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Preface

This book describes a problem that has vexed mathematicians for nearly
four hundred years. In 1611, the German astronomer Johannes Kepler con-
jectured that the way to pack spheres as densely as possible is to pile them
up in the same manner that greengrocers stack oranges or tomatoes. Until
recently, a rigorous proof of that conjecture was missing.

It was not for lack of trying. The best and the brightest attempted to
solve the problem for four centuries. Only in 1998 did Tom Hales, a young
mathematician from the University of Michigan, achieve success. And he
had to resort to computers. The time and effort that scores of mathemati-
cians expended on the problem is truly surprising. Mathematicians rou-
tinely deal with four and higher dimensional spaces. Sometimes this is
difficult; it often taxes the imagination. But at least in three-dimensional
space we know our way around. Or so it seems. Well, this isn’t so, and the
intellectual struggles that are related in this book attest to the immense dif-
ficulties. After Simon Singh published his bestseller on Fermat’s problem,
he wrote in New Scientist that “a worthy successor for Fermat’s Last Theo-
rem must match its charm and allure. Kepler’s sphere-packing conjecture is
just such a problem—it looks simple at first sight, but reveals its subtle hor-
rors to those who try to solve it.”

I first met Kepler’s conjecture in 1968, as a first-year mathematics stu-
dent at the Swiss Federal Institute of Technology (ETH). A professor of
geometry mentioned in an unrelated context that “one believes that the
densest packing of spheres is achieved when each sphere is touched by
twelve others in a certain manner.” He mentioned that Kepler had been the
first person to state this conjecture and went on to say that together with
Fermat’s famous theorem this was one of the oldest unproven mathemati-
cal conjectures. I then forgot all about it for a few decades.

Thirty years and a few career changes later, I attended a conference in
Haifa, Israel. It dealt with the subject of symmetry in academic and artistic
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disciplines. I was working as a correspondent for a Swiss daily, the Neue
Zürcher Zeitung (NZZ). The seven-day conference turned out to be one of
the best weeks of my journalistic career. Among the people I met in Haifa
was Tom Hales, the young professor from the University of Michigan, who
had just a few weeks previously completed his proof of Kepler’s conjecture.
His talk was one of the highlights of the conference. I subsequently wrote
an article on the conference for the NZZ, featuring Tom’s proof as its cen-
terpiece. Then I returned to being a political journalist.

The following spring, while working up a sweat on my treadmill one
afternoon, an idea suddenly hit. Maybe there are people, not necessarily
mathematicians, who would be interested in reading about Kepler’s con-
jecture. I got off the treadmill and started writing. I continued to write for
two and a half years. During that time, the second Palestinian uprising
broke out and the peace process was coming apart. It was a very sad and
frustrating period. What kept my spirits up in these trying times was that
during the night, after the newspaper’s deadline, I was able to work on the
book. But then, just as I was putting the finishing touches to the last chap-
ters, an Islamic Jihad suicide bomber took the life of one my closest friends.
A few days later, disaster hit New York, Washington, and Pennsylvania. If
only human endeavor could be channeled into furthering knowledge
instead of seeking to visit destruction on one’s fellow men. Would it not be
nice if newspapers could fill their pages solely with stories about arts, sports,
and scientific achievements, and spice up the latter, at worst, with news on
priority disputes and academic battles?

This book is meant for the general reader interested in science, scientists,
and the history of science, while trying to avoid short-changing mathe-
maticians. No knowledge of mathematics is needed except for what one
usually learns in high school. On the other hand, I have tried to give as
much mathematical detail as possible so that people who would like to
know more about what mathematicians do will also find the book of inter-
est. (Readers interested in knowing more about the people who helped
solve Kepler’s conjecture and the circumstances of their work will also be
able to find additional material at www.GeorgeSzpiro.com.)

Those readers more interested in the basic story may want to skip the more
esoteric mathematical points; for that reason, some of the denser mathemati-
cal passages are set in a different font. Even more esoteric material is banished
to appendixes. I should point out that the mathematics is by no means rigor-
ous. My aim was to give the general idea of what constitutes a mathematical
proof, not to get lost in the details. Emphasis is placed on vividness and some-
times only an example is given rather than a stringent argument.
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One further math note: throughout the text, numbers are truncated after
three or four digits. In the mathematical literature this is usually written as,
say, 0.883. . . . , to indicate that many more digits (possibly infinitely many)
follow. In this book I do not always add the dots after the digits.

I have found much valuable material at the Mathematics Library, the Har-
man Science Library and the Edelstein Library for History and Philosophy
of Science, all at the Hebrew University of Jerusalem. The library of the
ETH in Zürich kindly supplied some papers that were not available any-
where else, and even the library of the Israeli Atomic Energy Institute pro-
vided a hard-to-find paper. I would like to thank all those institutions. The
Internet proved, as always, to be a cornucopia of much useful informa-
tion . . . and of much rubbish. For example, under the heading “On
Johannes Kepler’s Early Life” I found the following gem: “There are no
records of Johannes having any parents.” So much for that. Separating the
e-wheat from the e-chaff will probably become the most important aspect
of Internet search engines of the future. One of the most useful web sites I
came across during the research for this book is the MacTutor History of
Mathematics archive (www-groups.dcs.st-and.ac.uk/∼history), maintained
by the School of Mathematics and Statistics of the University of Saint
Andrews in Scotland. It stores a collection of biographies of about 1,500
mathematicians.

Friends and colleagues read parts of the manuscript and made sugges-
tions. I mention them in alphabetical order. Among the mathematicians
and physicists who offered advice and explanations are Andras Bezdek,
Benno Eckmann, Sam Ferguson, Tom Hales, Wu-Yi Hsiang, Robert
Hunt, Greg Kuperberg, Wlodek Kuperberg, Jeff Lagarias, Christoph Lüthy,
Robert MacPherson, Luigi Nassimbeni, Andrew Odlyzko, Karl Sigmund,
Denis Weaire, and Günther Ziegler. I thank all of them for their efforts,
most of all Tom and Sam, who were always ready with an e-mail clarifica-
tion to any of my innumerable questions on the fine points of their proof.
Thanks are also due to friends who took the time to read selected chapters:
Elaine Bichler, Jonathan Dagmy, Ray and Jeanine Fields, Ies Friede,
Jonathan Misheiker, Marshall Sarnat, Benny Shanon, and Barbara Zinn.
Itay Almog did much more than just the artwork by correcting some errors
and providing me with numerous suggestions for improvement. Special
acknowledgment is reserved for my mother, who read the entire manu-
script. (Needless to say, she found it fascinating.) I would also like to thank
my agent, Ed Knappman, who encouraged me from the time when only a
sample chapter and an outline existed, and Jeff Golick, the editor at John
Wiley & Sons, who brought the manuscript into publishable form.
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Finally, I want to express gratefulness and appreciation to my wife, For-
tunée, and my children Sarit, Noam, and Noga. They always bore with me
when I pointed out yet another instance of Kepler’s sphere arrangement.
Their good humor is what makes it all worthwhile. This book was written
in no little part to instill in them some love and admiration for science and
mathematics. I hope I succeeded. My wife’s first name expresses it best and
I want to end by saying, c’est moi qui est fortuné de vous avoir autour de moi!

This book is dedicated to my parents, Simcha Binem Szpiro (from War-
saw, Poland) and Marta Szpiro-Szikla (from Beregszasz, Hungary).
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C H A P T E R  1

Cannonballs and Melons

The English nobleman and seafarer Sir Walter Raleigh (1552–1618) is
perhaps an unlikely progenitor for an intellectual adventure. His schol-

arly achievements somewhat in doubt, he nevertheless set in motion one of
the great mathematical investigations of the past four hundred years: Some-
time toward the end of the 1590s, stocking his ships for yet another expedi-
tion, Raleigh asked his sidekick and mathematical assistant Thomas Harriot
to develop a formula that would allow him to know how many cannonballs
were in a given stack simply by looking at the shape of the pile. Harriot, no
slouch, solved the problem put to him by Raleigh. But understanding his
master’s needs like any good assistant, he took it a step further and attempted
to discover the most efficient way to stuff as many cannonballs into the hold
of a ship as possible. And thus a mathematical problem was born.

Harriot, Sir Walter’s junior by eight years, was an accomplished mathe-
matician, astronomer, and geographer. He was also an ardent atheist, a per-
suasion that he shared with his master but that was not to be flaunted. The
two men had been introduced to each other by a common tutor and their
shared interest in navigation and exploration was the basis for a lifelong
friendship.

One of Harriot’s few surviving written documents is his report on Sir
Walter’s expedition of 1585–1586 to the New World: A Briefe and True
Report of the New Found Land of Virginia. Published in 1588, it was the first
English book describing the first English colony in America. The report
became quite a hit with the literati of the time, was reprinted several times,
and was translated into Latin, French, and German. Because of this report,
Harriot is better remembered as an observer of the American way of life
than as a scientist.

Harriot’s scientific achievements are many, although he is sometimes
quite unjustly overlooked as one of the foremost thinkers of his time. In
1609, Harriot was the first man to look at the moon through a telescope,
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and he discovered sunspots and the moons of Jupiter independently of
Galileo. This we know only from his notebooks, however, because Harriot
hardly published anything. Most of his scientific findings are contained in
his magnum opus, Artis analyticae praxis ad Aequationes Algebraicas Resolven-
das (Applications of the art of analysis to the solution of algebraic equa-
tions), published in 1631, ten years after his death. In this book, Harriot
developed a numerical method to approach solutions of algebraic equa-
tions. He also advanced the techniques to solve equations of the third
degree, and is credited with introducing the signs “>” (greater than) and
“<” (less than) into mathematical notation. He contributed to the under-
standing of the refraction of light, binary mathematics, spherical geometry,
ballistics, and many other fields. In 1607 he observed a UFO in the night
sky that would later be identified as Halley’s comet. He was also one of the
first atomists (thinkers who were convinced that all matter is made up of
minute particles), at a time when this view was not at all popular. And he
had all the insights into crystalline order that were later attributed to the
more famous astronomer Johannes Kepler.

In answering Sir Walter’s question, Harriot devised a table that helped
determine the number of cannonballs on carts of given shapes. But as men-
tioned, Harriot went one step further. Not only did he devise formulas to
compute how many cannonballs were in stacks of a certain shape, but he
would also discover how to maximize the number of cannonballs that
would fit in the hold of a ship. In modern mathematical parlance, he won-
dered how three-dimensional spheres could be packed as densely as possi-
ble. After contemplating the question for a while, Harriot decided to write
a letter to one of the foremost mathematicians, physicists, and astronomers
of the time—Kepler, his colleague in Prague.

Although cannonballs are three-dimensional objects, the same problem
can also be formulated in lower dimensions, and we will first have a look at
the corresponding problem in one dimension and two dimensions. The
objects that interest us are spheres, which we define formally as the collec-
tion of all points in space, whose distance to the center is smaller or equal
to a certain radius. Space and distance are defined with respect to their
dimension. In one dimension, space is just a line. In two dimensions, space
is a surface. And three-dimensional space is the space all around us. So,
according to the definition, a one-dimensional sphere is just a piece of a
line with length twice its radius. To make this a bit more intuitive, look at
a line and decide on a certain point as the center of the sphere. Then move
first in one direction along the line until you have covered a distance of R,
and then do the same in the other direction. This is the one-dimensional
sphere of radius R. It may seem surprising at first that a straight line can be
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a sphere, since we usually think of spheres as round objects.1 But that should
not bother us; “roundness” has no meaning in one dimension.

A two-dimensional sphere is a more familiar object. Define a point in
the plane and then move a distance of R in all directions; this sphere con-
sists of the circle and of all the points inside it. You can picture it in the fol-
lowing way: Imagine a field with a pole in the middle. Attach a cow to the
pole with a rope of length R, and let it graze. After a while the cow will
have grazed off the grass at all the points that are no farther away from the
center than radius R.

Finally, the three-dimensional sphere is, of course, our cannonball.
Why stop at three dimensions? In fact, mathematicians—who don’t

believe anything unless you give them a watertight proof—have no diffi-
culty at all at defining something that nobody could ever see. They simply
define higher-dimensional spheres in the same manner as they defined
lines, circles, and balls: the collection of points in n-dimensional space
(where n can be any number) that are not farther away from the center than
the radius. Believe it or not, they can even tell you the volume of such an
n-dimensional sphere (see the table in the appendix).

Let us return to packings and decide what we mean by its density. After
all, we can always put an infinite number of spheres into an infinitely large
space, so where does that leave us? Well, it leaves us with an example of
why mathematicians are so nitpicky about seemingly obvious matters. So
before we embark on any further investigation, the notion of density must
be made precise. Mathematicians define the density of a packing as the ratio
of the volume of the space that is filled by the spheres to the volume of the
whole space. To compute the density, we must simply divide the volume
that the spheres occupy by the volume of the space. This holds for any
dimension and, in the limit, also for a space that extends to infinity. It may
seem a wee bit difficult to measure the volume of an infinite space, but such
minor impediments don’t stop mathematicians. They define the density of
a space as the limit of the above ratio as the space gets larger and larger.

Can you imagine what the densest packing of spheres is in one dimen-
sion? We already know that one-dimensional space consists of just a line,
and that one-dimensional spheres are pieces of such a line—for example,
matches or toothpicks. Now try to pack as many matches or toothpicks
along a straight line as possible. It won’t take you long to realize that the
densest way to pack them is to place the matches end to end. In fact, this
manner of packing achieves the best possible density:100 percent of the line
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is filled with matches and there is no space left over in between. This is so
obvious that even mathematicians do not require a proof.

Let us move to two dimensions. Here the problem is to place circles in a
plane. We illustrate with a simple example. Take some coins of the same
size, such as nickels, place them on a table, and push them around for a
while. You will quickly find that the densest pattern is the one where each
coin is surrounded by six others, that is, where the coins form a hexagonal
pattern. You don’t even have to be very careful when you place the coins,
just push them around a bit and they usually arrange themselves into that
pattern on their own.

What is the density of this pattern? Leaving the exact calculations for the
appendix, we can see from the picture that the basic pattern that determines
the packing is the hexagon, a regular six-cornered object. The whole sur-
face can be regularly tiled with hexagons. Part of each hexagon is filled by
circles, part of it stays empty. The hexagon can be partitioned into equilat-
eral triangles, and each triangle is identical to the others. We can therefore
restrict ourselves to computing the density of the triangles. As it turns out,
the spheres cover 90.7 percent of the surface.

For comparison purposes, let us determine the density of the coins when
they are arranged in a regular square packing. In this case the coins fill less
than 79 percent of the surface (see the appendix for details of the compu-
tation). Hence, in two dimensions the regular square packing is much less
efficient than the hexagonal packing.

It is important to note that the hexagonal packing is not necessarily a
denser packing than the square packing unless the surface is extended to
infinity. For example, using the hexagonal packing, we would be able to fit
only three spheres into a square of edge-length four, while four spheres
would fit into it when using the square packing. Something similar is also
true in three dimensions, and Kepler’s conjecture, the subject matter of this
book, refers to space that has no borders, that is, that extends to infinity.

We saw that the hexagonal packing is denser than the square packing in
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two-dimensional space, but is it the densest possible packing? It is not at all
obvious that no denser pattern exists, and the optimality of the hexagonal
pattern does require proof. But even though the result looks quite banal, a
rigorous proof was no simple feat, and it took until 1940 to find one that
satisfied the community of mathematicians. We will return to that problem
in chapter 4.

Back to Raleigh’s cannonballs. Upon receipt of Harriot’s letter, Kepler
did not have to reflect for long in order to come to the conclusion that the
densest way to pack three-dimensional spheres was to stack them in the
same manner that market vendors stack their apples, oranges, and melons.
In 1611 he published a little booklet that he presented as a New Year’s gift
to his friend Wacker von Wackerfels. It was called The Six-Cornered Snowflake,
and in it he described a method of packing balls as tightly as possible. This
marks the birth of Kepler’s Conjecture. We will have more to say about
snowflakes and their relationship to the packing of cannonballs in the next
chapter.

Let us use melons as an illustration. If melons were cube-shaped, every-
thing would be much simpler. They could be stacked side by side and on
top of each other, with no space left over in between. As was the case with
the matches, the density would be 100 percent. For exactly this reason
attempts have been made to breed cubic melons.2 Since produce is often
flown from hot countries to overseas markets, melons have to be loaded
onto airplanes. This could be done most efficiently with boxes loaded with
cube-shaped melons. So why, the reader may ask, did nature evolve round
melons (assuming, for illustration purposes, that melons are perfectly round
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objects)? And why are so many other fruits and vegetables approximately
round? Well, nature did not worry about limited space on ships or in the
holds of aircraft, but it did worry about moisture loss in hot countries. And
it strove to minimize this loss. An object’s loss of moisture is proportional
to the object’s surface:The more skin that is needed to cover the object, the
higher the moisture loss due to evaporation. And which shape minimizes
the surface for a vegetable of a given volume? As the reader may guess, the
answer is the sphere.3 If you compare two melons of the same weight, one
cube-shaped and the other round, the round one has nearly 20 percent less
surface than the cube-shaped one (see the appendix). By evolving round
melons, nature strove to minimize the surface in order to reduce moisture
loss. By the way, this is another of those vexing problems that took millen-
nia to prove. Archimedes already knew the presumably correct shape. But
only in 1894 did Hermann Amandus Schwarz (1843–1921) rigorously
prove that the round sphere is the shape that minimizes the surface for a
given volume.

Similar consideration may have led two mineral water distributors to dis-
similar conclusions about the best shape of the containers they should use
for distribution. One of the companies, by the name of Neviot, distributes
water in cube-shaped canisters. The other, Eden, delivers cylindrical bot-
tles. (Neither of them use round bottles, presumably because they would
roll off the trucks.) Apparently, Neviot attempts to maximize the number
of bottles it can fit onto a truck, and cube-shaped bottles do the trick. What
does Eden do? They apparently try to minimize the cost of the raw mate-
rial, since—for the same volume—cylindrical bottles require less plastic
than the cube-shaped ones. But Eden containers do have an important
advantage for the end user. The 20-kilogram bottles can be rolled from the
front door to the kitchen, while Neviot bottles must be carried.

Returning to the fruit stand, one method of displaying the wares is to
just place them helter-skelter into a box. With good reason, very few ven-
dors choose this avenue. Not only is it a very unappealing way to show off
melons, it is also inefficient. Experiments show that only about 55–60 per-
cent of a box’s volume is filled by randomly placed spheres. A better,
though not much more esthetic, procedure is to shake the box while the
melons are being poured in. Assuming that none of them are squashed in
the process, about 64 percent of the container can be filled in this manner.

A more esthetic way to place the melons is to arrange the first layer in
neat rows and columns, and then build the next layer by placing the next
batch carefully on top of the lower melons. Obviously this cubic stacking
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method has a serious drawback: the melons are unstable. The slightest jolt
from a customer would bring the whole stack tumbling down. But the sta-
bility of melon stacks—while of great concern to market vendors—carries
no interest for mathematicians.4 What does trouble them is that on an infi-
nitely large table the cubic stacking method is inefficient. The density only
reaches about 52 percent. So when the melon heap caves in, density actu-
ally increases by about 3–8 percent. Only dumb vendors would go to such
lengths in order to build an unstable heap of melons that is also inefficient.

Shrewd vendors can do better than that. As it turns out, in markets all
over the world the same universally accepted stacking method is used. First
the individual fruits are placed along a line from one end of the table to the
other. As we saw before, this is the densest packing in one dimension. Then
the next line is filled in such a manner that each melon of the second line
comes to lie not next to a melon of the first line, but next to the valley that
is formed between two melons. In mathematical lingo, the second line is
“transposed by half a melon.” This goes on until the table is filled. Looking
at the counter from above, the vendor now has the densest possible packing
in two dimensions.

Let us go to the next layer of melons, which means moving into the third
dimension. It is not quite obvious what the vendor should do. One method
that we could devise would involve placing each melon of the second layer
exactly above a melon of the lower layer. This results in a density of 60.5
percent (see the appendix). Unfortunately, this is not much better than the
random arrangement of melons.

But shrewd mathematicians can do even better than that. They are quick
to point out that between every three melons of the first layer a dimple has
formed. A larger quantity of fruit can be stacked if the melons of the sec-
ond layer are placed into the dimples of the first layer. On the next layer one
dimple is filled with a melon, the next dimple is left empty, one is filled, one
is left empty. And so on. As we will see in chapter 2 the density of this so-
called hexagonal close packing (HCP) reaches a whopping 74.05 percent. Not
only is this way of stacking melons better than the previous one, it is the best
way to stack melons. In other words, it is the densest packing. Market ven-
dors know it, you and I know it, and Harriot and Kepler knew it, but
mathematicians refused to believe it. And it took 387 years to convince
them of the truth of this fact.

At this point I want to divulge two interesting and very important facts
about the packing of spheres. They indicate that nothing is as simple as it
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looks, especially in mathematics. In 1883 the crystallographer William
Barlow (1845–1934) pointed out that there is not just one good way to
stack melons, but two. Barlow was a self-educated scientist who used the
leisure afforded by an inheritance from his father to study and work in
crystallography. Convinced that the manner in which atoms and mole-
cules are packed around each other provides the answer to the symmetri-
cal forms of crystals, he investigated different packing arrangements. After
many years of study, he published an article in the British journal Nature,
in which he described five arrangements of atoms in space. Two of them
are of interest here.

The first arrangement is the market vendor’s HCP packing that was
described previously. But let us inspect the strategy of the dumb vendors
again for a moment. They start out by placing their melons in neat rows and
columns. Haven’t we already rejected that arrangement as being inefficient?
Well, the crucial point is the next layer. Note that there are dimples again,
but this time they exist between every four melons. (In the HCP packing,
there are dimples between every three melons.) The dumb vendors place
the melons of the next layer into these interstices, and start building up the
stack. They receive a packing called the face-centered cubic packing (FCC).
Why would vendors do such a dumb thing, after we have shown that the
HCP is the most efficient arrangement? Well, the HCP is the most efficient
stacking method, but it is not the only one. Upon close—very close—
inspection, it turns out that the FCC and the HCP are the exact same pack-
ing, viewed from different angles! This seems rather unbelievable at first.
But a very instructive illustration in Barlow’s paper, which depicts a cut-
away of an FCC arrangement, proves that both arrangements are, in fact,
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equivalent. Since the FCC and the HCP represent the same packing, they
must, of course, have the same density of 74.05 percent. So the dumb ven-
dors aren’t so dumb after all.

Twenty-four years later the amateur scientist struck again. Together with
his colleague William Jackson Pope, later professor of chemistry in Man-
chester, Barlow wrote a paper that appeared in the Journal of the Chemical
Society in 1907. In this paper the two men showed that there are not just
two, but an infinite number of ways to stack melons in the most efficient
manner. (Actually, they were concerned more with atoms than with mel-
ons.) Let’s describe what they meant, by using the HCP.

After having arranged the first layer of melons, the vendor must make a
decision: Which dimples should he use for the second layer? He could use
the interstices marked with a Y in the picture. Or he could use the ones
marked with a Z. Let’s say he uses Y. In the following layer he again faces a
choice: should he use the interstices marked Z or those marked X? And so
on. After a few layers, the heap is stacked as XYZXZX . . . , or as
XZXZYX . . . , or as XYXYXY . . . , or as any other succession of layers
from among an infinite variety of possibilities. All of these arrangements
have a density of 74.05 percent! Wouldn’t Harriot and Kepler have been
surprised?

Do the infinitely many packings have something in common, apart from
their density? Yes, they do. In every one of those arrangements each sphere
is in contact with twelve others. But don’t confuse this statement with its
converse. Not every arrangement in which a sphere touches twelve others
is efficient. In fact, there exist very obnoxious arrangements that I will call
the dirty dozens. I will have more to say about them in later chapters. For the
time being, let’s just agree that, definitely, nothing is as simple as it looks in
mathematics.
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C H A P T E R  2

The Puzzle of the Dozen Spheres

Harriot’s pen pal, Johannes Kepler, was born near Stuttgart, Germany,
to Heinrich and Katharina Kepler (née Guldenmann). Heinrich and

Katharina got married on May 15, 1571, and seven months later, on
December 27 of the same year, little Johannes was born. Lest one believe—
perish the thought—that Katharina was already pregnant on her wedding
day, note that Johannes was born prematurely. He himself maintained that
he had been conceived on the morning after the wedding night, at thirty-
seven minutes past four o’clock. The precise moment of conception was of
some importance to Kepler since this learned man, the foremost scientist of
his time, dabbled in astrology from time to time.

His parents did not provide what one would call a warm home. His father
was an extremely unlikable man, described by contemporaries as a bad-
tempered hothead, and his mother was not much better. A small, thin woman,
garrulous and quarrelsome, she was known to have an exceptionally vile char-
acter, and apparently devoted her existence to making life miserable for Hein-
rich. Annoyed, he fled his home to join the Spanish army, leaving 3-year-old
Johannes at home with his mother. But Katharina, not one to accept defeat,
set out in search of her husband. She finally caught up with him in Belgium,
and we can only imagine Heinrich’s embarassment in front of his warrior
companions when this woman suddenly appeared out of the blue. Left with
no choice, Heinrich followed her back to Germany. But he could not bear the
homestead for long; he yearned for his drinking and brawling days. Soon he
snuck off again to rejoin his war buddies. While living it up once again in Bel-
gium, he committed some unknown misdemeanor and only narrowly
escaped the gallows. Three years later he returned to Germany, in ill health
and looking much worse for wear, to try his hand as an innkeeper. But that
career change did not suit Heinrich either and, fed up with his wife’s constant
bickering, he eventually decided that enough was enough. One day he left the
house, never to be seen again. How and where his life ended is not known.

10



In such an unfavorable environment, the as-yet-hidden gifts of the
young Johannes would never have stood a chance of manifesting them-
selves, had it not been for a gifted children’s program that the local noble-
men, the dukes of Württemberg, established in the town of Leonberg.
Johannes was accepted to the school. He excelled in his studies but did not
become the life of the party. Apparently he had inherited his mother’s dis-
agreeable disposition, was nasty to most of his classmates, and constantly got
involved in fights and petty arguments.

When Kepler eventually wrote his life story, it read, in part, like this:

Holp openly detested me and on two occasions we got into fist
fights. . . . Molitor disliked me because I had betrayed him and
Wieland. . . . Köllin didn’t hate me, but I hated him. . . . Braunbaum
turned from friend to foe because of my boisterousness. . . . Hulden-
reich became hostile because of my rash accusations. . . . Seifert I dis-
liked because everyone else disliked him. . . . Ortholf could not stand
me. . . . Spangenberg was angry at me because I corrected him, even
though he was the teacher. . . . Kleber detested me because he thought
I was a rival. . . . Rebstock was ticked off whenever someone praised
my abilities. . . . Husel tried to block my progress. . . . Between Dauber
and myself there was a quiet jealousy. . . . Lorhard would have nothing
to do with me. . . . After Jaeger had lied to me I was insulted for two
years. . . . The rector became my enemy because I did not accord him
sufficient honor. . . . Murr became my enemy because I reprimanded
him.

And so on, and so on. Not once did Kepler mention a friend, except to
say that one had also turned into an enemy. Of course, the bad vibes
weren’t the poor boy’s fault. The deeper reason for all this hatred and
resentment was that, as Kepler himself put it, “Mercury was in the square
of Mars, the Moon in the trine of Mars and the Sun in the sextile of Sat-
urn.” On top of that Kepler was a hypochondriac, suffering from one ill-
ness or another throughout his youth, although there was no astrological
explanation for that.

But he did manage to learn Latin at school. This would come in handy
later on, since it was the lingua franca of science at the time, much as English
is today. After three years of study, Kepler successfully passed the state exam
and obtained one of the coveted places at the convent schools of Adelberg
(where the day started at four o’clock with the singing of psalms) and, later,
at Maulbronn. In 1589, half a year after his father’s final departure, the
newly graduated Baccalaureus entered college with the idea of eventually
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becoming a man of the cloth. But, as was the custom at the time, Kepler
had to take two years of classes in the faculty of arts of Tübingen Univer-
sity before embarking on the study of theology. After receiving the Master
of Arts degree, Kepler was finally allowed to enter the theological faculty.
The year 1594 saw him near the end of his studies, and Kepler started look-
ing around for a job as a clergyman. But to his great chagrin a hitch devel-
oped that would prove of everlasting benefit to science and to the world.

One of his teachers, the professor of mathematics and astronomy
Michael Mästlin, had noticed in this young prodigy an extraordinary talent
for science. He therefore recommended that upon graduation Kepler be
sent to the Austrian town of Graz to serve as mathematics teacher in the
cathedral school. The theological faculty of Tübingen was also not unhappy
to rid Kepler of his ecclesiastical ambitions, since he had shown too inde-
pendent a mind for their taste. The problem, in their eyes, was that he
showed an interest, fueled by his teacher Mästlin, for the Copernican solar
system. That system had the sun in the center of the universe instead of the
earth and was, therefore, frowned upon by the holy men. So, in spite of his
protestations, Kepler was sent to Graz to begin his duties as a schoolmaster.

His new location turned out not to be quite as bad as he had feared. He
set eyes on a young noblewoman, Barbara Müller von Mühlegg, and
decided to seek her hand in marriage. But before he could wed his heart-
throb, her family insisted that the bridegroom prove that he was of noble
descent. Kepler journeyed back to his hometown to procure the required
documents. He succeeded in obtaining them, but upon his return to Graz
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after several months he found that some rivals had almost convinced Bar-
bara to forget about him. It took no little effort on his part to change her
mind again. The wedding finally took place on February 9, 1597.

Teaching did not fulfill him, and Kepler kept himself busy reworking the
town’s calendar. This task did not just involve the assignment of weekdays
to the days of the months, but included astrological predictions. Kepler
foretold a few political events—based more on common sense than on the
position of the planets—which turned out to be true. He also predicted a
freezing winter, and according to contemporary accounts the season actu-
ally turned out to be so icy cold that people’s noses fell off when they blew
them! Such prophesies increased his stature immensely among the towns-
folk, though not among the faculty and senate of his alma mater. In spite of
his being a devout Protestant, Kepler had used the calendar reform intro-
duced by Pope Gregory XIII in 1582. The Lutheran senate of the Univer-
sity of Tübingen did not hide its displeasure.

This venture rekindled Kepler’s interest in astronomy—in the number of
planets, their sizes, and their orbits. His religious beliefs remained firm,
however, and Kepler sought a theological explanation to his questions.
Since God had created a perfect world, he thought it should be possible to
discover and understand the geometric principles that govern the universe.
After much deliberation Kepler believed that he had found God’s principles
in the regular solids. The key idea, so it is said, came to him in the middle
of one of his classes. His explanations of the universe were based on an
imaginary system of cubes, spheres, and other solids that he thought were
fitted between the sun and the planets. Kepler wrote up his theory and pub-
lished it in a book entitled Mysterium Cosmographicum. This tome did not
unveil any mysteries of the planetary system. It couldn’t have, since no
solids exist that are suspended in the universe. But the book did come to the
attention of Tycho Brahe, the great Danish astronomer.

Brahe was born in 1546, the first son of a noble Danish family. Problems
started before his birth because the father had promised his brother, a child-
less vice-admiral, that if the newborn would be a boy, he would let him
adopt and raise him. But when the father first set eyes on the cute little
baby, he reneged. Uncle Jörgen accepted this with understanding, but after
a second son was born to Mr. and Mrs. Brahe, Jörgen thought that surely
they had no further need for their firstborn and without much ado kid-
napped Tycho. The father thought otherwise and threatened to kill his
brother. He only calmed down when he realized that his son stood to
inherit a great fortune from the childless uncle. The young boy was sent to
study Latin so that he could eventually become a lawyer and enter Den-
mark’s civil service. But at age thirteen, Tycho witnessed an event that
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would shape his career: he observed a partial eclipse of the sun that had
been predicted for that day. The openmouthed boy decided then and there
that astronomy would be his profession. But first he had to begin his law
studies in the German town of Leipzig. His secret infatuation with astron-
omy never waned, however.

Brahe moved to Augsburg in Germany and joined the local stargazer’s
club. The young man convinced his newly found amateur astronomer
friends that what they needed were more accurate observations, so the club
commissioned a wooden sextant—a contraption with which a skilled
astronomer could determine the position of the stars—with a diameter of
12 meters. Along its edge notches were cut approximately every 1.5 mil-
limeters, which corresponds to gradations of 1′ (1′ is one-sixtieth of a
degree; 360 degrees form a circle). This allowed the determination of the
whereabouts of celestial objects to an unprecedented accuracy.

His rich-kid upbringing made Brahe somewhat of a spoiled brat, and he
liked to think of himself as the best and the brightest. One day he got into
an argument with another student about who was the better mathematician
and it was decided to settle the question once and for all in good Teutonic
fashion:by fighting a duel. In the course of this contest, part of Brahe’s nose
got cut off. It is not recorded what body part, if any, his opponent lost and
so conclusive proof as to who was the better mathematician is missing.

It is certain, however, that Brahe was a gifted inventor of astronomical
instruments and that he was equally talented in using his equipment. He
must also have had a high tolerance for boredom since he was able to sit for
hours in an observatory looking at the stars. King Frederick II of Denmark,
a patron of the arts and the sciences, made Brahe an unprecedented offer:
the picturesque island of Hven would be his, together with a castle and all
the amenities that a scientist could wish for. The property came with a
paper mill and a printing press, and all inhabitants of the island were to be
Brahe’s subjects. The castle even had its own little prisonette, in which dis-
obedient farmers could be incarcerated. Brahe graciously accepted and set
out to build a magnificent observatory, which he called Uraniborg.

Even though the master liked to entertain visitors, and many evenings
were filled with parties and festivities, Brahe spent most nights during the
next twenty years sitting in his observatory with his assistants, following and
recording planetary motions. At times, four teams of observers and time-
keepers measured the same thing simultaneously, thus reducing errors to a
minimum. Brahe performed his measurements not only to an unparalleled
precision but also, and equally important, with uninterrupted continuity.
His meticulously kept journals were to be the key to a new understanding
of astronomy. And did he ever know it. He jealously guarded them like a
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treasure and did not permit anyone access to their content. The celestial
system he envisioned was to become an improvement on both the Ptole-
maic system, which placed the earth at the center of the universe, and the
Copernican system, which put the sun at the center of the planets’ circular
orbits. Brahe proposed a system—which was, of course, to carry his
name—that put the earth at rest, had the sun going around the earth, and
all planets going around the sun.

But before he was able to achieve his aim, the haughty scientist picked a
quarrel with the Danish king. Apparently fame had gone to Brahe’s head
and he had become quite a tyrant toward the inhabitants of the island Hven.
The prisonette that came with the castle became instrumental in his down-
fall. Brahe took his disciplining authority seriously and had an unruly
farmer and his family imprisoned. The poor man appealed to the High
Court of Denmark and the judges, in a remarkable display of equality
before the law, ordered Brahe to free the man. But the cocksure astronomer
would have nothing of that, and kept the man in chains. By that time, how-
ever, King Christian IV had ascended the throne, and the new king was no
longer as well disposed towards the vain and conceited astronomer as had
been his predecessor. Fed up, the king reduced the salary that came with
Brahe’s cushy job. This didn’t sit well with Brahe, and the deeply insulted
astronomer packed up his instruments, took his family and his journals, and
left Denmark.

It took Brahe two years to land a new job, but in 1599 he got lucky. And
what a job it was. Brahe was asked by Emperor Rudolph II to become
“Imperial Mathematician” to the court in Prague. Among the many perks
of the job was the prospect of a position—although no money—for an
assistant, and Brahe immediately remembered Kepler. Actually, at the same
time the young teacher was about to embark on a job hunt himself. Prob-
lems had developed between his Protestant school and the Catholic town of
Graz. All members of the faculty were forced to sign an affidavit about their
religious denomination. Kepler, unwilling to lie, declared that he was a
Protestant, knowing full well that his convictions would sooner or later get
him booted out of Graz. Five days after his twenty-ninth birthday, on Jan-
uary 1, 1600, Kepler left the town for a half-year stint in Prague. He
returned the following June, but only to pack up. In September he left for
good with his wife Barbara and his child, to take on the post of Mathemat-
ical Assistant to the Imperial Mathematician. His salary was to be paid by
his new master.

The collaboration between the master and his new assistant did not turn
out to be an easy one. Brahe gave Kepler the task of figuring out the move-
ments of the planets, which, as he had already discerned, did not follow 
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circular orbits. The assistant was supposed to do this based on Brahe’s own
observations of the stellar positions, but without getting full access to the
data. Only when the master felt like it, did he hand out bits and pieces of
the compiled data. Apparently, he was afraid that the bright assistant would
surpass him. And he was quite right to fear his devious assistant. “Tycho is
very stingy as to communicating his observations. But I am allowed to use
them daily,” Kepler wrote to his former teacher, adding, “if only I could
copy them quickly enough!”

To keep him busy, Brahe put the frustrated Kepler to work on his obser-
vations of the planet Mars, which had the least circular orbit. Kepler soon
discovered that the orbit of Mars is an ellipse. Fortunately for Kepler—
unfortunately for Brahe—the fruitless relationship ended after one year,
when the latter died from a bladder infection. The illness had afflicted
Brahe after he had indulged in an especially sumptuous meal. Emperor
Rudolph II lost no time in promoting Kepler to the post of Imperial Math-
ematician, and the erstwhile assistant inherited Brahe’s prized possession,
the journals. Actually, inherited may be too nice a word. Stole would more
aptly describe the act with which Kepler managed to take hold of the log
books before Brahe’s heirs could lay their hands on them.

Unfortunately the lofty title that went with the imperial job did not carry
with it a commensurate financial reward, since the imperial treasury was
close to empty. Nevertheless, Kepler labored day and night on an explana-
tion of the planetary system and was finally able to publish his Astronomia
nova in 1609. But the hard work had taken its toll, and Kepler soon suffered
various illnesses and bouts of depression. In 1612 his wife and his favorite
son died of fever and smallpox. Struck with sorrow about his son’s death—
he did not care much about his wife even while she was alive—Kepler
wanted to leave Prague, which had become a cauldron of religious and
political strife. But he was forced to remain, and only when his sponsor,
Emperor Rudolph II, died a few months later was he allowed to depart.

Kepler moved back to Austria, made his home in the town of Linz, and
took another wife, Susanna Reuttinger. For the next fourteen years he
found sufficient calm in Linz to continue his work on astronomical tables
and publish some of his fundamental works. But life was not all roses. Reli-
gious doubts tormented Kepler, and when he confided in a clergyman, the
good man lost no time in making Kepler’s hesitations known to the proper
authorities. The astronomer was told to lay off theological speculations and
concentrate on mathematics.

Then, out of the blue, another catastrophe hit: Kepler’s mother, Katha-
rina, was accused of being a witch. Knowing her disagreeable temperament,
accusations of ill temper would not have been surprising, but a witch? That
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seemed a bit too much, even for a woman of Katharina’s exceptionally
obnoxious character, since a conviction carried the death sentence. Katha-
rina’s own aunt had suffered that fate a few years previously. What had actu-
ally happened was that Katharina, who liked to collect all kinds of herbs
with supposedly medicinal powers, had got into a dispute with some old
hag, a certain Mrs. Reinhold, who had previously been her best friend.
This woman, Katharina’s match in nastiness, decided to pay her back by
accusing Katharina of having given her a potion that made her suffer bouts
of depression. All of a sudden other townsfolk remembered that they too
had fallen ill after drinking Katharina’s potions, and the witch hunt started.

Kepler spent six difficult years fighting for his mother’s innocence.
Katharina was arrested by the authorities and Kepler found her in the
prison of Güglingen, bound hand and foot and guarded day and night by
two watchmen. Since Kepler had to pay the guards’ salaries, he wrote a let-
ter to the court asking whether one watchman would not suffice to guard
this seventy-three-year-old woman, all the more so since she was shackled
to a wall anyway.

Against all odds, Kepler managed to get a verdict of innocence for his
mother. Actually, Katharina herself was quite instrumental in winning her
eventual release. The generally used interrogation method of the time was
to extract a confession by torture. In Katharina’s case the court made an
exception. It was decided to lead the suspected witch to the torture cham-
ber and show her the instruments with which she would be tormented if
she didn’t tell the interrogator what he wanted to hear. The good men
believed that the mere exhibition of the tweezers, pulleys, chains, red-hot
irons, and other equipment would make her admit to any wrongdoings.
Any lesser woman would have succumbed to such gentle persuasion, but
not this stubborn lady. She would not confess. The increasingly frustrated
torturer hauled over more and more sinister looking instruments, but to no
avail. Finally the old woman fainted and the poor torturer gave up. Based
on such conclusive evidence, the court declared Katharina Kepler innocent
in October 1621. But the old woman was not to enjoy her victory for very
long; half a year later she died.

Kepler managed to complete work on the astronomical tables and then
traveled on to Prague where he presented his work, duly dedicated to his
excellency, at court. The emperor was well pleased and awarded Kepler an
extraordinary honorarium of 4,000 florins. This generous gesture cost him
nothing and did Kepler little good, since it was simply added to the sum the
emperor already owed the imperial mathematician.

Desperately looking for funds, Kepler rode 500 kilometers on horseback
to the town of Regensburg. There he hoped to collect the emperor’s out-
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standing debt from the Reichstag, the assembly of German dignitaries, who
should have honored the emperor’s promises. The trip took nearly four
weeks. Foul autumn weather got the better of Kepler. Ill and destitute, he
eventually arrived in Regensburg to find shelter at a friend’s house. But his
last respite was to last barely a week. On November 15, 1630, six weeks
before his fifty-ninth birthday, Kepler, the prince of astronomy, died.

Kepler’s legacy included many significant achievements. His main tri-
umph, however, was to bring the Copernican system into its final form. As
we noted, Copernicus believed that the planets of the solar system turned
in circles around the sun. Kepler took a closer look at the meticulously
compiled observational data he had inherited—or pilfered, depending on
whose side you are on—and realized that the planets actually move in
ellipses, with the sun at one of the focal points. This was the so-called first
law of planetary motion. He was able to formulate two more laws: The
speeds of the planets’ movements are not uniform, and the squares of the
periods of evolution of any two planets are proportional to the cubes of
their distances from the sun. He arrived at these results simply by gazing at
the series of numbers—as he gazed at the planets themselves—until a pat-
tern appeared among the numbers.

But Kepler did not only concern himself with big questions about the
heavenly bodies, he also showed an interest in the small-scale workings of
nature. And here lies his importance for our investigation. Kepler’s conjec-
ture is contained in the little booklet The Six-Cornered Snowflake, which he
wrote in 1611 as a New Year’s gift to his friend Wacker von Wackerfels. Von
Wackerfels, a traveler, intellectual, and sometime diplomat for the Bishop of
Breslau (Wroclav), had become friendly with Kepler during his stay in
Prague.

Written in a colloquial style in Latin, the booklet is rife with private jokes
that few people now understand, and contains numerous references to
Greek mythology and natural sciences that only well-read contemporaries
would grasp. Apparently, both Kepler and von Wackerfels kept abreast of the
current list of bestselling authors—Virgil, Homer, Aristophanes, Euripi-
des—and knew all the references. (Well, not quite. In his efforts to appear
well versed, Kepler refers to a fable by Aesop that simply doesn’t exist.)

Compared with the importance of his voluminous tomes on astronomy,
the little treatise on snowflakes made few waves, and it is hardly mentioned
in some of the bibliographies of Kepler’s works. But its importance must
not be overlooked. This was one of the first times ever that an attempt was
made to explain the physical forms of crystals and plants with the tools of
a scientist. Kepler’s contemplations in this little booklet have been
described by a biographer as “a scientific judgment of the highest caliber.”
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In the treatise, Kepler investigates the reasons why snowflakes are shaped as
they are. But before turning his attention to snow, Kepler examined three
questions concerning nature’s forms: why honeycombs are formed as
hexagons, why the seeds of pomegranates are shaped as dodecahedra, and
why the petals of flowers are most often grouped in fives.

Bees build their hives in a pattern of hexagons that are closed at the bot-
tom by three quadrangles. Hence all bees, except those in the “corner
offices,” are surrounded by six neighbors on the sides, and by three more
neighbors on the bottom. The little creatures leave the tops of the hives
open, for if they added roofs—so the imperial mathematician astutely
pointed out—they would have no exit from their little condominiums. But
it was the floorplan that caught Kepler’s attention, and he wondered about
possible explanations for its hexagonal shape. He thought that there were
three reasons. His step-by-step deductions are beautifully reasoned, even
though there are some holes in the arguments.

First Kepler observed that the hexagon is a shape that tiles a surface with-
out gaps. But then so do squares and triangles. So why hexagons? The
answer, according to Kepler, is that the two other shapes have less surface
than the hexagon on which honey can be stored. Here the great scholar
resorts to a bit of handwaving, since he neglects to specify a common scale
with which the surfaces of the three geometric forms could be compared in
a fair manner. After all, a large triangle has a bigger surface than a small
hexagon. What he probably meant was that when comparing squares, trian-
gles, and hexagons with equal edge sizes, the hexagon wins. Or that among
triangles, squares, and hexagons with the same surface, the latter minimizes
the lengths of the walls.1

Be that as it may, the master then turns to a second reason for the hon-
eycomb’s hexagonal form. The most comfortable dwelling for bees is,
according to Kepler, circular. And of the three shapes that can tile a surface,
the hexagon’s lack of sharp corners makes it resemble a circle most closely.2

Therefore, it is superior to triangles and squares. But if comfort, storage
space, or the parsimony of building materials were the guiding principle for
the bees’ condominium, than why not build round hives? After all, less wax
is required for the construction of the walls of a round room than for the
walls of a hexagonal room with the same surface. Here comes the final rea-
son for the hexagonal shape of the bee dwellings, which is itself threefold.
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First, in the construct-your-own-hexagon project, neighboring bees can
share the work by building common walls, one of them working on either
side. In a build-your-own-circle scheme each bee would be on its own.
Next, Kepler claims that the straight edges of the hexagon give the hive
more stability than do round walls, and make it less susceptible to crushing.3

Finally, and maybe most convincingly, gaps between the spheres would let
the cold seep into the hive and should, therefore, be avoided. Actually,
Kepler here resorts back to his initial argument, since gap-less floorplans
were the requirement he started out with. All these reasons should suffice—
so Kepler believed—to explain why the Creator imprinted bees with the
archetype of the hexagonal pattern. He saw no need to delve into further
arguments, but did think it appropriate to also mention “the beauty, per-
fection, and noble figure” of hexagons.

Kepler then turned his attention to pomegranates and it is here that he
formulated the conjecture that was to keep mathematicians, imperial and
otherwise, busy for nearly four centuries. Kepler observed that the seeds of
pomegranates are of a rhomboid shape, with twelve faces. He correctly sur-
mised that this shape arises when the seeds are pressed together in the con-
strained space of the fruit. As long as they are small, the seeds are round and
float around freely. But as they grow, they apparently organize themselves in
such a manner that each seed in the crowd is surrounded by twelve others
that are pressed against it.

This observation was ostensibly confirmed more than a century later, in
1727, by the English botanist Stephen Hales (1677–1761).4 In his book Veg-
etable Staticks, the world’s first work on plant physiology, Hales reported
experiments on plant respiration and transpiration. In one of these experi-
ments he put peas into a pot and then applied pressure. “I compressed 
several fresh parcels of Pease in the same Pot, with a force equal to 1600,
800, and 400 pounds, in which Experiments, tho’ the Pease dilated, yet
they did not raise the lever, because what they increased in bulk was, by the
great incumbent of weight, pressed into the interstices of the Pease, which
they adequately filled up, being thereby formed into pretty regular Dodec-
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3 Engineers would dispute this stability argument. Even in the Middle Ages church
builders knew, for example, that arches above doorways could support more weight
than flat doorframes.
4 Stephen Hales’s namesake, Thomas Hales, the mathematician whose struggles with
Kepler’s conjecture will be described in the later chapters, wrote of this botanist: “Even
though Stephen Hales married late and died without children, so that we can’t claim
him as an ancestor, the scientists in my family have informally ‘adopted’ him into our
family.”



ahedrons.” Had he used a force of more than just 1,600 pounds, his veg-
etables would have been pulped into pea soup, instead of emerging as reg-
ular, twelve-sided dodecahedra.

Or so Hales thought. Unfortunately, his conclusion was incorrect. After
all, it is not so easy to tell whether a pea has been squashed into a dodeca-
hedron or into some other kind of polyhedron. Presumably Hales was led
to believe that he saw dodecahedra by observing many pentagonal faces on
the peas. (A regular dodecahedron has pentagonal faces.) But they could
not all have been dodecahedra because of one irrefutable fact: in the same
manner that pentagons cannot tile a floor, dodecahedra can’t fill three-
dimensional space without gaps.

I will have more to say about that in later chapters, but before we leave
Hales, we must partially rehabilitate him. He did not really claim that
squashed peas became regular dodecahedra. Rather, he said that they
become pretty regular dodecahedra. While he may have found dodecahedra
pretty to look at, it is more likely that he meant that the dodecahedra he
saw weren’t exactly regular. Hales’s experiments were repeated in the 1950s
by various physicists, such as J. D. Bernal and G. D. Scott. They compressed
ball bearings in various packings and determined that the FCC, the face
centered cubic packing of chapter 1, produced the tightest packing.

Hales’s somewhat faulty conclusion did confirm Kepler’s observation,
however. After seeds and peas have been squashed and squeezed, they will
all be touched by twelve neighbors. If seeds accidentally found themselves
placed along parallel rows and columns, and seeds of the next higher planes
came to lie exactly above the ones of the lower planes, they would become
cubes when pressed together. But—and here Kepler performs an enormous
leap of faith—this does not represent the densest packing: “sed non erit arc-
tissima coaptatio.”

There are a couple of problems with this statement. First, Kepler takes it
for granted, without further justification, that nature, or the Creator,
arranges the seeds in the tightest manner possible. Second, he claims—also
without justification—that the tightest packing is achieved when twelve
seeds arrange themselves around a central seed in a regular manner. That is
why, so he claimed without further ado, that when they are pressed together,
the central seed is deformed into a twelve-faced rhomboid, and not a dodec-
ahedron, as Hales had thought. So, here it is. On pages 9 and 10 of Kepler’s
little treatise we find the formulation of his famed conjecture: A sphere sur-
rounded in a certain way by twelve other spheres represents the tightest pos-
sible packing. Kepler didn’t prove this statement, he just announced it.

Undeterred by such imperfections, Kepler then went on to describe a
remarkable fact. Such a packing can be built up from two different arrange-
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ments, one with a quadratic, or square, base and another with a hexagonal
base. He even illustrated the contention with pictures. I will now refer to
spheres instead of pomegranate seeds. If the basic arrangement is quadratic,
all spheres lie along horizontal rows and vertical columns. The balls of the
next layer come to lie in the crevices that are formed between four spheres
of the first layer. The same holds for the next layer, and for the one above
that one, and so on. In such an arrangement each sphere is touched by four
spheres of its own plane—one each to the north, south, west, and east—by
four spheres from the lower plane and by four spheres from the upper plane.
We recognize the FCC.

Now on to the hexagonal base. Here six spheres in a plane surround the
central sphere. In between these seven spheres there remain six holes—or
interstices. Spheres are placed into every second interstice to form the next
layer. The same is done in the layer below. And so, again, a total of twelve
spheres touch the central sphere: six in the plane, three above, and three
below. We now have the HCP, the hexagonal close packing.

Now Kepler points out something truly remarkable: the two arrange-
ments are equivalent. That is, the two packing methods are exactly the same,
the only difference being that they are perceived from different angles. This
fact, which was rediscovered by William Barlow in 1883, implies, of course,
that the two arrangements have equal density. On the one hand this may
seem plausible, because in both cases twelve neighbors touch the central
sphere.5 On the other hand, the reader may find it strange that both arrange-
ments have the same density. After all, in the square arrangement one sphere
is placed in the dimple that is formed by four spheres. In the hexagonal
arrangement, however, an additional sphere is placed in the dimple between
three spheres. One may be led to believe that the latter is denser (one addi-
tional sphere for every three spheres, versus one additional sphere for every
four spheres in the square arrangement). But this is not so: the interstices in
the square arrangement are deeper than the interstices in the hexagonal
arrangement. As it turns out, for the computation of density, the number of
spheres that form the dimple and the depths of the dimples exactly offset
each other. It is not easy to discern the equivalence of the two arrangements,
and it takes some imagination to convince oneself that the two packings are,
in fact, identical. The following picture, one hopes, makes this clear.
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5 However, we shall see later that there are more ways to have a dozen spheres touch the
central sphere, and they may have different densities. The discussion between Isaac
Newton and David Gregory (see chapter 5) concerns exactly this point, as does the
“dirty dozen” (see chapter 11).



There remains Kepler’s question of why flower petals are grouped in
arrangements of fives, or why, for example, the seeds in apples and pears are
housed in five cells. Contemplating this phenomenon, Kepler was led to
speculate about the beauty of the number five. Since this number is associ-
ated with plants and fruits, he concluded that it must have something to do
with life. In the deduction process he made some dramatic leaps of faith:
first, he started out with regular geometrical bodies, which in his world-
view are the basic building blocks of the universe. Second, one of those
bodies, the dodecahedron, is made up of five-sided regular figures, pen-
tagons. Third, the construction of a pentagon requires the so-called divine
proportion (more on that follows), which can be derived as the outcome of
a series of numbers. Fourth, a series of numbers, where preceding terms
give rise to the succeeding ones, is a symbol of fertility. And, fifth, from fer-
tility it is just a short step back to the seeds of apples and pears. Hence, the
master concluded, the number five must have special powers as a symbol of
fertility, and this “explains” why it should appear in flowers and fruits.

Let us examine Kepler’s thought process in a little more detail. The
number five appears in two regular bodies, the dodecahedron and the icosa-
hedron. The dodecahedron’s faces are pentagons, and five faces of an icosa-
hedron form a pentagon. Drafting a pentagon requires a ratio that is called
the divine proportion, or the golden number. This divine proportion can be cal-
culated from a very special series of numbers. A series of numbers consists
of a few terms, which are specified, and a rule about how the following
terms are spawned from the previous numbers. The famous Fibonacci
series, discovered by Leonardo of Pisa at the beginning of the thirteenth
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century,6 specifies the first two terms as ones, and then defines the other
terms in the series as the sum of the two previous numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

For example, 5 plus 8 equals 13, 8 plus 13 equals 21, 13 plus 21 equals 34, and
so on. Now compute the proportions between pairs of consecutive numbers:

1⁄1 = 1, 1⁄2 = 0.5, 2⁄3 = 0.666, . . . , 144⁄233 = 0.618025 . . . , . . .

As we move to higher terms, the ratio approaches a limit: 0.6180339. . . .
This number, as well as its inverse, 1⁄6180339 . . . = 1.6180339 . . . , are called
the golden numbers. Anything designed by nature or by man according to
the ratio of approximately 0.618 to 1, or of 1 to 1.618, was thought to be
especially pleasing aesthetically. That is why the ratio is called the divine
proportion. It often appears in geometry and is omnipresent in nature.
Artists and craftspeople try to incorporate the ratio in their artwork, and
many buildings, paintings, and statues are based on the golden proportion.

We now see how Kepler got from the pentagon to the divine propor-
tion, but how did he get from the divine proportion to fertility? That num-
bers in a series give “birth” to new numbers may, if you stretch your
imagination, be an indication of fertility. But there is another explanation.
Fibonacci discovered the series that was to carry his nickname during an
investigation of how rabbits multiply. He started with the assumption that a
pair of rabbits reaches maturity after one month, and then has a pair of off-
spring every month after that. Let us say that in January there is just one pair
of newborn rabbits. In February this pair matures, and in March it has its
first pair of offspring. There are now two pairs. In April another pair of off-
spring are born to the original pair, while the first offspring are still matur-
ing. Altogether there are now three pairs. In May, the first pair and their
offspring will each have offspring, while the April offspring are still matur-
ing, for a total of five pairs. Come June, the first pair and their offspring will
each have offspring, and the March offspring will also have kids, but the
April offspring are still maturing. Altogether there are now eight pairs. At
that point things become a wee bit complicated.

So the population of rabbits grows according to the Fibonacci series, and
grows and grows and grows. But Leonardo of Pisa forgot to take into
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account a minor detail: Rabbits have the funny habit of eventually dying.7

So the population does not quite grow out of bounds, as the series suggests.
Nevertheless Fibonacci’s somewhat faulty reflections on the rabbits’ repro-
ductive behavior convinced Kepler that this series symbolizes fertility, and
from fertility one is quickly led back to the seeds of apples and pears. That
is why, according to Kepler, plants, fruits, and vegetables have a partiality to
the number five.

Kepler’s farfetched chain of arguments has no basis in reality, of course,
but as is believed today, this devotee of astrology and esoteric symbolism
may not have been far from the truth. For example, the seeds in a sunflower
and the cells of pinecones and pineapple are arranged according to consec-
utive numbers taken from the Fibonacci series. This also seems to be true,
in general, of the arrangement of branches around the trunk of a tree or of
leaves around the stem of a plant. And so it appears that phyllotaxis (the sci-
ence of how the physical form of plants evolve) is at least partially based on
Fibonacci’s celebrated series. Why this should be so is a mystery even today.
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Having done away with bees, pomegranates, apples, and pears, Kepler
was ready to attack his original project and get down to the nitty-gritty of
snowflakes. The first question was, Why are these objects flat rather than
three-dimensional? After some deliberations Kepler came to the following
conclusion: snowflakes must originate when a warm front of air hits a cold
front, and since this can only occur in a plane, snowflakes must necessarily
be flat. The explanation seems quite plausible but there is one problem: it’s
not true. The size of the interface between hot and cold air is large, and
both two- or three-dimensional snowflakes could form there as long as
their diameters are small. The true reason for flatness will be discussed later.

Then Kepler turned his attention to the six-corneredness. He suggested
that the snowflake’s visible features may be caused by properties of the
building blocks of the flakes, that are themselves so small that they cannot
even be seen. This remark is very significant, because it was one of the first
times since the Greek thinker Democritus had postulated the existence of
atoms in the fourth century B.C. that a scientist proposed an atomistic
explanation to a natural phenomenon. Actually, it was Thomas Harriot
who had proposed the existence of atoms in his letters to Kepler who, for
his part, refused to believe him. This did not stop him, however, from
expounding the idea in his booklet, without as much as acknowledging the
correspondence with Harriot.8

This is where Kepler’s reflections on snow ended. Try as he might, our
hero found no satisfactory explanation for the hexagonal shape of snowflakes.
After pages and pages of deliberations he raised his hands in defeat and posited
the existence of a facultas formatrix, a “formative faculty,” that assembles
snowflakes in their beautiful pattern according to the Creator’s design. Deep
down he knew that this was a cop-out, and in the last paragraph of the book-
let he challenged future scientists to find the underlying reasons for the
snowflakes’ hexagonal patterns. In particular he “knock[ed] on the door of
chemistry” and predicted that chemists would eventually be able to give the
answer. This was to happen only three centuries later.

So Kepler was unable to give satisfactory answers to the questions he had
set himself. But his booklet is remarkable nevertheless. In the course of his
investigations he made extraordinary comments about close packings in
two and three dimensions. He hinted at the fact that the hexagonal packing
of two-dimensional spheres is the densest packing possible. He offered no
proof, and it was to take 341 years to confirm this statement conclusively.
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8 Harriot had also had all the insights into crystalline order that have been attributed to
Kepler. He had also recognized the similarities between HCP and FCC packing.



Then he stated as a truism that the arrangement described previously is the
densest packing in three dimensions. We know that it took a total of 387
years to prove that conjecture.9

Let us return to snow. One must differentiate between snowflakes and
snow crystals. Kepler entitled his treatise Strena seu de nive sexangula, which
translates as “New Year’s gift, or [a treatise] on six-cornered snow.” In
1966, Oxford University Press published the first English version of this
work and mistranslated nive as snowflake. However, snowflakes are hodge-
podge aggregates of several snow crystals, and only the latter are six-
cornered.10 Clearly Kepler was talking about them.

So why are snow crystals six-cornered? Kepler hinted at two possible
reasons. One, the hexagonal arrangement of circles is the densest possible
arrangement of spheres in the plane. Two, hexagons can tile a plane with-
out leaving gaps. His first explanation is completely off the mark. It would
have been ever so cute, but the snow crystal’s shape has absolutely nothing
to do with dense packings in two dimensions.11 His second explanation
does have some basis in reality, as we shall see.

A quarter of a century after the publication of Kepler’s New Year’s gift
for his friend Wacker von Wackerfels, the French mathematician and
philosopher René Descartes (1596–1650) also decided to take a close look
at snow crystals. He provided quite accurate descriptions of these “little
plates of ice . . . so perfectly formed in hexagons, and of which the six sides
are so straight, and the six angles so equal, that it is impossible for man to
make anything so exact.” Another twenty years went by until the experi-
mentalist Robert Hooke (1635–1703) did him one better. Hooke did not
just use the unaided eye to observe nature in the small, he spent his career
peering at anything that would sit still under the most modern, state-of-
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9 Apart from the unproven hypotheses, the treatise also contains a blooper. At one point
Kepler claims that if a space is completely filled with cubes of equal size, then “unum
cubum contingunt alii . . . octo et triginta” (one cube is touched by thirty-eight others).
Thirty-eight is way, way off the mark. Readers may recall the once popular “Hungar-
ian Cube” that was invented by the design professor Rubik. It is made up of three lay-
ers of cubes, each layer consisting of three rows, with three cubes in each row. This
gives a total of 3 × 3 × 3 = 27 cubes, that is, 1 in the middle, and 26 arranged around
it. Looked at in another manner, a cube in the center can be touched at its faces by 6,
at its edges by 12, and at the corners by 8 other cubes. Again, this results in a total of
6 + 12 + 8 = 26 cubes touching a central cube, and not 38, as Kepler, the Imperial
Mathematician, claimed. 
10 However, only the title of the book is misleading. The chapter explaining six-
corneredness is entitled “On the shape of snow crystals.”
11 More will be said about close packings in the plane in the next chapter.



the-art gadget of the day, the microscope.12 Of course, snow crystals did not
escape his attention, and in his bestseller, the Micrographia (1665), he
included many drawings of these complex and intricate marvels of nature.

Nothing much happened with respect to snow crystals until the 1920s,
when the American farmer and photo enthusiast, Wilson A. Bentley
(1865–1931), bettered Robert Hooke’s Micrographia. The Virginia ranch-
owner became a specialist in microphotography. Holding his breath so the
subjects would not melt, he captured some five thousand snow crystals on
film. With his pictures he proved the saying—albeit not in the mathemati-
cal sense—that no two snowflakes are ever alike. “Every crystal was a mas-
terpiece of design and no one design was ever repeated,” he wrote. “When
a snowflake melted, that design was forever lost. Just that much beauty was
gone, without leaving any record behind”—except if it had had its picture
taken before its demise by William “Snowflake” Bentley.

At about the same time, beyond the Pacific Ocean, the Japanese nuclear
physicist Ukichiro Nakaya (1900–1962) undertook the first systematic
study of snow crystals. He had been offered a chair at Hokkaido Imperial
University where he felt overqualified and underemployed. There was sim-
ply no nuclear research going on in Hokkaido. So he had to seek another
field of interest and turned his attention to something lower tech: snow.
Nakaya began to grow artificial snow crystals under controlled laboratory
conditions and could soon confirm that they are never the same shape. He
was able to classify the forms, however, and developed the Nakaya diagram,
which relates the shapes of snow crystals to meteorological conditions.

After snow crystals were observed by Kepler and Descartes with the
naked eye, by Hooke with the microscope, by Bentley with a camera, and
by Nakaya in a cold lab, it became time to use more advanced machinery.
Back in Germany, the physicist Max von Laue had discovered the diffrac-
tion of X-rays by crystals. This achievement, which earned him the Nobel
Prize in 1914, allowed the inspection of a snow crystal’s structure and shape
at the molecular level. The results were worked out in the late 1920s and
they finally provided answers to the questions that Kepler had posed three
centuries earlier.

Ice is frozen water and, as the word indicates, snow crystals are crystallized
water. Water, in turn, is composed of H2O molecules that contain two
hydrogen atoms and one oxygen atom. But in the early seventeenth cen-
tury nobody knew about the teeny-weeny building blocks that make up all
matter—of which four million can be placed next to each other along the

28 K E P L E R ’ S  C O N J E C T U R E

12 Nature in the large was observed with telescopes since the times of Harriot and Galileo.



length of 1 millimeter. Thomas Harriot did think of atoms as a convenient
way to explain weight differences between various materials and even
wrote about it to Kepler. He put forward the thesis that the atoms of light
materials are packed in such a manner that the central one is touched by six
others, while the atoms of heavy materials are surrounded by twelve
others.13 Little did Harriot know that this is, in fact, a partial explanation for
the mass of different materials.

But this model was just a construct that came in handy as an explanation.
Kepler himself refused to entertain the idea that all matter—stones, plants,
and even human beings—could be made up of these little building blocks.14

In 1805 the English chemist and physicist John Dalton of Manchester once
again took up the hypothesis that matter is composed of small particles, in
order to explain certain phenomena that occur during chemical reactions.
But for a long time atoms remained no more than a hypothesis. Only by the
end of the nineteenth century was it generally accepted that matter is com-
posed of atoms that combine to form molecules. With the advent of electron
microscopes—with a resolution of nearly one millionth of a millimeter—
toward the middle of the twentieth century, molecules could finally be seen.

Kepler thought of snow crystals as aggregates of globules of condensed
moisture. Again he was wrong. Snow crystals are composed of water that
crystallizes around dust particles that have been carried up into the atmo-
sphere. They are not always six-cornered, though, and their exact shapes
depend on the temperature. Apparently the snow crystals that Kepler ob-
served had formed when the air temperature in the clouds was between 
−12 and −16 degrees centigrade because this is when they take on hexago-
nal shape.15 As the crystals grow they become heavier and fall toward earth.
On the way down, up to two hundred of them may become bunched
together to form snowflakes.

The shape and form of a crystal reflects the way in which its molecules are
arranged. And the arrangement of the molecules, in turn, depends on how
the constituent atoms are fused together. Snow crystals are six-cornered
because of the manner in which the water molecules are arranged. H2O
molecules roughly resemble tetrahedra, with the oxygen atom sitting in the
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13 Apparently Harriot anticipated Kepler’s conjecture by a few years, and it could have
been called Harriot’s conjecture with at least equal justification.
14 As we saw, this did not stop him from being the first scientist ever to formulate the
proposition that a macroscopic feature of an object may have roots so tiny that they can-
not be seen by the unaided eye.
15 When it is colder, ice crystals form columns or they are star shaped. If the tempera-
ture is slightly warmer, plates form, then columns, needles, and finally plates again.



middle, the two hydrogen atoms perched at the end of two vertices, and the
other two vertices being occupied by unbounded electron pairs. Molecules
can link themselves together, with the hydrogen atom of one molecule
attaching itself to an unbounded electron of another water molecule. This is
called a hydrogen bond.

Different shapes can be built using hydrogen bonds, so why should water
molecules choose a hexagonal arrangement when forming snow crystals?
The answer lies in a universal principle of nature that says that any physical
system, left to itself, strives to achieve a state in which energy is at its lowest level.
This principle is accepted as an axiom, which is a fancy word for something
that is obviously true but nobody really knows why. Water, snow, and ice
are no exceptions to the principle of lowest energy, and the arrangement of
the molecules will be selected accordingly.

