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Preface

Part of what it means to be a researcher is to identify what appears to be a relationship that others either 
have not noticed or have not fully appreciated. Both the Turing test and the frame problem have been 
significant items of discussion for more than 20 years in the philosophy of artificial intelligence and the 
philosophy of mind, but there has been little effort during that time, as I read the literature, to distill how 
the frame problem bears on the Turing test. I believe that there is an important relationship and that this 
essay articulates that relationship. Of course, I must leave it to the reader to judge whether I have argued 
convincingly that such a relationship exists.

In a larger sense this essay is also an attempt to explain why there has been less progress in artificial 
intelligence research than AI proponents would have believed likely 25 to 30 years ago. As a first pass, 
the difficulty of the frame problem would account for some of the lack of progress. One could take this 
to mean that the progress will simply be much slower than originally anticipated because the problems 
are much more complex. An alternate interpretation, however, is that the research paradigm itself either 
is destined to be less productive than we might have hoped or must undergo radical change. In general 
terms, the view advanced here is that the future of AI depends in large part on whether the frame 
problem will fall to computational techniques. If it turns out that the frame problem is computationally 
intractable, if there is no way to solve it computationally by means of a program operating on formally 
defined constituents, which is AI's understanding
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of intelligence, then I suspect an increasing number of writers will reach the conclusion that AI 
embodies a fundamental misunderstanding of intelligence. In fact, that is the view I tentatively advance 
here.

In short, I defend the view that the Turing test is a good test for intelligence but that no computer will be 
able to pass the test unless there is a solution to the frame problem. Against those, such as Gunderson 
and Searle, who say that passage of the test would not necessarily signify that a machine was thinking, I 
argue that a computer passing the test would have to possess a solution to the frame problem and that 
such a solution should convince us that thinking is in fact occurring. Against those, such as Dennett and 
Turing, who imagine that passage of the test is just a matter of time, I argue that it is not at all clear that 
we will be able to solve the frame problem, and, as a result, it is not at all dear that a computer will ever 
pass the Turing test. In fact, I think the prospects for a solution to the frame problem are not good.



A number of people have read the entire manuscript and deserve my thanks. Among them are Keith 
Gunderson and Douglas Lewis (philosophy), and Michael Kac (linguistics/computer science), all of the 
University of Minnesota. Lewis reads manuscripts more closely than anyone I have ever met. 
Gunderson, a member of the Minnesota Center for Philosophy of Science, in particular graciously and 
helpfully commented on my critical assessment of his well-known views. We have had useful 
conversations about these issues for a period of 10 years now, and he has encouraged me to continue 
attempting to explain why I think he is mistaken. Yorick Wilks, Director of the Computing Research 
Laboratory, New Mexico State University, who is the editor of this Ablex series, read the entire 
manuscript and offered a number of insightful suggestions. My colleagues at Augsburg College, 
Minneapolis, Bruce Reichenbach (philosophy), John Benson (religion), and Larry Ragland (computer 
science) read parts of the manuscript and offered valuable suggestions. For several years, as well, I have 
had a number of useful conversations about related issues with my colleague Noel Petit (computer 
science). Last, but perhaps most significantly, I have tried out my ideas on a number of undergraduate 
and graduate students at Augsburg, and they have been remarkably helpful as I attempted to grope my 
way to some clarity with respect to these subtle, slippery issues.

LARRY J. CROCKETT
JUNE 1992
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Chapter 1—
Introduction:
Interpreting the Turing Test in Light of the Frame Problem

It has been more than four decades since A. M. Turing (1950) published his article, "Computing 
Machinery and Intelligence," which proposes a conversational test to answer the question of whether a 
computer can think. Turing's paper not only advances a practical test but also constitutes a theoretical 
fountainhead for both classical work in AI done as early as the 1950s and AI-influenced philosophical 
discussions of mind and psychology occurring during the last 40 years. Examples abound of the paper's 
enduring influence over the years. For instance, saluting it as a "classic," A.R. Anderson's 1964 
anthology, Minds and Machines, places Turing's paper first, perhaps following the ancient Semitic 
practice of placing the most important literature in a collection first. In his introduction, Anderson 
claims that more than one thousand papers were published in the period from 1950 to 1964 on the 
question of whether machines can think, with many referring to Turing's paper. More recently (1987), 
the entry for "Alan Mathison Turing" in the Oxford Companion to the Mind extols the test named for 
Turing as the best test we have for confirming the presence of intelligence in a machine. On the other 
side of the philosophical aisle, John Searle (1980, 1984, 1990) and Keith Gunderson (1971, 1985) have 
advanced arguments against the adequacy of the Turing test for a number of years.

More recently still, the Computer Museum of Boston hosted the Loebner Prize Competition in 
November of 1991. The goal of the
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competition was the development of software that would pass a ''modified version of Alan Turing's 1950-
era Turing test" (Zeichick, 1992). Competing programs included Ann, which purportedly possesses the 
knowledge of a 7-year-old child, and Wittsgenstein (note the play on the name of the 20th-century 
philosopher Ludwig Wittgenstein—no 's'), which allegedly holds forth ably on the genteel subject of 
burgundy wine. While there is no claim that a program has passed the full-fledged test, Ziechick's claim 
is that "we're not far from having imitative programs that can pass a limited Turing test with ease and do 
well on an unrestricted test, as Turing proposed it" (p. 5). Given this four-decades-long history, it seems 
fair to conclude that the Turing test has been the focal point around which a great deal of discussion, as 
well as a fair amount of programming, have turned in the last 40 years for what would be sufficient to 
convince us that machines think.



An undercurrent that is never far from the surface of debates over the Turing test is the fact that the 
debate is often a debate between disciplines. As is true in the cases of Searle and Gunderson, 
philosophers often have been suspicious of claims that a relatively straightforward test such as Turing's 
could confirm the extraordinary claim that a machine thinks. Researchers in various scientific 
disciplines, by contrast, have often welcomed the test as obviously the right way to answer the 
philosophers. In fact, Turing designed his test in part to limit the seemingly endless haggling over terms, 
definitions, and distinctions that scientists often accuse philosophers of substituting for "real science." 
As many scientists see it, they can justifiably point to the test when the philosophical question is asked, 
"How would we know that a computer is thinking?" and they can then profitably return to the research 
designed to produce such a machine. Indeed, the philosopher Haugeland (1985, p. 9) is sympathetic to 
this approach: "By accepting the Turing test . . . scientists can concentrate almost entirely on the 
'cognitive' aspects of the problem . . . [and] they can dispense with messy incidentals and get on with 
computational psychology." Instead of limiting the philosophical wrangling, however, Turing's 
introduction of his Imitation Game as a test, as we will see, has generated its own decades-long history 
of argument and counterargument.

Turing was not as consistent as we might like in defining the question for which his paper purportedly 
advanced a practical decision procedure. In the first sentence of "Computing Machinery and 
Intelligence," he writes that he will take up the question, "Can

  

Page 3

machines think?" Before the first paragraph is out, however, he exchanges this question for two 
questions associated with the Imitation Game. When we consider these substitute questions, 
nevertheless, they still involve the issue of whether machines think and-even more importantly—how 
we might satisfy ourselves that a machine is thinking. The Imitation Game, as a result, remains Turing's 
pragmatic answer to one pivotal question: what evidence would enable us to distinguish genuine 
machine thinking from cleverly engineered, machine imitation thinking?

Despite repeated attempts to dismiss it, the Turing test has proved to be a remarkably resilient proposal 
in the philosophy of mind and in philosophical discussions of artificial intelligence. Just when 
philosophical opponents conclude that it has finally been vanquished, Phoenix-like, it surfaces again, 
with defenders offering new defenses. This essay, in fact, constitutes in part just such a new defense. 
Perhaps the most spirited defense of the test published in the 1980s was offered by Daniel Dennett. 
Dennett's (1985) "Can Machines Think?" is something of a traditional defense of the test, however, 
because he suggests that his general orientation to the argument that ordinary conversation would be a 
good test of thinking in machines goes back as far as Descartes. Dennett's principal argument is that 
writers who dismiss the test have both overestimated the powers of current computers and 
underestimated the demands of conversing in a natural language. Such detractors of the test, as a result, 
believe that a computer might pass the test but that passage would not by itself indicate that the 
computer is thinking. Against such detractors, Dennett counters that the test is "plenty strong enough as 
a test of thinking."



In contrast to the Turing test, the frame problem has a briefer, rather less prominent history. While there 
is a fair amount of sentiment, especially among philosophers, that the frame problem is an old problem 
freshly disguised in trendy computational attire, other writers argue that the frame problem is essentially 
a new problem. Speaking for the "it's not as new as it seems" crowd, for example, Clark Glymour (1987, 
p. 65) argues that the frame problem is closely related to "problems that are old friends to philosophy." 
While he concedes there are some new twists on this old problem in AI discussions, he insists the 
problems have a long history in Western epistemology. On the other hand, Dennett and John Haugeland 
agree that the frame
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problem does not substantially predate the AI era. Haugeland (1987, p. 77) observes, "As if 
epistemology hadn't enough troubles, artificial intelligence has generously provided another, called the 
'frame' problem." Dennett (1987, p. 42) concludes that the frame problem is "a new, deep 
epistemological problem—accessible in principle but unnoticed by generations of 
philosophers—brought to light by the novel methods of AI, and still far from being solved."

The frame problem as a recognized problem with this specific name is only about half the age of the 
Turing test, since it dates to 1969. And while the Turing test is reasonably well defined and 
understood—even if there is little agreement about the significance of what passage of the test would 
mean—the term frame problem, in its shorter life, has been subject to a greater variety of interpretations. 
The writers who called attention to the problem for (mainly) technical readers, John McCarthy and 
Patrick Hayes, perhaps owing to their technical backgrounds, understand the term frame problem to 
name a difficulty associated with axiom revision in an AI system, given new data. Not surprisingly, 
philosophers such as Jerry Fodor (1987) have understood it in more epistemological terms. The frame 
problem, for Fodor, should be understood in terms of how a computer system would ascertain which of 
the "beliefs" about the world it has require updating and which do not, given its interaction with the 
world. Haugeland (1987, p. 82) interprets it as the problem of revising our beliefs about the world as we 
change it with our actions. Pylyshyn's (1987) volume, and to a lesser extent, Brown's (1987) volume, 
underscore how issues associated with the frame problem have assumed a larger role in philosophically 
oriented discussions of AI.

The frame problem parallels the Turing test in the sense that it occasions some of the same disciplinary 
skirmishing. As we have just seen, philosophers have analyzed the term frame problem, sometimes 
construing it in different ways from its original understandings. Hayes (1987, p. 82) in particular has 
been roundly irritated by the ways it has purportedly been misinterpreted. Making explicit reference to 
Dennett, Fodor, and Haugeland, Hayes has written in an attempt to correct some of what he views as the 
"sillier misunderstandings" of the frame problem by such philosophers.1 As might be expected, many

1At the Computers and Philosophy Conference at Stanford University in August 1990, Hayes told me that he 
regrets some of the caustic tone of his paper.
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scientists see in such problems research agendas that can be pursued profitably if the waters are not too 
muddied by the philosophers. On the other hand, philosophers sometimes conclude that scientists 
precipitously construe venerable philosophical problems as technical problems that are, in principle at 
least, amenable to engineering solutions.

In light of these remarks, it seems fair to conclude that the Turing test and the frame problem count as 
two major issues in philosophical discussions of AI as we approach the middle of the 1990s. The 
principal contribution I hope to make in this essay, however, is not primarily new insights about the 
frame problem or an amplification of more or less conventional arguments for the Turing test. While I 
think some new clarity can be achieved by carefully defining the frame problem, and while I will 
attempt to explain why some objections to the Turing test are not convincing, my primary goal is to 
distill some of the implications of the frame problem for the ongoing discussion of the Turing test. Little 
has been written on this relationship, and new discussions of the Turing test continue largely to ignore 
the frame problem. For example, David Anderson (1989) takes up many of the topics considered here: 
Turing's Imitation Game, simulation, the Dreyfus critique of AI, Searle's Chinese Room experiment, and 
Dennett's defense of the test. But there is no direct discussion of the frame problem.

I believe that two remarkable results follow if we interpret the Turing test in light of the frame problem. 
First, considerations attaching to the frame problem significantly reinforce the claim that the Turing test 
is a formidable test indeed—sufficiently difficult, in fact, that I believe that the probability of a digital 
computer ever passing it is remote. Second, should it turn out that there is agreement that a computer has 
passed the test (ignoring the technical details of how such a feat is possible), our confidence that it 
serves as a reasonably convincing indicator of intelligence is strengthened considerably, since the nature 
and scope of the frame problem's difficulty make it unlikely that it is amenable to solution by 
nonthinking algorithmic systems. In fact, a central claim of this essay is that the frame problem, if it is 
defined in something like the way I do, namely, as a two-sided problem with a common epistemological 
center, provides a clear demarcation between nonthinking and thinking in a formal system or, to use the 
finer-grained terms I will introduce later
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in the essay, between epistemologically simple thinking and epistemologically complex thinking. In 
sum, the literature I have seen has not adequately explored the implications of the frame problem for the 
Turing test and the resulting taxonomy of thinking that we are going to need to describe the several 
types of thinking and nonthinking behavior of computing machines. Such a taxonomy is essential if we 
are to understand better, for instance, the meaning of claims such as "Cray Research has developed a 
machine that can pass the test" and "It may be possible to program a Cray computer to pass the test 
without it thinking at all." This essay is designed to redress this oversight.

Given the interpretation of the relation of the frame problem to the Turing test that I will advance, a 
theme that will play a large role in this essay is the importance of learning for systems designed to pass 
the test. Questions associated with learning will prove to be important, since I claim that the frame 
problem obstructs the kind of learning that is necessary to pass the Turing test. Admittedly, there is 
considerable disagreement in the literature about the relative importance of learning to the AI enterprise 
in general. Haugeland (1985), for example, takes learning less seriously than I do, since he claims that 
"it does not appear that learning is the most basic problem, let alone a shortcut or a natural starting 
point" (p. 11). At the other end of the spectrum of opinion about the importance of learning, Waltz 
(1988) argues that future AI models will involve more look-up and less search. I take this to mean that, 
to an extent that has usually not been appreciated in classical AI, intelligent behavior in problem-solving 
contexts more often has to do with rather straightforward, algorithmically simple look-up—identifying, 
for example, a question as quite similar to an earlier, answered question—than it does with 
algorithmically based search through a large search space.2 That which is looked up, assuming that we 
cannot begin to program into a computer all that it will need to cope with the complexity of a real world, 
would have to have been learned in large part.

The point is that at least some discussions of the Turing test have

2 I don't wish to suggest that biological brains are algorithmically based, since it may turn out that the idea 
drawn from computing—specifically, that problem solving involves algorithmic search space reduction until a 
solution is found—may not describe neural processes well at all. Algorithmically simple here could include no 
algorithmic processing at all.
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not noticed that there are different kinds of learning that are needed for different kinds of conversational 
capacities; my claim is that there is a fundamental epistemological distinction that should be drawn 
between two different kinds of conversation. I claim that this point's importance becomes apparent if we 
correctly identify how the frame problem bears on the attempt to build computers or, in Haugeland's 
terms, automatic formal systems, which play the machine's part in Turing's Imitation Game test.

I have not yet attempted to define the term artificial intelligence. As would likely be expected, there is 
nothing approximating a universal agreement on how it should be interpreted. Boden (Gregory, 1987) 
defines it as "the use of computer programs and programming techniques to cast light on the principles 
of intelligence in general and human thought in particular." I think this is a respectable first pass— 
though more aggressive, less philosophically timid, writers would insist that it is the attempt to generate 
intelligence. What is striking in various definitions of AI is that one example of intelligence that is 
frequently mentioned almost immediately is conversational ability. Haugeland (1985), for example, 
discusses conversation and the Turing test in the first few pages of his book. To cite Boden again 
(Gregory, 1987), the kinds of things AI attempts to get machines to do "include holding a conversation" 
and "answering questions sensibly on the basis of incomplete knowledge." These examples illustrate that 
definitions of artificial intelligence often make reference to activities that we do that we assume require 
intelligence. As this essay will argue later, a pivotal question in philosophic discussions of AI is whether 
it follows that, if we require intelligence to do some activity, such as converse maturely about some 
subject, it follows necessarily that any computer doing that activity would also require intelligence. 
While I agree that conversation is just such a computer activity that requires intelligence, I do not argue 
that this result follows from the general principle that, if, when a human does it, it requires intelligence, 
it follows that a computer also would require intelligence to do it. I concede that the path to the 
conclusion that computers require intelligence to engage in mature conversations, for reasons supplied 
by Searle and Gunderson, is significantly more complicated.

Coming to some clarity about the possibilities and limits of AI presupposes coming to some 
understanding of what a computer is. This means exploring what it means to compute a function algorith-
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mically. I argue that the concept of algorithm is more important than the concept of computer or 
program. I have found, nevertheless, that abstract characterizations of the properties of algorithms 
should be supplemented by more concrete illustrations of what computers do in practice if we want an 
intuitive sense of what computation can do. As a result, I illustrate computer activity with a small 
simulation of basic computer operations which I call AugsAsm. I also press into service Haugeland's 
(1985) helpful discussion of a central property of digital computers, namely, the requirement of a set of 
unambiguous read/ write techniques. I find his discussion of read/write techniques helpful when 
attempting to make sense of what John Searle is capable of computing in his much discussed Chinese 
Room experiment.

Parenthetically, I must confess that I attempt to reach some clarity about what a computer "is" with some 
trepidation. One of the problems of attempting to spell out what a computer is can be compared to being 
handed a length of black pipe and asked, "What is this?" The question of what something "is," if asked 
in the context of human convention and practice, cannot be answered without considering the purposes 
for which that item is employed; a length of black pipe could be used as conduit for natural gas burned 
to stave off a cold Minnesota winter or as a weapon to murder an obnoxious spouse. Hence, what it "is" 
depends significantly on how people use it. A computer manipulates bits, given its program, and the 
question of what it "is'' cannot be completely disassociated, in the view I develop here, from the human 
purposes that generated the program. Admittedly, this view begs a question, for it assumes that there is a 
significant analogy to be drawn between a length of pipe and a computer. Much AI discussion, in fact, 
revolves around the question of whether a computer can possess something that has more in common 
with a thinking, understanding person than a nonthinking, nonunderstanding length of black pipe.

I also will spend some time with issues associated with computer simulation. I argue that the computer's 
simulation capacities are sufficiently significant that one good way to understand a computer is that it is 
a simulation machine. The specific reason for doing this, of course, is that, if we are to reach a clear 
understanding of the significance of a computer passing Turing's test, we need to possess some 
sensitivities with respect to how a computer can generate a simulation of some phenomenon without 
actually generating the phenomenon in question. As Searle (1984) points out, there remains a
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distinct difference between simulation and duplication. I press into service Alan Kay's (1984) 
provocative suggestion that a computer is a "metamedium" such that which machine it is at any given 
point is a function of which set of programs is driving it. Kay also speaks of "user illusions" and reminds 
us that computers are especially adept at generating user illusions. I take this to be a warning that we 
must especially be on our philosophic guard when it comes to assessing the Turing test since we are so 
susceptible to being taken in by a conversational user illusion.

I mentioned above the centrality of computer learning for the Turing test. Dealing with computer 
learning requires a distinction that I believe is pivotal if we are to interpret issues associated with the 
Turing test perceptively. The relationship of what we call learning to what a computer does when it 
processes information is treacherous for a number of reasons. One reason is that current computer 
programs cope quickly and effectively with certain kinds of input in a way that often could be 
understood as a kind of learning, and not at all well with some of the kinds of input we handle well when 
we are said to be learning. Another reason is that it is not clear whether rapid data assimilation and 
manipulation that result in programmatic behavioral modification should count as learning. I provide an 
illustration of a computer program that plays the Coin Toss game, which, by some philosophic lights at 
least, learns but, as I see it, learns in certain strictly circumscribed ways. There is a long history, both in 
philosophical discussions and in popular perception, of posing the larger AI question in terms of 
thinking versus nonthinking and learning versus nonlearning rather than developing a finer-grained 
taxonomy. Nevertheless, I believe that certain kinds of computer behavior, such as that exemplified by 
the Coin Toss game, which I discuss in Chapter 2, justify the claim that the computer is thinking and 
learning but that this sense of learn should not be taken to be identical with all uses of the term learn. 
My claim is that learning occurs as a computer plays the Coin Toss game but it is a specific, limited kind 
of learning that should not be confounded with the kind of learning we do, for example, when we 
correctly see that two things are similar when the common understanding is that they are not. In an 
attempt to name this difference, I will distinguish epistemologically simple from epistemologically 
complex learning. The former has to do with atomic, storage-based, constrained-domain revision and the 
latter has to do with system-wide,
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memory-based, unconstrained-domain revision. I argue that this distinction has conceptual correlates, 
conversationally speaking, namely, epistemologically simple and epistemologically complex 
conversation, which are helpful in attempting to determine which kinds of conversational ability are 
computable by a digital computer, which kinds of conversational ability are requisite to passing the 
Turing test, and, pivotally, whether these turn out to overlap sufficiently such that we can say that it is 
possible for a digital computer to pass the Turing test. From time to time, as well, I will speak of 
epistemologically simple and epistemologically complex thinking. I will not consistently distinguish the 
terms learning and thinking since I assume that the two terms overlap significantly.

Additionally, I will chronicle some of the AI history leading to the more considered understanding of the 
frame problem that emerged in the late 1980s. Any such chronicle is obliged to pay some attention to 
Hubert and Stuart Dreyfus. I will argue that the Dreyfus critique of AI anticipated a good part of the 
problem that the term frame problem names, at least as understood by philosophers. Hubert Dreyfus 
contends that the attempt to analyze human intelligent behavior in terms of rules, in the hope that we can 
generate a set of rules that captures the intelligence, presupposes a "certain ceteris paribus clause"— 
that things will go as they usually do when an attempt is made to use the rules to solve a problem. The 
problem is that it is not possible, according to Dreyfus, to spell out what the clause means axiomatically 
and it is difficult to determine how to program a system to recognize that a problem situation is at 
variance with this clause. Dreyfus claims it is impossible, to put it in the parlance of computer 
programming, to program a computer to deal effectively with the programmatically unanticipatable.

As I said above, there is considerable disagreement about the meaning of the term frame problem. 
Specifically, there is a disagreement between philosophically and technically inclined writers. McCarthy 
and Hayes, to whom goes the credit for coining the term frame problem, construe it more technically in 
terms of how it is possible to build an axiom-based system that incorporates a "principled" way to make 
changes in a representational system, given changes in the represented world, without falling prey to a 
computational paralysis resulting from the need to examine all axioms individually each time one axiom 
requires change. Brown (1987) defines the problem as one of "de-
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scribing in a computationally reasonable manner what properties persist and what properties change as 
actions are performed" (p. v). As Brown sees it, this means "we cannot expect to be able to exhaustively 
list for every possible action and for every possible state of the world how that action changes the truth 
or falsity of each individual fact" (p. v). The more philosophically inclined, such as Owen Flanagan 
(1991), understand the problem to be related to common sense and which criteria a system could use so 
that it is unnecessary for it to examine exhaustively all it knows, in the attempt to find what might prove 
to be relevant, when it attempts to solve a problem. It is not a matter of attempting to constrain the 
search space of a problem, which has usually been thought to be the principal problem in AI, but rather 
it is what this essay will call the problem of constraining the relevance space of its own set of 
representations, given the initial problem to be solved. On this view, it is the problem of the relevance of 
all that is represented in the attempt to solve problems as they occur in a robot's interaction with the 
real — as opposed to a "toy"— world. I claim that the two senses of the frame problem have a common 
core, because as soon as we attempt to find Hayes's "principled" way to avoid the specific frame 
problem, we get entangled in the epistemological complexities of the general frame problem.

Daniel Dennett has been conspicuous over the years for his spirited defense of the Turing test. Dennett's 
work, along with recent studies in complexity theory and evolution, I will argue at length, support the 
claim that we will have to rely heavily on I/O tests in our assessment of purported computer intelligence. 
The central point that Turing makes, which is not fully appreciated by detractors of the test, which 
Dennett wants to underscore, is that the test sanctions questions about virtually any of the activities and 
issues that people find interesting. This doesn't mean that the computer has to be expert in all of these 
fields any more than we expect a person who is a good conversationalist to be expert in all of them. The 
expectation is more modest and reasonable—it is that a good conversationalist ought to be able to 
discuss a reasonable sampling of these areas of human interest and activity well. Not only should a 
conversationalist be able to discuss many of them reasonably well, he or she or it should be able to make 
inferences across areas of interest such as being able to say something sensible, to anticipate the 
example I will use, about the implications of the political demise of Gorbachev for balancing the 
American federal
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budget. While I will express some qualms about Dennett's defense of the test, I will second Dennett's 
suggestion that demanding queries asked of a computer system programmed to pass the Turing test are, 
indeed, good "quick probes" for an intelligence such that, if a computer were able to pass the test, it 
would be reasonable to conclude that it possesses a general faculty that is at least roughly equivalent to 
human intelligence.

Moreover, there are other results that reinforce the need to rely significantly upon input/output tests such 
as Turing's. Specifically, Christopher Cherniak (1988) argues that a computer program with the 
approximate powers of the human mind would be so complex that it would be well beyond our ability to 
comprehend. In a similar vein, Howard Margolis argues that the brain is based on nonprogrammed 
pattern-recognition processes that developed in natural history. His claim is that evolution works in such 
a way, namely, generating novel function while using conserved biological structure, that it inhibits 
investigation into how the conserved structure generates the novel function. The upshot of Cherniak's 
and Margolis's limitative work is that the prospects are poor for achieving an understanding of the brain 
and a mindlike program that would be good enough so that we could, in light of investigations, 
justifiably say things such as "Yes, the brain's abc function parallels the program's xyz procedure." If 
they are right, the point is that we are forced largely to rely upon input/output tests such as Turing's 
more than many writers suppose.

The larger claim I wish to make is that the complexity of the brain and mindlike programs force us 
toward consideration of input/output assessments of machine intelligence and that the Turing test turns 
out, even when considered in isolation from the frame problem, to be a good I/O-based "quick probe" 
for intelligence. More specifically, considerations attaching to the frame problem significantly enhance 
the traditional argument that passage of the Turing test would be an adequate indication of intelligence 
but that, even without such considerations, the case for the Turing test is substantial. This is to say that I 
believe Turing has been right all along about what it would mean if a computer passed his test. But what 
follows from this positive assessment of the Turing test is not, as Turing supposed, that at some point we 
will agree that a computer thinks, but that computers are unlikely to pass the test at all. As a result, my 
view is at odds both with that held by AI proponents, namely, that we will eventually have a
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computer that can pass the test and therefore we will be able to conclude that computers can think, and 
the view held by a number of AI opponents, usually philosophers, that passing the Turing test would not 
by itself warrant such a conclusion.

In fact, I take two such philosophers, specifically, John Searle and Keith Gunderson, to task for arguing 
that passing the Turing test would not be sufficient to warrant the conclusion that a computer can think. 
As I read their objections, they have not fully understood how demanding the Turing test is. Instead, 
they typically assume such passage is probably inevitable and they concentrate on explaining why 
passage of the test would not mean what AI proponents have usually supposed, namely, that such a 
computer must be thinking as it converses. I claim that they fail, as many have failed, to see that an 
unsolved frame problem precludes a computer from having sufficient command of natural language that 
it could pass the test.

Parenthetically, if I am right that an unsolved frame problem stands in the way of a computer passing the 
test, it means that the poor substitute criticism of AI, which claims that a computer is not likely to pass 
the test, gets a boost, while the hollow shell criticism of AI, which claims that any computer passing the 
test would still be lacking something necessary for genuine thinking, becomes less plausible. This way 
of naming two ways of objecting to artificial intelligence dates to Haugeland (1985). The critiques of AI 
offered independently by Searle and Gunderson are of the hollow shell variety; my objection, as well as 
those of writers such as Hubert Dreyfus and Hilary Putnam, are of the poor substitute variety.

A central claim of this essay is that the frame problem bears on the Turing test in such a way that several 
major results follow.

First, I claim that computer systems, which possess no solution to the frame problem, are capable of 
epistemologically simple learning but are not capable of epistemologically complex learning. An 
unsolved frame problem, I argue, blocks the kind of epistemologically complex learning that is requisite 
to the epistemologically complex conversational abilities that are needed to play the Imitation Game 
successfully. As a result, Searle will not be able to converse in his Chinese room in such a way that his 
responses are indistinguishable from those of a native Chinese speaker. This is to say that I claim that 
his much discussed Chinese Room experiment is implausible, because he cannot handle a full-ranging 
conversation in Chinese the way he
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claims he can. The result is that his conversational abilities are not indistinguishable from those of a 
mature, natural speaker of Chinese; therefore, Searle conversing in Chinese in his Room does not, as he 
claims, constitute passage of the Turing test.

Second, I argue that the relation of the frame problem to the Turing test is sufficiently singular that 
normally germane cautions about the dangers of drawing inferences from I/O descriptions to intervening 
process ascriptions, such as those raised by Gunderson, do not apply. Usually, I agree that it is 
philosophically treacherous to make an inference from such and such I/O descriptions to such and such 
characterizations about the processes generating the I/O. But I contend that the implications of the frame 
problem for the Turing test are such that the price we would have to pay for denying thought to a 
machine passing the test is higher than the one we pay for ascribing thought to the machine. 
Specifically, I argue that the alternative to agreeing that a computer passing the test is thinking is 
claiming that a nonthinking, algorithmic machine is capable of solving the frame problem. I believe this 
is sufficiently unlikely that it is more reasonable to ascribe thinking to the machine passing the test. If 
we are willing to ascribe thought to persons on the basis of the right I/O and some kind of argument by 
analogy, I argue, we ought to be willing to ascribe thought to a machine on the basis of the right I/O and 
considerations stemming from the compelling relation of the frame problem to the Turing test.

Derivatively, and also contra Gunderson, I conclude that the necessity of epistemologically complex 
conversational ability for passing the test counts against claims that ELIZA or ELIZA-like programs are 
capable of passing the test. While Gunderson has some distinguished company, such as Arno Penzias 
(1989, whose position is cited in some detail at the beginning of Chapter 5), in supposing that an ELIZA-
like program can pass the Turing test, I argue that such a program, as an epistemologically simple 
program, cannot respond adequately to queries that presuppose an ability to appropriate and integrate 
epistemologically complex information. I illustrate this claim by including a "conversation" I had with 
ELIZA that is much less flattering than the widely (and tiresomely) cited "Men are all alike" example 
quoted by Gunderson.

Allow me to summarize my general position. While I will have a good deal to say about both, the 
primary topic of this essay is neither
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learning nor artificial intelligence, generally understood. Neither is it about the philosophy of language 
in general or human conversation in particular, although I will offer some observations about the 
rootedness of human language in tradition and convention and how this rootedness bears on the attempt 
to build an intelligent machine. Instead, it defends the claim that mature conversational ability turns out 
to be a compelling indicator of the presence of intelligence in machines, because, as Turing supposed, 
such ability presupposes the capacity to learn and integrate concepts and information at a sophisticated 
level. To the point, an unsolved frame problem, while it does not block a number of techniques that can 
and might be used to produce some useful kinds of computer learning, does preclude the specific kind of 
sophisticated learning that is a necessary condition for mature conversational ability. Expressed simply, 
conversationally fluid, intelligent systems do not suffer from a frame problem; the kinds of 
computational systems we currently build suffer from a frame problem that we do not know how to 
solve. My general position, then, is twofold. First, considerations stemming from the frame problem 
strongly support Turing's intuition that a general conversational ability is more than an adequate test of 
intelligence. A full appreciation of the frame problem makes it difficult to imagine how a nonthinking 
system could converse in the fluid, adaptable way Turing had in mind. Second—and this result would 
surprise and distress Turing—the frame problem likely demarcates the upper boundary of a computer's 
ability to learn and hence do many things that AI proponents have supposed would be just a matter of 
time and hard work. While I will concede Kay's (1984) point that we still have only a limited 
understanding of the limits of computation, the frame problem is emerging as a profound limitation that 
we can profitably discuss. As I will argue in the final chapter, if it turns out that the frame problem is not 
solvable, then such unsolvability counts decisively against AI's understanding of intelligence.

I should note, in closing this introduction, that I will say relatively little about how massively parallel 
computing bears or does not bear on the prospects for generating mature language competency in 
machines. I have limited my task to digital computers, because the relationship of the frame problem to 
parallel computing is unclear at this point. I have therefore limited my discussion almost exclusively to 
the attempt to generate intelligence on conventional digital computers
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and to classical AI's assumption that intelligence is manipulation of symbols under the control of a 
program. I must confess that I am skeptical that massively parallel computing will significantly overturn 
the limitative results defended here, but attempting to buttress that skepticism with an argument must 
wait for another occasion.
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Chapter 2—
Algorithmic Machines and Computer Learning
To simulate all the neurons in a human brain in real time would take thousands of computers. To simulate all the arithmetic operations 
occurring in a Cray would take billions of people.
— Geoffrey Hinton (Ladd, 1986)

In this chapter, I take up questions associated with what it means for a computer to execute an algorithm and what it 
means to claim, after the execution of the algorithm, that "it learns." Since we use computers to simulate many kinds of 
phenomena, a related issue is finding a way to distinguish clever computer simulations from computer activity that 
warrant ascriptions such as "it learns" and "it thinks." The next chapter takes up issues related to simulation. In the first 
section of this chapter, I spend some time attempting to reach an understanding of what a digital computer, or what I will 
call an algorithmic machine, is able and not able to do. In the last section, I use the example of a Coin Toss game 
program to illustrate the major set of distinctions drawn in this essay, namely, that between epistemologically simple 
(ES) and epistemolog-ically complex (EC) learning.

More specifically, in the first section, I argue that the operations of a digital computer at the most basic level are 
surprisingly simple, including operations such as adding 12 to the contents of a register, and storing the results, perhaps 
28, in a location in "memory." These simple operations, as is well known, are performed at astonishingly
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fast speeds, so that computers are able to manipulate large amounts of numeric data rapidly. The chapter uses a 
simulated simple computer, which I call AugsAsm, to illustrate what a computer does at the assembly language level.

There are two reasons for this brief tour of basic computer operations. First, while most people are aware that machine-
level operations are this simple, discussions of issues related to artificial intelligence, in the midst of considerations of 
such abstract concepts as recursion and backtracking, often lose sight of the fact that AI programming still generates 
operations that are this simple. Programs using advanced data structures and elegant algorithmic structures, after 
compilation, still consist of such simple operations. Second, an adequate understanding of the frame problem 
presupposes a sufficient command of the operations of a computer at this level.

Since the major question of this essay is the relation of the frame problem to the Turing test and how that relationship 
bears on the attempt to generate intelligence on a digital computer, I attempt to delineate what kind of learning is 
possible on computers and what kind of learning is required to pass the Turing test. I believe that the distinction I draw 
between epistemologically simple (ES) and epistemologically complex (EC) learning will shed some light on whether 
the kind of learning which is feasible on a digital computer is the kind of learning it needs to pass the Turing test.

1. Algorithmic Machines

In this section, I explore what it means to compute something algorithmically. First, I will try to develop an adequate 
definition of the concept of algorithm. As we will see, the concept of algorithm is more important to questions related to 
computability than is the concept of a computer. Second, to get a concrete sense of digital computing, I offer a 
simulation of a simple computer, which I call AugsAsm. At this level of description, there is a simplicity to computer 
operations that helps illumine why computers suffer from a frame problem.



Algorithms and Programs

The concept of algorithm has long been implicit in mathematics, but the word algorithm evidently came into use only 
during the middle
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ages. The Muslim mathematician Al-Khwarizm (died ca. 850 A.D.) wrote a book which summarized some Greek and 
Hindu contributions to elementary mathematics that came to be influential. The Hindu-Arabic numeric system came to 
be identified with his name and the Latin form of his name, Algorismus, became associated with the type of elementary, 
step-by-step mathematical work used by his book.

The concepts of algorithm and program are closely related but are not identical. Nicklaus Wirth (1984, p. 60) observes 
that ''data structures and algorithms are the materials out of which programs are constructed." Close up, the ultimate and 
only data structure of digital computers is the 1s and 0s (or the presence or absence of electrical current) stored in 
memory cells. From this vantage point, the ultimate data structure of a computer is its 1s and 0s, and its ultimate 
algorithms are the CPU's instruction set. Data structures—to cite one example, two-dimensional arrays—constitute maps 
of how information is stored in a computer's main storage, while an algorithm—for example a "quick-sort" 
algorithm—is the complementary, yet equally essential, procedural element in computing, the "recipe for computation." 
Hence an algorithm is a necessary component of a program but is not by itself sufficient, since programs are comprised 
of both data structures and algorithms.

Particularly if we wish to reach some understanding of why algorithmic machines suffer from a possibly insoluble frame 
problem, we need a more precise definition of algorithm. It would also be helpful if we had some idea of how the 
concepts of algorithm, program, and computer are related. One pass at the idea is that an algorithm is an unambiguous, 
finite series of steps which will eventually terminate. Given this definition, a program is a convenient way to express an 
algorithm, and a digital computer is a convenient device on which to execute a program that expresses an algorithm.

As a result, algorithms are theoretically more important than both computers and programs for computing, since 
computers execute programs that express algorithms. The theoretical significance resides more in the algorithm than in 
the program or in the computer. Without algorithms, there would be no programs, and, since computers are those 
systems that execute programs, it follows that, without algorithms, there would be no computers. To put it another way, 
only problems with algorithmic solutions can be solved by computers. This obtains whether the task is the computation 
of the next prime number or the simulation of human recognition of faces.
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Solving a problem with a computer requires the design of an algorithm. To draw a parallel with another discipline, while 
the theory of evolution is the unifying concept in biology, without which "nothing in biology makes sense," as the 
evolutionist Theodosius Dobzhansky used to put it, the concept of algorithm is the unifying concept for the theory of 
computability, without which little or nothing makes sense. In order to ascertain more dearly what is and is not to count 
as an algorithm, in addition to saying that an algorithm is an unambiguous, finite series of steps which eventually 
terminates, the following criteria should be added:

1. zero or more quantities are supplied as input;

2. zero or more quantities are produced as output;



3. every instruction must, in principle, be sufficiently simple that it could be carried out by a reasonably literate person 
using only pencil and paper.

The first two qualifications are designed to make allowance for algorithms which take as few as zero inputs and produce 
as few as zero outputs. Here are four program fragments which could easily be made into complete programs. The first 
takes no input and produces no output, the second has output only, the third takes input and produces no output, and the 
fourth takes input and produces output:

1) no I/O 2) output only 3) input only 4) input and output

if 0 = 0 then do; write; read(value); read(value);

: : : :

if 0 < > 0 then do; write('Hello!'); if value = 0 then do; write(value);

This taxonomy exhaustively enumerates the different possibilities in terms of algorithmic machine input/output. 
However, programs that express what might be called interactively impoverished algorithms, represented here by 
fragments 1-3, are of less interest to the theory of computability, since what is most interesting, I take it for obvious 
reasons, is the following: given input x, is it possible algorithmically to compute output y—that is, given x, is it possible 
to follow an unambiguous, finite series of simple steps (steps that any reasonably literate person could perform using 
only pencil and paper, given sufficient time) in such a way that the steps come to an end after a finite
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amount of time and we have y as an output? That is, what interests us most are the possibilities and limitations inherent 
in such a step-by-step algorithmic method that attempts to produce y, given x.

Kinds of Algorithm Structure and the Significance of Recursion

While there are many different kinds of algorithm structure, it turns out that no more than three are necessary for the 
construction of any algorithm. They are sequence, selection, and repetition. In sequence, the steps are executed one at a 
time, each step is executed exactly once, and the order of execution is the same as order of appearance of the instructions 
in the algorithm. Consider the following program fragment example:

write('In the sequence construct, steps are executed one at a time.');
write('Each step is executed exactly once.');
write('The order of execution is the same as the order in the algorithm.')

In selection, the second structure, choice between two or more alternate paths is presented and conditions external to the 
algorithm determine which path is chosen. The general pattern is: if some condition, then take one action; otherwise, 
take an alternate action; otherwise. . .. Consider this selection structure from Pascal:

if (counter < 5) then
             write('yes')
else
             write('no')



Sequence and selection are not sufficient to express algorithms whose execution (in contrast with expressed) length 
depends on intermediate results. We need some way to make the execution duration depend on the intermediate results. 
Iteration supplies this need. Consider the following examples, again in Pascal:

repeat while counter > 0 do begin

counter: = counter -1; counter: = counter-1;

write(counter); write(counter);

until counter < 0; end;
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As these repeat and while "loop" examples illustrate, iteration allows a process of indeterminate duration to be 
described by an algorithm of finite length. In each case the number of times the loop executes is a function of the value 
of the Boolean expression "counter > 0". In the first instance, so long as the Boolean expression evaluates as false, the 
loop continues; upon evaluating true, the loop terminates. Just the reverse is true in the case of the while loop. These two 
loop structures are prominent examples of iterative structures in a contemporary high level language.

One last algorithm structure, which is pivotal to AI programming, is the recursive structure. One illustration of the 
importance of recursion for AI is the relationship between LISP and recursion. As Allen B. Tucker (1986, p. 317) puts it, 
LISP "emerged as the lingua franca of the artificial intelligence community . . . LISP is unparalleled in its ability for 
expressing recursive algorithms which manipulate dynamic data structures." While recursion is often computationally 
inefficient, its elegance as a structure sometimes more than compensates for its inefficiency. A recursive algorithm 
contains a copy of itself (or at least its name as an invoking call of itself) within one of its instructions and hence can be 
said to "call itself' as a way of accomplishing its task. Wayne Amsbury (1985, p. 169) cites the everyday example of 
recursion: "a natural and effective definition of the word descendant is: . . . A descendant of a person is an offspring or 
the descendant of an offspring of a person. The definition is said to be recursive because it is in terms of itself." Here is a 
Pascal fragment which illustrates recursion:

procedure Reverse_Word;
    if (length(word) > = 1) then
          begin
              delete(word, 1, 1);
              Reverse_Word
end;

Since citing the name of the procedure, "Reverse_Word," constitutes a call of the procedure in Pascal, including the 
name inside the procedure definition constitutes a recursive call. There has to be a terminating condition so that the 
procedure does not keep calling itself in an infinite loop. In this case, the if clause must be supplied an
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instance in which the terminating condition, the Boolean expression "(length(word) > = 1)", is satisfied so that the 
algorithm recursively calls itself at most a finite number of times. And there has to be what Amsbury calls a refresh 
clause, so that the execution is continued at some more restricted level if the terminating condition is not found— in 
such a way that the "refreshment" will result in the terminating condition in a finite number of steps. In this case, the 
delete procedure ensures that the procedure operates on a shorter and shorter string, thus guaranteeing, in a finite amount 
of time, termination.

Recursion is often algorithmically elegant as expressed in a high level language such as LISP or Pascal but is 
computationally inefficient when actually executed at the instruction level; recursion trades off computational efficiency 
for elegance in algorithmic expression. But the pertinent point is that recursion is superfluous—any recursive algorithm 
can be cashed in for an algorithm consisting, at most, of sequence, selection, and repetition. The result will often be less 
elegant and frequently much more difficult to understand, but it can nevertheless exhaustively capture the recursive 
algorithm. In principle, if not in human practice, AI programming can be done equally well in assembly language using a 
simple computer as it can using LISP running on a Cray Research Y-MP C90 supercomputer. Nothing necessarily new is 
generated at the machine level, in other words, simply by using more elaborate structures.

The general philosophical moral is that, while programmatic structures can be quite elaborate if viewed abstractly "from 
above," the algorithmic structures that are sufficient for the expression of any algorithmic task, namely, sequence, 
selection, and repetition, are themselves conceptually simple. Recursion is conceptually more computationally complex 
but it is used (and sometimes abused) largely for its decompositional economies ("keep doin' it until it's done," as every 
army private knows, is an economical way to order a great deal of repetitive work); it is finally extraneous. One theme I 
will push aggressively later is that large programs are inaccessible to human understanding to any simultaneous breadth 
and depth. This stems, not from the complexity of algorithm structure per se, but from the layering and sheer size of the 
programs involved. We can find the conceptually simple wholly inaccessible if there is enough of it organized in an 
elaborate structure.
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Pencil-and-Paper Computability

I would like to emphasize the surprising simplicity of each step in an algorithmic process. We often hear that computers 
"simply add and subtract." While this oversimplifies the matter, since computers, among other things, also depend on 
logical operations such as complementing, ANDing, and ORing, there is a measure of truth in the claim that elementary 
computer operations are this simple.

Above, in defining the concept of algorithm, I claimed that "every instruction must, in principle, be sufficiently simple 
that it could be carried out by a literate person using only pencil and paper." To underscore that this is the case in current 
algorithmic machines, consider the AugsAsm simulated computer and instruction set that I developed and that is 
illustrated in Figure 2-1.

There are three principal components to the AugsAsm computer. The Accumulator is the register in which all arithmetic 
activity takes place. For data to be manipulated, it must be moved to the Accumulator first. Storage is usually called 
memory but I call it storage here to be consistent with claims made elsewhere in this essay that memory, when used in 
reference to computer storage, is an unfortunate misnomer. Last, the Program Counter points to the location in storage to 
be accessed during run time.



Figure 2-1.
The AugsAsm Simulated Computer. The AugsAsm computer consists of three parts: 

storage, consisting of consecutively numbered storage (memory) locations, an 
Accumulator in which all arithmetic activity takes place, and a Program Counter, which

 determines what locations in storage are accessed. The instruction set is listed at the right.
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To be sure, real computers contain components not simulated in AugsAsm. Most real computers contain additional 
registers, buses, clocks, various auxiliary mechanisms and assisting hardware—all of which are irrelevant to computing 
conceptually. The AugsAsm simulated computer contains all the components conceptually required by a digital 
computer.

Figure 2-2 contains a program written in AugsAsm that does two subtractions inside a loop, controlled by a counter. Of 
course, this example program is trivial. But consider the execution run that



Figure 2-2.
The AugsAsm Computer Executing a Program. Here the program in the upper left corner 

has been assembled and executed. As the trace illustrates, each operation is arithmetically
 so simple it could be done with pencil and paper by a grade school student.
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contains a program trace. First, storage is displayed before and after the actual execution. Notice how little of the storage 
changes as a result of the program's activity. In serial digital computers, very little in the computer's storage changes as a 
result of the execution of the program; the overwhelming majority of the storage contents remains unchanged. The 
passivity of most of the digital computer's "memory" is an obvious point of criticism for proponents of the connectionist 
or massively parallel processing school. It is also a point that I will return to later when I speak of the problems inherent 
in attempting to use such storage to model a dynamic world that is both complex and sometimes characterized by rapid 
change.

Second, the trace illustrates how the Accumulator is the center of activity, and that each operation is arithmetically or 
logically simple. For example, the second operation in the listed program, SUBLO SEC, is simply a subtraction 
operation. The value 8 is subtracted from the value 20 that is stored in the accumulator, leaving 12, which is then stored 
in the location named "FIR." Computer operations at the assembly language level are just this simple. The program 
accesses data in storage, both to get the program and the data to be operated on. At any given instant, only one operation 
is occurring. In a serial digital computer, which AugsAsm simulates, that is all that happens. Each one of these basic 
operations, with the exception of the PRINT, is a very simple task that could easily be done mechanically with pencil 
and paper. While more complicated operations can be defined even at the assembly language level, the fact remains that 
computational operations for the most part are just this simple at nearly the most basic level of description.



