₅)</u>
III	3250–3420(OH); 1720(C=O);1600(C=C, Ar); 1580(NH ₂ ⁺); 1240(Ar-O-C)	6,9т, 7,3т(3H, 2H, Ph); 4,2т(H, CH-N); 3,95м(3H, <u>CHCH</u> ₂); 3,1л(2H, CH ₂ O); 1,75м(3H, <u>CH₂CH</u>); 0,95д(6H, CH ₃)
٠v	1740(C=O); 1595(C=C, Ar); 1575(NH ₂ ⁺); 1240(Ar-O-C)	6,9т, 7,5т(3H, 2H, Ph); 4,2с(H, CH в цикле); 3,9м(3H, <u>CHCH</u> ₂ в цикле); 3,1д(2H, CH ₂ O); 1,75м(3H, <u>CH₂CH</u>); 0,95д(6H, CH ₃)
v	1740(C=O); 1595(C=C, Ar); 1570(NH ₂ ⁺); 1240(Ar-O-C)	6,9т, 7,3т(3H, 2H, Ph); 4,3т(H, CH ₂ -N); 3,95м(3H, <u>CHCH₂);</u> 3,1д(2H, CH ₂ O)

Спектры ИК и ЯМР ¹Н синтезированных соединений

Гидрохлорид метилового эфира N-(3'-фенокси-2'-оксипропил)-глицина(V). Эквимольную смесь (8ммоль) гидрохлорида метилового эфира глицина в 10мл воды и фенилглицидилэфира нагревают в течение 13ч при температуре 105–110⁰С. После выпаривания воды, добавляют спирт и осажденные кристаллы V промывают эфиром (табл. 1, 2).

Кафедра органической химии

Поступило 22.12.2003

ЛИТЕРАТУРА

- 1. Киприанов А.И. Укр. Хим.ж., 1928, т. 4, с. 215; 1930, т. 5, с. 538.
- 2. Радионов В.М., Ярцева Н. Изв. АН СССР, ОХН, 1950, № 1, с.108.
- 3. Месропян Э.Г., Амбарцумян Г.Б., Мартиросян Э.В., Оганезов А.С. Ученые записки ЕГУ, 1982. № 3. с. 111.
- 4. Месропян Э.Г., Амбарцумян Г.Б., Оганезов А.С., Дангян М.Т. Арм. хим. ж., 1982, т. 35, № 8, с. 550.
- 5. Машковский М.Д. Лекарственные средства. М.: Медицина, 1973.
- 6. Мелентьева Г.А. Фармацевтическая химия. М.: Медицина, 1976.
- 7. Ушаков С.Н., Богомолова Л.Г., Давиденков В.В. Актуальные вопросы переливания крови. М.: Медгиз, 1954.
- 8. Пакен А.М. Эпоксидные соединения и эпоксидные смолы. Л.: Хим. литер., 1962, с. 273.
- 9. Гринштейн Дж., Винец М. Химия аминокислот и пептидов. М.: Мир, 1965, с. 425.

Գ. Բ. ՀԱՄԲԱՐՉՈՒՄՅԱՆ, Է. Գ. ՄԵՍՐՈՊՅԱՆ, Ա. Ա. ԱՎԵՏԻՍՅԱՆ, Ա. Ս. ԳԱԼՍՏՅԱՆ, Ի. Ռ. ՀԱՐՈՒԹՅՈՒՆՈՎԱ

ՖԵՆԻԼԳԼԻՅԻԴԻԼԵԹԵՐԻ ՓՈԽԱՉԴԵՑՈՒԹՅՈՒՆԸ ՄԻ ՔԱՆԻ ԱՄԻՆԱԹԹՈՒՆԵՐԻ ՀԵՏ

Ամփոփում

Ուսումնասիրվել է ֆենիլգլիցիդիլեթերի փողազդեցությունը ամինաթթուների, հատկապես N-ֆենիլանտրանիլաթթվի, անտրանիլաթթվի հիդրոքլորիդի, ինչպես նաև գլիցինի և լեյցինի մեթիլէսթերների հիդրոքլորիդների հետ։

G. B. HAMBARDZUMYAN, E. G. MESROPYAN, A. A. AVETISYAN, A. S. GALSTYAN, I. R. HARUTYUNOVA

INTERACTION OF PHENYLGLICIDIL ETHER WITH SOME AMINO ACIDS

Summary

Interaction of phenylglicidil ether with amino acids is investigated namely with N-phenylanthranilic, hydrochloride anthranilic acids, and also with hydrochloride of a methyl ester leucine and glycine.

3,2004

Естественные науки

Биология

УДК 584.333.2

Ф. Г. АРУТЮНЯН

ЭМБРИОНАЛЬНАЯ ПЛОДОНОСНОСТЬ ГЛАЗКОВ ВИНОГРАДА В ЗАВИСИМОСТИ ОТ ЕГО СОРТОВОЙ ПРИНАДЛЕЖНОСТИ

Изучены процесс закладки эмбриональных соцветий и зоны плодоносных побегов у различных по происхождению сортов винограда. Показано, что высокая плодоносность глазков у всех сортов находится в средней зоне побега. В отличие от европейских, у амуро-европейских и американо-европейских сортов отмечена высокая способность закладки эмбриональных соцветий в запасных и центральных почках глазков. Этим и обусловлено быстрое восстановление плодоношения кустов после экстремальных погодных условий.