Since heat is a manifestation of energy, different shapes will appear at dif-
ferent temperatures.16 At relatively high temperatures water molecules are
too busy swirling around to get attached to each other. But with falling
temperatures, they calm down and start to bond. At temperatures between
−12 and −16 degrees centigrade, the lowest energy level is achieved when
the H2O molecules are organized in a lattice such that each molecule is sur-
rounded by four neighbors: one molecule sits at the center, and the other
four at the corners of a tetrahedron that surround the central molecule.17

Viewed from the top, this arrangement appears as a hexagon. And this is
whence six-corneredness arises.

When ice crystals start to grow around the nucleus, they initially retain
the hexagonal shape of their molecular structure. As more water molecules
travel through the vapor-filled air, looking for a good place to land, the
swirling hexagons offer themselves as ideal airports. And since the corners
of the hexagons stick out farther into space than the edges, this is where the
molecules like to dock. With more and more molecules attaching them-
selves to each other, tree-like structures grow out of the corners of the
hexagon. This is why snow crystals are flat and six-cornered.

We see that six-corneredness has nothing to do with the fact that plac-
ing circles in a hexagonal arrangement represents the densest possible
arrangement in a plane. In fact, the packing of atoms in ice crystals is not
particularly dense, as can be verified by the following simple experiment.
Fill a bottle to the brim with water and then put it in your freezer. The bot-
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16 Even freezing temperatures are considered heat, as long as they are above the absolute
zero of −273 degrees centigrade, or zero degrees Kelvin.
17 This tetrahedron derives from, but is not identical to, the tetrahedron that is formed
by the H2O atom itself.



tle will crack. Why does this happen? After all, there are as many H2O mol-
ecules in the bottle before and after freezing. The bottle breaks because the
molecules use up more space when they are arranged as a lattice of ice than
when they are in liquid form. In other words, the hexagonal arrangement
of molecules in ice is not as dense as the arrangement of the molecules in
water, so it certainly can’t be the densest packing possible.

On the other hand, Kepler’s suspicion that a relationship exists between
the six-corneredness of snow crystals and the tiling of the plane turns out
to be correct. Regular crystals are made up of so-called unit cells of a spe-
cific shape, which are repeated over and over again. Imagine a wallpaper
pattern. If you look closely you will be able to pick out the motif which is
representative of the pattern, and which—when repeated upward and
downward, right and left—generates the wallpaper pattern. Now if the
motifs are limited to regular polygons—geometric figures whose sides and
angles are equal—then only certain shapes are possible. In fact, of all imag-
inary shapes there are only three regular polygons that can be used as wall-
paper motifs. The motif could be a square because you can fill wallpaper or
cover a bathroom floor with square tiles without leaving any gaps. The
motif could be a triangle, for the same reason. Or it could be a hexagon.
But that’s it. The motif can never be a pentagon, for example, because try
as you might, you will not be able to arrange a floor with pentagonal tiles.
Gaps appear between the pentagons that cannot be filled.
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In this sense crystals are like wallpaper. When the lattice of a crystal is
viewed from above, its shape must be extendable in all directions without
leaving any gaps. The wallpaper argument narrows down the possibilities
significantly. In the 1780s Robert Bergman peered at crystals using the
recently invented microscope. His investigations suggested to him that
they consist of packed rhombohedra. During the first half of the nine-
teenth century, the German mineralogist Johann Hessel (1796–1872) and
the French astronomer and physicist Auguste Bravais (1811–1863) pro-
vided mathematical proof that only thirty-two classes of crystal forms are
possible. They also showed that if a crystal was to possess n-fold symmetry,
then n could only be 3, 4, or 6.18 That means that a crystal lattice can be
composed only of triangles, squares, or hexagons. No other regular shapes
fit the requirements.

Kepler knew, of course, that a kitchen floor can be tiled with one of
three different shapes: triangles, squares, or hexagons. But while he thought
he knew why bees choose hexagons over the other two shapes, he was
never able to figure out why snow crystals do. Exasperated, he left the mat-
ter at that. As we now know, the way out of his dilemma—trilemma actu-
ally—is provided by the principle of lowest energy. It is because the energy
level of snow (at temperatures between −12 and −16 degrees centigrade) is
lowest when H2O molecules are arranged in a hexagonal arrangement that
snow crystals have a six-cornered shape.19
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18 Twofold symmetry, which corresponds to symmetry in the plane, is also possible, in
principle, and quasicrystals have fivefold symmetry.
19 Christoph Lüthy of the Center of Medieval and Renaissance Natural Philosophy of
the University of Nijmegen has advised me of the following: there exists some evidence
that Kepler may have also been inspired by his reflections on the closest packing of
spheres by Giordano Bruno’s 1588 publication Articuli Adversus Mathematicos.



C H A P T E R  3

Fire Hydrants and Soccer Players

In this and the following chapter we limit the discussion to two dimen-
sions, that is, to the plane. And in the plane—imagine a tabletop—we

want to arrange two-dimensional spheres, or circles, in an efficient manner.
The obvious question is, How can disks of the same size be arranged so that
the density in the plane is maximized? In chapter 1 we computed that six
circles, arranged in a hexagon around a central circle, achieve a density of
90.7 percent. One can easily verify that this is the closest possible packing
in two dimensions, just by pushing the coins around. But does this prove
anything? Obviously not! In this and the next chapter we shall show that
the hexagonal arrangement is, in fact, the densest packing possible.

But before we set out to analyze this question in more detail let us men-
tion another problem, the so-called dual. What is the smallest number of
circles (all of identical size, of course) that is needed to completely cover a
plane? In contrast to the by-now-familiar “packing problem” this question
is called the “covering problem.”1 In the packing problem circles are
allowed to have gaps between them but there must be no overlaps; in the
covering problem circles are allowed to overlap, but there must be no gaps.
Phrased a bit differently, in the packing problem the gaps must be mini-
mized, in the covering problem the overlaps must be minimized. Phrased
differently still, the density of a packing is at most 100 percent: no part of the
plane may be covered by more than one disk. In the covering problem, on
the other hand, the disks cover the whole plane, and then some. The den-
sity is at least 100 percent.

Imagine a group of dictators—this example comes from a very impor-
tant mathematics treatise—whose powers reach the same distance in all

1 A dual problem is, in some sense, the opposite of the original problem. The dual to
minimization is maximization, the dual to the packing problem is the covering problem.
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directions. As a consequence they each reign over a circular region. Since
they do not wish to get into each other’s hair they decide at one of the
annual dictators’ conferences to position themselves as far away from each
other as possible. So the question they put to the Dictatorial Mathematician
is, How can the largest number of dictators be packed into a certain area?
By the way, any solution to this problem allows some fortunate individuals
to remain in the pockets of democracy between the circular dictatorships.

The dual to this packing problem is, for example, how municipal ser-
vices have to be distributed so that everyone in town gets to enjoy a certain
minimal level of service. How many garbage containers must be placed so
that no resident needs to carry the trash more than 50 meters from the front
door to the closest bin? How many fire engines are needed, and where must
they be located, so that nobody must wait more than six minutes after a dis-
tress call? Note that here, too, there are some lucky individuals who have
more than one garbage bin to choose from. If the citizen is really lucky, fire
engines from two stations will appear at the front door within six minutes
after Junior sets the house on fire.

Let us move from the sublime to the ridiculous and consider carpet
bombing. “Carpet” is, of course, a misnomer, since—apart from the de-
ceptive evocation of domestic coziness—it gives the impression that the
area to which a bomb inflicts damage is rectangular. But shrapnel flies the
same distance in all directions, hence the ravaged region is circular. It is a
consequence of modern warfare that a number of good explosives partially
go to waste if “scorched earth” is to be achieved because of the overlaps.

On a more banal note, packing problems in two dimensions arise when
containers are loaded onto the deck of a ship, when tailors cut shapes from
a piece of cloth, or when barrels are stacked along the walls of a wine cel-
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lar. Covering problems arise in command and control systems in the mili-
tary, monitoring of airspace, distribution of a sales force, or allocation of
service technicians. The list of examples could be lengthened, but then
again no mathematician worth his salt worries about applications. Hypoth-
eses are put forth, solutions are discovered, and theorems are proved purely
for their own sake, rarely for an ulterior purpose. Sometimes applications
may appear later, sometimes much later, but this is not what makes the
minds of mathematicians tick. For example, the work of nineteenth-
century mathematician Arthur Cayley on algebraic matrices served as a
foundation for quantum mechanics, which was developed only in the
twentieth century. Cayley did not know what his matrices would be good
for, and he didn’t care.

Now, the best imaginable packing would achieve a perfect density of 100
percent. The most economical covering would also achieve a perfect den-
sity of just 100 percent. Can perfect packings or coverings ever be achieved?
Not with circular disks, since they either leave gaps or they overlap. But
why should we limit ourselves to disks? And even if we do limit ourselves
to regular shapes, there may be other geometrical objects that can do the
trick. Not the pentagons—one hundred percent covering of the plane by
pentagons is impossible. Try as one might, there is no way to place them
next to each other without leaving gaps in between. So do packings or cov-
erings of 100 percent exist?

The answer is yes. But there is a surprise. Not only are there shapes that
permit perfect coverings and shapes that permit perfect packings, they are
the exact same shapes. Perfect covering and perfect packing go hand in
hand. An arrangement that achieves a packing with a density of 100
percent achieves a perfect covering at the same time. Can you imagine an
arrangement of geometrical objects that is, at the same time, both the dens-
est packing and the most economical covering? Let us take a step back. In
chapter 2 we saw that Johannes Kepler had already established that triangles,
squares, and hexagons are able to tile the kitchen floor. Hence these shapes
both pack and cover the plane perfectly. And this is exactly the definition
of a tiling: an arrangement of shapes that both covers and packs perfectly.
The three shapes mentioned—triangles, squares, and hexagons—are the
only regular shapes that can do that. That’s why ceramics shops usually do
not carry pentagonal, heptagonal, or other exotically shaped tiles in their
inventories.

We begin by stipulating that the centers of the circles must lie on a reg-
ular grid (also called a lattice). Let us look at a city like Manhattan and con-
sider the fire department’s problem of where to place fire hydrants. It is of
paramount importance that total coverage be achieved, that hoses attached
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to the hydrants can reach every nook and cranny of the city. Hence the
planners are faced with a covering problem. Since the lengths of the hoses
determine how far they can reach in all directions, the hydrant’s coverage is
anything inside the circle of a radius equal to the hose’s length. So we have
a circle covering problem.2 But there is more. If a blaze erupts we do not
want fire fighters running around frantically with their hoses, looking for
water outlets to attach them to. It would be a good idea if the hydrants were
placed in such a manner that they are easily found, even when chaos and
confusion reigns. So the fire chief may decide to place hydrants only at
intersections of certain blocks and avenues. The possible locations of the
hydrants form a grid. What we have, therefore, is a circle covering problem
in a two-dimensional lattice. The solution could be, say, to place hydrants
at all intersections of all avenues and even-numbered streets.

A nonlattice covering, on the other hand, can be portrayed if we look at
soccer players on a playing field. Each captain wants his team to defend its
side of the field in its entirety. Every player is responsible for his part of the
field, say, 20 meters in all directions. Hence he must defend a circle with 
a 20-meter radius. But while we do expect the goalkeeper to be posted
somewhere near the goal, the other ten players do not have to stand at reg-
ular intervals along the field. This leaves them more options and the players
of the opposing team have greater difficulty keeping track of them. Hence
the soccer players are faced with an example of a nonlattice circle covering
problem. The reader is encouraged to conjure up further examples of pack-
ing and covering problems, both of the lattice and nonlattice variety.

In the first problem (the lattice variety), restrictions are put on the possi-
ble solutions. So when a contention has been proven for a lattice, the gen-
eral problem has not yet been solved by any means. It is quite conceivable
that a nonlattice solution is lurking around somewhere that is superior to the
lattice solution. On the other hand, it could turn out that the solution to the
lattice problem is also the optimal solution to the general problem. But this
requires a proof. It may be—and often is—much harder to find the solution
to the nonlattice variety of the problem, since it allows more possibilities.

Who was the first person to put his thoughts about the densest arrange-
ment of circles to print? Generally it is assumed that it was Kepler in the
treatise The Six-Cornered Snowflake (see chapter 2). But while researching
this book I found otherwise. In Zürich I was invited to the office of Caspar
Schwabe, a designer of geometrical objects. Sitting among the strange
mathematical objects that Schwabe had either produced himself or col-
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lected—among them an original Tensegrity by Buckminster Fuller that takes
up most of the airspace in his office—we made a small discovery. Schwabe
showed me a recent acquisition of his, a richly illustrated book by the
Renaissance artist Albrecht Dürer. I here use the word “book” with a cer-
tain nonchalance, since printing and typography in Dürer’s day was a very
recent invention. Dürer was born in 1471, while printing technology,
invented by the metallurgist and goldsmith Johann Gutenberg just thirty
years earlier, was still in the alpha testing stage. Throughout his professional
life, Dürer would put this new technology to good use.

Albrecht was number three in a line of children that ran to the number
eighteen. His father was a jeweler who had immigrated from Hungary to
the German city of Nüremberg. He was a religious man who managed to
instill a healthy fear of God in his children. Dürer described him as “gentle
and patient . . . friendly towards all and full of gratitude to his Maker.”
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Albrecht received his initial training in painting and woodcutting in
Germany. After finishing his apprenticeship, which he spent wandering
through German cities, his parents arranged his marriage to a young
woman of good family, Agnes Frey. Albrecht himself was not very keen
about getting married and was not too happy in matrimony. A few months
after his wedding he took off again, this time to Italy. In Venice he hung
out with local artists, visited galleries, and sketched scenes of the city.
Upon his return to Germany in 1512 he found himself in the employ of
Kaiser Maximilian.

Unfortunately, over time celebrity went to Dürer’s head and he became
something of a prima donna. As a consequence he also became a bit neu-
rotic, and on his next trip to Italy he thought that aspiring competitors were
trying to get rid of him by putting poison in his food. He was so scared of
this perceived threat that he would not accept any invitations to dinner.
Back in his beloved Nüremberg he and his wife were among the first to
make a living off the new technology of typography, which had by now
reached the beta testing stage. The Dürers set up their own printing press.
Albrecht supplied the input and Agnes sold the output at the local fairs.
Today Dürer is considered one of the foremost painters and woodcutters of
all times.

Dürer’s mathematical interests and achievements are less well known, but
as a true Renaissance man he was well-versed not only in the arts but also
in the sciences. At one time or another he had studied such diverse fields as
anatomy, aeronautics, and architecture. With some pride he considered
himself a Mathematicus, and gave himself that title in the preface of the book
I looked at in Zürich. Dürer considered mathematics a necessary prerequi-
site for all the arts. The problem of perspective, for example, had always
vexed painters, and up until the fifteenth century they depicted figures only
in a single plane. In the 1420s the Florentine architect Filippo Brunelleschi
invented the technique of perspective drawing. Dürer, who had learned
about it during a trip to Italy, was one the first artists to depict figures simul-
taneously in the fore- and background.

His geometrical investigations were pathbreaking, and his book Unter-
weisung der Messung mit Zirkel und Richtscheit (Instructions on measuring
with compass and ruler) was the first mathematics textbook in German. In
it he discussed perspective and proportions and showed how to construct
figures with ruler and compass.

Dürer’s geometrical investigations influenced not only artists but also
mathematicians. His attempts to overcome the problems of projection, per-
spective, and depiction of moving bodies led him to the development of a
new discipline, descriptive geometry. This branch of geometry was put on a
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sound mathematical basis in the second half of the eighteenth century by
the Frenchman Gaspard Monge. Recently the investigations begun by
Albrecht Dürer saw a renaissance when computer scientists started dealing
with the representation of three-dimensional objects on two-dimensional
screens. They had to deal with the problems of hidden lines and—once
again—of perspective.

The book we looked at was published in 1528, shortly after the artist’s
death. Leafing through the 450-year-old tome, we stumbled upon a pair of
pictures that immediately caught our attention. In the first one, nine circles
are packed in a quadratic arrangement, and next to it is a figure of seven full
circles and ten partial circles packed hexagonally in a square of similar size.
The picture corresponds nearly exactly to a figure in a modern introduction
to geometry.

It took a while to decipher the ancient German text that accompanied
the figures, but it finally emerged that Dürer did indeed refer to packings,
although he made no reference to densest arrangements. What he wrote
was that there are only two ways to decorate the ceiling or the walls of a
house with a regular arrangement of circles: the square packing and the
hexagonal packing. He then implies that the latter is denser than the for-
mer. It cannot be excluded, and we may even assume, that the well-read
Kepler actually perused Dürer’s book in the late 1500s or early 1600s and
let himself be inspired by it.

So Dürer pointed out that among the two regular arrangements for cir-
cles the hexagonal one is denser than the quadratic, and Kepler claimed that
the hexagonal packing is the densest arrangement possible in two dimen-
sions. But who proved this? As was mentioned previously, this question
must be separated into two parts. It took two and a half centuries from the
date of Dürer’s publication to prove that the hexagonal arrangement is the
densest lattice packing of circles in the two-dimensional plane. It then took
another 170 years to show that this same hexagonal arrangement is also the
densest general packing. In the remainder of this chapter we investigate the
densest lattice arrangement. The densest general arrangement will be dis-
cussed in chapter 4.

The action shifts to Italy. Giuseppe Lodovico Lagrangia (who later
called himself Joseph-Louis Lagrange) was born in Turin in 1736 to a civil
servant of good social position who was in charge of the treasury of the
city’s Office of Public Works and Fortifications. Maybe this worthy man
had played around a bit with the content of the treasury in order to for-
tify himself rather than the city, or maybe he was just a shrewd investor.
Whichever, he became a wealthy man. But unfortunately goddess For-
tuna’s favors did not last forever, and one day Lagrange senior’s luck ran
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out: he lost everything in speculations. Young Giuseppe Lodovico was
shipped off to college to study law. As a seventeen-year-old student he
excelled in classical Latin (as did Kepler 160 years before him), though he
showed little interest in mathematics. But one day he happened upon a
mathematical treatise, started reading it, got excited, and decided to
devote the rest of his life to the subject. He immediately immersed him-
self day and night in intense study of mathematics. It was fortunate for the
world that his father’s financial luck had run out, because—as Lagrange
himself said later in life—had he been rich, he would have become a
lawyer.

Two years later Lagrange was ready to establish his early fame. He wrote
a letter to the then grandmaster of mathematics, Leonhard Euler, from
Switzerland. Euler, director of mathematics at the Academy of Sciences in
Berlin, was one of the most prolific mathematicians who ever lived and
made contributions to all areas of mathematics.

In his letter Lagrange described the solution to a problem that had vexed
mathematicians for more than half a century. It was the so-called isoperi-
metric problem, which consisted of maximizing a surface, or a volume, in
the presence of constraints and boundary conditions. We already met an
example of the isoperimetric problem in Kepler’s treatise on six-cornered
snow. Remember the bee whose task it is to maximize the storage space in
the honeycomb while minimizing the amount of wax that is needed to
build it? That’s an example of an isoperimetric problem, and as Pappus of
Alexandria had already claimed in the third century, the solution is the
hexagon.

Actually, the first known example of an isoperimetric problem stems
from much earlier, namely from the eighth century B.C. It is the story of
Dido, queen of Carthage. According to legend, Dido fled from her tyran-
nical brother, King Pygmalion. She landed on the coast of North Africa
and declared her intention to purchase a parcel of land. The locals were
quite willing to take her money but weren’t so keen on giving her much
real estate. A snickering native told Dido she could take as much territory
as she could cover with the hide of a bull. Apparently he thought of selling
the beautiful lady a little garden of about 5 square meters, but the clever
Dido had the last laugh. She cut the bull’s hide into very thin strips,
attached them end to end, and then announced that all territory that she
could surround with this strip would be hers. She probably confused “cov-
ering” with “encircling” on purpose, but the poor locals fell for it anyway.
After Dido had hit on the idea of cutting the bull’s hide into strips, she still
had to decide what shape the territory should have. It is here that the
isoperimetric problem makes its appearance. Obviously Dido wanted her
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new home to extend over the greatest surface. Hence she had to figure out
which shape would cover the greatest area, while being surrounded by a
border of a given length. The answer is—you guessed it—a circle. As the
locals watched in horror, Dido proceeded to encircle a large parcel of land
with the strip and became queen of the round city of Carthage.

Lagrange wrote to Leonhard Euler about the three-dimensional ver-
sion of Dido’s problem, that is, the problem of finding the greatest volume
to a fixed surface area. Euler had just been about to solve the problem
himself, but realized that the unknown youth from Turin had found a
method, later to become known as the calculus of variations, that was supe-
rior to the one he was going to propose. Recognizing the young man’s
gifts, he held back his own manuscript in order to get Lagrange’s work
published, and in one fell swoop the hitherto unknown Italian student
established himself at the cutting edge of the profession. A little later,
while investigating vibrating strings and the propagation of sound,
Lagrange pointed out both an error that the great Isaac Newton had made
when he analyzed the same phenomenon and a lack of generality in the
methods used by previous scientists. He went on to write a pathbreaking
discussion of echoes, beats, and compound sounds, thereby establishing
himself as an early fan of rock music, two hundred years before the Roll-
ing Stones hit the charts.

But this was not the Woodstock generation, and rock music did not
automatically mean pacifism. So at age nineteen Giuseppe Lodovico was
appointed professor of mathematics at the Royal Artillery School of Turin.
After all, not only artists needed a solid grounding in mathematics, as Dürer
had pointed out; shooters too had to be able to compute where their shells
would fall. While teaching artillery officers to do their math, Lagrange con-
tinued his research, and at the age of twenty-five he was already recognized
as the foremost mathematician of his time. But the intense work of the pre-
vious years took its toll and Lagrange fell ill, physically and psychologically.
He eventually recovered from his bodily ailment but his nervous system
never fully recuperated. Throughout his life he would suffer from bouts of
deep melancholy and depression.

Lagrange received many offers of work in various countries, but the shy
young man turned them all down, preferring to live in modest circum-
stances in his native Turin. He wanted to devote himself entirely to mathe-
matics. In 1766 the situation changed, however. Leonhard Euler was fed up
with his boss, Frederick the Great, who insisted on meddling in the matters
of the Academy. He left Berlin to set up camp in St. Petersburg with Peter
the Great. (No relation, they just both considered themselves great.) Fred-
erick the Great was greatly angered by the desertion and suggested to
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Lagrange that “the greatest mathematician of Europe” join up with “the
greatest king of Europe.” Even the unassuming Lagrange could not refuse
such a proposition and, on November 6, 1766, he became Euler’s succes-
sor as Director of Mathematics at the Berlin Academy of Sciences. He
would spend the next twenty years at Frederick’s court.

During his Berlin years, Lagrange produced about one memoir a month,
altogether hundreds of papers. He was no narrowminded crank, mind you,
but dealt with a varied array of subjects: algebra, the theory of numbers (he
proved some of Fermat’s theorems, but alas, not the celebrated one), ana-
lytical geometry, differential equations, astronomy, and mechanics. While at
the Prussian court he also walked away with most of the prizes that the
Académie des Sciences de Paris offered biannually for the solution of a par-
ticularly interesting problem. (He won in 1764, 1766, 1772, 1774, and
1778.)

Frederick died in 1787, and with this Lagrange’s life in Berlin became
less fun. He received numerous job offers, the most enticing one from Louis
XVI, king of France. It contained, most important, a clause that freed him
from all teaching duties, and Lagrange willingly accepted. The Académie
des Sciences de Paris immediately made him a member—probably to let
other young mathematicians finally take a shot at winning the prizes.

The beginning of the French Revolution saw Lagrange busy as a mem-
ber of the Committee to Standardize Weights and Measures. The Académie,
along with many other learned societies, had been forced to close its doors
during the Reign of Terror, but the weights and measures commission was
allowed to continue its work. Even the revolutionaries realized that some
order was needed in the chaos that reigned in the markets. Merchants in dif-
ferent parts of the country used different modes of measurement (albeit
keeping the price constant, which is a sure recipe for inflation), and the
committee’s brief was to devise a system that would be binding throughout
the country.

After many hours of deliberation they came to the conclusion that the
simple folk would find it easier to count and multiply if they could use their
fingers. So they devised the decimal system and based the meter, the gram,
and the liter on it. In contrast, the Romans had divided the pound and the
foot into twelve ounces and twelve inches, presumably because they used all
their fingers plus two toes to count up to a dozen. Until recently, even the
English and Americans insisted that using fingers and a couple of toes to do
their arithmetic was a good idea. It appears that the Anglo-Saxon folk were
not so concerned with multiplication of weights and measures, but with
division. And since a dozen can easily be divided by 2, 3, 4, and 6, while
the metric system allows easy division only by 2 and 5, they adopted the
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dodecimal system. Only now are they slowly coming around to the system
proposed by Lagrange and his men.3

The Reign of Terror did not leave Lagrange unscathed. A law was passed
by the Assemblée Nationale that ordered the arrest of all foreigners born in
enemy countries and the seizure of their property. This decree obviously
applied to Lagrange—so much for the claim that he was a Frenchman—but
the chemist Antoine-Laurent Lavoisier, one of the foremost French scien-
tists of the time, and a colleague from the Weights and Measures Commit-
tee, intervened on the famous mathematician’s behalf and an exception was
made. So Lagrange was spared, but shortly thereafter Lavoisier—until then
a respected government official and the Commissioner of Gunpowder—fell
afoul of revolutionary ideology. A court took just a day to try, condemn,
and execute this great man. Lagrange was deeply grieved by the killing of
the friend who had saved him from arrest and possibly from a similar fate
just a year earlier. “It took only a moment to cause his head to fall and a
hundred years will not suffice to produce its like,” he exclaimed.4

Privileges were severely frowned upon by the revolutionaries and with-
out much ado Lagrange’s “no teaching” clause was canceled. From then on
he was forced to lecture, first at the École Polytechnique, today the top
school for France’s elite civil servants and business leaders, and later at the
École Normale, which was founded as a school for teachers but is today 
the place for the real intellectuals. Not only did Lagrange have to teach, but
the lectures were also taken down in shorthand so that the deputies could
inspect for themselves whether the professor deviated from his subject mat-
ter. Apparently, the authorities were very worried about the subversiveness
of differential equations and the counterrevolutionary influence of calculus
and did not think of applying the first third of their battle cry (“liberté, égal-
ité, fraternité”) to academic freedom.

In his later life, Lagrange was showered with honors for his achievements
in mathematics. In 1796 the French commissary in Italy was dispatched to
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the residence of his father to convey to him the republic’s congratulations
on the achievements of his son. After Napoleon came to power, Lagrange
was named officer of the Légion d’Honneur and made a Count of the
Empire. On April 3, 1813, one week before his death, he was awarded the
Ordre Impérial de la Réunion. He is considered the foremost mathemati-
cian of the eighteenth century.

❖ ❖ ❖

We now return to the subject of circle packings.5 In 1773, while still at King Fred-
erick’s court, Lagrange wrote a treatise entitled “Recherche d’arithmétique,”
which was published in Nouveaux mémoires de l’Académie royale des Sciences et
Belles-Lettres de Berlin. Lest the reader think that this treatise is a simple essay
about the four arithmetic operations—addition, subtraction, multiplication, and
division—be forewarned. Lagrange did not waste his time with trivial high school
math. It was higher arithmetic—today called number theory—that he was deal-
ing with. In the treatise Lagrange discussed binary quadratic forms, that is, expres-
sions like a2 + 2b + c2. He determined that the most important characteristic of a
quadratic form is its so-called discriminant, which is calculated as a2c2 − b2. As it
turns out, determinants have a close connection to grids (or lattices).

In order to explain the connection, we must first define the notion of a grid’s
base. Two vectors, one for each direction, determine a two-dimensional grid. In
graphs and pictures these vectors are usually indicated by little arrows, and
with their help travelers wandering through the grid can find their way around.
The vectors and the angle between them form the grid’s base.6 In Manhattan,
a useful base consists of the avenues and the streets—let’s call it the “Manhat-
tan base.” The distance between two avenues (say 300 meters to the east) rep-
resents the vector in one direction and will be denoted by a. The distance
between two streets (100 meters north) represents the vector in the other
direction and will be denoted by b.7 The angle between avenues and streets is
90°. Hence, an address like “8th and 12th” refers to the intersection of 8th
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Avenue and 12th Street. Starting from the imaginary point zero—somewhere
near the Hudson River in our imaginary Manhattan—you would have to walk
eight avenues (8a = 2,400 meters) to the east and twelve streets (12b = 1,200
meters) to the north in order to reach this location.

When Lagrange was doing his higher arithmetic there was no Eiffel Tower in
Paris and tall buildings did not yet exist in Manhattan either. Thus there were
several ways to reach the same spot. Starting again at point zero, one could
start out in any direction, then take a shortcut through the fields, and again
land at the aforementioned “8th and 12th.” For example, Peter Stuyvesant
could have first walked four avenues to the east, and then cut through the
remaining blocks to get to the intersection. His base would be composed of 
the two vectors “300 meters in the east direction” and “316 meters toward the
east-northeast direction.”8 The angle between the two vectors is about 17°.
Using the “Stuyvesant base” a traveler can also reach every spot on the grid,
and it therefore also forms a base for the Manhattan lattice. In the same man-
ner one can think of infinitely many different bases for Manhattan. And this pre-
sents a problem, as we shall presently see.

What do quadratic forms have to do with lattices? The area contained
between avenues and streets is known as a block. More generally, the block in
any lattice is usually called the fundamental cell. Wouldn’t it be nice if some
simple expression for the cell’s surface existed? Well, we’re in luck. As we
show in the appendix, the surface of a base’s block is just the square root of
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8 The direction is not exactly east-northeast. By Pythagoras, the hypothenuse of a right-
angled triangle with perpendicular sides 100 and 300 meters long is 316 meters.



the quadratic form’s discriminant. That’s the link between grids and quadratic
forms.

All this gave the mathematicians who were working on packing problems an
idea. To find the lattice that represents the densest packing, one would have to
do the following: (1) Find the grids that allow four circles to be placed at the
corners of the cell, without any of them overlapping and (2) from among those
grids choose the one whose fundamental cell has the smallest surface.

Why would that solve the packing problem? First, one must realize that each
cell of the lattice contains one full circle, provided the vectors are sufficiently
long and the angle between them is sufficiently large. If you place four pizzas
at the corners of a cell, the slices that are contained within the cell form a full
pizza again—no matter how the cell is shaped. In general there will be two
large slices for the grown-ups, and two small slices for the kids. Put together,
the four slices will form a full Quattro Stagioni pizza.

So to achieve the densest packing, all we have to do is find the lattice that
wastes the least amount of space between the pizza slices.9 In other words, we
must find the lattice whose fundamental cell has the smallest surface. But the
surface of the fundamental cell is the square root of its discriminant. So things
are looking bright: All we have to do is check out all the bases of all the lattices
and chose the one with the smallest discriminant.

But we have a problem, remember? Not only are there many, many lattices,
but for each lattice there exists an infinite number of bases. How could we hope
to find the best packing if we have to check all lattices an infinite number of
times? So the problem Lagrange considered was how to reduce the infinite
number of bases that fit each lattice to one single representative. Basically, this
procedure, which is called reduction, consists of finding, among all the bases
that describe a specific lattice, the one with the shortest vectors.10 While fid-
dling around with the parameters of reduced bases, Lagrange found something
quite remarkable. He noted that the discriminant of a reduced base could never
be smaller than 3⁄4 a4. He further found that the angle between the two vectors
of a reduced base must lie between 60° and 90°.

Now recall that the surface of the cell is equal to the square root of the dis-
criminant. So what Lagrange had discovered was that the surface of the lattice’s
cell could never be smaller than 0.866a2. As long as the two vectors and the
angle between them are large enough to fit circles at the gridpoints without
overlap, one may play around with the parameters as much as one likes: The
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surface of the fundamental cell can never become smaller than that limit. And
what kind of lattice attains this minimum? Lagrange showed that the minimum
occurs only when a = c, and when the angle between the two vectors is 60°.
And what, in turn, does that imply? Lo and behold, it’s the hexagonal arrange-
ment. Those square pizza boxes should certainly be on their way out: lots and
lots of cardboard will be saved if the pizzas are placed into hexagonal boxes.
(Round boxes would be better still, of course.) There is never anything new
under the sun: Dürer and Kepler had already said so. But Lagrange did add the
finishing touches.

❖ ❖ ❖

Lagrange provided the mathematical ingredients for the proof that the
lattice whose points are arranged in a hexagonal manner minimizes wasted
space. Actually, he had no interest in circle packings per se, and in his
Mémoire of 1773 Lagrange considered quadratic forms purely as mathemat-
ical objects. He developed the theory of reduction of binary quadratic
forms, but the connection to lattices escaped him. Only sixty years later, in
1831, did Carl Friedrich Gauss (of whom we will have much more to say
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in chapter 7) introduce lattices, and point out the connection between
them and quadratic forms. But even he did not specifically consider circle
packings. Toward the end of the nineteenth century, when interest in the
subject resurfaced, it was realized that Lagrange had already provided all
that was needed to show that the hexagonal packing is the densest arrange-
ment of circles on a lattice.

In the next chapter we drop the requirement that the centers of the cir-
cles must lie on a lattice, and deal with the general problem of packings in
two dimensions.
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C H A P T E R  4

Thue’s Two Attempts 
and Fejes-Tóth’s Achievement

In the previous chapter we considered packings and coverings in two
dimensions. We pointed out that there are actually two different ques-

tions that must be examined, depending on whether the centers of the cir-
cles lie on a lattice or not. Joseph-Louis Lagrange provided the ingredients
for the proof that the hexagonal arrangement is the densest lattice packing
in two dimensions. Now let us move on to the general case. Is there maybe
an irregular arrangement that allows a denser packing?

It was long suspected that the hexagonal arrangement also represented
the tightest general packing, that is, that there exists no nonlattice pack-
ing that is denser than the hexagonal arrangement. However, this is not
quite obvious and must be proved. Take, for example, a two-dimensional
region, say, a rectangle with a length of 6 and height 5.8. The rectangle’s
surface is 34.8. Using the square arrangement, six circles of radius 1.0 fit
inside the rectangle, to give a density of 54.2 percent.1 With the hexag-
onal lattice arrangement, on the other hand, seven circles can be
arranged inside the rectangle, to give a density of 63.2 percent. That’s
better, but we can do better still if we don’t require a lattice arrange-
ment. By judiciously placing the circles we can fit eight of them inside
the rectangle, to give a density of 72.2 percent. Does that mean that
there are better arrangements than the hexagonal? The answer is: some-
times, if we consider limited areas. The reason for the higher density of
the jumbled arrangement is that the rectangle does not extend to infin-
ity. One must not confuse local density with global density; it is the
latter we want to maximize. But this little example does point to a

1 6πr 2/34.8 = 54.2 percent.
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problem, and the question must be asked whether there exist jumbled
arrangements that are superior to the hexagonal lattice packing.

Toward the end of the nineteenth century, a Norwegian mathematician
came along by the name of Axel Thue. Nowadays Thue is remembered
mostly for his contributions to number theory, but he also did work in math-
ematical logic, geometry, and mechanics. His paper entitled “Om nogle
geometrisk-taltheoretiske Theoremer” (About some geometric number-
theoretic theorems) was the first published attempt to solve the general circle-
packing problem. The stress is on the word attempt, because, as it turned out,
it was no proof. In fact, it was not much more than an outline of a possible
proof. Thue is sometimes awarded credit, nevertheless, for having been the
first to solve the two-dimensional packing problem because, after all, who
understands Norwegian?

Thue’s scientific record is somewhat mixed. One well-known number
theorist (Edmund Landau) judged a theorem by Thue to be “the most
important discovery in elementary number theory that I know.” But his
biographers (Trygve Nagell, Atle Selberg, Sigmund Selberg, and Knut
Thalberg) range in their assessment from “profound work, which started a
new era in the theory of diophantine equations” down to “simple, but ele-
gant and useful.” Thue’s life’s work was generally fraught with frustrations;
his assault on the circle packing problem was just one example.

Like Lagrange, young Axel came to the world of mathematics some-
what by accident. As a youth he was interested in physics and one day saw
an advertisement for a book titled Pendulum’s Influence on Geometry. 
What could a pendulum have to do with geometry, thought the boy, and
ordered the book. After receiving it he realized that the advertisement
had contained a typo: the real title was Poncelet’s Influence on Geometry.
Jean-Victor Poncelet was no pendulum. He was an engineer who took
part in Napoleon’s 1812 campaign and was taken captive by the Russians.
During his imprisonment he wrote a treatise on analytic geometry, which
wasn’t published until fifty years later. So the book Thue received was
pure mathematics, but he read on and became hooked. He also began a
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lifelong friendship with the author, Elling Holst, who would become his
teacher and mentor.

Thue entered the University of Oslo and, as a student, gave more than a
dozen lectures to select audiences at the Scientific Society and the Mathe-
matical Seminar. Although obviously endowed with talent, the gaps in his
education soon became apparent. Fellow Norwegian Sophus Lie, father of
the appropriately named Lie algebra, remarked that Thue’s “mathematical
knowledge does not do justice to his gifts and his enthusiasm” and that “the
probability of his succeeding in acquiring a sufficiently broad basis for his
work diminishes year by year.” But it was still not too late to fill the gaps,
and Thue was granted scholarships for the years 1890 and 1891 to study in
Leipzig and Berlin. He did not pass up the trip but took little advantage of
the opportunity. Usually the brash young man was happy to just get the
general idea of profound theories, postponing the study of the pertinent
details for later. For example, he got off to a good start in Leipzig and was
tutored by Sophus Lie. But when the time came to plunge into the nitty-
gritty details, he went on a vacation trip to Prague instead. There he con-
tracted yellow fever, which took him out of commission for a few months.
The long and the short of it was that “my work . . . has not led to any pos-
itive or conclusive result,” as he told a former teacher. In another letter he
wrote, “I have written about 500 pages, but most of them can be scrapped.”
His association with Lie is the story of a missed opportunity. The rare
chance to cooperate with the famous compatriot left absolutely no traces in
Thue’s work.

The near-total absence of citations to sources and of bibliographic mate-
rial at the end of his papers—except for references to his own work—also
indicated that Thue was simply not familiar with the pertinent literature.
He should have realized that he was on the wrong path because, in his own
words, “every time I came to a significant result, it turned out to be one
well known already. It is to be hoped that there is still something left which
can be said to be novel, and which learned mathematical palates will relish.”

This haphazard approach continued throughout his career. Thue just did
not enjoy immersing himself in the study of what other people had done
before him. He followed a different approach: he reinvented the wheel over
and over and over again. Only after he finished proving a theorem did he ask
an assistant to check whether it was actually new, just to find out ever so
often that someone had had the same idea before, sometimes dozens of years
before. In a footnote at the end of his 1909 paper about the existence of
transcendental numbers, Thue acknowledges that his proof was nearly iden-
tical to the one given by Liouville in 1851, more than half a century earlier.
The title of another one of his papers, “Proof of a known theorem about
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transpositions,” also attests to this lack of originality. Thue was fully aware of
this foibles. “The reason I haven’t published the work I have on hand
is . . . because I didn’t know what was new and what was already known.”
One possible reason for Thue’s reluctance to study the professional literature
was an inability to follow someone else’s train of thought. Another explana-
tion for this curious, self-imposed handicap could be that Thue was simply
lazy. But he refused to learn from his mistakes and, instead, tried to make a
virtue out of his character fault. He claimed that he didn’t like to study a
subject thoroughly because “such an investigation . . . has . . . an inhibiting
effect on my imagination.” As pretexts go, this must be one of the most
disingenuous ones ever. Any schoolteacher has heard better excuses.

Before Thue decided to devote his life to reinventing wheels, he started
his professional career with a seriously flawed paper. And this is the work
that concerns us here. It was only Thue’s second published paper, and we
may ascribe the blooper to the twenty-nine-year-old’s inexperience.
Shortly after he returned from his trips abroad, at the 1892 annual meet-
ing of the Scandinavian Society of Natural Scientists, Thue decided to give
a presentation about his ideas on the general problem of circle packings.
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He may have been aware of Lagrange’s solution for lattices, though—true
to form—he did not mention the Frenchman’s work. But Thue’s aim was
to solve the general packing problem, without restricting the circles to a
lattice.

At about the same time a young German by the name of Hermann
Minkowski was beginning his rise to mathematical stardom. He was born
in 1864 in Russia, and his family moved to the German town of Königs-
berg while Hermann was still a child. In school he became friendly with a
slightly older boy, David Hilbert, who would later become one of the most
influential mathematicians of the twentieth century (see chapter 8). But as
a boy it was Minkowski who stole the show. In 1882, at age eighteen, he
followed in Lagrange’s footsteps by winning the Grand Prix des Sciences
Mathématiques of the Académie des Sciences in Paris. The competition
question concerned the representation of an integer as a sum of five squares,
and the pupil from the Königsberg Gymnasium, the high school, was
awarded the prize jointly with the English number-theorist Henry John
Stephen Smith from Oxford.2 Actually Minkowski nearly lost his prize
again, because the English—fair sportsmen that they always are—didn’t take
kindly to the fact that the esteemed Savilian Professor of Geometry should
have to share the honor with a mere boy from Germany. Smith himself was
no longer in a position to care because he had died a few weeks earlier. But
lawyers were put to work on the small print of the competition bylaws and
they managed to find a reason to appeal against the Académie’s decision:
Minkowski’s essay had been written in German, while the rules clearly
stated that the paper was to be written in French. But the protests from the
other side of the Channel were to no avail. The jury did not relent and
Minkowski walked away with his half of the prize. It is ironic that nowa-
days the undistinguished Smith is mostly remembered for having shared the
Grand Prix with the great Minkowski.

The young man’s precocious career was interrupted when he had to serve
in the army of his fatherland, but took off again after he became assistant pro-
fessor at the Federal Institute of Technology (ETH) in Zürich. Minkowski, a
rather shy man, was not a captivating speaker, and many students preferred to
absent themselves from his lectures. One student, in particular, aroused
Minkowski’s ire because he constantly missed his classes. This student later
went on to make a name for himself as a patent clerk in the Swiss capital

T H U E ’ S  T WO  AT T E M P T S  A N D  F E J E S - T Ó T H ’ S  AC H I E V E M E N T 53

2 Professor H. J. S. Smith used all three of his Christian names. Henry Smith would
have sounded a bit too pedestrian for an Oxford don.



Berne. Apparently not all of the professor’s teachings were lost on the truant
student, however—his name, of course, was Albert Einstein—because
Minkowski’s invention of the “space-time continuum” laid the mathemati-
cal foundations for the theory of relativity. In 1902, at the instigation of his
boyhood friend David Hilbert, who was by then a famous professor,
Minkowski received a call to the University of Göttingen, then the world-
center of mathematics. The two men became close collaborators until
Minkowski’s sudden death, at age forty-four, from a ruptured appendix.

Axel Thue’s concern in 1892 was a line of research that Minkowski had
invented. It would later be called the “geometry of numbers.” Maybe it was
Minkowski’s Jewish background that kindled his interest in this new theory,
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which combined geometry and number theory. Gematria (a Hebrew-
Yiddish term for “geometry”) is a somewhat tongue-in-cheek technique in
which each letter of the Hebrew alphabet is assigned a number. This then
allows rabbis to interpret holy texts by their numerical equivalents.3 But
Minkowski didn’t concern himself with holy texts; his line of inquiry was
directed toward quadratic forms (which we met in the last chapter), and his
version of gematria eventually developed into an independent branch of
number theory. With its help, problems in number theory are studied by
the use of geometric methods, or vice versa. Sometimes the solution to a
problem that seems intractable in its original setting may become obvious
in the context of figures. Minkowski’s suggestion was to translate number-
theoretic problems into geometrical terms, wherein proofs may be found
more easily. Then they are translated back into number theory and, voilà,
we have the solution.

As an example let us take an airline that wants to renew its fleet. How
many jets should the company buy so that (1) its profits are maximized and
(2) certain conditions are fulfilled: at least one landing a day in Paris, Rome,
and London; no more than twelve weekly departures from Seattle; at least
twice as many available seats on the leg between Atlanta and San Francisco
as on the leg between Cairo and Tel Aviv; no takeoffs during the night in
Zürich; and so forth. This is a problem of optimization under constraints,
and computer programs have been developed to find the best possible num-
ber of aircraft.4 After much cranking and churning, the computer may spit
out the following result: profits are maximized with 17.9 airplanes. Obvi-
ously, this solution is no good. Neither Boeing nor Airbus nor any other
company has devised a method to build and fly fractional planes. And don’t
you dare just round the number up or down. The closeness of the result to
the number 18 should not fool you, because it is by no means certain that
18 aircraft is the optimal integer solution. Even if the best fractional result
is 17.9, the optimum fleet could contain 6 aircraft, or 74, or 38!

So how can one know whether an integer solution to the problem
exists? Let’s say there are d conditions of the form “no more than twelve
departures,” “at least twice as many seats,” and so on. These conditions
define a system of d inequalities. Translated into geometrical terms, the sys-
tem defines a body suspended in d-dimensional space. Now take a look at
the axes of this space. In each direction they define a continuum of real
numbers. The points on the axis that represent integer numbers define a 
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lattice, or grid, in d-dimensional space. So the question becomes: Does a
certain body that is suspended in a d-dimensional lattice contain at least one
of the lattice points, or does it float between them? Translated back into
arithmetic, this is equivalent to the question: Does a system of d inequalities
(which defines the body) have an integer solution (contain a lattice point)?
If it does, chose the one that maximizes profits. If it doesn’t, no optimal
integer solution exists and the airline must either relax some of the con-
straints or make do with a suboptimal solution.

Geometry of numbers can also be applied to packing problems. In 1893
Minkowski announced in a letter to a colleague that the density of a lattice
packing of spheres (a geometrical problem) is related to the so-called Zeta
function (a concept from number theory). Twelve years later, in 1905, he
published a proof of this assertion. He showed that, in fact, the best lattice
packing in two dimensions must have a density of at least 1⁄2(1 + 1⁄4 + 1⁄9 +
1⁄16 + 1⁄25 + . . .). This equals 0.8224 . . . and is quite a way off from 0.9068,
the density of the hexagonal packing. But since, in 1905, it was not yet
known whether the hexagonal packing is, in fact, the densest packing pos-
sible, this lower bound was considered quite an advance.5 Unfortunately
Minkowski’s theorem is nonconstructive, which means that it only guaran-
tees that such a lattice exists, but doesn’t show what it actually looks like.

In 1892 Thue need not have worried that his German competitor would
beat him to the finish line. Minkowski was still far from his 1905 proof and,
anyway, his approach only dealt with the lattice version of the problem. But
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Thue feared that Minkowski would, sooner rather than later, put his mind
to the general version and possibly succeed. So he was in a great hurry to
come out of the closet and announced a lecture on the subject. In that way
he could always claim priority over Minkowski if the question ever arose.

The audience at the meeting in Copenhagen waited with bated breath
to hear Thue, but was treated to a rather taciturn presentation. At least this
is what we have to gather from the published report. The printed version of
his sibylline talk contains all of twenty-three lines (plus one figure). But it
was not its brevity that raised criticism. Thue only presented an outline of
how the packing problem in two dimensions could be tackled. He may
have had a good idea, but a proof it certainly was not. A well-known num-
ber theorist, Carl Ludwig Siegel, described Thue’s attempt as “reasonable,
but full of holes.” An expert, Claude Ambrose Rogers, would write sev-
enty years later that “the published account of the lecture is very short and
is hardly sufficient to enable his proof to be reconstructed.” In particular he
criticized that “there is no [discussion of the] situation when seven of his
points lie within a [critical] distance of one of the points.” There will be
more to say about the problem of the seven points later.

If Thue had meant his address to be a preliminary report on a possible
strategy for a proof, the mathematical community waited in vain for a final
version that might have filled in the holes. It never appeared. 

Eighteen years later, in 1910, Thue tried his hand again, this time using
a totally different method. He did not do so because he had become aware
of any errors in his first paper—indeed, in a footnote he proudly mentioned
his previous essay—but apparently felt that one more essay on circle pack-
ings would be in order. This time he had the good sense to write in Ger-
man, which had long before replaced Latin as the lingua franca among
mathematicians. Now at least his peers could also read it. They did, and the
verdict was not long in coming:Thue’s newest work did not fulfill the strin-
gent requirements of the professionals, either.6 Maybe it hadn’t been such a
good idea to write the paper in German. Had Thue published in Danish or
Norwegian again, it would have been less open to scrutiny.

So neither of Thue’s two attempts managed to convince later mathe-
maticians. The community had to wait another thirty years for a satisfactory
proof of the general circle packing problem. In 1940, the Hungarian math-
ematician Laszlo Fejes-Tóth appeared on the scene. Born in Szeged, in
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1915, he studied mathematics and physics at the University of Budapest. He
got his doctorate in mathematics in 1938. A two-year service in the Hun-
garian army followed, after which he received his first academic post at the
University of Kolozsvar. Positions in Budapest, Veszprem, and, again, Buda-
pest followed. For fifteen years, from 1970 to 1985, he served as director of
the Mathematical Institute of the Hungarian Academy of Science. Fejes-
Tóth published about one hundred and eighty papers and two books in the
areas of convex and discrete geometry. Even though he never had a single
Ph.D. student his work and open problems have influenced almost every
contemporary discrete geometer. He will also accompany us in some of the
following chapters.

There must be something about nonlattice circle packings that makes for
short papers. The fact that Fejes-Tóth’s proof was twice as long as Thue’s
first paper isn’t saying much. It consisted of only forty-seven lines, plus a fig-
ure. But even if the proof wasn’t very loquacious, it certainly was rigorous—
no more handwaving here.7 The paper also contains four footnotes, and one
of them turns out to be of some significance because it deals with the noto-
rious case of the seven points.

Mathematical papers are not exactly known for their catchy titles, but
even among this sour fare, Fejes-Tóth certainly chose a winner. Written in
German, the paper carried a title reminiscent of Thue’s article: “Über einen
geometrischen Satz” (About a geometrical theorem). It was guaranteed to
arouse little interest. Superficially, the theorem does not seem to have any-
thing to do with circle packings. However, it is surprising in its own right
and we shall first describe what it says. Then we shall outline how Fejes-
Tóth proved it, and in the course of the proof it will become clear why this
theorem gives a definitive answer to the general (nonlattice) circle packing
problem.

Let’s illustrate the theorem. A farmer planted five hundred trees in a field
that he had leased. To permit sunshine to enter the forest and to allow for
sufficient irrigation, he left a distance of at least 2 meters, sometimes more,
between any two trees. When the owner of the land died, his son presented
the farmer with a choice: purchase the area on which the trees stand at a
price of $20 per square meter or forget about forestry. The poor farmer had
$34,000 at his disposal and had no idea how large his field was. He tried to
make a quick mental calculation of how much he would have to pay, but,
being a rather simple man, he just stood there scratching his head. Without
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even consulting a surveyor Fejes-Tóth could have told him immediately
that he did not have enough money: the area he would have to purchase
could not be smaller than 1,732 square meters. How did Fejes-Tóth arrive
at this number? To find out, read on.

❖ ❖ ❖

Take an area of any size and shape, and place a very large number of dots into
this region. (We denote the number of dots by N. In fact, the theorem holds if
N is infinitely large.) You can place them any way you like. You could throw
darts onto a board, drop the dots randomly into the area, or place plants in a
pattern in a flowerbed. The theorem that we are discussing holds for any kind
of arrangement of dots, darts, and flowers. The only condition is that none lie
on top of another. Once the dots have been placed, take the two that lie clos-
est to each other and measure the distance between them, denoted by D. Now
place squares of side length D around each of the dots. There may be overlaps
and there may be gaps, but that does not bother us. We have now packed or
covered the area with N squares, each of which covers an area of D2. The total
area covered by the squares—counting overlaps twice—is ND2. Fejes-Tóth’s
theorem states that the total area of the squares cannot surpass the surface of
the original area by more than 15.5 percent. This is quite surprising. Why
shouldn’t there be more overlaps? Why can the squares not cover areas that
are, say, 20 percent greater than the original area?

Let’s try to fool the theorem, and increase the distance between the two
dots somewhat. As soon as D becomes large enough, ND2 will become greater
than the original area plus 15.5 percent, right? Wrong! When the distance
between two neighbors is sufficiently increased, other dots will become too
crowded. Suddenly, two other dots will be identified, such that the distance
between them, let’s denote it by F, fulfills the theorem. In other words, as soon
as ND2 surpasses the original area by more than 15.5 percent, two other dots
will be close enough, such that NF2 fulfills the theorem.

Where does the number 15.5 percent come from and how can the theorem
be proven? To replicate Fejes-Tóth’s proof, first recall that all dots lie at a dis-
tance of at least D from each other. Now consider three dots that lie as close to
each other as is allowed; they lie at the corners of an equilateral triangle with
side length D. In what follows we shall need a very special number—the radius
of the circle that cuts through the three corners of that triangle (there is only
one). It equals 0.577 � D (see appendix). We now place circles with this radius
around each of the dots. This guarantees that no part of the area will be cov-
ered by more than two circles.

Before we continue with the proof we must answer the following question.
We know that not more than two circles can overlap at any point, but how
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many circles can reach into another circle? The answer is at most, seven. Why
can’t eight or more circles reach into a central circle? In order for circles with
radii R to overlap—or at least touch—their centers cannot lie farther away from
each other than twice their radius (2R = 2 � 0.577 � D = 1.154 � D). On the other
hand, the surrounding dots must lie at a distance of at least D from the central
dot, because that was specified as the smallest distance between any two dots.
This is the same as saying that the surrounding dots must lie outside a circle of
radius D from the central dot.

Let’s recapitulate. If we place one dot in the middle, then the centers of the
overlappers must lie farther away than D and, simultaneously, not farther away
than 1.154 � D. These two conditions define a ring-shaped area around the
middle dot, inside which the surrounding dots must lie.

But the dots must also lie at a distance of at least D from each other. So how
many dots can be placed inside this ring that satisfy this condition? Let’s make
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a feeble attempt at arranging eight dots in a judicious manner. The way to
place as many dots as possible into the ring-shaped area—with the maximal
distance between them—would be to arrange them on the outside border of
the ring. The appendix shows that such an arrangement results in distances of
0.884 � D between each pair of dots. This is too short, and eight overlappers are
impossible.

What about seven overlappers? Let us again place the dots on the outer cir-
cle and check whether they have the required distance from each other. The
appendix shows that seven equidistant dots on the outer circle result in a dis-
tance between any two neighbors of 1.002 � D. This is a hair’s breadth larger
than D, hence the requirement is satisfied, and seven overlappers are a real pos-
sibility.

We continue the proof by asking what area is covered by the circles? In order
to compute this surface, care must be taken to count the areas that are covered
by two circles only once. Fejes-Tóth used a neat trick to do that. He simply split
the double-covered areas down the middle by drawing a straight line through
the wedge-shaped sectors. One-half of the overlapped area is allocated to one
circle, the other half to the other circle. Apart from avoiding double counting,
this trick has the additional advantage of simplifying the mathematics. Instead
of awkwardly dealing with the surfaces of circles and wedges, one needs to
compute only the areas of straight-edged figures, which are easier to handle.

So what is the total area that is covered by the circles? Let us inspect one typ-
ical circle that is surrounded by other circles. Obviously, the covered area is
smaller if the central circle is partially overlapped by one of the outside circles.
The area is smaller still if the central circle is overlapped by two outside circles.
And the greater the number of outside circles that overlap the central circle, the
smaller the area gets, right? Wrong again! Let’s see why. The key to the 
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problem lies in the overlapped wedges, since they are the areas that save space.
If the overlapped area is big, then a big part of the surface is allocated to the
outside circles, and the remaining area—the surface allocated to the central cir-
cle—becomes smaller. So let’s try the whole thing again.

If one outside circle reaches into the central circle we get one wedge, half of
which is allocated to the outside circle. Let a second circle reach into the cen-
tral circle. There are now two wedges, and half of their area is allocated to the
outside circles. And if three circles reach into the central circle, the overlapped
areas are three times as large. And so on it goes, the area allocated to the cen-
tral circle becoming smaller and smaller until circle number six. But at that
point something happens: there is not enough room to add circle number 7! In
order to accommodate the seventh circle in their midst, circles 1 to 6 must
make room and move toward the outside edge of the ring. They must move so
far toward the outside circumference of the ring that they hardly reach into the
central circle anymore. As a consequence, the seven wedge-shaped sectors are
so minute that the area that remains allocated to the central circle is larger than
it was with only six overlappers. So the smallest area is allocated to the central
circle when six circles reach into it.

Until now the proof dealt with a typical circle in the center of the plane, sur-
rounded by a number of outside circles. But “center” and “outside” are relative
terms when the number of circles, N, goes to infinity. Each circle can be con-
sidered, in turn, a central circle or an outside circle. And since half of the surface
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of each wedge was allocated to each of the two circles, the whole argument
can be extended without further ado to all N circles in the plane.

We have thus shown that, no matter how the dots are arranged, the area
covered by the circles can never become smaller than the configuration where
six circles reach into the central circle. And in order to overlap in the most effi-
cient way, that is, in such a way that the total surface of the six wedges is at a
maximum, the six outside circles must be placed in a hexagonal arrangement.
How much of the area is then covered? If each wedge is cut through the mid-
dle, the area allocated to the central circle is a straight-edged hexagon with side
length D whose surface is easily determined. The appendix shows that this hexa-
gon covers an area of 0.866 � D2. (The number 0.866 is equal to 1⁄(1+15.5%).) In other
words, each dot requires a surrounding area of at least that surface. Fejes-Tóth
thus showed that the total surface, call it T, that is needed to position N dots at
a distance of at least D from each other, must be greater than 0.866 � ND2. Turn-
ing the argument around, we can say that ND2 must be smaller than 1⁄0.866 times
the area T. This is equal to T plus 15.5%, which is what we set out to prove.8

❖ ❖ ❖

This is why the farmer’s land must be greater than 1,732 square meters:
0.866 times 500 trees, times 22. What does all that mean for circle packings?
Fejes-Tóth showed that the surface must be greater than a certain lower
limit—no matter how the dots are arranged. This limit is attained when the
dots are placed in such a manner that six circles reach into a central circle.
Hence, the closest packing of circles is achieved when the dots, which rep-
resent the center of the circles, are placed in a hexagonal pattern. As we saw
in the previous chapter, this is the same result that can be deduced from
Lagrange’s findings, obtained in 1773. But Lagrange’s result was achieved
under the assumption that a lattice arrangement underlies the placement of
the circles. Fejes-Tóth did not place any restriction on the placing of the
dots. Therefore, his demonstration is a proof for the general problem of pack-
ing circles as closely as possible.

To the casual reader it may seem that Fejes-Tóth simply pulled a hexa-
gon out of his hat, but the argument is sophisticated. The crucial insight
was provided by the fact that, in order to save space, exactly six circles must
reach into the central circle. The hexagonal arrangement was a conse-
quence of the attempt to maximize the area of the wedges. One significant
advance of Fejes-Tóth’s proof over the previous attempts was his footnote
number 4, in which he treated the problem case of seven circles, which had
been completely neglected by Axel Thue.
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As if the locks had been opened, Fejes-Tóth’s proof made way for more
work on the two-dimensional packing problem. There was no hysteric
rush, mind you, but in 1944, four years after Fejes-Tóth’s paper had
appeared in the Mathematische Zeitschrift, two mathematicians from the Uni-
versity of Manchester in England, Beniamino Segré and Kurt Mahler, pub-
lished the paper “On the Densest Packing of Circles” in the American
Mathematical Monthly. Now here was a title that at least made sense. More-
over, the paper was written in English. While they were working on the
problem the authors were unaware of Fejes-Tóth’s earlier result. Only
when a colleague, Richard Rado of Sheffield, read their manuscript, did he
draw their attention to Fejes-Tóth’s previous work. Rado also informed
them that he too was working on the problem, but he probably became dis-
couraged by the deluge of proofs and never published his findings.

Segré and Mahler met at the University of Manchester. The two men
came from totally different backgrounds but they had three things in com-
mon: their year of birth (1903), an interest in circle packings, and their
faith: they were both Jewish. Their religious denomination was of great sig-
nificance in Europe in the 1930s and the consequences that arose were
what brought them together in Manchester. Segré was born in Turin, Italy
(the same town from which Joseph-Louis Lagrange hailed), and Mahler in
the German town of Krefeld. Segré came from a family of well-known sci-
entists and was a gifted student. He received his doctorate at age twenty, and
posts in Turin, Paris, and Rome followed. At the age of twenty-eight,
when he was appointed to a chair in Bologna, he already had forty papers
in various branches of mathematics to his credit.

Mahler, on the other hand, had a less fortunate youth. From early child-
hood he suffered from tuberculosis and as a consequence had to leave
school at the age of thirteen. He took a job as a factory worker but never
stopped pursuing his studies. After work he taught himself mathematics,
and even tried his hand at mathematical research. His proud father sent
some of the small articles to a mathematician he knew, who passed them on
to friends of his. They finally ended up in the hands of Carl Ludwig Siegel,
a professor at the University of Frankfurt. Siegel was suitably impressed
with what he saw and arranged for Mahler’s admission to the Universities
of Frankfurt, and later Göttingen. In 1927 Kurt became “Herr Doktor
Mahler,” but just when his academic career was about to take off, with an
appointment at the University of Königsberg, the Nazis came to power in
Germany. At the same time, the Fascists took over in Italy.

Both Segré and Mahler were affected to the extreme by the political
developments because of their Jewish backgrounds. The Fascist Italian gov-
ernment forced Segré out of the University of Bologna, and Mahler
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decided to leave before the Nazis would kick him out of the University of
Königsberg. They departed from their respective homelands and made their
ways to the shores of England. They were not made to feel especially wel-
come. As was the unfortunate custom at the time, after entry to Britain
every person who hailed from Germany or Italy—Jewish or otherwise—
was first interned as an “enemy alien.” Segré and Mahler were no excep-
tion and they got to enjoy the dubious honor of being hosted by His
Majesty’s detention service for a few months in 1940.9 After they were set
free, they met up at the University of Manchester, at the invitation of the
mathematician Louis Mordell. Segré and Mahler were forty-one years old
when they collaborated on their paper on circle packings.

They approached the problem differently from Fejes-Tóth. They asked
how many circles of radius 1 can be packed into a triangle, a square, a pen-
tagon, or a hexagon of area T. Their answer: at most 0.289�T. To prove this
assertion, Segré and Mahler surrounded each circle by a straight-edged cell,
and then computed the surface of these so-called Voronoi cells.10

Let me illustrate the situation with the following scenario. A group of
investors purchase an oceanfront property, of size T, in order to build
Voronoi Village, a holiday retreat. The developers want to parcel out the
property into separate lots. Inspired by Buckminster Fuller’s Dymaxion
houses, each lot would contain a round villa propped on a pole (that’s how
Bucky designed them) and surrounded by a little fenced garden. The prop-
erty boundaries would run down the middle of the space between any two
villas, as indicated by the fences. These boundary lines would, when viewed
from above a given villa, form polygons with as many straight edges are
there are surrounding villas. If two villas were adjacent, the garden fence
would simply run through the point of contact. Like all property develop-
ers worth their salt, the Voronoi Village Consortium wants to maximize
profits by squeezing as many villas onto the oceanfront property as possible.
How many can they fit?

Segré and Mahler set out to calculate the areas of the separate lots. For
the sake of the calculations they assumed that the villas have a radius of 1.
They partitioned the lots into triangles and showed that each of these tri-
angles must be greater than 0.5513 multiplied by the appropriate angle in
the middle of the villa.11 (The details of the calculations are quite intricate,
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and I won’t repeat them here.) Since the angles of all the triangles of a lot
must add up to a full circle, which is equal to 2π (in radians), the sum of the
triangles’ surfaces is greater than 0.5513 times 2π. This equals 3.464, and it
means that each lot covers an area of at least 3.464. Segré and Mahler con-
cluded that Voronoi Village, the oceanfront property of area T, cannot con-
tain more than T⁄3.464 separate lots.

Now I will translate the Voronoi Village Consortium’s experience back
into language mathematicians can understand, and see what all this means
for circle packings. Segré and Mahler’s calculations imply that no greater
density can be attained in two dimensions than when T⁄3.464 circles are packed
into a polygon of surface T. And which arrangement achieves that density?
The answer is—surprise, surprise—the hexagonal arrangement! So it has
been proved once again that the configuration of “six around one” is the
densest packing of circles in the plane.12

And what’s the density? Recall that density is defined as the ratio of the
area covered by the circles divided by the total area. Since a circle of radius
1 covers an area of π, and since there are T⁄3.464 circles in a polygon of area T,
we get a density of π � (T⁄3.464)/T, which equals 90.69 percent. Does that look
familiar? It better, since this number is the maximal density of spheres in
two dimensions, as already pointed out in chapter 3.

Now that the packing problem has been solved a couple of times over—
even in the general, nonlattice version—let us pick up a thread we left
hanging in the previous chapter. I refer to coverings in the plane. Recall that
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a covering is defined as a set of circles that completely covers the plane, even
if some parts of the plane are covered by more than one circle.

We go back to the late 1930s. On the other side of the Atlantic, at the
University of Wisconsin, the mathematician Richard B. Kershner was
working on circle coverings. Kershner was born in Crestline, Ohio, in
1913. When he was one year old, his father was appointed headmaster of
the Franklin Day School and the family moved to Baltimore. At fourteen,
Kershner went to sea as a deck boy on a freighter. Two years later, the six-
teen year old entered the engineering program at Johns Hopkins Univer-
sity. But adventure called, and after his first year in college he again went to
sea, this time as an ordinary seaman. Back from this exploit Kershner was
admitted to a graduate program at Hopkins for qualified undergraduates.
He received his Ph.D. in mathematics in 1937. By that time he had already
published more than a dozen articles in the American Journal of Mathematics.

After graduation, Kershner was appointed instructor of mathematics at
the University of Wisconsin. He stayed there for three years. When he
returned to the mathematics department of his alma mater as an assistant
professor of mathematics, he no longer had the leisure to concern himself
with pure mathematics. Times were hectic and the atmosphere was
charged: the United States was about to enter World War II. Everybody and
his uncle were enlisted in the war effort. The young mathematician turned
to ballistics, as always a thankful subject for mathematicians involved with
the military. (Remember Lagrange and the shooters in Turin?) During the
following years he and a colleague established the fundamental understand-
ing necessary for the development of advanced ordnance and rocket sys-
tems. Thus Kershner did his part to defeat the Fascists and the Nazis who
had thrown Segré and Mahler out of their respective homelands.

As dark clouds gathered over Europe, Kershner was busy with the cov-
ering problem. He wrote a paper while at the University of Wisconsin with
another sensible title: “The Number of Circles Covering a Set.” It was sub-
mitted to the American Journal of Mathematics in December 1938, and pub-
lished in the following year. Kershner thus solved the covering problem a
year before Fejes-Tóth solved the packing problem.

