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3-D Computer Graphics

A Mathematical Introduction with OpenGL

This book is an introduction to 3-D computer graphics with particular emphasis
on fundamentals and the mathematics underlying computer graphics. It includes
descriptions of how to use the cross-platformOpenGL programming environment.
It also includes source code for a ray tracing software package. (Accompanying
software is available freely from the book’s Web site.)

Topics include a thorough treatment of transformations and viewing, lighting
and shading models, interpolation and averaging, Bézier curves and B-splines, ray
tracing and radiosity, and intersection testing with rays. Additional topics, covered
in less depth, include texture mapping and color theory. The book also covers some
aspects of animation, including quaternions, orientation, and inverse kinematics.
Mathematical background on vectors and matrices is reviewed in an appendix.

This book is aimed at the advanced undergraduate level or introductory graduate
level and can also be used for self-study. Prerequisites include basic knowledge of
calculus and vectors. The OpenGL programming portions require knowledge of
programming in C or C++. The more important features of OpenGL are covered
in the book, but it is intended to be used in conjunction with another OpenGL
programming book.

Samuel R. Buss is Professor of Mathematics and Computer Science at the Univer-
sity of California, San Diego. With both academic and industrial expertise, Buss
has more than 60 publications in the fields of computer science and mathematical
logic. He is the editor of several journals and the author of a book on bounded
arithmetic. Buss has years of experience in programming and game development
and has acted as consultant for SAIC and Angel Studios.
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Preface

Computer graphics has grown phenomenally in recent decades, progressing from simple 2-D
graphics to complex, high-quality, three-dimensional environments. In entertainment, com-
puter graphics is used extensively in movies and computer games. Animated movies are in-
creasingly being made entirely with computers. Even nonanimated movies depend heavily on
computer graphics to develop special effects: witness, for instance, the success of the Star
Wars movies beginning in the mid-1970s. The capabilities of computer graphics in personal
computers and home game consoles have now improved to the extent that low-cost systems
are able to display millions of polygons per second.

There are also significant uses of computer graphics in nonentertainment applications. For
example, virtual reality systems are often used in training. Computer graphics is an indis-
pensable tool for scientific visualization and for computer-aided design (CAD). We need good
methods for displaying large data sets comprehensibly and for showing the results of large-scale
scientific simulations.

The art and science of computer graphics have been evolving since the advent of computers
and started in earnest in the early 1960s. Since then, computer graphics has developed into a
rich, deep, and coherent field. The aim of this book is to present the mathematical foundations
of computer graphics along with a practical introduction to programming using OpenGL.
I believe that understanding the mathematical basis is important for any advanced use of
computer graphics. For this reason, this book attempts to cover the underlying mathematics
thoroughly. The principle guiding the selection of topics for this book has been to choose
topics that are of practical significance for computer graphics practitioners – in particular for
software developers. My hope is that this book will serve as a comprehensive introduction to
the standard tools used in this field and especially to themathematical theory behind these tools.

About This Book

The plan for this book has been shaped by my personal experiences as an academic mathe-
matician and by my participation in various applied computer projects, including projects in
computer games and virtual reality. This book was started while I was teaching a mathematics
class at the University of California, San Diego (UCSD), on computer graphics and geometry.
That course was structured as an introduction to programming 3-D graphics in OpenGL and
to the mathematical foundations of computer graphics. While teaching that course, I became
convinced of the need for a book that would bring together the mathematical theory underlying
computer graphics in an introductory and unified setting.

xi
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xii Preface

The other motivation for writing this book has beenmy involvement in several virtual reality
and computer game projects. Many of the topics included in this book are presented mainly
because I have found them useful in computer game applications.Modern-day computer games
and virtual reality applications are technically demanding software projects: these applications
require software capable of displaying convincing three-dimensional environments. Generally,
the software must keep track of the motion of multiple objects; maintain information about
the lighting, colors, and textures of many objects; and display these objects on the screen at
30 or 60 frames per second. In addition, considerable artistic and creative skills are needed to
make aworthwhile three-dimensional environment.Not surprisingly, this requires sophisticated
software development by large teams of programmers, artists, and designers.

Perhaps it is a little more surprising that 3-D computer graphics requires extensive math-
ematics. This is, however, the case. Furthermore, the mathematics tends to be elegant and
interdisciplinary. The mathematics needed in computer graphics brings together construc-
tions and methods from several areas, including geometry, calculus, linear algebra, numeri-
cal analysis, abstract algebra, data structures, and algorithms. In fact, computer graphics is
arguably the best example of a practical area in which so much mathematics combines so
elegantly.

This book presents a blend of applied and theoretical topics. On the more applied side,
I recommend the use of OpenGL, a readily available, free, cross-platform programming en-
vironment for 3-D graphics. The C and C++ code for OpenGL programs that can freely be
downloaded from the Internet has been included, and I discuss how OpenGL implements
many of the mathematical concepts discussed in this book. A ray tracer software package is
also described; this software can also be downloaded from the Internet. On the theoretical side,
this book stresses the mathematical foundations of computer graphics, more so than any other
text of which I am aware. I strongly believe that knowing the mathematical foundations of
computer graphics is important for being able to use tools such as OpenGL or Direct3D, or, to
a lesser extent, CAD programs properly.

The mathematical topics in this book are chosen because of their importance and relevance
to graphics. However, I have not hesitated to introduce more abstract concepts when they
are crucial to computer graphics – for instance, the projective geometry interpretation of
homogeneous coordinates. A good knowledge of mathematics is invaluable if you want to use
the techniques of computer graphics software properly and is even more important if you want
to develop new or innovative uses of computer graphics.

How to Use This Book

This book is intended for use as a textbook, as a source for self-study, or as a reference. It is
strongly recommended that you try running the programs supplied with the book and write
some OpenGL programs of your own. Note that this book is intended to be read in conjunction
with a book on learning to program in OpenGL. A good source for learning OpenGL is the
comprehensive OpenGL Programming Guide (Woo et al., 1999), which is sometimes called
the “red book.” If you are learning OpenGL on your own for the first time, the OpenGL
Programming Guide may be a bit daunting. If so, the OpenGL SuperBible (Wright Jr., 1999)
mayprovide an easier introduction toOpenGLwithmuch lessmathematics. The bookOpenGL:
A Primer (Angel, 2002) also gives a good introductory overview of OpenGL.

The outline of this book is as follows. The chapters are arranged more or less in the order
the material might be covered in a course. However, it is not necessary to read the material
in order. In particular, the later chapters can be read largely independently, with the exception
that Chapter VIII depends on Chapter VII.
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Preface xiii

Chapter I. Introduction. Introduces the basic concepts of computer graphics; drawing points,
lines, and polygons; modeling with polygons; animation; and getting started with OpenGL
programming.

Chapter II. Transformations and Viewing.Discusses the rendering pipeline, linear and affine
transformations, matrices in two and three dimensions, translations and rotations, homoge-
neous coordinates, transformations in OpenGL, viewing with orthographic and perspective
transformations, projective geometry, pixelization, Gouraud and scan line interpolation, and
the Bresenham algorithm.

Chapter III. Lighting, Illumination, and Shading. Addresses the Phong lighting model;
ambient, diffuse, and specular lighting; lights and material properties in OpenGL; and the
Cook–Torrance model.

Chapter IV. Averaging and Interpolation. Presents linear interpolation, barycentric coor-
dinates, bilinear interpolation, convexity, hyperbolic interpolation, and spherical linear inter-
polation. This is a more mathematical chapter with many tools that are used elsewhere in the
book. You may wish to skip much of this chapter on the first reading and come back to it as
needed.

Chapter V. Texture Mapping.Discusses textures and texture coordinates, mipmapping, su-
persampling and jittering, bumpmapping, environmentmapping, and texturemaps inOpenGL.

Chapter VI. Color. Addresses color perception, additive and subtractive colors, and RGB
and HSL representations of color.

Chapter VII. Bézier Curves. Presents Bézier curves of degree three and of general degree;
De Casteljau methods; subdivision; piecewise Bézier curves; Hermite polynomials; Bézier
surface patches; Bézier curves in OpenGL; rational curves and conic sections; surfaces of rev-
olution; degree elevation; interpolation with Catmull–Rom, Bessel–Overhauser, and tension-
continuity-bias splines; and interpolation with Bézier surfaces.

Chapter VIII. B-Splines. Describes uniform and nonuniform B-splines and their proper-
ties, B-splines in OpenGL, the de Boor algorithm, blossoms, smoothness properties, rational
B-splines (NURBS) and conic sections, knot insertion, relationship with Bézier curves, and
interpolation with spline curves. This chapter has a mixture of introductory topics and more
specialized topics. We include all proofs but recommend that many of the proofs be skipped
on the first reading.

Chapter IX. Ray Tracing. Presents recursive ray tracing, reflection and transmission, dis-
tributed ray tracing, backwards ray tracing, and cheats to avoid ray tracing.

Chapter X. Intersection Testing.Describes testing rays for intersectionswith spheres, planes,
triangles, polytopes, and other surfaces and addresses bounding volumes and hierarchical
pruning.

Chapter XI. Radiosity. Presents patches, form factors, and the radiosity equation; the
hemicube method; and the Jacobi, Gauss–Seidel, and Southwell iterative methods.

Chapter XII. Animation and Kinematics. Discusses key framing, ease in and ease out,
representations of orientation, quaternions, interpolating quaternions, and forward and inverse
kinematics for articulated rigid multibodies.

Appendix A. Mathematics Background. Reviews topics from vectors, matrices, linear al-
gebra, and calculus.

Appendix B. RayTrace Software Package. Describes a ray tracing software package. The
software is freely downloadable.
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xiv Preface

Exercises are scattered throughout the book, especially in the more introductory chapters.
These are often supplied with hints, and they should not be terribly difficult. It is highly
recommended that you do the exercises to master the material. A few sections in the book,
as well as some of the theorems, proofs, and exercises, are labeled with an asterisk (�). This
indicates that the material is optional, less important, or both and can be safely skipped without
affecting your understanding of the rest of the book. Theorems, lemmas, figures, and exercises
are numbered separately for each chapter.

Obtaining the Accompanying Software

All software examples discussed in this book are available for downloading from the Internet
at

http://math.ucsd.edu/∼sbuss/MathCG/.

The software is available as source files and as PC executables. In addition, completeMicrosoft
Visual C++ project files are available.

The software includes several small OpenGL programs and a relatively large ray tracing
software package.

The software may be used without any restriction except that its use in commercial products
or any kind of substantial project must be acknowledged.

Getting Started with OpenGL

OpenGL is a platform-independent API (application programming interface) for rendering 3-D
graphics. A big advantage of using OpenGL is that it is a widely supported industry standard.
Other 3-D environments, notably Direct3D, have similar capabilities; however, Direct3D is
specific to the Microsoft Windows operating system.

The official OpenGL Web site is http://www.opengl.org. This site contains a huge
amount of material, but if you are just starting to learn OpenGL the most useful material is
probably the tutorials and code samples available at

http://www.opengl.org/developers/code/tutorials.html.

The OpenGL programs supplied with this text use the OpenGL Utility Toolkit routines,
called GLUT for short, which is widely used and provides a simple-to-use interface for con-
trolling OpenGL windows and handling simple user input. You generally need to install the
GLUT files separately from the rest of the OpenGL files.

If you are programming with Microsoft Visual C++, then the OpenGL header files and
libraries are included with Visual C++. However, you will need to download the GLUT files
yourself. OpenGL can also be used with other development environments such as Borland’s
C++ compiler.

The officialWeb site for downloading the latest version of GLUT for theWindows operating
system is available from Nate Robin at

http://www.xmission.com/∼nate/glut.html.

To install the necessary GLUT files on a Windows machine, you should put the header file
glut.h in the same directory as your other OpenGL header files such as glu.h. You should
likewise put the glut32.dll files and glut32.lib file in the same directories as the
corresponding files for OpenGL, glu32.dll, and glu32.lib.
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Preface xv

OpenGL and GLUTwork under a variety of other operating systems as well. I have not tried
out all these systems but list some of the prominent ones as an aid to the reader trying to run
OpenGL in other environments. (However, changes occur rapidly in the software development
world, and so these links may become outdated quickly.)

For Macintosh computers, you can find information about OpenGL and the GLUT libraries
at the Apple Computer site

http://developer.apple.com/opengl/.

OpenGL and GLUT also work under the Cygwin system, which implements a Unix-
like development environment under Windows. Information on Cygwin is available at
http://cygwin.com/ or http://sources.redhat.com/cygwin/.

OpenGL for Sun Solaris systems can be obtained from

http://www.sun.com/software/graphics/OpenGL/.

There is an OpenGL-compatible system, Mesa3D, which is available from http://
mesa3d.sourceforge.net/. This runs on several operating systems, including Linux,
and supports a variety of graphics boards.

Other Resources for Computer Graphics

Youmaywish to supplement this bookwith other sources of information on computer graphics.
One rather comprehensive textbook is the volume by Foley et al. (1990). Another excellent
recent book is Möller and Haines (1999). The articles by Blinn (1996; 1998) and Glassner
(1999) are also interesting.

Finally, an enormous amount of information about computer graphics theory and practice is
available on the Internet. There you can find examples of OpenGL programs and information
about graphics hardware as well as theoretical and mathematical developments. Much of this
can be found through your favorite search engine, but you may also use the ACM Transactions
on Graphics Web site http://www.acm.org/tog/ as a starting point.

For the Instructor

This book is intended for use with advanced junior- or senior-level undergraduate courses or
introductory graduate-level courses. It is based in large part onmy teaching of computer graph-
ics courses at the upper division level and at the graduate level. In a two-quarter undergraduate
course, I cover most of the material in the book more or less in the order presented here.
Some of the more advanced topics would be skipped, however – most notably Cook–Torrance
lighting and hyperbolic interpolation – and some of the material on Bézier and B-spline curves
and patches is best omitted from an undergraduate course. I also do not cover the more difficult
proofs in undergraduate courses.

It is certainly recommended that students studying this book get programming assignments
using OpenGL. Although this book covers much OpenGL material in outline form, students
will need to have an additional source for learning the details of programming in OpenGL.
Programming prerequisites include some experience in C, C++, or Java. (As we write this,
there is no standardized OpenGL API for Java; however, Java is close enough to C or C++ that
students can readily make the transition required for mastering the simple programs included
with this text.) The first quarters of my own courses have included programming assignments
first on two-dimensional graphing, second on three-dimensional transformations based on the
solar system exercise on page 40, third on polygonal modeling (students are asked to draw tori
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xvi Preface

of the type in Figure I.11(b)), fourth on adding materials and lighting to a scene, and finally
an open-ended assignment in which students choose a project of their own. The second quarter
of the course has included assignments on modeling objects with Bézier patches (Blinn’s
article (1987) on how to construct the Utah teapot is used to help with this), on writing a
program that draws Catmull–Rom and Overhauser spline curves that interpolate points picked
with the mouse, on using the computer-aided design program 3D Studio Max (this book does
not cover any material about how to use CAD programs), on using the ray tracing software
supplied with this book, on implementing some aspect of distributed ray tracing, and then
ending with another final project of their choosing. Past course materials can be found on the
Web from my home page http://math.ucsd.edu/∼sbuss/.
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I

Introduction

This chapter discusses some of the basic concepts behind computer graphics with particular
emphasis on how to get started with simple drawing in OpenGL. Amajor portion of the chapter
explains the simplest methods of drawing in OpenGL and various rendering modes. If this is
your first encounter with OpenGL, it is highly suggested that you look at the included sample
code and experiment with some of the OpenGL commands while reading this chapter.

The first topic considered is the different models for graphics displays. Of particular im-
portance for the topics covered later in the book is the idea that an arbitrary three-dimensional
geometrical shape can be approximated by a set of polygons – more specifically as a set of
triangles. Second, we discuss some of the basic methods for programming in OpenGL to dis-
play simple two- and three-dimensional models made from points, lines, triangles, and other
polygons. We also describe how to set colors and polygonal orientations, how to enable hidden
surface removal, and how to make animation work with double buffering. The included sample
OpenGL code illustrates all these capabilities. Later chapters will discuss how to use transfor-
mations, how to set the viewpoint, how to add lighting and shading, how to add textures, and
other topics.

I.1 Display Models

We start by describing threemodels for graphics displaymodes: (1) drawing points, (2) drawing
lines, and (3) drawing triangles and other polygonal patches. These three modes correspond
to different hardware architectures for graphics display. Drawing points corresponds roughly to
the model of a graphics image as a rectangular array of pixels. Drawing lines corresponds to
vector graphics displays. Drawing triangles and polygons corresponds to the methods used by
modern graphics display hardware for displaying three-dimensional images.

I.1.1 Rectangular Arrays of Pixels

The most common low-level model is to treat a graphics image as a rectangular array of pixels
in which, each pixel can be independently set to a different color and brightness. This is the
display model used for cathode ray tubes (CRTs) and televisions, for instance. If the pixels are
small enough, they cannot be seen individually by the human viewer, and the image, although
composed of points, can appear as a single smooth image. This technique is used in art as well –
notably in mosaics and, even more so, in pointillism, where pictures are composed of small

1
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2 Introduction

Figure I.1. A pixel is formed from subregions or subpixels, each of which displays one of three colors.
See Color Plate 1.

patches of solid color but appear to form a continuous image when viewed from a sufficient
distance.

Keep in mind, however, that the model of graphics images as a rectangular array of pixels is
only a convenient abstraction and is not entirely accurate. For instance, on a CRT or television
screen, each pixel actually consists of three separate points (or dots of phosphor): each dot
corresponds to one of the three primary colors (red, blue, and green) and can be independently
set to a brightness value. Thus, each pixel is actually formed from three colored dots. With a
magnifying glass, you can see the colors in the pixel as separate colors (see Figure I.1). (It is
best to try this with a low-resolution device such as a television; depending on the physical
design of the screen, you may see the separate colors in individual dots or in stripes.)

A second aspect of rectangular array model inaccuracy is the occasional use of subpixel
image addressing. For instance, laser printers and ink jet printers reduce aliasing problems, such
as jagged edges on lines and symbols, by micropositioning toner or ink dots. More recently,
some handheld computers (i.e., palmtops) are able to display text at a higher resolution than
wouldotherwise bepossible by treating eachpixel as three independently addressable subpixels.
In this way, the device is able to position text at the subpixel level and achieve a higher level
of detail and better character formation.

In this book however, issues of subpixels will never be examined; instead, we will always
model a pixel as a single rectangular point that can be set to a desired color and brightness.
Sometimes the pixel basis of a computer graphics imagewill be important to us. In Section II.4,
we discuss the problem of approximating a straight sloping line with pixels. Also, when using
texture maps and ray tracing, one must take care to avoid the aliasing problems that can arise
with sampling a continuous or high-resolution image into a set of pixels.

We will usually not consider pixels at all but instead will work at the higher level of
polygonally based modeling. In principle, one could draw any picture by directly setting the
brightness levels for each pixel in the image; however, in practice this would be difficult and
time consuming. Instead, in most high-level graphics programming applications, we do not
have to think very much about the fact that the graphics image may be rendered using a
rectangular array of pixels. One draws lines, or especially polygons, and the graphics hardware
handles most of the work of translating the results into pixel brightness levels. A variety of
sophisticated techniques exist for drawing polygons (or triangles) on a computer screen as an
array of pixels, including methods for shading and smoothing and for applying texture maps.
These will be covered later in the book.

I.1.2 Vector Graphics

In traditional vector graphics, one models the image as a set of lines. As such, one is not
able to model solid objects, and instead draws two-dimensional shapes, graphs of functions,
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penup();
moveto(2,2);
pendown();
moveto(2,1);
penup();
moveto(1,2);
pendown();
moveto(0,2);
moveto(1,1);
moveto(1,2);

Figure I.2. Examples of vector graphics commands.

or wireframe images of three-dimensional objects. The canonical example of vector graphics
systems are pen plotters; this includes the “turtle geometry” systems. Pen plotters have a
drawing pen that moves over a flat sheet of paper. The commands available include (a) pen
up, which lifts the pen up from the surface of the paper, (b) pen down, which lowers the point
of the pen onto the paper, and (c) move-to(x, y), which moves the pen in a straight line from
its current position to the point with coordinates 〈x, y〉. When the pen is up, it moves without
drawing; when the pen is down, it draws as it moves (see Figure I.2). In addition, there may be
commands for switching to a different color pen as well as convenience commands to make it
easier to draw images.

Another example of vector graphics devices is vector graphics display terminals, which
traditionally are monochrome monitors that can draw arbitrary lines. On these vector graphics
display terminals, the screen is a large expanse of phosphor and does not have pixels. A
traditional oscilloscope is also an example of a vector graphics display device.

Vector graphics displays and pixel-based displays use very different representations of
images. In pixel-based systems, the screen image will be stored as a bitmap, namely, as a table
containing all the pixel colors. A vector graphics system, on the other hand, will store the
image as a list of commands – for instance as a list of pen up, pen down, and move commands.
Such a list of commands is called a display list.

Nowadays, pixel-based graphics hardware is very prevalent, and thus even graphics sys-
tems that are logically vector based are typically displayed on hardware that is pixel based.
The disadvantage is that pixel-based hardware cannot directly draw arbitrary lines and must
approximate lines with pixels. On the other hand, the advantage is that more sophisticated
figures, such as filled regions, can be drawn.

Modern vector graphics systems incorporate more than just lines and include the ability to
draw curves, text, polygons, and other shapes such as circles and ellipses. These systems also
have the ability to fill in or shade a region with a color or a pattern. They generally are restricted
to drawing two-dimensional figures. Adobe’s PostScript language is a prominent example of a
modern vector graphics system.

I.1.3 Polygonal Modeling

One step up, in both abstraction and sophistication, is the polygonalmodel of graphics images. It
is very common for three-dimensional geometric shapes to bemodeled first as a set of polygons
and thenmapped to polygonal shapes on a two-dimensional display. The basic display hardware
is generally pixel based, but most computers now have special-purpose graphics hardware for
processing polygons or, at the very least, triangles. Graphics hardware for rendering triangles
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is also used in modern computer game systems; indeed, the usual measure of performance for
graphics hardware is the number of triangles that can be rendered per second. At the time this
book is being written, nominal peak performance rates of relatively cheap hardware are well
above one million polygons per second!

Polygonal-based modeling is used in nearly every three-dimensional computer graphics
systems. It is a central tool for the generation of interactive three-dimensional graphics and is
used for photo-realistic rendering, including animation in movies.

The essential operation in a polygonal modeling system is drawing a single triangle. In
addition, there are provisions for coloring and shading the triangle. Here, “shading” means
varying the color across the triangle. Another important tool is the use of texture mapping,
which can be used to paint images or other textures onto a polygon. It is very typical for color,
shading, and texture maps to be supported by special-purpose hardware such as low-cost
graphics boards on PCs.

The purpose of these techniques is tomake polygonallymodeled objects lookmore realistic.
Refer to Figure III.1 on page 68. You will see six models of a teapot. Part (a) of the figure shows
a wireframe teapot, as could be modeled on a vector graphics device. Part (b) shows the same
shape but filled in with solid color; the result shows a silhouette with no three-dimensionality.
Parts (c) through (f) show the teapot rendered with lighting effects: (c) and (e) show flat-shaded
(i.e., unshaded) polygons for which the polygonal nature of the teapot is clearly evident; parts
(d) and (f) incorporate shading in which the polygons are shaded with color that varies across
the polygons. The shading does a fairly good job of masking the polygonal nature of the teapot
and greatly increases the realism of the image.

I.2 Coordinates, Points, Lines, and Polygons

The next sections discuss some of the basic conventions of coordinate systems and of drawing
points, lines, and polygons. Our emphasis will be on the conventions and commands used by
OpenGL. For now, only drawing vertices at fixed positions in the xy-plane or in xyz-space is
discussed. Chapter II will explain how to move vertices and geometric shapes around with
rotations, translations, and other transformations.

I.2.1 Coordinate Systems

When graphing geometric shapes, one determines the position of the shape by specifying
the positions of a set of vertices. For example, the position and geometry of a triangle are
specified in terms of the positions of its three vertices. Graphics programming languages,
including OpenGL, allow you to set up your own coordinate systems for specifying positions
of points; in OpenGL this is done by specifying a function from your coordinate system into
the screen coordinates. This allows points to be positioned at locations in either 2-space (R2) or
3-space (R3) and to have OpenGL automatically map the points into the proper location in the
graphics image.

In the two-dimensional xy-plane, also called R
2, a position is set by specifying its x- and

y-coordinates. The usual convention (see Figure I.3) is that the x-axis is horizontal and pointing
to the right and the y-axis is vertical and pointing upwards.

In three-dimensional space R
3, positions are specified by triples 〈a, b, c〉 giving the x-, y-,

and z-coordinates of the point. However, the convention for how the three coordinate axes
are positioned is different for computer graphics than is usual in mathematics. In computer
graphics, the x-axis points to the right, the y-axis points upwards, and the z-axis points toward
the viewer. This is different from our customary expectations. For example, in calculus, the x-,
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b
〈a, 〉b

Figure I.3. The xy-plane, R2, and the point 〈a, b〉.

y-, and z-axes usually point forward, rightwards, and upwards (respectively). The computer
graphics convention was adopted presumably because it keeps the x- and y-axes in the same
position as for the xy-plane, but it has the disadvantage of taking somegetting used to. Figure I.4
shows the orientation of the coordinate axes.

It is important to note that the coordinates axes used in computer graphics do form a right-
handed coordinate system. This means that if you position your right hand with your thumb
and index finger extended to make an L shape and place your hand so that your right thumb
points along the positive x-axis and your index finger points along the positive y-axis, then
your palmwill be facing toward the positive z-axis. In particular, this means that the right-hand
rule applies to cross products of vectors in R

3.

I.2.2 Geometric Shapes in OpenGL

We next discuss methods for drawing points, lines, and polygons in OpenGL. We only give
some of the common versions of the commands available in OpenGL. You should consult the
OpenGL programming manual (Woo et al., 1999) for more complete information.

Drawing Points in OpenGL
OpenGL has several commands that define the position of a point. Two of the common ways
to use these commands are1

glVertex3f(float x, float y, float z);

or

float v[3] = { x, y, z };
glVertex3fv( &v[0] );

The first form of the command, glVertex3f, specifies the point directly in terms of its x-,
y-, and z-coordinates. The second form, glVertex3fv, takes a pointer to an array containing
the coordinates. The “v” on the end of the function name stands for “vector.” There are many
other forms of the glVertex* command that can be used instead.2 For instance, the “f,”

1 WedescribeOpenGLcommandswith simplified prototypes (and often do not give the officially correct
prototype). In this case, the specifiers “float” describe the types of the arguments to glVertex3f()
but should be omitted in your C or C++ code.

2 There is no function named glVertex*: we use this notation to represent collectively the many
variations of the glVertex commands.
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z
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a,〈 〉cb,

Figure I.4. The coordinate axes in R
3 and the point 〈a, b, c〉. The z-axis is pointing toward the viewer.

which stands for “float,” can be replaced by “s” for “short integer,” by “i” for “integer,” or by
“d” for “double.”3

For two-dimensional applications, OpenGL also allows you to specify points in terms of
just x- and y-coordinates by using the commands

glVertex2f(float x, float y);

or

float v[2] = { x, y };
glVertex2fv( &v[0] );

glVertex2f is equivalent to glVertex3f but with z = 0.
All calls to glVertex* must be bracketed by calls to the OpenGL commands glBegin

and glEnd. For example, to draw the three points shown in Figure I.5, you would use the
commands

glBegin(GL_POINTS);
glVertex2f( 1.0, 1.0 );
glVertex2f( 2.0, 1.0 );
glVertex2f( 2.0, 2.0 );
glEnd();

The calls to the functions glBegin and glEnd are used to signal the start and end of drawing.
A sample OpenGL program, SimpleDraw, supplied with this text, contains the preceding

code for drawing three points. If OpenGL is new to you, it is recommended that you examine
the source code and try compiling and running the program. You will probably find that the
points are drawn as very small, single-pixel points – perhaps so small as to be almost invisible.
On most OpenGL systems, you can make points display as large, round dots by calling the
following functions:

glPointSize(n); // Points are n pixels in diameter
glEnable(GL_POINT_SMOOTH);
glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

3 To be completely accurate,we should remark that, to help portability and future compatibility,OpenGL
uses the types GLfloat, GLshort, GLint, and GLdouble, which are generally defined to be the
same as float, short, int, and double. It would certainly be better programming practice to use
OpenGL’s data types; however, the extra effort is not really worthwhile for casual programming.
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Figure I.5. Three points drawn in two dimensions.

(In the first line, a number such as 6 for n may give good results.) The SimpleDraw program
already includes the preceding function calls, but they have been commented out. If you are
lucky, executing these lines in the program before the drawing code will cause the program to
draw nice round dots for points. However, the effect of these commands varies with different
implementations of OpenGL, and thus you may see square dots instead of round dots or even
no change at all.

The SimpleDraw program is set up so that the displayed graphics image is shown from the
viewpoint of a viewer looking down the z-axis. In this situation, glVertex2f is a convenient
method for two-dimensional graphing.

Drawing Lines in OpenGL
To draw a line in OpenGL, specify its endpoints. The glBegin and glEnd paradigm is still
used. To draw individual lines, pass the parameter GL_LINES to glBegin. For example, to
draw two lines, you could use the commands

glBegin( GL_LINES );
glVertex3f( x1, y1, z1 );
glVertex3f( x2, y2, z2 );
glVertex3f( x3, y3, z3 );
glVertex3f( x4, y4, z4 );
glEnd();

Letting vi be the vertex 〈xi , yi , zi 〉, the commands above draw a line from v1 to v2 and an-
other from v3 to v4. More generally, you may specify an even number, 2n, of points, and the
GL_LINES option will draw n lines connecting v2i−1 to v2i for i = 1, . . . , n.

You may also use GL_LINE_STRIP instead of GL_LINES: if you specify n vertices, a con-
tinuous chain of lines is drawn, namely, the lines connecting vi and vi+1 for i = 1, . . . , n − 1.
The parameter GL_LINE_LOOP can also be used; it draws the line strip plus the line connecting
vn to v1. Figure I.6 shows the effects of these three line-drawing modes.

The SimpleDraw program includes code to draw the images in Figure I.6. When the
program is run, you may find that the lines look much too thin and appear jagged because they

v1

v2

v3

v4

v5

v6

GL LINES

v1

v2

v3

v4

v5

v6

GL LINE STRIP

v1

v2

v3

v4

v5

v6

GL LINE LOOP
Figure I.6. The three line-drawing modes as controlled by the parameter to glBegin.
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Figure I.7. Figures for Exercises I.2, I.3, and I.4.

were drawn only one pixel wide. By default, OpenGL draws thin lines, one pixel wide, and
does not do any “antialiasing” to smooth out the lines. You can try making wider and smoother
lines by using the following commands:

glLineWidth( n ); // Lines are n pixels wide
glEnable(GL_LINE_SMOOTH);
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST); // Antialias lines
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

(In the first line, a value such as 3 for n may give good results.) How well, and whether,
the line-width specification and the antialiasing work will depend on your implementation of
OpenGL.

Exercise I.1 The OpenGL program SimpleDraw includes code to draw the images
shown in Figures I.5 and I.6, and a colorized version of Figure I.12. Run this program,
and examine its source code. Learn how to compile the program and then try enabling the
code for making bigger points and wider, smoother lines. (This code is already present but
is commented out.) Does it work for you?

Exercise I.2 Write an OpenGL program to generate the two images of Figure I.7 as line
drawings. You will probably want to modify the source code of SimpleDraw for this.

Drawing Polygons in OpenGL
OpenGL includes commands for drawing triangles, quadrilaterals, and convex polygons. Ordi-
narily, these are drawn as solid, filled-in shapes. That is, OpenGL does not just draw the edges
of triangles, quadrilaterals, and polygons but instead draws their interiors.

To draw a single triangle with vertices vi = 〈xi , yi , zi 〉, you can use the commands

glBegin( GL_TRIANGLES );
glVertex3f( x1, y1, z1 );
glVertex3f( x2, y2, z2 );
glVertex3f( x3, y3, z3 );
glEnd();

You may specify multiple triangles by a single invocation of the glBegin(GL_TRIANGLES)
function by making 3n calls to glVertex* to draw n triangles.

Frequently, one wants to combine multiple triangles to form a continuous surface. For
this, it is convenient to specify multiple triangles at once, without having to specify the same
vertices repeatedly for different triangles. A “triangle strip” is drawn by invoking glBegin
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v1

v2

v3
v4

v6

v5

GL TRIANGLES

v1

v2

v3
v4

v5

v6

GL TRIANGLE STRIP

v2

v3

v1 v4

v5v6

GL TRIANGLE FAN

Figure I.8. The three triangle-drawing modes. These are shown with the default front face upwards. In
regard to this, note the difference in the placement of the vertices in each figure, especially of v5 and v6
in the first two figures.

with GL_TRIANGLE_STRIP and specifying n vertices. This has the effect of joining up the
triangles as shown in Figure I.8.

Another way to join up multiple triangles is to let them share the common vertex v1. This
is also shown in Figure I.8 and is invoked by calling glBegin with GL_TRIANGLE_FAN and
giving vertices v1, . . . , vn .

OpenGL allows you to draw convex quadrilaterals, that is, convex four-sided polygons.
OpenGL does not checkwhether the quadrilaterals are convex or even planar but instead simply
breaks the quadrilateral into two triangles to draw the quadrilateral as a filled-in polygon.

Like triangles, quadrilaterals are drawn by giving glBegin and glEnd commands and
between them specifying the vertices of the quadrilateral. The following commands can be
used to draw one or more quadrilaterals:

glBegin( GL_QUADS );
glVertex3f( x1, y1, z1 );
· · ·

glVertex3f( xn, yn, zn );
glEnd();

Here n must be a multiple of 4, and OpenGL draws the n/4 quadrilaterals with vertices
v4i−3, v4i−2, v4i−1, and v4i , for 1 ≤ i ≤ n/4. You may also use the glBegin parameter
GL_QUAD_STRIP to connect the polygons in a strip. In this case, n must be even, and OpenGL
draws the n/2− 1 quadrilaterals with vertices v2i−3, v2i−2, v2i−1, and v2i , for 2 ≤ i ≤ n/2.
These are illustrated in Figure I.9.

v1 v2

v4 v3

v5 v6

v8 v7

GL QUADS

v1 v2

v3 v4

v5 v6

v7 v8

GL QUAD STRIP

Figure I.9. The two quadrilateral-drawing modes. It is important to note that the order of the vertices is
different in the two modes!
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v2

v3

v1
v4

v5v6

Figure I.10. A polygon with six vertices. The OpenGL standards do not specify how the polygon will be
triangulated.

The vertices for GL_QUADS and for GL_QUAD_STRIP are specified in different orders.
For GL_QUADS, vertices are given in counterclockwise order. For GL_QUAD_STRIP, they are
given in pairs in left-to-right order suggesting the action of mounting a ladder.

OpenGL also allows you to draw polygons with an arbitrary number of sides. You should
note that OpenGL assumes the polygon is planar, convex, and simple. (A polygon is simple
if its edges do not cross each other.) Although OpenGL makes these assumptions, it does not
check them in any way. In particular, it is quite acceptable to use nonplanar polygons (just as it
is quite acceptable to use nonplanar quadrilaterals) as long as the polygon does not deviate too
far from being simple, convex, and planar. What OpenGL does is to triangulate the polygon
and render the resulting triangles.

To draw a polygon, you call glBegin with the parameter GL_POLYGON and then give the
n vertices of the polygon. An example is shown in Figure I.10.

Polygons can be combined to generate complex surfaces. For example, Figure I.11 shows
two different ways of drawing a torus as a set of polygons. The first torus is generated by using
quad strips that wrap around the torus; 16 such strips are combined to make the entire torus.
The second torus is generated by using a single long quadrilateral strip that wraps around the
torus like a ribbon.

Exercise I.3 Draw the five-pointed star of Figure I.7 as a solid, filled-in region. Use a
single triangle fan with the initial point of the triangle fan at the center of the star. (Save
your program to modify for Exercise I.4.)

Colors
OpenGL allows you to set the color of vertices, and thereby the color of lines and polygons,
with the glColor* commands. The most common syntax for this command is

glColor3f( float r, float g, float b );

The numbers r , g, b specify respectively the brightness of the red, green, and blue components
of the color. If these three values all equal 0, then the color is black. If they all equal 1, then
the color is white. Other colors can be generated by mixing red, green, and blue. For instance,
here are some ways to specify some common colors:

glColor3f( 1, 0, 0 ); // Red
glColor3f( 0, 1, 0 ); // Green
glColor3f( 0, 0, 1 ); // Blue
glColor3f( 1, 1, 0 ); // Yellow
glColor3f( 1, 0, 1 ); // Magenta
glColor3f( 0, 1, 1 ); // Cyan
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(a) Torus as multiple quad strips.

(b) Torus as a single quad strip.

Figure I.11. Two different methods of generating wireframe tori. The second torus is created with the
supplied OpenGL program WrapTorus. In the second torus, the quadrilaterals are not quite planar.

The brightness levels may also be set to fractional values between 0 and 1 (and in some cases
values outside the range [0, 1] can be used to advantage, although they do not correspond to
actual displayable colors). These red, green, and blue color settings are used also by many
painting and drawing programs and even many word processors on PCs. Many of these pro-
grams have color palettes that let you choose colors in terms of red, green, and blue values.
OpenGL uses the same RGB system for representing color.

The glColor* command may be given inside the scope of glBegin and glEnd com-
mands. Once a color is set by glColor*, that color will be assigned to all subsequent vertices
until another color is specified. If all the vertices of a line or polygon have the same color,
then the entire line or polygon is drawn with this color. On the other hand, it is possible for
different vertices of line or polygon to have different colors. In this case, the interior of the
line or polygon is drawn by blending colors; points in the interior of the line or polygon will
be assigned a color by averaging colors of the vertices in such a way that the colors of nearby
vertices will havemore weight than the colors of distant vertices. This process is called shading
and blends colors smoothly across a polygon or along a line.

You can turn off shading of lines and polygons by using the command

glShadeModel( GL_FLAT );

and turn it back on with

glShadeModel( GL_SMOOTH );
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In the flat shading mode, an entire region gets the color of one of its vertices. The color of a
line, triangle, or quadrilateral is determined by the color of the last specified vertex. The color
of a general polygon, however, is set by the color of its first vertex.

The background color of the graphics window defaults to black but can be changed with the
glClearColor command. One usually starts drawing an image by first calling the glClear
command with the GL_COLOR_BUFFER_BIT set in its parameter; this initializes the color to
black or whatever color has been set by the glClearColor command.

Later in the book we will see that shading is an important tool for creating realistic images,
particularly when combined with lighting models that compute colors frommaterial properties
and light properties, rather than using colors that are explicitly set by the programmer.

Exercise I.4 Modify the program you wrote for Exercise I.3, which drew a five-pointed
star as a single triangle fan. Draw the star in the same way, but now make the triangles
alternate between two colors.

Hidden Surfaces
When we draw points in three dimensions, objects that are closer to the viewpoint may oc-
clude, or hide, objects that are farther from the viewer. OpenGL uses a depth buffer that holds
a distance or depth value for each pixel. The depth buffer lets OpenGL do hidden surface com-
putations by the simple expedient of drawing into a pixel only if the new distance will be less
than the old distance. The typical use of the depth buffer is as follows: When an object, such
as a triangle, is rendered, OpenGL determines which pixels need to be drawn and computes a
measure of the distance from the viewer to each pixel image. That distance is comparedwith the
distance associated with the former contents of the pixel. The lesser of these two distances de-
termineswhich pixel value is saved, because the closer object is presumed to occlude the farther
object.

To better appreciate the elegance and simplicity of the depth buffer approach to hidden
surfaces, we consider some alternative hidden surface methods. One such method, called the
painter’s algorithm, sorts the polygons from most distant to closest and renders them in back-
to-front order, letting subsequent polygons overwrite earlier ones. The painter’s algorithm is
easy but not completely reliable; in fact, it is not always possible to sort polygons consistently
according to their distance from the viewer (cf. Figure I.12). In addition, the painter’s algorithm
cannot handle interpenetrating polygons. Another hidden surface method is to work out all
the information geometrically about how the polygons occlude each other and to render only
the visible portions of each polygon. This, however, is quite difficult to design and implement
robustly. The depth buffer method, in contrast, is very simple and requires only an extra depth,
or distance, value to be stored per pixel. Furthermore, this method allows polygons to be
rendered independently and in any order.

The depth buffer is not activated by default. To enable the use of the depth buffer, you must
have a rendering context with a depth buffer. If you are using the OpenGL Utility Toolkit (as
in the code supplied with this book), this is done by initializing your graphics window with a
command such as

glutInitDisplayMode(GLUT_DEPTH | GLUT_RGB );

which initializes the graphics display to use a window with RGB buffers for color and with a
depth buffer. You must also turn on depth testing with the command

glEnable( GL_DEPTH_TEST );
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Figure I.12. Three triangles. The triangles are turned obliquely to the viewer so that the top portion of
each triangle is in front of the base portion of another.

It is also important to clear the depth buffer each time you render an image. This is typically
done with a command such as

glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

which both clears the color (i.e., initializes the entire image to the default color) and clears the
depth values.

The SimpleDraw program illustrates the use of depth buffering for hidden surfaces. It
shows three triangles, each of which partially hides another, as in Figure I.12. This example
shows why ordering polygons from back to front is not a reliable means of performing hidden
surface computation.

Polygon Face Orientations
OpenGL keeps track of whether polygons are facing toward or away from the viewer, that is,
OpenGL assigns each polygon a front face and a back face. In some situations, it is desirable
for only the front faces of polygons to be viewable, whereas at other times you may want
both the front and back faces to be visible. If we set the back faces to be invisible, then any
polygon whose back face would ordinarily be seen is not drawn at all and, in effect, becomes
transparent. (By default, both faces are visible.)

OpenGL determines which face of a polygon is the front face by the default convention
that vertices on a polygon are specified in counterclockwise order (with some exceptions for
triangle strips and quadrilateral strips). The polygons in Figures I.8, I.9, and I.10 are all shown
with their front faces visible.

You can change the convention for which face is the front face by using the glFrontFace
command. This command has the format

glFrontFace(

{
GL_CW

GL_CCW

}
);

where “CW” and “CCW” stand for clockwise and counterclockwise; GL_CCW is the default.
Using GL_CW causes the conventions for front and back faces to be reversed on subsequent
polygons.

To make front or back faces invisible, or to do both, you must use the commands

glCullFace(


GL_FRONT
GL_BACK

GL_FRONT_AND_BACK

);

glEnable( GL_CULL_FACE );
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(a) Torus as multiple quad strips.

(b) Torus as a single quad strip.

Figure I.13. Two wireframe tori with back faces culled. Compare with Figure I.11.

You must explicitly turn on the face culling with the call to glEnable. Face culling can be
turned off with the corresponding glDisable command. If both front and back faces are
culled, then other objects such as points and lines are still drawn.

The two wireframe tori of Figure I.11 are shown again in Figure I.13 with back faces culled.
Note that hidden surfaces are not being removed in either figure; only back faces have been
culled.

Toggling Wireframe Mode
By default, OpenGL draws polygons as solid and filled in. It is possible to change this by using
the glPolygonMode function, which determines whether to draw solid polygons, wireframe
polygons, or just the vertices of polygons. (Here, “polygon” means also triangles and quadri-
laterals.) This makes it easy for a program to switch between the wireframe and nonwireframe
mode. The syntax for the glPolygonMode command is

glPolygonMode(


GL_FRONT
GL_BACK

GL_FRONT_AND_BACK

,


GL_FILL
GL_LINE

GL_POINT

);

The first parameter to glPolygonMode specifies whether the mode applies to front or back
faces or to both. The second parameter sets whether polygons are drawn filled in, as lines, or
as just vertices.

Exercise I.5 Write an OpenGL program that renders a cube with six faces of different
colors. Form the cube from six quadrilaterals, making sure that the front faces are facing
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outwards. If you already know how to perform rotations, let your program include the
ability to spin the cube around. (Refer to Chapter II and see the WrapTorus program for
code that does this.)

If you rendered the cube using triangles instead, how many triangles would be needed?

Exercise I.6 Repeat Exercise I.5 but render the cube using two quad strips, each containing
three quadrilaterals.

Exercise I.7 Repeat Exercise I.5 but render the cube using two triangle fans.

I.3 Double Buffering for Animation

The term“animation” refers to drawingmovingobjects or scenes.Themovement is only avisual
illusion, however; in practice, animation is achieved by drawing a succession of still scenes,
called frames, each showing a static snapshot at an instant in time. The illusion of motion is
obtained by rapidly displaying successive frames. This technique is used for movies, television,
and computer displays. Movies typically have a frame rate of 24 frames per second. The frame
rates in computer graphics can vary with the power of the computer and the complexity of the
graphics rendering, but typically one attempts to get close to 30 frames per second and more
ideally 60 frames per second. These frame rates are quite adequate to give smooth motion on
a screen. For head-mounted displays, where the view changes with the position of the viewer’s
head, much higher frame rates are needed to obtain good effects.

Double buffering can be used to generate successive frames cleanly. While one image is
displayed on the screen, the next frame is being created in another part of the memory. When
the next frame is ready to be displayed, the new frame replaces the old frame on the screen
instantaneously (or rather, the next time the screen is redrawn, the new image is used). A
region of memory where an image is being created or stored is called a buffer. The image
being displayed is stored in the front buffer, and the back buffer holds the next frame as it is
being created.When the buffers are swapped, the new image replaces the old one on the screen.
Note that swapping buffers does not generally require copying from one buffer to the other;
instead, one can just update pointers to switch the identities of the front and back buffers.

A simple example of animation using double buffering in OpenGL is shown in the program
SimpleAnim that accompanies this book. To use double buffering, you should include the
following items in your OpenGL program: First, you need to have a graphics context that
supports double buffering. This is obtained by initializing your graphics window by a function
call such as

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH );

In SimpleAnim, the function updateScene is used to draw a single frame. It works by
drawing into the back buffer and at the very end gives the following commands to complete
the drawing and swap the front and back buffers:

glFlush();
glutSwapBuffers();

It is also necessary to make sure that updateScene is called repeatedly to draw the next
frame. There are two ways to do this. The first way is to have the updateScene routine
call glutPostRedisplay(). This will tell the operating system that the current window
needs rerendering, and this will in turn cause the operating system to call the routine speci-
fied by glutDisplayFunc. The second method, which is used in SimpleAnim, is to use
glutIdleFunc to request the operating system to call updateScene whenever the CPU is
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idle. If the computer system is not heavily loaded, this will cause the operating system to call
updateScene repeatedly.

You should see the GLUT documentation for more information about how to set up call-
backs, not only for redisplay functions and idle functions but also for capturing keystrokes,
mouse button events, mouse movements, and so on. The OpenGL programs supplied with this
book provide examples of capturing keystrokes; in addition, ConnectDots shows how to
capture mouse clicks.
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II

Transformations and Viewing

This chapter discusses the mathematics of linear, affine, and perspective transformations and
their uses in OpenGL. The basic purpose of these transformations is to provide methods of
changing the shape and position of objects, but the use of these transformations is pervasive
throughout computer graphics. In fact, affine transformations are arguably the most fundamen-
tal mathematical tool for computer graphics.

An obvious use of transformations is to help simplify the task of geometric modeling. For
example, suppose an artist is designing a computerized geometric model of a Ferris wheel.
A Ferris wheel has considerable symmetry and includes many repeated elements such as
multiple cars and struts. The artist could design a single model of the car and then place
multiple instances of the car around the Ferris wheel attached at the proper points. Similarly,
the artist could build the main structure of the Ferris wheel by designing one radial “slice” of
the wheel and using multiple rotated copies of this slice to form the entire structure. Affine
transformations are used to describe how the parts are placed and oriented.

A second important use of transformations is to describe animation. Continuing with the
Ferris wheel example, if the Ferris wheel is animated, then the positions and orientations of its
individual geometric components are constantly changing. Thus, for animation, it is necessary
to compute time-varying affine transformations to simulate the motion of the Ferris wheel.

A third, more hidden, use of transformations in computer graphics is for rendering. After a
3-D geometric model has been created, it is necessary to render it on a two-dimensional surface
called the viewport. Some common examples of viewports are a window on a video screen, a
frame of a movie, and a hard-copy image. There are special transformations, called perspective
transformations, that are used to map points from a 3-D model to points on a 2-D viewport.

To properly appreciate the uses of transformations, it is important to understand the ren-
dering pipeline, that is, the steps by which a 3-D scene is modeled and rendered. A high-level
description of the rendering pipeline used by OpenGL is shown in Figure II.1. The stages of
the pipeline illustrate the conceptual steps involved in going from a polygonal model to an
on-screen image. The stages of the pipeline are as follows:

Modeling. In this stage, a 3-D model of the scene to be displayed is created. This stage is
generally the main portion of an OpenGL program. The program draws images by spec-
ifying their positions in 3-space. At its most fundamental level, the modeling in 3-space
consists of describing vertices, lines, and polygons (usually triangles and quadrilaterals)
by giving the x-, y-, z-coordinates of the vertices. OpenGL provides a flexible set of tools
for positioning vertices, including methods for rotating, scaling, and reshaping objects.

17
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Modeling View
Selection

Perspective
Division

Displaying

Figure II.1. The four stages of the rendering pipeline in OpenGL.

These tools are called “affine transformations” and are discussed in detail in the next
sections. OpenGL uses a 4× 4 matrix called the “model view matrix” to describe affine
transformations.

View Selection. This stage is typically used to control the view of the 3-D model. In this
stage, a camera or viewpoint position and direction are set. In addition, the range and the
field of view are determined. The mathematical tools used here include “orthographic
projections” and “perspective transformations.”OpenGLuses another 4× 4matrix called
the “projection matrix” to specify these transformations.

Perspective Division. The previous two stages use a method of representing points in 3-
space bymeans of homogeneous coordinates. Homogeneous coordinates use vectors with
four components to represent points in 3-space.

The perspective division stage merely converts from homogeneous coordinates back
into the usual three x-, y-, z-coordinates. The x- and y-coordinates determine the position
of a vertex in the final graphics image. The z-coordinates measure the distance to the
object, although they can represent a “pseudo-distance,” or “fake” distance, rather than
a true distance.

Homogeneous coordinates are described later in this chapter. As we will see, perspec-
tive division consists merely of dividing through by a w value.

Displaying. In this stage, the scene is rendered onto the computer screen or other display
medium such as a printed page or a film. A window on a computer screen consists of a
rectangular array of pixels. Each pixel can be independently set to an individual color and
brightness. For most 3-D graphics applications, it is desirable to not render parts of the
scene that are not visible owing to obstructions of view. OpenGL and most other graphics
display systems perform this hidden surface removal with the aid of depth (or distance)
information stored with each pixel. During this fourth stage, pixels are given color and
depth information, and interpolation methods are used to fill in the interior of polygons.
This fourth stage is the only stage dependent on the physical characteristics of the output
device. The first three stages usually work in a device-independent fashion.

The discussion in this chapter emphasizes the mathematical aspects of the transformations
used by computer graphics but also sketches their use in OpenGL. The geometric tools used
in computer graphics are mathematically very elegant. Even more important, the techniques
discussed in this chapter have the advantage of being fairly easy for an artist or programmer to
use and lend themselves to efficient software and hardware implementation. In fact, modern-
day PCs typically include specialized graphics chips that carry out many of the transformations
and interpolations discussed in this chapter.

II.1 Transformations in 2-Space

We start by discussing linear and affine transformations on a fairly abstract level and then
see examples of how to use transformations in OpenGL. We begin by considering affine
transformations in 2-space since they are much simpler than transformations in 3-space. Most
of the important properties of affine transformations already apply in 2-space.
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II.1 Transformations in 2-Space 19

The xy-plane, denotedR
2 = R× R, is the usual Cartesian plane consisting of points 〈x, y〉.

To avoid writing toomany coordinates, we often use the vector notation x for a point inR
2, with

the usual convention being that x = 〈x1, x2〉, where x1, x2 ∈ R. This notation is convenient but
potentially confusing because we will use the same notation for vectors as for points.1

We write 0 for the origin, or zero vector, and thus 0 = 〈0, 0〉. We write x+ y and x− y for
the componentwise sum and difference of x and y. A real number α ∈ R is called a scalar, and
the product of a scalar and a vector is defined by αx = 〈αx1, αx2〉.2

II.1.1 Basic Definitions

A transformation on R
2 is any mapping A : R

2 → R
2. That is, each point x ∈ R

2 is mapped
to a unique point, A(x), also in R

2.

Definition Let A be a transformation. A is a linear transformation provided the following two
conditions hold:

1. For all α ∈ R and all x ∈ R
2, A(αx) = αA(x).

2. For all x, y ∈ R
2, A(x+ y) = A(x)+ A(y).

Note that A(0) = 0 for any linear transformation A. This follows from condition 1 with α = 0.

Examples: Here are five examples of linear transformations:

1. A1 : 〈x, y〉 → 〈−y, x〉.
2. A2 : 〈x, y〉 → 〈x, 2y〉.
3. A3 : 〈x, y〉 → 〈x + y, y〉.
4. A4 : 〈x, y〉 → 〈x,−y〉.
5. A5 : 〈x, y〉 → 〈−x,−y〉.

Exercise II.1 Verify that the preceding five transformations are linear. Draw pictures of
how they transform the F shown in Figure II.2.

We defined transformations as acting on a single point at a time, but of course, a transfor-
mation also acts on arbitrary geometric objects since the geometric object can be viewed as a
collection of points and, when the transformation is used to map all the points to new locations,
this changes the form and position of the geometric object. For example, Exercise II.1 asked
you to calculate how transformations acted on the F shape.

1 Points and vectors in 2-space both consist of a pair of real numbers. The difference is that a point
specifies a particular location, whereas a vector specifies a particular displacement, or change in
location. That is, a vector is the difference of two points. Rather than adopting a confusing and
nonstandard notation that clearly distinguishes between points and vectors, we will instead fol-
low the more common, but ambiguous, convention of using the same notation for points as for
vectors.

2 In view of the distinction between points and vectors, it can be useful to form the sums and differences
of two vectors, or of a point and a vector, or the difference of two points, but it is not generally useful
to form the sum of two points. The sum or difference of two vectors is a vector. The sum or difference
of a point and a vector is a point. The difference of two points is a vector. Likewise, a vector may be
multiplied by a scalar, but it is less frequently appropriate to multiply a scalar and point. However, we
gloss over these issues and define the sums and products on all combinations of points and vectors.
In any event, we frequently blur the distinction between points and vectors.

Team LRN



20 Transformations and Viewing

〈1, 0〉

〈1, 1〉

〈0,−1〉

〈0, 0〉

〈0, 1〉
y

x

Figure II.2. An F shape.

One simple, but important, kind of transformation is a “translation,” which changes the
position of objects by a fixed amount but does not change the orientation or shape of geometric
objects.

Definition A transformation A is a translation provided that there is a fixed u ∈ R
2 such that

A(x) = x+ u for all x ∈ R
2.

The notation Tu is used to denote this translation, thus Tu(x) = x+ u.
The composition of two transformations A and B is the transformation computed by first

applying B and then applying A. This transformation is denoted A ◦ B, or just AB, and satisfies

(A ◦ B)(x) = A(B(x)).

The identity transformation maps every point to itself. The inverse of a transformation A is
the transformation A−1 such that A ◦ A−1 and A−1 ◦ A are both the identity transformation.
Not every transformation has an inverse, but when A is one-to-one and onto, the inverse
transformation A−1 always exists.

Note that the inverse of Tu is T−u.

Definition A transformation A is affine provided it can be written as the composition of a
translation and a linear transformation. That is, provided it can be written in the form A = TuB
for some u ∈ R

2 and some linear transformation B.

In other words, a transformation A is affine if it equals

A(x) = B(x)+ u, II.1

with B a linear transformation and u a point.
Because it is permitted that u = 0, every linear transformation is affine. However, not every

affine transformation is linear. In particular, if u �= 0, then transformation II.1 is not linear
since it does not map 0 to 0.

Proposition II.1 Let A be an affine transformation. The translation vector u and the linear
transformation B are uniquely determined by A.

Proof First, we see how to determine u from A. We claim that in fact u = A(0). This is proved
by the following equalities:

A(0) = Tu(B(0)) = Tu(0) = 0+ u = u.

Then B = T−1u A = T−uA, and so B is also uniquely determined. �

II.1.2 Matrix Representation of Linear Transformations

The preceding mathematical definition of linear transformations is stated rather abstractly.
However, there is a very concrete way to represent a linear transformation A – namely, as a
2× 2 matrix.
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Define i = 〈1, 0〉 and j = 〈0, 1〉. The two vectors i and j are the unit vectors aligned with the
x-axis and y-axis, respectively. Any vector x = 〈x1, x2〉 can be uniquely expressed as a linear
combination of i and j, namely, as x = x1i+ x2j.

Let A be a linear transformation. Let u = 〈u1, u2〉 = A(i) and v = 〈v1, v2〉 = A(j). Then,
by linearity, for any x ∈ R

2,

A(x) = A(x1i+ x2j) = x1A(i)+ x2A(j) = x1u+ x2v

= 〈u1x1 + v1x2, u2x1 + v2x2〉.

Let M be the matrix
( u1

u2

v1
v2

)
. Then,

M

(
x1
x2

)
=

(
u1 v1
u2 v2

)(
x1
x2

)
=

(
u1x1 + v1x2
u2x1 + v2x2

)
,

and so the matrix M computes the same thing as the transformation A. We call M the matrix
representation of A.

We have just shown that every linear transformation A is represented by some matrix.
Conversely, it is easy to check that every matrix represents a linear transformation. Thus, it
is reasonable to think henceforth of linear transformations on R

2 as being the same as 2× 2
matrices.

Onenotational complication is that a linear transformation A operates onpointsx = 〈x1, x2〉,
whereas a matrix M acts on column vectors. It would be convenient, however, to use both of
the notations A(x) and Mx. To make both notations be correct, we adopt the following rather
special conventions about the meaning of angle brackets and the representation of points as
column vectors:

Notation The point or vector 〈x1, x2〉 is identical to the column vector
( x1

x2

)
. So “point,”

“vector,” and “column vector” all mean the same thing. A column vector is the same as
a single column matrix. A row vector is a vector of the form (x1, x2), that is, a matrix
with a single row.

A superscript T denotes the matrix transpose operator. In particular, the transpose of
a row vector is a column vector and vice versa. Thus, xT equals the row vector (x1, x2).

It is a simple, but important, fact that the columns of a matrix M are the images of i and j
under M . That is to say, the first column of M is equal to M i and the second column of M is
equal to Mj. This gives an intuitive method of constructing amatrix for a linear transformation,
as shown in the next example.

Example: Let M = ( 11 0
2

)
. Consider the action of M on the F shown in Figure II.3. To find the

matrix representation of its inverse M−1, it is enough to determine M−1i and M−1j. It is not
hard to see that

M−1
(
1
0

)
=
(

1
−1/2

)
and M−1

(
0
1

)
=
(

0
1/2

)
.

Hint: Both facts follow from M
( 0
1/2

) = ( 01) and M
( 1
0

) = ( 11).
Therefore, M−1 is equal to

( 1
−1/2

0
1/2

)
.
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〈1, 0〉

〈1, 1〉

〈0,−1〉

〈0, 0〉

〈0, 1〉
y

x ⇒

〈1, 3〉

〈1, 1〉

〈0,−2〉

〈0, 0〉

〈0, 2〉

y

x

Figure II.3. An F shape transformed by a linear transformation.

The example shows a rather intuitive way to find the inverse of a matrix, but it depends on
being able to find preimages of i and j. One can also compute the inverse of a 2× 2 matrix by
the well-known formula(

a b
c d

)−1
= 1

det(M)

(
d −b
−c a

)
,

where det(M ) = ad − bc is the determinant of M .

Exercise II.2 Figure II.4 shows an affine transformation acting on an F. (a) Is this a
linear transformation? Why or why not? (b) Express this affine transformation in the form
x → Mx+ u by explicitly giving M and u.

A rotation is a transformation that rotates the points inR
2 by a fixed angle around the origin.

Figure II.5 shows the effect of a rotation of θ degrees in the counterclockwise (CCW) direction.
As shown in Figure II.5, the images of i and j under a rotation of θ degrees are 〈cos θ, sin θ〉
and 〈−sin θ, cos θ〉. Therefore, a counterclockwise rotation through an angle θ is represented
by the matrix

Rθ =
(
cos θ −sin θ

sin θ cos θ

)
. II.2

Exercise II.3 Prove the angle sum formulas for sin and cos:

sin(θ + ϕ) = sin θ cosϕ + cos θ sinϕ

cos(θ + ϕ) = cos θ cosϕ − sin θ sinϕ,

by considering what the rotation Rθ does to the point x = 〈cosϕ, sinϕ〉.

〈1, 0〉

〈1, 1〉

〈0, 1〉

〈0, 0〉

〈0, 1〉
y

x ⇒

〈1,−1〉

〈1, 0〉
〈1, 1〉

〈0, 0〉

〈0, 1〉
y

x

−

Figure II.4. An affine transformation acting on an F.
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0 θ

1, 0

〈0, 1〉

0, 0

θ
θ

〈cos , sin θ
〈 sin , cos θ〉 〉θ

θ
−

Figure II.5. Effect of a rotation through angle θ . The origin 0 is held fixed by the rotation.

Conventions on Row and Column Vectors and Transposes. The conventions adopted in
this book are that points in space are represented by column vectors, and linear transfor-
mations with matrix representation M are computed as Mx. Thus, our matrices multiply
on the left. Unfortunately, this convention is not universally followed, and it is also com-
mon in computer graphics applications to use row vectors for points and vectors and
to use matrix representations that act on the right. That is, many workers in computer
graphics use a row vector to represent a point: instead of using x, they use the row vec-
tor xT. Then, instead of multiplying on the left with M , they multiply on the right with
its transpose MT. Because xTMT equals (Mx)T, this has the same meaning. Similarly,
when multiplying matrices to compose transformations, one has to reverse the order of
the multiplications when working with transposed matrices because (M N )T = NTMT.

OpenGL follows the same conventions as we do: points and vectors are column vec-
tors, and transformation matrices multiply on the left. However, OpenGL does have some
vestiges of the transposed conventions; namely, when specifyingmatrices with glLoad-
Matrix and glMultMatrix the entries in the matrix are given in column order.

II.1.3 Rigid Transformations and Rotations

A rigid transformation is a transformation that only repositions objects, leaving their shape and
size unchanged. If the rigid transformation also preserves the notions of “clockwise” versus
“counterclockwise,” then it is orientation-preserving.

Definition A transformation is called rigid if and only if it preserves both

1. Distances between points, and
2. Angles between lines.

The transformation is said to be orientation-preserving if it preserves the direction of an-
gles, that is, if a counterclockwise direction of movement stays counterclockwise after being
transformed by A.

Rigid, orientation-preserving transformations are widely used. One application of these
transformations is in animation: the position and orientation of a moving rigid body can be
described by a time-varying transformation A(t). This transformation A(t) will be rigid and
orientation-preserving provided the body does not deform or change size or shape.

The two most common examples of rigid, orientation-preserving transformations are ro-
tations and translations. Another example of a rigid, orientation-preserving transformation is
a “generalized rotation” that performs a rotation around an arbitrary center point. We prove
below that every rigid, orientation-preserving transformation over R

2 is either a translation or
a generalized rotation.
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x

y

0, 0

a, b
b, a−

Figure II.6. A rigid, orientation-preserving, linear transformation acting on the unit vectors i and j.

For linear transformations, an equivalent definition of rigid transformation is that a linear
transformation A is rigid if and only if it preserves dot products. That is to say, if and only if, for
all x, y ∈ R

2, x · y = A(x) · A(y). To see that this preserves distances, recall that ||x||2 = x · x
is the square of the magnitude of x or the square of x’s distance from the origin.3 Thus, ||x||2 =
x · x = A(x) · A(x) = ||A(x)||2. From the definition of the dot product as x · y = ||x|| ·
||y|| cos θ , where θ is the angle between x and y, the transformation A must also preserve
angles between lines.

Exercise II.4 Which of the five linear transformations in Exercise II.1 on page 19 are
rigid? Which ones are both rigid and orientation-preserving?

Exercise II.5 Let M = (u, v), that is, M = ( u1

u2

v1
v2

)
. Show that the linear transformation

represented by the matrix M is rigid if and only if ||u|| = ||v|| = 1, and u · v = 0. Prove
that if M represents a rigid transformation, then det(M) = ±1.

A matrix M of the type in the previous exercise is called an orthonormal matrix.

Exercise II.6 Prove that the linear transformation represented by the matrix M is rigid if
and only if MT = M−1.

Exercise II.7 Show that the linear transformation represented by the matrix M is
orientation-preserving if and only if det(M) > 0. [Hint: Let M = (u, v). Let u′ be u
rotated counterclockwise 90◦. Then M is orientation-preserving if and only if u′ · v > 0.]

Theorem II.2 Every rigid, orientation-preserving, linear transformation is a rotation.

The converse to Theorem II.2 holds too: every rotation is obviously a rigid, orientation-
preserving, linear transformation.

Proof Let A be a rigid, orientation-preserving, linear transformation. Let 〈a, b〉 = A(i). By
rigidity, A(i) · A(i) = a2 + b2 = 1. Also, A( j) must be the vector obtained by rotating A(i)
counterclockwise 90◦; thus, A( j) = 〈−b, a〉, as shown in Figure II.6.

Therefore, the matrix M representing A is equal to
( a

b
−b
a

)
. Because a2 + b2 = 1, there must

be an angle θ such that cos θ = a and sin θ = b, namely, either θ = cos−1 a or θ = − cos−1 a.
From equation II.2, we see that A is a rotation through the angle θ . �

Some programming languages, including C and C++, have a two-parameter version of the
arctangent function that lets you compute the rotation angle as

θ = atan2(b, a).

Theorem II.2 and the definition of affine transformations give the following characteriza-
tion.

3 Appendix A contains a review of elementary facts from linear algebra, including a discussion of dot
products and cross products.
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Figure II.7. A generalized rotation Ruθ . The center of rotation is u = 〈0, 3〉. The angle is θ = 45◦.

Corollary II.3 Every rigid, orientation-preserving, affine transformation can be (uniquely)
expressed as the composition of a translation and a rotation.

Definition A generalized rotation is a transformation that holds a center point u fixed and
rotates all other points around u through a fixed angle θ . This transformation is denoted Ruθ .

An example of a generalized rotation is given in Figure II.7. Clearly, a generalized rotation
is rigid and orientation-preserving.

One way to perform a generalized rotation is first to apply a translation to move the point u
to the origin, then rotate around the origin, and then translate the origin back to u. Thus, the
generalized rotation Ruθ can be expressed as

Ruθ = TuRθ T−u. II.3

You should convince yourself that formula II.3 is correct.

Theorem II.4 Every rigid, orientation-preserving, affine transformation is either a translation
or a generalized rotation.

Obviously, the converse of this theorem holds too.

Proof Let A be a rigid, orientation-preserving, affine transformation. Let u = A(0). If u = 0,
A is actually a linear transformation, and Theorem II.2 implies that A is a rotation. So suppose
u �= 0. It will suffice to prove that either A is a translation or there is some point v ∈ R

2 that
is a fixed point of A, that is, such that A(v) = v. This is sufficient since, if there is a fixed
point v, then the reasoning of the proof of Theorem II.2 shows that A is a generalized rotation
around v.

Let L be the line that contains the two points 0 and u. We consider two cases. First, suppose
that A maps L to itself. By rigidity, and by choice of u, A(u) is distance ||u|| from u, and
so we must have either A(u) = u+ u or A(u) = 0. If A(u) = u+ u, then A must be the
translation Tu. This follows because, again by the rigidity of A, every point x ∈ L must map
to x+ u and, by the rigidity and orientation-preserving properties, the same holds for every
point not on L . On the other hand, if A(u) = 0, then rigidity implies that v = 1

2u is a fixed
point of A, and thus A is a generalized rotation around v.

Second, suppose that the line L is mapped to a different line L ′. Let L ′ make an angle of θ

with L , as shown in Figure II.8. Since L ′ �= L , θ is nonzero and is not a multiple of 180◦. Let
L2 be the line perpendicular to L at the point 0, and let L ′2 be the line perpendicular to L at the
point u. Note that L2 and L ′2 are parallel. Now let L3 be the line obtained by rotating L2 around
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0

u = A(0)

A(u)v

θ
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θ
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L′
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Figure II.8. Finding the center of rotation. The point v is fixed by the rotation.

the origin through a clockwise angle of θ/2, and let L ′3 be the line obtained by rotating L ′2
around the point u through a counterclockwise angle of θ/2. Because A is rigid and orientation-
preserving and the angle between L and L3 equals the angle between L ′ and L ′3, the line L3

is mapped to L ′3 by A. The two lines L3 and L ′3 are not parallel and intersect in a point v. By
the symmetry of the constructions, v is equidistant from 0 and u. Therefore, again by rigidity,
A(v) = v. It follows that A is the generalized rotation Rvθ , which performs a rotation through
an angle θ around the center v. �

II.1.4 Homogeneous Coordinates

Homogeneous coordinates provide a method of using a triple of numbers 〈x, y, w〉 to represent
a point in R

2.

Definition If x, y, w ∈ R and w �= 0, then 〈x, y, w〉 is a homogeneous coordinate represen-
tation of the point 〈x/w, y/w〉 ∈ R

2.

Note that any given point in R
2 has many representations in homogeneous coordinates.

For example, the point 〈2, 1〉 can be represented by any of the following sets of homogeneous
coordinates: 〈2, 1, 1〉, 〈4, 2, 2〉, 〈6, 3, 3〉, 〈−2,−1,−1〉, and so on. More generally, the triples
〈x, y, w〉 and 〈x ′, y′, w′〉 represent the same point in homogeneous coordinates if and only if
there is a nonzero scalar α such that x ′ = αx , y′ = αy, and w′ = αw.

So far, we have only specified the meaning of the homogeneous coordinates 〈x, y, w〉when
w �= 0 because the definition of the meaning of 〈x, y, w〉 required dividing byw. However, we
will see in Section II.1.8 that, whenw = 0, 〈x, y, w〉 is the homogeneous coordinate represen-
tation of a “point at infinity.” (Alternatively, graphics software such as OpenGLwill sometimes
use homogeneous coordinates with w = 0 as a representation of a direction.) However, it is
always required that at least one of the components x , y, w be nonzero.

The use of homogeneous coordinates may at first seem somewhat strange or poorly moti-
vated; however, it is an important mathematical tool for the representation of points in R

2 in
computer graphics. There are several reasons for this. First, as discussed next, using homoge-
neous coordinates allows an affine transformation to be represented by a single matrix. The
second reason will become apparent in Section II.3, where perspective transformations and
interpolation are discussed. A third important reason will arise in Chapters VII and VIII, where
homogeneous coordinates will allow Bézier curves and B-spline curves to represent circles
and other conic sections.
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II.1.5 Matrix Representation of Affine Transformations

Recall that any affine transformation A can be expressed as a linear transformation B followed
by a translation Tu, that is, A = Tu ◦ B. Let M be a 2× 2 matrix representing B, and suppose

M =
(

a b
c d

)
and u =

(
e
f

)
.

Then the mapping A can be defined by(
x1
x2

)
→ M

(
x1
x2

)
+
(

e
f

)
=

(
a b
c d

)(
x1
x2

)
+
(

e
f

)
=

(
ax1 + bx2 + e
cx1 + dx2 + f

)
.

Now define N to be the 3× 3 matrix

N =
a b e

c d f
0 0 1

 .

Using the homogeneous representation 〈x1, x2, 1〉 of 〈x1, x2〉, we see that

N

x1
x2
1

 =
a b e

c d f
0 0 1

x1
x2
1

 =
ax1 + bx2 + e

cx1 + dx2 + f
1

 .

The effect of N ’s acting on 〈x, y, 1〉 is identical to the effect of the affine transformation A
acting on 〈x, y〉. The only difference is that the third coordinate of “1” is being carried around.
More generally, for any other homogeneous representation of the same point, 〈αx1, αx2, α〉
with α �= 0, the effect of multiplying by N is

N

αx1
αx2
α

 =
α(ax1 + bx2 + e)

α(cx1 + dx2 + f )
α

 ,

which is another representation of the point A(x) in homogeneous coordinates.
Thus, the 3× 3 matrix N provides a representation of the affine map A because, when one

works with homogeneous coordinates, multiplying by the matrix N provides exactly the same
results as applying the transformation A. Further, N acts consistently on different homogeneous
representations of the same point.

The method used to obtain N from A is completely general, and therefore any affine
transformation can be represented as a 3× 3 matrix that acts on homogeneous coordinates. So
far, we have used only matrices that have the bottom row (0 0 1); these matrices are sufficient
for representing any affine transformation. In fact, an affine transformation may henceforth be
viewed as being identical to a 3× 3 matrix that has bottom row (0 0 1).

When we discuss perspective transformations, which are more general than affine transfor-
mations, it will be necessary to have other values in the bottom row of the matrix.

Exercise II.8 Figure II.9 shows an affine transformation acting on an F. (a) Is this a
linear transformation? Why or why not? (b) Give a 3× 3 matrix that represents the affine
transformation.

[Hint: In this case, the easiest way to find the matrix is to split the transformation into
a linear part and a translation. Then consider what the linear part does to the vectors i
and j.]

For the next exercise, it is not necessary to invert a 3× 3 matrix. Instead, note that if a
transformation is defined by y = Ax+ u, then its inverse is x = A−1y− A−1u.
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1, 1

0,−1

0, 0

0, 1
y
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1,−1

1
2 , 10, 1

0, 2

y

x⇒

Figure II.9. An affine transformation acting on an F.

Exercise II.9 Give the 3× 3 matrix that represents the inverse of the transformation in
Exercise II.8.

Exercise II.10 Give an example of how two different 3× 3 homogeneous matrices can
represent the same affine transformation.

II.1.6 Two-Dimensional Transformations in OpenGL

We take a short break in this subsection from the mathematical theory of affine transformations
and discuss how OpenGL specifies transformations. OpenGL maintains several matrices that
control where objects are drawn, where the camera or viewpoint is positioned, and where the
graphics image is displayed on the screen. For the moment we consider only a matrix called the
ModelViewmatrix, which is used principally to position objects in 3-space. In this subsection,
we are trying to convey only the idea, not the details, of how OpenGL handles transformations,
and thus we will work in 2-space. OpenGL really uses 3-space, however, and so not everything
we discuss is exactly correct for OpenGL.

We denote the ModelView matrix by M for the rest of this subsection. The purpose of M is
to hold a homogeneous matrix representing an affine transformation. We therefore think of M
as being a 3× 3matrix acting on homogeneous representations of points in 2-space. (However,
in actuality, M is a 4× 4 matrix operating on points in 3-space.) The OpenGL programmer
specifies points in 2-space by calling a routine glVertex2f(x,y). As described in Chapter I,
this point, or “vertex,” may be drawn as an isolated point or may be the endpoint of a line or
a vertex of a polygon. For example, the following routine would specify three points to be
drawn:

drawThreePoints() {
glBegin(GL_POINTS);
glVertex2f(0.0, 1.0);
glVertex2f(1.0, -1.0);
glVertex2f(-1.0, -1.0);
glEnd();

}
The calls to glBegin and glEnd are used to bracket calls to glVertex2f. The param-
eter GL_POINTS specifies that individual points are to be drawn, not lines or polygons.
Figure II.10(a) shows the indicated points.

However, OpenGL applies the transformation M before the points are drawn. Thus, the
points will be drawn at the positions shown in Figure II.10(a) if M is the identity matrix. On
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(a)

〈0, 1〉

〈1,−1〉〈 1,−− 1〉

y

x

〈2, 3〉

〈0, 2〉

〈0, 4〉

(b)

y

x

Figure II.10. Drawing points (a) without transformation by the model view matrix and (b) with trans-
formation by the model view matrix. The matrix is as given in the text and represents a rotation of −90◦
degrees followed by a translation of 〈1, 3〉.

the other hand, for example, if M is the matrix 0 1 1
−1 0 3
0 0 1

 , II.4

then thepointswill be drawnas shown inFigure II.10(b). Fortunately forOpenGLprogrammers,
we do not often have to work directly with the component values of matrices; instead, OpenGL
lets the programmer specify the model view matrix with a set of calls that implement rotations
and translations. Thus, to use the matrix II.4, one can code as follows (function calls that start
with “pgl” are not valid OpenGL4):

glMatrixMode(GL_MODELVIEW); // Select model view matrix
glLoadIdentity(); // M = Identity
pglTranslatef(1.0,3.0); // M = M · T〈1,3〉.5

pglRotatef(-90.0); // M = M · R−90◦ .5

drawThreePoints(); // Draw the three points

When drawThreePoints is called, the model view matrix M is equal to T〈1,3〉 ◦ R−90◦ .
This transformation is applied to the vertices specified in drawThreePoints, and thus the
vertices are placed as shown in Figure II.10(b). It is important to note the order in which the
two transformations are applied, since this is potentially confusing. The calls to the routines
pglTranslatef and pglRotatef perform multiplications on the right; thus, when the
vertices are transformed by M , the effect is that they are transformed first by the rotation and

4 The prefix pgl stands for “pseudo-GL.” The two pgl functions would have to be coded as glTrans-
latef(1.0,3.0,0.0) and glRotatef(-90.0,0.0,0.0,1.0) to be valid OpenGL function
calls. These perform a translation and a rotation in 3-space (see Section II.2.2).

5 We are continuing to identify affine transformations with homogeneous matrices, and so T〈1,3〉 and
R−90◦ can be viewed as 3× 3 matrices.
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θ

�
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y

x

Figure II.11. The results of drawing the triangle with two different model viewmatrices. The dotted lines
are not drawn by the OpenGL program and are present only to indicate the placement.

then by the translation. That is to say, the transformations are applied to the drawn vertices in
the reverse order of the OpenGL function calls. The reason for this convention is that it makes
it easier to transform vertices hierarchically.

Next, consider a slightlymore complicated example of anOpenGL-style program that draws
two copies of the triangle, as illustrated in Figure II.11. In the figure, there are three parameters,
an angle θ , and lengths � and r , which control the positions of the two triangles. The code to
place the two triangles is as follows:

glMatrixMode(GL_MODELVIEW); // Select model view matrix
glLoadIdentity(); // M = Identity
pglRotatef(θ); // M = M · Rθ

pglTranslatef(�,0); // M = M · T〈�,0〉
glPushMatrix(); // Save M on a stack
pglTranslatef(0, r+1); // M = M · T〈0,r+1〉
drawThreePoints(); // Draw the three points
glPopMatrix(); // Restore M from the stack
pglRotatef(180.0); // M = M · R180◦

pglTranslatef(0, r+1); // M = M · T〈0,r+1〉
drawThreePoints(); // Draw the three points

The new function calls glPushMatrix and glPopMatrix to save and restore the current
matrix M with a stack. Calls to these routines can be nested to save multiple copies of the
ModelView matrix in a stack. This example shows how the OpenGL matrix manipulation
routines can be used to handle hierarchical models.

If you have never worked with OpenGL transformations before, then the order in which
rotations and translations are applied in the preceding program fragment can be confusing.
Note that the first time drawThreePoints is called, the model view matrix is equal to

M = Rθ ◦ T〈�,0〉 ◦ T〈0,r+1〉.
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〈1, 0〉

〈1, 1〉

〈0,−1〉

〈0, 0〉

〈0, 1〉
y

x

〈3, 0〉〈1, 0〉

〈1, 1〉 〈2, 1〉y

x⇒

Figure II.12. The affine transformation for Exercise II.11.

The second time drawThreePoints is called

M = Rθ ◦ T〈�,0〉 ◦ R180◦ ◦ T〈0,r+1〉.

You should convince yourself that this is correct and that this way of ordering transformations
makes sense.

Exercise II.11 Consider the transformation shown in Figure II.12. Suppose that a function
drawF() has been written to draw the F at the origin as shown in the left-hand side of
Figure II.12.

a. Give a sequence of pseudo-OpenGL commands that will draw the F as shown on the
right-hand side of Figure II.12.

b. Give the 3× 3 homogeneous matrix that represents the affine transformation shown in
the figure.

II.1.7 Another Outlook on Composing Transformations

So far we have discussed the actions of transformations (rotations and translations) as acting
on the objects being drawn and viewed them as being applied in reverse order from the order
given in the OpenGL code. However, it is also possible to view transformations as acting not
on objects but instead on coordinate systems. In this alternative viewpoint, one thinks of the
transformations acting on local coordinate systems (and within the local coordinate system),
and now the transformations are applied in the same order as given in the OpenGL code.

To explain this alternate view of transformations better, consider the triangle drawn in
Figure II.10(b). That triangle is drawn by drawThreePoints when the model view matrix
is M = T〈1,3〉 · R−90◦ . The model view matrix was set by the two commands

pglTranslatef(1.0,3.0); // M = M · T〈1,3〉
pglRotatef(-90.0); // M = M · R−90◦,

and our intuition was that these transformations act on the triangle by first rotating it clockwise
90◦ around the origin and then translating it by the vector 〈1, 3〉.

The alternate way of thinking about these transformations is to view them as acting on a
local coordinate system. First, the xy-coordinate system is translated by the vector 〈1, 3〉 to
create a new coordinate system with axes x ′ and y′. Then the rotation acts on the coordinate
system again to define another new local coordinate system with axes x ′′ and y′′ by rotating
the axes −90◦ with the center of rotation at the origin of the x ′y′-coordinate system. These
new local coordinate systems are shown in Figure II.13. Finally, when drawThreePoints
is invoked, it draws the triangle in the local coordinate axes x ′′ and y′′.
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(a)

y

x

x′

y′

(b)

y

x

x′′

y′′

Figure II.13. (a) The local coordinate system x ′y′ obtained by translating the xy-axes by 〈1, 3〉. (b) The
coordinates further transformed by a clockwise rotation of 90◦, yielding the local coordinate system with
axes x ′′ and y′′. In (b), the triangle’s vertices are drawn according to the local coordinate axes x ′′ and y′′.

When transformations are viewed as acting on local coordinate systems, the meanings of
the transformations are to be interpreted within the framework of the local coordinate system.
For instance, the rotation R−90◦ has its center of rotation at the origin of the current local
coordinate system, not at the origin of the initial xy-axes. Similarly, a translation must be
carried out relative to the current local coordinate system.

Exercise II.12 Review the transformations used to draw the two triangles shown in Fig-
ure II.11. Understand how this works from the viewpoint that transformations act on local
coordinate systems. Draw a figure showing all the intermediate local coordinate systems
that are implicitly defined by the pseudocode that draws the two triangles.

II.1.8 Two-Dimensional Projective Geometry�

Projective geometry provides an elegant mathematical interpretation of the homogeneous co-
ordinates for points in the xy-plane. In this interpretation, the triples 〈x, y, w〉 do not represent
points just in the usual flat Euclidean plane but in a larger geometric space known as the
projective plane. The projective plane is an example of a projective geometry. A projective
geometry is a system of points and lines that satisfies the following two axioms:6

P1. Any two distinct points lie on exactly one line.
P2. Any two distinct lines contain exactly one common point (i.e., the lines intersect in exactly

one point).

Of course, the usual Euclidean plane, R
2, does not satisfy the second axiom since parallel

lines do not intersect in R
2. However, by adding appropriate “points at infinity” and a “line

at infinity,” the Euclidean plane R
2 can be enlarged so as to become a projective geometry.

In addition, homogeneous coordinates are a suitable way of representing the points in the
projective plane.

6 This is not a complete list of the axioms for projective geometry. For instance, it is required that every
line have at least three points, and so on.
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The intuitive idea of projective plane construction is as follows: for each family of parallel
lines in R

2, we create a new point, called a point at infinity. This new point is added to each
of these parallel lines. In addition, we add one new line: the line at infinity, which contains
exactly all the new points at infinity. It is not hard to verify that the axioms P1 and P2 hold.

Consider a line L in Euclidean space R
2: it can be specified by a point u on L and by a

nonzero vector v in the direction of L . In this case, L consists of the set of points

{u+ αv : α ∈ R} = {〈u1 + αv1, u2 + αv2〉 : α ∈ R}.
For each value of α, the corresponding point on the line L has homogeneous coordinates
〈u1/α + v1, u2/α + v2, 1/α〉. As α →∞, this triple approaches the limit 〈v1, v2, 0〉. This
limit is a point at infinity and is added to the line L when we extend the Euclidean plane to the
projective plane. If one takes the limit as α →−∞, then the triple 〈−v1,−v2, 0〉 is approached
in the limit. This is viewed as being the same point as 〈v1, v2, 0〉 since multiplication by the
nonzero scalar−1 does not change the meaning of homogeneous coordinates. Thus, the same
point at infinity on the line is found at both ends of the line.

Note that the point at infinity, 〈v1, v2, 0〉, on the line L does not depend on u. If the point u is
replaced by some point not on L , then a different line is obtained; this line will be parallel to L
in the Euclidean plane, and any line parallel to L can be obtained by appropriately choosing u.
Thus, any line parallel to L has the same point infinity as the line L .

More formally, the projective plane is defined as follows. Two triples, 〈x, y, w〉 and
〈x ′, y′, w′〉, are equivalent if there is a nonzeroα ∈ R such that x = αx ′, y = αy′, andw = αw′.
We write 〈x, y, w〉P to denote the equivalence class containing the triples that are equivalent
to 〈x, y, w〉. The projective points are the equivalence classes 〈x, y, w〉P such that at least one
of x, y, w is nonzero. A projective point is called a point at infinity if w = 0.

A projective line is either a usual line in R
2 plus a point at infinity, or the line at infinity.

Formally, for any triple a, b, c of real numbers, with at least one of a, b, c nonzero, there is a
projective line L defined by

L = {〈x, y, w〉P : ax + by + cw = 0, x, y, w not all zero}. II.5

If at least one of a, b is nonzero, then by considering only the w = 1 case, the line L is the
line containing the Euclidean points 〈x, y〉 such that ax + by + c = 0. In addition, the line L
contains the point at infinity 〈−b, a, 0〉P. Note that 〈−b, a〉 is a Euclidean vector parallel to
the line L .

The projective line defined with a = b = 0 and c �= 0 is the line at infinity; it contains those
points 〈x, y, 0〉P such that x and y are not both zero.

Exercise II.13� Another geometric model for the two-dimensional projective plane is
provided by the 2-sphere with antipodal points identified. The 2-sphere is the sphere in R

3

that is centered at the origin and has radius 1. Points on the 2-sphere are represented
by normalized triples 〈x, y, w〉, which have x2 + y2 + w2 = 1. In addition, the antipodal
points 〈x, y, w〉 and 〈−x,−y,−w〉 are treated as equivalent. Prove that lines in projective
space correspond to great circles on the sphere, where a great circle is defined as the
intersection of the sphere with a plane containing the origin. For example, the line at infinity
corresponds to the intersection of the 2-sphere with the xy-plane. [Hint: Equation II.5 can
be viewed as defining L in terms of a dot product with 〈a, b, c〉.]

Yet another way of mathematically understanding the two-dimensional projective space
is to view it as the space of linear subspaces of three-dimensional Euclidean space. To un-
derstand this, let x = 〈x1, x2, x3〉 be a homogeneous representation of a point in the pro-
jective plane. This point is equivalent to the points αx for all nonzero α ∈ R; these points
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plus the origin form a line through the origin in R
3. A line through the origin is of course

a one-dimensional subspace, and we identify this one-dimensional subspace of R
3 with the

point x.
Nowconsider a line L in the projective plane. If L is not the line at infinity, then it corresponds

to a line in R
2. One way to specify the line L is to choose u = 〈u1, u2〉 on L and a vector

v = 〈v1, v2〉 in the direction of L . The line L then is the set of points {u+ αv : α ∈ R}. It is
easy to verify that, after adding the point at infinity, the line L contains exactly the following
set of homogeneous points:

{β〈u1, u2, 1〉 + γ 〈v1, v2, 0〉 : β, γ ∈ R s.t. β �= 0 or γ �= 0} .

This set of triples is, of course, a plane in R
3 with a hole at the origin. Thus, we can identify

this two-dimensional subspace of R
3 (that is, the plane) with the line in the projective plane.

If, on the other hand, L is the line at infinity, then it corresponds in the same way to the
two-dimensional subspace {〈x1, x2, 0〉 : x1, x2 ∈ R}.

These considerations give rise to another way of understanding the two-dimensional pro-
jective plane. The “points” of the projective plane are one-dimensional subspaces of R

3. The
“lines” of the projective plane are two-dimensional subspaces of R

3. A “point” lies on a “line”
if and only if the corresponding one-dimensional subspace is a subset of the two-dimensional
subspace.

The historical development of projective geometry arose from the development of the
theory of perspective by Brunelleschi in the early fifteenth century. The basic tenet of the
theory of perspective for drawings and paintings is that families of parallel lines point toward
a common “vanishing point,” which is essentially a point at infinity. The modern mathematical
development of projective geometry based on homogeneous coordinates came much later of
course through the work of Feuerbach and Möbius in 1827 and Klein in 1871. Homogeneous
coordinates have long been recognized as useful for many computer graphics applications;
see, for example, the early textbook (Newman and Sproull, 1979). An accessible mathematical
introduction to abstract projective geometry is the textbook (Coxeter, 1974).

II.2 Transformations in 3-Space

We turn next to transformations in 3-space. This turns out to be very similar in many respects
to transformations in 2-space. There are, however, some new features – most notably, rotations
are more complicated in 3-space than in 2-space. First, we discuss how to extend the concepts
of linear and affine transformations, matrix representations for transformations, and homoge-
neous coordinates to 3-space. We then explain the basic modeling commands in OpenGL for
manipulating matrices. After that, we give a mathematical derivation of the rotation matrices
needed in 3-space and give a proof of Euler’s theorem.

II.2.1 Moving from 2-Space to 3-Space

In 3-space, points, or vectors, are triples 〈x1, x2, x3〉 of real numbers. We denote 3-space by R
3

and use the notation x for a point with it being understood that x = 〈x1, x2, x3〉. The origin, or
zero vector, now is 0 = 〈0, 0, 0〉. As before, wewill identify 〈x1, x2, x3〉with the column vector
with the same entries. By convention, we always use a “right-handed” coordinate system, as
shown in Figure I.4 on page 6. This means that if you position your right hand so that your
thumb points along the x-axis and your index finger is extended straight and points along the
y-axis, your palm will be facing in the positive z-axis direction. It also means that vector cross
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products are defined with the right-hand rule. As discussed in Section I.2.1, it is common in
computer graphics applications to visualize the x-axis as pointing to the right, the y-axis as
pointing upwards, and the z-axis as pointing toward you.

Homogeneous coordinates for points in R
3 are vectors of four numbers. The homogeneous

coordinates 〈x, y, z, w〉 represents the point 〈x/w, y/w, z/w〉 in R
3. The two-dimensional

projective geometry described in Section II.1.8 can be straightforwardly extended to a three-
dimensional geometry by adding a “plane at infinity”: each line has a single point at infinity,
and each plane has a line of points at infinity (see Section II.2.5 for more on projective
geometry).

A transformation on R
3 is any mapping from R

3 to R
3. The definition of a linear transfor-

mation onR
3 is identical to the definition used forR

2 except that now the vectors x and y range
overR

3. Similarly, the definitions of translation and of affine transformation are word-for-word
identical to the definitions given for R

2 except that now the translation vector u is in R
3. In

particular, an affine transformation is still defined as the composition of a translation and a
linear transformation.

Every linear transformation A in R
3 can be represented by a 3× 3 matrix M as follows.

Let i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉, and let u = A(i), v = A( j), and w = A(k).
Set M equal to the matrix (u, v,w), that is, the matrix whose columns are u, v, andw, and thus

M =
u1 v1 w1

u2 v2 w2

u3 v3 w3

 . II.6

Then Mx = A(x) for all x ∈ R
3, that is to say, M represents A. In this way, any linear trans-

formation of R
3 can be viewed as being a 3× 3 matrix. (Compare this with the analogous

construction for R
2 explained at the beginning of Section II.1.2.)

A rigid transformation is one that preserves the size and shape of an object and changes
only its position and orientation. Formally, a transformation A is defined to be rigid provided
it preserves distances between points and angles between lines. Recall that the length of a
vector x is equal to ||x|| = √x · x = √x1

2 + x2
2 + x3

2. An equivalent definition of rigidity is that
a transformation A is rigid if it preserves dot products, that is to say, if A(x) · A(y) = x · y for
all x, y ∈ R

3. It is not hard to prove that M = (u, v,w) represents a rigid transformation if and
only if ||u|| = ||v|| = ||w|| = 1 and u · v = v · w = u · w = 0. From this, it is straightforward
to show that M represents a rigid transformation if and only if M−1 = MT (c.f. Exercises II.5
and II.6 on page 24).

We define an orientation-preserving transformation to be one that preserves “right-
handedness.” Formally, we say that A is orientation-preserving provided that (A(u)× A(v)) ·
A(u× v) > 0 for all noncollinear u, v ∈ R

3. By recalling the right-hand rule used to determine
the direction of a cross product, you should be able to convince yourself that this definition
makes sense.

Exercise II.14 Let M = (u, v,w) be a 3× 3 matrix. Prove that det(M) is equal to
(u× v) · w. Conclude that M represents an orientation-preserving transformation if and
only if det(M) > 0. Also, prove that if u and v are unit vectors that are orthogonal to
each other, then setting w = u× v makes M = (u, v,w) a rigid, orientation-preserving
transformation.

Any affine transformation is the composition of a linear transformation and a translation.
Since a linear transformation can be represented by a 3× 3 matrix, any affine transformation
can be represented by a 3× 3 matrix and a vector in R

3 representing a translation amount.
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That is, any affine transformation can be written asx
y
z

 →
a b c

d e f
g h i

x
y
z

+
u

v

w

 .

We can rewrite this using a single 4× 4 homogeneous matrix that acts on homogeneous
coordinates as follows:

x
y
z
1

 →


a b c u
d e f v

g h i w

0 0 0 1




x
y
z
1

 .

This 4× 4 matrix contains the linear transformation in its upper left 3× 3 submatrix and the
translation in the upper three entries of the last column. Thus, affine transformations can be
identified with 4× 4 matrices with bottom row (0 0 0 1). When we study transformations
for perspective, we will see some nontrivial uses of the bottom row of a 4× 4 homogeneous
matrix, but for now we are only interested in matrices whose fourth row is (0, 0, 0, 1).

As mentioned at the beginning of this section, rotations in 3-space are considerably more
complicated than in 2-space. The reason for this is that a rotation can be performed about any
axis whatsoever. This includes not just rotations around the x-, y- and z-axes but also rotations
around an axis pointing in an arbitrary direction. A rotation that fixes the origin can be specified
by giving a rotation axis u and a rotation angle θ , where the axis u can be any nonzero vector.
We think of the base of the vector being placed at the origin, and the axis of rotation is the
line through the origin parallel to the vector u. The rotation angle θ specifies the magnitude of
the rotation. The direction of the rotation is determined by the right-hand rule; namely, if one
mentally grasps the vector uwith one’s right hand so that the thumb, when extended, is pointing
in the direction of the vector u, then one’s fingers will curl around u pointing in the direction of
the rotation. In other words, if one views the vector u headon, that is, down the axis of rotation
in the opposite direction that u is pointing, then the rotation direction is counterclockwise (for
positive values of θ ). A rotation of this type is denoted Rθ,u. By convention, the axis of rotation
always passes through the origin, and thus the rotation fixes the origin. Figure II.14 on page 37
illustrates the action of Rθ,u on a point v. Clearly, Rθ,u is a linear transformation and is rigid
and orientation-preserving.

Section II.2.4 below shows that every rigid, orientation-preserving, linear transformation in
3-space is a rotation. As a corollary, every rigid, orientation-preserving, affine transformation
can be (uniquely) expressed as the composition of a translation and a rotation about a line
through the origin.

It is of course possible to have rotations about axes that do not pass through the origin.
These are discussed further in Section II.2.4.

II.2.2 Transformation Matrices in OpenGL

OpenGL has several function calls that enable you to conveniently manipulate the model view
matrix, which transforms the positions of points specified with glVertex*. We have already
seen much of the functionality of these routines in Section II.1.6, which explains the use
of OpenGL matrix transformations in the two-dimensional setting. Actually, OpenGL really
operates in three dimensions, although it supports a few two-dimensional functions, such as
glVertex2f, which merely set the z-component to zero.

In three dimensions, the following commands are particularly useful for working with the
model view matrix M .
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0
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v2

v3

Rθ,u(v)
θ

Figure II.14. The vector v being rotated around u. The vector v1 is v’s projection onto u. The vector v2 is
the component of v orthogonal to u. The vector v3 is v2 rotated 90◦ around u. The dashed line segments
in the figure all meet at right angles.

First, the command

glMatrixMode(GL_MODELVIEW);

selects themodel viewmatrix as the currently activematrix. Other matrices that can be selected
with this command include the projection matrix. The projection matrix and the model view
matrix work together to position objects, and Section II.3.5 explains the interaction between
these two matrices.

The following four commands provide simple ways to effect modeling transformations. All
four commands affect the currently active matrix, which we assume is the matrix M for the
sake of discussion.

glLoadIdentity(). Sets M equal to the 4× 4 identity matrix.

glTranslatef( float u1, float u2, float u3 ). This command sets M
equal to M ◦ Tu, where u = 〈u1, u2, u3〉 and Tu is the transformation that performs a
translation by u. The 4× 4 matrix representation for Tu in homogeneous coordinates is
1 0 0 u1

0 1 0 u2

0 0 1 u3

0 0 0 1

 .

glRotatef(float θ, float u1, float u2, float u3). This sets M equal to
M ◦ Rθ,u, where u = 〈u1, u2, u3〉 and, as discussed above, Rθ,u is the transformation that
performs a rotation around the axis through the origin in the direction of the vector u. The
rotation angle is θ (measured in degrees), and the direction of the rotation is determined
by the right-hand rule. The vector umust not equal 0. For the record, if u is a unit vector,
then the 4× 4 matrix representation of Rθ,u in homogeneous coordinates is

(1− c)u2
1 + c (1− c)u1u2 − su3 (1− c)u1u3 + su2 0

(1− c)u1u2 + su3 (1− c)u2
2 + c (1− c)u2u3 − su1 0

(1− c)u1u3 − su2 (1− c)u2u3 + su1 (1− c)u2
3 + c 0

0 0 0 1

 , II.7
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where c = cos θ and s = sin θ . OpenGL does not require that u be passed in as a unit
vector: OpenGL will automatically compute the normalization of u in order to compute
the rotation matrix. The formula II.7 for Rθ,u will be derived below in Section II.2.3.

glScalef(float α1, float α2, float α3). This command scales the x-, y-,
z-coordinates of points independently. That is to say, it sets M = M ◦ S, where S is
the matrix

α1 0 0 0
0 α2 0 0
0 0 α3 0
0 0 0 1

 .

The matrix S will map 〈x1, x2, x3, 1〉 to 〈α1x1, α2x2, α3x3, 1〉, so it allows scaling inde-
pendently in each of the x-, y-, and z-directions.