Выявление характера закладки эмбриональных соцветий и зоны наибольшей плодоносности у винограда имеет важное значение при определении оптимальной длины обрезки плодовых стрелок, а также восстановительной способности куста [1-2].

В зонах с резко континентальным климатом, где случаи значительных повреждений виноградников в зимний период очень часты, большой интерес представляет не только устойчивость данного сорта к морозам и заморозкам, но и способность его возмещать причененные ему зимними холодами потери в урожайности за счет обновления из замещающих почек плодоносных побегов [3–4].

Целью наших исследований являлось установление основных закономерностей закладки и дифференциации почек, а также эмбриональной плодоносности глазков (речь идет о количестве плодоносных основных и запасных почек) у сортов винограда различного происхождения в условиях Араратской равнины для выявления зависимости между степенью повреждения почек и восстановительной способностью куста, урожайностью.

Методы нсследований. Объектом изучения были выбраны следующие сорта: европейские (V. vinifera), американо-европейские (V. riparia, V. rupestris × V. vinifera), амуро-европейские (V. amurensis × V. vinifera). Для исследования отбирались по 10 побегов от каждого образца при длине плодовой стрелки в 15 глазков. Анатомо-морфологические изменения почек определяли по длине побега с помощью микроскопа MEU-15.

Результаты и обсуждение. Установлено, что размеры конуса нарастания растения имеют большое значение при определении количества и структуры формируемых им органов. Так, например, за неделю до цветения количество зачаточных листьев эмбрионального побега центральных почек сорта Бурмунк составляло у 5-го глазка 6 штук, а длина эмбрионального побега – 325*мк*.

Изучение динамики развития элементов почек разного местоположения в течение вегетации показало, что, независимо от сорта, диаметр конуса нарастания по мере развития зачаточного побега увеличивается и достигает максимума в начальный период созревания. В конце вегетации у средне- и морозоустойчивых сортов диаметр апекса нижних почек больше, а верхних – меньше. По количеству зачаточных листьев исследуемые сорта в конце вегетации существенно не отличаются друг от друга. Длина зачаточных побегов нижних узлов в конце вегетации была больше верхних.

Формирование зачатков соцветий в почках виноградной лозы – основа будущего урожая. В этом важном биологическом процессе большую роль играют благоприятные экологические условия, генотип сорта и определенное соотношение между его ростом и развитием.

		Основнь	Запасные	Среднее		
Сорта без соцвет		с 1-им соцветием	с 2-мя соц ве тиями	с 3-мя соцветиями	почки с 1-2-мя соцве- тиями, %	количество соцветий на побег
		(вропейские			
Эчмиадзин	45,0	25,0	30,0	0	5,8	14,7
Лернату	31,2	46,6	22,2	0	4,4	15,0
Шаумяни	63,3	30,0	6,7	0	0	6,5
Севан	60,0	33,3	6,7	0	0	7,0
Кахет	46,8	36,6	15,0	1,6	4,2	12,0
Адиси	40,1	38,3	21,6	0	5,8	13,0
		аму	ро-европейск	ие		
Меграбуйр	40,0	26,6	3,7	1,7	2,0	14,0
Димацкун	46,8	36,6	16,6	0	3,3	11,0
Кармрени	40,2	11,6	41,6	6,6	0,8	17,5
Неркарат	46,0	24,0	30,0	0	3,3	10,2
Лусакерт	29,2	33,8	34,9	2,1	6,2	14,9
Бурмунк	44,5	28,9	26,6	0	3,3	12,7
Мерцавани	54,8	13,3	29,3	2,6	4,7	16,0
Тавроси	57,9	26,6	15,5	0	0	8,0
Чаренци	23,4	36,6	36,6	3,4	3,3	15,0
Арташати кармир	46,6	41,6	11,8	0	0	9,8
американо-европейские						
Арази	70,0	23,3	6,7	1,0	2,8	5,8
Артагес	44,6	35,5	17,7	2,2	3,3	12,6
Неркени	58,5	21,6	16,6	3,3	3,3	10,3

Закладка соцветий в почках различных сортов винограда (с 1 по 15 глазок)

Нашими исследованиями показана различная степень закладки эмбриональных соцветий как по длине побега, так и внутри глазка (основная и запасная почки).

Из данных таблицы следует, что среди сортов европейского происхождения в наибольшей мере выделяются сравнительно морозоустойчивые сорта Эчмиадзин, Лернату, отличающиеся высокой степенью закладки 1– 2-х эмбриональных соцветий в центральной и запасных почках (14,7–15,0). Эти сорта обладают способностью в значительной степени восстанавливать плодоношение за счет запасных почек и тем самым в первый же сезон компенсировать потери, причиненные основным почкам виноградника низкими температурами.

Наряду с некоторыми морозостойкими сортами, имеющими высокие регенерационные возможности, большинство европейских сортов не обладает этой способностью. Например, сорта Шаумяни и Севан содержат 63,3 и 60% бесплодных основных почек и 30 и 33,3% почек с одним соцветием соответственно (см. табл.).

