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Preface

This book is concerned with various topics that center around equivariant
holomorphic maps of Hermitian symmetric domains and is intended for spe-
cialists in number theory and algebraic geometry. In particular, it contains
a comprehensive exposition of mixed automorphic forms that has never ap-
peared in book form.

The period map ω : H → H of an elliptic surfaceE over a Riemann surface
X is a holomorphic map of the Poincaré upper half plane H into itself that is
equivariant with respect to the monodromy representation χ : Γ → SL(2,R)
of the discrete subgroup Γ ⊂ SL(2,R) determined by X . If ω is the identity
map and χ is the inclusion map, then holomorphic 2-forms on E can be
considered as an automorphic form for Γ of weight three. In general, however,
such holomorphic forms are mixed automorphic forms of type (2, 1) that are
defined by using the product of the usual weight two automorphy factor and
a weight one automorphy factor involving ω and χ. Given a positive integer
m, the elliptic variety Em can be constructed by essentially taking the fiber
product of m copies of E over X , and holomorphic (m+1)-forms on Em may
be regarded as mixed automorphic forms of type (2,m). The generic fiber of
Em is the product of m elliptic curves and is therefore an abelian variety, or
a complex torus. Thus the elliptic variety Em is a complex torus bundle over
the Riemann surface X .

An equivariant holomorphic map τ : D → D′ of more general Hermitian
symmetric domains D and D′ can be used to define mixed automorphic forms
on D. When D′ is a Siegel upper half space, the map τ determines a complex
torus bundle over a locally symmetric space Γ\D for some discrete subgroup
Γ of the semisimple Lie group G associated to D. Such torus bundles are
often families of polarized abelian varieties, and they are closely related to
various topics in number theory and algebraic geometry. Holomorphic forms
of the highest degree on such a torus bundle can be identified with mixed
automorphic forms on D of certain type. Mixed automorphic forms can also
be used to construct an embedding of the same torus bundle into a complex
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projective space. On the other hand, sections of a certain line bundle over this
torus bundle can be regarded as Jacobi forms on the Hermitian symmetric
domain D.

The main goal of this book is to explore connections among complex torus
bundles, mixed automorphic forms, and Jacobi forms of the type described
above. Both number-theoretic and algebro-geometric aspects of such connec-
tions and related topics are discussed.

This work was supported in part by a 2002–2003 Professional Develop-
ment Assignment award from the University of Northern Iowa.

Cedar Falls, Iowa, April 5, 2004 Min Ho Lee
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Introduction

Let E be an elliptic surface in the sense of Kodaira [52]. Thus E is a compact
smooth surface over C, and it is the total space of an elliptic fibration π :
E → X over a compact Riemann surface X whose generic fiber is an elliptic
curve. Let Γ ⊂ SL(2,R) be a Fuchsian group of the first kind acting on the
Poincaré upper half plane H by linear fractional transformations such that
the base space for the fibration π is given by X = Γ\H∗, where H∗ is the
union of H and the set of cusps for Γ . Given z ∈ X0 = Γ\H, let Φ be a
holomorphic 1-form on the fiber Ez = π−1(z), and choose an ordered basis
{γ1(z), γ2(z)} for H1(Ez ,Z) that depends on the parameter z in a continuous
manner. Consider the periods ω1 and ω2 of E given by

ω1(z) =
∫
γ1(z)

Φ, ω2(z) =
∫
γ2(z)

Φ.

Then the imaginary part of the quotient ω1(z)/ω2(z) is nonzero for each z,
and therefore we may assume that ω1(z)/ω2(z) ∈ H. In fact, ω1/ω2 is a
many-valued holomorphic function on X0, and the period map ω : H → H
is obtained by lifting the map ω1/ω2 : X0 → H from X0 to its universal
covering space H. If Γ is identified with the fundamental group of X0, the
natural connection on E0 determines the monodromy representation χ : Γ →
SL(2,R) of Γ , and the period map is equivariant with respect to χ, that is,
it satisfies

ω(γz) = χ(γ)ω(z)

for all γ ∈ Γ and z ∈ H. Given nonnegative integers k and �, we consider a
holomorphc function f on H satisfying

f(γz) = (cz + d)k(cχω(z) + dχ)�f(z) (0.1)

for all z ∈ H and γ =
(
a b
c d

)
∈ Γ with χ(γ) =

(
aχ bχ
cχ dχ

)
∈ SL(2,R). Such a

function becomes a mixed automorphic or cusp form for Γ of type (k, �) if in
addition it satisfies an appropriate cusp condition. It was Hunt and Meyer [43]
who observed that a holomorphic form of degree two on the elliptic surface
E can be interpreted as a mixed cusp form for Γ of type (2, 1) associated to
ω and χ. If χ is the inclusion map of Γ into SL(2,R) and if ω is the identity
map on H, then E is called an elliptic modular surface. The observation of

M.H. Lee: LNM 1845, pp. 1–9, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 Introduction

Hunt and Meyer [43] in fact generalizes the result of Shioda [115] who showed
that a holomorphic 2-form on an elliptic modular surface is a cusp form of
weight three. Given a positive integer m, the elliptic variety Em associated
to the elliptic fibration π : E → X can be obtained by essentially taking
the fiber product of m copies of E over X (see Section 2.2 for details), and
holomorphic (m + 1)-forms on Em provide examples of mixed automorphic
forms of higher weights (cf. [18, 68]). Note that the generic fiber of Em is
an abelian variety, and therefore a complex torus, obtained by the product
of elliptic curves. Thus the elliptic variety Em can be regarded as a family
of abelian varieties parametrized by the Riemann surface X or as a complex
torus bundle over X .

Another source of examples of mixed automorphic forms comes from the
theory of linear ordinary differential equations on a Riemann surface (see
Section 1.4). Let Γ ⊂ SL(2,R) be a Fuchsian group of the first kind as
before. Then the corresponding compact Riemann surface X = Γ\H∗ can
be regarded as a smooth algebraic curve over C. We consider a second order
linear differential equation Λ2

Xf = 0 with

Λ2
X =

d2

dx2
+ PX(x)

d

dx
+QX(x), (0.2)

where PX(x) and QX(x) are rational functions on X . Let ω1 and ω2 be
linearly independent solutions of Λ2

Xf = 0, and for each positive integer m
let Sm(Λ2

X) be the linear ordinary differential operator of order m + 1 such
that the m+ 1 functions

ωm1 , ω
m−1
1 ω2, . . . , ω1ω

m−1
2 , ωm2

are linearly independent solutions of the corresponding homogeneous equa-
tion Sm(Λ2

X)f = 0. By pulling back the operator in (0.2) via the natural
projection map H∗ → X = Γ\H∗ we obtain a differential operator

Λ2 =
d2

dz2
+ P (z)

d

dz
+Q(z) (0.3)

such that P (z) and Q(z) are meromorphic functions on H∗. Let ω1(z) and
ω2(z) for z ∈ H be the two linearly independent solutions of Λ2f = 0 corre-
sponding to ω1 and ω2 above. Then the monodromy representation for the
differential equation Λ2f = 0 is the group homomorphism χ : Γ → GL(2,C)
which can be defined as follows. Given elements γ ∈ Γ and z ∈ H, we assume
that the elements ω1(γz) and ω2(γz) can be written in the form

ω1(γz) = aχω1(z) + bχω2(z), ω2(γz) = cχω1(z) + dχω2(z).

Then the image of γ ∈ Γ under the monodromy representation χ is given by

χ(γ) =
(
aχ bχ
cχ dχ

)
∈ GL(2,C). (0.4)



Introduction 3

We assume that χ(Γ ) ⊂ SL(2,R) and that

ω(z) = ω1(z)/ω2(z) ∈ H

for all z ∈ H. Then the resulting map ω : H → H satisfies

ω(γz) =
aχω(z) + bχ
cχω(z) + dχ

= χ(γ)ω(z)

for all z ∈ H and γ ∈ Γ . Thus the map ω is equivariant with respect to χ,
and we may consider the associated meromorphic mixed automorphic or cusp
forms as meromorphic functions satisfying the transformation formula in (0.1)
and a certain cusp condition. If Sm(Λ2) is the differential operator acting on
the functions on H obtained by pulling back Sm(Λ2

X) via the projection map
H∗ → X , then the solutions of the equation Sm(Λ2)f = 0 are of the form

m∑
i=0

ciω1(z)m−iω2(z)i

for some constants c0, . . . , cm. Let ψ be a meromorphic function on H∗ cor-
responding to an element ψX in K(X), and let fψ be a solution of the non-
homogeneous equation

Sm(Λ2)f = ψ.

If k is a nonnegative integer k, then it can be shown the function

Φψk (z) = ω′(z)k
dm+1

dω(z)m+1

(
fψ(z)
ω2(z)m

)

for z ∈ H is independent of the choice of the solution fψ and is a mixed auto-
morphic form of type (2k,m−2k+2) associated to Γ , ω and the monodromy
representation χ.

If f is a cusp form of weight w for a Fuchsian group Γ ⊂ SL(2,R), the
periods of f are given by the integrals

∫ i∞

0

f(z)zkdz

with 0 ≤ k ≤ w − 2, and it is well-known that such periods of cusp forms
are closely related to the values at the integer points in the critical strip
of the Hecke L-series. In [22] Eichler discovered certain relations among the
periods of cusp forms, which were extended later by Shimura [112]; these rela-
tions are called Eichler-Shimura relations. More explicit connections between
the Eichler-Shimura relations and the Fourier coefficients of cusp forms were
found by Manin [91]. If f is a mixed cusp form of type (2,m) associated to
Γ and an equivariant pair (ω, χ), then the periods of f can be defined by the
integrals
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∫ i∞

0

f(z)ω(z)kdz

with 0 ≤ k ≤ m. The interpretation of mixed automorphic forms as holo-
morphic forms on an elliptic variety described earlier can be used to obtain a
relation among such periods, which may be regarded as the Eichler-Shimura
relation for mixed cusp forms (see Section 2.4).

Connections between the cohomology of a discrete subgroup Γ of SL(2,R)
and automorphic forms for Γ were made by Eichler [22] and Shimura [112]
decades ago. Indeed, they established an isomorphism between the space
of cusp forms of weight m + 2 for Γ and the parabolic cohomology space
of Γ with coefficients in the space of homogeneous polynomials of degree
m in two variables over R. To be more precise, let Symm(C2) denote the
m-th symmetric power of C

2, and let H1
P (Γ, Symm(C2)) be the associated

parabolic cohomology of Γ , where the Γ -module structure of Symm(C2) is
induced by the standard representation of Γ ⊂ SL(2,R) on C

2. Then the
Eichler-Shimura isomorphism can be written in the form

H1
P (Γ, Symm(C2)) = Sm+2(Γ ) ⊕ Sm+2(Γ ),

where Sm+2(Γ ) is the space of cusp forms of weight m+2 for Γ (cf. [22, 112]).
In particular, there is a canonical embedding of the space of cusp forms into
the parabolic cohomology space. The Eichler-Shimura isomorphism can also
be viewed as a Hodge structure on the parabolic cohomology (see e.g. [6]).
If (ω, χ) is an equivariant pair considered earlier, we may consider another
action of Γ on Symm(C2) which is determined by the composition of the ho-
momorphism χ : Γ → SL(2,R) with the standard representation of SL(2,R)
in Symm(C2). If we denote the resulting Γ -module by Symm

χ (C2), the asso-
ciated parabolic cohomology H1

P (Γ, Symm
χ (C2)) is linked to mixed automor-

phic forms for Γ associated to the equivariant pair (ω, χ). Indeed, the space of
certain mixed cusp forms can be embedded into such parabolic cohomology
space, and a Hodge structure on H1

P (Γ, Symm
χ (C2)) can be determined by an

isomorphism of the form

H1
P (Γ, Symm

χ (C2)) ∼= S2,m(Γ, ω, χ) ⊕W ⊕ S2,m(Γ, ω, χ), (0.5)

where W is a certain subspace of H1
P (Γ, Symm

χ (C2)) and S2,m(Γ, ω, χ) is the
space of mixed cusp forms of type (2,m) associated to Γ , ω and χ (see
Chapter 3). The space W in (0.5) is not trivial in general as can be seen
in [20, Section 3], where mixed cusp forms of type (0, 3) were studied in
connection with elliptic surfaces. The isomorphism in (0.5) may be regarded
as a generalized Eichler-Shimura isomorphism.

The correspondence between holomorphic forms of the highest degree on
an elliptic variety and mixed automorphic forms of one variable described
above can be extended to the case of several variables by introducing mixed
Hilbert and mixed Siegel modular forms. For the Hilbert modular case we
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consider a totally real number field F of degree n over Q, so that SL(2, F )
can be embedded in SL(2,R)n. Given a subgroup Γ of SL(2, F ) whose em-
bedded image in SL(2,R)n is a discrete subgroup, we can consider the asso-
ciated Hilbert modular variety Γ\Hn obtained by the quotient of the n-fold
product Hn of the Poincaré upper half plane H by the action of Γ given
by linear fractional transformations. If ω : Hn → Hn is a holomorphic map
equivariant with respect to a homomorphism χ : Γ → SL(2, F ), then the
equivariant pair (ω, χ) can be used to define mixed Hilbert modular forms,
which can be regarded as mixed automorphic forms of n variables. On the
other hand, the same equivariant pair also determines a family of abelian
varieties parametrized by Γ\Hn. Then holomorphic forms of the highest de-
gree on such a family correspond to mixed Hilbert modular forms of certain
type (see Section 4.2). Another type of mixed automorphic forms of several
variables can be obtained by generalizing Siegel modular forms (see Section
4.3). Let Hm be the Siegel upper half space of degree m on which the sym-
plectic group Sp(m,R) acts as usual, and let Γ0 be a discrete subgroup of
Sp(m,R). If τ : Hm → Hm′ is a holomorphic map of Hm into another Siegel
upper half space Hm′ that is equivariant with respect to a homomorphism
ρ : Γ0 → Sp(m′,R), then the equivariant pair (τ, ρ) can be used to define
mixed Siegel modular forms. The same pair can also be used to construct a
family of abelian varieties parametrized by the Siegel modular variety Γ\Hm

such that holomorphic forms of the highest degree on the family correspond
to mixed Siegel modular forms (see Section 4.3).

A further generalization of mixed automorphic forms can be considered by
using holomorphic functions on more general Hermitian symmetric domains
which include the Poincaré upper half plane or Siegel upper half spaces. Let
G and G′ be semisimple Lie groups of Hermitian type, so that the associated
Riemannian symmetric spaces D and D′, respectively, are Hermitian sym-
metric domains. We consider a holomorphic map τ : D → D′, and assume
that it is equivariant with respect to a homomorphism ρ : G → G′. Let Γ
be a discrete subgroup of G. Note that, unlike in the earlier cases, we are
assuming that τ is equivariant with respect to a homomorphism ρ defined on
the group G itself rather than on the subgroup Γ . This provides us with more
flexibility in studying associated mixed automorphic forms. Various aspects
of such equivariant holomorphic maps were studied extensively by Satake
in [108]. Given complex vector spaces V and V ′ and automorphy factors
J : G×D → GL(V ) and J ′ : G′ ×D′ → GL(V ′), a mixed automorphic form
on D for Γ is a holomorphic function f : D → V ⊗ V ′ satisfying

f(γz) = J(γ, z) ⊗ J ′(ρ(γ), τ(z))f(z)

for all z ∈ D and γ ∈ Γ (see Section 5.1). Another advantage of considering an
equivariant pair (τ, ρ) with ρ defined on G instead of Γ is that it allows us to
introduce a representation-theoretic description of mixed automorphic forms.
Such interpretation includes not only the holomorphic mixed automorphic
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forms described above but also nonholomorphic ones. Given a semisimple
Lie group G, a maximal compact subgroup K, and a discrete subgroup Γ
of finite covolume, automorphic forms on G can be described as follows. Let
Z(g) be the center of the universal enveloping algebra of the complexification
gC of the Lie algebra g of G, and let V be a finite-dimensional complex vector
space. A slowly increasing analytic function f : G → V is an automorphic
form for Γ if it is left Γ -invariant, right K-finite, and Z(g)-finite. Let G′

be another semisimple Lie group with the corresponding objects K ′, Γ ′ and
V ′, and let ϕ : G → G′ be a homomorphism such that ϕ(K) ⊂ K ′ and
ϕ(Γ ) ⊂ Γ ′. Then the associated mixed automorphic forms may be described
as linear combinations of functions of the form f ⊗ (f ′ ◦ ϕ) : G → V ⊗ V ′,
where f : G → V is an automorphic form for Γ and f ′ : G′ → V ′ is an
automorphic form for Γ ′ (see Section 5.2.

The equivariant pair (τ, ρ) considered in the previous paragraph also de-
termines a family of abelian varieties parametrized by a locally symmetric
space if G′ is a symplectic group. Let Hn be the Siegel upper half space of
degree n on which the symplectic group Sp(n,R) acts as usual. Then the
semidirect product Sp(n,R) � R

2n operates on the space Hn × C
n by

(
(A B
C D ) , (µ, ν)

)
· (Z, ζ) = ((AZ +B)(CZ +D)−1, (ζ + µZ + ν)(CZ +D)−1)

for (A B
C D ) ∈ Sp(n,R), (µ, ν) ∈ R

2n and (Z, ζ) ∈ Hn × C
n, where elements of

R
2n and C

n are considered as row vectors. We consider the discrete subgroup
Γ0 = Sp(n,Z) of Sp(n,R), and set

X0 = Γ0\Hn, Y0 = Γ0 � Z
2n\Hn × C

n.

Then the map π0 : Y0 → X0 induced by the natural projection map Hn ×
C
n → Hn has the structure of a fiber bundle over the Siegel modular spaceX0

whose fibers are complex tori of dimension n. In fact, each fiber of this bundle
has the structure of a principally polarized abelian variety, and therefore the
Siegel modular variety X0 = Γ0\Hn can be regarded as the parameter space
of the family of principally polarized abelian varieties (cf. [63]). In order to
consider a more general family of abelian varieties, we need to consider an
equivariant holomorphic map of a Hermitian symmetric domain into a Siegel
upper half space. Let G be a semisimple Lie group of Hermitian type, and let
D be the associated Hermitian symmetric domain, which can be identified
with the quotient G/K of G by a maximal compact subgroup K. We assume
that there are a homomorphism ρ : G → Sp(n,R) of Lie groups and a
holomorphic map τ : D → Hn that is equivariant with respect to ρ. If Γ is a
torsion-free discrete subgroup of G with ρ(Γ ) ⊂ Γ0 and if we set X = Γ\D,
then τ induces a map τX : X → X0 of the locally symmetric space X into the
Siegel modular variety X0. By pulling the bundle π0 : Y0 → X0 back via τX
we obtain a fiber bundle π : Y → X over X whose fibers are n-dimensional
complex tori. As in the case of π0, each fiber is a polarized abelian variety, so
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that the total space Y of the bundle may be regarded as a family of abelian
varieties parametrized by the locally symmetric space X . Such a family Y is
known as a Kuga fiber variety, and various arithmetic and geometric aspects
of Kuga fiber varieties have been studied in numerous papers over the years
(see e.g. [1, 2, 31, 61, 62, 69, 74, 84, 96, 108, 113]). A Kuga fiber variety is
also an example of a mixed Shimura variety in more modern language (cf.
[94]). Holomorphic forms of the highest degree on the Kuga fiber variety Y
can be identified with mixed automorphic forms on the symmetric domain D
(see Section 6.3).

Equivariant holomorphic maps of symmetric domains and Kuga fiber va-
rieties are also closely linked to Jacobi forms of several variables. Jacobi forms
on the Poincaré upper half plane H, or on SL(2,R), share properties in com-
mon with both elliptic functions and modular forms in one variable, and
they were systematically developed by Eichler and Zagier in [23]. They are
functions defined on the space H × C which satisfy certain transformation
formulas with respect to the action of a discrete subgroup Γ of SL(2,R), and
important examples of Jacobi forms include theta functions and Fourier coef-
ficients of Siegel modular forms. Numerous papers have been devoted to the
study of such Jacobi forms in connection with various topics in number theory
(see e.g. [7, 9, 54, 116]). In the mean time, Jacobi forms of several variables
have been studied mostly for symplectic groups of the form Sp(m,R), which
are defined on the product of a Siegel upper half space and a complex vec-
tor space. Such Jacobi forms and their relations with Siegel modular forms
and theta functions have also been studied extensively over the years (cf.
[25, 49, 50, 59, 123, 124]). Jacobi forms for more general semisimple Lie groups
were in fact considered more than three decades ago by Piatetskii-Shapiro
in [102, Chapter 4]. Such Jacobi forms occur as coefficients of Fourier-Jacobi
series of automorphic forms on symmetric domains. Since then, there have
not been many investigations about such Jacobi forms. In recent years, how-
ever, a number of papers which deal with Jacobi forms for orthogonal groups
have appeared, and one notable such paper was written by Borcherds [12]
(see also [11, 55]). Borcherds gave a highly interesting construction of Jacobi
forms and modular forms for an orthogonal group of the form O(n+2, 2) and
investigated their connection with generalized Kac-Moody algebras. Such a
Jacobi form appears as a denominator function for an affine Lie algebra and
can be written as an infinite product. The denominator function for the fake
monster Lie algebra on the other hand is a modular form for an orthogonal
group, which can also be written as an infinite product. Thus many new ex-
amples of generalized Kac-Moody algebras may be constructed from modular
or Jacobi forms for O(n+2, 2), and conversely examples of modular or Jacobi
forms may be obtained from generalized Kac-Moody algebras. In this book
we consider Jacobi forms associated to an equivariant holomorphic map of
symmetric domains of the type that is used in the construction of a Kuga
fiber variety (see Chapter 7). Such Jacobi forms can be used to construct an



8 Introduction

embedding of a Kuga fiber variety into a complex projective space. They can
also be identified with sections of a certain line bundle on the corresponding
Kuga fiber variety. Similar identifications have been studied by Kramer and
Runge for SL(2,R) and Sp(n,R) (see [57, 58, 105]).

The construction of Kuga fiber varieties can be extended to the one of
more general complex torus bundles by using certain cocycles of discrete
groups. Let (τ, ρ) be the equivariant pair that was used above for the con-
struction of a Kuga fiber variety. Thus τ : D → Hn is a holomorphic map
that is equivariant with respect to the homomorphism ρ : G → Sp(n,R) of
Lie groups. Let L be a lattice in R

2n, and let Γ be a torsion-free discrete
subgroup of G such that � · ρ(γ) ∈ L for all � ∈ L and γ ∈ Γ , where we
regarded elements of L as row vectors. If L denotes the lattice Z

2n in Z
2n,

the multiplication operation for the semidirect product Γ � L is given by

(γ1, �1) · (γ2, �2) = (γ1γ2, �1ρ(γ2) + �2) (0.6)

for all γ1, γ2 ∈ Γ and �1, �2 ∈ L, and Γ � L acts on D × C
n by

(γ, (µ, ν)) · (z, w) = (γz, (w + µτ(z) + ν)(Cρτ(z) +Dρ)−1), (0.7)

for all (z, w) ∈ D × C
n, (µ, ν) ∈ L ⊂ R

n × R
n and γ ∈ Γ with ρ(γ) =(

Aρ Bρ
Cρ Dρ

)
∈ Sp(n,R). Then the associated Kuga fiber variety is given by the

quotient
Y = Γ � L\D × C

n,

which is a fiber bundle over the locally symmetric space X = Γ\D. We now
consider a 2-cocycle ψ : Γ ×Γ → L define the generalized semidirect product
Γ �ψ L by replacing the multiplication operation (0.6) with

(γ1, �1) · (γ2, �2) = (γ1γ2, �1ρ(γ2) + �2 + ψ(γ1, γ2)).

We denote by A(D,Cn) the space of C
n-valued holomorphic functions on D,

and let ξ be a 1-cochain for the cohomology of Γ with coefficients in A(D,Cn)
satisfying

δξ(γ1, γ2)(z) = ψ(γ1, γ2)
(
τ(z)

1

)

for all z ∈ D and γ1, γ2 ∈ Γ , where δ is the coboundary operator on 1-
cochains. Then an action of Γ �ψ L on D × C

n can be defined by replacing
(0.7) with

(γ, (µ, ν)) · (z, w) = (γz, (w + µτ(z) + ν + ξ(γ)(z))(Cρτ(z) +Dρ)−1).

If the quotient of D×C
n by Γ �ψ L with respect to this action is denoted by

Yψ,ξ, the map π : Yψ,ξ → X = Γ\D induced by the natural projection D ×
C
n → D is a torus bundle over X which may be called a twisted torus bundle

(see Chapter 8). As in the case of Kuga fiber varieties, holomorphic forms
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of the highest degree on Yψ,ξ can also be identified with mixed automorphic
forms for Γ of certain type.

This book is organized as follows. In Chapter 1 we discuss basic proper-
ties of mixed automorphic and cusp forms of one variable including the con-
struction of Eisenstein and Poincaré series. We also study some cusp forms
associated to mixed cusp forms and describe mixed automorphic forms asso-
ciated to a certain class of linear ordinary differential equations. Geometric
aspects of mixed automorphic forms of one variable are presented in Chap-
ter 2. We construct elliptic varieties and interpret holomorphic forms of the
highest degree on such a variety as mixed automorphic forms. Discussions
of modular symbols and Eichler-Shimura relations for mixed automorphic
forms are also included. In Chapter 3 we investigate connections between
parabolic cohomology and mixed automorphic forms and discuss a gener-
alization of the Eichler-Shimura isomorphism. In order to consider mixed
automorphic forms of several variables we introduce mixed Hilbert modular
forms and mixed Siegel modular forms in Chapter 4 and show that certain
types of such forms occur as holomorphic forms on certain families of abelian
varieties parametrized by Hilbert or Siegel modular varieties. In Chapter 5
we describe mixed automorphic forms on Hermitian symmetric domains as-
sociated to equivariant holomorphic maps of symmetric domains. We then
introduce a representation-theoretic description of mixed automorphic forms
on semisimple Lie groups and real reductive groups. We also construct the
associated Poincaré and Eisenstein series as well as Whitaker vectors. In
Chapter 6 we describe Kuga fiber varieties associated to an equivariant holo-
morphic map of a symmetric domain into a Siegel upper half space and show
that holomorphic forms of the highest degree on a Kuga fiber variety can
be identified with mixed automorphic forms on a symmetric domain. Ja-
cobi forms on symmetric domains and their relations with bundles over Kuga
fiber varieties are discussed in Chapter 7. In Chapter 8 we are concerned with
complex torus bundles over a locally symmetric space which generalize Kuga
fiber varieties. Such torus bundles are constructed by using certain 2-cocycles
and 1-cochains of a discrete group. We discuss their connection with mixed
automorphic forms and determine certain cohomology of such a bundle.



1

Mixed Automorphic Forms

Classical automorphic or cusp forms of one variable are holomorphic functions
on the Poincaré upper half plane H satisfying a transformation formula with
respect to a discrete subgroup Γ of SL(2,R) as well as certain regularity
conditions at the cusps (see e.g. [14, 95, 114]). Given a nonnegative integer
k, the transformation formula for an automorphic form f for Γ of weight k
is of the form

f(γz) = j(γ, z)kf(z)

for z ∈ H and γ ∈ Γ , where j(γ, z) = cz + d with c and d being the (2, 1)
and (2, 2) entries of the matrix γ.

Mixed automorphic forms generalize automorphic forms, and they are
associated with a holomorphic map ω : H → H that is equivariant with
respect to a homomorphism χ : Γ → SL(2,R). Indeed, the transformation
formula for mixed automorphic forms is of the form

f(γz) = j(γ, z)kj(χ(γ), ω(z))�f(z)

for some nonnegative integers k and �. Such equivariant pairs (ω, χ) occur
naturally in the theory of elliptic surfaces (see Chapter 2) or in connection
with certain linear ordinary differential equations. For example, an equivari-
ant pair is obtained by using the period map ω of an elliptic surface E and the
monodromy representation χ of E. In this case, a holomorphic form on E of
degree two can be interpreted as a mixed automorphic form (cf. [18, 43, 68]).
Similarly, the period map and the monodromy representation of a certain
type of second order linear ordinary differential equation also provide us an
equivariant pair (cf. [79]; see also [83]). In this chapter we introduce mixed
automorphic and mixed cusp forms of one variable and discuss some their
properties.

In Section 1.1 we describe the definition of mixed automorphic forms as
well as mixed cusp forms of one variable associated to an equivariant holo-
morphic map of the Poincaré upper half plane. As examples of mixed auto-
morphic forms, Eisenstein series and Poincaré series for mixed automorphic
forms are constructed in Section 1.2. In Section 1.3 we consider certain cusp
forms associated to pairs of mixed cusp forms and discuss relations among
the Fourier coefficients of the cusp forms and those of the mixed cusp forms.
Section 1.4 is about mixed automorphic forms associated to a certain class
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12 1 Mixed Automorphic Forms

of linear ordinary differential equation. We relate the monodromy of such a
differential equations with the periods of the associated mixed automorphic
forms.

1.1 Mixed Automorphic Forms of One Variable

In this section we introduce mixed automorphic forms associated to an equiv-
ariant pair, which generalize elliptic modular forms. In particular, we discuss
cusp conditions for mixed automorphic and cusp forms.

Let H denote the Poincaré upper half plane

{z ∈ C | Im z > 0}

on which SL(2,R) acts by linear fractional transformations. Thus, if z ∈ H
and γ =

(
a b
c d

)
∈ SL(2,R), we have

γz =
az + b

cz + d
.

For the same z and γ, we set

j(γ, z) = cz + d. (1.1)

Then the resulting map j : SL(2,R) × H → C is an automorphy factor,
meaning that it satisfies the cocycle condition

j(γγ′, z) = j(γ, γ′z)j(γ′, z) (1.2)

for all z ∈ H and γ, γ′ ∈ SL(2,R).
We fix a discrete subgroup Γ of SL(2,R) and extend the action of Γ on

H continuously to the set H ∪ R ∪ {∞}. An element s ∈ R ∪ {∞} is a cusp
for Γ if it is fixed under an infinite subgroup, called a parabolic subgroup,
of Γ . Elements of a parabolic subgroup of Γ are parabolic elements of Γ .
We assume that Γ is a Fuchsian group of the first kind, which means that
the volume of the quotient space Γ\H is finite. Let χ : Γ → SL(2,R) be a
homomorphism of groups such that its image χ(Γ ) is a Fuchsian group of the
first kind, and let ω : H → H be a holomorphic map that is equivariant with
respect to χ. Thus (ω, χ) is an equivariant pair satisfying the condition

ω(γz) = χ(γ)ω(z) (1.3)

for all γ ∈ Γ and z ∈ H. We assume that the inverse image of the set of
parabolic elements of χ(Γ ) under χ consists of the parabolic elements of Γ .
In particular, χ carries parabolic elements to parabolic elements. Given a pair
of nonnegative integers k and �, we set

Jk,�(γ, z) = j(γ, z)kj(χ(γ), ω(z))� (1.4)

for all γ ∈ Γ and z ∈ H.
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Lemma 1.1 The map Jk,� : Γ ×H → C determined by (1.4) is an automor-
phy factor, that is, it satisfies the cocycle condition

Jk,�(γγ′, z) = Jk,�(γ, γ′z) · Jk,�(γ′, z) (1.5)

for all γ, γ′ ∈ Γ and z ∈ H.

Proof. This follows easily from (1.2), (1.3), and (1.4). ��

If f : H → C is a function and γ ∈ Γ , we denote by f |k,� γ the function
on H given by

(f |k,� γ)(z) = Jk,�(γ, z)−1f(γz) (1.6)

for all z ∈ H. Using (1.5), we see easily that

((f |k,� γ) |k,� γ′ = f |k,� (γγ′)

for all γ, γ′ ∈ Γ ′.
Let s ∈ R ∪ {∞} be a cusp for Γ , so that we have

αs = s = σ∞ (1.7)

for some σ ∈ SL(2,R) and a parabolic element α of Γ . If Γs denotes the
subgroup

Γs = {γ ∈ Γ | γs = s} (1.8)

of Γ consisting of the elements fixing s, then we have

σ−1Γsσ · {±1} =
{
±
(

1 h
0 1

)n ∣∣∣∣ n ∈ Z

}
(1.9)

for some positive real number h. Since χ(α) is a parabolic element of χ(Γ ),
there is a cusp sχ for χ(Γ ) and an element χ(σ) ∈ SL(2,R) such that

χ(α)sχ = sχ = χ(σ)∞. (1.10)

We assume that
ω(σz) = χ(σ)ω(z) (1.11)

for all z ∈ H. Given an element z ∈ H and a holomorphic function f on H,
we extend the maps γ 
→ Jk,�(γ, z) and γ 
→ f |k,� γ given by (1.4) and (1.6),
respectively, to Γ ∪ {σ}. In particular, we may write

Jk,�(σ, z) = j(σ, z)kj(χ(σ), ω(z))�, (1.12)

(f |k,� σ)(z) = Jk,�(σ, z)−1f(σz) (1.13)

for all z ∈ H.
In order to discuss Fourier series, let f : H → C be a holomorphic function

that satisfies
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f |k,� γ = f (1.14)

for all γ ∈ Γ . Then we can consider the Fourier expansion of f at the cusps of
Γ as follows. Suppose first that ∞ is a cusp of Γ . Then the subgroup Γ∞ of Γ
that fixes ∞ is generated by an element of the form ( 1 h

0 1 ) for a positive real
number h. Since χ carries a parabolic element of Γ to a parabolic element of
χ(Γ ), we may assume

χ

(
1 h
0 1

)
= ±

(
1 hχ
0 1

)

for some positive real number hχ. Thus, using (1.1) and (1.4), we see that

Jk,�ω,χ
(
( 1 h

0 1 ) , z
)

= 1,

and hence we obtain f(z + h) = f(z) for all z ∈ H. This leads us to the
Fourier expansion of f at ∞ of the form

f(z) =
∑
n≥n0

ane
2πinz/h

for some n0 ∈ Z.
We now consider an arbitrary cusp s of Γ with σ(∞) = s. If Γs is as in

(1.8) and if Γ σ = σ−1Γσ, then we see that γ ∈ Γs if and only if

(σ−1γσ)∞ = σ−1γs = σ−1s = ∞;

hence σ−1Γsσ = (Γ σ)∞. In particular, ∞ is a cusp for Γ σ.

Lemma 1.2 If f satisfies the functional equation (1.14), then the function
f |k,� σ : H → C in (1.13) satisfies the relation

(f |k,� σ)(gz) = (f |k,� σ)(z)

for all g ∈ (Γ σ)∞ = σ−1Γsσ and z ∈ H.

Proof. Let g = σ−1γσ ∈ Γ σ with γ ∈ Γs. Then by (1.13) we have

(f |k,� σ)(gz) = j(σ, gz)−kj(χ(σ), ω(gz))−�f(γσz) (1.15)

for all z ∈ H. Since both g and χ(σ)−1χ(γ)χ(σ) fix ∞, we have

j(g, z) = 1 = j(χ(σ)−1χ(γ)χ(σ), ω(z)).

Using this, (1.2) and (1.11), we see that

j(σ, gz) = j(σ, gz)j(g, z) = j(σg, z) = j(γσ, z), (1.16)
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j(χ(σ), ω(gz)) = j(χ(σ), χ(σ)−1χ(γ)χ(σ)ω(z)) (1.17)

× j(χ(σ)−1χ(γ)χ(σ), ω(z))

= j(χ(σ)χ(σ)−1χ(γ)χ(σ), ω(z))
= j(χ(γ)χ(σ), ω(z)).

Thus, by combining this with (1.15), (1.16), and (1.17), we obtain

(f |k,� σ)(gz) = j(γσ, z)−kj(χ(γ)χ(σ), ω(z))−�f(γσz)

= j(γ, σz)−kj(σ, z)−kj(χ(γ), χ(σ)ω(z))−�

× j(χ(σ), ω(z))−�f(γσz)

= j(σ, z)−kj(χ(σ), ω(z))−�(f |k,� γ)(σz)
= (f |k,� σ)(z);

hence the lemma follows. ��

By Lemma 1.2 the Fourier expansion of f |k,� σ at ∞ can be written in
the form

(f |k,� σ)(z) =
∑
n≥n0

ane
2πinz/h,

which is called the Fourier expansion of f at s.

Definition 1.3 Let Γ , ω, and χ as above, and let k and � be nonnegative
integers. A mixed automorphic form of type (k, �) associated to Γ , ω and χ
is a holomorphic function f : H → C satisfying the following conditions:

(i) f |k,� γ = f for all γ ∈ Γ .
(ii) The Fourier coefficients an of f at each cusp s satisfy the condition

that n ≥ 0 whenever an �= 0.
The holomorphic function f is a mixed cusp form of type (k, �) associated to
Γ , ω and χ if (ii) is replaced with the following condition:

(ii)′ The Fourier coefficients an of f at each cusp s satisfy the condition
that n > 0 whenever an �= 0.
We shall denote by Mk,�(Γ, ω, χ) (resp. Sk,�(Γ, ω, χ)) the space of mixed au-
tomorphic (resp. cusp) forms associated to Γ , ω and χ.

Remark 1.4 If � = 0 in Definition 1.3(i), then f is a classical automorphic
form or a cusp form (see e.g. [95, 114]). Thus, if Mk(Γ ) denotes the space
of automorphic forms of weight k for Γ , we see that

Mk,0(Γ, ω, χ) = Mk(Γ ), Mk,�(Γ, 1H, 1Γ ) = Mk+�(Γ ),

where 1H is the identity map on H and 1Γ is the inclusion map of Γ into
SL(2,R). On the other hand for k = 0 the elements of M0,�(Γ, ω, χ) are
generalized automorphic forms of weight � in the sense of Hoyt and Stiller (see
e.g. [120, p. 31]). In addition, if f ∈ Mk,�(Γ, ω, χ) and g ∈ Mk′,�′(Γ, ω, χ),
then we see that fg ∈Mk+k′,�+�′(Γ, ω, χ).
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1.2 Eisenstein Series and Poincaré Series

In this section we construct Eisenstein series and Poincaré series, which pro-
vide examples of mixed automorphic forms. We shall follow closely the de-
scriptions in [70] and [80].

Let ω : H → H and χ : Γ → SL(2,R) be as in Section 1.1, and let
s be a cusp for Γ . Let σ ∈ SL(2,R) and α ∈ Γ be the elements associ-
ated to s satisfying (1.7), and assume that Γs in (1.8) satisfies (1.9). We
consider the corresponding parabolic element χ(α) of χ(Γ ) and the element
χ(σ) ∈ SL(2,R) satisfying (1.10) and (1.11). We fix a positive integer k
and a nonnegative integer m. For each nonnegative integer ν, we define the
holomorphic function φν : H → C associated to the cusp s by

φν(z) = J2k,2m(σ, z)−1 exp(2πiνσz/h) (1.18)

= j(σ, z)−2kj(χ(σ), ω(z))−2m exp(2πiνσz/h)

for all z ∈ H, where we used the notation in (1.12).

Lemma 1.5 If s is a cusp of Γ described above, then the associated function
φν given by (1.18) satisfies

φν |2k,2m γ = φν (1.19)

for all γ ∈ Γs.

Proof. Given z ∈ H and γ ∈ Γs, using (1.18), we have

φν(γz) = j(σ, γz)−2kj(χ(σ), ω(γz))−2m exp(2πiνσγz/h)

= j(σ, γz)−2kj(χ(σ), χ(γ)ω(z))−2m exp(2πiνσγz/h)

= j(σγ, z)−2kj(γ, z)2kj(χ(σ)χ(γ), ω(z))−2m

× j(χ(γ), ω(z))2m exp(2πiν(σγσ−1)σz/h),

where we used (1.2). Since σγσ−1 and χ(σ)χ(γ)χ(σ)−1 stabilize ∞, we have

j(σγσ−1, w) = j(χ(σ)χ(γ)χ(σ)−1 , χ(σ)w) = 1

for all w ∈ H, and hence we see that

j(σγ, z) = j(σγσ−1, σz) · j(σ, z) = j(σ, z),

j(χ(σ)χ(γ), ω(z)) = j(χ(σ)χ(γ)χ(σ)−1, χ(σ)ω(z)) · j(χ(σ), ω(z))
= j(χ(σ), ω(z)),

and σγz/h = (σγσ−1)σz/h = σz/h+ d for some integer d. Thus we obtain
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φν(γz) = j(σ, z)−2kj(γ, z)2k

× j(χ(σ), ω(z))−2mj(χ(γ), ω(z))2m exp(2πiνσz/h)

= j(γ, z)2kj(χ(γ), ω(z))2mφν(z),

and therefore the lemma follows. ��

Let s be a cusp of Γ considered above, and set

P ν2k,2m(z) =
∑

γ∈Γs\Γ
(φν |2k,2m γ)(z) (1.20)

for all z ∈ H. Note that by Lemma 1.5 the summation is well-defined.

Definition 1.6 The function P ν2k,2m(z) is called a Poincaré series for mixed
automorphic forms if ν ≥ 1, and the function P 0

2k,2m(z) is called an Eisenstein
series for mixed automorphic forms.

We shall show below that the series in (1.20) defining the function
P ν2k,2m(z) converges and is holomorphic on H.

Lemma 1.7 Let z0 ∈ H, and let ε be a positive real number such that

N3ε = {z ∈ C | |z − z0| ≤ 3ε} ⊂ H,

and let k and m be nonnegative integers. If ψ is a continuous function on
N3ε that is holomorphic on the interior of N3ε, then there exists a positive
real number C such that

|ψ(z1)| ≤ C

∫
N3ε

|ψ(z)|(Im z)k(Imω(z))mdV

for all z1 ∈ Nε = {z ∈ C | |z − z0| ≤ ε}, where dV = dxdy/y2 with x = Re z
and y = Im z.

Proof. Let z1 be an element of Nε, and consider the Taylor expansion of ψ(z)
about z1 of the form

ψ(z) =
∞∑
n=0

an(z − z1)n.

We set N ′
ε = {z ∈ C | |z − z1| < ε}. Then N ′

ε ⊂ N3ε, and we have

∫
N ′ε

ψ(z)dxdy =
∫ 2π

0

∫ ε

0

∞∑
n=0

anr
n+1einθdrdθ = πε2a0 = πε2ψ(z1).
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Hence we obtain

|ψ(z1)| ≤ (πε2)−1

∫
N3ε

|ψ(z)|dxdy

= (πε2)−1

∫
N3ε

|ψ(z)|(Im z)k(Imω(z))m

(Im z)k−2(Imω(z))m
dV

≤ (πε2C1)−1

∫
N3ε

|ψ(z)|(Im z)k(Imω(z))mdV,

where
C1 = inf{(Im z)k−2(Imω(z))m | z ∈ N3ε}.

Thus the lemma follows by setting C = (πε2C1)−1. ��

If U is a connected open subset of H, then we define the norm ‖ · ‖U on
the space of holomorphic functions on U by

‖ψ‖U =
∫
U

|ψ(z)|(Im z)k(Imω(z))mdV,

where ψ is a holomorphic function on U .

Lemma 1.8 Let {fn} be a Cauchy sequence of holomorphic functions on U
with respect to the norm ‖ · ‖U . Then the sequence {fn} converges absolutely
to a holomorphic function on U uniformly on any compact subsets of U .

Proof. Let {fn} be a Cauchy sequence of holomorphic functions on an open
set U ⊂ H. Then by Lemma 1.7, for each z ∈ U , there is a constant C such
that

|fn(z) − fm(z)| ≤ C‖fn − fm‖U
for all n,m ≥ 0. Thus the sequence {fn(z)} of complex numbers is also a
Cauchy sequence, and therefore it converges. We set f(z) = limn→∞ fn(z)
for all z ∈ U . Let z0 ∈ U , and choose δ > 0 such that

N3δ = {z ∈ C | |z − z0| ≤ 3δ} ⊂ U.

Using Lemma 1.7 again, we have

|fn(z) − fm(z)| ≤ C′‖fn − fm‖U

for all z ∈ Nδ = {z ∈ C | |z−z0| ≤ δ}. Given ε > 0, let N be a positive integer
such that ‖fn − fm‖U < ε/(2C′) whenever m,n > N . For each z ∈ Nδ, if we
choose an integer n′ > N so that |fn′(z) − f(z)| < ε/2, then we obtain

|fn(z) − f(z)| ≤ |fn(z) − fn′(z)| + |fn′(z) − f(z)| < ε

for all n > N . Thus the sequence {fn} converges to f uniformly on Nδ and
therefore on any compact subsets of U . Hence it follows that f is holomorphic
function on U . ��
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Let φν be as in (1.18), and let {s1, . . . , sµ} be the set of all Γ -inequivalent
cusps of Γ . We choose a neighborhood Ui of si for each i ∈ {1, . . . , µ}, and
set

H′ = H−
µ⋃
i=1

⋃
γ∈Γ

γUi. (1.21)

Then, using the relations

Im γw = |j(γ, w)|−2 · Imw, Imω(γw) = |j(χ(γ), ω(w))|−2 · Imω(w) (1.22)

for γ ∈ Γ and w ∈ H and the fact that φν satisfies (1.19) for γ ∈ Γs, it can
be shown that ∫

Γs\H′
|φν(z)|(Im z)k(Imω(z))mdV < ∞. (1.23)

Theorem 1.9 The series in (1.20) defining P ν2k,2m(z) converges absolutely
on H and uniformly on compact subsets, and, in particular, the function
P ν2k,2m(z) is holomorphic on H.

Proof. Let s1, . . . , sµ be the Γ -inequivalent cusps of Γ as above, and let z0 be
an element of H. We choose neighborhoods W of z0 and Ui of si for 1 ≤ i ≤ µ
such that

{γ ∈ Γ | γW ∩W �= ∅} = Γz0 , γW ∩ Ui = ∅ (1.24)

for all γ ∈ Γ and 1 ≤ i ≤ µ, where Γz0 is the stabilizer of z0 in Γ . Then,
using (1.18) and (1.22), we have

‖P ν2k,2m‖W =
∫
W

∣∣∣∣
∑

γ∈Γs\Γ
(φν |2k,2mγ)(z)

∣∣∣∣(Im z)k(Imω(z))mdV

≤
∫
W

∑
γ∈Γs\Γ

∣∣(φν |2k,2mγ)(z)
∣∣(Im z)k(Imω(z))mdV

=
∑

γ∈Γs\Γ

∫
W

|φν(γz)|(Im γz)k(Imω(γz))mdV

=
∑

γ∈Γs\Γ

∫
γW

|φν(z)|(Im z)k(Imω(z))mdV.

In order to estimate the number of terms in the above sum, let γ′ ∈ Γ and
set

Ξ = {γ ∈ Γ | γ′′γW ∩ γ′W �= ∅ for some γ′′ ∈ Γs}.
Then by (1.24) we see that γ′W ∈ H′ and

|Γs\Ξ| ≤ |Γs\Γsγ′Γz0 | ≤ |Γz0 |,

where | · | denotes the cardinality. Thus, using this and (1.23), we have
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∑
γ∈Γs\Γ

∫
γW

|φν(z)|(Im z)k(Imω(z))mdV

≤ |Γz0 |
∫
Γs\H′

|φν(z)|(Im z)k(Imω(z))mdV < ∞.

Hence we obtain ‖P ν2k,2m‖W < ∞, and by Lemma 1.8 we see that P ν2k,2m(z)
converges absolutely on W and uniformly on compact subsets of W . Thus
it follows that the function P ν2k,2m(z) is holomorphic on W , and therefore is
holomorphic on H as well. ��

Now we need to show that the function P ν2k,2m(z) is holomorphic at each
cusp for all nonnegative integers ν and that it vanishes at each cusp for all
positive integers ν.

Lemma 1.10 Let s′ be a cusp of Γ such that σ′s′ = ∞ with σ′ ∈ SL(2,R),
and let σ′

χ ∈ SL(2,R) be an element with σ′
χω(s) = ∞. Using the notation

in (1.6), the function φν given in (1.18) satisfies the following conditions.
(i) If s′ is not Γ -equivalent to s, then there exist positive real numbers M

and λ such that
|(φν |2k,2mσ′−1)(z)| ≤ M |z|−2k (1.25)

whenever Im z > λ.
(ii) If s′ is Γ -equivalent to s, then there exist positive real numbers M

and λ such that
|(φν |2k,2m σ′−1)(z)| ≤ M (1.26)

whenever Im z > λ. If in addition ν > 0, then we have

(φν |2k,2m σ′−1)(z) → 0 (1.27)

as Im z → ∞.

Proof. Using (1.6) and (1.18), for z ∈ H we have

(φν |2k,2m σ′−1)(z) = j(σ′−1, z)−2kj(σ′
χ
−1, ω(z))−2mj(σ, σ′−1z)−2k

× j(χ(σ), ω(σ′−1z))−2m exp(2πiνσσ′−1/h).

If σσ′−1 =
(
a b
c d

)
and if Im z > 2|d|/|c|, then we have

|j(σ, σ′−1z) · j(σ′−1, z)| = |j(σσ′−1, z)| = |cz + d|
≥ |c||z| − |d| ≥ |c||z| − (|c|/2) Im z

= |c||z| − (|c|/2)|z| = |c||z|/2.

On the other hand, if σ′
χ
−1 =

(
a′ b′
c′ d′

)
and χ(σ) =

(
a′′ b′′
c′′ d′′

)
, then we obtain

|j(χ(σ)′−1, ω(z))||j(χ(σ), ω(σ′−1z))| = |c′ω(z) + d′||c′′ω(σ′−1z) + d′′|.
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Since Imω(z) → ∞ and ω(σ′−1z) → ω(s′) as Im z → ∞, there exist real
numbers A, λ′ > 0 such that

|j(χ(σ)′−1, ω(z))||j(χ(σ), ω(σ′−1z))| ≥ A

whenever Im z > λ′. We set λ = max(λ′, 2|d|/|c|). Then, whenever Im z > λ,
we have

|(φν |2k,2m σ′−1)(z)| ≤ (|c||z|/2)−2kA−2m exp(−2πνσσ′(Im z)/h).

Thus (1.25) holds for M = (|c|/2)−2kA−2m exp(−2πνσσ′λ/h), and therefore
(i) follows. As for (ii), if s′ is equivalent to s, we may assume that σ = σ′.
Thus we have

(φν |2k,2m σ′−1)(z) = j(1, z)−2kj(χ(σ)−1, ω(z))−2m

× j(χ(σ), ω(σ−1z))−2m exp(2πiνz/h).

Since j(1, z) = 1, we obtain (1.26) by arguing as in the case of (i). ��

Theorem 1.11 Let s0 be a cusp of Γ . Then the function P ν2k,2m(z) is holo-
morphic at s0 for all nonnegative integers ν. Furthermore, P ν2k,2m(z) vanishes
at s0 if ν > 0.

Proof. Let Γs0 ⊂ Γ be the stabilizer of the cusp s0, and let {δ} be a complete
set of representatives of Γs\Γ/Γs0 . Given δ, let {η} be a complete set of
representatives of δ−1Γsδ ∩ Γs0\Γs0 , so that we have Γ =

∐
δ,η Γsδη. We set

φν,δ (z) =
∑
η

(φν |2k,2m δη)(z)

for all z ∈ H. Then we have

P ν2k,2m(z) =
∑
δ

∑
η

(φν |2k,2m δη)(z) =
∑
δ

φν,δ (z).

By Theorem 1.9 there is a neighborhood U of s0 in H such that P ν2k,2m(z)
converges uniformly on any compact subset of U . Hence, if σ0s0 = ∞ with
σ0 ∈ SL(2,R), then the function

P ν2k,2m |2k,2m σ−1
0 =

∑
δ

φν,δ |2k,2m σ−1
0

converges uniformly on any compact subset of {z ∈ H | Im z > d} for some
positive real number d. Therefore it suffices to show that each φν,δ |2k,2m σ−1

0

is holomorphic at ∞ and that it has zero at ∞ if ν > 0. First, suppose that
δs0 is not a cusp of Γs. Then δ−1Γsδ ∩ Γs0 coincides with {1} or {±1}, and
hence we have
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φν,δ |2k,2m σ−1
0 = C ·

∑
η∈Γs0

(φν |2k,2m δσ−1
0 σ0ησ

−1
0 )

with C = 1 or 1/2, respectively. Applying (1.25) for s = δs0, σ = σ0δ
−1, we

obtain
|(φν |2k,2m δσ−1

0 )(z)| ≤ M |z|−2k

for all z with Im z > λ for some M,λ > 0. Thus we obtain

|(φν,δ |2k,2m σ−1
0 )(z)| ≤ 2M

∑
α∈Z

|z + αb|−2k, (1.28)

where b is a positive real number such that

σ0Γs0σ
−1
0 · {±1} =

{
± ( 1 b

0 1 )α
∣∣α ∈ Z

}
.

By comparing the series on the right hand side of (1.28) with the series∑
α∈Z α

−2k, we see that it converges uniformly on any compact subset of the
domain Im z > λ. Hence it follows that φν,δ |2k,2m σ−1

0 is holomorphic at ∞.
Furthermore, φν,δ |2k,2m σ−1

0 vanishes at ∞ because the right hand side of
(1.28) approaches zero as z → ∞. Next, suppose δs0 is a cusp of Γs. Then
δ−1Γsδ ∩ Γs0 is a subgroup of Γs0 of finite index; hence the sum on the right
hand side of

φν,δ |2k,2m σ−1
0 =

∑
η

(φν |2k,2m δσ−1
0 σ0ησ

−1
0 ),

where the summation is over η ∈ δ−1Γsδ ∩ Γs0\Γs0 , is a finite sum. Using
(1.26) for s = δs0 and σ = σ0δ

−1, for each δ we obtain

|(φν |2k,2m δσ−1
0 )(z)| ≤M

for all Im z > λ for some M,λ > 0. For each η ∈ Γs0 we have

σ0ησ
−1
0 = ±

(
1 βb
0 1

)

for some β ∈ Z; hence we have

|(φν,δ |2k,2m σ−1
0 )(z)| ≤M

for all Im z > λ, and it follows that φν,δ |2k,2m σ−1
0 is holomorphic at ∞.

Furthermore, if ν > 0, then by (1.27) we have

(φν |2k,2m δσ−1
0 )(z) → 0

as Im z → ∞; hence we see that φν,δ |2k,2m σ−1
0 vanishes at ∞. ��

Theorem 1.12 The Eisenstein series P 0
2k,2m(z) is a mixed automorphic

form and the Poincaré series P ν2k,2m(z) is a mixed cusp form for Γ of type
(2k, 2m).
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Proof. Using the relations

j(γ, γ′z) = j(γ′, z)−1j(γγ′, z),

j(χ(γ), χ(γ′)ω(z)) = j(χ(γ′), ω(z))−1j(χ(γγ′), ω(z))

for γ, γ′ ∈ Γ and z ∈ H, we obtain

P ν2k,2m(γ′z) =
∑

γ∈Γs\Γ
(φν |2k,2m γ)(γ′z)

=
∑

γ∈Γs\Γ
j(γ, γ′z)−2kj(χ(γ), ω(γ′z))−2mφν(γγ′z)

= j(γ′, z)2kj(χ(γ′), ω(z))2m

×
∑

γ∈Γs\Γ
j(γγ′, z)−2kj(χ(γγ′), ω(z))−2mφν(γγ′z)

= j(γ′, z)2kj(χ(γ′), ω(z))2mP ν2k,2m(z)

for all γ′ ∈ Γ and z ∈ H; hence we see that P ν2k,2m satisfies the condition
(i) in Definition 1.3. Therefore the theorem follows from the cusp conditions
given in Theorem 1.11. ��

Remark 1.13 If ω is the identity map on H and if χ is the inclusion map of
Γ into SL(2,R), then P 0

2k,2m(z) and P ν2k,2m(z) for ν > 0 are the Eisenstein
series and the Poincaré series, respectively, for elliptic modular forms for Γ
of weight 2(k+m+1). Poincaré series were also considered in [70] for mixed
cusp forms of type (2, 2m).

1.3 Cusp Forms Associated to Mixed Cusp Forms

Let S�,k(Γ, ω, χ) be the space of mixed cusp forms of type (�, k) associated to
Γ , ω and χ as in Definition 1.3, and let Sm(Γ ) be the space of cusp forms of
weight m for Γ . If ω is the identity map on H and χ is the inclusion map of
Γ into SL(2,R), then a mixed cusp form of type (�, k) associated to Γ , ω and
χ becomes a cusp form of weight �+ k for Γ . Similarly, a mixed cusp form of
type (�, 0) is a cusp form of weight �. Given a mixed cusp form g belonging to
Sk,�(Γ, ω, χ), denote by L∗

g : S�+m,k(Γ, ω, χ) → Sm(Γ ) be the map that is the
adjoint of the linear map Lg : Sm(Γ ) → S�+m,k(Γ, ω, χ) sending h ∈ Sm(Γ )
to gh. In this section we express the Fourier coefficients of the cusp form
L∗
g(f) associated to a mixed cusp form f in terms of series involving Fourier

coefficients of f and g by following the method of W. Kohnen [53] who treated
the case of classical cusp forms.

If g ∈ S�,k(Γ, ω, χ) and h ∈ Sm(Γ ), then we see easily that gh ∈
S�+m,k(Γ, ω, χ). Thus, given an element g ∈ S�,k(Γ, ω, χ), we can consider
a linear map Lg : Sm(Γ ) → S�+m,k(Γ, ω, χ) defined by
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Lg(h) = gh (1.29)

for all h ∈ Sm(Γ ). The space Sm(Γ ) is equipped with the Petersson inner
product, and the Petersson inner product can also be defined on the space
S�+m,k(Γ, ω, χ) of mixed cusp forms (see [70, Proposition 2.1]). Thus we can
consider the adjoint map L∗

g : S�+m,k(Γ, ω, χ) → Sm(Γ ) of Lg satisfying the
condition

〈L∗
gf, h〉 = 〈〈f,Lgh〉〉 (1.30)

for all f ∈ S�+m,k(Γ, ω, χ) and h ∈ Sm(Γ ), where 〈 , 〉 (resp. 〈〈 , 〉〉) is the
Petersson inner product on the space Sm(Γ ) (resp. S�+m,k(Γ, ω, χ)).

Throughout the rest of this section we shall assume that the Fuchsian
group Γ is a congruence subgroup of SL(2,R). If Γ∞ is the subgroup of Γ
consisting of the elements of Γ fixing ∞, then Γ∞ is an infinite cyclic group
generated by the translation map z 
→ z + b for some b ∈ Z. Let Pm,n be the
n-th Poincaré series in Sm(Γ ) given by

Pm,n(z) =
∑

γ∈Γ∞\Γ
e2πinγz/bj(γ, z)−m, (1.31)

where j(γ, z) is as in (1.1) (see e.g. [33]). If h is a cusp form in Sm(Γ ) whose
Fourier expansion is of the form

h(z) =
∞∑
p=1

Ap(h)e2πipz/b

and if 〈 , 〉 is the Petersson inner product on Sm(Γ ), then we have

〈h, Pm,n〉 =
bmΓ (m− 1)
(4πn)m−1

An(h) (1.32)

(see Theorem 5 in [33, Section 11]), where Γ is the Gamma function. Thus,
if L∗

g : S�+m,k(Γ, ω, χ) → Sm(Γ ) is the adjoint of Lg as before, for each
f ∈ S�+m,k(Γ, ω, χ) and a positive integer n by using (1.29), (1.30) and
(1.32), we obtain

bmΓ (m− 1)
(4πn)m−1

An(L∗
gf) = 〈L∗

gf, Pm,n〉 = 〈〈f,LgPm,n〉〉 = 〈〈f, gPm,n〉〉

=
∫
Γ\H

f(z)g(z)Pm,n(z)ym+�(Imω(z))kdV

=
∫
Γ\H

Φ(z)Pm,n(z)ymdV,

where 〈〈 , 〉〉 is the Petersson inner product on S�+m,k(Γ, ω, χ) (cf. [70, Propo-
sition 2.1]), z = x+ iy, Φ(z) = f(z)g(z)y�(Imω(z))k, and dV = y−2dxdy.
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Lemma 1.14 The function Φ(z) = f(z)g(z)(Im z)�(Imω(z))k satisfies the
relation

Φ(γz) = j(γ, z)mΦ(z) (1.33)

for all γ ∈ Γ and z ∈ H.

Proof. Since f ∈ S�+m,k(Γ, ω, χ) and g ∈ S�,k(Γ, ω, χ), for γ ∈ Γ and z ∈ H,
we have

Φ(γz) = f(γz)g(γz)(Im γz)�(Imω(γz))k

= f(γz)g(γz)(Im γz)�(Imχ(γ)ω(z))k

= j(γ, z)�+mj(χ(γ), ω(z))kf(z) j(γ, z)� j(χ(γ), ω(z))k g(z)

× |j(γ, z)|−2�(Im z)�|j(χ(γ), ω(z))|−2k(Imω(z))k

= j(γ, z)mf(z)g(z)(Im z)�(Imω(z))k

= j(γ, z)mΦ(z).

Hence the lemma follows. ��

By Lemma 1.14 the function Φ satisfies Φ(z + kb) = Φ(b) for all k ∈ Z.
Note that Φ is not a holomorphic function. However, if z = x + iy, then
Φ is periodic as a function of x with period b and therefore has a Fourier
expansion of the form

Φ(z) =
∑
p∈Z

Ap(Φ; y)e2πipx/b, (1.34)

where the Ap(Φ; y) are functions of y. On the other hand, given f ∈
S�+m,k(Γ, ω, χ), the Fourier expansion of the cusp form L∗

gf in Sm(Γ ) can
be written in the form

L∗
gf(z) =

∞∑
p=1

Ap(L∗
gf)e2πipz/b (1.35)

for some constants Ap(L∗
gf) ∈ C.

Theorem 1.15 Given g ∈ S�,k(Γ, ω, χ), let f be a mixed cusp form in
S�+m,k(Γ, ω, χ), and let An(L∗

gf) be the n-th Fourier coefficient of the cusp
form L∗

gf in Sm(Γ ) as in (1.35). Then we have

An(L∗
gf) =

(4πn)m−1

Γ (m− 1)bm−1

∫ ∞

0

An(Φ; y)e−2πny/bym−2dy, (1.36)

where An(Φ; y) is the n-th Fourier coefficient of Φ(z) = f(z)g(z)y�(Imω(z))k

regarded as a function of y as in (1.34).
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Proof. Let Φ(z) be as above, and let Pm,n be the Poincaré series in (1.31).
We set

I =
∫
D

Φ(z)Pm,n(z)ymdV =
bmΓ (m− 1)
(4πn)m−1

An(L∗
gf), (1.37)

where D ⊂ H is a fundamental domain of Γ . Using the fact that

dV = y−2dxdy = Im(z)−2(i/2)dz ∧ dz,

we have

I =
∑

γ∈Γ∞\Γ

∫
D

Φ(z)e−2πinγz/b j(γ, z)−m Im(z)m−2(i/2)dz ∧ dz.

In terms of the variable w = γz = u + iv, a typical term in the above sum
becomes∫

D

Φ(z)e−2πinγz/b j(γ, z)−m Im(z)m−2(i/2) dz ∧ dz (1.38)

=
∫
γD

Φ(γ−1w)e−2πinw/b j(γ, γ−1w)−m

× Im(γ−1w)m−2(i/2) d(γ−1w) ∧ d(γ−1w).

However, using (1.2) and (1.38), we see that

Φ(γ−1w) = j(γ−1, w)mΦ(w), j(γ, γ−1w)−m = j(γ−1, w)−m,

Im(γ−1w)m−2 = |j(γ−1, w)|−2m+4 Im(w)m−2

= j(γ−1, w)−m+2 j(γ−1, w)−m+2 Im(w)m−2,

and

(i/2) d(γ−1w) ∧ d(γ−1w) = (i/2) j(γ−1, w)−2dw ∧ j(γ−1, w)−2dw

= j(γ−1, w)−2 j(γ−1, w)−2dudv.

Thus by substituting these into (1.38) we obtain
∫
D

Φ(z)e−2πinγz/b j(γ, z)−m Im(z)m−2(i/2) dz ∧ dz

=
∫
γD

Φ(w)e−2πinw/b Im(w)m−2dudv,

and hence the integral I in (1.37) can be written in the form

I =
∫
D′
Φ(z)e−2πinz/bym−2dxdy,
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where
D′ =

⋃
{γD | γ ∈ Γ∞\Γ}. (1.39)

From (1.39) we see easily that D′ is a fundamental domain of Γ∞, and hence
it can be written as

D′ = {z ∈ H | 0 ≤ Re z ≤ b}.

Therefore it follows that

I =
∫ ∞

0

∫ b

0

Φ(z)e−2πinz/bym−2dxdy.

Now by using the Fourier expansion of Φ(z) in (1.34) we obtain

I =
∞∑
k=0

∫ b

0

e2πi(k−n)x/bdx

∫ ∞

0

Ak(Φ; y)e−2πny/bym−2dy

= b

∫ ∞

0

An(Φ; y)e−2πny/bym−2dy.

Thus, using this and (1.37), we see that

An(L∗
gf) =

(4πn)m−1

bmΓ (m− 1)
I

=
(4πn)m−1

Γ (m− 1)bm−1

∫ ∞

0

An(Φ; y)e−2πny/bym−2dy,

and hence the proof of the theorem is complete. ��

We now want to establish relations among the Fourier coefficients of f
and g and those of the image L∗

gf ∈ Sm(Γ ) of a mixed cusp form f in
S�+m,k(Γ, ω, χ) under the map L∗

g associated to g ∈ S�,k(Γ, ω, χ). First, we
assume that the mixed cusp forms f and g have Fourier expansions of the
form

f(z) =
∞∑
ρ=1

B(ρ)e2πiρz/b, g(z) =
∞∑
µ=1

C(µ)e2πiµz/b (1.40)

(see [18]). Note that the homomorphism χ maps parabolic elements to
parabolic elements. Therefore we may assume that

χ

(
1 b
0 1

)
=
(

1 bχ
0 1

)

for some bχ ∈ R. Thus, if ψ(z) = (Imω(z))k and if Tb = ( 1 b
0 1 ), then

j(χ(Tb), ω(z)) = 1 and

ψ(z + b) = (Imω(Tbz))k = (Imχ(Tb)ω(z))k

= |j(χ(Tb), ω(z))|−2k (Imω(z))k = ψ(z)
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for all z ∈ H. Hence the real-valued function ψ(z) has a Fourier expansion of
the form

(Imω(z))k =
∑
ν∈Z

F (ν; y)e2πiνx/b, (1.41)

where the F (ν; y) are functions of y.

Theorem 1.16 Given f ∈ S�+m,k(Γ, ω, χ) and g ∈ S�,k(Γ, ω, χ), the n-th
Fourier coefficient An(L∗

gf) of the cusp form L∗
gf in Sm(Γ ) can be written

in the form

An(L∗
gf) =

nm−1b�

Γ (m− 1)(4π)�
×
∑
µ,ν

B(µ+ n− ν)C(µ)
(µ+ n− ν/2)�+m−1

×
∫ ∞

0

F

(
ν;

bt

4π(µ+ n− ν/2)

)
t�+m−2 e−t dt,

where B, C and F are as in (1.40) and (1.41).

Proof. In terms of the Fourier coefficients of f , g and (Imω(z))k in (1.40)
and (1.41) the function Φ(z) = f(z)g(z)y�(Imω(z))k can be written in the
form

Φ(z) = y�
∑
ρ,µ,ν

B(ρ)C(µ)F (ν; y) e2πi(ν+ρ−µ)x/b e−2π(ρ+µ)y/b.

Thus, using ν + ρ − µ = n, we have ρ = µ + n − ν, and by (1.34) the n-th
Fourier coefficient of Φ(z) is given by

An(Φ; y) = y�
∑
µ,ν

B(µ+ n− ν)C(µ)F (ν; y) e−2π(2µ+n−ν)y/b.

Substituting this into (1.36), we obtain

An(L∗
gf) =

(4πn)m−1

Γ (m− 1)bm−1

×
∫ ∞

0

y�+m−2
∑
µ,ν

B(µ+ n− ν)C(µ)F (ν; y) e−4π(µ+n−ν/2)y/b dy.