I am not claiming that the complex cannot be constituted by the simple. The claim is not that the simplicity of the 
operations of a computer at the assembly language level directly entails the result that computers cannot do marvelously 
complex operations. I take it as an axiom of modern scientific method that complexity routinely is decomposable and is 
constituted by that which, at least at some level of description, is relatively simple. Rather, the claim is more subtle. My 
argument is that the kind of simplicity that characterizes computation on a digital computer has distinct implications for 
the likelihood that the frame problem is amenable to algorithmic solution on a computer.

Notice also that the three kinds of algorithm structure discussed
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above, those which are essential to an algorithmic machine if it is to be capable of computing all computable functions, 
are present in the program displayed in Figure 2-2. There is sequence since there is a series of instructions executed 
sequentially; selection occurs when the computer executes the JMPGT instruction; and repetition occurs since the "loop" 
of the program executes twice—the number of loops is determined by the value stored in CNT. Since AugsAsm supports 
the three kinds of algorithm structure necessary for the construction of any algorithm, it is capable, assuming that storage 
is adequate and that there is enough time, of executing any finite algorithm. That is to say, it is capable of computing any 
computable function.

This little program exemplifies well my principal claims about what constitutes an algorithm: an unambiguous, step-by-
step process, using simple operations, which determines an output given an input and terminates operation under its own 
control after a finite amount of time. AugsAsm possesses, in sum, exactly the computational capabilities of any other 
digital computer.

I should spell out a little more clearly what the word digital means, especially since I assume that the kind of "computer" 
at issue in whether a computer can pass the Turing test is a digital computer. In the AugsAsm machine, there must be a 
way to read what is stored in memory without the material out of which the memory is made playing a pivotal role. It 
could be made from silicon or toilet paper, provided that the machine can distinguish one mark from another with 
extraordinary reliability. As Haugeland (1985, p. 54) puts it, "Digital techniques are write/read techniques" which have 
"the possibility of succeeding perfectly." The point is that the minute differences which distinguish equivalent tokens, 
such as this 1 from this 1 (the first is in Times font, the second in Courier), wash out in digital systems. To provide a 
further example, a dollar bill is digital in this sense: if a small part of the corner were missing, a bank teller would not 
insist that the dollar bill was worth only 97 cents.

Haugeland (1985) underscores the importance of digitalness to formal systems.

The digitalness of formal systems is profoundly relevant to Artificial Intelligence. Not only does it make enormous complexity 
practical and reliable, but it also underlies another fundamental property of formal
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systems: their independence of any particular material medium. Intelligence, too, must have this property if there are ever to be 
smart robots. (pp. 57-58)

In other words, fundamental to the AI program is the claim that intelligence emerges when the architecture and program 
are right; it does not have to be embodied in any particular kind of matter. The digitality of a digital computer means the 
physical. medium it is made from is theoretically insignificant so long as one mark can be distinguished from another. 
As a result, not only can digital computers be made of different kinds of material, as classical AI sees it, intelligence can 
be embodied in different kinds of material. Since formal operations can occur in any system that can distinguish one 
mark from another, and since intelligence consists of the manipulation of formally defined constituents under the control 
of a program, intelligence in principle can be embodied in a wide variety of materials.

Let me explain why this extended discussion of digital computers is pertinent to the major questions of this essay. Notice 
what computation means in a classical digital computer. Whether the machine is AugsAsm, or a much larger digital 
computer, one simple operation occurs at a time, with the operations occurring separately from all the passive data stored 
in storage with the exception of the data being manipulated in the current operation. While such operations occur at 
tremendous speeds in contemporary computers such as a Sun, with millions of these simple operations occurring during 
the span of 1 second, the fact remains that there is a kind of atomic, epistemologically monastic isolation between the 
current operation in the central processing unit and all other data stored in storage in the rest of the computer. In other 
words, the random access "memory" in a Macintosh Quadra or the storage in the AugsAsm computer are equally 
epistemologically inert. One surprisingly simple step, such as adding the contents of memory location 5 to the contents 
of register A, occurs at any given instant in a classical yon Neumann computer—and that's it.

Parenthetically, I should emphasize what I hope is obvious: many computer-related terms are philosophically 
tendentious. Artificial intelligence is the obvious case in point. Moreover, memory should be called storage, which was 
Turing's practice. My point in this discussion of
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AugsAsm is that computer ''memory" is storage, and such storage, I will claim throughout this essay, should be carefully 
distinguished from biological memory. The fact that computers possess storage but not memory, I will claim, is 
intimately bound up with the frame problem.

While there are significant advantages for traditional computing tasks to this serial computer architecture, I will argue in 
later chapters that there is a steep price to be paid for this computational simple-mindedness. Specifically, I believe that 
the evidence related to the frame problem supports the conclusion that intelligence on the scale possessed by people 
cannot be generated in classical yon Neumann computers—no matter what improvements occur technologically.

Moreover, notice that it is the prodigious speed of computational operations in a digital computer that makes 
wrongheaded characterizations about the cognitive significance of these operations likely. Because of the great speeds, it 
is tempting to imagine that a computer program, and its accompanying data, intermediate data, and so on, should be 
understood as some kind of cognitive whole that somehow significantly parallels, at least functionally, what occurs in 
animal cognitive systems. The speed of the atomic interactions (one piece of data is changed, one register changes, etc., 
at any specific instant) in some situations (I will argue later that Turing-level conversation is an exception) generates an 
appearance of simultaneous whole system interaction, such that it appears to have some cognitive parallels to biological 
systems such as brains, when, in fact, no such simultaneous, whole system interaction occurs. It is this atomicity, if I can 
call it that, of digital computers that accounts for both their stunning capacities and their striking limitations. The 
philosophical task, of course, which will occupy the balance of this essay, is distinguishing the former from the latter, 
especially as they pertain to the Turing test.



2. Epistemologically Simple and Epistemologically Complex Computer Learning

In this second section of the chapter, I will develop a set of distinctions that will be pivotal to this essay. I argue that 
there is a basic limitation to what a digital computer is able to learn in terms of assimilating new "data" as a program 
executes. Chapter 6 will argue that the frame
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problem provides the demarcation between epistemologically simple (ES) and epistemologically complex (EC) learning, 
thinking, and conversation. This section sets up the first of these three, namely, the distinction between ES and EC 
learning.

Few would question the computer's singular power to perform simulations well. The next chapter takes up issues related 
to simulation in depth. A serious question, related to the principal question of this essay, is whether simulation can 
include aspects of human mentality, especially intelligence roughly approximating human intelligence, and how we 
should interpret such simulations. In particular, the question which needs addressing is whether some simulations can 
become good enough to be counted as (functional) duplications.

I would like to consider for a moment the kind of learning that occurs in a computer simulation of the Coin Toss game. I 
got the idea for developing the program from Fischler and Firschein (1987), who claim that the game is a good 
illustration of how a computer, using a mechanical record keeping system, can at least appear to be "learning." The game 
serves to illustrate some of the points I wish to make in this section of the chapter.

Many children play the Coin Toss or "matching coins" game. The idea, depending on the convention adopted, is either to 
get or avoid a match. In the computer version of the game, which I present here, the computer attempts to avoid a match 
with the human player. So, for instance, if the computer concludes, as it were, that the person is likely to choose tails, the 
computer chooses heads, in order to avoid a match. The computer's programmed goal is to win more often than it loses. 
Up to this point, it sounds merely like a game of rank chance. It becomes more interesting, however, when the computer 
is programmed to keep a record of how the human chooses. The computer can then be informed that there will be 
enough of a pattern to the choices made by the person that—in the longer term—"learning" from the pattern will enable 
it to win more often than it loses.

Consider an example of the program running. I wrote the program with three options: a repeated pattern that would 
presumably result in more "learning"; a machine-generated random pattern that should be resistant to learning; and last, a 
user-entered string of 51 characters that likely would have a pattern amenable to learning but not one that would assist 
the computer as much as the repeated pattern. In the
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following example run, the user selects the predictable, or third, option.

Please indicate the kind of string to generate:

1) predictable pattern: THTHHTHHHTHHHHTHHHHHT

2) machine-generated random pattern

3) user-input pattern of 51 characters

Please enter choice: l, 2, or 3:3

Please enter at least 51 characters:

THTHHHTTHTHTHTHHTHTTTTHHHTTHTTHTHTTHHHTTTHHTT-
TTHHHTTTHTHTHTTHTTHTHTTTHHTTTHHTTHT

Computer Wins: 5 Person Wins: 5 Percent: 50.0000

Computer Wins: 10 Person Wins: 10 Percent: 50.0000

Computer Wins: 14 Person Wins: 16 Percent: 46.6667

Computer Wins: 19 Person Wins: 21 Percent: 47.5000

Computer Wins: 26 Person Wins: 24 Percent: 52.0000

Computer Wins: 41 Person Wins: 29 Percent: 58.5714

Computer Wins: 62 Person Wins: 38 Percent: 62.0000

Computer Wins: 70 Person Wins: 40 Percent: 63.6364

Computer Wins: 75 Person Wins: 45 Percent: 62.5000

Computer Wins: 84 Person Wins: 46 Percent: 64.6154

Computer Wins: 88 Person Wins: 52 Percent: 62.8571

Computer Wins: 95 Person Wins: 55 Percent: 63.3333

Computer Wins: 103 Person Wins: 57 Percent: 64.3750

Computer Wins: 109 Person Wins: 61 Percent: 64.1176

Computer Wins: 117 Person Wins: 63 Percent: 65.0000



Computer Wins: 122 Person Wins: 68 Percent: 64.2105

Computer Wins: 129 Person Wins: 71 Percent: 64.5000

Computer Wins: 138 Person Wins: 72 Percent: 65.7143

Computer Wins: 144 Person Wins: 76 Percent: 65.4545

Computer Wins: 151 Person Wins: 79 Percent: 65.6522

Computer Wins: 157 Person Wins: 83 Percent: 65.4167

Computer Wins: 163 Person Wins: 87 Percent: 65.2000

The series of tosses used for this learning experiment was:

THTHHHTTHTHTHTHHTHTTTTHHHTTHTTHTHTTHHHTTTHHTTTTHHHTTHTHHHTTHTHTHTHHTHTTT- 
THHHTTHTTHHTHTTHH-

(Table continued on next page)
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(Table continued from previous page)

HTTTHHTTTTHHHTTHTHHHTTHTHTHTHHTHTTTTHHHTTHTTHTHTTHHHTTTHHTTTTHHHTT-
HTHHHTTHTHTHTHHTHTTTTHHHTTHTTHTHTTHHHTTTHHTTTTHHHTTHTHHHTTHTHTHTHH-
THTTTTHHHTTHTTHTHTTHHHTTTHHTTTTHHHT

Here are the learning tables:
 

Table Number of Heads Number of Tails

HHHH 0 0

HHHT 14 8

HHTH 0 5

HHTT 5 19

HTHH 5 5

HTHT 10 10



HTTH 19 5

HTTT 15 0

THHH 0 19

THHT 0 10

THTH 15 10

THTT 5 10

TTHH 0 20

TTHT 9 10

TTTH 10 5

TTTT 10 0

After ten rounds of play, with little record to go on, the computer resorts to random guessing, with the predictable result 
of a standoff in terms of wins and losses. As play progresses, however, the computer gets better at the game. For 
example, after round 20, with a record of 10 and 10, the win/loss percentage is still a desultory .500. Between round 20 
and round 60, when the record is 21 wins and 19 losses (.525), and rounds 190 and 240, when the record is 35 wins and 
15 losses (.700), there is significant progress in terms of the win/loss percentage. Major league baseball managers, to cite 
a prosaic parallel, would be ecstatic over such an improvement in their teams during the "September stretch" preceding 
the playoffs. To claim that a baseball team that had improved that much was "learning to play the game" would scarcely 
get a rebuttal.
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The pressing philosophic question is the significance of the improvement and what kinds of characterizations are 
warranted. If Herbert Simon's (1983) definition of learning is pressed into service, then it looks as though the Coin Toss 
program learns:

Learning denotes changes in the system that are adaptive in the sense that they enable the system to do the same task or tasks 
drawn from the same population more efficiently and more effectively the next time.

As the play progresses in the Coin Toss game, there is adaptation, so that the machine performs more effectively. So it 
could be argued, using Simon's definition, that there is a measure of learning that takes place. Morris Firebaugh (1988) 
distinguishes a number of different levels of learning, from learning by rote to learning by induction, with learning by 
deduction listed as third of the five levels. He suggests that, in learning by deduction, "the learner draws deductive 
inferences from the knowledge and reformulates it in the form of useful conclusions which preserve the information 
content of the original data" (p. 586).



The principal mechanism of the Coin Toss program is a small deductive structure, an if/then/else statement, which 
makes deductions but it does so based on the programmatic assumption that past patterns will persist into the next round 
of play, so that there is a mix of induction and deduction in the program. As a result, it appears that the program satisfies 
several of Firebaugh's categories at once and, to the extent that his taxonomy has grasped some of the aspects of 
learning, it follows that this little program does something reasonably like learning.

Indeed, the heart of the Coin Toss program's inference engine, to invoke the tendentious language often used in AI 
contexts for a moment, is not unimpressive:

if length(person_string) < 4 then
   computer_choice {not enough information — call a separate procedure to guess}
else {is enough information to guess intelligently}
   begin
    if number_heads[index] > number__tails[index] then
       computer-guess := 'T' {guess opposite}
    else if number_tails[index] > number_heads[index] then
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     computer_guess : = 'H'
  else computer_choice; {do random guess}
  :
end; {else}

There are two conditions on which the computer simply guesses: when the game string is less than four characters, so 
there is no information in the table on which to base an informed guess, and when the number of heads and tails for a 
given four-character string is equal—in which case a random guess is all the database will support. Otherwise, it uses the 
table, assisted by the implicit assumption that past patterns will hold in the current round, implemented in an if/then/else 
structure, to draw inferences about likely behavior on the part of the person.

But it should be remembered that the moderately complicated if/then/else structure is cashed out at compilation time for 
the simple algorithmic structures we saw earlier, expressed abstractly as sequence, selection, and repetition. Or to get 
closer still to what happens in the machine, the Pascal program is a high level abstraction for a long series of machine 
level operations such as: move the contents of location 5 to register A, compare the contents of A with B to see which is 
larger, and so on. The computer is still trafficking in bit manipulation, with bits stored in a vast number of 
epistemologically passive storage locations. "Dynamic" data structures can be used, the algorithmic "recipe for 
computation" can employ the most advanced techniques, such as AI's favored recursion, but the operations at the 
machine level remain just as simple. The pivotal question is whether such simple operations can simulate phenomena as 
intricate as human intelligence in such a way that the simulation significantly becomes that which it simulates.

To begin tackling this complicated question, I need a distinction that I have said is central in this essay. The Coin Toss 
game program supports what I call epistemologically simple learning, which I distinguish from epistemologically 
complex learning. A number of authors distinguish between two fundamentally different kinds of learning. For example, 
Forsyth and Rada (1986) distinguish between knowledge-sparse and knowledge-rich learning. The former are those 
situations "which take little advantage of the complexity in knowledge"; the latter, by contrast, "show many facets to 
representation and reasoning." Fischler and Firschein (1987) contrast autonomous learning with non-autonomous
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learning. Most striking about the former, they argue, is the ability to recognize one situation or problem as similar to 
another; most typical of the latter is that supplied information assists the learner to solve a task more quickly or 
effectively.

Both sets of authors seem to be on to something but, unfortunately, neither set offers a sustained discussion of the 
distinctions they offer. There's a fundamental distinction to be drawn but, as I see it, there is a better way to do it. The 
difference between epistemologically simple and epistemologically complex (I'll sometimes use "ES learning" to 
designate the former and "EC learning" for the latter) turns on limitations inherent in storage-based processing systems, 
particularly as contrasted with memory-based biological systems. My contention is not that storage-based processing 
systems are not capable of EC learning, in principle, although that may turn out to be the case. At this point, that is a 
stronger claim than I wish to defend. My more modest claim is that, barring a solution to the frame problem, the 
evidence favors the conclusion that they are not capable of EC learning.

Consider the learning tables in the Coin Toss game simulation. Each time a new piece of data is encountered on the 
game string, an H or a T, the learning table is updated. As the table accumulates information, the computer learns in an 
epistemologically simple sense. To be sure, the computer's performance improves, but only in a drastically constrained 
domain, namely, the Coin Toss game. A relatively simple look-up table, linked to a set of production rules, enables the 
computer to perform in a significant—yet still epistemologically simple—way. Specifically, there is no larger cognitive 
system that integrates the learning, distilling the implications of the learning for the rest of something like a set of 
cognitive beliefs.

In epistemologically complex learning, on the other hand, learning involves just this kind of system-wide revision and 
integration, given new information or experience. I will discuss Howard Margolis' work in greater detail in Chapter 5, 
but his suggestion that all of biological cognition is based on pattern-recognition and not computation is relevant in this 
sense: EC learning involves whole system revision and change of the sort one would expect if Margolis is something like 
right. The web of belief, to invoke Quine and Ullian's term (1978), is dynamic and directly sensitive to belief revisions 
that occur to any part of the web. EC learning is memory based rather than storage based; this
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means that beliefs are not compartmentalized in storage cells or identifiable with specific production rules; in a profound 
sense, like a holograph, to grab, as it were, a part of a memory-based system is to grab a microcosm of the whole. 
Fischler and Firschein (1987) point out:

except for very short-term sensory storage, the memory function is a complex activity that involves distinct modes of information 
partitioning, selection and abstraction. It has all the attributes of perception, and in fact, memory recall can be viewed as a form of 
internal perception. We do not generally retrieve a unique "token" in the exact form in which it was stored, but rather synthesize a 
"mental construct" (possibly from many different brain storage modalities) that is relevant to some purpose or ongoing process. (p. 
37)

If human learning is about the modification of memory, which is a kind of internal perception, then learning is the 
modification of how we perceive the world. This captures a good deal of what I mean by EC learning. In ES learning, no 
such modification of how the world is perceived takes place.



While there is surely some localization of brain function such that certain brain functions are more tied to certain 
locations than others, we smile at 19th-century maps of various mental functions because they are too specific, too 
localized. Were such maps correct, of course, poststroke therapy would be much less successful today than it often is. 
Were such maps correct, to press the point, we would be more like computers. The limit point of such localization is a 
digital computer that stores binary numbers in sequenced, inert storage locations that are referenced serially under the 
control of an automatically incrementing program counter.

It might be argued that I have it backwards, that, even though there is some distance between brain function and brain 
tissue, there is enormous distance between a program, which is a conceptual/logical structure, and hardware. Programs 
can be loaded many different places in storage; procedures can be rearranged, algorithms can be self-modifying 
(although this is problematic, since any significantly self-modifying program would eventually founder on a 
programmatic version of the frame problem), and so on. That is, brain function is much more localized and tied to 
specific areas of the brain than program is to hardware. But my point is not about the relation of
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software to hardware so much as program to its own constituent parts: programs embody algorithms that happen to be 
executed on a digital computer. The data on which programs operate are functionally, parochially, tied to software 
structures. There is no interaction between data with data, or data with structure, except under epistemologically simple 
software control. There is no true dynamic, parallel interaction of the sort that evidently characterizes the brain.

Epistemologically complex learning is complex epistemologically in at least two major senses. First, in EC learning, it is 
some part of the real world about which something is learned, not a constricted domain or "toy world." The generation 
and maintenance of a model of the real world, I take it as uncontroversial, is complex epistemologically when compared 
to the generation and maintenance of a model of a "toy world" such as the Coin Toss game or even chess. For instance, 
the relations between the individual pieces of data represented in the Coin Toss game are simple; each is an ASCII 
character comprising a string. Operations over the pieces of data are straightforward; the data and operations fully 
represent the game that is modeled.

How much "data" are needed adequately to represent the actual world in a formal system designed to interact with the 
actual world? Not surprisingly, this is one of the perennial problems of AI. Difficulties abound. One major difficulty is 
that, when a person learns something new, this often means that his or her ability to interact with the world is improved 
in some way. In such situations, learning something new improves performance or understanding. By contrast, it often 
happens that adding new data to a computer system—let's let such data acquisition pass for learning for the 
moment—results in performance degradation. Consequently, support for epistemologically complex learning involves 
more than adding more data about the world and even adding structures that can use that data. As we will see when I 
discuss the frame problem, moreover, we don't know how to construct operations over a database or a program/database 
that will enable the system to cope with the complexity of the world over a significant amount of time. It is well known 
that the distinction between "data" and "program" is not a durable one—indeed, since programs and data are similarly 
stored in storage locations, the computer has to be instructed which bit strings are data and which are instructions. In 
terms of the history of programming languages, the movement towards "very high level" languages such as PROLOG
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embodies the attempt to eliminate any distinction between data and program. The result I draw from these considerations 
is that epistemologically complex learning differs in kind from epistemologically simple learning.

Second, it is complex epistemologically in the sense that it involves the task of generating and revising a large 
representational system. I will spend much more time later detailing some of the ramifications of the fact that, in 
modeling the actual world, epistemological complexity is encountered. That which is represented is complex, and so is 
that which does the representing.

I don't wish to suggest that epistemologically simple programs can be neither algorithmically complex nor large in terms 
of assembled size. Algorithmic complexity generally is increasing as programs get larger (although, of course, it is not 
simply the fact that they are getting larger which entails that they are becoming more algorithmically complex) in 
programming tasks as epistemologically simple as page composition software and operating systems. Assuming for a 
moment that it is possible to support humanlike intelligence on a digital computer, it might even be that some 
epistemologically simple programming turns out to be larger, in terms of number of lines of assembled code, than 
programming that supports humanlike intelligence. It is not algorithmic complexity or the size of programs, per se, that 
distinguishes the epistemologically simple from the epistemologically complex. Rather, the distinction turns on whether 
the programming and hardware are capable of supporting intelligence that, positively, is capable of representing the 
world in an adequate way and supports more or less intelligent real-time interaction with the world and, negatively, 
doesn't founder on the frame problem.

Moreover, I don't wish to suggest that there is no overlap between epistemologically simple learning and 
epistemologically complex learning. For example, epistemologically complex learning might well make use of 
epistemologically simple procedures as subroutines. In fact, perhaps most of whatever it is that comprises EC learning 
capacity is itself capable only of epistemologically simple learning. I take these to be open, empirical questions that my 
distinction need not, at this point in the essay, address.

There appears to be no way at present, however, to extend the programming techniques that support ES learning so that 
they support EC learning. EC learning differs from ES learning qualitatively, not simply quantitatively. My suspicion is 
that adult persons still know
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more facts about the world than computers do; however, I take it as an empirical question whether current computers can 
recall more ''facts" than people do. Some writers think they can, some do not. My point is that little turns on this 
quantitative question. ES learning, as I have defined it, is not extendible into EC learning by means of adding prodigious 
quantities of facts or production rules.



It might be objected that we don't know whether we can take computer systems capable currently of epistemologically 
simple learning such as the Coin Toss game and, by extending the techniques we find there, enhancing the techniques, 
increasing the speed, and so on, that we might encounter an emergent property much as we do in biological systems. In 
some respects, for example, there is striking functional dissimilarity, presumably, in terms of mental capacities, between 
the Adapis, of the lemur family, which the theory of evolution takes as our distant ancestor, and Homo sapiens. Yet, the 
physical dissimilarities seem to be dissimilarities of degree, not kind; the brains of the two species have a good deal in 
common physically. According to some interpreters of the theory of evolution, such as Margolis (see my discussion in 
Chapter 5), small genetic and structural differences, under selective pressures, have given rise to stunning functional 
differences. If we can understand the rich mental life of human beings as an emergent property in natural history, which 
is supported by functional differentiation over largely conserved physical structure, so the objection would go, we might 
similarly expect that epistemologically complex learning might emerge when we arrange programs and data correctly, 
and get enough of it focused in just the right way for the task. Evolution took thousands of millions of years, it is often 
pointed out; give computer science a few more before drawing such strong conclusions.

I have no telling rebuttal to this variation on the classic "give us a few more years" objection, but I claim that the 
evidence currently does not favor such a view. Specifically, and I will offer a more developed argument later, the frame 
problem counts decisively against the hope that programs and hardware supporting 'epistemologically simple learning 
can be extended (faster and more CPUs, bigger programs, more efficient algorithms, better look-up mechanisms, etc.) 
such that support for epistemologically complex learning emerges. It is the frame problem that demarcates 
epistemologically simple learning from epistemologically complex learning, and it is the evident intractability of the 
frame problem that makes it difficult to imagine how current programming and hardware can be improved to solve the 
problem.
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Chapter 3—
Computer Simulation and User Illusions

During the course of teaching computer science for a number of years, I have found that students have 
difficulty fully grasping that programming involves mapping the problems we want solved onto the 
resources of a computer. Computers don't intrinsically know anything, of course, about interest rates, 
derivatives, or thunderstorms, but we can map solutions to such problem classes onto the data structures 
and instruction sets of computers, and, assuming the programming gets the mapping right, computers 
can then solve problems that belong to those problem classes. Constructing the map successfully means 
reaching an understanding of the problem class, the resources available in the computing environment, 
and how the former can be functionally defined in terms of the latter.

Some problems are computationally irreducible; that is to say, no computationally definable map can be 
constructed to solve them directly. As a result, it is necessary to attack them indirectly by means of 
simulations. For example, it is known (see Toffoli & Margolus, 1988) that cellular automata can 
simulate any possible physical-system. Such simulations, however, raise some particularly slippery 
philosophical issues. For example, since a simulation is designed to get us to see what (with arguably 
few exceptions) is literally not there, what kinds of philosophical caveats are in order when we 
characterize the properties of such simulations? In other words, in what sense does a simulation capture 
the properties of the system it is simulating? Additionally,
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when the behavior of a simulation, for the purposes at hand, becomes difficult to distinguish from the 
behavior of the system being simulated, what, if anything, justifies a distinction between the two—at 
what point does a steadily improving simulation become a functional duplication?



In this chapter, I would like to explore some of what it means for a digital computer to simulate a natural 
phenomenon. This chapter will look at some common simulations and attempt to understand why they 
are effective. I will make some comments about simulation in general and advance some philosophical 
cautions about characterizing the "user illusion" (Kay, 1984) that defines our use of a simulation. I hope 
that one additional distinction I will develop, namely, that between I/O descriptions and process 
descriptions, will help illumine aspects of what kinds of inferences we can justifiably draw about 
computer processes, given certain kinds of simulation I/O. The goal is to begin developing the 
philosophic resources needed to address questions associated with the Turing test. More concretely, the 
distinction should help in determining what kinds of process descriptions are warranted by I/O 
evaluations such as "GreatTalker 5.1 is able to converse about a number of subjects in the kinds of ways 
we would expect a well-informed, native speaker of the language to converse ."

The Computer as Simulation Machine

Figure 3-1 illustrates convincingly, I think, that the skilled manipulation of binary strings can generate 
some extraordinary simulations. In Figure 3-1's Graphic 1, for example, we see the binary information 
that encodes the image in Graphic 2- which is to say that images can be encoded by means of ordering 
bits on a string, using a computer program. While the image in Graphic 2 does not seem obviously to be 
part of a recognizable image, with some effort, it becomes apparent that it is a simulation of the lower 
center part of Graphic 4. All four graphics are simulations, to be sure, but Graphic 2 is a simulation of 
Graphic 4 because it is a scaled portion of it —each pixel in Graphic 2 is expanded to a 7 × 7 pixel grid.

In Graphic 3, which is a scaled simulation of the extreme lower right of Graphic 4, a distinctive property 
emerges, namely, three-dimensionality. The short lesson seems to be that, if a computer gets the bits 
ordered just so, the image stimulates us visually in such a way
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Figure 3-1.
Three Dimensional Image as Information

that we perceive a three-dimensional image. In other words, skilled manipulation of the bits is capable of 
generating in certain kinds of perceivers an experience that one might not expect bit manipulation to be 
capable of producing. Graphic 4 gives us the complete three-dimensional image. While it would require 
a long string of bits, many times longer than the one we see in Graphic 1, Graphic 4 is encoded as one 
more string of bits in the computer storage. Manipulated the correct way, by a computer program and 
some reasonably competent "mouse-strokes," the bit string, or stream, as the hackers like to put it, yields 
a stimulating three-dimensional image.

Phenomena of the most diverse sorts can be simulated on a computer. The reason is that one way to 
understand a computer is that it is a simulation machine. People sometimes think of computers as large 
calculators, as giant electronic machines woodenly grinding out answers. But this view is shortsighted. 
Early in computing history, we used a variety of nonnumerical techniques to accomplish mathematical 
tasks, such as compiling the statistics for the national census. But the tables are turning. Increasingly, we 
use sophisticated mathematical techniques to accomplish nonnumerical tasks.

What's most remarkable about computers is that, from a blindingly
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fast ability to "crunch numbers" at their most basic level, a stunning ability to do a host of things 
emerges at the level at which we usually interact with them. Even in the 19th century, Augusta Ada 
anticipated that the computer would be the first general purpose machine in which the program 
determines what specific machine it will be at any particular moment. As we saw in the last chapter, the 
power of the computer lies in the fact that the simple can generate the complex, provided there are a 
useful representation, enough time, and the right program to manipulate the representation in the 
requisite way.

It turns out that a machine which can add and subtract numbers, which can perform logical operations 
such as ANDing and ORing, can process ideas and manipulate images and, therefore, can also simulate 
many kinds of phenomena. As Alan Kay (1984, p. 59) observes, the computer is a dynamic metamedium 
that can simulate any other medium:

The protean nature of the computer is such that it can act like a machine or like a language to be shaped and 
exploited. It is a medium that can dynamically simulate the details of any other medium, including media that 
cannot exist physically. . .. It is the first metamedium, and as such it has degrees of freedom for representation 
and expression never before encountered and as yet barely investigated.

The freedom of representation and expression is signal. A medium which can dynamically simulate the 
details of any other medium is a medium made to order for analytical activity. For every analysis of a 
problem is at once, at some level or levels deep, a simulation of it—a reproduction, an abstraction, a 
shorthand description of it, so that we can attend to salient mechanisms, pertinent causal relationships 
and so on in our attempt to understand and predict.

Extending Kay's term, I want to characterize the computer as an analytical metamedium. I call it this 
since the simulation capacity of the computer lends itself so well to conceptual analysis. The computer's 
simulation of the phenomena we find interesting, if the simulation takes robust advantage of the 
computer's capacities, occurs at speeds that allow us to attend to the content of the problem's analysis 
rather than the mechanisms of its representation. In analyzing problems, the human mind often works in 
flashes and stops; it surges with insight and gets bogged down in quagmires. Since a computer can often
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simulate faster than we can imagine, it doesn't get in the way when we are "on a roll." And when we get 
bogged down in the quagmires, it helps us break free by challenging us with alternate construals and 
what if? games.

Computers are theaters of the mind in which the user plays a significant part in the production on the 
screen. They enable the theater we create on screen, in Alan Kay's provocative term, the "user illusion," 
which mirrors what we have in mind as we attempt to conceptualize and analyze the problems we find 
interesting. Turkle (1984, p. 14) even suggests that the computer is "like a Rorschach inkblot test," a 
characterization nicely compatible with Winograd and Flores's characterizations of perception that I 
discuss later in the chapter.

A computer simulates something when it represents, in one or more respects, that thing's behavior or 
characteristics. The representation need not be exact, nor must it be done at the same speed as the 
original. The most commonly used simulations on computers today are spreadsheets and word 
processors. While we might not usually think of a word processing document on a computer screen as a 
simulation, a moment's reflection reveals that is what it is. As illustrated in Figure 3-2, a word processor 
simulates how documents would appear if printed. The tiny picture elements on screen, called "pixels," 
are used to simulate both the text of the working document and the word processing environment that 
allows the user to manipulate the text.

Figure 3-2.
A Word Processor Simulated How a Page Would Appear If Printed. Since the screen is

 made of thousands of tiny picture elements or pixels, text and graphics on a computer
 screen are comprised of pixels which are arranged in the necessary manner. Since the

 number of pixels per inch is limited, in this case 72 per inch, the resolution or clarity of 
the text image is not as good as that which is printed by some printers which print at 300 dpi.
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The low resolution of the graphic in Figure 3-2, particularly when compared with the rest of the page, 
illustrates that characters on a computer screen are comprised of tiny pixels. What is on screen looks 
much like a part of a page from this essay but closer inspection reveals that it is a clever simulation of a 
page, which uses thousands of tiny pixels to simulate a sheet of paper with typing on it (the acronym is 
WYSIWYG—or "What You See Is What You Get"). The simulation is powerful because we can 
manipulate the simulated document in a wide variety of ways at computer speeds. We can try different 
approaches, alternate wordings, and variant expressions with only a modest investment of time. As a 
result, the user can attend more to the analysis and expression of words and ideas and less to the 
impeding mechanics of the medium.

By virtue of being an analytical metamedium, the computer can serve as a word processor one moment, 
an art historian illustrating Florentine linear perspective the next, a biologist illustrating the double helix 
structure of DNA the next. In each case, the analytical freedom that characterizes the composition of 
words attends the illustration of art and the manipulation of biological structure. As demonstrated in 
Figure 3-3, which is a three-dimensional exploration of Uccello's chalice study that I developed using a 
3-D graphics package, a computer is an analytical metamedium that amplifies our understanding and 
enables us to make connections, to see things that we almost certainly would miss otherwise. We can 
look at things from different angles, in varying lights, against different backgrounds, and thereby 
generate new insight into even what is very old. As Figure 3-3 illustrates, a simulation such as a 
graphical representation of a medieval chalice can be quite a convincing simulation, but none of us 
supposes, since we can bring to bear the insight that pixels and gold have different properties, that the 
chalice can actually hold wine. It gets more difficult when the simulation is something as difficult to 
characterize adequately as thinking.

The simulation of physical systems has usually been done on conventional serial computers with partial 
differential equations. In the future, by means of using massively parallel systems, simulations will 
become more sophisticated and realistic. Massively parallel systems are now beginning to be used to 
simulate complex adaptive systems that are computationally irreducible. The striking output from serial-
based cellular automata, which can simulate evolving systems
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Figure 3-3.
I did this simulation of Paolo Uccello's (1397-1475) perspective analysis of a chalice using 
a three-dimensional graphics package. I owe the idea of attempting to do such a simulation

 study to Jacob Bronowski (1973). It illustrates both the power of computer simulation
 and some of the history of science this century. As this series illustrates, the principal 

paradigm in 'the physical sciences is shifting from mass/energy towards information/program. 
In the extreme left, the chalice appears substantial; the structural, informational component

 is hidden. In the middle left, the structural component has emerged but still seems less 
important than the matter it informs. In the middle right, the structural has submerged the
 material. In the extreme right, we view the chalice from above; structure has triumphed 

completely and the dominant motif is geometrical symmetry. I should emphasize that these 
are not four different graphics but the same graphic viewed from three different angles

 and two distinct lighting backdrops. As an analytical metamedium, the digital computer
 excels at this sort of simulation.

whose outcomes cannot be computed directly, hints at some of what will be possible in the future on 
massively parallel computers.

So far in this chapter I have been extolling the virtues of computer simulation. However, as opponents of 
the Turing test have emphasized, there is cause for concern in terms of how to understand what appears 
on screen in a skilled simulation. WYSIWYG is achievable in word processors; the worry in terms of 
natural language simulations is whether we won't get what we think we are seeing. That is, we will 
falsely conclude that we see something when, in fact, it is not there. After making several remarks about 
perception, I'd like to consider the graphics in Figure 3-1 one more time.

The classical assumption in Western tradition, at least, has been that, for the person not hallucinating or 
otherwise experiencing visual impairment, there is something approximating a one-to-one 
correspondence between optic nerve activity and retinal stimulation. Classical Western empiricists such 
as Locke and Hume emphasized and extended what was to become the dominant empiricist outlook in 
English-speaking countries: all knowledge grows out of what is
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presented in sensory experience. Some evolutionary studies in the last 30 years, however, have 
concluded that the survival needs of the perceiving organism play a decisive role in the construction of 
that which is perceived. One of the things that Fischler and Firschein (1987) remind us of is that vision 
developed to support survival and that the brain developed to support vision. The obvious inference is 
that the brain developed to support survival. For example, visual acuity at some distance would only be 
useful to an organism that could develop a course of action, by some kind of planning or instinctive 
behavior richer than limited tropisms, that would assist its survival needs. This would explain why 
grasshoppers, for instance, are evidently quite near-sighted. As Fischler and Firschein wrote, "it would 
appear that physical, perceptual, and intellectual competence are interdependent and must evolve as a 
coherent whole, rather than as independent entities" (1987, p. 210).

These sorts of considerations convince me that we have not taken selective pressures seriously enough 
in attempting to understand the conditions necessary for the generation of intelligence. Evidently 
agreeing, Winograd and Flores (1986, p. 42) argued that "Perception . . . must be studied from the inside 
rather than the outside— looking at properties of the nervous system as a generator of phenomena, 
rather than as a filter on the mapping of reality." Winograd and Flores's claim may be a tad strong, 
shaped as it is by a Continental philosophical agenda, but it serves as a corrective to the 
epistemologically naive assumption, partly generated by and embodied in Western empiricism, that we 
can simply see what is there. But I believe we should accept at least this much: perception is a biological 
phenomenon as well as an object of epistemological investigation and the plausible story some 
evolutionists tell us is that it is shaped significantly by the survival needs of the perceiver: what we see 
is conditioned in part by what we need to find. Appealing to the work of the Chilean biologist Maturana, 
they add the following considerations:

Maturana argues that all activity of the nervous system is best understood in this way. The focus should be on 
the interactions within the system as a whole, not on the structure of the perturbations. The perturbations do not 
determine what happens in the nervous system, but merely trigger changes of state. It is the structure of the 
perturbed system that determines, or better, specifies what structural configurations of the medium can perturb 
it. (pp. 43-44)
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To cite the obvious, visible light constitutes only about an octave of the "keyboard" of the 
electromagnetic spectrum. In other words, I am physically able to attend to only a small part of the 
electromagnetic spectrum that floods this room. I cannot see, unaided, the FM radio waves that I believe 
surround me at this moment, because the "structure of the perturbed system" (me) is not directly 
amenable to FM radio-wave perturbation. Even the best researchers, to cite a different example, have a 
propensity to see that which confirms their theories and to ignore putatively disconfirming evidence. In 
some cases, they even see, sometimes fraudulently but sometimes not, what others are not able to see, 
and we conclude that their experimental results have not been replicated.

It is almost a commonplace now that we do not visually perceive with our eyes. The eyes act as sensors 
and pass along sensory data to the visual cortex of the brain, which is our principal organ of vision. The 
entire brain is charged with the task of constructing an interpretation of the screened data. Fischler and 
Firschein (1987) point out that primitive eyes, at "lower" levels in the evolutionary scale, are more like 
"goal-oriented detectors" than cameras. Memory and "hard-wired" pattern-recognition processes likely 
have as much bearing on what is perceived as what is sensed by the eyes.

In Graphic 4 of Figure 3-1, we see an image that we interpret three-dimensionally. By contrast, the 
image in Graphic 2 seems flat and not at all three-dimensional. The arrangement of the dots in Graphic 
4, at approximately 300 dots per inch resolution, stimulates the human brain in such a way that we 
attribute three-dimensionality to Graphic 4 but not Graphic 2. I would guess that lower animals and 
persons with certain kinds of parieto-occipital damage would not perceive three dimensions upon 
viewing Graphic 2.

The point I wish to make is that simulations are designed to get us to see or experience something that is 
literally not there. As Searle (1984) points out, no one imagines that a simulation of a storm will drench 
the persons witnessing the simulated downpour. Simulation is designed to present a manipulatable 
image, portrayal, or representation, so that we can manipulate it and hopefully learn more about the 
phenomenon simulated. Here is the larger philosophic point: because the computer is so ideally suited to 
such simulations, we have to be careful not to mistake a computer simulation for that which is 
simulated. It takes some philosophical discipline, in short, to resist
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specious blurrings of differences between simulations and the phenomena they simulate.

It should particularly be noticed that we have a proclivity to see, at least in some senses, what is not 
there and to advance ascriptions about a simulation that, upon closer inspection, will often prove 
difficult to justify. As Hume argued, we are given to making inferences based more upon habituation 
than any relationships necessarily intrinsic to the phenomena we are considering. To the point, we 
habitually ascribe intelligence to a skilled conversationalist. It could be argued that to conclude that a 
machine that passes the Turing test is thinking is to make a mistake parallel to the mistake of concluding 
that serpentine three-dimensionality is one of Graphic 4's intrinsic properties. The graphical moral is that 
we have to exercise even more philosophic caution than usual when interpreting computer simulations. 
It is because the computer is so deft at generating ''user illusions" that we have to be particularly careful 
about the ascriptions we make about what is "there."

I/O Descriptions and Process Descriptions/Ascriptions

This essay has looked at several kinds of simulation. The first, namely, AugsAsm, simulates a primitive 
assembler. Such a primitive assembler is no conceptual puzzler, since the formal operations were 
defined exhaustively by the table shown. By contrast, in the Coin Toss game, there is an attempt to 
simulate a much more formidable phenomenon, namely, learning. To state the obvious, learning is a 
much more involved, problematic phenomenon to simulate, both because it presumably has many 
aspects to it and because it is much less well understood. The contrasting levels of difficulty of these two 
problem domains suggest to me that it would be helpful to draw a distinction between what I will call 
I/O-simulation and P-simulation or, as I will sometimes put it, since a primary interest of this essay will 
be what kinds of descriptions of I/O-simulations warrant which kinds of descriptions of the processes 
supporting the input/output, between I/O descriptions and process descriptions or ascriptions.

In I/O-simulation (IOS), what we attempt to simulate is output as compared to input, relative to the 
system being simulated, in the context in which the simulation is taking place. For example, all of the 
chess programs with which I am familiar should be described as I/O-simulations. There is little or no 
effort to simulate human chess

  



Page 50

playing in terms of the process that people presumably use to play chess. While we don't know a great 
deal about how people play games like chess, it seems obvious that they don't play it the way that 
current chess programs play it. (My guess is that a significant component of human chess playing, as in 
any game, is deeply pattern-recognition based, rather than rule-based.) As a result, the level of 
simulation is only input/output deep. In fact, much of what currently passes as "AI" is only IOS, and, to 
be sure, often such I/O-simulation is perfectly suitable for the task at hand.

In the Coin Toss program discussed in the previous chapter, to choose the obvious example, there is no 
attempt to write the program so that it simulates the processes that people presumably use to play the 
game. The programmatic mechanisms are designed to create effective output, given the input of the 
game string. If the mechanisms are such that the term learning should be applied to how they work, at 
least on some views of what constitutes "learning," it is on the basis of the relation of the output to the 
input, and the fact that the programmatic mechanisms produce improvement in the play. There is no 
attempt to simulate the processes supporting how people play the game.

In process or P-simulation, on the other hand, not only do we attempt to simulate output as compared to 
input, in a way that parallels that which is being simulated, we attempt to simulate the process, to some 
level of depth, by which the output is gotten from the input as well, relative to the system being 
simulated. For example, if we were to write chess-playing programs with an eye to simulating the way 
human chess champions play, this would count as an attempt at P-simulation. We could distinguish a 
number of levels of P-simulation: a less deep level of chess P-simulation might simply incorporate a 
number of rules of thumb that specific chess players reputedly employ. A much deeper P-simulation 
might attempt to simulate the way that one person plays chess, taking into account his or her favored 
strategies, personal idiosyncrasies, perhaps even taking into account this or that psychological or 
biological profile of the person. The point is that P-simulation can be taken to many different levels 
deep. The more deeply a simulation emulates that which is simulated, obviously, the more must be 
known about the system which is simulated.

In the case of the AugsAsm computer, the simulation formally captures the processes involved—there is 
nothing left that might be investigated and programmed. Computer simulations of other com-

  



Page 51

puters, which are admittedly complex, are nevertheless comparatively straightforward since there is no 
in-principle or in-practice (for the skilled) inaccessibility in that being simulated. While the limits of 
what may be computed remain rather poorly understood, there is no in-principle impairment to 
understanding what a computer does, since Turing machines exhaustively define computability.

As a corollary, it follows that, if little is known about a system that we want to simulate, any P-
simulation will necessarily be quite shallow or may not be possible at all; in such a case we may be 
limited to an I/O simulation. The obvious example is simulation of human mentality, especially 
intelligence. The larger claim of this essay is that our poor understanding of human intelligence has 
limitative consequences for our attempt to construct machines that attempt significantly to simulate or 
duplicate the processes that generate intelligence.

It may be, as is often the case in research in artificial intelligence, that what we are interested in is 
descriptions of input/output simulations and what we can infer about the processes that are used to 
generate the simulation. In this case, the processes supporting the input/output simulation are probably 
not best considered simulations themselves but are simply the mechanisms used to support the 
simulation. As a result, to be more accurate, it is best to refer to characterizations of the processes that 
support the I/O simulation as "process descriptions." In terms of the Coin Toss game, for example, a 
string array was used in a look-up table to support the simulated playing of the game. As the game 
progressed, what was visible on screen was a simulation of game playing. Talk of "arrays" and ''look-up 
tables" is a process description. In building a program to simulate something, we think in terms of what 
processes will be needed to support what simulations. But occasionally, we may want to go the reverse 
direction and attempt to determine if the simulation, along with some general computer science 
knowledge and some related philosophical considerations, would justify characterizations about the 
processes supporting the simulation—without specific knowledge of the programming supporting the 
simulation. Namely, can we justifiably make some process ascriptions on the basis—either principally 
or exclusively—of I/O descriptions? It is the defensibility of this kind of I/O-based inferences about 
supporting process, when applied to the relationship of thinking and mature conversational ability, that 
will occupy much of the rest of this essay.
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Chapter 4—
The Dreyfus Critique and the Frame Problem

In this chapter, I attempt three tasks. First, I undertake an exposition of Hubert Dreyfus's critique of 
artificial intelligence; second, I attempt to reach an understanding of the frame problem; and, last, and 
somewhat less importantly, I try to distill some of the relationship of the Dreyfus critique with the frame 
problem.1 It is my claim that some of the Dreyfus critique historically anticipated current discussions of 
the frame problem, and that the frame problem, because it lends itself to a philosophically clearer 
analysis than much of the Dreyfus critique of AI, is a good way to articulate some of what Dreyfus 
evidently has been attempting to say for so long. In terms of the principal task of this essay, which is to 
distill some of the implications of the frame problem for the Turing test, a clear understanding of the 
frame problem, of course, is essential.

In terms of the Dreyfus exposition, I will attempt to articulate the Dreyfus claim that AI is predicated on 
a mistaken view of human problem solving and reasoning that is endemic in Western philosophical and 
scientific traditions. Although I will offer occasional kind and critical words about the Dreyfus program, 
my principal goal will not be to assay the Dreyfus critique of AI. Rather, my principal goal in the

1 Unless there is a good reason to do so, I will not distinguish between Hubert and Stuart Dreyfus. As a result, I 
will often use locutions such as "Dreyfus and Dreyfus" or "the Dreyfus critique" to refer to the work of both 
Hubert and Stuart Dreyfus.