Характерной чертой сортов американо-европейского происхождения является наличие соцветий в запасных почках, а на долю основных почек с 2–3-мя соцветиями приходится от 1 до 17,7% общего их количества. Плодоносность почек технических сортов амуро-европейского происхождения составляет в среднем от 8 до 17,5 соцветия на побег (Кармрени, Лусакерт, Бурмунк и др.). Отличительной чертой этих сортов следует считать сравнительно высокое наличие среднего количества соцветий на побег, а также высокий процент основных почек с 2–3-мя соцветиями.

Сравнивая эмбриональную плодоносность изучаемых сортов, которые отличаются повышенной устойчивостью к морозам или восстановительной способностью, можно прийти к заключению, что они, независимо от происхождения, характеризуются высоким показателем эмбриональной плодоносности в основных и запасных почках. Это свойство наиболее сильно проявляется среди сортов амуро-европейского происхождения. Местные неустойчивые сорта (V. vinifera), наоборот, характеризуются более высоким процентом бесплодных эмбриональных побегов, низким процентом основных почек с двумя соцветиями и отсутствием плодоносных побегов в запасных почках.

Установлено, что, независимо от происхождения, у всех сортов основная нагрузка побегов соцветиями приходится на зону между 5–11-ым глазками. После 12-го глазка, как правило, имеет место резкое уменьшение числа соцветий, приходящихся на почку. Однако, не все сорта характеризуются одинаковым уровнем закладки соцветий по длине побега. У морозостойких сортов Меграбуйр, Чаренци, Эчмиадзин, Неркарат резкое увеличение числа соцветий на почку начинается с 3–4-го глазка, а до 9-го – оно держится стабильно, после чего несколько спадает при максимальном их количестве – 17,5.

Неморозостойкие сорта европейского происхождения (Севан, Шаумяни, Воскеат) отличаются невысокой плодоносностью глазков, и наибольшее количество соцветий находится лишь в зоне между 7–10-ым глазками. В этих глазках среднее число соцветий составляет примерно 1,35.

Таким образом, можно заключить, что высокая плодоносность глазков у всех сортов, независимо от их происхождения, находится в средней зоне побега.

Общеизвестно наличие высокого процента закладки соцветий в запасных почках почти у всех сортов амуро-европейского и американо-европейского происхождения. Независимо от происхождения, выявляется определенная взаимозависимость между высокой зимостойкостью, восстановительной способностью и эмбриональной плодоносностью запасных почек. Эти особенности, вероятно, связаны с генотипом сорта, биологической закономерностью, выработанной в процессе эволюции и направленной на ускоренное восстановление куста после воздействия на него экстремальных условий.

Научный центр виноградоплодовиноделия ГЗАО

Поступило 20.04.2004

ЛИТЕРАТУРА

- 1. Стоев К. Физиология винограда и основы его возделывания. т. 2, София, 1983, с. 47-60.
- 2. Вакарь Б.Г. Анатомо-гистохимические исследования тканей виноградной лозы. Кишинев, 1987, с. 185.
- 3. Погосян К.С. Физиологические особенности морозоустойчивости виноградного растения. Ер.: Изд-во АН Арм. ССР, 1975, с. 167.
- 4. Погосян К.С., Склярова И.А. Степень дифференциации и плодоносности почек у некоторых новых сортов винограда. Работа депанирована в Арм. НИИ НТИ, 29.07.1994, № 20, с. 94–97.

Ֆ. Գ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ

ԽԱՂՈՂԻ ԱՉՔԵՐԻ ՍԱՂՄՆԱՅԻՆ ՊՏՂԱԲԵՐՈՒԹՅՈՒՆԸ ԿԱԽՎԱԾ ՍՈՐՏԱՅԻՆ ՊԱՏԿԱՆԵԼՈՒԹՅՈՒՆԻՑ

Ամփոփում

Ուսումնասիրվել են խաղողի տարբեր ծագումով սորտերի սաղմնային ծաղկաբույլերի ձևավորման բնույթը և շիվերի պտղաբերության գոտիները։ Ի տարբերություն եվրոպական ծագման սորտերի՝ ամուրա-եվրոպական և ամերիկա-եվրոպական ձևերի շիվերի ամբողջ երկարությամբ նկատվել է աչքերի կենտրոնական ու փախարինող բողբոջներում սաղմնային ծաղկաբույլերի ձևավորման բարձր ունակություն։ Այս առանձնահատկությունը դրական դեր է կատարում էքստրեմալ պայմանների ներգործությունից հետո պտղաբերության արագ վերականգնման գործում։

F. G. ARUTUNYAN

EMBRYONIC FRUITING OF EYES OF GRAPES DEPENDING ON SORT ACCESSORY

Summary

The character of a laying of embryonic floscules and zones of fruiting of sprouts in many sorts of grapes of various origin was studied. In contrast to the sorts of European origin, such as Amour-European and American-European forms revealed high ability of a laying of embryonic floscules in spare and central kidneys of eyes for almost on all the length of sprout. Such a feature positively influences on accelerated testoration and formation of a crop after influence of extreme conditions.

