This is an authorized facsimile
printed by microfilm/xerography on acid-free paper
'in 1985 by |
UNIVERSITY MICROFILMS INTERNATIONAL
Ann Arbor, Michigan, U.S.A.

3058

Webber, Robert Edward
ANALYSIS OF QUADTREE ALGORITHMS

University of Maryland

University
Microfilms
International 300 N. Zeeb Road, Ann Arbor, Mi 48106

8421278

PH.D.

1983

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.

The sign or ‘“‘target” for pages apparently lacking from the document
photographed is ‘“Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of ‘“sectioning’ the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete. :

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

N iercHims
International

300 N. Zeeb Road
Ann Arbor, Ml 48106

ANALYSIS OF QUADTREE ALGORITHMS
by
Robert Edward Webber

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1983

Cofij l

® Copyright Robert Edward Webber 1983

APPROVAL SHEET

Title of Thesis: Analysis of Quadtree Algorithms

Name of Candidate: Robert Edward Webber
Doctor of Philosophy, 1983

Hooe [t

Thesis and Abstract Approved:

Hanan Samet
Associate Professor
Computer Science

Date Approved: (¢ 20983

ABSTRACT

Title of Dissertation: Analysis of Quadtree Algorithms
Robert Edward Webber, Doctor of Philosophy, 1983

Dissertation directed by: Hanan Samet
Associate Professor
Computer Science

In this thesis, several aspects of quadiree representations are analyzed. The
quadtree is a hierarchical variable-resolution data structure suitable for representing the
geometric objects of computer graphics, the polvgonal maps of computer cartography,
and the digitized images of computer vision. The analysis of quadtrees is presented in
three parts: (1) a formal semantics for quadtree algorithms, (2) improved algorithms for
manipulating the standard region quadiree. and (3) adaptations of the quadtree

‘methodology o the task of representing polygonal maps.

The first portion of this thesis provides a formal semantics for quadiree
algorithms, simultaneously overviewing and unifying previous research in this field.
Such a semantics has many usages. It forms a basis for correctness proofs of quadtree
algorithms. It provides a foundation for automatic derivation of variations of quadtree
algorithms. [t guides comparison of quadiree algorithms with algorithms based on other

hierarchical data structures.

In the next poriion of this thesis, the worst—case behavior of siandard region (and
line) quadtree algorithms is investigated. An improvement in the worst-case
performance results from usage of a quadtree normalization algorithm that calculates a
good placement of an image on the digitization grid. This normalization algorithm is

first developed in order to show that a quadtree can be constructed from a chain code

in time proportional to the length of the chain code. The algorithm is then modified
to allow the building of a normalized quadtree from an arbitrary quadtree in time
proportional to the size of the two quadtrees. Algorithms for connected-component
analysis and quadtree—to-chain-code conversion on normalized quadtrees are developed

that execute in time proportional to the number of nodes in the normalized quadtree.

In the last portion of this thesis, we consider the problem of how to adapt the
quadtree methodology to the task of representing polygonal maps. Three approaches for
representing polygonal maps are presented. First, we analyze the storage reduction that
results from performing common subtree elimination on a quadtree that represents a
polygonal map. Next, we consider how to use point quadtrees to store a Voronoi
tessellation of a polygonal map. Finally, we develop a quadtree variant, called a PM

quadtree, that provides a compact representation that is easy to both access and update.

ii

TABLE OF CONTENTS

1. INTRODUCTION 1
2. A FORMAL BASIS FOR A THEORY OF QUADTREE ALGORITHMS 21
2.1. PRELIMINARY DEFINITIONS AND THEOREMS 21
2.1.1. DEFINING NEIGHBOR RELATIONS 2

2.1.2. THEOREMS REGARDING NEIGHBOR RELATIONS 25

2.2. THE DEFINITION OF TWO TYPES OF QUADTREES 36
2.2.1. DEFINITION OF PICTURES AND THEIR PROPERTIES 37

2.2.2. DEFINITION OF REGION PYRAMIDS AND QUADTREES 40

2.2.3. DEFINITIONS RELATING TO AND |INCLUDING LINE 42

QUADTREES

2.3. RESULTS ON THE SIZE OF QUADTREES 46
2.4. ON FINDING NEIGHBORING QUADTREE NODES 55

3. NORMALIZING QUADTREES WITH RESPECT TO AGGREGATE 92
NEIGHBOR FINDING

3.1. DEVELOPMENT OF ANF ALGORITHMS FOR PYRAMIDS 92
3.1.1. THE OPTIMAL POSITIONING OF CHAIN CODES 92
3.1.2. THE CHAIN CODE TO QUADTREE ALGORITHM %

3.2. GENERALIZATION OF ANF ALGORITHM TO DIRECTLY TRANSFORM 98
QUADTREES
3.2.1. OPTIMAL POSITIONING OF QUADTREES 98
3.2.2. USING ANF NORMALIZATION IN OTHER ALGORITHMS 99
3.2.3. COMPARISON OF ANF TRANSFORM WITH NODE 101

MINIMIZATION
4. USING QUADTREES TO STORE POLYGONAL MAPS 110

4.1. A GEOMETRIC MODEL FOR THE NEIGHBOR AXIOMS 111

4.2. USING COMMON SUBTREE ELIMINATION TO COMPACT 114
QUADTREES .

4.3. USING VORONOI DIAGRAMS AND PR QUADTREES TO STORE 118
POLYGONAL MAPS
4.4. USING MAP VERTICES AND PR QUADTREES TO STORE POLYGONAL 121

MAPS

4.4.1. BACKGROUND FOR PM QUADTREE DEVELOPMENT 121
4.4.2. THE PM, QUADTREE 123
4.43. THE PM_ QUADTREE 125
4.4.4. THE PM, QUADTREE 126
4.4.5. ALGORITHMS FOR PM QUADTREES 127
4.4.6. POINT-IN-POLYGON DETERMINATION 128
4.4.7. LINE SEGMENT INSERTION IN PM QUADTREES 130
4.4.8. OVERLAY ALGORITHM FOR PM QUADTREES 132

4.4.9. CONCLUSIONS 137

iid

5. CONCLUSIONS i 159

Figure 2-5:
Figure 2-6:

Figure 2-7:
Figure 2-8:

Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:

Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 2-18:

iv

LIST OF FIGURES

An unbiased decomposition of the viewing window
A biased decompositon of the viewing window

A sample image

4x4 decomposition of image in Figure 1-3

A quadtree decomposition of Figure 1-3

Pointer representation of Figure 1-§

Dewey Decimal representation of Figure 1-§
DF-expression representation of Figure 1-§
Four/Nine/Four decomposition of a 12x12 image
Dewey Decimal representation corresponding to Figure 1-9
Line quadtree equivalent of Figure 1-§

Example of a point quadtree decomposition

PR quadtree equivalent of Figure 1-12

Layout of indices for F*

Layout of subframes for F°
Example of a pair of subframes, x and z, where X ne 2z

Representation of a binary picture denoted
<F' {BLACK.WHITE}.f>, with an area of 2 and a perimeter of
length 6

Representation of embed(NW.P). where P is the binary picture
of Figure 2-4

Representation of surround(P). where P is the binarv picture of
Figure 2-4

Two nictures related via a frame isomorphism

Two npictures related via a frame isomorphism preserving
neighbor relations among non-white pixels

Ilustration of a shift from <F .C.f> to <F *.C.f’’>

Example of a shift of picture in Figure 2-4 with distance 1 in
the western diréction

The overlay of two binary pictures

Representation of the region pyramid for picture in Figure 2-6
Representation of the region quadtree of the pyramid in Figure
2-12 '

Representation of the partial quadtree Q' of the pyramid in
Figure 2-12

Representation of thc difference picture of Figure 2-5§
Representation of tne line pyramid for Figure 2-15
Representation of the line quadtree for Figure 2-16 -

Representation of the partial quadtree Q' of the line quadtree
equivalent of the region quadiree in Figure 2-13

10
1
12
13
14
15
16
17
18
19
20

61

62
63

65

67
68

69
70

71

72
73

74

75
76

78

Figure 2-19:
Figure 2-20:
Figure 2-21:
Figure 2-22:

Figure 2-23:
Figure 2-24:

Figure 2-25:
Figure 2-26:
Figure 2-27:

Figure 3-1:

Figure 3-2:
Figure 3-3:

Figure 3-4:
Figure 3-5:

Figure 3-6:
Figure 3-7:

Figure 3-8:

Figure 4-1:
Figure 4-2:

Figure 4-3:
Figure 4-4:
Figure 4-5:

Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:

Figure 4-15:

Figure 4-16:
Figure 4-17:

Figure 4-18:

Record structure for difference picture of Figure 2-15

Record structure for line pyramid of Figure 2-16

Record structure for line quadiree of Figure 2-17

Example of 4 by 4 checker-board picture and corresponding
region quadtree

Illustration of the path sequence in surround(P) corresponding
o Figures 2-4 and 2-6

Illustration of the reduction of the augmented path of Figure
2-23

Example of a picture of a modified checker-board patiern

Two quadtirees representing a 4x4 square in an 8x8 picture
Example of quadiree whose aggregate neighbor finding cost is
of the order of the number of nodes squared
The region pyramid corresponding to the chain code for
NNNNNEEESSWSSESSWWWN, where f, is SW.SW.NE

Example of the centered snake path in a pyramid of depth 3
Example of the path in Figure 3-2 shifted 10 a more efficient
position

Result of ANF shifting of Figure 3-1

Actual chain code for perimeter following algorithm applied to
image of Figure 3-1

Quadtree corresponding to Figure 3-§

A sketich of the construction of a sequence where ANF creates
too many superfious nodes

A sketich of the construction of a sequence where NM causes
neighbor finding 10 be too laborious

Subframes of F’ labeled by Cartesian coordinates of lower left
hand corner

A quadtree representing two regions separated by a 45 degree
line

Pointer representation of Figure 4-2

Result of common subtree elimination on Figure 4-3

A quadiree representing two regions separated by a line with
slope approximately 4/16ths

Pointer representation of Figure 4-5

Result of common subtree elimination on Figure 4-6

A Sample Voronoi Diagram

First Step in Finding Voronoi Points for Map

Second Step in Finding Voronoi Points for Map

Final Step in Finding Voronoi Points for Map

Sample polygonal map

Line quadtree corresponding to Figure 4-12

PR quadtree corresponding to Figure 4-12 when the line
segments of the map are ignored. When the line segments are
included, the PM3 quadtree corresponding to Figure 4-12

The PMl quadtree corresponding to Figure 4-12

Example illustrating D3 > D2’ when C3 is used
The PM_ quadtree corresponding to Figure 4-12

Result of using C3’, instead of C3, in generating PM quadtree
for Figure 4-16

79

81
82

83

I

102

103

-104

105
106

107
108

109

138
139

140
141
142

143
144
145
146
147
148
149
150
151

152

153
154

155

vi

Figure 4-19: [Example demonstrating why diagonal neighbors should not be 156
examined prematurely when attempting to perform point-in-
polygon determination

Figure 4-20: Example demonstrating how the inserting of a q-edge can 157
result in the splitting of one that had been inserted earlier

Figure 4-21: Example demonstrating the sensitivity fo the PR quadiree to 158
shifts

Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:

vii

LIST OF TABLES

TABLE OF INVERSE NEIGHBOR AXIOMS

TABLE OF NEIGHBOR COMPOSITION AXIOMS

A SAMPLE PROOF

CONSTRUCTION OF SIDE NEIGHBORS GIVEN x r ¥y
PROCEDURAL ENCODING OF TABLE 2-4

88
88
89
89

CHAPTER 1
INTRODUCTION

Region representation is an important problem in image processing, computer
graphics, computerized cartography. and related areas. Recently there has been much
interest in hierarchical data structures, e.g., the quadtree (see overview in [30]). The
term quadtree [7, 17] is used to describe a class of variable resolution data structures
whose comnon property is that of organizing a space using the principle of recursive
decomposition. In the two-dimensional case, a rectangular planar region is recursively
subdivided into four rectangular planar regions until each region can be easily described
by a simpler data structure (e.g., a fixed size array. a linked-list. a binary tree, etc.).
Quadtrees can be classified on the basis of the type of data that they are used to
represent and on the basis of the principle used to guide the decomposition process.
The decomposition may be into equal-sized parts (termed a regular decomposition) or it
may be arbitrary (e.g.. one might subdivide a region with respect to an off-center point

in anticipation of some bias in the input data).

Papers involving quadtree-like techniques first surfaced in the late sixiies. They
contained primarily empirical and intuitive arguments that indicate a general usefulness
for quadtiree storage §trategi¢s. It was not until the mid-seventies that theoretical
results on quadiree structures began to appear. A brief introduction to these early
papers is presented below. Further discussion of theoretical results appear in Chapter 2.
In particular, Sections 2.3 and 2.4 integrate previously known theoretical results with the

Tormalisms of Sections 2.1 and 2.2.

In 1969, Warnock [35] formulated a hidden-surface elimination algorithm using a
recursive decomposition of the viewing window. As described in a later overview of
hidden—surface algorithms (33], Warnock considered the output field to be a window

that could either be directly processed if it was simple enough (e.g., the window is a

-

pixel or is homogeneous), or (otherwise) it could be subdivided into four subwindows,
each of which would then be processed separately. Two decomposition strategies were
considered. One strategy was the subdivision of the window into four congruent
subwindows as shown in Figure 1-1. The other strategy was the subdivision of the
window about an arbitrary polygon's vertex that happened to be inside the window as
illustrated in Figure 1-2. The motivation for using a polygon’s vertex as a subdivision
point is that if a window contains a polygon's vertex, then it certainly couldn’t be

homogeneous.

Also, during 1969, Nilsson [22] described a structure that allowed a robot to store
an internal map of a room that would permit large emply areas to be quickly
processed. His approach involved a hierarchical 4x4 decomposition (i.e, a
decomposition into sixteen parts) of a grid (the structure was called the GRID MODEL)
where a cell was decomposed if it contained a mixture of object and background.
Only binary images were discussed. An example of Nilsson’s approach applied to the
image in Figure 1-3 is shown in is shown in Figure 1-4. In the context of a 1970
discussion of space planning (taken to include such diverse fields as architectural design
and robotics), Eastman (6] noted that instead of using a 4x4 decomposition, a 2x2
decomposition could be used. thereby yielding a view of quadirees more consistent with
the one in this dissertation. The 2x2 decomposition corresponding to Figure 1-3 is

presented in Figure 1-5.

This view of a quadtree [6], henceforth termed region quadtree, stores a regular
decomposition of an image into homogeneous regions. There are many ways of storing
a region quadtree in a computer. Figure 1-6 illustfats the most straight-forward
storage technique, i.e.. that of representing each quadiree node by a structure that
contains six fieldss a father link. a node value (typically black. white, or grey). @d a
link to each of the node’s four sons. Note that the father link is not explicitly drawn
as it can be visually derived from the son links. The analysis of various quadtree
algorithms presented in this thesis assumes that this storage scheme is being used. An
interesting alternative scheme (see Figure 1-7) is one where the quadiree is stored as a
list of paths from the root of the quadtree to each of its leafs. In this figure, NW,
NE, SE, and SW denote quadrants - i.e., northwest, northeast, southeast, and southwest,

respectively. This scheme is an adaptation of the Dewey Decimal technique discussed
by Knuth [18]. The usefulness of these Dewey Decimal quadiree representations has
recently been investigated by Gargantini [9), with the modification that the paths are
only stored for the black nodes or the white nodes. Less useful for general
manipulation, but much more compact than the above representations, is the DF-
expression [15) representation shown in Figure 1-8. A DF-expression (Depth First)
corresponds to a preorder listing of the value fields of the nodes of a quadtree.

In 1971, Klinger [16] presented a quadiree variant that could reprisent images
whose sides were not powers of 2. One way of representing a 12x12 image is to
embed it within a 16x16 image and recursively decompose the 16x16 image into 2x2
blocks. However, Klinger advocated alternating a 2x2 decomposition with a 3x3
decomposition as shown in Figure 1-9. This variant was implemented using a Dewey
Decimal representation as presented in Figure 1-10. In this figure, NW, NE, SE, and
SW have their standard meaning when a region is split into four quadrants. When a
region is split into nine quadrants, NW. NC. NE, EC. SE. SC, SW, WC, and CC stand
for northwest. northcentral, northeast. eastcentral. southeast. southcentral. southwest,
westcentral, and center regions, respectively. This data structure was designed for use
in a pattern finding task on multicolored images. In 1975. further work on quadtirees

[17] was reporied. but the emphasis had shifted to strictly 2x2 decompositions.

Sometimes it is useful to specify regions in terms of their borders. The edge
quadiree [32] is an example of such an approach that uses regular decomposition to
represent such general curves (or in our case, region borders). A region is subdivided
repeatedly until the leaf nodes represent regions containing a single boundary curve that
can be approximated by a straight line. The line quadtree [27] is similar 10 the edge
quadtree except that a region is repeatedly subdivided (using regular decomposition) until
the leaf nodes represent regions that have no line segments passing through their
interior. An example of the line quadtree equivalent of Figure 1-5 is given by Figure
1-11. There is also an edge quadtree variant [21] that subdivides, again employing
regular decomposition, until the leaves represent regions containing a single curve that

can be approximated by k straight lines (where k has been’ fixed a priori).

The data structures " mentioned above are all organized about a regular
decomposition of the planar image (into squares. One alternative (10], closely related
to the quadtree, is to use a hextree. The hextree is a data structure that is organized
about a hexagonal decomposition pattern. Another alternative is to use a triangular
decomposition pattern, which together with a general discussion of all possible regular
tessellations of a plane appears in [2]. The appropriate tessellation for a given
application is the one that best corresponds to the sampling pattern of the original raw
data. If the images are purely synthetic, then the display pattern of the output device

plays the deciding factor.

The relations between quadtrees and hextrees are not derived from analogies
between geometric shapes, in this case squares and hexagonal configurations. Instead,
these relations derive from analogies between neighbor structures. By neighbor
structures, we refer to the rules used to determine which elements of a decomposition
are neighbors of which other elements. A discussion of the formalization of these rules
constitutes the substance of Section 2.1. The usage of these rules to define some
variants of the quadtree data structure is explored in Section 2.2. It is claimed that
these formalisms would also aid a comparison of quadiree and hextree algorithms,
although the actual performance of such a comparison lies outside the scope of this
dissertation. In Section 2.3. we analvze the space requirements of the quadiree data
structures. Section .4 conlains a2 presentation of various techniques for determining the

neighbor of a node in a quadtree,

Although the presentation differs greatly from that in the current literature,
ultimately, Chapter 2 does not yield any new results on quadtrees. Instead, it provides
an alternate approach to viewing known resuits. In Chapter 3, we present a new
quadtree transformation. This new transformation shifts the tree into a position where
aggregate neighbor finding can be done in an optimal manner. The aggregate neighbor
finding transformation (henceforth referred to as the ANF transformation) is presented
(and analyzed) in Section 3.1.1 with respect to neighbor finding in a pyramid. In
Section 3.1.2, these results for pyramids are extended 1o cover quadtrees.

Sections 3.1.1 and 3.1.2, contain ‘an application of the ANF transformation to a

chain code and then a quadtree is constructed from the transformed chain code. In
Section 3.2.1, we solve the problem of directly transforming a quadtiree. Next, we
demonstrate application of the ANF transformation to known quadtree zlgorithms.
Section 3.2.2 shows that a number of these applications result in significant
improvement of worst-case execution time behavior. The ANF transformation can be
viewed as an image normalization procedure. Section 3.2.3 presents a comparison of the
ANF normalization transformation to the node minimization transformation (henceforth

referred to as the NM transformation) of Li, Grosky and Jain [20].

Section 4 contains an investigation of the usage of quadtrees for storing polygonal
maps. Polygonal maps are often used in cartography and graphics, because straight line
approximations are sufficient representations of the ideal images. Such maps are merely
a collection of straight line segments. In ordar to enable our quadtree representations
to take advantage of this extra information about the nature of the data being
organized, if is necessary to establish a correspondence between the digitized space that
the quadiree represents and the continuous Euclidean plane. This correspondence is
presented in Section 4.1. Having made this correspondence, we can now consider three

approaches 10 using quadtrees to store polygonal maps.

The first approach is to compress the standard region quadtiree using the technique
of common subtree elimination. Thus. repeated pallerns in the subtrees will only be
represented once. Since such repetition is common in the digitization of straight lines.
much compression is expected. The analysis of this approach is presented in terms of
three different types of maps:

1. randomly constructed digitized maps
2. digitized maps of a single convex object

3. digitized maps of two regions seperated by a line having rational slope .

Although common subtree elimination rasults in significant storage reduction, it
seldom rsulté in faster algorithms. Only trivial tasks, e.g., calculating the area of a
map, can be speeded up 10 a degree comparable 10 the sicrage reduction. An
alternative approach based on trying to construct a Voronoi diagram that contains all

the edges of the original picture is developed in Section 4.3. The Voronoi diagram

used in this approach is stored as a collection of Voronoi points. We derive an
algorithm for constructing a set of Voronoi points that determine a diagram that
subsumes a given map. It quickly becomes apparent that the Voronoi diagrams are
much less amenable to analysis than the digitized space that the quadiree encodes.
Given a collection of Voronoi points, there remains the question of how 1o organize

them.

The point quadtiree (7] is based on an irregular decomposition of the point data
being represented. It is the multidimensional analog of a binary search tree [18)
where the root node of a subtree corresponds to the first node that was inserted into
that subtree. Thus, the shape of the point quadtreé is dependent on the order of the
insertion of its constituent points. The first point inserted is stored in the root of the
tree. Subsequent points are assigned subtrees according 1o their relation to the point
stored in the root. An example of a point quadtree is shown in Figure 1-12 for points
A. B. C. D. and E stored in this order.

The region quadtree can also be adapted 1o represent point data. We term such a
tree a PR quadtree (PR denoting point region) [23]. In this case all points are
associated with leaf nodes. Regular decomposition is applied until no quadrant contains
more than one data poini. For example. Figure 1-13 is 2 PR quadiree representation
of the same collectior of points as Figure 1-12. In order 1o cope with points that lie
directly on one of the quadrant lines emanating from a subdivision poini. we adopt the
convention that each quadrant contains its upper left hand corner as well as the two
half-open line segments (closed on the end touching the upper left hand corner)

extending from the upper left hand corner.

We shall use the PR quadiree for storing point data, because the shape of point
quadtrees is too sensilive to the order in which the data points are inserted into the
tree. Since there does not yet exist a dynamic balancing algorithm for point quadtrees
that is analogous to the AVL aigorithm [1] for binary trees, the depth of a point
quadiree is bounded from above by the number of nodes in it On the otlaer hand, we
can view PR quadirees as yielding an average-case balancing under the assumption that

future data is equally likely in any of the four quarters (i.e., quadrants) of the square.

The final approach to using quadtirees for representing polygonal maps is presented
in Section 4.4 and is termed a PM quadtree. This approach derives from allowing a
leaf node in the quadtree to contain a complicated structure, instead of just a numeric
value. The precise complexity of the structure stored at a leaf varies among the three
PM quadtrees introduced in this final section. This approach can be viewed as
producing an augmented PR quadiree of the vertices in the polygonal map. Its analysis

is presented in terms of the relative distances between vertices in the map.

Figure 1-1: An unbiased decomposition of the viewing window

Figure 1-2: A biased decompositon of the viewing window

10

Figure 1-3: A sample image

=

AN
O
\

A\

13

Root

W , LA BWWW

/
WWBBWWBW WBBBWBBW pgByw

Figure 1-6: Pointer representation of Figure 1-5

NW.NW (W)
NW.NE (W)
NW.SE.NW (W)
NW.SE.NE (B)
NW.SE.SE (B)
NW.SE.SW (B)
NW.SW (W)
NW.NW (W)
NW.NE (W)
NW.SE.NW
NW.SE.NE
NE.NW.SE.SE
NE.NW.SE.SW
NE.NW.SH.NW
NE.NW.SW.NE
NE.NW.SW.SE
NE.NW.SW.SW
NE.NE (W)
NE.SE (W)
NE.SW.NW.NW
NE.SW.NW.NE
NE.SW.NW.SE
NE.SW.NW.SW
NE.SW.NE.NW
NE.SW.NE.NE
NE.SW.NE.SE
NE.SW.NE.SW
NE.SW.SE.NW
NE.SW.SE.NE
NE.SW.SE.SE
NE.SW.SE.SW
NE.SW.SW (W)
SE.NW (B)
SE.NE (W)
SE.SE (W)
SE.SW (W)
SW (B)

(W)
(W)
(B)
(B)
(W)
(W)
(B)
(W)

(W)
(B)
(B)
(W)
(W)
(B)
(B)
(W)
(W)
(B)
(B)
(W)

Figure 1-7:

14

Dewey Decimal representation of Figure 1-§

15

GGWWGWBBBWGGWWG
WWBBGWWBWWWGGWSB

BBWGWBBWWGEB

Figure 1-8: DF-expression representation of Figure 1-5

16

7%
}f///fzfﬁ

Figure 1-9: Four/Nine/Four decomposition of a 12x12 image

NW

NE.
NE.
.NE
NE.
NE.
NE.
NE.
NE.
NE.
NE.
NE.
.CC
SE.
SE.
SE.
SE.
SE.
SE.
.EC
SE.
SE.
SE.
SE.
SE.
SW.
.NC
SW.
SW.
SW.
SW.
.EC
SW.
SW.
SW.
SW.
.CC

NE

NE

SE

SW

SW

SW

(W)
NC

EC
SE
SC
SW.