OpenGL does not have any special function calls for reflections or shearing transformations.
A reflection transformation is a transformation that transforms points to their “mirror image”
across some plane, as illustrated in Figure II.16 on page 43. Reflections across the coordinate
planes can easily be done with glScalef. For example,

glScalef(-1.0, 1.0, 1.0);

performs a reflection across the yz-plane by negating the x-coordinate of a point. A shearing
transformation is a more complicated kind of transformation; some two-dimensional examples
include the transformation A3 of Exercise II.1 and the transformation shown in Figure II.3. In
principle, one can use glScalef in combination with rotations and translations to perform
arbitrary reflections and shearing transformations. In practice, this is usually more trouble than
it is worth. Instead, you can just explicitly give the components of a 4× 4 matrix that perform
any desired affine transformation. For example, the formulas from Exercises II.18 and II.19
below can be used to get the entries of a 4× 4 matrix that carries out a reflection.

OpenGL includes the following two commands that allow you to use any homogeneous
4× 4 matrix you wish. Both of these commands take 16 floating point numbers as inputs and
create a 4× 4 homogeneous matrix with these components. The elements of the matrix are
given in column order!

glLoadMatrixf( float* matEntries ). This initializes M to be the matrix with
entries the 16 numbers pointed to by matEntries.

glMultMatrixf( float* matEntries ). This sets M equal to M · M ′, where M ′

is the matrix with entries equal to the 16 values pointed to by matEntries.

The variable matEntries can have its type defined by any one of the following lines:

float* matEntries;

float matEntries[16];

float matEntries[4][4];

In the third case, if one lets i and j range from 0 to 3, the entry in row i and column j is the
value matEntries[j][i]. The indices i and j are reversed from what might normally be
expected because the entries are specified in column order.

Solar System Examples in OpenGL. The Solar program contains some examples of
using OpenGL’s modeling transformations. This program creates a simple solar system
with a central sun, a planet revolving around the sun every 365 days, and amoon revolving
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around the planet 12 times per year. In addition, the planet rotates on its axis once per day,
that is, once per 24 hours. The program uses a combination of rotations and translations.
In addition, it uses glPushMatrix and glPopMatrix to save and restore the model
view matrix so as to isolate the transformations used to rotate the planet on its axis from
the transformations used to position the moon as it revolves around the planet.

The central part of the Solar program code is as follows:

// Choose and clear Modelview matrix
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// Move 8 units away to be able to view from the origin.
glTranslatef(0.0, 0.0, -8.0);
// Tilt system 15 degrees downward in order to view
// from above the xy-plane.
glRotatef(15.0, 1.0,0.0,0.0);

// Draw the sun -- as a yellow, wireframe sphere
glColor3f( 1.0, 1.0, 0.0 );
glutWireSphere( 0.8, 15, 15 ); // Radius = 0.8 units.

// Draw the Earth
// First position it around the sun
// Use DayOfYear to determine its position
glRotatef( 360.0*DayOfYear/365.0, 0.0, 1.0, 0.0 );
glTranslatef( 4.0, 0.0, 0.0 );
// Second, rotate the earth on its axis.
// Use HourOfDay to determine its rotation.
glPushMatrix(); // Save matrix state
glRotatef( 360.0*HourOfDay/24.0, 0.0, 1.0, 0.0 );
// Third, draw as a blue, wireframe sphere.
glColor3f( 0.2, 0.2, 1.0 );
glutWireSphere( 0.4, 10, 10);
glPopMatrix(); // Restore matrix state

// Draw the moon.
// Use DayOfYear to control its rotation around the earth
glRotatef( 360.0*12.0*DayOfYear/365.0, 0.0, 1.0, 0.0 );
glTranslatef( 0.7, 0.0, 0.0 );
glColor3f( 0.3, 0.7, 0.3 );
glutWireSphere( 0.1, 5, 5 );

The complete code for Solar.c can be found with the software accompanying this book.
The code fragment draws wireframe spheres with commands

glutWireSphere( radius, slices, stacks );

The value of radius is the radius of the sphere. The integer values slices and stacks
control the number of “wedges” and horizontal “stacks” used for the polygonal model of the
sphere. The sphere is modeled with the “up” direction along the z-axis, and thus “horizontal”
means parallel to the xy-plane.
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The glColor3f(red, green, blue) commands are used to set the current drawing
color.

The solar program code starts by specifying the ModelView matrix, M , as the current
matrix and initializes it to the identity. The program then right multiplies M with a translation
of−8 units in the z-direction and thereafter performs a rotation of 15◦ around the x-axis. This
has the effect of centering the solar system at 〈0, 0,−8〉 with a small tilt, and so it is viewed
from slightly above. The viewpoint, or camera position, is placed at the origin, looking down
the negative z-axis.

The sun is drawn with glutWireSphere. This routine draws the wireframe sphere, is-
suing glVertex* commands for a sphere centered at the origin. Of course, the sphere is
actually drawn centered at 〈0, 0,−8〉 because the position is transformed by the contents of
the M matrix.

To draw the Earth and its moon, another glRotatef and glTranslatef are performed.
These translate the Earth system away from the sun and revolve it around the sun. The angle of
rotation depends on the day of the year and is specified in degrees.A furtherglRotatef rotates
the Earth on its axis. This rotation is bracketed by commands pushing M onto the ModelView
matrix stack and then restoring it with a pop. This prevents the rotation of the Earth on its axis
from affecting the position of the moon. Finally, a glRotatef and glTranslatef control
the position of the moon around the Earth.

To understand the effect of the rotations and translations on an intuitive level, you should
think of their being applied in the reverse order of how they appear in the program. Thus,
the moon can be thought of as being translated by 〈0.7, 0, 0〉, then rotated through an angle
based on the day of the year (with exactly 12 months in a year), then translated by 〈4, 0, 0〉,
then rotated by an angle that depends on the day of the year again (one revolution around the
sun every 365 days), then rotated 15◦ around the x-axis, and finally translated by 〈0, 0,−8〉.
That is, to see the order in which the transformations are logically applied, you have to read
backward through the program, being sure to take into account the effect of matrix pushes and
pops.

Exercise II.15 Review the Solar program and understand how it works. Try making
some of the following extensions to create a more complicated solar system.

a. Add one or more planets.
b. Add more moons. Make a geostationary moon, which always stays above the same point

on the planet. Make a moon with a retrograde orbit. (A retrograde orbit means the moon
revolves opposite to the usual direction, that is, in the clockwise direction instead of
counterclockwise.)

c. Give the moon a satellite of its own.
d. Give the planet and its moon(s) a tilt. The tilt should be in a fixed direction. This is similar

to the tilt of the Earth, which causes the seasons. The tilt of the Earth is always in the
direction of the North Star, Polaris. Thus, during part of a year, the Northern Hemisphere
tilts toward the sun, and during the rest of the year, the Northern Hemisphere tilts away
from the sun.

e. Change the length of the year so that the planet revolves around the sun once every
365.25 days. Be sure not to introduce any discontinuities in the orientation of the planet
at the end of a year.

f. Make the moon rotate around the planet every 29 days. Make sure there is no disconti-
nuity in the moon’s position at the end of a year.
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θ

Figure II.15. The vector v2 being rotated around u. This is the same situation as shown in Figure II.14
but viewed looking directly down the vector u.

II.2.3 Derivation of the Rotation Matrix

This section contains the mathematical derivation of Formula II.7 for the matrix representing
a rotation, Rθ,u, through an angle θ around axis u. Recall that this formula was

Rθ,u =


(1− c)u2

1 + c (1− c)u1u2 − su3 (1− c)u1u3 + su2 0

(1− c)u1u2 + su3 (1− c)u2
2 + c (1− c)u2u3 − su1 0

(1− c)u1u3 − su2 (1− c)u2u3 + su1 (1− c)u2
3 + c 0

0 0 0 1

 , II.7

where c = cos θ and s = sin θ . The vector umust be a unit vector. There is no loss of generality
in assuming that u is a unit vector since if not, it may be normalized by dividing by ||u||.

To derive the matrix for Rθ,u, let v be an arbitrary point and consider what w = Rθ,uv is
equal to. For this, we split v into two components, v1 and v2 so that v = v1 + v2 with v1 parallel
to u and v2 orthogonal to u. The vector v1 is the projection of v onto the line of u and is equal
to v1 = (u · v)u since the dot product u · v is equal to ||u|| · ||v|| cos(ϕ) where ϕ is the angle
between u and v, and since ||u|| = 1. (Refer to Figure II.14 on page 37.) We rewrite this as

v1 = (u · v)u = u(u · v)
= u(uTv) = (uuT)v.

The equation above uses the fact that a dot product u · v can be rewritten as a matrix product
uTv (recall that our vectors are all column vectors) and that matrix multiplication is associative.
The product uuT is the symmetric 3× 3 matrix

Proju = uuT =
u1

u2

u3

 (u1 u2 u3) =

 u2
1 u1u2 u1u3

u1u2 u2
2 u2u3

u1u3 u2u3 u2
3

 .

Since v = v1 + v2, we therefore have
v1 = Projuv and v2 = (I − Proju)v,

where I is the 3× 3 identity matrix.
We know that Rθ,uv1 = v1 because v1 is a scalar multiple of u and is not affected by a

rotation around u. To compute Rθ,uv2, we further define v3 to be the vector

v3 = u× v2 = u× v.
The second equality holds since v and v2 differ by a multiple of u. The vector v3 is orthogonal
to both u and v2. Furthermore, because u is a unit vector orthogonal to v2, v3 has the same
magnitude as v2. That is to say, v3 is equal to the rotation of v2 around the axis u through
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an angle of 90◦. Figure II.15 shows a view of v2 and v3 oriented straight down the u axis of
rotation. From the figure, it is obvious that rotating v2 through an angle of θ around u results
in the vector

(cos θ )v2 + (sin θ )v3. II.8

Therefore, Rθ,uv is equal to

Rθ,uv = Rθ,uv1 + Rθ,uv2

= v1 + (cos θ )v2 + (sin θ )v3

= Projuv+ (cos θ )(I − Proju)v+ (sin θ )(u× v).
To finish deriving the matrix for Rθ,u, we define the matrix

Mu× =
 0 −u3 u2

u3 0 −u1

−u2 u1 0


and see, by a simple calculation, that (Mu×)v = u× v holds for all v. From this, it is immediate
that

Rθ,uv = [Proju + (cos θ )(I − Proju)+ (sin θ )Mu×]v

= [(1− cos θ )Proju + (cos θ )I + (sin θ )Mu×)]v.

The quantity inside the square brackets is a 3× 3 matrix, and so this completes the derivation
of the matrix representation of Rθ,u. An easy calculation shows that this corresponds to the
representation given earlier (in homogeneous form) by Equation II.7.

Exercise II.16 Carry out the calculation to show that the formula for Rθ,u above is
equivalent to the formula in Equation II.7.

Exercise II.17� Let u, v and w be orthogonal unit vectors with w = u× v. Prove that
Rθ,u is represented by the following 3× 3 matrix:

uuT + (cos θ )(vvT + wwT)+ (sin θ )(wvT − vwT).

It is also possible to convert a rotation matrix back into a unit rotation vector u and a rotation
angle θ . For this, refer back to Equation II.7. Suppose we are given such a 4× 4 rotation matrix
M = (mi, j )i, j so that the entry in row i and column j is mi, j . The sum of the first three entries
on the diagonal of M (that is, the trace of the 3× 3 submatrix representing the rotation) is
equal to

m1,1 + m2,2 + m3,3 = (1− c)+ 3c = 1+ 2c

since u2
1 + u2

2 + u2
3 = 1. Thus, cos θ = (m1,1 + m2,2 + m3,3 − 1)/2, or

θ = arccos(α/2),

where α = m1,1 + m2,2 + m3,3 − 1. Letting s = sin θ , we can determine u’s components from

u1 = m3,2 − m2,3

2s

u2 = m1,3 − m3,1

2s
II.9

u3 = m2,1 − m1,2

2s
.
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u
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y

Figure II.16. Reflection across the plane P . The vector u is the unit vector perpendicular to the plane. A
reflection maps a point to its mirror image across the plane. The point x is mapped to the point y directly
across the plane and vice versa. Each F is mapped to the mirror image F.

The preceding method of computing θ and u from M will have problems with stability if θ

is very close to 0 since, in that case, sin θ ≈ 0, and thus the determination of the values of ui

requires dividing by values near zero. The problem is that dividing by a near-zero value tends to
introduce unstable or inaccurate results, because small roundoff errors can have a large effect
on the results of the division.

Of course, if θ , and thus sin θ , are exactly equal to zero, the rotation angle is zero and
any vector u will work. Absent roundoff errors, this situation occurs only if M is the identity
matrix.

To mitigate the problems associated with dividing by a near-zero value, one should instead
compute

β =
√
(m3,2 − m2,3)2 + (m1,3 − m3,1)2 + (m2,1 − m1,2)2.

Note that β will equal 2s = 2 sin θ because dividing by 2s in Equations II.9 was what was
needed to normalize the vector u. If β is zero, then the rotation angle θ is zero and, in this case,
u may be an arbitrary unit vector. If β is nonzero, then

u1 = (m3,2 − m2,3)/β

u2 = (m1,3 − m3,1)/β

u3 = (m2,1 − m1,2)/β.

This way of computing umakes it more likely that a (nearly) unit vector will be obtained for u
when the rotation angle θ is near zero. From α and β, the angle θ can be computed as

θ = atan2 (β, α).

This is a more robust way to compute θ than using the arccos function.
For an alternate, and often better, method of representing rotations in terms of 4-vectors,

see the parts of Section XII.3 on quaternions (pages 298–307).

Exercise II.18� A plane P containing the origin can be specified by giving a unit vector u
that is orthogonal to the plane. That is, let P = {x ∈ R

3 : u · x = 0}. A reflection across P
is the linear transformation that maps each point x to its “mirror image” directly across P,
as illustrated in Figure II.16. Prove that, for a plane containing the origin, this reflection
is represented by the 3× 3 matrix I − 2uuT. Write out this matrix in component form too.
[Hint: If v = v1 + v2, as in the derivation of the rotation matrix, the reflection maps v
to v2 − v1.]
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Exercise II.19� Now let P be the plane {x ∈ R
3 : u · x = a} for some unit vector u and

scalar a, where P does not necessarily contain the origin. Derive the 4× 4 matrix that
represents the transformation reflecting points across P. [Hint: This is an affine transfor-
mation. It is the composition of the linear map from Exercise II.18 and a translation.]

II.2.4 Euler’s Theorem

A fundamental fact about rigid orientation-preserving linear transformations is that they are
always equivalent to a rotation around an axis passing through the origin.

Theorem II.5 If A is a rigid, orientation-preserving linear transformation of R
3, then A is

the same as some rotation Rθ,v.

Proof The idea of the proof is similar to the proof of Theorem II.4, which showed that every
rigid, orientation-preserving affine transformation is either a generalized rotation or a trans-
lation. However, now we consider the action of A on points on the unit sphere instead of on
points in the plane.

Since A is rigid, unit vectors are mapped to unit vectors. So, A maps the unit sphere onto
itself. In fact, it will suffice to show that A maps some point v on the unit sphere to itself,
for if v is a fixed point, then A fixes the line through the origin containing v. The rigidity and
orientation-preserving properties then imply that A is a rotation around this line because the
action of A on v and on a vector perpendicular to v determines all the values of A.

Assume that A is not the identity map. First, note that A cannot map every point u on the unit
sphere to its antipodal point−u; otherwise, A would not be orientation-preserving. Therefore,
there is some unit vector u0 on the sphere such that A(u0) �= −u0. Fix such a point, and let
u = A(u0). If u = u0, we are done; so suppose u �= u0. Let C be the great circle containing
both u0 and u and let L be the shorter portion of C connecting u0 to u, that is, L is spanning
less than 180◦ around the unit sphere. Let L ′ be the image of L under A and let C ′ be the great
circle containing L ′. Suppose that L = L ′, that is, that A maps this line to itself. In this case,
rigidity implies that A maps u to u0. Then, rigidity further implies that the point v midway
between u0 and u is a fixed point of A, and so A is a rotation around v.

Otherwise, suppose L �= L ′. Let L ′ make an angle of θ with the great circle C , as shown in
Figure II.17. Since L �= L ′, we have−180◦ < θ < 180◦. Let C2, respectively C ′

2, be the great
circle perpendicular to L at u0, respectively at u. Let C3 be C2 rotated an angle of−θ/2 around
the vector u0, and let C ′

3 be C ′
2 rotated an angle of θ/2 around u. Then C3 and C ′

3 intersect at a
point v equidistant from u0 and u. Furthermore, by rigidity considerations and the definition
of θ , A maps C3 to C ′

3 and v is a fixed point of A. Thus, A is a rotation around the vector v. �

One can define a generalized rotation in 3-space to be a transformation Rvθ,u that performs
a rotation through angle θ around the line L , where L is the line that contains the point v and
is parallel to u. However, unlike the situation for 2-space (see Theorem II.4), it is not the case
that every rigid, orientation-preserving affine transformation in 3-space is equivalent to either
a translation or a generalized rotation of this type. Instead, we need a more general notion of
“glide rotation” that incorporates a screwlike motion. For example, consider a transformation
that both rotates around the y-axis and translates along the y-axis.

A glide rotation is amapping that can be expressed as a translation along an axis u composed
with a rotation Rvθ,u around the line that contains v and is parallel to u.

Exercise II.20� Prove that every rigid, orientation-preserving affine transformation is
a glide rotation. [Hint: First consider A’s action on planes and define a linear transfor-
mation B as follows: let r be a unit vector perpendicular to a plane P and define B(r)
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Figure II.17. Finding the axis of rotation. We have u = A(u0) and v = A(v). Compare this with
Figure II.8.

to be the unit vector perpendicular to the plane A(P). The transformation B is a rigid,
orientation-preserving map on the unit sphere. Furthermore, B(r) = A(r)− A(0), and so
B is a linear transformation. By Euler’s theorem, B is a rotation. Let w be a unit vector
fixed by B and Q be the plane through the origin perpendicular to w, and thus A(Q) is
parallel to Q. Let C be a transformation on Q defined by letting C(x) be the value of A(x)
projected onto Q. Then C is a two-dimensional, generalized rotation around a point v in
the plane Q. (Why?) From this, deduce that A has the desired form.]

II.2.5 Three-Dimensional Projective Geometry�

Three-dimensional projective geometry can be developed analogously to the two-dimensional
geometry discussed in Section II.1.8, and three-dimensional projective space can be viewed
either as the usual three-dimensional Euclidean space augmented with points at infinity or as
the space of linear subspaces of the four-dimensional R

4.
We first consider how to represent three-dimensional projective space as R

3 plus points at
infinity. The new points at infinity are obtained as follows: let F be a family of parallel lines
(i.e., let F be the set of lines parallel to a given line L , where L is a line in R

3). We have a
new point at infinity, uF , and this point is added to every line in F . The three-dimensional
projective space consists of R

3 plus these new points at infinity. Each plane P in R
3 gets a new

line of points at infinity in the projective space, namely, the points at infinity that belong to the
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lines in the plane P . The set of lines of the projective space are (a) the lines of R
3 (including

their new point at infinity), and (b) the lines at infinity that lie in a single plane. Finally, the set
of all points at infinity forms the plane at infinity.

You should check that, in three-dimensional projective space, any two distinct planes inter-
sect in a unique line.

Three-dimensional projective space can also be represented by linear subspaces of the four-
dimensional space R

4. This corresponds to the representation of points in R
3 by homogeneous

coordinates. A point in the projective space is equal to a one-dimensional subspace of R
4,

namely, a set of points of the form {αu : α ∈ R} for u a fixed nonzero point ofR
4. The 4-tuple u

is just a homogeneous representation of a point; if its fourth component (w-component) is zero,
then the point is a point at infinity. The lines in projective space are just the two-dimensional
subspaces of R

4. A line is a line at infinity if and only if all its 4-tuples have zero as fourth
component. The planes in projective space are precisely the three-dimensional subspaces ofR

4.

Exercise II.21 Work out the correspondence between the two ways of representing three-
dimensional projective space.

OpenGL and other similar systems use 4-tuples as homogeneous coordinates for points in 3-
space extensively. In OpenGL, the function call glVertex4f(a,b,c,d) is used to specify a
point 〈a, b, c, d〉 in homogeneous coordinates. Of course, it is more common for a programmer
to specify a point with only three (nonhomogeneous) coordinates, but then, whenever a point
in 3-space is specified by a call to glVertex3f(a,b,c), OpenGL translates this to the point
〈a, b, c, 1〉.

However, OpenGL does not usually deal explicitly with points at infinity (although there
are some exceptions, namely, defining Bézier and B-spline curves). Instead, points at infinity
are typically used for indicating directions. As we will see later, when a light source is given a
position, OpenGL interprets a point at infinity as specifying a direction. Strictly speaking, this
is not a mathematically correct use of homogeneous coordinates, since taking the negative of
the coordinates does not yield the same result but instead indicates the opposite direction for
the light.

II.3 Viewing Transformations and Perspective

So far, we have used affine transformations as amethod for placing geometricmodels of objects
in 3-space. This is represented by the first stage of the rendering pipeline shown in Figure II.1
on page 18. In this first stage, points are placed in 3-space controlled by the model viewmatrix.

We now turn our attention to the second stage of the pipeline. This stage deals with how the
geometricmodel in 3-space is viewed; namely, it places the camera or eyewith a given position,
view direction, and field of view. The placement of the camera or eye position determines what
parts of the 3-D model will be visible in the final graphics image. Of course, there is no actual
camera; it is only virtual. Instead, transformations are used to map the geometric model in
3-space into the xy-plane of the final image. Transformations used for this purpose are called
viewing transformations. Viewing transformations include not only the affine transformations
discussed earlier but also a new class of “perspective transformations.”

To understand the purposes and uses of viewing transformations properly, it is necessary to
consider the end result of the rendering pipeline (Figure II.1). The final output of the rendering
pipeline is usually a rectangular array of pixels. Each pixel has an xy-position in the graphics
image. In addition, each pixel has a color or grayscale value. Finally, it is common for each
pixel to store a “depth value” or “distance value” that measures the distance to the object visible
in that pixel.
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Storing the depth is important because it is used by the hidden surface algorithm. When a
scene is rendered, there may be multiple objects that lie behind a given pixel. As the objects
are drawn onto the screen, the depth value, or distance, to the relevant part of the object is
stored into each pixel location. By comparing depths, one can determine whether an object is
in front of another object and thereby that the more distant object, being hidden behind the
closer object, is not visible.

The use of the depth values is discussed more in Section II.4, but for now it is enough for
us to keep in mind that it is important to keep track of the distance of objects from the camera
position.

Stages 2 and 3 of the rendering pipeline are best considered together. These two stages
are largely independent of the resolution of the screen or other output device. During the
second stage, vertices are mapped by a 4× 4 affine matrix into new homogeneous coordinates
〈x, y, z, w〉. The third stage, perspective division, further transforms these points by converting
them back to points in R

3 by the usual map

〈x, y, z, w〉 → 〈x/w, y/w, z/w〉.
The end result of the second and third stages is that they map the viewable objects into the
2× 2× 2 cube centered at the origin,which contains the pointswith−1 ≤ x ≤ 1,−1 ≤ y ≤ 1,
and−1 ≤ z ≤ 1. This cubewill bemapped by simple rectangular scaling into the final graphics
image during stage 4 of the rendering pipeline. The points with x = 1 (respectively, x = −1)
are to be at the right (respectively, left) side of the screen or final image, and points with y = 1
(respectively, y = −1) are at the top (respectively, bottom) of the screen. Points with z = 1 are
closest to the viewer, and points with z = −1 are farthest from the viewer.7

There are two basic kinds of viewing transformations: orthographic projections and per-
spective transformations. An orthographic projection is analagous to placing the viewer at an
infinite distance (with a suitable telescope). Thus, orthographic projections map the geometric
model by projecting at right angles onto a plane perpendicular to the view direction. Perspec-
tive transformations put the viewer at a finite position, and perspective makes closer objects
appear larger than distant objects of the same size. The difference between orthographic and
perspective transformations is illustrated in Figure II.18.

To simplify the definitions of orthographic and perspective transformations, it is convenient
to define them only for a viewer who is placed at the origin and is looking in the direction of
the negative z-axis. If the viewpoint is to be placed elsewhere or directed elsewhere, ordinary
affine transformations can be used to adjust the view accordingly.

II.3.1 Orthographic Viewing Transformations

Orthographic viewing transformations carry out a parallel projection of a 3-D model onto a
plane. Unlike the perspective transformations described later, orthographic viewing projections
do not cause closer objects to appear larger and distant objects to appear smaller. For this reason,
orthographic viewing projections are generally preferred for applications such as architecture
or engineering applications, including computer-aided design andmanufacturing (CAD/CAM)
since the parallel projection is better at preserving relative sizes and angles.

7 OpenGL uses the reverse convention on z with z = −1 for the closest objects and z = 1 for the
farthest objects. Of course, this is merely a simple change of sign of the z component, but OpenGL’s
convention seems less intuitive because the transformation into the 2× 2× 2 cube is no longer
orientation-preserving. Since the OpenGL conventions are hidden from the programmer in most
situations anyway, we will instead adopt the more intuitive convention.
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Figure II.18. The cube on the left is rendered with an orthographic projection, and the one on the right
with a perspective transformation. With the orthographic projection, the rendered size of a face of the
cube is independent of its distance from the viewer; compare, for example, the front and back faces.
Under a perspective transformation, the closer a face is, the larger it is rendered.

For convenience, orthographic projections are defined in terms of an observer who is at
the origin and is looking down the z-axis in the negative z-direction. The view direction is
perpendicular to the xy-plane, and if two points differ in only their z-coordinate, then the one
with higher z-coordinate is closer to the viewer.

An orthographic projection is generally specified by giving six axis-aligned “clipping
planes,” which form a rectangular prism. The geometry that lies inside the rectangular prism
is scaled to have dimensions 2× 2× 2 and translated to be centered at the origin. The rectan-
gular prism is specified by six values �, r , b, t , n, and f . These variable names are mnemonics
for “left,” “right,” “bottom,” “top,” “near,” and “far,” respectively. The rectangular prism then
consists of the points 〈x, y, z〉 such that

� ≤ x ≤ r,
b ≤ y ≤ t,

and n ≤ −z ≤ f.

The −z has a negative sign because of the convention that the viewer is looking down the
z-axis facing in the negative z-direction. This means that the distance of a point 〈x, y, z〉 from
the viewer is equal to −z. The usual convention is for n and f to be positive values; however,
this is not actually required. The plane z = −n is called the near clipping plane, and the plane
z = − f is called the far clipping plane. Objects closer than the near clipping plane or farther
than the far clipping plane will be culled and not be rendered.

The orthographic projection must map points from the rectangular prism into the 2×
2× 2 cube centered at the origin. This consists of (1) scaling along the coordinate axes and
(2) translating so that the cube is centered at the origin. It is not hard to verify that this is
accomplished by the following 4× 4 homogeneous matrix:

2

r − �
0 0 −r + �

r − �

0
2

t − b
0 − t + b

t − b

0 0
2

f − n

f + n

f − n

0 0 0 1


. II.10
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Viewscreen plane z = −d

0

Vertex
〈x, y, z〉

〈 d · x/z, d · y/z,−− − d〉

z

x

Figure II.19. Perspective projection onto a viewscreen at distance d. The viewer is at the origin looking in
the direction of the negative z-axis. The point 〈x, y, z〉 is perspectively projected onto the plane z = −d,
which is at distance d in front of the viewer at the origin.

II.3.2 Perspective Transformations

Perspective transformations are used to create the view when the camera or eye position is
placed at a finite distance from the scene. The use of perspective means that an object will
appear larger as it moves closer to the viewer. Perspective is useful for giving the viewer the
sense of being “in” a scene because a perspective view shows the scene from a particular
viewpoint. Perspective is heavily used in entertainment applications, where it is desired to
give an immersive experience; it is particularly useful in dynamic situations in which the
combination of motion and correct perspective gives a strong sense of the three-dimensionality
of the scene. Perspective is also used in applications as diverse as architectural modeling and
crime recreation to show the view from a particular viewpoint.

Aswasmentioned in Section II.1.8, perspectivewas originally discovered for applications in
drawing and painting. An important principle in the classic theory of perspective is the notion
of a “vanishing point” shared by a family of parallel lines. An artist who is incorporating
perspective in a drawing will choose appropriate vanishing points to aid the composition of the
drawing. In computer graphics applications, we are able to avoid all considerations of vanishing
points and similar factors. Instead, we place objects in 3-space, choose a viewpoint (camera
position), and mathematically calculate the correct perspective transformation to create the
scene as viewed from the viewpoint.

For simplicity, we consider only a viewer placed at the origin looking down the negative
z-axis. We mentally choose as a “viewscreen” the plane z = −d, which is parallel to the
xy-plane at distance d from the viewpoint at the origin. Intuitively, the viewscreen serves as
a display screen onto which viewable objects are projected. Let a vertex in the scene have
position 〈x, y, z〉. We form the line from the vertex position to the origin and calculate the
point 〈x ′, y′, z′〉where the line intersects the viewscreen (see Figure II.19). Of course, we have
z′ = −d. Referring to Figure II.19 and arguing on the basis of similar triangles, we have

x ′ = d · x

−z
and y′ = d · y

−z
. II.11

The values x ′, y′ give the position of the vertex as seen on the viewscreen from the viewpoint
at the origin.

So far, projective transformations have been very straightforward, but now it is necessary to
incorporate also the “depth” of the vertex, that is, its distance from the viewer. The obvious first
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Plane z = −d

0

A = A′

C = C ′

B

B′

z
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Figure II.20. The undesirable transformation of a line to a curve. The mapping used is 〈x, y, z〉 →
〈−d · x/z,−d · y/z, z〉. The points A and C are fixed by the transformation, and B is mapped to B ′. The
dotted curve is the image of the line segment AC . (The small unlabeled circles show the images of A
and B under the mapping of Figure II.19.)

attempt would be to use the value −z for the depth. Another, albeit less appealing, possibility
would be to record the true distance

√
x2 + y2 + z2 as the depth. Both of these ideas, however,

fail to work well. The reason is that, if perspective mappings are defined with a depth specified
in either of these ways, then lines in the three-dimensional scene can be mapped to curves in
the viewscreen space. That is, a line of points with coordinates x, y, z, will map to a curve that
is not a line in the viewscreen space.

An example of how a line can map to a curve is shown in Figure II.20. For this figure, we
use the transformation

x → d · x

−z
y → d · y

−z
z → z II.12

so that the z-coordinate directly serves a measure of depth. (Since the viewpoint is looking
down the negative z-axis, greater values of z correspond to closer points.) In Figure II.20,
we see points A, B, and C that are mapped by Transformation II.12 to points A′, B ′, and
C ′. Obviously, A and C are fixed points of the transformation, and thus A = A′ and C = C ′.
However, the point B is mapped to the point B ′, which is not on the line segment from A′ to C ′.
Thus, the image of the line segment is not straight.

One might question at this point why it is undesirable for lines to map to curves. The answer
to this question lies in the way the fourth stage of the graphics-rendering pipeline works. In the
fourth stage, the endpoints of a line segment are used to place a line in the screen space. This
line in screen space typically has not only a position on the screen but also depth (distance)
values stored in a depth buffer.8 When the fourth stage processes a line segment, say as shown
in Figure II.20, it is given only the endpoints A′ and C ′ as points 〈xA, yA, z A〉 and 〈xC , yC , zC 〉.
It then uses linear interpolation to determine the rest of the points on the line segment. This
then gives an incorrect depth to intermediate points such as B ′. With incorrect depth values,
the hidden surface algorithm can fail in dramatically unacceptable ways since the depth buffer
values are used to determine which points are in front of other points.

Thus, we need another way to handle depth information. In fact, it is enough to find a
definition of a “fake” distance or a “pseudo-distance” function that has the following two

8 Other information, such as color values, is also stored along with depth, but this does not concern the
present discussion.
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properties:

1. The pseudo-distance preserves relative distances, and
2. It causes lines to map to lines.

As it turns out, a good choice for this pseudo-distance is any function of the form

pseudo-dist(z) = A + B/z,

where A and B are constants such that B < 0. Since B < 0, property 1 certainly holds because
pseudo-dist(z1) < pseudo-dist(z2) holds whenever z1 < z2.

It is a common convention to choose the values for A and B so that points on the near and
far clipping planes have pseudo-distances equal to +1 and −1, respectively. The near and far
clipping planes have z = −n and z = − f , and so we need the following:

pseudo-dist(−n) = A − B/n = 1
pseudo-dist(− f ) = A − B/ f = −1.

Solving these two equations for A and B yields

A = −( f + n)

f − n
and B = −2 f n

f − n
. II.13

Before discussing property 2, it is helpful to see how this definition of the pseudo-distance
function fits into the framework of homogeneous representation of points. With the use of the
pseudo-dist function, the perspective transformation becomes the mapping

〈x, y, z〉 → 〈−d · x/z,−d · y/z, A + B/z〉.
We can rewrite this in homogeneous coordinates as

〈x, y, z, 1〉 → 〈d · x, d · y,−A · z − B,−z〉 II.14

since multiplying through by (−z) does not change the point represented by the homogeneous
coordinates.More generally, because the homogeneous representation 〈x, y, z, w〉 is equivalent
to 〈x/w, y/w, z/w, 1〉, the mapping II.14 acting on this point is

〈x/w, y/w, z/w, 1〉 → 〈d · x/w, d · y/w, − A · (z/w)− B, − z/w〉,
and, after multiplying both sides by w, this becomes

〈x, y, z, w〉 → 〈d · x, d · y, − (A · z + B · w), − z〉.
Thus, we have established that the perspective transformation incorporating the pseudo-dist
function is represented by the following 4× 4 homogeneous matrix:

d 0 0 0
0 d 0 0
0 0 −A −B
0 0 −1 0

 . II.15

That the perspective transformation based on pseudo-distance can be expressed as a 4× 4
matrix has two unexpected benefits. First, homogeneousmatrices provide a uniform framework
for representing both affine and perspective transformations. Second, in Section II.3.3,we prove
the following theorem:

Theorem II.6 The perspective transformation represented by the 4× 4 matrix II.15 maps
lines to lines.
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Figure II.21. Pseudo-distance varies nonlinearlywith distance. Larger pseudo-distance values correspond
to closer points.

In choosing a perspective transformation, it is important to select values for n and f ,
the near and far clipping plane distances, so that all the desired objects are included in the
field of view. At the same time, it is also important not to choose the near clipping plane to
be too near, or the far clipping plane to be too distant. The reason is that the depth buffer
values need to have enough resolution so as to allow different (pseudo)distance values to be
distinguished. To understand how the use of pseudo-distance affects how much resolution
is needed to distinguish between different distances, consider the graph of pseudo-distance
versus distance in Figure II.21. Qualitatively, it is clear from the graph that pseudo-distance
varies faster for small distance values than for large distance values (since the graph of the
pseudo-distance function is sloping more steeply at smaller distances than at larger distances).
Therefore, the pseudo-distance function is better at distinguishing differences in distance at
small distances than at large distances. In most applications this is good, for, as a general rule,
small objects tend to be close to the viewpoint, whereas more distant objects tend to either be
larger or, if not larger, then errors in depth comparisons for distant objects make less noticeable
errors in the graphics image.

It is common for stage 4 of the rendering pipeline to convert the pseudo-distance into a value
in the range 0 to 1, with 0 used for points at the near clipping plane and with 1 representing
points at the far clipping plane. This number, in the range 0 to 1, is then represented in fixed
point, binary notation, that is, as an integer with 0 representing the value at the near clipping
plane and themaximum integer value representing the value at the far clipping plane. Inmodern
graphics hardware systems, it is common to use a 32-bit integer to store the depth information,
and this gives sufficient depth resolution to allow the hidden surface calculations to work well
in most situations. That is, it will work well provided the near and far clipping distances are
chosen wisely. Older systems used 16-bit depth buffers, and this tended occasionally to cause
resolution problems. By comparison, the usual single-precision floating point numbers have
24 bits of resolution.

II.3.3 Mapping Lines to Lines�

As was discussed in the previous section, the fact that perspective transformations map lines in
3-space to lines in screen space is important for interpolation of depth values in the screen space.
Indeed, more than this is true: any transformation represented by a 4× 4 homogeneous matrix
maps lines in 3-space to lines in 3-space. Since the perspective maps are represented by 4× 4
matrices, as shown by Equation II.15, the same is true a fortiori of perspective transformations.

Theorem II.7 Let M be a 4× 4 homogeneous matrix acting on homogeneous coordinates
for points in R

3. If L is a line in R
3, then the image of L under the transformation represented

by M, if defined, is either a line or a point in R
3.

This immediately gives the following corollary.
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Corollary II.8 Perspective transformations map lines to lines.

For proving Theorem II.7, the most convenient way to represent the three-dimensional
projective space is as the set of linear subspaces of the Euclidean space R

4, as was described in
Section II.2.5. The “points” of the three-dimensional projective space are the one-dimensional
subspaces ofR

4. The “lines” of the three-dimensional projective space are the two-dimensional
subspaces of R

4. The “planes” of the three-dimensional projective geometry are the three-
dimensional subspaces of R

4.
The proof of Theorem II.7 is now immediate. Since M is represented by a 4× 4 matrix, it

acts linearly on R
4. Therefore, M must map a two-dimensional subspace representing a line

onto a subspace of dimension at most two: that is, onto either a two-dimensional subspace
representing a line, or a one-dimensional subspace representing a point, or a zero-dimensional
subspace. In the last case, the value of M on points on the line is undefined because the point
〈0, 0, 0, 0〉 is not a valid set of homogeneous coordinates for a point in R

3.

II.3.4 Another Use for Projection: Shadows

In the next chapter, we study local lighting and illumination models, which, because they track
only local features, cannot handle phenomena such as shadows or indirect illumination. There
are global methods for calculating lighting that do handle shadows and indirect illumination
(see chapters IX and XI), but these methods are often computationally very difficult and
cannot be used with ordinary OpenGL commands in any event. There are also some multipass
rendering techniques for rendering shadows that can be used in OpenGL (see Section IX.3).

An alternative way to cast shadows that works well for casting shadows onto flat, planar
surfaces is to render the shadow of an object explicitly. This can be done in OpenGL by setting
the current color to black (or whatever shadow color is desired) and then drawing the shadow
as a flat object on the plane. Determining the shape of a shadow of a complex object can
be complicated since it depends on the orientation of the object and the position of the light
source and object relative to the plane. Instead of attempting to calculate the shape of the
shadow explicitly, you can first set the model view matrix to hold a projection transformation
and then render the object in 3-space, letting the model view matrix map the rendered object
down onto the plane.

This method has several advantages, chief among them being that it requires very little
coding effort. One can merely render the object twice: once in its proper location in 3-space,
and once with the model view matrix set to project it down flat onto the plane. This technique
handles arbitrarily complex shapes properly, including objects that contain holes.

To determine what the model view matrix should be for shadow projections, suppose that
the light is positioned at 〈0, y0, 0〉, that is, at height y0 up the y-axis, and that the plane of
projection is the xz-plane, where y = 0. It is not difficult to see by using similar triangles that
the projection transformation needed to cast shadows should be (see Figure II.22)

〈x, y, z〉 →
〈

x

1− y/y0
, 0,

z

1− y/y0

〉
.

This transformation is represented by the following homogeneous matrix:
1 0 0 0
0 0 0 0
0 0 1 0
0 − 1

y0
0 1

 .
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Figure II.22. A light is positioned at 〈0, y0, 0〉. An object is positioned at 〈x, y, z〉. The shadow of the
point is projected to the point 〈x ′, 0, z′〉, where x ′ = x/(1− y/y0) and z′ = z/(1− y/y0).

Exercise II.22 Prove the correctness of the formula above for the shadow transformation
and the homogeneous matrix representation.

One potential pitfall with drawing shadows on a flat plane is that, if the shadow is drawn
exactly coincident with the plane, z-fighting may cause the plane and shadow to show through
each other. The phenomenon of z-fighting occurs when two objects are drawn at the same
depth from the viewer: owing to roundoff errors, it can happen that some pixel positions have
the first object closer than the other and other pixels have the second closer than the first. The
effect is a pattern of pixels in which one object shows through the other. One way to combat
z-fighting is to lift the shadow up from the plane slightly, but this can cause problems from
some viewpoints where the gap between the plane and the shadow can become apparent. To
solve this problem, you can use the OpenGL polygon offset feature. The polygon offset mode
perturbs the depth values (pseudo-distance values) of points before performing depth testing
against the pixel buffer. This allows the depth values to be perturbed for depth comparison
purposes without affecting the position of the object on the screen.

To use polygon offset to draw a shadow on a plane, you would first enable the polygon
offset mode with a positive offset value, draw the plane, and disable the polygon offset mode.
Finally, you would render the shadow without any polygon offset.

The OpenGL commands for enabling the polygon offset mode are

glPolygonOffset( 1.0, 1.0 );

glEnable(


GL_POLYGON_OFFSET_FILL
GL_POLYGON_OFFSET_LINE

GL_POLYGON_OFFSET_POINT

 );

Similar options for glDisable will disable polygon offset. The amount of offset is controlled
by the glPolygonOffset() command; setting both parameters to 1.0 is a good choice
in most cases. You can also select negative values such as -1.0 to use offset to pull objects
closer to the view. For details on what these parameters mean, see the OpenGL programming
manual (Woo et al., 1999).

II.3.5 The OpenGL Perspective Transformations

OpenGL provides special functions for setting up viewing transformations as either ortho-
graphic projections or perspective transformations. The direction and location of the camera
can be controlled with the same affine transformations used for modeling transformations,
and, in addition, there is a function, gluLookAt, that provides a convenient method to set the
camera location and view direction.
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The basic OpenGL command for creating an orthographic projection is

glOrtho ( float �, float r, float b, float t, float n, float f );

As discussed in Section II.3.1, the intent of the glOrtho command is to set up the camera or
eye position so that it is oriented to look down the negative z-axis at the rectangular prism of
points with � ≤ x ≤ r and b ≤ y ≤ t and n ≤ −z ≤ f . Any part of the scene that lies outside
this prism is clipped and not displayed. In particular, objects that are closer than the near
clipping plane, defined by (−z) = n, are not visible and do not even obstruct the view of more
distant objects. In addition, objects farther than the far clipping plane, defined by (−z) = f ,
are likewise not visible. Of course, objects, or parts of objects, outside the left, right, bottom,
and top planes are not visible.

Internally, the effect of the glOrtho command is to multiply the current matrix, which is
usually the projection matrix P , by the matrix

S =



2

r − �
0 0 −r + �

r − �

0
2

t − b
0 − t + b

t − b

0 0
−2

f − n
− f + n

f − n

0 0 0 1


.

This is the same as the matrix shown in Equation II.10 on page 48, except the signs of the
third row are reversed. This is because OpenGL’s convention for the meaning of points in the
2× 2× 2 cube is that z = −1 for the closest objects and z = 1 for the farthest objects, and
thus the z values need to be negated. As usual, the multiplication is on the right; that is, it has
the effect of performing the assignment P = P · S, where P is the current matrix (presumably
the projection matrix).

A special case of orthographic projections in OpenGL is provided by the following function:

gluOrtho2D( float �, float r, float b, float t );

The function gluOrtho2D is exactly like glOrtho, but with n = −1 and f = 1. That is,
gluOrtho2D views points that have z-value between−1 and 1. Usually, gluOrtho2D is used
when drawing two-dimensional figures that lie in the xy-plane, with z = 0. It is a convenience
function, along with glVertex2*, intended for drawing two-dimensional objects.

OpenGL has two commands that implement perspective transformations, glFrustum and
gluPerspective. Both these commands make the usual assumption that the viewpoint is
at the origin and the view direction is toward the negative z-axis. The most basic command is
the glFrustum command, which has the following syntax:

glFrustum ( float �, float r, float b, float t, float n, float f );

A frustum is a six-sided geometric shape formed from a rectangular pyramid by removing a
top portion. In this case, the frustum consists of the points 〈x, y, z〉 satisfying the conditions
II.16 and II.17. (Refer to Figure II.23).

a. The points lie between the near and far clipping planes:

n ≤ −z ≤ f. II.16
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View Frustum

Figure II.23. The frustum viewed with glFrustum(�, r, b, t, n, f ). The near clipping plane
is z = −n. The far clipping plane is z = − f . The frustum is the set of points satisfying Relations II.16
and II.17.

b. The perspective mapping, which performs a perspective projection onto the near clipping
plane, maps 〈x, y, z〉 to a point 〈x ′, y′, z′〉 with � ≤ x ′ ≤ r and b ≤ y′ ≤ t . On the basis of
Equation II.11, this is the same as

� ≤ n · x

−z
≤ r and b ≤ n · y

−z
≤ t. II.17

The effect of the glFrustum command is to form the matrix

S =



2n

r − �
0

r + �

r − �
0

0
2n

t − b

t + b

t − b
0

0 0
−( f + n)

f − n

−2 f n

f − n

0 0 −1 0


II.18

and then multiply the current matrix (usually the projection matrix) on the right by S. This
matrix S is chosen so that the frustum is mapped onto the 2× 2× 2 cube centered at the
origin. The formula for the matrix S is obtained in nearly the same way as the derivation of
Equation II.15 for the perspective transformation in Section II.3.2. There are three differences
between Equations II.18 and II.15. First, the OpenGL matrix causes the final x and y values
to lie in the range −1 to 1 by performing appropriate scaling and translation: the scaling
is caused by the first two diagonal entries, and the translation is effected by the top two values
in the third column. The second difference is that the values in the third row are negated
because OpenGL negates the z values from our own convention. The third difference is that
Equation II.15 was derived under the assumption that the view frustum was centered on the
z-axis. For glFrustum, this happens if � = −r and b = −t . But, glFrustum also allows
more general-view frustums that are not centered on the z-axis.

Exercise II.23� Derive Formula II.18 for the glFrustum matrix.

OpenGL provides a function gluPerspective that can be used as an alternative to
glFrustum. The function gluPerspective limits you to perspective transformations for
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which the z-axis is in the center of the field of view, but this is usually what is wanted anyway.
The function gluPerspective works by making a single call to glFrustum. The usage of
gluPerspective is

gluPerspective( float θ, float aspectRatio, float n, float f );

where θ is an angle (measured in degrees) specifying the vertical field of view. That is to say,
θ is the solid angle between the top bounding plane and the bottom bounding plane of the
frustum in Figure II.23. The aspect ratio of an image is the ratio of its width to its height, and
so the parameter aspectRatio specifies the ratio of the width of the frustum to the height of the
frustum. It follows that a call to gluPerspective is equivalent to calling glFrustum with

t = n · tan(θ/2)

b = −n · tan(θ/2)

r = (aspectRatio) · t
� = (aspectRatio) · b

As an example of the use of gluPerspective, consider the following code fragment from
the Solar.c program:

// Called when the window is resized
// Sets up the projection view matrix (somewhat poorly, however)
void ResizeWindow(int w, int h)
{

glViewport( 0, 0, w, h ); // Viewport uses whole window

float aspectRatio;
h = (h == 0) ? 1 : h; // Avoid divide by zero
aspectRatio = (float)w/(float)h;

// Set up the projection view matrix
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
gluPerspective( 60.0, aspectRatio, 1.0, 30.0 );

}
The routine ResizeWindow is called whenever the program window is resized9 and is given
the new width and height of the window in pixels. This routine first specifies that the viewport
is to be the entire window, giving its lower left-hand corner as the pixel with coordinates 0, 0
and its upper right-hand corner as the pixel with coordinates w − 1, h − 1.10 The viewport is
the area of the window in which the OpenGL graphics are displayed. The routine then makes
the projection matrix the active matrix, restores it to the identity, and calls gluPerspective.
This call picks a vertical field-of-view angle of 60◦ and makes the aspect ratio of the viewed
scene equal to the aspect ratio of the viewport.

It is illuminating to consider potential problems with the way gluPerspective is used
in the sample code. First, a vertical field of view of 60◦ is probably higher than optimal. By

9 This is set up by the earlier call to glutReshapeFunc in the main program of Solar.c.
10 Pixel positions are numbered by values from 0 to h − 1 from the bottom row of pixels to the top row

and are numbered from 0 to w − 1 from the left column of pixels to the right column.
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making the field of view too large, the effects of perspective are exaggerated, causing the image
to appear as if it were viewed through a wide-angle or “fish-eye” lens. On the other hand, if
the field of view is too small, then the image does not have enough perspective and looks too
close to an orthographic projection. Ideally, the field of view should be chosen to be equal to
the angle that the final screen image takes up in the field of view of the person looking at the
image. Of course, to set the field of view precisely in this way, one would need to know the
dimensions of the viewport (in inches, say) and the distance of the person from the screen. In
practice, one can usually only guess at these values.

The second problem with the preceding sample code is that the field of view angle is
controlled by only the up–down, y-axis, direction. To see why this is a problem, try running
the Solar program and resizing the window first to be wide and short and then to be narrow
and tall. In the second case, only a small part of the solar system will be visible.

Exercise II.24 Rewrite the ResizeWindow function in Solar.c so that the entire solar
system is visible no matter what the aspect ratio of the window is.

OpenGL provides another function gluLookAt to make it easy to position a viewpoint at
an arbitrary location in 3-space looking in an arbitrary direction with an arbitrary orientation.
This function is called with nine parameters:

gluLookAt(eye_x, eye_y, eye_z, center_x, center_y, center_z,
up_x, up_y, up_z);

The three “eye” values specify a location in 3-space for the viewpoint. The three “center” values
must specify a different location so that the view direction is toward the center location. The
three “up” values specify an upward direction for the y-axis of the viewer. It is not necessary
for the “up” vector to be orthogonal to the vector from the eye to the center, but it must not be
parallel to it. The gluLookAt command should be used when the current matrix is the model
view matrix, not the projection matrix. This is because the viewer should always be placed at
the origin in order for OpenGL’s lighting to work properly.

Exercise II.25 Rewrite the Solar function on page 39 to use gluLookAt instead of the
first translation and rotation.

II.4 Mapping to Pixels

The fourth stage of the rendering pipeline (see Figure II.1 on page 18) takes polygons with
vertices in 3-space and draws them into a rectangular array of pixels. This array of pixels is
called the viewport. By convention, these polygons are specified in terms of their vertices; the
three earlier stages of the pipeline have positioned these vertices in the 2× 2× 2 cube centered
at the origin. The x- and y-coordinates of a vertex determine its position in the viewport. The
z-coordinate specifies a relative depth or distance value – possibly a pseudo-distance value.
In addition, each vertex will usually have other values associated with it – most notably color
values. The color values are commonly scalars r , g, b, α for the intensities of red, green, and
blue light and the alpha channel value, respectively. Alternatively, the color may be a single
scalar for gray-scale intensity in a black and white image. Other values may also be associated
with pixels, for instance, u, v-values indexing into a texture map.

If the viewport has width w and height h, we index a pixel by a pair 〈i, j〉 with i, j integer
values, 0 ≤ i < w and 0 ≤ j < h. Suppose a vertex v has position 〈x, y, z〉 in the 2× 2× 2
cube. It is convenient to remap the x, y values into the rectangle [0, w)× [0, h) so that the
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values of x, y correspond directly to pixel indices. Thus, we let

x ′ = x + 1

2
w and y′ = y + 1

2
h.

Then the vertex v is mapped to the pixel 〈i, j〉, where11

i = ⌊
x ′
⌋

and j = ⌊
y′
⌋

,

with the exceptions that x ′ = w yields i = w − 1 and y′ = h yields j = h − 1. Thus, the pixel
〈i, j〉 corresponds to vertices with 〈x ′, y′〉 in the unit square centered at 〈i + 1

2 , j + 1
2 〉.

At the same time as the x ′ and y′ values are quantized to pixel indices, the other values
associated with the pixel are likewise quantized to integer values. The z-value is typically saved
as a 16- or 32-bit integer with 0 indicating the closest visible objects and larger values more
distant objects. Color values such as r , g, b are typically stored as either 8-bit integers (for
“millions of colors”modewith 16,777,216 colors) or as 5-bit integers (for “thousands of colors”
mode, with 32,768 colors). Texture coordinates are usually mapped to integer coordinates
indexing a pixel in the texture.

Now suppose that a line segment has as endpoints the two vertices v1 and v2 and that these
endpoints have been mapped to the pixels 〈i1, j1〉 and 〈i2, j2〉. Once the endpoints have been
determined, it is still necessary to draw the pixels that connect the two endpoints in a straight
line. The problem is that the pixels are arranged rectangularly thus, for lines that are not exactly
horizontal or vertical, there is some ambiguity about which pixels belong to the line segment.
There are several possibilities here for how to decide which pixels are drawn as part of the line
segment. The usual solution is the following.

First, when drawing the pixels that represent a line segment, we work only with the val-
ues 〈i1, j1〉 and 〈i2, j2〉: the floating point numbers from which they were derived have been
forgotten.12 Then let

�i = i2 − i1 and � j = j2 − j1.

Of course, we may assume that i1 ≤ i2; otherwise, the vertices could be interchanged. We can
also assume, without loss of any generality, that j1 ≤ j2, since the case j1 > j2 is symmetric.
We then distinguish the cases of whether the slope of the line segment is ≤ 1 or ≥ 1, that is,
whether � j/�i ≤ 1 or �i/� j ≤ 1. As illustrated in Figure II.24, in the first case, the line
segment can be drawn so that there is exactly one pixel 〈i, j〉 drawn for each i between i1 and i2.
In the second case, there is exactly one pixel 〈i, j〉 drawn for each j between j1 and j2.

Henceforth, it is assumed that the slope of the line is ≤ 1, that is, � j ≤ �i and that, in
particular, i1 �= i2. This does not cause any loss of generality since the case of slope > 1 can
be handled by interchanging the roles of the variables i and j . Our goal is to find values j(i) so
that the line segment can be drawn using the pixels 〈i, j(i)〉, for i = i1, i1 + 1, . . . , i2. This is
done by using linear interpolation to define an “ideal” value y(i) for j(i) and then rounding to
the nearest integer. Namely, suppose i1 ≤ i ≤ i2. Let α = i−i1

i2−i1
. Calculating the y-coordinate

11 The notation �a� denotes the least integer less than or equal to a.
12 There is some loss of information in rounding to the nearest pixel and forgetting the floating point

numbers. Some implementations of line drawing algorithms use subpixel levels of precision; that
is, rather than rounding to the nearest pixel, they use a fixed number of bits of extra precision to
address subpixel locations. This extra precision does not change the essential nature of the Bresenham
algorithm for line drawing, which is described in the next section. In particular, the Bresenham
algorithms can still work with integers.
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A

B

C

D

Figure II.24. The line segment AB has slope � j/�i ≤ 1. The line segment C D has slope ≥ 1. The
former segment is drawn with one pixel per column; the latter segment is drawn with one pixel per row.

of the line to be drawn on the viewport, we have that

y(i)− y(i1) = α · ( y(i2)− y(i1)),

that is,

y(i) = j1 + 1

2
+ α( j2 − j1) = j1 + 1

2
+ α� j

because our best estimates for y(i1) and y(i2) are y(i1) = j1 + 1
2 and y(i2) = j2 + 1

2 . We then
obtain j(i) by rounding down, namely,

j(i) =
⌊

j1 + 1

2
+ α� j

⌋
=

⌊
j1 + 1

2
+ i − i1

i2 − i1
� j

⌋
. II.19

Another, and more suggestive, way to write the formula for j(i) is to use the notation [x]
to denote x rounded to the nearest integer. Then [x] = �x + 1

2�, and so Equation II.19 is
equivalent to

j(i) = [(1− α) j1 + α j2] . II.20

As we will see in Chapter IV, this is the usual formula for linear interpolation. (The additive
1
2 in the earlier formulas is thus seen to be just an artifact of the rounding process.)

The other scalar values, such as the depth value z; the color values r, g, b; and the texture
coordinates can be linearly interpolated in the same way. For the color values, this is what is
called Gouraud interpolation.13 For example, the interpolated values for the depth (pseudo-
distance) z would be computed so that

z(i) = [(1− α)z1 + αz2] ,

where z1 and z2 are the integer values at the first and last vertex obtained by appropriately
scaling the z values and rounding down to the nearest integer. The value z(i) is the calculated
interpolating integer value at the pixel 〈i, y(i)〉.
13 Gouraud interpolation is named after H. Gouraud, who proposed linear interpolation in 1971 as a

method of blending colors across polygons in (Gouraud, 1971). His motivation was to apply smoothly
varying colors to renderings of surface patches similar to the patches discussed in Section VII.10.
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v1

v2

v3

〈i, j〉
〈 〈i4, j〉 i5, j〉

Figure II.25. The scan line interpolation method first interpolates along the edges of the triangle and then
interpolates along the horizontal rows of pixels in the interior of the triangle. The interpolation directions
are shown with arrows. If you look closely, you will note that the rightmost pixel 〈i5, j〉 on the horizontal
scan line is not exactly on the line segment forming the right edge of the triangle – this is necessary
because its position must be rounded to the nearest pixel.

The next section will present the Bresenham algorithm, which gives an efficient, purely
integer-based method for computing the interpolating values y(i), z(i), and so forth.

Before studying the Bresenham algorithm, we consider how interpolation is used to inter-
polate values across a triangle of pixels in the viewport. Let a triangle have vertices v1, v2,
and v3. After projecting and rounding to integer values, the vertices map to points 〈im, jm〉, for
m = 1, 2, 3. By the linear interpolation formulas above, the three sides of the triangle can be
drawn as pixels, and the other values such as depth and color are also interpolated to the pixels
along the sides of the triangle. The remaining pixels in the interior of the triangle are filled
in by interpolation along the horizontal rows of pixels. Thus, for instance, in Figure II.25, the
scalar values at pixel 〈i, j〉 are interpolated from the values at the pixels 〈i4, j〉 and 〈i5, j〉.
This method is called scan line interpolation.

The process of interpolating along a scan line is mathematically identical to the linear
interpolation discussed above. Thus, it can also be carried out with the efficient Bresenham
algorithm. In fact, the most natural implementation would involve nested loops that implement
nested Bresenham algorithms.

Finally, there is a generalization of scan line interpolation that applies to general polygons
rather than just to triangles. The general scan line interpolation interpolates values along all
the edges of the polygon. Then, each horizontal scan line of pixels in the interior of the polygon
begins and ends on an edge or vertex of course. The values on the horizontal scan line are
filled in by interpolating from the values at the ends. With careful coding, general scan line
interpolation can be implemented efficiently to carry out the interpolation along edges and
across scan lines simultaneously. However, scan line interpolation suffers from the serious
drawback that the results of the interpolation can change greatly as the polygon is rotated, and
so it is generally not recommended for scenes that contain rotating polygons. Figure II.26 shows
an example of how scan line interpolation can inconsistently render polygons as they rotate.
There, a polygon is drawn twice – first upright and then rotated 90◦. Two of the vertices of the
polygon are labeled W and are assigned the color white. The other two vertices are labeled B
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Figure II.26. Opposite vertices have the same black or white color. Scan line interpolation causes the
appearance of the polygon to change radically when it is rotated. The two polygons are identical except
for their orientation.

and are colored black. The scan line interpolation imposes a top-to-bottom interpolation that
drastically changes the appearance of the rotated polygon.

Another problem with scan line interpolation is shown in Figure II.27. Here a nonconvex
polygon has two black vertices and three white vertices. The nonconvexity causes a discontin-
uous shading of the polygon.

Scan line interpolation on triangles does not suffer from the problems just discussed. Indeed,
for triangles, scan line interpolation is equivalent to linear interpolation – at least up to roundoff
errors introduced by quantization.

II.4.1 Bresenham Algorithm

The Bresenham algorithm provides a fast iterative method for interpolating on integer values.
It is traditionally presented as an algorithm for drawing pixels in a rectangular array to form a
line. However, it applies equally well to performing linear interpolation of values in the depth
buffer, linear interpolation for Gouraud shading, and so forth.

Before presenting the actual Bresenham algorithm, we present pseudocode for an algorithm
based on real numbers. Then we see how to rewrite the algorithm to use integers instead. The
algorithm will calculate the integer values j(i) for i = i1, i1 + 1, . . . , i2 so that j(i1) = j1
and j(i2) = j2. We are assuming without loss of generality that i1 < i2 and j1 ≤ j2 and that
� j = j2 − j1 and�i = i2 − i1 with� j/�i ≤ 1. The first algorithm to compute the j(i) values
is (in pseudo-C++):

float dJ = j2-j1;
float dI = i2-i1;
float m = dJ/dI; // Slope
writePixel(i1, j1);
float y = j1;
int i, j;
for ( i=i1+1; i<=i2; i++ ) {

y = y+m;
j = round(y); // Round to nearest integer
writePixel( i, j );

}

In the preceding code, the function writePixel(i,j) is called to indicate that j(i) = j.
The function round(y) is not a real C++ function but is intended to return y rounded to the
nearest integer. The variables i1 and i2 are equal to i1 and i2.

The algorithm given above is very simple, but its implementation suffers from its using
floating point and converting a floating point number to an integer number in each iteration
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B

B
W

WW

Figure II.27. Vertices are colored black or white as labeled. Scan line interpolation causes the nonconvex
polygon to be shaded discontinuously.

of the loop. A more efficient algorithm, known as Bresenham’s algorithm, can be designed to
operate with only integers. The basic insight for Bresenham’s algorithm is that the value of y
in the algorithm is always a multiple of 1/(i2 − i1) = 1/�i . We rewrite the algorithm, using
variablesj andry that have the property thatj+ (ry/�i) is equal to the value y of the previous
pseudocode. Furthermore, j is equal to [y] = round(y), and thus −�x/2 < ry ≤ �x/2,
where �x = �i . With these correspondences, it is straightforward to verify that the next
algorithm is equivalent to the previous algorithm.

int deltaX = i2-i1;
int thresh = deltaX/2; // Integer division rounds down
int ry = 0;
int deltaY = j2 - j1;
writePixel( i1, j1 );
int i;
int j = j1;
for ( i=i1+1; i<=i2; i++ ) {

ry = ry + deltaY;
if ( ry > thresh ) {

j = j + 1;
ry = ry - deltaX;

}
writePixel( i, j );

}
The preceding algorithm, the Bresenham algorithm, uses only integer operations and

straightforward operations such as addition, subtraction, and comparison. In addition, the
algorithm is simple enough that it can readily be implemented efficiently in special-purpose
hardware.

We also need a version of the Bresenham algorithm that works for interpolating other values
such as depth buffer values, color values, and so on.When interpolating depth buffer values, for
instance, itmaywell be the case that�z = z2 − z1 is greater than�x ; however, there is, without
loss of generality, only one z value per i value. (Since we are assuming that the line’s slope is
at most 1, there is only one pixel per i value.) To adapt the Bresenham algorithm to the case in
which �z > �x , we let q = ��z/�x� and r = �z − q�x . Then, the values z(i) increase by
approximately q + r/�x each time i is incremented. The resulting algorithm is as follows:

int deltaX = i2-i1;
int thresh = deltaX/2;
int rz = 0;
int q = (z2-z1)/deltaX; // Integer division rounds down
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int r= (z2-z1)-q*deltaX;
writePixelZ( i1, z1 );
int i;
int z = z1;
for ( i=i1+1; i<=i2; i++ ) {

z = z + q;
rz = rz + r;
if ( rz > thresh ) {

z = z + 1;
rz = rz - deltaX;

}
writePixelZ( i, z );

}

The function writePixelZ(i,z) indicates that z is the interpolated value at the pixel
〈i, j(i)〉. This algorithm applies to the case in which �z < 0 too, provided that the computa-
tion of q as (z2-z1)/deltaX always rounds down to the nearest integer. (However, the usual
C/C++ rounding does not work this way!)

II.4.2 The Perils of Floating Point Roundoff

The preceding algorithm for line drawing has the property of attempting to draw lines that
are “infinitely thin.” Because of this, several unavoidable pitfalls can arise. The first and most
common problem is that of aliasing. The term aliasing refers to a large variety of problems
or effects that can occur when analog data is converted into digital data or vice versa. When
drawing a line, we are converting floating point numbers representing positions into integers
that signify pixel positions. The floating point numbers usually have much more precision than
the integer values, and the conversion to integer values can cause problems.

For drawing lines on a screen, a major part of the problem is that the pixels on the screen are
arranged rectangularly, whereas a line can be diagonal at an arbitrary angle. Therefore, a line
at a diagonal is drawn as a “step function” consisting of straight segments that are horizontal
(or vertical) with a 1-pixel jump between the segments. This can give the line drawn on the
screen a jagged or sawtooth look, that is to say, the line has “jaggies.” In addition, if the line is
animated, the positions of the jaggies on the line move with the line. This can cause undesirable
effects when the jaggies become annoyingly visible or where a moving line figure becomes
“shimmery” from the changes in the digitization of the lines.

Several antialiasing methods can reduce the undesirable jaggies on lines, but we do not
discuss these here (see Sections IX.2.1 and IX.3). Instead, we discuss another problem that can
arise in rendering lines if the programmer is not careful to avoid inconsistent roundoff errors.
An example is shown in Figure II.28. In the figure, the program has attempted to draw two
polygons, ABC D and B AE F , that share the common edge AB. However, owing to roundoff
errors, the second polygon was drawn as B ′A′E F , where A′ and B ′ are placed 1 pixel above
and to the left of A and B, respectively. Because of this, the whole line segment A′B ′ is placed
1 pixel up and 1 pixel to the left of the segment AB. The result is that the edges of the polygons
do not exactly coincide, and there are pixels between the two polygons that are left undrawn.
Each time the line segments “jog” up 1 pixel, an undrawn pixel is left behind. These undrawn
pixels can create unsightly pixel-sized holes in the surface being formed from the two polygons.

In actuality, the problems of matching up edges between two abutting polygons is evenmore
sensitive to roundoff error than is indicated in the previous paragraph.When two polygons share
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Figure II.28. The polygons ABC D and B ′A′E F are supposed to share an edge, but arbitrarily small
roundoff errors can cause a small displacement of the edge. This can lead to pixel-sized holes appearing
between the two polygons. In the figure, the pixelized polygons are shown with different crosshatching:
the three white pixels between the polygons are errors introduced by roundoff errors and will cause
unwanted visual artifacts. This same effect can occur even in cases in which only one of the vertices is
affected by roundoff errors.

an edge, the graphics display system should render them so that each pixel on the boundary
edge belongs to exactly one of the two polygons. That is to say, the image needs to be drawn
without leaving any gaps between the polgons and without having the polygons overlap in
any pixel. There are several reasons it is important not to have the polygons overlap and share
a pixel. First, it is desirable for the image to be drawn the same regardless of the order in
which the two polygons are processed. Second, for some applications, such as blending or
shadow volumes, polygons will leave visible seams where they overlap. Graphics hardware
will automatically draw abutting polygons with no gaps and no overlaps; the edges are traced
out by the Bresenham algorithm, but only the pixels whose centers are inside the polygon are
drawn. (Some special handling is needed to handle the situation in which a pixel center lies
exactly on a polygon edge.) This does mean, unfortunately, that almost any roundoff error that
moves a vertex to a different pixel position can cause rendering errors.

This kind of misplacement from roundoff errors can happen no matter how small the
roundoff error is. The only way to avoid this kind of roundoff error is to compute the positions
A′ and B ′ in exactly the same way that A and B were computed. By “exactly the same way,”
we do not mean by a mathematically equivalent way; rather, we mean by the same sequence
of calculations.14

Figure II.29 shows another situation in which discretization errors can cause pixel-sized
holes, even if there are no roundoff errors. In the figure, three triangles are being drawn:�uyx,
�uzy, and�vxz. The point y lies on the boundary of the third triangle. Of course, if the color
assigned to the vertex y is not the appropriateweighted average of the colors assigned to x and z,
then there will be a discontinuity in color across the line xz. But there can be problems even

14 In rare cases, even using exactly the same sequence of calculations may not be good enough if the
CPU or floating point coprocessor has flexibility in when it performs rounding of intermediate results,
which is the default setting on many PCs.
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Figure II.29. Three triangles as placed by glVertex*. Even if no roundoff errors occur, the pixel-level
discretization inherent in the Bresenham algorithm can leave pixel-sized gaps along the line xz.

if all vertices are assigned the same color. When the Bresenham algorithm draws the lines xy,
yz, and xz, it starts by mapping the endpoints to the nearest pixel centers. This can sufficiently
perturb the positions of the three points so that there are pixel-sized gaps left undrawn between
the line xz and the two lines xy and yz.

This kind of discretization error can easily arise when approximating a curved surface with
flat polygons (see the discussion on “cracking” in Section VII.10.2). It can also occur when two
flat polygons that abut each other are subdivided into subpolygons, for example, in radiosity
algorithms. If you look closely, you may be able to see examples of this problem in Figures
XI.1–XI.3 on pages 273–274. (This depends on how precisely the figures were rendered in the
printing process!)

To avoid this problem, you should subdivide the triangle �vxz and draw the two triangles
�vxy and �vyz instead.
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III

Lighting, Illumination, and Shading

Lighting and shading are important tools for making graphics images appear more realistic and
more understandable. Lighting and shading can provide crucial visual cues about the curvature
and orientation of surfaces and are important in making three-dimensionality apparent in a
graphics image. Indeed, good lighting and shading are probably more important than correct
perspective in making a scene understandable.

Lighting and illumination models in computer graphics are based on a modular approach
wherein the artist or programmer specifies the positions and properties of light sources,
and, independently, specifies the surface properties of materials. The properties of the lights
and the materials interact to create the illumination, color, and shading seen from a given
viewpoint.

For an example of the importance of lighting and shading for rendering three-dimensional
images, refer to Figure III.1. Figure III.1(b) shows a teapot rendered with a solid color with
no shading. This flat, featureless teapot is just a silhouette with no three-dimensionality.
Figure III.1(c) shows the same teapot but now rendered with the Phong lighting model. This
teapot now looks three-dimensional, but the individual polygons are clearly visible. Figure
III.1(d) further improves the teapot by using Gouraud interpolation to create a smooth, rounded
appearance. Finally, Figures III.1(e) and (f) show the teapot with specular lighting added; the
brightly reflecting spot shown in (e) and (f) is called a specular highlight.

“Shading” refers to the practice of letting colors and brightness vary smoothly across a
surface. The two most popular kinds of shading are Gouraud interpolation (Gouraud, 1971)
and Phong interpolation (Phong, 1975). Either of these shading methods can be used to give
a smooth appearance to surfaces; even surfaces modeled as flat facets can appear smooth, as
shown in Figure III.1(d) and (f).

This chapter discusses two local models of illumination and shading. The first model is the
popular Phong lighting model. This model gives good shading and illumination; in addition, it
lends itself to efficient implementation in either softwareor hardware.ThePhong lightingmodel
is almost universally used in real-time graphics systems – particularly for PCs andworkstations.
The Phong lighting model was introduced by Phong in the same paper (Phong, 1975) that also
introduced Phong shading.

The second local lighting model is the Cook–Torrance lighting model. This is computa-
tionally more difficult to implement but gives better flexibility and the ability to model a wider
variety of surfaces.

These lighting and shading models are at least partly based on the physics of how light
reflects off surfaces. However, the actual physics of reflection is quite complicated, and it is
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(a) (b)

(c) (d)

(e) (f )

Figure III.1. Six teapots with various shading and lighting options. (a) Wireframe teapot. (b) Teapot
drawn with solid color but no lighting or shading (c) Teapot with flat shading with only ambient and
diffuse lighting. (d) Teapot drawn with Gouraud interpolation with only ambient and diffuse reflection.
(e) Teapot drawn with flat shading with ambient, diffuse, and specular lighting. (f) Teapot with Gouraud
shading with ambient, diffuse, and specular lighting. See Color Plate 4.

more accurate to say that the Phong and Cook–Torrance models are physically inspired rather
than physically correct.

The Phong and Cook–Torrance models are both “local” models of lighting: they consider
only the effects of a light source shining directly onto a surface and then being reflected directly
to the viewpoint. Local lighting models do not consider secondary reflections, where light may
reflect from several surfaces before reaching the viewpoint. Nor do the local lightingmodels, at
least in their simplest forms, properly handle shadows cast by lights. We will discuss nonlocal,
or “global,” lighting models later: Chapter IX discusses ray tracing, and Chapter XI discusses
radiosity.

III.1 The Phong Lighting Model

The Phong lighting model is the simplest, and by far the most popular, lighting and shading
model for three-dimensional computer graphics. Its popularity is due, firstly, to its being flexible
enough to achieve a wide range of visual effects, and, secondly, to the ease with which it can
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Light source

Figure III.2. Diffusely reflected light is reflected equally brightly in all directions. The double line is a
beam of incoming light. The dotted arrows indicate outgoing light.

be efficiently implemented in software and especially hardware. It is the lighting model of
choice for essentially all graphics hardware for personal computers, game consoles, and other
realtime applications.

The Phong lighting model is, at its heart, a model of how light reflects off of surfaces. In
the Phong lighting model, all light sources are modeled as point light sources. Also, light is
modeled as consisting of the three discrete color components (red, green, and blue). That is
to say, it is assumed that all light consists of a pure red component, a pure green component,
and a pure blue component. By the superposition principle, we can calculate light reflection
intensities independently for each light source and for each of the three color components.

The Phong model allows for two kinds of reflection:

Diffuse Reflection. Diffusely reflected light is light which is reflected evenly in all direc-
tions away from the surface. This is the predominant mode of reflection for nonshiny
surfaces. Figure III.2 shows the graphical idea of diffuse reflection.

Specular Reflection. Specularly reflected light is light which is reflected in a mirror-like
fashion, as from a shiny surface. As shown in Figure III.3, specularly reflected light
leaves a surface with its angle of reflection approximately equal to its angle of incidence.
This is the main part of the reflected light from a polished or glossy surface. Specular
reflections are the cause of “specular highlights,” that is, bright spots on curved surfaces
where intense specular reflection occurs.

In addition to dividing reflections into two categories, the Phong lighting model treats light
or illumination as being of three distinct kinds:

Specular Light. Specular light is light from a point light source that will be reflected
specularly.

Diffuse Light. Diffuse light is light from a point light source that will be reflected diffusely.

Light source

Figure III.3. Specularly reflected light is reflected primarily in the direction with the angle of incidence
equal to the angle of reflection. The double line is a beam of incoming light. The dotted arrows indicate
outgoing light; the longer the arrow, the more intense the reflection in that direction.
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Light source

Eye (Viewpoint)
n

v
�

Figure III.4. The fundamental vectors of thePhong lightingmodel. The surface normal is the unit vectorn.
The point light source is in the direction of the unit vector �. The viewpoint (eye) is in the direction of
the unit vector v. The vectors �, n, and v are not necessarily coplanar.

Ambient Light. Ambient light is light that arrives equally from all directions rather than
from a point light source. Ambient light is intended to model light that has spread around
the environment through multiple reflections.

As mentioned earlier, light is modeled as coming in a small number of distinct wavelengths,
that is, in a small number of colors. In keeping with the fact that monitors have red, green,
and blue pixels, light is usually modeled as consisting of a blend of red, green, and blue. Each
of the color components is treated independently with its own specular, diffuse, and ambient
properties.

Finally, the Phong lighting model gives material properties to each surface; the material
properties control how lights illuminate the surface. Except for the specular exponent, these
properties can be set independently for each of the three colors.

Specular Reflection Properties. A specular reflectivity coefficient,ρs, controls the amount
of specular reflection. A specular exponent, f , controls the shininess of the surface by
controlling the narrowness of the spread of specularly reflected light.

Diffuse Reflection Properties. A diffuse reflectivity coefficient, ρd, controls the relative
intensity of diffusely reflected light.

Ambient Reflection Properties. An ambient reflectivity coefficient, ρa, controls the
amount of ambient light reflected from the surface.

Emissive Properties. The emissivity of a surface controls how much light the surface
emits in the absence of any incident light. Light emitted from a surface does not act as a
light source that illuminates other surfaces; instead, it only affects the color seen by the
observer.

The basic setup for reflection in the Phong reflection model is shown in Figure III.4. As
shown in thefigure, a particular point on a surface is being illuminatedby apoint light source and
viewed from some viewpoint. The surface’s orientation is specified by a unit vector n pointing
perpendicularly up from the surface. The light’s direction is specified by a unit vector � that
points from the point on the surface towards the light. The viewpoint direction is similarly
specified by a unit vector v pointing from the surface towards the viewpoint. These three
vectors, plus the properties of the light source and of the surface material, are used by the
Phong model to determine the amount of light reaching the eye.

We assume that light from the point light source is shining with intensity I in. The Phong
lighting model provides methods to calculate the intensity of the light reflected from the
surface that arrives at the eye. It is not particularly important to worry about how light intensity
is measured except that it is useful to think of it as measuring the energy flux per unit area,
where the area is measured perpendicularly to the direction of the light.
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�
n

v
θ χ

I in
d

Id

Figure III.5. The setup for diffuse reflection in the Phong model. The angle of incidence is θ , and I ind and
Id are the incoming and outgoing light intensities in the indicated directions.

The next two sections discuss how thePhongmodel calculates the reflection due to diffuse re-
flection and to specular reflection. For the time being,wewill restrict attention to light at a single
wavelength (i.e., of a single, pure color) and coming from a single light source. Section III.1.4
explains how the effects of multiple lights and of different colors are additively combined.

III.1.1 Diffuse Reflection

Diffuse reflection means that light is being reflected equally in all directions, as illustrated in
Figure III.2. The fundamental Phong vectors are shown again in Figure III.5 but now with the
angle between � and n shown equal to θ : this is the angle of incidence of the light arriving
from the point source. The amount of light that is diffusely reflected is modeled as

Id = ρd I in
d cos θ = ρd I in

d (� · n), III.1

where the second equality holds because the vectors are unit vectors. Here, I in
d is the intensity of

the incoming diffuse light, and Id is the intensity of the diffusely reflected light in the direction
of the viewpoint. The value ρd is a constant, which is called the diffuse reflectivity coefficient
of the surface. This value represents a physical property of the surface material.

A surface that diffusely reflects light according to Equation III.1 is called Lambertian,
and most nonshiny surfaces are fairly close to Lambertian. The defining characteristic of a
Lambertian surface is that, if a large flat region of the surface is uniformly lit, the surface
should have the same apparent (or perceived) brightness and color from all viewing directions.

The presence of the cos θ term in Equation III.1 requires some explanation. Recall that
the incoming light intensity I in

d is intended to measure energy flux per unit area with unit
area measured perpendicularly to the direction of the light. Since the light is incident onto
the surface at an angle of θ away from the normal vector n, a “perpendicularly measured unit
area’s” worth of energy flux is spread over a larger area of the surface, namely, an area that is
larger by a factor of 1/(cos θ ). See Figure III.6 for an illustration of how the area increases by

θ
Area A

Area A/cos θ

n

Figure III.6. The perpendicular cross-sectional area of a beam of light is A. The area of the surface tilted
at an angle θ is larger by a factor of 1/ cos θ .
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� r
n

vθ θ ϕ

I in
s

Is

Figure III.7. The setup for specular reflection in the Phong model. The angle of incidence is θ . The
vector r points in the direction of perfect mirror-like reflection, and I in

s and Is are the incoming and
outgoing specular light intensities respectively, in the indicated directions.

a factor of 1/ cos θ . Because of this, the energy flux arriving per unit area of the surface is only
(cos θ )I in

d .
At this point, it would be reasonable to ask why there is not another cosine factor involving

the angle of reflection. Of course, this is not what we generally perceive: that is, when one looks
at a surface from a sharp angle we do not see the brightness of the surface drop off dramatically
with the cosine of the angle of reflection. Otherwise, surfaces viewed from a sharply sidewise
angle would appear almost black. Conversely, diffusely reflecting surfaces do not appear much
brighter when viewed from straight on.1

However, more careful consideration of why there is no factor involving the angle of re-
flection reveals that Figure III.2 is a little misleading. It is not the case that the probability of
a single photon’s being reflected in a given direction is independent of the reflection direction.
Instead, letting χ be the angle between the surface normal n and the outgoing light direction v,
we find the probability that a photon reflects out in the direction v is proportional to cosχ .
The viewer looking at the surface from this view angle of χ from the normal vector sees light
coming from a surface area of (1/ cosχ ) times the apparent field of view area. (This is similar
to the justification of the cos θ factor.) The two factors of cosχ and 1/ cosχ cancel out, and
we are left with the Phong diffuse reflection formula III.1.

III.1.2 Specular Reflection

Specular reflection occurs when light reflects, primarily mirror-like, in the direction where the
angle of incidence equals the angle of reflection. Specular reflection is used to model shiny
surfaces. A perfect mirror would reflect all of its light in exactly that direction, but most shiny
surfaces do not reflect nearly as well as a mirror, and so the specularly reflected light spreads
out a little, as is shown in Figure III.3. (In any event, the Phong lighting model is not capable
of modeling mirror-like reflections other than specular reflections from point light sources.)

Given the unit vector � in the direction of the light source and the unit surface normal n,
the direction of a perfect mirror-like reflection is given by the vector r shown in Figure III.7.
The vector r is a unit vector coplanar with � and n. The angle of perfect reflection is the angle
between r andn, and this is equal to the angle of incidence θ , which is the angle between � andn.

It is best to compute r using the following formula:

r = 2(� · n)n− �.

To derive this formula, note that (� · n)n is the projection of � onto n and that �− (� · n)n is
equal to (� · n)n− r.
1 We are describing Lambertian surfaces. However, not all surfaces are Lambertian (e.g., the moon as

illuminated by the sun and viewed from the Earth).
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� r
hn

vθ ϕ

ψ

I in
s

Is

Figure III.8. The setup for calculating the specular reflection using the halfway vector h, the unit vector
halfway between � and v.

In Figure III.7, the angle between the view vector and the perfect reflection direction vector
is ϕ. The guiding principle for determining specular reflection is that, the closer the angle ϕ is
to zero, the more intense is the specular reflection in the direction of the viewpoint. The Phong
lighting model uses the factor

(cosϕ) f III.2

to model the dropoff in light intensity in a reflection direction that differs by an angle of ϕ from
the direction r of perfect reflection. There is no particular physical justification for the use of
the factor (cosϕ) f ; rather, it is used because the cosine can easily be computed by a dot product
and the exponent f can be adjusted experimentally on an ad hoc basis to achieve the desired
spread of specular light. The exponent f is ≥ 0, and values in the range 50 to 80 are typical
for shiny surfaces; the larger the exponent, the narrower the beam of specularly reflected light.
Higher exponent values make the specular highlights smaller and the surface appear shinier;
however, exponents that are too high can lead to specular highlights being missed.

With the factor III.2, the Phong formula for the intensity Is of specularly reflected light is

Is = ρs I
in
s (cosϕ) f = ρs I

in
s (v · r) f , III.3

where ρs is a constant called the specular reflectivity coefficient and I in
s is the intensity of

the specular light from the light source. The value of ρs depends on the surface and on the
wavelength of the light. For the time being, we are working under the assumption that all the
light is a single pure color.

Often a computational shortcut, based on the “halfway” vector, is used to simplify the
calculation of Is. The halfway vector h is defined to be the unit vector halfway between the
light source direction and the view direction, namely,

h = �+ v
||�+ v|| .

Let ψ be the angle between h and the surface normal n. Referring to Figure III.8, one can
easily see that if �, n, and v are (approximately) coplanar, then ψ is (approximately) equal to
ϕ/2. Therefore, it is generally acceptable to useψ instead of ϕ in the calculation of Is since the
exponent f can be changed slightly to compensate for the factor of two change in the value of
the angle. With the halfway vector, the Phong equation for the intensity of specular reflection
becomes

Is = ρs I
in
s (cosψ) f = ρs I

in
s (h · n) f . III.4

Although III.4 is not exactly equal to III.3, it gives qualitatively similar results.
For polygonally modeled objects, the calculation of the diffuse and specular components of

Phong lighting is usually done at least once for each vertex in the geometric model. For points
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in the interior of polygons, Gouraud shading is used to determine the lighting and colors by
averaging values from the vertices (see Section III.1.5 below). To apply the formula III.1 and
the formulas III.3 or III.4 at each vertex, it is necessary to calculate the unit vectors � and
v at each vertex. To calculate these two vectors, one subtracts the surface position from the
positions of the light and the viewpoint and then normalizes the resulting differences. This is
computationally expensive, since, for each of � and v, this computation requires calculation
of a square root and a division. One way to avoid this calculation is to make the simplifying
approximation that the two vectors � and v are constants and are the same for all vertices. In
essence, this has the effect of placing the lights and the viewpoint at points at infinity so that the
view direction v and the light direction � are independent of the position of the surface being
illuminated. When the light direction vector � is held constant, we call the light a directional
light. Nondirectional lights are called positional lights since the light’s position determines
the direction of illumination of any given point. If the view direction is computed using the
position of the viewpoint, then we say there is a local viewer. Otherwise, the view direction v
is held fixed, and we call it a nonlocal viewer. Note that a nonlocal viewer can be used in
conjunction with a perspective viewing transformation.

Ifwehave a directional light and a nonlocal viewer, so that both � andv are held constant, then
the vector h also remains constant. This makes the use of the halfway vector and Formula III.4
even more advantageous: the only vector that needs to be calculated on a per-vertex basis is
the surface normal n.

III.1.3 Ambient Reflection and Emissivity

Ambient light is light that comes from all directions rather than from the direction of a light
source. It ismodeled as being reflected equally in all directions, and thus the ambient component
of the surface lighting and shading is independent of the direction of view. We let I in

a represent
the total intensity of the incoming ambient light. In the Phong model, the surface has an
associated ambient reflectivity coefficient ρa that specifies the fraction of the ambient light
reflected. The formula for the intensity of the outgoing ambient light is

Ia = ρa I in
a . III.5

Finally, a surface can also be given an emissive intensity constant Ie. This is equal to the
intensity of the light emitted by the surface in addition to the reflected light.

III.1.4 Putting It Together: Multiple Lights and Colors

So far, the discussion of the Phong model has been restricted to a single wavelength (or pure
color) of light with illumination from a single light source. According to the superposition
principle, the various types of reflection and emission can be combined by simple addition.
Furthermore, the effect of multiple lights is likewise determined by adding the illumination
from the lights considered individually. Finally, different wavelengths may be considered in-
dependently with no interaction between the intensity of one wavelength and that of another.

First, for a single wavelength and a single light source, the total outgoing light intensity I
is equal to

I = Ia + Id + Is + Ie

= ρa I in
a + ρd I in

d (� · n)+ ρs I
in
s (r · v) f + Ie. III.6

(The halfway vector formula for specular reflection may be used instead with h · n replacing
r · v in the equation.)
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Second, to adapt this formula to multiple wavelengths, we write I λ, I λ,in
a , I λ,in

d , I λ,in
s , I λ

e
for the intensities of the light at wavelength λ. In addition, the material properties are also
dependent on the wavelength λ and can now be written as ρλ

a , and so forth. It is usual, however,
tomake the specular exponent independent of thewavelength. Equation III.6 can be specialized
to a single wavelength, yielding

I λ = ρλ
a I λ,in

a + ρλ
d I λ,in

d (� · n)+ ρλ
s I λ,in

s (r · v) f + I λ
e . III.7

It is traditional to use the three wavelengths of red, green, and blue light since these are the three
colors displayed by computer monitors; however, more wavelengths can be used for greater
realism.

To write a single equation incorporating all three wavelengths at once, we use boldface
variables to denote a 3-tuple: we let ρa denote the triple 〈ρred

a , ρ
green
a , ρblue

a 〉; let I equal
〈I red, I green, I blue〉, and so forth. We also momentarily use ∗ for component-wise multipli-
cation on 3-tuples. Then Equation III.7 can be written as

I = ρa ∗ Iina + ρd ∗ Iind (� · n)+ ρs ∗ Iins (r · v) f + Ie. III.8

Third, we consider the effect of multiple point light sources. We assume there are k light
sources. When illuminating a given point on a surface, light number i has light direction vector
�i . The i th light also has an intensity value Iin,i that represents the intensity of the light reaching
that point on the surface. This intensity may be moderated by the distance of the surface from
the light and by various other effects such as spotlight effects. In addition, if n · �i ≤ 0, then
the light is not shining from above the surface, and in this case we take Iin,i to be zero. We then
merely add the terms of Equation III.8 over all light sources to get the overall illumination (ri

is the unit vector in the direction of perfect reflection for light i):

I = ρa ∗ Iina + ρd ∗
k∑

i=1
Iin,id (�i · n)+ ρs ∗

k∑
i=1

Iin,is (ri · v) f + Ie. III.9

The 3-tuple Iina represents the incoming ambient light. It is common to specify a global value,
Iin,globala , for global ambient light and to have each light source contribute some additional
ambient light, Iin,ia , to the scene. Then,

Iina = Iin,globala +
k∑

i=1
Iin,ia . III.10

This completes the theoretical description of the Phong lighting model. The next section
takes up the two most common methods of interpolating, or shading, colors and brightness
from the vertices of a triangle into the interior points of the triangle. Section III.1.8 explains
in outline form how OpenGL commands are used to specify the material and light properties
needed for the Phong lighting calculations.

Exercise III.1 Why is it customary to use the same specular exponent for all wavelengths?
What would a specular highlight look like if different wavelengths had different specular
exponents?

III.1.5 Gouraud and Phong Shading

The term “shading” refers to the use of interpolation to create a smoothly varying pattern of
color and brightness on the surfaces of objects. Without shading, each polygon in a geometric
model would be rendered as a solid, constant color; the resulting image would be noticeably
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(a) (b)

Figure III.9. Two cubes with (a) normals at vertices perpendicular to each face, and (b) normals outward
from the center of the cube. Note that (a) is rendered with Gouraud shading, not flat shading. See Color
Plate 5.

polygonal. One way to avoid this problem is to use extremely small polygons, say with each
polygon so small that it spans only one pixel, but often this is prohibitively expensive in terms
of computational time. Instead, good shading effects can be obtained even for moderately large
polygons by computing the lighting and colors at only the vertices of the polygons and using
interpolation, or averaging, to set the lighting and colors of pixels in the interior of the polygons.

There are several ways that interpolation is used to create shading effects. As usual, suppose
a surface is modeled as a set of planar, polygonal patches and we render one patch at a time.
Consider the problem of determining the color at a single vertex of one of the patches. Once the
light source, viewpoint, and material properties are fixed, it remains only to specify the normal
vector n at the vertex. If the surface is intended to be a smooth surface, then the normal vector
at the vertex should, of course, be set to be the normal to the underlying surface. On the other
hand, some surfaces are faceted and consist of flat polygonal patches – for example, the cube
shown in part (a) of Figure III.9. For these surfaces, the normal vector for the vertex should be
the same as the normal vector for the polygon being rendered. Since vertices typically belong
to more than one polygon, this means that a vertex might be rendered with different normal
vectors for different polygons.

Parts (d) and (f) of Figure III.1 show examples of Gouraud shading. Figure III.9 shows
a more extreme example of how Gouraud shading can hide, or partially hide, the edges of
polygons. Both parts of Figure III.9 show a reddish solid cube lit by only ambient and diffuse
light, and both figures use Gouraud shading. The first cube was rendered by drawing each
polygon independently with the normals at all four vertices of each polygon normal to the
plane of the polygon. The second cube was drawn with the normal to each vertex pointing
outward from the center point of the cube; that is, the normals at a vertex are an average of the
normals of the three adjacent faces and thus are equal to 〈±1/√3,±1/√3,±1/√3〉. The faces
of the cube are clearly visible as flat surfaces in the first figure but are somewhat disguised in
the second picture.

The question of how to determine the surface normal at a vertex of a polygonal model will
be discussed further in Section III.1.6. For the moment, we instead consider the methods for
interpolating the results of the Phong lighting model to shade interior points of a polygon. We
assume the polygon is a triangle. This is a reasonable assumption, as rendering systems gener-
ally triangulate polygons. This assumption has the convenient effect that triangles are always
planar, and so we do not need to worry about the pathological situation of nonplanar polygons.
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Two kinds of shading are used with the Phong model, and both usually use the scan line
interpolation described in Section II.4. Scan line interpolation is also equivalent to linear
interpolation, which is discussed in Section IV.1.

The first kind of shading is Gouraud shading. In Gouraud shading, a color value is deter-
mined for each vertex, the color value being a triple 〈r, g, b〉 with red, green, and blue light
intensities. After the three vertices of a triangle are rendered at pixel positions in the viewport,
the interior pixels of the triangle in the viewport are shaded by simple linear interpolation.
Recall that this means that if two vertices x0, x1 have color values 〈ri , gi , bi 〉 for i = 0, 1, and
if another pixel is positioned on the line segment between the points at a fraction α of the way
from x0 to x1, then the interpolated color is

(1− α)〈r0, g0, b0〉 + α〈r1, g1, b1〉.
Gouraud interpolation works reasonably well; however, for large polygons, it can miss specular
highlights or at least miss the brightest part of the specular highlight if this falls in the middle
of a polygon. Another example of how Gouraud shading can fail is that a spotlight shining
on a wall can be completely overlooked by Gouraud interpolation: if the wall is modeled as a
large polygon, then the four vertices of the polygon may not be illuminated by the spotlight at
all. More subtly, Gouraud interpolation suffers from the fact that the brightness of a specular
highlight depends strongly on how the highlight is centered on a vertex; this is particularly
apparent when objects or lights are being animated. Nonetheless, Gouraud shading works well
inmany cases and can be implemented efficiently in hardware. For this reason, it is very popular
and widely used.

The second kind of shading is Phong shading. In this technique, the surface normals are
interpolated throughout the interior of the triangle, and the full Phong lighting is recalculated
at each pixel in the triangle on the viewport. The interpolation is not as simple as the usual
linear interpolation described in Section II.4 because the interpolated surface normals must be
unit vectors to be used in the Phong lighting calculations.

The most common way to calculate interpolated surface normals is as follows: Suppose
x0, x1 are pixels where the surface normals are n0 and n1, respectively. At a pixel a fraction α

of the distance along the line from x0 to x1, the interpolated normal is

nα = (1− α)n0 + αn1
||(1− α)n0 + αn1|| . III.11

This is computationally more work than Gouraud shading – especially because of the renor-
malization. However, the biggest disadvantage of Phong shading is that all the information
about the colors and directions of lights needs to be kept until the final rendering stage so that
lighting can be calculated at every pixel in the final image. On the other hand, the big advantage
of Phong shading is that small specular highlights and spotlights are not missed when they
occur in the interior of a triangle or polygon. In addition, the brightness of a specular highlight
is not nearly so sensitive to whether the specular highlight is centered over a vertex or in the
interior of a polygon.

A potential problem with both Gouraud and Phong shading is that they perform the inter-
polation in the coordinates of the screen or viewport. However, in perspective views, a large
polygon that is angled from the viewpoint will have its more distant parts appear more com-
pressed in the graphics image than its closer parts. Thus, the interpolation in screen coordinates
does not properly reflect the size of the polygon. This can sometimes contribute to subopti-
mal shading with unwanted visual effects. The method of hyperbolic interpolation, which is
discussed in Section IV.5, can be used to avoid these problems.
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Yet another problem with Phong shading is that normals should not be interpolated linearly
across the polygonal approximation to a surface because they tend to change less rapidly in
areas where the normals are pointing towards the viewer and more rapidly in areas where
the normals are pointing more sideways. One way to partly incorporate this observation in the
Phong shading calculation is to use the following method to calculate normals. Let the normals
be ni = 〈nx,i , ny,i , nz,i 〉, i = 0, 1. Then replace the calculation of Equation III.11 by

nx,α = (1− α)nx,0 + αnx,1

ny,α = (1− α)ny,0 + αny,1

nz,α =
√
1− n2

x,α − n2
y,α .

The equations above calculate the x- and y-components of nα by linear interpolation and
choose the z-component so as to make nα a unit vector.

Exercise III.2� Prove that these alternate equations for normal vector interpolation
provide the correct unit normal vectors in the case of a spherical surface viewed ortho-
graphically.

III.1.6 Computing Surface Normals

As we have seen, it is important to set the values of surface normals correctly to obtain
good lighting and shading effects. In many cases, one can determine surface normals by
understanding the surface clearly and using symmetry properties. For example, the surface
normals for objects like spheres, cylinders, tori, and so forth, are easy to determine. However,
for more complicated surfaces, it is necessary to use more general methods. We next consider
three different methods for calculating surface normals on general surfaces.

First, suppose a surface has been modeled as a mesh of flat polygons with vertices that lie
on the surface. Consider a particular vertex v, and let P1, . . . , Pk be the polygons that have
that vertex as a corner. The unit surface normal ni for each individual polygon Pi is easy to
compute by taking two adjacent (and noncollinear) edges from the polygon, forming their cross
product, and normalizing. Then we can estimate the unit normal n at the vertex as the average
of the unit normals of the adjacent polygons, namely as

n =
∑

i ni∣∣∣∣∑
i ni

∣∣∣∣ .
Note that it was necessary to renormalize since the Phong lighting model works with unit
vectors.

Computing the normal vector by averaging the normals of adjacent polygons has the advan-
tage that it can be done directly from the polygonal model of a surface without using any direct
knowledge of the surface. It also works even when there is no mathematical surface underlying
the polygonal data, say in situations in which the polygonal data has been generated by hand
or by measurement of some object. Of course, this method does not generally give the exactly
correct surface normal, but if the polygons are small enough compared with the rate of change
of the surface curvature, this approach will give normals that are close to the correct surface
normals.

The secondmethod of computing surface normals can be used with surfaces that are defined
parametrically.We say that a surface is definedparametrically if there is a function f(x, y) of two
variables with a domain A ⊆ R

2 such that the surface is the set of points {f(x, y) : 〈x, y〉 ∈ A}.
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Figure III.10. A polygonal mesh defined by a parametric function. The horizontal and vertical curves are
lines of constant y values and constant x values, respectively.

Wewrite f in boldface because it is a function that takes values inR
3, that is, it is a vector-valued

function,

f(x, y) = 〈 f1(x, y), f2(x, y), f3(x, y)〉.
The partial derivatives

fx := ∂f

∂x
and fy := ∂f

∂y

are defined component-wise as usual and are likewise vectors in R
3. The partial derivatives

are the rates of change of f with respect to changes in one of the variables while the other is
held fixed. In Figures III.10 and III.11, this is illustrated with the partial derivative tangent to
the surface cross sections where the other variable is constant. Except in degenerate cases, the
cross product of the two partial derivatives gives a vector perpendicular to the surface.

Theorem III.1 Suppose f has partial derivatives at 〈x, y〉. If the cross-product vector
fx (x, y)× fy(x, y) is nonzero, then it is perpendicular to the surface at f(x, y).

To prove the theorem, note that fx and fy are noncollinear and are both tangent to the surface
parametrically defined by f.

Usually, the vector fx × fy must be normalized, and care must be taken to choose the correct
outward direction. Therefore, the unit vector normal to a parametrically defined surface is given

fx

fy

Figure III.11. A close-up view of a polygonal mesh. The partial derivatives are tangent to the horizontal
and vertical cross-section curves.
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by the formula

± fx (x, y)× fy(x, y)

||fx (x, y)× fy(x, y)|| III.12

whenever the vector fx (x, y)× fy(x, y) is nonzero. The sign is chosen to make the vector point
outward.

Exercise III.3 Let T be a torus (doughnut shape) with major radius R and minor radius r .
This torus is a tube going around the y-axis. The center of the tube stays distance R from
the y-axis and lies in the xz-plane. The radius of the tube is r .