Естественные науки

ՃԱՆԱՉՎԱԾ ԳԻՏՆԱԿԱՆԸ ԵՎ ՄԱՆԿԱՎԱՐԺԸ

(Պրոֆ. Նորայր Մանվելի Բեյլերյանի ծննդյան 75-ամյակի առթիվ)

Lnugud վաստակավոր գիտնական, պրոֆեսոր Նորայը Մանվելի Բեյլերյանի ծննդյան 75 և գիտամանկավարժական գործունեության 50-ամյակը։ Ծնվել է 1929թ. հուլիսի 14-ին Կահիրեում։ Ավարտել է տեղի Գայուստյան ազգային վարժարանը։ 1947թ. ընտանիքով ներգաղթել է Խորհրդային Հայաստան։ 1953թ. գերազանցությամբ ավարտել է ԵՊՀ-ի քիմիայի ֆակուլտետը։ 1953թ.-ից մինչե օրս աշխատում է ԵՊՀ-ի ֆիզիկական և կոլոիդների քիմիայի ամբիոնում՝ լեկցիոն ասիստենտից հասնելով պրոֆեսորի պաշսոոնին։ 1976-2000թթ. եղել է նչված ամբիոնի վարիչը, իսկ 2000թ.-ից այդ ամբիոնի «պատվավոր վարիչն» է։

Դեռևս ուսանողական տարիներից մեծ հակում ցուցաբերելով դեպի

գիտահետազոտական աշխատանքները, բացի հայերենից տիրապետելով մի քանի օտար լեզուների՝ Ն. Բեյլերյանը արժանացավ իր խստարարո ուսուցչի՝ ամբիոնի վարիչ պրոֆ. Հ.Հ. Չալթիկյանի ուշադրությանը։ Ներգրավվելով ուսումնագիտական աշխատանքներում՝ երիտասարդը կարճ ժամանակում դարձավ ամբիոնի հեռանկարային աշխատակիցներից մեկը։ 1964–1976թթ. եղավ ամբիոնին կից պրոբլեմային լաբորատորիայի վարիչը, իսկ 1976թ.ից՝ գիտական ղեկավարը։ 1962թ. Ն. Բեյլերյանը պաշտպանում է թեկնածուական և 1974թ.՝ դոկտորական թեզերը։

Պրոֆ. Ն. Բեյլերյանի գիտական գործունեության ոլորտը շատ լայն է։ Այն հիմնականում վերաբերում է էլեկտրոնադոնորների և ակցևպտորների միջև կոնդենսացված ֆազում ընթացող ռեակցիաների կինետիկայի և մեխանիզմի ուսումնասիրությանը։ Նա ստեղծել և հաջողությամբ՝ զարգացրել է մի շարք գիտական ուղղություններ։

Իր գործունեության սկզբնական շրջանում Ն. Բեյլերյանը գրաղվել է ջրային և օրգանական լուծիչներում էլեկտրոնադոնորների ներկայությամբ

մի շարք պերօքսիդների քայքայման կինետիկայի ուսումնասիրությամը. առաջարկել հեակցիաների ընդհանուր մեխանիզմ։ Պարզել է լուծիչի դերը և թթվահիմնային կատայիզը պերօքսամին ռեակզիաներում։ Առաջինը լինեյով՝ ուսումնասիրել է մի շարք պերօքսամին ռեակցիաներ միցելային համակարգերում։ Պարզել է միցելների դերը ռաղիկայաշղթայական ռեակօհաներում։ Նա քանակապես ուսումնասիրել է ինչպես հոմոգեն պայմաններում, այնաես էլ ուղիղ և շրջված էմույսիաներում մի շարք վինիլային մոնոմերների, քյորոպրենի պերօքսամին համակարգով հարուզված պոյիմերազման նաև օրինաչափությունները։ Պարզել է ամինի դերը պոլիմերազման բոլոր տարրական ակտերում։ Սիստեմատիկորեն զբաղվելով պերօքսիդների քիմիալով՝ խոստումնալից գիտնականը չէր կարող անտեսել ջրածնի պերօքսիդը։ Նա. Հայաստանում առաջինը լինելով, սկսում է ուսումնասիրել մի շարք հողերում կատալազային, նաև ֆոսֆատազային ակտիվությունը կինետիկական մեթոորվ։ Իսկ 1980-ականներից անդրադառնում է նաև ջրային ավացաններում ընթացող այնպիսի ռեակցիաներին, որոնցում էական դեր են խաղում ջրածնի պերօքսիդը և դրա քայքայման արգասիք հանդիսացող ազատ ռադիկայները։

Նրա ջանքերով ԵՊՀ-ում ստեղծվեց գիտական նոր ուղղություն՝ լազերաքիմիա և փոքր դոզաներով ոաղիացիոն քիմիա։ Յույց տրվեցին իմպուլսային լազերի ազդեցության մի քանի առանձնահատկությունները՝ հատկապես ռաղիկալային պոլիմերացման պրոցեսներում։

