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Preface

This book is concerned with various topics that center around equivariant
holomorphic maps of Hermitian symmetric domains and is intended for spe-
cialists in number theory and algebraic geometry. In particular, it contains
a comprehensive exposition of mixed automorphic forms that has never ap-
peared in book form.

The period map w : H — H of an elliptic surface E over a Riemann surface
X is a holomorphic map of the Poincaré upper half plane H into itself that is
equivariant with respect to the monodromy representation x : I' — SL(2,R)
of the discrete subgroup I" C SL(2,R) determined by X. If w is the identity
map and Yy is the inclusion map, then holomorphic 2-forms on E can be
considered as an automorphic form for I" of weight three. In general, however,
such holomorphic forms are mixed automorphic forms of type (2,1) that are
defined by using the product of the usual weight two automorphy factor and
a weight one automorphy factor involving w and x. Given a positive integer
m, the elliptic variety E™ can be constructed by essentially taking the fiber
product of m copies of E over X, and holomorphic (m+1)-forms on E™ may
be regarded as mixed automorphic forms of type (2, m). The generic fiber of
E™ is the product of m elliptic curves and is therefore an abelian variety, or
a complex torus. Thus the elliptic variety E™ is a complex torus bundle over
the Riemann surface X.

An equivariant holomorphic map 7 : D — D’ of more general Hermitian
symmetric domains D and D’ can be used to define mixed automorphic forms
on D. When D’ is a Siegel upper half space, the map 7 determines a complex
torus bundle over a locally symmetric space I'\D for some discrete subgroup
I' of the semisimple Lie group G associated to D. Such torus bundles are
often families of polarized abelian varieties, and they are closely related to
various topics in number theory and algebraic geometry. Holomorphic forms
of the highest degree on such a torus bundle can be identified with mixed
automorphic forms on D of certain type. Mixed automorphic forms can also
be used to construct an embedding of the same torus bundle into a complex
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projective space. On the other hand, sections of a certain line bundle over this
torus bundle can be regarded as Jacobi forms on the Hermitian symmetric
domain D.

The main goal of this book is to explore connections among complex torus
bundles, mixed automorphic forms, and Jacobi forms of the type described
above. Both number-theoretic and algebro-geometric aspects of such connec-
tions and related topics are discussed.

This work was supported in part by a 2002-2003 Professional Develop-
ment Assignment award from the University of Northern Iowa.

Cedar Falls, Iowa, April 5, 2004 Min Ho Lee
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Introduction

Let E be an elliptic surface in the sense of Kodaira [52]. Thus E is a compact
smooth surface over C, and it is the total space of an elliptic fibration 7 :
E — X over a compact Riemann surface X whose generic fiber is an elliptic
curve. Let I' C SL(2,R) be a Fuchsian group of the first kind acting on the
Poincaré upper half plane H by linear fractional transformations such that
the base space for the fibration 7 is given by X = I'\H*, where H* is the
union of H and the set of cusps for I'. Given z € Xo = I'\H, let @ be a
holomorphic 1-form on the fiber E, = 77!(z), and choose an ordered basis
{71(2),v2(2)} for H,(E.,Z) that depends on the parameter z in a continuous
manner. Consider the periods w; and wy of E given by

wl(z):/ P, wg(z):/ P.
71 (2) 72(2)

Then the imaginary part of the quotient wy(z)/w2(2) is nonzero for each z,
and therefore we may assume that wi(z)/we(z) € H. In fact, wi/wy is a
many-valued holomorphic function on Xy, and the period map w : H — H
is obtained by lifting the map wy/ws : Xo — H from Xy to its universal
covering space H. If I' is identified with the fundamental group of Xj, the
natural connection on Ey determines the monodromy representation x : I' —
SL(2,R) of I', and the period map is equivariant with respect to x, that is,
it satisfies

w(yz) = x(7)w(z)
for all v € I' and z € ‘H. Given nonnegative integers k and ¢, we consider a
holomorphc function f on H satisfying

Flyz) = (cz + d)*(exw(z) + dy) f(2) (0.1)

for all z € H and v = (24) € I' with y(y) = (“; Zz) € SL(2,R). Such a

(&
function becomes a mixed automorphic or cusp form for I" of type (k, ¢) if in
addition it satisfies an appropriate cusp condition. It was Hunt and Meyer [43]
who observed that a holomorphic form of degree two on the elliptic surface
E can be interpreted as a mixed cusp form for I" of type (2, 1) associated to
w and x. If x is the inclusion map of I" into SL(2,R) and if w is the identity
map on H, then F is called an elliptic modular surface. The observation of

M.H. Lee: LNM 1845, pp. 1-9, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



2 Introduction

Hunt and Meyer [43] in fact generalizes the result of Shioda [115] who showed
that a holomorphic 2-form on an elliptic modular surface is a cusp form of
weight three. Given a positive integer m, the elliptic variety E™ associated
to the elliptic fibration 7 : E — X can be obtained by essentially taking
the fiber product of m copies of E over X (see Section 2.2 for details), and
holomorphic (m + 1)-forms on E™ provide examples of mixed automorphic
forms of higher weights (cf. [18, 68]). Note that the generic fiber of E™ is
an abelian variety, and therefore a complex torus, obtained by the product
of elliptic curves. Thus the elliptic variety E™ can be regarded as a family
of abelian varieties parametrized by the Riemann surface X or as a complex
torus bundle over X.

Another source of examples of mixed automorphic forms comes from the
theory of linear ordinary differential equations on a Riemann surface (see
Section 1.4). Let I' C SL(2,R) be a Fuchsian group of the first kind as
before. Then the corresponding compact Riemann surface X = I'\H* can
be regarded as a smooth algebraic curve over C. We consider a second order
linear differential equation A% f = 0 with

d? d
A% = — + Px(x)— 2
x=g37t X(I)dx + Qx(z), (0.2)
where Px(z) and Qx(z) are rational functions on X. Let w; and ws be
linearly independent solutions of A% f = 0, and for each positive integer m
let S™(A%) be the linear ordinary differential operator of order m + 1 such
that the m + 1 functions

W W W, wiwi T W

are linearly independent solutions of the corresponding homogeneous equa-
tion S™(A%)f = 0. By pulling back the operator in (0.2) via the natural
projection map H* — X = I'\'H* we obtain a differential operator

d2

Y/ —
dz?

d

+ P(2) P + Q(2) (0.3)
such that P(z) and Q(z) are meromorphic functions on H*. Let wq(z) and
ws(2) for z € H be the two linearly independent solutions of A%f = 0 corre-
sponding to w; and we above. Then the monodromy representation for the
differential equation A%f = 0 is the group homomorphism x : I' — GL(2,C)
which can be defined as follows. Given elements v € I" and z € ‘H, we assume
that the elements wy(yz) and wa(yz) can be written in the form

w1(72) = axw1(z) + bywa(2), w2(7z) = cywi(2) + dywa(2).

Then the image of v € I' under the monodromy representation x is given by

x(y) = (“X ZX) € GL(2,C). (0.4)

Cx Qx
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We assume that x(I") € SL(2,R) and that
w(z) =wi1(z)/wa(z) € H
for all z € H. Then the resulting map w : H — H satisfies

axw(z) £ by _
cyw(2) +dy

w(yz) = x(7)w(z)

for all z € H and v € I'. Thus the map w is equivariant with respect to Yy,
and we may consider the associated meromorphic mixed automorphic or cusp
forms as meromorphic functions satisfying the transformation formula in (0.1)
and a certain cusp condition. If S™(A?) is the differential operator acting on
the functions on H obtained by pulling back S™(A%) via the projection map
H* — X, then the solutions of the equation S™(A?)f = 0 are of the form

‘ ciw1 (2)™ wy(2)"

m
=0

for some constants cg, ..., cn. Let 1) be a meromorphic function on H* cor-
responding to an element 1x in K (X), and let f¥ be a solution of the non-
homogeneous equation

S™(A)f = 1.
If k is a nonnegative integer k, then it can be shown the function

BY(2) = o (o) (f%))

dw(z)m 1\ wa(z)™

for z € H is independent of the choice of the solution f¥ and is a mixed auto-
morphic form of type (2k, m — 2k 4 2) associated to I', w and the monodromy
representation Y.

If f is a cusp form of weight w for a Fuchsian group I' C SL(2,R), the
periods of f are given by the integrals

100
(2)2Fdz
0

with 0 < k < w — 2, and it is well-known that such periods of cusp forms
are closely related to the values at the integer points in the critical strip
of the Hecke L-series. In [22] Eichler discovered certain relations among the
periods of cusp forms, which were extended later by Shimura [112]; these rela-
tions are called Eichler-Shimura relations. More explicit connections between
the Eichler-Shimura relations and the Fourier coefficients of cusp forms were
found by Manin [91]. If f is a mixed cusp form of type (2,m) associated to
I' and an equivariant pair (w, x), then the periods of f can be defined by the
integrals
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100
(2)w(2)kdz
0

with 0 < k < m. The interpretation of mixed automorphic forms as holo-
morphic forms on an elliptic variety described earlier can be used to obtain a
relation among such periods, which may be regarded as the Eichler-Shimura
relation for mixed cusp forms (see Section 2.4).

Connections between the cohomology of a discrete subgroup I" of SL(2,R)
and automorphic forms for I were made by Eichler [22] and Shimura [112]
decades ago. Indeed, they established an isomorphism between the space
of cusp forms of weight m + 2 for I' and the parabolic cohomology space
of I' with coefficients in the space of homogeneous polynomials of degree
m in two variables over R. To be more precise, let Sym™(C?) denote the
m-th symmetric power of C2, and let Hp(I',Sym™(C?)) be the associated
parabolic cohomology of I', where the I'-module structure of Sym™(C?) is
induced by the standard representation of I' C SL(2,R) on C?. Then the
Eichler-Shimura isomorphism can be written in the form

Hll:'(F’ Symm((c2)) = SerQ(F) S?) Sm+2(F)7

where S, +2(I") is the space of cusp forms of weight m+2 for I" (cf. [22, 112]).
In particular, there is a canonical embedding of the space of cusp forms into
the parabolic cohomology space. The Eichler-Shimura isomorphism can also
be viewed as a Hodge structure on the parabolic cohomology (see e.g. [6]).
If (w, x) is an equivariant pair considered earlier, we may consider another
action of I" on Sym™ (C?) which is determined by the composition of the ho-
momorphism y : I' — SL(2,R) with the standard representation of SL(2,R)
in Sym™ (C?). If we denote the resulting I'-module by Sym'(C?), the asso-
ciated parabolic cohomology Hp(I', Sym}'(C?)) is linked to mixed automor-
phic forms for I" associated to the equivariant pair (w, x). Indeed, the space of
certain mixed cusp forms can be embedded into such parabolic cohomology
space, and a Hodge structure on Hp (I, Sym}' (C?)) can be determined by an
isomorphism of the form

Hll:'(r> Sym;n(cz)) = S2,’m(F>w>X) D w 3] S2,’m(F>w>X)7 (05)

where W is a certain subspace of Hp (I, SymY' (C?)) and Sy (I, w, x) is the
space of mixed cusp forms of type (2,m) associated to I', w and x (see
Chapter 3). The space W in (0.5) is not trivial in general as can be seen
in [20, Section 3|, where mixed cusp forms of type (0,3) were studied in
connection with elliptic surfaces. The isomorphism in (0.5) may be regarded
as a generalized Eichler-Shimura isomorphism.

The correspondence between holomorphic forms of the highest degree on
an elliptic variety and mixed automorphic forms of one variable described
above can be extended to the case of several variables by introducing mixed
Hilbert and mixed Siegel modular forms. For the Hilbert modular case we
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consider a totally real number field F' of degree n over Q, so that SL(2, F)
can be embedded in SL(2,R)™. Given a subgroup I" of SL(2, F') whose em-
bedded image in SL(2,R)™ is a discrete subgroup, we can consider the asso-
ciated Hilbert modular variety I'\'H" obtained by the quotient of the n-fold
product ‘H" of the Poincaré upper half plane H by the action of I' given
by linear fractional transformations. If w : H™ — H"™ is a holomorphic map
equivariant with respect to a homomorphism x : I' — SL(2, F), then the
equivariant pair (w,x) can be used to define mixed Hilbert modular forms,
which can be regarded as mixed automorphic forms of n variables. On the
other hand, the same equivariant pair also determines a family of abelian
varieties parametrized by I'\'H". Then holomorphic forms of the highest de-
gree on such a family correspond to mixed Hilbert modular forms of certain
type (see Section 4.2). Another type of mixed automorphic forms of several
variables can be obtained by generalizing Siegel modular forms (see Section
4.3). Let H,, be the Siegel upper half space of degree m on which the sym-
plectic group Sp(m,R) acts as usual, and let I be a discrete subgroup of
Sp(m,R). If 7 : H,, — Hypn is a holomorphic map of H,, into another Siegel
upper half space H,,,» that is equivariant with respect to a homomorphism
p : Iy — Sp(m/,R), then the equivariant pair (7, p) can be used to define
mixed Siegel modular forms. The same pair can also be used to construct a
family of abelian varieties parametrized by the Siegel modular variety I'\H,,
such that holomorphic forms of the highest degree on the family correspond
to mixed Siegel modular forms (see Section 4.3).

A further generalization of mixed automorphic forms can be considered by
using holomorphic functions on more general Hermitian symmetric domains
which include the Poincaré upper half plane or Siegel upper half spaces. Let
G and G’ be semisimple Lie groups of Hermitian type, so that the associated
Riemannian symmetric spaces D and D’, respectively, are Hermitian sym-
metric domains. We consider a holomorphic map 7 : D — D', and assume
that it is equivariant with respect to a homomorphism p : G — G’. Let I"
be a discrete subgroup of GG. Note that, unlike in the earlier cases, we are
assuming that 7 is equivariant with respect to a homomorphism p defined on
the group G itself rather than on the subgroup I". This provides us with more
flexibility in studying associated mixed automorphic forms. Various aspects
of such equivariant holomorphic maps were studied extensively by Satake
in [108]. Given complex vector spaces V and V' and automorphy factors
J:GxD— GL(V)and J : G' x D' — GL(V'), a mixed automorphic form
on D for I' is a holomorphic function f : D — V ® V' satisfying

fyz) = J(v,2) @ I (p(v),7(2)) f(2)

forall z € Dand v € I (see Section 5.1). Another advantage of considering an
equivariant pair (7, p) with p defined on G instead of I' is that it allows us to
introduce a representation-theoretic description of mixed automorphic forms.
Such interpretation includes not only the holomorphic mixed automorphic
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forms described above but also nonholomorphic ones. Given a semisimple
Lie group GG, a maximal compact subgroup K, and a discrete subgroup I’
of finite covolume, automorphic forms on G can be described as follows. Let
Z(g) be the center of the universal enveloping algebra of the complexification
gc of the Lie algebra g of G, and let V' be a finite-dimensional complex vector
space. A slowly increasing analytic function f : G — V is an automorphic
form for I' if it is left I'-invariant, right K-finite, and Z(g)-finite. Let G’
be another semisimple Lie group with the corresponding objects K’, I'" and
V', and let ¢ : G — G be a homomorphism such that ¢(K) C K’ and
@(I") C I''. Then the associated mixed automorphic forms may be described
as linear combinations of functions of the form f & (f'op) : G - V@ V|
where f : G — V is an automorphic form for I" and f' : G’ — V' is an
automorphic form for I'” (see Section 5.2.

The equivariant pair (7, p) considered in the previous paragraph also de-
termines a family of abelian varieties parametrized by a locally symmetric
space if G’ is a symplectic group. Let H,, be the Siegel upper half space of
degree n on which the symplectic group Sp(n,R) acts as usual. Then the
semidirect product Sp(n,R) x R?" operates on the space H,, x C" by

((A8).(11) (2.0 = (AZ+ B)(CZ + D)™\, (¢ + pZ +v)(CZ + D))

for (A4 B) € Sp(n,R), (1, v) € R?" and (Z,¢) € H,, x C", where elements of
R2™ and C™ are considered as row vectors. We consider the discrete subgroup
Iy = Sp(n,Z) of Sp(n,R), and set

Xo = Io\Hn, Yo=TpxZ*"\H, xC".

Then the map 7y : Yy — X induced by the natural projection map H, X
C"™ — H,, has the structure of a fiber bundle over the Siegel modular space X
whose fibers are complex tori of dimension n. In fact, each fiber of this bundle
has the structure of a principally polarized abelian variety, and therefore the
Siegel modular variety Xo = I'o\H,, can be regarded as the parameter space
of the family of principally polarized abelian varieties (cf. [63]). In order to
consider a more general family of abelian varieties, we need to consider an
equivariant holomorphic map of a Hermitian symmetric domain into a Siegel
upper half space. Let G be a semisimple Lie group of Hermitian type, and let
D be the associated Hermitian symmetric domain, which can be identified
with the quotient G/K of G by a maximal compact subgroup K. We assume
that there are a homomorphism p : G — Sp(n,R) of Lie groups and a
holomorphic map 7 : D — H,, that is equivariant with respect to p. If I" is a
torsion-free discrete subgroup of G with p(I') C I and if we set X = I'\D,
then 7 induces a map 7x : X — X of the locally symmetric space X into the
Siegel modular variety Xy. By pulling the bundle 7y : Yo — X back via 7x
we obtain a fiber bundle 7 : Y — X over X whose fibers are n-dimensional
complex tori. As in the case of mg, each fiber is a polarized abelian variety, so
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that the total space Y of the bundle may be regarded as a family of abelian
varieties parametrized by the locally symmetric space X. Such a family Y is
known as a Kuga fiber variety, and various arithmetic and geometric aspects
of Kuga fiber varieties have been studied in numerous papers over the years
(see e.g. [1, 2, 31, 61, 62, 69, 74, 84, 96, 108, 113]). A Kuga fiber variety is
also an example of a mixed Shimura variety in more modern language (cf.
[94]). Holomorphic forms of the highest degree on the Kuga fiber variety ¥
can be identified with mixed automorphic forms on the symmetric domain D
(see Section 6.3).

Equivariant holomorphic maps of symmetric domains and Kuga fiber va-
rieties are also closely linked to Jacobi forms of several variables. Jacobi forms
on the Poincaré upper half plane H, or on SL(2,R), share properties in com-
mon with both elliptic functions and modular forms in one variable, and
they were systematically developed by Eichler and Zagier in [23]. They are
functions defined on the space H x C which satisfy certain transformation
formulas with respect to the action of a discrete subgroup I" of SL(2,R), and
important examples of Jacobi forms include theta functions and Fourier coef-
ficients of Siegel modular forms. Numerous papers have been devoted to the
study of such Jacobi forms in connection with various topics in number theory
(see e.g. [7, 9, 54, 116]). In the mean time, Jacobi forms of several variables
have been studied mostly for symplectic groups of the form Sp(m,R), which
are defined on the product of a Siegel upper half space and a complex vec-
tor space. Such Jacobi forms and their relations with Siegel modular forms
and theta functions have also been studied extensively over the years (cf.
[25, 49, 50, 59, 123, 124]). Jacobi forms for more general semisimple Lie groups
were in fact considered more than three decades ago by Piatetskii-Shapiro
in [102, Chapter 4]. Such Jacobi forms occur as coefficients of Fourier-Jacobi
series of automorphic forms on symmetric domains. Since then, there have
not been many investigations about such Jacobi forms. In recent years, how-
ever, a number of papers which deal with Jacobi forms for orthogonal groups
have appeared, and one notable such paper was written by Borcherds [12]
(see also [11, 55]). Borcherds gave a highly interesting construction of Jacobi
forms and modular forms for an orthogonal group of the form O(n+2,2) and
investigated their connection with generalized Kac-Moody algebras. Such a
Jacobi form appears as a denominator function for an affine Lie algebra and
can be written as an infinite product. The denominator function for the fake
monster Lie algebra on the other hand is a modular form for an orthogonal
group, which can also be written as an infinite product. Thus many new ex-
amples of generalized Kac-Moody algebras may be constructed from modular
or Jacobi forms for O(n+2,2), and conversely examples of modular or Jacobi
forms may be obtained from generalized Kac-Moody algebras. In this book
we consider Jacobi forms associated to an equivariant holomorphic map of
symmetric domains of the type that is used in the construction of a Kuga
fiber variety (see Chapter 7). Such Jacobi forms can be used to construct an
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embedding of a Kuga fiber variety into a complex projective space. They can
also be identified with sections of a certain line bundle on the corresponding
Kuga fiber variety. Similar identifications have been studied by Kramer and
Runge for SL(2,R) and Sp(n,R) (see [57, 58, 105]).

The construction of Kuga fiber varieties can be extended to the one of
more general complex torus bundles by using certain cocycles of discrete
groups. Let (7, p) be the equivariant pair that was used above for the con-
struction of a Kuga fiber variety. Thus 7 : D — 'H,, is a holomorphic map
that is equivariant with respect to the homomorphism p : G — Sp(n,R) of
Lie groups. Let L be a lattice in R?", and let I" be a torsion-free discrete
subgroup of G such that - p(y) € L for all £ € L and v € I, where we
regarded elements of L as row vectors. If L denotes the lattice Z?" in Z2",
the multiplication operation for the semidirect product I" x L is given by

(71, 61) - (72, €2) = (1172, Lap(2) + £2) (0.6)
for all y1,7v2 € I" and ¢1,¢5 € L, and I" X L acts on D x C™ by
(7, (1)) - (2,w) = (v2, (w + p7(2) + v)(C,pr(2) + D,) ), (0.7)

for all (z,w) € D xC", (u,v) € L C R* x R” and v € I' with p(y) =
(’é;’ g‘; ) € Sp(n,R). Then the associated Kuga fiber variety is given by the

quotient
Y=IxL\DxC",

which is a fiber bundle over the locally symmetric space X = I'\D. We now
consider a 2-cocycle ¢ : I' x I' — L define the generalized semidirect product
I' x4 L by replacing the multiplication operation (0.6) with

(71, 41) - (72, €2) = (172, Lap(y2) + L2 + Y (71,72))-

We denote by A(D, C™) the space of C"-valued holomorphic functions on D,
and let € be a 1-cochain for the cohomology of I" with coefficients in A(D, C™)
satisfying

5E(71,72)(2) = ¥(v1,72) (T(12)>

for all z € D and ~1,72 € I', where ¢ is the coboundary operator on 1-
cochains. Then an action of I" X L on D x C™ can be defined by replacing
(0.7) with

(7, (1, v)) - (z,w) = (v2, (w+ p7(2) + v + £(7)(2))(Cpr(2) + D,) 7).

If the quotient of D x C" by I' X, L with respect to this action is denoted by
Yy e, the map 7 : Yy ¢ — X = I'\D induced by the natural projection D x
C™ — D is a torus bundle over X which may be called a twisted torus bundle
(see Chapter 8). As in the case of Kuga fiber varieties, holomorphic forms
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of the highest degree on Yy, ¢ can also be identified with mixed automorphic
forms for I" of certain type.

This book is organized as follows. In Chapter 1 we discuss basic proper-
ties of mixed automorphic and cusp forms of one variable including the con-
struction of Eisenstein and Poincaré series. We also study some cusp forms
associated to mixed cusp forms and describe mixed automorphic forms asso-
ciated to a certain class of linear ordinary differential equations. Geometric
aspects of mixed automorphic forms of one variable are presented in Chap-
ter 2. We construct elliptic varieties and interpret holomorphic forms of the
highest degree on such a variety as mixed automorphic forms. Discussions
of modular symbols and Eichler-Shimura relations for mixed automorphic
forms are also included. In Chapter 3 we investigate connections between
parabolic cohomology and mixed automorphic forms and discuss a gener-
alization of the Eichler-Shimura isomorphism. In order to consider mixed
automorphic forms of several variables we introduce mixed Hilbert modular
forms and mixed Siegel modular forms in Chapter 4 and show that certain
types of such forms occur as holomorphic forms on certain families of abelian
varieties parametrized by Hilbert or Siegel modular varieties. In Chapter 5
we describe mixed automorphic forms on Hermitian symmetric domains as-
sociated to equivariant holomorphic maps of symmetric domains. We then
introduce a representation-theoretic description of mixed automorphic forms
on semisimple Lie groups and real reductive groups. We also construct the
associated Poincaré and Eisenstein series as well as Whitaker vectors. In
Chapter 6 we describe Kuga fiber varieties associated to an equivariant holo-
morphic map of a symmetric domain into a Siegel upper half space and show
that holomorphic forms of the highest degree on a Kuga fiber variety can
be identified with mixed automorphic forms on a symmetric domain. Ja-
cobi forms on symmetric domains and their relations with bundles over Kuga
fiber varieties are discussed in Chapter 7. In Chapter 8 we are concerned with
complex torus bundles over a locally symmetric space which generalize Kuga
fiber varieties. Such torus bundles are constructed by using certain 2-cocycles
and 1-cochains of a discrete group. We discuss their connection with mixed
automorphic forms and determine certain cohomology of such a bundle.
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Mixed Automorphic Forms

Classical automorphic or cusp forms of one variable are holomorphic functions
on the Poincaré upper half plane H satisfying a transformation formula with
respect to a discrete subgroup I' of SL(2,R) as well as certain regularity
conditions at the cusps (see e.g. [14, 95, 114]). Given a nonnegative integer
k, the transformation formula for an automorphic form f for I" of weight k
is of the form
flyz) = (v, 2)" f(2)

for z € H and v € I', where j(v,2) = ¢z + d with ¢ and d being the (2,1)
and (2,2) entries of the matrix ~.

Mixed automorphic forms generalize automorphic forms, and they are
associated with a holomorphic map w : H — H that is equivariant with
respect to a homomorphism x : I' — SL(2,R). Indeed, the transformation
formula for mixed automorphic forms is of the form

Flvz) = (v, 2)"i (x(7), w(2)) f (2)

for some nonnegative integers k and ¢. Such equivariant pairs (w, x) occur
naturally in the theory of elliptic surfaces (see Chapter 2) or in connection
with certain linear ordinary differential equations. For example, an equivari-
ant pair is obtained by using the period map w of an elliptic surface E' and the
monodromy representation x of F. In this case, a holomorphic form on E of
degree two can be interpreted as a mixed automorphic form (cf. [18, 43, 68]).
Similarly, the period map and the monodromy representation of a certain
type of second order linear ordinary differential equation also provide us an
equivariant pair (cf. [79]; see also [83]). In this chapter we introduce mixed
automorphic and mixed cusp forms of one variable and discuss some their
properties.

In Section 1.1 we describe the definition of mixed automorphic forms as
well as mixed cusp forms of one variable associated to an equivariant holo-
morphic map of the Poincaré upper half plane. As examples of mixed auto-
morphic forms, Eisenstein series and Poincaré series for mixed automorphic
forms are constructed in Section 1.2. In Section 1.3 we consider certain cusp
forms associated to pairs of mixed cusp forms and discuss relations among
the Fourier coefficients of the cusp forms and those of the mixed cusp forms.
Section 1.4 is about mixed automorphic forms associated to a certain class
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© Springer-Verlag Berlin Heidelberg 2004



12 1 Mixed Automorphic Forms

of linear ordinary differential equation. We relate the monodromy of such a
differential equations with the periods of the associated mixed automorphic
forms.

1.1 Mixed Automorphic Forms of One Variable

In this section we introduce mixed automorphic forms associated to an equiv-
ariant pair, which generalize elliptic modular forms. In particular, we discuss
cusp conditions for mixed automorphic and cusp forms.

Let ‘H denote the Poincaré upper half plane

{ze C|Imz > 0}

on which SL(2,R) acts by linear fractional transformations. Thus, if z € H
and v = (2%) € SL(2,R), we have

az+b
z= .
7 cz+d
For the same z and v, we set
jlv,2) = ez + d. (1.1)

Then the resulting map j : SL(2,R) x H — C is an automorphy factor,
meaning that it satisfies the cocycle condition

I 2) = 3(v,7'2)i(Y, 2) (1.2)

for all z € H and 7,7 € SL(2,R).

We fix a discrete subgroup I' of SL(2,R) and extend the action of I" on
‘H continuously to the set H UR U {oco}. An element s € RU {oo} is a cusp
for I' if it is fixed under an infinite subgroup, called a parabolic subgroup,
of I'. Elements of a parabolic subgroup of I' are parabolic elements of I'.
We assume that I" is a Fuchsian group of the first kind, which means that
the volume of the quotient space I'\'H is finite. Let x : I' — SL(2,R) be a
homomorphism of groups such that its image x(I") is a Fuchsian group of the
first kind, and let w : H — H be a holomorphic map that is equivariant with
respect to x. Thus (w, x) is an equivariant pair satisfying the condition

w(yz) = x(w(z) (1.3)

for all v € I' and z € H. We assume that the inverse image of the set of
parabolic elements of x(I") under x consists of the parabolic elements of I'.
In particular, y carries parabolic elements to parabolic elements. Given a pair
of nonnegative integers k and ¢, we set

Tie(1,2) = (1, 2) i (x(7), w(2))* (1.4)

for all vy € I" and z € H.
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Lemma 1.1 The map Ji ¢ : I' x H — C determined by (1.4) is an automor-
phy factor, that is, it satisfies the cocycle condition

Trt(VY's2) = Jee(7,7'2) - Tk (7', 2) (1.5)
for allv,~' € I' and z € H.
Proof. This follows easily from (1.2), (1.3), and (1.4). O

If f:H — Cis a function and v € I', we denote by f |k v the function
on H given by
(f Ik M(2) = Jre(y,2) 7 f(72) (1.6)

for all z € H. Using (1.5), we see easily that

((f

ke Y) lke Y = f e ()

for all v,~" € I'".
Let s € RU {oo} be a cusp for I, so that we have

as=s=000 (1.7)

for some o € SL(2,R) and a parabolic element « of I'. If I's denotes the
subgroup
Is={yerl|vs=s} (1.8)

of I consisting of the elements fixing s, then we have

o ' {£1} = {i (é ’f)n

for some positive real number h. Since x(«) is a parabolic element of x(I),
there is a cusp sy, for x(I") and an element x (o) € SL(2,R) such that

n e Z} (1.9)

x(a)sy = sy = x(0)00. (1.10)

We assume that
w(oz) = x(o)w(z) (1.11)
for all z € H. Given an element z € H and a holomorphic function f on H,

we extend the maps v — Jy ¢(7,2) and v — f |k¢ v given by (1.4) and (1.6),
respectively, to I'U {o}. In particular, we may write

Ire(0,2) = j(0,2)"j(x(0),w(2))", (1.12)

(f ke 0)(2) = Jie(0,2) 7" f(o2) (1.13)

for all z € H.
In order to discuss Fourier series, let f : H — C be a holomorphic function
that satisfies
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fleery=1rf (1.14)

for all v € I'. Then we can consider the Fourier expansion of f at the cusps of
I as follows. Suppose first that oo is a cusp of I'. Then the subgroup I's of I’
that fixes oo is generated by an element of the form (§ %) for a positive real
number h. Since x carries a parabolic element of I" to a parabolic element of

x(I"), we may assume
1R, (1hy
wor) =+ (")

for some positive real number h,. Thus, using (1.1) and (1.4), we see that

To (@1, 2) =1,

and hence we obtain f(z + h) = f(z) for all z € H. This leads us to the
Fourier expansion of f at co of the form

f(Z): Z ane27rinz/h
n>ng

for some ng € Z.
We now consider an arbitrary cusp s of I with o(c0) = s. If I's is as in
(1.8) and if I' = 071 "o, then we see that v € I's if and only if

(07 yo)oo =0 tys =07 ts = oc;

hence 0~ I'yo0 = (I'?)oo. In particular, oo is a cusp for 1.

Lemma 1.2 If f satisfies the functional equation (1.14), then the function
fleeo:H— Cin (1.13) satisfies the relation

(f Ire 0)(92) = (f |r.e 0)(2)
forallg € (I')o = 0 50 and z € H.

Proof. Let g = o~ 1y0 € I'° with v € I';. Then by (1.13) we have

(f |re 0)(92) = j(o,92) Fj(x(0),w(gz)) " f(yoz) (1.15)

for all z € H. Since both g and x(o) " x(7)x (o) fix co, we have

i(g,2) = 1=3j(x(0) " 'x(7)x(0),w(2)).

Using this, (1.2) and (1.11), we see that

j(O', gZ) :j(O', gz)j(g,z) = j(Ugvz) :j(’YUVZ)? (116)
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i(x(0),w(g2)) = j(x(0), x(0) "' x(7)x(0)w(2)) (1.17)
x j(x(0) " x(v)x(0),w(2))
= j(x(o)x(0) " x(Mx(0), w(2))
= j(x(M)x(0), w(z)).
Thus, by combining this with (1.15), (1.16), and (1.17), we obtain
(f Ik 0)(92) = G(yo,2) " i(x(V)x(0),w(2)) " f(yo2)
= j(y,02)7%j(0,2) i (x(7), x(0)w(z))
x j(x(0),w(2)) " f(yo2)
= j(0,2) 7" (x(0),w(2) " (f ke V) (02)
=(f )(2);
hence the lemma follows. O

By Lemma 1.2 the Fourier expansion of f |, ¢ 0 at oo can be written in

the form
( Z an 627\'2nz/h

n>ngo

which is called the Fourier expansion of f at s.

Definition 1.3 Let I', w, and x as above, and let k and ¢ be nonnegative
integers. A mixed automorphic form of type (k, ¢) associated to I', w and x
is a holomorphic function f : H — C satisfying the following conditions:

(i) The Fourier coefficients a,, of [ at each cusp s satisfy the condition
that n > 0 whenever a, # 0.
The holomorphic function f is a mixed cusp form of type (k, ¢) associated to
I', w and x if (i) is replaced with the following condition:

(ii)) The Fourier coefficients a,, of f at each cusp s satisfy the condition
that n > 0 whenever a,, # 0.
We shall denote by My, o(I',w, x) (resp. Sk.e(I,w, X)) the space of mized au-
tomorphic (resp. cusp) forms associated to I', w and x.

Remark 1.4 If ¢ = 0 in Definition 1.3(i), then f is a classical automorphic
form or a cusp form (see e.g. [95, 114]). Thus, if My(I") denotes the space
of automorphic forms of weight k for I', we see that

Mk70(F7w7 X) = Mk(F)> Mk),f(F7 17‘[7 1F) = Mk+f(F)7

where 1y is the identity map on ‘H and 1 is the inclusion map of I' into
SL(2,R). On the other hand for k = 0 the elements of My (I w,x) are
generalized automorphic forms of weight £ in the sense of Hoyt and Stiller (see
e.g. [120, p. 81]). In addition, if f € My (I w,x) and g € My ¢ (I, w,X),
then we see that fg € Mytir o+ (I w, X).



16 1 Mixed Automorphic Forms

1.2 Eisenstein Series and Poincaré Series

In this section we construct Eisenstein series and Poincaré series, which pro-
vide examples of mixed automorphic forms. We shall follow closely the de-
scriptions in [70] and [80].

Let w: H — H and x : I’ — SL(2,R) be as in Section 1.1, and let
s be a cusp for I'. Let 0 € SL(2,R) and o € I' be the elements associ-
ated to s satisfying (1.7), and assume that I's in (1.8) satisfies (1.9). We
consider the corresponding parabolic element x(«) of x(I") and the element
x(o) € SL(2,R) satisfying (1.10) and (1.11). We fix a positive integer k
and a nonnegative integer m. For each nonnegative integer v, we define the
holomorphic function ¢, : H — C associated to the cusp s by

by (2) = Jok2m (0, 2) "t exp(2mivoz/h) (1.18)
= j(0,2) % j(x(0),w(2))"*" exp(2mivoz/h)
for all z € H, where we used the notation in (1.12).

Lemma 1.5 If s is a cusp of I' described above, then the associated function
o, given by (1.18) satisfies

¢V ‘2k,2m Y= ¢V (119)
for all v € I.

Proof. Given z € H and v € I, using (1.18), we have

b (v2) = j(0,72)"*j(x(0),w(v2)) "> exp(2mivoyz/h)
= j(o,7v2) 2 (x(0), x(7)w(2)) "> exp(2mivoyz/h)
= (07, 2)"%34(7, 2)** i (x(0)x (), w(z)) 2™

x j(X(7),w(2))*™ exp(2miv(oyo ™oz /h),

1

where we used (1.2). Since oyo~! and x(o)x(7)x(c) ! stabilize oo, we have

jlovo™tw) = j(x(@)x(7)x(0) ™ x(o)w) = 1
for all w € H, and hence we see that

j(0'77z) = j(07071703) j(o,2) = j(07 z),

and oyz/h = (070~ ')oz/h = 0z/h + d for some integer d. Thus we obtain



1.2 Eisenstein Series and Poincaré Series 17

b (12) = j(0,2) (v, 2)%*

,w(2)) 72 (x (1), w(2))*™ exp(2mivoz/h)
= j(7, )i (x(7), w(2))*" 6w (2),

and therefore the lemma follows. O

X
<.
=
N

Let s be a cusp of I' considered above, and set

P2Vk,2m(z) = Z (¢V |2k:,2m ’7)(Z) (120)

yel NI
for all z € H. Note that by Lemma 1.5 the summation is well-defined.

Definition 1.6 The function Py), ,, (%) is called a Poincaré series for mized

automorphic forms if v > 1, and the function P20k72m(z) is called an Eisenstein
series for mized automorphic forms.

We shall show below that the series in (1.20) defining the function
Py} 9, (2) converges and is holomorphic on H.

Lemma 1.7 Let zy € H, and let € be a positive real number such that
N3 ={z€C||z— 2| <3¢} CH,

and let k and m be nonnegative integers. If ¢ is a continuous function on
N3¢ that is holomorphic on the interior of Ns., then there exists a positive
real number C such that

[Y(z1)] < C . [%(2)](Im 2)* (Im w (=)™ dV

for all 21 € N. ={z € C ||z — 20| < &}, where dV = dxdy/y* with * = Re z
and y=1Imz.

Proof. Let z1 be an element of N, and consider the Taylor expansion of ¥(2)

about 27 of the form
o0
= Z an(z —21)"
n=0

We set Nl ={z € C| |z — 21| <e}. Then N, C Ns., and we have

2m
Y(z)dzdy —/ / Za e drdf = ne?ag = ne®P(z1).
N/
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Hence we obtain

el < (w7 [ o(e)ldady
2)(Im 2)*(Im w(z))™
:(7_‘,52)71/]\’ [9(2)|(Im 2)" (Im w(z)) qv

(Im 2)k—2(Im w(z))™

e

<) [ ul)]tm ) (mw(2) v,

N3
where
Cy = inf{(Im 2)*2(Imw(2))™ | z € Na.}.
Thus the lemma follows by setting C' = (re2Cy) L. O
If U is a connected open subset of H, then we define the norm || - |y on

the space of holomorphic functions on U by

Il = /U 0(2)|(Im 2)* (Im w(2))™dV,

where v is a holomorphic function on U.

Lemma 1.8 Let {f,} be a Cauchy sequence of holomorphic functions on U
with respect to the norm || - ||y. Then the sequence {f,} converges absolutely
to a holomorphic function on U uniformly on any compact subsets of U.

Proof. Let {fn} be a Cauchy sequence of holomorphic functions on an open
set U C H. Then by Lemma 1.7, for each z € U, there is a constant C' such
that

[fn(2) = fm(2)] < Clifn = fullv

for all n,m > 0. Thus the sequence {f,(z)} of complex numbers is also a
Cauchy sequence, and therefore it converges. We set f(z) = limy o0 fn(2)
for all z € U. Let zy € U, and choose d > 0 such that

N35:{Z€(C||Z—20‘S35}CU.
Using Lemma 1.7 again, we have

[fn(2) = fm(2)] < C'llfn = frmllu

forallz € Ny ={z€ C||z—zp| < d}. Givene > 0, let N be a positive integer
such that || fr, — fmllv < €/(2C") whenever m,n > N. For each z € Nj, if we
choose an integer n’ > N so that |f,/(z) — f(z)| < €/2, then we obtain

[fn(2) = F(2)] < [fal2) = fur ()| + | frr (2) = f(2) < €

for all n > N. Thus the sequence {f,} converges to f uniformly on Ns and
therefore on any compact subsets of U. Hence it follows that f is holomorphic
function on U. a
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Let ¢, be asin (1.18), and let {s1, ..., s,} be the set of all I-inequivalent
cusps of I'. We choose a neighborhood U; of s; for each i € {1,...,u}, and
set

n
H=H-J W (1.21)
i=1~yel’

Then, using the relations
Imyw = |j(7, )| 2 Imw,  Imw(yw) = [0x(7), ww))| - Imw(w) (1.22)

for v € I and w € H and the fact that ¢, satisfies (1.19) for v € I, it can
be shown that

/ |6 (2)|(Im 2)* (Tm w(2))™dV < occ. (1.23)
TR/

Theorem 1.9 The series in (1.20) defining Py} 5,,,(2) converges absolutely
on H and uniformly on compact subsets, and, in particular, the function
Py om(2) is holomorphic on 'H.

Proof. Let s1,...,s, be the I'-inequivalent cusps of I" as above, and let 2z be
an element of H. We choose neighborhoods W of zg and U; of s; for 1 <7 < p
such that

{yel|AYWnNW#£0} =1, YWnNU; =0 (1.24)

for all v € I" and 1 < ¢ < p, where I, is the stabilizer of zy in I'. Then,

using (1.18) and (1.22), we have

1Bl = [ | 5 (@uloramn)(a)| =) () mav
w
yELNT

S/W Z ’(¢u|2k,2m’y)(2)’(Imz)k(lmw(z))mdv

yELNT

2 /w |6 (v2)|(Imvy2)* (Imw(v2))™dV

yel NI

> (60 (2)](Tm 2)* (Tm w ()™ V.

yel NI W

In order to estimate the number of terms in the above sum, let 4/ € I" and
set
E={yvel|~y"yWn~W # 0 for some~" € I';}.

Then by (1.24) we see that v'W € H' and
‘FS\E| < |FS\F87/FZO| < ‘on|7

where | - | denotes the cardinality. Thus, using this and (1.23), we have
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Z / |6 (2)|(Im 2)* (Im w(2))™dV

NyETNT

<L /F 92N ) (ms(a) "V < o

Hence we obtain || Py o, [lw < 00, and by Lemma 1.8 we see that P, .. (2)
converges absolutely on W and uniformly on compact subsets of W. Thus
it follows that the function P, ,,.(z) is holomorphic on W, and therefore is
holomorphic on H as well. 7 a

Now we need to show that the function P}, ,  (2) is holomorphic at each
cusp for all nonnegative integers v and that it vanishes at each cusp for all
positive integers v.

Lemma 1.10 Let s’ be a cusp of I' such that o's’ = oo with o' € SL(2,R),
and let o), € SL(2,R) be an element with o\ w(s) = oco. Using the notation
n (1.6), the function ¢, given in (1.18) satisfies the following conditions.
(i) If s' is not I'-equivalent to s, then there exist positive real numbers M
and \ such that
(G0 lak2mo’1)(2)] < M]2| 2 (1.25)

whenever Im z > .
(i) If s’ is I'-equivalent to s, then there exist positive real numbers M
and A\ such that

[(Dv l2k2m o' ") (2)| < M (1.26)

whenever Im z > A. If in addition v > 0, then we have

(dv |2k,2m ' 1)(2z) = 0 (1.27)
as Imz — oo.

Proof. Using (1.6) and (1.18), for z € H we have

(60 lomam o' )(2) = jl0' ™1, 2) 720} T w(z)) 2o 0" Te) T

x j(x(0),w(0’ 712)) "2 exp(2mivos’ 1 /h).

If oo'~t = (2Y) and if Im z > 2|d|/|c|, then we have

/-1 /—1

)| = i(oo’ ™ 2) = Jez + d]
> |ellz| = [d| = |el|z] = (|¢[/2) Im 2
= lellz] = (lel/2)[z] = |cll2/2-

"ot

On the other hand, if ¢, =" = ( g d,) and x(o) = (a,, d,,) then we obtain

i(x(0) T w)Ili (x(0), w0’ 7'2))| = [c'w(z) + d||c"w(o’ ™ 2) + d”.

i(oy0" " 2) - j(o
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Since Imw(z) — oo and w(o’~'2) — w(s’) as Imz — oo, there exist real
numbers A, \' > 0 such that

5(x(0) 7wl (x(0),w(o’ 2))| > A

whenever Im z > A'. We set A = max()\', 2|d|/|c|). Then, whenever Imz > A,
we have

(6 l2k2m 01 (2)] < (Iel]2]/2) 28 A7*™ exp(~27vo0’ (Im 2) /h).

Thus (1.25) holds for M = (|c|/2)~2F A=2™ exp(—2nvao’A\/h), and therefore
(i) follows. As for (ii), if s’ is equivalent to s, we may assume that o = o’.
Thus we have

(B0 |2n,2m 0" 1)(2) = j(1,2) i (x(0) 7" w(2)) 7"
x j(x(0),w(c™12))"*™ exp(2mivz/h).

Since j(1,z) = 1, we obtain (1.26) by arguing as in the case of (i). O

Theorem 1.11 Let so be a cusp of I'. Then the function Py} ,,,(2) is holo-
morphic at so for all nonnegative integers v. Furthermore, Py . (z) vanishes
at so if v > 0.

Proof. Let I's, C I' be the stabilizer of the cusp so, and let {§} be a complete
set of representatlves of I' \I'/Ts,. Given 0, let {n} be a complete set of
representatives of 61 I's6 N I'sy\I's,, so that we have I = [ |5 o L's0n. We set

Gus(2) = D (b l2n2m 91)(2)

n

for all z € H. Then we have

P om Z Z b |2k,2m 00)(2 Z bu,s (2

By Theorem 1.9 there is a neighborhood U of s in ‘H such that Py, (2)
converges uniformly on any compact subset of U. Hence, if ogsg = oo with
oo € SL(2,R), then the function

—1 —1
Pl o lokom 06" =Y bus lok2m 0

converges uniformly on any compact subset of {z € H | Imz > d} for some
positive real number d. Therefore it suffices to show that each ¢,.5 |2k,2m 0g 1
is holomorphic at co and that it has zero at oo if v > 0. First, suppose that
§s0 is not a cusp of I's. Then 6 11,6 N Iy, coincides with {1} or {£1}, and
hence we have
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¢V,6 |2k,2m U(;l =C- Z ((bl/ ‘2k72m 6061007]061)
n€ls,

with C' = 1 or 1/2, respectively. Applying (1.25) for s = dsg, 0 = 09d 1, we
obtain
(@ lor2m 0o )(2)| < M 2| 2*

for all z with Im z > A for some M, A > 0. Thus we obtain

(0,6 l2ram 03 () < 2M Y |2+ ab| 2, (1.28)
a€EZ

where b is a positive real number such that
ool g0yt {1} = {£(§ 1) |a € Z}.

By comparing the series on the right hand side of (1.28) with the series
Y oacz a~ 2% we see that it converges uniformly on any compact subset of the
domain Im z > A. Hence it follows that ¢, s |2x,2m (70_1 is holomorphic at oo.
Furthermore, ¢, ; |2k,2m 0o ! Vanishes at oo because the right hand side of
(1.28) approaches zero as z — oo. Next, suppose dsg is a cusp of I's. Then
8716 N Iy, is a subgroup of Iy, of finite index; hence the sum on the right
hand side of

0

Gus lakom 05 ' = Z(% |2k,2m 00 'oonag '),
n

where the summation is over n € 6 *I'sd N I's,\Is,, is a finite sum. Using
(1.26) for s = §sp and o = gd 1, for each § we obtain

(80 |2x2m 805 1)(2)] < M
for all Imz > A for some M, A > 0. For each n € I';, we have
oonoy ' =+ (57)

for some 3 € Z; hence we have

[(bu.s |2k,2m 05 ) (2)] < M

for all Imz > A, and it follows that ¢,.5 |2k,2m O'al is holomorphic at oo.
Furthermore, if v > 0, then by (1.27) we have

(6w |2k,2m 00 ) (2) =0
as Im z — oo; hence we see that ¢,.5 |2k,2m 00_1 vanishes at oco. O

Theorem 1.12 The FEisenstein series Py, (z) is a mized automorphic
form and the Poincaré series Py, 5, (z) is a mized cusp form for I' of type

(2k,2m).
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Proof. Using the relations

iny'2) =30 2) (v 2),

—1

JX(), x(Yw(2) = i(x(v), w(2) " i (x(v7), w(2))

for v, € I and 2 € 'H, we obtain

Ploom(Y2) = Y (b0 l2k2m 7)(7'2)

yELNT

= Y i) () w(2) TP (17 2)

YELAT

=i(v,2)*"i(x(Y), w(2))
XG0 2) (), w(2) TP (17 2)
YEILAT

=3(7,2)* i (x(7), w(2))*" Py, o (2)

for all v/ € I' and 2z € H; hence we see that P om satisfies the condition
(i) in Definition 1.3. Therefore the theorem follows from the cusp conditions
given in Theorem 1.11. ad

2m

Remark 1.13 Ifw is the identity map on H and if x is the inclusion map of
I' into SL(2,R), then Py ,,.(2) and Py .. (2) for v > 0 are the Eisenstein
series and the Poincaré séries, respectivezy, for elliptic modular forms for I’
of weight 2(k+m+1). Poincaré series were also considered in [70] for mized
cusp forms of type (2,2m).

1.3 Cusp Forms Associated to Mixed Cusp Forms

Let Sex(I,w, x) be the space of mixed cusp forms of type (¢, k) associated to
I') w and x as in Definition 1.3, and let S,,(I") be the space of cusp forms of
weight m for I'. If w is the identity map on H and x is the inclusion map of
I' into SL(2,R), then a mixed cusp form of type (¢, k) associated to I', w and
X becomes a cusp form of weight ¢+ k for I'. Similarly, a mixed cusp form of
type (¢,0) is a cusp form of weight ¢. Given a mixed cusp form g belonging to
Ske(Iw, x), denote by L : Sem k(1,w, Xx) — Sm(I") be the map that is the
adjoint of the linear map Ly : Sp(I") — Sexm k(L w, x) sending h € S, (I)
to gh. In this section we express the Fourier coefficients of the cusp form
L3(f) associated to a mixed cusp form f in terms of series involving Fourier
coefficients of f and g by following the method of W. Kohnen [53] who treated
the case of classical cusp forms.

If g € Sep(lw,x) and h € Sp(I'), then we see easily that gh €
Setm k(I w, x). Thus, given an element g € Sp (I, w,x), we can consider
a linear map L4 : Sy (") — Seqm k(L w, x) defined by
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L,(h) = gh (1.29)

for all h € S,,(I"). The space S,,(I") is equipped with the Petersson inner
product, and the Petersson inner product can also be defined on the space
Setm, k(I w, x) of mixed cusp forms (see [70, Proposition 2.1]). Thus we can
consider the adjoint map L : Seim k(I w, X) — Sm(I') of L, satisfying the
condition
(Lgf,h) = (f, Lgh) (1.30)

for all f € Sprm (I w,x) and h € Sy, (I"), where (, ) (resp. {(, ))) is the
Petersson inner product on the space Sy, (I") (resp. Seqm k(I w, X)).

Throughout the rest of this section we shall assume that the Fuchsian
group I' is a congruence subgroup of SL(2,R). If I'y, is the subgroup of I
consisting of the elements of I" fixing oo, then Iy is an infinite cyclic group
generated by the translation map z — z + b for some b € Z. Let P,, ,, be the
n-th Poincaré series in Sy, (I") given by

Pn(z) = Z 2T/ )T, (1.31)
YELN\T

where j(7v, 2) is as in (1.1) (see e.g. [33]). If h is a cusp form in Sy, (I") whose
Fourier expansion is of the form

h(z) — ZAp(h)eZﬂipz/b
p=1

and if (, ) is the Petersson inner product on S,,(I"), then we have

_bmr(m—1)

(P} = = o An(h) (1.32)

(see Theorem 5 in [33, Section 11]), where I' is the Gamma function. Thus,
if £y @ Sermi(lLw,x) — Su(l) is the adjoint of £, as before, for each
f € Sermr(lw,x) and a positive integer n by using (1.29), (1.30) and
(1.32), we obtain

b™I'(m —1)

Tyt An (L5 ) = AL Pnn) = (F L P ) = (9P

:/ F(2)9(2) P (2)y™ H (Imw(2))*dV
I'\H
- / B(2) P (2)y™dV,

I'\'H

where ((, )) is the Petersson inner product on S¢ym (I w, x) (cf. [70, Propo-
sition 2.1]), z = = + iy, ®(2) = f(2)9(2)y*(Imw(z))¥, and dV = y~2dzdy.
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Lemma 1.14 The function ®(z) = f(2)g(z)(Im 2)*(Imw(2))* satisfies the
relation

P(yz) = j(7,2)"P(2) (1.33)
forallyve I and z € 'H.

Proof. Since f € Sppm k(I w,x) and g € Spx(L,w,x), for v € I" and z € H,
we have

(), w(2)) f(2) 5(7,2)" T (x(7), w(2))* 9(2)

% 507, 2)] 72 (Im 2) 5 (x (7), w ()|~ (Im w(2))*

Hence the lemma follows. a

By Lemma 1.14 the function ¢ satisfies @(z + kb) = &(b) for all k € Z.
Note that @ is not a holomorphic function. However, if z = x + iy, then
@ is periodic as a function of x with period b and therefore has a Fourier
expansion of the form

B(2) = Y Ap(@;y)e*™ P/, (1.34)
pEL

where the A,(®;y) are functions of y. On the other hand, given f €
Spm k(I w, x), the Fourier expansion of the cusp form L} f in S, (I") can
be written in the form

oo

L3f(z) = 7 Ap(L5 f)e> v/ (135)

p=1
for some constants A, (L} f) € C.

Theorem 1.15 Given g € Spr(Iw,x), let f be a mized cusp form in
Serm k(I w,x), and let Ay (Ly f) be the n-th Fourier coefficient of the cusp
Jorm L} f in Sy (I') as in (1.35). Then we have

) dgp)mt > —onny /b m—
An(‘cgf) = W/o An(P5y)e 2 y/by 2d2/’ (1.36)

where A, (®;y) is the n-th Fourier coefficient of (2) = f(2)g(2)y’(Im w(2))*
regarded as a function of y as in (1.34).
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Proof. Let &(z) be as above, and let P, ,, be the Poincaré series in (1.31).

We set T 0
1= /D PPV = T

where D C H is a fundamental domain of I'. Using the fact that

An(L51), (1.37)

dV =y 2dzdy = Tm(2)"2(i/2)dz A dz,
we have

I= Z / B(2)e T G~ )T Im(2)™ 2 (i/2)dz A dZ.
YET\T" D

In terms of the variable w = vz = u + v, a typical term in the above sum
becomes

/ B(2)e~ 2T T 2T Tm(2)™2(i/2) dz A dZ (1.38)
D
— / @(,y—lw)e—%rinﬁ/b m—m
~D
x Im(y~ )™ 2(i/2) d(y " w) A d(y~Tw).
However, using (1.2) and (1.38), we see that

Oy 'w) = (v w)"B(w), Gy, w) " =Gy w) T,

Im(y ™ w)™ ™2 = |j(y7 w)| 72 Im(w) ™2

= (v L w) T (v w) T Im(w) ™,

and

(i/2) d(y " 'w) Ad(yTw) = (i/2) j (v, w) " 2dw A (v~ T, w) " 2dw
=40y w) 2 (v T w) Pdudv.