SW.
sw.
SW.

NC
NE

SE
SC
SW
WwC
cc

NE
NE.
NE.
NE.

SE
SC
SW
WC

(W)
(W)
("))
(B)
(B)
(W)
NW (B)
NE (W)
SE (W)
SW (B)
(B)
(B)

NW (B)
.NE (W)
.SE (W)
MW.

SW (W)
(W)
(B)
(B)
(W)
(W)
(W)
(B)
(B)
(W)
(W)

.Nw (B)

NE (B)
SE (W)
SW (B)
(B)
(W)
(W)
(W)
(W)
(W)

Figure 1-10: Dewey Decimal representation corresponding

17

to Figure 1-9

18

Ol
U0
u

Figure 1-11: Line quadtree equivalent of Figure 1-5

19

B

Figure 1-122 Example of a point quadiree decomposition

20

Figure 1-13: PR quadtree equivalent of Figure 1-12

21

CHAPTER 2

A FORMAL BASIS FOR A THEORY OF QUADTREE
ALGORITHMS

2.1. PRELIMINARY DEFINITIONS AND THEOREMS

In this section, definitions are given for the basic concepts that are implicit in any
discussion of quadtree algorithms. The most fundamental of lhese‘ concepls is the
concept of the neighbor structure of the nodes of a quadtree. This concept is
presented in terms of a set of axioms that implicitly define the various neighbor
relations over a domain of elements collectively referred to as a frame. Many

properties of this neighbor structure are demonsirated.

In Section 2.2, the notion of a frame is used as a basis for presenting other
objects that will concern us in later parts of this thesis. The following definitions are
given 1o suggest the form that the corresponding full definition will take in subsequent
sections. A picture is defined as a mapping between the elements of a frame and the
elements of a set of colors. A pyramid is then viewed as an extension of the concept
of a piciure where colors can be associated with subframes. as well as frame elemenis.
The properties of the pyramid follow from resirictions placed on the mapping of
subframes to colors. A quadtree can then be defined as a subset of the ordered pairs
that form the pyramid color mapping, such that the mapping can be reconstructed from

the subset and the general properties of pyramids.

From such definitions, the formal properties of quadirees can be deduced. These
properties are stbsequently used, both implicitly and explicitly, in the demonstration of
the correciness of various quadiree algorithms. The remainder of Section 2 overviews
previous investigations of quadtrees and shows how they can be presented in terms of

the definitions of this section. Sometimes this means crealing proofs for theorems that

22

had always been implicitly assumed, e.g., Theorem 10 (The Quadtree Representation
Theorem). At other times, this means finding entirely different proofs for known

theorems, e.g., Theorem 19 (The Quadtree Storage Pequirements Theorem).

It is possible to give a formal definition of pictures, pyramids, and quadtrees by
referring o systems of 2' by 2' matrices. Using such a system, we would define
neighbor relationships in terms of arithmetic on the ordered pairs that serve as indices
of the elements of the matrices. This would be analogous to defining propositional
logic in terms of TRUE and FALSE being 1 and 0, respectively, where AND is
multiplication and NOT is subtraction from one. Alihough feasible, it is inappropriate

for two reasons.

First, by presenting quadtrees in terms of matrices, we find the resulting theory is
at the wrong level. Generally, the correctness of a quadtree algorithm hinges on such
properties as: if a3, and a are elements of a matrix, then so is a . At the
level of naive matrix theory, we simply do not have the machinery to consider such
problems. But if we fall back to some sei-theoretic definition of matrices, then we are
swamped with extraneous details. Such problems may be mere aesthetics to human

theorem provers, but have quite drastic consequences for mechanical theorem provers.

The second reason is that the matrix approach does not indicate appropriate ways
o generalize the definitions.. For example. it would be cumbersome to attempt to
present hextrees in terms of matrices; however, the approach followed below would
work with minimal adjustments. Also, it would be difficult, using a matrix approach,

to indicate similarities between hextrees and quadtrees.

2.1.1. DEFINING NEIGHBOR RELATIONS

In what follows, we present a large collection of axioms that implicitly define the
eight neighbor relations on elements of a frame. When dealing with any colleciion of
axioms larger than one, the problem of consistency must be coasidered. We could take
the standard approach of showing that these axioms can be modelled by a subset of
arithmetic. However, arithmetic is so complex that this would hardly be enlightening.

For the present, we will not bother with a consistency proof. However, in Section 4.1,

23

a consistency proof will be presented as a by-product of an investigation of how

quadtrees can be used to represent polygonal maps on the Euclidean plane.

A frame F' is a set of indices for atomic picture elements (pixels) that form a 2’
by 2' picture. These indices are taken from the set of strings over the alphabet {NW,
NE, SE, SW}. All references to equality of indices are considered to be references 1o
the standard equality of strings. The expression Xx.y denotes an application of the
operation of string concatenation to the strings represented by x and y. The empty
string is denoted by A. The frame F' is defined recursively as follows:

FF=1{2]}
F" = prefix(NW.,F™") U prefix(NE.F"™") u prefix(SE.F*") U prefix(SW.F"")
where prefix(x,Y) = {xy | y € Y}. Figure 2-1 shows the layout of indices for the

standard representation of the frame F.

The principal operator for extracting subsets of frames is the subframe function,
which is defined as follows:
subframe(F'x) = prefix(x.F' ™"

This definition is only meaningful when i is greater than or equal to length(x). Note

that length(NW.NE) is equal to 2, since NW and NE are single letters in alphabet over

which the indices are defined. From the above definitions. it follows that the

subframe(F'.x) is the set of indices in F' that begin with x.

The maximum depth of the subframe(F'.x) refers to the value of i. The root of
the subframe(F'x) refers to the value of x. The depth of a subframe refers to the
length of the root of that subframe. Figure 2-2 presents a representation of all the

subframes of F°, where each subframe is labeled by its root.

From our point of view, the most important aspect of the elements of a frame is
the structure imposed on them by the notion that some of the elemcpts are neighbors
of other elemnents. This structure is captured by the interactions between four major
(side) relations, n, e, s, and w, and four minor (diagonal) relations, nv;. ne, se, and sw.
These relations are defined with respect to the subframes of a given frame. The
qQuestion of the relation of frame elements x and y is handled by considering the

relation of the subframes {x} and {y}.

24

-

The axioms that define the interactions between these relations and subframes are
presented in three groups. The relevant axioms for equality are included for the sake
of completeness. The first group is shown in Table 2-1, which shows which relations
are inverses of each other. The table entries for ¢ and w are viewed as shorthand for

the axioms:
X ey implies y w x
and
X w y implies y e x

The second group of axioms is shown in Table 2-2. These axioms indicate the
manner in which the neighbor relations can be composed. Thus, the entry of = in

column w of row e represents the axiom:
Xeyand y w z implies that X = 2

which is different from our interpretation of entries in Table 2-1 (i.e., e and w are
inverse relations). An asterisk in Table 2-2 indicates that no axiom is being given for

that situation.

The third group of axioms shows the manner in which the neighbor relations can
be inferred from the subframe naming convention. Let us introduce the notion that
subframe(F'x) is a son of subframe(F'y) if and only if the former is a subset of the
latter and the lengtk of x is one more than the length of v. Then the axioms R1. R2.
and R3 (when taken together with the previous two groups of axioms) will establish the
appropriate neighbor relations among siblings (i.e.. among sons of the same father).
Axioms R4 and RS will extend these neighbor relations to the other subframes of the
same generation.

R1) subframe(Fi,x.NW) W subframe(Fi,x.NE)

R2) subframe(Fi,x.Sw) s subframe(Fi,x.NW)

R3) subframe(Fi,x.SE) s subframe(Fi,x.NE)

R4) if subframe(Fi,x) w subframe(Fi,y)

then subframe(Fi,x.NE) w subframe(Fi,y.Nw)
RS) if subframe(Fi,x) s Subframe(Fi,y)
then subfraue(Fi,x.NE) s subframe(Fi,y.SE)

To see how the above axiom system for neighbor relations can be used, consider
Figure 2-1. There, we observe that the region labeled NE.SW is northeast of the

25

region labeled SW.NE. This corresponds to the formal statement that there is a proof
of the relationship:
cubframe(F’,NE.SW) ne subframe(F’,SW.NE)
One such proof is shown in Table 2-3. Incidentally, the proof shown is the shortest
proof for the above relationship, although it is beyond the scope of this thesis to prove
that it is. Each row of this table indicates a step of the proof followed by the
justification of that step. The notation for the justification is highly abbreviated. For
example, the reference to Table 2-1 in the entry of the reason for line number 4 of
the proof refers to one of the axioms in the group associated with Table 2-1, in this
case:
X sy implies y n x

It should be noted that such proofs take place in the context of a propositional logic
augmented by the axiom schemes presented above. Hence a given instance of a

neighbor relationship is true if and only if it is provable.

2.1.2. THEOREMS REGARDING NEIGHBOR RELATIONS

The reason for presenting a formal theory of neighbor relations is that this theory
provides a context for later discussion of algorithm correctness. Actually, we will have
little use for proofs like the one in Table 2-3. but will instead want to consider
theorems from their metatheory. Four such theorems are proved below. These are the
Neighbor Uniqueness Theorem. the Neighbor Decidability Theorem, the Subframe

Invariance Theorem, and the No~Corner-Cutting Theorem.

The Neighbor Uniqueness Theorem states that two different subframes can not
bear the same relation to the same subframe. Among other things, this means that in
order to show that x s y is false, it is sufficient to show that x s z and that y is not
equal to z. For example, sir;ce we have already proved that

subframe(F* NE.SW) ne subframe(F’,SW.NE)
we can deduce from the Neighbor Uniqueness Theoremn that

subframe(F’,NE.SW) ne subframe(F*,SE.NW)
is false.

Theorem 1: (The Neighbor Uniqueness Theorem): For every neighbor
relation .

26

XxXryand xr z impliesy = z
Proof: Assume that x r vy and x r z. Table 2-1 shows that for each
neighbor relation r, there exists an inverse relation r~ such that
xryimpliesyr’ x
Inspection of Table 2-2 shows that it is always the case that

yr' xand x r z implies y = z
Thus, the theorem is proved.

We note that the proof of the Neighbor Uniqueness Theorem was not constructive.
Thus, we know that a subframe can have at most one neighbor on a given side, but we
do not know how to find that one neighbor. The Neighbor Decidability Theorem
yields a procedure for identifying that neighbor. However, before we can prove the
Neighbor Decidability Theorem, we need the following lemma. which limits the types of
inferences that need be used in a proof relating two subframes of F. For example,
from the proof of the following lemma, it will be clear that the shortest proof of a
relationship among subframes of F' will not contain references to subframes of frames

other than F'.

The proof of the following lemma uses the technique of ordering all the possible
proofs in our Neighbor Theory by the number of deductions in each proof. For
example. the proof in Table 2-3 is formed from eleven deductions. Within this -
ordering. il is necessarv that proofs involving the same number of deductions also be

ordered, but it is not important how they are ordered.

Lemma 2: If for some neighbor relation r, it is provable that

subframe(F',x) r subframe(F’,y)
then i = j and length(x) = length(y).
Proof: Consider the shortest proof for a statement S of the form:

subframe(F'x) r subframe(F’.y)

for some neighbor relation r, where either the maximum depths of the
subframes differ or the actual depths of the subframes differ. In the
following discussion, such subframes are called incomparable. The statement S
must be the consequence of the application of one of the axioms of the
Neighbor Theory. We will now show that the axiom applied could not have
been in any of the three groups that partition the axioms of Neighbor
Theory.

The axiom used could not be one of the axioms of the first group,

27

listed in Table 2-1, because their consequents only relate subframes that were
related in their antecedents (and if these subframes were related in the
antecedents then this isn't the shortest proof relating two incomparable
subframes).

The axiom used could not be one of the axioms of the second group,
listed in Table 2-2, because their consequents only relate subframes that were
related to a third intermediate subframe in their antecedent Clearly, if the
two subframes of the consequent are incomparable, then one of the subframes
must be incomparable 1o the intermediate subframe of the antecedent (and
hence there must exist a shorter proof relating incomparable subframes).

Finally, we consider the third group of axioms, i.e., Rl through RS.
The axiom used could not be one of Rl through R3, because each of these
axioms asserts a relation between subframes of the same maximum depth and
actual depth. Neither could the axiom used be either R4 or RS, because their
consequents assert a relation between subframes of equal maximum depth and
if the subframes of the antecedent are of equal actual depth then the
subframes of the consequent will also be of equal actual depth.

Thus, there is no axiom that will allow the deduction of a neighbor
relation between incomparable subframes, unless there is a proof relating
incomparable subframes that is shorter than the one for S, which was assumed
to be the shortest such proof. Therefore, the lemma is true.

If we consider the axioms Rl through R3, we find that there are an infinite
number of subframe relations that are being asserted by these axioms. However, for
any fixed maximum depth, there are only a finite number of assertions about relations
among subframes of that maximum depth. The proof of the above lemma shows that
in deciding whether or not two subframes are related. only the assertions about
subframes of the same maximum depth as those in question are relevant to the decision
(proof). Now, we are ready to prove the Neighbor Decidability Theorem. The
Neighbor Decidability Theorem states that for any instance of a neighbor relationship,
we can decide whether or not that relationship holds. Thus, instead of having humans

grind out proofs like the one in Table 2-3, it is possible 1o have computers do it

Theorem 3: (The Neighbor Decidability Theorem): There is an effective
algorithm (i.e., an algoritim that always halts) such that given any twec
subframes, x and y, and a neighbor relation r. the algorithm returns true :ff
the conjecture X r y is provable,

Proof: By induction on i, it can be shown that the size of F' and the
number of subframes of F' are both finite numbers. Let S denote the set of

all statements that assert neighbor or equality relations among subframes of F'
(for the value of i relevant to the conjecture to be decided). Clearly, S is
finite.

28

Lemma 2 stated that the only neighbor relations relevant to a decision
procedure are those that use the same frames as those that are in the
subframes that are to be proved related. If x and y are of different
maximum depths, then by Lemma 2, we know immediately to return false,

Now, let us construct the decision process. Let the curreat state of the
decision process be that subset of S which has been proved so far. The
initial state of the decision process is the empty set. The successor state of
the curreat state is the union of the current state with the set of relations
that can be deduced from the current state by exactly one application of an
axiom. The calculation of the successor state from the current state is clearly
effective. This is because only axioms R1 through R3 can generate an
unbounded number of consequences from a finite number of antecedents.
However, of this unbounded number of consequences, only a finite number of
them need be considered as relevant to the decision procedure.

An algorithm that starts with the initial state as its current state and
_then continually replaces the current state with its successor state until the
successor state equals the previous current state constitutes the core of the
decision process. It would eventually halt, because the successor state can
never be smaller than the current state nor larger than S. When the algorithm
halts, the current state will be the set of all statements that are provable and

assert neighbor relations or equality relations among the subframes of F'.

The remaining task for the decision procedure is t0o check whether the
conjecture is a member of the current state when the above algorithm halted.
This is also effective since the current state must be of finite size. Thus,
there is an effective decision algorithm for Neighbor Theory.

To prove the above theorem, a decision procedure that runs in time exponential
with respect to i. on subframes of F'. was developed. In Section 2.4, the correctness
of an algorithm ([25]. which could be used as a basis for a decision procedure that

runs in time linear with respect to i (on subframes of F'), will be shown.

Although it is true, as noted in Lemma 2, that there can not exist a neighbor
relationship between two subframes with different maximum depths, there is a certain
parallelism between the properties of subframes that have the same roots. For example,
since we have already proven that

subframe(F* NE.SW) ne subframe(F’ SW.NE)
we would like 1o be able to immediately infer
subframe(F*,NE.SW) ne subframe(F’.SW.NE)
as indicated in Figure 2-3. This ambition is justifisd by the following theorem.

Theorem 4: (The Subframe Invariance Theorem): For all nelghbor
relations r, if i is not less than length(x) then

29

subframe(F',x) r subframe(F'.y)
iff
subframe(F'"' x) r subframe(F'",y)

Proof: By Lemma 2, we know that if length(x) is not equal to length(y),
then both sides of the above "iff” construct are false, which makes the
theorem true. Also, Lemma 2 shows that the shoriest proof of each of the
statements (should they be provable) can be constructed with all references to
subframes restricted to those that are the same depth as that are in the
statement. In the following, we show that if one side of the "iff” is
provable, then so is the other side. We always assume that we are working
with the shortest possible proof of the given relationship. Now, let us
consider the two parts of this theorem.

In the "if" direction, we can take the proof of the antecedent and

substitute "F'*'" for every occurrence of "F'". We note that all the axioms
hold true under this substitution, because ii X is a valid root for a subframe

of F', then it is also a valid root for a subframe of F'"'. Thus, the result
of this substitution is a proof of the consequent.

In the "only if” direction, we take the proof of the antecedent (which
was the consequent in the "only if" direction) and substitutes "F'" for every

i*le
o

occurrence of "F The question then arises of whether this substitution
has invalidated any of the steps of the proof. The answer is no, because our
working with the shortest proof of

subframe(F'"' x) r subframe(F'""'.y)

implies that there were no references to subframes with roots longer than the
length of x. This is because relations on such subframes could not be part of
the deduction chain leading 10 the statement. by reasoning analogous 1o that
of the proof of Lemma 2. Since we assumed we had the shoriest proof. we
know that such superfluous references will not be in it

Thus, both cases of the Subframe Invariance Theorem hold.

In order to show the correctness of the neighbor-finding algorithms of Section 2.4,
it will be necessary to use some results that are stronger than the ones shown above.
The problem is that the axioms of Neighbor Theory force deductions to flow in a top—
down manner, whereas some of the algorithms work in a bottom-up fashion. Thus, it
is necessary to show not only that if the father has a nofthern neighbor, then so will
all his sons (as is shown by the Positive Dominant Lemma) but to aiso show that if the
father does not have a northern neighbor, then neither will two of his sons (as we will
eventually show in the Negative Recessive Lemmﬁ). These lemmas form part of the

reasoning justifying the No-Corner—Cutting Theorem, which states (among other things)

30

that if a subframe has a northwest neighbor, then it also must have a northern
neighbor.

The first lemma that we will consider is the Positive Dominant Lemma. This
lemma states that a subframe inherits the property of having a neighbor on a given
side from its father. Thus, if a subframe has a northern neighbor, all of its sons will
have northern neighbors. The proof is constructive in that it not only shows that the
northern neighbor exists, but it also shows how to compute the northern neighbor’s root
given the root of the northern neighbor of the father. This construction is summarized
in Table 2-4.

For Tabie 2-4, and for the following proofs, we introduce a new notation for the
sons of a subframe. If x is a subframe whose depth is less than its maximum depth,
then if

x = subframe(F'.a)
then the four sons of x are denoted
x"* = subframe(F'.a.NW)
x"E = subframe(F'a.NE)
x*t = subframe(F'a.SE)
" = subframe(F'.a.SW)

If % has a father, then it is denoted x'.

- Lemma 5: (The Positive Dominant Lemma): If, for some side relation
r. it is provable that

Xry
and x’ is a son of x, then there must exist z such that
\ x'rz
Proof: The son' of x’, according to our definition of son, must be one

of the following x“V, x™E, x*, and x*V. The proof for this lemma can be
constructed by considering each of the sixteen cases resulting from the
possible choices of the side relation r and the son x’. Table 2-4 shows the
appropriate value for z for each of these cases.

For example, to take the most difficult case, Table 2-4 indicates that for

r equal 10 e and x’ equal to x*", we can use y*t for z. This is equivalent o
the statement

x ¢y implies X’V e y*

To justify this, we first demonstrate that

31

x ¢ y implies x"¥ e yNE

using axiom R4. Next, we show that

xSstN'\V

and

'yNE n ySE

using axioms R2 and R3, respectively. Then, using the axioms of Table 2-2,
we chain the above together to form the following sequence of deductions:

X ey implies x™" e y"t
¥ s x™¥ and x™V e y™® implies x*™ se y"t
x* se y™t and yME n y*t implies x*¥ e y*f
which yield:

X e y implies x>V ¢ y*t

The proofs of the other cases are trivial modifications of the one shown
above. Thus, the lemma is demonstrated.

The above lemma shows that a son will always have a neighbor on a given side. if
his father does. The situation when that father does not have a neighbor on a given
side is analvzed by the Negative Recessive Lemma. That lemma claims that if the
father does not have a neighbor on a given side, then two of his sons will not have a
neighbor on that side either. This is proved by using the technique of embedding a
collection of subframes in a larger collection where the appropriale subframe now has a
neighbor or the given side. Next. it i1s shown that for two of its sons. if they have
neighbors on the given side in the original collection. then the'y would now have two
distinct neighbors on the same side. Since this would contradict the Neighbor
Uniqueness Theorem. the (wo sons must not have had neighbors in the original
collection. - To set all this up, we need to prove the Embedding Lemma, which
describes how the above embedding works.

Later. when we get around to proving properties of pyramids and quadtrees, this
type of embedding will again prove useful.

Lemma 6: (The Embedding Lemma): For each x in {NW, NE, SE.
SW} and for each neighbor relation r, if

subframe(F',y) r subframe(F',z)
then

-

subframe(F""'.x.y) r subframe(F'"' x.2)

32

Proof: Consider the shortest proof of

subframe(F',y) r subframe(F' z)

Without loss of generality, let us assume that x (of the above lemma) is NW.
Now, replace each subframe’s root, appearing in the proof, with the
concatenation of NW and .that root. Also, change every subframe’s depth
from i to i*l. Recall that all subframes in the shortest proof of a neighbor
relationship will have the same depth. It is claimed that this substitution has
produced a valid proof of

subframe(F'*' NW.y) r subframe(F'"' NW.2)

The above claim results from consideration of the effect that the same
substitution has when applied to each of the axioms. First, we note, from
the definition of a subframe, that y is a valid root for a subframe of depth
i iff NW.y is a valid root of a subframe of depth i+1; since

length(NW.y) = 1 + length(y)

Next, we note that the result of each substitution is a theorem that is a
special case of the axiom on which the substitution was made. For example,
the result of performing the substitution on axiom R1 yields

subframe(F*' . NW.x.NW) w subframe(F'*' NW.x.NE)
which is a special case of

subframe(F' x.NW) w subframe(F'x.NE)
Thus. the substitution yields a valid proof of the consequent of the lemma.

Now, we can combine the Neighbor Uniqueness Theorem with the above lemma, in
the manner described above, to prove that certain subframes do not have neighbors on
ceriain sides. - This lemma. the Negalive Recessive Lemma. together with the Positive
Dominant Lemma, shows how the property of having a neighbor on a given side is
inherited by the sons from the father. For example. the Negative Recessive Lemma is
used in Section 2.4 10 show that in the frame F', there are 2' indices that correspond
to subframes without northern neighbors (see Lemma 23). Like the proof of the
Positive Dominant Lemma, the following proof is constructive, i.e., we show that two
sons will not have neighbors on a particular side by showing how to determine which

two sons will not have neighbors.

Lemma 7: (The Negative Recessive Lemma): Focr each side relation r,
if subframe(F',x) does not have a neighbor in the direction r, then two of the

sons of subframe(F'x) will not have neighbors in the direction r.
Proof: Without loss of generality, let us assume that the side relation
under consideration is n. First, we note that

subframe(F' x.NW) n subframe(F' x.SW)
and

33

subframe(F' x.NE) n subframe(F' x.SE)

can be proved without reference to any nodes other than subframe(F'x) and

his sons. Thus, we are left with showing that neither subframe(F'.x.NW) no:
subframe(F'.X.NE) have northern neighbors. Recalling Table 2-4, we note that
if x had a northern npeighbor y, then

subframe(F',y.SW) n subframe(F'.x.NW)
and

subframe(F’,y.SE) n subframe(F',x.NE)

Let us now work only with subframe(F'x.NW) as the reasoning for the other
subframe follows in much the same manner.

Since the father of x does not have a northern neighbor, it follows
from the Positive Dominant Lemma that none of the ancestors of x have

northern neighbors. Now, embed all the subframes of F' in SW (i.e., perform
the substitutions of the Embedding Lemma). Note that from the Positive
Dominant Lemma and Table 2-4, we can deduce that there exists a 2z such
that

subframe(F'"'.NW.2SW) n subframe(F'*' SW.x.NW)

Now, if subframe(F'.x.NW) had had a northern neighbor y’, then according
to the Embedding Lemma

subframe(F'*'.SW.y’) n subframe(F'"'.SW.x.NW)

However. this contradicts the Unique Neighbor Theorem. Therefore,

subframe(F'.x.NW) has no northern neighbor. Similarly. subframe(F'.x.NE)
does not have a northern neighbor. Since each row of Table 2-4 has two
entries that refer wo sons of y, it follows that the above demonstration will
work for any side relation.