Վերջին տարիներին պրոֆ. Ն. Բեյլերյանը հիմնականում զբաղվում է այսպես կոչված «մոլեկուլային կազմակերպված համակարգերում» իրականացվող ռեակցիաների կինետիկայի և մեխանիզմի ուսումնասիրությամբ։ Կենսաբանական բջիջները, լինելով յուրատեսակ մոլեկուլային կազմակերպված համակարգեր, շատ կողմերով հիշեցնում են միցելային համակարգերը։ Այդպիսի համակարգերում նա ուսումնասիրում է ցածրամոլեկուլային ոչ ռաղիկալային ռեակցիաներ, նաև պոլիմերացում՝ ինչպես ուղիղ, այնպես էլ շրջված էմուլսիաներում։

Պրոֆ. Ն. Բեյլերյանը 1997թ. գիտական լայն համագործակցություն է սկսում Ֆրանսիայի Մոնպելիե-2 համալսարանի ֆիզիկա-օրգանական քիմիայի ամբիոնի հետ, որի արդյունքում հայտնաբերվում են այսպես կոչված «շրջված միջֆազային կատալիզ» և «միջերեսային կատալիզ» հետաքրքրական երևույթները։ Այժմ գիտնականը դրանք հաջողությամբ օգտագործում է ջրային միջավայրում, ջրում և օրգանական լուծիչներում լուծելի ռեագենտների միջև ռեակցիաներ իրագործելու համար։

Ն. Քեյլերյանի ղեկավարությամբ և անմիջական մասնակցությամբ կատարված աշխատանքների հիման վրա վերջին 40 տարիների ընթացքում մի շարք ներդրումներ են արվել «Նաիրիտ» ԳԱՄ-ում, Երևանի ոչ ալկոհոլային խմիչքների, շամպայն գինիների, քիմիական ռեակտիվների գործարաններում։

Տարիների քրտնաջան աշխատանքի հետևանքով վաստակաշատ գիտնականը իր սաների հետ հրատարակել է ավելի քան 620 գիտական հոդված։ Ունի 27 հեղինակային վկայական ու պատենտ, տպագրված 4 գիրք` ներառյալ առաջին անգամ մայրենի լեզվով գրված երկհատոր «Քիմիական կինետիկա» բուհական ուսումնական ձեոնարկը։ Ունեցել է շատ ակտիվ մասնակցություն ֆակուլտետում երկու նոր մասնագիտացումներ՝ «շրջակա միջավայրի քիմիա» և «կիրաոական քիմիա» ստեղծելու գործում։ Նրա ղեկավարությամբ 50 երիտասարդներ պաշտպանել են թեկնածուական և 7-ը՝ դոկտորական թեզեր։ Նրանցից վեցն այժմ պրոֆեսորներ են։

Պորֆ, Ն, Բեյլերյանը ուսումնագիտական աշխատանքներին գուգարեր ակտիվորեն մասնակցում է նաև հասարակական կյանքին։ Եղել է ԽՍՀՄ ՄՆ-ի գիտության և տեխնիկայի պետական կոմիտեին առոնթեդ՝ պեոօբսիդների թիմիայի խորհրդի անդամ։ 1991թ. ԽՍՀՄ ԳԱ ընդիանուր և տեխնիկական քիմիայի բաժանմունքի բյուղոյի որոշմամբ նշանակվել է կոլրիդների քիմիայի և Ֆիզիկաքիմիական մեխանիկայի գիտական խորհրդի անդամ։ Եղել է ԵՊՀ-ի և ԵՊՀ քիմիայի Ֆակույտետի գիտական խորհուրդների անդամ, ՀՍՀ գիտաճյուղային (քիմիա) խորհրդի, ԵՊՀ Գիտական տեղեկագիր հանդեսի խմբագրական կոլեգիայի անդամ։ Մինչև 1997թ. ներառյալ եղել է ՀՀ Կ և Գ նախարարության «քիմիա» առարկայի գծով գիտամեթողական խորհրդի նախագահը։ Այժմ «ֆիզիկական քիմիա» մասնագիտության գծով ahmuluu wumhawaatn jannhnn hunnhnnh, 22 GUU phuhuluu Shahluuh ինստիտուտի գիտական խորհրդի անդամ է։ Ծանաչված գիտնականը ոնտովել է Հայաստանի ճարտարագիտական ակադեմիայի թրթակից, էկդլոգների միջազգային ակառեմիայի և ՌՖ բնական գիտությունների ակադեմիայի հայկական մասնաճյուղի իսկական անդամ։ Նա՝ նաև «Հայաստան– Եգիպտոս մշակութային ընկերակցության» փոխնախագահն է։

Բարձր է գնահատվել պրոֆ. Ն. Բեյլերյանի գիտամանկավարժական գործունեությունը։ Նա արժանացել է ՀԽՍՀ բարձրագույն դպրոցի վաստակավոր գործչի պատվավոր կոչման, ինչպես նաև բազմաթիվ մեդալների և պատվոգրերի։ ԵՊՀ-ի հիմնադրման 80-ամյակի աոիթով պարգևատրվել է ոսկե մեդալով։ 1998թ. Ամերիկյան կենսագրական ինստիտուտի որոշմամբ արժանացել է «տարվա մարդը» տիտղոսին, իսկ 2004-ին արժանացել է Սվրոպայի բնական գիտությունների ակադեմիայի Կապույտ խաչ շքանշանին։