❖ ❖ ❖

Let us cover a surface with circles and connect the centers of all circles with the
centers of neighboring circles. A net of triangles results. There is a very neat
result by Leonhard Euler about such nets. Count the number of faces (F ), edges
(E ), and corners (C ). Now add the number of faces to the number of corners.
Euler showed that this sum is always equal to the number of edges plus 1. No
matter what kind of net you think of, you will always get C + F = E + 1.
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It is quite easy to prove this surprising theorem.13 Start with one triangle. It
has three corners, one face, and three edges. Hence Euler’s theorem is satisfied:
3 + 1 = 3 + 1. Now add two edges to form a net consisting of two triangles.
Again Euler’s theorem is satisfied: four corners, two faces, and five edges: 
4 + 2 = 5 + 1. Sometimes it may be possible to form a net of three triangles by
just adding a single edge. Euler’s theorem is still satisfied, because even though
the extra edge added an extra face, no new corners were added: 4 + 3 = 6 + 1.
A third possibility of adding faces to the net is as follows. Weave an additional
knot into the middle of an existing triangle by connecting that knot with the
three existing corners. In this case one new corner is added, two new faces (one
triangle was converted into three smaller triangles), and three new edges. We
get 5 + 5 = 9 + 1. Continue with this game as long as you like, the result always
stays C + F = E + 1. The underlying reason for this is that in order to add a new
triangle at the border of the net you must either add two edges, in which case
you simultaneously increase the number of corners by one, or you just add one
edge, in which case no additional corners appear. If you add a corner in the
middle of the net you willy-nilly add two faces and three edges. Euler’s theorem
is satisfied in each of these cases. We will make use of this result in the follow-
ing paragraphs.

I will now describe Kershner’s proof. How large can the triangles of the net
be? Recall first that the corners of the net represent the centers of circles that
cover the net. Now draw disks around the triangles. (To avoid confusion with
the original circles whose centers form the corners of the net, we call the circles
around the triangles disks.) The distance from the center of the triangle to its
corners cannot be larger than 1, so these disks have a radius of less than 1. (If
the disks had a larger radius the circles would not overlap.) How large can a tri-

68 K E P L E R ’ S  C O N J E C T U R E

corners = 9
edges = 16
 faces = 8

13 Actually, the net need not even be composed of triangles. Any combination of poly-
gons—combined into a net—satisfies Euler’s theorem.

(a) (b)

Covering (a), and associated net of triangles (b)



angle that is inscribed into a disk of radius 1 be? This question is a different ver-
sion of Queen Dido’s problem (discussed in the previous chapter): Which trian-
gle, inscribed into a disk of radius one, has the greatest surface? The answer is
the equilateral triangle. In the appendix to this chapter we show that such a tri-
angle has an area of 1.299. Hence each triangle in the net must be smaller than
that number. Since the net is composed of F triangles, one for each face, the
net’s total surface must be smaller than 1.299 � F.

Our next task is to find a relationship between the number of faces in a net
and the number of corners. Each face of the net is surrounded by three edges.
Hence there are three times as many edges as there are triangles. But this would
be double counting, since most edges belong to two triangles, one on each
side of the edge. Let’s call these the interior edges. Only the edges at the bor-
der of the net belong to a single triangle. If each triangle is allocated half of the
interior edges, and all of the border edges, then the average number of edges
per triangle must be higher than 11⁄2, that is, E ≥ 11⁄2 F. On the other hand, Euler
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stated that E = C + F − 1. Combining these two facts, we can give an upper limit
for the number of faces of a net: F ≤ 2C, that is, the number of faces is less than
(or equal to) twice the number of corners. And this means that the total area of
the net is smaller than 2C � 1.299 = 2.598 C.

Let’s compute the density of the area covered by the circles. There are C cor-
ners in the net and each of them represents a circle. Since the radius is 1, each
of these circles covers an area of π. The net’s total area is smaller than 2.598 C,
as we just showed. Hence the density—the area covered by the circles, divided
by the area of the net—is at least πC⁄2.598 C. Substituting the numerical value for π
we get 1.209. This is sort of a magic number. Even if the net were to be made
infinitely large, by adding more and more triangles, the density could never
drop below 1.209. But if the number of triangles increases how can the density
stay constant? Well, the number of corners, C, appears both in the numerator
and in the denominator of the density equation. Hence it cancels out of the
fraction, and so it does not matter how large the net is or how many triangles
there are. The density of any net can never be smaller than 1.209. There will
always be unavoidable overlaps to the tune of 20.9 percent.

One last question: Which circle arrangement attains the lowest density? Yes,
it’s the good old hexagon. The key to realizing this is that the only triangle in
the unit circle that exactly covers an area of 1.299 is the equilateral triangle. And
equilateral triangles placed next to each other make up a net of hexagons.

❖ ❖ ❖

Time out for an illustration. The manager of a beachfront has just
received an offer for new parasols: top quality, low price, great colors, and a
radius of 1 meter. His beachfront measures 26 meters by 10, and he wants
to have all of it in the shade. Recently a high-school student joined his
operation to make some money watching the action and arranging parasols.
Having just completed an honors course in geometry, he proudly informs
the manager that the shade of each parasol covers an area of 3.141 square
meters.14 The manager wants to put this handy information to good use.
He pulls out his pocket calculator, computes that the area of his beach is
260 meters, divides this number by 3.141, and places an order for eighty-
three parasols. But the parasol company had put its sales reps through an
intensive course on “Applications of advanced geometry to the placement
of parasols, with special emphasis on Euler’s theorem.” The sales rep tells
the manager point blank, “Forget it! At best, each parasol can provide shade
for no more than 2.598 square meters. Even if you place the parasols in the
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best method possible, you’ll need at least one hundred of them to provide
sufficient shade for the whole beachfront.” Needless to say, the manager
didn’t believe one word the rep was saying and went ahead with his order
of eighty-three parasols. After they arrived, he told his assistant to stick
them into the sand. The poor boy kept arranging and rearranging them,
but try as he might, there were always patches of sun shining in between the
parasols. After numerous complaints from the patrons, the manager placed
an order for another seventeen parasols, and the assistant went back to
school.

So the hexagonal arrangement provides the best packing and, with
somewhat larger circles, also provides the best covering. This completes the
proof or, as mathematicians are fond of saying, quod erat demonstrandum.
This Latin expression means “this is what had to be shown,” and is usually
abbreviated as QED. With a sigh of relief, this acronym is usually placed on
the right margin of the page after the last line of a proof. Like so:

QED

Those readers who had sufficient courage to walk through this proof
may have sensed some of the magic and beauty of mathematics. A number
of steps were taken, each of which seemed quite plausible by itself, maybe
even a bit trivial. But at the end of the path you realize that something
remarkable has happened: a surprising, by no means trivial statement has
been proved. In fact, it may have taken many mathematicians many years of
intense effort to arrive at the statement’s proof.

With this we have completed our discussion of Kepler’s problem in two
dimensions. We started with the lattice version of the packing problem in
the previous chapter. In this chapter we first continued on to the general
version of the packing problem. Now we have also shown how the general
version of the covering problem was solved. (No need to prove the more
restrictive, lattice version of the covering problem. The general version, as
proved by Kershner, subsumes it.) In the next chapters we leave the flatlands
in order to, once again, enter the real world of three-dimensional space.
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C H A P T E R  5

Twelve’s Company, 
Thirteen’s a Crowd

In this chapter we move back in time to the end of the seventeenth cen-
tury and up in space to three dimensions. In 1694, a famous discussion

between two of the leading scientists of the day—Isaac Newton and David
Gregory—took place on the campus of Cambridge University in England.
Their dispute concerned the “kissing problem.” But don’t get your hopes
up. The term kissing in this context has nothing to do with the gesture of
affection. Here the verb kiss refers to the game of billiards, where it signi-
fies two balls that just touch each other.

Newton and Gregory argued about the number of spheres of the same
radius that could be brought into contact with a central ball. On a straight
line two balls can kiss a ball in the center, one on the left and one on the
right. On a billiard table, at most six balls can touch a central ball. There’s
no room for a seventh, as anyone can verify by rolling the balls around a bit.
The reason for this is that a heptagon (seven-cornered polygon) whose sides
have length 2 (i.e., the diameter of a ball) is too large to fit tightly around a
circle with radius 1. So far everything is clear. But let’s move off the green
felt and up into the realm of space.

In the 1950s, H. W. Turnbull, an English school inspector, was doing
research on the life of Isaac Newton. Working his way through the numer-
ous papers, letters, and notes, he came across two documents that would
provide the basis for the kissing problem: a memorandum of a discussion
that the two scientists had at Cambridge, and an unpublished notebook at
Christ Church at Oxford in which Gregory had jotted down some notes.1

1 Christ Church is the cathedral of the Anglican diocese of Oxford and also a college
within the University of Oxford.
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The two men had been discussing the distribution of stars of various mag-
nitudes that revolve around a central sun. In the course of their delibera-
tions the question arose whether a sphere can be brought into contact with
thirteen others of the same size. And that’s where opinions diverged.

How many white billiard balls can kiss a black billiard ball in three-
dimensional space? Kepler stated in his treatise on six-cornered snow that
twelve spheres could touch a central sphere, and then went on to describe
two possible ways to arrange the balls. But maybe thirteen spheres can be
brought into contact with a central sphere. Initially we may think this
clearly impossible, since Kepler’s arrangement is completely rigid. All the
balls touch the central ball and they also touch each other. So how could a
further ball be squeezed in between? The question is not quite trivial
because the hexagonal packing—three balls below the central sphere, six
around it, and three above—is not the only arrangement of “12 around 1.”
We already saw that the cubic packing—four balls below the central sphere,
four on the sides, and four above—is another display of “12 around 1.” As
Kepler pointed out, however, these two arrangements are identical, and any
apparent differences are merely the result of looking at the balls from dif-
ferent perspectives. But maybe there is a truly different arrangement that
brings a dozen white balls into contact with the black ball.

There is—and not just one. Put one sphere on the bottom, then arrange
five balls in a pentagon around the central ball, just below its equator, place
another five balls more or less in the interstices of the lower five balls (this
puts them slightly above the equator of the central ball), and finally top it
off with the twelfth sphere on the pinnacle. So there you have it: another
arrangement of a dozen spheres around the central ball. You may note that
the spheres sit more or less on the vertices of an icosahedron, which is why
this configuration is called the icosahedral arrangement.

If we now take a close look, a very surprising fact emerges: this arrange-
ment is not rigid. Sufficient space is left over in the interstices between the
twelve balls that they can roll around a bit on the surface of the central ball.
You may ask yourself, as did Gregory:Can the balls be moved in such a way

Heptagon arrangement: no touching
and no kissing
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that sufficient space opens up for an additional sphere? Maybe the free
spaces can be combined so that a thirteenth ball can be squeezed in. This
may seem absurd, but Gregory did have a point and we will give a mathe-
matical demonstration that “13 around 1” is at least conceivable.

Consider a number—as yet unknown—of spheres that kiss a central
sphere, all of radius 1. Deposit the whole arrangement into a superball with
a radius of 3. Imagine a lamp at the center of the central ball that casts shad-
ows of the surrounding balls onto the inside surface of the superball. These
circular shadows cannot overlap. It is shown in the appendix that each
shadow has a surface area of 7.6, and the total surface of the superball is
113.1. So how many shadows can fit onto the superball’s surface? Divide
113.1 by 7.6 and you get 14.9. The inescapable conclusion is that there is
room for nearly fifteen balls! Definitely there is sufficient surface, at least
theoretically, for fourteen balls, and so thirteen balls certainly should be
considered a possibility.

All of a sudden Gregory’s claim does not sound as absurd as it did at the
outset. You may nevertheless think it somewhat strange that he steadfastly
claimed that an arrangement of “13 around 1” exists, but never came up
with the recipe of how and where to place the balls. Why did he not sim-
ply position 13 balls around a central sphere and show his arrangement to
Newton? That would have convinced him. Well, it was very difficult to

Icosahedral arrangement
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produce perfectly round spheres of wood or stone with the tools of the
time, so experiments were never quite satisfactory. As a consequence, the
question stayed around for another two and a half centuries. In fact, the dis-
pute was only settled in 1953.

Let us digress for a moment. The Englishman H. S. M. Coxeter2 from
the University of Toronto showed in 1963 that Kepler’s arrangement of “12
around 1” (the hexagonal arrangement) can be transformed into the icosa-
hedral arrangement just by rolling the balls around, without lifting them off
the surface of the central sphere. Since the icosahedral arrangement also
allows the balls to roll around, one ball can be pushed a bit in this direction,
another one in that direction, and so on. Some years later, the designer,
inventor, and architect Buckminster Fuller named the process that converts
the hexagonal arrangement into the icosahedral arrangement the jitterbug
transformation. (There will be much more to say about Bucky Fuller in
chapter 10.) This has far-reaching consequences. It means that in between
the hexagonal arrangement and the icosahedral arrangement there exist an
infinite number of configurations of “12 around 1.” And that’s another rea-
son why the kissing question stayed around for so long: among the infinite
number of arrangements, there just might be one that opens up sufficient
space for a thirteenth sphere.

Superball

2 The initials stand for Harold Scott MacDonald. Originally he was to have been named
Harold MacDonald Scott but friends pointed out to his father that the name H. M. S.
Coxeter would make the boy sound too much like one of Her Majesty’s Ships.
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The space left over in the interstices of the icosahedral arrangement
occupied the minds of generations of mathematicians. But it must be
pointed out that even after the Newton–Gregory dispute was eventually
decided, Kepler’s conjecture could not be put to rest. Just because a thir-
teenth sphere can, or cannot, touch a central sphere does not settle the
question of the densest packing. The number of spheres surrounding one
central sphere says nothing about how balls may be arranged in infinite
space. To put it in mathematical terms, the kissing problem deals with a local
question, while Kepler’s conjecture is a global problem.

Let us get back to the dramatis personae. Isaac Newton was one of the
foremost scientists of all times. If Johannes Kepler was considered the
prince of astronomy, then Isaac Newton was surely the prince of physics.
He was born on January 4, 1643, in Woolsthorpe, in Lincolnshire, a tiny,
weak baby that was not expected to survive for even a week. However,
Newton proved doctors and midwives wrong and extended his lifetime
another eighty-four years.3 He never knew his father, an uneducated, illit-
erate man who died three months before his birth. After the death of her
husband, Isaac’s distraught mother, Hannah, née Ayscough, was badly in
need of the church’s compassion, and the minister of the nearby village,
who went by the name of Barnabas Smith, was only too happy to oblige.
The reverend took his comforting duties very seriously and after a proper
period of mourning the two got married. With this, little Isaac became
superfluous and was shipped off to his grandparents, who weren’t too
pleased with the sudden appearance of a two-year-old boy. Isaac did not
have a happy childhood with them. There was no love lost between him
and his grandfather, James Ayscough. The old man even excluded him from
his will. Isaac was furious. About his mother and stepfather he fantasized
that he would “burn [them] and the house over them.”

Newton’s aim at college was to get—what else—a law degree. At Cam-
bridge, that included studying the antiquated texts of Aristotle, which still put
the earth at the center of the universe and described nature in qualitative
instead of quantitative terms. But revolutionary ideas can’t be repressed—they
just float around at centers of learning—and sometime during his undergrad-
uate days Newton discovered René Descartes’ natural philosophy. Descartes
viewed the world around him as particles of matter and explained natural
phenomena through their motion and mechanical interactions. Through
Descartes’ writings Newton was led to study—without anyone’s knowl-
edge—the important mathematical texts of the time. Then his genius began

3 Some sources put Newton’s birth on Christmas Day of the previous year, but that’s
because the Gregorian calendar was adopted in England only a hundred years later.
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to emerge. All by himself he created revolutionary advances in mathematics,
optics, and astronomy. Single-handedly he invented a new mathematical
method to describe motion and forces, which he called the “method of flux-
ions,” eventually known as calculus. To his greatest regret later in life, he never
published an account of the method that allowed the computation of areas,
lengths of curves, tangents, and maxima and minima of functions. He proba-
bly thought that the new technique was too radical a departure from tradi-
tional mathematics, and that discussions about it would detract the readers of
his astronomy texts from the main results. Therefore, he may have deliberately
covered his tracks by keeping the invention of differential calculus a secret.
The treatise in which he eventually described the new method, “De methodis
Serierum et Fluxionum” (On the methods of series and fluxions), written in
1671, would only be published sixty-five years later, ten years after his death.

Newton’s greatest discovery was the universal law of gravitation. Johannes
Kepler had discovered that planets moved in elliptic orbits. Then there had
been the apple falling from the tree. These clues, paired with phenomenal
insight, allowed Newton to establish the fact that the force acting on a planet
decreases with the square of its distance to the sun. Kepler had shown how,
but Newton explained why. At the urging of his friend, the astronomer

Isaac Newton
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Edmund Halley, Newton wrote Philosophiae naturalis principia mathematica
(Mathematical principles of natural philosophy), which was published in
1687. In the Principia, which has been described as the “greatest scientific
book ever written,” Newton analyzed the motion of bodies under the action
of centripetal forces and gave explanations for orbiting bodies, projectiles,
pendulums, the free fall of bodies, the tides, eccentric orbits of comets, the
precession of the earth’s axis, and the motion of the moon.

But most of his colleagues would not accept the physical law of gravity.
The law, which states that all matter attracts all other matter, baffled his con-
temporaries. Everybody could imagine pulling an obstinate donkey by a
string, but pulling a donkey without a string? That was too much for the
common public and even for the learned men to believe. Obviously a string
is needed to connect the donkey to the yanking farmer, and clearly one body
can move another body only when the two are in contact (when they kiss, so
to say—which does, after all, denote a moving experience). An invisible force
just could not act through thin air or through a vacuum, Newton’s colleagues
thought. They had only recently stopped believing that a magician could, just
by waving his hands, put objects in motion at the other end of the room. It
took a long time and much convincing until “action at a distance” was uni-
versally accepted.4

At age fifty-three, Newton decided on a career change. He became War-
den of the Royal Mint, and three years later, until his death, he was its Mas-
ter. Since he received a commission on all the coins that were struck, he
managed to do quite well for himself. He also pursued counterfeiters
relentlessly and with ferocity.

Many great people have a skeleton hidden in the closet and Newton is
no exception. In Kepler’s case it had been his infatuation with astrology;
Newton’s secret hobby was alchemy. He was obsessed with the idea of
turning metal into gold. Unfortunately, the material he and many other
alchemists used for experiments was mercury. As many of his colleagues
discovered the hard way, not only does mercury not yield gold, it also has
poisonous properties. The method that was generally used at that time to
determine a compound’s characteristics was to taste, smell, or swallow it. In
the case of mercury, this wasn’t such a good idea. Fortunately, Newton suf-
fered no ill effects from his experiments.5

4 Two and a half centuries later scientists had the same problem trying to explain Ein-
stein’s theory of relativity to the public.
5 Some biographers believe, however, that Newton’s depression in later life may have
resulted from the inhalation of mercury.
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In 1703 Newton was elected president of the Royal Society of London.
He was reelected every year until his death twenty-four years later. Apart
from dozing off during the meetings toward the end of his life, he used his
presidency quite to his advantage, as we shall see. Sir Isaac devoted the last
twenty-five years of his life to a priority dispute with Gottfried Wilhelm
von Leibniz over the discovery of calculus—Newton’s method of fluxions.
The stakes were high. Calculus changed mathematics in a fundamental way,
and its inventor would forever be remembered for this feat. As president of
the Royal Society Newton appointed an “unprejudiced committee” to
decide who had been the first to invent calculus. Of course the unpreju-
diced committee members knew exactly what was expected of them and
didn’t dream of letting Leibniz off the hook. The gentleman from Ger-
many was never even asked for his version of the events. Just to be on the
safe side, Newton secretly wrote the committee’s final report himself. And
to top it off, he also wrote a very favorable review of the report—again
anonymously—for the Transactions of the Royal Society.

Nowadays it is generally accepted that Newton deserves priority, having
invented calculus in 1665 and 1666. Leibniz apparently reinvented the
method, which he called the “method of differences,” ten years later. Isaac
Newton died on March 31, 1727, in London.

The other participant in the debate on the kissing number was David
Gregory, the nephew of the more famous scientist James Gregory. New-
ton’s junior by sixteen years, Gregory was born in 1659 in Aberdeen, Scot-
land, to a very fertile family: he was one of his father’s twenty-nine children
(by two wives). A precocious child, he started his university education at
the tender age of twelve. But the early start did not last. Rather it ended as
quickly as it started and Gregory concluded his days as a student without a
degree. This did not stop the University of Edinburgh from appointing
him, at age twenty-four, professor of mathematics. Gregory was an early
supporter of Newton. In fact, he was the first university lecturer to teach
the cutting-edge theories that no other university had yet adopted. In 1690,
when unrest set in in Scotland, he left for Oxford. Thankful for Gregory’s
endorsement of his theory, Newton arranged for his appointment as Savil-
ian Professor of Astronomy.

The discussion on kissing numbers began when the fifty-one-year-old
Newton was between jobs. He already had one foot in the Mint in Lon-
don, but had not yet removed the other foot from the ivory tower of Trin-
ity College. On May 4, 1694, Gregory paid him a visit. His stay at
Cambridge lasted several days, during which the two men talked nonstop
about scientific matters. It was a rather one-sided conversation, with Gre-
gory, the dutiful disciple, making notes of everything the great master
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uttered. He had to hurry because Newton freely related his thoughts,
jumping from one subject to another. From editorial corrections to the
Principia, he went to the curvature of geometric objects, the “smoke” issu-
ing from a comet, speeds of different colors of light, conic sections, the
interaction between Saturn and Jupiter, and so on. All this happened at
lightning speed, with Gregory attempting to take it all down. When he was
not quite able to follow, Newton just took the pad from his friend’s hands
and scribbled his own remarks into the notebook.

One of the points discussed, number 13 in Gregory’s memorandum of
that day, was how many planets revolve around the sun. The discussion then
went off on a tangent, to the question of how many spheres of equal size
could rotate around a central ball of the same size. It deviated again to the
distribution of stars of various magnitudes around a central sun. Finally
Gregory asked the question: Can a rigid material sphere be brought into
contact with thirteen other spheres of equal size?

In one of the notebooks found by H. W. Turnbull6 there is a passage in
which Gregory discusses the packing of circles that are placed in concentric
rings around a central circle, that is, the two-dimensional problem. He cor-
rectly pointed out that six spheres can surround a central sphere in the
innermost ring. This is the problem that was proved by Fejes-Tóth in 1940.
He also remarked that the next rings contain twelve and eighteen spheres.
Gregory then went on to discuss the question for three dimensions. How
many spheres can be placed in concentric layers so that they all touch the
central ball? It is here that he made a claim that sparked the debate and the
250-year search for a final answer. Gregory stated—without further ado—
that in three-dimensional space the first layer surrounding a central ball
contains thirteen spheres.

Newton, on the other hand, had written in “A table of ye fixed Starrs for
ye yeare 1671” that there exist thirteen stars of the first magnitude, and in
Gregory’s report on the discussion of May 4, 1694, we read that in order
“to discover how many stars there are of first, second, third etc. magnitude,
[Newton] considers how many spheres, nearest, second from them, third
etc. surround a sphere in space of three dimensions: there will be 13 of the
first magnitude.” Of course, Newton meant a total of thirteen spheres,
including the central one.

So Gregory and Newton did not agree on the number of spheres that
can kiss a central ball. If you were to place a bet, whose side would you
take? Do you believe in “12 around 1” or in “13 around 1”? Betting on

6 These notebooks are kept today at Christ Church at Oxford for safeguarding.



T W E L V E ’ S  C O M P A N Y,  T H I R T E E N ’ S  A  C R O W D 81

Newton would be a safe wager. While Gregory is considered a fair but by
no means outstanding mathematician, Newton was correct in most things
he ever said or did. But he was not infallible, as his attempts to make gold
from mercury showed. And—in Gregory’s favor—there is enough space
for nearly fifteen balls, as we saw previously.

It turns out that Newton was right: “13 around 1” is impossible. That’s
why the highest number of balls that can touch a central ball is now often
called the Newton number. But during their lifetimes the two men were
never to know the correct answer, and after whom the kissing numbers
would be named. And anyway, being correct is only half the fun in mathe-
matics. The other half is finding the proof, and some headway on that
track—though no definite progress—was only made 180 years after New-
ton and Gregory formulated their controversy. The final proof had to wait
an additional eighty years and was only formulated in 1953.7 In the next
chapter I will describe the various attempts to solve the kissing problem.
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7 Readers may be forgiven if they do not find the arguments above totally convincing.
After having finished the manuscript, this author remained beset by doubts. Does New-
ton’s statement really indicate that he knew the correct number to be twelve? Or did
he, like Gregory, think that thirteen spheres can touch the central sphere? Seeking an
answer, I contacted Dr. Robert Hunt, Deputy Director of the Isaac Newton Institute
for Mathematical Sciences at the University of Cambridge. We sought further sources
to confirm whether Newton knew the correct answer. Alas, we were not able to find
any, and until further notice the question remains open.
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Nets and Knots

In 1869 a mathematician by the name of Bender from the Swiss town of
Basle submitted a proof for the kissing problem to the Archiv der Mathe-

matik und Physisk, a well-regarded journal published in Germany. The paper
was entitled “Bestimmung der grössten Anzahl gleich grosser Kugeln,
welche sich auf eine Kugel von demselben Radius, wie die übrigen, aufle-
gen lassen”—in English, “Determination of the largest number of equal-
sized balls, that can be placed on a ball with the same radius, as the others.”
(There is nothing lost in the translation; even the original German title
sounds awkward.) The problem’s roots in Newton and Gregory’s dispute
were not mentioned and were apparently unknown to the author, who had
just put his mind to a geometrical problem that he found interesting. Dr.
Bender submitted his paper to the Archiv on May 25, 1869. And then he
waited. And waited. And waited.

Altogether he waited for five years, until 1874, when his exposition
finally appeared in print. There was a good reason for the delay, however,
and it wasn’t the confusing title. Bender’s alleged proof was no proof at all.
All he had managed to demonstrate was that twelve balls could touch the
central sphere and that each ball touched four neighbors simultaneously. He
did that by showing that if twelve balls are placed on the surface of the cen-
tral ball in the familiar arrangement, then there remain eight empty trian-
gles and six quadrangles in between the balls. Bender then computed the
surfaces of these triangles and quadrangles, summed them, and concluded
that there remains sufficient room for only the twelve balls with which he
had started out. Toward the end of the paper he added, as an aside, that it is
“easy to show that no other arrangement allows a greater [number of
spheres],” and, therefore, “not more than twelve balls can be placed on the
surface of a ball with the same radius.”

These are big words indeed, but Bender had proved nothing at all. Worse
still, he had committed the cardinal sin of establishing a tautology and try-

82



ing to pass it off as a proof: if you start out with twelve balls, you end up
with twelve balls. At best, Bender had shown that in the particular arrange-
ment he considered, no thirteenth ball could be added to the twelve that
are already there. That was no great achievement, since it was known all
along—at least since Harriott and Kepler discussed the matter toward the
end of the sixteenth century—that twelve balls could kiss a central ball. The
real question was whether some other kind of arrangement exists that allows
thirteen spheres to come into contact with the central ball. And that ques-
tion had been left open by Bender.

Strangely enough, the editorial board of the Archiv felt that this nonsense
was nevertheless worthy of publication. Why were the editors, typically
concerned about the quality of the material that appears between the cov-
ers of their journal, so soft-hearted in this case? The reason for their
leniency soon becomes apparent. Bender’s alleged proof, which should
never have seen the light of day, gave another mathematician by the name
of Reinhold Hoppe the opportunity to present his own version of a solu-
tion to the kissing problem. Hoppe just happened to be the editor-in-chief
of the Archiv.

Hoppe’s entire life was exceptionally unspectacular and his publications
record is no less mediocre. His research covered mathematics, physics, phi-
losophy, and linguistics. In mathematics he published 250 articles, which
seems an extremely respectable number at first sight. But 80 percent of the
articles appeared in the journal that he himself edited, and many of them
were simply “fillers,” short notes that served to complete the sheet when
another article ended in mid-page. The quality of his more weighty pieces
was not outstanding either. Since he rarely bothered to determine what
other authors (if any) had had to say about a given subject, much of
Hoppe’s original research was of only marginal interest. So insignificant
were most of his papers that sometimes he completely forgot that he him-
self had written on the same subject a few years earlier. At the age of forty
he stopped bothering with the pertinent literature altogether and hence-
forth was not even familiar with the names of the most famous of his con-
temporaries. A colleague described him as a “hermit of science.” Hoppe
had a very unpleasant appearance and his unpretentiousness and humility
led to a very neglected demeanor.

But as editor of one of the foremost mathematics journals in Europe he
wielded great power, which he could use as he liked. In his obituary, typi-
cally an occasion for summing up a person’s accomplishments, a colleague
wrote that Hoppe had composed many articles that would have better been
left unwritten. His handling of submissions from outside contributors was
equally casual. Especially toward the end of his life, his lack of intellectual
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astuteness allowed, “many conceited and loquacious authors, with little
knowledge and less ability, to convince him to publish the mediocre and
sometimes nonsensical products of their pens. But who would have had the
heart to argue with an octogenarian?”1

So, to the problem at hand. In 1874, Hoppe decided to publish Bender’s
contribution but attached an addendum to the end of the faulty paper, enti-
tled “Commentary of the editorial board.” This was done rather discreetly.
In fact, Hoppe didn’t even sign the commentary. What probably happened
was that when Bender submitted his paper, it was recognized by Hoppe as
being deficient. However, it did manage to spark an idea that then took five
years to gestate. Finally Hoppe was ready to present his proof to the world.
But apparently he felt it would be unfair to publish his essay without giving
Bender due credit. As a consequence, both papers were printed in the
Archiv, one right behind the other.

Hoppe began his commentary by pointing out the shortcomings of the
preceding paper. Starting from the arrangement that Bender considered, he
noted that many movements and displacements of the balls were possible.
The real question, he wrote, was whether the spheres could be pushed
around in such a manner that sufficient room opens up to let a thirteenth
ball squeeze in. This question was left unanswered by Bender, and now
Hoppe set himself to it. I will only sketch the main points of his demon-
stration because a similar proof will be described in the appendix.

❖ ❖ ❖

Assume that thirteen spheres can touch the central sphere, and consider the
points where they contact the central sphere.2 Let us weave a net around the
central sphere. From each point of contact a thread is woven to its neighboring
points of contact. If two threads cross, the longer one is deleted. The resulting
net will have thirteen knots and consist entirely of triangles. The threads must
be sufficiently long to accommodate two spheres next to each other, and from
this Hoppe deduced that the net must consist of exactly twenty-two triangles.
(He did that using Euler’s theorem in three dimensions. Details follow.) Then he
computed the surface of the smallest such triangle, multiplied that area by 22
(the number of triangles in the net), and concluded that even the smallest net
will have too much slack to fit tightly around the central sphere.

❖ ❖ ❖

1 E. Lampe, Archiv der Mathematik und Physisk, vol. 1, 1901.
2 Actually Hoppe considered the centers of the surrounding spheres, not the points of
contact, but that is not important.
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Hoppe’s demonstration is tantamount to saying that thirteen balls cannot
touch a central ball simultaneously. In contrast to Bender, he had made no
prior assumption about the arrangement of the spheres. His demonstration
was quite general.

After a year someone else took issue with both Bender’s essay and
Hoppe’s commentary. In 1875, the paper “A stereometric problem” by
Siegmund Günther appeared in the Archiv der Mathematik und Physisk. Gün-
ther was a geographer and geophysicist in Munich who had advanced the
once-popular theory that the core of the earth consists of a gas of high den-
sity. He was also interested in molecular physics and framed the problem of
the thirteen spheres as a question of how many atoms could be influenced
by the forces of another atom, if these forces reach out in all directions.3 He
stated that the method employed by Hoppe was too complicated and sug-
gested his own, simpler technique as an alternative.

Günther began his exposition by considering the shadows of the sur-
rounding spheres that are thrown onto the surface of the central ball.
Unsurprisingly, he reached the conclusion that, in principle, there is suffi-
cient room for thirteen shadows with additional space left over. Then he
went through more calculations to arrive at the verdict that his proposed
simple technique is not strong enough to decide whether a thirteenth ball
can or cannot fit in between the twelve that do have room. Some scientific
advance, that.

That’s where matters stood at the end of the nineteenth century. But

Hoppe’s net

3 This was written at a time when the existence of atoms was not yet verified.
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then, all of a sudden, Hoppe’s own contribution came under scrutiny. It
turned out that his proof was incomplete.

❖ ❖ ❖

Hoppe had suggested connecting the centers of all balls with threads. When-
ever two threads crossed each other, the longer one would be deleted. His
claim was that the resulting net would consist entirely of triangles. But he was
wrong! We present a counterexample in the picture. First all five points are con-
nected to each other. Then the superfluous threads are deleted. At crossing A,
thread m is longer than thread n and must be deleted. At crossing B, thread n
is longer than thread o and must be deleted. At crossing C, thread o is longer
than thread p and is deleted. Finally, at crossing D, q is longer than p and is
deleted. What is left are the five outside threads and the interior thread p. And
that’s the problem. In contradiction to Hoppe’s claim, the net that remains is
not composed entirely of triangles. It contains a quadrilateral.

❖ ❖ ❖

The mistake invalidated Hoppe’s entire proof. Further development on
the question had to wait until the middle of the twentieth century, when
two mathematicians finally provided the conclusive answer to the kissing
problem. In 1953, Kurt Schütte from Germany and the Dutchman Baartel
Leendert van der Waerden joined forces to settle the Newton–Gregory
debate once and for all. The fruits of their cooperation were published as
“Das Problem der dreizehn Kugeln” (The problem of the thirteen spheres)
in the Mathematische Annalen, the foremost mathematics journal in Ger-
many.

Hoppe’s mistake
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Schütte and van der Waerden had already met before the start of World
War II at the celebrated University of Göttingen. Kurt Schütte, born in
1909, was the sixty-ninth and last Ph.D. student of David Hilbert, the most
important mathematician of the first half of the twentieth century.4 Actu-
ally, the doctoral candidate didn’t see much of his thesis adviser, who was
already seventy-one years old at that time. His contacts to the professor
went through Hilbert’s assistant, Paul Bernays, who would later become a
world-renowned logician in Zürich. The twenty-four-year-old Schütte
met Hilbert only once before he graduated in 1933.

After finishing his thesis, which dealt with decision problems, and work-
ing for two years as a schoolteacher, Schütte realized that the professional
outlook for mathematicians was not very bright. So, during World War II,
he embarked on a second career as a meteorologist. After the war Schütte
taught at high schools and then slowly worked his way up through the aca-
demic ranks. The high point in his career came in 1959, when Kurt Gödel
invited him to Princeton’s Institute for Advanced Studies for a sabbatical.
His research concentrated on issues concerning mathematical proofs and
culminated in a well-regarded book, Proof Theory, in 1977. Schütte retired
in the same year but did not let age interfere with his work. Although prac-
tically blind, he stayed active until his death in 1998. His last paper appeared
posthumously in 1999.

B. L. van der Waerden was the senior of the two. He had already served
as an assistant at Göttingen when Schütte was still a doctoral student. Van
der Waerden was born in Amsterdam in 1903 and as a child showed prodi-
gious talent for mathematics. After finishing high school, he went on to
study mathematics at the University of Amsterdam. There was not much to
teach the gifted student and he completed the required program early. With
time on his hands, he decided to spend a semester at the famous University
of Göttingen. It was a university of the old type. Professors were impecca-
bly dressed, distant, and presumptuous. They delivered their lectures either
flawlessly or in such a confusing manner that everyone was left mystified.
Students hardly dared to address them, and lowered their eyes when spoken
to by one of these demigods. It was considered an honor when a promising
disciple was invited to a professor’s home.

The University of Göttingen contained the world’s nerve center of
mathematics: the Mathematische Institut. Felix Klein, the “great Felix,” as
his students called him, held court at the Institut, which was also famous for

4 The French would claim Henri Poincaré as the foremost mathematician of the time.
At the very minimum, Hilbert was one of the two greatest mathematicians of the first
half of the twentieth century.



being the first academic establishment to sport an open-shelf reading room.
Here there were no grudging librarians who would make humble readers
wait for hours on end before finally handing over a jealously guarded book.

After the first stint at Göttingen, it was time for van der Waerden’s mil-
itary service, and he used his spare time as a conscript in the Dutch army to
write his Ph.D. thesis. He would have liked to present his work in German,
so that the revered professors and colleagues at Göttingen would be able to
read it, but the University of Amsterdam’s rules allowed only a single for-
eign language: Latin. Not surprisingly, van der Waerden preferred Dutch.
In 1926, the young man received a Rockefeller grant to spend a postdoc-
toral semester at Göttingen.

The overwhelming intellect at Göttingen was Hilbert, of course, but
there were others of similar caliber, and van der Waerden met Fräulein
Emmy Noether, who—to quote Albert Einstein—was “the most significant
creative [female] mathematical genius thus far produced.” The only woman
ever to have been made Privatdozent at Göttingen, she revolutionized algebra
and deeply influenced the young Dutchman. Based on her lectures, which
were totally incomprehensible to anyone but a select few, as well as on the
lectures of Emil Artin, whom he visited in Hamburg, van der Waerden
wrote a pathbreaking treatise, the two-volume Moderne Algebra, which
appeared in 1930 and 1931. The books became instant bestsellers, were
immediately translated into English, Chinese, and Russian, and are still
bought today by students all over the world. The two volumes made van der
Waerden’s name famous. As Saunders MacLane put it, “it was van der Waer-
den who understood the real thrust of abstract algebra and who presented it
[in the two volumes] abstractly but without pedantry. . . . We are fortunate
that [Noether’s] imagination has been made accessible by van der Waerden.”

Van der Waerden would have liked to keep the next two decades of his
life under wraps. The blurbs on both volumes of his famous work only
mention a post in Groningen in 1928, then gloss over the next twenty-
three years, and coyly pick up again in 1951, when van der Waerden
became a professor in Zürich. What happened in the period between these
two positions? There is not much to be ashamed of, but there’s certainly
nothing to be proud of, either. Just before the start of the darkest period in
recent European history, in 1931, van der Waerden was offered a professor-
ship in Leipzig. He accepted, and the family moved east. There is nothing
to show that the professor had ever been close to the Nazis. A longtime col-
league of his in Zürich, Benno Eckmann from the ETH, described van der
Waerden’s convictions as decent but naïve. His later reluctance to speak
about his personal experiences during the war years may have fostered some
unpleasant questions.
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The partnership between van der Waerden and Schütte took place in the
early 1950s. Following their initial meetings at Göttingen, they parted
ways, but after the war they linked up again to write the definitive paper on
the problem of the thirteen spheres. The paper contained two proofs.
Schütte had thought about the problem and his proof was prepared and
ready to go when van der Waerden came up with a simpler one. What was
to be done? On the one hand, it would have been a shame to let a good
proof go to waste, even if it was superfluous. On the other hand, could one,
in good conscience, publish a convoluted proof if a simpler one exists?
Apparently not, and Schütte and van der Waerden decided to publish both
proofs together.

The two gentlemen started their joint paper by making polite curtseys to
each other. On the first page they emphasized that Schütte’s proof,
although relegated to the last section of the paper, was the first chronolog-
ically, and that this author therefore deserves priority. They continued by
stressing that van der Waerden’s proof, even though it saw the light of day
only later, was actually the simpler one, and was therefore pulled to the
front. Then they took the reader through six sections of propositions, lem-
mas, and theorems to prove that Newton had been right all along. Both
proofs consisted of showing that a sphere that can be touched simultane-
ously by thirteen balls of radius equal to 1 must itself have a radius greater
than 1. That was the death knell for Gregory’s thirteenth ball.

By the way, how large must a ball be so that thirteen spheres can touch
it? In an earlier paper Schütte and van der Waerden found such an arrange-
ment with the central ball having a radius of 1.04557. Is this the smallest
sphere that can be kissed by thirteen balls? It is believed that this is so, but it
has yet to be proven.

Schütte and van der Waerden were not able to rest on their laurels for
long. Across the Channel, the Englishman John Leech felt that the paper
from the continent was too intricate, and that even van der Waerden’s sim-
pler proof was too complicated. He decided to provide an even simpler
demonstration of the impossibility of thirteen spheres.

Leech was born in 1926, and educated at King’s College, Cambridge,
whence he graduated as a wrangler with a B.A. in 1950. (“Wrangler” is one
of those esoteric blue-ribbon signs of esteem, like the “Order of the
Garter,” reserved for British overachievers.) Leech started his professional
career by building early versions of digital computers, but returned to
Cambridge as a Ph.D. student a few years later. He was one of the first
mathematicians to use mainframe data processors, not just to compute
numerical solutions to military or engineering problems, but to apply them
to theoretical questions. He pioneered the use of computers for algebra by
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writing one of the early programs to implement an enumeration algorithm.
For eight years he served as lecturer in the computing laboratory at Glas-
gow University in Scotland. In 1968 a new university was founded in Stir-
ling, near Glasgow, and Leech was appointed head of computing science.
He stayed at Stirling for twelve years, taking early retirement in 1980
because of ill health. Leech died from a heart attack in 1992 while on board
a paddle steamer on a river in Scotland. On its way back to Glasgow the
boat’s red ensign was lowered to half-mast. Today he is best remembered for
the so-called Leech lattice, about which I shall have more to say.

When Leech wrote his version of the proof for the kissing conjecture in
three dimensions he didn’t bother to look very far for a catchy title. Even
though he set out to simplify and improve Schütte and van der Waerden’s
paper, he obviously liked it well enough to simply translate the title into
English and use it as a heading to his own article, which then appeared as
“The problem of the thirteen spheres.” While this doesn’t qualify as pla-
giarism, it does reveal a serious lack of imagination.

Leech’s article, which builds on the method that Reinhold Hoppe had
tried earlier, was published in 1956 by the Mathematical Gazette—albeit
without mentioning the German mathematician’s contribution. The
Gazette is the publication of an association of British teachers and students of
elementary mathematics. It may not carry a highbrow name like “archive,”
“annals,” or “journal,” but it is by no means a second-rate newsletter for
mediocre schoolteachers. It publishes high-quality papers for its readership,
which consists of first-rate schoolteachers, college and university lecturers,
and others with an interest in the teaching of mathematics.

Leech’s article was a short piece of work, only two pages. But even
though it used only elementary mathematical techniques and applied them
in a straightforward manner, the paper cannot be called trivial. It also can’t
be called an easy read. Try to read the following sentence out loud: “No
two joins of this network cross, since any four points of the network form
a quadrilateral of sides at least 1⁄3π whose diagonals cannot both be less than
1⁄2π, the extreme case being that of the regular quadrilateral of side 1⁄2π
whose diagonals are both exactly 1⁄2π.” It is quite amazing that such convo-
luted monsters could fit into two pages. Had the Gazette’s readership con-
sisted of schoolteachers with an interest not only in the teaching of
mathematics but also in English, the editors would have certainly added
some punctuation marks here and there, and occasionally made two sen-
tences out of one. This would not have lengthened the paper all that much,
and the effort would have been well worth it.

But once Leech’s paper is translated into proper English, it becomes a
beauty of mathematical reasoning. Using only elementary mathematics, it
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arrives at a profound truth. Don’t let the word “elementary” fool you,
however: it must not be confused with “simple.” Leech’s proof employed
spherical trigonometry, which is a very confusing branch of mathematics.
But the proof, which is presented in the appendix, is still straightforward.

Schütte and van der Waerden had proved that in order for thirteen
spheres to touch a ball, it would have to have a radius greater than one.
Leech’s proof shows that it is impossible to weave a net that would allow
thirteen balls of equal radius to kiss a central ball. Thus it was proved in
three different ways that Newton was right and Gregory was wrong: thirteen
spheres cannot touch a central sphere. The classical kissing problem was finally
solved. We now know that in one, two, and three dimensions, the Newton
numbers are, respectively, 2, 6, and 12.

What about higher dimensions? I pointed out before that mathemati-
cians have no problem working in spaces of arbitrarily high dimensions. All
one has to do is use one’s imagination. So how about kissing numbers in
higher dimensions? Here we reach the current frontiers of mathematical
knowledge. Apart from the solutions to the problem in one-, two-, and
three-dimensional space, kissing numbers are only known for dimensions
eight and twenty-four. For other spaces we have, at best, intervals that pro-
vide upper and lower bounds for the true kissing numbers.

As in the previous two chapters, one has to distinguish whether the balls
are restricted to a lattice or whether they are free to float around in any
jumbled manner. The lower bound of the interval is usually given by the
best arrangement that is known for some kind of lattice. This could possi-
bly be the true kissing number, but one won’t know for certain until it has
been proven. So in the meantime, all one can say about the kissing number
in any higher dimension (except dimensions eight and twenty-four) is that
it must be at least as high as the lower bound, that is, the number that has
already been found for some lattice.

In 1979, two mathematicians at AT&T Bell Labs, Andrew Odlyzko and
Neil Sloane, managed to take another step forward: they invented a method
to compute upper bounds for kissing numbers. Together with the already
established lower bounds, we now have intervals within which the kissing
numbers of high-dimensional spaces must lie.

Odlyzko was educated at the premier engineering schools of the
United States, Caltech, and MIT. His research interests cover a wide range
of subjects: he has done important work in number theory, combinatorics,
probability theory, analysis, cryptography, computational complexity, and
coding theory. As a graduate student he spent a few summers at the Jet
Propulsion Laboratory in Pasadena, and also did a stint with AT&T Bell
Labs. That got him hooked, and for a time he served as head of the

N E T S  A N D  K N O T S 91



92 K E P L E R ’ S  C O N J E C T U R E

research department in mathematics and cryptography at AT&T Bell Labs.
He is now the director of the University of Minnesota’s Digital Technol-
ogy Center.

Odlyzko teamed up with his colleague Sloane to investigate kissing
numbers in high dimensions. N. J. A. Sloane was an old hand at balls and
spheres, having written two papers with John Leech back in the early
1970s. He grew up in Australia and worked there as a student for the Post-
master General’s Department. This is a fancy name for the state phone
company, and Sloane had fun erecting telephone poles, splicing cables, and
driving around the countryside in large trucks. When he came to the
United States he was well prepared to work for another telephone com-
pany: he joined the research division of Bell Labs where he has been ever
since receiving his Ph.D. in electrical engineering from Cornell. With John
H. Conway from Princeton University he wrote the mathematical best-
seller Sphere Packings, Lattices and Groups, which is considered the bible of
sphere packings. SPLAG, as it is known to insiders, is now in its third edi-
tion, which, apart from van der Waerden’s Algebra, is a rather rare feat for a
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mathematical treatise.5 One reviewer wrote that SPLAG “is the best survey
of the best work in one of the best fields of combinatorics, written by the
best people. It will make the best reading by the best students interested in
the best mathematics that is now going on.” Some holier-than-thou purists
claim that, like the bible, SPLAG contains no proofs, but Sloane doesn’t
agree. Proofs are provided, at least in outline, throughout the book.

But Sloane is no one-shot author, and another book has also become a
hit. If you want to believe one reader of An Encyclopedia of Integer Sequences,
then “there’s the Old Testament, the New Testament, and the Encyclope-
dia of Integer Sequences.” The Web version of the book gets eight thou-
sand hits a day. However, Sloane’s interests are not limited to sphere
packings or integer sequences. In his CV he lists his membership in the
American Alpine Club on the same level as the medal that was bestowed on
him by the Collège de France in 1984, or the receipt of the Claude E.
Shannon Award of the IEEE Information Theory Society in 1998. And a
book on rock climbing in the New Jersey Crags figures in his bibliography,
just below the bibles on sphere packings and integer sequences.

By the way, Conway, Sloane’s coauthor on SPLAG, is a very important
figure in the sphere packing business. He is also a real character, usually
walking around with bare feet or in sandals. For thirty years he refused to
go to the barber. In this he unwittingly emulates Hoppe, without suffering
from the German’s other shortcomings. In fact, he is usually the life of a
party. He’s good at card tricks and coin tricks, knows the names of all visi-
ble stars in the northern hemisphere, can tell you the correct day of the
week of any date, and is prepared to recite the first thousand digits of π
when given half a chance. A journalist once called him a mathemagician.

Conway was born in Liverpool, England, one day after Christmas in
1937. That was just a couple of years before the Beatles saw the light of day
in the same town, and his father taught Paul McCartney and John Lennon
chemistry at school. As a pupil Conway showed great ability in all subjects,
but most of all in mathematics. After high school he went to study at Cam-
bridge, where he got his first job as university lecturer in mathematical
logic. But then his career got stuck. He was already in his late twenties and
had not yet done anything to ensure his immortality. “I became very
depressed. I felt that I wasn’t doing real mathematics; I hadn’t published,
and I was feeling very guilty because of that,” he wrote. He knew he was a
first-class mathematician, but nobody else did. Conway was desperate to

5 Of course, there are textbooks that make it through many printings and editions. But
that’s different—they are required reading.
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make his mark. And then he got a break. The subject that was to provide
him his entry into stardom was group theory.

Algebraic groups consist of elements, like the integer numbers −3, −2, −1,
0, 1, 2, 3, and so on, and an operation that combines any two elements, for
example, addition. One requirement for a group is that whenever two
members of the group are combined, like 7 and 9, the result is also a mem-
ber of the group.6 The even numbers, for example, also form a group
“under addition,” since adding two even numbers yields an even num-
ber. On the other hand, odd numbers do not form a group under add-
ition, since the sum of two odd numbers, such as 11 and 17, is not an odd
number.

The two groups mentioned (integer numbers and even numbers) have
an infinite number of elements. But there are also groups that are composed
of a finite number of elements. For example, the digits indicating the hours
on your wristwatch form a finite group under addition. If the little hand
points to 9, and you add 7 hours, the little hand will point to the number 4
on your wristwatch. Hence the requirement that the combination of 9 and
7 also be a member of the group is satisfied. The “wristwatch group” is a
finite group with twelve elements.

It is one of the remarkable scientific feats of the twentieth century—
almost comparable in scope to the mapping of the human genome—that
the mathematical community has been able to classify all finite groups. It
took the combined efforts of dozens of mathematicians and about five hun-
dred separate papers with a total of more than ten thousand pages to com-
plete the task. Victory was declared in 1982. But in the mid-1960s work on
the classification of finite groups was still in its heyday. In fact, most people
believed that it would take well into the twenty-first century to complete
the classification. Groups had been discovered, and were still being discov-
ered, that did not fit into any of the developed schemes. These bizarre
groups were called “sporadic simple groups.” (When it was all over, it
turned out that there exist exactly twenty-six sporadic simple groups, and
they are by no means “simple” in the usual sense.)

When Conway was trying to make a name for himself in Cambridge,
John Leech had just discovered the twenty-four-dimensional grid that
would henceforth carry his name. He set about investigating its character-
istics. One of the important attributes of a geometric object, like a grid, is
its symmetry. In the same manner that a cube can be rotated and twisted
around its axes and still look like a cube, the Leech lattice can also be

6 There are two more requirements: the group must contain a neutral element, like 0,
and to each element, say the number 5, there must be an inverse element, like −5.



turned, revolved, and rotated—albeit in twenty-four dimensions—and still
look like the original.

If a body has multiple symmetries, it can be rotated around one axis,
then around a different axis, and again around the first axis in the opposite
direction, and so on. Being symmetric, the body will look exactly the same
after each of the rotations. This means that rotations can be added, which is
precisely what is required in order for a set of elements to form a group.
Hence the rotations of symmetric bodies are elements of a finite group. The
characteristics a group has depend on the object itself. Leech knew that the
symmetries of his lattice would be interesting, but he was aware that he
lacked the group-theoretic skills necessary to investigate them. So he dan-
gled the problem before Conway, who immediately took the bait.

Conway told his wife that this was something important and difficult, and
that he was going to work on it Wednesdays from six to midnight and Sat-
urdays from noon to midnight. He need not have planned that far ahead. It
took him only a single Saturday session to crack the puzzle. What Conway
discovered that evening was that the group describing the symmetries of the
Leech lattice was none other than one of the sporadic simple groups that had
eluded discovery until then. It contains 8,315,553,613,086,720,000 ele-
ments. Soon thereafter, the discovery of the “Conway Group” gave rise to
the detection of three more then-undiscovered sporadic simple groups. That
breakthrough, which took the worldwide classification effort a giant step
forward, gave Conway a badly needed ego boost. He was immediately
named Fellow of the Royal Society, and has been in the forefront of math-
ematics ever since. In 1986 he joined the faculty at Princeton University.

Incidentally, the Conway Group, large as it may seem, is by no 
means the largest sporadic group. The appropriately named Monster
Group, which was discovered by Robert Greiss in 1980, has 808,017,
424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 ele-
ments. It contains more elements than there are particles in the universe.
The Baby Monster, which has only 4,154,781,481,226,426,191,177,
580,544,000,000 elements, is still several sizes larger than the already
enormous Conway Group. Mathematicians, who are not easily discon-
certed by bizarre objects, consider sporadic simple groups very weird
indeed.

With the discovery of the sporadic group, Conway had made his name
and from then on he could do whatever he liked. And he did. One of his
preoccupations was the ancient Chinese board game Go. That interest led
in some roundabout way to the discovery of surreal numbers. Then he
invented the Game of Life, a computer simulation of cellular automata. Its
rules are extremely simple but the evolving game gives rise to amazingly
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7 As we saw in chapter 5, however, “12 around 1” can also occur on icosahedra, which
cannot be combined into grids.

complex behavior. According to author Martin Gardner, people who got
hooked on the game “consumed millions of dollars in illicit computer
time” to play it while at work.

Apart from his work on group theory, Conway has also made advances
in number theory, game theory, coding theory, tiling, knot theory, and the
theory of quadratic forms. He does not only write esoteric works like
SPLAG. His popular books On Numbers and Games, The Book of Numbers,
Winning Ways for Your Mathematical Plays, On Being a Department Head, and
The Sensual (Quadratic) Form (some coauthored with colleagues) have con-
sistently scored positive reviews. Of course, he also knows a thing or two
about geometry. Tom Hales, who will accompany us in this book’s final
chapters, heard about Kepler’s conjecture for the first time as a graduate
student in Cambridge, when Conway mentioned the unsolved problem in
one of his lectures.

The method that Odlyzko and Sloane invented to compute the upper
bounds for kissing numbers relies on polynomials that fulfill certain require-
ments. They computed the upper bound in four dimensions to be 25. On
the other hand, a lattice arrangement is known (the so-called laminated lat-
tice) in which 24 balls kiss the central sphere. Hence, a modern version of
the Newton–Gregory debate can be formulated as follows: Is the maximal
number of white balls that can kiss a black ball in the center of four-
dimensional space 24 or 25? In five dimensions the Newton number lies
somewhere between 40 and 46, in dimension six it is at least 72 and at most
82, and in seven dimensions the interval is bounded by 126 and 140 balls.

Then, in eight dimensions, all of a sudden the Newton number is known
exactly:240 white balls can kiss the black ball in the center. Why is that num-
ber known precisely? In this case the upper bound came out to be 240, but a
certain, well-known lattice arrangement, called E8, also allows 240 balls to
touch the central sphere. Since the actual kissing number of E8 coincides with
the theoretical upper bound, 240 must be the highest kissing number. From
dimensions nine to twenty-three, again, only bounds are known.

An interesting case occurs in dimension nine. Up to this point, every-
thing we know, or assume to be correct, happened on lattices. For example,
the densest arrangement of disks on the plane occurs when coins, say, are
placed in a regular hexagonal pattern. The same holds for circle coverings.
Kepler conjectured that the densest packing of spheres occurs when the
apples or oranges are stacked in a regular market stall arrangement. Even the
highest kissing number in three-dimensional space occurs on a regular grid,7
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and as we just saw, the same is true for the eight-dimensional kissing num-
ber. But suddenly, with dimension nine, something unexpected occurs: the
highest possible kissing number for lattices is 272, but a jumbled-up, nonlat-
tice packing exists in which a sphere can touch 306 others! So for the first
time we encounter a nonlattice arrangement that is superior to any possible
lattice arrangement.8 This example shows that nothing—repeat, nothing—
may ever be taken for granted in mathematics. Everything may go along
nicely and smoothly until in dimension nine the exact opposite of what we
expect should have happened happens.

In dimension twenty-four we once again have an exact result for lattice
packings: 196,560 white balls can kiss the twenty-four-dimensional black
ball in the center. It was the lattice that John Leech discovered in 1965.
Hence, at least that many balls can kiss a central sphere in twenty-four-
dimensional space. Fourteen years later, Odlyzko and Sloane’s method
showed that at most that many balls can kiss a central sphere. When the
upper bound coincides with the lower bound—kaboom!—we have found
the Holy Grail, the highest kissing number in twenty-four dimensions.
(The mathematician V. I. Levenshtein of the Russian Academy of Sciences
discovered the kissing number for twenty-four dimensions at the same time
as, but independently of, Odlyzko and Sloane. His feat was all the more
remarkable since he had no computers available to him.)

The discovery and description of certain grids in high-dimensional space
are Leech’s most lasting achievement. His pursuit of high-dimensional
excitement started with a paper in 1964 in which he discussed sphere pack-
ings in eight or more dimensions. A year later, a supplement followed about
a twenty-four-dimensional grid that would henceforth carry his name: the
Leech lattice. It allowed a sphere packing that was locally twice as dense as
the original. Since then it has been shown that, in twenty-four dimensions,
the Leech lattice arranges balls locally in the absolutely densest manner (that
is, there is neither a lattice nor a nonlattice arrangement that locally packs
balls closer). Furthermore, it has been conjectured that the Leech lattice
may also globally represent the densest packing in twenty-four dimensions.
In this book we will not delve further into this area; we’ll just stick to
Kepler’s three dimensions.

By the way, in 128-dimensional space there exists a grid that allows 218
billion balls to kiss one ball in the center. Quite a crowd, you may say. But
if one doesn’t care much about neatness, there is a nonlattice arrangement
that allows at least 8,863,556,495,104 balls (that’s eight trillion and change)

8 Whether 306 is also the absolutely highest kissing number is not yet known.



to touch the center ball. Neither of these numbers is thought to be the last
word on the subject, however.

The debate that Newton and Gregory started in 1694 is still going
strong. Consider this:A preprint of an article appeared in 1996 in which the
authors established an upper bound on the degree of the polynomial that
must be used to compute an upper bound for the kissing numbers in vari-
ous dimensions. The paper does not reveal kissing numbers—that would be
too much to ask for—but just gives an indication about the polynomial that
could, in turn, be used to compute not the kissing number itself but just an
upper bound for it. This is how intricate mathematics can be; every minute
hint is of interest. Sherlock Holmes would have felt dumbfounded with
such farfetched clues.
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C H A P T E R  7

Twisted Boxes

In 1831 a book by an obscure professor of physics and mathematics
appeared that is connected in a roundabout way to our problem. The book

itself did not have much of an impact on mathematics, but a review of it did.
Ludwig August Seeber (1793–1855) left no great mark on either physics or
mathematics. Just three pieces of his work are known. One of them dealt with
the structure of solids and is still sometimes, although rarely, mentioned in the
contemporary literature in crystallography. Another one is totally forgotten.
His third work, a book he published in 1831, was called Untersuchungen über
die Eigenschaften der positiven ternären quadratischen Formen (Investigations into
the properties of positive ternary quadratic forms). It is Seeber’s main contri-
bution to mathematics, and it is this work that concerns us in this chapter.

Seeber’s long-winded investigation into quadratic forms was very com-
mendable, but extremely tedious. Nevertheless, it caught the eye of the
greatest mathematician of his time, the giant of the University of Göttin-
gen, Carl Friedrich Gauss.

Gauß (his name in proper German), was born on April 30, 1777, in the
German city of Braunschweig. His father, Gebhard Dietrich Gauss, was a
domineering man—“authoritarian, uncouth and unrefined” in Carl
Friedrich’s words—who never gained the trust of his son. His mother,
however, an intelligent but semiliterate woman—she could read but not
write—would be her son’s devoted supporter throughout her life. The
senior Gauss tried his hands at various jobs in order to make ends meet. At
some time or another he earned his living as a mason, a butcher, a gardener,
and a canal worker. The family lived in modest circumstances. The only rel-
ative with any even modest intellectual gifts was the mother’s brother, a
master weaver.

In elementary school Carl Friedrich showed extraordinary ability. One
day, when he was eight years old, the teacher tried to keep the kids busy for
a while and told them to add all the numbers from one to one hundred; in
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the meantime he would enjoy a cup of tea. The precocious Gauss immedi-
ately noticed that 1 plus 100 equals 101, that 2 plus 99 equals 101, and so on
until 50 plus 51, which also equals 101. So there are 50 pairs of numbers
whose sums always equals 101. The exasperated teacher, who had not even
been able to take a sip, must have been quite annoyed when the little squirt
walked to his table with the correct result, 5050, after barely a minute.

It was much to the credit of the poor teacher, J. G. Büttner, and espe-
cially his assistant Martin Bartels, that Gauss’s gifts were spotted. It was no
easy feat to single out the one boy, from among the fifty or so unruly kids
who sat in a class, who would advance science by leaps and bounds. Bartels,
later professor of mathematics at the University of Kazan, gave him special
instruction (as well as he could), provided him with books, and brought
him to the attention of the authorities.

C. F. Gauss



When Gauss reached the age of eleven, he entered the Gymnasium, the
high school, contrary to his father’s wishes that he start earning a living. He
excelled at mathematics and languages, and was promoted to the top class
within two years. When he was fourteen, he was presented at court to
Duke Carl Wilhelm Ferdinand von Braunschweig-Wolfenbüttel. The duke
was so impressed with this kid that on the spot he awarded him a scholar-
ship of 10 thalers per annum. The award would regularly be renewed and
increased for the next sixteen years and kept Gauss free from financial wor-
ries until he was thirty years old. Out of gratitude toward the duke, Gauss
became a lifelong supporter of the monarchy.

At age fifteen, Gauss entered the college in Braunschweig, the Colle-
gium Carolinum, where he read Newton’s Principia and all the works of
Euler and Lagrange that he could find at the library. But the institute’s book
collection was sadly lacking and the young student started to look else-
where for a more complete library. Three years after he had entered the 
college, and still without a diploma, he transferred to the University of
Göttingen.

The duke would have preferred Gauss stay in Braunschweig, but relented
after he was told that the Göttingen library had a quarter of a million books,
and that its modern catalogues and liberal lending policy made it the fore-
most research library in Europe. He even continued paying him the
stipend. Gauss devoured the books available at Göttingen. He also used the
time to acquaint himself intimately with individual numbers and spent long
years of endless calculations, aimless manipulations of numbers, and com-
putation of puzzling tables.

As good as the library was, the professor of mathematics, Abraham Gott-
helf Kästner, was not very inspiring. He was of mediocre talent and Gauss
quickly became disenchanted. After a while, he no longer bothered to go
to Kästner’s lectures, as they were too elementary. The linguist, on the
other hand, a man by the name of Heyne, was more impressive. The young
student had to make a difficult career decision: math or languages?

While the nineteen-year-old was still battling with this question, he
made a momentous discovery. He showed that it was possible to construct,
with ruler and compass, a heptadecagon, which is a fancy word for the reg-
ular, seventeen-sided polygon. He also showed how it could be done.

For two thousand years it was not known which polygons could be so
constructed. It was known how to construct a regular triangle, square, and
pentagon. And since it is easy to divide an angle by two, the number of
sides could be doubled and redoubled. Hence the 6-gon, 8-gon, and 10-
gon (hexagon, octagon, and decagon), and the 12-gon, 16-gon, and 20-
gon could also be constructed. But what about the 7-, 9-, 11-, 13-, 14-,
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15-, 17-, and other gons? Can they or can they not be constructed with a
compass and circle? The problem of constructing a regular n-gon is equiv-
alent to dividing 2π—that is, the circle’s 360 degrees—into n equal parts.
That’s no problem on a pocket calculator, which gives six or eight digits
after the decimal. Surely that is more than enough for general usage, but it
was not at all sufficient for the nitpicking Gauss. He wanted an exact result.
Furthermore, Gauss did not even have access to a slide rule.1 And measur-
ing 213⁄17 degrees with the help of a protractor would have been cheating.
Only a ruler and a compass were allowed.

❖ ❖ ❖

The solution came to Gauss while still in bed one morning, just after he woke up:
a regular polygon may be constructed by ruler and compass if the number of
sides, n, is equal to 2kpqrs . . . , where k can be any integer, and p, q, r, s, . . . are
prime Fermat numbers. No other regular polygons can be constructed by ruler
and compass.

Fermat numbers are numbers of the form 22m

+ 1. Only five Fermat numbers
are known that are prime: 3, 5, 17, 257, and 65537, corresponding to m = 0, 1,
2, 3, and 4. For m = 5, the Fermat number is 4,294,967,297, which isn’t a prime
number: it can be factored into 641 and 6,700,417. I won’t even write down the
Fermat number for m = 6 since it has thirty-nine digits. But believe me, it’s no
prime number either, because it factors into 59,649,589,127,497,217 and
5,704,689,200,685,129,054,721.

These five Fermat numbers, together with the number 4, are the basis for
Gauss’s early-morning musings. What he found was that any polygon can be
constructed whose number of sides is one of the five known Fermat primes (and
the number 4), or a multiple by 2m, or a combination of these numbers. (But
each number must appear only once.) For example, the 12-gon is constructible
as four times the triangle, the 15-gon is a combination of the triangle and the
pentagon, and so on. Thus it is possible to construct by ruler and compass any
regular n-gon if n equals 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 32, . . . . (It is
not possible to construct the 18-gon, because in the product 2 � 3 � 3, the num-
ber 3 appears twice.)

❖ ❖ ❖

When Gauss showed his 17-gon to Abraham Kästner, the professor
didn’t even understand what Gauss was talking about. But Hofrat (coun-
cilor) E. A. W. von Zimmermann, a professor at the Collegium Carolinum,

1 Slide rules were invented toward the middle of the seventeenth century. There is no
record, however, of Gauss having used them.



T W I S T E D  B O X E S 103

was extremely pleased with the student’s finding and announced it in the
Intelligenzblatt der allgemeinen Litteraturzeitung (Intelligence report of the
General Literature Gazette) under the heading “Neue Entdeckungen” (“New
Discoveries”). Gauss’s achievement was to reduce the geometrical problem
to a question in number theory. By the way, Gauss also stated with empha-
sis that no other polygon could be constructed, but he provided no proof.
That question was only settled forty years later, by P. Wantzel, who proved
that it is impossible to construct polygons with 7, 9, 11, 13, 14, 18, 19, 21,
22, 23, 25, 26, 27, 28, 29, 30, 31, . . . sides.2

Apart from settling the question of which polygons can be constructed
geometrically, this feat also settled Gauss’s career decision: languages were
out, mathematics was in. One may but wonder what great achievements
Gauss would have accomplished in the study of the Latin language, or what
Greek aphorisms are forever lost because he abandoned the subject. But the
philologists’ loss was, is, and will remain the mathematicians’ gain.

After his success with the heptadecagon, the ideas came so fast that he
did not even have time to write them down. His diary is full of mathemat-
ical discoveries that he never bothered to bring to fruition. Many of the
half-baked ideas that he scribbled into his notebooks would have sufficed
other men as the work of a lifetime.