Now the the theorem follows by expressing the above integral in terms of the
new variable t = 4π(µ+ n− ν/2)y/b. ��

Remark 1.17 If k = 0, the map L∗
g : S�+m,k(Γ, ω, χ) → Sm(Γ ) becomes a

map from S�+m(Γ ) to Sm(Γ ). If in addition Γ = SL(2,Z), then b = 1 and
the formula for An(L∗

gf) given in Theorem 1.16 reduces to the one obtained
by Kohnen in [53].
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1.4 Mixed Automorphic Forms and Differential
Equations

In this section we discuss mixed automorphic forms associated to a certain
class of linear ordinary differential equations and establish a relation between
the monodromy of such a differential equation and the periods of the corre-
sponding mixed automorphic forms.

Let X be a Riemann surface regarded as a smooth complex algebraic
curve over C, and consider a linear ordinary differential operator

Λn =
dn

dxn
+ Pn−1(x)

dn−1

dxn−1
+ · · · + P1(x)

d

dx
+ P0(x)

of order n on X , where x is a nonconstant element of the function field
K(X) of X and Pi ∈ K(X) for 0 ≤ i ≤ n − 1. We assume that Λn has
only regular singular points. Let U ⊂ X be a Zariski open set on which the
functions Pi are all regular, and choose a base point x0 ∈ U . Let ω1, . . . , ωn
be holomorphic functions which form a basis of the space of solutions of the
equation Λnf = 0 near x0. Given a closed path γ that determines an element
of the fundamental group π1(U, x0), there is a matrix M(γ) ∈ GLn(C) such
that the analytic continuation of the solution ωi becomes

∑n
j=1 mijωj for each

i ∈ {1, . . . , n}. Thus we obtain a representation M : π1(U, x0) → GLn(C) of
the fundamental group of U called the monodromy representation.

Let Vx0 be the space of local solutions of the equation Λnf = 0 near
x0 ∈ U , and consider an element ψ ofK(X). By shrinking the Zariski open set
U if necessary, we may assume that ψ is regular on U . Then the monodromy
representation M determines an action of the fundamental group π1(U, x0)
on Vx0 . We shall determine an element of the cohomology H1(π0(U, x0), Vx0)
of π1(U, x0) with coefficients in Vx0 associated to ψ ∈ K(X). Let fψ be a
solution of the nonhomogeneous equation Λnf = ψ, and suppose that the
solution of Λnf = ψ obtained by the analytic continuation of fψ around a
closed path γ ∈ π1(U, x0) is given by

fψ + aψγ,1ω1 + · · · + aψγ,nωn = fψ + ta
ψ
γω,

where
taψγ = (aψγ,1, . . . , a

ψ
γ,n),

tω = ω1, . . . , ωn) (1.42)

with aψγ,1, . . . , a
ψ
γ,n ∈ C. If τ ∈ π1(U, x0) is another closed path, then the

analytic continuation of fψ + taψγω around τ becomes

fψ + taψτ ω + taψγM(τ).

On the other hand, since the analytic continuation of fψ around γτ is fψ +
taψγτω, it follows that
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ta
ψ
γτ = ta

ψ
τ + ta

ψ
γM(τ).

Thus the map γ 
→ taψγ is a cocycle, and this cocycle is independent of
the choice of the solution fψ up to coboundary (cf. [120]). Note that each
taψγ determines an element taψγω of Vx0 . Consequently taψγ can be regarded
as an element of Vx0 , and hence it defines an element of the cohomology
H1(π1(U, x0), Vx0).

Let Γ ⊂ SL(2,R) be a Fuchsian group of the first kind that does not
contain elements of finite order. Then the quotient X = Γ\H∗ is a compact
Riemann surface, where H∗ is the union of H and the cusps of Γ , and can be
regarded as a smooth algebraic curve over C. Let x be a nonconstant element
of the function field K(X) of X when X is regarded as an algebraic curve
over C. We consider a second order linear differential equation Λ2

Xf = 0 with

Λ2
X =

d2

dx2
+ PX(x)

d

dx
+QX(x), (1.43)

where PX(x) and QX(x) are elements of K(X). We assume that the differ-
ential equation Λ2

Xf = 0 has only regular singular points and that the set
of singular points coincides with the set of cusps of Γ . Thus, if X0 is the set
of regular points of Λ2

Xf = 0 and if x0 ∈ X0, then X0 can be regarded as
the quotient space Γ\H and the fundamental group π1(X0, x0) of X0 can be
identified with Γ . Let χ : Γ → GL(2,C) be the monodromy representation
for the differential equation Λ2

Xf = 0, and assume that χ(Γ ) ⊂ SL(2,R).
Let ω1 and ω2 be linearly independent solutions of Λ2

Xf = 0, and for each
positive integer m let Sm(Λ2) be the linear ordinary differential operator of
order m+ 1 such that the m+ 1 functions

ωm1 , ω
m−1
1 ω2, . . . , ω1ω

m−1
2 , ωm2

are linearly independent solutions of the corresponding homogeneous equa-
tion Sm(Λ2

X)f = 0.
By pulling back the operator in (1.43) via the natural projection H∗ →

X = Γ\H∗ we obtain a differential operator

Λ2 =
d2

dz2
+ P (z)

d

dz
+Q(z) (1.44)

such that P (z) and Q(z) are meromorphic functions on H∗. Let ω1(z) and
ω2(z) for z ∈ H be the two linearly independent solutions of Λ2f = 0 corre-
sponding to ω1 and ω2 above. Then the monodromy representation for the
differential equation Λ2f = 0 is the group homomorphism χ : Γ → SL(2,R)
defined as follows. Given elements γ ∈ Γ and z ∈ H, we assume that the
elements ω1(γz), ω2(γz) ∈ H can be written in the form

ω1(γz) = aχω1(z) + bχω2(z), ω2(γz) = cχω1(z) + dχω2(z). (1.45)
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Then the image of γ ∈ Γ under the monodromy representation χ is given by

χ(γ) =
(
aχ bχ
cχ dχ

)
∈ SL(2,R). (1.46)

We now set
ω(z) = ω1(z)/ω2(z), (1.47)

and assume that ω(z) ∈ H for all z ∈ H. Then the resulting map ω : H → H
is the period map for the differential equation Λ2f = 0, and by (1.45) it
satisfies

ω(γz) =
aχω(z) + bχ
cχω(z) + dχ

= χ(γ)ω(z)

for all z ∈ H and γ ∈ Γ . Thus the maps ω and χ form an equivariant pair, and
we may consider the associated mixed automorphic or cusp forms as in Sec-
tion 1.1. Note, however, in this section we deal with meromorphic functions
rather than holomorphic functions on H, so we need to modify Definition 1.3
by replacing holomorphic functions with meromorphic functions.

Definition 1.18 Let f : H → C be a mixed automorphic form of type (µ, ν)
associated to Γ , ω and χ with µ ≥ 2. Then for z0 ∈ H and γ ∈ Γ the integrals
of the form

∫ γz0

z0

f(z)ω′(z)1−µ/2ω(z)idz, i = 0, 1, . . . , µ+ ν − 2

are called the periods of f .

If Sm(Λ2) is the differential operator acting on the functions on H ob-
tained by pulling back Sm(Λ2

X) via the projection H∗ → X , then the solutions
of the equation Sm(Λ2)f = 0 are of the form

m∑
i=0

ciω1(z)m−iω2(z)i (1.48)

for some constants c0, . . . , cm. Let ψ be a meromorphic function on H∗ cor-
responding to an element ψX in K(X), and let fψ be a solution of the non-
homogeneous equation

Sm(Λ2)f = ψ. (1.49)

Given a nonnegative integer k, we set

Φψk (z) = ω′(z)k
dm+1

dω(z)m+1

(
fψ(z)
ω2(z)m

)
(1.50)

for all z ∈ H.

Lemma 1.19 The function Φψk in (1.50) is independent of the choice of the
solution fψ of the differential equation in (1.49).
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Proof. Let fψ and hψ of the differential equation in (1.49). Then, using (1.48),
we see that

hψ(z) = fψ(z) +
m∑
i=0

ciω1(z)m−iω2(z)i

for some c0, . . . , cm ∈ C. Thus by using (1.47) we have

ω′(z)k
dm+1

dω(z)m+1

(
hψ(z)
ω2(z)m

)
= ω′(z)k

dm+1

dω(z)m+1

(
fψ(z)
ω2(z)m

+
m∑
i=0

ciω(z)
)

= ω′(z)k
dm+1

dω(z)m+1

(
fψ(z)
ω2(z)m

)
,

which proves the lemma. ��

Theorem 1.20 (i) The function Φψk (z) is a mixed automorphic form of type
(2k,m− 2k + 2) associated to Γ , ω and the monodromy representation χ.

(ii) If z0 is a fixed point in H, then a solution fψ of the equation
Sm(Λ2)f = ψ is of the form

fψ(z) =
ω2(z)m

m!

∫ z

z0

Φψk (z)ω′(z)−k(ω(z) − ω(t))mdω(t) (1.51)

+
m+1∑
i=1

ciω1(z)m+1−iω2(z)i−1

for some constants c1, . . . , cm+1.

Proof. It is known that the function

dm+1

dω(z)m+1

(
fψ(z)
ω2(z)m

)

is a mixed automorphic form of type (0,m+ 2) associated to Γ , ω and χ (cf.
[120, p. 32]). On the other hand, for γ =

(
a b
c d

)
∈ Γ and χ(γ) as in (1.46) we

have
d(γz)
dz

=
d

dz

(az + d

cz + d

)
=

1
(cz + d)2

,

dω(γz)
dω(z)

=
d(χ(γ)ω(z))

dω(z)
=

1
(cχz + dχ)2

.

Thus we obtain

Φψk (γz) =
(
dω(γz)
dω(z)

)k(
d(γz)
dz

)−k(
dω(z)
dz

)k
dm+1

dω(z)m+1

(
fψ(z)
ω2(z)m

)
(z)

= (cz + d)2k(cχz + dχ)m−2k+2Φψk (z),

and therefore (i) follows. As for (ii), we have
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∫ z

z0

Φψk (z)ω′(z)−k(ω(z) − ω(t))mdω(t)

=
∫ z

z0

dm+1

dωm+1

(
fψ(z)
ω2(z)m

)
(ω(z) − ω(t))mdω(t)

= m!
(
fψ(z)
ω2(z)m

)
+
m+1∑
i=1

c′iω(z)m+1−i

for some constants c′1, . . . , c
′
m+1 by applying the integration by parts m times.

Now using ci = −c′i/(m!) and ω = ω1/ω2, we obtain the desired formula in
(1.51). ��

Let Λ2 be the second-order differential operator in (1.44) with mon-
odromy representation χ : Γ → SL(2,R) described above. Then the mon-
odromy representation of Sm(Λ2) is given by Smχ = Symm ◦ χ, where
Symm : SL(2,R) → SL(m + 1,R) is the m-th symmetric power represen-
tation.

Let Vx0 be the space of local solutions of the equation Sm(Λ2)f = 0 near
x0 ∈ X0, and for ψ ∈ K(X) let taψγ be the cocycle in H1(Γ, Vx0) associated
to a solution fψ of Sm(Λ2)f = ψ in (1.42). Then we can express the cocycle
taψγ in terms of the periods of the mixed automorphic form Φψk and the
monodromy representation Smχ of Sm(Λ2)f = 0 as follows:

Theorem 1.21 Let Φψk be the mixed automorphic form of type (2k,m−2k+
2) associated to Γ , ω and χ determined by a solution of fψ of Sm(Λ2)f = ψ,
and let z0 be a fixed point in H. Then we have

[
taψγ

]
=
[
(Ξψ

γ,1, . . . , Ξ
ψ
γ,m+1) · Smχ(γ)

]

for each γ ∈ Γ , where

Ξψ
γ,ν = (−1)ν−1(m!)−1

(
m

ν − 1

)∫ γz0

z0

Φψk (z)ω′(z)1−kω(z)ν−1dz

for 1 ≤ ν ≤ m + 1; here the square brackets denote the cohomology class in
H1(Γ, Vx0 ).

Proof. Using [120, Proposition 3 bis. 10] and the proof of [120, Theorem 3
bis. 17], we obtain

ta
ψ
γ = (Ξψ

γ,1, . . . , Ξ
ψ
γ,m+1) · Smχ(γ) + (c1, . . . , cm+1) · (Smχ(γ) − Im+1)

for some constants c1, . . . , cm+1, where Im+1 is the (m+1)× (m+1) identity
matrix and
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Ξψ
γ,ν = (−1)ν−1(m!)−1

(
m

ν − 1

)

×
∫ γz0

z0

dm+1

dω(z)m+1

(
fψ(z)
ω2(z)m

)
ω′(z)k−1ω(z)ν−1dω(z)

for 1 ≤ ν ≤ m+ 1. However, we have

dm+1

dω(z)m+1

(
fψ(z)
ω2(z)m

)
dω(z) = Φψk (z)ω′(z)−kdω(z) = Φψk (z)ω′(z)1−kdz.

Now the theorem follows from the fact that

(c1, . . . , cm+1) · (Smχ(γ) − Im+1)

is a coboundary in H1(Γ, Vx0). ��



2

Line Bundles and Elliptic Varieties

An elliptic surface is the total space of a fiber bundle over a Riemann surface
whose generic fiber is an elliptic curve, and it was Hunt and Meyer [43] who
observed that a holomorphic form of degree two on an elliptic surface can be
interpreted as a mixed cusp form of type (2, 1). An elliptic variety, on the
other hand, can be constructed by considering a fiber bundle whose generic
fiber is the product of a finite number of elliptic curves, and a holomorphic
form of the highest degree on an elliptic variety can be identified with a mixed
cusp form of more general type (cf. [68, 18]). In this chapter we discuss certain
aspects of mixed automorphic forms of one variable that are related to their
geometric connections with elliptic varieties.

It is well-known that automorphic forms for a discrete subgroup Γ ⊂
SL(2,R) can be identified with sections of a line bundle over the Riemann
surface X = Γ\H. Such an interpretation can be extended to the case of
mixed automorphic forms. Thus a mixed automorphic form associated to Γ
and an equivariant pair (ω, χ) can be regarded as a section of a line bundle
over X determined by the given equivariant pair. This identification can in
turn be used to establish a correspondence between mixed automorphic forms
and holomorphic forms of the highest degree on an elliptic variety over X .

If f is a cusp form of weight w for a discrete subgroup Γ ⊂ SL(2,R), the
periods of f are given by the integrals

∫ i∞

0

f(z)zkdz

with 0 ≤ k ≤ w− 2, and it is well-known that such periods of cusp forms are
closely related to the values at the integer points in the critical strip of the
Hecke L-series (see e.g. [51, 104]). In [22] Eichler discovered certain relations
among the periods of cusp forms, which were extended later by Shimura [112];
these relations are called Eichler-Shimura relations. More explicit connections
between the Eichler-Shimura relations and the Fourier coefficients of cusp
forms were found by Manin [91]. On the other hand, if f is a mixed cusp
form of type (2,m) associated to Γ and an equivariant pair (ω, χ), then the
periods of f are the integrals

∫ i∞

0

f(z)ω(z)kdz

M.H. Lee: LNM 1845, pp. 35–58, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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with 0 ≤ k ≤ m. The Eichler-Shimura relations for these periods can be
obtained by regarding mixed cusp forms as holomorphic forms on an elliptic
variety.

In Section 2.1 we construct line bundles over a Riemann surface whose
sections can be identified with mixed automorphic forms. Such an identifica-
tion is used in Section 2.2 to establish a correspondence between mixed cusp
forms and holomorphic forms of the highest degree on an elliptic variety. Sec-
tion 2.3 describes some of the properties of the modular symbols and periods
of mixed cusp forms, which are used in Section 2.4 to obtain Eichler-Shimura
relations for mixed cusp forms.

2.1 Mixed Cusp Forms and Line Bundles

We shall adopt the notations used in Section 1.1. In particular, Γ ⊂ SL(2,R)
is a Fuchsian group of the first kind, and the holomorphic map ω : H → H
and the homomorphism χ : Γ → SL(2,R) form an equivariant pair. Recall
also that H∗ = H ∪ Σ with Σ being the set of cusps for Γ and that the
quotient X = Γ\H∗ has the structure of a compact Riemann surface. In this
section we establish an isomorphism between the space Sk,�(Γ, ω, χ) of mixed
cusp forms of type (k, �) associated to Γ , ω, and χ and the space of sections
of a certain line bundle over the Riemann surface X .

If SH∗ is a sheaf on H∗ on which Γ acts on the right, the associated
Γ -fixed sheaf (SH∗)Γ can be constructed by defining (SH∗)Γ for each open
subset U ⊂ X to be the space of Γ -invariant elements of SH∗(π−1(U)), where
π : H∗ → X is the natural projection map. Thus we may write

(SH∗)Γ (U) = (SH∗(π−1(U)))Γ . (2.1)

If s ∈ Σ ⊂ H∗ is a cusp of Γ and if Γs = {γ ∈ Γ | γs = s}, then the stalk
(SH∗)Γπ(s) of (SH∗)Γ over π(s) ∈ X can be identified with the Γs-invariant
elements of the stalk SH∗,s of SH∗ over s, that is,

(SH∗)Γπ(s) = (SH∗,s)Γs (2.2)

(see [6, Proposition 0.2]).
Let OH be the sheaf of germs of holomorphic functions on H, and let

η : H → H∗ denote the natural inclusion map. Then the direct image sheaf
η∗OH is an extension of OH to H∗ such that its stalk at each s ∈ Σ is given
by

(η∗OH)s = lim−→
U

OH(U ∩H),

where U runs through the set of open neighborhoods of s in H∗. Thus an
element of (η∗OH)s with s ∈ Σ is the germ of a section f : (U − {s}) → C

of OH on a punctured neighborhood U − {s} of s. We denote by OH∗ the
subsheaf of η∗OH such that the stalk at each s ∈ Σ is given by
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OH∗,s = {f ∈ (η∗OH)s | f(σ−1z) = O(|z|k) for some k ∈ Z}, (2.3)

where σ is an element of SL(2,R) with σs = ∞. Thus the germs at s belong-
ing to OH∗ are the elements of η∗OH that are meromorphic at s. The left
action of Γ on H∗ induces a right action of Γ on OH∗ given by

(f · γ)(z) = f(γz)

for all z ∈ U and γ ∈ Γ , where f : U → C represents a germ belonging to
OH∗ . We denote by (OH∗)Γ the Γ -fixed sheaf on X associated to OH∗ .

Lemma 2.1 The sheaf (OH∗)Γ can be identified with the sheaf OX of holo-
morphic functions on X.

Proof. Given an open subset U ⊂ X , by (2.1) a section f ∈ (OH∗)Γ (U)
of (OH∗)Γ on U is a Γ -invariant function on π−1(U). Thus f determines a
function f̃ on U . Since f is holomorphic on π−1(U) ∩ H, we see that f̃ is
holomorphic on U ∩X0, where X0 = Γ\H. If s ∈ π−1(U) is a cusp of Γ with
σs = ∞ and if the subgroup σΓsσ

−1 ⊂ SL(2,R) is generated by ( 1 h
0 1 ), then

the function z 
→ f(σ−1z) has a Fourier expansion of the form

f(σ−1z) =
∞∑

n=−∞
ane

2πinz/h.

By (2.3) we see that f satisfies

f(σ−1z) = O(|z|k)

for some k ∈ Z. However, we have

e2πiz/h = O(1), e−2πiz/h �= O(|z|�)

for every � ∈ Z; hence it follows that an = 0 for n < 0. Thus f is holomorphic
at s, and the proof of the lemma is complete. ��

Let Ω1
H∗ be the sheaf of holomorphic 1-forms on H∗. Then Ω1

H∗ is an
OH∗ -module, and we may write

Ω1
H∗ = dOH∗ = OH∗dz.

The group Γ acts on Ω1
H∗ , and therefore we can consider the associated Γ -

fixed sheaf (Ω1
H∗)

Γ on X . We denote by Ω1(Σ) the sheaf of meromorphic
1-forms on X that are holomorphic on X0 = Γ\H and have a pole of order
at most 1 at the cusps.

Lemma 2.2 The sheaf (Ω1
H∗)

Γ on X coincides with Ω1(Σ).
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Proof. Let s ∈ Σ ⊂ H∗ be a cusp of Γ with σs = ∞. If qs = e2πiσz/h, then
we have

dqs = (2πi/h)qsd(σz), d(σz) =
h

2πi
q−1
s dqs.

Using this and (2.2), we see that

(Ω1
H∗)

Γ
π(s) = (Ω1

H∗,s)
Γs = (OH∗,sd(σz))Γs = q−1

s (OH∗,s)Γsdqs;

hence the lemma follows. ��

We now consider the sheaf OH∗⊗CC
2 of C

2-valued meromorphic functions
of the form described above. Thus elements of this sheaf are germs of functions
of the form f1(z)e1 + f2(z)e2, where f1, f2 are functions representing germs
belonging to OH∗ and e1 = (1, 0), e2 = (0, 1) ∈ C

2. Note that in this section
we are considering elements of C

2 as row vectors. The group Γ acts on the
sheaf OH∗ on the right by

(f1(z)e1 + f2(z)e2) · γ = (f1(γz), f2(γz))
(
a b
c d

)
(2.4)

= (af1(γz) + cf2(γz))e1
+ (bf1(γz) + df2(γz))e2

for γ =
(
a b
c d

)
∈ Γ . We define the sheaf FH∗ on H∗ to be the subsheaf of

OH∗ ⊗C C
2 generated by the global section e1 − ze2, that is,

FH∗ = {f(z)(e1 − ze2) | f ∈ OH∗}. (2.5)

Lemma 2.3 The sheaf FH∗ on H∗ is Γ -invariant.

Proof. Given γ =
(
a b
c d

)
∈ Γ and f ∈ OH∗ , by (2.4) we have

f(z)(e1 − ze2) · γ = f(γz)(a− c(γz))e1 + (b − d(γz))e2).

Using the relations ad− bc = 1 and γz = (az + b)/(cz + d), we see that

a− c(γz) =
a(cz + d) − c(az + d)

cz + d
=

1
cz + d

,

b− d(γz) =
b(cz + d) − d(az + d)

cz + d
=

−z
cz + d

.

Hence we obtain

f(z)(e1 − ze2) · γ = (cz + d)−1f(γz)(e1 − ze2) ∈ FH∗ , (2.6)

which proves the lemma. ��

By Lemma 2.3 we can consider the Γ -fixed sheaf (FH∗)Γ on X . Given a
positive integer m, we can also consider the sheaf (Fm

H∗)
Γ on X , where Fm

H∗
is the m-th tensor power of FH∗ .
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Proposition 2.4 The space (Fm
H∗)

Γ (X) of global sections of (Fm
H∗)

Γ is
canonically isomorphic to the space Mm(Γ ) of automorphic forms of weight
m for Γ .

Proof. By (2.1) and (2.5) we have

(Fm
H∗)

Γ (X) = (Fm
H∗(H∗))Γ = (OH∗(H∗)(e1 − ze2)m)Γ .

Thus an element φ ∈ (Fm
H∗)

Γ (X) can be regarded as a Γ -invariant function
of the form

φ(z) = f(z)(e1 − ze2)m

for all z ∈ H∗ with f ∈ OH∗(H∗). Hence, in order to prove the proposition,
it suffices to show that f is an automorphic form for Γ of weight m. Since φ
is Γ -invariant, by using (2.6) we see that

f(γz) = j(γ, z)mf(z) = (f |m γ)(z)

for all z ∈ H and γ ∈ Γ . Now let s ∈ Σ be a cusp of Γ with σs = ∞. Then
f |m σ−1 has a Fourier expansion of the form

(f |m σ−1)(z) =
∞∑
−∞

ane
2πiz/h.

However, as in the proof of Lemma 2.1, the condition f(σ−1z) = O(|z|k)
implies that an = 0 for n < 0. Thus f ∈ Mm(Γ ), and therefore the proof of
the proposition is complete. ��

Let OH∗(−Σ) be the sheaf of functions on H∗ which are holomorphic on
H and zero on Σ. For each positive integer m we set

Fm
H∗(−Σ) = Fm

H∗ ⊗OH∗(−Σ),

and denote by
Fm
Γ = (Fm

H∗(−Σ))Γ (2.7)

the Γ -fixed sheaf of Fm
H∗(−Σ) on X = Γ\H∗.

Proposition 2.5 The space Fm
Γ (X) of global sections of Fm

Γ is canonically
isomorphic to the space Sm(Γ ) of cusp forms of weight m for Γ .

Proof. Using (2.1) and (2.5), we see that

Fm
Γ (X) = (Fm

H∗(−Σ))Γ (X) = (Fm
H∗(−Σ)(H∗))Γ

= (OH∗(−Σ)(H∗)(e1 − ze2)m)Γ .

Thus an element φ ∈ Fm
Γ (X) can be regarded as a Γ -invariant function of

the form
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φ(z) = f(z)(e1 − ze2)m

for all z ∈ H∗ with f ∈ OH∗(−Σ)(H∗). Hence, as in the proof of Proposition
2.4, we see that f satisfies f |m γ = f for all γ ∈ Γ on H. Now the fact that
the f is zero at each cusp follows from the definition of the sheaf OH∗(−Σ).
Thus it follows that f is a cusp form of weight m for Γ . ��

Let Γ ′ = χ(Γ ) be the image of Γ under χ, and let Σ′ be the set of cusps
of Γ ′. Then for each positive integer m we can define the sheaf Fm

Γ ′ over the
Riemann surface XΓ ′ = Γ ′\H# with H# = H ∪Σ′ given by

Fm
Γ ′ = (Fm

H#)Γ
′
= (Fm

H#(−Σ′))Γ
′
, (2.8)

and its sections can be identified with the cusp forms of weight m for Γ ′. Let
ωX : X → XΓ ′ be the morphism of complex algebraic curves induced by the
holomorphic map ω : H → H, and denote by ω∗

XFm
Γ ′ the sheaf on X obtained

by pulling the sheaf Fm
Γ ′ on XΓ ′ via the map ωX .

Proposition 2.6 The space Sk,�(Γ, ω, χ) of mixed cusp forms associated to
Γ , ω and χ is canonically isomorphic to the space H0(X,Fk

Γ ⊗ ω∗
XF�

Γ ′) of
sections of the sheaf Fk

Γ ⊗ ω∗
XF�

Γ ′ over X.

Proof. Each global section φ of the sheaf Fk
Γ ⊗ ω∗

XF�
Γ ′ is of the form

φ =
r∑
i=1

αiβi,

where αi ∈ Fk
Γ (X) and βi ∈ ω∗

XF�
Γ ′(X) for each i. As in the proof of Propo-

sition 2.5 the sections αi and βi may be regarded as Γ -invariant functions of
the form

αi(z) =
r∑
i=1

fi(z)(e1 − ze2)k, βi(z) = hi(ω(z))(e1 − ω(z)e2)�

for all z ∈ H∗, so that we have

φ(z) =
r∑
i=1

fi(z)hi(ω(z))(e1 − ze2)k(e1 − ω(z)e2)�.

Thus we see that the function

F (z) =
r∑
i=1

fi(z)hi(ω(z))

for z ∈ H∗ satisfies

F (γz) = j(γ, z)kj(χ(γ), ω(z))�F (z)

for all γ ∈ Γ and z ∈ H. Thus φ has the same transformation property as
the one for an element in Sk,�(Γ, ω, χ). Now the proposition follows from the
fact that the Γ -cusps and Γ ′-cusps correspond via ω and χ, since χ maps
parabolic elements to parabolic elements. ��
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2.2 Elliptic Varieties

In this section we describe the interpretation of mixed cusp forms as holomor-
phic forms on certain families of abelian varieties called elliptic varieties. An
abelian variety belonging to such a family is the product of a finite number
of elliptic curves.

Let E be an elliptic surface in the sense of Kodaira [52]. Thus E is a
compact smooth surface over C, and it is the total space of an elliptic fibration
π : E → X over a Riemann surface X whose generic fiber is an elliptic curve.
Let E0 be the union of the regular fibers of π, and let Γ ⊂ PSL(2,R) be the
fundamental group of X0 = π(E0). Then Γ acts on the universal covering
space H of X0 by linear fractional transformations, and we have

X = Γ\H ∪ {Γ -cusps}.

For z ∈ X0, let Φ be a holomorphic 1-form on the fiber Ez = π−1(z), and
choose an ordered basis {γ1(z), γ2(z)} for H1(Ez ,Z) that depends on the
parameter z in a continuous manner. Consider the periods ω1 and ω2 of E
given by

ω1(z) =
∫
γ1(z)

Φ, ω2(z) =
∫
γ2(z)

Φ.

Then the imaginary part of the quotient ω1(z)/ω2(z) is nonzero for each z,
and therefore we may assume that ω1(z)/ω2(z) ∈ H. In fact, ω1/ω2 is a
many-valued holomorphic function from X0 to H which can be lifted to a
single-valued function ω : H → H on the universal cover of X0 such that

ω(γz) = χ(γ)ω(z)

for all γ ∈ Γ and z ∈ H; here χ : Γ → SL(2,R) is the monodromy represen-
tation of the elliptic fibration π : E → X .

In order to discuss connections of elliptic varieties with mixed cusp forms
we shall regard Γ as a subgroup of SL(2,R). As in Section 1.1 we denote by
Sj+2,k(Γ, χ, ω) the space of mixed cusp forms of type (j + 2, k) associated
to Γ , ω and χ. Let E(χ) (resp. E(1)) be an elliptic surface over X whose
monodromy representation is χ (resp. the inclusion map), and let π(χ) :
E(χ) → X (resp. π(1) : E(1) → X) be the associated elliptic fibration. We
set

E(χ)0 = π(χ)−1(Γ\H), E(1)0 = π(1)−1(Γ\H),

and denote by (Ej,kχ,1)0 the fiber product of j-copies of E(1)0 and k copies
of E(χ)0 over X corresponding to the maps π(1) and π(χ), respectively.
The space (Ej,kχ,1)0 can also be constructed as below. Consider the semidirect
product Γ �1,χ Z

2j × Z
2k consisting of the triples (γ,µ,ν) in Γ × Z

2j × Z
2k

whose multiplication law is defined as follows. Let

(γ,µ,ν), (γ′,µ′,ν ′) ∈ Γ × Z
2j × Z

2k
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with
µ′ = (µ′

1,µ
′
2) = (µ′

11, . . . , µ
′
j1, µ

′
12, . . . , µ

′
j2) ∈ Z

2j ,

ν ′ = (ν ′
1,ν

′
2) = (ν′11, . . . , ν

′
k1, ν

′
12, . . . , ν

′
k2) ∈ Z

2k,

γ =
(
a b
c d

)
∈ Γ, χ(γ) =

(
aχ bχ
cχ dχ

)
∈ SL(2,Z).

Then we have

(γ,µ,ν) · (γ′,µ′,ν′) = (γγ′, γ · (µ′,ν ′) + (µ,ν)),

where γ · (µ′,ν ′) = (µ′′,ν′′) with

µ′′ = (aµ′
11 + bµ′

12, . . . , aµ
′
j1 + bµ′

j2,

cµ′
11 + dµ′

12, . . . , cµ
′
j1 + dµ′

j2) ∈ Z
2j ,

ν′′ = (aχν′11 + bχν
′
12, . . . , aχν

′
k1 + bχν

′
k2,

cχν
′
11 + dχν

′
12, . . . , cχν

′
k1 + dχν

′
k2) ∈ Z

2k.

The group Γ �1,χ Z
2j × Z

2k acts on the space H× C
j × C

k by

(γ,µ,ν) · (z, ξ, ζ) (2.9)

=
(
γz, (cz + d)−1(ξ + zµ1 + µ2),

(cχω(z) + dχ)−1(ζ + ω(z)ν1 + ν2)
)

for γ ∈ Γ , z ∈ H, ξ ∈ C
j , ζ ∈ C

k, µ = (µ1,µ2) ∈ Z
2j , and ν = (ν1,ν2) ∈

Z
2k. Then we have

(Ej,k1,χ)0 = Γ �1,χ Z
2j × Z

2k\H × C
j × C

k. (2.10)

Now we obtain the elliptic variety Ek,m1,χ by resolving the singularities of the
compactification of (Ej,k1,χ)0 (cf. [117]). The elliptic fibration π induces a fi-
bration πj,k1,χ : Ej,k1,χ → X whose generic fiber is the product of (j + k) elliptic
curves.

Theorem 2.7 Let Ej,k1,χ be an elliptic variety described above. Then there is
a canonical isomorphism

H0(Ej,k1,χ, Ω
j+k+1) ∼= Sj+2,k(Γ, ω, χ)

between the space of holomorphic (j + k + 1)-forms on Ej,kχ,1 and the space of
mixed cusp forms of type (j + 2, k).
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Proof. Let (Ej,k1,χ)0 be as in (2.10). Then a holomorphic (j + k + 1)-form on
Ej,k1,χ can be regarded as a holomorphic (j + k + 1)-form on H × C

j × C
k

that is invariant under the operation of Γ �1,χ Z
2j ×Z

2k. Since the complex
dimension of the space H×C

j×C
k is j+k+1, a holomorphic (j+k+1)-form

on H× C
j × C

k is of the form

Θ = f̃(z, ξ, ζ)dz ∧ dξ ∧ dζ,

where f̃ is holomorphic. For z0 ∈ H, the holomorphic form Θ descends to a
holomorphic (j + k)-form on the fiber (πj,k1,χ)−1(z0). However, the dimension
of the fiber is j + k, and therefore the space of holomorphic (j + k)-forms
on (πj,k1,χ)−1(z0) is one. Hence the map (ξ, ζ) 
→ f̃(z, ξ, ζ) is a holomorphic
function on a compact complex manifold, and consequently is a constant
function. Thus we have f̃(z, ξ, ζ) = f(z), where f is a holomorphic function
on C

j ×C
k. From (2.9) the action of (γ,µ,ν) ∈ Γ �1,χZ

2j ×Z
2k on the form

Θ = f(z)dz ∧ dξ ∧ dζ is given by

Θ · (γ,µ,ν) = f(gz)d(gz) ∧ d
(
(cz + d)−1(ξ + zµ1 + µ2)

)
∧ d
(
(cχω(z) + dχ)−1(ζ + ω(z)ν1 + ν2)

)
= f(gz)(cz + d)−2(cz + d)−j(cχω(z) + dχ)−kdz ∧ dξ ∧ dζ.

Thus it follows that f(z) satisfies the condition (i) of Definition 1.3, and it
remains to show that f satisfies the cusp condition. Using Theorem 3.1 in
[67], we see that the differential form Θ can be extended to Ej,k1,χ if and only
if ∫

(Ej,k1,χ)0

Θ ∧Θ < ∞.

From (2.9) it follows that a fundamental domain F in H × C
j × C

k for the
action of Γ �1,χ Z

2j × Z
2k can be chosen in the form

F = {(z, ξ, ζ) ∈ H× C
j × C

k | z ∈ F0, ξ = s + tz, ζ = u + vω(z),

s, t ∈ Ij , u,v ∈ Ik},

where F0 ⊂ H is a fundamental domain of Γ and I is the closed interval
[0, 1] ⊂ R. Thus we have

∫
(Ek,m1,χ )0

Θ ∧Θ =
∫
F

Θ ∧Θ =
∫
F

|f(z)|2dz ∧ dξ ∧ dζ ∧ dz ∧ dξ ∧ dζ

= K

∫
F

|f(z)|2(Im z)j(Imω(z))kdz ∧ dz,

where K is a nonzero constant. Thus the integral
∫
F Θ ∧Θ is a nonzero con-

stant multiple of the Petersson inner product 〈f, f〉 described in Proposition
2.1 in [70]; hence it is finite if and only if f satisfies the cusp condition, and
the proof of the theorem is complete. ��
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Remark 2.8 Theorem 2.7 is an extension of the results of [43, Theorem 1.6]
and [68, Theorem 3.2], where mixed cusp forms of types (2,1) and (2,m),
respectively, were considered.

2.3 Modular Symbols

Modular symbols for automorphic forms were first introduced by Birch [10]
and were developed systematically by Manin [89, 90]. More general modular
symbols were introduced by Šokurov [119] by using the fact that cusp forms
can be identified with holomorphic forms on an elliptic variety. In this section
we extend the notion of modular symbols of Šokurov to include the ones
associated to mixed cusp forms.

Let (ω, χ) be the equivariant pair associated to an elliptic surface E over
X = Γ\H∗ considered in Section 2.2. Thus ω : H → H is the period map and
χ : Γ → SL(2,R) is the monodromy representation for the elliptic fibration
π : E → X satisfying

ω(γz) = χ(γ)ω(z)

for all z ∈ H and γ ∈ Γ .
Let R1π∗Q be the sheaf on X corresponding to the presheaf determined

by the map
U 
→ H1(π−1(U),Q)

for each open subset U ⊂ X . We fix a positive integer m and denote by
(R1π∗Q)m the m-th symmetric tensor power of the sheaf R1π∗Q. We shall
construct below a map

{ , , }ω,χ : Q̃ × Z
m × Z

m −→ H0(Σ, (R1π∗Q)m) (2.11)

which assigns to each triple (α, p, q) ∈ Q̃ × Z
m the element {α, p, q}ω,χ ∈

H0(Σ, (R1π∗Q)m) called a boundary modular symbol, where Σ is the set of
cusps for Γ and Q̃ = Q ∪ {∞}. If ω is the identity map on H and χ is the
inclusion map, then {α, p, q}ω,χ is the boundary modular symbol {α, p, q}Γ
of Šokurov defined in [118, Section 1].

Note that the elliptic surface E can be written in the form

E = Γ �χ Z
2\H × C,

where the quotient is taken with respect to the action of the semidirect prod-
uct Γ �χ Z

2 on H× C given by

(γ, (µ1, µ2)) · (z, ζ) = (γz, (cχz + dχ)−1(ζ + µ1ω(z) + µ2))

for (µ1, µ2) ∈ Z
2, (z, ζ) ∈ H × C and γ ∈ Γ with χ(γ) =

(
aχ bχ
cχ dχ

)
. Thus, if

� : H∗ → X is the natural projection map and z ∈ H, the fiber Ez of the
elliptic fibration π : E → X over �(z) ∈ X is the elliptic curve of the form
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Ez = C/(Zω(z) + Z).

We choose a basis {η1(z), η2(z)} of H1(Ez ,Z) represented by the cycles η1(z)
and η2(z) corresponding to the paths {tω(z) | 0 ≤ t ≤ 1} and {t | 0 ≤ t ≤ 1},
respectively, in the complex plane C. Thus we may write

η1(z) =
[
π̃{tω(z) | 0 ≤ t ≤ 1}

]
, η2(z) =

[
{t | 0 ≤ t ≤ 1}

]
, (2.12)

where π̃ : C → Ez is the natural projection map. The codomain of the map
in (2.11) to be constructed has a direct sum decomposition of the form

H0(Σ, (R1π∗Q)m) =
⊕
s∈Σ

H0(s, (R1π∗Q)m).

Let s0 ∈ Σ be a cusp for Γ determined by α ∈ Q̃, and let (p, q) ∈ Z
m × Z

m.
Then we define the element {α, p, q}ω,χ ∈ H0(Σ, (R1π∗Q)m) to be trivial on
the summands H0(s, (R1π∗Q)m) for s �= s0 so that we may write

{α, p, q}ω,χ ∈ H0(s0, (R1π∗Q)m).

Now we choose a small disk D of s0, and let D̃ be the corresponding neigh-
borhood of α that covers D. If zD ∈ D̃ ⊂ H∗, p = (p1, . . . , pm) ∈ Z

m and
q = (q1, . . . , qm) ∈ Z

m, then we define the element

{zD, p, q}Dω,χ ∈ H0(D, (R1π∗Q)m)

to be the homology class of the cycle

m∏
i=1

(piη1 + qiη2)vD,

where vD ∈ X is the point corresponding to zD ∈ H∗. Then the boundary
modular symbol for the triple (α, p, q) is defined by

{α, p, q}ω,χ = lim
←−
D

{zD, p, q}Dω,χ, (2.13)

where the inverse limit is taken over the set of open disks D containing s0.
In this section we assume that Γ is a subgroup of SL(2,Z) of finite index. If

s is a Γ -cusp in X , then it is of type Ib or I∗b in the sense of Kodaira [52] where
b is the ramification index of the canonical map µ : X → SL(2,Z)\H ∪ Q̃

induced by χ at s. If τ = e2πiz is the canonical local parameter at the unique
cusp in SL(2,Z)\H ∪ Q̃, we can take a local parameter τs at s to be a fixed
branch of the root (τsµ)1/b. We define the subsets Eεs and F ε by

Eεs = {τs ∈ X | | τs |≤ ε}, F ε =
⋃
s∈Σ

Eεs
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for each small ε > 0. For γ ∈ SL(2,Z), let s1 and s2 be the cusps corre-
sponding to γ(0) and γ(i∞) respectively. Let [γ] = Γγ ∈ SL(2,Z)/Γ be the
Γ -coset containing γ, and denote by 0 i∞ the nonnegative part of the imagi-
nary axis in H∪ Q̃ oriented from 0 to i∞. We define the 1-cell c[γ]ε to be the
image of the oriented 1-cell γ(0 i∞) that lies outside Es1 and Es2 , that is,

c[γ]ε = �(0 i∞) − Es1 ∩ Es2 , (2.14)

where � : H∗ → X = Γ\H∗ is the natural projection map. The basis
{η1(z), η2(z)} of H1(Ez ,Z) for each fiber Ezconsidered before induces the
basis {η1, η2} of the group

(R1π∗Q) |c[γ]ε .

If k is an integer with 0 ≤ k ≤ m, we set

1k = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
m−k

), (2.15)

and define the element

{γ(0), γ(i∞), 1k, 1m − 1k}εω,χ ∈ H1(X,F ε, (R1π∗Q)m)

to be the homology class of the cycle

ηk1η
m−k
2 c[γ]ε =

m∏
i=1

(piη1 + qiη2)c[γ]ε, (2.16)

where p = (p1, . . . , pm) = 1k and q = (q1, . . . , qm) = 1m − 1k. Noting that
the pairs (X,F ε) with ε > 0 form a cofinal system, we define the modular
symbol

{γ(0), γ(i∞), 1k, 1m − 1k}ω,χ ∈ H1(X,Σ, (R1π∗Q)m)

to be the inverse limit

lim
←−
F ε

{γ(0), γ(i∞), 1k, 1m − 1k}εω,χ. (2.17)

We now denote by Em the elliptic variety E0,m
1,χ over X = Γ\H∗ con-

structed in Section 2.2 associated to the elliptic fibration π : E → X .

Lemma 2.9 There is a canonical pairing

〈 , 〉 : H1(X,Σ, (R1π∗Q)m) ×H0(Em, Ωm+1 ⊕Ω
m+1

) −→ C (2.18)

that is nondegenerate on the right.

Proof. See [119, Section 4.1]. ��
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Note that the pairing in (2.18) is given by

〈[δ], Φ〉 =
∫
δ

Φ

for all [δ] ∈ H1(X,Σ, (R1π∗Q)m) and Φ ∈ H0(Em, Ωm+1⊕Ωm+1
), where δ is

a cycle representing the cohomology class [δ]. Using (2.18) and the canonical
isomorphism

S2,m(Γ, ω, χ) ∼= H0(Em, Ωm+1) (2.19)

given in Theorem 2.7, we obtain the canonical pairing

〈 , 〉 : H1(X,Σ, (R1π∗Q)m) × (S2,m(Γ, ω, χ) ⊕ S2,m(Γ, ω, χ)) −→ C. (2.20)

Lemma 2.10 Let ∂ : H1(X,Σ, (R1π∗Q)m) → H0(Σ, (R1π∗Q)m) be the
boundary map for the homology sequence of the pair (X,Σ). Then for
1 ≤ k ≤ m we have

∂{γ(0), γ(i∞), 1k, 1m − 1k}ω,χ = {γ(i∞), 1k, 1m − 1k}ω,χ
− {γ(0), 1k, 1m − 1k}ω,χ

for all γ ∈ SL(2,Z).

Proof. This follows easily from the definitions in (2.13) and (2.17). ��

Proposition 2.11 Let 〈 , 〉 be the canonical pairing in (2.20),and let 1 ≤
k ≤ m. Then we have

〈{γ(0), γ(i∞), 1k, 1m − 1k}ω,χ, (f1, f2)〉

=
∫ γ(i∞)

γ(0)

f1ω(z)kdz +
∫ γ(i∞)

γ(0)

f2ω(z)
k
dz

=
∫ γ(i∞)

γ(0)

f1

m∏
i=1

(piω(z) + qi)dz

+
∫ γ(i∞)

γ(0)

f2

m∏
i=1

(piω(z) + qi)dz

for all γ ∈ SL(2,Z) and f1, f2 ∈ S2,m(Γ, ω, χ), where p = (p1, . . . , pm) = 1k
and q = (q1, . . . , qm) = 1m − 1k.

Proof. We note first that by (2.17) the element

{γ(0), γ(i∞), 1k, 1m − 1k}ω,χ ∈ H1(X,Σ, (R1π∗Q)m)

is obtained by taking the inverse limit of

[δε] = {γ(0), γ(i∞), 1k, 1m − 1k}εω,χ ∈ H1(X,F ε, (R1π∗Q)m)
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over the set {F ε | ε > 0}. However, by (2.16) the homology class [δε] can be
represented by the cycle

δε = ηk1η
m−k
2 c[γ]ε. (2.21)

Given f1, f2 ∈ S2,m(Γ, ω, χ), let Φf1 and Φf2 be the holomorphic (m + 1)-
forms on Em corresponding to f1 and f2, respectively, under the canonical
isomorphism (2.19). Then we see that

〈{γ(0), γ(i∞), 1k, 1m − 1k}ω,χ, (f1, f2)〉 =
∫
m!δε

(
Φf1 + Φf2

)
. (2.22)

Given ε > 0, if we identify (R1π∗Q)m with its embedded image in (R1π∗Q)⊗m

and if c[γ]ε is the 1-cell in (2.14), then the chain
[
m!ηk1η

m−k
2 c[γ]ε

]

corresponds to the set δ̃ ⊂ H × C
m whose restriction to {z} × C

m ∼= C
m is

given by

δ̃ |z=
⋃

(p,q)

m∏
i=1

{(t piω(z), t qi) | 0 ≤ t ≤ 1} ⊂ C
m;

here z ∈ H belongs to the set corresponding to c[γ]ε, and (p, q) runs through
all permutations (σ(1k), σ(1m − 1k)) for σ ∈ Sm. Now recall that there is a
canonical isomorphism

Em0
∼= Γ �χ Z

2m\H × C
m,

where Em0 is the elliptic variety (E0,m
1,χ )0 in (2.10). Let Φ0

fi
for i ∈ {1, 2} be

the lifting of Φfi |X0 to H× C
m. Then we have

Φ0
fi = fi(z)dz ∧ dζ1 ∧ · · · ∧ dζm, Φ

0

fi = fi(z)dz ∧ dζ1 ∧ · · · ∧ dζm,

where z and (ζ1, . . . , ζm) are the standard coordinate systems for H ⊂ C and
C
m, respectively. On the other hand, for each j ∈ {1, . . . ,m} we have

∫
{t ω(z)|0≤t≤1}

dζj = ω(z),
∫
{t ω(z)|0≤t≤1}

dζj = ω(z),

∫
[0,1]

dζj =
∫

[0,1]

dζj = 1.

Using this, (2.12) and (2.14), we see that

∫
m!ηk1η

m−k
2 c[γ]ε

(
Φf1 + Φf2

)
= m!

(∫ z′ε

zε

f1ω(z)kdz +
∫ z′ε

zε

f2ω(z)
k
dz

)

where ∂c[γ]ε = z′ε − zε on H. However, by (2.21) we have



2.3 Modular Symbols 49

m!ηk1η
m−k
2 c[γ]ε = m!δε;

hence we obtain
∫
δε

(
Φf1 + Φf2

)
=
∫ z′ε

zε

f1ω(z)kdz +
∫ z′ε

zε

f2ω(z)
k
dz.

Thus the proposition follows by taking the limit of this relation as ε → 0 and
then using (2.22). ��

Now in order to consider more general modular symbols

{α, β, p, q}ω,χ ∈ H1(X,Σ, (R1π∗Q)m)

for α, β ∈ Q̃ and p, q ∈ Z
m, we first state the following theorem.

Theorem 2.12 There exists a unique map

{ , , , }ω,χ : Q̃ × Q̃ × Z
m × Z

m −→ H1(X,Σ, (R1π∗Q)m)

satisfying the following properties:
(i) If ∂ : H1(X,Σ, (R1π∗Q)m) → H0(Σ, (R1π∗Q)m) is the boundary map

for the homology sequence of the pair (X,Σ), then we have

∂{α, β, p, q}ω,χ = {β, p, q}ω,χ − {α, p, q}ω,χ. (2.23)

for all α, β ∈ Q̃ and p, q ∈ Z
m.

(ii) If 〈 , 〉 denotes the canonical pairing in (2.20), then we have

〈{α, β, p, q}ω,χ, (f1, f2)〉 (2.24)

=
∫ β

α

f1

m∏
i=1

(piω(z) + qi)dz +
∫ β

α

f2

m∏
i=1

(piω(z) + qi)dz (2.25)

for all α, β ∈ Q̃, p, q ∈ Z
m and f1, f2 ∈ S2,m(Γ, ω, χ).

Definition 2.13 The values {α, β, p, q}ω,χ of the map in Theorem 2.12 are
called modular symbols.

Before we prove Theorem 2.12, we shall first verify a few properties sat-
isfied by modular symbols.

Lemma 2.14 Suppose that {α, β, p, q}ω,χ and {β, γ, p, q}ω,χ are modular
symbols, and set

{α, γ, p, q}ω,χ = {α, β, p, q}ω,χ + {β, γ, p, q}ω,χ. (2.26)

Then {α, γ, p, q}ω,χ is also a modular symbol.
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Proof. We need to verify (i) and (ii) in Theorem 2.12 for {α, γ, p, q}ω,χ defined
by the relation in (2.26). However, both of these properties follow easily from
the definitions and the uniqueness of the modular symbols. ��

Lemma 2.15 Consider the modular symbols

{α, β, p(j, 1), q(j, 0)}ω,χ, {α, β, p(j, 0), q(j, 1)}ω,χ,

where p(j, ∗) (resp. q(j, ∗)) denotes the element in Z
m obtained from p =

(p1, . . . , pm) (resp. q = (q1, . . . , qm) by replacing pj (resp. qj) by ∗. If we set

{α, β, p, q}ω,χ = pj{α, β, p(j, 1), q(j, 0)}ω,χ + qj{α, β, p(j, 0), q(j, 1)}ω,χ,

then {α, β, p, q}ω,χ is a modular symbol.

Proof. Using the definition of { , , }ω,χ, we see that

{ξ, p, q}ω,χ = pj{ξ, p(j, 1), q(j, 0)}ω,χ + qj{ξ, p(j, 0), q(j, 1)}ω,χ

for all ξ ∈ Q̃ The fact that {α, β, p, q}ω,χ satisfies (2.23) follows easily from
this relation. On the other hand, we have

〈{α, β, p, q}ω,χ, (f1, f2)〉

= pj

∫ β

α

f1ω(z)
∏
i	=j

(piω(z)qi)dz + pj

∫ β

α

f2ω(z)
∏
i	=j

(piω(z) + qi)dz

+ qj

∫ β

α

f1

∏
i	=j

(piω(z) + qi)dz + qj

∫ β

α

f2

∏
i	=j

(piω(z) + qi)dz

=
∫ β

α

f1

m∏
i=1

(piω(z) + qi)dz +
∫ β

α

f2

m∏
i=1

(piω(z) + qi)dz.

for all f1, f2 ∈ S2,m(Γ, ω, χ); hence we see that {α, β, p, q}ω,χ satisfies (2.24).
��

Lemma 2.16 Let σ ∈ Sm be a permutation of the set {1, . . .m}. If {α, β, p, q}ω,χ
is a modular symbol, then {α, β, σp, σq}ω,χ is also a modular symbol. Further-
more, we have

{α, β, p, q}ω,χ = {α, β, σp, σq}ω,χ,

where σ(p) = (pσ(1), . . . , pσ(m)) and σ(q) = (qσ(1), . . . , qσ(m)).

Proof. If ξ ∈ Q̃, by using the definition of { , , }ω,χit can be easily shown that

{ξ, p, q}ω,χ = {ξ, σp, σq}ω,χ,

hence it follows that
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∂{α, β, σp, σq}ω,χ = ∂{α, β, p, q}ω,χ.

We also see that

〈{α, β, σp, σq}ω,χ, (f1, f2)〉 = 〈{α, β, p, q}ω,χ, (f1, f2)〉

for f1, f2 ∈ S2,m(Γ, ω, χ). Therefore the lemma follows from these results and
the uniqueness of modular symbols. ��

Now we are ready to prove Theorem 2.12.

Proof. (Theorem 2.12) Given α, β ∈ Q̃ and p, q ∈ Z
m, in order to prove

uniqueness suppose we have two modular symbols {α, β, p, q}ω,χ and {α, β, p, q}′ω,χ.
If we set

µ = {α, β, p, q}ω,χ − {α, β, p, q}′ω,χ,

then ∂µ = 0 by (2.23), which implies that µ ∈ H1(X, (R1π∗Q)m). On the
other hand, using (2.24), we have

〈µ, (f1, f2)〉 = 0

for all f1, f2 ∈ S2,m(Γ, ω, χ). Since the pairing 〈 , 〉 is nondegenerate, we
obtain µ = 0. As for the existence, we first note that by Proposition 2.11
there are modular symbols of the form

{γ(0), γ(i∞), 1k, 1m − 1k}ω,χ.

By combining this with Lemma 2.15 and Lemma 2.16, we see that there exist
modular symbols of the form

{γ(0), γ(i∞), p, q}ω,χ

for arbitrary p, q ∈ Z
m. Now for arbitrary α, β ∈ Q̃, we consider a finite

sequence of points η1, . . . , ηl ∈ Q̃ such that

(α, η1) = (γ1(0), γ1(i∞)), . . . , (ηi, ηi+1) = (γi+1(0), γi+1(i∞)), . . .

. . . , (ηl, β) = (γl+1(0), γl+1(i∞))

for γ1, . . . , γl+1 ∈ SL(2,Z) (see [90, Theorem 1.6] for the proof of the existence
of such a sequence). Using this and Lemma 2.15 provides us the existence of
the modular symbol {α, β, p, q}ω,χ, and therefore the proof of the theorem is
complete. ��
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2.4 Eichler-Shimura Relations

In this section we discuss periods of mixed cusp forms in connection with
modular symbols described in Section 2.3. In particular, we establish relations
among such periods, which generalize Eichler-Shimura relations for classical
cusp forms studied by Šokuov [118].

As in Section 2.3, we consider an equivariant pair (ω, χ) associated to an
elliptic surface E over X = Γ\H∗, so that the period map ω : H → H is
equivariant with respect to the monodromy representation χ : Γ → SL(2,Z)
for E. In this section we assume that χ can be extended to a homomorphism
defined on SL(2,Z). We shall use the same symbol χ for the extension. Thus
we have a homomorphism χ : SL(2,Z) → SL(2,Z) satisfying

ω(γz) = χ(γ)ω(z)

for all z ∈ H and γ ∈ Γ . Then SL(2,Z) acts on the modular symbols
{α, β, p, q}ω,χ described in Section 2.3 by

γ · {α, β, p, q}ω,χ = {γα, γβ, (p, q)χ(γ)−1}ω,χ (2.27)
= {γα, γβ, dχp− cχq,−bχp+ aχq}ω,χ

for α, β ∈ Q̃, p, q ∈ Z
m and γ ∈ SL(2,Z) with χ(γ) =

(
aχ bχ
cχ dχ

)
. The group

SL(2,Z) also acts on the space S2,m(Γ, ω, χ) of mixed cusp forms of type
(2,m) associated to Γ , ω and χ by

(f | γ)(z) = j(γ, z)−2j(χ(γ), ω(z))−mf(γz)

for f ∈ S2,m(Γ, ω, χ), z ∈ H and γ ∈ SL(2,Z). We denote by

EΓ = SL(2,Z)/Γ

the set of Γ -orbits in SL(2,Z).

Definition 2.17 Let e = Γγ ∈ EΓ be the Γ -orbit determined by γ ∈
SL(2,Z), and let 0 ≤ k ≤ m. Given an element

f = (f1, f2) ∈ S2,m(Γ, ω, χ) ⊕ S2,m(Γ, ω, χ),

the the complex number r(e, k, f) given by

r(e, k, f) =
∫ i∞

0

(f1 |2,m γ)ω(z)kdz +
∫ i∞

0

(f2 |2,m γ)ω(z)
k
dz, (2.28)

is the period of f associated to e and k.

Note that, since fj |2,m γ = fj for j = 1, 2, the value of r(e, k, f) given
by (2.28) is independent of the choice of the representative γ of e. If e ∈ EΓ
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is the Γ -orbit determined by γ ∈ SL(2,Z) and if 0 ≤ k ≤ m, we denote by
ξ(e, k) the modular symbol defined by

ξ(e, k) = γ · {0,∞, 1k, 1m − 1k}ω,χ, (2.29)

where the vectors 1k are as in (2.15) and the action of γ on the right hand
side is given by (2.27).

Proposition 2.18 Let 〈 , 〉 be the canonical pairing given in (2.20), and con-
sider the element

f = (f1, f2) ∈ S2,m(Γ, ω, χ) ⊕ S2,m(Γ, ω, χ).

Then we have
〈ξ(e, k), f〉 = r(e, k, f) (2.30)

for each e ∈ EΓ and 0 ≤ k ≤ m.

Proof. Let e = Γγ ∈ EΓ with χ(γ) =
(
aχ bχ
cχ dχ

)
∈ SL(2,Z). Then by (2.29)

we have
ξ(e, k) = {γα, γβ, dχq − cχp,−bχq + aχp}ω,χ,

where α = 0, β = i∞, p = 1k and q = 1m − 1k. Hence, using (2.24), we see
that

〈ξ(e, f), f〉 =
∫ γβ

γα

f1(z)
m∏
i=1

((dχpi − cχqi)ω(z) + (−bχpi + aχqi))dz

+
∫ γβ

γα

f2(z)
m∏
i=1

((dχpi − cχqi)ω(z) + (−bχpi + aχqi))dz

=
∫ β

α

f1(γz)
m∏
i=1

((dχpi − cχqi)χ(γ)ω(z)

+ (−bχpi + aχqi))(cz + d)−2dz

+
∫ β

α

f2(γz)
m∏
i=1

((dχpi − cχqi)χ(γ)ω(z)

+ (−bχpi + aχqi))(cz + d)
−2
dz.

Using the relation χ(γ)ω(z) = (aχω(z) + bχ)(cχω(z) + dχ)−1, we obtain

〈ξ(e, k), f〉 =
∫ i∞

0

(f1 |2,m γ)ω(z)kdz +
∫ i∞

0

(f2 |2,m γ)ω(z)
k
dz

= r(e, k, f);

hence the proposition follows. ��
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By combining (2.30) with the fact that the pairing 〈 , 〉 is nondegenerate
on the right, we see that the value of ξ(e, k) given by (2.29) is also independent
of the choice of representatives of e ∈ EΓ .

Proposition 2.19 Let α, β ∈ Q̃ and p, q ∈ Z
m. Then the corresponding

modular symbol can be written in the form

{α, β, p, q}ω,χ =
m∑
k=0

∑
e∈EΓ

c(e, k)ξ(e, k)

for some integers c(e, k).

Proof. As in the proof of Theorem 2.12, consider a finite sequence of points
η1, . . . , ηl ∈ Q̃ such that

(α, η1) = (γ1(0), γ1(i∞)), . . . , (ηi, ηi+1) = (γi+1(0), γi+1(i∞)), . . .

. . . , (ηl, β) = (γl+1(0), γl+1(i∞))

for γ1, . . . , γl+1 ∈ SL(2,Z). Then by (2.26) we see that

{α, β, p, q}ω,χ = {α, η1, p, q}ω,χ +
l−1∑
i=1

{ηi, ηi+1, p, q}ω,χ + {ηl, β, p, q}ω,χ.

Thus in order to prove the proposition it suffices to consider the case where
(α, β) = (γ(0), γ(i∞)) for some element γ in SL(2,Z). In this case, by using
(2.27) we have

{α, β, p, q}ω,χ = γ · {0, i∞, p′, q′}ω,χ (2.31)

with (p′, q′) = (p, q)χ(γ)−1 or (p, q) = (p′, q′)χ(γ); hence we have

p′ = a1p+ c1q, q′ = b1p+ d1q

for χ(γ) =
(
aχ bχ
cχ dχ

)
∈ SL(2,Z). Let p′ = (p′1, . . . , p

′
m), q′ = (q′1, . . . , q

′
m), and

define ck(p′, q′) by

m∏
i=1

(piX + qiY ) =
m∑
k=0

ck(p, q)XkY m−k. (2.32)

Using this together with Lemma 2.15 and Lemma 2.16, it can be shown that

{0, i∞, p′, q′}ω,χ =
m∑
k=0

ck(p′, q′){0, i∞, 1k, 1m − 1k}ω,χ.

From this and (2.31) it follows that
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{α, β, p, q}ω,χ =
m∑
k=0

ck(p′, q′) γ · {0, i∞, 1k, 1m − 1k}ω,χ

=
m∑
k=0

ck(p′, q′)ξ(e, k),

where e = Γγ ∈ EΓ , which prove the proposition. ��

Now to discuss Eichler-Shimura relations for the periods of mixed cusp
forms, we consider the elements

s =
(

0 −1
1 0

)
, t =

(
1 −1
1 0

)

of SL(2,Z). Using the relations

(s(0), s(i∞)) = (i∞, 0), (t(0), t(i∞)) = (i∞, 1), (t2(0), t2(i∞)) = (1, 0),

we see that

γ · {i∞, 0, 1k, 1m − 1k}ω,χ = γs · {0, i∞, v(s, k), w(s, k)}ω,χ,
γ · {i∞, 1, 1k, 1m − 1k}ω,χ = γt · {0, i∞, v(t, k), w(t, k)}ω,χ,
γ · {1, 0, 1k, 1m − 1k}ω,χ = γt2 · {0, i∞, v(t2, k), w(t2, k)}ω,χ

for all γ ∈ SL(2,Z), where by (2.27)

v(α, k) = a(1k) + c(1m − 1k), w(α, k) = b(1k) + d(1m − 1k)

if χ(γ) =
(
aχ bχ
cχ dχ

)
∈ SL(2,Z). Hence, if the integers cj(·, ·) for 1 ≤ j ≤ m

are as in (2.32), we have

γ · {i∞, 0, 1k, 1m − 1k}ω,χ =
m∑
j=1

cj(v(s, k), w(s, k))ξ(es, j), (2.33)

γ · {i∞, 1, 1k, 1m − 1k}ω,χ =
m∑
j=1

cj(v(t, k), w(t, k))ξ(et, j), (2.34)

γ · {1, 0, 1k, 1m − 1k}ω,χ =
m∑
j=1

cj(v(t2, k), w(t2, k))ξ(et2, j), (2.35)

where e = Γγ ∈ EΓ .
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Proposition 2.20 If e ∈ EΓ , then we have

ξ(e, k) +
m∑
j=1

cj(v(s, k), w(s, k))ξ(es, j) = 0,

ξ(e, k) +
m∑
j=1

cj(v(t, k), w(t, k))ξ(et, j)

+
m∑
j=1

cj(v(t2, k), w(t2, k))ξ(et2, j) = 0

for 0 ≤ k ≤ m, where the cj(·, ·) are integers given by (2.32).

Proof. Using Lemma 2.14, we see that

γ · {0, i∞, 1k, 1m − 1k}ω,χ + γ · {i∞, 0, 1k, 1m − 1k}ω,χ = 0,

γ · {0, i∞, 1k, 1m − 1k}ω,χ + γ · {i∞, 1, 1k, 1m − 1k}ω,χ

+ γ · {1, 0, 1k, 1m − 1k}ω,χ = 0

for all γ ∈ SL(2,Z). Now the proposition follows combining these relations
with the identities (2.33), (2.34) and (2.35). ��

Theorem 2.21 Let f = (f1, f2) with f1, f2 ∈ S2,m(Γ, ω, χ). Then we have

r(e, k, f) +
m∑
j=1

cj(v(s, k), w(s, k))r(es, j, f) = 0, (2.36)

r(e, k, f) +
m∑
j=1

cj(v(t, k), w(t, k))r(et, j, f) (2.37)

+
m∑
j=1

cj(v(t2, k), w(t2, k))r(et2, j, f) = 0

for all e ∈ EΓ and 0 ≤ k ≤ m.

Proof. The theorem follows immediately from Proposition 2.18 and Proposi-
tion 2.20. ��

The relations (2.36) and (2.37) may be regarded as the generalized Eichler-
Shimura relations for the periods r(e, k, f) of mixed cusp forms.

We now want to discuss the period map for mixed cusp forms. Let V =⊕
Q(e, k) be the Q-vector space generated by the pairs (e, k) with e ∈ EΓ

and 0 ≤ k ≤ m. Let V ∗ denote the dual space of V , and let {(e, f)∗} be the
dual basis of {(e, f)}. If K is a subfield of C, we denote by R2,m(Γ, ω, χ,K)
the subspace of V ∗(K) = V ∗ ⊗Q K consisting of all the elements of the form
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m∑
k=0

∑
e∈E

ρ(e, k)(e, k)∗

such that the coefficients ρ(e, k) ∈ K satisfy the following relations:

ρ(e, k) +
m∑
j=1

cj(v(s, k), w(s, k))ρ(es, j) = 0, (2.38)

ρ(e, k) +
m∑
j=1

cj(v(t, k), w(t, k))ρ(et, j) (2.39)

+
m∑
j=1

cj(v(t2, k), w(t2, k))ρ(et2, j) = 0.

Now we define the period map

r : S2,m(Γ, ω, χ) ⊕ S2,m(Γ, ω, χ) −→ R2,m(Γ, ω, χ,C)

for mixed cusp forms by

r(f) =
m∑
k=0

∑
e∈E

r(e, k, f)(e, k)∗ (2.40)

for all f = (f1, f2) with f1, f2 ∈ S2,m(Γ, ω, χ).

Lemma 2.22 If K,K ′ are subfields of C with K ⊂ K ′ ⊂ C, then there is a
canonical isomorphism of K ′-vector spaces

R2,m(Γ, ω, χ,K) ⊗K K ′ ∼= R2,m(Γ, ω, χ,K ′). (2.41)

Proof. This follows from the fact that the equations (2.38) and (2.39) are
defined over Q. ��

Proposition 2.23 The period map r is injective. Furthermore, there is a
canonical isomorphism

R2,m(Γ, ω, χ,K)∗ ∼= H1(X,Σ, (R1π∗K)m). (2.42)

for each subfield K of C.

Proof. Suppose r(f) = 0 for f = (f1, f2) with f1, f2 ∈ S2,m(Γ, ω, χ). Then
from (2.30) and(2.40) it follows that

〈ξ(e, k), Φ〉 = 0

for all e ∈ E and 0 ≤ k ≤ m. Using the nondegeneracy of the paring 〈 , 〉 and
the fact that the modular symbols ξ(e, k) generate the homology group
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H1(X, (R1π∗Q)m) ⊂ H1(X,Σ, (R1π∗Q)m),

we see that f = 0; hence r is injective. Now note that the assignment (e, k) 
→
ξ(e, k) defines a linear map from V into the space H1(X,Σ, (R1π∗Q)m) and
that there is a canonical isomorphism

H1(X,Σ, (R1π∗K)m) ∼= H1(X,Σ, (R1π∗Q)m) ⊗Q K.