Այո՛, պրոֆեսոր Նորայր Մանվելի Բեյլերյանը բուհական աշխարհում ճանաչված և գնահատված անձ է։ Այսօր էլ նա շարունակում է ներշնչանքով կատարել իր սիրած գործը թե՛ կրթության, թե՛ գիտության ասպարեզներում։

Յանկանք նրան քաջառողջություն և նոր մտահղացումների իրագործում՝ ի շահ մեր ազգային գիտության զարգացման և նոր սերունդների դաստիարակության։

> ԵՊՀ ոեկտորատ, ԵՊՀ քիմիայի ֆակուլտետ

ԵՐԵՎԱՆԻ ՊԵՏԱԿԱՆ ՀԱՄԱԼՍԱՐԱՆԻ ԳԻՏԱԿԱՆ ՏԵՂԵԿԱԳԻՐ УЧЕНЫЕ ЗАПИСКИ ЕРЕВАНСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

Բնական գիտություններ

3, 2004

Естественные науки

СОДЕРЖАНИЕ

ОБЗОРНЫЕ СТАТЬИ

С.Г. Арутюнян,	В.И. Варданян,	Е.Б. Далян –	Особенности	комплексообразова-	
ния макромо	лекул ДНК с низи	комолекулярны	ми лигандами		3

МАТЕМАТИКА

М.С. Мартиросян - Равномерное суммирование биортогональных разложений по	
неполным системам рациональных функций в пространствах Харди	35
Ш.А. Григорян, С.М. Манукян, Г.Г. Оганян – Точные частные решения нели-	
нейного уравнения Клейна-Гордона и их приложения в механике жидкости и	
ra3a	42

МЕХАНИКА

A.C	Члннгарян –	Устойчивость	решения игров	ых задач н	аведения на	т-выпук-	
	лые компактны	е множества д	ля линейных сис	тем		4	9

ФИЗИКА

A.M.	Григорян,	A.A .	Макарян,	С.Ц.	Нерсисян,	Ю.С.	Чилингарян,	
	В.Л. Элбакян	– Иссл	едование отк	лонения	лазерного	луча при	прохождении	
	через воздушну	ю сред	у с температ	урным г	радиентом	с помощь	ю автоматизи-	
	рованной систе	мы мон	иторинга			••••••	•••••••••••••••••••••••	57

химия

A.P.	Мкртчян, Г.Н. Шапошникова, А.Г. Хачатрян – Исследование взаимодейст-	
	вия палладия(II) с тиомочевиной и фенилтиомочевиной спектрофотометриче-	
	ским методом	65
C.B.	Вартанян, Ш.А. Гюльназарян, Н.М. Давтян, А.Г. Хачатрян - Амперомет-	
	рическое определение рения в различных объектах некоторыми основными	
	красителями. Расчет произведений растворимости образующихся малораство-	
	римых соединений	69
A.A.	Амбарцумян, А.С. Сагиян, А.А. Петросян, Л.Л. Манасян, Г.М. Мкртчян,	
	А.А. Аветисян, В.И. Малеев, Ю.Н. Белоконь - Синтез новых хиральных	
	Ni(II) комплексов оснований Шиффа дегидроаланина	75

А.А. Амбарцумян	- Асимметрический синтез (S)-винилглицина через хиральный
Ni(II) комплек	с основания Шиффа дегидроаминомасляной кислоты с (S)-N-(2-
бензоилфенил)-1-(3,4-дихлорбензил)-пирролидин-2-карбоксамидом

БИОЛОГИЯ

Л.С. Габриелян – Спектрофотометрический анализ пигментов водоросли <i>Chlorella</i> pyrenoidosa, подвергнутой действию повышенных температур	
А.Х. Агаджанян, З.С. Минасян, А.А. Агаджанян, А.А. Захарян, Л.Г. Ананян – Ферменты катаболизма пролина и регуляция их активности в различных органах форели (Salmo ischchan).	
А.В. Даян, Н.Н. Ксаджикян, С.М. Минасяи, Э.С. Геворкян, А.Р. Саркисяи – Типологический анализ кардиогемодинамики у старшеклассников в условиях	
жзаменационного напряжения	
Р.С. Арутюнян, Н.С. Акопян, Н.Ю. Адамян - Роль СА, поля гиппокампа в	
регуляции дыхания при гипоксии	
М.Г. Таслахчыян - Микофлора Армении. Род Ascochyla Lib.	
Л.С. Шухин – Изучение начальных и поздних стадий эмбоногенеза некоторых	
сортов винюграда	

ГЕОЛОГИЯ

B.IL	Варданян – Основные принципы комплексирования гидрогеофизических и	
	аэрокосмических методов исследований с целью изучения ресурсов подзем-	
	ных вод	124
С.Г.	Айровн - Распространение продольных води в глинистых грунтах при широ-	
	KOM HHTEDBARC BRACKHOCTH	128
	1	

ГЕОГРАФИЯ

ГЛ	Тадсвосян,	Б.П. Милика	ням – Оценк	а ролн мор	фометрических	элементов	
	рельсфа в п	роцессе стокооб	разования (на	примере р.	Дебед)		133