Now, we are in a position to prove the No-Corner-Cutting Theorem. The proof
of the No—-Corner-Cutting Theorem is presented in two parts. The first part, Lemma
8, considers what can be deduced from the fact that there exists a proof of a
particular diagonal relationship. Specifically, it shows that the last deduction in the
shortest proof of such a relationship must have one of two forms. The second part of
the proof, which is presented as the proof of Theorem 9 (the No-Corner—Cutting
Theorem), sbows that for whichever form the last deduction of the shortest proof takes,
there exists another proof that reaches the same conclusion using the or;her form. Thus,
for c¢xample, if the shortest proof of x ne 2z, in Figure 2-3, makes use of a northern
neighbor y of 2, then there exists another proof of x ne z that uses an eastern

neighbor ¥’ of z. The lemma below states that if x ne z, then the shortest proof of x

34

ne z requires that 2z have either an eastern or a northern neighbor, but we don’t know

which.

Lemma 8: If p and q are side relations and r is a diagonal relation
such that -

Xpyand y q z implies x r 2
then x r z implies that there exists a y such that either
Xpyandyqz
or
Xqyand y p 2

Proof: Consider the shortest proof of a statement of the form x r 2
where x, 2, p. q. and r satisfy the conditions of this lemma, but there does
not exist the implied value of y. The final statement in the proof is X r 2,
which can only be a drawn conclusion from the usage of an inverse axiom
(from Table 2-1) or a ‘composition axiom (from Table 2-2), since R1 through
RS5 do not mention diagonal relations.

Assume that the final statement was deduced from a usage of an inverse
axiom. Then there exists a shorter proof that proves z r' x. Inspection of
the composition axioms shows that whenever

X pyand y q 2z implies x r 2
then

2q' yand y p” x implies x r* x
Since z ' x has a shorter proof that X r 2, it must be true that z, X, q",

p', and r” satisfy the conditions of this lemma. This means that there exists
a y such that ‘

2q" yand y p x
This same y satisfies

Xpyand yq2z2
thus, contradicting the assumption that y did not exist Therefore the final
statement could not have been deduced from an inverse axiom.

Assume that the final statement was deduced from a usage of a
composition axiom. For each diagonal relation r, there are exactly two side
relations p and q that could satisfy the conditions of the lemma. The
relevant axioms have the form

Xpyand yq 2z implies x r 2
or
Xqvand y p 2z implies x r 2

In both cases there must exist a y that satisfies the consequence of this
lemma, because there had to be a y that satisfied the antecedent of one of
these axioms so that it could be used in the proof. This contradicts the
assumption that there exists values of X, 2, p, g, and r that contradict the
lemma. Since the negation of the lemma always leads to a contradiction, the
lemma must be true.

kA3

We can now complete our proof of the No-Corner-Cutting Theorem.

Theorem 9: (The No-Corner-Cutting Theorem): If p and q are side
relations and r is a diagonal relation such that

xpyand y q z implies x r 2
then x r 2z implies there exists a y such that
Xpyand y q 2
Proof: Given that
X pyand y q z implies x r 2
and
Xrz
we know from Lemma 8 that there exists a y such that either
Xpyandygqz
or
xqyandypz

If the first case holds in a given situation, then our theorem is true. Thus,
we are left with considering the situation where the construction of Lemma
8 yields a y such that

XxXqyand y pz

A simple enumeration of the possibilities will show that the theorem
holds for all the subframes of F° and for all the subframes of F'. Let us

consider the smallest j such that for two subframes of F, the theorem does
not hold for some assignment of values t0o x, 2z, p, q, and r. Without loss of
generality, let us assume that p. q, and r are n, e. and ne. respectively.
Thus. we are assuming that there exists a vy such that
xevand yn 2z
but there does not exist a y’ such that
y' e 2

Note that x n ¥y’ would follow from the immediately above together with x
ne z. By follows immediately, we mean:

X ne z implies 2 sw X
y’ e z and 2z sw x implies y’ s X
y’ s x implies x n y’
Since 2z does not have an eastern neighbor, it follows from the Negative

Recessive Lemma that since 2’ is the father of 2z, either

z = 2
or
z = (O
The first of these cannot be true because then
yl = (zf)NE

which would imply that z must have an eastern neighbor since the only way

36

the northeastern son of 2, ie.. y’, can have an eastern neighbor is if z' has

an eastern neighbor which in turn implies that the southeastern son of 7, ie.,
2, would also have an eastern neighbor. Thus, we know that in order for the
theorem to be false, it must be that z is the northeastern son of its father.
Since z is the northeastern son of its father, it follows from the
Negative Recessive Lemma that since ¥y’ n 2z 2z must have a northern

neighbor, y’’, which in wrn has y’ as a son. In particular, it follows from
Table 2-2 that

yl = (ypl')SE A
When this fact is combined with x e y’, using reasoning analogous to that
which has just been used, it follows that y’' also has a eastern neighbor x’’.
Now, from the axioms of Table 2-2, this means that

X" ne 2
which under the Subframe Invariance Theorem implies a corresponding

relaticnship in F™'. By combining this relationship with the assumption that j
was the first frame depth to contradict the No—-Corner—Cutting Theorem and
another usage of the Subframe Invariance Theorem, we get the result that
there exists a y’’ such that

(4 ’

X'ny’” and ¥y'’ e 2
This, because of the Positive Dominant Lemma, contradicts the assumption
that z did not have an eastern neighbor.

Since analogous reasoning produces the same result for the other possible
combinations of side relations. it follows that there can not be a least i. such

that the No~Corner-Cutling Theorem does not hold among the subframes of
F'. Thus, by the weli-ordering of the positive integers. it follows that the
No—Corner~Cutting Theorem holds for all subframes of ali frames.

We have now concluded our presentation of Neighbor Theory. In the following
section, we will turn to the question of the computer representation of images whose

constituent parts satisly the axioms of Neighbor Theory.

2.2. THE DEFINITION OF TWO TYPES OF QUADTREES

Although the neighbor structure is the most fundamental concept involved in the
theory of quadtrees, it is not the only one. There is also the concept of the
association of a color with an element of a frame. In discussing colors, we have to
consider two possibilities. If the coloring is binary, then we choose our colors from

elements of the set {BLACK, WHITE}. If the coloring is multicolored, then we choose

37

our colors from elements of a set that contains a distinguished member who is denoted
by the color WHITE.

2.2.1. DEFINITION OF PICTURES AND THEIR PROPERTIES

We define a picture P as an ordered triple <F'.C.f> consisting of a frame F', a
set C of colors, and a coloring function f. The coloring function f is a total function
from F' into the set C of colors. It is also sometimes useful to view the picture P as
the set

{<x,f(x)> | x « F'}
which is simply an alternative representation of the function f. Figure 2-4 shows how

we represent a binary picture, P, where

P = <F’, {BLACK,WHITE}, f>
f = {<NW ,WHITE>, <NE.BLACK>, <SE.BLACK>, <SW,WHITE>}

One of the most basic operations on a picture is to embed it in a larger frame.
The simplest embedding is defined as follows. Let X, denote one of {NW, NE. SE,
SW}. Let X, X, and X, denote the remaining three elements. Then, we say
embed(x .<F'.C.f>) = <F".C.f'>)

where for each v in F'

f7.y) = f(y)

f'(x..y) = WHITE

£(x.y) = WHITE

f’(x,.y) = WHITE
The subframe(F"'.xl) is said to be the projection of the picture <F'.C.f>. Thus, for
example, Figure 2-5 shows embed(NW.P) where P is the binary picture in Figure 2-4.
The upper left hand quarter of Figure 2-5 is the subframe that corresponds to the
projection of the picture of Figure 2-4. The justification for coloring the pixels that
are not part of the projection of the original picture WHITE is that we are generally
oniy interested in the pixels that have a color other thcn WHITE.

One of the problems with manipulating quadtrees is that there is a set of nodes
that do not have neighbors on one of their sides. Sometimes this boundary condition

problem can be avoided by surrounding the nodes of interest with other nodes that

38

need not be further considered. We will see one usage of this technique when we later
define shifting We can define a function, based on embed, that performs this
transformation as follows:
surround(<F',C,f>) = embed(NW,embed(SE,<F',C.f>))

The importance of surround comes from the fact that by the Positive Dominant
Lemma, each element of the projection of the original picture <F,C.f> now has a
neighbor on each side. In Figure 2-6, we find a representation of surround(P) where P
is the binary picture of Figure 2-4. DMote that the lower right hand quarter of the
upper left hand quarter of Figure 2-6 corresponds to the projection of the picture of
Figure 2-4.

The final type of embedding that we will consider is the shiftt The following
definition of a shift is a bit complicated; so let us first look at what goes wrong with
some simpler definitions. Suppose we defined a shift to be an isomorphism from one
frame to another. This is unsatisfactory because it does not preserve any of the
neighbor structure. as illustrated by Figure 2-7. The next step would be to say that a
shift is an isomorphism between two frames such that all the neighbor relations are
preserved. This is too confining. Indeed, only the original picture satisfies this
condition. Next. we might say that a shift is an isomorphism that preserves neighbor

relations only among the non-White pixels. This permits too much. as illustrated by

" Figure 2-8. Also. there is the fact that it is alwavs meaningful to shift into a larger

frame. Taking all of this into account, we arrive at the following definition.

We say that <F,Cf’’> is a shift of <F',C.f> into F' iff the following four
conditions hold. Note that the mechanics of this definition are illustrated in Figure
2-9.

1. There exists a subset I, known as the image, of the frame of S where
$ = <FM Cf’> = surround”'(<F',C.f>)
2 The image | must contain all the pixels in S that are not WHITE.
3, Further, there exists a 1-1 onto mapping p from the image I on'to F'), such
that for every x and y in F'"), for every side relation r, if

Xry
then

39

p'X) r p'(®)
4. The last, but not least, condition is that for all x in F'™
£°/(x) = £(p™(x))
Note that the above definition is intended for use within a formally developed system.
Other approaches to the definition of shift can be justified by proving equivalence to
this definition. For example, it could be shown that an equivalent definition of shift
could be presented in terms of fewer applications (j/2 instead of j) of the function

surround, at the expense of introducing some minor complications.

When the shift is from <F'.C.f> into <F’’',Cf’’> ie., when j is zero, there is
the notion of the distance of a shift with respect to a direction. Note that the

surround(<F',C,f>) equals <F'"*,C,f’> where for each element x of the frame F'
f/(NW.SE.x) = f(x)

Using the projection function p from the above definition of a shift, if for each x in
FI ’,14

p-l(x) r (NW.SE) -G/ if j is even
p-l(x) r (NW.SE) G/2) nw.x if j is odd

then the shift is said to be of distance 1 in direction r. Figure 2-10 shows a shift of

distance 1 in the western direction for the picture in Figure 2-4.

For many basic picture properties, 2 picture and the shift of a picture have the
same value. Two such properties that come readily to mind are the area of a picture
and the length of the perimeter of a picture. The area of a picture is the number of
pixels in the picture that are not WHITE. Thus, the area of the picture in Figure

2-4 is 2. The length of the perimeter of a picture P is the size of the set

{{x,y} | x and y are in surround(P) and
x r y for some side relation r and
the color of x is not the color of y}

Thus, the length of the perimeter of the picture in Figure 2-4 is 6. A pixel x is said
1o be adjacent to the perimeter of a nicture P, if 2ither 1) there exists a neighbor on
some side cf x that has a different color from X, or 2) x is not WHITE and has a side

on which it has no neighbor. In Figure 2-4, all the pixels are on the perimeter.

Another useful operation to perform on pictures is to overlay them. The overlay

40

of picture <F.C.f> on top of the picture <F',C’,f’> is defined as the picture

<F'C’’.f’’> where C’’ is the union of C and C’, and for each x in F'

£/ (x) = ¢t(x) if £(x) is not equal to WHITE
£/7(x) = £°(x) if £(x) is equal to WHITE

Figure 2-11 shows the overlay of two binary pictures.

2.2.2. DEFINITION OF REGION PYRAMIDS AND QUADTREES

Having explored the basic operations on pictures, it is now appropriate to consider
the definition of the pyramid and the quadtree. Then we will look at two types of
each. Given a picture <F'.C.f> denoted P, we shall define a pyramid as an ordered
quadruple <P,C’,h.g>, where C is a subset of C’, and g is total from the subframes of

F' into C’ and is hierarchical in f and h. By g being hierarchical in f and h, it is

meant that
g(ix}) = £(x) if x € Fi
gx) = h(g(xnw).g(xNE).s(XSE).s(xsw)) othervise

Recall that if x is in F', then the singleton set {x} is the same as subframe(F'x). All
pyramids that have the same values of C, C’, and h are viewed as pyramids of the

same type.

It is sometimes useful to view the pyramid <P.C’.h.g> as set of ordered pairs
{<x,g(x)> | x is a subframe of F'}
but it is important not to lose track of the values of C, C’, and h. When the pyramid
<P,C'.Ii.g> is viewed as a set of ordered pairs, there is a special subset of it called a
quadtree. The quadtree of a pyramid <P,C’,h,g> is defined as a subset of that pyramid

where

{<x,g(x)> | g(x) € C and g(x") # C}

The most basic type of pyramid is one where: GRAY is not an element of C; C’

is the union of C and {GRAY}: and

h(a,b,c,d) = a ifa=b=ec=4d
h(a,b,c,d) = GKAY otherwise

A pyramid that satisfies these conditions shall be called a region pyramid. Such a
pyramid is illustrated in Figure 2-12. Note that since the subframes appeared on our

41

basic picture representation, Figures 2-6 and 2-12 appear identical. The quadtree of a
region pyramid is called a region quadtree. Such a quadtree is illustrated in Figure
2-13. /A region quadtree is said to represent a region pyramid in the sense that given
the region quadiree, we can reconstruct the region pyramid. This will be proved in the
Region Quadtree Representation Theorem.

In order to prove the following theorem, we need the concept of a partial region
quadtree. Let us define the partial region quadtree Q of <<F'.C.f>,C’.h.g> as follows :
Q¥ = {<ix},E£(x)> | x € Fi}
Qj+l = {<x,g(x)> | g(x) € C and either
x = yf where <y,g(y)> € Qj or
<x,g(x)> € Qj but g(xf) = GRAY}
Figure 2-14 presents the partial quadtree Q' for the pyramid shown in Figure 2-12.
Since if any of the arguments to h are GRAY, then h returns GRAY, it follows that
Q' is the region quadtree of <<F.C.f>.C’.h.g>.

Theorem 10: (The Region Quadtree Representation Theorem): Given a
region quadtree Q constructed from some region pyramid Y from a picture

with frame F' colored with colors C, it is possible to reconstruct the region
pyramid Y.

Proof: In order to reconstruct the region pyramid, we must determine
the values of <<F'C.f>.C’.h.g>. The value of F' and C are already given.
Since Y is a2 region pvramid. we know that C’ is the union of C with
{GRAY}. Similarly. since Y is a region pyramid, the function L is known.
Thus, if we can reconstruct the function f. we will be able to derive the
function g and the reconstruction will be finished.

In order to recomstruct f, it is sufficient to show that we can
reconstruct the partial region quadtree Q° from region quadtree Q, i.e., the
partial quadtree Q‘. Given the partial quadtree Q°', we can reconstruct the
partial quadtree Q' by replacing each ordered pair <x.y> in Q"' where the
length of the root of X is i-j with <x"y> <x“ty>, <x®y>, and <x™,y>.
This works because it is the exact inverse of the process that constructed Q“ !
from Q. By using this process j times, we can conmstruct Q° from Q. Since

we can construct f from Q° (because f(x) = y iff <ix}.y> in Q°). we have
completed the reconstruction of the regioa pyramid from the region quadtree.

42

2.2.3. DEFINITIONS RELATING TO AND INCLUDING LINE QUADTREES

Until now, we have been viewing colors as indivisible objects. It is sometimes
useful to view colors as having a structure. This is the case when defining the

difference picture D(P) of a picture P.

The difference picture D(<F',C,f>) is defined as <F'.C*.f*> where C* is the set of
ordered quadtuples of {SET, CLEAR} and f* is defined as
f*(x) = <diff(x,n).diff(x,e).diff(x,s).diff(x,w)>

where diff is defined as

diff(x,r) = CLEAR if for some y, x r y and £(x) = £(y)
diff(x,r) = SET otherwise

We consider <CLEAR.CLEAR,CLEAR,CLEAR> to be the distinguished color WHITE.

Furthermore, let us define the notational convention
¢ = <cin}.clel.cls).clw]>

as a way of indicating the four parts of the color ¢. Figure 2-15 shows how we will

represent difference pictures in our figures.

Subframes in a region pyramid that cannot be mapped onto one of the colors of
the corresponding picture are mapped onto GRAY. In the case of a line pyramid, we
will map subframes that do not have a reasonable interpretation as an ordered
quadruple of {SET. CLEAR} onto the color CROSSED. The color CROSSED
corresponds 10 the notion that the subframe represents a region that is split by some
boundary. Thus, for any region pyramid, there exists a corresponding line pyramid
such that all the subframes mapped to GRAY in the region pyramid are mapped to
CROSSED in the line pyramid.

A line pyramid <<F'.C*.f*>.C*’.h".g'> is one where: CROSSED is not an element
of C* C'’ is the union of C* and {CROSSED}; and

)
h (eyysENprSsprCgy) = Derge(eyy, eypiCops gy

if "“°r°“°d<°NW’°NE’°SE’°SW)

*
h (cN",cNE,cSE,cSH) = CROSSED otherwise

assuming the following definitions of uncrossed and merge. The predicate uncrossed is
used to verify that all of the borders between siblings have the value CLEAR; thus,

43

uncrossed(c . .c € .c.) is true iff ¢ [s]. Cw (el Ce (s], € e [w], Cp (n], € (wl,
Cow (n], and Cow [e] are all CLEAR. If any of Cow Cne Sep OF g 2T€ CROSSED,
then uncrossed is false. The function merge is used to produce the quadtuple X, where
for each side relation r, x[r] is SET if for the two siblings, X, and X, that do not
have brothers as neighbors on side r, both X {r] and X, {r] have the value SET. If we
let A denote the infix operator that maps SET A SET into SET and all other argument

pairs into CLEAR, then we can define merge as follows:
merge (cy i CupsCoprCoy) = <Cyylnl A ey lnl,

CNE [e] A Cep [e],

cSE[s] A csw[s] ,

cgu W] A e [w]>

Figure 2-16 shows a pictorial representation for a line pyramid.

The quadtree of a line pyramid is called a line quadtree. A line quadtree is said
to represent a line pyramid in the sense that the line pyramid can be reconstructed
from the line quadtree. Figure 2-17 shows a pictorial representation of the line

quadtree.

As with the region quadtree, we would like to show that the line quadtree is
sufficient to allow reconstruction of the line pyramid. Figure 2-18 illustrates the
partial quadtree Q' for the quadiree of Figure 2-17. In order to do this. we need the
concept of a partial line quad:ree. The definition is the same as for the partial region
quadtree except that references to GRAY are changed to CROSSED. Since if any of
the arguments to h' are CROSSED, then h® returns CROSSED, it follows that the
partial line quadtree Q"' is the quadtree of <<F',C'.f*>.C*’.h’.g°>.

Unfortunately, our usage of the partial line quadtree to prove the Line Quadtree
Representation Theorem is more complicated than our usage of the partial region
quadtree to prove the Region Quadtree Representation Theorem. To solve this

combplication, we.need the following three lemmas.

The first lemma states that two peighboring subframes in the domain of the
partial quadtree will agree in the value of the bordering sides. The key to the proof
of this lemma is that two subframes can only be neighbors if they are of the same
depth.

Lemma 11: If <xc> and <y.c> are in the partial line quadtree Q,

then if there exists a side relation r such that
. Xry
then
¢ [r"] =¢ (1]

Proof: Note that the lemma holds when j equals 0. It follows from the
definition of the partial line quadtree that if the lemma holds for Q*, then
it holds for Q*"*'. Thus, the lemma is true.

The next lemma states that the domain of the partial region quadtree is the same
as the domain of the partial line quadtree. This allows us to pass back and forth
between interpreting the process of forming a partial quadiree as forming a line
quadtree or as forming a region quadtree. In later sections, this will mean that most
results will apply to both kinds of quadtree. An instance of the truth of this lemma
can be seen by noticing that Figure 2-18 and Figure 2-14 have the same number of

subframes.

Lemma 12 If <x.c> is in the partial region quadtree Q, then there
exists a ¢* such that <x.c*> is in the partial line quadtree Q*.

Proof: Again. note that the lemma holds for Q° and Q*°. Assume i is
the smallest number for which the lemma failss The lemma could only fail
because in one of the partial quadtrees four brothers were replaced by their
father whereas in the other they were not. Both the assumption that the
merger failed to occur in the partial line quadtree and the assumption that
the merger failed to occur in the partial region quadiree lead to
contradictions. Therefore, the lemma holds.

The last lemma states that, for partial line quadtrees, if on some side the father is
CLEAR but one of the sons was SET, then the father does not have a neighbor on
that side This means that if the information that a given side is SET is lost by a
merger of one of the two subframes that contains it, then the other will not be

merged. Thus, in actuality, the information is never lost

Lemma 13: if there exists a side relation r such that x r y where <x,c>
and <y,d> are in the partial line quadtree Q" and ¢[r”) and d[r] are SET
but <x'c> is in the partial line quadree Q"' and c[r] is CLEAR, then

there is no d_such that <y',dr> is in the partial line quadtree Q"'

45

Proof: The assumption that the lemma is faise, together with Lemmas
11 and 12, leads to a contradiction. Thus, the lemma holds.

We now have sufficient knowledge of partial line quadtrees to prove the Line
Quadtree Representation Theorem. This theorem simply states that given a line
quadtree, we can reconstruct the line pyramid from which it came, and hence the

difference picture from which the line pyramid was built

Theorem 14: (The Line Quadtree Representation Theorem): Given a
line quadtree Q' constructed from some line pyramid Y from a picture with

frame F' colored with colors C*, it is possible to reconstruct the line pyramid
Y.

Proof: In order to reconstruct the line pyramid, we must determine the

values of <<F'.C’'.f>,C*’.h*g’>. As in the proof of the Region Quadtree
Representation Theorem. the crux is to show that we can reconstruct the

partial quadtree Q*° from quadtree Q*, i.e., the partial quadtree Q*. Given
the partial quadtree Q"', we can reconstruct the partial quadtrez Q* by

2j*1

replacing each ordered pair <x,c> in Q where the length of the root of x

is i-j with
<x"¥,<c [n],CLEAR.CLEAR.c [w] >>
<x"F,<c[n).c[e] CLEAR,CLEAR>>
<x*t.<CLEAR.c [e] .c [s] .CLEAR>>
<x*™.<CLEAR.CLEAR.c [s] .c [w]>>

Unfortunately. this does not directly recover Q™ because the use of the

A operator in the function merge used by h’, means that we cannot always
directly recover the color of .the son from its father. For example, if x[n]

is SET, then s"" [n] must also be SET, but if x[n] is CLEAR, all we know
is that s"" [n) and s"®[n) cannot both be set. However, as a consequence of
Lemma 13, if we perform the above procedure starting with changing Q*' into
Q™. Q"™ into Q’*" etc., we eventually produce a2 Q‘*°. This Q’*° can

be changed into Q*° by collecting all pairs of neighbors that violate Lemma
11 and changing their colors so that the appropriate side is SET for both
members of the pair.

Now, from Q'° we can reconstruct f*, thus, proving the theorem.

Examples of the usage of region quadtrees can be found in
{3, 4, 12, 13, 17, 25, 26]. The basic algorithms for line quadtrees can be derived
from the corresponding region quadtree algorithm by using techniques discussed in [27].

4%

2.3. RESULTS ON THE SIZE OF QUADTREES

In the previous sections, we have presented the picture, pyramid, and quadtree as
abstract mathematical objects. However, we are ultimately interested in them because
of our ability to represent and manipulate them within a computer. In this thesis, we
shall use an unbounded-size-random-access-memory model of a computer. The main
result of this choice of model, is that we will not consider implementation problems
that arise from paging or the usage of disk and/or tape files. This random-access
memory is organized (by software) into objects called records. A record consists of a

fixed number of fields, some of which are viewed as pointers to other records.

A computer representation of a picture <F',C,f> that is consistent with the usage
requirements of standard picture algorithms can be constructed in the following manner.
Let each record Rx correspond 1o an element x of the frame F'. Let the value field,
denoted value[R], of a record encode the color f(x). The remainder of the record
consists of four pointer fields, denoted kin [Rx.r] (where r is a side relation). For a
give side relation r, kin [Rx.r] is R where y r X, and is considered NULL, if x does
not have a neighbor on the r side.. Figure 2-19 shows the record structure for the
difference picture of Figure 2-15. Having drawn the distinction between a pixel of a
picture and the record of the corresponding computer representation. we shall now
proceed 1o ignore this distinction, for the sake of readability. Note that sometimes it
is convenient 10 view each record as a2 node in 2 graph where the pointer fields

indicate arcs.

The following theorem indicates how large a random access memory would have to
be in order to contain this representation of a picture. In performing this and other
calculations. we consider each field of a record to have the same size. Also, we are
not interested in the particular constants involved in the calculations; so most results

will be presented in terms of their order of magnitude.

Theorem 15: (The Picture Storage Requirements Theorem): The
number of records required to represeat a piciure <F'.C.f> is proportional to
4, ie, O4).