(a) Show that the torus T is parametrically defined by f(θ, ϕ), for 0 ≤ θ ≤ 360◦ and
0 ≤ ϕ ≤ 360◦, where

f(θ, ϕ) = 〈(R + r cosϕ) sin θ, r sinϕ, (R + r cosϕ) cos θ〉. III.13

[Hint: θ controls the angle measured around the y-axis, starting with θ = 0 at the
positive z-axis. The angle ϕ specifies the amount of turn around the centerline of the
torus.] Draw a picture of the torus and of a point on it for a representative value of θ

and ϕ.
(b) Use your picture and the symmetry of the torus to show that the unit normal vector to

the torus at the point f(θ, ϕ) is equal to

〈sin θ cosϕ, sinϕ, cos θ cosϕ〉. III.14

Exercise III.4 Let T be the torus from the previous exercise. Use Theorem III.1 to compute
a vector normal to the torus at the point f(θ, ϕ). Compare your answer with equation III.14.
Is it the same? If not, why not?

The third method for computing surface normals applies to surfaces defined as level sets of
functions. Such a surface can be defined as the set of points satisfying some equation and is
sometimes called an implicitly defined surface (see Appendix A.4). Without loss of generality,
there is a function f (x, y, z), and the surface is the set of points {〈x, y, z〉 : f (x, y, z) = 0}.
Recall that the gradient of f , ∇ f , is defined by

∇ f (x, y, z) =
〈
∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

〉
.

From multivariable calculus, it follows that the gradient of f is perpendicular to the level
surface.

Theorem III.2 Let S be the level set defined as above as the set of zeroes of f . Let 〈x, y, z〉
be a point on the surface S. If the vector ∇ f (x, y, z) is nonzero, then it is perpendicular to the
surface at 〈x, y, z〉.

Exercise III.5 Show that the torus T considered in the previous two exercises can be
defined as the set of zeros of the function

f (x, y, z) = (
√

x2 + z2 − R)2 + y2 − r2.

Use Theorem III.2 to derive a formula for a vector perpendicular to the surface at a point
〈x, y, z〉. Your answer should be independent of r . Does this make sense?
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n1

y

x

⇒
n2

y

x

Figure III.12. An example of how a nonuniform scaling transformation affects a normal. The transfor-
mation maps 〈x, y〉 to 〈 12 x, y〉. The line with unit normal n1 = 〈 1√

2
, 1√

2
〉 is transformed to a line with

unit normal n2 = 〈 2√
5
, 1√

5
〉.

III.1.7 Affine Transformations and Normal Vectors

When using affine transformations to transform the positions of geometricallymodeled objects,
it is important to also transform the normal vectors appropriately. After all, things could get
very mixed up if the vertices and polygons are rotated but the normals are not!

For now, assume we have an affine transformation Ax = Bx+ u0, where B is a linear
transformation. Since translating a surface does not affect its normal vectors, we can ignore
the translation u0 and just work with the linear mapping B.

If B is a rigid transformation (possibly not orientation-preserving), then it is clear that, after
a surface is mapped by B, its normals are also mapped by B. That is to say, if a vertex v on
the surface S has the normal n, then on the transformed surface B(S), the transformed vertex
B(v) has surface normal B(n).

However, the situation is more complicated for nonrigid transformations. To understand this
on an intuitive level, consider an example in the xy-plane. In Figure III.12(a), a line segment is
shownwith slope−1: the vectorn1 = 〈1, 1〉 is perpendicular to this line. If B performs a scaling
by a factor of 1/2 in the x-axis dimension, then the line is transformed to a line with slope−2.
But, the normal vector is mapped by B to 〈 12 , 1〉, which is not perpendicular to the transformed
line. Instead, the correct perpendicular direction is n2 = 〈2, 1〉; thus, it looks almost like the
inverse of B needs to be applied to the normal vector. This is not quite correct though; as we
will see next, it is the transpose of the inverse that needs to be applied to the normals.

We state the next theorem in terms of a vector normal to a plane, but the same results hold
for a normal to a surface since we can just use the plane tangent to the surface at a given point.
We may assume without much loss of applicability that the transformation B is invertible, for
otherwise the image of B would be contained in a plane P and any normal to the plane P
would be perpendicular to the surface.

Theorem III.3 Let B be a linear transformation represented by the invertible matrix M. Let N
equal (MT)−1 = (M−1)T. Let P be a plane and n be orthogonal to P. Then Nn is orthogonal
to the image B(P) of the plane P under the map B.

For the proof, it is helpful to recall that for any vectors x and y, the dot product x · y is equal
to xTy (see Appendix A).

Proof Suppose that x is a vector lying in the plane P , and so n · x = 0. To prove the theorem,
it will suffice to show that (Nn) · (Mx) = 0. But this follows immediately from

(Nn) · (Mx) = ((M−1)Tn) · (Mx) = ((M−1)Tn)T(Mx) = (nTM−1)(Mx)

= nT(M−1Mx) = nTx = n · x = 0,

and the theorem is proved. �
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Recall that the adjoint of amatrix M is the transpose of thematrix formed from the cofactors
of M (see Appendix A). In addition, the inverse of a matrix M is equal to the adjoint of M
divided by the determinant of M . Therefore, it is immediate that Theorem III.3 also holds for
the transpose of the adjoint of M in place of the transpose of the inverse of M .

To summarize, a normal vector transforms under an affine transformation x → Mx+ u0
according to the formula

n → Nn,

where N is the transpose of either the inverse or the adjoint of M . Note that Nn may not be a
unit vector.

Exercise III.6 The linear transformation of R
2 depicted in Figure III.12 is given by the

matrix

M =
(
1/2 0
0 1

)
.

Compute the transposes of the adjoint of M and the inverse of M. Prove that, for any line L
in R

2, these matrices correctly map a vector normal to the line L to a vector normal to the
image M(L) of the line.

So far, we have only discussed how normal vectors are converted by affine transformations.
However, the 4× 4 homogeneousmatrices allowed inOpenGL aremore general than just affine
transformations, and for these a different construction is needed. Given a 4× 4 matrix M ,
let N be the transpose of either the inverse or the adjoint of M . Let n be orthogonal to
a plane P . As discussed in Section II.2.5, the plane P in 3-space corresponds to a three-
dimensional linear subspace PH of R

4 in homogeneous coordinates. Let u be a point on the
plane P , and x = 〈x1, x2, x3〉 and y = 〈y1, y2, y3〉 be two noncollinear vectors parallel to P
in 3-space. Form the vectors xH = 〈x1, x2, x3, 0〉 and yH = 〈y1, y2, y3, 0〉. These two vectors,
plus uH = 〈u1, u2, u3, 1〉, span PH.

Let n = 〈n1, n2, n3〉 be orthogonal to P , and let nH = 〈n1, n2, n3,−u · n〉. Since nH is or-
thogonal to xH, yH, and uH, it is perpendicular to the space PH spanned by these three vectors.
Therefore, by exactly the same proof as that of Theorem III.3, we have that NnH is orthog-
onal to M(PH). Let NnH = 〈n′1, n′2, n′3, n′4〉. Then clearly, 〈n′1, n′2, n′3〉 is a vector in 3-space
orthogonal to the 3-space vectors parallel to M(P). Therefore, 〈n′1, n′2, n′3〉 is perpendicular to
the plane M(P) in 3-space.

III.1.8 Light and Material Properties in OpenGL

OpenGL implements the full Phong lighting model with Gouraud interpolation. It supports all
thematerial properties, including the ambient, diffuse, and specular reflectivity coefficients and
emissivity. Light sources may be given independent ambient, diffuse, and specular intensities,
and special effects for lights include spotlighting and distance attenuation.

This section is an outline of how lighting and surface material properties are specified and
controlled in OpenGL. This is only an overview and you should refer to an OpenGL manual
such as (Schreiner, 1999; Woo et al., 1999) for more information on the command syntax and
operation. In particular, we do not include information on all the variations of the command
syntax and only include the more common versions of the commands (usually the ones based
on floating point inputs when appropriate).

Initializing the Lighting Model. By default, OpenGL does not compute Phong lighting
effects. Instead, it just uses the color as given by a glColor3f() command to set the
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vertex color. To enable Phong lighting calculation, use the command

glEnable(GL_LIGHTING);

OpenGL includes eight point light sources; they must be explicitly enabled, or “turned
on,” by calling

glEnable(GL_LIGHTi); // 'i' should be 0,1,2,3,4,5,6, or 7

The light names are GL_LIGHT0, GL_LIGHT1, and so forth, and any OpenGL imple-
mentation should support at least eight lights. Lights can be disabled, or turned off, with
the glDisable(GL_LIGHTi) command.

By default, OpenGL renders polygons with Gouraud shading. However, Gouraud
shading can be turned off with the command

glShadeModel(GL_FLAT);

In this case, the usual convention is that the color of the last vertex of a polygon is used
to color the entire polygon (but see page 12). The command

glShadeModel( GL_SMOOTH );

can be used to turn Gouraud shading back on. Usually, it is best to keep Gouraud shading
turned on, but when rendering a faceted object it can be convenient to turn it off.

OpenGL gives you the option of rendering only one side or both sides of polygons.
Recall that polygons are given a front face and a back face – usually according to the
right-hand rule (see Section I.2.2 for more information). When applying lighting to the
back face of a polygon, OpenGL reverses the normal vector direction at each vertex to get
the surface normal vector for the back face. Frequently, however, the back faces are not
visible or properly lit, and by default OpenGL does not shade the back faces according to
the Phong lighting model. To tell OpenGL to use the Phong lighting model for the back
faces too, use the command

glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

(This can be turned off by using GL_FALSE instead of GL_TRUE.) If the back faces are
never visible, youmay also want to cull them. For this, see glCullFace in Section I.2.2.

OpenGL can use the halfway vector computational shortcut mentioned at the end of
Section III.1.2, which sets the light direction vectors � and the view direction vector v to
be constant vectors independent of vertex positions. To turn this off and allow the view
vector v to be recalculated for each vertex position, use the command

glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

To force OpenGL to use constant light direction vectors �, make the lights directional
rather than positional, using the commands discussed later in this section.

OpenGL’s implementation of Phong lighting assumes that the viewposition, or camera,
is positioned at the origin and, when the local viewer option is not used, that the view
direction be oriented down the negative z-axis so that v = 〈0, 0, 1〉. For this reason,
the routines gluPerspective, glFrustum, and glOrtho should be invoked when
the projection matrix is the current matrix, but gluLookAt should be invoked when the
model view matrix is active.

Vertex Normals and Colors. Recall how glBegin() and glEnd() are used to bracket
the specification of the geometric objects of points, lines, and polygons. OpenGL requires
that all glVertex* commands be inside a glBegin, glEnd pair. In addition to the
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glVertex* commands giving the positions of vertices, youmay also include commands
that specify the surface normal and the surface material properties of a vertex. This can
be done by commands of the following type:

glNormal3f( x,y,z ); // 〈x, y, z〉 is the normal
glMaterial*( · · · ); // Multiple glMaterial commands OK
glVertex*( · · · ); // Vertex position

The glMaterial*() commands are used to specify the reflectivity coefficients and
the shininess exponent. The syntax of these commands is described later. The effect
of a glNormal3f() or a glMaterial*() command is applied to all subsequent
glVertex*() commands until it is overridden by another glNormal3f() or glMa-
terial*().

The normal vector specified with glNormal3f should be a unit vector unless you
have instructed OpenGL to normalize unit vectors automatically as described on page 87.

Light Properties. The global ambient light intensity, Iin,globala , is set by calling the OpenGL
routines as follows:

float color[4] = { r, g, b, a };
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, &color[0]);

Note how the color is passed in as a pointer to a float, that is, as the C/C++ type float*–
in the OpenGL naming scheme, this is indicated by the suffix “fv” on the function name.
The “v” stands for “vector.”

The ambient color includes the levels of ambient light intensity for red, green, and blue
and also a value for the “alpha” component of light. The alpha component is typically
used for blending and transparency effects. We will not discuss it further here but remark
only that it is handled just like the other color components until the final stage (stage 4)
of the rendering pipeline. See Chapter V for more discussion on the uses of the alpha
color channel. When specifying colors of lights and materials, OpenGL often requires
you to set an alpha value; ordinarily, it is best just to set the alpha color equal to 1.

The positions, or alternatively the directions, of the point light sources are set with the
OpenGL command

float pos[4] = { x, y, z, w };
glLightfv( GL_LIGHTi,GL_POSITION, &pos[0]);

The position has to be specified in homogeneous coordinates. Ifw �= 0, then this indicates
a positional light placed at the position 〈x/w, y/w, z/w〉. If w = 0, then the light is
directional: the directional light is thought of as being placed at infinity in the 〈x, y, z〉
direction (not all of x, y, z, w should be zero). The light direction vector � is thus equal to
the constant vector 〈x, y, z〉 (recall that the vector � points from the surface towards the
light opposite to the direction the light is traveling). Note that, unlike the usual situation
for homogeneous vectors, the vectors 〈x, y, z, 0〉 and 〈−x,−y,−z, 0〉 do not have the
same meaning. Instead they indicate directional lights shining from opposite directions.
The default value for lights is that they are directional, shining down the z-axis, that is,
the default direction vector is 〈0, 0, 1, 0〉.

The positions and directions of lights aremodified by the current contents of themodel
view matrix. Therefore, lights can be placed conveniently using the local coordinates of
a model. It is important to keep in mind that the projection matrix does not affect the
lights’ positions and directions and that lights will work correctly only if the viewpoint
is placed at the origin looking down the negative z-axis.
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The colors, or, more properly speaking, the light intensity values, of lights are set by
the following OpenGL command:

float color[4] = { r, g, b, a };

glLightfv(GL_LIGHTi,


GL_AMBIENT
GL_DIFFUSE

GL_SPECULAR

, &color[0] );

where the second parametermay be any of the three indicated possibilities. This command
sets the values of the light’s Iina , I

in
d , or I

in
s intensity vector.2 The ambient light intensity

defaults to 〈0, 0, 0, 1〉. The diffuse and specular light intensities default to 〈1, 1, 1, 1〉 for
light 0 (GL_LIGHT0) and to 〈0, 0, 0, 0〉 for all other lights.

One might wonder why lights include an ambient color value when it would be com-
putationally equivalent just to include the lights’ ambient intensities in the global ambient
light. The reasons are threefold. First, lights may be turned off and on, and this makes it
convenient to adjust the ambient lighting automatically. Second, a light’s ambient light
intensity is adjusted by the distance attenuation and spotlight effects discussed later in
this section. Finally, the purpose of ambient light is to model light after multiple bounces
off of surfaces, and this logically goes with the light itself.

Material Properties. OpenGL’s glMaterial*() commands are used to set the surface
material properties. The ambient, diffuse, and specular reflectivity coefficients and the
emissive intensity can be set by the following commands:

float color[4] = {r, g, b, a };

glMaterialfv(


GL_FRONT
GL_BACK

GL_FRONT_AND_BACK

,


GL_AMBIENT
GL_DIFFUSE

GL_AMBIENT_AND_DIFFUSE
GL_SPECULAR
GL_EMISSION

,

&color[0] );

These set the indicated reflectivity coefficient or emissive intensity for either the front
surface of polygons, the back surface of polygons, or both surfaces of polygons. The
default values are 〈0.2, 0.2, 0.2, 1〉 for ambient reflectivity, 〈0.8, 0.8, 0.8, 1〉 for diffuse
reflectivity, and 〈0, 0, 0, 1〉 for specular reflectivity and emissivity.

The specular exponent, or shininess coefficient, is set by a command

glMaterialf(


GL_FRONT
GL_BACK

GL_FRONT_AND_BACK

 , GL_SHININESS,float f );

The default value for the specular exponent is 0, and the maximum value is 128.
You can still use glColor*() commands with Phong lighting, but they are less

flexible than the glMaterial*() commands. First you have to call

glEnable(GL_COLOR_MATERIAL);

2 However, before being used to calculate the illumination levels, as in Equation III.9, these light
intensity values may be reduced by a distance attenuation factor or spotlight factor.
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so that glColor* will affect material properties. Then you can code as follows:

glNormal3f( x, y, z ); // 〈x, y, z〉 is the normal
glColor3f( r, g, b ); // Change reflectivity parameter(s)
glVertex*( · · · ); // Vertex position

By default, the preceding glColor*() command changes the ambient and diffuse color
of the material; however, this default can be changed with the glColorMaterial()
command.

Special Effects: Attenuation and Spotlighting. OpenGL supports both distance attenua-
tion and spotlighting as a means of achieving some special effects with lighting. Distance
attenuation refers to making the light less intense, that is, less bright, as the distance
increases from the light. The formula for the distance attenuation factor is

1

kc + k�d+ kqd2
,

where d is the distance from the light, and the constant scalars kc, k� and kq are the
constant attenuation factor, the linear attenuation factor, and the quadratic attenuation
factor, respectively. All three of the light intensity values, Iina , I

in
d , and I

in
s , are multiplied

by the distance attenuation factor before being used in the Phong lighting calculations.
The distance attenuation factors are set by the following OpenGL commands:

glLightf( GL_LIGHTi,


GL_CONSTANT_ATTENUATION

GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION

 , float k );

A spotlight effect can be used to make a positional light act as a narrow beam of light.
A spotlight effect is specified by giving (a) the direction of the spotlight; (b) the cutoff
angle, which is the angle of the cone of light from the light source; and (c) a spotlight
exponent, which controls how fast the light intensity decreases away from the center of
the spotlight. The spotlight direction is set by the commands

float dir[3] = { x, y, z };
glLightfv( GL_LIGHTi, GL_SPOT_DIRECTION, &dir[0] );

The spotlight direction is modified by the model view matrix in exactly the same way
that vertex normals are.

The spotlight cutoff angle controls the spread of the spotlight. A cutoff angle of θ

specifies that the light intensity drops abruptly to zero for any direction more than θ

degrees away from the spotlight direction.The spotlight cutoff angle is set by the command

glLightf(GL_LIGHTi, GL_SPOT_CUTOFF, float θ );

where, as usual for OpenGL, the angle is measured in degrees.
The spotlight exponent is used to reduce the intensity of the spotlight away from the

center direction. The intensity of the light along a direction at an angle ϕ from the center
of the spotlight (where ϕ is less than the spotlight cutoff angle) is reduced by a factor of
(cosϕ)c, where the constant c is the spotlight exponent. The command to set a spotlight
exponent is

glLightf(GL_LIGHTi, GL_SPOT_EXPONENT, float c );
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Normalizing Normal Vectors. Bydefault,OpenGL treats normal vectors by assuming that
they are already unit vectors and transforming them by the current model view matrix.
As discussed in Section III.1.7, this is fine as long as the model view matrix holds a rigid
transformation. However, this is not acceptable if the model view matrix holds a more
general transformation, including a scaling transformation or a shear.

To make OpenGL transform normals by the procedure described in Section III.1.7,
you must give the command

glEnable( GL_NORMALIZE );

This command should be given if you either use nonunit vectors with glNormal3f()
or nonrigid transformations.

The latest version of OpenGL (version 1.2) has a new normalization option

glEnable( GL_RESCALE_NORMAL );

that rescales normal vectors under the assumption that the normal given with glNor-
mal3f() is a unit vector and that themodel viewmatrix consists of a rigid transformation
composed with a uniform scaling, where the same scaling factor is used in all directions.
This is considerably faster than the full GL_NORMALIZE option, which needs to compute
the transpose of the inverse and then normalize the vector.

III.2 The Cook–Torrance Lighting Model�

The Cook–Torrance lighting model is an alternative to Phong lighting that can better capture
reflectance properties of awider range of surfacematerials. The Cook–Torrance lightingmodel
was introduced by (Cook and Torrance, 1982) based partly on a lighting model developed
by (Blinn, 1973). The Cook–Torrance lighting model incorporates the physical properties of
reflection more fully than the Phong lighting model by using a microfacet model for rough
surfaces and by incorporating the Fresnel equations in the calculation of reflection intensities.
It thus can better handle rough surfaces and changes in reflection due to grazing view angles.
In particular, the Cook–Torrance lighting model can be used to render metallic surfaces better
than can be done with the Phong lighting model.

Several other local lighting models exist besides the Phong and the Cook–Torrance model.
(He et al., 1991) have described a model that extends the Cook–Torrance model to include
more physical aspects of light reflection. Another popular model by (Schlick, 1994) incorpo-
rates many features of the physically based models but is more efficient computationally.

III.2.1 Bidirectional Reflectivity

The central part of any local lighting model is to compute how light reflects off of a surface.
To state this in a general form, we assume that a beam of light is shining on a point of the
surface from the direction pointed to by a unit vector � and that wewish to compute the intensity
of the light that is reflected in the direction of a unit vector v. Thus, the light reflectance
calculation can be reduced to computing a single bidirectional reflectivity function, BRIDF.
The initials “BRIDF” actually stand for “bidirectional reflected intensity distribution function.”
The parameters to the BRIDF function are (a) the incoming direction �; (b) the outgoing
direction v, (c) the color or wavelength λ of the incoming light, and (d) the properties of
the reflecting surface, including its normal and orientation. We write the BRIDF function
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Figure III.13. The BRIDF function relates the outgoing light intensity and the incoming light intensity
according to BRIDF(�, v, λ) = I λ,out/I λ,in.

as just

BRIDF(�, v, λ),

to signify a function of the light and view directions, and of the wavelength, suppressing in
the notation the dependence on the surface properties. The value BRIDF(�, v, λ) is intended
to be the ratio of the intensity of the outgoing light in the direction v to the intensity of the
incoming light from the direction pointed to by �.3 As shown in Figure III.13, the bidirectional
reflectivity function is defined by

BRIDF(�, v, λ) = I λ,out

I λ,in
.

An important characteristic of the BRIDF function is that the incoming and outgoing
directions are completely arbitrary, and in particular, the outgoing direction v does not have
to be in the direction of perfect reflection. By expressing the BRIDF function in this general
form, one can define BRIDF functions for anisotropic surfaces, where the reflectance function
is not circularly symmetric around the perpendicular. An example of an anisotropic surface
would be a brushedmetal surface that has parallel grooves: light will reflect from such a surface
differently depending on the orientation of the incoming direction relative to the orientation
of the grooves. Other examples of anisotropic surfaces include some types of cloth, where the
weave pattern may create directional dependencies in reflection. Still other examples include
hair, feathers, and fur. We will not consider anisotropic surfaces in this book, but the interested
reader can consult (Kajiya, 1985) for an early treatment of anisotropic surfaces in computer
graphics.

The bidirectional reflectivity function can be computed in several ways. First, if one is trying
to simulate the appearance of a physical, real-world surface, the most direct way would be to
perform experiments measuring the reflectivity function. This would require shining light from
various directions and of various wavelengths onto a sample of the material and measuring the
levels of reflected light in various directions. (Devices that perform these measurements are
called goniometers.) Interpolation could then be used to fill in the values of the BRIDF function
between the measured directions. In principle, this would give an accurate calculation of the

3 We are following (Trowbridge and Reitz, 1975) in using the BRIDF function, but many authors prefer
to use a closely related function, BRDF(�, v, λ) instead. TheBRDF function is called the “bidirectional
reflectivity distribution function.” These two functions are related by

BRIDF(�, v, λ) = BRDF(�, v, λ) · (n · �).
Here, n is the unit surface normal, and so n · � is the cosine of the angle between the surface normal
and the incidence vector. Thus, the only difference between the two functions is that the BRIDF takes
into account the reduction in intensity (per unit surface area) due to the angle of incidence, whereas
the BRDF does not.
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I1

I2

Figure III.14. A microfacet surface consists of small flat pieces. The horizontal line shows the average
level of a flat surface, and the microfacets show the microscopic shape of the surface. Dotted lines show
the direction of light rays. The incoming light can either be reflected in the direction of perfect mirror-like
reflection (I1) or can enter the surface (I2). In the second case, the light is modeled as eventually exiting
the material as diffusely reflected light.

bidirectional reflectivity function. In practice, the physical measurements are time consuming
and inconvenient at best. And of course, physical measurements cannot be performed for
materials that do not physically exist. There are published studies of reflectivity functions:
these are typically performed at various wavelengths but usually only from perpendicular
illumination and viewing directions.

A second way to calculate bidirectional reflectivity functions is to create a mathematical
model of the reflectivity of the surface. We have already seen one example of this, namely, the
Phong lighting model, which gives a simple and easy way to compute bidirectional reflectivity
function. The Cook–Torrance model, which we discuss in detail in Section III.2.2, is another
similar model but takes more aspects of the physics of reflection into account and thereby
captures more features of reflectance.

The bidirectional reflectivity function is only an idealized model of reflection. To make
physical sense of the way we have defined bidirectional reflectivity, one has to let the sur-
face be an infinite flat surface and the distances to the light source and the viewer tend
to infinity. Several more sophisticated local lighting models have been developed since the
Cook–Torrance model. These models take into account more detailed aspects of the physics
of reflectivity, such as subsurface scattering, polarization, and diffraction. To handle polariza-
tion, the BRIDF function needs to be redefined so as to incorporate polarization parameters
(cf. (Wolff and Kurlander, 1990)).

III.2.2 Overview of Cook–Torrance�

The Cook–Torrance model and the earlier Blinn model are based on a microfacet model
for surface reflection. According to this model, a surface consists of small flat pieces called
facets. A one-dimensional cross section of a microfacet surface is shown in Figure III.14. The
assumption is then made that light hitting a microfacet can either be immediately reflected or
can enter into the surface. The light that is immediately reflected is presumed to reflect off
the microfacet in the direction of perfect reflection, that is, in the direction of reflection from
a mirror parallel to the microfacet. Light that is refracted and enters into the surface through
the microfacet is assumed to penetrate deeper into the material and to reflect around inside
the surface several times before exiting the surface. This portion of the light that is refracted
and undergoes multiple reflections inside the material will exit the surface in an unpredictable
direction. Thus, this part of the light is treated as being diffusely reflected.

Just like the Phong model, the Cook–Torrance model treats reflection as being composed
of separate ambient, diffuse, and specular components. The ambient and diffuse components
are essentially the same in the Cook–Torrance model as in the Phong lighting model. Thus, in
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the Cook–Torrance model, reflected light at a given wavelength can be expressed by

I = Ia + Id + Is

= ρa I in
a + ρd I in

d (� · n)+ Is.

This is the same as in the Phong model (see Equation III.6) except that now the specularly
reflected light will be calculated differently.

The calculation for specular light has the form

Is = (n · �)
(n · v) s F G D · I in

s ,

where n is the unit vector normal to the surface, s is a scalar constant, and F , G, and D
are scalar-valued functions that will be explained below. The constant s is used to scale the
brightness of the specular reflection. Including the multiplicative factor n · � has the effect of
converting the incoming light intensity into the incoming light energy flux per unit surface
area; that is to say, the value (n · �)I in measures the amount of light energy hitting a unit area
of the surface. Similarly, (n · v)Is measures the amount of light energy leaving a unit area of
the surface, and for this reason we need to include the division by n · v. Thus, the quantity
s · F · G · D is the ratio of the energy hitting a unit area of the surface from the direction of �
to the energy leaving the unit area in the direction of v.

The function D = D(�, v) measures the distribution of the microfacets, namely, it equals
the fraction of microfacets that are oriented correctly for specular reflection from the direction
of � to the direction v. Possible functions for D are discussed in Section III.2.3. The G =
G(�, v) function measures the diminution of reflected light due to shadowing and masking,
where the roughness of the surface creates shadowing that prevents reflection. This geometric
termwill be discussed in Section III.2.4. The function F = F(�, v, λ) is the Fresnel coefficient,
which shows what percentage of the incidence light is reflected. The Fresnel term is discussed
in Section III.2.5.

The Fresnel coefficient is particularly important because it can be used to create the effect
that light reflects more specularly at grazing angles than at angles near vertical. This kind of
effect is easy to observe; for instance, a piece of white paper that usually reflects only diffusely
will reflect specularly when viewed from a very oblique angle. An interesting additional effect
is that the Fresnel term can cause the angle of greatest reflection to be different than the
direction of perfect mirror-like reflection. The Fresnel term F , unlike the D and G functions,
is dependent on the wavelength λ. This causes the color of specular reflections to vary with
the angles of incidence and reflection.

In our description of the Cook–Torrance model, we have not followed exactly the con-
ventions of (Blinn, 1973) and (Cook and Torrance, 1982). They did not distinguish between
diffuse and specular incoming light but instead assumed that there is only one kind of incoming
light. They then used a bidirectional reflectivity function of the form

BRIDF = d · ρd(n · �)+ s · (n · �)
(n · v) F G D,

where d and s are scalars, with d + s = 1, that control the fraction of diffuse versus specular
reflection. We have changed this aspect of their model since it makes the model a little more
general and also for the practical reason that it allows Cook–Torrance lighting to coexist with
Phong lighting in the ray-tracing software described in Appendix B.
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III.2.3 The Microfacet Distribution Term�

The microfacet model assumes that light incident from the direction of � is specularly reflected
independently by each individual microfacet. Hence, the amount of light reflected in the direc-
tion v is deemed to be proportional to the fraction of microfacets that are correctly oriented to
cause mirror-like reflection in that direction. To determine the direction of these microfacets,
recall that the halfway vector was defined by

h = v+ �

||v+ �||
(see Figure III.8 on page 73). For a microfacet to be oriented properly for perfect reflection,
the normal pointing outward from the microfacet must be equal to h. We let ψ equal the
angle between h and the overall surface normal n, that is, ψ = cos−1(h · n). Then, we use the
function D = D(ψ) to equal the fraction of microfacets that are correctly oriented for perfect
reflection. There are several functions that have been suggested for D. One possibility is the
Gaussian distribution function

D(ψ) = ce−ψ2/m2
,

where c and m are positive constants. Another possibility is the Beckmann distribution

D(ψ) = 1

π m2 cos4 ψ
e−(tan

2 ψ)/m2
,

where again m is a constant. The Beckmann distribution is based on a mathematical model
for a rough one-dimensional surface where the height of the surface is a normally distributed
function and the autocorrelation of the surface makes the root mean value of the slope equal
to m/

√
2. This sounds complicated, but what it means is that the constant m should be chosen

to be approximately equal to the average slope of (microfacets of) the surface.4 Bigger values
of m correspond to rougher, more bumpy surfaces.

III.2.4 The Geometric Surface Occlusion Term�

The geometric term G in the Cook–Torrance model computes the fraction of the illuminated
portion of the surface that is visible to the viewer, or, to be more precise, the geometric term
computes the fraction of the light specularly reflected by themicrofacets that is able to reach the
viewer. Because the surface is rough and bumpy, it is probable that some of the illuminated area
of the surface is not visible to the viewer, and this can reduce the amount of visible specularly
reflected light.

To derive a formula for the geometric term, we make two simplifying assumptions. The
first assumption is that the vectors �, n, and v are coplanar. We call this plane the plane of
reflection. At the end of this section, we discuss how to remove this coplanarity assumption. The
second, and more important, assumption is that the microfacets on the surface are arranged as
symmetric ‘V’-shaped grooves. These grooves are treated as being at right angles to the plane
of reflection. In effect, this means we are adopting a one-dimensional model for the surface.
We further assume that the tops of the grooves are all at the same height, that is, that the surface
is obtained from a perfectly flat surface by etching the grooves into the surface. A view of the
grooves is shown in Figure III.15.

4 See (Beckmann and Spizzichino, 1963) for more details, including the details of the mathematical
models.
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Figure III.15. For the derivation of the geometric term G, the microfacets are modeled as symmetric,
‘V’-shaped grooves with the tops of the grooves all at the same height. The horizontal line shows the
overall plane of the surface.

The assumption about the microfacets being ‘V’-shaped may seem rather drastic and un-
justified, but the reason for the assumption is that it simplifies the calculation of the geometric
factor G. In addition, it is hoped that the simplified model will qualitatively match the behavior
of more complicated surfaces fairly well.

Some different kinds of specularly reflected light occlusion are illustrated in Figure III.16.
Since the tops of the grooves are all at the same height, each groove may be considered
independently. In Figure III.16, light is shown coming in from the direction pointed to by �
and is reflected specularly in the direction of v. This means that the side of the groove must
have the normal vector equal to the halfway vector h. In part (a) of the figure, the light falls
fully onto the groove, and the entire groove is visible to the viewer. In part (b), the reflecting
side of the groove is partly occluded by the other side, and thus some of the reflected light
hits the opposite side of the groove and does not reach the viewer. In this case, we say that
masking has occurred. In part (c), the reflecting side of the groove is partly shadowed by the
other side of the groove so that the reflecting side of the groove is not fully illuminated: we
call this shadowing. Finally, in part (d), both shadowing and masking are occurring.

h′ h

�

v

h h′

�

v

(a) No shadowing or masking. (b) Only masking.

hh′

v

� h h′

�

v

(c) Only shadowing. (d) Both shadowing and masking.

Figure III.16. Shadowing and masking inside a single groove. The ‘V’ shape represents a groove; the
unit vector h is normal to the facet where specular reflection occurs. Light from the direction of � is
specularly reflected in the direction v.
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�

v

Figure III.17. Shadowing without masking does not reduce the intensity of the reflected light.

The usual formulation of the Cook–Torrance model calculates the percentage of light that
is not shadowed and the percentage of the light that is not masked and uses the minimum of
these for the G term. However, this usual formulation is incorrect because shadowing by itself
should not cause any reduction in the intensity of reflected light. This is shown in Figure III.17,
where the incoming light is partially shadowed, but, nonetheless, all of the incoming light is
reflected to the viewer. Figure III.17 shows all the grooves having the same slope so as to make
the situation clearer, but the same effect holds even if different grooves have different slopes
(since the D term is used for the fraction of microfacets at a given slope, the G term does not
need to take into account grooves that do not lead to perfect reflection).

Therefore, we present a version of the geometric term G that is different from the term used
by (Blinn, 1973) and (Cook and Torrance, 1982) in that it uses a more correct treatment of
shadowing. First, we need a geometric lemma due to (Blinn, 1973). This lemma will serve as
the basis for calculating the fraction of the groove that is masked or shadowed. As stated with v,
the lemma computes the fraction that is not masked (if there is any masking), but replacing
v with � gives the formula for the fraction of the groove that is not shadowed (if there is any
shadowing).

Lemma III.4 Consider the situation in Figure III.18. Let ||AB|| be the distance from A to B,
and so forth. Then,

||BC ||
||AC || =

2(n · h)(n · v)
(h · v) . III.15

To prove the lemma, and for subsequent algorithms, it will be useful to define the vector h′

to be the unit vector that is normal to the opposite side of the groove. By the symmetry of the

C D

B

A

α

β

n

v

h h′

Figure III.18. The situation for Lemma III.4. The edges AC and AD form a symmetric groove, and AC
and AD are of equal length. The vector n points upward, and the vector v is in the direction from B to D.
The vectors h and h′ are normal to the sides of the groove. All four vectors are unit vectors. The ratio of
||BC || to ||AC || measures the fraction of the groove that is not masked.
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groove, the vector h′ is easily seen to equal

h′ = 2(n · h)n− h. III.16

We now prove the lemma.

Proof From the symmetry of the groove and the law of sines, we have

||AB||
||AC || =

||AB||
||AD|| =

sinα

sinβ
.

Clearly, we have sinα = cos(π
2 − α) = −v · h′. Similarly, we have sinβ = v · h. From this,

using Equation III.16, we get

||BC ||
||AC || = 1− ||AB||

||AC || = 1+ v · (2(n · h)n− h)
v · h ,

and the lemma follows immediately. �

With the aid of the lemma, we can now give a formula for the geometric term that describes
the reduction in reflection due to masking. First, we note that masking occurs if, and only if,
v · h′ < 0. To see this, note that v · h′ is positive only if the vector h′ is facing towards the
viewer. When masking occurs, the fraction of the side of the groove that is not masked is given
by Equation III.15 of the lemma.

For similar reasons, shadowing occurs if and only if we have � · h′ < 0. By Lemma III.4,
with v replaced by �, the fraction of the side of the groove that is not shadowed is equal to

2(n · h)(n · �)
(h · �) .

We can now describe how to compute the geometric factor G. In the case in which there is
neither masking nor shadowing, we set G equal to 1.When there is masking, but no shadowing,
we set G equal to the fraction of the reflected light that is not masked, that is,

G = 2(n · h)(n · v)
(h · v) .

In the case in which both masking and shadowing occur, as illustrated in Figure III.16(d), we
set G to equal the fraction of the reflected light that is not masked. This means that we set
G equal to the ratio (note that h · v = h · � by the definition of h)(

2(n · h)(n · v)
(h · v)

)
÷
(
2(n · h)(n · �)

(h · �)
)
= n · v
n · �

if this value is less than 1. This is the case illustrated in part (d) of Figure III.16(d), and we are
setting G equal to the ratio of the nonmasked amount to the nonshadowed amount. However,
if the fraction is ≥ 1, then none of the nonshadowed part is masked, and so we just set G = 1.

To summarize, the geometric term G is defined by

G =



1 if v · h′ ≥ 0 or n · v ≥ n · �
2(n · h)(n · v)

(h · v) if v · h′ < 0 and � · h′ ≥ 0

n · v
n · � if v · h′ < 0, � · h′ < 0, and n · v < n · �.
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The formula for the geometric term was derived from a one-dimensional model of ‘V’-
shaped grooves. Although this assumption that the facets are arranged in grooves is unrealistic,
it still works fairly well as long the vectors �, v, and n are coplanar. However, the formula breaks
down when these vectors are not coplanar because the derivation of the formula for G made
assumptions about how h, h′, and n interact that are no longer valid in the noncoplanar case.
The coplanar case is actually quite common; for instance, these vectors are always coplanar in
(nondistributed) ray tracing, as we will see in Chapter IX, since basic ray tracing follows rays
in the direction of perfect mirror-like reflection.

In the noncoplanar case, we suggest that the vector n be replaced by projecting (actually,
rotating) it down to the plane containing � and v. That is to say, instead of n, we use a unit
vectorm that is parallel to the projection of n onto the plane containing � and v. The vector h
is still computed as usual, but now h′ is computed using m instead of n. It is not hard to see
that the projection of n onto the plane is equal to

n0 = (n · �)�+ (n · v)v− (v · �)(v · n)�− (v · �)(� · n)v
1− (v · �)2 . III.17

Then,m = n0/||n0||. In the extreme case, where v and � are both perpendicular to n, this gives
a divide by zero, but this case can be handled by instead setting n0 = v+ �.

Putting this together gives the following algorithm for the case in which v, �, and n are not
coplanar:

ComputeG( n, �, v ) {
If ( ||�+ v|| == 0 ) { // if v · � == −1

Set G = 1;
Return ( G );

}
Set h = (�+ v)/(||�+ v||);
Set n0 = (n · �)�+ (n · v)v− (v · �)(v · n)�− (v · �)(� · n)v;
If ( ||n0|| �= 0 ) {

Set m = n0/||n0||;
}
Else {

Set m = h;
}
Set h′ = 2(m · h)m− h;

Set G =



1 if v · h′ ≥ 0 or m · v ≥ m · �
2(m · h)(m · v)

(h · v) if v · h′ < 0 and � · h′ ≥ 0

m · v
m · � otherwise.

Return ( G );
}

Although it is not part of the Cook–Torrance model, it is possible to use the geometric
term to affect the diffuse part of the reflection too. (Oren and Nayar, 1994; 1995) use the same
‘V’-shaped groove model of surface roughness to compute masking and shadowing effects for
diffuse lighting; this allows them to render non-Lambertian surfaces.
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Exercise III.7� Derive the formula III.17 for n0.

III.2.5 The Fresnel Term�

The Fresnel equations describe what fraction of incident light is specularly reflected from a
flat surface. For a particular wavelength λ, this can be defined in terms of a function F

F(�, v, λ) = F(ϕ, η),

where ϕ = cos−1(� · h) is the angle of incidence, and η is the index of refraction of the surface.
Here, ϕ is the angle of incidence of the incoming light with respect to the surface of the
microfacets, not with respect to the overall plane of the whole surface. The index of refraction
is the ratio of the speed of light above the surface to the speed of light inside the surfacematerial
and is discussed in more detail in Section IX.1.2 in connection with Snell’s law. For materials
that are not electrically conducting, Fresnel’s law states that the fraction of light intensity that
is specularly reflected is equal to

F = 1

2

(
sin2(ϕ − θ )

sin2(ϕ + θ )
+ tan2(ϕ − θ )

tan2(ϕ + θ )

)
, III.18

where ϕ is the angle of incidence and θ is the angle of refraction. (We are not concerned with
the portion of the light that is refracted, but the angle of refraction still appears in the Fresnel
equation.) This form of the Fresnel equation applies to unpolarized light and is obtained by
averaging the two forms of the Fresnel equations that apply to light polarized in two different
orientations. The angles of incidence and refraction are related by Snell’s law, which states
that

sinϕ

sin θ
= η.

Let

c = cosϕ and g =
√

η2 + c2 − 1 . III.19

The most common situation is that η > 1, and in this case η2 + c2 − 1 > 0; thus, g is well
defined.5 A little work shows that g = η cos θ , and then using the trigonometric angle sum and
difference formulas it is not hard to see that

sin(ϕ − θ )

sin(ϕ + θ )
= (g − c)

(g + c)
III.20

and
cos(ϕ − θ )

cos(ϕ + θ )
= (c(g − c)+ 1)

(c(g + c)− 1)
. III.21

This lets us express the Fresnel equation III.18 in the following, easier to compute form:

F = 1

2

(g − c)2

(g + c)2

(
1+ [c(g + c)− 1]2

[c(g − c)+ 1]2

)
. III.22

5 However, the η < 1 case can arise in ray tracing when transmission rays are used, as described in
Chapter IX. In that case, the condition η2 + c2 − 1 ≤ 0 corresponds to the case of total internal
reflection. For total internal reflection, you should just set F equal to 1.
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Red Green Blue
Gold: 0.93 0.88 0.38

Iridium: 0.26 0.28 0.26
Iron: 0.44 0.435 0.43

Nickel: 0.50 0.47 0.36
Copper: 0.93 0.80 0.46

Platinum: 0.63 0.62 0.57
Silver: 0.97 0.97 0.96

Figure III.19. Experimentally measured reflectances for perpendicularly incident light. Values are based
on (Touloukian and Witt, 1970).

The preceding form of the Fresnel equation makes several simplifying assumptions. First,
the incoming light is presumed to be unpolarized. Second, conducting materials such as metals
need to use an index of refraction that has an imaginary component called the extinction
coefficient. For simplicity, the Cook–Torrance model just sets the extinction coefficient to
zero.

If the index of refraction η is known, then Equations III.19 and III.22 provide a good way
to compute the reflectance F . On the other hand, the Fresnel equation is sometimes used in
the context of ray tracing, and in that setting a slightly more efficient method can be used. For
this, refer to Section IX.1.2. That section has a vector v giving the direction from which the
light arrives and describes a method for computing the transmission direction t. Then, we can
calculate c = cosϕ = v · n and g = η cos θ = −ηt · n, instead of using Equation III.19.

Exercise III.8� Prove that the reflectance F can also be computed by the formula

F = 1

2

[(
η cos θ − cosϕ

η cos θ + cosϕ

)2

+
(

η cosϕ − cos θ

η cosϕ + cos θ

)2
]

. III.23

[Hint: Use Equation III.20 and use trignometry identities to show

tan(ϕ − θ )

tan(ϕ + θ )
= η cosϕ − cos θ

η cosϕ + cos θ
.] III.24

This still leaves the question of how to find the value of η, and Cook and Torrance suggest
the following procedure for determining an index of refraction for metals. They first note that
for perpendicularly incident light, ϕ = θ = 0; thus, c = 1, g = η, and

F =
(

η − 1

η + 1

)2

.

Solving for η in terms of F gives

η = 1+√F
1−√F . III.25

Reflectance values F for perpendicularly incident light have been measured for many mate-
rials (see (Touloukian and Witt, 1970; 1972; Touloukian, Witt, and Hernicz, 1972)). Given
a reflectance value for perpendicularly incident light, Equation III.25 can be used to get an
approximate value for the index of refraction. This value for η can then be used to calculate
the Fresnel term for light incident at other angles. Figure III.19 shows reflectance values F
for a few metals. These values are estimated from the graphs in (Touloukian and Witt, 1970)
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Figure III.20. Metallic tori with the specular component computed using the Cook–Torrance model. The
materials are, from top to bottom, gold, silver, and platinum. The roughness is m = 0.4 for all three
materials. The tori are each illuminated by five positional white lights. See Color Plate 16.

at red, green, and blue color values that correspond roughly to the red, green, and blue colors
used by standard monitors.

Figures III.20 and V.8 show some examples of roughened metals rendered with the Cook–
Torrance model. As can be seen from the figures, the Cook–Torrance model can do a fairly
good job of rendering a metallic appearance, although the colors are not very accurate (and in
any event, the colors in these figures have not been properly calibrated). The Cook–Torrance
model works less well on shiny metals with low roughness.
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IV

Averaging and Interpolation

This chapter takes up the subject of interpolation. For the purposes of the present chapter, the
term “interpolation” means the process of finding intermediate values of a function by aver-
aging its values at extreme points. Interpolation was already studied in Section II.4, where
it was used for Gouraud and Phong interpolation to average colors or normals to create
smooth lighting and shading effects. In Chapter V, interpolation is used to apply texture maps.
More sophisticated kinds of interpolation will be important in the study of Bézier curves and
B-splines in Chapters VII and VIII. Interpolation is also very important for animation, where
both positions and orientations of objects may need to be interpolated.

The first three sections below address the simplest forms of interpolation; namely, linear
interpolation on lines and triangles. This includes studying weighted averages, affine combi-
nations, extrapolation, and barycentric coordinates. Then we turn to the topics of bilinear and
trilinear interpolation with an emphasis on bilinear interpolation, including an algorithm for
inverting bilinear interpolation. The next section has a short, abstract discussion on convex
sets, convex hulls, and the definition of convex hulls in terms of weighted averages. After that,
we take up the topic of weighted averages performed on points represented in homogeneous
coordinates. It is shown that the effect of the homogeneous coordinate is similar to an extra
weighting coefficient, and as a corollary, we derive the formulas for hyperbolic interpolation
that are important for accurate interpolation in screen-space coordinates. The chapter con-
cludes with a discussion of spherical linear interpolation (“slerping”), which will be used later
for quaternion interpolation.

The reader may wish to skip many of the topics in this chapter on first reading and return
to them as needed for topics taken up in later chapters.

IV.1 Linear Interpolation

IV.1.1 Interpolation between Two Points

Suppose that x1 and x2 are two distinct points, and consider the line segment joining them. We
wish to parameterize the line segment between the two points by using a function x(α) that
maps the scalar α to a point on the line segment x1x2. We further want x(0) = x1 and x(1) = x2
and want x(α) to interpolate linearly between x1 and x2 for values of α between 0 and 1.

Therefore, the function is defined by

x(α) = (1− α)x1 + αx2. IV.1

99
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x1 x2

α = −1 α=0 α= 1
3

α = 1 α = 11
2

Figure IV.1. Interpolated and extrapolated points for various values of α. For α < 0, x(α) is to the left
of x1. For α > 1, x(α) is to the right of x2. For 0 < α < 1, x(α) is between x1 and x2.

Equivalently, we can also write

x(α) = x1 + α(x2 − x1), IV.2

where, of course, x2 − x1 is the vector from x1 to x2. Equation IV.1 is a more elegant way to
express linear interpolation, but the equivalent formulation IV.2 makes it clearer how linear
interpolation works.

We can also obtain points by extrapolation, by letting α be outside the interval [0, 1].
Equation IV.2 makes it clear how extrapolation works. When α > 1, the point x(α) lies past x2
on the line containing x1 and x2. And, when α < 0, the point x(α) lies before x1 on the line.
All this is illustrated in Figure IV.1.

Now we consider how to invert the process of linear interpolation. Suppose that the points
x1, x2, and u are given and we wish to find α such that u = x(α). Of course, this is possible
only if u is on the line containing x1 and x2. Assuming that u is on this line, we solve for α as
follows: From Equation IV.2, we have that

u− x1 = α(x2 − x1).
Taking the dot product of both sides of the equation with the vector x2 − x1 and solving for α,
we obtain1

α = (u− x1) · (x2 − x1)
(x2 − x1)2 . IV.3

This formula for α is reasonably robust and will not have a divide-by-zero problem unless
x1 = x2, in which case the problem was ill-posed. It is easy to see that if u is not on the line
containing x1 and x2, then the effect of formula IV.3 is equivalent to first projecting u onto the
line and then solving for α.

Exercise IV.1 Let x1 = 〈−1, 0〉 and x2 = 〈2, 1〉. Let α control the linear interpolation
(and extrapolation) from x1 to x2. What points are obtained with α equal to−2,−1, 0, 1

10 ,
1
3 , 1

2 , 1, 11
2 , and 2? What value of α gives the point 〈1, 2

3 〉? The point 〈8, 3〉? Graph your
answers.

Now we extend the notion of linear interpolation to linearly interpolating a function on the
line segment x1x2. Let f (u) be a function, and suppose that the values of f (x1) and f (x2) are
known. To linearly interpolate the values of f (u), we express u as u = (1− α)x1 + αx2. Then
linear interpolation for f yields

f (u) = (1− α) f (x1)+ α f (x2). IV.4

This method works equally well when the function f is vector-valued instead of scalar-valued.
For instance, in Gouraud interpolation, this method was used to interpolate color values.
However, it does notwork quite sowell for Phong interpolation,where normals are interpolated,
since the interpolated vectors have to be renormalized.

1 We write v2 for v · v = ||v||2. So (x2 − x1)2 means the same as ||x2 − x1||2.
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Equation IV.4 can also be used when α is less than zero or greater than one to extrapolate
values of f .

The process of interpolating a function’s values according to Formula IV.4 is often referred
to as “lerping.” “Lerp” is short for “Linear intERPolation.” Occasionally, when we want to
stress the use of interpolation, we use the notation

lerp(x, y, α) = (1− α)x+ αy.

Thus, Formula IV.4 could be written as f (u) = lerp( f (x1), f (x2), α).

IV.1.2 Weighted Averages and Affine Combinations

The next two definitions generalize interpolation to interpolating betweenmore than two points.

Definition Let x1, x2, . . . , xk be points. Let a1, a2, . . . , ak be real numbers; then

a1x1 + a2x2 + · · · + akxk IV.5

is called a linear combination of x1, . . . xk .
If the coefficients sum to 1, that is, if

∑k
i=1 ai = 1, the expression IV.5 is called an affine

combination of x1, . . . , xk .
If
∑k

i=1 ai = 1 and, in addition, each ai ≥ 0, then expression IV.5 is called a weighted
average of x1, . . . , xk .

Theorem IV.1 Affine combinations are preserved under affine transformations. That is, if

f(x1, . . . , xk) = a1x1 + a2x2 + · · · + akxk

is an affine combination, and if A is an affine transformation, then

f(A(x1), A(x2), . . . , A(xk)) = A(f(x1, x2, . . . , xk)).

Theorem IV.1 will turn out to be very important for Bézier curves and B-splines (as defined
in Chapters VII and VIII). Bézier curves and B-spline curves will be defined as affine combi-
nations of points called “control points,” and Theorem IV.1 tells us that arbitrary rotations and
translations of the control points just rotate and translate the spline curves in exactly the same
way.

Proof Recall from Chapter II that the affine transformation A can be written as

A(x) = B(x)+ A(0),

where B is a linear transformation. Then,

A(a1x1 + a2x2 + · · · + akxk)

= B(a1x1 + a2x2 + · · · + akxk)+ A(0)

= a1B(x1)+ a2B(x2)+ · · · + ak B(xk)+ A(0)

= a1B(x1)+ a2B(x2)+ · · · + ak B(xk)+
k∑

i=1
ai A(0)

= a1B(x1)+ a1A(0)+ a2B(x2)+ a2A(0)+ · · · + ak B(xk)+ ak A(0)

= a1A(x1)+ a2A(x2)+ · · · + ak A(xk).
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The second equality above uses the linearity of B, and the third equality uses the fact that the
combination is affine. �

Exercise IV.2� By definition, a function f(x) is preserved under affine combinations if
and only if, for all α and all x1 and x2,

f((1− α)x1 + αx2) = (1− α)f(x1)+ αf(x2).

Show that any function preserved under affine combinations is an affine transformation.
[Hint: Show that f(x)− f(0) is a linear transformation.]

Exercise IV.3� Show that any vector-valued function f(x1, x2) preserved under affine
transformations is an affine combination. [Hint: Any such function is fully determined by
the value of f(0, i).] Remark: This result holds also for functions fwith more than two inputs
as long as the number of inputs is at most one more than the dimension of the underlying
space.

Theorem IV.1 states that affine transformations preserve affine combinations. On the other
hand, perspective transformations do not in general preserve affine combinations. Indeed, if we
try to apply affine combinations to points expressed in homogeneous coordinates, the problem
arises that it makes a difference which homogeneous coordinates are chosen to represent
the points. For example, consider the points v0 = 〈0, 0, 0, 1〉 and the point v1 = 〈1, 0, 0, 1〉.
The first homogeneous vector represents the origin, and the second represents the vector i. The
second vector is also equivalent to v′1 = 〈2, 0, 0, 2〉. If we form the linear combinations

1
2v0 + 1

2v1 = 〈 12 , 0, 0, 1〉 IV.6

and

1
2v0 + 1

2v
′
1 = 〈1, 0, 0, 3

2 〉, IV.7

the resulting two homogeneous vectors represent different points in 3-space even though they
are weighted averages of representations of the same points! Thus, affine combinations of
points in homogeneous coordinates have a different meaning than you might expect. We return
to this subject in Section IV.4, where it will be seen that the w-component of a homogeneous
vector serves as an additional weighting term. We will see later that affine transformations of
homogeneous representations of points can be a powerful and flexible tool for rational Bézier
curves and B-splines because it allows them to define circles and other conic sections.

IV.1.3 Interpolation on Three Points: Barycentric Coordinates

Section IV.1.1 discussed linear interpolation (and extrapolation) on a line segment between
points. In this section, the notion of interpolation is generalized to allow linear interpolation
on a triangle.

Let x, y, and z be three noncollinear points, and thus they are the vertices of a triangle T .
Recall that a point u is a weighted average of these three points if it is equal to

u = αx+ βy+ γ z, IV.8

where α + β + γ = 1 and α, β, and γ are all nonnegative. As shown below (Theorems
IV.2 and IV.3), a weighted average u of the three vertices x, y, z will always be in or on
the triangle T . Furthermore, for each u in the triangle, there are unique values for α, β, and γ

such that Equation IV.8 holds. The values α, β, and γ are called the barycentric coordinates
of u.
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x

y

z

w

u

Figure IV.2. The point u in the interior of the triangle is on the line segment from w to z. The point w is
a weighted average of x and y. The point u is a weighted average of w and z.

Theorem IV.2 Let x, y, z be noncollinear points and let T be the triangle formed by these
three points.

(a) Let u be a point on T or in the interior of T . Then u can be expressed as a weighted
average of the three vertices x, y, z as in Equation IV.8 with α, β, γ ≥ 0 and α + β +
γ = 1.

(b) Let u be any point in the plane containing T . Then u can be expressed as an affine
combination of the three vertices, as in Equation IV.8 but with only the condition α + β +
γ = 1.

Proof (a) If u is on an edge of T , it is a weighted average of the two vertices on that edge.
Suppose u is in the interior of T . Form the line containing u and z. This line intersects the
opposite edge, xy, of T at a point w, as shown in Figure IV.2. Since w is on the line segment
between x and y, it can be written as a weighted average

w = ax+ by,

where a + b = 1 and a, b ≥ 0. Also, because u is on the line segment between w and z, it can
be written as a weighted average

u = cw+ dz,

where c + d = 1 and c, d ≥ 0. Therefore, u is equal to

u = (ac)x+ (bc)y+ dz,

and this is easily seen to be a weighted average because ac + bc + d = 1 and all three coeffi-
cients are nonnegative. This proves (a).

Part (b) could be proved by a method similar to the proof of (a), but instead we give a
proof based on linear independence. First, note that the vectors y− x and z− x are linearly
independent since they form two sides of a triangle and thus are noncollinear. Let P be the
plane containing the triangle T : the plane P consists of the points u such that

u = x+ β(y− x)+ γ (z− x), IV.9

where β, γ ∈ R. If we let α = (1− β − γ ), then u is equal to the affine combination αx+
βy+ γ z. �

Exercise IV.4 Let x = 〈0, 0〉, y = 〈2, 3〉, and z = 〈3, 1〉 in R
2. Determine the points

represented by the following sets of barycentric coordinates.

a. α = 0, β = 1, γ = 0.

b. α = 2
3 , β = 1

3 , γ = 0.
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x

y

z

u
A

B

C

Figure IV.3. The barycentric coordinates α, β, and γ for the point u are proportional to the areas A, B
and C .

c. α = 1
3 , β = 1

3 , γ = 1
3 .

d. α = 4
5 , β = 1

10 , γ = 1
10 .

e. α = 4
3 , β = 2

3 , γ = −1.

Graph your answers along with the triangle formed by x, y, and z.

The proof of part (b) of Theorem IV.2 constructed β and γ so that Equation IV.9 holds.
In fact, because y− x and z− x are linearly independent, the values of β and γ are uniquely
determined by u. This implies that the barycentric coordinates of u are unique, and so we have
proved the following theorem.

Theorem IV.3 Let x, y, z, and T be as in Theorem IV.2. Let u be a point in the plane
containing T . Then there are unique values for α, β, and γ such that α + β + γ = 1 and
Equation IV.8 holds.

One major application of barycentric coordinates and linear interpolation on three points is
to extend the domain of a function f by linear interpolation. Suppose, as usual, that x, y, and z
are the vertices of a triangle T and that f is a function for which we know the values of f (x),
f (y), and f (z). To extend f to be defined everywhere in the triangle by linear interpolation,
we let

f (u) = α f (x)+ β f (y)+ γ f (z),

whereα, β, γ are the barycentric coordinates ofu.Mathematically, this is the same computation
as used in Gouraud shading based on scan line interpolation (at least, it gives the same results
to within roundoff errors, which are due mostly to pixelization). The same formula can be used
to linearly extrapolate f to be defined for all points u in the plane containing the triangle.

Area Interpretation of Barycentric Coordinates
There is a nice characterization of barycentric coordinates in terms of areas of triangles.
Figure IV.3 shows a triangle with vertices x, y, and z. The point u divides the triangle into three
subtriangles. The areas of these three smaller triangles are A, B, and C , and so the area of the
entire triangle is equal to A + B + C . As the next theorem states, the barycentric coordinates
of u are proportional to the three areas A, B, and C .

Theorem IV.4 Suppose the situation shown in Figure IV.3 holds. Then the barycentric coor-
dinates of u are equal to

α = A

A + B + C
β = B

A + B + C
γ = C

A + B + C
.

Team LRN



IV.1 Linear Interpolation 105

x

y

z

u

w D1

D2

x

y

z

w

u
A

B

E2

E1

(a) (b)

Figure IV.4. The areas used in the proof of Theorem IV.4.

Proof The proof is based on the construction used in the proof of part (a) of Theorem IV.2.
In particular, recall the way the scalars a, b, c, and d were used to define the barycentric
coordinates of u. You should also refer to Figure IV.4, which shows additional areas D1, D2,
E1, and E2.

As shown in part (a) of Figure IV.4, the line zw divides the triangle into two subtriangles
with areas D1 and D2. Let D be the total area of the triangle, and so D = D1 + D2. By using
the usual “one-half base times height” formula for the area of a triangle with the base along
the line xy, we have that

D1 = aD and D2 = bD. IV.10

(Recall a and b are defined so that w = ax+ by.)
Part (b) of the figure shows the triangle with area D1 further divided into two subtriangles

with areas E1 and A and the triangle with area D2 divided into two subtriangles with areas
E2 and B. By exactly the same reasoning used for Equations IV.10, we have (recall that
u = cw+ dz)

E1 = d D1, A = cD1,

E2 = d D2, B = cD2.
IV.11

Combining Equations IV.10 and IV.11 and using C = E1 + E2 and a + b = 1, we obtain

A = acD, B = bcD, and C = d D.

This proves Theorem IV.4 since D = A + B + C and α = ac, β = bc, and γ = d. �

Calculating Barycentric Coordinates
Nowwe take up the problem of how to find the barycentric coordinates of a given point u. First
consider the simpler case of 2-space, where all points lie in the xy-plane. (The harder 3-space
case will be considered afterwards.) The points x = 〈x1, x2〉, y = 〈y1, y2〉, z = 〈z1, z2〉, and
u = 〈u1, u2〉 are presumed to be known points. We are seeking coefficients α, β, and γ that
express u as an affine combination of the other three points.

Recall (see Appendix A.2.1) that, in two dimensions, the (signed) area of a parallelogram
with sides equal to the vectors s1 and s2 has area equal to the cross product s1 × s2. Therefore,
the area of the triangle shown in Figure IV.3 is equal to

D = 1
2 (z− x)× (y− x).
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Figure IV.5. Calculating barycentric coordinates in R
3.

Likewise, the area B is equal to

B = 1
2 (z− x)× (u− x).

Thus, by Theorem IV.4,

β = (z− x)× (u− x)
(z− x)× (y− x) . IV.12

Similarly,

γ = (u− x)× (y− x)
(z− x)× (y− x) . IV.13

The barycentric coordinate α can be computed in the same way, but it is simpler just to let
α = 1− β − γ .

Equations IV.12 and IV.13 can also be adapted for barycentric coordinates in 3-space ex-
cept that you must use the magnitudes of the cross products instead of just the cross prod-
ucts. However, there is a simpler and faster method presented below by Equations IV.14
through IV.16.

To derive the better method, refer to Figure IV.5. The two sides of the triangle are given by
the vectors

e1 = y− x and e2 = z− x.
In addition, the vector from x to u is f = u− x. The vector n is the unit vector perpendicular to
the side e2 pointing into the triangle. The vector n is computed by lettingm be the component
of e1 perpendicular to e2,

m = e1 − (e1 · e2)e2/e22,
and setting n = m/||m||. (The division by e22 is needed since e2 may not be a unit vector.)

Letting e2 be the base of the triangle, we find that the height of the triangle is equal to n · e1.
Thus, the area of the triangle is equal to

D = 1
2 (n · e1)||e2|| =

(m · e1)||e2||
2||m|| .

Similarly, the area of the subtriangle B is equal to

B = 1
2 (n · f)||e2|| =

(m · f)||e2||
2||m|| .
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z

u2

u3

u4

Figure IV.6. The points from Exercise IV.5.

Therefore, β is equal to

β = B

D
= m · f
m · e1 =

(e22 e1 − (e1 · e2)e2) · f
e21e

2
2 − (e1 · e2)2

. IV.14

A similar formula holds for γ but with the roles of e1 and e2 reversed.We can further preprocess
the triangle by letting

uβ = e22e1 − (e1 · e2)e2
e21 e

2
2 − (e1 · e2)2

and uγ = e21e2 − (e1 · e2)e1
e21 e

2
2 − (e1 · e2)2

. IV.15

Thus, the barycentric coordinates can be calculated by

β = uβ · f and γ = uγ · f, IV.16

and of course α = 1− β − γ .
Note that the vectors m and n were used to derive the formulas for β and γ , but there is

no need to actually compute them: instead, the vectors uβ and uγ contain all the information
necessary to compute the barycentric coordinates of the point u from f = u− x. This allows
barycentric coordinates to be computed very efficiently. A further advantage is that Equations
IV.15 and IV.16work in any dimension, not just inR

3.When the point u does not lie in the plane
containing the triangle, then the effect of using Equations IV.15 and IV.16 is the same as pro-
jecting u onto the plane containing the triangle before computing the barycentric coordinates.

Exercise IV.5 Let x = 〈0, 0〉, y = 〈2, 3〉, and z = 〈3, 1〉. Determine the barycentric coor-
dinates of the following points (refer to Figure IV.6).

a. u1 = 〈2, 3〉.
b. u2 = 〈11

3 , 2〉.
c. u3 = 〈 32 , 3

2 〉.
d. u4 = 〈1, 0〉.

Exercise IV.6� Generalize the notion of linear interpolation to allow interpolation be-
tween four noncoplanar points that lie in R

3.

IV.2 Bilinear and Trilinear Interpolation

IV.2.1 Bilinear Interpolation

The last section discussed linear interpolation between three points. However, often we would
prefer to interpolate between four points that lie in a planeor on a two-dimensional surface rather
than between only three points. For example, a surface may be tiled by a mesh of four-sided
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α

β β

Figure IV.7. The point u = u(α, β) is formed by bilinear interpolation with the scalar coordinates α and
β. The points a1 and a2 are obtained by interpolating with α, and b1 and b2 are obtained by interpolating
with β.

polygons that are nonrectangular (or even nonplanar), but we may wish to parameterize the
polygonal patches with values α and β both ranging between 0 and 1. This frequently arises
when using texture maps. Another common use is in computer games such as in driving
simulation games when the player follows a curved race track consisting of a series of approx-
imately rectangular patches. The game programmer can use coordinates α, β ∈ [0, 1] to track
the position within a given patch.

To interpolate four points, we use a method called bilinear interpolation. Suppose four
points form a four-sided geometric patch, as pictured in Figure IV.7. Bilinear interpolation will
be used to define a smooth surface; the four straight-line boundaries of the surface will be the
four sides of the patch. We wish to index points on the surface with two scalar values, α and β,
both ranging from 0 to 1; essentially, we are seeking a smooth mapping that has as its domain
the unit square [0, 1]2 = [0, 1]× [0, 1] and that maps the corners and the edges of the unit
square to the vertices and the boundary edges of the patch. The value of α corresponds to the
x-coordinate and that of β to the y-coordinate of a point u on the surface patch.

The definition of the bilinear interpolation function is as follows:

u = (1− β) · [(1− α)x+ αy]+ β · [(1− α)w+ αz]

= (1− α) · [(1− β)x+ βw]+ α · [(1− β)y+ βz] IV.17

= (1− α)(1− β)x+ α(1− β)y+ αβz+ (1− α)βw.

For 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1, this defines u as a weighted average of the vertices x, y, z,
and w. We sometimes write u as u(α, β) to indicate its dependence on α and β.

We defined bilinear interpolation with three equivalent equations in IV.17 to stress that
bilinear interpolation can be viewed as linear interpolation with respect to α followed by linear
interpolation with respect to β or, vice versa, as interpolation first with β and then with α.
Thus, the first two lines of Equation IV.17 can be rewritten as

u = lerp( lerp(x, y, α), lerp(w, z, α), β) IV.18

= lerp( lerp(x,w, β), lerp(y, z, β), α).

Bilinear interpolation may be used to interpolate the values of a function f . If the values
of f are fixed at the four vertices, then bilinear interpolation is used to set the value of f at
the point u obtained by Equation IV.17 to

f (u) = (1− α)(1− β) f (x)+ α(1− β) f (y)+ αβ f (z)+ (1− α)β f (w).
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x = 〈0, 0〉 y = 〈4, 0〉

z = 〈5, 3〉

w = 〈0, 2〉

Figure IV.8. Figure for Exercise IV.7.

Exercise IV.7 Let x = 〈0, 0〉, y = 〈4, 0〉, z = 〈5, 3〉, andw = 〈0, 2〉, as in Figure IV.8. For
each of the following values of α and β, what point is obtained by bilinear interpolation?
Graph your answers.

a. α = 1 and β = 0.

b. α = 1
3 and β = 1.

c. α = 1
2 and β = 1

4 .

d. α = 2
3 and β = 1

3 .

Equation IV.17 defining bilinear interpolation makes sense for an arbitrary set of vertices x,
y, z, w. If the four vertices are coplanar and lie in a plane P , the bilinearly interpolated points
u(α, β) clearly lie in the same plane because they are weighted averages of the four vertices. If,
on the other hand, the four vertices are not coplanar and are positioned arbitrarily in R

3, then
the points u = u(α, β) obtained by bilinear interpolation with α, β ∈ [0, 1] form a four-sided
“patch,” that is, a four-sided surface. The sides of the patch will be straight line segments, but
the interior of the patch may be curved.

Exercise IV.8 Suppose a surface patch in R
3 is defined by bilinearly interpolating from

four vertices. Derive the following formulas for the partial derivatives of u:
∂u

∂α
= (1− β)(y− x)+ β(z− w) IV.19

∂u

∂β
= (1− α)(w− x)+ α(z− y).

In addition, give the formula for the normal vector to the patch at a point u = u(α, β).

Usually, bilinear interpolation uses vertices that are not coplanar but are not too far away
from a planar, convex quadrilateral. Amathematical way to describe this is to say that a plane P
exists such that, when the four vertices are orthogonally projected onto the plane, the result is
a convex, planar quadrilateral. We call this condition the “projected convexity condition”:

ProjectedConvexityCondition: The projected convexity condition holds provided there exists
a plane P such that the projection of the points x, y, z, w onto the plane P are the vertices of
a convex quadrilateral with the four vertices being in counterclockwise or clockwise order.

To check that the projected convexity condition holds for a given plane, choose a unit
vector n normal to the plane and assume, without loss of generality, that the plane contains the
origin. Then project the four points onto the plane, yielding four points xP, yP, zP, and wP by
using the following formula (see Appendix A.2.2):

xP = x− (n · x)n.
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Figure IV.9. The vectors vi are the directed edges around the quadrilateral.

Then check that the interior angles of the resulting quadrilateral are less than 180◦. (We discuss
convexity more in Section IV.3, but for now we can take this test as being the definition of a
convex quadrilateral.)

Amathematically equivalent method of checkingwhether the projected convexity condition
holds for a plane with unit normal n is as follows. First define the four edge vectors by

v1 = y− x
v2 = z− y
v3 = w− z
v4 = x− w.

These give the edges in circular order around the quadrilateral, as shown Figure IV.9. The
condition that the interior angles of the projected quadrilateral are less than 180◦ is equivalent
to the condition that the four values

(v1 × v2) · n (v3 × v4) · n
(v2 × v3) · n (v4 × v1) · n

IV.20

are either all positive or all negative. To verify this, suppose we view the plane down the
normal vector n. If the four values from IV.20 are all positive, then the projected vertices are
in counterclockwise order. When the four values are all negative, the projected vertices are in
clockwise order.

Exercise IV.9 Prove that the values (vi × v j ) · n are equal to �i · � j sin θ where �i is the
magnitude of the projection of vi onto the plane P and where θ is the angle between the
projections of vi and v j .

The projected convexity condition turns out to be very useful, for instance, in the proof of
Corollary IV.7 and for solving Exercise IV.10. Thus, it is a pleasant surprise that the projected
convexity condition nearly always holds; indeed, it holds for any set of four noncoplanar
vertices.

Theorem IV.5 Suppose that x, y, z, and w are not coplanar. Then the projected convexity
condition is satisfied.

Proof We call the two line segments xz and yw the diagonals. With reference to Figure IV.10,
let a be the midpoint of the diagonal xz so that a = 1

2 (x+ z). Likewise, let b be the midpoint of
the other diagonal. The points a and bmust be distinct, for otherwise the two diagonals would
intersect and the four vertices would all lie in the plane containing the diagonals, contradicting
the hypothesis of the theorem.

Form the unit vector n in the direction from a to b, that is,

n = b− a
||b− a|| .

Team LRN



IV.2 Bilinear and Trilinear Interpolation 111

w y

x

z

b

a

n

Figure IV.10. The line segments xz and yw have midpoints a and b. The vector n is the unit vector in the
direction from a to b.

Let P be the plane containing the origin and perpendicular to n, and consider the orthogonal
projection of the four vertices onto P . The midpoints a and b project onto the same point
of P because of the way n was chosen. Also, the projections of the two diagonals cannot be
collinear, for otherwise all four vertices would lie in the plane that contains the projections
of the diagonals and is perpendicular to P . That is, the projections of the diagonals are two
line segments that cross each other (intersect in their interiors), as shown in Figure IV.11. In
particular, neither diagonal projects onto a single point. The projections of the four vertices are
the four endpoints of the projections of the diagonals. Clearly they form a convex quadrilateral
with the vertices being in clockwise or counterclockwise order. �

For convex, planar quadrilaterals, we have the following theorem.

Theorem IV.6 Let x, y, z,w be the vertices of a planar, convex quadrilateral in counterclock-
wise (or clockwise) order. Then the bilinear interpolation mapping

〈α, β〉 → u(α, β)

is a one-to-one map from [0, 1]× [0, 1] onto the quadrilateral.

Proof We give a quick informal proof. If the value of β is fixed, then the second line in
Equation IV.17 or IV.18 shows that the function u(α, β) is just equal to the result of using α to
interpolate linearly along the line segment Lβ joining the two points

(1− β)x+ βw and (1− β)y+ βz.

These two points lie on opposite edges of the quadrilateral and thus are distinct. Furthermore,
for β �= β ′, the two line segments Lβ and Lβ ′ do not intersect, as may be seen by inspection
of Figure IV.12. This uses the fact that the interior angles of the quadrilateral measure less
than 180◦. Therefore, if β �= β ′, then u(α, β) �= u(α′, β ′), since Lβ and Lβ ′ are disjoint. On
the other hand, if β = β ′, but α �= α′, then again u(α, β) �= u(α′, β ′) because they are distinct
points on the the line Lβ .

To verify that the map is onto, note that the line segments Lβ sweep across the quadrilateral
as β varies from 0 to 1. Therefore, any u in the quadrilateral lies on some Lβ . �

Figure IV.13 shows an example of how Theorem IV.6 fails for planar quadrilaterals that
are not convex. The figure shows a sample line Lβ that is not entirely inside the quadrilateral;

xP
yP

zPwP

Figure IV.11. The projections of the two diagonals onto the plane P are noncollinear and intersect at their
midpoints at the common projection of a and b. The four projected vertices form a convex quadrilateral.
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Figure IV.12. Since the polygon is convex, distinct values β and β ′ give nonintersecting “horizontal” line
segments.

thus, the range of the bilinear interpolation map is not contained inside the quadrilateral.
Furthermore, the bilinear interpolation map is not one-to-one; for instance, the point where
the segments Lβ and zw intersect has two sets of bilinear coordinates.

However, the next corollary states that Theorem IV.6 does apply to any set of four noncopla-
nar points.

Corollary IV.7 Suppose x, y, z, and w are not coplanar. Then the function u(α, β) is a
one-to-one map on the domain [0, 1]× [0, 1].

Proof By Theorem IV.5, the projected convexity condition holds for some plane P . With-
out loss of generality, the plane P is the xy-plane. The bilinear interpolation function
u(α, β) operates independently on the x-, y-, and z-components of the vertices. Therefore,
by Theorem IV.6, the projection of the values of u(α, β) onto the xy-plane is a one-to-one
function from [0, 1]2 into the xy-plane. It follows immediately that the function u(α, β) is
one-to-one. �

Exercise IV.10� Let the vertices x, y, z, w be four points in R
3 and suppose that the

projected convexity condition holds. Prove that

∂u

∂α
× ∂u

∂β

is nonzero for all α, β ∈ [0, 1]. Conclude that this defines a nonzero vector normal to the
surface. [Hint: Refer back to Exercise IV.8 on page 109. Prove that the cross product is
equal to

α(1− β)v1 × v2 + αβv2 × v3 + (1− α)βv3 × v4 + (1− α)(1− β)v4 × v1,
and use the fact that (vi × v j ) · n, for j = (i mod 4)+ 1, all have the same sign, for
n normal to the plane from the projected convexity condition.]

x y
z

w

Lβ

Figure IV.13. An example of the failure of Theorem IV.6 for nonconvex, planar quadrilaterals.
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x y

z
w

u

s1(β) s2(β)

Figure IV.14. The three points s1(β), u, and s2(β) will be collinear for the correct value of β. The value
of β shown in the figure is smaller than the correct β coordinate of u.

IV.2.2 Inverting Bilinear Interpolation

We now discuss how to invert bilinear interpolation. For this, we are given the four vertices
x, y, z, and w, which are assumed to form a convex quadrilateral in a plane.2 Without loss
of generality, the points lie in R

2, and so x = 〈x1, x2〉, and so on. In addition, we are given a
point u = 〈u1, u2〉 in the interior of the quadrilateral formed by these four points. The problem
is to find the values of α, β ∈ [0, 1] so that u satisfies the defining equation IV.17 for bilinear
interpolation.

Our algorithm for inverting bilinear interpolation will be based on vectors. Let s1 = w− x
and s2 = z− y. Then let

s1(β) = x+ βs1 and s2(β) = y+ βs2,

as shown in Figure IV.14. To solve for the value of β, it is enough to find β such that 0 ≤ β ≤ 1
and such that the three points s1(β), u, and s2(β) are collinear.

Referring to Appendix A.2.1, we recall that two vectors in R
2 are collinear if, and only if,

their cross product is equal to zero.3 Thus, for the three points to be collinear, we must have

0 = (s1(β)− u)× (s2(β)− u)
= (βs1 − (u− x))× (βs2 − (u− y)) IV.21

= (s1 × s2)β2 + [s2 × (u− x)− s1 × (u− y)]β + (u− x)× (u− y).
This quadratic equation can readily be solved for the desired value of β. In general, there will
be two roots of the quadratic equation. To find these, let A, B, and C be the coefficients of β2,
β, and 1 in Equation IV.21, namely,

A = s1 × s2 = (w− x)× (z− y)

B = (z− y)× (u− x)− (w− x)× (u− y)

C = (u− x)× (u− y).
The two roots of IV.21 are

β = −B ±√B2 − 4AC

2A
. IV.22

2 At the end of this section, we discuss how to modify the algorithm to work in three dimensions.
3 Recall that the cross product for 2-vectors is defined to be the scalar value

〈v1, v2〉 × 〈w1, w2〉 = v1w2 − v2w1.
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x y

z

w
u

s1(β−)
s2(β−)

s1(β+)

s2(β+)
(a)

z
w

x y

u s2(β−)
s1(β−)

s2(β+)

s1(β+)

(b)

Figure IV.15. The two possibilities for the sign of s1 × s2. In (a), s1 × s2 < 0; in (b), s1 × s2 > 0. In each
case, there are two values for β where the points s1(β), s2(β), and u are collinear. The values β+ and β−

are the solutions to Equation IV.22 obtained with the indicated choice of plus or minus sign. For (a)
and (b), β = β− is between 0 and 1 and is the desired root.

There remains the question of which of the two roots is the right value for β. Of course, one
way to decide this is to use the root between 0 and 1. But we can improve on this and avoid
having to test the roots to see if they are between 0 and 1.4 In fact, we will see that the right
root is always the root

β = −B −√B2 − 4AC

2A
. IV.23

To prove this, consider the two cases s1 × s2 < 0 and s1 × s2 > 0 separately. (The case s1 ×
s2 = 0 will be discussed later.) First, assume that s1 × s2 < 0. This situation is shown in
Figure IV.15(a), where the two vectors s1 and s2 are diverging, or pointing away, from each
other since the angle from s1 to s2 must be negative if the cross product is negative. As shown
in Figure IV.15(a), there are two values, β− and β+, where s1(β), u, and s2(β) are collinear.
The undesired root of Equation IV.21 occurs with a negative value of β, namely β = β+, as
shown in the figure. So in the case where s1 × s2 < 0, the larger root of IV.22 is the correct
one. And since the denominator A = s1 × s2 of IV.22 is negative, the larger root is obtained
by taking the negative sign in the numerator.

Now assume that s1 × s2 > 0. This case is shown in Figure IV.15(b). In this case, the
undesired root of Equation IV.21 is greater than 1; therefore, the desired root is the smaller
of the two roots. Since the denominator is positive in this case, we again need to choose the
negative sign in the numerator of IV.22.

This almost completes the mathematical description of how to compute the value of β.
However, there is one further modification to be made to make the computation more stable.
It is well known (c.f. (Higman, 1996)) that the usual formulation of the quadratic formula can
be computationally unstable. This can happen to the formula IV.23 if value of B is negative
and if B2 is much larger than 4AC , since the numerator will be computed as the difference of

4 The problemwith testing for being between 0 and 1 is that roundoff error may cause the desired root to
be slightly less than 0 or slightly greater than 1. In addition, if one is concerned aboutminor differences
in computation time, then comparison between real numbers can actually be slightly slower than other
operations on real numbers.
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two large numbers that mostly cancel out to yield a value close to 0. In this case, a more stable
computation can be performed by using the formula

β = 2C

−B +√B2 − 4AC
. IV.24

This formula is equivalent to IV.23, as can be seen by multiplying both the numerator and de-
nominator of IV.23 by (−B +√B2 − 4AC), and it has the advantage of being computationally
more stable when B is negative.

Once the value of β has been obtained, it is straightforward to find the value of α, since u is
now the weighted average of s1(β) and s2(β). This can be done by just setting

α = (u− s1(β)) · (s2(β)− s1(β))
(s2(β)− s1(β))2

because this is the ratio of the distance from s1(β) to u to the distance from s1(β) to s2(β). (See
also Equation IV.3 on page 100.)

We now can present the algorithm for inverting bilinear interpolation. The input to the
algorithm is five points in R

2. For reliable results, the points x, y, z, w should be the vertices
of a convex quadrilateral, and u should be on or inside the quadrilateral.

// x, y, x, w, u lie in the plane R2

BilinearInvert( u, x, y, z, w ) {
Set A = (w− x)× (z− y);
Set B = (z− y)× (u− x)− (w− x)× (u− y);
Set C = (u− x)× (u− y);
If ( B > 0 ) {

Set β =
−B −√B2 − 4AC

2A
;

}
Else {

Set β =
2C

−B +√B2 − 4AC
;

}
Set s1,β = (1− β)x+ βw;
Set s2,β = (1− β)y+ βz;

Set α =
(u− s1,β ) · (s2,β − s1,β )

(s2,β − s1,β )2 ;

Return α and β as the bilinear interpolation inverse.
}

We have omitted so far discussing the case where A = s1 × s2 = 0: this happens whenever
s1 and s2 are collinear so that the left and right sides of the quadrilateral are parallel. When
A equals 0, the quadratic equation IV.21 becomes the linear equation Bβ + C = 0 with only
one root, namely, β = −C/B. Thus, it would be fine to modify the preceding algorithm to test
whether A = 0 and, if so, compute β = −C/B. However, the algorithm above will actually
work correctly as written even when A = 0. To see this, note that, if A = 0, the left and right
sides are parallel, so (w− x)× (u− y) ≥ 0 and (z− y)× (u− x) ≤ 0 sinceu is in the polygon.
Furthermore, for a proper polygon these cross products are not both zero. Therefore, B < 0
and the algorithm above computes β according to the second case, which is mathematically
equivalent to computing −C/B and avoids the risk of a divide by zero.
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x = 〈0, 0〉 y = 〈4, 0〉

z = 〈5, 3〉

w = 〈0, 2〉

u = 〈3
2 ,

7
6 〉

Figure IV.16. Figure for Exercise IV.11.

Exercise IV.11 Let x = 〈0, 0〉, y = 〈4, 0〉, z = 〈5, 3〉, w = 〈0, 2〉, and u = 〈 32 , 7
6 〉, as in

Figure IV.16. What are the bilinear coordinates, α and β, of u?

Now we generalize the bilinear inversion algorithm to work in three dimensions instead of
two. The key idea is that we just need to choose two orthogonal axes and project the problem
onto those two axes, reducing the problemback to the two-dimensional case. For this,we start by
choosing a unit vectorn such that the projected convexity condition holds for a plane perpendic-
ular to n. To choose n, you should not use the vector from the proof of Theorem IV.5, as thismay
give a poorly conditioned problem and lead to unstable computations. Indeed, this would give
disastrous results if the points x, y, z, andwwere coplanar andwould give unstable results if they
were close to coplanar. Instead, in most applications, a better choice for n would be the vector

(z− x)× (w− y)
||(z− x)× (w− y)|| .

Actually, it will turn out that there is no need tomake n a unit vector, and so it is computationally
easier just to set n to be the vector

n = (z− x)× (w− y). IV.25

This choice for n is likely to work well in most applications. In particular, if this choice for n
does not give a plane satisfying the projected convexity condition, then the patches are probably
poorly chosen and are certainly not very patchlike.

In some cases there are easier ways to choose n. A common application of patches is to
define a terrain or, more generally, a surface that does not vary too much from horizontal. In
this case, the “up”-direction vector, say j, can be used for the vector n.

Once we have chosen the vector n, we can convert the problem into a two-dimensional one
by projecting onto a plane P orthogonal to n. Fortunately, it is unnecessary to actually choose
coordinate axes for P and project the five points u, x, y, z, and w onto P . Instead, we only
need the three scalar values A, B, and C , and to compute these, it is mathematically equivalent
to use the formulas in the BilinearInvert routine but then take the dot product with n.

To summarize, the bilinear inversion algorithm for points in R
3 is the same as the Bilin-

earInvert program as given on page 115, except that now u, x, y, z, andw are vectors in R
3,

and the first three lines of the program are replaced by the following four lines:

Set n = (z− x)× (w− y);
Set A = n · ((w− x)× (z− y));
Set B = n · ((z− y)× (u− x)− (w− x)× (u− y));
Set C = n · ((u− x)× (u− y));

The rest of BilinearInvert is unchanged. Other choices for n are possible too: the
important point is that the projected convexity condition should hold robustly.
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IV.2.3 Trilinear Interpolation

Trilinear interpolation is a generalization of bilinear interpolation to three dimensions. For
trilinear interpolation, we are given eight points xi, j,k , where i, j, k ∈ {0, 1}. Our goal is to
define a smooth map u(α, β, γ ) from the unit cube [0, 1]3 into 3-space so that u(i, j, k) = xi, j,k

for all i, j, k ∈ {0, 1}. The intent is that the eight points xi, j,k are roughly in the positions of the
vertices of a rectangular prism and that the map u(α, β, γ ) should be a smooth interpolation
function.

For trilinear interpolation, we define

u(α, β, γ ) =
∑
i, j,k

wi (α)w j (β)wk(γ )xi, j,k,

where the summation runs over all i, j, k ∈ {0, 1}, and where the values wn(δ), for n ∈ {0, 1},
are defined by

wn(δ) =
{
1− δ if n = 0

δ if n = 1.

Trilinear interpolation can also be used to interpolate the values of a function. Suppose a
function f has its values specified at the vertices so that f (xi, j,k) is fixed for all eight vertices.
Then, we extend f to the unit cube [0, 1]3 through trilinear interpolation by letting

f (u(α, β, γ )) =
∑
i, j,k

wi (α)w j (β)wk(γ ) f (xi, j,k).

To the best of our knowledge, there is no good way to invert trilinear interpolation in closed
form. However, it is possible to use an iterative method based on Newton’s method to invert
trilinear interpolation quickly.

IV.3 Convex Sets and Weighted Averages

The notion of a convex quadrilateral has already been discussed in the sections above. This
section introduces the definition of convexity for general sets of points and proves that a set is
convex if and only if it is closed under the operation of taking weighted averages.

The intuitive notion of a convex set is that it is a fully “filled in” region with no “holes” or
missing interior points and that there are no places where the boundary bends inward and back
outward. Figure IV.17 shows examples of convex and nonconvex sets in the plane. Nonconvex
sets have the property that it is possible to find a line segment that has endpoints in the set but
is not entirely contained in the set.

Definition Let A be a set of points (in Rd for some dimension d). The set A is convex if and
only if the following condition holds: for any two points x and y in A, the line segment joining
x and y is a subset of A.

Some simple examples of convex sets include: (a) any line segment, (b) any line or ray,
(c) any plane or half-plane, (d) any half-space, (e) any linear subspace of R

d , (f) the entire
space R

d , (g) any ball (i.e., a circle or sphere plus its interior), (h) the interior of a triangle or
parallelogram, and so on. It is easy to check that the intersection of two convex sets must be
convex. In fact, the intersection of an arbitrary collection of convex sets is convex. (You should
supply a proof of this!) However, the union of two convex sets is not always convex.

Definition Let A be a set of points in R
d . The convex hull of A is the smallest convex set

containing A.
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Figure IV.17. The shaded regions represent sets. The two sets on the left are convex, and the two sets
on the right are not convex. The dotted lines show line segments with endpoints in the set that are not
entirely contained in the set.

Every set A has a smallest enclosing convex set. In fact, if S is the set of convex sets
containing A, then the intersection

⋂S of these sets is convex and contains A. It is therefore
the smallest convex set containing A. (Note that the set S is nonempty because the whole
space R

d is a convex set containing A.) Therefore, the notion of a convex hull is well-defined,
and every set of points has a convex hull.

There is another, equivalent definition of convex that is sometimes used in place of the
definition given above. Namely, a set is convex if and only if it is equal to the intersection
of some set of half-spaces. In R

3, a half-space is a set that lies on one side of a plane, or
more precisely, a half-space is a set of the form {x : n · x > a} for some nonzero vector n and
scalar a. With this definition of convex set, the convex hull of A is the set of points that lie
in every half-space that contains A. Equivalently, a point y is not in the convex hull of A if
and only if there is a half-space such that A lies entirely in the half-space and y is not in the
half-space.

It should be intuitively clear that the definition of convex hulls in terms of intersections
of half-spaces is equivalent to our definition of convex hulls in terms of line segments. How-
ever, giving a formal proof that these two definitions of convexity are equivalent is fairly
difficult: the proof is beyond the scope of this book, but the reader can find a proof in the
texts (Grünbaum, 1967) or (Ziegler, 1995). (You might want to try your hand at proving this
equivalence in dimensions 2 and 3 to get a feel for what is involved in the proof.) We have
adopted the definition based on line segments since it makes it easy to prove that the convex
hull of a set A is precisely the set of points that can be expressed as weighted averages of points
from A.

Definition Let A be a set and x a point. We say that x is a weighted average of points in A
if and only if there is a finite set of points y1, . . . , yk in A such that x is equal to a weighted
average of y1, . . . , yk .

Theorem IV.8 Let A be a set of points. The convex hull of A is precisely the set of points that
are weighted averages of points in A.

Proof Let WA(A) be the set of points that are weighted averages of points in A. We first prove
that WA(A) is convex, and since A ⊆ WA(A), this implies that the convex hull of A is a subset
of WA(A). Let y and z be points in WA(A). We wish to prove that the line segment between
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these points is also contained in WA(A). Since this line segment is just the set of points that are
weighted averages of y and z, it is enough to show that if 0 ≤ α ≤ 1 and w = (1− α)y+ αz,
then w is in WA(A). Since y and z are weighted averages of points in A, they are equal to

y =
k∑

i=1
βixi and z =

k∑
i=1

γixi ,

with eachβi , γi ≥ 0 and
∑

i βi = 1 and
∑

i γi = 1.We can assume the same k points x1, . . . , xk

are used in both weighted averages because we can freely add extra terms with coefficients 0
to a weighted average. Now

w =
k∑

i=1
((1− α)βi + αγi )xi ,

and the coefficients on the right-hand side are clearly nonnegative and sum to 1. Therefore,
w ∈ WA(A). Thus, we have shown that WA(A) is convex, and hence WA(A) contains the
convex hull of A.

For the second half of the proof, we need to show that every element of WA(A) is in the
convex hull of A. For this, we prove, by induction on k, that any weighted average of k points
in A is in the convex hull. For k = 1, this is trivial because the convex hull of A contains A.
For k > 1, let

w = a1x1 + a2x2 + · · · + akxk,

where αk �= 1. This formula for w can be rewritten as

w = (1− ak)
[

a1
1−ak

x1 + a2
1−ak

x2 + · · · + ak−1
1−ak

xk−1
]
+ akxk .

Letting w′ be the vector in square brackets in this last formula, we find that w′ is a weighted
average of k − 1 points in A and thus, by the induction hypothesis, w′ is in the convex hull
of A. Now, w is a weighted average of the two points w′ and xk ; in other words, w is on the
line segment from w′ to xk . Since w′ and xk are both in the convex hull of A, so is w. �

IV.4 Interpolation and Homogeneous Coordinates

This section takes up the question of what it means to formweighted averages of homogeneous
vectors. The context is that we have a set of homogeneous vectors (4-tuples) representing
points in R

3. We then form a weighted average of the four tuples by calculating the weighted
averages of the x-, y-, z, and w-components independently. The question is, What point in R

3

is represented by the weighted average obtained in this way?
A key observation is that a given point in R

3 has many different homogeneous representa-
tions, and the weighted average may give different results depending on which homogeneous
representation is used. An example of this was already given above on page 102. In that ex-
ample, we set v0 = 〈0, 0, 0, 1〉 and v1 = 〈1, 0, 0, 1〉 and v′1 = 2v1; so v0 is a homogeneous
representation of 0, and v1 and v′ are both homogeneous representations of i. In Equation IV.6,
the average 1

2v0 + 1
2v1 was seen to be 〈 12 , 0, 0, 1〉, which represents (not unexpectedly) the point

midway between 0 and i. On the other hand, the average 1
2v0 + 1

2v
′
1 is equal to 〈1, 0, 0, 3

2 〉,
which represents the point 〈 23 , 0, 0〉: this is the point that is two-thirds of the way from 0 to i.
The intuitive reason for this is that the point v′1 has w-component equal to 2 and that the
importance (or, weight) of the point i in the weighted average has therefore been doubled.

We next give amathematical derivation of this intuition about the effect of formingweighted
averages of homogeneous coordinates.
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To help increase readability of formulas involving homogeneous coordinates, we introduce
a new notation. Suppose x = 〈x1, x2, x3〉 is a point in R

3 and w is a nonzero scalar. Then the
notation 〈x, w〉 will denote the 4-tuple 〈x1, x2, x3, w〉. In particular, if x is a point in R

3, then
the homogeneous representations of x all have the form 〈wx, w〉.

Suppose x1, x2, . . . , xk are points in R
3, and w1, w2, . . . , wk are positive scalars so that the

4-tuples 〈wixi , wi 〉 are homogeneous representations of the points xi . Consider a weighted
average of the homogeneous representations, that is

α1〈w1x1, w1〉 + α2〈w2x2, w2〉 + · · · + αk〈wkxk, wk〉.
The result is a 4-tuple; but the question is,What pointy inR

3 has this 4-tuple as its homogeneous
representation? To answer this, calculate as follows:

α1〈w1x1, w1〉 + α2〈w2x2, w2〉 + · · · + αk〈wkxk, wk〉
= 〈α1w1x1, α1w1〉 + 〈α2w2x2, α2w2〉 + · · · + 〈αkwkxk, αkwk〉
= 〈α1w1x1 + α2w2x2 + · · · + αkwkxk, α1w1 + α2w2 + · · · + αkwk〉

≡
〈
α1w1x1 + α2w2x2 + · · · + αkwkxk

α1w1 + α2w2 + · · · + αkwk
, 1

〉
,

where the last equality (≡) means only that the homogeneous coordinates represent the same
point in R

3, namely the point

y =
k∑

i=1

αiwi

α1w1 + · · · + αkwk
· xi . IV.26

It is obvious that the coefficients on the xi ’s sum to 1, and thus IV.26 is an affine combination of
the xi ’s. Furthermore, the αi ’s are nonnegative, and at least one of them is positive. Therefore,
each coefficient in IV.26 is in the interval [0,1], and thus IV.26 is a weighted average.

Equation IV.26 shows that a weighted average

α1〈w1x1, w1〉 + α2〈w2x2, w2〉 + · · · + αk〈wkxk, wk〉
gives a homogeneous representation of a point y in R

3 such that y is a weighted average of
x1, . . . , xk :

y = β1x1 + β2x2 + · · · + βkxk .

The coefficients β1, . . . , βk have the property that they sum to 1, and the ratios

β1 : β2 : β3 : · · · : βk−1 : βk

are equal to the ratios

α1w1 : α2w2 : α3w3 : · · · : αk−1wk−1 : αkwk .

Thus, the wi values serve as “weights” that adjust the relative importances of the xi ’s in the
weighted average.

The preceding discussion has established the following theorem:

Theorem IV.9 Let A be a set of points in R
3 and AH a set of 4-tuples so that each member of AH

is a homogeneous representation of a point in A. Further suppose that the fourth component
(the w-component) of each member of AH is positive. Then any weighted average of 4-tuples
from AH is a homogeneous representation of a point in the convex hull of A.
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As we mentioned earlier, using weighted averages of homogeneous representations can
greatly extend the power of Bézier and B-spline curves – these are the so-called rational Bézier
curves and rational B-spline curves. In fact, it is only with the use of weighted averages in
homogeneous coordinates that these spline curves can define conic sections such as circles,
ellipses, parabolas, and hyperbolas.

A second big advantage of using weighted averages in homogeneous coordinates instead of
in ordinary Euclidean coordinates is that weighted averages in homogeneous coordinates are
preserved not only under affine transformations but also under perspective transformations. In
fact, weighted averages (and more generally, linear combinations) of homogeneous represen-
tations are preserved under any transformation that is represented by a 4× 4 homogeneous
matrix. That is to say, for any 4× 4 matrix M , any set of 4-tuples ui , and any set of scalars αi ,

M
(∑

i
αiui

)
=

∑
i

αi M(ui ).

Exercise IV.12 Work out the following example of how weighted averages of Euclidean
points in R

3 are not preserved under perspective transformations. Let the perspective
transformation act on points in R

3 by mapping 〈x, y, z〉 to 〈x/z, y/z, 0〉. Give a 4× 4
homogeneous matrix that represents this transformation (cf. Section II.3.2). What are the
values of the three points 〈0, 0, 3〉, 〈2, 0, 1〉 and 〈1, 0, 2〉 under this transformation? Explain
how this shows that weighted averages are not preserved by the transformation.

IV.5 Hyperbolic Interpolation

The previous section discussed the effect of interpolation in homogeneous coordinates and
what interpolation of homogeneous coordinates corresponds to in terms of Euclidean coor-
dinates. Now we discuss the opposite direction: how to convert interpolation in Euclidean
coordinates into interpolation in homogeneous coordinates. This process is called “hyper-
bolic interpolation” or sometimes “rational linear interpolation” (see (Blinn, 1992) and
(Heckbert and Moreton, 1991)).

The situation is the following: we have points in Euclidean space specified with homoge-
neous coordinates 〈xi , wi 〉, i = 1, 2, . . . , k (usually there are only two points, and so k = 2).
These correspond to Euclidean points yi = xi/wi . An affine combination of the points is given
as

z =
∑

i

αiyi ,

where
∑

i αi = 1. The problem is to find values of βi so that
∑

βi = 1 and so the affine
combination of homogeneous vectors∑

i

βi 〈xi , wi 〉

is a homogeneous representation of the same point z. From our work in the previous section,
we know that the values βi and αi must satisfy the condition that the values αi are proportional
to the products βiwi . Therefore, we may choose

βi = αi/wi∑
j α j/w j

,

for i = 1, 2, . . . , n.
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Hyperbolic interpolation is useful for interpolating values in stage 4 of the rendering pipeline
(see Chapter II). In stage 4, perspective division has already been performed, and thus we are
working with points lying in the two-dimensional screen space. As described in Section II.4,
linear interpolation is performed in screen space to fill in color, normal, and texture coordinate
values for pixels inside a polygon. The linear interpolation along a line gives aweighted average

(1− α)y1 + αy2

specifying a point in screen coordinates in terms of the endpoints of a line segment. However,
linear interpolation in screen coordinates is not really correct; it is often better to interpolate
in spatial coordinates because, after all, the object that is being modeled lies in 3-space. In
addition, interpolating in screen coordinates means that the viewed object will change as the
viewpoint changes.

Therefore, it is often desirable that values specified at the endpoints, such as color or texture
coordinates, be interpolated using hyperbolic interpolation. For the hyperbolic interpolation,
weights (1− β) and β are computed so that (1− β)x1 + βx2 is a homogeneous representation
of (1− α)y1 + αy2. The weights (1− β) and β are used to obtain the other interpolated
values. This does complicate the Bresenham algorithm somewhat, but it is still possible to use
an extension of the Bresenham algorithm (cf. (Heckbert and Moreton, 1991)).