In 1799 Gauss received his doctoral degree in absentia, even before the
publication of his thesis, in which he gave a proof of the fundamental the-
orem of algebra. The fundamental theorem states that any polynomial with
complex coefficients has a root in the field of complex numbers. So great
was Gauss’s stature already that he wasn’t required to give the customary
oral defense of his thesis. Two years later, when he was only twenty-four
years old, Gauss published Disquisitiones Arithmeticae, a book that dealt with
what we today call number theory. Its content was not quite understood by
his contemporaries, but it immediately catapulted Gauss to prominence.
One of the sections dealt with quadratic forms that Lagrange had discov-
ered earlier (see chapter 3), but whose importance the Italian-Frenchman
had failed to appreciate.

In the same year Gauss accomplished another feat. An astronomer by the
name of Giuseppe Piazzi had discovered an asteroid in the sky in the pre-
ceding winter. He named it Ceres, and then promptly lost sight of it. Piazzi
and others wiggled their telescopes in all directions of the firmament, in the
hope of finding it again. But it was in vain; the asteroid was lost. Along came
Gauss, who managed to calculate the orbit of the tiny and distant asteroid

2 Wantzel also proved that no angle can be perfectly trisected, except if it is 90° � m/2n.
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based on the the few observations that had been recorded by Piazzi.3 The
astronomers stopped wiggling and focused their telescopes to the point that
Gauss had predicted. That point was way off from where they thought Ceres
should have been, but they promptly rediscovered it. Now Gauss’s fame as
an astronomer was also established. The young man had used a secret
weapon for his calculations. He had developed the method of squared errors
to determine the asteroid’s orbit in spite of the paucity of observations. But,
like Newton, who had managed to decipher planetary motion without
revealing calculus, Gauss kept the method of smallest squares secret.

In 1806 Gauss’s benefactor, the seventy-year-old duke of Braunschweig-
Wolfenbüttel, was called up to fight Napoleon. Against his will, the Pruss-
ian cabinet had named him supreme commander of the army. But the duke,
who forty years earlier had been a successful general in the service of King
Frederick the Great, Leonhard Euler’s erstwhile boss, was too old and frail
to take command of a disorganized army that lacked a clear chain of com-
mand. The Prussians were badly beaten in the battles at Jena and Auer-
staedt. The duke suffered mortal wounds and died a few days later.

Gauss was distraught. To him the duke had been one of the noblest rep-
resentatives of an enlightened monarchy, while Napoleon symbolized the
worst dangers of revolution. Gauss’s conservative tendencies were rein-
forced. Henceforth he refused to write in French, and feigned ignorance of
the language when circumstances forced him to interact with Frenchmen.
Actually, he didn’t just dislike French mathematicians, his antipathy
extended toward fellow mathematicians in general. He treated many con-
temporary colleagues as if they came from another world and lamented the
“shallowness of contemporary mathematics.”

With the duke gone, Gauss had to find other ways to assure his financial
security. He did not cherish the thought of teaching and preferred a job
where he could concentrate on his research. Fortunately, the Ceres feat had
made his name known to the authorities. Gauss decided on a career change.
A year after the duke’s demise, Gauss landed a job as the director of Göt-
tingen University’s observatory. From then on he was a professional
astronomer. He kept the position at the observatory until his death, half a
century later.

Since his times with the revered Duke von Braunschweig-Wolfenbüttel,
Gauss remained a deeply conservative and nationalistic German patriot.
Even though he read many books in various languages, his cultural outlook
remained narrow. And he usually did not like to take a stand. When King

3 In 1978 radio signals reflected by Ceres were detected again by astronomers.



William IV of England and Hannover died, Queen Victoria followed him
to the throne in England, but the chauvinist laws of Hannover did not
allow a female ruler. Therefore, Victoria’s uncle, the duke of Cumberland,
became king of Hannover. One of his first decrees was an annulment of the
oath to the constitution, sworn by the professors of the University of Göt-
tingen. This raised the anger of the faculty, and seven prominent professors
wrote a manifesto to protest this edict. Among the Göttingen Seven (G-7)
were Gauss’s friend and colleague Wilhelm Weber, and the orientalist
Heinrich Ewald, husband of his oldest daughter, Minna. The king was not
perturbed by the protest since professors were not difficult to come by.
They could be hired as easily as ballerinas, he remarked, and had the G-7
kicked out of Göttingen. For Gauss, the loss of Weber, who was not just a
colleague but also like the son he always wished for, was irreparable, and the
move of his favorite daughter away from Göttingen left a deep void. But
while the controversy was at its height, he never lifted a finger to help his
tormented colleagues. Maybe his conservative tendencies forbade any
involvement in matters that concerned the royal authorities, or maybe he
was just reluctant to meddle in politics. Whatever the reason, Gauss’s timid
status as a bystander and his disloyalty toward his colleagues, does not com-
pare well with, say, Isaac Newton’s strong stand against the Crown’s inter-
ference in the matters of the University of Cambridge.

After Seeber’s book came out, it was only good form that Gauss, the
author’s former teacher, should write a review of it for the Göttingische gelehrte
Anzeigen (Learned announcements of Göttingen). The gelehrte Anzeigen
was, and still is, a review journal in which scholars in philology, philosophy,
theology, science, mathematics, and other disciplines review the books of
their rivals. Founded in 1739, the Göttingische gelehrte Anzeigen was pub-
lished, in Gothic script, under the auspices of the Prussian Royal Society of
Science. During the eighteenth and nineteenth centuries it was the fore-
most review journal of the world. The leading savants of Germany used the
Anzeigen’s pages to heap praise on colleagues, or to tear their work apart.
The journal was considered an emblem of distinction for the University of
Göttingen. Today the Anzeigen is put out by the Academy of Science of
Göttingen, and is the only review journal in existence with such a long his-
tory. The reviews are serious affairs, and give the professors the opportunity
to critically discuss and put into context the ideas presented in their col-
leagues’ works. Very often one needs to be a specialist just to read them.

Gauss was an active reviewer. Even though he was a strict and often
unfair critic of the work of others, his book reports were usually mild and
he was often inclined to dispense benevolent praise. Except, that is, for
remarks to the effect that he had known everything all along.
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Gauss’s review of Seeber’s work appeared on July 9, 1831, only a few
months after the book was published. Gauss didn’t sign the review, since
this was not customary at that time, and articles were acknowledged, at
most, with the author’s initials.4 The “publish or perish” syndrome of
modern-day universities was not yet the norm and it didn’t matter how
many articles a professor published. Fame and recognition came with truly
original work that managed to stand the test of time. Gauss did not even
bother to put his initials to the review, but insiders were aware who had
written it, especially since the Disquisitiones Arithmeticae was frequently
mentioned. And everyone knew who the author of that piece of work was.

The review was quite laudatory, if a little condescending. At one point
Gauss stated that he had actually done the lion’s share of the work in his
own Disquisitiones Arithmeticae, thirty years earlier, but that Seeber’s tedious
efforts were praiseworthy nevertheless. Further on, he wrote that it would
take only a few words to summarize what was new in Seeber’s book. Some
compliment. According to Gauss, Seeber’s primary contribution was the
tying together of some loose ends that he himself had left dangling in Dis-
quisitiones Arithmeticae—but only because he had not been interested in
those details at the time.

The main thrust of Seeber’s work is the description of a method that
allows the transformation of any quadratic form into its reduced state. This
is followed by the proof of a theorem that states that there exists exactly one
reduced quadratic form in each class of equivalent forms. Gauss considered
quadratic forms one of the most interesting and richest subjects of higher
arithmetic, that is, number theory, because of the many applications outside
of its field. He mentions crystalline structure as one example where qua-
dratic forms come in handy.

The review started with a warning to potential readers: the description
of the reduction method covers 41 of the 248 pages of the book and the
proof of the theorem takes another 91. This inordinate length may turn
readers off, Gauss wrote, only to add immediately that his remark should by
no means be understood as a reproach. To the contrary, he emphasized, the
first person who shows that a proof exists and that a statement is true must
always be thanked, no matter how many pages it takes. Nobody should
complain about a long proof unless he himself provides a shorter or more
elegant one.

Before he started on his ninety-one-page proof, Seeber wanted to get an
upper bound for the parameters of the ternary quadratic form that he

4 This tradition is nowadays kept alive by the Swiss newspaper Neue Zürcher Zeitung.
Yours truly signs his reports in the NZZ only as “gsz.”



would have to manipulate. He was especially interested in a certain ratio,
whose importance for sphere packings will become apparent later on. (The
ratio consisted of the square of the product of the ternary quadratic form’s
first three parameters, abc, divided by the quadratic form’s determinant.) To
get a feel for the size of this ratio, Seeber started out by calculating many
examples. He never came across a single instance where the ratio was
greater than 2. After six hundred examples the suspicion befell the percep-
tive professor that maybe the ratio is always smaller than 2. But even if he
had computed a thousand, ten thousand, or a million ratios, and not found
a single one that contradicted his suspicion, he could still not have stated
this fact as an absolute truth. He had to prove it. Unfortunately, Seeber was
unable to do so. He tried, all right, but managed to prove only that the ratio
had to be smaller than 3. Finally the frustrated professor gave up. He pub-
lished his book with the proof of the weaker theorem, recorded his suspi-
cion that the ratio is actually always smaller than 2, and let it go at that.

This is where Gauss picked up the cue. Referring to Seeber’s conjecture
very politely—and with only the slightest trace of contempt—as a “peculiar
theorem found by way of induction,” he started taking an active interest in it.
He did not refer to “induction” in the word’s modern, mathematical sense.
Rather he meant that Seeber had ventured a lucky guess made after six hun-
dred tests. But now the prince was going to “make a contribution in this review
to the completion of the theory.” Using only the simplest of arithmetic manip-
ulations, and requiring not more than a page and a half, Gauss furnished a very
clever proof of the fact that the ratio under discussion is always less than 2.

To prove Seeber’s conjecture, Gauss wrote down an equation whose
right-hand side consisted of a few simple terms made up of the quadratic
form’s parameters. Then he showed that each one of the right-hand terms
is positive. This, of course, implies that the left-hand side is also positive,
which—as the appendix to this chapter shows—meant that the ratio is
always smaller than 2. And, voilà, QED.

Gauss’s review of his book must have felt to Seeber like a slap in the face.
He had computed more than six hundred ratios, written a 248-page book,
proved a weaker theorem, but never managed to achieve the aim he had set for
himself. And here, in just forty lines, Gauss provided the elusive proof that had
frustrated Seeber for so long. Granted, a slap in the face by the princeps mathe-
maticorum may not sting as much as a slap by any other mortal, but a slap it was.

❖ ❖ ❖

But the best is yet to come. Gauss’s strange numerical result about some eso-
teric ratio has an extremely important implication for the sphere packing prob-
lem. I mentioned before (and also in chapter 3) that the determinant of a
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binary quadratic form equals the surface of a grid’s fundamental cell. Joseph-
Louis Lagrange, who pioneered the study of quadratic forms, had not realized
that. He thought that he simply dealt with higher arithmetic. But Gauss saw
straight through the number-theoretic problem and succeeded in peeking fur-
ther afield, toward geometry. He pointed out, in the review of Seeber’s book,
that quadratic forms have a geometric interpretation: the square root of a qua-
dratic form’s determinant is the volume of a lattice’s fundamental cell. This
interpretation holds both in the plane (for binary quadratic forms), and in space
(for ternary quadratic forms).

So how is the theorem that was conjectured by Seeber and proved by
Gauss, related to the packing problem? Let us look at a three-dimensional,
right-angled lattice whose edges are a, b, and c. Obviously, abc is the volume of
an upright box. Change the lattice by turning and twisting the axes, thereby
squashing the box and reducing its volume. Now comes the interesting part:
the ratio that had caught Seeber’s attention was a2b2c2, divided by the deter-
minant of the lattice’s quadratic form (i.e., the square of “volume of the upright
box” divided by the square of “volume of the twisted box”). Actually, it was
Gauss who gave the two expressions their geometric interpretations. And then
he showed that the ratio is always smaller than 2. What does that mean? Tak-
ing square roots on both sides of the equation, Gauss’s theorem states that the
volume of the twisted box can never be reduced by more than 29.3 percent
from the volume of the upright box, no matter how the axes are twisted,
turned, and squashed (see the appendix).

We now make another important observation. Every fundamental cell con-
tains parts of eight spheres—one at each corner. When these parts are joined
together they always add up to one complete sphere, no matter what the cell’s
shape. (Recall the pizzas in chapter 3.) The smaller the volume of a fundamen-
tal cell, the denser the packing. The only requirement is that the edges be suf-
ficiently long so that the spheres do not overlap.5 How long is sufficiently long?
In order for two spheres of radius 1 to have sufficient room at the corners, all
edges must at least be length 2. So the volume of the upright box is 2 � 2 � 2 =
8. On the other hand, Gauss showed that the volume of a twisted box cannot
be reduced by more than 29.3 percent. Therefore, the volume of the smallest
box cannot be less than 5.657. Hence, the density of a lattice packing, which is
calculated as the volume of the complete sphere, 4.189,6 divided by the vol-
ume of the smallest box, can never be greater than 4.189⁄5.657 = 74.05 percent.

❖ ❖ ❖

5 The angles must also sufficiently large, but I won’t go into detail here.
6 4⁄3 π = 4.189.
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So the ratio in question is always smaller than 2, which proves that the
density of a lattice packing can never be greater than 74.05 percent.
Does that number seem familiar? If it doesn’t, look again at the appen-
dix to chapter 2: 74.05 percent is exactly the density that was conjectured
by Kepler to be the tightest sphere packing possible. So Gauss’s observa-
tions in the review of Seeber’s book prove that no three-dimensional 
lattice sphere packing can be denser than 74.05 percent. Kepler was
right—at least for lattice packings. And which lattice arrangement 
provides this density? The arrangement suggested by Kepler, the face-
centered cubic packing (FCC), does. But is this the only lattice packing
of spheres that provides this density? The answer is yes, as is also shown
in the appendix.

How did Gauss hit upon just the terms that would prove his point? After
all, there exist innumerable possible combinations of parameters, but he
picked just the ones that would work. We can be certain that Seeber had
also tried many combinations, without success. Gauss simply had phenom-
enal insight. Fourteen years earlier he had written that “it is characteristic
of higher arithmetic that many of its most beautiful theorems can be dis-
covered by induction with the greatest of ease but have proofs that lie any-
where but near at hand, and are often found only after many fruitless
investigations with the aid of deep analysis combined with luck.” So it was
intense meditation and a bit of luck that did it. And Gauss’s penchant to get
to know numbers individually probably helped. But it still seemed like a
mystery. In 1850, the French mathematician Charles Hérmite referred to

Fundamental cell in three-dimensional
grid system containing the eight parts of
spheres
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Gauss’s equation as “this astonishing transformation” and noted that it
“seems to be based on hidden principles that I have not been able to find,
in spite of my greatest efforts.” His colleague V. A. Lebesgue did not agree:
“I don’t believe that [Gauss’s] proof rests on hidden principles,” he wrote
in 1856, but then goes on to acknowledge that, “Gauss’s proof is still the
simplest one.” Fascinated by the subject, Charles Hérmite returned to it in
1874 to give another proof, and then admits that it “is far removed from the
elegance and depth of Gauss’s demonstration.” Throughout the nineteenth
century mathematicians tried to improve on Gauss. Apart from Hérmite
and Lebesgue, Gustave Lejeune Dirichlet gave an alternative proof (1850),
and so did A. N. Korkine and Egor Ivanovich Zolotareff (1873), E. Selling
(1874), and Hermann Minkowski (1883). Interest continued into this cen-
tury, quite in the spirit of Gauss, who thought that “the finding of new
proofs for known truths is often at least as important as the discovery itself.”
In 1940, Kurt Mahler re-proved Seeber’s theorem, and in 1992, 160 years
after Gauss’s book review, yet another article appeared with the title “On
Gauss’s Proof of Seeber’s Theorem.”

As mentioned, Gauss also pointed out the close connection of quadratic
forms to the structure of crystals. After all, the atoms of crystals lie on lat-
tices. All of this Gauss only mentioned toward the end of the review, as an
aside. He simply wanted to emphasize the importance of quadratic forms
for disciplines other than number theory. Gauss’s review was deemed so
important that it was reprinted nine years later, in 1840, in Crelle’s Journal.
August Leopold Crelle was an engineer in Berlin with a soft spot for math-
ematics and mathematicians.7 In 1826 he founded a journal, named it after
himself, and edited it until his death in 1855. The journal, which appears
monthly, continues publication to this day. High-quality articles are pub-
lished in all fields of pure and applied mathematics. As a tribute to the
changing times, it is now named more appropriately Journal der reinen und
angewandten Mathematik (Journal of pure and applied mathematics). Accord-
ing to the publisher, it is the oldest mathematics periodical still in existence
and boasts one of the largest circulations worldwide. It’s not the cheap price
that encourages such wide distribution. A subscription costs $2,295 per
year. You can buy single issues if you don’t want to commit to a full year,
but it’s not the kind of periodical you’d get at your local newsstand. For an
individual copy you must shell out $238. At 240 pages an issue, that’s just
about a dollar a page.

7 He was an avid supporter of the mathematician Niels Henrik Abel, who died in 1829,
not yet twenty-seven years of age.



Only after the appearance of Gauss’s book review was it realized that
Lagrange had already given the ingredients for the solution of the two-
dimensional lattice packing problem (see chapter 3). Nearly sixty years ear-
lier, Lagrange had manipulated binary quadratic forms without realizing
their connection to lattices. It was Gauss who found the missing link:binary
quadratic forms are associated with two-dimensional lattices, ternary qua-
dratic forms with three-dimensional lattices. So with one fell swoop the
two- and three-dimensional lattice packing problems were solved. There is
one more thing to note: the famous book review again showed how differ-
ent mathematical disciplines are interwoven. Using purely number-
theoretic tools, Gauss proved a geometrical theorem.

With this, the first part of Kepler’s problem had been solved. Gauss
showed that no lattice arrangement exists that could provide a denser
arrangement than the one Kepler had conjectured. But what about jumbled-
up arrangements? Even after Gauss’s achievement, this question still remained
unanswered, and the coming chapters will deal with the really tough ques-
tion, the general, nonlattice packing problem in three dimensions.
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No Dancing at This Congress

After the review of Seeber’s book by Gauss, Kepler’s conjecture went
into hibernation for close to seventy years. Gauss had shown that if

the balls had to lie on a lattice, no arrangements existed which could be
denser than the ones proposed by Kepler. And that’s where matters stood.
The question of whether a jumbled-up arrangement could be even denser
was only revived at a congress of mathematicians in 1900. On August 8,
the German mathematician David Hilbert addressed the Second Interna-
tional Congress of Mathematicians, held in Paris. He thought that open
problems were the sign of a subject’s vitality, and under the title “Mathe-
matical Problems” presented twenty-three unsolved problems whose solu-
tions, he believed, would give impetus to important new discoveries
during the new century. One of the problems, number 18, dealt with
Kepler’s conjecture.

At the turn of the century, Hilbert was considered the most important
mathematician of his time, with the possible exception of the Frenchman
Henri Poincaré.1 Hilbert was the elder colleague and close friend of Her-
mann Minkowski, who, through the development of the geometry of
numbers, provided lower bounds for the packing density in any dimension
(see chapter 4). He was also, respectively, Ph.D. adviser and host to the two-
man team who proved that the highest kissing number in three dimensions
is 12: Karl Schütte and B. L. van der Waerden. And he taught at the same
prestigious university as Carl Friedrich Gauss, the University of Göttingen.
So Hilbert definitely had some affinity to sphere packings.

Hilbert was born in 1862 in the German city of Königsberg (today
Kaliningrad). His talents were recognized early, but at the University of
Königsberg it was not he who outshone everyone else, but his younger col-

1 A translation of his name would be “squared point.” What a misnomer for a mathe-
matician.

112



N O  D A N C I N G  A T  T H I S  C O N G R E S S 113

league Hermann Minkowski.2 After Minkowski won the Paris Academy
prize, Hilbert’s father, a Prussian judge, told his son that to presume friend-
ship with such a genius bordered on impertinence.

But Hilbert forged ahead. After receiving his Ph.D. from the University
of Königsberg, he was called to the chair of mathematics at the University
of Göttingen in 1895. Two years earlier, the German Mathematical Society
requested a report on the state of the theory of numbers, and he wrote his
first major treatise. The “Zahlbericht” (translated into English as “The the-
ory of algebraic number fields”) was a brilliant synthesis of all prior investi-
gations in number theory. More important, it also contained new concepts
and ideas that would influence research efforts for years to come. Then he
put geometry on a formal axiomatic setting. His book, Grundlagen der
Geometrie (Foundations of geometry) appeared in ten editions and had the
greatest influence on the subject since Euclid’s Elements. But that was not
all. Hilbert dealt with mathematical logic, invariant theory, functional
analysis, integral equations, the calculus of variations, and even mathemat-
ical physics. In each of these subjects he provided penetrating insights. By
and by, he became the undisputed master of German mathematics.

For a while it was even believed that he, and not Albert Einstein, might
have been the father of general relativity theory. Einstein had submitted the
final revision of his article to the Preussische Akademie der Wissenschaften
(Prussian Academy of Sciences) on November 25. Hilbert, on the other
hand, had submitted an article to the Gesellschaft der Wissenschaften (Soci-
ety of Sciences) in Göttingen on the same subject five days earlier, on
November 20, 1915. However, as we might expect of the orderly Prussians,
Einstein’s article appeared almost immediately, on December 2. The Göt-
tingen society was slower and Hilbert’s paper saw the light of day only on
March 31 of the following year. But priority is based on the date of sub-
mission and not the date of publication, and so the prize would seem to
belong to Hilbert. Worse still, it turns out that Einstein was in possession of
Hilbert’s paper before he finished revising his own article. He admitted as
much in a letter to Hilbert, on November 18, in which he thanks his col-
league for sending him a copy of the paper. So much for the facts.

Did Einstein make use of material that he gleaned from Hilbert’s article
during the week between November 18 and November 25? Did he plagia-
rize Hilbert’s work? Recent scrutiny of the archives in Göttingen shows
that actually it may have been the other way around. Among the papers
found were the galley proofs of Hilbert’s paper. They were stamped
December 6, and show that two crucial terms of the equations, which were

2 See chapter 4.



present in Einstein’s paper, were missing from Hilbert’s proof sheets. How-
ever, in the final publication of March 1916, the two terms were present.
So the uncomfortable conclusion must be that Hilbert added corrections to
the galleys after he read Einstein’s paper of December 2. This is quite
acceptable, but the confusion could have been avoided had Hilbert done
what is customary in such cases: add a byline with the date of the final revi-
sion. This would have avoided the unnecessary priority dispute, which was,
it must be noted, only carried out by later historians of science and never
by the protagonists themselves.

The glory of the Mathematische Institut at Göttingen came to an end in
the 1930s, when the Nazis brought the faculty down. Jewish professors and
assistants, who made up a large part of the mathematics faculty at Göttin-
gen, were forced out of the university and had to flee abroad. The final end
came when Hilbert’s eminent colleague Edmund Landau, who had refused
to read the writing on the wall, wanted to give an introductory calculus
course. Until then, he had been permitted to give advanced courses, but
the Nazis did not allow beginners to be taught by a Jew. Hooligans in
brown shirts called a boycott and refused him entry to the auditorium.

Hilbert, who by then was in his seventies, stayed on as a professor emer-
itus. But the place would never be the same again. At one time, Hilbert had
to provide proof that his first name, David, was no indication that he was of
Jewish descent or that he was anything less than an Aryan. At a banquet, a
Nazi minister asked him whether mathematics at Göttingen had suffered
after it had been purged of the Jewish influence. The minister expected to
hear that to the contrary, the subject had started to flourish once the devi-
ous and noxious analytical manner of the Jews had been replaced with a
good, clean, German synthetic approach. He was quite taken aback when
the old man replied, with a mixture of deep sadness and anger: “Suffered?
It hasn’t suffered. It simply doesn’t exist any more!”

Hilbert’s life was dedicated to the search for knowledge. He abhorred
the dispirited pessimism of the then-popular philosopher Emil DuBois-
Reymond, who claimed that some problems were unsolvable, even in prin-
ciple. The Frenchman’s discouraging outlook was epitomized in the motto
“Ignoramus et ignorabimus” (“We don’t know and we shall never know”).
Hilbert did not allow such pessimism to take over. When he died in 1943,
his gravestone was inscribed with the words he once used in a radio lecture.
They expressed his everlasting optimism: “Wir müssen wissen, wir werden wis-
sen” (“We must know, we shall know”).

At the turn of the twentieth century, the Frenchman Henri Poincaré
could also lay down a legitimate claim to the title of most important math-
ematician of his time. But the two men were not rivals. In fact, they held
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each other in high esteem, and when Poincaré was chosen to organize the
Second International Congress of Mathematicians, he asked Hilbert to pre-
pare an address that would provide a memorable experience for all attendees.
The congresses are held every four years, the first one having taken place in
Zürich, in 1897. The second one was going to be held in the French capi-
tal, in 1900. Adding four to 1897 doesn’t exactly come out to 1900, as any
mathematician of Poincaré’s stature could have told you, but the World
Exhibition was simultaneously taking place in Paris, and that was too good
an opportunity to pass up. In fact, it was the reason why about two hundred
other scientific conferences were also held in Paris during that year.

When Hilbert received Poincaré’s invitation, he hesitated at first. It would
be very tempting to end the old century by giving a speech that would influ-
ence his colleagues and successors throughout the new one, but how could
he capture the attention of the international audience that was expected at
the congress? Then he thought of an interesting angle:maybe he could focus
the development of mathematical research in the twentieth century by
directing his listeners toward some important, unsolved problems. Before he

David Hilbert
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made a decision, however, he took advice from his friends Minkowski and
Hurwicz in Zürich. They endorsed the idea enthusiastically, but Hilbert
continued to vacillate until it was nearly too late. The invitations for the
congress had been sent out in June and did not list any speech by the Ger-
man professor. But Hilbert had been writing all the time and in mid-July his
speech was ready. Unfortunately, it was no longer possible to schedule it as
the keynote speech, as Poincaré had planned, and his talk had to be trans-
ferred to the joint session for Bibliography and History, and Teaching and
Methods. These sessions were regarded as quite inferior to the sessions on
theoretical subjects, but Hilbert’s address gave luster to these somewhat bor-
ing seminars.

Before Hilbert’s lecture, some of the 253 attendees had expressed dissat-
isfaction with the limited social program that was prepared for them by the
organizing committee. Some of the honorable mathematicians must have
heard rumors about debauchery in chic Paris, and traveled from far and
wide expecting some action. After all, the Folies Bergères had a world-
famous show that was already in its thirty-first season. And the Moulin
Rouge, now in its eleventh season, was famed for its cancan dancers, “qui
lancent leur jambe en l’air avec une élasticité qui nous laisse présager d’une souplesse
morale au moins égale” (“who throw a leg in the air with an agility that lets
us suspect an equal moral suppleness”). Tickets to one of these spectacles—
all in the interest of science, of course—would have been greatly appreci-
ated. Other congress participants, more interested in sport than “folk
dancing,” would have been overjoyed to attend at least some of the events
of the second Olympic games that were being held in the French capital at
precisely the same period.3 Even a visit to the World Fair or a climb up the
Eiffel Tower would have been a welcome diversion.

So much to do, but nothing doing. It was mathematics from morning to
evening and discontent started to rise among the participants. But all the
mutterings were put to an end with Hilbert’s lecture. “The Paris Congress
will forever bask in a special glory,” reads the official history of the Inter-
national Mathematical Union. Forget the Moulin Rouge, the Eiffel Tower,
and the Olympics. The mathematical congress “will be remembered in the
history of mathematics for David Hilbert’s address.”

At the lecture, Hilbert immediately caught the attention of his auditors
with his opening sentence: “Who among us would not like to lift the veil
behind which the future lies hidden, in order to cast a glance at the

3 They wouldn’t have liked it; it was all chaos and confusion. Baron De Coubertin, the
founder of the modern Olympic games, would say later: “It’s a miracle the Olympic
movement survived these Games.”
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advances that await our science, and at the secrets of its development dur-
ing the coming centuries?” The professor expounded his vision for nearly
an hour, and then turned to the unsolved problems. But he had already
taken up most of the time allotted to his address and could not present all
twenty-three problems. He made do with ten and had the full list distrib-
uted to the participants later on. His address ended with the conviction that
“mathematics is the foundation of all exact knowledge of natural phenom-
ena,” and expressed the hope that “the new century bring it gifted masters
and many zealous and enthusiastic disciples, so that it may completely ful-
fill this high mission.”

Hilbert’s speech was highly influential. It provided new impetus for
research and spawned wholly new disciplines. One could say that Hilbert’s
address turned out to be truly prophetic, since it determined the direction
of much of mathematical research for the next century. On the other hand,
it was a rather self-fulfilling prophecy, since the address was meant to influ-
ence future mathematical research.

The list of problems encompassed all areas of mathematics. Hilbert, and
with him Poincaré, were probably the last people who were able to grasp
the entirety of mathematics. With the new century, research split into var-
ious disciplines and subdisciplines, whose exponents nowadays, more often
than not, don’t understand each other.

Not all problems on Hilbert’s list have been solved yet. Problem 8, for
example, deals with the Riemann hypothesis, which has been called the
most famous, and is certainly the most important, unsolved problem in
mathematics. It concerns the so-called Zeta function. Much depends on
Riemann’s hypothesis, because hundreds of principles, postulates, and the-
orems assume its validity—pending final settlement of the question—and
base their own conclusions on this assumption. It may be a good thing it has
not yet been solved. While a solution for any of Hilbert’s unsolved prob-
lems promised no more than eternal glory, recently the ante has been
upped. The Clay Mathematics Institute, a nonprofit institute dedicated to
increasing and disseminating mathematical knowledge and set up by the
Boston businessman Landon T. Clay, announced a $1 million prize for any-
one who proves or disproves the Riemann hypothesis.4

Some of Hilbert’s problems were solved, but differently than the professor
expected. In Problem 1, Hilbert asked the community to prove that the
objects of a set are either countable, by integer numbers, or are as dense as the
continuum of real numbers. The situation can be visualized in the following

4 Six other “millennium” problems were announced at the same time, each of which
carried a prize of $1 million.
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way: draw a line and count all the points on it. Of course, there are infinitely
many points. Then cut out a section from this line and count the points on
this section. Again, the number is infinite. The question is now: Is the infinite
number of points on the section equal to the infinite number of points on the
whole line? Or is the number of points in the smaller section “countable,”
that is, somewhat less than a continuum?

Hilbert illustrated the notion of infinity with an ingenious example. He
told his listeners to imagine a hotel with an infinite number of rooms. All
rooms are taken, but the manager neglected to hang the “no vacancy” sign.
In the middle of the night a traveler arrives and asks for accommodation.
“No problem,” says the manager, and has all guests move from room num-
ber N to room number N + 1. The traveler can have room number 1. This
shows that infinity plus one equals infinity. But wait, there’s more. The new
guest has barely settled into his room, when a bus arrives with an infinite
number of passengers. Of course, the “no vacancy” sign still hasn’t been
put up, and with good reason. Can all the newcomers be accommodated?
“No problem,” says the manager, and has all the guests move from room
number N to room number 2N. With this move, an infinite number of
odd-numbered rooms become available for the infinite number of new
guests. So two times infinity is also equal to infinity. (By the way, each one
of the newcomers gave the manager an infinitely small tip. How much did
he receive in total compensation?)

In 1963, it turned out that Hilbert had posed the question for Problem
1 incorrectly. It is not either/or. One answer and its opposite are true. The
mathematician Paul Cohen from Stanford University showed that some
other notion of cardinality must exist between countability and continuum.

And in Problem 10 Hilbert asked his colleagues and the coming gener-
ations of mathematicians to devise an algorithm that would be able to
determine whether a Diophantine equation has a solution.5 No can do, said
Yuri Matiyasevich, from St. Petersburg (then Leningrad) in 1970. In his dis-
sertation he proved that such an algorithm cannot exist.

At least one problem never will be solved, strange as that may sound. It
is Problem 2 on Hilbert’s list, which deals with the consistency of arith-
metic, that is, with its freedom from contradictions. We would like to think
that arithmetic, as we know it, needs no further proof. Two plus two equals
four; there are no two ways about it. But not only was Hilbert right in ask-
ing the question, worse news was to come. Thirty years after the congress,
the logician Kurt Gödel showed that arithmetic is not free from contradic-

5 A Diophantine equation is an equation whose coefficients are integers, like the one in
Fermat’s famous theorem.



tions. Both a statement and its opposite may be true simultaneously. Propo-
sitions could be formulated that are undecidable.

The standard example of an undecidable question is the following: If the
barber of Seville shaves all the men of Seville who do not shave themselves,
does he shave himself ? If he does, he doesn’t, and if he doesn’t, he does.
The question simply cannot be answered. Or consider this more exciting
example. Let’s say you land on an island inhabited by cannibals. You are
caught immediately. The cannibals’ chef prepares the menu and, in a jocu-
lar mood, lets you decide what dish you want to be served as. To spice up
the preparations, he devises the following game: you may make a final state-
ment. If it is true, you will be sautéed in a pan. If it is false, you will be
grilled and served as barbecue. But maybe there is a statement that will save
your life. There is, and please commit it to memory immediately, in case
you should ever find yourself in such an uncomfortable situation. The state-
ment is, “I will be grilled!” Once you utter that sentence, the chef ’s menu
plans go down the drain. Is the statement true or false? If he grills you, you
have told the truth, and you should have been sautéed. But if he sautés you,
you have lied, and consequently you should have been grilled. There is
nothing he can do: his buddies will have to go without dinner.

That was quite a blow to Hilbert. It threw everything he believed in into
disarray. The lack of contradictions is, after all, the basis of a rigorous foun-
dation of all of mathematics. But for once, mathematicians decided to take
a pragmatic stand. They decided that mathematics is probably free of contra-
dictions, but that this can’t be proved in a finite number of steps. That’s a
copout if ever there was one, but if it’s good enough for Hilbert and his fol-
lowers, it is good enough for us. And so the game may continue.

Then there is Problem 18 on Hilbert’s list. It went under the title “The
building up of space from congruent polyhedra,” and belongs to the so-
called specific problems on Hilbert’s list, in contrast to the more basic general
problems. Hilbert divided the problem into three parts, one of which will
be recognized by the astute reader as Kepler’s problem.

In the first part he asks for a proof that a finite number of objects exist
that can build up space, that is, that can tile it without gaps or overlaps. For
two- and three-dimensional space, the question had already been answered
in the affirmative before Hilbert raised it. There are exactly 17 different
plane symmetry groups, and exactly 219 three-dimensional symmetry
groups. The result for the two-dimensional case is of paramount impor-
tance for printing shops that produce wallpaper. It states that there are
exactly seventeen distinct ways to print wallpaper in a pattern that is peri-
odic in two directions. So don’t let the salesperson in the home improve-
ment store confuse you. Even though wallpaper can be decorated with an
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infinite number of flowers or ornaments or anything else, there are not
more than seventeen symmetries (translations, rotations, reflections, or any
combinations thereof ). The answer for the three-dimensional case has
even more important implications. It means that atoms can configure
themselves into exactly 219 different molecules to form crystals. It is
nothing less than astounding that such down-to-earth results were arrived
at purely through mathematical reasoning, without recourse to experi-
ments or observations.

The answer to the general, n-dimensional case was found in 1910 by
Ludwig Bieberbach. He proved that, not only in two and in three dimen-
sions but in all dimensions, there are a finite number of objects that can
build up space. The ambitious young man, an ardent German nationalist
and later a prominent Nazi, was only too happy to solve one of Hilbert’s
celebrated problems—even if it was only a subproblem. It was to be an
important first step on his career path. But his later association with the
Göttingen professor became very strained. In 1928 Bieberbach insisted on
boycotting a mathematicians’ congress for nationalistic reasons, because it
was to be held in Italy. Hilbert fumed. “We are convinced that Herr
Bieberbach’s way will bring misfortune to German science and will expose
us to all justifiable criticism from well disposed sides,” he wrote to col-
leagues around the country. Hilbert’s view prevailed, and in Bologna, Italy,
the Germans formed the second-largest national contingent, after the Ital-
ian hosts. With Hitler’s rise to power, Bieberbach became a leading anti-
Semite, wore a Nazi uniform when conducting examinations, and took a
leading role in dismissing Jewish colleagues from their positions. After the
end of World War II, he was stripped of all his posts.

Hilbert gave the second part of the problem a slightly different tilt. He
asked whether objects exist that (1) fill n-dimensional space without gaps
and without overlaps, but that (2) cannot be transformed into each other by
simple movements. The first requirement again means that the objects must
tile the space. The second requirement means that all tiles have to be exact
copies of each other, but cannot be brought to cover each other just by slid-
ing them around in different directions. In other words, they must be some-
how similar but not identical.

It took twenty-eight years to provide a first answer. In a 1928 paper pre-
sented to the Akademie der Wissenschaften (Academy of Sciences) in Berlin,
Karl Reinhardt described a complicated three-dimensional object, copies
of which completely fill three-dimensional space—without gaps and
without overlaps—but which cannot be brought to cover themselves by
simply moving them around. He also formulated the conjecture that no
such tiles exist in two dimensions, using the same method that Ludwig
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August Seeber employed for his conjecture on ternary quadratic forms. He
spent lots of time trying to find an appropriate tile. After he had tried and
tried without success, the exasperated mathematician convinced himself
that no such shape could exist. Someone else would certainly provide the
proof and his name would forever be connected to the conjecture-turned-
theorem.

That’s a really bad way of doing mathematics, and it came as it had to.
Barely four years later, Reinhardt was proved wrong. The German violinist
and mathematician Heinrich Heesch found a shape that can tile the floor,
but whose representatives cannot be brought to exactly cover each other by
sliding them around. Some of the tiles could only be covered if another tile
is lifted off the floor and flipped around. When the venerable German
ceramics company Villeroy & Boch got wind of Heesch’s discovery, they
saw an opportunity to branch out into nonconventional floor coverings and
immediately offered to produce such tiles. Heesch designed a suitable
shape, which was then used for the ceiling of the Göttingen town library,
where they can still be seen today.

Heesch’s tile
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Some readers may have expected a convex tile, while Heesch’s shape is
concave.6 But even if we were to rule out concave shapes, something
Hilbert did not require, Reinhardt’s conjecture is false. Richard Kershner
(whom we met in chapter 4) found a pentagonal shape in 1968 that (1) can
fill a kitchen floor without gaps and overlaps, (2) has tiles that cannot be
transformed into each other by movement alone, and (3) is convex. From
all this we learn an extremely important lesson. If you absolutely must pro-
pose a conjecture, at least make sure that you won’t be proven wrong for a
long, long time—if possible, not during your lifetime.

But it is the third part of Problem 18 that we are interested in. Specifi-
cally, Hilbert’s question was: “How can one arrange an infinite number of
equal solids, of given form, most densely in space, e.g., spheres with given
radii. . . . [H]ow can one fit them together in a manner such that the ratio
of the filled space to the unfilled space be as great as possible?” That is,
Kepler’s conjecture as tossed into the twentieth century. Hilbert mentions
that an answer to this question is “important to number theory and [may
be] sometimes useful to physics and chemistry.”

The race was on again and mathematicians went back to work. It soon
became apparent that a proof was still way beyond reach. The available
mathematical tools just did not suffice to crack the problem. Try as they
might, nobody even got close to solving Kepler’s conjecture. So the math-
ematics community set itself a more moderate, intermediate, goal: find
upper and lower bounds for the best density. This is a time-tested method
in mathematics whenever the exact answer to a problem is not known.
Establish upper and lower bounds and show that the true result must lie

Kershner’s pentagonal tile

6Concave and convex are the mathematical terms for bulging in and out.
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somewhere between these two limits; then, try to narrow the gap by raising
the lower bound and lowering the upper bound. As the gap gets com-
pressed, claustrophobia sets in as the result gets caught between ever more
cramped walls. What happens when the upper bound has been lowered all
the way down to the lower bound, or vice versa? The result gets locked in,
and the exact result has been found.7

Beware, however: if the lower bound turns out to be higher than the
upper bound, there’s trouble. No result can be smaller than the lower num-
ber and, at the same time, greater than the higher number. (You may take
some solace, however, if this happens: getting the bounds to cross is a con-
venient way to show that no result exists.)

As we saw in the appendix to chapter 1 and at the end of chapter 7, the
arrangement suggested by Kepler has a density of 74.05. Does an arrange-
ment exist with a density higher than that? If it can be shown that no pack-
ing can have a density greater than 74.05 percent, then Kepler’s
arrangement of spheres is the densest packing possible. It may not be the
only such packing, because there may be others with the same density. In
fact, as William Barlow discovered, there is an infinite number of such
packings (see chapter 1). So the accepted strategy at that time was to nar-
row the gap between the upper and the lower bounds.

The density of the best packing must be at least as high as the density of
Kepler’s arrangement. So 74.05 percent constitutes a lower bound. On the
other hand, nothing can be stuffed into a space once it is full, especially not
spheres. So 100 percent is the highest conceivable density in any space and
this number constitutes an upper bound. The density of the best sphere
packing must, therefore, lie somewhere in between these two bounds. If a
lower bound could be established that is greater than 74.05 percent, Kepler
would be proven wrong, and his would not be the densest arrangement. In
such a case, Kepler’s sphere arrangement would still represent the best lattice
packing, since Gauss had conclusively proved that, but some jumbled up
arrangement would be denser still. But nobody took this possibility seri-
ously and no mathematician wasted his time trying to raise the lower
bound. Instead, all efforts were directed at lowering the upper bound little
by little, in the hope that eventually an upper bound of 74.05 percent
would be reached. This task was to keep mathematicians busy for most of
the twentieth century.

7 This is the method Odlyzko and Sloane employed when they derived the highest kiss-
ing number in eight and twenty-four dimensions (see chapter 6).
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The Race for the Upper Bound

The first to try his hand at establishing an upper bound well below 100
percent was Hans Frederik Blichfeldt. This man’s life story is one of

those fairy tales that relate an ascent from ashes to glory. Blichfeldt managed
to rise from the ranks of a simple laborer to become head of the mathe-
matics department of one of the world’s most prestigious universities. He
was born in 1873 in Denmark, the son of a farmer. After the family’s emi-
gration to the United States, the fifteen-year-old boy worked as a farmhand
and laborer in sawmills and lumber companies. But he did not intend to
stay a workman all his life. After a few years, he became a draftsman, then a
surveyor, and finally entered Stanford University. He spent his academic
career at Stanford, starting as an instructor and working his way up through
the ranks—lecturer, assistant professor, associate professor, and finally full
professor. In 1927 he was appointed head of the mathematics department.
In this post he managed to make Stanford one of the foremost centers for
mathematics of the world.

In 1919 and 1929 Blichfeldt published two papers concerning sphere
packings. An ingenious idea allowed him to establish the first upper bounds
for the packing density of three-dimensional spheres below 100 percent.

❖ ❖ ❖

Imagine a large box and, within this box, a jumbled-up mess of spheres. Now
increase the radius of the spheres and, at the same time, enlarge the box so that
there is sufficient room in it for the larger spheres. Parts of the enlarged spheres
may overlap. Blichfeldt’s idea was to fill the spheres with layers of sand, using a
sophisticated method. The layers become thinner the farther away one gets
from the center. So there would be lots of sand in the middle of a given sphere,
but as one approached the outside surface there would be less and less.

You could imagine the spheres as onion-like objects, whose layers in the cen-
ter are dense and heavy and then become increasingly thin and light the farther
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one moves from the center. Since some spheres overlap, the sand of different
spheres combine in the regions of overlap. Here comes Blichfeldt’s clincher: by
judicious distribution of the sand—and Blichfeldt developed formulas for this—
it can be guaranteed that nowhere will there be more sand than in the dense
center of the spheres. This will be true even if several spheres overlap, due to
the sand’s sparseness toward the outer surfaces.

The rest is easy. Weigh the box that contains the sand-filled spheres and
compare the result with the weight of an identical box that is completely filled
with sand. Obviously, the latter contains more sand and is, therefore, heavier
than the former, no matter how many spheres it contains. Hence, when you
divide the weight of the box that is completely filled with sand by the weight
of the box that contains the spheres, you get a number that is less than 1.0.
Moreover, this ratio represents an upper bound on the density of spheres in a
box. Now let the boxes’ sizes grow very, very large and compute the ratio
again. The numerical value turns out to be 0.883. Whatever the arrangement
of spheres within an infinitely large box, their density can never exceed 88.3
percent.

Compared to 74.05 percent, the density of Kepler’s arrangement, an upper
bound of 88.3 percent still leaves a lot of leeway. A denser arrangement of
spheres is, in principle, not ruled out, but Blichfeldt did narrow down the pos-
sibilities.

In 1929, he followed up with an improvement. The crucial point in his
derivation of the upper bound was the way in which the sand was distributed
within the spheres. In his second paper, he devised a different way to fill the
spheres with sand and managed to lower the upper bound from 88.3 percent
to 84.3 percent. Moreover, at the end of the paper he declared that “a more
elaborate use of the relations” would lower the upper bound even further.
Without further ado, he claimed that “in no case can equal spheres be
packed . . . such that the space occupied by the spheres is as much as 835⁄1000 of
the volume of the cube.”

❖ ❖ ❖

We now have an upper bound of 83.5 percent. By filling spheres with
sand, figuratively speaking, Blichfeldt had made the first steps towards solv-
ing Kepler’s conjecture since Gauss’s book review a century earlier. With
clever reasoning, he established that no packing could exist with a density
higher than 83.5 percent. But an arrangement with a density up to that
number could, in principle, exist, and if one could be found it would spell
the death of Kepler’s conjecture. But Blichfeldt’s proof gave no indication
what such a packing would look like and, pending further evidence,
Kepler’s conjecture remained undecided.
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From here on the going became tough. For eighteen years Blichfeldt was
the holder of the world record: his 83.5 percent remained the best available
upper bound until 1947. Then a Scottish mathematician entered the pic-
ture, Robert A. Rankin. Rankin was born in 1915 in Garlieston, Wigton-
shire. During the war he worked on rocket flight. At the same time, across
the Atlantic, his colleague Richard Kershner was working on similar prob-
lems (see chapter 4). Stints at Cambridge and Birmingham followed. In
1954 he joined the University of Glasgow as a professor of mathematics,
and stayed there for twenty-eight years. From 1971 to 1978 he served as
clerk of the university’s senate, and for many years was head of its mathe-
matics department. Even after his retirement, in 1982, he stayed active in
research. In 1987 he received the Senior Whitehead Prize. The prize is
bestowed by the London Mathematical Society on worthy mathematicians
in every odd-numbered year. (The Junior Whitehead Prize is awarded to
mathematicians under the age of forty.) In 1995 Rankin received the De
Morgan medal, the London Mathematical Society’s most prestigious prize.
It is awarded to worthy mathematicians in years that are divisible by 3. For-
tunately, Rankin had already received the Senior Whitehead Prize, because
the rules for the latter state that it may not be awarded to any person who
has previously received the De Morgan medal. (Very puzzling indeed, these
British rules.)

Toward the end of 1946, Rankin, just released from war duty, found
himself at Clare College in Cambridge. That’s where he wrote a twenty-
page paper on an upper bound for the sphere packing. After a rather dull
start, in which Blichfeldt’s derivation is rehashed, complete with proofs,
Rankin took off. He did not just seek a better method for the distribution
of sand, he sought the best. And he found it, by trial and error. One of the
difficult parts of the proof was the computation of the numerical values of
a certain formula. In 1946 such a calculation was still a major undertaking,
although it would take only a few seconds today using a hand calculator.
Fortunately, the Cambridge Mathematical Laboratory came to the rescue
and “provided a calculating machine by means of which the computations
of the numbers were carried out.” Once that hurdle was overcome, Rankin
could, again, weigh the sand-filled spheres, and establish a new upper limit:
82.7 percent.

This is as far as Blichfeldt’s sand-filling method could advance. Rankin
had exploited it to its maximum; no further improvement was possible. To
move matters ahead, one would have to travel down a totally different
avenue.

This is what the Hungarian mathematician Laszlo Fejes-Tóth tried to do
in 1943. Fejes-Tóth had already shown his mettle three years earlier, with
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the proof of the sphere packing problem in two dimensions (see chapter 4).
The invaluable experience that he gained there made him uniquely quali-
fied to push the upper limit down. Leaving the physical aspects of sand-
filled spheres behind, Fejes-Tóth returned to the fundamental geometrical
properties of the sphere packing problem. In particular, he studied the
empty area in the vicinity of each sphere. His idea was to divide space into
cells, such that each sphere would sit in its own cell. Like good neighbors,
the spheres divide up the area between them equally. Hence, the walls run
exactly halfway between the spheres. If two spheres touch, the cell’s wall
goes through the point of contact.1

These cells, which will play a fundamental role in the further history of
Kepler’s conjecture, were initially proposed by the mathematician Georgii
Feodosevich Voronoi. The son of a professor of Russian literature, Voronoi
was born in 1868 in Zhuravka, a town that was then in Russia and now
belongs to the Ukraine. He studied physics and mathematics at the Univer-
sity of St. Petersburg, where both his master’s thesis and his doctoral dissera-
tion were awarded prizes. Then he joined the faculty of the University of
Warsaw. In 1904 he attended the Third International Congress of Mathe-
maticians in Heidelberg and met Hermann Minkowski. To their great sur-
prise, the two men discovered that, unbeknownst to each other, they had
both been working on the same subject: the geometry of numbers. Unfortu-
nately, there was no occasion for closer collaboration, because Voronoi died
four years later, at the age of forty. He left an important legacy, however: three
long papers on quadratic forms. Another legacy is represented by the Voronoi
cells, or V-cells for short, which will help us find improved upper bounds for
the packing density. If all spheres sit inside identical V-cells, then the smaller
the V-cell that encloses a sphere, the higher the packing density.

1 We met Voronoi cells in chapter 4. They were the gardens on the oceanfront property.

V-cells in two dimensions
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When Fejes-Tóth decided to inspect V-cells, he thought a good candidate
would be the regular dodecahedron. The smallest dodecahedron that
encloses a sphere of radius 1 has a volume of 5.5503 (see the appendix for
some details of how to compute this volume). Since the sphere has a volume
of 4.1888, this would establish an upper bound for the density of 4.1888⁄5.5503 =
75.46 percent. Wait a minute—this is greater than the density of Kepler’s
arrangement (74.05 percent), which we believed was the best one possible.
Is it possible that Fejes-Tóth had found a better packing arrangement?

The answer is an emphatic no, and the reason is simple. Even though the
dodecahedron does give a tight fit locally, the arrangement cannot be
extended to several spheres. When you try to fit dodecahedra together,
gaps appear. Three-dimensional space cannot be completely filled with
dodecahedra.

It is ever so unfortunate that not every object that is regular locally stays
regular globally. Take Platonic solids, the regular polyhedra in three-
dimensional space. Platonic solids are structures that fulfill two conditions:
(1) all faces of the solid are identical, regular polygons, and (2) the same
number of faces meet at each vertex. The cube, for example, is composed
of six squares, and three of them meet at every corner. Only five Platonic
solids exist: the tetrahedron (four faces), the hexahedron or cube (six faces),
the octahedron (eight faces), the dodecahedron (twelve faces), and the
icosahedron (twenty faces).2 Let’s inspect the dodecahedron. Taken on its
own it is quite regular; all its faces are equal-sided pentagons, and three pen-
tagons meet at every vertex. But it all depends on what your definition of
regular is. Dodecahedra do not tile space!

This unfortunate fact of dodecahedral life was discovered in the 1980s, to
the chagrin of the computer scientist-turned-sculptor Robert Dewar.
Dewar, who works in Tehachapi, north of Los Angeles, is inspired in his art
by the subtle secrets of nature, for example, by the strange symmetries of
polyhedra or by the structure of molecules. An artist and not a mathemati-
cian, Dewar once tried to pack twelve dodecahedra around a central dodec-
ahedron. Dodecahedra, after all, are regular polyhedra in the same way as
hexagons are regular polygons. Hence what works in the plane should work
in space, he thought. But the dodecahedra would not fit. They could be
almost joined together, but never exactly. A small, wedge-shaped space was
always left open between the faces of adjacent dodecahedra. Exasperated, he

2 Note that the tetrahedron is not a pyramid, even though it is similar. Pyramids, as
found in Egypt, have a square base, while the remaining faces are triangles. The pyra-
mid therefore belongs to the group of semiregular polyhedra, or Archimedean solids.
Two pyramids, placed base to base, form an octahedron.
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turned to a simpler task and attempted to sculpt a ring of dodecahedra by
stringing six of them together end to end, leaving a hexagon open in the
middle. Again, he didn’t succeed: after placing the first five dodecahedra,
there was not enough room left for the sixth. Soon the reason why nothing
seemed to fit became obvious to Dewar. The dihedral angle (the angle of
intersection of any two adjacent faces) of a regular dodecahedron is 116° 34′.
Three of these angles add up to 349° 42′, which is just 10° 18′ short of the
360° required to close the circle,3 hence the gaps. For comparison, the angles
of the hexagon are each 120° wide, so three of them combine to a full cir-
cle. The same holds for four squares (with 90° corners), and six triangles
(with 60° corners).4

If dodecahedra can’t be joined together, maybe they could at least pro-
vide a new upper bound for the packing density. Fejes-Tóth thought they
could, and set out to prove that the V-cells of any sphere packing have to be
at least as large as dodecahedra. In a 1943 paper in the Mathematische
Zeitschrift, he proved that honest-to-goodness V-cells must have volumes of
at least 5.5503. Therefore, the packing’s density would have to be smaller
than 75.46 percent. His approach provided an upper bound that was signif-
icantly lower than both Blichfeldt’s and Rankin’s. There was only one
problem: the proof contained mistakes. They weren’t spotted immediately,
and Fejes-Tóth bathed in glory for a while. But the errors were detected a
few years later.

Where did Fejes-Tóth go wrong? Most of the proof had been worked
out very neatly. But on the next-to-last page, just before the end of the
proof, he made two seemingly harmless assumptions, one of which turned
out to be fatal. The first assumption was that no more than twelve spheres
can simultaneously touch a central sphere. Fejes-Tóth did remark, in foot-
note number 6, that proving this assertion is no easy feat, but then left mat-
ters at that. We’ll let that one pass since we know—with hindsight—that
Schütte and van der Waerden did provide a correct proof for the kissing
problem ten years later, in 1953. It was a bad start, however.

Fejes-Tóth next investigated how close a thirteenth sphere could get to
the central sphere (all of radius 1). Without much ado, he stated that it can’t

3 To visualize, the large hand on your watch requires one minute and forty-three sec-
onds to cover an angle of 10° 18′.
4 Remembering his original calling as a computer scientist, and inspired by a book on
crystallography, Dewar developed a computer program that slightly deforms the faces of
the dodecahedra, until they—now no longer regular objects—fit together. The defor-
mations can hardly be seen by the naked eye. Incidentally, the only Platonic solid that
completely fills three-dimensional space is the cube.
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get closer than 1.26. He justified this number in footnote number 7 with
the explanation that a rough experiment had convinced him that the dis-
tance between the central sphere and the thirteenth sphere must actually be
larger than about 1.38. So 1.26 certainly seemed an okay assumption. A
rough experiment? Had he not learned anything from David Hilbert’s
uncompromising, rigorous approach to mathematics? No mathematician is
ever allowed to formulate a proof that is built on the basis of a rough exper-
iment. Did he really hold a central sphere in his fingers, juggle a dozen
spheres around, and then put a ruler to the thirteenth sphere, to measure its
distance from the central sphere?

When he tried to mend the holes, the proof of this seemingly innocent
assumption resisted all efforts. After years of trying to fill the gap, Fejes-
Tóth finally gave up. To his credit, it must be said that he himself admitted
defeat and classified the dodecahedral conjecture an open problem in 1964.
The wording of the conjecture was: “In any unit sphere packing, the vol-
ume of any Voronoi cell around any sphere is at least as large as a regular
dodecahedron of inradius 1.” The dodecahedral conjecture, which is obvi-
ously related to, but doesn’t solve, Kepler’s conjecture, has in fact been
solved, but we’ll talk about that in chapter 14.

So it was back to square one. Fifteen years after Fejes-Tóth’s attempt, in
1958, a new approach was provided by the British mathematician Claude
Ambrose Rogers. Rogers, who throughout his career made contributions of
fundamental importance to the problems of packing and covering, was born
in Cambridge, England, in 1920. He attended a boarding school and, upon
turning eighteen, went to study mathematics at University College in Lon-
don. He received his B.A. degree in 1941, but the war was still on, and he
was called to serve his country in the Ministry of Supply. At the end of the
war, he rejoined University College and, while serving as a lecturer, worked

Dodecahedron as a V-cell
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his way through a doctorate. A four-year stint at the University of Birming-
ham followed. Finally, he was called back to his alma mater, University Col-
lege, as Aston Professor of Pure Mathematics. There he stayed until his
retirement in 1986. He wrote over 170 research papers and in 1977 the Lon-
don Mathematical Society awarded him the De Morgan medal. That was
eighteen years before Rankin won his medal. 

But Rogers gained an even higher distinction:he carries the coveted Erdös
number 1⁄7. This number indicates a relationship (in terms of coauthorship) to
the most prolific mathematician of all time, the Hungarian mathematician
Paul Erdös. With about fourteen hundred published papers, Erdös, who died
in 1996, is the world record holder in mathematical output. (The second-
ranked author has about half as many papers to his credit.) But Erdös was no
solitary scientist, jealously keeping his ideas to himself. Like no other math-
ematician, he promoted cooperation among his colleagues. He traveled the
world, staying with anybody who was willing to have him—it is reported
that he had no home to call his own—and doing research with his eager
hosts. He coauthored papers with an unprecedented number of mathemati-
cians.5 And this is how Erdös numbers came into being.

An Erdös number of 1 is awarded to mathematicians who wrote at least
one paper with Erdös. At the end of the year 2000, there were no less than
507 mathematicians who proudly carried an Erdös number 1. And as of
2002 the list had not been finalized, since new papers were still being added
to his list of publications. (Even a few years after his death, his coauthors
were still revising and correcting work that was done in collaboration with
him.) By the way, there is also a famous nonmathematician with an Erdös
number of 1: the baseball player Henry L. “Hank” Aaron autographed the
same baseball as Erdös when they were both getting honorary degrees from
Emory University in 1995.

Erdös’s 507 collaborators have, themselves, 5,897 coauthors. These peo-
ple carry an Erdös number of 2. Then there are 26,422 people who collab-
orated with mathematicians with an Erdös number of 2 and who, therefore,
have an Erdös number of 3. And so on. Nearly every research mathemati-
cian today has an Erdös number of 6 or lower, and only 2 percent have
Erdös numbers higher than 8.

As the number of mathematicians with Erdös number 1 increased, the need
arose to distinguish among those relatively few colleagues who wrote more
than one paper with the master—there are two hundred of them. It was
decided that they would be awarded a fractional Erdös number below 1,

5 Contrast Erdös to Andrew Wiles, who worked in solitary for many years on Fermat’s
last theorem. Erdös very much disapproved of Wiles’s reticence.



depending on the amount of work they had done with him. Rogers wrote
seven papers with Erdös, whence derives his Erdös number of 1⁄7. (There are
fifty-one mathematicians with Erdös numbers smaller than, or equal to, 1⁄7. The
mathematician closest to zero is Andras Sarkozy, with an Erdös number of 1⁄62.)

Back to Rogers. A large part of his career was devoted to Kepler’s con-
jecture and related problems. His book Packing and Covering, published in
1964, summed up the current state of the art. In his 1958 paper we find a
quote that has become famous among packing experts: “Many mathemati-
cians believe, and all physicists know” that Kepler’s conjecture is true. His
quote expresses in a nutshell the frustration the mathematical community
felt at the state of affairs. It was obvious to all, be they grocers, cannonball
stackers, or physicists, that Kepler’s arrangement of spheres was the densest
one. But for three and a half centuries mathematicians have not been able to
come up with a proof. Rogers’s words also summarize the different outlook
between the professions. Mathematicians require proof for every single,
ever-so-obvious detail, while to physicists, something as well established as
Kepler’s conjecture requires no further proof. In 1976, John Milnor, then at
the Institute of Advanced Study at Princeton, commented on the state of
affairs by exclaiming, “the problem in three dimensions remains unsolved.
This is a scandalous situation since the presumably correct answer has been
known since the times of Gauss.” And then he added, as an afterthought, a
small detail: “All that is missing is a proof.”

In 1958, while at the University of Birmingham, Rogers published a paper
in which he derived an upper bound for the density of sphere packings that
was just a tad under 78 percent. To be exact, he managed to lower the upper
bound to 77.97 percent. Rogers inspected a tetrahedron and placed a sphere
at each of its four corners. He then showed that even the best packing, what-
ever it would turn out to be, could not be denser than this configuration.

Some people claim that by reverting back to geometrical tools, Rogers’s
derivation made the intricacies of sphere packings more transparent. After
all, Blichfeldt’s method had more to do with the shovelling of sand into
balls than with geometry. Rogers brought the subject down to the realm of
geometry. But transparency, like beauty, is solely in the eyes of the beholder,
and the average beholder will find little that is transparent in Rogers’s
paper—pages and pages, twelve in all, of equations, formulas, and integrals,
without even a tiny illustration to lighten the fare. It would have been easy
to clarify what Rogers meant by the following sentence, for example, if he
had only resorted to a drawing: “To each center c of a sphere of the system,
we assign the set Π (c) of all points of space, whose distance from c is equal
to their minimum distance from the centres of the spheres of the system.”
As the picture shows, Rogers was describing a V-cell.
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Following Fejes-Tóth’s first, unsuccessful attempt, Rogers also decided
to partition space into V-cells, each of which contained one ball. No gaps
were left over in between. But he went a step further. He took a big kitchen
knife and cut each and every V-cell into little pieces. In mathematically
more appropriate language, he dissected the V-cells into simplices. A sim-
plex is a little pyramid whose top is at the center of the V-cell, and whose
base is one of the outside walls of the V-cell.

Each simplex contains part of a sphere; Rogers sought an upper bound
for the density of a typical simplex. He argued that since the simplices make
up a V-cell, and the V-cells completely fill space, it would suffice to average
the densities. The resulting number would be an upper bound for the den-
sity of the whole space. Using this argument, Rogers went on to show that
the density of the best sphere packing could not be greater than the density
of four balls placed at the corners of a tetrahedron.

Simplex, with partial sphere

Rogers’s sentence

c

(c)π



6 The weighted average, with weights 6 and 8, gives the density of the dodecahedron:
(6 × 72% + 8 × 77.97%)⁄14 = 75.46 percent. In order to compute the density of Kepler’s FCC
arrangement, the weights are 6(√32⁄9), and 8(√8⁄9). The irrational numbers arise from the
fact that the dodecahedron does not tile space.
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All that remained was to calculate the density of the balls in the tetrahe-
dron. Such a computation is no picnic for regular mortals, but for an able
mathematician it is a piece of cake. (The appendix shows how it is done.)
The result: 77.97 percent of the tetrahedron is filled up by the four balls at
its corners. This density is better than halfway between Blichfeldt’s early
attempts at an upper bound and the density of Kepler’s sphere arrangement.
The paper was a real advance and, henceforth, Rogers’s suggestion to
decompose V-cells into simplices became an important element in the study
of sphere packings.

Let us compare the tetrahedra, with spheres at its corners, with Kepler’s
arrangement. How is it that the tetrahedra produce a density of 77.97 per-
cent while Kepler’s arrangement has a density of only 74.05 percent? Isn’t
Kepler’s arrangement the densest possible? And doesn’t it also place the
balls at the corners of tetrahedra? The answer is that in Kepler’s arrange-
ment some of the balls are placed at the corners of tetrahedra and others are
placed at the corners of pyramids with a square base. So spheres sometimes
come to lie on top of three, sometimes on top of four, other spheres. A dif-
ferent way to recognize this is to realize that tetrahedra cannot fill space
completely. Other objects, in this case square pyramids, are required to fill
the gaps: each cluster of “12 around 1” consists of six pyramids and eight
tetrahedra. (In the appendix I show that four balls in a tetrahedron fill 77.97
percent of the tetrahedron’s volume and five balls in a square pyramid fill 72
percent of the pyramid’s volume.) The density of Kepler’s arrangement is a
weighted average of the above densities.6 By the way, this example shows
again that locally a packing can be achieved that is denser than Kepler’s
arrangement. But in the global case, clusters of less density offset the dense
clusters.

For many years Rogers’s upper bound stood like a solitary beacon in the
emptiness of the geometrical desert, guiding all those who came after. It
was the benchmark against which any further progress had to be measured.
For nearly three decades nobody succeeded in bettering the record. Then,
in 1987, J. H. Lindsey II from Northern Illinois University managed to
lower the upper bound even further. Lindsey was an outstanding student
at Caltech; in 1963 he received the E. T. Bell Undergraduate Mathematics
Research Prize—an annual cash award of $500 that is presented for the
best original mathematics paper written by a Caltech junior or senior. Five
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hundred dollars may not seem like a lot of money today, but it meant a lot
to an undergraduate forty years ago. He did his Ph.D. in group theory at
Harvard University.

Lindsey’s paper—the one on upper bounds, not the one for the prize—
was one page shorter than Rogers’s article, and had no pictures. I cannot
resist but quote the following lines from his article: “Let A be the part of F
bounded by a perpendicular from Q to the midpoint M on edge E, the line
segment MV where V is one of the two vertices of E, and the line segment
VQ. Let q, m, and v be the vectors from P to Q, M, and V, respectively.”
All clear? Not quite. Compare this mathspeak to the picture.

Clearer? I would hope so.
While Fejes-Tóth and Rogers had set the stage with the dissection of

V-cells, Lindsey developed the method into a fine art. Fejes-Tóth used a
chainsaw to separate space into V-cells, and Rogers used a kitchen knife to cut
V-cells into pyramids. Lindsey applied a scalpel to the pyramids and carved
them up even further. He divided each face of the V-cell into triangles,

Kepler’s arrangement consists of eight tetrahedra and six pyramids

&

Lindsey’s sentence
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and constructed pyramids with these triangles as bases. Lindsey’s pyramids
were just as high as Rogers’s, but had smaller bases. Then Lindsey computed
the density in these pyramids, meticulously documenting each step of his
calculations. Toward the end of his paper he got into a bit of a hurry, how-
ever, and decided to include most of the remaining arguments into a single
statement:

The angle VQW is twice the angle MQV so the angle MQY is 5 times
the angle MQV so Y is represented by a real multiple of ((1⁄31⁄

2) + (i⁄61⁄
2))5

and of (21⁄
2 + i)5 = −(11)(2)1⁄

2 + i which has smaller angle with the nega-
tive real axis than 21⁄

2 + i with the positive real axis, so when we put the
regions for i = 5, 6 clockwise from that for i = 4 we get final vertex a
real multiple of −(11)(2)1⁄

2 − i and in the angle between −(11)(2)1⁄
2 + i and 

−(11)(2)1⁄
2 − i only room for the region for i = 1.

Even a picture gallery won’t help here. The long and the short of it is that
the density of spheres in three-dimensional space cannot be greater than
0.7784. The upper limit is lowered to 77.84 percent.