Proof: The above picture representation has one record for each element
of F'; therefore, the number of records required is equal to the cardinality of
F', i.e, |F'|. Referring to the definition of frame, the following holds:

47

|F°| =1
|F'| = 4-|F"|
Hence, the cardinality of F' (and the number of records in the

fepresentation) is 4'.

The computer representation of a pyramid <<F',C.f>,C’.h,g> is built from records
that represent the view of a pyramid as a set of ordered pairs <x,g(x)> where x is a
subframe of F'. The pyramid record RPK that corresponds to the subframe x has six
fields. The value field, value [RPX] encodes g(x). The remaining five fields are pointer
fields, denoted:

father [RP] = RP (£
son [Rpx,Nw] =~ RP (NW,
son [RPx,NE] = RP NE,
son [RPx,SE] ~ RP SE,

son [RPx,SW] - RP(xSW)
For all pointer fields, if the field refers to an object that does not exist, then the field
is said to be NULL. The record structure of the line pyramid shown in Figure 2-16 is
shown in Figure 2-20. Having drawn the distinction between a subframe-color pair and
a record of the corresponding computer representation, we shall proceed to ignore the

distinction.

When viewed as a graph. the nodes of a pvramid form a tree. If we consider the
root of the graph to be the node corresponding the record that corresponds to the
subframe whose root is A, then by induction on the frame depth of the represented
quadtree (and using the Subframe Invariance Theorem), it can be shown that the graph
is connected and acyclic. Thus, viewing the pyramid as a graph introduces tree

terminology, e.g., depth, nodes, and leaves.

The following theorem indicates the storage requirements of our pyramid
representation. Note that although the pyramid almost always requires more space than

the picture, their requirements are of the same magnitude.

Theorem 16: (Pyramid Storage Requirements Theorem): The number
of records required to represent a pyramid <<F'C.f>C’hg> is of the
magnitude O(4°).

43

Proof: The number of records used to represent a pyramid is the same
as the number of subframes of F. From the definition of subframes, we
note that the number of subframes of F' is equal to

B+ IF'] + o+ |
which is in turn equal to
L+4s 4 &

according to our calculations from the proof of the Picture Storage
Requirements Theorem. The above reduces to

(4/3)-(4'-1) + 1
which is of magnitude O(4').

Now, let us construct a computer representation for a quadtree. We let the
quadtree have the same record fields as the pyramid. However, just as the quadiree is
a subset of the pyramid. so the records used to represent the quadtree will be a subset
of the records used to represent a pyramid. Let the term full quadiree denote the
smallest set that contains the quadtree and is closed under the operation of finding a
subframe’s father. With respect to a full quadtree, the quadtree from which it was
built is referred to as the fringe. Henceforth, we will not draw a distinction between
a quadtree and a full quadtree. The set of records that form the quadiree
representation is that subset of the pyramid-representation records that correspond to
subframes in the full quadtree with the modification that the son fields of records
corresponding to the fringe have been set o NULL An example of the record
structure of a quadtree that corresponds to the line quadiree of Figure 2-17 is shown

in Figure 2-21.

When viewed as a graph the quadtree representation forms a subgraph of the
pyramid representation. The records of our quadtree representation also form a tree.
The argument showing that they form a tree follows the same form as the one
presented for the analogous statement with respect (0 pyramids. The same
terminological ramifications apply, i.e, nodes of a quadiree have depth and are
sometimes leaves. As well as the notion of the depth of a node, there is also the
notion of the depth of the entire tree. Note that the depth of a quadtrse is bounded
from above by the maximum depth bf a s_ubframe that corresponds 10 a node of the

tree.

49

The above Pyramid Storage Requirements Theorem presents the space requirements
in terms of a function of the pyramid depth i If we were to present the space
requirements of a quadtree as a function of the quadtree depth, we would get a bound
of the same order of magnitude .as that of pyramids. This is an immediate consequence
of considering the quadirees for a sequence of checker-board pattern pictures, as
illustrated in Figure 2-22.

It turns out that it is useful to consider the size of the representation of a
quadtree, henceforth called the size of the quadtree, as a function of the length of the
perimeter of the picture that the quadtree represenis. Recall that the length of the

perimeter of a picture P has been defined as the size of the set S where

S = {{x,y} | x and y are in surround(P) and
x ry for some side relation r and
the color of x is not the color of y}

It can be shown that the length of the perimeter of P is equal to t.hé length of the
perimeter of surround(P) and that the size of the quadiree of surround(P) is eight plus
the size of the quadtree of P. Before we can analyze the size of the quadtree in terms

of its perimeter, we will need to consider some auxiliary conceplts.

We say that P contains a path, if the above set S forms a path. A set S is said
to form a path if and only if there is an enumeration of the elements of S. s, through
s). where j equals IS|. such that for any pair of consecutive elements s, and s, one
of the following two conditions is satisfied. If s denotes {x,y} where x n v (the first
case), then one of the following three conditions holds:

1. .. has exactly one element, z, in common with s, and the other element is

either an eastern or a western neighbor of z.

2. Each element of 5., is an eastern neighbor of an element of ..

3. Each element of ..\ is a western neighbor of an element of s,
Similarly, if s denotes {x,y} where x e y (the second case). then one of the following
three conditions holds:

1 S. has exactly one element, z, in common with s, and the other element is
1
either a northern or a southern neighbor of z.

2. Each element of ., is a northern neighbor of an element of s

3. Each element of s, is a southern neighbor of an element of s

50

Note that for i less than j; all possible values of s have been covered. Recalling the
picture P of Figure 2-4 and surround(P) of Figure 2-6, the path corresponding to the
perimeter of surround(P) is shown in Figure 2-23. A number i inside the square that
Tepresents an element of the frame of surround(P) indicates that that element was in s.
Note that in order to simplify the presentation, we do not indicate the color associated

with the elements of surround(P).

Given the notion of a path, defined above, it is useful to coastruct the notion of
an augmentied path and then the notion of the reduction of an augmented path. The
notion of an augmented path is needed because there is not a simple notion of the
reduction of a path that is useful in the analysis of the space requirements of
quadtrees. A set S that can be defined as having elements of the form {x,y} where all
the x's and y¥'s are elements of the same frame is said to form an augmented path if
and only if the following condition holds. There is a sequence of its elements
(allowing duplication but not omission) where for each i less than j, one of the
following holds:

1 s and s, are both of cardinality 2 and they obey the conditions for a path
listed above.

9

Exactly one of s and .. is a set of cardinality 1 and it is a subset of the
other element.

PJ

Both s and s_ are sets of cardinality 1. {x} and {y} respectively. and there
exists a side relation r, such that x r v .

Note that it is permitied for {x,y} to be an element of S even though x equals
y. Since every path is also an augmented path, Figure 2~23 would be a trivial example
of an augmented path. A reduction of an augmented path is formed by replacing
every element of an element of an augmented path with its father. Figure
2-24 indicates the augmented path that happens to be the reduction of the augmented
path shown in Figure 2-23. Note that depth of the frame of the reduction of the
augmented path is one less than the depth of the frame of the original augmented path.
That the reduction of an augmented path is always an augmented path is the content of

the following lemma.

Lemma 17: (The Augmented Path Reduction Lemma): If the set S

51

forms an augmented path with respect to some frame F'"', then the reduction

of S, denoted S’, forms an augmented path with respect to the frame F'.

Proof: The new sequence for S’, is the result of applying the reduction
to the sequence for S, and then eliminating successive duplicate entries. The
proof of this lemma results from consideration of the result of performing a
reduction upon Iwo successive elements of S, s, and S .. where these

successive elements satisfy either one of the conditions for a path, or they
satisfy one of the last two conditions for an augmented path. If the
successive elements satisfy one of the conditions for a path, then, one of the
following holds:

1. Both s'i ard s'l.I have cardinality 2, in which case either they are

equal (and hence only one of them is left in the sequence) or they are
distinct. If they are distinct, then it can be shown that they satisfy
the conditions for a path.

2. Exactly one of s'i and s’m has cardinality one, in which case it must
satisfy the second condition for an augmented path.

3. Both s'i and s’M have cardinality one, in which case either they are

equal (and hence only one of them is left in the sequence) or they are
distinct. If they are distinct, then they must satisfy condition 3) for an
augmented path.

If s, and s, are in the sequence because they satisfy one of the last two

conditions for an augmented path, then the reduction transformation will
either leave them identical (and thus, one is removed from the sequence) or

s’ and s"_I will satisfy one of the last two conditions for an augmented

path.
Each of the staiements above can be verified by a proof by
contradiction.

From our point of view, the most interesting result from reducing an augmented

path is that the size of the reduced path is 4/5ths the size of the original path.

Lemma 18: (The Reduced Augmented Path Size Lemma): If j is the
length of a sequence satisfying the conditions-of an augmented path for a set
S, then there exists a sequence satisfying the conditions of an augmented path
for the reduced set S’ and the length of that sequence is bounded from
above by

4+4--G/ 9%

Proof: This lemma can be demonstrated by considering every possible
form tnat an augmented path of length five can take and noting that in
every case the result of reducing the path yields a sequence of length four or
less. Having broken the path into a sequence of subpaths of length 5, it is
possible for there to be a subpath of length 4 left over that will reduce to
being still of length 4.

52

In the above lemma, w; analyzed the effect of reduction on subpaths of length 5.
We chose the length 5 because shorter subpaths need not always reduce. If we had
chosen a longer subpath length. e.g, subpaths of length 125, we would expect to get a
better reduction rate (and hence better constants in the Quadtree Siorage Results
Theorem). However, it should be noted that the reduction rate for subpaths of length
4 can be easily verified by hand calculation, whereas the reduction rate for subpaths of
length 125 would require either further theoretical analysis or extensive calculations
feasible only for a computer. Indeed, it is not clear how a computer could be
programmed to perform this calculation in a manner that does not suffer from

exponential growth.

We can now demonstrate the relation between the length of the perimeter of P

and the size of the quadtree for P.

Theorem 19: (The Quadtree Storage Requirements Theorem): If Q is
the quadtree of a picture P that has a path, then the number of records
required to represent the quadtree Q is of the magnitude O(p+d), where d is
the depth of P and p is the length of the perimeter of P.

Proof: First, we note that for any quadtree node x, either x or one of
X's siblings is on the perimeter or has a descendant that is on the perimeter.
Next, we note that if a node is on the perimeter or has a descendant that is
on the perimeter, then it is a member of an element of the path or it is a
member of an element of one of the augmented paths that result from
performing a reduction. From an application of the Reduced Augmented
Path Size Lemma, we deduce the following upper bound on the number of
nodes in a quadtree of depth d representing an objec! of perimeter p that are
on the path or have descendants that are on the path.

T, 4+ @9)p

This upper bound is of order O(p+d). Since no element of a path can have
more than two elements itself, and since each node has three siblings, there
must be an upper bound of order O(p+d) on the number of nodes needed to
represent a picture P that has a path.

The result of the above theorem can be extended to quadtrees by use of the

following theorem [12. 13].

Theorem 20: (The Quadtree Overlay Storage Theorem): Let Q denote
a quadtree that represents a picture <F'.C.f> denoted P. Let Q’ denote a
quadtree that represents a picture <F',C’.f’> denoted P’. Let Q’‘ denote a
quadtree that represents a picture <F'.C’’.f’’> denoted P’’, where P’’ is

53

the result of overlaying P on top of P’. The the number of records
required to store the quadtree Q’’ is bounded from above by the sum of the
number of records needed to store the quadtrees Q and Q’.

Proof: Consider th: partial quadirees that correspond to Q. Q’. and
Q’’. It can be shown by induction that for each j less than or equal to i,

the size of Q‘“! is bounded from above by the sum of the sizes of Q and

Q"

Thus, a picture P could be viewed as having been built from the overlay of j
pictures, P’ through Pj. where for all i from 1 to j, Pi has a path. Then the size of
the quadtree that represents P would be bounded from above by the sum of the sizes
of the quadtrees that represent P._. where is from i to j. Unfortunately, this does not
always give a good bound on the number of nodes in a quadtree. Consider the
sequence of quadirees for modified checker-board patterns as illustrated in Figure 2-25.
The modification referred to is that the BLACK pixels have been separated so that
there is no path that connects the perimeter of any two BLACK pixeis. Here, we
would have to consider the picture as the union of O(4) 2 by 2 pictures. for each of
which, the length of the perimeier was 4. The Quadiree Overlay Storage Theorem
would allow us to deduce the following upper bound:

oL’
This upper bound is of magnitude O(j-4'), whereas the number of nodes in such a
quadtree is of magnitude O(4’). Note that we have modified the checker~board pattern
so that there is no other way of breaking the picture up into fewer pictures, all of

which have paths.

Other approaches to the question of the storage requirements of a quadtree are
possible. Given a particular geometric model for the neighbor axioms like that of
Section 4.1, there are two known results on the size of a quadtree. Hunter's theorem

{12, 13] states that the size of a quadtree that represents a polygon is proportional to
the sum of the depth q of the quadirze plus the length p of the perimeter of the
polygon. This result is analogous to tae Quadtree Storage Requirements Theorem,
although its proof is different. In particular, the exact upper bound that Hunter
derives is 16q-11+16p, which has constants that are considerably lower than those of the
Quadtree Storage Requirements Theorem. However, the proof of the Quadtree Storage

54

Requirements Theorem could be modified to yield better constants at the expense of

additional complications.

~ The other known result on quadtree size is due to Dyer [S]. He analyzes the
average number of nodes in a ﬁuadtree that represents a 2™ by 2™ square embedded
within a 2% by 2% picture. Assuming that each element of the frame of the picture is
equally likely to contain the upper left hand corner of the square, Dyer shows that
both the average and worst case quadtree sizes are O(2™+q-m). Although this result is
subsumed by Hunter's Theorem, the constants involved are considerably lower; in
particular, Dyer calculates an upper bound on the worst case for square representation

to be (in Hunter’s notation):
4 -p+16-(q+2-logip) - 27

Figure 2-26 illustrates the wide variance (from 5 nodes to 53 nodes) in the
number of nodes needed 1o represent a 4 by 4 square within an 8 by 8 picture. It
should be noted that these quadtrees represent pictures that are shifts of each other.
Considering the wide variance illustrated by Figure 2-26. it is interesting to consider the
problem of developing an algorithm whose input would be a picture and whose output
would be a shift of that picture that minimizes the number of quadtiree nodes needed.
The transformation resuiting from this algorithm (the NM transformation) is considered
in depth in Section 3.2.3 If P is a 2* bv 2% picture. then Li. Grosky, and Jain [20]
propose. an al'gorithm thai executes in time proportional to

2"t . q
This algorithm uses dynamic programming It is based on the following two results on

the size of the quadtree representing the shift of a picture.

1. Given a picture <F'.C.f>, the minimum of the depth of the smallest quadtree
corresponding to a shift of the picture is bounded from above by i+l.

2. Given that P’ is a shift of P in some direction with distance 2' and that q
is the depth of the pyramid corresponding to P, then the number of nodes
with depth d in the quadtree for P’ is equal to the number of nodes with
depth d in the quadtree for P, if d is greater than g-i

A proof of the above two results within the Quadtree Theory developed above is
beyond the scope of this dissertation. However, the class of quadtrees generated by
this algorithm is considered in Section 3.2.3.

55

2.4. ON FINDING NEIGHBORING QUADTREE NODES

In the computer representation of pictures outlined in the previous section, finding
the neighbor of a given picture element is simply a matter of dereferencing a pointer
field. To determine the corresponding information about a node in a pyramid or a
quadtree is more complicated. The neighbor-finding algorithm discussed below has
played a key role in various applications, including chain code to quadiree conversion

[25]. quadtree to chain code conversion [4], and connected component labeling [26].
A general discussion of the problem of locating side and diagonal neighbors in a
quadtree, with particular emphasis on average case analysis, is presented in [28]. In
the following, we are only interested in finding side neighbors. Furthermore, we are

only concerned with the worst—case analysis of this algorithm.

The algorithm for finding a side neighbor in a pyramid is simply a procedural
encoding of the information presented in Table 2-4. One encoding of this algorithm is
presented in Table 2-5. It is assumed that applying any operation to ERROR vyields
ERROR as the result (with the exception of the query ISERROR, which always returns
TRUE or FALSE). The correctness of the algorithm in Table 2-5 is demonstrated in

the proof of the following lemma.

Lemma 21: (Neighbor Finding Correctness Theorem): Given the
procedural definition of Table 2-35. for any subframes x and vy, for any side
relation r

y = NEIGHBOR(x.r) iff x r y

Proof: As with most proofs of iff-type theorems, we will first prove
the only-if-part and then prove the if-part. The only-if-part states that

y = NEIGHBOR(x,r) implies x r y

First, by induction on the actual depth of x, we show that the actual depth
of NEIGHBOR(x,r) is equal to the actual depth of x. Then by induction on
the actual depth of x and vy, using the results in Table 2-4, it is clear that

y = NEIGHBOR(x.r) implies x r y

The if-part states that
X r y implies y = NEIGHBOR(x,r)
By the Neighbor Uniqueness Theorem and the only-if-part above, if x r v
and NEIGHBOR(x.r) is not equal to ERROR, then
y = NEIGHBOR(x,r)

If NEIGHBOR(x,r) equals ERROR, then we can use the Embedding Lemma
(Lemma 6) to comstruct an x’ that denotes the embedding of x in the
appropriate quadrant q. Through careful choice of q, we obtain that

56

NEIGHBOR(x’,r) equals some subframe z that is not in quadrant q. However
the embedding of y, denoted y’, is in quadrant q and x’ r y’. From the
only-if part of this lemma, we can deduce a contradiction with respect to the
Neighbor Uniqueness Theorem. Therefore

x r y implies y = NEIGHBOR(x,r)

Thus, the procedure is correct.

However, recalling the Neighbor Decidability Theorem (Theorem 3), we realize that
we already have a correct algorithm for calculating neighbors. The difference is that
the algorithm of Table 2-§ is practical from an execution time point of view. In

particular, we have the following theorem.

Theorem 22: (Order Depth Neighbor Finding Theorem): The execution
time of the algorithm for NEIGHBOR(x.r) is proportional to the actual depth
of x. '

, Proof: Inspection of the ailgorithm shows that its execution time is
proportional to the number of times the function neighbor is invoked. Let
Cost(x.r) denote the number of times the algorithm invokes the neighbor
function in order to calculate NEIGHBOR(x.r). Thus. for any subframe x
and side r. either

Cost{x.r) = 1
or

Cost(x.r) = 1 + Cost(x".r)

Using these relations. it can be shown by induction on the actual depth of x.
that Cost(x.r) is bounded from above by the actual depth of x. Therefore. the
execution time for this algorithm is bounded from above by a function
proportional to the actual depth of x.

The above theorem could be extended to cover diagonal neighbors by using the

No—Corner—Cutting Theorem. For a fuller treatment of diagonal neighbors see [28].

In extending the above theorem to work with quadtrees, we encounter the problem
of what to do if the subframe NEIGHBOR(x,r) is not in the quadtree Q. Let y denote
the subframe NEIGHBOR(x.r). First, we note that y will be in the partial quadtree Q'
where i is the difference between the maximum and the actual depths of x. Next, we
observe that if y is not in Q. then it is not in the partial quadtree Q'*'. Finally, we
recall that if y is in Q', but not in Q"', then y' is in Q"' and the color of y' is the
same as the color of y. Now, NEIGHBOR(x'r) must equal y', since the only other

alternative was that x' = y' and this is impossible as x' has four sons (since x was in

57

Q) and y' has no sons in Q"' (since y was not in Q). Let us modify the algorithm
for the function NEIGHBOR(x.r) given in Table 2-5 so that it calculates the function

QUADNEIGHBOR(x,r) defined as
QUADNEIGHBOR (x,r) = NEIGHBOR (x,r) if NEIGHBOR(x,r) is in Q

QUADNEIGHBOR(xf.r) otherwise

Then, based on an induction over the observations mentioned above,
QUADNEIGHBOR(x,r) is in Q iff NEIGHBOR(x,r) is not ERROR. Also, the color of
QUADNEIGHBOR(x,r) is equal to the color of NEIGHBOR(x.r). Further justification
of the function QUADNEIGHBOR is dependent on the model of Neighbor Theory
presented in Section 4.1. It is an easy corollary of the Order Depth Neighbor Finding
Theorem, to show that there is an algorithm for QUADNEIGHBOR that executes in
time proportional to the actua] depth of «x.

Thus. the Order Depth Neighbor Finding Theorem covers the case of finding a
neighbor in a quadtree or a pyramid. However, this does not complete our analysis of
neighbor finding. Many algorithms. e.g. quadtree to chain code conversion, perform
QUADNEIGHBOR’s over at most some constant portion k of the quadtree. Thus, if
QuadCost(Q.r) is the cost of executing QUADNEIGHBOR(x,r) for each leaf x in the
quadtree Q divided by the number of leafs in Q. then we can calculate an upper bound
on the average cost of performing each of the QUADNEIGHBORs as QuadCost{Q.r)/k.
Note that this simply means that the cost of executing a fixed number of -
QUADNEIGHBORs is bounded from above by the cost of executing all possibie
QUADNEIGHBORs.

Before malyz{ng QuadCost, let‘us consider the analogous function PyrCost, i.e., the
cost of executing NEIGHBOR(x,r) for each subframe whose actual depth equals his
maximum depth divided by the number of leaves in the pyramid. Note that this
includes executions of NEIGHBOR on subframes that do not have a neighbor on the
given side r. Thus, before analyzing PyrCost, it is convenient to calculate the number of
subframes whose maximum depth equals tneir actual depth and who have no neighbors

on the side r.

Lemma 23: (The Edge Size Lemma) The number of subframes of F'
whose maximum depth equals their actual depth and have no neighbors on

side r is equal to 2'.

58

Proof: This follows immediately from an application of induction on the
depth of the quadtree together with the Negative Recessive Lemma.

Now, we are ready to calculate an upper bound on PyrCost

Theorem 24: (The Pyramid Constant Aggregate Cost Theorem): The
function PyrCost applied to a pyramid of maximum depth i is bounded from
above by 4. Thus, the sum of the costs of finding the neighbors on the side

r of each node in the pyramid is bounded from above by 4'-4.
Proof: We calculate the upper bound on PyrCost by induction of the
maximum depth of the pyramid <<F'.C.f>,C’.gh> which we denote as P'.

Since there are 4' leaves in P' according Theorem 15, together with the
definition of a pyramid, the following relations hold:
PyrCost(P%) = 0
4! .PyrCost(P""') = 4-4'-PyrCost(P) + 2'-(2-i+6)

That is, the average cost of finding a neighbor in a single subframe pyramid
is zero and the average cost of finding a neighbor in a pyramid of depth i+l
can be calculated as follows: the total cost of all neighbor finding in a
pvramid of depth i+l is equal to 4 times the total cost of all neighbor
finding in a pyramid of depth i plus the additional costs due to neighboring
subframes whose nearest common ancestor is the root of the pyramid and
subframes that have no neighbor.

The last formula relies on the following observations. For each of the

4-4' leaves in P'"', the cost of finding their neighbors in P'*' is at least as

much as it was in P'. For all but 4:2' of these leaves. the cost is the same
because both thev and their neighbors are embedded in the same quadrant

Of the 4-2' leaves who did not have neighbors before being embedded, 2.2'
of them still do not have neighbors, but it takes one step longer o verify it

The other 2-2' leaves must now have neighbors, and these neighbors are i+2
steps farther away than the cost of verifying that they didn't have neighbors

in P\
If we divide both sides of the last formula by 4', we get

PyrCost(P"™') = PyrCost(P') + (i+3)-27""
Using the following two identities

' 27 =2 - (a+2)-2"

i=1
=120

we can derive that PyrCost(P') is less than 4.

The analogous Order Quadiree Depth Neighbors Finding Theorem does not hold

59

because of the following counter—example. Consider a sequence of quadtrees having the
general form shown in Figure 2-27. Note that a constant fraction of the nodes in the
tree are adjacent to a vertical line drawn through the middle of the square representing
the root of the tree. When east/west neighbor finding is performed for any one of
these nodes, we note that the number of nodes visited is proportional to the depth of
the node. Thus the total cost of neighbor finding for this example will be O(N?) for a
quadtree of N nodes from this sequence. Thus, the average cost (QuadCost) of finding
a neighbor in quadtrees from this sequence will be O(N). Thus, any algorithm that
finds a neighbor among a fixed proportion of the subframes will heve a worst—~case
lower bound of the order of the number of nodes in the quadtree squared. In the
next section, we will discuss ways of transforming the quadtree to reduce this overhead.
But first, it is worth taking a look an alternate approach that works satisfactorily when
the order that the neighbor findings is to find the neighbors of each node visited by a
preorder traversal of the quadtree.

If the starting nodes from which the neighbor finding is begun are visited in
preorder, then we can construct a recursive algorithm using neighbor-passing techniques
shown in [27, 29]. The basic idea is to use the results in Table 2-4 (from the Positive
Dominant Lemma) to derive the neighbors of a node from the neighbors of its father.