Hyperbolic interpolation is most useful when a polygon is being viewed obliquely with the
near portion of the polygon much closer to the viewer than the far part. For an example of how
hyperbolic interpolation can help with compensating for perspective distortion, see Figure V.2
on page 128.

IV.6 Spherical Linear Interpolation

This section discusses “spherical linear interpolation,” also called “slerp”-ing, which is a
method of interpolating between points on a sphere.5 Fix a dimension d > 1 and consider the
unit sphere in R

d . This sphere consists of the unit vectors x ∈ R
d . In R

2, the unit sphere is just
the unit circle. In R

3, the unit sphere is called S2 or the “2-sphere” and is an ordinary sphere.
In R

4, it is called S3 or the “3-sphere” and is a hypersphere.
Let x and y be points on the unit sphere and further assume that they are not antipodal (i.e.,

are not directly opposite each other on the sphere). Then, there is a unique shortest path from
x to y on the sphere. This shortest path is called a geodesic and lies on a great circle. A great
circle is defined to be the intersection of a plane containing the origin (i.e., a two-dimensional
linear subspace of R

d ) and the unit sphere. Thus, a great circle is an ordinary circle of radius 1.
Now suppose also that α is between 0 and 1. We wish to find the point z on the sphere that

is fraction α of the distance from the point x to y along the geodesic, as shown in Figure IV.18.
This is sometimes called “slerp”-ing for “Spherical Linear intERPolation,” and is denoted by
z = slerp(x, y, α). The terminology comes from (Shoemake, 1985) who used slerping in R

4

for interpolating quaternions on the 3-sphere (see Section XII.3.7).
An important aspect of spherical linear interpolation is that it is nonlinear: in particular, it

is not good enough to form the interpolant by the formula

(1− α)x+ αy

||(1− α)x+ αy|| ,

because this will traverse the geodesic at a nonconstant rate with respect to α. Instead, we want
to let z be the result of rotating the vector x a fraction α of the way toward y. That is, if the angle

5 The material in this section is not needed until the discussion of interpolation of quaternions in
Section XII.3.7.
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x

z

y

αϕ
ϕ

Figure IV.18. The angle between x and y is ϕ, and slerp(x, y, α) is the vector z obtained by rotating x a
fraction α of the way toward y. All vectors are unit vectors because x, y, and z lie on the unit sphere.

between x and y is equal to ϕ, then z is the vector coplanar with 0, x, and y that is obtained by
rotating x through an angle of αϕ toward y.

We now give a mathematical derivation of the formulas for spherical linear interpolation
(slerping). Recall that ϕ is the angle between x and y; we have 0 ≤ ϕ < 180◦. If ϕ = 180◦,
then slerping is undefined, since there is no unique direction or shortest geodesic from x to y.
Referring to Figure IV.19, we let v be the component of y that is perpendicular to x and let
w be the unit vector in the same direction as v.

v = y− (cosϕ)x = y− (y · x)x,

w = v

sinϕ
= v√

v · v .

Then we can define slerp(x, y, α) by

slerp(x, y, α) = cos(αϕ)x+ sin(αϕ)w, IV.27

since this calculation rotates x through an angle of αϕ.
An alternative formulation of the formula for slerping can be given by the following deri-

vation:

slerp(x, y, α) = cos(αϕ)x+ sin(αϕ)w

= cos(αϕ)x+ sin(αϕ)
y− (cosϕ)x

sinϕ

x

z

y

w

v

Figure IV.19. Vectors v and w are used to derive the formula for spherical linear interpolation. The
vector v is the component of y perpendicular to x, and w is the unit vector in the same direction. The
magnitude of v is sinϕ.

Team LRN



124 Averaging and Interpolation

=
(
cos(αϕ)− sin(αϕ)

cosϕ

sinϕ

)
x+ sin(αϕ)

sinϕ
y

= sinϕ cos(αϕ)− sin(αϕ) cosϕ

sinϕ
x+ sin(αϕ)

sinϕ
y

= sin(ϕ − αϕ)

sinϕ
x+ sin(αϕ)

sinϕ
y

= sin((1− α)ϕ)

sinϕ
x+ sin(αϕ)

sinϕ
y. IV.28

The next-to-last equality was derived using the sine difference formula sin(a − b) =
sin a cos b − sin b cos a.

The usual method for computing spherical linear interpolation is based on Equation IV.28.
Since typical applications of slerping require multiple uses of interpolation between the same
two points x and y, it makes sense to precompute the values of ϕ and s = sinϕ. This is done
by the following pseudocode:

Precompute_for_Slerp(x, y) {
Set c = x · y; // Cosine of ϕ

Set ϕ = acos(c); // Compute ϕ with arccos function
Set s = sin(ϕ); // Sine of ϕ

}
An alternative method for precomputing ϕ and s can provide a little more stability for very

small angles ϕ without much extra computation:

Precompute_for_Slerp(x, y) {
Set c = x · y; // Cosine of ϕ

Set v = y− cx;
Set s =

√
v · v; // Sine of ϕ

Set ϕ = atan2(s,c); // Compute ϕ = arctan(s/c)
}
Then, given any value for α, 0 ≤ α ≤ 1, compute slerp(x, y, α) by

Slerp(x, y, α) {
// ϕ and s=sinϕ have already been precomputed.

Set z =
sin((1− α)ϕ)

sinϕ
x+ sin(αϕ)

sinϕ
y;

Return z;
}
As written above, there will a divide-by-zero error when ϕ = 0 because then sinϕ = 0. In

addition, for ϕ close to zero, the division by a near-zero value can cause numerical instability.
To avoid this, you should use the following approximations when ϕ ≈ 0:

sin((1− α)ϕ)

sinϕ
≈ (1− α) and

sin(αϕ)

sinϕ
≈ α.
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These approximations are obtained by using sinψ ≈ ψ whenψ ≈ 0. The error in these approx-
imations canbe estimated from theTaylor series expansionof sinψ ; namely, sinψ ≈ ψ − 1

6ψ
3.

The test of ϕ ≈ 0 can be replaced by the condition that roundoff error makes 1− 1
6ϕ

2 eval-
uate to the value 1. For single-precision floating point, this condition can be replaced by the
condition that ϕ < 10−4. For double-precision floating point, the condition ϕ < 10−9 can be
used.
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V

Texture Mapping

V.1 Texture Mapping an Image

Texture mapping, in its simplest form, consists of applying a graphics image, a picture, or a
pattern to a surface. A texture map can, for example, apply an actual picture to a surface such
as a label on a can or a picture on a billboard or can apply semirepetitive patterns such as wood
grain or stone surfaces. More generally, a texture map can hold any kind of information that
affects the appearance of a surface: the texture map serves as a precomputed table, and the
texture mapping then consists simply of table lookup to retrieve the information affecting a
particular point on the surface as it is rendered. If you do not use texture maps, your surfaces
will either be rendered as very smooth, uniform surfaces or will need to be rendered with very
small polygons so that you can explicitly specify surface properties on a fine scale.

Texture maps are often used to very good effect in real-time rendering settings such as
computer games since they give good results with a minimum of computational load. In
addition, texture maps are widely supported by graphics hardware such as graphics boards for
PCs so that they can be used without needing much computation from a central processor.

Texture maps can be applied at essentially three different points in the graphics rendering
process, which we list more or less in order of increasing generality and flexibility:

• A texture map can hold colors that are applied to a surface in “replace” or “decal” mode:
the texture map colors just overwrite whatever surface colors are otherwise present. In this
case, no lighting calculations should be performed, as the results of the lighting calculations
would just be overwritten.

• A texture map can hold attributes such as color, brightness, or transparency that affect the
surface appearance after the lighting model calculations are completed. In this case, the
texture map attributes are blended with, or modulate, the colors of the surface as calculated
by the lighting model. This mode and the first one are the most common modes for using
texture maps.

• A texture map can hold attributes such as reflectivity coefficients, normal displacements, or
other parameters for the Phong lighting model or the Cook–Torrance model. In this case,
the texture map values modify the surface properties that are input to the lighting model.
A prominent example of this is “bump mapping,” which affects the surface normals by
specifying virtual displacements to the surface.

Of course, there is no reason why you cannot combine various texture map techniques by
applying more than one texture map to a single surface. For example, one might apply both

126
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an ordinary texture map that modulates the color of a surface together with a bump map that
perturbs the normal vector. In particular, one could apply texture maps both before and after
the calculation of lighting.

A texture map typically consists of a two-dimensional, rectangular array of data indexed
with two coordinates s and t that both vary from 0 to 1. The data values are usually colors
but could be any other useful value. The data in a texture map can be generated from an
image such as a photograph, a drawing, or the output of a graphics program. The data can
also be procedurally generated; for example, simple patterns like a checkerboard pattern can
easily be computed. Procedurally generated data can either be precomputed and stored in a
two-dimensional array or can be computed as needed. Finally, the texture map may be created
during the rendering process itself; an example of this would be generating an environment
map by prerendering the scene from one or more viewpoints and using the results to build a
texture map used for the final rendering stage.

This chapter will discuss the following aspects of texture mapping. First, as a surface is
rendered, it is necessary to assign texture coordinates s and t to vertices and then to pixels. These
s and t values are used as coordinates to index into the texture and specify what position in the
texture map is applied to the surface. Methods of assigning texture coordinates to positions on
a surface are discussed in Section V.1.2. Once texture coordinates are assigned to vertices on
a polygon, it is necessary to interpolate them to assign texture coordinates to rendered pixels:
the mathematics behind this is discussed in Section V.1.1. Texture maps are very prone to bad
visual effects from aliasing; this can be controlled by “mipmapping” and other techniques, as
is discussed in Section V.1.3. Section V.2 discusses bump mapping, and Section V.3 discusses
environment mapping. The remaining sections in this chapter cover some of the practical
aspects of using texture mapping and pay particular attention to the most common methods of
utilizing texture maps in OpenGL.

V.1.1 Interpolating a Texture to a Surface

The first step in applying a two-dimensional texture map to a polygonally modeled surface is to
assign texture coordinates to the vertices of the polygons: that is to say, to assign s and t values
to each vertex. Once this is done, texture coordinates for points in the interior of the polygon
may be calculated by interpolation. If the polygon is a triangle (or is triangulated), you may
use barycentric coordinates to linearly interpolate the values of the s and t coordinates across
the triangle. If the polygon is a quadrilateral, you may use bilinear interpolation to interpolate
the values of s and t across the interior of the quadrilateral. The former process is shown in
Figure V.1, where a quadrilateral is textured with a region of a checkerboard texture map; the
distortion is caused by the fact that the s and t coordinates do not select a region of the texture
map that is the same shape as the quadrilateral. The distortion is different in the upper right
and the lower left halves of the quadrilateral because the polygon was triangulated, and the
linear interpolation of the texture coordinates was applied independently to the two triangles.

For either linear or bilinear interpolation of texture coordinates, itmay be desirable to include
the hyperbolic interpolation correction that compensates for the change in distance affecting
the rate of change of texture coordinates. When a perspective projection is used, hyperbolic
interpolation corrects for the difference between interpolating in screen coordinates and inter-
polating in the coordinates of the 3-D model. This is shown in Figure V.2, where hyperbolic
interpolation makes more distant squares be correctly foreshortened. Refer to Section IV.5 for
the mathematics of hyperbolic interpolation.

Hyperbolic interpolation can be enabled in OpenGL by using the command

glHint( GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST );
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〈0, 0〉 〈3
4 , 0〉

〈3
4 ,

3
4 〉〈0, 1〉

Figure V.1. The square on the left is a texture map. The square on the right is filled with a quadrilateral
region of this texture map. The coordinates labeling the corners of the square are s, t values indexing into
the texture map. The subregion of the checkerboard texture map selected by the s and t coordinates is
shown in the left square. This subregion of the texture map was converted to two triangles first, and each
triangle was mapped by linear interpolation into the corresponding triangle in the square on the right:
this caused the visible diagonal boundary between the triangles.

The disadvantage of hyperbolic interpolation is that it requires extra calculation and thus may
be slower. Hyperbolic interpolation is necessary mostly when textures are applied to large,
obliquely viewed polygons. For instance, if d1 and d2 are theminimum andmaximum distances
from the view position to points on the polygon, and if the difference in the distances, d2 − d1,
is comparable to or bigger than the minimum distance d1, then hyperbolic interpolation may
be noticeably helpful.

V.1.2 Assigning Texture Coordinates

We next discuss some of the issues involved in assigning texture coordinates to vertices on a
surface. In many cases, the choice of texture coordinates is a little ad hoc and depends greatly
on the type of surface and the type of texture, as well as other factors. Because most surfaces
are not flat, but we usually work with flat two-dimensional textures, there is often no single
best method of assigning texture coordinates. We will deal with only some of the simplest
examples of how texture map coordinates are assigned: namely, for cylinders, for spheres, and
for tori. We also discuss some of the common pitfalls in assigning texture coordinates. For
more sophisticated mathematical tools that can aid the process of assigning texture coordi-
nates to more complex surfaces, consult the article (Bier and Sloan Jr., 1986) or the textbook
(Watt and Watt, 1992).

First, consider the problem of mapping a texture map onto a shape whose faces are flat
surfaces – for example, a cube. Since the faces are flat and a two-dimensional texture map
is flat, the process of mapping the texture map to the surface does not involve any nonlinear
stretching or distortion of the texturemap. For a simple situation such as a cube, one can usually

Without hyperbolic interpolation With hyperbolic interpolation

Figure V.2. The figure on the right uses hyperbolic interpolation to render the correct perspective fore-
shortening. The figure on the left does not.
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Figure V.3. A texture map and its application to a cylinder.

just set the texture coordinates explicitly by hand. Of course, a single vertex on a cube belongs
to three different faces of the cube, and thus it generally is necessary to draw the faces of the
cube independently so as to use the appropriate texture maps and different texture coordinates
for each face.

To apply texture maps to surfaces other than individual flat faces, it is convenient if the
surface can be parametrically defined by some function p(u, v), where 〈u, v〉 ranges over some
region of R

2. In most cases, one sets the texture coordinates s and t as functions of u and v,
but more sophisticated applications might also let the texture coordinates depend on p(u, v),
the surface normal, or both.

For the first example of a parametrically defined surface, consider how to map texture
coordinates onto the surface of a cylinder. We will pay attention only to the problem of how
to map a texture onto the side of the cylinder, not onto the top or bottom face. Suppose the
cylinder has height h and radius r and that we are trying to cover the side of the cylinder by
a texture map that wraps around the cylinder much as a label on a food can wraps around the
can (see Figure V.3). The cylinder’s side surface can be parametrically defined by the variables
θ and y with the function

p(θ, y) = 〈r sin θ, y, r cos θ〉,
which places the cylinder in “standard” position with its center at the origin and with the y-axis
as the central axis of the cylinder.We let y range from−h/2 to h/2 so the cylinder has height h.

One of the most natural choices for assigning texture coordinates to the cylinder would be
to use

s = θ

360
and t = y + h/2

h
. V.1

This lets s vary linearly from 0 to 1 as θ varies from 0 to 360◦ (we are still using degrees to
measure angles) and lets t vary from 0 to 1 as y varies from−h/2 to h/2. This has the effect of
pasting the texture map onto the cylinder without any distortion beyond being scaled to cover
the cylinder; the right and left boundaries meet at the front of the cylinder along the line where
x = 0 and z = r .

Exercise V.1 How should the assignment of cylinder texture coordinates be made to have
the left and right boundaries of the texture map meet at the line at the rear of the cylinder
where x = 0 and z = −r?

Although mapping texture coordinates to the cylinder is very straightforward, there is one
potential pitfall that can arise when drawing a patch on the cylinder that spans the line where
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xy

z w

x y

zw

Figure V.4. The quadrilateral x, y, z, w selects a region of the texture map. The crosshatched region of
the texture map is not the intended region of the texture map. The shaded area is the intended region.

the texture boundaries meet. This is best explained with an example. Suppose we are drawing
the patch shown in Figure V.4, which has vertices x, y, z, and w. For x and w, the value
of θ is, say, −36◦, and, for y and z, the value of θ is 36◦. Now if you compute the texture
coordinates with 0 ≤ s ≤ 1, then we get s = 0.9 for the texture coordinate of x and w and
s = 0.1 for the points y and z. This would have the unintended effect of mapping the long
cross-hatched rectangular region of the texture map shown in Figure V.4 into the patch on the
cylinder.

Tofix this problem, one should use a texturemap that repeats, or “wraps around.”A repeating
texture map is an infinite texture map that covers the entire st-plane by tiling the plane with
infinitely many copies of the texture map. Then, you can let s = 0.9 for x and w and s = 1.1
for y and z. (Or you can use s = −0.1 and s = 0.1, respectively, or, more generally, you can
add on any integer amount to the s values.) Of course this means that you need to use a certain
amount of care in how you assign texture coordinates. Recall from Section II.4.2 that small
roundoff errors in positioning a vertex can cause pixel-sized gaps in surfaces. Because of this,
it is important that any point specified more than once by virtue of being part of more than
one surface patch always has its position specified with exactly the same θ and y value. The
calculation of the θ and y values must be done by exactly the same method each time to avoid
roundoff error. However, the same point may be drawn multiple times with different texture
values. An example of this is the point y of Figure V.4, which may need s = 0.1 sometimes
and s = 1.1 sometimes. In particular, the texture coordinates s and t are not purely functions
of θ and y; so you need to keep track of the “winding number,” that is, the number of times
that the cylinder has been wound around.

There is still a residual risk that roundoff error may cause s = 0.1 and s = 1.1 to correspond
to different pixels in the texture map. This would be expected to cause serious visible defects
in the image only rarely.

We now turn to the problem of assigning texture coordinates to a sphere. Unlike the case of
a cylinder, a sphere is intrinsically curved, which means that there is no way to cover (even part
of) a sphere with a flat piece paper without causing the paper to stretch, fold, tear, or otherwise
distort. This is also a problem faced by map makers, since it means there is no completely
accurate, distortion-free way to represent the surface of the Earth on a flat map. (The Mercator
map is an often-used method to map a spherical surface to a flat map but suffers from the
problem of distorting relative sizes as well as from the impossibility of using it to map all the
way to the poles.)

The problem of assigning texture coordinates to points on a sphere is the problem faced by
map makers, but in reverse: instead of mapping points on the sphere to a flat map, we are as-
signing points from a flat texture map onto a sphere. The sphere can be naturally parameterized
by variables θ and ϕ using the parametric function

p(θ, ϕ) = 〈r sin θ cosϕ, r sinϕ, r cos θ cosϕ〉.
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Figure V.5. Two applications of a texture map to a sphere. The sphere on the left has a checkerboard
texture applied with texture coordinates given by the spherical map of Equation V.2. The sphere on the
right uses texture coordinates given by the cylindrical projection of Equation V.3. The spheres are drawn
with a tilt and a small rotation.

Here, θ represents the heading angle (i.e., the rotation around the y-axis), and ϕ represents the
azimuth or “pitch” angle. As the value of θ varies from 0 to 360◦, and the value of ϕ ranges
from −90 to 90◦, the points p(θ, φ) sweep out all of the sphere.

The first natural choice for assigning texture map coordinates would be

s = θ

360
and t = ϕ

180
+ 1

2
. V.2

This assignment works relatively well.
A second choice for assigning texture coordinates would be to use the y value in place of

the ϕ value for t . Namely,

s = θ

360
and t = sinϕ

2
+ 1

2
. V.3

This assignment is mapping the sphere orthogonally outward to the surface of a cylinder and
then unwrapping the cylinder to a flat rectangle. One advantage of this second map is that it is
area preserving.

Figure V.5 shows a checkerboard pattern applied to a sphere with the two texture-coordinate
assignment functions. Both methods of assigning texture coordinates suffer from the problem
of bunching up at the poles of the sphere. Since the sphere is intrinsically curved, some kind
of behavior of this type is unavoidable.

Finally, we consider the problem of how to apply texture coordinates to the surface of a
torus. Like the sphere, the torus is intrinsically curved; thus, any method of assigning texture
map coordinates on a torus must involve some distortion. Recall from Exercise III.3 on page 80
that the torus has the parametric equation

p(θ, ϕ) = 〈(R + r cosϕ) sin θ, r sinϕ, (R + r cosϕ) cos θ〉,
where R is the major radius, r is the minor radius, and both θ and ϕ range from 0 to 360◦. The
most obvious way to assign texture coordinates to the torus would be

s = θ

360
and t = ϕ

360
.

Figure V.6 illustrates the application of a checkerboard texture map to a torus.

Exercise V.2 Where would the center of the texture map appear on the torus under the
preceding assignment of texture coordinates to the torus? How would you change the
assignment so as to make the center of the texture map appear at the front of the torus (on
the positive z-axis)?
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Figure V.6. A checkerboard texture map applied to a torus.

V.1.3 Mipmapping and Antialiasing

Texture maps often suffer from problems with aliasing. The term “aliasing” means, broadly
speaking, any problem that results from conversion between digital and analog or from conver-
sion between differently sampled digital formats. In the case of texturemaps, aliasing problems
can occur whenever there is not a one-to-one correspondence between screen pixels and texture
pixels. For the sake of discussion, we assume that texture coordinates are interpolated from
the vertices of a polygon to give a texture coordinate to each individual pixel in the interior of
the polygon. We then assume that the texture coordinates for a screen pixel are rounded to the
nearest pixel position in the texture and that the color of that texture map pixel is displayed on
the screen in the given pixel location. In other words, each screen pixel holds the color from a
single texture map pixel. We will shortly discuss better ways to assign color to screen pixels
from the texture map colors, but we make this assumption for the moment to discuss how this
straightforward method of copying from a texture map to the screen leads to problems.

First, consider the case in which the texture map resolution is less than the corresponding
resolution of the screen. In this case, a single texture map pixel will correspond to a block of
pixels on the screen. This will make each texture map pixel appear as a (probably more-or-less
rectangularly shaped) region of the screen. The result is a blown up version of the texture map
that shows each pixel as a too-large block.

Second, consider the (potentially much worse) case in which the screen pixel resolution is
similar to, or is less than, the resolution of the texture map. At first thought, onemight think that
this is a good situation, for it means the texture map has plenty of resolution to be drawn on the
screen. However, as it turns out, this case can lead to very bad visual effects such as interference
and flashing. The problems arise from each screen pixel’s being assigned a color from only one
texture map pixel. When the texture map pixel resolution is higher than the screen resolution,
thismeans that only a fraction of the texturemap pixels are chosen to be displayed on the screen.
As a result, several kinds of problems may appear, including unwanted interference patterns,
speckled appearance, graininess, or other artifacts. When rendering a moving texture map,
different pixels from the texture map may be displayed in different frames; this can cause
further unwanted visual effects such as strobing, flashing, or scintillating. Similar effects can
occur when the screen resolution is slightly higher than the texture map resolution owing to
the fact that different texture map pixels may correspond to different numbers of screen pixels.

Severalmethods are available to fix, or at least partially fix, the aliasing problemswith texture
maps. We will discuss three of the more common ones: bilinear interpolation, mipmapping,
and stochastic supersampling.

Interpolating Texture Map Pixels. One relatively easy way to smooth out the problems
that occur when the screen resolution is about the same as the texture map resolution is to
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bilinearly interpolate the color values from several texture map pixels and use the resulting
average color for the screen pixel. This is done by finding the exact s and t texture coordinates
for the screen pixels, locating the four pixels in the texture map nearest to the 〈s, t〉 position
of the texture map, and using bilinear interpolation to calculate a weighted average of the four
texture map pixel colors.

For the case in which the texture map resolution is significantly greater (more than twice as
great, say) than the screen resolution, one could use more than just four pixels from the texture
map to form an average color to display on the screen. Indeed, from a theoretical point of view,
this is more or less exactly what you would wish to do: namely, find the region of the texture
map that corresponds to a screen pixel and then calculate the average color of the pixels in that
region, taking care to properly average in fractions of pixels that lie on the boundary of the
region. This can be a potentially expensive process, however, and thus instead it is common to
use “mipmapping” to precompute some of the average colors.

Mipmapping. The term “mipmapping” was coined by (Williams, 1983), who introduced
it as a technique of precomputing texture maps of reduced resolution – in other words, as a
“level of detail” (LOD) technique. The term “mip” is an acronym for a Latin phrase, multum
in parvo, or “many in one.” Mipmapping tries to avoid the problems that arise when displaying
a texture map that has greater resolution than the screen by precomputing a family of lower
resolution texture maps and always displaying a texture map whose resolution best matches
the screen resolution.

The usual way to create mipmap textures is to start with a high resolution texture map of
dimension N × M . It is convenient to assume that N and M are powers of two. Then form a
reduced resolution texture map of size (N/2)× (M/2) by letting the pixel in row i , column j
in the reduced resolution texture map be given the average of the four pixels in rows 2i and
2i + 1 and in columns 2 j and 2 j + 1 of the original texture map. Then recursively apply this
process as often as needed to get reduced resolution texture maps of arbitrarily low resolution.

When a screen pixel is to be drawn using a texture map, it can be drawn using a pixel from
the mipmapped version of the texture map that has resolution no greater than that of the screen.
Thus, when the texture-mapped object is viewed from a distance, a low-resolution mipmap
will be used; whereas, when viewed up close, a high-resolution version will be used. This will
get rid of many of the aliasing problems, including most problems with flashing and strobing.
There can, however, be a problem when the distance from the viewer to the texture-mapped
surface is changing, since switching from one mipmap version to another can cause a visible
“pop” or “jump” in the appearance of the texture map. This can largely be avoided by rendering
pixels using the two mipmap versions closest to the screen resolution and linearly interpolating
between the results of the two texture maps.

A nice side benefit of the use of mipmaps is that it can greatly improve memory usage,
provided the mipmap versions of texture maps are properly managed. Firstly, if each mipmap
version is formed by halving the pixel dimensions of the previous mipmap, then the total
space used by each successive mipmap is only one quarter the space of the previous mipmap.
Since

1+ 1

4
+ 1

16
+ 1

64
+ · · · = 1

1

3
,

this means that the use of mipmaps incurs only a 33 percent memory overhead. Even better,
in any given scene, it is usual for only relatively few texture maps to be viewed from a close
distance, whereas many texture maps may be viewed from a far distance. The more distant
texture maps would be viewed at lower resolutions, and so only the lower resolution mipmap
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Figure V.7. In the first figure, the nine supersample points are placed at the centers of the nine subpixels.
In the second figure, the supersample points are jittered but are constrained to stay inside their subpixel.

versions of these need to be stored in the more accessible memory locations (e.g., in the
cache or on a graphics chip). This allows the possibility of more effectively using memory
by keeping only the needed mipmap versions of texture maps available; of course, this may
require sophisticated memory management.

One big drawback to mipmapping is that it does not fully address the problem that arises
when surfaces are viewed obliquely. In this case, the ratio of the texture map resolution and
the screen resolution may be quite different along different directions of the texture map, and
thus no single mipmap version may be fully appropriate. Since the oblique view could come
from any direction, there is no good way to generate enough mipmaps to accommodate all
view directions.

V.1.4 Stochastic Supersampling

The term supersampling refers to rendering an image at a subpixel level of resolution and then
averaging over multiple subpixels to obtain the color value for a single pixel. This technique
can be adapted to reduce aliasing with texture maps by combining it with a stochastic, or
randomized, sampling method.

The basic idea of nonstochastic supersampling is as follows. First, we divide each pixel into
subpixels; for the sake of discussion, we assume each pixel is divided into nine subpixels, but
other numbers of subpixels could be used instead. The nine subpixels are arranged in a 3× 3
array of square subpixels. We render the image as usual into the subpixels, just as we would
usually render the image for pixels, but use triple the resolution. Finally, we take the average
of the results for the nine pixels and use this average for the overall pixel color.

Ninefold nonstochastic supersampling can be useful in reducing texture map aliasing prob-
lems or at least in delaying their onset until the resolution of the texturemap is about three times
as high as the resolution of the screen pixels. However, if the texture map contains regular pat-
terns of features or colors, then even with supersampling there can be significant interference
effects.

The supersampling method can be further improved by using stochastic supersampling. In
its simplest form, stochastic supersampling chooses points at random positions inside a pixel,
computes the image color at the points, and then averages the colors to set the color value for
the pixel. This can cause unrepresentative values for the average if the randomly placed points
are clumped poorly, and better results can be obtained by using a jitter method to select the
supersampling points. The jitter method works as follows: Initially, the supersample points
are distributed evenly across the pixel. Then each supersample point is “jittered” (i.e., has its
position perturbed slightly). A common way to compute the jitter on nine supersample points
is to divide the pixel into a 3× 3 array of square subpixels and then place one supersample
point randomly into each subpixel. This is illustrated in Figure V.7.
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Figure V.8. A bump-mapped torus. Note the lack of bumps on the silhouette. Four white lights are shining
on the scene plus a low level of ambient illumination. This picture was generated with the ray tracing
software described in Appendix B. See Color Plate 6.

It is important that the positions of the supersampling points be jittered independently for
each pixel; otherwise, interference patterns can still form.

Jittering is not commonly used for ordinary texturemapping but is often used for antialiasing
in non-real-time environments such as ray-traced images. Figure IX.9 on page 245 shows an
example of jittering in ray tracing. It shows three pool balls on a checkerboard texture; part (a)
does not use supersampling, whereas part (b) does. Note the differences in the checkerboard
pattern off towards the horizon on the sides of the image.

Jittering and other forms of stochastic supersampling decrease aliasing but at the cost of
increased noise in the resulting image. This noise generally manifests itself as a graininess
similar to that seen in a photograph taken at light levels that were too low. The noise can be
reduced by using higher numbers of supersample points.

V.2 Bump Mapping

Bump mapping is used to give a smooth surface the appearance of having bumps or dents. It
would usually be prohibitively expensive to model all the small dents and bumps on a surface
with polygons because this would require a huge number of very small polygons. Instead,
bump mapping works by using a “height texture” that modifies surface normals. When used
in conjunction with Phong lighting or Cook–Torrance lighting, the changes in lighting caused
by the perturbations in the surface normal will give the appearance of bumps or dents.

An example of bumpmapping is shown in Figure V.8. Looking at the silhouette of the torus,
you can see that the silhouette is smooth with no bumps. This shows that the geometric model
for the surface is smooth: the bumps are instead an artifact of the lighting in conjunction with
perturbed normals.

Bump mapping was first described by (Blinn, 1978), and this section presents his approach
to efficient implementation of bump mapping. Suppose we have a surface that is specified
parametrically by a function p(u, v). We also assume that the partial derivatives

pu = ∂p

∂u
and pv = ∂p

∂v
,

are defined and nonzero everywhere and that we are able to compute them. (All the points
and vectors in our discussion are functions of u and v even if we do not always indicate this
explicitly.) As was discussed in Section III.1.6, a unit vector normal to the surface is given by

n(u, v) = pu × pv

||pu × pv|| .
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〈u1, v1〉
〈u2, v2〉

Figure V.9. The dashed curve represents a cross section of a two-dimensional surface. The surface is
imagined to be displaced perpendicularly a distance d(u, v) to form the dotted curve. The outward
direction of the surface is upward, and thus the value d(u1, v1) is positive and the value d(u2, v2) is
negative.

The bump map is a texture map of scalar values d(u, v) that represent displacements in the
direction of the normal vector. That is, a point on the surface p(u, v) is intended to undergo a
“virtual” displacement of distance d(u, v) in the direction of the normal vector. This process
is shown in Figure V.9. However, remember that the surface is not actually displaced by the
texture map, but rather we just imagine the surface as being displaced in order to adjust (only)
the surface normals to match the normals of the displaced surface.

The formula for a point on the displaced surface is

p∗(u, v) = p+ dn.

The normals to the displaced surface can be calculated as follows. First, find the partial deriva-
tives to the new surface by

∂p∗

∂u
= ∂p

∂u
+ ∂d

∂u
n+ d

∂n

∂u
,

∂p∗

∂v
= ∂p

∂v
+ ∂d

∂v
n+ d

∂n

∂v
.

By taking the cross product of these two partial derivatives, we can obtain the normal to the
perturbed surface; however, first we simplify the partial derivatives by dropping the last terms
to obtain the approximations

∂p∗

∂u
≈ ∂p

∂u
+ ∂d

∂u
n,

∂p∗

∂v
≈ ∂p

∂v
+ ∂d

∂v
n.

We can justify dropping the last term on the grounds that the displacement distances d(u, v)
are small because only small bumps and dents are being added to the surface and that the
partial derivatives of n are not too large if the underlying surface is relatively smooth. Note,
however, that the partial derivatives ∂d/∂u and ∂d/∂v cannot be assumed to be small since
the bumps and dents would be expected to have substantial slopes. With this approximation,
we can approximate the normal of the displaced surface by calculating

m ≈
(

∂p

∂u
+ ∂d

∂u
n

)
×
(

∂p

∂v
+ ∂d

∂v
n

)

=
(

∂p

∂u
× ∂p

∂v

)
+

(
∂d

∂u
n× ∂p

∂v

)
−

(
∂d

∂v
n× ∂p

∂u

)
. V.4

The vector m is perpendicular to the displaced surface but is not normalized: the unit vector
normal to the displaced surface is then just n∗ = m/||m||.

Team LRN



V.3 Environment Mapping 137

Note that Equation V.4 uses only the partial derivatives of the displacement function d(u, v);
the values d(u, v) are not directly needed at all. One way to compute the partial derivatives
is to approximate them using finite differences. However, a simpler and more straightforward
method is not to store the displacement function values themselves but instead to save the
partial derivatives as two scalar values in the texture map.

The algorithm for computing the perturbed normal n∗ will fail when either of the partial
derivatives ∂p/∂u or ∂p/∂v is equal to zero. This happens for exceptional points on many
common surfaces; for instance, at the north and south poles of a sphere using either the
spherical or the cylindrical parameterization. Thus, you need to be careful when applying a
bump map in the neighborhood of a point where a partial derivative is zero.

It has been presupposed in the preceding discussion that the bump map displacement dis-
tance d is given as a function of the variables u and v. It is sometimes more convenient to
have a bump map displacement distance function D(s, t), which is a function of the texture
coordinates s and t . The texture coordinates are of course functions of u and v, that is, we have
s = s(u, v) and t = t(u, v), expressing s and t as either linear or bilinear functions of u and v.
Then the bump map displacement function d(u, v) is equal to D(s(u, v), t(u, v)). The chain
rule then tells us that

∂d

∂u
= ∂ D

∂s

∂s

∂u
+ ∂ D

∂t

∂t

∂u

∂d

∂v
= ∂ D

∂s

∂s

∂v
+ ∂ D

∂t

∂t

∂v
.

The partial derivatives of s and t are either constant in a given u, v-patch in the case of
linear interpolation or can be found from Equation IV.19 on page 109 in the case of bilinear
interpolation.

Bump-mapped surfaces can have aliasing problems when viewed from a distance – par-
ticularly when the distance is far enough that the bumps are rendered at about the size of an
image pixel or smaller. As usual, stochastic supersampling can reduce aliasing. A more ad hoc
solution is to reduce the height of the bumps gradually based on the level of detail at which the
bump map is being rendered; however, this does not accurately render the specular highlights
from the bumps.

Bump mapping is not supported in the standard version of OpenGL. This is because the
design of the graphics-rendering pipeline in OpenGL only allows texture maps to be applied
after the Phong lighting calculation has been performed. Bump mapping must precede Phong
lighting model calculations because Phong lighting depends on the surface normal. For this
reason, it would also make sense to combine bump mapping with Phong interpolation but not
with Gouraud interpolation.

Bump mapping can be implemented in extensions of OpenGL that include support for
programming modern graphics hardware boards with pixel shaders.

V.3 Environment Mapping

Environment mapping, also known as “reflection mapping,” is a method of rendering a shiny
surface showing a reflection of a surrounding scene. Environment mapping is relatively cheap
compared with the global ray tracing discussed later in Chapter IX but can still give good
effects – at least for relatively compact shiny objects.

The general idea of environment mapping is as follows: We assume we have a relatively
small reflecting object. A small, flat mirror or spherical mirror (such as on a car’s passenger
side door), or a compact object with a mirror-like surface such as a shiny teapot, chrome faucet,
toaster, or silver goblet are typical examples. We then obtain, either from a photograph or by

Team LRN



138 Texture Mapping

Figure V.10. An environment map mapped into a sphere projection. This is the kind of environment map
supported by OpenGL. See Color Plate 7.

The scene is the same as is shown in Figure V.11. Note that the front wall has the most fidelity and the
back wall the least. For this reason, spherical environment maps are best used when the view direction is
close to the direction used to create the environment map.

computer rendering, a view of the world as seen from the center position of themirror or object.
From this view of the world, we create a texture map showing what is visible from the center
position. Simple examples of such texture maps are shown in Figures V.10 and V.11.

When rendering a vertex on the reflecting object, one can use the viewpoint position, the
vertex position, and surface normal to calculate a view reflection direction. The view reflection
direction is the direction of perfect reflection from the viewpoint; that is, a ray of light emanat-
ing from the viewer’s position to the vertex on the reflecting object would reflect in the view
reflection direction. From the view reflection direction, one calculates the point in the texture
map that corresponds to the view reflection direction. This gives the texture coordinates for the
vertex.

The two most common ways of representing environment maps are shown in Figures
V.10 and V.11. The first figure shows the environment map holding the “view of the world” in

Figure V.11. An environment map mapped into a box projection consists of the six views from a point
mapped to the faces of a cube and then unfolded to make a flat image. This scene shows the reflection
map from the point at the center of a room. The room is solid blue except for yellow writing on the walls,
ceiling, and floor. The rectangular white regions of the environment map are not used. See Color Plate 8.
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a circular area. This is the same as you would see reflected from a perfectly mirror-like small
sphere viewed orthogonally (from a point at infinity). The mathematics behind calculating the
environment map texture coordinates is discussed a little more in Section V.4.6.

Figure V.11 shows the environment map comprising six square regions corresponding to
the view seen through the six faces of a cube centered at the environment mapped object. This
“box” environment map has a couple advantages over the former “sphere” environment map.
Firstly, it can be generated for a computer-rendered scene using standard rendering methods
by just rendering the scene six times from the viewpoint of the object in the directions of the
six faces of a cube. Secondly, the “box” environment map can be used effectively from any
view direction, whereas the “sphere” environment map can be used only from view directions
close to the direction from which the environment was formed.

Exercise V.3� Derive formulas and an algorithm for converting the view reflection di-
rection into texture coordinates for the “box” environment map. Make any assumptions
necessary for your calculations.

An interesting and fairly common use of environment mapping is to add specular highlights
to a surface. For this, one first creates an environment texture map that holds an image of the
specular light levels in each reflection direction. The specular light from the environment map
can then be added to the rendered image based on the reflection direction at each point. A big
advantage of this approach is that the specular reflection levels from multiple lights can be
precomputed and stored in the environment map; the specular light can then be added late in
the graphics pipeline without the need to perform specular lighting calculations again.

V.4 Texture Mapping in OpenGL

We now discuss the most basic uses of texture mapping in OpenGL. Three sample programs
are supplied (TextureBMP, FourTextures, and TextureTorus) that illustrate simple
uses of texture mapping. You should refer to these programs as you read the descriptions of
the OpenGL commands below.

V.4.1 Loading a Texture Map

To use a texture map in OpenGL, you must first build an array holding the values of the texture
map. This array will typically hold color values but can also hold values such as luminance,
intensity, or alpha (transparency) values. OpenGL allows you to use several different formats
for the values of the texture map, but the most common formats are floating point numbers
(ranging from 0 to 1) or unsigned 8-bit integers (ranging from 0 to 255).

Once you have loaded the texture map information into an array (pixelArray), you must
call an OpenGL routine to load the texture map into a “texture object.” The most basic method
for this is to call the routine glTexImage2D. A typical use of glTexImage2D might have
the following form, with pixelArray an array of float’s:

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexImage2D ( GL_TEXTURE_2D, 0, GL_RGBA, textureWidth, textureHeight,

0, GL_RGBA, GL_FLOAT, pixelArray );

Another typical usage, with data stored in unsigned bytes, would have the form

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexImage2D ( GL_TEXTURE_2D, 0, GL_RGB, textureWidth, textureHeight,

0, GL_RGB, GL_UNSIGNED_BYTE, pixelArray );
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but now with pixelArray an array of unsigned char’s. The call to glPixelStorei
tells OpenGL not to expect any particular alignment of the texture data in the pixel array. (This
is actually needed only for data stored in byte formats rather than floating point format.)

The parameters to glTexImage2D have the following meanings: The first parame-
ter, GL_TEXTURE_2D, specifies that a texture is being loaded (as compared with using
GL_PROXY_TEXTURE_2D, which checks if enough texture memory is available to hold the
texture). The second parameter specifies the mipmapping level of the texture; the highest res-
olution image is level 0. The third parameter specifies what values are stored in the internal
OpenGL texture map object: GL_RGB and GL_RGBA indicate that color (and alpha) values are
stored. The next two parameters specify the width and height of the texture map in pixels; the
minimum dimension of a texture map (for level 0) is 64× 64. The sixth parameter is 0 or 1
and indicates whether a border strip of pixels has been added to the texture map; the value 0
indicates no border. The seventh and eighth parameters indicate the format of the texture val-
ues as stored in the programmer-created array of texture information. The last parameter is a
pointer to the programmer-created array of texture values. The width and height of a texture
map are required to equal a power of 2 or 2 plus a power of 2 if there is a border.

There are a huge number of options for the glTexImage2D command, and you should
refer to the OpenGL programming manual (Woo et al., 1999) for more information.

Frequently, one also wants to generate mipmap information for textures. Fortunately,
OpenGL has a utility routine gluBuild2DMipmaps that does all the work of generating
texture maps at multiple levels of resolution for you: this makes the use of mipmapping com-
pletely automatic. The mipmap textures are generated by calling (for example):

gluBuild2DMipmaps( GL_TEXTURE_2D, GL_RGBA, textureWidth,
textureHeight, GL_RGBA, GL_FLOAT, pixelArray );

The parameters to gluBuild2DMipmaps have the same meanings as the parameters to
glTexImage2D except that the level parameter is omitted since the gluBuild2DMipmaps
is creating all the levels for you and that borders are not supported. The routine
gluBuild2DMipmaps checks how much texture memory is available and decreases the
resolution of the texture map if necessary; it also rescales the texture map dimensions to the
nearest powers of two. It then generates all the mipmap levels down to a 1× 1 texture map. It
is a very useful routine and is highly recommended, at least for casual users.

OpenGL texture maps are always accessed with s and t coordinates that range from 0 to 1.
If texture coordinates outside the range [0, 1] are used, then OpenGL has several options of
how they are treated: first, in GL_CLAMP mode, values of s and t outside the interval [0, 1] will
index into a 1-pixel-wide border of the texture map, or, if there is no border, then the pixels on
the edge of the texture are used instead. Second, GL_CLAMP_TO_EDGE mode clamps s and t
to lie in the range 0 to 1: this acts like GL_CLAMP except that, if a border is present, it is ignored
(CLAMP_TO_EDGE is supported only in OpenGL 1.2 and later). Finally, GL_REPEAT makes
the s and t wrap around, namely the fractional part of s or t is used; that is to say, s − �s� and
t − �t� are used in “repeat” mode. The modes may be set independently for the s and t texture
coordinates with the following command:

glTexParameteri(GL_TEXTURE_2D,

{
GL_TEXTURE_WRAP_S

GL_TEXTURE_WRAP_T

}
,


GL_REPEAT

GL_CLAMP

GL_CLAMP_TO_EDGE

);

The default, and most useful, mode is the “repeat” mode for s and t values.
Section V.1.3 discussed the methods of averaging pixel values and of using mipmaps with

multiple levels of detail to (partly) control aliasing problems and prevent interference effects
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and “popping.”Whenonly a single texturemap level is used,with nomipmapping, the following
OpenGL commands allow the averaging of neighboring pixels to be enabled or disabled:

glTexParameteri(GL_TEXTURE_2D,

{
GL_TEXTURE_MAG_FILTER
GL_TEXTURE_MIN_FILTER

}
,

{
GL_NEAREST
GL_LINEAR

}
);

The option GL_NEAREST instructs OpenGL to set a screen pixel color with just a single
texture map pixel. The option GL_LINEAR instructs OpenGL to set the screen pixel by bilin-
early interpolating from the immediately neighboring pixels in the texture map. The settings
for “GL_TEXTURE_MIN_FILTER” apply when the screen pixel resolution is less than (that
is, coarser than) the texture map resolution. The setting for “GL_TEXTURE_MAG_FILTER”
applies when the screen resolution is higher than the texture map resolution.

When mipmapping is used, there is an additional option to set. OpenGL can be instructed
either to use the “best” mipmap level (i.e., the one whose resolution is closest to the screen
resolution) or to use linear interpolation between the two best mipmap levels. This is controlled
with the following command:

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER,


GL_NEAREST_MIPMAP_NEAREST
GL_LINEAR_MIPMAP_NEAREST
GL_NEAREST_MIPMAP_LINEAR
GL_LINEAR_MIPMAP_LINEAR

);

This command is really setting two options at once. The first ‘NEAREST’ or ‘LINEAR’
controls whether only one pixel is used from a given mipmap level or whether neighbor-
ing pixels on a given mipmap level are averaged. The second part, ‘MIPMAP_NEAREST’ or
‘MIPMAP_LINEAR’, controls whether only the best mipmap level is used or whether the linear
interpolation of two mipmap levels is used.

OpenGL has several additional advanced features that give you fine control over mipmap-
ping; for documentation on these, you should again consult the OpenGL programming
manual.

V.4.2 Specifying Texture Coordinates

It is simple to specify texture coordinates in OpenGL. Before a vertex is drawn with glVer-
tex*, you give the s and t texture coordinates for that vertex with the command

glTexCoord2f( s, t );

This command is generally given along with a glNormal3f command if lighting is enabled.
Like calls to glNormal3f, it must be given before the call to glVertex*.

V.4.3 Modulating Color

In OpenGL, the colors and Phong lighting calculations are performed before the application
of textures. Thus, texture properties cannot be used to set parameters that drive Phong lighting
calculations. This is unfortunate in that it greatly reduces the usability of textures; on the other
hand, it allows the texture coordinates to be applied late in the graphics rendering pipeline,
where it can be done efficiently by special purpose graphics hardware. As graphics hard-
ware becomes more powerful, this situation is gradually changing; however, for the moment,
OpenGL supports only a small amount of posttexture lighting calculations through the use of
a separate specular color (as described in Section V.4.4).
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The simplest form of applying a texture to a surface merely takes the texture map color
and “paints” it on the surface being drawn with no change. In this situation, there is no need
to set surface colors and normals or perform Phong lighting since the texture color will just
overwrite any color already on the surface. To enable this simple “overwriting” of the surface
color with the texture map color, you use the command

glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL );

There is a similar, less commonly used, option, GL_REPLACE, which acts just like GL_DECAL
when the texture map does not have an alpha component.

The “decal” option, however, does not usually give very good results when used in a setting
with lighting since the lighting does not affect the appearance of textured surfaces when the
textures are applied in decalmode. The easiest andmost commonmethod of combining textures
with lighting is to do the following: render the surface with Phong lighting enabled (turn this on
with glEnable(GL_LIGHTING) as usual), give the surface material a white or gray ambient
and diffuse color and a white or gray specular color, and then apply the texture map with the
GL_MODULATE option. This option is activated by calling

glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE );

What the “modulate” option does is take the colors rs, gs, and bs that were calculated for
the surface with the Phong lighting model and the colors rt, gt, and bt from the texture map
and form the products rsrt, gsgt, and bsbt. These products then become the new color of the
screen pixel. This has the effect that the texture map color is modulated by the brightness of
the lighting of the surface.

There aremany otherways to control the interaction of texturemap colors and surface colors.
However, the two methods above are probably the most commonly used and the most useful.
As usual, refer to the OpenGL programming manual (Woo et al., 1999) for more information
on other ways to apply texture maps to surfaces.

V.4.4 Separate Specular Highlights

The previous section discussed the “GL_MODULATE” method for applying a texture map
in conjunction with the use of Phong lighting. The main problem with this method is that
the modulation of the Phong lighting color by the texture color tends to mute or diminish the
visibility of specular highlights. Indeed, specular highlights tend to be the same color as the
light; that is, they are usually white because lights are usually white. For instance, a shiny
plastic object will tend to have white specular highlights, regardless of the color of the plastic
itself. Unfortunately, when a white specular highlight is modulated (multiplied) by a texture
color, it turns into the color of the texture and does not keep its white color.

Recent versions of OpenGL (since version 1.2) can circumvent this problem by keeping
the specular component of the Phong lighting model separate from the diffuse, ambient, and
emissive components of light. This feature is turned off by default and can be turned off and
on with the commands

glLightModeli( GL_LIGHT_MODEL_COLOR_CONTROL,

{
GL_SINGLE_COLOR

GL_SEPARATE_SPECULAR_COLOR

}
);

When the separate specular color mode is enabled, the Phong lighting model stores both the
sum of the ambient, diffuse, and emissive components from all light sources and the sum of
specular light components from all light sources. When the texture map is applied, it is applied
only to the nonspecular light component. After the texture has been applied, then the specular
component of the light is added on unaltered by the texture.
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Another way to add specular highlights after texturing is to usemultiple texturemaps, where
the last texture map is an environment map that adds specular highlights (see the discussion
of this in the last paragraph of Section V.3).

V.4.5 Managing Multiple Texture Maps

OpenGL provides a simple mechanism to manage multiple texture maps as “texture objects.”
This allows your program to load or create multiple texture maps and give them to OpenGL
to be stored in OpenGL’s texture memory. We sketch below the basic functionality of texture
objects in OpenGL; you should look at the FourTextures program supplied with this book
to see an example of how to use multiple texture maps in OpenGL.

The OpenGL commands for handling multiple texture maps are glGenTextures(),
glBindTexture(), andglDeleteTextures(). TheglGenTextures command is used
to get the names (actually, integer indices) for one or more new texture objects. This has
the effect of reserving texture map names for future use. The glBindTextures() func-
tion takes a texture map name as input and makes that texture the currently active texture
map. Subsequent uses of commands such as glTexImage*(), glTexParameter*(),
gluBuild2DMipmaps(), glTexCoord*(), and so on will apply to the currently active
texture map.

To reserve new names for texture objects, use commands such as

GLuint textureNameArray[N];
glGenTextures( N, textureNameArray );

where N is the integer number of texture names requested. The call to glGenTextures()
returns N texture names in the array. Each texture name is a GLuint, an unsigned integer. The
texture name 0 is never returned by glGenTextures; instead, 0 is the texture name reserved
for the default texture object.

To select a 2-D texture object, use the command

glBindTexture( GL_TEXTURE_2D, textureName );

The second parameter, textureName, is a GLuint unsigned integer that names a texture.
WhenglBindTexture is called as above for thefirst timewith a giventextureNamevalue,
it sets the texture type to 2-D and sets the various parameters. On subsequent calls, it merely se-
lects the texture object as the current texture object. It is also possible to use GL_TEXTURE_1D
or GL_TEXTURE_3D: refer to the OpenGL programming manual (Woo et al., 1999) for infor-
mation on one-dimensional and three-dimensional texture maps.

A texture object is freed with the command

glDeleteTextures( N, textureNameArray );

which frees the N texture names in the array pointed to by the second parameter.
Some implementations of OpenGL support “resident textures” as a means of managing a

cache of textures: resident textures are intended mostly for use with special-purpose hardware
(graphics boards) that incorporates special texture buffers.

V.4.6 Environment Mapping in OpenGL

OpenGL supports the spherical projection version of environment maps (see Section V.3).
The OpenGL programming manual (Woo et al., 1999) suggests the following procedure for
generating a texture map for environment mapping: take a photograph of a perfectly reflecting
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sphere with a camera placed an infinite distance away; then scan in the resulting photograph.
This, of course, is not entirely practical, but it is mathematically equivalent to what should be
done to generate the texture map for OpenGL environment mapping.

To turn on environment mapping in OpenGL, you need to give the following commands (in
addition to enabling texture mapping and loading a texture map):

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

When rendering an object with an environment map, the surface normal direction, the view-
point, and the view direction are used to determine the texture coordinates.

If the viewer is not local, that is, if the view direction is fixed to be 〈0, 0,−1〉 with the
viewer positioned at a point at infinity, then texture coordinates are generated in the following
way: If the normal to the surface is equal to the unit vector 〈nx , ny, nz〉, then the s and t texture
coordinates are set equal to

s = 1

2
nx + 1

2
and t = 1

2
ny + 1

2
. V.5

The effect is that the texture coordinates lie in the circle of radius 1/2 centered at 〈 12 , 1
2 〉, and

thus the values for s and t can range as low as 0 and as high as 1. For a sphere, this is the same
as projecting the sphere orthogonally into a disk.

For a local viewer, the viewer is by convention placed at the origin, and the position and
normal of the surface are used to compute the view reflection direction, that is, the direction in
which a ray of light from the view position would be specularly reflected by the surface. Given
the view reflection direction, one then computes the unit vector n that would cause a nonlocal
viewer to have the same view reflection direction. The s, t texture coordinates are then set by
Equation V.5.

The overall effect is that the view reflection direction is used to compute the s, t values
generated for a nonlocal viewer with the same view reflection direction. That is to say, the
texture coordinates s, t are determined by the view reflection direction.

Exercise V.4� As in the Phong lighting model, let v be the unit vector in the direction of
the viewer and n be the surface normal. Show that the view reflection direction is in the
direction of the unit vector

r′ = 2(n · v)n− v.
For a nonlocal viewer, v would be 〈0, 0, 1〉; for a local viewer, the vector v is the normal-
ization of the position of the point on the surface (since the local viewer is presumed to be
positioned at the origin).

Let r′ = 〈r ′1, r ′2, r ′3〉 be a unit vector in the view reflection direction computed for a
local viewer. Show that n′ = 〈r ′1, r ′2, r ′3 + 1〉 is perpendicular to the surface that gives the
nonlocal viewer the same view reflection direction.

The vector n′ of the exercise can be normalized, and then its first two components give the
s and t coordinates by the calculation in Equation V.5.

Other Texture Map Features of OpenGL. OpenGL supports many additional features
for working with texture maps, too many for us to cover here. These other features
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include things such as

(a) The texture matrix – a homogeneous matrix for transforming texture coordinates.
This is selected by setting the matrix mode to GL_TEXTURE.

(b) One-dimensional texture maps.
(c) Three-dimensional texture maps.
(d) Creation of texture maps by rendering into the frame buffer.
(e) Manipulation of a region or subimage of a texture map.
(f) More options for mipmapping and controlling level of detail.
(g) Numerous options for controlling the way a texture map modifies the color of a

surface.
(h) Optional ability to perform “multitexturing,” where multiple textures are succes-

sively applied to the same surface.
(i) Several ways of automatically generating texture coordinates (environment maps

are only one example of this).
(j) Management of the available texture memory with texture proxies.
(k) Management of resident textures in graphics hardware systems.

For more information on these features, you should consult the OpenGL programming
manual.
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VI

Color

This chapter briefly discusses some of the issues in color perception and color represen-
tation that are important for computer graphics. Color perception and color representa-
tion are complicated topics, and more in-depth information can be found in references
such as (Berns, Billmeyer, and Saltzman, 2000); (Jackson, MacDonald, and Freeman, 1994);
(Foley et al., 1990); Volume I of (Glassner, 1995); or (Hall, 1989). Also recommended is the
short, readable introduction to the physics of color and the physiological aspects of color
perception in (Feynman, 1989). Some more detailed recommendations for further reading are
given at the end of this chapter.

The first section of this chapter discusses the physiology of color perception and its implica-
tions for computer graphics. The second, more applied section discusses some of the common
methods for representing color in computers.

VI.1 Color Perception

The basic theories of how humans perceive color were formulated already in the nineteenth
century. There were two competing theories of color perception: the trichromatic theory and
the opponent color theory. These two theories will appear contradictory at first glance, but
in fact they are both correct in that they are grounded in different aspects of human color
perception.

The Trichromatic Theory of Vision. The trichromatic theory was formulated by
G. Palmer in 1777 and then again by T. Young in 1801; it was extended later by Helmholtz.
This theory states that humans perceive color in three components: red, green, and blue. That
is, that we see the colors red, green, and blue independently and that all other colors are formed
from combinations of these three primary colors.

It was later discovered that the retina of the eye contains several kinds of light-sensitive
receptors called cones and rods after their shapes. The human eye contains three kinds of
cones: one kind is most sensitive to red light, one to green light, and one to blue light. Rods,
the fourth kind of light-sensitive cell, are mostly used for vision in very low light levels and
for peripheral vision and do not have the ability to distinguish different colors (thus, in very
dark settings, you are unable to see colors but instead see only shades of gray and dark).

For direct viewing of objects in normal light levels, the cones are the primary color recep-
tors, and, although the cones are each sensitive to a wide range of colors, the fact that the
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three different kinds are selectively more sensitive to red, to green, and to blue provides a
physiological basis for the trichromatic theory.

The Opponent Theory of Vision. The opponent theory was formulated by Ewald Hering
in 1878. It states that humans perceive light in three opposing components: namely, light versus
dark, red versus green, and blue versus yellow. This theory accounts for some aspects of our
subjective perception of color such as that one cannot perceive mixtures of red and green or
mixtures of blue and yellow (thus there are no colors that are reddish green or blueish yellow,
for instance).

Although this theory would appear to be in conflict with the trichromatic theory, there is in
fact a simple explanation of how both theories can be valid. The trichromatic theory applies
to the different light sensitivities of cones in the retina, and the opponent color theory reflects
the way the cells in the retina process color into signals sent to the brain. That is, the neurons
in the retina encode color in “channels” so that the neural signals from the eyes to the brain
have different channels for encoding the amount of light versus dark, the amount of red versus
green, and the amount of blue versus yellow.

The trichromatic theory is the main theoretical foundation for computer graphics, whereas
the opponent theory seems to have little impact on computer graphics.1 Indeed, the princi-
pal system of color representation is the RGB system, which is obviously based directly on
the trichromatic theory. For applications in computer graphics, the main implications of the
trichromatic theory are twofold. First, the space of visible colors forms a three-dimensional
vector space since colors are differentiated according to how much they stimulate the three
kinds of cones.2 Second, characterizing colors as being a combination of red, green, and blue
light is a fairly good choice because these colors correspond to the light sensitivities of the
different cones.

One consequence of the assumption that perceived colors form a three-dimensional space is
that there are light sources that have different spectral qualities (i.e., have different intensities
of visible light at given wavelengths) but that are indistinguishable to the human eye. This
is a consequence of the fact that the set of possible visible light spectra forms an infinite
dimensional space. It follows that there must be different light spectra that are equivalent in
the sense that the human eye cannot perceive any difference in their colors. This phenomenon
is called metamerism.

There have been extensive experiments to determine how to represent different light spectra
as combinations of red, green, and blue light. These experiments use the tristimulus method
and proceed roughly as follows: Fixed light sources of pure red, pure green, and pure blue are
chosen as primary colors. Then, for a given color C , one tries to find a way to mix different
intensities of the red, green, and blue lights so as to create a color that is equivalent to (i.e.,
visually indistinguishable from) the color C . The result is expressed by an equation

C = rC R + gC G + bC B,

where rC , gC , bC are scalars indicating the intensities of the red, green, and blue lights. This
means that when the three reference lights are combined at the intensities given by the three
scalars, the resulting light looks identical in color to C . It has been experimentally verified
1 One exception to this is that the opponent theory was used in the design of color encoding for

television. In order to compress the resolution of television signals suitably and retain backward
compatibility with black and white television transmissions, the opponent theory was used to aid the
decision of what information to remove from the color channels.

2 The opponent theory of color also predicts that the perceivable colors form a three-dimensional space.
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that all colors can be expressed as linear combinations of red, green, and blue in this way.3

Furthermore, when colors are combined, they act as a vector space. Thus, the combination of
two colors C1 and C2 is equivalent to the color

(rC1 + rC2 )R + (gC1 + gC2 )G + (bC1 + bC2 )B.

There is one big, and unfortunate, problem: sometimes the coefficients rC , gC , bC are negative!
The physical interpretation of a negative coefficient, say if bC < 0, is that the reference color
(blue, say) must be added to the color C to yield a color that is equivalent to a combination
of red and green colors. That is to say, the interpretation of negative coefficients on colors is
that the formula should be rearranged by moving terms to the other side of the equality so as
to make all coefficients positive.

The reason it is unfortunate that the tristimulus coefficients can be negative is that, since
there is no way to make a screen or a drawing emit negative light intensities, it follows that
there are some colors that cannot be rendered by a red–blue–green color scheme. That is to
say, there are some colors that can be perceived by the human eye but that cannot be rendered
on a computer screen, even in principle, at least as long as the screen is rendering colors using
a system of three primary colors. The same considerations apply to any kind of color printing
system based on three primary colors. Some high-quality printing systems use more than three
primary colors to achieve a broader range of perceptual colors.4

So far our discussion has concerned the color properties of light. The color properties of
materials are considerably more complicated. In Chapter III, the Phong and Cook–Torrance
illumination models treated each material as having reflectance properties for the colors red,
green, and blue, with each color treated independently. However, a more physically accurate
approach would treat every spectrally pure color independently; that is, for each wavelength of
light, thematerial has reflectanceproperties, and these properties varywith thewavelength.This
more physically accurate model would allow for illuminant metamerism, where two materials
may appear to be the same color under one illumination source and to be a different color under
another illumination source. There seems to be noway to extend the Phong and Cook–Torrance
light models easily to allow for reflectance properties that vary with wavelength except to use
more than three primary colors. This is called spectral sampling and is sometimes used for
high-quality, photorealistic renderings. For spectral sampling, each light source is treated as
consisting of multiple pure components, and each surface has reflectance properties for each
of the light components. The illumination equations are similar to those Chapter III described
but are carried out for more wavelengths. At the end, it is necessary to reduce back to three

3 We are describing the standard, idealized model of color perception. The experiments only apply to
colors at a constant level of intensity, and the experimental results are not as clear cut as we are making
them sound. In addition, there is considerable variation in how different people distinguish colors.

4 It is curious, to this author at least, that we are so unconcerned about the quality of color reproduction.
Most people are perfectly happy with the rather low range of colors available from a CRT or a
television. In contrast, systems for sound reproduction are widespread, and home stereo systems
routinely provide high-quality recording and reproduction of audio signals (music) accurately across
the full audible spectrum. It is surprising that there has been no corresponding improvement in color
reproduction systems for television nor even any demand for such improvement – at least from the
general consumer.

It is certainly conceivable that improved color rendition could be developed for CRTs and televi-
sions; for instance, one could envision a display system in which each pixel could emit a combination
of two pure, narrow-spectrum, wavelengths of light, with the two wavelengths individually tunable.
Such a system would be able to render nearly every perceptual color.
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(a) (b)
Figure VI.1. (a) The additive colors are red, green, and blue. (b) The subtractive colors are cyan, magenta,
and yellow. See Color Plate 2.

primary colors for printing or display purposes. The book (Hall, 1989) discusses algorithms
for spectral sampling devised by Hall and by Meyer.

VI.2 Representation of Color Values

This section discusses some of the principal ways inwhich colors are represented by computers.
We discuss first the general theory of subtractive versus additive colors and then discuss how
RGB values are typically encoded. Finally, we discuss alternate representations of color based
on hue, saturation, and luminance.

VI.2.1 Additive and Subtractive Colors

The usual method of displaying red, green, and blue colors on a CRT monitor is called an ad-
ditive system of colors. In an additive system of colors, the base or background color is black,
and then varying amounts of three primary colors – usually red, green, and blue – are added.
If all three colors are added at full intensity, the result is white. Additive colors are pictured in
part (a) of Figure VI.1 in which the three circles should be viewed as areas that generate or emit
light of the appropriate color. Where two circles overlap, they combine to form a color: red and
green together make yellow, green and bluemake cyan, and blue and redmakemagenta.Where
all three circles overlap, the color becomes white. The additive representation of color is appro-
priate for display systems such as monitors, televisions, or projectors for which the background
or default color is black and the primary colors are added in to form composite colors.

In the subtractive representation of light, the background or base color is white. Each
primary color is subtractive in that it removes a particular color from the light by absorption
or filtering. The subtractive primary colors are usually chosen as magenta, cyan, and yellow.
Yellow represents the filtering or removal of blue light, magenta the removal of green light, and
cyan the removal of red light. Subtractive primaries are relevant for settings such as painting,
printing, or film, where the background or default color is white and primary colors remove a
single color from the white light. In painting, for instance, a primary color consists of a paint
that absorbs one color from the light and reflects the rest of the colors in the light. Subtractive
colors are illustrated in part (b) of Figure VI.1. You should think of these colors as being in front
of a white light source, and the three circles are filtering out components of the white light.
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There can be confusion between the colors cyan and blue, or the colors magenta and red.
Cyan is a light blue or greenish blue, whereas blue is a deep blue. Magenta is a purplish or
bluish red; if red and magenta are viewed together, then the red frequently has an orangish
appearance. Sometimes, cyan and magenta are referred to as blue and red, and this can lead to
confusion over the additive and subtractive roles of the colors.

The letters RGB are frequently used to denote the additive red–green–blue primary colors,
and CMY is frequently used for the subtractive cyan–magenta–yellow primary colors. Often,
one uses these six letters to denote the intensity of the color on a scale 0 to 1. Then, the nominal
way to convert from a RGB color representation to CMY is by the formulas

C = 1− R

M = 1− G

Y = 1− B.

We call this the “nominal” way because it often gives poor results. The usual purpose of
converting from RGB to CMY is to change an image displayed on a screen into a printed
image. It is, however, very difficult to match colors properly as they appear on the screen with
printed colors, and to do this well requires knowing the detailed spectral properties (or color
equivalence properties) of both the screen and the printing process. A further complication
is that many printers use CMYK colors, which use a K channel in addition to C,M,Y. The
value of K represents the level of black in the color and is printed with a black ink rather than
a combination of primary colors. There are several advantages to using a fourth black color:
First, black ink tends to be cheaper than combining three colored inks. Second, less ink needs
to be used, and thus the paper does not get so wet from ink, which saves drying time and
prevents damage to the paper. Third, the black ink can give a truer black color than is obtained
by combining three colored inks.

VI.2.2 Representation of RGB Colors

This section discusses the common formats for representing RGB color values in computers.
An RGB color value typically consists of integer values for each of the R, G, B values, these
values being rescaled from the interval [0, 1] and discretized to the resolution of the color
values.

The highest commonly used resolution for RGB values is the so-called 32-bit or 24-bit
color. On a Macintosh, this is called “millions of colors,” and on a PC it is referred to variously
as “32-bit color,” “16,777,216 colors,” or “true color.” The typical storage for such RGB values
is in a 32-bit word: 8 bits are reserved for specifying the red intensity, 8 bits for green, and
8 bits for blue. Since 224 = 16, 777, 216, there are that many possible colors. The remaining
8 bits in the 32-bit word are either ignored or are used for an alpha (α) value. Typical uses of
the alpha channel are for transparency or blending effects (OpenGL supports a wide range of
transparency and blending effects). Because each color has 8 bits, each color value may range
from 0 to 255.

The second-highest resolution of the commonly used RGB color representations is the
16-bit color system. On a Macintosh, this is called “thousands of colors”; on a PC it will
be called “high color,” “32,768 colors,” or “16-bit color.” In 16-bit color, there are, for each
of red, green, and blue, 5 bits that represent the intensity of that color. The remaining one
bit is sometimes used to represent transparency. Thus, each color has its intensity repre-
sented by a number between 0 and 31, and altogether there are 215 = 32,768 possible color
combinations.
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The lowest resolution still extensively used by modern computers is 8-bit color. In 8-bit
color, there are 256 possible colors. Usually, three of the bits are used to represent the red
intensity, three bits represent the green intensity, and only two bits represent the blue intensity.

An alternative way to use eight bits per pixel for color representation is to use a color lookup
table, often called a CLUT or a LUT, for short. This method is also called indexed color. A
LUT is typically a table holding 256 distinct colors in 16-bit, 24-bit, or 32-bit format. Each
pixel is then given an 8 bit color index. The color index specifies a position in the table, and
the pixel is given the corresponding color. A big advantage of a LUT is that it can be changed
in accordance with the contents of a window or image on the screen. Thus, the colors in the
LUT can reflect the range of colors actually present in the image. For instance, if an image has
many reds, the lookup table might be loaded with many shades of red and with relatively few
nonred colors. For this reason, using 8-bit indexed color can give much better color rendition
of a particular image than just using the standard 8-bit color representation with 3+ 3+ 2 bits
for red, green, and blue intensities.

Color lookup tables are useful in situations in which video memory is limited and only
8 bits of memory per pixel are available for storing color information. They are also useful for
compressing files for transmission in bandwidth-limited or bandwidth-sensitive applications
such as when files are viewed over the Internet. The widely used Compuserve GIF file format
incorporates indexed color: a GIF file uses a k-bit index to specify the color of a pixel, where
1 ≤ k ≤ 8. In addition, the GIF file contains a color lookup table of 2k color values. Thus, with
k = 8, there are 256 possible colors; however, smaller values for k can also be used to further
reduce the file size at the cost of having fewer colors. This allows GIF files to be smaller than
they would otherwise be and thereby faster to download without sacrificing too much in image
quality. To be honest, we should mention that there is a second reason GIF files are so small:
they use a sophisticated compression scheme, known as LZW (after its inventors Lempel, Ziv,
andWelch) that further compresses the file by removing certain kinds of redundant information.

Internet software, such asNetscape or Internet Explorer, uses a standard color index scheme
for “browser-safe” or “Web-safe” colors. This scheme is based on colors that are restricted to
six levels of intensity for red, for green, and for blue, which makes a total of 63 = 216 standard
colors. In theory at least, browsers should render these 216 colors identically on all hardware.

VI.2.3 Hue, Saturation, and Luminance

Several methods exist for representing color other than in terms of its red, green, and blue
components. These methods can be more intuitive and user-friendly for color specification and
color blending.

We will discuss only one of the popular methods of this type, the “HSL” system, which
specifies a color in terms of its hue, saturation, and luminance. The hue (or chromaticity) of a
light is its dominant color. The luminance (also called intensity, or value, orbrightness) specifies
the overall brightness of the light. Finally, the saturation (also called chroma or colorfulness)
of a color measures the extent to which the color consists of a pure color versus consists of
white light. (These various terms with similar meanings are not precisely synonymous but
instead have different technical definitions in different settings. For other methods of color
specification similar in spirit to HSL, you may consult, for instance, (Foley et al., 1990).)

In the HSL system, hue is typically measured as an angle between 0 and 360◦. A pure red
color has hue equal to 0◦, a pure green color has hue equal to 120◦, and a pure blue color has
hue equal to 240◦. Intermediate angles for the hue indicate the blending of two of the primary
colors. Thus, a hue of 60◦ indicates a color contains equal mixtures of red and green, that is,
the color yellow. Figure VI.2 shows the hues as a function of angle.
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Red

YellowGreen

Cyan

Blue Magenta

Figure VI.2. Hue is measured in degrees representing an angle around the color wheel. Pure red has hue
equal to 0, pure green has hue equal to 120◦, and pure blue has hue equal to 240◦. See Color Plate 3.

The luminance refers to the overall brightness of the color. In the HSL system, luminance is
calculated from RGB values by taking the average of the maximum and minimum intensities
of the red, green, and blue colors.

The saturation is measured in a fairly complex fashion, but generally speaking, it measures
the relative intensity of the brightest primary color versus the least bright primary color and
scales the result into the range [0, 1].

The advantage of using HSL color specification is that it is a more intuitive method for
defining colors. The disadvantage is that it does not correspond well to the physical processes
of displaying colors on a monitor or printing colors with ink or dyes. For this, it is necessary
to have some way of converting between HSL values and either RGB or CMY values.

The most common algorithm for converting RGB values into HSL values is the following:

// Input: R, G, B. All in the range [0, 1].
// Output: H, S, L. H∈ [0, 360], and S, L ∈ [0, 1].

Set Max = max{R, G, B};
Set Min = min{R, G, B};
Set Delta = Max - Min;
Set L = (Max+Min)/2; // Luminance
If (Max==Min) {

Set S = 0; // Achromatic, unsaturated.
Set H = 0; // Hue is undefined.

}
Else {

If ( L<1/2 ) {
Set S = Delta/(Max+Min); // Saturation

}
Else {

Set S = Delta/(2-Max-Min); // Saturation
}
If ( R == Max ) {

Set H = 60*(G-B)/Delta; // Hue
If ( H<0 )

Set H = 360+H;
}
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Else if ( G == Max ) {
Set H = 120 + 60*(B-R)/Delta; // Hue

}
Else {

Set H = 240 + 60*(R-G)/Delta; // Hue
}

}

The H, S, and L values are often rescaled to be in the range 0 to 255.
To understand how the preceding algorithm works, consider the case in which R is the

dominant color and B the least bright so that R > G > B. Then the hue will be calculated by

H = 60 · G − B

R − B
= 60 · G − Min

R − Min
.

Thus, the hue will range from 0 to 60◦ in proportion to (G − Min)/(R − Min). If we think of
the base intensity Min as the amount of white light, then R − Min is the amount of red in the
color and G − Min is the amount of green in the color. So, in this case, the hue measures the
ratio of the amount of green in the color to the amount of red in the color.

On the other hand, the conversion fromRGB into HSL does not seem to be completely ideal
in the way it computes brightness: for instance, the color yellow, which has R,G,B values of
1,1,0, has luminance L = 1/2. Likewise, the colors red and green, which have R,G,B values
of 1,0,0 and of 0,1,0, respectively, also have luminance L = 1/2. However, the color yellow
is usually a brighter color than either red or green. There seems to be no way of easily evading
this problem.

The formulas for computing saturation from RGB values are perhaps a little mysterious.
They are

S = Max− Min

Max+ Min
and S = Max− Min

2− (Max+ Min)
,

where the formula on the left is used if Max+ Min ≤ 1; otherwise, the formula on the right is
used. Note that when Max+ Min = 1, then the two formulas give identical results, and thus
the saturation is a continuous function. Also note that if Max = 1, then S = 1. Finally, the
formula on the right is obtained from the formula on the left by replacing Max by 1− Min and
Min by 1− Max.

It is not hard to see that the algorithm converting RGB into HSL can be inverted, and thus
it is possible to calculate the RGB values from the HSL values. Or rather, the algorithm could
be inverted if HSL values were stored as real numbers; however, the discretization to integer
valuesmeans that the transformation fromRGB toHSL is not one-to-one and cannot be exactly
inverted.

Exercise VI.1 Give an algorithm for converting HSL values to RGB values. You may treat
all numbers as real numbers and consequently do not need to worry about discretization
problems. [Hint: First compute Min and Max from L and S.]

The translation from RGB into HSL is a nonlinear function; thus, a linear interpolation
process such as Gouraud shading will give different results when applied to RGB values than
to HSL values. Generally, Gouraud shading is applied to RGB values, but in some applications,
it might give better results to interpolate in HSL space. There are potential problems with
interpolating hue, however; for instance, how would one interpolate from a hue of 0◦ to a hue
of 180◦?
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Further Reading: Two highly recommended introductions to color and its use in computer
graphics are the book (Jackson, MacDonald, and Freeman, 1994) and the more advanced book
(Berns, Billmeyer, and Saltzman, 2000); both arewellwrittenwith plenty of color illustrations.
They also include discussion of human factors and good design techniques for using color in
a user-friendly way.

For a discussion of human abilities to perceive and distinguish colors, consult
(Glassner, 1995), (Wyszecki and Stiles, 1982), or (Fairchild, 1998). Discussions of monitor
and display design, as well as color printing, are given by (Glassner, 1995; Hall, 1989;
Jackson, MacDonald, and Freeman, 1994).

A major tool for the scientific and engineering use of color is the color representation stan-
dards supported by theCommission International d’Eclairage (CIE) organization. For computer
applications, the 1931 CIE (x̄, ȳ, z̄) representation is the most relevant, but there are several
other standards, including the 1964 10◦ observer standards and the CIELAB and CIELUV
color representations, that better indicate human abilities to discriminate colors. The CIE stan-
dards are described to some extent in all of the aforementioned references. A particularly
comprehensive mathematical explanation can be found in (Wyszecki and Stiles, 1982); for a
shortermathematical introduction, seeAppendixBof (Berns, Billmeyer, and Saltzman, 2000).
Also, (Fairman, Brill, and Hemmendinger, 1997) describe the mathematical definition of the
1931 CIE color standard and its historical motivations.

The early history of scientific theories of color is given by (Bouma, 1971, Chap. 12).
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Bézier Curves

A spline curve is a smooth curve specified succinctly in terms of a few points. These two
aspects of splines, that they are smooth and that they are specified succinctly in terms of only
a few points, are both important. First, the ability to specify a curve with only a few points
reduces storage requirements. In addition, it facilitates the computer-aided design of curves and
surfaces because the designer or artist can control an entire curve by varying only a few points.
Second, the commonly used methods for generating splines give curves with good smoothness
properties andwithout undesired oscillations. Furthermore, these splines also allow for isolated
points where the curve is not smooth, such as points where the spline has a “corner.” A third
important property of splines is that there are simple algorithms for finding points on the spline
curve or surface and simple criteria for deciding how finely a spline must be approximated by
linear segments to obtain a sufficiently faithful representation of the spline. The main classes
of splines discussed in this book are the Bézier curves and the B-spline curves. Bézier curves
and patches are covered in this chapter, and B-splines in the next chapter.

Historically, splines were specified mechanically by systems such as flexible strips of wood
or metal that were tied into position to record a desired curve. These mechanical systems
were awkward and difficult to work with, and they could not be used to give a permanent,
reproducible description of a curve. Nowadays, mathematical descriptions are used instead
of mechanical devices because the mathematical descriptions are, of course, more useful and
more permanent, not to mention more amenable to computerization. Nonetheless, some of the
terminology of physical splines persists such as the use of “knots” in B-spline curves.

Bézier curves were first developed by automobile designers to describe the shape of
exterior car panels. Bézier curves are named after Bézier for his work at Renault in
the 1960s (Bézier, 1968; 1974). Slightly earlier, de Casteljau had already developed mathe-
matically equivalent methods of defining spline curves at Citroën (de Casteljau, 1959; 1963).1

This chapter discusses Bézier curves, which are a simple kind of spline. For the sake of
concreteness, the first five sections concentrate on the special case of degree threeBézier curves
in detail. After that, we introduce Bézier curves of general degree. We then cover how to form
Bézier surface patches and how to use Bézier curves and surfaces in OpenGL. In addition, we

1 We do not attempt to give a proper discussion of the history of the development of Bézier curves
and B-splines. The textbooks of (Farin, 1997), (Bartels, Beatty, and Barsky, 1987), and especially
(Rogers, 2001) and (Schumaker, 1981) contain some historical material and many more references
on the development of Bézier curves and B-splines.

155
Team LRN
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q(u)

p0

p1 p2

p3

Figure VII.1. A degree three Bézier curve q(u). The curve is parametrically defined with 0 ≤ u ≤ 1,
and it interpolates the first and last control points with q(0) = p0 and q(1) = p3. The curve is “pulled
towards” the middle control points p1 and p2. At p0, the curve is tangent to the line segment joining p0
and p1. At p3, it is tangent to the line segment joining p2 and p3.

describe rational Bézier curves and patches and how to use them to form conic sections and
surfaces of revolution. The last sections of the chapter describe how to form piecewise Bézier
curves and surfaces that interpolate a desired set of points.

For a basic understanding of degree threeBézier curves, you should start by reading Sections
VII.1 through VII.4. After that, you can skip around a little. Sections VII.6–VII.9 and VII.12–
VII.14 discuss general-degree Bézier curves and rational Bézier curves and are intended to
be read in order. But it is possible to read Sections VII.10 and VII.11 about patches and
about OpenGL immediately after Section VII.4. Likewise, Sections VII.15 and VII.16 on
interpolating splines can be read immediately after Section VII.4. The mathematical proofs
are not terribly difficult but may be skipped if desired.

VII.1 Bézier Curves of Degree Three

The most common Bézier curves are the degree three polynomial curves, which are specified
by four points called control points. This is illustrated in Figure VII.1, where a parametric
curveq = q(u) is defined by four control pointsp0, p1, p2, p3. The curve starts fromp0 initially
in the direction of p1, then curves generally towards p2, and ends up at p3 coming from the
direction of p2. Only the first and last points, p0 and p3, lie on q. The other two control points,
p1 and p2, influence the curve: the intuition is that these two middle control points “pull” on
the curve. You can think of q as being a flexible, stretchable curve that is constrained to start
at p0 and end at p3 and in the middle is pulled by the two middle control points. Figure VII.2
shows two more examples of degree three Bézier curves and their control points.

p0

p1

p2

p3

p0

p1
p2

p3

Figure VII.2. Two degree three Bézier curves, each defined by four control points. The curves interpolate
only their first and last control points, p0 and p3. Note that, just as in Figure VII.1, the curves start off,
and end up, tangent to line segments joining control points.
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We say that a curve interpolates a control point if the control point lies on the curve. In
general, Bézier curves do not interpolate their control points, except for the first and last points.
For example, the degree three Bézier curves shown in Figures VII.1 and VII.2 interpolate the
first and last control points p0 and p3 but not the middle control points.

Definition Degree threeBézier curves are defined parametrically by a functionq(u): as u varies
from 0 to 1, the values of q(u) sweep out the curve. The formula for a degree three Bézier
curve is

q(u) = B0(u)p0 + B1(u)p1 + B2(u)p2 + B3(u)p3, VII.1

where the four functions Bi (u), called blending functions, are scalar-valued and are defined by

Bi (u) =
(
3

i

)
ui (1− u)3−i . VII.2

The notation
(n

m

)
represents the “choice function” counting the number of subsets of size m of

a set of size n, namely,(
n

m

)
= n!

m!(n − m)!
.

Much of the power and convenience of Bézier curves comes from their being defined in a
uniform way independent of the dimension d of the space containing the curve. The control
points pi defining a Bézier curve lie in d-dimensional space R

d for some d. On the other
hand, the blending functions Bi (u) are scalar-valued functions. The Bézier curve itself is a
parametrically defined curve q(u) lying inR

d . Bézier curves can thus be curves in the plane R
2

or in 3-space R
3, and so forth. It is also permitted for d to equal 1, in which case a Bézier

curve is a scalar-valued “curve.” For instance, if u measures time and d = 1, then the “curve”
represents a time-varying scalar value.

The functions Bi (u) are special cases of the Bernstein polynomials. When we define Bézier
curves of arbitrary degree in Section VII.6, the Bernstein polynomials of degree three will be
denoted by B3

i instead of just Bi . But for now, we omit the superscript 3 to keep our notation
from being overly cluttered.

The blending functions Bi (u) are clearly degree three polynomials. Indeed, when their
definitions are expanded they are equal to

B0(u) = (1− u)3 B2(u) = 3u2(1− u)

B1(u) = 3u(1− u)2 B3(u) = u3.

These four functions are graphed in Figure VII.3. Obviously, the functions take on values in
the interval [0, 1] for 0 ≤ u ≤ 1. Less obviously, the sum of the four functions is always equal
to 1: this can be checked by summing the polynomials, or, more elegantly, by the binomial
theorem we have

3∑
i=0

Bi (u) =
3∑

i=0

(
3

i

)
ui (1− u)3−i

= (u + (1− u))3 = 1.

In addition, B0(0) = 1 and B3(1) = 1. From this, we see immediately that q(u) is always
computed as a weighted average of the four control points and that q(0) = p0 and q(1) = p3,
confirming our observation that q(u) starts at p0 and ends at p3. The function B1(u) reaches its
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B0

B1 B2

B3

1

10

y

u

Figure VII.3. The four blending functions for degree three Bézier curves. We are only interested in their
values in the interval [0, 1]. Each Bi (u) is a degree three polynomial.

maximum value, namely 4
9 , at u = 1

3 ; therefore, the control point p1 has the greatest influence
over the curve at u = 1

3 . Symmetrically, p2 has the greatest influence over the curve at u = 2
3 .

This coincides with the intuition that the control points p1 and p2 “pull” the hardest on the
curve at u = 1

3 and u = 2
3 .

If we calculate the derivatives of the four blending functions by hand, we of course find that
their derivatives are degree two polynomials. If we then evaluate these derivatives at u = 0 and
u = 1, we find that

B ′0(0) = −3 B ′1(0) = 3 B ′2(0) = 0 B ′3(0) = 0

B ′0(1) = 0 B ′1(1) = 0 B ′2(1) = −3 B ′3(1) = 3.

The derivative of the function q(u) can easily be expressed in terms of the derivatives of the
blending functions, namely,

q′(u) = B ′0(u)p0 + B ′1(u)p1 + B ′2(u)p2 + B ′3(u)p3.

This is of course a vector-valued derivative because q is a vector-valued function. At the
beginning and end of the curve, the values of the derivatives are

q′(0) = 3(p1 − p0) VII.3

q′(1) = 3(p3 − p2).

Graphically, this means that the curve q(u) starts at u = 0 traveling in the direction of the
vector from p0 to p1. Similarly, at the end, where u = 1, the curve q(u) is tangent to the vector
from p2 to p3. Referring back to Figures VII.1 and VII.2, we note that this corresponds to the
curve’s starting at p0 initially tangent to the line segment joining the first control point to the
second control point and ending at p3 tangent to the line segment joining the third and fourth
control points.

Exercise VII.1 A degree three Bézier curve in R
2 satisfies q(0) = 〈0, 1〉, q(1) = 〈3, 0〉,

q′(0) = 〈3, 3〉 and q′(1) = 〈−3, 0〉. What are the control points for this curve? Give a
rough freehand sketch of the curve, being sure to show the slopes at the beginning and end
of the curve clearly.
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p0

p1 p2

p3

r0

r1

r2s0

s1

t0

Figure VII.4. The de Casteljau method for computing q(u) for q, a degree three Bézier curve. This
illustrates the u = 1/3 case.

VII.2 De Casteljau’s Method

The qualitative methods described above allow you to make a reasonable freehand sketch of a
degree three Bezier curve based on the positions of its control points. In particular, the curve
starts at p0, ends at p3, and has initial and final directions given by the differences p1 − p0
and p3 − p2. Finding the exact values of q(u) for a given value of u can be done by using
Formulas VII.1 and VII.2 of course. However, an easier method, known as de Casteljau’s
method, can also be used to find values of q(u). De Casteljau’s method is not only simpler for
hand calculation but is also more stable numerically for computer calculations.2 In addition,
de Casteljau’s method will be important later on as the basis for recursive subdivision.

Let p0, p1, p2, p3 define a degree three Bézier curve q. Fix u ∈ [0, 1] and suppose we want
to compute q(u). The de Casteljau method for computing q(u) works as follows: First, form
three points r0, r1, r2 by linear interpolation from the control points of q by

ri = (1− u) · pi + u · pi+1. VII.4

Recall from Section IV.1.1 that this means that ri lies between pi and pi+1 with ri at the point
that is fraction u of the distance from pi to pi+1. (This is illustrated in Figures VII.4 and VII.5.)
Then define s0 and s1 by linear interpolation from the ri ’s by

si = (1− u) · ri + u · ri+1. VII.5

Finally define t0 by linear interpolation from s0 and s1 by

t0 = (1− u) · s0 + u · s1. VII.6

Then, it turns out that t0 is equal to q(u). We will prove a generalization of this fact as
TheoremVII.6; however, for the special case of degree threeBézier curves, the reader can easily
verify that t0 = q(u) by expressing t0 as an explicit function of u and the four control points.

In the special case of u = 1/2, the de Casteljau method becomes particularly simple. Then,

ri = pi + pi+1
2

, si = ri + ri+1
2

, t0 = s0 + s1
2

. VII.7

That is to say, q( 12 ) = t0 = 1
8p0 + 3

8p1 + 3
8p2 + 1

8p3.

Exercise VII.2 Prove that t0, as computed by Equation VII.6, is equal to q(u).

2 See (Daniel and Daubisse, 1989; Farouki, 1991; Farouki and Rajan, 1987; 1988) for technical dis-
cussions on the stability of the de Casteljau methods. They conclude that the de Castaljau method is
preferable to conventional methods for polynomial representation and evaluation, including Horner’s
method.
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p0

p1 p2

p3

r0

r1

r2

s0 s1t0

q1(u) q2(u)

Figure VII.5. The de Casteljau method for computing q(u) for q a degree three Bézier curve is the basis
for finding the new points needed for recursive subdivision. Shown here is the u = 1/2 case. The points
p0, r0, s0, t0 are the control points for the Bézier curve q1(u) that is equal to the first half of the curve q(u),
that is, starting at p0 and ending at t0. The points t0, s1, r2, p3 are the control points for the curve q2(u)
equal to the second half of q(u), that is, starting at t0 and ending at p3.

Exercise VII.3 Let q(u) be the curve from Exercise VII.1. Use the de Casteljau method
to compute q( 12 ) and q( 34 ). (Save your work for Exercise VII.4.)

VII.3 Recursive Subdivision

Recursive subdivision is the term used to refer to the process of splitting a single Bézier
curve into two subcurves. Recursive subdivision is important for several reasons, but the most
important, perhaps, is for the approximation of a Bézier curve by straight line segments. A
curve that is divided into sufficiently many subcurves can be approximated by straight line
segments without too much error. As we discuss in the latter part of this section, this can help
with rendering and other applications such as intersection testing.

Suppose we are given a Bézier curve q(u) with control points p0, p1, p2, p3. This is a cubic
curve of course, and if we let

q1(u) = q(u/2) and q2(u) = q((u + 1)/2), VII.8

then both q1 and q2 are also cubic curves. We restrict q1 and q2 to the domain [0, 1]. Clearly,
for 0 ≤ u ≤ 1, q1(u) is the curve that traces out the first half of the curve q(u), namely, the
part of q(u) with 0 ≤ u ≤ 1/2. Similarly, q2(u) is the second half of q(u). The next theorem
gives a simple way to express q1 and q2 as Bézier curves.

Theorem VII.1 Let q(u), q1(u), and q2(u) be as above. Let ri , si , and t0 be defined as
in Section VII.2 for calculating q(u) with u = 1/2; that is to say, they are defined accord-
ing to Equation VII.7. Then the curve q1(u) is the same as the Bézier curve with control
points p0, r0, s0, t0. And the curve q2(u) is the same as the Bézier curve with control points
t0, s1, r2, p3.

Theorem VII.1 is illustrated in Figure VII.5.
One way to prove TheoremVII.1 is just to use a “brute force” evaluation of the definitions of

q1(u) and q2(u). The two new Bézier curves are specified with control points ri , si , and t0 that
have been defined in terms of the pi ’s. Likewise, from Equations VII.8, we get equations for
q1(u) and q2(u) in terms of the pi ’s. From this, the theorem can be verified by straightforward
calculation. This brute force proof is fairly tedious and uninteresting, and so we omit it. The
interested reader may work out the details or, better, wait until we give a proof of the more
general Theorem VII.7.

Theorem VII.1 explained how to divide a Bézier curve into two halves with the subdivision
breaking the curve at the middle position u = 1/2. Sometimes, one wishes to divide a Bézier
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curve into two parts of unequal size, at a point u = u0. That is to say, one wants curves q1(u)
and q2(u) defined on [0, 1] such that

q1(u) = q(u0u) and q2(u) = q(u0 + (1− u0)u).

The next theorem explains how to calculate control points for the subcurves q1(u) and q2(u)
in this case.

Theorem VII.2 Let q(u), q1(u), and q2(u) be as above. Let 0 < u0 < 1. Let ri , si , and t0
be defined as in Section VII.2 for calculating q(u) with u = u0. That is, they are defined by
Equations VII.4–VII.6 so that t0 = q(u0). Then the curve q1(u) is the same as the Bézier curve
with control points p0, r0, s0, t0. Also, the curve q2(u) is the same as the Bézier curve with
control points t0, s1, r2, p3.

For an illustration of Theorem VII.2, refer to Figure VII.4, which shows the u = 1/3 case. The
curve from p0 to t0 is the same as the Bézier curve with control points p0, r0, s0, and t0. The
curve from t0 to p3 is the same as the Bézier curve with control points t0, s1, r2, and p3.

Like Theorem VII.1, Theorem VII.2 may be proved by direct calculation. Instead, we will
prove a more general result later as Theorem VII.7.

Exercise VII.4 Consider the curve q(u) of Exercise VII.1. Use recursive subdivision to
split q(u) into two curves at u0 = 1

2 . Repeat with u0 = 3
4 .

Applications of Recursive Subdivision
There are several important applications of recursive subdivision. The first, most prominent
application is for rendering a Bézier curve as a series of straight line segments; this is often
necessary because graphics hardware typically uses straight line segments as primitives. For
this, we need a way to break a Bézier curve into smaller and smaller subcurves until each
subcurve is sufficiently close to being a straight line so that rendering the subcurves as straight
lines gives adequate results. To carry out this subdivision, we need to have a criterion for
“sufficiently close to being a straight line.” Generally, this criterion should depend not just on
the curvature of the curve but also on the rendering context. For instance, when rendering to
a rectangular array of pixels, there is probably no need to subdivide a curve that is so straight
that the distance between the curve and a straight line approximation is less than a single pixel.

Here is one way of making this criterion of “sufficiently close to a straight line” more
precise: first, based on the distance of the curve from the viewer and the pixel resolution of
the graphics rendering context, calculate a value δ > 0 so that any discrepancy in rendering
of absolute value less than δ will be negligible. Presumably this δ would correspond to some
fraction of a pixel dimension. Then recursively subdivide the curve into subcurves, stopping
whenever the error in a straight line approximation to the curve is less than δ. A quick and
dirty test to use as a stopping condition would be to check the position of the midpoint of the
curve; namely, the stopping condition could be that

||q( 12 )− 1
2 (p0 + p3)|| < δ.

In most cases, this condition can be checked very quickly: in the degree three Bézier case,
q( 12 ) is equal to t0 = 1

8p0 + 3
8p1 + 3

8p2 + 1
8p3. A quick calculation shows that the stopping

condition becomes merely

||p0 − p1 − p2 + p3||2 < (8δ/3)2,

which can be efficiently computed.
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p0

p1 p2

p3

r0

r1

r2

s0 s1t0

q1(u) q2(u)

Figure VII.6. The convex hull of the control points of the Bézier curves shrinks rapidly during the
process of recursive subdivision. The whole curve is inside its convex hull, that is, inside the quadrilateral
p0p1p2p3. After one round of subdivision, the two subcurves are known to be constrained in the two
convex shaded regions.

This “quick and dirty” test can occasionally fail since it is based on only the midpoint of
the Bézier curve. A more reliable test would check whether the intermediate control points, p1
and p2, lie approximately on the line segment p0p3.

A second important application of recursive subdivision involves combining it with convex
hull tests to determine regions where the Bézier curve does not lie. For example, in Chapters IX
and X, we are interested in determining when a ray (a half line) intersects a surface, and we will
see that it is particularly important to have efficient methods of determining when a line does
not intersect the surface. As another example, suppose we are rendering a large scene of which
only a small part is visible at any given time. To render the scene quickly, it is necessary to be
able to decide rapidly what objects are not visible by virtue, for example, of being outside the
view frustum. A test for nonintersection or for nonvisibility would be based on the following
fact: for a Bézier curve defined with control points pi , the points q(u), for 0 ≤ u ≤ 1, all lie in
the convex hull of the control points. This is a consequence of the fact that the points on the
Bézier curve are computed as weighted averages of the control points.

To illustrate the principle of recursive subdivision combined with convex hull testing, we
consider the two-dimensional analogue of the first example. The extension of these principles
to three-dimensional problems is straightforward. Suppose we are given a Bézier curve q(u)
and a line or ray L and want to decide whether the line intersects the Bézier curve and, if so,
findwhere this intersection occurs. An algorithm based on recursive subdivision would work as
follows: Begin by comparing the line L with the convex hull of the control points of q.3 Since
the curve lies entirely in the convex hull of its control points, if L does not intersect the convex
hull, then L does not intersect the Bézier curve: in this case the algorithmmay return false to
indicate no intersection occurs. If L does intersect the convex hull, then the algorithm performs
recursive subdivision to divide the Bézier curve into two halves, q1 and q2. The algorithm then
recursively calls itself to determinewhether the line intersects either of the subcurves. However,
before performing the recursive subdivision and recursive calls, the algorithm checks whether
the Bézier curve is sufficiently close to a straight line and, if so, the algorithm merely performs
a check for whether the line L intersects the straight line approximation to the Bézier curve. If
so, this intersection, or nonintersection, is returned as the answer.

For algorithms using recursive subdivision for testing nonintersection or nonvisibility to
performwell, it is necessary for the convex hulls to decrease rapidly in sizewith each successive
subdivision. One step of this process is illustrated in Figure VII.6, which shows the convex

3 See Section X.1.4 for an efficient algorithm for finding the intersection of a line and polygon.
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q1(u) q2(u)

p1,0

p1,1

p1,2 p1,3 = p2,0 p2,1

p2,2

p2,3
(a)

q1(u) q2(u)

p1,0

p1,1

p1,2

p1,3 = p2,0

p2,1

p2,2

p2,3
(b)

Figure VII.7. Two curves, each formed from two Bézier curves, with control points as shown. The
curve in part (a) is G1-continuous but not C1-continuous. The curve in part (b) is neither C1-continuous
nor G1-continuous. Compare these curves with the curves of Figures VII.5 and VII.6 which are both
C1-continuous and G1-continuous.

hulls of the two subcurves q1 and q2 obtained by recursive subdivision. Actually, the shrinkage
of the convex hulls of subcurves proceeds even more rapidly than is apparent in the figure: the
“width” of the convex hull will decrease quadratically with the “length” of the convex hull.
This fact can be proved by elementary calculus, just from the fact that Bézier curves have
continuous second derivatives.

VII.4 Piecewise Bézier Curves

There is only a limited range of shapes that can described by a single degree-three Bézier curve.
In fact, Figures VII.1 and VII.2 essentially exhaust the types of shapes that can be formed with
a single Bézier curve. However, one frequently wants curves that are more complicated than
can be formed with a single degree-three Bézier curve. For instance, in Section VII.15, we will
define curves that interpolate an arbitrary set of points. One way to construct more complicated
curves would be to use higher degree Bézier curves (look ahead to Figure VII.9(c), for an
example). However, higher degree Bézier curves are not particularly easy to work with. So,
instead, it is often better to combine multiple Bézier curves to form a longer, more complicated
curve called a piecewise Bézier curve.

This section discusses how to join Bézier curves together – especially how to join them so
as to preserve continuity and smoothness (i.e., continuity of the first derivative). For this, it
is enough to show how to combine two Bézier curves to form a single smooth curve because
generalizing the construction to combinemultiple Bézier curves is straightforward.We already
saw the converse process in the previous section, where recursive subdivision was used to split
a Bézier curve into two curves.

Suppose we want to build a curve q(u) consisting of two constituent curves q1(u) and q2(u)
that are both degree three Bézier curves. That is, we want to have q(u) defined in terms of q1(u)
and q2(u) so that Equation VII.8 holds. Two examples of this are illustrated in Figure VII.7.
Note that q(u) will generally not be a single Bézier curve; rather it is a union of two Bézier
curves.

For i = 1, 2, let pi,0, pi,1, pi,2, and pi,3 be the control points for qi (u). In order for q(u) to
be a continuous curve, it is necessary for q1(1) to equal q2(0). Since Bézier curves begin and
end at their first and last control points, this is equivalent to requiring that p1,3 = p2,0. In order
for q(u) to have a continuous first derivative at u = 1

2 , it is necessary to have q′1(1) = q′2(0),
that is, by Equation VII.3, to have

p1,3 − p1,2 = p2,1 − p2,0.
If (and only if) these conditions are met, q(u) will be continuous and have continuous first
derivatives. In this case, we say that q(u) is C1-continuous.
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164 Bézier Curves
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Figure VII.8. The degree three Hermite polynomials.