Thus by substituting these into (1.38) we obtain
/ B(2)e 2T Gy 2) 7™ Im(2)2(i/2) dz A dZ
D
= / (w)e” T 0/Y Tm (w)™ 2 dudv,
~D
and hence the integral I in (1.37) can be written in the form

I:/ @(2)6727rin2/bym72dl,dy’
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where
D' = J{yD |y € I\I'}. (1.39)

From (1.39) we see easily that D’ is a fundamental domain of I, and hence
it can be written as

D'={z2€H|0<Rez <b}.

Therefore it follows that

] b
I = / / @(2)6727rin2/bym72dl,dy.
0 0

Now by using the Fourier expansion of @(z) in (1.34) we obtain

S b )
7= Z/ eQ‘n’i(k—n)az/bdx/ Ak(¢7 y)e—27rny/bym—2dy
k=070 0

=b / A (5 y)e2mmu/bym=2y,
0

Thus, using this and (1.37), we see that

(47n)m—1
ALl f) = ———F——
(£9f) bmI(m —1)
(4mn)™ ! /oo —27ny/b, m—2
Tlm = 15T J, (P;y)e Y™ dy,
and hence the proof of the theorem is complete. O

We now want to establish relations among the Fourier coefficients of f
and g and those of the image L£)f € S,,(I") of a mixed cusp form f in
Sttm k(I w, x) under the map L associated to g € Se k(I w,x). First, we
assume that the mixed cusp forms f and g have Fourier expansions of the
form

f(z) =) Blp)e®™=/t,  g(z) =Y _ C(u)e*™=/*  (1.40)

(see [18]). Note that the homomorphism x maps parabolic elements to
parabolic elements. Therefore we may assume that

16\ (10
o) -6
for some b, € R. Thus, if ¥(2) = (Imw(2))* and if T}, = (1%), then
J(x(Tp),w(2)) =1 and

U(z +b) = (Imw(Ty2))* = (Im x(Th)w(2))"
= [7(x(Tp), w(2)| 7 (Imw(2))" = 9 (2)
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for all z € H. Hence the real-valued function ¢(z) has a Fourier expansion of

the form _
(mw(z))* = 3 F(y;y)ezmvel, (1.41)
vEZ

where the F(v;y) are functions of y.

Theorem 1.16 Given f € Sepm k(I w,x) and g € Sex(Iw,X), the n-th
Fourier coefficient An (L} f) of the cusp form Lf in Spm(I") can be written
in the form

L B(p+n—v)C(p)
T D < 2= Gatn /2T

v

i bt
. / F( —) prem=2 =t gy
0 In(j+n—v)2)

where B, C and F are as in (1.40) and (1.41).

An(Lyf) =

Proof. In terms of the Fourier coefficients of f, g and (Imw(z))* in (1.40)
and (1.41) the function &(z) = f(2)g(2)y*(Imw(z))* can be written in the
form

9(z) =y Y Blp) Olu) F(viy) 20/ o=2n(oriou/t
Pyl v

Thus, using v + p — ¢ = n, we have p = u +n — v, and by (1.34) the n-th
Fourier coefficient of @(z) is given by

An(@ry) =y" > B(u+n—v) Cp) Fv;y) e 27 Crtn=nv/t,

v

Substituting this into (1.36), we obtain

. (47rn)m—1
AnlLol) = Fom—ypm
% / yz+m—2 Z B(u+n—v) WF(V; Y) e—4m(utn—v/2)y/b dy.
0 o

Now the the theorem follows by expressing the above integral in terms of the
new variable ¢t = 4w (u +n —v/2)y/b. O

Remark 1.17 If k = 0, the map L} : Spym k(Iw,X) — Sm(I") becomes a
map from Serm () to Sp(I'). If in addition I' = SL(2,Z), then b =1 and
the formula for A, (L} f) given in Theorem 1.16 reduces to the one obtained
by Kohnen in [53].
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1.4 Mixed Automorphic Forms and Differential
Equations

In this section we discuss mixed automorphic forms associated to a certain
class of linear ordinary differential equations and establish a relation between
the monodromy of such a differential equation and the periods of the corre-
sponding mixed automorphic forms.
Let X be a Riemann surface regarded as a smooth complex algebraic
curve over C, and consider a linear ordinary differential operator
dn dn—l

A= — —+ Pnfl(l')m

d
T + -+ Pi(z) o~ + Po(z)

dx

of order n on X, where z is a nonconstant element of the function field
K(X)of X and P, € K(X) for 0 < ¢ < n — 1. We assume that A™ has
only regular singular points. Let U C X be a Zariski open set on which the
functions P; are all regular, and choose a base point g € U. Let wq,...,wy,
be holomorphic functions which form a basis of the space of solutions of the
equation A" f = 0 near xg. Given a closed path «y that determines an element
of the fundamental group m (U, zo), there is a matrix M (y) € GL,(C) such
that the analytic continuation of the solution w; becomes Z?Zl m;;w; for each
i € {1,...,n}. Thus we obtain a representation M : w1 (U, z9) — GL,(C) of
the fundamental group of U called the monodromy representation.

Let V,, be the space of local solutions of the equation A™f = 0 near
xo € U, and consider an element 1) of K(X). By shrinking the Zariski open set
U if necessary, we may assume that 1 is regular on U. Then the monodromy
representation M determines an action of the fundamental group 71 (U, zo)
on V,,. We shall determine an element of the cohomology H* (o (U, x¢), Va,)
of m1(U,zo) with coefficients in V,, associated to 1 € K(X). Let f¥ be a
solution of the nonhomogeneous equation A™f = 1, and suppose that the
solution of A™f = 1 obtained by the analytic continuation of f¥ around a
closed path v € 71 (U, zg) is given by

Frralio ot al wn = fU ek,

where

= (0 eal ), W= w) (1.42)

with af)l,..wain € C. If 7 € m(U,x0) is another closed path, then the

analytic continuation of f¥ + tafw around 7 becomes
v+ tafw + tan(T).

On the other hand, since the analytic continuation of f¥ around 7 is f¥ +
75afq,w, it follows that
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t ¢7- = taf + tan(T).
Thus the map v — ‘a’

- 1s a cocycle, and this cocycle is independent of

the choice of the solution f¥ up to coboundary (cf. [120]). Note that each

taw determines an element ad) ¥

- w of V,,. Consequently * a, can be regarded
as an element of V,,, and hence it defines an element of the cohomology
Hl(ﬂ'l(U,,Io),Vzo).

Let I' C SL(2,R) be a Fuchsian group of the first kind that does not
contain elements of finite order. Then the quotient X = I'\'H* is a compact
Riemann surface, where H* is the union of H and the cusps of I, and can be
regarded as a smooth algebraic curve over C. Let x be a nonconstant element
of the function field K(X) of X when X is regarded as an algebraic curve

over C. We consider a second order linear differential equation A% f = 0 with

d? d
A% = 7 + Px(2) 2 + Qx (), (1.43)
where Px(x) and Qx(x) are elements of K(X). We assume that the differ-
ential equation A% f = 0 has only regular singular points and that the set
of singular points coincides with the set of cusps of I'. Thus, if X is the set
of regular points of A% f = 0 and if zgp € Xo, then X, can be regarded as
the quotient space F\H and the fundamental group 1 (Xo, zo) of Xo can be
identified with I'. Let x : I' — GL(2,C) be the monodromy representation
for the differential equation A% f = 0, and assume that x(I") C SL(2,R).
Let w; and wo be linearly independent solutions of A% f = 0, and for each
positive integer m let S™(A?) be the linear ordinary dlfferentlal operator of
order m + 1 such that the m 4 1 functions

W W W, wiw T W

are linearly independent solutions of the corresponding homogeneous equa-
tion S™(A%)f = 0.

By pulling back the operator in (1.43) via the natural projection H* —
X = I'VH* we obtain a differential operator

o d°
A% = =3 + P(z ) P +Q(2) (1.44)

such that P(z) and Q(z) are meromorphic functions on H*. Let wq(z) and
wa(2) for z € H be the two linearly independent solutions of A%f = 0 corre-
sponding to wi and wy above. Then the monodromy representation for the
differential equation A%f = 0 is the group homomorphism x : I' — SL(2,R)
defined as follows. Given elements v € I' and z € H, we assume that the
elements wy (yz),w2(y2z) € H can be written in the form

w1 (72) = aywi(2) + bywa(z), wa(v2z) = cywi(2) + dywa(2). (1.45)
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Then the image of v € I under the monodromy representation x is given by

x(y) = (‘Cli «bii) € SL(2R). (1.46)
We now set
w(z) = wi(z)/wa(2), (1.47)

and assume that w(z) € H for all z € H. Then the resulting map w: H — H
is the period map for the differential equation A%f = 0, and by (1.45) it

satisfies
aw(z) +by

for all z € H and v € I'. Thus the maps w and y form an equivariant pair, and
we may consider the associated mixed automorphic or cusp forms as in Sec-
tion 1.1. Note, however, in this section we deal with meromorphic functions
rather than holomorphic functions on H, so we need to modify Definition 1.3
by replacing holomorphic functions with meromorphic functions.

w(yz) =

Definition 1.18 Let f : H — C be a mized automorphic form of type (p,v)
associated to I', w and x with p > 2. Then for zg € H and v € I' the integrals
of the form

YZ0 .
' ()20 (2) dz 1=0,1,....u4+v—2
f() ) b 7#
20

are called the periods of f.

If S™(A?) is the differential operator acting on the functions on H ob-
tained by pulling back S™(A% ) via the projection H* — X, then the solutions
of the equation S™(A?)f = 0 are of the form

‘ ciw1 (2)™ wy(2)" (1.48)

m
=0
for some constants cg, ..., cn. Let 1) be a meromorphic function on H* cor-
responding to an element 1x in K (X), and let f¥ be a solution of the non-

homogeneous equation

S™(A2)f = 1. (1.49)
Given a nonnegative integer k, we set
™t ()
P _ Nk
D) (2) = w'(2) T2y <w2(z)m> (1.50)

for all z € H.

Lemma 1.19 The function @Z in (1.50) is independent of the choice of the
solution f¥ of the differential equation in (1.49).
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Proof. Let f* and h of the differential equation in (1.49). Then, using (1.48),
we see that

e (z) = f¥(2) + " lwa(2)!

ciw(2)

IF

Il
=

K2

for some ¢y, ..., ¢ € C. Thus by using (1.47) we have

m

w/ - k dm+1 hw(z) _w/ P k derl f’/f(z) c;wl(z
) e ) = O g (g + 2 )

= w'(2)" djf;+1 (jt(;")

which proves the lemma. a

Theorem 1.20 (i) The function @Z’(z) is a mized automorphic form of type
(2k, m — 2k + 2) associated to I', w and the monodromy representation x.

(ii) If zo is a fized point in H, then a solution f¥ of the equation
S™(A2)f =) is of the form

16 = 28 [ el () M e — e (15

!
m! 0

for some constants c1,...,Cmy1-
Proof. 1t is known that the function
dmtt ( f(2) >
dw(z)m 1\ wa(z)™
is a mixed automorphic form of type (0, m + 2) associated to I', w and x (cf.

[120, p. 32]). On the other hand, for y = (%) € I" and x(7) as in (1.46) we
have

d(’YZ)i d raz+d N 1
dz _E(cz—kd) (24 d)¥
dor2) _ dx()wz) _ 1
) do(z) (o2 +dy)?

Thus we obtain

won= (55 () (52) er= (e

= (cz 4 d)?F(cyz + dy )" 207 (2),

and therefore (i) follows. As for (ii), we have
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z
| o) ) - vt

o /| %(M)W) — w(t)"d(t)

wa(z)™
+1
f’/f(z) ) X / 1—1
=m! + chw(z)m i
(L& > ot
for some constants ¢/, ..., ¢}, by applying the integration by parts m times.
Now using ¢; = —c}/(m!) and w = wy /wa, we obtain the desired formula in
(1.51). 0

Let A% be the second-order differential operator in (1.44) with mon-
odromy representation x : I' — SL(2,R) described above. Then the mon-
odromy representation of S™(A?) is given by S™x = Sym™ o x, where
Sym™ : SL(2,R) — SL(m + 1,R) is the m-th symmetric power represen-
tation.

Let V0 be the space of local solutions of the equation S™(A?)f = 0 near
xo € Xo, and for ¢ € K(X) let ta;p be the cocycle in H(I',V,,) associated
to a solution f¥ of S™(A?)f =1 in (1.42). Then we can express the cocycle
taf in terms of the periods of the mixed automorphic form @f and the
monodromy representation S™y of S™(A?)f = 0 as follows:

Theorem 1.21 Let @Z’ be the mized automorphic form of type (2k, m—2k+
2) associated to I', w and x determined by a solution of f¥ of S™(A?)f =,
and let zo be a fized point in H. Then we have

o] = [ S 5750

for each v € I', where

5$7V—(—1)”1(m!)1( m )

S /WO @Z(z)w'(z)lfkw(z)l’*ldz

Z0

for 1 < v < m+1; here the square brackets denote the cohomology class in
HY(T,V,,).

Proof. Using [120, Proposition 3 bis. 10] and the proof of [120, Theorem 3
bis. 17], we obtain

P —_ —_ m m
ta'y = (:;p,b AR :;p,m-q—l) -5 X('V) + (Cl> s Cm+1) : (S X('V) = Int1)

for some constants ¢y, . .., ¢pmy1, where I, 1 is the (m+1) x (m+ 1) identity
matrix and
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53’,u—(—1)”1(m!)1< m >

v—1

X /z:z° dwCZ)J:H ( () )w/(z)k_lw(z)y_ldw(z)

wa(z)™

for 1 <v < m+ 1. However, we have

ar f¢(z) wZ*wzwlsza)Z*wzwlzlsz
e (L ute) = @1t o) Haole) = B el (91t

Now the theorem follows from the fact that
(c1ye s emi1) - (S"X(Y) = Im+1)

is a coboundary in H(I',V,,).
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Line Bundles and Elliptic Varieties

An elliptic surface is the total space of a fiber bundle over a Riemann surface
whose generic fiber is an elliptic curve, and it was Hunt and Meyer [43] who
observed that a holomorphic form of degree two on an elliptic surface can be
interpreted as a mixed cusp form of type (2,1). An elliptic variety, on the
other hand, can be constructed by considering a fiber bundle whose generic
fiber is the product of a finite number of elliptic curves, and a holomorphic
form of the highest degree on an elliptic variety can be identified with a mixed
cusp form of more general type (cf. [68, 18]). In this chapter we discuss certain
aspects of mixed automorphic forms of one variable that are related to their
geometric connections with elliptic varieties.

It is well-known that automorphic forms for a discrete subgroup I' C
SL(2,R) can be identified with sections of a line bundle over the Riemann
surface X = I'\H. Such an interpretation can be extended to the case of
mixed automorphic forms. Thus a mixed automorphic form associated to I’
and an equivariant pair (w,y) can be regarded as a section of a line bundle
over X determined by the given equivariant pair. This identification can in
turn be used to establish a correspondence between mixed automorphic forms
and holomorphic forms of the highest degree on an elliptic variety over X.

If f is a cusp form of weight w for a discrete subgroup I' C SL(2,R), the
periods of f are given by the integrals

/O - f(2)2%dz

with 0 < k < w — 2, and it is well-known that such periods of cusp forms are
closely related to the values at the integer points in the critical strip of the
Hecke L-series (see e.g. [51, 104]). In [22] Eichler discovered certain relations
among the periods of cusp forms, which were extended later by Shimura [112];
these relations are called Eichler-Shimura relations. More explicit connections
between the Eichler-Shimura relations and the Fourier coefficients of cusp
forms were found by Manin [91]. On the other hand, if f is a mixed cusp
form of type (2,m) associated to I and an equivariant pair (w, x), then the
periods of f are the integrals
100

f(2)w(z)kdz

0
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with 0 < k& < m. The Eichler-Shimura relations for these periods can be
obtained by regarding mixed cusp forms as holomorphic forms on an elliptic
variety.

In Section 2.1 we construct line bundles over a Riemann surface whose
sections can be identified with mixed automorphic forms. Such an identifica-
tion is used in Section 2.2 to establish a correspondence between mixed cusp
forms and holomorphic forms of the highest degree on an elliptic variety. Sec-
tion 2.3 describes some of the properties of the modular symbols and periods
of mixed cusp forms, which are used in Section 2.4 to obtain Eichler-Shimura
relations for mixed cusp forms.

2.1 Mixed Cusp Forms and Line Bundles

We shall adopt the notations used in Section 1.1. In particular, I' C SL(2,R)
is a Fuchsian group of the first kind, and the holomorphic map w : H — H
and the homomorphism x : I' — SL(2,R) form an equivariant pair. Recall
also that H* = H U X with X being the set of cusps for I' and that the
quotient X = I'\'H* has the structure of a compact Riemann surface. In this
section we establish an isomorphism between the space Sy ¢(I,w, x) of mixed
cusp forms of type (k, £) associated to I', w, and x and the space of sections
of a certain line bundle over the Riemann surface X.

If Sy~ is a sheaf on ‘H* on which I' acts on the right, the associated
I-fixed sheaf (Sp+)!" can be constructed by defining (Sy+)! for each open
subset U C X to be the space of I'-invariant elements of Sy+ (7~1(U)), where
m: H* — X is the natural projection map. Thus we may write

(S1)"(U) = (S (x~HU)))T (2.1)

Ifse ¥ CH*isacuspof I'and if I's = {y € I' | vs = s}, then the stalk
(SH*)f:(s) of (Sy+)!" over m(s) € X can be identified with the I's-invariant
elements of the stalk Sy» s of Sy« over s, that is,

(Sre )k = (S o) (2.2)

(see [6, Proposition 0.2]).

Let Oy be the sheaf of germs of holomorphic functions on H, and let
1 : H — H* denote the natural inclusion map. Then the direct image sheaf
1+ is an extension of Oy to H* such that its stalk at each s € X' is given
by

(1:On)s = lim O (U N'H),
U

where U runs through the set of open neighborhoods of s in H*. Thus an
element of (7,Ox)s with s € X is the germ of a section f : (U — {s}) — C
of Oy on a punctured neighborhood U — {s} of s. We denote by O+ the
subsheaf of 7,0y such that the stalk at each s € X' is given by
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Ore s ={f € (0:On)s | flo7'2) = O(|2|*) for some k € Z}, (2.3)

where o is an element of SL(2,R) with os = co. Thus the germs at s belong-
ing to Oy« are the elements of 7,0y that are meromorphic at s. The left
action of I" on ‘H* induces a right action of I" on O+ given by

(f (=) = flv2)

for all z € U and v € I', where f : U — C represents a germ belonging to
Oz¢-. We denote by (Oy+)! the I'-fixed sheaf on X associated to Oz

Lemma 2.1 The sheaf (Oy+)"" can be identified with the sheaf Ox of holo-
morphic functions on X.

Proof. Given an open subset U C X, by (2.1) a section f € (O)I'(U)
of (Oy+)! on U is a I'-invariant function on 7~ !(U). Thus f determines a

function f on U. Since f is holomorphic on 7#=*(U) N H, we see that fis
holomorphic on U N Xo, where Xog = I'\'H. If s € 7= 1(U) is a cusp of I" with
os = oo and if the subgroup oIso~' C SL(2,R) is generated by (%), then
the function z — f(0~'z) has a Fourier expansion of the form

f(ailz) — Z anGZﬂinz/h.
By (2.3) we see that f satisfies
flo=t2) = O(|z|")
for some k € Z. However, we have
eQﬂ'iz/h — O(l), 6727riz/h # O(|Z|£)

for every ¢ € Z; hence it follows that a,, = 0 for n < 0. Thus f is holomorphic
at s, and the proof of the lemma is complete. ad

Let £2},. be the sheaf of holomorphic 1-forms on H*. Then (2},. is an
O+-module, and we may write

2 = dOsp = Opedz.

The group I" acts on (271_[*, and therefore we can consider the associated I'-
fixed sheaf (£2},.)" on X. We denote by £2'(X) the sheaf of meromorphic
1-forms on X that are holomorphic on Xy = I'\'H and have a pole of order
at most 1 at the cusps.

Lemma 2.2 The sheaf (£23,.)"" on X coincides with 2'(X).
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Proof. Let s € X C 'H* be a cusp of I" with s = co. If ¢5 = €2™7#/" then
we have

dgs = (2mi/R)gsd(02),  d(o2) = — g dgs.

2mi
Using this and (2.2), we see that

(2 ) k) = (2 )15 = (Ope wd(02)) " = q7 (O )2 dgs;
hence the lemma follows. a

We now consider the sheaf Oy ®cC? of C?-valued meromorphic functions
of the form described above. Thus elements of this sheaf are germs of functions
of the form fi(z)e; + fa(2)ea, where fi, fo are functions representing germs
belonging to Oz and e; = (1,0),e2 = (0,1) € C2 Note that in this section
we are considering elements of C? as row vectors. The group I" acts on the
sheaf O« on the right by

(@1 + R@)en) 1 = (62 202D (45) 2.4

= (afi(yz) + cfa(v2))er
+ (bf1(vz) + df2(vz))e2

for v = (‘; g) € I'. We define the sheaf F3~ on H* to be the subsheaf of
Ox- ®@c C? generated by the global section e; — zes, that is,

Fr ={f(2)(e1 — zea) | f € Op}. (2.5)
Lemma 2.3 The sheaf Fp~ on H* is I'-invariant.
Proof. Given vy = (2%) € I' and f € Oy, by (2.4) we have
F(2)(er = zea) -7 = f(72)(a — e(y2))ex + (b — d(y2))ea).

Using the relations ad — bc = 1 and vz = (az + b)/(cz + d), we see that

_afcz+d)—claz+d) 1
a=cyz) = cz+d ez +d
b(cz +d) — d(az + d) —z
b—d = = )
(v2) cz+d cz+d
Hence we obtain

f(z)(e1 —zea) -y = (cz+ d)flf(fyz)(el — ze9) € Fp, (2.6)
which proves the lemma. a

By Lemma 2.3 we can consider the I'-fixed sheaf (Fp+)! on X. Given a
positive integer m, we can also consider the sheaf (F7.)!" on X, where F17.
is the m-th tensor power of Fp«.
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Proposition 2.4 The space (Fi.)''(X) of global sections of (Fi)' is
canonically isomorphic to the space My, (I') of automorphic forms of weight
m for I'.

Proof. By (2.1) and (2.5) we have
(F)T(X) = (Fpe () = (Op= (M) (e1 — ze2)™)".

Thus an element ¢ € (F;7.)7 (X) can be regarded as a I'-invariant function
of the form

P(2) = f(2)(e1 — ze2)™

for all z € H* with f € Oy-(H*). Hence, in order to prove the proposition,
it suffices to show that f is an automorphic form for I" of weight m. Since ¢
is I'-invariant, by using (2.6) we see that

fv2) =3, 2)" f(2) = (f lm 7)(2)

for all z € H and v € I'. Now let s € X be a cusp of I' with s = oo. Then
f |m 07! has a Fourier expansion of the form

(f Im 0'71)(2) = Zanezmz/h-

However, as in the proof of Lemma 2.1, the condition f(c712) = O(|z|¥)
implies that a,, = 0 for n < 0. Thus f € M,,(I"), and therefore the proof of
the proposition is complete. a

Let O~ (—2X) be the sheaf of functions on H* which are holomorphic on
‘H and zero on Y. For each positive integer m we set

e (—X) = Fif @ Op= (—2),

and denote by
Fit = (Fip(=2))" (2.7)
the I'-fixed sheaf of Fj.(=X) on X = I'\H*.

Proposition 2.5 The space F*(X) of global sections of F[ is canonically
isomorphic to the space Sy, (I") of cusp forms of weight m for I.

Proof. Using (2.1) and (2.5), we see that
FPHX) = (Fri (= 2)T(X) = (Ffi- (= 2)(H)"
= (On-(=2)(H")(e1 — ze2)™)".

Thus an element ¢ € F*(X) can be regarded as a I-invariant function of
the form
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¢(2) = f(2)(ex — ze2)™
for all z € H* with f € Oy~ (—X)(H*). Hence, as in the proof of Proposition
2.4, we see that f satisfies f |,, v = f for all v € I on H. Now the fact that
the f is zero at each cusp follows from the definition of the sheaf O+ (—X).
Thus it follows that f is a cusp form of weight m for I a

Let I'" = x(I') be the image of I" under x, and let X’ be the set of cusps
of I'". Then for each positive integer m we can define the sheaf FJ¥ over the
Riemann surface X = I"\'H# with H# = H U X' given by

7= (Fage) = (Fha (=20, (2.8)
and its sections can be identified with the cusp forms of weight m for I'V. Let
wx : X — X/ be the morphism of complex algebraic curves induced by the
holomorphic map w : H — H, and denote by w¥ F7 the sheaf on X obtained
by pulling the sheaf 7%} on X via the map wx.

Proposition 2.6 The space S (I, w,x) of mized cusp forms associated to
', w and x is canonically isomorphic to the space H°(X, .7-"113 ® w}}"g,) of
sections of the sheaf Fr ® wiFb, over X.

Proof. Each global section ¢ of the sheaf Fr ® wi F¥, is of the form

=> b
i=1

where a; € FF(X) and 3; € wiF& (X) for each i. As in the proof of Propo-
sition 2.5 the sections «; and 3; may be regarded as I'-invariant functions of
the form

0i2) = 0 E)er — e, A(E) = Bl (er — w(2)en)
for all z € H*, sihat we have
62) = Y R e - zen)(er —w(z)ea)’
Thus we see that th(;;:mction
F(e) = ﬁ;fxz)m(w(z»

for z € ‘H* satisfies

F(vz) = j(v,2)*5(x(7), w(2)) F(2)

for all v € I' and z € H. Thus ¢ has the same transformation property as
the one for an element in Sy ¢(I',w, x). Now the proposition follows from the
fact that the I'-cusps and I’-cusps correspond via w and Y, since Y maps
parabolic elements to parabolic elements. a
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2.2 Elliptic Varieties

In this section we describe the interpretation of mixed cusp forms as holomor-
phic forms on certain families of abelian varieties called elliptic varieties. An
abelian variety belonging to such a family is the product of a finite number
of elliptic curves.

Let E be an elliptic surface in the sense of Kodaira [52]. Thus F is a
compact smooth surface over C, and it is the total space of an elliptic fibration
7w : E — X over a Riemann surface X whose generic fiber is an elliptic curve.
Let Ey be the union of the regular fibers of 7, and let I' C PSL(2,R) be the
fundamental group of Xy = w(Ep). Then I' acts on the universal covering
space ‘H of Xg by linear fractional transformations, and we have

X = I'NH U {I'-cusps}.

For z € Xy, let & be a holomorphic 1-form on the fiber E, = 7—1(z), and
choose an ordered basis {v1(2),v2(2)} for Hy(E,,Z) that depends on the
parameter z in a continuous manner. Consider the periods w; and ws of E

given by
w1(2) :/ b, wa(z) :/ o.
71(2) v2(2)

Then the imaginary part of the quotient wy(z)/w2(2) is nonzero for each z,
and therefore we may assume that wi(z)/wa2(z) € H. In fact, wi/wy is a
many-valued holomorphic function from Xy to H which can be lifted to a
single-valued function w : H — H on the universal cover of Xy such that

w(yz) = x(7w(2)

for all v € I and z € H; here x : I' — SL(2,R) is the monodromy represen-
tation of the elliptic fibration 7 : £ — X.

In order to discuss connections of elliptic varieties with mixed cusp forms
we shall regard I" as a subgroup of SL(2,R). As in Section 1.1 we denote by
Siyo.r (I, x,w) the space of mixed cusp forms of type (j + 2,k) associated
to I', w and x. Let E(x) (resp. E(1)) be an elliptic surface over X whose
monodromy representation is x (resp. the inclusion map), and let 7(y) :
E(x) — X (resp. w(1) : E(1) — X) be the associated elliptic fibration. We
set

E(o =700 (I\H), (1) = (1) (I'\H),

and denote by (Efﬁ)o the fiber product of j-copies of E(1)y and k copies
of E(x)o over X corresponding to the maps 7(1) and m(x), respectively.
The space (Ei’i)o can also be constructed as below. Consider the semidirect
product I" X1, Z% x 72* consisting of the triples (7, u,v) in I' x Z% x 72k
whose multiplication law is defined as follows. Let

(Vo) (Y, 1/ V') € T x 277 x 7%
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with _
I“Ll = (IJ’&7I~'I’I2) = (/’l‘lllw . '7,“13'17/1/127‘ . ‘7,“13'2) € Z2]7
V= W) = (V. U Vg ) € 22K,

_f(abd _fay by
V= (C d) er, x(v)= (CX dx) € SL(2,Z).

Then we have
(77/1'7 U) : ('Y/HU'/, V/) = (77/77 : (/1'/, V/) + (/1'7 U))7
where v - (¢/, V') = (", V") with

B = (apyy + by, .. 7‘1/1;'1 + b:u;'2>
cphy + dptly, ..oy + duly) € 72

"o / / / /
V' = (axVi1 + byVig,s ooy x Vg + by,

exViy Fdy Vs, o Vg +dyvps) € z**.
The group I' X1, Z* x Z2* acts on the space H x C7 x C¥ by
(’77 “7”) : (27 £> C) (29)

= (yz, (cz+ d) (€ + 21y + o),
(cxw(z) + dx)il(c + CL’(Z)Vl + VQ))

foryel,zeH, £E€cCl,¢eCF = (1) €Z%, and v = (v1,vs) €
7% . Then we have

(EP%)o =T w1, Z% x Z*\H x €7 x C*. (2.10)

Now we obtain the elliptic variety E by resolving the singularities of the
compactlﬁcatlon of (EJ’ )o (cf. [117]). The elliptic fibration 7 induces a fi-
bration 7] E] " — X whose generic fiber is the product of (j + k) elliptic
curves.

Theorem 2.7 Let EJ’ be an elliptic variety described above. Then there is
a canonical zsomorphzsm

HO(ELY, 7 = 850 (1w, X)

between the space of holomorphic (j + k + 1)-forms on E 1 and the space of
mized cusp forms of type (j + 2, k).
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Proof. Let (E{’;)o be as in (2.10). Then a holomorphic (5 + k + 1)-form on
E{f{ can be regarded as a holomorphic (j + k + 1)-form on H x C/ x C*
that is invariant under the operation of I' x , Z? x Z?*. Since the complex
dimension of the space H x C/ x C¥ is j+k+1, a holomorphic (5 +k+1)-form

on H x CJ x CF is of the form

6 = J(=.€,¢)d= A d€ A dC,

where fis holomorphic. For zg € H, the holomorphic form © descends to a
holomorphic (j + k)-form on the fiber (7‘(’{:’;)71(2’0). However, the dimension
of the fiber is j + k, and therefore the space of holomorphic (5 + k)-forms
on (w{:’;)’l(zo) is one. Hence the map (&,¢) — f(2,&, ¢) is a holomorphic
function on a compact complex manifold, and consequently is a constant
function. Thus we have f(z,&,{) = f(z), where f is a holomorphic function
on C7 x C*. From (2.9) the action of (v, u,v) € I" X1, Z¥ x Z** on the form

O = f(z)dz A d€ A dC is given by
O - (v, 1,v) = f(g2)d(gz) Nd((cz +d) (€ + zpy + o))
Ad((exw(z) +dy)"HE + w(z)vn +v2))
= f(92)(cz +d)"2(cz + d) 7 (cyw(2) + dy) Fdz A d€ A dC.

Thus it follows that f(z) satisfies the condition (i) of Definition 1.3, and it
remains to show that f satisfies the cusp condition. Using Theorem 3.1 in
[67], we see that the differential form © can be extended to E{]; if and only

if
/ . OANO <.
(EL%)o
From (2.9) it follows that a fundamental domain F' in H x C7 x C* for the
action of I' 1, Z* x Z?* can be chosen in the form

F={(2,6¢) eHXxTC xCF|zeF, €=s+tz, ¢=u+vuw(z),
s,tel’, uvelr),

where Fy C H is a fundamental domain of I and I is the closed interval
[0,1) € R. Thus we have

/ @/\@z/@/\@:/ |f(2)|2dz A d€ A dC A dZ A dE A dE
(B0 F F

= zzmzjmwzkz Z
—KLUUHI)G (2)*dz A dz,

where K is a nonzero constant. Thus the integral [ FON O is a nonzero con-
stant multiple of the Petersson inner product (f, f) described in Proposition
2.1 in [70]; hence it is finite if and only if f satisfies the cusp condition, and
the proof of the theorem is complete. a
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Remark 2.8 Theorem 2.7 is an extension of the results of [43, Theorem 1.6]
and [68, Theorem 8.2], where mixzed cusp forms of types (2,1) and (2,m),
respectively, were considered.

2.3 Modular Symbols

Modular symbols for automorphic forms were first introduced by Birch [10]
and were developed systematically by Manin [89, 90]. More general modular
symbols were introduced by Sokurov [119] by using the fact that cusp forms
can be identified with holomorphic forms on an elliptic variety. In this section
we extend the notion of modular symbols of Sokurov to include the ones
associated to mixed cusp forms.

Let (w,x) be the equivariant pair associated to an elliptic surface E over
X = I'\'H* considered in Section 2.2. Thus w : H — H is the period map and
X : I' = SL(2,R) is the monodromy representation for the elliptic fibration
m: E — X satisfying

w(vz) = x(7)w(2)

forall ze Hand y € I'.

Let Rym.Q be the sheaf on X corresponding to the presheaf determined
by the map

U Hy(n 1 (U),Q)

for each open subset U C X. We fix a positive integer m and denote by
(R1m.Q)™ the m-th symmetric tensor power of the sheaf Rym,.Q. We shall
construct below a map

{0 Yox 1 QX Z" X Z™ — Hy(Z, (Rim.Q)™) (2.11)

which assigns to each triple (a,p,q) € Q x Z™ the element {,0,q¢}w €
Hy(X, (R1m.Q)™) called a boundary modular symbol, where X' is the set of

cusps for I and Q = Q U {oo}. If w is the identity map on H and y is the
inclusion map, then {a,p, g}y is the boundary modular symbol {a, p,q}r
of Sokurov defined in [118, Section 1].

Note that the elliptic surface E can be written in the form
E=Tx,Z*\H xC,

where the quotient is taken with respect to the action of the semidirect prod-
uct I" X, Z? on H x C given by

(7, (1, p2)) - (2,0) = (72, (2 + dy) " HC + paw(z) + p2))

for (p1,p2) € Z2, (2,¢) € Hx C and v € I' with x(v) = (ax bx ) Thus, if

cx dx
w : H* — X is the natural projection map and z € H, the fiber E, of the
elliptic fibration 7 : F — X over w(z) € X is the elliptic curve of the form
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E,=C/(Zw(z)+ 7).

We choose a basis {n1(z),n2(2)} of H1(E,,Z) represented by the cycles n;(z)
and n2(z) corresponding to the paths {tw(z) |0 <t <1} and {¢t |0 <t < 1},
respectively, in the complex plane C. Thus we may write

m) = [w) [0<t<1)], m)=[{t]o<t<1}],  (212)

where 7 : C — E, is the natural projection map. The codomain of the map
in (2.11) to be constructed has a direct sum decomposition of the form

Ho(2, (RimQ)™) = @D Ho(s, (Rim.Q)™).

seX

Let sg € X be a cusp for I' determined by a € Q, and let (p,q) €Z™ x 2.
Then we define the element {a, p, ¢}w. € Ho(X, (R17.Q)™) to be trivial on
the summands Hy(s, (R17.Q)™) for s # sg so that we may write

{OéaILQ}%X S H0(507 (le*(@)m).

Now we choose a small disk D of sg, and let D be the corresponding neigh-
borhood of « that covers D. If zp € D C H*, p = (p1,...,Pm) € Z™ and
q=1(q1,---,qm) € Z™, then we define the element

{zp,p,4}2, € Ho(D, (Ryim.Q)™)

to be the homology class of the cycle

m

H(Pﬂh + ¢in2)vp,
i=1

where vp € X is the point corresponding to zp € H*. Then the boundary
modular symbol for the triple («, p, q) is defined by

{,p, ¢}y =lim{zp,p,q}7 (2.13)
D

where the inverse limit is taken over the set of open disks D containing sg.

In this section we assume that I is a subgroup of SL(2, Z) of finite index. If
sisa [-cusp in X, then it is of type I, or I in the sense of Kodaira [52] where
b is the ramification index of the canonical map p : X — SL(2,Z)\H U Q
induced by x at s. If 7 = e*™* is the canonical local parameter at the unique
cusp in SL(2,Z)\H U Q, we can take a local parameter 75 at s to be a fixed
branch of the root (7,4)'/?. We define the subsets ES and F*© by

Ei={r.eX||r|<e}, F°=|JES
seX
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for each small ¢ > 0. For v € SL(2,Z), let s; and sy be the cusps corre-
sponding to v(0) and ~y(ioc0) respectively. Let [y] = I'y € SL(2,Z)/I be the
I'-coset containing v, and denote by 0ioo the nonnegative part of the imagi-
nary axis in HUQ oriented from 0 to ico. We define the 1-cell ¢[v]. to be the
image of the oriented 1-cell y(0i00) that lies outside Fy, and Es,, that is,

¢[7]e = w(0ioo) — By, N E,,, (2.14)

where @w : H* — X = I['\H* is the natural projection map. The basis
{m(2),m2(2)} of Hi(E,,Z) for each fiber F,considered before induces the
basis {71, 12} of the group

(Rlﬂ-*(@) ‘C[’Y]E .

If k£ is an integer with 0 < k < m, we set

1, =(1,...,1,0,...,0), (2.15)

and define the element
{7(0), 7(i00), 1k, L — 1%}, € Hi(X, F®, (Rym.Q)™)

to be the homology class of the cycle

m

ming " elyle = [ [wim + aimz)ee, (2.16)
=1

where p = (p1,...,pm) = 1 and ¢ = (¢1,...,¢m) = Ly — 1. Noting that
the pairs (X, F¢) with ¢ > 0 form a cofinal system, we define the modular
symbol

{’Y(O)’ V(Z’OO)7 Ty Im — 1k}w,x € (X7 X, (Rlﬂ-*Q)m)

to be the inverse limit

Hm{v(0),v(io0), 1, L — 1k }5, o - (2.17)
FE

We now denote by E™ the elliptic variety E?;n over X = I'\H* con-
structed in Section 2.2 associated to the elliptic fibration 7 : £ — X.

Lemma 2.9 There is a canonical pairing
() Hi(X, 5, (BymQ)™) x HYE™, Q" o 0™ —cC  (218)
that is nondegenerate on the right.

Proof. See [119, Section 4.1]. O
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Note that the pairing in (2.18) is given by

(5).0) = [0

for all [8] € Hy(X, 2, (RymQ)™) and & € HO(E™, 2+ o 2™, where 6 is
a cycle representing the cohomology class [0]. Using (2.18) and the canonical
isomorphism

Som([yw,x) = HO(E™, QM) (2.19)

given in Theorem 2.7, we obtain the canonical pairing
< ) > : Hl(X> 27 (Rlﬂ—*(@)m) X (827177,(1—1,(4), X) 3] S2,’m(F>w>X)) — C. (220)

Lemma 2.10 Let 0 : Hi(X, X, (Rim.Q)™) — Ho(X, (RymxQ)™) be the
boundary map for the homology sequence of the pair (X,X). Then for
1 <k <m we have

8{7(0)7 ’Y(iOO), 1k7 1m 1k}w X = {’Y(ZOQ) 1k7 1k}w,X
—{7(0), L, L — L }ux

for all v € SL(2,Z).
Proof. This follows easily from the definitions in (2.13) and (2.17). O

Proposition 2.11 Let ( , ) be the canonical pairing in (2.20),and let 1 <
k <m. Then we have

({3(0),7(000), L Lon = Lihuns (1. T2)
v(i00) y(ico)
— [ heles [ TR

~(0) ~(0)

y(ico) M
:/ h H(piw( ) + qi)dz

(0)
7(100) L
/ Fo [ [(iw(2) + a:)d
"Y =1

fO’f’ a’”’y € SL(27Z) and f17f2 € 827m(F7w7X)7 where b= (p17"'7p’m) =1k
and ¢ = (q1,- - qm) = 1;m — 1i.

Proof. We note first that by (2.17) the element
{’Y(O)a ’y(iOO), 1k7 L, — 1k}w,x € Hy (X7 2, (Rlﬂ'*Q)m)
is obtained by taking the inverse limit of

[0c] = {7(0),7(i00), 1k, L — 11}, € H1(X, ¥, (RamQ)™)
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over the set {F* | € > 0}. However, by (2.16) the homology class [0.] can be
represented by the cycle

m—k

8e = myny e[yl (2.21)

Given f1, fa € Som (L, w, ), let $p, and Py, be the holomorphic (m + 1)-
forms on E™ corresponding to f1 and fs, respectively, under the canonical
isomorphism (2.19). Then we see that

(0) 700 1Ly = e (BT = [ (04T). 222

Given € > 0, if we identify (R 7,.Q)™ with its embedded image in (R;m.Q)®™
and if ¢[y]. is the 1-cell in (2.14), then the chain
[mininy~*el]e]

corresponds to the set § C H x C™ whose restriction to {z} xC™ = C™is
given by

UH{tpz Y, tq) |0<t <1} CC™;

(p,q) =1

here z € H belongs to the set corresponding to c[v]., and (p, ¢) runs through
all permutations (o(1), (1, — 1)) for 0 € &, Now recall that there is a
canonical isomorphism

E 2T %, Z*"\H x C™,

where EJ" is the elliptic variety (E?:;n)o in (2.10). Let @}, for i € {1,2} be
the lifting of @y, |x, to H x C™. Then we have

where z and ((1, ..., (n) are the standard coordinate systems for H C C and
C™, respectively. On the other hand, for each j € {1,...,m} we have

/ d¢; = w(z), / d¢; = w(2),
{tw(z)l0<t<1}) {t(=)0<t<1}

/ dgj:/ ;= 1.
[0,1] [0,1]

Using this, (2.12) and (2.14), we see that

— z; z;_ E
/ — (% +¢f2) —m!</ flw(z)’“dz+/ Fow(z) dz)
i o Ze Ze

where Oc[y]e = 2L — 2. on H. However, by (2.21) we have
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m—k

mintns " e[y]. = mlde;

hence we obtain

/65 <¢fl * 5’"2) - / frw(z)kdz + / Foo(2) dz.

Thus the proposition follows by taking the limit of this relation as ¢ — 0 and
then using (2.22). O

Now in order to consider more general modular symbols
{0[7 57107 q}w,x S Hl (X> 27 (Rlﬂ-*@)m)

for a, 8 € @ and p,q € Z™, we first state the following theorem.

Theorem 2.12 There exists a unique map
{0 o 1 QX QX 2™ x 2" — H(X, 2, (Rim.Q)™)

satisfying the following properties:
(i) If 0 : Hi(X, X, (R1m.Q)™) — Ho(X, (R1m.Q)™) is the boundary map
for the homology sequence of the pair (X, X)), then we have

a{auﬂap7q}w7x = {/67P7Q}w7x - {O[7p, q}UJ,X' (223)

for all a, B € @ and p,q € Z™.
(i) If {, ) denotes the canonical pairing in (2.20), then we have

<{a7 ﬂ7pa q}w,x7 (f1372)> (224)
g m g m
~ [ allewe +aiz+ [ LI[oam+ae @)

fO’f’ all 067,8 € @; p,q € Z™ and f1>f2 € S2,m(F>w>X)'

Definition 2.13 The values {«, 3,p,q}w. of the map in Theorem 2.12 are
called modular symbols.

Before we prove Theorem 2.12, we shall first verify a few properties sat-
isfied by modular symbols.

Lemma 2.14 Suppose that {a,3,p,q}w.x and {B,7,p,q}w are modular
symbols, and set

{O[777p7 q}w,x = {OL,,()’,]L q}w,x + {ﬂ?FYap7 Q}W,X' (226)

Then {o,v,p, q}w.y 8 also a modular symbol.
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Proof. We need to verify (i) and (ii) in Theorem 2.12 for {c, v, p, ¢}w,y defined
by the relation in (2.26). However, both of these properties follow easily from
the definitions and the uniqueness of the modular symbols. ad

Lemma 2.15 Consider the modular symbols

{Oé,,@,p(j, 1)7 Q(j> O)}%X? {Oé,,@,p(j, 0)7 Q(j> 1)}0-17)(7

where p(j,*) (resp. q(j,*)) denotes the element in Z™ obtained from p =
(P1y---,Pm) (resp. ¢ = (qu,-..,qm) by replacing p; (resp. q;) by *. If we set

{0[7 ﬂ7pa q}w,x = pj{aa Bap(.% 1)a q(]? O)}W,X + qj{a’ 5?p(]7 O)? q(]? 1)}W7X7
then {a, 8,D, q}w x is a modular symbol.

Proof. Using the definition of {, , }. 5, we see that

{fapv q}uJ,X = pj{fvp(j7 1)v q(]7 O)}W,X + Qj{fap(j7 O)a q(]7 1)}w7X

for all £ € Q The fact that {a, B,p, q¢}w,y satisfies (2.23) follows easily from
this relation. On the other hand, we have

<{aﬂﬁup7Q}w7x> f17 f2)>

B .
— / o) [[w(@adz +p; | Foo00) [[ @@ + ai)dz
l;ﬁj @ i#j

+qg/ A vz +qzd2+qg/ o [[piw(2) + @)
Y i ¢ i

_/Bf1H(pi _|_qldz—|—/ fQHp1 z) + qi)dz
@ =1

for all fi, fo € So.m (I, w,x); hence we see that {«a, 5,p, ¢} satisfies (2.24).
O

Lemma 2.16 Leto € &, be a permutation of the set {1,...m}. If {a, B, D, ¢}w
is a modular symbol, then {a, B,0D,0q}w y s also a modular symbol. Further-
more, we have

{a, 8,0, ¢bw,x = {a, B,0D,0q}w,x,
where U(p) = (p0(1)7 cee 7po(m)) and U(Q) = (QU(1)7 B QU(m))'

Proof. Tf € € Q, by using the definition of {,, }wxit can be easily shown that

&0, 3o =18 00, 0q} .y

hence it follows that



2.3 Modular Symbols 51

8{a, /87 op, Jq}w7x = a{Oé, ﬂa D, q}w7x~

We also see that

<{O[,ﬂ,0’p, O'q}w,)@ (f1a72)> = <{OL,,6,[)7 Q}WJO (f1a72)>

for f1, fo € Sa.m (I, w, x). Therefore the lemma follows from these results and
the uniqueness of modular symbols. a

Now we are ready to prove Theorem 2.12.

Proof. (Theorem 2.12) Given «,f € @ and p,q € Z™, in order to prove
uniqueness suppose we have two modular symbols {«, 3, p, ¢}, and {«, B, p, ¢}, -
If we set

H = {a7ﬂ7pa q}w,x - {OL,,()’,]L Q}:.;7Xa

then dp = 0 by (2.23), which implies that ¢ € Hy (X, (R17.Q)™). On the
other hand, using (2.24), we have

<ﬂa (f1372)> =0

for all fi,fa € Sam(I,w,x). Since the pairing (, ) is nondegenerate, we
obtain p = 0. As for the existence, we first note that by Proposition 2.11
there are modular symbols of the form

{’Y(O)’ V(Z’OO)7 Ty Im — 1k}w7X'

By combining this with Lemma 2.15 and Lemma 2.16, we see that there exist
modular symbols of the form

{’7(0)7 ’V(ioo)>p7 Q}w,x

for arbitrary p,q € Z™. Now for arbitrary «a, 3 € @, we consider a finite
sequence of points 71, ...,7; € Q such that

(,m) = (71(0),71(i00)), -+ - (Mis Mit1) = (Yi+1(0), Yir1(i00)), . ..

oo (i, B) = (Mi41(0), Yig1 (i00))

forv1,...,y+1 € SL(2,Z) (see [90, Theorem 1.6] for the proof of the existence
of such a sequence). Using this and Lemma 2.15 provides us the existence of
the modular symbol {«, 3,p, ¢}w,y, and therefore the proof of the theorem is
complete. a
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2.4 Eichler-Shimura Relations

In this section we discuss periods of mixed cusp forms in connection with
modular symbols described in Section 2.3. In particular, we establish relations
among such periods, which generalize Eichler-Shimura relations for classical
cusp forms studied by Sokuov [118].

As in Section 2.3, we consider an equivariant pair (w, x) associated to an
elliptic surface F over X = I'\'H*, so that the period map w : H — H is
equivariant with respect to the monodromy representation x : I' — SL(2,7Z)
for E. In this section we assume that x can be extended to a homomorphism
defined on SL(2,7Z). We shall use the same symbol y for the extension. Thus
we have a homomorphism x : SL(2,Z) — SL(2,Z) satisfying

w(y2z) = x(7w(2)

for all z € H and v € I'. Then SL(2,Z) acts on the modular symbols
{a, 8, p, q}w,x described in Section 2.3 by

v A, B, 0, Ywx = {178, 0, )X (7) Fux (2.27)
= {’7017 ’757 dxp — Cyq, _bxp + ax‘l}%x

for o, f € Q, p,q € Z™ and v € SL(2,7Z) with x(v) = (ax o ) The group

cx dx
SL(2,Z) also acts on the space Sz (I, w,x) of mixed cusp forms of type
(2,m) associated to I', w and x by

(f 1) =307, 2) 725 (x(7), w(2) 7" f(72)
for f € So.m(Iw,X), 2 € H and v € SL(2,Z). We denote by
&r = SL(2,Z)/T
the set of I'-orbits in SL(2,Z).

Definition 2.17 Let e = I'y € &r be the I'-orbit determined by v €
SL(2,Z), and let 0 < k < m. Given an element

f = (f1’72) € SQJ”«(Fawa X) D SQJ”«(Fawa X)a
the the complex number r(e, k, ) given by

r(e k, f) = /Owo(fl l2,m ’y)w(z)kdz + /Owo(fg 2,m v)w(z)kdf, (2.28)

is the period of f associated to e and k.

Note that, since fj |2,m v = f; for j = 1,2, the value of r(e, k, f) given
by (2.28) is independent of the choice of the representative v of e. If e € Ep
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is the I'-orbit determined by v € SL(2,Z) and if 0 < k < m, we denote by
&(e, k) the modular symbol defined by

f(e,k’) =7 {0>OQ>1k>1m - 1k}w7x> (229)

where the vectors 15 are as in (2.15) and the action of v on the right hand
side is given by (2.27).
Proposition 2.18 Let (, ) be the canonical pairing given in (2.20), and con-

sider the element

f = (f1’72) € SQ,m(F’w’ X) D SQ,m(F’w’ X)'
Then we have
<€(6’ k)7f> = T‘(@,k,f) (230)

for each e € Er and 0 < k < m.

Proof. Let e = I'y € & with x() = (% It ) € SL(2,2). Then by (2.29)
we have
5(67 k) = {"YOL, 6, dxq — CxD, _bxq + axp}w,xa

where a = 0, § = ico, p = 1, and ¢ = 1,, — 1. Hence, using (2.24), we see
that

(€. ). ) = / () T (s = xiez) + (i + axai))d=

+ f2(Z) [1((dpi = exai)w(z) + (—bypi + axai))dz

i=1

/ F1v2) [[((deps = exai)x(M)w(2)

=1
+ (=bypi + ayqi))(cz + d)*dz

B m
+ [ B [ - et 10

— 2
+ (=bypi + ayqi))(cz +d) dz.
Using the relation x(7)w(z) = (ayw(z) + by)(cyw(z) + dy) ™!, we obtain

100 "

(E(e.k). ) = / T e V() dz + / (Fa o )o() a2
= T‘(E, k’ f)a

hence the proposition follows. a
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By combining (2.30) with the fact that the pairing (, ) is nondegenerate
on the right, we see that the value of {(e, k) given by (2.29) is also independent
of the choice of representatives of e € £.

Proposition 2.19 Let o,8 € @ and p,q € Z™. Then the corresponding
modular symbol can be written in the form

{0, 8p dlon =3 3 cleb)E(e k)

k=0ec&r
for some integers c(e, k).

Proof. As in _the proof of Theorem 2.12, consider a finite sequence of points
M, ...,Mm € Q such that

(Og 771) = (’Vl (0)7'71 (ZOO)), SKR) (771‘7 "7i+1) = (%-H (0)7 Yi+1 (ZOO)), e

ey (Tih 5) = (’W-‘rl(o)?’YH‘l(ioo))
for v1,...,7+1 € SL(2,Z). Then by (2.26) we see that

-1

{aaﬂap7q}w7x - {0477717P7Q}w7x + Z{ni7ni+17p7q}w7x + {nl7/67p7q}w7x~
i=1

Thus in order to prove the proposition it suffices to consider the case where
(o, B) = (7(0),v(ic0)) for some element «y in SL(2,Z). In this case, by using
(2.27) we have

{aaﬂap7q}w7x =" {07i007p/7q/}w,x (231)
with (p',¢') = (p,q)x(7)~" or (p,q) = (p',¢')x(7); hence we have

p'=ap+cig, ¢ =bip+dig

for x(7) = (& &%) € SL2,2). Let ' = (B, 0}u), @' = (dh,+df,), and
define ¢x(p', ¢') by

m m

[[e:X +aY) =D clp, X y™" (2.32)
i=1 k=0

Using this together with Lemma 2.15 and Lemma 2.16, it can be shown that

m

{0,00, 9,0 Yo = D (P, ¢){0, 400, 1, Ly = i}y
k=0

From this and (2.31) it follows that
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{0, 8,0, Yo = Y cu(®',q") 7 - {0,000, 1, 1 — L }urx

- Z ck:(p/> q/)§(€7 k)7
k=0

where e = I'y € &p, which prove the proposition. a

Now to discuss Eichler-Shimura relations for the periods of mixed cusp
forms, we consider the elements

0-1 1-1
=(0) = 6)
of SL(2,7). Using the relations
(5(0), 5(i00)) = (i00,0),  ((0),t(io0)) = (o0, 1), (t*(0),¢*(ic0)) = (1,0),
we see that

v {i00,0, 1k, 1y — 1wy = vs - {0,900, v(s, k), w(s, k) bw s
- {00, 1, 1k, Ly — i wy = vt - {0,300, 0(t, k), w(t, k) by
v {L 07 1167 m 1k}w,x = ,-th : {Oa Z.OO7 U(t27 k)a w(t2a k)}w,x

for all v € SL(2,Z), where by (2.27)
v(a, k) =a(lg) + (1 — 1g), w(a, k) =b(1k) +d(1,, — 1k)

if x(v) = (Z: Z’;) € SL(2,Z). Hence, if the integers ¢;(-,-) for 1 < j <m

are as in (2.32), we have

v {i00,0, 1, Iy — Tp by = Zc] (s, k))E(es, ), (2.33)
v {00, 1, 1y Iy — Tp by = ch w(t, k))E(et, ), (2.34)
v 41,0, 15, Lin — L}y = Zc] w(t?, k)E(et?, §),  (2.35)

where e = 'y € Ep.
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Proposition 2.20 Ife € &p, then we have
Ele k) + D ci(v(s, k), w(s, k))E(es, ) =0,

5(67 k) + Z Gy (U(t7 k)’ w(t’ k))ﬁ(et’ .7)

j=1

+3 e (0, k), w(t?, k))E(et?, j) = 0

j=1
for 0 < k < m, where the c;(-,-) are integers given by (2.32).
Proof. Using Lemma 2.14, we see that
v+ {0,700, L, Ly — 1ty +7 - {300,0, 15, 1y — 1}y = 0,
v {0,700, 1gy Loy, — Li by + v - {00, 1, 1y Lo — i wx
4y 41,0, 14 Ly — Loy =0

for all v € SL(2,Z). Now the proposition follows combining these relations
with the identities (2.33), (2.34) and (2.35). O

Theorem 2.21 Let f = (f1, f5) with f1, f € So.m (I w,X). Then we have

rek, f)+ ch(v(s, k),w(s,k))r(es,j, f) =0, (2.36)
(e, k, f) + ch(v(t, k), w(t, k))r(et, j, f) (2.37)
+ Z Cj(v(t2’ k)? w(t27 k))r(et2,j, f) =0

foralle e Er and 0 < k < m.