After that, the pace picked up a little. Following Lindsey’s paper, it took
only one year for the mathematician Doug Muder to refine the method.
But progress became so microscopic we have to move to five digits after the
decimal point to spot the improvements. Muder was a mathematician
working at MITRE, a nonprofit corporation in Bedford, Massachusetts,
whose clients include the Internal Revenue Service, the Federal Aviation
Authority, and the Department of Defense. Apart from designing methods
for more efficient tax collection, the people at MITRE did a lot of cool
things. The paper Muder submitted to the Proceedings of the London Mathe-
matical Society in August 1986, for example, was called “Putting the best
face on a Voronoi polyhedron.” Now that’s a title that invites readers to
delve into the twenty-page paper. (They had to wait two years, however,
until 1988, for its publication.) Muder, a nonconformist if there ever was
one, broke with tradition: he included three illustrations!

He broke with tradition in other ways too. A friend describes him as “a
mathematician whose career involved explaining complicated subjects to
people who could fire him if they didn’t understand. Until recently, his
main works were impenetrable papers about such important topics as the
precise number of Ping-Pong balls that can fit into a very big cardboard
box. He finally cracked under the strain of taking all this seriously.” Muder
took time out to write computer books for idiots. Actually he was a bit
more polite, and the books he wrote or co-authored carried titles like Inter-
net for Dummies and E-Mail for Dummies.



Seventy years earlier, Blichfeldt had suggested the sand-filling method.
Then Rankin had honed it to perfection. A generation later, Fejes-Tóth
had suggested the V-cells method. Then Rankin had improved on it. Now
it was up to Muder to hone that method to perfection.

You’ll recall that the smaller the V-cell, the higher the density of the
packing. So how can the volume of the V-cell be reduced? Muder thought
that this could be achieved by taking a close look at the shape of the V-cell’s
faces. As the title of his paper indicates, he set himself the task of “putting
the best face on a Voronoi polyhedron.” After careful deliberation, Muder
concluded that the most efficient face would have to be circular, small, and
as close to the center of the V-cell as possible. From all the shapes Muder
could think of, regular pentagons come as close to fulfilling these require-
ments as possible. Hence, he concluded, pentagonal shapes are the V-cell’s
best faces. So he dissected space into V-cells with pentagonal bases and cut
them into pyramids. To distinguish his paper from Rogers’s paper, Muder
did not call the pyramids pyramids; he called them wedges. He then assem-
bled them into wedge-clusters, and calculated their volumes. Comparing
the wedge-clusters’ volumes with the volume of a sphere, he managed to
lower the upper bound for the packing density to 0.77836.

So the upper bound now stood at 77.836 percent. This is an improve-
ment on Lindsey’s bound of less than one hundredth of one percent. Both
Blichfeldt’s sand-filling method and Rogers’s V-cell method had been
manipulated with great skill, and no further progress seemed possible
unless, of course, a new idea arose that would open up a different avenue.

Muder remained fascinated with the problem and spent the next few
years thinking about the matter. He was all the more intrigued, since—
according to rumor—Lindsey had been busy in the meantime, and had
found an upper bound that was better than his: 77.36 percent. Soon, the
news was no longer just a rumor. A working paper appeared and was dis-
tributed by Lindsey to his colleagues. But this upper bound never saw the
light of day in any learned journal. We may assume that Lindsey had fol-
lowed a false lead, and that his colleagues made him aware of that.

But the rumor did have a positive effect: it kept Muder going. How
could the upper bound be lowered? Suddenly it hit him:pentagons may not
be the best faces for the V-cell after all. They were the best straight-edged
bases. But a good mathematician thinks outside the box. Perhaps the vol-
ume of the V-cells could be minimized further, if other face shapes were
considered.

Now we are entering the realms of microsurgery. Muder started shaving,
chiseling, trimming, and carving the bits and pieces into which the V-cells
had been cut up. Throughout, he took care to sculpt a shape that would fill
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7 Volume = 4⁄3π.

Shaved circular cone
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the space without gaps and, at the same time, leave sufficient room to con-
tain the sphere. Finally the master craftsman was done. Volumes had been
reduced to their skinniest minimum. What was left were thirteen shaved cir-
cular cones, that is, pyramids that initially had round bases, but from which
some parts had been removed.

In order to make his point, Muder needed three propositions, which he
proved with the help of no less than twenty subpropositions and technical
lemmas. The V-cells had been cut into thirteen shaved circular cones whose
solid angles were identical to the solid angles of the “best faces” from his
previous paper. The crucial point was that the new and lean, if not to say
emaciated, V-cell had a volume of only 5.41848. Since a sphere of radius 1
has a volume7 of 4.18879, the density is 4.18879⁄5.41848 or 77.306 percent. By
skillful use of modeling tools, Muder had managed to lower the upper
bound by a whopping one-half of one percent.

It had not been easy going, and the ordeal was far from over. Once he
had everything neatly worked out, Muder wrote up an article and, on July
18, 1991, submitted it to the journal Discrete and Computational Geometry. It
was not satisfactory and he was asked to revise his work. A year and a half
later, in February 1993, Muder submitted a revision. His revised article was
still not acceptable to the editors. Finally, in June of the same year, Muder’s
second revision was accepted for publication. The article appeared a few
months later.
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Altogether, in the seventy-four years since Blichfeldt’s first attempt, the
upper bound was lowered to 0.77306. Progress had been agonizingly slow.
With minute advances every dozen years or so, the upper bound inched
downward like the world record in the 100-meter dash. On July 6, 1912,
the American sprinter Donald Lippincott covered the distance in 10.6 sec-
onds. On September 14, 2002, in Paris, American athlete Tim Mont-
gomery lowered the world record to 9.78 seconds. The world record had
improved by 7.8 percent over a period of ninety years. During about the
same period, the upper bound for the packing density decreased from 0.883
by 14.2 percent.8

The lower bound for three dimensions needed no development, because
it was known since Gauss’s times that the best packing would have to have
a density of at least 74.05 percent.

I must add a significant postscript to this chapter. In his second paper,
Muder reported a momentous news item. A professor at Berkeley, Wu-Yi
Hsiang, claimed to have proved Kepler’s conjecture. In the bibliography,
Muder cited a preprint by Hsiang from the previous year, “On the sphere
packing problem and the proof of Kepler’s conjecture.” That was a real
bombshell. While worthy mathematicians were fiddling with chain saws,
kitchen knives, and scalpels, just to find better bounds, a professor on the
West Coast had quietly made all these efforts superfluous. After 381 years
Kepler’s conjecture had finally been solved. Or had it? Muder had some
doubts about the veracity of Hsiang’s assertion. He expressed them in a caveat
to his readers: “As of this writing, the status of [this claim] is unresolved.”

8 I limited the discussion to three dimensions in this chapter. However, some of the
work that was discussed includes results that also apply to upper bounds in higher
dimensions. I mentioned in chapter 4 that in 1905 Minkowski showed that the Rie-
mann Zeta function provides an appropriate lower bound for higher dimensions.
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Right Angles for Round Spaces

In the late 1980s a new player appeared on the scene. It was Thomas Hales,
an assistant professor of mathematics at the University of Michigan. Hales

had impeccable academic credentials: B.A. and M.A. degrees from Stanford,
a year at Cambridge University in England, and a Ph.D. from Princeton
University. At Cambridge he sat, with distinction, for the Part III Tripos, an
exam named after the three-legged stool on which the student traditionally
sat when he was questioned. At Princeton he was awarded the Harold W.
Dodds Honorific Fellowship. Teaching posts at Harvard and at the Univer-
sity of Chicago followed, interspersed with research appointments at the
Institute of Advanced Studies at Princeton and the Centre National de
Recherche in France. Since 1993 Hales has been on the mathematics faculty
of the University of Michigan.

Hales heard about Kepler’s conjecture for the first time in the autumn 
of 1982, in a course taught by John Conway at Cambridge. In 1988 he
encountered the conjecture again. He taught an elementary undergraduate
course in geometry at Harvard, and the textbook he used mentioned the
problem. This is when he started thinking about it seriously. He started
developing a strategy that he thought would lead to a proof. He had just got
into high gear with his grand design when disaster struck. It was 1991, and
he had been thinking about his scheme for the past three years, when a col-
league informed him that a professor on the West Coast had found a proof
of Kepler’s conjecture. The information was not yet official since no paper
to that effect had appeared in a respected journal, the seal of quality and the
hallmark of scientific achievement, but various preprints were floating
around the mathematics community. One of these preprints was mentioned
by Doug Muder in his upper-bound paper. Finally, in 1993, the Interna-
tional Journal of Mathematics published “On the sphere packing problem and
the proof of Kepler’s conjecture,” by Wu-Yi Hsiang of the University of
California at Berkeley.
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Predictably, for Hales the news went down like a lead balloon. Here he
was, laboring away on a grand plan to prove a conjecture that nobody had
been able to prove for the last 380 years when all of a sudden someone
appears out of the blue and manages to snatch away victory. Couldn’t Hsiang
have waited a few years? Then priority would have been Hales’s, and any
other proof would appear under the also-rans. Of course, the genuine intel-
lectual, the scientist solely concerned with furthering human knowledge,
would not mind who gets priority, as long as a truth has been established.
But human nature is different and such a scientist does not exist, at least these
days, where notoriety, fame, and reputation count for just about everything.
Hales did not want to believe it, but when the newspapers got wind of the
story and made a big deal out of it, it dawned on him that the news might
be true. What must have really got to him was the media hyperbole that
greeted the feat. The 1992 Yearbook of the Encyclopedia Britannica called the
feat “without doubt the mathematical event of 1991.” Science wrote on
March 1, 1991, that a professor at Berkeley had picked “the oldest, hardest
unsolved problem. The second thing he did was solve it.” And Discover
gushed in its January 1992 issue that a math professor with a flexible mind
“knocked off a proof ” that it hailed as “one of the most remarkable achieve-
ments in the history of mathematics.”

Despite Hales’s disappointment, he still had reason to believe that not all
his travails had been for naught. A false claim had been made before. No less
a figure than Buckminster Fuller had previously claimed to have proven
Kepler’s conjecture, only to have done nothing of the sort. Bucky, as he was
affectionately called by everyone, was the architect who lent his name to the
Buckyballs, or Fullerenes, molecules that are shaped like his best-known
invention, the geodesic dome.

The geodesic dome is a structure that maximizes space and uses building
materials most efficiently. Mathematically speaking, a sphere maximizes vol-
ume while, at the same time, it minimizes surface.1 But since it is difficult to
build round walls and ceilings, Bucky designed a polyhedron that approxi-
mates a sphere. The geodesic dome uses only straight-line segments, but
from afar it looks like a sphere. The advantages of the dome are too numer-
ous to list. Suffice it to say that a U.S. infantry general remarked during the
Korean War that the geodesic dome was the only real advance in mobile
shelters since the tent had been invented a few millennia ago. Bucky’s domes
were the most useful gadget for survivalists since the Swiss army knife. There
is only one small blemish: Bucky wasn’t the first person to invent it. A cer-
tain Dr. Walter Bauersfeld was. He built a lightweight round structure made
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up of polygons for the famous Zeiss Optical Works in Germany in 1922.
The edifice was used as a planetarium on the roof of the factory, and people
traveled from far away to catch a glimpse of it. Bucky was simply the first
man to get a patent for the dome, exploit it commercially, and do a song and
dance about it. And while we’re at it, let’s also mention that the Inuit built
their igloos long before anybody had ever heard of either Dr. Bauersfeld or
Buckminster Fuller. So much for American innovation.

But Bucky was not content to be an architect; he also considered himself
a mathematician. One of his claims was that he had proved Kepler’s con-
jecture. The proof was contained, so he asserted, in his magnum opus, the
two-volume Synergetics (1975 and 1979). In fact, sphere packings are at the
heart of Synergetics. References to it are scattered throughout the books.
Bucky was very concerned with the densest packing of spheres, since it
provided a prime example of stability and equilibrium. To Bucky, the archi-
tect, these two features were of overall importance. After all, who wants a
house that falls down? Fuller called Kepler’s arrangement of spheres, FCC
and HCP, the “isotropic vector matrix,” or “isomatrix” for short. In other
places it is called a “vector equilibrium,” or octet truss or cuboctahedron.
All terms but the last one are of Bucky’s invention. One should always be
suspicious when an author tries to repackage old ideas by inventing new
words. It is often a sign of forced originality when true innovation is lack-
ing. But even though Bucky did not add anything uniquely new to Kepler’s
problem, he was nothing if not original.

In Synergetics Bucky launches into a long-winded discussion of how
spheres arrange themselves in space if they are left to their own design, that is,
to gravity. One sphere on its own serves no purpose because there is no one
there to observe it. So a second sphere must be added to the universe, and
from that moment on gravity comes into play. The two spheres are attracted
to each other. Bucky maintains that two spheres, left to their own devices,
will swirl around for a while until—under the influence of gravitation—they
eventually knock into each other and arrange themselves in the form of a
dumbbell without a handle. At this point a third sphere is added to the uni-
verse. After it has done its swirling around, it will dock onto the dumbbell
right in the sweet spot, the crevice between the two first spheres. If it docks
anywhere else, gravitation will immediately pull it towards the crevice. Only
then is the ménage-à-trois stable. To top things off, add a fourth ball. After
having done its share of whirling, swirling, and zooming around, it will auto-
matically land in the nest created by the first three spheres. If it happens to
land on one of the balls instead, gravity will soon make it roll into the nest.
So there you have it: the four spheres have arranged themselves into a tetra-
hedron.
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With five balls swirling around in the universe, another configuration is
possible. First two pairs of spheres arrange themselves in two dumbbells and
dock next to each other, thus forming a perfect square. This square is unsta-
ble, except that at precisely that moment a fifth ball drops into the nest in
the middle. We now have a stable pyramid or, looked at in another way, half
an octahedron. When the sixth ball comes swirling by, it will land in the
nest on the opposite side, and a full octahedron will have formed.

Only when spheres are arranged in tetrahedra or octahedra are they at
rest. Any other configuration is unstable. Bucky maintained that under the
influence of gravity, balls would twitch, fidget, and wiggle until they settle
in comfortable resting places, forming a tetrahedron or an octahedron.

Once we have reached this stage, everything else is easy. Release more
and more spheres into the universe and let them swirl around. One after
another they will land in the nests created by the previous spheres, thereby
building up a larger and larger configuration. The result is a so-called
cuboctahedron, or isomatrix, that grows thicker with every layer of balls.
The first layer (after the “nucleus” in the middle) contains twelve balls, the
next forty-two, the one after that ninety-two, and so on. The nth layer
contains 10n2 + 2 spheres.

Looking closely at this cuboctahedron, one notes that not only the
nucleus is surrounded by twelve spheres. Each sphere on its own is also sur-
rounded by a dozen others. So there you have it: the FCC. In Bucky’s
words: “Being omnidirectionally equally interspaced from one another, this
omni-intertriangulation produced the isotropic matrix of foci for omni-
closest-packed sphere centers.” Couldn’t have put it better ourselves.

So what has Bucky done to prove Kepler’s conjecture? In one short word:
nothing. His “proof ” was just a description of the face-centered cubic pack-
ing, albeit a very idiosyncratic one. Swirling balls—left to their own design
and solely under the influence of gravitation—like to arrange themselves
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neatly into a cuboctahedron. So? The configuration is stable, we’ll admit to
that. But does that imply that it is the densest packing? Not by any stretch of
the imagination! Bucky’s musings were certainly not a proof of Kepler’s
conjecture.

Wu-Yi Hsiang was the newfound darling of the scientific press. He
received his B.A. from the National Taiwan University in 1959 and then
completed two years of mandatory military service. Since there were no
graduate schools in his native country, in the 1960s he went to Princeton
where he got his Ph.D. in 1964. In 1968, during the heyday of the flower
power revolution, he became professor at the University of California at
Berkeley, the focal point of the Woodstock generation. San Francisco and
Haight-Ashbury were just a stone’s throw away, anti-Vietnam protests were
the order of the day, and kids with flowers in their hair experimented with
alternative lifestyles. Hsiang stayed at Berkeley for nearly thirty years; in
1997 he left the West Coast to answer a call from the Hong Kong Univer-
sity of Science and Technology. Wu-Yi’s brother, Wu-Chung, is also a dis-
tinguished professor of mathematics at Princeton.

Hsiang’s main research interests were transformation groups, global dif-
ferential geometry, classical geometry, and celestial mechanics. Hsiang is an
inspiring educator who took his teaching duties at Berkeley very seriously.
One semester he announced a course on classical geometry. In order to get
his students interested in the subject, he sought an interesting application of
the theoretical concepts and hit upon Kepler’s conjecture. Once he started
thinking about the problem, it would not let him go.

He began to fiddle around with the conjecture, and after months of
wrestling with the problem he was satisfied that he had, in fact, succeeded
in proving it. Not only that, but at the same time he also achieved a proof
for the dodecahedral conjecture, the remnant of Fejes-Tóth’s failed attempt
to prove Kepler’s conjecture. He had killed two birds with one stroke—or
so he believed.

How had he done it? Earlier attempts to prove Kepler’s conjecture, for
example Fejes-Tóth’s foray in the 1940s, compared wasted space in differ-
ent packing arrangements, that is, the combined volume of all the gaps that
were left between the spheres in that arrangement. Then mathematicians
would vary the packing arrangement a bit and check whether the wasted
space became larger or smaller.

But that was easier said than done. The accepted method to compute
wasted space was to subdivide the whole space into many-sided cells, the 
V-cells. Each of them contains one sphere and some wasted space. The
shape of the V-cells is determined according to which packing arrangement
is used and, accordingly, the wasted space also varies. Loose packings imply
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large cells with lots of wasted space, dense packings use small cells with less
space wasted. The key to the proof—so it was thought—was to compute
the wasted space in each packing arrangement.

The tools were provided by convex polyhedral theory. In this theory, cells
are divided into simpler shapes (polyhedra) and then the wasted space is cal-
culated in each of these polyhedra. But mathematicians who tried their hand
at it soon found out that this approach led nowhere. Hsiang decided that
something different was needed.

Up to that time, mathematicians had used Cartesian coordinates in their
attempts to prove Kepler’s conjecture. Cartesian coordinates were invented
by, and are named after, René Descartes, the seventeenth-century philoso-
pher and mathematician. They work as follows: in a two-dimensional plane,
the position of a point can be characterized by stating its distance from some
origin in each of two directions. It is like a pirate’s map, which indicates that
Captain Crook’s hidden fortune is buried 60 meters to the east and 80 meters
to the north of the Big Oak Tree. These indications leave no doubt as to the
whereabouts of the hidden fortune, and if the chest hasn’t been dug up before
then the treasure hunter would have no trouble finding it.2 So 60 meters east
and 80 meters north are the Cartesian coordinates of the treasure chest.

The Cartesian coordinate system, which is the basis of Euclidean geom-
etry, is inherently rectilinear: right angles and straight lines, horizontal and
vertical, form its basis. The problem with the Cartesian system for Kepler’s
conjecture is that spheres, and the wasted space hugging them, is inherently
curved. In Hsiang’s words: “Spheres—the most symmetric bodies—are per-
fectly round in shape, while the whole space is basically rectilinear in nature.
Since roundness and rectilinearity clearly cannot fit together very well, there
always exists a considerable amount of unfilled interstices for any sphere
packings.”3 Hsiang decided to try his luck with something different: spheri-
cal coordinates.

Spherical coordinates also need an origin, but instead of specifying two
directions the new system makes do with just one, for example, the north.
The position of a point in the plane is then defined by again specifying two
numbers: the direction and the distance from the origin. We could say that a
point lies 100 meters northeast of the origin.4 Hsiang thought that spherical
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geometry would be the fundamental tool in solving Kepler’s conjecture, and
that it would be better able to deal with the problem.

One of the advantages of spherical coordinates can be seen in the fol-
lowing example. A treasure hunter using a Cartesian map and starting from
the Big Oak Tree would walk 60 meters to the right, make a left turn, and
walk another 80 meters to reach the point where the chest is buried. A trea-
sure hunter using a spherical map, on the other hand, would walk 100
meters in the 31° direction. Both would get to the same point, but the
spherical walker would already be busy digging for the chest by the time the
Cartesian walker arrived.

Some people, for example Arthur L. Loeb, the chemist/physicist/
choreographer-turned-professor of design science from the Department of
Visual and Environmental Studies at Harvard University, argue that spheri-
cal coordinates are more natural than Cartesian coordinates since 90° angles
usually do not appear in nature. Like Buckminster Fuller, Loeb maintains
that right angles, squares, and cubes are simply artifacts of architects, math-
ematicians, and modern artists. In his freshman seminars on Structure in
Science and Art, he encourages students to explore space by emphasizing
natural structure. He asks them to avoid right angles, which do not prevail
in the art of people in closer touch with nature. This, by the way, is why the
huts of African tribes and the Inuit’s igloos are usually round.5

Let us return to Kepler’s conjecture. A sphere packing consists of balls that
either touch each other, or that are close but do not quite touch. The first
thing Hsiang did was to delineate a tight polyhedron around each sphere and
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check how much of its volume stays empty. If two spheres touch, the face of
the polyhedron contains the point of contact. If two spheres are close but do
not touch, the face of the polyhedron runs through the middle of the empty
space that is left in between. We recognize the familiar V-cells. In the first case
the ball reaches all the way to the face of the polyhedron. In the second case,
some space is contained between the sphere and the polyhedron’s face.
Hsiang called this space a slab.

Hsiang’s approach consisted in classifying the interstices—the nooks and
crannies nestled between the spheres—into two categories: the peripheral
interstices, which consist of the slabs, and the core interstices, which contain
everything else. Since the slabs are box-like shapes, with angles and straight
edges, the volume of the peripheral part can be computed with Cartesian
coordinates. That proved to be the easy part. The core interstices, which
contain the wasted space that arches around the spheres, are curved. The
determination of their volume requires more sophisticated tools, and this is
where spherical geometry came in handy. First Hsiang subdivided the core
part into subpolyhedra, using the faces of the V-cell as bases. Then he de-
rived formulas for their volumes. The lower limit of the slabs’ volumes pro-
vides the upper limit for the density.

Next, he examined how many spheres could approach a central ball. On
the one hand, space will be overcrowded if the number of balls is thirteen
or more, while, on the other hand, a considerable amount of gaps will be
left between the balls if their number is twelve or less. Hsiang sought to
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understand overcrowdedness in the former, while studying the geometry of
non-touchingness in the latter.6

Up to this point Hsiang’s proof only considered local density. By local,
Hsiang meant a configuration that consisted of the central sphere, its neigh-
bors, and the neighbors’ neighbors. This he called the “double layer local
packing.” The double layer local packing of Kepler’s proposed configura-
tion, for example, consisted of the central sphere, the twelve immediate
neighbors, and the forty-four neighbors of the twelve immediate neighbors
(a total of fifty-seven spheres).7 The double layer approach allowed Hsiang
to compute local density. But how can these computations be extended to
the third, fourth, and further layers? In simply adding all wasted spaces,
without taking account of the fact that some of them are common to more
than one neighborhood, one would be guilty of double counting, and
would overstate the wasted space.

So Hsiang was faced with a problem:How would the calculations, which
only examine local neighborhoods, be extended to infinite space? Eventu-
ally he saw a way out. While local density cannot be a proxy for global den-
sity, the average of the local densities can. Hsiang then showed that “the
average local densities cannot be greater than 74.05%.” To prove that no
arrangement can be tighter, he examined different types of packings, one
by one. First he looked at configurations that can be formed by a central
ball, surrounded by at most twelve close neighbors. Then he examined
configurations with thirteen or more close neighbors.8 In each of these
cases he proved that his contention was true. From this he drew the general
conclusion, that no packing arrangements exist with local densities greater
than 74.05 percent. Since this is exactly the density of the face-centered
cubic, this statement implies that Kepler’s packing is the tightest possible.

Hsiang was elated. After nearly four centuries, he was the first man to
provide the proof of one of the oldest unsolved problems in mathematics.
He traveled the continents, attending workshops and giving lectures on his
proof. Everybody was very excited. But gradually doubts arose: Hsiang
glossed over the nitty-gritty of his proof, and his presentations did not con-
tain sufficient detail, so nobody could quite follow them. Nevertheless, his
talks were always vague enough to be plausible. Finally, in the summer of
1990, Hsiang sent out preprints of his proof to colleagues around the world.
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The distribution of working papers and preprints represents a convenient
way to share not-quite-finished work with colleagues in order to get their
feedback and, equally important, to establish priority. Sometimes preprints
contain work that has been accepted for publication, but—given certain
journals’ backlog—may not see the light of day for many more months. At
other times working papers consist of unfinished work, usually marked
“not for quotation,” that is sent to everyone on the author’s mailing list in
the hope of receiving some feedback. Hsiang made ample use of the latter
method and was soon bombarded with requests for clarifications on points
that had been left obscure. He soon realized, or was told by colleagues, that
the preprint contained shortcomings, and in the following months Hsiang
issued revisions of the preprints and revisions of the revisions.

But his colleagues were not happy with Hsiang’s stopgap manner and
soon people began to ask questions. The professor got exceedingly frustrated
with the persistent inquiries by mathematicians who, in his mind, didn’t
quite understand as much about geometry as he did. Finally he decided 
that enough was enough and that his result should be officially presented to
the world of mathematicians. On November 17, 1992, he submitted the
hundred-page proof to the International Journal of Mathematics.

Publication in a respectable journal is generally considered the seal of
approval, and Hsiang hoped that this would stop the muttering. Neverthe-
less, Science cautioned that his work must still be checked by the mathemat-
ics community, and that the 400-year-old quest would only be over “if his
proof holds up under the [mathematicians’] gaze.” And Discover hedged its
characterization of the proof as one of the most remarkable achievements
in the history of mathematics with the caution, “if it holds up.”

For Hsiang it was very convenient that the International Journal of Mathe-
matics was edited by colleagues from the Berkeley mathematics department.
His acquaintance with the editors would undoubtedly speed up the refer-
eeing and publishing process.

As Hsiang had hoped, his paper got a quick and sympathetic reading.
But the editors did not want to give the impression that they had accepted
a colleague’s paper without checking it for rigor and completeness, and
asked for a revision. On March 9, 1993, Hsiang submitted a revised version
and it was duly accepted.

Allow me an aside about the refereeing process in professional journals.
Once a manuscript has landed on an editor’s desk, it takes some time to
decide on the referees, and then the paper is sent out to them. If the chosen
referees are not on sabbatical somewhere, a fact of which the editor may
become aware only after not having received any response for a few months,
the refereeing process can begin. But this is just the beginning. Any self-
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respecting professor considers himself far too busy with his own research,
conferences, and administrative duties (let alone teaching) to find the time to
do the refereeing. So he or she first sits on the paper for a couple of months.
Then the paper may undergo a preliminary leaf-through. Finally the referee
finds the time to read it thoroughly and write a report together with a rec-
ommendation to the editor. By that time, five, six, ten, or even more months
may have passed. The editor then may take another month or two to make
a decision. The net result is that a year’s wait is nothing unusual. And the
whole process may start over if a revision is needed.

The reader may note that the time between the submissions of Hsiang’s
original paper and the revised version was less than sixteen weeks! Obvi-
ously four months is an inordinately short time for one or more referees to
check a ground-breaking, extremely bulky paper and write a report; for the
editor to make an initial decision and send it to the author; for the author
to revise the paper along the suggested lines; and finally for the editor to
check and accept the revised version.

Doubts about the seriousness of the refereeing process seemed more than
called for. Doug Muder, the upper bound man, was prompted to comment
that the Journal’s refereeing process had obviously not worked as it was sup-
posed to. “Hsiang’s paper was not adequately refereed, if it was refereed at
all. The fact that the Journal is edited by Hsiang’s Berkeley colleagues lends
an air of cronyism to the story. It seems clear that Hsiang chose the Interna-
tional Journal because it was edited by his friends.”

The fact that the refereeing process was flawed does not necessarily mean
that the paper was wrong. It could still contain a valid proof of Kepler’s
conjecture. But it didn’t. And it did not take long for the fallout to hit
Berkeley. The first experts soon expressed reservations about Hsiang’s
proof, and the full extent of its shortcomings became apparent soon after.
Gábor Fejes-Tóth of the Hungarian Academy of Sciences, son of Laszlo
and himself a mathematician of note, made an assessment for Mathematical
Reviews, a journal that reports on the correctness and importance of articles
from the hundreds of mathematics journals around the world. He wrote,
“many of the key statements have no acceptable proof,” and continued,
“this cannot be considered a proof. The problem is still open.” He con-
cluded with a resounding denunciation. “If I am asked if the paper fulfills
what it promises in its title, namely a proof of Kepler’s conjecture, my
answer is: no.” In 1997 Károly Bezdek, a colleague of Hsiang’s from Eötvös
University in Budapest, wrote that “Kepler’s conjecture . . . [is] still un-
proven. [Hsiang’s] work is far from being complete and correct in all details.”
Thomas Hales agreed: “This problem is still unsolved. I haven’t solved it.
Hsiang hasn’t solved it. Nobody else has solved it as far as I know.”
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Bezdek spent more than a year working with Hsiang in an attempt to fill
in the gaps. In the end he gave up. The proof was simply wrong. Bezdek
submitted a paper to the Journal detailing a counterexample to one of
Hsiang’s central claims. This time the editors took their time. They were in
no hurry to publish a counterexample to the Journal’s most publicized paper
in many years. Only after some delay was Bezdek’s paper accepted and pub-
lished in the International Journal of Mathematics, in 1997.

By and by, the deficiencies of Hsiang’s proof became apparent and were
roundly criticized in workshops, at conferences, during afternoon teas in
mathematical departments around the world, and in private conversations
by almost everybody who was anybody. Soon the mathematical community
was nearly unanimous—Hsiang’s proof was not what it claimed to be. A
letter from Doug Muder to Barry Ciapra, the writer for Science, put it suc-
cinctly: “1. Hsiang’s paper . . . is not a proof of the Kepler conjecture. At
best it is a sketch (a 100 page sketch!) of how such a proof might go. 2. Even
as a sketch the paper is inadequate, since counter-examples have been found
to several of its steps. 3. Hsiang’s related claim to have proved the Dodeca-
hedron conjecture . . . is equally baseless. 4. Work on the Kepler conjecture
and the Dodecahedron conjecture should continue as if Hsiang’s paper had
never existed.” In the ivory towers of academia vicious battles are not
uncommon. But Muder’s comments used strong language indeed.9

Given the stringent laws of mathematics, we would have expected the
members of the profession to agree on whether a statement or a collec-
tion of statements from which a proof is deduced is true or not. After all,
mathematics—unlike the justice system—needs no interpretation of facts.
It is an exact science, and feelings or prejudices play no role in deciding
whether a proof is true or false. This is also not medical research, wherein
patient records could be falsified and scientific results doctored. Every-
thing is out in the open and everybody versed in the language of mathe-
matics should be able to see for himself or herself whether a proof is
correct and a statement is true.

But mathematics is not quite value-free, after all, and interpretation may
still play a role, if only for a while. After sufficient time has passed for the
experts to scrutinize every single step of a proposed proof, the community
of mathematicians decides, by majority if not by consensus, whether a paper
should be considered correct. In the case of Hsiang vs. Kepler’s conjecture,
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the jury soon came back with a verdict: guilty! Hales could breathe a sigh of
relief. He was still ahead.

What did the jury find? John Conway, Tom Hales, Doug Muder, and
Neil Sloane announced in a letter to the Mathematical Intelligencer that they
had objections to Hsiang’s proof, and that Hales would describe the alleged
holes in a forthcoming article. The Mathematical Intelligencer is a widely read
publication with information, news, and historical tidbits about mathemat-
ics and mathematicians. It is not a peer-reviewed journal, and articles that
appear there may contain opinion pieces that do not reflect the beliefs of
anyone but the authors.

Before setting out on his debunking article, Hales wrote letters to
Hsiang asking for clarifications on some subtle points. He didn’t get clear
answers. Worse still, Hsiang resorted to insults. “Your letter made me
realize that I cannot assume that the average mathematician knows too
much about elementary spherical geometry,” he wrote. To claim that the
Stanford-, Cambridge-, and Princeton-educated Hales was an average
mathematician who knew little about elementary geometry was a bit low.
Hales was quick to counter, and reprimanded Hsiang for his habit of giv-
ing proofs by handwaving: “Students who resort to such tactics jeopardize
their grade-point average. For a professional, it is hardly imaginable.”
This did not sit well with Hsiang. In a rejoinder, published in a subse-
quent issue of the Mathematical Intelligencer, Hsiang wrote that “a fake
counterexample . . . [is] manufactured, . . . easily provable statements are
tortured into fallacious statements,” and that Hales & Co. sometimes take
refuge in “outright misrepresentation . . . to explain away their own mis-
understandings.” That is it, then: Hsiang regards Hales as rather less than
an average mathematician; Hales considers Hsiang as being less capable
than an average student. Not often did the venerable pages of the Mathe-
matical Intelligencer carry such a barrage of verbal fire.

Mathematicians considered Hsiang’s rejoinder inadequate; it could not
cover up the proof ’s deficiencies. But Hales was not willing to waste fur-
ther time poking additional holes into his colleagues’ paper. Debunking
Hsiang’s rejoinder would continue a never-ending cycle that he simply did
not have time for. As things stood, he would not be able to convince
Hsiang anyway, and so he just dropped the matter.

What was the problem? In the New Scientist, in 1992, Ian Stewart of
Warwick University cites two problematic statements that Hsiang had
made in his preprints. Both of them are hair-raising. In one example,
Hsiang allegedly stated that the surface of one triangle is larger than the
surface of another triangle if its edges are longer. While this is true for
equilateral triangles, a picture easily convinces the reader that it is clearly
incorrect as a general statement about all triangles. All edges of Triangle A
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are longer than the edges of Triangle B. Nevertheless, the surface of Tri-
angle B is greater.

A counterexample suffices to disprove a statement, so one incorrect link
in a chain of arguments invalidates any mathematical paper. The situation is
similar to one in a court of law as was brought home by the lawyers in the
murder trial of O. J. Simpson. Even though much of the evidence pointed
to Simpson’s guilt, doubt on just one item in the chain of evidence sufficed
to allow the jury to declare the former football star innocent of the murder
of his ex-wife. A mathematical proof is no different.

But there is more. According to Hales and Stewart, Hsiang claimed that
if a number of objects cannot be contained within a certain region, then a
smaller region can not contain them either. Again this is not true. A glance
at the picture shows that two circles cannot be placed into a square of sur-
face 9, while a rectangle of surface 8 is able to contain them. Did Hsiang,
an accomplished mathematician by all accounts, really make such foolish
errors? In his rejoinder to Hales’s broadside, Hsiang denied he used such
defective arguments in his proof. He claimed that Hales, Stewart, and all
other critics attributed fallacious statements to him. In the published version
of the proof these errors, in fact, no longer appear. But in the preprint they
did, and even though Hsiang eventually managed to patch up some of the
errors, his credibility in the mathematics community was badly tarnished.
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Should a mathematical paper depend on the reputation of the author
instead of being judged on its merit? It should not, and let’s not belittle the
published paper because of the deficient preprints. But as turns out, the pub-
lished version of the proof also contained numerous errors, fallacies, and
gaps. More than once Hsiang used a dubious trick, which Hales disparag-
ingly called “critical case analysis.” A general statement was reduced to a few
critical cases. Hsiang proved the statement for the critical cases and then
bombastically—and without proof—claimed that the statement is correct
for all cases. This is quite inadmissible. Furthermore, the paper is replete with
phrases like “it is quite easy to show,” “it suffices to consider,” or “the same
method will imply the general case.” Well, it usually was not easy to show, 
it did not suffice to consider, and the same method did not imply the gen-
eral case.

At some point in his proof, Hsiang derived a lower bound for something
he called the “uniform buckling height.” The numerical value of this
bound turned out to be 0.0316. The estimate Hsiang needed, however, was
0.0250 for all, not just for the uniform, buckling heights. No problem:
“Since 0.0316 is more than 25% larger than 0.0250, [this] also implies the
lower bound of 0.0250 . . . in the non-uniform case.” That really takes the
biscuit! Just because one object is much larger than a certain numerical
value does not mean that another object is also larger than this value. Hales
compared Hsiang’s assertion to the following ridiculous statement: “If the
foothills, which we see, are no more than 1,000 feet, then the mountain
peak, hidden by the clouds, cannot be more than 1,250 feet.”

Hsiang himself remained unconvinced. He was well aware of the coun-
terexamples, and of the fact that his claims were not believed by the experts
in the field. Nevertheless, he considered the whole hullabaloo about his
paper to be no more than a discussion about how much detail must be
included in the published proof. One is reminded a bit of a childish game
of one-upmanship. If I gloss over a few steps in the proof, and you get lost,
then I must be much smarter than you are. If I state that the truth of a state-
ment “can easily be seen,” and you don’t see it, then you obviously do not
measure up to my high standards. Hsiang glossed over too many steps, and
declared too often that part of an argument can easily be seen. Paraphrasing
Abraham Lincoln: one can fool some mathematicians some of the time, but
one can’t fool all mathematicians all of the time.

According to John Conway, nobody who read Hsiang’s proof has any
doubts about its validity: the paper is nonsense. With this he did not mean
Buckminster Fuller’s kind of nonsense, but nonsense all the same. Hales was
a bit more diplomatic. He was prepared to admit that despite its shortcom-
ings there was much of value in Hsiang’s paper, but that he destroyed the

154 K E P L E R ’ S  C O N J E C T U R E



credibility of his own work in trying to present experimental hypotheses as
if they were facts. Mathematicians, Hales claimed, can easily spot the dif-
ference between handwaving and proof. Eventually, Hsiang’s proof was
declared dead, and quietly carried to its grave. It would have been nice to
have had an elegant, analytical proof that used nothing more than well-
known tools from spherical geometry, vector algebra, and calculus. But for
the time being, it was not to be.

In spite of all the flak, Hsiang remains to this day deeply convinced of his
proof ’s correctness. And one cannot simply discount his generally brilliant
geometric ideas and insights. Colleagues recount that Hsiang is sometimes
able to see more in a simple sketch than others are able to discover in a whole
picture book. Everything he writes inspires those around him. Unfortu-
nately, much of it is incomplete and not correct in all details. Furthermore,
Hsiang seems genuinely unable to understand why his colleagues are often
dissatisfied. His mind lives in another world and he is often not responsive to
doubt and criticism. In science this can be disastrous.

Maybe Hsiang’s proof will be cleaned up one day. Initially, even Conway
seemed to believe it could. Then, on seeing Hsiang’s intransigence, every-
one gave up. Most troubling is the fact that while some of the building
blocks that make up Hsiang’s “proof” may eventually be proven, others are
factually wrong. Nevertheless, Bezdek felt that “a combination of Fejes-
Tóth’s and Hsiang’s strategies with some other methods might work.” But,
he added, “one needs further combinatorial and analytic ideas in order to
have a proof.” What was already clear, however, was that it would take
more than just a little cleaning up.

Recently, Hsiang made another attempt to rehabilitate his proof. He had
come to realize that at the very least his paper was lacking in detail. To fill
in the holes he published a book in December 2001 with World Scientific
entitled Least Action Principle of Crystal Formation of Dense Packing Type and
Kepler’s Conjecture.10 The publisher’s advertisement heaped praise on it:
“This important book provides a self-contained proof of [Kepler’s conjec-
ture], using vector algebra and spherical geometry as the main tech-
niques . . . in the tradition of classical geometry.” Whether the work will
live up to the publisher’s expectations remains to be seen. Close scrutiny by
a multitude of mathematicians will be required to ascertain whether the
gaps have been filled. One noteworthy detail: the work of Tom Hales is not
mentioned once.
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10 Hsiang feels that the optimal finite packing (as opposed to Kepler’s infinite packing)
is actually more useful for the understanding of nature.
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Wobbly Balls and Hybrid Stars

The Hungarian professor and mathematician Laszlo Fejes-Tóth solved
the packing problem in two dimensions in 1940 and then turned his

attention to the three-dimensional problem. There, however, his luck ran
out. As described in chapter 9, his attempt to establish a new upper bound
ended in total failure. Subsequently, his futile endeavor went into history as
the dodecahedral conjecture.

Fejes-Tóth believed that nature has a tendency to organize its building
blocks into regular structures. Nature’s inclination towards efficiency (for
example, by minimizing a volume or maximizing a density) should auto-
matically bring about regularity: maximize density and what you find is a
regular lattice. Put another way, regularity in nature is usually brought about
by some efficiency principle: scratch a regular structure, and an efficiency
problem is hidden somewhere. Thus order arises out of chaos. Fejes-Tóth’s
deeply held beliefs anticipated the notions of chaos and self-organization
dozens of years before they became fashionable. A case in point would be
Kepler’s sphere arrangement. Taken on their own, the cells that make up
Kepler’s arrangement are not the densest at all. But they tile space in a reg-
ular fashion, on a lattice, and thus should represent the densest global arrange-
ment. Fejes-Tóth’s ideas are in general thought-provoking, but without a
formal proof they sound much like the unsupported speculations of his con-
temporary, Buckminster Fuller.

Undaunted by his failure with the dodecahedral conjecture, Fejes-Tóth
returned to sphere packings time and time again. In 1953 he wrote a book
in German entitled Lagerungen in der Ebene, auf der Kugel und im Raum (Pack-
ings in the plane, on the sphere and in space). It summarized everything
that was known about the subject at that time. The book’s last chapter was
devoted to packings in three-dimensional space. Fejes-Tóth could not stop
himself from repeating the claim he had made ten years earlier, that no
sphere packing could be denser than 75.46 percent. He knew, of course,
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that the evidence he had offered in support of the dodecahedral conjecture
was lacking. But this did not keep him from presenting the “not quite
exact, but from a certain point of view nevertheless rather satisfying proof.”
It is not clear which point of view Fejes-Tóth had in mind, but obviously
no such thing as a “not quite exact proof ” exists.

Fejes-Tóth then suggested a two-stage proof for Kepler’s conjecture. The
first stage would consist of dividing space into Voronoi cells. (Recall that 
a sphere packing’s V-cells are polyhedra whose walls run exactly halfway
between two neighboring spheres.) The next stage would consist of the
search for cells with the smallest volume. The regular dodecahedron would
have been a good candidate. It is small all right. But as a V-cell it is quite use-
less, since it cannot be built into a gap-free packing of the entire space. So the
question arises: What is the purpose of examining a V-cell? One may happen
upon a good candidate, only to find out that it cannot tile space. Then, in
order to fill the invariable gaps, neighboring V-cells must be of different
shapes. But when gluing differently shaped cells together a small V-cell is usu-
ally surrounded by large, loosely fitting V-cells. The unused volume of the
loose neighbors wipes out the advantage of the tight fit in the center. This is
what happens with the regular dodecahedron.

When Fejes-Tóth became aware of this, he realized that he had been fol-
lowing the wrong approach. To examine V-cells on their own is too short-
sighted. The central V-cell must be considered together with its neighbors,
and the neighbors’ neighbors, and the neighbors’ neighbors’ neighbors.
The key to Kepler’s conjecture was the examination of a whole cluster of
spheres simultaneously. Then, instead of considering the volumes of single
cells, the average volume of the cells in the cluster must be computed.

That was the key, but where was the lock? Since there are infinitely
many neighbors, how can the plan amount to anything useful? While pon-
dering this question, Fejes-Tóth had a crucial insight. It should suffice to
analyze finite clusters of balls and to find an upper bound for their packing
density. Then there would be no need to compute the densities of an infi-
nite number of spheres, which is what his predecessors had tried to do.
Specifically, he proposed the following procedure: consider a collection of
balls of unit radius that lie within a larger globe. Let us say that the maxi-
mum number of balls that fit into the globe is N.1 The rest of the procedure
is as simple as counting one, two, three. One, form V-cells around each of
the balls. Two, compute the V-cells’ volumes. Three, identify the densest
cluster composed of at most N balls.

1 An upper limit for the number of balls of radius 1 that fit into a globe of radius R is
R3.



You could think of the cluster as a bunch of grapes. The first task consists
of gift-wrapping each grape in its own little box. Immediately a difficulty
arises: the grapes in the outer layer are not completely encircled by neighbors.
Consequently, the outermost grapes are al fresco, so to speak; some gift boxes
have no exterior walls. Fejes-Tóth’s way around this problem was to envelop
the cluster with an additional layer of balls, which would be like placing the
bunch of grapes into a partially filled container and then covering it with
more grapes. Once a sufficient number of neighbors surround the central
bunch, the outside walls of the gift boxes are identified.

The second task is easy. It involves no more than computing the average
volume of the bunch’s gift boxes. The third, and final task consists of choos-
ing from among all possible bunches with N grapes or less the one whose
gift boxes have the smallest average volume. Having completed these three
tasks, the whole, infinitely large space may be filled up, using any clusters
with up to N grapes. The average density of this global packing can never rise
above the density of the best bunch. In this manner an upper bound for the
packing density would be found.

If this bound turns out to be equal to 74.05 percent, Kepler’s conjecture
would be proven. The FCC and the HCP have exactly that density, and it
would have been shown that no packing exists with a density greater than
that. But what if the bound that has just been found is lower than 74.05
percent? Or if it is higher? Where would that leave us?

The first alternative can be dismissed out of hand: you will never find an
upper bound that is lower than 74.05 percent because we know for sure
that Kepler’s packing achieves this density. But a higher bound is a possibil-
ity. (The dodecahedral conjecture, with a density of 75.46 percent, points
ominously in this direction.) In this case a global packing that is better than
Kepler’s arrangement may possibly exist; it would just not have been found
yet. Therefore, the search must go on. Either the mysterious packing with
the higher density is found, or the upper bound must somehow be lowered.

The chances of finding a packing that is denser than Kepler’s arrange-
ment are extremely slim, so the latter way is the way to proceed. The only
hope of tightening the upper bound is by increasing the size of the clusters.
Let us, therefore, expand our horizon beyond the immediate neighbors of
the middle ball, and include the neighbors’ neighbors and, if need be, the
neighbors’ neighbors’ neighbors. (Of course, one additional layer is always
required in order to determine the gift boxes of the outermost balls.) After
each new layer we seek the cluster with the highest average density. If this
density turns out to be 74.05 percent, we’re done; otherwise we increase
the bunch once more and try again. Et cetera, et cetera, ad nauseam. The
hope is that the upper bound will drop further and further, until it eventu-
ally hits 74.05 percent.
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But where do we begin? Fejes-Tóth suggested starting with clusters of
balls whose centers lie within a distance of 2.0534 of each other. Whence
this magic number? Fejes-Tóth claimed that this is the closest distance at
which thirteen balls can approach a central ball. At any distance less than
that, no more than twelve neighbors can squeeze in.

Why is that? We know that within a distance of 2.0 from the center, the
ball in the middle can have no more than twelve neighbors. Newton already
said so.2 But if the permissible distance is increased to a distance of 2.0534
anything could happen. Maybe thirteen balls could get that close. Or four-
teen. After all, it took two and a half centuries to prove Newton’s kissing
problem, so let’s not take anything for granted. In Fejes-Tóth’s exposition
we look in vain for a proof of the claim. Rather, the professor resorts to the
time-tested method of handwaving. The paragraphs following his initial
statement are replete with phrases such as “it may be assumed,” “most prob-
ably,” “it accords with experience,” “it agrees with intuition,” “presum-
ably,” and “there is no doubt that.”

Who would dare argue with such intimidating proclamations? But coer-
cion is no substitute for proof and Fejes-Tóth seems to have sensed that he
was not being very convincing. So he delved into a long-winded explana-
tion. “It’s not really worth while to actually prove the inequality because it
carries little interest.” Sound persuasive? “The inequality should be consid-
ered a well tested empirical fact.” Nice try, but no, thanks. “Anyway, the
inequality is only used as a rough estimate which will only serve to exclude
special cases.” Fejes-Tóth’s previous rough estimate of 1943, which was
meant to exclude special cases, turned out to be unprovable. “A weaker
inequality also suffices.” It may also suffice, but it is also not proven.

Having made this passionate though not very compelling point, Fejes-
Tóth pressed on without looking back. Limiting his investigations to con-
figurations of spheres whose centers lie within a distance of 2.0534, he made
two crucial assumptions. If these assumptions were true, he wrote, Kepler’s
conjecture would be proved. This time it was okay to make assumptions
since they were used for illustrative purposes only. The first assumption was
that the densest packing would not contain more than twelve neighbors—in
addition to the central ball. Mindful of the above arguments, we can admit
that such a statement may not be totally unreasonable. At least it was explic-
itly used as an assumption and not as a proven fact.

The second assumption was that in the densest packing the balls of the
cluster should not be able to wobble. This assumption also seems reasonable,
since a wobbly ball means that there is too much room left in the V-cell.

2 At a distance of 2.0 the surrounding balls must kiss the central ball. And no more than
twelve balls can do that.
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Unfortunately, reasonableness is no substitute for a proof either. True to
form, Fejes-Tóth again offered none. Instead he resorted to phrases like
“[this cluster] appears to be the most advantageous” and “therefore one may
assume” that this cluster achieves the minimum density. If the two assump-
tions were true, Kepler’s conjecture would be proven: twelve balls arranged
around a central ball in a rigid manner would be the densest cluster, and this
cluster could be extended to infinite space. This is what Kepler had claimed.
But since Fejes-Tóth’s demonstration was based on unsubstantiated assump-
tions, he had not proved anything.

But that wasn’t the point. The point was that for the first time someone
had suggested that Kepler’s problem could be reduced to a finite number of
variables. All one had to do was minimize the average volume of the cells
in the cluster. Fejes-Tóth had a hunch that the number of balls that would
eventually have to be considered simultaneously would be about fifty: one
ball in the center, a dozen neighbors, and close to forty that surround the
twelve neighbors. These forty balls determine the gift boxes of the twelve
neighbors. But the number could be much higher. V-cells have been dis-
covered that have forty-four neighbors.3

Let us assume that Fejes-Tóth was right and that we must consider no
more than about fifty balls. The task would be to find, among all possible
configurations, the one with maximum average density. Since the positions of
fifty balls in three-dimensional space are determined by their 150 coordinates,
the objective would be to maximize a function of 150 variables. Fejes-Tóth

3 And it is not even certain that this number is the maximum number of neighbors pos-
sible. The best upper limit currently known is forty-nine.

V-cell with forty-four neighbors (coordinates in parantheses)

(0 , 2.50 , 2.50)

(1 , 1 , 3.40)

(2.08 , 2.08 , 2.08)



summarized his thoughts with the following words: “We have indicated a
concrete program for the solution of the sphere packing problem. Thus we
have come a step closer to settling the problem.”

But wait a minute. Maximizing a function of 150 variables is no trivial
matter. The classical way to maximize a function consists of differentiating
it with respect to each of the 150 variables, setting each expression equal to
zero, and then solving the system of 150 nonlinear equations simultane-
ously in 150 variables. It would have been a daunting task. Fejes-Tóth fully
realized this, but he remained confident. “Even though an exact treatment
of this minimizing problem seems to be rather difficult, it cannot be con-
sidered hopeless.” Rather difficult? The treatment may not be quite hope-
less, but it is very difficult. Fejes-Tóth had taken a giant step forward by
pulling the problem down from an infinite number of variables to only 150.
But a solution was still light-years away.

Does this place us back at square one? Not quite. In 1965 Fejes-Tóth
wrote another book, entitled Reguläre Figuren (Regular figures). It is a beau-
tiful work about ornaments and mathematics. Stashed away in an envelope
behind the front cover are stereographic images (if they haven’t been stolen
by a previous library user). They can be viewed in three dimensions with a
special pair of eyeglasses that are stashed away in an envelope under the back
cover. Toward the end, Fejes-Tóth returned to Kepler’s conjecture. Most of
what he had written on the subject twelve years earlier was reproduced here,
nearly verbatim. But then Fejes-Tóth added one significant sentence, which
paved the way for future attempts to prove Kepler’s conjecture. “Mindful of
the rapid development of our computers, it is imaginable that the minimum
[of the volume function] may be approximated with great exactitude.”

At that time, computers were still in their infancy. ENIAC (Electronic
Numerical Integrator and Computer), the machine that ushered in the infor-
mation age, had been built at the University of Pennsylvania’s Moore School
of Electrical Engineering less than twenty years earlier. The ENIAC was 30
meters long and 3 meters high. Its nineteen thousand vacuum tubes, fifteen
hundred relays, and hundreds of thousands of resistors, capacitors, and induc-
tors filled an entire room. It weighed 30 tons, and consumed 200 kilowatts of
power. ENIAC generated so much heat that it had to be placed in a room
with an air cooling system. Its speed, however, was truly awesome: ballistic
trajectories that had taken a hand calculator twenty hours to calculate (and
Lagrange’s students twenty days) were computed by the ENIAC in just thirty
seconds.

But speed is a relative term, and a pace that was considered awesome in
1946, and even in 1965, would be regarded as pedestrian today. Forget about
processing speed measured in megahertz and information storage measured
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in gigabytes. In the mid-1960s, electronic computing was still an excruciat-
ingly slow process. ENIAC could complete 5 KIPS (5,000 instructions per
second). The 8088 chip introduced by Intel in 1979 was fifty times faster, at
250 KIPS. The 80486 processor, installed on the most modern PCs of 1989,
was able to process an impressive 20 MIPS (20 million instructions per sec-
ond). Four years later the Pentium chip processed 60 MIPS, and in 1995 the
Pentium Pro was whizzing away at 200 MIPS. In early 1999 IBM launched
the S/390 G6 Mainframe Server, a machine with a processing speed of 1.6
BIPS (1.6 billion instructions per second), and at the end of 2000 Hitachi
announced a server that approached 3 BIPS.

In the mid-1960s, however, when Fejes-Tóth wrote his prophetic
words, most computers still performed at the KIPS level. Even the setup
for a computer run was agonizingly slow. It usually consisted of handing a
stack of punched cards to the operator and hoping for the best. A day later
a tense programmer would trot down to the computation center to find
out whether the program had compiled or, more likely, that a misplaced
comma had thrown the machine off track. Or that a card, instead of hav-
ing been punched, had only been dimpled.4 Then the process would have
to start over again, before one even got to the debugging stage, let alone to
running the program.

But Fejes-Tóth saw far afield. Except for the as-yet undeveloped hard-
ware, the stage was set. Eventually, computers would not only “approximate
the minimum of the volume function with great exactitude,” as Fejes-Tóth
had predicted, but prove Kepler’s conjecture with complete rigor. It was to
take another quarter of a century, however, until someone picked up the
gauntlet. Tom Hales, who was a seven-year-old kid, still playing with Lego
blocks when Regular Figures appeared, would be the man to put computers
to work on Kepler’s conjecture.

Thomas Callister Hales was born in 1958 in San Antonio, Texas, and grew
up in Provo, Utah, a clean, pleasant city, beautifully situated between the
Wasatch Mountains and Utah Lake. His father, Robert Hyrum Hales, was
an ophthalmologist (a profession of some importance to the solution of
Kepler’s conjecture). Hales’s grandfather, Wayne Brockbank Hales, was a
physicist at Brigham Young University (BYU) in Provo. He was to have a
profound influence on Hales’s education.

Wayne B. Hales was born in 1893. In the course of his thesis work at the
University of Chicago, the University of Utah, and the California Institute of

4 A problem that was still with us in the year 2000, as the presidential showdown
between George W. Bush and Al Gore demonstrated.
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Technology, he met and studied under two Nobel Prize winners, Albert A.
Michaelson and Robert A. Millikan.

Tom’s gifts were not lost on Wayne, and under the grandfather’s influ-
ence Tom first planned to become a physicist. He enrolled at Stanford.
Inspired by excellent professors at the Farm, he gradually changed his mind
and moved in the direction of mathematics. His student record was out-
standing and he earned two degrees simultaneously—a B.S. in mathematics
and an M.S. in engineering-economic systems. Following graduation he
was awarded a fellowship to Cambridge University in England.

Cambridge is where Hales first heard of Kepler’s conjecture. It was the
autumn of 1982 when the legendary John Conway mentioned it in one of
his lectures. At first, Hales did not pay much attention because other sub-
jects in the course had a much deeper impact on him. But six years later—
after obtaining his Ph.D. from Princeton and spending a postdoctoral year
at Berkeley—the problem popped up again. Hales was assistant professor of
mathematics at Harvard and had to prepare an elementary course on geom-
etry. The textbook he was using mentioned Kepler’s sphere packing prob-
lem as an example of an unproven conjecture. Hales began to think
seriously about the problem for the first time.

Most twentieth-century mathematicians who had tried their luck with
Kepler’s conjecture had used Voronoi cells to partition space. It seemed like
the obvious choice. But given their lack of success, Hales sought a new
approach. He found it in a different partitioning routine, the so-called
Delaunay triangulation.

The Russian mathematician Boris Nikolaevich Delone was born in
1890 in St. Petersburg, and he graduated from Kiev University in 1913.
Delone specialized in algebra and number theory, but after the October
Revolution in 1917, education in the Ukraine became more practical and

Thomas C. Hales
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technology based. Algebra was no longer in demand and Delone moved to
Petrograd (a.k.a. St. Petersburg, a.k.a. Leningrad). There he became head of
the algebra department of the Steklov Institute of Mathematics. When the
institute moved to Moscow in 1935, Delone moved with it. Apart from his
fulfilling his duties at the institute, he also served as professor of mathemat-
ics at the University of Moscow. Delone was also a famous rock climber.
He died in 1980, at the age of 90.5

The triangulation that carries the Russian’s name is—in a certain
sense—the exact opposite of the V-cell partitioning of space. Consider a
sphere packing and join the centers of neighboring balls by an edge. What
do you get when you look closely? Lo and behold, the whole space has
been partitioned into tetrahedra. Four edges form a tetrahedron (or sim-
plex, as this shape is sometimes called). Delaunay tetrahedra are dual to
Voronoi cells in the sense that a Delaunay edge joins two sphere centers if
the two sphere centers are separated by a Voronoi wall. But there is also a dif-
ference:While Voronoi cells come in differing shapes (polyhedra with up to

5 The reason the partitioning of space considered by Tom Hales was not named the
Delone triangulation is that the Russian name is not supposed to rhyme with alone, but
with baloney. In 1934 Delone wrote a seven-page treatise in French for the Bulletin of the
Academy of Sciences of the USSR, “Sur la sphère vide. A la mémoire de Georges Voronoi”
(“About the empty sphere. In memory of Georges Voronoi”). So French readers would
pronounce his name correctly, it was transcribed as Delaunay. (Actually, only Americans
and the British articulate the name as rhyming with baloney. The French have a more
delightful manner of pronunciation.) In this treatise Delone proposed the famous tri-
angulation technique, which was henceforth called the Delaunay triangulation.
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forty-four or even more sides), Delaunay simplices decompose space into
partitions of the same form—four-sided tetrahedra.

By the way, the partitioning of space is not an activity limited to math-
ematicians. It has applications across many disciplines. A recent book on
the subject lists nearly two dozen areas in which Delaunay and Voronoi
decompositions of space play a role: anthropology, archaeology, astron-
omy, biology, cartography, chemistry, computational geometry, crystallogra-
phy, ecology, forestry, geography, geology, linguistics, marketing, metallurgy,
meteorology, operations research, physics, physiology, remote sensing, statis-
tics, and urban and regional planning.

So Hales decided to try his luck with Delaunay simplices. The first step
consisted in joining the centers of the spheres with each other, separating
space into tetrahedra. But Hales was not satisfied with decomposing space,
he also wanted to build something, as he used to do when he played with
Lego blocks. The only construction rule he set himself was that all Delau-
nay tetrahedra had to be attached to a common center. He called the result-
ing structure a Delaunay star (which we shall sometimes abbreviate to 
D-star).

I mentioned previously that forty-four neighboring spheres could sur-
round a central sphere. By Euler’s formula, the Delaunay triangulation of
this cluster has eighty-four simplices (see the appendix). Hales showed that
Delaunay stars could be made up of at most 102 simplices, which implies

Delaunay star
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that up to fifty-three spheres can crowd around a common center (again,
see the appendix). Following Fejes-Tóth’s hint, Hales was going to study
the density of local configurations. But instead of computing the density of
V-cells, as had been fashionable for the previous thirty-five years, Hales ana-
lyzed the density inside D-stars.

The Delaunay method opened a new avenue for the study of sphere
packings, but it was a risky business. The V-cells method wasn’t able to
prove Kepler’s conjecture, but at least it had allowed Claude A. Rogers,
John Lindsey, and Doug Muder to provide a series of gradually improving
bounds on the packing densities. The hope that some day a bound on the
density of 74.05 percent would be reached had remained intact. But D-stars
were quite a different matter. There were no intermediate way stations. You
either get all the way to the final result or you don’t get there at all. There
was no glory for the winner of the half-lap.

At the beginning, Hales didn’t get there at all. All he managed to show
was the following: eight balls placed at the corners of a regular octahedron
cover 72.09 percent of an octahedron’s volume. That much was standard
knowledge. He then applied this knowledge to D-stars and went on to prove
that one can not pack more than four additional balls in the remaining 27.91
percent. This was new, but it was not very surprising. In fact, it seemed
rather obvious that only so many balls could be packed into such little space.
Hales’s theorem was a very weak theorem indeed. So one should not be sur-
prised that the consequences of this statement would not turn out to be very
satisfying.

It came as it had to. When he applied his new approach, Hales was only
able to show that the density of any packing was less than infinity. Infinity?
He did not even prove that the density of any packing was less than 100
percent, which would have been quite a useless statement in its own right
but, at least, would have made some sense. So Hales’s first finding was com-
pletely, totally, utterly useless and had absolutely no value in proving a new
bound on the density of sphere packing. But his seemingly useless theorem
did do one thing: it proved that densities could not be negative. That would
have been weirder still. So Hales’s early foray into Delaunay triangulations
simply set the stage. It demonstrated that the method did not descend into
the depths of weirdness—even though it remained, for the time being,
within the realms of uselessness.

In January 1990, Hales submitted an article about these findings, entitled
“Remarks on the Density of Sphere Packings,” to the journal Combinatorica.
But before it could be accepted, he found what every mathematician dreads:
a counterexample to one of his conjectures. Hales had to sit down and revise
the paper. Two years later, in December 1991, it was accepted. It then took



another two years to make it into print. Even thought it was of little practical
use, it proved revolutionary. Hales’s “Remarks” suggested a novel approach
to Kepler’s conjecture. Since the Delaunay approach cannot produce negative
densities, there was hope that it could eventually be worked into something
useful. For the time being, however, Hales was not able to take the idea any
further.

But a seed had been planted. In fact, Hales started to feel a bit cocky. He
believed that with some more twisting, squeezing, and tweaking, the
Delaunay method could be developed into a strategy to prove Kepler’s con-
jecture. He talked to several colleagues and told them about his ideas.
Among the colleagues were Robert Langlands and John Milnor, two very
highly regarded mathematicians at the Institute of Advanced Studies (IAS)
at Princeton. They listened carefully as Hales laid out his plans, but were
not convinced. The two seasoned professors feared that their young col-
league would be working his way down a blind alley. They suggested he
first test his ideas on some examples, using a computer, to gain some con-
fidence in this novel approach. Only if the tests produced no counterexam-
ples—no D-stars whose density bound rises above 74.05 percent—would it
be worthwhile to embark on a time-consuming and possibly not very fruit-
ful expedition. Remember that there were no laurels to be won on the way
to the finishing line. Either the Delaunay approach would lead to complete
success, in the form of a proof of Kepler’s conjecture, or it wouldn’t even
win Hales a booby prize in the form of, say, an improved upper bound on
the packing density. Everything would have been in vain. (At the same
time, Wu-Yi Hsiang was also visiting the IAS. Langlands invited the two
men to his office, where they had their first friendly talk about Kepler’s
conjecture.)

Hales took his colleagues up on their suggestion. He wrote a computer
program and began to test his hypothesis. After running the program on
many, many clusters he found that none of them had a density bound above
74.08 percent. Wait a minute—74.08? To Hales’s chagrin, the program had
identified a cluster with a density bound just slightly greater than Kepler’s
74.05 percent. Imagine his surprise. Could it be that a packing arrangement
existed after all that was denser than Kepler’s packing? An arrangement that
had not been discovered until now? This seemed extremely unlikely, so
Hales’s first thought was that his computer program contained a bug. He
printed out a listing of the program and painstakingly double-checked the
code. He went over it line by line, examining every comma and every semi-
colon, but found no mistake. There was nothing wrong with the code.

Back to the results. Hales subjected the offensive sphere arrangement to
more scrutiny. After a while he had to admit that the cluster he had found
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was, in fact, a genuine counterexample to his hypothesis. It consisted of a
central sphere, surrounded by a dozen neighbors. But the neighbors were
arranged differently than in Kepler’s packing. One ball was on top of the
central sphere, five balls were wrapped around it, just above the equator,
another five were wrapped around it, a bit below the equator, and finally
one ball was located at the bottom.6 When a V-cell is formed around the
central ball, it has the shape of a polyhedron with one pentagon on top,
another one at the bottom, and ten triangles around the middle. The
arrangement is called the pentagonal prism. We shall call it the dirty dozen.
It would haunt Hales for many years to come.7

The existence of this bothersome cluster did not mean that Hales had
actually found a better packing. It just meant that the true density lay
somewhat below 74.08 percent. His suggested method would have to be
improved. For the time being, Hales decided to collect everything he had

6 We discussed this so-called icosahedral arrangement in chapter 5.
7 Since the twelve surrounding spheres can be moved slightly, there are actually infi-
nitely many dirty dozens.
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found out so far. He wrote a paper entitled “The Sphere Packing Prob-
lem” and submitted it to the Journal of Computational and Applied Mathe-
matics. It was published in 1992, shortly after he had finished revising his
previous article.

Kepler’s conjecture never loosened its grip on Hales. At the beginning of
1994 he decided to put everything else aside and spend all his available time
on the problem. He was by then near the top of his profession. He had just
ended a three-year appointment at the University of Chicago and had been
invited as a visiting member to the IAS, one of the most, if not the most pres-
tigious academic institution in the United States. Hales did not have to worry
about academic appointments. To a young mathematician of his stature,
tenure would certainly come sooner or later. He could afford to invest a year’s
worth of his time and energy tinkering with a question that may possibly turn
out not to be solvable with the methods he was proposing.

Hales spent most of the year dismantling and reassembling Delaunay stars.
He had by now been playing around with the tetrahedra for a longer time
than he had spent with Lego blocks as a kid: more than five years. But all his
struggles came to naught. Toward the end of the period he had reserved for
Kepler’s conjecture, he became a bit discouraged. He had found a procedure
to partition space into fragments and to compute their densities. But when-
ever one of the pieces was too large, his method gave inaccurate results. It
became extremely difficult to prove anything about the sphere packing. The
problems seemed insurmountable.

Suddenly, in November of that year, inspiration came, seemingly out of
nowhere. Hales was sitting in on one of the weekly seminars at IAS. Robert
MacPherson, a permanent member of the institute, was holding forth on
the question of why the French mathematician Jean Leray (1906–1998) had
not discovered perverse sheaves. It is a fascinating subject to the initiated, and
Robert MacPherson was just the person to give a lecture about it. Two
years earlier he had received an award from the National Academy of Sci-
ences for his pioneering role in the introduction and application of radically
new approaches, among them perverse sheaves, to the topology of singular
spaces. But for everyone else sheaves, perverse or otherwise, are a major
bore. While MacPherson was giving his overview, Hales started to day-
dream about Voronoi and Delaunay decompositions. All of a sudden,
MacPherson’s voice cut through the fog of his reverie. “But, of course,
there are more than two ways to do things.” It hit Hales like a lightning
bolt. That was it! Voronoi cells and Delaunay simplices cannot be the only
techniques to partition space. There must be more than two ways to do
things. Hales later recalled: “Bob’s statement jolted my daydreams so force-
fully that I began a serious investigation of other decompositions of space.”