Definition Let k ≥ 0. A function f(u) is Ck-continuous if f has kth derivative defined and
continuous everywhere in the domain of f. For k = 0, the convention is that the zeroth derivative
of f is just f itself, and so C0-continuity is the same as continuity.

The function f(u) is C∞-continuous if it is Ck-continuous for all k ≥ 0.

In some situations, having continuous first derivatives is important. For example, if the
curve q(u) will be used to parameterize motion as a function of u, with u measuring time, then
the C1-continuity of q(u) will ensure that the motion proceeds smoothly with no instantaneous
changes in velocity or direction.However, in other cases, the requirement that the first derivative
be continuous can be relaxed somewhat. For example, if the curve q(u) is being used to define
a shape, then we do not really need the full strength ofC1-continuity. Instead, it is often enough
just to have the slope of q(u) be continuous. That is, it is often enough if the slope of q1(u)
at u = 1 is equal to the slope of q2(u) at u = 0. This condition is known as G1-continuity
or geometric continuity. Intuitively, G1-continuity means that when the curve is drawn as a
static object, it “looks” smooth. A rather general definition of G1-continuity can be given as
follows.

Definition A function f(u) is G1-continuous provided f is continuous and there is a function
t = t(u) that is continuous and strictly increasing such that the function g(u) = f(t(u)) has
continuous, nonzero first derivative everywhere in its domain.

In practice, one rarely uses the full power of this definition. Rather, a sufficient condition
for the G1-continuity of the curve q(u) is that p1,3 − p1,2 and p2,1 − p2,0 both be nonzero and
that one can be expressed as a positive scalar multiple of the other.

Exercise VII.5 Give an example of a curve that is C1-continuous but not G1-continuous.
[Hint: The derivative of the curve can be zero at some point.]

VII.5 Hermite Polynomials

Hermite polynomials provide an alternative to Bézier curves for representing cubic curves.
Hermite polynomials allow a curve to be defined in terms of its endpoints and its derivatives
at its endpoints.

The degree three Hermite polynomials H0(u), H1(u), H2(u), and H3(u) are chosen so that

H0(0)=1
H ′

0(0)=0
H ′

0(1)=0
H0(1)=0

H1(0)=0
H ′

1(0)=1
H ′

1(1)=0
H1(1)=0

H2(0)=0
H ′

2(0)=0
H ′

2(1)=1
H2(1)=0

H3(0)=0
H ′

3(0)=0
H ′

3(1)=0
H3(1)=1.
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VII.6 Bézier Curves of General Degree 165

The advantage of Hermite polynomials is that if we need a degree three polynomial f(u) that
has value equal to a at u = 0 and equal to d at u = 1 and has first derivative equal to b at u = 0
and c at u = 1, then we can just define

f(u) = aH0(u)+ bH1(u)+ cH2(u)+ dH3(u).

Since a degree three polynomial is uniquely determined by its values and first derivatives at
the two points u = 0 and u = 1, there is only one way to define the Hermite polynomials Hi

to satisfy the preceding conditions. Some simple calculus and algebra shows that the degree
three Hermite polynomials are4

H0(u) = (1+ 2u)(1− u)2 = 2u3 − 3u2 + 1

H1(u) = u(1− u)2 = u3 − 2u2 + u

H2(u) = −u2(1− u) = u3 − u2

H3(u) = u2(3− 2u) = − 2u3 + 3u2.

The Hermite polynomials are scalar-valued functions but can be used to define curves inR
k

by using vectors as coefficients. This allows any degree three Bézier curve to be expressed in
a Hermite form. In fact, it is easy to convert a Bézier curve q(u) with control points p0, p1, p2,
and p3 in R

k into a Hermite representation: because the initial derivative is q′(0) = 3(p1 − p0)
and the ending derivative is q′(1) = 3(p3 − p2), the Hermite representation must be

q(u) = p0H0(u)+ 3(p1 − p0)H1(u)+ 3(p3 − p2)H2(u)+ p3H3(u).

Unlike Bézier curves, the Hermite representation of a curve is not a weighted average since
the sum H1 + H2 + H3 + H4 does not generally equal 1. The coefficients of H0 and H3 are
points (the starting and end points of the curve), but the coefficients of H1 and H2 are vectors.
As a consequence, the Hermite polynomials lack many of the nice properties of Bézier curves;
their advantage, however, is that sometimes it is more natural to define a curve in terms of its
initial and ending positions and velocities than with control points.

For the opposite direction, converting a Hermite representation of a curve,

q(u) = r0H0(u)+ r1H1(u)+ r2H2(u)+ r3H3(u),

into a Bézier representation of the curve is also simple. Just let p0 = r0, let p3 = r3, let
p1 = p0 + 1

3r1, and let p2 = p3 − 1
3r2.

Exercise VII.6 Let q(u) be the curve of Exercise VII.1. Express q(u) with Hermite poly-
nomials.

VII.6 Bézier Curves of General Degree

We now take up the topic of Bézier curves of arbitrary degree. So far we have considered only
degree three Bézier curves, but it is useful to consider curves of other degrees. For instance, in
Section VII.13 we will use degree two, rational Bézier curves for rendering circles and other
conic sections. As we will see, the higher (and lower) degree Bézier curves behave analogously
to the already studied degree three Bézier curves.

4 Another way to derive these formulas for the Hermite polynomials is to express them as Bézier curves
that take values in R. This is simple enough, as we know the functions’ values and derivatives at the
endpoints u = 0 and u = 1.
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166 Bézier Curves

Definition Let k ≥ 0. The Bernstein polynomials of degree k are defined by

Bk
i (u) =

(
k

i

)
ui (1− u)k−i .

When k = 3, the Bernstein polynomials B3
i (u) are identical to the Bernstein polynomials Bi (u)

defined in Section VII.1. It is clear that the Bernstein polynomials Bk
i (u) are degree k polyno-

mials.

Definition Let k ≥ 1. The degree k Bézier curve q(u) defined from k + 1 control points
p0, p1, . . . ,pk is the parametrically defined curve given by

q(u) =
k∑

i=0
Bk

i (u)pi ,

on the domain u ∈ [0, 1].

The next theorem gives some simple properties of the Bernstein polynomials.

Theorem VII.3 Let k ≥ 1.

a. Bk
0 (0) = 1 = Bk

k (1).

b.
∑k

i=0 Bk
i (u) = 1 for all u.

c. Bk
i (u) ≥ 0 for all 0 ≤ u ≤ 1.

Proof Parts a. and c. are easily checked. To prove part b., use the binomial theorem:

k∑
i=0

Bk
i (u) =

k∑
i=0

(
k

i

)
ui (1− u)k−i = (u + (1− u))k = 1. �

The properties of Bernstein functions in TheoremVII.3 immediately imply the correspond-
ing properties of the curveq(u). By a., the curve starts atq(0) = p0 and ends atq(1) = pk . Prop-
erties b. and c. imply that each point q(u) is a weighted average of the control points. As a con-
sequence, by Theorem IV.8, a Bézier curve lies entirely in the convex hull of its control points.

We have already seen several examples of degree three Bézier curves in Figures VII.1
and VII.2. Figure VII.9 shows some examples of Bézier curves of degrees 1, 2, and 8 along
with their control points. The degree one Bézier curve is seen to have just two control points
and to consist of linear interpolation between the two control points. The degree two Bézier
curve has three control points, and the degree eight Bézier curve has nine.

In all the examples, the Bézier curve is seen to be tangent to the first and last line segments
joining its control points at u = 0 and u = 1. This general fact can be proved from the following
theorem, which gives a formula for the derivative of a Bézier curve.

Theorem VII.4 Let q(u) be a degree k Bézier curve, with control points p0, . . . ,pk . Then its
first derivative is given by

q′(u) = k ·
k−1∑
i=0

Bk−1
i (u)(pi+1 − pi ).

Therefore, the derivative q′(u) of a Bézier curve is itself a Bézier curve: the degree is decreased
by one and the control points are k(pi+1 − pi ). A special case of the theorem gives the following
formulas for the derivatives of q(u) at its starting and end points:

Corollary VII.5 Let q(u) be a degree k Bézier curve. Then

q′(0) = k(p1 − p0) and q′(1) = k(pk − pk−1).
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p0

p1

(a) Degree one

p0

p2

p1

(b) Degree two

p0

p1 p2

p3 p4

p5

p6

p7

p8

(c) Degree eight

Figure VII.9. (a) A degree one Bézier curve is just a straight line interpolating the two control points.
(b) A degree two Bézier curve has three control points. (c) A degree eight Bézier curve has nine control
points. The dotted straight line segments are called the control polygon of the Bézier curve.

This corollary proves the observation that the beginning and ending directions of the Bézier
curve are in the directions of p1 − p0 and of pk − pk−1.

Proof The corollary is easily proved from Theorem VII.4 with the aid of Theorem VII.3. To
prove TheoremVII.4, one may either obtain it as a special case of TheoremVIII.8 on page 221,
which we will state and prove in the next chapter, or one can prove it directly by the following
argument. Using the definition of the Bernstein polynomials, we have

d

du
Bk

i (u) =
(

k

i

)
iui−1(1− u)k−i −

(
k

i

)
(k − i)ui (1− u)k−i−1.

Note that the first term is zero if i = 0 and the second is zero if i = k. Thus, the derivative of
q(u) is equal to

k∑
i=0

(
k

i

)
iui−1(1− u)k−ipi −

k∑
i=0

(
k

i

)
(k − i)ui (1− u)k−1−ipi

=
k∑

i=1

(
k

i

)
iui−1(1− u)k−ipi −

k−1∑
i=0

(
k

i

)
(k − i)ui (1− u)k−1−ipi

=
k−1∑
i=0

(
k

i + 1

)
(i + 1)ui (1− u)k−1−ipi+1 −

k−1∑
i=0

(
k

i

)
(k − i)ui (1− u)k−1−ipi

=
k−1∑
i=0

k

(
k − 1

i

)
ui (1− u)k−1−ipi+1 −

k−1∑
i=0

k

(
k − 1

i

)
ui (1− u)k−1−ipi

=
k−1∑
i=0

k

(
k − 1

i

)
ui (1− u)k−1−i (pi+1 − pi )

= k
k−1∑
i=0

Bk−1
i (u)(pi+1 − pi ),

and Theorem VII.4 is proved. �
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Bézier curves of arbitrary degree k have many of the properties we discussed earlier in
connection with degree three curves. These include the convex hull property mentioned pre-
viously. Another property is invariance under affine transformations; namely, if M is an affine
transformation, then the result of applying M to a Bézier curve q(u) is identical to the re-
sult of applying M to the control points. In other words, the curve M(q(u)) is equal to the
Bézier curve formed from the control points M(pi ). The affine invariance property follows
from the characterization of the point q(u) as a weighted average of the control points and
from Theorem IV.1.

An additional property of Bézier curves is the variation diminishing property. Define
the control polygon to be the series of straight line segments connecting the control points
p0, p1, . . . ,pk in sequential order (see Figure VII.9). Then the variation diminishing property
states that, for any line L in R

2 (or, any plane P in R
3), the number of times the curve q(u)

crosses the line (or the plane) is less than or equal to the number of times the control polygon
crosses the line (or the plane). A proof of the variation diminishing property may be found
in (Farin, 1997); this proof is also sketched in Exercise VII.9.

It is of course possible to create piecewise degree k Bézier curves using the same approach
discussed in Section VII.4 for degree three curves. Let p1,i be the control points for the first
curve and p2,i be the control points for the second curve (where 0 ≤ i ≤ k). A necessary
and sufficient condition for continuity is that p1,k = p2,0 so that the second curve will start
at the end of the first curve. A necessary and sufficient condition for C1-continuity is that
p1,k − p1,k−1 equals p2,1 − p2,0 so that the first derivatives will match up (see Corollary VII.5).
A sufficient condition for G1-continuity is that p1,k − p1,k−1 and p2,1 − p2,0 are both nonzero
and are positive scalar multiples of each other. These conditions are equivalent to those we
encountered in the degree three case!

For the next exercise, we adopt the convention that two curves q1(u) and q2(u) are the same
if and only if q1(u) = q2(u) for all u ∈ [0, 1]. Otherwise, the two curves are said to be different.

Exercise VII.7 Prove that, for a given degree k Bézier curve, there is a unique set of
control points p0, . . . ,pk that defines that Bézier curve. That is, two different sequences of
k + 1 control points define two different Bézier curves. [Hint: This should be clear for p0
and pk; for the rest of the control points, use induction on the degree and the formula for
the derivative of a Bézier curve.]

A degree k polynomial curve is a curve of the form

q(u) = 〈x(u), y(u), z(u)〉
with x(u), y(u), and z(u) polynomials of degree≤ k. A degree two (respectively, degree three)
polynomial curve is also called a quadratic curve (respectively, cubic curve). Note that every
degree k Bézier curve is a degree k polynomial curve.

Exercise VII.8 Let q(u) be a degree k polynomial curve. Prove that there are control
points p0, . . . ,pk that represent q(u) as a degree k Bézier curve for u ∈ [0, 1]. [Hint:
Prove that the dimension of the vector space of all degree k polynomial curves is equal to
the dimension of the vector space of all degree k Bézier curves. You will need to use the
previous exercise.]

VII.7 De Casteljau’s Method Revisited

Recall from Section VII.2 that de Casteljau gave a simple, and numerically stable, method for
computing a point q(u) on a degree three Bézier curve for a particular value of u. As we show
next, the de Casteljau method can be generalized to apply to Bézier curves of arbitrary degree
in the more or less obvious way.
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VII.8 Recursive Subdivision Revisited 169

Let a degree k Bézier curve q(u) have control points pi , i = 0, . . . , k. Fix u ∈ [0, 1]. We
define points pr

i (u) as follows. First, for r = 0, let p0i (u) = pi . Second, for r > 0 and 0 ≤ i ≤
k − r , let

pr
i (u) = (1− u)pr−1

i (u)+ upr−1
i+1 (u)

= lerp(pr−1
i (u), pr−1

i+1 (u), u).

In Section VII.2, for the degree k = 3 case, we used different names for the variables. Those
variables can be translated into the new notation by ri = p1i , si = p2i , and t0 = p30.

The next theorem generalizes the de Casteljau method to the general degree case.

Theorem VII.6 Let q(u) and pr
i be as above. Then, for all u, q(u) = pk

0(u).

Proof To prove the theorem, we prove the following more general claim. The theorem is an
immediate consequence of the r = k case of the following claim.

Claim Let 0 ≤ r ≤ k and 0 ≤ i ≤ k − r . Then

pr
i (u) =

r∑
j=0

Br
j (u)pi+ j . VII.9

We prove this claim by induction on r . The base case, r = 0, is obvious. Or, if you prefer to
take r = 1 as the base case, the claim is also easily verified for r = 1. Now, suppose Equation
VII.9 holds for r : we wish to prove it holds for r + 1. We have

pr+1
i (u) = (1− u)pr

i (u)+ upr
i+1(u)

=
r∑

j=0
(1− u)Br

j (u)pi+ j +
r∑

j=0
u Br

j (u)pi+ j+1

=
r+1∑
j=0

(
(1− u)Br

j (u)+ u Br
j−1(u)

)
pi+ j ,

where the last sum should interpreted by letting the quantities ( r
r+1 ) and (

r
−1 ), and thus Br

−1(u)
and Br

r+1(u), be defined to equal zero. Because ( r
j )+ ( r

j−1 ) = ( r+1
j ), it is easy to verify

that

(1− u)Br
j (u)+ u Br

j−1(u) = Br+1
j (u),

from whence the claim, and thus Theorem VII.6, are proved. �

VII.8 Recursive Subdivision Revisited

The recursive subdivision technique of Section VII.3 can be generalized to Bézier curves of
arbitrary degree. Let q(u) be a degree k Bézier curve, let u0 ∈ [0, 1], and let q1(u) and q2(u)
be the curves satisfying

q1(u) = q(u0u) and q2(u) = q(u0 + (1− u0)u).

Thus, q1(u) is the first u0-fraction of q(u) and q2(u) is the rest of q(u): both curves q1(u) and
q2(u) have domain [0, 1]. Also, let the points pr

i = pr
i (u0) be defined as in Section VII.7 with

u = u0.
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Theorem VII.7 Let q, q1, q2, and pr
i be as above.

a. The curve q1(u) is equal to the degree k Bézier curve with control points p00, p
1
0, p

2
0, . . . ,p

k
0.

b. The curve q2(u) is equal to the degree k Bézier curve with control points pk
0, p

k−1
1 ,

pk−2
2 , . . . ,p0k .

Proof We will prove part a.; part b. is completely symmetric. To prove a., we need to show
that

q(u0u) =
k∑

j=0
Bk

j (u)p
j
0(u0)

holds. Expanding the left-hand side with the definition of Bézier curves and the right-hand
side with Equation VII.9 of the claim, we find this is equivalent to

k∑
i=0

Bk
i (u0u)pi =

k∑
j=0

Bk
j (u)

j∑
i=0

B j
i (u0)pi .

With the summations reordered, the right-hand side of the equation is equal to

k∑
i=0

k∑
j=i

Bk
j (u)B

j
i (u0)pi .

Therefore, equating coefficients of the pi ’s, we need to show that

Bk
i (u0u) =

k∑
j=i

Bk
j (u)B

j
i (u0),

that is,(
k

i

)
(u0u)

i (1− u0u)k−i =
k∑

j=i

(
k

j

)(
j

i

)
u j ui

0(1− u)k− j (1− u0)
j−i .

If we divide both sides by (u0u)i and use the fact that (
k
j )(

j
i ) = ( k

i )(
k−i
j−i ), this reduces to showing

that

(1− u0u)k−i =
k∑

j=i

(
k − i

j − i

)
u j−i (1− u)k− j (1− u0)

j−i .

By a change of variables from “ j” to “ j + i” in the summation, the right-hand side is equal to

k−i∑
j=0

(
k − i

j

)
u j (1− u0)

j (1− u)k−i− j

=
k−i∑
j=0

(
k − i

j

)
(u − u0u)

j (1− u)k−i− j

= ((u − u0u)+ (1− u))k−i

= (1− u0u)k−i ,

where the second equality follows from the binomial theorem. This is what we needed to show
to complete the proof of Theorem VII.7. �
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Exercise VII.9� Fill in the details of the following sketch of a proof of the variation
diminishing property of Bézier curves. First, fix a line (or, in R

3, a plane) and a continuous
curve (the curve may consist of straight line segments). Consider the following operation
on the curve: choose two points on the curve and replace the part of the curve between
the two points by the straight line segment joining the two points. Prove that this does not
increase the number of times the curve crosses the line. Second, show that the process of
going from the control polygon of a Bézier curve to the two control polygons of the two
subcurves obtained by using recursive subdivision to split the curve at u = 1/2 involves
only a finite number of uses of the operation from the first step. Therefore, the total number
of times the two new control polygons cross the line is less than or equal to the number
of times the original control polygon crossed the curve. Third, prove that, as the curve
is repeatedly recursively subdivided, the control polygon approximates the curve. Fourth,
argue that this suffices to prove the variation diminishing property (this last point is not
entirely trivial).

VII.9 Degree Elevation

The term “degree elevation” refers to the process of taking a Bézier curve of degree k and
reexpressing the same curve as a higher degree Bézier curve. Degree elevation is useful for
converting a low-degree Bézier curve into a higher degree represention. For example, Section
VII.13 will describe several ways to represent a circle with degree two Bézier curves, and
one may need to elevate their degree to three for use in a software program. The PostScript
language, for example, supports only degree three Bézier curves, not degree two.

Of course, it should not be surprising that degree elevation is possible. Indeed, any degree k
polynomial can be viewed also as a degree k + 1 polynomial by just treating it as having a
leading term 0xk+1 with coefficient zero. It is not as simple to elevate the degree of Bézier
curves, for we must define the curve in terms of its control points. To be completely explicit,
the degree elevation problem is the following:

We are given a degree k Bézier curve q(u) defined in terms of control points pi ,
i = 0, . . . , k. We wish to find new control points p̂i , i = 0, . . . , k, k + 1 so that
the degree k + 1 Bézier curve q̂(u) defined by these control points is equal to q(u),
that is, q̂(u) = q(u) for all u.

It turns out that the solution to this problem is fairly simple. However, before we present the
general solution, we first use the k = 2 case as an example. (See Exercise VII.17 on page 184
for an example of an application of this case.) In this case, we are given three control points,
p0, p1, p2, of a degree two Bézier curve q(u). Since q(0) = p0 and q(1) = p2, we must have
p̂0 = p0 and p̂3 = p2 so that the degree three curve q̂(u) will start at p0 and end at p2. Also,
the derivatives at the beginning and end of the curve are equal to

q′(0) = 2(p1 − p0)
q′(1) = 2(p2 − p1).

Therefore, by Equation VII.3 for the derivative of a degree three Bézier curve, we must have

p̂1 = p̂0 + 1

3
q′(0) = 1

3p0 + 2
3p1

p̂2 = p̂3 − 1

3
q′(1) = 2

3p1 + 1
3p2,
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p̂0 = p0

p̂1

p1

p̂2

p2 = p̂3

Figure VII.10. The curve q(u) = q̂(u) is both a degree two Bézier curve with control points p0, p1, and p2
and a degree three Bézier curve with control points p̂0, p̂1, p̂2, and p̂3.

as shown in Figure VII.10. These choices for control points give q̂(u) the right starting and
ending derivatives. Since q(u) and q̂(u) both are polynomials of degree ≤ 3, it follows that
q̂(u) is equal to q(u).

Now, we turn to the general case of degree elevation. Suppose q(u) is a degree k curve
with control points p0, . . . ,pk : we wish to find k + 1 control points p̂0, . . . , p̂k+1 which define
the degree k + 1 Bézier curve q̂(u) that is identical to q(u). For this, the following definitions
work:

p̂0 = p0 p̂k+1 = pk

p̂i = i

k + 1
pi−1 + k − i + 1

k + 1
pi .

Note that the first two equations, for p̂0 and p̂k+1, can be viewed as special cases of the third
by defining p−1 and pk+1 to be arbitrary points.

Theorem VII.8 Let q(u), q̂(u), pi , and p̂i be as above. Then q̂(u) = q(u) for all u.

Proof We need to show that

k+1∑
i=0

(
k + 1

i

)
ui (1− u)k−i+1p̂i =

k∑
i=0

(
k

i

)
ui (1− u)k−ipi . VII.10

The left-hand side of this equation is also equal to

k+1∑
i=0

(
k + 1

i

)
ui (1− u)k−i+1

(
i

k + 1
pi−1 + k − i + 1

k + 1
pi

)
.

Regrouping the summation, we calculate the coefficient of pi in this last equation to be equal
to (

k + 1

i + 1

)
i + 1

k + 1
ui+1(1− u)k−i +

(
k + 1

i

)
k − i + 1

k + 1
ui (1− u)k−i+1.

Using the identities
(k+1

i+1
)

i+1
k+1 =

(k
i

) = (k+1
i

)
k−i+1

k+1 , we find this is further equal to(
k

i

)
(u + (1− u))ui (1− u)k−i =

(
k

i

)
ui (1− u)k−i .

Thus, we have shown that pi has the same coefficient on both sides of Equation VII.10, which
proves the desired equality. �
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p0,0 p3,0

p0,3 p3,3

Figure VII.11. A degree three Bézier patch and its control points. The control points are shown joined
by straight line segments.

VII.10 Bézier Surface Patches

This section extends the notion of Bézier curves to define Bézier patches. A Bézier curve is
a one-dimensional curve; a Bézier patch is a two-dimensional parametric surface. Typically, a
Bézier patch is parameterized by variables u and v, which both range over the interval [0, 1].
The patch is then the parametric surface q(u, v), where q is a vector-valued function defined
on the unit square [0, 1]2.

VII.10.1 Basic Properties of Bézier Patches

Bézier patches of degree three are defined using a 4× 4 array of control points pi, j , where i, j
take on values 0, 1, 2, 3. The Bézier patch with these control points is given by the formula

q(u, v) =
3∑

i=0

3∑
j=0

Bi (u)B j (v)pi, j . VII.11

An example is shown in Figure VII.11. Intuitively, the control points act similarly to the control
points used for Bézier curves. The four corner control points, p0,0, p3,0, p0,3, and p3,3 form the
four corners of the Bézier patch, and the remaining twelve control points influence the patch
by “pulling” the patch towards them.

Equation VII.11 can be equivalently written in either of the forms

q(u, v) =
3∑

i=0

(
Bi (u) ·

3∑
j=0

B j (v)pi, j

)
VII.12

q(u, v) =
3∑

j=0

(
B j (v) ·

3∑
i=0

Bi (u)pi, j

)
. VII.13

Consider the cross sections of q(u, v) obtained by holding the value of v fixed and varying u.
Someof these cross sections are showngoing from left to right inFigureVII.12.EquationVII.12
shows that each such cross section is a degree three Bézier curve with control points ri equal
to the inner summation, that is,

ri =
3∑

j=0
B j (v)pi, j .
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Figure VII.12. A degree three Bézier patch and some cross sections. The cross sections are Bézier curves.

Thus, the cross sections of the Bézier patch obtained by holding v fixed and letting u vary are
ordinary Bézier curves. The control points ri for the cross section are functions of v of course
and are in fact given as Bézier curves of the control points pi, j .

Similarly, from Equation VII.13, if we hold u fixed and let v vary, then the cross sections are
again Bézier curves and the control points s j of the Bézier curve cross sections are computed
as functions of u as Bézier curve functions:

s j =
3∑

i=0
Bi (u)pi, j .

Now consider what the boundaries of the Bézier patch look like. The “front” boundary is
where v = 0 and u ∈ [0, 1]. For this front cross section, the control points ri are equal to pi,0.
Thus, the front boundary is the degree three Bézier curve with control points p0,0, p1,0, p2,0,
and p3,0. Similarly, the “left” boundary where u = 0 is the Bézier curve with control points
p0,0, p0,1, p0,2, and p0,3. Likewise, the other two boundaries are Bézier curves that have as
control points the pi, j ’s on the boundaries.

The first-order partial derivatives of the Bézier patch q(u, v) can be calculated with aid of
Theorem VII.4 along with equations VII.12 and VII.13. This can be used to calculate the
normal vector to the Bézier patch surface via Theorem III.1. Rather than carrying out
the calculation of the general formula for partial derivatives here, we will instead consider only
the partial derivatives at the boundary of the patches because these will be useful in the discus-
sion about joining together Bézier patches with C1- and G1-continuity (see Section VII.10.2).
By using Equation VII.3 for the derivatives of a Bézier curve at its endpoints and Equations
VII.12 and VII.13, we can calculate the partial derivatives of q(u, v) at its boundary points
as

∂q

∂v
(u, 0) =

3∑
i=0

3Bi (u)(pi,1 − pi,0) VII.14

∂q

∂v
(u, 1) =

3∑
i=0

3Bi (u)(pi,3 − pi,2) VII.15

∂q

∂u
(0, v) =

3∑
j=0

3B j (v)(p1, j − p0, j ) VII.16

∂q

∂u
(1, v) =

3∑
j=0

3B j (v)(p3, j − p2, j ). VII.17
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These four partial derivatives are the partial derivatives in the directions pointing perpendic-
ularly to the boundaries of the patch’s domain. The other partial derivatives at the boundary,
such as (∂q/∂u)(u, 0), can easily be calculated from the fact that the boundaries of the patch
are Bézier curves.

Later, in Section VII.16, we will need to know the formulas for the second-order mixed
partial derivatives at the corners of the patch. Using Equation VII.3 or Corollary VII.5 and
Equation VII.14, we have

∂2q

∂u∂v
(0, 0) = 9 · (p1,1 − p0,1 − p1,0 + p0,0). VII.18

Similarly, at the other three corners of the patch, we have

∂2q

∂u∂v
(0, 1) = 9 · (p1,3 − p0,3 − p1,2 + p0,2)

∂2q

∂u∂v
(1, 0) = 9 · (p3,1 − p2,1 − p3,0 + p2,0) VII.19

∂2q

∂u∂v
(1, 1) = 9 · (p3,3 − p2,3 − p3,2 + p2,2).

The second-order mixed partial derivatives at the corners are called twist vectors.

Exercise VII.10� Use Theorem VII.4 to work out the general formula for the first-order
partial derivatives of a Bézier patch, ∂q(u, v)/∂u and ∂q(u, v)/∂v.

ExerciseVII.11 Derive an extension of the de Casteljau algorithm for degree three curves
(see Section VII.2) that applies to Bézier patches of degree three.

Exercise VII.12 Derive a recursive subdivision method for degree three Bézier patches
based on recursive subdivision for Bézier curves. Your method should either subdivide in
the u direction or in the v direction and split a patch into two patches (i.e., it should not
subdivide in both directions at once).

VII.10.2 Joining Bézier Patches

A common use ofBézier patches is to combinemultiple patches tomake a smooth surface.With
only 16 control points, a single Bézier patch can make only a limited range of surface shapes.
However, by joining multiple patches, a wider range of surface shapes can be approximated.
Let us start by considering how to join two patches together so as to make a continuous or
C1- or G1-continuous surface. The situation is that we have two Bézier patches q1(u, v) and
q2(u, v). The control points of q1 are pi, j , and those of q2 are the points ri, j . In addition, q2 has
domain [0, 1]2 as usual, but the surface q1 has been translated to have domain [−1, 0]× [0, 1]
(by use of the change of variables u → u + 1).Wewish to find conditions on the control points
that will cause the two surfaces to join smoothly at their boundary where u = 0 and 0 ≤ v ≤ 1,
as shown in Figure VII.13.

Recall that the right boundary of q1 (where u = 0) is the Bézier curve with control points
p3, j , j = 0, 1, 2, 3. Likewise, the left boundary of q2 is the Bézier curve with control points
r0, j . Thus, in order for the two boundaries tomatch, it is necessary and sufficient thatp3, j = r0, j

for j = 0, 1, 2, 3.
Now we assume that the patches are continuous at their boundary and consider continuity

of the partial derivatives at the boundary between the patches. First, since the boundaries are
equal, clearly the partials with respect to v are equal. For the partials with respect to u, it follows
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p0,0

p0,3

p3,0 = r0,0

p3,3 = r0,3

r3,0

r3,3

q1 q2

Figure VII.13. Two Bézier patches join to form a single smooth surface. The two patches q1 and q2 each
have 16 control points. The four rightmost control points of q1 are the same as the four leftmost control
points of q2. The patches are shown forming a C1-continuous surface.

from Equations VII.16 and VII.17 that a necessary and sufficient condition for C1-continuity,
that is, for

∂q2
∂u

(0, v) = ∂q1
∂u

(0, v)

to hold for all v, is that

p3, j − p2, j = r1, j − r0, j for j = 0, 1, 2, 3. VII.20

For G1-continuity, it is sufficient that these four vectors are nonzero and that there is a scalar
α > 0 so that

p3, j − p2, j = α(r1, j − r0, j ) for j = 0, 1, 2, 3.

In Section VII.16, we will use the condition VII.20 for C1-continuity to help make surfaces
that interpolate points specified on a rectangular grid.

Subdividing Bézier Patches
In Exercise VII.12, you were asked to give an algorithm for recursively subdividing degree
three Bézier patches. As in the case of Bézier curves, recursive subdivision is often used to
divide a surface until it consists of small patches that are essentially flat. Each flat patch can be
approximated as a flat quadrilateral (or, more precisely, can be divided into two triangles, each
of which is necessarily planar). These flat patches can then be rendered as usual. In the case of
recursive subdivision of patches, there is a new problem: since some patches may need to be
subdivided further than others, it can happen that a surface is subdivided and its neighbor is
not. This is pictured in Figure VII.14, where q1 and q2 are patches. After q1 is divided into two
subpatches, there is a mismatch between the (formerly common) boundaries of q1 and q2. If
this mismatch is allowed to persist, then we have a problem known as cracking in which small
gaps or small overlaps can appear in the surface.

One way to fix cracking is to replace the boundary by a straight line. Namely, once the
decision has been made that q2 needs no further subdivision (and will be rendered as a flat
patch), replace the boundary between q1 and q2 with a straight line. This is done by redefining
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q1 q2 q1 q2

Figure VII.14. Nonuniform subdivision can cause cracking. On the left, two Bézier patches share a com-
mon boundary. On the right, after subdivision of the left patch q1, the boundaries no longer match up.

the two middle control points along the common boundary. This forces the boundary of q1
also to be straight, and this straightness is preserved by subsequent subdivision.

Unfortunately, just replacing the boundary by a straight line is not enough to fix the cracking
problem completely. First, as discussed at the end of Chapter II, there may be problems with
pixel-size holes along the boundary (see the discussion accompanying Figure II.29 on page 66).
Second, and more seriously, it is also important that the surface normals on the boundary
between the two patches match up in order for lighting computations to be consistent. Still
worse, being consistent about assigning surface normals to the vertices is not enough: this is
because Gouraud interpolation is used to shade the results of the lighting calculation along
the boundary between the patches. If the boundary is divided into two pieces in one patch and
left as one piece in the other patch, Gouraud interpolation will give different results in the
two patches. This could happen if three quadrilaterals were rendered as shown on the left in
Figure VII.15 since the lighting calculated at the center vertex may not be consistent with the
light values obtained by Gouraud interpolation when rendering patch q2. One possible solution
to this problem is shown on the right in Figure VII.15, where the quadrilateral patch q2 has
been split into a triangle and another quadrilateral. With this solution, the boundary is rendered
only in separate pieces, never as a single edge, and Gouraud interpolation yields consistent
results on both sides of the boundary.

We have discussed only degree three Bézier patches above, but of course, Bézier patches
can also be defined with other degrees. In addition, a Bézier patch may have a different degree
in u than in v. In general, if the Bézier patch has degree ku in u and degree kv in v, then there are
(ku + 1)(kv + 1) control points pi, j with 0 ≤ i ≤ ku and 0 ≤ j ≤ kv . The Bézier patch is
given by

q(u, v) =
ku∑

i=0

kv∑
j=0

Bku
i (u)Bkv

j (v)pi, j .

We will not develop the theory of Bézier patches of general degree any further; however, an
example of a Bézier patch that is degree three in one direction and degree two in the other is
shown in Section VII.14 on page 188.

q1 q2 q1 q2

Figure VII.15. Two solutions to the cracking problem. On the left, the subdivided q1 and the original q2
share a common straight boundary. However, the lighting and shading calculations may cause the surface
to be rendered discontinuously at the boundary. On the right, the patch q2 has been subdivided in an
ad hoc way to allow the common boundary to have the same points and normals with respect to both
patches.
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VII.11 Bézier Curves and Surfaces in OpenGL

VII.11.1 Bézier Curves

OpenGL has several routines for automatic generation of Bézier curves of any degree. How-
ever, OpenGL does not have generic Bézier curve support; instead, its Bézier curve functions
are linked directly to drawing routines. Unfortunately, this means that the OpenGL Bézier
curve routines can be used only for drawing; thus, if you wish to use Bézier curves for other
applications, such as animation, you cannot use the built-in OpenGL routines.

Instead of having a single command for generating Bézier curves, OpenGL has separate
commands for defining or initializing a Bézier curve from its control points and for displaying
part or all of the Bézier curve.

Defining Bézier Curves. To define and enable (i.e., activate) a Bézier curve, the following
two OpenGL commands are used:

glMap1f(GL_MAP1_VERTEX_3, float umin, float umax,
int stride, int order, float* controlpointsptr );

glEnable(GL_MAP1_VERTEX_3);

The values of umin and umax give the range of u values over which the curve is defined.
These are typically set to 0 and 1.

The last parameter points to an array of floats that contains the control points. A typical
usage would define controlpoints as an array of x, y, z values,

float controlpoints[M][3];

and then the parameter controlpointsptr would be &controlpoints[0][0].
The stride value is the distance (in floats) from one control point to the next; that is,
the control pointpi is pointed to bycontrolpointsptr+i*stride. For the preceding
definition of controlpoints, stride equals 3.

The value of order is equal to one plus the degree of the Bézier curve; thus, it also
equals the number of control points. Consequently, for the usual degree three Bézier
curves, the order M equals 4.

As mentioned above, Bézier curves can be used only for drawing purposes. In fact,
several Bézier curves can be active at one time to affect different aspects of the drawn
curve such as its location and color. The first parameter to glMap1f() describes how
the Bézier curve is used when the curve is drawn. The parameter GL_MAP1_VERTEX_3
means that the Beziér curve is defining the x, y, z values of points in 3-space as a function
of u. There are several other useful constants that can be used for the first parameter. These
include GL_MAP1_VERTEX_4, which means that we are specifying x, y, z, w values of
a curve, that is, a rational Bézier curve (see Sections VII.12 and VII.13 for information
on rational curves). Also, one can use GL_MAP1_COLOR_4 as the first parameter: this
means that, as the Bézier curve is being drawn (by the commands described below), the
color values will be specified as a Bézier function of u. You should consult the OpenGL
documentation for other permitted values for this first parameter. Finally, a reminder:
do not forget to give the glEnable command for any of these parameters you wish to
activate!

Drawing Bézier Curves. Once the Bézier curve has been specified with glMap1f(), the
curve can be drawn with the following commands. The most basic way to specify a point
on the curve is with the command

glEvalCoord1f( float u );
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whichmust be given between aglBegin() andglEnd(). The effect of this command is
similar to specifying a point with glVertex* and, if the appropriate curves are enabled,
with glNormal* and glTexCoord* commands. However, the currently active normal
and texture coordinates are not changed by a call to glEvalCoord1f().

When you use glEvalCoord1f(), you are explicitly drawing the points on the
curve. However, frequently you want to draw an entire curve or a portion of a curve at
once instead of having to make multiple calls to glEvalCoord1f. For this, OpenGL
has several commands that will automatically draw points at equally spaced intervals
along the curve. To use these commands, after calling glMap1f and the corresponding
glEnable, you must next tell OpenGL the “grid” or “mesh” of points on the curve to
be drawn. This is done with the following command:

glMapGrid1f(int N, float ustart, float uend);

which tells OpenGL that you want the curve to be discretized as N + 1 equally spaced
points starting with the value u = ustart and ending with u = uend. It is required that
umin ≤ ustart ≤ uend ≤ umax.

A call to glMapGrid1f() only sets a grid of u values. To actually draw the curve,
you should then call

glEvalMesh1(GL_LINE, int pstart, int pend);

This causes OpenGL to draw the curve at grid values, letting p range from pstart to pend

and drawing the points on the Bézier curve with coordinates

u = ((N − p)ustart + p · uend) /N .

The first parameter, GL_LINE, tells OpenGL to draw the curve as a sequence of
straight lines. This has the same functionality as drawing points after a call to glBe-
gin(GL_LINE_STRIP). To draw only the points on the curve without the connecting
lines, useGL_POINT instead (similar in functionality to usingglBegin(GL_POINTS)).
The values of pstart and pend should satisfy 0 ≤ pstart ≤ pend ≤ N .

You can also use glEvalPoint1( int p ) to draw a single point from the
grid. The functions glEvalPoint1 and glEvalMesh1 are not called from inside
glBegin() and glEnd().

VII.11.2 Bézier Patches

Bézier patches, or Bézier surfaces, can be drawn using OpenGL commands analogous to the
commands described in the previous section for Bézier curves. Since the commands are very
similar, only very brief descriptions are given of the OpenGL routines for Bézier patches. The
SimpleNurbs program in the software accompanying this book shows an example of how
to render a Bézier patch in OpenGL.

To specify a Bézier patch, one uses the glMap2f() routine:

glMap2f(GL_MAP2_VERTEX_3,
float umin, float umax, int ustride, int uorder,
float vmin, float vmax, int vstride, int vorder,
float* controlpoints );

glEnable(GL_MAP2_VERTEX_3);

The controlpoints array is now a (uorder)×(vorder) array and would usually be
specified by

float controlpointsarray[Mu][Mv][3];
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180 Bézier Curves

where Mu and Mv are the uorder and vorder values. In this case, the value vstride would
equal 3, and ustride should equal 3Mv . Note that the orders (which equal 1 plus the degrees)
of the Bézier curves are allowed to be different for the u and v directions.

Other useful values for the first parameter to glMap2f() include GL_MAP2_VERTEX_4
for rational Bézier patches, GL_MAP2_COLOR_4 to specify colors, and GL_MAP2_
TEXTURE_COORD_2 to specify texture coordinates. Again, you must give the glEnable
command to activate these settings for the parameter.

For many typical applications of texture coordinates to Bézier patches, one wants the texture
coordinates s, t just to be equal to u and v. This is done by specifying a degree one (order= 2)
Bézier curve; for instance,

float texpts[8]={0,0, 0,1, 1,0, 1,1};
glMap2f(GL_MAP2_TEXTURE_COORD_2,0,1,4,2,0,1,2,2,&texpts[0]);
glEnable(GL_MAP2_TEXTURE_COORD_2);

The normals to the patch may be specified by a Bézier formula using GL_MAP2_NORMAL
as the first parameter to glMap2f(). However, this is rarely useful because typically one
wants the true normals to the Bézier surface. OpenGL will calculate these true normals for
you (according to Formula III.12 if applicable), if you give the command

glEnable(GL_AUTO_NORMAL);

To display the Bézier patch, or a portion of the Bézier surface, the following OpenGL
commands are available:

glEvalCoord2f(float u, float v);
glMapGrid2f(int Nu, float ustart, float uend,

int Nv, int vstart, int vend);
glEvalMesh2(GL_FILL, int pstart, pend, qstart, qend);
glEvalPoint2(int p, int q);

The first parameter to glEvalMesh2() may be also GL_LINE or GL_POINT. These com-
mands work analogously to the commands for one-dimensional Bézier curves. The most direct
method of drawing a Bézier patch is to call glMapGrid2f and then glEvalMesh2.

Exercise VII.13 Build a figure such as a teapot, coffee pot, vase, or other shape of similar
complexity. The techniques described in Blinn’s article (Blinn, 1987) on the famous Utah
teapot can make this fairly straightforward. Make sure that normals are calculated so that
lighting is applied correctly (OpenGL can compute the normal for you).

Optionally, refer ahead to Sections VII.13 and VII.14 to learn how to make surfaces
of revolution with rational Bézier patches. Apply this to make the cross sections of your
object perfectly circular.

One difficulty with completing the preceding exercise is that OpenGL does not always
calculate normals on Bézier surfaces correctly. In particular, OpenGL has problems with
normalswhen an edgeof aBézier patch consists of a single point.Remember that you should use
glEnable(GL_NORMALIZE) when transforming illuminated objects. The sample program
SimpleNurbs shows how to use OpenGL to render a Bézier patch with correct normals and
illumination.

VII.12 Rational Bézier Curves

A Bézier curve is called rational if its control points are specified with homogeneous coordi-
nates. Using homogeneous representations for control points may seem obscure or mystifying
at first, but, in fact, there is nothing especially mysterious about the use of homogeneous
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〈p0, 1〉

〈3p1, 3〉

1
3p2,

1
3

〈p3, 1〉

Figure VII.16. A degree three, rational Bézier curve. The control points are the same as in the left-hand
side of Figure VII.2 on page 156, but now the control point p1 is weighted 3 and the control point p2
is weighted only 1/3. The other two control points have weight 1. In comparison with the curve of
Figure VII.2, this curve more closely approaches p1 but does not approach p2 nearly as closely.

coordinates for control points. In R
3 (say), the control points are specified as 4-tuples

pi = 〈x, y, z, w〉: the curve’s values q(u) are expressed as weighted averages of the control
points,

q(u) =
∑

i
Bk

i (u)pi ,

and so the values of q(u) specify the points on the curve in homogeneous coordinates too.
There are several advantages to rational Bézier curves. These include the following:

a. The use of homogeneous coordinates allows thew-coordinate value to serve a weight factor
that can be used to increase or decrease the relativeweight of a control point. A higherweight
for a control point causes the Bézier curve to be “pulled” harder by the control point.

b. The use of weights in this form allows rational Bézier curves to define circular arcs, ellipses,
hyperbolas, and other conic curves.

c. Rational Bézier curves are preserved under perspective transformations, not just affine
transformations. This is because the points on a Bézier curve are computed as weighted
averages and affine combinations of homogeneous coordinates are preserved under per-
spective transformations (see Section IV.4).

d. Control points can be placed at infinity, giving extra flexibility in the definition of a Bézier
curve.

To understand a., recall from Section IV.4 the notation 〈wp, w〉, where p ∈ R
3 and w �= 0,

and where 〈wp, w〉 is the 4-tuple that is the (unique) homogeneous representation of p, which
hasw as its fourth component. Then a point q(u) on the curve is defined by a weighted average
of homogeneous control points, namely

q(u) =
∑

i
Bk

i (u)〈wipi , wi 〉.

The point q(u) is also a 4-tuple and thus is a homogeneous representation of a point in R
3. By

the earlier discussion in Section IV.4, it represents the following point in R
3:

∑
i

wi Bk
i (u)∑

j w j Bk
i (u)

pi .

Thus, the w-components of the control points act like extra weighting factors. Figure VII.16
shows an example of how weights can affect a Bézier curve.
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p0 = 〈0, 1, 1〉

p2 = 0, 1, 1

p1 = 1, 0, 0
q(u)

Figure VII.17. The situation of Theorem VII.9. The middle control point is actually a point at infinity,
and the dotted lines joining it to the other control points are actually straight and are tangent to the circle
at p0 and p2.

We used the representation 〈wp, w〉 for the homogeneous representation of p, with last com-
ponent w. That is, if p = 〈p1, p2, p3〉 ∈ R

3, then 〈wp, w〉 is the 4-tuple 〈wp1, wp2, wp3, w〉.
This notation is a little confusing and user-unfriendly. Accordingly, drawing software or CAD
programs usually use a different convention: these programs allow a user to set, independently,
a control point p and a weight w, but they hide from the user the fact that the components of p
are being multiplied by w. You can refer to Figure VII.19 for an example of this convention,
where the control points in R

2 are given in terms of their nonhomogeneous representation plus
their weight.

VII.13 Conic Sections with Rational Bézier Curves

A major advantage to using rational Bézier curves is that they allow the definition of conic
sections as quadratic Bézier curves. We start with an example that includes a point at infinity.5

Theorem VII.9 Let p0 = 〈0, 1, 1〉, p1 = 〈1, 0, 0〉, and p2 = 〈0,−1, 1〉 be homogeneous
representations of points in R

2. Let q(u) be the degree two Bézier curve defined with these
control points. Then, the curve q(u) traces out the right half of the unit circle x2 + y2 = 1 as
u varies from 0 to 1.

The situation of Theorem VII.9 is shown in Figure VII.17. Note that the middle control point
is actually a point at infinity. However, we will see that the points q(u) on the curve are
not points at infinity but are always finite points. To interpret the statement of the theorem
properly, note that the points q(u) as computed from the three control points are actually
homogeneous representations of points in R

2. That is, q(u) is a triple 〈q1(u), q2(u), q3(u)〉 and
is the homogeneous representation of the point 〈q1(u)/q3(u), q2(u)/q3(u)〉 in R

2. The import
of the theorem is that the points q(u), when interpreted as homogeneous representations of
points in R

2, trace out the right half of the unit circle.
We now prove Theorem VII.9. From the definition of Bézier curves,

q(u) = (1− u)2p0 + 2u(1− u)p1 + u2p2

= (1− u)2〈0, 1, 1〉 + 2u(1− u)〈1, 0, 0〉 + u2〈0,−1, 1〉
= 〈2u(1− u), (1− u)2 − u2, (1− u)2 + u2〉.

It is easy to check that the third component is nonzero for 0 ≤ u ≤ 1. Thus, q(u) is the
homogeneous representation of the point

〈x(u), y(u)〉 =
〈

2u(1− u)

(1− u)2 + u2
,
(1− u)2 − u2

(1− u)2 + u2

〉
.

5 Most of our examples of constructions of circular arcs by Bézier curves in this section and by B-spline
curves in Section VIII.11 can be found in the article (Piegl and Tiller, 1989).
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p0

p1

p2

T0

T2

Figure VII.18. A portion of a branch of a conic section C is equal to a rational quadratic Bézier curve.
Control points p0 and p2 have weight 1, and p1 gets weight w1 ≥ 0.

We need to show two things. The first is that each point q(u) lies on the unit circle. This is
proved by showing that x(u)2 + y(u)2 = 1 for all u. For this, it is sufficient to prove that

[2u(1− u)]2 + [(1− u)2 − u2]2 = [(1− u)2 + u2]2, VII.21

which is almost immediate. The second thing to show is that q(u) actually traces out the correct
portion of the unit circle: for this we need to check that x(u) ≥ 0 for all u ∈ [0, 1] and that
y(u) is decreasing on the same interval [0, 1]. Both these facts can be checked readily, and we
leave this to the reader. ✷

Now that we have proved Theorem VII.9, the reader might reasonably ask how we knew
to use the control point p1 = 〈1, 0, 0〉 for the middle control point. The answer is that we first
tried the control point 〈h, 0, 0〉 with h as a to-be-determined constant. We then carried out the
construction of the theorem’s proof but used the value h where needed. The resulting analogue
of Equation VII.21 then had its first term multiplied by h2; from this we noted that equality
holds only with h = ±1, and h = +1 was needed to get the right half of the curve.

This construction generalizes to a procedure that can be used to represent any finite segment
of any conic section as a quadratic Bézier curve. Let C be a portion of a conic section (a line,
parabola, circle, ellipse, or hyperbola) in R

2. Let p0 and p2 be two points on (one branch of)
the conic section. Our goal is to find a third control point p1 with appropriate weightw1 so that
the quadratic curve with these three control points is equal to the portion of the conic section
between p0 and p1 (refer to Figure VII.18).

Let T0 and T2 be the two lines tangent to the conic section at p0 and p2. Let p1 be the
point in their intersection (or the appropriate point at infinity if the tangents are parallel, as in
Theorem VII.9). We further assume that the segment of the conic section between p0 and p2
lies in the triangle formed by p0, p1, and p2 – this rules out the case in which the segment is
more than 180◦ of a circle, for instance.

Theorem VII.10 Let C, p0, p2, T0, T2, and p1 be as above. Let p0 and p2 be given weight 1.
Then there is a value w1 ≥ 0 such that when p1 is given weight w1, the rational degree two
Bézier curve q(u) with control points p0, p1, and p2 traces out the portion of C between p0
and p2.

Proof This was originally proved by (Lee, 1987); we give here only a quick and incomplete
sketch of a proof. In the degenerate case in which C is a line, take p1 to be any point between
p0 and p2; then any value for w1 ≥ 0 will work. Otherwise, for each h ≥ 0, let qh(u) be the
Bézier curve obtained when w1 = h. At h = 0, qh(1/2) lies on the line segment from p0 to p2.
As h →∞, qh(1/2) tends to p1. Thus, there must be a value h > 0 such that qh(1/2) lies on
the conic section. By Theorem VII.11 below, the curve qh(u) is a conic section. Furthermore,
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p2 = 〈0, 1〉 ;
w2 = 1 p1 = 〈1, 1〉 ;

w1 =
√

2
2

p0 = 〈1, 0〉 ;
w0 = 1

p2 = 〈−
√

3
2 , 1

2 〉 ;
w2 = 1

p0 = 〈
√

3
2 , 1

2 〉 ;
w0 = 1

p1 = 〈0, 2〉 ;
w1 = 1

2

Figure VII.19. Two ways to define circular arcs with rational Bézier curves without control points at
infinity.

there is a unique conic section that (a) contains the three points p0, qh(1/2), and p2 and (b) is
tangent to T0 and T2 at p0 and p2. Therefore, with w1 = h, the resulting Bézier curve must
trace out C . �

Theorem VII.10 gives the general framework for designing quadratic Bézier curves that
form conic sections. Note that the fact that p1 lies at the intersection of the two tangent lines
T0 and T2 is forced by the fact that the initial (respectively, the final) derivative of a Bézier
curve points from the first (respectively, the second) control point towards the second point
(respectively, the third point). It can be shown, using the equivalence of rational Bézier curves
to Bézier curves with weighting, that this fact holds also for rational Bézier curves.

The next three exercises give some ways to form circles as quadratic Bézier curves that do
not require the use of a point at infinity.

Exercise VII.14 Let q(u) be the rational, degree two Bézier curve with homogeneous
control points p0 = 〈1, 0, 1〉, p1 = 〈

√
2/2,

√
2/2,

√
2/2〉 and p2 = 〈0, 1, 1〉. Prove that

this Bézier curve traces out the 90◦ arc of the unit circle in R
2 from the point 〈1, 0〉 to

〈0, 1〉. See Figure VII.19 where the control points are shown in R
2 with their weights.

Exercise VII.15 Let q(u) be the rational, degree two Bézier curve defined with homoge-
neous control points p0 = 〈

√
3/2, 1/2, 1〉, p1 = 〈0, 1, 1/2〉, and p2 = 〈−

√
3/2, 1/2, 1〉.

Prove that this Bézier curve traces out the 120◦ arc of the unit circle in R
2 from 〈√3/2, 1/2〉

to 〈−√3/2, 1/2〉. See Figure VII.19.

Exercise VII.16� Generalize the constructions of the previous two exercises. Suppose
that p0 and p2 lie on the unit circle separated by an angle of θ , 0◦ < θ < 180◦. Show that
the arc from p0 to p2 can be represented by a degree two Bézier curve, where p0 and p2
are given weight 1, and p1 is given weight w1 = cos(θ/2). Also, give a formula expressing
(or, if you prefer, an algorithm to compute) the position of p1 in terms of the positions of
p0 and p2.

Sometimes it is desirable to use degree three curves instead of degree two curves for conic
sections. There are many ways to define conic sections with degree three curves: the next
exercise suggests that one general method is first to form the curve as a degree two conic
section and then to elevate the degree to degree three using the method of Section VII.9.

Exercise VII.17 Apply degree elevation to the degree two Bézier curve of Theorem VII.9
(Figure VII.17) to prove that the following degree three Bézier curve traces out the right
half of the unit circle: the degree three curve is defined with control points p0 = 〈0, 1〉,
p1 = 〈2, 1〉, p2 = 〈2,−1〉 and p3 = 〈0,−1〉, with p0 and p3 having weight 1 and p1 and p2
having weight 1/3 (see Figure VII.20).
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p0 = 〈0, 1〉 ;
w0 = 1

p3 = 〈0,−1〉 ;
w3 = 1

p1 = 〈2, 1〉 ;
w1 = 1

3

p2 = 〈2,−1〉 ;
w2 = 1

3

Figure VII.20. A semicircle as a degree three Bézier curve. See Exercise VII.17.

The next exercise shows that it is also possible to use negatively weighted control points
for rational Bézier curves. This is more of an oddity than a genuinely useful construction; in
particular, the convex hull property is lost when negatively weighted points are allowed (see
Theorem IV.9).

Exercise VII.18 Investigate what happens with negatively weighted control points. For
instance, investigate what happens to the Bézier curve of Exercise VII.14 if the middle
control point is redefined as p1 = (−√2/2,−√2/2,−√2/2), that is, is a homogeneous
representation of the same point but now in negated form. [Answer: You obtain the other
three quarters of the unit circle.]

TheoremVII.10 shows that finite portions of conic sections can be represented by quadratic
Bézier curves. Its proof depended on the next theorem, which asserts that conic sections are
the only curves that can be represented by quadratic Bézier curves.

Theorem VII.11 Let q(u) = 〈x(u), y(u), w(u)〉 be a rational quadratic curve in R
2. Then

there is a conic section such that every point of q(u) lies on the conic section.

Proof Recall that a conic section is defined as the set of points 〈x, y〉 ∈ R
2 that satisfy

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

for some constants A, B, C, D, E, F not all zero. If we represent points with homogeneous
coordinates 〈x, y, w〉, then this condition is equivalent to

Ax2 + Bxy + Cy2 + Dxw + Eyw + Fw2 = 0. VII.22

Namely, a conic section is the set of points whose homogeneous representations satisfy equa-
tion VII.22.

Claim Let x = x(u), y = y(u), and w = w(u) be parametric functions of u. Let M be a trans-
formation of R

2 defined by an invertible 3× 3 matrix that acts on homogeneous coordinates.
Then, in R

2, the curve M(q(u)) lies on a conic section if and only if q(u) lies on a conic section.

To prove the claim, let xM , yM , and wM be the functions of u defined so that

〈xM , yM , wM 〉 = M〈x, y, w〉.
Suppose that, for all u,

Ax2
M + BxM yM + Cy2M + DxMwM + EyMwM + Fw2

M = 0 VII.23

with not all the coefficients zero (i.e., M(q) lies on a conic section). Since each of xM , yM ,
and wM is a linear combination of x , y, and w, Equation VII.23 can be rewritten in the form
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of Equation VII.22 but with different values for the coefficients. Since M is invertible, this
process can be reversed; therefore, the coefficients of Equation VII.22 for x, y, w are not all
zero. Consequently, we have shown that if M(q) lies on a conic section, then so does q. Since
M is invertible, the converse implication holds as well and the claim is proved.

We return to the proof of Theorem VII.11 and note that since q(u) is quadratic, it is equal
to a Bézier curve (see Exercise VII.8 on page 168). Let p0, p1, and p2 be the homogeneous
control points of this Bézier curve. If these three control points represent points in R

2 that are
collinear, then the curve q(u) lies in the line containing the control points and therefore on
a (degenerate) conic section. Otherwise, since a line in R

2 corresponds to a two-dimensional
linear subspace of homogeneous xyw-space, the three points p0, p1, and p2 are linearly in-
dependent in homogeneous space (see Section II.2.5). Therefore, there is an invertible linear
transformation M of homogeneous space, that is, a nonsingular 3× 3 matrix M , that sends
the three points p0, p1, and p2 to the three control points 〈0, 1, 1〉, 〈1, 0, 0〉, and 〈0,−1, 1〉
of Theorem VII.9. That is, the projective transformation M maps the curve q(u) to a circle.
Therefore, M(q) lies on a conic section, and thus, by the claim q(u) lies on a conic section. �

The next two exercises show that we cannot avoid the use of homogeneous coordinates
when representing conic sections.

Exercise VII.19 Prove that there is no nonrational degree two Bézier curve that traces
out a nontrivial part of a circle. [Hint: A quadratic curve consists of segments of the form
〈x(u), y(u)〉 with x(u) and y(u) degree two polynomials. To have only points on the unit
circle, they must satisfy (x(u))2 + (y(u))2 = 1.]

Exercise VII.20 Prove that there is no nonrational Bézier curve of any degree that traces
out a nontrivial part of a circle.

Lest one get the overly optimistic impression that rational Bézier curves are universally
good for everything, we end this section with one last exercise showing a limitation on what
curves can be defined with (piecewise) Bézier curves.

Exercise VII.21� (Requires advanced math.) Consider the helix spiraling around the
z-axis, which is parametrically defined by q(u) = 〈cos(u), sin(u), u〉. Prove that there is no
rational Bézier curve that traces out a nontrivial portion of this spiral. [Hint: Suppose there
is a rational curve q(u) = 〈x(u), y(u), z(u), w(u)〉 that traces out a nontrivial portion of
the helix. Then we must have

x(u)

w(u)
= cos

(
z(u)

w(u)

)
on some interval. But this is impossible because the lefthand side is a rational function and
the righthand side is not.]

Another way to think about how to prove the exercise, at least for the quadratic case, is to
note that if a nontrivial part of the helix is a Bézier curve, then its projection onto the xz-plane
is a rational quadratic curve. But this projection is the graph of the function x = cos(z), which
contradicts Theorem VII.11 because the graph of cos(z) is not composed of portions of conic
sections.

(Farouki and Sakkalis, 1991) gave another approach to Exercise VII.21. They proved that
there is no rational polynomial curve q(u), of any degree, that gives a parametric definition
of any curve other than a straight line such that q(u) traverses the curve at a uniform speed
with respect to the parameter u. In other words, it is not possible to parameterize any curve
other than a straight line segment by rational functions of its arclength. For the special case of
the circle, this means that there is no way to parameterize circular motion with a Bézier curve
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that traverses the circle at a uniform speed. For the circle, the impossibility of a Bézier curve’s
traversing a circle at uniform speed is equivalent to Exercise VII.21 because a Bézier curve
tracing out the spiral could be reinterpreted with the z-value as time.

Whenwe define B-splines in the next chapter, wewill see that B-spline curves are equivalent
to piecewise Bézier curves (in Section VIII.9). Therefore, the impossibility results of Exercises
VII.19–VII.21 and of Farouki and Sakkalis also apply to B-spline curves.

VII.14 Surface of Revolution Example

This section presents an example of how to form a surface of revolution using rational Bézier
patches with control points at infinity.

Our point of departure is Theorem VII.9, which showed how to form a semicircle with a
single quadratic Bézier curve. We will extend this construction to form a surface of revolution
using Bézier patches with quadratic cross sections. First, however, it useful to examine semi-
circles more closely; in particular, we want to understand how to translate, rotate, and scale
circles.

Refer back to the semicircle shown in FigureVII.17 on page 182. That semicircle is centered
at the origin. Suppose we want to translate the semicircle to be centered, for example, at 〈4, 2〉.
We want to express the translated semicircle as a rational quadratic Bézier curve. Let p0, p1,
and p2 be the control points shown in Figure VII.17. The question is, What are the control
points p∗i for the translated circle? Obviously, the first and last control points should now be
p∗0 = 〈4, 3, 1〉 and p2 = 〈4, 1, 1〉, as obtained by direct translation. But what is the point p∗1
at infinity? Here, it does not make sense to translate the point at infinity; instead, the correct
control point is p∗1 = p1 = 〈1, 0, 0〉. Intuitively, the reason for this is as follows: We chose
the point p1 to be the point at infinity corresponding to the intersection of the two horizontal
projective lines tangent to the circle at the top and bottom points (see Theorem VII.10). When
the circle is translated, the tangent lines remain horizontal, and so they still contain the same
point at infinity.

To be more systematic about translating the semicircle, we can work with the 3× 3 homo-
geneous matrix that performs the translation, namely, the matrix

M =
1 0 4
0 1 2
0 0 1

 .

It is easy to check that

p∗0 = Mp0, p∗1 = Mp1, and p∗2 = Mp2.

This proves the correctness of the control points for the translated semicircle.

Exercise VII.22 Consider the effect of rotating the semicircle from Figure VII.17 through
a counterclockwise angle of 45◦ around the origin. Prove that the result is the same as the
quadratic rational Bézier curve with control points

p∗0 = 〈−
√
2
2 ,

√
2
2 , 1〉, p∗0 = 〈

√
2
2 ,

√
2
2 , 0〉, and p∗2 = 〈

√
2
2 ,−

√
2
2 , 1〉.

[Hint: The rotation is performed by the homogeneous matrix
√
2
2 −

√
2
2 0

√
2
2

√
2
2 0

0 0 1

.
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〈2, 1, 0〉
〈3, 0, 0〉

〈3
2 ,

1
2 , 0〉

〈2, 1, 0〉

(a) (b)

−

Figure VII.21. (a) A silhouette of a surface of revolution (the control points are in x, y, z-coordinates).
(b) The front half of the surface of revolution. This example is implemented in the SimpleNurbs
progam.

Exercise VII.23 Consider the effect of scaling the semicircle from Figure VII.17 by a
factor of r so that it has radius r . Prove that the result is the same as the quadratic rational
Bézier curve with control points

p∗0 = 〈0, r, 1〉, p∗0 = 〈r, 0, 0〉, and p∗2 = 〈0,−r, 1〉.
[Hint: The scaling is performed by the homogeneous matrixr 0 0

0 r 0
0 0 1

.

We now give an example of how to form a surface of revolution. Figure VII.21 shows
an example of a surface of revolution. The silhouette of the surface is defined by a cubic
(nonrational) Bézier curve; the silhouette is defined as a curve in the xy-plane, and the surface
is formed by revolving around the y-axis. We will show how to define a 180◦ arc of the surface
with a single Bézier patch using control points at infinity. The entire surface can be formed
with two such patches.

Section VII.10.1 discussed how the control points of a Bézier patch define the patch; most
notably, each cross section is itself a Bézier curve and the control points of the cross sections
are defined by Bézier curves. Considering the vertical cross sections (i.e., the cross sections
that go up and down with the axis of revolution), we can see clearly that the control points of
each vertical cross section must be obtained by revolving the control points shown in part (a) of
Figure VII.21. Now these revolved control points can therefore be defined with Bézier curves
that trace out semicircles.

These considerations let us define180◦ of the surface of revolution shown inFigureVII.21(b)
as a single rational Bézier patch that has order 4 in one direction and order 3 in the other
direction. The control points for the patch are as follows:

〈−2,−1, 0, 1〉 〈0, 0, 2, 0〉 〈2,−1, 0, 1〉
〈−3, 0, 0, 1〉 〈0, 0, 3, 0〉 〈3, 0, 0, 1〉
〈− 3

2 ,
1
2 , 0, 1〉 〈0, 0, 3

2 , 0〉 〈 32 , 1
2 , 0, 1〉

〈−2, 1, 0, 1〉 〈0, 0, 2, 0〉 〈2, 1, 0, 1〉.

Each of the four rows of the table holds three control points that define a semicircular curve
in R

3. Taking vertical cross sections of the four semicircles gives the four control points for
the corresponding vertical cross section of the surface of revolution.
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VII.15 Interpolating with Bézier Curves

Frequently, one wishes to define a smooth curve that interpolates (i.e., passes through, or
contains) a given set of points. For example, suppose we are given a set of points that define the
positions of some object at different times; if we then find a smooth curve that interpolates these
points, we can use the curve to define (or estimate) the positions of the object at intermediate
times.

The scenario is as follows. We are given a set of interpolation points p0, . . . ,pm and a set
of “knot values” u0, . . . , um . The problem is to define a piecewise (degree three) polynomial
curve q(u), so that q(ui ) = pi for all i . There are several ways to define the interpolating curves
as piecewise Bézier curves. The general idea is to define a series of Bézier curves connecting
pairs of successive interpolation points. For each appropriate value of i , there will be a Bézier
curve that starts at pi and ends at pi+1. Putting these curves together forms the entire curve.
This automatically makes a piecewise Bézier curve that interpolates the points pi of course,
but more work is needed to make the curve smooth at the points pi . For this, we need to use
the methods of Section VII.4 to make the curve C1-continuous.

We describe three ways to define interpolating piecewise Bézier curves. The first is the
Catmull–Rom splines, and the second is a generalization of Catmull–Rom splines called
Overhauser splines. Catmull–Rom splines are used primarily when the points pi are more
or less evenly spaced and with ui = i . The Overhauser splines allow the use of more general
values for ui as well as chord-length parameterization to give better results when the distances
between successive points pi vary considerably. A more general variation on these splines is
the tension–continuity–bias interpolation methods, which allow a user to vary parameters to
obtain a desirable curve.

VII.15.1 Catmull–Rom Splines

Catmull–Rom splines are specified by a list of m + 1 interpolation points p0, . . . ,pm and are
piecewise degree three polynomial curves of the type described in SectionVII.4 that interpolate
all the points except the endpoints p0 and pm . For Catmull–Rom splines, ui = i , and so we
want q(i) = pi for 1 ≤ i < m. The Catmull–Rom spline will consist of m − 2 Bézier curves
with the i th Bézier curve beginning at point pi and ending at point pi+1. Catmull–Rom splines
are defined bymaking an estimate for the first derivative of the curve passing through pi . These
first derivatives are used to define additional control points for the Bézier curves.

Figure VII.22 illustrates the definition of a Catmull–Rom spline segment. Let

li = 1

2
(pi+1 − pi−1)

and define

p+i = pi + 1

3
li and p−i = pi − 1

3
li .

Then let qi (u) be the Bézier curve – translated to have domain i ≤ u ≤ i + 1 – defined with
control points pi , p

+
i , p−i+1, pi+1. Define the entire Catmull–Rom spline q(u) by piecing to-

gether these curves so that q(u) = qi (u) for i ≤ u ≤ i + 1.
Since Bézier curves interpolate their first and last control points, the curve q is continuous

and q(i) = pi for all integers i such that 1 ≤ i ≤ m − 1. In addition, q has continuous first
derivatives with

q′(i) = li = (pi+1 − pi−1)/2.
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pi−1

p−
i

pi

p+
i p−

i+1
pi+1

p+
i+1

pi+2

2li+1

2li

Figure VII.22. Defining the Catmull–Rom spline segment from the point pi to the point pi+1. The points
p−i , pi , and p

+
i are collinear and parallel to pi+1 − pi−1. The points pi , p

+
i , p

−
i+1, and pi+1 form the control

points of a degree three Bézier curve, which is shown as a dotted curve.

It follows that q(u) is C1-continuous. This formula for the first derivatives, q′(i), also explains
the motivating idea behind the definition of Catmull–Rom splines. Namely, since q(i − 1) =
pi−1 and q(i + 1) = pi+1, the average rate of change of q(u) between u = i − 1 and u = i + 1
must equal (pi+1 − pi−1)/2. Thus, the extra control points, p+i and p−i , are chosen so as to
make q′(i) equal to this average rate of change.

Figure VII.23 shows two examples of Catmull–Rom splines.

VII.15.2 Bessel–Overhauser Splines

The second curve in Figure VII.23(b) shows that bad effects can result when the interpolated
points are not more or less equally spaced; bad “overshoot” can occur when two close control
points are next to widely separated control points. One way to solve this problem is to use
chord-length parameterization. For chord-length parameterization, the knots ui are chosen so
that ui+1 − ui is equal to ||pi+1 − pi ||. The idea is that the arclength of the curve between

p0

p1 p2

p3

p4

p5

p0

p1

p2

p3

p4p5

p6

p7

Figure VII.23. Two examples of Catmull–Rom splines with uniformly spaced knots.
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pi and pi+1 will be approximately proportional to the distance from pi to pi+1 and therefore
approximately proportional to ui+1 − ui . If one views the parameter u as time, then, as u varies,
the curve q(u) will be traversed at roughly a constant rate of speed.6

Of course, to use chord-length parameterization, we need to modify the formalization of
Catmull–Rom splines to allow for nonuniform knot positions: in particular, it is necessary to
find an alternative definition of the extra control points p−i and p+i . More generally, to handle
arbitrary nonuniform knot positions, we use a method called the Bessel tangent method or
the Overhauser method (Overhauser, 1968). Assume that we are given knot positions (not
necessarily obtained from a chord-length parameterization) and that all knot positions are
distinct with ui < ui+1. Define

vi+ 1
2
= pi+1 − pi

ui+1 − ui
.

The idea is that vi+ 1
2
is the average velocity at which the interpolating spline is traversed from

pi to pi+1. Of course, if we have defined the knot positions using a chord-length interpolation,
then the velocities vi+ 1

2
will be unit vectors. Then we define a further velocity

vi =
(ui+1 − ui )vi− 1

2
+ (ui − ui−1)vi+ 1

2

ui+1 − ui−1
,

which is a weighted average of the two velocities of the curve segments just before and just
after the interpolated point pi . The weighted average is defined so that the velocities vi± 1

2
are

weighted more heavily when the elapsed time, |ui±1 − ui |, between being at the control point
pi±1 and being at the control point pi is less. Finally, define

p−i = pi − 1
3 (ui − ui−1)vi

p+i = pi + 1
3 (ui+1 − ui )vi .

These points are then used to define Bézier curves in exactly the manner used for the uniform
Catmull–Rom curves. The i th segment, qi (u), has control points pi , p

+
i , p

−
i+1, and pi+1 and is

linearly transformed to be defined for u in the interval [ui , ui+1]. The entire piecewise Bézier
curve q(u) is defined by patching these curves together, with q(u) = qi (u) for ui ≤ u ≤ ui+1.

Two examples of chord-length parameterization combined with the Overhauser method are
shown in Figure VII.24. These interpolate the same points as the Catmull–Rom splines in
Figure VII.23 but give a smoother and nicer curve – especially in the second example in the
figures. Another example is given in Figure VII.25.

Exercise VII.24 Let p0 = p1 = 〈0, 0〉, p2 = 〈10, 0〉 and p3 = p4 = 〈10, 1〉. Also, let
u0 = 0, u1 = 1, u2 = 2, u3 = 2.1 and u4 = 3.1. Find the control points for the corre-
sponding Overhauser spline, q(u), with q(ui ) = pi for i = 1, 2, 3. Verify that your curve
corresponds to the curve shown in Figure VII.25.

Second, draw the Catmull–Rom curve defined by these same interpolation points. Qual-
itatively compare the Catmull–Rom curve with the Overhauser spline.

Exercise VII.25 Investigate the chord-length parameterization Overhauser method curve
from p0 to p2 when p0, p1, p2 are collinear. What is the velocity at p1? Consider separately
the cases in which p1 is, and is not, between p0 and p2.

6 Another common choice for knot parameterization is the centripetal parameterizationwhere ui+1 − ui

is set equal to
√||pi+1 − pi ||. This presumably has an effect intermediate between uniform knot

spacing and chord-length parameterization.
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p0

p1 p2

p3

p4

p5

p0

p1

p2

p3

p4p5

p6

p7

Figure VII.24. Two examples of Overhauser spline curves. The knot positions were set by chord-length
parameterization. These are defined from exactly the same control points as the Catmull–Rom curves in
Figure VII.23.

Exercise VII.26 It should be clear that the Overhauser method gives G1-continuous
curves. Prove that, in fact, the Overhauser method gives C1-continuous curves. [Hint:
Prove that q′(ui ) = vi . You will need to take into account the fact that qi (u) has domain
[ui , ui+1].]

There is another nice characterization of the Overhauser method in terms of blending two
quadratic polynomials that provides a second justification for its appropriateness.Define fi (u) to
be the (unique) quadratic polynomial such that fi (ui−1) = pi−1, fi (ui ) = pi , and fi (ui+1) =
pi+1. Similarly define fi+1(u) to be the quadratic polynomial with the values pi , pi+1, pi+2 at
u = ui , ui+1, ui+2. Then define

qi (u) = (ui+1 − u)fi (u)+ (u − ui )fi+1(u)
ui+1 − ui

. VII.24

Clearly qi (u) is a cubic polynomial and, further, for ui ≤ u ≤ ui+1, qi (u) is equal to the curve
qi (u) obtained with the Overhauser method.

Exercise VII.27� Prove the last assertion about the Overhauser method. [Suggestion:
verify that qi (u) has the correct values and derivatives at its endpoints ui and ui+1.]

p0 = p1 p2

p3 = p4

y

x

Figure VII.25. The Overhauser spline that is the solution to Exercise VII.24.
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Exercise VII.28 Write a program that takes a series of positions specified with mouse
clicks and draws a Catmull–Rom curve, Bessel–Overhauser spline, or both so that the curve
interpolates them. Make the curves also interpolate the first and last point by doubling the
first and last points (i.e., treat the first and last points as if they occur twice). The supplied
program ConnectDots can be used as a starting point; it accepts mouse clicks and joins
the points with straight line segments.

VII.15.3 Tension–Continuity–Bias Splines

There are a variety of modified versions of Catmull–Rom interpolation schemes. Many of
these are tools that let a curve designer specify a broader range of shapes for curves. For
instance, someone may want to design a curve that is “tighter” at some points and “looser”
at other points. One widely used method is the TCB (tension–continuity–bias) method of
(Kochanek and Bartels, 1984), which uses the three parameters of tension, continuity, and
bias that affect the values of the tangents and thereby the extra control points p+i and p−i .
The parameter of tension is used to control the tightness of curve, the continuity parameter
controls the (dis)continuity of first derivatives, and the bias controls how the curve overshoots
or undershoots an interpolation point.

The TCBmethod is a refinement of Catmull–Rom splines that adjusts the control points p−i
and p+i according to the three new parameters. To describe how the TCB method works, we
first reformulate the Catmull–Rom method slightly by introducing notations for the left and
right first derivatives of the curve at an interpolation point pi as follows:

Dq−i = lim
u→u−i

q(ui )− q(u)
ui − u

= 3(pi − p−i ),

Dq+i = lim
u→u+i

q(u)− q(ui )

u − ui
= 3(p+i − pi ).

If we set values for Dq+i and Dq−i , then this determines p+i and p−i by

p+i = pi + 1
3 Dq+i and p−i = pi − 1

3 Dq−i .

The basic Catmull–Rom splines can be defined by setting

Dq−i = Dq+i = 1

2
vi− 1

2
+ 1

2
vi+ 1

2
, VII.25

where vi− 1
2
= pi − pi−1. The TCB splines work by modifying Equation VII.25 but leaving the

rest of the definition of the splines unchanged.
The tension parameter, denoted t , adjusts the tightness or looseness of the curve. The default

value is t = 0; positive values should be less than 1 and make the curve tighter, and negative
values make the curve looser. Mathematically, this has the effect of setting

Dq−i = Dq+i = (1− t)

(
1

2
vi− 1

2
+ 1

2
vi+ 1

2

)
,

that is, of multiplying the derivative by (1− t). Positive values of t make the derivative smaller:
this has the effect of making the curve’s segments between points pi straighter and making
the velocity of the curve closer to zero at the points pi . Negative values of t make the curve
looser and can cause it to take bigger swings around interpolation points. The effect of setting
tension to 1/2 and to −1/2 is shown in Figure VII.26.
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t = 1/2 t = −1/2

t = 0

p0

p1 p5

p6

Figure VII.26. The effects of the tension parameter.

The continuity parameter is denoted c. If c = 0, then the curve is C1-continuous; otherwise,
the curve has a corner at the control point pi and thus a discontinuous first derivative. The
mathematical effect of the continuity parameter is to set

Dq−i = 1− c

2
vi− 1

2
+ 1+ c

2
vi+ 1

2

Dq+i = 1+ c

2
vi− 1

2
+ 1− c

2
vi+ 1

2
.

Typically, −1 ≤ c ≤ 0, and values c < 0 have the effect of turning the slope of the curve
towards the straight line segments joining the interpolation points. Setting c = −1 would
make the curve’s left and right first derivatives at pi match the slopes of the line segments
joining pi to pi−1 and pi+1.

The effect of c = −1/2 and c = −1 is shown in Figure VII.27. The effect of c = −1/2
in this figure looks very similar to the effect of tension t = 1/2 in Figure VII.26; however,
the effects are not as similar as they look. With t = 1/2, the curve still has a continuous first
derivative, and the velocity of a particle following the curve with u measuring time will be
slower near the point where t = 1/2. On the other hand, with c = −1/2, the curve has a
“corner” where the first derivative is discontinuous, but there is no slowdown of velocity in the
vicinity of the corner.

The bias parameter b weights the two average velocities vi− 1
2
and vi+ 1

2
differently to cause

either undershoot or overshoot. The mathematical effect is

Dq−i = Dq+i = 1+ b

2
vi− 1

2
+ 1− b

2
vi+ 1

2
.

The curve will have more tendency to overshoot pi if b > 0 and to undershoot it if b < 0. The
effect of bias b = 1/2 and bias b = −1/2 is shown in Figure VII.28.

The tension, continuity, and bias parameters can be set independently to individual interpo-
lation points or uniformly applied to an entire curve. This allows the curve designer to modify
the curve either locally or globally. The effects of the three parameters can be applied together.

c = −1/2 c = −1

c = 0

p0

p1 p5

p6

Figure VII.27. The effects of the continuity parameter.
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b = 1/2 b = −1/2

b = 0

p0

p1 p5

p6

Figure VII.28. The effects of the bias parameter.

This results in the following composite formula, which replaces Equation VII.25:

Dq−i =
(1− t)(1− c)(1+ b)

2
vi− 1

2
+ (1− t)(1+ c)(1− b)

2
vi+ 1

2

Dq+i =
(1− t)(1+ c)(1+ b)

2
vi− 1

2
+ (1− t)(1− c)(1− b)

2
vi+ 1

2
.

Exercise VII.29� Extend the TCB parameters to apply to Overhauser splines instead of
Catmull–Rom splines.

VII.16 Interpolating with Bézier Surfaces�

The previous sections have discussed methods of interpolating points with a series of Bézier
curves that connects the interpolated points together with a smooth curve. The analogous
problem for surfaces is to interpolate a two-dimensional mesh of control points with a smooth
surface formed from Bézier patches. For this, suppose we are given control points pi, j for i =
0, . . . , m and j = 0, . . . , n and we want to find a smooth surface q(u, v) so that q(i, j) = pi, j

for all appropriate i and j .
To formulate the problem a little more generally, let I and J be finite sets of real numbers,

I = {u0, u1, . . . , um} and J = {v0, v1, . . . , vn},
where ui < ui+1 and v j < v j+1 for all i, j . For 0 ≤ i ≤ m and 0 ≤ j ≤ n, let pi, j be a point
in R

3. Then, we are seeking a smooth surface q(u, v) so that q(ui , v j ) = pi, j for all 0 < i < m
and 0 < j < n.

We define the surface q(u, v) as a collection of Bézier patches analogous to the Catmull–
Rom and Bessel–Overhauser splines defined with multiple Bézier curves that interpolate a
sequence of points. The corners of the Bézier patches comprising q(u, v) will meet at the
interpolation points pi, j , and the Bézier patches will form a mesh of rectangular patches. One
big advantage of this method is that the Bézier patches are defined locally, that is, each Bézier
patch depends only on nearby interpolation points.

We discuss primarily the case in which the interpolation positions ui and v j are equally
spaced with ui = i and v j = j , but we will also discuss how to generalize to the non-equally-
spaced case.

We define degree three Bézier patches Qi, j (u, v) with domains the rectangles [ui , ui+1]×
[v j , v j+1]. The complete surface q(u, v) will be formed as the union of these patches Qi, j . Of
course,wewill need to be sure that the patches have the right continuity andC1-continuity prop-
erties. The control points for the Bézier patch Qi, j will be 16 points, pα,β , where α ∈ {i, i + 1

3 ,

i + 2
3 , i + 1}, and β ∈ { j, j + 1

3 , j + 2
3 , j + 1}. Of course, this means that the patch Qi, j will

interpolate the pointspi, j ,pi+1, j ,pi, j+1, andpi+1, j+1, which is exactlywhatwewant. It remains
to define the other 12 control points of the patch.
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As the first step towards defining the other 12 control points for each patch, we define the
control points that lie on the boundary, that is, the control points pα,β , where either α or β

is an integer. Fix, for the moment, the value of j and the value of v as v = v j . Consider the
cross section of the surface q(u, v) for this value of v, namely, the curve q j (u) = q(u, v j ). This
cross section is piecewise degree three Bézier curves defined with control points pα, j . It also
interpolates the point pi, j at α = ui . Thus, it seems natural to define the other control points
pi± 1

3 , j , for all values of i , using the Catmull–Rom or Bessel–Overhauser method. (Recall that
the Catmull–Rom and Bessel–Overhauser methods are identical in the equally spaced case.
The Bessel–Overhauser method should be used in the non-equally-spaced case.) The control
points pi± 1

3 , j are chosen so that the curve q j smoothly interpolates the points pi, j for this fixed
value of j .

Dually, if i is held fixed and u = ui , the cross-sectional curves of q(ui , v) are likewise
piecewise degree three Bézier curves. Thus, the control points pi,β can be defined using the
Catmull–Rom or Bessel–Overhauser method to obtain a curve that interpolates the points pi, j

for a fixed value of i .
It now remains to pick the four interior control points for each patch Qi, j , namely, the

control points pi+ 1
3 , j+ 1

3
, pi+ 2

3 , j+ 1
3
, pi+ 1

3 , j+ 2
3
, and pi+ 2

3 , j+ 2
3
. As we will see, these four control

points can be determined by choosing appropriate twist vectors. To simplify the details of how
to set these control points, we now make the assumption that the interpolation positions ui

and v j are equally spaced: in fact, we assume that ui = i and v j = j for all i and j .
The patches Qi, j and Qi−1, j share a common border. In order to haveC1-continuity between

the two patches, it is necessary that the partial derivatives match up along the boundary. As
was discussed in Section VII.10.2, to match up partial derivatives, it is necessary and sufficient
to ensure that

pi,β − pi− 1
3 ,β = pi+ 1

3 ,β − pi,β VII.26

for each β ∈ { j, j + 1
3 , j + 2

3 , j + 1}. Likewise, in joining up patches Qi, j and Qi, j−1, we
must have

pα, j − pα, j− 1
3
= pα, j+ 1

3
− pα, j , VII.27

for α ∈ {i, i + 1
3 , i + 2

3 , i + 1}. Equations VII.26 and VII.27 were derived for a particular
patch Qi, j , but since all the patches must join up smoothly these equations actually hold for
all values of i and j . We define the twist vector τ i, j by

τ i, j = 9(pi+ 1
3 , j+ 1

3
− pi, j+ 1

3
− pi+ 1

3 , j + pi, j ).

Then, by Equation VII.26, with β = j and β = j + 1
3 , we obtain

τ i, j = 9(pi, j+ 1
3
− pi− 1

3 , j+ 1
3
− pi, j + pi− 1

3 , j ).

By similar reasoning, with Equation VII.27 for α equal to i + 1
3 , i and i − 1

3 , we have also

τ i, j = 9(pi+ 1
3 , j − pi, j − pi+ 1

3 , j− 1
3
+ pi, j− 1

3
)

τ i, j = 9(pi, j − pi− 1
3 , j − pi, j− 1

3
+ pi− 1

3 , j− 1
3
).

Rewriting these four equations, we get formulas for the inner control points:

pi+ 1
3 , j+ 1

3
= 1

9
τ i, j + pi, j+ 1

3
+ pi+ 1

3 , j − pi, j VII.28

pi− 1
3 , j+ 1

3
= −1

9
τ i, j + pi, j+ 1

3
+ pi− 1

3 , j − pi, j
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pi+ 1
3 , j− 1

3
= −1

9
τ i, j + pi, j− 1

3
+ pi+ 1

3 , j − pi, j

pi− 1
3 , j− 1

3
= 1

9
τ i, j + pi, j− 1

3
+ pi− 1

3 , j − pi, j .

Thus, once the twist vectors τ i, j have been fixed, the remaining control points for the Bézier
patches are completely determined.

The twist vector has a simple geometric meaning as the second-order partial derivatives of
the Bézier surfaces; namely, by equations VII.18 and VII.19 on page 175 and by the definition
of the twist vector,

∂2Qi, j

∂u∂v
(ui , v j ) = τ i, j .

Thus, the twist vector τ i, j is just the second-order mixed partial derivative at the corners of
the patches that meet at 〈ui , v j 〉.

To finish specifying all the control points, it only remains to set the value of the twist vector.
The simplest method is just to set the twist vectors τ i, j all equal to zero. This yields the
so-called Ferguson patches since it is equivalent to a construction from (Ferguson, 1964). The
disadvantage of just setting the twist vector to zero is that it tends tomake the surfaceq(u, v) too
flat around the interpolation points. For specular surfaces in particular, this can make artifacts
on the surface, known as “flats,” where the surface is noticeably flattened around interpolation
points.

It is better to set the twist vector by estimating the second-order mixed partial derivative
of q(u, v) at an interpolation point 〈ui , v j 〉. Here we are still making the assumption that
interpolation positions are equally spaced, that is, that ui = i and v j = j . Then, a standard
estimate for the partial derivative is

∂2q

∂u∂v
(i, j) = 1

4
(q(i + 1, j + 1)− q(i − 1, j + 1)− q(i + 1, j − 1)+ q(i − 1, j − 1))

= 1

4
(pi+1, j+1 − pi−1, j+1 − pi+1, j−1 + pi−1, j−1). VII.29

Using this value as the value of τ can give a better quality interpolating surface.
The estimate of Equation VII.29 is not entirely ad hoc: indeed, it can be justified as a

generalization of the Bessel–Overhauser curve method. For surface interpolation, we refer to
it as just the Bessel twist method, and the idea is as follows. Let fi, j (u, v) be the degree two
polynomial (“degree two” means degree two in each of u and v separately) that interpolates the
nine control points pα,β for α ∈ {ui−1, ui , ui+1} and β ∈ {v j−1, v j , v j+1}; thus, fi, j (α, β) =
pα,β for these nine values of α and β. Then define the patch Qi, j by blending four of these
functions, namely,

Qi, j (u, v)

= (u − ui )(v − v j )

�ui�v j
fi+1, j+1(u, v)+ (u − ui )(v j+1 − v)

�ui�v j
fi+1, j (u, v)

+ (ui+1 − u)(v − v j )

�ui�v j
fi, j+1(u, v)+ (ui+1 − u)(v j+1 − v)

�ui�v j
fi, j (u, v), VII.30

where �ui = ui+1 − ui and �v j = v j+1 − v j . Note that this way of defining Qi, j is a direct
generalization of the Bessel–Overhausermethod of EquationVII.24. The patch Qi, j defined by
Equation VII.30 is obviously a bicubic patch (i.e., is degree three in each of u and v separately).
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As a bicubic patch it can be expressed as a degree threeBézier patch. In viewof ExerciseVII.27,
the corners and boundary control points of Qi, j defined by Equation VII.30 are equal to the
control points defined using the first method. We claim also that the four interior control points
of the patch Qi, j as defined by Equation VII.30 are the same as the control points calculated by
using Equation VII.29 with the twist vector estimate of Equation VII.29. To prove this for the
case of equally spaced interpolation positions, we can evaluate the mixed partial derivatives
of the right-hand side of Equation VII.30 and use the fact that the four functions fi+1, j+1,
fi, j+1, fi+1, j and fi, j are equal at 〈ui , v j 〉, that (∂ fi, j/∂u)(ui , v j ) = (∂ fi, j+1/∂u)(ui , v j ), and
that (∂ fi, j/∂v)(ui , v j ) = (∂ fi+1, j/∂v)(ui , v j ). We find that

∂2Qi, j

∂u∂v
(ui , v j ) = ∂2 fi, j

∂u∂v
(ui , v j ).

This holds even in the case of non-equally-spaced interpolation positions. We leave the details
of the calculations to the reader.

Finally, we claim that

∂2 fi, j

∂u∂v
(ui , v j ) = 1

4
(pi+1, j+1 − pi−1, j+1 − pi+1, j−1 + pi−1, j−1) VII.31

when the interpolation positions are equally spaced. This is straightforward to check, and we
leave its verification to the reader, too. With this, the Bessel method is seen to be equivalent to
using the last formula of Equation VII.29 to calculate the twist vector.

We now generalize to the case of non-equally-spaced interpolation positions. We have
already described how to set the corner and boundary control points of each patch Qi, j . We
still let the twist vector τ i, j be themixed partial derivative at 〈ui , v j 〉. Now the EquationsVII.28
become

pi+ 1
3 , j+ 1

3
= �ui�v j

τ i, j

9
+ pi, j+ 1

3
+ pi+ 1

3 , j − pi, j VII.32

pi− 1
3 , j+ 1

3
= −�ui−1�v j

τ i, j

9
+ pi, j+ 1

3
+ pi− 1

3 , j − pi, j

pi+ 1
3 , j− 1

3
= −�ui�v j−1

τ i, j

9
+ pi, j− 1

3
+ pi+ 1

3 , j − pi, j

pi− 1
3 , j− 1

3
= �ui−1�v j−1

τ i, j

9
+ pi, j− 1

3
+ pi− 1

3 , j − pi, j .

In addition, Equation VII.31 is no longer correct: instead, we let

Ti, j = pi+1, j+1 − pi+1, j − pi, j+1 + pi, j ,

and then we have

∂2 fi, j

∂u∂v
(ui , v j )

= �ui�v j Ti−1, j−1 +�ui�v j−1Ti−1, j +�ui−1�v j Ti, j−1 +�ui−1�v j−1Ti, j

(�ui +�ui−1)(�v j +�v j−1)

= �ui�v j Ti−1, j−1 +�ui�v j−1Ti−1, j +�ui−1�v j Ti, j−1 +�ui−1�v j−1Ti, j

(ui+1 − ui−1)(v j+1 − v j−1)
.

Thus, for non-equally-spaced interpolation points, we recommend setting the twist vector τ i, j

equal to this last equation and setting the control points with Equations VII.32.

Team LRN



VII.16 Interpolating with Bézier Surfaces 199

There are several otherways of computing twist vectors: see (Farin, 1997) and the references
cited therein.

Further Reading: The preceding discussion has been limited to surfaces formed by regular
patterns of retangular patches.Not all surfaces canbe conveniently approximatedby rectangular
patches, however; in fact, some cannot be approximated by a single array of rectangular patches
at all. One alternative is to work with triangular patches; for example, the books (Farin, 1997)
and (Hoschek and Lasser, 1993) discuss Bézier patches defined on triangles. More generally,
it is desirable to be able to model surfaces containing an arbitrary topology of triangles,
rectangles, and other polygons. Extensive work has been conducted on subdivision surfaces
for the purpose of modeling surfaces with a wide range of topologies. Subdivision surfaces
are beyond the scope of this book, but for an introduction you can consult the Siggraph course
notes (Schröder, Zorin, et al., 1998) or the book (Warren and Weimer, 2002).
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VIII

B-Splines

This chapter covers uniform and nonuniformB-splines, including rational B-splines (NURBS).
B-splines are widely used in computer-aided design and manufacturing and are supported by
OpenGL. B-splines are a powerful tool for generating curves with many control points and
provide many advantages over Bézier curves – especially because a long, complicated curve
can be specified as a single B-spline. Furthermore, a curve designer has much flexibility
in adjusting the curvature of a B-spline curve, and B-splines can be designed with sharp
bends and even “corners.” In addition, it is possible to translate piecewise Bézier curves into
B-splines and vice versa. B-splines do not usually interpolate their control points, but it is
possible to define interpolating B-splines. Our presentation of B-splines is based on the Cox–
de Boor definition of blending functions, but the blossoming approach to B-splines is also
presented.

The reader is warned that this chapter is a mix of introductory topics and more advanced,
specialized topics. You should read at least the first parts of Chapter VII before this chapter.
Sections VIII.1–VIII.4 give a basic introduction to B-splines. The next four sections cover
the de Boor algorithm, blossoming, smoothness properties, and knot insertion; these sections
are fairly mathematical and should be read in order. If you wish, you may skip these math-
ematical sections at first, for the remainder of the chapter can be read largely independently.
Section VIII.9 discusses how to convert a piecewise Bézier curves into a B-spline. The very
short Section VIII.10 discusses degree elevation. Section VIII.11 covers rational B-splines.
Section VIII.12 very briefly describes using B-splines in OpenGL. Section VIII.13 gives a
method for interpolating points with B-splines. You should feel free to skip most of the proofs
if you find them confusing;most of the proofs, especially themore difficult ones, are not needed
for the practical use of splines.

Splines – especially interpolating splines – have a long history, and we do not try to describe
it here. B-spline functions were defined by (Shoenberg, 1946; Curry and Shoenberg, 1947).
The name “B-spline,” with the “B” standing for “basis,” was coined by (Shoenberg, 1967).
The terminology “basis spline” refers to the practice of defining B-splines in terms of “basis
functions.” (We use the term “blending function” instead of “basis function.”) B-splines be-
came popular after de Boor (de Boor, 1972), Cox (Cox, 1972), and Mansfield discovered the
fundamental Cox–de Boor formula for recursively defining the blending functions.

Figure VIII.1 shows one of the simplest possible examples of how B-spline curves can be
used. There are nine control points, p0, . . . ,p8, that completely define the B-spline curves.
The curve shown in part (a) is a uniform degree two B-spline curve; the curve in part (b) is
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p0

p1 p2

p3 p4

p5

p6

p7

p8

(a) Degree two B-spline curve.

p0

p1 p2

p3 p4

p5

p6

p7

p8

(b) Degree three B-spline curve.

Figure VIII.1. Degree two and degree three B-spline curves with uniformly spaced knots and nine
control points. The degree three curve is smoother than the degree two curve, whereas, the degree two
curve approaches the control points a little more closely. Compare with the degree eight Bézier curve of
Figure VII.9(c) on page 167.

a uniform degree three curve. (The mathematical definitions of these curves are in Sections
VIII.1 and VIII.2.) Qualitatively, the curves are “pulled towards” the control points in much
the same way that a Bézier curve is pulled towards its interior control points. Unlike Bézier
curves, B-spline curves do not necessarily interpolate their first and last control points; rather,
the degree two curve starts and ends midway between two control points, and the degree
three curve starts and ends near the control points adjacent to the starting and ending points.
However, there are ways of defining B-spline curves that ensure that the first and last control
points are interpolated.

A big advantage of B-spline curves over Bézier curves is that they act more flexibly and intu-
itively with a large number of control points. Indeed, if you compare the curves of Figure VIII.1
with the degree eight Bézier curve of Figure VII.9(c) on page 167, you will see that the
B-spline curves are pulled more definitely by the control points. The Bézier curve seems to be
barely affected by the placement of individual control points, whereas the B-spline curves are
clearly affected directly by the control points. This makes B-spline curves much more useful
for designing curves.

Wewill first treat the case of uniformB-splines and then themore general case of nonuniform
B-splines.

VIII.1 Uniform B-Splines of Degree Three

Before presenting the general definition of B-splines in Section VIII.2, we first introduce one
of the simplest and most useful cases of B-splines, namely, the uniform B-splines of degree
three. Such a B-spline is defined with a sequence p0, p1, p2, . . . ,pn of control points. Together
with a set of blending (or basis) functions N0(u), N1(u), . . . , Nn(u), this parametrically defines
a curve q(u) by

q(u) =
n∑

i=0
Ni (u) · pi 3 ≤ u ≤ n + 1.
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p0

p1 p2

p3 p4

p5

p6
q3

q4

q5

q6

Figure VIII.2. A degree three uniform B-spline curve with seven control points.

We define these blending functions later in this section, but for the moment, just think of the
blending functions Ni as having an effect analogous to the Bernstein polynomials Bi used in
the definition of Bézier curves.

An important property of the uniform degree three blending functions Ni is that Ni (u)
will equal zero if either u ≤ i or i + 4 ≤ u. That is, the support of Ni (u) is the open interval
(i, i + 4). In particular, this means that we can rewrite the formula for q(u) as

q(u) =
j∑

i= j−3
Ni (u) · pi provided u ∈ [ j, j + 1], 3 ≤ j ≤ n VIII.1

since the terms omitted from the summation are all zero. This means that the B-spline has local
control; namely, if a single control point pi is moved, then only the portion of the curve q(u)
with i < u < i + 4 is changed, and the rest of the B-spline remains fixed. Local control is an
important feature enhancing the usefulness of B-spline curves: it allows a designer or artist to
edit one portion of a curve without causing changes to distant parts of the curve. In contrast,
Bézier curves of higher degree do not have local control, for each control point affects the
entire curve.

Figure VIII.2 shows an example of a degree three B-spline curve q(u) defined with seven
control points and defined for 3 ≤ u ≤ 7. The curve q is split into four subcurves q3, . . . ,q6,
where q3 is the portion of q(u) corresponding to 3 ≤ u ≤ 4, q4 is the portion with 4 ≤ u ≤ 5,
and so on. More generally, qi (u) = q(u) for i ≤ u ≤ i + 1.

The intuition of how the curve q(u) behaves is as follows. The beginning point of q3,
where u = 3, is being pulled strongly towards the point p1 and less strongly towards the points
p0 and p2. The other points on q3 are calculated as weighted averages of p0, p1, p2, p3. The
other segments are similar; namely, the beginning of qi is being pulled strongly towards pi−2,
the end of qi is being pulled strongly towards pi−1, and the points interior to qi are computed
as weighted averages of the four control points pi−3, pi−2, pi−1, pi . Finally, the segments qi (u)
are degree three polynomial curves; thus, q(u) is piecewise a degree three polynomial curve.
Furthermore, q(u) has continuous second derivatives everywhere it is defined.