  

Page 53

first part of the chapter is an exposition of the critique, particularly as it anticipates the frame problem.

The Dreyfus critique has been widely criticized by both philosophers and cognitive scientists—and, to 
be sure, I find myself agreeing with many of the criticisms. As chronicled in McCorduck (1979), some 
writers have questioned Hubert Dreyfus's philosophic ability; others dismiss his Continental philosophy-
based work as a "ball of fluff," while still others claim that he understands little technical AI and 
therefore doesn't warrant serious rebuttal. As a result, it might be asked why the Dreyfus critique 
warrants investigation in this essay. The answer is that while What Computers Can't Do (1979) is 
showing its age, and while I readily concede that there are numerous problems with its argument, some 
of the points it makes—as illustrated, I believe, by the increasing interest in the frame problem—are 
demonstrating significant staying power. With the publication of Mind Over Machine (1986), which 
Hubert Dreyfus wrote in collaboration with his brother Stuart, and with former AI proponents such as 
Terry Wino-grad (Winograd & Flores, 1986) now offering criticisms of AI that parallel the Dreyfus 
critique, it now seems likely that much of the philosophic criticism of artificial intelligence will consist 



of the "poor substitute" strategy. According to this objection to AI, aside from a preliminary successful 
first step here or there and some occasional, narrowly defined successes, AI will prove to be a poor 
substitute for human intelligence. Winograd and Flores (1986), for example, observe that "Dreyfus and 
Dreyfus, in Mind Over Machine (1986, p. 99), argue along lines very similar to ours that expertise 
cannot be captured in any collection of formal rules."

In terms of the Turing test, AI will not get good enough, according to the poor substitute strategy, that 
we will have to assess the philosophical significance of the claim that an intelligent computer has passed 
the test. In other words, we will need to concern ourselves less with what Haugeland calls the "hollow 
shell" strategy, exemplified perhaps most notably by Searle's "Chinese Room" counterexample, because 
computers will not get good enough to fool us significantly in the first place. Against Searle, Haugeland 
(1981b) argues that the poor substitute strategy "is much more likely to succeed" (pp. 33-34). With this 
type of criticism of AI becoming more widespread, and with Dreyfus offering amplifications of it, as a 
result, I believe that his work warrants a fresh look.
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The Dreyfus exposition is designed to set the stage for the central task of the chapter, which is to reach a 
clear articulation of the frame problem. As I said at the outset, there are two distinct reasons why an 
understanding of the frame problem is essential.

First, reaching a crisp understanding of the frame problem is an effective way to explicate in a clearer 
way what Dreyfus has been claiming for a quarter century. As Dennett (1987, p. 43) remarks, in 
reference to What Computers Can't Do, "Dreyfus sought to show that AI was a fundamentally mistaken 
method for studying the mind, and in fact many of his declared insights into their intrinsic limitations 
can be seen to hover quite systematically in the neighborhood of the frame problem." It is my claim that 
there is a significant relationship between the Dreyfus critique and the frame problem that warrants 
investigation, and that an understanding of the frame problem is not only pivotal in assessing the Turing 
test but is also useful in interpreting the Dreyfus critique.

Second, since the primary goal of this essay is to reach an understanding of the relationship of the frame 
problem to the Turing test, it is obvious that a clarification of the meaning of "the frame problem" is 
necessary. As stated in Chapter 1, I hope to reach an understanding of the frame problem in order to 
determine whether or not its solution is necessarily presupposed by a computer system that (in some 
significant sense) passed the Turing test and, in general, to determine some of the implications of the 
frame problem for the Turing test. This is not to say that I wish to claim that how I define the frame 
problem is the only way it can be defined. Other interpretations are certainly possible and the frame 
problem, on those alternate understandings, would presumably bear different relationships to the Turing 
test.



Another reason to explore the frame problem is the growing interest in it; I'll cite only four of many 
examples in contemporary literature. Fischler and Firschein (1987), for instance, cite the frame problem 
as one of the enduring philosophical questions associated with AI. Winograd and Flores's 
Understanding Computers and Cognition (1986) involves many issues related to the frame problem. 
Flanagan (1991, p. 235) cites it as one of the 10 problems facing AI. Last, and most significant, 
Pylyshyn's (1987) anthology is entirely devoted to the frame problem. As a result, it seems fair to 
conclude that the frame
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problem has achieved the status of an important problem in current philosophical discussions of AI.

1. The Dreyfus Critique

Better than a quarter century ago, Hubert Dreyfus launched his contentious critique of artificial 
intelligence with RAND Corporation's reportedly reluctant publication of "Alchemy and Artificial 
Intelligence." Seven years later, in 1972, a book-length expansion of this paper, What Computers Can't 
Do: A Critique of Artificial Reason (Dreyfus, 1979), was published. A central claim of both the paper 
and the book is that artificial intelligence is predicated on an understanding of human intelligence as rule-
based manipulation of formal constituents that goes back at least to the time of Plato.

Since the Greeks invented logic and geometry, the idea that all reasoning might be reduced to some kind of 
calculation—so that all arguments could be settled once and for all—has fascinated most of the Western 
tradition's most rigorous thinkers. . . The story of artificial intelligence might well begin around 450 B.C. . . 
Socrates is asking Euthyphro for what modern computer theorists would call an "effective procedure," "a set of 
rules which tells us, from moment to moment, precisely how to behave." (1979, p. 67)

Dreyfus disdains what he takes to be the anachronistic attribution of AI claims to Plato by arguing that 
Plato understood the reasoning brain to manipulate its contents in terms of semantically—rather than 
syntactically—based rules, since "His [Plato's] rules presupposed that the person understood the 
meanings of the constitutive terms" (1979, p. 68). As a result, according to Dreyfus, Plato never 
supposed that reasoning is amenable to formalization; meanings play an indispensable role in the 
cognitive manipulations.

Dreyfus cursorily traces what he claims is the inexorable movement in Western tradition towards the 
belief that thought and knowledge are, in principle, completely formalizable. As many others have, he 
observes that Hobbes claimed that "'REASON . . . is nothing but reckoning'" (1979, p. 69). He attributes 
to Leibniz, the inventor of the
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base two number system on which most modern computers are based, the goal of inventing the formal 
language necessary to realize the purportedly long-held Western goal of an unambiguous formal 
language capable of manipulating symbols purely formally, according to a clearly defined set of rules.

After surveying familiar 19th-century figures such as George Boole and Charles Babbage, Dreyfus 
moves the discussion to Turing and the Turing test. Anticipating part of the subsequent discussion in AI, 
Dreyfus argues that "Philosophers may doubt whether merely behavioral similarity could ever give 
adequate ground for the attribution of intelligence, but as a goal for those actually trying to construct 
thinking machines, and as a criterion for critics to use in evaluating their work, Turing's test was just 
what was needed" (p. 73). Over the last 25 years, philosophers have indeed repeatedly questioned 
whether attribution of intelligence is justifiable on the basis of externally observable behavior alone, and 
the Turing test did, in fact, serve as the most important measure for what should count as intelligence for 
many working in AI. Recall that I called the Turing test a "fountainhead" in Chapter 1 for this reason. 
As a result, it seems fair to conclude that Dreyfus presciently anticipated much subsequent AI history.

On the other hand, there are some arguments in What Computers Can't Do that I find unconvincing. 
Among other problems, there is a polemical, sarcastic tone to the Introduction to the original version 
which the older Dreyfus largely avoids in Mind Over Machine. I'll cite just one example. Dreyfus calls 
our attention to the fact that "Of course, no digital computer immediately volunteered or was drafted for 
Turing's game" (p. 73). While such remarks should be evaluated with at least some reference to the 
heated context in which they were written (as chronicled by McCorduck, 1979), the fact remains that 
such comments serve more to inflame passions than enlighten perspectives and, consequently, they 
diminish the book's value.

More seriously, he reaches many of his conclusions with too little justification. For instance, he suggests 
that, "if reason can be programmed into a computer, this will confirm an understanding of man as an 
object, which Western thinkers have been groping toward for two thousand years but which they only 
now have the tools to express" (p. 78). There are several elementary philosophical objections here: for 
example, what are we to understand by reason in this sentence? Reason has many usages and senses, 
and distinguishing carefully between
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them is the philosopher's task. In one (perhaps narrow) sense, computers reason when they take one 
course of action rather than another, given the magnitude of intermediate data. Dreyfus surely means 
more than this, but at least the immediate context doesn't spell out what we are to understand by his use 
of reason. Much the same objection can be lodged about the word confirm in this sentence.

Moreover, he has not spelled out what we are to make of the perplexing notion of "man as object." Two 
possibilities for why he did not spell out the notion come to mind. First, Dreyfus operates largely from a 
Continental philosophic perspective, and perhaps he would claim that such a background provides the 
tacit hermeneutical context for interpreting this passage. If so, since philosophic work in the Continental 
tradition is especially subject to such varying interpretations and assessments, I don't find this possible 
assumption reasonable. Second, he might take the phrase "man as object" to be sufficiently obvious in 
meaning that no special definition is necessary. But I find this even less plausible than the first 
alternative. As a result, we have ill-defined terms playing pivotal roles in a sentence whose claim cannot 
therefore be adequately supported. I take this example to be a typical illustration of Dreyfus at his least 
convincing. Generally speaking, here and there the reader gets glimpses of what he has in mind, but he 
doesn't take adequate time to spell out unclear notions and contentious use of words that are subject to 
different interpretations. He moves too quickly, takes scanty evidence to entail more than it does, and 
takes quick references to prominent philosophers to support disputatious conclusions.

In sum, I take it as established that there are soft spots in What Computers Can't Do. But there is 
something of distinct value here nonetheless. While in the 1960s and even 1970s much of the discussion 
turned on the expected rapid advances of AI, and many essays tackled the thorny issues involved in 
Turing's imitation game, presumably on the assumption that a computer would eventually likely do well 
in the Imitation Game and hence force the big question of whether to attribute intelligence, Dreyfus 
correctly anticipated that progress in AI would be slower than was widely anticipated, and that some 
efforts would come to a dead end after an initial period of well-publicized success. Later, in Mind Over 
Machine, The Drefuses call this the "fallacy of the first successful step": success in the first stages does 
not mean that subsequent efforts will be successful. In other words, there is
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something to be said for the claim that Dreyfus saw a problem in the raft of audacious claims and 
expectations surrounding AI when many others did not: AI has, in fact, progressed more slowly than 
most proponents supposed it would, and, consequently, the prospects of a machine passing the Turing 
test in the near term now appear much lower than many would have guessed 10 and 20 years ago. To put 
it another way, as the years have passed, the poor substitute critique of AI, which was initially espoused 
by Dreyfus and not many others, has come to rival the hollow shell argument as a compelling way to 
criticize AI.

Much more recently remarks published by S. R. Graubard in the Preface to the Daedalus issue (Winter, 
1988) devoted to AI provide at least some vindication for Dreyfus's early objections:

AI is something of a myth. Had the name not existed, certain consequences might have been averted—for 
example, in the early AI community a tendency to exaggerate what might be impending, showing—however 
unwittingly—a kind of hubris that, in retrospect, seems both unbecoming and unnecessary. In suggesting that a 
machine with vast intellectual capability was in the offing and that this new intelligence might quickly be 
attained, these advocates made themselves hostage to critics, who, increasingly aware of the limitations of 
certain of the theories being advanced, insisted on their inadequacies. The critics resented the exaggeration 
implicit in the claims of those who saw only the promise of quick results and the epistemological assumptions 
implicit in the name the field had given itself. (p. V)

It is interesting that this passage shares some themes with the early Dreyfus, yet it was published in 
1988. Conspicuous among such early "critics" would, of course, have been Dreyfus. As a result, I think 
it is fair to conclude that at least some of the objections articulated by the early Dreyfus have found 
wider acceptance than many Dreyfus critics would have supposed in the late 1960s and early 1970s.

Moreover, he correctly surmised that there is an acute problem in the general vicinity of what we now 
call the frame problem. The specific argument that most clearly anticipates the frame problem appears in 
the introduction to the revised edition of What Computers Can't Do, which was published seven years 
after the first edition, in 1979. Here Dreyfus claims that the importance of common sense, of 
background
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knowledge, became increasingly evident in the years following the publication of the first edition. Not 
only common sense, generally understood, but what is to count as relevant, is claimed by Dreyfus 
(1979) to be overlooked in the AI account of intelligence:

Work during the first five years (1967-1972) demonstrated the futility of trying to evade the importance of 
everyday context by creating artificial gamelike contexts preanalyzed in terms of a list of fixed-relevance 
features. More recent work has thus been forced to deal directly with the background of commonsense know-
how which guides our changing sense of what counts as the relevant facts. (p. 56)

As I will attempt to argue, the question of what "counts as the relevant facts" in a changing situation is 
integral to the general frame problem. Of course, Dreyfus is quite correct in reminding us that the move 
from artificial contexts such as game playing, which are examples of microworlds, to the real or 
macroworld context is the move that generates the need for an AI system to have something like 
common sense so that the problem of what is to count as relevant can be solved. Dreyfus appeals to 
Wittgenstein's discussion of rules and rule following to point out that the attempt to base behavior on 
rules has to make a troublesome assumption:

My thesis, which owes a lot to Wittgenstein, is that whenever human behavior is analyzed in terms of rules, 
these rules must always contain a ceteris paribus condition, i.e., they apply "everything else being equal," and 
what "everything else" and "equal" means in any specific situation can never be fully spelled out without a 
regress . . . [since] the ceteris paribus condition points to a background of practices which are the condition of 
the possibility of all rulelike activity. (pp. 56-57)

I believe this is the part of the early Dreyfus critique to which Dennett (1987, p. 43) would point to 
substantiate his claim that "Dreyfus never explicitly mentions the frame problem, but is it perhaps the 
smoking pistol he was looking for but didn't quite know how to describe?" The problem, then, is that we 
have to assume, if we are basing behavior on a rule-governed system, that everything else will be equal; 
but this is an undifferentiated way to point to the general frame problem, as I will describe it below. 
Cashing this out into more concrete terms, a rule-based system such as an AI-based robot, according to 
Dreyfus,
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has to assume that everything else will be equal. For example, if it takes a step up an illuminated flight 
of stairs, it has to assume that this step will not result in the stairway light being switched off—it has to 
assume that things go as they usually do. In this example, "as they usually do" includes not encountering 
a first step of a stairway which is a toggle for the stairway lighting. Generally, as we will see, it is quite 
difficult, perhaps impossible, for a rule-based system to determine what the ceteris paribus clause 
means. This is the part of Dreyfus that I think most clearly anticipates the frame problem.

Dreyfus above acknowledges a debt to Wittgenstein. There is an interesting relation, which I haven't 
adequately assessed, between the frame problem and Wittgenstein's skeptic as developed by Saul Kripke 
(1982) in Wittgenstein on Rules and Private Language. My suspicion is that we can understand Kripke's 
skeptic as pretending that he is a machine that contains the rules and definitions that we attach to 
language, and yet we suppose (erroneously, according to the skeptic) that the rules and definitions are 
adequate to generate answers to questions we ask him. The skeptic points out they are not. The skeptic 
effectively seems to feign a frame problem with respect to language usage.

I should emphasize the point that the earlier work anticipated the later work in Mind Over Machine. As I 
will attempt to substantiate below, one of the primary themes of the later work is the claim that human 
skill acquisition moves from rule-governed knowing-that to intuitive knowing-how. This theme is 
present in What Computers Can't Do, in nascent form:

Generally, in acquiring a skill—in learning to drive, dance or pronounce a foreign language, for example—at 
first we must slowly, awkwardly, and consciously follow the rules. But then there comes a moment when we 
can finally perform automatically. At this point we do not seem to be simply dropping these same rigid rules 
into unconsciousness; rather we seem to have picked up the muscular gestalt which gives our behavior a new 
flexibility and smoothness. (Dreyfus, 1979, pp. 248-249)

This claim, that rule following is pronounced early in skill acquisition but is gradually supplanted by a 
less discrete, more intuitive "gestalt," is articulated in greater detail in Mind Over Machine. The Dreyfus 
claim
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in this later work is that human skill acquisition involves advancing, progressively, from knowing-that to 
knowing-how:

You probably know how to ride a bicycle. Does that mean you can formulate specific rules that would 
successfully teach someone else how to do it? How would you explain the difference between the feeling of 
falling over and the perfectly normal sense of being slightly off balance when turning? . . . No you don't. You 
can ride a bicycle because you possess something called ''know-how," which you acquired from practice and 
sometimes painful experience. The fact that you can't put what you have learned into words means that know-
how is not accessible to you in the form of facts and rules. If it were, we would say that you "know that" certain 
rules produce proficient bicycle riding. (Dreyfus & Dreyfus, 1986, p. 16)

Dreyfus and Dreyfus agree that rule following is necessarily an early ingredient in the skill acquisition 
process but argue that it progressively fades in importance as the practitioner moves from early, novice 
states to later, more expert stages. In support of this argument, a five-stage skill-acquisition scheme is 
advanced.

Before I survey this scheme, however, I would like to identify what I believe is a confusion in their 
discussion of the relation of human to machine intelligence. In the context of their discussion of the five 
stages of skill acquisition, they comment, "Once we adequately appreciate the full development of 
human skilled behavior, we can ask how far along this path the digital computer can reasonably be 
expected to progress" (p. 20). I assume here that human skilled behavior is sufficiently synonymous with 
intelligence that I can use the terms interchangeably in the discussion of what I claim is a confusion on 
the part of Dreyfus and Dreyfus. This is somewhat unfortunate, since skilled human behavior often 
includes bodily components whose relationship to intelligence is at once fascinating and mysterious. I 
think Searle (1984, p. 62) is correct that, in the Western analytical tradition, too little attention has been 
paid to the philosophy of action. He writes, "until recently the philosophy of action was a somewhat 
neglected subjection. The Western tradition has persistently emphasized knowing as more important 
than doing." It might be the case that machine intelligence would have to take the same "path" as human 
intelligence, for reasons ingredient in the nature of intelligence itself,
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but this auxiliary claim requires the benefit of some evidence or argument.

There might well be empirical constraints such that the only path to intelligence is the one followed by 
protohumans and humans over the eons of natural history—but I fail to see that there are logical 
constraints forcing artificial intelligence along the same path. Hilary Putnam's (1988) argument, which I 
discuss below, provides precisely the argument that Mind Over Machine needs but does not present. In 
fact, for reasons discussed later in the chapter, I am sympathetic to this view. My complaint here is that 
it should not be simply assumed but needs to be acknowledged as an assumption or, alternately, some 
support should be advanced. I see neither. Support for this auxiliary claim might be found implicitly 
elsewhere in the text, but I see no support for it in this context and I have not been able to find support 
for it elsewhere. As a result, coming to a better understanding of human skill acquisition would not, by 
itself, necessarily shed any light on the prospects for imparting similar skills to machines and it might 
turn out to be an impediment.

There is a sense, moreover, in which this confusion pervades the entire book. If the goal of AI is to 
duplicate human intelligence in the sense of replicating intelligence as humans have it, then the Dreyfus 
criticisms are more compelling. But if the goal is to produce intelligence in machines by whatever 
means that seem to work—and one powerful insight of functionalism is that the same function (at the 
I/O level) can be implemented many different ways at the process level— then the Dreyfus critique 
stands in need of defending the assumption I just mentioned, namely, that we would expect that machine 
intelligence would develop in ways pioneered by human intelligence.

This caveat noted, consider the claim that, "once we adequately appreciate the full development of 
human skilled behavior, we can ask how far along this path the digital computer can reasonably be 
expected to progress" (Dreyfus & Dreyfus, 1986, p. 19). If this is the case, and if we also appeal to 
Putnam's argument that building an artificial device that can learn in the human community is the most 
likely or perhaps the only promising avenue for AI, then we are in a position to continue with the 
Dreyfus program that, by understanding human skill acquisition, we will be in a better position to 
understand what the prospects are for developing intelligent AI systems.

But let's assess the significance of the five stages. The first stage,

  



Page 63

according to Dreyfus & Dreyfus, is the novice stage. The principal task facing the novice is the 
acquisition of facts and rules pertinent to the skill in question. According to them, the novice lacks the 
insight which experience provides, and so judges how well he or she does by how well the rules are 
followed, given the relevant facts. The point to be noticed, according to them, is that facts and rules 
dominate the skill acquisition of the novice.

The second stage is the advanced beginner. Experience begins to shape the interpretation of the rules 
and facts that characterized the first stage. Comparisons with earlier examples raise the issue of how the 
current situation is similar to earlier situations. Even at this early stage, the learner begins to traffic in 
"perceived similarity" that is not simply a matter of rules ranging over facts, according to Dreyfus and 
Dreyfus.

The third stage is that of competence. This stage is characterized by mastery of the rules and facts, and 
the learner is a good problem solver in the sense of using the rules and facts, and recognizing that certain 
"constellations" of rules and facts mean that certain conclusions should be drawn. This stage is 
important for at least two reasons. First, the Dreyfus claim is that this stage is what cognitive scientists 
have in mind when they advance the CS understanding of problem solving. At this stage, the 
learner/problem solver is good at decomposing problem situations into constituent parts, analyzing the 
parts, and applying pertinent rules and facts to reach a solution to the problem. Second, Dreyfus and 
Dreyfus argue that expert systems are really competent systems, that what are called "expert systems" 
have expertise at the level of competence only.

The first three stages exhaust, according to Dreyfus and Dreyfus, what cognitive science understands by 
possessing a skill and, in fact, intelligence generally. A skill, according to the cognitive science or 
information-processing model, is the ability to decompose a problem and apply rules, given facts 
pertinent to the problem, and deduce a solution. The Dreyfus claim is that the cognitive science research 
program supposes that all intelligent behavior is explainable in these terms.

Simon has written that the entire cognitive research enterprise "rests implicitly on the physical symbol 
hypothesis: possession of the basic resources of a physical symbol system is both the necessary and sufficient 
condition for intelligent behavior." (1986, p. 27)
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The claim, then, is that the cognitive science program in general and AI in particular have got hold of 
only part of what skilled intelligence is about, and the most rudimentary, uninteresting part at that. The 
first three stages comprise what the Dreyfuses understand by the term knowing-that. The principal goal 
of Mind Over Machine is to convince us that know-how is not reducible to knowing-that, that knowing-
that is what computers are capable of capturing, and that know-how is what human expertise and skill 
involve. Dreyfus and Dreyfus take it that following from this set of propositions is the conclusion that 
computers cannot (even functionally) equal human intelligence and skill.

By way of contrast, in their widely cited essay, "Computer Science as Empirical Inquiry," Newell and 
Simon (Haugeland, 1981) advance the classic AI claim that a physical symbol system is both a 
necessary and a sufficient condition for intelligence:

The twenty years of work since then has seen a continuous accumulation of empirical evidence of two main 
varieties. The first addresses itself to the sufficiency of physical symbol systems for producing intelligence, 
attempting to construct and test specific systems that have such a capability. The second kind of evidence 
addresses itself to the necessity of having a physical symbol system wherever intelligence is exhibited. (pp. 46-
47; emphasis in original)

To say that a set of circumstances is sufficient to cause x, of course, is an ambitious claim. To say that it 
is necessary for x, that x cannot occur without the set, is also a strong claim. To say that it is at once 
sufficient and necessary is to make the strongest claim possible. It is to say that a physical symbol 
system is sufficient for intelligence and that, where intelligence exists, there also exists a physical 
symbol system. It is tantamount to equating intelligence with a physical symbol system. On their view, 
and diametrically against the Dreyfus brothers, know-how, at least in principle, is reducible to—can be 
expressed functionally in terms of—knowing-that.

Stages 4 and 5 represent a difference of degree that has become a difference of kind. Proficiency and 
expertise, for Dreyfus and Dreyfus, are not to be understood in terms of following rules and applying 
relevant facts in the attempt to solve problems. Instead the analytical increasingly gives way to the 
intuitive, the decomposable to the holistic.
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What they call holistic similarity recognition is the claimed ability to recognize patterns as similar to 
earlier, experienced patterns without having to decompose them into constituent parts. Know-how refers 
to the ability to recognize, without the rule-based effort required at earlier stages, a situation as similar to 
an earlier situation. What was a piece-meal, mechanical effort earlier becomes a skill characterized by a 
sense of being effortless and fluid. The graininess of discrete steps, which results from the application of 
rules, given facts, is replaced by quick recognition of what needs to be done. The skilled expert does not 
need to modify a "knowledge-base" consisting of representations, because whatever representations and 
rules he or she possesses are incidental to the intuitive know-how.

Stage five, expertise, means that the skill is so integral to the person that the expert does it as readily as 
he or she breathes. The know-how of the expert is, at its best, nonanalytical and can be applied at great 
speed. Dreyfus and Dreyfus point to the fact that expert chess players can play several games 
simultaneously, with moves every few seconds, without the kind of degradation in the quality of play 
that one would expect if the prodigious search spaces involved were analyzed according to the rules and 
heuristics that constitute chess-playing programs.

Excellent chess players can play at the rate of five to ten seconds a move and even faster without serious 
degradation in performance. At that speed they must depend almost entirely on intuition and hardly at all on 
analysis and comparing alternatives. (1986, p. 33)

The result, according to Dreyfus and Dreyfus, is that the assumption that expertise consists of increasing 
mastery of rules, of increasingly abstract skills, is the wrong way about; increasing expertise typically 
means the progressive abandonment of rules and abstract reasoning for intuitive recognition of concrete 
cases as similar to earlier, experienced cases.

What should stand out is the progression from the analytic behavior of a detached subject consciously 
decomposing his environment into recognizable elements, and following abstract rules, to involved skilled 
behavior based on an accumulation of concrete experiences and the unconscious recognition of new situations 
as similar to whole remem-
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bered ones. The evolution from the abstract toward the concrete reverses what one observes in small children 
dealing with intellectual tasks. (p. 35)

Dreyfus and Dreyfus thus challenge the AI supposition that expertise is formal manipulation of discrete 
symbols. Know-how finally resists the Western, analytic desire to decompose into constituent parts.

Thus according to our description of skill acquisition the novice and advanced beginner exercise no judgment, 
the competent performer judges by means of conscious deliberation, and those who are proficient or expert 
make judgments based upon their prior concrete experiences in a manner that defies explanation. . .. The moral 
of the five-stage model is: there is more to intelligence than calculative rationality. . .. A vast area exists 
between irrational and rational that might be called arational. . .. arational behavior, then, refers to action 
without conscious analytic decomposition and recombination. Competent performance is rational; proficiency 
is transitional; experts act arationally. (p. 36; emphasis in original)

Moreover, Dreyfus and Dreyfus claim that conscious use of rules by an expert often produces regression 
in expert behavior. They take this to indicate that conscious use of rules constitutes a regression to 
earlier stages of the acquisition of the skill in question.

As I stated earlier, my principal task in this chapter is to establish a relationship between the Dreyfus 
critique of AI and the frame problem. As a result, I will not criticize the Dreyfus critique as much as I 
would otherwise. Nevertheless, there is so much here claimed so relatively quickly that a few criticisms 
seem in order.

It is frequently said that we are poor observers of our own psychological states and processes. Pointedly, 
the fact that an expert is not conscious of using rules and heuristics while applying his or her expertise 
certainly doesn't entail the claim that rules and heuristics are not being used. It is a truism by now in 
computer science that the workings of subroutines are usually not known to the calling routine; 
subroutines are treated as black boxes to which parameters are passed and values returned. It is possible, 
as AI is wont to claim, that the self is an executive master program that invokes subroutines, which, in 
turn, invoke subroutines, and so on, until the task is done. The master
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program need not concern itself, in everyday psychology, attend to, or even be aware of the workings of 
the subroutines called.

As a result, from the fact that we are not aware of using routines, of using rules ranging over databases, 
or suchlike structures, without the assistance of additional support, it doesn't follow that expertise does 
not typically involve the use of rules, facts and heuristics. That is, this fact alone doesn't particularly 
count against the physical symbol hypothesis which informs AI's understanding of intelligence.

Additionally, there are some claims in Mind Over Machine that are overstated. In discussing expertise, 
for example, Dreyfus and Dreyfus claim that, "when things are proceeding normally, experts don't solve 
problems and don't make decisions; they do what normally works" (1986, p. 30). This claim is related to 
the last comment in the displayed quotation above that "experts act arationally." I think what they have 
in mind is the following kind of situation. ! would guess that, in an emergency room, life-saying 
activities happen so quickly that it is questionable whether the word decision is the most appropriate 
way to describe what happens, if by decision is meant a pensive consideration of the range of possible 
alternatives. The expertise is presumably deeply enough ingrained that the activity has more in common 
with a professional tennis player's split-second forehand response to a serve than it does with a new 
home buyer's belabored choice. In their defense, moreover, Dreyfus and Dreyfus might point to Sherry 
Turkle's (1984) work and suggest that the word decision itself has been so conditioned by the "computer 
science revolution" that, increasingly, what we usually understand by decision is analytic decomposition 
and recombination of symbolic elements that represent the world. But, all these considerations 
notwithstanding, to say that "experts don't solve problems and don't make decisions'' is surely gratuitous 
hyperbole. It may be, as Turkle argues, that the computer paradigm is changing our understanding of 
words such as decision, but I don't see that saying "the doctor decided not to operate," even given the 
semantic "drift" of words such as decision, commits me to the view that the doctor's behavior is to be 
understood in physical symbol system terms. All it commits me to is the folk-psychology understanding 
that the doctor looked at a situation and, doing whatever health experts do in choosing one course over 
another, quickly concluded against surgery. To use the word decide in this context, therefore, is an apt 
use of the word.

In closing this section, I would like to summarize the Dreyfus
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critique of AI, casting it in terms that will be helpful in looking at the frame problem. Consider this 
remark:

It is no wonder that among philosophers of science one finds an assumption that machines can do everything 
people can do, followed by an attempt to interpret what this bodes for the philosophy of mind. . .. Thinkers . . . 
have failed to ask the preliminary question whether machines can in fact exhibit even elementary skills like 
playing games, solving simple problems, reading simple sentences and recognizing patterns, presumably 
because they are under the impression, fostered by the press and artificial-intelligence researchers such as 
Minsky, that the simple tasks and even some of the most difficult ones have already been or are about to be 
accomplished. (1986, p. 81)

Dreyfus probably overstates his case some—the polemic is still here— but he is right in this regard. It is 
simply unfounded to talk as though computers have matched human competencies in game playing, 
reading, pattern recognition, speech, and so on. This needs some qualification. Of course, there are some 
quite good chess and checkers programs today, and these can defeat most human players. The Dreyfuses 
discuss some recent good chess programs and argue that the best human players still defeat 
them—especially if the human players are privy to the strategies programmed in the computer. Scottish 
International Champion David Levy's commentary (Dreyfus and Dreyfus, 1986, pp. 111-115) on the 
potential of chess programs, is insightful. Levy's observations sum to the claim that, if a human chess 
player has a good grasp of how a chess-playing program has been written, it becomes significantly 
easier for the human to defeat the machine. Additionally, a qualification that should be noted is that 
games that incorporate a significant amount of chance, such as backgammon, may produce occasional 
significant (really insignificant) computer successes.

In fact, the evidence is that philosophers over the last 25 years have too often concluded that the 
progress has been or would be rapid when, for the most part, it has been painfully slow. Dreyfus has 
been arguing that it would be either slow or nonexistent for more than 25 years, and he deserves a 
measure of credit for the prescient intuition if not the actual argument. The reason for the dearth of 
progress, according to
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the Dreyfuses, is that human expertise does not consist of skilled manipulation of formal symbols, of 
rules that range over facts and issue in deductions; instead, it consists of the holistic recognition of a new 
situation as similar to a previously experienced situation. The expert acts, making the necessary 
adjustments, based on her or his experience. Holographic correlations are made quickly, without the 
problem decomposition, accumulation of facts, and application of rules, step by step, which classical AI 
supposes characterizes intelligence. Dreyfus and Dreyfus quote, with approval, Stanford neurologist 
Karl Pribam's claim that "decisions fall out as the holographic correlations are performed. One doesn't 
have to think things through a step at a time. One takes the whole constellation of a situation, correlates 
it, and out of that correlation emerges the correct response" (1986, p. 108). This comment evidently 
targets the classical AI paradigm, of course, but I don't see that the classical AI paradigm will be 
radically overthrown soon by, for example, connectionist models.2 According to Dreyfus and Dreyfus, 
to sum up the case that Hubert Dreyfus has been making for so long, at least classical AI profoundly 
misunderstands the nature of intelligence.

Finally, AI proponent David L. Waltz (1988, p. 197), perhaps surprisingly, is not as far from the Dreyfus 
position as one might suppose. He writes, "Craig Stanfill and I have argued at length elsewhere that 
humans may well solve problems by a process much more like look-up than search, and that the items 
looked up may be much more like representations of specific or stereotyped episodes and objects than 
like rules and facts." I take this to be surprisingly close to the view I find most compelling, namely, that 
cognition is likely based on some kind of noncomputational pattern recognition. Conversely, Dreyfus 
and Dreyfus (1987) have some rather complimentary things to say about AI work with parallel 
distributed processing, which is not rule-based as is conventional AI, and, purportedly, is amenable to 
some forms of "instruction." The limits and possibilities of massively parallel computing are less well 
known than those of classical serial

2 At the AI Conference at Carleton College in February 1989, the consensus of the presenters, who included 
Michael Arbib and Paul Thagard, was that traditional AI models will be supplemented by the new connectionist 
models but not outright replaced.
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computing, in part because of its complexity and because we have had less experience with it, but as a 
model of learning and the brain, it appears to be somewhat more promising.

2. The Frame Problem

In the first part of the chapter, I attempted to outline the Dreyfus critique of artificial intelligence. I 
argued that there are numerous problems with the critique, but that it has turned out more accurate than 
many detractors would have supposed in terms of the seriousness of the difficulties facing AI at the 
"I/O" level. Dreyfus claimed that the scope of these difficulties was not understood by either proponents 
of AI or those philosophers who were otherwise critical of AI but were too uncritical in terms of how 
successful AI would prove in the last 20 years at the I/O level; much philosophical criticism of AI 
historically has been of the hollow shell variety, namely, "given successful I/O, what does it signify?" 
Increasingly, perhaps in part due to the Dreyfus critique, the debate has evolved to focus more on how 
much should be expected at the "I/O" level. Increasing interest in the frame problem, I believe, 
exemplifies just this evolution.

In this section, I try to show that getting a clear understanding of the frame problem does two things. 
First, it typifies a good part of what Dreyfus has attempted to argue, but, interpreted carefully, does so in 
a less ambiguous, more philosophically adequate, way. Second, and most importantly for the purposes 
of this essay, it shows that the frame problem is a formidable problem which obstructs the 
epistemologically complex learning, which I claim is essential to the passage of the Turing test.

The term frame problem dates back about 20 years, specifically to the work of Hayes and McCarthy. 
Since that time, there have been two fundamental approaches to how the term should be used. First, 
when used by computer scientists and cognitive scientists, it has often been understood in a narrower, 
more technical, less philosophical way. Second, when used by philosophers and those with more 
philosophical interests, it has usually been understood in a broader, less technical, more epistemological 
way. Hayes in particular, as I will attempt to explain later, believes that the two senses are quite different 
and that
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the former is correct and the latter represents a deplorable metamorphosis of the term.

But the task of reaching a clear interpretation of what the problem is, it turns out, is more complicated 
than just distinguishing between the technical and philosophical senses. Even a quick reading of the 
literature reveals that there is considerable difference of opinion over what the frame problem is, 
whether it is one problem or many, and whether it is a new problem, as Dennett, for instance, claims, or 
a classical problem, recently retrofitted with digital attire, as others such as Glymour argue. Dennett 
(1987, p. 42) claims that the frame problem is a new, quite serious, epistemological puzzle, since it "is a 
new, deep epistemological problem—accessible in principle but unnoticed by generations of 
philosophers—brought to light by the novel methods of AI, and still far from being solved." Because AI 
involves new research done with a "novel" approach, Dennett seems to be saying, it has uncovered this 
new philosophical puzzle we call the frame problem. The frame problem is discovered, I think Dennett 
(1978) wants to say, because AI consists of thought experiments "about whether or not one can obtain 
certain sorts of information processing—recognition, inference, control of various sorts . . . from certain 
sorts of designs." Dennett defines AI as a variation on a classical epistemological question: how is 
knowledge possible in a system? When the question is posed in terms of an automatic formal system, 
instead of being asked from a human perspective as it has been historically by philosophers, the frame 
problem develops.

Clark Glymour (1987, p. 65) takes exception to Dennett's claim and argues that AI, effectively exposing 
its own philosophical naïveté, has simply stumbled onto a perennial problem that philosophers have 
known and argued about for centuries:

I think it is more accurate to say that there is no novel problem at all, only a novel and powerful constraint on 
problems that are old friends to philosophy. . .. I think the "frame problem" is not one problem, but an endless 
hodgepodge of problems concerned with how to characterize what is relevant in knowledge, action, planning, 
etc.

Haugeland (1987), more sympathetic with Dennett's position than Glymour's, suggests that, "as if 
epistemology hadn't enough troubles, artificial intelligence has generously provided another, called the
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'frame' problem." These claims alone make it clear that there is considerable difference of opinion over 
whether the frame problem is a new problem or an old problem rediscovered by a new academic pursuit.

To compound matters further, the frame problem is one of several imbricated problems. Related, 
possibly overlapping problems include the prediction problem, the bookkeeping problem, the 
qualification problem, the installation problem, and, perhaps most important of all, the general problem 
of induction and how they differ, assuming they do, from the frame problem. Given this epistemological 
imbroglio, the task which I undertake is to find a definition of the frame problem, argue why this 
definition is preferable to rival definitions, and then argue how the frame problem is distinguishable 
from the problem of induction and the several "related" problems just cited. The goal of the discussion, 
of course, is to achieve a clear enough characterization of the frame problem that I will be in a position 
to determine its relation to the Turing test.

In turn, I will discuss the general frame problem, the specific frame problem, several problems related to 
the frame problem, and, last, I will attempt to show why there is a space problem generated by the frame 
problem, which I will call the relevance space problem. I will close the chapter with a summary of how 
I understand the frame problem and a summary statement of how the general frame problem is related to 
the specific frame problem.

The General Frame Problem

In this section I want to relay the general frame problem, that is, the frame problem as philosophers, for 
the most part, have understood the frame problem, and I wish to trace some history of various 
interpretations of the frame problem.

In Brainstorms, which was published in 1978, Dennett devoted two pages to expanding this brief 
depiction of the frame problem:

The frame problem is an abstract epistemological problem that was in effect discovered by AI thought-
experimentation. When a cognitive creature, an entity with many beliefs about the world, performs an act, the 
world changes and many of the creature's beliefs must be revised or updated. How? It cannot be that we 
perceive and notice all the
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changes . . . and hence it cannot be that we rely entirely on perceptual input to revise our beliefs. So we must 
have internal ways of up-dating our beliefs that will fill in the gaps and keep our internal model, the totality of 
our beliefs, roughly faithful to the world. (p. 125)

According to this relatively early, philosophical understanding, the frame problem is one of updating the 
beliefs that a "cognitive creature" has about the world, since an act performed by the creature 
presumably changes that world in some way. An act that results in change in the world requires a change 
in the belief system if that system is—in some sense or other—to be a "faithful" (I'd be happy to settle 
for "useful") representation of the world. More to the point, the question is how such updating should be 
done.

Writing perhaps 8 years later, Dennett (1987) suggests that Hubert Dreyfus and John Searle are 
"ideological foes" of AI and employ the frame problem as grounds for opposing it.

the ideological foes of AI such as Hubert Dreyfus and John Searle are tempted to compose obituaries for the 
field, citing the frame problem as the cause of death. In What Computers Can't Do . . . Dreyfus sought to show 
that AI was a fundamentally mistaken method for studying the mind, and in fact many of his somewhat 
impressionistic complaints about AI models and many of his declared insights into their intrinsic limitations can 
be seen to hover quite systematically in the neighborhood of the frame problem. Dreyfus never explicitly 
mentions the frame problem, but is it perhaps the smoking pistol he was looking for but didn't quite know how 
to describe? (p. 43)

The association of Dreyfus with the frame problem, of course, is not surprising, but suggesting that 
Searle's opposition to AI rests on the frame problem is more tantalizing than helpful, since, quite 
contrary to usual classification, Dennett associates Searle more with the poor substitute strategy than 
with the hollow shell strategy. I wish that Dennett had developed this purported connection between 
Searle's view and the frame problem, since Searle has not done so.

In his 1983 Modularity of Mind, Jerry Fodor casts the frame problem in terms of a robot's activity. Fodor 
is interested in the question of how the robot could determine which beliefs need updating in light of 
some of its behavior, and which do not. Using a helpful example that dates to Hayes and McCarthy, 
Fodor asks how a robot, once it has begun to
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dial a telephone number, should know that the number itself will not be altered by the action of 
beginning to place the call. Since nothing in its belief complex averts the possibility of this kind of 
causal relationship, the robot rechecks the number, begins the call, rechecks the number, and so on, 
effectively disabled by a real-time, frame-problem-based, infinite loop. As Fodor suggests, "Unless the 
robot can be assured that some of its beliefs are invariant under some of its actions, it will never get to 
do anything" (p. 113).

Fodor identifies three corollaries stemming from the frame problem. I'll interpret these corollaries in my 
terms:

1. there is nothing like a rule which would enable a robot to know which set of beliefs require updating 
for any given action;

2. newly acquired beliefs do not contain explicitly their implications for other beliefs;

3. there seems to be no relation between which beliefs require revision, given an action, and when they 
were acquired or what the semantic relations happen to be between the beliefs and descriptions of 
related actions.

These three corollaries of the frame problem, according to Fodor, can be understood in light of the 
question, "What, in general, is the optimal adjustment of my beliefs to my experiences?" As he points 
out, the general frame problem, as I call it, turns on the fact that "cognitive processes" have to be 
"sensitive to the whole belief system" (p. 114). We don't know, Fodor seems to be saying, how to 
construct cognitive processes for an automatic formal system that are sensitive to the whole belief 
complex. He concludes by suggesting that the "seriousness of the frame problem has not been 
adequately appreciated'' (p. 115).

Owen Flanagan (1991) cites the frame problem as one of "Ten Objections to Artificial Intelligence" (pp. 
230-247). Flanagan understands the problem to be one of common sense and of the relevance criteria we 
would have to draw on so that we don't have to examine exhaustively all the beliefs and knowledge we 
have in attempting to solve the raft of problems we solve routinely and often with little effort.

Fischler and Firschein (1987), somewhat surprisingly, given their technical background as researchers at 
SRI International, define the frame problem in quite general terms:
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How can an intelligent system, in trying to solve a problem or carry out an action, know what information in its 
database should be ignored, and what is relevant to the problem at hand? . . . The big problem is knowing what 
is indeed relevant, since the time constraints will not permit examination of the implication of every fact in the 
database. Many AI systems have the unfortunate characteristic that increasing the amount of knowledge in their 
database degrades, rather than improves, their performance. (p. 305)

They understand the frame problem to be one of effectively using the store of information that an 
"intelligent system" has, of possessing an ability to distill what is clearly and usably relevant and, 
conversely, what is not relevant, in that store to the solution of the problem, and doing it in a timely 
fashion. Their comments remind us how unfortunate the term memory is when used in reference to the 
internal memory of the Macintosh SE/30 I am using to write this chapter, which has 5 megabytes of 
random access memory. One of the reasons that the frame problem arises, I believe the evidence 
suggests, is that computers possess storage and not memory; memories organized as ours are, it appears, 
do not run into the problem of "relevance" with anything like the frequency storage-based systems 
encounter. It would be surprising indeed if ''increasing the amount of knowledge" a human has would, 
under most circumstances, result in a degradation of performance. It is typical, by contrast, in the case of 
storage-based systems.

In still more general terms, Fischler and Firschein (1987) argue that the frame problem is "closely 
related" to the decomposability of intelligence question. The question is whether all problems are 
amenable to decomposition in such a way that we can decompose them, study the parts, and thereby 
understand their functions in such a way that we can replicate them artifactually. I take it that they mean 
that whether intelligence is a decomposable problem is an empirical question; it may turn out that 
intelligence is not a decomposable problem. With evident approval, they quote Dreyfus' remark that 
"Since intelligence must be situated, it cannot be separated from the rest of human life." Presumably; 
this means that intelligence necessarily is rooted in life in such a way that taking it to be decomposable, 
as AI does, is to misunderstand it profoundly.

Haugeland acknowledges the problem in his 1985 text, Artificial Intelligence: The Very Idea. By this 
later date, the frame problem is commanding greater attention. He compares it to the "knowledge
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acquisition" problem but claims that there is a distinct difference. Ingredient in the solution of both the 
knowledge acquisition problem and the frame problem is the essential goal of avoiding deciding, for 
each piece of information in a database, whether or not it is relevant. This is a generalized way of saying 
that intelligent systems must constrain the solution space; brute force is ineffective as a search method 
for significant problems.

Beyond this by now rather pedestrian computer science claim, Haugeland claims that the difference 
between the two is a matter of time. The problem is a matter of the intelligent system determining how 
to update its database as events develop. He suggests that any system's knowledge must be of at least 
two types: that which does not change over time, given some event or act, and that which does. The 
problem with the latter, of course, is not only knowing that some knowledge is time and context 
dependent, but knowing how that knowledge is time and context dependent:

the frame problem arises with knowledge of the current situation, here and now—especially with keeping such 
knowledge up to date as events happen and the situation evolves. . .. When things start moving and changing, 
"knowledge" of the current situation may not stay valid . . . the system's knowledge must be divided into (at 
least) two categories: perennial facts that stay the same and temporary facts that are subject to change at any 
moment and therefore must be actively kept up to date. (pp. 204-205; emphasis in original)

Still later, he observes that AI systems are prone to being "jerky":

AI systems seem to lack the flexible, even graceful "horse sense" by which people adjust and adapt to 
unexpected situations and surprising results. So it's tempting to suppose that adding more "clauses" merely 
postpones the inevitable; like greasing a rusty bearing, it doesn't address the underlying problem, but at best 
hides it a little longer. In this view, then, graceful and jerky differ not in degree but kind—and never the twain 
shall meet. (p. 209)

Haugeland offers an analogy: the "jerky" (a relative of the frame) problem may turn out to be like the 
films consisting of frames that, when run too slowly, obviously consist of frames. But when run at the
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proper speed, graceful, fluid motion results. Initially, this might look like a plausible analogy, but it 
seems to skirt the frame problem as well as the jerky problem: one could surmise that the frame and 
jerky problems are a matter of speeding up the processing so that they dissolve. It is not that simple. 
Speed is not the problem but rather is symptomatic of a deeper problem—the frame problem's solution 
will require more than speedier CPUs. As a representation problem, the issue is not speed but 
sufficiency of the representation and the principles of representation maintenance, given that it has to 
represent a dynamic world with epistemological adequacy.