Thus the isomorphism in (2.42) is obtained by combining these results with
(2.30), (2.41), and the definition of R2,m(Γ, ω, χ,K)∗. ��



3

Mixed Automorphic Forms and Cohomology

Given a positive integer m, let Symm(C2) denote the m-th symmetric power
of C

2, and let H1
P (Γ, Symm(C2)) be the associated parabolic cohomology of

Γ , where the Γ -module structure of Symm(C2) is induced by the standard
representation of Γ ⊂ SL(2,R) on C

2. Then the Eichler-Shimura isomor-
phism can be written in the form

H1
P (Γ, Symm(C2)) = Sm+2(Γ ) ⊕ Sm+2(Γ ),

where Sm+2(Γ ) is the space of cusp forms of weight m+2 for Γ (cf. [22, 112]).
In particular, there is a canonical embedding of the space of cusp forms into
the parabolic cohomology space. The Eichler-Shimura isomorphism can also
be viewed as a Hodge structure on the parabolic cohomology (cf. [6]). If
(ω, χ) is an equivariant pair considered in Chapter 1, we may consider an-
other action of Γ on Symm(C2) which is induced by the homomorphism
χ : Γ → SL(2,R). If we denote the resulting Γ -module by Symm

χ (C2), the
associated parabolic cohomology H1

P (Γ, Symm
χ (C2)) is linked to mixed auto-

morphic forms associated to the equivariant pair (ω, χ). Indeed, mixed cusp
forms can be embedded into such parabolic cohomology space, and they can
also be used to determine a Hodge structure on H1

P (Γ, Symm
χ (C2)), which

provides an extension of the Eichler-Shimura isomorphism to mixed auto-
morphic forms.

If (Symm(C2))∗ denotes the dual of the complex vector space Symm(C2),
there is a canonical paring

H1(Γ, Symm(C2)) ×H1(Γ, (Symm(C2))∗) → C

known as the Kronecker pairing (cf. [48]). In [48], Katok and Millson deter-
mined the value of the Kronecker pairing between the image of a cusp form
for Γ of weight 2m+2 in H1(Γ, S2mV ) and a certain 1-cycle in H1(Γ, S2mV )
associated to each element of Γ . They used this to determine a necessary and
sufficient condition for the space of cusp forms to be spanned by a certain set
of relative Poincaré series (see [47, 48]). Similar results can be obtained by
using the Γ -module Symm

χ (C2) and mixed cusp forms associated to (ω, χ).
In Section 3.1 and Section 3.2 we discuss relations between mixed cusp

forms and parabolic cohomology of the corresponding discrete subgroup of
SL(2,R). We construct a map carrying a mixed cusp form to a parabolic
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cohomology class in Section 3.1 and show that the resulting map is injective
in Section 3.2 by using a pairing on the space of mixed cusp forms. A Hodge
structure of the parabolic cohomology in terms of mixed cusp forms is stud-
ied in Section 3.3. This generalizes the usual Eichler-Shimura isomorphism
for cusp forms. In Section 3.4 we describe the value of the Kronecker pair-
ing between the canonical image of a mixed cusp form f of type (2, 2r) in
H1(Γ, Sym2r

χ (C2)) and a cycle γ⊗Qrγ in H1(Γ, (Sym2r
χ (C2))∗) for each γ ∈ Γ ,

where Qrγ is a certain element of (Sym2r(C2))∗ associated to γ, r, and the
homomorphism χ.

3.1 Mixed Cusp Forms and Parabolic Cohomology

Connections between the cohomology of a discrete subgroup Γ of SL(2,R)
and automorphic forms for Γ were made by Eichler [22] and Shimura [112]
decades ago. Indeed, they established an isomorphism between the space of
cusp forms of weight m+ 2 for Γ and the parabolic cohomology space of Γ
with coefficients in the space of homogeneous polynomials of degree m in two
variables over R. A similar isomorphism for mixed cusp forms may not hold
in general as can be seen in [20, Section 3] where mixed cusp forms of type
(0, 3) were studied in connection with elliptic surfaces (see Section 3.3). In
this section we construct a map from the space of mixed cusp forms of type
(k, �) associated to Γ , ω and χ with k ≥ 2 to the parabolic cohomology space
of Γ with coefficients in some Γ -module.

If R is a commutative ring R we denote by PnX,Y (R) the R-algebra of
homogeneous polynomials of degree n in two variables X and Y . Then the
semigroup M(2, R) of 2 × 2 matrices with entries in R acts on PnX,Y (R) on
the left by

Mn(γ)φ(X,Y ) = φ((X,Y )(γι)t), (3.1)

where (·)t denotes the transpose of the matrix (·) and

γι = tr(γ) · I − γ = det(γ)γ−1 (3.2)

with I being the identity matrix.
Let Γ be a discrete subgroup of SL(2,R), and let ω : H → H and χ :

Γ → SL(2,R) be as in Section 1.1. For fixed nonnegative integers k and m
we set

Pk,m(C) = PkX1,Y1
(C) ⊗ PmX2,Y2

(C).

Then Γ acts on Pk,m(C) by Mk,m
χ (γ) = Mk(γ) ⊗Mm(χ(γ)), that is,

Mk,m
χ (γ)

(
φ(X1, Y1) ⊗ ψ(X2, Y2)

)
=
(
Mk(γ)φ(X1, Y1)

)
⊗
(
Mm(χ(γ))ψ(X2, Y2)

)
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for all γ ∈ Γ , φ(X1, Y1) ∈ PkX1,Y1
(C) and ψ(X2, Y2) ∈ PmX2,Y2

(C), where
Mk(γ) and Mm(χ(γ)) are as in (3.1). Thus we can consider the parabolic
cohomology H1

P (Γ,Pk,m(C)) of Γ with coefficients in Pk,m(C), which can be
described as follows.

Let Z1(Γ,Pk,m(C)) be the set of 1-cocycles for the action of Γ on Pk,m(C).
Thus it consists of maps u : Γ → Pk,m(C) such that

u(γδ) = u(γ) +Mk,m
χ (γ)u(δ) (3.3)

for all γ, δ ∈ Γ . We denote by Z1
P (Γ,Pk,m(C)) the subspace of Z1(Γ,Pk,m(C))

consisting of the maps u : Γ → Pk,m(C) satisfying

u(π) ∈ (Mk,m
χ (π) − 1)Pk,m(C) (3.4)

for π ∈ P , where P is the set of parabolic elements of Γ . We also denote by
B1(Γ,Pk,m(C)) the set of maps u : Γ → Pk,m(C) satisfying

u(γ) = (Mk,m
χ (γ) − 1)x (3.5)

for all γ ∈ Γ , where x is an element of Pk,m(C) independent of γ. Then the
parabolic cohomology of Γ with coefficients in Pk,m(C) is given by

H1
P (Γ,Pk,m(C)) = Z1

P (Γ,Pk,m(C))/B1(Γ,Pk,m(C))

(see e.g. [41, Appendix], [114, Chapter 8] for details).
Now we denote by ∆k,m(z) the differential form on H with values in the

space Pk,m(C) given by

∆k,m(z) = (X1 − zY1)k ⊗ (X2 − ω(z)Y2)mdz (3.6)

for all z ∈ H.

Lemma 3.1 Given γ ∈ Γ , we have

γ∗∆k,m(z) = j(γ, z)−k−2j(χ(γ), ω(z))−m(Mk,m
χ (γ)∆k,m(z))

for all z ∈ H, where γ∗∆k,m(z) = ∆k,m(γz).

Proof. Let γ =
(
a b
c d

)
∈ Γ ⊂ SL(2,R). Then from (3.6) we obtain

γ∗∆k,m(z) = (X1 − (γz)Y1)k ⊗ (X2 − ω(γz)Y2)md(γz) (3.7)

for all z ∈ H. The first factor on the right hand side of (3.7) can be written
as

(X1 − (γz)Y1)k =
(

(X1, Y1)
(

0 1
−1 0

)(
γz

1

))k

=
(

(X1, Y1)
(

0 1
−1 0

)
γ

(
z

1

))k
(cz + d)−k.
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However, using (3.2), we have

(γι)t
(

0 1
−1 0

)
= (γt)−1

(
0 1
−1 0

)
=
(
c d
−a −b

)
=
(

0 1
−1 0

)
γ;

hence we obtain

(X1 − (γz)Y1)k =
(

(X1, Y1)(γι)t
(

0 1
−1 0

)(
z

1

))k
(cz + d)−k (3.8)

= Mk(γ)(X1 − zY1)kj(γ, z)−k,

where we used (3.1). Similarly, we have

(X2 − ω(γz)Y2)m =
(

(X2, Y2)
(

0 1
−1 0

)(
ω(γz)

1

))m

=
(

(X2, Y2)
(

0 1
−1 0

)(
χ(γ)ω(z)

1

))m

= Mm(χ(γ))(X2 − ω(z)Y2)mj(χ(γ), ω(z))−m.

Therefore the lemma follows by combining this with (3.2), (3.7), (3.8), and
the relation d(γz) = j(γ, z)−2dz. ��

Given a mixed cusp form f ∈ Sk+2,m(Γ, ω, χ) of type (k + 2,m), we also
define the differential form Ω(f) on H by

Ω(f) = 2πif(z)∆k,m(z). (3.9)

Corollary 3.2 Given a mixed cusp form f in Sk+2,m(Γ, ω, χ), we have

γ∗Ω(f) = Mk,m
χ (γ)Ω(f) (3.10)

for all γ ∈ Γ .

Proof. This follows immediately from Lemma 3.1 and the transformation
formula in Definition 1.3(i) for mixed automorphic forms of type (k + 2,m)
associated to Γ , ω and χ. ��

We fix a point z in H∗ = H ∪ Q ∪ {∞} and for each f ∈ Sk+2,m(Γ, ω, χ)
we define the map Ez(f) : Γ → Pk,m(R) by

Ez(f)(γ) =
∫ γz

z

Re(Ω(f)) ∈ Pk,m(R) (3.11)

for each γ ∈ Γ , where Re(·) denotes the real part of (·). Note that the
integral is independent of the choice of the path joining z and γz, since Ω(f)
is holomorphic. The integral is convergent even if z is a cusp because of the
cusp condition for the mixed cusp form f given in Definition 1.3(ii)′.
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Theorem 3.3 For each mixed cusp form f ∈ Sk+2,m(Γ, ω, χ) the associated
map Ez(f) : Γ → Pk,m(C) is a 1-cocycle in H1

P (Γ,Pk,m(C)) whose cohomol-
ogy class is independent of the choice of the base point z.

Proof. If f ∈ Sk+2,m(Γ, ω, χ) and γ, γ′ ∈ Γ , then by (3.11) we have

Ez(f)(γγ′) =
∫ γγ′z

z

Re(Ω(f)) (3.12)

=
∫ γz

z

Re(Ω(f)) +
∫ γγ′z

γz

Re(Ω(f))

=
∫ γz

z

Re(Ω(f)) +
∫ γ′z

z

Re(γ∗Ω(f)).

However, using (3.10), we see that

Re(γ∗Ω(f)) = Re(Mk,m
χ (γ)Ω(f)) = Mk,m

χ (γ)Re(Ω(f)).

By substituting this and (3.11) into (3.12), we obtain

Ez(f)(γγ′) = Ez(f)(γ) +Mk,m
χ (γ)Ez(f)(γ′),

which implies by (3.3) that Ez(f) is a 1-cocycle for the Γ -module Pk,m(C).
Now in order to show that it is a cocycle in the parabolic cohomology
H1
P (Γ,Pk,m(C)), let z, z′ be elements of H∗. Then we have

Ez′(f)(γ) − Ez(f)(γ) =
∫ γz′

z′
Re(Ω(f)) −

∫ γz

z

Re(Ω(f))

=
∫ γz′

γz

Re(Ω(f)) −
∫ z′

z

Re(Ω(f))

= Mk,m
χ (γ)

∫ z′

z

Re(Ω(f)) −
∫ z′

z

Re(Ω(f))

= (Mk,m
χ (γ) − 1)

∫ z′

z

Re(Ω(f));

hence by (3.5) it follows that Ez′(f)(γ) and Ez(f)(γ) determine the same
cohomology class. On the other hand, if z′ is a cusp s ∈ Q ∪ {∞} and if
π ∈ P is a parabolic element of Γ fixing s, then Es(f)(π) = 0, and therefore
we have

Ez(f)(π) = −(Mk,m
χ (π) − 1)

∫ s

z

Re(Ω(f)) ∈ (Mk,m
χ (π) − 1)Pk,m(C).

Thus by (3.4) Ez(f)(γ) is a 1-cocycle in H1
P (Γ,Pk,m(C)), and the proof of

the proposition is complete. ��
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3.2 Pairings on Mixed Cusp Forms

In this section we continue our discussion of relations between mixed cusp
forms and parabolic cohomology. We introduce a pairing on the space
Sk+2,m(Γ, ω, χ) of mixed cusp forms of type (k + 2,m) associated to Γ , ω
and χ, and use this to show that the map f 
→ Ez(f) described in Theorem
3.3 is injective.

If n is a positive integer, we denote by Sn(C2) the n-th symmetric tensor
power of C

2, which can be identified with C
n+1. Then each vector (x, y)t ∈ C

2

determines an element (x, y)tn of Sn(C2) given by

(x, y)tn = (xn, xn−1y, . . . , xyn−1, yn)t ∈ C
n+1. (3.13)

Note that in this section we consider elements of C
2 or C

n+1 as column
vectors and denote the transpose of a matrix (·) by (·)t. As in [41, Section
6.2]), we now consider the (n+ 1) × (n+ 1) integral matrix Θ given by

Θ =
(

(−1)i
(
n

j

)
δn−i,j

)
0≤i,j≤n

, (3.14)

where δn−i,j is the Kronecker delta and
(
n
j

)
= n!/(j!(n− j)!).

Lemma 3.4 If Θ is as in (3.13), we have

Θ−1 =
(

(−1)n−i
(
n

j

)−1

δi,n−j

)
0≤i,j≤n

, (3.15)

(x, y)tnΘ(x′, y′)tn = det
(
x x′

y y′

)n
(3.16)

for all (x, y), (x′, y′) ∈ C
2.

Proof. For 0 ≤ i, j ≤ n we set

θij = (−1)i
(
n

j

)
δn−i,j , φij = (−1)n−i

(
n

j

)−1

δi,n−j .

Then we have
n∑
j=0

θijφj� = (−1)i(−1)n−j
(
n

j

)(
n

�

)−1

δn−i,jδj,n−�

= (−1)2i
(

n

n− i

)(
n

�

)−1

δi.� = δi.�;

hence we obtain (3.15). On the other hand, using (3.13) and (3.14), we see
that
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(x, y)nΘ(x′, y′)tn =
∑

0≤i,j≤n
(−1)i

(
n

j

)
δn−i,jxn−iyix′

n−j
y′j

=
n∑
i=1

(−1)i
(

n

n− i

)
(xy′)n−i(x′y)i

= (xy′ − x′y)n,

which implies (3.16). ��

Using (3.15), we obtain a pairing on the space Sn(C2) given by

〈
(x, y)tn, (x

′, y′)tn
〉

= (x, y)nΘ(x′, y′)tn) = det
(
x x′

y y′

)n
. (3.17)

We now identify the space Sn(C2) with the dual of the space PnX,Y (C) of
homogeneous polynomials of degree n in X and Y by allowing the dual of
the basis vector Xn−iY i with the i-th standard basis vector ei in C

n+1 =
Sn(C2). Thus by (3.15) the pairing 〈 , 〉 in (3.17) induces the pairing 〈 , 〉nX,Y
on PnX,Y (C) given by

〈 n∑
i=0

aiX
n−iY i,

n∑
j=0

bjX
n−jY j

〉n
X,Y

(3.18)

= (a0, . . . , an)Θ−1(b0, . . . , bn)t

=
∑

0≤j,�≤n
(−1)n−j

(
n

�

)−1

δj,n−�ajb�

=
n∑
�=0

(−1)�
(
n

�

)−1

an−�b�.

Hence we obtain a pairing of the form

〈〈 , 〉〉 = 〈 , 〉kX1,Y1
· 〈 , 〉mX2,Y2

(3.19)

on the space
Pk,m(C) = PkX1,Y1

(C) ⊗ PmX2,Y2
(C).

Lemma 3.5 If 〈〈 , 〉〉 is the pairing on Pk,m(C) in (3.19), we have
〈〈

(X1 − zY1)k(X2 − ω(z)Y2)m, (X1 − zY1)k(X2 − ω(z)Y2)m
〉〉

= (z − z)k(ω(z) − ω(z))m

for all z ∈ H.
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Proof. For each z ∈ H, by (3.19), we have
〈〈

(X1 − zY1)k(X2 − ω(z)Y2)m, (X1 − zY1)k(X2 − ω(z)Y2)m
〉〉

=
〈
X1 − zY1, X1 − zY1

〉k
X1,Y1

·
〈
X2 − ω(z)Y2, X2 − ω(z)Y2

〉m
X2,Y2

.

However, using (3.18), we obtain
〈
X1 − zY1, X1 − zY1

〉k
X1,Y1

=
〈 k∑
i=0

(−z)i
(
k

i

)
Xk−i

1 Y i1 ,

k∑
j=0

(−z)j
(
k

j

)
Xk−j

1 Y j1

〉

=
k∑
�=0

(−1)�
(
k

�

)−1

(−z)k−�
(

k

k − �

)
(−z)�

(
k

�

)

=
k∑
�=0

(−1)k−�
(

k

k − �

)
zk−�z� = (z − z)k.

Similarly, we have
〈
X2 − ω(z)Y2, X2 − ω(z)Y2

〉m
X2,Y2

= (ω(z) − ω(z))m.

Hence the lemma follows. ��

Let Θ1 (resp. Θ2) be the matrix that determines the pairing on Sk(C2)
(resp. Sm(C2)) dual to 〈 , 〉kX1,Y1

(resp. 〈 , 〉mX2,Y2
). Now let f and g be mixed

cusp forms belonging to Sk+2,m(Γ, ω, χ) so that ReΩ(f), ReΩ(g) are ele-
ments of Pk,m(R) ⊂ Pk,m(C). By identifying the element

( k∑
i=0

aiX
k−i
1 Y i1

)
⊗
( m∑
j=0

bjX
m−j
2 Y j2

)

with the vector (a0, . . . , ak)t ⊗ (b0, . . . , bn)t, we obtain

〈〈ReΩ(f),ReΩ(g)〉〉 = Re(Ω(f))t ∧ (Θ−1
1 ⊗Θ−1

2 )Re(Ω(g)). (3.20)

We denote the form on the right hand side of (3.20) by Φ(f, g) and define the
pairing I(·, ·) : Sk+2,m(Γ, ω, χ) × Sk+2,m(Γ, ω, χ) → C on the space of mixed
cusp forms Sk+2,m(Γ, ω, χ) by

I(f, g) =
∫
Γ\H

Φ(f, g) (3.21)

=
∫
Γ\H

Re(Ω(f))t ∧ (Θ−1
1 ⊗Θ−1

2 )Re(Ω(g))

for f, g ∈ Sk+2,m(Γ, ω, χ).

Administrator
ferret
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Proposition 3.6 The pairing I(·, ·) on Sk+2,m(Γ, ω, χ) given by (3.21) is
nondegenerate.

Proof. Let f, g ∈ Sk+2,m(Γ, ω, χ). Using the relations

Re Ω(f) =
1
2
(Ω(f) +Ω(f)), ReΩ(g) =

1
2
(Ω(g) +Ω(g)),

we obtain

Φ(f, g) =
1
4

(
Ω(f)t ∧ (Θ−1

1 ⊗Θ−1
2 )Ω(g) (3.22)

+Ω(f)
t ∧ (Θ−1

1 ⊗Θ−1
2 )Ω(g)

)
.

However, by using (3.6), (3.9)and Lemma 3.5 we have

Ω(f)t ∧ (Θ−1
1 ⊗Θ−1

2 )Ω(g) (3.23)

= (2πi)2f(z)g(z)
〈
(X1 − zY1)k, (X1 − zY1)k

〉k
X1,Y1

×
〈
(X2 − ω(z)Y2)m, (X2 − ω(z)Y2)m

〉m
X2,Y2

dz ∧ dz

= −4π2f(z)g(z)(z − z)k(ω(z) − ω(z))mdz ∧ dz
= −4π2(−2i)f(z)g(z)(z − z)k(ω(z) − ω(z))mdx ∧ dy

= −4π2(−2i)k+m+1f(z)g(z)(Im z)k(Imω(z))mdx ∧ dy.

Similarly, we see that

Ω(f)
t ∧ (Θ−1

1 ⊗Θ−1
2 )Ω(g) (3.24)

= −4π2f(z)g(z)(z − z)k(ω(z) − ω(z))mdz ∧ dz

= −4π2(2i)k+m+1f(z)g(z)(Im z)k(Imω(z))mdx ∧ dy.

Thus from (3.22), (3.23) and (3.24) we obtain

Φ(f, g) = −π2(−2i)k+m+1
(
f(z)g(z) + (−1)k+m+1f(z)g(z)

)
(3.25)

× (Im z)k(Imω(z))mdx ∧ dy.

We now consider the Petersson inner product 〈 , 〉P on Sk+2,m(Γ, ω, χ) given
by

〈f, g〉P =
∫
Γ\H

f(z)g(z)(Im z)k(Imω(z))mdxdy

(see [7, Proposition 2.1]). Then from this and (3.25) we obtain

I(f, g) =
∫
Γ\H

Φ(f, g) = 4π2(−2i)k+m−1
(
〈f, g〉P + (−1)k+m+1〈g, f〉P

)
.
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In particular, we have

I(f, ik+m−1g) = 4π2(−2i)k+m−1
(
(−i)k+m−1〈f, g〉P

+ (−1)k+m+1ik+m−1〈g, f〉P
)

= (−2)k+m+1π2 Re〈f, g〉P ,

I(f, ik+mg) = 4π2(−2i)k+m−1
(
(−i)k+m〈f, g〉P + (−1)k+m+1ik+m〈g, f〉P

)

= −(−2)k+m+2π2 Im〈f, g〉P ,

where we used the fact that 〈g, f〉P = 〈f, g〉P . Hence the nondegeneracy
of the pairing I(·, ·) follows from the nondegeneracy of the Petersson inner
product 〈 , 〉P . ��

In order to discuss the injectivity of the map f 
→ Ez(f) described in
Theorem 3.3, let s ∈ Q ∪ {∞} be a cusp of Γ such that σ∞ = s with
σ ∈ SL(2,R). Given ε > 0, we set

Vs,ε = {z ∈ Γs\H | Im(σ−1(z))−1 < ε},

where Γs is the stabilizer of s in Γ as usual. We choose ε such that the
members of {Vs,ε | s ∈ Σ} are mutually disjoint, where Σ is the set of
Γ -cusps. Let X0 = Γ\H, X = Γ\H ∪Σ, and let

X1 = X0 −
⋃
s∈Σ

Vs,ε.

As is described in [41, Section 6.1], there is a triangulation K of X1 satisfying
the following conditions:

(i) Each element of Γ induces a simplicial map of K onto itself.
(ii) For each s ∈ Σ the boundary of Vs,ε is the image of a 1-chain of K.
(iii) There is a fundamental domain D1 in H1 whose closure consists of

finitely many simplices in K, where H1 is the inverse image of X1 in H.
If g denotes the genus of X and if ν is the number of cusps of Γ , then the

Fuchsian group Γ is generated by 2g + ν elements

α1, . . . , αg, β1, . . . , βg, π1, . . . , πν

with the relation
(∏
s∈Σ

πs

)
α1β1α

−1
1 β−1

1 · · ·αgβgα−1
g β−1

g = 1.

Then the boundary ∂D1 of the fundamental domain D1 of X1 is given by



3.2 Pairings on Mixed Cusp Forms 69

∂D1 =
∑
s∈Σ

ts +
g∑
i=1

(
(αi − 1)sαi + (βi − 1)sβi

)
,

where sαi , sβi , ts denote the faces of D1 corresponding to αi, βi, πs, respec-
tively.

Theorem 3.7 Given z ∈ H and f ∈ Sk+2,m(Γ, ω, χ), let Ez(f) : Γ →
Pk,m(R) be as in (3.11). Then the associated map Ez : Sk+2,m(Γ, ω, χ) →
H1
P (Γ,Pk,m(C)) is injective.

Proof. Since the pairing I(·, ·) on Sk+2,m(Γ, ω, χ) in (3.21) is nondegenerate
by Proposition 3.21, in order to establish the injectivity of Ez it suffices to
show that, if

Ez(f) = 0 ∈ H1
P (Γ,Pk,m(C)),

I(f, g) = 0 for all g ∈ Sk+2,m(Γ, ω, χ). Thus suppose that Ez(f) determines
the zero cohomology class in H1

P (Γ,Pk,m(C)). Then there is an element C ∈
Pk,m(R) such that

Ez(f)(γ) = (Mk,m
χ (γ) − 1)C (3.26)

for all γ ∈ Γ . We define a map F : H → Pk,m(R) by

F (w) =
∫ w

z

Re(Ω(f)) + C (3.27)

for all w ∈ H. Using this, (3.10), (3.11) and (3.26), we have

F (γw) =
∫ γw

z

Re(Ω(f)) + C (3.28)

=
∫ γw

γz

Re(Ω(f)) +
∫ γz

z

Re(Ω(f)) + C

=
∫ w

z

γ∗ Re(Ω(f)) + Ez(f)(γ) + C

= Mk,m
χ (γ)(F (w) − C) + Ez(f)(γ) + C

= Mk,m
χ (γ)F (w) + Ez(f)(γ) − (Mk,m

χ (γ) − 1)C

= Mk,m
χ (γ)F (w)

for all γ ∈ Γ and w ∈ H. Let g ∈ Sk+2,m(Γ, ω, χ), and set

G(w) =
∫ w

z

Re(Ω(g))

for all w ∈ H, so that dG = ReΩ(g). Since dF = ReΩ(f) by (3.27), we see
that
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Φ(f, g) = dF t ∧ (Θ−1
1 ⊗Θ−1

2 )dG

= d
(
F t · (Θ−1

1 ⊗Θ−1
2 )dG

)

= d
(
F t · (Θ−1

1 ⊗Θ−1
2 )Re(Ω(g))

)
.

If X0 = Γ\H, X = Γ\H∗ and X1 = X0 −
⋃
Vs,ε as before, then we obtain

I(f, g) = lim
X1→X

∫
X0

d
(
F t · (Θ−1

1 ⊗Θ−1
2 )Re(Ω(g))

)

= lim
X1→X

∫
∂D1

F t · (Θ−1
1 ⊗Θ−1

2 )Re(Ω(g)).

However, using (3.10) and (3.28), for each simplex Ξ and γ ∈ Γ we see that
∫
γΞ

F t · (Θ−1
1 ⊗Θ−1

2 )Re(Ω(g))

=
∫
Ξ

(γ∗F )t · (Θ−1
1 ⊗Θ−1

2 )γ∗ Re(Ω(g))

=
∫
Ξ

F tMk,m
χ (γ)t · (Θ−1

1 ⊗Θ−1
2 )Mk,m

χ (γ)Re(Ω(g))

=
∫
Ξ

F t · (Θ−1
1 ⊗Θ−1

2 )Re(Ω(g)),

where we used (3.10) and (3.28). Hence the integral of the differential form

F t · (Θ−1
1 ⊗Θ−1

2 )Re(Ω(g))

over (αi − 1)sαi + (βi − 1)sβi is zero for 1 ≤ i ≤ g, and therefore we have

I(f, g) =
∑
s∈Σ

lim
X1→X

∫
ts

F t · (Θ−1
1 ⊗Θ−1

2 )Re(Ω(g)).

Since F (w) is bounded near the cusps and Re(Ω(g)) is rapidly decreasing at
each cusp of Γ , it follows that I(f, g) = 0. Hence the injectivity of the map
Ez follows, and the proof of the theorem is complete. ��

Remark 3.8 For classical cusp forms the surjectivity of the map Ez in The-
orem 3.7 also follows from the Eichler-Shimura isomorphism. However, for
mixed cusp forms Ez may not be surjective in general. Although in this section
we only considered mixed cusp forms of type (�,m) with � ≥ 2, it is known
that Ez is not necessarily surjective for mixed cusp forms of type (0, 3) (see
[20, Section 3]).
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3.3 Hodge Structures

The Eichler-Shimura isomorphism for cusp forms determines a Hodge struc-
ture on parabolic cohomology (cf. [6]). In this section we generalize the usual
Eichler-Shimura isomorphism by determining a Hodge structure on parabolic
cohomology by using mixed cusp forms.

Let OH∗ be the sheaf on H∗ = H ∪ Σ characterized by (2.3). In this
section, if W is one of the spaces H, H∗, H#, X0, X , and XΓ ′ , we denote
by VW the constant sheaf C

2 on W and by V mW the m-th symmetric power
of VW , where m is a positive integer. Thus VH∗ and VmH∗ are the sheaves on
H∗ given by

VH∗ = C
2 = C e1 ⊕ C e2, VmH∗ = Symm(C2) =

m⊕
j=0

C ej1 · e
m−j
2 ,

where e1 = (1, 0) and e2 = (0, 1) are the standard basis vectors of C
2; here

we are considering elements of C
2 as row vectors as in Section 2.1. We set

OH∗(V ) = OH∗ ⊗ VH∗ , OH∗(V m) = OH∗ ⊗ VmH∗ .

The Γ -action on OH∗(V ) given by (2.4) induces a Γ -action on OH∗(V m) on
the right. Given a positive integer m, let Fm

Γ be the sheaf on X = Γ\H∗

given by (2.7), and let Fm
Γ ′ be the sheaf on XΓ ′ = Γ ′\H# given by (2.8).

Proposition 3.9 Let ωX : X → XΓ ′ be the period map, and let Ω1 be the
sheaf of holomorphic 1-forms on X. Then there is a canonical isomorphism

S2,m(Γ, ω, χ) ∼= H0(X, (ω∗
XFm

Γ ′) ⊗Ω1), (3.29)

where S2,m(Γ, ω, χ) is the space of mixed cusp forms of type (2,m) associated
to Γ , ω and χ.

Proof. If f(e1 − ze2)2 ∈ F2
H∗ , then by (2.6) we have

f(z)(e1 − ze2)2 · γ = j(γ, z)−2f(γz)(e1 − ze2)2

for all z ∈ H and γ ∈ Γ . Since dz ∈ Ω1 satisfies

d(γz) = j(γ, z)−2dz,

we see that the map (e1 − ze2)2 
→ dz induces a canonical isomorphism

F2
H ∼= ΩH.

Now the proposition follows from this and Proposition 2.6. ��
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Let OH be the sheaf of holomorphic functions on H, and set

OH(V ) = OH ⊗ VH = OH ⊗ C
2.

Then the group Γ acts on OH(V ) by (2.4). We now consider another right-
action of Γ on OH(V ) defined by

(f1(z)e1 + f2(z)e2) · γ = (f1(γz), f2(γz))
(
aχ bχ
cχ dχ

)
(3.30)

= (aχf1(γz) + cχf2(γz))e1
+ (bχf1(γz) + dχf2(γz))e2

for γ ∈ Γ with χ(γ) =
(
aχ bχ
cχ dχ

)
∈ Γ ′ = χ(Γ ). This action induces a Γ action

on the sheaf
OH(V m) = OH ⊗ VmH = OH ⊗ Symm(C2).

We denote by the associated fixed sheaf on X0 = Γ\H by

OX0(V
m) = (OH(V m))Γ,χ,

where we used the symbol (·)Γ,χ to distinguish it from the Γ -fixed sheaf (·)Γ
with respect to the action given by (2.4). We also denote by FH the restriction
of FH∗ to H, that is,

FH = {f(z)(e1 − ze2) | f ∈ OH}. (3.31)

Let ω∗FH be the subsheaf of OH(V ) on H obtained by pulling FH back via
the equivariant holomorphic map ω : H → H.

Lemma 3.10 The subsheaf ω∗FH of OH(V ) on H is invariant under the
Γ -action on OH(V ) given by (3.30).

Proof. By (3.31) and element φ ∈ ω∗FH can be written in the form

φ(z) = f(ω(z))(e1 − ω(z)e2)

for some f ∈ OH. Given γ ∈ Γ with χ(γ) =
(
aχ bχ
cχ dχ

)
, by (3.30) we have

φ(z) · γ = f(ω(γz))((aχ − cχω(γz))e1 + (bχ − dχω(γz))e2.

However, we have

aχ − cχω(γz) = aχ − cχχ(γ)ω(z)

= aχ − cχ

(
aχω(γz) + bχ
cχω(γz) + dχ

)
=

1
cχω(γz) + dχ

bχ − dχω(γz) = bχ − dχ

(
aχω(γz) + bχ
cχω(γz) + dχ

)
=

−ω(γz)
cχω(γz) + dχ

,
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where we used the relation aχdχ − bχcχ = 1. Hence we obtain

φ(z) · γ = f(χ(γ)ω(z))(cχω(γz) + dχ)−1(e1 − ω(z)e2) ∈ ω∗FH,

which proves the lemma. ��

For each nonnegative integer k we set

F kH = (ω∗Fk
H) · OH(V m−k) (3.32)

with Fk
H = (FH)⊗k. Then by Lemma 3.10 the filtration OH(V ) ⊃ ω∗FH

induces the Γ -invariant filtration

OH(V m) = F 0
H ⊃ F 1

H ⊃ · · · ⊃ FmH ⊃ Fm+1
H = 0.

By considering the associated Γ -fixed sheaves, we obtain the filtration

OX0(V
m) = F 0 ⊃ F 1 ⊃ · · · ⊃ Fm ⊃ Fm+1 = 0 (3.33)

of sheaves on X0 = Γ\H, where F k = (F kH)Γ,χ for each k ≥ 0. We denote by
EX0 the sheaf of complex C∞-functions on X0, and consider the sheaf

EX0(V
m) = EX0 ⊗OX0

OX0(V
m)

of V m-valued C∞ functions on X0.

Proposition 3.11 Let ω∗
X0

(Fk
X0

)E and F kE be the sheaves on X0 defined by

ω∗
X0

(Fk
X0

)E = (ω∗Fk
H)Γ ⊗OX0

EX0 , F kE = F k ⊗OX0
EX0

for k ≥ 0. Then we have

EX0(V
m) =

⊕
p+q=m

ω∗
X0

(Fp
X0

)E · ω∗
X0

(Fq
X0

)E (3.34)

and
ω∗
X0

(Fp
X0

)E · ω∗
X0

(Fq
X0

)E = F pE ∩ F qE
for 0 ≤ p, q ≤ m.

Proof. Since EX0(V m) can be identified with (EX0 (V ))m, the m-th symmetric
power of EX0(V ), it suffices to prove the proposition for m = 1. The second
identity in this case is trivial. To prove the first identity, let v = f(z)e1+g(z)e2
be a section of

EH(V ) = EH e1 ⊕ EH e2,

where EH is the sheaf of complex C∞-functions on H. Then v can be expressed
uniquely in the form

v = f1(z)(e1 − ω(z)e2) + g1(z)(e1 − ω(z)e2)
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by using the functions

f1(z) = (ω(z) − ω(z))−1(f(z)ω(z) + g(z)),

g1(z) = (ω(z) − ω(z))−1(f(z)ω(z) + g(z))

for z ∈ H. Since f1, g1 ∈ EH, using (3.31), we see that

f1(z)(ω(z)e1 + e2) ∈ (ω∗F1
H) ⊗ EH,

g1(z)(ω(z)e1 + e2) ∈ (ω∗
X0

F1
X0

) ⊗ EH.
Hence we have

EX0(V ) = (ω∗
X0

F1
X0

)E ⊕ (ω∗
X0

F1
X0

)E ,

and therefore the lemma follows. ��

Given a nonnegative integer k, we set

Ω1
H(V k) = Ω1

H ⊗ V kH,

where Ω1
H is the sheaf of holomorphic 1-forms on H, and consider the asso-

ciated Γ -fixed sheaf

Ω1
X0

(V k) = (Ω1
H(V k))Γ,χ = Ω1

X0
⊗O0 OX0(V

k)

on X0. Then the connection on the constant sheaf V m on X0 is the C-linear
map

� : OX0 (V
k) −→ Ω1

X0
(V k) (3.35)

induced from the Γ -invariant map

d⊗ 1 : OH(V k) −→ Ω1
H(V k)

with
(d⊗ 1)(f(z)ζ) = (df(z))ζ

for all f ∈ OH and ζ ∈ V m.

Proposition 3.12 The image �F k of F k under the map � in (3.35) is
contained in the sheaf F k−1 ⊗OX0

Ω1
X0

.

Proof. Since ω∗Fk
H can be regarded as OH(e1 − ω(z)e2)k, the sheaf F kH in

(3.32) can be written in the form

F kH = (ω∗Fk
H) · OH(V m−k) = OH(e1 − ω(z)e2)k · V m−k

H .

If f(z) and ξ are sections of OH and V m−k
H , respectively, we have

(d⊗ 1)(f(z)(e1 − ω(z)e2)k · ξ) = d(f(z)(e1 − ω(z)e2)k) · ξ
= (e1 − ω(z)e2)k · (df(z))ξ

− kf(z)(e1 − ω(z)e2)k−1 · (dω(z))e1 · ξ.
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Since e1 · ξ is a section of V m−(k−1)
H , we see that

f(z)(e1 − ω(z)e2)k−1 · (dω(z))e1 · ξ

is a section of the sheaf

ω∗Fk−1
H ⊗OH(V m−(k−1)) ⊗OH Ω

1
H = F k−1 ⊗OH Ω

1
H.

On the other hand, (e1 − ω(z)e2)k · (df(z))ξ is a section of

ω∗Fk
H ⊗OH(V m−k) ⊗OH Ω

1
H = F k ⊗OH Ω

1
H.

Using these and the fact that

F k ⊗OH Ω
1
H ⊂ F k−1 ⊗OH Ω

1
H,

we see that

(d⊗ 1)(f(z)(e1 − ω(z)e2)k · ξ) ∈ F k−1
H ⊗OH Ω

1
H.

Thus it follows that

�F k ⊂ (F k−1
H ⊗ΩH)Γ = F k−1 ⊗X0 Ω

1
X0
,

and therefore the proposition follows. ��

From Proposition 3.12 it follows that the filtration {F k} in (3.33) deter-
mines a variation of Hodge structure on OX0(V m) over X0. We shall now
introduce a polarization on OX0(V m). First, we consider the bilinear form
B1 on C

2 given by

B1(ae1 + be2, ce1 + de2) = det
(
a b
c d

)
= ad− bc. (3.36)

We define the bilinear form Bm on V mH = Symm(C2) by

Bm(u1 · · ·um, v1 · · · vm) =
1

(m!)2
∑

σ,τ∈Sm

m∏
i=1

B1(uσ(i), vτ(i)), (3.37)

where Sm is the group of permutations of the set {1, . . . ,m}. This can be
extended to the Γ -invariant bilinear form

Bm : EH(V m) × EH(V m) −→ EH.

Taking the Γ -fixed sheaves, we obtain the nondegenerate OX0 -bilinear form

Bm : EX0(V
m) × EX0(V

m) −→ EX0 (3.38)

on the EX0 -module EX0(V m). By (3.36) we have B(v, u) = −B(u, v) for all
u, v ∈ V ; hence, using this and (3.38), we see that
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Bm(y, x) = (−1)mBm(x, y)

for all x, y ∈ EX0(V
m). We now consider another bilinear form 〈 , 〉 on

EX0(V m) given by
〈x, y〉 = iq−pBm(x, y) (3.39)

for all x, y ∈ EX0(V m).

Proposition 3.13 The bilinear form 〈 , 〉 on EX0(V m) in (3.39) is positive
definite on the EX0-module

(ω∗
X0

Fp
X0

)E · (ω∗
X0

Fq
X0

)E

for each pair (p, q) of nonnegative integers with p+ q = m, and the decompo-
sition of the sheaf EX0(V m) given by (3.34) is orthogonal with respect to the
bilinear form 〈 , 〉.

Proof. Let v = e1 − ω(z)e2 ∈ ω∗
X0

FX0 , so that v = e1 − ω(z)e2 ∈ ω∗
X0

FX0 .
If s′ ∈ H and s = π(s′) ∈ X0, then v is Γs′ -invariant basis of ω∗FH, where
Γs′ = {γ ∈ Γ | γs′ = s′}. Hence the stalk of EX0(V m) at s is given by

EX0(V
m)s =

⊕
p+q=m

(ω∗
X0

Fp
X0

)E,s · (ω∗
X0

Fq
X0

)E,s

=
⊕

p+q=m

EX0,sv
p · vq.

Consider pairs (p, q) and (p′, q′) of nonnegative integers satisfying p + q =
p′ + q′ = m. If p �= p′ and if Bm is the bilinear form in (3.38), then by using
(3.37) we see that

Bm(vp · vq, vp′ · vq′) = 0.

On the other hand, we have

Bm(vp · vq, vp · vq) =
1

(m!)2
m!p!q!(2i Im(ω(z)))p(−2i Im(ω(z)))q

=
(
m

p

)−1

ip−q(2 Im(ω(z)))m.

Thus, using this and (3.39), we obtain

〈vp · vq, vp′ · vq′〉 =

{
0 if p �= p′(
m
p

)−1(2 Im(ω(z))) if p = p′.

The proposition follows from this result. ��
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If χ : Γ → SL(2,R) with Γ ′ = χ(Γ ) is the monodromy representation as
before, then Γ acts on V m = Symm(C2) via χ and the standard representa-
tion of SL(2,R). Thus, if we set

(x, y)m = (xm, xm+1y, . . . , xym−1, ym) ∈ V m = Symm(C2)

for (x, y) ∈ C
2, then we have

(x, y)m · γ = ((x, y)χ(γ))m (3.40)

for all γ ∈ Γ . We denote by H1
P (Γ, V m) the parabolic cohomology with re-

spect to this representation. The following proposition shows that this bilinear
form determines a polarization on the variation of Hodge structure over X0

determined by the filtration {F k} in (3.33).

Proposition 3.14 If η : X0 → X is the inclusion map, then the parabolic co-
homology H1

P (Γ, V m) is naturally isomorphic to the cohomology H1(X, η∗V mX0
)

of X = Γ\H∗ with coefficients in the sheaf η∗VmX0
.

Proof. See [125, Proposition 12.5]. ��

Let Ω•
X0

be the holomorphic de Rham complex on X0, and set

Ω•
X0

(V m) = Ω•
X0

⊗OX0
OX0(V

m).

We denote by Ω•
(2)(V

m) the complex of sheaves on X whose sections are
the sections of the complex η∗Ω•

X0
(V m) that are square-summable near the

Γ -cusps.

Proposition 3.15 The cohomology Hi(X, η∗V mX0
) is isomorphic to the hy-

percohomology
H
i(X,Ω•(V m)(2))

of the complex Ω•(V m)(2).

Proof. The proposition follows from Theorem 4.8, Corollary 6.15 and Corol-
lary 7.13 in [125]. ��

Let OH∗ and VmH∗ be as in Section 2.1, and let

OX(V m) = (OH∗ ⊗ V mH∗)
Γ,χ.

We consider the complex K• given by K0 = OX(V m) and

K1 = im[� : OX(V m) −→ Ω1
X(logΣ) ⊗OX(V m)].

The complexes Ω•(V m)(2) and K• can be filtered by the filtrations induced
from the filtration {F k} of OH(V m).
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Proposition 3.16 The inclusion map Ω•(V m)(2) → K• of filtered com-
plexes is a quasi-isomorphism.

Proof. See [125, Proposition 9.1]. ��

Now we state our main theorem in this section, which describes a Hodge
structure on the parabolic cohomology H1

P (Γ, V m) in terms of mixed cusp
forms.

Theorem 3.17 The parabolic cohomology H1
P (Γ, V m) of the group Γ has a

polarized Hodge decomposition of the form

H1
P (Γ, V m) ∼= S2,m(Γ, ω, χ) ⊕W ⊕ S2,m(Γ, ω, χ),

where W = ⊕Hp,q is the direct sum of the Hodge components of H1
P (Γ, V m)

for p, q ≥ 1 and p+ q = m+ 1.

Proof. By Propositions 3.15 and 3.16, the hypercohomology H
1(X,GrpK•)

determines the subspace Hp,m+1−p in the Hodge decomposition of the coho-
mology space H1(X, η∗V mX0

). Thus we have

H1(X, η∗V mX0
) =

m+1⊕
p=0

Hp,m+1−p

= Hm+1,0 ⊕
( m⊕
p=1

Hp,m+1−p
)
⊕Hm+1,0.

By Proposition 3.13 the bilinear form Bm determines a polarization on this
Hodge structure. Since H1

P (Γ, V m) is isomorphic to H1(X, η∗V mX0
) by Propo-

sition 3.14, it remains to prove that Hm+1,0 is isomorphic to S2,m(Γ, ω, χ).
However, we have

Hm+1,0 = Fm+1H1(X, η∗V mX0
)

= H(X,Fm+1Ω•(V m)(2))

= H0(X, (ω∗Fm ⊗Ω1)(2)),

where (ω∗Fm ⊗ Ω1)(2) is the extension of ω∗
X0

Fm ⊗ Ω1
X0

in Ω•(V m)(2). By
[125, Proposition 4.4] the sheaf (ω∗Fm⊗Ω1)(2) is isomorphic to ω∗

X(Fm
0 )⊗Ω1.

Hence from Proposition 3.9 it follows that

Hm+1,0 = H0(X,ω∗
X(Fm

0 ) ⊗Ω1) ∼= S2,m(Γ, ω, χ);

hence the proof of the theorem is complete. ��

Remark 3.18 If the homomorphism χ : Γ → SL(2,R) is the inclusion map
and if ω is the identity map on H, then we have W = {0} and Theorem 3.17
reduces to the well-known Eichler-Shimura isomorphism (see [6, 22, 112]).
The space W in Theorem 3.17, however, is not trivial in general as can be
seen in [20, Section 3] for m = 1.
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3.4 The Kronecker Pairing

The Kronecker pairing is a bilinear map defined on the product of cohomol-
ogy and homology of a discrete subgroup Γ of SL(2,R). In this section we
determine the value of the Kronecker pairing between the image of a mixed
automorphic form and a special 1-cocycle associate to each element of Γ .

Let Γ ⊂ SL(2,R) and the equivariant pair (ω, χ) be as in Section 3.1.
Thus ω : H → H is a holomorphic map that is equivariant with respect
to the homomorphism χ : Γ → SL(2,R). Let V = C

2 be the space of the
standard two-dimensional complex representation of SL(2,R), and let V ∗ be
its dual space. Given a positive integer r, we denote by V 2r and (V 2r)∗ be
the 2r-th symmetric power of V and its dual space, respectively. If {u1, u2}
is the standard basis for V ∗, then (V 2r)∗ can be regarded as the space of all
homogeneous polynomials P2r(u1, u2) of degree 2r in u1 and u2. As in (3.40),
the discrete subgroup Γ of SL(2,R) acts on V 2r on the right by

(x, y)2r · γ = ((x, y)χ(γ))2r

for all γ ∈ Γ , where elements of V = C
2 were considered as row vectors and

(x, y)2r = (x2r , x2r+1y, . . . , xy2r−1, y2r) ∈ V 2r

for (x, y) ∈ C
2. On the other hand, Γ also acts on (V 2r)∗ on the right by

P2r(u1, u2) · γ = P2r((u1, u2)χ(γ)) (3.41)
= P2r(aχu1 + cχu2, bχu1 + dχu2)

for each γ ∈ Γ with χ(γ) =
(
aχ bχ
cχ dχ

)
∈ SL(2,R). Thus we can consider the

group cohomology H1(Γ, V 2r) and the group homology H1(Γ, (V 2r)∗) with
respect to the Γ -module structures of V 2r and (V 2r)∗ described above. For
each γ ∈ Γ we consider the element Qrγ of (V 2r)∗ given by

Qrγ = (cχu2
2 + (aχ − dχ)u1u2 − bχu

2
1)
r ∈ (V 2r)∗, (3.42)

which is a modification of ξγ in [48, p. 744] (see also [47]).

Lemma 3.19 Given γ ∈ Γ , the element Qmγ ∈ (V 2r)∗ given by (3.42) is
invariant under the action of γ ∈ G.

Proof. For γ ∈ G with χ(γ) =
(
aχ bχ
cχ dχ

)
, using (3.41), we have

γ ·Qrγ = (cχ(bχu1 + dχu2)2 + (aχ − dχ)(aχu1 + cχu2)(bχu1 + dχu2)

− bχ(aχu1 + cχu2)2)r

= ((aχcχdχ − bχc
2
χ)u2

2 + (aχdχ − bχcχ)(aχ − dχ)u1u2

+ (cχb2χ − aχbχdχ)u2
1)
r

= (cχu2
2 + (aχ − dχ)u1u2 − bχu

2
2)
r = Qrγ ,

and therefore the lemma follows. ��



80 3 Mixed Automorphic Forms and Cohomology

Given a positive integer r, we consider the canonical isomorphism in (3.29)
for m = 2r and denote it by

Φ : S2,2r(Γ, ω, χ) → H0(X, (ω∗
XFr

Γ ′) ⊗Ω1), (3.43)

where Γ ′ = χ(Γ ), and S2,2r(Γ, ω, χ) is the space of mixed cusp forms of type
(2, 2r) associated to Γ , ω and χ. If f ∈ S2,2r(Γ, ω, χ), using the descriptions
in Section 3.3, we see that Φ(f) can be represented by the 1-form

Φ(f) = (e1 − ω(z)e2)2rf(z)dz (3.44)

for z ∈ H.

Lemma 3.20 If 〈 , 〉 denotes the natural pairing between V 2r and (V 2r)∗,
then we have

〈Φ(f), (au2
1 + bu1u2 + cu2

2)
r〉 = f(z)(a− bω(z) + cω(z)2)rdz (3.45)

for all f ∈ S2,2r(Γ, ω, χ) and a, b, c ∈ C.

Proof. Given f ∈ S2,2r(Γ, ω, χ), by (3.44) we have

Φ(f) = f(z)(e1 − ω(z)e2)2rdz. (3.46)

We consider the factorization au2
1 + bu1u2 + cu2

2 = a(u1 + su2)(u1 + tu2) with
s, t ∈ C. Using this, (3.46) and the fact that 〈ei, uj〉 = δij for 1 ≤ i, j ≤ 2, we
see that

〈Φ(f), (au2
1 + bu1u2 + cu2

2)
r〉 = f(z)ar((e1 − ω(z)e2)(u1 + su2))r

× ((e1 − ω(z)e2)(u1 + tu2))rdz
= f(z)(a(1 − sω(z))(1 − tω(z)))rdz

= f(z)(a− bω(z) + cω(z)2)rdz,

which prove the lemma. ��

Proposition 3.21 Let k be a positive integer, and let ω∗
XFk

Γ ′ be the sheaf
on X in (3.29). Then there is a canonical isomorphism

H0(X0, (ω∗
XFk

Γ ′) ⊗Ω1 |X0) ∼= H1(X0, (ω∗
XFk

Γ ′) |X0) (3.47)

where X0 = Γ\H and Ω1 is the sheaf of holomorphic 1-forms on X.

Proof. We shall first construct a pairing

〈 , 〉 : H0(X0, (ω∗
XFk

Γ ′) ⊗Ω1 |X0) ×H1(X0, (ω∗
XFk

Γ ′)
∗ |X0) → C, (3.48)

where (ω∗
XFk

Γ ′)
∗ denotes the dual of the sheaf ω∗

XFk
Γ ′ . Consider an element

ζ ∈ H0(X0, (ω∗
XFk

Γ ′) ⊗ Ω1 |X0),
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which is regarded as a closed 1-form on X0 with values in (ω∗
XFk

Γ ′) |X0 .
We consider an oriented 1-simplex (α, β) in X0 and a section v of the sheaf
(ω∗
XFk

Γ ′)
∗ |X0 restricted to (α, β). Then (α, β) ⊗ v is a simplicial 1-chain in

X0 with coefficients in (ω∗
XFk

Γ ′)
∗ |X0 . If ξ ∈ H1(X0, (ω∗

XFk
Γ ′)

∗ |X0) denotes
the homology class of (α, β) ⊗ v, then the pairing (3.48) is defined by

〈ζ, ξ〉 =
∫

(α,β)

〈ζ |(α,β), v〉

(see [46, Section 4] for details). From the pairing (3.48) we obtain

H0(X0, (ω∗
XFk

Γ ′) ⊗Ω1 |X0) ∼= (H1(X0, (ω∗
XFk

Γ ′)
∗ |X0)

∗

∼= H1(X0, (ω∗
XFk

Γ ′) |X0);

hence the proposition follows. ��
By combining the isomorphisms (3.43) and (3.47) with the restriction

map
H0(X0, (ω∗

XFk
Γ ′) ⊗Ω1) → H0(X0, (ω∗

XFk
Γ ′) ⊗Ω1 |X0),

we obtain a map

S2,k(Γ, ω, χ) → H1(X0, (ω∗
XFk

Γ ′) |X0).

On the other hand, it is well-known thatH1(X0, V
k), where V k is regarded as

the sheaf of locally constant functions on X0 with values in V k, is canonically
isomorphic to H1(Γ, V k). Since (ω∗

XFk
Γ ′) |X0 is a subsheaf of V k, the inclusion

induces a map

H1(X0, (ω∗
XFk

Γ ′) |X0) → H1(X0, V
k) ∼= H1(Γ, V k).

Thus, for k = 2r, we obtain the map

Ψ : S2,2r(Γ, ω, χ) → H1(Γ, V 2r).

We denote by 〈〈 , 〉〉 the canonical pairing

〈〈 , 〉〉 : H1(Γ, V 2r) ⊗H1(Γ, (V 2r)∗) → C, (3.49)

known as the Kronecker pairing (see [48, p. 738 and p. 745]). The Kronecker
pairing can be interpreted in terms of the de Rham cohomology and the sim-
plicial homology as in [48, Section 2] by identifying the group cohomology
H1(Γ, V 2r) with the de Rham cohomology H1(X0, V

2r) and the group coho-
mology H1(Γ, (V 2r)∗) with the simplicial homology H1(X0, (V 2r)∗), where
(V 2r)∗ is the sheaf of locally constant functions on X0 with values in (V 2r)∗.
Thus let ζ be a closed 1-form on X0 with values in V 2r and let σ⊗ µ, where
σ is a simplicial 1-cycle in X0 and µ is a parallel section of (S2rV )∗ on σ.
Then the Kronecker pairing (3.49) is determined by

〈〈ζ, σ ⊗ µ〉〉 =
∫
σ

〈ζ, µ〉.
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Lemma 3.22 If γ ∈ Γ , then the 1-chain γ⊗Qrγ is a cycle in H1(Γ, (S2rV )∗),
where Qrγ is as in (3.42).

Proof. Note that the boundary map ∂ for 1-chains is given by

∂(γ ⊗ v) = γ · v − v

for all γ ∈ Γ and v ∈ (V 2r)∗. Thus from Lemma 3.19 it follows that

∂(γ ⊗Qrγ) = 0,

and therefore (γ ⊗Qrγ is a cycle. ��

Theorem 3.23 For each γ ∈ Γ and f ∈ S2,2r(Γ, ω, χ), we have

〈〈Ψ(f), γ ⊗Qrγ〉〉 =
∫ γz0

z0

f(z)(cχω(z)2 + (dχ − aχ)ω(z) − bχ)rdz,

where z0 is an arbitrary point in the Poincaré upper half plane H and the
integral is taken along any piecewise continuous path joining z0 and gz0.

Proof. We shall use the interpretation of the Kronecker pairing in terms of
de Rham cohomology and simplicial homology. For z0 ∈ H, let σγ be the
image of a simplicial path joining z0 to γz0 under the natural projection
H → X0 = Γ\H, and let ζrγ be the parallel section of (S2rV )∗ restricted to
σγ obtained by parallel translation of Qrγ around σγ . Then σγ ⊗ ζrγ is the
cycle in H1(X0, (V 2r)∗) corresponding to γ⊗Qrγ (see [46, Section 4] and [48,
Section 2]). If the map

Φ : S2,2r(Γ, ω, χ) → H0(X,F2r
0 ⊗Ω1)

is as in (??), the closed 1-form on X0 with values in V 2r corresponding to
Ψ(f) is simply Φ(f) restricted to X0. Using (3.42) and (3.45), we see that

〈Φ(f), ζrγ〉 = 〈Φ(f), Qrγ〉 = f(z)(cχω(z)2 + (dχ − aχ)ω(z) − bχ)rdz.

Hence the theorem follows. ��
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Mixed Hilbert and Siegel Modular Forms

As was discussed in Section 2.2, a holomorphic form of the highest degree on
an elliptic variety can be identified with a mixed automorphic form of one
variable. An elliptic variety E is a fiber bundle over a quotient X = Γ\H
whose generic fiber is the product of a finite number of elliptic curves. Thus
E is a family of abelian varieties parametrized by the complex curve Γ\H. In
this chapter we discuss more general families of abelian varieties in connection
with mixed automorphic forms of several variables.

If F is a totally real number field of degree n over Q, then SL(2, F ) can be
embedded in SL(2,R)n. Given a subgroup Γ of SL(2, F ) whose embedded
image in SL(2,R)n is a discrete subgroup, we can consider the associated
Hilbert modular variety Γ\Hn obtained by the quotient of the n-fold product
Hn of the Poincaré upper half plane H by the action of Γ given by linear
fractional transformations. Let ω : Hn → Hn be a holomorphic map that is
equivariant with respect to a homomorphism χ : Γ → SL(2, F ). Then the
equivariant pair (ω, χ) can be used to define mixed Hilbert modular forms,
which can be regarded as mixed automorphic forms of n variables. On the
other hand, the same equivariant pair also determines a family of abelian
varieties parametrized by Γ\Hn. As is expected, holomorphic forms of the
highest degree on such a family of abelian varieties can be interpreted as
mixed Hilbert modular forms of certain type.

Another type of mixed automorphic forms of several variables can be
obtained by generalizing Siegel modular forms. Let Hm be the Siegel upper
half space of degree m on which the symplectic group Sp(m,R) acts, and let
Γ0 be a discrete subgroup of Sp(m,R). If τ : Hm → Hm′ is a holomorphic
map of Hm into another Siegel upper half space Hm′ that is equivariant with
respect to a homomorphism ρ : Γ0 → Sp(m′,R), then the equivariant pair
(τ, ρ) can be used to define mixed Siegel modular forms. The same pair can
also be used to construct a family of abelian varieties parametrized by the
Siegel modular variety Γ\Hm such that holomorphic forms of the highest
degree on the family are mixed Siegel modular forms.

In Section 4.1 we introduce mixed Hilbert modular forms and describe
some of their properties. The construction of families of abelian varieties
parametrized by a Hilbert modular variety and the interpretation of some
of their holomorphic forms in terms of mixed Hilbert modular forms are

M.H. Lee: LNM 1845, pp. 83–107, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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discussed in Section 4.2. Section 4.3 concerns mixed Siegel modular forms
as well as their connections with families of abelian varieties parametrized
by a Siegel modular variety. In Section 4.4 we extend some of the results in
Section 1.3 to the Siegel modular case by considering Fourier expansions of
Siegel modular forms associated to Mixed Siegel modular forms.

4.1 Mixed Hilbert Modular Forms

In this section we define mixed Hilbert modular forms associated to an equiv-
ariant pair and discuss some of their properties.

We fix a positive integer n, and let Hn = H × · · · × H be the Cartesian
product of n copies of the Poincaré upper half plane H. Then the usual
operation of SL(2,R) on H by linear fractional transformations induces an
action of the n-fold product SL(2,R)n of SL(2,R) on Hn. Let F be a totally
real number field with [F : Q] = n. Then there are n embeddings of F into
R, which we denote by

a 
→ a(j), F ↪→ R (4.1)

for 1 ≤ j ≤ n. These embeddings induce the embedding

ι : SL(2, F ) → SL(2,R)n (4.2)

defined by

ι

(
a b
c d

)
=
((

a(1) b(1)

c(1) d(1)

)
, . . . ,

(
a(n) b(n)

c(n) d(n)

))

for all
(
a b
c d

)
∈ SL(2, F ). Throughout this section we shall identify an element

g of SL(2, F ) with its embedded image ι(g) of SL(2,R)n under the embedding
ι in (4.2). Thus, in particular, an element g =

(
a b
c d

)
∈ SL(2, F ) acts on Hn

by

gz =
(
a(1)z1 + b(1)

c(1)z1 + d(1)
, · · · , a

(n)zn + b(n)

c(n)zn + d(n)

)

for all z = (z1, . . . , zn) ∈ Hn. If z = (z1, . . . , zn) ∈ Hn, g =
(
a b
c d

)
∈ SL(2, F )

and � = (�1, . . . , �n) ∈ Z
n, we set

N(g, z)� =
n∏
j=1

(
c(j)zj + d(j)

)�j
. (4.3)

Then we see easily that the resulting map

(g, z) 
→ N(g, z)� : SL(2, F )×Hn → C

satisfies the cocycle condition

N(g1g2, z)� = N(g1, g2z)�N(g2, z)� (4.4)
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for all z ∈ Hn and g1, g2 ∈ SL(2, F ).
Let Γ be a subgroup of SL(2, F ) whose embedded image in SL(2,R)n

is a discrete subgroup. Let ω : Hn → Hn be a holomorphic map, and let
χ : Γ → SL(2, F ) be a homomorphism satisfying the condition

ω(gz) = χ(g)ω(z)

for all g ∈ Γ and z ∈ Hn, so that (ω, χ) becomes an equivariant pair. We
assume that the the image χ(Γ ) of Γ under χ is also a discrete subgroup of
SL(2,R)n and that the parabolic elements of Γ and those of χ(Γ ) correspond.
Thus the inverse image of the set of parabolic elements of χ(Γ ) coincides
with the set of parabolic elements of Γ . Let k = (k1, . . . , kn) and m =
(m1, . . . ,mn) ∈ Z

n be elements of Z
n with ki,mi ≥ 0 for each i ∈ {1, . . . , n}.

If g ∈ Γ ⊂ SL(2, F ) and z ∈ Hn, we set

J2k,2m
ω,χ (g, z) = N(g, z)2kN(χ(g), ω(z))2m, (4.5)

where N(·, ·)(·) is as in (4.4). Using the cocycle condition in (4.3), we see that
the resulting map J2k,2m

ω,χ : Γ ×Hn → C is an automorphy factor, that is., it
satisfies the relation

J2k,2m
ω,χ (gh, z) = J2k,2m

ω,χ (g, hz) · J2k,2m
ω,χ (h, z) (4.6)

for all g, h ∈ Γ and z ∈ Hn. If k = (k, . . . , k) and m = (m, . . . ,m) for some
nonnegative integers k and m, then J2k,2m

ω,χ will also be denoted simply by
J2k,2m
ω,χ .

In order to discuss Fourier expansions we assume that f : Hn → C is a
function that satisfies the functional equation

f(gz) = J2k,2m
ω,χ (g, z)f(z)

for all g ∈ Γ and z ∈ Hn. Then we can consider the Fourier expansion of f
at the cusps of Γ as follows. Suppose first that ∞ is a cusp of Γ . We set

Λ = Λ(Γ ) = {λ ∈ F | ( 1 λ
0 1 ) ∈ Γ},

and identify it with a subgroup of R
n via the natural embedding F ↪→ R

n :
λ 
→ (λ(1), . . . , λ(n)) induced by (4.1). Since the homomorphism χ carries
parabolic elements to parabolic elements, for each λ ∈ Λ we see that

χ

(
1 λ
0 1

)
=
(

1 λχ
0 1

)

for some λχ ∈ F , and therefore we obtain

J2k,2m
ω,χ

(
( 1 λ

0 1 ) , z
)

= 1.
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Thus f is periodic with f(z + λ) = f(z) for all z ∈ H and λ ∈ Λ, and hence
it has a Fourier expansion. Let Λ∗ denote the dual lattice given by

Λ∗ = {ξ ∈ F | T (ξλ) ∈ Z for all λ ∈ Λ},

where T (ξλ) =
∑n
j=1 ξjλj . Then the Fourier expansion of f at ∞ is given by

f(z) =
∑
ξ∈Λ∗

aξe
2πiT (ξz),

where T (ξz) =
∑n

j=1 ξjzj .
Now we consider an arbitrary cusp s of Γ . Let σ be an element of

SL(2, F ) ⊂ SL(2,R)n such that σ(∞) = s. We assume that the homo-
morphism χ : Γ → SL(2, F ) can be extended to a map χ : Γ ′ → SL(2, F ),
where

Γ ′ = Γ ∪ {α ∈ SL(2, F ) | α(∞) = s, s a cusp of Γ}.
Given elements k,m ∈ Z

n, we set

Γ σ = σ−1Γσ,

(f | σ)(z) = J2k,2m
ω,χ (σ, z)−1f(σz). (4.7)

for all z ∈ Hn.

Lemma 4.1 If f : Hn → C is a function satisfying

f(gz) = J2k,2m
ω,χ (g, z)f(z)

for all g ∈ Γ and z ∈ Hn, then the function f | σ : Hn → C given by (4.7)
satisfies the functional equation

(f | σ)(gz) = J2k,2m
ω,χ (g, z)(f | σ)(z)

for all g ∈ Γ σ and z ∈ Hn.

Proof. Let g = σ−1γσ ∈ Γ σ with γ ∈ Γ . Then we have

(f | σ)(gz) = J2k,2m
ω,χ (σ, σ−1γσz)−1f(σσ−1γσz)

= J2k,2m
ω,χ (σ, σ−1γσz)−1J2k,2m

ω,χ (γ, σz)f(γσz)

= J2k,2m
ω,χ (σ−1γ, σz)f(σz),

where we used the relation

J2k,2m
ω,χ (γ, σz) = J2k,2m

ω,χ (σσ−1γ, σz)

= J2k,2m
ω,χ (σ, σ−1γσz)J2k,2m

ω,χ (σ−1γ, σz)

that follows from (4.6). However, using (4.6) again, we have
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J2k,2m
ω,χ (σ−1γσ, z) = J2k,2m

ω,χ (σ−1γ, σz)J2k,2m
ω,χ (σ, z).

Thus we obtain

(f | σ)(gz) = J2k,2m
ω,χ (σ−1γσ, z)J2k,2m

ω,χ (σ, z)−1f(σz)

= J2k,2m
ω,χ (σ−1γσ, z)(f | σ)(σz);

hence the lemma follows. ��

Since ∞ is a cusp of Γ σ, the function f | σ has a Fourier expansion at ∞
of the form

(f | σ)(z) =
∑
ξ∈Λ∗

aξe
2πiT (ξz).

This series is called a Fourier expansion of f at the cusp s, and the coefficients
aξ are called the Fourier coefficients of f at s.

Definition 4.2 Let Γ ∈ SL(2,R)n be a discrete subgroup with cusp s, and
let f : Hn → C be a holomorphic function satisfying the relation

f(gz) = J2k,2m
ω,χ (g, z)f(z).

(i) The function f is regular at s if the Fourier coefficients of f at s
satisfy the condition that ξ ≥ 0 whenever aξ �= 0.

(ii) The function f vanishes at s if the Fourier coefficients of f at s satisfy
the condition that ξ > 0 whenever aξ �= 0.

Remark 4.3 Given a cusp s of Γ there may be more than one element σ ∈
SL(2, F ) such that σ(∞) = s. However the above definition makes sense
because of the next lemma.

Lemma 4.4 Let s be a cusp of Γ and assume that σ(∞) = σ′(∞) = s for
σ, σ′ ∈ SL(2, F ). Then f | σ is regular (resp. vanishes) at ∞ if and only if
f | σ′ is regular (resp. vanishes) at ∞.

Proof. It is sufficient to prove the lemma for the case when σ′ is the identity
element in SL(2, F ) and s = ∞. Then we have σ(∞) = ∞, and hence

σ =
(
δ 0
0 δ−1

)(
1 b
0 1

)

for some b, δ ∈ F . Let Λσ = Λ(Γ σ) = Λ(σ−1Γσ). Then λ ∈ Λσ if and only if

σ

(
1 λ
0 1

)
σ−1 =

(
1 δ2λ
0 1

)
∈ Γ ;

hence we have Λσ = δ−2Λ. Therefore Λ∗
σ = δ2Λ∗, and we have the Fourier

expansions
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f(z) =
∑
ξ∈Λ∗

aξe
2πiT (ξz), (f | σ)(z) =

∑
ξ∈Λ∗σ

aσξ e
2πiT (ξz).

On the other hand, we have

(f | σ)(z) = J2k,2m
ω,χ (σ, z)−1f(σz) = J2k,2m

ω,χ (σ, z)−1f(δ2(z + b))

= J2k,2m
ω,χ (σ, z)−1

∑
ξ∈Λ∗

aξe
2πiT (δ2bξ)e2πiT (ξδ2z)

= J2k,2m
ω,χ (σ, z)−1

∑
ξ∈Λ∗σ

aξδ−2e2πiT (bξ)e2πiT (ξz)

Thus we obtain
aσξ = J2k,2m

ω,χ (σ, z)−1e2πiT (bξ)aξδ−2

for all ξ ∈ Λ∗
σ. The lemma follows from this relation. ��

Definition 4.5 Let Γ , χ, and ω be as above, and assume that the quotient
space Γ\Hn ∪ {cusps} is compact. A mixed Hilbert modular form of type
(2k, 2m) associated to Γ , ω and χ is a holomorphic function f : Hn → C

satisfying the following conditions:
(i) f(γz) = J2k,2m

ω,χ (γ, z)f(z) for all γ ∈ Γ .
(ii) f is regular at the cusps of Γ .