These properties of the curve q(u) all depend on properties of the blending functions Ni (u).1

Figure VIII.3 shows the graphs of the functions Ni (u). At u = 3, we have N1(3) > N0(3) =
N2(3) > 0, and Ni (3) = 0 for all other values of i . In fact, we will see that N1(3) = 2/3 and
N0(3) = N2(3) = 1/6. Therefore, q(3) is equal to the weighted average (p0 + 4p1 + p2)/6,
which is consistent with what we earlier observed in Figure VIII.2 about the beginning point
of the curve q3. The other assertions we made about the curves q3, . . . ,q6 can likewise be
seen to follow from the properties of the blending functions Ni (u). Note that Equation VIII.1
is borne out by the behavior of the blending functions in Figure VIII.3. Similarly, it is also
clear that a control point pi affects only the four segments qi , qi+1, qi+2, qi+3.

1 When we develop the theory of B-splines of arbitrary degree, these blending functions Ni (u) will
be denoted Ni,4(u). Another mathematical derivation of these blending functions is given in the first
example of Section VIII.3.

Team LRN



VIII.1 Uniform B-Splines of Degree Three 203

N0 N1 N2 N3 N4 N5 N61

0 1 2 3 4 5 6 7 8 9 10

y

u

Figure VIII.3. The blending functions for a uniform, degree three B-spline. Each function Ni has sup-
port (i, i + 4).

The blending functions should have the following properties:

(a) The blending functions are translates of each other, that is,

Ni (u) = N0(u − i).

(b) The functions Ni (u) are piecewise degree three polynomials. The breaks between the pieces
occur only at integer values of u.

(c) The functions Ni (u) have continuous second derivatives, that is, they are C2-continuous.
(d) The blending functions are a partition of unity, that is,∑

i

Ni (u) = 1

for 3 ≤ u ≤ 7. (Or, for 3 ≤ u ≤ n + 1 when there are n + 1 control points p0, . . . ,pn .)
This property is necessary for points on the B-spline curve to be defined as weighted
averages of the control points.

(e) Ni (u) ≥ 0 for all u. Therefore, Ni (u) ≤ 1 for all u.
(f ) Ni (u) = 0 for u ≤ i and for i + 4 ≤ u. This property of the blending functions gives the

B-spline curves their local control properties.

Because of conditions (a) and (f), the blending functions will be fully specified once we
define the function N0(u) on the domain [0, 4]. For this purpose, we will define four functions
R0(u), R1(u), R2(u), R3(u) for 0 ≤ u ≤ 1 by

R0(u) = N0(u) R2(u) = N0(u + 2)

R1(u) = N0(u + 1) R3(u) = N0(u + 3).

Thus, the functions Ri (u) are the translates of the four segments of N0(u) to the interval [0, 1]
and, to finish the definition of N0(u) it suffices to define the four functions Ri (u). These four
functions are degree three polynomials by condition (b). In fact, we claim that the following
choices for the Ri functions work (and this is the unique way to define these functions to satisfy
the six conditions (a)–(f)):

R0(u) = 1
6u3

R1(u) = 1
6 (−3u3 + 3u2 + 3u + 1)

R2(u) = 1
6 (3u3 − 6u2 + 4)

R3(u) = 1
6 (1− u)3.

It takes a little work to verify that conditions (a)–(f) hold when N0(u) is defined from these
choices for R0, . . . , R3. Straightforward calculation shows that

∑
i Ri (u) = 1; thus, (d) holds.

Also, it can be checked that Ri (u) ≥ 0 for i = 0, 1, 2, 3 and all u ∈ [0, 1]; hence (e) holds.
For (c) to hold, N0(u) needs to have continuous second derivative. Of course, this also means
N0(u) is continuous and has continuous first derivative. These facts are proved by noticing that
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when the Ri functions are pieced together, their values and their first and second derivatives
match up. That is,

R0(0)=0

R0(1)= 1
6=R1(0)

R1(1)= 2
3=R2(0)

R2(1)= 1
6=R3(0)

R3(1)=0

R′0(0)= 0

R′0(1)= 1
2 =R′1(0)

R′1(1)= 0 =R′2(0)
R′2(1)=−1

2 =R′3(0)
R′3(1)= 0

R′′0 (0)= 0

R′′0 (1)= 1 =R′′1 (0)
R′′1 (1)=−2=R′′2 (0)
R′′2 (1)= 1 =R′′3 (0)
R′′3 (1)= 0

Exercise VIII.1 Graph the four functions Ri on the interval [0, 1]. [Hint: These are
portions of the blending functions shown in Figure VIII.3.]

Exercise VIII.2 Give formulas for the first and second derivatives of the Ri functions.
Verify the 15 conditions needed for the C2-continuity of the blending function N0(u).

Exercise VIII.3 Verify that
∑

i Ri (u) = 1. Prove that Ri (u) > 0 for i = 0, 1, 2, 3 and for
all u ∈ (0, 1).

Exercise VIII.4 Verify that R0(u) = R3(1− u) and that R1(u) = R2(1− u). Show that
this means that uniform B-splines have left–right symmetry in that, if the order of the
control points is reversed, the curve q is unchanged except for being traversed in the
opposite direction.

Exercise VIII.5 Describe the effect of repeating control points in degree three uniform
B-splines. Qualitatively describe the curve obtained if one control point is repeated – for
instance, if p3 = p4.

Secondly, suppose p2 �= p3 = p4 = p5 �= p6. Show that the curve q interpolates the
point p3 with q(6) = p3. Further show that the segments q5 and q6 are straight lines.

VIII.2 Nonuniform B-Splines

The degree three uniform B-spline of the previous section were defined so that the curve q(u)
was “pulled” by the control points in such way that q(i) is close to (or at least, strongly affected
by) the control point pi−2. These splines are called “uniform” since the values ui where the
curve q(u) ismost strongly affected by control points are evenly spaced at integer values ui = i .
These values ui are called knots. A nonuniform spline is one for which the knots ui are not
necessarily uniformly spaced. The ability to space knots nonuniformly makes it possible to
define a wider range of curves, including curves with sharp bends or discontinuous derivatives.
The uniform B-splines are just the special case of nonuniform B-splines where ui = i .

We define a knot vector to be a sequence

[u0, u1, . . . , u�−1, u�]

of real numbers u0 ≤ u1 ≤ u2 ≤ · · · ≤ u�−1 ≤ u� called knots. A knot vector is used with a
sequence of n + 1 control points p0, p1, . . . ,pn to define a nonuniform B-spline curve. (When
defining an order m B-spline curve, that is, a curve of degree k = m − 1, we have n = �− m.)
You should think of the spline curve as being a flexible and stretchable curve: its flexibility is
limited and thus it resists being sharply bent. The curve is parameterized by the variable u, and
we can think of u as measuring the time spent traversing the length of the curve. The control
points “pull” on parts of the curve; you should think of there being a stretchable string, or
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0 1 2 3 4 5 6 7 8 9 10 11 12

u

1

Doubled knot Tripled knot

N0,4 N1,4

N2,4N3,4 N4,4
N5,4 N6,4 N7,4

N8,4

N9,4 N10,4
N11,4

Figure VIII.4. Example of order four (degree three) blending functions with repeated knots. The knot
vector is [0, 1, 2, 3, 4, 4, 5, 6, 7, 8, 8, 8, 9, 10, 11, 12] so that the knot 4 has multiplicity two and the
knot 8 has multiplicity three.

rubber band, attached to a point on the curve and tied also to the control point pi . These pull
on the spline, and the spline settles down into a smooth curve.

Now, you might expect that the “rubber bands” tie the control point pi to the point on
the curve where u = ui . This, however, is not correct. Instead, when defining a B-spline
curve of order m, you should think of the control point pi as being tied to the curve at
the position u = ui+m/2. Ifm is odd,we need to interpret the position ui+m/2 as lying somewhere
between the two knots ui+(m−1)/2 and ui+(m+1)/2. This corresponds to what we observed in the
case of uniformly spaced knots defining a degree three curve, where m = 4: the curve q(u) is
most strongly influenced by the control point pi at the position with u = ui+2.

It is possible for knots to be repeated multiple times. If a knot position has multiplicity
two, that is, if it occurs twice with ui−1 < ui = ui+1 < ui+2, then the curve will be affected
more strongly by the corresponding control point. The curve will also lose some continu-
ity properties for its derivatives. For instance, if q(u) is a degree three curve with a knot
ui = ui+1 of multiplicity two, then q(u) will generally no longer have continuous second
derivatives at ui , although it will still have a continuous first derivative at ui . Further, if
q(u) has a knot of multiplicity three, with ui−1 < ui = ui+1 = ui+2 < ui+3, then q(u) will
interpolate the point pi−1 and will generally have a “corner” at pi−1 and thus not be C1- or
G1-continuous. However, unlike the situation in Exercise VIII.5, the adjacent portions of the B-
spline curve will not be straight line segments. These behaviors are exhibited in Figures VIII.4
and VIII.5.

If a knot position occurs four times (in a degree three curve), then the curve can actually
become discontinuous! Knots that repeat four times are usually used only at the beginning or
end of the knot vector and thus do not cause a discontinuity in the curve.

Next, we give the Cox–de Boor mathematical definition of nonuniform B-spline blending
functions. So far, all of our examples have been degree three splines, but it is now convenient
to generalize to splines of degree k = m − 1, which are also called order m splines. Assume
the knot vector u0 ≤ u1 ≤ · · · ≤ u� has been fixed. The blending functions Ni,m(u) for order m
splines depend only on the knot positions, not on the control points, and are defined by induction

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

Figure VIII.5. Example of an order four B-spline created with repeated knots. This curve is created with
the knot vector and blending functions shown in Figure VIII.4. It has domain [3, 9].
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on m ≥ 1 as follows. First, for i = 0, . . . , �− 1, let

Ni,1(u) =
{
1 if ui ≤ u < ui+1
0 otherwise.

There is one minor exception to the preceding definition, which is to include the very last
point u = u� in the domain of the last nonzero function: namely, if ui−1 < ui = u�, then we let
Ni−1,1(u) = 1when ui−1 ≤ u ≤ ui . In thisway, the theorems stated below hold also for u = u�.
Second, for m ≥ 1, letting m = k + 1, Ni,k+1(u) is defined by the Cox–de Boor formula:

Ni,k+1(u) = u − ui

ui+k − ui
Ni,k(u)+ ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k(u)

The Cox–de Boor formula

When there are repeated knots, some of the denominators above may be zero: we adopt the
convention that 0/0 = 0 and (a/0)0 = 0. Since Ni,k(u) will be identically zero when ui+k = ui

(see the next paragraph), this means that any term with denominator equal to zero may be
ignored.

The form of the Cox–de Boor recursive formulas for the blending functions immediately
implies that the functions Ni,m(u) are piecewise degree m − 1 polynomials and that the breaks
between pieces occur at the knots ui . Secondly, it is easy to prove, by induction on m ≥ 1, that
the function Ni,m(u) has support in [ui , ui+m] (i.e., Ni,m(u) = 0 for u < ui and for ui+m < u).
From similar considerations, it is easy to see that the definition of the blending function Ni,m(u)
depends only on the knots ui , ui+1, . . . , ui+m .

VIII.3 Examples of Nonuniform B-Splines

To gain a qualitative understanding of how nonuniform B-splines work, it is helpful to do some
simple examples.

Example: Uniformly Spaced Knots
We start with what is perhaps the simplest example, namely, the case in which the knots are
uniformly spaced with the knot vector equal to just [0, 1, 2, 3, . . . , �]. That is, the knots are
ui = i . Of course, we expect this case to give the same degree three results as the uniform
B-splines discussed in Section VIII.1 with the functions Ni,4(u) equal to the functions Ni (u)
of that section.

To define the blending functions, Ni,m(u), we start with the order m = 1 case, that is, the
degree k = 0 case. For this we have merely the step functions, for i = 0, . . . , �− 1,

Ni,1(u) =
{
1 if i ≤ u < i + 1

0 otherwise.

These functions are piecewise degree zero (i.e., piecewise constant); of course, they are dis-
continuous at the knot positions ui = i .

Next, we compute the order two (piecewise degree one) blending functions Ni,2(u). Using
the fact that ui = i , we define these from the Cox–de Boor formula as

Ni,2(u) = u − i

1
Ni,1(u)+ i + 2− u

1
Ni+1,1(u),
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N0,2 N1,2 N2,2 N3,2 N4,2 N5,2 N6,2 N7,2 N8,2

1

0 1 2 3 4 5 6 7 8 9 10

y

u

Figure VIII.6. The order two (piecewise degree one) blending functions with uniformly spaced knots,
ui = i . Here � = 10, and there are �+ 1 knots and �− 1 blending functions. The associated B-spline
curve of Equation VIII.2 is defined for 1 ≤ u ≤ �− 1.

for i = 0, . . . , �− 2. Specializing to the case i = 0, we have

N0,2(u) = uN0,1(u)+ (2− u)N1,1(u),

and from the definitions of N0,1(u) and N1,1(u), this means that

N0,2(u) =


u if 0 ≤ u < 1

2− u if 1 ≤ u < 2

0 otherwise.

Because the knots are uniformly spaced, similar calculations apply to the rest of the order
two blending functions Ni,2(u), and these are all just translates of N0,2(u) with Ni,2(u) =
N0,2(u − i). The order two blending functions are graphed in Figure VIII.6.

Note that the order two blending functions are continuous (C0-continuous) and piecewise
linear. Since clearly Ni,2(u) ≥ 0 and

∑
i Ni,2(u) = 1 for all u ∈ [1, �− 1], we can define a

“curve” q(u) as

q(u) =
�−2∑
i=0

Ni,2(u)pi , 1 ≤ u ≤ �− 1, VIII.2

with control points p0, . . . ,p�−2. By inspection, this “curve” consists of straight line segments
connecting the control points p0, . . . ,p�−2 in a “connect-the-dots” fashion with q(ui+1) = pi

for i = 0, . . . , �− 2.
Next, we compute the order three (piecewise degree two) blending functions, Ni,3(u). From

the Cox–de Boor formula with m = 3 or k = 2,

Ni,3(u) = u − i

2
Ni,2(u)+ i + 3− u

2
Ni+1,2(u).

These are defined for i = 0, . . . , �− 3. As before, we specialize to the case i = 0 and have

N0,3(u) = 1
2uN0,2(u)+ 1

2 (3− u)N1,2(u).

Considering separately the cases 0 ≤ u < 1 and 1 ≤ u < 2 and 2 ≤ u < 3, we have

N0,3(u) =


1
2u2 if 0 ≤ u < 1
1
2u(2− u)+ 1

2 (3− u)(u − 1) = 1
2 (6u − 2u2 − 3) if 1 ≤ u < 2

1
2 (3− u)2 if 2 ≤ u < 3

0 otherwise.

It is straightforward to check that N0,3(u) has a continuous first derivative. In addition, direct
calculation shows that N0,3(u) ≥ 0 for all u. Because the knots are uniformly spaced, the rest
of the order three blending functions, Ni,3(u), are just translates of N0,3(u), with Ni,3(u) =
N0,3(u − i): these functions are shown in Figure VIII.7. It is also straightforward to check
that

∑�−3
i=0 Ni,3(u) = 1 for 2 ≤ u ≤ �− 2. Also note that the function Ni,3(u) is maximized at

u = i + 3/2, where it takes on the value 3/4. A degree two B-spline curve can be defined with
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N0,3 N1,3 N2,3 N3,3 N4,3 N5,3 N6,3 N7,31

0 1 2 3 4 5 6 7 8 9 10

y

u

Figure VIII.7. The order three (piecewise degree two) blending functions with uniform knot positions
ui = i . We still have � = 10; there are �+ 1 knots and �− 2 blending functions. The associated B-spline
curve of Equation VIII.3 is defined for 2 ≤ u ≤ �− 2.

these blending functions as

q(u) =
�−3∑
i=0

Ni,3(u)pi , 2 ≤ u ≤ �− 2. VIII.3

By using the Cox–de Boor formula again, we could define the order four (piecewise degree
three) blending functions Ni,4(u). We do not carry out this computation; however, the results
obtained would be identical to the blending functions Ni (u) used in Section VIII.1 and shown
in Figure VIII.3. We leave it as an exercise for the reader to verify this fact.

Example: Bézier Curve as B-Spline
For our second example, we let the knot vector be [0, 0, 0, 0, 1, 1, 1, 1] and compute the order
1, 2, 3, and 4 blending functions for this knot vector. Here we have ui = 0 for i = 0, 1, 2, 3
and ui = 1 for i = 4, 5, 6, 7. The order one blending functions are just

N3,1(u) =
{
1 if 0 ≤ u ≤ 1
0 otherwise

and Ni,1(u) = 0 for i �= 3.
The order two blending functions Ni,2(u) are zero except for i = 2, 3. Also, for every

order m ≥ 1, every blending function will be zero for u < 0 and u > 1. Both these facts use
the conventions for the Cox–de Boor equations that 0/0 = 0 and (a/0) · 0. (The reader should
verify all our assertions!) For i = 2, 3 and 0 ≤ u ≤ 1, the Cox–de Boor equations with k = 1
give

N2,2(u) = u − u2

u3 − u2
· N2,1(u)+ u4 − u

u4 − u3
· N3,1(u)

= u − 0

0− 0
· 0+ 1− u

1− 0
· 1 = 1− u

N3,2(u) = u − u3

u4 − u3
· N3,1(u)+ u5 − u

u5 − u4
· N4,1(u)

= u − 0

1− 0
· 1+ 1− u

1− 1
· 0 = u.

The order three blending functions are zero except for i = 1, 2, 3, and N1,3(u), N2,3(u),
and N3,3(u) are zero outside the domain [0, 1]. Calculations from the Cox–de Boor equations,
similar to the preceding, give, for 0 ≤ u ≤ 1,

N1,3(u) = (1− u)2

N2,3(u) = 2u(1− u) VIII.4

N3,3(u) = u2.
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The order four (piecewise degree three) blending functions Ni,4(u) are nonzero for i =
0, 1, 2, 3 and have support contained in [0, 1]. Further calculations from the Cox–de Boor
equations give

N0,4(u) = (1− u)3

N1,4(u) = 3u(1− u)2

N2,4(u) = 3u2(1− u)

N3,4(u) = u3

for 0 ≤ u ≤ 1. Surprisingly, these four blending functions are equal to the Bernstein polyno-
mials of degree three, namely, B3

i (u) = Ni,4(u). Therefore, the B-spline curve defined with the
four control points p0, p1, p2, p3 and knot vector [0, 0, 0, 0, 1, 1, 1, 1] is exactly the same as
the degree three Bézier curve with the same control points.

Some generalizations of this example are given later in the first half of Section VIII.9,
where it is shown how to represent multiple Bézier curves as a single B-spline curve: see
Theorem VIII.12 on page 226.

Example: Nonuniformly Spaced and Repeated Knots
Consider the nonuniform knot vector

[0, 0, 0, 0, 1, 2, 24
5 , 3

1
5 , 4, 5, 6, 7, 7, 8, 9, 10, 10, 10, 10].

This was obtained by starting with knots at integer values 0 through 10, quadrupling the first
and last knots, doubling the knots at u = 3 and u = 7, and then separating the knots at 3 slightly
to be at 24

5 and 31
5 . As usual, for i = 0, . . . , 18, ui denotes the i th knot as shown:

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ui : 0 0 0 0 1 2 2 4
5 3 1

5 4 5 6 7 7 8 9 10 10 10 10

The degree zero blending functions Ni,1(u) are defined for 0 ≤ i ≤ 17. These are the step
functions defined to have value 1 on the half-open interval [ui , ui+1) and value zero elsewhere.
For values i such that ui = ui+1, this means that Ni,1(u) is equal to zero for all u. This happens
for i equal to 0, 1, 2, 11, 15, 16, 17.

The degree one blending functions are Ni,2(u), for 0 ≤ i ≤ 16, and are shown in
Figure VIII.8. When ui , ui+1, and ui+2 are distinct, then the graph of the function Ni,2(u)
rises linearly from zero at ui to 1 at ui+1 and then decreases linearly back to zero at ui+2. It
is zero outside the interval (ui , ui+2). On the other hand, when ui = ui+1 �= ui+2, then Ni,2 is
discontinuous at ui : it jumps from the value zero for u < ui to the value 1 at ui . It then decreases
linearly back to zero at ui+2. The situation is dual when ui �= ui+1 = ui+2. In Figure VIII.8,
N10,2 and N11,2 are both discontinuous at u = 7. If ui = ui+2, as happens for i = 0, 1, 15, 16,
then Ni,2(u) is equal to the constant zero everywhere.

The degree two blending functions are Ni,3(u), for 0 ≤ i ≤ 15, and are shown in part (b) of
Figure VIII.8. The functions Ni,3(u) have support in the interval [ui , ui+3]. More than this is
true: if ui �= ui+1, then Ni,3(ui ) = 0, and similarly, if ui+2 �= ui+3, then Ni,3(ui+3) = 0. Even
further, if ui = ui+1 �= ui+2, then Ni,3(ui ) = 0: this happens when i = 2, 11. However, in this
case, Ni,3(u) has discontinuous first derivative at ui . The symmetric case of ui+1 �= ui+2 = ui+3
can be seen with i = 9 and i = 13.

When there is a knot ofmultiplicity≥ 3 and ui = ui+2 �= ui+3, thenwe have Ni,3(ui ) = 1: in
our example, this happens for i = 1. Dually, when ui �= ui+1 = ui+3, as happens with u = 14,
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1 2 2.8 3.2 4 5 6 7 8 9 10
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N3,2 N4,2N5,2N6,2 N7,2 N8,2 N9,2
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(a) Degree one blending functions.
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(b) Degree two blending functions.
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Doubled knot
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N9,4N10,4
N11,4N12,4

N13,4
N14,4

(c) Degree three blending functions.

Figure VIII.8. Degree one, two, and three blending functions for a nonuniform knot sequence. The knot
7 has multiplicity two, and the knots 0 and 10 have multiplicity 4.

then Ni,3(ui+2) = 1. For i = 0, 15, Ni,3(u) is just the constant zero everywhere. At the doubled
knot u11 = u12 = 7, the blending function N10,3(u) is continuous and equal to 1 but has a
discontinuous first derivative. A degree two B-spline curve formed with this knot vector will
interpolate p10 at u = 7 but will, in general, have a corner there.

The degree three blending functions, Ni,4(u), are shown in part (c) of Figure VIII.8. They are
defined for 0 ≤ i ≤ 14 and have support in the interval [ui , ui+4].Where a knot hasmultiplicity
≥ 4, say if ui = ui+3 �= ui+4, then the right limit limu→u+i Ni,4(u) is equal to 1. Likewise, if
ui �= ui+1 = ui+4, then the left limit limu→u−i+1 Ni,4(u) equals1. In this example, these situations
happen only at the endpoints of the curve.

The degree three blending functions are C2-continuous everywhere except at the doubled
knot position u = 7, where N8,4(u), N9,4(u), N10,4(u), and N11,4(u) are only C1-continuous.

The next two exercises ask you to work out some details of the standard knot vectors for
degree two and degree three. For general degree k, the standard knot vectors have the form

[0, 0, . . . , 0, 1, 2, 3, . . . , s − 2, s − 1, s, s, . . . , s],
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N0,3
N1,3

N2,3 N3,3 N4,3

N5,3

1 2 3 4

u

1

Figure VIII.9. The degree two blending functions, Ni,3(u), for the knot vector of Exercise VIII.6.

where the knots 0 and s have multiplicity k + 1 and the rest of the knots have multiplicity 1.
For these knot vectors, the B-spline curve will interpolate the first and last control points: the
exercises ask you to verify this for some particular examples. In Section VIII.13, we will work
again with the standard knot vector for degree three B-spline curves to interpolate a set of
control points.

Exercise VIII.6 Derive the formulas for the quadratic (order three, degree two) B-spline
blending functions for the knot vector [0, 0, 0, 1, 2, 3, 4, 4, 4]. How many control points
are needed for a quadratic B-spline curve with this knot vector? What is the domain of the
B-spline curve? Show that the curve begins at the first control point and ends at the last
control point. Check your formulas for the blending functions against Figure VIII.9.

Exercise VIII.7 Repeat the previous exercise, but with cubic B-spline curves with the
knot vector [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6]. The graph of the blending functions for this
curve is shown in Figure VIII.10. (If you actually do this exercise, you might wish to use a
computer algebra program to derive the formulas to avoid excessive hand calculation.)

VIII.4 Properties of Nonuniform B-Splines

We now introduce some of the basic properties of the B-spline blending functions. Theorem
VIII.1 describes the domain of definition for B-spline blending functions and shows they
can be used to form weighted averages. Theorem VIII.2 explains the continuity properties of
derivatives of B-splines.

Throughout this section, we use m to denote the order of the blending functions, that is,
m is 1 plus the degree k of the blending functions.

Theorem VIII.1 Let u0 ≤ u1 ≤ · · · ≤ u� be a knot vector. Then the blending functions
Ni,m(u), for 0 ≤ i ≤ �− m, satisfy the following properties.

(a) Ni,m has support in [ui , ui+m] for all m ≥ 1.
(b) Ni,m(u) ≥ 0 for all u.
(c)

∑�−m
i=0 Ni,m(u) = 1 for all u such that um−1 ≤ u ≤ u�−m+1.

N0,4

N1,4 N2,4
N3,4 N4,4 N5,4 N6,4 N7,4

N8,4

1 2 3 4 5 6

u

1

Figure VIII.10. The degree three blending functions, Ni,4(u), for the knot vector [0, 0, 0, 0, 1, 2,
3, 4, 5, 6, 6, 6, 6] of Exercise VIII.7.
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It can become very confusing to keep track of all the precise values for subscripts and their
ranges. Referring to Figures VIII.3, VIII.6, and VIII.7 can help with this.

Proof As discussed earlier, conditions (a) and (b) are readily proved by induction on m.
Condition (c) is also proved by induction on m by the following argument. The base case, with
m = 1, is obviously true. For the induction step, we assume condition (c) holds and then prove
it with m + 1 in place of m. Assume um ≤ u ≤ u�−m . By the Cox–de Boor formula,

�−m−1∑
i=0

Ni,m+1(u)

=
�−m−1∑

i=0

(
u − ui

ui+m − ui
Ni,m(u)+ ui+m+1 − u

ui+m+1 − ui+1
Ni+1,m(u)

)

= u − u0

um − u0
N0,m(u) +

�−m−1∑
i=1

(u − ui )+ (ui+m − u)

ui+m − ui
Ni,m(u)

+ u� − u

u� − u�−m
N�−m,m(u)

= N0,m(u) +
�−m−1∑

i=1
1 · Ni,m(u) + N�−m,m(u)

=
�−m∑
i=0

Ni,m(u) = 1.

The final equality follows from the induction hypothesis. The derivation of the next to last
line needed the fact that u−u0

um−u0
N0,m(u) = N0,m(u). This holds since um ≤ u; in particular,

if um < u then N0,m(u) = 0 by (a), and if um = u then u−u0
um−u0

= 1. Similarly, the fact that
u�−u

u�−u�−m
N�−m,m(u) = N�−m,m(u) is justified by u ≤ u�−m . �

The importance of conditions (b) and (c) is that they allow the blending functions to be
used as coefficients of control points to give a weighted average of control points. To define
an order m (degree m − 1) B-spline curve, one needs n + m + 1 knot positions u0, . . . , un+m

and n + 1 control points p0, . . . ,pn . Then � = n + m and the B-spline curve equals

q(u) =
n∑

i=0
Ni,m(u)pi

for um−1 ≤ u ≤ u�−m+1 = un+1.
The bounded interval of support given in condition (a) means that

q(u) =
j∑

i= j−m+1
Ni,m(u)pi

provided u j ≤ u < u j+1. Thus, the control points provide local control over the B-spline curve,
since changing one control point only affects m segments of the B-spline curve.

The next theorem describes the smoothness properties of a B-spline curve. Because a
B-spline consists of pieces that are degree m − 1 polynomials, it is certainly C∞-continuous
at all values of u that are not knot positions. If there are no repeated knots and if m > 1, then,
as we will prove, the curve is in fact continuous everywhere in its domain and, even more, the
curve is Cm−2-continuous everywhere in its domain. For instance, a degree three B-spline with
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no repeated knots has its second derivatives defined and continuous everywhere in its domain,
including at the knot positions.

The case of repeated knots is more complicated. We say that a knot has multiplicity µ if it
occurs µ times in the knot vector. Since the knots are linearly ordered, these µ occurrences
must be consecutive values in the knot vector. That is, we have

ui−1 < ui = ui+1 = · · · = ui+µ−1 < ui+µ.

In this case, the curve will have its (m − µ− 1)th derivative defined and continuous at u = ui .
For instance, a degree three B-spline will have a continuous first derivative at a twice repeated
knot position but in general will be only continuous at a knot position of multiplicity three.
In the latter case, the curve will generally have a “corner” or “bend” at that knot position. A
B-spline curve of degree three can be discontinuous at a knot position of multiplicity four.

The ability to repeat knots andmake the curve have fewer continuous derivatives is important
for the usefulness of B-splines because it allows a single curve to include both smooth portions
and sharply bending portions.

We combine the assertions above about the smoothness of B-splines into the next theorem.

TheoremVIII.2 Letq(u)be a B-spline curve of order m, and let the knot ui have multiplicityµ.
Then the curve q(u) has continuous (m − µ− 1)th derivative at u = ui .

It is fairly difficult to give a direct proof of this theorem, and so the proof of Theorem VIII.2
is postponed until Section VIII.7, where we present a proof based on the use of the blossoms
introduced in Section VIII.6.

The last property of B-splines discussed in this section concerns the behavior of blending
functions near repeated knots. In general, if a degree k B-spline curve has a knot of multiplic-
ity ≥ k, then there is a blending function Ni,k+1(u) that goes to 1 at the knot. Examples of this
are the blending functions shown in Figures VIII.8–VIII.10, where the first and last knots are
repeated many times and the first and last blending functions reach the value 1 at the first and
last knots, respectively. It can also happen that interior knot positions have multiplicity k as
well, and at such knots the appropriate blending function(s) will reach the value 1; see Figures
VIII.4 and VIII.8(b) for examples of this.

The next theorem formalizes these facts. In addition to helping us understand the behavior
of B-spline curves at their endpoints, the theorem will be useful in the next two sections for
the development of the de Boor algorithm and for the proof of Theorem VIII.2.

Theorem VIII.3 Let k ≥ 1.

(a) Suppose that ui = ui+k−1 < ui+k , and so ui has multiplicity at least k. Then

lim
u→u+i

Ni−1,k+1(u) = 1 VIII.5

and, for j �= i − 1,

lim
u→u+i

N j,k+1(u) = 0.

(b) Dually, suppose ui−1 < ui = ui+k−1, and so ui has multiplicity at least k. Then

lim
u→u−i

Ni−1,k+1(u) = 1 VIII.6

and, for j �= i − 1,

lim
u→u−i

N j,k+1(u) = 0.
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Proof To prove (a) and (b), it will suffice to prove that equations VIII.5 and VIII.6 hold since
the fact that the other limits equal zero will then follow from the partition of unity property of
Theorem VIII.1(c).

We prove VIII.5 by induction on k. The base case is k = 1. (Refer to figures VIII.6
and VIII.8(a).) Using the definitions of the N j,1(u) blending functions as step functions, that
ui+1 − ui �= 0, and the Cox–de Boor formula, we have

lim
u→u+i

Ni−1,2(u) = lim
u→u+i

( u − ui−1
ui − ui−1

Ni−1,1(u)+ ui+1 − u

ui+1 − ui
Ni,1(u)

)
= 0+ 1 · 1 = 1.

The induction step applies to k ≥ 2. In this case, we have

lim
u→u+i

Ni−1,k+1(u)

= lim
u→u+i

( u − ui−1
ui+k−1 − ui−1

Ni−1,k(u)+ ui+k − u

ui+k − ui
Ni,k(u)

)
= 1 · 1+ 1 · 0 = 1.

Here we have used the induction hypothesis and the fact that ui = ui+k−1.
The proof of VIII.6 is completely dual, and we omit it. �

Exercise VIII.8 Use Theorem VIII.3 to prove that B-splines defined with the standard knot
vector interpolate their first and last control points. [Hint: Use i = 0 and i = s + k − 1.]

VIII.5 The de Boor Algorithm

The de Boor algorithm is a method for evaluating a B-spline curve q(u) at a single value
of u. The de Boor algorithm is similar in spirit to the de Casteljau method for Bézier curves
in that it works by repeatedly linearly interpolating between pairs of points. This makes
the de Boor algorithm stable, robust, and less prone to roundoff errors than methods that
work by calculating values of the blending functions Ni,m(u). The de Boor algorithm is
also an important construction for understanding the mathematical properties of B-spline
curves, and it will be used to establish the “blossoming” method for B-splines in the next
section.

Suppose that q(u) is a B-spline curve of degree k ≥ 1 and is defined by the control points
p0, p1, . . . ,pn and the knot vector [u0, . . . , un+m], where m = k + 1 is the order of q(u).
Therefore, the curve’s domain of definition is [uk, un+1]. As usual, q(u) is defined by

q(u) =
n∑

i=0
Ni,k+1(u)pi . VIII.7

The next theorem provides the main tool needed to derive the de Boor algorithm.

Theorem VIII.4 For all u ∈ [uk, un+1] (or, for all u ∈ [uk, un+1) if k = 1),

q(u) =
n∑

i=1
Ni,k(u)p

(1)
i (u), VIII.8

where

p(1)i (u) = ui+k − u

ui+k − ui
pi−1 + u − ui

ui+k − ui
pi . VIII.9
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If any knot has multiplicity> k; we can have ui = ui+k ; the value p
(1)
i (u) is undefined.With

our conventions on division by zero, the theorem still makes sense in this case, for then the
function Ni,k(u) is the constant zero function.

Proof We expand equation VIII.7 using the Cox–de Boor formula.

q(u) =
n∑

i=0
Ni,k+1(u)pi

=
n∑

i=0

(
u − ui

ui+k − ui
Ni,k(u)+ ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k(u)

)
pi

=
n∑

i=0

u − ui

ui+k − ui
Ni,k(u)pi +

n+1∑
i=1

ui+k − u

ui+k − ui
Ni,k(u)pi−1

=
n∑

i=1

u − ui

ui+k − ui
Ni,k(u)pi +

n∑
i=1

ui+k − u

ui+k − ui
Ni,k(u)pi−1

=
n∑

i=1

(
ui+k − u

ui+k − ui
pi−1 + u − ui

ui+k − ui
pi

)
Ni,k(u).

It is necessary to justify the fourth equality above, which reduces the domains of the summa-
tions. First note that, since N0,k(u) has support contained in [u0, uk] and is right continuous atuk ,
N0,k(u) = 0 for u ≥ uk . This justifies dropping the i = 0 term from the first summation. For
the second summation, we need to show that Nn+1,k(u) = 0. Note that Nn+1,k(u) has support in
[un+1, un+m], and so the desired equality Nn+1,k(u) = 0 certainly holds if u < un+1. It remains
to consider the case where k > 1 and u = un+1. Now, if un+1 < un+m , then Nn+1,k(un+1) = 0
by the Cox–de Boor formula. On the other hand, if un+1 = un+m , then Nn+1,k(u) is the constant
zero function.

That suffices to prove the theorem. �

It is possible restate Theorem VIII.4 without the special case for k = 1. For this, let the
order k functions Ni,k(u) be defined from the knot vector [u0, . . . , un+m−1] instead of the knots
[u0, . . . , un+m]. Then Equation VIII.8 holds for all u ∈ [uk, un+1] for all k ≥ 1.

At first glance, Equation VIII.8 may appear to define q(u) as a degree k − 1 B-spline curve.
This is not quite correct however, since the new “control points” p(1)i (u) depend on u. Nonethe-
less, it is convenient to think of the theorem as providing a method of “degree lowering,” and
we can iterate the construction of the theorem to lower the degree all the way down to degree
one. For this, we define

p(0)i (u) = pi ,

and, for 1 ≤ j ≤ k, we generalize Equation VIII.9 to

p( j)
i (u) = ui+k− j+1 − u

ui+k− j+1 − ui
p( j−1)

i−1 + u − ui

ui+k− j+1 − ui
p( j−1)

i . VIII.10

The following theorem shows that, for a particular value of j and a particular u, q(u) can be
expressed in terms of a B-spline curve of degree k − j .

Theorem VIII.5 Let 0 ≤ j ≤ k. Let u ∈ [uk, un+1] (or u ∈ [uk, un+1) if j = k). Then

q(u) =
n∑

i= j

Ni,k+1− j (u)p
( j)
i (u). VIII.11

This theorem is proved by induction on j using Theorem VIII.4. ✷
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p(k)
s

p(k−1)
s−1

p(k−1)
s

. . .

· · ·

p(2)
s−k+2

...

p(2)
s−1

p(2)
s

p(1)
s−k+1

...

p(1)
s−2

p(1)
s−1

p(1)
s

p(0)
s−k

=

...

p(0)
s−2

=

p(0)
s−1

=

p(0)
s

=

ps−k

...

ps−2

ps−1

ps

Figure VIII.11. The control points obtained as q(u) is expressed as B-spline curves of lower degrees. For
j > 0, the values p( j)

i depend on u.

For the rest of this section, we suppose q(u) has degree k and that every knot position has
multiplicity ≤ k except that possibly the first and last knot positions have multiplicity k + 1.
It follows from Theorem VIII.2 that q(u) is a continuous curve. These assumptions can be
made without loss of generality since the B-spline curve can be discontinuous at any knot with
multiplicity ≥ k + 1, and if such knots do occur the B-spline curve can be split into multiple
B-spline curves.

We are now ready to describe the de Boor algorithm. Suppose we are given a value for u
such that us ≤ u < us+1, and we wish to compute q(u). By Theorem VIII.5, with j = k,
we have q(u) = p(k)s (u). This is because the degree zero blending function Ns,1(u) is equal
to 1 on the interval containing u. The de Boor algorithm thus consists of evaluating p(k)s (u)
by using equation VIII.10 recursively. As shown in Figure VIII.11, p(k)s (u) does not in gen-
eral depend on all of the original control points pi but instead only on the control points pi

with s − k ≤ i ≤ s. The de Boor algorithm presented at the conclusion of this section works
by computing the control points p( j)

i (u), which are shown in FigureVIII.11. That is, it computes
p( j)

i (u) for j = 1, . . . , k and for i = s − k + j, . . . , s. An example of the de Boor algorithm
is also illustrated in Figure VIII.12.

There is one special case in which the de Boor algorithm can be made more efficient. When
u is equal to the knot us , it is not necessary to iterate all the way to j = k. Instead, suppose

p0

p1

p2 p3

p4

p5

p6

p7

p
(1)
3

p
(1)
4

p
(1)
5

p
(2)
4

p
(2)
5

p
(3)
5

Figure VIII.12. The use of the de Boor algorithm to compute q(u). The degree three spline has the
uniform knot vector ui = i for 0 ≤ i ≤ 11 and control points pi . The points p( j)

i are computed by the
de Boor algorithm with u = 5 1

2 and p(3)5 = q(5 1
2 ).
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the knot u = us has multiplicityµ. Let δ = min(k, µ). Since us < us+1, we have us−δ+1 = us ,
and applying Theorem VIII.3(b) with i = s − δ + 1 gives

q(u) = p(k−δ)
s−δ .

The pseudocode for the de Boor algorithm is presented below. The algorithm works by
computing values p( j)

i (u) for successive values of j up to j = k − µ; these values are stored in

an arrayr[]. For a given value of j ,r[�] is computed to equalp( j)
s−k+ j+�(u). Tofind the formula

for computing successive values of r[�], make the change of variables � = i − (s − k + j)
in Equation VIII.10 to obtain

p( j)
s−k+ j+�(u) =

us+�+1 − u

us+�+1 − us−k+ j+�

p( j−1)
s−k+ j+�−1 +

u − us−k+ j+�

us+�+1 − us−k+ j+�

p( j−1)
s−k+ j+�. VIII.12

De Boor Algorithm

Input: A degree k B-spline curve q (thus of order m = k + 1), given by:
Control points p0, p1, . . . ,pn ,
Knot positions u0, u1, . . . , un+m .

A value u such that uk ≤ u ≤ un+1.
Result: Return value is q(u).
Algorithm:

If ( u==un+m ) { // If so, also u = un+1 holds.
Return pn;

}
Set s to be the value such that us ≤ u < us+1;
Set δ = 0;
// The next three lines are optional! Letting δ = 0
// always works.
If ( u==us ) {

Set δ = min(δ, the multiplicity of us);
}
// Initialize for j=0:
For � = 0, 1, ..., k − δ {

Set r[�] = ps−k+�;
}
// Main loop:
For j = 1,2,..., k − δ {

For � = 0, 1, ..., k − δ − j {
Set α =

u − us−k+ j+�

us+�+1 − us−k+ j+�

;

Set r[�] = lerp(r[�],r[�+ 1],α);
}

}
Return r[0];

VIII.6 Blossoms

Blossoms are a method of representing polynomial curves with symmetric, multiaffine func-
tions.As such they provide an elegant tool forworkingwithB-splines.Apart frommathematical
elegance, the most important aspect of blossoms for us is that they give a simple algorithm for
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computing the control points of a B-spline curve from the polynomial segments of the curve.
Blossoms will be useful for obtaining formulas for the derivative of a B-spline. In addition,
they give an easy method for deriving algorithms for knot insertion.

Suppose q(u) is a degree k B-spline curve and that us < us+1 are two knots. The curve
q(u) consists of polynomial pieces; on the interval [us, us+1], q(u) is defined by a (single)
polynomial, which we call f(u). We will find a new function b(x1, x2, . . . , xk) that takes k real
numbers as arguments but has the diagonal property that

b(u, u, . . . , u) = f(u). VIII.13

This function b(x1, . . . , xk) is called the “blossom” of f. The blossom b will also satisfy the
following two properties:

Symmetry Property: Changing the order of the inputs to b does not change the value of b;
namely, for any permutation π of {1, . . . , k} and for all values of x1, . . . xk ,

b(xπ (1), xπ (2), . . . , xπ (k)) = b(x1, x2, . . . , xk).

A function with this property is called a symmetric function.
Multiaffine Property: For any scalars α and β with α + β = 1, the blossom satisfies

b(αx1 + βx ′1, x2, x3, . . . , xk) = αb(x1, x2, x3, . . . , xk)+ βb(x ′1, x2, x3, . . . , xk).

By the symmetry property, the same property holds for any of the other inputs x2, . . . , xk

in place of x1.

Normally, the term “affine” is used for a function of a single variable that is defined by
a polynomial of degree one. (This is equivalent to how “affine” was defined in Chapter II;
however, now we are working with functions that take scalar inputs instead of inputs from
R

2 or R
3.) In other words, a function h(x) is affine if it is of the form h(x) = ax + b. Such

functions h are precisely the functions that satisfy h(αx + βy) = αh(x)+ βh(y) for all values
of x , y, α, and β with α + β = 1. Since blossoms are affine in each input variable separately,
they are called “multiaffine.”

We next define the blossom of a polynomial curve q(u) in R
d . First, some notation is

necessary. For k > 0, we let [k] = {1, 2, . . . , k}. For J a subset of [k], we define the term xJ

to be the product

xJ =
∏

j∈J
x j .

For example, if J = {1, 3, 6}, then xJ = x1x3x6. For the empty set, we define x∅ = 1.

Definition Let q have degree ≤ k so that

q(u) = rkuk + rk−1uk−1 + · · · + r2u2 + r1u1 + r0,
where the coefficients ri are points from R

d for some d. (These coefficients ri should not be
confused with the control points of a B-spline curve.) We define the degree k blossom of q(u)
to be the k variable polynomial

b(x1, . . . , xk) =
k∑

i=0

∑
J⊆[k]
|J |=i

(
k

i

)−1
ri x J , VIII.14

where |J | denotes the cardinality of J . We need to check that the definition of the blossom b
satisfies the three properties described above. First, it is immediate, just from the form of the
definition, that b is a symmetric function. Second, the terms in the polynomial defining b
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contain at most one occurrence of each variable; therefore, b is degree one in each variable
separately and thus is affine in each variable. Finally, since there are

(k
i

)
many subsets J of k

of size i , it is easy to see that b(u, u, . . . , u) = q(u).
As an example, let q(u) be the quadratic curve

q(u) = au2 + bu + c.
Then, the degree two blossom of q(u) is the polynomial

b(x1, x2) = ax1x2 + 1
2b(x1 + x2)+ c.

There is also a degree three blossom for q(u). For this, we think of q(u) as being a degree three
polynomial with leading coefficient zero. Then the degree three blossom of q(u) equals

b(x1, x2, x3) = 1
3a(x1x2 + x1x3 + x2x3)+ 1

3b(x1 + x2 + x3)+ c.

Exercise VIII.9 Let q(u) = au3 + bu2 + cu + d. What is the degree three blossom
of q(u)?

The key reason that blossom functions are useful is that they can be used to compute the
control points of a B-spline curve from the polynomial equation of the curve. This is expressed
by the next theorem.

Theorem VIII.6 Let q(u) be a degree k, order m = k + 1 B-spline curve with knot vector
[u0, . . . , un+m] and control points p0, . . . ,pn. Suppose us < us+1, where k ≤ s ≤ n. Let q(u)
be equal to the polynomial qs(u) for u ∈ [us, us+1). Let b(x1, . . . , xk) be the blossom of qs(u).2

Then the control points ps−k, . . . ,ps are equal to

pi = b(ui+1, ui+2, . . . , ui+k), VIII.15

for i = s − k, . . . , s.

This theorem lets us obtain the control points that affect a single segment of a B-spline from
the blossom of the segment. In particular, it means that k + 1 consecutive control points can
be calculated from just the one segment that they all affect!

Proof To prove Theorem VIII.6, we relate the blossom’s values to the intermediate values
obtained in the de Boor algorithm. For this, it is convenient to make a change of variables by
setting i = s − k + � and rewriting equation VIII.15 as

ps−k+� = b(us−k+�+1, us−k+�+2, . . . , us+�). VIII.16

It will thus suffice to prove Equation VIII.16 holds for � = 0, 1, . . . , k.
Consider the values of the blossom function, as shown in Figure VIII.13. To save space, we

have used two notational conveniences. First, the notation u〈i〉 is used to denote i occurrences
of the parameter u; for example, the diagonal property VIII.13 can be reexpressed as b(u〈k〉) =
qs(u). Second, for i < j , the notation u[i, j] denotes the sequence of values ui , ui+1, . . . , u j .

Figure VIII.13 looks very much like Figure VIII.11, which describes the de Boor algorithm.
Indeed, the next lemma shows that it corresponds exactly to Figure VIII.11.

LemmaVIII.7 Suppose the equality VIII.16 holds for all � = 0, . . . , k. Then, for j = 0, . . . , k
and � = 0, . . . , k − j ,

p( j)
s−k+ j+�(u) = b(us−k+ j+�+1, . . . , us+�, u〈 j〉).

2 The B-spline curve q(u) is only piecewise polynomial, and so it does not have a blossom. But, of
course the subcurve qs(u) does have a blossom.
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b(u〈k〉)

. . .

· · ·

b(u[s−k+3,s], u
〈2〉)

...

b(u[s,s+k−3], u
〈2〉)

b(u[s+1,s+k−2], u
〈2〉)

b(u[s−k+2,s], u)

...

b(u[s−1,s+k−3], u)
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b(u[s+1,s+k−1], u)

b(u[s−k+1,s])

...

b(u[s−1,s+k−2])

b(u[s,s+k−1])

b(u[s+1,s+k])

Figure VIII.13. A table of blossom values. The value b(u〈k〉) on the left is equal to qs(u). The blossom
values in the right column are equal to the control points of the B-spline curve. The symmetry and
multiaffine properties of the blossom function mean that each blossom value is a weighted average of the
two blossom values that point to it as expressed in Equation VIII.17.

The lemma is proved by induction on j . The base case is j = 0, and for this case, the lemma
holds by the hypothesis that VIII.16 holds. To prove the induction step for j > 0, note that the
symmetry and multiaffine properties of b imply that b(us−k+ j+�+1, . . . , us+�, u〈 j〉) equals

b(us−k+ j+�+1, . . . , us+�, u, u〈 j−1〉)

= us+�+1 − u

us+�+1 − us−k+ j+�

b(us−k+ j+�, . . . , us+�, u〈 j−1〉) VIII.17

+ u − us−k+ j+�

us+�+1 − us−k+ j+�

b(us−k+ j+�+1, . . . , us+�+1, u〈 j−1〉).

The induction hypothesis tells us that b(us−k+ j+�, . . . , us+�, u〈 j−1〉) and b(us−k+ j+�+1,
. . . , us+�+1, u〈 j−1〉) are equal to p( j−1)

s−k+ j+�−1(u) and p
( j−1)
s−k+ j+�(u), respectively. Therefore, by

Equation VIII.12,

b(us−k+ j+�+1, . . . , us+�, u〈 j〉) = p( j)
s−k+ j+�(u).

That completes the proof of the lemma.
The lemma immediately implies that, if the control points ps−k, . . . ,ps satisfy

Equation VIII.16, then the correct curve qs(u) is obtained. That is, the values
b(us−k+�+1, us−k+�+2, . . . , us+�) are a possible set of control points for qs(u). On the other
hand, vector space dimensionality considerations imply that there is at most a single set of pos-
sible control points for qs(u). Namely, for a curve lying in R

d , the vector space of all degree k
polynomials has dimension (k + 1)d , and the space of possible control points ps−k, . . . ,ps has
the same dimension. Thus, Theorem VIII.6 is proved. �

Exercise VIII.10 Verify the following special case of Theorem VIII.6. Let

q(u) = (1− u)2p0 + 2u(1− u)p1 + u2p2

be the degree two B-spline with the knot vector [0, 0, 0, 1, 1, 1]and control pointsp0, p1, p2.
(See Equations VIII.4 on page 208.) Give the formula for the blossom b(x1, x2) of q. What
are the values of b(0, 0), b(0, 1), and b(1, 1)?

It is possible to develop the theory of Bézier curves and B-spline curves using the blossoms
as the central concept. This alternate approach differs from our treatment in this book by
using blossoms instead of blending functions Ni,k as the main tool for defining B-splines.
The textbook (Farin, 1997) describes this alternate approach. Two early papers describing the
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use of blossoms are (Seidel, 1988; 1989); his work is based on the original developments by
de Casteljau and Ramshaw.

VIII.7 Derivatives and Smoothness of B-Spline Curves

This section derives formulas for the derivative of a B-spline curve and proves Theorem VIII.2
about the number of continuous derivatives of a B-spline. It is a pleasant discovery that the
derivative of a degree k B-spline curve is itself a B-spline curve of degree k − 1.

Theorem VIII.8 Let q(u) be a degree k = m − 1 B-spline curve with control points
p0, . . . ,pn. Then its first derivative is

q′(u) =
n∑

i=1
k Ni,k(u)

pi − pi−1
ui+k − ui

. VIII.18

In particular, q′(u) is the degree k − 1 B-spline curve with control points equal to

p∗i =
k

ui+k − ui
(pi − pi−1). VIII.19

We prove Theorem VIII.8 in stages. First, we prove that Equation VIII.18 is valid for
all values of u that are not knots. We then use continuity considerations to conclude that
Equation VIII.18 holds also for u a knot.3 After proving Theorem VIII.8, we use it to help
prove Theorem VIII.2.

The next lemma will be used for the first stage of the proof of Theorem VIII.8. This lemma
explains how to express the blossom of the first derivative of a function in terms of the blossom
of the function.

Lemma VIII.9 Let f(u) be a polynomial curve of degree ≤ k, and let b(x1, . . . , xk) be its
degree k blossom.

(a) Let b∗(x1, . . . , xk−1) be the degree k − 1 blossom of the first derivative f′(u) of f(u). Then,

b∗(x1, . . . , xk−1) = k · (b(x1, . . . , xk−1, 1)− b(x1, . . . , xk−1, 0)). VIII.20

(b) More generally, for all s �= t ,

b∗(x1, . . . , xk−1) = k

t − s
(b(x1, . . . , xk−1, t)− b(x1, . . . , xk−1, s)). VIII.21

Proof Let f(u) =∑k
i=0 ri ui . The definition of the degree k blossom of f(u) given by equa-

tion VIII.14 can be rewritten as

b(x1, . . . , xk) =
∑
J⊆[k]

(
k

|J |
)−1

r|J |xJ . VIII.22

3 (For any practical use of splines, you can ignore this footnote.) To be completely rigorous, it is not
quite true that q′(u) is always the degree k − 1 B-spline curve with control points p∗i . Namely, at points
where the degree k − 1 curve is discontinuous, the first derivative ofq is undefined.However, if the first
derivative is extended to isolated points by taking right limits, we have equality. For similar reasons,
Equation VIII.18 does not always hold either. A more correct way to say this is that Equation VIII.18
holds whenever the expression on the right-hand side is continuous at u as well as whenever q′(u) is
defined.
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The first derivative of f(u) is f′(u) =∑k−1
i=0 (i + 1)ri+1ui , and its degree k − 1 blossom is

b∗(x1, . . . , xk−1) =
∑

J⊆[k−1]

(
k − 1

|J |
)−1

(|J | + 1)r|J |+1xJ . VIII.23

Now consider the difference b(x1, . . . , xk−1, 1)− b(x1, . . . , xk−1, 0). Examining the for-
mula VIII.22 for b, we see that terms for subsets J ’s that do not contain xk cancel out in
the difference, and terms for J ’s that do contain xk survive but with the factor xk removed.
Thus,

b(x1, . . . , xk−1, 1)− b(x1, . . . , xk−1, 0) =
∑

J⊆[k−1]

(
k

|J | + 1

)−1
r|J |+1xJ . VIII.24

Now, VIII.20 follows immediately from VIII.23 and VIII.24 and the identity k · (k−1
i

) =
(i + 1) · ( k

i+1
)
. So (a) is proved.

Part (b) is proved using (a). By the multiaffine property, since s + (1− s) = 1 and s · 1+
(1− s) · 0 = s,

b(x1, . . . , xk−1, s) = s · b(x1, . . . , xk−1, 1)+ (1− s) · b(x1, . . . , xk−1, 0).

Therefore,

b(x1, . . . , xk−1, s)− b(x1, . . . , xk−1, 0) = s · (b(x1, . . . , xk−1, 1)− b(x1, . . . , xk−1, 0)).

VIII.25

Similarly, with t in place of s,

b(x1, . . . , xk−1, t)− b(x1, . . . , xk−1, 0) = t · (b(x1, . . . , xk−1, 1)− b(x1, . . . , xk−1, 0)).

VIII.26

Equation VIII.21 follows from Equations VIII.20, VIII.25, and VIII.26. �

Returning to the proof of Theorem VIII.8, we can now show that q′(u) is the B-spline curve
with control points p∗i . For this, by Theorem VIII.6, it will suffice to prove the following: For
two distinct adjacent knots, us < us+1, if b and b∗ are the blossoms of q(u) and q′(u) on the
interval (us, us+1), then p∗i = b∗(ui+1, . . . , ui+k−1) for all i such that i ≤ s < i + k. This is
proved as follows using Lemma VIII.9(b) with s = ui and t = ui+k :

b∗(ui+1, . . . , ui+k−1)

= k

ui+k − ui
(b(ui+1, . . . , ui+k−1, ui+k)− b(ui+1, . . . , ui+k−1, ui ))

= k

ui+k − ui
(b(ui+1, . . . , ui+k−1, ui+k)− b(ui , ui+1, . . . , ui+k−1))

= k

ui+k − ui
(pi − pi−1) = p∗i .

It follows fromwhat we have proved so far that EquationVIII.18 holds for all values of u that
are not knots. It remains to establish the appropriate continuity conditions. This will complete
the proof of Theorem VIII.8, since a function that is continuous and whose first derivative is
equal to a continuous function except at isolated points has a continuous first derivative. This
is formalized by the following fact from real analysis (which we leave to the reader to prove):
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Lemma VIII.10 Let f be a continuous function, whose first derivative is defined in a neigh-
borhood of ui such that the left and right limits of f ′(u) at u = ui satisfy limu→u+i f ′(u) =
L = limu→u−i f ′(u). Then f ′(ui ) exists and is equal to L.

That concludes the proof of Theorem VIII.8.
We are now ready to prove Theorem VIII.2. It is certainly enough to prove the following

statement: For all B-spline curves q(u) of degree k, if a knot ui has multiplicity µ, then q(u)
has continuous (k − µ)th derivative at u = ui . We prove this statement by holding the knot
vector and thus the multiplicity µ of ui fixed and using induction on k starting at k = µ.

The base case, k = µ, is a direct consequence of Theorem VIII.3. Ni−1,k+1(u) has limit 1
on both sides of ui and thus value 1 at u = ui . For j �= i − 1, N j,k+1(u) is continuous and
equal to zero at ui . So, in this case, q(u) is continuous at u = ui with q(ui ) = pi−1.

The induction step uses theCox–deBoor formula to establish continuity andTheoremVIII.8
and LemmaVIII.10 to establish the continuity of the derivatives. Assume k > µ. The induction
hypothesis implies that, for all j , N j,k(u) is continuous and is Ck−µ−1-continuous at ui (the
induction hypothesis applies to N j,k(u) since it is a real-valued, degree k − 1 B-spline curve).
The Cox–de Boor formula expresses each N j,k+1(u) in terms of N j,k(u) and N j+1,k(u), and so
the induction hypothesis applied to these two functions implies that N j,k+1(u) has continuous
(k − µ− 1)th derivative at ui . Thus, any degree k B-spline curve q(u) with this knot vector is
Ck−µ−1-continuous at ui . TheoremVIII.8 further implies that the first derivative ofq(u) is equal
to a degree k − 1 B-spline curve, except possibly at knots. By the induction hypothesis, this
degree k − 1 curve is Ck−µ−1-continuous at ui . It follows that q(u) has a continuous (k − µ)th
derivative, by using Lemma VIII.10 with f(u) equal to the (k − µ− 1)th derivative of q(u). ✷

VIII.8 Knot Insertion

An important tool for practical interactive use of B-spline curves is the technique of knot
insertion, which allows one to add a new knot to a B-spline curve without changing the curve
or its degree. For instance, when editing a B-spline curve with a CAD program, one may wish
to insert additional knots in order to be able to make further adjustments to a curve: having
additional knots in the area of the curve that needs adjustment allows more flexibility in editing
the curve. Knot insertion also allows the multiplicity of a knot to be increased, which provides
more control over the smoothness of the curve at that point. A second use of knot insertion is to
convert a B-spline curve into a series of Bézier curves, as will be seen in Section VIII.9. A third
use of knot insertion is that, by adding more knots and control points, the control polygon will
more closely approximate the B-spline curve. This can be useful, for instance, in combination
with the convex hull property, since the convex hull will be smaller and will more closely
approximate the curve. This is similar to the way recursive subdivision can be used for Bézier
curves. However, one complication is that, for B-spline curves with many knot positions, you
should not work with the convex hull of the entire set of control points. Instead, you should use
the local support property and define a sequence of convex hulls of k + 1 consecutive control
points so that the union of these convex hulls contains the B-spline curve. A fourth use of knot
insertion is for knot refinement, whereby two curves with different knot vectors can each have
new knot positions inserted until the two curves have the same knot vectors.

There are two commonly usedmethods for knot insertion. The Böhmmethod (Böhm, 1980;
Böhm and Prautsch, 1985) allows a single knot at a time to be inserted into a curve, and the
Oslo method (Cohen, Lyche, and Riesenfeld, 1980; Prautsch, 1984) allows multiple knots to
be inserted at once. We will discuss only the Böhm method; of course, multiple knots may be
inserted by iterating this method. The proof of the Böhm method’s correctness will be based
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p0 = p̂0

p1 = p̂1 p2 = p̂2

p3 = p̂3 p4 = p̂4

p5

p6

p7 = p̂8

p8 = p̂9

p̂5

p̂6
p̂7

(a) Knot vector becomes [0, 1, 2, 3, 4, 5, 6, 7, 73
4 , 8, 9, 10, 11].

p0 = p̂0

p1 = p̂1 p2 = p̂2

p3 = p̂3 p4 = p̂4

p8 = p̂9

p9 = p̂10

p5 = p̂5

p6

p7 = p̂8

p̂6
p̂7

(b) Knot vector becomes [0, 1, 2, 3, 4, 5, 6, 7, 73
4 , 7

3
4 , 8, 9, 10, 11].

Figure VIII.14. Showing the insertion of knots into a degree three curve. The original knot vector is the
uniform knot vector [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. We insert the value 7 3

4 into the curve twice, each
time adding a new control point and making the control polygon more closely approximate the curve
near 7 3

4 . The dotted straight lines show the control polygon before the insertion of the new knot position.
The dashed straight lines are the control polygon after the insertion. (In (b), the dashed line from p̂6 to p̂7
is so close to the curve that it cannot be seen in the graph.) The filled circles are the original control
point positions. The open circles are the changed control point positions. The control points p̂i of (a)
are renamed pi in (b). In both figures, one new knot has been inserted and some of the control points
have been moved, but the B-spline curve itself is unchanged. If we inserted 7 3

4 a third time, then the new
control point p̂7 would be equal to the point on the curve at u = 7 3

4 .

on blossoming. For other methods of knot insertion, the reader can consult (Farin, 1997) and
(Piegl and Tiller, 1997) and the references cited therein.

Suppose q(u) is an order m, degree k = m − 1, B-spline curve defined with knot vector
[u0, . . . , un+m] and control points p0, . . . ,pn . We wish to insert a new knot position û where
us ≤ û < us+1 and then choose new control points so that the curve q(u) remains unchanged.

The new knot vector is denoted [̂u0, . . . , ûn+m+1], where, of course,

ûi =


ui if i ≤ s
û if i = s + 1
ui−1 if i > s + 1.

The method of choosing the new control points is less obvious, for we must be sure not to
change the curve. The Böhm algorithm gives the following definition of the control points:
(remember, k = m − 1):

p̂i =


pi if i ≤ s − k

ui+k − û

ui+k − ui
pi−1 + û − ui

ui+k − ui
pi if s − k < i ≤ s

pi−1 if s < i .

VIII.27

It is implicit in the definitions of the p̂i ’s that us+1 > us . This can always be arranged by
inserting a new repeated knot at the end of a block of repeated knots rather than the beginning
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or the middle. Note that the new control points p̂i are defined as weighted averages of pairs of
old control points pi−1 and pi .

The correctness of the Böhm algorithm for knot insertion is stated by the next theorem.

Theorem VIII.11 Suppose k ≥ 1 and let q̂(u) be the degree k B-spline curve defined with the
knot vector [̂u0, . . . , ûn+m+1] and control points p̂0, . . . , p̂n+1. Then, q̂(u) = q(u) for all u.

Proof Because of the way blossoms determine control points, it will suffice to show that

q(u) = q̂(u) for u ∈ [us, us+1).

For this, it is enough to show that the blossom b of q on the interval [us, us+1) is also the
blossom for q̂ on the intervals [us, û) and [̂u, us+1). To prove this, it is necessary and sufficient
to show that the blossom b has the properties given by Theorem VIII.6 with respect to the knot
positions and control points of q̂, namely, that for all i such that s − k ≤ i ≤ s + 1,

p̂i = b(̂ui+1, ûi+2, . . . , ûi+k).

For i = s − k, this is easily shown by

p̂s−k = ps−k

= b(us−k+1, us−k+2, . . . , us)

= b(̂us−k+1, ûs−k+2, . . . , ûs)

since u j = û j for j ≤ s. Likewise, for i = s + 1,

p̂s+1 = ps

= b(us+1, us+2, . . . , us+k)

= b(ûs+2, ûs+3, . . . , ûs+k+1).

It remains to consider the case in which s − k < i ≤ s. Let

α = ui+k − û

ui+k − ui
and β = û − ui

ui+k − ui
.

Then, by the definition of p̂i and since i ≤ s < i + k,

p̂i = αpi−1 + βpi

= αb(ui , ui+1, . . . , ui+k−1)+ βb(ui+1, ui+2, . . . , ui+k)

= b(ui+1, ui+2, . . . , us, û, us+1, . . . , ui+k−1)

= b(ûi+1, ûi+2, . . . , ûi+k).

The third equality above is justified by the symmetry and multiaffine properties of the blossom
and because α + β = 1 and αui + βui+k = û. �

Exercise VIII.11 In Exercise VII.17 on page 184, a half-circle is expressed as a quadratic
rational Bézier curve. Rewrite this as a degree two rational B-spline with knot vector
[0, 0, 0, 1, 1, 1]. Insert u = 1

2 as a new knot position. What are the new control points?
Graph the curve and its new control polygon. Compare with Figure VIII.17 on page 229.

Exercise VIII.12� Prove that B-spline curves satisfy the variation diminishing property.
[Hint: Combine the ideas of Exercise VII.9 with the fact that repeatedly inserting knots
in the correct sequence can make the control polygon approximate the B-spline curve
arbitrarily well.]
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VIII.9 Bézier and B-Spline Curves

We now discuss methods for translating between Bézier curves and B-spline curves. These
methods are degree preserving in that theywill transforma degree k Bézier curve into a degree k
B-spline and vice versa. Of course, there is a bit of a mismatch: a Bézier curve consists of
a single degree k curve specified by k + 1 control points whereas a B-spline curve consists
of a series of pieces, each piece a degree k polynomial. Accordingly, the translation between
B-spline curves and Bézier curves will transform a series of degree k pieces that join together
to make a single curve. Such a series of curve pieces can be viewed as either a single B-spline
curve or as a collection of Bézier curves.

From Bézier Curves to B-Spline Curves
First, we consider the problem of converting a single Bézier curve into a B-spline curve.
Suppose we have a degree three Bézier curve q(u) defined with control points p0, p1, p2, p3
that are defined over the range 0 ≤ u ≤ 1. To construct a definition of this curve as a B-spline
curve with the same control points, we let [0, 0, 0, 0, 1, 1, 1, 1] be the knot vector and keep
the control points as p0, p1, p2, p3. It can be verified by direct computation that the B-spline
curve is in fact the same curve q(u) as the Bézier curve (see pages 208–209). In fact, we have
the following general theorem.

Theorem VIII.12 Let k ≥ 1 and q(u) be a degree k Bézier curve defined by control points
p0, . . . ,pk . Then q(u) is identical to the degree k B-spline curve defined with the same control
points over the knot vector consisting of the knot 0 with multiplicity k + 1 followed by the
knot 1 also with multiplicity k + 1.

To prove this theorem, let Ni,k+1(u) be the basis functions for the B-spline with the knot
vector [0, . . . , 0, 1, . . . , 1] containing 2k + 2 many knots. Then we claim that

Ni,k+1(u) =
(

k

i

)
ui (1− u)k−i . VIII.28

The right-hand side of this equation is just the same as the Bernstein polynomials used
to define Bézier curves, and so the theorem follows immediately from Equation VIII.28.
Equation VIII.28 is easy to prove by induction on k, and we leave the proof to the reader. ✷

The most useful cases of the previous theorem are when k = 2 and k = 3. As we saw in
Section VII.13, the k = 2 case is frequently used for defining conic sections, including circles,
via Bézier curves. In the k = 2 case, a degree two Bézier curve with the three control points
p0, p1, p2 is equivalent to the degree two B-spline curve with the same three control points
and with knot vector [0, 0, 0, 1, 1, 1].

Often one wants to combine two or more Bézier curves into a single B-spline curve. For
instance, suppose one has degree two Bézier curves q0(u) and q1(u) defined with control
points p0, p1, p2 and p′0, p

′
1, p

′
2. We wish to combine these curves into a single curve q(u)

that consists of q1(u) followed by q2(u). That is, q(u) = q1(u) for 0 ≤ u ≤ 1, and q(u) =
q2(u − 1) for 1 ≤ u ≤ 2. By Theorem VIII.12, q(u) is equivalent to the degree two B-spline
curve with knot vector [0, 0, 0, 1, 1, 1, 2, 2, 2] and with the six control points p0, . . . ,p′2.
However, usually the two Bézier curves form a single continuous curve, that is, p2 = p′0. In
this case, q(u) is the same as the B-spline curve with knot vector [0, 0, 0, 1, 1, 2, 2, 2] and
with five control points p0, p1, p2, p′1, p

′
2. Note that one knot position and the duplicate control

point have been omitted. This construction is demonstrated by the calculation in the next
exercise.
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Exercise VIII.13 Calculate the degree two blending functions for the knot vector
[0, 0, 0, 1, 1, 2, 2, 2]. Show that the results are the degree two Bernstein polynomials on
the interval [0, 1], followed by the same degree two Bernstein polynomials translated to the
interval [1, 2]. Conclude that a quadratic B-spline formed with this knot vector and control
points p0, p1, p2, p3, p4 will be the concatenation of the two quadratic Bézier curves with
control points p0, p1, p2 and with control points p2, p3, p4.

The construction in this exercise can be generalized in several ways. First, if one has three
degree two Bézier curves that form a single continuous curve, then they are equivalent to a
degree twoB-spline curvewith knot vector [0, 0, 0, 1, 1, 2, 2, 3, 3, 3]. This generalizes to allow
a continuous curve that consists of any number of quadratic Bézier curves to be expressed as
a single B-spline curve. Second, the construction generalizes to other degrees: for instance,
a continuous curve that consists of two degree three Bézier curves is the same as the degree
three B-spline curve that has knot vector [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] and has the same seven
points as its control points. We leave the proofs of these statements to the reader.

Exercise VIII.14 Prove that the de Casteljau algorithm for a Bézier curve is the same as
the de Boor algorithm for the equivalent B-spline curve.

From B-Spline Curve to Piecewise Bézier Curve
We now discuss how to convert a general B-spline curve into constituent Bézier curves. A
priori, it is always possible to convert a degree k B-spline curve into a series of degree k Bézier
curves merely because the B-spline curve consists of piecewise polynomials of degree k and
any finite segment of a degree k polynomial can be represented as a degree k Bézier curve (see
Exercise VII.8).

Here is an algorithm to convert a B-spline curve into multiple Bézier pieces: use repeated
knot insertion to insert multiple occurrences of the knots until the first and last knots have
multiplicity k + 1 and each interior knot has multiplicity k. By the discussion about combining
multiple Bézier curves into a B-spline curve, this means that the control points of the resulting
B-spline curve (that is, the control points that result from the knot insertion) are also the control
points for Bézier curves between the knot positions.

VIII.10 Degree Elevation

Section VII.9 discussed degree elevation for Bézier curves. Degree elevation can also be
applied to B-spline curves. In analogy to the situation with Bézier curves, suppose we are
given a degree k B-spline curve q(u) and wish to find a way to describe the (same) curve as a
degree k + 1 B-spline curve.

The first thing to notice is that if a knot u has multiplicity µ in the degree k curve, then
q(u) has continuous (k − µ)th derivative at u (by Theorem VIII.2) but may well not have a
continuous (k − µ+ 1)th derivative at u. Thus, to represent q(u) as a degree k + 1 curve, it
is necessary for the knot position u to have multiplicity µ+ 1. In other words, to elevate the
degree of a curve, it will generally be necessary to increase the multiplicity of all the knots by
one.

Because of the need to add so many (duplicate) knot positions, the algorithms for de-
gree elevation are not particularly simple. We do not cover them but instead refer the
reader to (Farin, 1997) or (Piegl and Tiller, 1997) for algorithms and references for other
algorithms. Piegl and Tiller suggest the following algorithm: first, use knot insertion or
knot refinement to make all knots have multiplicity k in order to convert the curve into
degree k Bézier curve segments; second, use the degree elevation algorithm for Bézier
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〈p0, 1〉

〈p1, 1〉 〈p2, 1〉

〈 1
3p3,

1
3 〉 〈p4, 1〉

〈3p5, 3〉

〈3p6, 3〉

〈p7,1〉

〈p8, 1〉

FigureVIII.15. A degree three, rational B-spline curve. The control points are the same as in FigureVIII.1
on page 201, but now the control point p3 is weighted only 1/3, and the two control points p5 and p6 are
weighted 3. All other control points have weight 1. In comparison with the curve of Figure VIII.1(b), this
curve more closely approaches p5 and p6 but does not approach p3 as closely.

curves; and then, third, reduce the knot multiplicities by a process called “knot elimination.”
Other algorithms are available that do not need to add excess knots, for example, based on
blossoms.

VIII.11 Rational B-Splines and NURBS

A B-spline curve is called a rational curve if its control points are specified with homoge-
neous coordinates. These curves are sometimes called “NURBS,” which is an acronym for
“nonuniform, rational B-splines.”

Rational Bézier curves were already discussed earlier in Sections VII.12 and VII.13; much
of what was said about rational Bézier curves also applies to rational B-splines. A rational
B-spline has 4-tuples 〈x, y, z, w〉 as control points; the curve’s values q(u) are expressed as
weighted averages of the control points,

q(u) =
∑

i
Ni,m(u)pi ,

and so q(u) represents the points on the curve in homogeneous coordinates.
As with rational Bézier curves, thew component of a control point acts as a weight factor: a

control point 〈wpi , w〉weights the pointpi by a factor ofw. This is illustrated in FigureVIII.15.
Also, like rational Bézier curves, rational B-splines are preserved under perspective transfor-
mations and may have control points at infinity.

Section VII.13 described the construction of Bézier curves that trace out a semicircle or,
more generally, a portion of a conic section. B-splines can do better in that a single B-spline
can define an entire circle or an entire conic section. This is done by patching together several
quadratic Bézier curves to form a quadratic B-spline curve that traces out an entire circle or
conic section. As was shown in Section VIII.9, two quadratic Bézier curves may be patched
together into a single B-spline curve by using the knot vector [0, 0, 0, 1, 1, 2, 2, 2]. Similarly,
three quadratic Bézier curves can be combined into a single B-spline curve using the knot
vector [0, 0, 0, 1, 1, 2, 2, 3, 3, 3], and a similar construction works for combining four Bézier
curves into a single B-spline curve, and so forth. As an example, Theorem VII.9 on page 182
implies that if we use the knot vector [0, 0, 0, 1, 1, 2, 2, 2] and the control points

p0 = 〈0, 1, 1〉 p3 = 〈−1, 0, 0〉
p1 = 〈1, 0, 0〉 p4 = p0,
p2 = 〈0,−1, 1〉

then the resulting B-spline will trace out the unit circle.
Similar constructions also give the unit circle as a B-spline consisting of either three or

four Bézier segments without using control points at infinity. These are based on the results
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p0 = p8

p1

p2
p3

p4

p5
p6

p7

p0 = p6

p1

p2

p3

p4

p5

Figure VIII.16. Two ways to form a complete circle with a quadratic B-spline curve. The first curve has
knot vector [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4], and the control points pi have weight 1 when i is even and
weight

√
2
2 when i is odd. The second curve has knot vector [0, 0, 0, 1, 1, 2, 2, 3, 3, 3], and the control

points pi have weight 1 when i is even and weight 1
2 when i is odd.

from Exercises VII.14 and VII.15 and are pictured in Figure VIII.16. Compare this Figure with
VII.19 on page 184.

Another well-known construction of the unit circle by a degree two B-spline curve is shown
in Figure VIII.17; we leave the proof of its correctness to the reader (see Exercise VIII.11 on
page 225).

VIII.12 B-Splines and NURBS Surfaces in OpenGL

OpenGL provides routines for drawing (nonuniform) B-spline surfaces in the glu library.
By specifying the control points in homogeneous coordinates, this includes the ability
to render NURBS surfaces. The B-spline routines include gluNewNurbsRenderer and
gluDeleteNurbsRenderer to allocate and deallocate, respectively, a B-spline renderer;
these routines are misnamed, for they can also be used to render nonrational B-splines. The
routines gluBeginSurface() and gluEndSurface() are used to bracket one or more
calls to gluNurbsSurface. The latter routine allows specification of an array of knots and
control points. Since it renders a surface, it uses two knot arrays and a two-dimensional array
of control points. The routine gluNurbsProperty allows you to control the level of detail
at which the B-spline surface is rendered.

The interested reader should refer to the OpenGL documentation for more details.

VIII.13 Interpolating with B-Splines

Frequently, one wishes to define a smooth curve that interpolates (i.e., passes through, or
contains) a given set of points. Chapter VII explained ways of forming interpolating curves
using the Catmull–Rom and Overhauser splines, which consist of piecewise Bézier curves.
The Catmull–Rom and Overhauser curves are C1-continuous but generally do not have

p0 = p6

p1p2

p3

p4 p5

Figure VIII.17. Another way to form a complete circle with a quadratic B-spline curve. The curve has
knot vector [0, 0, 0, 1, 2, 2, 3, 4, 4, 4], the control points p0, p3, and p6 have weight 1, and the other
control points p1, p2, p4, and p5 have weight 1

2 . Exercise VIII.11 on page 225 shows a way to prove the
correctness of this B-spline curve.
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continuous second derivatives. On the other hand, we know (see Section VIII.4) that degree
three splines can have continuous second derivatives provided the knots have multiplicity one.
Thus, we might hope to get better, smoother curves by using B-splines to interpolate a set of
points.

Unfortunately, the B-spline curves that have been defined so far are not particularly con-
venient for this purpose; they have been defined from control points, which merely influence
the curve and usually are not interpolated; thus, the control points usually do not lie on the
curve. When control points are interpolated, it is generally because of repeated knot values,
but then the curve loses its good smoothness properties and may even have discontinuous first
derivatives.

Our strategy for constructing interpolatingB-spline curveswith good smoothness properties
will be first to choose knot positions and then solve for control points that will make the B-
spline curve interpolate the desired points. The algorithm for finding the control points will be
based on solving a system of linear equations, which will be tridiagonal and thus easily solved.

Consider the following problem. We are given points q0, q1, q2, . . . ,qn and positions
u0, u1, u2, . . . , un with ui < ui+1 for all i . The problem is to find a degree three B-spline
curve q(u) so that q(ui ) = qi for all i . This still leaves too many possibilities, and so we further
make the rather arbitrary assumption that the B-spline curve is to be formed with the standard
knot vector

[u0, u0, u0, u0, u1, u2, u3, . . . , un−2, un−1, un, un, un, un],

where the first and last knots have multiplicity 4 and the rest of the knots have multiplicity 1.
(Refer to Exercises VIII.6 and VIII.7 for a qualitative understanding of the blending functions
defined from this knot vector.) Note that there are n + 7 knot positions, and thus there must
be n + 3 control points. The conditions are still not strong enough to determine the B-spline,
fully for there are only n + 1 conditions q(ui ) = qi but n + 3 control points to be determined.
Therefore, we make one more arbitrary assumption, namely, that the first derivative of q(u)
at u0 and at un is equal to zero. This means that the first two control points must be equal so
that q′(u0) = 0, and the last two control points must be equal so that q′(un) = 0.

The control points can thus be denoted

p0, p0, p1, p2, . . . ,pn−2, pn−1, pn, pn.

The equation for the curve q(u) based on these knot positions and control points is

q(u) = (N0,4(u)+ N1,4(u))p0 +
n−1∑
i=1

Ni+1,4(u)pi + (Nn+1,4(u)+ Nn+2,4(u))pn.

Since the first and last knots have multiplicity 4, we have

q(u0) = p0 and q(un) = pn

and thus need p0 = q0 and pn = qn . Theorem VIII.1 and the continuity of the blending func-
tions tell us where these blending functions are nonzero, and so we have, for 1 ≤ i ≤ n − 1,

q(ui ) = Ni,4(ui )pi−1 + Ni+1,4(ui )pi + Ni+2,4(ui )pi+1.

Of course, we want this value to equal qi . Letting αi = Ni,4(ui ), βi = Ni+1,4(ui ), and γi =
Ni+2,4(ui ), we want

qi = αipi−1 + βipi + γipi+1.
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We can write the desired conditions as a single matrix equation:

1 0 0 · · · · · · 0
α1 β1 γ1 0 · · · ...
0 α2 β2 γ2 0 · · ·
0 0 α3 β3 γ3 0 · · ·
...

. . .
. . .

. . .

· · · 0 αn−1βn−1γn−1
0 · · · 0 0 1





p0
p1
p2
p3
...

pn−1
pn


=



q0
q1
q2
q3
...

qn−1
qn


.

We need to solve this matrix equation to find values for the control points pi . Because the
matrix equation is tridiagonal, it is particularly easy to solve for the pi ’s. The algorithm that
calculates the pi ’s uses two passes: first, we transform the matrix into an upper diagonal matrix
by subtracting a multiple of the i th row from the (i + 1)st row, for i = 1, 2, . . . , n − 1. This
makes the matrix upper diagonal and in the form

1 0 0 · · · · · · 0
0 β ′1 γ1 0 · · · ...
0 0 β ′2 γ2 0 · · ·
0 0 0 β ′3 γ3 0 · · ·
...

. . .
. . .

. . .

· · · 0 0 β ′n−1γn−1
0 · · · 0 0 1





p0
p1
p2
p3
...

pn−1
pn


=



q′0
q′1
q′2
q′3
...

q′n−1
q′n


.

Second, we can easily solve the upper diagonal matrix by setting pn = q′n and setting pi =
(q′i − γipi+1)/β ′i , for i = n − 1, n − 2, . . . , 0.

The complete algorithm for calculating the pi ’s is as follows:

// Pass One
Set β ′0 = 1;
Set γ0 = 0;
Set q′0 = q0;
For i = 1, 2, . . ., n − 1 {

Set mi = αi/β
′
i−1;

Set β ′i = βi − miγi−1;
Set q′i = qi − miq′i−1;

}
Set q′n = qn;

// Pass two
Set pn = q′n; // Same as qn.
For i = n − 1, n − 2, . . ., 2, 1 {

Set pi = (q′i − γipi+1)/β ′i ;
}
Set p0 = q′0; // Same as q0.

Note that the algorithm is only linear time, that is, has runtime O(n). This is possible because
the matrix is tridiagonal. For general matrices, matrix inversion is much more difficult.
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p0

p1

p2
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Figure VIII.18. Degree three interpolating spline. The dotted curve uses uniform knot spacing. The solid
curve uses chord-length parameterization. It is clear that chord-length parameterization gives much better
results. The interpolation points are the same as used for the interpolating Catmull–Rom and Overhauser
splines shown in Figures VII.23 and VII.24 on pages 190 and 192.

The B-spline interpolating curve does not enjoy local control properties: moving a single
interpolation point qi can affect the curve along its entire length. However, in usual cases,
moving a control point has only slight effects on distant parts of the B-spline.

Figure VIII.18 shows an interpolating B-spline and can be compared with the earlier ex-
amples of interpolating Catmull–Rom and Overhauser splines. The figure shows two curves.
The dotted curve is based on uniformly spaced values for ui , with ui = i . The solid curve uses
chord-length parameterization with the values ui chosen so that ui − ui−1 = ||pi − pi−1||.
Evidently, just like the Overhauser splines, B-spline interpolation can benefit from the use of
chord-length parameterization.
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IX

Ray Tracing

Ray tracing is a technique that performs, by a single unified technique, global calculations of
lighting and shading, hidden surface elimination, reflection and transmission of light, casting
of shadows, and other effects. As such, it significantly extends the local lighting models such as
the Phong and Cook–Torrance lighting models from Chapter III. Ray tracing also eliminates
the use of a depth buffer for hidden surface determination. In addition, it allows for many
special effects and can create images that are more realistic looking than those that can be
easily obtained by the methods we have discussed so far.

With all these advantages, ray tracing sounds too wonderful to be true; however, it has the
big disadvantage of being computationally very expensive. Indeed, a single ray-traced image
may take minutes, hours, or occasionally even days to render. For example, modern computer-
animated movies routinely use ray tracing to render scenes; it is not unusual for an average
frame of a movie to require an hour of computation time to render, and individual frames might
require 10 hours or more to render. A quick calculation shows that this means that a movie with
24 frames per second, lasting for 100 minutes, may require 6,000 CPU days to render, which
is over 16 CPU years! It is fortunate that individual frames can be ray traced independently in
parallel, and it is common for animated movies to be developed with the aid of hundreds of
computers dedicated to rendering images. Despite the high computational costs of ray tracing,
it has become a widely used technique for generating high quality and photorealistic images –
especially because computers are becoming cheaper and faster and ray tracing techniques are
becoming more sophisticated.

The basic idea behind ray tracing is to follow the paths of light rays around a 3-D scene.
Typically, one follows the light rays’ paths from the position of the viewer back to their source.
When light rays hit objects in the 3-D scene, one computes the reflection direction for the light
ray and continues to follow the light ray in the reflection direction. Continuing this process,
perhaps through multiple reflections (and possibly transmissions through transparent media),
one can trace the path of a light ray from its origination at a light source until it reaches the
view position.

Ray tracing is generally combined with a local lighting model such as the Phong or the
Cook–Torrance model but adds many global lighting effects that cannot be achieved with just
these local lighting models. The global lighting phenomena that can be obtained with basic
ray tracing include the following:

• Reflections – glossy or mirror-like reflections.
• Shadows – sharp shadows cast by lights.
• Transparency and refraction.

233
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The basic form of ray tracing is covered in Section IX.1. That section discusses the way
rays are traced backwards from the view position to the light sources. It also discusses the
mathematicalmodels for transmission of light through semitransparentmaterials. The basic ray
tracing method can generate effects such as reflection, transparency, refraction, and shadows.

There are many more advanced models of ray tracing. Many of these go under the name of
“distributed ray tracing” and involve tracing a multiplicity of rays. Applications of distributed
ray tracing include antialiasing, depth of field, motion blur, and simulation of diffuse light-
ing. Distributed ray tracing is covered in Section IX.2.1. Section IX.2.2 covers the so-called
backwards ray tracing, where light rays are traced starting from the positions of the lights.

OpenGL does not support ray tracing, and so it is necessary to use custom code (such as
the ray tracing code provided with this book) to perform all the rendering calculations from
scratch. However, a variety of tricks, or “cheats,” exist that can be used in OpenGL to give
effects similar to ray tracing with substantially less computation. Some of these are surveyed
in Section IX.3.

Appendix B covers the features of a ray tracing software package developed for this book.
The software package is freely available from the Internet and may be used without restriction.

Radiosity is another global lighting method that is complementary in many ways to ray
tracing. Whereas ray tracing is good at handling specular lighting effects and less good at
handling special diffuse lighting effects, radiosity is very good at diffuse lighting effects but
does not handle specularity. Radiosity will be covered in Chapter XI.

IX.1 Basic Ray Tracing

The basic idea behind ray tracing is to follow the paths taken by rays of light, or photons,
as they travel from the light sources until they eventually reach the viewer’s eye position. Of
course, most light rays never reach the eye position at all but instead either leave the scene or
are absorbed into a material. Thus, from a computational point of view, it makes more sense
to trace the paths traveled by rays of light from the eye by going backwards until eventually a
light source is reached since, in this way, we do not waste time on tracing rays that do not ever
reach the viewer.1

The simplest kind of ray tracing is illustrated in Figure IX.1. The figure shows, first, a 3-D
scene containing two boxes and a sphere (which are represented by two rectangles and a circle);
second, a single light source; and, third, a viewer. The viewer is looking at the scene through a
virtual viewport rectangle, and our task is to render the scene as seen through the viewport. To
determine the color of a pixel P in the viewport, a ray is sent from the eye through the center of
the pixel, and then we determine the first point of intersection of the ray with the objects in the
scene. In the figure, the ray would intersect both the lower rectangle and the circle. However,
it intersects the rectangle first, and thus this is what is seen through the pixel. The point of
intersection on the rectangle is shaded (colored) according to a local lighting model such as
the Phong model, and the result is the contents of the pixel P.

In the simple form described so far, ray tracing would not achieve any new visual effects
beyond those already obtainable by a local lighting model and the depth buffer hidden-surface
algorithm. Indeed, so far all that has changed is that the depth buffer method of culling hidden

1 In a confusing twist of terminology, the process of following rays from the eye position back to their
point of origin from a light is sometimes called forward ray tracing, whereas, tracing paths from
a light up to the viewpoint is called backwards ray tracing. To add to the confusion, many authors
reverse the meaning of these terms. Section IX.2.2 covers backwards ray tracing.
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eye
viewport

light

Figure IX.1. The simplest kind of ray tracing, nonrecursive ray tracing, involves casting rays of light from
the view position through pixel positions. A local lighting model is used to calculate the illumination of
the surface intersected by the ray.

surfaces has been replaced by a ray tracing method for determining visible surfaces. More
interesting effects are obtained with ray tracing as we add reflection rays, transmission rays,
and shadow feelers.

Shadow Feelers
A shadow feeler is a ray sent from a point u on the surface of an object towards a light
source to determine whether the light is visible from the point u or whether it is occluded by
intervening objects. As you will recall from Chapter III, the local lighting models (Phong or
Cook–Torrance) do not form any shadows; instead, they assume that every light is visible at
all times and that no objects are blocking the light and creating shadows. Examples of shadow
feelers are shown in Figure IX.2: four rays are traced from the eye through the centers of four
pixels in the viewport (not shown) until they hit points in the scene. From each of these four
points, a ray, called a shadow feeler, is traced from the point to the light source. If the shadow
feeler hits an object before reaching the light, then the light is presumed to be occluded by
the object so that the point is in a shadow and is not directly lit by the light. In the figure, two
of the shadow feelers find intersections; these rays are marked with an “X” to show they are
blocked. In one case, a point on the box surface is being shadowed by the box itself.

Reflection Rays
What we have described so far accounts for light rays that originate from a point light, hit
a surface, and then reflect from the surface to the eye. However, light can also travel more
complicated paths, perhaps bouncingmultiple times from surfaces before reaching the eye. This
phenomenon can be partially simulated by adding reflection rays to the ray tracing algorithm.
When a ray from the eye position hits a surface point, we generate a further reflection ray in the
direction of perfect specular reflection. This reflection ray is handled in the same way as the ray
from the eye; namely, we find the first point where it hits an object in the scene and calculate
that point’s illumination from all the light sources. This process can continue recursively with
reflection rays themselves spawning their own reflection rays.
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eye

light

Figure IX.2. Shadow feelers: Rays from the eye are traced to their intersections with objects in the scene.
Shadow feeler rays, shown as dotted lines, are sent from the points in the scene to each light to determine
whether the point is directly illuminated by the point light source or whether it is in a shadow. The two
shadow feelers marked with an “X” show that the light is not directly visible from the point.

This process is illustrated in Figure IX.3, where a single ray from the eye hits an object, and
from this point another ray is sent in the direction of perfect specular reflection. This second
ray hits another object, then generates another reflection ray, and so on.

Although it is not shown in Figure IX.3, each time a ray hits an object, we generate shadow
feelers to all the light sources to determine which lights, if any, are illuminating the surface.
In Figure IX.3, the first and third points hit by the ray are directly illuminated by the light; the
second point is not directly illuminated.

The purpose of tracing reflections is to determine the illumination of the point that is visible
to the viewer (i.e., of the point hit by the ray from the eye through the pixel position). This is

eye

light

Figure IX.3. Reflection rays: The path of the ray from the eye is traced through multiple reflections. This
calculates approximations to the lighting effects of multiple reflections.
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eye

light

Figure IX.4. Transmission and reflection rays: The path of the ray from the eye is traced through multiple
reflections and transmissions. Reflection rays are shown as solid lines, and transmission rays as dotted
lines. The shadow feeler rays would still be used but are not shown.

computed by a formula of the form

I = Ilocal + ρrg Ireflect. IX.1

Here, Ilocal is the lighting as computed by the local illumination model (Phong lighting, say),
and Ireflect is the lighting of the point in the direction of the reflection ray. The scalar ρrg is a new
material property: it is a factor specifyingwhat fraction of the light from the reflection direction
is reflected. Like the diffuse and specular material properties, the ρrg value is wavelength
dependent, and thus there are separate reflection coefficients for red, green, and blue. The
subscript “rg” stands for “reflection, global.” The intensity of the incoming reflected light,
Ireflect, is computed recursively by Equation IX.1.

Sections IX.1.1 and IX.1.3 give more details about how the local lighting is calculated and
about the recursive calculations.

Transmission Rays
Ray tracing can also model transparency effects by using transmission rays in addition to
reflection rays. Transmission rays can simulate refraction, the bending of light that occurs
when light passes from one medium to another (e.g., from air into water).

A transmission ray is generated when a ray hits the surface of a transparent object: the
transmission ray continues on through the surface. Refraction causes the direction of the
transmitted ray to change. This change in direction is caused physically by the difference in
the speed of light in the two media (air and water, for instance). The amount of refraction is
calculated using the index of refraction, as discussed in Section IX.1.2.

Transmitted rays are recursively traced in the same manner as reflected rays. Of course,
the transmission rays may be inside an object, and their first intersection with the scene could
be the boundary of an object hit from the inside. When the transmitted ray hits a point,
it will again spawn a reflection ray and a transmission ray. This process continues recur-
sively. Figure IX.4 illustrates the generation of both reflection and transmission rays. In the
figure, a single ray from the eye is traced through three bounces, spawning a total of 12 addi-
tional rays: the transmission rays are shown as dotted lines to distinguish them from reflection
rays.

Team LRN



238 Ray Tracing

�

rv

n

v
Ireflect I

I in

Figure IX.5. The usual setup for reflection rays in basic recursive ray tracing. The vector v points in the
direction opposite to the incoming ray. The direction of perfect reflection is shown by the vector rv. The
vector � points to a point light source, I is the outgoing light intensity as seen from the direction given
by v, Ireflect is the incoming light from the reflection direction rv. and I in is the intensity of the light from
the light source. (Compare this with Figure III.7 on page 72.)

When transmission rays are used, the lighting formula has the form

I = Ilocal + ρrg Ireflect + ρtg Ixmit.

The new term ρtg Ixmit includes the effect of recursively calculating the lighting in the trans-
mission direction scaled by the material property ρtg. The scalar ρtg is wavelength dependent
and specifies the fraction of light transmitted through the surface. The subscript “tg” stands
for “transmission, global.”

IX.1.1 Local Lighting and Reflection Rays

We now give more details about the calculation of reflection rays and the associated lighting
calculations. The basic setup is shown in Figure IX.5, where we are tracing the path of a ray
whose direction is determined by the vector v. In keeping with our usual conventions that
the vectors are pointing away from the point of intersection with the surface, the vector v is
actually pointing in the opposite direction of the ray being traced. (The figure shows the traced
ray as emanating from an eye position, but the ray could more generally emanate from another
intersection point instead.) We assume v is a unit vector. Also, n is the unit vector normal to
the surface at the point of intersection.

The direction of perfect reflection is shown as the vector rv. This is calculated according to
the formula

rv = 2(v · n)n− v, IX.2

which is derived in the same way as the formula for the reflection vector in Section III.1.2.2

The basic ray tracing algorithms depend on the use of a particular local lighting model:
this is commonly either the Phong lighting model or the Cook–Torrance lighting model; the
discussion that follows will presume the use of the Phong lighting model (it is straightforward
to substitute the Cook–Torrancemodel in its place). The illumination of the point on the surface
as seen from the ray trace direction v is given by the formula

I = Ilocal + ρrg Ireflect. IX.3

The Ilocal term is the lighting due to direct illumination by the lights that are visible from the
intersection point.

For a given light i , let �i be the unit vector in the direction of the light. Then let δi equal 1 if
the light is above the surface and is directly illuminating the point as determined by a shadow

2 The reflection vector is named rv instead of r to avoid confusion with the reflection of the light vector �
of Section III.1.2.
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t

n

vθv

θt
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tlat vlat

Figure IX.6. Computing the transmission ray direction t. The horizontal line represents the surface of
a transmissive material; n is the unit vector normal to the surface. The vector v points in the direction
opposite to the incoming ray. The direction of perfect transmission is shown by the vector t. The vectors
vlat and tlat are the projections of these vectors onto the plane tangent to the surface, and, tperp is the
projection of t onto the normal vector.

feeler; otherwise, let δi equal 0. The value of δi is computed by determining whether the light
is above the surface by checking whether �i · n > 0; if so, a shadow feeler is used to determine
visibility of the light. The illumination due to the light i is defined as

I i
local = ρa I in,i

a + δi ·
(
ρd I in,id (�i · n)+ ρs I

in,i
s (rv · �i )

f
)

. IX.4

You should compare this to Equation III.6 on page 74. We are here using the notations I in,i− for
the light coming from the i th light. The term r · v has been replaced by rv · �i , which is clearly
mathematically equivalent.

The net local lighting due to all the lights above the surface and incorporating all the
wavelengths is obtained by summing the illumination from all the lights:

Ilocal = ρa ∗ Iina + ρd ∗
k∑

i=1
δi I

in,i
d (�i · n)+ ρs ∗

k∑
i=1

δi I
in,i
s (rv · �i )

f + Ie,

which is similar to Equation III.9 on page 75. As before, the values ρa, ρd, ρs are tuples of
coefficients with one entry per color, and ∗ denotes a component-wise product. The value of
Iina is still given according to Formula III.10.

The second term in Equation IX.3 contains the newmaterial property ρrg: this coefficient is a
scalar and can vary with wavelength (i.e., it is different for each color). The light intensity Ireflect
is computed recursively by iterating the ray tracing algorithm.

IX.1.2 Transmission Rays

Now we turn to the details of how the ray tracing calculations work for transmission rays.
First, we discuss how to compute the direction t of perfect transmission. The setup is shown
in Figure IX.6.

The direction of the transmission vector t is found using the incoming direction v and the
surface normal n with the aid of Snell’s law. Snell’s law relates the angle of incidence with the
angle of refraction by the formula

sin θv

sin θt
= η.
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Here, θv , the angle of incidence, is the angle between v and the normal n; and θt , the angle of
refraction, is the angle between the transmission direction t and the negated normal. The index
of refraction, η, is the ratio of the speed of light in the medium above the surface (the side
where v is) to the speed of light in the medium below the surface (the side where t is). Typical
values for η are approximately equal to 1.3 for rays going from air to water, and approximately
equal to 1.5 for rays going from air to glass. For the reverse direction you need the reciprocal,
and so when traveling fromwater or glass to air the index of refraction would be approximately
1/1.3 or 1/1.5. Snell’s law can be derived from the wave model for light and can be found in
many elementary physics books.

Snell’s law can be rewritten as

sin θt = η−1 sin θv.

Now, if η < 1, it can happen that η−1 sin θv is greater than 1. Of course in this case there is no
possible angle θt that satisfies Snell’s law. This corresponds to total internal reflection, where
there is no transmission but only reflection. This happens only if η < 1, which is the case if
light is traveling in a region of lower light speed (e.g., inside a medium such as glass or water)
and is exiting to a medium, such as air, with a higher speed of light. In addition, this happens
only when the angle of incidence is sufficiently large that the quantity η−1 sin θv is larger
than 1.

We can derive a method of computing t from n and v as follows. Let vlat be the component
of v that is orthogonal to the normal vector, namely,

vlat = v− (v · n)n.
(The subscript “lat” stands for “lateral.”) Note that ||vlat|| = sin θv . Therefore, the component,
tlat, of t orthogonal to n has magnitude equal to

||tlat|| = sin θt = η−1 sin θv = η−1||vlat||.
If ||tlat|| ≥ 1, then total internal reflection occurs. Otherwise, if ||tlat|| < 1, we can continue
the computation of the transmission direction. Since tlat points in the direction opposite to vlat,
this means that

tlat = − η−1vlat.