Proof. The theorem follows immediately from Proposition 2.18 and Proposi-
tion 2.20. O

The relations (2.36) and (2.37) may be regarded as the generalized Eichler-
Shimura relations for the periods r(e, k, f) of mixed cusp forms.

We now want to discuss the period map for mixed cusp forms. Let V =
P Q(e, k) be the Q-vector space generated by the pairs (e, k) with e € &p
and 0 < k < m. Let V* denote the dual space of V, and let {(e, f)*} be the
dual basis of {(e, f)}. If K is a subfield of C, we denote by R (I, w, X, K)
the subspace of V*(K) = V* ®q K consisting of all the elements of the form
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Z Z p(e, k)(e7 k)*
k=0 ecE

such that the coefficients p(e, k) € K satisfy the following relations:

ple, k) + Z ci(v(s, k), w(s, k))p(es,j) =0, (2.38)
ple, k) + Z ¢j(v(t, k), w(t, k)p(et, j) (2.39)

+ 3 e (0, k), w(t, k))plet®, §) = 0.

Jj=

=

Now we define the period map
T 527m(F7W7X) S7) 527m(F7W7X) I RQVM(Fawv X7(C)
for mixed cusp forms by
r(f) =Y Y rlek, (e k) (2.40)
k=0 ecE

for all f = (f1,f5) with f1, fo € Sa,m (I, w, X)-

Lemma 2.22 If K, K’ are subfields of C with K C K' C C, then there is a
canonical isomorphism of K'-vector spaces

Rom(Iw, x, K) @k K' = Ry (I w, x, K'). (2.41)

Proof. This follows from the fact that the equations (2.38) and (2.39) are
defined over Q. O

Proposition 2.23 The period map r is injective. Furthermore, there is a
canonical isomorphism

Rom (I w,x, K)* =2 Hi(X, 2, (Rim. K)™). (2.42)
for each subfield K of C.

Proof. Suppose r(f) = 0 for f = (f1, f5) with fi1, f2 € S2m (I, w,Xx). Then
from (2.30) and(2.40) it follows that

<£(67 k)’ @) =0

for all e € E and 0 < k < m. Using the nondegeneracy of the paring (, ) and
the fact that the modular symbols £(e, k) generate the homology group
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Hl(X, (Rlﬂ'*@)m) C Hl(X, X, (Rlﬂ'*(@)m),

we see that f = 0; hence r is injective. Now note that the assignment (e, k) —
&(e, k) defines a linear map from V into the space H; (X, X, (R1m.Q)™) and
that there is a canonical isomorphism

Hi(X, 2, (Rim K)™) =2 Hi (X, X, (Rim.Q)™) ®¢ K.

Thus the isomorphism in (2.42) is obtained by combining these results with
(2.30), (2.41), and the definition of R (I, w, x, K)*. O



3

Mixed Automorphic Forms and Cohomology

Given a positive integer m, let Sym™ (C?) denote the m-th symmetric power
of C?, and let HL(I',Sym™(C?)) be the associated parabolic cohomology of
I, where the I'-module structure of Sym™(C?) is induced by the standard
representation of I" C SL(2,R) on C?. Then the Eichler-Shimura isomor-
phism can be written in the form

H}’(F’ Symm((c2)) = SerQ(F) S?) Sm+2(F)7

where Sp,42(I") is the space of cusp forms of weight m+2 for I' (cf. [22, 112]).
In particular, there is a canonical embedding of the space of cusp forms into
the parabolic cohomology space. The Eichler-Shimura isomorphism can also
be viewed as a Hodge structure on the parabolic cohomology (cf. [6]). If
(w, x) is an equivariant pair considered in Chapter 1, we may consider an-
other action of I' on Sym™(C?) which is induced by the homomorphism
X : I' = SL(2,R). If we denote the resulting I'-module by Sym'(C?), the
associated parabolic cohomology Hp(I', Sym{'(C?)) is linked to mixed auto-
morphic forms associated to the equivariant pair (w, x). Indeed, mixed cusp
forms can be embedded into such parabolic cohomology space, and they can
also be used to determine a Hodge structure on Hp (I, Sym}'(C?)), which
provides an extension of the Eichler-Shimura isomorphism to mixed auto-
morphic forms.

If (Sym™(C?))* denotes the dual of the complex vector space Sym™ (C?),
there is a canonical paring

HY(I,Sym™(C*)) x Hy(T, (Sym™(C*))*) — C

known as the Kronecker pairing (cf. [48]). In [48], Katok and Millson deter-
mined the value of the Kronecker pairing between the image of a cusp form
for I" of weight 2m+2 in H(I', S*™V) and a certain 1-cycle in H; (I, S*™V)
associated to each element of I'. They used this to determine a necessary and
sufficient condition for the space of cusp forms to be spanned by a certain set
of relative Poincaré series (see [47, 48]). Similar results can be obtained by
using the I'-module Sym}’(C?) and mixed cusp forms associated to (w, x).
In Section 3.1 and Section 3.2 we discuss relations between mixed cusp
forms and parabolic cohomology of the corresponding discrete subgroup of
SL(2,R). We construct a map carrying a mixed cusp form to a parabolic
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(© Springer-Verlag Berlin Heidelberg 2004
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cohomology class in Section 3.1 and show that the resulting map is injective
in Section 3.2 by using a pairing on the space of mixed cusp forms. A Hodge
structure of the parabolic cohomology in terms of mixed cusp forms is stud-
ied in Section 3.3. This generalizes the usual Eichler-Shimura isomorphism
for cusp forms. In Section 3.4 we describe the value of the Kronecker pair-
ing between the canonical image of a mixed cusp form f of type (2,2r) in
H\(T, Symir((Cz)) and a cycle y® Q" in Hy(I', (Symir((CQ))*) foreachy € I,
where @7 is a certain element of (Sym?"(C?))* associated to v, r, and the
homomorphism x.

3.1 Mixed Cusp Forms and Parabolic Cohomology

Connections between the cohomology of a discrete subgroup I' of SL(2,R)
and automorphic forms for I" were made by Eichler [22] and Shimura [112]
decades ago. Indeed, they established an isomorphism between the space of
cusp forms of weight m + 2 for I' and the parabolic cohomology space of I"
with coefficients in the space of homogeneous polynomials of degree m in two
variables over R. A similar isomorphism for mixed cusp forms may not hold
in general as can be seen in [20, Section 3] where mixed cusp forms of type
(0,3) were studied in connection with elliptic surfaces (see Section 3.3). In
this section we construct a map from the space of mixed cusp forms of type
(k, £) associated to I', w and x with k > 2 to the parabolic cohomology space
of I' with coefficients in some I'-module.

If R is a commutative ring R we denote by PY%  (R) the R-algebra of
homogeneous polynomials of degree n in two variables X and Y. Then the
semigroup M (2, R) of 2 x 2 matrices with entries in R acts on PY y-(R) on
the left by

M™(7)¢(X,Y) = ¢((X,Y)(+')"), (3.1)

where (+)? denotes the transpose of the matrix (-) and
v =tr(y) - L =y =det(y)y ! (3.2)

with I being the identity matrix.

Let I" be a discrete subgroup of SL(2,R), and let w : H — H and x :
I' — SL(2,R) be as in Section 1.1. For fixed nonnegative integers k and m
we set

PEM(C) = Pk, v,(C) @ PR, v, (C).
Then I' acts on P*™(C) by MF™(v) = M*(y) ® M™(x(v)), that is,

ME™ (1) (6(X1, Y1) @ 9( Xz, Ya))
= (M*(1)¢(X1, Y1) ® (M™(x (7))t (X2, Ya))
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for all v € I', ¢(X1,Y7) € P§(1,Y1(C) and ¥(X2,Y2) € PR, y,(C), where
MP¥(y) and M™(x(v)) are as in (3.1). Thus we can consider the parabolic
cohomology HL(I", P¥™(C)) of I" with coefficients in P*™(C), which can be
described as follows.

Let Z1(I", P*™(C)) be the set of 1-cocycles for the action of I" on P*™(C).
Thus it consists of maps u : I" — P*™(C) such that

u(y8) = u(y) + My ™ (v)u(8) (3-3)

for ally, 6 € I'. We denote by ZL (I, P*™(C)) the subspace of Z1(I', P*™(C))
consisting of the maps u : I' — P*™(C) satisfying

u(m) € (ME™ () — 1)PE™(C) (3.4)

for m € P, where P is the set of parabolic elements of I'. We also denote by
BY(I",P*™(C)) the set of maps u : I' — P*™(C) satisfying

u(y) = (ME™(y) = (3.5)

for all v € I', where x is an element of P*™(C) independent of . Then the
parabolic cohomology of I" with coefficients in ¥ (C) is given by

Hp(I,PH™(C)) = Zp(I, PE™(C))/BH (I, PR™(C))

(see e.g. [41, Appendix], [114, Chapter 8] for details).
Now we denote by Ay (2) the differential form on H with values in the
space P*™(C) given by

Ap(2) = (X1 = 2Y1)* @ (X2 — w(2)Ya) " dz (3.6)
for all z € H.
Lemma 3.1 Given v € I', we have
v Ak (2) = (7, 2)F 2 (x(9), w(2)) T M (1) A (2))
for all z € H, where v*Ag m(2) = Ag m(72).
Proof. Let v = (2b%) € I € SL(2,R). Then from (3.6) we obtain
7 A (2) = (X1 = (72)11)* @ (X2 — w(v2)Ya)"d(72) (3.7)

for all z € H. The first factor on the right hand side of (3.7) can be written

= ()2
- ((xl, i) (_01 (1)) ’y(i))k(cz ).
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However, using (3.2), we have

o (5) et (o) = (5 )

hence we obtain

01\ .
~10) 7

(Xl_(’yz)yl)k:<(X1,Y1)( ( )G)) (cz+d)~ (3.8)
= M*(7) (X1 — 2Y1)¥i(y, 2) 7,

o () (7))
- ((X%Yz ( ) (x v)lw . ))m

=M™ (x(7)) (X2 — w(2)Y2)"j(x(7), w(2)) ™.
3

where we used (3.1). Similarly, we have

Therefore the lemma follows by combining this with (3.2), (3.7), (3.8), and
the relation d(vz) = j(v, z) ~2dz. O

Given a mixed cusp form f € Sgio,m (I, w,x) of type (k + 2, m), we also
define the differential form 2(f) on H by

Qf) =2mif(2)Ar,m(2). (3.9)
Corollary 3.2 Given a mized cusp form f in Skyo.m (I w,X), we have

VRF) = M () 2A(F) (3.10)
forally eI

Proof. This follows immediately from Lemma 3.1 and the transformation
formula in Definition 1.3(i) for mixed automorphic forms of type (k + 2,m)
associated to I', w and x. ad

We fix a point z in H* = HUQU {oo} and for each f € Sit2m (I, w,X)
we define the map E.(f) : I' — P*™(R) by

e = | " Re(2())) € PP (R) (3.11)

for each v € I', where Re(-) denotes the real part of (-). Note that the
integral is independent of the choice of the path joining z and 7z, since 2(f)
is holomorphic. The integral is convergent even if z is a cusp because of the
cusp condition for the mixed cusp form f given in Definition 1.3(ii)’.
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Theorem 3.3 For each mized cusp form f € Skyo.m (I w,x) the associated
map E.(f) : I' — P*™(C) is a 1-cocycle in Hy(I', P*™(C)) whose cohomol-
ogy class is independent of the choice of the base point z.

Proof. If f € Skyo.m(I,w,x) and v, € I', then by (3.11) we have

’

e = [ " Re(@(f) (3.12)
:/w Re(Q(f))+/WZRe(~Q(f))
:/W Re(Q(f))+/wRe(v*9(f))-

However, using (3.10), we see that
Re(v*2(f)) = Re(My™(7)02(f)) = M ™ (7) Re(£2(f))-

By substituting this and (3.11) into (3.12), we obtain

E(N ) =& () + ME™(7)E(F)(Y),

which implies by (3.3) that £,(f) is a 1-cocycle for the I'-module P*™(C).
Now in order to show that it is a cocycle in the parabolic cohomology
Hy (I, PR™(C)), let z, 2’ be elements of H*. Then we have

vz’

e - &N = [ Reetn) - [ T Re(2()))

’

’

:/: Re(()(f))—/: Re(£2(f))

= ME™(y) / Re(2(f)) —/Z Re(£2(f))

’

= aEma) = 1) [ Re(2)

hence by (3.5) it follows that &./(f)(y) and &,(f)(y) determine the same
cohomology class. On the other hand, if 2’ is a cusp s € Q U {oo} and if
7 € P is a parabolic element of I" fixing s, then &(f)(w) = 0, and therefore
we have

E-(f)(m) = —(My™(m) = 1) / Re(2(f)) € (M™(m) — 1)PE"™(C).

Thus by (3.4) &.(f)(7) is a l-cocycle in Hp(I',P*™(C)), and the proof of
the proposition is complete. a
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3.2 Pairings on Mixed Cusp Forms

In this section we continue our discussion of relations between mixed cusp
forms and parabolic cohomology. We introduce a pairing on the space
Skt2,m (I, w, x) of mixed cusp forms of type (k + 2,m) associated to I', w
and x, and use this to show that the map f +— &.(f) described in Theorem
3.3 is injective.

If n is a positive integer, we denote by S™(C?) the n-th symmetric tensor
power of C2, which can be identified with C***. Then each vector (x, )" € C?
determines an element (z,y)!, of S"(C?) given by

(z,y) = (z", "y, oyl y")t e crt. (3.13)

Note that in this section we consider elements of C? or C"*! as column
vectors and denote the transpose of a matrix (-) by (). As in [41, Section
6.2]), we now consider the (n + 1) x (n + 1) integral matrix © given by

o= ((-1)1‘ (’;) 5n_i7j>0<i7j<n, (3.14)

where d,,—; ; is the Kronecker delta and (?) =nl/(G!(n = ).

Lemma 3.4 If O is as in (3.13), we have

—1
o1 = ((—1)“’(?) 51-,”]-) , (3.15)
0<i,j<n

/ n
(e koY, = et (7)) (3.10)
for all (x,y),(z',y") € C2.

Proof. For 0 <1,j <n we set

—1
Oij = (_1)i<?)5n—i7j> Oij = (—1)"‘i<?) Sim—j-

Then we have

n —1
> Oii¢50 = (—1)'(=1)" (?) (Z) On—i,j0j,n—t
=0

= (-1)* (ni Z) (Z) _15i.z = 0.t

hence we obtain (3.15). On the other hand, using (3.13) and (3.14), we see
that
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(z,9)n0(",y');, = (-1)° (n> Sniga iyt Ty
0<4,57<n J

which implies (3.16). 0

Using (3.15), we obtain a pairing on the space S™(C?) given by

(o @) = a0l = et (5 0) L @)

We now identify the space S™(C?) with the dual of the space Py (C) of
homogeneous polynomials of degree n in X and Y by allowing the dual of
the basis vector X" *Y*? with the i-th standard basis vector e; in C**T1 =
5™(C?). Thus by (3.15) the pairing (, ) in (3.17) induces the pairing (, )% y
on P% y(C) given by

n

<zn:aixn—iyi, zn: ij”—ij> (3.18)
i=0 j=0

XY

= (a0a Tt an)eil(boa AR bn)t

1
= > (—1)nj(z> 8jn—ea;be

-y (—1)* (’;) _lan,zbz.

Hence we obtain a pairing of the form

Ch=0wm (%w (3.19)

on the space
kam(c) = Péc(l,yl (C) ® P)T?Q,YQ (C)'

Lemma 3.5 If {(, ) is the pairing on P*™(C) in (3.19), we have
(X = 271 (X = w(z)V)™, (X1 = 211)H (X2 = 0(2)Y2)™))
= (7 - 2)" (w(z) —w(=)™
for all z € H.
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Proof. For each z € H, by (3.19), we have

(X1 = 29 (X2 = w(@Y2)™, (X1 - 2V (Xe — (YD) )

= (X1 =2V, X1 —2V) L (X = w(2)Ya, Xo — 0(2)Ya)y, .

However, using (3.18), we obtain

<X1—ZY1,X1 ZY1>X i

k

(e (e o () xtow)

(i) oGt ) ()
= 37 (—1)Ft (kﬁ£> k=t5t _ (7 _ 5)k,

Similarly, we have

(X2 — w(2)Ya, X2 —w(z )Y2>X27Y2 (w(z) —w(z))™.

Hence the lemma follows. O

Let O; (resp. O2) be the matrix that determines the pairing on S*(C?)
(resp. S™(C?)) dual to (,)%, y, (resp. (,)%,y,)- Now let f and g be mixed
cusp forms belonging to Sk+2 m (L, w,x) so that Re Q2(f), Ref2(g) are ele-
ments of P¥™(R) C P¥™(C). By identifying the element

k m
() (Eor)
i=0 §=0
with the vector (ag,...,ax)t ® (bo, .. .,bn)t, we obtain
(Re 2(f),Re 2(g))) = Re(2(f)) A (O7' @ O51) Re(£2(9))- (3.20)

We denote the form on the right hand side of (3.20) by @(f, ¢) and define the
pairing I(-,) : Skt2,m (I w, X) X Sk+2,m(I,w, x) — C on the space of mixed
cusp forms Skio.m (I w,x) by

I(f.g9) —/F\H o(f,9) (3.21)
:/ Re(2(f)) A (651 © ©;1) Re(22(g))
A

for f,g € Skyo,m (I w, X).


Administrator
ferret
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Proposition 3.6 The pairing I(-,-) on Skyom (I w,x) given by (3.21) is
nondegenerate.

Proof. Let f,g € Skyo.m (I, w,x). Using the relations

Re 2(f) = 5(2(/) + 7). Relg) = 3(2(9) + 7(g).
we obtain
#(f,9) = 7 (205 767" @ 65" )7g) (322)
+ 200 A (67 2 67H)2g)).

However, by using (3.6), (3.9)and Lemma 3.5 we have
2N A 07 ®e;M)2(g) (3.23)
= (2mi)* f(2)g(z )<(X1 —ZY1) (X; —zYp)" >X v
x (X2 — w(2)Y2)™, (X2 — w(2)Y2)™) s o, 2 Nz
= —An’ f(2)9(2)(z - 2)"* ( w(z) = w(z))"dz N dz
= —4n?(=20)f(2)g(2)(Z — )" (w(2) — w(2))"dz A dy
()

(2
= 4 (=20)F ML £ (2)g(2)(Im 2)F (Im w(2))"dx A dy.

Similarly, we see that
—t _ _
Q(f) AOr @63 1)R(g) (3.24)

= —4m?f(2)g(2)(2 = 2)*(w(2) —w(2))"dz A dz
= —4r?(20) T F(2)g(2) (Im 2)* (Im w(2)) ™ dx A dy.

Thus from (3.22), (3.23) and (3.24) we obtain
0(f.9) = —m* (=20 (f(2)9() + (~UHTGEIg()  (3:25)
x (Im 2)*(Im w(z))™dz A dy.

We now consider the Petersson inner product (, )p on Sii2,m (I, w, x) given
by

(f,9)p = f(2)g(z)(Im 2)* (Im w(z)) " dady

r\H
(see [7, Proposition 2.1]). Then from this and (3.25) we obtain

1.9)= [ #(09) = 4207 ((f.g)p + ()=o)
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In particular, we have

17, Lg) = am?(—20) L (=il g g

+ (=1)FtmALktm=1/ f>P)
= (=2)"" 7 Re(f, ) p,

I(£,%+7g) = 4m? (=207 (=) (f, g + (1)1 g, f) )

= _(_2)k+m+2ﬂ-2 Im<fa g>Pa
where we used the fact that (g, f)p = (f,9)p. Hence the nondegeneracy
of the pairing I(-,-) follows from the nondegeneracy of the Petersson inner
product (, )p. O

In order to discuss the injectivity of the map f — &.(f) described in
Theorem 3.3, let s € QU {oo} be a cusp of I' such that coo = s with
o€ SL(2,R). Given € > 0, we set

Vse ={z€ Is\H | Im(c~ ()" <e},

where [ is the stabilizer of s in I' as usual. We choose ¢ such that the
members of {Vs;. | s € X} are mutually disjoint, where X is the set of
I-cusps. Let Xo = I'\H, X = I'\NHU X, and let

X1 =Xo- | Vee.
seX

As is described in [41, Section 6.1], there is a triangulation K of X satisfying
the following conditions:

(i) Each element of I" induces a simplicial map of K onto itself.

(ii) For each s € X the boundary of V; . is the image of a 1-chain of K.

(iii) There is a fundamental domain D; in H; whose closure consists of
finitely many simplices in IC, where H; is the inverse image of X; in H.

If g denotes the genus of X and if v is the number of cusps of I', then the
Fuchsian group I' is generated by 2g + v elements

OL17...7Oég,ﬂ17...,/89771'1,..-,ﬂ'l,

with the relation

(H Ws)alﬂlal_lﬂl_l . -~agﬂga;1ﬂ;1 =1.

seX

Then the boundary 0D, of the fundamental domain D; of X7 is given by
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0D = Z ts + Z((a’ — l)Sai + (,61 — 1)8@),

where sq,, $3,, ts denote the faces of Dy corresponding to «;, 3;, s, respec-
tively.

Theorem 3.7 Given z € H and f € Siyam(Iw,Xx), let E(f) : [ —
PE™(R) be as in (3.11). Then the associated map &, : Skyo.m([w,x) —
Hy (I, PR (C)) is injective.

Proof. Since the pairing I(-,-) on Skyo.m,m ([, w,x) in (3.21) is nondegenerate
by Proposition 3.21, in order to establish the injectivity of &, it suffices to
show that, if

5z(f) =0¢ Hll:'(F’ ,kam((c))a

I(f,g) =0 for all g € Sky2.m (I, w,x). Thus suppose that &,(f) determines
the zero cohomology class in H5(I', P¥™(C)). Then there is an element C €
Pkm(R) such that

E(f)(y) = (My™(v) = 1)C (3.26)

for all v € I'. We define a map F : H — P*™(R) by

F(w) = /w Re(2(f)) + C (3.27)

for all w € H. Using this, (3.10), (3.11) and (3.26), we have
yw
Flyw) = / Re(2(f)) + C (3.28)

_ /jw Re(2(f)) + /:z Re(2(f)) +C

z

- /w Y*Re(2(f)) + E(f)(7) + C

= ME™ () (F(w) — C) + E(f)(7) + C
= MEM(3)F(w) + E(f)(y) — (MF™(y) = 1)C
= MF™(y)F(w)

w

w

for all y € I' and w € H. Let g € Si12.m (L, w, X), and set

Gw) = [ Re(2(9)

for all w € H, so that dG = Re £2(g). Since dF = Re £2(f) by (3.27), we see
that



70 3 Mixed Automorphic Forms and Cohomology
&(f,g) =dFt A (O] @ 6;1)dG
- d(Ff (67 e egl)dG)
- d(Ft L6765 Re(n(g))).

If Xo=I'\H, X =I'\H* and X; = X — |J Vs as before, then we obtain

1(f.9) = Jim [ d(F'- (07" ©07") Re(02(9)))

1—=X Jx,

= Jim - F'- (67" @ 051 Re(2(g)).

However, using (3.10) and (3.28), for each simplex = and v € I" we see that
[ _r e w6y Ree()
~E

- / (Y*F)' - (07" @ 051 )y" Re(£2(g))

/: FEME™ () (67" © 031 )ME™ (7) Re(£2(g))

/ Ft (67 © ©5) Re(2(g)),

where we used (3.10) and (3.28). Hence the integral of the differential form
F'- (01" @ 6,") Re(2(9))

over (o; — 1)8q; + (8i — 1)sg, is zero for 1 <i < g, and therefore we have
17,9)= 3 Jim [ F'-(67" 005" Re(e2(o)).
ts

Since F(w) is bounded near the cusps and Re(£2(g)) is rapidly decreasing at
each cusp of I', it follows that I(f,g) = 0. Hence the injectivity of the map
&, follows, and the proof of the theorem is complete. O

Remark 3.8 For classical cusp forms the surjectivity of the map &, in The-
orem 8.7 also follows from the Eichler-Shimura isomorphism. However, for
mized cusp forms E, may not be surjective in general. Although in this section
we only considered mized cusp forms of type (€, m) with £ > 2, it is known
that €. is not necessarily surjective for mized cusp forms of type (0,3) (see

[20, Section 3]).
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3.3 Hodge Structures

The Eichler-Shimura isomorphism for cusp forms determines a Hodge struc-
ture on parabolic cohomology (cf. [6]). In this section we generalize the usual
Eichler-Shimura isomorphism by determining a Hodge structure on parabolic
cohomology by using mixed cusp forms.

Let O~ be the sheaf on H* = H U X characterized by (2.3). In this
section, if W is one of the spaces H, H*, H*, Xo, X, and X, we denote
by Vi the constant sheaf C* on W and by Vi the m-th symmetric power
of Vi, where m is a positive integer. Thus Vi~ and V. are the sheaves on
H* given by

Vig- = C? = Cey @ Cey, Vi :Symm(CQ):EB(Cefe;"*j,
j=0
where e; = (1,0) and ez = (0,1) are the standard basis vectors of C?; here
we are considering elements of C? as row vectors as in Section 2.1. We set
OH* (V) = OH* ® Vi, OH* (Vm) = OH* X V{[n*

The I'-action on O (V) given by (2.4) induces a I'-action on O« (V™) on
the right. Given a positive integer m, let F* be the sheaf on X = I'\H*
given by (2.7), and let % be the sheaf on X = I"\H# given by (2.8).

Proposition 3.9 Let wx : X — X be the period map, and let 2° be the
sheaf of holomorphic 1-forms on X. Then there is a canonical isomorphism

Sam(Iw,x) = H (X, (W F) @ 2V), (3.29)

where So (I, w, x) is the space of mized cusp forms of type (2,m) associated
toI', w and x.

Proof. If f(eq — ze2)? € F3,., then by (2.6) we have
f(2)(er = ze2)” -y = j(7,2) 2 (v2)(ex — ze2)”
for all z € H and v € I'. Since dz € 2! satisfies
d(vz) = j(y,2)"%dz,
we see that the map (e; — ze2)? — dz induces a canonical isomorphism
Fiy & Q.

Now the proposition follows from this and Proposition 2.6. a
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Let Oy be the sheaf of holomorphic functions on H, and set
OH(V) =0 RV =0 ® C2.

Then the group I" acts on Ox (V) by (2.4). We now consider another right-
action of I" on O (V') defined by

(h(2)er + Fal2e) -7 = (i (v2), fo(r2) ( "X) (3.30)

Cx dy
= (axf1(72) + ey f2(72))er
+ (bxfl (’YZ) + dxfz(’YZ))GQ

for v € I with x(v) = (a" b") € I'" = x(I'). This action induces a I" action

Cx dy
on the sheaf
OH(V™) =0V =01 ® Symm(CQ).

We denote by the associated fixed sheaf on Xo = I'\'H by
Ox, (V™) = (On(V™) "™,

where we used the symbol (-)1*X to distinguish it from the I'-fixed sheaf (-)!
with respect to the action given by (2.4). We also denote by JFy; the restriction
of Fpy« to H, that is,

Fru=1{f(2)(e1 —ze2) | f € Ox}. (3.31)

Let w*Fp be the subsheaf of Oy (V) on H obtained by pulling Fp back via
the equivariant holomorphic map w : H — H.

Lemma 3.10 The subsheaf w*Fy of Ox(V) on H is invariant under the
I'-action on Oy (V') given by (3.30).

Proof. By (3.31) and element ¢ € w*Fy can be written in the form
¢(z) = fw(z))(e1 —w(z)ez)

for some f € Oy. Given v € I' with x(y) = (a" b ), by (3.30) we have

cx dx

¢(2) -7 = flwy2))((ax — exw(v2))er + (bx — dyw(yz))es.

However, we have

ay — cxw(7z) = ay — exx(v)w(z)

+by\ 1

+ dx) ow(y2) +dy
+b0y\  —w(y2)
+d > Cew(yz) Fdy
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where we used the relation a,d, — bycy, = 1. Hence we obtain
0(2) -7 = FX(w(2)(exw(72) +dy) " (e1 — w(2)ea) € W' Fay,
which proves the lemma. a
For each nonnegative integer k we set
Ef, = (w*Ff) - On(V™F) (3.32)

with FF, = (F»)®*. Then by Lemma 3.10 the filtration Oy (V) D w*Fy
induces the I-invariant filtration

On(V™)=Fy, D Fy > D Fy > Fyt =o0.
By considering the associated I'-fixed sheaves, we obtain the filtration
Ox,(V")Y=F'>F'>...>F" > F™"" =0 (3.33)

of sheaves on Xo = I'\H, where F* = (Ff)TX for each k > 0. We denote by
Ex, the sheaf of complex C*°-functions on Xy, and consider the sheaf

Ex, (Vm) =Ex, ®Ox0 Ox, (Vm)
of V™-valued C*° functions on Xj.
Proposition 3.11 Let wk (F% )e and FE be the sheaves on Xo defined by
“f)k(o (-7:;6(0)5 = ("‘J*:F?k{)F ®Oxo 5X07 F:‘f‘g = Fk ®Oxo 5Xo
for k> 0. Then we have
Exo (V™M) = P vk, (FX,)e - wk, (FL, e (3.34)
pt+g=m

and L
Wi, (F&, e - wi, (Fx,)g = FENFE

for 0 <p,q <m.

Proof. Since Ex, (V™) can be identified with (Ex,(V))™, the m-th symmetric
power of Ex,(V), it suffices to prove the proposition for m = 1. The second
identity in this case is trivial. To prove the first identity, let v = f(2)e1+g(2)ea
be a section of

En(V) =Ener @ Exea,

where £y is the sheaf of complex C°°-functions on H. Then v can be expressed
uniquely in the form

v = fi(z)(e1 —w(2)e2) + g1(2)(e1 — w(z)ez)
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by using the functions

f1(2) = (W(2) = w(2)) T (f(2)w(z) + g(2)),
91(2) = (w(2) = w(2)) " (f(2)w(2) + 9(2))
for z € H. Since f1,g1 € Ex, using (3.31), we see that

Fi(2)(w(z)er + e2) € (W™ Fp) @ En,

g1(2)(w(z)e1 + e2) € (Wi, Fx,) @ En.
Hence we have
Exo(V) = (Wi, Fxo)e @ (Wi, Fxy ) g
and therefore the lemma follows. O
Given a nonnegative integer k, we set
2(VF) = 25 @ Vi,

where (2}, is the sheaf of holomorphic 1-forms on H, and consider the asso-
ciated I'-fixed sheaf

on Xg. Then the connection on the constant sheaf V™ on X is the C-linear
map

V1 Ox, (VF) — 2% (V) (3.35)
induced from the I'-invariant map
d®1: On(VF) — 27,(VF)

with
(d®1)(f(2)¢) = (df (2))¢
for all f € Oy and ( € V™.

Proposition 3.12 The image 7 F* of F* under the map 7 in (3.35) is
contained in the sheaf F*~1 ®R0x, 2%,

Proof. Since w*F}, can be regarded as Oy (e1 — w(z)e2), the sheaf Ff, in
(3.32) can be written in the form

FF = (W FF) - O (V™) = Op(er — w(z)ea)” - Vﬁ’_k.
If f(2) and £ are sections of Oy and Vﬂ%_k , respectively, we have
(d®1)(f(z)(er —w(z)e)" - €) = d(f(2)(er — w(2)e2)") - €

= (e1 — w(2)e2)” - (df (2))€
—kf(z)(e1 — w(z)eg)k*1 - (dw(2))er - €.
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— (k1)

Since e; - € is a section of V7T , we see that

F2)(er —w(2)e2)" " - (dw(2))er - €
is a section of the sheaf
w*]—}lf[l ® OH(Vm_(k_l)) ®0,, 25 = Fk-1 ®0,, 2.
On the other hand, (e; — w(z)e2)* - (df (2))€ is a section of
W FF @ On (V™) @0, 25 = F* ®0,, 23,
Using these and the fact that
Fk R0y 971_[ c pkt ROy _(271_[,
we see that
(d@1)(f(2)(e1 —w(2)e2)" - €) € Fyy ! @0, 23y

Thus it follows that

VFF C(F @ 2n)' = FFex, 2%,
and therefore the proposition follows. a

From Proposition 3.12 it follows that the filtration {F*} in (3.33) deter-
mines a variation of Hodge structure on Ox, (V™) over Xy. We shall now
introduce a polarization on Ox, (V™). First, we consider the bilinear form
B! on C? given by

B'(aey + bey, cey + des) = det <(CI Z) = ad — be. (3.36)

We define the bilinear form B™ on V7" = Sym™(C?) by

m 1 - 1
B (ul S U, V1 Upy) = ()2 Z HB (ua(i),’l)q,(i)), (3.37)
o, TES,, =1
where &, is the group of permutations of the set {1,...,m}. This can be

extended to the I'-invariant bilinear form
B™:Eq(V™) x Eq(V™) — En.

Taking the I'-fixed sheaves, we obtain the nondegenerate Ox,-bilinear form
B™: Ex,(V™) x Ex, (V™) — Ex, (3.38)

on the Ex,-module Ex, (V™). By (3.36) we have B(v,u) = —B(u,v) for all
u,v € V; hence, using this and (3.38), we see that
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B™(y, .’L‘) = (=1)"B"(z, y)

for all z,y € Ex,(V™). We now consider another bilinear form (,) on
Ex, (V™) given by
(x,yy =141"PB™(z,7) (3.39)

for all z,y € Ex, (V™).
Proposition 3.13 The bilinear form (, ) on Ex,(V™) in (3.39) is positive
definite on the Ex,-module

(Wio Fxy)e - (Wi, T, )

for each pair (p,q) of nonnegative integers with p+ q = m, and the decompo-
sition of the sheaf Ex,(V™) given by (3.34) is orthogonal with respect to the
bilinear form ().

Proof. Let v = e1 — w(2)ea € wy, Fx,, 0 that T = e; — w(z)ez € Wy, Fxo-
If s € H and s = 7(s’) € X, then v is I'y-invariant basis of w*Fyy, where
I'y ={yeI'|vs’' = s'}. Hence the stalk of Ex, (V™) at s is given by

Exo(V™)s = B Wi, Fi e (Wi, F e
p+g=m

— D Ex?

pt+g=m

Consider pairs (p,q) and (p/,q’) of nonnegative integers satisfying p + ¢ =
p'+¢ =m. I p+#p and if B™ is the bilinear form in (3.38), then by using
(3.37) we see that

B™ (W ~Eq,v”/ -@ql) =0.

On the other hand, we have

B™(wP vl 0P 1) =

(ml!)2 m!plg!(2i Im(w(2)))P(=2i Im(w(z)))?

-1
- (m) P12 Im(w(z)))™.
p
Thus, using this and (3.39), we obtain

o if p #p/
(3)  @Im(w(2)) ifp=p"

The proposition follows from this result. O

o ) - {
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If x: I' = SL(2,R) with I = x(I') is the monodromy representation as
before, then I" acts on V™ = Sym™(C?) via y and the standard representa-
tion of SL(2,R). Thus, if we set

(T, 9)m = (2™, 2z y, .. oy™ 1 y™) € V™ = Sym™(C?)
for (z,y) € C?, then we have

(@, )m -7 = (=, 9)x(V)m (3.40)

for all v € I'. We denote by HL(I, V™) the parabolic cohomology with re-
spect to this representation. The following proposition shows that this bilinear
form determines a polarization on the variation of Hodge structure over Xj
determined by the filtration {F*} in (3.33).

Proposition 3.14 Ifn: Xo — X is the inclusion map, then the parabolic co-
homology HL (I, V™) is naturally isomorphic to the cohomology H* (X, . V)
of X = I'\H* with coefficients in the sheaf 0. Vy" .

Proof. See [125, Proposition 12.5]. O
Let 2%, be the holomorphic de Rham complex on Xo, and set
“Q;(O (Vm) = “Q;(O ®OXO OXO (Vm)

We denote by Q('Q)(Vm) the complex of sheaves on X whose sections are

the sections of the complex 7. 2%, (V™) that are square-summable near the
I'-cusps.

Proposition 3.15 The cohomology H'(X,n.V) is isomorphic to the hy-
percohomology

H' (X, 2°(V™)(2))
of the complex £2°(V™) 2.

Proof. The proposition follows from Theorem 4.8, Corollary 6.15 and Corol-
lary 7.13 in [125]. O

Let O3+ and VJJ. be as in Section 2.1, and let
Ox (V™) = (O @ ViR )X,
We consider the complex K*® given by K° = Ox (V™) and
K'=im[y: Ox (V™) — 2% (log £) @ Ox (V™)].

The complexes 2°(V™)(,) and K* can be filtered by the filtrations induced
from the filtration {F¥} of Oz (V™).
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Proposition 3.16 The inclusion map 2°(V'™)q) — K* of filtered com-
plexes is a quasi-isomorphism.

Proof. See [125, Proposition 9.1]. O

Now we state our main theorem in this section, which describes a Hodge
structure on the parabolic cohomology H5(I', V™) in terms of mixed cusp
forms.

Theorem 3.17 The parabolic cohomology Hs(I', V™) of the group I' has a
polarized Hodge decomposition of the form

HE(L, V™) 2 Sy i (Dw, X) @ W @ So,m(Iw, X),

where W = @HP4 is the direct sum of the Hodge components of HL(I, V™)
forp,g>1landp+qg=m-+1.

Proof. By Propositions 3.15 and 3.16, the hypercohomology H!(X, GrP K*)
determines the subspace HP"™*1~P in the Hodge decomposition of the coho-
mology space H!(X, n:Vy:). Thus we have

m—+1
HY (X, nVE) = @ gpmA1-p
p=0
m
= gmt10 g (@ Hp,m+1—p) @ Hm+10,
p=1
By Proposition 3.13 the bilinear form B™ determines a polarization on this
Hodge structure. Since Hp(I', V™) is isomorphic to H' (X, n.V{") by Propo-
sition 3.14, it remains to prove that H™*10 is isomorphic to Sa ., (I, w, X).
However, we have

Hm+1,0 —_ Fm-‘rlHl(X’ n*V)'r(rz])
= H(X, F" 20 (V™))
= H(X, (w*F" @ 2% ),
where (w*F™ @ 02')2) is the extension of wi F™ ® 2%, in 2°(V™)«). By

(125, Proposition 4.4] the sheaf (w* F™®12") 2) is isomorphic to w (F§*) @62
Hence from Proposition 3.9 it follows that

H™H0 = HY(X, wx (F5") @ 21) 2 So (L w, X);
hence the proof of the theorem is complete. a

Remark 3.18 If the homomorphism x : I' — SL(2,R) is the inclusion map
and if w is the identity map on H, then we have W = {0} and Theorem 3.17
reduces to the well-known Eichler-Shimura isomorphism (see [6, 22, 112]).
The space W in Theorem 3.17, however, is not trivial in general as can be
seen in [20, Section 3] for m = 1.
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3.4 The Kronecker Pairing

The Kronecker pairing is a bilinear map defined on the product of cohomol-
ogy and homology of a discrete subgroup I" of SL(2,R). In this section we
determine the value of the Kronecker pairing between the image of a mixed
automorphic form and a special 1-cocycle associate to each element of I'.

Let I' € SL(2,R) and the equivariant pair (w,x) be as in Section 3.1.
Thus w : ' H — H is a holomorphic map that is equivariant with respect
to the homomorphism x : I' — SL(2,R). Let V = C? be the space of the
standard two-dimensional complex representation of SL(2,R), and let V* be
its dual space. Given a positive integer r, we denote by V2" and (V2")* be
the 2r-th symmetric power of V' and its dual space, respectively. If {uq,us}
is the standard basis for V*, then (V?")* can be regarded as the space of all
homogeneous polynomials Py, (u1,us) of degree 2r in u; and wus. As in (3.40),
the discrete subgroup I" of SL(2,R) acts on V2" on the right by

(@, 9)2r -7 = ((z,9)x(7))2r

for all v € I', where elements of V' = C? were considered as row vectors and

(LL', y)2r — (:1727‘7 1L'2T+1y, . l‘sz_l, y2r) c V2r
for (z,y) € C2. On the other hand, I" also acts on (V?")* on the right by
Por(u1,uz) -y = Por((u1, u2)x(7)) (3.41)

= PQT(aXul + Cx U2, qul =+ dXUQ)

for each v € I' with x(vy) = (Z: ZZ‘() € SL(2,R). Thus we can consider the
group cohomology H'(I',V2") and the group homology Hi (I, (V?")*) with
respect to the I'-module structures of V2" and (V?")* described above. For

each v € I we consider the element Q7 of (V2r)* given by

Q= (exus + (ay — dy)uruz — byuf)" € (V)" (3.42)
which is a modification of &, in [48, p. 744] (see also [47]).
Lemma 3.19 Given v € I, the element Q7" € (V*')* given by (3.42) is

invariant under the action of v € G.

Proof. For v € G with x(vy) = (ax bx ), using (3.41), we have

cx dx

v er = (cx(byur + dxu2)2 + (ay — dy)(ayur + cyuz)(byur + dyus)
— by (ayur + cyuz)?)”
= ((ayexdy — bxci)u% + (axdy — byey)(ay — dy)uruz
+ (exby — axbydy)ui)’

X
= (Cxug + (ay — dy)uruz — bx“%)r = Q7

v

and therefore the lemma follows. O
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Given a positive integer r, we consider the canonical isomorphism in (3.29)
for m = 2r and denote it by

@ : S0 (Mw,x) — HYX, (W Fr) @ 021, (3.43)

where I = x(I'), and S22, (I, w, ) is the space of mixed cusp forms of type
(2,2r) associated to I', w and x. If f € Sa.2,(I',w, x), using the descriptions
in Section 3.3, we see that @(f) can be represented by the 1-form

B(f) = (e1 — w(z)e2)” f(2)dz (3.44)
for z € H.

Lemma 3.20 If (, ) denotes the natural pairing between V2" and (V?")*,
then we have

(®D(f), (au? + buug + cu3)”) = f(2)(a — bw(z) + cw(2)?)"dz (3.45)
for all f € Sy 0,.(I'w,x) and a,b,c € C.
Proof. Given f € S.(I'w, x), by (3.44) we have
D(f) = f(2)(e1 — w(z)e2)* dz. (3.46)

We consider the factorization au? + bujuz + cud = a(uy + sug)(u1 + tug) with
s,t € C. Using this, (3.46) and the fact that (e;,u;) = d;; for 1 <1i,j <2, we
see that

(@), (@ + burus + ad)") = F(2)a”((ex — w()ea) (w1 + 5u2))"

x ((e1 —w(z)ea)(u1 + tuz)) dz
F(2)(a(1 = sw(2))(1 — tw(2)))"dz
= f(2)(a — bw(z) + cw(2)?)"dz,

which prove the lemma. a

Proposition 3.21 Let k be a positive integer, and let wiF~r, be the sheaf
on X in (3.29). Then there is a canonical isomorphism

H(Xo, (i) © Q' [x,) = H' (Xo, @ FE) [x,)  (347)
where Xog = I'\'H and 02" is the sheaf of holomorphic 1-forms on X.
Proof. We shall first construct a pairing
(1) H(Xo, (W Fr) @ 2" [x,) ¥ Hi(Xo, (W Ff)* |x,) = C, (3.48)
where (W% F%,)* denotes the dual of the sheaf w% F¥,. Consider an element

C € HO(X07(W§(FI€’) ® Ql |Xo)7
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which is regarded as a closed 1-form on Xy with values in (wiF%r,) |x,-
We consider an oriented 1-simplex (a, 3) in X and a section v of the sheaf
(Wi FE)* |x, restricted to (a, 3). Then (a, 3) ® v is a simplicial 1-chain in
Xo with coefficients in (wiFE)* |x,. If £ € H1(Xo, (Wi Fr)* |x,) denotes
the homology class of (a, 8) ® v, then the pairing (3.48) is defined by

€= €l

)

(see [46, Section 4] for details). From the pairing (3.48) we obtain
H°(Xo, (WxFp) © 21 |x,) 2= (H1(Xo, (W FP)" |x0)"
= H'(Xo, (WkF1) |x0);
hence the proposition follows. a

By combining the isomorphisms (3.43) and (3.47) with the restriction
map
HO(XOv (w}fk’) ® Ql) - HO(X07 (w;((fk’) ® “Ql |X0)7
we obtain a map

Sa (I w,x) — HY(Xo, (WX FL) 1x0)-

On the other hand, it is well-known that H'(Xg, V*), where V* is regarded as
the sheaf of locally constant functions on X, with values in V*, is canonically
isomorphic to H!(I', V¥). Since (w%F%) | x, is a subsheaf of V¥, the inclusion
induces a map

HY(Xo, (W FF) |x0) = H' (X0, VF) = HY(I, V).
Thus, for k = 2r, we obtain the map
W Syor(lw,x) — HY(L, V).
We denote by ((, )) the canonical pairing
() H(D V) @ Hy(I, (V")) — C, (3.49)

known as the Kronecker pairing (see [48, p. 738 and p. 745]). The Kronecker
pairing can be interpreted in terms of the de Rham cohomology and the sim-
plicial homology as in [48, Section 2] by identifying the group cohomology
HY(I',V?") with the de Rham cohomology H*'(X,, V?") and the group coho-
mology Hi (I, (V?")*) with the simplicial homology H;(Xo, (V?")*), where
(V21)* is the sheaf of locally constant functions on Xy with values in (V27)*.
Thus let ¢ be a closed 1-form on X, with values in V2" and let 0 ® u, where
o is a simplicial 1-cycle in X and yu is a parallel section of (S*"V)* on o.
Then the Kronecker pairing (3.49) is determined by

(Co®u) = / €.
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Lemma 3.22 Ifv € I', then the 1-chain y®Q", is a cycle in Hy (I (S2"V)*),
where Q7 is as in (3.42).

Proof. Note that the boundary map 0 for 1-chains is given by
Ay @v)=7-v—v
for all v € I' and v € (V?")*. Thus from Lemma 3.19 it follows that

od(vy® QL) =0,
and therefore (v ® Q) is a cycle. O

Theorem 3.23 For each v € I' and f € Sy.9,.(I',w, x), we have

YZo
(w(f),y® Q;» = (Z)(CXW(Z)Q + (dy — ay)w(z) — by)"dz,
20
where zg is an arbitrary point in the Poincaré upper half plane H and the
integral is taken along any piecewise continuous path joining zo and gzg.

Proof. We shall use the interpretation of the Kronecker pairing in terms of
de Rham cohomology and simplicial homology. For zo € H, let o, be the
image of a simplicial path joining zy to vz under the natural projection
H — Xo = I'\H, and let ¢J be the parallel section of (S*"V)* restricted to
o, obtained by parallel translation of Q7 around o,. Then o, ® (7 is the
cycle in Hy(Xo, (V?")*) corresponding to ¥ ® Q7 (see [46, Section 4] and [48,
Section 2]). If the map

@ : SQ,ZT(F7W7X) - HO(X7f§T ®‘Ql)

is as in (?7), the closed 1-form on X with values in V2" corresponding to
U (f) is simply ®(f) restricted to Xy. Using (3.42) and (3.45), we see that

(@(f), <;> = (2(f), Q;> = f(z)(cxw(z)Q + (dy — ay)w(z) — by)"dz.

Hence the theorem follows. O
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Mixed Hilbert and Siegel Modular Forms

As was discussed in Section 2.2, a holomorphic form of the highest degree on
an elliptic variety can be identified with a mixed automorphic form of one
variable. An elliptic variety E is a fiber bundle over a quotient X = I'\'H
whose generic fiber is the product of a finite number of elliptic curves. Thus
E is a family of abelian varieties parametrized by the complex curve I'\'H. In
this chapter we discuss more general families of abelian varieties in connection
with mixed automorphic forms of several variables.

If F is a totally real number field of degree n over Q, then SL(2, F') can be
embedded in SL(2,R)™. Given a subgroup I" of SL(2, F) whose embedded
image in SL(2,R)"™ is a discrete subgroup, we can consider the associated
Hilbert modular variety I"\'H" obtained by the quotient of the n-fold product
‘H™ of the Poincaré upper half plane H by the action of I' given by linear
fractional transformations. Let w : H" — H" be a holomorphic map that is
equivariant with respect to a homomorphism x : I' — SL(2, F'). Then the
equivariant pair (w,x) can be used to define mixed Hilbert modular forms,
which can be regarded as mixed automorphic forms of n variables. On the
other hand, the same equivariant pair also determines a family of abelian
varieties parametrized by I'\'H". As is expected, holomorphic forms of the
highest degree on such a family of abelian varieties can be interpreted as
mixed Hilbert modular forms of certain type.

Another type of mixed automorphic forms of several variables can be
obtained by generalizing Siegel modular forms. Let H,, be the Siegel upper
half space of degree m on which the symplectic group Sp(m,R) acts, and let
Iy be a discrete subgroup of Sp(m,R). If 7 : H,, — Hyp is a holomorphic
map of H,,, into another Siegel upper half space H,,,» that is equivariant with
respect to a homomorphism p : Iy — Sp(m/,R), then the equivariant pair
(7,p) can be used to define mixed Siegel modular forms. The same pair can
also be used to construct a family of abelian varieties parametrized by the
Siegel modular variety I'\'H,, such that holomorphic forms of the highest
degree on the family are mixed Siegel modular forms.

In Section 4.1 we introduce mixed Hilbert modular forms and describe
some of their properties. The construction of families of abelian varieties
parametrized by a Hilbert modular variety and the interpretation of some
of their holomorphic forms in terms of mixed Hilbert modular forms are

M.H. Lee: LNM 1845, pp. 83-107, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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discussed in Section 4.2. Section 4.3 concerns mixed Siegel modular forms
as well as their connections with families of abelian varieties parametrized
by a Siegel modular variety. In Section 4.4 we extend some of the results in
Section 1.3 to the Siegel modular case by considering Fourier expansions of
Siegel modular forms associated to Mixed Siegel modular forms.

4.1 Mixed Hilbert Modular Forms

In this section we define mixed Hilbert modular forms associated to an equiv-
ariant pair and discuss some of their properties.

We fix a positive integer n, and let H" = H x --- x H be the Cartesian
product of n copies of the Poincaré upper half plane H. Then the usual
operation of SL(2,R) on H by linear fractional transformations induces an
action of the n-fold product SL(2,R)" of SL(2,R) on H". Let F be a totally
real number field with [F' : Q] = n. Then there are n embeddings of F' into
R, which we denote by

a—a9, F<R (4.1)

for 1 < j < n. These embeddings induce the embedding

L1 SL(2,F) — SL(2,R)" (4.2)

ab a® 1) a™ p)

“Ned) = e g ) e g
forall (¢ %) € SL(2, F). Throughout this section we shall identify an element
g of SL(2, F) with its embedded image ¢(g) of SL(2,R)™ under the embedding

¢ in (4.2). Thus, in particular, an element g = (2%) € SL(2, F) acts on H"
by

defined by

a(l)zl _|_ b(l) a(n)Zn + b(n)
gz = (c(l)zl T d(l) S, c(”)zn I d(n)>

for all z = (21,...,2,) EH". If 2= (21,...,20) € H", g = (24) € SL(2,F)
and £ = ({1,...,4,) € Z™, we set

N(g,2)t = H (C(j)Zj + d(j))ej. (4.3)

j=1
Then we see easily that the resulting map
(9,2) — N(g,2)*: SL(2,F) x H" — C
satisfies the cocycle condition

N(g192,2)" = N(g1, 922)*N (g2, z)* (4.4)
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for all z € H™ and ¢1,92 € SL(2, F).

Let I be a subgroup of SL(2, F) whose embedded image in SL(2,R)"
is a discrete subgroup. Let w : H™ — H"™ be a holomorphic map, and let
X : I' — SL(2, F) be a homomorphism satisfying the condition

w(g2) = x(g)w(2)

for all g € I" and z € H", so that (w,x) becomes an equivariant pair. We
assume that the the image x(I") of I" under y is also a discrete subgroup of
SL(2,R)™ and that the parabolic elements of I" and those of x(I") correspond.
Thus the inverse image of the set of parabolic elements of x(I") coincides
with the set of parabolic elements of I'. Let k = (k1,...,k,) and m =
(mq,...,my) € Z™ be elements of Z™ with k;, m; > 0 for each i € {1,...,n}.
IfgeI’ C SL(2,F) and z € H", we set

I8P, 2) = N(g,2)* N(x(9), w(2))*™, (4.5)

where N(-,-)(") is as in (4.4). Using the cocycle condition in (4.3), we see that
the resulting map Jiifm : I' x H" — C is an automorphy factor, that is., it
satisfies the relation

S22 (gh, z) = T2 (g, hz) - J2EP™ (b, 2) (4.6)

forall gh € I and z € H™. If k = (k,..., k) and m = (m, ..., m) for some

nonnegative integers k and m, then Jzﬁfm will also be denoted simply by
J5k72m.