The idea that would eventually lead to a solution of Kepler’s conjecture
came to Hales in a dream the very night after the seminar: If neither
method works, why not try using them both? Maybe the advantages of par-
titioning space into Voronoi cells and Delaunay simplices could be com-
bined into a hybrid approach?

❖ ❖ ❖

Let’s take it step by step. One characteristic of a good packing is a small Voronoi
cell. But this does not suffice. Half a century earlier, Fejes-Tóth had stated that
even though the regular dodecahedron minimizes the volume, the cells of the
next outer layer waste too much space. To circumvent this problem, he sug-
gested that the cell and its neighbors be taken into account simultaneously. He
proposed assigning a score to each cluster of balls. One requirement for a use-
ful score should be that the volume of the central ball’s V-cell be small. The
other requirement should be that the ball belongs to a tight cluster. To combine
both requirements, the score must be designed in such a way that it decreases
if the ball is part of a “bad” arrangement. Hence, an inefficient arrangement
would receive a bad (low) score, even if the V-cell were small. On the other
hand, a tight packing would be awarded a good (high) score, even if the cen-
tral ball’s V-cell were a bit larger.

Hales’s first task, therefore, was to devise a workable penalization schedule.
He decided to design a function of the form Volume + Penalty that would be
minimized. The penalty could be positive, zero, or negative. Once a suitable
score had been decided upon, Hales would check to see for which arrangement
Volume + Penalty achieves its minimum. The expectation was, of course, that
this would happen for Kepler’s sphere arrangement.

Sometimes mathematicians choose to maximize the reverse function instead
of minimizing the original function. It is like screaming at a taxi driver, “drive as
fast as you can” instead of yelling, “spend as little time as you can to get there.”
Both of these polite requests amount to the same thing—especially if you back
them up with a $10 bill. Hales did something similar. He maximized the nega-
tive of the Volume + Penalty function.

In his search for an appropriate function, Hales first established a baseline.
The regular octahedron, with edges of length 2 and with one ball placed at
each of the six corners, would serve that purpose. The parts of the eight balls
that are contained within the octahedron fill 72.09 percent of the volume.
Henceforth, all arrangements would be measured against that standard. A clus-
ter of balls that is less dense than the octahedral arrangement would be slapped
with a penalty, and a cluster that is denser than the octahedral arrangement
would receive a bonus. The octahedron itself would receive a score of zero. In
the original versions of his papers Hales called this construct the Gamma-
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function. Since this was not a very illustrative name, friends suggested that he
give it a designation more indicative of its purpose. So Hales called it the com-
pression, which does not really convey much more information. We shall call it
the surplus-function, because it represents the surplus of the specific arrange-
ment over and above the octahedral arrangement.

Let us examine an example. Balls placed at the corners of the regular tetra-
hedron fill 77.96 percent of the tetrahedron’s space. The difference to the octa-
hedron’s density is 5.87 percent (= 77.96% − 72.09%). Since the volume of a
tetrahedron with edge-length 2 is 0.942, the surplus awarded to the tetrahe-
dron is 0.0553736.8 Hales called this number a point (pt). So 1 pt defines the
“density surplus” of a tetrahedron over an octahedron. The surplus of all cells,
stars, and simplices would be measured in points (pts). If the balls in the sim-
plex fill less space than in an octahedron, the surplus would be negative.

But soon a problem arose. Whenever the simplex was large the computa-
tions of the surplus were fraught with errors and gave useless results. Hales was
at a loss. He thought about simplices, then about cells, and then about sim-
plices again. And then it hit him: the thing to do was to use a combination of
both simplices and cells. Whenever the simplices were small, he would com-
pute the surplus of the simplex, as he had done until now. But when the sim-
plex is larger than a certain cutoff value, he would switch to the V-cell of the
central ball and compute its premium.

Octahedron used for surplus-function

8 The volume of a tetrahedron with edge length k is √2⁄12 k3. For k = 2 the volume
amounts to 0.9428. The difference in densities between the tetrahedron and the octa-
hedron, 5.87%, times the volume of the tetrahedron, 0.9428 equals 0.0553736.
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What’s a premium? The premium is to cells what the surplus is to simplices.
Take the central sphere and consider its V-cell. Slice the cell into wedges. The
bottom corner of each wedge is occupied by the sphere. Now compare the
density of such a wedge to the density of the octahedron. The premium is 
the wedge’s gain in volume over the octahedron. The score of a Delaunay star
would then be the sum of all the surpluses and premiums. That was Hales’s
brainstorm.

The crucial question now was: What is the maximum score of a Delaunay
star? Hales had a very precise idea of what the highest score could be. He was
convinced that no star could ever score more than 8 pts. And this, ladies and
gentlemen, implies Kepler’s conjecture. Why? Because Kepler’s arrangement is
made up of stars that consist of eight tetrahedra and six octahedra. By defini-
tion, octahedra, which have no surpluses, score zero pts. A tetrahedron, on the
other hand, has a surplus of exactly 1 pt. Hence Kepler’s cluster scores 8 pts. If
it could be shown that all other stars score less than that, Kepler’s conjecture
would be proven.

So all that remained was to show that no matter how space is divided into
cells and simplices, no star could ever reach a score higher than 8 pts. Sounds
straightforward enough, but don’t underestimate the problems. Hales’s task
resembled an extremely intricate and convoluted three-dimensional puzzle
whose pieces—on top of everything else—could penetrate, pierce, and perfo-
rate each other.

❖ ❖ ❖

Hales restricted his attention to clusters made up of a central ball and all
its neighbors.9 He drew lines between the centers of the neighbors and pro-
jected these lines onto the shell of the central ball. This defined a network

9 All balls whose centers lie within a distance of 2.51 from the central ball’s center were
defined as neighbors. Of course, Hales also had to take into account the next layers of
spheres (the neighbors’ neighbors) in order to define the outside walls of the first layer’s
V-cells.
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on the shell of the central ball, which is reminiscent of Reinhold Hoppe’s
and John Leech’s nets from chapter 6. During the following years, Hales
would keep himself busy considering all possible such nets. First he would
generate them using combinatorial techniques. Then he would classify
them according to whether they were made up of triangles, quadrangles, or
other polygons. Finally he would compute the maximum score the nets
could achieve and show that this maximum lies below 8 pts, except for the
FCC and the HCP, which score exactly 8 pts.

The author Simon Singh described Hales’s approach succinctly as fol-
lows: Plot the density of all 50-ball arrangements on a 150-dimensional
graph. Such a graph resembles a 150-dimensional landscape. Construct a
150-dimensional roof over the landscape. Seek the roof ’s peak. Then lower
the roof until it just touches the tallest hill. The “height” of the lowest
roof ’s peak is just 8 pts—if all goes as planned.

This is the general outline of the idea that had come to Hales during
MacPherson’s lecture and in his sleep in November 1994. He immediately
went to work, and started by mapping out a master plan. Hales’s strategy
was to divide the proof into five segments, which he thought would require
roughly similar amounts of effort and time.

The Master Plan10

Segment 1: Show that all nets made up of only triangles score at most
8 pts.

Network on central ball

10 I have barely scratched the surface of the proof here and will give a somewhat more
detailed, step-by-step account of Hales’s master plan in the appendix, entitled “The
Proof—An Explanation.”
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Segment 2: Show that three-sided loops score at most 1 pt, rectangles
score at most zero points, and any loop with more than
four sides gets a negative score.

Segment 3: Show that all nets made up of triangles or quadrangles
(with the exception of the dirty dozen) score less than 8 pts.

Segment 4: Show that all nets that contain at least one region with
more than four sides score less than 8 pts.

Segment 5: Prove that the dirty dozen also has a score of less than 8 pts.

So accustomed was Hales to partitioning space into cells and stars that
dividing time into segments must have seemed very natural to him. (Hales’
degree in engineering-economic systems also came in handy.) But it was a
rather unusual procedure and resembled more an engineer’s approach to the
building of bridges than a mathematician’s approach to proving a theorem. A
scientist’s progress usually comes in completely unpredictable spurts and starts.
But this nonconformist approach would enable Hales to chart his progress
and determine whether he was on or behind schedule. At the end of 1994
Hales had already completed a significant part of Segment 1, and at a pace of
one segment per year, he figured he would finish his task by the end of 1998.

At this point computers enter the scene, as Fejes-Tóth had predicted.
They were used throughout the proof to partition space, generate all possi-
ble nets, compute the density of all the bits and pieces, and perform innu-
merable other tasks.

After several months of work Hales managed to prove that no net could
score more than 8 pts if it is composed only of triangles. The first segment of
his master plan was completed, and he sat down to write the paper. He enti-
tled it “Sphere Packings I” and, on May 12, 1994, submitted it to the journal
Discrete and Computational Geometry. The referees were not delighted. Hales
had not yet formulated his ideas in a sufficiently clear manner. There was no
conjecture that a particular scoring system would lead to a proof of Kepler’s
conjecture, just a suggestion that a solution may eventually be found. There
was no mention of the hybrid scoring system. Instead, Hales proposed a
“repacking” scheme that he already knew would present huge obstacles.

The editor asked for a revision and Hales spent the following year re-
writing his paper. He submitted the revised version on April 24, 1995. Again,
the editors were not enthusiastic. They demanded more changes. Dutifully,
Hales spent another year—he was already busy working on Segments 2 and 3
at that time—re-revising his paper. He submitted it on April 11, 1996, and
this time it was finally accepted. One year later it appeared in print.
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With that the ice was broken; Hales had exposed his plan to the world.
Was he worried that someone would steal his ideas and make it to the fin-
ishing line before he did? He was not. In fact, he was hoping to get some
sort of informal approval for his ideas. The size and difficulty of the remain-
ing problems seemed overwhelming and he looked forward to all the help
he could get. (The pentagonal prism—the dirty dozen—had not yet been
identified as a potential problem.) But there were no takers. His friends and
colleagues were generally pessimistic about his chances of success and took
a wait-and-see attitude. One of Hales’s later papers, in which he outlined
his master plan, was rejected as being too tentative and speculative. In fact,
John Conway had predicted that the problem would not be solved during
his lifetime.

But Hales toiled on. In Segment 2 he related scores to the shapes of the
net’s loops. So which stars could score exactly 8 pts? We already know that
Kepler’s sphere arrangements reach the perfect score. Hales showed that any
deformation of this arrangement, even just the slightest wiggle, reduces the
score. On April 24, 1995, Hales put “Sphere Packings II” into an envelope
together with the revision of Segment I and sent the two papers to Discrete
and Computational Geometry. By that time the editors were already some-
what familiar with his work and demanded only one revision. It took Hales
a year—he was simultaneously working on the second revision of “Sphere
Packings I”—but in April 1996 both papers were sent off to the editor and
duly accepted. “Sphere Packings II” appeared in the following year, 562
pages behind “Sphere Packings I.”

On to Segment 3, where all nets are dealt with that are woven into both
triangles and quadrangles. Of course, the FCC and the HCP have such a
net and score exactly 8 pts. Hales wanted to show that all others must score
less than that. The problem of the dirty dozen remained. But at least he was
able to show that apart from this single exception, all such nets score less
than 8 pts. When he sat down to write up his findings he toyed with catchy
titles such as “Sphere Packings:The Sequel” or “The Return of the Sphere
Packing.” In the end he decided against it. He could not afford to be any-
thing less than serious, especially with a subject that not everybody took
quite seriously anyway. So Hales gave it the unassuming, but not unex-
pected, title, “Sphere Packings III.”

In “Sphere Packings IV” he showed that even if polygons with more than
four sides are woven into the nets, they still score less than 8 pts. “Sphere
Packings III” and “Sphere Packings IV” were never published. Hales was
just happy to know that he was on the way to solving the problem.

Now all that was missing was Segment 5. The pentagonal prism had
been a major thorn in Hales’s side ever since he had come across it during



11 To be exact, the algorithm discovered the formula that produces a hexadecimal
expansion of π. Another mathematician, David Bailey, also from BYU, wrote the code
for PSLQ.

his computer experiments at IAS. But now, at long last, Hales was going to
receive some help. At this point his father’s profession acquires importance
for our narrative. Dr. Hales had a well-established eye clinic in Provo, Utah.
One of his patients, Helaman Pratt Ferguson, was a professor of mathemat-
ics from Brigham Young University.

Ferguson is one of the few lucky individuals who are able to combine
two passions and excel at both of them. His early childhood was sad. A
lightning bolt killed his mother while she was hanging laundry in the back
yard, and then his father was drafted into the army in World War II. The lit-
tle boy and his sister were taken in by their grandmother. But when horri-
fied relatives found out that the old lady had been serving them coffee, they
arranged for their adoption by distant relatives. Ferguson started his training
as an apprentice with his adoptive father, an Irish stone mason, and then
went on to study painting and sculpture. But since not every aspiring artist
can be certain to make a living, Ferguson also studied mathematics. In
1971, he received his Ph.D. from the University of Washington in Seattle
and then taught mathematics for seventeen years at BYU. He also did
research on computational number theory and one of his computer algo-
rithms became famous. It was the so-called PSLQ-algorithm, which per-
mits the calculation of the nth digit of the number π without calculating
the n − 1 digits before it. PSLQ also does some other neat things for math-
ematics and physics, and a professional journal named it one of the top ten
algorithms of the century.11

One would think that such an achievement would have sufficed for a
man’s lifetime. Not so for Ferguson. He is, above all, a sculptor. His math-
ematically inspired creations, which combine esthetic beauty with mathe-
matical elegance, are exhibited all over the world. Ferguson manages to
translate rigorous concepts into three-dimensional art, and thus give physi-
cal expression to the beauty of mathematics.

Ferguson has yet another claim to fame. To keep in shape, he took up
jogging. But after pursuing this activity for more than two decades, he
started to find it a bit lopsided. The arms flail about uselessly in the air while
the legs do all the work. Ferguson wanted to give his arms something to do,
so he took to “joggling.” He juggles rings, balls, or bowling pins while he
jogs. Apart from exercising his arms, says Ferguson, joggling also takes the
boredom out of jogging. The Guinness Book of Records lists Helaman P. Fer-
guson as the first person to have joggled for a length of 80 kilometers. (It is
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not recorded whether he covered the distance without dropping a ball.)
Unfortunately, he had to stop joggling after he injured his back in a fall. To
this day, however, he continues to “wuggle” (walk and juggle).

Despite his many skills, Helaman Ferguson was not the one who would
aid Hales in his struggles. This task was reserved for one of his sons, Samuel
Lehi Pratt Ferguson. Sam Ferguson was Hales’s junior by eight years. They
had known each other in Provo, and Ferguson had been invited to IAS in
1983, when Hales was doing his doctorate at Princeton. The young grad-
uate student came over occasionally to visit the Ferguson family and Sam
got to know him a little better.

Early on in life Ferguson showed interest in science. After his father
and mother had convinced him that mathematics was the key to the other
sciences, he took up the subject seriously. It seemed to be the best use of
his talents. (Ferguson does not describe himself as an outstanding mathe-
matician. He thinks of himself as more of a problem solver, but a pretty
good one.) He attended BYU, where he received his B.S. degree in 1991.
In his senior year, Hales came for a visit to the mathematics department
and gave a lecture in which he discussed his work. Ferguson was in the
audience. This was the first time he heard about Kepler’s conjecture.

After graduation, Ferguson took his time to decide whether to continue
with his studies. When he finally decided to apply for graduate school, the
deadlines of many universities had already expired. One graduate department
that had not yet closed its doors was at the University of Michigan. So Fer-
guson sent in his application and was accepted. His second year there coin-
cided with the arrival of his old friend, Hales. The University of Chicago had
been too coy to offer Hales tenure, but the University of Michigan did not

A Helaman P. Ferguson sculpture
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require much prompting. An offer was made and Hales accepted. At Michi-
gan, Ferguson and Hales got along very well, which wasn’t surprising given
their common youth in Provo and their shared Mormon background.

Ferguson got his Master’s degree in 1993 and decided to stay on to do
his doctorate. Unfortunately—with hindsight, we may say fortunately—his
search for a thesis advisor coincided with the remodeling of Angell Hall,
where the department of mathematics was housed. The ensuing chaos
encouraged all faculty members who could leave to do so. Ferguson had a
hard time finding a thesis advisor. One of the professors who was not yet up
for a sabbatical leave and had to stay put amidst the dust, dirt, and grime,
was none other than Tom Hales. After consulting with his father, Ferguson
decided to ask Hales to be his thesis adviser. Nothing seemed more natural
than that the two Provonians would collaborate in order to push Kepler’s
conjecture to the finishing line. At a time when most seasoned mathemati-
cians were still very skeptical about Hales’s master plan, Ferguson was just
naïve enough to believe that it could work. Hales recounted his problem
with the dirty dozen and asked him to “make it go away.” And that’s
exactly what Ferguson did. The dirty dozen became the subject of his doc-
toral thesis. His talents as a problem solver served him well during the long
and arduous path that lay ahead. To help his son with visualization, Fergu-
son senior sent him a large number of ball bearings. Made of solid steel,
about 1 inch in diameter, they were a very impressive prop. Unfortunately
Ferguson could not really use them as his father had intended, since they
were too heavy to be kept in place with chewing gum.

Originally, Hales thought it would take Ferguson a few months to com-
plete Segment 5. He would then give his student something else to cut his
teeth with, in order to fatten up the thesis. But the amount of work turned
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out to be significantly more than expected and took much longer than just
a summer. In fact, Ferguson ended up spending three years to complete it.
The programming and the computer experiments he and Hales designed to
find the proper decomposition and scoring system were a tremendous
amount of work. In the end, there was certainly no need to add material to
beef up the thesis.

One day, in August 1997, the work was over. Segment 5 was solved.
Kepler’s conjecture had been proved. Were they elated? Not really. Hales
describes the sensation he felt at that moment more as a sense of relief. It
was as if a weight had been taken off his shoulders.

Ferguson reported the findings in “Sphere Packings V.” The thesis was
accepted and Sam, now Dr. Ferguson, wanted to submit it for publication
to a respectable journal. Hales thought that the journal Discrete and Compu-
tational Geometry would be the right outlet, since this is where he had pub-
lished his first two papers in the series. He talked to the editors but they
were not interested. It wasn’t a solution to Kepler’s conjecture, they said,
merely partial progress towards that end. As such, it could not stand on its
own. On top of that, “it would be quite difficult to find a referee willing
and able to dig through the sordid details of the proof,” as Ferguson him-
self admits. To this day his paper is still waiting to appear in print. Ferguson
is now working as a mathematician with the U.S. Department of Defense.

Ferguson describes his collaboration with Hales as an extraordinary
experience. Both benefited from the partnership. It helped Hales a great
deal to have someone working on the problem together with him. It would
have been much easier to put the project on the back burner, save for the
fact that Ferguson’s thesis was hanging in the balance.

In the winter of 1998 Hales was nominated for the coming year’s Henry
Russell award of the University of Michigan. The award is conferred annu-
ally to a junior faculty member in recognition of distinguished scholarship
and conspicuous ability as a teacher. Ferguson wrote an eloquent letter in
support of Hales’s nomination and Hales won the Henry Russell award in
1999.

To sum up, nets with triangles were treated in “Sphere Packings I.” Nets
with triangles and quadrangles were treated first in “Sphere Packings III”
(Kepler’s arrangement and all deformations), and second in “Sphere Pack-
ings V” (the dirty dozen). Nets with polygons that have more than five sides
were dealt with in “Sphere Packings IV.” Thus all possible nets were cov-
ered. (“Sphere Packings II” was needed only as “supporting material.”)
Every single net scores less than 8 pts, except for the net of Kepler’s arrange-
ment, which scores exactly 8 pts.



Helaman Ferguson once asked Hales why he chose to tackle Kepler’s
conjecture. Hales answered that he initially thought it would not be that
hard to solve. Had he known how hard it would be, he said, he would not
have embarked on it. This expresses in a nutshell the obstacles and hurdles
that had to be surmounted. The next two chapters describe in a little more
detail the work that went into the five segments.

Before we end the chapter, I need to set the record straight on one point.
One might come away from this chapter with the impression that Fejes-
Tóth was a bumbling dreamer whose work mostly contained unfulfilled
promises and unproven hypotheses. This does not represent the whole pic-
ture; We must see his contributions in perspective. As Hales put it:

I admire Laszlo Fejes-Tóth a great deal. During my long years on the
problem, I felt that he, more than anyone else, understood the nature
of the problem and had covered the terrain before me. On many occa-
sions, after arriving at various insights after long and hard reflection, I
found evidence in his work that he had made the journey already and
had arrived at the same insight before me. That he had to formulate so
much as hypothesis and conjecture only shows that he was a visionary
working on the problem 50 years before its time. I admire him for that
in the same way that I admire any great mathematician who formulates
a bold proposal to solve an important problem.
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Simplex, Cplex, 
and Symbolic Mathematics

The proof of Kepler’s conjecture is basically an optimization problem.
Tom Hales had reduced the proof to the task of optimizing the score

of Delaunay stars. Kepler’s configurations score 8 pts, and Tom showed that
no star could score more than that. His task had consisted, firstly, of finding
the maximal score of all possible stars and, secondly, of showing that this
maximum score lies below 8 pts. One hurdle was the listing of all possible
Delaunay stars.1 Another was the maximization of the scores.

Maximization problems arise all the time, as we constantly strive to max-
imize something: income, grade-point average, profit, strength, speed, plea-
sure. On other occasions one may want to minimize variables, like
expenditures, effort, the distance one has to walk, pain, or load. Maximiza-
tion and minimization problems are subsumed under the notion of “opti-
mization.” Maximizing profits may, for example, be equivalent to
minimizing costs.

The answers to many optimization problems may reduce to zero or
infinity. For example, how many doodads should a factory produce in order
to minimize the cost? Well, zero. Do nothing and you won’t have to pay
anything. But this answer is, of course, too simpleminded. One wants to
minimize costs, but one also wants to produce something. So, in general, an
optimization problem takes the form of “maximize profits, given that at
least twenty-five doodads are produced.” The “given that” clause is called a
constraint. Only constrained optimization problems are of interest. Uncon-
strained problems have so-called trivial corner solutions (zero and infinity
are considered to lie in the corners of infinite space).

1 Or, equivalently, their nets.

181



The earliest progress on constrained optimization was made in the 1930s
by the mathematician Leonid Vitalievich Kantorovich in the Soviet Union.
This is not altogether surprising; after all, the proponents of central plan-
ning were convinced they could maximize everybody’s welfare by having
supercomputers (which, alas, were not yet available) decide on optimal pro-
duction quotas, allocation of materials, pricing schemes, and consumption
schedules. As befits a centralized economy, Big Brother would take care of
everything. As befits the Western world, Russian research was completely
ignored.

Kantorovich was born in 1912, in St. Petersburg (later Petrograd, then
Leningrad, and then St. Petersburg again). His earliest childhood memories
included bullets whizzing around during the October Revolution of 1917.
At age fourteen he entered the mathematics department of Leningrad State
University. He wasted little time and got his Ph.D. when he was only eigh-
teen years old. Kantorovich was a theoretical mathematician with an excel-
lent feel for the mathematics underlying economics. His involvement with
economics started by accident. As a twenty-six-year-old professor whose
salary was not exceedingly high, he moonlighted as a consultant to a fac-
tory that dealt with plywood. He was asked to determine the distribution
of raw materials that would maximize the productivity of the equipment.
Kantorovich solved the problem by inventing a procedure that he called the
“method of resolving multipliers.” In 1939 Leningrad University Press
published a booklet by Kantorovich that contained the main ideas of the
theories and algorithms of what would later become known as linear pro-
gramming. Written in Russian, his work remained unknown to Western
scholars for decades.

At about the same time a Hungarian émigré, John von Neumann, was
doing research at the Institute for Advanced Studies (IAS) at Princeton. In
fact, it is said that IAS was founded in order to give him and his colleague
Albert Einstein a place to further human knowledge. Von Neumann was
born 1903, the son of a wealthy Jewish banker in Budapest. Jancsi, as he was
called then, was a child prodigy and despite a strict quota against Jewish stu-
dents at the University of Budapest he was easily admitted. But he paid
back in kind, and hardly ever attended any classes. Instead, he simulta-
neously enrolled at the University of Berlin. His attendance record at Berlin
was not outstanding either, because in 1926 he received a diploma in chem-
ical engineering from the Federal Institute of Technology (ETH) in Zürich.
In the same year he obtained a doctorate from the University of Budapest.
There followed a study year with David Hilbert in Göttingen. Everyone
who met him recognized his superior intellect. During the years 1930 to
1933 he held positions both in Germany and at Princeton University. After
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IAS was founded, he became one of its six original professors of mathe-
matics. In 1937 von Neumann, now Johnnie, became an American citizen.
He died of cancer in 1957, at age fifty-four.

Von Neumann is considered the father of modern computers. In fact, he
fathered many disciplines and subdisciplines. His contributions to mathemat-
ics, quantum theory, economics, decision theory, computer science, neurol-
ogy, and other fields are too vast to be listed here. We’ll just mention two
areas. As a consultant to the Manhattan Project, he was instrumental in the
development of the atom bomb in Los Alamos. He worked out the theory of
“implosion,” which proved to be the key to the developments of the bombs
Little Boy, dropped over Hiroshima, and Fat Man, dropped over Nagasaki.2

At the same time von Neumann was also preoccupied with something
much less sinister. Together with his Princeton colleague Oscar Morgen-
stern, an émigré from Austria, he was working on a fun paper about games
people play.3 When it turned out that the material would be too much for
a single paper, the two professors planned to cover the subject in a series of
papers. Then it turned out that even a series of papers would not be able to
contain everything they had to say about games. So they decided to write a
book. The fruit of their labor appeared in 1944 as a thick primer that would
become one of the most influential scientific works of the twentieth cen-
tury. Theory of Games and Economic Behavior ushered in the age of mathe-
matical economics.

The best-known game of the type von Neumann and Morgenstern
studied is the so-called prisoner’s dilemma. Two suspected burglars have
been arrested and are being interrogated separately. The police do not have
sufficient evidence against either of them, so they try to make a deal. If one
of the suspects is willing to turn state’s witness, he will get off scot-free. The
other will be convicted based on the testimony and receive a sentence of
two years. If both of them keep their mouths shut, they will be convicted
on a minor charge and each get a sentence of one week. If, however, unbe-
knownst to each other, both of them spill the beans, they will both receive
a sentence of six months. Now put yourself into the shoes of a prisoner. If
you and your buddy keep your mouths shut, you’ll both be out in a week.
If you keep your mouth shut, but your buddy—who isn’t such a buddy,

2 It is for his association with the Manhattan Project (and for the fact that the cancer-
stricken professor was confined to a wheelchair during the last months of his life) that
Stanley Kubrick reportedly had von Neumann in mind when he created the character
Dr. Strangelove in his 1963 film.
3 The origins of game theory go back to the nineteenth century, to Augustin Cournot
and Francis Edgeworth, and to the 1920s to Emil Borel.
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after all—starts singing, you’ll be in the slammer for two full years. If you
talk and your buddy—who doesn’t yet know that you’re no buddy of his—
keeps quiet, you’re out, and he’ll be making license plates for two years. If
both of you talk to the police, you’ll both be doing time, although only for
half a year. The prison sentences are set out in a so-called payoff matrix.
What should you do?

You Talk You Don’t Talk

Buddy Talks Both of you get six You get two years 
months and buddy goes

free

Buddy Doesn’t Buddy gets two years Both of you get 
Talk and you go free one week 

4 The fascinating biography of John Nash, who spent a quarter of a century as a para-
noid schizophrenic, involuntarily confined for long stretches of time to mental institu-
tions before miraculously recovering, is related in the play Proof by David Auburn, in
the book A Beautiful Mind by Sylvia Nasar, and in the Oscar-winning movie of the
same title directed by Ron Howard.

There is no “correct” answer. The dilemma is precisely that: no prisoner
can make the “correct” decision without knowing what the other will do.
The so-called rational strategy is to make a deal with the police. But what
if you two hoodlums plan further burglaries? Will you be able to count on
each other in the future? This game is called the iterated prisoner’s dilemma.
The best approach for serial burglars is a tit-for-tat strategy: always cooper-
ate (with your mate, that is, not with the police), except if your mate
doesn’t. If he defects, punish him in the next round by turning state’s wit-
ness. That’ll teach him. The tit-for-tat strategy has been suggested as a pos-
sible explanation how cooperation evolved in a world where, according to
accepted wisdom, everybody is supposed to be selfish. In 1994 the Ameri-
cans John C. Harsanyi and John F. Nash received the Nobel Prize for eco-
nomics together with Reinhart Selten from Germany for their work in the
theory of games.4

The first major breakthrough in game theory was the “minimax theorem”
that von Neumann discovered in 1928, about ten years before he met Mor-
genstern. Let us say two players compete for the same amount of money. The
winner’s gain is the loser’s loss. This is called a zero-sum game, because the
sum total of all winnings and losses is zero. The minimax theorem states that
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the problem of maximizing the minimum gain has the same solution as the
problem of minimizing the maximum loss. To explain, say it’s your lucky day
and you are convinced you will win. But you will win different amounts of
money depending on which strategy you chose. A good approach to the
game would be to check the worst scenario in each strategy. Then choose the
strategy that guarantees you the largest payoff, even if the worst happens. In
other words, maximize the minimum gain. On an unlucky day you may want
to employ a different tactic. You feel like you will lose no matter what you
do, but you’d like to keep the damage to your wallet to a minimum. So check
the worst-case scenario in each strategy, and then choose the strategy that
minimizes the maximum loss. Surprise, surprise—in a zero-sum game these
two strategies coincide. Maximin equals minimax.

A few years after von Neumann discovered the minimax theorem, it
became apparent that it had an exact counterpart in Kantorovich’s theory
of linear programming. This counterpart is called “duality theory.” Let’s say
a doll factory produces soldier dolls and dress-up dolls. Plastic, textiles, and
color are required for both dolls in differing amounts. Given the prices of
the dolls and the amounts of raw material that are available, the factory
wants to maximize profits. What quantities of soldier dolls and of dress-up
dolls should the factory produce? That is the primary problem.

Now on to the dual. The dual problem consists of interchanging the profit
function and the constraints and then solving that new problem.5 The answer
to the new problem indicates how profits would increase if the factory had
another unit of raw material at its disposal. It gives the maximum prices that
the factory would be willing to pay for additional amounts of plastic, textiles,
and color. It may be a bit difficult to grasp why the dual is equivalent to the
primary problem, but that’s why duality theory is so surprising.

With the proof that the minimax theorem is equivalent to duality the-
ory, von Neumann had provided the theoretical underpinnings for linear
programming, which is the method Hales would be using in his proof of
Kepler’s conjecture. Kantorovich, for his part, had suggested a practical
method for the solution of optimization problems. It did not utilize differ-
entiation or anything as complicated in order to find optimal solutions. All
that was required was a hop, step, and jump to higher-dimensional space.
But Kantorovich was ahead of his time. Computing machines—which
would have been able to deal with large-scale hops, steps, and jumps—did
not exist yet. That started to change in the late 1940s when the first com-
puters were built under von Neumann’s direction. They were designed to

5 This is done by inverting the rows and columns of a linear programming matrix.
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handle the massive calculations and repetitive tasks that were necessary for
optimization problems. All that was missing was a suitable algorithm.

At this point the action moves back to the other side of the world. A few
years after Leningrad University Press published Kantorovich’s book, and
unbeknownst to the Russian professor, efforts were underway in the U.S.
Air Force to allocate resources efficiently to different tasks. It was 1947 and
the war had recently ended. George B. Dantzig, a thirty-three-year-old sta-
tistician, was working in the Pentagon on training and supply schedules.

Dantzig was born in Portland, Oregon, in 1914, completed his under-
graduate studies at the University of Maryland, and then received an M.A.
degree from the University of Michigan. Upon graduation, he worked as
statistician in the U.S. Bureau of Labor Statistics. He then joined the war
effort and from 1941 to 1946 was head of the Combat Analysis Branch,
U.S. Air Force Headquarters Statistical Control. In the Air Force he made
a name for himself as an expert on programming—planning methods done
with desk calculators. (Program, at the time, was a military term that
referred to plans and schedules for training, supply, and deployment of
men.) Dantzig earned a doctorate in 1946 from the University of Califor-
nia at Berkeley and was appointed mathematical adviser to U.S. Air Force
Headquarters in the same year. His assignment in this new position was to
devise more efficient planning methods.

He rose to the challenge and invented an algorithm called the simplex. It
was listed by a professional journal as one of the ten most important algo-
rithms of the twentieth century, and is still used today in many different
variants.6 In fact, one expert estimated that the simplex algorithm accounts
for more computer time all over the world than any other program, with
the possible exception of database handling.

The inner workings of this algorithm can be easily demonstrated on a
sheet of paper. Let us look at the doll factory again. It has two products, sol-
dier dolls and dress-up dolls; there are constraints on the raw materials; and
the objective is to maximize profits. We plot the number of dolls along the
axes, soldier dolls in one direction and dress-up dolls in the other. Then we
add the constraints; these are just straight lines. All combination of soldier
and dress-up dolls on one side of the line are possible. The points on the
other side represent combinations that are infeasible. They may be using too
much plastic, for example, thus violating a constraint. The area below and
to the left of all the constraints defines the feasible region, that is, the combi-

6 We met another one of the top ten in chapter 11: Helaman Ferguson’s PSLQ algo-
rithm.
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nation of values that fulfill all restrictions. We seek the optimal point in the
feasible region, which is tantamount to pushing a suitable profit line as far
as possible. Dantzig realized that the optimal combination of soldier dolls
and dress-up dolls must lie on an edge of the feasible region. If one chooses
an interior point, it will always be possible to find another combination of
dolls, situated closer to an edge, with increased profits. For similar reasons
the optimal solution can only lie at a corner, that is, at a point where two
constraints meet. With this, the stage for the simplex algorithm is set. The
computer starts with one corner, moves as far as possible along an edge in
the direction in which profits increase fastest. Having arrived at another
corner it pivots around again and starts moving along the new edge. At the
next corner it pivots again, and thus the process continues. When no fur-
ther increase in profits is possible in any direction, the algorithm stops: it has
reached the optimal combination of soldier dolls and dress-up dolls.

The simplex algorithm can be applied even if the factory has a broader
product palette and operates under many more constraints. Instead of mov-
ing from corner to corner on a sheet of paper, the simplex algorithm roams
around from corner to corner in higher-dimensional space. Problems with
thousands of variables and constraints are now routinely solved every day.

Dantzig left the Pentagon in 1952 and became a research mathematician
with the RAND Corporation. In 1960 he was named professor of com-
puter science at Berkeley and six years later he moved to Stanford Univer-
sity. He never won a Nobel Prize in economics even though many
colleagues believed that he richly deserved one. Instead, Kantorovich and
Tjalling C. Koopmans, a Dutch-born U.S. economist, shared the honor in
1975, for their work in the theory of optimum allocation of resources. This

Linear program in two dimensions
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was, in effect, an application of linear programming to economics. Koop-
mans, who was a good friend of Dantzig’s, at first considered refusing the
prize. He was convinced by a fellow Nobel laureate to accept in spite of his
misgivings, but could not quell his conscience. After he had received his
half of the $240,000 prize money, he donated $40,000 to a research insti-
tute, thus reducing his share to $80,000, which is the amount he would
have received had Dantzig been the third cowinner. Even though Koop-
mans made it an explicit condition that the donation stay secret, a friend
told Dantzig about it after Koopmans’s death. But the professor needn’t
have had a bad conscience. In the same year that Koopmans was awarded
the Nobel, Dantzig received the National Medal of Science. Unfortunately,
that honor was not backed up with the kind of cash that is attached to the
Nobel, but it’s still a nice thing to get. But, the greatest privilege was to
have invented a method that continues to be—more than half a century
after it was developed—a blessing to humankind. Of course, it also allows
military people to wage war more efficiently. “The tremendous power of
the simplex method is a constant surprise to me,” Dantzig wrote in his
reminiscences.

Hales used the simplex method over and over again for the proof of
Kepler’s conjecture. But he could not simply take a canned program and
apply it to his problem. There were two hurdles: his constraints were not
always linear and the solutions often had to be integers. Let us turn to the

Linear program in three dimensions



latter hurdle first. We already mentioned (in chapter 4) that it is far more
difficult to solve problems for integer numbers than it is to find solutions
with real numbers. For illustrative purposes, take the equation A + B = 1.
There are an infinite number of real solutions (for example, 0.123456 and
0.876544), but it has just two integer solutions (not counting the negative
ones). An airline may serve as a practical example. Its optimal flying stock
may consist of 26.7 Boeing 747s and 35.2 Boeing 777s, but it will have
great difficulties placing an order for such a fleet. Rounding the numbers
up and down to, say, 27 and 35 is no guarantee of optimality either. The
optimal integer solution may be far removed from the rounded values.

Hales tackled the integer problem with a technique that had already 
served him well with the dirty dozen. He looked it straight in the eye
and . . . ignored it. Since he was not actually looking for the optimal solution,
but just an upper bound, this copout was allowed. The non-integer solution
is always at least as good as the more restricted, integer-valued solution—even
though it may not be feasible. Then he did a similar thing with the nonlin-
earities. He replaced them with linear constraints that were less tight than the
nonlinear ones. We pointed out in the previous chapter that in optimization
problems, as well as in dictatorships, the relaxation of constraints has the effect
of raising the optimum. The treatment resembled the placing of a roof over
the feasible region. After having made sure that no corner of the feasible
region protrudes, the roof ’s peak can be sought. If it lies below 8 pts then the
true, possible noninteger, optimum certainly lies below 8 pts.

A typical example of Hales and Ferguson’s problem had between one
hundred and two hundred variables, and between one thousand and two
thousand constraints. The variables in the linear programs were angles, vol-
umes, and distances. The constraints expressed the conditions on lengths
and angles so that only those packings that could actually exist were con-
sidered. Nearly one hundred thousand such problems had to be solved in
the proof. In 98 percent of the five thousand nets that Hales investigated,
that method worked.

But in about one hundred cases the relaxation method did not succeed.
By letting the variables take on any value—not just integer values—Hales
had relaxed the constraints too much. As a consequence, the roofs’ peaks
became higher than 8 pts. He would have to try to construct lower roofs.
For this a more refined method was needed and he found it in the “branch
and bound” method. B&B is an adaptation of linear programming to prob-
lems where some or all of the decision variables must be integers.

Say an investment company wants to decide which projects to invest in,
given its budget, manpower limitations, and legal constraints. Of course,
the company wants to maximize profits. So the computer department runs
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a linear program and proudly sends the solution in a manila envelope
marked “highly confidential” to the CEO, who opens the envelope and
starts scanning the results. Some projects carry a one (do invest), others a
zero (don’t invest). But then the CEO does a double take: some projects
carry fractional results, like 0.716. The CEO stuffs everything back into the
envelope and sends it down to the basement—together with a cute little
note about nerds.

The nerds scratch their eggheads for a while, and then hit upon an idea.
They let the simplex algorithm branch out, trying both zero and one for
each project where no clear-cut recommendation had been received in the
first run. Both branches are analyzed separately. If the profits for some
branch are inferior to previously obtained profits (that is, the profits are
bounded from above), the branch is ignored. Those branches that are not
ignored are further branched. This process continues until all decision vari-
ables have become integers. Meekly, the envelope is sent up to the boss
again. This time the CEO is satisfied.

In principle, the tree with all its branches could get enormous. After all,
there could be twice as many branches at each step as there were at the step
before. But generally the bounding process eliminates all but a small fraction
of the branches (which may, nevertheless, go into the tens of thousands).

Using B&B, Hales constructed new, tighter fitting roofs above the feasi-
ble regions for the one hundred Delaunay stars that had remained. Then he
sought the peaks of these new roofs. As he had hoped and expected they lay
safely below 8 pts every time. Every time, that is, except for the dirty dozen
(see the appendix).

In the course of his work with computers, Hales encountered another
obstacle. The problem can be demonstrated with a hand calculator, as long
as it has buttons for “square” and “square root.” Type in the number 10, hit
the “square root” key, and then hit the “square” key. Not surprisingly, the
number 10 appears on the display. After all, the square of the square root of
10 is 10. Try again, but this time hit the “square root” button thirty times
in a row, and then hit the “square” button thirty times in a row. You would
again expect 10 as an answer, but brace yourself. This time the output
shows something like 9.5338764. Maybe you should throw your calculator
away and use a desktop computer? Go on now, throw the calculator in the
dustbin and start up a spreadsheet, like Excel. Enter the number 10 into cell
A1 and then enter “=(10^(1/2^A1))^(2^A1)” into cell A2. The answer is
10, as you would expect.7 Now increase the number in cell A1 to 20.

7 (101/2A1)2A1 = 10, for any value of A1.
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Everything okay? Yes, the answer is still 10. Increase the number to 30.
Everything still okay? Yes. Increase the number to 40 and a funny thing
happens: The result is 9.999051. Funny maybe, but who cares about
0.000949? Now enter 50 in cell A1 and watch what happens. The displayed
answer now is 9.487736 or something similar. Enter 51 and you get
12.18249, nowhere near the correct answer of 10. What happened? Is this
a bug? No, it is not a bug, it’s a feature.

Before we delve into the inner workings of computers to investigate this
feature, let us look at two more examples. In the early 1960s a meteorolo-
gist at MIT, Edward Lorenz, ran a computer program that simulated
weather conditions. At one point he jotted down an intermediate result,
and then let the simulation continue on to hailstorms, thunder, and light-
ning. The next morning he started the evolution of weather again from the
intermediate result that he had jotted down the previous day. Then he went
to the cafeteria for a cup of coffee. When he came back he had a surprise.
Instead of the foul weather that he expected in his virtual world, the sun
was shining and a soft breeze was blowing. Why did the computer produce
completely different weather conditions on the second run?

The answer is chaos. Chaos is often defined as “sensitivity of the out-
come to initial conditions.” Lorenz had jotted down the numbers from the
first run to three digits after the decimal. He thereby inadvertently trun-
cated the numbers that the computer stored internally to, say, eight digits
after the decimal point. By truncating the numbers, he had changed the
initial conditions. And since the weather is very sensitive to these initial
conditions, sunshine happened instead of hailstorms.

This phenomenon is often called the “butterfly effect,” wherein a but-
terfly flapping its wings in Brazil can produce a thunderstorm in Florida.
Even if the wing-flapping corresponds to a disturbance to the air of no
more than the twentieth digit after the decimal, the disturbance propagates
and expands. By the time it reaches the Sunshine State, the minute distur-
bance could have jogged itself up to gale force. Incidentally, the butterfly
effect also has a good side to it. Since a butterfly in Brazil can disturb the
serene weather in Florida, the same butterfly could calm a hurricane in
Texas by simply flapping its wings in a certain fashion. This process is called
“controlling chaos” and has been put to use with some success in dealing
with heart fibrillation. By applying small shocks at precisely the right
moment, an erratic heartbeat can be regularized and a heart attack avoided.

The second example is a strange phenomenon that may occur when
consecutive measurements are made of a contracting object. This could
happen, for example, when a spacecraft that is traveling near the speed of
light accelerates. According to Einstein, it becomes shorter at higher
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speeds. Due to the finite precision of yardsticks, the measurements become
less precise the shorter the spaceship becomes. At first this leads to seem-
ingly jumbled-up observations. As the speed increases, these observations
organize themselves into a series of interesting dome-shaped patterns. The
same patterns, which find their explanation in number theory, can be
observed when measurements are performed with increasingly coarse or
increasingly fine instruments.

The common thread to the above phenomena is round-off error, or
truncation. A yardstick, a calculator, and a computer can measure, com-
pute, and store numerical values only to a certain number of digits after the
decimal point. When von Neumann built the first computer he did not yet
have to bother with such niceties. But the problem was soon recognized.
Different machines used different procedures to round off numbers, and
when a program was transferred from one machine to another, strange
things happened. X − X was not always equal to zero, and X −Y sometimes
was. 00 produced an “error” on some machines and 1.0 on others; zero
divided by zero occasionally equaled zero, while it produced an “error” at
other times; and the sign of zero was sometimes positive, sometimes nega-
tive, and sometimes undefined. Blunders and mistakes were inevitable,
making machine computation very unreliable.8

Computers operate differently from the way we expect mathematics to
work. For example, with Carl Louis Ferdinand von Lindemann’s proof in
1882 that π is a transcendental number, it was established that this number
has infinitely many digits. But for a computer, π is not transcendental at
all—it ends after 14 or 28 digits.9 So how can one in good conscience trust
computers that ignore a large part of a number’s idiosyncrasy?

It took more than just a little effort to restore confidence. First, there was
the tiresome business of the numbers’ magnitudes. In the early days com-
puters allocated a fixed width to each number, let’s say eight positions
before the decimal point and two behind. So when the number
12,345,678.90 was added to the number 0.0123456789 the calculation in
effect became 12,345,678.90 plus 0.01. Somehow that seemed grossly

8 Blunders and mistakes were not limited to the early days of electronic computing.
One day in late 1994 the computing community woke up to find that when using X =
4195835 and Y = 3145727, the equation X − (X/Y)Y equals 256 (instead of 0) when
run on a computer with Intel Inside! This was the infamous Pentium bug that made it
into newspaper headlines.
9 With great foresight the legislature of the state of Indiana attempted to find a way
around this bothersome matter in 1897. The honorable legislators wanted to enforce 
π = 3.2 by law.
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unfair. While the first number was represented exactly, the second carried
an error of 23 percent (0.0100000000 versus 0.0123456789). Why should
one number be much more precise than another? Just because it is larger?

A method, called floating-point arithmetic, was developed to fight against
rampant discrimination. Floating-point arithmetic doesn’t care where the
decimal point is and always registers the same number of significant digits.
After the values of the digits have been established, the decimal point floats
in and lands at the appropriate position. So the first number above would 
be written as 0.123456789 E + 8, the second as 0.123456789 E − 1. The
number after the E indicates the landing place of the decimal point: +8
denotes a touchdown eight positions to the right, −1 points to one position
to the left.

Floating-point arithmetic was an advance but no panacea. In the mid-
1970s anarchy reigned among computer manufacturers. Every company
supplied its own mathematical library of elementary functions, which
widely varied in quality. The companies also decided on their own where
to truncate numbers, how to handle division by zero, what infinity looks
like, and so on. As a consequence, peculiarities and eccentricities prolifer-
ated. It was a jungle, and the professionals started to worry. It became
increasingly obvious that standards were needed to make the different prac-
tices compatible.

In 1976 the Intel Corporation began designing a floating-point math
coprocessor for its 8086/8 microprocessor. A coprocessor assists the main
processor in certain specialized tasks. Initially the executives at Intel were
reluctant to launch the project because the marketing people thought there
was no market for the 8087 math coprocessor. Then John Palmer, the man
in charge of the project, reportedly said, “I’ll relinquish my salary, provided
you’ll write down your number of how many [coprocessors] you expect to
sell, then give me a dollar for every one you sell beyond that.” The
coprocessor project was on its way. (Palmer regretted that the marketing guys
didn’t take him up on the offer. He could have stopped working and retired
a rich man.) One of the first things Palmer did was to recruit William Kahan,
a professor of computer science at U.C. Berkeley, as a consultant.

At about the same time, the Institute of Electrical and Electronics Engi-
neers (IEEE) decided that something had to be done about standardization.
The IEEE is a very well-respected organization with a century-old his-
tory.10 Under its aegis, meetings were organized in the early 1980s in an

10 It grew out of the American Institute of Electrical Engineers (AIEE), which was
founded in 1884, and the Institute of Radio Engineers (IRE), which was formed in
1912. These two organizations formed the IEEE on January 1, 1963.
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attempt to reach a consensus on the floating-point issue. Kahan thought it
wise for Intel to get in on the standardization efforts and requested permis-
sion from the company to participate in the meetings. He was not going to
charge the company for the time spent with IEEE, in order to keep his stan-
dardization efforts separate from Intel’s commercial interests. In the commit-
tee he was going to work solely toward the best interest of the community.

Together with a student and a colleague, Jerome Coonen from U.C.
Berkeley and Professor Harold Stone, Kahan went to work. A draft was pro-
duced, which was to become known as the KCS proposal, after the authors’
initials. But the Digital Equipment Company (DEC), arguing that the KCS
proposal was too complicated, advocated its own format. Of course DEC
had a vested interest in its design, since it was tailor-made to work on its
VAX computers. Kahan countered that his proposal was designed not only
with experts in floating-point arithmetic in mind, but also programmers not
well versed in numerical analysis. So what if the KCS proposal was a bit
complicated? At least it managed to satisfy a lot of conflicting requirements.

For years the dispute raged on like a religious war. Kahan was hampered
in the meetings of the IEEE committee because he could not disclose too
much information. This would have given the competition valuable hints
about the design of the 8087 coprocessor. At one point the DEC people
argued that a certain feature would be infeasible. Kahan knew full well that
this was not true—Intel already had working prototypes—but he could not
tell anybody. Another time he proposed very stringent specifications for the
“square root” operator. But then he became afraid that the working group
would not endorse a standard that was deemed unrealistic. So he lifted the
veil just a little and divulged some details about Intel’s way of rounding
“square root” functions.

Then “underflow” became an issue. The term refers to the question of
how small a number must be in order to be flushed to zero with impunity.
Kahan proposed a method of “gradual underflow,” which wedged a few
ultrasmall numbers into the gap between zero and what was previously the
smallest number. However, the DEC people expressed fear that gradual
underflow would slow their computers down. The company commissioned
a highly respected computer scientist to assess the value of gradual under-
flow. Of course, they expected him to corroborate their claim; after all, they
were paying him a fat consultant’s fee. To their astonishment, the professor
announced that gradual underflow was the right thing to do. This setback
put a damper on DEC’s enthusiasm for their own design and they discon-
tinued fighting KCS.

Support for the KCS proposal started pouring in from Kahan’s former
students and, little by little, it became a de facto standard. Finally, in 1985,
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the IEEE gave its official stamp of approval: henceforth the KCS proposal
became known as “IEEE Standard 754 for floating point arithmetic.” Many
years later Kahan said in an interview that the story of how IEEE 754 devel-
oped was “one example . . . where sleaze did not triumph.” In recognition
of his role in the design of IEEE 754, Kahan was awarded the Turing Award
of the Association for Computing Machinery (ACM) in 1989. The ACM’s
most prestigious award, it is bestowed on an individual who makes a con-
tribution of lasting importance to the computer field. By some it is consid-
ered the Nobel Prize in computer science (though it carries a cash prize of
only $25,000).

These were some of the issues that Hales and Ferguson had to take into
account. The implication of IEEE 754 for Kepler’s conjecture was that
numbers—small or not—could not be taken at face value. Because of
rounding and truncation errors they had to be embedded in intervals. Then,
using not the numbers but the intervals, the calculations could be continued.
For example, to add the numbers 1.2435826 . . . and 3.5823043 . . . one
could produce the naïve sum 4.8258869. . . . But this is only approximately
correct because nobody knows what lies beyond the seventh digit after the
decimal point. Now use the intervals [1.2 to 1.3] for the first number, and
[3.5 to 3.6] for the second. Add the lower and the upper bounds of the two
intervals to form the new interval [4.7 to 4.9]. The correct sum of the two
numbers must lie somewhere in the interval. This is not very precise but at
least it is absolutely correct. The same procedure can be applied to subtrac-
tion, multiplication, and division. With numbers in the intervals [a,b] and
[c,d ], for example, division would be accomplished by forming the interval
[a/d, b/c].11 Its bounds guarantee that the interval is wide enough to contain
the true result.12 Things are slightly more complicated with square roots and
trigonometric function, but the same principle applies.

In real-life applications, round-off errors accumulate as the calculations
progress. Consequently, the intervals grow wider and wider. The correct
answer remains trapped inside the interval, but as the intervals get larger,
care has to be taken that the bounds do not explode into meaninglessness.
Hales and Ferguson’s way around the explosive issue was to postpone the
creation of the intervals to the end of the calculations, rather than forming
new intervals at each intermediate step.

Interval arithmetic was the solution to the numerical problems that arose
in the course of the proof of Kepler’s conjecture. Ferguson summed it up:
“[F]loating point arithmetic alone only provides an approximation to the

11 Assuming that a, b, c, and d are positive.
12 [a/c, b/d ] would be too narrow an interval.



correct value of a computation . . . , [it] cannot constitute a proof.” But
“floating-point interval arithmetic . . . is correct.”

With these minutiae out of the way, the question of which programs to
use arose. Hales decided on two commercial systems: Cplex to run the lin-
ear programs, and Mathematica to do symbolic manipulations. Later Fer-
guson double-checked the results with Maple.

Cplex is an optimization program that was developed by Robert Bixby,
a professor of computational and applied mathematics at Rice University.
Bixby had earned his B.S. degree in industrial engineering from Berkeley
and his M.S. and Ph.D. degrees from Cornell University. His research inter-
ests include linear programming problems in all shapes and forms. Bixby is
one of those rare individuals who actually enjoy contemplating numbers. “I
find great satisfaction in looking at large volumes of numerical data and
deducing new, generally applicable solution strategies,” he once related.
Together with colleagues from Princeton and Rutgers he broke the world
record for the celebrated Travelling Salesman Problem (TSP). This notori-
ously difficult problem consists of finding an optimal route for a salesman
who has to visit a certain number of cities. The route should be the short-
est possible, and no city may be visited more than once. In their record-
breaking work, Bixby and his colleagues found an optimal path for a TSP
with 7,397 cities. They are now working on a TSP with 13,509 cities.

The problem and its solution are not very realistic since it would keep
the salesman on the road for about twenty years without ever letting him
visit his home. So Bixby and his colleagues also did some more down-to-
earth things, like optimize an airline crew scheduling model that included
no less than thirteen million variables. Such conundrums, plus his teaching
duties, kept Bixby busy. But he had some spare time nights and weekends—
and spent them designing and writing an optimization program that he
would use for illustrative purposes in his classes. He used the computer lan-
guage C to write the code for his version of the simplex algorithm. So he
called the program Cplex.

In 1988, Bixby, Janet Lowe, a business student at Rice, and her husband
Todd formed a company around the product. Then the phones started ring-
ing and they’ve never stopped since. Today, most of the Fortune 1,000 com-
panies are using Cplex. Apart from commercial users, universities throughout
the world also employ the Cplex optimizer for linear and integer program-
ming. The University of Michigan was no exception, and Cplex became
Hales’s program of choice for the one hundred thousand linear programs he
had to run. He was so fond of the program, he wrote a little essay for the May
1999 “Ilog Cplex Newsletter,” describing how Cplex had helped him solve
Kepler’s conjecture. (Ilog is the company that now owns Cplex.)
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But a program for optimization was not the only software Hales and Fer-
guson needed. The proof of Kepler’s conjecture required handling many
formulas and the manipulation of symbolic mathematics (now commonly
known as “computer algebra”). What was needed for these tasks was not a
number cruncher, like Cplex or Excel, which produces numerical solu-
tions. Rather, Hales sought a symbolic computation system that would
express and manipulate complex equations, using automated mathematical
formalisms and knowledge systems. He found it in Stephen Wolfram’s
Mathematica.

Stephen Wolfram was a true child prodigy. Born in London in 1959 to a
novelist father and an Oxford philosophy professor mother, Stephen was
educated at Eton, Oxford, and the California Institute of Technology. At the
tender age of fourteen Stephen neatly typed a book about the physics of
subatomic particles. Shortly after he turned fifteen, a scientific paper of his
appeared in a learned journal. By the time he reached his twentieth birthday,
he had already published a dozen articles, some of which would become
classics in their field. In the same year, he received his Ph.D. from Caltech,
and at twenty-two he was granted a five-year MacArthur “genius” award.

Armed with the MacArthur money, Wolfram, who had had a fallout
with Caltech over patent rights, moved to the IAS at Princeton. At first he
continued his studies in cosmology, particle physics, and computer science.
But then he discovered an arcane subject that had been overlooked by most
colleagues: cellular automata. It was one of Wolfram’s predecessors at IAS,
the illustrious John von Neumann, who had conceived cellular automata as
one of his many sidelines in the late 1940s. But the great mathematician lost
interest—his two papers on the subject were published posthumously—and
nobody really picked up on the idea.

Until 1970. In that year, John Conway invented the Game of Life. Life
is played on a grid on which some black squares are distributed. They could
represent, say, bacteria. A few simple rules determine how the situation
develops in the next generations. Some bacteria die, some survive, and new
ones are born. Then the fun begins. One can watch as generation after 
generation unfolds and the most amazing things happen. Some initial pop-
ulations of bacteria simply die out, others persevere in ever changing pat-
terns, and still others just linger for a while and then blink until eternity.
There are populations that eat each other up, others that spew each other
out, and those that bounce around in a neverending dance. All these phe-
nomena are the consequence of just a few simple rules.

After Martin Gardner published accounts of the Game of Life in his Sci-
entific American column, it become very popular among amateur mathe-
maticians. Some scientists also started to take notice, among them Stephen



198 K E P L E R ’ S  C O N J E C T U R E

Wolfram. He took a close look at these strange constructs, analyzed them,
classified them, and catalogued their characteristics. The brash young man
was convinced that his findings would revolutionize everybody’s thinking
about science.

But again, few scientists picked up on the idea. It was the time when
chaos theory had become the current fad. Every self-respecting physicist,
especially those of the younger generation, felt that they needed to have a
finger in some chaos-related research. Cellular automata were on nobody’s
list of favorite topics. In 1986, disappointed that his work did not receive
the attention he felt it deserved, Wolfram decided on a career change and
became a businessman.

During his scientific research he had developed a piece of software that
did scientific computing. Now was the time to make some money off it.
Stephen spent the next two years putting his program into commercial
form and a revolutionary piece of software was born: Mathematica. The
manual that accompanies the system is more than fourteen hundred pages
long and weighs over 3 kilograms.

Mathematica can produce numerical solutions to difficult problems, but
that is by far the simplest of its features. The fact that Mathematica easily
displays π to ten thousand digits, or that it instantaneously computes all
16,325 digits of 5,000! (that’s 5,000, multiplied by 4,999, multiplied by
4,998, and so on) are also just minor peculiarities. Finding the prime fac-
tors of 1,000,000,000,000,001 is easy (= 7�11�13�211�241�2161�9091) and
the billionth prime number is, of course, 22,801,763,489. But Mathemat-
ica goes far beyond numerical calculations. It does symbolic mathematics.
That means that when you want to transform, convert, modify, change, and
transmogrify a formula, Mathematica will give you the desired result in
symbolic form. For example you can ask for the factorization of (x25 + y25)
and get the answer as a formula.13 You can enter a function that you want
to integrate, and out comes the correct expression. And if it does not, you
may be reasonably sure that a solution to your question simply does not
exist. Then there also are Mathematica’s truly amazing graphics. They have
become the standard against which competitors are measured. Mathemat-
ica even allows you to visualize functions in four dimensions, as movies.

In the following years, Wolfram showed his mettle as a businessman. He
built his company, Wolfram Research, into a miniconglomerate with three
hundred employees. T-shirts, posters, mugs, and baseball caps sporting the
company’s logo are an integral part of the company’s marketing strategy, as

13 x25 + y25 = (x + y)(x4 − x3y + x2y2 − xy3 + y4)(x20 − x15y5 + x10y10 − x5y15 + y20 ).
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is a journal devoted entirely to the system, and a Mathematica-Mobile that
travels the world preaching the gospel according to Stephen Wolfram. An
estimated two million engineers, industrialists, scientists, and students use
Mathematica all over the world.

So Hales opted for Mathematica to do his symbolic mathematics. Not so
Sam Ferguson. Tom and Sam had decided early on that since their proof
relied so heavily on computer calculations, they would have to double-
check their programs. They independently rewrote large parts of the pro-
grams using different software so that possible shortcomings of the
programs could be excluded as a source of error. Sam’s program choice was
Maple.

At a time when Wolfram was still developing Mathematica, Maple was
already in its version 4.2. Maple was developed at the University of Water-
loo in Ontario, Canada, by Professor Keith Geddes, codirector of the Sym-
bolic Computation Group of the university, and Professor Gaston Gonnet,
now head of the Institute for Scientific Computing at the ETH in Zürich.
The two professors were interested in programs that could perform sym-
bolic mathematics.

Research work on the design of systems for performing computer alge-
bra had been underway since the 1960s, long before either Wolfram or
Geddes and Gonnet entered the picture. But the early systems, which were
developed during the 1970s, were very large, demanded many megabytes of
RAM, and required extensive computer time to perform routine mathe-
matical computations. Consequently, only a tiny number of researchers
with access to large mainframe computers were able to exploit this tech-
nology. That’s where Mathematica and Maple came in.

Geddes and Gonnet began their collaboration on the project in Novem-
ber 1980. Their primary goal was to design a computer algebra system that
would be accessible to researchers in mathematics, engineering, and sci-
ence, and to large numbers of students for educational purposes. Only three
weeks after they started work, they already had a functioning prototype.
Within a couple of months the system was being used at the University of
Waterloo to support courses for graduate and senior undergraduate stu-
dents. At the end of 1983 the software was installed on about fifty external
computers. By 1987 there were about three hundred installations and the
professors decided to go global. Waterloo Maple Software (now Waterloo
Maple, Inc.) was incorporated in 1988, the same year Stephen formed
Wolfram Research, Inc.

The Canadians were more down-to-earth than their extravagant com-
petitors south of the border. Neither baseball caps nor umbrellas were dis-
tributed. No T-shirts bore the maple leaf and no Maple-Mobile spouted the
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gospel. Maple was a plain vanilla version of the flamboyant Mathematica.
As a consequence, the installed base grew modestly to about two thousand
installations during the next two years. But starting in 1990, increased
attention was paid to sales and marketing. Even though there were still no
baseball caps, estimates at the start of the twenty-first century run to about
one million users worldwide.14

14 Gonnet, who remains a major shareholder of Waterloo Maple, has had a rocky rela-
tionship with the company he helped found. The mother company sued him over
ownership of Maple’s technology, and Gonnet did not hesitate to countersue.
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But Is It Really a Proof ?

Sunday morning, August 9, 1998. The previous day marked the ninety-
eight-year anniversary of David Hilbert’s famous speech at the Second

International Congress of Mathematicians in Paris. Tom Hales was finally
done. He sat down to write a message announcing that Kepler’s conjecture
was no longer a conjecture. At five minutes to ten he sent out the e-mail to
his colleagues around the world.

From hales@math.lsa.umich.edu
Date: Sun, 9 Aug 1998 09:54:56 -0400 (EDT)
From: Tom Hales

Subject: Kepler conjecture

Dear colleagues,

I have started to distribute copies of a series of papers giving a solu-
tion to the Kepler conjecture, the oldest problem in discrete geome-
try. These results are still preliminary in the sense that they have not
been refereed and have not even been submitted for publication, but
the proofs are to the best of my knowledge correct and complete.

Nearly four hundred years ago, Kepler asserted that no packing of
congruent spheres can have a density greater than the density of the
face-centered cubic packing. This assertion has come to be known as
the Kepler conjecture. In 1900, Hilbert included the Kepler conjec-
ture in his famous list of mathematical problems.

In a paper published last year in the journal “Discrete and Compu-
tational Geometry” (DCG), I published a detailed plan describing how
the Kepler conjecture might be proved. This approach differs signifi-
cantly from earlier approaches to this problem by making extensive use
of computers. (L. Fejes-Tóth was the first to suggest the use of com-
puters.) The proof relies extensively on methods from the theory of
global optimization, linear programming, and interval arithmetic.

201
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The full proof appears in a series of papers totaling well over 250
pages. The computer files containing the computer code and data files
for combinatorics, interval arithmetic, and linear programs require
over 3 gigabytes of space for storage.

Samuel P. Ferguson, who finished his Ph.D. last year at the Univer-
sity of Michigan under my direction, has contributed significantly to
this project.

The papers containing the proof are:

An Overview of the Kepler Conjecture, Thomas C. Hales
A Formulation of the Kepler Conjecture, Samuel P. Ferguson and

Thomas C. Hales
Sphere Packings I, Thomas C. Hales (published in DCG, 1997)
Sphere Packings II, Thomas C. Hales (published in DCG, 1997)
Sphere Packings III, Thomas C. Hales
Sphere Packings IV, Thomas C. Hales
Sphere Packings V, Samuel P. Ferguson
The Kepler Conjecture (Sphere Packings VI), Thomas C. Hales

Postscript versions of the papers and more information about this
project can be found at http://www.math.lsa.umich.edu/∼hales

Tom Hales

samf@math.lsa.umich.edu
hales@math.lsa.umich.edu

The minute the e-mail was on its way, Hales felt as if a load had been
taken off his shoulders. His gamble had paid off. When he had started his
work on the proof, and even much later, it had by no means been certain
that his efforts would eventually be crowned by success. There had always
been a real possibility that his ideas—finding the maximum score of
hybrid stars—would lead nowhere. But at long last, everything was
worked out and all the skeptics who had expressed doubt about Tom’s
approach had been proven wrong. Five years of hard labor had come to
an end.1

1 But maybe Hales should have waited another two years with his announcement. On
May 24, 2000, the Clay Mathematics Institute of Cambridge, founded by the Boston
businessman Landon T. Clay, announced seven prizes of $1 million each for the solu-
tion of open problems. “The Scientific Advisory Board of CMI selected these prob-
lems, focusing on important classic questions that have resisted solution over the years.”
Had Hales waited, the advisory board could have chosen Kepler’s conjecture as one of
the prize questions, and Hales and Ferguson could have laughed all the way to the bank.
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Four weeks later, Hales was on a flight to Israel. He was going to give his
first lecture on the completed proof of Kepler’s conjecture. The occasion
was the fourth triannual congress of the International Society for the Inter-
disciplinary Study of Symmetry. ISIS-Symmetry is an organization that
includes all disciplines and comprises all fields that have anything to do with
symmetry: mathematics, of course, but also biology, physics, chemistry,
crystallography. And psychology, neurology, and linguistics. And also archi-
tecture, choreography, music, and art. The conferences are truly interdisci-
plinary. Specialists from different areas of study do not just talk past each
other but actually communicate. Crystallographers roam around the arts
exhibit, architects listen to botanists, biologists talk to theatre impresarios,
physicists watch films about modern ballet. People from different fields
wander into various lectures, conferences, and multimedia presentations
about disciplines they never even knew existed.

The most appropriate venue for a public announcement of Hales’s success
would have been the Twenty-third International Congress of Mathemati-
cians in Berlin, which had taken place three weeks earlier. Nearly thirty-five
hundred mathematicians from one hundred countries participated in this
mammoth event that is now organized once every four years by the Interna-
tional Mathematical Union.2 Unfortunately, the deadline for the registration
of lectures had been May 1.3 At that time, in the late spring, Hales had not yet
been sure whether his proof would be completed soon enough for the con-
gress. Then, during the summer, progress was faster than he expected, but it
was too late to announce a presentation. Ordnung muss sein!—especially in
Berlin.4 At least Hales had the satisfaction that in the wake of his e-mail his
feat was already known by most participants at the congress.