The holomorphic function f is a mixed Hilbert cusp form of the same type
if (ii) is replaced with the following condition:

(ii)′ f vanishes at the cusps of Γ .
If k = (k, . . . , k) and m = (m, . . . ,m) with nonnegative integers k and

m, then a mixed Hilbert modular form of type (2k, 2m) will also be called a
mixed Hilbert modular form of type (2k, 2m).

As in the case of the usual Hilbert modular forms, Koecher’s principle also
holds true in the mixed case as is described in the next proposition. Thus the
condition (ii) is not necessary for n ≥ 2.

Proposition 4.6 If n ≥ 2, then any holomorphic function f : Hn → C

satisfying the condition (i) in Definition 4.5 is a mixed Hilbert modular form
of type (2k, 2m) associated to Γ , ω and χ.

Proof. Let ε be an element in F such that the transformation z 
→ εz + b is
contained in Γ for some b. Then we have

f(εz + b) = J2k,2m
ω,χ

((
ε1/2 bε−1/2

0 ε−1/2

)
, z

)
f(z)

= ε−k11 · · · ε−knn ε−m1
χ,1 · · · ε−mχ,n f(z)

= N(ε−k)N(ε−m
χ )f(z)

if
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χ

(
ε1/2 bε−1/2

0 ε−1/2

)
=

(
ε
1/2
χ dε

−1/2
χ

0 ε
−1/2
χ

)

for some elements εχ, d ∈ F (note that the image of a parabolic element
under χ is a parabolic element). Hence, if f(z) =

∑
ξ∈Λ∗ aξe

2πiT (ξz) is the
Fourier expansion of f(z) at ∞, then we have

aεξ = aξe
2πiT (ξb)N(ε−k)N(ε−m

χ ).

Now suppose ξ = (ξ1, . . . , ξn) ∈ R
n with ξi < 0 for some i, and choose a

unit ε � 0 such that εi > 1 and εj < 1 for j �= i. Let c be any positive real
number, and consider the subseries

∞∑
m=1

aε2mξe
2πiT (ε2mξic)

= aξe
2πiT (ξb)

∞∑
m=1

N(ε−2mk)N((ε2m)−m
χ )e−2πcT (ε2mξ)

of the Fourier series of f(ic). Since we have

T (ε2mξ) = ε2mi ξi +
∑
j 	=i

ε2mj ξj ,

the above subseries cannot converge unless aξ = 0. Therefore ξ is positive
whenever aξ �= 0. ��

4.2 Families of Abelian Varieties over Hilbert Modular
Varieties

In this section we discuss connections between mixed Hilbert modular forms
and holomorphic forms on families of abelian varieties parametrized by a
Hilbert modular variety.

Let Hn, Γ , ω and χ be as in Section 4.1. Thus Γ ⊂ SL(2, F ) is a discrete
subgroup of SL(2,R)n, χ : Γ → SL(2, F ) ⊂ SL(2,R)n is a homomorphism
of groups, and ω : Hn → Hn is a holomorphic map equivariant with respect
to χ. Throughout the rest of this paper, we shall assume that

γ · (Z × Z)n ⊂ (Z × Z)n

for all γ ∈ Γ .
Consider the semidirect product Γ � (Z×Z)mn consisting of the elements

of the form

(g, (µ, ν)) = (g1, . . . , gn; (µ, ν)1, . . . (µ, ν)n)

= (g1, . . . , gn; (µ1
1, ν

1
1 ), . . . (µm1 , ν

m
1 ); . . . ; (µ1

n, ν
1
n), . . . (µmn , ν

m
n ))
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with its multiplication operation given by

(g, (µ, ν)) · (g′, (µ′, ν′)) = (gg′, (µ, ν)g′ + (µ′, ν′)),

where

(µ, ν) = ((µ, ν)1, . . . , (µ, ν)n)

= ((µ1
1, ν

1
1), . . . , (µm1 , ν

m
1 ); . . . ; (µ1

n, ν
1
n), . . . , (µ

m
n , ν

m
n ))

with µkj , ν
k
j ∈ Z for 1 ≤ j ≤ n and 1 ≤ k ≤ m, and

(µ, ν)g′ = ((µ, ν)1g′1, . . . , (µ, ν)ng
′
n)

= ((µ1
1, ν

1
1 )g′1, . . . , (µ

m
1 , ν

m
1 )g′1; . . . ; (µ

1
n, ν

1
n)g

′
n, . . . , (µ

m
n , ν

m
n )g′n)

for g′ = (g′1, . . . , g
′
n) ∈ Γ ⊂ SL(2,R)n. Then the discrete group Γ�(Z×Z)mn

operates on Hn × C
mn by

(g, (µ, ν)) · (z, ζ) (4.8)

=
(
a1z1 + b1
c1z1 + d1

, . . . ,
anzn + bn
cnzn + dn

;

µ1
1ω(z)1 + ν1

1 + ζ1
1

cχ,1ω(z)1 + dχ,1
, . . . ,

µm1 ω(z)1 + νm1 + ζm1
cχ,1ω(z)1 + dχ,1

; . . .

. . . ;
µ1
nω(z)n + ν1

n + ζ1
n

cχ,nω(z)n + dχ,n
, . . . ,

µmn ω(z)n + νmn + ζmn
cχ,nω(z)n + dχ,n

)
,

where

g = (g1, . . . , gn) ∈ Γ with gj =
(
aj bj
cj dj

)
∈ SL(2,R) for 1 ≤ j ≤ n,

(µ, ν) = ((µ1
1, ν

1
1 ), . . . , (µm1 , ν

m
1 ); . . . ; (µ1

n, ν
1
n), . . . , (µ

m
n , ν

m
n )) ∈ (Z × Z)mn,

(z, ζ) = (z1, . . . , zn; ζ1
1 , . . . , ζ

m
1 ; . . . ; ζ1

n, . . . , ζ
m
n ) ∈ Hn × C

mn,

χ(g) = (χ(g)1, . . . , χ(g)n) with χ(g)j =
(
aχ,j bχ,j
cχ,j dχ,j

)
∈ SL(2,R)

for 1 ≤ j ≤ n, and ω(z) = (ω(z)1, . . . , ω(z)n) ∈ Hn.
Now we assume that Γ does not contain elements of finite order, so that

the corresponding quotient Γ\Hn has the structure of a complex manifold,
and set

Em,nω,χ = Γ � (Z × Z)mn\Hn × C
mn, (4.9)

where the quotient is taken with respect to the operation of Γ � (Z × Z)mn

on Hn × C
mn given by (4.8). If XΓ denotes the Hilbert modular variety

Γ\Hn, then the canonical projection map Hn×C
mn → Hn induces the map

πm,nΓ : Em,nω,χ → XΓ , which is a fiber bundle over XΓ and whose fiber is the
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complex torus (C/Z × Z)mn. Now let Γ ′ = χ(Γ ) be the image of Γ under
χ regarded as a subgroup of SL(2,R)n. If 1 : Hn → Hn is the identity map
and ι : Γ ′ → SL(2,R)n is the inclusion map, the corresponding quotient
similar to (4.9) with Γ replaced with Γ ′ determines the fiber bundle Em,n1,ι

over the Hilbert modular variety XΓ ′ = Γ ′\Hn. The next proposition shows
that Em,nω,χ can be regarded as a family of abelian varieties parametrized by
XΓ .

Proposition 4.7 (i) If m = 1, the corresponding map π1,n
Γ : E1,n

ω,χ → XΓ

is a fiber bundle over the Hilbert modular variety XΓ = Γ\Hn whose fiber
C
n/(Z × Z)n has a canonical structure of an abelian variety.

(ii) If m > 1, the space Em,nω,χ is an m-fold fiber power of the fiber bundle
E1,n
ω,χ in (i) over XΓ

Proof. These statements are proved in [92, Proposition 7.4] for the case of
Em,n1,ι . The proof for the general case follows from the observation that Em,nω,χ

can be obtained by pulling back the fiber bundle Em,n1,ι over XΓ ′ = Γ ′\Hn =
χ(Γ )\Hn via the natural map XΓ → Xχ(Γ ) induced by ω : Hn → Hn so that
the diagram

Em,nω,χ −−−−→ Em,nχ(Γ ),id,id)
)

XΓ −−−−→ Xχ(Γ )

is commutative (see also [61, 69], [108, Chapter IV]). ��

Given a nonnegative integer ν, let J2,2ν
ω,χ : Γ × Hn → C be the auto-

morphy factor described in (4.5), that is, the automorphy factor J2k,2l
ω,χ for

k = (1, . . . , 1) and m = (ν, . . . , ν). Then the discrete subgroup Γ ⊂ G oper-
ates on Hn × C by

g · (z, ζ) = (gz, J2,2ν
ω,χ (g, z)ζ) (4.10)

for all g ∈ Γ and (z, ζ) ∈ Hn × C. We set

L2,2ν
ω,χ = Γ\Hn × C,

where the quotient is taken with respect to the operation given by (4.10).
Then the natural projection Hn × C → Hn induces on L2,2ν

ω,χ the structure
of a line bundle over the arithmetic variety XΓ = Γ\Hn, and holomorphic
sections of this bundle can be identified with holomorphic functions f : Hn →
C satisfying

f(gz) = J2,2ν
ω,χ (g, z)f(z)

for all g ∈ Γ and z ∈ Hn.

Theorem 4.8 Let Ω(2ν+1)n be the sheaf of holomorphic (2ν + 1)n-forms on
E2,2ν
ω,χ . Then the space of holomorphic sections of the line bundle L2,2ν

ω,χ over
XΓ is canonically isomorphic to the space H0(E2,2ν

ω,χ , Ω
(2ν+1)n) of holomor-

phic (2ν + 1)n-forms on E2,2ν
ω,χ .
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Proof. From the construction of Em,nω,χ in (4.9) it follows that a holomorphic
(2ν+1)n-form on Em,nω,χ can be regarded as a holomorphic (2ν+1)n-form on
Hn × C

2νn that is invariant under the operation of Γ � (Z × Z)2νn given by
(4.8). Since (2ν + 1)n is the complex dimension of the space Hn × C

2νn, a
holomorphic (2ν + 1)n-form on Hn × C

2νn is of the form

Θ = f̃(z, ζ)dz ∧ dζ,

where

(z, ζ) = (z1, . . . , zn; ζ1
1 , . . . , ζ

2ν
1 ; . . . ; ζ1

n, . . . , ζ
2ν
n ) ∈ Hn × C

2νn,

dz = dz1 ∧ · · · ∧ dzn,

dζ = dζ1
1 ∧ · · · ∧ dζ2ν

1 ∧ · · · ∧ dζ1
n ∧ · · · ∧ dζ2ν

n ,

and f̃ is a holomorphic function on Hn×C
2νn. Given a fixed point z0 ∈ Hn,

the holomorphic form Θ descends to a holomorphic 2νn-form on the corre-
sponding fiber of the fiber bundle Em,nω,χ → XΓ = Γ\Hn. Since the complex
dimension of the fiber is 2νn, the dimension of the space of holomorphic 2νn-
forms is one. Thus the mapping ζ 
→ f̃(z, ζ) is a holomorphic 2νn-variable
function with 2νn independent variables, and therefore must be constant.
Hence the function f̃(z, ζ) depends only on z, and f̃(z, ζ) = f(z) where f is
a holomorphic function on Hn. Given (g, (µ, ν)) ∈ Γ � (Z × Z)2νn as above,
we have the operations

dzj | (g, (µ, ν)) = (cjzj + dj)−2dzj , 1 ≤ j ≤ n,

dζkj | (g, (µ, ν)) = (cχ,jω(z)j + dχ,j)−1dζkj +
n∑
i=1

Fi(z, ζ) dzi

for 1 ≤ k ≤ 2ν, 1 ≤ j ≤ n, and some functions Fi(z, ζ). Thus the operation
of (g, (µ, ν)) on Θ is given by

Θ | (g, (µ, ν)) = f(gz)
n∏
j=1

(cjzj + dj)−2(cχ,jω(z)j + dχ,j)−2νdz ∧ dζ.

Hence it follows that

f(gz) = f(z)
n∏
j=1

(cjzj + dj)2(cχ,jω(z)j + dχ,j)2ν

= f(z)J2,2ν
ω,χ (g, z),

and therefore f can be identified with a holomorphic section of L2,2ν
ω,χ . ��

Corollary 4.9 Let A2,2ν(Γ, ω, χ) be the space of mixed Hilbert modular
forms of type (2, 2ν) associated to Γ , ω and χ. If n ≥ 2, then there is a
canonical isomorphism

A2,2ν(Γ, ω, χ) ∼= H0(E2,2ν
ω,χ , Ω

(2ν+1)n).
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Proof. The corollary follows from Theorem 4.8 and Proposition 4.6. ��

Arithmetic varieties such as the Hilbert modular variety XΓ = Γ\Hn

considered above can be regarded as connected components of Shimura va-
rieties (cf. [21]). Mixed Shimura varieties generalize Shimura varieties, and
they play an essential role in the theory of compactifications of Shimura va-
rieties (cf. [3, 38, 39]). A typical mixed Shimura variety is essentially a torus
bundle over a family of abelian varieties parametrized by a Shimura variety
(see [94, 103]). A Shimura variety and a family of abelian varieties which it
parametrizes can also be considered as special cases of mixed Shimura vari-
eties. We now want to discuss extensions of the results obtained above to the
compactifications of families of abelian varieties using the theory of toroidal
compactifications of mixed Shimura varieties developed in [3] (see also [38]).

Let πΓ : E2,2ν
ω,χ → XΓ be the family of abelian varieties parametrized

by an arithmetic variety given by (4.9). Using the language of Shimura va-
rieties, E2,2ν

ω,χ can be regarded as the mixed Shimura variety MKf (P,X )(C)
associated to the group

P = ResF/QSL(2, F ) � V4νn

and the subgroup Kf ⊂ P (Af ) with Kf ∩ P (Q) = Γ � (Z × Z)2νn, where
Res is Weil’s restriction map and V4νn is a Q-vector space of dimension 4νn.
Thus X is a left homogeneous space under the subgroup P (R) ·U(C) ⊂ P (C),
where U is a subgroup of the unipotent radicalW of P , and MKf (P,X )(C) =
P (Q)\X×(P (Af )/Kf ), where the operation of P (Q) on X is via χ and ω (see
[94, 103] for details). The arithmetic variety XΓ is the mixed Shimura variety
MKf ((P,X )/W )(C), which is in fact a pure Shimura variety. Furthermore,
the mapping πΓ can be considered as the natural projection map

MKf (P,X )(C) →MKf ((P,X )/W )(C).

There are number of ways of compactifying Shimura varieties. Among those
are Baily-Borel compactifications (cf. [5]) and toroidal compactifications. The
toroidal compactifications of mixed Shimura varieties were constructed by
Pink in [103]. Let XΓ be the Baily-Borel compactification of XΓ , and denote
by

Ẽ2,2ν
ω,χ = MKf (P,X ,S)(C)

the toroidal compactification of E2,2ν
ω,χ = MKf (P,X )(C) associated to a Kf -

admissible partial cone decomposition S for (P,X ). Then πΓ induces the
mapping π̃Γ : Ẽ2,2ν

ω,χ → XΓ of compactifications (see [103] for details).

Theorem 4.10 Let Ω(2ν+1)n(log ∂Ẽ) be the sheaf of holomorphic (2ν+1)n-
forms on Ẽ2,2ν

ω,χ with logarithmic poles along the boundary

∂Ẽ = Ẽ2,2ν
ω,χ − E2,2ν

ω,χ .
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Then there exists an extension L2,2ν

ω,χ of L2,2ν
ω,χ to the Baily-Borel compactifica-

tion XΓ of XΓ , which depends only on (P,X )/U up to isomorphism, such
that there is a canonical isomorphism

Ω(2ν+1)n(log ∂Ẽ) ∼= π̃∗
ΓL

2,2ν

ω,χ

of sheaves, where the line bundle L2,2ν

ω,χ is regarded as an invertible sheaf.

Proof. By Proposition 8.1 in [103], there is an invertible sheaf F on the Baily-
Borel compactification XΓ of X such that there is a canonical isomorphism

π∗
ΓF ∼= Ω(2ν+1)n(log ∂Ẽ).

On the other hand, using Theorem 4.8 we obtain a canonical isomorphism
π∗
ΓL2,2ν

ω,χ
∼= Ω(2ν+1)n. Thus it follows that L2,2ν

ω,χ = F is the desired extension
of L. ��

Remark 4.11 Let X̃Γ be the toroidal compactification of XΓ , and let L̃2,2ν
ω,χ

be the canonical extension of L2,2ν
ω,χ to X̃Γ . Let ι : XΓ → XΓ be the canonical

embedding of XΓ into its Baily-Borel compactification XΓ . Then the image
of the restriction map

H0(X̃Γ , L̃2,2ν
ω,χ ) → H0(XΓ ,L2,2ν

ω,χ ) ∼= H0(XΓ , ι∗L2,2ν
ω,χ )

is the subspace of sections regular at infinity, and hence it is the space of
sections in H0(XΓ , ι∗L2,2ν

ω,χ ) which vanish on XΓ − XΓ , i.e., the space of
mixed Hilbert modular cusp forms (see [39, p. 40], [5, Section 10]).

4.3 Mixed Siegel Modular Forms

In this section we introduce mixed Siegel modular forms, construct a family
of abelian varieties parametrized by a Siegel modular variety, and show that
holomorphic forms of the highest degree on such a family are mixed Siegel
modular forms.

Given a positive integer m, let Sp(m,R) and Hm be the symplectic group
and the Siegel upper half space, respectively, of degree m. Then Sp(m,R)
acts on Hm as usual by

(
a b
c d

)
· z = (az + b)(cz + d)−1

for all z ∈ Hm and
(
a b
c d

)
∈ Sp(m,R). Let Γ be an arithmetic subgroup of

Sp(m,R), and let m′ be another positive integer. Let τ : Hm → Hm′ be
a holomorphic map, and assume that there is a homomorphism ρ : Γ →
Sp(m′,R) such that τ is equivariant with respect to ρ, that is,
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τ(γz) = ρ(γ)τ(z)

for all γ ∈ Γ and z ∈ Hm. If ν is a positive integer and g =
(
a b
c d

)
∈ Sp(ν,R),

we shall write
j(g, z) = det(cz + d) (4.11)

for z ∈ Hν . Then the resulting map j : Sp(m,R) × Hm → C satisfies the
cocycle condition

j(gg′, z) = j(g, g′z)j(g′, z)

for all g, g′ ∈ Sp(m,R) and z ∈ Hm.

Definition 4.12 Let k and � be nonnegative integers. A holomorphic func-
tion f : Hm → C is a mixed Siegel modular form of weight (k, �) associated
to Γ , τ and ρ if

f(γz) = j(γ, z)kj(ρ(γ), τ(z))�f(z)

for all z ∈ Hm and γ ∈ Γ ⊂ Sp(m,R).

Note that, if � = 0 and n ≥ 2 in Definition 4.12, the function f is a usual
Siegel modular form for Γ of weight k. We shall denote by Mk(Γ ) the space
of Siegel modular forms for Γ of weight k and by Mk,�(Γ, τ, ρ) the space of
mixed Siegel modular forms of type (k, �) associated to Γ , τ and ρ. Thus we
see that Mk,0(Γ, τ, ρ) = Mk(Γ ).

Example 4.13 Let Γ ′ be an arithmetic subgroup of Sp(m′,R) such that
ρ(Γ ) ⊂ Γ ′, and let φ : Hm′ → C be an element of M�(Γ ′). We denote
by τ∗φ : Hm → C the pullback of φ via τ , that is, the function defined by
(τ∗φ)(z) = φ(τ(z)) for all z ∈ Hm. If f : Hm → C is an element of Mk(Γ ),
then we have

(f · (τ∗φ))(γz) = f(γz)φ(τ(γz))
= f(γz)φ(ρ(γ)τ(z))

= j(γ, z)kf(z) · j(ρ(γ), τ(z))�φ(τ(z)),

= j(γ, z)k · j(ρ(γ), τ(z))�(f · (τ∗φ))(z)

for all γ ∈ Γ and z ∈ Hm, and hence f · (τ∗φ) is an element of Mk,�(Γ, ρ, τ).
Thus we obtain a linear map Lφ,τ : Mk(Γ ) → Mk,�(Γ, ρ, τ) sending f to
f · (τ∗φ).

We assume that the arithmetic subgroup Γ ⊂ Sp(m,R) is torsion-free,
so that the corresponding quotient space X = Γ\Hm has the structure of
a complex manifold. Then we can construct a family of abelian varieties
parametrized by the Siegel modular variety X = Γ\Hm as described below.

Let L ⊂ C
m′ be a lattice in C

m′ , and let Γ0 be a torsion-free arithmetic
subgroup of Sp(m′,R) such that

Γ0 · L ⊂ L, ρ(Γ ) ⊂ Γ0. (4.12)
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We shall first describe the standard family Y0 of abelian varieties over
X0 = Γ0\Hm′ . Let Sp(m′,R) � R

2m′ denote the semidirect product whose
multiplication operation is given by

((
a b
c d

)
, (u, v)

)((
a′ b′

c′ d′

)
, (u′, v′)

)

=
((

a b
c d

)
·
(
a′ b′

c′ d′

)
, (u, v)

(
a′ b′

c′ d′

)
+ (u′, v′)

)

for u, v, u′, v′ ∈ R
m′ and

(
a b
c d

)
,

(
a′ b′

c′ d′

)
∈ Sp(m′,R).

Then Sp(m′,R) � R
2m′ acts on Hm′ × C

m′ by
((

a b
c d

)
, (u, v)

)
· (z, ζ) (4.13)

= ((az + b)(cz + d)−1, (ζ + uz + v)(cz + d)−1)

for (z, ζ) ∈ Hm′ × C
m′ . By identifying C

m′ with R
2m′ we may regard the

lattice L as a subgroup of R
2m′ . Then the condition Γ0 · L ⊂ L in (4.12)

implies that the action of Sp(m′,R) � R
2m′ on Hm′ ×C

m′ induces an action
of Γ0 � L. We denote the associated quotient space by

Y0 = Γ0 � L\Hm′ × C
m′ .

Then the natural projection Hm′ × C
m′ → Hm induces the map

π0 : Y0 → X0 = Γ0\Hm′ ,

which has the structure of a fiber bundle over the Siegel modular variety X0

with fiber C
m′/L. Each fiber of π0 isomorphic to the complex torus C

m′/L in
fact has the structure of an abelian variety, so that Y0 is a family of abelian
varieties parametrized by X0. Such a family of abelian varieties is called a
standard family (see e.g. [108, Chapter 4]).

Using the condition ρ(Γ ) ⊂ Γ0 in (4.12), we see that the holomorphic
map τ : Hm → Hm′ induces the morphism τX : X → X0 of Siegel modular
varieties. We denote by Y be the fiber bundle over X obtained by pulling the
standard family Y0 back via τX so that the following diagram is commutative:

Y = τ∗XY0 −−−−→ Y0

π

)
)π0

X
τX−−−−→ X0

(4.14)

Then the fiber of π : Y → X is the same as that of π0 : Y0 → X0, and hence
Y is a family of abelian varieties, each of which is isomorphic to C

m′/L,
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parametrized by the Siegel modular variety X = Γ\Hm. Given a positive
integer ν, we denote by Y ν the ν-fold fiber power of Y over X , that is, the
fiber product over X of the ν copies of Y . Thus Y ν can be regarded as the
quotient space

Y ν = Γ � Lν\Hm × C
m′ν , (4.15)

where the quotient is taken with respect to the operation described as follows.
Let L = L1 + L2 ⊂ C

m′ with L1, L2 ⊂ R
m′ be the natural decomposition

of the lattice L in (4.12) corresponding to the identification of C
m′ with

R
m′ ⊕ R

m′ = R
2m′ . Then, using (4.13) and the fact that Y is the pullback

bundle in (4.14), we see that the operation of the discrete subgroup Γ � Lν

of Sp(m,R) × R
2m′ν on Hm × C

m′ν is given by

(γ, (u, v)) · (z, ζ) = (γz, (ζ(1) + u1τ(z) + v1)(cρτ(z) + dρ)−1, . . . (4.16)

. . . , (ζ(ν) + uντ(z) + vν)(cρτ(z) + dρ)−1)

for all γ ∈ Γ with

ρ(γ) =
(
aρ bρ
cρ dρ

)
∈ Sp(m′,R),

ζ = (ζ(1), . . . , ζ(ν)) ∈ (Cm
′
)ν , and

u = (u1, . . . , uν) ∈ (L1)ν , v = (v1, . . . , vν) ∈ (L2)ν .

Theorem 4.14 Let πν : Y ν → X with X = Γ\Hm be the ν-fold fiber power
of the family of abelian varieties π : Y → X constructed by (4.14), and let
〈m〉 = m(m + 1)/2 = dimC Hm. Then the space H0(Y ν , Ω〈m〉+m′ν) of all
holomorphic forms of degree 〈m〉 + m′ν on Y ν is canonically isomorphic to
the space Mm+1,ν(Γ, τ, ρ) of all mixed Siegel modular forms on Hm of type
(m+ 1, ν) associated to Γ , τ and ρ.

Proof. Note that Y ν is given by the quotient (4.15), and let z = (z1, . . . , z〈m〉)
and ζ = (ζ(1), . . . , ζ(ν)) with ζ(j) = (ζ(j)

1 , . . . , ζ
(j)
m′ ) for 1 ≤ j ≤ ν be the canon-

ical coordinate systems for Hm and C
m′ν , respectively. Then a holomorphic

form Φ of degree 〈m〉+m′ν on Y can be regarded as a holomorphic form on
Hm × C

m′ν of the same degree that is invariant under the action of Γ � Lν

given by (4.16). Thus there is a holomorphic function fΦ(z, ζ) on Hm×C
m′ν

such that
Φ(z, ζ) = fΦ(z, ζ)dz ∧ dζ(1) ∧ · · · ∧ dζ(ν), (4.17)

where dz = dz1 ∧ · · · ∧ dz〈m〉 and dζ(j) = dζ
(j)
1 ∧ · · · ∧ dζ

(j)
m′ for 1 ≤ j ≤ ν.

Given an element z0 ∈ Hm, the restriction of the form Φ to the fiber Y νz0 over
the corresponding point in X = Γ\Hm is the holomorphic m′ν-form

Φ(z0, ζ) = fΦ(z0, ζ)dζ(1) ∧ · · · ∧ dζ(ν),

where ζ 
→ fΦ(z0, ζ) is a holomorphic function on Y νz0 . However, Y νz0 is iso-
morphic to the complex torus C

m′/L, and therefore is compact. Since any
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holomorphic function on a compact complex manifold is constant, we see that
fΦ is a function of z only. Thus (4.17) can be written in the form

Φ(z, ζ) = f̃Φ(z)dz ∧ dζ(1) ∧ · · · ∧ dζ(ν), (4.18)

where f̃Φ is a holomorphic function on Hm. Now we consider the action of
an element (γ, (u, v)) ∈ Γ � Lν on Φ given by Φ 
→ Φ ◦ (γ, (u, v)). By (4.16),
for the differential form dz with z ∈ Hm, we have

dz ◦ (γ, (u, v)) = d(γz) = det(cz + d)−m−1dz. (4.19)

On the other hand, using (4.16) again, we obtain

(dζ(1) ∧ . . . ∧ dζ(ν)) ◦ (γ, (u, v)) (4.20)

=
ν∧
j=1

d((ζ(j) + ujτ(z) + vj)(cρτ(z) + dρ)−1)

=
ν∧
j=1

(
det(cρτ(z) + dρ)−1dζ(j)

)

= det(cρτ(z) + dρ)−νdζ.

Thus by substituting (4.19) and (4.20) into (4.18) we see that

(Φ ◦ (γ, u, v))(z, ζ) = f̃Φ(γz) det(cz + d)−m−1 det(cρτ(z) + dρ)−ν (4.21)

× dz ∧ dζ(1) ∧ . . . ∧ dζ(ν).

Now using the fact that Φ is (Γ � Lν)-invariant, from (4.18) and (4.21) we
obtain

f̃Φ(γz) = det(cz + d)m+1 det(cρτ(z) + dρ)ν f̃Φ(z)

= j(γ, z)m+1j(ρ(γ), τ(z))ν f̃Φ(z);

hence by Definition 4.12 we see that f̃Φ ∈ Mm+1,ν(Γ, τ, ρ). On the other
hand, given an element f of Mm+1,ν(Γ, τ, ρ), we define the holomorphic form
Φf on Hm × C

m′ν by
Φf (z, ζ) = f(z)dz ∧ dζ.

Then for each (γ, (u, v)) ∈ Γ � Lν we have

(Φf ◦ (γ, u, v))(z, ζ) = f(γz) det(cz + d)−m−1

× det(cρτ(z) + dρ)−νdz ∧ dζ(1) ∧ . . . ∧ dζ(ν)

= f(z)dz ∧ dζ(1) ∧ . . . ∧ dζ(ν) = Φf (z, ζ)

for all (z, ζ) ∈ Hm ×C
m′ν . Therefore the map f 
→ Φf gives an isomorphism

between the spaces Mm+1,ν(Γ, τ, ρ) and H0(Y0, Ω
〈m〉+m′ν). ��
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4.4 Fourier Coefficients of Siegel Modular Forms

In Example 4.13 we described a map Lφ,τ : Mk(Γ ) → Mk,�(Γ, ρ, τ) that car-
ries a Siegel modular form to a mixed Siegel modular form. Thus the adjoint
of Lφ,τ associates a Siegel modular form L∗

φ,τf to a mixed Siegel modular
form f . In this section we discuss connections of the Fourier coefficients of a
Siegel modular form of the form L∗

φ,τf with special values of certain Dirichlet
series, when τ is the Eichler embedding.

Siegel modular forms are holomorphic functions on Siegel upper half
spaces. We can consider C∞ Siegel modular forms by using C∞ functions
instead. We shall first describe below a method of obtaining Siegel cusp forms
from C∞ Siegel modular forms.

Let Ξ be the set of all symmetric integral matrices of order n with even
diagonal entries, and set

Ξ+
0 = {ξ ∈ Ξ | ξ ≥ 0}, Ξ+ = {ξ ∈ Ξ | ξ > 0}.

Let Γ be a discrete subgroup of Sp(n,R), and let b be the smallest positive
integer such that the set{(

1 bu
0 1

) ∣∣∣∣ u ∈Mn(Z), ut = u

}
(4.22)

is contained in Γ , where Mn(Z) is the set of n × n matrices with entries in
Z. We set

GSp+(n,Q) (4.23)

=
{
g ∈M2n(Q)

∣∣∣∣ gt
(

0 −1
1 0

)
g = r(g)

(
0 −1
1 0

)
, r(g) > 0

}
,

so that Sp(n,Q) ⊂ GSp+(n,Q). Let f : Hn → C be an element of Mk(Γ ),
that is, a Siegel modular form of weight k for Γ . Then, since Γ contains the
set in (4.22), f is invariant under the map z 
→ z + u on Hn; hence f has a
Fourier expansion of the form

f(z) =
∑

ξ∈b−1Ξ+
0

c(ξ)e(ξz) (4.24)

for all z ∈ Hn, where e(∗) = e2πiTr(∗). If δ ∈ Sp(n,Q), then Γ (δ) = δ−1Γδ
is a congruence subgroup of Sp(n,R) and f |k δ is an element of Mk(Γ (δ))
that has a Fourier expansion of the form

(f |k δ)(z) =
∑

ξ∈b−1
δ Ξ+

0

cδ(ξ)e(ξz)

with cδ(ξ) ∈ C and bδ ∈ N; here

(f |k δ)(z) = j(δ, z)−kf(z)

for δ =
(
a b
c d

)
∈ Sp(n,R) with j(δ, z) as in (4.5).
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Definition 4.15 An element f of Mk(Γ ) is a Siegel cusp form of weight k
for Γ if for each δ ∈ Sp(n,Q) its Fourier expansion is of the form

(f |k δ)(z) =
∑

ξ∈b−1
δ Ξ+

cδ(ξ)e(ξz)

for all z ∈ Hn. We denote by Sk(Γ ) the complex vector space of all Siegel
cusp forms of weight k for Γ .

Given a positive integer N , we now consider the congruence subgroup

Γ0(N) =
{
γ =

(
a b
c d

)
∈ Sp(n,Z)

∣∣∣∣ c ≡ 0 (mod N)
}
, (4.25)

and set
Mk(N) = Mk(Γ0(N)), Sk(N) = Sk(Γ0(N)).

Then a Siegel modular form in Mk(N) has a Fourier expansion of the form
(4.24) with b = 1. If f ∈ Sk(N), h ∈ Mk(N) and z = x + iy, then the
Petersson inner product 〈f, h〉k is given by

〈f, h〉k =
∫
F
f(z)h(z) det ykd×z, (4.26)

where F ⊂ Hn is a fundamental domain for Γ0(N) and d×z = det y−n−1dz.

Definition 4.16 A C∞ function F : Hn → C is called a C∞ Siegel modular
form of weight k for Γ0(N) if it satisfies

F (γz) = det(cz + d)kF (z)

for all γ =
(
a b
c d

)
∈ Γ0(N) and z ∈ Hn. We denote by M∞

k (N) the space of
all C∞ Siegel modular forms of weight k for Γ0(N).

If F ∈ M∞
k (N), then as a function of x it has a Fourier expansion of the

form
F (z) =

∑
ξ∈Ξ

Aξ(y)e(ξx), (4.27)

where the Aξ(y) are C∞ functions of y. We can also extend the Petersson
inner product (4.26) to C∞ Siegel modular forms so that for f ∈ Sk(N) and
F ∈ M∞

k (N) their inner product 〈f, F 〉∞k is given by

〈f, F 〉∞k =
∫
F
f(z)F (z) det ykd×z, (4.28)

where F and d×z are as in (4.26). We denote by Γ n the Gamma function of
degree n given by

Γ n(s) =
∫
Y

e−Tr(y) det ysd×y =
∫
Y

e−Tr(y) det ys−(n+1)/2dy, (4.29)

where Y = {y ∈Mn(R) | ty = y > 0}.
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Theorem 4.17 Let F be an element of M∞
k (N) of bounded growth with

k ≥ 2n whose Fourier expansion is given by (4.27), and let F̃ : Hn → C be
the function defined by the series

F̃ (z) =
∑
ξ∈Ξ+

a(ξ)e(ξz)

for all z ∈ Hn, where

a(ξ) =
πn(k−(n+1)/2) det(4ξ)k−(n+1)/2

Γ n(k − (n+ 1)/2)
(4.30)

×
∫
Y

Aξ(y)e(iξy) det yk−1−ndy.

Then F̃ is a Siegel cusp form in Sk(N) and

〈h, F 〉∞k = 〈h, F̃ 〉k
for all h ∈ Sk(N), where 〈 , 〉k and 〈 , 〉∞k are the Petersson inner products
given by (4.26) and (4.28), respectively.

Proof. See Theorem 4.2 in [101, Chapter 2]. ��
We now want to consider a special type of equivariant holomorphic maps

of Siegel upper half spaces known as Eichler embeddings. Let σ be a real
symmetric positive definite r × r matrix with entries in Q. We define the
holomorphic map τσ : Hn → Hnr and the homomorphism ρσ : Sp(n,R) →
Sp(nr,R) by

τσ(z) = σ ⊗ z, ρσ(g) =
(

ε⊗ a σ ⊗ b
σ−1 ⊗ c ε⊗ d

)

for all z ∈ Hn and

g =
(
a b
c d

)
∈ Sp(n,R),

where ε is the r × r identity matrix. The map τσ is known as the Eichler
embedding (cf. [25, §II.4]) associated to σ, and it is equivariant with respect to
ρσ. Let Γ0(N) ⊂ Sp(n,Z) be the congruence subgroup given by (4.25) for the
symplectic group Sp(n,R), and let Γ ′ be an arithmetic subgroup of Sp(nr,R)
such that ρσ(Γ0(N)) ⊂ Γ ′. Let φ : Hnr → C be a Siegel modular form of
weight � for Γ ′ ⊂ Sp(nr,R), and let τ∗σφ be its pullback via τσ : Hn → Hnr.
Thus τ∗σφ is the function on Hn given by τ∗σφ(z) = φ(τσ(z)) for z ∈ Hn. As
discussed in Example 4.13, we obtain a linear map

Lφ,τσ : Mk(N) → Mk,�(Γ0(N), τσ, ρσ)

given by
(Lφ,τσf)(z) = (f · τ∗σφ)(z) = f(z)φ(τσ(z))

for all z ∈ Hn.
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Lemma 4.18 The image Lφ,τσf of each f ∈ Mk(N) under Lφ,τσ is a Siegel
modular form for Γ0(N) of weight k + �r, that is, Lφ,τσf ∈ Mk+�r(N).

Proof. For each γ =
(
a b
c d

)
∈ Γ0(N) and z ∈ Hn we have

τ∗σφ(γz) = φ(τσ(γz)) = φ(ρσ(γ)τσ(z)) (4.31)

= det((σ−1 ⊗ c)(σ ⊗ z) + ε⊗ d)�φ(τσ(z))

= det(cz + d)�rτ∗σφ(z) = j(γ, z)�rτ∗σφ(z).

Thus for each f ∈ Mk(Γ0(N)) we have

Lφ,τσf(γz) = f(γz) · (τ∗σφ)(γz)

= j(γ, z)kf(z) · j(γ, z)�rτ∗σφ(z)

= j(γ, z)k+�rLφ,τσf(z),

and hence the lemma follows. ��

By Lemma 4.18, if we restrict the linear map Lφ,τσ to the space Sk(N)
of Siegel cusp forms on Hn for Γ0(N) of weight k, then we obtain the linear
map

Lφ,τσ : Sk(N) → Sk+�r(N)

given by Lφ,τσ(h) = h · (τ∗σφ) for h ∈ Sk(N). By taking the adjoint with
respect to the Petersson inner product, we have the linear map

L∗
φ,τσ : Sk+�r(N) → Sk(N)

such that
〈Lφ,τσ(h), f〉k+�r = 〈h,L∗

φ,τσ(f)〉k
for h ∈ Sk(N) and f ∈ Sk+�r(N). The following lemma will be used in the
next section.

Lemma 4.19 Let Γ ′ ⊂ Sp(nr,R) be an arithmetic subgroup containing
ρσ(Γ0(N)) as above, and let φ : Hnr → C be an element of M�(Γ ′). If
f : Hn → C is an element of Sk+�r(N), then the function

F (z) = f(z)φ(τσ(z))(det(Im z))�r (4.32)

for z ∈ Hn is a C∞ Siegel modular form of weight k for Γ0(N), where Im z
is the imaginary part of the matrix z.

Proof. Given γ =
(
a b
c d

)
∈ Γ0(N) and z ∈ Hn we have

f(γz) = det(cz + d)k+�rf(z), det(Im γz) = | det(cz + d)|−2 det(Im z).

On the other hand by (4.31) we get
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φ(τσ(γz)) = det(cz + d)�r · φ(τσ(z)).

Since | det(cz + d)|2 = det(cz + d) · det(cz + d), we see that

F (γz) = f(γz)φ(τσ(γz))(det(Im γz))�r

= det(cz + d)k+�r · det(cz + d)�r · | det(cz + d)|−2�r · F (z)

= det(cz + d)kF (z),

and hence the lemma follows. ��

For the families of abelian varieties determined by Eichler embeddings we
have the following result.

Proposition 4.20 Let πσ : Yσ → Xσ be the family of abelian varieties over
Xσ = Γ0(N)\Hn associated to the equivariant pair (τσ , ρσ), and let (Yσ)ν

be its ν-fold fiber power. If 〈n〉 = n(n + 1)/2 = dimC Hn, then the space
H0((Yσ)ν , Ω〈n〉+nrν) of holomorphic forms on (Yσ)ν of degree 〈n〉 + nrν is
canonically embedded in the space Mn+rν+1(N) of Siegel modular forms on
Hn for Γ0(N) of weight n+ rν + 1.

Proof. By Theorem 4.14 the spaceH0((Yσ)ν , Ω〈n〉+nrν) of holomorphic forms
on (Yσ)ν of degree n(n + 1)/2 + nrν is canonically isomorphic to the space
Mn+1,ν(Γ0(N), τσ, ρσ) of mixed Siegel modular forms of type (n + 1, ν) as-
sociated to Γ0(N), τσ and ρσ. However, using the arguments in the proof
of Lemma 4.18 we see that Mn+1,ν(Γ0(N), τσ, ρσ) is embedded in the space
Mn+rν+1(N), and therefore the proposition follows. ��

Let q be a prime with q � N , and let

∆q =
{(

a b
c d

)
∈ GSp+(n,Q) ∩GL(2n,Z(q))

∣∣∣∣ c ≡ 0 (mod q)
}
,

where Z(q) is the ring of rational numbers whose denominators are prime to
q and GSp+(n,Q) is as in (4.23). Let χ1 be a Dirichlet character modulo N ,
and set χ(g) = χ1(det a) for g =

(
a b
c d

)
∈ ∆q. If h : Hn → C is a function and

if α ∈ ∆q, then we set

(h |k α) = χ(α)j(α, z)−kh(z)

for all z ∈ Hn. Let α ∈ ∆q, and assume that the double coset Γ0(N)αΓ0(N)
has a decomposition of the form

Γ0(N)αΓ0(N) =
d∑
i=1

ai · Γ0(N)αi

for some α1, . . . , αd ∈ GSp+(n,Q) and a1, . . . , ad ∈ C. The the associated
Hecke operator on the space Sk(N) of Siegel modular forms for Γ0(N) of
weight k is given by
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TN (α)f =
d∑
i=1

ai(f |k αi)

for all f ∈ Sk(N). We now consider the Poincaré series of two variables
P k(z, w, α, s) defined by

P k(z, w, α, s) =
∑

γ∈Γ0(N)αΓ0(N)

(cz + d)−k|j(γ, z)|−2

× det(γz + w)k| det(γz + w)|−2s

for s ∈ C and γ =
(
a b
c d

)
. Then it is known that the function

w 
→ P k(z, w, α, s)

is a Siegel cusp form for Γ0(N) of weight k (cf. [101]).

Lemma 4.21 Let f : Hn → C be a Siegel cusp form for Γ0(N) of weight k.
Then we have

〈P k(−z, w, α, s), f(w)〉k = µ(s)(TN (α)f)(z)

for all z ∈ Hn with

µ(s) =2n+1+n(n+1)/2−2nsi−nkπn(n+1)/2 (4.33)

× Γ n(k + s− (n+ 1)/2)Γ n(k + s)−1,

where Γ n(·) denotes the Gamma function given by (4.29).

Proof. See [101, p. 73]. ��

Proposition 4.22 Let F̃ (z) be the Siegel cusp form for Γ0(N) associated to
the C∞ Siegel modular form F (z) given by (4.32). Then we have L∗

φ,τσ
f = F̃ .

Proof. Let 〈 , 〉m denote the Petersson inner product for Siegel modular forms
of weight m, and let w = u+ iv. Then we have

〈P k(−z, w, α, s),L∗
φ,τσf(w)〉k

= 〈Lφ,τσP k(−z, w, α, s), f(w)〉k+�r
= 〈φ(τσ(w))P k(−z, w, α, s), f(w)〉k+�r

=
∫
F
φ(τσ(w))P k(−z, w, α, s)f(w) det vk+�r−n−1dudv

=
∫
F
P k(−z, w, α, s)(f(w)φ(τσ(w)) det v�r) det vk−n−1dudv

= 〈P k(−z, w, α, s), F (w)〉∞k ,
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where F ⊂ Hn is a fundamental domain for Γ0(N). Thus by Theorem 4.17
we obtain

〈P k(−z, w, α, s),L∗
φ,τσf(w)〉k = 〈P k(−z, w, α, s), F̃ (w)〉k

for all z, w ∈ Hn, and hence by Lemma 4.21 we have

µ(s)(TN (α)L∗
φ,τσf)(z) = µ(s)(TN (α)F̃ )(z)

for all z ∈ Hn, where µ(s) is a nonzero number given by (4.33). Therefore
the proposition follows by taking α to be the identity matrix in ∆q. ��

Let φ : Hnr → C be an element of M�(Γ ′) with Γ ′ ⊃ ρσ(Γ0(N)) as
above so that the function τ∗σ(φ) : Hn → C is an element of M�r(N). For
the elements ξ ∈ Ξ+, let A(ξ) and B(ξ) be the Fourier coefficients of f ∈
Sk+�r(N) and τ∗σ(φ) ∈ M�r(N), respectively, so that

f(z) =
∑
ξ∈Ξ+

A(ξ)e(ξz), τ∗σ(φ)(z) =
∑
ξ∈Ξ

B(ξ)e(ξz). (4.34)

Given ξ ∈ Ξ+, we define the Dirichlet series Lσ,ξf,φ(s) associated to f , φ, σ
and ξ by

Lσ,ξf,φ(s) =
∑
η∈Ξ

A(ξ + η)B(η)
det(ξ + η)s

. (4.35)

for s ∈ C.

Theorem 4.23 Let φ : Hnr → C be an element of M�(Γ ′) with Γ ′ ⊃
ρσ(Γ0(N)), and let

L∗
φ,τσ : Sk+�r(N) → Sk(N)

be the associated linear map described above. If f ∈ Sk+�r(N), then the
Fourier expansion of L∗

φ,τσ
f ∈ Sk(N) is given by

(L∗
φ,τσf)(z) =

∑
ξ∈Ξ+

a(ξ)e(ξz)

for all z ∈ Hn, where

a(ξ) =
(det ξ)k−(n+1)/2Γ n(k + �r − (n+ 1)/2)

(4π)n(�r−(n−1)/2)Γ n(k − (n+ 1)/2)
Lσ,ξf,φ(k + �r − n) (4.36)

for all ξ ∈ Ξ+.

Proof. By Proposition 4.22 we see that L∗
φ,τσ

f coincides with the Siegel cusp
form F̃ ∈ Sk(N) associated to the C∞ Siegel modular form

F (z) = f(z)φ(τσ(z)) det(Im z)�r.
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Given ξ ∈ Ξ+, we set

K(ξ) =
πn(k−(n+1)/2) det(4ξ)k−(n+1)/2

Γ n(k − (n+ 1)/2)
. (4.37)

Then by (4.30) we have

a(ξ) = K(ξ)
∫
Y

Aξ(y)e(iξy) det yk−1−ndy.

Using the Fourier expansions in (4.27) and (4.34) we see that

F (z) =
∑
ξ∈Ξ

Aξ(y)e(ξx)

=
∑
µ∈Ξ+

∑
η∈Ξ

A(µ)B(η)e((µ− η)x)e(i(µ+ η)y) det y�r.

Thus, using ξ = µ− η or µ = ξ + η, we have

Aξ(y) =
∑
η∈Ξ

A(ξ + η)B(η)e(i(ξ + 2η)y) det y�r.

Hence it follows that

a(ξ) = K(ξ)
∫
Y

∑
η∈Ξ

A(ξ + η)B(η)e(2i(ξ + η)y) det yk+�r−1−ndy

= K(ξ)
∑
η∈Ξ

A(ξ + η)B(η)
∫
Y

e−4πTr((ξ+η)y) det yk+�r−1−ndy.

If v = 4π(ξ + η)y, we have

det v = (4π)n det(ξ + η) det y, dv = (4π)n det(ξ + η)dy,

and therefore, for each ξ ∈ Ξ+, we see that

a(ξ) = K(ξ)(4π)−n(k+�r−n)

∫
Y

e−Tr v det vk+�r−1−ndv

×
∑
η∈Ξ+

A(ξ + η)B(η)
det(ξ + η)k+�r−n

.

However, using (4.29) and (4.35), we get

Γ n(k + �r − (n+ 1)/2) =
∫
Y

e−Tr v det vk+�r−1−ndv,

Lσ,ξf,φ(k + �r − n) =
∑
η∈Ξ

A(ξ + η)B(η)
det(ξ + η)k+�r−n

.

From these relations and (4.37) we obtain the formula (4.36); hence the proof
of the theorem is complete. ��
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Remark 4.24 The method used for the proof of Theorem 4.23 was devel-
oped by Kohnen [53], where he considered modular forms. This method was
extended to the case of Hilbert modular forms in [78], and the case of Siegel
modular forms was investigated in [19, 75].



5

Mixed Automorphic Forms on Semisimple Lie
Groups

In the previous chapters we considered mixed automorphic forms on the
Poincaré upper half plane H, its product space Hn, and the Siegel upper
half space Hn, which are Hermitian symmetric domains associated to the
semisimple Lie groups SL(2,R), SL(2,R)n, and Sp(n,R), respectively. In
this chapter we discuss mixed automorphic forms associated to more general
semisimple Lie groups and real reductive groups (cf. [71, 82]). We include
nonholomorphic automorphic forms by using the representation theoretic in-
terpretation of automorphic forms initiated by Selberg and Langlands (see
e.g. [13, 15]).

Let G be a semisimple Lie group, K a maximal compact subgroup, and Γ
a discrete subgroup of finite covolume. Let Z(g) be the center of the universal
enveloping algebra of the complexification gC of the Lie algebra g of G, and let
V be a finite-dimensional complex vector space. A slowly increasing analytic
function f : G → V is an automorphic form for Γ if it is left Γ -invariant,
right K-finite, and Z(g)-finite. In order to describe mixed automorphic forms,
let G′ be another semisimple Lie group with the corresponding objects K ′,
Γ ′ and V ′, and let ρ : G → G′ be a homomorphism such that ρ(K) ⊂ K ′

and ρ(Γ ) ⊂ Γ ′. Then associated mixed automorphic forms occur as linear
combinations of functions of the form f⊗(f ′◦ρ) : G→ V ⊗V ′, where f : G→
V is an automorphic form for Γ and f ′ : G′ → V ′ is an automorphic form for
Γ ′. If G and G′ are a real reductive groups, the construction described above
produces mixed automorphic forms on real reductive groups. If G and G′ are
semisimple Lie groups of Hermitian type, we can define holomorphic mixed
automorphic forms as follows. In this case the Riemannian symmetric spaces
D = G/K and D′ = G′/K ′ are Hermitian symmetric domains, and from the
condition ρ(K) ⊂ K ′ we see that ρ induces a holomorphic map τ : D → D′

that is equivariant with respect to ρ. Given complex vector spaces V and V ′

and automorphy factors J : G×D → GL(V ) and J ′ : G′ × D′ → GL(V ′), a
mixed automorphic form on D for Γ is a holomorphic function f : D → V ⊗V ′

satisfying
f(γz) = J(γ, z) ⊗ J ′(ρ(γ), τ(z))f(z)

for all z ∈ D and γ ∈ Γ .
Whittaker vectors associated to representations of real reductive groups

generalize Whittaker’s confluent hypergeometric functions that occur in non-

M.H. Lee: LNM 1845, pp. 109–139, 2004.
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constant terms of Fourier coefficients of automorphic forms (cf. [88]), and
over the last few decades various aspects of Whittaker vectors have been in-
vestigated in numerous papers (see e.g. [30, 45, 56, 110, 111]). In [93] Miatello
and Wallach constructed an analogue of non-holomorphic Poincaré series for
automorphic forms on reductive groups of real rank one using Whittaker
vectors in order to construct square-integrable automorphic forms.

In this chapter we construct Poincaré series and Eisenstein series for mixed
automorphic forms on semisimple Lie groups and discuss Whittaker vectors
and Jacquet integrals associated to mixed automorphic forms on real reduc-
tive groups. We also construct an analogue of Poincaré series of Miatello and
Wallach and express the Fourier coefficients of Eisenstein series for mixed
automorphic forms in terms of Jacquet integrals.

Section 5.1 contains the discussion of holomorphic mixed automorphic
forms on Hermitian symmetric domains. In Section 5.2 we introduce a repre-
sentation theoretic description of mixed automorphic forms on semisimple Lie
groups and construct Poincaré series as examples of such automorphic forms.
The construction of Eisenstein series for automorphic forms on semisimple
Lie groups is contained in Section 5.3. In Section 5.4 we describe mixed au-
tomorphic forms on real reductive groups and construct Eisenstein series as
well as an analogue of Poincaré series of Miatello and Wallach. Whittaker vec-
tors for such mixed automorphic forms are also discussed in this section. In
Section 5.5 we study Fourier coefficients of Eisenstein series for mixed auto-
morphic forms on real reductive groups in connection with Jacquet integrals
and Whittaker vectors.

5.1 Mixed Automorphic Forms on Symmetric Domains

In this section we describe holomorphic mixed automorphic forms on Her-
mitian symmetric domains. We also construct Poincaré series which provide
examples of such automorphic forms.

Let G be a semisimple Lie group of Hermitian type. Thus, if K is a maxi-
mal compact subgroup of G, the corresponding Riemannian symmetric space
D = G/K has a G-invariant complex structure and is called a Hermitian
symmetric domain. Let V be a finite-dimensional complex vector space, and
let J : G×D → GL(V ) be an automorphy factor satisfying

J(γ1γ2, z) = J(γ1, γ2z)J(γ2, z)

for all z ∈ D and γ1, γ2 ∈ G.
Let D′ = G′/K ′ be another Hermitian symmetric domain associated to a

semisimple Lie group of Hermitian type G′ and a maximal compact subgroup
K ′ of G′. We assume that there is a holomorphic map τ : D → D′ that is
equivariant with respect to a Lie group homomorphism ρ : G → G′. This
means that ρ and τ satisfies



5.1 Mixed Automorphic Forms on Symmetric Domains 111

τ(γz) = ρ(γ)τ(z)

for all z ∈ D and γ ∈ G. Such equivariant pairs (τ, ρ) will be studied in
Chapter 6 in connection with families of abelian varieties. We now consider
another automorphy factor J ′ : G′×D′ → GL(V ′) for some finite-dimensional
complex vector space V ′. Let Γ be a discrete subgroup of G.

Definition 5.1 A mixed automorphic form for Γ on D of type (J, J ′, τ, ρ)
is a holomorphic function f : D → V ⊗ V ′ satisfying

f(γz) = J(γ, z) ⊗ J ′(ρ(γ), τ(z))f(z)

for all z ∈ D and γ, γ′ ∈ Γ .

Remark 5.2 If Γ is torsion-free and cocompact and if G′ is a symplectic
group, then it was shown in [74] that for some specific automorphy factors J
and J ′ mixed automorphic forms on D of type (J, J ′, τ, ρ) can be identified
with holomorphic forms on certain families of abelian varieties parametrized
by a locally symmetric space. In the elliptic modular case, that is, when
G = SL(2,R), various results were discussed about the corresponding mixed
automorphic forms in Chapters 1, 2 and 3 (see also [43, 68, 70]). Similar
geometric aspects for the Siegel and Hilbert modular cases were treated in
Chapter 4 (see also [71, 76]).

If γ ∈ G and z ∈ D, let jD(γ, z) denote the determinant of the Jacobian
matrix of γ at z, so that the resulting map jD : G×D → C is an automorphy
factor. We denote by jD′ : G′ × D′ → C the similar automorphy factor for
D′. Let f be a bounded holomorphic function on D. Given positive integers
� and m and a discrete subgroup Γ of G, we set

Pf�,m(z) =
∑
γ∈Γ

f(γz)jD(γ, z)�jD′(ρ(γ), τ(z))m (5.1)

for all z ∈ D.

Theorem 5.3 The function Pf�,m : D → C defined by (5.1) is a mixed
automorphic form on D for Γ of type (j−�D , j−mD′ , τ, ρ), where j−�D (γ, z) =
jD(γ, z)−� for γ ∈ Γ and z ∈ D and similarly for j−mD′ .

Proof. Given γ ∈ Γ and z ∈ D, we have

Pf�,m(γz) =
∑
γ′∈Γ

f(γ′γz)jD(γ′, γz)�jD′(ρ(γ′), τ(γz))m.

Thus, using the relations

jD(γ′, γz) = jD(γ′γ, z)jD(γ, z)−1,
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jD′(ρ(γ′), τ(γz)) = jD′(ρ(γ′γ), τ(z))jD′(ρ(γ), τ(z))−1,

we see that

Pf�,m(γz) =
∑
γ′∈Γ

f(γ′γz)jD(γ′γ, z)�jD(γ, z)−�

× jD′(ρ(γ′γ), τ(z))mjD′(ρ(γ), τ(z))−m

= jD(γ, z)−�jD′(ρ(γ), τ(z))−mPf�,m(z)

Hence it suffices to show that the series in (5.1) converges uniformly and
absolutely on any compact subset of D for � ≥ 2, which can be carried out by
modifying the proof of Proposition 1 in [4, p. 44]. Let E and C be compact
subsets of D such that E is contained in the interior of C. We choose a
positive real number λ such that for each e ∈ E there is a polydisc Be of
volume λ centered at e with Be ⊂ C. Given e ∈ E, we have

|jD(γ, e)|2 ≤ λ−1

∫
Be

|jD(γ, z)|2dvz = λ−1 vol(γBe)

for all γ ∈ Γ . Thus, if z ∈ E and if M is a bound of |f | on D, we see that
∑
γ∈Γ

|f(γz)||jD(γ, z)|2 ≤
∑
γ∈Γ

M |jD(γ, z)|2 ≤ λ−1M
∑
γ∈Γ

vol(γBz).

Let q be the number of elements in the set

Γ ∩ {γ ∈ G | γC ∩ C �= ∅}.

If γ′Bz ∩ γBz �= ∅ with γ, γ′ ∈ Γ and z ∈ E, then we have γ−1γ′C ∩ C �= ∅;
hence for each γ ∈ Γ the number of sets of the form γ′Bz having nonempty in-
tersection with γBz is at most q. Thus it follows that the collection {γBz}γ∈Γ
covers each point of D at most q times, and therefore we obtain

∑
γ∈Γ

|f(γz)||jD(γ, z)|2 ≤ λ−1qM vol(D). (5.2)

This proves the uniform convergence for � = 2 and m = 0. The proof for the
general case follows from (5.2) and the fact that

|jD(γ, z)| < 1, |jD′(ρ(γ), τ(z))| < 1

for all but a finite number of γ ∈ Γ . ��

Definition 5.4 The series Pf�,m(z) given by (5.1) is called a Poincaré series
associated to τ , ρ and f .
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5.2 Mixed Automorphic Forms on Semisimple Lie
Groups

In this section we introduce a representation theoretic definition of mixed
automorphic forms on semisimple Lie groups. As an example of such auto-
morphic forms, we also construct Poincaré series.

First, we shall review the definition of the usual automorphic forms on
semisimple Lie groups (see e.g. [13, 15, 27, 28]). Let G be a semisimple Lie
group, and let g be its Lie algebra. If V is a finite-dimensional complex vector
space, then g operates on the space of smooth functions f : G→ V by

(Y · f)(g) =
d

dt
f
(
(exp tY )g

)∣∣∣∣
t=0

(5.3)

for Y ∈ g and g ∈ G. Let Z(g) be the center of the universal enveloping
algebra U(g) of the complexification gC of g. Then a vector-valued function
f : G → V is said to be Z(g)-finite if Z(g) · f is a finite-dimensional vector
space. This is equivalent to the condition that f is annihilated by an ideal A
of Z(g) of finite codimension. If the ideal A has codimension one, then f is
an eigenfunction of every operator in Z(g).

Let W be a finite-dimensional vector space over C, and let α : G →
GL(W ) be a representation of G in W whose kernel is finite and whose
image is closed in End(W ). Then we can define a norm ‖ · ‖α on G by

‖g‖α =
(
Tr
(
α(g)∗ · α(g)

))1/2

,

where ∗ denotes the adjoint with respect to a Hilbert space structure on W
invariant under a maximal compact subgroup K of G. If β is another such
representation, then there is a constant M > 0 and a positive integer m such
that

‖x‖α ≤ M‖x‖mβ (5.4)

for all x ∈ G. A vector valued function f : G → V is said to be slowly
increasing if there is a norm ‖ · ‖ on G, a constant C > 0, and a positive
integer m such that

|f(g)| ≤ C‖g‖m,
where | · | is a norm on V .

Definition 5.5 Let K be a maximal compact subgroup of G, and let σ :
K → GL(V ) be a representation of K in a finite-dimensional complex vector
space V . Given a discrete subgroup Γ of G, a smooth vector-valued function
f : G → V is an automorphic form for Γ and σ if the following conditions
are satisfied:

(i) f(kgγ) = σ(k)f(g) for all k ∈ K and γ ∈ Γ .
(ii) f is Z(g)-finite.
(iii) f is slowly increasing.
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Let the subgroups K and Γ of G and the representation σ : K → GL(V )
be as in Definition 5.5. We now consider another semisimple Lie group G′.
Let K ′ be a maximal compact subgroup and Γ ′ a discrete subgroup of G′.
We assume that there is a homomorphism ρ : G→ G′ of Lie groups such that
ρ(K) ⊂ K ′ and ρ(Γ ) ⊂ Γ ′, and let σ′ : K ′ → GL(V ′) be a representation
of K ′ in a finite-dimensional complex vector space V ′. Then we obtain the
representation σ ⊗ (σ′ ◦ ρ|K) : K → GL(V ⊗ V ′) of K in V ⊗ V ′, where ρ|K
denotes the restriction of ρ to K.

Definition 5.6 A mixed automorphic form for Γ of type (ρ, σ, σ′) is an
automorphic form for Γ and the representation σ⊗ (σ′ ◦ ρ|K) in the sense of
Definition 5.5.

Let fσ : G → V (resp. f ′
σ′ : G′ → V ′) be an automorphic form for Γ (resp.

Γ ′) and σ : K → GL(V ) (resp. σ′ : K ′ → GL(V ′)), where V (resp. V ′) is
a finite-dimensional complex vector space. We denote by fρ,σ,σ′ the function
from G to V ⊗ V ′ given by

fρ,σ,σ′(g) = (fσ ⊗ (f ′
σ′ ◦ ρ))(g) = fσ(g) ⊗ f ′

σ′(ρ(g)) (5.5)

for all g ∈ G.

Proposition 5.7 The function fρ,σ,σ′ : G → V ⊗ V ′ given by (5.5) is a
mixed automorphic form for Γ of type (ρ, σ, σ′).

Proof. We must show that fρ,σ,σ′ satisfies the conditions (i), (ii) and (iii) in
Definition 5.5 for the discrete group Γ and the representation σ⊗ (σ′ ◦ ρ|K).
Given g ∈ G, k ∈ K and γ ∈ Γ , using (5.5), we see that

fρ,σ,σ′(kgγ) = f(kgγ) ⊗ f ′(ρ(k)ρ(g)ρ(γ))
= σ(k)f(g) ⊗ σ′(ρ(k))f ′(ρ(g))
= (σ ⊗ (σ′ ◦ ρ|K))(k) · (f ⊗ f ′ ◦ ρ)(g),

which verifies the condition (i). Now, given Y ∈ Z(g), by (5.3) we have

Y · fρ,σ,σ′(g) =
d

dt
fρ,σ,σ′

(
(exp tY )g

)∣∣∣∣
t=0

=
[
d

dt
fσ
(
(exp tY )g

)]
t=0

⊗ f ′
σ′(ρ(g))

+ fσ(g) ⊗
[
d

dt
f ′
σ′
(
ρ((exp tY )g)

)]
t=0

=
[
d

dt
fσ
(
(exp tY )g

)]
t=0

⊗ f ′
σ′(ρ(g))

+ fσ(g) ⊗
[
d

dt
f ′
σ′
(
(exp tdρY )ρ(g)

)]
t=0



5.2 Mixed Automorphic Forms on Semisimple Lie Groups 115

for all g ∈ G. Thus the condition (ii) follows from this and the fact that fσ
is Z(g)-finite and f ′

σ′ is Z(g′)-finite. As for the condition (iii), since fσ and
f ′
σ′ are slowly increasing, we have

|fρ,σ,σ′(g)| = |fσ(g) ⊗ f ′
σ′(ρ(g))| ≤ C1‖g‖m1

α · C2‖ρ(g)‖m2
β

for some constants C1, C2, positive integers m1, m2, and representations
α : G→ GL(W ), β : G→ GL(W ′). However, by (5.4) we have

‖ρ(g)‖β = ‖g‖β◦ρ ≤ C3‖g‖m3
α

for some constant C3 and positive integer m3. Thus we see that

|fρ,σ,σ′(g)| ≤ C1C2C3‖g‖m1+m3
α ,

and fρ,σ,σ′ is slowly increasing, and therefore the proof of the proposition is
complete. ��

Example 5.8 Let ρ : G → G′, K, K ′, V and V ′ be as above. Assume that
the symmetric spaces D = G/K and D′ = G′/K ′ have G-invariant and G′-
invariant complex structures, respectively. This assumption implies that D
and D′ are equivalent to bounded symmetric domains (see e.g. [36]). Since
ρ(K) ⊂ K ′, the map ρ induces a holomorphic map τ : D → D′ satisfying
τ(gz) = ρ(g)τ(z) for all g ∈ G and z ∈ D. Let J : G × D → GL(V ) and
J ′ : G′ ×D′ → GL(V ′) be automorphy factors, and set

Jρ(g, z) = J(g, z) ⊗ J ′(ρ(g), τ(z))

for all g ∈ G and z ∈ D. Then the resulting map Jρ : G × D → GL(V ) ⊗
GL(V ′) satisfies

Jρ(g1g2, z) = Jρ(g1, g2z)Jρ(g2, z) (5.6)

for all g1, g2 ∈ D and z ∈ D. We define the homomorphisms σ : G→ GL(V )
and σ′ : G′ → GL(V ′) by

σ(g) = J(g, 0), σ′(g′) = J ′(g′, 0′),

where 0 ∈ D and 0′ ∈ D′ are the fixed points of K and K ′, respectively. Note
that 0′ = τ(0) because of the condition ρ(K) ⊂ K ′. These homomorphisms
induce the map σρ : G→ GL(V ) ⊗GL(V ′) given by

σρ(g) = J(g, 0) ⊗ J ′(ρ(g), τ(0)) = σ(g) ⊗ σ′(ρ(g)) = (σ ⊗ (σ′ ◦ ρ))(g).

We now consider a mixed automorphic form f : D → V ⊗ V ′ for Γ on D of
type (J, J ′, τ, ρ) in the sense of Definition 5.1, so that f satisfies

f(γz) = Jρ(γ, z)f(z)

for all γ ∈ Γ and z ∈ D. We define the function f̃ : G→ V ⊗ V ′ by
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f̃(g) = σρ(g)f(g−10)

for all g ∈ G. Then for g ∈ G, k ∈ K and γ ∈ Γ we have

f̃(kgγ) = σρ(kgγ)f(γ−1g−1k−10)

= σρ(k)σρ(g)σρ(γ)f(γ−1g−10)

= σρ(k)σρ(g)σρ(γ)Jρ(γ−1, g−10)f(g−10)

= σρ(k)σρ(g)σρ(γ)Jρ(γ−1g−1, 0)Jρ(g−1, 0)−1f(g−10),

where we used (5.6). Using this and the relation

Jρ(γ−1g−1, 0)Jρ(g−1, 0)−1 = σρ(γ)−1σρ(g)−1σρ(g),

we obtain
f̃(kgγ) = σρ(k)σρ(g)f(g−10) = σρ(k)f̃(g).

In fact, it can be shown that f̃ is a mixed automorphic form for Γ of type
(ρ, σ, σ′) in the sense of Definition 5.6.

We shall construct below Poincaré series which are examples of mixed
automorphic forms on semisimple Lie groups. Let Γ (resp. Γ ′) be a discrete
subgroup of a semisimple Lie group G (resp. G′), and let K (resp. K ′) be a
maximal compact subgroup of G (resp. G′). Let ρ : G → G′ be a homomor-
phism such that ρ(K) ⊂ K ′. If f : G → V is a vector-valued function and if
h is an element of G, we denote by l(h) and r(h) the translation operators
given by

l(h)f(g) = f(h−1g), r(h)f(g) = f(gh)

for all g ∈ G.