X
In order to discuss Fourier expansions we assume that f : H” — Cis a
function that satisfies the functional equation

Flgz) = J252™(9.2) f(2)

for all g € I' and z € H™. Then we can consider the Fourier expansion of f
at the cusps of I" as follows. Suppose first that oo is a cusp of I'. We set

A=AI)={reF|(§1) €T},

and identify it with a subgroup of R™ via the natural embedding F — R" :
A= (A AM) induced by (4.1). Since the homomorphism y carries
parabolic elements to parabolic elements, for each A € A we see that

A (1A
Xo1) 7 \o1
for some A, € F, and therefore we obtain

A ((52).2) = 1.
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Thus f is periodic with f(z+ A) = f(z) for all z € H and X € A, and hence
it has a Fourier expansion. Let A* denote the dual lattice given by

A ={EeF|TEN€eZ forall Xe A},

where T'(EN) = Z;—;l &;jA;. Then the Fourier expansion of f at oo is given by

()= Y aget e,

fenx

where T(€2) = -7, &2
Now we consider an arbitrary cusp s of I'. Let ¢ be an element of
SL(2,F) C SL(2,R)™ such that o(cc) = s. We assume that the homo-
morphism x : I' — SL(2, F) can be extended to a map x : I — SL(2, F),
where
I"'=ru{aeSL2,F)|alx)=s, sacusp of I'}.

Given elements k, m € Z", we set
I =o0"'To,
(f | o)(2) = J25 ™ (0,2) " f(o2). (4.7)
for all z € H™.
Lemma 4.1 If f: H" — C is a function satisfying
Flgz) = JZ5™(9.2)f(2)

for all g € I' and z € H™, then the function f | o : H™ — C given by (4.7)
satisfies the functional equation

(f 1 o)(gz) = J25™ (9. 2)(f | 0)(2)
forallge I' and z € H".

Proof. Let g = o0 'yo € I'° with v € I'. Then we have

(f | o)(gz) = J252™ (0,0 yoz) " floo™ y02)
= J2P (0,07 yo2) T 2R (v, 02) f (v 2)
= J2E2m (07 y,02) f(02),
where we used the relation
T2 (v, 02) = J25P (00T, 02)

= Jgﬁfm (0,0 1yo2) Jg’ffm (07 1y,02)

that follows from (4.6). However, using (4.6) again, we have
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Jg{ifm (070, 2) = Jzﬁfm (071, 02) Jzﬁfm (0,2).

Thus we obtain

(f [0)(g2) = 252 ™ (0™ 10, 2)J252™ (0, 2) " f(02)
= IS0 e, 2)(f | 0)(02);

hence the lemma follows. a
Since oo is a cusp of I'?, the function f | o has a Fourier expansion at co

of the form
f ‘ 0, Z a 627\'2T(§z
fenx
This series is called a Fourier expansion of f at the cusp s, and the coeflicients

ag are called the Fourier coefficients of f at s.

Definition 4.2 Let I' € SL(2,R)" be a discrete subgroup with cusp s, and
let f:H"™ — C be a holomorphic function satisfying the relation

Flgz) = J252™(9,2) f (2).

(i) The function f is regular at s if the Fourier coefficients of f at s
satisfy the condition that £ > 0 whenever ag # 0.

(i) The function f vanishes at s if the Fourier coefficients of f at s satisfy
the condition that £ > 0 whenever a¢ # 0.

Remark 4.3 Given a cusp s of I' there may be more than one element o €
SL(2,F) such that o(co) = s. However the above definition makes sense
because of the next lemma.

Lemma 4.4 Let s be a cusp of I' and assume that o(c0) = o'(00) = s for
o,0' € SL(2,F). Then f | o is reqular (resp. vanishes) at oo if and only if
f o is regular (resp. vanishes) at co.

Proof. Tt is sufficient to prove the lemma for the case when ¢’ is the identity
element in SL(2, F) and s = oco. Then we have o(00) = oo, and hence

7= (05%) (01)

for some b,§ € F. Let A, = A(I'°) = A(c~'I'0). Then A € A, if and only if

1A\ ., [16% .
"(01)" _<0 1)6F’

hence we have A, = §~2A. Therefore A% = §2A*, and we have the Fourier
expansions
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— Z 015627riT(£z)7 f | O' Z ao 27miT fz)

e~ feAr

On the other hand, we have

(f | o)(z) = J252™(0,2) " f(oz) = 257 ™(0,2) " [(8%(2 + b))
_ Jik)fm((j’Z)—l Z a€e27riT(62b§)e27riT(£62z)
fenx

— Ji{é}fm(o_ Z Z ags- ZeZTrzT(bf) 2miT (€2)
geqy

Thus we obtain

ag _ ‘]2{6);27”(0'7 Z)fleZﬂiT(bE)a§§72

for all £ € A%. The lemma follows from this relation. ad

Definition 4.5 Let I', x, and w be as above, and assume that the quotient
space T'\H™ U {cusps} is compact. A mixed Hilbert modular form of type
(2k,2m) associated to I', w and x is a holomorphic function f : H" — C
satisfying the following conditions:

(i) f(72) = J2K2™(y,2) () for ally € T

(i) f is reqular at the cusps of I.
The holomorphic function f is a mixed Hilbert cusp form of the same type
if (i) is replaced with the following condition:

(i) f vanishes at the cusps of I'.

Ifk = (k,...,k) and m = (m,...,m) with nonnegative integers k and
m, then a mized Hilbert modular form of type (2k,2m) will also be called a
mixed Hilbert modular form of type (2k,2m).

As in the case of the usual Hilbert modular forms, Koecher’s principle also
holds true in the mixed case as is described in the next proposition. Thus the
condition (ii) is not necessary for n > 2.

Proposition 4.6 If n > 2, then any holomorphic function f : H* — C
satisfying the condition (i) in Definition 4.5 is a mized Hilbert modular form
of type (2k,2m) associated to I', w and x.

Proof. Let € be an element in F' such that the transformation z +— ez + b is
contained in I" for some b. Then we have

1/2 p-—1/2
flez+b) = Jﬁﬁf’"((go b;l/g) ,z>f(z)

—k —kp — —
:El 1...€n EX7T1...EX;? (Z)

= N(e*)N(ex™)f(2)

if
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2l/2 pe—1/2 B 5;/2 d8;1/2
X\ g 12) = 0 5;1/2

for some elements e,,d € F (note that the image of a parabolic element
under x is a parabolic element). Hence, if f(z) = ZEEA* age®™T(€2) s the
Fourier expansion of f(z) at oo, then we have

Geg = agezmT(fb)N(E_k)N(E;m).

Now suppose & = (&1,...,&,) € R™ with & < 0 for some 4, and choose a
unit € > 0 such that ¢; > 1 and €; < 1 for j # 7. Let ¢ be any positive real
number, and consider the subseries

oo
. 2m -
E a52m£627rzT(s gic)

m=1

_ a€e27riT(§b) Z N(E—ka)N((&Jm);m)e—ZﬂcT(Eme)

m=1

of the Fourier series of f(ic). Since we have

T(e¥™¢) = ef™& + 25?m§j7
J#
the above subseries cannot converge unless az = 0. Therefore & is positive
whenever ag # 0. O

4.2 Families of Abelian Varieties over Hilbert Modular
Varieties

In this section we discuss connections between mixed Hilbert modular forms
and holomorphic forms on families of abelian varieties parametrized by a
Hilbert modular variety.

Let H™, I', w and  be as in Section 4.1. Thus I' C SL(2, F) is a discrete
subgroup of SL(2,R)", x : I' — SL(2,F) C SL(2,R)" is a homomorphism
of groups, and w : H™ — H" is a holomorphic map equivariant with respect
to x. Throughout the rest of this paper, we shall assume that

v-(ZxZ)" C(ZxZ)"

forally eI
Consider the semidirect product I" x (Z x Z)™" consisting of the elements
of the form

(9, (1, v)) = (91,5 gns (1, V)1, - - - (115 V) )
= (917-“7971; (/1'}>V11)7"'(MT>VIH);"‘;(/J'rlwyvlz)?“‘(ﬂ':znﬂ/rrzn))
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with its multiplication operation given by

(g9, () - (¢, (W) = (99's (m,v)g" + (W', V")),

where

(:u“’l/) = ((/1‘71/)1""’(:“71/)”)
= (1, 01)s o ()5 (s V), s (it vt
Withu?,ufEZforlngnandlngm, and

()9 = (1 v)1915 - - (1, V)nGn)
(1, v) g5 s (V)0 (s Vi ) G - (it Vi) )

for g = (g1,...,4,) € I' C SL(2,R)"™. Then the discrete group I" x (Z x Z)™"
operates on ‘H"™ x C™" by

(9 (1 v)) - (2,) (4.8)
_ (arz1+b an2n + bn
- (clzl +dy’  epen +dy]
pwEi +vi +¢4G 0w+t + G
caw(@h +dyr T eaw()itdy T
W@t + G ppw(R)e Fupt + G
o Cx,nwW(2)n + dyn Y Cx,nwW(2)n + dyn >’

where

g=1(91,---,9n) € I' with gj_<ZJ:ZJ:)€SL(2,R) for 1<j<n,
j a4

(o) = (1, 1) ooy (R )5 (s ), o (it Vi) € (2% Z)™,
(2,0) = (21, s 21 (L ooy T3 Gha e () € HP X C

(@) = (@) x(@)a) with  x(g); = ( bm‘) € SL(2R)

Cx,j Ox,j
for 1 <j<n,and w(z) = (w(2)1,...,w(2),) € H".
Now we assume that I" does not contain elements of finite order, so that
the corresponding quotient I'\H™ has the structure of a complex manifold,

and set
EL";‘ =T x (ZxZ)™\H" x C™", (4.9)

where the quotient is taken with respect to the operation of I' x (Z x Z)™"
on H"™ x C™" given by (4.8). If X denotes the Hilbert modular variety
I'\'H"™, then the canonical projection map H™ x C™" — H" induces the map
TR E7' — Xp, which is a fiber bundle over X and whose fiber is the
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complex torus (C/Z x Z)™™. Now let I'" = x(I") be the image of I" under
X regarded as a subgroup of SL(2,R)™. If 1 : H® — H™ is the identity map
and ¢ : I" — SL(2,R)™ is the inclusion map, the corresponding quotient
similar to (4.9) with I" replaced with I'" determines the fiber bundle Ey";"
over the Hilbert modular variety X = I'"\'H". The next proposition shows
that EJ'y" can be regarded as a family of abelian varieties parametrized by
Xr.

Proposition 4.7 (i) If m = 1, the corresponding map 71'114” : E};& — Xr
is a fiber bundle over the Hilbert modular variety Xpr = I'\H™ whose fiber
C"/(Z x Z)™ has a canonical structure of an abelian variety.

(i) If m > 1, the space EJ5" is an m-fold fiber power of the fiber bundle
EL" in (i) over Xr

Proof. These statements are proved in [92, Proposition 7.4] for the case of
EI" """ The proof for the general case follows from the observation that EZ
can be obtained by pulling back the fiber bundle EY"," over X/ = I"\H" =
X(I")\H" via the natural map Xr — X, induced by w : H" — H" so that
the diagram

m,n m,n
EW,X Ex(F)7id7id

l

Xr Xx(r)
is commutative (see also [61, 69], [108, Chapter IV]). O

Given a nonnegative integer v, let Jf):i” : I' x H* — C be the auto-
morphy factor described in (4.5), that is, the automorphy factor J2%2 for
k=(,...,1) and m = (v,...,v). Then the discrete subgroup I C G oper-
ates on H"™ x C by

for all g € I" and (z,() € H™ x C. We set

2,2v __ n
£y =T'\H" xC,

where the quotient is taken with respect to the operation given by (4.10).
Then the natural projection H" x C — H" induces on E?fx” the structure
of a line bundle over the arithmetic variety X = I'\H", and holomorphic
sections of this bundle can be identified with holomorphic functions f : H” —
C satisfying

flgz) =I5 (9,2)f (2)

for all g € I' and z € H™.

Theorem 4.8 Let 2Y+1)™ be the sheaf of holomorphic (2v 4 1)n-forms on

ngg Then the space of holomorphic sections of the line bundle Eszx” over

Xr is canonically isomorphic to the space HO(E‘%’&”, 0(2”“‘1)”) of holomor-
phic (2v 4 1)n-forms on EZ%.
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Proof. From the construction of E';" in (4.9) it follows that a holomorphic
(2v + 1)n-form on E]'y* can be regarded as a holomorphic (2v + 1)n-form on
H™ x C?"™ that is 1nvar1ant under the operation of I" x (Z x Z)?™ given by
(4.8). Since (2v + 1)n is the complex dimension of the space H" x C?" a
holomorphic (2v + 1)n-form on H™ x C?*™ is of the form

6 = f(2,¢)dz N dg,
where

(2,0) = (21, ooy 203 Gy oo (Yo, C2Y) € H x C2V1,
dz=dzy N+ Ndzy,
dC=d¢i N NdC N NdACE N AN dCP,

and f is a holomorphic function on H"™ x C?*". Given a fixed point zg € H",
the holomorphic form © descends to a holomorphic 2vn-form on the corre-
sponding fiber of the fiber bundle E'" — X = I'\'H". Since the complex
dimension of the fiber is 2vn, the dlmensmn of the space of holomorphic 2vn-
forms is one. Thus the mapping ( — f (2,¢) is a holomorphic 2vn-variable
function with 2vn independent variables, and therefore must be constant.
Hence the function f(z, () depends only on z, and f(z,() = f(z) where f is
a holomorphic function on H™. Given (g, (u,v)) € I' x (Z x Z)*™ as above,
we have the operations

dzj | (9, (. v)) = (2 +dj) Pz, 1<) <n,

d¢f | (g, (1,v)) = (exjw(2); + dyy) HdCf + > Filz,() dz
i=1
for 1 <k <2v,1 < j <n,and some functions F;(z,(). Thus the operation
of (g,(u,v)) on O is given by

n

o | (g, (1, 92) [ [ (ci2s + dj) "2 (eyjw(2); + dyj) ™2 dz A dC.

j=1

Hence it follows that

n

H ¢jzj + dj) Cx,jw(z)j + dx,j)%

= f(z )J””( 9, %),
and therefore f can be identified with a holomorphic section of £Z%. 0

Corollary 4.9 Let Ao, (I, w,X) be the space of mized Hilbert modular
forms of type (2,2v) associated to I', w and x. If n > 2, then there is a
canonical isomorphism

Ao (T ) = HO(EZ, 00 +1m)
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Proof. The corollary follows from Theorem 4.8 and Proposition 4.6. a

Arithmetic varieties such as the Hilbert modular variety Xp = I'\H"
considered above can be regarded as connected components of Shimura va-
rieties (cf. [21]). Mixed Shimura varieties generalize Shimura varieties, and
they play an essential role in the theory of compactifications of Shimura va-
rieties (cf. [3, 38, 39]). A typical mixed Shimura variety is essentially a torus
bundle over a family of abelian varieties parametrized by a Shimura variety
(see [94, 103]). A Shimura variety and a family of abelian varieties which it
parametrizes can also be considered as special cases of mixed Shimura vari-
eties. We now want to discuss extensions of the results obtained above to the
compactifications of families of abelian varieties using the theory of toroidal
compactifications of mixed Shimura varieties developed in [3] (see also [38]).

Let 7wp : Ef;g(” — X be the family of abelian varieties parametrized
by an arithmetic variety given by (4.9). Using the language of Shimura va-
rieties, E22” can be regarded as the mixed Shimura variety M*7s (P, X)(C)
associated to the group

P = Resp/gSL(2,F) X Viyn

and the subgroup Ky C P(Ay) with Ky N P(Q) = I" x (Z x Z)?>*", where
Res is Weil’s restriction map and Vy,,, is a Q-vector space of dimension 4vn.
Thus X is a left homogeneous space under the subgroup P(R)-U(C) C P(C),
where U is a subgroup of the unipotent radical W of P, and M%7 (P, X)(C) =
P(Q)\Xx(P(Af)/Ky), where the operation of P(Q) on X is via x and w (see
[94, 103] for details). The arithmetic variety X is the mixed Shimura variety
MXs((P,X)/W)(C), which is in fact a pure Shimura variety. Furthermore,
the mapping 7 can be considered as the natural projection map

M¥1(P,X)(C) — M%r((P,x)/W)(C).

There are number of ways of compactifying Shimura varieties. Among those
are Baily-Borel compactifications (cf. [5]) and toroidal compactifications. The
toroidal compactifications of mixed Shimura varieties were constructed by
Pink in [103]. Let X 1 be the Baily-Borel compactification of X, and denote
by

22U K

ESY =M™ (P,X,S5)(C)

the toroidal compactification of E22” = M*/(P, X)(C) associated to a K-
admissible partial cone decomposition S for (P, X). Then 7, induces the
mapping 7p : B3 — X of compactifications (see [103] for details).

Theorem 4.10 Let 22+ (1og OE) be the sheaf of holomorphic (2v+1)n-
forms on ngg with logarithmic poles along the boundary

mo_ ~2,2V 2,2v
OF = E22 — E2%.
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—=2,2
Then there exists an extension Ew’; of Ei’?x” to the Baily-Borel compactifica-
tion Xr of Xr, which depends only on (P,X)/U up to isomorphism, such
that there is a canonical isomorphism

QI (log E) = 75 Lo

2v

of sheaves, where the line bundle Zi’,x is regarded as an invertible sheaf.

Proof. By Proposition 8.1 in [103], there is an invertible sheaf 7 on the Baily-
Borel compactification X r of X such that there is a canonical isomorphism

T F 2 QP (10g OE).

On the other hand, using Theorem 4.8 we obtain a canonical isomorphism
TR L22 = Qv Thus it follows that Zi’i” = F is the desired extension
of L. a

Remark 4.11 Let )N(p be the toroidal compactification of X, and let E?fx”
be the canonical extension of Effx” to )?p. Let v : Xp — X be the canonical

embedding of Xr into its Baily-Borel compactification X . Then the image
of the restriction map

HO(Xp, L2%) — H(Xr, L5%) = HO(Xp, 1.L2%)

is the subspace of sections regular at infinity, and hence it is the space of

sections in HO(YF,L*L‘%’%(”) which vanish on Xp — Xp, i.e., the space of

mized Hilbert modular cusp forms (see [39, p. 40], [5, Section 10]).

4.3 Mixed Siegel Modular Forms

In this section we introduce mixed Siegel modular forms, construct a family
of abelian varieties parametrized by a Siegel modular variety, and show that
holomorphic forms of the highest degree on such a family are mixed Siegel
modular forms.

Given a positive integer m, let Sp(m,R) and H,,, be the symplectic group
and the Siegel upper half space, respectively, of degree m. Then Sp(m,R)
acts on H,, as usual by

(Z Z) 2= (az +b)(cz+d)7!

for all z € H,, and (‘i 3) € Sp(m,R). Let I" be an arithmetic subgroup of
Sp(m,R), and let m’ be another positive integer. Let 7 : H,, — Hy be
a holomorphic map, and assume that there is a homomorphism p : I' —
Sp(m’,R) such that 7 is equivariant with respect to p, that is,
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7(y2) = p(7)7(2)

for all v € I' and z € H,,,. If v is a positive integer and g = (‘; Z) € Sp(v,R),
we shall write
j(g,z) = det(cz + d) (4.11)

for z € H,. Then the resulting map j : Sp(m,R) x H,, — C satisfies the
cocycle condition

a9’ %) = i(9,9'2)i(g’, 2)
for all g, ¢" € Sp(m,R) and z € H,,.

Definition 4.12 Let k and { be nonnegative integers. A holomorphic func-
tion f : Hy — C is a mixed Siegel modular form of weight (k, ¢) associated
to I', 7 and p if

Fvz2) = 30r, )" (p(7), 7(2)) f(2)

for all z € H,y and v € T' C Sp(m, R).

Note that, if £ = 0 and n > 2 in Definition 4.12, the function f is a usual
Siegel modular form for I" of weight k. We shall denote by My (I") the space
of Siegel modular forms for I" of weight k& and by My, ¢(I', 7, p) the space of
mixed Siegel modular forms of type (k, £) associated to I', 7 and p. Thus we
see that My, o(I, T, p) = My ().

Example 4.13 Let I'' be an arithmetic subgroup of Sp(m’,R) such that
p(I') C I, and let ¢ : Hp — C be an element of M(I""). We denote
by 7°¢ : Hy — C the pullback of ¢ via T, that is, the function defined by
(7*¢)(2) = ¢(7(2)) for all z € Hy. If f: Hym — C is an element of My (I'),

then we have

forally € I and z € Hy, and hence f-(7¢) is an element of My (I, p, 7).
Thus we obtain a linear map Ly + Mp(I') — My (I, p,T) sending f to
f(m79).

We assume that the arithmetic subgroup I' C Sp(m,R) is torsion-free,
so that the corresponding quotient space X = I'\'H,, has the structure of
a complex manifold. Then we can construct a family of abelian varieties
parametrized by the Siegel modular variety X = I'\'H,, as described below.

Let L C C™ be a lattice in (Cm/, and let Iy be a torsion-free arithmetic
subgroup of Sp(m’,R) such that

Iv-LCL, pI)cC . (4.12)
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We shall first describe the standard family Yy of abelian varieties over
Xo = Io\Hpm. Let Sp(m’,R) x R*™ denote the semidirect product whose
multiplication operation is given by

((i Z)’(“>”)> ((Z// Zi) 7(u’,v’)>
() (8 (12) )

’
for u,v,u’,v" € R™ and

b "y
<Z d) ) <Z/ d/> € Sp(mlvR)'

Then Sp(m/,R) x R2™ acts on Hpy x C™ by

((i Z) (u, v)) (0) (4.13)

= ((az +b)(cz+d)™', (CH+uz+v)(cz+d)™h)

for (z,¢) € Hpy x C™. By identifying C™ with R2™ we may regard the
lattice L as a subgroup of R2™ . Then the condition Iy - L C L in (4.12)
implies that the action of Sp(m/,R) x R2™ on H,, x C™ induces an action
of I'hy x L. We denote the associated quotient space by

Yo = Iy X L\Hy x C™.
Then the natural projection H,, X C™ — H,, induces the map
o - YO — Xo = Fo\Hm/7

which has the structure of a fiber bundle over the Siegel modular variety X
with fiber C™' /L. Each fiber of my isomorphic to the complex torus C™ /L in
fact has the structure of an abelian variety, so that Y is a family of abelian
varieties parametrized by Xy. Such a family of abelian varieties is called a
standard family (see e.g. [108, Chapter 4]).

Using the condition p(I") C I in (4.12), we see that the holomorphic
map 7 : H,;, — Hyy induces the morphism 7x : X — X of Siegel modular
varieties. We denote by Y be the fiber bundle over X obtained by pulling the
standard family Yy back via 7x so that the following diagram is commutative:

Y = T;}YO — YO
"l lm (4.14)
X T—X> XO

Then the fiber of 7 : Y — X is the same as that of mg : Yy — Xo, and hence
Y is a family of abelian varieties, each of which is isomorphic to C™ /L,
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parametrized by the Siegel modular variety X = I'\'H,,. Given a positive
integer v, we denote by Y the v-fold fiber power of Y over X, that is, the
fiber product over X of the v copies of Y. Thus Y” can be regarded as the
quotient space

YV =T x L'\Hyp x C™7, (4.15)
where the quotient is taken with respect to the operation described as follows.
Let L = Ly + Ly € C™ with Li,Ly C R™ be the natural decomposition
of the lattice L in (4.12) corresponding to the identification of C™ with
R™ @ R™ = R*" . Then, using (4.13) and the fact that Y is the pullback
bundle in (4.14), we see that the operation of the discrete subgroup I" x L”
of Sp(m,R) x RV on ‘H,, x C™" is given by

(v, (u,0)) - (2,0) = (72, €Y +urr(2) + v1)(e,m(2) +dp) 71, ... (4.16)
L uT(2) o) (eT(2) + dp) )

for all v € I' with

p(y) = (ap bp) € Sp(m',R),

cp dp
¢=(W,....¢") e (©™)”, and
w=(u1,...,uy) € (L1)", v=(v1,...,0,) € (La2)".

Theorem 4.14 Let 7 : Y” — X with X = I'\H,, be the v-fold fiber power
of the family of abelian varieties m :' Y — X constructed by (4.14), and let
(m) = m(m + 1)/2 = dime Hy. Then the space HO(YY, Q8m+mv) of all
holomorphic forms of degree (m) +m'v on YV is canonically isomorphic to
the space Mai1,,(I, 7, p) of all mized Siegel modular forms on Hy, of type
(m 4+ 1,v) associated to I', T and p.

Proof. Note that Y is given by the quotient (4.15), and let z = (21,..., 2(m))
and ¢ = (¢, (@) with ¢ = (¢Y, ... ¢Y)) for 1 < j < v be the canon-
ical coordinate systems for H,, and (Cm/”, respectively. Then a holomorphic
form @ of degree (m) +m'v on Y can be regarded as a holomorphic form on
Hpm x C™7 of the same degree that is invariant under the action of I x L”
given by (4.16). Thus there is a holomorphic function fa(z,¢) on H,, x C™”
such that

B(2,C) = folz,Q)dz AdCD A~ AdC™, (4.17)

where dz = dzi A -+ A dzgy and dC0) = d¢P Ao A d¢Y) for 1< j <.
Given an element 29 € Hyp, the restriction of the form @ to the fiber Y,/ over
the corresponding point in X = I'\'H,, is the holomorphic m'v-form

P(20,¢) = folz0,)dCH A -+ AdCW),

where ¢ — fa(20,() is a holomorphic function on Y. However, Y} is iso-
morphic to the complex torus (Cm// L, and therefore is compact. Since any
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holomorphic function on a compact complex manifold is constant, we see that
fa is a function of z only. Thus (4.17) can be written in the form

B(z,¢) = fo(2)dz AdCH Ao A dCW), (4.18)

where fqﬁ is a holomorphic function on H,,. Now we consider the action of
an element (v, (u,v)) € I' x L” on @ given by ¢ — P o (v, (u,v)). By (4.16),
for the differential form dz with z € H,,, we have

dz o (7, (u,v)) = d(yz) = det(cz + d)"™ dz. (4.19)
On the other hand, using (4.16) again, we obtain

(dCVD A AdCP)) o (v, (u,v)) (4.20)

d((¢9 +u;7(2) +v;)(co7(2) +dp) 1)

Il
=

<.
Il
—

=

(det(cpT(Z) + dp)*ld((j))
j=1

= det(c,7(2) +d,)""dC.
Thus by substituting (4.19) and (4.20) into (4.18) we see that

(@0 (v,u,v))(2,C) = fao(yz) det(cz + d) ™ det(c,m(2) +dp) " (4.21)
xdz ANdCYD A AndCW),

Now using the fact that @ is (I" x L")-invariant, from (4.18) and (4.21) we
obtain

fo(v2) = det(cz + d)™ det(c,7(2) + d,)" fa(2)
= (7, 2" (p(1), 7(2))" fa(2);
hence by Definition 4.12 we see that fp € Mpi1.0(L, 7, p). On the other
hand, given an element f of M,,1.,(I, 7, p), we define the holomorphic form
®; on H,, x C™" by
Ds(2,¢) = f(z)dz AN dC.

Then for each (v, (u,v)) € I' x L” we have

(@5 o (7,u,v))(2,¢) = f(yz) det(cz +d)~™ !

x det(c,m(2) +d,)"dz Ad¢V AL A d¢™)
= f(2)dz AdCY AL AdCY) = B (2,Q)

for all (z,¢) € Hp x C™". Therefore the map f — & gives an isomorphism
between the spaces M, 11, (I, 7, p) and H°(Yy, Q(m)-i-m/u). 0
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4.4 Fourier Coefficients of Siegel Modular Forms

In Example 4.13 we described a map Ly » : Mg (") — My (I, p, 7) that car-
ries a Siegel modular form to a mixed Siegel modular form. Thus the adjoint
of L4 - associates a Siegel modular form £} _f to a mixed Siegel modular
form f. In this section we discuss connections of the Fourier coefficients of a
Siegel modular form of the form L7 | f with special values of certain Dirichlet
series, when 7 is the Eichler embeddmg

Siegel modular forms are holomorphic functions on Siegel upper half
spaces. We can consider C*° Siegel modular forms by using C*° functions
instead. We shall first describe below a method of obtaining Siegel cusp forms
from C*° Siegel modular forms.

Let = be the set of all symmetric integral matrices of order n with even
diagonal entries, and set

Ef={¢cE|¢>0}, Ef={¢e=|¢>0}

Let I" be a discrete subgroup of Sp(n,R), and let b be the smallest positive
integer such that the set

1) ‘ we M), W =u) (4.22)

is contained in I', where M, (Z) is the set of n x n matrices with entries in
Z. We set

GSp*(n,Q) (4.23)

B L(0-1\ 0-1
so that Sp(n,Q) C GSp™(n,Q). Let f : H, — C be an element of My(I"),
that is, a Siegel modular form of weight k for I". Then, since I" contains the

set in (4.22), f is invariant under the map z — z + u on H,; hence f has a
Fourier expansion of the form

f)= Y c@eléz) (4.24)
geb-1=;

for all z € H,, where e(x) = >™ ") If § € Sp(n,Q), then I'(§) = §~1T'9
is a congruence subgroup of Sp(n,R) and f |, ¢ is an element of My (I'(J))
that has a Fourier expansion of the form

Fld) = > esl(@eléz)
cebyt=s
with ¢5(§) € C and bs € N; here
(f s 0)(2) = j(6,2) " f(2)
for § = (2 %) € Sp(n,R) with j(J,2) as in (4.5).
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Definition 4.15 An element f of My(I") is a Siegel cusp form of weight k
for I if for each 6 € Sp(n,Q) its Fourier expansion is of the form

Fld) = > esl(@eléz)
geby =+

for all z € H,,. We denote by Sp(I") the complex vector space of all Siegel
cusp forms of weight k for I.

Given a positive integer N, we now consider the congruence subgroup

Io(N) = {7 - (CC‘ Z) € Sp(n,Z) | ¢=0 (mod N)}, (4.25)

and set
Mp(N) = Mp(IH(N)),  Sk(N) = Sk(Lo(N)).

Then a Siegel modular form in My (N) has a Fourier expansion of the form
(4.24) with b = 1. If f € Sg(N), h € My(N) and z = x + iy, then the
Petersson inner product (f, h)y is given by

<f,h>k:/}_mh(z) det y*d* z, (4.26)

where F C ‘H,, is a fundamental domain for I)(N) and d*z = dety~""1d=.

Definition 4.16 A C* function F : H,, — C is called a C*° Siegel modular
form of weight k for I'h(N) if it satisfies

F(yz) = det(cz + d)FF(2)
for ally = (2%) € Iy(N) and z € Hy. We denote by M3*(N) the space of
all C* Siegel modular forms of weight k for I'h(N).

If F € MZ(N), then as a function of x it has a Fourier expansion of the

form
F(z) = 3 Aclyel&n), (427)
cexs
where the A¢(y) are C°° functions of y. We can also extend the Petersson
inner product (4.26) to C*° Siegel modular forms so that for f € S;(N) and
F € M§P(N) their inner product (f, F)7° is given by

<f,F>z°:/}_mF(z)detykdxz, (4.28)

where F and d* z are as in (4.26). We denote by I',, the Gamma function of
degree n given by

rn(s):/ye—“(y) detySde:/Ye—Tf(y) det ys~ (/2 gy (4.29)

where Y = {y € M,,(R) | 'y =y > 0}.
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Theorem 4.17 Let F be an element of MP(N) of bounded growth with

k > 2n whose Fourier expansion is given by (4.27), and let F:H, — C be
the function defined by the series

F(z)= Y a(®)e(¢z)
feE+
for all z € H,,, where
7.‘_n(k—(n-i-l)/Q det(4§)k_(”+1)/2

a(§) = “nt1))2) (4.30)

/Ag e(ity) detyk 1=n gy,

Then F is a Siegel cusp form in Sp(N) and
(h, ) = (b, F)y,

for all h € Sp(N), where (, ) and (, )7° are the Petersson inner products
given by (4.26) and (4.28), respectively.

Proof. See Theorem 4.2 in [101, Chapter 2]. O

We now want to consider a special type of equivariant holomorphic maps
of Siegel upper half spaces known as Eichler embeddings. Let o be a real
symmetric positive definite r x r matrix with entries in Q. We define the
holomorphic map 7, : H, — Hy, and the homomorphism p, : Sp(n,R) —
Sp(nr,R) by

eE®Ra oRb
TU(Z):O-®Z? pU(g): (0.—1 ®C€®d>

for all z € H,, and

ab
g= (c d> € Sp(n,R),

where € is the r x r identity matrix. The map 7, is known as the Eichler
embedding (cf. [25, §11.4]) associated to o, and it is equivariant with respect to
po- Let IH(N) C Sp(n,Z) be the congruence subgroup given by (4.25) for the
symplectic group Sp(n,R), and let I'"” be an arithmetic subgroup of Sp(nr, R)
such that p,(Io(N)) C I". Let ¢ : Hpr — C be a Siegel modular form of
weight ¢ for I C Sp(nr,R), and let 7X¢ be its pullback via 7o : Hy, — Hoer
Thus 7} ¢ is the function on H,, given by 73¢(2) = ¢(75(2)) for z € H,,. As
discussed in Example 4.13, we obtain a linear map

Ly Mi(N) = My o(Io(N), 7o, po)

given by
(Lo, [)(2) = (f - 750)(2) = [(2)d(75(2))
for all z € H,.
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Lemma 4.18 The image Ly -, | of each f € Mp(N) under Ly -, is a Siegel
modular form for I'y(N) of weight k + ¢r, that is, Lg -, f € Myter(N).

Proof. For each v = (‘; g) € I'v(N) and z € H,, we have
70(72) = 6(75(72)) = (s (V)75(2)) (4.31)

= det((07' @ ¢)(0 @ 2) + £ © d) (75 (2))
= det(cz + d)hT; (2) =4, Z)ZTT; (2)-

Thus for each f € My(IH(N)) we have
Lor, f(72) = f(v2) - (150)(72)

§Or 2 f(2) - (v, 2) 5 ¢(2)
=35(7,2) " Lor, f(2),

and hence the lemma follows. O

By Lemma 4.18, if we restrict the linear map Ly -, to the space Sk(N)
of Siegel cusp forms on H,, for IH(N) of weight k, then we obtain the linear
map

L, SE(N) = Skter(N)

given by L4 -, (h) = h - (72¢) for h € Si(N). By taking the adjoint with
respect to the Petersson inner product, we have the linear map

L5 Spper(N) = Si(N)

such that
(Lory (B, fhrver = (A L (F))k

for h € SK(N) and f € Sk4er(N). The following lemma will be used in the
next section.

Lemma 4.19 Let I C Sp(nr,R) be an arithmetic subgroup containing
o (Io(N)) as above, and let ¢ : Hpr — C be an element of My(I'"). If
f:Hn, — Cis an element of Spier(N), then the function

F(2) = f(2)0(r5(2))(det(Im 2))*" (4.32)

for z € Hy, is a C™ Siegel modular form of weight k for I'y(N), where Im z
1s the imaginary part of the matriz z.

Proof. Given vy = (2%) € Iy(N) and z € H,, we have
f(yz) = det(cz + d)* f(2), det(Imyz) = |det(cz + d)| 2 det(Im ).

On the other hand by (4.31) we get
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¢(75(72)) = det(cz + d)"" - (75 (2)).
Since |det(cz + d)|? = det(cz + d) - det(cz + d), we see that
F(y2) = f(72)¢(7s(v2))(det(Im 72))""
= det(cz + d)F T - det(cz + d)*" - | det(cz 4+ d)| 72" - F(2)
= det(cz + d)F F(2),

and hence the lemma follows. O

For the families of abelian varieties determined by Eichler embeddings we
have the following result.

Proposition 4.20 Let 7, : Y, — X, be the family of abelian varieties over
Xo = Io(N)\H,, associated to the equivariant pair (75, ps), and let (Yy)
be its v-fold fiber power. If (n) = n(n + 1)/2 = dimc H,,, then the space
HO((Y, )Y, 28m+nmvY of holomorphic forms on (Yy)¥ of degree (n) + nrv is
canonically embedded in the space My 1r+1(N) of Siegel modular forms on
H,, for IH(N) of weight n+ rv + 1.

Proof. By Theorem 4.14 the space HO((Y, )", 2{+77) of holomorphic forms
on (Y5)” of degree n(n + 1)/2 + nrv is canonically isomorphic to the space
Ms1.(Io(N), 7o, po) of mixed Siegel modular forms of type (n + 1,v) as-
sociated to I'h(N), 7, and p,. However, using the arguments in the proof
of Lemma 4.18 we see that M, 41, (I'0(N), 7o, po) is embedded in the space
Mpirv+1(N), and therefore the proposition follows. O

Let ¢ be a prime with ¢ N, and let

A, = {(a b) € GSp*(n,Q) N GL(2n, Z,))

=0 (mod Q)},

where Z,) is the ring of rational numbers whose denominators are prime to
q and GSp™*(n,Q) is as in (4.23). Let x1 be a Dirichlet character modulo N,
and set x(g) = x1(deta) for g = (24) € Ag. If h: H,, — C is a function and
if o € Ay, then we set

(h |k @) = x(a)j(a, 2)""h(z)

for all z € H,. Let w € Ay, and assume that the double coset I'y(N)alp(N)
has a decomposition of the form

Io(N)aly(N Zal Ih(N

for some ay,...,aq € GSpT(n,Q) and ay,...,a; € C. The the associated
Hecke operator on the space Si(N) of Siegel modular forms for IH(N) of
weight k is given by
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d
f Zaz f |k az
=1

for all f € Sk(IN). We now consider the Poincaré series of two variables
Pk(z,w,a, s) defined by

Pk('z?w?a?S): Z (Cz+d) ‘ (’Y’ )‘ 2

YEIo(N)alo(N)

x det(yz + w)¥| det(yz + w)| =2
for s € C and v = ( ) Then it is known that the function
w — P*(z,w, a, s)
is a Siegel cusp form for I't(N) of weight k (cf. [101]).

Lemma 4.21 Let f : H,, — C be a Siegel cusp form for Ih(N) of weight k.
Then we have

(P*(=Z,w,a,5), f(w))e = pu(s)(Tn(@)f)()
for all z € H,, with
pi(s) =2nHitn(ntl)/2=2ns;—nkn(nt1)/2 (4.33)
Iy(k+s—(n+1)/2)Th(k+s)"",
where I'y,(+) denotes the Gamma function given by (4.29).

Proof. See [101, p. 73]. O

Proposition 4.22 Let ﬁ(z) be the Siegel cusp form for I'H(N) associated to
the C> Siegel modular form F(z) given by (4.32). Then we have LY _ f = F.

Proof. Let (, )y, denote the Petersson inner product for Siegel modular forms
of weight m, and let w = u 4 iv. Then we have

<Pk(_2’w’a’8)’£2 To-f(w)>k
:<£M H(—zw,a,5), f(w)
7o (w)) P (%, w, 0, 5), f
@, s)

/quU VPR (—Z,w

:/ PF(=%Z,w, a, 5)(f(w)d(7, (w)) det v*") det v* " Ldudv
F

>k+£r
(

W)) ktor

f(w) det v* =" dudy

= (P*(=7,w,q, 5), F(w))y°,
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where F C H,, is a fundamental domain for I'y(N). Thus by Theorem 4.17
we obtain

<Pk(_§7w7O‘78)7‘C27raf(w)>k = <Pk(_z7w7a78)7F(w)>k

for all z,w € H,, and hence by Lemma 4.21 we have

w(s)(Tn (@)L -, f)(2) = p(s) (T (@) F)(2)

for all z € H,,, where pu(s) is a nonzero number given by (4.33). Therefore
the proposition follows by taking o to be the identity matrix in A,. O

Let ¢ : Hpr — C be an element of My(I”) with IV D p,(IH(N)) as
above so that the function 7(¢) : H, — C is an element of My, (N). For
the elements £ € =T, let A(£) and B(£) be the Fourier coefficients of f €
Skter(N) and 72 (¢) € My (N), respectively, so that

fl)= > Al©e(2),  73(0)(2) =D B(&e(2). (4.34)
tezt

¢ex

Given ¢ € &1, we define the Dirichlet series Lc;i(s) associated to f, ¢, o
and & by '

A(§+n)B(n)

neES det(§ +m)* (4:35)

LE5(s) =

for s € C.

Theorem 4.23 Let ¢ : Hp — C be an element of Me(I") with I D
po(To(N)), and let
Ly .+ Skrer(N) — Sk(N)

be the associated linear map described above. If f € Skyer(N), then the
Fourier expansion of L7, . f € Sk(N) is given by

(L., ) z) =D a©)e()

fe=+
for all z € H,,, where

(det )F=(+D2P, (K + r — (n+1)/2)

a(§) = () DTk — (0 £ 1)/2) LES(k+tr—n)  (4.36)

forall ¢ € 27T,

Proof. By Proposition 4.22 we see that £} f coincides with the Siegel cusp
form F € S(N) associated to the C* Siegel modular form

F(2) = f(2)¢(15(2)) det(Im z)zr.
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Given £ € £, we set
(k= (n+1)/2) ot (4€)F—(n+1)/2
In(k—(n+1)/2)

K(§) = (4.37)

Then by (4.30) we have
/ Ae(y)e(ily) det YTy,

Using the Fourier expansions in (4.27) and (4.34) we see that

=Y Ac(y)e(¢n)

ez

= > > AwBme((pn — m)x)e(i(p + n)y) det y™.

pneEEt nEE
Thus, using £ =y —n or p = & +n, we have
= > A& +n)B(n)e(i(& + 2n)y) dety"".
nex
Hence it follows that
/ S A + ) Blne(2i(¢ + n)y) det y=+r—1-ndy

nes

Z A f + ’I’} / —4m Tr((E+n)y) det yk+Zr717ndy.

nez
If v = 47(£ + 1)y, we have
detv = (4m)" det(§ + n) det y, dv = (4m)" det (& + n)dy,
and therefore, for each £ € =T, we see that
a({) _ K(g)(47r)—n(k+lr—n) / e~ Trv qet pFHer—1-n gy
Y

A(€ +n)B(n)
X Z det(f + n)k%%rfn :

nes+

However, using (4.29) and (4.35), we get

ry(k+tr—(n+1)/2) = / e TV det o =1=ngy,
Y

a,& f‘f"] ()
LTSk + tr —n) = Zdet&nwr —

From these relations and (4.37) we obtain the formula (4.36); hence the proof
of the theorem is complete. a
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Remark 4.24 The method used for the proof of Theorem 4.23 was devel-
oped by Kohnen [53], where he considered modular forms. This method was
extended to the case of Hilbert modular forms in [18], and the case of Siegel
modular forms was investigated in [19, 75].



5

Mixed Automorphic Forms on Semisimple Lie
Groups

In the previous chapters we considered mixed automorphic forms on the
Poincaré upper half plane H, its product space H™, and the Siegel upper
half space H,, which are Hermitian symmetric domains associated to the
semisimple Lie groups SL(2,R), SL(2,R)", and Sp(n,R), respectively. In
this chapter we discuss mixed automorphic forms associated to more general
semisimple Lie groups and real reductive groups (cf. [71, 82]). We include
nonholomorphic automorphic forms by using the representation theoretic in-
terpretation of automorphic forms initiated by Selberg and Langlands (see
e.g. [13, 15]).

Let G be a semisimple Lie group, K a maximal compact subgroup, and I’
a discrete subgroup of finite covolume. Let Z(g) be the center of the universal
enveloping algebra of the complexification gc of the Lie algebra g of G, and let
V be a finite-dimensional complex vector space. A slowly increasing analytic
function f : G — V is an automorphic form for I' if it is left I'-invariant,
right K-finite, and Z(g)-finite. In order to describe mixed automorphic forms,
let G’ be another semisimple Lie group with the corresponding objects K’,
I'" and V', and let p : G — G’ be a homomorphism such that p(K) C K’
and p(I') C I". Then associated mixed automorphic forms occur as linear
combinations of functions of the form f®(f'op): G — VRV’ where f : G —
V is an automorphic form for I" and f’ : G’ — V' is an automorphic form for
I'". Tf G and G’ are a real reductive groups, the construction described above
produces mixed automorphic forms on real reductive groups. If G and G’ are
semisimple Lie groups of Hermitian type, we can define holomorphic mixed
automorphic forms as follows. In this case the Riemannian symmetric spaces
D =G/K and D' = G'/K' are Hermitian symmetric domains, and from the
condition p(K) C K’ we see that p induces a holomorphic map 7: D — D’
that is equivariant with respect to p. Given complex vector spaces V and V'
and automorphy factors J: G x D — GL(V) and J' : G' x D' — GL(V’), a
mixed automorphic form on D for I' is a holomorphic function f : D — V@V’
satisfying

flyz) = J(v,2) @ J'(p(7),7(2)) f (2)

forallze Dandye I
Whittaker vectors associated to representations of real reductive groups
generalize Whittaker’s confluent hypergeometric functions that occur in non-

M.H. Lee: LNM 1845, pp. 109-139, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



110 5 Mixed Automorphic Forms on Semisimple Lie Groups

constant terms of Fourier coefficients of automorphic forms (cf. [88]), and
over the last few decades various aspects of Whittaker vectors have been in-
vestigated in numerous papers (see e.g. [30, 45, 56, 110, 111]). In [93] Miatello
and Wallach constructed an analogue of non-holomorphic Poincaré series for
automorphic forms on reductive groups of real rank one using Whittaker
vectors in order to construct square-integrable automorphic forms.

In this chapter we construct Poincaré series and Eisenstein series for mixed
automorphic forms on semisimple Lie groups and discuss Whittaker vectors
and Jacquet integrals associated to mixed automorphic forms on real reduc-
tive groups. We also construct an analogue of Poincaré series of Miatello and
Wallach and express the Fourier coefficients of Eisenstein series for mixed
automorphic forms in terms of Jacquet integrals.

Section 5.1 contains the discussion of holomorphic mixed automorphic
forms on Hermitian symmetric domains. In Section 5.2 we introduce a repre-
sentation theoretic description of mixed automorphic forms on semisimple Lie
groups and construct Poincaré series as examples of such automorphic forms.
The construction of Eisenstein series for automorphic forms on semisimple
Lie groups is contained in Section 5.3. In Section 5.4 we describe mixed au-
tomorphic forms on real reductive groups and construct Eisenstein series as
well as an analogue of Poincaré series of Miatello and Wallach. Whittaker vec-
tors for such mixed automorphic forms are also discussed in this section. In
Section 5.5 we study Fourier coefficients of Eisenstein series for mixed auto-
morphic forms on real reductive groups in connection with Jacquet integrals
and Whittaker vectors.

5.1 Mixed Automorphic Forms on Symmetric Domains

In this section we describe holomorphic mixed automorphic forms on Her-
mitian symmetric domains. We also construct Poincaré series which provide
examples of such automorphic forms.

Let G be a semisimple Lie group of Hermitian type. Thus, if K is a maxi-
mal compact subgroup of G, the corresponding Riemannian symmetric space
D = G/K has a G-invariant complex structure and is called a Hermitian
symmetric domain. Let V be a finite-dimensional complex vector space, and
let J: G x D — GL(V) be an automorphy factor satisfying

J(’Yl’}% Z) = J(’yh 722)1](’727 Z)

for all z € D and 1,72 € G.

Let D' = G’ /K’ be another Hermitian symmetric domain associated to a
semisimple Lie group of Hermitian type G’ and a maximal compact subgroup
K’ of G'. We assume that there is a holomorphic map 7 : D — D’ that is
equivariant with respect to a Lie group homomorphism p : G — G’. This
means that p and 7 satisfies



5.1 Mixed Automorphic Forms on Symmetric Domains 111

7(y2) = p(7)7(2)

for all z € D and v € G. Such equivariant pairs (7, p) will be studied in
Chapter 6 in connection with families of abelian varieties. We now consider
another automorphy factor J' : G’ xD’ — GL(V") for some finite-dimensional
complex vector space V'. Let I be a discrete subgroup of G.

Definition 5.1 A mixed automorphic form for I" on D of type (J,J', 7, p)
is a holomorphic function f: D —V & V' satisfying

fyvz) = J(v,2) @ J'(p(7), 7(2)) f (2)
forall z € D and v, € I.

Remark 5.2 If I" is torsion-free and cocompact and if G’ is a symplectic
group, then it was shown in [7/] that for some specific automorphy factors J
and J' mized automorphic forms on D of type (J,J',T,p) can be identified
with holomorphic forms on certain families of abelian varieties parametrized
by a locally symmetric space. In the elliptic modular case, that is, when
G = SL(2,R), various results were discussed about the corresponding mized
automorphic forms in Chapters 1, 2 and 3 (see also [{3, 68, 70]). Similar
geometric aspects for the Siegel and Hilbert modular cases were treated in
Chapter 4 (see also [71, 76]).

If vy € G and z € D, let jp(7, z) denote the determinant of the Jacobian
matrix of v at z, so that the resulting map jp : G x D — C is an automorphy
factor. We denote by jpr : G' x D' — C the similar automorphy factor for
D'. Let f be a bounded holomorphic function on D. Given positive integers
£ and m and a discrete subgroup I of GG, we set

Pln(2) =Y f(v2)in(y, 2) dp (p(), 7(2)™ (5.1)

yel’
for all z € D.

Theorem 5.3 The function Pef,m : D — C defined by (5.1) is a mized
automorphic form on D for ' of type (jp',ip™,T,p), where j5*(y,2) =
jp(v,2)~¢ for v € I' and 2 € D and similarly for j;".

Proof. Given v € I' and z € D, we have

Pln(v2) =Y F(/72)ip(,v2) dp (p(y), (v2))™.
y'er

Thus, using the relations

jD(’7/> 72) = jD(’Y/% Z)]D(’W Z)_1>
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Jo (p(7'), 7(v2)) = jor (p(v'7), 7(2)jpr (p(7), 7(2)) 7,

we see that

Pla(v2) =" f(v2)in(v'v,2) dp(v,2) 7"
y'erl

% jpr (p(4'), 7(2)) ™ (p(7), 7(2))
= jp(7,2) " i (p(7), 7(2)) TP . (2)

Hence it suffices to show that the series in (5.1) converges uniformly and
absolutely on any compact subset of D for £ > 2, which can be carried out by
modifying the proof of Proposition 1 in [4, p. 44]. Let E and C be compact
subsets of D such that E is contained in the interior of C'. We choose a
positive real number A such that for each e € FE there is a polydisc B, of
volume ) centered at e with B, C C. Given e € E, we have

()P < A~ / ip (7, 2) 2dv, = A~ vol(yB,)

e

for all v € I'. Thus, if z € E and if M is a bound of |f| on D, we see that

S1F(llin(r. 2)P < > Mljp(y, 2)> < ATM Y vol(vB.).

yel' yel’ yel'

Let ¢ be the number of elements in the set
I'n{yeG|yCnNC #0}.

If ¥B, NyB, # () with v,7" € I' and z € E, then we have y~14y/C' N C # 0;
hence for each v € I' the number of sets of the form 7’ B, having nonempty in-
tersection with vB, is at most ¢. Thus it follows that the collection {yB,} er
covers each point of D at most ¢ times, and therefore we obtain

Y f(2)llin(y 2)F < AqM vol(D). (5:2)
yel’

This proves the uniform convergence for £ = 2 and m = 0. The proof for the
general case follows from (5.2) and the fact that

ip(v,2)l <1, |ip(p(7), 7(2)) <1
for all but a finite number of v € I O

Definition 5.4 The series ’Plfm(z) given by (5.1) is called a Poincaré series
associated to 7, p and f.
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5.2 Mixed Automorphic Forms on Semisimple Lie
Groups

In this section we introduce a representation theoretic definition of mixed
automorphic forms on semisimple Lie groups. As an example of such auto-
morphic forms, we also construct Poincaré series.

First, we shall review the definition of the usual automorphic forms on
semisimple Lie groups (see e.g. [13, 15, 27, 28]). Let G be a semisimple Lie
group, and let g be its Lie algebra. If V' is a finite-dimensional complex vector
space, then g operates on the space of smooth functions f : G — V by

V- F)(9) = S F((exp1Y)g) (5.9
t=0
for Y € gand g € G. Let Z(g) be the center of the universal enveloping
algebra U(g) of the complexification gc of g. Then a vector-valued function
f: G —V issaid to be Z(g)-finite if Z(g) - f is a finite-dimensional vector
space. This is equivalent to the condition that f is annihilated by an ideal 2
of Z(g) of finite codimension. If the ideal 2 has codimension one, then f is
an eigenfunction of every operator in Z(g).
Let W be a finite-dimensional vector space over C, and let o : G —
GL(W) be a representation of G in W whose kernel is finite and whose
image is closed in End(WW). Then we can define a norm || - ||, on G by

lglla = (Tr(a(g)* -a(g)))w,

where * denotes the adjoint with respect to a Hilbert space structure on W
invariant under a maximal compact subgroup K of G. If § is another such
representation, then there is a constant M > 0 and a positive integer m such
that

2]l < Mlz|]3 (5.4)

for all x € G. A vector valued function f : G — V is said to be slowly
increasing if there is a norm || - || on G, a constant C' > 0, and a positive
integer m such that

[f(9)l < Cllgl™,

where | - | is a norm on V.

Definition 5.5 Let K be a mazimal compact subgroup of G, and let o :
K — GL(V) be a representation of K in a finite-dimensional complex vector
space V. Given a discrete subgroup I' of G, a smooth vector-valued function
f G — V is an automorphic form for I' and o if the following conditions
are satisfied:

(i) f(kgy) =0o(k)f(g) for all k € K and v € I.

(i) f is Z(g)-finite.

(i) f is slowly increasing.
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Let the subgroups K and I' of G and the representation o : K — GL(V)
be as in Definition 5.5. We now consider another semisimple Lie group G'.
Let K’ be a maximal compact subgroup and I a discrete subgroup of G’.
We assume that there is a homomorphism p : G — G’ of Lie groups such that
p(K) C K" and p(I') C I, and let o' : K’ — GL(V’) be a representation
of K’ in a finite-dimensional complex vector space V'. Then we obtain the
representation o ® (¢’ o p|g) : K = GL(V® V') of K in V ® V', where p|x
denotes the restriction of p to K.

Definition 5.6 A mixed automorphic form for I' of type (p,o,0’) is an

automorphic form for I' and the representation o ® (0’ o p|k) in the sense of
Definition 5.5.

Let fy : G — V (resp. f., : G' — V') be an automorphic form for I" (resp.
I') and 0 : K — GL(V) (resp. ¢’ : K/ — GL(V")), where V (resp. V') is
a finite-dimensional complex vector space. We denote by f, s o the function
from G to V ® V' given by

foo0r(9) = (fo @ (for 0 p))(9) = fog) ® fr:(p(9)) (5.5)
for all g € G.

Proposition 5.7 The function f, 5o : G — V @ V' given by (5.5) is a
mized automorphic form for I' of type (p,o,0’).