ISIS-Symmetry was holding its congress in Haifa on the Mediterranean.
The city in the north of Israel was a particularly well-chosen location for
this conference. Haifa is the seat of the holiest shrine of the Baha’i faith, and
the gardens that surround it are world-famous for their beauty and symme-
try. In his briefcase Hales had brought slides for a presentation with him to
Haifa. The organizers of ISIS-Symmetry made no fuss about any missed
deadlines. This was the Middle East, after all, and people were more relaxed

2 There were no congresses during the First and the Second World Wars.
3 It was exactly this deadline that David Hilbert had missed ninety-eight years earlier.
4 “There must be order!” This Teutonic utterance has been used by civil servants and
bureaucrats throughout the ages. It justifies the call for compliance with even the silliest
requirement. It is an axiom with which one simply does not argue. To be fair, the orga-
nizers of the Berlin conference were not quite as thick headed as that. There was a provi-
sion at the congress for “those who have the wish to make a spontaneous contribution.”
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about dates and regulations. Yallah, forget about the deadline.5 Everybody
was more than happy to have Hales present his proof. The congress began
on September 13, 1998. At the opening session, the chairman of ISIS-
Symmetry announced the presence of the man who had proved Kepler’s
conjecture, four centuries after it had first been proposed. The audience
spontaneously rose to their feet and gave Hales a standing ovation.

On the fourth day of the conference, he delivered his talk. Again there
was wild applause. But there was no scrutiny of his work at all in Haifa. The
listeners—who included the architects, the choreographers, and at least one
journalist—were delighted to witness such a momentous event. But they
did not ask any incisive questions. And the physicists who attended Hales’s
lecture had, of course, known all along that Kepler’s conjecture was true.

The first real test came four months later, at the beginning of 1999. The
e-mail that Hales sent out in August had also reached Robert MacPherson
at the Institute of Advanced Studies. He was intrigued and organized a
mini-conference at IAS, entitled “Workshop on Discrete Geometry and
the Kepler Problem.” The announcement spelled out the theme of the
workshop: “The main subject of the workshop will be the new computer-
assisted proof of the Kepler Conjecture by Tom Hales. Most of the talks and
working sessions will be . . . on this subject.” The flyer went on to explain
to those who might not know that “the Kepler Conjecture asserts that the
densest packing . . . is the one we all expect.”

The workshop was scheduled for a full week and luminaries on sphere
packings and discrete geometry were to attend. Gabor Fejes-Tóth, Laszlo’s
son, was appointed the organizer. Hales was the informal guest of honor.
Sam Ferguson was invited and came. So did John Conway and Neil Sloane.
And of course Wu-Yi Hsiang also attended. Altogether about a dozen peo-
ple from as far away as Hungary and Austria assembled in Princeton from
January 17 to 22. The major lectures took place every day at 2 P.M., with
shorter talks scheduled in between. Ferguson gave the opening address on
Sunday and Hsiang’s talk was scheduled for Tuesday.

The workshop was very intense and many tough questions were asked.
But Hales never wavered. His answers were clear and to the point. This
reassured the audience. Even Hsiang did not have any technical objections.
His only critique was to the effect that the proof was not very pretty. Hales
never contested that. “We all agree that this proof is ugly,” Ferguson com-
mented later. “However, it was the best that we could do, at least up to that

5 “Go ahead already.” This Arabic/Hebrew expression is the Middle Eastern counter-
part—and exact opposite—of Ordnung muss sein! It justifies just about every infraction.
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point. Hales could spend the rest of his career simplifying the proof. But
that doesn’t seem like an appropriate use of his time.” Initially, there had
been some apprehension about how Hsiang would react to all the hoopla
about Hales’s proof. But he remained quite friendly, if somewhat conde-
scending. After Hales’s talk he commented, “I am glad that Kepler’s con-
jecture has now been proven once again.” His perspective seemed to be
that everything is much simpler if you apply the appropriate geometric
insight. Then he gave a one-hour presentation himself, entitled “On the
proof of Kepler’s conjecture.” Of course he meant his proof, not Hales’s.
But he did not manage to convince anyone.

The participants came away from the meeting convinced that Hales had
made his point. The fine print would still have to be checked, of course, but
overall the proof seemed to hold up. After the workshop was over,
MacPherson thought long and hard about Hales’s achievement. He was one
of the six editors of the Annals of Mathematics, one of the most respected, if
not the most respected mathematics journal in the world. Would Hales’s
proof be a worthy candidate for publication in the Annals?

The Annals of Mathematics was founded in 1884 by a professor at the
University of Virginia, Ormond Stone, who financed the journal out of his
own pocket for the first ten years of its life. It is the second oldest mathe-
matics journal in the United States.6 In 1899 the editorial office moved to
Harvard, and in 1911 to Princeton, where it is still located today. Starting
in 1933 the IAS got a foot in, and since then Annals has been edited jointly
by the mathematics department of Princeton University and the IAS. At
the beginning of the twentieth century, the subscription cost $2 a year, and
most mathematicians in the United States subscribed to it. After the First
World War the Annals, which had hitherto mainly published papers from
American authors, gained in importance. European journals were under-
going difficult times and many mathematicians from abroad started sending
their papers to the Annals. In response to the increased influx during the
1930s, the Annals expanded its publication schedule from four issues a year
to six. In the late 1920s, Solomon Lefschetz took over as editor, a position
he kept until 1958.

Lefschetz was an algebraic topologist—in fact, the word “topology” came
into use only after Lefschetz wrote a pathbreaking monograph with this title
in 1930. However, his claim to fame did not only derive from his outstand-
ing mathematical abilities, but also from the fact that he had two artificial

6 The oldest mathematics journal in the United States is the American Journal of Mathe-
matics, whose editorial offices are located at Johns Hopkins.



hands. He lost the limbs in a laboratory accident when he was twenty-three
years old. As a result, he had to turn away from his original calling as an
engineer and became a mathematician. But the engineers’ loss turned out to
be the mathematicians’ gain, as Lefshetz became one of the most influential
mathematicians of his time. The door to his office at Princeton had a special
hook installed, instead of a knob, so that he could open and close it with his
lower arm. And instead of putting the standard issue filing cabinets into his
room, he received a specially designed set of drawers that enabled him to
store and find papers with relative ease. Every morning an assistant would
put a chalk into his shiny, black prosthesis and Lefschetz would jot down
equations on the blackboard in enormous letters, like a child learning how
to write. In the evening an assistant removed the chalk.

During his thirty-year tenure, Lefschetz put a lasting mark on the Annals.
The only other publication in the 1930s that came close to it in terms of
the quality of published papers was the Transactions of the American Mathe-
matical Society. However, that journal was not to everybody’s liking. The
board was extremely fussy, refereeing was heavy handed, and publication
was slow. The editors did not like short papers. Neither did they like long
papers. The Annals, on the other hand, was game for anything between two
pages and one hundred pages. And refereeing was not always an impedi-
ment to publication. “[Lefschetz] would hear of some new result, . . .
solicit the paper and promise publication without refereeing,” a colleague
related. This could have been disastrous, except that Lefschetz had an
uncanny instinct for good and important work. Whenever a refereeing job
was called for, it was unusually fast, because most of it was done in-house,
at Princeton. One of the referees was John von Neumann, Lefschetz’s
coeditor. It is told that he refereed even the most difficult papers just by flip-
ping through the pages. That did not mean that he didn’t read the paper; he
did. It was just that his brain worked ten times faster than anybody else’s.

Lefshetz’s autocratic style as editor of the Annals had its disadvantages.
“[He] made a lot of enemies, because two people, say, would be competing
to get first publication in some new thing and the person who published in
the . . . Transactions got nipped by the guy who got it in with Lefschetz.”
From a fairness standpoint, the Transactions’s editorial policy was by far the
more ethical. “The Transactions was run democratically, no favors, every-
body treated the same. The Annals was run with a great deal of favoritism.”
But favoritism is not always considered a drawback, especially by those on
the receiving end. And for Princetonians, publication in the Annals used to
be de rigeur anyway.

Lefshetz ruffled some other feathers too. When he was about to be nom-
inated to the presidency of the American Mathematical Society, the emi-
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nent mathematician George D. Birkhoff at Harvard wrote to a friend: “I
have a feeling that Lefshetz will . . . try to work strongly and positively for
his own race. They are exceedingly confident of their own power and influ-
ence in the good old USA.” Take a quick guess what Lefshetz’s religious
background was. Birkhoff ’s letter went on: “He will get very cocky, very
racial and use the Annals as a . . . racial perquisite. The racial interests will
get deeper, as Einstein’s . . . do.” Later on, Birkhoff did redeem himself a
little, as one Jewish contemporary testified: “In all fairness it should be
noted that, in spite of his stated position on refugees, Birkhoff did help
some [Jewish] refugees get positions in less prestigious schools.” The anti-
Semitic attitudes that prevailed among the American intelligentsia in the
1930s led even Lefshetz to propose a quota for Jews. He once remarked that
no more Jewish graduate students should be admitted to Princeton, because
Jews could not get a job anyway, so why bother.

Today, the Annals remains one of the premier outlets for mathematicians.
This declaration is no empty statement; it can be made precise. Customar-
ily, a journal’s impact on science is measured by the number of times its
articles are quoted by other authors. By that count the Annals comes out
close to the top. Its articles are cited, on average, 1.71 times each year in the
two years following publication. This puts the Annals in third place in terms
of impact after the Bulletin of the American Mathematical Society (1.88) and
Computational Geometry (1.82). The Transactions, with an impact factor of
0.55, ranks about twenty places lower.

In order to safeguard the Annals’s reputation as the world’s most presti-
gious mathematics journal, every article that is submitted must undergo a
very stringent refereeing procedure. This is hard, even on the editors. “I
don’t enjoy rejecting nine out of ten papers,” MacPherson has remarked.
But he would have certainly liked to see the paper containing the proof of
Kepler’s conjecture published in the pages of the Annals, which was easier
said than done. After all, MacPherson was not Lefschetz and had no desire
to emulate his editorial policies. So he first polled his coeditors. He sent 
e-mails to his five colleagues on the editorial board asking for their opin-
ions. He cautioned them that the paper would be very long. He also noted
that Hales’s proof was computer-aided. Under previous editors the Annals
would never have accepted anything that contained something as ignomin-
ious as a computer proof. But times have changed and MacPherson’s coed-
itors were game. They unanimously recommended that he solicit the paper.

Hales was asked whether he would be interested in publishing his work
in the Annals. MacPherson told him right away that it would be a very
drawn-out process. Nothing but an extremely rigorous refereeing process
would be acceptable. As an example he cited a similar paper, also a computer-
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assisted proof, whose audit took two teams of referees three full years. Hales
did not mind. He himself wished for a thorough and critical reading of his
work. He did not want any doubts lingering on for years, and would wel-
come a stamp of approval.

But MacPherson had another fear. The work that he had seen so far was
not particularly well written. During the years that Hales had spent work-
ing on the various parts of his proof, he had recorded everything in a very
meticulous fashion, as in a lab report. The moment the computer was done,
the appropriate manuscript was also done. As a result, the papers were not
easy to read. And since they were completed at different times, various parts
had to be reformulated and retrofitted. Accordingly, the proof resembled a
patchwork of loosely related bits and pieces. Would Hales agree to revise his
work? Ferguson certainly was not very enthusiastic about the prospect.
“The editors of the Annals want a comprehensive, up-to-date presentation,
hopefully simplified. All well and good, in principle, but both of us are tired
of working on the problem, which we consider to be solved, and properly
documented. It seems a bit much to ask us to re-work the entire proof
merely to make the proof more accessible.”

So how does one go about refereeing a proof that consists in a large part
of computer programs? MacPherson was not overly worried. “When I ref-
eree a paper I try to understand the internal logic of the proof and do con-
sistency checks. I don’t check the proof statement by statement.” An audit
of a computer-assisted proof would follow the same guidelines. For the
proof of Kepler’s conjecture twelve referees were chosen, mostly from
among the workshop participants, and Gabor Fejes-Tóth, who has a repu-
tation of being a careful and responsible organizer, was asked to coordinate
the process. As of 2002, the referees, whose names were not revealed to any-
one, continue to be very dedicated and most have kept up their enthusiasm.
The selfless work of these referees who labor away at someone else’s work
instead of furthering their own careers is a constant source of astonishment
to MacPherson: “Isn’t it amazing? They do it for the mathematical commu-
nity.” In Hungary a group of professors and graduate students are running
seminars about the proof. Laszlo Fejes-Tóth, Gabor’s father, still takes a keen
interest in what is happening. Nevertheless, for some referees the work has
become too much and they have dropped out of the refereeing process.

But while the proof of Kepler’s conjecture was on its way to becoming
an accepted part of the mathematicians’ bag of wisdom, questions started to
arise: Is it really a proof ? Can a mathematical truth be demonstrated by
brute force? Could a computer be wrong? How do computer-aided proofs
compare with the elegance of conventional proofs? What have we learned
from the proof ?
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The first time a computer was utilized not just to solve numerical prob-
lems, but to prove a theorem, the mathematics community was up in arms.
It was in connection with the so-called Four-Color Problem. The problem
had been raised in 1852 by Francis Guthrie, a student of University Col-
lege, London. He had been given the task of coloring a map of the coun-
ties of England. No two adjacent counties were to be painted in the same
color, although counties of the same color were allowed to share a corner.
After a little while he noticed that he did not need more than four colors.
In a letter to his younger brother Frederick, he raised the question whether
this was true for any map. Frederick did not know the answer either. Nei-
ther did his teacher, the celebrated mathematician Augustus de Morgan. De
Morgan wrote a letter to his equally famous colleague, Sir William Hamil-
ton, who also didn’t have an answer. For more than 120 years many people
tried their hand at the problem but invariably their efforts remained with-
out success. Finally, in 1976, the German-born Wolfgang Haken and his
colleague at the University of Illinois, Kenneth Appel, astounded the pub-
lic with a proof. Overnight the Four-Color Problem had become the Four-
Color Theorem.

But the mathematical ingredients were provided—horror of horrors—by
a computer. Appel and Haken had established 1936 different map configura-
tions that could be possible counterexamples to the conjecture. Then the
computer checked each and every one of these prototypes. The computer
churned on for about twelve hundred hours. Finally the two mathematicians
were able to cry:Eureka! Or rather, Ouk Eureka! (Didn’t find it!) Not a single
instance was discovered among the 1936 maps that would have required five
or more colors. With that, the Four-Color Problem was proved. Does Appel
and Haken’s strategy seem vaguely familiar? It does, indeed. It bears an eerie
resemblance to Tom and Sam’s proof. In fact, the strategy—reduce a proof to
a finite list of possible counterexamples, and then eliminate them one by
one—is now a mainstay of computer-aided proofs.7

Computer programs exist that are perfectly able to discover truths.
Genetic algorithms, for example, have discovered laws of nature—without
proving them, however, or explaining why they are true. Genetic algorithms
are programs that evolve according to Darwin’s laws. Such an algorithm
starts out with bits and pieces of possible solutions to a problem, and uses
them as building blocks for future generations. The building blocks com-
bine, split, and recombine to produce offspring. These offspring become

7 The other computer proof published in the Annals (referred to by MacPherson) also
followed a similar strategy.
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better the longer the computer runs. After many generations, which may
take no more than a couple of minutes on a fast computer, the algorithm
may produce a formula that mimics the phenomenon that underlies the data.

For example, feed the computer data from the orbits of the planets, and
let the genetic algorithm run for a few dozen generations. It invariably dis-
covers Kepler’s third law on planetary motion. That may not be totally sur-
prising, since astronomers have known the true answer since the
seventeenth century. But take sunspots, for example, a periodic phenome-
non of the sun about which we still do not know very much. Feed a cen-
tury’s worth of sunspot data into a genetic algorithm, and out comes a
formula that predicts future sunspot activity to a surprising degree of accu-
racy. Then there are computer programs that perform “data mining.” They
sift through enormous databases and find connections that nobody would
ever have been able to spot. For example, so-called neural network pro-
grams determine the buying patterns of legitimate credit card holders and
discover fraud as it happens. None of the above examples constitutes a
proof. However, such programs tell us where to look for the answer . . . or
for the con artist.

Since Appel and Haken first presented their work to a packed audience
in Toronto in 1976, it has become a landmark proof in the history of math-
ematics. But at the time, most mathematicians were horrified. The philoso-
pher Thomas Tymoczko wrote, “If we accept the four color theorem as a
theorem, then we are committed to changing the sense of ‘theorem,’ or
more to the point, to changing the sense of the underlying concept of
proof,” and another purist reserved the right “to reject any proof that
emanates only from a ‘black box’ . . . with the same vigor that I reject a
Jehovah’s Witness’s proof.” How can one believe a proof if one cannot ver-
ify its every step? Tymoczko rejects Appel and Haken’s demonstration
because “no mathematician has seen a proof of the four color theorem” and
“it is very unlikely that any mathematician will ever see a proof.”8

We generally don’t trust what we can’t see. Or do we? Remember Gene
Hackman’s remark to Denzel Washington in Crimson Tide, just before their
submarine started its dive? “Last breath of polluted air for the next 65 days.
Gonna miss it. I don’t trust air I can’t see.” It’s funny because it’s so absurd.
Of course we trust air, especially if we can’t see it. So do we have to watch
as a computer processes bits and bytes through its CPU, better yet through
its innumerable transistors, before we trust it? Or do pure mathematicians

8 Thomas Tymoczko was educated at Harvard and Oxford and became professor of phi-
losophy at Smith College in 1971. He died of stomach cancer in 1996 at the age of
fifty-three.



have some irrational prejudice against innovation, like some religious fun-
damentalists have against medical progress? There is evidence that this may
be so. As one mathematician at Harvard found to his surprise, half of his
colleagues in the department did not even know how to program. And
when an inventory of computing equipment was made at Stanford Univer-
sity, it turned out that the mathematics department had fewer computers
than even the French department. The prevailing feeling among purists was
reflected by the opening words of Tymoczko’s essay “Computers and math-
ematical practice”: “Computers have been intruding upon mathematics for
several decades.”

But wariness with respect to computers is not just based on prejudice.
After all, bloopers do happen. Generally, one distinguishes between two types
of errors: human errors (input or programming) and system errors (software
or hardware). Human errors—which are known by the term GIGO (garbage
in, garbage out)—should be brought to light through a scrupulous refereeing
process. But system errors could go undetected even in the wake of the most
painstaking audit. Since the introduction of IEEE Standard 754, the round-
ing of numbers no longer presents a source of error. But the possibility exists
that errors are introduced by defective computer chips (as was the case with
the Pentium bug) or by faults in the way a computer translates a program into
instructions to a microprocessor (compiler errors). Worse still, even a per-
fectly healthy computer is not totally error-free. A Cray-1A supercomputer,
for example, was reported to produce approximately one undetected error
per thousand hours of operation. Usually this occurs through a random
change of a bit in computer memory, engendered by, of all things, cosmic
radiation. Manufacturers use error-correcting memory to minimize such
faults, but the problem cannot be completely eliminated.

Pierre Deligne, an algebraic geometer at the IAS, is convinced that the
human mind is still the measure of all things. “I don’t believe in a proof
done by a computer,” he says, “I believe in a proof if I understand it.”
Doron Zeilberger from Temple University finds himself at the other end of
the spectrum. He proposes a new semirigorous mathematical culture in
which computers will be used to establish not the truth, but only the prob-
ability of a truth. This would produce statements like “The Goldbach con-
jecture is true with a probability of 0.9999 and its complete truth could be
determined with a budget of $10 billion.”

The future could even see the validity of a proposition established by com-
paring it with experiments run on computers. David Epstein from the Uni-
versity of Warwick in England established a journal devoted to results and
conjectures suggested by experiments. For reasons such as these, the mathe-
matician Edward Swart suggested the creation of a new term: agnogram.
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An agnogram would be a statement that lies somewhere between a conjec-
ture and a theorem. Its veracity would have been verified as well as possi-
ble, but its truth would not be known with the kind of assurance one
attaches to theorems. About agnograms one would thus remain, to some
extent, agnostic.

There is another complaint against brute-force computer proofs. A good
conventional proof does not just tell the mathematician that a fact is true,
but also why it is true. It allows a deeper understanding of the inner struc-
ture of a mathematical system, opening avenues for further discoveries. A
computer proof reveals nothing, apart form the truth of the fact. So, after
studying the proof of Kepler’s conjecture, one has to ask the question: Did
one learn anything from the proof ? Did one gain a deeper insight into
mathematics? Has one become wiser after studying the proof ? The painful
answers are clearly in the negative. After all, everybody knew that Kepler’s
conjecture was true, even before work on the proof started. So there was
nothing to be gained on that account. Furthermore, the proof did not open
any new avenues.

After Hales announced his proof, complaints started pouring in. No, not
brute force again! Quibblers liked to point to Andrew Wiles’s gigantic proof
of Fermat’s theorem (published, in 1995, in the Annals of Mathematics).
Now that was a classy proof. It was beautiful, it had elegance, it had style. It
was in a totally different league. Ian Stewart, the well-known English math-
ematician and popularizer of mathematics, remarked very aptly that while
Wiles’s proof of Fermat’s theorem resembles War and Peace, Tom’s proof of
Kepler’s conjecture resembles a telephone directory. Short it is not. Elegant
it is not. Aesthetic—only if you have a penchant for telephone books.

Nevertheless, since Appel and Haken’s trailblazing work, the profession
has moved along. Computer proofs are, if not universally liked, at least
widely accepted as a necessary evil by many modern mathematicians.
Hales’s own attitude towards computers has changed over time. “I used
computers as part of the 1998 proof only because I could not conceive of a
way to prove the Kepler conjecture without them. [Lately] my stance
shifted considerably, and I now feel that computer proofs are vital to the
progress of mathematics.”

A protocol of sorts has emerged to minimize the probability of errors.
Check the results by hand whenever possible. Solve the same problem using
different programs. Check for internal consistency of the results. Don’t
reinvent the wheel by writing your own programs—leave that to the 
specialists. But avoid freeware. Instead, use popular, well-known software
packages that have stood the test of time. Run the programs on more than
one machine, with different processors and with different compilers.
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Finally, try to get other people to perform independent verification of your
proof. None of the proposed measures can guarantee the absence of mis-
takes, but they can serve to increase confidence in computer-aided proofs.

Getting other people to perform verifications of computer-based proofs
is the hardest problem. In chemistry or microbiology it is quite customary
to have graduate students all over the world run experiments dozens, if not
hundreds of times. Maybe this should become the norm in mathematics
too. Ferguson would clearly like to see independent verification: “. . . it
would make more sense for a third party to independently verify our work,
rather than asking us to just simplify it. . . . It [doesn’t seem] that the math-
ematical community is willing to ante up the appropriate investment.”

Apart from independent verification, Hales and Ferguson complied with
most of the suggestions. They used well-known software programs (Cplex,
Mathematica, and Maple), and independently wrote key portions of the
programs twice. Ferguson also ran parts of the programs at home on his
Macintosh PowerPC, to check the results against those obtained from the
Sun workstation at the university. “I looked at the output of the compiler
on my home machine, using a disassembler, and verified that no errors
seemed to be occurring.” But the pitfalls remained. “It is difficult to be
sure. . . . We tried to be as careful as possible, but we are human, after all.”
And this, in a nutshell, may be the best reason yet to use computers for
mathematical proofs. It is not the fallibility of computers that should be the
issue, but human frailty. After all, a computer error of one bit every one
thousand hours of operation compares quite favorably with the human
brain’s rate of bloopers. Thus the adversaries of computer proofs could be
beaten at their own game.

When MacPherson initially polled his colleagues, all agreed that com-
puter-aided proofs of mathematical theorems should not be held up to
higher standards of rigor than traditional proofs. The mathematical com-
munity must not cut itself off from such a resource. After all, even calculus
was looked at with suspicion in the late seventeenth century, shortly after it
was invented. Besides, errors can also occur in a conventional proof. Short-
comings should become apparent during the refereeing process. But the
system does not always work that way. Sometimes an error in a conven-
tional proof appears only after the paper has appeared in print, sometimes a
long time after publication. For example, Alfred Bray Kempe, a London
barrister and specialist in ecclesiastical law, published the first purported
proof of the Four-Color Theorem in 1879 in the American Journal of Math-
ematics. It was considered correct until 1890, when Percy John Heawood, a
lecturer at Durham in England, showed that the proof was flawed. (That did
not prevent Kempe from receiving great praise in the meantime, from being
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elected to the Royal Society and from receiving a knighthood.) Bender’s
faulty proof of the kissing problem, and Hoppe’s equally faulty correction
are further examples. So is Hsiang’s alleged conventional proof of Kepler’s
conjecture.9

We never know if a well-established proof will turn out to be deficient
one day. Only errors can be established conclusively; correctness can only
be assumed as long as no countervailing evidence appears. After a while,
most mathematicians start to believe that a proof is correct, simply because
nobody found anything wrong with it. Doesn’t belief run completely
against everything we know about mathematics and mathematicians? I still
remember my mathematics teacher in seventh grade telling us: “Don’t
believe anything I say, unless I can prove it.” That sounded very liberal,
especially since it came from an authoritarian pedagogue at a junior high
school in Switzerland, where discipline was rated higher than intelligence
(which, in turn, was rated lower than athletic ability). Was he wrong?

Mathematics is a social process. Truths get accepted by consensus or,
lacking that, through the approval by the majority or, lacking even that,
through endorsement by the few qualified specialists. Until the beginning
of the last century, proofs were short and could be surveyed in one sitting.
This has changed. Nowadays there is a lot of trust involved, since not every-
one can work his or her way through a hundred-page paper. Only very few
people have actually read Wiles’s proof of Fermat’s theorem. But laypeople
trust the judgement of mathematicians, mathematicians trust number the-
orists, and number theorists trust the verdict of the referees. In the end
there may be no more than a few dozen people who actually read and
understood a proof. But the whole world knows that the theorem is true. As
was pointed out in chapter 6, the classification of finite, simple groups
involves about five hundred separate articles, written by about a hundred
mathematicians, and covering approximately fifteen thousand pages. But
there was only one mathematician, Daniel Gorenstein, who had a grasp of
the whole project. Since his death in 1992 there is probably nobody on
earth who can personally vouch for the correctness of the classification.
Seen from that perspective, a proof provided by an impartial computer may
be more believable than a conventional proof fraught with potential traps.

9 See chapters 6 and 9.



C H A P T E R  1 4

Beehives Again

We have nearly reached the end of the saga. Kepler’s conjecture was
solved and Tom Hales could lie back and bask in the glory of his

proof of an age-old problem. But a mathematician’s work never ends. The
successful solution of one problem opens up new avenues, engenders fur-
ther conjectures, and spawns novel theories.

The first of the new avenues involved one of Hales’s students at Michigan
and concerned another long-standing conjecture. Remember the dodeca-
hedral conjecture that Laszlo Fejes-Tóth formulated in 1943? It deals with
the configuration of twelve spheres arranged around a central nucleus in
such a way that one lies on top, five are arranged in a regular fashion a bit
above the equator, five more a bit below the equator, and one on the bot-
tom. This configuration, whose Voronoi cell is a dodecahedron, fills 75.46
percent of space. Thus it is denser than Kepler’s arrangements, but since the
dodecahedron cannot fill space without gaps, it is useless as a global packing.
However, Fejes-Tóth firmly believed that no local arrangement could be
denser than that. At first, he thought he had found a proof of this assertion.
But then the proof turned out to be faulty. Ever since, his statement was
considered a conjecture. On the one hand, no counterexample to the con-
jecture could be found. On the other hand, nobody was able to prove it
either. For a brief period in 1993, Wu-Yi Hsiang thought that he had proved
both Kepler’s conjecture and the dodecahedral conjecture in one fell swoop,
but then gaps showed up in Hsiang’s paper, and henceforth the proof was
ignored by the mathematics community.1

Enter Sean McLaughlin, an undergraduate clarinet student at the Uni-
versity of Michigan. Sean had performed successfully with the Detroit and
Toledo symphony orchestras, and came to Ann Arbor to study music. But

1 See chapter 10.
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he did not limit his activities to playing the clarinet. The program distributed
at one of his performances stated that “in addition to his musical studies
[Sean] pursues an interest in mathematics.” That was rather an understate-
ment because mathematics was more than just a hobby to McLaughlin. In
fact, he took his mathematical studies extremely seriously.

One of his teachers was Tom Hales, who showed him the power of brute
force. A sensitive musician, McLaughlin preferred the beauty and elegance
of traditional mathematics and he took to computer proofs as he would
have taken to freestyle wrestling. Nevertheless, when Hales suggested that
the two of them use brute force to attack the dodecahedral conjecture,
McLaughlin agreed. That was in the summer of 1997, when Sam Ferguson
was in the midst of his thesis work on the dirty dozen. The by-now very
experienced Ph.D. student spent many hours discussing and explaining the
methods and techniques to his younger colleague.

McLaughlin started working along the lines that Hales had described to
him. He began by establishing eight properties that stars and nets must have
in order to be potential counterexamples to the conjecture. Then he iden-
tified all cases that fulfill these eight requirements. There were about a thou-
sand. Then McLaughlin started his offensive, using linear optimization and
interval arithmetic. In all but thirteen cases he succeeded in eliminating the
potential counterexamples. Applying even more brute force, the thirteen
exceptional cases were then also excluded one by one. The only Voronoi
cell that was left was the dodecahedral one. QED!

McLaughlin spent the fall of 1998 with Hales, putting the finishing touches
to the paper, “A proof of the dodecahedral conjecture.” On November 10,
just two months after Hales announced his proof of Kepler’s conjecture to the
world, the proof of the dodecahedral conjecture was also in the bag. The fol-
lowing year, McLaughlin was awarded the AMS-MAA-SIAM2 Morgan Prize
for Outstanding Research in Mathematics by an Undergraduate Student, in
recognition of this achievement. The prize carried a $1,000 cash payment and,
more importantly, a certificate that stated that McLaughlin had received the
most prestigious prize in mathematics that an undergraduate could win. In the
citation the jury wrote that “the solution of this old, difficult conjecture con-
stituted a singular achievement of such stature that this work alone was deserv-
ing of the highest recognition.”

Next in line for Hales was the so-called honeycomb conjecture. In The
Six-Cornered Snowflake, Kepler formulated not only the conjecture, which
we discussed in the first thirteen chapters of the present book, but also one

2 AMS—American Mathematical Society, MAA—Mathematical Association of Amer-
ica, SIAM—Society for Industrial and Applied Mathematics.



about floor tiling. Think of a tile layer by the name of Ernie, who has been
commissioned to cover the floor of a large hotel lobby with tiles. The hotel
owner will provide the tiles but Ernie has to provide the grout, which must
fill the cracks where the tiles meet. The owner will be quite flexible about
the shape of the tiles; all that matters to him is that they cover the whole
lobby. In fact, tiles of different shapes would be okay too, and so would tiles
that did not have straight edges. Ernie scratches his head. Business has been
very slow lately, and he has to minimize expenses wherever possible. Fur-
thermore, grout has become very expensive. What kind of tiles should he
order? Without knowing it, Ernie is confronted with a two-thousand-year-
old problem: What is the most efficient partitioning of the plane into equal
areas?

In the local pub, after a couple of pints, Ernie tells his friends at the bar
of his problem. As fate would have it, George, a bibliophile and antiquities
buff, overhears the conversation. He immediately remembers a book on
agriculture that he had heard about recently. It’s a bit out of date, since it
was written in 36 B.C. by the Roman scholar Marcus Terentius Varro. In this
work Varro discussed the hexagonal form of the bee’s honeycomb. Either
the bees choose this shape in order to accommodate their six legs, he wrote,
or there was some other reason. The other reason, he thought, was that this
shape holds the largest amount of honey. “The geometers prove that this
hexagon . . . encloses the greatest amount of space.” George also tells Ernie
about Kepler’s The Six-Cornered Snowflake. In this booklet Kepler states that
bees build their honeycombs in hexagonal patterns, because hexagonal
walls require the least amount of wax. That’s it for Ernie. Honey, wax, tiles,
grout—it’s all the same. He orders hexagonal tiles. Did he do the right
thing?

Whether Varro’s contemporaries actually proved that hexagons enclose the
greatest amount of space is more than doubtful. In any case, no proof was ever
found. Five centuries later, Pappus of Alexandria tried his hand at it. How-
ever, his “proof ” was no more than a comparison of triangles, squares, and
hexagons, the three regular shapes that tile the floor. Among these three
shapes, the hexagon is the most efficient tile. But what about curved shapes,
and what about joining different shapes, like a jigsaw puzzle? Then Charles
Darwin, of all people, came up with his kind of proof. Since the production
of wax costs energy, and bees, who have evolved over millions of generations,
choose hexagons, then hexagons must represent the most efficient shape. But
if mathematicians are weary of computers, they certainly won’t accept evolu-
tionary behavior as a valid proof. The question of the most efficient parti-
tioning of space remained a puzzle for two millennia.

On Monday, August 10, 1998, Denis Weaire, a physicist from Trinity
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College in Dublin, Ireland, was going fishing. He was just about to take his
tackle out of the trunk of his car when his eye fell on a headline in a news-
paper: “Kepler’s Orange Stacking Problem Quashed.” It was the day after
Hales had announced to the world that he had solved Kepler’s conjecture.
Weaire, who had been working on a related problem for years, put his fish-
ing tackle back. “All thoughts of angling were dismissed for a while,” he
would write later. In the ensuing e-mail correspondence he congratulated
Tom on his achievement and then reminded him of the honeycomb con-
jecture: “Given its celebrated history, it seems worth a try.”

That remark put Hales into high gear. What is the most efficient parti-
tioning of the plane into cells of equal area? The question is reminiscent of
Dido’s problem (see chapter 3). First Hales studied the relevant literature and
discovered, not totally to his surprise, that Laszlo Fejes-Tóth had been there
before. In 1943 he had proved that among all straight-edged polygons, the
hexagon comes out the winner.3 But the prerequisite that polygons have
straight edges was a very stringent assumption. After all, when Queen Dido
wanted to encircle the greatest parcel of real estate with a strip of cow’s skin,
she founded the round city of Carthage. So why should circular edges be
excluded? Fejes-Tóth didn’t intend to exclude them at first, but soon found
that “this conjecture resisted all attempts at proving it.” So he made do with
the weaker problem and predicted that the proof of the general problem
would involve considerable difficulties.

Hales was intrigued. He started working on the problem in the winter of
1998. First he established an inequality that relates the area of a cell to its

Honeycomb tiling

3 Actually, Fejes-Tóth proved the conjecture for convex cells. But convexity implies
straight edges. (If bulges were allowed, then every cell with an out-bulge would neces-
sitate another cell with an in-bulge, making it concave.)



perimeter. Then he showed that the area advantage of a cell whose sides
bulge out is more than offset by the disadvantage of the neighboring cell
whose sides bulge in. With that Hales had established that only polygons
with straight edges could be optimal. Then he proved that the inequality
that he established at the outset reaches its minimum when the cell is a
hexagon. He completed the proof without any assumptions about the cells
having straight borders. The following June, barely half a year later, he was
done. Hales was surprised. The Kepler Conjecture had shaped his expecta-
tions of mathematical proofs: he had come to think that every age-old
problem would require a monumental effort. He was unprepared for the
light, twenty-page proof of the honeycomb conjecture he had found. “In
contrast with the years of forced labor that gave the proof of the Kepler
Conjecture, I felt as if I had won a lottery,” he commented.

It is very rare that a mathematician succeeds in solving a centuries-old
conjecture. To score a double whammy is quite unheard of. What’s more,
the proof of the latter conjecture was totally independent of the former,
and was not a computer proof. Enough of telephone books, this time Hales
had found an elegant proof.

It was only natural to move from partitioning the plane to partitioning
space. But switching from two dimensions to three proved no simple task.
The three-dimensional version of the honeycomb conjecture is called the
Kelvin problem. It calls for the division of space into three-dimensional
cells of equal volume, such that the total area of the walls is minimized. It
is a very difficult problem. “Of course, I’m fascinated by the Kelvin prob-
lem too, but I don’t think that it will be solved anytime soon,” Hales wrote
to Weaire.

Kelvin, born William Thomson in Belfast, Ireland, in 1824, was one of the
most brilliant minds of the nineteenth century. His father was a professor of
mathematics at Glasgow University, and he himself became a student at that
institution at the tender age of 11. At the age of fifteen he won a gold medal
for “An Essay on the Figure of the Earth,” and his first scientific paper was
published when he was sixteen. He continued his studies at Cambridge and
in Paris. When the chair of natural philosophy—called physics today—at the
University of Glasgow became vacant, his father mounted a carefully planned
and energetic campaign to get his son nominated. He was successful and at
the age of twenty-two, William Thomson became professor at the Univer-
sity of Glasgow. He remained there for his entire fifty-three-year career.
Thomson’s academic work covered thermodynamics, hydrodynamics, elec-
tricity, magnetism, and engineering. His contributions included six hundred
scientific papers. In 1892 Queen Victoria raised him to the peerage. Sir
William took the title of Baron Kelvin of Largs.
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Toward the end of his life his insights became somewhat clouded. He
opposed Darwin’s theory of evolution, made incorrect speculations as to
the age of the earth and the sun, opposed Rutherford’s ideas of radioactiv-
ity, and maintained that there was nothing of importance left to discover in
physics. “X-rays are a hoax,” “heavier-than-air flying machines are impos-
sible,” and “radio has no future” are some of his pronouncements from that
time. Nevertheless, his stature as a scientist was so established that when he
died in 1907, he was buried next to Isaac Newton in Westminster Abbey.

Before we deal with the full Kelvin problem, let us inspect a partial ver-
sion. Beehives should be efficient partitions of space. But at least one open-
ing must be left in each cell, so that the bees can enter and leave their homes
without disturbing neighbors. So what is the best design of cells, with one
end left open? (The real Kelvin problem deals with cells that are closed on
all sides.) The bees came up with a clever-looking plan: Walls were built
along the hexagons, with four quadrangles added at the rear for privacy. The
cells fit snugly back to back, and of course scientists, naturalists, and bee-
keepers immediately assumed that this design minimizes the amount of wax
that is needed for the walls. So accustomed had one become to the idea that
bees always do the right thing that it would have been “politically incorrect”
to assume anything else. Bees just had to be superior mathematicians. By the
way, with that, popular opinion had come full circle. While it had seemed
incredible, at first, that a mere insect should be able to determine an opti-
mal floor plan for its home, it now seemed unimaginable that bees did any-
thing less than that in three dimensions. All that was missing was a proof.
But in 1964 Fejes-Tóth thwarted all attempts to find one. In a paper enti-
tled “What the bees know and what they do not know,” he presented his
own design for a bee cell. It saved a whopping 0.3 percent of wax. Whether

Bee’s design (left) and Fejes-Tóth’s design (right)
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Fejes-Tóth’s design actually is the absolutely best possible bee habitat has
never been proven, but at least it served as a counterexample. Score one for
Homo sapiens.

Back to the original problem. What is the best partitioning of space into
cells of equal size, if there is no need for an entrance? Imagine a wall painter
named Harry who must paint the rooms of a modern, Buckminster-Fuller-
like house. All rooms have the same volume, and there are neither corridors
nor lounges. One room just leads straight into the next. The builder is will-
ing to construct the rooms in any shape or form, but Harry has to provide
the paint for the walls, ceilings, and floors. Harry scratches his head. It
wasn’t only Ernie’s business that had been slow lately, Harry too had to
minimize expenses wherever possible. What room shapes should he ask the
builder to construct so that he would require the least amount of paint?

In 1887 Lord Kelvin, then still Sir William Thomson, thought he had
found a solution to just this problem. On September 29 of that year, at a
quarter past seven o’clock in the morning, he woke up and jotted down an
observation that had come to him during the night. (With that he placed
himself firmly in the row of thinkers who work best while sleeping, or
immediately after they wake up, like Gauss or Hales.) Kelvin had been
wrestling with the new theories of light that James Clerk Maxwell (1831–
1879) had proposed. According to this theory, which is correct, light is an
electromagnetic phenomenon. But Kelvin was convinced otherwise. Until
the end of his life he firmly believed that light emerges as the result of
vibrations. But vibrations of what? It was the answer to that question that
came to Kelvin during his dream. He conceived of a space-filling, invisi-
ble foam-like medium, which he called “ether.” The immediate next ques-
tion was: Of what shape could the foam’s bubbles be? Kelvin thought that
the wall area of the foam’s bubbles must be minimized—since nearly every-
thing in nature is either maximized or minimized—and gave the answer to
the question in a paper entitled “On the division of space with minimum
partitional area.”

Kelvin built on the theories on soap bubbles of the Belgian physicist
Joseph Antoine Ferdinand Plateau (1801–1883). Based on the realization
that the energy of foam bubbles is proportional to its surface area, Plateau
formulated three laws about their shapes and about how they can be con-
nected to each other. His findings are all the more remarkable when one
considers that this physicist was blind for the last forty years of his life. He
had lost his eyesight after an experiment during which he stared straight at
the sun for twenty-five seconds. From then on, the results of all experi-
ments had to be described to him by family members, friends, and students.

Plateau’s laws led Kelvin to describe a slightly curved polyhedron con-
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sisting of six squares and eight hexagons. He called it the tetrakaidekahedron
(TKD-hedron), literally the “four and ten seater.” Copies of it fit together
perfectly and the walls, ceilings, and floors require very little paint.

For more than one hundred years, Kelvin’s TKD-hedron remained the
best solution to this problem. His followers were ebullient; the master had
solved yet another fiendishly difficult problem. Never mind that he had
failed to provide a proof. (Never mind also that the ether that Kelvin pro-
posed does not exist.) But soon a challenge arose. If nature is as clever as it
pretends to be, and the TKD-hedron minimizes the surface of the walls,
then surely TKD-hedra should appear somewhere in nature. Chemists,
physicists, biologists, and other scientists started looking for this shape in
their fields of study. No luck! The TKD-hedron failed to appear either nat-
urally or in experiments. Gradually the euphoria gave way to disillusion-
ment. Maybe TKD-hedra exist only in the virtual world. This left mankind
with two possibilities: (1) either nature is not clever, or (2) the TKD-hedron
is not the most economical partitioning of space. Which was it?

The Princeton mathematician Fred Almgren, an authority on soap bub-
bles, declared in 1982 that, “despite the claims of various authors to the

Kelvin’s tetrakaidekahedron
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contrary [Kelvin’s conjecture] seems an open question.” In 1993 Denis
Weaire and his research student Robert Phelan got interested in the ques-
tion. As scientists, they rejected option 1, of course. Nature cannot be any-
thing but clever. Then they had an insight. Why should only a single cell be
used to partition space? Maybe there exist two cells of equal volume but
unequal shape that could be combined. They began hunting for the elusive
wall-minimizing cells in nature. The cells must fit together without leaving
gaps and should have less wall surface than Kelvin’s TKD-hedra.

Weaire and Phelan let themselves be inspired by nature. In their quest to
further human knowledge, they spent many hours at the Pavilion, one of
the two places at Trinity College with a licensed bar available to staff and
students. But while their colleagues peered deeply into their beer mugs—
when they were not watching the cricket or rugby game from the Pavil-
ion’s veranda—Weaire and Phelan just skimmed the surface of their glasses.
What they did, in fact, was inspect the foam on top. After about a month’s
work they hit paydirt. They identified bubbles that challenged Kelvin’s
TKD-hedron. While scrutinizing the foam, they also thought about analo-
gous problems in the bonding structure of chemical compounds. Because
nature is not only clever, but also quite repetitive. In Weaire’s words it had
been “one third intuition, one third analogy, and one third serendipity”—
and one third beer, one is tempted to add.

But they still had a problem. In his first term as a graduate student, Phe-
lan performed the computations that established the existence of a coun-
terexample to Kelvin’s conjecture.4 So they knew more or less what the
bubbles should look like. But they could not compute the exact surface of
the walls. Neither could they determine their exact shapes. In their plight,
Ken Brakke from Susquehanna University in Pennsylvania came to the
rescue, like a knight in shining armor. Brakke had studied minimal sur-
faces, that is, soap bubbles, at Princeton University with Almgren’s group.
Subsequently he developed a computer program called Surface Evolver,
which simulates and computes minimal surfaces. But instead of selling his
program to breweries in search of the perfect foam, Brakke made the
Evolver available to the scientific community. “My Surface Evolver is an
interactive program for the modelling of liquid surfaces shaped by various
forces and constraints. The program is available free of charge,” he wrote
on his web site.

The appropriate data was fed into their computers and—lo and behold—
Brakke’s program confirmed what Phelan and Weaire had suspected. The

4 This guaranteed his eventual doctorate. Phelan now works for a Dutch telecommuni-
cations company.
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Evolver produced two differently shaped cells: a pentagonal dodecahedron
and a TKD-hedron. (The dodecahedron has pentagonal faces with sides of
unequal length. The Weaire–Phelan version of the TKD-hedron is different
from Kelvin’s: it has twelve pentagonal and two hexagonal faces.) Mixed in
the proportion of two of the former and six of the latter, they combine to
form a structure that leaves no gaps in space. And now the punch line: The
walls of the structure have 0.3% less surface area than Kelvin’s structure. This
may seem like a negligible improvement, but consider that the development
of the world records in the 100-meter dash or the long jump are character-
ized by even smaller increments. And then, Fejes-Tóth’s improvement over
the bee cells was just as minute.

Informed of the discovery, Brakke immediately replied with an e-mail
confirming their success: “As soon as I saw the picture on the screen, I was
sure you had it. . . . Congratulations.” Almgren exclaimed that this was “a
glorious day for surface minimization theory.” With Weaire and Phelan’s
discovery, Kelvin’s century-old conjecture had been proven incorrect.
Were he alive today, Kelvin could at least take comfort in the thought that
bees had missed the optimum by about the same margin.

There is no guarantee that the Weaire–Phelan partition is optimal. Pend-
ing such proof, scientists are still trying to come up with bubbles that are

Denis Weaire and Robert Phelan
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even more economical partitions of space. So far, nobody has had any luck.
In the meantime, Weaire was made a Fellow of the Royal Society of Lon-
don with a citation that includes the discovery of the space partition.

Another problem that was recently solved concerns the so-called 
double-bubble: What shape do two bubbles with given volumes have after
they dock? We already mentioned in chapter 1 that the problem goes back
to Archimedes, who conjectured that a round sphere is the most econom-
ical way to enclose a given volume, and that Hermann Amandus Schwarz
proved the conjecture in 1884.

It then took another century until a team of mathematicians managed 
to tackle the double-bubble. We know that soap bubbles minimize surface,
so the task consists of finding the shape of two combined bubbles that 
minimizes the total surface. (Astonishingly, a group of undergraduates at
Williams College solved the two-dimensional version of the problem in
1990.) In three dimensions, a computer proof had already been proposed as
a partial solution. But it was unsatisfactory. Then, in March 2000, four
mathematicians—Michael Hutchings, Frank Morgan, Manuel Ritoré, and
Antonio Ros—presented a traditional, elegant proof for the general prob-
lem. They showed that two bubbles must dock in the obvious way, side by
side. Other wild configurations, for instance one bubble wrapped around the
other, were shown to be unstable. In real soap-bubble life, they would just
go pop! Then it was the undergraduates’ turn again. A new group of young-
sters spent a summer at Williams College under the direction of Frank Mor-
gan, and extended the proof to four-dimensional bubbles.

These are some of the success stories, but there remain numerous
unsolved problems. One of them goes by the name “sausage conjecture.” It
is related to Kepler’s conjecture and was proposed by that Hungarian
grandmaster of discrete geometry, Laszlo Fejes-Tóth. To this day it remains
unsolved. To illustrate, let us observe Fumiko, a shop assistant in Tokyo who

Double-bubble
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boxes up gifts for the customers in the sports department. The question she
faces is, what is the best way to pack balls? Which boxing method wastes
the least amount of space? For example, is it more efficient to pack four
tennis balls—or Ping-Pong balls, or golf balls—into a square box, or an
elongated box or a pyramidal box? How about six balls, or three, or twenty-
five? We will call the long boxes sausage-boxes and all others cluster-boxes.

The results are quite surprising. For up to fifty-five balls the sausage seems
to represent the best box. It may be a little awkward to load such a thing into
the trunk of the car, but as far as wasted space is concerned it’s the best. If you
want to pack additional balls something strange happens, however. For fifty-
six balls or more, clusters are better than sausages. Fejes-Tóth was so shocked
and confused when he found out that he called the switch from sausages to
clusters the “sausage catastrophe.” Nobody is quite sure at exactly what num-
ber of balls optimality changes from sausage to cluster. It is believed that the
switch occurs somewhere between fifty and fifty-six balls. But at exactly what
number this happens is still an open question.

If you become bored with regular tennis you may prefer to play the game
in four dimensions. As you might expect, the problem does not become any
easier. As long as you play four-dimensional tennis with less than about sev-
enty-five thousand balls, it is better to store them in sausage-boxes. For more
than 375,769, cluster-boxes are best. Somewhere in between the switch takes
place. Where exactly? Nobody knows.

Surprisingly, in still higher dimensions the situation calms down again.
Fejes-Tóth claimed that in sufficiently high dimensions, sausages are always
best, no matter how many balls you want to store. This contention was
proved rigorously for all dimensions greater than forty-two. (Quite a tennis

Sausage-box or cluster-boxes
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game that is: You don’t just have to look ahead at your opponent but must
keep your eyes peeled in forty-two directions simultaneously.) But Fejes-
Tóth conjectured that in any dimension higher than five, sausages are
always best. As of this writing, the claim is still awaiting a proof. By the way,
can you guess what happens in two dimensions? It’s real simple: clusters are
always superior to sausages.5 And in one dimension, sausages are the only
option.

If the surface area of the box’s walls are of primary concern and not the
volume, then there is another conjecture in store. The “spherical conjecture”
states that the optimum, wall-minimizing shape of the box for tennis balls is
roughly spherical if the dimension is large. Whether this is true, and for
which dimensions the conjecture should hold, is anybody’s guess at this stage.

And then there is Tammes’s problem. P. M. L. Tammes was a Dutch
botanist who investigated why the pores on pollen grain are distributed in
a regular fashion over the grain’s surface. He surmised that they are so
arranged to be as far away from each other as possible. This is equivalent to
decorating a sphere with curved disks that must not overlap. What is the
maximum radius the disks can have? In his 1930 paper “On the origin of
number and arrangement of the places of exit on the surface of pollen
grains,” Tammes discussed this question. He also proved an interesting fact:
It does not matter whether there are five pores or six, the maximum radius
is the same in both cases. Of course, the botanist’s proof wasn’t rigorous
enough for mathematicians and was corrected sixty-six years later. But the
general problem, for any number of orifices, remains with us even today.
There is an enormous literature on this problem but exact solutions are
known only for twelve points or less, and for twenty-four points. For any
other number of points only bounds on the maximum radii have been con-
structed.6

But what are all these theorems and proofs good for? What about appli-
cations? In mathematical circles such questions are considered very gauche,
if not downright rude. It is like asking a mountain climber why he climbs
mountains. George Leigh Mallory’s answer to that question may sum it up
also for mathematicians: he climbed a mountain “because it’s there.” Maybe
he should have taken the question more seriously before giving a snappy

5 Recall the coins on the tabletop.
6 Tammes’s problem is related to the kissing problem of chapter 5. The question there
was whether thirteen points could be placed on a sphere, such that they would be sep-
arated from each other by a distance of at least 2π/6.
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answer. His frozen body was discovered on Mount Everest only seventy-
five years after he disappeared on a 1924 expedition.7

Mathematics certainly is no extreme sport, but mathematicians also solve
problems just because they’re there. They pursue the work for the subject’s
intrinsic beauty. The joy of mathematics consists in doing it—gratification is
mathematics itself. But occasionally one must explain what one does for a
living to one’s mother, or justify one’s work to a funding organization, or
impress one’s boy- or girlfriend. In these cases it does not hurt to have some
real-life examples handy. Take John von Neumann. He could always men-
tion game theory, atom bombs, or electronic computers, depending on who
was listening. But what can packing experts show for their labor? How to
stack oranges? You won’t be able to dazzle a date with that. And you would
be hard-pressed to find a funding agency willing to underwrite research on
how to improve the stacking of melons. In the next—and final—chapter I
will describe some areas where the theory of sphere packing can be applied.

Tammes’s problem

7 The question of whether Mallory had reached the summit before he fell to his death,
twenty-nine years before Sir Edmund Hillary reached the top, or on his way up, has
never been settled.
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This Is Not an Epilogue

L et us return to Thomas Harriot and Johannes Kepler at the end of the
sixteenth century to describe some applications of the theory of dens-

est packings. Harriot, moving beyond Raleigh’s cannonballs, wondered
how atoms are arranged around each other. This is quite remarkable, since
atoms were no more than a figment of imagination at that time. Kepler, for
example, did not even believe that these little “balls” existed. But Harriot
was right on target. The packing of spheres in three-dimensional space
serves as a correct model for the understanding of how matter is built.

Packings are especially helpful to the understanding of the structure of
crystals.1 Most metal atoms, for example, are arranged either in an FCC or
an HCP structure. As Harriot speculated, that is one reason why metals are
heavier than other materials: they are more densely packed.2 Besides the
FCC and the HCP, other crystalline structures exist: the simple cubic pack-
ing (SCP), where eight atoms sit at the corners of a cube, and the body
centered cubic packing (BCC), which is the same as the SCP with an addi-
tional atom sitting in the middle of the cube.3 Obviously, these two struc-
tures are less dense than FCC and HCP. After all, the whole purpose of
Tom Hales’s exercise was to show that the density of Kepler’s arrangements
(74.05 percent) is the highest possible.

The SCP packing is a very inefficient packing. Atoms fill only 52 per-
cent of the volume (see the appendix to chapter 1) and only one chemical
element exists whose atoms conform to this arrangement: the radioactive

1 In general parlance, crystals are associated with quartz crystals or crystal glass. Not so
in chemistry. There, crystals describe the state of a chemical element whose atoms are
arranged in a periodic lattice.
2 The two other explanations for an element’s mass are the number of protons in each
atom and the atom’s size.
3 There are more crystal structures, but we won’t deal with them here.
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polonium, discovered by Pierre and Marie Curie in 1898. The BCC, at 68
percent, is somewhat denser. Chromium, sodium, and iron atoms, for
example, conform to the BCC packing. Cadmium, cobalt, and zinc are
instances of the HCP packings. Finally, the queen of packings, the FCC, is
adopted by—what else—silver, gold, and platinum.

The sphere packing model also indicates why some elements are more
flexible than others. When you deform a material you actually push the
planes of atoms over each other. Atoms in the BCC structure fit into the
interstices formed by four atoms of the lower layer. In the FCC structure an
atom rests in the interstice formed by only three atoms of the lower layer.
Hence BCC atoms fit more deeply into the cracks and it is more difficult
to budge them out of their nests. That is why BCC atoms, like chromium,
are usually firmer than FCC structures, like gold.

The sphere packing model also enlightens us about the advantages of
impurities in some materials. Defects in the lattice operate like cogs; they
prevent slipping. And that is why the “pure” gold earrings you just bought
at the jewelers are at best only 75 percent pure and more likely only 58 per-
cent (18 and 14 carats, respectively). The remainder consist of silver, cop-
per, or some other metal. Twenty-four-carat gold would be too malleable.

Predictably enough, packing theory can also be used to solve problems
of how to pack items into containers. Applications include the bin packing
problem (put as many objects as possible into the least number of contain-
ers), the dual bin packing problem (fill as many bins as possible with the
fewest objects), the knapsack problem (given items of different values and
volumes, find the most valuable pieces that fit into a knapsack of fixed vol-
ume), the cutting stock problem (find the arrangement of shapes on a sur-
face that minimizes waste), or the strip packing problem (cut as many strips
of specified lengths as possible from a number of fixed-length strips). In
each of these examples the objects must be packed as densely as possible,
thus minimizing wasted space.

FCC structure with deforming material



These examples come from an area of mathematics called operations
research. In practice they appear, for instance, in the stacking of containers
onto ships and the loading of pallets onto airplanes and trucks. The problems
are very difficult. In the old days freight forwarders just loaded goods
helter-skelter onto the platform. When additional items would no longer fit,
the ships, trucks, and planes took off, much to the chagrin of the owners, whose
vessels and vehicles were usually still partially empty. The freight forwarders
didn’t care, of course, since they paid by weight. But then the powers-to-be had
a good idea. They decided to standardize containers (8′ × 8.5′ × 20′ or
8′ × 8.5′ × 40′) and pallets (48″ × 40″ in the United States, and 120 cm × 80
cm in Europe; height is usually not specified). Once containers and pallets
were built to these sizes, the boxes fit neatly next to, and on top of, each
other. Ships were built to specifications and containers could be loaded into
the hold and onto the deck without wasting any space. Thus we have again
come full circle. Remember Sir Walter Raleigh? He started the whole saga
by wondering about the best way to load cannonballs onto a ship.

With the standardization of the containers the ship owners had rid
themselves of a serious problem. But the problem of wasted space hadn’t
disappeared into thin air, of course. It had simply been shifted downwards
to the freight forwarders. They were the ones who now had to worry about
how to pack their wares as densely as possible into their containers. Ship
owners had the last laugh.

But it is not always possible to standardize. The job of a tailor, cutting
cloth for shirts and pants, would be much easier if the garments were made
of standardized rectangular pieces of cloth.4 But variation is the name of the
game in many industrial applications, like sheet metal factories, paper mills,
and garment sweatshops. Plasticine can always be resquashed and reused.
Gold and silver can be smelted and reused. Not so the expensive lacework
that must be trimmed from the brocade. Too much waste cuts into the prof-
its. Leather cutting presents even more difficult problems, since imperfec-
tions in animal hides must be avoided.

Another illustration of a packing problem is the placing of fishing rods,
golf clubs, tennis racquets, and sausage- and cluster-boxes with golf and ten-
nis balls into the trunk of your car. The decisions you have to make when
buying a bottle of cola at a vending machine, knowing that you need change
for the highway toll and another quarter to tip the guy who washes the car
windows at the red light, also belong to the general realm of packing prob-
lems. So do newspaper layouts and the ancient Chinese puzzle Tangram, or
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4 Even then the problem is by no means trivial.
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5 Actually, this defines a cube, but we won’t go into details.
6 The volume of a ten-dimensional sphere of radius 1 is about 2.55. Ten percent of ten
billion divided by 2.55 is about 400 million.
7 A ten-dimensional sphere of radius 3 has a volume of 2,674,041. Ten percent of ten
billion divided by 2,674,041 is about 374.

its three-dimensional version, the Soma cube. There is no general method
to solve these problems. Algorithms have been developed that are designed
to provide optimal solutions for many specific problems. In the simplest cases
the Simplex algorithm may give a solution, but usually much more sophis-
ticated programs are required.

Finally, there are some farfetched applications of packing problems. Take
telecommunications. Let’s say a signal consists of a string of ten digits
between zero and nine, like 3849001823 or 8640923902. Hence, each sig-
nal is represented by a point in a ten-dimensional cube with edge-length
10. Altogether there is room in this hypercube for 10,000,000,000 different
signals. But add a constraint. Since similar strings could be confused
because of noise in the transmission lines, we won’t allow signals that are
“close” to each other, like 1234567890 and 1234567891. Only strings that
differ in each position by at least two units are allowed. Then, if a slightly
distorted, and therefore illegal, message arrives at the receiving end, it can
be rectified by simply assigning it to the closest legal string. The meaning of
this constraint is that every signal that lies within a sphere of radius one
around the original signal is not legitimate.5 This just begs the question:
Given this constraint, how many different signals can be represented with
strings of length 10? The latter is tantamount to the question: What is the
densest packing of spheres with radius 1, in a ten-dimensional hypercube?
This application of the theory of sphere packing goes under the name
“error correcting codes.” It is suspected, but not known, that the best den-
sity of spheres in ten-dimensional space is just under 10 percent. Hence
400,000,000 signals can be represented, which is sufficient for all words in
all languages of the globe.6 But if the radius of the spheres is increased to
four units, in order to make errors even more unlikely, a ten-dimensional
signal allows only 374 words or so.7 So a higher-dimensional hypercube for
coding may be needed. How high the dimension must be depends crucially
on how densely spheres can be packed. Hales provided the answer for three
dimensions. For dimensions higher than three the answer is unknown.

Let’s describe another farfetched example: running a business. One of
the first things MBA students learn in business school is that profits must be
maximized. The second thing they learn is that to do so, markets should be
segmented. Big spenders should be charged high prices, but cheapies
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should not be disregarded. An illustration of this maxim is available in most
commercial airlines. Usually there’s a first class in front, followed by busi-
ness class, and then there’s economy in the back. The “product” is the same
(transporting a person from, say, London to New York), but those who can
afford it should pay a higher price than those who cannot. Accordingly,
advertising campaigns will emphasize the product’s different virtues to dif-
ferent potential clients. A marketing-savvy garment supplier will stress to its
young buyers how cool it is to wear a necktie, while it will put the empha-
sis on a necktie’s elegance to older buyers. A tennis-shoe company may sell
the same product to men and to women, but package them in different col-
ors. Sometimes a market must be segmented according to more than one
criterion: age, sex, income, education, and so on. For each niche a different
advertising strategy may be designed: one for highly educated women
between the ages of forty-five and fifty-five with incomes over $100,000
per year, another for young men without high-school diplomas earning less
than $25,000, and so on. The vice president of marketing wants to reach as
many potential customers as possible, spending as little as possible, without
ignoring anyone, and without any overlap. And here is the link to sphere
packings: The allocation of advertising budgets in segmented markets is
equivalent to the packing of spheres in high-dimensional spaces.

Believe it or not, the theory of sphere packing can also be applied to
political science. Political parties must decide how they should position
themselves in the space of potential voters, minimizing both residual space
and overlap. For example, a lattice packing can reflect a copying mechanism
in the positioning of political parties (“copy the neighboring parties, but
differentiate your platform at least in one dimension”). As the dimensions
increase, pockets open up between the constituencies that were tradition-
ally covered by the large consensus parties. That is where small, special-
interest politicians may find a foothold.

With this our account comes to an end. But the story does not, because
mathematics is never completed. The speed with which questions, prob-
lems, and hypotheses are solved is surpassed by the pace at which new ones
arise. In the appendix, a few dozen conjectures are listed that have been
proposed over the years. Some of them have been solved, more may be
solved by the time you read this, but most will still be looking for a solution
for a long time to come. Therefore, let us not consider this chapter the epi-
logue to one story, but rather a prologue to new endeavors.
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Volume of n-Dimensional Spheres

Volume for 
Dimension Sphere Volume R = 1 cm 

1 Line joining the two endpoints 2R 2 cm
2 Circle, and all points inside it πR2 3.14 cm2

3 Solid ball 4⁄3 πR3 4.19 cm3

4 4-dimensional solid ball 1⁄2π2R 4 4.93 cm4

� � � �

Density of Coins in the Plane

The surface of a triangle is given by multiplying its base by its height, and
dividing the result by two:

Surface of triangle =

The surface of a circle is the number π multiplied by the square of the
radius:

Surface of circle = πr 2

(We usually will assume in this book that the spheres’ radii, r, are equal to 1.)
It follows that the length of each of the triangle’s edges is 2. Since a surface can
be tiled with identical triangles, it suffices to inspect just one such triangle.

Pythagoras’s Theorem tells us that the height of an equilateral triangle,
with edge-length 2 is �3�. Hence our triangle’s surface is

= = �3� ≈ 1.732

The density is defined as the ratio of (1) the surface of the triangle that
is covered by circles to (2) the total surface of the triangle. Now one-sixth of
each of three circles is contained in this triangle. Hence the parts of the
spheres’ surfaces that are contained within the triangle are

3(πr 2) ≈ 1.571
1
�
6

2�3�
�

2
Base ⋅ Height
��

2

Base ⋅ Height
��

2
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Recall that the radius r = 1. Hence the proportion of those parts of the
spheres’ surfaces that are contained in the triangle, to the surface of the tri-
angle itself, is

Density ≈ ≈ 0.907

In other words, nearly 90.7 percent of the triangle is covered by the spheres.
And since the plane can be regularly tiled with identical triangles, this is also
the density of the plane.

Density of the Regular Square Packing

Take a square with a side length of 4. Its surface is 16. Four whole circles can
be fitted into such a square, and their combined surface is

4(πr 2) ≈ 12.566

Hence the density of the packing within that square can be computed as

Density ≈ ≈ 0.785

or about 78.5 percent. Since an infinite surface can be tiled with identical
squares, the density of the square is identical to density of surface extended
to infinity.

The Melon Rind

The following table gives surfaces and volumes of round melons (with
radius r = 1) and of cube-shaped melons (with edge-length s):

12.566
�

16.0

1.571
�
1.732
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Surface Volume

Round 4(πr2) ≈ 12.566 (πr3) = 4.189

Cube-shaped 6s2 s3

What edge length must a cube-shaped melon have in order to contain
the same volume as the round melon with radius r = 1? Let us set the vol-
umes of both kinds of melons equal:

4.189 = s3

We solve for s, to get

s = �
3

4.189� ≈ 1.612

Hence a cube-shaped melon with edge-length 1.612 has the same volume
and weight as a round melon with radius 1. According to the above table
the skin surface of a cube-shaped melon with edge-length s = 1.61 is

6s2 ≈ 6(1.612)2 ≈ 6(2.599) ≈ 15.591

while the rind of the round melon is only 12.566. Hence round melons
require nearly 20 percent less rind than the cube-shaped ones.

Density of Melon Heaps

In the first part of the appendix we looked at the regular square packing in
two dimensions. Let us now analyze the same packing in three dimensions.
Consider cubes with edge-lengths 2. (Since the whole space can be com-
pletely filled with identical cubes, it suffices to inspect just one such cube.)
Each of these cubes has a volume of 23 = 8.0, and exactly one sphere fits
into each such cube. Since the volume of a sphere is

(πr3) = 4.189

the density of this packing is 4.189⁄8.0 ≈ 0.52, that is, 52 percent.

4
�
3

4
�
3



But we can do better than that. We already know that in two dimensions
the hexagonal arrangement allows more coins to be packed than the square
arrangement. Let us see what happens if we replace the coins by melons and
add layers. We extend the hexagons into three dimensions by making them
into cylinders of height two. Now we can fit one sphere into each of these
hexagonal cylinders. Let us compute the density of this arrangement. The
surface of a hexagon is

Surface(Hexagon) = 2�3�r 2

where r is the radius of the inscribed circle, that is, the distance from the
center of the hexagon to its edge. The volume of a hexagonal cylinder with
height 2 is (recall r = 1):

Volume(Hexagon) = 2(2�3�r 2) ≈ 6.928

The volume of the melon is 4.189 (see above), hence the density of this
packing is 4.189⁄6.928 ≈ 0.605, or 60.5 percent. Since all additional layers are
identical to the first one, this is also the density of the hexagonal packing in
three dimensions. Obviously 60.5 percent is better than the 52 percent of
the square packing. But it is not as good as the density of the FCC and the
HCP (74.05 percent), where the melons of each additional layer are placed
in the dimples that are formed by the melons of the previous layer. This we
will see in the appendix to chapter 2.
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In this appendix we show that the square or hexagonal packing of spheres
in three dimensions fills 74.05 percent of the space. In order to do so we
first partition space into equal cells, such that each sphere lies inside one
such Voronoi cell. (Voronoi cells are discussed in detail in chapter 9.) What
is the shape of such a cell? If the arrangement of the spheres were a simple
square packing, then the Voronoi cells would be cubes stacked on top of,
and next to each other. But since the spheres in Kepler’s arrangement lie in
a more complicated arrangement—the balls lie in the dimples that are
formed by the balls below, and each ball is touched by twelve others—the
cells also have a more intricate shape. The Voronoi cells that surround the
balls are shaped as so-called rhombic dodecahedra.