Thus. an algorithm of the form:
procedure ALG(X)
begin
T[N] := NEIGHBOR(X,N);
T{E] := NEIGHBOR(X,E);
T[S] := NEIGHBOR(X,S);
T[W] := NEIGHBOR(X,W);

[

end;
could be transformed into:

60

procedure NEWALG(X,T[N],T[E],T[S],TI[W])

begin
NEWALG (xN¥, 7[N]SW, xNE xSV o[w)NE),
NEWALG (XNE r[N]SE r[g)NW xSE xNW,.
NEWALG (X5E xNE o[g)S¥ p[g)NE xSW),
NEWALG (x5W xNW xSE p[g1NW o[y)SE),
end;

Clearly, the above recursive procedure does the neighbor finding portion of its task in
time proportional to the number of nodes in the tree. In the next section, we show
how to get the same result for more general patterns of node visiting For example,

we are interested in the cost of following the boundary of an object

61

NW.NW NW.NE NE.NW NE.NE
NW.SW NW.SE NESW NE.SE
SW.NW SW.NE SE.NW SE.NE
SW.SW SW.SE SE.SW SE.SE

Figure 2-1: Layout of indices for F*

62

A
NW
EE.NH NW.NE
1 T —
IANH.SH NW.SE
SW
SW.NW SW.NE
SW.SW SW.SE

1
NE !
NE.NW |NE.NE|
NE.SW| INE. SE
SE
SE.NW SE.NE
SE. SW SE.SE

Figure 2-2:

Layout of subframes for F°

63

Figure 2-3: Example of a pair of subframes, x and z,
where X ne 2z

Figure 2-4: Representation of a binary picture denoted

<F', {BLACK.WHITE} .f>, with an area of 2
and a perimeter of length 6

Figure 2-5: Representation of embed(NW.,P), where P is the
binary picture of Figure 2-4

AV

Figure 2-6: Representation of surround(P), where P is the
binary picture of Figure 2-4

67

7

Figure 2-7: Two pictures related via a frame isomorphism

68

Figure 2-8: Two pictures related via a frame isomorphism
preserving neighbor relations among non-white
pixels

69

a4

shift - >

Figure 2-9: Illustration of a shift from <F 'Cf>
tO <F z.C‘f‘ l>

70

U

Figure 2-10: Example of a shift of picture in Figure 2-4
with distance 1 in the western direction

n

V4

7

overla}/

NN

%

Figure 2-11: The overlay of two binary pictures

72

AV

Figure 2-12: Represeatation of the region pyramid for picture in
Figure 2-6

73

Figure 2-13: Representation of the region quadtree of the pyramid
in Figure 2-12

74

BN

Figure 2-14: Representation of the partial quadtree Q' of
the pyramid in Figure 2-12

75

L]
01 {E3] O
00

Figure 2-15: Representation of the difference picture of
Figure 2-§

¢1-7 amdg
Joj pimelid ouT] Y JO UONMIVISAANY 9]-T am3y

9L

77

na
0o

Figure 2-17: Representation of the line quadtree for
Figure 2-16

78

0
mm

Figure 2-18: Representation of the partial quadtree Q' of
the line quadtree equivalent of the region quadtree
in Figure 2-13

79

Figure 2-19: Record structure for difference picture of
Figure 2-15

80

5 4'...'.},4, éég

Id

d

X
5

u
7,

//
|
00

q

Figure 2-20: Record structure for line pyramid of
Figure 2-16

81

00

Figure 2-21: Record structure for line quadtree of
Figure 2-17

82

NEWN

N
N F\\
N N
N
[N N

Figure 2-22: Example of 4 by 4 checker-board picture and
corresponding region quadtree

33

Figure 2-23: Illustration of the path sequence in
surround(P) corresponding to Figures 2-4 and 2-6

34

Figure 2-24: Ilustration of the reduction of the augmented
path of Figure 2-23

85

Figure 2-25: Example of a picture of a modified
checker-board pattern

7

%
%
%

mmlli.
B[7z||[z[z]]| [«
7 ////[

/

pov—

iy

Figure 2-26: Two quadtrees representing a 4x4 square in
an 8x8 picture

87

00
00

oo
0

Figure 2-27: Example of quadtree whose aggregate neighbor
finding cost is of the order of the number
of nodes squarzd

88

Table 2-1: TABLE OF INVERSE NEIGHBOR AXIOMS

RELATION I INVERSE RELATION
n (north) s (south)
e (east) w (west)

ne (northeast) sw (southwest)
nw (northwest) se (southeast)
= (equality) = (equality)

Table 2-2: TABLE OF NEIGHBOR COMPOSITION AXIOMS

n e $ W nw ne se sSw =
n * ne = naw * % e w n
e ne * gse = n * * g o
s = ge * swu w e * * ¢
) nw = sw ¥ * n s ¥ ow
nw * n w * * * g * nw
ne * * @ a * * * a pne
se e * * g = *x *x X g4
sw w s * X X e x ok gy
- n e S W nwW ne se sSw =

89

Table 2-3: A SAMPLE PROOF

STATEMENT | REASON
1) subframe(Fz,NW) w subframe(Fz,NE) R1
2) subfrane(Fz,NH.NE) w subframe(Fz,NE.Nw) 1, R4
k)l subframe(Fz,NE.SW) s subframe(Fz,NE.NW) R2
4) subframé(Fz,NE.NW) n subframe(Fz,NE.SW) 3, Table 2-1

|

|

|

|
5) subframe(Fz,NW.NE) nw subframe(Fz,NE.SH) | 2, 4, Table 2-2
6) subframe(Fz,NW.SE) s subframe(Fz,NW.NE) | R3
7 subframe(Fz,Nw.SE) w subframe(Fz,NE.SW) | 5, 6, Table 2-2
8) subframe(Fz,SW) s subframe (F2,NW) |
9) subframe(Fz,Sw.NE) s subframe(Fz,Nﬂ.SE) |
10) subframe(F2,SW.NE) sw subframe(FZ,NE.SW) |
11) subfrane(Fz,NE.SW) ne subframe(Fz,Sw.NE) |

8, RS
7, 9, Table 2-2
10, Table 2-1

Table 2-4: CONSTRUCTION OF SIDE NEIGHBORS GIVEN x r y

| wa | NE | XSE | XSH
SwW E NE NW
no | SN XSE YNy
NE NW W .
e | v, A S
W E N
A e i L
NE NW SW SE .
w | x | v | y | =

90

Table 2-5: . PROCEDURAL ENCODING OF TABLE 2-4

procedure NEIGHBOR(X,R)

/* where X is a node and R is a side relation.
note: X and Y do not have the same meaning
as in Table 2-4. */

begin
if 1SERROR(XE) then’

return (ERROR) ;
f

else Y := X™;
case R
N: if X =Y then
return (NEIGHBOR(Y,N
else if X = YNE then
return (NEIGHBOR(Y,N
else if X = YSE then
return (YNE) ;
else /* it must be that X = YW so */
return(Y"w)
E: if X = Yw then
retum(YNE);
else if 2 = YNE then
return(NEIGHBOR(Y,E)W);
else if X = YSE then
return (NEIGHBOR(Y,E

else /* it must be that X = YV so */
7S¥) .
4

NW

)SW);

return (
S: if X = Yw then
return (S¥) :
else if X = YNE then
YSE);
SE

return (
else if X = Y then
return (NEIGHBOR (Y,) NE) ;
else /* it must be that X = st so */
return (NEIGHBOR (Y, S)N¥W) ;

91

/* note: this is a continuation of TABLE 2-5 */
W if X = Yw then
return (NEIGHBOR(Y, W) NE) ;
else if X = Yn then

else if X = Y then
return (NEIGHBOR(Y,w) W) ;
else /* it must be that X = ¥ 50 #/

return (ySE):
end__of__case
end;

92

CHAPTER 3

NORMALIZING QUADTREES WITH RESPECT TO
AGGREGATE NEIGHBOR FINDING

3.1. DEVELOPMENT OF ANF ALGORITHMS FOR PYRAMIDS

3.1.1. THE OPTIMAL POSITIONING OF CHAIN CODES

The notion of a path, presented in Section 2.3, can be used as the basis for a
data structure for storing images. Such a data structure has been called a chain code
[8]. The important aspect of the chain code with respect to quadtrees is that it
specifies a sequence of subframes relative to an arbitrary first subframe (ie., the first
picture element). Assume that the chain code is presented as a string over an alphabet
consisting of the set {N, E. S, W} of directions. Then, the sequence of subframes
associated with a chain code is defined as follows:
1. The sequence of subframes associated with the empty string is <fo> where fo

denotes the arbitrary first subframe.

2. The sequence of subframes associated with the string «.p, where « is an
arbitrary string over our alphabet and P is a single element of our alphabet
is the the concatenation of the sequence <fo.....fM> corresponding 10 « with

the singleton sequence <fi>. such that the relation between fi_I and fi is
defined as follows:

a. if p = N, then f~. n f‘i.l

b. if p=E thenf ef

c. if p =8, then fi s fi_|
d if p =W, then fi w :'H
Thus, the sequence of subframes marked in Figure 3-1 indicates the sequence of
‘subframes referred to by the chain code NNNNNEEESSWSSESSWWWN once f, is

chosen to be the subframe whose root is SW.SW.NE. This chain code can be viewed as

93

defining the object that resulls from associating the color BLACK with each subframe
visited by it or marked with an X in Figure 3-1. The length of this chain code
corresponds to the length of the perimeter of the object defined by the previous
sentence. Note that this is a slight variation on the usage of boundary codes in other
quadtree papers [25, 4] in that in this case, the code describes steps from one pixel to
the next, instead of describing steps along the side of a pixel

It turns out that when calculating the cost of traversing the subframes referred to
by a chain code in a pyramid or quadtree, the initial assignment of the subframe fo is
critical. A bad choice can result in excessive neighbor-finds that are performed at
maximum cost. For example, in Figure 3-2, we see that we are constantly going back
and forth @ong subframes in two columns whose nearest common ancestor is the root
of the tree. However, the chain code with a better choice of initial subframe could

result in Figure 3-3.

The task of this chapter is to show how to calculate the best location for the
initial subframe. The best location for the initial subframe is specified as a location
where the total cost of traversing the sequence of subframes defined by the chain code
is proportional to the length of the chain code. A convenient measure of cost for
quadtree algorithms is the number of nodes visited. Note that if a2 node is visited

more than once. then it is counied more than once.

The algorithm that computes this location for the fo subframe of the chain code is
called the Aggregate Neighbor Finding Transformation. The result of using this
algorithm to shift the path in Figure 3-1 is shown in Figure 3-4. The following
should be clear about the ANF Transformation: the amount of shift in the x direction
is toually independent of the N/S steps in the chain code (and likewise for the y
direction and the E/W steps). Thus, if we consider the fo to be initially corresponding
to the point <0,0»>, we can then proceed to calculate the appropriate shifts according to
the following recursive relation. Assume without loss of generality that we are shifting

with respect to the x-axis.

94

procedure ANF (<X, Y>,CURRENTSHIFT ,MAXSHIFT,CHAIN)

/* ANF calculates the correct shift for the chain code
CHAIN by considering each possible power of 2 shift
and making a shift only when it improves the current
cost. <X,¥Y> denotes the current start of the chain
code. CURRENTSHIFT denotes the current power of 2
that we are considering shifting by. MAXSHIFT is
the upper bound on CURRENTSHIFT. The cost of shifting
is stored in ONEOFF and the cost of staying in place
is stored in STAYPUT. Note that we are only con-
sidering the amount of shift in the E-W direction.*/

begin

integer ONEOFF, STAYPUT;
if CURRENTSHI FT = MAXSH IFT then return <X, Y>
else begin
STAYPUT := NUMBER OF FIND-NEIGHBORS COSTING EXACTLY
2:'CURRENTSHIFT, GIVEN THAT CHAIN
STARTS AT <X,¥>;
ONEOFF := NUMBER OF FIND-NEIGHBORS COSTING EXACTLY
2 -CURRENTSHIFT, GIVEN THAT CHAIN

STARTS AT <x+2CURRENTSHIFT 4.,
if STAYPUT > ONEOFF
then return ANF(<X,Y>,CURRENTSHIFT+1,
MAXSHIFT,CHAIN)

else return ANF(<X+2CURRENTSHIFT,Y>,

CURRENTSHIFT+1,MAXSHIFT,CHAIN)
end;
end;

Recall the Pyramid Constant Aggregate Cost Theorem of Section 2.4. There, we
noted that if all possible neighbor findings were performed (in a pyramid), then the
aggregate cost (i.e., the number of nodes visited) would be bounded from above by 4
times the number of neighbor findings done. OQur chain code can be viewed as a
specification of a skewing of the distribution of neighbor findings done. The ANF
algorithm shifts the quadtree so that the most frequently performed nieghbor findings
have the cheapest costs.

Thus, for example, on the first invocation of the ANF procedure. we count the
number of E/W neighbor findings done at every other column along the x-axis, starting
at either <0,0> or <1,0>. We, then, compare these two groups of neighbor findings and
shift the image so that the largest group of neighbor finding car be done in 2 steps
(i.e., the father of one of the nodes involved is also the nearest common ancestor).

Note that in the Pyramid Constant Aggregate Cost Theorem, exactly half of the

95

neighbor findings could be performed in 2 steps. Due to the shift performed by the
ANF algorithm, at least half of the neighbor findings are performed in 2 steps. Thus,
as the ANF algorithm processes the chain code, it constantly skews the cost of neighbor
finding toward the least cost. Hence, when the transformation is completed, the cost
of the neighbor finding performed is bound from above by 4 times the number of
neighbor findings done.

The main properties of the above algorithm are outlined in the following two

theorems.

Theorem 1: (The ANF Chain Code Transformation Theorem): For any
path A, there exists a shifting of the path, denoted A’ that can be traversed
in the pyramid in time less than 4 times the length of A.

Proof: Following reasoning similar to the Pyramid Constant Aggregate
Cost Theorem, we note that if half of the neighbor finding operations cost 2,
half of the remaining cost 4, half of the remaining cost 6, etc., then the total
cost of all the neighbor finding operations will be bounded from above by
four times the length of the perimeter of the object. Such a chain code
corresponds to one that performs the find-neighbor operation between
adjacent nodes the same number of tlimes per node pair. Now, if some of
the costs are weighted more hearvily than is dictated by this breakdown, then
the total sum will be less than the cost of four times the length of the
perimeter, because the ANF algorithm places the heaviest weights on the
lowest path-length costs.

There remains the question of how expensive it is to calculate the ANF transform.

. Theorem 2: (The Linear Time ANF Chain Code Theorem): The
algorithm presented in Theorem 1 executes in time proportional to the length
of the chain code.

Proof: The cost of the ANF algorithm depends on how the counting of
the number of find-neighbors with a given cost is performed. The simplest
way to count these find-neighbors is to use a 1-dimensional array whose size
is twice the smallest power of 2 that bounds the length of the chain code
from above. Hence, for a chain code of length 3, we would use an array of
size 8. Starting at the middle of the array, and traversing the chain code,
count how many find-neighbors cross each column orthogonal to the x-axis at
each position. Then, to determine how many nodes have a given cost 2°N in
a chain code beginning at <X,Y>, the algorithm need only start at the

position X snd sum the values stored in the array for each position X-k-2"

where k runs from 0 to the size of the array divided by 2°. Thus, the
number of entries in the array that nave to be visited by one recursive
invocation is at most half those visited by the previous invocation. Therefore
the cost of the algorithm is proportional to the length of the array used for
counting plus the length of the chain code. Note that- the length of the

W et e N RN TR

96

chain code times 4 is_an upper bound on the length of the array used for
counting.

The next section begins the interface between the ANF transform and quadtrees.

3.1.2. THE CHAIN CODE TO QUADTREE ALGORITHM

Based on the chain code to quadiree conversion algorithm presented in [25)
together with the ANF transformation, we deduce an alternative algorithm to accomplish
the same task whose worst~case performance is proportional to the length m of the
chain~code. This is an improvement over the O(m-logz(m)) worst~case performance of
the conversion algorithm ([25] that occurs without the preprocessing done by the ANF
transformation. Since the ANF algorithm is O(m), the only reason for not applying it
is that it might cause a collection of maps to be represented by unaligned quadtrees.
Note that many algorithms {e.g., intersection) are more difficuit when performed on
quadtrees whose lower left hand corners do not correspond to the same global
coordinate. That is. given a collection of quadtrees, it might be more imporiant to
make sure that all the quadirees have the same global coordinate for their lower

lefthand corner (see Section 4.1) than it is to optimize aggregate neighbor following.

Theorem 3: (Linear Time Chain Code to Quadtree Theorem): There
exists an algorithm that builds a quadtree from a single connected chain code
in lime proporiional to the length of the chain code.

Proof: The initial coloring of the nodes on the boundary of region in
the quadiree can be done in lime proportional to the length of the chain
code when the chain code has been positioned by the ANF algorithm. From
Hunter’s Theorem. the number of nodes in the quadtree is proportional to the
length of the chain code. The interior nodes of the region can be colored
by a preorder traversal of the quadtree that passes down neighbors as
described in Section 2.4 in time proportional to the number of nodes in the
quadtree. Thus, the entire algorithm is bounded from above by a constant
times the length of the chain code.

When constructing a quadtree from a chain code, before we perform the possible
merging of nodes that are adjacent to the perimeter of the object, the number of nodes
in the quadtree is proportional to the length of the chain code. After these nodes
have been merged (where possible), it might be the case the the number of nodes in
the quadtree is considerably less than the length of the chain code. Thus, although we
were able to build the quadtree in time proportional to the length of the chain code,

97

we are not able to traverse the boundary in time proportional to the number of nodes
in the quadtree. However, there is an alternative approach to defining the chain code
for the boundary of an object that will permit traversal in time proportional to the
number of nodes in the quadtree. This occurs by including in the chain code both a
traversal of the WHITE nodes adjacent to a boundary and a traversal of the BLACK
nodes adjacent to the boundary (with the provision that when this traversal bends

around a corner, it first overshoots the corner by one step).

An example of the extended chain code corresponding to Figure 3-1 is shown in
Figure 3-5. It should be noted that this extended chain code exactly describes a path
that a perimeter~following algorithm might traverse. In general, assuming that the
contribution from overshoots is insignificant, the length of this extended chain code is
twice the length of the original chain code. However, because there exist images where
the number of "overshoots” dominates the size of the extended chain code, we can only
guarantee that it will be no larger than sixteen limes the length of the original chain
code (note that this still means that they are proportional in length). For example, we
note that the chain code of Figure 3-1 is of length 19, whereas the corresponding
extended chain code of Figure 3-5 is of length 54 (including 20 overshoots)

The optimality of placement resulling from the original application of the ANF
algorithm is preserved under the node collapsing criteria of the region/line quadtree as
shown in Figure 3-6. As a result of this preservation, we can calculate the chain code
from a. quadtree of a connected image in lime proportional 1o the length of the chain

code (cf., [4]). This is summarized by the following theorem.

Theorem 4: (Linear Time Chain Code From Quadtree Theorem):
Given a quadtree that has been constructed from an extended chain code by
the algorithm in Theorem 3, it is possible to regenerate the original chain
code in time proportional to its length.

Proof: Consider the number of links crossed in the traversal of a path
in a pyramid. Now, consider the result of merging nodes in the pyramid in
order to build a quadtree. Note that the number of find-neighbors done by
the perimeter following algorihtm corresponds to the number of links in the
extended chain code. Each time fcur sons merge, the cost of traversing the
perimeter reduces as links merge into longer links (nute that the boundary of
a link is precisely where it crosses the boundary of a quadtree node). Note
that for each link removed from the path because it crossed between two
nodes that are now part of the same node, there is a corresponding reduction

- e
98

in the aggregate neighbor following cost for an extended chain code by four
(or more), thus preserving (from Theorem 1) the average cost of four limes
the number of links in the extended chain code which is proportional to the
number of nodes in the quadtree. Thus, the usage of the ANF algorithm on
the extended chain code (henceforth always referred to as the chain code) will
satisfy the requirements of this theorem. '

Often, when dealing with real data, we must consider maps that represent a
collection of disconnected objects. If the notion of a chain code is exiended to be a
collection of chain codes prefaced by relative addresses indicating the location of each
chain code, then we note that the length of these addresses is proportional to the depth
of the resulting quadtree. Thus, we can derive results analogous to those above for
disconnected maps. Note that the cost of traversing the perimeter of some of the
regions in the map may be quite large. However, the cost of traversing all the region’s

perimeter is still less than four times the sum of the length all these perimeters.

3.2. GENERALIZATION OF ANF ALGORITHM TO DIRECTLY TRANSFORM
QUADTREES

3.2.1. OPTIMAL POSITIONING OF QUADTREES

The ANF algorithm for directly manipulating quadirees is based on the fact that
the contribution of a line segment of exactly 2° to the ANF algorithm does not effect
the costs calculated for any shift of length less than 2°. The ANF algorithm for
quadtree to quadtiree conversion proceeds as follows (again we break the algorithm into
solving for the x and y shifts separately, only showing one solution):

1. Perform a preorder traversal of the tree that passes down neighbors to
determine the location of the steps used in the border following procedure.
Build a linked list for each level of the count of steps that would be taken
that correspond to the width of a leaf at that level. This linked list is the
direct analog 10 the array described in the previous theorem. Since the access
to the information stored is sequential, the linked list and the array can be
used interchangebly.

v 2. Add additional nodes to the lowest level to take care of overshoots. Note
that we are using an extended chain code.

3. Perform the ANF algorithm on the iinked list of the smallest pixel width
columns. Since we are working with linked lists instead of arrays, the
counting is done differently. The process starts at the beginning of the
linked list and traverses the list forming two lists, corresponding to the two
groups of find-neighbors being compared.

99

4. After making the appropriate decision about shifting, merge the list
corresponding to the least number of steps with the list for the next higher
level. Note that the list with the larger total contains information that is no
longer necessary to the calculation of the appropriate shift

5. Repeatedly apply the previous two steps until the list corresponding to the
root of the tree has been reached. By now, the ANF shift position <X Y>
has been calculated.

6. Shift the input quadtree so that its lower lefthand corner corresponds to the
position <X,Y>. This can be done by a preorder traversal of the input
quadtree in time proportional to the size of the input and the output
quadtrees.

The analysis of the above algorithm constitutes the following theorem.

Theorem 5: (The Linear Time Quadtree To Quadtree ANF
Transformation Theorem): Given a quadtree, we can construct the result of
reading the chain code from the quadiree, performing the ANF
transformation on the chain code, and then re—encoding the chain code as a
quadtree in time proportional to the size of the input and output quadtrees.

Proof: The above algorithm is correct because of the property of large

line segments of length 2" mentioned at the beginning of this section. The
algorithm executes in linear time. because il visits each node in the two
Quadtrees a fixed number of times.

We now have a transformation of an input quadtree into an output quadtiree,
where the output quadiree’s perimeter can be traver;ed in time proportional to the
number of nodes on the perimeter of the quadtree. The amount of shifling.nec&ary
to produce this output quadiree can be calculated in time proportional 1o the size of

the input quadtree.

3.2.2. USING ANF NORMALIZATION IN OTHER ALGORITHMS

Since connected component labelling is usuaily done on an unlabelled map, it is
natural to view this task as one of labelling a line quadiree. Note that the above

rstilts for binary region quadtrees carry over to line quadtrees.

Theorem 6: (The Linear Ccnnected Component Theorem): Connected
component anulysis can be performed on an ANF balanced line quadtree in
lime proportivnal to the number of nodes in that quadtree.

Proof: The basic algorithm is to use the ANF transformation or the
quadiree to produce a shifted quadtree in time proportional to the number of
nodes in both the original and the shifted quadtrees. Next, the quadtree is
traversed in preorder, until an unlabeiled border is found. Then the border

100

-

is traversed and each node along it is labelled (note that this can be done in
linear time due to the ANF transformation). Then, the process returns to the
original preorder traversal of the quadtiree that passes down neighbors to use
in determining how the colors propagate through the structure. It will always
be the case that if a node is not on a border, then all of its neighbors that
are colored will have the same color, which is also the appropriate color to
label said node.

The preorder traversal that passes down neighbors can be performed in
time proportional to the number of nodes in the quadtree. The traversal of
the perimeters of all the regions in the quadtree can be done in time
proportional to the number of nodes in the quadtree. Thus, the entire
procedure can be performed in time proportional to the number of nodes in
the quadtree.

The worst—-case analysis of the above algorithm is considerably better than that of

(26] assuming that the number of nodes was not more important in the total analysis
than keeping the average cost per node down was. As was noted in 126], given a
connected component algorithm, there exists a simple modification of the connected
component algorithm that produces a function for calculating the Euler number of the

image.

Also, the ANF transformation can be used to derive yet another algorithm that
calculates the perimeter of an object in time proportional to the number of nodes in

the transformed and untransformed quadtrees.

Alternatively, the ANF quadtree to quadtree transformation could be used to speed
up the quadtree to chain code conversion process given in [4]. The resulting algorithm
would be linear in the sum of the size of the transformed and the untransformed

quadtrees.

There are two reasons why we might choose not to perform the ANF
transformation in a practical application. First, it is often the case that the size of the
transformed quadtiree is considerably larger than the size of the untransformed quadtree.
We will coasider this point in more depth in the next section. Second, if this shifting
technique is used heavily in a database of quadtress, then unaligned intersections and
unions are being constantly performed along with transformations to maintain
consistency. Thus, it would be worthwhile to investigate the overhead involved with

tasks like intersection of unaligned quadtrees.