Proof. We must show that f, ;. satisfies the conditions (i), (ii) and (iii) in
Definition 5.5 for the discrete group I" and the representation o ® (o’ o p|k).
Given g € G, k € K and v € I, using (5.5), we see that

fooo(kgy) = f(kgy) @ f'(p(k)p(9)p(7))
=a(k)f(g) @ o' (p(k))f'(p(9))
= (0@ (d" op|K))(k) - (f@ f op)g),

which verifies the condition (i). Now, given Y € Z(g), by (5.3) we have

d
Y fpoa(9) = 5 I (€017 )g)

t=0

= [%fg((exptY)g)] ® for(p(g))

t=0

Fine) e [0 pewa)]|

_ [% £y ((exp ty)g>] ® f1u(p(9))

t=0

+ folg) ® %fc’,f ((exp tde)p(g))}

t=0
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for all g € G. Thus the condition (ii) follows from this and the fact that f,
is Z(g)-finite and f., is Z(g’)-finite. As for the condition (iii), since f, and
fl, are slowly increasing, we have

[fo.0.00(9)] = fo(9) @ fo:(p(9))] < Chllglla™ - Callp(g)l5"

for some constants Cy, Cy, positive integers mj, mso, and representations
a:G— GLW), 8:G — GL(W'). However, by (5.4) we have

lp(@)lls = llgllsop < Csllglla™

for some constant C'3 and positive integer ms3. Thus we see that

[ fo.o0r (9)] < CLCC5 gl ™,

and f, oo is slowly increasing, and therefore the proof of the proposition is
complete. a

Example 5.8 Let p: G — G', K, K', V and V' be as above. Assume that
the symmetric spaces D = G/K and D' = G'/K’ have G-invariant and G’-
mvariant complex structures, respectively. This assumption implies that D
and D' are equivalent to bounded symmetric domains (see e.g. [36]). Since
p(K) C K', the map p induces a holomorphic map 7 : D — D’ satisfying
7(g2) = p(g)7(z) for all g € G and z € D. Let J : G x D — GL(V) and
J G x D' — GL(V') be automorphy factors, and set

Jo(9,2) = J(g,2) ® J' (p(g),7(2))

for all g € G and z € D. Then the resulting map J, : G x D — GL(V) ®
GL(V') satisfies
Jo(9192,2) = Jo(91, 922)Jp (92, 2) (5.6)

for all g1,92 € D and z € D. We define the homomorphisms o : G — GL(V)
and o' : G' — GL(V') by

U(g) = J(g,O), U/(g/) = J/(g/>ol)7

where 0 € D and 0/ € D' are the fixed points of K and K', respectively. Note
that 0" = 7(0) because of the condition p(K) C K'. These homomorphisms
induce the map o, : G — GL(V) ® GL(V") given by

op(9) = J(9,0) ® J'(p(g),7(0)) = a(9) ® a'(p(g)) = (0 @ (¢" 0 p))(g)-

We now consider a mized automorphic form f: D —V @V’ for I on D of
type (J,J', T, p) in the sense of Definition 5.1, so that f satisfies

f(vz) = Jp(7,2)f(2)

forally e I' and z € D. We define the function ]?: G—-VeV by
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Flg) =0,(9)f(g7"0)
for all g € G. Then for g€ G, k € K and v € I' we have

bq
s
bq
2
<
3
o)
S}

where we used (5.6). Using this and the relation

Jo(v g7 0) 0,97 0) T = 0,(7) to,(9) T lau(g),

we obtain
Flkgy) = 0,(k)o,(9)f(g70) = 0,0 (k) f(g).

In fact, it can be shown that f is a mized automorphic form for I' of type
(p,0,0") in the sense of Definition 5.6.

We shall construct below Poincaré series which are examples of mixed
automorphic forms on semisimple Lie groups. Let I (resp. I'') be a discrete
subgroup of a semisimple Lie group G (resp. G'), and let K (resp. K') be a
maximal compact subgroup of G (resp. G’). Let p : G — G’ be a homomor-
phism such that p(K) C K'. If f: G — V is a vector-valued function and if
h is an element of G, we denote by I(h) and r(h) the translation operators
given by

W) f(g) = f(h~tg), r(h)f(g9) = f(gh)

for all g € G.

Definition 5.9 A vector-valued function f : G — V on G is said to be left
(resp. right) K-finite if the set of left (resp. right) translations

{i(k)f | ke K} (resp. {r(k)f|ke K})
of f by elements of K spans a finite-dimensional vector space.

Proposition 5.10 Let V and V' be finite-dimensional complex vector spaces,
and assume that the following conditions are satisfied:

(i) f @ (f op) € LYG) ® (V ® V'), where L*(G) denotes the set of
integrable functions on G.

(i) [ is Z(g)-finite and f' is Z(g')-finite.

(i) f is right K-finite and f' is right K'-finite.
Then the series P, s ¢/(g) defined by

Popp(@) =Y _(F&(f op)g-7) (5.7)

yel’
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converges absolutely and uniformly on compact sets. Furthermore, the series

Y@ o)

yel’
is bounded on G where | - | denotes the norm on V@ V'.

Proof. As in the proof of Proposition 5.7, it can be shown that the function
f@(flop): G—VV'is Z(g)-finite by using the condition (ii). For k € K
and g € G, we have

r(k)(f @ (f'op))(g) = (f @ (f o p))(gk)
= flgk) @ f'(p(g)p(k))

( )
(k) f(g) @ r(p(k))f (p(K))-
Hence the condition (iii) implies that the function f® (f’op) is right K-finite.

Therefore the proposition follows from [4, Theorem 23], [5, Theorem 5.4], or
[13, Theorem 9.1]. O

Definition 5.11 The series P, s /(g) given by (5.7) is called a Poincaré
series associated to p, f and f'.

Corollary 5.12 Let 0 : K — GL(V) and ¢’ : K' — GL(V') be finite-
dimensional representations of K and K', respectively, over C. Assume that
the vector-valued functions f : G — V and f' : G' — V' satisfy the conditions
(i), (it) and (iii) of Proposition 5.10 together with the condition that

f(kg) =0a(k)f(9), f'(Kg)=0d(K)f'(g)

forke K,ge G, k¥ € K' and g € G'. Then the associated Poincaré series
P, ;¢ is a mized automorphic form for I' of type (p,o,0").

Proof. Since f ® (f' o p) is Z(g)-finite on the left, so is the Poincaré series
P, ¢ 4. From the definition of P, ¢ ¢/ (g) the right I'-invariance of P, ¢ ¢ fol-
lows immediately, and P, y ;s is slowly increasing by Proposition 5.10. As in
the proof of Proposition 5.7, we have

(f @ (f o p))(kg) = (0@ (0" o plx))(k)(f @ (f 0 p))(9);
hence it follows that
Po.g.y(kg) = (0 @ (0" 0 plx)) (k) Pp,1.5(9),
and the proof of the corollary is complete. ad

Let G, G', D, D, p, 7, jp : GXxD — C and jp : G' x D' — C be as in
Section 5.1.
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Lemma 5.13 If ¢ and m are nonnegative integers with ¢ > 2, then the C-
valued function on G given by

g+ 3(9,0) @ jp(p(g),0)™ : G — C
is an element of Ll(G),

Proof. Note first that the function g — [j(g,0)|* (resp. ¢’ — |ip:(g’,0")|™) is
left and right K-invariant (resp. K'-invariant) (see [5, Section 5.8]); hence it
can be considered as a function on D (resp. D’), and we have

/ 13(9.0)%3p (p(g), 0')™) dg = / 15z 0 i (r(2), 0) [ da(2),
G D

where du(z) denotes the invariant Bergmann measure on D (cf. [4, Section
4.3]). If dz is the usual Euclidean measure on D, then we have

dpu(z) = |j(2,0)|*dz

up to a positive factor. Thus we have
[ 15600 i (00,0 dg = [ 1.0 2L (7(2).0) "
D

However, both |j(z,0)| and |j(7(2),0")| are bounded by [5, Proposition 1.12];
hence the lemma follows. ad

Let FF: D — V and F' : D' — V' be functions such that F ® (F' o) :
D — V ®V'is a polynomial function. Given nonnegative integers ¢, m with
£ > 2, we define the functions f: G — V and f': G' — V' by

fl9) =3(9,0) F(rg), [f'(g") = jo(g',0)"F'(x'g) (5.8)

for g € G and ¢’ € G', where 0 € D and 0’ € D’ are the fixed points of K and
K’, respectively, and 7 : G — D and ©’ : G’ — D’ are canonical projection
maps. We set

o(k) = j(k,0)", o' (k) = j(K', 0™ (5.9)

for k € K and k' € K’'. Then ¢ and ¢’ are representations of G and G’ in V
and V', respectively. We set

PE™(g) =Y (f®(f op)(g7) (5.10)

yel’

for g € G, which is indeed the Poincaré series P, y, associated to the func-
tions f and f’ in (5.8) in the sense of Definition 5.11.

Theorem 5.14 The Poincaré series sz’m(g) given by (5.10) is a mized au-
tomorphic form for I' of type (p,o,0").
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Proof. For each g € G, using (5.8), we have

(f & (f'op)(9) = (j(g.0) F(rg)) @ (jp (p(g),0)" F'(7'(p(9))))
= (i(9,0)" - jor (p(g), 0)™) (F(rg) ® F'(w(mg))).

Thus from Lemma 5.13 and the fact that F® (F'ow) is a polynomial mapping
on the bounded symmetric domain D it follows that

/Gl(f®(f’op))(g)ldg<oo;

hence f ® (f' o p) is an element of L'(G) @ (V ® V). Using (5.9) and the
relation j(g192,0) = j(g1,0);(g2,0) for g1, g2 € G, we have

f(kg) = j(gk,0)*F(n(gk))
= 3j(9,0)%(k, 0) F(mg) = o (k) f(9)
for k € K and g € G. Similarly, we have f'(k'g") = o'(K')f'(¢’) for k' € K’
and ¢’ € G'. Thus we see that f is Zg-finite and f’ is Zy-finite. For k € K
and g € G the set of right translates r(k)F(w(gk)) are polynomials of the

same degree as F'; hence f is right K-finite. Similarly, f’ is right K’-finite.
Thus it follows from Proposition 5.10 that the series

Yol o m)gl

yel’

is bounded on G. In particular, the Poincaré series Plf”” in (5.10) is slowly
increasing. As in the proof of Proposition 5.7, the function f ® (f' o p) is
Zg-finite, and for k € K and g € G we have

(f@(f op)(kg) = (0@ (0" oplx))(k)(f @ (f op))(9);
hence we see that
Py (kg) = (0@ (0" 0 plx)) (k) Py ™ (g)-

Therefore szvm(g) is an automorphic form for I" of type (p, 0, 0’) in the sense
of Definition 5.5. ad

5.3 Eisenstein Series

In this section we construct Eisenstein series and show that they are mixed
automorphic forms on semisimple Lie groups in the sense of Definition 5.5.
For this purpose, instead of the usual semisimple Lie group G, we need to
consider an algebraic group whose set of real points will coincide with G.
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Let G be a connected, semisimple, linear algebraic group defined over
a subfield k£ of R, and let P be a k-parabolic subgroup of G containing a
maximal k-split torus S of G. Let Py be a minimal k-parabolic subgroup of
G such that S C Py C P. We define an ordering on the set X of k-roots of
G with respect to S as follows: A k-root a € Xy, is positive if and only if the
subgroup of G generated by the a-eigenspace of the adjoint representation of
S is contained in Py. We denote by Ay the set of simple positive k-roots in
k.

If = is a subset of Ay, we set

Sz = ( ﬂ Kera)o,

acZ

where (-) denotes the connected component of the identity. Let © be the
subset of A such that P is generated by the unipotent radical Uy of Py and
by the centralizer Z(Sg) of Se. Let Ug be the unipotent radical of P, and let
Mg be a subgroup of G such that Zg(Se) = Se - Mo with S N Mg finite.
We set

P=P(R), A=SeR)?, M=MgR), U=Ug(R).
Then we obtain the Langlands decomposition
P=MAU
of P and the corresponding decomposition
G=KP=KMAU

of G=GR). If g=kmau e Gwithke K, me M,a€ A and u € U, then
k-m, a and u are uniquely determined. We write a = a(g).
Let {Aq}aca, be the set of fundamental dominant k-weights of G that
satisfy
<Aoc> 5> = daéaﬁ

for all o, € Ay, where 05 is the Kronecker delta and d, is a positive
real number (see [13, Section 11]). Let u be the Lie algebra of U and let
X = det Ad, be the character of P with p* = det Ady p for p € P. We set
© = A — 6. Then x is a positive linear combination of the A, for a € O,

that is,
X=Y_ eala
acb
with eq > 0. If {sa} g i a set of complex numbers s, € C indexed by the
set ©, and if p € P, then we set

pe =TT P

ae(:)
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Lemma 5.15 Let I' be a discrete subgroup of G and let I's, be a subgroup of
I'NMU. Suppose that there is a set {Sa}aeé of complex numbers satisfying
the following conditions: _

(i) a(y)« > e >0 for ally € T and a € 6.

(i) MU/T's has finite measure.

(iii) Re o > eq for all o € 6.

Then the series
E(g,s)= Y algn)™™
YET'/T'so

converges uniformly on any compact subset of G.
Proof. See Lemma 4 in [4] or Lemma 11.1 in [13] (see also [29]). O

Now we consider another semisimple Lie group G’ = G’(R) associated to
a connected algebraic group G’ defined over a subfield k of R. We consider
the corresponding subgroups K', P/, M’, A’, U’, etc. defined in a way similar
to the case of G above. Thus we have decompositions

P =KAU, G=KP=KMAU"
Let p: G — G’ be a Lie group homomorphism such that
p(K)C K', p(P)C P, p(A)cCA.

Theorem 5.16 Let I' and I's, be as in Lemma 5.15, and let f : G — V and
f': G' = V' be smooth vector-valued functions, where V. and V' are finite-
dimensional vector spaces. Suppose that there is a set {Sa}aeé of complex
numbers satisfying the following conditions:

(i) a(y)d« > e >0 for ally € I and a € 6.

(i) MU /T has finite measure.

(iii) Resq > eq for all a € 6.

(iv) (f & (F' o p)(97) = (f @ (' p))(g) for all 7 € .

(v) | £ ()|l (p(gp))|p?s is bounded for p € P and g belonging to a fized
compact set.

Then the series

Eprp(g)= > (f&(f op)lgV) (5.11)

YETI'/T's
converges absolutely and uniformly on any compact set of G.
Proof. Since G = KP, we have
(f @ (f op)(g)-alg)’ = (f @ ("o p))(kp) - a(kp)™

=(f®(f op)(kp) - alp)™
=(f®(f op)(kp) - p™



122 5 Mixed Automorphic Forms on Semisimple Lie Groups

for g = kp with k € K and p € P. Hence by (v) |(f ® (f o p))(g) - a(g)’|
is bounded for g € G. Therefore, the series defining Ey s , is majorized by a
constant times the series

> algn) ™,

YET' /T

which converges uniformly on any compact set by Lemma 5.15. Hence the
theorem follows. O

Definition 5.17 The series E, 5 ¢/(g) given by the series in (5.11) is called
an Eisenstein series for I" associated to p, f and f’.

Let G, P, M, A, and U be as before. Thus we have decompositions
P=MAU, G=KP=KMAU.

Let o : K — GL(V) be a representation of K in a finite-dimensional complex
vector space V. Let m : MU — M be the natural projection, and let Ky, =
(K NMU). Then K) is a maximal compact subgroup of M, and o induces
the representation oj; of Kj; given by

om(n(k)) = o(k)

for all k € KN MU. Let I' be an arithmetic subgroup of G, and let I’y =
m(I" " MU) be the corresponding arithmetic subgroup of M. We denote
by L?(M/I'n,0p) the space of square-integrable functions ¢ : M — V
satisfying
p(kmy) = on (k)p(m)

for all k € Kp;, m € M and v € I'yy. Any function ¢ : M — V satisfying
w(km) = oy (k)p(m) for k € Kpr and m € M can be extended to a function
wa : G — V on G by the formula

pa(kmau) = o(k)p(m)

foral ke K, me M, a € A and u € U. Then ¢ is o-equivariant, that is,

va(kg) = o(k)pc(g)

for k € K and g € G. Although a decomposition ¢ = kmau is not unique,
the extension ¢¢ is uniquely determined. We shall identify a ojr-equivariant
function ¢ on M and the corresponding o-equivariant function ¢g on G.
Thus each element of L?(M/I'y,on) will be regarded as a function of G
into V.

Let af. be the dual space of the complexification ac of the Lie algebra a
of A, and let

(af)” ={A€cat| ReA+p,a) <0 forall ac X%,
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where X° is the set of simple roots of the Lie algebra g of G. For ¢ €
L*(M/I'v,00) and A € af, we set

oa(z) = p(z)eA—PHE@)
for x € G, where H(z) denotes loga(x). Then we have

palkgy) = a(k)palg)
forall g € G, k € K and v € U(I' N P). Given ¢ € L*(M/I'y, 00 ) and
A€ (af)™, the series

E(A,p,x)= Y palay)
r/rnp

is called an Eisenstein series (see [37]; see also [60, 64, 65, 66, 100]).

Let x be a representation of Z(g) in V. We denote by L2(M /'y, onr, X)
the subgroup of L?(M /'y, o) consisting of functions f : G — V satisfying
the condition

Y- £)g) = fg)x(Y) (5.12)
for all Y € Z(g).

Lemma 5.18 If ¢ € L2(M /'y, 001,%) and v € U(I' N P), then there are a
positive real number C and a positive integer N such that

Y lpa@y) < Clal™

r/rnp
forallx € G.
Proof. This follows from [37, Lemma 24]. O
Let G’ be another semisimple Lie group, and consider the corresponding
objects K', P, M', A, U', «, aff, (ag¥)~ and the representation ¢’ : K’ —

GL(V’) of K’ in a finite-dimensional complex vector space V'. Let p : G — G’
be a Lie group homomorphism such that

p(K) C K', p(P)cC P, p(4)cA.
As in the case of G, for ¢’ € L*(M'/I'};,0%,) and A" € (af)~, we set
Pa(y) = ¢/ (y)el =)

for y € G’, where H'(y) denotes loga’(y).
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Proposition 5.19 Let x and X' be representations of Z(g) and Z(g') in V
and V' respectively, and let

pa € L2(M/Tn,o0,X)s o € LX(M' /Ty, 0, X))

with A € (ag)™ and A" € (af¥)~. Then there are a positive real number Cy
and a positive integer No such that

> pa® (@ o p)) (@) < Collz] ™
yer/rnp

forallx € G.

Proof. By Lemma 5.18 there exist positive real numbers C, C’ and positive
integers NV, and N’ such that

> lea@y)| < Clla|”,

~yel')/TNP
Yoo @ <Y
~N'er’/I'np’

for all z € G and 2’ € G'. In particular, we have

Sl = > 1@ p)p())]

yET/TNP yET/TNP
< C'lp@) IV < Clpll™ [l Y

for all z € G, since p(vy) € I'"/I" N P’ whenever v € I'/I'N P. Thus we obtain

Y l@a@@uop)@l= > leal@y)l- ek (p(xy))]

~el/TNP ~el/TNP
< >0 dea@l- D 1w (p))
~el/TNP ~el/TNP

<C-C ™ Yl IV
hence the proposition follows. a

We set

B (AN, 2)= > (pa® (¢l 0p))(ay) (5.13)
~ET/TAP

for z € G, which is an Eisenstein series for I" associated to p, ¢4, and ¢4, in
the sense of Definition 5.17 with I'.c = I'N MU = I'N P (see [37, p. 6]).

Theorem 5.20 The Eisenstein series E, , (A, A, x) given by (5.13) is a
mized automorphic form for I' of type (p,o,0’).
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Proof. Recall that ¢, can be regarded as a function ¢4 : G — V on G
satisfying @4 (kmau) = o(k)pa(m). Thus we have

valkg) = a(k)palg)

for all k € K and g € G. Similarly, we consider ¢/;, as a V’'-valued function
on G’ satisfying

e (k'g") =o' (k) (g')
for all ¥ € K’ and ¢’ € G’. Thus we see that

(94 @ (P 0 p))(kg) = (0 @ (0" 0 plK)) (k) (s @ (¢4 0 p))(9)

for all k € K and g € G, which implies
EP7<P7<P'(A7 A/’ kg) = (0 ® (OJ ° p‘K))(k)EPV%W (A7 Al? g)

by (5.13). On the other hand, using (5.13) and Proposition 5.19, we obtain

| Bpor (A, A 2)] < D7 (04 ® (&g 0 p))(@y)] < Collx|No
~E/TNP

for some Cy, Ny > 0, and consequently the function x +— E, , o (A4, A, ) is
slowly increasing. Using (5.12), we have

Y -oa)(9) = palgx(Y), (Y- @U)(g) = (g X' (Y)

for Y € Z(g), Y € Z(g'), g € G and ¢’ € G’; hence it follows that ¢, is
Z(g)-finite and ¢y, is Z(g’)-finite. Thus, as in the proof of Proposition 5.7,
we see that the function ¢4 ® (¢4, 0 p) is Z(g)-finite. Therefore E, , . is also
Z(g)-finite, and the theorem follows. O

5.4 Whittaker Vectors

We shall first extend the notion of mixed automorphic forms on semisimple
Lie groups constructed in Section 5.2 to real reductive groups and describe
Eisenstein series for such automorphic forms. We also discuss Whittaker
vectors and Poincaré series for mixed automorphic forms on real reductive
groups.

Let G be a real reductive group G of rank one, and let G = NAK be
its Iwasawa decomposition. Let P = M AN be the associated Langlands
decomposition of a minimal parabolic subgroup P of G. If g € G, then we
write

g =n(g)a(g)k(g)

with n(g) € N, a(g) € A and k(g) € K. Let g, ¢, m, a, n denote the Lie
algebras of G, K, M, A, N, respectively, and let
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o(H) = %Tr<ad (H)la)

for H € a.

Let (¢, HS) be the principal series representation of G corresponding
to an element v € (ac)* and a unitary representation £ of M in H¢. Thus
HS" is the space of all square-integrable functions f : K — H such that

f(mk) =E&(m) f(k) (5.14)
for m € M and k € K with

mew(9)f(x) = a(zg)" ™ f(k(zg)) (5.15)

for g € G and © € K. Let Z(g) be the center of the universal enveloping
algebra U(g) of g. Let V be a finite-dimensional complex inner product space,
and let 0 : K — GL(V) be a representation of K in V. Then an automorphic
form on the real reductive group G for I' and o is a left I'-invariant and
Z(g)-finite analytic function f : G — V satisfying the following conditions:

(i) f(zk) =o(k)f(z) for all z € G and k € K,

(ii) f is slowly increasing, that is, there exist positive real numbers C' and
C’ such that

If (@)l < C" - alz|®

for all z € G, where a|z|® = eClrloga@)l,

Let G’ be another real reductive group of rank one, and let K/ and P’ =
M'A’N’ be a maximal compact subgroup and a Langlands decomposition
of a minimal parabolic subgroup of G’, respectively. Let ¢ : G — G’ be a
homomorphism such that ¢(K) C K’, ¢(P) C P, ¢(A) C A" and ¢(N) C
N’ and let I be a discrete subgroup of G’ of finite covolume with p(I") C
I'" satisfying the assumptions in [66, §2]. We also consider a representation
o' K' - GL(V') of K’ in a finite-dimensional complex vector space V', so
that o ® (0’ o ) is a representation of K in V@ V.

Definition 5.21 A mixed automorphic form for I" of type (p,0,0’) on the
real reductive group G is an automorphic form f: G — V V' for I' and
the representation o @ (o' o @) of K.

Proposition 5.22 Let f: G — V (resp. f' : G' — V') be an automorphic
form for I' (resp. I'') and o (resp o’ ). Then the function f @ (f'op): G —
V @ V' is an automorphic form for I' and o @ (¢’ o ).

Proof. The proof is essentially the same as in Proposition 5.7. a

Given an element v’ € (ap)* and a unitary representation & of M’ in
Her, let (HEIV"/, mer ) be the associated principal series representation of G'.

Let (f[é’f/”””/, T er 1) be the induced representation of G associated to the
representation £ ® (£ o) of M in He ® He and an element v+ (V' + p') odyp
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of (ac)*, where dy : ac — ag is the linear map corresponding to the map
ola: A — A’ Thus, using (5.14) and (5.15), we see that Hf;f/’””’/ consists
of square-integrable functions ¢ : K — Hy ® He such that
P(mk) = (€@ (£ 0 p))(m)Y (k)
for all m € M and k € K, and we have
T e (90 (@) = alxg)” O HPIAT Py (f(2g))

forall ge G and x € K.
Now we denote by H. 5;5 ¥V the complex linear space generated by func-
tions of the form

fe(fop): K — He @ He

for some f € H*Y and f' € H¢' "' and define the action of G on Hf,75/7”’”/
by

(ﬂ—zg’,y,u’ (g))(f ® (f/ OSD)) = ((Wf,y ® (775’,11’ o w))(g)(f ®f/)) o (1 &® QD) (516)
for all g € G. Thus, if v =Y1", fi @ (flop) € Hgg/,yﬂ/ with f; € HS and
fl e HE"' | then by (5.14) and (5.15) we have

P(mk) = Z filmk) @ fi (e Zﬁ ¢ (p(m)) fi (p(F))

-
Il
—

I
NE

(€@ (& op)m)(fi® (fiop) (k) = (@ (& o @))(m)i(k)

ﬁ
Il
-

for all m € M and k € K, and

(€ e 0 (9)0) () Z(Wg,u(g)fi)(r) ® (e (9(9)).f1) (o))

«
Il
-

a(wg)"** fi(k(xg)) © a (p(xg))” 7 fi(K (p(xg)))

.

«
Il
-

a(zg)"** fi(k(xg)) ® a' (p(xg))” T fl(p(k(zg)))

.

©
Il
-

Ms

= a(xg)"*d (p(29)" " Y (f ® (f] 0 9)) (k(xg))

1

(fi @ (fi o 9))(k(xg))

.
Il

’

= a(zg)" P p(a(xg))” **

Ms

Il
-

i

_ a(xg)”+p+(” +p")ody Z o)) (k(zg))

i=1
= a(xg)" Ty (k)
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for all g € G and = € K. Therefore (11745;’5/’”7”/7 77?5,71,7”,) is in fact a subrepre-

sentation of (ﬁf;gl"””/ , %205, ), and it has the structure of a (g, K')-module.
We define the linear map

et HEE Y = Heo He
by
e (fO(f o) =(Fe(f op)) (5.17)

for f € HS and f' € HE ' Let Hy" C H&Y (resp. Hf(/}”/ c H V") denote
the subspace of K-finite (resp. K’-finite) vectors, and let HégKl}(”, be the
subspace of Hf;g/’”’” generated by elements of the form f ® (f' o ¢) with
fe H%" and f’ € Hf{}” . For ¢ € HiEKVKLf , we set

Eo(P&E v )W) = Y e (wg’jg,w,(y)@b). (5.18)
yeI'N\T"
Now we consider an element ¢ € H i’%”l’{lf/ given by

m

b= f;@(flop) (5.19)

i=1

with f; € H%" and f! € Hf;}”/, then by (5.17) and (5.18) we see that
E (P& ¢ v, V) (¢) is an element of He ® He given by

Ey(P,&,¢ v, 0)(¥) (5.20)
= Z 525’,%1/(sz’,uy'('yg)@b)

yeI'N\T"

Yo D mewMF)D) @ (mer (M) ().

NEDN\T i=1

For g € G and n € (He ® Her)*, we set
ESD(P7§7£/>V7 V/7¢)(g) = ESD(P7§7£/7V7 V/)(ﬂ—zg’,u,y’(g)w)? (5'21)
EZ(P,€7£I,Z/7 V/7d))(g) = U(EAP(P7£a€/aV7 V/7d))(g))? (522)

where E,(P,&,¢,v,v') is as in (5.18). If v € HES% is as in (5.19), let
Vfw C H (resp. Vg C Hy¢/) be the subspace spanned by the set

{fi(k) | ke K,1<i<m} (resp. {f/(K') |k € K',1<i<m}).

Since the function f; (resp. f/) is K-finite (resp. K'-finite), it follows that Vgp
(resp. ng’) is a finite-dimensional complex vector space. Let org’ (resp. 02/’,) be

the representation of K (resp. K') on Vg’ (resp. V) given by
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Ug(k)fi(kl) = fi(kik) (resp. Ugj/(k/)fi/(ki) = fi(K{K"))
for all k, k1 € K (resp. k/, k] € K'). Then we have
Eo(P&,¢ v,V 9)(g) e VY @ VY
for all g € G.
Proposition 5.23 Let ¢ € Hfle}('f be as in (5.19). Then the function
E (P& & v,V )« G — Vdj ® V given by (5.21) is a mized automor-
phic form of type (gp,ag},og},) fm" I.

Proof. From (5.18) and (5.21) we see easily that E (P, &, & v,V ) is left
I-invariant. If ¢ € Hile}{'f is as in (5.19), then by (5.20) we have

Eo (P&, ¢ v,V )(g Z > alzg)"t filk(vg)) (5.23)

=1 veI'N\I"
® a'(¢(79))" * f(o(k(vg)))
for each g € G. However, the sum
7 alzg)t fi(k(vg)d (2(v9)”  Fi (e (k(79))
~yeI'N\I

n (5.23) is an Eisenstein series in the sense of Definition 5.17, and therefore
it is Z(g)-finite and slowly increasing by Theorem 5.20. On the other hand,
for kg € K we have

Ey(P.&,& v, v 4)(gko)
= Z > alwgko)”* fi(k(vgko))

=1 yeI'N\I"
® a'(¢(vgko))” ' fl((k(vgko)))

:Z > alwg)”* fik(vg)ko)

i=1 ~veI'N\I

@ a'(¢(v9)p (ko))" fl(o(k(vg)e(ko)))
=Z Y alzg)” T filk(vg)ko)

i=1 ~veI'N\I"

® d'((vg)e(ko))”  f1(o(k(v9) (ko))

— Z Z a(zg) ”“U (ko) fi(k(vg))

1=1 yeI'N\I"

® a'(¢(v9)p (ko))" ¥ ot (ko)) f1(o(k(7g))).
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Hence we obtain

E%(Pa €7 6/’ V7 Vl7 1/))(9]{30) = (U? ® (0'?, © (p)) (kO)E<F(P7 fa 5/7 Va l/a 77[})(9)7
and therefore the proposition follows. a

From Proposition 5.23 it follows that the function E} (P&, v, v 9) :
G — C given by (5.22) is also a mixed automorphic form for I" and that both
of the functions Ey(P,§, ¢, v,v/,¢) and EJ(P,§, &, v,v' 1) are Eisenstein
series for mixed automorphic forms for I" in the sense of Definition 5.17. We
denote by A(I'\G, He ® H¢/) the space of (He ® Hg )-valued automorphic
forms for I'. Then A(I'\G, He ® H¢/) is a (g, K)-module, and the map

HES — AD\G, He ® Her),  — Ep(P,&,& v,V )

is a homomorphism of (g, K)-modules.

We shall now discuss the construction of Whittaker vectors and describe
Poincaré series for mixed automorphic forms. Let G = NAK, P = M AN
and other objects be as before. We fix Hy € a such that a(Hy) = 1 and
set a; = exp(tHp) for t € R. If v € (ag)* and if a = exp H with H € a,
then we write a” = 1) as usual. Let HS” be the space of C®°-vectors in
H%", and define the map ¢, : HY” — He by 6, (f) = f(1), which is a
continuous (P, M)-homomorphism with M acting by £, a by v+ p, and n by
0. For A > 1 denote by S\(H®") C H*" the associated Gevrey space in the
sense of Goodman and Wallach [30], which satisfies the inclusion relations

HSY € S\(H®Y) € HYY.
We fix a nontrivial character x on N.

Theorem 5.24 There exists a weakly holomorphic family of continuous
maps W(E,v) © S\(HSY) — Hg for 1 < X\ < 3/2 satisfying the following
conditions:
(i) W(&,v)(me(n)v) = x(n)W(&,v)(v) for alln € N and v € Sy(H®).
(i1) There exists a nonzero holomorphic function I¢ : (ac)* — C such that

im a7 CTPIWE ) (e (ar)v) = Te(v)de (v)
uniformly on compact subsets of (ac)*.

Proof. See [93, Theorem 1.1]. O

Let (ﬁgvf/v”’”/, T ery,) and (Hf;gl;”"’/, 71'25,,”7,/,2 be the representations of
G described above. For A > 1 let S'A(I{:f}’5 Y C Hf;5 ¥ be the associated
Gevrey space, and set

SXHGE ) = SA(HES 7 ) nHES Y (5.24)
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Thus, if H i’f;(;””’/ denotes the subspace of H, i’fl”“”/ generated by elements of
the form f ® (f' o o) with f € HSY and f' € HSV', then we have

HESHE € Sa(HES )  HES

Now the Whittaker vector for mixed automorphic forms is given by the next
lemma.

Lemma 5.25 Let x be a nontrivial character of N, and let SA(Hf,’sl"””/) be
as in (5.24). If 1 < X < 3/2, then there exists a linear map

WH(E,E v, V) : SN(HES ™) — He ® Her

satisfying the following conditions:

(1) WO, v/ ) (1€ (M) = X(MWP(E.E w0/ ) for all n € N
and ¥ € Sx(HES ).

(i1) There is a nonzero holomorphic function Izg, :ag — C such that

lim a,
t——o0

v+(v +p')od T
WOV € )R g (00

=+ (V +p) 0odp)dle , (V)
for all w c S/\(Hg7€/71/,y/).

Proof. Applying Theorem 5.24 to the representation (ﬁg@/”””/,%zg,’wy,) of
G associated to the representation R (Eop) of M and v+ (v +p)odp € (ac)*,
we obtain the linear map

W (&, € v, v/) : SA(HES ™) — He ® He
such that
WAL 1V )FE g (M) = X(M)WVP (€€ v )y
for all n € N and ¢ € SA(fI@f/”’”’/), and

lim a;(yﬂy te )OWJFP)WS&(@G,V, V/)(%§§/7y,u’ (ar))y

t——o0

= Igjg' (V + (V/ + p/) © d@)ézgguy W)

for some holomorphic function Ig’g, : (ag)* — C. Since Hg@/’””’/ is a subrep-
resentation of ﬁg@/”””/ of G, the lemma follows by restricting we & ¢, vv)
to HEE " of HEE ' 0
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Given ¢ € S,\(H5,75/’”7” ), let Vw ¢.¢ be the subspace of He ® Her spanned
by the set

{W¢(£a€/7 v, V/)ﬂ§£’7y,y/ (g)d) ‘ g € G}a

and let 03575, be the representation of K on Vzé,é’ given by

0¥ ¢ (WP (E, € v, )T s, (9)0 = W(E E 0,01, (9K

For g € G we set

PES 0= D WAL V) (e, (19) (W) € VYo (5.25)
yeI'N\T"

In order to discuss the convergence of ’P‘p’, , let o be a simple root of
(P, A), and fix an element Hy € a such that a(Ho) = 1. Let 6 be a Cartan
involution of g, and fix a nondegenerate G-invariant real-valued bilinear form
B on g such that B(Hg, Hy) =1 and —B(X,0X) <0 for all X € g. Let (, )
be the bilinear form on (ac)* that is dual to Bla.xa., and set

ag(N) = {p € (ac)” | Re(u, @) > (\, )}
for A € a*.

Theorem 5.26 Assume that v+ (V' + p') odyp € at(p)t. Then the function
PE o v on G given by (5.25) satisfies the following conditions:
o : W
(i) The series in (5.25) defining PL
subsets of G.
(i1) Pzgf),wu’ is left I'-invariant.
(111) 'ngg,b%y, (gk) = 0?575,(]@)?2?,&,”7”, (g9) forallge G and k € K.

. converges uniformly on compact
v,

Proof. Let WW(& &', v,1') be as in the proof of Lemma 5.25. Then by Lemma
2.1 in [93] the statement in (i) is true for W“"({,f’,u, v'). Thus (i) fol-
lows from the fact that W¥(¢,&',v,1/) is the restriction of W*"(ﬁ,f’,y, V)
to S,\(Hf;f/”””/). As for (iii), we have

7)5 &, u’( k) = Z we (67 5/7 v, V/)(’]rzg’,u,u’ (’ygk))(’(/})

yeI'N\T"

= Y 0l e WAL v ) (7Eer . (19) ()

yeI'N\T"
gp&'&'/( )ng’uu( )

for all £ € K. Since (ii) is clear from (5.25), the proof of the theorem is
complete. a
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From Theorem 5.26 it follows that the function
0,0 P
P G = Voee
given by (5.25) satisfies all the conditions for an automorphic form for I" and
az ¢.er €xcept the condition that it is slowly increasing. Since Uf £,¢ Can be
considered as an analogue of org’ ® (U?, o ) in the proof of Proposition 5.23,

the series 7’? ’gf’l,y, (9) can be regarded as a generalized Poincaré series for
mixed automorphic forms, and it provides an analogue of the Poincaré series
of Miatello and Wallach [93].

5.5 Fourier Coefficients of Eisenstein Series

In this section we express the Fourier coefficients of the Eisenstein series
for mixed automorphic forms described in Section 5.4 in terms of Jacquet
integrals by using Whittaker vectors.

We shall use the same notations as in the previous sections. Let x be a
nontrivial character of N, and set

Wh?%’ v,y T {l’l’ € (Hg7€ wy )* | M o (7725/7%”/ (n)) (526)

= x(n)p for all n € N}.

Thus, if n : He x Hey — C is a linear map and W% (€, ¢, v, ') is the Whittaker
vector described in Lemma 5.25, then we have

77 © (WW(£’€/7 v, V/)) € Wh?’g’ NZ

Let s* be an element of the normalizer M* of A in K, and define the
linear map
foa?/o;l/ﬂ// : Hé:&oo,u,u - HE ® HE'

by the integral

J&-X,?/Dﬂ/,y/ - /]V X(n)_lazf/,y7yl o (71’2-0,5/,”7,// (S*n))dn, (527)

where 772’5, oo and 0f, ,, are as in (5.16) and (5.17), respectively. The
integral in (5 27) can be considered as an analogue of the Jacquet mtegml (cf.
[45]) for mixed automorphic forms. Note that, if s* is replaced by ms* with
m € M, then JX7 , , should be replaced by (£ ® (¢ 0 ¢))(m)JX7 ,

Let u € WhX’ ' v and extend x to a map x : G — C* by setting
x(nak) = x(n) for aliln € N,a € Aand k € K. Then p is a quasi-invariant
distribution on N with multiplier

v,V

GxN—=C* (g.n)—x(9)"
in the sense of [122, §5.2].



134 5 Mixed Automorphic Forms on Semisimple Lie Groups

Lemma 5.27 If 4 € WhX? then there exists a linear map S : He ®

&8N’
H¢ — C such that
=S80 (JXZ 5

where Jg’g’,‘/l’f’y, is as in (5.27).

Proof. Since p is a quasi-invariant distribution on N with multiplier (g, n) —
x(9)~%, from [122, Theorem 5.2.2.1] it follows that there is a unique element
Z € (H¢ ® Her)* such that

for all g € AK = N\G and

) = ([ o sujan.7)

for f € Hf,:g;”’”/. However, since a(n) = 1 and a’(p(n)) = 1, we have

fn) = (e (D) =0 (T er 11 () )

Thus the map S : H:® Her — C defined by S(v) = (v, 2) for eachv € H: @ Hes
satisfies the desired condition. O

Let s be a nontrivial element of the Weyl group W(G, A) of (G, A), and let
s* € K be an element of the normalizer M* of A in K such that ad (s*)|q4 = s.
Then we set

(As(& & v, ) (k) = /N O e1 o (TE er 1 (8™ b)) dn (5.28)

for ¢ € H&f;;””’/ and k € K, and define the representation £° of M and the
element sv of (ac)* by

€ (m) = £((s")"'ms"), s = (ad (s 1)(H)) (5.29)

for all m € M and H € (ac)*. Similarly, we can consider the representation
¢¢) of M’ and the element o(s)v/ of (al)*.
Proposition 5.28 For each € WhY{ , , there ewist elements n,n €
(He ® H{)* such that
p=n0Zee v+ @ +p)odp) WA E v )
1 0 B oo (50 + (60 + /) 0 dp)
WAE,E7 svp(s)) 0 Au(€, € v ),

where Ag(&,&,v,V'), £ and sv are as in (5.28) and (5.29).
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Proof. Let n1,...,nq be a basis for ﬁ5,75/7”’”/, and let

=X e
Whe e, = { € (HG* ") o (7Ee . (0))
= x(n)pu for all n € N}.

Then, as in the proof of Theorem A.1.10 in [93], the 2d functionals

moSee(v+ (1 +p)odp) WP (E ¢ v, V),
M0 Zgu groto (s + (9(5) + pl) 0 dp) ™!
W(E, &) su, p(s)V) 0 Au(€, € 1, V),

na© See (v + (V' + p') o dp) T WP(E, € v, 1),
1© Zee oo (30 4+ (p() + ) 0 d)”!
WAE, €7 sv () As(€ €' v/
form a basis for WTI?:;VU’V/. Thus, if i € \/7\/'\}12757]/71,/, there exist elements
0,1 € (He ® He)* such that
fi=1n0Zee+ 1 +p)odp) W v,0)
17 0 S oo (30 + (o) + ) 0 dp) ™
WAE, €7, svp(s)) 0 Au(E, € v ).
Now the proposition follows from the fact that each p € Whyg is a
restriction of an element [ € \/NTI?:;,UW/. ad

Let A(I'\G) be the space of C-valued automorphic forms for I", and let
V C A(I'\G) be a (g, K)-module. If T": HiEKVKLf — V is a homomorphism
of (g, K)-modules, we set

Iy(y) = xX()~HT(®))(ng)dn (5.30)

I'NN\N

for ¢ € Hii;l}{'fl and g € G.

Lemma 5.29 If JX7 is as in (5.27), then for each 1 € Hi%;'}{lf/ and
g € G the integral in (5.30) can be written in the form

Ig (’(/}) = n(JEX,g’D,U,V’ (Wzé’,u,u’ (g)’(/}))

for some element n € (He ® Her)*.
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Proof. Since T is a homomorphism of (g, K)-modules and the action of G
on V C A(I'\G) is a right regular representation, if ng € N, then by using
(5.30) for the identity element 1 of G we obtain

£ (wZ i 0)¥) = | o N (T ) (o)
— x(no) / X(n) " (T (W) (n)dn = x(no) 11 (4).
PNAN\N

Thus, using Lemma 5.27, we see that there is an element n € (He ® He/)*
such that

L) =n(JEe . (1)
On the other hand, using the relation

T(nfer ., (9)0)(x) = (T¢)(zg)

for all g,z € G, we obtain

B = [ X @0 )dn = B (w0 (0)9).

and hence the lemma follows. O

Let Q = MgAgNg be the Langlands decomposition of another parabolic
subgroup @ of G, so that there is an element k € K with Q = kPk~!. Since
we are now dealing with two parabolic subgroups P and @, we shall use P
and @) as subscripts on the left for various objects associated to respective
parabolic subgroups, for example pHiﬁl(:';’{lf/ for Hii;';{lf/ Given a function
1 on G, we set

(L) (z) = (k™ z) (5.31)

for all k,x € G. Let £* be the representation of Mg and kv the element of
(ag)¢ corresponding to & and v, respectively, where ag is the Lie algebra of
Ag.

Lemma 5.30 If Q = kPk~! with k € K, then the operator Ly in (5.31)

. . ’ ’ k grp(k) ’
determines a linear map from pr;E e 70 QHi & k(R

Proof. Let ¢ = 3" fi @ (fl o) € pHijfl”’”" with f; € pH®" and f] €
pHE "' Then by (5.31) we see that

Ly (¢)(x) fik™ ) @ filp(k) " o(@))

M-

1

.
Il

M-

(Lt @ (Lo o)) (@)

1

.
Il
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for all x € G. However, we have
Lifi € QHgk’k'/, Loy fi € QHf/W)’w(k)”/>

and therefore Ly (¢)(z) € QHfak’flw(k)7k”""(k)”/; hence the lemma follows. O
Now we describe the Fourier coefficient of the Eisenstein series
ELZ(P7 f’ 5/7 I/’ l//’ 110)(9)

for mixed automorphic forms in (5.22) corresponding to a character of Ng in
the next theorem.

Theorem 5.31 Let EJJ(P,§,&',v,1',v)(g) be the Eisenstein series in (5.22)

associated to a linear map 0 : He ® He — C and an element i) € pro’FI/(’f’]’(",/,

and let xg be a character on Ng. Then there exists a meromorphic function
0 (ag)e — Home((He ® Her)*, (Her © Hyro)*)

such that
[ xaln) N EUPEE v )0
FI’TNQ\NQ

= (W& (shv + (p(sk)V + p') o dip)) ()
X (‘]?k(?gpap(k)7ky’w(k)y/ (Wfk,flw(k),kmw(k)yl (g)Lkd}))
forall g € G.

Proof. If xp is the character of Np corresponding to x¢, then the Jacquet
integral ng,?,ﬁ,u’ on Np corresponds to J ?kQ f’im on Ng. Therefore by Lemma
5.29 there is a linear map A : He ® He — C such that

/ xa(n) " (EL(P,£,€ v,/ ) (ng))dn
INNg\Ng

XQ,¥P
=4 (Jsk?w(m,kuw(k)u' (Wfk,em Jvp(k)v! (Q)LW))’

On the other hand, if we consider the case of @ = P and define A(n) €

Whe's . by

/ xp(n)"HEL(P,€,€ v,/ 1) (ng))dn
FﬂNP\NP
:/mNP\NpXP(”)_ln( >° 00w (WEe (o)) )dn

’)/EFN\F
=Am)(TEer 0 (9)0),
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then A(n) is an element of Why'7  , in (5.26) and A is a linear function of
7; hence by Proposition 5.28 there exist meromorphic functions

=19 259+ (ag)f — Home ((He ® He )", (Hee ® Hero))*)

—1 y =2
such that
/ xa () \(EL(P.,€ v, ) (ng))dn
FI’TNQ\NQ

= Z kv + (p(k)V + p') o dg) (n)
x (W? (e, g/w(k), kv, @(k)y’)(ﬁfk7€w(k)7kV’¢(k))y, (9)Lx)
+ 539 (shv + (p(sk)v + p) o dp)(n)
x (W#((65)7, (€720, shw, o (sk)v')

k
[¢] AS (£k7 flLP( )a kl/? gp(k)yl)(ﬂ-gkvg/up(k)vkw(p(k)y/ (g)Lkd))

However, it can be shown that

k
As (£k7£/<p( )a kl/7 gp(k)y/) © ﬂgk,g“/’(k),ku,<p(k)y’

k (k)
- ﬂ—ék)s7(5“”(}9))‘P(S),Skl/,go(sk)l/’ AS (6 76/5& ’ ]ﬂ/7 (p(k‘)yl)

Using this and applying Lemma 5.25 for g = a;, we have

ZP kv + (k) + p) 0 d)(n)
W2 (¥, €Y kv, o)) (T8 goiir gy iy (00) D)
+ 55 (skv + (9(sk)v + p) 0 d) ()
x (WP ((€)°, (7)) sk, o(sk))
0 Au(€h, €7 kv, @RV ) (T, v oy (@) L)

~ ZP9 (kv + (k) + o) o dp)(n)ap” T EWV Pl

X Ifk &'/Lp(k) (V + (V/ + p ) © d(p)(sgk gup(k) kv Lp(k ( kﬂ/)

+ ~PQ(sk:V + (p(sk)v + p') o dyp)(n)
aku+( ek +p)odp+p o (skv + (@(sk)V' + p') o dp)

X fsk glnp(sk)
(65,67 kv, (k) ) (Lib))

5(5’“) (€720 () sk, p(sk) V’(
as t — oco. On the other hand, we have

(k
8 e (ere 0y omspeiyer (As (65 € v, (k) ) (L)

— JXQ e
(€9)%,(£7¢00) ) shwp(sh)v

,(Li).
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Hence we obtain

A(‘]?fsfw kv p(k)v’ (Wfkw(k%ku,w(mw (“t)LW))

kv k) +p')od
_ A(JgQgﬁa(k) oo +(p (k) +p") so+ka¢)

~ 5k + (p(R)Y + ) 0 dip) (may” T et

X ng o) (kv + (p(k)v" +p') d‘P)(sgk o) o o(k)) o (Lk)
+ 259 shv + (p(sk)' + o) o dig) (m)a; ™ FH et
X Igsk o (skv + (@(sk)V' + p') o dyp)

XQ ¥
x J(sk) (€720 (5) sku,p(sk) o (L)

as t — o0o. By comparing the coefficients, we have

A =TIy oo (kv + (p(sk)v' + ) o dyp)
x EPCQ(skv + (@(sk)' + p') o dp)(n).

Thus the function lI/ 5, on (ag)¢ given by
P, =P,
Wg@ fo’( ) Igsk E/AP(SK)( ) "—’2 Q( )

is a meromorphic function, and the proof of the theorem is complete. a
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Families of Abelian Varieties

In earlier chapters we studied elliptic varieties and their connections with
mixed automorphic forms. An elliptic variety can be described by a family
of abelian varieties parametrized by an algebraic curve. The abelian varieties
involved were products of elliptic curves. In this chapter we consider more
general families of abelian varieties parametrized by an arithmetic quotient
of a Hermitian symmetric domain.

Let H,, be the Siegel upper half space of degree n on which the symplectic
group Sp(n,R) acts as usual. If I is an arithmetic subgroup of Sp(n, R), then
the associated quotient space I'"\'H,, can be regarded as the moduli space for
a certain family of polarized abelian varieties, known as a universal family
(see e.g. [24, 42, 63]). Such a family of abelian varieties can be considered as a
fiber variety over the Siegel modular variety X' = I'"\'H,,, and the geometry
of a Siegel modular variety and the associated universal family of abelian
varieties is closely connected with various topics in number theory including
the theory of Siegel modular forms, theta functions and Jacobi forms.

Let G = G(R) be a semisimple Lie group of Hermitian type that can be
realized as the set of real points of a linear algebraic group G defined over
Q. Thus the quotient D = G/K of G by a maximal compact subgroup K
has the structure of a Hermitian symmetric domain. Let 7 : D — H,, be
a holomorphic map, and let p : G — Sp(n,R) be a homomorphism of Lie
groups such that 7(gz) = p(g)7(z) for all z € D and g € G. Let I" be a
torsion-free arithmetic subgroup of G such that p(I") C I/, and let X = I'\D
be the corresponding arithmetic variety. Then the holomorphic map 7 induces
a morphism 7x : X — X' of arithmetic varieties, and by pulling the fiber
variety over X’ back via 7x we obtain a fiber variety over X whose fibers
are again polarized abelian varieties (see Section 6.1 for details). Such fiber
varieties over an arithmetic variety are called Kuga fiber varieties (see [61,
108]), and various geometric and arithmetic aspects of Kuga fiber varieties
have been investigated in numerous papers (see e.g. [1, 2, 31, 62, 69, 74, 84, 96,
108, 113]). A Kuga fiber variety is also an example of a mixed Shimura variety
in more modern language (cf. [94]). Various objects connected with Siegel
modular varieties and the associated universal families of abelian varieties
can be generalized to the corresponding objects connected with more general
locally symmetric varieties and the associated Kuga fiber varieties.

M.H. Lee: LNM 1845, pp. 141-175, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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In Section 6.1 we review the construction of Kuga fiber varieties associ-
ated to equivariant holomorphic maps of symmetric domains. In Section 6.2
we describe canonical automorphy factors and kernel functions for semisimple
Lie groups of Hermitian type as well as for generalized Jacobi groups. Section
6.3 is concerned with the interpretation of holomorphic forms of the highest
degree on a Kuga fiber variety as mixed automorphic forms on symmetric
domains involving canonical automorphy factors. The construction of an em-
bedding of a Kuga fiber variety into a complex projective space is discussed
in Section 6.4. This involves Jacobi forms of the type that will be considered
in Chapter 7.

6.1 Kuga Fiber Varieties

In this section we review the construction of Kuga fiber varieties associated to
equivariant holomorphic maps of symmetric domains. They are fiber bundles
over locally symmetric spaces whose fibers are polarized abelian varieties.
More details can be found in [61] and [108].

Let G be a Zariski-connected semisimple real algebraic group of Hermitian
type defined over Q. Thus G is the set of real points G(R) of a semisimple
algebraic group G defined over Q, and the associated Riemannian symmetric
space D = G/K, where K is a maximal compact subgroup of G, has a G-
invariant complex structure. Such a space can be identified with a bounded
symmetric domain in C* for some k(see e.g. [36]), and is called a Hermitian
symmetric domain. Let G’ be another group of the same type, and let D’ be
the associated Hermitian symmetric domain. We assume that there exist a
holomorphic map 7 : D — D’ and a homomorphism p : G — G’ of Lie groups
such that

7(92) = p(g)7(2)
for all g € G and z € D. In this case we say that 7 is equivariant with respect
to p or that (7,p) is an equivariant pair. To construct Kuga fiber varieties
we need to consider equivariant pairs when G’ is a symplectic group. Such
equivariant pairs were classified by Satake (see [108]).

Example 6.1 Let W be a real vector space of dimension v defined over Q,
and let S be a nondegenerate symmetric bilinear form of signature (p,q) for
some positive integer p defined over Q. Let T(W) = @, -, W™ be the tensor
algebra of W, and let g be the two-sided ideal of T (W) generated by the set

{z@xz—S(x,z) |z e W}
Then the Clifford algebra of (W, S) is given by
C=C(V,5)=T(W)/As.

Let {e1,...,e,} with v =p+ q be an orthogonal basis of V' such that
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S(ei, ej) = (5@'0[,‘

for some aq,...,a, € R, where 6;; is the Kronecker delta. If W is identified
with its image in C, then it is known that dimC = 2¥ and that the set

{1YU{es, -vei, |1<ig < <ip, <y, 1<r<v}

is a basis of C. Thus C is an associative algebra generated by eq,. .., e, satis-
fying the conditions
el =a;, eej+eje;=0

for 1 <i,j <wv withi+# j. We set

Ct={(ey e, |1<iy< - <i, <v, r even)g,

C =(ey e, |1<i < <t <v, r oddg.
Then C* is a subalgebra of C of dimension 2V~ and we have
c=Ctec, (C"YY?*=(C)*=c", ctc-=CccCcr=cC".