Pylyshyn (1987, p. viii) suggests that the frame problem is related to the fact that a general purpose 
reasoning system, in contrast to a special purpose system such as an expert system, has to have the 
ability to "connect any item of knowledge or belief (i.e., any representation) with any other." Assuming 
that cognition encompasses inference, since any belief might be related to any other belief in a system 
that represents the world, "there is no way to exclude any fact in advance as being irrelevant, without 
considering all the implications of that fact" (p. viii). The vexing problem is to find a way to distinguish 
between relevant beliefs and irrelevant beliefs; if the irrelevant beliefs cannot be identified and hence 
ignored, "the cognitive system will become mired in an exponentially expanding range of inferences and 
will never be able to deal intelligently with domains requiring a potentially unbounded domain of 
knowledge such as is involved in carrying on the simplest everyday conversation" (p. viii).

The general frame problem, as Janlert understands it, is the epistemological problem of finding a way to 
represent a complicated world characterized by significant change. On this interpretation, the frame 
problem should not be understood as a problem of algorithms or data structures. The frame problem is 
not a traditional computer science problem but one of determining how the world is to be 
represented—it is a problem in modeling, a problem for epistemology; Janlert (Pylyshyn, 1987) would 
even say it is a metaphysical problem. The reason that "microworlds" have played an important role 
historically in AI, this interpretation would point out, is that microworlds significantly obviate the 
epistemic issues involved in modeling a dynamic system as complicated as the real world. Once we 
attempt to model the full-bodied real world, in the attempt, for instance, to write
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a program that would enable a robot to make its way down a sidewalk on a moderately busy street, 
we've committed ourselves to doing epistemology, according to this view, even metaphysics.

One additional consideration adds to the difficulty of solving the general frame problem. The general 
frame problem, at least if we let the philosophers have their way, is a problem in epistemology—the 
theory of knowledge. Epistemology in this century has been preoccupied with science and the 
foundations of scientific method. One assumption that has dominated Western views of science is that 
science is virtually immune to fraud. Ingredient in this assumption has been the understanding that 
experimental results, since replicability is an essential characteristic of science, will eventually, given 
enough time, be purged of mistaken and fraudulent claims. But John Hardwig (1991) argues that the 
explosion in research, along with the weakening in the monitoring of experimental results, when added 
to the fact that research now requires large teams and often large amounts of time and specialized 
equipment, sum to the conclusion that the replicability of experimental results is no longer as much of a 
leash on the mistaken and the fraudulent as it once was. Moreover, he claims that surveys have turned up 
plagiarism or outright fraud in up to 25% of published scientific work. Thus, he concludes, the 
trustworthiness of experimental results has become a major concern.



The conclusion that knowledge often is based on certain kinds of relationships between people, on trust, and 
consequently on the character of other people is an epistemologically odd conclusion. It is odd even for 
pragmatists, though pragmatists have generally had more room for epistemic community in their theories. To 
my mind, this oddness is symptomatic of what will be needed to assimilate an acknowledgement of the role of 
trust into our epistemologies. We have a lot of work to do. (p. 708)

The result, according to Hardwig, is a reversal of the usual view of the relation of ethics to 
epistemology. The general assumption in the Western tradition is that ethics presupposes 
epistemology—that ethics is obliged to meet the standards of the conditions for knowledge generated by 
epistemology. Given the importance of trust in the evaluation of scientific claims, however, it turns out 
that epistemology significantly presupposes the standards of ethics. The consequence is
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that epistemology must now take into account ethical factors— epistemology is an alloy of evidence, 
logic, epistemic considerations of one kind or another, and ethics. Knowing is inexorably conditioned by 
ethical judgment—trust, or the "credit of the proposer," to press into service John Locke's term, is a 
necessary condition for knowledge based on experimental results.

If Hardwig is right, and I believe that he makes a convincing case, then the general frame problem 
cannot be solved without addressing the significantly complicating factor of how judgments of the trust-
worthiness of scientific claims might be decomposed and functionally defined in terms of a program. 
When should certain claims be trusted, and when should they not? On what grounds? Are the skills 
requisite to such judgments computationally reducible—amenable to capture in a program? Even if we 
could actually generate some kind of programmatic mechanism for such assessments, perhaps 
employing the probability calculus, we would then be faced with this variation on the frame problem: 
when one item in the "knowledge base" is no longer judged trustworthy, the system is faced with the 
task of assessing the trustworthiness of every other item that presupposes the item no longer judged 
trustworthy. The system will then have to spend significant amounts of time confirming that most of 
what it knows remains trustworthy, given that some small percentage of what it thought was trustworthy 
erroneously earned that evaluation. In sum, the general frame problem isn't as simple as a tangle of 
epistemological issues; it has a treacherous "credit of the proposer" dimension as well.

The Specific Frame Problem

As noted above, the way that computer scientists and many other cognitive scientists use the term frame 
problem is much more specific than the more general, epistemological sense in which it is used by 
philosophers or those such as Fischler and Firschein, who have a distinct interest in the philosophical 
issues associated with AI. In more recent discussions of the frame problem, Hayes in particular has been 
outspokenly critical of the epistemological construal of the term. My aim in this part of the chapter is to 
articulate an understanding of what I call the specific frame problem. I'll cast the discussion in terms of 
what we would need to keep a robot named SIMON functioning.



The "original frame problem," according to Janlert, had to do with
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the fact that modeling was understood to be a matter of representing facts in the world modeled with 
proper axioms. The difficulty was determining what changes in model would be dictated by a change in 
the world modeled. If no theoretical way can be identified for avoiding the task of examining each 
proper axiom each time a change occurs in the modeled world, then SIMON would become hopelessly 
bogged down "in the midst of a sea of axioms representing non-changes, endlessly calculating non-
effects" (p. 6).

Axioms that might be put into a program to assist SIMON's movement could take the form of a familiar 
IF/THEN statement:

IF (object O Isin room R1) or (object O Isin room R2)
AND IF not (object O Isin R2)
THEN LOOKFOR(O,R1).

The point of developing such axioms is that it makes it possible to generate a model that represents 
states in some world. Of course, the axiom just cited, assuming the truth of the two IF conditions, entails 
the call LOOKFOR(O,R1). With a system like PROLOG, for example, with a few qualifications, it is 
(usually) fairly straightforward to generate truth-preserving conclusions, given premises in the database. 
The specific frame problem arises when we attempt to determine noninferences or nonconsequences 
from an axiom system, given a change or set of changes. Most changes in the world evidently result in 
few other significant changes—the world, at least in terms of macroscopic, common sense descriptions 
that we apparently use to make our way in the world with routine success, is not characterized by 
massive change from one moment to the next. Chaos theory notwithstanding, a tune-up for my car, for 
example, presumably would not alter the publication date of John Updike's next novel. Yet the fact that 
the publication date of Updike's next novel does not depend up my car's tune-up is not a necessary truth, 
since logic doesn't preclude the possibility that there is such a relationship. As a result, if we wish to 
model a nontrivial world with an axiom system, we have to find some way of expressing the obvious 
fact that most changes in the world leave most of the world unchanged. Hayes (1987) put it this way:

One feels that there should be some economical and principled way of succinctly saying what changes an action 
makes, without having to
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explicitly list the things it doesn't change as well; yet there doesn't seem to be any way to do it. That is the frame 
problem. (p. 125)

In terms of axioms in SIMON, Hayes claims that there is no "principled" way to decide which of the 
axioms don't need revision, given an action by SIMON or some change in SIMON's world. Not only 
does SIMON have the task of inferring deductions, but also nondeductions, given an action. That logic 
is not equivalent to metaphysics is underscored by Hayes's comment that, "in this ontology, whenever 
something MIGHT change from one moment to another, we have to find some way of stating that it 
DOESN'T change whenever ANYTHING changes."

Hayes's second characterization of the frame problem warrants a brief comment. He suggests that we 
imagine that we had enough facts about a state that we thought it an adequate characterization—a 
snapshot in time, as it were. If we introduce one change, a function carrying the system from one state or 
states to another state or states, the question becomes how large a description will be needed to 
characterize the new situation, after the change. Not only will the model have to specify what changes 
occurred, it will have to specify what does not change. The description of the change will rival, in terms 
of size, the original description. The frame problem, on this characterization, is "to find a more 
principled, compact, and sensible way to state or infer these platitudes, or somehow avoid the need to 
infer them at all." What Hayes calls the frame problem, I wish to call the specific frame problem.

What interests me about this second characterization is a passing reference that Hayes makes, in a 
footnote, about the implications for learning. He suggests that attending to the "litany of reassurance that 
this action doesn't change this or that or the other" has many unacceptable consequences. In the footnote, 
he suggests "when a new time-dependent relation is added to the reasoner's repertoire of concepts, it 
should not be necessary to update all the action descriptions. This would make learning very difficult" 
(p. 126). I think this is too generous. If SIMON has an unsolved frame problem, it appears to bring 
learning effectively to a halt because the overhead of attending to the "litany" of nonconsequences, as 
the representation of a nontrivial world becomes more adequate, increasingly crowds out attending to 
the efficient and effective modification of the representation of the
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world that learning surely requires. A robot that can't learn is a robot that cannot function in a real world. 
A robot with an unsolved frame problem, I will claim in Chapter 6 of this essay, is a tongue-tied robot 
that cannot engage in a conversation at an epistemologically complex level.

Several Problems Related to the Frame Problem

The first problem that I wish to consider, which is related to the (general) frame problem, is the 
prediction problem.3 If a cognitive system is to make its way more or less successfully in the world, it 
has to have some facility for anticipating what will happen next in its environment. In other words, it has 
to have something like a common-sense understanding of how currently observable events will affect 
the future. But there are several difficulties with generating such a prediction capacity. We have nothing 
like a set of deterministic laws at the macroscopic level that we could use to represent the world a robot 
will have to make its way in. The second half of Searle (1984), in fact, labors to establish just this point. 
Even if we had such deterministic laws, moreover, it would be extremely difficult to model the world in 
sufficient detail that such laws would allow predictions that would be sufficiently reliable. Increasing 
complexity of representation, other things being equal, tends to degrade performance. The more detailed 
the map, the more complex the computation, other things being equal, so that, at some point of increased 
complexity, it appears, the robot would not be able to manipulate the representation fast enough; it 
would begin to predict, even with a superb representation and deterministic laws, that which has already 
occurred.

The prediction problem's relation to the frame problem should be apparent, but so are the differences. 
The prediction problem is the task of adequately representing how the world goes, its physics. How the 
model is manipulated internally is not part of the prediction problem. The frame problem, by contrast, 
does concern administration of the representation once formulated. As Janlert puts it, the frame problem 
is "mainly the problem of representing the metaphysics of the modeled world" (1987, p. 5).

3 Some of the characterizations of problems related to the frame problem are indebted to Janlert (1987).
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Another problem involves the qualification of rules or assumptions. In confronting any problem 
situation, we usually take for granted a raft of assumptions about the situation. For example, if I am 
asked to open a window on the other side of the room, in taking on the task, I would assume that the 
window can be opened, that the Persian rug covering the floor in the middle of the room does not 
conceal a hole into which I would drop while crossing the room, and so on. Janlert calls such 
assumptions rules. An exhaustive listing of such assumptions for any real world problem situation, of 
course, is generally not possible.

Another way of stating this problem is to point out that idealized understandings of items in the world 
are often at variance with what we find. Without qualifications, it is reasonable to assume that a 
styrofoam cup will keep hot coffee from burning a hand. With some frequency, as we know, the 
assumption proves false. The qualification problem is the problem of how to program SIMON so that it 
can interact in the world without becoming jerky (in Haugeland's sense) in the face of qualifications that 
characterize so much of our experience.

On the other hand, the updating problem has to do with updating the representational system data in the 
representation changes. For example, if SIMON is moving down the hallway and three chairs are moved 
by people, the representation of the three chairs in SIMON has to be changed to reflect the new situation 
in the world. This is different from the frame problem in that SIMON is not faced with determining the 
consequences and nonconsequences of the chair's new position, but simply changing the the actual 
representation of the chairs' location.

The Frame Problem, Search Spaces, and Relevance Spaces

According to the classical AI paradigm, an important step in making computers more intelligent is to 
program them in such a way that the search space of a problem the computer is attempting to solve is 
successively reduced until either an answer is found or an acceptable approximation is reached. The 
search space is the set of spaces— physically or logically understood — that a person or program is 
prepared to look in for a solution or an approximation to a solution. It is a truism by now in both 
artificial intelligence and conventional computer science that brute force, or, as it is sometimes called, a 
British
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Museum algorithm (BMA) approach, won't work for very many interesting problems. A BMA algorithm 
identifies all the possible places that might contain a solution and examines each one, one at a time, until 
the solution is found. In other words, a BMA algorithm serially searches each element in the problem's 
search space until a solution is found.

Classical AI as well as conventional computer science have both rightly concerned themselves with the 
constraint of search spaces, on the ground that the search spaces of most interesting problems are too 
vast for even the fastest machines to search in an acceptable amount of time. As Raphael (1976, p. 95) 
puts it, "Search is an important part of most problem-solving processes." If one way to constrain search 
spaces includes knowledge of some kind, then AI practitioners are inclined to label their programs 
"intelligent," on the presumed ground that it is the knowledge in the program which enables it to do 
better than a BMA algorithm. Search spaces of tractable problems such as games are reduced by a 
variety of techniques. Techniques include "look-ahead" and "minimax." As the improvement in the 
performance of checkers and chess-playing programs illustrates, such techniques have generated a fair 
amount of success in coping with problems with large search spaces.

I won't say much more about search spaces. One reason I won't is that I believe, along with Waltz 
(1988), that look-up is a more promising avenue for AI than search if AI projects are to "scale up" better 
than they currently do. There's a respectable case to be made that people identify solutions to problems 
by means of something like look-up and, assuming this is so, an attempt to emulate human practice may 
prove fruitful. My principal reason for not saying more about search spaces, though, is that the reason 
for talking about a search space is that I want to contrast it with what I will call the relevance space of a 
system's attempt to solve real-world problems.

An unsolved frame problem means that a computer system possesses no programmatic mechanism for 
ignoring irrelevant facts, as it takes on a problem, short of attempting to identify the implications of that 
fact for the other facts it possesses in its "knowledge base." In my terms, it has an enormous relevance 
space which resists reduction by any technique we currently possess. As a result, not only do we have to 
be concerned about a problem's search space, which is external to the AI system, as it were, we must be 
concerned with the system's
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relevance space, which is internal to the system. We know some ways to reduce search spaces for 
certain kinds of problems, but we know of no way to reduce relevance spaces for problems requiring 
what I have called epistemologically complex learning.

In fact, not only do we not know a way to reduce relevance spaces; given an initial consideration of a 
problem and an initial state of a system, relevance spaces exponentially explode as a computer system 
attempts to assimilate epistemologically complex information. If a new piece of information is 
encountered, for example, in a conversation, even assuming there is some way to encode the information 
in a production system, the task is not only to encode the information, but to determine what the 
implications are of the new information for the rest of the system, both positively in terms of what needs 
to be changed and negatively in terms of what doesn't need to be changed. That is, it has to examine 
each element of the representation, attempting to determine if the new information entails a change in 
old information elements aaa . . . 999 (however many there are). If aaa does not change, the system is 
left with the task of examining elements aab . . . 999 in light of the new information. In this case, the 
relevance space decreases slightly. If aaa needs changing, however, not only does the system have the 
task of examining elements aab . . . 999 in light of the new information, it must also evaluate elements 
aab . . . 999 in light of the fact that aaa has been changed. Each time a change occurs, the relevance 
space increases dramatically in size. If only a tiny percentage of the elements require a change for each 
pass through the system's representation, the relevance space grows exponentially. The fundamental 
problem is that there is no known way to develop a general-purpose executive program or production 
rule that could exclude examination of what we could readily identify as irrelevant elements on grounds 
of prima facie irrelevancy. Most things in the world don't change (significantly) when one thing 
changes, and most of what we believe does not require alteration when we change some small part of 
our beliefs about the world. We accept these epistemological truisms; the problem is determining how to 
encode them in a production system. We don't suffer from exploding relevance spaces as we assimilate 
information about the world, but automatic formal systems do.

In the terms I developed in the last chapter, epistemologically simple learning does not founder on 
exploding relevance spaces, while
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epistemologically complex learning does. In the Coin Toss game, to use the example from Chapter 2, 
assimilation of data from the game string generated no exploding relevance space, since increasingly 
successful play of the game did not presuppose examination of each cell of its database each time one 
cell was changed. While a chess program has to cope with a large search space and, necessarily, must 
restrict ''look-ahead" in order to keep the search space manageable, it has no relevance space problem 
either, since events that go on in the real world are irrelevant. As a formal game, the only learning that it 
has to do is epistemologically simple and is therefore representationally manageable.

A brief consideration of some of the reasons why we don't suffer from the frame problem and how 
Hilary Putnam believes AI might be able to overcome difficulties related to frame problem may be 
helpful at this point. Putnam (1988) argues that AI, if it is to be more than a "notional" activity, has to 
produce an intelligence that learns much as children do. Putnam's piece is a reproach of AI as it is 
currently practiced but it nevertheless offers some constructive advice on what the agenda should be for 
AI proponents.

Putnam argues that there are two basic approaches that AI researchers could take in the effort to produce 
machine intelligence. First, AI researchers could attempt to program into a machine all the information 
that an adult human has at his or her disposal, in the expectation that this would be necessary for 
intelligence. The problem with this, according to Putnam, is the sheer enormity of the task. The amount 
of information would "require generations of researchers to formalize the information." As a practical 
note, software giant Microsoft now breaks up its larger projects such as spreadsheets and high-end word 
processors into as many as 2,000 tasks. But projects such as spreadsheets and word processors are surely 
many orders of magnitude, if a number can be attached at all, simpler than all the "information" which 
would be available in a normal adult. Several years are now required, even for large programming 
teams, to bring comparatively simple programs such as spreadsheet and word processing programs to 
market. Even then, of course, they have numerous bugs. Expressed more theoretically, David Waltz 
(1988, p. 192), an AI proponent, agrees that "It will be extremely difficult to characterize and build into 
a system the kinds of a priori knowledge or structuring principles people have."
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If he were being more consistent with what he argues elsewhere in his paper, Putnam would question 
this alternative even more than he does. He spends a fair amount of time discussing the problem of 
induction as it pertains to AI and calls our attention to the problem of "conflicting inductions," as 
Goodman, in part, understands it. The idea is that there is no mechanical way to arbitrate between 
innumerable conflicting inductions that, short of command of the entire body of background knowledge 
that mature people take for granted as they make their way in everyday activities, would immobilize a 
formal system interacting with typical real-world situations. I take this complaint as a rough 
approximation of the general frame problem.

He cites Goodman's example that it appears true that no one who has entered Emerson Hall at Harvard 
speaks Inuit (Eskimo). From this we might draw the induction that if a person enters Emerson Hall, the 
person is not able to speak Inuit. But if an Eskimo were to appear at the doors of Emerson Hall, few of 
us would subscribe to the induction that the Eskimo would suddenly lose the ability to speak his or her 
native tongue. We are able to draw on our background knowledge and discount the suggestion that a 
person would lose the ability to speak Inuit simply by passing through the doors of Emerson Hall, even 
if we have not had to make such a judgment before. In a word, we readily resolve the conflict of 
inductions correctly. The issue, for Putnam, is whether this ability, as part of what he calls "human 
nature," is amenable to capture in formal rules.

Again, it is not clear that the knowledge that one doesn't lose a language just like that is really the product of 
induction; perhaps this is something we have an innate propensity to believe. The question that won't go away is 
how much of what we call intelligence presupposes the rest of human nature. (p. 277; emphasis in original)

I take this last statement to be a philosophic pointer to the host of competencies humans possess as 
linguistically capable animals produced by natural history. The larger problem, then, is a matter of what 
is ingredient in "human nature." In other words, the relevance spaces (on an AI paradigm) we would 
otherwise face in all kinds of problems have been vastly shrunk for us by the very natural history which 
produced us; ineffectual problem solvers did not pass on their genes to succeeding generations. The fact 
that we are here, can ambulate, and
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can indulge in philosophic problems associated with AI, means that solutions to many of the large 
problems facing AI are necessarily ingredient in the natural intelligence we possess.

Ingredient in the "rest of human nature," for Putnam, is an evolution-generated competency that enables 
us to cope with what would otherwise be an infinitude of conflicting inductions—in terms I have used in 
this chapter, we normally don't suffer from a relevance space problem. Putnam appeals to the work of 
evolutionary biologist François Jacob, who compares evolution to a tinker who works, not according to 
a master design, which is what traditional AI presupposes, according to Putnam, but to meet the 
exigencies that appear over a long span of time, modifying the design in a piecemeal, serendipitous 
fashion. The upshot is that "natural intelligence is not the expression of some one program but the 
expression of billions of bits of 'tinkering' " (p. 272). Perhaps a good analogy to the evolutionary 
development of intelligence as tinkering is the Watts Towers in Los Angeles, built by Simon Rodia. As 
Bronowski (1973, p. 118) puts it, "He never had anyone to help him because, he said, 'most of the time I 
didn't know what to do myself.'' To ask the question, what general principles did Rodia use in building 
the Towers? then, is to ask the wrong question. There were no general principles, just 30 years of 
tinkering with wire, glass, concrete, and odds and ends such as plastic saucers and broken sea shells. 
Analogously, there may be no general principles to intelligence as developed by evolution, just 3 billion 
years of tinkering with amino acids and suchlike. One way to understand evolution is that it is brute 
force applied biologically to an enormous search space over a very long time. Perhaps such tinkering is 
the only way to develop intelligence. If this is the case, according to Putnam, then "we may never get 
very far in terms of simulating human intelligence" (p. 273).

Consequently, the problem with the first alternative, namely, the definition of AI as the effort to encode 
in a computer all the background information that every mature person has, is not so much the 
prodigious quantity of information, which is what a reader could take Putnam to be saying at the end of 
his paper if much of the rest of the paper were ignored. Though this is a daunting problem in its own 
right, the monumental difficulty is determining what Evolution the Tinker did through the eons of time 
in developing what we too facilely call human nature. Putnam likes the suggestion that AI "is one 
damned
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thing after another," because he supposes that AI's unwitting mission, in purportedly aspiring to replicate 
intelligence, amounts to recapitulating the Promethean saga of natural history. Putnam takes this result 
to mean, at least practically, and I think he could be coaxed to agree that it is an in-principle limitation, 
that the first alternative is beyond our collective grasp.

The other alternative Putnam proposes is that "AI practitioners could undertake the more exciting and 
ambitious task of constructing a device that could learn the background knowledge by interacting with 
human beings, as a child learns a language and all the cultural information, explicit and implicit, that 
comes with learning a language by growing up in a human community" (p. 278). Putnam urges this 
alternative of learning upon us as the best way to understand AI if it is to be more than a "notional" 
undertaking.

The problem that is not addressed by Putnam, however, is that there are limits to the kinds of learning a 
computer system can do, if there is no solution to the frame problem and the relevance space problems it 
creates in a system attempting to learn. If by learn Putnam means that AI practitioners should develop 
programs that can learn at an epistemologically simple level, then, since we are able to do this now, I 
have no objections. If, on the other hand, by "learn," Putnam means that AI practitioners should attempt 
to develop programs that can learn at an epistemologically complex level, then my objection is that I 
don't see how this can be done, barring a solution to the frame problem. Learning may prove to be one 
way to generate a measure of intelligence in machines, but, until we have a solution to what appears now 
to be an intractable frame problem, the learning that such systems can do will not get AI to the 
announced goal of an intelligence that rivals that possessed by people.

3. The General and Specific Frame Problems and Their Principled Link

As noted earlier, historically many AI efforts have centered on microworlds. Winograd in particular, 
while he was skeptical even early in his career that language is finally neatly divisible into isolatable 
domains, knew that drastic restrictions in the language domain were necessary, at least at first, if 
computer-based natural language com-

  



Page 90

petency was to make some progress. While sequence may be important in writing a chess-playing 
program, for example, time does not play a role dynamically. Games such as chess lend themselves to 
computer simulation, as Haugeland (1986) reminds us, especially because they are formal:

The essential point is that nothing in a formal game depends on any specific features of its physical medium, as 
long as the same sequences of legal moves and positions are maintained; hence the game itself seems less 
directly tied to material embodiment. (p. 59)

As long as AI restricts itself to such limited, formal domains, problems such as the frame problem do not 
arise. When a reasoning system, however, takes on the task of reasoning about an informal macro-world, 
such as that faced when a robot walks down a college building hallway crowded with people and 
objects, the frame problem develops.

Cashing out the contrast in terms of examples may help make my point. In a chess game, while the 
search space is notoriously large, everything, in principle, is predictable. While there is certainly change 
on the board as the game progresses, it is anticipatable, unambiguous, what I would like to call 
metaphysically simple change. There isn't the host of epistemological and metaphysical difficulties 
attending formal games that there is in the attempt to model a dynamic, real world. By contrast, in a 
crowded hallway, people move around, unpredictable events take place, the knotty task of representing a 
complex, ambiguous, metaphysically problematic real world is joined.

Any representation of the scene must take into account that, from moment to moment, the representation 
must change, accommodating the changes observable in the hallway as time passes. On the face of it, 
perhaps, this seems to be a manageable task. But our robot must undertake two tasks: (a) making 
changes in the representation to reflect dynamic changes in the world, and (b) determining what the 
implications are for the rest of the representation, even though only a small part of the representation 
was changed to reflect the different state of the world. The implications include not only what must be 
changed in the representation but what must be left unaltered— determining the difference in a 
principled, as opposed to an instance-by-instance, examination is essential if the robot is to function in 
real time.
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The distinction between the general and specific frame problem is significant; Hayes is correct in 
insisting that conflating the two can lead to confusion. I want to characterize the general frame problem, 
contrast it with the specific frame problem, and then say how the two are related.

As we have seen, the general frame problem concerns how a "cognitive system" goes about updating 
beliefs. The question is how such updating should be done. The robot, for example, acts, or some part of 
its world changes, and it is obliged, if it is to interact with something like success, to determine which of 
its beliefs need updating in light of its behavior (or the fact that some part of its world changed 
significantly) and, importantly, which do not. There is an effective procedure, a finite number of 
mechanical steps for reaching an answer to a problem, for determining, for instance, whether the black 
king is in check in a chess game, but there is not one for determining which beliefs need updating and 
which do not, given a robot attempting to cross a street at a crosswalk, which does not include 
examining every item in its "database."

The general frame problem concerns reasoning about the "whole belief system" and the implications of 
actions or newly acquired beliefs for that system. Above, I drew the distinction between memory-based 
systems and storage-based systems. Storage-based systems, which include digital computers as we now 
understand them, have to have, effectively, an executive charged with the task of updating; there is no 
"web of belief' that seems to characterize memory-based cognitive systems such as people. This 
executive is forced to take on the task, given a problem, of determining what is relevant, what is not, 
what ought to be changed, what need not be changed, for each item in the database, as the system 
interacts with a macroworld. The items don't directly, efficiently interact as they evidently do in a 
memory-based system. Moreover, the general frame problem has, if Hardwig is right, both epistemic 
and ethical components. Not only must epistemic considerations, whatever they are, be incorporated into 
the maintenance of a representation of a dynamic world, but considerations of the trustworthiness of 
claims about the world must be factored into the updating. It means not only identifying and discarding 
the untrustworthy, it means repeatedly confirming the trustworthiness of the many components that 
comprise the representation, each time one component is judged untrustworthy.
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A solution to the frame problem, which I have not attempted, would be to achieve this goal: how does 
SIMON avoid having to decide, for each piece of information, that it is or is not relevant? Given an 
action, such as beginning to place a call, as in Fodor's borrowed example, how does SIMON avoid 
having to decide, for each piece of information, that it does not change under the impact of the action? 
Haugeland distinguishes between temporary and perennial facts. The general frame problem is 
identifying a "principled" way to distinguish temporary facts from perennial facts, for each moment the 
robot interacts with its environment, without beginning an examination of its axiom system which would 
generate a relevance space explosion. SIMON has to avoid considering all facts in his database, and all 
implications of those facts, in representing its world, given an act or a new belief, on pain of screeching 
to a halt, frozen, as it were, in frame-problem-induced catatonia.

The specific frame problem involves discussing axioms and how they are organized. The problem is to 
find some way to express the necessary fact that most changes in the world leave most of the world 
effectively unchanged. Suppose that Axiom 1 changes. Barring some "principled" way to do it, SIMON 
has to begin the following task:

Does Axiom 1 entail or require a change in Axiom 2?
Does Axiom 1 entail or require a change in Axiom 3?
:
Does Axiom 1 entail or require a change in Axiom n?

This would be a costly computational endeavor, even assuming that we know what require means 
algorithmically. But SIMON is not done. Suppose that SIMON discovers after doing this exhaustive 
search, that Axioms g1, h23, . . ., m-3 (just some axioms in its system) need to be changed because 
Axiom 1 changed. SIMON must now determine, for each and every axiom not in the set (Axioms g1, 
h23, . . ., m-3), whether the changes in Axioms g1, h23, . . ., m-3 entail (or require) further changes. And 
so on. I called this problem the problem of an exploding relevance space in the representation, which 
should be kept distinct from the search space of the problem, that has been the space problem which has 
interested AI historically. It doesn't take many of these cycles to appreciate fully Janlert's comment that 
SIMON would become hopelessly bogged down "in the midst of a sea of axioms representing non-
changes, endlessly calculating non-effects."
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The general and specific frame problems should be distinguished, for at least some purposes, so I am 
content to defer to Hayes in his insistence that we keep the two senses distinct. However, he misses an 
important connection. As soon as we attempt to find a "principled" (Hayes's term) way to avoid the 
specific problem, we get entangled in the general frame problem. The attempt to find a principled way to 
solve the specific frame problem inexorably entangles one in the general frame problem — which I get 
the impression Hayes would just as soon avoid as long as possible. The general and specific frame 
problems are distinct, yet linked decisively and importantly by epistemological "principle."

The importance of the frame problem, general and specific, should now be apparent but let me close 
with these remarks. It is one of those rare problems that can be made specific enough that some 
"science" can arguably be brought to bear on it — I am happy to let Hayes have his way and say that 
some "science" must be part of the agenda. At the same time, interpreted generally, it is one of those rare 
problems that embodies many new and classical philosophical problems. Positively, as a result, the 
frame problem seems destined to be one of those important problems about which philosophers and 
cognitive scientists can — just possibly — have a profitable conversation. Less happily, for AI 
proponents, it is a problem that those who have opposed AI on "poor substitute" grounds can claim 
supports their objection with significant justification.
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Chapter 5—
The Turing Test, Dennett's Defense of the Test, and Mindlike Programs

The Turing test is almost singular in its ability to generate both quick dismissals and summary praise. 
For example, Arno Penzias (1989), the Nobel Laureate physicist, offers the following critique of the 
Turing test in his Ideas and Information:

The great computing science pioneer Alan Turing once said that he would call a machine "intelligent" when it 
held up one end of a dialogue well enough to convince him — via typed messages — that he was exchanging 
thoughts with a human being. In fact, however, it's a lot easier for a dumb machine to converse with a human 
being than Turing thought. People fill in missing pieces with unconscious ease. (p. 143)

The claim seems to be that ascriptions of intelligence to a conversing machine, should it occur, would 
owe more to the person's unconscious propensity to gloss over deficiencies in the machine's responses 
than to the ability of the machine to converse. Following the well-worn path of other writers, Penzias 
attempts to augment his case by citing a brief example of a "conversation" involving ELIZA, Joseph 
Weizenbaum's widely discussed "counseling program" that simulates a Rogerian-style psychotherapist 
"counseling" a client. Two pages later, he draws his conclusion:

The point is basic. Confronted with isolated acts of "intelligent" behavior in cars—or with any intelligent 
entity — we must look deep enough to see how that entity functions under changing real-world
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conditions. If we don't we cannot evaluate the true intelligence of a system — its ability to acquire and apply 
knowledge in a variety of contexts. (p. 145)

Penzias's assessment, that the Turing test is too easy because people readily compensate for the "missing 
pieces" in a conversation, and that, as a result, we must "look deep enough" into a program simulating a 
mind in order to reach a considered view about whether it is "intelligent," is one of the latest in a long 
line of similar interpretations. Much could be said in response to this abrupt dismissal of Turing's test, 
but for now I'll settle for a consideration of the scope of ELIZA's purported linguistic competence. 
Rogerian-style counseling deliberately traffics in stock responses which, for putative psychotherapeutic 
reasons, are minimalist by intention. In Rogerian-style counseling classes, students are told to get lots of 
mileage out of ''yes," "um," "I see," "please go on," and even nods of the head. The theory is that, in 
"client-centered therapy," it is important that the client do most of the talking, and that the principal task 
of the counselor is to make it clear that he or she is listening — which is why the stock responses are 
used. During practice counseling sessions, members of such classes often laugh at the use of such stock 
phrases because of their obviousness. The interesting fact is that, in real counseling, they serve a purpose 



if the client has not been trained in such techniques.

The larger point, of course, is that such specialized, constrained "conversation" has little to do with the 
Turing test as Turing advanced it. In fact, ELIZA should be understood as a bantam expert system that 
deliberately — and I will claim necessarily—constrains the conversational search space. Given such a 
radical constraint, it is not surprising that ELIZA can seemingly perform well for a few lines. Generally, 
as Penzias does, the proponents of such a view trot out the few lines and take them to be a clear-cut 
example of how a program can speciously satisfy Turing's test. As I will argue in greater depth at the 
end of Chapter 7, the fact of the matter is that lengthier "conversations" with ELIZA, especially if one 
has some awareness of the strategy used in the program, and one asks the kinds of questions that Turing 
had in mind, unmask it for the inflexible, narrow program that it is. As a result, ELIZA-like examples, 
where the conversation is drastically constrained, is not even remotely equivalent to the test Turing had 
in mind.
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On the other side of the philosophical aisle, consider the Oxford Companion to the Mind's enthusiastic 
assessment of Turing's Imitation Game (Gregory, 1987):

Turing suggested how we could recognize whether a simulation of the human mind had succeeded or failed. His 
paper, 'Computing machinery and intelligence' (1950) remains the clearest short account of the philosophy of 
artificial intelligence, as it came to be called, and 'Turing's test' for judging the adequacy of a simulation of 
mind remains the best criterion for recognizing intelligence in a machine. The 'test' is the Imitation Game . . . It 
is of course behavioristic; but, as Turing says, we cannot 'get inside' another human being, to know directly 
whether he or she has conscious experiences, such as sensations of colour and emotional state.

Partially because of its brusqueness, I like this paragraph. It has much the same succinct flavor that 
Turing's "Computing Machinery and Intelligence" has, it is forthright in the strong claims that it makes, 
and it captures some of the history of the controversy in just a few words. Whether the test is the "best 
criterion for recognizing intelligence in a machine," of course, is a conclusion that would need 
considerably more support to be convincing. While the reader likely can't reasonably expect a lengthy 
treatment of the issues in such a publication, whether the paper, even though it is deservedly a classic, is 
the "clearest short account of the philosophy of artificial intelligence" is arguable. It is undeniably 
provocative, insightful, and I believe it is right on its major points. Alas, it is not particularly well argued 
in a number of places.

Parenthetically, the striking feature of both of these assessments is that, evidently, their authors assume 
that relatively few words are sufficient to substantiate remarkably strong claims; the reader gets little 
sense that the test, as I will attempt to argue, embodies numerous subtle philosophical issues that warrant 
much more extended treatment.



The Turing test has been subject to a good deal of criticism by philosophers in the four decades since the 
appearance of Turing's (1950) "Computing Machinery and Intelligence," which advanced the test. 
Chapter 7 will look at some of the major criticisms of the Turing test that have appeared during that 
time. The purpose of this chapter
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is to attempt to make the strongest case for the Turing test that I can, amplifying insights in Turing's 
essay but augmented by considerations stemming from Daniel Dennett's defense of the test. Since I will 
do so in the next chapter, I will not make any sustained reference to the frame problem's implications for 
the Turing test. Instead, I attempt to buttress the importance of "I/O" tests such as Turing's by appealing 
to recent work, especially by Christopher Cherniak, on rationality, computability, and the difficulty of 
understanding a mindlike program. Related to the issues that Cherniak raises, but coming at them from 
the "hardware" side, I press into service Howard Margolis's work on the importance of evolution to 
assessing how far we are likely to get in understanding the brain.1 As a result, this chapter represents 
largely a classical, non-frame-problem-buttressed defense of the test.

Let me summarize my position in this chapter. I claim that parts of Dennett's defense of the Turing test 
significantly amplify Turing's sketchy articulation, and that Dennett's defense, in turn, can be improved 
so that a compelling conventional case can be made for the Turing test's difficulty. Moreover, I argue 
that Cherniak's and Margolis's work goes some distance towards showing that we will have to rely 
largely on "I/O" tests such as Turing's because of the apparently intractable opacity that both 
characterizes mindlike programs and retards investigations of the brain and mind. The reason I say 
largely is that I believe considerations associated with the frame problem can be brought to bear on the 
relation of the Turing test to the question of machine intelligence in such a way that there is an indirect 
way to get some intervening process considerations that can supplement the I/O case for the Turing test.

I should emphasize that I argue in this chapter that the Turing test is adequate as a test for intelligence. I 
could distinguish between the adequacy of the test and its difficulty and claim that the test is difficult but 
that the test's difficulty does not entail its adequacy. That is, I could argue that, while the adequacy of 
the test would presumably entail its difficulty, the difficulty of the test does not, by itself, necessarily 
entail its adequacy. While I worry about the test's anthropocentrism, and while it is admittedly 
treacherous to advance characterizations about

1 Unless there is good reason to do so, I will sometimes not distinguish between the mind and the brain. I 
assume that the words mind and brain point to different aspects of the same entity.
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intermediate processes from the relation of input to output, I am going to take on the larger task of 
arguing that the demands of natural language competency are so comprehensive, and that the capacities 
of mindless, rule-governed symbol manipulation are sufficiently ill-suited for such a competency, that 
the best explanation that could be offered for a machine that passed the test is, simply, that it thinks. In 
short, my position is that Dennett's, Cherniak's, and Margolis' work, suitably clarified and amplified, 
helps establish both the Turing test's sufficiency and utility, neither of which has been adequately 
appreciated by its detractors.

Last, I should add that some defenders of the Turing test, impressed by the capacities of computers, have 
been favorably disposed to the likelihood that a computer or a robot could pass it and this would confirm 
that it indeed thinks. Dennett is perhaps the most obvious example of this view. On the other hand, some 
who have attacked the Turing test have been less impressed by the difficulty of the test (and usually by 
computers as well) and, as a result, have often argued that passage of the test would signify much less 
than defenders suppose. The most obvious examples are Searle and Gunderson. My view is at odds with 
both of these historical currents. I am impressed by the capacities of computers and robots—I believe 
Alan Kay (1984) is correct that we have only begun to appreciate the potential of automated 
computation—but I am even more impressed by both the difficulty of the test and its anthropocentrism. I 
think it is unlikely that a computer will pass the test, not because I have a low estimate of the capacities 
of computers (or AI-based systems), but because I am particularly impressed by the test's difficulty. 
Passage of the test is unlikely, on my view, not because the capacities of computers are relatively 
modest, but because the test is more difficult and anthropocentric than even Turing fully appreciated. 
Should a machine pass the test, however, precisely because I am impressed by the exceptional difficulty 
of the test, I would readily agree that the machine is a member of the exclusive club of thinkers.

1. Turing's Imitation Game

A few years ago, just outside the lounge door at a swank hotel in the French quarter of New Orleans, an 
exceptional scene captured my
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attention. An elegantly attired woman, perhaps in her early sixties, whose flushed face and slurred 
speech disclosed that she should have declined at least her last cocktail, exclaimed for all in the lobby to 
hear, "I just can't believe it! I just can't believe it! I just can't believe that that stripper was actually a 
man!" I surmised that she had just seen the widely publicized French female impersonator the hotel's bar 
was boldly featuring. It is a testimony to the scope of human creativity, I suppose, that female 
impersonation has become an exquisitely refined art, especially in Continental Europe. I wish now I had 
taken in the show to better appreciate how convincing a skilled charade can be.

Alan Turing (1950) was also interested in female impersonation. Perhaps there is a veiled touch of 
autobiographical allusion in his well-known suggestion, in "Computing Machinery and Intelligence," 
that we should (temporarily) replace the question "Can machines think?" with his Imitation Game. In the 
Imitation Game, a man and a woman are separated from an interrogator, whose task is to establish the 
sexual identity of the two people hidden from view. The job of the man is to convince the interrogator, 
contrary to fact, that he is the woman; the job of the woman is to convince the interrogator, true to fact, 
that she is the woman.

Next, Turing proposes a slight variation on the original Imitation Game. Instead of the man playing the 
role of the female impersonator, Turing asks us to consider the situation in which a computer plays the 
role of the impersonator. The situation is illustrated graphically in Figure 5-1. Instead of using variable 
names such as "A", "B", and "C", I use conventional names. Given such a situation, according to Turing, 
this is the pertinent question: Will Alayna, the interrogator, decide wrongly as often when the game is 
played like this as she does when the game is played between a man (skilled at impersonation) and a 
woman? What conclusion should be drawn, Turing effectively asks, if this happens?

Turing believes that he knows the answer. If the machine proves to be so good at imitating Teresa (an 
adult, native speaker of the language, reasonably well educated, etc.) that Alayna has extended difficulty 
determining which responses come from Teresa and which from the machine, then we have adequate 
grounds for concluding that the unnamed machine thinks, which, despite mildly misleading initial 
suggestions to the contrary, Turing still wishes to take as his question.

Sparing the reader sustained discussion of any one issue, Turing
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Figure 5.1.
Turing's "Imitation Game" Test for Computing Thinking

points to a couple of considerations that he believes make the Imitation Game a good test. First, he 
claims that "the new problem has the advantage of drawing a fairly sharp line between the physical and 
the intellectual capacities of a man" (Anderson, 1964, p. 4). Thus the test rules out asking the machine to 
hit a major-league curve ball or asking it to sing an Italian aria. The Imitation Game is to be conducted 
exclusively by means of conversation, preferably by means of a terminal that serves to mask irrelevant 
factors.

Second, and central to his case, "the question and answer method seems to be suitable for introducing 
almost any one of the fields of human endeavor that we wish to include" (Anderson, 1964, p. 5). The test 
is intended to include a random sampling of the astonishing range of human interests, practices, and 
passions, which are amenable to
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linguistic expression, bar none: the constitutionality of flag desecration, the relation of Muslim 
mysticism to petroleum geopolitics, formal wedding etiquette, and the possible relation of all these to 
each other, are all fair game. This second consideration surely rules out Penzias's counterexample appeal 
to ELIZA, with which I began this chapter, with its drastically constrained conversational competence. It 
is the sheer complexity of this vast interlocking web of "human endeavor," and the concomitant 
difficulty of conversing adequately about it, that anchors Turing's appeal to human conversation as the 
best test we have. He supposed, correctly I think, that this complexity means that any successful 
conversational partner in a full-fledged Imitation Game would have to think — not just mechanically, 
mindlessly manipulate symbols — in some significant sense. The ability to converse well, to respond 
adequately to the queries of the interrogator, to ask the informed questions, in turn, which inevitably 
characterize good conversations, are exclusively the grounds on which the judgment is to be made. I'll 
return to this second consideration at length later in the chapter.

Turing's long paper covers quite a broad range of issues generally related to the question of machine 
intelligence. At this point I would like to make one objection to a comment that Turing makes in the 
paper and call attention to one tantalizing statement that Turing makes but, as usual, does not amplify. 
One comment in Turing's "Computing Machinery and Intelligence" particularly warrants censure.2 
Specifically, Turing's optimism about "what steps should be taken now if the experiment is to be 
successful" is at once amusing and preposterous. Consider the following remarks:

Estimates of the storage capacity of the brain vary from 1010 to 1015 binary digits. . .. A storage capacity of 107 
would be a very practicable possibility even by present techniques. . .. Our problem then is to find out how to 
program these machines to play the [imitation] game. At my present rate of working I produce about a thousand 
digits of program a day, so that about sixty workers, working steadily through the fifty years might accomplish 
the job, if nothing went into the wastepaper basket. (Anderson, 1964, p. 26)

2 I use the full version as it appeared in Mind and was reprinted in Anderson (1964). Hofstadter and Dennett's 
(1981) truncated version omits some important remarks, in my opinion.
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While the orders of magnitude seem about right, Turing's qualifier "if nothing went into the wastepaper 
basket" is programmatically equivalent to saying "if God did the programming" — so this idealized 
qualification is useless. If no mistakes are made, quite a lot that is practically impossible for many 
theoretically interesting reasons suddenly becomes just a matter of time. Moreover, the tacit assumption 
that this is fundamentally a quantitative endeavor bespeaks a naïveté that is difficult to understand today. 
Correctly coordinating the code of 60 workers working through 50 years and producing a thousand 
digits of code each day is surely distantly beyond the humanly possible. This idealized qualification 
aside, Turing deserves credit for intuiting something of the scale of such a programming task. I'll return 
to a discussion of "scale" problems when the chapter takes up issues related to rationality, debuggability, 
and the problems inherent in attempting to understand a mindlike program.



The tantalizing remark made by Turing in fact anticipated much of what Cherniak has been working on 
with regard to rationality and undebuggability. In terms of engineering a machine which might be 
capable (with some education) of passing the Imitation Game, Turing remarks:

We also wish to allow the possibility that an engineer or team of engineers may construct a machine which 
works, but whose manner of operation cannot be satisfactorily described by its constructors because they have 
applied a method which is largely experimental. (Anderson, 1964, p. 7)

Turing raises the possibility here that a machine that "works" (I assume he means one that successfully 
participates in the Imitation Game) might be so complicated, owing to "experimental" engineering, that 
it cannot be satisfactorily described. As is usually the case in his paper, he does not expand the point but 
moves abruptly to another. I take it that he means that the experimental engineering sufficient to produce 
such a machine would be so complicated that it would preclude our comprehension of it. It might be that 
the engineering he has in mind has a lot to do with education, since he spends a considerable amount of 
time discussing the education of a computer in the paper. I suspect, however, that he had another point 
in mind. Perhaps by accident, he obliquely raises the point I will consider later in this chapter: suppose
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it turns out that a mindlike program necessarily must be so complicated, with a vast panoply of logical 
and nonlogical components, that we cannot seriously even entertain the hope of understanding how it 
works. In an article for which I have lost the reference, a writer some years ago suggested that for people 
to write a program which successfully duplicated the powers of the mind's program, we'd have to be a 
lot smarter than we are. But if we were a lot smarter, the program would, of course be more difficult, 
and so on, so that a mind's program becomes, to use Cherniak's (1988) term, an impossibility engine. 
How would we evaluate a mindlike program? What grounds could we possibly cite to substantiate the 
claim that it thinks? The answer I wish to sponsor is that an I/O test, specifically Turing's test, is the best 
recourse we have given our inability to understand well either the brain or programs that significantly 
emulate the powers of the brain.

2. Dennett's Defense of the Turing Test

In his Nobel talk at Gustavus Aldophus College in St. Peter, Minnesota, several years ago, Dennett 
(1985) took up the question that Turing, in "Computing Machinery and Intelligence," briefly discarded, 
namely, "Can machines think?" The announced intention of this talk and the corresponding paper to 
"show that the Turing test . . . is . . . plenty strong enough as a test of thinking." Dennett's claim is that 
critics have failed to recognize what the test actually requires and, as a result, have dismissed it 
unjustifiably. As stated earlier, I believe that Dennett succeeds in amplifying Turing's case but fails to 
notice the test's unfortunate anthropocentrism and makes no mention of other considerations, to be 
explored in the last half of this chapter, which count in favor of the claim that using such I/O tests is 
unavoidable.