101

3.2.3. COMPARISON OF ANF TRANSFORM WITH NODE MINIMIZATION

Note that in Section 2.3 we discussed the node minimization algorithm NM [20].
Referring back to the costs associated with the NM transformation, we note that it is
significantly more expensive than the ANF transformation. The question arises as o
which is better if the task is to minimize the total cost of perimeter following. This

question is answered by the following theorem.

Theorem 7: (The ANF~NM Incomparability Theorem): With respect to
minimizing the cost of following a border, neither ANF nor NM
transformations will always be within a constant factor of the best case.

Proof: First, we note that ANF can be arbitrarily worse than NM.
Consider a sequence of quadtrees based on the template shown in Figure 3-7.
Since the find-neighbors resuiting from traversing the perimeter of a large
square region are uniformly distributed, it's contribution to the position
calculated by the ANF algorithm is over-ridden by an attempt to optimize
the short twisty part on the lower right hand side of the figure. The degree
to which the ANF quadtree can be worse than the result of the NM quadtree
on the same image is a function of the size of the square.

Alternatively, we could have a map involving a small two by two square
and a very long twisty part that is always of width one. Thus, the NM
algorithm optimizes the placement of the square at the expense of the cost of
traversing twisty region. An exainple is shown in Figure 3-8.

Therefore, there are sequences of images for which either algorithm is
arbitrarily bad.

Thus the practicality of these two transformations depends on what an average
quadtree looks like in a particular application. The ANF ‘transformation has an
additional theoretical benefit, in that it allows a guarantee on the worst-case cost of

certain operations as a function of the size of the quadtrees operated on.

As a final note on these two types of transformations, we might consider what
set-theoretic operations preserve membership in the class of optimal quadtrees (without
reapplication of the transformation). It is easy to show that both ANF and NM are

preserved under image complementation, but not under image intersection or union.

102

X

XX] (XX

=
X

Figure 3-1: The region pyramid corresponding to the chain code for
NNNNNEEESSWSSESSWWWN, where fo is SW.SW.NE

€ dap Jo prweid
B U yied INeUs PV 3 jo Idwexy - amdiyg

H-

£ot1

104

Figure 3-3: Example of the path in Figure 3-2
shifted to a more efficient position

105

Figure 3-4: Result of ANF shifting of Figure 3-1

106

Figure 3-5: Actual chain code for perimeter following algorithm
applied to image of Figure 3-1

107

ZINZ1Z) A A
A 12 7
G| G Es

Figure 3-6: Quadtree corresponding to Figure 3-$§

108

Figure 3-7:

A sketch of the conmstruction of a sequence where
ANF creates too many superflous nodes

109

k twists *

- [‘!....'l‘u L]

Figure 3-8: A skeich of the construction of a sequence where
NM causes neighbor finding to be too laborious

110

CHAPTER 4
USING QUADTREES TO STORE POLYGONAL MAPS

In this chapter., we consider the problems inherent in storing polygonal maps. In
particular, we discuss three ways of attempting (o construct a quadtree-like data

structure for storing polygonal maps that is more compact than the region quadtree.

In order 1o analyze the costs associated with storing a polygonal map, it is
necessary !0 describe the correspondence between subframes and regions in a plane. As
an added bonus for formalizing the connection between our Neighbor Theory and
Euclidean Geometry. we demonstrate the relative consistency of Neighbor Theory in

terms of Euclidean Geometry.

The first attempt 10 construct a compact quadtree representation is to build a
region quadtree and. then perform common subtree elimination on the resulting
structure. The other atiempts abandon the notion of storing a region in the manner of
a region quadtree and instead. look for significant collections of points that can be
stored in a point or PR quadtree. These points must in some way correspond to the

regions of the polygonal map.

The second attempt 10 construct a compact quadtree representation is motivated by
the observation that the region quadiree that represents a Voronoi diagram is much
larger than the set of points that generated the diagram. Since not every polygonal
map is a Voronoi diagram, we instead view a polygonal map as a Voronoi diagram in
which some of the regions have been merged. This places no restrictions on the
permissible polygonal maps. Thus, our second attempt is to derive a set of points that
generate a Voronoi diagram where labelling some regions identically produces our
poiygonal map. This transforms the problem of point in polygon search applied to a
polygonal map into the problem of nearest neighbor search applied 10 a set of points.

Nearest neighbor searches are efficient using PR quadtrees.

111

The third attempt is a more straightforward application of the PR quadtree to the
polygonal map. Here, we store the vertices of the polygonal map in separate leaves.
Then, we store the edses of the map by their order of intercept with respect to the
leaves generated by the storage of vertices. This last attempt yields our most easily
manijpulable structure. However, our first attempt yields more interesting theoretical
results. There are still 100 many open questions associated with the second attempt to

judge its utility.
4.1. A GEOMETRIC MODEL FOR THE NEIGHBOR AXIOMS

Until now, we have refrained from restricting ourselves to any particular
interpretation of the neighbor axioms presented in Section 2.1. This was possible
because we were considering general properties of the neighbor axioms and not
attempting to apply these properties to specific applications. However, in this chapter,
we are concerned with representing polygonal maps, which is generally viewed as a task
defined with respect to the standard Euclidean (analytic) geometry of a continuous
plane. Thus, we must now assert a relation between the elements of a frame and the
interior of a unit square. In the process of defining this relation, we also show that
the neighbor axioms 'have a model in Euclidean geometry, and hence, that the neighbor

axioms are consistent (if Euclidean geometry is consistent).

Ti:e natural interpretation of the quadtree partition of an Euclidean plane (as
exemplified by the various figures herein) could be described informally as follows. |
The subframes correspond to square regions. Subframes of the same depth correspond
1o square regions of the same width. The squares corresponding to a subframe’s
children are enclosed by the square corresponding to their father. The width of the
square representing a child of a subframe is half the width of the square representing
the subframe. The neighbor relations among squares of the same size use the standard

cartographic interpretation of north, south, ete.

To develop this correspondence for usage as a model of our Neighbor Theory
Axioms, using <x.y,w> to denote a square of width w with a lower left hand corner
with coordinates x and y, we can define the appropriate relations between Neighbor
Theory and Analytic Geometry by the following. Note that’Figure 4-1 illustrates the

result of the application of these correspondences to F.

112

1. Let subframe(F',\) correspond to the square <0,0,1>.
2. If subframe(F',a) corresponds to the square <x,y,w>, then

a. subframe(F',a.SW) corresponds to the square <x.y,w/2>;

b. subframe(F'.x.NE) corresponds to the square <x+(w/2),y+(w/2),w/2>;

c. subframe(F'.a.NW) corresponds to the square <x+(w/2),y,w/2>;

d. subframe(F'.z.SE) corresponds to the square <x,y+H(w/2),w/2>.
3. If A corresponds to <x,y.w>, then

a. A s B implies B corresponds to <x+w,y,w>;

b. A n B implies B corresponds (0 <x-w,y,w>;

¢c. A ¢ B implies B corresponds to <x,y-w,w>;

d. A w B implies B corresponds to <x,y+w,w>;

e. A ne B implies B corresponds 10 <x-w,y-w,w>;

f. A nw B implies B corresponds to <x-w,y+w,w>;

g. A sw B implies B corresponds to <x+w.y+w,w>;

h

A se B implies B corresponds to <x+w,y-w,w>,

In the following theorem, we show that this model satisfies the Neighbor Theory
developed in Section 2.

Theorem 1: (The Cartesian Modelling Theorem): The natural
interpretation of Neighbor Theory satisfies all the axioms of Neighbor Theory.

Proof: The proof of this theorem involves the individual verification of
each of the axioms of Neighbor Theory with respect to the model stated
above. Below, we will show how these verfications are done, by working out
typical examples of the verification process for each of the three groups of
axioms of Neighbor Theory.

The first axiom presented in Table 2-1 states that if A and B are
frames, then A n B implies B n A. Now, if A is a frame corresponding to
<x.y.w > and B is a frame corresponding to <x,y,.w,> then A n B implies
the iollowing

®
"
£

0
£

(7]
-—

[]
-—

which in turn implies that

which is exactly what B s A implies. The remaining axioms of Table 2-1 can
be verified in an analogous manner.

The first axiom of Table 2-2 states that A n B and B ¢ C implies
A ne C. Assuming that A, B, and C refer to XYW 2 <XLY,W, and

XYW respectively, then A n B implies
woEw =w

X - w

Y, =Y

X
)

and B ¢ C implies that

which in turn implies that

£
"
£
"
£

X =X - w
y, =y, -w

which is exactly what A ne C implies, thus verfying this axiom. The other
axioms of Table 2-2 can be verified analogously.

The third set of axioms contains axioms of two types. The first t}pe is
an expression of an identity, e.g..

subframe(F ,Xx.NW) w subframe(F*,x.NE)

which works out perfectly once we have made the substitutions indicated by
parts 2b and 2c of the natural model given above. The other type of axiom
is exemplified by R4, i.e.,

if subframe(F WX) W subframe(F ,y)

then subframe(F',x.NE) w subframe (F* ,y-NW)
This also yields quite readily to substitutions that define the natural model.

This concludes our overview of the proof for this theorem.

The natural interpretation of shifiing (cf. Section 2.2) is that if P and P’ are
pictures wich the same number of non-WHITE pixels, then there exists an n and m
such that for every non-WHITE pixel in P, represented by XYW >, the pixel
<x*m.y*aw > in P’ has the same color. This assumes that the width of the pixel in

picture P’, denoted w_, is less than or equal to the width of the pixel in picture P,

v

S e e A

114

-

denoted w. Given that the notion of a picture is mapped into a set of ordered pairs
<n.c> where n is the ordered triple defining the appropriate square and ¢ is a color,
substitutions analogous o those made to prove the above theorem result in a

verification of this interpretation of the definition of the term shift

4.2. USING COMMON SUBTREE ELIMINATION TO COMPACT QUADTREES

The first approach to the problem of storing polygonal maps is to try to take
advantage of the regularity of digitizations of straight lines [24, 36] by performing a
common subtree elimination procedure on the quadtree of the digitized form of the

polygonal map. The result of this operation will henceforth be termed a CSE quadtree.

The conversion of a line quadtree to a CSE quadtree can be accomplished in a
straightforward manner using the following O(N log N) algorithm (where N is the
number of nodes in the line quadtree).

1. Traverse the line quadtree and for each level i, insert nodes of that level
into a queue Q.

2. Let d denote the maximum level for the input line quadtree and perform the
following for each ‘level i, from d to 1 (assuming that the root is at level 0
and that there is an ordering on colors and pointer values):

a. Sort the nodes X, in Q| lexicographically with respect to the vector
(henceforth referred to as the descriptor of the node x)
<son [xj.NW] .son [xJ.NE] .son [xJ.SE] .son [xJ.SW] ,value [",] >

b. For each pair of nodes with duplicate descriptors, remove one of them
from the queue and change its father so that the father points to the
other duplicate that was left in the queue.

The analysis of the above algorithm ‘is as follows. Separating the nodes into
queues is done in time proportional to the number of nodes, N. For each queue, we
sort the queue (requiring time M log2 M where M is the size of the queue) and then
we remove duplicates in time proportional to the number of nodes in the queues.

Since no node from the original quadtree appears in two queues and given the identity
(a+ b)log(a+b)2(alog a)+ (b log, b)

the costs of the various parts of the algorithm sum to O(N log N).

The best order of compression for a quadtree into a CSE quadtree that we can

115

expect is illustrated by the quadtree shown in Figure 4-2. It has a corresponding
pointer representation shown in Figure 4-3. Now, we consider the result of the above
algorithm as given in Figure 4-4. Here, we see that as we increase the resolution of
the digitization of the same line, the number of nodes in the CSE quadiree grows
linearly with the logaritim of the length (in pixels) of the line. This is a vast
improvement over the normal quadtree where the number of nodes would grow linearly

with the length of the line.

On the other hand, there are maps like the one shown in Figure 4-5 with pointer
representations as illustrated in Figure 4-6 that have less spectacular results under the
CSE transformation (see Figure 4-7). Looking at the reduction from Figure 4~6 to
Figure 4-7, it is not obvious what formula would cover the series of which this is a
member. So, the following compression results were deduced, not from extrapolation
from examples, but rather as what resulted from applying a certain approach to

calculating the number of nodes in a tree.

The general approach used in each of the proofs of the following theorems is one
where we count the number of nodes used on each level of the quadtree and sum this
over the number of levels. The formula for the number of nodes at a given level is
the minimum of two values: 1) the maximum number of nodes at that level in a region
quadtree that represents the same image, and 2) the maximum number of different
subtrees rooted at that level. First, we consider the most general case. i.e., a map with

no restrictions.

Theorem 2: (The CSE Arbitrary Map Compression Theorem): The size

of the CSE quadtree for an arbitrary 2" by 2" binary map is O(4"/n).
Proof: Since there is no restriction on the arrangement of pixels, it is

possible for each level i of the quadtree of a 2" by 2° picture to have 4'

nodes in it. Each node at level i represents a collection of 4°" pixels and

each of these pixels can be either BLACK or WHITE. Thus, at level i, there
o~

are 2 ' possible different subtrees. Using the general approach. outlined

above, now, we wan{ to calculate the point at which the dominating factor in

the minimum of these two values changes (note that toth of these are

monotonic functions). Thus, we look for the smallest value of i such that

)

4> 2(4"")

116

First, we take the logaritim of both sides and manipulate yielding the
following:

2i > 4%
2% > 4"/4'
2i-4' > 4
which holds when i equals n—.Sologz(n). Thus, an upper bound on the sum:

z a . (4| 2(4'-‘))
i=0 mima.
is given by the sum
z I«m-.S‘Iogz(nlz(-ln-i) .
ten
zi.on-.s . 10‘2(0)41'
We note that both of these sums are dominated by their last term. Hence

they are bounded from above by a term proportional to
4n-.5 *loy (n)
which in turn is proportional to
4"/n
thus completing this proof.

Next, we consider the resuit of applying a common restriction on the object stored
in the structure, i.e., we assume that the object is convex. Note that the following

proof and the one after that follow the same line of reasoning as the previous proof.

Theorem 3: (The Convex CSE Compression Theorem): The size of the

CSE quadtree for a 2" by 2" map of a convex object is at most 0(2"/n).

Proof: There are two properties of convex objects that make this proof
work. First, is the fact that quartering a convex object yields four convex
objects. Second, is the fact that the length of the perimeter of a convex

object residing in a 2' by 2' square is
4-2'

From this plus the Quadtree Storage Size Theorem (Theorem 19) we can
immediately note that the maximum number of nodes at a given level is

proportional (o 4-(2'). We derive the maximum number of different subtrees
that represent convex shapes

i ge2™)
4.4

from the consideration that each picture built for a convex object could be
built by a process that starts at ene of 4 given points and then moves in one
of eight possible directions until it has completed the perimeter of the object.

When we calculate the upper bound on the analogous summation of

117

minimums of the two upper bounds and then evaluate it (as done in the
previous theorem) we arrive at the result that the number of nodes in a CSE

quadtree representing a convex object is O(2"/n) (assuming that n is the
maximum depth of the quadtree).

Note that a corollary of the above theorem would be that straight lines could be
represented in a CSE qnad;ree with the number of nodes proportional to the length of
the line divided by the logarithm of the length of the line. This is a significant,
though minor, improvement in the storage requirement of a CSE quadtree as opposed to
a regular region or line quadtree. Of course, a straight line has more structure than a
convex object. Thus, we might expect to get a better result than the one mentioned
above. However, fixed portions of digitizations of lines with irrational slopes can
exhibit rather varied behavior. The situation is considerably simpler when considering

lines with slopes that are rational numbers, as is shown in the following theorem.

Theorem 4: (The Rational Slope CSE Compression Theorem): The size
of the CSE quadiree for a 2" by 2" map representing a line with rational

slope is at most O(2"%).

Proof: Let the rational value of the slope of the line be expressed as
r/s where r and s are integers and r is between s and -s. Then, the chain
code for this line will contain a subsequence of length s, such that the line is
simply an infinite concatenation of this subsequence. The maximum number

of nodes at a level i is 2' (according to the Quadtree Storage Size Theoremof
Section 2.3). The maximum number of different subtrees at level i is s-2",

because there are 2" different intercept points along the side of the node
and there are s different parts of the line that could make the interception.
Thus, we are presented with the following calculations:

2i > 8 o 2I‘I‘i
i>log(s) +n-i
i > (log (s) + n)/2

which for fixed values of s yields an expected growth of the order of the
square root of the length of the line

We note that there have been no lower bound results corresponding to the abovel
upper bound results. Thus, there is still the hope that even better results are possible.
However, there are less complicated lechniques for storing polygonal map that would
result in more favorable compressions. Also, it is not clear how to manipulate CSE

quadtrees in such a manner that the nodes do not constantly have to be resorted (as

118

they were in the original generation of the CSE quadtree from a region quadtree as

described at the beginning of this section).

4.3. USING VORONOI DIAGRAMS AND PR QUADTREES TO STORE
POLYGONAL MAPS

A second approach to using quadtrees to represent polygonal maps is to find a
collection of points that characterize the regions of the maps. As mentioned in Section
1, there are two methods of storing point data using quadtrees. One is the point
quadtree [7] and the other is the PR quadtree. In this section (as well as the next

section) we will be using the PR quadtree.

The major reason for using the PR quadtree in an application is the ease of
programming algorithms that manipulate it. However, the analysis of such algorithms is
not always 6ptimal because the number of nodes in a PR quadtree for a map of two
points (we are not considering edges yet) is proportional to minus the logarithm of the
distance between them. Such considerations indicate a favoring of the point quadtree
where the number of nodes in the tree is exactly the number of points being stored.
However, the access time for these points is also proportional to the number of nodes
inserted in the point quadiree because there is no satisfactory dynamic balancing
algorithm. Thus. the analysis we perform below favors working with PR quadtrees as
we are concerned with the cost of accessing various parts of the map. The question
still remains of what the points that reside in the PR quadtree characterize with respect

to the origina! map.

One significant set of characterization points can be derived from the map by
considering the map as the result of the merger of some of the regions in a Voronoi
diagram. In this section. we shall discuss how to derive a set of Voronoi points for an

arbitrary polygonal map.

The Voronoi diagram is one of the basic concepts of computational geometry
[34]. Many basic problems in computational geometry can be reduced to problems of
manipulating Voronoi diagrams. A Voronoi diagram is defined as a partitioning of a

plane by a set of points (referred to herein as the Voronoi points) where a region in

119

the plane is defined with respect t0 one of the Voronoi points as being the locus of
points in the plane that are closer to that Voronoi point than to any other Voronoi
point. An example of a Voronoi diagram (shown as the boundaries between regions

defined by Voronoi points) is given in Figure 4-8.

Algorithms for generating the Voronoi diagram (which is an example of a
polygonal map) from the Voronoi points have been extensively studied [34]. The main
motivation for this study has been to use the construction of Voronoi diagrams to
transform questions about nearest neighbors iuto questions about points in polygons.
Such a transformation is not necessary for solving nearest neighbor problems using
quadtrees, because nearest neighbors can be found by directly searching the PR
quadtree. Thus, we are left witl; the possibility that we might be able to use the -
transformation in the other direction, ie., transform point in polygon problems into

nearest neighbor problems.

Unfortunately, there are maps that do not correspond exactly to Voronoi diagrams.
Indeed, since it is easy to prove that every region in a Voronoi diagram must be
convex, any map containing a concave region is sufficient as a counterexample.
However, we might allow that a single region in the polygonal map might correspond
exactly to a set of contiguous regions in the Voronoi diagram. Whether or not this is
always possible is proven by giving a constructor of the appropriate Voronoi diagram

for an arbitrary polygonal map.

Let us consider an algorithm that performs the following steps:

1. Calculate a value D that is 1/4th the minimum distance between a vertex of
the polygonal map and an edge that does not coincide with that vertex.
(Note: 1/4th is used to prevent any complications from arising in the last
step of this algorithm. There are values closer to 1/2 that would also work,
but clearly using 1/2 would still leave room for points being inserted to
control one edge having the effect of interfering with another edge.)

2. Draw circles around the vertices of the polygonal map and place a fpoint at
the bisector of each of the arcs subtended by to adjacent line segments in
the polygonal map. The result of this step is shown in Figure 4-9,

3. Again, calculate a2 value of D’ that is 1/4th the minimum distance between
the point in the augmented polygonal map and an edge that does not contain
it

4. For each side of each arc, place a point that is D’ awéy from the line that

120

-

bounds the arc on that side. The result of this step is shown in Figure
4-10.

5. Finally, starting at each end of the line segment’'s intersection with an arc
and moving toward the other such intersection, at intervals of D’ place a
point on each side of the line segment whose distance from the line segment
is D’. The result of performing this last step is shown in Figure 4-11.

First. we note that this algorithm terminates in a rather straightforward manner.
Its complexity is bounded from above by the number of points formed and the cost of
calculating D and D’. For the size of the quadtree, the critical value to calculate is
the number of points formed. If E is the number of edges and P is the length of the

perimeter, then the number of points is
O(E+(P/D’))

Note that this algorithm is building sets of points that are potentially as large as the
number of nodes in the region quadtree representation of the same map. Hence, we
are not getting any guaranteed compression. However, this algorithm makes no attempt
to remove unnecessary points; so, it is possible that there exist an alternative algorithm
that terminates with better results than this algorithm. For example, this algorithm
could never have derived the set of Voronoi points that defined Figure 4-8 from the

diagram of the same figure.

On the other hand, recovering the original diagram from the collection of points
produced by this algorithm is relatively easy, because each significant line segment is
coated with points. For example, we note that it would be extremely messy to
caiculate the set of Voronoi points that correspond to overlaying the Voronoi diagrams
for two arbitrary sets of Voronoi points. However. the same calculation for the sets of
points produced by the second algorithm could be guided by the line coating pattern of

points involved.

We might try to derive a Voronoi construction algorithm that makes a less
conservative first estimate of the points needed for the Voronoi set and then tries to
fix the portions of the diagram that are wrong. The correctness of such an algorithm
is implicit in its derivation. However, there remains a question as to whether or not

the construction defined by the algorithm will terminate after a finite number of steps.

121

One such algorithm is:

1. Determine the closest approach between a vertex and an edge not containing
that vertex in the polygonal map. Call this distance D.

2. Draw a circle with radius .5-D around each vertex of the polygonal map.

3. For each arc segment of the circles drawn in step 2 subtended by edges of
the polygonal map, place a point on the bisector of the arc. These points on
bisectors will be part of the ultimate Voronoi seL

4. For each point in the Voronoi set, follow the circle in both directions until a
line segment of the polygonal map is reached. If an equivalent distance in
the same direction can be moved without encountering a Voronoi point, then
a point is inserted at that position. Add the points inserted in this phase to
the set of Voronoi points.

5. Repeatedly consider each point in the set of Voronoi points. For each point,
if it interferes with a line segment from the original map, then insert a point
into the map that will cancel the effects of this point. This new point is
immediately added 1o the set of Voronoi points.

Since step 5, in essence, says 10 keep modifying the set of Voronoi points as long
as the original map is not a submap of the result, it is clear that if the algorithm
halts, i.e., the corrections converge in a finite number of iterations, then the algorithm
works. However, the question of whether or not this algorithm ever halts is far too

complicated to be resolved here.

4.4. USING MAP VERTICES AND PR QUADTREES TO STORE POLYGONAL
MAPS

4.4.1. BACKGROUND FOR PM QUADTREE DEVELOPMENT

The quadtree that we develop for storing polygonal maps will be referred to as
the PM quadtree. It will be seen to be an adaptation of the PR quadtree. OQur goal
in designing this data structure is to derive a compact representation that satisfies the
following three criteria:

1. It stores polygonal maps with absoluie accuracy.

2. It is not overly sensitive to the positioning of the map (i.e., shift and
rotation operations do not drastically increase the storage requirements of the
map). ‘

3. It is easy to manipulate.

122

To solve this problem, we will develop three closely related quadtree structures: PMl,
PM , and PM,-

In general, it is difficult to evaluate a data structure in a vacuum. We evaluate
the PM quadtree in the context of the following three tasks: point-in-polygon
determination, line insertion, and map overlay. We assume that the polygonal map is
being manipulated in a dynamically changing environment. We aiso assume that
associated with each line segment that forms the boundary of a region, there is a pair
of names indicating which region is on which side of the line segment This reduces
the point-in-polygon task to the less restricted problem of locating a line segment that

borders the region containing the query pointL

Before adapting the PR quadtree, let us reconsider using one of the line quadtree
schemes of [27). Those schemes prove unsatisfactory for several reasons. First, line
quadtrees store only a digitization of a map. Certain properties of polygonal maps
cannot be directly represented (e.g.. it is impossible for five line segments to meet at a
vertex because the line quadtree is made up of a collection of square-like regions).
Second, shifting or rotating a line quadtreé leads to a possible loss of accuracy with
respect to the map that was originally digitized. Third, line quadtirees may require
much space. For example. for the polygonal map of Figure 4-12, we have the
corresponding line quadtree in Figure 4-13. Nole that although Figure 4-12 consists of

just five vertices and six edges, its line quadtree requires 105 leaf nodes.

The quadtrees presented in this section will be defined in terms of their
decomposition criteria. First, let us consider the definition of PR quadtrees in terms of
their criterion for decomposing a quadrant. The decomposition criterion that defines
the PR quadtree is denoted Cl and is given below:

e Cl: At most one vertex can lie in a region represented by a quadtree leaf.
Figure 4-14 is the PR quadtree formed from the vertices of the map of Figure 4-12.
We will use this example to illustrate the various issues involved with basing a map

representation on PR quadtrees of map vertices.