Definition 5.9 A vector-valued function f : G → V on G is said to be left
(resp. right) K-finite if the set of left (resp. right) translations

{l(k)f | k ∈ K} (resp. {r(k)f | k ∈ K})

of f by elements of K spans a finite-dimensional vector space.

Proposition 5.10 Let V and V ′ be finite-dimensional complex vector spaces,
and assume that the following conditions are satisfied:

(i) f ⊗ (f ′ ◦ ρ) ∈ L1(G) ⊗ (V ⊗ V ′), where L1(G) denotes the set of
integrable functions on G.

(ii) f is Z(g)-finite and f ′ is Z(g′)-finite.
(iii) f is right K-finite and f ′ is right K ′-finite.

Then the series Pρ,f,f ′(g) defined by

Pρ,f,f ′(g) =
∑
γ∈Γ

(f ⊗ (f ′ ◦ ρ))(g · γ) (5.7)
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converges absolutely and uniformly on compact sets. Furthermore, the series
∑
γ∈Γ

|(f ⊗ (f ′ ◦ ρ))(g · γ)|

is bounded on G where | · | denotes the norm on V ⊗ V ′.

Proof. As in the proof of Proposition 5.7, it can be shown that the function
f ⊗ (f ′ ◦ ρ) : G→ V ⊗V ′ is Z(g)-finite by using the condition (ii). For k ∈ K
and g ∈ G, we have

r(k)(f ⊗ (f ′ ◦ ρ))(g) = (f ⊗ (f ′ ◦ ρ))(gk)
= f(gk) ⊗ f ′(ρ(g)ρ(k))
= r(k)f(g) ⊗ r(ρ(k))f ′(ρ(k)).

Hence the condition (iii) implies that the function f⊗(f ′◦ρ) is right K-finite.
Therefore the proposition follows from [4, Theorem 23], [5, Theorem 5.4], or
[13, Theorem 9.1]. ��

Definition 5.11 The series Pρ,f,f ′(g) given by (5.7) is called a Poincaré
series associated to ρ, f and f ′.

Corollary 5.12 Let σ : K → GL(V ) and σ′ : K ′ → GL(V ′) be finite-
dimensional representations of K and K ′, respectively, over C. Assume that
the vector-valued functions f : G→ V and f ′ : G′ → V ′ satisfy the conditions
(i), (ii) and (iii) of Proposition 5.10 together with the condition that

f(kg) = σ(k)f(g), f ′(k′g′) = σ′(k′)f ′(g′)

for k ∈ K, g ∈ G, k′ ∈ K ′ and g′ ∈ G′. Then the associated Poincaré series
Pρ,f,f ′ is a mixed automorphic form for Γ of type (ρ, σ, σ′).

Proof. Since f ⊗ (f ′ ◦ ρ) is Z(g)-finite on the left, so is the Poincaré series
Pρ,f,f ′ . From the definition of Pρ,f,f ′(g) the right Γ -invariance of Pρ,f,f ′ fol-
lows immediately, and Pρ,f,f ′ is slowly increasing by Proposition 5.10. As in
the proof of Proposition 5.7, we have

(f ⊗ (f ′ ◦ ρ))(kg) = (σ ⊗ (σ′ ◦ ρ|K))(k)(f ⊗ (f ′ ◦ ρ))(g);

hence it follows that

Pρ,f,f ′(kg) = (σ ⊗ (σ′ ◦ ρ|K))(k)Pρ,f,f ′ (g),

and the proof of the corollary is complete. ��

Let G, G′, D, D′, ρ, τ , jD : G × D → C and jD′ : G′ × D′ → C be as in
Section 5.1.
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Lemma 5.13 If � and m are nonnegative integers with � ≥ 2, then the C-
valued function on G given by

g 
→ j(g, 0)� ⊗ jD′(ρ(g), 0′)m : G → C

is an element of L1(G).

Proof. Note first that the function g 
→ |j(g, 0)|� (resp. g′ 
→ |jD′(g′, 0′)|m) is
left and right K-invariant (resp. K ′-invariant) (see [5, Section 5.8]); hence it
can be considered as a function on D (resp. D′), and we have

∫
G

|j(g, 0)�jD′(ρ(g), 0′)m| dg =
∫
D
|j(z, 0)|�|jD′(τ(z), 0′)|mdµ(z),

where dµ(z) denotes the invariant Bergmann measure on D (cf. [4, Section
4.3]). If dz is the usual Euclidean measure on D, then we have

dµ(z) = |j(z, 0)|−2dz

up to a positive factor. Thus we have
∫
G

|j(g, 0)�jD′(ρ(g), 0′)m| dg =
∫
D
|j(z, 0)|�−2|jD′(τ(z), 0′)|mdz.

However, both |j(z, 0)| and |j(τ(z), 0′)| are bounded by [5, Proposition 1.12];
hence the lemma follows. ��

Let F : D → V and F ′ : D′ → V ′ be functions such that F ⊗ (F ′ ◦ τ) :
D → V ⊗ V ′ is a polynomial function. Given nonnegative integers �, m with
� ≥ 2, we define the functions f : G→ V and f ′ : G′ → V ′ by

f(g) = j(g, 0)�F (πg), f ′(g′) = jD′(g′, 0′)mF ′(π′g′) (5.8)

for g ∈ G and g′ ∈ G′, where 0 ∈ D and 0′ ∈ D′ are the fixed points of K and
K ′, respectively, and π : G → D and π′ : G′ → D′ are canonical projection
maps. We set

σ(k) = j(k, 0)�, σ′(k′) = j(k′, 0′)m (5.9)

for k ∈ K and k′ ∈ K ′. Then σ and σ′ are representations of G and G′ in V
and V ′, respectively. We set

P �,mρ (g) =
∑
γ∈Γ

(f ⊗ (f ′ ◦ ρ))(gγ) (5.10)

for g ∈ G, which is indeed the Poincaré series Pρ,f,f ′ associated to the func-
tions f and f ′ in (5.8) in the sense of Definition 5.11.

Theorem 5.14 The Poincaré series P �,mρ (g) given by (5.10) is a mixed au-
tomorphic form for Γ of type (ρ, σ, σ′).
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Proof. For each g ∈ G, using (5.8), we have

(f ⊗ (f ′ ◦ ρ))(g) =
(
j(g, 0)�F (πg)

)
⊗
(
jD′(ρ(g), 0′)mF ′(π′(ρ(g)))

)
=
(
j(g, 0)� · jD′(ρ(g), 0′)m

)(
F (πg) ⊗ F ′(ω(πg))

)
.

Thus from Lemma 5.13 and the fact that F⊗(F ′◦ω) is a polynomial mapping
on the bounded symmetric domain D it follows that

∫
G

|(f ⊗ (f ′ ◦ ρ))(g)| dg < ∞;

hence f ⊗ (f ′ ◦ ρ) is an element of L1(G) ⊗ (V ⊗ V ′). Using (5.9) and the
relation j(g1g2, 0) = j(g1, 0)j(g2, 0) for g1, g2 ∈ G, we have

f(kg) = j(gk, 0)�F (π(gk))

= j(g, 0)�j(k, 0)�F (πg) = σ(k)f(g)

for k ∈ K and g ∈ G. Similarly, we have f ′(k′g′) = σ′(k′)f ′(g′) for k′ ∈ K ′

and g′ ∈ G′. Thus we see that f is Zg-finite and f ′ is Zg′ -finite. For k ∈ K
and g ∈ G the set of right translates r(k)F (π(gk)) are polynomials of the
same degree as F ; hence f is right K-finite. Similarly, f ′ is right K ′-finite.
Thus it follows from Proposition 5.10 that the series

∑
γ∈Γ

|(f ⊗ (f ′ ◦ ρ))(gγ)|

is bounded on G. In particular, the Poincaré series P �,mρ in (5.10) is slowly
increasing. As in the proof of Proposition 5.7, the function f ⊗ (f ′ ◦ ρ) is
Zg-finite, and for k ∈ K and g ∈ G we have

(f ⊗ (f ′ ◦ ρ))(kg) = (σ ⊗ (σ′ ◦ ρ|K))(k)(f ⊗ (f ′ ◦ ρ))(g);

hence we see that

P �,mρ (kg) = (σ ⊗ (σ′ ◦ ρ|K))(k)P �,mρ (g).

Therefore P �,mρ (g) is an automorphic form for Γ of type (ρ, σ, σ′) in the sense
of Definition 5.5. ��

5.3 Eisenstein Series

In this section we construct Eisenstein series and show that they are mixed
automorphic forms on semisimple Lie groups in the sense of Definition 5.5.
For this purpose, instead of the usual semisimple Lie group G, we need to
consider an algebraic group whose set of real points will coincide with G.
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Let G be a connected, semisimple, linear algebraic group defined over
a subfield k of R, and let P be a k-parabolic subgroup of G containing a
maximal k-split torus S of G. Let P0 be a minimal k-parabolic subgroup of
G such that S ⊂ P0 ⊂ P. We define an ordering on the set Σk of k-roots of
G with respect to S as follows: A k-root α ∈ Σk is positive if and only if the
subgroup of G generated by the α-eigenspace of the adjoint representation of
S is contained in P0. We denote by ∆k the set of simple positive k-roots in
Σk.

If Ξ is a subset of ∆k, we set

SΞ =
( ⋂
α∈Ξ

Kerα
)0

,

where (·)0 denotes the connected component of the identity. Let Θ be the
subset of ∆k such that P is generated by the unipotent radical U0 of P0 and
by the centralizer Z(SΘ) of SΘ. Let UΘ be the unipotent radical of P, and let
MΘ be a subgroup of G such that ZG(SΘ) = SΘ · MΘ with SΘ ∩ MΘ finite.
We set

P = P(R), A = SΘ(R)0, M = MΘ(R), U = UΘ(R).

Then we obtain the Langlands decomposition

P = MAU

of P and the corresponding decomposition

G = KP = KMAU

of G = G(R). If g = kmau ∈ G with k ∈ K, m ∈ M , a ∈ A and u ∈ U , then
k ·m, a and u are uniquely determined. We write a = a(g).

Let {Λα}α∈∆k be the set of fundamental dominant k-weights of G that
satisfy

〈Λα, β〉 = dαδαβ

for all α, β ∈ ∆k, where δαβ is the Kronecker delta and dα is a positive
real number (see [13, Section 11]). Let u be the Lie algebra of U and let
χ = detAdu be the character of P with pχ = detAdu p for p ∈ P . We set
Θ̃ = ∆k − Θ. Then χ is a positive linear combination of the Λα for α ∈ Θ̃,
that is,

χ =
∑
α∈Θ̃

eαΛα

with eα > 0. If {sα}α∈Θ̃ is a set of complex numbers sα ∈ C indexed by the
set Θ̃, and if p ∈ P , then we set

pΛs =
∏
α∈Θ̃

|pΛα |sα .
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Lemma 5.15 Let Γ be a discrete subgroup of G and let Γ∞ be a subgroup of
Γ ∩MU . Suppose that there is a set {sα}α∈Θ̃ of complex numbers satisfying
the following conditions:

(i) a(γ)Λα ≥ ε > 0 for all γ ∈ Γ and α ∈ Θ̃.
(ii) MU/Γ∞ has finite measure.
(iii) Re sα > eα for all α ∈ Θ̃.

Then the series
E(g, s) =

∑
γ∈Γ/Γ∞

a(gγ)−Λs

converges uniformly on any compact subset of G.

Proof. See Lemma 4 in [4] or Lemma 11.1 in [13] (see also [29]). ��

Now we consider another semisimple Lie group G′ = G
′(R) associated to

a connected algebraic group G
′ defined over a subfield k of R. We consider

the corresponding subgroups K ′, P ′, M ′, A′, U ′, etc. defined in a way similar
to the case of G above. Thus we have decompositions

P ′ = K ′A′U ′, G′ = K ′P ′ = K ′M ′A′U ′.

Let ρ : G → G′ be a Lie group homomorphism such that

ρ(K) ⊂ K ′, ρ(P ) ⊂ P ′, ρ(A) ⊂ A′.

Theorem 5.16 Let Γ and Γ∞ be as in Lemma 5.15, and let f : G → V and
f ′ : G′ → V ′ be smooth vector-valued functions, where V and V ′ are finite-
dimensional vector spaces. Suppose that there is a set {sα}α∈Θ̃ of complex
numbers satisfying the following conditions:

(i) a(γ)Λα ≥ ε > 0 for all γ ∈ Γ and α ∈ Θ̃.
(ii) MU/Γ∞ has finite measure.
(iii) Re sα > eα for all α ∈ Θ̃.
(iv) (f ⊗ (f ′ ◦ ρ))(gγ) = (f ⊗ (f ′ ◦ ρ))(g) for all γ ∈ Γ∞.
(v) |f(gp)||f ′(ρ(gp))|pΛs is bounded for p ∈ P and g belonging to a fixed

compact set.
Then the series

Eρ,f,f ′(g) =
∑

γ∈Γ/Γ∞
(f ⊗ (f ′ ◦ ρ))(gγ) (5.11)

converges absolutely and uniformly on any compact set of G.

Proof. Since G = KP , we have

(f ⊗ (f ′ ◦ ρ))(g) · a(g)Λs = (f ⊗ (f ′ ◦ ρ))(kp) · a(kp)Λs

= (f ⊗ (f ′ ◦ ρ))(kp) · a(p)Λs

= (f ⊗ (f ′ ◦ ρ))(kp) · pΛs
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for g = kp with k ∈ K and p ∈ P . Hence by (v) |(f ⊗ (f ′ ◦ ρ))(g) · a(g)Λs |
is bounded for g ∈ G. Therefore, the series defining Ef,f ′,ρ is majorized by a
constant times the series ∑

γ∈Γ/Γ∞
a(gγ)−Λs ,

which converges uniformly on any compact set by Lemma 5.15. Hence the
theorem follows. ��

Definition 5.17 The series Eρ,f,f ′(g) given by the series in (5.11) is called
an Eisenstein series for Γ associated to ρ, f and f ′.

Let G, P , M , A, and U be as before. Thus we have decompositions

P = MAU, G = KP = KMAU.

Let σ : K → GL(V ) be a representation of K in a finite-dimensional complex
vector space V . Let π : MU → M be the natural projection, and let KM =
π(K ∩MU). Then KM is a maximal compact subgroup of M , and σ induces
the representation σM of KM given by

σM (π(k)) = σ(k)

for all k ∈ K ∩MU . Let Γ be an arithmetic subgroup of G, and let ΓM =
π(Γ ∩ MU) be the corresponding arithmetic subgroup of M . We denote
by L2(M/ΓM , σM ) the space of square-integrable functions ϕ : M → V
satisfying

ϕ(kmγ) = σM (k)ϕ(m)

for all k ∈ KM , m ∈ M and γ ∈ ΓM . Any function ϕ : M → V satisfying
ϕ(km) = σM (k)ϕ(m) for k ∈ KM and m ∈M can be extended to a function
ϕG : G→ V on G by the formula

ϕG(kmau) = σ(k)ϕ(m)

for all k ∈ K, m ∈ M , a ∈ A and u ∈ U . Then ϕG is σ-equivariant, that is,

ϕG(kg) = σ(k)ϕG(g)

for k ∈ K and g ∈ G. Although a decomposition g = kmau is not unique,
the extension ϕG is uniquely determined. We shall identify a σM -equivariant
function ϕ on M and the corresponding σ-equivariant function ϕG on G.
Thus each element of L2(M/ΓM , σM ) will be regarded as a function of G
into V .

Let a∗C be the dual space of the complexification aC of the Lie algebra a
of A, and let

(a∗C)− = {Λ ∈ a∗C | 〈ReΛ+ ρ, α〉 < 0 for all α ∈ Σ0},
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where Σ0 is the set of simple roots of the Lie algebra g of G. For ϕ ∈
L2(M/ΓM , σM ) and Λ ∈ a∗C, we set

ϕΛ(x) = ϕ(x)e(Λ−ρ)(H(x))

for x ∈ G, where H(x) denotes log a(x). Then we have

ϕΛ(kgγ) = σ(k)ϕΛ(g)

for all g ∈ G, k ∈ K and γ ∈ U(Γ ∩ P ). Given ϕ ∈ L2(M/ΓM , σM ) and
Λ ∈ (a∗C)−, the series

E(Λ,ϕ, x) =
∑

Γ/Γ∩P
ϕΛ(xγ)

is called an Eisenstein series (see [37]; see also [60, 64, 65, 66, 100]).
Let χ be a representation of Z(g) in V . We denote by L2(M/ΓM , σM , χ)

the subgroup of L2(M/ΓM , σM ) consisting of functions f : G→ V satisfying
the condition

(Y · f)(g) = f(g)χ(Y ) (5.12)

for all Y ∈ Z(g).

Lemma 5.18 If ϕ ∈ L2(M/ΓM , σM , χ) and γ ∈ U(Γ ∩ P ), then there are a
positive real number C and a positive integer N such that

∑
Γ/Γ∩P

|ϕΛ(xγ)| ≤ C‖x‖N

for all x ∈ G.

Proof. This follows from [37, Lemma 24]. ��

Let G′ be another semisimple Lie group, and consider the corresponding
objects K ′, P ′, M ′, A′, U ′, a′, a′∗C , (a′∗C )− and the representation σ′ : K ′ →
GL(V ′) of K ′ in a finite-dimensional complex vector space V ′. Let ρ : G → G′

be a Lie group homomorphism such that

ρ(K) ⊂ K ′, ρ(P ) ⊂ P ′, ρ(A) ⊂ A′.

As in the case of G, for ϕ′ ∈ L2(M ′/Γ ′
M ′ , σ

′
M ′) and Λ′ ∈ (a′∗C )−, we set

ϕ′
Λ′(y) = ϕ′(y)e(Λ

′−ρ′)(H′(y))

for y ∈ G′, where H ′(y) denotes log a′(y).
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Proposition 5.19 Let χ and χ′ be representations of Z(g) and Z(g′) in V
and V ′ respectively, and let

ϕΛ ∈ L2(M/ΓM , σM , χ), ϕ′
Λ′ ∈ L2(M ′/Γ ′

M ′ , σ
′
M ′ , χ

′)

with Λ ∈ (a∗C)− and Λ′ ∈ (a′∗C )−. Then there are a positive real number C0

and a positive integer N0 such that
∑

γ∈Γ/Γ∩P
|(ϕΛ ⊗ (ϕ′

Λ′ ◦ ρ))(xγ)| ≤ C0‖x‖N0

for all x ∈ G.

Proof. By Lemma 5.18 there exist positive real numbers C, C′ and positive
integers N , and N ′ such that

∑
γ∈Γ/Γ∩P

|ϕΛ(xγ)| ≤ C‖x‖N ,

∑
γ′∈Γ ′/Γ ′∩P ′

|ϕ′
Λ′(x

′γ′)| ≤ C′‖x′‖N
′

for all x ∈ G and x′ ∈ G′. In particular, we have
∑

γ∈Γ/Γ∩P
|ϕ′
Λ′ (ρ(xγ))| =

∑
γ∈Γ/Γ∩P

|ϕ′
Λ′(ρ(x)ρ(γ))|

≤ C′‖ρ(x)‖N ′ ≤ C′‖ρ‖N ′‖x‖N ′

for all x ∈ G, since ρ(γ) ∈ Γ ′/Γ ′∩P ′ whenever γ ∈ Γ/Γ ∩P . Thus we obtain
∑

γ∈Γ/Γ∩P
|(ϕΛ ⊗ (ϕ′

Λ′ ◦ ρ))(xγ)| =
∑

γ∈Γ/Γ∩P
|ϕΛ(xγ)| · |ϕ′

Λ′ (ρ(xγ))|

≤
∑

γ∈Γ/Γ∩P
|ϕΛ(xγ)| ·

∑
γ∈Γ/Γ∩P

|ϕ′
Λ′ (ρ(xγ))|

≤ C · C′ · ‖ρ‖N
′
· ‖x‖N+N ′ ;

hence the proposition follows. ��

We set

Eρ,ϕ,ϕ′(Λ,Λ′, x) =
∑

γ∈Γ/Γ∩P
(ϕΛ ⊗ (ϕ′

Λ′ ◦ ρ))(xγ) (5.13)

for x ∈ G, which is an Eisenstein series for Γ associated to ρ, ϕΛ, and ϕ′
Λ′ in

the sense of Definition 5.17 with Γ∞ = Γ ∩MU = Γ ∩ P (see [37, p. 6]).

Theorem 5.20 The Eisenstein series Eρ,ϕ,ϕ′(Λ,Λ′, x) given by (5.13) is a
mixed automorphic form for Γ of type (ρ, σ, σ′).
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Proof. Recall that ϕΛ can be regarded as a function ϕΛ : G → V on G
satisfying ϕΛ(kmau) = σ(k)ϕΛ(m). Thus we have

ϕΛ(kg) = σ(k)ϕΛ(g)

for all k ∈ K and g ∈ G. Similarly, we consider ϕ′
Λ′ as a V ′-valued function

on G′ satisfying
ϕ′
Λ′(k

′g′) = σ′(k′)ϕ′
Λ′(g

′)

for all k′ ∈ K ′ and g′ ∈ G′. Thus we see that

(ϕΛ ⊗ (ϕ′
Λ′ ◦ ρ))(kg) = (σ ⊗ (σ′ ◦ ρ|K))(k)(ϕΛ ⊗ (ϕ′

Λ′ ◦ ρ))(g)

for all k ∈ K and g ∈ G, which implies

Eρ,ϕ,ϕ′(Λ,Λ′, kg) = (σ ⊗ (σ′ ◦ ρ|K))(k)Eρ,ϕ,ϕ′(Λ,Λ′, g)

by (5.13). On the other hand, using (5.13) and Proposition 5.19, we obtain
∣∣Eρ,ϕ,ϕ′(Λ,Λ′, x)

∣∣ ≤ ∑
γ∈Γ/Γ∩P

|(ϕΛ ⊗ (ϕ′
Λ′ ◦ ρ))(xγ)| ≤ C0‖x‖N0

for some C0, N0 > 0, and consequently the function x 
→ Eρ,ϕ,ϕ′(Λ,Λ′, x) is
slowly increasing. Using (5.12), we have

(Y · ϕΛ)(g) = ϕΛ(g)χ(Y ), (Y ′ · ϕ′
Λ′ )(g

′) = ϕ′
Λ′(g

′)χ′(Y ′)

for Y ∈ Z(g), Y ′ ∈ Z(g′), g ∈ G and g′ ∈ G′; hence it follows that ϕΛ is
Z(g)-finite and ϕ′

Λ′ is Z(g′)-finite. Thus, as in the proof of Proposition 5.7,
we see that the function ϕΛ⊗ (ϕ′

Λ′ ◦ρ) is Z(g)-finite. Therefore Eρ,ϕ,ϕ′ is also
Z(g)-finite, and the theorem follows. ��

5.4 Whittaker Vectors

We shall first extend the notion of mixed automorphic forms on semisimple
Lie groups constructed in Section 5.2 to real reductive groups and describe
Eisenstein series for such automorphic forms. We also discuss Whittaker
vectors and Poincaré series for mixed automorphic forms on real reductive
groups.

Let G be a real reductive group G of rank one, and let G = NAK be
its Iwasawa decomposition. Let P = MAN be the associated Langlands
decomposition of a minimal parabolic subgroup P of G. If g ∈ G, then we
write

g = n(g)a(g)k(g)

with n(g) ∈ N , a(g) ∈ A and k(g) ∈ K. Let g, k, m, a, n denote the Lie
algebras of G, K, M , A, N , respectively, and let
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ρ(H) =
1
2

Tr
(
ad (H)|n

)

for H ∈ a.
Let (πξ,ν , Hξ,ν) be the principal series representation of G corresponding

to an element ν ∈ (aC)∗ and a unitary representation ξ of M in Hξ. Thus
Hξ,ν is the space of all square-integrable functions f : K → Hξ such that

f(mk) = ξ(m)f(k) (5.14)

for m ∈ M and k ∈ K with

πξ,ν(g)f(x) = a(xg)ν+ρf(k(xg)) (5.15)

for g ∈ G and x ∈ K. Let Z(g) be the center of the universal enveloping
algebra U(g) of g. Let V be a finite-dimensional complex inner product space,
and let σ : K → GL(V ) be a representation of K in V . Then an automorphic
form on the real reductive group G for Γ and σ is a left Γ -invariant and
Z(g)-finite analytic function f : G→ V satisfying the following conditions:

(i) f(xk) = σ(k)f(x) for all x ∈ G and k ∈ K,
(ii) f is slowly increasing, that is, there exist positive real numbers C and

C′ such that
‖f(x)‖ ≤ C′ · a|x|C

for all x ∈ G, where a|x|C = eC|ρ(log a(x))|.
Let G′ be another real reductive group of rank one, and let K ′ and P ′ =

M ′A′N ′ be a maximal compact subgroup and a Langlands decomposition
of a minimal parabolic subgroup of G′, respectively. Let ϕ : G → G′ be a
homomorphism such that ϕ(K) ⊂ K ′, ϕ(P ) ⊂ P ′, ϕ(A) ⊂ A′ and ϕ(N) ⊂
N ′, and let Γ ′ be a discrete subgroup of G′ of finite covolume with ϕ(Γ ) ⊂
Γ ′ satisfying the assumptions in [66, §2]. We also consider a representation
σ′ : K ′ → GL(V ′) of K ′ in a finite-dimensional complex vector space V ′, so
that σ ⊗ (σ′ ◦ ϕ) is a representation of K in V ⊗ V ′.

Definition 5.21 A mixed automorphic form for Γ of type (ϕ, σ, σ′) on the
real reductive group G is an automorphic form f : G → V ⊗ V ′ for Γ and
the representation σ ⊗ (σ′ ◦ ϕ) of K.

Proposition 5.22 Let f : G → V (resp. f ′ : G′ → V ′) be an automorphic
form for Γ (resp. Γ ′) and σ (resp σ′). Then the function f ⊗ (f ′ ◦ ϕ) : G→
V ⊗ V ′ is an automorphic form for Γ and σ ⊗ (σ′ ◦ ϕ).

Proof. The proof is essentially the same as in Proposition 5.7. ��

Given an element ν′ ∈ (a′C)∗ and a unitary representation ξ′ of M ′ in
Hξ′ , let (Hξ′,ν′ , πξ′,ν′) be the associated principal series representation of G′.
Let (Ĥξ,ξ′,ν,ν′

ϕ , π̂ϕξ,ξ′,ν,ν′) be the induced representation of G associated to the
representation ξ⊗ (ξ ◦ϕ) of M in Hξ ⊗Hξ′ and an element ν+ (ν′ + ρ′) ◦ dϕ
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of (aC)∗, where dϕ : aC → a′C is the linear map corresponding to the map
ϕ|A : A → A′. Thus, using (5.14) and (5.15), we see that Ĥξ,ξ′,ν,ν′

ϕ consists
of square-integrable functions ψ : K → Hξ ⊗Hξ′ such that

ψ(mk) = (ξ ⊗ (ξ′ ◦ ϕ))(m)ψ(k)

for all m ∈M and k ∈ K, and we have

π̂ϕξ,ξ′,ν,ν′(g)ψ(x) = a(xg)ν+(ν′+ρ′)◦dϕ+ρψ(k(xg))

for all g ∈ G and x ∈ K.
Now we denote by Hξ,ξ′,ν,ν′

ϕ the complex linear space generated by func-
tions of the form

f ⊗ (f ′ ◦ ϕ) : K → Hξ ⊗Hξ′

for some f ∈ Hξ,ν and f ′ ∈ Hξ′,ν′ , and define the action of G on Hξ,ξ′,ν,ν′
ϕ

by

(πϕξ,ξ′,ν,ν′(g))(f ⊗ (f ′ ◦ϕ)) =
(
(πξ,ν ⊗ (πξ′,ν′ ◦ϕ))(g)(f ⊗ f ′)

)
◦ (1⊗ϕ) (5.16)

for all g ∈ G. Thus, if ψ =
∑m

i=1 fi ⊗ (f ′
i ◦ ϕ) ∈ Hξ,ξ′,ν,ν′

ϕ with fi ∈ Hξ,ν and
f ′
i ∈ Hξ′,ν′ , then by (5.14) and (5.15) we have

ψ(mk) =
m∑
i=1

fi(mk) ⊗ f ′
i(ϕ(mk)) =

m∑
i=1

ξ(m)fi(k) ⊗ ξ′(ϕ(m))f ′
i(ϕ(k))

=
m∑
i=1

(ξ ⊗ (ξ′ ◦ ϕ))(m)
(
fi ⊗ (f ′

i ◦ ϕ)
)
(k) = (ξ ⊗ (ξ′ ◦ ϕ))(m)ψ(k)

for all m ∈M and k ∈ K, and

(
πϕξ,ξ′,ν,ν′(g)ψ

)
(x) =

m∑
i=1

(πξ,ν(g)fi)(x) ⊗ (πξ′,ν′(ϕ(g))f ′
i)(ϕ(x))

=
m∑
i=1

a(xg)ν+ρfi(k(xg)) ⊗ a′(ϕ(xg))ν
′+ρ′f ′

i(k
′(ϕ(xg)))

=
m∑
i=1

a(xg)ν+ρfi(k(xg)) ⊗ a′(ϕ(xg))ν
′+ρ′f ′

i(ϕ(k(xg)))

= a(xg)ν+ρa′(ϕ(xg))ν
′+ρ′

m∑
i=1

(fi ⊗ (f ′
i ◦ ϕ))(k(xg))

= a(xg)ν+ρϕ(a(xg))ν
′+ρ′

m∑
i=1

(fi ⊗ (f ′
i ◦ ϕ))(k(xg))

= a(xg)ν+ρ+(ν′+ρ′)◦dϕ
m∑
i=1

(fi ⊗ (f ′
i ◦ ϕ))(k(xg))

= a(xg)ν+ρ+(ν′+ρ′)◦dϕψ(k(xg))
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for all g ∈ G and x ∈ K. Therefore (Hξ,ξ′,ν,ν′
ϕ , πϕξ,ξ′,ν,ν′) is in fact a subrepre-

sentation of (Ĥξ,ξ′,ν,ν′
ϕ , π̂ϕξ,ξ′,ν,ν′), and it has the structure of a (g,K)-module.

We define the linear map

δϕξ,ξ′,ν,ν′ : Hξ,ξ′,ν,ν′
ϕ → Hξ ⊗Hξ′

by
δϕξ,ξ′,ν,ν′

(
f ⊗ (f ′ ◦ ϕ)

)
=
(
f ⊗ (f ′ ◦ ϕ)

)
(1) (5.17)

for f ∈ Hξ,ν and f ′ ∈ Hξ′,ν′ . Let Hξ,ν
K ⊂ Hξ,ν (resp. Hξ′,ν′

K′ ⊂ Hξ′,ν′) denote
the subspace of K-finite (resp. K ′-finite) vectors, and let Hξ,ξ′,ν,ν′

ϕ,K,K′ be the
subspace of Hξ,ξ′,ν,ν′

ϕ generated by elements of the form f ⊗ (f ′ ◦ ϕ) with

f ∈ Hξ,ν
K and f ′ ∈ Hξ′,ν′

K′ . For ψ ∈ Hξ,ξ′,ν,ν′
ϕ,K,K′ , we set

Eϕ(P, ξ, ξ′, ν, ν′)(ψ) =
∑

γ∈ΓN\Γ
δϕξ,ξ′,ν,ν′

(
πϕξ,ξ′,ν,ν′(γ)ψ

)
. (5.18)

Now we consider an element ψ ∈ Hξ,ξ′,ν,ν′
ϕ,K,K′ given by

ψ =
m∑
i=1

fi ⊗ (f ′
i ◦ ϕ) (5.19)

with fi ∈ Hξ,ν
K and f ′

i ∈ Hξ′,ν′
K′ , then by (5.17) and (5.18) we see that

Eϕ(P, ξ, ξ′, ν, ν′)(ψ) is an element of Hξ ⊗Hξ′ given by

Eϕ(P , ξ, ξ′, ν, ν′)(ψ) (5.20)

=
∑

γ∈ΓN\Γ
δϕξ,ξ′,ν,ν′

(
πϕξ,ξ′,ν,ν′(γg)ψ

)

=
∑

γ∈ΓN\Γ

m∑
i=1

(πξ,ν(γ)fi)(1) ⊗ (πξ′,ν′(ϕ(γ))f ′
i)(ϕ(1)).

For g ∈ G and η ∈ (Hξ ⊗Hξ′)∗, we set

Eϕ(P, ξ, ξ′, ν, ν′, ψ)(g) = Eϕ(P, ξ, ξ′, ν, ν′)(πϕξ,ξ′,ν,ν′(g)ψ), (5.21)

Eηϕ(P, ξ, ξ′, ν, ν′, ψ)(g) = η
(
Eϕ(P, ξ, ξ′, ν, ν′, ψ)(g)

)
, (5.22)

where Eϕ(P, ξ, ξ′, ν, ν′) is as in (5.18). If ψ ∈ Hξ,ξ′,ν,ν′
ϕ,K,K′ is as in (5.19), let

V ψξ ⊂ Hξ (resp. V ψξ′ ⊂ Hξ′) be the subspace spanned by the set

{fi(k) | k ∈ K, 1 ≤ i ≤ m} (resp. {f ′
i(k

′) | k′ ∈ K ′, 1 ≤ i ≤ m}).

Since the function fi (resp. f ′
i) is K-finite (resp. K ′-finite), it follows that V ψξ

(resp. V ψξ′ ) is a finite-dimensional complex vector space. Let σψξ (resp. σψξ′ ) be
the representation of K (resp. K ′) on V ψξ (resp. V ψξ′ ) given by
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σψξ (k)fi(k1) = fi(k1k) (resp. σψξ′(k
′)f ′

i(k
′
1) = f ′

i(k
′
1k

′))

for all k, k1 ∈ K (resp. k′, k′1 ∈ K ′). Then we have

Eϕ(P, ξ, ξ′, ν, ν′, ψ)(g) ∈ V ψξ ⊗ V ψξ′

for all g ∈ G.

Proposition 5.23 Let ψ ∈ Hξ,ξ′,ν,ν′
ϕ,K,K′ be as in (5.19). Then the function

Eϕ(P, ξ, ξ′, ν, ν′, ψ) : G → V ψξ ⊗ V ψξ′ given by (5.21) is a mixed automor-
phic form of type (ϕ, σψξ , σ

ψ
ξ′) for Γ .

Proof. From (5.18) and (5.21) we see easily that Eϕ(P, ξ, ξ′, ν, ν′, ψ) is left
Γ -invariant. If ψ ∈ Hξ,ξ′,ν,ν′

ϕ,K,K′ is as in (5.19), then by (5.20) we have

Eϕ(P, ξ, ξ′, ν, ν′, ψ)(g) =
m∑
i=1

∑
γ∈ΓN\Γ

a(xg)ν+ρfi(k(γg)) (5.23)

⊗ a′(ϕ(γg))ν
′+ρ′f ′

i(ϕ(k(γg)))

for each g ∈ G. However, the sum∑
γ∈ΓN\Γ

a(xg)ν+ρfi(k(γg))a′(ϕ(γg))ν
′+ρ′f ′

i(ϕ(k(γg))

in (5.23) is an Eisenstein series in the sense of Definition 5.17, and therefore
it is Z(g)-finite and slowly increasing by Theorem 5.20. On the other hand,
for k0 ∈ K we have

Eϕ(P, ξ, ξ′, ν, ν′, ψ)(gk0)

=
m∑
i=1

∑
γ∈ΓN\Γ

a(xgk0)ν+ρfi(k(γgk0))

⊗ a′(ϕ(γgk0))ν
′+ρ′f ′

i(ϕ(k(γgk0)))

=
m∑
i=1

∑
γ∈ΓN\Γ

a(xg)ν+ρfi(k(γg)k0)

⊗ a′(ϕ(γg)ϕ(k0))ν
′+ρ′f ′

i(ϕ(k(γg)ϕ(k0)))

=
m∑
i=1

∑
γ∈ΓN\Γ

a(xg)ν+ρfi(k(γg)k0)

⊗ a′(ϕ(γg)ϕ(k0))ν
′+ρ′f ′

i(ϕ(k(γg)ϕ(k0)))

=
m∑
i=1

∑
γ∈ΓN\Γ

a(xg)ν+ρσψξ (k0)fi(k(γg))

⊗ a′(ϕ(γg)ϕ(k0))ν
′+ρ′σψξ′(ϕ(k0))f ′

i(ϕ(k(γg))).
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Hence we obtain

Eϕ(P, ξ, ξ′, ν, ν′, ψ)(gk0) =
(
σψξ ⊗ (σψξ′ ◦ ϕ)

)
(k0)Eϕ(P, ξ, ξ′, ν, ν′, ψ)(g),

and therefore the proposition follows. ��

From Proposition 5.23 it follows that the function Eηϕ(P, ξ, ξ′, ν, ν′, ψ) :
G → C given by (5.22) is also a mixed automorphic form for Γ and that both
of the functions Eϕ(P, ξ, ξ′, ν, ν′, ψ) and Eηϕ(P, ξ, ξ′, ν, ν′, ψ) are Eisenstein
series for mixed automorphic forms for Γ in the sense of Definition 5.17. We
denote by A(Γ\G,Hξ ⊗ Hξ′) the space of (Hξ ⊗ Hξ′)-valued automorphic
forms for Γ . Then A(Γ\G,Hξ ⊗Hξ′) is a (g,K)-module, and the map

Hξ,ξ′,ν,ν′
ϕ,K,K′ → A(Γ\G,Hξ ⊗Hξ′), ψ 
→ Eϕ(P, ξ, ξ′, ν, ν′, ψ)

is a homomorphism of (g,K)-modules.
We shall now discuss the construction of Whittaker vectors and describe

Poincaré series for mixed automorphic forms. Let G = NAK, P = MAN
and other objects be as before. We fix H0 ∈ a such that α(H0) = 1 and
set at = exp(tH0) for t ∈ R. If ν ∈ (aC)∗ and if a = expH with H ∈ a,
then we write aν = eν(H) as usual. Let Hξ,ν

∞ be the space of C∞-vectors in
Hξ,ν , and define the map δξ,ν : Hξ,ν

∞ → Hξ by δξ,ν(f) = f(1), which is a
continuous (P,M)-homomorphism with M acting by ξ, a by ν + ρ, and n by
0. For λ ≥ 1 denote by Sλ(Hξ,ν) ⊂ Hξ,ν the associated Gevrey space in the
sense of Goodman and Wallach [30], which satisfies the inclusion relations

Hξ,ν
K ⊂ Sλ(Hξ,ν) ⊂ Hξ,ν

∞ .

We fix a nontrivial character χ on N .

Theorem 5.24 There exists a weakly holomorphic family of continuous
maps W(ξ, ν) : Sλ(Hξ,ν) → Hξ for 1 ≤ λ ≤ 3/2 satisfying the following
conditions:

(i) W(ξ, ν)(πξ,ν (n)v) = χ(n)W(ξ, ν)(v) for all n ∈ N and v ∈ Sλ(Hξ).
(ii) There exists a nonzero holomorphic function Iξ : (aC)∗ → C such that

lim
t→−∞ a

−(ν+ρ)
t W(ξ, ν)(πξ,ν(at)v) = Iξ(ν)δξ,ν(v)

uniformly on compact subsets of (aC)∗.

Proof. See [93, Theorem 1.1]. ��

Let (Ĥξ,ξ′,ν,ν′
ϕ , π̂ϕξ,ξ′,ν,ν′) and (Hξ,ξ′,ν,ν′

ϕ , πϕξ,ξ′,ν,ν′) be the representations of
G described above. For λ ≥ 1 let Sλ(Ĥξ,ξ′,ν,ν′

ϕ ) ⊂ Ĥξ,ξ′,ν,ν′
ϕ be the associated

Gevrey space, and set

Sλ(Hξ,ξ′,ν,ν′
ϕ ) = Sλ(Ĥξ,ξ′,ν,ν′

ϕ ) ∩Hξ,ξ′,ν,ν′
ϕ . (5.24)
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Thus, if Hξ,ξ′,ν,ν′
ϕ,∞ denotes the subspace of Hξ,ξ′,ν,ν′

ϕ generated by elements of
the form f ⊗ (f ′ ◦ ϕ) with f ∈ Hξ,ν

∞ and f ′ ∈ Hξ′,ν′
∞ , then we have

Hξ,ξ′,ν,ν′
ϕ,K,K′ ⊂ Sλ(Hξ,ξ′,ν,ν′

ϕ ) ⊂ Hξ,ξ′,ν,ν′
ϕ,∞ .

Now the Whittaker vector for mixed automorphic forms is given by the next
lemma.

Lemma 5.25 Let χ be a nontrivial character of N , and let Sλ(Hξ,ξ′,ν,ν′
ϕ ) be

as in (5.24). If 1 ≤ λ ≤ 3/2, then there exists a linear map

Wϕ(ξ, ξ′, ν, ν′) : Sλ(Hξ,ξ′,ν,ν′
ϕ ) → Hξ ⊗Hξ′

satisfying the following conditions:
(i) Wϕ(ξ, ξ′, ν, ν′)(πϕξ,ξ′,ν,ν′(n))ψ = χ(n)Wϕ(ξ, ξ′, ν, ν′)ψ for all n ∈ N

and ψ ∈ Sλ(Hξ,ξ′,ν,ν′
ϕ ).

(ii) There is a nonzero holomorphic function Iϕξ,ξ′ : a∗C → C such that

lim
t→−∞ a

−(ν+(ν′+ρ′)◦dϕ+ρ)
t Wϕ(ξ, ξ′, ν, ν′)(π̂ϕξ,ξ′,ν,ν′(at))ψ

= Iϕξ,ξ′(ν + (ν′ + ρ′) ◦ dϕ)δϕξ,ξ′,ν,ν′(ψ)

for all ψ ∈ Sλ(Hξ,ξ′,ν,ν′
ϕ ).

Proof. Applying Theorem 5.24 to the representation (Ĥξ,ξ′,ν,ν′
ϕ , π̂ϕξ,ξ′,ν,ν′) of

G associated to the representation ξ⊗(ξ◦ϕ) ofM and ν+(ν′+ρ′)◦dϕ ∈ (aC)∗,
we obtain the linear map

Ŵϕ(ξ, ξ′, ν, ν′) : Sλ(Ĥξ,ξ′,ν,ν′
ϕ ) → Hξ ⊗Hξ′

such that

Ŵϕ(ξ, ξ′, ν, ν′)(π̂ϕξ,ξ′,ν,ν′(n))ψ = χ(n)Ŵϕ(ξ, ξ′, ν, ν′)ψ

for all n ∈ N and ψ ∈ Sλ(Ĥξ,ξ′,ν,ν′
ϕ ), and

lim
t→−∞ a

−(ν+(ν′+ρ′)◦dϕ+ρ)
t Ŵϕ(ξ, ξ′, ν, ν′)(π̂ϕξ,ξ′,ν,ν′(at))ψ

= Iϕξ,ξ′ (ν + (ν′ + ρ′) ◦ dϕ)δϕξ,ξ′,ν,ν′(ψ)

for some holomorphic function Iϕξ,ξ′ : (aC)∗ → C. Since Hξ,ξ′,ν,ν′
ϕ is a subrep-

resentation of Ĥξ,ξ′,ν,ν′
ϕ of G, the lemma follows by restricting Ŵϕ(ξ, ξ′, ν, ν′)

to Hξ,ξ′,ν,ν′
ϕ of Ĥξ,ξ′,ν,ν′

ϕ . ��
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Given ψ ∈ Sλ(Hξ,ξ′,ν,ν′
ϕ ), let V ψϕ,ξ,ξ′ be the subspace of Hξ ⊗Hξ′ spanned

by the set
{Wϕ(ξ, ξ′, ν, ν′)πϕξ,ξ′,ν,ν′(g)ψ | g ∈ G},

and let σψϕ,ξ,ξ′ be the representation of K on V ψϕ,ξ,ξ′ given by

σψϕ,ξ,ξ′(k)Wϕ(ξ, ξ′, ν, ν′)πϕξ,ξ′,ν,ν′(g)ψ = Wϕ(ξ, ξ′, ν, ν′)πϕξ,ξ′,ν,ν′(gk)ψ.

For g ∈ G we set

Pϕ,ψξ,ξ′,ν,ν′(g) =
∑

γ∈ΓN\Γ
Wϕ(ξ, ξ′, ν, ν′) · (πϕξ,ξ′,ν,ν′(γg))(ψ) ∈ V ψϕ,ξ,ξ′ . (5.25)

In order to discuss the convergence of Pϕ,ψξ,ξ′,ν,ν′ let α be a simple root of
(P,A), and fix an element H0 ∈ a such that α(H0) = 1. Let θ be a Cartan
involution of g, and fix a nondegenerate G-invariant real-valued bilinear form
B on g such that B(H0, H0) = 1 and −B(X, θX) < 0 for all X ∈ g. Let 〈 , 〉
be the bilinear form on (aC)∗ that is dual to B|aC×aC

, and set

a∗C(λ)+ = {µ ∈ (aC)∗ | Re〈µ, α〉 > 〈λ, α〉}

for λ ∈ a∗.

Theorem 5.26 Assume that ν + (ν′ + ρ′) ◦ dϕ ∈ a∗C(ρ)+. Then the function
Pϕ,ψξ,ξ′,ν,ν′ on G given by (5.25) satisfies the following conditions:

(i) The series in (5.25) defining Pϕ,ψξ,ξ′,ν,ν′ converges uniformly on compact
subsets of G.

(ii) Pϕ,ψξ,ξ′,ν,ν′ is left Γ -invariant.
(iii) Pϕ,ψξ,ξ′,ν,ν′(gk) = σψϕ,ξ,ξ′(k)P

ϕ,ψ
ξ,ξ′,ν,ν′(g) for all g ∈ G and k ∈ K.

Proof. Let Ŵϕ(ξ, ξ′, ν, ν′) be as in the proof of Lemma 5.25. Then by Lemma
2.1 in [93] the statement in (i) is true for Ŵϕ(ξ, ξ′, ν, ν′). Thus (i) fol-
lows from the fact that Wϕ(ξ, ξ′, ν, ν′) is the restriction of Ŵϕ(ξ, ξ′, ν, ν′)
to Sλ(Hξ,ξ′,ν,ν′

ϕ ). As for (iii), we have

Pϕ,ψξ,ξ′,ν,ν′(gk) =
∑

γ∈ΓN\Γ
Wϕ(ξ, ξ′, ν, ν′)(πϕξ,ξ′,ν,ν′(γgk))(ψ)

=
∑

γ∈ΓN\Γ
σψϕ,ξ,ξ′(k)W

ϕ(ξ, ξ′, ν, ν′)((πϕξ,ξ′,ν,ν′(γg)(ψ))

= σψϕ,ξ,ξ′(k)P
ϕ,ψ
ξ,ξ′,ν,ν′(g)

for all k ∈ K. Since (ii) is clear from (5.25), the proof of the theorem is
complete. ��



5.5 Fourier Coefficients of Eisenstein Series 133

From Theorem 5.26 it follows that the function

Pϕ,ψξ,ξ′,ν,ν′ : G→ V ψϕ,ξ,ξ′

given by (5.25) satisfies all the conditions for an automorphic form for Γ and
σψϕ,ξ,ξ′ except the condition that it is slowly increasing. Since σψϕ,ξ,ξ′ can be
considered as an analogue of σψξ ⊗ (σψξ′ ◦ ϕ) in the proof of Proposition 5.23,
the series Pϕ,ψξ,ξ′,ν,ν′(g) can be regarded as a generalized Poincaré series for
mixed automorphic forms, and it provides an analogue of the Poincaré series
of Miatello and Wallach [93].

5.5 Fourier Coefficients of Eisenstein Series

In this section we express the Fourier coefficients of the Eisenstein series
for mixed automorphic forms described in Section 5.4 in terms of Jacquet
integrals by using Whittaker vectors.

We shall use the same notations as in the previous sections. Let χ be a
nontrivial character of N , and set

Whχ,ϕξ,ξ′,ν,ν′ = {µ ∈ (Hξ,ξ′,ν,ν′
ϕ )∗ | µ ◦

(
πϕξ,ξ′,ν,ν′(n)

)
(5.26)

= χ(n)µ for all n ∈ N}.

Thus, if η : Hξ×Hξ′ → C is a linear map and Wϕ(ξ, ξ′, ν, ν′) is the Whittaker
vector described in Lemma 5.25, then we have

η ◦ (Wϕ(ξ, ξ′, ν, ν′)) ∈ Whχ,ϕξ,ξ′,ν,ν′ .

Let s∗ be an element of the normalizer M∗ of A in K, and define the
linear map

Jχ,ϕξ,ξ′,ν,ν′ : Hξ,ξ′,ν,ν′
ϕ,∞ → Hξ ⊗Hξ′

by the integral

Jχ,ϕξ,ξ′,ν,ν′ =
∫
N

χ(n)−1δϕξ,ξ′,ν,ν′ ◦ (πϕξ,ξ′,ν,ν′(s
∗n))dn, (5.27)

where πϕξ,ξ′,ν,ν′ and δϕξ,ξ′,ν,ν′ are as in (5.16) and (5.17), respectively. The
integral in (5.27) can be considered as an analogue of the Jacquet integral (cf.
[45]) for mixed automorphic forms. Note that, if s∗ is replaced by ms∗ with
m ∈ M , then Jχ,ϕξ,ξ′,ν,ν′ should be replaced by (ξ ⊗ (ξ′ ◦ ϕ))(m)Jχ,ϕξ,ξ′,ν,ν′ .

Let µ ∈ Whχ,ϕξ,ξ′,ν,ν′ , and extend χ to a map χ : G → C
× by setting

χ(nak) = χ(n) for all n ∈ N , a ∈ A and k ∈ K. Then µ is a quasi-invariant
distribution on N with multiplier

G×N → C
×, (g, n) 
→ χ(g)−1

in the sense of [122, §5.2].
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Lemma 5.27 If µ ∈ Whχ,ϕξ,ξ′,ν,ν′ , then there exists a linear map S : Hξ ⊗
Hξ′ → C such that

µ = S ◦ (Jχ,χ
′,ϕ

ξ,ξ′,ν,ν′),

where Jχ,χ
′,ϕ

ξ,ξ′,ν,ν′ is as in (5.27).

Proof. Since µ is a quasi-invariant distribution on N with multiplier (g, n) 
→
χ(g)−1, from [122, Theorem 5.2.2.1] it follows that there is a unique element
z̃ ∈ (Hξ ⊗Hξ′)∗ such that

χ(g)−1z̃ = z̃

for all g ∈ AK = N\G and

µ(f) =
〈∫

N

χ(n)−1f(n)dn, z̃
〉

for f ∈ Hξ,ξ′,ν,ν′
ϕ,∞ . However, since a(n) = 1 and a′(ϕ(n)) = 1, we have

f(n) = (πϕξ,ξ′,ν,ν′(n))f(1) = δϕξ,ξ′,ν,ν′(π
ϕ
ξ,ξ′,ν,ν′(n)f).

Thus the map S : Hξ⊗Hξ′ → C defined by S(v) = 〈v, z̃〉 for each v ∈ Hξ⊗Hξ′

satisfies the desired condition. ��

Let s be a nontrivial element of the Weyl groupW (G,A) of (G,A), and let
s∗ ∈ K be an element of the normalizerM∗ of A in K such that ad (s∗)|a = s.
Then we set

(
As(ξ, ξ′, ν, ν′)ψ

)
(k) =

∫
N

δϕξ,ξ′,ν,ν′
(
πϕξ,ξ′,ν,ν′(s

∗nk)ψ
)
dn (5.28)

for ψ ∈ Hξ,ξ′,ν,ν′
ϕ,∞ and k ∈ K, and define the representation ξs of M and the

element sν of (aC)∗ by

ξs(m) = ξ((s∗)−1ms∗), sν = (ad (s∗−1)(H)) (5.29)

for all m ∈ M and H ∈ (aC)∗. Similarly, we can consider the representation
ξ′ϕ(s) of M ′ and the element ϕ(s)ν′ of (a′C)∗.

Proposition 5.28 For each µ ∈ Whχ,ϕξ,ξ′,ν,ν′ there exist elements η, η′ ∈
(Hξ ⊗H ′

ξ)
∗ such that

µ = η ◦ Ξξ,ξ′(ν + (ν′ + ρ′) ◦ dϕ)−1Wϕ(ξ, ξ′, ν, ν′)

+ η′ ◦ Ξξs,ξ′ϕ(s)(sν + (ϕ(s)ν′ + ρ′) ◦ dϕ)−1

Wϕ(ξs, ξ′ϕ(s)
, sν, ϕ(s)ν′) ◦As(ξ, ξ′, ν, ν′),

where As(ξ, ξ′, ν, ν′), ξs and sν are as in (5.28) and (5.29).
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Proof. Let η1, . . . , ηd be a basis for Ĥξ,ξ′,ν,ν′
ϕ , and let

Ŵh
χ,ϕ

ξ,ξ′,ν,ν′ = {µ̂ ∈ (Ĥξ,ξ′,ν,ν′
ϕ )∗ | µ̂ ◦

(
π̂ϕξ,ξ′,ν,ν′(n)

)
= χ(n)µ̂ for all n ∈ N}.

Then, as in the proof of Theorem A.1.10 in [93], the 2d functionals

η1 ◦Ξξ,ξ′(ν + (ν′ + ρ′) ◦ dϕ)−1Wϕ(ξ, ξ′, ν, ν′),

η1 ◦Ξξs,ξ′ϕ(s)(sν + (ϕ(s)ν′ + ρ′) ◦ dϕ)−1

Wϕ(ξs, ξ′ϕ(s)
, sν, ϕ(s)ν′) ◦As(ξ, ξ′, ν, ν′),

. . . . . . . . . ,

ηd ◦ Ξξ,ξ′(ν + (ν′ + ρ′) ◦ dϕ)−1Wϕ(ξ, ξ′, ν, ν′),

ηd ◦ Ξξs,ξ′ϕ(s)(sν + (ϕ(s)ν′ + ρ′) ◦ dϕ)−1

Wϕ(ξs, ξ′ϕ(s)
, sν, ϕ(s)ν′)As(ξ, ξ′, ν, ν′)

form a basis for Ŵh
χ,ϕ

ξ,ξ′,ν,ν′ . Thus, if µ̂ ∈ Ŵh
χ,ϕ

ξ,ξ′,ν,ν′ , there exist elements
η̂, η̂′ ∈ (Hξ ⊗Hξ′)∗ such that

µ̂ = η̂ ◦Ξξ,ξ′(ν + (ν′ + ρ′) ◦ dϕ)−1Wϕ(ξ, ξ′, ν, ν′)

+ η̂′ ◦ Ξξs,ξ′ϕ(s)(sν + (ϕ(s)ν′ + ρ′) ◦ dϕ)−1

Wϕ(ξs, ξ′ϕ(s)
, sν, ϕ(s)ν′) ◦As(ξ, ξ′, ν, ν′).

Now the proposition follows from the fact that each µ ∈ Whχ,ϕξ,ξ′,ν,ν′ is a

restriction of an element µ̂ ∈ Ŵh
χ,ϕ

ξ,ξ′,ν,ν′ . ��

Let A(Γ\G) be the space of C-valued automorphic forms for Γ , and let
V ⊂ A(Γ\G) be a (g,K)-module. If T : Hξ,ξ′,ν,ν′

ϕ,K,K′ → V is a homomorphism
of (g,K)-modules, we set

Ig(ψ) =
∫
Γ∩N\N

χ(n)−1
(
T (ψ)

)
(ng)dn (5.30)

for ψ ∈ Hξ,ξ′,ν,ν′
ϕ,K,K′ and g ∈ G.

Lemma 5.29 If Jχ,ϕξ,ξ′,ν,ν′ is as in (5.27), then for each ψ ∈ Hξ,ξ′,ν,ν′
ϕ,K,K′ and

g ∈ G the integral in (5.30) can be written in the form

Ig(ψ) = η
(
Jχ,ϕξ,ξ′,ν,ν′

(
πϕξ,ξ′,ν,ν′(g)ψ

))

for some element η ∈ (Hξ ⊗Hξ′)∗.
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Proof. Since T is a homomorphism of (g,K)-modules and the action of G
on V ⊂ A(Γ\G) is a right regular representation, if n0 ∈ N , then by using
(5.30) for the identity element 1 of G we obtain

I1

(
πϕξ,ξ′,ν,ν′(n0)ψ

)
=
∫
Γ∩N\N

χ(n)−1
(
T (ψ)

)
(nn0)dn

= χ(n0)
∫
Γ∩N\N

χ(n)−1
(
T (ψ)

)
(n)dn = χ(n0)I1(ψ).

Thus, using Lemma 5.27, we see that there is an element η ∈ (Hξ ⊗ Hξ′)∗

such that
I1(ψ) = η(Jχ,ϕξ,ξ′,ν,ν′(ψ)).

On the other hand, using the relation

T
(
πϕξ,ξ′,ν,ν′(g)ψ

)
(x) = (Tψ)(xg)

for all g, x ∈ G, we obtain

Ig(ψ) =
∫
Γ∩N\N

χ(n)−1T
(
πϕξ,ξ′,ν,ν′(g)ψ

)
(n)dn = I1

(
πϕξ,ξ′,ν,ν′(g)ψ

)
,

and hence the lemma follows. ��

Let Q = MQAQNQ be the Langlands decomposition of another parabolic
subgroup Q of G, so that there is an element k ∈ K with Q = kPk−1. Since
we are now dealing with two parabolic subgroups P and Q, we shall use P
and Q as subscripts on the left for various objects associated to respective
parabolic subgroups, for example PH

ξ,ξ′,ν,ν′
ϕ,K,K′ for Hξ,ξ′,ν,ν′

ϕ,K,K′ . Given a function
ψ on G, we set

(Lkψ)(x) = ψ(k−1x) (5.31)

for all k, x ∈ G. Let ξk be the representation of MQ and kν the element of
(aQ)∗C corresponding to ξ and ν, respectively, where aQ is the Lie algebra of
AQ.

Lemma 5.30 If Q = kPk−1 with k ∈ K, then the operator Lk in (5.31)
determines a linear map from PH

ξ,ξ′,ν,ν′
ϕ to QH

ξk,ξ′ϕ(k),kν,ϕ(k)ν′
ϕ .

Proof. Let ψ =
∑m

i=1 fi ⊗ (f ′
i ◦ ϕ) ∈ PH

ξ,ξ′,ν,ν′
ϕ with fi ∈ PH

ξ,ν and f ′
i ∈

PH
ξ′,ν′ . Then by (5.31) we see that

Lk(ψ)(x) =
m∑
i=1

fi(k−1x) ⊗ f ′
i(ϕ(k)−1ϕ(x))

=
m∑
i=1

(
(Lkfi) ⊗

(
(Lϕ(k)f

′
i) ◦ ϕ

))
(x)
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for all x ∈ G. However, we have

Lkfi ∈ QH
ξk,kν , Lϕ(k)f

′
i ∈ QH

ξ′ϕ(k),ϕ(k)ν′ ,

and therefore Lk(ψ)(x) ∈ QH
ξk,ξ′ϕ(k),kν,ϕ(k)ν′
ϕ ; hence the lemma follows. ��

Now we describe the Fourier coefficient of the Eisenstein series

Eηϕ(P, ξ, ξ′, ν, ν′, ψ)(g)

for mixed automorphic forms in (5.22) corresponding to a character of NQ in
the next theorem.

Theorem 5.31 Let Eηϕ(P, ξ, ξ′, ν, ν′, ψ)(g) be the Eisenstein series in (5.22)

associated to a linear map η : Hξ ⊗Hξ′ → C and an element ψ ∈ PH
ξ,ξ′,ν,ν′
ϕ,K,K′ ,

and let χQ be a character on NQ. Then there exists a meromorphic function

ΨP,Qϕ,ξ,ξ′ : (aQ)∗C → HomC((Hξ ⊗Hξ′)∗, (Hξk ⊗Hξ′ϕ(k))∗)

such that∫
Γ∩NQ\NQ

χQ(n)−1(Eηϕ(P, ξ, ξ′, ν, ν′, ψ)(ng))dn

=
(
ΨP,Qϕ,ξ,ξ′(skν + (ϕ(sk)ν′ + ρ′) ◦ dϕ)

)
(η)

×
(
J
χQ,ϕ

ξk,ξ′ϕ(k),kν,ϕ(k)ν′
(
πϕ
ξk,ξ′ϕ(k),kν,ϕ(k)ν′ (g)Lkψ

))

for all g ∈ G.

Proof. If χP is the character of NP corresponding to χQ, then the Jacquet
integral JχP ,ϕξ,ξ′,ν,ν′ on NP corresponds to JχQ,ϕ

ξk,ξ′ϕ(k) on NQ. Therefore by Lemma
5.29 there is a linear map ∆ : Hξ ⊗Hξ′ → C such that

∫
Γ∩NQ\NQ

χQ(n)−1(Eηϕ(P, ξ, ξ′, ν, ν′, ψ)(ng))dn

= ∆
(
J
χQ,ϕ

ξk,ξ′ϕ(k),kν,ϕ(k)ν′
(
πϕ
ξk,ξ′ϕ(k),kν,ϕ(k)ν′(g)Lkψ

))
.

On the other hand, if we consider the case of Q = P and define Λ(η) ∈
Whχ,ϕξ,ξ′,ν,ν′ by

∫
Γ∩NP \NP

χP (n)−1(Eηϕ(P, ξ, ξ′, ν, ν′, ψ)(ng))dn

=
∫
Γ∩NP \NP

χP (n)−1η
( ∑
γ∈ΓN\Γ

δϕξ,ξ′,ν,ν′
(
πϕξ,ξ′,ν,ν′(γng)ψ

))
dn

= Λ(η)(πϕξ,ξ′,ν,ν′(g)ψ),
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then Λ(η) is an element of Whχ,ϕξ,ξ′,ν,ν′ in (5.26) and Λ is a linear function of
η; hence by Proposition 5.28 there exist meromorphic functions

ΞP,Q
1 , ΞP,Q

2 : (aQ)∗C → HomC((Hξ ⊗Hξ′)∗, (Hξk ⊗Hξ′ϕ(k))∗)

such that∫
Γ∩NQ\NQ

χQ(n)−1(Eηϕ(P, ξ, ξ′, ν, ν′, ψ)(ng))dn

= ΞP,Q
1 (kν + (ϕ(k)ν′ + ρ′) ◦ dϕ)(η)

× (Wϕ(ξk, ξ′ϕ(k)
, kν, ϕ(k)ν′)(πϕ

ξk,ξ′ϕ(k),kν,ϕ(k))ν′ (g)Lkψ)

+ΞP,Q
2 (skν + (ϕ(sk)ν′ + ρ′) ◦ dϕ)(η)

× (Wϕ((ξk)s, (ξ′ϕ(k))ϕ(s), skν, ϕ(sk)ν′)

◦As(ξk, ξ′ϕ(k)
, kν, ϕ(k)ν′)(πϕ

ξk,ξ′ϕ(k),kν,ϕ(k)ν′ (g)Lkψ).

However, it can be shown that

As(ξk,ξ′
ϕ(k)

, kν, ϕ(k)ν′) ◦ πϕ
ξk,ξ′ϕ(k),kν,ϕ(k)ν′

= πϕ
(ξk)s,(ξ′ϕ(k))ϕ(s),skν,ϕ(sk)ν′ ◦As(ξ

k, ξ′ϕ(k)
, kν, ϕ(k)ν′).

Using this and applying Lemma 5.25 for g = at, we have

ΞP,Q
1 (kν + (ϕ(k)ν′ + ρ′) ◦ dϕ)(η)

(Wϕ(ξk, ξ′ϕ(k)
, kν, ϕ(k)ν′)(πϕ

ξk ,ξ′ϕ(k),kν,ϕ(k))ν′ (at)Lkψ)

+ΞP,Q
2 (skν + (ϕ(sk)ν′ + ρ′) ◦ dϕ)(η)

× (Wϕ((ξk)s, (ξ′ϕ(k))ϕ(s), skν, ϕ(sk)ν′)

◦As(ξk, ξ′ϕ(k)
, kν, ϕ(k)ν′)(πϕ

ξk,ξ′ϕ(k),kν,ϕ(k)ν′(at)Lkψ)

≈ ΞP,Q
1 (kν + (ϕ(k)ν′ + ρ′) ◦ dϕ)(η)akν+(ϕ(k)ν′+ρ′)◦dϕ+ρ

t

× Iϕ
ξk,ξ′ϕ(k)(ν + (ν′ + ρ′) ◦ dϕ)δϕ

ξk ,ξ′ϕ(k),kν,ϕ(k))ν′ (Lkψ)

+ΞP,Q
2 (skν + (ϕ(sk)ν′ + ρ′) ◦ dϕ)(η)

× a
kν+(ϕ(k)ν′+ρ′)◦dϕ+ρ
t Iϕ

ξsk,ξ′ϕ(sk)(skν + (ϕ(sk)ν′ + ρ′) ◦ dϕ)

× δϕ
(ξk)s,(ξ′ϕ(k))ϕ(s),skν,ϕ(sk)ν′ (As(ξ

k, ξ′ϕ(k)
, kν, ϕ(k)ν′)(Lkψ))

as t→ ∞. On the other hand, we have

δϕ
(ξk)s,(ξ′ϕ(k))ϕ(s),skν,ϕ(sk)ν′ (As(ξ

k, ξ′ϕ(k)
, kν, ϕ(k)ν′)(Lkψ))

= J
χQ,ϕ

(ξk)s,(ξ′ϕ(k))ϕ(s),skν,ϕ(sk)ν′ (Lkψ).
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Hence we obtain

∆
(
J
χQ,ϕ

ξk,ξ′ϕ(k),kν,ϕ(k)ν′
(
πϕ
ξk,ξ′ϕ(k),kν,ϕ(k)ν′(at)Lkψ

))

= ∆
(
J
χQ,ϕ

ξk,ξ′ϕ(k),kν,ϕ(k)ν′a
kν+(ϕ(k)ν′+ρ′)◦dϕ+ρ
t Lkψ

)

≈ ΞP,Q
1 (kν + (ϕ(k)ν′ + ρ′) ◦ dϕ)(η)akν+(ϕ(k)ν′+ρ′)◦dϕ+ρ

t

× Iϕ
ξk,ξ′ϕ(k)(kν + (ϕ(k)ν′ + ρ′) ◦ dϕ)δϕ

ξk,ξ′ϕ(k),kν,ϕ(k))ν′(Lkψ)

+ΞP,Q
2 (skν + (ϕ(sk)ν′ + ρ′) ◦ dϕ)(η)askν+(ϕ(sk)ν′+ρ′)◦dϕ+ρ

t

× Iϕ
ξsk,ξ′ϕ(sk)(skν + (ϕ(sk)ν′ + ρ′) ◦ dϕ)

× J
χQ,ϕ

(ξk)s,(ξ′ϕ(k))ϕ(s),skν,ϕ(sk)ν′ (Lkψ)

as t→ ∞. By comparing the coefficients, we have

∆ = Iϕ
ξsk,ξ′ϕ(sk)(skν + (ϕ(sk)ν′ + ρ′) ◦ dϕ)

×ΞP,Q
2 (skν + (ϕ(sk)ν′ + ρ′) ◦ dϕ)(η).

Thus the function ΨP,Qϕ,ξ,ξ′ on (aQ)∗C given by

ΨP,Qϕ,ξ,ξ′(ν) = Iϕ
ξsk,ξ′ϕ(sk)(ν) · ΞP,Q

2 (ν)

is a meromorphic function, and the proof of the theorem is complete. ��



6

Families of Abelian Varieties

In earlier chapters we studied elliptic varieties and their connections with
mixed automorphic forms. An elliptic variety can be described by a family
of abelian varieties parametrized by an algebraic curve. The abelian varieties
involved were products of elliptic curves. In this chapter we consider more
general families of abelian varieties parametrized by an arithmetic quotient
of a Hermitian symmetric domain.

Let Hn be the Siegel upper half space of degree n on which the symplectic
group Sp(n,R) acts as usual. If Γ ′ is an arithmetic subgroup of Sp(n,R), then
the associated quotient space Γ ′\Hn can be regarded as the moduli space for
a certain family of polarized abelian varieties, known as a universal family
(see e.g. [24, 42, 63]). Such a family of abelian varieties can be considered as a
fiber variety over the Siegel modular variety X ′ = Γ ′\Hn, and the geometry
of a Siegel modular variety and the associated universal family of abelian
varieties is closely connected with various topics in number theory including
the theory of Siegel modular forms, theta functions and Jacobi forms.