сообщения

Н.Х. Месронии – Проверка ганотезы относительно корреляционной функции гвус-	
совского процесса	
А.А. Кутузан - Спектральная компрессия фемтосекундных импульсов	
М.В. Мартиросви, Л.Е. Саргсян, С.К. Григорян – Влияние структуры фазовой пленки на коррозионные свойства нерастворимых анодов на основе свинца	
Г.Б. Амбарцумян, Э.Г. Месропян, А.А. Аветисян, А.С. Галстан, И.Р. Арутюнова – Взаимодействие фенияглицидилэфира с некоторыми аминокиспотами	
 Ф.Г. Арутюнан – Эмбриональная паодовосмость глазков винограда в зависимости от его сортовой принадлежности 	

Признанный	ученый	н	педагог	(⊀	75-летню	ço	, ALLA	рождения	вроф.	Норайра	
Манвсловича	Бсйлеря	i Ha	.)			· 					161

3, 2004

Естественные науки

CONTENTS

REVIEWS

S.G. Haroutiu	nian, V.I.	Vardanyan,	Y.B. Daly	an – Th	e peculiaritie	es of comple	exation
of DNA n	nacromolec	ule with low	molecular	ligands			3

MATHEMATICS

M.S. Martirosyan - The uniformly summation of biorthogonal expansions by the inco-	
mplete system of rational functions in Hardy's spaces.	.35
Sh.A. Grigoryan, S.M. Manukyan, G.G. Ohanyan - Exact particular solutions of non-	
linear Klein-Gordon equation and their application in fluid mechanics	.42

MECHANICS

A.S.	Chlingaryan – Stability of the solution of game problems on guidance to <i>m</i> convex	
	and compact sets for linear systems	.49

PHYSICS

A.M	. Grigory an ,	А.Н.	Makaryan,	S.C. Nersisyan,	, U.S. Chilings	iry an ,
	V.L. Elbakyan	- Laser	beam rejectio	n investigation p	assing through air	r with
	temperature grad	ient using	g the monitorin	g automated system	m	

CHEMISTRY

A.R. Mkrtchyan, G.N. Shaposhnikova, H.G. Khachatryan – Investigation of interac- tion of palladium(II) with thiourea and phenylthiourea using spectrophotometric method	65
SV Vertanyan Sh & Cyulnezerven NM Devtyen H.C. Khechetryen - Amnero-	
metric determination of thenium in different objects by some organic basic dues	
Calculation of solubility products for obtaining insoluble compounds	69
H.H. Hambardzumyan, A.S. Saghiyan, A.A. Petrosyan, L.L. Manasyan,	
G.M. Mkrtchyan, A.A. Avetisyan, V.I. Maleev, Yu.N. Belokon' - Synthesis of	
new chiral Ni(II) complexes of Schiff's base of dehydroalanine	75

H.H	I. Hambardzumyan – Asymmetric synthesis of (S)-vinylglycine via chiral Ni(II)	
	complex Schiff's base of dehydroaminobutanoic acid with (S)-N-(2-benzoylphe-	
	nyl)-1-(3,4-dichlorbenzyl)pyrrolydin-2-carboxamide	

BIOLOGY

L.S. Gabrietyan – The spectrophotometric analysis of pigments of alga Chlorella pyrenoidosa, subjected to action of increased temperatures	91
A.Kh. Aghajanyan, Z.S. Minasyan, A.A. Aghajanyan, A.A. Zakharyan, L.G. Ananyan – Enzymes of proline degradation and their regulation in defferent	
organs of Salmo ischchan	
A.V. Dayan, N.N. Ksadjikyan, S.M. Minasyan, E.S. Gevorkyan, A.R. Sarkisyan – Typological analysis of cardiogemodinamic among pupils of high classes in terms	
of examination effort	100
R.S. Arutunyan, N.S. Hakopyan, N.J. Adamyan – The CA ₁ area of hippocampus	
reaction in respiratory regulation in hypoxia conditions	
M.G. Taslakhchyan - Micoflora of Armenia. Genus Ascochyta Lib.	111
L.S. Shukhian - The study of some sorts of grapes in the primary and late stages of	
embryogenesis	119

GEOLOGY

V.P.	Vardanyan – Application of general principles of hydrogeophysical and aerocos-	
	mic complex methods for investigation of ground water resources	.124
S.H .	Hayroyan - Transmission of longitudinal waves in loamy soils under the wide	
	range of humidity	128

GEOGRAPHY

.

G.P. Tadevosyan, B.P. Mnatsakar	yan – Evaluation of the mor	phometrical elements of
relief in the process of runoff	(on the example of Debed rive	:)133

COMMUNICATIONS

N.Ch. Mesropyan - Verifying hypothesis on the correlative function of Gaussian					
process	.141				
A.A. Kutuzian - Spectral compression of femtosecond pulses	.145				
M.V. Martirosvan, L.Ye. Sargsvan, S.K. Grigorvan - Influence of phase layer on the					
corrosive stability of lead based insoluble anodes					
G.B. Hambardzumyan, E.G. Mesropyan, A.A. Avetisyan, A.S. Galstyan,					
I.R. Harutyunova - Interaction of phenylglicidil ether with some amino acids	153				
F.G. Arutunyan - Embryonic fruiting of eyes of grapes depending on sort accessory	157				

Distinguished	scientist	and	teacher	(on the	e occasion	of	the	75™	anniversary	of	
prof. Norair	M. Beiler	yan).								· • • • • • • • • • • • • • • • • • • •	161

.