Let ¢ be the canonical involution of C defined by ei = e; for 1 <i <mn. Then
the spin group is given by

Spin(W,S) ={geC" |g'g=1, gWg ' =W}

Given Spin(W, S), we set
$g)r = grg™!
for all x € W. Then we have ¢(g) € SO(W,S), and the map
¢ : Spin(W, S) — SO(W, S)

is a two-fold covering of SO(W,S). Let a be an element CT with a* = —a,
and let by and by be elements of CT and C*, respectively, such that

b2 + (=1)1HD/2p2 — 1 biby + boby =0,
and the bilinear map
(x,y) — tr(biaz'y) + tr(braz'e_y)
for x,y € CT is symmetric and positive definite. We set
A(z,y) = tr(az'y), I(z)=xby + e_xbs.

for all z,y € C*, where e_ = epy1---€,. Then A is a nondegenerate alter-
nating bilinear form on C*, and I is a complex structure on CT such that
(x,y) — Az, Iy) is symmetric and positive definite and

A(gz, gy) = A(x,y), I(gz) = gl(x)



144 6 Families of Abelian Varieties

for all g € Spin(W, S) and x,y € C* (see [106, Section 2]). Thus we see that
the left multiplication map
plg) : @ — gx

determines a homomorphism
p: Spin(W, S) — Sp(C™, A).

Now we assume that p = 2, that is the signature of S is (2,q). Then it is
known (see [106]) that the symmetric space D = G/K associated to a maz-
imal compact subgroup of the spin group G = Spin(W, S) has a G-invariant
complex structure. We choose a basis of CT in such a way that Sp(CT, A) can
be identified with Sp(2¥,R) with v = 2 + q and denote by

p: Spin(W, S) — Sp(2",R)

the homomorphism induced by p. Then we can consider a holomorphic map
7 : D — Ha, be that is equivariant with respect to p.

Let V' be a real vector space of dimension 2n defined over Q. A complex
structureon V is an element I € GL(V) such that I? = —1y with 1y denoting
the identity map on V. Equipped with such a complex structure I, the real
vector space V can be converted to a complex vector space if the complex
multiplication operation is defined by

(a+bi)-v=av+blv (6.1)

for all a + bi € C and v € V. Let § be a nondegenerate alternating bilinear
form on V defined over Q. Then the symplectic group

Sp(V,B) ={g € GL(V) | B(gv, gv") = B(v,v") for all v,0" € V}

is of Hermitian type, and the associated Hermitian symmetric domain can be
identified with the set H = H(V, ) of all complex structures I on V such that
the bilinear form V x V. — R, (v,v") — B(v,Iv’) is symmetric and positive
definite. The group Sp(V, 8) acts on H by

g-1=glg™!

for all ¢ € Sp(V, ) and I € H. Let {e1,...,e2,} be a symplectic basis of
(V, B), that is, a basis of V satisfying the condition

1 ifi=j5+n,
,6(6,‘,6]’) = —1 ifq :j—n,

0 otherwise

for 1 <14,j < 2n. Then with respect to such a basis Sp(V, 3) can be identified
with the real symplectic group Sp(n,R) of degree n. We also note that H can
be identified with the Siegel upper half space
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Hn=1{Z€ M,(C)|'Z=2, ImZ >0}

of degree n consisting of n x n complex matrices with positive definite imag-
inary part and that the symplectic group Sp(n,R) on H,, by

9(Z2)=(AZ + B)(CZ+D)™! (6.2)

for all Z € H,, and g = (4 B) € Sp(n, R).

We now consider an equivariant pair (7, p) for the special case of G/ =
Sp(V, 3). Thus we have the homomorphism p : G — Sp(V, §) and the holo-
morphic map 7 : D — H,, satisfying the condition 7(gz) = p(g)7(z) for all
g € G and z € D. Let G x, V be the semidirect product of G' and V' with
respect to the action of G on V' via p. This means that G' x, V' consists of
the elements (g,v) € G x V and its multiplication operation is given by

(9,v) - (¢',v") = (99", p(g)v" +v) (6.3)

for g,¢' € G and v,v' € V. Then G X,V acts on D x V by

(9,v) - (2,w) = (92, p(g)w +v) (6.4)

for all (g,v) € Gx,V and (z,w) € D x V. Let I" be a torsion-free arithmetic
subgroup of G. Then the corresponding quotient space X = I'\D has the
structure of a complex manifold as well as the one of a locally symmetric
space. It is also called an arithmetic variety taking into account the fact that
it can be regarded as a quasi-projective complex algebraic variety (cf. [5]).
Let L be a lattice in V' with Vg = L ®7 Q such that

B(L,L)CZ, p(I)LC L. (6.5)
If (7,0),(¢,0') € Gx,V with v,7" € I" and £,¢' € L, then by (6.3) we have

(1, 0) - (' 0) = (s p()E +£).

Using this and the condition p(I")L C L, we see that (v,£) - (v/,¢') € I' x L;
hence we obtain the subgroup I" x, L of G x, V. Thus the action of G X,V
in (6.4) induces the action of I' X, L on D x V. We denote the associated
quotient space by

Y=Ix,L\DxV. (6.6)

Then the natural projection map D x V — D induces the map 7 : ¥ — X,
which has the structure of a fiber bundle over X whose fiber is isomorphic
to the quotient space V/L.

We want to discuss next the complex structure on the fiber bundle Y over
X given by (6.6). Let zg be a fixed element of D, and let Iy be the complex
structure on V' corresponding to the element 7(zp) of H,,. Let Vo =V @r C
be the complexification of V', and denote by V; and V_ the subspaces of V¢
defined by
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Vi ={v e V| lyv==Liv}, (6.7)

so that we have B
Ve=ViagV., Vi=V_. (6.8)

Using the fact that H,, can be identified with the set of complex structures
on V, we see that each element z € D determines a complex vector space
(V,I,(2)), where I is the complex structure on V' corresponding to 7(z) €
H,. Then each element v in (V, I;(;)) determines an element

£(z,0) = v, = vy —T(2)v- = vy — Lyve (6.9)

of the subspace V of V¢, where the elements vy denote the Vi-components
ofveV C Vg =Vy @ V_. We consider the map

n:DxV —=DxV,

defined by
n(z,v) = (2,§(z,v)) (6.10)

for all (z,v) € DxV. Then it can be shown that 7 is a bijection, and therefore
the action in (6.4) determines an action of G x, V on D x V. given by

(9:0) - (z,u) = n((g,v) - (07" (2,u))) (6.11)

for all (g,v) € G,V and (z,u) € D x V.

We consider the natural projection map 7 : D x V. — D as the trivial
vector bundle over D with fiber V. Then by using the isomorphism 7 : DxV =
D x Vi given by (6.10) the complex structure on D x Vy can be carried over
to a complex structure Z on the vector bundle D x V over D. Note that
the complex structure on D x Vi is determined by the G-invariant complex
structure on the Hermitian symmetric domain D and the complex structure
Iy = I+(zy) on V. Let 7 : D x V. — D be the natural projection map, which
may be regarded as the trivial vector bundle over D with fiber V. If z € D,
the fibers of T and 7' over z can be written as

Fl) = (b x VRV, 7 = {2hx Vi 2V
hence we have
n |7~r*1(z): {2} x V4.
Noting that the complex structure on V; is Iy, we see that
(M z-1()) © (Z [7-1(z)) = Lo o (1 [7-1(2))
for the fiber 7~!(z) of the bundle 7 : D x V — D over each z € D.
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Proposition 6.2 Let g be an element of G such that

plg) = (é g) € Sp(V. B) (6.12)

with respect to the decomposition Vo = Vi @ V_ of Vo =V @ C in (6.8).
Then the action in (6.11) can be written as

(9,v) - (2,€(z,w)) = (92,(C7(2) + D)~ €(2, w) +€(g2,v)) (6.13)
forall z€ D and v,w e V.

Proof. Given g € G, z € D and v,w € V, using (6.3), (6.9) and (6.11), we
see that

(9,v) - (2,&(z,w)) = (92,&(92, p(g)w + v)) (6.14)
= (92,¢(g9z, p(g)w)) + £(g2,v)).

If p(g) is as in (6.12), we have

ran=(p) (1) = (e L ow )

hence we obtain
(p(9w)+ = Awy + Bw-, (p(9)w)- = Cwy + Dw-_.
Using this and (6.9), we have

(07 p(g)w) = (Aw, + Bu) — 7(g2)(Cus + Dw_)  (6.15)
=(A—-171(92)C)wy + (B — 7(92)D)w—

= (1,-7(g2)) <é g) (zﬁ

= (L, =7(g2))p(g)w-
Since p(g) € Sp(V, ), its inverse is given by

o= (AT ' (tD —tB

Py =\cbp) “\-cta)

Using this, (6.2), and the fact that the matrices 7(z),7(g9z) € H, are sym-
metric, we see that

(1,-7(92)) = (1, ="(7(g2))) (6.16)
(
= YCr(2) + D)~ (r(2)!C +'D, —7(2)' A — ' B)

= (Crt)+ D) =) ([ )
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By substituting this into (6.15) we obtain

&gz, plg)w) = (C7(2) + D)7 (1, —=7(2))w (6.17)
="(C7(2) + D)~ "&(z, w);

hence the proposition follows by combining this with (6.14). a

Corollary 6.3 The complex structure Z on D x V' described above is invari-
ant under the action of G x, V.

Proof. Let z = (21,...,2;) and £ = (&1, ..., &) be global complex coordinate
systems for D and V, respectively, associated to the complex structure Z on
D x V. Given (g,v) € G x, V, we denote by

zo(g,v) = (z10(g,v),...,250(g,v)),

60(977}) = (flo(g7v)7"'7£no(g7v))

the corresponding transformed coordinate systems. Then by (6.13) we have
(z0(g,v)(z,w) = gz, (6.18)

(€0 (g,v))(z,w) = "(C7(2) + D)~ '&(2,w) + £(gz,v). (6.19)

Since the complex structure on D determined by Z is G-invariant, the formula
(6.18) shows that the transformed coordinates z; o (g,v) are holomorphic
functions of z1, . . ., z;. Similarly, the coordinates z; are holomorphic functions
of z1 0 (g,v),..., 2k 0 (g,v). On the other hand, from (6.19) we see that the
transformed coordinates £; o (g, v) are holomorphic functions of z and £ and
that the coordinates ¢; are holomorphic functions of z and £ o (g, v); hence
the lemma follows. ad

By Corollary 6.3 the complex structure Z on D x V induces the complex
structure Zy on the fiber bundle Y over X in (6.6); hence its fiber V/L
becomes a complex torus. In addition, the alternating bilinear form § on V'
determines the structure of a polarized abelian variety on the complex torus
V/L. Thus Y may be regarded as a family of abelian varieties parametrized
by the locally symmetric space X and is known as a Kuga fiber variety.

Lemma 6.4 The complex structure Z on D x V' described above satisfies
I [r-1(=Ir(»)

for each z € D, where I.(.) is the complex structure on V' corresponding to
the element 7(z) € H,.
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Proof. Since the complex structure on V. is Iy, it suffices to show that

f(Z, IT(Z)w) = IOS('% ’LU)

for all w € V. Let zg be the element of D such that the complex structure
Iy corresponds to 7(zp9) € H, as before, and let g € G be the element with
z = gzo. Then we have

Loy = Logyr(zo) = P(9) r(z0)p(9) 1 = p(9)Top(g) ™"
Using this, (6.9) and (6.16), we have

§(z, Lryw) = (1, =7(2)) [ (zyw
= (1,-7(g20))p(9)op(9) ~'w
="(C7(2) + D)~ (1, =7(20))p(9) ' p(9)op(g) "'
= 1" (C7(2) + D)~ (1, =7(20))p(g9) ~'w
= Io&(z,w),
and therefore the lemma follows. a

Using the notation in (6.9), the action of G x, V on D x V. given by
(6.11) can be written in the form

(9,v) - (z,u) = (92, "(C7(2) + D) 'u +v,.) (6.20)

forallv eV, (z,u) € DxVy and g € G with p(g) = (& B) € Sp(V, 8). Thus
the Kuga fiber variety in (6.6) can be written as

Y =Ix,L\DxV,, (6.21)

where the quotient is taken with respect to the action given by (6.20).
Given g € G, we define the map ¢4 : V — V by

bg(v) = p(g)v (6.22)

for all v € V. Then we see easily that ¢, is an R-linear isomorphism. Using
the fact that

Ir(g2) = Lo(gyr(z) = P(9)Ir(z)p(9) ™"

for each z € D, we have

(IT(QZ) © ng)(”) = p(g)IT(Z)p(g)ilp(g)”
= p(g)IT(z)v = (¢q © I‘r(z))(fv)

for all z € D and v € V. Thus it follows that
I‘r(gz) o ¢g = (rbg o I‘r(z) (623)
for all z € D.
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Lemma 6.5 Given z € D and g € G, let (V,1.(.)) and (V,I(,.)) be the
complex vector spaces with respect to the complex structures I,y and I, (42,
respectively. Then the R-linear isomorphism ¢4 : V. — V given by (6.22)
induces the C-linear isomorphism

¢g : (‘/7 I‘r(z)) - (‘/a IT(gz))
defined also by (6.22).
Proof. Given a + bi € C, using (6.1) and (6.23), we have

By((a+bi) -v) = By(av -+ bLysy0) = ady(v) + b(dy 0 Ty
= aqﬁg(v) + bIT(gZ)¢g(U) = (a + bi) - ng(”)

for all v € V; hence the lemma follows. a

By Lemma 6.5 the element of (V, I, (,.)) corresponding to the element v
in (V, I,(s)) is ¢4(v) = p(g)v. This means that as an element of (V, I (4.)) the
element vy, in (6.20) should be considered as

(p(9)v)g: = (92, p(g)v)) = (C7(2) + D) "v2,

where we used the calculation in (6.17). Therefore we can now rewrite (6.20)
in the form

(9,0) - (z,0) = (92, (C7(2) + D) (u +v2)). (6.24)
for all (g,v) € G x,V and (z,u) € D x V.

Example 6.6 We consider the case where the real vector space is V = R?" =
R™XxR™, so that Vi = C™. Given (r,s) € R"xR"™ =V, we choose the complex
structure on V' in such a way that (s, —r) € Vo @ V_ = V. Then by (6.9) we
have

(r,8): =s+7(2)r

for z € D; hence (6.24) can be written as
(9,(r,8)) - (z,u) = (92, t(CT(z) + D)_l(u +7(2)r +5))
for u e C" and g € G with p(g) = (& B) € Sp(V, 3).

In order to consider another interpretation of the Kuga fiber variety Y in
(6.21), we consider the case of Gy = Sp(V, ), Dy = H,, and Iy = Sp(L, B),
and assume that py : Go — Sp(V,3) and 7y : Dy — H,, are the respective
identity maps. If we denote by Y, the Kuga fiber variety determined by the
equivariant pair (79, po) and the discrete subgroup Iy X,, L of Go x,, V,
then we obtain the complex torus bundle my : Yy — Xy over the Siegel
modular variety Xo = Ip\H,. Let Y be the Kuga fiber variety in (6.6)
or (6.21) associated to the equivariant pair (7,p) and the discrete group
I' x, L considered before. Using (6.5), we see that p(I") C Ip; hence the map
7 :D — H, induces the map 7x : X — Xy. Then the Kuga fiber variety Y
can also be obtained by pulling the bundle Yy back via 7x.
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6.2 Automorphy Factors and Kernel Functions

In this section we review the notion of canonical automorphy factors and
canonical kernel functions for semisimple Lie groups of Hermitian type and
those for generalized Jacobi groups by following closely the descriptions of
Satake given in [108] (see also [99]). A generalized Jacobi group can be con-
structed by using a Heisenberg group and an equivariant pair which deter-
mines a Kuga fiber variety considered in Section 6.1. Canonical automorphy
factors for generalized Jacobi groups will be used later to define Jacobi forms.

Let G = G(R) be a semisimple real algebraic group of Hermitian type as
in Section 6.1, and let K be a maximal compact subgroup of G. Then the
Riemannian symmetric space D = G/K has a G-invariant complex structure
7 which determines a complex structure on the tangent space T (D) for each
z € D. Let € be the Lie algebra of K, and let g = £+ p be the corresponding
Cartan decomposition of g. Let zg € D be the fixed point of K, and let Zg
be the complex structure on T, (D) = p. We set

pr ={X €pc | Lo(X) = +iX}, (6.25)

and denote by P; and P_ the C-subgroups of G¢ corresponding to the sub-
spaces p4 and p_, respectively, of gc. Then we have

P NKcP. ={1}, GCP,KcP., GNKcP. =K (6.26)

(see for example [108, Lemma 11.4.2], [99]). If g € P KcP— C G¢, we denote
by (9)+ € Pt, (9)o € Kc and (g)— € P— the components of g such that

g9 =1(9)+(9)o(g)--

We denote by (G¢ X p4 )« the subset of G¢ X py consisting of elements (g, 2)
such that gexpz € Py KcP-. Then the canonical automorphy factor is the
map J : (G¢ X py)« — K¢ defined by

J(g,2) = (gexp z)o (6.27)

for (g,2) € (Ge x p4)«. If (g,2) € (G X p+)«, we also define the element
9(z) € py by
expg(z) = (gexpz)+. (6.28)

Furthermore, for z, 2’ € p, with (expz’) " lexpz € Py KcP-_, we set
Kk(z,2") = J((expZ) 1, 2) 7' = (((expZ) texpz)y) * € Kc. (6.29)

Thus we obtain a Kc¢-valued function k(-,-) defined on an open subset of
p4 xXp4 called the canonical kernel function for G, and it satisfies the relations

k(2 2) = n(z,z’)fl, k(20,2) = K(z,20) = 1,
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k(9(2),3(=")) = J(g, 2)i(z, 2) T (G, w)

for z,2" € p+ and g € Gg¢ for which k(z,2’) and k(g(z),g(z")) are defined
(see e.g. [108, Section I1.5]).

Let (V, 3) be the real symplectic space of dimension 2n defined over Q as
is described in Section 6.1. We extend ( to a bilinear form on V¢ and denote
by B, : Vo x Vg — C the bilinear map defined by

Bro(v,v") = B(v, Iyv")

for all v,v" € V¢. Then we have 35, = i on Vi x V; and B, = —if8 on
V_ x V_. Thus each of fr,|v,xv, and Br,|v_xv_ is both symmetric and
alternating; hence we have

Brolvixv, =0, Brlv.xv. =0.

Let H = H(V, 8) be as in Section 6.1, which can be identified with the Siegel
upper half space H,, of degree n. Since Iy € H, from the definition of H it
follows that both Br,|v, xv_ and fBr,|v_xv, are positive definite. Therefore
we can identify V_ with the dual V" of V. Now we define a Hermitian form

B:V@xV@—MConVbe

B(v,v") =iB(v,v")

for all v,v" € V. Then E is positive definite on V. x V., negative definite on
V_ x V_, and is zero on V} x V_ and V_ x V.

Let {u1,...,u,} be an orthonormal basis of V} with respect to the re-
striction of the positive definite form B to Vi x V4, and define the elements
Unt1,---,U2n DY Ujyn =Ty for 1 < j < n. Then we have

iﬂ(un-i-ﬁuj) = Zﬂ(ﬂﬁuj) = 6(uj7uj) =1,

iB(uk, Un k) = 13wk, W) = —iB(Tn, u) = —Blup, ug) = 1
for 1 < j,k < n. On the other hand, using Lemma 1.1(iii), we obtain

for 1 < j,k <n. Thus {us,...,us,} is a symplectic basis for (V¢, i), and we
have Sp(Vc, i) = Sp(Ve, ).

Now we discuss the canonical automorphy factor for G = Sp(V, 3). We
shall regard the elements of Sp(V,3) and the elements of its Lie algebra as
matrices using the basis {ug, ..., us,} of V¢ described above. Indeed, we have
G = Sp(n,R) with respect to this basis. Thus, for example, p; and Py can
be written in the form
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o {(32) 2}

po=ewr. = {(37) [2es0),

where S,,(C) denotes the set of complex symmetric n X n matrices. Similarly,

we have - {(% 8) ’ 7c sn(C)},

P —expp_ = {(% 2) ‘ Ze sn(«:)}.

We shall identify py with S,,(C) using the correspondence (§ ) +— Z. Thus
we may write

expZ = ((1) f) e Py

for Z € p; = S5 (C), and G acts on p by

9Z = exp '((gexp Z)1) € py

for all g € G, where exp™ 1 (W) for W € P, denotes the (1,2)-block of the
2 x 2 block matrix W. Let ¢’ be an element of G¢ = Sp(V¢, §) whose matrix

representation is of the form ¢’ = (éj gi ) Then ¢’ € Py KcP- if and only if
D’ is nonsingular, and in this case its decomposition is given by

., (1BD™Y (tD'' 0 10
9=\ 1 o p')\p'cr1)

Lemma 6.7 Let g= (4 B) € Ge, Z € py = Su(C), and let
J% : (Ge x py)e — K¢

be the canonical automorphy factor for the symplectic group G = Sp(V, 8). If
CZ + D is nonsingular, then we have

9Z = (AZ + B)(CZ + D)™,

J5(9,2) = (t(CZJgD)_l (CZO+ D)> . (6.30)

Proof. Given g € G¢ and Z € p, as above, we have
4 _(AB\(12\_(AAz+B
sexpe=\cp)\o1) " \cocz+D)"

Since C'Z + D is nonsingular, we see that the element gexp Z belongs to
P KcP_ and that its decomposition is given by
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gexpZ = (gexp Z)1(gexp Z)o(gexp Z) -,

(gexpZ)s = ((1) (AZ + B)(ch + D)l) |
tCz+ D)t 0
(geXpZ)OZ( 0 (CZ—FD))’

1 0
(gexp2)- = ((CZ +D)"lC 1) :
Thus we have

o2 = oo = (t(CZ g o (C’ZO+ D)) :

and gZ is the (1,2)-block (AZ + B)(CZ + D)~ ! of the matrix (gexpp);. O

Since the Siegel upper half space H,, is as the set of complex symmetric n x
n matrices with positive definite imaginary part, there is a natural embedding
of H,, into py = S,(C). If g= (A B) € Sp(V,B) and Z € H,,, then CZ + D
is nonsingular; hence, using Lemma 6.7 we obtain the usual action Z +—
(AZ + B)(CZ + D)™! of G on H,. On the other hand, given g € G and
Z € H,, the associated complex n x n matrix J(g, Z) can be regarded as a
linear map of V¢ into itself.

Corollary 6.8 (i) Let Z € ‘H,, and

g= (g g) € Sp(V. B).

Then the restriction J5 (g, Z) of the linear map J°(g9,Z) : Vo — Vg to the
subspace Vi of Vi is given by

J5(9.2) ={(CZ + D). (6.31)

(ii) Let k% be the canonical kernel function for the symplectic group
Sp(V., B), and let k3 be its restriction to Vi of the type described in (i).
Then we have

k32,2 =1- 27 (6.32)

for all Z,Z' € H,, where 1 denotes the n X n identity matriz.

Proof. The formula (6.31) follows immediately from (6.30). On the other
hand, applying Lemma 6.7 to the group
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with Z/ € ‘H,,, we see that

—
1-Z7 0
Hi(Z,Z/): ( 0 1—7/Z> 5

where we used (6.29) and the fact that
1-Z2)=1-1'2'7 =1- 27 .
This implies (6.32), and hence the proof of the lemma is complete. a

Let (7,p) be an equivariant pair which determines Kuga fiber varieties
considered in Section 6.1. Thus 7 : D — H,, is a holomorphic map that
is equivariant with respect to the homomorphism p : G — Sp(V, 3) of Lie
groups. We denote by G the group of all elements of G x V x R whose
multiplication operation is defined by

(9,v,)(¢", 0", ') = (99", p(@)v" + v, t +t' + B(v, p(g)v")/2) (6.33)

for all (g,v,1),(¢',v',t') € G x V x R. Thus the subgroup {0} x V x R of G
is the Heisenberg group associated to the symplectic space (V, 3). The group
G is the group of Harish-Chandra type in the sense of Satake [108] and can
be considered as a generalized Jacobi group since it reduces to a usual Jacobi
group when p is the identity map on Sp(V, ) (see for example [8, 124]). Let
K be a maximal compact subgroup of G with D = G/K, and let g and ¢ be
the Lie algebras of G and K, respectively. If g = € 4 p is the corresponding
Cartan decomposition of g, we recall that p, and p_ are subspaces of pc
defined by (6.25). If the subspaces V. and V_ of V¢ are as in (6.7), we set

pr=p+@V4, po=praV, (6.34)

and let P+, P_ Dbe the corresponding subgroup of Gc = G¢ x Ve x C, respec-
tlvely If Ko = K x {0} x C, we have G C P+K<CP_ Thus each element
geE G has a decomposition of the form

9=(9)+-(9o-(9)-

with (§)1 € Py, (§)o € Kc and (§)_ € P_. The canonical automorphy factor
J for the group G and the action of G on Py =py @V, is defined by

j((g,’l)ﬂf), (z7w)) = ((g,ut) exp(sz))07 (6'35)

exp((g,ut) : (Z,’LU)) = ((g,v,t) exp(z7w))+, (636)

assuming that (g, v,t) exp(z,w) € Py KcP_. Here exp(z,w) is an element of
G and is given by
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exp(z, w) = (exp z, w, 0) (6.37)
for all z € p; and w € V4. Since D is embedded into py, the quotient space
D =G/K =D x Vj can be embedded into pr = pr @ V. Thus (6.36)
defines the action of G on D. We also define the canonical kernel function
R() 1Py x Py — Kc by

7((z,w), (2, w') = J((exp (2, w')) ", (z,w)) ! (6.38)
= ((exp (/,w)) "' exp(z,w))y !

for (z,w), (2/,w’) € p4 such that

(exp (z/, w')) " exp(z, w) € Py KcP_. (6.39)

The condition (6.39) is satisfied for (z,w), (z',w’) € D; hence we obtain a
canonical kernel function on D x D.

Lemma 6.9 The canonical kernel function &((z,w), (2',w")) is holomorphic
in (z,w) and satisfies the relations

E((zl>w/)> (Z,’LU)) = E((Z,’LU), (Z/>w/))717

(G- (z,w),§- (2 0) = J(G, (2, w)E((z,w), (', w) T (G, (', w) "
Jor (z,w), (#,w') € D and § € G.

Proof. The first relation follows immediately from (6.38). In order to verify
the second relation, let (z,w), (2/,w’) € D and g € G. Then, using (6.35) and
(6.36), we see that

anp(Z,w) = exp(§~ (Z7w))j(§7 (Z7w))p1’
gexp(z’, wl) = exp(§~ (Zla wl))j(§’ (Z/’ wl))p2

for some py,p2 € P_. Since g = g, we have

exp(z/,w') "t exp(z, w) (6.40)
= exp( w) G g exp(z,w)

=P, (g, (", w)) " exp (G- (7 w) " exp(§ - (2,w)) (3, (2, w))pr,

which shows that

exp (2, w') texp(z,w) € Py KcP_.

Thus, by (6.38) and (6.40) the Kc-component of exp (27, w') ! exp(z, w) is
given by
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A((z,w), (2, w) 7
= J(G, (=", w) M exp (G- (7 w) " exp(G - (2,w)) T (G, (2, w));
hence we obtain

exp (g (2, w)) " exp(g - (z,w)) ™!

= j(@ (2, w))&((z, w), (3/7 u/))j(ﬁ, (2, w/))_l‘
Now the second relation is obtained from this and (6.38). O

We shall now describe below the action of G on D and the canonical
automorphy factor for G defined by (6.36) more explicitly. Given (g,v,t) € G

and (z,w) € D C py @ V., we set

(g,v,t) - (z,w) = (2,w') € D, (6.41)

J((g,v,1), (z,w)) = (J1,0,.J2) € K¢ = K¢ x {0} x C. (6.42)

Using (6.35), (6.36), (6.37), (6.41) and (6.42), we obtain a decomposition of
the form

(g,v,t) exp(z, w) = (exp 2, w',0)(J1,0,J2)(p_,w_,0) € PyKcP_  (6.43)

for some (p_,w_,0) € P_. Using the multiplication rule on G in (6.33), we
see that the right hand side of (6.43) reduces to

((exp2")Ji,w', Jo)(p—,w—,0) = (¢", 0", t"),
where
g" = (exp2’)Jip_,

o' = w + pl(exp 2 -,
— Ja + B!, p((exp ) 1)) /2.

On the other hand, the left hand side of (6.43) can be written as
(9, v, 1) exp(z,w) = (g,v,)(exp 2, w,0)
= (gexpz,v+ p(g)w,t + B(v, p(g)w)/2).

Hence we obtain
gexpz = (expz’)Jip_, (6.44)

v+ p(g)w =w" + (exp 2')Jiw_, (6.45)
t+ B, plg)w)/2 = Jo + B(w', p((exp 2) T )w-) /2.
for (g,v,t) e G=G xV xR and (z,w) e D=D x V,.
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Proposition 6.10 Given (z,w) € D, we set

platw) = (75 ) e s

where we identified Sp(V, 3) with Sp(n,R) by fizing a symplectic basis of V.
Then the action of G on D is given by

(g, 0,1) - (z,w) = (9(2), vg= + J4 (2, w)w) (6.46)
for dll (g,v,t) € G.
Proof. Consider the elements (g,v,t) € G and (z,w) € D, and assume that
(g,v,1) - (z,w) = (z,w') € D
as in (6.41). Since exp g(z) = (gexp z)+ by (6.28), from (6.44) we obtain
expz =expg(z), J1=(gexpz)_.
Hence it follows that z’ = g(z), and
J1((g,0,1), (z,w)) = J (g, 2),

where J is the canonical automorphy factor for the group G given in (6.27).
Now we consider the matrix representations

plexpz) = ((1) T(IZ)) . plg) = (é g) el = (L]o+ JO)

for z € p_ relative to the decomposition V =V, @& V_. Applying p to both
sides of the relation (6.44), we obtain

(n) (6 %) =67 () (ard)

for some matrix M. Thus we have

(A Ar(z) + B) B (J+ +

_ ()Y J-M T(z’)J_)
CCr(z)+D ‘

-
J_M J_
Hence we see that

Jy=A—-7(z")C, J_=C7(2)+D,

7(2) = (A7(2) + B)(C7(2) + D) "
On the other hand the matrix form of the relation (6.45) is given by

() + (@) (6) = (0) () (5 7) (),
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which implies that
vy +Aw=w +7("NJ_w_, v_+Cw=J_w_.
Therefore we obtain
w' = (v3 + Aw) — 7(2") (v- + Cw)
= (vy — 7o)+ (A —7(z")C)w = vy + Jyw;
hence we have (2/,w') = (9(2), vg> + Jyw). O
Corollary 6.11 Let Jf_ be the restriction of the canonical automorphy factor
for Sp(V, B) to V. given in Corollary 6.8. Then, for (g,v,t) € G and (z,w) €
D, we have
(9:0,1) - (z,w) = (92, v92 + J5 (p(9), 7(2))w). (6.47)
In particular, if
A, Bp)
rlg) = € Sp(V, B),
@ = (e 7)< snvs)
then we have
(9,0,1) - (z,w) = (g2,vg2 + (Cy7(2) + D,) ') (6.48)
Proof. From (6.27), for g € G and z € D, we have

p(J1) = p(J1(g,2)) = p((gexp 2)o) = (p(g) exp7(2))o-
Thus we see that
p(J1)(g,2) = J5(p(g), 7(2)),

where J° is the canonical automorphy factor for the symplectic group
Sp(V, B) given in (6.30). Therefore, if J; is as in Proposition 6.10, we have

Using this and Proposition 6.10, we obtain (6.47). Then (6.48) is obtained
by using (6.31). O

From the multiplication operation on G given in (6.33) we see that the

induced operation on G x V by the natural projection G — G x V is exactly
the one on G x, V considered in Section 6.1. On the other hand, by (6.49)

the restriction of the action of G on D x V4. given by (6.46) to G x V can be
written in the form
(9:0) - (z,w) = (92,092 + T3 (p(9), 7(2) )w)
= (92,vg> + "(C,7(2) + D,) " tw).

for all (z,w) € D x V4 and (g,v) € G x V C G with p(g) = (’éz g‘;) €

Sp(V, 3), which coincides with the action in (6.20) that was used for the
construction of the Kuga fiber variety Y in (6.21).
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Lemma 6.12 If (g,v,t) - (z,w) = (2/,w’), then we have
Bv, p(g)w) = B(vzr, Cw) = B(v, J1w),
where the matriz C is the (2,1) block of p(g) as in the proof of Lemma 6.10.

Proof. Using v, = vy — 7(2’)v— and the matrix representation of p(g), we
have

B(v, p(g)w) — B(v.r, Cw) = B(v, Aw + Cw) — ﬂ((é *T1<Z’>) v+ v, Cw).

Since Cw € V_ and S|yv_xv. = 0, using the fact that § is invariant under
p(G), we obtain

B(v, plg)w) — B(vzr, Cw) = Blv, Aw) + B(v, Cw) — Blv, ({7¢) Cw)
= B(v, Aw) + B(v, Cw) — B(v, Cw + 7(z")Cw)
= B(v, Aw — 7(2')Cw).

Now the lemma follows from the fact that Jyw = Jyw = Aw — 7(2')Cw. O
Proposition 6.13 The canonical automorphy factor jfor G is given by
T((g,0,1), (z,w)) = (J((g,), (2,0)), 0, o ((g, v, ), (2,w))) (6.50)

for all (g,v,t) € G and (z,w) € D, where Jy is the canonical automorphy
factor J for the group G given by (6.27) and

J2((g,v,1), (z,w)) =t + B(v,v4:)/2 + B(v, Jiw) (6.51)
+ B(p(g)w, Jrw)/2.

Proof. If C' is as in Lemma 6.12, then we have (v + p(g)w)- = v_ + Cw.
Using this and the fact that f|v, xv, = 0, we see that

J2 =t + B(v, p(g)w)/2 — B(w', p((exp 2') J1)w-)/2
=t + B(v, plg)w)/2 — Bw',v + p(g)w — w') /2
=t+ B(v,p(g)w)/2 — B(vy + Jyw,v + p(g)w)/2
=t+ B(v, p(g)w)/2 — B(vsr,v) /2 = B(var, p(g)w) /2

- B(Jyw,v_ + Cw)/2
=t+ (v, plg)w)/2 — B(vr,v)/2 = B(vzr, p(g)w) /2
- 6(J+w7 ”—)/2 - /6(J+w7 Cw)/2

Using Lemma 6.12, we thus obtain

Jo =t 4 B0, 1w)/2 = B(vzr,0)/2 = B(Jyw,v-)/2 = B(Jrw, Cw) /2
=t+ B(v, JJw) — B(vy,v)/2 — B(Jrw, Cw)/2.
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Since p(g)w = Aw + Cw with Aw € V4, we have

B(Jrw, Cw) = B(Jrw, p(g)w) = B(J1w, p(g)w) = —=B(p(g)w, Jiw).

Therefore the proposition follows by using this and the relation §(v,,v) =
B(ng’ U) = —ﬂ(v, ng)' g

Now we define the complex-valued function 7 : GxD—C by

J((g;v,1), (z,w)) = e (J2((g, v, 1), (z,w))) (6.52)
e(t+ B(v,vg:)/2+ B(v, J1w)
+ Bp(9)w, J1w)/2)

for all (g,v,t) € G, where e () = e,

Proposition 6.14 The function J is an automorphy factor, that is, it sat-
isfies the relation

forg=1(g,v,t),q = (g’ t) € G and 7z = (z,w) € D.

Proof. Let g,¢' € G and 7 € D. Since the map
J = (J1,0,.J5) : Gx D — K¢
is an automorphy factor, using the multiplication rule (6.33) in C~7', we obtain

(J1(§§/72)’07 JQ(ﬁlva) = (Jl(g’ §/3)70a J2(§7§/2))(‘]1(§/’3)70’ J2(§/72))
= (Jl(aa §IQJ1(§/72)’O7 J2(§a 5/2) + JQ(gl’z))'

Thus we have
J2(99',7) = J2(9,9'%) + J2(7', 2),
and hence J = e (J3) satisfies the desired relation. O

6.3 Mixed Automorphic Forms and Kuga Fiber
Varieties

In this section we describe a connection between Kuga fiber varieties and
mixed automorphic forms (cf. [71, 74, 73, 76]). To be more specific, we show
that the holomorphic forms of the highest degree on a Kuga fiber variety
can be interpreted as mixed automorphic forms on a Hermitian symmetric
domain.

Let (7, p) be an equivariant pair consisting of a homomorphism p : G — G’
and a holomorphic map 7 : D — D’ described in Section 6.1. Let I' be
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a torsion-free arithmetic subgroups of G, and let j : I' x D — C* be an
automorphy factor, which means that j satisfies the cocycle condition

(1,72, 2) = §(71,722)7 (2, 2)

for all z € D and 1,72 € I'. Let I’ be a torsion-free arithmetic subgroup of
G’ such that p(I") C I, and let j' : I x D — C* be an automorphy factor.

Definition 6.15 A mixed automorphic form on D of type (j,j',p,7) is a
holomorphic function f: D — C such that

frz) =j(r.2) - 3" (p(7), 7(2)) - £(2)
forall z€ D and v,y € I.

Remark 6.16 Note that the map (g,z) — j(v,2) - j'(p(7),7(2)) is also an
automorphy factor of I'. Thus, if we denote this automorphy factor by J; j,
then a mized automorphic form on D of type (j, 7', p,T) is simply an auto-
morphic form on D of type J; j in the sense of Definition 6.19.

Let Y be the Kuga fiber variety over X = I'\ D associated to the equivari-
ant pair (7, p) with G’ = Sp(V, 8) given by (6.21), and let Y be the m-fold
fiber power of the fiber bundle 7 : Y — X over X, that is,

Y™ ={(y1,---,ym) €Y x - XY | 7(y1) = = 7(ym) }
Thus we have
Y™ =TI xL™\DxV]", (6.54)

and each fiber of Y™ is isomorphic to the m-fold power (Vi/L)™ of the
polarized abelian variety V. /L.

Let J : GXD — K¢ be the automorphy factor obtained by restricting the
canonical automorphy factor (G¢ X p4 )« — K¢ given in (6.27) by identifying
D as a subdomain of p4, and set

jr(g,2) = det[Ady, (J(g,2))] (6.55)

for all g € G and z € D, where Ad,, is the restriction of the adjoint rep-
resentation of G¢ to py. Then jy : G x D — C is an automorphy factor,
and for each g € G the map z — ju(g,z) is simply the Jacobian map of
the transformation z — gz of D. We also consider the automorphy factor
Jv : Sp(V, B) x H,, — C given by

Jjv(g',Z) =det(CZ + D) (6.56)
for all Z € 'H,, and
, (AB
where we identified Sp(V, 8) with Sp(n,R) by using a symplectic basis for V.
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Theorem 6.17 Let Y™ be the m-fold fiber power of the Kuga fiber variety
Y over X given by (6.6), and let 2*+™" be the sheaf of holomorphic (k +
mn)-forms on Y™. Then the space HO(Y™, Q*+mn) of sections of 28Tmn js
canonically isomorphic to the space of mized automorphic forms on D of type
a8 0 7)-

Proof. We assume that the Hermitian symmetric domain D is realized as
a bounded symmetric domain in C* for some positive integer k, and let
z = (#1,...,2r) be the global coordinate system for D. Recalling that each
fiber of Y™ is of the form (V. /L)™, let ¢\ = (Cl(]), ce 7(1])) be coordinate
system for V for 1 < j < m. Let @ be a holomorphic (k + mn)-form on Y™.
Then @ can be regarded as a holomorphic (k + mn)-form on D x V] that is

invariant under the action of I" x, L. Thus there is a holomorphic function
fao(z,¢) on D x V] such that

B(z,¢) = folz, Odz NdCD Ao A dCT™) (6.57)

where z = (21,...,2,) € D, ¢ = (¢M,...,¢™)) and

(D= (¢ () e Vs

for 1 < j7 < m. Give an element xg € D, the restriction of the form @ to the
fiber Y, over x¢ is the holomorphic mn-form

B(0,C) = folzo,)dz AdCD A~ Ad¢C™,

where ¢ — fa(20,() is a holomorphic function on Y. However, Y is a
complex torus of dimension mn, and therefore is compact. Since any holo-
morphic function on a compact complex manifold is constant, we see that fg
is a function of z only. Thus (6.57) can be written in the form

(z,0) = fo(2)dz AdCD Ao AdC™), (6.58)

where ]? is a holomorphic function on D. In order to use the condition that
@ is invariant under the action of I" x, L™, consider an element

(0 =0l lm) € I, L™
Then we have
dzo(v,1) = ju(y,2)dz,

since jg (7, *) is the Jacobian map for the transformation z — ~yz as stated
above. On the other hand, by (6.20) the action of the element (v,1) € I'x,L™
on

dc9) = (d¢?, ... dc)) e vy (6.59)

is given by
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d¢9) o (1,1) 7\ d(t(CpT(z) +D,) 7' + (li)w) (6.60)
i=1

d¢”

3

det(C,7(2) + D,) !
1

= jv(p(y),7(2) " d¢\?

for 1 < j < m, where

_ (4 By
p(v) = (Cp Dp) € Sp(V, 6).
Thus from (6.58), (6.59) and (6.60) we obtain

Do (1,0) = fo(v2)ju (v, 2)v(p(y), 7(2))"™dz Ad¢ A -+ AdC™.

Since @ is invariant under I' x , L™, by comparing the previous relation with
(6.58) we see that

fo(v2) = ju(v,2) " v (p(3), 7(2))" fa(2)

for all v € I'and z € D. On the other hand, given a mixed automorphic form
f on D of type (', j¥, p,7), we define the (k + mn)-form &; on Y™ by

Br(2,¢) = f(2)dz Ad¢H A~ A dC™ .,
Then for (v,1) = (v,l1,...,l,) € I' x, L™ we have

(@5 0 (1,1))(2,0) = F(v2)iu (v, 2)jv (p(7); 7(2))""dz Ad¢M A~ Ad¢™
= f(2)dz NdCD A - A = By(2,0).

Therefore the map f +— & gives an isomorphism between the space of mixed
automorphic forms on D of type (j;Il , ™ p,7) and the space HO (Y™, Qk+mn)
of holomorphic (k + mn)-forms on Y™, O

Remark 6.18 Note that the cohomology group HO(Y™, 2K+ s isomor-
phic to the Dolbeault cohomology group H*Tm0(Y™ C) of Y™, which is the

(k + mn, 0)-component in the Hodge decomposition of the de Rham cohomol-
ogy group H**+mn (Y™ C) of Y™.

6.4 Embeddings of Kuga Fiber Varieties

If Y is the Kuga fiber variety over X given by (6.6) or (6.21), it is well-known
(cf. [5]) that the locally symmetric space X = I'\D has the structure of a
quasi-projective algebraic variety over C. In this section we show that Y is



6.4 Embeddings of Kuga Fiber Varieties 165

also a projective variety when I' is cocompact by following Kuga [61] and
Satake [108].

We shall first start with a review of the theory of embeddings of K&ahler
manifolds into complex projective spaces (see [108]). Let M be a complex
manifold, and let {U, | @ € £} be an open cover of M. A collection { fog} of
nonzero holomorphic functions f,3 : Uy, N Ug — C is a 1-cocycle of M with
respect to the covering {U,} if faq = 1 on U, and fap - fay - fya = 1 on
Ua NUgNU,. Two 1-cocycles { fog} and { f;,3} are cohomologous if there are
nonzero holomorphic functions A, : U, — C such that

f(;ﬁ = ha'fozﬁ : hgl

on U, NUg. The set of 1-cocycles on M modulo the cohomologous relation
forms the first cohomology group H* (M, 0*), where O* denotes the sheaf of
nonzero holomorphic functions on M. On the other hand, a 1-cocycle {fag}
determines a line bundle £ over M obtained from the set

HUax(C

acx

by identifying the elements (z,7) € Uy x C and (2/,n3) € Ug x C with
UoNUg # 0, 2 = 2" and 1o = fap - np. The isomorphism class of such a
line bundle depends only on the cohomology class of the corresponding 1-
cocycle, and there is a natural isomorphism between the group of complex
line bundles over M and the cohomology group H*(M,O*).

Let £ be the line bundle on M determined by the cocycle { fo5}. If we set

1

kaﬁ’y = _%(Ingaﬁ + Ingﬁ'y + 10gf'ya)>

then the collection {kng~} is a 2-cocycle and determines an element ¢(£) of
the second cohomology group H?(M,Z) with coefficients in Z. The element
c(L) € H*(M,Z) is called the Chern class of £. We denote by cr(L) €
H?(M,R) the real Chern class of L, that is, the image of ¢(£) in H?(M,R).
Let {ho} be a collection of C*° functions h,, : U, — C satisfying

ha(2) = hs(2) - |fap(2)]
for all z € Uy, N Ug. Then the corresponding differential forms
hOé(Z)ané /\ dﬁa

determine a Hermitian metric on each fiber of £. We shall call {h,} the
Hermitian structure on L. Given such a Hermitian structure, it is known
that the real Chern class cgr(L) of L is given by

(L) = Cl[%d’d” log hA}, (6.61)

T
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where Cl[-] denotes the cohomology class in H?(M,R) (see [108, p. 203]).

Let ® be a domain in C™, and let A be a group that acts on ® holomorphi-
cally, properly discontinuously, and without fixed points. Let j : Ax®D — C*
be an automorphy factor satisfying

(616, 2) = j(61,022) - (62, 2) (6.62)
for all 41,02 € A and z € ©. We consider the action of A on ® x C given by
5 (2,¢) = (02,5(6, 2)C)

for § € A and (z,() € © x C. Then the quotient
L(j)=A\D xC (6.63)

with respect to this action has the structure of a line bundle over M = A\D,
which is induced by the natural projection map ® x C — D.

Definition 6.19 Let j : A x ® — C* be the automorphy factor described
above. An automorphic form of type j for A is a holomorphic map f: © — C
that satisfies

f(62) = j(6,2)f(2)
forall z€® and § € A.

Lemma 6.20 Let I'o(M, L(j)) be the space of all sections of the line bundle
L(j). Then each element of I'o(M,L(j)) can be identified with an automor-
phic form of type j for A.

Proof. Let s : M — L(j) be an element of I'g(M, L(j)). Then for each z € ©
we have

s(A2) = [(z,w,)] € L(j) = A\D x C (6.64)

for some w, € C, where Az € M and [(z,w,)] € £(j) denote the elements
corresponding to z € © and (z,w,) € D x C, respectively. We define the
function f5 : ® — C by fs(z) = w, for all z € ©. Using (6.64), for each
0 € A we have

S(A2) = 5(A82) = [(0z,ws2)] = [ - (62, ws)] = (2,4, 2)ws.)),
which implies that
fs(2) = j(071, 82)ws. = §(671,02) fs(62) (6.65)
for all z € D and § € A. However, from (6.62) we obtain
1=3(6716,2)=75(61,62)-5(6,2).

Thus we have j(671,62) = j(J,2)!, and therefore (6.65) implies that f; is
an automorphic form of type j for A. O
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The 1-cocycle associated to the line bundle £(7) in (6.63) can be described
as follows. Let ® — M = A\D, and choose an open cover {U, | a € Z} of
M such that U, N Upg is connected for all o, 8 € = and each U, satisfies the
following conditions:

(i) Every connected component of p~1(U,) is homeomorphic to U,.

(ii) If U/, is a connected component of p~*(U,), then we have

p ' (Ua) =[] 6- UL
ISpAY

Let a, 8 € & with U,NUg # 0, and let U}, U[Q be the connected components
of Uy, Ug, respectively. Then there is a unique element d,3 € A such that

U&ﬂdag-U[’; # .
Thus we obtain a collection { fag} of functions fus : Uy N Ug — C such that

fap(2) = j(0ap, 28) (6.66)

for all z € Ua NUp, where zo = (pluy) ' (2). Using (6.62), we see that {fas}
is a 1-cocycle on M, and it can be shown that £(j) is exactly the line bundle
determined by this 1-cocycle.

Given an automorphy factor j : Ax® — C*, a kernel function associated
to j is a function k : ® x ©® — C* that is holomorphic in the first argument
and satisfies

k(2',2) =k(z,2), k(0z,02")=j(8,2) k(z,2")-5(0,2) (6.67)
for all z,2’ € ® and § € A.

Lemma 6.21 Ifk: D x © — C* is a kernel function such that k(z,z) > 0
for all z € ©, then we have

1
cr(L(j)) =Cl —ﬂd’d” logk(z,2)|. (6.68)
T
Proof. From (6.66) and (6.67) we obtain
k(dap2s,0ap28) = j(0ap, 28) - k(28, 28) - j(0ap, 28) (6.69)
= k(28,25 - | fap(28)|?
for all z € Uy NUg. Since dap € UY,, we see that dag2g = da; hence if we set
ha(z) = k:(za,za)_l,
for all z € ®, then (6.69) becomes
ha(z) = hs(z) - ‘faﬁ(z)rz-

Therefore {h,} is a Hermitian structure on the line bundle £(j); hence we
obtain (6.68) by using (6.61). O
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Let M be a Hermitian manifold, that is, a complex manifold with a Her-
mitian metric ds? on M. Then we have

ds® = Zsagdzadzﬁ, (6.70)

where s, = ds?(9/02%,0/0z"). Given such a Hermitian metric, the 2-form
@ given by

7
— a =05
P = 3 E Sqpdz® Ndz

is called the associated fundamental 2-form. If the real (1, 1)-form @ is closed,
then ds? in (6.70) is called a Kdhler metric and (M, ds?) is called a Kdhler

manifold.

Theorem 6.22 (Kodaira) Let (M,ds?) be a compact Kdhler manifold, and
let @ be the associated fundamental 2-form. If the cohomology class of @ is
in the image of the natural homomorphism H?*(M,Z) — H*(M,R), then M
is algebraic. Furthermore, if L is a line bundle over M with cg(L) = Cl[P]
and if (o, . ..,mn) is a basis of the space of sections of LZY with v a positive
integer, then, for sufficiently large v, the map

= (0(2),..,nn(2), M — PY(C)
provides an embedding of M into an algebraic variety in PN (C).
Proof. See e.g. [32, §1.4]. O

Proposition 6.23 Letk : D xD — C* be a kernel function on ® associated
to an automorphy factor j : Ax D — C* satisfying k(z,z) > 0 for all z € D.
Assume that the Hessian matriz

o2

of log k(z, z) is definite. For a positive integer v, let (¢g, ..., dN) is a basis of
the space of automorphic forms on ® of type j¥. Then for sufficiently large
v the map

2z (¢o(2),...,0n(2)), M — PYN(C) (6.71)

provides an embedding of M = A\D into an algebraic variety in PN (C).

Proof. Since the Hessian matrix of log k(z, z) is definite, we obtain a Hermi-
tian metric on ® given by

Za =R Blogk z,2)dz*d2",

which is A-invariant and Ké&hler. Thus it induces a Kédhler metric on M =
A\D whose associated fundamental 2-form is given by
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i
& =—dd"logk(z,z).
5 gk(z,2)

Using Lemma 6.21, we see that the cohomology class of @ is contained in the
image of H?(M,Z). Therefore, using Theorem 6.22, we see that for sufficiently
large v a basis (¢, . .., ¢n) of the space of sections of the line bundle £(5)®"
determines an embedding of M onto an algebraic variety in PY¥(C) by the
map (6.71). Hence the proposition follows by applying Lemma 6.20. a

In order to construct an embedding of a Kuga fiber variety into a complex
projective space, let G, D, V, I, L, and the equivariant pair (7, p) be as in
Section 6.1. In particular, V is a real vector space of dimension 2n. We fix
20 € D and consider the complex structure Iy = I;(,,) on V corresponding
to 7(z0) € Hy, as before. We denote by V. and V_ the associated subspaces
of V¢ given by (6.7).

Lemma 6.24 Ifv =vy +v_ € V C Ve withvy € Vi and v— € V_, then
we have
Vy = 677 v = 64,, (672)

where the decomposition Vo = VL @V_ s with respect to the complex structure
Iy on V.

Proof. Using (6.7), we have

Iovy = (Iov4) = (ivg) = —iUy,

Ip_ = (Ipv-) = (—iv_) = i0_;

hence it follows that 74 € V_ and v_ € V. However, since v belongs to the
real vector space V', we have

Vy +0_- =0v=UV=0Uy +V_.
Therefore we obtain v4 = v_ and v_ = T, which proves the lemma. a

Example 6.25 Let V = R2, so that Vo = C?, and let Iy : R? — R? be the

linear map defined by
I (aa) ( 9 )
i) —T1

for all x1,z2 € R. Then Ig = —1y; hence Iy is a complex structure on R2.
Consider the element

1
v—<3)—v++v€V+@V—(C2.

Then it can be easily shown that

1/1—3i 1/1+3\ _
Ve = — V. = — = V4.
T o\34i ) 2\ 3 *
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Let £ : DxV — Vi beasin (6.9), and let (z,w) € Dx V¢ with w = £(z,v)
forsomev e V. lfv=vy +v_ €V withvy € V; and v_ € V_, we set

dFw=dvy —7(2) - dv_ = dvy — 7(2) - dvy, (6.73)

where we used (6.72). We also set

I*w = doy — 7(2) - dug. (6.74)
Using (6.7) and (6.72), we have
w=¢(2,0) = v = vg = T(2)V4;
hence we see that
dw = dvy —d(7(2) - v4) (6.75)

=dvy — (dr(2)) - U4 — 7(2) - dvy
=d*w — (dr(2)) - U+.

Lemma 6.26 Let d' and d’ be the holomorphic and antiholomorphic part of
the differential operator d, and let kK : D x D — K¢ be the canonical kernel
function for G given by (6.29). Then we have

dvy = p(ki(z,2)" - d*w, d"vy = p(k1(2,2)) " - 7(2) - &°T0.
Proof. From (6.29) and (6.32) it follows that
p(k1(z,2') =1 =7(2) - 7(2) (6.76)

for z, 2’ € D. Using this, (6.73) and (6.74), we have

Fw+71(2) - dFw=dvy —7(2) - dvy + 7(2) - (dvy — 7(2) - dvy)

=(1-17(2) %) ~duy
= p(K(z,2)) - dvy

for (z,w) € D x V¢, which implies that
dvy = p(k1(2,2)) 7t - (d*w + 7(2) - *W).