Let G = G(R) be a semisimple Lie group of Hermitian type that can be
realized as the set of real points of a linear algebraic group G defined over
Q. Thus the quotient D = G/K of G by a maximal compact subgroup K
has the structure of a Hermitian symmetric domain. Let τ : D → Hn be
a holomorphic map, and let ρ : G → Sp(n,R) be a homomorphism of Lie
groups such that τ(gz) = ρ(g)τ(z) for all z ∈ D and g ∈ G. Let Γ be a
torsion-free arithmetic subgroup of G such that ρ(Γ ) ⊂ Γ ′, and let X = Γ\D
be the corresponding arithmetic variety. Then the holomorphic map τ induces
a morphism τX : X → X ′ of arithmetic varieties, and by pulling the fiber
variety over X ′ back via τX we obtain a fiber variety over X whose fibers
are again polarized abelian varieties (see Section 6.1 for details). Such fiber
varieties over an arithmetic variety are called Kuga fiber varieties (see [61,
108]), and various geometric and arithmetic aspects of Kuga fiber varieties
have been investigated in numerous papers (see e.g. [1, 2, 31, 62, 69, 74, 84, 96,
108, 113]). A Kuga fiber variety is also an example of a mixed Shimura variety
in more modern language (cf. [94]). Various objects connected with Siegel
modular varieties and the associated universal families of abelian varieties
can be generalized to the corresponding objects connected with more general
locally symmetric varieties and the associated Kuga fiber varieties.

M.H. Lee: LNM 1845, pp. 141–175, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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In Section 6.1 we review the construction of Kuga fiber varieties associ-
ated to equivariant holomorphic maps of symmetric domains. In Section 6.2
we describe canonical automorphy factors and kernel functions for semisimple
Lie groups of Hermitian type as well as for generalized Jacobi groups. Section
6.3 is concerned with the interpretation of holomorphic forms of the highest
degree on a Kuga fiber variety as mixed automorphic forms on symmetric
domains involving canonical automorphy factors. The construction of an em-
bedding of a Kuga fiber variety into a complex projective space is discussed
in Section 6.4. This involves Jacobi forms of the type that will be considered
in Chapter 7.

6.1 Kuga Fiber Varieties

In this section we review the construction of Kuga fiber varieties associated to
equivariant holomorphic maps of symmetric domains. They are fiber bundles
over locally symmetric spaces whose fibers are polarized abelian varieties.
More details can be found in [61] and [108].

Let G be a Zariski-connected semisimple real algebraic group of Hermitian
type defined over Q. Thus G is the set of real points G(R) of a semisimple
algebraic group G defined over Q, and the associated Riemannian symmetric
space D = G/K, where K is a maximal compact subgroup of G, has a G-
invariant complex structure. Such a space can be identified with a bounded
symmetric domain in C

k for some k(see e.g. [36]), and is called a Hermitian
symmetric domain. Let G′ be another group of the same type, and let D′ be
the associated Hermitian symmetric domain. We assume that there exist a
holomorphic map τ : D → D′ and a homomorphism ρ : G→ G′ of Lie groups
such that

τ(gz) = ρ(g)τ(z)

for all g ∈ G and z ∈ D. In this case we say that τ is equivariant with respect
to ρ or that (τ, ρ) is an equivariant pair. To construct Kuga fiber varieties
we need to consider equivariant pairs when G′ is a symplectic group. Such
equivariant pairs were classified by Satake (see [108]).

Example 6.1 Let W be a real vector space of dimension ν defined over Q,
and let S be a nondegenerate symmetric bilinear form of signature (p, q) for
some positive integer p defined over Q. Let T (W ) =

⊕∞
r=0W

⊗r be the tensor
algebra of W , and let AS be the two-sided ideal of T (W ) generated by the set

{x⊗ x− S(x, x) | x ∈ W}.

Then the Clifford algebra of (W,S) is given by

C = C(V, S) = T (W )/AS .

Let {e1, . . . , eν} with ν = p+ q be an orthogonal basis of V such that
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S(ei, ej) = δijαi

for some α1, . . . , αν ∈ R, where δij is the Kronecker delta. If W is identified
with its image in C, then it is known that dim C = 2ν and that the set

{1} ∪ {ei1 · · · eiν | 1 ≤ i1 < · · · < ir ≤ ν, 1 ≤ r ≤ ν}

is a basis of C. Thus C is an associative algebra generated by e1, . . . , eν satis-
fying the conditions

e2i = αi, eiej + ejei = 0

for 1 ≤ i, j ≤ ν with i �= j. We set

C+ = 〈ei1 · · · eiν | 1 ≤ i1 < · · · < ir ≤ ν, r even〉R,
C− = 〈ei1 · · · eiν | 1 ≤ i1 < · · · < ir ≤ ν, r odd〉R.

Then C+ is a subalgebra of C of dimension 2ν−1, and we have

C = C+ ⊕ C−, (C+)2 = (C−)2 = C+, C+C− = C−C+ = C−.

Let ι be the canonical involution of C defined by eιi = ei for 1 ≤ i ≤ n. Then
the spin group is given by

Spin(W,S) = {g ∈ C+ | gιg = 1, gWg−1 = W}.

Given Spin(W,S), we set
φ(g)x = gxg−1

for all x ∈ W . Then we have φ(g) ∈ SO(W,S), and the map

φ : Spin(W,S) → SO(W,S)

is a two-fold covering of SO(W,S). Let a be an element C+ with aι = −a,
and let b1 and b2 be elements of C+ and C±, respectively, such that

b21 + (−1)q(q+1)/2b22 = −1, b1b2 + b2b1 = 0,

and the bilinear map

(x, y) 
→ tr(b1axιy) + tr(b2axιe−y)

for x, y ∈ C+ is symmetric and positive definite. We set

A(x, y) = tr(axιy), I(x) = xb1 + e−xb2.

for all x, y ∈ C+, where e− = ep+1 · · · eν . Then A is a nondegenerate alter-
nating bilinear form on C+, and I is a complex structure on C+ such that
(x, y) 
→ A(x, Iy) is symmetric and positive definite and

A(gx, gy) = A(x, y), I(gx) = gI(x)
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for all g ∈ Spin(W,S) and x, y ∈ C+ (see [106, Section 2]). Thus we see that
the left multiplication map

ρ̃(g) : x 
→ gx

determines a homomorphism

ρ̃ : Spin(W,S) → Sp(C+, A).

Now we assume that p = 2, that is the signature of S is (2, q). Then it is
known (see [106]) that the symmetric space D = G/K associated to a max-
imal compact subgroup of the spin group G = Spin(W,S) has a G-invariant
complex structure. We choose a basis of C+ in such a way that Sp(C+, A) can
be identified with Sp(2ν ,R) with ν = 2 + q and denote by

ρ : Spin(W,S) → Sp(2ν ,R)

the homomorphism induced by ρ̃. Then we can consider a holomorphic map
τ : D → H2ν be that is equivariant with respect to ρ.

Let V be a real vector space of dimension 2n defined over Q. A complex
structure on V is an element I ∈ GL(V ) such that I2 = −1V with 1V denoting
the identity map on V . Equipped with such a complex structure I, the real
vector space V can be converted to a complex vector space if the complex
multiplication operation is defined by

(a+ bi) · v = av + bIv (6.1)

for all a + bi ∈ C and v ∈ V . Let β be a nondegenerate alternating bilinear
form on V defined over Q. Then the symplectic group

Sp(V, β) = {g ∈ GL(V ) | β(gv, gv′) = β(v, v′) for all v, v′ ∈ V }

is of Hermitian type, and the associated Hermitian symmetric domain can be
identified with the set H = H(V, β) of all complex structures I on V such that
the bilinear form V × V → R, (v, v′) 
→ β(v, Iv′) is symmetric and positive
definite. The group Sp(V, β) acts on H by

g · I = gIg−1

for all g ∈ Sp(V, β) and I ∈ H. Let {e1, . . . , e2n} be a symplectic basis of
(V, β), that is, a basis of V satisfying the condition

β(ei, ej) =




1 if i = j + n,

−1 if i = j − n,

0 otherwise

for 1 ≤ i, j ≤ 2n. Then with respect to such a basis Sp(V, β) can be identified
with the real symplectic group Sp(n,R) of degree n. We also note that H can
be identified with the Siegel upper half space
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Hn = {Z ∈Mn(C) | tZ = Z, ImZ � 0}

of degree n consisting of n× n complex matrices with positive definite imag-
inary part and that the symplectic group Sp(n,R) on Hn by

g(Z) = (AZ +B)(CZ +D)−1 (6.2)

for all Z ∈ Hn and g = (A B
C D ) ∈ Sp(n,R).

We now consider an equivariant pair (τ, ρ) for the special case of G′ =
Sp(V, β). Thus we have the homomorphism ρ : G → Sp(V, β) and the holo-
morphic map τ : D → Hn satisfying the condition τ(gz) = ρ(g)τ(z) for all
g ∈ G and z ∈ D. Let G �ρ V be the semidirect product of G and V with
respect to the action of G on V via ρ. This means that G �ρ V consists of
the elements (g, v) ∈ G× V and its multiplication operation is given by

(g, v) · (g′, v′) = (gg′, ρ(g)v′ + v) (6.3)

for g, g′ ∈ G and v, v′ ∈ V . Then G�ρ V acts on D × V by

(g, v) · (z, w) = (gz, ρ(g)w + v) (6.4)

for all (g, v) ∈ G�ρ V and (z, w) ∈ D×V . Let Γ be a torsion-free arithmetic
subgroup of G. Then the corresponding quotient space X = Γ\D has the
structure of a complex manifold as well as the one of a locally symmetric
space. It is also called an arithmetic variety taking into account the fact that
it can be regarded as a quasi-projective complex algebraic variety (cf. [5]).
Let L be a lattice in V with VQ = L⊗Z Q such that

β(L,L) ⊂ Z, ρ(Γ )L ⊂ L. (6.5)

If (γ, �), (γ′, �′) ∈ G�ρ V with γ, γ′ ∈ Γ and �, �′ ∈ L, then by (6.3) we have

(γ, �) · (γ′, �′) = (γγ′, ρ(γ)�′ + �).

Using this and the condition ρ(Γ )L ⊂ L, we see that (γ, �) · (γ′, �′) ∈ Γ × L;
hence we obtain the subgroup Γ �ρ L of G�ρ V . Thus the action of G�ρ V
in (6.4) induces the action of Γ �ρ L on D × V . We denote the associated
quotient space by

Y = Γ �ρ L\D × V. (6.6)

Then the natural projection map D × V → D induces the map π : Y → X ,
which has the structure of a fiber bundle over X whose fiber is isomorphic
to the quotient space V/L.

We want to discuss next the complex structure on the fiber bundle Y over
X given by (6.6). Let z0 be a fixed element of D, and let I0 be the complex
structure on V corresponding to the element τ(z0) of Hn. Let VC = V ⊗R C

be the complexification of V , and denote by V+ and V− the subspaces of VC

defined by
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V± = {v ∈ VC | I0v = ±iv}, (6.7)

so that we have
VC = V+ ⊕ V−, V+ = V −. (6.8)

Using the fact that Hn can be identified with the set of complex structures
on V , we see that each element z ∈ D determines a complex vector space
(V, Iτ(z)), where Iτ(z) is the complex structure on V corresponding to τ(z) ∈
Hn. Then each element v in (V, Iτ(z)) determines an element

ξ(z, v) = vz = v+ − τ(z)v− = v+ − Iτ(z)v− (6.9)

of the subspace V+ of VC, where the elements v± denote the V±-components
of v ∈ V ⊂ VC = V+ ⊕ V−. We consider the map

η : D × V → D × V+

defined by
η(z, v) = (z, ξ(z, v)) (6.10)

for all (z, v) ∈ D×V . Then it can be shown that η is a bijection, and therefore
the action in (6.4) determines an action of G�ρ V on D × V+ given by

(g, v) · (z, u) = η((g, v) · (η−1(z, u))) (6.11)

for all (g, v) ∈ G�ρ V and (z, u) ∈ D × V+.
We consider the natural projection map π̃ : D × V → D as the trivial

vector bundle over D with fiber V . Then by using the isomorphism η : D×V ∼=
D×V+ given by (6.10) the complex structure on D×V+ can be carried over
to a complex structure I on the vector bundle D × V over D. Note that
the complex structure on D × V+ is determined by the G-invariant complex
structure on the Hermitian symmetric domain D and the complex structure
I0 = Iτ(z0) on V . Let π̃′ : D× V+ → D be the natural projection map, which
may be regarded as the trivial vector bundle over D with fiber V+. If z ∈ D,
the fibers of π̃ and π̃′ over z can be written as

π̃−1(z) = {z} × V ∼= V, π̃′−1(z) = {z} × V+
∼= V+;

hence we have
η |π̃−1(z)= {z} × V+.

Noting that the complex structure on V+ is I0, we see that

(η |π̃−1(z)) ◦ (I |π̃−1(z)) = I0 ◦ (η |π̃−1(z))

for the fiber π̃−1(z) of the bundle π̃ : D × V → D over each z ∈ D.
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Proposition 6.2 Let g be an element of G such that

ρ(g) =
(
A B
C D

)
∈ Sp(V, β) (6.12)

with respect to the decomposition VC = V+ ⊕ V− of VC = V ⊗R C in (6.8).
Then the action in (6.11) can be written as

(g, v) · (z, ξ(z, w)) = (gz, t(Cτ(z) +D)−1ξ(z, w) + ξ(gz, v)) (6.13)

for all z ∈ D and v, w ∈ V .

Proof. Given g ∈ G, z ∈ D and v, w ∈ V , using (6.3), (6.9) and (6.11), we
see that

(g, v) · (z, ξ(z, w)) = (gz, ξ(gz, ρ(g)w + v)) (6.14)
= (gz, ξ(gz, ρ(g)w)) + ξ(gz, v)).

If ρ(g) is as in (6.12), we have

ρ(g)w =
(
A B
C D

)(
w+

w−

)
=
(
Aw+ +Bw−
Cw+ +Dw−

)
;

hence we obtain

(ρ(g)w)+ = Aw+ +Bw−, (ρ(g)w)− = Cw+ +Dw−.

Using this and (6.9), we have

ξ(gz, ρ(g)w) = (Aw+ +Bw−) − τ(gz)(Cw+ +Dw−) (6.15)
= (A− τ(gz)C)w+ + (B − τ(gz)D)w−

= (1,−τ(gz))
(
A B
C D

)(
w+

w−

)

= (1,−τ(gz))ρ(g)w.

Since ρ(g) ∈ Sp(V, β), its inverse is given by

ρ(g)−1 =
(
A B
C D

)−1

=
(

tD −tB
−tC tA

)
.

Using this, (6.2), and the fact that the matrices τ(z), τ(gz) ∈ Hn are sym-
metric, we see that

(1,−τ(gz)) = (1,−t(τ(gz))) (6.16)

= (1,−t(Cτ(z) +D)−1t(Aτ(z) +B))

= t(Cτ(z) +D)−1(τ(z)tC + tD,−τ(z)tA− tB)

= t(Cτ(z) +D)−1(1,−τ(z))
(

tD −tB
−tC tA

)

= t(Cτ(z) +D)−1(1,−τ(z))ρ(g)−1.
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By substituting this into (6.15) we obtain

ξ(gz, ρ(g)w) = t(Cτ(z) +D)−1(1,−τ(z))w (6.17)

= t(Cτ(z) +D)−1ξ(z, w);

hence the proposition follows by combining this with (6.14). ��

Corollary 6.3 The complex structure I on D×V described above is invari-
ant under the action of G�ρ V .

Proof. Let z = (z1, . . . , zk) and ξ = (ξ1, . . . , ξn) be global complex coordinate
systems for D and V , respectively, associated to the complex structure I on
D × V . Given (g, v) ∈ G�ρ V , we denote by

z ◦ (g, v) = (z1 ◦ (g, v), . . . , zk ◦ (g, v)),

ξ ◦ (g, v) = (ξ1 ◦ (g, v), . . . , ξn ◦ (g, v))

the corresponding transformed coordinate systems. Then by (6.13) we have

(z ◦ (g, v))(z, w) = gz, (6.18)

(ξ ◦ (g, v))(z, w) = t(Cτ(z) +D)−1ξ(z, w) + ξ(gz, v). (6.19)

Since the complex structure on D determined by I is G-invariant, the formula
(6.18) shows that the transformed coordinates zj ◦ (g, v) are holomorphic
functions of z1, . . . , zk. Similarly, the coordinates zj are holomorphic functions
of z1 ◦ (g, v), . . . , zk ◦ (g, v). On the other hand, from (6.19) we see that the
transformed coordinates ξj ◦ (g, v) are holomorphic functions of z and ξ and
that the coordinates ξj are holomorphic functions of z and ξ ◦ (g, v); hence
the lemma follows. ��

By Corollary 6.3 the complex structure I on D× V induces the complex
structure IY on the fiber bundle Y over X in (6.6); hence its fiber V/L
becomes a complex torus. In addition, the alternating bilinear form β on V
determines the structure of a polarized abelian variety on the complex torus
V/L. Thus Y may be regarded as a family of abelian varieties parametrized
by the locally symmetric space X and is known as a Kuga fiber variety.

Lemma 6.4 The complex structure I on D × V described above satisfies

I |π̃−1(z)= Iτ(z)

for each z ∈ D, where Iτ(z) is the complex structure on V corresponding to
the element τ(z) ∈ Hn.
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Proof. Since the complex structure on V+ is I0, it suffices to show that

ξ(z, Iτ(z)w) = I0ξ(z, w)

for all w ∈ V . Let z0 be the element of D such that the complex structure
I0 corresponds to τ(z0) ∈ Hn as before, and let g ∈ G be the element with
z = gz0. Then we have

Iτ(z) = Iρ(g)τ(z0) = ρ(g)Iτ(z0)ρ(g)
−1 = ρ(g)I0ρ(g)−1.

Using this, (6.9) and (6.16), we have

ξ(z, Iτ(z)w) = (1,−τ(z))Iτ(z)w
= (1,−τ(gz0))ρ(g)I0ρ(g)−1w

= t(Cτ(z) +D)−1(1,−τ(z0))ρ(g)−1ρ(g)I0ρ(g)−1w

= I0
t(Cτ(z) +D)−1(1,−τ(z0))ρ(g)−1w

= I0ξ(z, w),

and therefore the lemma follows. ��

Using the notation in (6.9), the action of G �ρ V on D × V+ given by
(6.11) can be written in the form

(g, v) · (z, u) = (gz, t(Cτ(z) +D)−1u+ vgz) (6.20)

for all v ∈ V , (z, u) ∈ D×V+ and g ∈ G with ρ(g) = (A B
C D ) ∈ Sp(V, β). Thus

the Kuga fiber variety in (6.6) can be written as

Y = Γ �ρ L\D × V+, (6.21)

where the quotient is taken with respect to the action given by (6.20).
Given g ∈ G, we define the map φg : V → V by

φg(v) = ρ(g)v (6.22)

for all v ∈ V . Then we see easily that φg is an R-linear isomorphism. Using
the fact that

Iτ(gz) = Iρ(g)τ(z) = ρ(g)Iτ(z)ρ(g)−1

for each z ∈ D, we have

(Iτ(gz) ◦ φg)(v) = ρ(g)Iτ(z)ρ(g)−1ρ(g)v
= ρ(g)Iτ(z)v = (φg ◦ Iτ(z))(v)

for all z ∈ D and v ∈ V . Thus it follows that

Iτ(gz) ◦ φg = φg ◦ Iτ(z) (6.23)

for all z ∈ D.
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Lemma 6.5 Given z ∈ D and g ∈ G, let (V, Iτ(z)) and (V, Iτ(gz)) be the
complex vector spaces with respect to the complex structures Iτ(z) and Iτ(gz),
respectively. Then the R-linear isomorphism φg : V → V given by (6.22)
induces the C-linear isomorphism

φg : (V, Iτ(z)) → (V, Iτ(gz))

defined also by (6.22).

Proof. Given a+ bi ∈ C, using (6.1) and (6.23), we have

φg((a+ bi) · v) = φg(av + bIτ(z)v) = aφg(v) + b(φg ◦ Iτ(z))v
= aφg(v) + bIτ(gz)φg(v) = (a+ bi) · φg(v)

for all v ∈ V ; hence the lemma follows. ��
By Lemma 6.5 the element of (V, Iτ(gz)) corresponding to the element v

in (V, Iτ(z)) is φg(v) = ρ(g)v. This means that as an element of (V, Iτ(gz)) the
element vgz in (6.20) should be considered as

(ρ(g)v)gz = ξ(gz, ρ(g)v)) = t(Cτ(z) +D)−1vz ,

where we used the calculation in (6.17). Therefore we can now rewrite (6.20)
in the form

(g, v) · (z, u) = (gz, t(Cτ(z) +D)−1(u+ vz)). (6.24)

for all (g, v) ∈ G�ρ V and (z, u) ∈ D × V+.

Example 6.6 We consider the case where the real vector space is V = R
2n =

R
n×R

n, so that V+ = C
n. Given (r, s) ∈ R

n×R
n = V , we choose the complex

structure on V in such a way that (s,−r) ∈ V+ ⊕V− = VC. Then by (6.9) we
have

(r, s)z = s+ τ(z)r

for z ∈ D; hence (6.24) can be written as

(g, (r, s)) · (z, u) = (gz, t(Cτ(z) +D)−1(u + τ(z)r + s))

for u ∈ C
n and g ∈ G with ρ(g) = (A B

C D ) ∈ Sp(V, β).

In order to consider another interpretation of the Kuga fiber variety Y in
(6.21), we consider the case of G0 = Sp(V, β), D0 = Hn and Γ0 = Sp(L, β),
and assume that ρ0 : G0 → Sp(V, β) and τ0 : D0 → Hn are the respective
identity maps. If we denote by Y0 the Kuga fiber variety determined by the
equivariant pair (τ0, ρ0) and the discrete subgroup Γ0 �ρ0 L of G0 �ρ0 V ,
then we obtain the complex torus bundle π0 : Y0 → X0 over the Siegel
modular variety X0 = Γ0\Hn. Let Y be the Kuga fiber variety in (6.6)
or (6.21) associated to the equivariant pair (τ, ρ) and the discrete group
Γ �ρL considered before. Using (6.5), we see that ρ(Γ ) ⊂ Γ0; hence the map
τ : D → Hn induces the map τX : X → X0. Then the Kuga fiber variety Y
can also be obtained by pulling the bundle Y0 back via τX .
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6.2 Automorphy Factors and Kernel Functions

In this section we review the notion of canonical automorphy factors and
canonical kernel functions for semisimple Lie groups of Hermitian type and
those for generalized Jacobi groups by following closely the descriptions of
Satake given in [108] (see also [99]). A generalized Jacobi group can be con-
structed by using a Heisenberg group and an equivariant pair which deter-
mines a Kuga fiber variety considered in Section 6.1. Canonical automorphy
factors for generalized Jacobi groups will be used later to define Jacobi forms.

Let G = G(R) be a semisimple real algebraic group of Hermitian type as
in Section 6.1, and let K be a maximal compact subgroup of G. Then the
Riemannian symmetric space D = G/K has a G-invariant complex structure
I which determines a complex structure on the tangent space Tz(D) for each
z ∈ D. Let k be the Lie algebra of K, and let g = k + p be the corresponding
Cartan decomposition of g. Let z0 ∈ D be the fixed point of K, and let I0

be the complex structure on Tz0(D) = p. We set

p± = {X ∈ pC | I0(X) = ±iX}, (6.25)

and denote by P+ and P− the C-subgroups of GC corresponding to the sub-
spaces p+ and p−, respectively, of gC. Then we have

P+ ∩KCP− = {1}, G ⊂ P+KCP−, G ∩KCP− = K (6.26)

(see for example [108, Lemma II.4.2], [99]). If g ∈ P+KCP− ⊂ GC, we denote
by (g)+ ∈ P+, (g)0 ∈ KC and (g)− ∈ P− the components of g such that

g = (g)+(g)0(g)−.

We denote by (GC × p+)∗ the subset of GC × p+ consisting of elements (g, z)
such that g exp z ∈ P+KCP−. Then the canonical automorphy factor is the
map J : (GC × p+)∗ → KC defined by

J(g, z) = (g exp z)0 (6.27)

for (g, z) ∈ (GC × p+)∗. If (g, z) ∈ (GC × p+)∗, we also define the element
g(z) ∈ p+ by

exp g(z) = (g exp z)+. (6.28)

Furthermore, for z, z′ ∈ p+ with (exp z′)−1 exp z ∈ P+KCP−, we set

κ(z, z′) = J((exp z′)−1, z)−1 = (((exp z′)−1 exp z)0)−1 ∈ KC. (6.29)

Thus we obtain a KC-valued function κ(·, ·) defined on an open subset of
p+×p+ called the canonical kernel function for G, and it satisfies the relations

κ(z′, z) = κ(z, z′)−1, κ(z0, z) = κ(z, z0) = 1,
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κ(g(z), g(z′)) = J(g, z)κ(z, z′)J(g, w)
−1

for z, z′ ∈ p+ and g ∈ GC for which κ(z, z′) and κ(g(z), g(z′)) are defined
(see e.g. [108, Section II.5]).

Let (V, β) be the real symplectic space of dimension 2n defined over Q as
is described in Section 6.1. We extend β to a bilinear form on VC and denote
by βI0 : VC × VC → C the bilinear map defined by

βI0(v, v
′) = β(v, I0v′)

for all v, v′ ∈ VC. Then we have βI0 = iβ on V+ × V+ and βI0 = −iβ on
V− × V−. Thus each of βI0 |V+×V+ and βI0 |V−×V− is both symmetric and
alternating; hence we have

βI0 |V+×V+ = 0, βI0 |V−×V− = 0.

Let H = H(V, β) be as in Section 6.1, which can be identified with the Siegel
upper half space Hn of degree n. Since I0 ∈ H, from the definition of H it
follows that both βI0 |V+×V− and βI0 |V−×V+ are positive definite. Therefore
we can identify V− with the dual V ∗

+ of V+. Now we define a Hermitian form
β̃ : VC × VC → C on VC by

β̃(v, v′) = iβ(v, v′)

for all v, v′ ∈ VC. Then β̃ is positive definite on V+ ×V+, negative definite on
V− × V−, and is zero on V+ × V− and V− × V+.

Let {u1, . . . , un} be an orthonormal basis of V+ with respect to the re-
striction of the positive definite form β̃ to V+ × V+, and define the elements
un+1, . . . , u2n by uj+n = uj for 1 ≤ j ≤ n. Then we have

iβ(un+j, uj) = iβ(uj , uj) = β̃(uj , uj) = 1,

iβ(uk, un+k) = iβ(uk, uk) = −iβ(uk, uk) = −β̃(uk, uk) = 1

for 1 ≤ j, k ≤ n. On the other hand, using Lemma 1.1(iii), we obtain

iβ(uj , uk) = β̃(uj , uk) = 0,

iβ(un+j , un+k) = iβ(uj , uk) = β̃(uj, uk) = 0

for 1 ≤ j, k ≤ n. Thus {u1, . . . , u2n} is a symplectic basis for (VC, iβ), and we
have Sp(VC, iβ) = Sp(VC, β).

Now we discuss the canonical automorphy factor for G = Sp(V, β). We
shall regard the elements of Sp(V, β) and the elements of its Lie algebra as
matrices using the basis {u1, . . . , u2n} of VC described above. Indeed, we have
G = Sp(n,R) with respect to this basis. Thus, for example, p+ and P+ can
be written in the form
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p+ =
{(

0 Z
0 0

) ∣∣∣∣ Z ∈ Sn(C)
}
,

P+ = exp p+ =
{(

1 Z
0 1

) ∣∣∣∣ Z ∈ Sn(C)
}
,

where Sn(C) denotes the set of complex symmetric n×n matrices. Similarly,
we have

p− =
{(

0 0
Z 0

) ∣∣∣∣ Z ∈ Sn(C)
}
,

P− = exp p− =
{(

1 0
Z 1

) ∣∣∣∣ Z ∈ Sn(C)
}
.

We shall identify p+ with Sm(C) using the correspondence ( 0 Z
0 0 ) 
→ Z. Thus

we may write

expZ =
(

1 Z
0 1

)
∈ P+

for Z ∈ p+ = Sm(C), and GC acts on p+ by

gZ = exp−1((g expZ)+) ∈ p+

for all g ∈ GC, where exp−1(W ) for W ∈ P+ denotes the (1, 2)-block of the
2× 2 block matrix W . Let g′ be an element of GC = Sp(VC, β) whose matrix
representation is of the form g′ =

(
A′ B′
C′ D′

)
. Then g′ ∈ P+KCP− if and only if

D′ is nonsingular, and in this case its decomposition is given by

g′ =
(

1 B′D′−1

0 1

)(
tD′−1 0

0 D′

)(
1 0

D′−1
C′ 1

)
.

Lemma 6.7 Let g = (A B
C D ) ∈ GC, Z ∈ p+ = Sn(C), and let

JS : (GC × p+)∗ → KC

be the canonical automorphy factor for the symplectic group G = Sp(V, β). If
CZ +D is nonsingular, then we have

gZ = (AZ +B)(CZ +D)−1,

JS(g, Z) =
(
t(CZ +D)−1 0

0 (CZ +D)

)
. (6.30)

Proof. Given g ∈ GC and Z ∈ p+ as above, we have

g expZ =
(
A B
C D

)(
1 Z
0 1

)
=
(
A AZ +B
C CZ +D

)
.

Since CZ + D is nonsingular, we see that the element g expZ belongs to
P+KCP− and that its decomposition is given by
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g expZ = (g expZ)+(g expZ)0(g expZ)−,

(g expZ)+ =
(

1 (AZ +B)(CZ +D)−1

0 1

)
,

(g expZ)0 =
(
t(CZ +D)−1 0

0 (CZ +D)

)
,

(g expZ)− =
(

1 0
(CZ +D)−1C 1

)
.

Thus we have

JS(g, Z) = (g exp p)0 =
(
t(CZ +D)−1 0

0 (CZ +D)

)
,

and gZ is the (1, 2)-block (AZ+B)(CZ+D)−1 of the matrix (g exp p)+. ��

Since the Siegel upper half space Hn is as the set of complex symmetric n×
n matrices with positive definite imaginary part, there is a natural embedding
of Hn into p+ = Sm(C). If g = (A B

C D ) ∈ Sp(V, β) and Z ∈ Hn, then CZ +D
is nonsingular; hence, using Lemma 6.7 we obtain the usual action Z 
→
(AZ + B)(CZ + D)−1 of G on Hn. On the other hand, given g ∈ G and
Z ∈ Hn, the associated complex n× n matrix JS(g, Z) can be regarded as a
linear map of VC into itself.

Corollary 6.8 (i) Let Z ∈ Hn and

g =
(
A B
C D

)
∈ Sp(V, β).

Then the restriction JS+(g, Z) of the linear map JS(g, Z) : VC → VC to the
subspace V+ of VC is given by

JS+(g, Z) = t(CZ +D)−1. (6.31)

(ii) Let κS be the canonical kernel function for the symplectic group
Sp(V, β), and let κS+ be its restriction to V+ of the type described in (i).
Then we have

κS+(Z,Z ′) = 1 − ZZ
′

(6.32)

for all Z,Z ′ ∈ Hn, where 1 denotes the n× n identity matrix.

Proof. The formula (6.31) follows immediately from (6.30). On the other
hand, applying Lemma 6.7 to the group

(expZ
′
)−1 =

(
1 0

−Z′
1

)
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with Z ′ ∈ Hn, we see that

κS+(Z,Z ′) =

(
1 − ZZ

′
0

0 1 − Z
′
Z

)
,

where we used (6.29) and the fact that

t(1 − Z
′
Z) = 1 − tZtZ

′
= 1 − ZZ

′
.

This implies (6.32), and hence the proof of the lemma is complete. ��

Let (τ, ρ) be an equivariant pair which determines Kuga fiber varieties
considered in Section 6.1. Thus τ : D → Hn is a holomorphic map that
is equivariant with respect to the homomorphism ρ : G → Sp(V, β) of Lie
groups. We denote by G̃ the group of all elements of G × V × R whose
multiplication operation is defined by

(g, v, t)(g′, v′, t′) = (gg′, ρ(g)v′ + v, t+ t′ + β(v, ρ(g)v′)/2) (6.33)

for all (g, v, t), (g′, v′, t′) ∈ G× V × R. Thus the subgroup {0} × V × R of G̃
is the Heisenberg group associated to the symplectic space (V, β). The group
G̃ is the group of Harish-Chandra type in the sense of Satake [108] and can
be considered as a generalized Jacobi group since it reduces to a usual Jacobi
group when ρ is the identity map on Sp(V, β) (see for example [8, 124]). Let
K be a maximal compact subgroup of G with D = G/K, and let g and k be
the Lie algebras of G and K, respectively. If g = k + p is the corresponding
Cartan decomposition of g, we recall that p+ and p− are subspaces of pC

defined by (6.25). If the subspaces V+ and V− of VC are as in (6.7), we set

p̃+ = p+ ⊕ V+, p̃− = p+ ⊕ V−, (6.34)

and let P̃+, P̃− be the corresponding subgroup of G̃C = GC ×VC ×C, respec-
tively. If K̃C = KC × {0} × C, we have G̃ ⊂ P̃+K̃CP̃−. Thus each element
g̃ ∈ G̃ has a decomposition of the form

g̃ = (g̃)+ · (g̃)0 · (g̃)−

with (g̃)+ ∈ P̃+, (g̃)0 ∈ K̃C and (g̃)− ∈ P̃−. The canonical automorphy factor
J̃ for the group G̃ and the action of G̃ on p̃+ = p+ ⊕ V+ is defined by

J̃((g, v, t), (z, w)) = ((g, v, t) exp(z, w))0, (6.35)

exp((g, v, t) · (z, w)) = ((g, v, t) exp(z, w))+, (6.36)

assuming that (g, v, t) exp(z, w) ∈ P̃+K̃CP̃−. Here exp(z, w) is an element of
G̃ and is given by
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exp(z, w) = (exp z, w, 0) (6.37)

for all z ∈ p+ and w ∈ V+. Since D is embedded into p+, the quotient space
D̃ = G̃/K̃ = D × V+ can be embedded into p̃+ = p+ ⊕ V+. Thus (6.36)
defines the action of G̃ on D̃. We also define the canonical kernel function
κ̃(·, ·) : p̃+ × p̃+ → K̃C by

κ̃((z, w), (z′, w′)) = J̃((exp (z′, w′))−1, (z, w))−1 (6.38)

= ((exp (z′, w′))−1 exp(z, w))−1
0

for (z, w), (z′, w′) ∈ p̃+ such that

(exp (z′, w′))−1 exp(z, w) ∈ P̃+K̃CP̃−. (6.39)

The condition (6.39) is satisfied for (z, w), (z′, w′) ∈ D̃; hence we obtain a
canonical kernel function on D̃ × D̃.

Lemma 6.9 The canonical kernel function κ̃((z, w), (z′, w′)) is holomorphic
in (z, w) and satisfies the relations

κ̃((z′, w′), (z, w)) = κ̃((z, w), (z′, w′))−1,

κ̃(g̃ · (z, w), g̃ · (z′, w′)) = J̃(g̃, (z, w))κ̃((z, w), (z′, w′))J̃(g̃, (z′, w′))−1

for (z, w), (z′, w′) ∈ D̃ and g̃ ∈ G̃.

Proof. The first relation follows immediately from (6.38). In order to verify
the second relation, let (z, w), (z′, w′) ∈ D̃ and g̃ ∈ G̃. Then, using (6.35) and
(6.36), we see that

g̃ exp(z, w) = exp(g̃ · (z, w))J̃(g̃, (z, w))p1,

g̃ exp(z′, w′) = exp(g̃ · (z′, w′))J̃(g̃, (z′, w′))p2

for some p1, p2 ∈ P̃−. Since g̃ = g̃, we have

exp(z′, w′)−1 exp(z, w) (6.40)

= exp (z′, w′)−1g̃
−1
g̃−1 exp(z, w)

= p−1
2 J̃(g̃, (z′, w′))−1 exp (g̃ · (z′, w′))−1 exp(g̃ · (z, w))J̃(g̃, (z, w))p1,

which shows that

exp (z′, w′)−1 exp(z, w) ∈ P̃+K̃CP̃−.

Thus, by (6.38) and (6.40) the K̃C-component of exp (z′, w′)−1 exp(z, w) is
given by
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κ̃((z, w), (z′, w′))−1

= J̃(g̃, (z′, w′))−1 exp (g̃ · (z′, w′))−1 exp(g̃ · (z, w))J̃(g̃, (z, w));

hence we obtain

exp (g̃ · (z′, w′))−1 exp(g̃ · (z, w))−1

= J̃(g̃, (z, w))κ̃((z, w), (z′, w′))J̃(g̃, (z′, w′))−1.

Now the second relation is obtained from this and (6.38). ��

We shall now describe below the action of G̃ on D̃ and the canonical
automorphy factor for G̃ defined by (6.36) more explicitly. Given (g, v, t) ∈ G̃

and (z, w) ∈ D̃ ⊂ p+ ⊕ V+, we set

(g, v, t) · (z, w) = (z′, w′) ∈ D̃, (6.41)

J̃((g, v, t), (z, w)) = (J1, 0, J2) ∈ K̃C = KC × {0} × C. (6.42)

Using (6.35), (6.36), (6.37), (6.41) and (6.42), we obtain a decomposition of
the form

(g, v, t) exp(z, w) = (exp z′, w′, 0)(J1, 0, J2)(p−, w−, 0) ∈ P̃+K̃CP̃− (6.43)

for some (p−, w−, 0) ∈ P̃−. Using the multiplication rule on G̃ in (6.33), we
see that the right hand side of (6.43) reduces to

((exp z′)J1, w
′, J2)(p−, w−, 0) = (g′′, v′′, t′′),

where

g′′ = (exp z′)J1p−,
v′′ = w′ + ρ((exp z′)J1)w−,
t′′ = J2 + β(w′, ρ((exp z′)J1)w−)/2.

On the other hand, the left hand side of (6.43) can be written as

(g, v, t) exp(z, w) = (g, v, t)(exp z, w, 0)
= (g exp z, v + ρ(g)w, t+ β(v, ρ(g)w)/2).

Hence we obtain
g exp z = (exp z′)J1p−, (6.44)

v + ρ(g)w = w′ + (exp z′)J1w−, (6.45)

t+ β(v, ρ(g)w)/2 = J2 + β(w′, ρ((exp z′)J1)w−)/2.

for (g, v, t) ∈ G̃ = G× V × R and (z, w) ∈ D̃ = D × V+.
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Proposition 6.10 Given (z, w) ∈ D̃, we set

ρ(J1(z, w)) =
(
J+(z, w) 0

0 J−(z, w)

)
∈ Sp(V, β),

where we identified Sp(V, β) with Sp(n,R) by fixing a symplectic basis of V .
Then the action of G̃ on D̃ is given by

(g, v, t) · (z, w) = (g(z), vgz + J+(z, w)w) (6.46)

for all (g, v, t) ∈ G̃.

Proof. Consider the elements (g, v, t) ∈ G̃ and (z, w) ∈ D̃, and assume that

(g, v, t) · (z, w) = (z′, w′) ∈ D̃

as in (6.41). Since exp g(z) = (g exp z)+ by (6.28), from (6.44) we obtain

exp z′ = exp g(z), J1 = (g exp z)−.

Hence it follows that z′ = g(z), and

J1((g, v, t), (z, w)) = J(g, z),

where J is the canonical automorphy factor for the group G given in (6.27).
Now we consider the matrix representations

ρ(exp z) =
(

1 τ(z)
0 1

)
, ρ(g) =

(
A B
C D

)
, ρ(J1) =

(
J+ 0
0 J−

)

for z ∈ p− relative to the decomposition V = V+ ⊕ V−. Applying ρ to both
sides of the relation (6.44), we obtain

(
A B
C D

)(
1 τ(z)
0 1

)
=
(

1 τ(z′)
0 1

)(
J+ 0
0 J−

)(
1 0
M 1

)

for some matrix M . Thus we have(
A Aτ(z) +B
C Cτ(z) +D

)
=
(
J+ + τ(z′)J−M τ(z′)J−

J−M J−

)
.

Hence we see that

J+ = A− τ(z′)C, J− = Cτ(z) +D,

τ(z′) = (Aτ(z) +B)(Cτ(z) +D)−1.

On the other hand the matrix form of the relation (6.45) is given by
(
v+
v−

)
+
(
A B
C D

)(
w
0

)
=
(
w′

0

)
+
(

1 τ(z′)
0 1

)(
J+ 0
0 J−

)(
0
w−

)
,
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which implies that

v+ +Aw = w′ + τ(z′)J−w−, v− + Cw = J−w−.

Therefore we obtain

w′ = (v+ +Aw) − τ(z′)(v− + Cw)
= (v+ − τ(z′)v−) + (A− τ(z′)C)w = vz′ + J+w;

hence we have (z′, w′) = (g(z), vgz + J+w). ��
Corollary 6.11 Let JS+ be the restriction of the canonical automorphy factor
for Sp(V, β) to V+ given in Corollary 6.8. Then, for (g, v, t) ∈ G̃ and (z, w) ∈
D̃, we have

(g, v, t) · (z, w) = (gz, vgz + JS+(ρ(g), τ(z))w). (6.47)

In particular, if

ρ(g) =
(
Aρ Bρ
Cρ Dρ

)
∈ Sp(V, β),

then we have

(g, v, t) · (z, w) = (gz, vgz + t(Cρτ(z) +Dρ)−1w). (6.48)

Proof. From (6.27), for g ∈ G and z ∈ D, we have

ρ(J1) = ρ(J1(g, z)) = ρ((g exp z)0) = (ρ(g) exp τ(z))0.

Thus we see that
ρ(J1)(g, z) = JS(ρ(g), τ(z)),

where JS is the canonical automorphy factor for the symplectic group
Sp(V, β) given in (6.30). Therefore, if J+ is as in Proposition 6.10, we have

J+(g, z) = JS+(ρ(g), τ(z)). (6.49)

Using this and Proposition 6.10, we obtain (6.47). Then (6.48) is obtained
by using (6.31). ��

From the multiplication operation on G̃ given in (6.33) we see that the
induced operation on G× V by the natural projection G̃ → G× V is exactly
the one on G �ρ V considered in Section 6.1. On the other hand, by (6.49)
the restriction of the action of G̃ on D× V+ given by (6.46) to G×V can be
written in the form

(g, v) · (z, w) = (gz, vgz + JS+(ρ(g), τ(z))w)

= (gz, vgz + t(Cρτ(z) +Dρ)−1w).

for all (z, w) ∈ D × V+ and (g, v) ∈ G × V ⊂ G̃ with ρ(g) =
(
Aρ Bρ
Cρ Dρ

)
∈

Sp(V, β), which coincides with the action in (6.20) that was used for the
construction of the Kuga fiber variety Y in (6.21).
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Lemma 6.12 If (g, v, t) · (z, w) = (z′, w′), then we have

β(v, ρ(g)w) − β(vz′ , Cw) = β(v, J1w),

where the matrix C is the (2, 1) block of ρ(g) as in the proof of Lemma 6.10.

Proof. Using vz′ = v+ − τ(z′)v− and the matrix representation of ρ(g), we
have

β(v, ρ(g)w) − β(vz′ , Cw) = β(v,Aw + Cw) − β(
(

1 −τ(z′)
0 1

)
v + v−, Cw).

Since Cw ∈ V− and β|V−×V− = 0, using the fact that β is invariant under
ρ(G), we obtain

β(v, ρ(g)w) − β(vz′ , Cw) = β(v,Aw) + β(v, Cw) − β(v,
(

1 τ(z′)
0 1

)
Cw)

= β(v,Aw) + β(v, Cw) − β(v, Cw + τ(z′)Cw)
= β(v,Aw − τ(z′)Cw).

Now the lemma follows from the fact that J1w = J+w = Aw − τ(z′)Cw. ��

Proposition 6.13 The canonical automorphy factor J̃ for G̃ is given by

J̃((g, v, t), (z, w)) = (J1((g, v), (z, w)), 0, J2((g, v, t), (z, w))) (6.50)

for all (g, v, t) ∈ G̃ and (z, w) ∈ D̃, where J1 is the canonical automorphy
factor J for the group G given by (6.27) and

J2((g, v, t), (z, w)) = t+ β(v, vgz)/2 + β(v, J1w) (6.51)
+ β(ρ(g)w, J1w)/2.

Proof. If C is as in Lemma 6.12, then we have (v + ρ(g)w)− = v− + Cw.
Using this and the fact that β|V+×V+ = 0, we see that

J2 = t+ β(v, ρ(g)w)/2 − β(w′, ρ((exp z′)J1)w−)/2
= t+ β(v, ρ(g)w)/2 − β(w′, v + ρ(g)w − w′)/2
= t+ β(v, ρ(g)w)/2 − β(vz′ + J+w, v + ρ(g)w)/2
= t+ β(v, ρ(g)w)/2 − β(vz′ , v)/2 − β(vz′ , ρ(g)w)/2

− β(J+w, v− + Cw)/2
= t+ β(v, ρ(g)w)/2 − β(vz′ , v)/2 − β(vz′ , ρ(g)w)/2

− β(J+w, v−)/2 − β(J+w,Cw)/2

Using Lemma 6.12, we thus obtain

J2 = t+ β(v, J1w)/2 − β(vz′ , v)/2 − β(J+w, v−)/2 − β(J+w,Cw)/2
= t+ β(v, J1w) − β(vz′ , v)/2 − β(J+w,Cw)/2.
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Since ρ(g)w = Aw + Cw with Aw ∈ V+, we have

β(J+w,Cw) = β(J+w, ρ(g)w) = β(J1w, ρ(g)w) = −β(ρ(g)w, J1w).

Therefore the proposition follows by using this and the relation β(vz′ , v) =
β(vgz , v) = −β(v, vgz). ��

Now we define the complex-valued function J : G̃× D̃ → C by

J ((g, v, t), (z, w)) = e (J2((g, v, t), (z, w))) (6.52)
= e (t+ β(v, vgz)/2 + β(v, J1w)

+ β(ρ(g)w, J1w)/2)

for all (g, v, t) ∈ G̃, where e (·) = e2πi(·).

Proposition 6.14 The function J is an automorphy factor, that is, it sat-
isfies the relation

J (g̃g̃′, z̃) = J (g̃, g̃′z̃)J (g̃, z̃) (6.53)

for g̃ = (g, v, t), g̃′ = (g′.v′, t′) ∈ G̃ and z̃ = (z, w) ∈ D̃.

Proof. Let g̃, g̃′ ∈ G̃ and z̃ ∈ D̃. Since the map

J̃ = (J1, 0, J2) : G̃× D̃ → K̃C

is an automorphy factor, using the multiplication rule (6.33) in G̃, we obtain

(J1(g̃g̃′, z̃), 0, J2(g̃g̃′, z̃)) = (J1(g̃, g̃′z̃), 0, J2(g̃, g̃′z̃))(J1(g̃′, z̃), 0, J2(g̃′, z̃))
= (J1(g̃, g̃′z̃)J1(g̃′, z̃), 0, J2(g̃, g̃′z̃) + J2(g̃′, z̃)).

Thus we have
J2(g̃g̃′, z̃) = J2(g̃, g̃′z̃) + J2(g̃′, z̃),

and hence J = e (J2) satisfies the desired relation. ��

6.3 Mixed Automorphic Forms and Kuga Fiber
Varieties

In this section we describe a connection between Kuga fiber varieties and
mixed automorphic forms (cf. [71, 74, 73, 76]). To be more specific, we show
that the holomorphic forms of the highest degree on a Kuga fiber variety
can be interpreted as mixed automorphic forms on a Hermitian symmetric
domain.

Let (τ, ρ) be an equivariant pair consisting of a homomorphism ρ : G → G′

and a holomorphic map τ : D → D′ described in Section 6.1. Let Γ be
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a torsion-free arithmetic subgroups of G, and let j : Γ × D → C
× be an

automorphy factor, which means that j satisfies the cocycle condition

j(γ1, γ2, z) = j(γ1, γ2z)j(γ2, z)

for all z ∈ D and γ1, γ2 ∈ Γ . Let Γ ′ be a torsion-free arithmetic subgroup of
G′ such that ρ(Γ ) ⊂ Γ ′, and let j′ : Γ ′ ×D → C

× be an automorphy factor.

Definition 6.15 A mixed automorphic form on D of type (j, j′, ρ, τ) is a
holomorphic function f : D → C such that

f(γz) = j(γ, z) · j′(ρ(γ), τ(z)) · f(z)

for all z ∈ D and γ, γ′ ∈ Γ .

Remark 6.16 Note that the map (g, z) 
→ j(γ, z) · j′(ρ(γ), τ(z)) is also an
automorphy factor of Γ . Thus, if we denote this automorphy factor by Jj,j′ ,
then a mixed automorphic form on D of type (j, j′, ρ, τ) is simply an auto-
morphic form on D of type Jj,j′ in the sense of Definition 6.19.

Let Y be the Kuga fiber variety over X = Γ\D associated to the equivari-
ant pair (τ, ρ) with G′ = Sp(V, β) given by (6.21), and let Y m be the m-fold
fiber power of the fiber bundle π : Y → X over X , that is,

Y m = {(y1, . . . , ym) ∈ Y × · · · × Y | π(y1) = · · · = π(ym)}.

Thus we have
Y m = Γ × Lm\D × V m+ , (6.54)

and each fiber of Y m is isomorphic to the m-fold power (V+/L)m of the
polarized abelian variety V+/L.

Let J : G×D → KC be the automorphy factor obtained by restricting the
canonical automorphy factor (GC ×p+)∗ → KC given in (6.27) by identifying
D as a subdomain of p+, and set

jH(g, z) = det[Adp+(J(g, z))] (6.55)

for all g ∈ G and z ∈ D, where Adp+ is the restriction of the adjoint rep-
resentation of GC to p+. Then jH : G × D → C is an automorphy factor,
and for each g ∈ G the map z 
→ jH(g, z) is simply the Jacobian map of
the transformation z 
→ gz of D. We also consider the automorphy factor
jV : Sp(V, β) ×Hn → C given by

jV (g′, Z) = det(CZ +D) (6.56)

for all Z ∈ Hn and

g′ =
(
A B
C D

)
∈ Sp(V, β),

where we identified Sp(V, β) with Sp(n,R) by using a symplectic basis for V .
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Theorem 6.17 Let Y m be the m-fold fiber power of the Kuga fiber variety
Y over X given by (6.6), and let Ωk+mn be the sheaf of holomorphic (k +
mn)-forms on Y m. Then the space H0(Y m, Ωk+mn) of sections of Ωk+mn is
canonically isomorphic to the space of mixed automorphic forms on D of type
(j−1
H , jmV , ρ, τ).

Proof. We assume that the Hermitian symmetric domain D is realized as
a bounded symmetric domain in C

k for some positive integer k, and let
z = (z1, . . . , zk) be the global coordinate system for D. Recalling that each
fiber of Y m is of the form (V+/L)m, let ζ(j) = (ζ(j)

1 , . . . , ζ
(j)
n ) be coordinate

system for V+ for 1 ≤ j ≤ m. Let Φ be a holomorphic (k+mn)-form on Y m.
Then Φ can be regarded as a holomorphic (k+mn)-form on D× V m+ that is
invariant under the action of Γ �ρ L

m. Thus there is a holomorphic function
fΦ(z, ζ) on D × V m+ such that

Φ(z, ζ) = fΦ(z, ζ)dz ∧ dζ(1) ∧ · · · ∧ dζ(m), (6.57)

where z = (z1, . . . , zk) ∈ D, ζ = (ζ(1), . . . , ζ(m)) and

ζ(j) = (ζ(j)
1 , . . . , ζ(j)

n ) ∈ V+

for 1 ≤ j ≤ m. Give an element x0 ∈ D, the restriction of the form Φ to the
fiber Y nx0

over x0 is the holomorphic mn-form

Φ(x0, ζ) = fΦ(x0, ζ)dz ∧ dζ(1) ∧ · · · ∧ dζ(m),

where ζ 
→ fΦ(x0, ζ) is a holomorphic function on Y mx0
. However, Y mx0

is a
complex torus of dimension mn, and therefore is compact. Since any holo-
morphic function on a compact complex manifold is constant, we see that fΦ
is a function of z only. Thus (6.57) can be written in the form

Φ(z, ζ) = f̃Φ(z)dz ∧ dζ(1) ∧ · · · ∧ dζ(m), (6.58)

where f̃ is a holomorphic function on D. In order to use the condition that
Φ is invariant under the action of Γ �ρ L

m, consider an element

(γ, l) = (γ, l1, . . . , lm) ∈ Γ �ρ L
m.

Then we have
dz ◦ (γ, l) = jH(γ, z)dz,

since jH(γ, ∗) is the Jacobian map for the transformation z 
→ γz as stated
above. On the other hand, by (6.20) the action of the element (γ, l) ∈ Γ�ρL

m

on
dζ(j) = (dζ(j)

1 , . . . , dζ(j)
n ) ∈ V+ (6.59)

is given by
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dζ(j) ◦ (γ, l) =
m∧
i=1

d
(
t(Cρτ(z) +Dρ)−1ζ

(j)
i + (li)γz

)
(6.60)

= det(Cρτ(z) +Dρ)−1
m∧
i=1

dζ
(j)
i

= jV (ρ(γ), τ(z))−1dζ(j)

for 1 ≤ j ≤ m, where

ρ(γ) =
(
Aρ Bρ
Cρ Dρ

)
∈ Sp(V, β).

Thus from (6.58), (6.59) and (6.60) we obtain

Φ ◦ (γ, l) = f̃Φ(γz)jH(γ, z)jV (ρ(γ), τ(z))−mdz ∧ dζ(1) ∧ · · · ∧ dζ(m).

Since Φ is invariant under Γ �ρ L
m, by comparing the previous relation with

(6.58) we see that

f̃Φ(γz) = jH(γ, z)−1jV (ρ(γ), τ(z))mf̃Φ(z)

for all γ ∈ Γ and z ∈ D. On the other hand, given a mixed automorphic form
f on D of type (j−1

H , jmV , ρ, τ), we define the (k +mn)-form Φf on Y m by

Φf (z, ζ) = f(z)dz ∧ dζ(1) ∧ · · · ∧ dζ(m).

Then for (γ, l) = (γ, l1, . . . , lm) ∈ Γ �ρ L
m we have

(Φf ◦ (γ, l))(z, ζ) = f(γz)jH(γ, z)jV (ρ(γ), τ(z))−mdz ∧ dζ(1) ∧ · · · ∧ dζ(m)

= f(z)dz ∧ dζ(1) ∧ · · · ∧ dζ(m) = Φf (z, ζ).

Therefore the map f 
→ Φf gives an isomorphism between the space of mixed
automorphic forms on D of type (j−1

H , jmV , ρ, τ) and the spaceH0(Y m, Ωk+mn)
of holomorphic (k +mn)-forms on Y m. ��

Remark 6.18 Note that the cohomology group H0(Y m, Ωk+mn) is isomor-
phic to the Dolbeault cohomology group Hk+mn,0(Y m,C) of Y m, which is the
(k+mn, 0)-component in the Hodge decomposition of the de Rham cohomol-
ogy group Hk+mn(Y m,C) of Y m.

6.4 Embeddings of Kuga Fiber Varieties

If Y is the Kuga fiber variety over X given by (6.6) or (6.21), it is well-known
(cf. [5]) that the locally symmetric space X = Γ\D has the structure of a
quasi-projective algebraic variety over C. In this section we show that Y is
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also a projective variety when Γ is cocompact by following Kuga [61] and
Satake [108].

We shall first start with a review of the theory of embeddings of Kähler
manifolds into complex projective spaces (see [108]). Let M be a complex
manifold, and let {Uα | α ∈ Ξ} be an open cover of M . A collection {fαβ} of
nonzero holomorphic functions fαβ : Uα ∩ Uβ → C is a 1-cocycle of M with
respect to the covering {Uα} if fαα = 1 on Uα and fαβ · fβγ · fγα = 1 on
Uα ∩Uβ ∩Uγ . Two 1-cocycles {fαβ} and {f ′

αβ} are cohomologous if there are
nonzero holomorphic functions hα : Uα → C such that

f ′
αβ = ha · fαβ · h−1

β

on Uα ∩ Uβ. The set of 1-cocycles on M modulo the cohomologous relation
forms the first cohomology group H1(M,O×), where O× denotes the sheaf of
nonzero holomorphic functions on M . On the other hand, a 1-cocycle {fαβ}
determines a line bundle L over M obtained from the set

∐
α∈Ξ

Uα × C

by identifying the elements (z, ηα) ∈ Uα × C and (z′, ηβ) ∈ Uβ × C with
Uα ∩ Uβ �= ∅, z = z′ and ηα = fαβ · ηβ . The isomorphism class of such a
line bundle depends only on the cohomology class of the corresponding 1-
cocycle, and there is a natural isomorphism between the group of complex
line bundles over M and the cohomology group H1(M,O×).

Let L be the line bundle on M determined by the cocycle {fαβ}. If we set

kαβγ = − 1
2πi

(log fαβ + log fβγ + log fγα),

then the collection {kαβγ} is a 2-cocycle and determines an element c(L) of
the second cohomology group H2(M,Z) with coefficients in Z. The element
c(L) ∈ H2(M,Z) is called the Chern class of L. We denote by cR(L) ∈
H2(M,R) the real Chern class of L, that is, the image of c(L) in H2(M,R).
Let {hα} be a collection of C∞ functions hα : Uα → C satisfying

hα(z) = hβ(z) · |fαβ(z)|−2

for all z ∈ Uα ∩ Uβ. Then the corresponding differential forms

hα(z)dηα ∧ dηα

determine a Hermitian metric on each fiber of L. We shall call {hα} the
Hermitian structure on L. Given such a Hermitian structure, it is known
that the real Chern class cR(L) of L is given by

cR(L) = Cl
[ 1
2πi

d′d′′ log hλ
]
, (6.61)
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where Cl[·] denotes the cohomology class in H2(M,R) (see [108, p. 203]).
Let D be a domain in C

m, and let∆ be a group that acts on D holomorphi-
cally, properly discontinuously, and without fixed points. Let j : ∆×D → C

×

be an automorphy factor satisfying

j(δ1δ2, z) = j(δ1, δ2z) · j(δ2, z) (6.62)

for all δ1, δ2 ∈ ∆ and z ∈ D. We consider the action of ∆ on D× C given by

δ · (z, ζ) = (δz, j(δ, z)ζ)

for δ ∈ ∆ and (z, ζ) ∈ D × C. Then the quotient

L(j) = ∆\D × C (6.63)

with respect to this action has the structure of a line bundle over M = ∆\D,
which is induced by the natural projection map D × C → D.

Definition 6.19 Let j : ∆ × D → C
× be the automorphy factor described

above. An automorphic form of type j for ∆ is a holomorphic map f : D → C

that satisfies
f(δz) = j(δ, z)f(z)

for all z ∈ D and δ ∈ ∆.

Lemma 6.20 Let Γ 0(M,L(j)) be the space of all sections of the line bundle
L(j). Then each element of Γ 0(M,L(j)) can be identified with an automor-
phic form of type j for ∆.

Proof. Let s : M → L(j) be an element of Γ 0(M,L(j)). Then for each z ∈ D
we have

s(∆z) = [(z, wz)] ∈ L(j) = ∆\D × C (6.64)

for some wz ∈ C, where ∆z ∈ M and [(z, wz)] ∈ L(j) denote the elements
corresponding to z ∈ D and (z, wz) ∈ D × C, respectively. We define the
function fs : D → C by fs(z) = wz for all z ∈ D. Using (6.64), for each
δ ∈ ∆ we have

s(∆z) = s(∆δz) = [(δz, wδz)] = [δ−1 · (δz, wδz)] = (z, j(δ−1, δz)wδz)),

which implies that

fs(z) = j(δ−1, δz)wδz = j(δ−1, δz)fs(δz) (6.65)

for all z ∈ D and δ ∈ ∆. However, from (6.62) we obtain

1 = j(δ−1δ, z) = j(δ−1, δz) · j(δ, z).

Thus we have j(δ−1, δz) = j(δ, z)−1, and therefore (6.65) implies that fs is
an automorphic form of type j for ∆. ��
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The 1-cocycle associated to the line bundle L(j) in (6.63) can be described
as follows. Let D → M = ∆\D, and choose an open cover {Uα | α ∈ Ξ} of
M such that Uα ∩ Uβ is connected for all α, β ∈ Ξ and each Uα satisfies the
following conditions:

(i) Every connected component of p−1(Uα) is homeomorphic to Uα.
(ii) If U ′

α is a connected component of p−1(Uα), then we have

p−1(Uα) =
∐
δ∈∆

δ · U ′
α.

Let α, β ∈ Ξ with Uα∩Uβ �= ∅, and let U ′
α, U ′

β be the connected components
of Uα, Uβ, respectively. Then there is a unique element δαβ ∈ ∆ such that

U ′
α ∩ δαβ · U ′

β �= ∅.

Thus we obtain a collection {fαβ} of functions fαβ : Uα ∩ Uβ → C such that

fαβ(z) = j(δαβ , zβ) (6.66)

for all z ∈ Uα ∩Uβ , where zα = (p|U ′β )
−1(z). Using (6.62), we see that {fαβ}

is a 1-cocycle on M , and it can be shown that L(j) is exactly the line bundle
determined by this 1-cocycle.

Given an automorphy factor j : ∆×D → C
×, a kernel function associated

to j is a function k : D × D → C
× that is holomorphic in the first argument

and satisfies

k(z′, z) = k(z, z′), k(δz, δz′) = j(δ, z) · k(z, z′) · j(δ, z′) (6.67)

for all z, z′ ∈ D and δ ∈ ∆.

Lemma 6.21 If k : D × D → C
× is a kernel function such that k(z, z) > 0

for all z ∈ D, then we have

cR(L(j)) = Cl
[
− 1

2πi
d′d′′ log k(z, z)

]
. (6.68)

Proof. From (6.66) and (6.67) we obtain

k(δαβzβ , δαβzβ) = j(δαβ , zβ) · k(zβ , zβ) · j(δαβ , zβ) (6.69)

= k(zβ, zβ) · |fαβ(zβ)|2

for all z ∈ Uα ∩ Uβ. Since δαβ ∈ U ′
α, we see that δαβzβ = δα; hence if we set

hα(z) = k(zα, zα)−1,

for all z ∈ D, then (6.69) becomes

hα(z) = hβ(z) · |fαβ(z)|−2.

Therefore {hα} is a Hermitian structure on the line bundle L(j); hence we
obtain (6.68) by using (6.61). ��



168 6 Families of Abelian Varieties

Let M be a Hermitian manifold, that is, a complex manifold with a Her-
mitian metric ds2 on M . Then we have

ds2 =
∑

sαβdz
αdzβ , (6.70)

where sαβ = ds2(∂/∂zα, ∂/∂zβ). Given such a Hermitian metric, the 2-form
Φ given by

Φ =
i

2

∑
sαβdz

α ∧ dzβ

is called the associated fundamental 2-form. If the real (1, 1)-form Φ is closed,
then ds2 in (6.70) is called a Kähler metric and (M,ds2) is called a Kähler
manifold.

Theorem 6.22 (Kodaira) Let (M,ds2) be a compact Kähler manifold, and
let Φ be the associated fundamental 2-form. If the cohomology class of Φ is
in the image of the natural homomorphism H2(M,Z) → H2(M,R), then M
is algebraic. Furthermore, if L is a line bundle over M with cR(L) = Cl[Φ]
and if (η0, . . . , ηN ) is a basis of the space of sections of L⊗ν with ν a positive
integer, then, for sufficiently large ν, the map

z 
→ (η0(z), . . . , ηN (z)), M → PN (C)

provides an embedding of M into an algebraic variety in PN(C).

Proof. See e.g. [32, §1.4]. ��

Proposition 6.23 Let k : D×D → C
× be a kernel function on D associated

to an automorphy factor j : ∆×D → C
× satisfying k(z, z) > 0 for all z ∈ D.

Assume that the Hessian matrix
(

2
∂2

∂zα∂zβ
log k(z, z)

)

of log k(z, z) is definite. For a positive integer ν, let (φ0, . . . , φN ) is a basis of
the space of automorphic forms on D of type jν . Then for sufficiently large
ν the map

z 
→ (φ0(z), . . . , φN (z)), M → PN (C) (6.71)

provides an embedding of M = ∆\D into an algebraic variety in PN (C).

Proof. Since the Hessian matrix of log k(z, z) is definite, we obtain a Hermi-
tian metric on D given by

ds2 =
1
π

∑
α,β

∂2

∂zα∂zβ
log k(z, z)dzαdzβ ,

which is ∆-invariant and Kähler. Thus it induces a Kähler metric on M =
∆\D whose associated fundamental 2-form is given by
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Φ =
i

2π
d′d′′ log k(z, z).

Using Lemma 6.21, we see that the cohomology class of Φ is contained in the
image ofH2(M,Z). Therefore, using Theorem 6.22, we see that for sufficiently
large ν a basis (φ0, . . . , φN ) of the space of sections of the line bundle L(j)⊗ν

determines an embedding of M onto an algebraic variety in PN (C) by the
map (6.71). Hence the proposition follows by applying Lemma 6.20. ��

In order to construct an embedding of a Kuga fiber variety into a complex
projective space, let G, D, V , Γ , L, and the equivariant pair (τ, ρ) be as in
Section 6.1. In particular, V is a real vector space of dimension 2n. We fix
z0 ∈ D and consider the complex structure I0 = Iτ(z0) on V corresponding
to τ(z0) ∈ Hn as before. We denote by V+ and V− the associated subspaces
of VC given by (6.7).

Lemma 6.24 If v = v+ + v− ∈ V ⊂ VC with v+ ∈ V+ and v− ∈ V−, then
we have

v+ = v−, v− = v+, (6.72)

where the decomposition VC = V+⊕V− is with respect to the complex structure
I0 on V .

Proof. Using (6.7), we have

I0v+ = (I0v+) = (iv+) = −iv+,

I0v− = (I0v−) = (−iv−) = iv−;

hence it follows that v+ ∈ V− and v− ∈ V+. However, since v belongs to the
real vector space V , we have

v+ + v− = v = v = v+ + v−.

Therefore we obtain v+ = v− and v− = v+, which proves the lemma. ��

Example 6.25 Let V = R
2, so that VC = C

2, and let I0 : R
2 → R

2 be the
linear map defined by

I0

(
x1

x2

)
=
(
x2

−x1

)

for all x1, x2 ∈ R. Then I2
0 = −1V ; hence I0 is a complex structure on R

2.
Consider the element

v =
(

1
3

)
= v+ + v− ∈ V+ ⊕ V− = C

2.

Then it can be easily shown that

v+ =
1
2

(
1 − 3i
3 + i

)
, v− =

1
2

(
1 + 3i
3 − i

)
= v+.
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Let ξ : D×V → V+ be as in (6.9), and let (z, w) ∈ D×VC with w = ξ(z, v)
for some v ∈ V . If v = v+ + v− ∈ V with v+ ∈ V+ and v− ∈ V−, we set

dzw = dv+ − τ(z) · dv− = dv+ − τ(z) · dv+, (6.73)

where we used (6.72). We also set

dzw = dv+ − τ(z) · dv+. (6.74)

Using (6.7) and (6.72), we have

w = ξ(z, v) = vz = v+ − τ(z)v+;

hence we see that

dw = dv+ − d(τ(z) · v+) (6.75)
= dv+ − (dτ(z)) · v+ − τ(z) · dv+

= dzw − (dτ(z)) · v+.

Lemma 6.26 Let d′ and d′′ be the holomorphic and antiholomorphic part of
the differential operator d, and let κ : D × D → KC be the canonical kernel
function for G given by (6.29). Then we have

d′v+ = ρ(κ1(z, z))−1 · dzw, d′′v+ = ρ(κ1(z, z))−1 · τ(z) · dzw.