The analysis of each of the PM quadtree variants relies heavily on the value of

the worst-case tree depth, which is, in turn, a function of the input polygon. Thus, it

123

is worthwhile to determine this value for the PR quadiree. The worsi-case PR quadtree
depth is obtained as follows. Assume that the polygonal map is embedded in a unit
square. As the depth of the PR quadtree increases, the maximum separation between
two points in the same node is halved. The maximum separation between any two
points in the unit square is y2. Points that are this far apart require a tree with depth
1 to separate them. Generalizing this observation, we see that when vv is the minimum
separation between two distinct vertices, then an upper bound on the depth of the

corresponding quadiree is
D1 =1+1log (v2/ vv)

In the PM quadtree structure, it is assumed that the region labels are associated
with the edges. For example, the map of Figure 4-12 partitions the plane into three
regions, labeled 1. 2, and 3. Thus, in Figure 4-14, edge AD is marked to indicate that
region 2 lies to the right of AD and region 1 lies to the left of AD where right and
left are with respect to a vantage point at the origin (i.e., the lower left corner of the
enclosing unit square). Here, lines are viewed as if they have been extended to
intersect the enclosing square. @ When a line segment is inserted in a map, the
appropriate region labels are given with the line segment. Any changing of region
labels of existing line segments is handled by deleting and then re-inserting the
appropriate line segment. No effort is made to force the region labelings to be

consistent.

In the subsequent discussion, we frequently need to refer to segments of edges of
the polygonal map (we also use the term graph). We use the term gq-edge to refer to
a segment of an edge that spans an entire block (e.g., RS in Figure 4-14) or all of the
block of which its corresponding edge is a member (e.g. ER in Figure 4-14). For
example, edge EB consists of the g-edges ER, RS, ST, and TB.

4.4.2. THE PM QUADTREE

A criterion analogous to Cl1, called C2, which takes edges into account is given
below.
e C2: At most one g-edge can lie in a region represented by a quadtree leaf.
Unfortunately, C2 is inadequate because there exist polygonal maps that would require a

124

PM quadtree of infinite depth to satisfy C2. For example, consider vertex E and gq-
edges ER and EU in Figure 4-14. Assume that the x and y coordinates of E cannot
be expressed (without error) as a rational number whose denominator is a power of two
(e.g.. let both coordinates be 1/3). This means that E can never lie on the boundary
between two quadrants. Thus, by virtue of the continuity of the q-edges, no matter
how many times we subdivide the quadrant containing the vertex E and the q-edges ER
and EU, there will always exist a pair of (possibly infinitesimally small) q-edges EH
and EI which will occupy the same quadtree leaf. Vertices at subdivision points may,
at times, avoid the infinite depth problem because of certain predefined conventions

about which node they are in.

One solution to the above problem lies in replacing C2 with criteria C2° and C3
given below.

e C2’: If a region contains a vertex, then it can contain no q—edge that does
not include that vertex.

e C3: If a region contains no vertices, then it can contain at most one q-
edge.

A quadtree built from the criteria Cl, C2’ and C3, representing the polygonal map of
Figure 4-12, termed a PMl quadtree, is shown in Figure 4-15.

Since criterion C2’ allows an arbitrary number of q-edges to be stored at one
PMI quadtree leaf. the question of how these q-edges are organized arises. The
simplest approach, consistent with our interest in worst-case tree-depth, is to store the
qg-edges in an AVL tree [1] where the gq-edges are ordered by the angle that they
form with a ray originating at the vertex and parallel to the positive x-axis. Since the
number of q-edges passing through a leaf is bounded from above by the number of
vertices belonging to the polygonal map, say V., the depth of the AVL tree is

proportional to
Al = log (V)

The depth of the I-"MI quadtree can be determined as the maximum of the depth
required independently by each of the three criteria for building the quadtree. The
factor contributed by criterion C1 has already been noted to be D1. If ev denotes the

minimum separation between an edge and a vertex not on that edge (for a given

125

polygonal map), then by reasoning similar to the derivation of D1, the depth of the

PM, quadtree required to fulfill criterion C2’ is
D2’ =1+1log (v2/ ev)

Analogously, if ss denotes the minimum separation between two non-intersecting q-
edges (i.e., portions of edges bounded by either a vertex or the boundary of a PMl
quadiree leaf of the I-"Ml quadiree of the given polygonal map), then the PMl quadtree

depth required to fulfill criterion C3 is
D3=1+log (v2 / ss)

The factors D1 and D2’ are functions of the polygonal map and are independent
of the positioning of the underlying digitization grid. However, the factor D3 is
dependent on the positioning of the digitization grid and thus it can vary as the
polygonal map is shifted. Recall that each of these factors, D1, D2’, and D3, is an
upper bound on some aspect of the quadtree’s construction that could contribute to the
depth of the resulting quadtree. The actual depth of the quadtree built could be
considerably less than any of these factors. For maps of the complexity of the one
shown in Figure 4-12, the D3 factor can become arbitrarily large. For exampie,
suppose we shift the polygonal map in Figure 4-12 to the right As vertex E (see
Figure 4-14) gets closer to the eastern boundary of the quadrant contining it. the
minimum separation between q-edges RS and UV (ie.. RU) gets smaller and smaller
resuiting in the growth of D3 to unacceptable values. While this is better than the
impossibility associated with C2, it still behooves us to find a better decomposition

criterion than C3.

4.4.3. THE PM, QUADTREE

In order to remedy the deficiency associated with criterion C3, it is necessary to
determine when it dominates the cost of storing 2 polygonal map. In particular, D3 is
greater than L2’ only if ss is smaller than ev, which happens only when the two
nearest non-intersecting q—edges are serments of edges that intersect at a vertex. For
example, Figure 4-16 is the PMl quadtree for polygonal map ABCI) where D3 is
greater than D2’, because ss (the distance between q-edges XY and WZ) is smaller than
ev (the distance between C and BD). Note that XY is a g-edge of BD, WZ is a g~

126

-

edge of CD, and BD intersects CD at vertex D. This analysis leads us to replace
ctiterion C3 with criterion C3° defined below.

e C3’: If a region contains no vertices, then it can contain only q-edges that
~ meet at a common vertex exterior to the region.

A quadtree built from criteria Cl, C2°, and C3’, for the polygonal map of Figure
4-12, termed a PM_ quadtree is shown in Figure 4-17.

The worst-case tree—depth is again proportional to the sum of the depth of the
qQuadtree plus Al. the maximum depth of the AVL trees. However, the depth of the
quadtree is bounded from above by the maximum of D1 and D2’, the factors
attributed to criteria C1 and C2’ respectively. Note that by virtue of our definition of

C3’, the maximum depth resulting from its use is bounded from above by D2’.

As an example. 'consider Figure 4-18, which represents the same polygonal map as
Figure 4-16 except that it uses C3’ instead of C3. The analog of ss, termed ss’, is
defined as the minimum separation between two q-edges that are not segments of two
intersecting edges. In this example, D3’ is less than D2’ because ss’ (the distance
between UB and SC) is greater than ev (the distance between C and DB). Note that
the distance between QR and ST and the distance between RB and TC are irrelevant to

D3’. because. if necessary. these segments could be in the same leaf.

We have now achieved a structure for which the worst-case tree—depth is less
sensitive to shift and rotation of the polygonal map. The only question that remains is
whether we can do better. Can the contribution of criterion C2° be removed or
reduced?

4.4.4. THE PM, QUADTREE

We consider a quadtree, termed a I-"M3 quadtree, which is built using only
criterion C1, but that could represent any polygonal map. For this version of the PM
quadtree we revert to the original PR quadtree (i.e., Figure 4-14) except that more
information is stored at each terminal node that corresponds to a region surrounding a
vertex of this map. Since the depth factor DI is always less than or equal to the
maximum of the factors D1 and D2’, the quadiree component (as opposed to the AVL

127

tree component) of the worst—case tree—depth is lower than in our previous structures.
Indeed, the only time D1 is greater than sz is when the polygonal map contains
isolated edges (i.e., edges with both endpoints of degree 1). However, this structure
does have the problem that the number of g-edges that can be stored in a leaf is now
bounded by the number of q-edges in the graph, instead of the number of vertices.
This does not affect the order of the worst—case tree—depth, because, in a planar graph,
the number of edges is bounded from above by a linear function of the number of

vertices (this is a corollary of Euler’s formula [11]).

There still remains the problem of how to organize the q-edges in a leaf’s region.
We propose to partition the gq-edges in a leaf’s region into seven classes, each of which
can be ordered by an AVL tree. Note that in any given leaf, some of these classes
will often be empty.

The most obvious class of q-edges is the class of q-edges that meet at a vertex
within the leaf's region. This class can be ordered in an angular manner as has been
done previously. The remaining q-edges that pass through the leaf’s region must enter
at one side and leave via another. This yields six classess NE, NS, NW, EW, SW, and
SE, where NE denotes q-edges that intersect both the northern and the eastern
boundaries of the leaf’s region. Note that the q-edges are non-directional. For
example. the q-edges in class NE (the other 5 classes are handled analogbmly) are
ordered according to whether they lie to the left or to the right of each other when
viewing: them in an easterly direction from the northern boundary of the leaf’s region.
Q-edges that coincide with the border of a leaf's region are placed in either NS or EW
as is appropriate. Note that any given leaf's boundary can only contain one such q-
edge, because if it contained two, then it would have to contain two vertices and

thereby violate Cl.

4.4.5. ALGORITHMS FOR PM QUADTREES

Now that we have developed the PM quadtree, it is appropriate to examine how it
can be used to achieve the three tasks that we specified in Section , i.e., point-in-
polygon determination, line insertion, and map overlay. F’or each of the tasks, our
discussion starts with the PM‘ quadtree, after which we show how the PM2 and PM,

quadtrees perform it We first consider point-in-polygon determination.

128

4.4.6. POINT-IN-POLYGON DETERMINATION

For PM quadtrees (built from Cl, C2’, and C3) this problem has three cases
which are illustrated by queries with respect to the points x, y, and z in Figure 4-15.
The first case is illustrated by the point labeled x. In this case, the point lies in a leaf
containing exactly one qg-edge. Since region information is stored at each q-edge
indicating the regions associated with the g-edge, this reduces to determining the side

of the g—edge on which the point lies.

The second case is illustrated by the point labeled y. In this case, the query point
lies in a leaf containing a vertex, C in this example. This situation reduces to finding
a q-edge in the AVL tree that would neighbor a hypothetical q-edge from C and
passing through y. Such a neighboring q-edge must border the region containing
y. Thus, once again our task is reduced to determining on which side of a q—edge a
point lies (i.e.. y). |

The third case is illustrated by the point labeled z. In this case, the query point
lies in a leaf, say q, containing no q-edges. This means that all the points in the
region represented by the leaf q lie in the same region of the polygonal map. It also
means that one of q’s brothers must be the root of a subtree that contains a q-edge
that borders the region containing z. In order to find this (not necessarily unique)
brother. we move clockwise among the brothers of q. This prevents us from
prematurely considering the diagonally neighboring brother of q (for an explanation, see
the next paragraph). When considering a brother, one of two subcases arises. Either
q's clockwise neighboring brother, say -r, (the first subcase) contains a q-edge, say b,
lying on the boundary between q and r or (the second subcase) it doesn’t. In the first
subcase, the problem reduces to determining the side of q-edge b on which z lies. The

second subcase is sliéhtly more complex.

We postulate a hyi:othetical point z’ in region r that is infinitesimally close to q's
region and recursively reapply the point-in-polygon procedure to z°. Figure
4-19 shows why we don’t want to prematurely consider a diagonal brother. In this case
placement of our hypothetical point z’ in the SE brother of the quadrant containing z

will lead us to conclude that z lies in region 2 rather than region 1 by virtue of its

129

relative position to edge segment ST which is the only edge segment in the quadrant
Note that point R is associated with the NE brother of the quadrant containing z by
virtue of the conventions adopted in the introduction with respect to points that lie on

quadrant lines emanating from subdivision points.

As an example of the case where z lies in a leaf containing no q-edges, consider
Figure 7). Since the leaf containing z, call it q, is empty, we examine its clockwise
brother, say r. Since r does not contain a q-edge on the boundary between q and r,
the second subcase applies. Thus we postulate a point z’ that is just across the
boundary between q and r. Determining the polygon in which z’ lies (in this example)
is equivalent to determining the polygon in which x lies. Note that in second subcase,
if r contains no q-edges, then the algorithm proceeds to examine r’s clockwise brother.
It should be clear that one of the brothers must contain a q-edge as otherwise the

brothers would have been merged to yield a larger node.

The worst-case execution time of point-in-polygon determination using a PMl
quadtree constructed with criteria Cl, C2’, and C3 is proportional to the depth of the
entire structure - i.e., the depth of the quadtree built from Cl. C2’, and C3 plus Al
(where Al is the maximum depth of the AVL trees at the quadiree leaf nodes).

Replacement of C3 by C3’. resulting in a PM: quadtree, does not lead 1o
significant changes in the point-in-polvgon determination procedure. The situation
arising when q-edges are ordered about a point exterior to their region is handled in
tie same way as q-edges that are angularly ordered about their point of intersection.
Of course, it is necessary 1o store with each AVL tree the point about which the

ordering is being performed.

Point-in-polygon determination in PM3 quadtrees is accomplished by finding a
bordering q-edge with respect to each of the seven classes and then using the closest of
the seven as the true bordering q-edge. The worst—case coast of point-in-polygon

determination whens using a PM3 quadtree is proportional to D1 plus Al

130

4.4.7. LINE SEGMENT INSERTION IN PM QUADTREES

Initially, we are given a PMl quadtree that satisfies the given criteria. To insert a
line segment AB, we insert a q-edge of AB into each quadrant that AB intersects. In
some of these quadrants, the insertion of a q-edge of AB would cause a violation of
one of the criteria. In that case, the quadrant in question is subdivided and insertion

is re-attempted.

The above subdivision of a quadrant can cause q—edges of line segments that had
been previously inserted to be further subdivided. For example, consider Figure 4-20.
First, we insert the line segment AB, which enlails inserling the q—edges: AV, VW, and
WB. We insert the line segment BC, which entails not only inserting the g—edges CZ
and ZB, but aiso the gq-edges WX, XY, and YB. Thus, the ultimate cost of inserting a
line segment into a PMl quadtree is often paid for over many insertions as g-edges of_
the line segment are further subdivided to accommodate line segments that are being
subsequently added.

In order to handle this situation for our worst-case analysis, we do not consider
the total cost of inserting a particular line in a tree. Instead, we consider the ultimate
cost of inserting that portion of the map that is currently built. This cost. henceforth
known as the running-sum worst-case cost, assumes that the map is being built
dvnamically. i.e.. that we don’t know about future line segments at the time a line
segment is initially inserted. Note that the running-sum worst-case cost (when summed
over the insertions that buijlt the map) is an upper bound on the actual cost of building
the map so far. Implicit in the calculation of the running-sum cost at any instant
during the building of a map is the assumption that we know the ultimate depth to

which the tree will be expanded.

The running-sum worst—case map building cost is the product of the cost of
inserting a q~edge and the number of q-—edges that would have to be inserted. The
cost of inserting a q-edge is the depth DMAX of the quadiree (the ‘maximum of D1,
D2’, and D3) plus the depth of the AVL tree (Al). The calculation of an upper
bound for the number of q-edges is slightly more complicated. We define L, the
length of the perimeter of a polygonal map., to be the sum of the lengths of all the

131

line segments that form the map. In the following we show that the upper bound on
the number of q-edges in the representation of the map is a function of L and the
maximum depth, DMAX, of the quadtree structure.

Let us consider | the strucn;re of the q-edges that form a single line segment
First we note that for each line segment there are at most two gq-edges that have the
property of being incident with one of the vertices of the graph. Thus the number of
such gq-edges is proportional to the number of line segments in the graph. Since the
factor D1 is both bounded above by DMAX and requires that no line segmen: is less
than 2°A" units long, we deduce the following upper bound on the number of line
segments, denoted S, in a map.

S . 2-DMAX SL
or SSL . 20MX
Of the remaining P q—edges in the map, all begin and end on the boundary of a’
square of size 2°MAX py 2PMAX | Of the P q-edges that begin and end on square
boundaries, | P/2 can be grouped into disjoint pairs of contiguous g-edges. Each
pair of contiguous gq-edges forms a straight line that enters one square and exits the
other. The length of such a line is bounded from below by the width of the squares
that it passes through. This leads to the following upper bound on P:
LP/2 - 2P g
or P-1 <L . 2. 2°M
or PSL -3 .20MX

To summarize, the number of q-edges is equal to the number of g-edges that are
_ incident on a vertex plus the number of q-edges that are left over after the pairing
process plus the number of q—edges that participate in the pairing process. For each of
these values, we have an upper bound proportional to the length of the perimeter of
the map times 2°4* . Thus the total number of g-edges is also bounded from above

DMAX " Recall that the running-sum

by the length o the perimeter of the map times 2
worst-case map building cost was proportional to the depth of the entire structure
(DMAX plus Al) times the number of q-edges inseried, for which we have just derived
an upper bound. Thus, we have an upper bound on the cost of building a PM

-

quadtree by inserting one line at a time.

132

Note that the analysis of line insertion for PM_ quadtrees is the same as for PM,.
except that DMAX now denotes the maximum of D1 and D2. Similarly, for the PM3
quadtree, the analysis need only be modified in that DMAX now corresponds to D1.

The above costs for point-in-polygon determination and line insertion are not
optimal under the assumption that these are the only two tasks we wish to perform.
While it is true that others (e.g, [19]) have shown structures that have better worst-
case analysis for the point-in-polygon and line-segment insertion tasks than the PM
quadtree described above, the PM quadiree has a major advantage over other structures
in that it organizes the data without a directional bias. By directional bias, we mean
that the cost of moving from one node to its neighbor is independent of the direction
in which the neighbor lies. Thus PM quadtreé are generally better for range queries,
whose analysis is a natural extension of the above discussion of point-in-polygon

determination for PM quadtrees.

While the lack of bias in its treatment of the x and y coordinates is a major help
to quadtree based structures in the performance of range query tasks, the regular
decomposition quadtree schemes also favor the performance of set operations (e.g.,
union and intersection). Thus we consider below the task of map overlay which
corresponds 1o calculating the cross product of a map. i.e., the regions in the resulling

map have a natural labeling in terms of ordered pairs of the labels of the two overlaid

maps.

4.4.3. OVERLAY ALGORITHM FOR PM QUADTREES

We first consider the computation of overlay for PM3 qQuadtrees. The overlay
algorithm can be decomposed into four proceduress OVERLAY., MERGE,
CAN_MERGE, and QUARTER. Procedure OVERLAY takes two PM3 quadtrees as
parameters. It traverses the two quadtrees in parallel. When one tree is a leaf and
the other tree is not, the leaf is split into a node with four sons, each of which are
leaf nodes (and correspond to a description of the same region as the original leaf) and
the OVERLAY procedure is applied recursively to the corresponding sons, When both
quadtrees are leaf nodes, the information about line segments in each of them is

merged to form a leaf in the output tree.

133

procedure OVERLAY (SUBTREE1,SUBTREE2);

/* Compute the overlay of the quadtrees SUBTREE]l and
SUBTREE2. */

begin
value quadtree SUBTREE]l, SUBTREEZ2;
quadtree QUARTERED, THE SUBTREE, TREE _ 1‘0 RETURN;
quadrant X;
if 1S_LEAF(SUBTREE1l) and IS LW(SUBT&EBZ) then

return (MERGE (SUBTREE1, SUBTREE2)

else if IS_LEAF(SUBTREEI) or 1S_LEAF(SUBTREE2) then

begin
QUARTERED := QUARTER(WHICHEVER_WAS_LEAF (SUBTREE1
,SUBTREE2));
THE_SUBTREE := WHICHEVER_WAS_NOT_ LW(SUBTREEI
SUBTREEZ)

TREE_TO_RETURN := NEW_NODE();
foreach X do
SON(TREE_TO_RETURN,X) := OVERLAY(
SON (QUARTERED, X),
SON (THE_SUBTREE, X)) ;
return (TREE_TO_RETURN);
end

else begin
TREE_TO_RETURN := NEW_NODE();
foreach X do
SON(TREE_TO_RETURN,X) := OVERLAY (
SON (SUBTREE1],X),
SON(SUBTREE2,X));
return (TREE_TO_RETURN) ;

end;

end;

Procedure MERGE produces the subtree that results from merging two leaf nodé (from
a pair of PM3 quadtrees) according to whether or not the q-—edges involved intersect
Recall that the information about line segments that is stored in the leaf nodes is
ordered with respect (0 various intercepts (either a verlex or a side of the node). Thus
the merger of this information is simply the merger of the corresponding trees. The
routine that performs the actual merging is termed AVL_MERGE and is not given here.
The worst case execution time of MERGE is proportional to the number of nodes
merged plus the cost of executing the proceduress CAN_MERGE and QUARTER.

The coding of the procedure MERGE uses WHICHEVEFE._HAD_AVL_VERTEX,
which returns NULL if neither leaf contains a distinguistied vertex and otherwise
returns the AVL tree connected to the distinguished vertex. Note that the function

CAN_MERGE has a side effect of removing redundant references to the same vertex

134

(i.e. with same x and y coordinates). Two the information in two AVL trees is

merged to form a new AVL tree by the function AVL_MERGE.

procedure MERGE (LEAF1,LEAF2);

/* Perform the overlay algorithm on the simple case
where both quadtrees, LEAFl and LEAF2, are leaf
nodes. */

begin

value quadtree LEAFl,LEAF2;
quadtree LEAF_TO_RETURN, QUARTER] ,QUARTER2;
quadrant Q;
side X,Y;
if not CAN_MERGE(LEAFI,LEAFZ) then
begin
LEAF_TO_RETURN := NEW NODE():
QUARTER] := QUARTER(LEAF1);
QUARTER2 := QUARTER(LEAF2);
foreach Q do
SON(LEAF_TO_RETURN ,X) := MERGE(SON(QUARTER1,Q),

SON(QUARTER2,Q));

return"(LEAF_TO__RETURN) -
end

else begin
LEAF_TO_RETURN := NEW_NODE();
AVL_VERTEX (LEAF_TO_RETURN) :=

WHICHEVER_HAD_AVL _VERTEX (LEAF]1,LEAF2);
foreach X do
foreach Y do
AVL SIDE(LEAF 'l‘O RETURN,X) :=
TAVL MERGE(AVL SIDE(LEAF1,X),
AVL_SIDE(LEAF2, Y))

return (LEAF_TO_RETURN);

end;

end;

Procedure CAN_MERGE determines whether a pair of leaf nodes of PM3
quadtrees can be merged. In order to be mergible, the q—edges in the two leaf nodes
cannot intersect and if there is a vertex in both of the leaf nodes then, it must have
the same™ x and y coordinate values. Since the Ehecking of intersection (done by the
prc.;cedure LINES_INTERSECT) can take advantage of the ordering of the q-edges. the
execution time of CAN_MERGE is proportional to the number of gq-edges in its leaf

parameters.

135

Boolean procedure CAN_MERGE (LEAF1,LEAF2);

/* Returns TRUE if and only if the merger of the leaf
nodes, LEAFl and LEAF2, would not create any new
vertices. Note that in the case where neither leaf
node contains a vertex, it is possible for one
intersection to occur and yet the nodes would
still be mergible. The counter, N, records the
number of known vertices in the pair of nodes. 1If
this counter is zero, then LINES_INTERSECT, upon
noticing that exactly one intersection occurs, has
the side effect of 1ncrement1ng N aad updating the
AVL_VERTEX field of its last parameter, which is
always LEAF1l. Of course, if more than one
intersection occurs, then LINES_INTERSECT will

y cause CAN_MERGE to return FALSE.

®
begin
reference quadtree LEAF1,LEAF2;
side X;
integer N;
N := 0;
if BAS_VERTEX(LEAFI) and HAS_VERTEX(LEAFZ) then
if SAME_XY_VERTEX (LEAF1,LEAF2) then
begin
AVL_VERTEX(LEAF1) := AVL_MERGE(
AVL_VERTEX (LEAF1),
AVL vgnrsx(nzarz)),
AVL_VERTEX(LEAFZ) := NULL;
end
else return (FALSE);
if HAS vsnrsx(nsarl) or HAS_VERTEX (LEAF2)

then begin
N := 1;
THE_VERTEX := WHICHEVER_HAD_VERTEX(LEAF1,
. LEAFZ)’
foreach X do

if LINES_INTERSECT(THE_VERTEX,
AVL_SIDE(LEAF1,X),N,LEAF1)
or LINES_INTERSECT (THE VERTEX,
AVL_SIDE(LEAF2,X),N,LEAF1)
i then return(FALSE)
end
foreach X do
if LINES_INTERSECT(AVL_SIDE(LEAF1,X),
AVL_ SIDE(LEAFZ X),N,LEAF1)
then return (FALSE);
return (TRUE);

end;

The final procedure to conmsider is QUARTER, which takes a leaf as a parameter

and returns a subtree containing four leaves that represents the same map. This

136

procedure involves visitling .each q-edge in its leaf parameter and determining which
parts of it will lie in which sons of the new subtree. Its execution time is proportional

to the number of q-edges processed. We don't give its cods here.