However, from (6.75) we see that d*w is of type (1,0), and therefore d*w is
of type (0,1); hence the lemma follows. O

Let 7(-,-) be the canonical kernel function for the group G = G x V x R
given by (6.38). Thus we have

K((z,w), (Z/,’LU/)) = J((exp (z/>w/))717 (z7w))71
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for (z,w), (2/,w') € D =D x V4. Since J = (J3,0,.J5) € K¢, by restricting &
to D x D we have
E((z,w), (2, w"))
= (Jl((exp (3/7 w/))_17 (z7 w)))7 0, J2((eXp (z/7 w/))_17 (z7 w)))_l
= (Jl((exp (3/7 w/))_17 (z7 w)))_17 0, _JQ((eXp (3/7 w/))_17 (z7 w)))

Using (6.37), we obtain

((exp (2/,w")) ™" = (expZ, w0, 0) " = ((expZ) ™", -0, 0),
and hence we see that

Ji((exp (2, w)) ™ (z,w) T = J((expZ) 7 2) T = k(2. 2),

where J and « are the canonical automorphy factor and the canonical kernel
function for the group G given in (6.27) and (6.29), respectively. Thus we
obtain

F((z,w), (2, w")) = (k(2,2), 0, 52 ((2, w), (2, w))),

where
ra((z,w), (2, w")) = =Ja((exp (2, w')) ", (2,w)) (6.77)
= B, pli(z, ) ()2
+ B, p(k(z, 7)) " w)
+ B(T(Z)w, p(k(z, 2')) " tw) /2.
We set

ﬁ((z> ’LU)7 (3/7 ’LU/)) =e [HQ((Z> ’LU), (3/7 w/))} (6'78)

for (z,w), (2/,w') € D.If J = e[J5] is as in Section 6.2, then it can be shown
that

ﬁ((zl’ wl)’ (Z’ w)) = ﬁ(('Zvvu))? (Zl7w/))7
ﬁ(g (Z’w)’g' (Z/’w/)) = j(gv (Z7w)) ' .ﬁ((z,w), (Z/’w/)) ’ j(gv (Zl7w/))

for all (z,w), (z',w') € D and § € G. Given elements z € D and w,w’ € Vj,
we set

R (w,w") = &((z,w), (z,w0")). (6.79)

Throughout the rest of this section we shall fix a basis of V¢ so that the
alternating bilinear form 3 on V¢ satisfies

iB(w,w) = "w - w

for all w,w' € V.
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Lemma 6.27 For fixed z € D, we have
d'd"log &, (w,w) =21 - "(d*w) A p(k(2,2)) "' - d°w
for all w € V., where d*w and d*w are as in (6.73) and (6.74), respectively.
Proof. Using (6.77), (6.78) and (6.79), we have
log &, (w,w) = 7w - p(k) ™ - 7(2) - W+2-"w-p(k)" - w
+w-7(2) - p(k) - w]
=@ p(r)~" - (1(2) @+ w)
+ (Wt 7(2) - p(k) ]

for all w € V. Note that w = £(z,v) for a unique element v € V, where £ is
as in (6.9). Then we have

w=vy —7(2) Ty, W=y~ vy 7(2);

hence we see that
() Wt w = (1—7(2) - 7)oy = p(k) - v
T4 tw-7(2) = Ty - p(k),
where we used (6.76). Thus we obtain
log &, (w,w) = 7['W - vy + "Dy - W] (6.80)

=7[("Ty =g - 7(2) - vg Ty (04 = 7(2) - T4))

=Ty vp = oy 7(2) T+ T4 0s = T4 T(2) 04 ]

However, we have

hence (6.80) can be written in the form

log R, (w,w) = [0} - vy +'W-w—"vy - 7(2) - 7(2) - V4]

=7['Ty - p(k) vy + W w).

Using this, Lemma 6.26, (6.75), and the relation d”('v) = *d'v,., we have
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d"log R (w,w) = 7[("d"vy) - p(k)vs + Ty - (d"p(K)) - v
1Ty pl) - d"vy + (Hdm) - w)
=" (p(r) =" dFw) - p(k) - vy + Ty - (=7(2) - dT) - vy
+'4 - p(k) - p(r) 1 7(2) - AW+ (V) - )
=7ld*w vy — "y - 7(2) - dT - vy
+ 'y - 7(2) - W + (Ydw) - w).
= 7[(*dw + tvy - HdF) vy — T4 - T(2) - AT vy
+ Ty - 7(2) - (dW + dT - vy)
T (dm) - (g~ 7(2) 7))
=72 -tdw - vy + vy - tdT vy

From this and Lemma 6.26 we obtain

d'd"log &, (w,w) = 7[~2 - 'dw A p(k) ™" - d*w
— 2ty tdF A p(r) T - dFw]
=n[=2-'d*TW A p(k) " - d*w],

which proves the lemma. a

As before, we regard the Hermitian symmetric domain D as a bounded
domain in C¥, and let du(z) be the Euclidean volume element of C* given by

du(z) = (%)k ﬁ dzo N dZq.
a=1

The the space H?(D) of all square-integrable holomorphic functions on D is
a Hilbert space with respect to the inner product

(f.g) = /D ()@ du(z)

for f,g € H*(D). If {u; | i = 1,2,...} is an orthonormal basis of H?(D), then
the Bergman kernel function kp : D x D — C is given by

kp(z,2) =Y pi(2)pa(2))
i=1

for z,2' € D. Let xo : K¢ — C* be the character of K¢ given by
Xo(k) = det(Ady, (k))

for k € K¢. Then it can be shown that
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ko(z,2) ™" = vol(D) - xo(r(2, )

for all z, 2" € D, where & is the canonical kernel function of G and vol(D) is
the Euclidean volume of D. Furthermore, for a bounded domain D in C, we
have kp(z,z) > 0 for all z € D and the Hessian matrix (hqeg) with

2

haﬁ log kD(ZaZ)

T 9Za025
is a positive definite Hermitian matrix, where

0 0 .0 0 0 .0
i1 Gl o Bt | G )

[e3

The associated Hermitian metric on D given by

dsh = hapdZadzs (6.81)
a,B

is called the Bergman metric of D.

Theorem 6.28 Assume that that the arithmetic variety X = I'\D is com-
pact, and let (no,...,nn) be a basis of the space of holomorphic automorphic
forms on D x Vi for I' x L relative to the automorphy factor

(I'x L) x (DxVy) —C, (6.82)

((’77 l)7 (z7 w)) = (jH(77 Z)_lj((’W L, 0)7 (z7 w)))y>
where jg is as in (6.55). Then, for sufficiently large v, the map

[(Z’ w)] = (770(2’ w)’ LR UN(Z’ w))

gives an embedding Y — P(C)N of the Kuga fiber variety Y = I' x L\D x V.
to the complex projective space P(C)N.

Proof. By Lemma 6.27 the differential form
1 ! g
—d'd"log R, (w, w)
2
is the fundamental 2-form associated to the Hermitian metric
2(0d*W) p(k(2, 2)) " td*w = 2i - B(d*W, p(k(z, 2)) " d*w)

on the fiber Vi /L over z € D. Therefore, if we consider the Hermitian metric

82
ds® = 71 Z 57075 log kp(z, 2)dZadzg (6.83)
o, «

+2(*d* W) p(k(z, 2)) " d*w
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on Y, then the fundamental 2-form associated to ds? is given by
i ! g -t gz =1 gz—
w= ﬁdd logkp(z,2) + i(*d*w)p(k(z,2)) " d*w
= L dd" logkp(z, 2) + —d'd" log & (w, w),
27 27

which represents the real Chern class of the line bundle £(j;" - J)®¥ as-
sociated to the automorphy factor in (6.82). Thus the theorem follows by
applying Proposition 6.23. a

Remark 6.29 The automorphic forms ng,...,nn used in Theorem 6.28 to
construct an embedding a Kuga fiber variety into a complex projective space

are essentially Jacobi forms on symmetric domains which will be discussed
in Chapter 7.
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Jacobi Forms

Jacobi forms on the Poincaré upper half plane share properties in common
with both elliptic functions and modular forms in one variable, and they were
systematically developed by Eichler and Zagier in [23]. They are functions
defined on the product H x C of the Poincaré upper half plane H and the
complex plane C which satisfy certain transformation formulas with respect
to the action of a discrete subgroup I' of SL(2,R), and important exam-
ples of Jacobi forms include theta functions and Fourier coefficients of Siegel
modular forms. Numerous papers have been devoted to the study of such
Jacobi forms in connection with various topics in number theory (see e.g.
[7], [9], [54], [116]). Jacobi forms of several variables have been studied most
often on Siegel upper half spaces (cf. [123], [124]). Such Jacobi forms and
their relations with Siegel modular forms and theta functions have also been
studied extensively over the years (cf. [25], [49], [50], [123], [124]). A number
of papers have appeared recently which deal with Jacobi forms on domains
associated to orthogonal groups, and one notable such paper was written by
Borcherds [12] (see also [11], [55], [59]). Borcherds gave a highly interest-
ing construction of Jacobi forms and modular forms on such domains and
investigated their connections with generalized Kac-Moody algebras. Jacobi
forms for more general semisimple Lie groups were in fact considered before
by Piatetskii-Shapiro in [102, Chapter 4]. Such Jacobi forms occur as coeffi-
cients of Fourier-Jacobi series of automorphic forms on symmetric domains.
In this chapter we study Jacobi forms on Hermitian symmetric domains as-
sociated to equivariant holomorphic maps into Siegel upper half spaces. Such
Jacobi forms can be used to construct a projective embedding of a Kuga fiber
variety and can be identified with certain line bundles on a Kuga fiber variety.
When the Hermitian symmetric domain D is the Poincaré upper half plane
or a Siegel upper half space, the interpretation of Jacobi forms as sections of
a line bundle was investigated by Kramer and Runge (see [57, 58, 105].

One of the important nilpotent Lie groups is the Heisenberg group whose
irreducible representations were classified by Stone and von Neumann (see
for example [44, 98, 121]). One way of realizing representations of the Heisen-
berg group is by using Fock representations, whose representation spaces are
Hilbert spaces of functions on complex vector spaces with inner products as-
sociated to points on a Siegel upper half space (see [107]). Another topic that

M.H. Lee: LNM 1845, pp. 177-207, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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is treated in this chapter is a generalization of such Fock representations by
using inner products associated to points on a Hermitian symmetric domain
that is mapped into a Siegel upper half space by an equivariant holomorphic
map. These representations of the Heisenberg group are given by an automor-
phy factor for Jacobi forms on symmetric domains considered in Chapter 6.
We also introduce theta functions associated to an equivariant pair and study
connections between such theta functions and Fock representations described
above.

In Section 7.1 we construct circle bundles as well as line bundles over a
Kuga fiber variety. We also introduce Jacobi forms on symmetric domains
and discuss their connections with those bundles. Section 7.2 is about Fock
representations of Heisenberg groups obtained by using automorphy factors
for Jacobi forms on symmetric domains. We study some of the properties of
such representations including the fact that they are unitary and irreducible.
In Section 7.3 we introduce theta functions on Hermitian symmetric domains
and show that certain types of such theta functions generate the eigenspace of
the Fock representation associated to a quasi-character. Such theta functions
provide examples of Jacobi forms. Vector-valued Jacobi forms on symmetric
domains are discussed in Section 7.4 in connection with modular forms on
symmetric domains.

7.1 Jacobi Forms on Symmetric Domains

In this section, we construct twisted torus bundles over locally symmetric
spaces, or circle bundles over Kuga fiber varieties, associated to generalized
Jacobi groups. We then define Jacobi forms associated to an equivariant pair,
which generalize the usual Jacobi forms (see [124]), and discuss connections
between such generalized Jacobi forms and twisted torus bundles. Similar
Jacobi forms were also considered in [72, 77, 81].

Let G =G x V x R be the generalized Jacobi group in Section 6.2 associ-
ated to an equivariant pair (7, p) which acts on the space D = G/K = Dx Vi
Other notations will also be the same as in Section 6.2. In particular, P+
and P_ are the subgroup of Ge = Ge x Vg x C corresponding to the sub-
spaces p4 and p_, respectively, of pc = pc @ Ve given by (6.34). Recall that
G C ﬁ+l~(cﬁ_ with K¢ = K¢ x {0} x C; hence each element g € G has a
decomposition of the form

with (§)+ € Py, (§)o € K¢ and (§)— € P_. We also recall that the C-
subgroups P and P_ of G¢ corresponding to the subspaces p; and p_,
respectively, of gc in (6.25) satisfy the relations in (6.26). From the relation
GNKcP- = K in (6.26) we have
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D=G/K=G/(GNKcP-)=GKcP_/KcP-.

Using this and the condition G C Py K¢ P- in (6.26), we obtain the natural
embedding
D — PyKcP_/KcP_ — G¢/KcP-. (7.1)

However, from the relation Py N KcP— = {1} in (6.26) we see that
P KcP_/KcP_ =Py /(P NKcP_)=Py 2py. (7.2)
From (7.1) and (7.2) we obtain
D — py — Gc¢/KcP-, (7.3)

where the second embedding is given by the exponential map.

We note that the exponential map on py @ Vy @ C is given as follows.
Given an element (z,w,u) € py @ Vi @ C, we denote by exp(z,w,u) the
element of G defined by

exp(z, w,u) = (exp z, w, u).
In particular, we have
expu = exp(0,0,u) = (1,0,u), exp(z,w) = exp(z,w,0) = (expz,w,0),
which agrees with (6.37). Thus, using (6.33), we see that
exp(z, w,u) = exp(z, w) exp u. (7.4)
The embeddings in (7.3) induces
D=D®Vy —py=psdVy — Ge/KcP-.

On the other hand, since the elements of expC and the elements of 15+
commute, the exponential map determines the natural embedding

EJr eC=p,0V,pC— éc/K@ﬁ,.
Thus by using the embedding D — p we obtain a commutative diagram

DxVyxC —— G¢/KcP-

l |

DxV, —— G¢/KcP-

l l

D — G¢/KcP_,
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where the horizontal arrows are the natural embeddings given by the expo-
nential map and the vertical arrows are the natural projection maps.
Now we define an action of G on D x V x C by requiring that

(g7 v, t) ’ (27 w, U) = (2/7 w/a U/)
if and only if
(g,v,1) exp(z, w,u) € exp(z’, w',u')Kc P_ (7.5)

for (g,v,t) € G xV xR and (z,w,u), (z/,w',u’) € D x Vi x C. More specif-
ically, the action is defined by the condition

(9, v,t) exp(z, w,u) = exp(2/, w', u')kp- (7.6)

for all (g,v,t) € G and (z,w,u) € D x Vi x C, where ke Kcandp_ € P_
with k& = (k,0,0) for some k € K¢. Using (7.4), the condition (7.6) can be
written in the form

(9,v,t) exp(z, w) expu = exp(z’, w') expu’ - kp_.
Thus, by considering the natural projection map
DxVyxC—DxVy,
we see that the action of G on D x V, is given by
(g,v,t) exp(z,w) = exp(z’,w’) exp(u’ — u)%ﬁ,,
which implies that
((g,v,t) exp(z, w))o = exp(u’ — u)k = (k,0,u’ — u).
However, using (6.35) and (6.50), we see that
((g,v,t) exp(z,w))o = (J1,0, J2),

where J; = J(g, z) with J being the canonical automorphy factor for G given
by (6.27) and Jy = J2((g,v,t), (z,w)) is as in (6.51). Therefore we obtain

k:Jh U/:U—FJQ.

On the other hand, by comparing the conditions (6.36) and (7.5) we see that
the corresponding actions of (g, v,t) on (z,w) coincide. Hence it follows that

(g,v,t)~(z,w,u):(gz,vgz—FJer,u—l-Jg), (77)

where Jy = J;(g,2) is as in (6.49). For convenience we recall the formulas
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Jo = J2((g,0,1), (z,w)) =t + B(v,v4:)/2 + B(v, Jiw) + B(p(g)w, Jiw)/2,
Jy=Jy(g,2) = J{(p(g), 7(2)) = (Cp7(2) + D,) " (7.8)
)s

for g € G p(g) = (gz gZ) € Sp(V, ), where Jf is the restriction of the

canonical automorphy factor J< for Sp(V, 3) to V.
Now we restrict the holomorphic action of G on D x Vi x C to the real

analytic action of G on D x V4 x R. Let the arithmetic subgroup I' C G and
the lattice L C V be as in Section 6.1, and consider the quotient

C=I'xLxZ\DxVy xR (7.9)

of Dx V4 x R by the action of I'x L x Z C G given in (7.7). We shall identify
¢ with the quotient
I' x I\D x V, x (R/Z)

by using the map
(z,w,u) — (z,w,elu]), DxVyxR—-DxVyx(R/Z),

where we identify R/Z with the unit circle {z € C | |z|] = 1} in C. Then the
action of I' x L on D x Vi x (R/Z) is given by

(7, 0) - (2w, A) = (2, byz + Jyw, T((7, £, 0), (z,w))A) (7.10)

for all (v,¢) € I' x L and (z,w,\) € D x Vy x (R/Z), and the natural
projection map
DxVyx(R/Z)—DxVy

equips € with the structure of a fiber bundle 77 : € — Y over the Kuga
fiber variety Y = I' x L\D x Vi whose fiber is isomorphic to the circle
R/Z. Thus € is a circle bundle over Y. On the other hand, by composing 77
with 7 : Y — X we can also consider € as a twisted torus bundle over the
arithmetic variety X = I'\D in the sense of [72].

Let j : GXD — C be an automorphy factor satisfying as usual the cocycle
condition

a9’ %) = i(9,9'2)i(g’, 2) (7.11)
for all z € D and g,¢9' € G. Given a function f : D x V; — C, an element
(9,v) € G x V and a nonnegative integer v, we set

(f 150 (g, 0))(z,w) = j(g,2) " T ((9,,0), (z,w)) ™" (7.12)
X f(g92,vg2 + Jyw)
=j(g.2) """ (B(v,vy2)/2
+ B, Jiw) + Bp(g)w, J1w)/2) (7.13)
X f(92, vy + Jrw)

for all (z,w) € D x V., where e” (-) = e(v(-)) = ™) and J = e(J») is as
1 (6.52).
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Lemma 7.1 If f : Dx V. — C is a function and v is a nonnegative integer,

we have
(F 150 (g0) 150 (' 0") = £ 170 (9. 0) (g, "))
for all (g,v),(¢',v") € G x V, where the product (g,v)(g',v") is as in (6.3).

Proof. Using (6.46) and (7.12), we have

(
((f 150 (g,0) 5 (g, 0") (2, 0)
= (g’,Z) T((g'sv",0), (z,w) " (f 157 (9,0)) (¢, v, 0) - (2,w))
ilg',2) " ile, 9'2) 1T (g0, 0), (z,w)) ™"
x J((9,v,0),(¢',v",0) - (z,w)) ™" f((g,0,0)(¢, 0", 0) - (2,0))

for all (z,w) € D x V., which can be shown to be equal to

(f 150 ((g,0)(g", 0 (2, w)

by using the cocycle conditions for J and j in (6.53) and (7.11), respectively.
O

Definition 7.2 A holomorphic function f: D x Vi — C is a Jacobi form of
weight j and index v for (I', L, p, 7) if it satisfies

fl0 (nt)=f (7.14)
forallvye I and € L.
Given (z,w,() € D x V4 x C and (g,v) € G x V, we set
(g,v) ’ (Z,’LU7<) = ((977)) : (z,w),j(g,z)() (7'15)
= (gZ,’UgZ + J+w7j(97z)o>

where we used (6.20) and (7.8). The next lemma show that the operation
(7.15) defines an action of G x V on D x V4 x C.

Lemma 7.3 The operation (7.15) satisfies

(971}) ’ ((9/77}/) ’ (Zv w, C)) = ((ga U)(g/a U/)) ’ (Z7w7 C)
for all (g,v),(¢',v'") € GxV and (z,w,{) € D x Vy x C.
Proof. Using(7.15), we have

(gav) ' ((9/77}/) ’ (Z,’LU,C))

(9:v) - ((¢',0") - (z,0), (9", 2)C)

((g,v) - ((¢',0") - (2,w)), (g, 9'2)i(g', 2)C)
(((g,0)(g",0") - (2,w), 5 (99", 2)C)

= ((g,v)(¢",v")) - (2,w, Q)

where we used the cocycle condition (7.11) for j. O
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We consider the action of the subgroup I' x L C G x V on the space
D x V4 x C given by (7.15), and denote the corresponding quotient by

B=IxI\DxVyxC (7.16)
Then, as in the case of the bundle € in (7.9), the natural projection map
D x V+ xC—1Dx V+

induces a map my : B — Y, which has the structure of a line bundle over
the Kuga fiber variety Y.

We now extend the action of I' x L on D x Vi x (R/Z) given by (7.10)
to the one on D x V; x C by using

(’776) : (Z,’LU7<) = (’V%évz + J+w,._7((7,€,0), (Z,’LU))C) (7'17)

for all (v,¢) € I' x L and (z,w,¢) € D x Vi x (R/Z). We denote the corre-
sponding quotient by R
¢ =TI xI\Dx V, xC. (7.18)

Then the construction similar to the case of 8 or € provides ¢ with the
structure of a line bundle over Y, and there is a natural embedding € — €
of the circle bundle € in (7.9) into the line bundle € over Y.

Theorem 7.4 Let B and € be the bundles over the Kuga fiber variety Y =
I' x L\D x V4 given by (7.16) and (7.18), respectively. Then the space of
Jacobi forms of weight j and index v for (I',L,p,T) is isomorphic to the
space R

Ty(Y, B ®e®)

of sections of the bundle B ® €8 over Y.

Proof. From (7.15) and (7.17) it follows that the bundle B ® €®¥ over Y can
be regarded as the quotient

BE =T x L\Dx Vy xC
with respect to the action of I" x L on D x V. x C given by
(776) : (Z,’LU, C)
= (7276’)’2 + J+waj(7a Z)j((77€70)a (Zv w))UC)

Let s : Y — B ® €% be an element of I'o(Y,B ® €&¥). Then for (z,w) €
D x V4 we have

s([(z,w)]) = [(z, 0, ((z )]

for some ¢ ) € R/Z, where [(-)] denotes the appropriate coset corresponding
to the element (). We define the holomorphic function fs : D x Vi — C by
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fs(z7w) = C(z,w) (719)

for all (z,w) € D x Vy. For each (v,¢) € I' x L, using the actions of I' x L
given in (7.10) and (7.15), we have

s([(z,w)])

s([(vz, bz + J4w)])
[(v2, yz + 4w, Gyt T )]
[(7,€)~ (VZ by + Jhw, C (vz, ZWZ+J+w))]
[(z,w, (7, 2)
X T((7:4,0), (2,w) " Ciyzvt, 4 d0w)]s

where by (6.52),

j(('77 l 0)7 (Z> ’LU)) =e [JQ((’77 l, 0)7 (Z> ’LU))] (7'20)
=e[B(l,4:)/2+ B4, Jyw) (7.21)
+ B(p(v)w, Jiw)/2].

Therefore we obtain

fs(sz) = j(% Z)ilj((r%g?o)’ (Z’ w))iufs(ryzaeﬁz + J+w)

Hence by (7.12) the function f; satisfies the transformation formula (7.14) for
a Jacobi form of weight j and index v for (I, L, p, 7). On the other hand, sup-
pose that f: D x V; — C is a holomorphic function satisfying the condition

7.14). We define the map s : Y — B ® cor by
( f

si([(z,w)]) = [(z,w, f(z, w))] (7.22)

for (z,w) € D x V. Then this map is well-defined because, for each (v,¢) €
I' x L, we have

sr([(v, Oz, w)]) = s¢([(v2, b5z + Jrw)))
= [(727672 + Jiw, f(’YZ7 fvz + J+w))]
= [(v2, by + 1w, (7, 2)
X J((7,£,0), (z,w))" f(z,w)]
=[(v: Oz, w, f(z,w))] = [(z,w, f(z,w))],

which is equal to s;([(z, w)]) in (7.1); hence sy is a section of B ® o, We
see easily that the holomorphic function fs, defined as in (7.19) coincides
with f, and therefore the proof of the theorem is complete. a

Remark 7.5 When the Hermitian symmetric domain D is the Poincaré up-
per half plane or a Siegel upper half space and if p and 7 are identity maps,
the interpretation of Jacobi forms as sections of a line bundle in a way sim-
ilar to the result in Theorem 7.4 was investigated by Kramer and Runge. In
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[57] Kramer identified Jacobi forms on the Poincaré upper half plane with
sections of a line bundle on an elliptic modular surface. He also proved the
vanishing of the first cohomology of the elliptic modular surface with coeffi-
cients in that bundle and used it to derive a formula for the dimension of the
space of Jacobi forms. The correspondence between Jacobi forms on a Siegel
upper half space and section of a line bundle over a family of abelian varieties
parametrized by a Siegel modular variety was studied by Kramer in [58] and
Runge in [105]. They also considered the extension of such a line bundle over
a compactification of the family of abelian varieties.

Example 7.6 Let the automorphy factor j;Il : G x D — C be defined by

Ju(9,2) = ju(g,2)~" = det[ad,, (J(g,2))]

for all (g,2z) € G x D, where jg is as in (6.55) and J is the canonical
automorphy factor for G. Then Jacobi forms of weight j;ll and index v for
(I, L, p,7) can be used to construct a projective embedding of a Kuga fiber
variety (see Theorem 6.28).

Example 7.7 Given a nonnegative integer p and elements z € D and g € G
with p(g) = (éz gZ) € Sp(V, B), we set

Julg,z) = det(Cp7(z) + Dp)*.

Then this formula determines an automorphy factor J, : G x D — C. Jacobi
forms of weight J,, and index v for (I, L, p,T) were considered in [86].

Example 7.8 Let W be a real vector space of dimension v > 2 defined over
Q, and let S be a nondegenerate symmetric bilinear form on W of signature
(2,v —2). We consider the associated spin group G = Spin(W, S), which is a
semisimple Lie group of Hermitian type. Then, as was described in Example
6.1, there is a homomorphism p : Spin(W,S) — Sp(2,R), which induces
an equivariant holomorphic map 7 : D — Hov of the symmetric domain D
associated to G into the Siegel upper half space Hov. Thus we obtain Jacobi
form on the symmetric domain associated to spin groups of type (2,n), and
such Jacobi forms were studied recently in connection with a number of topics

(see for example [12] and [26]).

7.2 Fock Representations

Let G = G x V x R be as in Section 6.2. Then the multiplication operation
(6.33) restricted to the subgroup {1} x VxR =2 V x R of G is the usual
multiplication operation on the Heisenberg group V x R. Classically a Fock
representation of such a Heisenberg group is a representation in a Hilbert
space of certain functions on V¢ associated to a point in the corresponding
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Siegel upper half space (see [107]). In this section we construct similar repre-
sentations of such a Heisenberg group in Hilbert spaces associated to points in
the Hermitian symmetric domain D by using automorphy factors associated
to Jacobi forms discussed earlier in this chapter.

Throughout this section we shall adopt various notations used in Section
6.2. In particular, k(-,-) the the canonical kernel function for the group G =
G x V x R given in (6.38). Thus we have

R((zw), (2/,w") = T((exp (2, w)) 7, (z,w))
for (z,w), (2/,w') € D =D x V4. Since J = (J1,0,.J5) € K¢, by restricting &
to D x D we have
E((z,w), (2, 0"))

= (1((exp (z/,w")) ", (2,w))) ™, 0, a((exp (2, w')) 7, (2,w)))

= (1((exp (=", ")), (2,w))) 1,0, = Ja((exp (27, w") 1, (2,0))).
Using (6.37), we obtain
~1

((exp (', w)) " = (expZ, @', 0)™" = ((expZ) ™", ~w',0),

and hence we see that
Ji((exp (2, w) 71, (z,w))) 7 = J((expz)~, 2) 7! = k(z, 2),

where J and x are the canonical automorphy factor and the canonical kernel
function for the group G given in (6.27) and (6.29), respectively. Thus we
obtain

A((z,w), (2, 0')) = (k(2,2'), 0, ha((2, w), (2, w))),

where
ra((z,w), (2, w')) = —Ja((exp (2, w')) 1, (2, w)) (7.23)
= B@, p(k1(z,2") " 7(2)@) /2
+ 8@, p(ra(2,2")) " w)
+B(r(2")w, p(ka(z,2) " w) /2.
We set
A((z,w), (z/,w")) = e [ra((z,w), (2, w))] (7.24)

for (z,w), (2, w') € D.
Proposition 7.9 Let J = e|[Jz] be as in (6.52). Then we have
ﬁ(('z/7 wl)7 (z7 w)) = R((z,w), (z/,w")), (7'25)

R(G(z,w), g(z',w") = T (G, (z,w))R((z,w), (z',w")) T (g, (=", w'))  (7.26)
Jor all (z,w),(z/,w') € D and § € G.
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Proof. Let (z,w),(z',w') € D and § € G. Then by Lemma 6.9 the canonical
kernel function K(-,-) satisfies the relations

E((Z/7w/)7 (z7w)) = E((z7w)7 (Z/>w/))_1

= H(Z, Z/)_17 0, _52((27“))7 (z/7w/)))>

E(g(z> w)>§(zl7 ’LU/)) = j(§> (Z> w))E((z, w)7 (2/7 w/))j(§> (3/7 w/))_l
= J(g, Z)’ 0, J2(§7 (Z7w)))(‘%(z’ Z/)7O’ ‘%2((2’ w)’ (Z/’ w/)))
X (J(g7 Z/)_1707 _J2(§> (Z/,’LU/)))

where
Ky = J(g,2)k(2,2") (g, 2") 1,
’%/2 = J2(§7 (z7w)) + Rg((Z,w), (z/7w/)) - m

In particular, we obtain

’%2((zl>w/)7 (z,w)) = —r2((z,w), (2/,w')),

52(§(Z7w)>§(z/7w/)) = J2(§7 (z7w)) + 52((2771)), (z/7w/)) - J2(§7 (z/7w/))'
Thus it follows that

ﬁ((z/7 w/)7 (z7 w)) =e [_’%2((2"7 w), (2, w/))] = R((z,w), (', w/))7

ﬁ(5(27 w)7§(z/7 ’LU/)) =e [J2(§> (Z> w))]e [HQ((Z7 w)7 (z/> w/))]e [_J2(§7 (z/> ’LU/))]
= \7(57 (Z>w))ﬁ((sz)7 (Z/7w/))j(§7 (Z/,’LU/));

hence the proof of the proposition is complete. a

Lemma 7.10 Let £((z,w), (z/,w)) be a C-valued function on D x D that is
holomorphic in (z,w) and satisfies (7.25) and (7.26). Then £ is a constant
multiple of R.

Proof. For % = (z,w),% = (2/,w') € D we sct
n(z,2) = L(Z,2)R(Z 2) 7

Then, using (7.26), we obtain 7(§Z,§z') = n(%,%') for all § € G. Thus, if
Zo € D is a base point, then we have

n(9%0,%0) = n(z0, 9 130)



188 7 Jacobi Forms

for all § € G. Since n(z,z") is holomorphic in Z; by (7.25) it is antiholomorphic
in z’. Therefore, using the fact that G acts on D transitively, we see that

(%0, 20) = 1(Z0, 9~ 'Z0) = 1(Z0, Z0)

for all § € G. Thus, if 7,7’ € D with ' = §'Z,, we obtain

~/

n(z,2') = n((g") "% 20) = n(%0, %0);
hence it follows that &(Z,z") = C£(Z,z") with C = n(Zo, Zo). O
Given elements z € D and w,w’ € V., we set
R (w,w") = &((z,w), (z,w")). (7.27)

For each z € D we denote by F, the space of holomorphic functions ¢ on V
such that

16|12 = /V ()P R (10, )~ dyw < oo, (7.28)

where d,w = det(Im 7(z))"'dw. Thus F, together with the inner product

<¢a 1;[}>z = QS(W)W-RZ (w’ w)ildzw (729)

Vi

is a Hilbert space. _
For g = (g,v,t) € G and ¢ € F ., we set

(T9*(g~ 1)) (w) = T (7, (z,w)) ™ d(pra((9(2, w)))

for all (z,w) € D x V4, where pr, : D x V; — V. is the natural projection
map onto V,; hence we have

pra((9(2,w))) = Pralgz, vg: + I (p(g), 7(2))w)
= Ugz + Jf(p(g)> T(Z))’LU,
where we used (6.47).

Lemma 7.11 For g = (g,v,t) € G and ¢ € Fyz, we have TI*(g~1)p € F,
and

179 (g1l = l16lg-
for all z € D.

Proof. Let z € D, g = (g,v,t) € G and ¢ € Fy(z)- Then we have
17925~ 1) ol

- / 179 (1) b(w) 2R (w, )~
Vi

:/V T (G, (2,w) " ¢ (vg2 + TE(p(g), 7(2))w) P Rs (w, )~ daw.
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However, by Proposition 7.9, we have

Ry=(vg: + JE(p(9), 7(2))w, vz + JF (p(g), 7(2))w)
= J(9, (2,0)) R (w, w) T (g, (2, w))
=17(3, (z,w)) "Rz (w, w).

Furthermore, we have
dyz (vg: + T3 (p(g), 7(2))w)
= det(Im7(g2)) " d(vg: + T3 (p(g), 7(2))w)
= [T (p(9), T(2))* det( 7(2)) " d(vg. + JF (p(9), T(2))w),

noting that J_f is the restriction of the canonical automorphy factor of
Sp(V, 3) to Vi as in (6.31). However, we have

d(vg. + J{ (p(g), 7(2))w) = [T (p(g), 7(2)) 2,

which implies that dg.(vg. + J% (p(g), 7(2))w) = d.w. Hence we have

IT%(g~1)ell2 :/V |6(vgs + I3 (p(g), 7(2))w)

x Ry: (vg: + 5 (p(9), 7(2))w, vy + J5 (p(g), 7(2))w)
x dgz (vg + J5 (p(g), 7(2))w)

- /V |60 R (10, w)dgaw = ]2,

and therefore the lemma follows. a

By Lemma 7.11 we see that 79%(g~1) is an isometry of F,, into F,, and
therefore it follows that T%(g) is an isometry of F, into F,,, and for ¢ € F,
we have

(T*(@)¢) (w) = (T9 92 (§)¢) (w) (7.30)
= TG (92, w)  d(pra(G (g2, w)))
for all z € D and w € V.

Proposition 7.12 For g = (g,v,t),¢ = (¢’,v',t') € G and ¢ € Fyz), we
have
T9%(g) 0 T*(§') = T*(G9)

for all z € D.
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Proof. Let § = (g,v,t),§ = (¢/,v',t') € G, (z,w) € D = D x Vy and

¢ € Fg(z)- Then from (7.30) we obtain
(T*(@)¢)(w) = T (@ (g'z,w) " (pra(d " (g'z,w))).
Applying (7.30) once again, we see that

(T9%(g )OTZ(N’)( ))(w)
( ~—

TG (99’7 w) 7!

NUER SN CTERT)) )
d(pra(g' (g2, pra (5~ (992, w))))).

1

On the other hand, we have
(T*(39")(0))(w) = T ((39") ", (99"2, w)d(pro((99") " (99" 2, w)))
=J@ g (99 %w) TG, (99'2,w))
X o(pra((gg) " (992, w))).
Since we have
g 99’z w) = (97 99"z, pro(g (99 2, w)))
= (¢'z,pr2(g " (99’2, w))),

pry (7' (g' 2, pra (g (99’2, w)))) = pro((§' 19 g9 2, w))

= pry((99) (992, w)),
it follows that
(T9%(3) o T*(F)(9)) (w) = (T*(G9)(6)) (w),

and therefore the proposition follows.

O

Now we consider the subgroup {1} x V4 x R of G. We shall identify

this subgroup with V. = Vi x R. Then V is in fact a Heisenberg
because the restriction of the multiplication operation on G given by

group
(6.33)

to V gives us the usual multiplication operation on a Heisenberg group. For

u=(u,t) €V CGand w eV} we set

uw = pry((u(z, w)).
Then, using (6.47), we obtain
uw = pry(((1, u, 1) (z, w))
= u1, + J5 (p(1), 7(2))w = u, + w.
Thus for g = @ the formula (7.30) reduces to
(T*(@ ) (w) = T (@, (z,w)) ' p(tw)

(7.31)

(7.32)

for p € F., 2€ D and w € V., and T?(u~?) is an isometry of F, into itself.
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Lemma 7.13 For fized z € D the function K, (w,w’) is holomorphic in w,
and we have
R (W', w) = K, (w,w'), (7.33)

A (uw,uw’) = J (4, (z,w)) R (w,w") T (0, (z,w')) (7.34)
for all w,w' € Vy andu e V.
Proof. Using (7.23), (7.24) and (7.27), we have
ﬁZ(U)?w/) = ﬁ((va)7 (Z7w/)) =e [’12((271”)7 (Z7w/))]
for w,w’ € V., where
ra((2,0), (z,w) = B@', pki1 (2, 2)) " 7 (2)@) /2 + B(@', p(ki (2, 2)) " w)
+B(r(2)w, (k1 (2, 2)) " w) /2.

Thus k9 is holomorphic in w, and therefore K. (w,w’) is holomorphic in w
as well. Now (7.33) and (7.34) follows from the corresponding relations in
Proposition 7.9. g

Lemma 7.14 Let U(w,w') is a function on Vi x Vi that is holomorphic in
w satisfying the conditions

(w',w) =¥ (w,w'), (7.35)
¥ (tw, tw') = J (W, (z,w))¥ (w,w )T (@, (z,w')) (7.36)

for all w,w' € Vi and u € V. Then ¥ is a constant multiple of R,.
Proof. This follows from Lemma 7.10. O

For fixed z € D the map ¢ — ¢(w), F. — C is a continuous linear
functional on F,, and therefore there exists an element &7 € F, such that

p(w) = L & (w)p(w') R (w',w') " o' (7.37)

for all ¢ € F,.

Lemma 7.15 Given z € D, there is a nonzero constant C such that

& (w') = CRz(w, ')

for all w,w' € V.
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Proof. For z € D and w,w’ € V; we have
Eir(w) = | & )&, (v)R:(v,v) " dov,
Vi
which implies that

Zﬂ(w) = gfo (’U)fi}, (’U)ﬁz(ﬂ, D)_ldz’[) = gfo (’LU/)

Vi
Let % = (u,t) € V C G and ¢ € F., so that we have
(T*(@Ne)(w) = T (@, (z,w)) ™ d(uw).

Then we see that

[ B0 (o) o8 00) ey
[ GO E 0800 o
= (@, (2,w))"! /V . )0(0) R, (0,0) " duv

= J(@, (z,w))"! g &, (av)p(uv) R, (v, uwv) " 'd,v.

Thus we have
T (@,(z,v))7"€ (v)ﬁz(vw)
T (@, (z,w)) ez (aw). z (uv) R (uv,uv) !
T (U, (z,w))~ mj(@ (2,0) 71T (@, (2,0)) " Ra(v,0) 7!
for v € V.. Hence, replacing v with w’, we see that
§ow(uw') = T (1, (2, w))&E ()T (U, (z,w')).
NO(VV t)he lemma follows by applying Lemma 7.14 to the function (w,w’) —
&5 (w'). 0

Given an element v of the Heisenberg group V =V xR, by (7.32) we
obtain the isometry T%(v) of F, into itself given by

(T*(@)¢)(w) = T @, (2,w) " ¢(T w) (7.38)
for all w € V. We now consider an operator on F, associated to a function

on V. Let E(‘N/) be the space of C-valued continuous functions on V with
compact support. For F' € L(V) we denote by T#(F) the operator on F,

defined by
F)o = / @)dv

for all ¢ € F,.
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Lemma 7.16 For F € L(V) and ¢ € F. we have
(T*(F)¢)(w) :/ . (w, w)p(w") R, (w', w') "t
Vi
where

F@)J (@, (z,w')) ' R, (w, tw)du

\4

k. (w,w') = C’/
for all w,w' € V.

Proof. Using (7.37) and Lemma 7.15, we have
(T*(F)¢)(w) = /V R (w,w')(T*(F)¢) (w) R (w', ')~ dow!

for F € L(V), w € V. and some constant C. On the other hand, for & € V
we have

(T%(w)¢)(w) :C/ Rz (w,v)(T*(W)¢) (v) R (v, v) " v

Vi

=C R (w,0) T (@, (z,0) Do )R, (v,0) " tdv

Vi
e / . (w, i) T (@, iz, w') ™)
Vi
x p(w) R, (i, i) dyu
Thus, using the relations
& (!, ')~ = T, (2 0) " 8. (o, ) LT (@, (2, w')) L,
Tz, )T (@, (20') = T @, (2, 0)) = 1,

we obtain

(T*(@)(w) = | = Ra(w,ww)T (@, (z,w) "' Re(w', ')~ p(w)dow'.

Vi

Hence we see that

@) = [ ([ P@TEE D) 8 i)
v \Jv
x d(w )R, (w',w') "t
and therefore the lemma follows. O

Theorem 7.17 Let z be an element of the Hermitian symmetric domain D
and let V C G be the Heisenberg group associated to the real vector space V
described above. Then the map v — T#(V) given by (7.38) is an irreducible
unitary representation of V on the space F.
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Proof. By Proposition 7.12, for v = (v,t),0" = (v/,t') € V, we have
T*(®) o T*(@") = T*(0")

for all z € D. Furthermore, using Lemma 7.11, we see that || T%(0)¢||. = ||9||»
for all z € D, 7 € V and ¢ € F,. Therefore the map v — T#(v) determines
a unitary representation of V on the space F,. It remains to show that 1%
is irreducible. Using Lemma 7.16, we see that the image of F, under T~
is dense in the ring of Hilbert-Schmidt operators on the space £2(V,) of
square-integrable functions on V; with respect to the measure

dp = R, (w,w) 'dw = R.(w,w) " det(Im 7(z)) 'dw

for w € V. This implies that the centralizer in Aut (£2(V,)) of the image
group of V under T is the set Ci* of complex numbers of modulus 1. Indeed,
cach element A of the centralizer commutes with every T%(%) for @ € V,
and therefore with every T%(¢) for ¢ € F,. By continuity A commutes with
every element of the Hilbert space of Hilbert-Schmidt operators on £2(V, ).
Let 11,19 € £2(V,.), and let = be the Hilbert-Schmidt operator with kernel
k(w,w") = 11 (w)ha(w’). Then we have Xy = A= for all ¢ € L%(V,),
which implies

(0, 1h2) by = (X, o)1

Since 1, 1,92 are arbitrary, it follows that A is a scalar; therefore the unitar-
ity of A shows the claim that A € C;*. Now let F! be a V invariant subspace
of F, under TZ. Since TZ is unitary, there is an invariant subspace F?2 such
that F, = F! @ FL. If A is the scalar multiplication by A\; € C;* on F! and

A2 € CJ on F2 with \; # t2, then A belongs to the centralizer of the image

group of V under T%. Hence we have F2? =0, and therefor T* is irreducible.
O

Remark 7.18 If the Hermitian symmetric domain is the Siegel upper half
space Hy, and if p and T are identity maps, the representation T? given in
Theorem 7.17 reduces to the usual Fock representation of the Heisenberg group

V described in [107].

7.3 Theta Functions

Let (7, p) is the equivariant pair consisting of the homomorphism p : G —
Sp(V,3) and the holomophic map 7 : D — H,, used for the construction
of Kuga fiber varieties in Section 6.1. In this section we consider general-
ized theta functions on the Hermitian symmetric domain D which should
reduce to usual theta functions on the Siegel upper half space H,, when p
and 7 are identity maps. We obtain a transformation formula for such a theta
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function, and show that certain types of such theta functions genenate some
eigenspaces associated to the Fock representations described in Section 7.2.
We shall use the same notations as in the previous sections. Thus V is
a real vector space of dimension 2n whose complexification is of the form
Ve = V4 + V_, and the underlying real vector space of each of V; and
V_ is isomorphic to the real vector space V. Then there are n-dimensional
subspaces V; and V5 of V and an element o € Sp(V, §)¢ such that

V=VieVs a(Vi)=Vi, a(Vs)=V_.
Let Lo be a lattice in V' with L = «(Lg) C V¢ such that
B(L,L)yCcZ, L=LNVi+LNV_ (7.39)
We set
Li=LnNnVy, L_=LnV_., Vo=aV)C V.
Thus each element m € Vj can be written in the form m = my + m_ €
with my =Vp NV and m_ =VyNnV_.

Definition 7.19 The theta function associated to m € Vy and the equivari-
ant pair (1, p) is the function 0., : D x V. — C given by

On(zw) = D e(Bl-+m_,7(z)(1- +m_))/2 (7.40)

l-eL_

+ 8- +m_,w+my))
for all (z,w) € D x V.

Example 7.20 Let S be an r X r real symmetric positive definite matriz,
and let T : Hr, — Hgr be the Eichler embedding (see for example [25, Section
I1.4]) given by 7(Z) = S® Z for all Z € Hy,, where Hy, is regarded as the set
of k X k complex symmetric matrices with positive definite imaginary part.
Let p: Sp(k,R) — Sp(kr,R) be the homomorphism given by

AB\ (E®A SoB AB
p(CD)_<Sl®CE®D)’ (cp)ESp(k’R)’

where F is the r X r identity matriz. Then (T, p) is an equivariant pair, and
therefore (7.40) determines the associated theta function on Hy x CF”.

Example 7.21 Let H* be the product of k copies of the Poincaré upper half
plane H. We define the holomorphic map 79 : H" — Hj and the homo-
morphism po : Sp(1,R)¥ — Sp(k,R) as follows. Let g = (g1,-..,9%) be an
element of Sp(1,R)* with g; = (z: Zii) € Sp(L,R) for 1 < i <k, and let

z=(21,...,2r) € H*. Then we set

m(z) = 2" polg) = (& 5 ).
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where z* = diag (21, ..., zx) is the k x k diagonal matriz and similarly for a*,
b*, ¢* and d*. Let = be an element of Sp(k,R)%, and set

T(Z) = :To(z), p(g) = EPO(Q)E_l

for z € H* and g € Sp(k,R)*. Then (1, p) is an equivariant pair, and (7.40)
determines the associated theta function on H*. Such a function can be shown
to be a Hilbert modular form under certain conditions if the results in [35] is
used.

Lemma 7.22 Letr = ri+r_ be an element of L withry € Ly andr_ € L_.
Then we have

Om (z,w+ry +7(2)r2)
=e[=B(r—,7(2)r-)/2 = B(r—, w+ my)|0mir(z, w)

for all (z,w) € D x V.
Proof. Given (z,w) € D x Vi, we have

Bl +m_,7(z)I-+m_))/2+ 8- +m_,w+7ry +7(2)r— +my)
=Bl 4+m_~+r_,7(z)(l-+m_+r_))/2
— Bl ()L +m_))/2 — Blr_,7(2)r )2
—B(l-+m_,7(z)r_-)/2
+B(1-+m_+r_,w+ry +my)
+ B +m—,7(z)r-) = Br—,w+ry +my).

Since the matrix representation of 7(z) : Vo — V¢ is of the form (2 %) relative

to the decomposition Ve = Vi @V_, we have 7(2)~! = —7(2) = —7(2); hence

we obtain
Bl +m_,7(2)r_) =B(r(z) (- +m_),r_) = =B(1(2) (- +m_),r_).
Thus we see that

B +m_, 7)1 +m))/2+ B +m_w+rer(2)r +my)
=01 +m_+r_,7(2)(l- +m_+r_))/2
+O8(-+m_+r_,w+rsy+my)

=Bl (&) /2 — Bl w s+ my),

and therefore the lemma follows. O

Given an element | =1 +1_ € L withly € L, and [_ € L_, we set

(1) = e [B(L,12)/2 + B, ms) + Blm_, 1)) (7.41)



7.3 Theta Functions 197

Then 1, is a quasi-character of L in the sense that the map

L= Pm(De[B(l4,1-)/2]

is a character of L. We also set I, =1y —7(z)I_ € V4 for z € D as in Section
6.1.

Theorem 7.23 Let J : G x D — C be the automorphy factor given by
(6.52). Then the theta function 0., satisfies the relation

Om (z,w+ 1) = (DT ((1,1,0), (z,w))0m (2, w) (7.42)
for all (z,w) eD=DxVy andl € L C Vp.
Proof. Applying Lemma 7.22 for (z,w) € D x V4 and r = l; — [_ with
ry =1l €Lyandr_ =—Il_ € L_, we have
Om(z,w+ 1) =e[-B(=,7(2)=)/2 4+ B(_,w + my)]|0mtr (2, w).

However, for m+r = (m4 +14+) + (m— —1_), we have
Omtr(z,w) = Z e[Blk— +m_ —1l_,7(z)(k— +m_ —1_))/2
k_€L_
F B0 +me — L wtmy +1)]

= Y elBk-+m_,7(z)(k- +m_))/2

k_eL_
+ Bk +m_,w+my +11)]

= Y elBth +m_,r(=)(k- +m_))/2

k_eL_
+ 6(k— +m_,w +m+) +/6(k—7l+) + 6(m—>l+)]
= e[ﬁ(m—7l+)]9m(z7w)>

where we used the condition §(L, L) C Z. Thus we obtain
Om(z,w+12) = e[=B(l-, 7(2)1-)/2 + B, w4+ my) + B(m—, 11)]0m (2, w).
Since S =0on V4 x V4 and V_ x V_, we have

T(1,1,0), (z,w) = e [B(1,1.)/2 + B0, w)] = e [B(1_, 1.)/2 + AL, w)]
— e[, 1+)/2 — B, 7(2)I_)/2 + B, w)).

Hence we see that

¢(Z)j((1> L, 0)7 (z7 w)) =e [_6(1—7 T(Z)l—)/2 + /B(l—7 ’LU)
+/6(l—7m+) +6(m—7l+)]7

and therefore the proof of the theorem is complete. a
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Remark 7.24 If we set U = (1,1,0) € G and Z = (z,w) € D, then (7.42)
can be written in the form

am(ﬂz) = jll)(ﬁv z)am(z)7
where Jy : (I' x L x {0}) x (D x V}) — C is the automorphy factor given by
j¢((77 L, 0)7 (z7 w)) = ’(/}(l)j((’w L 0)7 (Z> ’LU))
forallvyeI',l e L and (z,w) € D x V;.

Given an element z € D and a quasi-character ¥ of L, we denote by Vi
the complex vector space consisting of all functions f : Vi — C satisfying
the relation

T((1,1,0)f =)~ f

for all [ € L, where T# is the Fock representation in Section 7.2.

Proposition 7.25 Let z € D, and let f be an element of V] for some quasi-
character ¢ of L. Then T¢ o 0)f is an element of Vlzz forallv € G.

Proof. Letl € L, v € G and z € D. Then we have
(1,91,0)(7,0,0) = (7,0,0)(1,,0) = (v,7,0) € G = G x V x R.

Hence, using Proposition 7.12, we obtain

T7%((4,0,0)) 0 T((1,1,0)) = T*((7,0,0)) o T*((1,,0)).
Thus for f € V, we have

T7((7,0,0)(T*((1,1,0)) f) = T*((7,0,0))(T*((1,1,0)) f)

= ()" H(T*((7,0,0)),
and therefore we see that 7%((1,1,0))f € V,]*. 0
Given z € D and m € V{ we define the function 67, : V; — C by
07, (w) = O (2, w)

for all w € V..

Proposition 7.26 Let z € D, and set | = (1,1,0) € G for | € L. Let T*(l)
be the associated operator on F. given by (7.38), and let 1, be the quasi-
character associated to m € Vy in (7.41). Then the function 0%, is an element

of Vi,
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Proof. Given z € D, m € Vg, 1= (1,1,0) € G and w € Vg, we have

o~

(T*(1)(02,)) (w) = TAL, (2,w)) 7202,(1 (2, 0)))-

However, we have

~

7Y (z,w) = (1, -1,0)(z,w) = (z,w — 1,);
hence we obtain (I !(z,w)), = w — I.. Thus we see that
(T*(D)(07,) (w) = T ) 707 o L)
! ) (D (2,0))0, (w)
= Y (=107, (w) = P (1) 105, (w).
Thus the proposition follows. a

Let L7 be the dual lattice of L relative to 3, that is,
LY ={veVy|pB(Ly,v) CZ}.

Then by (7.39), we have L_ C L% . Now we state the main theorem in
this section which extends a result of Satake [107, Section 3] to the case of
Hermitian symmetric domains.

Theorem 7.27 Let {2 be the complete set of representatives Ly modulo L_ .
Then, for z € D and m € Vy, the set {6%,,, | r € 2} forms a basis of the
complex vector space V,; .

m—+r

Proof. Since the set {67, ., | r € 2} is obviously linearly independent over
C, it suffices to show that it spans the complex vector space V.- Let z €D,
w € Vo and m =myq +m_ with my € V3 and m_ € V_. Then for I, € L
we have

J((1L,14,0), (z,w)) = 1, ¢(ly) = e[Blm—,11)].
Thus, for f € V7, the relation T3 ;, o) f = U (1) 71 f(w) reduces to
flw—=1y) = e[=B(m—, 11)]f (w).
Hence the function f.(w) = f(w)e [—B(m_,w)] satisfies the relation
felw—=11) = flw—1)e[-B(m—,w) + B(m_,14)]
= fw)e[=B(m—,I)]le[-B(m—, w)le [B(m—, 11 )]
= fe(w)~

Therefore we obtain a Fourier expansion of f.(w) of the form

fe(w) = f(w)e[=B(m_,w)] = Y a(r)e[B(r,w)],

rely
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which implies that
fw)="Y" a(r)e[B(r+m_,w)].
rel
On the other hand, for I_ € L_, we have
flw—7(2)l-) =e[-B(-,7(2)l-)/2 + B(I-,w) + B, m4)]f(w).

By comparing the coefficients of e [3(r +m_, w)] in the Fourier series of both
sides of the above equation, we see that

a(rje [B(r +m—,7(2)l-)] = a(r —1-)e[=B(l-, 7(2)I-)/2 + B, m+)];
hence we have
alr —1-) = a()e [B(r +m_, 7(2)l_) + B, 7(2)I-)/2 — B(1_,m.)]
for each r € L . Using this relation, we obtain

fw)y=3%" > a(r—i-)e[B(r+m-_ —1_,w)

reRl_eL_
=3 Y alelBlr - mo. () + AL ()2
reRl_eL_
—B-,my)+B(r+m_ —1_,w)].
However, we have
B +m_, T(2)L) + B, ()1 )2
=08(r+m_,7(2)I-)/24+ 8-, 7(z)(r + m_))/2+ B(l_,7(2)l-)/2
=08(r+m_,7(2)I-)/2+ 8-, 7(z)(r+ m_ +1_))/2
=B(r+m-+1_,7(z)(r+m-+1-))/2 = B(r + m—,7(2)(r + m-))/2,
Bl m )+ Br+m_,w)=6r+m_—Il_,w+mi)+B(r+m_,my).
Thus we see that

fw) = a(r)e[Br+m- —1_,7(z)(r+m-))/2 = B(r +m_,m.)]

res?

X Z elfir+m_+i_,7(2)(r+m_+1-))/2
l_eL_

+ 80 +m- =l w+my)]
= Z C(T7 z)efn+r (’LU),
ref
where
c(r,z) = a(r)e [B(r + m—,7(z)(r + m-))/2 = B(r + m—, m,)]

is a constant independent of w; hence the theorem follows. a



7.4 Vector-Valued Jacobi Forms 201

7.4 Vector-Valued Jacobi Forms

In this section we extend the notion of Jacobi forms treated in Section 7.1,
and discuss vector-valued Jacobi forms on symmetric domains in connection
with vector-valued modular forms. Such Jacobi forms are related to torus
bundles over Kuga fiber varieties.