Proof. From (6.29) and (6.32) it follows that

ρ(κ1(z, z′)) = 1 − τ(z) · τ(z′) (6.76)

for z, z′ ∈ D. Using this, (6.73) and (6.74), we have

dzw + τ(z) · dzw = dv+ − τ(z) · dv+ + τ(z) · (dv+ − τ(z) · dv+)

= (1 − τ(z) · τ(z)) · dv+
= ρ(κ(z, z)) · dv+

for (z, w) ∈ D × VC, which implies that

dv+ = ρ(κ1(z, z))−1 · (dzw + τ(z) · dzw).

However, from (6.75) we see that dzw is of type (1, 0), and therefore dzw is
of type (0, 1); hence the lemma follows. ��

Let κ̃(·, ·) be the canonical kernel function for the group G̃ = G× V × R

given by (6.38). Thus we have

κ̃((z, w), (z′, w′)) = J̃((exp (z′, w′))−1, (z, w))−1
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for (z, w), (z′, w′) ∈ D̃ = D× V+. Since J̃ = (J1, 0, J2) ∈ K̃C, by restricting κ̃
to D ×D we have

κ̃((z, w), (z′, w′))

= (J1((exp (z′, w′))−1, (z, w))), 0, J2((exp (z′, w′))−1, (z, w)))−1

= (J1((exp (z′, w′))−1, (z, w)))−1, 0,−J2((exp (z′, w′))−1, (z, w))).

Using (6.37), we obtain

((exp (z′, w′))−1 = (exp z′, w′, 0)−1 = ((exp z′)−1,−w′, 0),

and hence we see that

J1((exp (z′, w′))−1, (z, w)))−1 = J((exp z′)−1, z)−1 = κ(z, z′),

where J and κ are the canonical automorphy factor and the canonical kernel
function for the group G given in (6.27) and (6.29), respectively. Thus we
obtain

κ̃((z, w), (z′, w′)) = (κ(z, z′), 0, κ2((z, w), (z′, w′))),

where

κ2((z, w), (z′, w′)) = −J2((exp (z′, w′))−1, (z, w)) (6.77)

= β(w′, ρ(κ(z, z′))−1τ(z)w′)/2

+ β(w′, ρ(κ(z, z′))−1w)

+ β(τ(z′)w, ρ(κ(z, z′))−1w)/2.

We set
K((z, w), (z′, w′)) = e [κ2((z, w), (z′, w′))] (6.78)

for (z, w), (z′, w′) ∈ D̃. If J = e [J2] is as in Section 6.2, then it can be shown
that

K((z′, w′), (z, w)) = K((z, w), (z′, w′)),

K(g̃ · (z, w), g̃ · (z′, w′)) = J (g̃, (z, w)) · K((z, w), (z′, w′)) · J (g̃, (z′, w′))

for all (z, w), (z′, w′) ∈ D̃ and g̃ ∈ G̃. Given elements z ∈ D and w,w′ ∈ V+,
we set

Kz(w,w′) = K((z, w), (z, w′)). (6.79)

Throughout the rest of this section we shall fix a basis of VC so that the
alternating bilinear form β on VC satisfies

iβ(w,w) = tw · w′

for all w,w′ ∈ V+.
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Lemma 6.27 For fixed z ∈ D, we have

d′d′′ log Kz(w,w) = 2π · t(dzw) ∧ ρ(κ(z, z))−1 · dzw

for all w ∈ V+, where dzw and dzw are as in (6.73) and (6.74), respectively.

Proof. Using (6.77), (6.78) and (6.79), we have

log Kz(w,w) = π[tw · ρ(κ)−1 · τ(z) · w + 2 · tw · ρ(κ)−1 · w
+ tw · τ(z) · ρ(κ)−1 · w]

= π[tw · ρ(κ)−1 · (τ(z) · w + w)

+ (tw + tw · τ(z)) · ρ(κ)−1 · w]

for all w ∈ V+. Note that w = ξ(z, v) for a unique element v ∈ V , where ξ is
as in (6.9). Then we have

w = v+ − τ(z) · v+,
tw = tv+ − tv+ · τ(z);

hence we see that

τ(z) · w + w = (1 − τ(z) · τ(z))v+ = ρ(κ) · v+,
tw + tw · τ(z) = tv+ · ρ(κ),

where we used (6.76). Thus we obtain

log Kz(w,w) = π[tw · v+ + tv+ · w] (6.80)

= π[(tv+ − tv+ · τ(z)) · v+ + tv+ · (v+ − τ(z) · v+)]

= π[tv+ · v+ − tv+ · τ(z) · v+ + tv+ · v+ − tv+ · τ(z) · v+].

However, we have

tw · w = (tv+ − tv+ · τ(z)) · (v+ − τ(z) · v+)

= tv+ · v+ − tv+ · τ(z) · v+ − tv+ · τ(z) · v+ + tv+ · τ(z) · τ(z) · v+;

hence (6.80) can be written in the form

log Kz(w,w) = π[tv+ · v+ + tw · w − tv+ · τ(z) · τ(z) · v+]

= π[tv+ · ρ(κ) · v+ + tw · w].

Using this, Lemma 6.26, (6.75), and the relation d′′(tv+) = td′v+, we have
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d′′ log Kz(w,w) = π[(td′v+) · ρ(κ)v+ + tv+ · (d′′ρ(κ)) · v+
+ tv+ · ρ(κ) · d′′v+ + (tdw) · w]

= π[t(ρ(κ)−1 · dzw) · ρ(κ) · v+ + tv+ · (−τ(z) · dτ ) · v+
+ tv+ · ρ(κ) · ρ(κ)−1 · τ(z) · dzw + (tdw) · w]

= π[tdzw · v+ − tv+ · τ(z) · dτ · v+
+ tv+ · τ(z) · dzw + (tdw) · w].

= π[(tdw + tv+ · tdτ ) · v+ − tv+ · τ(z) · dτ · v+
+ tv+ · τ(z) · (dw + dτ · v+)

+ (tdw) · (v+ − τ(z) · v+)]

= π[2 · tdw · v+ + tv+ · tdτ · v+].

From this and Lemma 6.26 we obtain

d′d′′ log Kz(w,w) = π[−2 · tdw ∧ ρ(κ)−1 · dzw
− 2 · tv+ · tdτ ∧ ρ(κ)−1 · dzw]

= π[−2 · tdzw ∧ ρ(κ)−1 · dzw],

which proves the lemma. ��

As before, we regard the Hermitian symmetric domain D as a bounded
domain in C

k, and let dµ(z) be the Euclidean volume element of C
k given by

dµ(z) =
( i

2

)k k∏
α=1

dzα ∧ dzα.

The the space H2(D) of all square-integrable holomorphic functions on D is
a Hilbert space with respect to the inner product

〈f, g〉 =
∫
D
f(z)g(z)dµ(z)

for f, g ∈ H2(D). If {µi | i = 1, 2, . . .} is an orthonormal basis of H2(D), then
the Bergman kernel function kD : D ×D → C is given by

kD(z, z′) =
∞∑
i=1

µi(z)µi(z′)

for z, z′ ∈ D. Let χ0 : KC → C
× be the character of KC given by

χ0(k) = det(Adp+(k))

for k ∈ KC. Then it can be shown that
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kD(z, z′)−1 = vol(D) · χ0(κ(z, z′))

for all z, z′ ∈ D, where κ is the canonical kernel function of G and vol(D) is
the Euclidean volume of D. Furthermore, for a bounded domain D in C, we
have kD(z, z) > 0 for all z ∈ D and the Hessian matrix (hαβ) with

hαβ =
∂2

∂zα∂zβ
log kD(z, z)

is a positive definite Hermitian matrix, where

∂

∂zα
=

1
2

( ∂

∂xα
− i

∂

∂yα

)
,

∂

∂zα
=

1
2

( ∂

∂xα
+ i

∂

∂yα

)
.

The associated Hermitian metric on D given by

ds2D =
∑
α,β

hαβdzαdzβ (6.81)

is called the Bergman metric of D.

Theorem 6.28 Assume that that the arithmetic variety X = Γ\D is com-
pact, and let (η0, . . . , ηN ) be a basis of the space of holomorphic automorphic
forms on D × V+ for Γ × L relative to the automorphy factor

(Γ × L) × (D × V+) → C, (6.82)

((γ, l), (z, w)) 
→ (jH(γ, z)−1J ((γ, l, 0), (z, w)))ν ,

where jH is as in (6.55). Then, for sufficiently large ν, the map

[(z, w)] 
→ (η0(z, w), . . . , ηN (z, w))

gives an embedding Y ↪→ P (C)N of the Kuga fiber variety Y = Γ ×L\D×V+

to the complex projective space P (C)N .

Proof. By Lemma 6.27 the differential form

1
2πi

d′d′′ log Kz(w,w)

is the fundamental 2-form associated to the Hermitian metric

2(tdzw)ρ(κ(z, z))−1dzw = 2i · β(dzw, ρ(κ(z, z))−1dzw)

on the fiber V+/L over z ∈ D. Therefore, if we consider the Hermitian metric

ds2 = π−1
∑
α,β

∂2

∂zα∂zβ
log kD(z, z)dzαdzβ (6.83)

+ 2(tdzw)ρ(κ(z, z))−1dzw
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on Y , then the fundamental 2-form associated to ds2 is given by

ω =
i

2π
d′d′′ log kD(z, z) + i(tdzw)ρ(κ(z, z))−1dzw

=
i

2π
d′d′′ log kD(z, z) +

i

2π
d′d′′ log Kz(w,w),

which represents the real Chern class of the line bundle L(j−1
H · J )⊗ν as-

sociated to the automorphy factor in (6.82). Thus the theorem follows by
applying Proposition 6.23. ��

Remark 6.29 The automorphic forms η0, . . . , ηN used in Theorem 6.28 to
construct an embedding a Kuga fiber variety into a complex projective space
are essentially Jacobi forms on symmetric domains which will be discussed
in Chapter 7.
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Jacobi Forms

Jacobi forms on the Poincaré upper half plane share properties in common
with both elliptic functions and modular forms in one variable, and they were
systematically developed by Eichler and Zagier in [23]. They are functions
defined on the product H × C of the Poincaré upper half plane H and the
complex plane C which satisfy certain transformation formulas with respect
to the action of a discrete subgroup Γ of SL(2,R), and important exam-
ples of Jacobi forms include theta functions and Fourier coefficients of Siegel
modular forms. Numerous papers have been devoted to the study of such
Jacobi forms in connection with various topics in number theory (see e.g.
[7], [9], [54], [116]). Jacobi forms of several variables have been studied most
often on Siegel upper half spaces (cf. [123], [124]). Such Jacobi forms and
their relations with Siegel modular forms and theta functions have also been
studied extensively over the years (cf. [25], [49], [50], [123], [124]). A number
of papers have appeared recently which deal with Jacobi forms on domains
associated to orthogonal groups, and one notable such paper was written by
Borcherds [12] (see also [11], [55], [59]). Borcherds gave a highly interest-
ing construction of Jacobi forms and modular forms on such domains and
investigated their connections with generalized Kac-Moody algebras. Jacobi
forms for more general semisimple Lie groups were in fact considered before
by Piatetskii-Shapiro in [102, Chapter 4]. Such Jacobi forms occur as coeffi-
cients of Fourier-Jacobi series of automorphic forms on symmetric domains.
In this chapter we study Jacobi forms on Hermitian symmetric domains as-
sociated to equivariant holomorphic maps into Siegel upper half spaces. Such
Jacobi forms can be used to construct a projective embedding of a Kuga fiber
variety and can be identified with certain line bundles on a Kuga fiber variety.
When the Hermitian symmetric domain D is the Poincaré upper half plane
or a Siegel upper half space, the interpretation of Jacobi forms as sections of
a line bundle was investigated by Kramer and Runge (see [57, 58, 105].

One of the important nilpotent Lie groups is the Heisenberg group whose
irreducible representations were classified by Stone and von Neumann (see
for example [44, 98, 121]). One way of realizing representations of the Heisen-
berg group is by using Fock representations, whose representation spaces are
Hilbert spaces of functions on complex vector spaces with inner products as-
sociated to points on a Siegel upper half space (see [107]). Another topic that

M.H. Lee: LNM 1845, pp. 177–207, 2004.
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is treated in this chapter is a generalization of such Fock representations by
using inner products associated to points on a Hermitian symmetric domain
that is mapped into a Siegel upper half space by an equivariant holomorphic
map. These representations of the Heisenberg group are given by an automor-
phy factor for Jacobi forms on symmetric domains considered in Chapter 6.
We also introduce theta functions associated to an equivariant pair and study
connections between such theta functions and Fock representations described
above.

In Section 7.1 we construct circle bundles as well as line bundles over a
Kuga fiber variety. We also introduce Jacobi forms on symmetric domains
and discuss their connections with those bundles. Section 7.2 is about Fock
representations of Heisenberg groups obtained by using automorphy factors
for Jacobi forms on symmetric domains. We study some of the properties of
such representations including the fact that they are unitary and irreducible.
In Section 7.3 we introduce theta functions on Hermitian symmetric domains
and show that certain types of such theta functions generate the eigenspace of
the Fock representation associated to a quasi-character. Such theta functions
provide examples of Jacobi forms. Vector-valued Jacobi forms on symmetric
domains are discussed in Section 7.4 in connection with modular forms on
symmetric domains.

7.1 Jacobi Forms on Symmetric Domains

In this section, we construct twisted torus bundles over locally symmetric
spaces, or circle bundles over Kuga fiber varieties, associated to generalized
Jacobi groups. We then define Jacobi forms associated to an equivariant pair,
which generalize the usual Jacobi forms (see [124]), and discuss connections
between such generalized Jacobi forms and twisted torus bundles. Similar
Jacobi forms were also considered in [72, 77, 81].

Let G̃ = G×V ×R be the generalized Jacobi group in Section 6.2 associ-
ated to an equivariant pair (τ, ρ) which acts on the space D̃ = G̃/K̃ = D×V+.
Other notations will also be the same as in Section 6.2. In particular, P̃+

and P̃− are the subgroup of G̃C = GC × VC × C corresponding to the sub-
spaces p+ and p−, respectively, of p̃C = pC ⊕ VC given by (6.34). Recall that
G̃ ⊂ P̃+K̃CP̃− with K̃C = KC × {0} × C; hence each element g̃ ∈ G̃ has a
decomposition of the form

g̃ = (g̃)+ · (g̃)0 · (g̃)−

with (g̃)+ ∈ P̃+, (g̃)0 ∈ K̃C and (g̃)− ∈ P̃−. We also recall that the C-
subgroups P+ and P− of GC corresponding to the subspaces p+ and p−,
respectively, of gC in (6.25) satisfy the relations in (6.26). From the relation
G ∩KCP− = K in (6.26) we have
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D = G/K = G/(G ∩KCP−) = GKCP−/KCP−.

Using this and the condition G ⊂ P+KCP− in (6.26), we obtain the natural
embedding

D ↪→ P+KCP−/KCP− ↪→ GC/KCP−. (7.1)

However, from the relation P+ ∩KCP− = {1} in (6.26) we see that

P+KCP−/KCP− = P+/(P+ ∩KCP−) = P+
∼= p+. (7.2)

From (7.1) and (7.2) we obtain

D ↪→ p+ ↪→ GC/KCP−, (7.3)

where the second embedding is given by the exponential map.
We note that the exponential map on p+ ⊕ V+ ⊕ C is given as follows.

Given an element (z, w, u) ∈ p+ ⊕ V+ ⊕ C, we denote by exp(z, w, u) the
element of G̃ defined by

exp(z, w, u) = (exp z, w, u).

In particular, we have

expu = exp(0, 0, u) = (1, 0, u), exp(z, w) = exp(z, w, 0) = (exp z, w, 0),

which agrees with (6.37). Thus, using (6.33), we see that

exp(z, w, u) = exp(z, w) expu. (7.4)

The embeddings in (7.3) induces

D̃ = D ⊕ V+ ↪→ p̃+ = p+ ⊕ V+ ↪→ G̃C/K̃CP̃−.

On the other hand, since the elements of exp C and the elements of P̃+

commute, the exponential map determines the natural embedding

p̃+ ⊕ C = p+ ⊕ V+ ⊕ C ↪→ G̃C/KCP̃−.

Thus by using the embedding D ↪→ p+ we obtain a commutative diagram

D × V+ × C −−−−→ G̃C/KCP̃−)
)

D × V+ −−−−→ G̃C/K̃CP̃−)
)

D −−−−→ GC/KCP̃−,
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where the horizontal arrows are the natural embeddings given by the expo-
nential map and the vertical arrows are the natural projection maps.

Now we define an action of G̃ on D × V+ × C by requiring that

(g, v, t) · (z, w, u) = (z′, w′, u′)

if and only if

(g, v, t) exp(z, w, u) ∈ exp(z′, w′, u′)K̃CP̃− (7.5)

for (g, v, t) ∈ G× V ×R and (z, w, u), (z′, w′, u′) ∈ D× V+ ×C. More specif-
ically, the action is defined by the condition

(g, v, t) exp(z, w, u) = exp(z′, w′, u′)k̃p̃− (7.6)

for all (g, v, t) ∈ G̃ and (z, w, u) ∈ D × V+ × C, where k̃ ∈ K̃C and p̃− ∈ P̃−
with k̃ = (k, 0, 0) for some k ∈ KC. Using (7.4), the condition (7.6) can be
written in the form

(g, v, t) exp(z, w) expu = exp(z′, w′) expu′ · k̃p̃−.

Thus, by considering the natural projection map

D × V+ × C → D × V+,

we see that the action of G̃ on D × V+ is given by

(g, v, t) exp(z, w) = exp(z′, w′) exp(u′ − u)k̃p̃−,

which implies that

((g, v, t) exp(z, w))0 = exp(u′ − u)k̃ = (k, 0, u′ − u).

However, using (6.35) and (6.50), we see that

((g, v, t) exp(z, w))0 = (J1, 0, J2),

where J1 = J(g, z) with J being the canonical automorphy factor for G given
by (6.27) and J2 = J2((g, v, t), (z, w)) is as in (6.51). Therefore we obtain

k = J1, u′ = u+ J2.

On the other hand, by comparing the conditions (6.36) and (7.5) we see that
the corresponding actions of (g, v, t) on (z, w) coincide. Hence it follows that

(g, v, t) · (z, w, u) = (gz, vgz + J+w, u + J2), (7.7)

where J+ = J+(g, z) is as in (6.49). For convenience we recall the formulas
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J2 = J2((g, v, t), (z, w)) = t+ β(v, vgz)/2 + β(v, J1w) + β(ρ(g)w, J1w)/2,

J+ = J+(g, z) = JS+(ρ(g), τ(z)) = t(Cρτ(z) +Dρ)−1 (7.8)

for g ∈ G ρ(g) =
(
Aρ Bρ
Cρ Dρ

)
∈ Sp(V, β), where JS+ is the restriction of the

canonical automorphy factor JS for Sp(V, β) to V+.
Now we restrict the holomorphic action of G̃ on D × V+ × C to the real

analytic action of G̃ on D×V+ ×R. Let the arithmetic subgroup Γ ⊂ G and
the lattice L ⊂ V+ be as in Section 6.1, and consider the quotient

C = Γ × L× Z\D × V+ × R (7.9)

of D×V+×R by the action of Γ ×L×Z ⊂ G̃ given in (7.7). We shall identify
C with the quotient

Γ × L\D × V+ × (R/Z)

by using the map

(z, w, u) 
→ (z, w, e [u]), D × V+ × R → D × V+ × (R/Z),

where we identify R/Z with the unit circle {z ∈ C | |z| = 1} in C. Then the
action of Γ × L on D × V+ × (R/Z) is given by

(γ, �) · (z, w, λ) = (γz, �γz + J+w,J ((γ, �, 0), (z, w))λ) (7.10)

for all (γ, �) ∈ Γ × L and (z, w, λ) ∈ D × V+ × (R/Z), and the natural
projection map

D × V+ × (R/Z) → D × V+

equips C with the structure of a fiber bundle πJ : C → Y over the Kuga
fiber variety Y = Γ × L\D × V+ whose fiber is isomorphic to the circle
R/Z. Thus C is a circle bundle over Y . On the other hand, by composing πJ
with π : Y → X we can also consider C as a twisted torus bundle over the
arithmetic variety X = Γ\D in the sense of [72].

Let j : G×D → C be an automorphy factor satisfying as usual the cocycle
condition

j(gg′, z) = j(g, g′z)j(g′, z) (7.11)

for all z ∈ D and g, g′ ∈ G. Given a function f : D × V+ → C, an element
(g, v) ∈ G× V and a nonnegative integer ν, we set

(f |ρ,τj,ν (g, v))(z, w) = j(g, z)−1J ((g, v, 0), (z, w))−ν (7.12)

× f(gz, vgz + J+w)

= j(g, z)−1eν (β(v, vgz)/2
+ β(v, J1w) + β(ρ(g)w, J1w)/2) (7.13)

× f(gz, vγz + J+w)

for all (z, w) ∈ D × V+, where eν (·) = e(ν(·)) = e2πiν(·) and J = e(J2) is as
in (6.52).
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Lemma 7.1 If f : D×V+ → C is a function and ν is a nonnegative integer,
we have

(f |ρ,τj,ν (g, v)) |ρ,τj,ν (g′, v′) = f |ρ,τj,ν ((g, v)(g′, v′))

for all (g, v), (g′, v′) ∈ G× V , where the product (g, v)(g′, v′) is as in (6.3).

Proof. Using (6.46) and (7.12), we have

((f |ρ,τj,ν (g, v)) |ρ,τj,ν (g′, v′))(z, w)

= j(g′, z)−1J ((g′, v′, 0), (z, w))−ν(f |ρ,τj,ν (g, v))((g′, v′, 0) · (z, w))

= j(g′, z)−1j(g, g′z)−1J ((g′, v′, 0), (z, w))−ν

× J ((g, v, 0), (g′, v′, 0) · (z, w))−νf((g, v, 0)(g′, v′, 0) · (z, w))

for all (z, w) ∈ D × V+, which can be shown to be equal to

(f |ρ,τj,ν ((g, v)(g′, v′)))(z, w)

by using the cocycle conditions for J and j in (6.53) and (7.11), respectively.
��

Definition 7.2 A holomorphic function f : D×V+ → C is a Jacobi form of
weight j and index ν for (Γ,L, ρ, τ) if it satisfies

f |ρ,τj,ν (γ, �) = f (7.14)

for all γ ∈ Γ and � ∈ L.

Given (z, w, ζ) ∈ D × V+ × C and (g, v) ∈ G× V , we set

(g, v) · (z, w, ζ) = ((g, v) · (z, w), j(g, z)ζ) (7.15)
= (gz, vgz + J+w, j(g, z)ζ),

where we used (6.20) and (7.8). The next lemma show that the operation
(7.15) defines an action of G× V on D × V+ × C.

Lemma 7.3 The operation (7.15) satisfies

(g, v) · ((g′, v′) · (z, w, ζ)) = ((g, v)(g′, v′)) · (z, w, ζ)

for all (g, v), (g′, v′) ∈ G× V and (z, w, ζ) ∈ D × V+ × C.

Proof. Using(7.15), we have

(g, v) · ((g′, v′) · (z, w, ζ)) = (g, v) · ((g′, v′) · (z, w), j(g′, z)ζ)
= ((g, v) · ((g′, v′) · (z, w)), j(g, g′z)j(g′, z)ζ)
= (((g, v)(g′, v′)) · (z, w), j(gg′, z)ζ)
= ((g, v)(g′, v′)) · (z, w, ζ)

where we used the cocycle condition (7.11) for j. ��
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We consider the action of the subgroup Γ × L ⊂ G × V on the space
D × V+ × C given by (7.15), and denote the corresponding quotient by

B = Γ × L\D × V+ × C (7.16)

Then, as in the case of the bundle C in (7.9), the natural projection map

D × V+ × C → D× V+

induces a map πB : B → Y , which has the structure of a line bundle over
the Kuga fiber variety Y .

We now extend the action of Γ × L on D × V+ × (R/Z) given by (7.10)
to the one on D × V+ × C by using

(γ, �) · (z, w, ζ) = (γz, �γz + J+w,J ((γ, �, 0), (z, w))ζ) (7.17)

for all (γ, �) ∈ Γ × L and (z, w, ζ) ∈ D × V+ × (R/Z). We denote the corre-
sponding quotient by

Ĉ = Γ × L\D × V+ × C. (7.18)

Then the construction similar to the case of B or C provides Ĉ with the
structure of a line bundle over Y , and there is a natural embedding C ↪→ C̃
of the circle bundle C in (7.9) into the line bundle C̃ over Y .

Theorem 7.4 Let B and Ĉ be the bundles over the Kuga fiber variety Y =
Γ × L\D × V+ given by (7.16) and (7.18), respectively. Then the space of
Jacobi forms of weight j and index ν for (Γ,L, ρ, τ) is isomorphic to the
space

Γ 0(Y,B ⊗ Ĉ⊗ν)

of sections of the bundle B ⊗ Ĉ⊗ν over Y .

Proof. From (7.15) and (7.17) it follows that the bundle B⊗ Ĉ⊗ν over Y can
be regarded as the quotient

B ⊗ Ĉ⊗ν = Γ × L\D × V+ × C

with respect to the action of Γ × L on D × V+ × C given by

(γ, �) · (z, w, ζ)
= (γz, �γz + J+w, j(γ, z)J ((γ, �, 0), (z, w))νζ).

Let s : Y → B ⊗ Ĉ⊗ν be an element of Γ 0(Y,B ⊗ Ĉ⊗ν). Then for (z, w) ∈
D × V+ we have

s([(z, w)]) = [(z, w, ζ(z,w))]

for some ζ(z,w) ∈ R/Z, where [(·)] denotes the appropriate coset corresponding
to the element (·). We define the holomorphic function fs : D × V+ → C by
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fs(z, w) = ζ(z,w) (7.19)

for all (z, w) ∈ D × V+. For each (γ, �) ∈ Γ × L, using the actions of Γ × L
given in (7.10) and (7.15), we have

s([(z, w)]) = s([(γz, �γz + J+w)])
= [(γz, �γz + J+w, ζ(γz,�γz+J+w))]

= [(γ, �)−1(γz, �γz + J+w, ζ(γz,�γz+J+w))]

= [(z, w, j(γ, z)

× J ((γ, �, 0), (z, w))−νζ(γz,�γz+J+w))],

where by (6.52),

J ((γ, �, 0), (z, w)) = e [J2((γ, �, 0), (z, w))] (7.20)
= e [β(�, �γz)/2 + β(�, J1w) (7.21)

+ β(ρ(γ)w, J1w)/2].

Therefore we obtain

fs(z, w) = j(γ, z)−1J ((γ, �, 0), (z, w))−νfs(γz, �γz + J+w).

Hence by (7.12) the function fs satisfies the transformation formula (7.14) for
a Jacobi form of weight j and index ν for (Γ,L, ρ, τ). On the other hand, sup-
pose that f : D× V+ → C is a holomorphic function satisfying the condition
(7.14). We define the map sf : Y → B ⊗ Ĉ⊗ν by

sf ([(z, w)]) = [(z, w, f(z, w))] (7.22)

for (z, w) ∈ D×V+. Then this map is well-defined because, for each (γ, �) ∈
Γ × L, we have

sf ([(γ, �)(z, w)]) = sf ([(γz, �γz + J+w)])
= [(γz, �γz + J+w, f(γz, �γz + J+w))]
= [(γz, �γz + J+w, j(γ, z)

× J ((γ, �, 0), (z, w))νf(z, w)]
= [(γ, �)((z, w, f(z, w))] = [(z, w, f(z, w))],

which is equal to sf ([(z, w)]) in (7.1); hence sf is a section of B ⊗ Ĉ⊗ν . We
see easily that the holomorphic function fsf defined as in (7.19) coincides
with f , and therefore the proof of the theorem is complete. ��

Remark 7.5 When the Hermitian symmetric domain D is the Poincaré up-
per half plane or a Siegel upper half space and if ρ and τ are identity maps,
the interpretation of Jacobi forms as sections of a line bundle in a way sim-
ilar to the result in Theorem 7.4 was investigated by Kramer and Runge. In
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[57] Kramer identified Jacobi forms on the Poincaré upper half plane with
sections of a line bundle on an elliptic modular surface. He also proved the
vanishing of the first cohomology of the elliptic modular surface with coeffi-
cients in that bundle and used it to derive a formula for the dimension of the
space of Jacobi forms. The correspondence between Jacobi forms on a Siegel
upper half space and section of a line bundle over a family of abelian varieties
parametrized by a Siegel modular variety was studied by Kramer in [58] and
Runge in [105]. They also considered the extension of such a line bundle over
a compactification of the family of abelian varieties.

Example 7.6 Let the automorphy factor j−1
H : G×D → C be defined by

j−1
H (g, z) = jH(g, z)−1 = det[adp+(J(g, z))]

for all (g, z) ∈ G × D, where jH is as in (6.55) and J is the canonical
automorphy factor for G. Then Jacobi forms of weight j−1

H and index ν for
(Γ,L, ρ, τ) can be used to construct a projective embedding of a Kuga fiber
variety (see Theorem 6.28).

Example 7.7 Given a nonnegative integer µ and elements z ∈ D and g ∈ G

with ρ(g) =
(
Aρ Bρ
Cρ Dρ

)
∈ Sp(V, β), we set

Jµ(g, z) = det(Cρτ(z) +Dρ)µ.

Then this formula determines an automorphy factor Jµ : G×D → C. Jacobi
forms of weight Jµ and index ν for (Γ,L, ρ, τ) were considered in [86].

Example 7.8 Let W be a real vector space of dimension ν > 2 defined over
Q, and let S be a nondegenerate symmetric bilinear form on W of signature
(2, ν − 2). We consider the associated spin group G = Spin(W,S), which is a
semisimple Lie group of Hermitian type. Then, as was described in Example
6.1, there is a homomorphism ρ : Spin(W,S) → Sp(2ν ,R), which induces
an equivariant holomorphic map τ : D → H2ν of the symmetric domain D
associated to G into the Siegel upper half space H2ν . Thus we obtain Jacobi
form on the symmetric domain associated to spin groups of type (2, n), and
such Jacobi forms were studied recently in connection with a number of topics
(see for example [12] and [26]).

7.2 Fock Representations

Let G̃ = G× V × R be as in Section 6.2. Then the multiplication operation
(6.33) restricted to the subgroup {1} × V × R ∼= V × R of G̃ is the usual
multiplication operation on the Heisenberg group V × R. Classically a Fock
representation of such a Heisenberg group is a representation in a Hilbert
space of certain functions on VC associated to a point in the corresponding
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Siegel upper half space (see [107]). In this section we construct similar repre-
sentations of such a Heisenberg group in Hilbert spaces associated to points in
the Hermitian symmetric domain D by using automorphy factors associated
to Jacobi forms discussed earlier in this chapter.

Throughout this section we shall adopt various notations used in Section
6.2. In particular, κ̃(·, ·) the the canonical kernel function for the group G̃ =
G× V × R given in (6.38). Thus we have

κ̃((z, w), (z′, w′)) = J̃((exp (z′, w′))−1, (z, w))−1

for (z, w), (z′, w′) ∈ D̃ = D× V+. Since J̃ = (J1, 0, J2) ∈ K̃C, by restricting κ̃
to D ×D we have

κ̃((z, w), (z′, w′))

= (J1((exp (z′, w′))−1, (z, w)))−1, 0, J2((exp (z′, w′))−1, (z, w)))−1

= (J1((exp (z′, w′))−1, (z, w)))−1, 0,−J2((exp (z′, w′))−1, (z, w))).

Using (6.37), we obtain

((exp (z′, w′))−1 = (exp z′, w′, 0)−1 = ((exp z′)−1,−w′, 0),

and hence we see that

J1((exp (z′, w′))−1, (z, w)))−1 = J((exp z′)−1, z)−1 = κ(z, z′),

where J and κ are the canonical automorphy factor and the canonical kernel
function for the group G given in (6.27) and (6.29), respectively. Thus we
obtain

κ̃((z, w), (z′, w′)) = (κ(z, z′), 0, κ2((z, w), (z′, w′))),

where

κ2((z, w), (z′, w′)) = −J2((exp (z′, w′))−1, (z, w)) (7.23)

= β(w′, ρ(κ1(z, z′))−1τ(z)w′)/2

+ β(w′, ρ(κ1(z, z′))−1w)

+ β(τ(z′)w, ρ(κ1(z, z′))−1w)/2.

We set
K((z, w), (z′, w′)) = e [κ2((z, w), (z′, w′))] (7.24)

for (z, w), (z′, w′) ∈ D̃.

Proposition 7.9 Let J = e [J2] be as in (6.52). Then we have

K((z′, w′), (z, w)) = K((z, w), (z′, w′)), (7.25)

K(g̃(z, w), g̃(z′, w′)) = J (g̃, (z, w))K((z, w), (z′, w′))J (g̃, (z′, w′)) (7.26)

for all (z, w), (z′, w′) ∈ D̃ and g̃ ∈ G̃.
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Proof. Let (z, w), (z′, w′) ∈ D̃ and g̃ ∈ G̃. Then by Lemma 6.9 the canonical
kernel function κ̃(·, ·) satisfies the relations

κ̃((z′, w′), (z, w)) = κ̃((z, w), (z′, w′))−1

= (κ(z, z′)−1, 0,−κ2((z, w), (z′, w′))),

κ̃(g̃(z, w), g̃(z′, w′)) = J̃(g̃, (z, w))κ̃((z, w), (z′, w′))J̃(g̃, (z′, w′))−1

= (J(g, z), 0, J2(g̃, (z, w)))(κ(z, z′), 0, κ2((z, w), (z′, w′)))

× (J(g, z′)−1, 0,−J2(g̃, (z′, w′)))
= (κ′1, 0, κ

′
2),

where

κ′1 = J(g, z)κ(z, z′)J(g, z′)−1,

κ′2 = J2(g̃, (z, w)) + κ2((z, w), (z′, w′)) − J2(g̃, (z′, w′)).

In particular, we obtain

κ2((z′, w′), (z, w)) = −κ2((z, w), (z′, w′)),

κ2(g̃(z, w), g̃(z′, w′)) = J2(g̃, (z, w)) + κ2((z, w), (z′, w′)) − J2(g̃, (z′, w′)).

Thus it follows that

K((z′, w′), (z, w)) = e [−κ2((z, w), (z′, w′))] = K((z, w), (z′, w′)),

K(g̃(z, w), g̃(z′, w′)) = e [J2(g̃, (z, w))]e [κ2((z, w), (z′, w′))]e [−J2(g̃, (z′, w′))]

= J (g̃, (z, w))K((z, w), (z′, w′))J (g̃, (z′, w′));

hence the proof of the proposition is complete. ��

Lemma 7.10 Let L((z, w), (z′, w′)) be a C-valued function on D̃ × D̃ that is
holomorphic in (z, w) and satisfies (7.25) and (7.26). Then L is a constant
multiple of K.

Proof. For z̃ = (z, w), z̃′ = (z′, w′) ∈ D̃ we set

η(z̃, z̃′) = L(z̃, z̃′)K(z̃, z̃′)−1.

Then, using (7.26), we obtain η(g̃z̃, g̃z̃′) = η(z̃, z̃′) for all g̃ ∈ G̃. Thus, if
z̃0 ∈ D̃ is a base point, then we have

η(g̃z̃0, z̃0) = η(z̃0, g̃−1z̃0)
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for all g̃ ∈ G̃. Since η(z̃, z̃′) is holomorphic in z̃, by (7.25) it is antiholomorphic
in z̃′. Therefore, using the fact that G̃ acts on D̃ transitively, we see that

η(g̃z̃0, z̃0) = η(z̃0, g̃−1z̃0) = η(z̃0, z̃0)

for all g̃ ∈ G̃. Thus, if z̃, z̃′ ∈ D̃ with z̃′ = g̃′z̃0, we obtain

η(z̃, z̃′) = η((g̃′)−1z̃, z̃0) = η(z̃0, z̃0);

hence it follows that K(z̃, z̃′) = CL(z̃, z̃′) with C = η(z̃0, z̃0). ��

Given elements z ∈ D and w,w′ ∈ V+, we set

Kz(w,w′) = K((z, w), (z, w′)). (7.27)

For each z ∈ D we denote by Fz the space of holomorphic functions φ on V+

such that
‖φ‖2

z =
∫
V+

|φ(w)|2Kz(w,w)−1dzw <∞, (7.28)

where dzw = det(Im τ(z))−1dw. Thus Fz together with the inner product

〈φ, ψ〉z =
∫
V+

φ(w)ψ(w)Kz(w,w)−1dzw (7.29)

is a Hilbert space.
For g̃ = (g, v, t) ∈ G̃ and φ ∈ Fgz , we set

(T gz(g̃−1)φ)(w) = J (g̃, (z, w))−1φ(pr2((g̃(z, w)))

for all (z, w) ∈ D × V+, where pr2 : D × V+ → V+ is the natural projection
map onto V+; hence we have

pr2((g̃(z, w))) = pr2(gz, vgz + JS+(ρ(g), τ(z))w)

= vgz + JS+(ρ(g), τ(z))w,

where we used (6.47).

Lemma 7.11 For g̃ = (g, v, t) ∈ G̃ and φ ∈ Fgz, we have T gz(g̃−1)φ ∈ Fz
and

‖T gz(g̃−1)φ‖z = ‖φ‖gz
for all z ∈ D.

Proof. Let z ∈ D, g̃ = (g, v, t) ∈ G̃ and φ ∈ Fg(z). Then we have

‖T gz(g̃−1)φ‖2
z

=
∫
V+

|T gz(g̃−1)φ(w)|2Kz(w,w)−1dzw

=
∫
V+

|J (g̃, (z, w))−1φ(vgz + JS+(ρ(g), τ(z))w)|2Kz(w,w)−1dzw.
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However, by Proposition 7.9, we have

Kgz(vgz + JS+(ρ(g), τ(z))w, vgz + JS+(ρ(g), τ(z))w)

= J (g̃, (z, w))Kz(w,w)J (g̃, (z, w))

= |J (g̃, (z, w))|2Kz(w,w).

Furthermore, we have

dgz(vgz + JS+(ρ(g), τ(z))w)

= det(Im τ(gz))−1d(vgz + JS+(ρ(g), τ(z))w)

= |JS+(ρ(g), τ(z))|2 det( τ(z))−1d(vgz + JS+(ρ(g), τ(z))w),

noting that JS+ is the restriction of the canonical automorphy factor of
Sp(V, β) to V+ as in (6.31). However, we have

d(vgz + JS+(ρ(g), τ(z))w) = |JS+(ρ(g), τ(z))|−2,

which implies that dgz(vgz + JS+(ρ(g), τ(z))w) = dzw. Hence we have

‖T gz(g̃−1)φ‖2
z =

∫
V+

|φ(vgz + JS+(ρ(g), τ(z))w)|2

× Kgz(vgz + JS+(ρ(g), τ(z))w, vgz + JS+(ρ(g), τ(z))w)−1

× dgz(vgz + JS+(ρ(g), τ(z))w)

=
∫
V+

|φ(w)|2Kgz(w,w)dgzw = ‖φ‖2
gz ,

and therefore the lemma follows. ��

By Lemma 7.11 we see that T gz(g̃−1) is an isometry of Fgz into Fz, and
therefore it follows that T z(g̃) is an isometry of Fz into Fgz, and for φ ∈ Fz
we have

(T z(g̃)φ)(w) = (T g
−1(gz)(g̃)φ)(w) (7.30)

= J (g̃−1, (gz, w))−1φ(pr2(g̃
−1(gz, w)))

for all z̃ ∈ D and w ∈ V+.

Proposition 7.12 For g̃ = (g, v, t), g̃′ = (g′, v′, t′) ∈ G̃ and φ ∈ Fg(z), we
have

T g
′z(g̃) ◦ T z(g̃′) = T z(g̃g̃′)

for all z ∈ D.
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Proof. Let g̃ = (g, v, t), g̃′ = (g′, v′, t′) ∈ G̃, (z, w) ∈ D̃ = D × V+ and
φ ∈ Fg(z). Then from (7.30) we obtain

(T z(g̃′)φ)(w) = J (g̃′−1, (g′z, w))−1φ(pr2(g̃
′−1(g′z, w))).

Applying (7.30) once again, we see that

(T g
′z(g̃) ◦ T z(g̃′)(φ))(w) = J (g̃−1, (gg′z, w))−1

× J (g̃′−1, (g′z, pr2(g̃
−1(gg′z, w))))−1

φ(pr2(g̃
′−1(g′z, pr2(g̃

−1(gg′z, w))))).

On the other hand, we have

(T z(g̃g̃′)(φ))(w) = J ((g̃g̃′)−1, (gg′z, w))φ(pr2((g̃g̃
′)−1(gg′z, w)))

= J (g̃′−1, g̃−1(gg′z, w))J (g̃−1, (gg′z, w))

× φ(pr2((g̃g̃
′)−1(gg′z, w))).

Since we have

g̃−1(gg′z, w) = (g−1gg′z, pr2(g̃
−1(gg′z, w)))

= (g′z, pr2(g̃
−1(gg′z, w))),

pr2(g̃
′−1(g′z, pr2(g̃

−1(gg′z, w)))) = pr2((g̃
′−1g̃−1(gg′z, w))

= pr2((g̃g̃
′)−1(gg′z, w)),

it follows that

(T g
′z(g̃) ◦ T z(g̃′)(φ))(w) = (T z(g̃g̃′)(φ))(w),

and therefore the proposition follows. ��
Now we consider the subgroup {1} × V+ × R of G̃. We shall identify

this subgroup with Ṽ = V+ × R. Then Ṽ is in fact a Heisenberg group
because the restriction of the multiplication operation on G̃ given by (6.33)
to Ṽ gives us the usual multiplication operation on a Heisenberg group. For
ũ = (u, t) ∈ Ṽ ⊂ G̃ and w ∈ V+ we set

ũw = pr2((ũ(z, w)).

Then, using (6.47), we obtain

ũw = pr2(((1, u, t)(z, w)) (7.31)

= u1z + JS+(ρ(1), τ(z))w = uz + w.

Thus for g̃ = ũ the formula (7.30) reduces to

(T z(ũ−1)φ)(w) = J (ũ, (z, w))−1φ(ũw) (7.32)

for φ ∈ Fz, z ∈ D and w ∈ V+, and T z(ũ−1) is an isometry of Fz into itself.
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Lemma 7.13 For fixed z ∈ D the function Kz(w,w′) is holomorphic in w,
and we have

Kz(w′, w) = Kz(w,w′), (7.33)

Kz(ũw, ũw′) = J (ũ, (z, w))Kz(w,w′)J (ũ, (z, w′)) (7.34)

for all w,w′ ∈ V+ and ũ ∈ Ṽ .

Proof. Using (7.23), (7.24) and (7.27), we have

Kz(w,w′) = K((z, w), (z, w′)) = e [κ2((z, w), (z, w′))].

for w,w′ ∈ V+, where

κ2((z, w), (z, w′)) = β(w′, ρ(κ1(z, z))−1τ(z)w′)/2 + β(w′, ρ(κ1(z, z))−1w)

+ β(τ(z)w, ρ(κ1(z, z))−1w)/2.

Thus κ2 is holomorphic in w, and therefore Kz(w,w′) is holomorphic in w
as well. Now (7.33) and (7.34) follows from the corresponding relations in
Proposition 7.9. ��

Lemma 7.14 Let Ψ(w,w′) is a function on V+ × V+ that is holomorphic in
w satisfying the conditions

Ψ(w′, w) = Ψ(w,w′), (7.35)

Ψ(ũw, ũw′) = J (ũ, (z, w))Ψ(w,w′)J (ũ, (z, w′)) (7.36)

for all w,w′ ∈ V+ and ũ ∈ Ṽ . Then Ψ is a constant multiple of Kz.

Proof. This follows from Lemma 7.10. ��

For fixed z ∈ D the map φ 
→ φ(w), Fz → C is a continuous linear
functional on Fz, and therefore there exists an element ξzw ∈ Fz such that

φ(w) =
∫
V+

ξzw(w′)φ(w′)Kz(w′, w′)−1dzw
′ (7.37)

for all φ ∈ Fz.

Lemma 7.15 Given z ∈ D, there is a nonzero constant C such that

ξzw(w′) = CKz(w,w′)

for all w,w′ ∈ V+.
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Proof. For z ∈ D and w,w′ ∈ V+ we have

ξzw′(w) =
∫
V+

ξzw(v)ξzw′(v)Kz(v, v)
−1dzv,

which implies that

ξzw′(w) =
∫
V+

ξzw(v)ξzw′(v)Kz(v, v)
−1dzv = ξzw(w′).

Let ũ = (u, t) ∈ Ṽ ⊂ G̃ and φ ∈ Fz, so that we have

(T z(ũ−1)φ)(w) = J (ũ, (z, w))−1φ(ũw).

Then we see that∫
V+

ξzw(v)J (ũ, (z, v))−1φ(ũv)Kz(v, v)−1dzv

=
∫
V+

ξzw(v)(T z(ũ−1)φ)(v)Kz(v, v)−1dzv

= J (ũ, (z, w))−1

∫
V+

ξzũw(v)φ(v)Kz(v, v)−1dzv

= J (ũ, (z, w))−1

∫
V+

ξzũw(ũv)φ(ũv)Kz(ũv, ũv)−1dzv.

Thus we have

J (ũ,(z, v))−1ξzw(v)Kz(v, v)−1

= J (ũ, (z, w))−1ξzũw(ũv)Kz(ũv, ũv)−1

= J (ũ, (z, w))−1ξzũw(ũv)J (ũ, (z, v))−1J (ũ, (z, v))−1Kz(v, v)−1

for v ∈ V+. Hence, replacing v with w′, we see that

ξzũw(ũw′) = J (ũ, (z, w))ξzw(w′)J (ũ, (z, w′)).

Now the lemma follows by applying Lemma 7.14 to the function (w,w′) 
→
ξzw(w′). ��

Given an element ṽ of the Heisenberg group Ṽ = V × R, by (7.32) we
obtain the isometry T z(ṽ) of Fz into itself given by

(T z(ṽ)φ)(w) = J (ṽ−1, (z, w))−1φ(ṽ−1w) (7.38)

for all w ∈ V+. We now consider an operator on Fz associated to a function
on Ṽ . Let L(Ṽ ) be the space of C-valued continuous functions on Ṽ with
compact support. For F ∈ L(Ṽ ) we denote by T z(F ) the operator on Fz
defined by

T z(F )φ =
∫
Ṽ

F (ṽ)(T z(ṽ)φ)dṽ

for all φ ∈ Fz.



7.2 Fock Representations 193

Lemma 7.16 For F ∈ L(Ṽ ) and φ ∈ Fz we have

(T z(F )φ)(w) =
∫
V+

kz(w,w′)φ(w′)Kz(w′, w′)−1dzw
′,

where
kz(w,w′) = C

∫
Ṽ

F (ũ)J (ũ, (z, w′))−1Kz(w, ũw′)dũ

for all w,w′ ∈ V+.

Proof. Using (7.37) and Lemma 7.15, we have

(T z(F )φ)(w) =
∫
V+

Kz(w,w′)(T z(F )φ)(w′)Kz(w′, w′)−1dzw
′

for F ∈ L(Ṽ ), w ∈ V+ and some constant C. On the other hand, for ũ ∈ Ṽ
we have

(T z(ũ)φ)(w) = C

∫
V+

Kz(w, v)(T z(ũ)φ)(v)Kz(v, v)−1dzv

= C

∫
V+

Kz(w, v)J (ũ−1, (z, v))−1)φ(ũ−1v)Kz(v, v)−1dzv

= C

∫
V+

Kz(w, ũw′)J (ũ−1, ũ(z, w′))−1)

× φ(w′)Kz(ũw′, ũw′)−1dzw
′.

Thus, using the relations

Kz(ũw′, ũw′)−1 = J (ũ, (z, w′))−1Kz(w′, ũw′)−1J (ũ, (z, w′))−1,

J (ũ−1, ũ(z, w′))J (ũ, (z, w′)) = J (ũ−1ũ, (z, w′)) = 1,

we obtain

(T z(ũ)φ)(w) =
∫
V+

Kz(w, ũw′)J (ũ, (z, w′))−1Kz(w′, w′)−1φ(w′)dzw′.

Hence we see that

(T z(F )φ)(w) =
∫
V+

(∫
Ṽ

F (ũ)J (ũ, (z, w′))−1Kz(w, ũw′)dũ
)

× φ(w′)Kz(w′, w′)−1dzw
′,

and therefore the lemma follows. ��

Theorem 7.17 Let z be an element of the Hermitian symmetric domain D
and let Ṽ ⊂ G̃ be the Heisenberg group associated to the real vector space V
described above. Then the map ṽ 
→ T z(ṽ) given by (7.38) is an irreducible
unitary representation of Ṽ on the space Fz.
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Proof. By Proposition 7.12, for ṽ = (v, t), ṽ′ = (v′, t′) ∈ Ṽ , we have

T z(ṽ) ◦ T z(ṽ′) = T z(ṽṽ′)

for all z ∈ D. Furthermore, using Lemma 7.11, we see that ‖T z(ṽ)φ‖z = ‖φ‖z
for all z ∈ D, ṽ ∈ Ṽ and φ ∈ Fz. Therefore the map ṽ 
→ T z(ṽ) determines
a unitary representation of Ṽ on the space Fz. It remains to show that T z

is irreducible. Using Lemma 7.16, we see that the image of Fz under T z

is dense in the ring of Hilbert-Schmidt operators on the space L2
z(V+) of

square-integrable functions on V+ with respect to the measure

dµ = Kz(w,w)−1dzw = Kz(w,w)−1 det(Im τ(z))−1dw

for w ∈ V+. This implies that the centralizer in Aut (L2
z(V+)) of the image

group of Ṽ under T z is the set C
×
1 of complex numbers of modulus 1. Indeed,

each element λ of the centralizer commutes with every T z(ũ) for ũ ∈ Ṽ ,
and therefore with every T z(φ) for φ ∈ Fz. By continuity λ commutes with
every element of the Hilbert space of Hilbert-Schmidt operators on L2

z(V+).
Let ψ1, ψ2 ∈ L2

z(V+), and let Ξ be the Hilbert-Schmidt operator with kernel
k(w,w′) = ψ1(w)ψ2(w′). Then we have Ξλψ = λΞψ for all ψ ∈ L2

z(V+),
which implies

〈ψ, ψ2〉λψ1 = 〈λψ, ψ2〉ψ1.

Since ψ, ψ1, ψ2 are arbitrary, it follows that λ is a scalar; therefore the unitar-
ity of λ shows the claim that λ ∈ C

×
1 . Now let F1

z be a Ṽ invariant subspace
of Fz under T z. Since T z is unitary, there is an invariant subspace F2

z such
that Fz = F1

z ⊕ F1
z . If Λ is the scalar multiplication by λ1 ∈ C

×
1 on F1

z and
λ2 ∈ C

×
1 on F2

z with λ1 �= t2, then Λ belongs to the centralizer of the image
group of Ṽ under T z. Hence we have F2

z = 0, and therefor T z is irreducible.
��

Remark 7.18 If the Hermitian symmetric domain is the Siegel upper half
space Hn and if ρ and τ are identity maps, the representation T z given in
Theorem 7.17 reduces to the usual Fock representation of the Heisenberg group
Ṽ described in [107].

7.3 Theta Functions

Let (τ, ρ) is the equivariant pair consisting of the homomorphism ρ : G →
Sp(V, β) and the holomophic map τ : D → Hn used for the construction
of Kuga fiber varieties in Section 6.1. In this section we consider general-
ized theta functions on the Hermitian symmetric domain D which should
reduce to usual theta functions on the Siegel upper half space Hn when ρ
and τ are identity maps. We obtain a transformation formula for such a theta
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function, and show that certain types of such theta functions genenate some
eigenspaces associated to the Fock representations described in Section 7.2.

We shall use the same notations as in the previous sections. Thus V is
a real vector space of dimension 2n whose complexification is of the form
VC = V+ + V−, and the underlying real vector space of each of V+ and
V− is isomorphic to the real vector space V . Then there are n-dimensional
subspaces V1 and V2 of V and an element α ∈ Sp(V, β)C such that

V = V1 ⊕ V2, α(V1) = V+, α(V2) = V−.

Let L0 be a lattice in V with L = α(L0) ⊂ VC such that

β(L,L) ⊂ Z, L = L ∩ V+ + L ∩ V− (7.39)

We set
L+ = L ∩ V+, L− = L ∩ V−, V0 = α(V ) ⊂ VC.

Thus each element m ∈ V0 can be written in the form m = m+ +m− ∈ V0

with m+ = V0 ∩ V+ and m− = V0 ∩ V−.

Definition 7.19 The theta function associated to m ∈ V0 and the equivari-
ant pair (τ, ρ) is the function θm : D × V+ → C given by

θm(z, w) =
∑

l−∈L−
e
(
β(l− +m−, τ(z)(l− +m−))/2 (7.40)

+ β(l− +m−, w +m+)
)

for all (z, w) ∈ D × V+.

Example 7.20 Let S be an r × r real symmetric positive definite matrix,
and let τ : Hk → Hkr be the Eichler embedding (see for example [25, Section
II.4]) given by τ(Z) = S⊗Z for all Z ∈ Hk, where Hk is regarded as the set
of k × k complex symmetric matrices with positive definite imaginary part.
Let ρ : Sp(k,R) → Sp(kr,R) be the homomorphism given by

ρ

(
A B
C D

)
=
(

E ⊗A S ⊗B
S−1 ⊗ C E ⊗D

)
,

(
A B
C D

)
∈ Sp(k,R),

where E is the r × r identity matrix. Then (τ, ρ) is an equivariant pair, and
therefore (7.40) determines the associated theta function on Hk × C

kr.

Example 7.21 Let Hk be the product of k copies of the Poincaré upper half
plane H. We define the holomorphic map τ0 : Hh → Hk and the homo-
morphism ρ0 : Sp(1,R)k → Sp(k,R) as follows. Let g = (g1, . . . , gk) be an
element of Sp(1,R)k with gi =

(
ai bi
ci di

)
∈ Sp(1,R) for 1 ≤ i ≤ k, and let

z = (z1, . . . , zk) ∈ Hk. Then we set

τ0(z) = z∗, ρ0(g) =
(
a∗ b∗
c∗ d∗

)
,
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where z∗ = diag (z1, . . . , zk) is the k×k diagonal matrix and similarly for a∗,
b∗, c∗ and d∗. Let Ξ be an element of Sp(k,R)k, and set

τ(z) = Ξτ0(z), ρ(g) = Ξρ0(g)Ξ−1

for z ∈ Hk and g ∈ Sp(k,R)k. Then (τ, ρ) is an equivariant pair, and (7.40)
determines the associated theta function on Hk. Such a function can be shown
to be a Hilbert modular form under certain conditions if the results in [35] is
used.

Lemma 7.22 Let r = r++r− be an element of L with r+ ∈ L+ and r− ∈ L−.
Then we have

θm(z, w + r+ + τ(z)r−)
= e [−β(r−, τ(z)r−)/2 − β(r−, w +m+)]θm+r(z, w)

for all (z, w) ∈ D × V+.

Proof. Given (z, w) ∈ D × V+, we have

β(l− +m−, τ(z)(l− +m−))/2 + β(l− +m−, w + r+ + τ(z)r− +m+)
= β(l− +m− + r−, τ(z)(l− +m− + r−))/2

− β(r−, τ(z)(l− +m−))/2 − β(r−, τ(z)r−)/2
− β(l− +m−, τ(z)r−)/2

+ β(l− +m− + r−, w + r+ +m+)
+ β(l− +m−, τ(z)r−) − β(r−, w + r+ +m+).

Since the matrix representation of τ(z) : VC → VC is of the form ( 0 ∗∗ 0 ) relative
to the decomposition VC = V+⊕V−, we have τ(z)−1 = −tτ(z) = −τ(z); hence
we obtain

β(l− +m−, τ(z)r−) = β(τ(z)−1(l− +m−), r−) = −β(τ(z)(l− +m−), r−).

Thus we see that

β(l− +m−, τ(z)(l− +m−))/2 + β(l− +m−, w + r+τ(z)r− +m+)
= β(l− +m− + r−, τ(z)(l− +m− + r−))/2

+ β(l− +m− + r−, w + r+ +m+)
− β(r−, τ(z)r−)/2 − β(r−, w + r+ +m+),

and therefore the lemma follows. ��

Given an element l = l+ + l− ∈ L with l+ ∈ L+ and l− ∈ L−, we set

ψm(l) = e [β(l+, l−)/2 + β(l−,m+) + β(m−, l+)]. (7.41)
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Then ψm is a quasi-character of L in the sense that the map

l 
→ ψm(l)e [β(l+, l−)/2]

is a character of L. We also set lz = l+ − τ(z)l− ∈ V+ for z ∈ D as in Section
6.1.

Theorem 7.23 Let J : G̃ × D̃ → C be the automorphy factor given by
(6.52). Then the theta function θm satisfies the relation

θm(z, w + lz) = ψm(l)J ((1, l, 0), (z, w))θm(z, w) (7.42)

for all (z, w) ∈ D̃ = D × V+ and l ∈ L ⊂ V0.

Proof. Applying Lemma 7.22 for (z, w) ∈ D × V+ and r = l+ − l− with
r+ = l+ ∈ L+ and r− = −l− ∈ L−, we have

θm(z, w + lz) = e [−β(l−, τ(z)l−)/2 + β(l−, w +m+)]θm+r(z, w).

However, for m+ r = (m+ + l+) + (m− − l−), we have

θm+r(z, w) =
∑

k−∈L−
e [β(k− +m− − l−, τ(z)(k− +m− − l−))/2

+ β(k− +m− − l−, w +m+ + l+)]

=
∑

k−∈L−
e [β(k− +m−, τ(z)(k− +m−))/2

+ β(k− +m−, w +m+ + l+)]

=
∑

k−∈L−
e [β(k− +m−, τ(z)(k− +m−))/2

+ β(k− +m−, w +m+) + β(k−, l+) + β(m−, l+)]
= e [β(m−, l+)]θm(z, w),

where we used the condition β(L,L) ⊂ Z. Thus we obtain

θm(z, w + lz) = e [−β(l−, τ(z)l−)/2 + β(l−, w +m+) + β(m−, l+)]θm(z, w).

Since β = 0 on V+ × V+ and V− × V−, we have

J ((1, l, 0), (z, w)) = e [β(l, lz)/2 + β(l, w)] = e [β(l−, lz)/2 + β(l−, w)]
= e [β(l−, l+)/2 − β(l−, τ(z)l−)/2 + β(l−, w)].

Hence we see that

ψ(l)J ((1, l, 0), (z, w)) = e [−β(l−, τ(z)l−)/2 + β(l−, w)
+ β(l−,m+) + β(m−, l+)],

and therefore the proof of the theorem is complete. ��
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Remark 7.24 If we set ũ = (1, l, 0) ∈ G̃ and z̃ = (z, w) ∈ D̃, then (7.42)
can be written in the form

θm(ũz̃) = Jψ(ũ, z̃)θm(z̃),

where Jψ : (Γ ×L×{0})× (D× V+) → C is the automorphy factor given by

Jψ((γ, l, 0), (z, w)) = ψ(l)J ((γ, l, 0), (z, w))

for all γ ∈ Γ , l ∈ L and (z, w) ∈ D × V+.

Given an element z ∈ D and a quasi-character ψ of L, we denote by V zψ
the complex vector space consisting of all functions f : V+ → C satisfying
the relation

T z((1, l, 0))f = ψ(l)−1f

for all l ∈ L, where T z is the Fock representation in Section 7.2.

Proposition 7.25 Let z ∈ D, and let f be an element of V zψ for some quasi-
character ψ of L. Then T z(γ,0,0)f is an element of V γzψ for all γ ∈ G.

Proof. Let l ∈ L, γ ∈ G and z ∈ D. Then we have

(1, γl, 0)(γ, 0, 0) = (γ, 0, 0)(1, l, 0) = (γ, γl, 0) ∈ G̃ = G× V0 × R.

Hence, using Proposition 7.12, we obtain

T γz((γ, 0, 0)) ◦ T z((1, l, 0)) = T z((γ, 0, 0)) ◦ T z((1, l, 0)).

Thus for f ∈ V zψ , we have

T γz((γ, 0, 0))(T z((1, l, 0))f) = T z((γ, 0, 0))(T z((1, l, 0))f)

= ψ(l)−1(T z((γ, 0, 0))f),

and therefore we see that T z((1, l, 0))f ∈ V γzψ . ��

Given z ∈ D and m ∈ V0 we define the function θzm : V+ → C by

θzm(w) = θm(z, w)

for all w ∈ V+.

Proposition 7.26 Let z ∈ D, and set l̂ = (1, l, 0) ∈ G̃ for l ∈ L. Let T z(l̂)
be the associated operator on Fz given by (7.38), and let ψm be the quasi-
character associated to m ∈ V0 in (7.41). Then the function θzm is an element
of V zψm
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Proof. Given z ∈ D, m ∈ V0, l̂ = (1, l, 0) ∈ G̃ and w ∈ VC, we have

(T z(l̂)(θzm))(w) = J (l̂−1, (z, w))−1θzm((l̂−1(z, w))w).

However, we have

l̂−1(z, w) = (1,−l, 0)(z, w) = (z, w − lz);

hence we obtain (l̂−1(z, w))w = w − lz. Thus we see that

(T z(l̂)(θzm))(w) = J (l̂−1, (z, w))−1θzm(w − lz)

= J (l̂−1, (z, w))−1ψm(−l)J (l̂−1, (z, w))θzm(w)

= ψm(−l)θzm(w) = ψm(l)−1θzm(w).

Thus the proposition follows. ��

Let L∗
+ be the dual lattice of L+ relative to β, that is,

L∗
+ = {v ∈ V0 | β(L+, v) ⊂ Z}.

Then by (7.39), we have L− ⊂ L∗
+. Now we state the main theorem in

this section which extends a result of Satake [107, Section 3] to the case of
Hermitian symmetric domains.

Theorem 7.27 Let Ω be the complete set of representatives L+ modulo L−.
Then, for z ∈ D and m ∈ V0, the set {θzm+r | r ∈ Ω} forms a basis of the
complex vector space V zψm .

Proof. Since the set {θzm+r | r ∈ Ω} is obviously linearly independent over
C, it suffices to show that it spans the complex vector space V zψm . Let z ∈ D,
w ∈ V0 and m = m+ +m− with m+ ∈ V+ and m− ∈ V−. Then for l+ ∈ L+

we have
J ((1, l+, 0), (z, w)) = 1, ψ(l+) = e [β(m−, l+)].

Thus, for f ∈ V zψm , the relation T z(1,l+,0)f = ψm(l+)−1f(w) reduces to

f(w − l+) = e [−β(m−, l+)]f(w).

Hence the function fe(w) = f(w)e [−β(m−, w)] satisfies the relation

fe(w − l+) = f(w − l+)e [−β(m−, w) + β(m−, l+)]
= f(w)e [−β(m−, l+)]e [−β(m−, w)]e [β(m−, l+)]
= fe(w).

Therefore we obtain a Fourier expansion of fe(w) of the form

fe(w) = f(w)e [−β(m−, w)] =
∑
r∈L∗+

a(r)e [β(r, w)],
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which implies that

f(w) =
∑
r∈L∗+

a(r)e [β(r +m−, w)].

On the other hand, for l− ∈ L−, we have

f(w − τ(z)l−) = e [−β(l−, τ(z)l−)/2 + β(l−, w) + β(l−,m+)]f(w).

By comparing the coefficients of e [β(r+m−, w)] in the Fourier series of both
sides of the above equation, we see that

a(r)e [β(r +m−, τ(z)l−)] = a(r − l−)e [−β(l−, τ(z)l−)/2 + β(l−,m+)];

hence we have

a(r − l−) = a(r)e [β(r +m−, τ(z)l−) + β(l−, τ(z)l−)/2 − β(l−,m+)]

for each r ∈ L∗
+. Using this relation, we obtain

f(w) =
∑
r∈Ω

∑
l−∈L−

a(r − l−)e [β(r +m− − l−, w)]

=
∑
r∈Ω

∑
l−∈L−

a(r)e [β(r +m−, τ(z)l−) + β(l−, τ(z)l−)/2

− β(l−,m+) + β(r +m− − l−, w)].

However, we have

β(r +m−, τ(z)l−) + β(l−, τ(z)l−)/2
= β(r +m−, τ(z)l−)/2 + β(l−, τ(z)(r +m−))/2 + β(l−, τ(z)l−)/2
= β(r +m−, τ(z)l−)/2 + β(l−, τ(z)(r +m− + l−))/2
= β(r +m− + l−, τ(z)(r +m− + l−))/2 − β(r +m−, τ(z)(r +m−))/2,

−β(l−,m+) + β(r +m−, w) = β(r +m− − l−, w +m+) + β(r +m−,m+).

Thus we see that

f(w) =
∑
r∈Ω

a(r)e [β(r +m− − l−, τ(z)(r +m−))/2 − β(r +m−,m+)]

×
∑

l−∈L−
e [β(r +m− + l−, τ(z)(r +m− + l−))/2

+ β(r +m− − l−, w +m+)]

=
∑
r∈Ω

c(r, z)θzm+r(w),

where

c(r, z) = a(r)e [β(r +m−, τ(z)(r +m−))/2 − β(r +m−,m+)]

is a constant independent of w; hence the theorem follows. ��
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7.4 Vector-Valued Jacobi Forms

In this section we extend the notion of Jacobi forms treated in Section 7.1,
and discuss vector-valued Jacobi forms on symmetric domains in connection
with vector-valued modular forms. Such Jacobi forms are related to torus
bundles over Kuga fiber varieties.

Let G = G(R), D = G/K, and the equivariant pair (τ, ρ) be as in Section
6.1. In particular, τ : D → Hn is a holomorphic map that is equivariant with
respect to the homomorphism ρ : G → Sp(V, β), where β is an alternating
bilinear form on the real vector space V of dimension 2n. We denote by
Alt(V ) the space of all alternating bilinear forms on V .

Definition 7.28 A Hermitian structure on V is a pair (α, I) consisting of
all elements α ∈ Alt(V ) and I ∈ GL(V ) with I2 = −1V such that the bilinear
map

V × V → R, (v, v′) 
→ α(v, Iv′)

is symmetric and positive definite. We shall denote by Herm(V ) the space of
all Hermitian structures on V .

We z0 ∈ D as before, and denote by I0 = Iτ(z0) the complex structure
on V corresponding to the element τ(z0) ∈ Hn. Then we see that (β, I0) ∈
Herm(V ), and the Siegel upper half space Hn of degree n can be identified
with the space

H = H(V, β) = {I ∈ GL(V ) | (β, I) ∈ Herm(V )} (7.43)

on which Sp(V, β) acts by
(g, I) 
→ gIg−1

for all g ∈ Sp(V, β) and I ∈ H(V, β). We set

U∗ = {α ∈ Alt(V ) | ρ(G) ⊂ Sp(V, α)}.

Then U∗ is a subspace of Alt(V ) defined over Q, and we have β ∈ U∗. Let
U = (U∗)∗ be the dual space of U∗. Then we obtain an alternating bilinear
map A : V × V → U defined over Q by

A(v, v′)(α) = α(v, v′) (7.44)

for all α ∈ U∗ and v, v′ ∈ V .
Following Satake (cf. [108, §III.5], [109]), we consider the generalized

Heisenberg group H associated to A consisting of all elements of V × U to-
gether with a multiplication operation given by

(v, u) · (v′, u′) = (v + v′, u+ u′ −A(v, v′)/2) (7.45)

for all (v, u), (v′, u′) ∈ V × U . Then the group G operates on H by
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g · (v, u) = (ρ(g)v, u) (7.46)

for all g ∈ G and (v, u) ∈ H, and we can form the semidirect product G� H

with respect to this operation. Thus G� H consists of the elements (g, v, u)
of G× V × U whose multiplication operation is given by

(g, v, u) · (g′, v′, u′) = (gg′, (v, u) · (ρ(g)v′, u′)) (7.47)
= (gg′, v + ρ(g)v′, u+ u′ −A(v, ρ(g)v′)/2).

If I ∈ H = H(V, β), we extend the complex structure I on V linearly to
the complexification VC = V ⊗R C of V , and set

V+(I) = {v ∈ VC | Iv = iv}, V−(I) = {v ∈ VC | Iv = −iv}.