We now consider an analys.iS of the OVERLAY algorithm. Let N be the number
of q~edges in the PM quadtree built by OVERLAY. Recall that DMAX is an upper
bound on the depth of the PM quadtree (not including the depth of the AVL trees).
Although OVERLAY performs a preorder traversal of two subtrees in parallel, its
calculation could be performed by a breadth-first traversal of the two trees. This

reformulation is used in the following analysis.

First, we note that the cost of executing OVERLAY is proportional to the number
of nodes in the input quadtrees (as is the case for the region quadtree intersection and
union algorithms) except that the cost of the CAN_MERGE and QUARTER procedures
is unbounded (whereas the analogous procedures for a region quadtree are bounded).
Instead, we find that the cost of performing these functions is proportional to the
number of q-edges in the two leaf parameters of these functions. We now consider
the worst case of the execution time of the OVERLAY algorithm. This occurs when
we overlay a pair of PM quadtrees having two corresponding leaf nodes at level k
containing vertices which are arbitrarily. close t0 each other. Alternatively, this worst
case also results when two new intersection points are created that are arbitrarily close
to each other. With respect to the analysis, the significance of two vertices being

arbitrarily close 1o each other is that DMAX becomes 'arbitrarily larger than k.

Let i be a level between k and DMAX. The execution of OVERLAY on each
leaf at level i will result in an invocation of CAN_MERGE and QUARTER (which
creates the leaf nodes of level i+1). Hence the cost associated with the processing at
level i is proportional to the number of gq-edges at levél i. This cost must be paid at
each of the levels between k and DMAX. The number of such levels is bounded from
above by DMAX. The number of gq-~edges at any given level is bounded from above
by the number of q-edges in the final result, i.e., N. Thus, it follows that the entire
OVERLAY algorithm will execute in time proportional to N « DMAX .

Note that the above analysis holds for PM , PM, , and PM_ quadirees. At first

137

glance, it might appear that the OVERLAY algorithm could be done just as effectively
by repeatedly performing line insertions from one of the PM quadtrees into the other.
However, the analysis for such an approach turns out to be of order N - (DMAX +
Al). Our OVERLAY procedure does better than this because the q-—edges occurring
within a given AVL tree are processed sequentially instead of randomly.

4.4.9. CONCLUSIONS

We have taken an iterative approach to developing a quadtree-like data structure
for storing polygonal maps. We started with the PR quadtiree and developed the PM
quadtrees. The final formulation, PM3 , uses the same decomposition rule as the PR
quadtree but stores considerably more information in the terminal nodes. It should be
clear that the PM quadtree enables storing polygonal maps with absolute accuracy and
that its worst—-case tree-depth is less sensitive to the positioning of the polygonal map.
Thus unlike the region quadtree and the line quadtrees of [SameS$2], the PM: and PMJ
quadtrees can be shifted or rotated without distortion or unreasonable change in the
storage requirements of the structure. Nevertheless, the storage requirements are still
somewhat dependent on the positioning of the space within which the map is embedded.
For example, the polygonal map of Figure 4-21a requires 7 PR quadtree leaf nodes.
However, if we shift the map slightly, we get Figure 4-21b. which requires only 4 PR
quadtree leaf nodes. We also observe that our proposed quadtrees are',relatively
compact. As a comparison, we note that the lirie quadtree in Figure 4-13 required 105
quadtre¢ leaf nodes, whereas the PM2 quadtree of Figure 4-17 required 13 quadtree leaf
nodes and 21 AVL data nodes (scattered among 1: AVL trees), and the PM , Quadtree
of Figure 4-14 required 7 quadtree leaf nodes and 17 AVL data nodes (scattered among
9 AVL trees). Note that many of the AVL trees consist of single data noda'.

In addition, we have shown that point-in-polygon determination using the PM
quadtree can be performed in time proportional to the depth of the structure. We aiso
gave an upper bound on the worst—case cost of insertion of a postion of a map'
dynamically. Finally, we have shown how to overlay two polygonal maps that are
represented by PM quadtrees. Some possible future work includes the development and
analysis of algorithms for other operations, e.g.. shift and rotﬁtion. |

138

8?2 | L7]f {127{]3.2 _‘f;]J S (167177
ok] |8¢]] | lae |34 44] |56 [g,_e_ %6
0,6 2,6 4,6 e,6
0,51 1,5 15| [35] 45118y 65t 2
o] |\t Izﬁl 34 g | {2 flegel 12
oW Y 1 Y £,
oF 4,9

#3153 AIRVA]

=1
el kel 152)] [le.2] [22

los]
mim
>

g,
o | [us , M
le‘p_ Lo 3,0 wo | 1521] | lao] 120
o,.w = ’a"i:'a‘o £
0o

Figure 4-1: Subframes of F’ labeled by Cartesian coordinates of
lower left hand corner

139

\

N

N

Figure 4-2: A quadiree representing two regions separated
by a 45 degree line

e T S i e T e gl e DS el i gy
B e SO 8 e L Ry BRI A

140

Z

N\ INTRN

Figure 4-3:

Pointer representation of Figure 4-2

[/

141

N\

7
g
Z

Figure 4-4: Result of common subtree elimination on
Figure 4-3

142

|

5]s)
@
e

a0
2o
Z,

v/

Figure 4-5: A quadtree representing two regions separated
by a line with slope approximately 4/16ths

143

Figure 4-6: Pointer representation of Figure 4-5

144

Figure 4-7: Result of common subtree elimination on
Figure 4-6

145

=4

Figure 4-8: A Sample Voronoi Diagram

1%

Figure 4-9: First Step in Finding Voronoi Points for Map

147

Figure 4-10: Second Step in Finding Voronoi Points for Map

¢ » = & o & o o= o

Figure 4-11:

148

Final Step in Finding Voronoi Points for Map

149

Figure 4-12: Sample polygonal map

150

Figure 4-13: Line quadtree corresponding to Figure 4-12

151

(G,1) (I,1)

0,0) (1.0)

Figure 4-14: PR quadtree‘corresponding to Figure 4~-12 when the
line segments of the map are ignored. When the line segments
are included, the PM . quadtree corresponding to Figure 4-12

152

\

Figure 4-15:

The PM, quadtree corresponding to Figure 4-12

153

Figure 4~16: Example illustrating D3 > D2’ when C3 is used

154

Figure 4-17: The PM2 quadtree corresponding to Figure 4-12

155

Figure 4-18: Result of using C3’, instead of C3,
in generating PM quadtree for
Figure 4-16

156

Figure 4-19: Exampie demonstrating why diagonal neighbors
should not be examined prematurely when attempting
to perform point~in-polygon determination

157

Figure 4-20: Example demonstrating how the inserting of a
q-edge can result in the splitting of one that
had been inserted earlier

158

Figure 4-21: Example demonstrating the sensitivity fo the PR
quadtree to shifts

159

CHAPTER 5§
CONCLUSIONS

In this dissertation, we have approached the lask of analyzing quadtree algorithms
on three levels:

1. The analysis of the manipulation of quadtrees irrespective of any
interpretation placed on the data stored.

2. The analysis of the manipulation of quadtirees under the assumption that
certain trees represent equivalent information.

3. The analysis of the manipulation of quadtrees given a definite interpretation
of the data being represented (in our case, the data was interpreted in terms
of a geometric model). :

The motivating factor behind this research is to lay the groundwork for automating the
methods of reasoning about quadtrees praenfed in this thesis. It is felt that in order
to say that a program understands the quadtree data structure, the program would have
to be able to respond to questions posed on each of these three levels.

First. we considered the formal analysis of the semantics of the quadtree data
structure. The main tool in the development of this semantics was the notion of a
theory of neighbor relations. This theory was developed from scratch, illustrating the
bare minimum that needs to be manipulated in order to define the neighbor relations
between the nodes of the quadtree/pyramid/picture. The particular approach adopted
in defining this semantics is also appropriate to a comparison of quadtree algorithms
with hierarchical algorithms that are not based on quadtrees, e.g., hextree algo.rit.hms

(10]. Thus, this presenration of the theory of neighbors is better for the task of
anaiyzirg quadtree algorithms than a matrix—based theory.

The theory of neighbors was presenied in two siages. First, there was a simple
theory that allowed us to prove that two nodes was neighbors. Aa example of a proof
in this system was given in Table 2-3. Although this theory has a certain toy-like

160

‘charm. the main results about neighbor relations lie not in this theory, but rather in its
metatheory. Thus, in the second stage, we considered metatheorems that posed
restrictions on which nodes could be proved to be related. First, we proved that each
node had only one neighbor on any given side (Theorem 1 of Section 2.1). Then, we
proved (Theorem 3 of Section 2.1) that it was decidable whether or not two nodes were
neighbors (and also that given a node, the function that calculates its neighbor is
computable). Nert, we investigated transformations of subframes that preserved
relations (Theorem 4 and Lemma 6 of Section 2.1). Finally, a sequence of lemmas
were proved, leading to a theorem (Theorem 9 of Section 2.1) that demonstrated the
compactness of our web of neighbors, e.g.. one corollary of this theorem is that if a

node has a northwestern neighbor, then it also has a northern neighbor.

Having created this theory of neighbors, we turned to the concept of a picture
viewed as an association of colors with elements of the neighbor structure. Next, basic
picture manipulations (embedding, surrounding, shifting, overlaying) and measures (area
and perimeter) were defined. Subsequently, the concept of a pyramid was developed as
an extension of the picture coloring technique restricted by certain hierarchical
constraints. These definitions culminated in the deflining of two types of quadtrees
(region quadtrees and line quadtrees) as subsets of the corresponding pyramids. It was
shown that the original picture could be reconstructed from either of these quadtrees
(Theorems 10 and 14 of Section 2.2). The demonstration of this result was less
straightforward in the case of the line quadtree and relied heavily on the close
relationship between line quadtrees and region quadtrees noted in Lemma 12 of Section
22

Given the basic definitions for pictures, pyramids, and quadtrees, we proceeded to
consider their relation in terms of the size of each of these representations, and in
terms of the ease of the operation of neighbor finding on each of these representations.
Although the sizes of pictures and pyramids are roughly comparable, it was shown that
the size of a quadtree, measured as a function of the length of the perimeter of the
object stored, could be significantly less than the size of the corresponding pyramid
(Theorem 19 of Section 2.3). Although this theorem (as well as Theorem 20 of Section
2.3 on the result of overlaying two quadtrees) was originally due to Hunter (12, 13], it

161

is given a proof herein that has removed the irrelevant geometric assumptions that are
common to proofs based on an intuitive understanding of neighbor relations in the
quadtree (with the hope that this will make these results easier to adapt when

performing the analysis of quadtree variants).

The problem of neighbor finding provides the transition between the section on
formalizing quadtree theory and the section on quadtree transformations. First, we are
able to use our Neighbor Theory to prove tne correctness (Lemma 21 of Section 2.4) of
an important neighbor finding algorithm [28]. Such a correctness proof has many uses.
Implicit in any formal correctness proof is the potential of some day being able to
automatically derive the algorithm. Along with correctness, we also get formal
derivations of the basic analysis associaied with the algorithm (Theorems 22 and 24 of
Section 2.4). However, part of this basic analysis only applies to pyramids and not to
quadtrees (here we refer to the aggregate neighbor finding cost being bounded from
above by a constant times the number of neighbors sought). That this analysis does not
directly extend to quadtrees (as well as a special case were it does extend) is the final

topic considered in the section on formal analysis of quadtree algorithms.

The next level of analysis adds an important new concept to our theory. We use
the operation of shifting to form a meaningful equivalence class among different
quadtrees. Thus. while on the first level. we were analvzing quadtrees in isolation. on
the second level, we will be able 10 consider the ramifications of considering various
quadtrees as equivalent. In each equivalence class of quadtres. there are two important
members: 1) the one that minimizes the aggregate cost of neighbor finding and 2) the °
one (NM) that minimizes the number of nodes in the quadtree. Instead of trying to
minimize the aggregate cost of neighbor finding, we look at the related ANF
transformation that insures that the aggregate cost of neighbor finding will be bounded

from above by a constant when averaged over all the neighbors found.

The ANF transformation is first developed with respect to the chain code
representation of a picture to aid in a chain code to quadtree algorithm. Using the
ANF transformation (which can be performed in time proportional to the length of the

chain code), we derive an algorithm that has a worst case analysis proportional o

oy

162

previously reported [25] average case analysis for performing this task. We then
extend this transformation to directly transform quadtrees (this time with cost linear in
the size of the original and resulting quadtrees). This leads us to improve on krown
results for quadtree to chain code, connected component algorithms, as well as to give
alternative algorithms for tasks already known to have a linear cost (e.z, computing
perimeters and Euler numbers). Finally, we compare the ANF transformation with the
NM transformation, showing that neither transformation subsumes the other (even in the

loose sense of being only off by a constant factor).

The third level of analysis is to integrate the quadtree data structure with a
problem domain (in our case, storing polygonal maps in the Euclidean plane). First,
certain basic correspondences between the Euclidean plane and Neighbor Theory are
established. One by-product of this correspondence is a demonstration of the
consistency of Neighbor Theory (relative to Euclidean geometry). The task we set
ourselves is to minimize the size of the quadtree while maintaining an ease of
manipulation. A priori, it is considered that the size of the quadtree that corresponds
to a reasonable digitization of a polygonal map is too large for the amount of

information it is storing.

The first attempt at solution does not attempt to integrate the structure of the
Euclidean plane directly into the data structure, but rather applies a common subtree
elimination (CSE) process to compress the region quadtree representation. The results
of this' compression are analyzed in terms of properiies of the geometric objects that
were digitized. The analysis of the size of the resulting structure (referred to as a CSE
quadtree) comes in three parts. First, we derive an upper bound for the compression
occuring from a CSE manipulation of a randomly constructed quadtree. While this is
not a particularly interesting case. it does introduce the line of reasoning that is used in
subsequent proofs. Next, it is shown that the storage requirements for a convex object
is prcportional to its length divided by the logarithm of its length. Finally, analysis of .
a special case of the representation of straight lines yields an upper bound on the cost
of representing a line with rational slcpe. This upper bound is proportional to the
square root of the length of the represented line segment Although these bounds

indicate the potential for significant compression, they are still oo loose to represent a

163

complete understanding of the situation. It is not known if the bounds for rational
sloped lines can be improved, nor if the bounds for non-rational sloped lines are any
better than the case of representing a convex object However, we ultimatsly abandon
this approach, not because of the meager guaranteed compression, but rather because of
the difficulty of translating the compression in storage into speed improvements of basic
algorithms. For the computation of area, it is easy to develop an algorithm that runs
in time proportional to the size of the resulting CSE quadtree, but for algorithms that
require calculations that are functions of neighbors (e.g., perimeter) or algorithms that
require manipulation of more than one CSE quadtree (e.g., intersection) the correlation

between the cost of the algorithm and size of a CSE quadtree is not so clear.

The following two approaches consider the task of applying point quadtrees
(instead of region quadtrees) to the task of storing polygonal maps. Immediately, the
question arises of what points to store. The task of storing a polygonal map is one of
representing regions. We recall that in the Voronoi Diagram Construction problem,
points are used to represent regions. Thus, one possibility that comes to mind is to
discover a tessellation of the map that corresponds to a Voronoi diagram, and then
represent tihat map by a labelling of the set of points that the Voronoi diagram
represents. This second attempt leaves us with the task of solving the exact inverse of
the Voronoi Diagram Construction problem. Two items are worthy of note. First, it
may be necessary to break some regions into subregions. Second. such an approach
transforms the point-in-polygon problem into the nearest-neighbor problem. The status
of this appfoach is still an open problem. On the one hand, we have an algorithm
that terminates, but produces t0o many points. On the other hand, we have an
algorithm that may not terminate, but need not always produce such an excessive

number of points.

The third and last approach also represents the polygonal map in terms of points,
but this time it uses points that zre already given as part of tne map speciiication, ie.,
the vertex points. The presentation of this solution of thc problem of storing
polygonal maps shows major interactions betvieen our theory of quadtrees and both the
properties of Euclidean geometry and other data structures (in this case, balanced binary

trees). Thus, as we reach the end of our analysis of quadtrees, we also see how rich

[
o
Tk

st

S AT S
e T TR T R T

i ‘,;;‘r,' “?“5"""

Tl A

i, e R e e OB

KR T

R

164

the knowledge base that r;mst be brought to bear on these problems. This final
structure turns out to be both easy to manipulate and have reasonable compression
factors. The analysis presented assumes that the points are stored in a PR quadtree.
Even better worst case results would be possible if we had dynamic balancing aigorithms
for point quadtrees that were comparable to the AVL aigorithm on binary trees. Of
all the open problems in the theory of quadtree data structures, the search for this

balancing algorithm is the one that appears farthest from solution.’

165

References

1. G. M. Adelson-Velskii and Y. M. Landis "An algorithm for the organization of
information." Soviet Math. Dok/ady. 3 (1962), 1259-1262.

2. N. Ahuja. On anproaches to polygonal decomposition for hierarchical image
representation. to appesr in: Computer Vision, Graphics and Image Processing, 1983
(see also Proceedings of the IEEE Conference on Patiern Recognition and Image
Processing, Dallas, TX, 1981, 75-80)

3. C. R Dyer. "Computing the Euler number of an image from its quadtree.”
Computer Graphics and Image Processing 13 (1980), 270-276.

4. C. R. Dyer, A. Rosenfeld, and H. Samet "Region representation: boundary codes
from quadtrees.” Comn.unications of the ACM 23 (1980), 171-179.

5. C. R Dyer. "Space efficiency of region representation by quadtrees.” Computer
Graphics and |mage Processing 19 (1982), 335--348.

6. 'C. M. Eastman. "Representations for space planning.”" Communications of the
ACM 13 (1970), 242-250.

7. R. A. Finkel aad J. L. Bentley. "Quad trees: a data structure for retrieval on
composite keys." Acta /nformatica 4 (1974), 1-9.

8. H. Freeman. "Computer processing of line-drawing images.” ACM Computing
Surveys 6 (1974), 57-97.

9., I Gargantini. "An effective way to represent quadtrees.” Communications of the
ACM 25 (1982), 905-910.

10. L. Gibson and D. Lucas. "Vectorization of raster images using hierarchical
methods." Computer Graphics and Image Processing 20 (1982), 82-89.

11. F. Harary. Graph Theory. Addison-Weslev Publishing Company. Reading, MA,
1969.

12. G. M. Hunter. £fficient computation and data structures for graphics. Ph.D.
Th., Department of Electrical Engineering and Computer Science, Princeton University,
1978.

13. G. M. Hunter and K. Steiglitz. "Operations on images using quadtrees.” /£££
Transactions on Pattern Analysis and Machine Intelligence 1 (1979), 145-153.

14. G. M. Hunter and K. Steiglitz. "Linear transformation of pictures represented by
quadtrees.” Computer Graphics and | mage Processing 10 (1979), 289-296.

15. E. Kawaguchi. T. Endo, and J. Matsunaga. "Depth-first expression viewed from
digital picture processing.” /EEE Transactions on Pattern Analysis and Machine
/ntelligence 5 (1983), 373-384.

16. A. Klinger. Ratterns and search statistics. In Optimizing Methods in Statistics,
1. 8. Rustagi, Ed.,Academic Press, New Yerk, 1971. '

17. A. Klinger and C. R. Dyer. "Experiments in piciure representation using regular
decomposition.” Computer Graphics and |/ mage Processing 5 (1976), 68-105.

166

18. D. E Knuth. The Art of Computer Programming: Volume 1/ Fundamenta/
Algorithms. Addison-Wesley Publishing Company, Reading, MA, Second Edition, 1975.

19. D. T. Leé and F. P. Preparata. Location of a point in a planar subdivision and
its applications. Proceedings of the §th Annual ACM Symposium on Theory of
Computing, Hershey, PA, 1976, pp. 231-235.

20. M. Li. W. Grosky, and R. Jain. Normalized quadtrees with respect to translation.
Proceedings of the IEEE Conference on Pattern Recognition and Image Processing 81,
Dallas, TX, August, 1981, pp. 60—62.

21. J. J. Martin. Organization of geographical data with quadtrees and least squares
approximations. Proceedings of the IEEE Conference on Pattern Recognition and Image
Processing, Las Vegas, NV, 1982, pp. 458-463.

22. N. J. Nilsson. A mobile automaton: an application of artificial intelligence
techniques. Proceedings International Joint Conference on Artificial Intelligence,
Washington, DC, 1969, pp. 509-520. '

23. J. A. Orenstein. "Multidimensional tries used for associative searching.”
Information Processing Letters 14 (1982), 150-157.

24. A. Rosenfeld. "Digital straight line segments.” /EEE Transactions on Computers
23 (1974), 1264-1269.

25. H. Samet "Region representation: quadirees from boundary codes.”
Communications of the ACM 23 (1980), 163-170.

26. H. Samet "Connected component labeling using quadirees.” Journal/ of the ACM
24 (1981), 487-501.

27. H. Samet and R. E. Webber. Line quadirees: hierarchical data structures for
encoding boundaries. Proceedings of the IEEE Conference on Pattern Recognition and
Image Processing 82, Las Vegas, NV, 1982, pp. 90-92.

28. H. Samet “Neighbor finding techniques for images represented by quadirees.”
Computer Graphics and /mage Processing 18 (1982), 37-57.

29. H. Samet A top-down quadiree traversal algorithm. Computer Science TR-1237,
University of Maryland, 1982 '

30. H. Samet The quadiree and related hierarchical data structures. Computer
Science Department, TR 1329, University of Maryland, College Park, MD, 1983.

31. H. Samet and R. E. Webber. Using quadirees to represent polygonal maps.
Conference on Paitern Recognition and Image Processing 83, Washington. DC, 1983.

32. M. Shneier. "Two hierarchical linear feature representations: edge pyramids and
edge quadtrees." Computer Graphics and |mage Processing 17 (1981), 211-224.

33. L E Sutheriand, R. F. Sproull, and R. A. Schumacker. "A characterization of ten
hidden-surface algorithms." ACM Computing Surveys 6 (1974), 1-55.

34. G. Toussaint. Patern recognition and geomeiric complexity. Proceedings of Fifth
International Conference on Pattern Recognition, Miami Beach, FL, 1980, pp. 1324-1347.

35. J. E. Warnock. A hidden surface algorithm for computer generated half tone
pictures. Computer Science Department, TR 4-15, University of Utah, 1969.

167

36. Li-De Wu. On the Freeman's conj
Proceedings Sth International conjecture about the chain code of a line.
1980, pp. 32-34. Conference on Pattern Recognition, Miami Beach, FL,

CURRICULUM VITAE

Name: Robert Edward Webber

Permanent address: 2304 Perry Avenue
Edgewood, Maryland 21040

Degree and date to be conferred: Ph.D., 1983.
Date of birth: July 15, 1955,
Place of birth: Danville, Virginia.

Secondary education: Edgewood Senior High School,
Edgewood, Maryland, May 1973.

Collegiate institutions attended Dates Degree Date of Degree
University of Maryland 8/76-8/78 B.S. May 1978.
University of Maryland 8/78-5/80 M.S. May 1980.
University of Maryland 5/80-12/83 Ph.D. December 1983.

Major: Computer Science.
Professional publications:

On formalizing abstract machines, Masters's Thesis, CSC 1316,
Computer Science Department, University of Maryland, 1980.

(with A. Rosenfeld, H. Samet, and C. Shaffer) Application of
hierarchical data structures to geographical information systems,
Computer Science TR-1197, University of Maryland, College Park,
MD, June 1982.

(with H. Samet) Line quadtrees: a hierarchical data structure
for encoding boundaries, Proceedings of the |EEE Conference

on Pattern Recognition and /mage Processing, Las Vegas, NV,

1982, 90-92.

(with H. Samef) Using quadtrees to represent polygonal maps,
Proceedings of Computer Vision and Pattern Recognition 83,
Washington, D.C., June 1983, 127-132.

(with A, Rosenfeld, H. Samet, and C. Shaffer) Application of
hierarchical data structures to geographical information systems

phase II, Computer Science TR-1327, University of Maryland,
College Park, MD, June 1983.

(with A. Rosenfeld, H. Samet, and C. Shaffer) Quadtree }egion
representation in cartography: experimental resuits,
Proceedings of Computer Vision and Pattern Recognition 83,
Washington, D.C., June 1983, 176~177.

(with A. Rosenfeld, H. Samet, and C. Shaffer) A quadtree-based
geographical information system, Proceedings of the Third g
Scandinavian Conference on /mage Analysis, Copenhagen, July

1983, 231-236. ;

(with H. Samet) On encoding boundaries with quadtrees, to appear
in /EEE Transactions on Pattern Analysis and Machine |ntelligence
(also University of Maryland Computer Science TR-1162).

(with A. Rosenfeld, H. Samet, and C. Shaffer) Quadtree region
representation in cartography: experimental results, to appear
in /EEE Transactions on Systems, Man, and Cybernetics.

Professional positions held:

Teaching Assistant, University of Maryland, College Park, MD.
Instructor, University of Maryland, College Park, MD.

Research Assistant, University of Maryland, College Park, MD.

Assistant Professor, Rutgers University, New Brunswick, NJ.