The component of t in the direction of the negation of the normal vector has magnitude equal
to

cos θt =
√
1− sin2 θt =

√
1− ||tlat||2,

and therefore is equal to

tperp = −
√
1− ||tlat||2 · n.

Finally, we have

t = tlat + tperp,
which completes the calculation of the transmission direction.

Exercise IX.1 An alternative calculation of the transmission vector uses

tperp = −
√
1− η−2(1− (v · n)2) · n.

Prove that this formula is correct too.
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(a)
Light

(b)
Light

Figure IX.7. (a) Diffusely transmitted light. (b) Specularly transmitted light. The specularly transmitted
light is centered around the transmission direction from Snell’s law.

The exercise lets us give a closed form expression for t:

t = η−1((v · n)n− v)−
√
1− η−2(1− (v · n)2) · n IX.5

provided the formula in the square root is nonnegative. If the value in the square root is negative,
then there is no transmission ray at all and we have total internal reflection.

To summarize, here is our preferred algorithm for computing the transmission ray:

CalcTransmissionDirection( v, n, η ) {
Set tlat = ((v · n)n− v)/η;
Set sinSq = ||tlat||2; // sin2(θt )
If ( sinSq>1 ) {

Return(``No transmission --- total internal reflection!'');
}
Set t = tlat −

√
1− sinSq · n;

Return t;
}

Next, we give details on how to extend the Phong lighting model to apply to transmission of
light. (The Cook–Torrance or other local lighting models could be used instead, but we only
discuss the Phong-style lighting model.) The new aspect of local lighting is that a transparent
surface may now be illuminated by a light that lies on the far side of the surface. That is to
say, the light may be on the opposite side of the surface from the viewer or incoming ray. As
in the case of reflective illumination, transmitted illumination is modeled as having separate
diffuse and specular components. These two kinds of illumination are shown in Figure IX.7;
you should compare these with Figures III.2 and III.3 on page 69. The diffusely transmitted
light is transmitted equally in all directions; the specularly transmitted light is transmitted
primarily in the direction of perfect transmission.

The Ilocal term for the transmitted illumination from a light i that is on the opposite side of
the surface is given by

I i
local = ρa I in,i

a + δ′i ·
(
ρdt I

in,i
d (�i · (−n))+ ρst I

in,i
s (t · �i )

f
)

, IX.6

where ρdt and ρst are material properties for diffuse and specular transmitted light (these can
reasonably be taken to just equal ρd and ρs in some cases). The value δ′i is equal to 1 if the
light is below the surface and the surface point is visible from the light, as determined by a
shadow feeler. Otherwise δ′i is equal to zero. Equation IX.6 needs to be used only when the
light is behind the surface and δ′i = 1, and so �i · n < 0; otherwise, Equation IX.4 would be
used instead. Figure IX.8 shows the vectors used in the application of Equation IX.6.
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Ilocal

I in

t

�

n

v

Figure IX.8. The vectors used in the computation of transmitted light are v, �, t, and n. The vector v
points in the direction opposite to the incoming ray. The direction of perfect transmission is shown by
the vector t. The direction opposite to the incoming light is given by �.

The full local lighting formula, incorporating both reflected and transmitted illumination
as well as all wavelengths, can be given as

Ilocal = ρa ∗ Iina + ρd ∗
k∑

i=1
δi I

in,i
d (�i · n)+ ρs ∗

k∑
i=1

δi I
in,i
s (rv · �i )

f

+ρdt ∗
k∑

i=1
δ′i I

in,i
d (�i · (−n))+ ρst ∗

k∑
i=1

δ′i I
in,i
s (t · �i) f + Ie. IX.7

For each particular light i , at most one of δi and δ′i can be nonzero since the light source cannot
be both above and below the surface.

IX.1.3 Putting It All Together

We have finished the discussion of all the features of the basic form of recursive ray tracing.
These are combined into a recursive routine for ray tracing. The main loop of the recursive
routine loops over every pixel in the image and forms the ray from the eye through that pixel.
With that ray, a routine RayTrace is called, which does the following:

1. Finds the first place where the ray intersects the scene. If the ray does not hit any object in
the scene, then a default “background color” is used for the illumination level.

2. Calculates the illumination of that point according to the local lighting model.
3. Spawns a reflection ray and a transmission ray as appropriate.
4. Calls itself recursively with the reflection ray and with the transmission ray.
5. Combines the resulting illumination levels and returns.

In addition, a stopping criterion is needed to terminate the recursive calls to RayTrace: an
easy, albeit rather arbitrary, stopping criterion is just to trace recursively to only a fixed number
of levels, or “bounces.” This is the approach we take in the pseudocode that follows.

Here is the main program for basic recursive ray tracing:

RayTraceMain() {
// Let x be the position of the viewer.
// Let maxDepth be a positive integer.
For each pixel p in the viewport, do {

Set u = unit vector in the direction from x to p.
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Call RayTrace( x, u, maxDepth );
Assign pixel p the color returned by RayTrace.

}
}

The recursive ray tracing routine is given next.

RayTrace( s, u, depth ) {
// s is the starting position of the ray.
// u is unit vector in the direction of the ray.
// depth is the trace depth.
// Return value is a 3-tuple of color values (R,G,B).

// Part I - Nonrecursive computations
Check the ray with starting position s and direction u

against the surfaces of the objects in the scene.
If it intersects any point, let z be the first intersection point
and n be the surface normal at the intersection point.

If no point was intersected {
Return the background color.

}
For each light {

Generate a shadow feeler from z to the light.
Check if the shadow feeler intersects any object.
Set δi and δ′i appropriately.

}
Set color = Ilocal; // Use equation IX.7

// Part II - Recursive computations
If ( depth==0 ) {

Return color; // Reached maximum trace depth.
}
// Calculate reflection direction and add in reflection color
If ( ρrg �= 0 ) { // if nonzero reflectivity

Set r = u− 2(u · n)n; // Eq. IX.2 with v = −u.
Set color = color + ρrg∗RayTrace(z, r, depth-1);

}
// Calculate transmission direction (if any) and add in transmitted color
If ( ρtg �= 0 ) { // if has transparency

// Let η be the index of refraction.
Set t = CalcTransmissionDirection(−u, n, η);
If t is defined { // if not total internal reflection

Set color = color + ρtg∗RayTrace(z, t, depth-1);
}

}
Return color;

}
The basic recursive ray tracing algorithms have now been completely defined with one

notable exception; namely, we have not discussed how to find intersections of a ray with
objects in the virtual scene. The basic idea is to model each object in the scene as a geometric
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object such as a sphere, cylinder, cone, or torus, or as a polygonal object with a surface
comprising flat polygonal faces, or as being bounded by more general surfaces such as Bézier
or B-spline patches. Then,we have to test the ray against each surface of each object for possible
intersections. Further, it is important that the intersection testing algorithms be computationally
efficient because we have to perform the test for every ray and every shadow feeler. Indeed,
it is typically the case that the computation time required for intersection testing is the major
portion of the execution time in ray tracing.

The discussion of how to perform the intersection tests for rays against common surfaces
is left to Chapter X.

The basic ray tracing algorithm, with recursive calls and intersection testing, is much too
slow for real-time rendering. Suppose, for instance, that the screen has about one million pixels
and that each ray is traced to a depth of six bounces (i.e., starting with maxDepth set to 5). In
the worst case, each intersection will spawn both a reflection ray and a transmission ray and so
for each pixel we trace a total of 1+ 2+ 4+ · · · + 25 = 63 rays. In the best case, there is no
transmission; consequently, each pixel requires us to trace six rays. In addition, for each light
and each intersection point, we must intersect a shadow feeler against the scene. Thus, all in
all, we may need to handle tens of millions, or even hundreds of millions, of rays, each ray
needing to be tested for intersections with objects in the scene. It is common for this process
to take several minutes on a modern-day personal computer. Given the amount of work being
performed, one feels lucky that it takes only this long!

IX.2 Advanced Ray Tracing Techniques

IX.2.1 Distributed Ray Tracing

Distributed ray tracing, first introduced by (Cook, Porter, and Carpenter, 1984), is a collection
of techniques used to extend the functionality of ray tracing by increasing the number of rays
that are traced. Generally speaking, distributed ray tracing is significantly slower than basic
recursive ray tracing; however, it can achieve a variety of additional effects. In this section, we
describe some of the more common applications of distributed ray tracing.

Antialiasing with Multiple Eye-to-Pixel Rays
In the basic ray tracing model, only one ray is sent from the eye position to each pixel. This
means that only a single ray determines the color of a given pixel. However, in actuality, a pixel
covers a square region of the image, and sometimes one would obtain better visual effects if the
pixel were colored as an average color of the region subtended by the pixel. This average color
can be approximated by supersampling the pixel, namely, by tracing multiple rays through the
pixel with the rays spread more or less evenly across the pixel and then assigning the pixel the
average of the colors from the multiple rays.

Two prominent applications in which forming an average pixel color can help with antialias-
ing are (a) removing the “jaggies,” or pixel-sized bumps, from lines, edges, or other object
boundaries; and (b) viewing texture maps. We have already discussed two ad hoc solutions to
these problems: (a) lines can be smoothed through blending and transparency, and (b) texture
map aliasing can be minimized by using mipmapping. Distributed ray tracing gives a more
general solution to these and other related problems.

Supersampling and stochastic supersampling were discussed earlier in Section V.1.4 in
the context of texture maps. Supersampling consists of selecting multiple subpixel locations.
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(a) No supersampling.

(b) Supersampling with jittered subpixel centers.

Figure IX.9. An example of antialiasing using jittered subpixel centers. (a) The scene rendered without
supersampling; note the “jaggies” on the silhouettes of the balls, for instance. (b) The scene with pixels
selectively supersampled up to a maximum of 40 times. See Color Plate 9.

Distributed ray tracing can trace separate rays from the eye to each subpixel location and
then average the results. The strategies described in Section V.1.4 apply also to ray tracing;
in particular, jittering is also a recommended method for selecting subpixel locations for
distributed ray tracing (see Figure V.7 on page 134).

Figures IX.9 and IX.10 show an example of antialiasing with jittered pixel supersampling.

Depth of Field with Jittered Eye Positions
Depth of field is caused by a lens’s focusing on objects at a given depth, thereby making objects
that are either nearer or farther than the focus depth appear out of focus. This is particularly
noticeable in movies when a camera switches from focusing up close to focusing far away
or vice versa. Pinhole cameras and lenses with a very small aperture are not affected nearly
so much by depth of field. Depth of field affects human eyes as well; however, your visual
system compensates for this so that you do not notice it under normal circumstances. Computer
graphics systems calculate images purely virtually and do not require physical focusing devices,
and so of course they are not affected by depth-of-field focusing problems. Nonetheless, it is
sometimes desirable to simulate depth of field in computer graphics.

Ray tracing allows depth-of-field effects by jittering the eye position while keeping the focal
plane fixed. For this, you set up the virtual viewport in the plane of the image you wish to
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(a) No supersampling.

(b) Supersampling with jittered subpixel centers.

Figure IX.10. Close-up views of the images in Figure IX.9. See Color Plate 10.

have in focus. Then, for each pixel, you trace multiple rays from jittered eye positions to the
center of the pixel (the pixel’s center being kept fixed in the focal plane). For instance, one
possibility is to jitter the eye position to nine (or more) positions with the jittered positions
obtained by moving the eye position up or down, and left or right. Then, from each jittered
position, perform ray tracing as usual: the final color of the pixel is the average of the results
of the multiple ray traces.

The effect of jittering the eye position is that objects that lie in the focal plane (and are
visible to the eye) are always hit exactly, and each of the multiple ray traces hits the same
point and yields essentially the same results. On the other hand, objects that are either nearer
or farther than the focal plane are hit differently from different jittered eye positions, and the
averaging tends to blur them. Figure IX.11 shows how the rays converge and diverge to focus
objects in the focal plane and blur objects at other depths. Figure IX.12 shows an example of
depth of field.

It is important that you choose the jittered positions for the eye separately for each pixel,
that is, do not use the same jittered eye positions for all the pixels but instead use new jittered
positions for each pixel. The problem with reusing the same jittered positions is that the result
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focal
plane

Figure IX.11. The rays from the jittered viewpoints converge at the focal plane but not at the back plane.

would be a composite of multiple copies of the scene from slightly different viewpoints rather
than an actual blurring of the scene.

Motion Blur
Motion blur renders fast-moving objects as blurs or streaks to indicate their speed; an example
is shown in Figure IX.13. Motion blur can be accomplished by jittering objects’ positions
backwards in time. This can be done as follows: each time the high-level ray tracing routine
begins tracing a ray from the eye position to a pixel, the moving object(s) are moved back to
their position at a small time, δt , in the past. The δt values should be chosen at random and
independently. It probably would be best to adjust the probabilities so that small δt values are
more likely than large ones. For instance, you could use the following algorithm to choose
k jittered values for δt : First choose values ai randomly and independently from the intervals
[ i

k , i+1
k ], for 0 ≤ i < k. Then set bi by

bi = a2
i .

Finally, set the i th jitter value δt equal to bi�t , where �t is the time period over which
the motion blur should extend. (That is, large �t values make the motion blur trail longer.)
Calculating the δt values using the bi ’s instead of the ai ’s has the effect of compressing them
to be closer to zero: the intended visual effect is that the motion blur trail fades out smoothly.

Soft Shadows with Extended Lights and Jittered Shadow Rays
Up until now, we have discussed only point light sources. However, few light sources are
modeled well by points. Most lights are either roundish or spherical (such as the sun or light

Figure IX.12. An example of depth of field. The front of the eight ball is the focal plane. Note also the
blurring of the checkerboard plane. In this image, each pixel is selectively supersampled up to 40 times.
The eye positions and the subpixel positions were independently jittered as described on page 249. See
Color Plate 11.
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Figure IX.13. An example of motion blur. Pixels were selectively supersampled up to 40 times. Both
motion supersampling and subpixel supersampling were used. See Color Plate 12.

bulbs) or are rectangularly shaped (such as fluorescent lights in the ceiling behind a plastic
cover). The term “extended light” refers to any nonpoint source.

Extended lights differ from point lights in several important ways. Mainly, an extended light
source may be partially occluded. As a consequence, an extended light will not cast perfectly
sharp shadows and generally gives a softer, smoother lighting effect. Figure IX.14 illustrates
how soft shadows work. It shows a spherical light source shining on a wall with an obstruction
shadowing part of the wall.Where the obstruction blocks the entire light, the wall is completely
in shadow. But there is a region, called the penumbra, where the obstruction blocks only part
of the spherical light. In the penumbra, the shadowing transitions smoothly from completely
shadowed to completely illuminated.

Ray tracing can be used to simulate penumbra effects by casting multiple shadow feelers
instead of a single shadow feeler. The shadow feelers should be more or less evenly distributed
across the extent of the light as seen from the point being illuminated. The fraction of shadow
feelers not finding an obstruction between the point of illumination and the light can be used
as an estimate of the fraction by which the light is occluded. The lighting from the that light is
then reduced correspondingly by the same fraction.

As usual, one gets better effects by randomly choosing positions on the light’s extent as seen
by the point of illumination and then casting shadow feelers to those positions on the light. If
you were to pick fixed points on the light as the targets for shadow feelers, then the penumbra
would show banding: there would be noticeable changes in the shading where each fixed light
point vanished from view. Jittering can be used to good effect to help distribute the shadow
feeler targets evenly over the extent of the light.

Light Full shadow

Penumbra

Penumbra

Full illumination

Full illumination

Figure IX.14. The penumbra is the area where the light is only partly blocked.
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Using Multiple Techniques at Once
It is possible to combine multiple distributed ray tracing techniques to achieve more than one
effect at once. For instance, you can render an image that has both antialiasing and depth of
field. To do this, you would jitter subpixel locations for antialiasing and jitter the eye position
for depth of field. At first glance, this might seem to require tracing many more rays. That
is, if each pixel has nine jittered subpixel locations and nine jittered eye positions, then one
might try casting 92 = 81 rays from the eye to the pixel, one for each choice of eye position
and pixel position. Fortunately, this large increase in the number of rays is not necessary. We
can instead cast rays from each eye position and to each subpixel position but use only one ray
for each eye position and choose one jittered subpixel position for each eye position. For best
results, you need to make sure that the choices of jittered subpixel positions are independent
of the jittered eye positions. In particular, suppose the jittered subpixel positions are chosen
from square subpixels, as shown in Figure V.7 on page 134. Also suppose that the eye positions
are chosen in a similar manner by jittering the centers of an array of squares around the
central view position. Then you should choose a random assignment of subpixel positions
to eye positions (i.e., a random one-to-one correspondence between subpixel positions and
eye positions) and then recursively trace one ray from each eye position to its corresponding
pixel position. The point of using the random assignment is to avoid having a correlation
between the jittered eye positions and jittered pixel positions that could cause unwanted visual
effects.

The high-level algorithm for this is as follows:

Variables:
Array p[N]: An array for holding N subpixel positions.
Array e[N]: An array for holding N eye locations.
Array π[N]: An array that holds a permutation of [0, . . . , N − 1]

For each pixel: {
Fill p[] with N jittered subpixel locations.
Fill e[] with N jittered eye positions.
Choose π a random permutation of [0, . . . , N − 1].
For i = 0, . . . , N − 1 {

Recursively ray trace with ray from e[i] to p[π[i]].
}

}

To choose a random permutation of [0, . . . , N − 1], you can use the following code. We
use the function RandInt(i) to compute a random integer in the range 0, . . . , i .

RandomPermutation(N) {
For i = 0, . . . , N − 1 {

Set π[i] = i;
}
For i = N − 1, N − 2, . . . , 1 {

Set j = RandInt(i);
If j < i

Swap values of π[ j] and π[i];
}

}

Similar methods can be used to combine other distributed ray tracing methods.
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Multiple Colors
For greater realism, one can perform ray tracing for more colors than just the primary red,
green, and blue colors. In addition, the speed of light in a medium typically depends on the
wavelength of the light. For refraction, this means that the transmission direction varies with
color: a good example of this is a prism splitting white light into a spectrum of wavelengths. In
addition, in some local lighting models (such as Cook–Torrance, but not in the Phong model),
the dominant reflection angle is also wavelength dependent. Thus, for more realistic results
with multiple colors, one may wish to trace multiple reflection and transmission rays from a
single ray–object intersection.

Path Tracing. Tracing Diffuse Reflection and Transmission
The basic ray tracing methods described so far are a hybrid of (a) a local lighting model
that includes ambient and diffuse lighting terms, and (b) ray tracing perfect reflection and
perfect transmission directions. This hybrid is far from physically correct and contains several
undesirable features. For example, the local lighting model has a term for ambient light, which
is needed because of our inability to trace all rays of light completely. Similarly, the basic ray
tracing model does not allow the illumination of a diffuse surface to illuminate other surfaces
in the scene. For instance, in the real world, a diffusely lit red wall will itself illuminate nearby
objects with reddish light; ray tracing, however, will not simulate this because it only follows
reflections in the direction of perfect, specular reflection.

It would bemore physically realistic ifwe could completely subsume the ambient and diffuse
lighting from the local lighting model into the global methods of ray tracing. In essence, this
would mean trying to trace all the photons in the entire scene to track the entire flow of light
throughout the scene. If this could be successfully done, then it would be possible to unify the
local lighting models with the ray tracing model: for instance, one would use the same lighting
models for both reflected and transmitted rays as for rays to light sources.

Several techniques are used to try to increase the realismof the ray tracingmodel by capturing
more effects of diffuse and ambient reflection. The main idea behind these techniques is to
try to follow reflection (and perhaps transmission) rays in all possible directions, not just
in the direction of perfect reflection. Unfortunately, this requires spawning a huge number of
reflection rays in hundreds, or thousands, of directions. This is often done via a technique called
path tracing. In path tracing, one generates many rays starting at the eye position through a
given pixel. At each intersection, the subsequent reflection direction is chosen by a random
procedure. In this way, one attempts to sample a large number of representative paths by which
light can reach the eye.

When tracing multiple reflection directions, one must also still trace shadow feelers to
the lights and calculate direct illumination from the lights. Of course, this can be com-
bined with extended lights and the use of multiple shadow feelers per light to create soft
shadows.

The big drawback to tracing so many reflection directions is that it greatly increases the
number of rays that must be traced by a factor of a thousandfold or more. These techniques
are therefore very time consuming, and can require hours of computation time to trace a single
image.

Path tracing can also be combined with so-called backwards ray tracing. Backwards ray
tracing follows rays of light starting at the light source through one or more bounces and tracks
the flow of light from the light source towards the eye. Backwards ray tracing is discussed
briefly in the next section.
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Another global lighting method, called radiosity, can also be used to simulate the flow of
diffuse lighting through a scene. Radiosity is based on amethod quite different from ray tracing
and is covered in Chapter XI.

IX.2.2 Backwards Ray Tracing

Ray tracing as described so far has involved tracing paths of light starting at the eye position and
ending at lights. It is also possible to trace light in the other direction by starting at light sources
and tracing the paths taken by light from the light sources. This process is called backwards ray
tracing. The name is somewhat misleading, since backwards ray tracing involves tracing the
forward movement of light from the light source. The usual ray tracing, however, sometimes
called forward ray tracing, traces backwards from the eye along the paths taken by light.

The difficulty with backwards ray tracing is that most of the light exiting light sources never
reaches the eye position at all but instead either leaves the scene entirely or is attenuated by
multiple bounces until it is insignificant. Thus, a pure backwards ray tracing algorithm would
be much more computationally intensive than forward ray tracing. For this reason, backwards
ray tracing is generally used in conjunction with forward ray tracing.

The most common methods use backwards ray tracing to track the overall distribution of
light throughout the scene and then use forward ray tracing to view the lit scene. (Radiosity
is another method with a similar idea.) The first such method was the method of illumination
maps introduced by (Arvo, 1986). For illuminationmaps, all the surfaces of objects in the scene
are parameterized and then gridded up into small patches. Then, numerous light rays are traced
forward from the light sources through multiple bounces. Each time a light ray hits a surface,
it is determined which surface patch is hit and the color and intensity of the illuminating light
are applied to the patch. These color and intensity values are stored at the vertices of the
patch, and the light color and intensity are distributed to each vertex roughly in proportion to
the distance of the intersection point from the vertex (more precisely: by inverting linear or
bilinear interpolation to get the weight coefficients). The corners of the surface patches are
used as accumulators, and, at the end of the backwards ray tracing phase, they hold the sum
of all the weighted illumination from all the light rays that hit neighboring patches. These
vertices and their stored illumination values are together called an illumination map. After the
illumination map has been created, forward ray tracing can be used to view the scene. For
the forward ray tracing, the diffuse component of the lighting model is omitted; instead, the
illumination map values are used for the diffuse lighting. More precisely, when a ray hits a
patch, the intersection point is expressed as a weighted average of the corners of the patch, and
the illumination levels at these vertices are combined using the corner weights to calculate the
diffuse illumination at the intersection point.

A common visual effect that can be simulated well with illumination maps is the focusing
of light through transparent objects. For example, light shining on a glass ball can create bright
patterns on a surface under the glass ball, where the curvature of the ball has acted to focus
many rays of light into a small area. Another visual effect that can be handled in this way is
caustics. An example of caustics is seen in a pool of clear water in which small ripples on the
surface of the water will bend light, creating rippling patterns of light on the bottom of the pool.

Amore recent method of extending illuminationmaps is that of photon maps (Jensen, 2001;
Jensen and Christensen, 1995). Unlike illumination maps, which store aggregate illumination
levels at vertices on a surface, a photon map stores information about each individual light ray
(i.e., photon) that hits the surface along with its color and intensity and possibly its direction.
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Photon maps were originally invented to avoid needing to parameterize surfaces, but when
they include direction information they can also be used to model specular light. An example
of how direction information can help is when light is reflected off a mirror and then strikes a
surface at point x. Then, a viewer looking at point x slightly off the direction of perfect specular
reflection will still be able to see the specular highlight, for it can be calculated from the photon
map.

Using a photon map allows one to drop both the diffuse and specular terms from the local
lighting model. In fact, if the backwards ray tracing is carried out sufficiently far, through
enough bounces, then sometimes even the ambient light term can be omitted from the local
lighting formula. Photon maps are also used for illumination of volumes, for light scattering,
and for translucency, see (Jensen, 2001).

Another formof backwards ray tracing is bidirectional path tracing (Lafortune andWillems,
1993; Veach and Guibas, 1994). In bidirectional path tracing, paths are traced both from light
sources and from the eye and then are joined together.

Further Reading
Our treatment of themore advanced topics in ray tracing has beenquite cursory. Someof the top-
ics we have completely skipped are (a) Monte-Carlo methods for choosing ray trace directions,
importance sampling, and more sophisticated probability distributions than jittered samples;
(b) Russian roulette methods for deciding when to stop tracing rays (Arvo and Kirk, 1990);
and (c) participating media, such as smoke, fog, or atmosphere, which scatter light.

There are several good sources for more information about these and other ray tracing top-
ics. The book (Glassner, 1989) has a collection of introductory articles about the techniques of
ray tracing as developed before 1990. The textbook (Watt and Watt, 1992) has several chapters
devoted to advanced topics in ray tracing along with pointers to the literature. (Shirley, 2000)
has a nice overview of ray tracing, including several advanced topics. (Glassner, 1995) covers
many advanced topics relevant for ray tracing. The online newsletter Ray Tracing News, also
maintained by Glassner, has a huge amount of material on developments in ray tracing. Fi-
nally, many of the recent developments in ray tracing can be found in conference proceedings
and journals; the annual proceedings of the ACM Siggraph conference and the Eurographics
conferences are good places to search for this literature.

Ray tracing was first developed by (Whitted, 1980): this seminal paper is remarkably read-
able and still relevant.

IX.3 Special Effects without Ray Tracing

Ray tracing is too complicated and too experimental to be included in a standard graphics
API such as OpenGL. Indeed, if you want to write a ray tracing application in OpenGL, you
must completely rewrite all the lighting models yourself, including standard routines like the
calculation of Phong lighting. (However, a ray tracing package is included with this book and
described in Appendix B.) On the other hand, many visual effects similar to those that can
be achieved with ray tracing can also be obtained with much simpler and faster methods. We
will discuss some of the more common of such methods in this section. Most of these can
be done efficiently in OpenGL; the rest can generally be done efficiently by modern graphics
hardware. Low-cost graphics boards for PCs are nowadays very sophisticated, have memory
for computing and storing multiple textures, and even let the programmer download simple
programs for remote real-time execution in the graphics pipeline. (Future releases of OpenGL
are planned to allow the user to access these capabilities of graphics boards from OpenGL
programs.)
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Antialiasing Lines with Blending
OpenGL includes automatic use of blending to antialias lines, points, and polygons. These can
be enabled by giving the commands

glEnable(


GL_POINT_SMOOTH
GL_LINE_SMOOTH

GL_POLYGON_SMOOTH

);

glHint(


GL_POINT_SMOOTH_HINT
GL_LINE_SMOOTH_HINT

GL_POLYGON_SMOOTH_HINT

, GL_NICEST );

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

These commands cause OpenGL to render pixels that lie at the border of, and are partially
covered by, a point or edge as partly transparent. This is done by giving the partially covered
pixels an alpha value between 0 and 1 equal to the fraction of the pixel that is covered. As these
pixels are drawn, the blending operation averages the drawn color (the source color) with the
color already stored for the pixel (the destination color).

Antialiasing in this way works reasonably well for line and points but does not work as
well for filled polygons. You should see the OpenGL programming manual for a more sophis-
ticated way to antialias polygon edges, but that method requires performing your own depth
calculations instead of using the depth buffer for hidden surface removal.

Motion Blur and Depth of Field with the Accumulation Buffer
The OpenGL accumulation buffer is a memory region in which you can temporarily store and
combine images. It is possible to render a scene multiple times, combine the results into the
accumulation buffer, and finally display the composite image. OpenGL allows you to scale the
accumulation buffer contents, and the accumulation buffer can be loaded from, and saved to,
the current frame buffer.

By taking multiple snapshots and averaging them together into the frame buffer, you can
obtain motion blur and depth of field similar to those that can be achieved with distributed ray
tracing. For motion blur, you render the moving object several times at several intermediate
positions in its motion. For depth of field, you render the complete scene from several different
viewpoints. To get results comparable to distributed ray tracing you may need to use a larger
number of repeated images to avoid having the results look like several superimposed snapshots,
but this approach is still substantially faster than ray tracing.

Finally, because a scene may have only a few fast moving objects, you can often render
the more static background once and then repeatedly render the moving objects in front of the
static background to thus avoid the expense of repeatedly rendering the entire scene.

The OpenGL commands for manipulating the accumulation buffer are

glutInitDisplayMode( GLUT_ACCUM | other-options );

glAccum(


GL_ACCUM
GL_LOAD

GL_RETURN
GL_MULT
GL_ADD

, float factor );

glAccumClear( float red, float green, float blue, float alpha);

glClear(GL_ACCUM_BUFFER_BIT);
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You must include the GLUT_ACCUM bit in the options to glutInitDisplayMode to request
a rendering context with an accumulation buffer. The glAccumClear command sets the
clear colors for the accumulator: the accumulator buffer is loaded with these values by the
glClear command shown above. The call to glAccum with the GL_ACCUM operand adds
into the accumulation buffer the contents of the current drawing buffer multiplied by the
factor value. For superimposing multiple rendered images, you would use a loop of the
following type:

glClear(GL_ACCUM_BUFFER_BIT);
For i = 1,...,n {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
RenderScene( i ); // Render i-th version of scene
glAccum(GL_ACCUM, 1.0/n);

}
glAccum(GL_RETURN, 1.0);

The subroutine RenderScene() must render the changing scene as usual but should not
swap buffers to display it. The last line uses the GL_RETURN option to glAccum to place
the contents of the accumulation buffer back into the rendering buffer. The factor, which is
equal to 1 here, specifies another scaling value.

See the OpenGL programming manual for documentation on the rest of the operands to
glAccum.

Depth of Field with z-Buffer–Based Blurring
The z-buffer contents contain the pseudo-distance from which one can determine the actual
distance of the object from the eye. This distance information can be used to create depth of
field effects. To do this, any pixel whose depth does not approximately match the focal depth
can be blurred by replacing it with a weighted average of the surrounding pixels. The radius
of the area from which the surrounding pixels are taken should depend on the distance of the
pixel from the focal plane.

Reflections with Environment Mapping
Shiny, specular objects with reflections of the surrounding scene can be rendered using en-
vironment maps. The environment map is created by rendering the scene from the viewpoint
of the shiny object and then using this to create an environment map. Typically, this is done
by rendering the scene from the viewpoint of the shiny object up to six times and storing the
environment map in the box projection format. Once an environment map is created from every
shiny object, the final image can be rendered one further time from the eye position with the
environment maps applied as textures to the objects. It is also possible to iterate this proce-
dure to obtain multiple levels of reflection. Attenuated or blurry reflections can be handled by
attenuating or blurring the environment map.

Environment maps were already discussed in more detail in Section V.3.
Using environment maps in this way cannot fully simulate reflections. First there is some

error in the calculation of reflection because the environmentmap is formed from the viewpoint
of only a single position (usually the center point) of the object. Further, this approach does
not handle self-reflections; for instance, a shiny teapot would not show the reflection of the
spout on its body, or vice versa, unless you treat the spout and the body as separate objects and
calculate separate environment maps for them.
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Mirror Reflections with Clones
Reflections from flat, mirrored surfaces can be created by rendering a mirror image of the
world behind the mirror’s plane. This involves first rendering the entire scene reflected across
the plane of the mirror, then drawing the mirror as a transparent shape (using blending; see
glBlend in the OpenGL programming manual), and then drawing the real scene. Attenuated
reflections can be achieved by choosing blending value appropriately.

For small mirrors or for difficult geometric arrangements, you may need to use the OpenGL
stencil buffer to restrict the mirror image to be rendered only behind the mirror, for otherwise
the mirror image of the world would be visible around the mirror too. For this, you set up the
stencil buffer by drawing the mirror shape, then render the mirror image of the scene with
the stencil buffer enabled, and then disable the stencil buffer and render the mirror and then
the rest of the scene again. The stencil buffer acts as a mask to prevent rendering outside of a
defined area (for more details see the OpenGL programming manual).

Shadows
As we discussed already in Section II.3.4, shadows can be projected on a flat surface using
projection transformations. For soft shadows, this process can be repeated with multiple light
positions and blending.

Casting shadows on nonplanar surfaces is harder, but there are variety of methods that can
render shadows in real time. Two of the most popular ways of rendering shadows in real time
without ray tracing are the shadow volume method and the shadow map method. We give only
brief descriptions of these methods, but you can consult the references mentioned below for
more information.

The shadow volume method works by determining what regions in 3-space are in shadow.
For each point light source �i , and each polygonal object, we determine the solid region that
lies in the shadow cast by that object from light �i . This region is called a shadow volume. For
positional lights, the shadow volume is a generalized truncated cone. For instance, if the object
is a triangle, then its shadow volume is a three-sided, infinitely tall pyramid that is capped
(truncated) by the triangle. For general polygonal objects instead of triangles, it suffices to
find the “silhouette edges” and then the shadow volume is the infinite region bounded by
the shadows cast by the silhouette edges and capped by the polygonal object. The side faces
of the shadow volume are the boundaries of the shadow region as cast from the silhouette
edges.

Standard implementations of shadow volumes proceed roughly as follows: First, the scene is
rendered into the frame buffer as usual with all depth buffer information and either (a) with all
lighting as usual, or (b) with ambient lighting only. Then, the shadow volumes’ side faces are
rendered, but instead of drawing them into the frame buffer, the (pseudo-)depths are compared
with the depth buffer values in the frame buffer. By keeping track of the net number of front-
and back-facing shadow volume faces that lie in front of a given pixel in the frame buffer, we
can determine whether the pixel is in shadow. (The OpenGL stencil buffer can be used to keep
track of the net number of front- and back-facing edges.) Third, once it is determined which
pixels are in shadow, then either (a) all shadowed pixels are darkened to simulate shadows,
or (b) Phong lighting is used to add diffuse and specular lighting to all nonshadowed pixels.
These steps have to be repeated for each point light source.

The shadow volumemethod was first described by (Crow, 1977). It was generalized to more
general shapes by (Bergeron, 1986) and adapted to handle soft shadows from extended lights by
(Brotman and Badler, 1984). (Heidmann, 1991) describes efficient implementation of shadow
volumes with the stencil buffer. (Everitt and Kilgard, 2002) also discuss implementations
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on modern graphics hardware along with optimizations that avoid problems with clipping
planes.

The second method is that of shadowmaps. A shadow map consists of the view of the scene
as rendered from the perspective of a point light source (instead of from the viewpoint of the
viewer). For each point light source, a shadow map is created with a depth buffer and with
hidden surfaces removed. The shadowmap can be used to determine the distance from the light
source to the first object in the scene in any given direction (up the resolution of the shadow
map). After the shadow maps are created, the scene is rendered as usual from the viewpoint
of the viewer. Each pixel in the scene is rendered into screen space, with x- and y-coordinates
and with a pseudodepth value z. These screen space coordinates can be inverted to obtain
the position of the pixel’s contents in the scene in 3-space.3 Then the distance from the light
in 3-space can be compared with the corresponding distance from the shadow map. If the
object is farther away than the distance in the shadow map, it is shadowed; otherwise, it is not.
(Usually, a bias value is added to the distance to avoid problems with self-shadowing caused
by roundoff error.) Once it is known which pixels represent surfaces in shadow, then, as before,
either shadowed pixels can be darkened or nonshadowed pixels can be illuminated with Phong
lighting.

Shadow maps were introduced by (Williams, 1978). They can suffer from problems with
aliasing and roundoff error; (Reeves, Salesin, andCook, 1987) use amethod called “percentage
closer filtering” that can reduce aliasing and make softer shadows. (Agrawala et al., 2000) and
(Chen and Williams, 1993) discuss ways to use shadowmaps to render soft shadows with from
jittered light sources.

(McCool, 2000) describes a hybrid method that combines shadow volumes and shadow
maps by extracting shadow volume information from a shadow map.

Transparency, Blending, and Fog
OpenGL includes several features that allow some aspects of transparency to be rendered easily.
The OpenGL functions glBlendFunc and glFog control these features.

Blending allows transparent objects to modify the colors of objects behind them. The alpha
component of colors is used to control blending. To obtain good results with blending, it is
usually necessary to first render all nontransparent objects and then render the transparent
objects with the painter’s algorithm, namely, to render the transparent objects sorted so that
more distant objects are rendered first.

Fog allows more distant objects to “fade out,” as from fog or other atmospheric interference.
Fog has the advantage of providing “depth cueing,” wherein the attenuation of images due to
fog gives an indication of distance. In addition, fog can be used to obscure distant objects and
thereby improve performance since obscured objects do not need to be rendered.

3 The OpenGL function gluUnProject can help with inverting the screen space coordinates.
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Color Plate 1. (Figure I.1, page 2.) A pixel is formed from subregions or subpixels, each of which displays
one of three colors.

(a) (b)
Color Plate 2. (FigureVI.1, page 149.) (a) The additive colors are red, green, and blue. (b) The subtractive
colors are cyan, magenta, and yellow.

Red

YellowGreen

Cyan

Blue Magenta

Color Plate 3. (Figure VI.2, page 152.) Hue is measured in degrees representing an angle around the
color wheel. Pure red has hue equal to 0◦, pure green has hue equal to 120◦, and pure blue has hue equal
to 240◦.
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(a) (b)

(c) (d)

(e) (f )

Color Plate 4. (Figure III.1, page 68.) Six teapotswith various shading and lighting options. (a)Wireframe
teapot. (b) Teapot drawn with solid color but no lighting or shading. (c) Teapot with flat shading with only
ambient and diffuse lighting. (d) Teapot drawn with Gouraud interpolation with only ambient and diffuse
reflection. (e) Teapot drawn with flat shading with ambient, diffuse, and specular lighting. (f) Teapot with
Gouraud shading with ambient, diffuse, and specular lighting.
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(a) (b)

Color Plate 5. (Figure III.9, page 76.) Two cubes with (a) normals at vertices perpendicular to each face,
and (b) normals outward from the center of the cube. Note that (a) is rendered with Gouraud shading,
not flat shading.

Color Plate 6. (Figure V.8, page 135.) A bump-mapped torus. Note the lack of bumps on the silhouette.
Four white lights are shining on the scene plus a low level of ambient illumination. This picture was
generated with the ray tracing software described in Appendix B.

Color Plate 7. (Figure V.10, page 138.) An environment map mapped into a sphere projection. This is the
kind of environment map supported by OpenGL. The scene is the same as is shown in Figure V.11. Note
that the front wall has the most fidelity and the back wall the least. For this reason, spherical environment
maps are best used when the view direction is close to the direction used to create the environment map.
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Color Plate 8. (Figure V.11, page 138.) An environment map mapped into a box projection consists of
the six views from a point mapped to the faces of a cube and then unfolded to make a flat image. This
scene shows the reflection map from the point at the center of a room. The room is solid blue except for
yellow writing on the walls, ceiling, and floor. The rectangular white regions of the environment map are
not used.

(a) No supersampling.

(b) Supersampling with jittered subpixel centers.

Color Plate 9. (Figure IX.9, page 245.) An example of antialiasing using jittered subpixel centers. (a) The
scene rendered without supersampling; note the “jaggies” on the silhouettes of the balls, for instance.
(b) The scene with pixels selectively supersampled up to a maximum of 40 times.
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(a) No supersampling.

(b) Supersampling with jittered subpixel centers.

Color Plate 10. (Figure IX.10, page 246.) Closeup views of the images in figure IX.9.

Color Plate 11. (Figure IX.12, page 247.) An example of depth of field. The front of the eight ball is
the focal plane. Note also the blurring of the checkerboard plane. In this image, each pixel is selectively
supersampled up to 40 times. The eye positions and the subpixel positions were independently jittered as
described on page 249.
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Color Plate 12. (Figure IX.13, page 248.) An example of motion blur. Pixels were selectively supersam-
pled up to 40 times. Both motion supersampling and subpixel supersampling were used.

Color Plate 13. (Figure XI.1, page 273.) The patches used to render the radiosity scene of Figures XI.2
and XI.3.
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Color Plate 14. (Figure XI.2, page 274.) A radiosity-rendered figure with flat shading. It is evident that
this image is based on the patches shown in Figure XI.1.

Color Plate 15. (FigureXI.3, page 274.) A radiosity-rendered figurewith smooth shading of illumination.
The red color of the box is reflected onto the nearby walls, giving them a slight reddish hue. This is based
on the patches shown in Figure XI.1.

Team LRN



Color Plate 16. (Figure III.20, page 98.) Metallic tori with specular component computed using the
Cook–Torrance model. The materials are, from top to bottom, gold, silver, and platinum. The roughness
is m = 0.4 for all three materials. The tori are each illuminated by five positional white lights.
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X

Intersection Testing

This chapter discusses issues in intersection testing and describes algorithms for intersecting
rays with geometric objects. Intersection testing is one of the fundamental algorithms used
in ray tracing, which usually requires intersecting a large number of rays against a large set
of geometric objects. For this reason, it is often the case that the bulk of the computational
time required for ray tracing is spent on intersection testing. Intersection testing has other
applications besides ray tracing (for e.g., in motion planning and collision detection).

Intersection testing is a large and diverse field. In this chapter, we discuss only some of
the first topics, namely, intersecting rays against simple geometric objects. We only briefly
discuss methods such as bounding boxes and bounding spheres and global pruning methods
such as octtrees and binary space partitioning. More information on intersection testing can
be found in the book (Möller and Haines, 1999), which has two chapters devoted to this topic,
including numerous references to the literature. The Graphics Gems volumes also contain
many articles on intersection testing. For additional reading suggestions, see the end of this
chapter.

Two important goals need be kept to in mind when designing software for intersection
testing. The first design goal concerns accuracy and robustness. Clearly, it is important that
the algorithms be accurate; even more so, the algorithms need to be free from occasional
errors that may make visible artifacts, such as holes, or cause an occasional inconsistency in
intersection status. For example, in ray tracing applications, it ought to be impossible for a path
to be confused about being inside or outside a closed object such as a sphere. Similarly, for
objects made up of multiple parts, say a cube made from six square faces, or a surface whose
“faces” are Bézier patches, it should not be possible for roundoff error to allow a ray to pass
through a “crack” between two faces without hitting the surface.

The second design goal for intersection testing is speed. It is often the case that intersection
testing is the most computationally intensive part of a program. In particular, in ray tracing,
most of the computation time is commonly spent on intersection testing. The reason for this
is that there are typically numerous objects – hundreds, thousands, or perhaps many more –
and one has to consider the possibility that each ray hits each object. Since the ray hits only
one object, the time spent processing the actual hit is generally much less than the time spent
determining which of the many objects is first hit. A subordinate principle is that what is really
important is that one be able to determine very quickly when an intersection has not occurred.
That is, it is often far more important to decide quickly when a ray does not hit an object than
it is to decide quickly that a ray does hit an object.

257
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u

p
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q
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aaq1 q2

Figure X.1. The ray from p in direction u reaches its closest point to the center c of the sphere at q. The
points q1 and q2 are the two places where the line intersects the sphere.

If a ray is being intersection tested against many objects, then it may be useful to preprocess
the objects by arranging them hierarchically or by partitioning space with the use of octtrees
or binary space partitioning trees. These techniques allow a quick rejection of many objects
at once and thus intersection testing does not have to be performed against each individual
object. We will discuss these techniques briefly at the end of the chapter; however, our main
emphasis is on algorithms for testing whether a ray intersects an individual object.

X.1 Fast Intersections with Rays

In this section, we discuss algorithms for intersecting rays with several common surfaces in
R

3. We do not try to be encyclopedic in our coverage of intersection testing with rays but
instead strive to show the issues and algorithms that arise in many common cases. We consider
intersections of rays against spheres, planes, triangles, convex polytopes, cylinders, quadrics,
and Bézier patches.

X.1.1 Ray versus Sphere Intersections

Assume that a ray and a sphere are fixed. The ray is specified by its starting position p and a
unit vector u in the direction of the ray. That is, the ray is the set of points

{p+ αu : α ≥ 0}.
We will also talk about the line containing the ray, which we call the ray-line.

The sphere is specified by its center c and its radius r > 0 and is equal to the set of points
at distance r from the center.

The ray–sphere intersection algorithm works by first finding the point q on the ray-line
closest to the center of the sphere. (Refer to Figure X.1.) The point q will be equal to p+ αu,
where α is a scalar measuring how far q is from p along the ray. A point q will be the closest
point on the ray-line to the point c provided that the line from q to c is perpendicular to the
ray; that is, the point q can be defined by

0 = (q− c) · u = (p+ αu− c) · u.
Solving for α, using the fact that u · u = 1, gives

α = −(p− c) · u.
Therefore q = p− ((p− c) · u)u.

Once we have found q, we can check whether it lies inside the sphere by checking whether
||q− c|| ≤ r . Finding the norm of a vector involves calculating a square root, and so it is
actually more efficient to check whether ||q− c||2 ≤ r2. The calculation of the square of the
magnitude of a vector, say of ||w||2, can be done with only three multiplications and two
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additions, and this is significantly more efficient than also using a square root. If q does not lie
inside the sphere, then obviously the ray does not intersect the sphere.

When q does lie inside the sphere, let b = ||q− c|| and set a = √r2 − b2. Note that only
the square of b is needed; however, a square root is needed to compute a. Then the ray-line
intersects the sphere at the two points

q1 = p+ (α − a)u and q2 = p+ (α + a)u.

(See Figure X.1.) Now, if α − a ≥ 0, then the ray does actually hit the sphere at q1, and this
is its first intersection with the sphere. However, if α < a, then the point q1 lies in the wrong
direction along the ray-line, that is, behind p on the line. In this latter case, we then check
whether α + a > 0; if so, then the point p lies inside the sphere and q2 is the point where the
ray first hits the sphere.

Putting this together gives the following algorithm for ray–sphere intersection testing.

Ray-Sphere Intersection:
Input: p and u describe a ray. u a unit vector.

A sphere specified by center c and radius r .
Algorithm:

Set α = −(p− c) · u;
Set q = p+ αu;
Set bSq = ||q− c||2;
If ( bSq > r2 ) {

Return “No intersection”;
}
Set a =

√
r2 − bSq;

If ( α ≥ a ) {
Set q1 = q− au;
Return q1;

}
If ( α + a > 0 ) {

Set q2 = q+ au;
Return q2;

}
Return “No intersection”;

As discussed in the introduction, themost important aspect of the computational speed of the
algorithm is how fast it detects nonintersections. In the algorithm above, to get to the rejection
test of b2 > r2 on line 4, one performs 9 multiplications, 11 additions, and 1 comparison on
the assumption that the radius squared, r2, has been precomputed.

If you know that the ray’s beginning point p is never inside the sphere, it could beworthwhile
to add a check for whether α > 0 since α ≤ 0 means that the ray is not pointing towards the
sphere at all. In ray tracing, this may be the case if the sphere is not transmissive. This extra
test for nonintersection does not work so easily when it is possible for p to be inside the sphere.
For that, you need to check both α > 0 and ||p− c||2 > r2, that is, check that p is outside
the sphere and that the ray is pointing away from the sphere. This test then requires three
extra multiplications, two extra additions, and two extra comparisons; thus, it is generally only
marginally useful to perform this extra test.

Intersection tests for complicated geometric objects can be speeded up by giving the object
a bounding sphere, which must completely enclose the object. To test whether a ray intersects
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qp

u

Figure X.2. The ray specified by its start position p and direction u intersects the plane at the point q.

the complicated object, you can first test whether the ray intersects the bounding sphere. If
not, then it also does not intersect the geometric object. However, if the ray does intersect
the bounding sphere, you must further test for intersection with the geometric object. The
advantage of the bounding sphere is that it allows you to detect many cases of nonintersection
quickly.

Exercise X.1 Write an efficient pseudocode algorithm for bounding sphere testing. [Hint:
Use the first part of the ray–sphere intersection algorithm, namely, the part through line 6
ending with the test for b2 > r2. Finish up by testing the condition “α > 0 or α2 ≤ a2.”]

Exercise X.2� An ellipsoid is specified by its center, three orthogonal axes, and three
radii. The three orthognal axes and radii can be specified by three orthogonal vectors v1,
v2, and v3, with each norm ||vi || equal to the inverse of the radius in the direction of vi :
the ellipsoid is the set of points x such that

∑
i ((x− c) · vi )2 = 1. Formulate an efficient

ray versus ellipsoid intersection algorithm.

X.1.2 Ray versus Plane Intersections

A plane is specified by a normal vector n perpendicular to the plane and a scalar d. The plane
is the set of points x satisfying x · n = d .

If p and u specify a ray as usual, then, to intersect the ray with the plane, we first calculate
the point q (if it exists) that is the intersection of the ray-line with the plane. This q will equal
p+ αu for α a scalar. To lie in the plane, it must satisfy

d = q · n = p · n+ αu · n.
Solving for α yields

α = d − p · n
u · n .

The quantities in this formula for α all have geometric meaning. If n is a unit vector, then
the value d − p · n is the negative of the distance of p above the plane, where “above” means
in the direction of n. For nonunit n, (d − p · n)/||n|| is the negative of the distance of p above
the plane. In particular, p is above (respectively, below) the plane if and only if d − p · n is
negative (respectively, positive).

The dot product u · n is negative if the ray’s direction is downward relative to the plane (with
n defining the notions of “down” and “up”). If u · n = 0, then the ray is parallel to the plane,
and the usual convention is that in this case the ray does not intersect the plane at all. Even if
the ray lies in the plane, it is usually desirable for applications to treat this as not intersecting
the plane. The value of α is the signed distance of q from p. If α < 0, then the ray does not
intersect the plane.
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These considerations give the following ray-versus-plane intersection algorithm:

Ray-Plane Intersection:
Input: p and unit vector u defining a ray.

n and d defining a plane.
Algorithm:

Set c = u · n;
If ( c == 0 ) {

Return “No intersection (parallel)”;
}
Set α = (d − p · n)/c;
If ( α < 0 ) {

Return “No intersection”;
}
Set q = p+ αu;
Return q;

Sometimes we want to intersect the ray-line against the plane instead, such as in the ray
versus convex polytope intersection algorithm in Section X.1.4. This is even simpler than the
previous algorithm, for we just omit the test for α ≥ 0:

Line-Plane Intersection:
Input: p and unit vector u defining a line.

n and d defining a plane.
Algorithm:

Set c = u · n;
If ( c == 0 ) {

Return “No intersection (parallel)”;
}
Set α = (d − p · n)/c;
Set q = p+ αu;
Return q;

Exercise X.3 What would happen if we drop the requirement that the vector u be a unit
vector? Show that the preceding algorithms would still compute the intersection point q
correctly, but not the distance α.

X.1.3 Ray versus Triangle Intersections

We next take up the intersection of a ray with a triangle. In principle, this can be taken as
the fundamental intersection operation, because all surfaces can be approximated by planar
patches – indeed by triangles.

A ray is, as usual, specified by its starting position p and direction u, with u a unit vector.
A triangle can be represented by its three vertices v0, v1, and v2, which are presumed to be
noncollinear.

The first step in intersecting a ray with the triangle is to intersect it with the plane containing
the triangle. Let n be a vector normal to the plane, and let d be the scalar so that the plane
consists of those points x such that n · x = d . By convention, the vector n is taken to be the
“upward” direction, and we presume the triangle’s vertices are ordered in the counterclockwise
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qp

u

Figure X.3. Intersecting a ray with a triangle. The first step is to find the intersection q with the plane
containing the triangle.

direction when the plane is viewed from above. Values for n and d can be computed by the
following formulas:

n = (v1 − v0)× (v2 − v0)
d = n · v0.

The point q where the ray intersects the plane is found using the ray–plane intersection test
of the previous section. This also gives the signed distance α from p to q; if this test finds that
α < 0, then there is no intersection. By further examining the sign of either u · n or d − p · n,
one can determine whether the point p lies above or below the surface.

Once the point q has been found, we still need to determine whether q is inside or outside
the triangle. One way to do this is by computing the barycentric coordinates of q relative to
the triangle. They can be found using Equations IV.15 and IV.16 on page 107. To translate
these equations to our present setting, we let x = v0, y = v1, z = v2, and u = q. To find the
barycentric coordinates of q, we first calculate

e1 = v1 − v0
e2 = v2 − v0
a = e21
b = e1 · e2
c = e22.

Here e1 and e2 are two of the edge vectors for the triangle. Then, calculate

D = ac − b2

A = a/D

B = b/D

C = c/D.

Then let

uβ = Ce1 − Be2 and uγ = Ae2 − Be1.

The barycentric coordinates α, β, γ , which represent q as q = αv0 + βv1 + γ v2 are found by

β = uβ · (q− v0)
γ = uγ · (q− v0)
α = 1− β − γ.

The point q lies in or on the triangle provided that α, β, and γ are all nonnegative.
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Putting this together gives the following algorithm. The algorithm is split into two phases.
The precomputation calculates values that depend on the triangle only, and these values can
be computed once and saved.

Ray-Triangle Intersection Algorithm
Input: p and unit vector u specifying a ray.

v0, v1, v2 specifying a triangle.
Precompute n, d, uβ, uγ :

Set e1 = v1 − v0;
Set e2 = v2 − v0;
Set n = e1 × e2;
Set d = n · v0;
Set a = e1 · e1;
Set b = e1 · e2;
Set c = e2 · e2;
Set D = ac − b2;
Set A = a/D;
Set B = b/D;
Set C = c/D;
Set uβ = Ce1 − Be2;
Set uγ = Ae2 − Be1;

Main algorithm:
Invoke Ray-Plane intersection algorithm to calculate q.
If ( No ray-plane intersection exists ) {

Return “No intersection”;
}
Set r = q− v0;
Set β = uβ · r;
If ( β < 0 ) {

Return “No intersection”;
}
Set γ = uγ · r;
If ( γ < 0 ) {

Return “No intersection”;
}
Set α = 1− β − γ ;
If ( α < 0 ) {

Return “No intersection”;
}
Return q;

The algorithm above has been optimized for speed, not memory usage. Examination of the
main algorithm shows that for each triangle we need to have the values v0, n, d, uβ , and uγ ; this
is four floating point numbers more than would be needed to store just the three vertices (but
most applicationswould need to keep v1 and v2 too). There are several algorithms that use fewer
precomputed numbers; see especially (Möller and Trumbore, 1997; Möller and Haines, 1999)
for an algorithm that skips the stage of calculating q. Those algorithms have the advantage of
needing less memory, which can be important if there are many triangles; however, without
storing the plane normal and scalar values, it is not possible to have such a quick intersection
rejection test.
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X.1.4 Ray versus Convex Polytope Intersections

A convex polytope in R
3 is a region bounded by a finite number of planes.1 In 3-space,

convex polytopes are also called convex polyhedra, and examples include cubes, rectangular
prisms (boxes), pyramids, and so on. In 2-space, the bounding planes are replaced by bounding
lines, and so a convex polytope is the same as a convex polygon. The concept of polytope is
easily extended to arbitrary dimension (in R

d , the bounding planes are replaced by (d − 1)-
dimensional affine subspaces), and the algorithms we develop in this section apply equally
well to all dimensions. However, to avoid confusion, we will just discuss the case of polytopes
in R

3.
Because we never consider nonconvex polytopes, we simplify terminology by omitting the

adjective “convex” and using “polytope” to mean convex polytope.
After working out the rather complex algorithm for ray–triangle intersection in the previous

section, one might fear that ray–polytope intersection algorithms would be even more com-
plex. Surprisingly, and fortunately, this does not happen, and the algorithm for ray–polytope
intersection is not particularly complicated.

Consider a fixed polytope. If there are k faces for the polytope, then the k planes bounding
the polytope have normals ni and scalars di for 1 ≤ i ≤ k. By convention, the normals face
outward from the polytope. Therefore, the polytope is the set of points x satisfying

x · ni ≤ di for all i = 0, 1, 2, . . . , k.

That is to say, the polytope is the intersection of the k closed halfspaces bounded by the k
planes.

To intersect a raywith a convexpolytope,wefirst intersect the raywith each of the k bounding
planes. For each plane i , we compute the intersection qi of the ray-line with that plane along
with the signed distance αi from the originating point p to qi . In addition, we compute whether
the ray-line hits the bounding plane from above or from below. By “from above,” we mean that
u · ni < 0 and that the ray direction vector u is pointing in the plane’s downward direction.
By “from below,” we mean that u · ni > 0 and that the ray direction is pointing in the upward
direction.

An intersection from above is also called a “front intersection,” meaning that the ray-line
has hit the plane from its front face and is entering the halfspace bounded by the plane. An
intersection from below is also called a “back intersection,” and the ray-line is hitting the back
face and exiting the halfspace. The intersections are categorized as front or back intersections
on the basis of the dot product u · ni according to the following table:

Test Meaning

u · ni < 0 Front intersection: ray-line entering halfspace
u · ni > 0 Back intersection: ray-line exiting halfspace
u · ni = 0 & p · ni ≤ di Parallel ray below face: front intersection, αi = −∞.
u · ni = 0 & p · ni > di Parallel ray above face: back intersection, αi = −∞.

The degenerate case of the ray’s being parallel to the plane is treated by the convention that
it hits the plane at α = −∞. However, in this case, it still needs treated as a front or a back
intersection. This is consistent with the treatment of other front and back intersections in that
it makes the following property hold:

1 Generally, it is also required that the polytope be bounded, that is, not infinite in size; however, the
algorithm we present does not require polytopes to be bounded.

Team LRN



X.1 Fast Intersections with Rays 265
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Figure X.4. The two rays are shown intersecting the bounding planes of the shaded polytope. Front
intersections are labeled “f ” and back intersections are labeled “b”. The upper ray hits some back
intersections before some front intersections and thus does not intersect the polytope. The lower ray hits
all the front intersections before all the back intersections and thus does intersect the polytope.

Lemma X.1 Let qi and αi be set for the i th plane as above. Let p(β) = p+ βu. Then,

a. If the intersection with the i th plane is a front intersection, then p(β) is in the halfspace
bounded by the i th plane if and only if β ≥ αi .

b. If the intersection with the i th plane is a back intersection, then p(β) is in the halfspace
bounded by the i th plane if and only if β ≤ αi .

The proof of the lemma is immediate from the definitions.
The property of the lemma is the crucial idea behind the algorithm for intersecting a ray

and a convex polytope. The algorithm calculates all the αi and qi values and categorizes them
as either front or back intersections. It then lets

fMax = max{αi : the i th intersection is a front intersection}

bMin = min{αi : the i th intersection is a back intersection}.
The ray-line then intersects the polytope if and only if fMax ≤ bMin. If fMax ≥ 0, then the ray
intersects the polytope boundary first at p(fMax), and it is entering the polytope at this point. If
fMax < 0 ≤ bMin, then p is inside the polytope, and the ray first hits the polytope boundary
at p(bMin); it is exiting the polytope at this point. If however, bMin < 0 or bMin < fMax,
then the ray does not intersect the polytope. Figure X.4 illustrates the idea for this intersection
testing algorithm.

To verify all the assertions of the last paragraph, you simply note that, in order to be in the
polytope it is necessary and sufficient to be inside all the half spaces simultaneously. The front
intersections give the point where the line enters a half space, and the back intersections are
where the line exits a half space.

We can now give the intersection algorithm based on the preceding constructions. We use
±∞ only as a shorthand notation for very large (in absolute value) positive and negative
numbers.

Input: A ray specified by p and a unit vector u
k planes specified by normals ni and scalars di .

Algorithm:
Set fMax = −∞;
Set bMin = +∞;
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For i = 1, 2, ..., k {
// Ray to plane intersection
Set s = u · ni ;
If (s == 0) { // If parallel to plane

If ( p · ni > di ) {
Return “No intersection”;

}
Else {

Continue loop with next value of i;
}

}
// If not parallel to plane
Set α = (di − p · ni )/s;
If ( u · ni < 0 ) { // If front intersection

If ( α > fMax ) {
If ( α > bMin ) {

Return “No intersection”;
}
Set fMax = α;

}
}
Else { // Else, back intersection

If ( α < bMin ) {
If ( α < 0 or α < fMax ) {

Return “No intersection”;
}
Set bMin = α;

}
}

} // End of for loop
If ( fMax > 0 ) {

Set α = fMax;
}
else {

Set α = bMin;
}
Return q = p+ αu;

There are some notable special cases for which the preceding algorithm can be sped up. In
particular, many common shapes like cubes, rectangular prisms, parallelepipeds, and k-DOP’s
(see Section X.2) have bounding planes that come in pairs with opposite faces parallel. For
these, it is possible to speed up the algorithm by treating pairs of parallel faces simultaneously.

X.1.5 Ray versus Cylinder Intersections

The intersection of a ray with a cylinder can be done by combining the techniques for intersect-
ing rayswith spheres and polytopes.We consider only the case of right, circular, finite cylinders:
such a cylinder is specified by a radius r , an axis v, a center point c, and a height h. It is con-
venient to assume that v is a unit vector. The cylinder consists of the points that both lie within
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Figure X.5. A cylinder is the intersection of an infinite cylinder and the area between two parallel planes.
The ray is shown hitting the top plane, then entering the (infinite) cylinder, then exiting the cylinder, and
finally hitting the bottom plane. All the front intersections come before all the back intersections, and
thus the ray does intersect the cylinder.

distance r of the line through c in the direction v and are between the two planes perpendicular
to v that are distance h/2 away from the center c. That is, the cylinder is the set of points

{x : ||x− ((x− c) · v)v− c||2 ≤ r2} ∩ {x : ((x− c) · v)2 ≤ (h/2)2}.
The cylinder is expressed as the intersection of two sets of points: the first set is the infinite
height cylinder, and the second set is the region bounded between two parallel planes. Clearly,
a cylinder is convex.

The algorithm to intersect a ray with this cylinder proceeds as follows. First, use essentially
the method of Section X.1.1 to find where the ray-line intersects the infinite height cylinder:
this gives zero, one, or two intersections. (Handle the case of the ray being parallel to the
cylinder’s axis as a special case.) If there is only one intersection, it is a glancing intersection
and should be treated as being either zero or two intersections. If there are two intersections,
categorize them as being front and back intersections much like what was done in the algorithm
for ray-polytope intersection; the front intersection will always precede the back intersection.
Otherwise, if the ray does not intersect the infinite cylinder, it also does not intersect the
finite cylinder. Second, intersect the ray with the two parallel planes, getting its front and
back intersections (the degenerate case of the ray parallel to the planes is best treated as a
separate special case). Again, the front intersection will always precede the back intersection.
Third, combine the (up to) four intersections in the same manner as was used for ray–polytope
intersections. Figure X.5 illustrates the idea for this intersection testing algorithm.

Exercise X.4 Fill in the details of the paragraph above and write an algorithm for ray–
cylinder intersections.

The RayTrace software package described in Appendix B includes more general cylin-
ders, allowing them to have elliptical cross section and to have bounding planes that are not
perpendicular to the central axis. We leave it to the reader as an exercise to work out efficient
intersection algorithms for these.

X.1.6 Ray versus Quadric Intersections

A quadric is a surface in 3-space that consists of the points satisfying a polynomial of degree 2.
That is, a quadric is a surface consisting of all points 〈x, y, z〉 satisfying an identity f = 0,
where f is a function of the form

f (〈x, y, z〉) = Ax2 + By2 + Cz2 + Dxy + Exz + Fyz + Gx + H y + J z + K .

Examples of quadrics include spheres, ellipsoids, cylinders, paraboloids, and hyperboloids.
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To intersect a ray with a quadric, let p and u specify the starting point and the direction of
the ray as usual. Let p(α) equal p+ αu. To find the points p(α) that lie on the quadric, we need
to find the values for α ≥ 0 such that f (p(α)) = 0. Since f is a polynomial of total degree
two, the value of f (p(α)) is a polynomial of degree two,

f (p(α)) = aα2 + bα + c.

Solving for values of α such that f (p(α)) = 0 can easily be done with the quadratic formula
and yields 0, 1, or 2 solutions. The least nonnegative solution, if any, gives the first intersection
of the ray with the quadric.

For ray tracing applications, you want to know not only the point of intersection but also
the normal vector to the surface at that point. For a quadric, the normal vector can be found by
using the method of Theorem III.2 on page 80 using the gradient of f . Except in degenerate
cases, the gradient, ∇ f , will be nonzero.

X.1.7 Ray versus Bézier Patch Intersections

Testing the intersection of a ray and Bézier patch can be a daunting task. In fact, there is no
way to give a closed-form solution to the problem, and one must instead use iterative methods
to find the intersection approximately.

There are several approaches to algorithms that perform ray-versus-Bézier-patch intersec-
tion testing. These basically fall into two categories: (a) Newton and quasi-Newton methods
and (b) recursive subdivision methods.

Let a Bézier patch be given by a function q(u, v) that is, say, degree three in each of u and v,
and let a ray be specified as usual by p and u. Finding an intersection is the same as finding
values for u, v, and α so that ||q(u, v)− p+ αu|| = 0. Alternatively, one can define d(q) to
equal the distance from q to the ray-line. In this case, we are seeking values for u and v such that
d(q(u, v)) = 0. In both approaches, we are seeking the zeros of a function. Newton methods
and quasi-Newtonmethods aremethods that, at least in ideal situations, will iteratively compute
points that converge rapidly to a solution. Papers that discuss (quasi-)Newton methods include
(Toth, 1985) and (Joy and Bhetanabhotla, 1986).

Recursive subdivision algorithms are more straightforward but do not hold out the promise
of fast quadratic convergence of the type that can be obtained from (quasi-)Newton methods.
For this, a surface patch is given a bounding volume such as a bounding sphere or a bounding
box. The ray is checked for intersections against the bounding volume. If an intersection occurs,
then the Bézier patch is split into two subpatches using the de Casteljau subdivision algorithm,
and the ray is recursively checked against both patches. The RayTrace software performs ray-
versus-Bézier-patch intersections in this way using a bounding parallelepiped. The bounding
parallelepiped is chosen so as to enclose the control points of the patch. This is sufficient, since
the convex hull property guarantees that the entire Bézier patch lies in the convex hull of its
control points.

A recursive subdivision algorithm for ray versus bicubic surface patch intersection was
used already in the original publication on ray tracing (Whitted, 1980). A more sophisticated
recursive subdivision algorithm is proposed by (Nishita, Sederberg, and Kakimoto, 1990),who
subdivide Bézier patches into sizes smaller than half the size of the whole patch when this can
be justified by convexity considerations. This allows for much faster convergence, particularly
in cases in which the ray is hitting the patch at an angle significantly away from parallel to the
surface.
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(a) (b)

(c) (d)

Figure X.6. Various kinds of two-dimensional bounding volumes enclosing a crescent shape. (a) A
bounding sphere. (b) An axis-aligned bounded box (AABB). (c) An oriented bounding box (OBB). (d) A
discrete oriented polygon (k-DOP) with k = 3.

X.2 Pruning Intersection Tests

We next discuss “pruning” methods that let us avoid having to perform so many intersection
tests. For space reasons, we do not cover these in depth but instead give an overview of
some of the more common techniques and provide some references at the end for further
reading.

Several standard approaches are used to prune intersection tests. The first is to use bounding
volumes to enclose objects. The bounding volumes are picked to be much simpler than the
enclosed object and must completely enclose the object. If there is no intersection with the
boundingvolume, then there is also no intersectionwith the enclosedobject.Commonbounding
volumes include bounding spheres, bounding boxes called AABBs and OBBs, and k-DOPs.
Figure X.6 shows examples of these different types of bounding volumes. A bounding sphere
is a sphere that completely encloses an object. An AABB is an axis-aligned bounding box and
is a box whose edges are parallel to the standard x, y, z-axes. An OBB is an oriented bounding
box: this is a box placed at an arbitrary orientation. Computing intersections against OBBs is
more complex than against AABBs, but OBBs can sometimes more closely enclose an object
and moreover have the flexibility to move with an object as it changes orientation. A k-DOP is
a discrete oriented polygon: it is a convex polytope bounded by k planes, where the k-planes
come in pairs so that opposite faces of the polytope are parallel (it is permitted for some planes
to be extraneous and intersect the k-DOP in only a single point).

The second approach to pruning intersection tests involves partitioning space into regions.
Each object lies in one or more regions. When a ray is tested for intersections with the set of
all objects, the regions that the ray intersects are traversed one at a time: for each region that
the ray enters, the ray intersection tests are performed for each object that intersects the region.
There are a wide variety of ways to partition space. Representative methods include (a) room-
or cell-based methods, (b) quadtrees or octtrees, (c) k-d trees, and (d) BSP trees.
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Figure X.7. A quadtree.

Room- or cell-based partitions apply well to situations in which space is partitioned into
rooms or regions: typical applications that could use room-based partitions are 3-D models of
houses or buildings and computer games where the player traverses rooms or other discrete
regions. In a room-based partition, the extents of the rooms would usually be explicitly set by
the designer of the 3-D model.

Quadtrees are used to partition 2-space hierarchically into square regions, as shown in
Figure X.7. The root of a quadtree is an axis-aligned square containing the entire region of
interest. It is split into the four subsquares obtained by dividing it into half horizontally and
vertically. Each of these subsquares may themselves be split into four subsquares, and so
on, recursively. The decision of whether to split a square into four sub-subsquares depends
usually on how many objects intersect the region. The entire quadtree is stored as a tree
structure, including pointers to allow traversal of the quadtree. Octtrees are the generalization
of quadtrees to three dimensions: each node of an octtree is a cube and can be split into eight
subcubes.

The k-d trees are generalizations of quadtrees and partition space (of any dimension) by
using axis-aligned planes, as shown in Figure X.8. The root of a k-d tree is a rectangular box
containing the region of interest. Each nonleaf node N in a k-d tree has two children (i.e., is
split into two subregions). The two subregions are defined by choosing an axis and dividing
the node N with a plane perpendicular to that axis. The most common way to choose the two
subregions is by selecting a vertex v from an object in the region covered by N , choosing
one axis, and splitting the region into two subregions based on v’s coordinate for that axis.
In 2-space this means choosing a vertical or horizontal line through v; in 3-space this means
splitting the region with an axis-aligned plane through v. The advantage of k-d trees over
quadtrees is that one can intelligently pick the vertex v and axis direction so as to try to divide

Figure X.8. A k-d tree in two dimensions. A region in a k-d tree can be subdivided by either a vertical
or a horizontal line.
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Figure X.9. A BSP tree in two dimensions.

into subregions that partition the objects into sets of approximately equal size. The hope is that
the tree will have lower depth and be faster to traverse.

Binary space partitioning trees, known as BSP trees, generalize k-d trees by allowing the
regions to be partitioned by an arbitrary plane rather than only axis-aligned planes (see Figure
X.9.) Typically, the plane that divides a region is chosen so that it contains one of
the faces of one of the objects in the region. The BSP trees were first introduced by
(Fuchs, Abram, and Grant, 1983; Fuchs, Kedem, and Naylor, 1980), (see also the references
in the Further Reading section below).

The third approach to pruning intersection tests is the use of hierarchical bounding volumes.
This is actually a hybrid of the first two approaches. Typically, they work by first enclosing each
individual object with a bounding volume, then enclosing pairs or small clusters of bounding
volumes by another bounding volume, and recursively iterating this procedure until the entire
scene in enclosed in a bounding volume.Oriented bounding boxes are a popular choice for these
bounding volumes (see (Gottschalk, Lin, and Manocha, 1996)), but other types of bounding
volumes can be used as well.

Further Reading: Some good textbooks that cover octtrees, BSPs, and related spatial data
structures are (Samet, 1990a; 1990b) and (de Berg et al., 2000). (Möller and Haines, 1999)
describe many algorithms for AABBs, OBBs, k-DOPs, and hierarchical methods.

This chapter has discussed only intersecting rays against three-dimensional objects. For
many applications, one also wants to perform intersection tests on pairs of three-dimensional
objects to determine if they have collided or interpenetrated: this is a much harder task in gen-
eral. For an overviewof intersecting three-dimensional objects, see (Möller and Haines, 1999),
who discuss algorithms for intersecting simple objects such as spheres, boxes, and k-
DOPs. Exact algorithms for intersection testing between general convex objects have
been given by (Lin, 1993; Lin and Canny, 1991) and (Gilbert, Johnson, and Keerthi, 1988).
As of this writing, at the University of North Carolina, the Geometry Group’s Web site,
http://www.cs.unc.edu/∼geom, has numerous related papers and resources, includ-
ing extensive downloadable software.
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Radiosity

Radiosity is a global lighting method that tracks the spread of diffuse light around a scene. As
a global lighting method, it attempts to simulate the effect of multiple light reflection. Unlike
basic ray tracing, which tracks only the specular transport of light, radiosity tracks only the
diffuse transport of light.

The goal of a radiosity algorithm is to calculate the illumination levels and brightness of
every surface in a scene. As an example, consider a scene of a classroom with fluorescent
light fixtures, painted walls, a nonshiny tile floor, and desks and other furniture. We assume
that there are no shiny surfaces, and thus no significant amount of specular light reflection.
All the light in the room emanates originally from the ceiling lights; it then reflects diffusely
from objects in the room, especially from the walls and floor, providing indirect illumination
of the entire room. For instance, portions of the floor underneath the desk may have no direct
illumination from any of the lights; however, these parts of the floor are only partly shadowed.
Likewise, the ceiling of the room receives little direct illumination from the overhead lights but
still is not dark. As a more extreme case, the bottom sides of the desk tops are partly shadowed
but are certainly not completely dark: they are illuminated by light reflecting off the floor.

Another common example of a scene with diffuse lighting is a room lit by indirect light
such as by a torchère. A torchère is a vertically standing, bright white light that shines up onto
the ceiling of the room. The light reflects diffusely from the ceiling to illuminate the entire
room even though essentially none of the room is directly visible to the light bulb. Radiosity
can also model a room lit by indirect outdoor light.

Radiosity methods are, in many ways, complementary to ray tracing methods. Basic ray
tracing tracks the global transport of specularly reflected light, whereas radiosity tracks the
global transport of diffusely reflected light. Thus, radiosity is much better at softly lit scenes
with subtle color shading, whereas ray tracing is better at rendering sharp shadows. Radiosity
methods usually track the diffusely reflected light by starting at the light source and tracking the
movement of illumination forward. Ray tracing generally starts at the view point position and
tracks rays of light backwards (in the so-called forward ray tracing). For this reason, the results
of ray tracing are view dependent, whereas the results of radiosity are view independent. Thus,
radiosity can be used to preprocess a scene ahead of time, and once the radiosity algorithm
is completed the scene can be traversed in real time without expensive computation. This
means that radiosity is well suited to interactive walkthrough applications. By comparison, ray
tracing cannot generally be viewed by a moving viewer in realtime, since the entire ray tracing
procedure must be repeated for each change in the view position.
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Figure XI.1. The patches used to render the radiosity scene of Figures XI.2 and XI.3. See Color Plate 13.

This chapter describes radiosity algorithms in some detail. However, before presenting the
detailed mathematical algorithms, we give a high-level overview of radiosity algorithms.

Radiosity algorithms typically begin by breaking the scene into a set of flat polygons called
“patches” (for an example, see Figure XI.1). The main goal of the radiosity algorithm is to
compute an illumination level, or brightness, of each patch. For this, the radiosity algorithm
assumes that each patch is uniformly lit. In addition, it is assumed that all light is reflected
only diffusely; that is, it is only the total illumination of a given patch that is important, and the
direction of the incoming illumination can be ignored. Some of the patches are light sources:
these are called emissive patches. For the other polygons, we wish to determine illumination
levels. This will be done by tracing the flow of all the light – from the light sources through
multiple bounces – to determine the overall light levels for each patch.

After breaking the scene into patches, the radiosity algorithm computes “form factors.”
The form factors will be used to describe how much light reflects diffusely from one patch to
another. For each pair of patches, their form factor measures the fraction of the light leaving
the first patch that directly illuminates the second patch. For instance, if the first patch lies on
the wall of the classroom and the second patch corresponds to one tile on the floor, the form
factor would be equal to the percentage of the light leaving the wall’s patch that goes directly
to the tile.

Once the form factors have been determined, we set up equations that relate the patch
illuminations and the form factors. These equations can be conveniently set up as a large
system of linear equations. The remainder of the radiosity algorithm solves the system of
equations to determine the level of illumination of each patch. Figure XI.2 shows an example
of a scene with each patch illuminated according to the radiosity algorithm. In the figure, each
patch is flat shaded, and so the scene does not look realistic. But, as the final step of the radiosity
algorthm, an averaging procedure is applied to make each patch smoothly shaded. Figure XI.3
shows the result of smoothly shading the patches.

Although we will describe the radiosity algorithm as computing a single brightness value
for each patch, in fact, we really mean for it to compute a different brightness level at each
wavelength (typically, red, green, and blue). As a general rule, the same patches and the same
form factors are used for all wavelengths.
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Figure XI.2. A radiosity-rendered figure with flat shading. It is evident that this image is based on the
patches shown in Figure XI.1. See Color Plate 14.

XI.1 The Radiosity Equations

XI.1.1 Patches, Light Levels, and Form Factors

The first step in rendering a scene in the radiosity algorithm is to break the surfaces in the
scene into a set of small flat patches. The main part of the radiosity algorithm will treat each
patch as being uniformly illuminated, but in the end shading will be used to render the patches
with smoothly varying illumination levels. It is important to choose patches sufficiently small
that the assumption that each patch is uniformly illuminated will not cause too much error in
the calculation. Thus, the illumination levels should not change very much between adjacent
patches or within a single patch; otherwise, the radiosity algorithm may give poor results.

Figure XI.3. A radiosity-rendered figure with smooth shading of illumination. The red color of the box
is reflected onto the nearby walls, giving them a slight reddish hue. This is based on the patches shown
in Figure XI.1. See Color Plate 15.
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An example of a scene broken into patches is shown in Figure XI.1, which shows a table
and a box sitting in a room with the whole scene drawn as wireframe quadrilaterals. This is a
particularly simple example of a scene to break into patches, for all the surfaces are already
rectangular. However, complications arise even here because the changes in illumination levels
are more pronounced near corners; thus, it helps to use smaller patches near corners.

Several important issues are involved in making a good choice for the patches. The smaller
the patches, the more likely it is that the radiosity algorithmwill succeed in calculating lighting
levels well. On the other hand, the radiosity algorithm takes time at least O(n2), where n is the
number of patches, and so the running time increases quadratically with the number of patches.
Even worse, the memory usage is also O(n2). Thus, it is common to use some kind of adaptive
meshing in which some patches are large and some patches are small. In Figures XI.1–XI.3,
we used smaller patches near the sides of the room, near the box, and under the table: the idea
is that patches should be smaller where the illumination levels are changing more rapidly.

We will not further discuss issues in how to choose patches (see (Cohen and Wallace, 1993;
Sillion and Puech, 1994) for a discussion of good tactics for choosing patches). Instead, we
henceforth assume that patches have already been chosen.We label the patches P1, P2, . . . , Pn .
We let Ai denote the area of patch Pi .

The central goal of the radiosity algorithm is to determine the average brightness of each
patch Pi . For this, we define Bi to equal the light energy leaving patch Pi divided by the
area of Pi . Thus, the brightness Bi measures the light energy per unit area averaged over
patch Pi . Note that the Bi values are different from the intensity levels, denoted I , discussed
in Chapter III. The intensities I were defined as light flux per unit area perpendicular to
the direction of light propagation, whereas Bi equals light flux per unit of surface area. The
reason for using brightness values instead of intensity levels is that we now are interested in
the illumination levels for each individual patch rather than (at least for the moment) in the
illumination that reaches a viewer. However, the assumption that the surfaces are Lambertian
means the perceived brightness of a patch is proportional to its Bi value and independent of
the viewing angle.

Often, the term “radiosity” is used for the values Bi , but we will use the more intuitive term
“brightness.”

We write B in
i to denote the brightness of the total light shining onto patch Pi . The equation

relating the incoming and outgoing brightnesses is

Bi = Ei + Ri · B in
i , XI.1

where Ei is the emissiveness of the patch and Ri is its reflectivity. Like the brightness values
Bi and B in

i , the emissiveness Ei is measured in terms of light energy per unit area. The factor
Ei represents the amount of light being generated by the surface (as compared with being
reflected by the surface). Positive values of Ei are used for patches that are light sources. For
ordinary surfaces other than lights, Ei should equal zero. The reflectivity value Ri specifies
the color of the patch. Since we are considering only a single wavelength, Ri is a scalar that
equals the fraction of incoming light that is (diffusely) reflected by the patch. We require
that 0 ≤ Ri < 1. If Ri = 0, the patch is not reflective at all, and values of Ri close to 1 mean
that the patch is highly reflective. Values of Ri close to 0 are appropriate for black surfaces,
and values near 1 are appropriate for white surfaces.

Equation XI.1 gives a formula for the light leaving a patch in terms of the light incident
on the patch. We also want to express the light incident to a patch in terms of the outgoing
brightnesses of the rest of the patches. The light incident on a patch Pi should be equal to
the total light leaving the other patches that directly illuminates patch Pi . To express this
mathematically, let Fi, j be the fraction of the light leaving patch Pi that shines directly onto
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patch Pj without reflecting off any intermediate patches. To handle the case of i = j , we let
Fi,i = 0. The values Fi, j are called form factors.

Since brightness is measured in terms of light energy per unit area, the total light leaving
patch Pj is equal to A j B j . Likewise, the total light entering patch Pi is equal to Ai B in

i .
Therefore, the definition of form factors gives us

Ai B in
i =

n∑
j=1

Fj,i A j B j . XI.2

We will see later that the form factors satisfy the following reciprocity equation:

Ai Fi, j = A j Fj,i .

With this, equation XI.2 may be rewritten as

B in
i =

n∑
j=1

Fi, j B j . XI.3

Combining equations XI.1 and XI.3 gives the radiosity equation:

Bi = Ei + Ri

n∑
j=1

Fi, j B j . XI.4

The radiosity equation can be rewritten in matrix form by letting

B =

B1
...

Bn

 and E =

E1
...

En


and letting M be the n × n matrix, M = (Ri Fi, j )i, j . Then, the matrix form of the radiosity
equation is

B = E + MB. XI.5

By letting I equal the n × n identity matrix, this can be rewritten as

(I − M)B = E.

The vector E of emissivities and the reflectivity values Ri are presumed to be known, and we
will see how to compute the form factors Fi, j . It will then remain to compute the value of
the brightness vector B. One way to do this would be to invert the matrix (I − M). However,
matrix inversion is relatively time consuming and difficult, and sowe discuss alternate, iterative
methods of computing B in Section XI.3.

XI.1.2 High-Level Description of the Radiosity Algorithm

We can now describe the major steps in the basic radiosity algorithm. These are illustrated in
Figure XI.4. The first step is to model the scene and break it into patches Pi . We presume that
the emissivities Ei and the reflectivities Ri are given ahead of time.

The second step is to compute the form factors Fi, j . This typically is the computationally
difficult part of the radiosity algorithm and consumes most of the time needed for the radiosity
computation. We discuss a couple methods for computing form factors in Section XI.2. Once
the form factors are computed, it is easy to compute the entries in the matrix M and set up the
radiosity equation XI.5.

The third step is to solve the radiosity equation for the brightness levels B. Several methods
for solving this are presented in Section XI.3. These are iterative methods that mostly work
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Mesh scene
as patches
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Figure XI.4. The four stages of the radiosity algorithm.

by chasing light around the scene from the light sources (i.e., patches with nonzero emis-
sivity values) and calculating better and better estimates for the brightness levels of all the
patches.

The fourth step is to render the scene. Each patch has been assigned a brightness
(or color), but we do not merely want to render each patch as a flat color; instead, we want to
use interpolation to render the surfaces with smooth shading. (Figures XI.2 and XI.3 illustrate
the difference between flat and smooth shading.) To obtain smooth shading, we first use the
brightness levels for each patch to set the brightness levels for each patch vertex. For instance,
each patch vertex can be assigned a brightness equal to a weighted average of the brightness
levels of the adjacent patches. Once the brightness level is set for each vertex, then the patches
can be rendered by standard means using Gouraud interpolation. The use of interpolation and
shading helps to smooth out the lighting and hide the fact that we computed a uniform average
brightness level for each patch.

Several complications arise in the fourth step. First, the lighting levels will generally be only
continuous – but not C1-continuous – across patch boundaries, which can sometimes cause
visible edges due to “Mach banding.” The human eye is fairly sensitive to discontinuities in
the first-order derivative of lighting levels, and this tends to make boundaries between patches
more visible than expected. Second, if the patches are not uniform in size, one must be careful
with adjacent patches that share an edge. This was already discussed at the end of Chapter II
as well as on page 177 with Figure VII.15. If a larger patch shares part of an edge with another
smaller patch, then the common edge should be split for rendering the larger patch too.

The first three stages of the radiosity algorithm in Figure XI.4 are view independent. The
final, fourth state is view dependent of course, but this stage is computationally easy and
efficient. For this reason, radiosity lends itself well to precomputation of lighting and allows
interactive walkthroughs.

Figure XI.4 shows the most basic form of the radiosity algorithm. Frequently, one wishes
to use adaptive methods to form patches: that is, on the basis of the quality of the solution
obtained in the third stage, one may wish to refine the patches in areas where light levels are
changing rapidly or where the solution otherwise needs more accuracy. Thus, sophisticated
algorithms may alternate between solving the radiosity equations, and adding more patches
and computing new form factors.

XI.2 Calculation of Form Factors

Recall that Fi, j is equal to the fraction of the light leaving patch Pi that goes directly to patch Pj .
Clearly, the values of Fi, j are always in the interval [0, 1]. We assume that we have an enclosed
environment so that all light leaving a patch hits some other patch; in other words,

n∑
j=1

Fi, j = 1.

This holds without loss of generality, for, if necessary, we can add completely nonreflective
black patches surrounding the environment.
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Patch P1 , area A1 .

Patch P2 , area A2 .

Figure XI.5. A large patch and small patch.

To aid our intuition about the values of Fi, j , consider the situation shown in Figure XI.5.
Here, a small patch P2 is facing upward, and centered above it is a large patch P1 facing
downward. We expect the value of F1,2 to be small, since only a relatively small fraction of the
light leaving the upper patch hits the small lower patch. Conversely, we expect the value of F2,1

to be large because the larger patch P1 fills much of the field of view of the smaller patch.
Now consider two small patches Pi and Pj obliquely facing each other, as shown in

Figure XI.6. The distance between the centers of the patches is equal to d, and the normal
vectors to the two patches make angles ϕi and ϕ j with the line joining the centers of the two
patches. Here we assume that ϕi and ϕ j are both less than 90◦, for otherwise the two patches
would not face each other and the form factors would be zero, Fi, j = 0 = Fj,i .

We make the further assumption that the patches are infinitesimally small so as to simplify
estimation of the form factors. The patches have areas Ai and A j . Consider the field of view
of patch Pi . The other patch Pj has area A j but is turned away at an angle of ϕ j and is a
distance d away. Consider what happens when patch Pj is projected towards Pi onto the unit
sphere centered around Pi . The area that the projection of patch Pj occupies on that unit sphere
is equal to (cos ϕ j )A j/d2. The area of the upper half of the unit sphere is equal to 2π ; hence,
the fraction of Pi ’s field of view that is occupied by patch Pj is

(cos ϕ j )A j

2πd2
.

The surface of patch Pi is assumed to be Lambertian. A large Lambertian surface has the
same apparent brightness from any viewing angle. But, as we remarked already on page 72,
because of the foreshortening of areas when viewed obliquely the fraction of light that leaves
the patch Pi in a direction at an angle ϕi from the normal is proportional to cos ϕi . Therefore,
the fraction Fi, j of the light energy that leaves Pi in the direction of Pj is proportional to

cos ϕi
(cos ϕ j )A j

2πd2
. XI.6

The constant of proportionality is set from the condition that the total light leaving patch Pi

should of course be fraction 1 of the light. For this, we let S2+ denote the upper half of the

Pi

Ai

Pj

Aj

ni

nj

ϕi

ϕj

d

Figure XI.6. Two infinitesimally small patches Pi and Pj with areas Ai and A j . The normals to the
patches are ni and n j .
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unit sphere and, thinking of the patches A j constituting the unit sphere around Pi , evaluate
the integral∫

S2+
cos ϕ d A =

∫ π/2

ϕ=0
(cos ϕ)(2π sin ϕ) dϕ = π.

Therefore, we need to drop the factor of 2 from Equation XI.6, and the form factor Fi, j is equal
to

Fi, j = (cos ϕi )(cos ϕ j )A j

πd2
. XI.7

One convenient property of the form factors is the reciprocity property that

Fi, j Ai = Fj,i A j .

The reciprocity property is an immediate consequence of Equation XI.7. In some cases, the
reciprocity property can effectively cut the work of computing form factors in half. Usually,
the areas are known; thus, once the form factors Fi, j with i < j have been computed, the rest
can be computed by using Fj,i = Fi, j Ai/A j .

The preceding derivation of Formula XI.7 for the form factor is simple enough, but there
are two potentially serious pitfalls. First, the formula was derived under the assumption that
the two patches are infinitesimal but are separated by a noninfinitesimal distance d. Often
this assumption does not hold, and, in this case, the actual form factor may be quite different
from the value given by Formula XI.7. As a general rule, if the sizes of the patches are small
compared with the distance d , then Equation XI.7 will be close enough to the correct value
for practical purposes. Define the diameter of a patch to be the diameter of the smallest circle
that contains the patch. Then if the distance d between the patches is at least five times the
diameters of the patches, then Equation XI.7 is likely to be sufficiently accurate.

One might wish to have a better formula for the form factors that could be applied to (say)
arbitrary rectangles. Such formulas can be derived for important special cases, but even in
simple cases, such as two patches that share a common edge and meet at right angles, the
formulas are quite complicated. Thus, if you want more accurate calculation for form factors,
you must perform a double integral over the surfaces of the two patches. In practice, this
means that the two patches are divided into multiple, sufficiently small subpatches, and the
form factors between each subpatch of Pi and subpatch of Pj are computed using XI.7. These
form factors are then combined to obtain the overall form factor Fi, j for Pi and Pj .

The second pitfall in using Equation XI.7 concerns visibility. In other words, if there are
other patches between Pi and Pj , then they can obstruct the light from Pi to Pj . Now, if the
light from Pi to Pj is completely blocked, then Fi, j is just equal to 0. On the other hand, if
the light is only partially blocked, the form factor needs to be reduced by multiplying by the
fraction of light from Pi that can reach Pj .

XI.2.1 The Ray Tracing Method

One method for computing the visibility between patches is to use ray tracing. We sketch a
simple, and fairly robust, way to compute form factors with the aid of ray tracing.

The computation of the form factors will be based on Equation XI.7 but with an additional
visibility term Vi, j , which is an estimate for the fraction of patch Pi that is visible from patch Pj .
Note that we will have Vi, j = Vj,i . One way to compute Vi, j is to cast rays from k positions on
patch Pi towards k positions on patch Pj . Ray tracing is then used to determine if these rays
intersect any intermediate objects. We then set Vi, j equal to the fraction of rays that were not
obstructed by intersections with intermediate objects.
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Pi

Pj

Figure XI.7. Projection onto a hemicube.

A good way to choose the k rays is to use the method of jittering discussed in Chapters
V and IX. You can choose k jittered subpixel positions on each of Pi and Pj , then choose
a random one-to-one correspondence between jittered positions in Pi and jittered positions
in Pj , and cast rays between the corresponding points.

The rest of the form factor calculation is unchanged. We let ci and c j be the centers of Pi

and Pj , let d be the distance from ci to c j , and let ϕi and ϕ j be the angles that the patches’
normals make with the vector c j − ci . Then the form factor can be estimated by

Fi, j = Vi, j
(cos ϕi )(cos ϕ j )A j

πd2
.

XI.2.2 The Hemicube Method

The hemicubemethod, introduced by (Cohen and Greenberg, 1985), is amethod for computing
form factors that takes advantage of hardware acceleration using the depth buffer algorithms
present in most graphics chips. The hemicube algorithm computes the form factors for a
particular patch Pi by rendering a view of the world from the viewpoint of patch Pi . For every
other patch Pj , this rendered view can be used to determine what fraction of Pi ’s field of view
is occupied by patch Pj . After compensating for distance and for the cosine factors, we obtain
the form factor Fi, j .

The basic idea of the hemicube algorithm is illustrated in Figure XI.7. Here a virtual
hemicube is placed over the center of an infinitesimal patch Pi . The hemicube is the top half of
a cube with sides of length 2. The field of view occupied by patch Pj is projected towards Pi

onto the hemicube. Clearly, the form factor Fi, j is the same as the form factor from Pi to the
projection of Pj .

This does not yet take visibility or occlusion into account. Now, for each of the five faces of
the hemicube, the top and the four sides, we render a view of the scene from the center of Pi

as seen through that face. This maps every other patch onto a (possibly empty) set of pixels of
the viewscreen, and the depth buffer algorithm keeps track of which patches are visible in the
direction of any given pixel. At the end of rendering the scene from the point of view of Pi ,
we do not display the rendered scene as usual but instead read the contents of the image buffer
to determine which patch was visible at each pixel position.

We use a trick to determine which patch is visible in each pixel position. We do not render
the patches in their correct color but instead assign to each patch Pj a distinct color C j . Then,
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0 x, y

z

d =
√
x2 + y2 + 1

ϕi

ϕj

Pixels on top
face: z = 1. Shows Pj

Figure XI.8. A row of pixels along the top of the hemicube. One pixel shows patch Pj . The origin is
placed at the center of patch Pi . The top of the cube is the z = 1 plane.

Pj is visible at a given pixel position if and only if the pixel has been rendered with color C j .
Since there are typically (256)3 many distinct colors, plenty of colors will be available to give
each patch a distinct color.

The hemicube algorithm estimates the form factor Fi, j as the sumof the form factors from Pi

to the pixels showing Pj , namely, as

Fi, j =
∑
Pixels

showing Pj

(fraction of Pi ’s light that reaches pixel). XI.8

Figure XI.8 shows the situation for a pixel in the top surface of the hemicube. Here a pixel
containing the color of Pj is at coordinates 〈x, y, 1〉 on the top surface of the hemicube, where
the coordinates refer to the natural coordinatization of the hemicube relative to placing the
origin at the center ci of patch Pi . The distance from ci to the pixel is d =

√
x2 + y2 + 1. The

angles ϕi and ϕ j are equal, and the cosine of this angle is equal to 1/d. Thus, referring back
to Equation XI.7, we find that the contribution to the summation XI.8 from pixels on the top
of the hemicube is∑

Pixels on top
showing Pj

(1/d)(1/d)(Pixel Area)

πd2
=

∑
Pixels on top
showing Pj

(Pixel Area)

πd4
,

where d4 = (x2 + y2 + 1)2. The “Pixel Area” value is equal to the area occupied by a single
pixel on the top of the cube. Since the top of the cube is a 2× 2 square, the pixel area will be
4/(w h), where h and w stand for “height” and “width,” respectively, and are the dimensions
of the image buffer measured in pixels.

Pixels from the view through the side faces of the hemicube contribute similarly to the form
factor Fi, j . For instance, pixels on any of the four side faces of the hemicube, as shown in
Figure XI.9, contribute the following amount to Fi, j :∑

Pixels on side
showing Pj

z(Pixel Area)

πd4
,

where z is the z-component of the side face pixel.
There are some odd side effects that can arise when using the hemicube method. One

phenomenon is that patches are treated asymmetrically when computing form factors. That is,
when computing Fi, j for i fixed and for all j’s, we are essentially treating patch Pi as a single
point, whereas we are treating the other patches as extended areas. Therefore, the reciprocity
condition may no longer hold. On the other hand, it is still guaranteed that

∑
j Fi, j = 1; this is
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cosϕ
ϕ
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cos j = 1/d
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Figure XI.9. A row of pixels along the x = 1 side of the hemicube.

important because the convergence of the algorithms discussed in the next section for solving
the radiosity equations depends on this fact. Finally, like any method based on discretization
into pixels, the hemicube method is subject to errors involving aliasing.

XI.3 Solving the Radiosity Equations

We now assume that all patch geometry has been set and the form factors have all been
computed; this means that the matrix M is completely known, and it remains to solve the
radiosity equation XI.5 for the value of the brightness vector B. The first section below will
discuss theoretical issues, especially iterativemethods that can obtain approximate values forB.
The basic iterative method, called Jacobi iteration, works by solving a fixed point equation by
iterating a function. However, there are various ways to improve on this basic iteration. We
give sketches of proofs that these various methods are guaranteed to converge. The remaining
three sections describe the details of implementing successively better iterative methods for
solving the radiosity equations.

XI.3.1 Iterative Methods

Recall that the matrix form of the radiosity equations is

(I − M)B = E.

The vectors B and E have n entries, M is an n × n matrix, I is the n × n identity matrix, and
we assume that E and M are known. We wish to solve for the brightness vector B.

Of course, one way to solve for B would be to invert the matrix I − M and just set

B = (I − M)−1E.

The problem with this is that inverting a large matrix can be computationally expensive and
difficult to implement robustly. Because n is the number of patches in the scene, the matrix is
indeed quite large, say on the order of n = 10, 000 for moderately complex scenes. It is not
hard to verify that the straightforward algorithms for matrix inversion require running time
of O(n3), and so it would be prohibitively difficult to invert such a large matrix.

On the other hand, the matrix M enjoys several special properties, and there are iterative
methods that can exploit these properties to get better and better approximations to the correct
solution to the radiosity equation. These special properties of M are captured by the next
lemma.

Definition The entry in the i th row and j th column of M is denoted mi, j . We denote this by
M = (mi, j )i, j . Let max(M) be the maximum entry of M . Let RowSumi (M) be the sum of the
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entries in the i th row of M , that is,

RowSumi (M) =
n∑

j=1
mi, j .

Finally, let MaxRowSum(M) = max{ RowSumi (M) : i = 1, . . . , n}.
Lemma XI.1 Let M = (mi, j )i, j be the matrix for the radiosity equation.
(a) For all i, j , mi, j ≥ 0.

(b) 0 ≤ MaxRowSum(M) < 1.

(c) Let α = MaxRowSum(M). For all k ≥ 0,

MaxRowSum( Mk ) ≤ αk .

In particular, max(Mk) ≤ αk .

Proof That (a) and (b) hold follows immediately from the definition of M . Each diagonal
entry of M is zero, and each off-diagonal entry is equal to mi, j = Ri Fi, j , which is certainly
nonnegative. Thus, (a) holds. To prove (b), note that the sum of the entries in the i th row is
equal to

n∑
j=1

mi, j = Ri

n∑
j=1

Fi, j = Ri .

As discussed in SectionXI.1.1, the reflectances are strictly less than 1 for any realistic situation.
Thus, each row sum is less than 1, and because there are finitely many rows the maximum row
sum exists and is less than 1.

Now we prove (c). For k equal to 0 or 1, (c) is trivially true. The general case is proved by
induction on k. First note that every entry in Mk is nonnegative. To prove the induction step,
we need the following fact:

Claim If N = (ni, j )i, j and P = (pi, j )i, j are arbitrary matrices containing only nonnegative
entries, and if ν = MaxRowSum(N ) and ρ = MaxRowSum(P), then

MaxRowSum(N P) ≤ νρ.

To prove the claim, note that the entry in row i and column k of the product N P is equal to

n∑
j=1

ni, j p j,k .

Thus, RowSumi (N P) can be bounded by

RowSumi (N P) =
∑

k

∑
j

ni, j p j,k =
∑

j

ni, j

∑
k

p j,k

≤
∑

j

ni, jρ ≤ νρ.