Dennett ties what he takes to be Turing's insight, namely, that successful conversation between a 
machine and a person would necessarily indicate machine intelligence, to a "hunch" dating to Descartes; 
as we would expect, Dennett readily embraces the insight:

Descartes's hunch that ordinary conversation would put as severe a strain on artificial intelligence as any other 
test was shared by Turing. . .. The assumption Turing was prepared to make was this:
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Nothing could possibly pass the Turing test by winning the imitation game without being able to perform 
indefinitely many other clearly intelligent actions. Let us call that assumption the quick probe assumption. . .. 
success on his chosen test, he thought, would be highly predictive of success on many other intuitively 
acceptable tests of intelligence. Remember, failure on the Turing test does not predict failure on those others, 
but success would surely predict success. His test was so severe, he thought, that nothing that could pass it fair 
and square would disappoint us in other quarters. (1985, p. 124)

Let me attempt to identify two important claims ingredient in this passage:

1. Quick probe assumption: since passing the test is so demanding, any machine that was successful in the 
Imitation Game would be successful at many other tasks we would associate with intelligence — which is to 
say that language competency is not, like chess, an "isolatable talent." The assumption is that full language 
ability, like that which would be required to pass the test, has as a necessary condition a general ability that 
would not be limited to one or only a few domains. By contrast, chess-playing ability, as current chess-playing 
programs and "idiot-savant" chess players in Western history both illustrate, does not guarantee much in terms 
of other abilities. Both Turing and Dennett claim that language competency presupposes a general faculty that 
could be used in many areas that we associate with thinking.

2. No false-positives: failure at the Imitation Game would not be a predictor of failure at other tasks requiring 
intelligence; the weaker claim is that, while there might be some false negatives (a machine could fail at the 
Imitation Game and still be intelligent), there would be no false positives (no machine could succeed at the 
Imitation Game and not be intelligent).

Dennett begins his discussion of the quick probe assumption by appealing to some work by Terry 
Winograd, whom he describes as a "leader in artificial intelligence efforts to produce conversational 
ability in a computer" (p. 125). After citing an example from the early
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Winograd,3 which involves an ambiguous usage of a verb, Dennett argues that such disambiguation 
ability presupposes quite a lot:

But mere rules of grammar or vocabulary will not fix the right reading. What fixes the right reading for us is 
knowledge about the world, about politics, social circumstances, committees and their attitudes, groups that 
want to parade, how they tend to behave and the like. One must know about the world, in short, to make sense 
of such a sentence. (p. 125)

Dennett claims that questions that could be a part of an Imitation Game conversation are good quick 
probes because of the deep, wide range of knowledge, and a faculty capable of skillfully using that 
knowledge, that are requisite to successful conversation. In fact, he emphasizes the importance of the 
surprise or unusual question:

People typically ignore the prospect of having the judge ask off-the-wall questions in the Turing test, and hence 
they underestimate the competence a computer would have to have to pass the test. But remember, the rules of 
the imitation game as Turing presented it permit the judge to ask any question that could be asked of a human 
being—no holds barred. (p. 126)

The point is that the range of questions that could be asked in an Imitation Game, in the effort to unmask 
the computer and identify the person as really the person, is so large that the problem facing the 
computer programmers cannot be solved using conventional programming techniques such as stock 
responses, random guessing, or look-up in a large database. There has to be, in Dennett's terms, a 
general ability to respond to questions that would characterize an engaging conversation. This general 
ability should not be confused with a narrow, isolatable talent such as chess playing or counseling a 
client using Rogerian psychotherapy. This general ability to converse across a wide range of subjects, 
possessing at once breadth and depth, Dennett

3 The example is from Understanding Natural Language (Winograd, 1983) which was published in 1972. The 
Winograd (1986) of Understanding Computer and Cognition takes a different view.

  

Page 106

seems to suggest, requires nothing less than thinking in every philosophically interesting sense.

Dennett is not obliged to detail what thinking is or is not, nor is he obligated to spell out, even 
speculatively, what computer techniques might provide such a general ability (he is much more sanguine 
than I about this). Rather, Dennett's argument is that, whatever thinking is, and however it might be 
accomplished on a machine, if a machine passed the full-fledged Turing test, it would have be able to 
think in ways that fulfill the commitments we make, to use terms derived from Winograd and Flores 
(1986) when we say ''So and so thinks."



To emphasize his point, he proposes that we accept Ned Block's suggestion that we limit the 
conversation to the 850 words of "Basic English" and to short sentences. Even in this extremely limited 
context, according to Dennett, the number of possible conversations is prodigious:

Of course, the number of good, sensible conversations under these limits is a tiny fraction, maybe one in a 
quadrillion, of the number of merely grammatically well formed conversations. So let's say, to be very 
conservative, that there are only ten to the fiftieth different smart conversations such a computer would have to 
store. Well, the task shouldn't take more than a few trillion years — given generous federal support. Finite 
numbers can be very large. (p. 131)

What Dennett is getting to is that we can't hope to store every possible conversation in a computer in 
hopes of enabling it to pass the Turing test by means of simple look-up. Combinatorial explosion 
plagues chess and, a fortiori, conversations even as dramatically and artificially circumscribed as 
Block's. There is nothing like a detailed argument here, to be sure, but I don't believe that his reminder 
that a conversation between a computer and a person, of the type suggested by the Imitation Game, 
would quickly overwhelm a computer not specifically and imaginatively designed to defeat the resulting 
combinatorial explosion, is seriously disputed by anyone. He concludes that "there is considerable 
plausibility in Newell and Simon's proposal that avoiding combinatorial explosion (by any means at all) 
be viewed as one of the hallmarks of intelligence" (p. 131). The avoidance of combinatorial explosion is 
a problem on the view of cognition as computation assumed by classical AI. Below, I cite Howard 
Margolis's
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promising new work, which takes cognition to be based on pattern recognition and not computation at 
all; the result arguably is that combinatorial explosion is avoided and problems such as the frame 
problem do not occur.

As it is, Dennett's defense recognizes only half of the "space" problems facing a computer designed to 
pass the Turing test. The number of combinations of words in a possible conversation in a search space 
is so large that nothing like a conventional database is likely going to be able to put together the word 
combinations that will work in the Imitation Game. He has therefore correctly called attention to this 
problem effectively, even scaling the claims he could make to quite modest levels. The space problem 
he does not recognize and press into service in defense of the test is the relevance space problem that 
results from the frame problem. As I will argue later, not only is there an enormous linguistic search 
space problem at the I/O level, there is an equally daunting relevance space problem at the process level 
inside any would-be conversing program.



Dennett's defense resembles Haugeland's (1986) brief defense of the test in the sense that both point to 
the range of knowledge that a maturely conversing system would have to have. Anticipating what I will 
expand upon at much greater length in the next chapter, Haugeland observes that "to converse beyond 
the most superficial level, you have to know what you are talking about" (p. 8). Haugeland's claim is that 
the competency involved in mature language ability is not just linguistic but involves a "passable 
understanding" of issues ranging from poetry to Federal Reserve policy. As Haugeland puts it, "That's 
why the Turing test is so powerful.''

I believe that this is generally the right direction to take, although the case that Haugeland and Dennett 
make, unaided, is partially vulnerable to the kind of argument advanced by Searle and Gunderson, which 
I look at in the next chapter. If an observer only has input/output in a conversation, and claims, in light 
only of this fact, that the computer must have a "passable understanding" of the topics covered in the 
conversation, one might still question whether such a Haugeland-style argument is vulnerable to the 
criticism that understanding (or thinking) may turn out to be only one of two or more ways to account 
for the input/output. Understanding and thinking are a sufficient condition for passing the test but it 
might be questioned whether such high level mental activity is necessary. Impressive
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input/output may be thought to be indicative of understanding and thinking, if it is aided by auxiliary 
philosophical considerations, so the concern might be expressed, but it is surely not simply synonymous 
with it. What we need from Haugeland, and do not get, is a convincing argument that there cannot be 
other ways to produce the input/output than that the system understands what it is talking about.

In fact, I think this criticism of Haugeland applies partially to Dennett as well. We get a general "since 
combinational explosion is solved there must be a general intelligence"-style argument from Dennett, 
but he doesn't supply a sufficiently specific explanation of why combinatorial explosion cannot be 
managed by some new algorithmic technique.4 After all, the game of chess suffers from combinatorial 
explosion and, especially in the early days of AI, some people were skeptical that that problem would 
fall to clever programming but, since chess programs play master-rating chess these days, it seems fair 
to say that at least some problems with enormous search spaces are amenable to respectable algorithmic 
(or, if it is preferred, "heuristic") management.5 As I will argue in Chapter 6, however, the better 
explanation is that it is the frame problem that can be used to show why chess as a problem falls to 
algorithmic management but mature conversation does not. It is not just that the search space is larger 
for mature conversation but that, on my view, it differs in epistemological kind from chess. As I see it, 
then, it is the combination of the good input/output plus considerations stemming from the frame 
problem that, in tandem, generate a convincing case that a maturely conversing system must be thinking. 
As a result, Dennett and Haugeland are strong on the input/output side but weak on the indirect, internal 
considerations side, which can be used to augment the case for the Turing test.

In a claim that sounds as if it could have been written by Dreyfus and Dreyfus, Dennett points out that 
programs such as expert systems



4 I use the word manage, since the problem of combinational explosion is scarcely solved. According to latest 
characterizations I have read, the best chess programs are capable of only about three turns of "look ahead."
5 An alleged example of this is Hubert Dreyfus's purported claim in 1965 that computers would never play good 
chess. Since he was defeated by the chess program Mac Hack in 1968, that was taken as evidence by some, such as 
the futurist Alvin Toffler, that such advances would be rapid in coming. Dreyfus denies that he made such a 
prediction. See Dreyfus and Dreyfus (1986, p. 112).
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and other AI programs, of necessity, are engineered to manage a narrow range of problems.

All expert systems, like all other large AI programs, are what you might call Potemkin villages. That is, they are 
cleverly constructed facades, like cinema sets. The actual filling-in of details of AI programs is time-consuming, 
costly work, so economy dictates that only those surfaces of the phenomenon that are likely to be probed or 
observed are represented. (1985, p. 135)

Let's call this quality of expert systems and AI programs the Potemkin village problem. The Potemkin 
village problem is the characteristic problem that plagues computer programs in general and AI 
programs specifically: within a narrow range, they function well. But in order to be successful, the range 
must be drastically constricted. Once the user attempts to go outside the bounds, the programs fail 
spectacularly — recall that Haugeland calls this the jerky problem.

Unfortunately following Turing's method too closely, Dennett fails to amplify this point as fully as it 
deserves. A Dennett-compatible amplification can be obtained by citing some considerations that 
Dennett (1987) attempted to bring to bear in his discussion of the frame problem:

artificial agent[s] with a well-stocked compendium of frames or scripts . . . perform creditably when the world 
co-operates with their stereotypes, and even with anticipated variations on them, [but] when their world turns 
perverse, such systems typically cannot recover gracefully from the misanalyses they are led into. In fact, their 
behavior in extremis looks for all the world like the preposterously counterproductive activities of insects 
betrayed by their rigid tropisms and other genetically hard-wired behavioral routines. (p. 57)

Stereotypical behavior is the stock-in-trade of software as it is currently understood and developed. But 
mature conversation is not stereotypical, so, consequently, stereotyped responses to conversational 
queries of the type Turing had in mind will also be betrayed, as Dennett puts it, "by their rigid tropisms." 
In a word, they will fail to pass the Turing test.

Dennett could have reminded us that one goal of software development should be robustness over 
invalid input data; robust software
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should handle inappropriate data entry by identifying the inappropriate data to the user and reprompting 
so that, using Dennett's terms, in extremis situations are circumvented at the outset. Software as it is now 
produced is engineered to constrict the interaction between user and computer into the narrow, 
stereotypical range that software must be designed, at least so far, to handle. Conversation, by contrast, 
possesses the broadest of imaginable ranges; in extremis conditions abound and stereotypical 
conversation is inept conversation. The mark of an engaging conversation is the skill and urbanity of the 
conversational partners coping with the surprising twists and unanticipated turns of the conversation, 
with in extremis moments in particular handled skillfully. Consequently, and Dennett should have 
emphasized this more than he did, in extremis conditions are as often the rule as the exception. To force 
the user back into the circumscribed input/output range characteristic of software as we know it now — 
which is how ELIZA handles responses that do not fit into its tiny stock of phrase-matching routines — 
is pointedly to fail the test. Passing the test requires a general, flexible facility to handle such extreme 
conditions with routine ease in the very short periods of time that are available during a human 
conversation. To cope gracefully when the conversational world turns "perverse," to respond creatively 
to "off the wall" questions, is the sine qua non of the kind of informed, mature conversational ability that 
Turing surely had in mind. Torrance (1986) seconds this and reminds us of the importance of AI's 
nemesis, common sense, by arguing that "any Turing test program must be extremely robust, versatile 
and comprehensive . . . and must also have extensive reserves of common-sense knowledge" (p. 298).

Let me amplify this by appealing to relatively recent work in the psychology of testing. Sternberg (1986) 
has pointed out that, while there is generally less reliance now in the assaying of intelligence on 
psychometric tests than was the case some years ago, considerable consensus remains that vocabulary 
tests are a good way to measure intelligence. The reason, according to Sternberg, is that vocabulary tests 
represent an indirect measure of the general ability to appropriate new information and integrate it into 
old. He writes:

vocabulary [is] . . . generally considered to be one of the best measures of individual differences in intelligence 
(Matarazzo 1972). Vocabulary tests are such good measures of intelligence because they indirectly
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measure the ability to acquire meanings of new words from natural contexts and thus reflect the ability to 
acquire new information.

Mature conversational ability, as I have tried to define it, includes the skilled use of a large vocabulary, 
both in terms of using it and understanding it when it is used by a conversational partner. Often it is the 
case, moreover, that an intelligent person can understand a new word, or a new use of a familiar word, 
by taking the context in which the word is used into consideration and drawing upon "extensive reserves 
of common sense knowledge." Surely, this is part of what we value in a stimulating conversationalist. 
Conversely, repeated failure to do this would begin to count against the claim that a specific system can 
pass the Turing test.

In terms of an automatic formal system, success at handling a rich vocabulary, appropriately integrating 
and using newly learned words, and disambiguating new words during the course of a conversation is 
compelling evidence that the frame problem has been solved. As a result, and Dennett misses this 
pivotal point, the way to understand why skilled use of a large vocabulary is Turing-test significant is 
because we have successful constraint of two distinct spaces, namely, search and relevance. At the 
search space level, successful I/O means that words are handled well in the course of the conversation. 
The number of meaningless combinations of words far exceeds the number of meaningful combinations, 
especially since the set of meaningful combinations of words in a specific conversation is much smaller 
than the set of meaningful combinations of words. The result is that there is constraint of the I/O search 
space, as Dennett underscores. At the relevance space level, it means that the system is able to integrate 
words used in different senses, as they almost invariably are in engaging conversations, into its own 
representational system, and, even more significantly, it will often mean that the system is able to 
surmise the meaning of words used in the conversation which are new to the system, successfully 
incorporating the new words into an existing vocabulary. Such successful incorporation means the 
problem of an exploding relevance space has been solved. It is the second constraint that Dennett does 
not explicitly underscore.

The Newell/Simon suggestion about the relation of intelligence to the problem of combinatorial 
explosion, therefore, should be amplified to take into account how the frame problem also inhibits 
intelligence.
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An (epistemologically complex) intelligent computer system is not only one which avoids or solves the 
search space combinatorial explosion at the I/O level, it avoids or solves the relevance space 
combinatorial explosion problem at the representational level. The combinatorial explosion problem not 
only occurs "out there" in the problem domain, such as a conversation that can be observed by the 
interrogator, it exists "in here" in the system of representation that is used to generate the computer's 
successful output. In fact, solution of the latter is a necessary condition to solution of the former, 
although solution of the latter is not a sufficient condition to solution of the former. This is the case 
since, on the assumption that the relevance space problem is soluble, it is conceivable that a system 
incorporates a solution to the relevance space problem but, owing to other deficiencies in its 
programming, performs ineffectually at the I/O level. A successfully conversing system, one that 
converses effectively at an epistemologically complex level, thus has necessarily solved both 
combinatorial explosion problems — at the same time. The general point is that Dennett has made a 
good — albeit rather traditional — start toward a full defense of the test, but that he has not adequately 
taken into account the implications of the frame problem for the test.

There are other problems as well. Later in his paper, for example, he writes, "But all AI programs in one 
way or another have this facade-like quality, simply for reasons of economy" (1987, p. 137). This 
comment, taken together with the longer passage appearing before it, seems to suggest that this is 
Dennett's understanding: AI programs suffer from the Potemkin village problem because the problems 
that AI, in contrast with conventional computer science, tackles are usually the most difficult problems. 
Since writing computer programs is time consuming and resources are scarce, programmers have to be 
very selective in choosing which parts of the facade to build. The problem I have with this 
characterization is that it makes the problem sound akin to the couple building a new house who have to 
decide, because they are already at their mortgage limit, between a third stall on the garage, which 
would be convenient to house the riding mower, and a guest room on the lower level, which would be 
handy to put up visiting in-laws at a comfortable distance. Both could be done, if only the resources 
were there. But Dennett has given us no good reason to suppose that the problem is as simple as 
"economy." In fact, it is the claim of this essay that there are severe theoretical
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problems standing in the way of flushing out the programmatic Potemkin village, so that it more nearly 
approximates what it feigns. We get dismayingly little indication that Dennett understands that there are 
formidable problems, such as the frame problem, standing in the way of the production of AI programs 
that attempt to generate intelligence.

At this point, I would like to raise the question of whether Turing's test is too anthropocentric and hence 
too narrow to be a good test of thinking, generally understood. I believe the following is the case: 
passing the Turing test would surely require thinking, as both Turing and Dennett claim. But, by basing 
the test on human conversation, could it be that they have made the standards too stringent and too 
predicated on thinking in ways compatible, at least at the I/O level, with human thinking? If the issue is, 
"Can machines think as people do (at the I/O level, at least)?" then the test is appropriate. As a result, in 
terms of computer simulation of human intelligence, the test is not too species specific. But if we prefer 
the much more general question, "Can machines think?" the test is more specific than that. Another way 
to put this is: if what we are concerned about is computer simulation of human intelligence, then the 
Turing test, for reasons articulated in this chapter, is quite suitable. But if we are interested in the more 
general question, "Can machines think?" which both Turing and Dennett profess to be their question, 
then I am less confident that the test measures this and only this.

Allow me to consider the role of natural language in the Imitation Game so that I can explore the 
problem of the test's anthropocentrism more fully. Part of the appeal of the Imitation Game, as Dennett 
correctly underscores, is that the interrogator is precluded from discriminating against the computer on 
the grounds of appearance, of unfairly concluding that, since the computer doesn't look anything like a 
person or a particularly smart dog, it could not possibly belong to the club of thinkers. Dennett writes 
that Turing's "point was that we should not be species-chauvinistic, or anthropocentric, about the insides 
of an intelligent being, for there might be inhuman ways of being intelligent" (1985, p. 132).

It is this claim which occasions my somewhat reluctant appeal to the later work of Terry Winograd and 
Fernando Flores (1986). It is somewhat reluctant because Winograd, in his post-AI-proponent days, has 
become a disciple of Continental philosophy. I don't wish to
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impugn Continental philosophy per se; rather, my concern is that Continental philosophy tends to 
wrestle with those dimensions of human experience that are far beyond the announced topic of this 
essay.

The question is this: does the Turing test preclude species chauvinism in the way that Turing and 
Dennett suppose? It does so only on one view of natural language, namely, that language significantly is 
a matter of correspondence between that which is represented and the linguistic representation. 
Winograd and Flores document at some length what they call the rationalistic theory of language. 
Ingredient in this rationalistic theory, according to Winograd and Flores, is a truth theoretic 
characterization of meaning. To put it roughly, natural language is extricable from the context of human 
tradition and expectation, such that it can, in principle, be expressed in terms amenable to capture by 
computer program. Such a view of natural language, they argue, denigrates the essential rootedness of 
language in human tradition and experience.

Appealing to the phenomenological work of Heidegger and the hermeneutical work of Hans-Georg 
Gadamer, Winograd and Flores argue that human language is grounded in the human situation, with its 
background of tradition and tacit expectations, in such a way that the meaning of conversation or a piece 
of writing is necessarily dependent on the "horizon" that the conversationalist or reader brings to the 
linguistic task. This involves the vast range of cultural conditions and human experiences that largely 
tacitly condition any human conversation. In this view, it is not possible to isolate human language from 
its thoroughly human context, thereby seemingly purging it of its chauvinistic qualities.

The question I raise is this: do we obviously escape the problem of species chauvinism by hiding the 
computer behind a wall and judging its intellectual capacity on the basis of its ability to handle natural 
language as well as an adult? Is taming the problem of species chauvinism in judging the intellectual 
capacity of a radically different "cognitive system" this straightforward? The case that Winograd and 
Flores make is that our language, probably more than any other human phenomenon, embodies who and 
what we are. The objection I raise is not the difficulty of using the language in such a way that the 
Imitation Game is successful; rather, the objection is that, in assaying the intelligence of a computer by 
testing its natural (human) language
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competence, we have not obviated the species-chauvinism that Turing and Dennett suppose. In fact, 
Winograd and Flores, whose extended argument has been only briefly alluded to here, would surely 
claim that just the opposite is the case. In selecting human language as the test medium, Winograd and 
Flores would surely counter, Turing selected that medium most likely to result in the species-
chauvinistic judgments that Dennett praises the test for avoiding. Minimally, I don't see that hiding the 
computer behind the wall and using a teletype for communication, alone, clearly solve the problem or 
assist the identification of "inhuman ways of being intelligent."

Admittedly, finding a way to identify and measure intelligence that does not presuppose the species-
specific ways we happen to be intelligent will not be easy. If, as the biologists tell us, vision developed 
to support survival and reproduction, and intelligence developed to support vision, attempting to say 
something nonchauvinistic about machine intelligence will be even more difficult than attempting to say 
something nonchauvinistic about grasshopper vision. Classical AI proponents, of course, will not be 
swayed by this point since, as they see it, intelligence just is the manipulation of logically related 
constituents under the control of a program — and this can occur, at least in principle, just as readily and 
measurably in a machine as it does in a person. In a word, biology is finally irrelevant.

3. Cherniak's Critique and the Mind's Program as an Unknowable Ding an Sich

Suppose that we were given a program by visiting, extremely smart aliens which, running on our best 
hardware, duplicated closely the properties of the human mind, whatever they are, and that such a 
program would be worth academic acclaim and enormous financial return — provided that we could (to 
a reasonable degree) demonstrate that it closely duplicated the properties of the mind. Coveting 
distinction and treasure, how could we do this?

Two possibilities come to mind. One would be to study the program until we understood it so well that 
we could articulate how it had the properties at issue. This first alternative assumes that we understand 
the properties of the brain/mind. In the last section, I challenge this assumption. As a result, I claim that 
the first alternative fails on two
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counts. First, it fails because we don't understand the brain well enough to claim that we could identify a 
mindlike program. Second, I claim that we cannot understand, because of its complexity and size, a 
mind-like program. Since we have only the dimmest understanding of both minds and mindlike 
programs, it follows, on my account, that we cannot say that program x has the properties of a mind. The 
other possibility would be to test it at the input/output level, which, of course, is what the Turing test 
does. As a hybrid third alternative, one might argue for a combination of these two methods.

What I propose to do in this section is discuss and amplify some of the limitative claims advanced by 
Christopher Cherniak, with the goal of advancing a substantial case that the first alternative is not viable. 
If these are the only two methods of reaching our goal, and it turns out that the first is not viable, then it 
would follow that our only recourse would be the input/output method.

Cherniak's (1988) principal claim is that a program that thoroughly models the mind will turn out to be a 
program that differs fundamentally from conventional programs. In other words, it would not be the case 
that such a program would be similar to the latest expert system except that it would be, to pick a 
theologically interesting number for lack of a better method, 666 times larger. Instead, it is the 
unparalleled characteristics of a mindlike program that deserve our attention.

A complete computational approximation of the mind would be a (1) huge, (2) "branchy" and holistically 
structured, and (3) quick and dirty (i.e., computationally tractable, but formally incorrect/incomplete) (4) kludge 
(i.e., a radically inelegant set of procedures). The mind's program thus turns out to be fundamentally dissimilar 
to more familiar software, and software, in general, to be dissimilar to more familiar types of machines. . . . In 
this way, the full mind's program appears to be a type of practically unknowable thing-in-itself. (p. 402)

Each of these characterizations complicates our ability to understand such a program. Let me amplify 
them briefly, in order. First, even with modular structure, huge programs are notoriously difficult to 
comprehend. By treating subroutines as black boxes, we can have some understanding of large programs 
in terms of breadth. Or we can get some in-depth understanding of specific routines if we are willing to 
sacrifice breadth. But simultaneous breadth and depth under-
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standing of large programs, especially those approximating the size of a mindlike program, is not 
possible. Second, a good part of recent computer science has been devoted to limiting branchy computer 
structures because they so quickly impair human understanding. However, the singular demands of a 
mindlike program require the branchiest of program structures. Third, quick and dirty routines, often the 
brunt of jokes in software engineering contexts, turn out to be, according to Cherniak, necessarily 
characteristic of a mindlike program; such routines also cloud our ability to fathom how a program 
works. Last, kludge, or ''radically inelegant set[s] of procedures," are far from computer science ideals 
because they reflect the fact that the needed operation is not well understood, so that we wind up using 
programmatic structures that we don't understand to solve problems that we understand poorly, crossing 
our fingers that the kludge will get us past the programmatic crisis.

Cherniak argues that mindlike programs have these four under-standing-limiting characteristics 
simultaneously. The result, if he is right, is that mindlike programs are monumentally inaccessible to 
human understanding. This is the reason why Cherniak reaches back into philosophical history for 
Kant's term, ding an sich, which, as Kant understood that German phrase, means that which is beyond 
human observation or experience, and uses it to emphasize the inaccessibility of a mindlike program. 
For Cherniak, a mindlike program is a 20th-century instantiation of a Kantian ding an sich.

Much of Cherniak's recent work, both in this paper and in his Minimal Rationality (1986), has to do with 
challenging the cognitive science view that mentality is largely cognition, which is largely ratiocination, 
which, in principle, is amenable to study and understanding. As Cherniak puts it, "cognitive science 
seems to presuppose the manageability and feasibility of such a total mind's program" (1988, p. 402).

In fact, the feasibility of understanding a mind's program is what is at issue. Part of the reason why 
cognitive science has turned to software as an objective cognitive investigation stems from the 
difficulties in analyzing the brain. The hope is that the software will be accessible in ways that the brain 
has not been, at least up to now. The problem with this assumption, according to Cherniak, is that it does 
not take into account the extraordinary difficulty of understanding software that even begins to approach 
the complexity of a mind's
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program. Software's characteristic "branchy structure" means that a mindlike program has its own 
unique opacity which stands in the way of understanding either how it works or what causes it to fail:

The texture of failure for a program differs [from hardware] because of its branchy structure: There are not just 
many distinct states, but a combinatorially exploding number of ways in which one state can be connected to 
another. The branching is not just wide, but deeply hierarchical in organization, nested iteratively through many 
layers as in truth tables. (1988, p. 409)

Cherniak takes the result of this to be that our hope for debugging a program simply by I/O testing alone 
is illusory. Given that there are a combinatorially exploding number of ways in which one program state 
can interact with another for even conventional, smaller programs, the result I take from these 
considerations is that they count against the hope that we can even begin to understand a mindlike 
program with its size, formally incorrect structures, and inelegantly related procedures.

One of Cherniak's claims is that formally incorrect heuristics, which he believes characterize human 
mentality, are not irrational but stand reasonably between formal correctness, which yields 
computational paralysis, on one hand, and random guessing, which generates at best rare success solving 
problems on the other, both of which are presumably antithetical to successful problem solving. The 
problem, according to Cherniak, is that many cognitive models fail to recognize the problems inherent in 
attributing to cognitive agents the "impossibility engine" of a deductive system able to produce usable 
inferences in the context of finite time and virtually infinite real-world complexity.

Standard rationality models require the agent to be some sort of perfect logician, in particular, to be able to 
determine in finite time whether or not any given formal sentence is a first-order logical consequence of a given 
set of premises. Half a century ago, however, Church's theorem showed that the predicate calculus was 
undecidable — that is, no algorithm for this task is possible. (p. 403)

The point is that a person cannot begin to determine which propositions follow from a set of premises, 
even if the set is unrealistically
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small. Quantifying his claim, he suggests that, given a set of 138 independent propositions, a speedy 
inference engine could not evaluate the truth table for the set in the time the universe has existed. Put in 
more qualitative terms, he suggests that such considerations lead to the conclusion that there is a distinct 
"upper bound on the size of a human cognitive system" (p. 404).

Cherniak accepts the common estimate that the human cognitive system is able to store something on 
the order of 1 to 10 million different items. The question he wishes to ask is: What is the significance of 
this magnitude for cognitive science? He juggles quite a few purportedly related numbers and then 
suggests that, in order for the mind's program to handle such a vast amount of data, it would have to be 
on the order of one hundred times the projected size of the immense Strategic Defense Initiative (or 
"Star Wars") battle-management software. He rehearses some of the well-publicized recent history of 
differences of opinion on the part of software engineers as to the reliability of the proposed SDI 
software. The point of such controversy, according to Cherniak, is that large programs encounter at least 
practically intractable problems in terms of reliability; the mind's program, on the plausible assumption 
that it would be many times larger than the SDI software, would likely be even more riddled with 
reliability problems, since "a cognitive system's program will tend to act as a failure amplifier because of 
its intrinsically holistic structure of interconnection" (p. 408).

Cherniak's analysis can be augmented with some of the following considerations from the theory of 
algorithms. Discussion of program correctness often concentrates on bugs and debugging for the reason 
that computer scientists, not surprisingly, value the goal of bug-free programs. Generally, program 
testing turns out to be of two categories, which, given the previous discussion, should not be unexpected. 
First, programs can be tested against a set of data. As Goldschlager and Lister (1982, p. 107) put it, 
however, "The important feature of testing is that the effect of the program is discovered only for the 
particular chosen set of test data." It might be argued that Goldschlager and Lister's comment counts 
against the Turing test, since it is an I/O test. However, I claim that this comment pertains only to more 
conventional programs; the branchy quality of a mindlike program acts, as Cherniak noted, as a failure 
amplifier. That is to say, serious problems in a mindlike program will appear quickly, especially in a
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conversational context, precisely because a good conversation is an excellent quick probe. As a result, I 
don't see that Goldschlager and Lister's observation is particularly a problem. The problem with testing 
over a necessarily finite set of test cases, of course, is that most interesting programs accept a large 
number of inputs; testing can only verify correctness for a tiny percentage of inputs. The number of 
valid inputs for a mind's program, obviously, would be prodigious.

Second, we can attempt to prove a program correct. The advantage of proving a program correct is that 
we can be sure, if in fact the program is correct, that it will work for all valid input data (a program that 
finds square roots for all numbers less than the maximum representable number for that system will not 
be able to find a root for a negative number, which is not a valid input). But proving a program correct 
requires a proof distinct from the program itself. Now, instead of one suspect item, namely, the program, 
we have two, the program and the proof. But suppose we write a proof for a program. The new worry is 
whether the proof itself is correct; since proofs can be larger than the programs they prove, the proof 
becomes more subject to error than the original program. As Cherniak puts it, "To establish adequate 
confidence in a program by this [proof] methodology, one moves out of the frying pan of questions 
about the program's correctness and into the fire of an even more real-world unmanageable correctness 
proof' (1988, p. 407). We now have questions about program correctness and proof correctness. We 
might attempt a proof of the proof, but even the thought suggests we have become entangled in an 
infinite regress. Unless we can attach complete confidence to the proof, we have inadequate grounds for 
concluding that either the program or the proof(s) are correct.

One practical point that rarely gets mentioned in these discussions is that programmers rarely write a 
program directly in machine code — especially in the case of large, ambitious programs like those 
attempted in AI. Instead, such programs are often written in a language such as LISP or PROLOG. 
Suppose that we write the mind-program in PROLOG. The PROLOG interpreter or compiler itself 
would be written in another language, such as a C compiler or LISP, which, in turn, presupposes an 
operating system, which presupposes both code written in ROM and the hardware's microcode. Each of 
these levels almost certainly has bugs. As a result, attempting to prove a large PROLOG program correct 
would be a matter of showing its correct-
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ness on all these different levels, not just the PROLOG program itself. Moreover, PROLOG is neither 
complete nor consistent. My point here is that correctness of the program is only one small part of what 
might be called systemic correctness. Even if proving the correctness of the PROLOG program were 
remotely possible, it becomes humanly impossible to construct a convincing proof of this magnitude. As 
Cherniak puts it, "As programs and their verifications get bigger, the proofs power as convincing 
machines thereby asymptotes" (1988, p. 407). As a result, I conclude that proving a large program, such 
as a mind program, correct is not feasible.

I also maintain that proving a program correct and understanding it are significantly related. If it is not 
feasible to prove a program correct, then our justification for claiming that we understand it erodes 
because we can't claim to understand how it performs in all situations; conversely, if it is not 
understandable, it is difficult to imagine how a proof would be constructed. As a result, I would rephrase 
Cherniak's observation this way: as programs get bigger, the feasibility of understanding them decreases. 
If we can accept Cherniak's claim that the mind's program would be on the order of 100 times the size of 
the SDI's battle management program, it would seem that, as the mind's program approaches an 
adequate duplication of the properties of the mind, our ability to understand it radically wanes. In 
practice, in fact, on large programming projects, in which the program is much smaller than a mind 
program would be, each programmer typically "understands" at best a tiny percentage of the production 
process. In sum, the hope that we can understand a mindlike program to any significant simultaneous 
breadth and depth is a false one.

The picture of a mindlike program that emerges from studies in computability theory is one that is 
anything but clean, logical, and symmetrical. In taking the computer to be analogically helpful in 
understanding the mind, we run the risk of mistakenly imposing logical structure on that which was 
generated out of biological necessity and which had to settle for an inelegant hodgepodge of 
mechanisms that, according to Cherniak, is the equivalent of a kludge:

It is at least a question of current empirical investigation, and of some controversy, whether the mind is in fact 
hyper-Euclidean in this way. After all, what is elegant to the eye of the cognitive theoretician may not be 
obediently implemented by Mother Nature because it may not be
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efficient for actual processing: Thus, the alternative emerging picture of mind instead as an in-practice 
anomalous kludge of limited-applicability special-purpose procedures. (1988, p. 409)

Surely an enormous, "anomalous kludge of limited-applicability special-purpose procedures" is not a 
promising candidate for significant understanding.

The result I take from this section is that we are unable to reach a general understanding of a mind-like 
program which is sufficiently rich that we could characterize how it works at anything more than an I/O 
level or, at the most, a level or two down in the process itself.

4. Pattern Recognition, Evolution, and the Mind's Accessibility

In this last section of the chapter, I will call attention to some of the pertinent aspects of Howard 
Margolis's (1987) account, in his relatively recently published Patterns, Thinking and Cognition, of how 
human mentality, especially cognition and judgment, is based exclusively on a pattern-recognition 
faculty that developed in natural history. Advanced as an alternative to the computational picture of the 
mind that is most notably associated with AI and cognitive psychology, Margolis's theory does not 
attempt to detail how pattern recognition works since, as he points out, pattern recognition is poorly 
understood. Instead, he attempts to provide an account of how pattern recognition developed in natural 
history in animals as a way to solve survival problems. The reason his work is relevant to this chapter is 
that, if he is right, our ability to achieve a deep understanding of human mentality at what I have called 
the process level is likely to remain inconsequential for the foreseeable future.

Before I begin, however, I wish to rehearse briefly the distinction I developed in Chapter 3 between P-
simulation and I/O-simulation. In I/O-simulation (IOS), what we attempt to simulate is output as 
compared to input, relative to the system being simulated, in the context in which the simulation is 
taking place. For example, all of the chess programs with which I am familiar should be described as I/O-
simulations. There is little or no effort to simulate human chess playing in terms of the process that 
people presumably use to play chess.
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While we don't know a great deal about how people play games like chess, it seems obvious that they 
don't play it the way that current chess programs play it. (My guess is that a significant component of 
human chess playing, as in any game, is deeply pattern recognition based.) As a result, the level of 
simulation is only input/output deep. In fact, much of what currently passes as "AI" is only IOS and, to 
be sure, often such I/O-simulation is perfectly suitable for the task at hand.

In process or P-simulation, not only do we attempt to simulate output as compared to input, in a way that 
parallels that which is being simulated, we attempt to simulate the process, to some level of depth, by 
which the output is gotten from the input as well, relative to the system being simulated. For example, if 
we were to write chess playing programs with an eye to simulating the way human chess champions 
play, this would count as an attempt at P-simulation. We could distinguish a number of levels of P-
simulation: a less deep level of chess P-simulation might simply incorporate a number of rules of thumb 
that specific chess players often employ. A much deeper P-simulation might attempt to simulate the way 
that one person plays chess, taking into account his or her favored strategies, personal idiosyncrasies, 
perhaps even taking into account this or that psychological or biological profile of the person. The point 
is that P-simulation, if we know enough about the phenomenon being simulated, can be taken to quite a 
number of different levels. The more deeply a simulation emulates that which is simulated, obviously, 
the more must be known about the system that is simulated. As a corollary, it follows that, if little is 
known about a system that we want to simulate, any P-simulation will necessarily be quite shallow or 
may not be possible at all; in such a case we may be limited to an I/O simulation.

It should be obvious where I am headed: in simulations limited to shallow P-simulations or especially 
I/O simulations, I/O-based tests, such as Turing's, become more important. If deep P-simulations are 
possible, then, other things being equal, I/O-based tests are less important. I believe that Margolis's work 
counts in favor of the claim that simulations of human mentality, at least in the foreseeable future, are 
likely to be limited to quite shallow P-simulations at best and, in the worst case, I/O-simulations.

Margolis concedes that he is not the first to advance a theory of cognition based on pattern recognition. 
He does claim that his is a
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radical proposal, since he wishes to base cognition exclusively on pattern recognition, and not appeal to 
computational mechanisms when all else fails:

So it is essentially universal to concede an essential role to the cuing of patterns and patterned responses; but 
precise articulation of just what is happening when a pattern is recognized is an unsolved problem. Because so 
little can be said, the dominant tendency (until very recently, at least) has been to move as quickly as possible 
from pattern-recognition to some algorithmic, rule-following procedure which can be articulated in a discussion 
and perhaps instantiated on a computer program. (p. 3)

Fischler and Firschein (1987) make exactly the kind of move that Margolis rejects. They observe that 
very little is known about the brain. Since so little is known about the brain, they suggest, we should turn 
to the computer for analogical help.

there is little hope that the structures we can currently observe and describe will shed much light on how the 
brain really functions. In a device as complex as the brain, function is too deeply encoded in structure to be 
deciphered without already knowing the relationships for which we are searching. . . . At present, our best hope 
for understanding the brain and the nature of human intelligence appears to be through analogy with the 
computer and the associated mathematical theory of computation. (pp. 23-24)

Of course, this presupposes that a computer and the brain have enough in common that study of the 
former can shed some light on the latter. By way of contrast with many cognitive theories, Margolis 
wishes not to suggest that his theory can be expressed in a computer program:

Unlike the many students of cognition for whom a viable cognitive theory must be implemented as a computer 
program, I have disowned trying to build a theory of that sort. Pattern-recognition is all there is to cognition, on 
the account I will give; but no one can say much yet about what the brain is doing when it recognizes a pattern. 
(1987, p. 3)

  

Page 125

Instead of attempting to build a theory that could be tested by means of simulation on a computer, 
Margolis attempts to account for what little we know of the brain — and to explain at the same time why 
so little is known — by tracing some natural history and attempting to tease out some resulting 
considerations. He particularly focuses on the relation of decision making to evolution. Echoing some of 
Cherniak's articulation of the cognitive agent's dilemma of computational paralysis versus random 
guessing, Margolis claims that the two extremes facing the agent making a decision which affects its 
survival are hesitating too long and jumping too soon:

For less trivial brains absolute perfection could hardly be approached. So we want to be alert to various 
properties which, if achieved by a system, would contribute to its ability to perform well despite flaws. . . . it 
would surely be undesirable to work out the response to every situation from scratch. Rather, we should look for 
standard responses to various frequently encountered situations. . . . Consequently, there surely will be some 
tradeoff between what statisticians call errors of the first kind (hesitating too long in seeking the best response) 
and errors of the second kind (jumping too soon). (p. 27)



While he doesn't use results from the theory of computability, as Cherniak does, there are some clear 
parallels. Animal survival depends on making good choices a significant percentage of the time; those 
who do not make good choices perish and sometimes do not pass on their genes to the next generation. 
Animals who hesitate too long before deciding may perish; likewise with those who decide too quickly. 
What is needed is some kind of faculty that will enable the animal to avoid the perils of the two extreme 
poles. That faculty, Margolis claims, is the ability to recognize similarities between current situations 
and past situations — in a word, pattern recognition.

Margolis attempts to explain why pattern recognition, which, in his view, is all there finally is to 
cognition, is so poorly understood. He claims that two Darwinian principles, namely, that variation is 
blind and selection is nearsighted, result in conservative continuity in systemic structure as the 
generations pass. These two principles, combined, entail that systemic structure will change only as fast 
as it must to support the function or functions favored by selective pressures. Margolis labels this 
relationship between the two Darwinian
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principles, on one hand, and structural conservatism on the other, the principle of continuity.

evolution is creative with respect to function in ways that remain very conservative with respect to structure. . . . 
Structure tends to be conserved, even while function (in evolutionary time) tends to be marvelously creative, not 
because that leads to the best of all possible outcomes but because a process that proceeds by nearsighted 
selection among almost random variations has much better chances to produce new functions out of old 
structures than to produce new functions and new structures. (p. 36)

To put it simply, evolution had to work with what was, so to speak, at hand, rather than what would have 
been ideal in terms of our ability to investigate and understand. The principle of continuity provides an 
account, for instance, of why there is such similarity, in terms of evident physical structure, between a 
feline brain and a human brain, but significant functional difference.

Margolis observes, as others have, that "the way our brains operate seems quite odd." He argues, 
however, that it is odd only from the perspective most associated with conventional cognitive science 
and AI. Logical structure, that which is amenable to computer programming, is what AI wants to see in 
all cognitive structures, the brain included. Margolis claims that this attempt to attribute logical structure 
and computational mechanisms to biological structure, which was produced by a natural history that 
found, as it were, pattern recognition to be the most efficient way to impose new function over slowly 
changing structure, will mislead us if we wish to understand the brain rather than "cognitive systems" 
we can build and, to some extent, understand better than we do the brain.

The analogy that Margolis suggests is not the computer, with its logical architecture, but an old city with 
its architecture dominated by historical events and turns, layer upon layer, new grafted onto old, with 
little evident long-term planning:



once we think about the brain as necessarily the latest stage of some Darwinian pathway . . . We must expect 
that the architecture and functioning of the brain would be more nearly analogous to the structure of an old city 
like Paris or Rome than to a contemporary,
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designed from scratch machine like a spacecraft or a computer. . . . Under Darwinian evolution, novelties 
emerge from a process of blind variation, favored (or not) by near-term advantage. There is nothing in the 
process that is more than vaguely analogous to planning ahead. (p. 33)

Since we're reduced, at present, to trafficking in analogies, allow me to expand Margolis's analogy. An 
old city strikes me as a good analogy since, as Fischler and Firschein (1987), who, as we saw, are 
otherwise disposed to using the computer analogically, put it, ''the evolution of the human brain has been 
a process of rearranging and augmenting the basic parts of the brains of lower vertebrate animals" (p. 
35). Moreover, Penfield's (1975) suggestion that conscious awareness resides in the brain stem, or old 
brain, rather than the neocortex, or new brain, is compatible with the larger claim of radical functional 
change developed over conserved physical structure. Given these considerations, I suggest the modified 
analogy of an old city seen from the air in which the underlying layers can scarcely be seen at all and 
what we have to do is surmise both underlying structures and how those structures support the life of the 
city, by looking, while flying over the city. The general point is that novel function embodied in 
conservative structure is a formidable object of study. While we can see the outside of the structure, it is 
extremely difficult to surmise function from structure alone or how such structure can support such 
seemingly different function — which is another way to articulate the classical mind/body problem.

Margolis also argues that the kind of calculation ability we associate with computers appeared only very 
recently in natural history. On his view, pattern recognition is fundamental; logical and calculative 
reasoning, on the other hand, represent something like a functional overlay.

reasoning appears only at the most recent stage of a very long course of evolution, [so] that we would hardly 
expect that a refinement of reasoning (calculation) — the capability for manipulating abstract rules of 
inference — would lie at the root of everything, or anything else. On the argument here, that puts things exactly 
backward.

. . .Under this [Margolis's] view, even the most abstract sorts of reasoning (formal logic and mathematics) must 
be reducible to pattern-
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recognition. The skill human beings exhibit in such matters would be akin to the skills we exhibit (for example) 
in playing the violin. It is not a natural, inborn, or routinely developed activity of the mind. Cognition (on this 
view) is intrinsically "a-logical." (pp. 44-45)

According to Margolis, logical and mathematical skills as we have them depend on pattern recognition. 
The claim is that pattern recognition, as developed in natural history, is the kind of faculty that can 
support natural language, logic, and mathematical reasoning but not the other way about.

These considerations, it seems to me, support two general conclusions. First, the brain will continue to 
be resistant to investigation, because the principle of continuity, for all its marvel as an evolutionary 
mechanism, serves to mask its own workings. The fact that we have made such comparatively modest 
progress in brain science over quite significant spans of time seems much more compatible with the 
analogy of the brain as an old city rather than a new computer, and with the basic cognitive process as 
pattern recognition rather than computation.

Second, and consonant with the major theme of this essay, it calls into radical question the 
appropriateness of the computer as an analogical object of study at deep P-simulation levels. Margolis 
surely has not demolished the classical AI view of intelligence, but his approach to the problem, it seems 
to me, possesses some distinct advantages. It would explain the syndrome of initial success, frustration, 
and then abandonment of an effort that has characterized so much of AI history — what Dreyfus and 
Dreyfus call the fallacy of the first successful step. It explains why we haven't gotten very far in 
explaining pattern recognition in terms of symbol manipulation. As noted above, that is exactly the 
wrong way about. And, to return to the major issue of the previous chapter, it explains why people 
evidently don't suffer from a frame problem.

To be sure, many kinds of mechanisms can be simulated, since there are many ways mathematically to 
construct a rule. But for computer simulation of the brain, such simulations will be helpful at the I/O 
level, or for specific functions, but not for systemic, deep P-simulations, since, if Margolis is right, the 
deep processes of the brain are radically noncomputational. In computers, architecture and program 
reign supreme, and hardware is finally not very interesting;
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in brains, by contrast, the evidence cited by Margolis and regularly seconded by Fischler and Firschein 
favors the claim that hardware still very much matters; the way that function is rooted in hardware 
apparently solves the problems that bedevil computational attempts at the generation of intelligence.