Let G = G(R), D = G/K, and the equivariant pair (7, p) be as in Section
6.1. In particular, 7 : D — H,, is a holomorphic map that is equivariant with
respect to the homomorphism p : G — Sp(V, 3), where ( is an alternating
bilinear form on the real vector space V of dimension 2n. We denote by
Alt(V') the space of all alternating bilinear forms on V.

Definition 7.28 A Hermitian structure on V' is a pair (o, I) consisting of
all elements o € Alt(V) and I € GL(V) with I? = —1y such that the bilinear
map

VxV =R, (v,v)—alv,v)
is symmetric and positive definite. We shall denote by Herm(V') the space of

all Hermitian structures on V.

We zg € D as before, and denote by Iy = I.(.,) the complex structure
on V corresponding to the element 7(z9) € H,. Then we see that (5, 1y) €
Herm(V), and the Siegel upper half space H,, of degree n can be identified
with the space

H=H(V,3) = {I €GL(V) | (3,I) € Herm(V)} (7.43)

on which Sp(V, §) acts by
(9.1) = glg™"

for all g € Sp(V,3) and I € H(V,3). We set
U ={a e Alt(V) | p(G) € Sp(V, a)}.

Then U* is a subspace of Alt(V) defined over Q, and we have 8 € U*. Let
U = (U*)* be the dual space of U*. Then we obtain an alternating bilinear
map A:V xV — U defined over Q by

A, v")(a) = afv, ) (7.44)

for all « € U* and v,v' € V.

Following Satake (cf. [108, §III.5], [109]), we consider the generalized
Heisenberg group H associated to A consisting of all elements of V' x U to-
gether with a multiplication operation given by

(v,u) - (V' u') = (v+ v, u+u — A(v,v")/2) (7.45)

for all (v,u), (v',u") € V x U. Then the group G operates on H by
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g- (’1)7’11,) = (p(g)w,u) (7'46)

for all g € G and (v,u) € H, and we can form the semidirect product G x H
with respect to this operation. Thus G x H consists of the elements (g, v, u)
of G x V x U whose multiplication operation is given by

(g,uu) : (9/7”/7’“/) = (99/7 (7)7u) . (p(g)v/,u’)) (747)
= (99’0 + p(g)v", u+u" = A(v, p(g)v')/2).

If I € H=H(V,3), we extend the complex structure I on V linearly to
the complexification Ve =V ®g C of V, and set

Vi) ={veVe|Iv=iv}, V_.(I)={veVe|Iv=—iv}.

When [ is equal to Iy considered above, we shall write V. = V. (Iy) and
V_ =V_(Ip).

Lemma 7.29 To each complex structure I on V there corresponds a unique
complex linear map & : V_ — V. satisfying

Vo(I)=(1+¢&)V.. (7.48)

Furthermore, the map I — & determines a bijection between H = H(V, B)
and the set of C-linear maps £ : V_ — Vi such that 1 — &€ is positive definite
and £ = &, where the transpose is taken with respect to the bilinear map f.

Proof. This follows from [108, Lemma I1.7.2]. O

If ¢ is an element of Home(V_,V}) in Lemma 7.29 corresponding to an
element I € H, then we shall write I = I.

Lemma 7.30 For each £ € Home(V_,V,) with I € H the map
Se:(ViIe) = Vi, v vg — &

determines an isomorphism of vector spaces over C, where v = vy +v_ €
V C Vo with vy € V.

Proof. Given ¢ € Home(V_,V,) with I € H, the map Z¢ is linear. Since
dim¢ V' = dimc V4, it suffices to show that Ker = = {0}. Suppose that v € V'
satisfies

Ze(v) = vy —&u_ = 0. (7.49)

By (7.48) there exists v’ € V_(I¢) such that
v =v_ +&v_. (7.50)

From (7.49) and (7.50) we see that v' = vy +v_ =v € V. Since VNV_(I¢) =
{0}, we have v" = v = 0; hence it follows that Ker = = {0} O



7.4 Vector-Valued Jacobi Forms 203

By Lemma 7.29 we may identify the symmetric domain H in (7.43) with
the set of elements z € Homc(V_, V) with z' = z and 1 — 2z > 0. Then the
symplectic group Sp(V, 3) operates on H in (7.43) by

9(2) = (az +b)(cz +d) "
for all z € H and
ab
g= (C d) € Sp(V, B);

here we wrote g € Sp(V,f3) as a 2 x 2 block matrix with respect to the
decomposition Vg = V4 + V_. As was discussed in Section 6.2, the canonical
automorphy factor J of Sp(V, ) is the map on Sp(V, 3) x H with values in
GL(V¢) given by

— J+(g,2:) 0
o= (M 0 (751)
for all g € Sp(V,8) and z € H, where
Ji(g,2) =a—g(z)e, J_(g,2) =cz+d. (7.52)

If 7 : D — 'H is the holomorphic map equivariant with respect to the ho-
momorphism p : G — Sp(V, 3) as before and if A is as in (7.44), then we
set

3((g,7,5), (2,0)) = s = A(p(g)r, J+(p(g), 7(2))72) /2 (7.53)
— A(p(g)v, I+ (p(g), 7(2))v)/2
— A(p(g)r, J+(p(g), T(2))v)

for g € G, (r,s) € H and (z,v) € D x Vi, where
T, =r4—2r_ €Vy (7.54)

for r = (ry,r—) € V.C Vg = V4 ® V_. Then it is known (see [108, §III.5])
that the group G x H operates on D x V; x Uc by

(g7lr7 8) : (z7v7 ’LL) = (gz, J+(p(g), T(Z))(U —l—rz),u +3((97T7 8)7 (zﬂ)))) (7'55)

By restricting this action to D x V we obtain the action of Gx H on D x V.
given by

(9.7,5) - (2,0) = (92, T+ (p(9), 7(2)) (v + 12))
for g € G, (r,s) € Hand (z,v) € D x Vj.

Proposition 7.31 The map J: (G x H) x (D x V;.) — Uc given by (7.53)
satisfies

3((9/7T/78/) : (g7lr7 8)7 (Z,?))) = 3((9/,’1"/,8/), (g>r>s) ’ (z,v)) +3((97T7 8)7 (z,v))
for all (¢',7",8"),(g,7,8) € GxH and (z,v) € D x V,.
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Proof. Given (¢',7',s'),(g,7,8) € G x H and (z,v,u) € D x V4 x Ug, we set

)
(Z177)17u1) (g T, ) (Z,’U,’LL)
(22’1}2’“2) (g ) /7 ) ’ (217U17u1)
(23’1}3’“3) ((g/ rl § ) (g’r’ S)) ’ (Z7U7U)'

Then by (7.55) we see that

up = u—|—3((g,r, S)’ (Z’U))
Uz = U1 —I—S((g/,r/,s/), (g7lr7 8) ) (Z,’U))
us=u+J((g,r,s) - (g,7,8),(2,0)).

Since G x H acts on D x V x Ug, we have us = us; hence the proposition
follows. a

Let Ly be an arithmetic subgroup of H, and set

L=pv(Lu), Lu=pu(Lln), (7.56)

where py : HH — V and py : H — U are the natural projection maps. Then
L and Ly are lattices in V' and U, respectively, and we have L = Ly/Ly.
Given elements [,I’ € L, we have (1,0), (I’,0) € Ly; hence by (7.45) we see
that

(1,0)- (I',0) = (1 + 1", —A(l,1")/2) € Ly.

Since (I +1,0)~! = (=1 —1',0) € Ly, we have
(I+U,-A11)/2) - (-1 =1",0) = (0,—A(,1')/2) € Ly.

Thus it follows that A(L,L) C Ly. Let v be a torsion-free arithmetic sub-
group of G. Using the isomorphism

F[XLH/LUgleL,

we see that the action of G x H on D x V. x Ug induces actions of the discrete
groups I' X Ly, I' x L and I" on the spaces D x V; x Uc, D x V4 and D,
respectively. We denote the associated quotient spaces by

W=IxLg\DxVyxUs, Y=IxI\DxV,, X=TI\D.

Then each of the spaces W, Y and X has a natural structure of a complex
manifold, and there are natural projections

wILy ™% X,

The complex manifold Y is the Kuga fiber variety in (6.21), and W is a torus
bundle over Y whose fiber is isomorphic to the complex torus Ug/Ly .
Let KSP be the subgroup of GL(V¢) given by
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k2= {(37) e croe) =),

where the matrix is written with respect to the decomposition Vo = Vi +V_.
Then it is known that Kgp is the complexification of a maximal compact

subgroup K5 of Sp(V, ). Let J, J, and J_ be as in (7.51), and let g =
(¢%) € Sp(V,B) and ¢ € H. Since the matrix g¢ = (al +b)(c¢ +d)~! € H
is symmetric, by (7.52) we obtain
Ji(9,¢) =a—(aC+b)(cC +d) e

=a— (¢t +d) 7 (¢al + e

= (¢t 4+ d)H¢(a — a'e) + dta — bPe)

= (¢ +d) = (1 (9, 0N
Hence it follows that J4(g,¢) € Kép.

Let 0 : Ko” — GL(Z) be a representation of KoP in a finite-dimensional
complex vector space Z. Given a holomorphic map f: D — Z, we set

(f le M) = a(J(p(7), 7(2)) " f(72) (7.57)
for v € G and z € D. Then it can be shown that

flovle? =F1o77,s
for 7,7 € I'. Let I' C G be a torsion-free arithmetic subgroup as before.

Definition 7.32 A holomorphic map f : D — Z is a modular form for I’
associated to o if it satisfies

flov=1"f
forally eI

Let x : Uz — C* be a character of Uz with x(s) =1 for all s € Ly, where
Ly is as in (7.56). Then by Proposition 7.31 we see that x o J : (G x H) x
(D x V4) — C is an automorphy factor, that is, it satisfies

(xo)@7,2) = (x°3)(G,9'%) - (x0I)(F,2)

forallg,g’ € GxHand z € D x V.. Given a holomorphic map F : Dx V, —
Z, we set

(F lo (1,78))(z,w) = x(=3((v,7,5), (z,w))) - o (S (p(7), 7(2))) " (7.58)
X F(yz, J4(p(7), 7(2))(w + 72))

for all (z,w) € D x V4 and (v,r,s) € G x H, where r, is as in (7.54). Using
the fact that x o J is an automorphy factor, we see that

o,X (’Y/,’I"/, 8/) =F

F oy (v,7,5) o,X ((v,7,8) - (7/77"/73/))

for v,~" € G and (r,s), (r',s") € H.
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Definition 7.33 A holomorphic map F : D x V. — Z is a Jacobi form for
I' x Ly associated to o and x if it satisfies

F |U,X (’77T7 8) =F
for all (y,r,8) € I' X Ly.

We can obtain a family of modular forms on D parametrized by the
rational points of H as is described in the next theorem.

Theorem 7.34 Let F': DXV, — Z be a Jacobi form for I'x Ly associated to
o and x, and let (r,s) € Hg = VoxUq withr = (ry,r_) € V C Ve = Vo0 V_
in the sense of Definition 7.33. If A : VXV — U s the bilinear map in (7.44),
we set

f(z) =x(=A(r,zr_)/2) - F(z,r,) (7.59)

for all z € D. Then f is a modular form for an arithmetic subgroup I" C I’
of G associated to o in the sense of Definition 7.32.

Proof. Let € be the identity element of G, and let (r,s) € Hg. Then, for
each z € D, J(p(e),7(2)) and Jy(p(e),7(z)) are identity matrices, and in
particular o(J(p(e),7(z))) is the identity element in GL(Z). Thus, using
(7.53) and (7.58), we see that

J((e, 7 8),(2,0) =s—A(r,r.)/2 — A(v,v)/2 — A(r,0) = s — A(r,7,)/2,
(F oy (8,7,8))(2,0) = x(=s + A(r,72)/2)F (2,72)
for all z € D. Hence by (7.59) we obtain
f(2) =x(s = Alr,rq —2r_) /2 = A(r,zr_) /2)(F |o,x (¢,7,5))(2,0)
=X(s = A(r,r4)/2)(F |o (€,7,5))(2,0).
Thus it suffices to show that the function F{, ) : D — Z given by
F(T%S)(z) = (F |ox (,7,5))(2,0)

is a modular form for an arithmetic subgroup I C I" associated to o. Given
an element v € I', by (7.57) we have

(Firsy o M(2) = a(J(p(7), 7(2))) " Fir5) (72)
= a(J(p(7), 7(2))) THF lox (&,7,5))(72,0)
(F' o (8,7:8)) loyx (7,0,0))(2,0)

4

(
for all z € D. However, by (7.47) we see that
)

(5,7‘, S) : (7’070 = (’Y’r’ S) = (7’070) : (5’p(7)717" S)

Using this and the fact that F' is a Jacobi form for I', we obtain
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(Firs) o M(2) = (F low (7,0,0)) lony (€. p(1)7'7,5))(2,0)
= (F lox (€,p(7)7'7,5)(2,0)

= Ly=1.(r,5) (2)7

where v~ - (r,8) = (p(vy)~'r,s) by (7.46). Let I, ) be the subgroup of I’
consisting of the elements v € I" satisfying

'7_1 ’ (Tv S) = (0751) ) (7‘2,82) : ('F, S)

with s; € Ly and (rg,s2) € Ly. Then I, ) is an arithmetic subgroup, and,
if v € I, 5), we have

(F(r,s) ‘U 7)(2) = F’y*L(r,s)(Z) = F(0,81)~(7‘2782)~(7‘7S)(Z)
= (F |U,X (57 0, 51) |U,X (57T27 82) ‘mx (57T7 S))(Z7O)
= (F |ox (g,7,8)(2,0) = F(.5)(2)
for all z € D. Hence the function F{, ) is a modular form for the arithmetic

subgroup I, ) C I" associated to o, and therefore the proof of the theorem
is complete. a



8

Twisted Torus Bundles

As was discussed in Chapter 6 equivariant holomorphic maps of Hermitian
symmetric domains into Siegel upper half spaces can be used to construct
Kuga fiber varieties, which can be regarded as complex torus bundles over
locally symmetric spaces. In this chapter we extend the construction of such
torus bundles using 2-cocycles of discrete subgroups of the semisimple Lie
groups associated to the given symmetric domains (cf. [85, 87]).

Let G be a semisimple Lie group of Hermitian type, and let D be the asso-
ciated symmetric domain, which can be identified with the quotient G/K of
G by a maximal compact subgroup K. We assume that there are a homomor-
phism p : G — Sp(n,R) of Lie groups and a holomorphic map 7 : D — H,
that is equivariant with respect to p, where H,, is the Siegel upper half space
of degree n. Let L be a lattice in R?", and let I" be a torsion-free discrete sub-
group of G such that £- p(y) € L for all £ € L and v € I', where we regarded
elements of L as row vectors. If L denotes the lattice Z2" in Z?", as in Section
6.1, we may consider the semidirect product I" x L with multiplication given
by

(71, 61) - (72, €2) = (1172, Lap(2) + £2) (8.1)

for all y1,7v2 € I" and ¢1,¢5 € L. Then I' X L acts on D x C™ by
(7, (1, 1)) - (z,w) = (vz, (w + p7(2) + v)(Cp7(2) + D,) ), (8.2)
for all (z,w) € DxC", (u,v) € L C R* x R™ and v € I' with p(y) =

(éz gz ) € Sp(n,R). If we denote the associated quotient space by

Y=IxIL\DxC",

then the map mp : Y — X = I'\D induced by the natural projection map
D x C™ — D has the structure of a fiber bundle over the locally symmetric
space X whose fibers are in fact polarized abelian varieties (see Section 6.1).
The total space of such a bundle is called a Kuga fiber variety as was discussed
in Chapter 6.

The torus bundle parametrized by X = I'\D described above can further
be generalized if a 2-cocycle of I' is used to modify the action of I" x L
on D x C™. Indeed, given a 2-cocycle ¥ : I' x I' — L, by replacing the
multiplication operation (8.1) with

M.H. Lee: LNM 1845, pp. 209-230, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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(1, 01) - (72, €2) = (M72, Lrp(y2) + L2 + ¥ (71, 72)), (8.3)

we obtain the generalized semidirect product I" X L of I" and L. We denote
by A(D, C™) the space of C™-valued holomorphic functions on D, and let & be
a 1-cochain for the cohomology of I with coefficients in A(D, C") satisfying

seln ) = vl (7)) (5.4

for all z € D and ~1,72 € I', where d is the coboundary operator on 1-
cochains. Then an action of I" X L on D x C™ can be defined by replacing
(8.2) with

(7 (1, v)) - (z,w) = (v2, (W + p7(2) + v + £(7)(2))(Cpor(2) + D,) 7).

If the quotient of D x C" by I' x,, L with respect to this action is denoted
by Yy e, the map 7 : Yy, — X = I'\D induced by the natural projection
D x C™ — D is a torus bundle over X which is called a twisted torus bundle.

In Section 8.1 we describe the multiplication operation (8.3) by introduc-
ing a 2-cocycle of I'. The action given by (8.4) in terms of a 1-cochain is
considered in Section 8.2, and this action is used in Section 8.3 to construct
a complex torus bundle, called a twisted torus bundle, over a locally sym-
metric space. We also consider families of such torus bundles produced by
different 2-cocycles and 1-cochains. In Section 8.4 we determine the cohomol-
ogy ]i’,kﬂ'*(Oy%E along the fibers of Yy, ¢ over X associated to the sheaf Oy, ,
of holomorphic functions on Yy ¢ for k =0, 1.

8.1 Two-Cocycles of Discrete Groups

As was discussed in Section 6.1, a Kuga fiber variety is obtained as a quotient
by a semidirect product I" x L of a discrete subgroup I' of a semisimple Lie
group of Hermitian type and a lattice L. In this section we generalize the
multiplication operation on I X L by using a 2-cocycle of I'.

Let G be a semisimple Lie group of Hermitian type, and let K be a
maximal compact subgroup of G. Thus the quotient space D = G/ K has the
structure of a Hermitian symmetric domain. We consider an equivariant pair
(7, p) associated to a Kuga fiber variety as in Section 6.1. Thus 7 : D — H,,
is a holomorphic map that is equivariant with respect to a homomorphism
p: G — Sp(n,R) of Lie groups, where Sp(n,R) and H,, are the symplectic
group and the Siegel upper half space, respectively, of degree n. Recall that
this means that the pair (7, p) satisfies

7(g2) = p(9)7(2)

for all z € D and g € G.
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Let L be a lattice in R2™. In this chapter we shall often consider L as
a subgroup of R"® x R™ and write elements of L in the form (u,v), where
u,v € R™ are regarded as row vectors. Let I be a discrete subgroup of G
such that ¢p(y) € L forall ¢ € L and v € I', where £p() is the matrix product
of the row vector £ of 2n entries and the 2n x 2n matrix p(v). Thus L has the
structure of a right I"-module, and therefore we can consider the cohomology
H*(I', L) of the group I' with coefficients in L. We denote by ¢*(I', L) and
3%(I', L) the spaces of the associated k-cochains and k-cocycles, respectively,
and choose an element ¢ of 3%(I',L). Thus ¢ is a map ¢ : ' x I' — L
satisfying

Y(v1,72)p(13) + Y(m1y2,73) = PY(v2,73) + ¥ (11, 7273) (8.5)

Y(v,1) =0=1(1,7) (8.6)
for all vy1,v2,73,7 € I', where 1 is the identity element of I". We note that
an element o € 32(I', L) is a coboundary if o = 93 for some 3 € ¢(I', L),
where

IB(71,72) = B(y2) — B(mirz2) + B(v1)p(re) (8.7)

for all v1,7 € I'.

We now consider the generalized semidirect product I" x, L associated to
¥, which consists of the elements (v, (u,7)) in I' X L and is equipped with
the multiplication operation defined by

(v1, (p1, 1)) - (v2, (p2, v2)) = (M1v2, (1, v1) p(v2) + (p2, v2) +9(71,72)) (8.8)
for all y1,v2 € I" and (u1,11), (u2,v2) € L.

Lemma 8.1 The generalized semidirect product I' X L is a group with re-
spect to the multiplication operation given by (8.8). The identity element is
(1,(0,0)), and the element

(v = ()N = (1)
is the inverse of (v, (u,v)) € I' xy L.

Proof. First, we shall show that the operation in (8.8) is associative. Let
Y1,72,73 € I and (p1,v1), (p2, v2), (13, v3) € L. Then by (8.8) we have

(71, (1, v1)) - (2, (p2,12))) - (73, (13, v3))
= (717273, (1, 1) p(72) p(73) + (2, v2)p(73)
+ (1, 72)p(3) + (13, v3) + Y (1172,73))-

Similarly, we obtain

(1, (1, v1)) - ((v2, (p2,v2)) - (3, (13, 3)))
= (1, (1, 1)) - (v23, (2, v2)p(v3) + (k35 v3) + ¥(72,73))
= (m7273, (11, v1)p(y2) p(v3) + (2, v2)p(73) + (13, v3)
+ ¥ (v2,73) + P (71,7273))-
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Thus the associativity follows from the cocycle condition (8.5). Given (v, (i, v)) €
I' xy L, using (8.6), we have

(’Y’ (M? V)) ' (17 (O’ O)) = (77 (HJ’ V) + (07 O) + 77[}(7’ 1)) = (’Y’ (M? I/)),
(1,(0,0)) - (7, (1, ) = (7, (0,0)p(y) + (1, v) +(1,7)) = (v, (1, ¥));

hence it follows that (1, (0,0)) is the identity. As for the inverse, we have

(7, (1, v)) - (v = (s v)p(y) T = ()
( (s )p(V) = (v)p(y) T = (v, F (7))

—(p, )p(V) T =Yy h) - (s (s v))
( = v)p() " () = (v, v ) p(y) + () F (v )
= (Lo ) = v,y o).

However, using (8 5) for v1 = v3 = v and 72 = 7y~ !, we see that

() = vy e,
and therefore it follows that (y=1, —(u,v)p(v)~! — ¥(y,771)) is the inverse
of (v, (u,v)). 0

The group I' Xy L essentially depends on the cohomology class [¢] €
H?(I', L) of v according to the next lemma.

/\/-\

Lemma 8.2 Let ¢,¢' : I' x I' — L be 2-cocycles that are cohomologous, and
let ¢ be an element of € (I, L) such that

Y(y1,72) = ¥ (71,72) + (09) (71, 72)- (8.9)
Then the map @ : I' Xy L — I' Xy L defined by
(v, (1,v)) = (7, (s v) + (7)) (8.10)

for~v € and (u,v) € L is an isomorphism.
Proof. Using (8.9), we have

(1, (1, 1)) - (12, (12, v2))
= (772, (1, v1) + (1)) p(v2) + (12, v2) + (72) + ' (71,72))
(7172,(;“,1/) (v2) + (p2,v2) + ¥(71,72) + d(1172))
(71, (p1,v1)) - (v2, (12, 12)))-
for all (1, (p1,01)), (72, (p2,2)) € I' Xy L. Hence it follows that @ is a
homomorphism. If we set,
(' (W) = (0 (W) = o(y),

then we see easily that the map ¥ is an inverse of @, and therefore the lemma
follows. U
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According to the following proposition, the number of cocycles 1 modulo
the coboundaries is finite if the R-rank of G is greater than two.

Proposition 8.3 If the R-rank of the semisimple Lie group of G is greater
than two, then the cohomology group H?(I', L) is finite.

Proof. From the short exact sequence
0—-L—-V->V/L-0
of I'-modules, we obtain the long exact sequence
- —HYTI',L) - HY(I''V) — H(I',V/L)
—H*(I',L) — H*(I',)V) — H*(I,V/L) — - --

of cohomology groups of I'. Since the R-rank of G is greater than two, it
follows from Proposition 6.4 in [16, §VIL.6] that

HY(I',\V) = H(I'\D,V) =0

for ¢ = 1,2, where V is the local system on I'\ D defined by the representation
p of I' on V. Hence we have

HYI,V/L)= H*T,L).

However, since V/L is compact, H'(I',V/L) is also compact, while H*(I', L)
is discrete. Thus it follows that H?(I', L) is finite. O

8.2 One-Cochains Associated to 2-Cocycles

In order to introduce an action of the semidirect product associated to a
2-cocycle considered in Section 8.1, we need to introduce a certain 1-cochain
of I'. In this section we discuss some of the properties of such a cochain.

The symplectic group Sp(n,R) acts on the Siegel upper half space H,, as
usual by

g¢ = (aC +b)(cC +d)7 ! (8.11)

for all z € H, and g = (‘CL Z) € Sp(n,R). For such g € Sp(n,R) and ¢ € H,,
we set
J(9,¢) =c( +d.

Then the resulting map j : Sp(n,R) x H,, — GL(n,C) satisfies

3(9'9,¢) = i(g’,9¢)i(9,¢) (8.12)

for all ( € H,, and g,¢’" € Sp(n,R). Given z € D and v € I' C G, we set
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Jpr (7, 2) = J(p(7), 7(2)). (8.13)

Using (8.12) and the fact that (p,7) is an equivariant pair, we see that

jp,T(/y/,Y7Z) :jp7‘r(’7/>’yz)jp,7'(’77z) (814)

for all z € D and 7,7 € I'. Thus j, . : I’ Xx D — GL(n,C) is an automorphy
factor, and automorphic forms involving the determinant of such an auto-
morphy factor have been studied in a number of papers (see e.g. [19] and
[74)).

Let A(D, C™) denote the space of C™*-valued holomorphic functions on D.
Then A(D,C™) has the structure of a double I™-module by

(v-NE) = 1), (F-1E) =025 (7, 2) (8.15)

for all v € I' and z € D, where elements of C™ are considered as row vectors.
Thus we can consider the cohomology of the group I' with coefficients in
A(D,C"™), where its group of k-cochains consists of all functions

n:T* — AD,C")

such that n(y1,...,7) = 0 whenever at least one of the ~; is 1. Then the
coboundary operator

§: ¢M(I, A(D,C")) — ¥ (I A(D,C"))
is given by

M1, er1) = 71002, -5 Vet1)

k
) (DY Yig ) + (CDF 0, ) e
=1

for all n € €¥(I", A(D,C")) (see [34, Chapter 15]). In particular, for k = 1 we
have

on(v1,72) =7 - n(y2) —n(ny2) +1n(71) - 12 (8.16)

for all 41,2 € I', where the right and left actions of I" are given by (8.15).
Given a 2-cocycle ¢ € 3%(I', L), we assume that there is an element ¢ of
¢Y(I, A(D,C")) satisfying

seln)(2) = vl (7)) (817

for all z € D, where the right hand side is the matrix multiplication of the
row vector ¥(y1,72) € L C R™ x R™ and the complex 2n x n matrix ("(12) ) If
1’ is another 2-cocycle that is cohomologous to 1), the corresponding element
of €Y(I', A(D,C")) can be obtained as follows. Let v’ € 3%(I', L) satisfy
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Y= + ¢ (8.18)

for some ¢ € €(I,L). Then we define the map &' : I' — A(D,C") by

€ (1)(=) = £()(=) — o) (T(z)) (8.19)

forally € I' and z € D.
Lemma 8.4 If ¢’ and & are as in (8.18) and (8.19), then we have

o (71,72)(2) = ¥’ (11, 72) (T(f))

for all y1,72 € I' and z € H.
Proof. For 41,72 € I and z € 'H, using (8.16) and (8.19), we obtain
08 (71,72)(2) = €' (12)(2) — §' (M12)(2) + &' (1) (122)dp,7 (72, 2)

= 0§(71,72)(2) — B(72) (T(lz)>

+ o) (") = o) (T i 2.2
However, we have

(7 ot = (7T e

_ (ar(2) + b\ 7(2)
(o) =0 (Y)
if p(y2) = (¢ 4). Using this, (8.17) and (8.7), we see that

3 tn, () = v (7)) - @) (7))
=v(1,72) (T(lz)),

and therefore the lemma follows. a

Let ¢ € 3%(I',L) and £ € €' (I', A(D,C")) be as in (8.17). Given elements
(v, (p,v)) € I' xy L and (z,w) € D x C*, we set

(7, (1)) - (z,w) = (yz, (w+ pr(2) + v + £V (2)dpr (1, 2) 1), (8.20)

where j,, : I' X D — GL(n,C) is given by (8.13).
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Lemma 8.5 The operation given by (8.20) determines an action of the group
I" Xy L on the space D x C".

Proof. Let (v, (u,v)), (v, (W ,v")) € I' xy L and (z,w) € D x C™. Then we
have

O (W) - (s (1) - (2,w))
= (Yvz, (Wr(v2) + V' + (ur(2) + v+ w + E()(2)dpr (1, 2)
+E(V)(¥2))dor (Vs 72) )
= (Yvz, (WT(v2) + V)jpr (7 72) 7!
+ (pr(z )+V+w+€(7 (2)dpr (Y7, 2)”
+E()(12)dpr (7 72) 7,

1

where we used the relation (8.14). Similarly, using (8.8) and (8.20) we have

(s (V") - (s (s ) - (2, w)
= (v, (W', V)p(y) + (1,v) + (v, 7)) - (2,w)
(

Ve (o w)p(v)( ) e+
<(1 )+w+§vv 2))jpr(V7,2) 7
Z)JpTvvz

() v W) (P 2) B ,w(

= (v'yz, (p (
7(2)

Dinrtrma)

+ (€N dor (Y1, 2) 7).

However, if p(y) = (2Y) € Sp(n,R), we see that

ab
d
o) (T(lz)) _ (ZTT((,:)) ) ((aT(z) —l—b)(fT(z)—i-d)_l) or(2) + d)
= ( (zz))jp,r(%Z)-

Hence, using this and (8.14), we obtain

(W'T(v2) + V" )dpr (Vs 72) 7 = ( ( )J,”v vz) 7t
(Z))JN %, 2) o (7 72) 7
)

o
(Y

]p‘r ’Y'Y Z
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On the other hand, using (8.15), (8.16) and (8.17), we have

v/ (") = st

1
=) = EON(R) + E0) - 7)(=)
=EM(2) —EOVN(=) + €O ) (72)dp.r (7, 2).

Hence it follows that

('-Y/, (:U’/7 V/)) : ((’Ya (:U’7 V)) ' (Zv w)) = ((FY/7 (.u/7 V/)) ! (’Ya (:U’7 V))) : (Zv UJ),
and therefore the proof of the lemma is complete. O

Remark 8.6 In [87, Lemma 8.3], there is another action of I' Xy L on
D xC™ which apparently looks different from the one in Lemma 8.5. Howewver,
it can be shown that these two actions are equivalent. The equivalence of these
actions in the case of trivial ¥ and & can be found in Section 6.1, and similar
arguments can be used to prove the equivalence in the general case.

8.3 Families of Torus Bundles

By taking the quotient of the space D x C" by the action of I" X L discussed
in Section 8.2 we obtain a complex torus bundle over a locally symmetric
space, which may be regarded as a generalized Kuga fiber variety. In this
section we consider certain properties of families of such torus bundles.

We assume that the discrete subgroup I' C G does not contain elements
of finite order, so that the quotient X = I'\D of D by the I'-action given by
(8.11) has the structure of a complex manifold, and set

Yw,g =T X L\D X (Cn, (8.21)

where the quotient is taken with respect to the action in Lemma 8.5. Then
the map 7 : Yy ¢ — X induced by the natural projections D x C"* — D and
I' xy L — I" has the structure of a fiber bundle over X whose fiber over a
point corresponding to z € D is isomorphic to the complex torus

=/ (=(7)

If 9» = 0 and £ = 0, then the the corresponding torus bundle Yy ¢ is a family
of abelian varieties known as a Kuga fiber variety (cf. [61, 108]), which was
discussed in Section 6.1.

Proposition 8.7 Given ¢ € 3%(I',L) and ¢ € €Y(I', A(D,C")), let ¥/ and
& be as in (8.18) and (8.19). Then the map @ : I' Xy L — I' Xy L given by
(8.10) and the identity map on D x C™ induce an isomorphism Yy ¢ — Yy ¢
of bundles over X = I'\D.



218 8 Twisted Torus Bundles
Proof. 1t suffices to show that

43(77 (ﬂ’l/)) : (Z’w) = (77 (ﬂal/)) : (va)v

where the actions on the right and left hand sides are with respect to (¢, )
and (¢, &), respectively. Indeed, we have

Dy, (1,)) - (2,w) = (v2, (w + (p, v) (T(lz)) +¢(7) (T(lz))
+E (M@)o (v:2)7h)

= 2w+ ) (757 + €N (.7
= (’Y’ (M? V)) : (Z’ U)).
and therefore the proposition follows. a

Given a 2-cocycle ¢ : I' x I' — L, we denote by = the set of all £ €
¢Y(I, A(D,C")) satisfying (8.17). Thus, if ¢ = 0, the set =y coincides with
the space

3N (ILAD,CM) = {n € € (I, A(D,C")) | on = 0}

of 1-cocycles in €!(I, A(D,C")), where dn is as in (8.16). Each ¢ €
determines the associated torus bundle Yy, ¢ over X given by (8.21). We
denote by

n

Ty ={Yoel€€Zy}
the family of torus bundles Y, . parametrized by Zy,. Thus, if 9 is the
zero map, the torus bundle Yy determined by 0 € =y is a Kuga fiber

variety. Given £ € 5y and & € Zy, if ¢ is the coboundary operator on
¢(I', A(D,C")), then by (8.17) we have

T(z
3(E+E)(n,72)(2) = (¥ +9) (0, 72) ( (1 )>
for all z € H,, and 71,72 € I'; hence we see that £ + &' € Sy
Let (D x C™)@p (D x C™) be the Whitney sum of two copies of the trivial
vector bundle D x C™ over D, which we identify with D x (C™ ¢ C™). Then
we can consider the map

s:Dx (C"@C") -DxC"
given by
s(z,0,0") = (2,v+ ") (8.22)

for all z € D and v,v’ € C". Let 1,9’ € 3%(I', L), and let I" X, L X L be the
group consisting of the elements of I" x L x L equipped with multiplication
given by



8.3 Families of Torus Bundles 219

(71, (1, 01), (1, 11)) - (2, (p2s v2), (1, 13))
= (7172, (1, 1) p(v2) + (2, v2) + ¥(11,72),
(1, v1)p(v2) + (1o, v5) + ' (71,72))-

Then we see that there is a group homomorphism
g:FD(wLD(wlL—)FK¢+¢/L

given by
§(77€1a€2) = (’Yaél + 62) (823)

for all v € I' and ¢1,0, € L. If £ € 5y and & € Zy/, we let the group
I' Xy L xy L act on the space D x (C" @ C™) by

(77 (/1'7 V)? (/1'/7 V/)) ! (z7 w, w/) (8~24)

= (vz (b (z) + v +w +£(0)(2)) - Jpr (71:2) 7,
(W@ +v +w' + € (1(=) dor(r,2)7h).
Then the associated quotient space
Yye®x Yyrer =1 Xy Ly L\D x (C" & C")
is the fiber product of the torus bundles Yy ¢ € Ty and Yy o € Ty over X.

Proposition 8.8 Let £ € 5 and & € Ey with ¢, € 3Y(I,L). Then the
map s in (8.22) and the morphism s in (8.23) induce a morphism

Yie ©x Yy e = Yopyere
of torus bundles over X.

Proof. By our construction of the torus bundles involved, it suffices to show
that
5((77 (HJ’ V)7 (u/a V/)) ’ (Zv w, ’U}/)) = g(’Ya (:U’7 V) + (ﬂ/a V/)) ’ 8(27 w, w/)
forvye I, (p,v),(W,v') € L and (z,w,w’) € D x (C™ @& C"). Indeed, using
(8.24) and (8.23), we see that
S((’Yv (/1'7 V)7 (:u/7 V/)) : (z7 w, w/))
= vz, (p+p)7(2) + (v + 1)
+(w+w) + €+ M) or(r:2)7)
=3(7, (. v) + (/1'/7 V/)) -s(z,w, ’LU/),

and therefore the proposition follows. a
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Applying Proposition 8.8 to the special case of ' = 0, we see that there
is a natural morphism
Yye ©x Yo, = Yy,e4n

for Yy e € Ty and n € Zp.

Example 8.9 Given an element h € A(D,C"), we define the 1-cochain n €
eI, A(D,C)) b

n(7)(2) = h(z) = h(y2)dp, (7, 2)

forall z€ D and v € I'. Then for z € D and v',v € I' we have

() (z) = n(y7)(2) + 1Y) (v2)dp. (7, 2)
= (h(2) = h(v2)Jp,r (7, 2)) — (R(2) = h(¥'¥2)Jp,r (V7 2))
+ (h(v2) = h(v'72)dp,r (Vs 2))dp,r (75 2) = 0;

hence it follows that n € 3*(I", A(D,C")). In fact, n is a coboundary. Thus we
can consider the associated torus bundle Yy, = Yy, and a morphism Yy ¢ ©x
Y, — Yd%f""”l for each Y¢7§ S Tll)’

We are now interested in extending the interpretation of holomorphic
forms on Kuga fiber varieties as mixed automorphic forms given in Theorem
6.17 to the torus bundle Yy ¢. Let jg : GXD — Cand jy : Sp(V, 8)xH, — C
be canonical automorphy factors given by (6.55) and (6.56), respectively.
Then from (6.56) and (8.13) we see that

det(jp,r (7, 2)) = jv (p(7),7(2))
for all z € D and v € G.

Theorem 8.10 Let m:Y". — X be the m-fold fiber power of the torus bun-
dle Yy ¢ over X in (8.21). Then the space of mized automorphic forms on D
of type (j;ll,j(}‘, p,T) is canonically isomorphic to the space HO( s QkAmn)
of holomorphic (k 4+ mn)-forms on Y[, where k = dimc D.

Proof. Using (8.21), we see that Y can be regarded as the quotient
I'x, L"™\D x (C*)™

fibered over the locally symmetric space X = I'\D with fiber (C"/L)™. Let
z = (z1,...,2k) be a global coordinates for D, and let

w=(w,. . wm™)= (wgl),...,wy(ll);...;wgm) L wi™)
be the canonical coordinates for (C™)™. If & is a holomorphic (k 4+ mn)-
form on Y%, then @ can be considered as a holomorphic (k + mn)-form on
D x (C™)™ that is invariant under the action of I" x, L™. Thus there is a
holomorphic function Fg(z,w) on D x (C™)™ such that
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& = Fp(z,w)dz Adw™ A--- A dw™,

where z = (21,...,2x) € D, w = (wM,...,w™) € (C)™, and W) =
(ng), .. .,wﬁf)) € C" for 1 < j < m. Given z € X, the holomorphic form

@ descends to a holomorphic mn-form on the fiber (Y[ ), over . The fiber
(Y, )« is the m-fold product of a complex torus of dimension n, and hence
the dimension of the space of holomorphic mn-forms on (Ymg)z is one. Since
any holomorphic function on a compact complex manifold is constant, the
restriction of Fip(z,w) to the compact complex manifold V" is constant.
Thus Fg(z,w) depends only on z; and hence @ can be written in the form

D = fo(z)dz A dw® A A dw(m)’

where fg is a holomorphic function on D. To consider the invariance of &
under the group I' x, L™, we first notice that the action of I' x, L™ on
dz =dzy N\ --- Ndzy is given by

(77 (HJ’ V)) ~dz = jH(’Y? Z)dz

for all (v, (p,v)) € I' x, L™, because z — jr(7, 2) is the Jacobian map for

the transformation z — vz of D. On the other hand, the action of I" x, L™

on dw) = dng) AR dwéj) is given by

(7, (1, v) - dw = d [(w+ pr(2) + v + E()(2))dpr (7, 2) 7]
= det(jp,r (v, 2)) " 'dw'? + @)
= 3v(pla), 72) " du + 90

for 1 < j < m, where the term ¥\ is the sum of the terms involving some
dzy for 1 < ¢ < k; hence we obtain

(7, () - @ = fo(v2) ju (v, 2)iv (p(), 7(2)) "™ dz A dw™ Ao A dw™.

Thus we have

fo(vz) = ju(v,2) " iv(p(7),7(2)™ fa(2)

for all v € I" and z € D. On the other hand, each mixed automorphic form
on D of type (j;Il,j{q}, p,T) is a holomorphic function h : D — C satisfying

h(vz) = ju(v,2) " v (p(7), 7(2))"h(z)

for z € D and v € I'. Therefore the assignment & — fs(z) determines
an isomorphism between the space H O(YQZ”57 QF+mn) of holomorphic (k +
mn)-forms on Y] and the space of mixed automorphic forms on D of type

Ga's 3, p, 7). 0



222 8 Twisted Torus Bundles
8.4 Cohomology

In this section we establish an isomorphism between the k-th cohomology
along the fibers of a twisted torus bundle and the sheaf of holomorphic sec-
tions of a certain vector bundle over the base space of the torus bundle.
This vector bundle is determined by an automorphy factor associated to an
equivariant pair.

We fix elements ¢ € 3%(I,L) and ¢ € =y, where =y is as in Section
8.3, and consider the associated torus bundle 7 : Y ¢ — X constructed in
the same section. The cohomology along the fibers of Yy ¢ over X can be
provided by the direct image functors Rim,, which determine sheaves on X
associated to sheaves on Yy ¢ (see e.g. [40, Section II1.8]). We are interested
in the images of the sheaf Oy, ., of holomorphic functions on Yy ¢ under
such functors. Given a nonnegative integer k, RFr, Oy, . is the sheaf on X
generated by the presheaf

U H7'(U),0y,.)

for open subsets U of X. Note that by Dolbeault’s theorem there is a canonical
isomorphism

H*(n~}(U), Oy, ) = HOW (a1 (U)).

Proposition 8.11 The sheaf ROﬂ'*OYwY& is isomorphic to the sheaf Ox of
holomorphic functions on X.

Proof. Let U be a sufficiently small open ball in X, and consider the section
feH (m"Y(U),0y,,) of Oy, on =2 (U). If U C D is the inverse image of
U under the natural projection map D — X = I'\D, then we have

7N U) 2 Iy L\U x C™. (8.25)

Thus f may be regarded as a holomorphic function on U xC™ that is invariant
under the action of I' X, {0} and satisfies

fiz,w) = f(z,w+ pr(z) + v)

for all (z,w) € UxC™ and (i, ) € L. Hence it follows that f is constant with
respect to w and therefore can be identified with a I'-invariant holomorphic
function on U or a holomorphic function on U. a

Let j, - : I' x D — GL(n,C) be the automorphy factor given by (8.13).
Then the discrete subgroup I C Sp(n,R) acts on D x C™ by

v (z7w) = (727 w 'jp7‘f'(,Y7 Z)_l)
for all v € I and (z,w) € D x C™. If we denote the associated quotient by

Y =TI\D x C", (8.26)
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then the map p : V — X = I'\D induced by the natural projection D x
C"™ — D determines the structure of a vector bundle on V over X with fiber
isomorphic to C". By our construction we see that each holomorphic section
s: X — VofVover X can be identified with a function s : D — C" satisfying

8(v2) =5(2) o (v,2)7" (8.27)

forally € I' and z € D.

Given a torus bundle 7 : Yy, ¢ — X and a sufficiently small open ball U in
X, we consider a (0, 1)—form w on 77_1(U) which determines the cohomology
class [w] in HOD(x=1(U)) = HY(n~}(U), Oy, ). Let U C D be the inverse
image of U under the natural projection map D — X as in (8.25), and let

z = (z1,...,2n) be a local holomorphic system of coordinates on U. Then
we have
N n
w= Z An(z,w)dZ, + Z Bg(z, w)dwg (8.28)
a=1 B=1

for some C-valued C* functions A, (z,w) and Bg(z,w) on U x C", where
w = (wy,...,wy) is the standard coordinate system for C™. Let ¢ = (u,v) €
L, and set

((2,0) = p-7(2) +v

for all z € D. Note that ((z,/) is the same as £(z,¢) = £, in the notation
used in Chapter 6 (see Example 6.6). Then by (8.20) the action of £ on w is
given by

N
Fw= Z Aoz, w+ ((2,0))dZ,

a=1
N
ZBﬁzw—i—sz (dwg Z )
p=1 a=1

Since £*w = w, we obtain
b

n 9C(z,¢
Aa(z,w) = Aa(z,w0+C(2,0) + > Ba(z,w + (=, é))%,
B=1 “
Bg(z,w) = Bg(z,w + ((2,{)) (8:29)

for all ¢ € L.

Lemma 8.12 Let w® be the (0,1)-form on U x C" given by (8.28). Then
there exists a (0,1)-form on U x C" of the form

N n
1) _ Z_:l (Aa(z, w) — %)m + > Cp(z)dwg (8.30)

A=1
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such that [wM] = [w] in HOV(z=1(U)), where f(z,w) and Cg(z) for 1 <
B < n are C functions on U x C™ and U, respectively.

Proof. We first rewrite the (0,1)-form w in (8.28) as

N
w= Z Ao (z,w)dZq + D(2,w) (8.31)

a=1

by setting

P(z,w) = ZB[;(Z,w)dEg.

p=1
Then, for fixed z € U C D, by (8.29) we sce that the (0, 1)-form &(z,w) on
C" is L-invariant and satisfies 0,,®(z,w) = 0. Thus for each z € U we obtain
a Oy-closed (0, 1)-form &(z) that is cohomologous to @(z,w) on the complex

/(1))

which is the fiber of the bundle Yy, ¢ over the image of z in X. From harmonic

theory we see that there are C°° functions Cg(z) on U with 1 < 8 < n such
that

(z) =Y Cy(z)dwg (8.32)
B=1

is a harmonic form in w that is cohomologous, for each fixed z, to &(z) in
HOD (771(2)). Hence there is a C* function f(z,w) on U x C™ such that
f(z,w+{(2,£) = f(z,w) for all £ € L and

#:) = 0°(:) = Duferw) = 3 L2y (3.3
B=1
N
= 9f ) -y e s,
a=1 o

We now define w™® by (8.30), so that
- 0f(z,w)
1) ) — 0
o = E (Aa(z7w) — W)dza + P°(2) (8.34)

a=1
by (8.32). Then from (8.31), (8.33) and (8.34), we obtain
w—w® = gf;

hence it follows that [w] = [w™®] in HOD (z=1(1)). O
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Lemma 8.13 There are C* functions F; o(z) with1 <j<nandl <a <
N such that the (0,1)-form on U x C™ given by

N
Z (' — 'w)dza + Cs(z)dwgs (8.35)

satisfies (W] = W] = [w] in HOD(x=1(U)), where the functions Cj(z)
are as in (8.30), w = (wi,...,wn), and Fo(2) = (Fa,1(2),...,Fan(2)) for
each o € {1,...,n}.

Proof. From (8.30) we may write

N n
Y= Da(z,w)dza + > _ Cs(z)dws (8.36)
with 0 ()
Do (z,w) = An(z,w) — 5

Since w™®) is a d-closed form, we have

N N N n
O:Ew(”:ZZ%&AACEQJFZZ%WM&Q
A €

a=1 =1 a=1e=1
n N
0Cs(z
d A dw

hence we obtain

0C3(2) _ OD\(z,w) 0Dy (z,w)  ODx(z,w)

= 8.37
0z 8@5 ’ 0Zx 0Za ( )
for 1 <a,A< N and 1 < 8 <n. Thus we have
- dCs(z
Da(z,w) =Y Fap(2)s + Pa(z,w),  Fag(z) = 86( )> (8.38)
ZX

=1

where Py(z,w) is a holomorphic function in w. Since £*w™) = w™) for each
¢ € L, by (8.36) we obtain

9¢(z,0)

Di(z,w) = Da(z,w+¢(2.0) + Y cﬁ(z)# (8.39)
B=1

for all ¢ € L. Hence, if we set
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~ i 0(¢(z, ¢ -
e =3 (o0 22 4 p (e 2T,

B=1
for 1 <X < N, by (8.38) and (8.39) we have

P(z,w) — P(z,w + ((2,0)) = PY(2), (8.40)

which is a function of z only. Thus Py (z, w) must be of the form
Pa(z,w) = P(2) + > _ Pl 5(2)wp (8.41)
p=1

for each A. Using (8.40) and (8.41) for w = ((z, ), we see that the functions
Py 5(z) satisty

- a _ 9C(z, 0
Yo PsENGE s == (Fm(z)c‘(z, 0+ cﬁ(z)CéTA)f’) (8.42)
B=1

=1

Since ((z,¢) = p-7(z) + v for £ = (p,v), using p =0 and v = (v1,...,vp)
with v; # 0 and v, = 0 for k # j, from (8.42) we obtain

Pyj(2) = =Fx(2) (8.43)
for each j € {1,...,n}. Thus (8.42) reduces to
> Fuple)e 7 = 3 (o) 7N + o) 2012 )
p=1 p=1 A

for £ = (p,0). By considering p with only one nonzero entry pu; for each j we
see that

Fx(2)7(z) = Fx(2)7(2) + C(z) 3872(? ,

where the Fy(z) and C(z) are row vectors given by
Fr(z) = (Faa(2),..., Fan(2)), C(z) = (Ci(2),...,Cn(2))

and the products are matrix products. Thus we have

or7(z)

2iF\(z)(Im7(z)) = C(2) S

(8.44)

By (8.37) and (8.38) we have

3Fa(z)t_+ 0Py (z,w)  0Dg(z,w)  ODx(z,w)
0z v 9z, 0z 0z,

_ OFx\(2);_ , OP\(z,w)

 0Za v 0%Z0
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where W is regarded as a row vector and w is its transpose. Hence it follows
that

0F,(2)  0F\(2) OP,(z,w)  OP\(z,w)
8z 0z, 8z 0z,
Thus, using this and (8.41), we obtain

OPY(z) | OP,(2), _ OPY(z) K OPi(2),
07 + 07, w= 0Z4 + 0Z, v

with P} = (P},,..., P},) for e = a, A, which implies that

OPY(2) B 8P>‘\)(z)
0Zx - 0Z4, '

By (8.36), (8.38), (8.41) and (8.43) we see that

e

(Fa(2)W + PY(2) + Ph(2)'w)dZa + Y Cp(2)dwg
B=1

I
M =

Q
Il
-

I
] =

(Fo(2) ('@ — 'w) + P2(2))dZ, + C(2)d'w.

Il
-

(03

Hence, if we define the (0,1)-form w® on U x C" by (8.35), we obtain

N
w® =@ 4 Z PY(2)dzZ,.

a=1

Since 25:1 PY(2)dz, is a closed 1-form on 7~ 1(U), it is exact by Poincaré’s
lemma; hence it follows that [w] = [wM)] = [W®)] in HOD (z=1(T)). O

Lemma 8.14 The (0,1)-form w® on U x C" given by (8.35) can be written
in the form _
w® = ¢(2)d((Im 7(2)) " Im *w)

for some C™-valued holomorphic function ¢ on U.
Proof. By (8.38) and (8.44) we have

0C(z)
0%

(Im7(2)) = Fa(z)(Im7(

W
~
~
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Thus we obtain 9
g(C(z) Im7(z)) =0,

and therefore we see that the function C'(z) Im7(z) is holomorphic. Now we
define the vector-valued holomorphic function ¢ on U C D by

d(2) = (61(2), ..., Pn(2)) = =2iC(z) Im7(2). (8.45)
Using this, (8.38) and (8.35), we obtain

N
Z 32 ("0~ "w)dza + C(2)d'w (8.46)
ol mr(z))"!
= 55 2 o) M (i, — o))
- —2i¢<z><<5<1m<z>>-1><tw — ) + (I (=)~ — )
= ¢(2)d((Im7(2)) ™" Im "w),
which prove the lemma. a

Theorem 8.15 Let V be the vector bundle over X given by (8.26). Then the

sheaf le(’)yw,5 s isomorphic to the sheaf]N} of holomorphic sections of V
over X.

Proof. We shall first show that ¢ in (8.45) corresponds to a holomorphic
section of the bundle V over U. By (8.27) it suffices to show that the function

¢ : U — C" in (8.46) satisfies

$(v2) = 6(2)jp.r(7,2) 7" (8.47)

for all vy € I' and 2z € U. If v € I', using (8.20), we see that the action of
(7,0) € I' Xy, L on dw is given by

(7,0)"dw = d((w + £(v)(2))dp.r (v, 2) 1)

= dw - jp,‘l'(r% ) +w- d(]ﬁ, (’Ya Z)

=dw- j,.(7,2)" " + (terms in dz,),

)

) +d(E(M(=) Jpr(v,2)7)

where we used the fact that the functions £(v)(z) and j, - (v, z) are holomor-
phic in z. Since w® in (8.35) can be written in the form

w® = C(2)d'w + (terms in dz,)
and since (y,0)* takes terms in dz, to themselves, we see that

(7,0)*w® = C(v2)%,+ (7, 2) 1w + (terms in dz,,).
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We now compare terms in dwg in the relation (7, 0)*w® = w®) to obtain

C(v2) Gpr(7,2) 1 = C(2).
Using this, (8.45), and the fact that

Im7(yz) =5 (v,2) 7" - Im7(2) - Jpr (7, 2) 7",

we obtain

d(vz) = —2iC(y2) Im 7(y2)
= —ZZC(Z) Im T(Z),jpﬂ' (’Y’ 2)71
= ¢(2)jp,r (7, 2)" .

Hence it follows that ¢ can be regarded as a holomorphic section of V over
U. On the other hand, if ¢ is a holomorphic section of V over U represented
by a vector-valued holomorphic function ¢ : U — C", we denote by wg the

(0,1)-form on U x C™ given by
wz = ¢(2)9((Im 7(2)) " Im "w).

Denoting by I'(U, V) the space of holomorphic sections of V over U and using
(8.46), we see that the map

L, v) — HOY (@ (U))

sending ¢ to the cohomology class [wg] of wg is surjective. Thus we obtain
the corresponding surjective map

F: Y Rl’IT*waﬁg

of sheaves on X. In order to show that § is injective, given z € X, we denote
by T, and V, the fibers of the bundles Yy ¢ and V), respectively, over z.
Then V, and HY(T,,0) = H©D(T,) are the fibers of the sheaves V and
R'm, Oy, ., respectively. Thus, using the fact that both V, and H'(T, )
are isomorphic to the n-dimensional space C”, we see that the surjectivity of
§ implies its injectivity. Hence it follows that § is an isomorphism of sheaves
on X, and the proof of the theorem is complete. O

Corollary 8.16 Let V be as in Theorem 8.15, and let k be a positive integer.
Then there is an isomorphism

RFr, Oy, = AF(V)

of sheaves on X.
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Proof. Since m~1(x) is a complex torus for each z € X, from a well-known
result (see e.g. Corollary 1 in [97, p. 8]) we see that

Hk(ﬂ_l(x% OYw,g) = /\k(Hl (W_1($)7 OYw,g))
for each x € X. Hence we obtain
‘Rk’ﬁ*(')yw’g = /\k(RkW*OYwﬁg),

and therefore the corollary follows by combining this with the isomorphism
in Theorem 8.15. a
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semisimple Lie groups, 113
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Shimura variety, 93
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spin group, 143
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symplectic group, 94, 144, 145
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