ԿԱՆՈՆՆԵՐ ՀԵՂԻՆԱԿՆԵՐԻ ՀԱՄԱՐ

- «Գիտական տեղեկագիր» հանդեսում հրատարակվում են Երևանի պետական համալսարանում կատարված տեսական ու փորձարարական բնույթի օրիգինալ հոդվածներ, հաղորդումներ ու նամակներ՝ մաթեմատիկայի, ինֆորմատիկայի, մեխանիկայի, ֆիզիկայի, ոադիոֆիզիկայի, քիմիայի, կենսաբանության, երկրաբանության և ֆիզիկական աշխարհագրության բնագավառներից, ինչպես նաև ակնարկային հոդվածներ՝ պատվիրված խմբագրության կողմից։
- Ընդունվում են գիտական նոր հրատարակությունների, մենագրությունների և դասագրքերի, ԵՊՀ մասնակցությամբ կայացած գիտաժողովների և գիտական դպրոցների, ինչպես նաև համալսարանում աշխատող անվանի գիտնականների հոբելյանների մասին համառոտ նյութեր։
- 3. Բնագրերը ներկայացվում են երկու օրինակով, համակարգչային շարվածքով՝ «Word» ծրագրով (հայերեն տեքստը՝ Times Armenian, ռուսերենը՝ Times New Roman տառատեսակներով)՝ հայերեն կամ ռուսերեն, ռուսերեն կամ հայերեն և անգլերեն ամփոփումներով։ Բոլոր երեք լեզուներով հեղինակների ազգանունները և հոդվածի վերնագիրը գրել գլխատառերով։ Տեքստը շարել 12 թt-ով, 1,5 ինտերվալով՝ աջ և ձախ կողմերում պահպանելով 3 սմ դաշտ։ Վերին ձախ անկյունում գրվում է УДК-ն, հաջորդ տողում հեղինակների անվանատառերն ու ազգանունները, այնուհետե հոդվածի վերնագիրը։ Դրան հետևում է հոդվածի համառոտ ամփոփումը։ Այն պետք է համապատասխանի հայերեն և անգլերեն ամփոփումներին, որտեղ պետք է շարադրված լինեն աշխատանքի գլխավոր արդյունքները՝ առանց գրական հղումների, 100 բառից ոչ ավելի ծավալով։
- Հոդվածի ծավալը աղյուսակներով չպետք է գերազանցի 10 էջը, հաղորդմանը՝ 4, նամակինը՝ 2:
- 5. Հոդվածները ձևակերպվում են հստակ ենթաբաժիններով։ Ներածություն կամ Խնդրի դրվածքը, որտեղ պետք է հիմնավորվի տվյալ հետազոտության անհրաժեշտությունն ու հրատապությունը, Հետազոտության մեթոդիկան և Եզրակացություն, որտեղ հստակ ձևակերպվում են ստացված արդյունքները և հետևությունները։
- 6. Հղումները պետք է լինեն քննարկվող խնդրի հետ առնչվող ժամանակակից հրատարակումների վրա։ Դրանք բերվում են բնագրի լեզվով ըստ հանդիպման հերթականության, կարգային համարը նշվում է քառակուսի փակագծերում ([1], [2–5])։ Հոդվածի վերջում նույն հաջորդականությամբ բերվում է գրականության ցուցակը՝ կարգային համարը, հեղինակների ազգանուններն ու անվանատառերը։ Պարբերական հրատարակությունների համար այնուհետև հաջորդում է ամսագրի ընդունված կրճատ անվանումը առանց չակերտների, հրատարակման թվականը, հատորի ու թողարկման համարները, հերթական համարը, էջը, գրքերի դեպքում՝ վերնագիրը, հրատարակման վայրը, հրատարակչությունը, թվականը։ Օհրատարակված աշխատանքի վերաբերյալ (բացի դիսերտացիայից) գրականության մեջ նշել չի թույլատրվում։
- 7. Միենույն նյութը աղյուսակի և նկարի ձևով ներկայացնել չի թույլատրվում։
- Թույլատրվում է 5-ից ոչ ավելի նկար, որոնք իրենց բացատրություններով պետք է ներկայացնել առանձին File-ով:
- 9. Հոդվածի տեքստի վերջում՝ ձախ կողմում, նշվում է այն ամբիոնը կամ լաբորատորիան, որտեղ կատարվել է աշխատանքը։
- 10. Հոդվածը ստորագրվում է բոլոր հեղինակների կողմից։
- Խմբագրությունը հեղինակին տայիս է առաջին սրբագրությունը, որտեղ ուղղման ենթակա են տպագրության սխալները։
- 12. Խմբագրությունը հեղինակներին ձրի տրամադրում է հանդեսի I օրինակ և հոդվածի 5 առանձնատիպ։