The importance of these considerations lies in the picture of complexity of the brain that they paint. That 
we have made such little progress in understanding the brain from a neurophysiological perspective is 
explained by the continuity-of-structure/novelty-of-function picture Margolis provides. Novel function 
rooted in conservative structural change, generated incrementally by environmental selective pressures 
over vast spans of time, looks to be singularly resistant to successful investigation. As a result, 
especially given the modest investigatory powers of science, the prospects for coming to anything more 
than a shallow understanding of the human brain, at least in the foreseeable future, seem poor.

5. Conclusion

I have advanced reasons supporting the claim that mature natural language competence is the most 
demanding computer simulation of human mentality imaginable, and that, unlike narrow, isolatable 
talents such as chess playing and Rogerian counseling, it presupposes intelligence. I also argued that we 
face severe difficulties understanding both mindlike programs and the mind; the result, I claimed, is that 
the prognosis for understanding as well as generating deep P-level simulations of the mind is poor. 
Given these two considerations, I conclude that we will have to rely on "I/O" tests such as Turing's for 
assessing what computer simulations of human mentality we can attempt and that his Imitation Game 
remains the best "criterion for recognizing intelligence in a machine," to requote Gregory (1987), that 
we possess.

I criticized Turing for the philosophic thinness of his essay "Computing Machinery and Intelligence," 
specifically for rushing precipitously from one topic to the next without the sustained consideration 
these subtle topics deserve. Since he worked in the earliest days of the development of the computer, 
perhaps we should excuse his unduly optimistic prognosis of how people might begin the process of 
building
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a machine that thinks. Moreover, he clearly did not comprehend the magnitude of the "scale" problems 
as Cherniak brings them to our attention. On the other hand, as I argued, he got one important issue 
correct: He surmised that successful participation in a full-ranging human conversation represents a test 
sufficiently severe that, taking into account the staggering difficulties that coping with the demands such 
an activity would place on a machine, there would be good grounds for concluding that such a machine 
was, indeed, thinking.

Dennett's contribution to the issues at hand centers on his "quick probe" assumption: inherent in this 
assumption is the claim that language ability differs fundamentally from "isolatable talents" such as 
playing a respectable game of chess or finding a ninth-order derivative. Mature language ability, 
according to Dennett, presupposes a general ability that could be used in numerous activities that require 
some measure of intelligence. The claim is that the competence a machine would have to have to pass 
the test could not be based on stock responses, as in the ELIZA program, or computation based on 
scripts or frames, or look-up in a large database, since the latter is orders of magnitude too slow and also 
faces the frame problem. While I complained that he missed considerations stemming from the frame 
problem and the relevance space problems it generates, I seconded Dennett's claim that demanding 
queries asked of a candidate system are good quick probes for intelligence.

I appealed to Howard Margolis's argument that human intelligence is based exclusively on pattern 
recognition, not rule-based manipulation of symbols that represent the world. His claim is that whatever 
logical and mathematical competencies we have are predicated on pattern recognition processes and not 
the other way around; the problem, of course, is that pattern recognition is ill understood. If we could 
determine how to develop robust pattern-recognition capacities in a machine, then possibly problems 
such as combinatorial explosion and the frame problem could be avoided or defeated and, as a result, 
full-fledged machine language competency might be feasible.

Consequently, my position is that passing the Turing test would require genuine intelligence on the part 
of the computer. Such a claim does not mean that a weak or truncated application of the test might not 
result in a premature claim that a computer had passed the test; testing procedures of all kinds are 
vulnerable to inept administration. Rather, the claim is that passage of the full-fledged, correctly admin-
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istered test could only be accomplished by a genuinely intelligent system. Fully engaging in an 
extended, mature human conversation is the most challenging, feasible problem I can imagine — it is 
challenging because we don't know how we do it, and is feasible since we clearly do it. But, like the 
classic halting problem, it may not be computable. In fact, any algorithmic process with which I am 
familiar attempting tasks requiring humanlike intelligence founders on the combinatorial explosion (the 
frame problem can be considered a special case) that Newell and Simon, perhaps unwittingly, pointed 
out stands in the way of true machine intelligence. Rather, recapitulating natural history after a fashion, 
it may be necessary to build such a machine on pattern-recognition processes rather than rule-based 
manipulation of formal symbols. The daunting problem is that we currently have little idea how to do 
that.

In sum, I concur with Turing and Dennett that a machine that passed the test would have to think. 
However, since we haven't solved the frame problem and since the prognosis for its solution seems poor, 
as argued in Chapter 4, I am skeptical that we have even begun to understand how such a machine could 
be built.
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Chapter 7—
Two Major Critiques of the Turing Test:
Searle and Gunderson

In Chapters 2 and 3, I discussed some of the properties of digital computers, I illustrated how we 
simulate phenomena on computers, and I developed a distinction between epistemologically simple (ES) 
and epistemologically complex (EC) learning. In Chapter 4, I looked at the Dreyfus critique of AI, and I 
attempted to explain why a more precisely expressible, yet related, problem facing AI, specifically the 
frame problem, constitutes a formidable impediment to development of rule-based AI systems that 
attempt functionally to approximate human-level intelligence. In Chapter 5, I argued that a mature 
natural language competency possessed by an artificial system would presuppose a generalized 
faculty—in contrast to a highly specialized faculty, which is typical of AI systems to date—which is 
significantly equivalent to the faculty we use when we think and use language. In short, I argued that 
passage of the Turing test would constitute adequate grounds for concluding that the machine passing 
the test was thinking. I claimed, however, that we have little idea how to build such a machine, and I 
speculated that natural language competency of the sort envisioned by Turing may not be a computable 
function on a digital computer. In the last chapter, I took the position that the frame problem's fate will 
determine whether or not we will be able to develop computers that can pass the Turing test.

In this chapter, I take up aspects of two major challenges to the Turing test advanced during the last 20 
years, namely, those of John
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Searle and Keith Gunderson. Searle's "Chinese Room" thought experiment is probably the most 
discussed counterexample in philosophical discussions of AI in the last 10 years. As I read them, both 
Searle and Gunderson take Searle's counterexample to be plausible, they evidently agree that the Turing 
test does not likely pose a formidable obstacle for AI, and they concur that passing the test would not be 
sufficient grounds for concluding that the computer passing the test was thinking. Reasons that each 
have for objecting to what Searle calls strong AI in general and the Turing test in particular differ in 
specifics, though generally not in temperament. Searle maintains that computer programs lack the 
semantical content that is a necessary ingredient in thinking; Gunderson argues that, while thinking has 
usually been thought to be a necessary condition for mature conversational ability, we have often seen in 
technological history how what appear to be necessary conditions to generate some phenomenon turn 
out to be only sufficient. In other words, we have a habit of mistaking a sufficient for a necessary 
condition, and it is an empirical question whether a nonthinking system of some kind will turn out to be 
a sufficient condition for such language competency.



I will attempt to use arguments developed in Chapters 5 and 6 against both positions. I claim that what I 
have called the general and the specific frame problem stand as serious impediments to the passage of 
the test, and that, at least in the writings that I have seen in print, Searle and Gunderson either have not 
noticed this problem or do not regard it to be significant. Not only, in my view, does the frame problem 
make the Turing test much more difficult to pass—in fact, my suspicion is that the frame problem will 
prove fatal to the attempt to program a digital computer so that it can pass the test—I claim that it makes 
Searle's Chinese Room experiment counterexample to the Turing test implausible, because it is difficult 
to ascribe such a mature conversational ability to Searle in his Chinese Room in the absence of a 
reasonable expectation of overcoming the frame problem. In sum, I argue that it is the frame problem 
that stands as the principal problem faced by the Turing test in particular and AI in general, not 
counterexamples to and related criticisms of Turing's Imitation Game such as Searle's and Gunderson's.

In the first section, I consider and reject John Searle's critique of AI, specifically his Chinese Room 
thought experiment and generally his criticism of strong AI. Strong AI, the view that the goal of AI is 
(or
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should be) to replicate to some significant degree the capabilities of a human brain—that, by possessing 
the right program that yields the desired output, given certain inputs, it is correct to say that a computer 
thinks—is Searle's general target. Searle believes that his Chinese Room counterexample and his 
accompanying philosophic argument constitute a decisive rebuttal of the strong AI view in general and 
the Turing test in particular. Searle claims that his counterexample demonstrates that the Turing test 
could be passed without a rule-based digital computer understanding what it is doing (for the purposes 
of this essay, I'll take this to be synonymous with thinking) when it passes the test.

While I have some sympathy with the overall conclusion he reaches, namely, that a program running on 
a digital computer cannot capture the full causal powers of a human brain, I will argue that the 
counterexample itself, as well as some of the assumptions ingredient in it, are not plausible. Part of the 
reason for the extended consideration of the frame problem in Chapter 4 is that I believe that, not only 
does the frame problem make it much more difficult for a digital computer to pass the Turing test, but it 
also counts against the plausibility of Searle's counterexample. In other words, I will argue that the 
evident intractability of the frame problem seriously undercuts the plausibility of Searle's 
counterexample. It is not that I find the general tenor of Searle's philosophical stance uncongenial — in 
fact I like quite a lot of what he has to say about the philosophy of mind and the philosophy of science. 
Instead, it is that I find his specific objections to AI, most particularly his counterexample, to be 
implausible, inconsistent, or both.



In the second section of the chapter, I look at two objections by Keith Gunderson (1985) to the Turing 
test, first, that "similar inputs and outputs would not guarantee similar intervening processes" (p. 202), 
and second, that, as technological history often has illustrated, it is easy to mistake a sufficient for a 
necessary condition when attempting to determine whether some activity can be done only one way.

In terms of the first objection, the conclusion that Gunderson apparently urges upon us is that, in 
addition to having good I/O, we would have to evaluate the intervening processes in order to reach the 
admittedly weighty conclusion that a machine thinks. I take exception to this objection on two grounds. 
While I will not expand on this point
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in this chapter, since I did so in Chapter 5, I believe that the mind and mindlike programs are 
monumentally resistant to the kind of investigation that would be needed to assess adequately the 
lineaments of the "intervening processes." We're not in a position, in other words, to make the requisite 
kinds of investigations; we are limited at best to depth or breadth investigations of a mindlike program, 
were one to exist, but nothing approaching simultaneous depth and breadth understanding, which is what 
would be needed to claim that the intervening process is reasonably well understood, is possible. As a 
result, I claim, we are forced largely to rely upon I/O types of evaluations such as the Turing test.

As my second ground, I claimed in the last chapter that natural language competency, of the kind Turing 
evidently had in mind, makes such demands on any system successfully engaging in the Imitation 
Game, that the best general explanation for such a system's success, should it occur, is that it is thinking. 
In other words, the Turing test turns out to be a strong I/O test—even with its faults, the most 
demanding, feasible test we have. To argue otherwise, I maintain, is to claim that what might be called a 
syntax only, nonthinking, rule-based system is capable of defeating the frame problem in particular and 
the combinatorial explosion problem in general. I believe both Searle and Gunderson must embrace this 
problematic claim if they wish to maintain their positions.

In terms of Gunderson's second objection to the Turing test, that we can easily mistake a sufficient for a 
necessary condition when we attempt to determine if intelligence is a necessary condition for mature 
conversational ability, I argue that the language competency is not like other analogically offered 
parallels that support this caution. I agree that it doesn't necessarily take a human to generate vocal 
music, since a stereo can do it, and I agree that it doesn't take muscles to dig tunnels, since we know 
now that steam engines can do it. It is true, therefore, that we often find alternate ways to do what we 
had formerly thought could be done only one way. It is a logical possibility, I am willing to concede to 
Gunderson, that we might develop nonthinking ways to generate mature conversational abilities, since 
conversation is an activity. But I think the evidence counts decisively against this, because of the 
extraordinary demands of the test itself and because a nonthinking conversational ability presupposes a 
non-thinking solution to the frame problem. I argue that the latter is
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sufficiently unlikely that it is more reasonable to ascribe—especially since we routinely ascribe thinking 
to other persons on grounds that are no more compelling—thinking to a maturely conversing computer.

Let me emphasize my overall stance. In Chapter 5, I cited Haugeland's (1981a) useful distinction 
between the poor substitute strategy and the hollow shell strategy. The claim of the poor substitute 
strategy is that AI will likely prove to be a poor substitute for human intelligence. In terms of the Turing 
test, the claim would be that an artificially "intelligent" system would not be adequate to pass the test. 
By contrast, the hollow shell strategy maintains that such a system might behave in ways that look 
intelligent, but that it cannot really be such, because it is missing some essential component presupposed 
by intelligence. Haugeland suggests in passing that the poor substitute strategy is more promising as an 
objection to AI than the hollow shell strategy. I intend to provide an argument for why this is the case: I 
claim that Searle's Chinese Room experiment is a hollow shell counterexample and, as I have said, that 
its plausibility suffers when viewed in light of considerations associated with the frame problem. 
Additionally, I argue that Searle's own understanding of how language is a social phenomenon that 
resists capture by nomic generalizations undermines his counterexample. So I question the consistency 
of Searle's view of language and his professed Chinese language competency in the Chinese Room.

Assuredly, I don't claim that any particular system has passed or can pass the Turing test. I take the 
passage of the test to be an empirical question that has not been decided yet. I remain skeptical that any 
digital computer— in Haugeland's terms, any automatic formal system— is capable of passing the test, 
because I don't see a way for a computer to overcome the frame problem. However, should it turn out 
that a digital computer, however it is constructed or programmed, passed the test, I would believe that 
such a system was thinking; a solved frame problem and a system able to handle mature conversation is 
the best available evidence I can think of for inferring that thinking aptly characterizes the processing 
occurring in such a system. As a result, mine is what might be called a soft or modified poor substitute 
position: I think it is unlikely that there is a rule-based solution to the frame problem, and, as a result, it 
is unlikely that a computer system will be able to pass the Turing test. But should one pass the Turing 
test, on the other hand, I claim that we would have sufficient grounds

  



Page 150

for believing that the computer is thinking at a significant (epistemologically complex) level.

There is nothing like a proof or a "knock-down" argument here, of course. My position simply is that the 
prospects for a nonthinking (or an ES-thinking only) system solving the frame problem are sufficiently 
improbable that, however unlikely it appears now, should a system solve the frame problem and pass the 
Turing test, our grounds for attributing (EC) thought to it would be roughly as good as those we 
have—which virtually all of us evidently find sufficient—for attributing thought to other people. Was it 
Bertrand Russell who observed that solipsism is philosophically irrefutable but psychologically 
impossible? If we attribute thought to maturely conversing people with the unabashed alacrity we do, it 
seems to me we should be willing to do so for maturely conversing computer systems as well. My claim 
is that the argument for attributing thought to maturely conversing systems is philosophically on a par 
with the (usually tacit) argument that we routinely accept for attributing thought to other people.

1. The Searle Critique

Few philosophical papers on issues associated with AI of recent years have caused as much discussion 
and acrimony as John Searle's "Minds, Brains and Programs," which first appeared in The Behavioral 
and Brain Sciences in 1980. This paper was followed in 1984 by the Reith Lectures in Britain, which 
were issued in book form as, Minds, Brains and Science. More recently, Searle published "Is the Brain's 
Mind a Computer Program?" in the January 1990 edition of Scientific American, with the Churchlands 
(Churchland & Churchland, 1990) providing something of a rebuttal in the same issue. In fact, the term 
Chinese Room has become nearly synonymous with Searle's kind of critique of what he calls strong AI. 
As a result, Searle has maintained his objections to strong AI in particular and cognitive science in 
general, as well as his Chinese Room counterexample, before a wide audience for a decade and more.

As I stated at the beginning of this chapter, I intend to argue that the Chinese Room counterexample is 
not plausible, that Searle will not be capable of the kind of Chinese conversation in the room that he 
would need to have if his counterexample is to serve, as he supposes it does,
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as a refutation of the Turing test. Moreover, I will point out that Searle himself is not consistent, because 
his view of language, and of how human conventions of various kinds shape how we use language, will 
not allow the rule-based use of language he claims he has in the Chinese Room.

Consider Figure 7-1's illustration of Searle's Chinese Room counterexample to the claims of strong AI. I 
understand the thought experiment this way. Assume that Searle, positioned as illustrated in his room, 
understands absolutely no Chinese symbols or words. Let batch 1 of the Chinese language materials be a 
script that includes the necessary background knowledge such as "A restaurant is a place where. . . . " 
Let batch 2 be a story that includes lines such as "A man orders a hamburger in a restaurant, it is served 
burned, and the man abruptly leaves the restaurant in anger. . . . " Let batch 3 be a series of questions 
such as, ''In this story, does the man eat the hamburger?" Let the English materials be the rules, the 
program, that Searle is to follow. These include, as it were, "If squoggle squiggle is followed by 
squiggle squoggle squiggle, then place another squiggle in box x." Assume further that Searle gets so 
good at correlating the batches, given his rules for manipulating Chinese and lots of practice, that he 
answers the questions about the story well enough that his answers are indistinguishable from those of a 
native speaker of Chinese. This might take him 2 years for each question; it might take him 400 years to 
get good

Figure 7.1.
Searle's Chinese Room
Gedankenexperiment
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enough at it that he would answer questions as well as a native speaker of Chinese. In this case, we 
invent a time machine so the extra time is transparent to the room of people asking questions outside 
Searle's window.

Here is a capsule version of Searle's argument:

1. a machine would have to possess causal powers at least equal to the brain to be capable of thinking;

2. a necessary component of thinking is intentionality, which is to say aboutness, which refers to 
something—it has semantical content;

3. according to strong AI proponents, a computer manipulates symbols according to rules—it has 
syntactical content alone;

4. since computers lack one essential component, namely, semantical content attaching to its 
representations, it follows that computers cannot think.

The question Searle wishes to pose is: given that the conversation is indistinguishable from what we 
would expect from a native speaker of Chinese, and that Searle is able to converse convincingly (which 
stems from the program and not his understanding of Chinese), ought we to attribute understanding of 
Chinese to this Searlean system? We are back to the issue of the relation of input/output to processes 
that produce output, in my terms, of I/O-simulation to justifiable process ascriptions. Specifically, the 
question is one of what successful I/O allows us to deduce about the processes that produced such 
output, and whether, to be more specific, we can ascribe various intentional states to "systems" based on 
such output. As Gunderson (1985) expresses it, "the point of Searle's Chinese Room argument—and a 
crucial part—is that from similarities in inputs and outputs one cannot deduce similarity of intervening 
processes, states, or events" (p. 201).

Searle's argument, as I suggested earlier, is a version of the hollow shell critique. That is, he is willing to 
play along with the assumption of classical AI and computational psychology and assume that a mature 
conversational ability is feasible; he does not take the poor substitute tack of arguing that such a 
competency is unlikely. The heart of his complaint is that a mature language competency, of the kind 
stipulated by Turing for his test and exemplified in his counterexample, would not be sufficient grounds 
for concluding that the computer is thinking since, as his counterexample purportedly illus-
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trates, such a competency is possible without the semantical content that is requisite to understanding 
and, therefore, thinking.

It is the plausibility of the counterexample I wish to challenge. It is my claim that the argument 
developed to this point counts significantly against the plausibility of the counterexample. Against 
Searle, that is, I claim that, should a computer carry on such a conversation, that would be strong 
grounds for concluding that it was thinking, because the kind of problems it would have to solve appear 
not to be amenable to nonthinking, mechanical solution; mine is a poor substitute strategy amended by a 
"but if, by some near miracle, they do get that good, then" qualification.

Searle could respond at the outset to my questioning of the plausibility of his counterexample by 
pointing out that he is simply momentarily granting the AI picture of human intelligence, as applied to 
language and the Turing test, to see what would follow if it turns out that computers and programs get 
that good. In other words, he need not be particularly concerned to defend the plausibility of a computer 
passing the test. Instead, I think he would answer, "All right, let's grant strong AI its admittedly strong 
assumption and suppose that they get that good and pass the Turing test. What would that fact in itself 
signify? If the specific question is, Would such a turn of events support the claim that the computer is 
thinking? then the answer is, 'Clearly no.' " Of course, what we would get next would be the litany about 
computers possessing only syntax and, since thinking requires semantical content, it follows as a "knock-
down" argument that computers with mature conversational ability would not necessarily be thinking.

As a general rule, I agree that thought experiments can be a productive way to analyze issues, and, as 
well, it can be philosophically astute to take a position, grant the assumptions ingredient in a position, 
and then determine whether what follows from those assumptions are the results claimed by the 
proponent. But we should exercise some caution in granting assumptions that are problematic to grant, 
given other considerations. Searle grants the classical AI assumptions without reference to the 
implications of the frame problem, and I think this is a mistake. The considerations attaching to the 
frame problem are such that the discussions we have about computer conversational ability should take 
them into account.

Searle (1984) comments that "I don't believe I have a knockdown refutation of cognitivism in the way 
that I believe I have one of strong
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AI" (p. 46). I find Searle's belief that he has a "knock-down" argument surprising. David Lewis, who is 
often thought the owner of bizarre beliefs about possible worlds and the gods therein, stands in plausible 
contrast to Searle, who otherwise owns notably nonbizarre beliefs. Lewis (1983) has written:

The reader in search of knock-down arguments in favor of my theories will go away disappointed. Whether or 
not it would be nice to knock disagreeing philosophers down by sheer force of argument, it cannot be done. 
Philosophical theories are never refuted decisively. . . . The theory survives its refutation—at a price But when 
all is said and done, and all the tricky arguments and distinctions and counterexamples have been discovered, 
presumably we will still face the question which prices are worth paying, which theories are on balance 
credible, which are the unacceptably counterintuitive consequences and which are the acceptably 
counterintuitive ones. (p. x)

Searle's belief that he has a knock-down refutation of strong AI is itself too strong—strong AI can be 
defended so long as one is willing to pay certain kinds of prices. Parenthetically, I take it that the 
question of which theories are credible, which are not, and which should be maintained at certain prices 
is itself a prime example of a frame problem generator, which I defined in the last chapter.

Searle has become well known during the 10 years of the Chinese Room debate for his straightforward, 
direct talk. With no expansion or sustained discussion, in the Scientific American piece, he says simply 
and provocatively in regard to what the Chinese Room experiment signifies, "I satisfy the Turing test for 
understanding Chinese." But this claim depends, as I see it, on an inadequate articulation of the 
requirements of both mature conversational ability and the Turing test. Let me attempt to explain why, 
as he defines it, Searle in the Chinese Room cannot be capable of the linguistic competency he claims he 
is.

Searle repeatedly insists that computer programs consist of syntax alone. As I will argue below, I think 
this is likely incorrect and that, minimally, it is not dear that the line between syntax and semantics is as 
clear as Searle would need for it to be in order for him to make his case as he does. But, for the moment, 
let's grant that Searle is exactly
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right: Digital computer simulation consists exclusively of syntactical manipulation of formally defined 
symbols. All syntax, no semantics. For reasons articulated earlier in this chapter as well as in Chapter 2, 
what follows from this is that, at best, all a computer is capable of, in terms of learning, is 
epistemologically simple learning.

Consider "Searle-in-the-room," as Boden puts it. He correctly surmises that his task parallels that of a 
digital computer. While not understanding Chinese—Searle's presumed equivalent of having no 
semantics—he is given a rule book—Searle's presumed equivalent of an instruction set and the 
appropriate programming—at whatever level we like. Specifically, in terms of Chinese "manipulation," 
he notices instructions such as, '''Take a squiggle-squiggle sign out of basket number one and put it next 
to a squoggle-squoggle sign from basket number two'" (1984, p. 32). Two more assumptions set the 
stage for the counterexample's provocative central claim:

1. I/O at the window turns out to be questions and answers—a conversation;

2. the programmers are sufficiently good at the programming, and Searle gets so good at the 
manipulation that:
(Result): Searle's answers are indistinguishable from a native Chinese speaker.

Of course, I wish to call (2) into question and, as a result, I wish to claim that the result, that Searle's 
answers could be indistinguishable from those of a native Chinese speaker, is not defensible at anything 
like a reasonable price.

On my view, Searle-in-the-room will be capable only of ES learning. As Searle manipulates his 
squiggles and squoggles, purportedly bereft of any understanding of what they mean, he should be 
capable, given enough time (which would be prodigious—but this is irrelevant for his point), of the kind 
of learning which the Coin Toss game in Chapter 2 exemplified. That is, using his baskets (storage 
locations) and rules (program), he should be capable of comparing baskets, of logically evaluating 
Boolean expressions ("If basket 1 contains more squiggles than squoggles"), changing the contents of 
baskets ("Add a squoggle to basket 3"), and putting together arbitrary strings of squiggles and squoggles 
("squoggle, squiggle,. .
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squoggle"). To be sure, Searle's baskets, in principle if not in imaginable practice, should be capable of 
storing whatever a modern computer's storage could hold, since all he needs is a set of "positive 
read/write techniques," as Haugeland puts it. With the rules in his book, his array of storage baskets, and 
his positive read/write techniques, he will be capable of slowly computing any computable function.

Searle does not consider the question of whether all conversations are equivalent in terms of an 
automatic formal system's ability to learn. Given some input through the window (one or more squoggle 
squiggle string(s)), as a result, Searle will be capable of the type of learning we saw in the Coin Toss 
game, namely, ES learning. But the pivotal question, which he does not address, is whether such ES 
learning capacity is adequate to support mature conversational ability that involves EC conversational 
segments as well as ES segments. Epistemologically complex conversations, ones that involve real—in 
contrast to "toy" worlds, as I tried to show in the last chapter, presuppose epistemologically complex 
learning capacity. As I have argued, EC learning capacity presupposes a solution to the frame problem. 
Without such a solution, a syntax-only computing system such as Searle-in-the-room (temporarily 
granting him this contentious assumption) cannot engage in EC learning, and, since EC conversations 
presuppose EC learning capability, he cannot engage in EC conversations. The kind of conversations 
that Searle will be capable of, therefore, will be ELIZA-like conversations that are the functional analog 
of the Coin Toss game. He will be capable of answering certain kinds of questions that do not 
presuppose an ability to revise the system in an epistemologically complex manner.

Unfortunately, we never get much of a discussion of what kind of conversation is purportedly occurring 
in the Chinese Room; evidently, there is no recognition that there are two fundamentally different kinds 
of conversation, epistemologically speaking. If, by "your answers are indistinguishable from those of a 
native Chinese speaker," all that is meant is the ability to answer ES questions, then Searle is quite right. 
Consequently, he should be able to converse in such a manner and such a conversational competency 
would not, by itself, warrant the ascription, "Searle-in-the-room understands Chinese" or "Searle-in-the-
room thinks'' (where thinks means more than
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the epistemologically simple thinking we arguably saw in the Coin Toss game).

To be sure, some kinds of conversations are epistemologically sufficiently simple that they are what 
might be called Searle-in-the-room computable. So Searle will be capable of the following Chinese 
equivalent of the question and answer "I/O," a variation of which we saw earlier:

Interrogator: Well, here it is Friday, again.
Searle: Yes, I see it is the 12th of the month. Didn't miss the 13th by much!

Interrogator: You're not superstitious are you?
Searle: No, of course not. Logic and superstition don't mix.



While he will not understand the squiggle-squoggle strings needed to support such a conversation, since 
this conversation is epistemologically simple, as I argued earlier, he should be able to generate 
something like these responses. On the other hand, if, by "your answers are indistinguishable from those 
of a native Chinese speaker," he means mature conversational ability, of the kind I have tried to 
emphasize characterizes the Turing test, then he will not be able to converse in such a manner. His 
answers will be noticeably distinguishable from a native Chinese speaker who would be capable of such 
conversation. He will be incapable, I claim, of this kind of conversation in Chinese, a variation of which 
we also saw earlier:

Interrogator: Did you hear that Gorbachev's political strength within the upper ranks of the KGB is 
deteriorating significantly?
Searle: No, that's news to me.

Interrogator: What do you think that means for the federal government's attempt to decrease the budget 
deficit?
Searle: I should think it would make it much more difficult.

As I see it, he will not be capable of the Chinese equivalent of this question and answer "I/O" but would 
have to settle, at best, for some kind of ELIZA-like, epistemologically simple response such as "Why do 
you want to know about the budget deficit?" On the set of
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distinctions I have drawn, there is a difference of kind between "I should think that it would make it 
much more difficult" and "Why do you want to know about the budget deficit?" such that the former, 
barring a solution to the frame problem, is not a Searle-in-the-room computable function, while the 
latter, we can at least imagine, is. The latter, ES response does not require the kind of understanding that 
Searle insists he does not have in the Chinese Room while the former, the EC response, does. For the EC 
response, the sense of what is being asked must be appropriated by any system making the response and 
revisions of the system's axiomatized beliefs must occur before the response can be made. By Searle's 
own admission he has no such ability to appropriate the sense of what is asked and an unsolved frame 
problem prevents a syntax-only computation of such an EC response.



I have used considerations dependent on the frame problem to argue that Searle misrepresents the kind 
of Chinese language abilities he would have in the Chinese Room. It might be objected that I have 
somewhat unfairly used a philosophical problem that has become prominent since Searle developed his 
argument. Indeed, the earlier pieces, namely, "Minds, Brains and Programs" and Minds, Brains and 
Science, appeared before the frame problem became a prominent topic for philosophers commenting on 
AI—it is anachronistic, the objection would continue, to fault Searle for not exploring whether the frame 
problem constitutes a difficulty for his position. But Searle's newest piece, "Is the Brain's Mind a 
Computer Program?" (1990), was presumably written or edited after Pylyshyn's volume on the frame 
problem appeared. If it is anachronistic to fault Searle for not paying attention to the frame problem in 
the earlier pieces, it no longer is. The conclusion I draw from Searle's inattention to the frame problem 
and how it bears on mature conversational abilities in a computer is that Searle doesn't see that the frame 
problem is pertinent.

Additionally, there are grounds for resisting Searle's strong claim that there is a sufficiently clear 
difference between syntax and semantics such that it can be argued forcefully that all that computer 
programs possess is syntax. Searle adds that one lesson from his Gedankenexperiment is that we can't 
get semantics from syntax, and all he has in his room, which is all any computer program has, is syntax. 
But Searle seems to assume that there is a clear enough distinction between semantics and syntax that 
we can speak as though there is a clear-cut difference of kind. It is not obvious that the distinction is 
sufficiently
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clean that Searle can simply assume the distinction holds as tightly as he supposes it does.

In discussing semantics and computer programs, I find it helpful to distinguish original from derivative 
semantical content. Even if it is the case that a program has no original semantic content qua program 
(and I think this is problematic as well), programs as implemented on this or that machine, at least at 
some levels of description, have considerable derivative semantic content. That programs are—at one 
level of description—independent of this or that machine does not mean that programs are always 
independent of all machines, as though they are some kind of Gedankenexperiment themselves. 
Unembodied programs do no work. Programs get executed on computers and, as a result, they do 
derivatively refer to things in the world, such as registers, memory locations and ports, and other objects 
in the world, and consequently, they do—as they execute at least—have derivative semantical content. I 
think Gunderson intuits some of the difficulty with Searle's position when he observes that we need to 
consider how programs are roboted as well as how robots are programmed in coming to terms with these 
issues. Programs are hooked into the real world, they do refer, at least some of the time and in some 
ways.



As a simple illustration, consider this Pascal procedure call: assign(datafile, 'b:temps');. There are two 
parameters in this call, datafile and b:temps. Datafile is the name of the logical file in the Pascal 
program. Let Searle have his way; let's agree that this part is syntax only (I don't believe this either, but 
for the sake of argument I'll play along). But even if this is quite right, we cannot say the same for the 
second parameter, namely b:temps, since it names a file recorded physically on a disk. Run the program 
and a drive is accessed, on a floppy drive a red light goes on, the read/write head contacts the medium, 
in short, things happen in the real world. As a result, programs are connected to the real world, they do 
refer, there is an "aboutness" to them of the kind that Searle claims there isn't.

I grant that Searle would likely not be impressed by this modest counterexample. Searle could respond 
that the fact that the assign procedure causes the machine to access a disk drive is a mere convenience 
since we happen to use a disk drive to store the (syntax-only) data and that he is no more moved by this 
point than he would be by being reminded that a program is stored in a computer's "RAM" using chips 
built by Motorola in a plant in Rantoul, Illinois. We use
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physical devices, he would counter, to support formal programs. The physical devices happen to be 
convenient ways to run the program, but they are finally irrelevant to what a formal program does 
logically.

But I, think Searle lets the fact that we map computable problems onto the resources of an automatic 
formal system obscure the fact that the course of action taken by programs typically hinges on events in 
the external world and, in turn, programs often significantly affect the course of events in the 
world—especially, as we have seen, in the case of conversations. The way the world happens to be 
going shows up as intermediate data which shape the sequence of instruction execution. The logical 
map, it is true, can be understood (by a person only, Searle would doubtless insist) in splendid, syntactic 
isolation. However, in practice, the logical map, the program, often causally interacts with the world in 
such a way that the sequence of instruction execution directly depends on events transpiring in the 
world. Considered as a series of logical bits, admittedly, the envisioned SDI battle management 
software, to use the example cited by Cherniak in the last chapter, is (arguably) syntax only; as it 
directed (alarmingly, in an epistemologically simple way, in my view) the early stages of the American 
intercontinental ballistic participation in what might turn out to be the last world war, nonetheless, it 
surely would have all too real "aboutness." We can consider programs in the abstract and thereby ignore 
the derivative semantical content they have when they are used. As the assign statement illustrates and 
these considerations suggest, however, programs such as conversational programs are bidirectionally 
hooked into the real world and thereby acquire significant derivative semantical content even if we 
concede that they possess no original or intrinsic semantical content. Searle-in-the-room minimally has 
just this kind of derivative semantical content.



Though I am less optimistic than she about the prospects for AI, and while I don't otherwise like her 
critique of Searle, I believe Margaret Boden (1989b) answers the question of whether a program has 
derivative semantical content correctly.

But what must not be forgotten is that a computer program is a program for a computer: when a program is run 
on suitable hardware, the machine does something as a result (hence the use in computer science of the words 
"instruction" and "obey"). At the level of the machine code the effect of the program on the machine is direct, 
because the machine is
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engineered so that a given instruction elicits a unique operation . . . A programmed instruction, then, is not a 
mere formal pattern—nor even a declarative statement . . . It is a procedure-specification that, given suitable 
hardware-context, can cause the procedure in question to be executed. (pp. 94-95)

At the programmatic level, there is no semantical content, then, but in context of driving hardware, a 
program takes on its semantical content—its relatedness to the world — derivatively. I think Boden's 
case would be stronger if she underscored how program logic presupposes intermediate data, especially 
in a conversation, to direct which path the program logically follows of the many that are available.

In essence, it looks as though Searle has uncritically accepted a debatable functionalist understanding of 
program — to rebut the strong AI point of view. In neither "Minds, Brains, and Programs" nor Minds, 
Brains and Science does Searle attempt to convince us that programs have no semantic content. He 
simply assumes it. In "Is the Brain's Mind a Computer Program?" (Searle, 1990), he advances a brief 
argument to support this claim. He writes:

First, symbols and programs are purely abstract notions. . . . The Os and l s, qua symbols, have no essential 
physical properties and a fortiori have no physical, causal properties. . . . The second point is that symbols are 
manipulated without reference to any meanings. (p. 27)

What he means, as I understand it, is that the program, for example, executes an if/then/else statement 
based on the evaluation of Boolean expressions and comparisons based on relative magnitudes. Because 
it is a logical abstraction, such a program could be instantiated using any jury-rigged device capable of 
supporting automatic computation—in fact, Searle-in-the-room is exactly just such a jury-rigged 
computer. However, I'm at a loss to understand, if the Os and 1s have no "causal properties," how it is 
that Searle-in-the-room, who cannot, by stipulation, point to his own understanding of Chinese as the 
causal explanation, can nevertheless "satisfy the Turing test for understanding Chinese." If satisfying the 
Turing test cannot be explained in terms of Searle's understanding, what gets the credit for the Chinese 
language competency? Surely the program does. If the program were removed from the room, and this 
means that Searle would not have it
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memorized, no Chinese competency would remain. As a result, I don't believe that it is consistent to 
claim that the program has no causal properties and yet plays the pivotal role in an extraordinary 
achievement, namely, the ability to converse in a language in such a way that the conversational ability 
is indistinguishable from that of a native speaker. Abstract, unembodied formulas presumably play no 
causal role in the world but "roboted" (Gunderson's term) formulas sometimes have significant causal 
roles.

There is another way that Searle is not consistent. In terms of this essay, I take it that Searle would want 
to say that he believes that rule-based, syntax-only EC conversations are possible in the Chinese 
Room—remember that he claims a competency which is indistinguishable from that of a native speaker. 
His inconsistency becomes apparent when we consider the implications of Chapter 5 of Minds, Brains 
and Science, where he discusses why the social sciences will not be able to explain human behavior. The 
discussion turns on the issue of why we don't have anything like the success with nomic generalizations 
in the social sciences that we have in the natural sciences. The position that Searle advances to account 
for this disparity is that there is a "peculiar kind of self-referentiality" about many kinds of social 
phenomena. Using everyday, common examples, Searle tells us that such phenomena include money 
and marriage. In the case of conventions associated with money, the question, according to Searle, is 
whether we can develop a rule which determines whether something is money. We cannot, says Searle, 
because money just is what people decide will be used as money. There is no rule which would cover 
issues associated with what is to count as money (1984, p. 78). He writes:

The defining principle of such social phenomena set[s] no physical limits whatever on what can count as the 
physical realisation of them. And this means that there can't be any systematic connections between the physical 
and the social or mental properties of the phenomenon. The social features in question are determined in part by 
the attitudes we take toward them. The attitudes we take toward them are not constrained by the physical 
features of the phenomena in question. Therefore, there can't be any matching of the mental level and the level 
of the physics of the sort that would be necessary to make strict laws of the social sciences possible. (pp. 78-79)

I can't understand how it would be possible to engage in the conversation in the Chinese Room if such 
social phenomena are not capable,
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in principle, of being described by rules. Searle's conception of social phenomena surely has 
considerable implications for the nature of language, which is arguably the most social phenomenon 
there is.

Heinz Pagels (1988) underscores this point by writing that "behavioral scientists have a greater 
challenge in making computer models because they lack a deep theory of social or psychological 
phenomena" (p. 90). He quotes Stan Ulam of Stanford as remarking:

You see an object as a key, you see a man as a passenger, you see some sheets of paper as a book. It is the word 
'as' that must be mathematically formalized, on a par with the connectives 'and,' 'or,' 'implies,' and 'not' that have 
already been accepted into formal logic. Until you do that, you will not get very far with your AI problem. (p. 
94)

In other words, we have succeeded at formalizing some parts of natural language but other parts remain 
resistant to formalization. While such resistance remains, full natural language competency will elude 
computer systems. While Pagels is optimistic about AI, this quote, perhaps unwittingly, underscores 
what Searle seems to be saying and parallels a good bit of what, in stronger, more comprehensive terms, 
Winograd and Flores argue (1986). I take it that if Ulam, Searle, and Winograd and Flores are 
significantly correct, and contrary to what Searle assumes in his Chinese Room, we will not be able to 
build digital computers with anything approximating a deep enough understanding of human language 
that they could pass the Turing test.

For example, suppose that Searle participated in a question-and-answer conversation in which he was 
asked to imagine that he was the man in a restaurant having a meal. Recall that scripts have played a 
significant role in AI, and that a script is a set of rules and information that purportedly would allow a 
formal system to handle itself in typical human situations such as having a meal in a restaurant. The 
story continues in this way: The man eats his meal and, upon receiving his check, presents the waiter 
with a 50 dollar bill. Discovering he has no money to make change, the waiter remarks to Searle-in-the-
room:

Waiter: I must apologize that I have no change. Would you be willing to take this 1987 Frank Viola 
baseball card instead of your $40 change?
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If it is the case, as Searle insists, that '"money' refers to whatever people use and think of as money" and 
if it is the case that "there can't be any matching of the mental level and the level of the physics of the 
sort that would be necessary to make strict laws of the social sciences possible," how are we to imagine 
that Searle-in-the-room could use a program devoid of semantical content to marshal a sensible response 
to the waiter's question? Or how might he be able to make the connection that this is possibly a fair offer 
and ask relevant questions in order to make the determination that it is something like fair?

In sum, I don't believe that Searle has made a convincing case that his much-discussed Chinese Room 
experiment is plausible. He has not given us adequate grounds for concluding that, given his 
understanding of what he has at his disposal in the room, namely a program, he would be capable of 
such a competency. I have attempted to show why he would not have the kind of competency that would 
be needed to pass the Turing test. Specifically, I conceded an ES language competency, but I argued that 
he would not possess the requisite EC competency. As a result, therefore, his claim that, as Searle-in-the-
room, "I satisfy the Turing test for understanding Chinese" is not convincing. Moreover, I argued that 
Searle himself has a view of the relation of language and convention to human intentionality that entails 
that no set of rules could capture the relationship in a way adequate to support mature conversational 
ability. Minimally, I take this to mean that he does not believe himself, upon pain of contradiction, that 
he could perform as stipulated in the Chinese Room. Maximally, it means that he could not pass the 
Turing test at an EC level.

The following objection might be raised to my criticism of Searle: Your criticism of Searle is predicated 
on an unsolvable frame problem. Suppose that we find a solution for the frame problem, some kind of 
delightfully imaginative engineering solution, such that a computer, to everyone's complete satisfaction 
and perhaps astonishment, passes the Turing test. What would you, Crockett, say in response to Searle's 
Chinese Room counterexample then? The point, I take it, is that my criticism of the plausibility of 
Searle's Chinese Room thought experiment assumes an unsolvable frame problem but I have conceded 
that it is at least logically possible we might at some point find a solution. All Searle is doing, as it were, 
is assuming that there is a solution to the frame problem, just as classical AI must assume there will be 
one.
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What are the implications of a solved frame problem? In such a situation, I think we will have to do a 
fair amount of the science that Pat Hayes has been pushing on us, then do some of the careful 
philosophical analysis that Searle and Gunderson have been saying is essential to interpreting impressive 
computer performance. A solved frame problem in digital systems means some very interesting things 
may begin to happen. Understanding may be an emergent property for which a solved frame problem is 
a necessary condition. Self-awareness similarly may begin to develop in systems that possess a solution 
to the frame problem and some yet to be determined minimal storage capacity. Speculating even more, a 
solved frame problem in a sufficiently massively parallel system may mean that the contrast I have 
insisted we must observe—that between storage and memory— becomes much fuzzier or even 
disappears.

It is conceivable that Searle-in-the-room with a solved frame problem, given sufficient time, would 
develop an understanding of the language he is using in much the same way that an infant begins to 
appropriate what at first must appear to the infant as so many oral squiggle-squoggle strings. In fact, 
Searle-in-the-room with a solved frame problem may well be a system that finally becomes 
psychologically relevant in the way that computational psychology has largely been simply assuming to 
date. Moreover, I think a solved frame problem would count in favor of the hollow shell criticism, at 
least initially, and against the poor substitute strategy I currently endorse, simply because a sufficiently 
large system with a solved frame problem is going to be able to do some epistemologically complex 
learning. To the point, such a system will likely be a good substitute for human-level intelligence. Even 
more dramatically, a solved frame problem would be impressive evidence that the classical AI 
understanding of intelligence itself is reviving as a research paradigm.

2. The Gunderson Critique

Keith Gunderson's critique of AI has some parallels with Searle's, but there are two objections 
Gunderson makes to AI in general and the Turing test in particular that I find at once distinctive in terms 
of specific emphasis and philosophically more subtle than Searle's take-no-prisoners frontal assault. 
First, consider Gunderson's (1985) corn-
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ment on what I have called the relation of I/O to what we can justifiably infer about the intervening 
processes that generate the ''O" of the I/O:

Now perhaps comparable net results achieved by machines and human beings is all that is needed to establish 
an analogy between them, but it is far from what is needed to establish that one sort of subject (machines) can 
do the same thing that another sort of subject (human beings or animals) can do. Part of what things do is how 
they do it. To ask whether a machine can think is in part to ask whether machines can do things in certain ways. 
(p. 45)

I take this first objection to be a reminder that similarity of I/O descriptions between two systems would 
not, in itself, justify similar characterizations about the intervening processes producing the output. For 
purposes of analyzing the Turing test, I believe that Gunderson is saying, there are two aspects to an 
activity done by a machine or a person. One is the output as compared with the input and the other is the 
process which generates the output, given the input. To establish that a machine is doing the same thing 
as a person, specifically, we would have to know something about the intervening processes as well as 
the I/O.

In terms of a second objection by Gunderson that I wish to discuss, consider his comments about the 
purported lack of appreciation in the literature that some tasks which may have previously been thought 
to require intelligence may not, owing to developments in machine technology, turn out to require 
intelligence:

What I wish to stress and what I think has been increasingly overlooked is that any taxonomy of the field of 
machine intelligence must leave room for a category that tolerates the possibility of machines performing tasks 
that had hitherto required intelligence (human or otherwise) and performing them in ways totally bereft of any 
psychological reality. (p. 174; emphasis in original)

I understand this second objection to be a matter of asking whether it is possible that tasks we had 
formerly supposed required intelligence— say, for example, chess playing—may turn out to be a task, 
owing to the advance of computer and related technology, which is amenable to being done by a purely 
mechanical, nonthinking machine. His
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example in Mentality and Machines is that of steam engine power replacing muscle power in the digging 
of tunnels. To put it in traditional philosophic terms, Gunderson reminds us how tempting it is to 
mistake a sufficient condition for a necessary condition—if we can ignore related factors, muscles are a 
sufficient but not a necessary condition for digging tunnels. Analogously, he claims, intelligence is a 
sufficient condition (again, if we can ignore all the auxiliary "hardware" usually needed to communicate 
with another user of the language) for mature conversational ability, but we cannot claim, since it may 
well turn out that such competency can be generated by machines "totally bereft of any psychological 
reality," that it is a necessary condition. Of course, this allows him to deny the logic of the Turing test, 
namely, that mature conversational ability as defined by Turing means that we are justified in ascribing 
intelligence to the system passing the test.

In this last section of the chapter, I intend to argue against these two objections as they pertain to the 
frame problem and the Turing test. I conclude the section as well as the chapter with a brief discussion 
of Gunderson's claim that Weizenbaum's ELIZA and Winograd's SHRDLU are capable of passing 
"Turing-type" tests.

I should emphasize that I don't believe Gunderson has no appealing grounds for warning us about the 
philosophic difficulty of making ascriptions about intervening processes on the basis of I/O alone. In 
fact, given what I have claimed about the treacherous nature of computer simulation, the problem may 
be even more difficult than Gunderson suggests. We have access to, and significant understanding of, 
many kinds of natural and human phenomena, and, as a result, we have at least some basis for claiming 
that we understand "how they do it." Ordinarily, with the overwhelming majority of phenomena, I 
readily concede, it is important to ask if something is done Kin certain ways" before risking 
characterizations about behavior when such characterizations tacitly suppose something about the 
intervening processes supporting the behavior. Since, indeed, "part of what things do is how they do it," 
in most situations, when we want to know if x is doing y, it will usually be correct to ask about how x 
does the phenomenon in question in order to be in a position to agree, reasonably, that x really is doing 
y.