Rhombic dodecahedron

In order to compute the density of one cell, all one has to do now is to
compute the volumes of the ball and of the rhombic dodecahedron that
surrounds it. Since space can be filled to infinity with rhombic dodecahe-
dra without leaving any gaps, the density computed for a single ball in its
Voronoi cell also holds for the packing in infinite space. This sounds simple
enough but, unfortunately, there is a slight problem: Computing the vol-
ume of the Voronoi cell for Kepler’s packing is no easy procedure. I will just
state here that the rhombic dodecahedron (for balls of radius r = 1) has a
volume of 4�2�, which equals about 5.6568. . . .

On the other hand, the volume of a ball with a radius of 1 is 4⁄3π, or
4.18879. . . . We now compute the density of the packing by dividing the
volume of the ball by the volume of the rhombic dodecahedron, 4.1888⁄5.6568,
which equals 0.74048 . . . , or about 74.05 percent.
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The Quadratic Form and the Diagonals of the Fundamental Cell

What is the length of the short diagonal (d1) through the fundamental cell?
In the picture we add the height (h) of the fundamental cell, and divide vec-
tor c into two segments, p and q. By Pythagoras’s Theorem we know that
the square of d1 is equal to the sum of the squares of h and q:

d 2
1 = h2 + q2

We can use Pythagoras’s Theorem once more to determine h2:

h2 = a2 − p2

From the picture we see that q = c − p. Hence we have

d 2
1 = a2 − p2 + (c − p)2

= a2 − p2 + c2 − 2cp + p2

= a2 − 2cp + c2

Let’s denote the angle between the two vectors by α. Unfortunately,
angles have the annoying habit of being measured in degrees, and to avoid
complications we introduce a new variable, denoted by b, that is measured
in real numbers:

b = a � c � cos α

We can rewrite this as cos α = b/ac. But cos α also equals p/a, so 
p = a cos α. Entering b/ac for cos α we get p = b/c. Entering this in the
above equation, we get

d 2
1 = a2 − 2b + c2

So the square root of the quadratic form is just the length of the short diag-
onal. And this is just what we set out to prove. In a similar manner we can

Quadratic form and the diagonals

�=30

�

a

c
p q

h
d1 d2
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show that the length of the second diagonal, d2, is equal to the quadratic
form with the sign of the middle term changed to a “plus”:

d 2
2 = a2 + 2b + c2

The Discriminant and the Surface of the Fundamental Cell

The surface of the fundamental cell, denoted by F, is equal to its base times
its height, that is, F = c � h. Hence we have

F 2 = h2c2

We know from basic trigonometry that

sin α = i.e., h = a sin α

Pythagoras’s Theorem tells us that

h2 + p2 = a2

or
h2 = a2 − p2

From cos α = p/a, we have p = a cos α, and therefore we get

h2 = a2(1 − cos2 α)

From the definition of b it follows that cos α equals b/ac. Putting all of this
together, we obtain

F 2 = a2c2�1 − �
or, after rearranging,

F 2 = a2c2 − b2

The right-hand side of the last equation is the discriminant of the quadratic
form, and we have therefore shown that its square root is just the surface of
the fundamental cell.

Examples

To illustrate, we return to Manhattan’s grid layout. The angle between
avenues and streets is 90°, and since the cosine of a right angle is zero, b is

b2

�
a2c2

h
�
a
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also zero. Hence the quadratic form is 3002 + 0 + 1002. The square root of
this is 316 meters, and this is the length of the diagonal through a block.
The discriminant associated with this quadratic form is 3002 � 1002 − 0, and
the surface of a block is the square root of this number, that is, 30,000
square meters. Quadratic forms and their discriminants can be used for any
lattice, after the appropriate values for a, b, and c have been inserted.1

Lagrange also provided formulas that can be applied for areas, which
cover more than just one street and one avenue. Let us look at a superblock
stretching for X avenues (each having length a) and Y streets (of lengths c).
First, the diagonal distances through this superblock are equal to the square
root of the quadratic forms, a2X 2 + 2bXY + c2Y 2 and a2X 2 − 2bXY + c2Y 2,
and the surface is the square root of the discriminant a2c2X 2Y 2 − b2X 2Y 2.
Once a, b, and c are known, all one has to do to get the lengths of the two
diagonals and the surface is enter X and Y into the formulas. The length of
the diagonals through just one block can easily be computed by setting X
and Y equal to 1. The length of the diagonals through four blocks (for
example, from 3rd Avenue and 50th Street to 5th Avenue and 52nd Street)
can be computed by setting X and Y equal to 2 in the formula. We leave the
verification—that the diagonal of the superblock is 632 meters and its sur-
face is 120,000 square meters—as an exercise for the reader.

Suppose we have circles with a 50-meter radius that we want to place
around Manhattan. Both the sides of the blocks (100 and 300 meters) and
the diagonals (316 meters) are sufficiently long to easily place circles at the
four corners without any of them overlapping. Hence the Manhattan lattice
is a contender for the title of closest packing. The discriminant, a2c2 − b2

equals 900,000,000, and the square root of this, which is just the surface of
the block, is 30,000 square meters.

Let us check how well the Manhattan lattice performs. According to
Lagrange, the discriminant can never be smaller than �(3⁄4a4)�, which equals
0.866a2 or 8,660 square meters. So we didn’t expect any surface smaller
than that. But the Manhattan block does not even get close. Maybe we can
construct a better grid by changing the angle between the two vectors. Let
us compute the surface of a deformed Manhattan lattice by reducing the
angle between the two vectors to about 70°. This corresponds to a value for
b of 10,000. The first thing to check is whether the diagonals are longer

1 When α is 90° we could simply use Pythagoras’s Theorem to compute the diagonal
of the cell. The significance of quadratic forms is that the diagonal of any cell, regard-
less of its angle, can be computed. (By the way, the surface of a superblock is xy times the
square root of the discriminant.)



than 100 meters. Only then can circles of 50-meter radius be fit into the
corners without overlap, and only then is the deformed lattice a legitimate
contender. The square roots of the quadratic forms give the lengths of the
diagonals of a block:

�(10,00�0 + 2(1�0,000)� + 90,0�00)� = �120,00�0� ≈ 346 meters

�(10,00�0 − 2(1�0,000)� + 90,0�00)� = �80,000� ≈ 283 meters

Hence, the diagonals are sufficiently long to fit circles comfortably into the
four corners of the block of the deformed Manhattan lattice. Now what’s
the surface of such a block? The discriminant, a2c2 − b2, equals

30021002 − 10,0002 = 900,000,000 − 100,000,000 = 800,000,000

The square root of this number, and hence the surface of the block, is
28,284 square meters. The deformed Manhattan block has become some-
what smaller than 30,000 m2, but it is still a long, long way off from 8,660
m2. Let’s try a deformed Manhattan lattice but shorten the avenues. By how
much can the avenue vector be cut? Obviously the vector can not be
shorter than 100 meters, because there must be enough room for two cir-
cles next to each other. So the shortest possible avenue has the same length
as the street, that is, a = c. Add to that (without proof ) an angle of 60° and
we have the hexagonal arrangement.

Out of curiosity, let us check the density of such a packing. The surface
of a circle with a radius of 50 meters is π � 502 ≈ 7,854 m2. Divide this by
the surface of the smallest cell imaginable, which is 8,660 m2, and one gets
7854⁄8660 = 90.69%. Wow, that is just the density of the closest packing. (See the
appendix to chapter 1.) Well, maybe that isn’t all that surprising since we
already know that among all possible lattices, the hexagonal one allows the
densest arrangement of circles in a plane.
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Circle around an Equilateral Triangle

Consider an equilateral triangle of side length D. We want to draw a circle
that runs through the three corners of the triangle. Obviously, the centers
of the circle and of the triangle coincide. What is the circle’s radius?

The height of the triangle, H, can be computed with the help of
Pythagoras’s Theorem, as

H = �D2 − ����
2� = D

The triangle’s height is composed of two components, the radius that we
are seeking, R, and another segment that we shall denote by S:

H = R + S

Hence

R = D − S (1)

We can use Pythagoras’s Theorem once more to get

R2 = S 2 + � �
2

(2)

Expressing equation (1) as

S 2 = � D�
2

− �3�DR + R2

and substituting into equation (2), we get

R2 = � D�
2

− �3�DR + R2 + � �
2

In this equation the terms R2 cancel, and we obtain

D2 − �3�DR = 0

from which follows

R =
D

�
�3�

D
�
2

�3�
�

2

�3�
�

2

D
�
2
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2

�3�
�

2
D
�
2
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Hence the radius of the circle around an equilateral triangle with side
length D is D/�3�, which equals 0.577D.

Side Lengths of Octagons and Heptagons

We consider a circle of radius 2D/�3�. First we inscribe an octagon, then
we will do the same exercise for a heptagon. An octagon can be partitioned
into eight triangles. Obviously the angle of each triangle in the center is 
360⁄8 = 45°. Therefore one half of the octagon’s side length, C, is

= sin � � = 0.383 = 0.442D

The octagon’s side length is twice this length, that is, C = 0.884D. This is
too short! Two adjacent points do not have the required distance of D from
each other.1

Let us move on to the heptagon. The angle of each of the seven triangle
in the center is 360⁄7 = 51.43°. Therefore one half of the heptagon’s side
length, G, is

= sin � � = 0.434 = 0.501D

The heptagon’s side length is twice this length, that is, G = 1.002D.

2G
�
1.732

2G
�
�3�

51.43°
�

2
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�
2

2D
�
1.732
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�3�
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�

2
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2

Circle around an equilateral triangle

D H D R
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D

D

D

H

2
_D

2
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R = D
3

= 0.577D

1 We must also deal with the case of star-shaped octagons, where the corners lie on the
outer and inner edge of the ring. Calculations show that this reduces the distance
between any two adjacent corners even more.
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Surface of a Hexagon

Consider an equilateral triangle of side D. As was shown in the first part of
this appendix, the radius of the circle that cuts through the three corners of
the triangle has a radius of D/�3�. This is the side length of the hexagon
that we must now consider.

What is the surface of a hexagon with side length K? The hexagon can
be partitioned into six triangles, and the surface of each triangle can be
computed as follows. First compute the height of the triangle, H:

H = �K 2 − ����
2� = K

�3�
�

2
K
�
2

(a) Octagon, (b) heptagon

C

G = 0.501 D

51.43�
25.7�

22.5�45�

2
G

2
C = 0.441 D

(a)

(b)
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Since the surface of a triangle is equal to half the base times the height, we
get

SurfaceTriangle = � � H = K 2

Hence the hexagon’s six triangles cover an area of

SurfaceHexagon = 6 K 2 = K 2

We are considering hexagons with a side length K = D/�3�. Hence, the
hexagons in Fejes-Tóth’s proof cover an area of

SurfaceFejes-Toth = � � ≈ 0.866 D2D2
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Superball and the Shadows of Kissing Balls

From high school we know (and if we don’t, we can look it up in any col-
lection of mathematical formulas) that the surface of a sphere’s cap is given by

C = 2πr(r − h)

where r = 3 and r − h is the height of the cap. How large is h? By Pythago-
ras’s Theorem we have

h = �r 2 − x2�

where x is the diameter of the cap, which needs to be computed. From
chapter 4 we know that six circles can touch the central circle in two
dimensions, hence the angle that encompasses each circle spans 60°. The
sine of half that angle allows the computation of x:

sin 30° =

Sin 30° equals 1⁄2, so we get x = 3⁄2. This, in turn, allows us to determine the
value of h:

h = �r 2 − x2� = �9 −�� = 3��1 −��� = 3�� = �3�

Inserting the value of h into the formula for the cap’s surface, we get

C = 2π(3)�3 − �3�� = 18π − 9π�3� = 9π(2 − �3�) ≈ 7.6
3
�
2

3
�
2

3
�
4

1
�
4

9
�
4

x
�
3

Surface of a sphere’s cap

 = 60°

r
x

h

a
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Hence the shadow that each surrounding ball throws onto the superball’s
surface is 7.6. On the other hand, the total surface of the superball is 4πr2.
With r = 3 this gives 36π, or 113.1. So for how many shadows is there room
on the superball’s surface? Divide one number by the other, 113.1⁄7.6, and you
get 14.9.
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Leech’s Proof

Leech inspected the points where the 12 (or 13) outside balls come into
contact with the central sphere, and—like Hoppe had done eighty years
earlier—suggested weaving a net. The points of contact are the knots, and
threads are woven between them. The length of each thread must be at least
1.047, to accommodate the balls.1 In principle, the net can be woven out of
triangles, quadrangles, pentagons, hexagons, heptagons, and so on.

He then proceeded to compute the minimal surfaces of each of these
polygons, and added them up. Leech reaches the conclusion that the total
area of the net must be greater than 0.5513, multiplied by a weighted sum
of the polygons.2 On the other hand, the net must fit tightly around the
ball, so its true area must be equal to the surface of the ball. It is known that
a ball with radius 1 has a surface of 4π, and so 4π must be greater than
0.5513 times the weighted sum of the polygons. Let’s note that down for
future reference:

4π ≥ 0.5513 (weighted sum of the polygons)

Net, with angles at least 60° (distance between
knots ≥ 1.047)

60

L

a> �

L �        = 1.047
π
3

1 In order for six balls to fit around the circumference of the central ball, which mea-
sures 2π, each ball requires a length of π/3 = 1.047.
2 I will not go into the reason why this is a weighted sum rather than a straight sum.
Suffice it to say that triangles carry a weight of one, quadrangles have a weight of two,
pentagons a weight of three, and so on.
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At this stage Euler’s theorem, which we first met in chapter 5, makes
another guest appearance. This time it comes in a three-dimensional guise,
to provide a relationship between corners (C ), faces (F ), and edges (E ) of
a net in space:3 C + F = E + 2. We can verify this fact for a simple net in
space: a cube-like net has 8 corners, 6 faces, and 12 edges, that is, 8 + 6 =
12 + 2. Add a pyramid to one of the cube’s sides, and you get 9 corners, 9
faces, and 16 edges, that is, 9 + 9 = 16 + 2. And so on, and so on. We can
rewrite Euler’s equation for nets in space as

2C − 4 = 2E − 2F

Let’s note that also for future reference.
Leech now proceeded to count the edges and the faces of the net, and

expressed them in terms of the polygons: Each triangle face is surrounded by
three edges, each quadrangle face by four edges, and so on. Then Leech cal-
culated the result for the right-hand side of Euler’s equation, 2E − 2F, by
expressing the edges and the faces in terms of triangles, quadrangles, and so
on. He did not forget to make the all-important allowance for double count-
ing, mind you, because neighboring polygons always have edges in common.
It turns out that the right-hand side of the rewritten Euler equation contains
the same weighted sum of the polygons that was obtained above.

As we recall, Leech already computed a lower limit for the net’s sur-
face—0.5513 times the weighted sum of the polygons—and now he has an
expression for the right-hand side of Euler’s equation, which is equal to the

3 That is, for polyhedra instead of polygons.

Euler’s equation for nets noting corners (C), faces (F), and edges (E)

C = 8
F = 6
E = 12

C = 9
F = 9
E = 16
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left-hand side, 2C − 4, in terms of the weighted sum of polygons. Putting
all of this together, he saw that the area of the net must be greater than
0.5513(2C − 4). But since the true area is 4π, this implies that 4π ≥
0.5513(2C − 4), which, in turn, means that C, the number of knots, must
be less than 14. And since each knot stands for a ball, 14 or more balls are
not possible.

Wow, big deal! We never even considered the possibility of 14 or more
balls touching the central sphere, the question was whether 13 could kiss or
not. So, unfortunately, the first one-and-a-quarter pages of the two-page
proof don’t settle the Newton–Gregory dispute at all. But Leech didn’t
stop there: he forged ahead for another three-quarters of a page. And if you
thought the fare up to this point was difficult, you ain’t seen nothin’ yet.

Let us assume, for argument’s sake, that the net can be composed of 13
knots. Leech showed that this leads to an impossible situation. The first
thing he did was to prove that a 13-knot net cannot have pentagons, or
hexagons, or higher polygons in it because the surface of such a net would
be too large. If pulled around the sphere it would sag, that is, it would have
slack. So in order for the net to fit snugly around the sphere, all polygons
higher than quadrangles have to be excluded. The conclusion was that the
net must be woven out of triangles, and at most 1 quadrangle.

Armed with this knowledge, let’s see how many triangles the net has.
The clue lies in Euler’s equation. With C = 13, that is, with 13 knots, the
left-hand side of the equation, 2C − 4, becomes 22 (= 2 � 13 − 4). Now
recall that the right-hand side of Euler’s equation is equal to the weighted
sum of polygons. This allows either 22 triangles and zero quadrangles,4 or

Leech’s net with slack

4 This is what Hoppe had used in his proof more than eighty years earlier.
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one quadrangle and no, you were quite close, but the answer is not 21 tri-
angles. For esoteric reasons that we shall not go into each quadrangle is
counted twice in the sum of the polygons, and, therefore, if the net con-
tains a quadrangle it will only have 20 triangles. Each of the two possibili-
ties will be inspected in turn.

We first concentrate on the latter case. With a total of 21 faces (1 quad-
rangle and 20 triangles), the right-hand side of Euler’s equation, 2E − 2F,
gives 2E − 42. Setting this equal to the left-hand side, which was 22, and
solving for E, we see that there must be 32 edges, or threads, in the net.
Obviously 32 edges have 64 endpoints, and these endpoints must be
attached to the 13 knots.

At this point a subtle net-weaving secret will be revealed: at most 5
threads can lead to any knot in our net. Why is that? Imagine a ball lying
at, or near, the North Pole of the central sphere and threads radiating out
towards 6 neighboring balls that lie around the equator. So far we have 7
balls. In order to get a total of 13 spheres, this means that 6 additional
spheres would have to be added to the lower hemisphere. But there is not
enough space. So let’s try to make room by rolling the 6 spheres up from
the equator, towards the North Pole. Well, they cannot all be rolled up
without getting into each other’s way. At most 5 balls can be moved north-
wards simultaneously. So 5 threads it will be, at most.

The details of the puzzle, that we have come up with so far, are as fol-
lows: A net must be woven out of 1 quadrangle and 20 triangles, or out of
22 triangles. It must have 13 knots, 32 threads, and 64 endpoints. Obvi-
ously, the threads must be attached to the 13 knots, and we also know that
at most 5 threads can reach each knot. So let’s continue from here.

We start with the case of 0 quadrangles and 22 triangles. By Euler’s
equation such a net must have 33 threads, and their 66 endpoints must be
attached to the 13 knots. But the only way to produce such a net would be
to weave 12 knots with 5 threads each, and a 13th knot with 6 threads. But
that can’t be done. According to the net-weaving secret, at most 5 threads
can lead to any knot in the net.

Now let’s inspect the case of 1 quadrangle and 20 triangles. The only way
to weave 64 endpoints into 13 knots—with no more than 5 threads reach-
ing each knot—is to attach 4 threads to 1 knot, and 5 threads to each of the
other 12 knots (4 � 1 + 5 � 12 = 64). So let’s weave such a net. Well we can’t!
And John Leech couldn’t either. In fact, nobody can. It is impossible.

Is it really? In a manner rather uncharacteristic for a mathematician, John
Leech decided to forego a formal demonstration of the impossibility and
simply wrote that he “knows of no better proof of this than sheer trial.” So
let’s also try. We start with the quadrangle and attach triangles to each side.
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Then we add a free thread to each of the 4 corners of the quadrangle. Of
the remaining 9 knots, 8 must have 5 threads attached to it, and 1 must have
4 threads running towards it. Try to continue the graph and note that in
order to enfold the central sphere with the net, the knots and threads that
lie on the periphery must be attached to one another. You will soon arrive
at a situation where no more threads can be woven into knots without vio-
lating some of the details of the puzzle (20 triangles, 32 threads, 12 knots
with 5 threads, one knot with 4 threads).5

Impossible net

5 You then must also deal with the case where 5 threads lead to 3 of the 4 corners of
the quadrangle, and the 4th corner has only 4 threads.
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Gauss’s Proof of Seeber’s Conjecture

In chapter 3 we already made acquaintance with quadratic forms in two
variables, which are defined as a2x2 + 2bxy + c2y2. Let us recall some of the
important features. Geometrically, quadratic forms can be regarded as the
distance between two points on a lattice. The distance between the lines
that make up the lattice’s grid are a in the x-direction, and c in the y-
direction. The system does not need to be rectangular. The cosine of the
angle between the two axes is b/ac. (Only if b equals zero, is the system rect-
angular.) The numerical values of x and y represent the number of ticks
between the two points on each axis.

The quadratic form’s determinant, D, is computed as a2c2 − b2 (or, if neg-
ative, as b2 − a2c2). It is called the determinant because it determines all
interesting properties of the quadratic form. (Sometimes it is called the dis-
criminant because it discriminates between quadratic forms with different
properties.) For example, the surface of the lattice’s fundamental cell is
given by the square root of D. Two quadratic forms can have the same
determinant, even if the values of a, b, and c differ.1 From among all the
quadratic forms that have the same determinant, some are regarded as being
equivalent to each other. (They are equivalent because they can all be con-
verted into each other by some algebraic operation that won’t be described
here.) Together they make up a class of equivalent quadratic forms. One
member from each such class is picked to serve as its representative. It is
called the reduced quadratic form and can be regarded, in some sense, as the
simplest member from among the whole class.2

Lagrange, Seeber, Minkowski, and others developed algorithms to trans-
form a quadratic form into its reduced state. We won’t describe these meth-
ods here, but just ask the following question: When confronted with a
quadratic form how can one tell, whether it already is reduced? As
recounted in chapter 3, Joseph-Louis Lagrange gave the answer. A qua-
dratic form is reduced iff (if and only if ) a ≤ c and 2b ≤ a2. If these two con-
ditions are fulfilled, and only then, the quadratic form is in its reduced state.

1 For example a = 3, b = 4, c = 1.375 and a = 2, b = 5, c = 2.550 have the same deter-
minant: D = 1.01.
2 All quadratic forms from a particular class can be converted into the same reduced
quadratic form.
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Quadratic forms are intimately related to lattices. Every lattice can be
described by a base. (Bases, remember, are vectors or little arrows, one for
each axis.) Usually a lattice can be described by more than one—in fact by
infinitely many—different bases. The “simplest” base corresponds to the
reduced quadratic form.

The quadratic forms which Lagrange dealt with are called binary because
there were two variables, x and y. Seeber’s contribution was to add a third
variable, z, and that’s what his book was about. The objects of his attention
were ternary quadratic forms, a2x2 + b2y2 + c2z2 + 2dyz + 2exz + 2fxy. Like
the binary quadratic forms, their ternary cousins have a geometric inter-
pretation. a, b, and c are the distances between the grid lines in the x-, y-,
and z-directions of a three-dimensional lattice, and d, e, and f determine the
angles between the axes. Ternary quadratic forms also have determinants,
which are defined as a2d2 + b2e2 + c2f 2 − a2b2c2 − 2def. As in the binary case,
ternary quadratic forms can be equivalent and for each class of equivalent
quadratic forms there is a simplest representative, the reduced quadratic
form. How can we know whether a quadratic form is reduced? Seeber
proved that a ternary quadratic form is in its reduced form, iff the following
conditions hold:

1. a ≤ b ≤ c.
2. 2|d| ≤ b2, 2|e| ≤ a2, and 2|f| ≤ a2.
3. d, e, and f must be of the same sign. If they are negative, 

−2(d + e + f ) ≤ a2 + b2.

He also proved that a2b2c2 ≤ 3D but suspected that a2b2c2 ≤ 2D. When Gauss
proved Seeber’s conjecture he had to distinguish between two cases: either
d, e, and f are all positive, or they are all negative. In the first case he intro-
duced six new variables:

D = b2 − 2d, E = c2 − 2e, F = a2 − 2f,
G = c2 − 2d, H = a2 − 2e, I = b2 − 2f

Obviously a2, b2, and c2 are positive. Given Seeber’s conditions on reduced
quadratic forms, it is easy to verify that D, E, F, G, H, and I are also posi-
tive. Gauss formed the expression 2D − a2b2c2 (the reader is invited to check
the details):

2D − a2b2c2 = a2dD + b2eE + c2fF + dHI + eGI + fGH + GHI

All the terms on the right-hand side are positive. This means that 
2D − a2b2c2 ≥ 0, from which Seeber’s claim follows:

a2b2c2 ≤ 2D
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Now the case must be analyzed where d, e, and f are all negative. This time
Gauss introduced nine new variables:

J = b2 + 2d, K = c2 + 2e, L = a2 + 2f
M = c2 + 2d, N = a2 + 2e, O = b2 + 2f
P = b2 + c2 + 2d + 2e + 2f
Q = a2 + c2 + 2d + 2e + 2f
R = a2 + b2 + 2d + 2e + 2f

which are all positive because of Seeber’s conditions on reduced quadratic
forms. (Check them if you like.) Gauss then wrote down the following
equation:

6D − 3abc = −a2d( J + 2P) − b2e(K + 2Q) − c2f (L + 2R) − dNO − eMO −
fMN + JKL + 2MNO

(Check that too if you like. Otherwise you may take Gauss’s word for it.)
Since d, e, and f are negative or zero, all terms on the right-hand side are
positive, and so is the left-hand side. Hence 6D − 3abc ≥ 0 and therefore

a2b2c2 ≤ 2D

QED

So Seeber’s hunch was correct!

Apart from proving Seeber’s number theoretic conjecture, Gauss also
gave a geometric interpretation for this result. And that is where the impli-
cation for sphere packing lies. Consider an upright box, whose edges are a,
b, and c and therefore has a volume of abc. Now reduce the box’s volume by
turning and twisting the axes. Try as you might, Gauss’s proof tells us that
the volume of the box can never be reduced by more than 29.7 percent.
How come? Well this time consider a lattice with edges a, b, and c, and with
a quadratic form whose determinant is D. Gauss explained that ���D is the
volume of the lattice’s fundamental cell (the “box”). So the theorem con-
jectured by Seeber is equivalent to saying that no grid system exists whose
fundamental cell is smaller than the volume of the upright box, reduced by
29.3 percent:

√���D ≥ abc/���2 = 0.707abc = (1 − 0.293)abc

Does that mean that a box can never be squashed? That you can never
reduce its volume to zero by stepping on it? Well, not quite. Gauss’s state-
ment holds only for boxes that are in reduced form. This means that the val-
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ues of d, e, and f, which determine the angles of the box, must fulfill the
three conditions mentioned above. A squashed box is not equivalent to the
upright box, even though it may have the same edge lengths a, b, and c. So
for all you recycling enthusiasts: Go on, you can do it! Squash the box.

In order to be a contender for the best packing, a lattice’s box must be
able to fit one ball of radius 1 (and of volume 4⁄3π = 4.189) at each corner.
So the edges must have lengths of at least 2. Hence, the upright box has a
volume of 2 � 2 � 2 = 8. On the other hand, we know that the volume of a
box can not be reduced by more than 29.3 percent. Therefore, the smallest
possible box has a volume of 5.657. From this it follows that the best pack-
ing density is 4.189⁄5.657 = 74.05 percent.

Which box has this minimal volume? The question is equivalent to ask-
ing under what conditions a2b2c2 is equal to 2D. For this to hold, the right-
hand sides of the two above equations must be equal to zero. We will just
skim the surface here. Gauss said that the cosines of the grid’s angles are d/bc,
e/ac, and f/ab. The right-hand sides of the equations are equal to zero iff
these three ratios are equal to 1⁄2. And the angle for which the cosine is 1⁄2 is
60°. And a box whose edges are inclined at 60° angles represents just the
FCC and the HCP arrangements. Now how ’bout that?
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Density of Spheres in a Dodecahedron

First, the dodecahedron is cut into twelve pyramids. They all have pentag-
onal bases. Let us denote the length of the edges of the pentagons with the
letter a. That was the easy part. From here on things become a bit compli-
cated. Actually, all that is needed is just elementary mathematics (Pythago-
ras and some trigonometry). But the derivations are long and tedious. In
fact, they are so convoluted that for the most part I will just state the results.

Volume of a dodecahedron

HD

a

108�

1. The volume of a pyramid is calculated as

VD = (Surface of the pentagonal base) ⋅ Height

2. The surface of the pentagonal base is

SD = 5 (tan 54°)� �
2

= (tan 54°)a2

The “54°” arises from the fact that the angle of a regular pentagon is
108°.

3. The height of the pyramid is

HD = (tan 54°) tan �arcsin � ��a
4. The volume of the dodecahedron is

VD = 12 ⋅ Volume of the pyramid

= 12 ⋅ SD ⋅ HD ⋅
1
�
3

1
��
2 sin 36°

1
�
2

5
�
4

a
�
2

1
�
3
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= (tan 54°)2 tan �arcsin � ��a3

≈ 7.66a3

5. The radius of an inscribed sphere is

r = �250 +�110�5��

Hence the edge length of the dodecahedron with an inscribed sphere
of radius 1, is

a = = 0.898

Therefore, the volume of the dodecahedron is VD = 5.55.
6. Since the volume of a sphere is 4.1888 (= 4⁄3π), the density is 4.1888⁄5.55 =

75.47 percent.

Density of Spheres in a Tetrahedron

Refer to the figure!

1. Volume of a tetrahedron with edge-length 2:
The surface of the base triangle is, by Pythagoras,

ST = �3�

The height of the tetrahedron, HT, is computed from (again by
Pythagoras)

H 2
T + X 2 = 22

20r
��
�250 +�110�5��

a
�
20

1
��
2 sin 36°

5
�
2

Density of spheres in a tetrahedron

HT

2 2

2222 X

Cap

70.53°

70.53°



We know that X = 2/��3 (just substitute 2 for D in the first section
of the appendix to chapter 4). Hence

H 2
T + = 4

and from this it follows that HT = �8⁄3�.
The volume of a pyramid (and hence of the tetrahedron) is:

VT = (Surface of base triangle) ⋅ Height

= �3��� = = 0.943

2. Volume of the parts of the sphere contained within the tetrahedron:
If a ball is placed at the corner of a tetrahedron, a spherical trian-

gle is cut out from it. We shall call it a “cap.”
Spherical trigonometry tells us that the surface of the cap with N

corners is the sum of the angles, minus (N − 2)π.
For a spherical triangle, that is, for a cap that has three corners, N

equals 3. What are the angles of the cap?
Start by drawing lines from the middle of an edge to the two

opposite vertices. By Pythagoras’s Theorem, these lines have
length ��3.

The sine of half of the angle that lies between these lines is 1/��3.
Hence the angle is 70.53°. The surface of the cap is, therefore,
3 � 70.53° − π = 31.6°.

On the other hand, the total surface of a sphere is 4 � π = 720°.
Hence 31.6° represents 4.389% of the total surface.

The volume of the part of the sphere that is contained in the tetra-
hedron is proportional to its surface.

Therefore, the balls at the four corners represent 17.55% of a
sphere’s volume.

The volume of a sphere is 4⁄3π = 4.189, and 17.55% of 4.189 equals
0.735.

3. The density is, therefore, 0.735⁄0.943 ≈ 77.97%.

Density of Spheres in an Octahedron

We investigate a square pyramid, which is half an octahedron.

�8�
�

3
8
�
3

1
�
3

1
�
3

4
�
3
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1. Volume of the pyramid with edge-length 2:
The surface of the base quadrangle is 2 � 2 = 4.
The height of the pyramid is ��2.
The volume of the pyramid is

Vo = (Surface of the base quadrangle) ⋅ Height

= 4�2� = 1.885

which is exactly twice the volume of the tetrahedron.
2. Volume of the parts of the sphere contained within the pyramid:

There is one ball centered at the top of the pyramid, and there are
four balls centered at the four corners of the base.

(a) The ball at the top cuts out four angles of 109.5° each. Again, this
requires no more than Pythagoras’s theorem and trigonometry, but we
won’t go into the details. The surface of this four-cornered cap is

S1 = (Sum of the angles) − (N − 2)π

where N, the number of corners of the base, is 4 in this case. Hence the sur-
face contained within the pyramid is

S1 = 4 � 109.5° − 360° = 78°

This corresponds to 10.8 percent of a whole sphere.
(b) The four balls at the bottom corners cut out triangles. Without

going into details, the spherical triangles have one angle of 109.5°, and two
angles of 54.7°. Therefore the surface of each ball contained within the
pyramid is (this time N equals 3)

S2 = 109.5° + 2 ⋅ 54.7° − 180° = 38.9°

1
�
3

1
�
3

Density of an octahedron

2

2
 54.7

109.5�

109.5�

109.5�

�



This corresponds to 5.4 percent of a whole ball.
(c) To summarize, there are four balls at the corners of the base, and one

ball on top. Hence, the total volume of those parts of the five balls that are
contained within the pyramid is

S = 4S1 + S2

= 4 ⋅ 5.4% + 10.8%
= 32.4% of a whole ball

Since the volume of a whole ball is 4.189 (= 4⁄3π), the volume of the parts
of the spheres contained in the pyramid is 1.357.

3. Dividing one volume by the other, we get

Density = ≈ 72%
1.357
�
1.885
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Number of Triangles in the Net

X triangles on their own have 3X edges. Since the triangles are woven into
a net, each thread belongs to two triangles at the same time. Hence there
are only 1⁄2(3X) = 1.5X threads in the net. Euler’s formula, which we dis-
cussed in chapter 6, says

Vertices − Edges + Faces = 2

or

Faces = Edges − Vertices + 2

In other words,

Triangles = Threads − Neighboring Spheres + 2

With X triangles, 1.5X threads and 44 neighboring spheres we get

X = 1.5X − 44 + 2

Which gives

X = 84

Hence there are 84 triangles in the net.

Number of Neighboring Spheres

On the other hand, Hales showed that the nets of Delaunay stars could be
made up of at most 102 threads. Since each thread belongs to 2 triangles,
the net has at most 51 triangles. Euler’s formula

Triangles = Threads − Neighboring Spheres + 2

translates as

51 = 102 − Neighboring Spheres + 2

Hence, the number of Neighboring Spheres is at most 53.

263



A P P E N D I X  T O  C H A P T E R  1 3

The Proof—An Explanation

For his proof, Tom Hales proposed three things: weave a net, partition
space, and partition space another time.

To begin, think about a saturated packing—a collection of balls that is
packed so tightly that no additional balls can be added. Pick one sphere at
random and call it the nucleus. The net is woven in the following manner:
draw red lines from the center of the nucleus to the centers of the neigh-
boring spheres.1 This produces a sort of wire mesh. Mark the points where
the wires cut through the nucleus. The nucleus now sports a set of freckles.
Connect the neighboring freckles along the surface of the nucleus with yel-
low threads. This defines a net that is wound around the nucleus. It is made
up of loops of various shapes.2

1 We call spheres “neighbors” if their centers lie at a distance of no more than 2.51 from
each other. The colors (red, yellow, and so forth) are mentioned only for illustrative
purposes. Our pictures are just black and white.
2 The word “loop” usually conveys roundness, but this need not be so. A net’s loops
have corners, that is, they are polygons.

Wire mesh and net around 
the nucleus
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Next, Hales suggested spanning the wires with red walls. These walls
define a set of red tetrahedra. Finally, he also proposed forming Voronoi
cells around the nucleus and around the neighboring spheres. The walls of
the cells were to be painted blue. Space has thus been partitioned twice,
once into red tetrahedra and another time into blue cells.

Now star-like structures are built around each sphere. Its components are
the red tetrahedra and the blue cells. If a red tetrahedron is sufficiently small
it is used as a building block, otherwise parts of the corresponding blue cell
are selected.3 Once the star has been built, it resembles a blue cell, with
inverted red tetrahedra sticking out from some of its sides. This multicol-
ored star represents Hales’s hybrid approach to Kepler’s conjecture.

Nets and stars are interchangeable. The threads of the net, you see, are
exactly the lines where the star cuts through the shell of the nucleus, and
that makes for a close relationship between stars and nets. Thus, by defining
and measuring the net’s score, the score of its star is also determined. But
all these yellow threads make for a rather drab net. Let’s put some life into
it by coloring all loops where red parts of the star cut through the shell in
orange (yellow + red = orange), and all loops where blue parts of the star
cut through the shell in green (yellow + blue = green). When a green loop
lies next to an orange loop, the threads will be orange on one side and
green on the other.

The remainder of the proof consists of computing the scores of all pos-
sible nets. As Hales soon came to realize, a net’s score is determined pre-
cisely by the shapes of the loops and by the colors of the threads.
Apparently, even in the most egalitarian of all worlds, shape and color do
matter. Color determines the mode of measurement: orange-colored loops
are scored by their surplus, green loops are scored by their premium.4 (For
threads that are colored orange on one side and green on the other, the
appropriate method is used for each of the neighboring loops.) The only
remaining problem are the shapes of the nets’ loops. All told, Hales had
managed to reduce the packing problem to the contemplation of stars, the
contemplation of stars to the inspection of nets, and the inspection of nets
to the scrutiny of loops. It was definitely getting simpler and simpler.

As was pointed out in the previous chapter, a score of 8 pts corresponds
to a density of 74.05 percent. The basic philosophy behind Hales’s proof

3 By “sufficiently small” Hales designated tetrahedra whose circumradius, that is, the
radius of the smallest ball that contains the tetrahedron, is at most 1.41. (The regular
tetrahedron, with edge-length 2, has a circumradius of 1.22.)
4 The notions of “surplus” and “premium” were introduced in chapter 11.
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was to show that regular triangles score 1 pt, other triangles score between
0 and 1 pt, four-sided loops score 0, and all other loops give negative scores.
Hales conjectured, indeed he was convinced, that when the scores of all
loops are added up, no net could ever achieve more than 8 pts. And only
two nets could achieve a score of exactly 8 pts. Which sphere arrangements
do these nets represent and why do they score exactly 8 pts?

The answer to the first question is:Kepler’s sphere arrangements. Both the
FCC and the HCP consist of eight regular tetrahedra and six regular octahe-
dra. Hence, the corresponding nets consist of eight equilateral triangles and

Cell with protruding tetrahedra
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six squares. What are the scores of these nets? Surplus and premium were
designed in such a way that regular tetrahedra, and hence triangles, score 1 pt,
regular octahedra, and hence squares, score 0 pts. Hence the eight triangles
score a total of 8 pts. The six squares, on the other hand, add nothing to the
total score. Therefore the nets, and hence the stars, and hence the sphere
packings of Kepler’s arrangements score exactly 8 pts.

The assignment that Hales faced was to show that no other net could
also score 8 pts. Hales laid out a game plan. First he would classify all nets
into a few distinct groups according to the shapes of the loops. Then he
would seek the representative net with the maximum score within each
group. Finally he would show that this maximum score always lies below 8
pts. Should he be successful with all steps, he would have shown that all
nets, without exception, score less than 8 pts. That would be tantamount to
saying that no packing—except for Kepler’s arrangements—could reach a
density of 74.05 percent. But he was not going to complete his game plan
overnight. It would take four years of intensive work to eliminate all con-
ceivable nets.

In Segment 1 Hales was going to show that all the nets that are composed
entirely of triangles have scores of at most 8 pts. He began his work by deter-
mining the characteristics that are necessary so that a net could at least pro-
vide the hope of achieving a score higher than 8 pts. How many knots must
it have? How many threads may lead to a knot? How long must the threads
be? To investigate these questions, Hales derived relationships between the
various attributes of the net’s triangles. Some of them were very esoteric.
One of the simpler relationships was “the triangle’s score is less than 0.5 pts if
one of the threads is longer than 2.2 but shorter than 2.51.”5 More compli-
cated examples were “the score is smaller than 0.287389, minus 0.37642101
multiplied by the angle of the corresponding tetrahedron.” Or “if the sum of
the three threads is less than 6.3 and the triangle cannot be contained within
a circle of radius 1.41, then the angle is greater than 0.767.”

Altogether Hales required thirty-five such inequalities. He could have
proven them with pencil and paper but that would have been very boring.
Moreover, he suspected that hundreds of such statements would turn up
during the coming years. It would be so much faster if he had a computer
program that would automate this tedious task. Designing a program that
automatically proves relationships and inequalities between variables also

5 To be exact, the measurements do not relate to the lengths of the threads. Rather they
refer to the lengths of the edges of the Delaunay stars. The threads are the projections
of these edges onto the central ball and are, therefore, shorter.
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takes a lot of effort. However, Hales decided that in the long run, it would
be more efficient to write a program and get the whole thing over with,
once and for all.

Say you have two functions and you want to show that one of them is
always smaller than the other one. Imagine them as curves on a sheet of
paper. Subdivide the sheet into squares, and check whether the squares that
the first curve enters always lie below the squares that the second curve
enters. If they do, you are done and the inequality has been proven. But if
the two curves overlap in some of the squares, the offending squares are
divided into subsquares and the checks are redone with a magnifying glass.
With any luck, you will be done at this stage. But if there still remain
offending squares, redivide them into subsubsquares, use a microscope, and
so on. If the inequality is, in fact, true, then you will eventually find that all
minisquares that the first curve enters lie below the minisquares of the sec-
ond curve. (If after several subdivisions of the boxes the inequality still can-
not be established, then it may simply not be true.)

This is how it’s done in two dimensions. In higher dimensions the work
becomes more tedious but not more difficult. Simply replace the squares by
n-dimensional boxes and apply the same process. Hales let the computer do
the dirty work for all thirty-five inequalities. One of them required just
seven boxes before it was proven to be correct, another inequality required
over two million. Eventually the truth of all statements was confirmed.

Based on the thirty-five inequalities, Hales realized that for a net to
approach the score of 8 pts it would have to satisfy nine requirements. For
example, it has to be composed of between 13 and 15 knots, and 4, 5, or 6
triangles must meet at each knot. The net can not contain more than 
2 knots where 4 threads meet, and these 2 knots can not lie next to each
other. And so on. Obviously such requirements significantly cut down on
the number of nets that could possibly score higher than 8 pts. Hales sus-
pected that maybe several hundreds of them would exist. He set out to use

Proving inequalities through magnification



A P P E N D I X  T O  C H A P T E R  1 3 269

combinatorial techniques to generate a list of the nets and to inspect them
one by one.

At first he thought of having the computer generate the list of all nets
that fulfill the nine requirements. But here we have an example of where
the human mind is still superior to electronic computers. The human who
accomplished this feat was none other than Doug Muder, the world record
holder for the lowest upper bound. Without the use of a computer, just
with pencil and paper, he gave a direct classification of all nets that satisfy
the nine requirements. By that time Muder had become somewhat of a
mathematical recluse. His disenchantment with academia was so intense
that he did not even bother publishing his result. He simply asked Hales to
append it to one of his articles.

Based on Muder’s result, Hales was able to show which nets fulfill the
nine requirements. There were not hundreds of them, as he had initially
suspected. There were not even dozens of them. No, there was exactly one
net that fulfills all nine requirements. It was composed of twenty-four tri-
angles connected through fourteen knots. The proof that it scores less than
8 pts turned out to be a piece of cake. All Hales had to do was reuse some
of the thirty-five inequalities.

There was no time for rest, however: on to Segment 2, which dealt with
n-sided loops, where n is three or greater.6 Hales was going to show that
three-sided loops score at most 1 pt, rectangles score at most zero points,
and any loop with more than four sides gets a negative score. In other
words, all loops except triangles and the square waste so much space that a
penalty must be imposed on the net’s total score! Hence, high-scoring nets
should include as many triangles as possible. If differently shaped loops are
needed, preference should be given to squares. Any other shape should be
avoided if at all possible. If they must be included, they should be accom-
panied by additional triangles to compensate for the penalties.

Muder’s net (Hales’s diagram 6.2)

6 The results of this segment were not needed immediately, but prepared the ground for
later parts of the proof.
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This is the point where the results of Hales’s dreams first bore fruit. Up
until now, he had always computed the scores of stars by their surplus, that
is, by the density gain (or handicap) they have over octahedra. The method
had been quite an advance over previous efforts, since all attempts to use
Voronoi cells had ended in serious problems—as Fejes-Tóth’s faulty dodec-
ahedral conjecture had shown beyond doubt.7 So the idea with stars was a
step forward. But it was by no means the answer to all problems. While it
gave better bounds on the packing density for small simplices, it ran into
trouble whenever the bits and pieces of the star became too large. Specifi-
cally, when the size of the tetraehdron reached about 1.8, the surplus esti-
mates were totally off the mark.8

So one method had led into a blind alley, the other to a dead-end road.
Was there a way out? There was! Combine the blind alley with the dead-
end road, knock out the obstructing wall, and blaze a new trail. This is what
Hales did. His brainstorm produced a hybrid scoring method that com-
bined density estimates of both simplices and cells. Take a tetrahedron with
a sphere placed at each of its four corners and an octahedron with a sphere
at each of its eight corners. The density surplus of a tetrahedron was defined
as its gain or handicap over the octahedron’s density (72.09 percent). The
premium is defined similarly. Take a ball’s Voronoi cell and slice it into
wedges. Each wedge contains, at its lower corner, part of the ball. Compute
the density that prevails in the wedge and compare it to the density of the
octahedron. The gain or handicap is the wedge’s premium.

Hales incorporated the surplus of the tetrahedra and the premium of the
cells into the score. If the size of a tetrahedron was smaller than 1.41, its score
was computed by the surplus, as in Segment 1. But whenever the tetrahe-
dron’s size was larger than 1.41, Hales would switch to the computation of
the premium of the appropriate cell.9 The combination of the two methods
of measurement produces a useful score for stars of all sizes. This hybrid
approach retains the best features of both methods, without producing any
harmful side effects. Hales had some additional fancy ideas—like reassign-
ing offending corners of the Voronoi cells to its neighboring cells—but we
won’t burden ourselves with those details.

The stage was set for the inspection of the loops. Hales already knew that

7 Recall, that Fejes-Tóth showed that the dodecahedron is the smallest possible cell. But
since dodecahedra do not tile space, they have to be combined with other shapes to
form an efficient packing.
8 Again, by “size” of a simplex Hales meant its circumradius.
9 The cutoff number of 1.41 was a bit arbitrary. All that mattered was that it was safely
below 1.8.
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regular triangles score exactly 1 pt. In addition, one of the thirty-five
inequalities that Hales’s computer program had spat out for Segment 1
implied that irregular triangles score between 0 and 1 pt. To show that loops
of any other shape score at most 0 pts, Hales returned to the star, which
gave rise to the net. He split it into a number of wedges, each of which was
shaped either as a small tetrahedron or as one of four different archetypes.
He was going to show that the density of each wedge was at most 72.09
percent. Since this number represents the density of the octahedron, the
score would at most be zero.

Hales went to work. Wedges were broken into subwedges, the computer
was programmed to spit out some more inequalities, and the surpluses and
the premiums of all the bits and pieces were computed. One by one, each
of the four archetypes was shown to have a density less than the octahedron.
This implied that loops of any shape other than triangles or squares have
negative scores. A second implication was that whatever pieces are needed
to fill the space around a tetrahedron, their densities could never be greater
than that of the octahedron.

With Segment 1 and Segment 2 safely under his belt, Hales’s next chal-
lenge was Segment 3. This is where he dealt with nets that are woven out
of triangles and quadrangles. He was going to prove that no such net could
have a score higher than 8 pts. Of course, Kepler’s arrangements also con-
sist of triangles and quadrangles, and we know that they score exactly 8 pts.
The question was whether another net could also reach 8 pts. Hales
thought that this was out of the question.

First let us look at squashed versions of Kepler’s arrangements. Can a
deformation of the net raise its score? The answer is no. Even the slight-
est deformation transforms regular triangles into irregular ones, thus
reducing the score to below 1 pt, and deforms squares into rectangles,
making their scores negative. Hence, the net’s total score falls to below 8
pts and squashed versions of Kepler’s arrangement were no contenders for
the perfect score. What about other nets composed of triangles and quad-
rangles? Maybe a few triangles, which have positive scores, could be
added to an existing net, thus increasing its score. Hales was convinced
that this was impossible. Or so he thought. As he was to discover soon
there was one net, consisting of ten triangles and five quadrangles, which
came pretty close to the perfect score. It was the dirty dozen. Hales did 
a wise thing. Instead of letting himself be frustrated by this annoying 
net, he looked it straight in the eye—and ignored it. The dirty dozen,
which requires very delicate treatment, would be dealt with in a separate
segment.

But we are jumping ahead. Hales started his work by laying out a plan



similar to the one that had been successful for Segment 1. First, he was
going to establish a list of properties that are necessary in order for a net
to have a hope of reaching a score higher than 8 pts. Then he was going
to list all nets that satisfy these characteristics, and sort them into classes.
Following that, he would seek the maximum score in each of these
classes. Hales hoped he would be able to show that these maxima always
lie safely below 8 pts. Thus he would eliminate all nets, one by one. But
it was a frightening prospect. In Segment 1 he had been very lucky
because only a single net existed that had a chance of scoring high. It had
easily been eliminated. In Segment 3 there could be millions and millions
of them, in which case the task would be hopeless. Would he be lucky
again?

The search for the required properties was based on twenty-six inequal-
ities between the attributes of loops and their scores. It turned out that a net
woven out of triangular and quadrangular loops had to satisfy exactly seven
requirements in order to even have a prayer of scoring 8 pts or more. For
example, acceptable nets had to include at least eight triangles and at most
six quadrangles. Knots were not allowed to connect one triangle to four
quadrangles. And so on.

Generating a list of those nets was one of the most important parts of
Segment 3. In the search for all nets that satisfy the seven requirements the
computer was put to work again. The algorithm starts out with partially
completed nets. Additional loops are added by tying loose ends into knots.
Existing nets are modified by adding threads and creating subloops. When
all loose threads have been tied up, the program performs a quality check:
Are the seven requirements fulfilled? If they aren’t, the net is discarded.
Only finished nets that do satisfy the seven requirements are contenders for
a high score and are put on the list of candidates. After hours of whirring
and buzzing the computer coughed up the result: 1,749 nets. At first, Hales
was taken aback. This certainly was a lot of nets. But then he breathed a
sigh of relief; the problem was not unmanageable. The important point was
that an explicit list had been obtained.

Now it was time to verify whether the scores of the 1,749 nets lie safely
below 8 pts. The computer spat out fifty-one inequalities, which related the
scores of the loops to the lengths of the threads and to the angles at the cor-
ners. Additionally, there was constraint number fifty-two. It was actually an
equation that stated the obvious fact that the sum of the angles around a
knot must add up to 360°. Using these fifty-two constraints, the computer
was ready to compute the maximum scores that the nets could attain.
Would they lie below 8 pts?

Unfortunately, it is notoriously difficult to maximize non-linear equa-
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tions in many variables, especially if the number of triangles, quadrangles,
and knots must be integers. But once again, Goddess Fortuna was kind to
Hales. In all but twenty-three of the 1,749 cases the non-linearities could
be avoided by employing a technique called “linear relaxation.” The tech-
nique consists of simply dropping the integer requirement and some of the
non-linearities. Let us describe the technique in a few words.

The fewer constraints there are in a system, the more freedom exists.
This is as true in a mathematical system as it is in a political system. Under
a dictatorship, for instance, with its numerous restrictions on all forms of
human activity, possibilities for success in most endeavors are severely
restricted. As a consequence the economy is inefficient, quality of life is
low, and art is boring. In a free country, on the other hand, where every-
thing is more relaxed and everyone is allowed to do as one pleases, innova-
tion flourishes and the economy booms. Dropping or relaxing constraints
in a maximization problem has an effect similar to the liberation of a coun-
try from a dictatorship. Suddenly there is more freedom, and with more lib-
erty to move around, the solution will in all likelihood be better. The upper
bound of a maximization problem certainly won’t be lower, and most
probably will be higher. So if the linear relaxation, which can be found
with relative ease, were to produce a score that lies safely below 8 pts, this
would be all the more true for the nonlinear integer problem. And this,
after all, is what Hales wanted to prove. The actual technique he used to
find the linear relaxed maxima is called the “simplex method.” It is one of
the most important computer algorithms of the twentieth century.10

In 1,726 of the 1,749 cases, the linear relaxed version of the problem
gave scores below 8 pts. There remained twenty-three nets—four of them
obvious, and nineteen pathological cases—where linear relaxation pro-
duced bounds of 8 pts or above. Of the obvious nets, two belong to
Kepler’s packings, of which it had been known all along that they would
score exactly 8 pts. Then there was the icosahedral net. This net corre-
sponds to the dodecahedral Voronoi cell. And the dodecahedral Voronoi
cell, which contains only triangles, had been eliminated in Segment 1.
Finally there was the dirty dozen, which Hales decided to ignore for the
time being.

The real problem now was the nineteen remaining nets. Their number
diminished to eighteen after Hales realized that two of the nets were actu-
ally mirror images of each other. The fact that these pathological nets could
not be eliminated did not mean that their scores actually reached or sur-

10 This method, as well as the “branch and bound method” mentioned on the follow-
ing page are described in a little more detail in chapter 12.



11 Virtual because a real net can’t contain, say, 2.5 triangles.
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passed 8 pts. All it meant was that the methods that Hales had used were not
powerful enough to establish that the true scores were, in fact, lower than 8
pts. Hence, these cases required more refined treatment.

Hales started his work on the pathological nets by tuning up the linear
programs. He divided the domains of the optimization problem into several
thousand smaller sets and worked on them. Eventually he was able to show
that fourteen nets have scores below 8 pts, and they could be eliminated.
Two additional nets were dealt with by application of an advanced opti-
mization technique called the B&B method. Only B&B does not stand for
“bed and breakfast” but for the “branch and bound” method. These two
holdouts could not withstand the double barrage of enhanced linear pro-
grams and B&B. The upper bound for their scores were pushed below 8
pts.

The last two nets required even more specialized treatment. Upon closer
inspection it turned out that the wedges of the star that gave rise to the
offending nets were rather small. This allowed the addition of extra con-
straints. With more restrictions, elbow room became cramped. And with
less freedom to move around, the upper bound certainly can’t be higher.
Most probably it will be lower. (Actually, the addition of the extra con-
straints counteracted the “linear relaxation”: when the integer-requirement
was dropped, the virtual nets were free to reach a higher score.11 Subse-
quent efforts then concentrated on pushing the relaxed bounds back down,
through the addition of new constraints.) And this was exactly what hap-
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pened. As soon as Hales added the extra constraints, the bound dropped
below 8 pts. The last two nets went out the window.

And that was it: 1,745 nets with triangular and quadrangular loops had
been eliminated. The only nets whose scores could reach or surpass 8 pts
belonged to the dirty dozen, to be dealt with in Segment 5, to the icosea-
hedral net, dealt with in Segment 1, and to Kepler’s two packings.

Next on the list was Segment 4. It dealt with nets that contain loops other
than triangles and quadrangles. Hales argued that loops with more than four
sides take up too much space, give too little in return, and have such incom-
patible shapes that they cannot be part of a winning strategy. Just one such
loop would make the whole net incompatible with a high score. No amount
of triangles would be able to make up for the squandered space. To make his
point, Hales wrote a forty-seven-page paper, densely filled with equations
and formulas. But even forty-seven pages did not suffice and in order to
present all the evidence he had to write an additional sixty-three-page paper.

The procedure was similar to the one used in Segments 1 and 3. First,
the characteristics that are necessary for a net to obtain a score of 8 pts had
to be found. Then, using combinatorics, a list of all nets that fulfill these
characteristics had to be generated. Finally, it had to be ascertained that the
scores of all nets on the list do not, in fact, reach 8 pts.

Some of the required characteristics are, for example that the net has at
most 100 knots, that two knots with four threads each cannot lie next to
each other, and so on. One important fact is that nets that aspire to a score
of 8 pts cannot include nonagons (a polygon with nine sides). Neither can
they include decagons, or any polygon with more than ten sides. The rea-
son is that such loops waste too much and add too little. On balance, they
make a negative contribution to the net’s total score.

By the way, there is a maximum score that can be attained. No matter
what its shape, no net can ever score more than 22.8 pts. This significant
fact is implied by the upper bound on the packing density that Rogers had
discovered in 1958 (77.97 percent, as shown in chapter 9).12 It corresponds
to four balls placed at the corners of the tetrahedron and would be the max-
imum packing density if tetrahedra were able to fill space without gaps.
Since they aren’t able to do so, 77.96 percent or 22.8 pts are the maximum
density and score that a star or net can achieve locally.

To make use of this interesting fact and to complement the definition of
the score, Hales introduced an additional measure for stars and nets: the
amount squandered. While the score is the improvement in density over the

12 22.8 pts = 22.8 × 0.05537 = 1.2624 = 77.96%.
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octahedron’s 72.09 percent, the amount squandered is the deficit as com-
pared to the tetrahedron’s 77.96 percent. The fact that no net can have more
than 22.8 pts has a very important consequence: if a loop, or a collection of
loops, squanders more than 14.8 pts, the net must score less than 8 pts. (If
more than 14.8 are deducted from 22.8, the remainder is less than 8.)

Once again it was time to utilize combinatorial techniques to generate a
list of nets with the required characteristics. The computer whirred and
buzzed. The printer clanked and clunked. Finally Hales held the output in
his hands: there were 2,469 nets that contained at least one pentagon, 429
with at least one hexagon, 413 with at least one heptagon, and 44 nets that
included at least one octagon. Altogether 3,345 nets that had the potential
to reach, or even to surpass, a score of 8 pts were listed. They were subjected
to the by-now-familiar linear program. The maximum score was sought,
given constraints on the angles, thread lengths, placement of loops, you
name it. As the nets were inspected loop by loop, the computer kept track
of how much space was being squandered. As soon as the squandered space
reached 14.8 pts, the net was thrown onto the pile of rejects. No amount of
space-saving triangles would have been able to make up for the lost space.

The method worked in most cases: 3,156 nets could be chucked out
immediately. But 189 nets did not succumb to the attack. Linear program-
ming methods were not able to prove that the scores were below 8 pts.
These nets required special attention and Hales had to call in heavier
artillery.

Taking his cue again from a good dictatorship, Hales restricted the nets’
freedom by adding more constraints. Thus he prevented them from attain-
ing a high score. The new constraints were by no means simple. Number
131574415, for example, reads: “The score is smaller than 1.01 minus 0.1
times the length of thread 1 minus 0.05 times the length of thread 2 minus
0.05 times the length of thread 3 minus 0.15 times the length of thread 5
minus 0.15 times the length of thread 6, provided that the angle is less than
1.9, thread 1 is shorter than 2.2 and thread 4 is longer than 2.83.” Or take
constraint 941700528: “The space squandered is greater than 0.14 times the
length of thread 5 plus 0.19 times the length of thread 6 minus 0.676, pro-
vided that threads 1 and 4 are equal to 2, thread 5 is longer than 2.83 but
shorter than 3.23, and thread 6 is longer than 3.06 but shorter than 3.105.”

Such fierce-looking inequalities really took the juice out of the majority
of the remaining 189 nets. One hundred and one were defeated by the aug-
mented linear program. But eighty-eight obstinate, stubborn, tenacious
nets still resisted all efforts. They had to be inspected and treated case by
case. The offending loops were divided into smaller subloops, and B&B was
applied. Thus the eighty-eight holdouts were also dealt death blows and
Segment 4 was brought to an end.



Now all that was missing to complete the proof was the dirty dozen.
Hales’s early computer experiments had produced disturbingly high results
for this configuration. Subsequently he decided to ignore the wayward
configuration while getting the rest of the proof in order. But now there
were no more excuses. The troublesome configuration had to be met face
on. The dirty dozen was the task of Segment 5.

Let’s recall that Hales usually did not compute the score itself, but only
upper bounds for the true, unknown score. The best upper bound that he
had found for the dirty dozen so far was 8.156 pts. That didn’t help much.
The dirty dozen’s score lies below 8.156, but is it below 8.000? Only if this
question is answered to the affirmative can Kepler’s conjecture be consid-
ered proven. If Hales and Ferguson could not reduce the bound below 8
pts, all would be lost. While there would be no certainty that the dirty
dozen scores 8 pts or above, there would always remain a doubt. Hales put
Ferguson to work.

The dirty dozen’s net is made up ten triangles and five quadrangles. In
principle, it should have been treated in Segment 3 where nets with such
shapes were analyzed. But while working on that segment, it soon become
apparent—indeed, Hales had suspected as much from his earlier computer
experiments—that the necessary estimates would be much more delicate
than for the other triangular nets.

With the help of their trusted friend, the computer, Ferguson proved
various relationships between the scores and the angles of the two kinds of
loops. Then he multiplied the inequalities for the triangles’ score by ten,
and the inequalities for the quadrangles’ score by five. Finally, everything
was added up. During the computations two facts came in handy: the sum
of all angles that meet at a knot is 360° (= 2π), and the sum of all solid
angles that meet at the center of the nucleus is 4π. After many trials and
tribulations, Ferguson received the following equation for the dirty dozen’s
total score:

Total score of the dirty dozen ≤ 5b + 10c − 4πm

where b = 0.49246, c = 0.253095, and m = 0.3621. Substitute these numer-
ical values into the equation and there you have it: The right-hand side of
the equation comes out to 7.99961! That’s an upper limit for the net’s
score. The derivation of this limit may seem rather simple and quite
straightforward, but nothing could be further from the truth. It was an
extremely difficult, arduous task, that required the solution of many com-
plex problems on the way.

Hence, the dirty dozen or, to return to its scientific name, the pentago-
nal prism, scores less than 7.99961 pts. Ferguson could have done even bet-
ter than that and proved a tighter bound, like 7.98 pts, but why bother? It
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was quite sufficient to show that the dirty dozen’s score was below 8 pts,
and that has been done with 0.00039 to spare.

With this the last segment of the master plan had fallen into place. The
pentagonal prism that created such problems in the earlier papers was no
longer a contender for the “best packing” title. Hales and Ferguson
breathed a collective sigh of relief: Only the two sphere arrangements that
Johannes Kepler had described four hundred years earlier—a dozen spheres
appropriately arranged around the central sphere—score a perfect 8 pts.
They are the arctissima coaptatio, the densest packing. The proof was com-
plete. Kepler’s conjecture had finally been solved.

QED

Altogether Hales had checked the scores of 5,093 nets, and Ferguson had
checked one additional net. (It’s not as if Hales had done 5,093 times the
work, it’s just that Ferguson had been saddled with the toughest, most vex-
atious specimen of them all.) The vast majority of the nets were eliminated
by the computer. About 100 of them had to be checked by hand with more
refined methods. One by one, they too were eliminated. All, that is, except
for the FCC and the HCP. By the way, let us recall that Barlow had shown
in 1907 that there are an infinite number of arrangements—albeit not lattice
arrangements—that achieve a density of 74.05 percent (see chapter 1).
Upon close inspection of those arrangements, we see, however, that they
are all made up of FCCs and HCPs.

So the FCC and the HCP really are the densest packings. Surprised?
Hardly. Most mathematicians, and all physicists, would have been stupefied
had it turned out otherwise. What was surprising about the proof is that
Kepler’s conjecture, which had resisted the efforts of mathematicians for
four centuries, could be solved by nothing more advanced than linear
methods. The series of papers, Sphere Packings I, II, III, IV, V, and VI, filled
over 250 pages. The programs and the output, which can be found on
Hales’s web site, comprise 3 gigabytes of data.
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Some Mathematical Conjectures

The following list of 116 conjectures represents just a sample of challenges
that mathematicians are confronted with. No attempt has been made at
completeness. Some of the conjectures have already been solved, some have
been shown to be incorrect, others may be solved by the time you read this.
And, of course, new conjectures are proposed every year.

Adam’s conjecture, Alperin’s conjecture, Andrew-Curtis conjecture,
annulus conjecture, Artin’s conjecture, Banach conjecture, Bernstein’s con-
jecture, Birch and Swinnerton-Dyer conjecture, Birch-Tate conjecture,
Bombieri-Dworke conjecture, Borsuk’s conjecture, Brauer’s k(B) conjec-
ture, Brauer-Thrall conjecture, Bunyakowski’s conjecture, Burnside conjec-
ture, C1 stability conjecture, Calabi’s conjecture, Carmichael’s conjecture,
Catalan-Dirkson conjecture, Catalan’s conjecture, Chang’s two cardinals
conjecture, Cherlin-Zilber conjecture, Collatz conjecture, Conner-Floyd
conjecture, Dyson’s conjecture, Eckmann-Ruelle conjecture, entropy con-
jecture, epsilon conjecture, Erdös–Heilbronn conjecture, Erdös–Wintner
conjecture, Evans’ conjecture, Fejer’s conjecture, Fermat’s conjecture, four
colour conjecture, Frobenius conjecture, fundamental conjecture of com-
binatorial topology, Gilbert-Pollak’s conjecture, Goldbach’s conjecture,
Golod-Gulliksen conjecture, conjecture A of Golomb, Gottschalk’s con-
jecture, Grothendieck’s conjecture, Hadamard’s conjecture, Hadwiger’s
conjecture, Halberstam’s conjecture, Heawood’s conjecture, Hedetniemi’s
conjecture, Hodge’s conjecture, Iwasawa–Gleason conjecture, Kazhdan-
Lustig conjecture, Kellogg’s conjecture, Kelly-Ulam reconstruction conjec-
ture, Kneser–Tits conjecture, generalized Kostrikin-Shafarevich conjecture,
original Kostrikin-Shafarevich conjecture, Kummer’s conjecture, Landau’s
conjecture, Leopoldt’s conjecture, Lichnerowicz’s conjecture, Lindelöf ’s
conjecture, Luzin’s conjecture, Macdonald’s conjecture, MacWilliams-
Sloane conjecture, Mahler’s conjecture, Minkowski’s conjecture, modu-
larity conjecture, Moore space conjecture, Mordell’s conjecture, Morley’s
conjecture, Mumford’s conjecture, Nagata’s conjecture, Nevanlinna’s 
conjecture, Noether’s conjecture, Novikov’s conjecture, P. A. Smith’s con-
jecture, P ≠ NP conjecture, Palis–Smale conjecture, perfect sequence 
conjecture, Petersson’s conjecture, Pillai’s conjecture, Platonov’s conjec-
ture, Poincaré’s conjecture, positive mass conjecture, Ramanujan’s conjec-
ture, Reifenberg’s conjecture, Riemann’s conjecture, Schanuel’s conjecture,
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1 No relation to the author.

Schläfli’s conjecture, Schönflies conjecture, Segal’s conjecture, Selberg’s
conjecture, Serre’s conjecture, Shapiro’s conjecture, Shfarevich’s conjecture,
Siegel’s conjecture, stable homeomorphism conjecture, Stone-Weierstrass
conjecture, Strong Norikov conjecture, Suslin’s conjecture, Szpiro’s conjec-
ture,1 Tate’s conjecture, the unicity conjecture, upper bound conjecture, van
der Waerden’s conjecture, Wagner’s conjecture, Weil’s conjecture, Weil-
Tamiyama conjecture, Weinstein’s conjecture, Witten’s conjecture, the
{XYZ} conjecture, Zeeman’s conjecture.
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