When I is equal to I0 considered above, we shall write V+ = V+(I0) and
V− = V−(I0).

Lemma 7.29 To each complex structure I on V there corresponds a unique
complex linear map ξI : V− → V+ satisfying

V−(I) = (1 + ξI)V−. (7.48)

Furthermore, the map I 
→ ξI determines a bijection between H = H(V, β)
and the set of C-linear maps ξ : V− → V+ such that 1− ξξ is positive definite
and ξt = ξ, where the transpose is taken with respect to the bilinear map β.

Proof. This follows from [108, Lemma II.7.2]. ��

If ξ is an element of HomC(V−, V+) in Lemma 7.29 corresponding to an
element I ∈ H, then we shall write I = Iξ.

Lemma 7.30 For each ξ ∈ HomC(V−, V+) with Iξ ∈ H the map

Ξξ : (V, Iξ) → V+, v 
→ v+ − ξv−

determines an isomorphism of vector spaces over C, where v = v+ + v− ∈
V ⊂ VC with v± ∈ V±.

Proof. Given ξ ∈ HomC(V−, V+) with Iξ ∈ H, the map Ξξ is linear. Since
dimC V = dimC V+, it suffices to show that KerΞξ = {0}. Suppose that v ∈ V
satisfies

Ξξ(v) = v+ − ξv− = 0. (7.49)

By (7.48) there exists v′ ∈ V−(Iξ) such that

v′ = v− + ξv−. (7.50)

From (7.49) and (7.50) we see that v′ = v+ +v− = v ∈ V . Since V ∩V−(Iξ) =
{0}, we have v′ = v = 0; hence it follows that KerΞξ = {0} ��
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By Lemma 7.29 we may identify the symmetric domain H in (7.43) with
the set of elements z ∈ HomC(V−, V+) with zt = z and 1− zz � 0. Then the
symplectic group Sp(V, β) operates on H in (7.43) by

g(z) = (az + b)(cz + d)−1

for all z ∈ H and

g =
(
a b
c d

)
∈ Sp(V, β);

here we wrote g ∈ Sp(V, β) as a 2 × 2 block matrix with respect to the
decomposition VC = V+ + V−. As was discussed in Section 6.2, the canonical
automorphy factor J of Sp(V, β) is the map on Sp(V, β) ×H with values in
GL(VC) given by

J(g, z) =
(
J+(g, z) 0

0 J−(g, z)

)
(7.51)

for all g ∈ Sp(V, β) and z ∈ H, where

J+(g, z) = a− g(z)c, J−(g, z) = cz + d. (7.52)

If τ : D → H is the holomorphic map equivariant with respect to the ho-
momorphism ρ : G → Sp(V, β) as before and if A is as in (7.44), then we
set

J((g, r, s), (z, v)) = s−A(ρ(g)r, J+(ρ(g), τ(z))rz)/2 (7.53)
−A(ρ(g)v, J+(ρ(g), τ(z))v)/2

−A(ρ(g)r, J+(ρ(g), τ(z))v)

for g ∈ G, (r, s) ∈ H and (z, v) ∈ D × V+, where

rz = r+ − zr− ∈ V+ (7.54)

for r = (r+, r−) ∈ V ⊂ VC = V+ ⊕ V−. Then it is known (see [108, §III.5])
that the group G� H operates on D × V+ × UC by

(g, r, s) · (z, v, u) =
(
gz, J+(ρ(g), τ(z))(v + rz), u+ J((g, r, s), (z, v))

)
. (7.55)

By restricting this action to D×V+ we obtain the action of G�H on D×V+

given by
(g, r, s) · (z, v) =

(
gz, J+(ρ(g), τ(z))(v + rz)

)
for g ∈ G, (r, s) ∈ H and (z, v) ∈ D × V+.

Proposition 7.31 The map J : (G � H) × (D × V+) → UC given by (7.53)
satisfies

J((g′, r′, s′) · (g, r, s), (z, v)) = J((g′, r′, s′), (g, r, s) · (z, v)) + J((g, r, s), (z, v))

for all (g′, r′, s′), (g, r, s) ∈ G� H and (z, v) ∈ D × V+.
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Proof. Given (g′, r′, s′), (g, r, s) ∈ G� H and (z, v, u) ∈ D × V+ × UC, we set

(z1, v1, u1) = (g, r, s) · (z, v, u)
(z2, v2, u2) = (g′, r′, s′) · (z1, v1, u1)
(z3, v3, u3) = ((g′, r′, s′) · (g, r, s)) · (z, v, u).

Then by (7.55) we see that

u1 = u+ J((g, r, s), (z, v))
u2 = u1 + J((g′, r′, s′), (g, r, s) · (z, v))
u3 = u+ J((g′, r′, s′) · (g, r, s), (z, v)).

Since G � H acts on D × V+ × UC, we have u2 = u3; hence the proposition
follows. ��

Let LH be an arithmetic subgroup of H, and set

L = pV (LH), LU = pU (LH), (7.56)

where pV : H → V and pU : H → U are the natural projection maps. Then
L and LU are lattices in V and U , respectively, and we have L = LH/LU .
Given elements l, l′ ∈ L, we have (l, 0), (l′, 0) ∈ LH; hence by (7.45) we see
that

(l, 0) · (l′, 0) = (l + l′,−A(l, l′)/2) ∈ LH.

Since (l + l′, 0)−1 = (−l− l′, 0) ∈ LH, we have

(l + l′,−A(l, l′)/2) · (−l − l′, 0) = (0,−A(l, l′)/2) ∈ LH.

Thus it follows that A(L,L) ⊂ LU . Let γ be a torsion-free arithmetic sub-
group of G. Using the isomorphism

Γ � LH/LU ∼= Γ � L,

we see that the action of G�H on D×V+×UC induces actions of the discrete
groups Γ � LH, Γ � L and Γ on the spaces D × V+ × UC, D × V+ and D,
respectively. We denote the associated quotient spaces by

W = Γ � LH\D × V+ × UC, Y = Γ � L\D × V+, X = Γ\D.

Then each of the spaces W , Y and X has a natural structure of a complex
manifold, and there are natural projections

W
π1−→ Y

π2−→ X.

The complex manifold Y is the Kuga fiber variety in (6.21), and W is a torus
bundle over Y whose fiber is isomorphic to the complex torus UC/LU .

Let KSp
C be the subgroup of GL(VC) given by
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KSp
C =

{(
p 0
0 q

)
∈ GL(VC)

∣∣∣ p = (qt)−1
}
,

where the matrix is written with respect to the decomposition VC = V+ +V−.
Then it is known that KSp

C is the complexification of a maximal compact
subgroup KSp of Sp(V, β). Let J , J+ and J− be as in (7.51), and let g =(
a b
c d

)
∈ Sp(V, β) and ζ ∈ H. Since the matrix gζ = (aζ + b)(cζ + d)−1 ∈ H

is symmetric, by (7.52) we obtain

J+(g, ζ) = a− (aζ + b)(cζ + d)−1c

= a− (ζct + dt)−1(ζat + bt)c

= (ζct + dt)−1(ζ(cta− atc) + dta− btc)

= (ζct + dt)−1 = (J−(g, ζ)t)−1.

Hence it follows that J+(g, ζ) ∈ KSp
C .

Let σ : KSp
C → GL(Z) be a representation of KSp

C in a finite-dimensional
complex vector space Z. Given a holomorphic map f : D → Z, we set

(f |σ γ)(z) = σ(J(ρ(γ), τ(z)))−1f(γz) (7.57)

for γ ∈ G and z ∈ D. Then it can be shown that

f |σ γ |σ γ′ = f |σ γγ′,

for γ, γ′ ∈ Γ . Let Γ ⊂ G be a torsion-free arithmetic subgroup as before.

Definition 7.32 A holomorphic map f : D → Z is a modular form for Γ
associated to σ if it satisfies

f |σ γ = f

for all γ ∈ Γ .

Let χ : UC → C
× be a character of UC with χ(s) = 1 for all s ∈ LU , where

LU is as in (7.56). Then by Proposition 7.31 we see that χ ◦ J : (G � H) ×
(D × V+) → C is an automorphy factor, that is, it satisfies

(χ ◦ J)(g̃g̃′, z̃) = (χ ◦ J)(g̃, g̃′z̃) · (χ ◦ J)(g̃′, z̃)

for all g̃, g̃′ ∈ G�H and z̃ ∈ D×V+. Given a holomorphic map F : D×V+ →
Z, we set

(F |σ,χ (γ, r, s))(z, w) = χ(−J((γ, r, s), (z, w))) · σ(J(ρ(γ), τ(z)))−1 (7.58)
× F (γz, J+(ρ(γ), τ(z))(w + rz))

for all (z, w) ∈ D × V+ and (γ, r, s) ∈ G� H, where rz is as in (7.54). Using
the fact that χ ◦ J is an automorphy factor, we see that

F |σ,χ (γ, r, s) |σ,χ (γ′, r′, s′) = F |σ,χ ((γ, r, s) · (γ′, r′, s′))

for γ, γ′ ∈ G and (r, s), (r′, s′) ∈ H.
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Definition 7.33 A holomorphic map F : D × V+ → Z is a Jacobi form for
Γ � LH associated to σ and χ if it satisfies

F |σ,χ (γ, r, s) = F

for all (γ, r, s) ∈ Γ � LH.

We can obtain a family of modular forms on D parametrized by the
rational points of H as is described in the next theorem.

Theorem 7.34 Let F : D×V+ → Z be a Jacobi form for Γ�LH associated to
σ and χ, and let (r, s) ∈ HQ = VQ×UQ with r = (r+, r−) ∈ V ⊂ VC = V+⊕V−
in the sense of Definition 7.33. If A : V ×V → U is the bilinear map in (7.44),
we set

f(z) = χ(−A(r, zr−)/2) · F (z, rz) (7.59)

for all z ∈ D. Then f is a modular form for an arithmetic subgroup Γ ′ ⊂ Γ
of G associated to σ in the sense of Definition 7.32.

Proof. Let ε be the identity element of G, and let (r, s) ∈ HQ. Then, for
each z ∈ D, J(ρ(ε), τ(z)) and J+(ρ(ε), τ(z)) are identity matrices, and in
particular σ(J(ρ(ε), τ(z))) is the identity element in GL(Z). Thus, using
(7.53) and (7.58), we see that

J((ε, r, s), (z, 0)) = s−A(r, rz)/2 −A(v, v)/2 −A(r, 0) = s−A(r, rz)/2,

(F |σ,χ (ε, r, s))(z, 0) = χ(−s+A(r, rz)/2)F (z, rz)

for all z ∈ D. Hence by (7.59) we obtain

f(z) = χ(s−A(r, r+ − zr−)/2 −A(r, zr−)/2)(F |σ,χ (ε, r, s))(z, 0)
= χ(s−A(r, r+)/2)(F |σ,χ (ε, r, s))(z, 0).

Thus it suffices to show that the function F(r,s) : D → Z given by

F(r,s)(z) = (F |σ,χ (ε, r, s))(z, 0)

is a modular form for an arithmetic subgroup Γ ′ ⊂ Γ associated to σ. Given
an element γ ∈ Γ , by (7.57) we have

(F(r,s) |σ γ)(z) = σ(J(ρ(γ), τ(z)))−1F(r,s)(γz)

= σ(J(ρ(γ), τ(z)))−1(F |σ,χ (ε, r, s))(γz, 0)
= ((F |σ,χ (ε, r, s)) |σ,χ (γ, 0, 0))(z, 0)

for all z ∈ D. However, by (7.47) we see that

(ε, r, s) · (γ, 0, 0) = (γ, r, s) = (γ, 0, 0) · (ε, ρ(γ)−1r, s).

Using this and the fact that F is a Jacobi form for Γ , we obtain
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(F(r,s) |σ γ)(z) = ((F |σ,χ (γ, 0, 0)) |σ,χ (ε, ρ(γ)−1r, s))(z, 0)

= (F |σ,χ (ε, ρ(γ)−1r, s)(z, 0)
= Fγ−1·(r,s)(z),

where γ−1 · (r, s) = (ρ(γ)−1r, s) by (7.46). Let Γ(r,s) be the subgroup of Γ
consisting of the elements γ ∈ Γ satisfying

γ−1 · (r, s) = (0, s1) · (r2, s2) · (r, s)

with s1 ∈ LU and (r2, s2) ∈ LH. Then Γ(r,s) is an arithmetic subgroup, and,
if γ ∈ Γ(r,s), we have

(F(r,s) |σ γ)(z) = Fγ−1·(r,s)(z) = F(0,s1)·(r2,s2)·(r,s)(z)

= (F |σ,χ (ε, 0, s1) |σ,χ (ε, r2, s2) |σ,χ (ε, r, s))(z, 0)
= (F |σ,χ (ε, r, s)(z, 0) = F(r,s)(z)

for all z ∈ D. Hence the function F(r,s) is a modular form for the arithmetic
subgroup Γ(r,s) ⊂ Γ associated to σ, and therefore the proof of the theorem
is complete. ��



8

Twisted Torus Bundles

As was discussed in Chapter 6 equivariant holomorphic maps of Hermitian
symmetric domains into Siegel upper half spaces can be used to construct
Kuga fiber varieties, which can be regarded as complex torus bundles over
locally symmetric spaces. In this chapter we extend the construction of such
torus bundles using 2-cocycles of discrete subgroups of the semisimple Lie
groups associated to the given symmetric domains (cf. [85, 87]).

Let G be a semisimple Lie group of Hermitian type, and let D be the asso-
ciated symmetric domain, which can be identified with the quotient G/K of
G by a maximal compact subgroup K. We assume that there are a homomor-
phism ρ : G → Sp(n,R) of Lie groups and a holomorphic map τ : D → Hn

that is equivariant with respect to ρ, where Hn is the Siegel upper half space
of degree n. Let L be a lattice in R

2n, and let Γ be a torsion-free discrete sub-
group of G such that � · ρ(γ) ∈ L for all � ∈ L and γ ∈ Γ , where we regarded
elements of L as row vectors. If L denotes the lattice Z

2n in Z
2n, as in Section

6.1, we may consider the semidirect product Γ �L with multiplication given
by

(γ1, �1) · (γ2, �2) = (γ1γ2, �1ρ(γ2) + �2) (8.1)

for all γ1, γ2 ∈ Γ and �1, �2 ∈ L. Then Γ � L acts on D × C
n by

(γ, (µ, ν)) · (z, w) = (γz, (w + µτ(z) + ν)(Cρτ(z) +Dρ)−1), (8.2)

for all (z, w) ∈ D × C
n, (µ, ν) ∈ L ⊂ R

n × R
n and γ ∈ Γ with ρ(γ) =(

Aρ Bρ
Cρ Dρ

)
∈ Sp(n,R). If we denote the associated quotient space by

Y = Γ � L\D × C
n,

then the map π0 : Y → X = Γ\D induced by the natural projection map
D × C

n → D has the structure of a fiber bundle over the locally symmetric
space X whose fibers are in fact polarized abelian varieties (see Section 6.1).
The total space of such a bundle is called a Kuga fiber variety as was discussed
in Chapter 6.

The torus bundle parametrized by X = Γ\D described above can further
be generalized if a 2-cocycle of Γ is used to modify the action of Γ � L
on D × C

n. Indeed, given a 2-cocycle ψ : Γ × Γ → L, by replacing the
multiplication operation (8.1) with

M.H. Lee: LNM 1845, pp. 209–230, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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(γ1, �1) · (γ2, �2) = (γ1γ2, �1ρ(γ2) + �2 + ψ(γ1, γ2)), (8.3)

we obtain the generalized semidirect product Γ �ψ L of Γ and L. We denote
by A(D,Cn) the space of C

n-valued holomorphic functions on D, and let ξ be
a 1-cochain for the cohomology of Γ with coefficients in A(D,Cn) satisfying

δξ(γ1, γ2)(z) = ψ(γ1, γ2)
(
τ(z)

1

)
(8.4)

for all z ∈ D and γ1, γ2 ∈ Γ , where δ is the coboundary operator on 1-
cochains. Then an action of Γ �ψ L on D × C

n can be defined by replacing
(8.2) with

(γ, (µ, ν)) · (z, w) = (γz, (w + µτ(z) + ν + ξ(γ)(z))(Cρτ(z) +Dρ)−1).

If the quotient of D × C
n by Γ �ψ L with respect to this action is denoted

by Yψ,ξ, the map π : Yψ,ξ → X = Γ\D induced by the natural projection
D×C

n → D is a torus bundle over X which is called a twisted torus bundle.
In Section 8.1 we describe the multiplication operation (8.3) by introduc-

ing a 2-cocycle of Γ . The action given by (8.4) in terms of a 1-cochain is
considered in Section 8.2, and this action is used in Section 8.3 to construct
a complex torus bundle, called a twisted torus bundle, over a locally sym-
metric space. We also consider families of such torus bundles produced by
different 2-cocycles and 1-cochains. In Section 8.4 we determine the cohomol-
ogy Rkπ∗OYψ,ξ along the fibers of Yψ,ξ over X associated to the sheaf OYψ,ξ

of holomorphic functions on Yψ,ξ for k = 0, 1.

8.1 Two-Cocycles of Discrete Groups

As was discussed in Section 6.1, a Kuga fiber variety is obtained as a quotient
by a semidirect product Γ � L of a discrete subgroup Γ of a semisimple Lie
group of Hermitian type and a lattice L. In this section we generalize the
multiplication operation on Γ � L by using a 2-cocycle of Γ .

Let G be a semisimple Lie group of Hermitian type, and let K be a
maximal compact subgroup of G. Thus the quotient space D = G/K has the
structure of a Hermitian symmetric domain. We consider an equivariant pair
(τ, ρ) associated to a Kuga fiber variety as in Section 6.1. Thus τ : D → Hn

is a holomorphic map that is equivariant with respect to a homomorphism
ρ : G → Sp(n,R) of Lie groups, where Sp(n,R) and Hn are the symplectic
group and the Siegel upper half space, respectively, of degree n. Recall that
this means that the pair (τ, ρ) satisfies

τ(gz) = ρ(g)τ(z)

for all z ∈ D and g ∈ G.
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Let L be a lattice in R
2n. In this chapter we shall often consider L as

a subgroup of R
n × R

n and write elements of L in the form (µ, ν), where
µ, ν ∈ R

n are regarded as row vectors. Let Γ be a discrete subgroup of G
such that �ρ(γ) ∈ L for all � ∈ L and γ ∈ Γ , where �ρ(γ) is the matrix product
of the row vector � of 2n entries and the 2n×2n matrix ρ(γ). Thus L has the
structure of a right Γ -module, and therefore we can consider the cohomology
H∗(Γ,L) of the group Γ with coefficients in L. We denote by Ck(Γ,L) and
Zk(Γ,L) the spaces of the associated k-cochains and k-cocycles, respectively,
and choose an element ψ of Z2(Γ,L). Thus ψ is a map ψ : Γ × Γ → L
satisfying

ψ(γ1, γ2)ρ(γ3) + ψ(γ1γ2, γ3) = ψ(γ2, γ3) + ψ(γ1, γ2γ3) (8.5)

ψ(γ, 1) = 0 = ψ(1, γ) (8.6)

for all γ1, γ2, γ3, γ ∈ Γ , where 1 is the identity element of Γ . We note that
an element α ∈ Z2(Γ,L) is a coboundary if α = ∂β for some β ∈ C1(Γ,L),
where

∂β(γ1, γ2) = β(γ2) − β(γ1γ2) + β(γ1)ρ(γ2) (8.7)

for all γ1, γ2 ∈ Γ .
We now consider the generalized semidirect product Γ �ψL associated to

ψ, which consists of the elements (γ, (µ, ν)) in Γ × L and is equipped with
the multiplication operation defined by

(γ1, (µ1, ν1)) ·(γ2, (µ2, ν2)) = (γ1γ2, (µ1, ν1)ρ(γ2)+(µ2, ν2)+ψ(γ1, γ2)) (8.8)

for all γ1, γ2 ∈ Γ and (µ1, ν1), (µ2, ν2) ∈ L.

Lemma 8.1 The generalized semidirect product Γ �ψ L is a group with re-
spect to the multiplication operation given by (8.8). The identity element is
(1, (0, 0)), and the element

(γ−1,−(µ, ν)ρ(γ)−1 − ψ(γ, γ−1))

is the inverse of (γ, (µ, ν)) ∈ Γ �ψ L.

Proof. First, we shall show that the operation in (8.8) is associative. Let
γ1, γ2, γ3 ∈ Γ and (µ1, ν1), (µ2, ν2), (µ3, ν3) ∈ L. Then by (8.8) we have

((γ1, (µ1, ν1)) · (γ2, (µ2, ν2))) · (γ3, (µ3, ν3))
= (γ1γ2γ3, (µ1, ν1)ρ(γ2)ρ(γ3) + (µ2, ν2)ρ(γ3)

+ ψ(γ1, γ2)ρ(γ3) + (µ3, ν3) + ψ(γ1γ2, γ3)).

Similarly, we obtain

(γ1, (µ1, ν1)) · ((γ2, (µ2, ν2)) · (γ3, (µ3, ν3)))
= (γ1, (µ1, ν1)) · (γ2γ3, (µ2, ν2)ρ(γ3) + (µ3, ν3) + ψ(γ2, γ3))
= (γ1γ2γ3, (µ1, ν1)ρ(γ2)ρ(γ3) + (µ2, ν2)ρ(γ3) + (µ3, ν3)

+ ψ(γ2, γ3) + ψ(γ1, γ2γ3)).
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Thus the associativity follows from the cocycle condition (8.5). Given (γ, (µ, ν)) ∈
Γ �ψ L, using (8.6), we have

(γ, (µ, ν)) · (1, (0, 0)) = (γ, (µ, ν) + (0, 0) + ψ(γ, 1)) = (γ, (µ, ν)),
(1, (0, 0)) · (γ, (µ, ν)) = (γ, (0, 0)ρ(γ) + (µ, ν) + ψ(1, γ)) = (γ, (µ, ν));

hence it follows that (1, (0, 0)) is the identity. As for the inverse, we have

(γ, (µ, ν)) · (γ−1,−(µ, ν)ρ(γ)−1 − ψ(γ, γ−1))

= (1, (µ, ν)ρ(γ)−1 − (µ, ν)ρ(γ)−1 − ψ(γ, γ−1) + ψ(γ, γ−1))
= (1, (0, 0))

(γ−1,−(µ, ν)ρ(γ)−1 − ψ(γ, γ−1)) · (γ, (µ, ν))
= (1,−(µ, ν)ρ(γ)−1ρ(γ) − ψ(γ, γ−1)ρ(γ) + (µ, ν) + ψ(γ−1, γ))

= (1, ψ(γ−1, γ) − ψ(γ, γ−1)ρ(γ)).

However, using (8.5) for γ1 = γ3 = γ and γ2 = γ−1, we see that

ψ(γ−1, γ) = ψ(γ, γ−1)ρ(γ),

and therefore it follows that (γ−1,−(µ, ν)ρ(γ)−1 − ψ(γ, γ−1)) is the inverse
of (γ, (µ, ν)). ��

The group Γ �ψ L essentially depends on the cohomology class [ψ] ∈
H2(Γ,L) of ψ according to the next lemma.

Lemma 8.2 Let ψ, ψ′ : Γ ×Γ → L be 2-cocycles that are cohomologous, and
let φ be an element of C1(Γ,L) such that

ψ(γ1, γ2) = ψ′(γ1, γ2) + (∂φ)(γ1, γ2). (8.9)

Then the map Φ : Γ �ψ L → Γ �ψ′ L defined by

Φ(γ, (µ, ν)) = (γ, (µ, ν) + φ(γ)) (8.10)

for γ ∈ Γ and (µ, ν) ∈ L is an isomorphism.

Proof. Using (8.9), we have

Φ(γ1, (µ1, ν1)) · Φ(γ2, (µ2, ν2))
= (γ1γ2, ((µ1, ν1) + φ(γ1))ρ(γ2) + (µ2, ν2) + φ(γ2) + ψ′(γ1, γ2))
= (γ1γ2, (µ1, ν1)ρ(γ2) + (µ2, ν2) + ψ(γ1, γ2) + φ(γ1γ2))
= Φ((γ1, (µ1, ν1)) · (γ2, (µ2, ν2))).

for all (γ1, (µ1, ν1)), (γ2, (µ2, ν2)) ∈ Γ �ψ L. Hence it follows that Φ is a
homomorphism. If we set,

Ψ(γ′, (µ′, ν′)) = (γ′, (µ′, ν′) − φ(γ)),

then we see easily that the map Ψ is an inverse of Φ, and therefore the lemma
follows. ��
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According to the following proposition, the number of cocycles ψ modulo
the coboundaries is finite if the R-rank of G is greater than two.

Proposition 8.3 If the R-rank of the semisimple Lie group of G is greater
than two, then the cohomology group H2(Γ,L) is finite.

Proof. From the short exact sequence

0 → L→ V → V/L → 0

of Γ -modules, we obtain the long exact sequence

· · · →H1(Γ,L) → H1(Γ, V ) → H1(Γ, V/L)

→H2(Γ,L) → H2(Γ, V ) → H2(Γ, V/L) → · · ·

of cohomology groups of Γ . Since the R-rank of G is greater than two, it
follows from Proposition 6.4 in [16, §VII.6] that

Hi(Γ, V ) = Hi(Γ\D, Ṽ ) = 0

for i = 1, 2, where Ṽ is the local system on Γ\D defined by the representation
ρ of Γ on V . Hence we have

H1(Γ, V/L) ∼= H2(Γ,L).

However, since V/L is compact, H1(Γ, V/L) is also compact, while H2(Γ,L)
is discrete. Thus it follows that H2(Γ,L) is finite. ��

8.2 One-Cochains Associated to 2-Cocycles

In order to introduce an action of the semidirect product associated to a
2-cocycle considered in Section 8.1, we need to introduce a certain 1-cochain
of Γ . In this section we discuss some of the properties of such a cochain.

The symplectic group Sp(n,R) acts on the Siegel upper half space Hn as
usual by

gζ = (aζ + b)(cζ + d)−1 (8.11)

for all z ∈ Hn and g =
(
a b
c d

)
∈ Sp(n,R). For such g ∈ Sp(n,R) and ζ ∈ Hn,

we set
j(g, ζ) = cζ + d.

Then the resulting map j : Sp(n,R) ×Hn → GL(n,C) satisfies

j(g′g, ζ) = j(g′, gζ)j(g, ζ) (8.12)

for all ζ ∈ Hn and g, g′ ∈ Sp(n,R). Given z ∈ D and γ ∈ Γ ⊂ G, we set
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jρ,τ (γ, z) = j(ρ(γ), τ(z)). (8.13)

Using (8.12) and the fact that (ρ, τ) is an equivariant pair, we see that

jρ,τ (γ′γ, z) = jρ,τ (γ′, γz)jρ,τ (γ, z) (8.14)

for all z ∈ D and γ, γ′ ∈ Γ . Thus jρ,τ : Γ ×D → GL(n,C) is an automorphy
factor, and automorphic forms involving the determinant of such an auto-
morphy factor have been studied in a number of papers (see e.g. [19] and
[74]).

Let A(D,Cn) denote the space of C
n-valued holomorphic functions on D.

Then A(D,Cn) has the structure of a double Γ -module by

(γ · f)(z) = f(z), (f · γ)(z) = f(γz)jρ,τ (γ, z) (8.15)

for all γ ∈ Γ and z ∈ D, where elements of C
n are considered as row vectors.

Thus we can consider the cohomology of the group Γ with coefficients in
A(D,Cn), where its group of k-cochains consists of all functions

η : Γ k → A(D,Cn)

such that η(γ1, . . . , γk) = 0 whenever at least one of the γi is 1. Then the
coboundary operator

δ : Ck(Γ,A(D,Cn)) → Ck+1(Γ,A(D,Cn))

is given by

δη(γ1, . . . , γk+1) = γ1 · η(γ2, . . . , γk+1)

+
k∑
i=1

(−1)iη(γ1, . . . , γiγi+1, . . . , γk+1) + (−1)k+1η(γ1, . . . , γk) · γk+1

for all η ∈ Ck(Γ,A(D,Cn)) (see [34, Chapter 15]). In particular, for k = 1 we
have

δη(γ1, γ2) = γ1 · η(γ2) − η(γ1γ2) + η(γ1) · γ2 (8.16)

for all γ1, γ2 ∈ Γ , where the right and left actions of Γ are given by (8.15).
Given a 2-cocycle ψ ∈ Z2(Γ,L), we assume that there is an element ξ of

C1(Γ,A(D,Cn)) satisfying

δξ(γ1, γ2)(z) = ψ(γ1, γ2)
(
τ(z)

1

)
(8.17)

for all z ∈ D, where the right hand side is the matrix multiplication of the
row vector ψ(γ1, γ2) ∈ L ⊂ R

n×R
n and the complex 2n×n matrix

(
τ(z)

1

)
. If

ψ′ is another 2-cocycle that is cohomologous to ψ, the corresponding element
of C1(Γ,A(D,Cn)) can be obtained as follows. Let ψ′ ∈ Z2(Γ,L) satisfy
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ψ = ψ′ + ∂φ (8.18)

for some φ ∈ C1(Γ,L). Then we define the map ξ′ : Γ → A(D,Cn) by

ξ′(γ)(z) = ξ(γ)(z) − φ(γ)
(
τ(z)
1

)
(8.19)

for all γ ∈ Γ and z ∈ D.

Lemma 8.4 If ψ′ and ξ′ are as in (8.18) and (8.19), then we have

δξ′(γ1, γ2)(z) = ψ′(γ1, γ2)
(
τ(z)
1

)

for all γ1, γ2 ∈ Γ and z ∈ H.

Proof. For γ1, γ2 ∈ Γ and z ∈ H, using (8.16) and (8.19), we obtain

δξ′(γ1, γ2)(z) = ξ′(γ2)(z) − ξ′(γ1γ2)(z) + ξ′(γ1)(γ2z)jρ,τ (γ2, z)

= δξ(γ1, γ2)(z) − φ(γ2)
(
τ(z)
1

)

+ φ(γ1γ2)
(
τ(z)

1

)
− φ(γ1)

(
τ(γ2z)

1

)
jρ,τ (γ2, z).

However, we have
(
τ(γ2z)

1

)
jρ,τ (γ2, z) =

(
(aτ(z) + b)(cτ(z) + d)−1

1

)
(cτ(z) + d)

=
(
aτ(z) + b

cτ(z) + d

)
= ρ(γ2)

(
τ(z)
1

)

if ρ(γ2) =
(
a b
c d

)
. Using this, (8.17) and (8.7), we see that

δξ′(γ1, γ2)(z) = ψ(γ1, γ2)
(
τ(z)
1

)
− (∂φ)(γ1, γ2)

(
τ(z)

1

)

= ψ(γ1, γ2)
(
τ(z)
1

)
,

and therefore the lemma follows. ��

Let ψ ∈ Z2(Γ,L) and ξ ∈ C1(Γ,A(D,Cn)) be as in (8.17). Given elements
(γ, (µ, ν)) ∈ Γ �ψ L and (z, w) ∈ D × C

n, we set

(γ, (µ, ν)) · (z, w) = (γz, (w + µτ(z) + ν + ξ(γ)(z))jρ,τ (γ, z)−1), (8.20)

where jρ,τ : Γ ×D → GL(n,C) is given by (8.13).
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Lemma 8.5 The operation given by (8.20) determines an action of the group
Γ �ψ L on the space D × C

n.

Proof. Let (γ, (µ, ν)), (γ′, (µ′, ν′)) ∈ Γ �ψ L and (z, w) ∈ D × C
n. Then we

have

(γ′, (µ′, ν′)) · ((γ, (µ, ν)) · (z, w))

= (γ′γz, (µ′τ(γz) + ν′ + (µτ(z) + ν + w + ξ(γ)(z))jρ,τ (γ, z)−1

+ ξ(γ′)(γz))jρ,τ (γ′, γz)−1)

= (γ′γz, (µ′τ(γz) + ν′)jρ,τ (γ′, γz)−1

+ (µτ(z) + ν + w + ξ(γ)(z))jρ,τ (γ′γ, z)−1

+ ξ(γ′)(γz)jρ,τ (γ′, γz)−1),

where we used the relation (8.14). Similarly, using (8.8) and (8.20) we have

((γ′, (µ′, ν′)) · (γ, (µ, ν))) · (z, w)
= (γ′γ, (µ′, ν′)ρ(γ) + (µ, ν) + ψ(γ′, γ)) · (z, w)

= (γ′γz, ((µ′, ν′)ρ(γ)
(
τ(z)
1

)
+ µτ(z) + ν

+ ψ(γ′, γ)
(
τ(z)
1

)
+ w + ξ(γ′γ)(z))jρ,τ (γ′γ, z)−1)

= (γ′γz, (µ′, ν′)ρ(γ)
(
τ(z)

1

)
jρ,τ (γ′γ, z)−1

+ (µτ(z) + ν + w)jρ,τ (γ′γ, z)−1 + ψ(γ′, γ)
(
τ(z)

1

)
jρ,τ (γ′γ, z)−1

+ (ξ(γ′γ)(z))jρ,τ (γ′γ, z)−1).

However, if ρ(γ) =
(
a b
c d

)
∈ Sp(n,R), we see that

ρ(γ)
(
τ(z)
1

)
=
(
aτ(z) + b

cτ(z) + d

)
=
(

(aτ(z) + b)(cτ(z) + d)−1

1

)
(cτ(z) + d)

=
(
τ(γz)

1

)
jρ,τ (γ, z).

Hence, using this and (8.14), we obtain

(µ′τ(γz) + ν′)jρ,τ (γ′, γz)−1 = (µ′, ν′)
(
τ(γz)

1

)
jρ,τ (γ′, γz)−1

= (µ′, ν′)ρ(γ)
(
τ(z)

1

)
jρ,τ (γ, z)−1jρ,τ (γ′, γz)−1

= (µ′, ν′)ρ(γ)
(
τ(z)

1

)
jρ,τ (γ′γ, z)−1.
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On the other hand, using (8.15), (8.16) and (8.17), we have

ψ(γ′, γ)
(
τ(z)
1

)
= δξ(γ′, γ)(z)

= (γ′ · ξ)(γ)(z) − ξ(γ′γ)(z) + (ξ(γ′) · γ)(z)
= ξ(γ)(z) − ξ(γ′γ)(z) + ξ(γ′)(γz)jρ,τ (γ, z).

Hence it follows that

(γ′, (µ′, ν′)) · ((γ, (µ, ν)) · (z, w)) = ((γ′, (µ′, ν′)) · (γ, (µ, ν))) · (z, w),

and therefore the proof of the lemma is complete. ��

Remark 8.6 In [87, Lemma 3.3], there is another action of Γ �ψ L on
D×C

n which apparently looks different from the one in Lemma 8.5. However,
it can be shown that these two actions are equivalent. The equivalence of these
actions in the case of trivial ψ and ξ can be found in Section 6.1, and similar
arguments can be used to prove the equivalence in the general case.

8.3 Families of Torus Bundles

By taking the quotient of the space D×C
n by the action of Γ �ψL discussed

in Section 8.2 we obtain a complex torus bundle over a locally symmetric
space, which may be regarded as a generalized Kuga fiber variety. In this
section we consider certain properties of families of such torus bundles.

We assume that the discrete subgroup Γ ⊂ G does not contain elements
of finite order, so that the quotient X = Γ\D of D by the Γ -action given by
(8.11) has the structure of a complex manifold, and set

Yψ,ξ = Γ �ψ L\D × C
n, (8.21)

where the quotient is taken with respect to the action in Lemma 8.5. Then
the map π : Yψ,ξ → X induced by the natural projections D × C

n → D and
Γ �ψ L → Γ has the structure of a fiber bundle over X whose fiber over a
point corresponding to z ∈ D is isomorphic to the complex torus

C
n

/(
L ·
(
τ(z)
1

))
.

If ψ = 0 and ξ = 0, then the the corresponding torus bundle Y0,0 is a family
of abelian varieties known as a Kuga fiber variety (cf. [61, 108]), which was
discussed in Section 6.1.

Proposition 8.7 Given ψ ∈ Z2(Γ,L) and ξ ∈ C1(Γ,A(D,Cn)), let ψ′ and
ξ′ be as in (8.18) and (8.19). Then the map Φ : Γ �ψ L→ Γ �ψ′ L given by
(8.10) and the identity map on D×C

n induce an isomorphism Yψ,ξ → Yψ′,ξ′
of bundles over X = Γ\D.
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Proof. It suffices to show that

Φ(γ, (µ, ν)) · (z, w) = (γ, (µ, ν)) · (z, w),

where the actions on the right and left hand sides are with respect to (ψ, ξ)
and (ψ′, ξ′), respectively. Indeed, we have

Φ(γ, (µ, ν)) · (z, w) = (γz, (w + (µ, ν)
(
τ(z)
1

)
+ φ(γ)

(
τ(z)
1

)

+ ξ′(γ)(z))jρ,τ (γ, z)−1)

= (γz, (w + (µ, ν)
(
τ(z)
1

)
+ ξ(γ)(z))jρ,τ (γ, z)−1)

= (γ, (µ, ν)) · (z, w).

and therefore the proposition follows. ��

Given a 2-cocycle ψ : Γ × Γ → L, we denote by Ξψ the set of all ξ ∈
C1(Γ,A(D,Cn)) satisfying (8.17). Thus, if ψ = 0, the set Ξ0 coincides with
the space

Z1(Γ,A(D,Cn)) = {η ∈ C1(Γ,A(D,Cn)) | δη = 0}

of 1-cocycles in C1(Γ,A(D,Cn)), where δη is as in (8.16). Each ξ ∈ Ξψ
determines the associated torus bundle Yψ,ξ over X given by (8.21). We
denote by

Tψ = {Yψ,ξ | ξ ∈ Ξψ}
the family of torus bundles Yψ,ξ parametrized by Ξψ. Thus, if ψ is the
zero map, the torus bundle Y0,0 determined by 0 ∈ Ξ0 is a Kuga fiber
variety. Given ξ ∈ Ξψ and ξ′ ∈ Ξψ′ , if δ is the coboundary operator on
C1(Γ,A(D,Cn)), then by (8.17) we have

δ(ξ + ξ′)(γ1, γ2)(z) = (ψ + ψ′)(γ1, γ2)
(
τ(z)

1

)

for all z ∈ Hn and γ1, γ2 ∈ Γ ; hence we see that ξ + ξ′ ∈ Ξψ+ψ′ .
Let (D×C

n)⊕D (D×C
n) be the Whitney sum of two copies of the trivial

vector bundle D × C
n over D, which we identify with D × (Cn ⊕ C

n). Then
we can consider the map

s : D × (Cn ⊕ C
n) → D × C

n

given by
s(z, v, v′) = (z, v + v′) (8.22)

for all z ∈ D and v, v′ ∈ C
n. Let ψ, ψ′ ∈ Z2(Γ,L), and let Γ �ψL�ψ′L be the

group consisting of the elements of Γ × L × L equipped with multiplication
given by
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(γ1, (µ1, ν1), (µ′
1, ν

′
1)) · (γ2, (µ2, ν2), (µ′

2, ν
′
2))

= (γ1γ2, (µ1, ν1)ρ(γ2) + (µ2, ν2) + ψ(γ1, γ2),
(µ′

1, ν
′
1)ρ(γ2) + (µ′

2, ν
′
2) + ψ′(γ1, γ2)).

Then we see that there is a group homomorphism

s̃ : Γ �ψ L�ψ′ L→ Γ �ψ+ψ′ L

given by
s̃(γ, �1, �2) = (γ, �1 + �2) (8.23)

for all γ ∈ Γ and �1, �2 ∈ L. If ξ ∈ Ξψ and ξ′ ∈ Ξψ′ , we let the group
Γ �ψ L�ψ′ L act on the space D × (Cn ⊕ C

n) by

(γ, (µ, ν), (µ′, ν′)) · (z, w,w′) (8.24)

= (γz, (µτ(z) + ν + w + ξ(γ)(z)) · jρ,τ (γ, z)−1,

(µ′τ(z) + ν′ + w′ + ξ′(γ)(z)) · jρ,τ (γ, z)−1).

Then the associated quotient space

Yψ,ξ ⊕X Yψ′,ξ′ = Γ �ψ L�ψ′ L\D × (Cn ⊕ C
n)

is the fiber product of the torus bundles Yψ,ξ ∈ Tψ and Yψ′,ξ′ ∈ Tψ′ over X .

Proposition 8.8 Let ξ ∈ Ξψ and ξ′ ∈ Ξψ′ with ψ, ψ′ ∈ Z1(Γ,L). Then the
map s in (8.22) and the morphism s̃ in (8.23) induce a morphism

Yψ,ξ ⊕X Yψ′,ξ′ → Yψ+ψ′,ξ+ξ′

of torus bundles over X.

Proof. By our construction of the torus bundles involved, it suffices to show
that

s((γ, (µ, ν), (µ′, ν′)) · (z, w,w′)) = s̃(γ, (µ, ν) + (µ′, ν′)) · s(z, w,w′)

for γ ∈ Γ , (µ, ν), (µ′, ν′) ∈ L and (z, w,w′) ∈ D × (Cn ⊕ C
n). Indeed, using

(8.24) and (8.23), we see that

s((γ, (µ, ν), (µ′, ν′)) · (z, w,w′))
= (γz, ((µ+ µ′)τ(z) + (ν + ν′)

+ (w + w′) + (ξ + η)(γ)(z)) · jρ,τ (γ, z)−1)
= s̃(γ, (µ, ν) + (µ′, ν′)) · s(z, w,w′),

and therefore the proposition follows. ��
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Applying Proposition 8.8 to the special case of ψ′ = 0, we see that there
is a natural morphism

Yψ,ξ ⊕X Y0,η → Yψ,ξ+η

for Yψ,ξ ∈ Tψ and η ∈ Ξ0.

Example 8.9 Given an element h ∈ A(D,Cn), we define the 1-cochain η ∈
C1(Γ,A(D,Cn)) by

η(γ)(z) = h(z) − h(γz)jρ,τ (γ, z)

for all z ∈ D and γ ∈ Γ . Then for z ∈ D and γ′, γ ∈ Γ we have

η(γ)(z) − η(γ′γ)(z) + η(γ′)(γz)jρ,τ (γ, z)
= (h(z) − h(γz)jρ,τ (γ, z)) − (h(z) − h(γ′γz)jρ,τ (γ′γ, z))

+ (h(γz) − h(γ′γz)jρ,τ (γ′, z))jρ,τ (γ, z) = 0;

hence it follows that η ∈ Z1(Γ,A(D,Cn)). In fact, η is a coboundary. Thus we
can consider the associated torus bundle Yh = Y0,η and a morphism Yψ,ξ ⊕X
Yh → Yψ,ξ+η for each Yψ,ξ ∈ Tψ.

We are now interested in extending the interpretation of holomorphic
forms on Kuga fiber varieties as mixed automorphic forms given in Theorem
6.17 to the torus bundle Yψ,ξ. Let jH : G×D → C and jV : Sp(V, β)×Hn → C

be canonical automorphy factors given by (6.55) and (6.56), respectively.
Then from (6.56) and (8.13) we see that

det(jρ,τ (γ, z)) = jV (ρ(γ), τ(z))

for all z ∈ D and γ ∈ G.

Theorem 8.10 Let π : Y mψ,ξ → X be the m-fold fiber power of the torus bun-
dle Yψ,ξ over X in (8.21). Then the space of mixed automorphic forms on D
of type (j−1

H , jmV , ρ, τ) is canonically isomorphic to the space H0(Y mψ,ξ, Ω
k+mn)

of holomorphic (k +mn)-forms on Y mψ,ξ, where k = dimC D.

Proof. Using (8.21), we see that Y mψ,ξ can be regarded as the quotient

Γ �ρ L
n\D × (Cn)m

fibered over the locally symmetric space X = Γ\D with fiber (Cn/L)m. Let
z = (z1, . . . , zk) be a global coordinates for D, and let

w = (w(1), . . . , w(m)) = (w(1)
1 , . . . , w(1)

n ; . . . ;w(m)
1 , . . . , w(m)

n )

be the canonical coordinates for (Cn)m. If Φ is a holomorphic (k + mn)-
form on Y mψ,ξ, then Φ can be considered as a holomorphic (k +mn)-form on
D × (Cn)m that is invariant under the action of Γ �ρ L

m. Thus there is a
holomorphic function FΦ(z, w) on D × (Cn)m such that
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Φ = FΦ(z, w) dz ∧ dw(1) ∧ · · · ∧ dw(m),

where z = (z1, . . . , zk) ∈ D, w = (w(1), . . . , w(m)) ∈ (Cn)m, and w(j) =
(w(j)

1 , . . . , w
(j)
n ) ∈ C

n for 1 ≤ j ≤ m. Given x ∈ X , the holomorphic form
Φ descends to a holomorphic mn-form on the fiber (Y mψ,ξ)x over x. The fiber
(Y mψ,ξ)x is the m-fold product of a complex torus of dimension n, and hence
the dimension of the space of holomorphic mn-forms on (Y mψ,ξ)x is one. Since
any holomorphic function on a compact complex manifold is constant, the
restriction of FΦ(z, w) to the compact complex manifold Y mψ,ξ is constant.
Thus FΦ(z, w) depends only on z; and hence Φ can be written in the form

Φ = fΦ(z) dz ∧ dw(1) ∧ · · · ∧ dw(m),

where fΦ is a holomorphic function on D. To consider the invariance of Φ
under the group Γ �ρ L

m, we first notice that the action of Γ �ρ L
m on

dz = dz1 ∧ · · · ∧ dzk is given by

(γ, (µ, ν)) · dz = jH(γ, z)dz

for all (γ, (µ, ν)) ∈ Γ �ρ L
m, because z 
→ jH(γ, z) is the Jacobian map for

the transformation z 
→ γz of D. On the other hand, the action of Γ �ρ L
m

on dw(j) = dw
(j)
1 ∧ · · · ∧ dw

(j)
n is given by

(γ, (µ, ν)) · dw(j) = d
[
(w + µτ(z) + ν + ξ(γ)(z))jρ,τ (γ, z)−1

]
= det(jρ,τ (γ, z))−1dw(j) + Ψ (j)

= jV (ρ(γ), τ(z))−1dw(j) + Ψ (j)

for 1 ≤ j ≤ m, where the term Ψ (j) is the sum of the terms involving some
dz� for 1 ≤ � ≤ k; hence we obtain

(γ, (µ, ν)) · Φ = fΦ(γz) jH(γ, z)jV (ρ(γ), τ(z))−mdz ∧ dw(1) ∧ · · · ∧ dw(m).

Thus we have

fΦ(γz) = jH(γ, z)−1jV (ρ(γ), τ(z))mfΦ(z)

for all γ ∈ Γ and z ∈ D. On the other hand, each mixed automorphic form
on D of type (j−1

H , jmV , ρ, τ) is a holomorphic function h : D → C satisfying

h(γz) = jH(γ, z)−1jV (ρ(γ), τ(z))nh(z)

for z ∈ D and γ ∈ Γ . Therefore the assignment Φ 
→ fΦ(z) determines
an isomorphism between the space H0(Y mψ,ξ, Ω

k+mn) of holomorphic (k +
mn)-forms on Y mψ,ξ and the space of mixed automorphic forms on D of type
(j−1
H , jmV , ρ, τ). ��
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8.4 Cohomology

In this section we establish an isomorphism between the k-th cohomology
along the fibers of a twisted torus bundle and the sheaf of holomorphic sec-
tions of a certain vector bundle over the base space of the torus bundle.
This vector bundle is determined by an automorphy factor associated to an
equivariant pair.

We fix elements ψ ∈ Z2(Γ,L) and ξ ∈ Ξψ, where Ξψ is as in Section
8.3, and consider the associated torus bundle π : Yψ,ξ → X constructed in
the same section. The cohomology along the fibers of Yψ,ξ over X can be
provided by the direct image functors Riπ∗, which determine sheaves on X
associated to sheaves on Yψ,ξ (see e.g. [40, Section III.8]). We are interested
in the images of the sheaf OYψ,ξ of holomorphic functions on Yψ,ξ under
such functors. Given a nonnegative integer k, Rkπ∗OYψ,ξ is the sheaf on X
generated by the presheaf

U 
→ Hk(π−1(U),OYψ,ξ)

for open subsets U ofX . Note that by Dolbeault’s theorem there is a canonical
isomorphism

Hk(π−1(U),OYψ,ξ ) ∼= H(0,k)(π−1(U)).

Proposition 8.11 The sheaf R0π∗OYψ,ξ is isomorphic to the sheaf OX of
holomorphic functions on X.

Proof. Let U be a sufficiently small open ball in X , and consider the section
f ∈ H0(π−1(U),OYψ,ξ) of OYψ,ξ on π−1(U). If Ũ ⊂ D is the inverse image of
U under the natural projection map D → X = Γ\D, then we have

π−1(U) ∼= Γ �ψ L\Ũ × C
n. (8.25)

Thus f may be regarded as a holomorphic function on Ũ×C
n that is invariant

under the action of Γ �ψ {0} and satisfies

f(z, w) = f(z, w + µτ(z) + ν)

for all (z, w) ∈ Ũ×C
n and (µ, ν) ∈ L. Hence it follows that f is constant with

respect to w and therefore can be identified with a Γ -invariant holomorphic
function on Ũ or a holomorphic function on U . ��

Let jρ,τ : Γ × D → GL(n,C) be the automorphy factor given by (8.13).
Then the discrete subgroup Γ ⊂ Sp(n,R) acts on D × C

n by

γ · (z, w) = (γz, w · jρ,τ (γ, z)−1)

for all γ ∈ Γ and (z, w) ∈ D × C
n. If we denote the associated quotient by

V = Γ\D × C
n, (8.26)
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then the map p : V → X = Γ\D induced by the natural projection D ×
C
n → D determines the structure of a vector bundle on V over X with fiber

isomorphic to C
n. By our construction we see that each holomorphic section

s : X → V of V overX can be identified with a function s̃ : D → C
n satisfying

s̃(γz) = s̃(z) · jρ,τ (γ, z)−1 (8.27)

for all γ ∈ Γ and z ∈ D.
Given a torus bundle π : Yψ,ξ → X and a sufficiently small open ball U in

X , we consider a (0, 1)-form ω on π−1(U) which determines the cohomology
class [ω] in H(0,1)(π−1(U)) = H1(π−1(U),OYψ,ξ ). Let Ũ ⊂ D be the inverse
image of U under the natural projection map D → X as in (8.25), and let
z = (z1, . . . , zN) be a local holomorphic system of coordinates on Ũ . Then
we have

ω =
N∑
α=1

Aα(z, w)dzα +
n∑
β=1

Bβ(z, w)dwβ (8.28)

for some C-valued C∞ functions Aα(z, w) and Bβ(z, w) on Ũ × C
n, where

w = (w1, . . . , wn) is the standard coordinate system for C
n. Let � = (µ, ν) ∈

L, and set
ζ(z, �) = µ · τ(z) + ν

for all z ∈ D. Note that ζ(z, �) is the same as ξ(z, �) = �z in the notation
used in Chapter 6 (see Example 6.6). Then by (8.20) the action of � on ω is
given by

�∗ω =
N∑
α=1

Aα(z, w + ζ(z, �))dzα

+
n∑
β=1

Bβ(z, w + ζ(z, �))
(
dwβ +

N∑
α=1

∂ζ(z, �)β
∂zα

dzα

)
.

Since �∗ω = ω, we obtain

Aα(z, w) = Aα(z, w + ζ(z, �)) +
n∑
β=1

Bβ(z, w + ζ(z, �))
∂ζ(z, �)β
∂zα

,

Bβ(z, w) = Bβ(z, w + ζ(z, �)) (8.29)

for all � ∈ L.

Lemma 8.12 Let ω(1) be the (0, 1)-form on Ũ × C
n given by (8.28). Then

there exists a (0, 1)-form on Ũ × C
n of the form

ω(1) =
N∑
α=1

(
Aα(z, w) − ∂f(z, w)

∂zα

)
dzα +

n∑
β=1

Cβ(z)dwβ (8.30)
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such that [ω(1)] = [ω] in H(0,1)(π−1(U)), where f(z, w) and Cβ(z) for 1 ≤
β ≤ n are C∞ functions on Ũ × C

n and Ũ , respectively.

Proof. We first rewrite the (0, 1)-form ω in (8.28) as

ω =
N∑
α=1

Aα(z, w)dzα + Φ̃(z, w) (8.31)

by setting

Φ̃(z, w) =
n∑
β=1

Bβ(z, w)dwβ .

Then, for fixed z ∈ Ũ ⊂ D, by (8.29) we see that the (0, 1)-form Φ̃(z, w) on
C
n is L-invariant and satisfies ∂wΦ̃(z, w) = 0. Thus for each z ∈ Ũ we obtain

a ∂w-closed (0, 1)-form Φ(z) that is cohomologous to Φ̃(z, w) on the complex
torus

C
n

/(
L ·
(
τ(z)
1

))
,

which is the fiber of the bundle Yψ,ξ over the image of z in X . From harmonic
theory we see that there are C∞ functions Cβ(z) on Ũ with 1 ≤ β ≤ n such
that

Φ0(z) =
n∑
β=1

Cβ(z)dwβ (8.32)

is a harmonic form in w that is cohomologous, for each fixed z, to Φ(z) in
H(0,1)(π−1(z)). Hence there is a C∞ function f(z, w) on Ũ × C

n such that
f(z, w + ζ(z, �)) = f(z, w) for all � ∈ L and

Φ(z) − Φ0(z) = ∂wf(z, w) =
n∑
β=1

∂f(z, w)
∂wβ

dwβ (8.33)

= ∂f(z, w) −
N∑
α=1

∂f(z, w)
∂zα

dzα.

We now define ω(1) by (8.30), so that

ω(1) =
N∑
α=1

(
Aα(z, w) − ∂f(z, w)

∂zα

)
dzα + Φ0(z) (8.34)

by (8.32). Then from (8.31), (8.33) and (8.34), we obtain

ω − ω(1) = ∂f ;

hence it follows that [ω] = [ω(1)] in H(0,1)(π−1(U)). ��
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Lemma 8.13 There are C∞ functions Fj,α(z) with 1 ≤ j ≤ n and 1 ≤ α ≤
N such that the (0, 1)-form on Ũ × C

n given by

ω(2) =
N∑
α=1

Fα(z)(tw − tw)dzα + Cβ(z)dwβ (8.35)

satisfies [ω(2)] = [ω(1)] = [ω] in H(0,1)(π−1(U)), where the functions Cβ(z)
are as in (8.30), ω = (ω1, . . . , ωn), and Fα(z) = (Fα,1(z), . . . , Fα,n(z)) for
each α ∈ {1, . . . , n}.

Proof. From (8.30) we may write

ω(1) =
N∑
α=1

Dα(z, w)dzα +
n∑
β=1

Cβ(z)dwβ (8.36)

with

Dα(z, w) = Aα(z, w) − ∂f(z, w)
∂zα

.

Since ω(1) is a ∂-closed form, we have

0 = ∂ω(1) =
N∑
α=1

N∑
λ=1

∂Dα(z, w)
∂zλ

dzλ ∧ dzα +
N∑
α=1

n∑
ε=1

∂Dα(z, w)
∂wε

dwε ∧ dzα

+
n∑
β=1

N∑
λ=1

∂Cβ(z)
∂zλ

dzλ ∧ dwβ ;

hence we obtain

∂Cβ(z)
∂zλ

=
∂Dλ(z, w)

∂wβ
,

∂Dα(z, w)
∂zλ

=
∂Dλ(z, w)

∂zα
(8.37)

for 1 ≤ α, λ ≤ N and 1 ≤ β ≤ n. Thus we have

Dλ(z, w) =
n∑
β=1

Fλ,β(z)wβ + Pλ(z, w), Fλ,β(z) =
∂Cβ(z)
∂zλ

, (8.38)

where Pλ(z, w) is a holomorphic function in w. Since �∗ω(1) = ω(1) for each
� ∈ L, by (8.36) we obtain

Dλ(z, w) = Dλ(z, w + ζ(z, �)) +
n∑
β=1

Cβ(z)
∂ζ(z, �)β
∂zλ

(8.39)

for all � ∈ L. Hence, if we set
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P̃ 0
λ(z) =

n∑
β=1

(
Cβ(z)

∂ζ(z, �)β
∂zλ

+ Fλ,β(z)ζ(z, �)β

)

for 1 ≤ λ ≤ N , by (8.38) and (8.39) we have

Pλ(z, w) − Pλ(z, w + ζ(z, �)) = P̃ 0
λ(z), (8.40)

which is a function of z only. Thus Pλ(z, w) must be of the form

Pλ(z, w) = P 0
λ(z) +

n∑
β=1

P 1
λ,β(z)wβ (8.41)

for each λ. Using (8.40) and (8.41) for w = ζ(z, �), we see that the functions
P 1
λ,β(z) satisfy

n∑
β=1

P 1
λ,β(z)ζ(z, �)β = −

n∑
β=1

(
Fλ,β(z)ζ(z, �)β + Cβ(z)

∂ζ(z, �)β
∂zλ

)
. (8.42)

Since ζ(z, �) = µ · τ(z) + ν for � = (µ, ν), using µ = 0 and ν = (ν1, . . . , νn)
with νj �= 0 and νk = 0 for k �= j, from (8.42) we obtain

P 1
λ,j(z) = −Fλ,j(z) (8.43)

for each j ∈ {1, . . . , n}. Thus (8.42) reduces to

n∑
β=1

Fλ,β(z)(µ · τ(z))β =
n∑
β=1

(
Fλ,β(z)(µ · τ(z))β + Cβ(z)

∂(µ · τ(z))β
∂zλ

)

for � = (µ, 0). By considering µ with only one nonzero entry µj for each j we
see that

Fλ(z)τ(z) = Fλ(z)τ(z) + C(z)
∂τ(z)
∂zλ

,

where the Fλ(z) and C(z) are row vectors given by

Fλ(z) = (Fλ,1(z), . . . , Fλ,n(z)), C(z) = (C1(z), . . . , Cn(z))

and the products are matrix products. Thus we have

2iFλ(z)(Im τ(z)) = C(z)
∂τ(z)
∂zλ

. (8.44)

By (8.37) and (8.38) we have

∂Fα(z)
∂zλ

tw +
∂Pα(z, w)

∂zλ
=
∂Dα(z, w)

∂zλ
=
∂Dλ(z, w)

∂zα

=
∂Fλ(z)
∂zα

tw +
∂Pλ(z, w)

∂zα
,



8.4 Cohomology 227

where w is regarded as a row vector and tw is its transpose. Hence it follows
that

∂Fα(z)
∂zλ

=
∂Fλ(z)
∂zα

,
∂Pα(z, w)

∂zλ
=
∂Pλ(z, w)

∂zα
.

Thus, using this and (8.41), we obtain

∂P 0
α(z)
∂zλ

+
∂P 1

α(z)
∂zλ

tw =
∂P 0

λ(z)
∂zα

+
∂P 1

λ(z)
∂zα

tw

with P 1
ε = (P 1

ε,1, . . . , P
1
ε,n) for ε = α, λ, which implies that

∂P 0
α(z)
∂zλ

=
∂P 0

λ(z)
∂zα

.

By (8.36), (8.38), (8.41) and (8.43) we see that

ω(1) =
N∑
α=1

(Fα(z)tw + P 0
α(z) + P 1

α(z)tw)dzα +
n∑
β=1

Cβ(z)dwβ

=
N∑
α=1

(Fα(z)(tw − tw) + P 0
α(z))dzα + C(z)dtw.

Hence, if we define the (0, 1)-form ω(2) on Ũ × C
n by (8.35), we obtain

ω(1) = ω(2) +
N∑
α=1

P 0
α(z)dzα.

Since
∑N

α=1 P
0
α(z)dzα is a closed 1-form on π−1(U), it is exact by Poincaré’s

lemma; hence it follows that [ω] = [ω(1)] = [ω(2)] in H(0,1)(π−1(U)). ��

Lemma 8.14 The (0, 1)-form ω(2) on Ũ ×C
n given by (8.35) can be written

in the form
ω(2) = φ(z)∂((Im τ(z))−1 Im tw)

for some C
n-valued holomorphic function φ on Ũ .

Proof. By (8.38) and (8.44) we have

∂C(z)
∂zλ

(Im τ(z)) = Fλ(z)(Im τ(z))

=
1
2i
C(z)

∂τ(z)
∂zλ

=
1
2i
C(z)

∂

∂zλ
(τ(z) − τ(z))

= −C(z)
∂

∂zλ
(Im τ(z)).
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Thus we obtain
∂

∂zλ
(C(z) Im τ(z)) = 0,

and therefore we see that the function C(z) Im τ(z) is holomorphic. Now we
define the vector-valued holomorphic function φ on Ũ ⊂ D by

φ(z) = (φ1(z), . . . , φn(z)) = −2iC(z) Im τ(z). (8.45)

Using this, (8.38) and (8.35), we obtain

ω(2) =
N∑
α=1

∂C(z)
∂zα

(tw − tw)dzα + C(z)dtw (8.46)

= − 1
2i

N∑
α=1

φ(z)
∂(Im τ(z))−1

∂zα
(tw − tw)dzα − 1

2i
φ(z)(Im τ(z))−1dtw

= − 1
2i
φ(z)((∂(Im τ(z))−1)(tw − tw) + (Im τ(z))−1∂(tw − tw))

= φ(z)∂((Im τ(z))−1 Im tw),

which prove the lemma. ��

Theorem 8.15 Let V be the vector bundle over X given by (8.26). Then the
sheaf R1π∗OYψ,ξ is isomorphic to the sheaf Ṽ of holomorphic sections of V
over X.

Proof. We shall first show that φ in (8.45) corresponds to a holomorphic
section of the bundle V over U . By (8.27) it suffices to show that the function
φ : Ũ → C

n in (8.46) satisfies

φ(γz) = φ(z)jρ,τ (γ, z)−1 (8.47)

for all γ ∈ Γ and z ∈ Ũ . If γ ∈ Γ , using (8.20), we see that the action of
(γ, 0) ∈ Γ �ψ L on dw is given by

(γ, 0)∗dw = d((w + ξ(γ)(z))jρ,τ (γ, z)−1)

= dw · jρ,τ (γ, z)−1 + w · d(jρ,τ (γ, z)−1) + d(ξ(γ)(z) · jρ,τ (γ, z)−1)

= dw · jρ,τ (γ, z)−1 + (terms in dzα),

where we used the fact that the functions ξ(γ)(z) and jρ,τ (γ, z) are holomor-
phic in z. Since ω(2) in (8.35) can be written in the form

ω(2) = C(z)dtw + (terms in dzα)

and since (γ, 0)∗ takes terms in dzα to themselves, we see that

(γ, 0)∗ω(2) = C(γz)tjρ,τ (γ, z)−1dtw + (terms in dzα).
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We now compare terms in dwβ in the relation (γ, 0)∗ω(2) = ω(2) to obtain

C(γz)tjρ,τ (γ, z)−1 = C(z).

Using this, (8.45), and the fact that

Im τ(γz) = tjρ,τ (γ, z)−1 · Im τ(z) · jρ,τ (γ, z)−1,

we obtain

φ(γz) = −2iC(γz) Im τ(γz)

= −2iC(z) Im τ(z)jρ,τ (γ, z)−1

= φ(z)jρ,τ (γ, z)−1.

Hence it follows that φ can be regarded as a holomorphic section of V over
U . On the other hand, if ϕ̂ is a holomorphic section of V over U represented
by a vector-valued holomorphic function ϕ : Ũ → C

n, we denote by ωϕ̂ the
(0, 1)-form on Ũ × C

n given by

ωϕ̂ = ϕ(z)∂((Im τ(z))−1 Im tw).

Denoting by Γ (U,V) the space of holomorphic sections of V over U and using
(8.46), we see that the map

Γ (U,V) → H(0,1)(π−1(U))

sending ϕ̂ to the cohomology class [ωϕ̂] of ωϕ̂ is surjective. Thus we obtain
the corresponding surjective map

F : Ṽ → R1π∗OYψ,ξ

of sheaves on X . In order to show that F is injective, given x ∈ X , we denote
by Tx and Vx the fibers of the bundles Yψ,ξ and V , respectively, over x.
Then Vx and H1(Tx,O) = H(0,1)(Tx) are the fibers of the sheaves Ṽ and
R1π∗OYψ,ξ , respectively. Thus, using the fact that both Vx and H1(Tx,O)
are isomorphic to the n-dimensional space C

n, we see that the surjectivity of
F implies its injectivity. Hence it follows that F is an isomorphism of sheaves
on X , and the proof of the theorem is complete. ��

Corollary 8.16 Let Ṽ be as in Theorem 8.15, and let k be a positive integer.
Then there is an isomorphism

Rkπ∗OYψ,ξ
∼= ∧k(Ṽ)

of sheaves on X.
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Proof. Since π−1(x) is a complex torus for each x ∈ X , from a well-known
result (see e.g. Corollary 1 in [97, p. 8]) we see that

Hk(π−1(x),OYψ,ξ ) ∼= ∧k(H1(π−1(x),OYψ,ξ ))

for each x ∈ X . Hence we obtain

Rkπ∗OYψ,ξ
∼= ∧k(Rkπ∗OYψ,ξ),

and therefore the corollary follows by combining this with the isomorphism
in Theorem 8.15. ��



References

1. S. Abdulali, Conjugates of strongly equivariant maps, Pacific J. Math. 165
(1994), 207–216.

2. S. Addington, Equivariant holomorphic maps of symmetric domains, Duke
Math. J. 55 (1987), 65–88.

3. A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of
locally symmetric varieties, Math. Sci. Press, Brookline, 1975.

4. W. Baily, Introductory lectures on automorphic forms, Princeton Univ. Press,
Princeton, 1973.

5. W. Baily and A. Borel, Compactification of arithmetic quotients of bounded
symmetric domains, Ann. of Math. 84 (1966), 442–528.

6. P. Bayer and J. Neukirch, On automorphic forms and Hodge theory, Math.
Ann. 257 (1981), 135–155.

7. R. Berndt, On automorphic forms for the Jacobi group, Jb. d. Dt. Math.-
Verein. 97 (1995), 1–18.
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vol. 55, Birkhäuser, Boston, 1985.

24. G. Faltings and C. L. Chai, Degeneration of abelian varieties, Springer-Verlag,
Berlin, 1990.

25. E. Freitag, Singular modular forms and theta relations, Lecture Notes in
Math., vol. 1487, Springer-Verlag, Heidelberg, 1991.

26. E. Freitag and C. Hermann, Some modular varieties of low dimension, Adv.
Math. 152 (2000), 203–287.

27. S. Gelbart, Automorphic forms on adele groups, Princeton Univ. Press, Prince-
ton, 1975.

28. S. Gelbart and F. Shahidi, Analytic properties of automorphic L-functions,
Academic Press, New York, 1988.

29. R. Godement, Introduction à la théorie de Langlands, Sém. Bourbaki 19
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70. , Mixed cusp forms and Poincaré series, Rocky Mountain J. Math. 23
(1993), 1009–1022.

71. , Mixed Siegel modular forms and Kuga fiber varieties, Illinois J. Math.
38 (1994), 692–700.

72. , Twisted torus bundles over arithmetic varieties, Proc. Amer. Math.
Soc. 123 (1995), 2251–2259.

73. , Mixed automorphic forms on semisimple Lie groups, Illinois J. Math.
40 (1996), 464–478.

74. , Mixed automorphic vector bundles on Shimura varieties, Pacific J.
Math. 173 (1996), 105–126.

75. , Siegel cusp forms and special values of Dirichlet series of Rankin type,
Complex Variables Theory Appl. 31 (1996), 97–103.

76. , Mixed Hilbert modular forms and families of abelian varieties, Glas-
gow Math. J. 39 (1997), 131–140.

77. , Generalized Jacobi forms and abelian schemes over arithmetic vari-
eties, Collect. Math. 49 (1998), 121–131.

78. , Hilbert cusp forms and special values of Dirichlet series of Rankin
type, Glasgow Math. J. 40 (1998), 71–78.

79. , Periods of mixed automorphic forms and differential equations, Appl.
Math. Lett. 11 (1998), 15–19.

80. , Eisenstein series and Poincaré series for mixed automorphic forms,
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Poincaré series, 17, 24, 104, 112, 117,

118, 133
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