To cite a computer illustration that underscores Gunderson's claim, it would not be justified to infer from 
only the fact that a computer had
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computed some function that the computer must be using one language rather than another. Since, given 
a few essential properties, all languages can compute the same class of computable functions, we are not 
in a position, without knowing more, to infer from this I/O description, namely, that function x was 
computed, to that process description, namely, that language y must have been used. In Chapter 3, I 
attempted to underscore how computer simulations are particularly likely to mislead the unsuspecting. It 
is because we know the power of simulation, how it is that a computer is uniquely suited to generating a 
"user illusion," that we should especially be concerned to resist quick inferences to the similarity of 
intervening processes from similarity of I/O alone. With massively parallel computing becoming more 
feasible than it was just a few years ago, the user illusions that we will be capable of generating will be 
even more seductive. Consequently, Gunderson is on to something significant in terms of warning us of 
the dangers of advancing characterizations about intervening processes on the basis of I/O alone.

I agree that such caution is warranted in virtually every case—but I do not agree that it is warranted in 
all situations. As I attempted to argue in the last chapter, we are not currently in a position to do the kind 
of inspection of internal processes of the brain that we are for many other objects of study. For 
somewhat similar reasons of scale, we are not in a position to understand to any significant extent a 
mindlike program. In order to compare a brain with a program, to see if there is something like 
intervening similarity of process, we would have to have some significant knowledge of brain processes 
and some significant knowledge of program processes of a mindlike program. But as I argued, we have 
neither of these to any significant simultaneous breadth and depth. Consequently, I believe, we are not in 
a position to make the relevant comparisons. It would be welcome indeed if we could make such 
comparisons, but, unfortunately, we are not in the requisite position and, given the likelihood that the 
radically novel function possessed by the human brain developed over largely conserved structure in 
evolutionary history, and given the extraordinary complexity of a mindlike program, I see no grounds 
for optimism that this unfortunate impairment can be overcome.

As should be expected by now, I claim that considerations attaching to mature conversational ability 
make it an exception to Gunderson's "similarity of input/output does not guarantee similarity of 
intervening
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processes" objection. Mature conversational competency on a computer is not typical I/O—which is 
why Turing presumably chose it. But not only does Gunderson reject the Turing test, he claims that it is 
quite weak:

With respect to Turing's Test, it should also be emphasized that not only is it inadequate as a test for there being 
literally a mind in the machine, it is for reasons given in Chapter Four inadequate as a test for a simulation in a 
machine of a mind. In this sense the chapter might be seen as trying to delineate how very weak Turing's Test 
actually is. (1985, p. 205)

I cannot claim to have one of Searle's "knock-down" arguments, but I believe the price for holding 
Gunderson's position is too high. Like Searle's, Gunderson's is a variation on a hollow shell strategy; in 
other words, he claims that passage of the test by a computer would not, in itself, justify the claim that 
the computer is thinking—that is, passage of the test is not a sufficient condition for concluding that the 
computer is thinking. By contrast, my position is that, if the grounds are sufficient for concluding that 
other persons think, owing to behavioral considerations and presumably some kind of argument by 
analogy, passage of the Turing test is surely also a sufficient condition for concluding that the computer 
is thinking, owing to behavioral considerations and a solved frame problem, for which I see no 
mechanical, nonthinking solution.

The argument from analogy, I take it, would go something like this: Other people have bodies quite 
similar to my own, and they behave in ways that are similar to the way I often behave. Certain kinds of 
problems that I work at and solve require what I call thinking. I notice that other people work at these 
kinds of problems, and, since they have similar bodies and hence likely similar biological processes, I 
infer that they must be thinking as well when they do the tasks I do that require what I call thinking. 
While there are problems with all arguments from analogy, and while there is an additional problem 
with arguing from a single-case analogy, namely, from myself to many other people, most of us do 
accept the conclusion that other people think, presumably on grounds, if we are philosophically 
reflective, something like these. I don't claim that this is a knock-down argument. My claim is that, 
given the difficulty of solving the frame problem, and given the
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role that the frame problem has of distinguishing ES from EC thinking "systems," it seems to me that a 
digital computer system capable of passing the Turing test, one that has therefore solved the frame 
problem, is at least as worthy of being described as thinking as another person who displays the right 
behavior and about whom I make some kind of attribution by analogy. In other words, the grounds, on 
my view, are roughly on a par.

Gunderson would argue that we would need, to some extent, presumably, to see how it is conversing in 
the way that it is—not just that it is conversing that way, and that it might turn out that the test can be 
passed by systems that are not thinking (in something like a full sense of thinking). I have already 
argued at length why we are not in a position to achieve an adequate picture of the intervening 
processes; I intend to argue now that Gunderson's position commits him to claiming that it is feasible 
that a nonthinking, rule-based, automatic formal system can be programmed in such a way that it can 
defeat the frame problem. This is the price he must pay for his position, I claim, and I find it to be too 
high.

Suppose that a computer, appropriately enhanced with the requisite peripherals, engaged in a long 
conversation with an interrogator, with Turing, Dennett, Gunderson, and myself observing carefully. 
Suppose as well that the computer was so skilled at the conversation that we all agreed that, by any 
reasonable definition of the test, here, at last, we have a computer that had passed the test. Gunderson 
claims that such passage would not, by itself, justify the claim that the computer is thinking. Turing and 
Dennett and I, of course, suppose the opposite.

Given such a situation in which all observers agreed that a computer had passed the test, what would it 
mean for Gunderson to be correct in his claim that it is possible that a test-passing machine might still 
not be thinking? It would mean that it is feasible that a nonthinking automatic formal system had passed 
the test. That is, it would have engaged successfully in a mature conversation of the sort envisioned by 
Turing and amplified by Dennett and, I hope, myself. However, I argued in the previous chapter that a 
Turing test conversation is an epistemologically complex conversation that presupposes an ability for 
the system to engage in EC learning. I claimed that adequacy of conversational response in an EC 
conversation presupposes the ability of the system to revise its own set of beliefs, presumably some kind 
of

  



Page 171

axiom system, in light of epistemologically complex information — at least in some parts of an EC 
conversation. To be sure, I didn't claim that such revision was necessary for all parts of an EC 
conversation, just some. I also argued that EC learning is blocked by an unsolved frame problem since 
the frame problem prevents the kind of system-wide inspection and revision, in light of EC information, 
that is requisite to EC learning. An unsolved frame problem prevents EC learning, which is a necessary 
condition for an EC conversation. And EC conversational skills, not simply ES skills, are necessary for 
passage of the Turing test.

I should emphasize at this point that, given the history of the debate that Turing's paper started, the 
question often gets phrased in the unrefined way, "Can machines think?" or "Do we have adequate 
grounds for concluding that SIMON the robot thinks, given that he has just passed the Turing test?" I 
have distinguished ES from EC thinking, granting that digital computers are capable of the former but, it 
appears now, probably not the latter. Pushed to relinquish my distinction and use the rougher grained 
thinking and nonthinking dichotomy, I would reluctantly equate EC thinking with thinking and ES 
thinking with nonthinking, with the result that a digital computer, on my view, is likely not capable of 
the kind of thinking that Turing had in mind, nor is it capable of the activity pointed to by the term 
thinking as most people apparently understand that word.

Using these qualifications, Gunderson's view commits him, therefore, to the claim that it is feasible that 
a nonthinking automatic formal system can be programmed in such a way that it can solve the frame 
problem each time an EC comment or query is encountered, in conversational real time. However, I 
have argued that the evidence is compelling that there is no mechanical, nonthinking way for the frame 
problem to be solved, particularly in such a circumstance. Minimally, there is no way currently known 
to solve the frame problem in a mechanical, nonthinking way. We don't know how to begin the task of 
constructing and programming such a digital computer.

As I see it, therefore, the choice comes down to this: either affirm that it is feasible for a nonthinking, 
mechanical system to solve the frame problem or be willing to ascribe thinking to the system which 
passes the Turing test. Gunderson, I claim, would have to opt for the former choice; of course, I choose 
the latter.

Gunderson could respond that, from the fact that we currently are
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not able to program an automatic formal system to solve the frame problem when it arises in a 
conversational context, we are not justified in concluding that it cannot be done in principle. From the 
fact that we cannot do it now, it does not follow that it cannot be done in principle. On this point, then, 
Gunderson is likely not far from defenders of classical AI who remind us that the discipline is young and 
that AI engineers ought to be given a chance to see what can be done; in any case, they are largely 
oblivious to the claims of philosophers that such and such is impossible or unlikely.

I wholeheartedly concur that such an inference is not justified. But I have not claimed that the frame 
problem cannot, in principle, be solved by a nonthinking, automatic formal system. I simply claim that 
there is little evidence at present that it can, and a considerable amount of evidence that it can't, be 
solved by a nonthinking system. Put in more constructive terms, I claim that the evidence against it is 
sufficiently compelling that the best way we have to distinguish thinking from nonthinking activity, if 
the general frame of reference is AI, is that thinking activity does not suffer from the frame problem. 
The frame problem, in other words, is fatal to automatic formal systems that are programmed to think in 
the ways requisite to a mature conversation. The frame problem, on my view, represents the principal 
demarcation which distinguishes EC from ES thinking machines (or, using the rougher grained 
dichotomy, thinking from nonthinking machines).

Of course, I don't wish to claim that an automatic formal system which suffers from the frame problem 
does no thinking — to carry my distinction through, I claim that it is capable of epistemologically 
simple thinking rather than epistemologically complex thinking. The fact that a computer can compute a 
ninth-order derivative means that a ninth-order derivative problem is amenable to solution by ES 
thinking. By contrast, if it is not possible to program a digital computer with an unsolved frame problem 
so that it passes the Turing test, this means that mature conversational ability is not amenable to solution 
by ES thinking alone.

The result I wish to sponsor is that an automatic formal system that passes the Turing test does not suffer 
from the frame problem. Passing the test is evidence that the frame problem has been solved; in the case 
of an automatic formal system or, in cases where other kinds of systems are putatively under scrutiny, it 
may not exist at all. I
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suggested earlier that pattern-recognition-based "systems" that are not computationally based may not 
need a solution to the frame problem because they don't suffer from it to begin with.

If the evidence, as I have argued, favors the view that there is no mechanical, nonthinking way to solve 
the frame problem, and if an automatic formal system had solved the problem on its way to passing the 
Turing test, I think we would have grounds for ascribing thinking to the system that are at least as 
compelling as the grounds we have — and evidently find compelling — for ascribing thinking to other 
persons.

To be sure, I cannot begin to detail how such a feat would be possible such that I could answer the 
question, "Well, how would such a mechanical, thinking device solve the frame problem?" I remain 
skeptical that we can build a digital computer which incorporates a solution to the frame problem. As I 
stated earlier, I am convinced that full-fledged thinking is most likely exclusively associated with pattern-
recognition of the type described by Margolis, not automatic manipulation of symbols at all.

Gunderson in fact recognizes that there is a problem with what I have called EC conversation, even 
though I don't believe he sees the full significance of it. The following remarks are occasioned by 
problems associated with character recognition:

The major obstacle is that there is still no precise account of how one could build into a program the 
fantastically varied background knowledge (e. g., that cows don't eat fish) that human speaker-hearers bring to a 
communication situation and that enables them in fairly systematic and facile ways to interpret correctly each 
other's utterances, even though considerable novelty may attend both the syntactic, and situational or pragmatic 
features of the remark that is interpreted. (1985, p. 111)

I take it as uncontroversial that people possess a "fantastically varied background knowledge," which is 
central to our ability to answer correctly the question whether, to use Gunderson's example, cows eat 
fish — and that we do so virtually immediately and with evident ease. But the major obstacle to mature 
conversational ability for a computer is not just acquiring the enormous background of knowledge we 
can bring to a conversation. I take it as an open, empirical question
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whether current computers can store background knowledge in amounts that at least rival that of people. 
The problem is not so much that we have no precise account of how to represent this wealth of 
knowledge in a machine — we've made considerable progress with the problem of representation. 
Instead, the principal problem is understanding how an automatic formal system should go about 
integrating old beliefs with new (epistemologically complex) information, it is identifying a principled 
way to recognize the relevance of new items of information for problem tasks, given such a background, 
and it is a matter of solving the problem of doing all this at a speed that makes it possible to engage in a 
real conversation in real time. On a classical AI paradigm understanding of intelligence, the principal 
problem is not the storage of knowledge per se, it is how to overcome the frame problem so that such 
knowledge can be used in epistemologically complex problem solving situations such as Turing test-
style conversations.

Specifically, I see no evidence that Gunderson has adequately acknowledged that there is a difference 
between developing a rich representation, a "fantastically varied background knowledge," and 
maintaining that representation over a period of time in situations of real world complexity. If by 
"fantastically varied background" he means everything a system would need to know to pass the Turing 
test, it is too much to expect that we can simply program a sufficiently rich background into the 
computer. For reasons pointed to by Putnam (1988), which I amplified in Chapter 4 and elsewhere, 
learning at a high (EC) level will be a necessary capacity in any system that passes the test. If he will 
agree that such learning is a necessary ingredient in any system passing the test, he is going to have to 
take account of the impediment to such learning posed by the frame problem. He has not done this.

Parenthetically, I should state that the old CS/AI distinction has been lost — probably, as I think 
Gunderson supposes as well, to the detriment of the philosophical conversations about AI. In his chapter 
entitled "Philosophy and Computer Simulation," Gunderson discusses the Turing test and computer 
simulation. If the question is phrased as: Is the Turing test psychologically relevant to human 
intelligence? I think the answer is: not necessarily. All it shows, in my view, is that there is thinking, 
which may have little, in some respects at least, to do with human thinking. I take no position on the 
psychological relevance
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of such thinking to psychological investigations of human thinking. That is, we don't get from an I/O 
statement about a machine passing the Turing test to a surmise about a human process description; 
nothing about a machine passing the Turing test necessarily tells us anything specific about human 
intelligence. I take it as an axiom that there are lots of quite dissimilar ways at the process level to 
generate functional similarity at the I/O level. The more modest claim I defend is that passage of the 
Turing test does tell us something about the likely existence of intelligence in the machine.

At this point, I want to discuss what I have called Gunderson's second objection to the Turing test, 
namely, that we can't be sure that what we have taken to be a necessary condition for a phenomenon 
won't turn out to be one of two or more sufficient conditions — in other words, the objection that it may 
turn out that thinking is a sufficient condition for passing the test but not necessarily a necessary 
condition. Parenthetically, I should add that I will use the usual contrast between necessary and 
sufficient conditions in this section even though I know that, strictly speaking, thinking is not a 
sufficient condition for conversation, for since various other conditions would have to be present as 
well — in the case of people, for example, conversation also requires sensory organs of some kind, some 
physically supported way to communicate, and so on. For the sake of simplicity of expression, I will 
claim that Gunderson supposes thinking is a sufficient condition for conversation but not a necessary 
condition even though, strictly speaking, I am sure he would agree that it is neither necessary nor 
sufficient. The central question is the necessity of thinking for conversation such that conversational 
ability at a Turing test level would be sufficient grounds for inferring the presence of thinking on the 
part of the system passing the test.

To get a full picture of his objection, I will quote Gunderson at greater length:

So we shall be primarily concerned with asking whether or not a machine, which could play the imitation game 
as well as Turing thought it might, would thus be a machine which we would have good reasons for saying was 
capable of thought and what would be involved in saying this. (1985, p. 41)

After comparing Turing's Imitation Game with his own parody of the Imitation Game, Gunderson writes 
(pp. 43-44):
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The above seems to show the following: what follows from the toe-stepping game situation surely is not that 
rocks are able to imitate . . . but only that they are able to be rigged in such a way that they could be substituted 
for a human being in a toe-stepping game without changing any essential characteristics of that game.

To be sure, a digital computer is a more august mechanism than a rock box, but Turing has not provided us with 
any arguments for believing that its role in the imitation game, as distinct from the net results it yields, is any 
closer a match for a human being executing such a role, than is the rock box's execution of its role in the toe-
stepping game a match for a human being's execution of a similar role. The parody comparison can be pushed 
too far. But I think it lays bare the reason why there is no contradiction in saying, ''Yes, a machine can play the 
imitation game, but it can't think."

For thinking (or imitating) cannot be fully described simply by pointing to net results such as those illustrated 
above. For if this were not the case it would be correct to say that a phonograph could sing, and that an electric 
eye could see people coming.

Turing brandishes net results. But I think the foregoing at least indicates certain difficulties with any account of 
thinking or decision as to whether a certain thing is capable of thought which is based primarily on net results.

What Gunderson assumes here is that there is some significant analogy between a computer and 
conversation, on the one hand, and a phonograph and singing on the other. Since the digital onslaught 
has overtaken musical reproduction as well, allow me to update the comparison to a compact disk. Other 
than the fact we might imagine —under quite unusual but still plausible circumstances — that a person 
might mistake, say, a "Use Your Illusion I" disk played on a state-of-the-art system for the rock group 
Guns N' Roses on their tour, and that, in a parallel way, a person might not be able to distinguish a 
computer from a person in Turing's Imitation Game, what grounds has Gunderson given us for 
supposing that there is a significant analogy between the two situations? Singing, for all of its subtly 
beautiful dimensions at its best, has few of the singular dimensions of a mature conversation. A Jesuit 
biologist friend of mine, James Mulligan, helped the philosopher Charles Hartshorne edit his well-
regarded book of birdsong. Mulligan once observed to me, "For all its
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beauty, birdsong appears to be finally quite mechanical." Song, whether by a person or a bird (and the 
equivalence is a tip-off), lacks the principal asset of conversation in terms of testing for intelligence: 
unpredictable interactivity over an uncircumscribed domain. In a mature conversation, one would expect 
spontaneity, unanticipated twists and turns, nuances, new information, probing questions, perhaps some 
wry humor here and there, and so on. That which is rather clearly mechanical, namely, song, would 
seem to lend itself to mechanization in a way that that which is not rather clearly mechanical, namely, 
conversation, would not. There is little relevant philosophical moral, as a result, in the fact that a 
phenomenon such as song is amenable to mechanical reproduction.



Gunderson's contrast between program receptive and program resistant aspects of mentality achieved 
considerable currency in philosophical discussions of AI when it was advanced about 20 years ago. One 
might conclude that there is a correlation between my ES/EC distinction and Gunderson's distinction. 
On this conclusion, epistemologically simple (ES) learning and conversation are program receptive; 
epistemologically complex (EC) learning and conversation are program resistant. I certainly have argued 
that ES learning and conversation are amenable to programming, and I have argued that EC learning and 
conversation are resistant to programming, given an unsolved frame problem. But one should notice that 
Gunderson's distinction has to do with the performing of acts, of behaviors, as opposed to the having of 
experiences. Full language competency, of the kind required to pass a full-fledged test, remains, for 
Gunderson a behavior that might be duplicated, since it is a behavior, by means other than thinking. That 
is, thinking is a sufficient condition for such a behavior, but it is not a necessary condition — the 
technology, as it has so often in the past, might get good enough to do what formerly we thought could 
only be done by means of thinking. Gunderson would point to top-rank computer chess play as a 
prominent case in point. What is resistant to programming, according to Gunderson, are certain kinds of 
experiences that characterize human mentality: pains, anxieties about the fidelity of one's spouse, after-
images, and so on. These are not behaviors we do, they are experiences we have. That part of human 
mentality, as Gunderson sees it, is resistant to capture in a program.

But Gunderson's question of whether a program can capture all
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aspects of human mentality is a somewhat different question from the one Turing addressed. Turing was 
not so concerned about whether programs could capture certain kinds of human mental experiences; he 
was concerned, in spite of some initial protestations to the contrary, with whether machines can think 
and how we might convince ourselves they can think. Gunderson might argue that the ability to have 
such mental experiences is part of the ability to think, and therefore is a necessary condition for 
thinking, but I don't know that this is the case.

While I am unsettled on the issue of whether natural language competency is fully a behavior, or best 
thought of as exclusively a behavior and not bound up intimately with mental states that we have, for the 
moment, let's agree that it is a behavior. My view, then, is that there is a behavior that is resistant to 
programming, namely full natural language competency, so long as the frame problem remains 
unsolved. I agree that certain kinds of mental states are program resistant, but I want to add one behavior 
to the list of the program resistant, so long as we have no solution to the frame problem, namely, natural 
language competency of the kind requisite to passing the Turing test.



In general, in drawing the analogy between computer conversation, on the one hand, and the music 
produced by a system on the other, Gunderson has evidently not noticed that thinking of the sort I claim 
is required for the Turing test is a singular predicate such that analogies with other phenomena are not 
likely to be useful. Let me qualify my use of the strong term singular. I am quite happy to agree that 
there are gradations of thinking, shades of gray, places where some thinking is happening or where a 
small amount of what might be called high-order thinking is being applied, or a great deal of low-order 
thinking is being applied — and it might be difficult to distinguish such contrasts on an I/O basis alone 
(in fact, as we have seen, this is one basis for objecting to the Turing test). I understand my distinction 
between ES and EC thinking to be only a start toward the kind of rich taxonomy that might be needed 
adequately to describe the cognitive activities that could come under the umbrella term thinking. 
Consequently, I agree with Gunderson that there is a significant "conceptual space" between what the 
"strong AI" view of what "thinking" machines do and how the Dreyfus brothers view such machines; as 
I have intimated, some kinds of thinking may well be occurring even as a computer approximates a 
derivative. But I also insist that consider-
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ations attaching to an unsolved frame problem entail a fundamental distinction, namely, that between ES 
and EC thinking. As a result, thinking of the kind needed to pass the Test, which avoids or solves the 
frame problem, is not analogous to many other kinds of phenomena to which Gunderson's otherwise 
timely remarks would aptly apply. The usual philosophic lessons, I claim, don't always illumine an 
extraordinary situation.

It is not that I don't agree with the pertinence of Gunderson's remarks for almost all inferences from I/O 
descriptions to process ascriptions. I'll use one of Gunderson's literary devices at this point to emphasize 
where I agree with him. Consider: you're at one of the sexier indoor megamalls, and you see what 
appears to be a tree growing in an atrium. Upon closer inspection, the bark feels about right, there are 
imperfections here and there, the leaves vary in texture, shape and color, as they do on a real tree. It is 
easy to split one with your fingers; some dried leaves even litter the floor, which surrounds a hole filled 
with dirt. Still, you wonder — perhaps this is one of those new, quite expensive artificial trees that you 
recently read about in the "What Will They Think of Next?" newspaper column. In this case, it is 
philosophically astute to insist on knowing whether, for example, photosynthesis is occurring in the 
leaves (it wouldn't be enough to discover moisture in a split leaf) before possibly agreeing that the 
evidence warrants the process ascription, "This is a genuine tree." If still not convinced, since 
photosynthesis might be simulated in some way, we might wish to know: If a branch were sawn in half, 
would we see rings? After a few minutes, would we see some sap oozing from the wound? If we were to 
watch over a long period, would the tree get taller from year to year? While the complete skeptic would 
never be satisfied, since a process description can always be reformulated at a lower explanatory level as 
an I/O description, Gunderson is correct in this sense: We have gotten so good at simulations and 
imitations that there are many phenomena where examination of the process level must be made before 
it is reasonable to assent to the conclusion that this is the genuine item, not just a clever, state-of-the-art 
simulation. As a result, Gunderson serves us well in reminding us that such inferences are generally 



treacherous philosophically.

Situations in which it is reasonable to attempt an inference from I/O descriptions alone to a specific 
characterization of the intervening
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process are therefore admittedly rare — perhaps there is only one. But I claim thinking of the kind 
required to pass the test remains a notable exception. We have some understanding now about the limits 
of programmable machines in terms of dealing with a complex phenomenon such as a Turing-level 
conversation. In principle, the evidence is compelling that this limit is set by the frame problem. 
Computers are astonishingly good at epistemologically simple manipulations. Epistemologically simple 
tasks are amenable to mechanization and mechanical tasks which are amenable to algorithmic solution 
face limitations such as the speed of light and the efficiencies that attach to certain sorts of algorithms. 
But the evidence is that mature conversational ability does not yield to algorithmic decomposition and 
solution in the way that even chess does.

Chess, in fact, warrants a comment at this point. It is vast in terms of search space but perfectly simple 
epistemologically. There are more components in natural language than there are in a chess game, and 
while the number of different chess games is quite large, perhaps 10120, it is many orders of magnitude 
smaller than the number of different conversations that two persons, each of whom could comfortably 
use and understand approximately 15,000 words, could have over, say, the course of an hour. Not only is 
the search space larger for an unconstrained conversation, chess programs do not founder on the frame 
problem; EC conversations do. The conversation is at once many orders of magnitude larger in terms of 
search space and it is complex, rather than simple, epistemologically.

Inferring that a computer thinks because it plays world class chess is risky for exactly the reasons 
Gunderson supplies. Previously, it was usually believed it is necessary to think in order to play a good 
game of chess — indeed, it was supposed it is necessary to be smart. People had a difficult time 
imagining a mechanical, nonthinking machine playing good chess. All that good chess playing programs 
show us, Gunderson would rightly point out, is that it doesn't take (EC) intelligence to play a good game 
of chess, since a good (at most Es) program will do. If it turns out that a chess-playing computer defeats 
the best human player, I will be impressed but not necessarily moved to conclude that the machine 
thinks, again, for exactly the reasons Gunderson supplies. I would want to know something about the 
intermediate processes before I could imagine endorsing such a judgment.

But part of the reason I have for welcoming a Gunderson-style
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caveat in the case of chess is that chess is a formal game. It is describable in unambiguous terms, and 
while "look-ahead" is severely circumscribed, owing to combinatorial explosion, no frame problem is 
joined, because no moves that an opponent might make require revision of the system of "beliefs" (let 
McCarthy have his way for a moment) needed to play the game. In a word, chess is epistemologically 
simple. Chess is an ES programmatic task. EC conversations are not. Philosophic lessons learned from 
detailing the relation of I/O descriptions to appropriate process ascriptions in chess, as a result, do not 
apply to EC conversations, because, as I have tried to argue, there is a difference in epistemological kind 
between chess and mature conversations, and there is an inaccessibility to systems supporting mature 
conversation that does not obtain in the case of chess.

In sum, Gunderson's critique applies to epistemologically simple tasks that a computer might perform. 
On the assumption that such an investigation is feasible, epistemologically simple simulations warrant 
just the kind of investigation that Gunderson would surely urge upon us before we could justifiably 
agree that, in some sense, the "computer is thinking." When cashed in for the rougher grained terms, 
nonthinking and thinking, I have reluctantly correlated ES thinking with nonthinking but, if we adopt a 
preferable, richer taxonomy, I take it to be an empirical question what kinds of low-level thinking might 
correctly be ascribed to various sorts of programs — and, here, I concede, Gunderson's remarks are 
germane. For the reasons I have advanced in this essay, nevertheless, I claim that the critique does not 
apply to the epistemologically complex task of mature conversation. In other words, Gunderson has 
supposed that his critique applies to thinking of the two types I have called ES and EC thinking, when, 
on my view, they apply only to the former.

Let me conclude my critique of what I have called Gunderson's necessary/sufficient objection by 
commenting on another analogy Gunderson (1985) offers. In Mentality and Machines, at the end of the 
chapter entitled "The Imitation Game," Gunderson raises the by-now familiar possibility that a computer 
may not need thinking to pass the Turing test. In his view, thinking, as we have seen, would be sufficient 
to explain the passage of the Turing test but not necessary, since some nonthinking process might turn 
out to be sufficient to explain the passage. He writes, "In the end the steam drill outlasted John Henry as 
a digger of railway tunnels, but that didn't prove the machine had
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muscles; it proved that muscles were not needed for digging railway tunnels" (p. 59). The analogy, then, 
is that just as the steam drill illustrated that muscles are not needed to dig large tunnels, it is a distinct 
possibility that what a conversationally gifted computer will show us is that thinking is not required for 
conversation. While, as I have said, I agree that it is easy to mistake sufficient for necessary conditions, I 
think it is also tempting to reach conclusions supported by analogies that other considerations count 
against. To the point, was there any sustainable reason to suppose that only muscles can dig railway 
tunnels? Surely such a supposition doesn't do well under even a little scrutiny. Water, to cite perhaps the 
most conspicuous alternate sufficient condition, erodes vast mountain ranges, sometimes carving huge 
caverns underground. Digging railway tunnels by steam engine is an impressive achievement, but it does 
not stand apart from other phenomena in terms of warranting philosophic scrutiny the way that thinking 
does — there are good reasons why there is no philosophy of tunnel digging. Consequently, the grounds 
are weak for supposing that only muscles can dig tunnels. My principal complaint about this analogy, 
then, is that our grounds for tying thinking to mature conversation are significantly more compelling 
than associating muscles with tunnel digging; while the John Henry analogy is picturesque, I do not find 
it convincing.

Last, I wish to offer some remarks about Gunderson's assessment of our old conversational friend 
ELIZA, since I believe that Gunderson is too generous in his assessment both of ELIZA and Winograd's 
SHRDLU. In the Epilogue to Mentality and Machines, for example, he writes that "both ELIZA and 
SHRDLU could pass Turing-type tests, which, I think, only shows how ineffectual such tests are for 
showing the comparative psychological significance of different AI programs" (1985, pp. 191-192). 
Such a statement is difficult to sustain in the face of actual experience with ELIZA, Weizenbaum's 
assessment of ELIZA, or Winograd's own assessment of his early, famous work — which he now claims 
is based on a fundamentally mistaken understanding both of human cognition and language.

But notice: Gunderson is more impressed by SHRDLU than Winograd and is more sanguine about 
ELIZA than Weizenbaum. Winograd and Flores (1986) offer the following assessment of SHRDLU:
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The rationalistic approach to meaning that underlies systems like SHRDLU is founded on the assumption that 
the meanings of words and of the sentences and phrases made up of them can be characterized independently of 
the interpretation' given by individuals in a situation .... McCarthy responds by pointing out that there are 
different kinds of understanding and by suggesting that we might expect a computer to understand literal 
meaning even if it were not open to the connotations and emotional subtleties of full meaning . . . But . . . the 
concept of literal meaning is inadequate even in dealing with the most mundane examples. The phenomena of 
background and interpretation pervade our everyday life. Meaning always derives from an interpretation that is 
rooted in a situation. (p. 111)



In other words, meaning in natural language derives from its rootedness in human experience; SHRDLU 
is not capable of handling such rooted meanings and, therefore, is incapable of passing the Turing test. 
Weizenbaum (1976) offers this analysis of his much-discussed ELIZA:

The first extensive script I prepared for ELIZA was one that enabled it to parody the responses of a nondirective 
psychotherapist in an initial psychiatric interview. I chose this script because it enabled me to temporarily 
sidestep the problem of giving the program a data base of real-world knowledge. After all, I reasoned, a 
psychiatrist can reflect the patient's remark, "My mommy took my teddy bear away from me," by saying, "Tell 
me more about your parents," without really having to know anything about teddy bears, for example. (pp. 188-
189)

In my terms, Weizenbaum is saying that ELIZA is capable of epistemologically simple interchanges but 
is not capable of EC conversations. ELIZA, as Weizenbaum sees it, parodies a Rogerian psychotherapist 
and therefore enables it to engage in ES conversations without a rich knowledge of the real world.

Gunderson cites the widely quoted "Men are all alike" ELIZA conversation. The problem is that ELIZA 
is rarely this good and, in my experience at least, is never this good for a sustained period of time. On a 
number of occasions, I have used ELIZA in class. The pattern of reaction from my students has been 
neatly consistent: at first they are amazed that a conversation with a computer is possible at
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all. After an initial period of slightly nervous enthrallment, the students begin to discern the weaknesses 
and repetitiveness in ELIZA's responses, unknowingly playing the role of the interrogator in a "Turing-
type" test. Toward the end of their time with ELIZA, they ask questions or make comments they 
correctly anticipate it cannot handle convincingly. In my experience with ELIZA, the pattern in student 
assessments of ELIZA, over the course of a half-hour or 45 minutes, consistently progresses, if I may 
coin a Schullerism, from amazement to amusement; ELIZA does not impress careful, probing observers 
for a sustained period of conversation.

This conversation is widely discussed indeed. It appears not only in Weizenbaum's (1976) Computer 
Power and Human Reason, and Gunderson's (1985) Mentality and Machines, but also in Elaine Rich 
(1983). I must confess as well that I quoted it in my "The Information Age: Friend or Foe of the Liberal 
Arts" (Crockett, 1987). Aside from the fact that Rich ascribes some "knowledge about both English and 
psychology" to ELIZA, I find her discussion of the implications of ELIZA preferable to others. ELIZA's 
major strength, according to Rich, is "its ability to say something fairly reasonable almost all the time," 
while its major weakness is "the superficiality of its understanding and its ability to be led completely 
astray'' (1983, p. 68). In my view, she has it half right.



Gunderson quotes the "Men are all alike" ELIZA conversation in Mentality and Machines (1985, pp. 
189-190). He quotes with apparent approval Churchland's assessment of ELIZA which includes: "Which 
just goes to show how surprisingly little understanding is required to engage successfully in many 
standard forms of conversation." Put in my terms, I take Churchland to be saying that at least some ES 
conversations would presuppose little understanding. I readily grant the truthfulness of this claim but I 
question its relevancy to the issue of the adequacy of the Turing test since, to repeat again, virtually any 
topic that reasonably well-informed, mature adults should be capable of handling is fair game during the 
administration of the test. Note Churchland's use of the word standard. I can't claim to be sure I know 
what Churchland means by standard, but, on the plausible interpretation that it means something like 
"perfunctory" or "constrained in terms of permissible topic," Turing's test should not be taken to be 
equivalent to standard conversations. The Turing test's difficulty lies precisely in the permissibility of 
conversation occurring in extremis
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conditions, to reinvoke Dennett's way of characterizing it. As a result, I claim that the "eerie impression 
of real understanding" that Church-land claims ELIZA has, is, for reasons I advance in this chapter, 
unfortunately misleading. The only way that I can account for the widespread quoting of this 
conversation, and the concomitant, unjustified analysis that often accompanies it, is that commentators 
discover the quote, take it to be illustrative of the case they are attempting to make, and begin 
interpreting it without actually spending time with the program itself. One should expect that, if they 
spent time with the program and not just the quoted conversation, and if ELIZA were consistently this 
effective, that other similar — equally impressive — conversations with similarly "eerie" attributes 
would appear in the literature. They don't.

In contrast with the "Men are all alike" conversation, the following conversation I had with ELIZA is 
not likely to be widely quoted. This conversation should be considered along with its much more 
discussed "Men are all alike" cousin (computer part is in uppercase; all terminating punctuation, as per 
instructions, is omitted).

HI I'M ELIZA. WHAT'S YOUR PROBLEM
?Did you hear that Bush and Gorbachev are meeting?
WE WERE DISCUSSING YOU NOT ME
H don't feel well today
DON'T YOU REALLY FEEL WELL TODAY
?Men are all alike
WHAT DOES THAT SUGGEST TO YOU
?That men are sexist
DO YOU ENJOY FEELING SEXIST
:
?Are you a counselor
WHY ARE YOU INTERESTED IN WHETHER OR NOT I AM A
COUNSELOR
?Well you are not interested in talking about Bush



I SEE
?What do you think of rock music
OH I THINK OF ROCK MUSIC
?Since you are smart you must have an opinion
WHAT MAKES YOU THINK I AM SMART
?You're a computer damnit
DOES IT PLEASE YOU TO BELIEVE I AM A COMPUTER
?Enormously
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I AM NOT SURE I UNDERSTAND YOU FULLY
?I want to know if you can think
YOU'RE NOT REALLY TALKING ABOUT ME ARE YOU

I had this conversation with ELIZA November 27, 1989. The elided part consisted simply of repeated 
lines. As the conversation indicates, I hope, some responses are plausible, in fact, even strangely 
interesting, but some, on the other hand, are implausible and patently unconvincing. Spending an hour or 
so with ELIZA, in my experience at least, unmasks it for the epistemologically simple, Potemkin village 
program that it is. Any suggestion that ELIZA can pass a "Turing-type test," therefore, fails to take into 
account the fact that many conversations are unsatisfactory and that any adequate Turing test would 
uncover this fact in rather short order. Moreover, I have not seen any suggestion in writing, and it runs 
against the experience I have had with ELIZA on at least a half dozen different occasions, that ELIZA is 
capable of convincing conversations over anything more than a trivial amount of time covering a tiny 
range of human interests — namely, of course, Rogerian-style counseling. Raphael (1976), for example, 
includes a conversation with ELIZA that has more in common with the conversation I quote here than it 
does with the "Men are all alike" conversation so widely quoted by others. To be even bolder, I would 
like to see a defense of the claim that ELIZA is capable of sustained conversation in other than Rogerian-
style (read: epistemologically simple) mode.

If by "Turing-type tests" Gunderson means that ELIZA and SHRDLU can more or less converse at an 
epistemologically simple level, then, of course, I must agree. If, on the other hand, his claim is that 
ELIZA and SHRDLU can converse at an epistemologically complex level, which is what I have argued 
is required to pass the Turing test, then it follows that such a claim is quite difficult to defend. As I tried 
to underscore by citing my "conversation" with ELIZA, it (she?) is incapable of absorbing 
epistemologically complicated comments or queries and, instead, necessarily traffics in the kind of 
epistemologically simple database lookup that we saw in the Coin Toss game in Chapter 2. In fact, 
Rich's discussion of ELIZA's "matching'' mechanisms, with surprisingly few changes, could be used as 
not a bad commentary on the Coin Toss game. As a result, I don't believe that this is the kind of 
conversational performance that even remotely satisfies the Turing test.
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We should be careful in employing the phrase "Turing-type test." There is only one Turing test, with the 
specific, demanding requirements it includes. Any weakened test is not the Turing test, and use of 
phrases such as "Turing-type test" obscures the issues at stake. In particular, criticizing the Turing test 
by saying that some program can pass a "Turing-type test'' is simply misleading. We should consistently 
refer to the full-strength test when we using the name "Turing." Granted, the kind of comments we get in 
Zeichick (1992, p. 5), which I discussed briefly in Chapter 1, warrant exactly the kind of criticisms 
brought by Gunderson. But from the fact that too many AI proponents have less than a full 
understanding of the stringent requirements of the test, and too often make precipitous claims as a result, 
we should not criticize the Turing test by claiming that some (nonthinking) programs have already 
passed "Turing-type" tests.

In closing this chapter, I would like to refer to Zeichick's comments. To say, as he does, that "there's no 
doubt that the state of the art is approaching Alan Turing's goal for machine intelligence," if the relation 
exists as I claim it does between the frame problem and the Turing test, is to claim that there is no doubt 
the state of the art is approaching a solution to the frame problem. About that, I believe there is 
considerable doubt.
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Chapter 8—
The Frame Problem, Philosophy, and AI's Understanding of Intelligence

In this concluding chapter, I wish to make some general comments that presuppose the argument 
developed in the preceding seven chapters. My general goal is to lay out what I believe this essay 
contributes to the philosophical discussion of AI as it exists in the early 1990s, and to indicate where we 
are in the discussions of the philosophic viability of AI as a general theory of intelligence.

Early in the essay, I advanced some preliminary reasons why the Turing test and the frame problem 
should count as two major issues in philosophical discussions of artificial intelligence. Here I wish to 
emphasize that the frame problem and the Turing test are not two major but largely separate issues, or 
two issues that happen to have some tangentially related links. While each is an important issue in its 
own right, it is the relationship between them that explains why they should be considered jointly. 
Moreover, not only do I believe that I have shown that there is an important relationship, I think I have 
also argued persuasively that their relationship has been either poorly understood or neglected outright 
in some of the books and papers that have attempted to analyze artificial intelligence over the last 10 
years or so. The most conspicuous example of this oversight in terms of the Turing test is John Searle's 
(1990) latest piece, "Is the Brain's Mind a Computer Program?" There is no evidence in the piece that 
Searle understands the relevance of the frame problem for the Turing test. Of course, I claim not only 
that the frame problem bears on the Turing
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test but that it does so in such a way that it counts decisively against the position he espouses. 
Additionally, neither Pylyshyn's anthology (1987) nor Brown's (1987) anthology, which cover quite a lot 
of ground on the frame problem from the philosophical and technical perspectives, respectively, say 
anything about the frame problem's implications for the Turing test. As well, it is perplexing and 
disappointing that David Anderson's (1989) volume, which covers many of the same issues addressed 
here, does not attempt to articulate the issue.



One reason the relationship of the frame problem to the Turing test is important is that the prospects for 
understanding the intervening processes of the brain and a mindlike program are so poor that we have no 
choice but to rely on input/output tests such as the Turing test and any related, indirect characterizations 
of the intervening processes we can distill, given such an I/O test. While, as I argued, there is a 
substantial case to be made for the test without considering indirect characterizations, if we can 
supplement this case with considerations that enable us indirectly to discern some sense of what is likely 
happening at the process level, then we can assign a higher probability that the conclusions we draw 
from both the test and the indirect intervening process considerations are close to right than we could 
from the case for the test alone. Indeed, I claim that this point speaks to the worry that Gunderson brings 
to the debate over the Turing test — he wants to know something about the intervening processes as 
well as the relation of the output to the input. I agree that the impulse for wanting more than an I/O case 
alone is good operating procedure, philosophically speaking. My claim is that, for reasons advanced in 
this essay, while we are not in a position to make significant progress directly, we can get a measure of 
indirect understanding of the intervening processes by considering the implications of the frame problem 
for the Turing test. To be more specific, as I interpret it, the frame problem bears on the Turing test in 
such a way that it serves to augment significantly more conventional defenses of the test by proponents 
such as Dennett and Haugeland, and it enhances the case for why the Turing test is resistant to the 
criticisms of long-time Turing test critics such as Gunderson and Searle.

If I am right, then there is both indirect and direct evidence that supports the claim that the Turing test is 
an adequate test of intelligence. One result from studies in the philosophy of science is that, for evidence 
to support a theory well, it is preferable for there to
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be a variety of kinds of evidence. I don't claim that there is anything like irrefutable confirmation of a 
theory, or a philosophical view for that matter, but, other things being equal, it is preferable for there to 
be a variety of evidence supporting a theory or some kind of philosophical interpretation. In earlier 
chapters, I attempted to enhance the conventional kind of case made by Dennett and Haugeland for the 
Turing test by arguing that depending heavily on I/O evidence is unavoidable, but, more importantly I 
think, I attempted to show that there is a significant body of a different kind of evidence that supports 
the claim that passage of the Turing test would be reasonable grounds for adopting the view that a 
computer passing the test is thinking. Specifically, I claim that there is both direct, I/O evidence and 
indirect evidence, related to intervening processes, that support the positive evaluation of the test. As a 
result, there is not just one kind of evidence, there are two kinds that serve to supplement each other in 
the case that can be made on behalf of the test. I believe that this represents a significant enhancement of 
the case to be made for Turing's test.



A related result of the essay is my claim that an indirect characterization of the intervening processes 
supporting conversational abilities in a computer is likely the best we can do. Cherniak and Margolis, 
working independently, have advanced some compelling grounds for concluding, respectively, that a 
mindlike program would be too complicated for us to understand, and that the human brain supports 
novel function which developed over conserved biological structure, and, consequently, is also 
singularly resistant to investigation. Fischler and Firschein are AI proponents but argue that the brain's 
function is too deeply encoded in its biological structure for us to decipher directly how it works. While 
their view is sympathetic to an AI understanding of intelligence that I do not share, their point lends 
support to the claim I do endorse that "hollow shell" criticisms of AI, when such criticisms insist on 
looking at intervening processes before granting that something like thinking is going on in a Turing test-
capable machine, will be hard pressed to show how this is feasible in the case of brains and mindlike 
programs. In large measure, then, we are limited to I/O assessments of putatively linguistically endowed 
digital computers, because we have little other choice. Direct evaluation of the intervening processes 
supporting the linguistic skills, as a result, is out of reach.
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I use the qualification in large measure because, as I have said, we can make some indirect inferences 
about intervening processes in the case of a mindlike program with the aid of the distillation advanced 
here of the relationship of the frame problem to the Turing test. In fact, this essay can be viewed in part 
as an articulation of an indirect way to get some of the intervening process considerations that 
Gunderson seems to want in assaying the significance of the Turing test. Since we cannot achieve 
anything like a simultaneous understanding of the brain or a mindlike program, which is what would be 
necessary to supplement input/output considerations with intervening process considerations, we cannot 
claim any kind of direct, comprehensive understanding of the intervening processes supporting a 
maturely conversing computer. As a result, I believe that we cannot reasonably hold out the hope that 
we can achieve some significant process level understanding of the kind I take it Gunderson would like 
to see in order to assent to the claim that a computer passing the Turing test was thinking. Hence, one 
way to understand this essay is that it has attempted to show that there is no direct understanding of the 
relevant process levels to which we could appeal to supplement the test, but that some indirect 
considerations can be brought to bear to supplement the I/O side of the case for the test.

Considerations attaching to the frame problem do count as something of an indirect way of distilling 
some sense of what must be going on at the process level in a program as complicated as a mindlike 
program. The implications of the frame problem, some of which I have educed here, can be understood 
as an indirect way of showing, functionally if not specifically, some of what is likely happening in a 
digital computer if it has the mature conversational ability necessary to pass the Turing test. This is a 
variation on reverse engineering, since it argues from a certain I/O adequacy, namely, the Turing test, as 
well as how the frame problem bears on a Turing test capacity in a digital computer, to intervening 
process descriptions which arguably describe the supporting processes.



Most discussions of AI spend little time considering the fundamental operations of a computer. As I see 
it, some philosophical discussions of artificial intelligence move too quickly from a consideration of 
what it means for a digital computer to run a computer program in some high-level language to whether 
this or that particular skill is possible on a computer, or whether the computer should be
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characterized as having this or that capacity. I claim that a careful, low-level look at computation is 
essential before we can begin to appreciate what the capabilities are. Generally speaking, delimiting the 
characteristics and capabilities of machines that programmatically manipulate prodigious quantities of 
bits at extraordinary speed is not for the philosophically faint of heart; the probability of getting it wrong 
is high. My assumption is that some results from the theory of computation, along with some educated 
intuitions about computation at the machine level, can play an important role in generating a substantial, 
intuitive understanding about the likely capacities of digital computers with respect to mature 
conversational ability in particular and thinking in general.

Indeed, a limitative caveat is in order. Alan Kay (1984, p. 59) remarks that the computer, as the first 
"metamedium," "has degrees of freedom for representation and expression never before encountered and 
as yet barely investigated." In a parallel way, in the Epilogue to the expanded edition of Perceptrons, 
Minsky and Papert (1988) point out that they required approximately a year to reach a complete 
understanding of a simple perceptron. The larger result I take from these two claims and the discussion 
developed here is that it is foolhardy to suggest that anyone has anything even approximating a full 
understanding of the limitations of digital computers such that a detailed articulation of what they will 
and won't be able to achieve is possible. We assuredly have some provable limitative results from the 
theory of computability. But the comprehensive limits to what computers can do turn out to be a slippery 
empirical question that likely is not amenable in general to formal proof techniques. It seems to me, as a 
result and contra Searle, that we can only traffic in ''the evidence appears to support this interpretation 
rather than that"-kinds of tentative claims.

Here's what I claim the evidence and pertinent logical considerations suggest at this point in the 
philosophy of artificial intelligence. It is apt to characterize a computer as an algorithmic machine, since 
algorithms are more important than either computers or programs; computers execute programs that 
express algorithms. A problem has to have an algorithmic solution if it is to be solved on a computer, 
which is an algorithmic machine. Moreover, any problem solvable by means of an algorithmic process 
can be solved using at most three kinds of algorithmic structure, each of which is simply expressible. 
There are more elaborate algorithmic structures, such as AI's favored recursion,
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and these three structures can be combined into quite elaborate structures, but only three simple 
structures, namely, sequence, selection and repetition, are necessary for the computation of any 
computable function. As a result, necessary algorithmic structure is, at this level at least, simpler than 
might be expected.

Additionally, each step in an algorithmic process can be expressed so simply that automatic formal 
system computability can be characterized as "pencil and paper computability." Such operations consist 
of operations as simple as, "add the contents of storage location 2 to the accumulator," "see which 
storage location, 4 or 5, contains the larger integer," and so on. Arithmetic operations are the direct 
operations manipulating numeric values. Logical constructs such as ''if x is greater than y, then call 
procedure z" are typically used to determine which of a number of paths through the algorithm to take, 
given intermediate values. I emphasized that it is preferable to call "memory" storage, since digital 
computer storage is much simpler than animal memories. Consequently, arithmetic and logical 
operations at machine level turn out to be simpler than what might be thought, given what computers 
can do at the application program level.

Generally speaking, three simple algorithm structures, when combined with equally straightforward 
arithmetic and logical operations, are sufficient to constitute a full-fledged computer. I grant that typical 
programs are large in size, but I believe it is helpful to emphasize that the fundamental structures and 
operations are just this simple. My claim is that this simplicity has implications in terms of what we are 
justified in ascribing to the computer. To be sure, we can consider all the algorithmic abstractions we 
like, in terms of hierarchies, as we attempt to understand the programs we develop and use. Since we're 
completely inept at trying to remember how hundreds of millions of "bits" are arranged or manipulated, 
we cannot avoid characterizing the computer's "bit stream" with terms drawn from human convention. 
But I see such hierarchical understanding, for example, "this program plays the Coin Toss game by 
betting that its opponent's past play is a good predictor of current play," as finally an attribution on our 
part, a useful fiction, to borrow a term from R. B. Braithwaite, an aid that we use, so that we don't get 
hopelessly lost in the bits as we attempt to map the problems we want solved onto a system that knows 
nothing about human conventions and desires. Our anthropomorphizing proclivity is to reify those 
abstractions and suppose that the computer program
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possesses something approximating the range of properties that we associate with similar abstractions in 
human minds. This is harmless so long as we remember that such characterizations can lead to 
considerable philosophic misunderstanding.

I suppose the rejoinder to this admittedly "low church" approach is that I am ignoring the functional 
capacities that emerge when we get the bits being manipulated in the requisite way. In other words, a 
good case can be made to take the abstractions literally. An AI proponent might point out that we could 
take a "low church" approach to brain functioning in such a way that, after all the low-level talk about 
neuron firings, electrochemical thresholds, reinforcing connections, and the like, if we didn't know 
otherwise, we could begin to wonder how seriously to take the high-level reports of consciousness and 
the claim that conscious attitudes purportedly supported by the brain cause, for example, an arm to rise 
or a missile to be fired. Phenomena look quite different, the retort would run, depending on what level 
we look at them. As a result, it doesn't follow that a "bit" analysis, or some other low-level analysis, of a 
computer will result in the right understanding of what a digital computer can and can't do, any more 
than a neuron analysis of brains would necessarily result in the right understanding of the rich mental 
life that people undeniably possess.

But this view, as I see it, presupposes the untenable assumption that there is some significant similarity 
between brains and computers, when the preponderance of the evidence points in the opposite direction. 
The reason we don't get far with a "neuron up" analysis of the brain, if Margolis is something like right 
(and I believe he is), is that the novel function developed over the conserved structure is such that we 
don't have a good way to deduce the functional properties from a low-level analysis of the structure 
only. The pattern recognition capacities out of which all of human cognition is made, according to 
Margolis, are not rooted in a program. The problems computers have with pattern recognition and the 
difficulty people have with remembering long sequences of meaningless numbers, to put it in more 
conventional terms, counts in favor of the claim that there are stunning differences between computers 
and brains. In fact, my entire discussion of the frame problem also supports this view, at least as long as 
there is no "principled" solution.

I believe that the frame problem serves as a reinforcing systemic consideration that confirms what I 
claim about computers at the
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machine level. At the machine level, where the machine does simple arithmetic and logical operations, I 
find it difficult to imagine the development of any kind of "scale up" significant enough that the 
operations, by dint of some kind of emergent property, become psychologically relevant. My intuition 
about this — and who's to say how best to understand a computer's vast "bit stream"? — is significantly 
reinforced by considerations stemming from the frame problem.

The result, as I see it, is that we should understand digital computers as those machines that execute 
sequences of simple, atomic steps working with an inert storage where each cell is — at any specific 
instant — epistemologically quite isolated from the other cells. A specific symptom of this atomicity is 
that adding data to "smart" systems not infrequently results in performance degradation, often in terms 
of speed, sometimes in terms of satisfactory output. The opposite is usually the case in people. As a 
result, I characterized computers as utterly simple-minded. I agreed that the great speeds of a computer 
can blind us to the computer's epistemological atomicity, if I may coin a 12-syllable tongue-twister, 
because it so readily — in narrow domain situations — generates the "user illusion" of something 
approximating the causal powers of memory as we experience them in people. The speed of the atomic 
interactions, I said, generates an appearance of simultaneous, whole-system interactivity, but closer 
inspection shows this evident, whole-system interactivity to be one more user illusion. The reason I 
devoted a number of pages to exploring computation at basic levels stemmed from my desire to get as 
good a picture of computation from the bottom-up as I could. My view is that the frame problem 
originates in the inherent limitations of digital computing, which are more easily identified in machine-
level characterizations than in high-level abstractions.

I concede that my general orientation to interpreting a digital computer as I just have stems, in part, from 
my expectation that the frame problem is insoluble. I agree that the question of whether the frame 
problem is solvable is something we don't know yet — it is an empirical question that requires 
investigation. Should it turn out that it is solvable by a digital computer, then, I have to confess, my 
entire interpretation of what it means for a system to be a digital computer will change significantly. To 
go at it the other way around, part of what I understand a digital computer to be stems from my under-
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standing of the frame problem as that which demarcates the probable upper bound of digital computer 
computing capacity when we attempt to get it to solve "real-world" problems such as conversation. That 
is, a theoretical result not gotten from just the bits informs my view of what the bits can do. But as I 
have intimated, what we have to do when we attempt to understand a system that manipulates vast 
numbers of bits includes identifying philosophic difficulties such as the frame problem, bringing in 
relevant results from computability theory, seeing what sense can be made of computer operations in 
close-up mode, as I did with AugsAsm, all in an effort to generate a collage of informed impressions 
about what computation means and what its likely limits are. The bits themselves are so far silent on 
philosophical issues. As Dijkstra once observed, the digital computer is so different from any artifact we 
have ever made that the propensity for getting it wrong, for succumbing to the most egregious 
anthropomorphizing (he believes AI does just this), is dismayingly high.1

I have emphasized that the computer is quite a good simulation machine, provided that the simulation in 
question is amenable to the kind of epistemologically simple manipulation a digital computer supports. 
Simulations attempt to generate the appearance of what literally is not there — which is one reason why 
philosophical analyses of computer simulations are especially fraught with difficulty. As a result, we 
need to use special care, lest we mistake a simulation for the genuine item. I also attempted to show that 
there is good reason to distinguish between epistemologically simple and epistemologically complex 
learning. In fact, this distinction constitutes the backbone of this essay. My claim is that computers, 
barring a solution to the frame problem and as exemplified by the Coin Toss game, are capable of 
epistemologically simple learning but not epistemologically complex learning. ES learning does not 
presuppose a solution to the frame problem while EC learning does. Much of my analysis of hollow 
shell critiques of AI, specifically those offered by Searle and Gunderson, turns on this basic distinction.

While Hubert Dreyfus has been something of a lonely voice in his three-decades long opposition to AI, 
the developing importance of the frame problem constitutes a partial vindication of him in the sense that

1 He makes this point in a relatively recent edition of Communications of the ACM. I have lost the exact 
reference.
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he was correctly pointing in the general direction of the frame problem. In terms of the problem itself, 
the expression frame problem does not enjoy anything like unanimity of opinion with respect to what it 
names. There are a number of different definitions of the problem, and technically inclined writers, such 
as Hayes, define it more technically while more philosophically inclined writers, such as Haugeland, not 
surprisingly, define it more epistemologically. I called the former, more technical interpretation the 
specific frame problem and understood it to be a matter of finding a principled way to avoid examining 
an entire axiom system every time one axiom requires revision. Haugeland's understanding, that it 
involves finding a way to distinguish efficiently temporary from more or less permanent facts is an 
adequate, rough and ready way to define what I called the general frame problem.

One point that I did not emphasize is that there is less discussion of the frame problem, particularly as it 
bears on the case against artificial intelligence, in recently published material than one would expect. 
For example, Rainer Born's 1987 anthology, Artificial Intelligence: The Case Against, does not discuss 
the frame problem. The Daedulus issue devoted to AI, for the winter quarter of 1988, doesn't discuss the 
problem to any depth. Fischler and Firschein (1987) devote about three-quarters of a page to it in their 
Epilogue. Haugeland (1986) discusses it but fails to discuss, as best as I can determine, how it counts in 
favor of the poor substitute strategy for opposing AI which he himself embraces or what its implications 
are for the Turing test. Given Dennett's (1987)"Cognitive Wheels" paper which is reprinted in 
Pylyshyn's frame problem volume, it is also disappointing to see no consideration of it in his 
Consciousness Explained (Dennett, 1991). Missing in the literature, which I believe this essay 
establishes, are: the frame problem is more important than many writers suppose, it has significant 
consequences for the attempt to build computer systems which learn, and it dramatically reinforces the 
difficulty of the Turing test. In fact, there is disappointingly little specific discussion of the frame 
problem's implications for the Turing test in the literature I have seen.

Another result of this essay is that the conventional belief in AI that the "key to intelligence" in a 
machine lies in the constraint of search spaces is too simple. For example, Lenat (1984, p. 204) argues 
that the "essence of intelligence" lies in "finding ways to solve otherwise
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intractable problems by limiting the search for solutions." I believe I have shown that, because of the 
frame problem, there are two computational spaces that require constraint in the attempt to generate 
intelligence on a digital computer. First, as Lenat suggests, the search space must be limited. But 
considerations attaching to the frame problem indicate that there is also what I have called a relevance 
space that bedevils the representations used by digital computers designed to interact with domains 
possessing real world complexity. Not only, I argued, are there two kinds of computational spaces that 
must be drastically limited in order for a machine to possess something like intelligence, I claimed that 
intelligent behavior, such as that needed to pass the Turing test, must solve both of these "space" 
problems simultaneously. The fact that they must be solved simultaneously results in a new degree of 
complexity in the attempt to generate computer intelligence that has not been well articulated in 
philosophical discussions of AI that I have seen.

Even if the frame problem is solved, AI proponents are not home free. I appealed to recent studies of 
complexity, as discussed by Pagels, that suggest that a simulation of them would need to be as 
complicated as that which is simulated. This distinct complexity issue stands as an additional hurdle 
which AI will need to clear if we are to arrive at what I have called epistemologically complex learning 
and the concomitant ability to communicate at an epistemologically complex level. If this is right, the 
frame problem is an example of complexity issues facing AI, but its solution would remove only one 
layer of complexity when there are more to be solved.

One issue I did not consider explicitly in the preceding chapters is the question of whether digital 
computers attempting tasks such as learning and conversing possess intrinsic intentionality of the kind 
we have, according to some writers, when, for example, a person says "I'm hungry."2 The alternative to 
this kind of intrinsic intentionality would be what is usually called observer-relative intentionality. This 
species of intentionality depends on attributions made by outside observers. If I say, "the computer 
wants to know which file you want to work on," I am ascribing an intentional state to the computer in an 
observer-relative way.

2 If we can assume that original and intrinsic intentionality are identical, Dennett (1987, chap. 8), of course, 
will have none of this.
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As might be anticipated, my view will turn on what happens with the frame problem. So long as there is 
an unsolved frame problem facing computers, the most that I think the evidence will support is the claim 
that computers have observer-relative or derivative intentionality. The programming they use depends so 
heavily on the purposes of the programmers, and they are blocked from significant learning by the frame 
problem, so that I see no adequate grounds for saying that they have anything more than derivative 
intentionality. If it turns out that the frame problem is soluble, on the other hand, then things get much 
more interesting. To see why this is so, I need to make some remarks about what a digital computer that 
had solved the frame problem represents.

A digital computer with no unsolved frame problem has effectively broken the epistemological curse of 
what I have characterized as a single-cell simple-mindedness. There may be other significant problems 
standing in the way of such a general ability, but I have difficulty imagining that they would constitute 
as high a hurdle as the frame problem. With the right kind of programming, such a frame-solving 
computer could presumably make surmises about all kinds of things in the world, offer opinions about 
topics of conversation as we do often, and generally surmise, in some significant sense, the implications 
of any particular item in the world for any other item. I assume that such a computer would be able to 
make surmises about itself in a similar fashion. If, as Douglas Hofstadter suggests, it is the case that a 
sense of self has largely to do with this kind of self-referential surmising, then we have some grounds 
for ascribing the kind of intrinsic intentionality to a computer that we routinely do with each other. At 
this point, with no solution to the frame problem on the imaginable horizon, I believe the evidence we 
have supports only an ascription of derivative or observer-relative intentionality to computers. I continue 
to be impressed, to make a larger point, that it is the frame problem in light of which many 
conventionally discussed problems in AI now should be reinterpreted.

A central result of this essay is not only that the Turing test is, as Dennett puts it, "plenty" difficult in 
terms of being an adequate test for the presence of intelligence in a machine, but that the frame problem 
bears on the Turing test in a way that has not been appreciated in philosophical discussions of AI to date. 
Two major results stem, as I see it, from the frame problem's implications for the Turing test, both
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having to do with the claim that the frame problem adds significantly to the case that the Turing test is a 
difficult test. First, it reinforces the claim made by Turing, Dennett, and Haugeland that the test is 
adequate in the way that Turing supposed. That is, any system good enough to pass the full-throated test 
is good enough that we have sufficient grounds for attributing thought to it. Now, I agreed that there is a 
pragmatic component to the case that can be made for the test that parallels the ascription of thought to 
people. I cited Bertrand Russell's observation that solipsism is philosophically irrefutable but 
psychologically impossible. My claim is that ascription of thought to computers passing the test is 
reasonable, not provable or demonstrable by means of one of Searle's "knockdown" arguments. The 
claim is that ascription of thought to computers is at least as justifiable as ascription of thought to people 
because, I argued, there are two basic grounds for attributing thought to people, first, the right I/O, and 
second, some kind of argument by analogy. My argument is that considerations attaching to the 
difficulty of the frame problem make it at least as good an argument as the argument by analogy, and, 
since most of us routinely and reasonably (would any but the solipsist argue otherwise?) attribute 
thought to other people, it is at least as reasonable to attribute thought to a maturely conversing 
computer.

Second, not only does it reinforce a Turing-type assessment of the Imitation Game, the frame problem 
counts in favor of the poor substitute strategy for opposing AI and against the hollow shell strategy. One 
major claim of this essay is that most writers have not seen how difficult the test is. Dennett appreciates 
that it is "plenty" difficult enough. What he doesn't appreciate is that it is so difficult, and reasons for its 
difficulty are such, that the Turing test, ironically, begins to count against the AI enterprise in ways that 
I doubt Turing could have imagined. That is, in attempting to build a machine that can pass the test, we 
find out something about the difficulty of the test, apparent limitations of computing machines, and the 
raft of problems that must be solved before the test is passable. The way in which the test is difficult, I 
should emphasize, is what calls the classical AI paradigm into question. I doubt that is what Turing had 
in mind.

I believe, as well, that the two prominent detractors of the test, specifically Searle and Gunderson, have 
evidently not fully appreciated all of what the test requires. I think this essay has shown that the hollow 
shell strategy for objecting to the Turing test requires a solution
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to the frame problem, yet hollow shell proponents such as Searle and Gunderson have said little about it. 
An unsolved frame problem, in fact, counts in favor of the poor substitute strategy reproach of AI and 
serves to count against the two hollow shell reproaches of AI by Searle and Gunderson. Conversely, I 
grant that a solution to the frame problem will count significantly against the the poor substitute strategy 
which I find convincing.

The distinction between epistemologically simple and epistemologically complex learning extends 
readily to mature natural language conversational ability. Correlated with ES learning and EC learning 
are ES conversational skills and EC conversational skills. My principal claim is that ES learning ability 
supports ES conversational skills but not EC skills. Required for EC conversational skills is the much 
more demanding capacity to learn at an epistemological complex level. But, as I have argued, without a 
solution to the frame problem, digital computers are unable to learn at an EC level. My ES/EC 
distinction grows out of my understanding of what is and is not possible in a digital computer, given an 
unsolved frame problem, and it bears on how I view claims about what kinds of real-world tasks 
computers will be capable of successfully engaging.

I believe the contrast illustrates why Searle's much-discussed Chinese Room experiment is not plausible, 
and why Searle cannot have the competency he claims he has in the room. Indeed, from its first 
publication in the Behavioral and Brain Sciences a decade ago, it has generated considerably more 
debate than most philosophical critiques do. My late mentor, Grover Maxwell (1980), wrote at the time 
that it appeared that Searle's paper was destined to be a classic, and time has proven that intuition to be 
right on the mark. I did not say much about critiques of Searle's article that have appeared in recent 
years. Writers such as Torrance (1986) and Boden (1989) have some useful things to say about the 
article and the counterexample. But it seems to me that most commentators have missed a relevant, 
pivotal point that psychologists have noticed about the relation between the use of words and 
intelligence. The skillful handling of words, specifically, words used in a new sense or new words 
encountered in a conversation, remains a good, general indication of intelligence, because it presupposes 
the general ability a "system" would need to integrate new with old over a complex domain, that is to 
say, learn. What I think most philosophical critiques of Searle have missed is the centrality of learning 
for mature
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conversational ability and that a digital computer, if it is cognitively impaired by an unsolved frame 
problem, is capable of some kinds of learning but not the kind of learning it would need to engage in 
mature conversation. In sum, I claim that Searle will be incapable of EC learning in his room and that, 
consequently, he will not possess the mature Chinese language competency he claims he will—that is, 
he will not be able, contrary to what he claims, to pass the Turing test. A major theme of this essay is not 
just that he will not be able to pass the test, it is that the reasons why he will not be able to pass the test 
have not been well understood.

As I said, even though I do not share his hollow shell position, I find Gunderson's critique of the test to 
be more subtle—and finally more interesting—than Searle's. While Searle rests much of his case on his 
well-known counterexample, and while Gunderson has his own, less well known, "Toe-stepping" 
counterexample, which roughly parallels Searle's Chinese Room thought experiment, Gunderson finally 
offers the more enduring argument. Gunderson's case rests largely on the generally sound point that 
there is often a number of ways to achieve the same end. Cast in terms of thinking and conversation, 
Gunderson wants to emphasize that, while we have understood thinking to be a prerequisite for at least 
some kinds of conversation, it may turn out that it is possible to build a good conversationalist that does 
no thinking at all—or, in my terms, no epistemologically complex thinking. That is, while thinking is 
(more or less) a sufficient condition for thinking, it is not necessarily necessary. As a result, he wants us 
to look at intervening processes as well as the "right I/O" before we can suppose that we are in a position 
to assent to the claim, "Yes, the computer must be thinking."

I have advanced reasons for why we are not in a position to do the kinds of investigations that 
Gunderson presumably would urge. The complexities of a mindlike program and the brain are such that 
the prospects for any significant understanding of either is poor. As a result, we are largely left with 
considerations associated with I/O assessments. I claim that Gunderson would have to pay this price for 
holding his position: Since he claims that it is conceivable that it will turn out that a computer that 
passes the test would do no (EC) thinking, this means that it is feasible for a nonthinking, automatic 
formal system to solve the frame problem. If we are looking for some kind of threshold to demarcate 
nonthinking from thinking, or ES
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thinking from EC thinking, in a digital computer, I claim that the frame problem is the natural candidate. 
I countered that it appears so unlikely that a nonthinking automatic system can solve the frame problem 
and pass the test that it is more reasonable to ascribe thinking to a machine that passed the test and 
therefore had solved the frame problem. An auxiliary consideration I appealed to above is that such an 
ascription is surely at least as good as the appeal to analogy that an ascription of intelligence to a 
maturely conversing person would (probably) tacitly include. Since we reasonably ascribe intelligence 
to maturely conversing persons, I believe we can reasonably ascribe thinking to maturely conversing 
computers. That is, the computer auxiliary consideration, namely, that solution of the frame problem by 
a nonthinking system seems quite unlikely, is at least as compelling as the person auxiliary 
consideration, namely, that there is some kind of an analogy between myself and other people. In short, I 
am willing to call a frame-solving, maturely conversing computer a thinker.

But there is an irony here. There comes a point, in defending the Turing test from charges that passage 
would signify little, in developing the case for the adequacy of the test, in attempting to show all that a 
digital computer would have to do in order to pass the test, that we begin to undermine the goal that 
Turing originally had of providing a practical decision procedure for affirming that a computer can 
think. In other words, if we defensibly reach the conclusion that the test is quite difficult, partly because 
we have found that there are possibly intractable problems that require solution before a computer could 
pass the test, we may also begin to suspect that the computer is unlikely to pass the test at all—and that, 
as a result, we now have significant, new evidence for concluding that AI's understanding of 
intelligence—namely, that it is the manipulation of symbols under the control of a formal program—is 
fundamentally mistaken. For reasons advanced in this essay, I believe that this is exactly the point we 
have reached.

Massively parallel computing (MPC) may address some of the questions raised here but I suspect it will 
succeed only in trading one large, system-wide frame problem for as many little frame problems as the 
massively parallel system has individual processors. The complete solution of the frame problem may 
well require a massively parallel computer of equal or greater granularity to the phenomenon being 
simulated. An MPC of equal or greater granularity to the
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human brain, to choose the obvious example, presumably would have to have approximately 1011 or 
about 100 billion processors. While programming massively parallel systems of relatively smaller sizes 
(say 64K) is not as difficult as we once expected, we know little at present about the ramifications of 
attempting to program an MPC of that size. This may be a situation in which, in principle, we know how 
to do the programming but, in practice, it is out of reach because of the sheer size of the parallelism. In 
fact, one can imagine that individual neurons in an animal brain suffer, as it were, from lilliputian frame 
problems but it is not noticeable from the perspective of the system as a whole because they wash out in 
the system's parallelism. If the present study is right, it appears that AI proponents will have to look to 
massively parallel computing of prodigious sizes to recast the AI research paradigm in radically new 
form.
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Chapter 6—
The Relation of the Frame Problem To the Turing Test

In the first section of the chapter, I attempt to educe some of the implications of the frame problem for 
the Turing test, with a particular focus on what implications bear on Searle- and Gundersonstyle 
arguments against the Turing test. I develop further distinctions based on the epistemologically simple 
learning/epistemologically complex learning distinction I developed in Chapter 2. Applied to 
conversations which might take place in Searle's Chinese Room, I argue that we should distinguish 
between epistemologically simple (ES) conversations and epistemologically complex (EC) 
conversations. My pivotal claim in the first section of the chapter is that ES conversations do not 
presuppose a solution to the frame problem, but that EC conversations do.

I have discussed the frame problem and the Turing test at length, but I have not attempted to spell out 
what I think the implications of the frame problem are for the Turing test and some of the discussions of 
the test. In this first section of the chapter, I would like to undertake this task.

As we saw in Chapter 4, the frame problem is often cast in terms of how it poses problems for an 
artificial system as such a system attempts to engage the world in some significant sense. Recall that 
Fodor, for example, cast his understanding of the general frame problem in terms of the problems a 
robot would face attempting quite ordinary tasks. According to Fodor, as we saw, the frame problem is 
largely the problem of adjusting beliefs about the world, given the experiences —
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here we might say "input" — the robot has, which almost always entail changes in those beliefs so that 
the robot can effectively adjust its behavior.

In Chapter 4, I also distinguished two aspects of the frame problem, namely the specific and the general 
frame problem. The general frame problem, cast in robot terms, is a matter of determining the relevance 
of the experiences that a robot might have to the beliefs that the robot has about the world in two ways: 
(a) how should the robot's belief system be updated in light of new input? and (b) what is relevant in the 
robot's database to the solution of any given problem?



The specific frame problem, as I defined it in Chapter 4, involves issues associated with what changes 
are not needed in an axiom-based system, given changes in the world modeled by the system. There are 
production systems that have some ability spelling out what changes are entailed by the change of this or 
that axiom; the problem is that determining that changes a. .m are required does not mean that changes n 
. . z are not required. The system is left with the problem of determining that a change does not entail 
that change, and that change, and so on. A solution to the specific frame problem would be a matter of 
identifying a "principled" way, rather than an ad hoc way, to make such determinations. As Hayes 
(1987) argues, there doesn't seem to be any rule-based way to do this. Attempting to do it ad hoc, for a 
real as opposed to a toy world, of course, results in computational paralysis. Cast in my terms, the 
specific frame problem details at the programmatic level why there appears to be no way to enhance 
programming techniques as we understand them now so that computer-based epistemologically simple 
learning can be extended to encompass epistemologically complex learning.

As I argued in Chapter 4, the specific frame problem is related to the general frame problem since the 
attempt to find Hayes's "principled" way to avoid the specific frame problem unavoidably entangles the 
attempt in the general frame problem. In this chapter, I intend to argue that the frame problem blocks 
epistemologically complex learning, and, since EC learning is a prerequisite to the kind of the 
conversational ability Turing had in mind, an unsolved frame problem means that it will not be possible 
for an automatic formal system to pass the Turing test. Instead, it will be forced into inept, ELIZA-like 
responses when the conversational partner imparts new, epistemologically complex information. A 
system that responds with ELIZA-like
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responses, as I attempted to show in the last chapter (and will argue again at the end of this chapter), will 
conspicuously fail the Turing test.

The general frame problem inhibits epistemologically complex learning in automatic formal systems for 
the following reasons. Any computer model of the world that would be rich enough to support 
conversation (assuming that such a feat is possible) would contain, in addition to many other 
components, presumably, something like a logical snapshot of the world. That is, it would contain a 
manipulable representation of the world, its components, and how those components that are significant 
for human activities usually interact. Even given the contentious assumption that such a snapshot was 
adequate for the conversational task, however, it is adequate only so long as there is no new information 
in the conversation that has any bearing on the model's representation of the world. As soon as such 
information appears in the course of the conversation, the model must be successfully updated if it is to 
use the new information in responding convincingly to a query or a comment. And that is precisely what 
is required if the conversation is to be convincing enough that the computer plays the Imitation Game 
successfully.



In terms of the specific frame problem, as soon as epistemologically complex information is 
encountered in a conversation, the question becomes how to assimilate such information 
axiomatically — namely, how does the system survey its system of production rules and data and 
determine which should be revised and which should not be — and do so in conversational "real-time"? 
Even this vexing question presupposes, moreover, that the system would have some way to recast an EC 
comment encountered in a conversation, for example, in programmatic/ database terms. It is a 
commonplace, by now, that translation of natural language sentences into first-order predicate calculus, 
even when done by thinking people, is accomplished at the price of "losing something in the 
translation." As a result, the automatic formal system faces two problems in light of the frame problem: 
(a) how should EC information be translated without losing part of the meaning of the original, and (b) 
how should the system of rules and data comprising the "programming" of the system be revised in light 
of this translation? The overriding question, of course, is whether there is a mechanical (presumably 
nonthinking or at most ES-thinking) way to do this.

It might be objected that many — perhaps most — conversations do
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not involve epistemologically complex information, or, if they occasionally do, that successful 
manipulation of epistemologically complex information is not necessary for more or less successful 
participation in such conversations. To put it another way, it might be possible that EC information is 
handled by clever ES responses in such a way that the Turing test is satisfied — this is the kind of 
possibility, I take it, that Gunderson would point to in resisting the ascription of thought to a maturely 
conversing system solely on the basis of its conversational abilities. I readily concede that some kinds of 
conversation would impose no such burden, since they consist of the kind of banter that a bantam expert 
system, constructed using ELIZA-like techniques, should be able to support. By sheer weight, I grant 
that a large percentage of human conversation is epistemologically simple: greetings, simple 
exhortations, requests for uncomplicated factual information, and so on. While I think it would be 
difficult for a rule-based system to handle all such conversations — I take it that Haugeland's "jerky" 
problem would likely be encountered in the inevitable unusual interchanges, even in these kinds of 
straightforward conversations — I think it is likely that such a limited linguistic competency is possible. 
If this is right, it should be no insuperable problem to write a computer program capable, given a little 
good fortune, of the following credible conversation.

Alayna: Well, here it is Friday, again.
Computer: Yes, I see it is the 12th of the month. Didn't miss the 13th by much!

Alayna: You're not superstitious are you?
Computer: No, of course not. Logic and superstition don't mix.



Indeed, such conversational give and take could plausibly be ascribed to two persons rather than a 
person and a computer. The computer's responses don't simply mirror, in a trivial fashion, the comments 
of the person, they engage the person's comments in a plausible way. As a result, while I don't think 
ELIZA, for example, would often be this good, I readily concede that some conversations — and 
perhaps significant parts of all conversations — could satisfactorily be handled by means of a rule-based 
inference system. So I will concede to the objection that a large part of conversation is epistemologically 
simple and therefore is capable of being handled by nonthinking (or ES
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thinking only) systems. In terms of the Turing test, this means that some parts of such a test could likely 
be handled well by a computer system possessing such conversational abilities.

Consistent with my contrast between epistemologically simple and epistemologically complex learning, 
I will call this genre of conversation epistemologically simple conversation. What I mean by this is that 
ES conversation makes no demands on an automatic formal system such that a solution to the frame 
problem is required before an engaging, appropriate conversational response can be made. The 
conversational exchanges are simple enough that no system-wide revision of the system's belief complex 
is required in order to respond with an answer that meets the demands of the Turing test. If this 
particular exchange does not appear to be simple enough to be obviously an epistemologically simple 
conversation, I assume that the responses can be scaled to the point where such agreement could be 
reached. It might look as though the first comment, "Well, here it is Friday, again" might generate the 
frame problem since it evidently contains new information. But this is not information that the system 
would likely not have or, alternately, have difficulty handling. Specifically, it doesn't require much 
storage to represent a calendar in a computer, all the way to the year 2050, which would be adequate for 
most purposes. Add some general purpose conversational responses in an array with a good look-up 
device, a simple inference mechanism that would support inferences such as the fact that the 13th 
follows the 12th in every month, and the computer would likely do well in such conversational settings 
for at least a short period of time. While slightly more complicated, similar comments could be made 
about the computer's second comment.

I should emphasize that it is not that an epistemologically simple conversation can impart no new 
knowledge to an automatic formal system while it is driven by a program with conversational capacities. 
To be sure, "run-time" data entry, in contrast to the use of some kind of internal data base, is almost as 
old as automatic computing itself. I should add that the problems associated with "run-time" assignment 
of data to variables have shaped a good part of programming language history. Classical programming 
languages such as Pascal are characterized as prescriptive languages, since extensive use of run time 
assignments is typically made. New languages such as PROLOG rely more on description; no 
potentially destructive assignments to variables
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are made at run time. The point is that successful run-time assimilation of data has been a problem even 
for epistemologically simple computational activity. It is that such information has to be amenable to 
representation in the system's storage without necessitating a system-wide examination of the 
implications of that information. Such information should be amenable to representation in the system's 
storage and should not require system-wide examination of other storage cells which are not overwritten 
in the storage process.

In epistemologically complex conversation, by contrast, if an adequate response is to be generated, the 
system's belief complex must undergo a system-wide examination, identifying both what needs to be 
changed and what does not need to be changed, given the kind of information encountered in a 
conversation. When a conversational fragment contains new information that has nontrivial implications 
for the system's belief complex, such that a system-wide examination and partial revision is a 
prerequisite for adequate conversational responses, then the frame problem is joined. It might be 
possible to isolate some identifying characteristic of all epistemologically complex information, but the 
best criterion I can think of that distinguishes epistemologically complex information from 
epistemologically simple information is that the former necessitates system-wide examination of the 
beliefs of the computer, in the manner just suggested, if the system is to respond convincingly to queries 
about that information and what it means for the world the computer inhabits. The frame problem, to put 
it simply, is what distinguishes the two.

Recall from the last chapter that virtually any topic involving human interests and practices can be 
involved, as Turing envisioned the Imitation Game. This doesn't mean, I take Turing to be saying, that 
the computer has to be an expert conversationalist in every area of human endeavor, just reasonably well 
informed in the way that we would expect that an informed, reasonably well-educated, fluent speaker of 
the language would be. As an example, suppose that Alayna, the interrogator, relays some information 
to SIMON, the robot, by way of a question.

Alayna: Did you hear that Gorbachev's political strength within the upper ranks of the KGB is 
deteriorating significantly?
SIMON:No, that's news to me.
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Alayna: What do you think that means for the federal government's attempt to decrease the budget 
deficit?

Surely a modestly well-informed adult, for example, one who reads Time magazine on a regular basis, 
should be able to surmise and express, in response to Alayna's question, that a deterioration of 
Gorbachev's position in the Soviet intelligence agency might well contribute to Gorbachev's political 
demise, which, in turn, would likely increase calls for an increase in the American military budget, 
which, in turn, with other things being equal, makes it more difficult to reduce the prodigious federal 
budget. While one might object to the example by observing that the American CIA did rather a poor 
job of predicting both the August 1991 coup, as well as the eventual demise of the Soviet Union itself, 
my response would be that large organizations such as the CIA often act much like computers with acute 
frame problems. Prerequisite to such a sophisticated surmise, however, is quite a large number of 
inferences and whole belief examinations and partial revisions; the recurring question, of course, is 
whether we have adequate grounds for supposing that an automatic formal system is capable of such 
inferences and whole belief revisions without foundering on the frame problem and falling prey to a 
terminal — so to speak-case of computational paralysis.

The robotic response in the conversation just displayed, ''No, that's news to me," is certainly plausible, 
even given the problems associated with the frame problem. SIMON's reply is the sort of reply that a 
person might expect of another person in response to such a question. In fact, an ELIZA-like program 
could be expected to perform just as adequately in such a situation: a very specific, epistemologically 
complex question is handled by means of a general-purpose response. If all that is expected of SIMON 
is Rogerian psychotherapeutic-like answers of the kind we find in ELIZA-like programs, then passing 
the Turing test would be relatively easy.

But some care needs to be exercised at this point. We need to distinguish between conversational 
response to a comment or query and appropriation of that query's or comment's content in order to see 
that mature conversational ability entails more than simply the plausibility of the response at any given 
exchange. In the conversation just displayed, "No, that's news to me" is certainly an acceptable response 
to the new information about Gorbachev but that is not the only task the
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conversing computer attempting to pass the Turing test has given the question, "Did you hear that 
Gorbachev's political strength within the upper ranks of the KGB is deteriorating significantly?" There 
must also be an epistemological appropriation of the content of the comment such that it is incorporated 
into SIMON's beliefs about the world. We can't tell, on the basis of SIMON's only response, "No, that's 
news to me," whether the computer has appropriated the information so that it can be used to support the 
conversation as it develops. The reason for conversing at length about such matters, during the 
administration of the test, is to determine if such appropriation is made and is made in something 
approximating the way that we would expect of a competent adult.

The pivotal point is that ES conversational adequacy is not equivalent to EC conversational adequacy. If 
SIMON has a large belief complex, some kind of logical picture of the world, which surely would be 
required to participate adequately in a mature conversation, then that belief complex has to be examined 
and appropriately changed to reflect the new information, in this case, the claim that Gorbachev's 
political situation within the KGB is deteriorating. But notice that the nature of the change required is 
quite different from what we saw with the Coin Toss game in Chapter 2. New data in that 
epistemologically simple situation, such as reading an H on the game string, meant only that a 
magnitude had to be changed in one location of storage at a given instant. Megabytes of such 
epistemologically simple data are, in principle, readily handled by computer systems in a short amount 
of time — that's what they are good at and we, by contrast, are comparatively poor at. Nevertheless, the 
way that such volumes of data are handled in current systems is epistemologically simple, since the 
frame problem blocks it from being used in the epistemologically complex way that would be 
presupposed by any EC response predicated on an EC appropriation of the new information about 
Gorbachev.

It might be hoped that some kind of clever ES mechanism could handle the new information in such a 
way that epistemological issues are avoided and plausible responses are supported. The problem is that 
conventional AI database changes that normally are used in what I have called epistemologically simple 
learning and conversation cannot involve systemic, principled belief revisions; single item changes, such 
as the change required by encountering a new item on the game string, are atomic, not system wide. 
That can occur at such speeds that it
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might look as though there is support for system-wide revision (here we have to beware of the dangers 
of "user illusions") but the fact remains that digital computers with an unsolved frame problem make 
atomic, rule-governed storage changes that are incapable of effecting epistemologically complex 
changes. In the case of SIMON being informed, in a conversation, that "Gorby's" political position is 
deteriorating in the upper echelons of the Soviet intelligence establishment, there is no rule-based, 
automatic ES change that can be made that would be adequate to the conversation since the implications 
of the claim bear on large parts of the belief system. Analogically speaking, individual tiles of the 
mosaic comprising the system's logical portrait of its world can be changed according to production 
rules and intermediate data, but the rules and tiles together are insufficient to generate the sense of the 
picture embodied in the mosaic that would be needed to make changes in an epistemologically complex 
manner.

For a rule-based system like a digital computer, it might be hoped that some kind of sophisticated set or 
hierarchy of rules could handle the updating required about the news about Gorbachev in an ES way. 
The purpose of a rule is to enable the user of the rule to have a shorthand method for coping with 
virtually limitless numbers of applications of a rule over some domain. But if recent assessments in the 
emerging field of complexity study, such as Heinz Pagels's (1988), are right, some phenomena admit of 
satisfactory rule-based modeling or simulation, and therefore symbolic manipulation based on rules, but 
some cannot be adequately modeled by any system simpler than the phenomenon being modeled. Pagels 
cites the weather as a prominent example of such a phenomenon. In fact, Pagels speculates that the brain 
is just one such system.

the simplest system that simulates a brain's operation is that brain itself. If these ideas are right, then there is a 
'complexity barrier' that lies between our instantaneous knowledge of the state of neuronal network and our 
knowledge of its future development. The brain, and hence the mind, is another example of an unsimulatable 
system. (pp. 227-228)

Because of the enormous number of concepts, words, nuances of concepts, words and expressions, and 
what Winograd and Flores (1986) call the rootedhess of all these words, expressions, and concepts in 
(largely tacit) human convention and tradition, I believe that natural
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language also has a "complexity barrier." Natural language is so complex that no manageable set of 
(syntactic-based) rules can model it in anything approximating its complexity. The qualification 
problem, which I discussed briefly in Chapter 3, is related: given a rule, it is always possible to qualify a 
description of that to which the rule purportedly applies so that it no longer clearly applies.1 If this is 
right, then there is nothing like a rule, or a system of rules, that would enable SIMON to do the updating 
of a rule-based system which attempts to model and use natural language such as English. Consequently, 
the evidence favors the result that there is no set of rules, no matter how they are organized or how 
sophisticated they are, that can be constructed to overcome the frame problem as it obstructs the attempt 
to build computers capable of passing the Turing test.

Barring a solution to the frame problem, as a result, it is not possible to extend the kind of techniques 
that are adequate for epistemologically simple conversations so that they would be adequate for 
epistemologically complex conversations. Algorithmic techniques that are now used in AI and were 
used in the Coin Toss game in Chapter 2 should be adequate for many epistemologically simple 
conversational tasks. My claim is that such techniques are not extendible to encompass 
epistemologically complex conversational tasks just because we have no way at present to solve the 
frame problem with programming techniques that support only epistemologically simple learning.

A classical AI objection at this point might be that I have missed the point of what distinguishes AI from 
conventional programming. Namely, AI is based more on heuristics than algorithms as understood in 
conventional computer science. In fact, some might go so far as to say that what distinguishes AI from 
conventional computer science is that the former is principally based on heuristics while the latter is 
based on algorithms. The claim is that heuristic search reduces the search space of a problem by using 
knowledge to eliminate areas of the search which are unlikely to yield a solution. From the fact, 
therefore, the objection would continue, that I have putatively shown that algorithmic techniques which 
support epistemologically simple conversations cannot be extended to support EC conversations, it 
doesn't follow that digital computers cannot engage in EC conversations. Heuristic search procedures, at 
some point in the future, may well

1 Interestingly enough, it was John McCarthy (1977) who identified this problem.
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prove up to the task of supporting EC conversations. While the jury may still be out, the objection would 
conclude, it remains an unsettled question whether digital computers can engage in EC conversations.

I have never been particularly impressed by the claim that AI uses heuristics while computer science 
employs only algorithms, since conventional (albeit sophisticated) programming often involves 
knowledge-based search space constraint, and "heuristic search" still cashes out as algorithmic 
manipulation of data at the machine level. The fact of the matter is that there is little evidence that 
heuristic search is any more likely to solve the frame problem than is conventional algorithmic 
programming. David Waltz (1988, p. 195), who is otherwise more optimistic about AI than I, seems to 
agree: "In retrospect it is remarkable how seriously heuristic search has been taken as a cognitive model 
. . . [and it is now] clear that traditional AI methods do not scale up well and that new AI paradigms will 
therefore be needed." The failure of heuristic search methods to ''scale up well," in fact, is likely due at 
least in part to the frame problem. And my claim, of course, is that the best line of demarcation that we 
have between the epistemologically simple and the epistemologically complex, in automatic formal 
systems that attempt to engage in tasks such as natural language use, is the frame problem.

Assuming that the computer wouldn't have to distinguish between epistemologically simple and 
complex conversation—that is, judge whether this or that conversational segment is simple or complex 
so as to invoke different routines, for instance, it should often perform well with such conversation. In 
fact, I take it that such a judgment itself would founder on the frame problem. It turns out, however, that 
this is a problematic assumption. I would like to call the issue of whether a conversational segment is 
simple or complex the frame problem generator question. I believe it is likely that the frame problem 
generator question is an analog to the halting problem. In other words, if we can't write a program to 
determine if any arbitrarily entered program halts, which is what the provable halting problem means, 
and if the frame problem generator question is an analog to the halting problem, it follows that we can't 
write a program that determines if any arbitrarily presented conversational segment (one more 
"program") will generate the frame problem for the system.

In fact, other considerations support the claim that we cannot write a program that determines whether 
an arbitrarily selected conversa-
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tional fragment will turn out to be a frame problem generator. Consider what such a program would 
have to do. It has to be able to answer the question, "Does this statement or query, which is the last part 
of the conversational fragment, generate the frame problem?" But this question, which can only be 
answered by system-wide scrutiny of the implications and nonimplications of the conversational 
fragment, itself is epistemologically complex, not simple. Since it is complex, it generates the frame 
problem if an automatic formal system attempts to answer it, and, as a result, the system is left with two 
equally undesirable (from our perspective) choices. Either the system possesses a routine that returns a 
randomly generated answer—a guess—or it takes on the question, hangs on the frame problem, and is 
unable either to answer this question or continue in the conversation.

As a result, it is not possible to write a program which would gracefully, convincingly handle a 
conversation segment that turns out to be a frame problem generator—for example, by including a 
procedure that, by some means, gracefully deflects segments that turn out to be frame problem 
generators. Since such an identification is not possible, two possibilities remain, neither of which is 
desirable. Either the program would handle the segment ineptly by taking an epistemologically complex 
segment to be simple, and, as a result, answer simplistically at best or "jerkily" at worst, or, correctly 
surmising, by whatever means, that the epistemologically complex segment is complex, it would 
founder on the frame problem, either hanging in speechless suspended animation, or, if it had some 
arbitrary routine that monitors cycle time, it would interrupt belief system revision arbitrarily, and, 
likewise, answer simplistically or jerkily. In either case, the computer answers unconvincingly and thus 
contributes to the failure of the test.

The signal result is that there is no way, barring a solution to the frame problem, for an automatic formal 
system to cope gracefully and effectively with epistemologically complex conversations.

I should point out that there is a parallel between the ES/EC contrast, and the frame problem, on one 
hand, and Dreyfus and Dreyfus's five stages of skill acquisition on the other. On the distinction I have 
drawn, it should be clear why a computer should be able to advance through stages 1-3 but founder at 
stages 4 and 5. While much of Dreyfus and Dreyfus's discussion of these stages is couched in terms of 
the human learner, it is easy to transfer their claims to the
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"computer learner." A computer learner, as it accumulates experience (in the case of the Coin Toss 
game, as it reads more of the game string) is able to become more adequate to an epistemologically 
simple task. In Dreyfus and Dreyfus (1986, p. 28) terms, enough "experience" (data) is accumulated as 
the computer learns that the rules begin to generate a distinctive improvement in performance. However, 
for tasks that require "holistic similarity recognition," which, according to Dreyfus and Dreyfus, are 
possible only in stages 4 and 5, ES learning is insufficient. EC learning, requiring whole belief system 
revision, enables what they would call "intuitive know-how." On the set of contrasts I have drawn, in 
sum, ES learning supports automatic formal system advances from stages 1 to 3, but such a system 
would founder on the frame problem and would be incapable of advancing to the "intuitive'' skills 
characterizing stages 4 and 5. EC learning would be required for these last two stages.
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as analytical metamedium, 43, 46



I/O, 49-51, 122-123

of a word processor, 44

of physical systems, 45, 49-51, 122-123, 128

philosophical problems with, 48-49

SHRDLU, 167, 182, 186

Skill Acquisition, 62

five stages of, 62-66

Specific frame problem, see Frame problem, specific

Storage, 26, 91, 101

and computer memory, 91

capacity of the brain, 101

Strategic Defense Initiative, 119

Strong AI, see Artificial intelligence, strong; Syntax only

semantics, 152, 154-155, 158

Syntax only, rule-based system, 148

Systemic correctness, 121

T

Tropisms, 109

Turing test, 2, 8, 10, 11, 12, 13-14, 27, 54, 56, 95, 106, 111, 113-115, 129-131, 141, 148, 164, 166, 169, 
175, 184, 187, 188, 189, 190, 191, 200, 203

  



Page 216

and complexity barrier of language, 141

and conversational ability, 10

and ELIZA, 95

and frame problem, 5, 6, 13-14, 54

anthropocentrism of, 113-115

as quick probe for intelligence, 12

Gunderson's first objection, 148, 166

Gunderson's second objection, 148, 166, 175

requiring genuine intelligence, 130

weakness of, 169

what's needed to pass, 129-131

U

User illusions, 9, 41, 44, 49, 168, 195

V

Vocabulary tests, 110-111

as a measure of intelligence, 110-111

W

Watts Tower, 88

WYSIWYG, 45-46

  