That proves the claim, and now part (c) follows easily by using induction on k. �

In particular, part (c) of the lemma implies that every entry in Mk is ≤ αk . Thus, since
α < 1, the matrices Mk converge quickly to zero as k tends to infinity. With part (c) of the
lemma proved, we are now able to establish that the matrix I − M is invertible. One motivation
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for the next theorem comes from the Taylor series for the function f (x) = 1/(1− x). It is not
hard to show, via the formula for Taylor series, that

1

1− x
= 1+ x + x2 + x3 + x4 + · · · ,

for all x such that |x | < 1. Thus, onemight guess that a similar fact holds for the matrix I − M ,
namely,

(I − M)−1 = I + M + M2 + M3 + M4 + · · · ,
where the role of the condition that |x | < 1 is now played by the property that
MaxRowSum(M) < 1. This formula for matrix inverse does indeed hold, as the next
theorem states.

Theorem XI.2 Let M satisfy the properties of parts (a) and (b) of Lemma XI.1. Then I − M
is invertible, and its inverse is equal to the infinite sum

I + M + M2 + M3 + M4 + · · · . XI.9

Proof Wegive a sketch of the proof. The first observation is that the summationXI.9 converges
to a matrix N , where the limit N is a matrix in which all entries are finite. This is because each
entry in Mk is in the range [0, αk] and the geometric series

∑
k αk has a finite limit.

Let Nk be the matrix equal to the first k + 1 terms in the series

Nk = I + M + M2 + M3 + · · · + Mk .

As k →∞, Nk → N , where N is the matrix given by XI.9. Now,

(I − M)Nk = (I − M)(I + M + · · · + Mk−1 + Mk)

= (I + M + · · · + Mk−1 + Mk)− (M + M2 · · · + Mk + Mk+1)

= I − Mk+1.

Since Mk+1 → 0, we have (I − M)Nk → I as k →∞. By the continuity of matrix product,
this means that (I − M)N = I . This proves the theorem. �

An important consequence of TheoremXI.2 is that there is a unique solutionB to the radios-
ity equation, namely, B = (I − M)−1E. The theorem also suggests one method for approxi-
matingB: First, choose a value of k large enough so that Mk is expected to be sufficiently close
to zero. Then, compute Nk , the first k + 1 terms of the power series. Then setB = N kE, so that

B = (I + M + M2 + M3 + · · · + Mk)E.

This would indeed work, but the runtime would still be much slower than we would like, for
computing powers Mi of M requires iteratedmatrix multiplication and the usual algorithms for
matrix multiplication have a fairly poor cubic runtime of O(n3) for n × n matrices. There are
better algorithms formatrixmultiplication, but even those are still not as good as wewould like.

To find a faster algorithm, we cast the radiosity equation back into its original form B =
E+ MB. We think of this as a fixed point problem by defining an operator � that acts on
matrices by

�(B) = E+ MB.

Then we are seeking a B (in fact, the unique B) such that

�(B) = B.
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We call such a B a fixed point of �. A standard way to solve fixed point problems is to choose
an initial guess for the value of B and then repeatedly apply the operator �. If we are lucky
(and we will be lucky in the present situation), repeatedly applying � yields a sequence of
matrices that converge to a finite limit. In that case, the limit of the sequence will be a fixed
point of �.

To make this more concrete, define a sequence of vectors B0,B1,B2, . . . by

B0 = 0 (the zero vector)

Bk+1 = E+ MBk,

for all k ≥ 0. Thus, B1 = E and B2 = E+ ME = (I + M)E and B3 = E+ ME+ M2E =
(I + M + M2)E. For general k,

Bk+1 = (I + M + M2 + · · · + Mk)E.

Therefore, by the earlier theorem and proofs, Bk converges to the solution of the radiosity
equation as k increases.

The fixed point algorithm for approximating the solution B of the radiosity equation is
mathematically equivalent to the power series algorithm. However, in the fixed point algorithm,
each iteration uses only one matrix–vector product and one matrix addition. This takes time
only O(n2 + n) = O(n2) and is considerably faster than the power series algorithm, which
required matrix multiplications.

There is a simple physical intuition for themeaning of the intermediate brightness vectorsBk

obtained by the fixed point iteration method. The first nonzero one, B1 = E, is just the directly
emitted light. The second one,B2 = E+ ME, is equal to the emitted light plus the illumination
from a single bounce of the emitted light. The kth one, Bk , is equal the lighting that results
after k − 1 bounces of reflected light.

A useful property of theBi vectors is that they are increasing. Let the notation Bk,i represent
the i th entry of Bk . Then the increasing property states that, for all i, k, we have Bk,i ≤ Bk+1,i .
This is easy to prove by induction on k using the fact that every entry in the matrix M is
nonnegative. Intuitively, this corresponds to the fact that the more reflection bounces that are
taken into account, the brighter the scene gets.

The proofs of Theorem XI.2 and Lemma XI.1 give an estimate for the rate of convergence
of the fixed point iterative algorithm. Namely, the errors of the entries Nk are bounded by∑

i>k αi = αk+1/(1− α), where α is the maximum reflectivity of the patches. Actually, the
error tends to zero more like βk , where β is the average of the reflectivities. Thus, not sur-
prisingly, the lower the reflectivity values, the fewer the iterations that are needed to achieve a
good accuracy. That is, the lower the reflectivities, the smaller the number of “bounces” that
need to be followed.

The iterative fixed point method described above is the same as the Jacobi iteration given
in more detail in the next section.

XI.3.2 Jacobi Iteration

The Jacobi method for solving the radiosity equation is just the iterative method described
in the previous section. This algorithm successively computes B1,B2,B3, . . . . Here is the
algorithm expressed in terms of individual entries, rather than in terms of vectors.

JacobiIteration.
// B[], E[] and Bnew[] are arrays. E[] is already set.
// m[i,j] denotes mi, j .
// Initialization: set B = E.
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For i = 1 to n {
Set B[i] = E[i];

}
// Main loop.
While (not converged enough) {

For i = 1 to n {
Set Bnew[i] = E[i] +

∑n
j=1m[i,j]*B[j];

}
For i = 1 to n {

Set B[i] = Bnew[i];
}

}
The algorithm uses the emissivity array E instead of the zero vector 0 for its initial brightness
vector: this saves one iteration of the loop. The array Bnew[] is used to save a separate copy
of B[] so that the previous values can be remembered long enough to compute the new values.
Strictly speaking, there is no need to copy back the array values; instead, the two arrays could
alternate roles on each iteration of the loop.

We have not shown any explicit test for whether the solution has converged sufficiently.
Usually, this would just involve checking whether the change in value of B[i] is sufficiently
small for all i . This can be tested by checking the values of Bnew[i]-B[i].

XI.3.3 Gauss–Seidel Iteration

The Gauss–Seidel method is an improvement of the Jacobi method that is easier to implement
and converges to the solution faster. The new feature of the Gauss–Seidel method is that it
does not save a copy of the old values of B[] but instead updates them immediately.

Gauss-Seidel Iteration.
// B[] and E[] are arrays. E[] is already set.
// m[i,j] denotes mi, j .
// Initialization: set B = E.
For i = 1 to n {

Set B[i] = E[i];
}
// Main loop.
While (not converged enough) {

For i = 1 to n {
Set B[i] = E[i] +

∑n
j=1m[i,j]*B[j];

}
}

The Gauss–Seidel method is sometimes called the gathering method. The reason for the
name “gathering method” is that you can think of the computation’s updating the brightness Bi

of patch Pi (that is, B[i]) by setting1

Bi = Ei +
∑

j

mi, j B j

as gathering together all the light from other patches to calculate the brightness of patch Pi .
The difference with the Jacobi method is that we apply the update to Bi immediately instead

1 This Bi should not be confused with the vector Bi (note the difference in font).
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of waiting until the next loop iteration for the new value to take effect. Thus, the new value
of Bi affects the updated values of B j for j > i in the same loop iteration.

It is not hard to show that the Gauss–Seidel algorithm converges to the correct solution of
the radiosity equation. In fact, it is easy to prove, by induction on the number of gathering
calculations, that the brightness values in the array B[] computed by the Gauss–Seidel method
are less than or equal to the correct brightness values. In addition, if Bk denotes the brightness
vector obtained after k − 1 iterations of the Jacobi algorithm loop, and BGS

k the brightness
vector obtained by k − 1 iterations of the Gauss–Seidel loop, then the entries in the vector
BGS

k are greater than or equal to the corresponding entries in Bk . This fact is also easily
proved by induction on k by again using the nonnegativity of the entries of M . Therefore, the
Gauss–Seidel results are sandwiched between the results of the Jacobi iteration and the correct
solution. Because the Jacobi algorithm converges to the correct solution, the Gauss–Seidel
algorithm must also converge to the correct solution. In practice, the Gauss–Seidel method
tends to converge noticeably faster than the Jacobi method.

XI.3.4 The Shooting Method

The shootingmethod, also known as the Southwell iterationmethod, is another iterativemethod
for solving the radiosity equations. For both the Gauss–Seidel and Jacobi methods, a basic
update step consists of choosing a single patch and updating its brightness level based on the
brightnesses of all the other patches. The shooting method operates rather differently: the basic
update step now chooses a single patch and sends (or “shoots”) its brightness out to all the other
patches. That is, instead of concentrating on a single receiving patch at a time, the shooting
method concentrates on a single transmitting patch. To make this work, the shooting method
must track, for each patch Pj , how much of its brightness level has not yet been taken into
account by the brightness levels of the other patches Pi .

The shooting algorithm maintains two brightness values for each patch, Bi and �Bi . Both
Bi and �Bi will always be nonnegative, and the overall brightness of the patch is equal to the
sum Bi +�Bi . The value �Bi represents the part of the brightness of patch Pi that has not
yet been transmitted on to the other patches. The update loop consists of choosing a value for i
and “shooting” the �Bi value to all the other patches, thereby updating the values of all the
other patches to take into account the brightness due to �Bi .

The shooting algorithm is as follows.

Shooting_Method
// B[] and �B[] and E[] are arrays.
// Initialization.
For i = 1 to n {

Set B[i] = 0;
Set �B[i] = E[i];

}
// Main loop
While (not converged enough) {

Choose j so that �B[j]*A j is maximized; // A j = area of Pj

Set B[j] = B[j] + �B[j];
For i = 1 to n {

Set �B[i] = �B[i] + m[i,j]*�B[j];
}
Set �B[j] = 0;

}
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// Finish up
For i = 1 to n {

Set B[i] = B[i]+�B[i];
}

The choice of j was made so as to find the patch having the largest amount of outgoing light
energy that has not been accounted for. Since the brightness values B[] are measured in terms
of light energy per unit surface area, we multiply the unshot brightness value �B[i] times
the patch area to measure the total outgoing light energy. Thus, this choice for j attempts to
“shoot” the largest amount of light energy possible. Other choices for j could work well too,
but it is important that every j value that still has unshot brightness get picked eventually.

The runtime of a single shooting operation is clearly just O(n). For comparison, a single
gather operation is also O(n); the advantage of the shooting algorithm lies in the possibility
that fewer shooting operations may be needed because the shooting algorithm concentrates its
efforts on the patches with the most “unshot” light.

The test in thewhile loop for sufficient convergencewould probably be based on a threshold
value for the largest�B[i]*Ai value. The codewritten above assumes that the diagonal entries
m[j,j] in the matrix are equal to zero.

ExerciseXI.1 Prove that, under the assumptions we have been making about the matrix M,
the shooting method is guaranteed to converge to the correct answer. [Hint: Prove bounds
on how fast the summation

∑
i Ai�Bi is decreasing. Use the reciprocity condition.]

Further Reading: This chapter has covered only the most basic aspects of radiosity. Good
sources for information onmore advanced topics in radiosity are the books (Cohen andWallace,
1993) and (Sillion and Puech, 1994). There is a hierarchical method of calculating form factors
that can greatly reduce the computational work in very large scenes (Hanrahan, Salzman, and
Aupperle, 1991) Advanced work in global lighting often combines techniques from radiosity
and ray tracing.

(Ashdown, 1994) gives a theoretical description and complete code for a radiosity renderer.
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XII

Animation and Kinematics

XII.1 Overview

The term animation refers to the process of specifying or controlling the movement of objects.
Of particular concern to us in this chapter is the use of mathematical techniques to aid in the
programming of animation.

Traditional animation techniques, used notably in movies, substantially predate comput-
erized animation. Traditionally, animation requires drawing a series of pictures, each picture
showing an instantaneous snapshot of objects in motion. These are then displayed in rapid
succession, giving the visual effect of smooth motion. The same general idea applies to com-
puter animation: a software program repeatedly renders a three-dimensional scene with each
scene showing the objects at a particular point in time. These scenes are then displayed at a
sufficiently fast frame rate to give the visual illusion of motion.

Nowadays, much of the work of animation is being taken over by computers. An artist will
create objects, people, creatures, and so on as three-dimensional models in a CAD program.
These models can include information about the formation and permissible motions of the
objects. For instance, an object may have a skeleton of rigid links connected by joints, and
the joints can be given characteristics that control their motion. The rest of the object can be
controlled to move in synchronization with the skeleton. One such technique is called skinning
and permits the “skin,” or surface, of a creature to move in conjunction with the movement of
the skeleton. Once a model has been properly created and the appropriate software is written,
the task of an animator is simplified greatly: he or she needs to control only the motion of the
skeleton to control the motion of the entire model. Furthermore, techniques such as inverse
kinematics (IK) allow an even simpler interface for the animator; inverse kinematics permits
the animator to set the positions or orientations of only a few selected portions of the skeleton,
and the software can automatically control the rest of the skeleton.

The outline of this chapter is as follows. First, there is some general introductory discussion
about topics including keyframing, motion capture, and applications of animation and of
forward and inverse kinematics. Next, we discuss some problems in animation of position,
including “ease-in” algorithms. Animation of orientation is covered next, including yaw, pitch,
and roll, as well as an in-depth treatment of quaternions. The chapter concludes with forward
and inverse kinematics for articulated rigid bodies (multibodies).

289
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XII.1.1 Techniques Evolved from Traditional Animation

Many techniques from traditional animation are useful for computer animation. Space (and
lack of knowledge) prevents us from covering very much traditional animation, but you
can find extensive information on techniques traditionally used in animation in the books
(Thomas and Johnston, 1981) and (White, 1986). (The former book has a thorough discussion
of animation at Disney.) Traditional animation is certainly more of an art than a science, and
considerable experience and talent were needed to devise styles of animation that produce
visually pleasing results. Of course, using computers for animation is no less of an art than
traditional animation.

Several mathematical aspects of computer animation are direct extensions of techniques
used in traditional animation: two prominent examples are keyframing and motion capture.

Keyframing. Keyframing is the process of creating animated motion by specifying the
positions of objects at keyframes and then filling in the motion in intermediate frames by
interpolation. For traditional animation of movies, the keyframes, also called keys, are drawn
by a senior animator. Other artists, inbetweeners and inkers, draw the intermediate frames and
flesh out the complete detailed drawings. The keyframes typically show the extreme poses, or
most critical poses. Initially, the keyframes can be in only rough formwithout complete details.
The job of the inbetweener would be to draw the intermediate poses, being sure to make the
motion look fluid and natural.

Keyframing is particularly important to the animation of full-length movies. A movie
shows 24 frames per second, and thus there are too many frames for a single artist to draw all
the frames in a movie. On the other hand, if multiple artists draw different parts of the movie,
then consistency of style is lost. By employing a few senior animators to draw the keyframes
and a larger number of inbetweeners and inkers, a movie can be drawn with a smaller number
of senior animators. A single senior animator can handle the drawing of all keyframes for a
particular character in the movie, providing more consistency of style.

The computerized analogue of keyframing and inbetweening is the use of splines for
interpolating points. At keyframes, the positions, orientations, and shapes of objects in
the scene are specified. Then, by using interpolating curves, one can obtain positions,
orientations, and shapes of the objects as smooth functions of time. This often can be done
fully automatically with Catmull–Rom or Overhauser splines, but manual editing can also be
employed (e.g., using tension-continuity-bias splines).

Motion Capture. Motion capture is the measurement of the motion of (real-world) objects
and the use of these measurements to guide animated motion. In early animated movies,
motion capture consisted of filming live action. The filmed live action could be traced over
to generate animated motion. For instance, to animate a fight scene, one might first film a
movie of a two actors mock fighting. This could be translated into an animated fight by using
the motion and timing of the filmed fight as the basis for the animated motion. Of course, the
filmed motion capture does not need to be followed too slavishly. For instance, if one were
animating a fight involving Daffy Duck, then one certainly would not want the movements of
Daffy Duck to follow the motion of the actor exactly. Rather, the motions would be modified
to reflect Daffy’s physiology, and some aspects of the motion would be exaggerated for better
artistic results. This kind of motion capture, when properly used, can greatly increase the
fluidity and naturalness of the animated motion.

Modern versions of motion capture involve attaching sensors to actors that allow measure-
ment of their three-dimensional motion. There are various types of motion capture sensors.
Some motion capture systems work by using small devices (called diodes) that sense motion
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through electrical or magnetic fields; these magnetic sensors can provide both position and
orientation data in real time. Optical motion capture systemswork by attaching bright reflective
spheres to the actors and tracking the spheres withmultiple cameras: themultiple camera views
can be combined to give three-dimensional positional information. Other systems work by at-
taching mechanical sensors to the actor’s body that directly measure joint angles or bending,
and so on. A small-scale example of this is the data glove, which can capture precise finger
movements.

All approaches provide for measurement of the position of each sensor as a function of
time. The motion capture data usually needs (often significant) processing to remove noise
and distortion. After the motion capture data has been cleaned up, it can be translated into
information about positions and joint angles. This detailed information about positions of
parts of the bodies as a function of time can be used to control animated motion that is highly
realistic. Typical applications include capturing the motion of actors performing movements
such as walking, running, and fighting or of acrobats or athletes performing movements. These
animated movements can be approximated by spline curves and played back to reproduce the
captured motion as an animation.

XII.1.2 Computerized Animation

The kinds of systems that can be animated with the aid of computers include the following:

Particle Systems. Particle systems are collections of particles moving as a group. These
can be used to simulate a wide range of phenomena, including smoke, fluids, and the
flocking behavior of large crowds or large groups of creatures.

Rigid Bodies. A rigid body does not change shape as it moves but does change position
and orientation. It may be controlled directly in terms of its position and orientation or
indirectly in terms of velocity and angular velocity.

Articulated Rigid Bodies. Articulated rigid bodies, also called multibodies, are hierarchi-
cally connected assemblages of rigid bodies called links. The connections between the
rigid bodies are generally joints. The joints may be rotational or translational; more com-
plicated joints, such as screw joints, are also possible. Examples of objects that can be
modeled as multibodies include skeletons of humans or other creatures; for this, the links
are the bones of the skeletons. Other examples include robot arms and other mechanical
linkages.

Flexible Objects. Flexible objects include cloth or rope as well as “squishy” or bendable
objects.

Camera Viewpoint. An important element in many computer games is the use of a camera
that follows the player around as he or she navigates an environment. The camera needs
to follow the viewpoint of the player without having excessive jerkiness, oscillation, or
other jitter.

Other Specialized Phenomena. Other applications of animation are diverse, including
topics such as lightning, clouds, galaxy collisions, and many more.

The rest of the present chapter will be concerned with the animation of rigid bodies and of
articulated rigid bodies.

Themotion of rigid bodies can be completely described in terms of position and orientation.
The specification of position is, at least from a mathematical viewpoint, quite straightforward.
The position of an object is usually given by specifying the position of its center of mass,
and the position consists of a single point in R

3. Similarly, the velocity of an object (the
velocity of the center of mass of the object, for instance) is just a single vector. Of course, both
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position and velocity will generally be functions of time. Section XII.2 will cover some simple
topics involved in controlling the position of objects.

Specifying and controlling the orientation of a rigid body are more problematic. There
are several possible ways to represent orientation, including rotation matrices, yaw-pitch-roll
angles, and quaternions. Section XII.3 discusses these ways of representing rotation with
particular attention to the theory of quaternions. It also discusses spherical linear interpolation
(slerping) for interpolation between two quaternion specifications of orientation.

Articulated rigid bodies are taken up in Section XII.4. Techniques for animating articulated
bodies can be divided roughly into two categories. The first category, kinematics, concerns
the relationship between joint angles or, more generally, joint settings and the positions of the
links. Typical concerns of kinematics include the relationships between, on the one hand, the
joint angles and their rate of motion and, on the other hand, the positions and velocities of
the links. The second category is dynamics and is concerned with physical properties such
as forces, accelerations, energy, and so on. It is often convenient to subdivide techniques for
animation of articulated objects further into four categories:

Forward Kinematics. The forward kinematics problem is as follows: Given settings for
all the joint angles, determine the positions of all the links in the articulated structure.

Inverse Kinematics. The inverse kinematics, or IK, problem is as follows: Given a desired
position for one or more links of an articulated object, determine settings for the joint
angles that will achieve the desired position. For example, we set the position of one
or more of the hands or feet of an animated person and then solve the IK problem
to determine good settings for all the joints in the body that give the hands or feet the
desired positions. Inverse kinematics allows an animator to set only the position of a small
number of links; for instance, to simulate a person reaching for an object, the animator
could specify the trajectory of the hand as a function of time and let the IK algorithm
automatically determine the position of the joints and thereby the position of the rest of
the body. Not surprisingly, the inverse kinematics problem is much more difficult than
the forward kinematics problem.

Forward Dynamics. Forward dynamics is the same as physical simulation. If we are given
the initial positions, orientations, velocities, and angular velocities (or essentially equiv-
alently, if we are given the initial joint angles and rates of change of joint angles), and,
if we are further given information about all external forces and torques, then we want
to compute the movement of the articulated object as a function of time. This usually
requires a physical simulation of the object’s motion.

Inverse Dynamics. The inverse dynamics problem is usually considerably simpler than
forward dynamics. Here, we are given the motions of all the links (or, equivalently, the
motions of all the joint angles). The problem is to determine what forces must be applied,
firstly at the joints and secondly from external sources, to obtain this motion.

Section XII.4 will treat the mathematical theory of forward and inverse kinematics. We will
not discuss dynamics at all.

XII.2 Animation of Position

The position of an object at time u can be given by a single vector q(u). We have several tools
for describing curves q(u), namely Bézier curves and B-splines. To animate position using
keyframing, one picks times u0, u1, . . . , un and corresponding values for q(ui ) for each i .
Then, Bézier or B-spline interpolation, as described in Sections VII.15 and VIII.13, can be
used to describe the curve at arbitrary times u, for u0 ≤ u ≤ un .
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Often, one wants to animate nonpreprogrammed motion. By “nonpreprogrammed” we
mean that the motion is not following a path determined in advance but is instead following
a path in response to changing circumstances. A notable example of this is in interactive
applications such as computer games. However, nonpreprogrammed motion can also be useful
in noninteractive situations. A prime example of nonpreprogrammed motion is the motion
of the camera, or viewpoint, in a computer game that must follow the movement of a player
around a virtual world. The player could be a character moving on foot or could be a vehicle in
a driving game, and so on. The camera then needs to follow behind the character, keeping the
character and the environs in view. In addition, the camera needs to move smoothly without
jerkiness.

One way to control a camera position is with techniques known as “ease-in.” Ease-in refers
to moving from a starting position to a desired position in a smooth, nonjerky fashion with no
sudden changes in position or velocity and perhaps with an additional constraint of no sudden
changes in acceleration. A real-world example of ease-in is the motion of a subway train or an
airport tram as it stops at a station. The tram needs to stop smoothly with no sudden changes
in acceleration that would jerk passengers, but it also needs to end up at a precise location
so that the automatic doors line up correctly. The ease-in problem in computer graphics is
much simpler to solve than the ease-in problem for trams because we do not have to deal with
real-world considerations like brakes or with needing feedback to measure current velocity
and position accurately.

XII.2.1 Ease In: Fixed Target

The fixed-target ease-in problem is as follows. At some time u0, an object has position p0 and
velocity v0. It is desired that at some future time u1 the object have position p1 and stay there
with velocity 0. The airport tram mentioned above is an example of the fixed-target ease-in
problem.

A simple solution to this fixed-target ease-in problem can be given using degree three
Hermite polynomials. (Hermite polynomials were defined in Section VII.5.) First, if u0 = 0
and u1 = 1, then we can let

q(u) = p0H0(u)+ v0H1(u)+ p1H3(u)

and let q(u) specify the position at time u, 0 ≤ u ≤ 1. It is easy to verify that this meets all
the requirements of the ease-in problem. In addition, the position curve q(u) is a degree three
polynomial and thus has a constant third derivative; consequently, the acceleration of the object
is changing at a constant rate throughout the movement.1

For general u0 < u1, we need to make a change of variables by setting

Ji (u) = Hi

(
u − u0

u1 − u0

)
.

The functions Ji have properties similar to the Hermite functions but on the domain [u0, u1]
instead of on [0, 1]. Note, however, that the change of variables affects the first derivatives,
and thus

J ′1(u0) = 1

u1 − u0
.

1 This solution would not be good enough for the above-mentioned tram example since the acceleration
does not go smoothly to zero at u = 1.
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The curve q(u) can then be defined for u0 ≤ u ≤ u1 by

q(u) = p0 J0(u)+ (u1 − u0)v0 J1(u)+ p1 J3(u).

Exercise XII.1 The fixed-target ease-out problem is similar to the fixed-target ease-in
problem but has initial position p0 and velocity 0 at time u0 and needs to reach a target
position p1 and velocity v1 at time u1. Give a solution to the fixed-target ease-out problem
based on Hermite polynomials.

XII.2.2 Ease In: Moving Target

The moving target version of the ease-in problem is the problem of making an object both
move smoothly and track a moving target. An example of this would be a camera position in a
computer game; in a first-person exploration game, or in a driving game, the camera position
needs to follow behind the player position smoothly. In this case, it is desirable for the camera
to stay at a more-or-less fixed distance behind the player, but it is also important for the camera
not to move too jerkily.

We will use the term “target position” to indicate the position we wish to track or approx-
imate. The term “current position” means the current position of the object that is trying to
track the target position. We assume that the animation is being updated in fixed time steps,
each time step being of duration �t . Let ti denote the target position at time step i , that is, at
time step i ·�t . Let ci be the current position of the tracking object at time step i . In each time
step, we are given the target positions up through ti+1 and wish to compute ci+1.

Wewill discuss two versions of the moving-target ease-in problem. In the first case, suppose
that neither the target nor the object has any inherent velocity. By “has inherent velocity,” we
mean that the object has enough mass or inertia that velocity should not change abruptly. In
the case where neither the target nor the tracking device has inherent velocity, a very simple
update is to set

ci+1 = (1− α)ci + αti+1

for some fixed scalar α between 0 and 1. This defines the next position ci+1 as a weighted
average of the current position ci and the target position. The higher α is, the faster the object’s
position responds to changes in the target position but the greater the possibility of jumpy or
jerky movement. The best value for α would depend on the time step �t and on the particular
application.

For the second case, suppose the target does not have a velocity, but the tracking object
does. The current velocity of the tracking object can be approximated as

vi = ci − ci−1
�t

.

If the object were to keep moving at this velocity, then its next position would be

ci + ci − ci−1
�t

�t = 2ci − ci−1.

However, we want also to incorporate the new target position so we can set

ci+1 = (1− α) · (2ci − ci−1)+ α · ti+1.
This sets ci+1 to be an average of the target position and the position the object would reach if
there were no change in velocity.
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In both cases, the closer the value of α is to 1, the more tightly the object tracks the target;
the closer α is to 0, the smoother, and less jerky, the motion of the object is.

XII.3 Representations of Orientations

We now turn to the problem of animating the orientation of objects. A rigid body’s position in
space can be completely specified in terms of the position of its center (its center of mass, say)
and its orientation. The position of the center of the rigid body is specified by a single vector
q ∈ R

3 and is readily amenable to keyframing and interpolation. Specifying the orientation of
a rigid body is more problematic. There are several ways to represent orientations, and the best
choice of representation depends on the application at hand.

Let us consider two examples of animation of orientation. As a first example, consider
the orientation of a camera or viewpoint. The camera is given a position as usual, and then
its orientation can specified by a view direction and an “up” direction, as was used by the
gluLookAt command. Cameras usually have a preferred up direction, namely, pointing up
along the y-axis as much as possible. As a second example, consider the orientation of a
spacecraft traveling in deep space away from any planets or suns. There is no preferred “up”
direction in space, and so the orientation of the spacecraft is essentially arbitrary when it is not
moving. If the spacecraft is accelerating, or has nonzero velocity relative to its surroundings,
the spacecraft has a preferred forward orientation direction; but even in this case, it would
generally not have a preferred axial rotation (or roll amount).

This lack of a preferred up direction for spacecraft is somewhat counterintuitive to us, for
we are so used to living on the surface of a planet. Indeed, in popular shows such as Star Trek,
spacecraft always have an up direction and, furthermore, whenever two spacecraft meet in an
episode of Star Trek, they always miraculously share the same up direction. That is, they never
meet turned axially or facing each other upside down, and so on. Of course, this common up
direction is unrealistic because there is no reason that there should be a shared “up” direction
out in deep space. On the other hand, for spacecraft near a planet, there is of course a preferred
up direction, namely away from (or towards) the planet. For instance, the U.S. space shuttle
frequently orients itself so that its top side is facing the Earth.

When animating orientation, the decision of how to represent orientations is crucial. For
applications that have a preferred up direction (such as cameras), it is probably useful to use the
yaw, pitch, and roll representation. For applications that do not have a preferred up direction, and
where it is necessary to blend or interpolate orientations, quaternions provide a good represen-
tation. We will discuss these representations, along with rotation matrices, in the next sections.

XII.3.1 Rotation Matrices

Specifying an orientation is essentially identical to specifying a rotation, namely, if we choose
an initial orientation �0, then any other orientation � can be specified in terms of the rotation
that takes the body from�0 to�. As was discussed in Chapter II, an orientation in 3-space can
be described by an orthonormal 3× 3 matrix that represents a rigid, orientation-preserving
transformation.

A big drawback to using rotation matrices for animating orientation is that they cannot
be interpolated or averaged in a straightforwardly. For instance, consider the following two
rotation matrices: 0 0 1

0 1 0
−1 0 0

 and

0 −1 0
1 0 0
0 0 1

 . XII.1
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The first matrix represents a 90◦ rotation around the y-axis, and the second represents a 90◦

rotation around the z-axis. If you attempt to take the average of these two rotations by just
adding the matrices and dividing by two, you obtain the matrix 0 −1/2 1/2

1/2 1/2 0
−1/2 0 1/2

 .

The resultingmatrix is not even orthonormal and certainly does not represent a rotationmidway
between the two initial rotations.

XII.3.2 Yaw, Pitch, and Roll

Yaw, pitch, and roll specify an orientation in terms of three successive rotations around the x-,
y-, and z-axes. This is particularly useful for orientations in settings where there is a preferred
up direction, such as for cameras or for airplane navigation.

Actually, yaw, pitch, and roll is only one example of a more general class of methods called
Euler angles, which specify a rotation in terms of three rotations around three axes. There are
many different forms of Euler angles depending (a) on the order in which the rotations are
performed (i.e., on the order in which the axes x , y, and z are chosen for rotations), and (b) on
whether the axes move with the object or remain fixed in global coordinates. Yaw, pitch, and
roll performs rotation first around the y-axis (yaw), then around the x-axis (pitch), and finally
around the z-axis (roll). The second and third rotations (pitch and roll) are around the local x-
and z-axes that move with the object, not around the fixed x-, z-axes in world coordinates.2

Figure XII.1 shows the effects of yaw, pitch, and roll on the orientation of an airplane.
So far, we have described the axes of rotations for yaw, pitch, and roll as being local axes

that move with the object being rotated. An equivalent way to describe the rotations is as being
made around the fixed x-, y-, and z-axes. By “fixed,” we mean that the axes do not move with
the object. However, as discussed in Section II.1.7, if fixed rotation axes are used, the rotations
must be performed in the opposite order: first roll around the z-axis, then pitch around the
x-axis, and finally yaw around the y-axis. This representation of yaw, pitch, and roll around
fixed axes lets us give a formula for yaw, pitch, and roll. Let θy , θp, and θr be the yaw, pitch,
and roll angles with directions of rotation determined by the right-hand rule. Then the effect
of the yaw, pitch, and roll is the transformation

Rθy ,j ◦ Rθp,i ◦ Rθr ,k. XII.2

Exercise XII.2 The methods of Chapter II let you express the rotations Rθy ,j, Rθp,i, and
Rθr ,k as 3× 3 matrices. Use these to derive the formula for the rotation matrix of for-
mula XII.2 in terms of the sines and cosines of the three angles. Your answer should have
the formsyspsr + cycr syspcr − cysr sycp

cpsr cpcr −sp

cyspsr − sycr cyspcr + sysr cycp

 ,

where cy = cos θy , sy = sin θy , etc.

2 Our conventions for the names “yaw,” “pitch,” and “roll” and for the order in which the rotations
occur are based on the assumption that the z-axis is the forward direction, the x-axis is the rightward
direction, and the y-axis is the upward direction. The reader is warned that other conventions are often
used.
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Rollz

Pitch
x

Yaw
y

Figure XII.1. Yaw, pitch, and roll represent rotations around the y-axis, the x-axis, and the z-axis. If the
axes move with the object, the rotations are performed in the order yaw, then pitch, and finally roll. If the
axes are taken as fixed, then the rotations are performed in the opposite order: roll, then pitch, then yaw.
Rotation directions are determined by the right-hand rule. The reader is warned that the rotation directions
for pitch and yaw shown in the figure are opposite to customary usage in aviation. For us, a positive pitch
means the nose dips down, and a positive yaw steers to the left. However, aviation conventions are that a
positive pitch means the nose moves up, and a positive yaw means turning to the right. It is customary for
positive roll to mean that the right wing dips, which agrees with our convention. In aviation conventions,
the directions of the x and y axes are reversed with the x-axis pointing rightward and the y-axis pointing
downward.

As we discuss in the next paragraph, yaw, pitch, and roll can sometimes lead to bad behavior
of interpolation.On the other hand, yaw, pitch, and roll have the advantage of being intuitive. For
instance, yaw, pitch, and roll are commonly used for airplane navigation since they correspond
well to the controls available to a pilot. Yaw, pitch, and roll also work well for a camera.
Actually, cameras usually do not use roll but instead keep roll equal to zero. The orientation for
a camera can be given in terms of just yaw and pitch, and interpolating yaw and pitch values
usually works well for interpolating camera orientation.

There are three ways in which the use of yaw, pitch, and roll can cause problems with
interpolation. The first two are easy to circumvent, but the third one (gimbal lock) is more
serious. First, when interpolating yaw, pitch, and roll, you need to keep in mind that if angles
are changed by 360◦ the orientation is unchanged. For instance, when interpolating from a yaw
angle of 170◦, to a yaw angle of−170◦ (with pitch and roll both held fixed, say equal to zero),
it is usually intended that the yaw vary by only 20◦ rather than rotating the other direction
through 340◦. This is easily handled by adding 360◦ to the second angle and interpolating
the yaw from 170 to 190◦. (The interpolated yaw values greater than 180◦ can of course have
360◦ subtracted back off if desired.)

The second potential pitfall with interpolating yaw, pitch, and roll is that every orientation
has two distinct representations. Namely, the orientation represented by the angles θy , θp, and θr

is identical to the orientation represented by the following yaw, pitch, and roll angles:

θ ′y = θy ± 180◦

θ ′p = −θp ± 180◦ XII.3

θ ′r = θr ± 180◦,
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where any combination of plus or minus signs may be used. Thus, care must be taken when
interpolating yaw, pitch, and roll angles to decide properly whether to transform the angles
according to Equations XII.3 before performing the interpolations.

The third, and most serious, problem with interpolation of yaw, pitch, and roll involves
gimbal lock, which occurs when a degree of freedom is lost at particular angle settings (to be
precise, at pitch equal to ±90◦). As an example, consider interpolation between the following
two orientations: �1 is the “standard position” orientation given with yaw, pitch, and roll all
equal to zero. Let�2 be the orientationwith yawequal to 90◦, pitch equal to−90◦, and roll equal
to−90◦. (You should visualize this! The airplane of Figure XII.1 in orientation �2 would have
its nose pointing up the y-axis and its bottom facing the positive z-axis.) The orientation �2

suffers from gimbal lock since a degree of freedom has been lost: in particular, the yaw and
roll axes have become effectively identical, and so changing either yaw or roll would have the
same effect on the orientation�2. Now suppose we try to use averaging to obtain an orientation
midway between �1 and �2; straightforward averaging will give yaw equal to 45◦, pitch equal
to −45◦, and roll equal to −45◦. This orientation is by no means intuitively midway between
�1 and �2: indeed, the intuitive midway position would be obtained by rotating around the
(global, fixed) x-axis. One could complain that this example is unfair, for it involves a pitch
of 90◦ and results in gimbal lock; however, one could use instead a pitch very close to 90◦, say
a pitch of 89◦, and then there would still be the same kinds of problems with interpolation.

Exercise XII.3 Verify that yaw, pitch, and roll angles θ ′y , θ ′p and θ ′r of Equations XII.3
represent the same orientation as θy , θp, and θr .

XII.3.3 Quaternions

Quaternions provide a method of representing rotations by 4-tuples. Recall from Euler’s theo-
rem in Section II.2.4 that an arbitrary, rigid, orientation-preserving linear transformation can
be expressed as a rotation around some fixed axis. Such a rotation is specified by a rotation
angle θ and a rotation axis u, where u is a unit vector: recall that this rotation was denoted
Rθ,u. To represent Rθ,u with a quaternion, let c = cos(θ/2), s = sin(θ/2), and u = 〈u1, u2, u3〉.
Then the 4-tuple q defined by

q = 〈c, su1, su2, su3〉
is called a quaternion and represents the rotation Rθ,u. We will see that quaternions provide a
useful method of representing rotations in situations where there is no preferred up direction.

Most of the discussion to follow will give a theoretical development of quaternions. But
before starting the theoretical treatment, we point out a few practical issues.

Note that the magnitude of the quaternion q as defined above is equal to one (strictly
speaking this is not necessary, and we can also deal with nonunit quaternions; however, in
practice, it is common to use only magnitude 1 quaternions). Conversely, suppose we are given
an arbitrary 4-tuple of magnitude 1, say

r = 〈r1, r2, r3, r4〉,
such that r21 + r22 + r23 + r24 = 1. Then, since −1 ≤ r1 ≤ 1, we can set ϕ = cos−1(r1). Also,
let v = 〈r2, r3, r4〉 so that ||v|| =

√
1− r 1

2. Since sinϕ = ±√1− r 1
2, the vector

u = v

sinϕ

is a unit vector. Finally, let θ = 2ϕ. Then we have

r = 〈cos(θ/2), sin(θ/2)u1, sin(θ/2)u2, sin(θ/2)u3〉,
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and so r is a quaternion representing the rotation Rθ,u. By this method, any unit 4-tuple
represents a rotation. Nonunit 4-tuples can be normalized and thus also represent rotations.

Quaternions have the unexpected property that −q represents the same rotation as q. This
is because adding 360◦ to a rotation angle does not change the ending orientation. That is,
Rθ+360◦,u is the same transformation as Rθ,u. Letting c, s, and q be defined from θ and u as
above, we have−c = cos(θ/2+ 180◦) and−s = sin(θ/2+ 180◦). Thus,−q is the quaternion
that corresponds to the transformation Rθ+360◦,u, and so−q represents the same rotation as q.

We next take up the theoretical development of quaternions. The theoretical discussion
culminates with practical considerations of how quaternions represent rotations and how to
perform interpolation (slerping) with quaternions. For more discussion of how quaternions
represent rotations, the reader can also consult (Hart, Francis, and Kauffman, 1994).

XII.3.4 Theoretical Development of Quaternions

Quaternionswere developed by themathematicianW.R.Hamilton in 1843 to represent rotations
in 3-space. The quaternions were invented (or discovered?) as a generalization of complex
numbers. The complex numbers are of course obtained from the real numbers by including the
number i , which is a square root of −1. Quaternions further extend the complex numbers by
including a total of three square roots of −1, which are represented by i , j , and k. Thus, we
have i2 = j2 = k2 = −1. We wish to be able to multiply quaternions, and for this we need to
define how the three new symbols i, j, k multiply with each other, namely,

i2 = −1 j2 = −1 k2 = −1
i j = k jk = i ki = j
j i = −k k j = −i ik = − j.

XII.4

Note that this multiplication is not commutative; for example, i j �= j i .
A quaternion q is defined to equal an expression of the form

d + ai + bj + ck,

where d, a, b, c are all scalars from R. We also represent this quaternion by the 4-tuple q =
〈d, a, b, c〉.3

Two quaternions are defined to be equal if and only if they have exactly the same four
components. (Two unequal quaternions may still represent the same rotation.) Addition of
quaternions is defined component-wise, namely

(d + ai + bj + ck)+ (d ′ + a′i + b′ j + c′k) = (d + d ′)+ (a + a′)i

+ (b + b′) j + (c + c′)k.

The product of a scalar and quaternion is defined also as expected, namely,

α(d + ai + bj + ck) = (αd)+ (αa)i + (αb) j + (αc)k,

where α ∈ R. The product of two quaternions q1 and q2 is denoted q1q2 (we reserve the dot
product notation q1 · q2 for the usual dot product). The definition of multiplication is more
complicated than the definition of addition and is defined from the identities XII.4 using the

3 There are various conventions on representing quaternions, andmany authors put the scalar component
last in the 4-tuple and might prefer the notation 〈a, b, c, d〉 for d + ai + bj + ck. Similarly, we later
introduce the notation 〈d; u〉, and these authors would typically prefer 〈u, d〉 instead. We prefer to put
the scalar component d first since it corresponds better to the way one treats complex numbers.
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associative and distributive laws. This gives

(d + ai + bj + ck)(d ′ + a′i + b′ j + c′k)

= dd ′ + da′i + db′ j + dc′k + ad ′i + aa′i2 + ab′i j + ac′ik

+ bd ′ j + ba′ j i + bb′ j2 + bc′ jk + cd ′k + ca′ki + cb′k j + cc′k2

= (dd ′ − aa′ − bb′ − cc′)+ (da′ + ad ′ + bc′ − cb′)i XII.5

+ (db′ + bd ′ + ca′ − ac′) j + (dc′ + cd ′ + ab′ − ba′)k.

This formula formultiplication is fairlymessy but can be expressedmore clearlywith vector
notation. Let u be the vector u = 〈a, b, c〉. Then the notation 〈d; u〉 is used as a shorthand nota-
tion for the quaternion 〈d, a, b, c〉. Letting also u′ = 〈a′, b′, c′〉, we can rewrite equation XII.5
as

(〈d; u〉)(〈d ′; u′〉) = 〈dd ′ − u · u′; du′ + d ′u+ u× u′〉. XII.6

Thus, for q = 〈d; u〉 and q ′ = 〈d ′; u′〉, the scalar component of the quaternion product qq ′ is
equal to dd ′ − u · u′, and the vector component is du′ + d ′u+ u× u′.
Theorem XII.1 Quaternion addition is commutative and associative. Quaternion multipli-
cation is associative. The left and right distributive laws hold for quaternions, that is, for all
quaternions q, r, s,

q(r + s) = qr + qs and (r + s)q = rq + sq.

The theorem is proved by simple calculations, and we leave the proof to the reader.
On the other hand, we alreadymentioned that quaternionmultiplication is not commutative;

in EquationXII.6 the noncommutativity arises from the fact that u× u′ is not generally equal to
u′ × u. The noncommutativitymay seem strange at first; however, you are already quite familiar
with some other noncommutative systems. First, matrices (2× 2 matrices, for instance) have
addition andmultiplication operations that satisfy properties similar to quaternions, andmatrix
multiplication is not commutative. As a second example, consider vectors over R

3 with the
usual vector addition and with cross product as the multiplication operation. Vector addition
is of course associative and commutative. Furthermore, cross products are distributive over
vector addition. However, the vector cross product is neither commutative nor associative.

The norm, or magnitude, of a quaternion q = 〈d, a, b, c〉 is defined to equal

||q|| =
√

d2 + a2 + b2 + c2.

We define the conjugate, q∗, of q to equal q∗ = 〈d,−a,−b,−c〉. If q = 〈d; u〉, then ||q|| =√
d2 + u2, where u2 = u · u. Also, q∗ = 〈d;−u〉. It is easily verified, from the definition of

quaternion multiplication, that

qq∗ = q∗q = 〈d2 + u2; 0〉 = ||q||2. XII.7

A unit quaternion is a quaternion with norm equal to 1.

Exercise XII.4 Let q1 = 〈
√
2
2 , 0,

√
2
2 , 0〉, q2 = 〈

√
2
2 , 0, 0,

√
2
2 〉, and q3 = 〈2, 0, 0, 0〉.

a. Calculate q1 + q2, q1 − q2, and q1 + q3.
b. Calculate the products q1q2, q2q1, q1q3, q3q1, and q1(q2 + q3).
c. Calculate q∗1 , q∗2 , and q∗3 .
d. Calculate ||q1||, ||q2||, ||q3||, ||q1q2||, and ||q1q3||.
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Exercise XII.5 Give examples showing that the vector cross product is not commutative
and not associative.

A quaternion 〈d; 0〉 with zero vector component will be identified with the scalar d ∈ R.
This is compatible with the earlier definitions since the product dq is the same whether d is
interpreted as a quaternion or as a scalar. Similarly, a vector u ∈ R

3 will be identified with
the quaternion 〈0; u〉 with zero scalar component. Care should be taken when vectors are
interpreted as quaternions because a vector cross product is not the same as a quaternion
product. (Indeed, they could not be the same, for quaternion products are associative whereas
vector cross products are not.) As an example, we have

(i+ j)× j = k,

but,

(i + j) j = (〈0, 1, 1, 0〉)(〈0, 0, 1, 0〉) = 〈−1, 0, 0, 1〉 �= 〈0, 0, 0, 1〉 = k.

The next theorem discusses the scalar multiplication and multiplicative inverse properties for
quaternions.

Theorem XII.2
a. The scalar 1 = 〈1; 0〉 is the multiplicative identity, that is, q = 1q = q1 for all quater-

nions q.

b. Let s = 〈s; 0〉 be a scalar. Then sq = qs for all quaternions q.

c. Let q be a nonzero quaternion. Then

q−1 = 1

||q||2 q∗

is the multiplicative inverse of q, that is, qq−1 = q−1q = 1.

The proof of the theorem is by straightforward calculation; use Equation XII.7 to help prove
part c. Note that if q = 〈d; u〉 is a unit quaternion, then q−1 is very simply computable as
q−1 = 〈d;−u〉.

Exercise XII.6 Let q1, q2, and q3 be as in Exercise XII.4. Also, let q4 = 〈1, 0, 1, 0〉.
Calculate q−11 , q−12 , q−13 , and q−14 .

Exercise XII.7 Let q1 and q2 be arbitrary quaternions. Prove that (q1q2)∗ = q∗2q∗1 and
that (q1q2)−1 = q−12 q−11 .

Exercise XII.8 Let q1 and q2 be arbitrary quaternions. Prove that ||q1q2|| = ||q1|| · ||q2||.
[Hint: This can be proved with straightforward but messy algebraic manipulation; alter-
natively, a slick proof can be given using the previous exercise and Equation XII.7.]

XII.3.5 Representing Rotations with Quaternions

We are now ready to (re)state the method by which quaternions represent rotations. Fix a unit
vector u and a rotation angle θ . Recall that Rθ,u is the rotation around axis u through angle θ

with the rotation direction given by the right-hand rule. Let c = cos(θ/2) and s = sin(θ/2),
and let q be the quaternion

q = 〈c, su〉 = 〈c, su1, su2, su3〉.
The next theorem explains the basic method by which quaternions represent rotations: to rotate
a vector v you multiply on the left by q and on the right by q−1.
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Theorem XII.3 Let u, θ , and q be as above. Let v be any vector in R
3, and set w = Rθ,uv.

Then,

qvq−1 = w. XII.8

Some comments are in order before we prove the theorem. First note that q, as defined
above, is a unit quaternion, and so q−1 = q∗. So for unit quaternions we have qvq∗ = w.
Second, Equation XII.8 uses our convention on treating vectors as quaternions, and so another
way of stating XII.8 is

q〈0; v〉q−1 = 〈0;w〉.
Third, Equation XII.8 can also be used for nonunit quaternions. To see this, let α be a nonzero
scalar and let r = αq . Then r−1 = (1/α)q−1, and thus

rvr−1 = (αq)v(α−1q−1) = qvq−1 = w.

In other words, multiplying a quaternion by a nonzero scalar does not change the value of
qvq−1. In this way, quaternions act very much like homogeneous coordinates since, if we are
interested only in what rotation is represented by the formula qvq−1, multiplication by nonzero
scalars has no effect. In most applications it is best to work with unit quaternions, which can
be viewed as 4-tuples that lie on the unit sphere S3 in R

4. Conversely, each point on the unit
sphere S3 can be viewed as a quaternion.4 Antipodal points on the sphere represent the same
rotation, for q and −q differ by a nonzero scalar factor.

In abstract algebra, a mapping of the form

v → qvq−1,

computed by multiplying on the left by a fixed element and on the right by its inverse is called
an inner automorphism.

We now prove Theorem XII.3.

Proof (Theorem XII.3.) Let u, θ , and q be as in the statement of the theorem: in particular,
u is a unit vector and q is a unit quaternion. Referring back to Figure II.14 on page 37, we
write the vector v as a sum of two vectors v = v1 + v2 such that v1 is parallel to u and v2 is
perpendicular to u. By the distributive law, the map v → qvq−1 is linear, that is,

qvq−1 = qv1q
−1 + qv2q

−1 = ||v1||(quq−1)+ qv2q
−1.

Therefore, it will suffice to prove

a. quq−1 = u, and
b. qv2q−1 = Rθ,uv2 for v2 perpendicular to u.

First we prove a. by direct calculation:

quq−1 = [(〈c; su〉)(〈0; u〉)]q−1

= (〈0− su · u; cu+ su× u〉)q−1

= (〈−s; cu〉)q−1

= (〈−s; cu〉)(〈c;−su〉)

4 The unit sphere S3 is the set of points {〈x, y, z, w〉 : x2 + y2 + z2 + w2 = 1}. The superscript 3means
that the surface of the sphere is a three-dimensional manifold.
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= 〈−cs + csu · u; s2u+ c2u− csu× u〉
= 〈−cs + cs; (s2 + c2)u〉
= 〈0; u〉 = u.

These calculations used the fact thatu is a unit vector, and sou · u = 1. In addition, c2 + s2 = 1
because c = cos(θ/2) and s = sin(θ/2).

We now prove b. We have v3 = u× v2 and v3 × u = v2, where v3 is defined as in Section
II.2.3 (again, see Figure II.14 on page 37). We will explicitly compute qv2q−1. First,

qv2 = (〈c; su〉)(〈0; v2〉)
= 〈0− su · v2; cv2 + su× v2〉
= 〈0; cv2 + sv3〉.

Then,

qv2q
−1 = (〈0; cv2 + sv3〉)(〈c;−su〉)
= 〈0+ scv2 · u+ s2v3 · u; 0+ c2v2 + csv3 − csv2 × u− s2v3 × u〉
= 〈0; c2v2 + csv3 + csv3 − s2v2〉
= 〈0; (c2 − s2)v2 + (2cs)v3〉.
= 〈0; (cos θ )v2 + (sin θ )v3〉
= Rθ,uv2.

The last equality follows from Equation II.8 on page 42. The next-to-last equality follows from
the sine and cosine double angle formulas:

cos(2ϕ) = cos2 ϕ − sin2 ϕ and sin(2ϕ) = 2 cosϕ sinϕ,

with ϕ = θ/2. We have thus completed the proof of Theorem XII.3. �

Using quaternions to represent rotations makes it easy to calculate the composition of two
rotations. Indeed, if the quaternion q1 represents the rotation Rθ1,u1 and if q2 represents Rθ2,u2 ,
then the product q1q2 represents the composition Rθ1,u1 Rθ2,u2 . To prove this, note that

Rθ1,u1 Rθ2,u2v = q1(q2vq−12 )q−11 = (q1q2)v(q
−1
2 q−11 ) = (q1q2)v(q1q2)

−1

holds by associativity of multiplication and by Exercise XII.7.

Exercise XII.9 Let R1 and R2 be the two rotations with matrix representations given in
the formulas XII.1 on page 295.

a. What are the two unit quaternions that represent R1? What are the two unit quaternions
that represent R2?

b. Let v = 〈1, 3, 2〉. Compute R1v and R2v using quaternion representations from part a.
by the method of Theorem XII.3. Check your answers by multiplying by the matrices
in XII.1.

XII.3.6 Quaternion and Rotation Matrix Conversions

Because a quaternion represents a rotation, its action on R
3 can be represented by a 3× 3

matrix. We now show how to convert a quaternion q into a 3× 3 matrix. Recall from the
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discussion on page 35 that a transformation A(v) is represented by the matrix (w1 w2 w3),
where the columns wi are equal to A(i), A(j), and A(k). Thus, to represent a quaternion q by
a matrix, we set

w1 = qiq−1, w2 = qjq−1, and w3 = qkq−1,

and then the matrix representation will be (w1 w2 w3).
Let q = 〈d, a, b, c〉 be a unit quaternion. To compute qiq−1, first compute

(〈d, a, b, c〉)(〈0, 1, 0, 0〉) = 〈−a, d, c,−b〉.
Then, since q−1 = 〈d,−a,−b,−c〉, compute qiq−1 by

(〈−a, d, c,−b〉)(〈d,−a,−b,−c〉) = 〈0, d2 + a2 − b2 − c2, 2ab + 2cd, 2ac − 2bd〉.
Similar computations give

qjq−1 = 〈0, 2ab − 2cd, d2 − a2 + b2 − c2, 2bc + 2ad〉
qkq−1 = 〈0, 2ac + 2bd, 2bc − 2ad, d2 − a2 − b2 + c2〉.

Thus, the matrix representing the same rotation as the quaternion 〈d, a, b, c〉 isd2 + a2 − b2 − c2 2ab − 2cd 2ac + 2bd
2ab + 2cd d2 − a2 + b2 − c2 2bc − 2ad
2ac − 2bd 2bc + 2ad d2 − a2 − b2 + c2

 . XII.9

A 3× 3 matrix that represents a rotation can also be transformed into a quaternion. For this,
we are given a matrix M = (mi, j ) and want to find a quaternion q = 〈d, a, b, c〉 such that M is
equal to XII.9. Furthermore, the quaternionwill be a unit quaternionwith d2 + a2 + b2 + c2 =
1. Since q and −q represent the same rotation, there are two possible answers.

There are several methods for converting M into a quaternion (see (Klumpp, 1976;
Spurrier, 1978; Shepperd, 1978)). We follow the algorithm of (Shepperd, 1978). The algo-
rithm is also similar to the one given in Section II.2.3 to convert a rotation matrix into a
rotation axis and rotation angle.

Thefirst step in the derivation of a quaternion fromamatrix is to note the following identities:

m2,1 + m1,2 = 4ab m1,3 + m3,1 = 4ac m3,2 + m2,3 = 4bc

m2,1 − m1,2 = 4cd m1,3 − m3,1 = 4bd m3,2 − m2,3 = 4ad.
XII.10

If we know one of the values of d, a, b, c, and if this value is nonzero, then we can solve for
the other three values by using the appropriate three of these six equations. For instance, if we
have the value for d , then we can solve for a, b, c by using the bottom three equations; note
that this requires dividing by d and thus works only if d is nonzero.

The trace of M is equal to the sum of its diagonal elements:

T = m1,1 + m2,2 + m3,3 = 3d2 − a2 − b2 − c2 = 4d2 − 1,

where the last step used d2 + a2 + b2 + c2 = 1. It is convenient also to use the notation m0,0

for the trace, that is, set m0,0 = T . Then, we have

2m0,0 − T = T = 3d2 − a2 − b2 − c2 = 4d2 − 1

2m1,1 − T = −d2 + 3a2 − b2 − c2 = 4a2 − 1

2m2,2 − T = −d2 − a2 + 3b2 − c2 = 4b2 − 1

2m3,3 − T = −d2 − a2 − b2 + 3c2 = 4c2 − 1.
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We can use any of these four equations to solve for values of any of a, b, c, d; for instance,

a = ± 1

2

√
2m1,1 − T + 1.

However, there is the complication that we would not be able to determine the proper signs for
a, b, c, and d in this way. In addition, this approach would require the computational expense
of four square roots. Therefore, instead of using all four equations, we use just one of them to
calculate one of a, b, c, or d : this value may arbitrarily be set to be either positive or negative
since it will affect only the overall sign of the quaternion. Then we can use the appropriate
equations from XII.10 to solve for the other three variables. To choose which of a, b, c, d to
solve for first, recall that we want to avoid division by zero. Further, to avoid division by a
value near zero, we can choose to solve for the one of a, b, c, d having the largest absolute
value. It is evident from the four equations that this is done by choosing the largest mi,i , for
0 ≤ i ≤ 3 and using the corresponding equation.

We can write out the complete algorithm as follows:

Input: A rotation matrix M.
M has entries mi, j , for i = 1, 2, 3 and j = 1, 2, 3.

Output: A quaternion 〈d, a, b, c〉
Algorithm:

Set m0,0 = m1,1 + m2,2 + m3,3; // Trace
Set i so that mi,i = max{m0,0, m1,1, m2,2, m3,3};
Switch ( i ) {
Case 0: // i == 0

Set d = 1
2

√
m0,0 + 1;

Set a = (m3,2 − m2,3)/(4d);
Set b = (m1,3 − m3,1)/(4d);
Set c = (m2,1 − m1,2)/(4d);
Return;

Case 1: // i == 1
Set a = 1

2

√
2m1,1 − m0,0 + 1;

Set d = (m3,2 − m2,3)/(4a);
Set b = (m2,1 + m1,2)/(4a);
Set c = (m1,3 + m3,1)/(4a);
Return;

Case 2: // i == 2
Set b = 1

2

√
2m2,2 − m0,0 + 1;

Set d = (m1,3 − m3,1)/(4b);
Set a = (m2,1 + m1,2)/(4b);
Set c = (m3,2 + m2,3)/(4b);
Return;

Case 3: // i == 3
Set c = 1

2

√
2m3,3 − m0,0 + 1;

Set d = (m2,1 − m1,2)/(4c);
Set a = (m1,3 + m3,1)/(4c);
Set b = (m3,2 + m2,3)/(4c);
Return;

}
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i

1

Figure XII.2. Lerping moves from 1 to i at a constant rate along the secant line. Slerping moves from
1 to i at a constant rate along the great circle. The points drawn on the secant line and on the great circle
are obtained by lerping and slerping with α = 1

3 . They do not correspond to the same rotation.

The algorithm returns a single quaternion q = 〈d, a, b, c〉; however, recall that −q repre-
sents the same rotation. Depending on how you use the quaternion, you may need to determine
which of q or −q is more appropriate.

XII.3.7 Interpolation of Quaternions

Interpolation of quaternions is best done with the spherical linear interpolation introduced
earlier in Section IV.6. Because every rotation is represented by a unit quaternion, we restrict
our attention to unit quaternions. Recall that unit quaternions can be viewed as points on the
unit sphere S3 in R

4. The only catch is that antipodal points on the sphere represent the same
rotation; thus, each rotation has two possible representations as a unit quaternion. It is often
important in applications to choose the more appropriate of the two possible representions.

Suppose we are given two unit quaternions q1 and q2 and a scalar α ∈ [0, 1], and wish
to interpolate between q1 and q2. Because the quaternions lie on the unit sphere, it is better
to use spherical linear interpolation instead of ordinary linear interpolation. Namely, one can
interpolate with

q(α) = slerp(q1, q2, α).

The slerp function is computed by the method of Section IV.6.
What would go wrong if we used linear interpolation (lerping) instead of spherical linear

interpolation (slerping)? First, of course, the results would not lie on the sphere and would
need to be renormalized. Even more important, linear interpolation would not result in a
constant rate of rotation. For example, in Figure XII.2, the two quaternions 1 = 〈1, 0, 0, 0〉
and i = 〈0, 1, 0, 0〉 are shown. The latter quaternion corresponds to a 180◦ rotation around the
x-axis. Both slerping and lerping can be used to move smoothly from the quaternion 1 to
the quaternion i . However, using linear interpolation and computing q(α) = lerp(1, i) causes
the quaternion q(α) to move along the straight line segment from 1 to i at a constant rate.
On the other hand, setting q(α) = slerp(1, i, α) causes q(α) to move along the great circle
from 1 to i at a constant rate. So only slerping makes the orientation vary at a constant rate.

Recall from Equation IV.28 on pages 123–124 that the formula for spherical linear interpo-
lation is

slerp(q1, q2, α) = sin((1− α)ϕ)

sin ϕ
q1 + sin(αϕ)

sin ϕ
q2.

Here ϕ is the angle between q1 and q2. This angle can be computed by using the dot product
q1 · q2, which is equal to cosϕ. (You treat q1 and q2 as ordinary vectors in R

4 to compute the
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dot product.) Alternately, you may also compute the sine of ϕ and then take the arctangent, as
was done on page 124 in the second version of the Precompute_for_Slerp.

One typically is really interested in interpolating between rotations rather than between
quaternions. That is say, one is typically given two orientations and is asked to interpolate
between them. The orientations can be converted to quaternions by the method of the previous
section, but then one has the choice of negating one of the quaternions to get a second quaternion
representation of the same orientation. The question then is, Should one use

slerp(q1, q2, α) or slerp(q1,−q2, α)

for the interpolation? (Negating both quaternions just negates the results of the slerp function,
and so these are really the only two choices.) The usual way to resolve this question is to
consider the angle between q1 and q2. If this is less than or equal to 90◦, then slerp between q1

and q2. If it is greater than 90◦, then slerp between q1 and−q2. Physically, this corresponds to
rotating in the shortest direction between the two orientations. To determine whether the angle
is greater than 90◦, form the dot product q1 · q2; the dot product is negative if and only if the
angle is greater than 90◦.

Interpolation between quaternions can be used to create splinelike curves that take on
quaternion values. The importance of this is that it allows orientation to be smoothly animated
by a spline function in terms of control points. The main remaining technical difficulty is that
slerping only interpolates between two quaternions at a time, but the usual definitions of Bézier
andB-spline curves in termsof blending functions require taking aweighted average ofmultiple
control points at a time. This problem can be circumvented by using de Casteljau and de Boor
methods, which allow calculating the value of a Bézier curve or B-spline curve by a series
of interpolations of two control points at a time. (Shoemake, 1985; 1987) employs this as the
basis for some methods of using Catmull–Rom style curves that interpolate given quaternions,
and several other authors have made similar suggestions. We have also proposed a method of
forming the weighted average of multiple quaternions at a time in (Buss and Fillmore, 2001).

XII.4 Kinematics

The term “kinematics” refers to motion or movement without regard to physical properties
such as mass or momentum. Instead, kinematics refers to the purely geometric properties of
motion such as position, orientation, velocity, rotational velocity, and so forth.

We focus on the kinematics of hierarchies of simple, rigid, three-dimensional objects linked
with perfect joints; such assemblages are also called articulated objects or multibodies. Ap-
plications include the animation of humans and other creatures by controlling their skeletal
movement. These techniques can also be used for simulating chains or ropes by approximating
them as a series of short rigid segments. Much of the theory of kinematics was developed for
the analysis and control of mechanical linkages as well as for motion planning and control of
robots.

The outline of the rest of this chapter is as follows. We first set up a framework for dis-
cussing rigid, articulated objects. This involves creating a tree structure of links, with each link
connected to its parent by a single degree of freedom (1–DOF) joint. Next we examine forward
kinematics: this involves methods for calculating positions and orientations of the rigid objects
as functions of the joint positions. The final section will take up the harder topic of inverse
kinematics, which provides methods to control the positions of the joints so as to achieve a
desired motion.
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A linear chain of links with 1-DOF rotational joints.

a b c d e

Root End effector f

Root

A tree-like arrangement of links and 1-DOF joints. The
points h -k are end effector points.

(a)

(b)

a

b

c h

d

e i

f j

g k

FigureXII.3. Two examples of tree-like arrangements of links. The black dots represent 1-DOF rotational
joints. The small circles are end effector points.

XII.4.1 Rigid Links and Joints

We wish to model simple arrangements of rigid bodies, called links, connected by joints.
We make several simplifying assumptions. The first assumption is that the joints are purely
rotational and have a single degree of freedom (that is, they are 1–DOF joints). This assumption
is not so crucial in that it can be relaxed significantly without seriously affecting the difficulty
of either forward kinematics or inverse kinematics. The second assumption is that the links
are hooked up in a treelike fashion (i.e., there is no loop or closed chain of links). This second
assumption is crucial for our discussion of kinematics: Indeed any loop or closed chain would
imply dependencies among joint positions, and we would have no meaningful way to deal with
these dependencies kinematically (as compared with dealing with the dynamics or physics of
the bodies).

We assume therefore that we have a set L of links (rigid objects) connected by rotational
joints (see Figure XII.3). The links are organized as a tree; the nodes of the tree are the set
of links from L . One of the links is identified as the root link, and the leaves of the tree (i.e.,
links that do not have any children) are called end links. Each link is joined to its parent and
its children in the tree by 1–DOF rotational joints. A joint is attached to fixed positions on two
links and has a single axis of rotation; this is similar in effect to a door hinge, for example.
The axis of rotation of the 1–DOF joint is fixed relative to the two links that it joins. End links
are also called end effectors. For each end effector, we pick a fixed point on the link called an
end effector point. The end effector points are the points we are trying to control with inverse
kinematics. For example, for a robot arm, the end effector point could be the position of the
hand or other tool at the end of the robot arm, and we would like to control the position,
orientation, or both of the end effector.

XII.4.2 Forward Kinematics

To describe the positions of links mathematically, we need to set up a scheme for naming joints
and effectors their positions and orientations, and so on. Each link x ∈ L has an attachment
point, which is the place where link x is attached to its parent. The root link also has an
attachment point, called the base position, where it is attached to a fixed point. We assume each
attachment point consists of a 1–DOF joint. A 1–DOF joint rotates around a single axis. This
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Figure XII.4. The relative position vectors rx measure the relative rest positions of the links; ra = 0 and
the other relative position vectors are as shown.

axis is fixed relative to the two adjacent links but of course may depend on other joint angles.
We use the variable θx to denote the angle of the 1–DOF joint connecting link x to its parent.

The relative positions of the links (other than the root link)will be specifiedwith variables rx .
The relative position vectors rx are fixed and are not functions of the joint angles. The relative
positions rx for a link x are defined as follows: if y is the parent link of link x , and if all the
joint angles are set equal to zero, then rx is equal the vector from the attachment point of y
to the attachment point of x . This is illustrated in Figure XII.4. We also define rx when x is
an end effector point instead of a link. In this case, if x lies on link y, then rx is defined to
be the vector from the attachment point of y to the end effector point x . Examples of this in
Figure XII.4 are r f in the first figure and rh through rk in the second figure.

As discussed earlier in this section, the angle θx is measured in terms of the relative orien-
tation of joint x to its parent. This means that if the parent link is rotated and θx is held fixed,
then x moves and changes orientation with its parent (see Figure XII.5.) We will use vectors vx

to denote the rotation axis for the 1–DOF joint attaching x to its parent link (or, if x is the root
link, attaching x to the base position). The vector vx is equal to the unit vector along the axis
of rotation of the joint when all the joint angles equal zero. Of course, as the joint angles θx

vary, the joints’ actual axes of rotation can change (we will denote these changing axes by wx

below in this section).
The vectors rx and vx give a description of the mechanical functionality of the links. These

vectors are fixed and do not vary with the joint angles θx ; in other words, they are static. We
will shortly define values sx and wx that give the positions of the joints’ attachment points and
the joints’ rotational axes as functions of the joint angles θx .

The basic problem of forward kinematics is to obtain a formula for end effector point
positions as functions of the angles θx . We solve this problem by defining vectors sx that equal

θe

θd

θc
θb

θa

Figure XII.5. The angles of joints are measured relative to the two links that are joined.
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θe

θd
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θd
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θe

θd

θc
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sbf

θe

θd

θc
θb
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saf

Figure XII.6. The definitions of sy
f for the end effector f and the links y = a, b, c, d of the linear chain

shown in Figure XII.3.

the position of the attachment point of a link x or the position of an end effector x , where sx is
a function of the joint angles. A good way to define the vectors sx is to traverse the tree of links
starting from the end effectors up to the root. We will give formulas for intermediate vectors
sy

x , where x is either a link or an end effector point and the link y is an ancestor of x in the tree.
The meaning of sy

x is as follows (also, refer to Figure XII.6). Let Ty be the set containing the
link y and all the links z that are descendants of y in the tree, that is, Ty is the subtree rooted
at y. Then sy

x is a function of the angles θz such that z ∈ Ty . For a link x , sy
x is the vector from

the attachment point of y to the attachment point of x if it is assumed that the joint positions
are set according to the values of the angles θz and that θz′ = 0 for all other links z′ /∈ Ty . For
an end effector point x , sy

x is the vector from the attachment point of y to the point x again on
the assumption that the joint positions are set according to the values of the angles θz and that
θz′ = 0 for all z′ /∈ Ty .

For a link x in the subtree Ty , we also define a vector wy
x that describes the rotation axis

for the joint attaching x . The vector wy
x will be a function of the angles θz such that z ∈ Ty .

The value of wy
x is defined to be the unit vector along the axis of rotation for the 1–DOF joint

connecting x to its parent (based on the angles θz , z ∈ Ty) under the same assumption that
θz′ = 0 for z′ /∈ Ty .

It is fairly easy to give recursive formulas for sy
x and wy

x . For y = x , we have

sx
x = 0 and wx

x = vx .

And, for an end effector position x on the link y,

sy
x = rx .

Then, for y equal to the parent link of w and for x in Tw, we have

sy
x = Rθy ,vy (rw + swx ),

wy
x = Rθy ,vy (w

w
x ).
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As you should recall fromSection II.2.3, Rθ,u represents the linear transformation that performs
a rotation of θ degrees around the axis u.

These formulas for sy
x andw

y
x suffice to solve the forward kinematics problem. For instance,

the position of end effector f is given as a function of the joint angles by saf , where a is the
root link.

To avoid excessive superscripts, we henceforth let sx and wx equal

sx = sax and wx = wa
x ,

where a is the root link. Thus, sx gives the position of the link or end effector point x as a
function of the joint angles. Likewise, wx gives the rotation axis for the joint at link x .

We now turn to the inverse kinematics problem,which is to find joint angles thatwill produce
desired values for the end effector positions.

XII.4.3 Inverse Kinematics, Setting It Up

The inverse kinematics problem is the problem of, given desired positions for some of the
links, finding appropriate joint angles that will place the links in these positions. Applications
of inverse kinematics include motion planning in real-world applications, such as in robotics,
and also include animation in graphical environments – especially of articulated figures such
as humans or other creatures.

Our discussion of inverse kinematics is based loosely on (Girard and Maciejewski, 1985),
who used inverse kinematics to animate the walking motion of legged creatures. See also
the later paper (Zhao and Badler, 1994) for more advanced methods of inverse kinematics,
applications to human figures, and references to related work.

In computer graphics, a typical application of inverse kinematics is animation of a creature.
An animator may, for example, specify the desired positions of the hand and feet of a person,
and then the inverse kinematics problem will be solved to find good positions for the joints
of the entire body. If this works well, the job of the animator can be significantly simplified
because this approach can eliminate the work of manually setting all the joint angles in a
skeleton. Other applications include motion planning – either for robotics or in a virtual reality
application. For instance, if it is desired to make an arm and hand reach out to grasp an object,
then inverse kinematics can be used to find possible solutions for the movement. Of course,
these possible solutions may need to take into account issues such as collision detection and
avoidance, or joint forces and joint limits.

We discuss only the “pure” form of inverse kinematics: in particular, we do not consider
issues like collision avoidance or limits on joint angles. Rather, we discuss solutions to the
following problem: Given a set of joint angles, and thereby, from forward kinematics, given
the positions and orientations of all the links, and given a set of desired new positions for some
of the links, we want to find a way to change the joint angles so as to move the links’ positions
closer to the desired positions. This process can be iterated in such a way that each iteration
moves the links’ positions closer to their target positions until eventually new joint positions
are reached that place the links close enough to their desired positions. The reason for using
an iterative procedure is that it is usually too complicated to actually solve for joint angles,
#θ , in terms of the desired link positions. The iterative procedure will be easier to implement
and, if it converges sufficiently well, can provide values for the joint angles that put the links
arbitrarily close to their desired positions.

For a single step of the iterative procedure, we consider the function telling us how links’
positions depend on joint angles (this function is obtainable from the forward kinematics
of the last section). We then evaluate the partial derivatives of this function to find a linear
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θy

sx − sy

sy

sx

FigureXII.7. The rate of change of the position sx of point x with respect to the joint angle θy is calculated
in terms of rotation around the axis wy of the joint y as wy × (sx − sy). The axis wy is pointing out of
the page, and sowy × (sx − sy) has the right direction for the partial derivative. Sincewy is a unit vector,
wy × (sx − sy) also has the right magnitude. This calculation works for any x and y, not for just end
effectors and the root link.

approximation to the function. That is, we compute the rates of changes in links’ positions
with respect to the rates of changes in joint angles. These give a Jacobian matrix of partial
derivatives. With some assumptions about the nonsingularity of the Jacobian matrix, we can
then find a way to change the joints’ angles so as to move the links’ positions closer to the
desired positions. Since the Jacobian gives only a linear approximation to the function, we
have to iterate the process until it converges (we hope!) to a good solution.

Suppose that x is an end effector position or an attachment point of a link and that we
are seeking to set the joint angles so as to set the position sx of x equal to a target value s′x .
More generally, we may have more than one x and be trying to make each x reach its target
position s′x . We assume the links are already placed in some initial configuration with known
joint angles #θ , where #θ represents the vector of all the joint angles. The discussion in the
previous section on forward kinematics gives us a formula for sx in terms of the angles #θ .

The first step in setting up the inverse kinematics problem is to define the Jacobian matrix,
which will tell us how the position of x changes with respect to small changes in the angles #θ ; in
other words, the matrix will contain the partial derivatives of sx with respect to the variables #θ .

To define the Jacobian matrix, we must define the partial derivatives of the functions sx

giving the link positions. We have sx as a function of #θ , that is, sx = sx (#θ ). For particular links
x and y, we can define ∂sx/∂θy as follows:

∂sx

∂θy
=

{
0 if y = x or x /∈ Ty

wy × (sx − sy) otherwise

To see that this correctly defines the partial derivative, note the following: (a) If x is not
a proper descendant of y, then the rotation of y’s joint does not affect the position of x ,
and so ∂sx/∂θy = 0. (b) Otherwise, the vector from point y to point x is equal to sx − sy ,
and the rotation axis for angle θy is the axis wy . An infinitesimal rotation ϕ radians around
the axis wy centered at sy will move the point x an infinitesimal distance given by the vector
ϕwy × (sx − sy). From this observation, the second part of the definition of ∂sx/∂θy is obtained
immediately. Figure XII.7 shows how to visualize the derivation of the formula for the partial
derivative.5

5 The formula for ∂sx/∂θy is only correct if angles are measured in radians. If the angle θ is measured in
units of α radians, then the equation for the partial derivative becomes αwy × (sx − sy). For example,
if angles are measured in degrees, then α = π/180.
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The vector version of the Jacobian matrix is then defined to equal the m × n matrix(
∂sx

∂θy

)
x,y

,

where the rows of the matrix are indexed by the m many links x whose position we are trying
to set (often, x ranges over the set of end effectors, for instance) and the columns of the matrix
are indexed by the set of all joints y.

The entries in the preceding matrix are 3-vectors; to convert the matrix into an ordinary
matrix with real numbers as entries, we replace each vector-valued entry by its column form.
This gives a matrix of dimension (3m)× n. We call this (3m)× n matrix the Jacobian matrix
and denote it J . Each row in J has length n and consists of partial derivatives of one of the x-,
y-, or z-coordinates of one of the sx values with respect to the n angles θy .

To finish setting up the inverse kinematics problem, we assume we are given current values
for the angles #θ . This gives values sx , and we denote the sequence of all these by #s (so #s is a
sequence of m vectors and thus a sequence of 3m scalars). We also let s′x be the desired values
for these positions and let #s′ denote the sequence of all these. Finally, let �#s equal

�#s = #s′ − #s,
which equals the desired change in the links’ positions.

To solve the inverse kinematics problem, we want to solve the following equation for �#θ :
�#s = J (�#θ ). XII.11

This will give�#θ as a first-order approximation to the change in values of #θ necessary to effect
the desired change �#s in positions.

The next section will describe an algorithm to find a solution �#θ to Equation XII.11. Once
we have this solution, we might be tempted to set #θ equal to #θ +�#θ . This, however, will not
work so easily and is likely to lead to unstable performance. The Jacobian matrix gives only
a first-order approximation to the change in angles, and, unfortunately, the partial derivatives
can change very rapidly with changes in the angles #θ . A second problem is that when the links
and joints are positioned badly, Equation XII.11 can be unstable; in particular, the matrix J
may have rank less than n, or be close to having rank less than n, and this can cause instability
and overshoot problems.

To keep these problems under control, it is recommended that you choose a small positive
scalar ε < 1 and update the joint angles #θ by adding ε�#θ . Then proceed iteratively by recom-
puting the Jacobian based on the updated angles and positions, finding new values for �#θ and
again updating with a small fraction ε. This is repeated until the links x are sufficiently close
to the desired positions. The question of how small ε needs to be depends on the geometry of
the links; it would be a good idea to keep ε small enough so that the angles are updated by at
most 5 or 10◦ at a time.

XII.4.4 Inverse Kinematics, Finding a Local Solution

The previous section reduced the inverse kinematics problem to the problem of solving Equa-
tion XII.11 for �#θ in terms of �#s and J . Of course, if we are very lucky, then J is a square
matrix and is invertible. In that case, we can solve for �#θ as

�#θ = J−1(�#s).
However, we are not usually so lucky. First of all, J may well not be square. For example, if
there is only one end effector, so m = 1, and there are n > 3 joints, then J is a 3× n matrix
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with more columns than rows. In this case, the rank of J is ≤ 3, and thus the columns cannot
be linearly independent. A second way that things can go wrong is when the rows of J are
not linearly independent, that is, the rank of J is < 3m. A simple example of this is seen in
Figure XII.3(a) on page 308. Suppose the joints are all straight, as shown in the figure, and
that the end effector is at the point f at the right end of the rightmost link. Let fx measure
the x-coordinate (horizontal position) of the end effector f . Then ∂ fx/∂θ = 0 for all the joint
angles θ : in other words, the corresponding row of J is zero. Physically, this means that no
infinitesimal change in joint angles can effect a change in the horizontal position of the end
effector.

When J is not invertible, we will use the pseudo-inverse of J instead of the inverse of J .
The pseudo-inverse is also sometimes called the Moore–Penrose inverse. Before defining
the pseudo-inverse of J , we need to develop some background from linear algebra. (See
Appendix A.3.3 for related background material.)

We define the kernel of J to be the set of vectors v ∈ R
n such that Jv = 0. We define the

rowspan of J to be the subspace of R
n spanned by the rows of J (i.e., the subspace of vectors

that can be expressed as linear combinations of the rows of J ). Then R
n is the direct sum of

kernel(J ) and rowspan(J ); that is, every vector v in R
n can be written uniquely in the form

v = k+ r with k ∈ kernel(J ) and r ∈ rowspan(J ). XII.12

Furthermore, the dot product k · r is equal to zero for all k ∈ kernel(J ) and r ∈ rowspan(J ).
Since these conditions hold, kernel(J ) and rowspan(J ) are called orthogonal complements.
It is an elementary fact from linear algebra that any subspace of R

n has a unique orthogonal
complement.

Similarly, we let colspan(J ) be the column span of J , and its orthogonal complement is
kernel(JT).6 It is easy to check that colspan(J ) is the same as the range of the linear map
represented by J .

We henceforth let k = 3m be the number of rows of J .

Definition Let J be a k × n matrix. Then the pseudo-inverse of J , denoted J †, is the n × k
matrix such that

(a) For every v ∈ kernel(JT), J †v = 0.
(b) For every v ∈ colspan(J ), J †v ∈ rowspan(J ).
(c) For every v ∈ colspan(J ), J J †v = v.

A crucial property of the pseudo-inverse is that J † J is the projection mapping onto the
subspace rowspan(J ); namely, if EquationXII.12 holds, then J † Jv = r. To prove this, note that
applying condition (b) with v replaced by Jv, shows that J † Jv is in rowspan(J ). Further, by (c),
J J † Jv = Jv = Jr. These two facts imply J (J † Jv− r) = 0, and so J † Jv− r ∈ kernel(J ).
But also, J † Jv− r ∈ rowspan(J ), and thus J † Jv− r = 0, that is, J † Jv = r.

By similar reasoning, it can also be shown that J J † is the projection mapping onto
colspan(J ). By (a), J J † maps kernel(JT), the orthogonal complement of colspan(J ), to zero.
For v ∈ colspan(J ), J J †v = v, by (c). Thus, J J † is the projection mapping onto colspan(J ).

To see that conditions (a)–(c) determine a uniquematrix J †, note that for all v ∈ colspan(J ),
there is a unique w ∈ rowspan(J ) such that Jw = v. Thus, (a)–(c) uniquely determine J †(v)
for v in kernel(JT) ∪ colspan(J ). These are orthogonal complements, and so the linear map
J † is thereby uniquely specified for all vectors v.

6 JT is the transpose of J .
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An alternative, and equivalent, definition of the pseudo-inverse of J is as follows: for any
vector v ∈ R

k , J †v = w, where w ∈ R
n is the vector such that

(a′) ||v− Jw|| is minimized, and
(b′) ||w|| is the minimum among all w satisfying (a′).

To see this equivalence, first note that because the range of J is colspan(J ), the quantity
||v− Jw||will beminimized if Jw is the projection of v onto colspan(J ). As just proved above,
J J † is the projection mapping onto colspan(J ), and thus condition (a′) holds. Condition (b′)
now follows from (b).

Conditions (a′) and (b′) can be equivalently expressed in terms of minimizing the squares of
the magnitudes, that is, minimizing ||v− Jw||2 and ||w||2. The square magnitude of a vector
is, of course, the sum of the squares of the components of the vector. Therefore, (a′) and (b′)
show that the pseudo-inverse J † finds a solution that is as good as possible, where “good”
is measured in terms of the sum of the squares. In other words, it solves the least-squares
minimization problem.

Exercise XII.10� Suppose that J † satisfies conditions (a′) and (b′). Prove that it also
satisfies conditions (a), (b), and (c).

Now that we have defined the pseudo-inverse, we can give a solution for Equation XII.11,
namely,

�#θ = J †(�#s). XII.13

By the characterization of pseudo-inverses through conditions (a′) and (b′), we see that this is
a reasonably good choice for �#θ .

It remains to explain how to compute J †. The next theorem gives a formula for finding J †

in the case where J has at least as many columns as rows and where the rows are linearly
independent.

Theorem XII.4 Suppose J is a k × n matrix and that J has rank k. Then J JT is nonsingular,
and the pseudo-inverse J † of J is

J † = JT(J JT)−1. XII.14

Proof We start by just assuming that J JT is nonsingular, and thus (J JT)−1 exists. Let J † be
the matrix given by the right-hand side of equation XII.14.

Since J has rank k, the rows of J are linearly independent.Also, colspan(J ) has dimension k.
Thus, colspan(J ) is equal to all of R

k , and kernel(JT) = {0}. Therefore, condition (a) of the
definition of the pseudo-inverse automatically holds for J † without even using EquationXII.14.
In addition, the range of JT equals colspan(JT), and therefore the range of JT(J JT)−1 is
certainly a subset of colspan(JT). Since colspan(JT) equals rowspan(J ), condition (b) must
hold for J † defined by Equation XII.14. Finally, condition (c) holds since

J J † = J (JT(J JT)−1) = J JT(J JT)−1 = Identity.

We have shown that if J † is defined by Equation XII.14, then conditions (a)–(c) hold, and
so it remains only to prove the assumption that Z = J JT is invertible. Note that Z is a k × k
matrix and that the entries of Z are equal to

zi, j = ri · r j ,

where ri is the i th row of J and “·” denotes a vector dot product. Suppose Z has rank < k and
thus that there is a linear dependence among the rows of Z . This means there are scalars αi ,
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not all zero, such that

0 =
∑

i

αi zi, j =
∑

i

αiri · r j for all j = 1, 2, . . . , k.

Then, for all j ,(∑
i
αiri

)
· r j = 0.

The vector in the parentheses is in the span of the rows of J and also has a dot product equal
to zero with each of the rows r j . Therefore, the quantity in parentheses must be zero. This,
however, contradicts the hypothesis that the rows of J are linearly independent. �

Very frequently, the Jacobian J does not have full row rank, that is, its rank is < k. In this
case, Theorem XII.4 does not apply, and we must find another way to compute the pseudo-
inverse J †. Let � equal the rank of J . We wish to express J in the form

J = J1 J2 XII.15

where J1 is a k × � matrix, J2 is an �× n matrix, and both J1 and J2 have rank �. When these
conditions hold, the product J = J1 J2 is called the full rank factorization of J .

To find J1 and J2, first find � rows of J that are linearly independent. Let rs1 , . . . , rs�
be

these � rows. Then, express all the rows of R as

ri =
�∑

j=1
αi, jrs j .

The linearly independent rows rs j and the coefficients αi, j can be found by a Gaussian elimina-
tion type procedure. Care should be taken here to have good criteria for deciding when a given
row is the span of another set of rows, since to deal with roundoff errors and with matrices that
are near-singular, one has to allow a row nearly equal to a linear combination of other rows to
be treated as being a linear combination.

Once the values αi, j have been found, let J1 be the matrix with entries αi, j , and let J2 be
the matrix obtained from J by keeping the � rows rs1 through rs�

and discarding the rest of the
rows. Then, by inspection, J = J1 J2.

Theorem XII.5 Let J = J1 J2 be such that J1 is k × � and J2 is �× n and suppose J (and
thus J1 and J2) are rank �. Then

J † = JT
2 (J2 JT

2 )
−1(JT

1 J1)
−1 JT

1 . XII.16

Proof We already proved that J2 JT
2 is invertible in the proof of Theorem XII.4. A similar

argument shows that JT
1 J1 is invertible. Let J † be the matrix defined by Equation XII.16:

we must show that conditions (a)–(c) hold. Since JT = JT
2 JT

1 and kernel(JT
2 ) = {0}, we

have kernel(JT) = kernel(JT
1 ). Therefore, condition (a) certainly holds. Similarly, because

kernel(J1) = {0}, J and J2 have the same kernel, and so rowspan(J2) = rowspan(J ). Clearly,
the range of J † is a subset of colspan(JT

2 ) = rowspan(J2). Therefore, the range of J † is a subset
of rowspan(J ), and so condition (b) holds. Finally, suppose v is in colspan(J ), that is, v is in
the range of J so that v = J (w) for some w. From this,

J J †v = J J † Jw

= J JT
2 (J2 JT

2 )
−1(JT

1 J1)
−1 JT

1 Jw

= (J1 J2)J
T
2 (J2 JT

2 )
−1(JT

1 J1)
−1 JT

1 (J1 J2)w
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= J1(J2 JT
2 )(J2 JT

2 )
−1(JT

1 J1)
−1(JT

1 J1)J2w

= J1 J2w

= Jw

= v,
and condition (c) is proved. �

Theorems XII.4 and XII.5 imply algorithms for finding the pseudo-inverse that are fairly
efficient as long as k is small; that is, as long as the total number of links we are trying to force
to a specified position is small. There are other iterativemethods that find the pseudo-inverse by
computing a singular value decomposition (c.f., (Press et al., 1986)). Quasi-Newton methods
have also been used to solve the inverse kinematics problem (c.f., (Zhao and Badler, 1994)).

We have glossed over many important issues that are important for writing a functioning
inverse kinematics system based on pseudo-inverse calculations. Perhaps the most significant
of these issues are how to handle extra constraints such as joint limits and how to avoid
unnecessarily reaching configurations of the links where the Jacobian has reduced row rank.
One way to help avoid these problems was suggested by (Girard and Maciejewski, 1985).
For each joint angle, we choose a “rest position,” which is a desired value for the joint angle;
preferably, this rest positionwould be in a partially flexedposition away fromany joint limits and
away from configurations that lead to reduced row rank in the Jacobian. In a given configuration
of the links, let � #H denote the change in the values of the joint angles #θ that would suffice
to bring all the joints back to their rest positions. Then, after performing the pseudo-inverse
calculation of � #θ , update the joint positions by

ε[� #θ + (I − J † J )(� #H )]. XII.17

Recall that J † J is the projection mapping onto the rowspan of J . Therefore, (I − J † J ) is the
projection map onto the kernel of J , and we have

J (� #θ + (I − J † J )(� #H )) = J (� #θ ).
Updating the joint positions by XII.17 thus tends to move the joint angles back to their rest
positions as well as can be done without worsening the progress made towards the target
positions of the links.

Weighting Joint Angles. Often, it is useful to weight joint angle changes to allow some
joints to rotate more readily than others. For example, in a robot arm, it can be much easier
to rotate a joint angle near an end link than a joint angle near the root. Analogously, for a
human arm, it is generally much easier to rotate a finger joint through an angle of ϕ than to
move a shoulder joint through the same angle ϕ. Indeed, it is generally preferable to change
a finger joint by a relatively large angle rather than a shoulder joint through a relatively small
angle.

The pseudo-inverse method described above does not incorporate any weighting of the
costs of rotating different joints; however, it is fairly simple to modify it to do so. Let #θ =
〈θ1, . . . , θm〉T be the joint angles (which are now indexed by integers instead of by links). We
assign positive weights αi , for i = 1, . . . , m, to these joint angles, choosing the values αi to be
proportional to the cost of changing the angle θi . That is to say, the cost of changing angle θi

by a small angle ϕ is equal to αi/α j times the cost of changing angle θ j by the same amount ϕ.
For instance, in the shoulder–finger example, the value of weight α would be much higher for
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the shoulder joint than for the finger joint. Another way to state the property satisfied by the
weights αi is that if αi�θi = α j�θ j , then the costs of the changes to the two angles θi and θ j

are equal.
We introduce new variables ψi = αiθi , and let #ψ be the vector of values ψi . Note that

θi = ψi/αi , and �θi = (�ψi )/αi , and so on. We now define a new Jacobian matrix Ĵ using
the variables #ψ , namely, Ĵ is the Jacobian matrix whose entries are equal to

∂sx

∂ψi
.

Since (dθi/dψi ) = 1/αi , we have

∂sx

∂ψi
= 1

αi

∂sx

∂θi
.

Therefore, the matrix Ĵ can be obtained from the original Jacobian J by dividing the entries
in each column i by αi . Then we solve the least-squares problem but use the variables #ψ . To
do this, form the pseudo-inverse Ĵ † and set

� #ψ = Ĵ †(�#s).
Finish by letting �θi = (�ψi )/αi and then proceed as before, choosing a small ε and incre-
mentally updating the joint angles.

We have just shown that weighting joint angle costs corresponds to a very simple change
of variables. Now, one should wonder why it is appropriate to use the multipliers αi instead of
some other value. This choice can be justified by the following simple example.

Suppose we want to solve

θ1 + θ2 = 1

subject to minimizing the quantity

(α1θ1)
2 + (α2θ2)

2.

That is, we are trying to minimize the sum of the squares of the costs of the angles with α1

and α2 specifying the relative costs. When we change to the variables ψ1 and ψ2, this is the
same as solving for

ψ1

α1
+ ψ2

α2
= 1

subject to minimizing the quantity

ψ2
1 + ψ2

2 .

In other words, the problem becomes an ordinary least-squares problem with all weights equal
to 1. Thus, the transformation from the variables θi to the variables ψi converts the weighted
least-squares minimization problem into an unweighted least-squares minimization problem.
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APPENDIX A

Mathematics Background

This appendix quickly reviews many of the mathematical prerequisites for this book. This
material is mostly from a first-year calculus course with particular emphasis on vectors. The
first section covers some preliminaries. Section A.2 covers vectors in R

2 and then in R
3,

including dot products and cross products. The next section introduces 3× 3 matrices and
their connections to vector dot products and cross products. Matrix determinants and inverses
and adjoints are covered after that. Then, fundamental properties of linear spaces and dimension
are reviewed. The concluding sections discuss some of the basic concepts from multivariable
calculus, including partial derivatives, gradients, vector-valued functions, and Jacobians.

Other prerequisites, not covered in this appendix, include basic topics from discrete math,
most notably proofs by induction and simple facts about trees. There a few places where we
presume knowledge of big-O notation, of the choice function

(n
k

)
, and of geometric series.

The reader is also expected to have prior knowledge of trigonometry and of the basics of
single-variable calculus.

A.1 Preliminaries

The set R is the set of real numbers (also called scalars). For k ≥ 1 an integer, Rk is the set of
k-tuples of real numbers; these k-tuples are also called k-vectors when we want to emphasize
that R

k is a vector space (vector spaces are discussed more below). A k-tuple is a sequence of
length k and is represented by the notation

〈a1, a2, . . . , ak〉,
using angle brackets.

For a < b, the set [a, b] is the closed interval containing all points x such that a ≤ x ≤ b.
The square brackets indicate the inclusion of the endpoints a and b. We use parentheses instead
of square brackets when the endpoints are omitted; for example,

[a, b) = {x ∈ R : a ≤ x < b}
is a half-open interval. Exponent notation is used for tuples of elements from intervals too; for
example,

[0, 1]2 = [0, 1]× [0, 1] = {〈a, b〉 : a, b ∈ [0, 1]}
is the unit square containing pairs of reals from [0, 1].
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x

y

p = 〈p1, p2〉

q = 〈q1, q2〉

u = 〈q1 − p1, q2 − p2〉

Figure A.1. Two points p and q and the vector u = q− p.

The notation

f : A → B

indicates that f is a function with domain A and with range contained in B. A function is
also called a mapping. The range of f is the set of values f (a) for a in the domain A; the
set B is sometimes called the codomain of f . For example, the function g : R → R defined
by g(x) = sin(x) has domain R and range [−1, 1]. The function f : A → B is one-to-one
provided that for each b ∈ B there is at most one a ∈ A such that f (a) = b. The function is
onto provided that the range of f is equal to all of B.

When the codomain B is R, we define the support of f to be the set of elements a such that
f (a) is nonzero.

A.2 Vectors and Vector Products

A k-vector u is a sequence of k real numbers,

u = 〈u1, u2, . . . , uk〉.
Our conventions are to use boldface letters, like u to denote vectors and italic symbols, like u
or ui , for scalar values.

In computer graphics, we are mostly concerned with vectors with 2, 3, or 4 components.
For k = 2, a 2-vector represents a point in R

2, the real plane. Going up a dimension, a
3-vector represents a point inR

3, that is, in three-dimensional space.We use 4-vectorsmostly to
represent points in homogeneous coordinates (see Chapter II for information on homogeneous
coordinates).

The space of all k-vectors is the k-dimensional vector space, sometimes called Euclidean
space, and is denoted R

k .

A.2.1 Vectors in R
2

A vector inR
2 is a pair of real numbers and is written u = 〈u1, u2〉. As an ordered pair, a vector

can be viewed either as a point in the usual xy-plane or as a displacement between two points
(see Figure A.1). It is sometimes useful to make a distinction between points and vectors since
they are often used in different ways. However, they are both represented by a pair of scalars,
and their similarities greatly outweigh their differences. Thus, we find it convenient to treat
vectors and points as being the same kind of object, namely, as a pair of scalars.

The length of a vector, also called its magnitude or norm, can be defined in terms of the
Euclidean distance function

||u|| =
√

u2
1 + u2

2.

A unit vector is a vector with magnitude equal to 1.
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u

v

ϕ

Figure A.2. The angle between u and v equals ϕ and is used for computing the dot product. Since
cosϕ = cos(−ϕ) = cos(360◦ − ϕ), it makes no difference which way the angle is measured for the
purposes of computing the dot product.

The unit circle in R
2, also called the 1-sphere, is the set of vectors with magnitude 1.

Vector addition and vector subtraction are defined to act component-wise:

u+ v = 〈u1, u2〉 + 〈v1, v2〉 = 〈u1 + v1, u2 + v2〉,

u− v = 〈u1, u2〉 − 〈v1, v2〉 = 〈u1 − v1, u2 − v2〉.
One could define a component-wise multiplication operation on vectors, but this turns out
not to be a very useful operation. Instead, there are two much more useful ways to define
multiplication on vectors, the dot product and the cross product:

u · v = u1v1 + u2v2 Dot product A.1

u× v = u1v2 − u2v1 Cross product A.2

Note that both the dot and cross products form the product of two vectors and produce a scalar
as the result. If you have studied cross products before, you may remember their being defined
only for vectors in R

3 and giving another vector as the result. It is useful, however, to define
cross products also for vectors in R

2. In R
2, the cross product of two 2-vectors is a scalar.

The dot product is sometimes called the inner product.

Dot Products in R
2

The dot product was defined in (A.1) with the formula u1v1 + u2v2. An alternate definition
can be given in terms of the magnitudes of u and v and the angle ϕ between the two vectors;
that is, with reference to Figure A.2,

u · v = ||u|| · ||v|| cosϕ. A.3

It is fine to take equation A.3 on faith, but if you wish to see a proof you may work the next
exercise.

Exercise A.1� Prove the correctness of equation A.3. [Hint: Let u make angle ψ with
the x-axis. Therefore, v makes angle ψ + ϕ with the x-axis. Express the vectors u and v
component-wise with sines and cosines. Then compute the dot product according to the
definition in equation A.1 and transform it using the sine or cosine angle sum formulas (or
the angle difference formulas). Show that equation A.3 results.]

Suppose u and v are nonzero. Then equation A.3 shows that u · v is equal to zero if and
only if cos θ equals zero. This happens if and only if the angle between u and v is a right angle.
In this case, the two vectors are said to be perpendicular, or orthogonal.

When u is a unit vector, the dot product formula reduces to just u · v = ||v|| cosϕ. With
reference to Figure A.3, this implies that, when u is a unit vector, u · v is the (signed) length
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u

v

ϕ

(u · v)u = ( ‖v‖ cos ϕ)u

Figure A.3. The projection of v onto the line parallel to a unit vector u, where ϕ is the angle between u
and v. How would the picture look if ϕ were between 90 and 180◦?

of the projection of v onto the line in the direction of u. The projection of v onto u is defined
to equal

(u · v)u,
which is the component of v parallel to the vector u. (This formula for projection is correct
only if u is a unit vector.) Note that the projection is a vector parallel to u.

We can also find a formula for the component of v perpendicular to u. Namely, if we subtract
the projection, the remaining part is perpendicular tou. Thus, for a unit vectoru, the component
of v perpendicular to u is equal to

v− (u · v)u.
It is easy to check that u · u = ||u||2. Thus, the magnitude of u is

√
u · u. We use u2 as a

shorthand notation for u · u = ||u||2.

Cross Products in R
2

The cross product of vectors in R
2 was defined as u× v = u1v2 − u2v1. There are several

alternate useful ways to think about cross products:

(a) If you are more familiar with cross products in three dimensions, we can restate the two-
dimensional cross product in terms of the three-dimensional cross product. For this, we
pad u and vwith a third entry equal to zero and take the cross product in three dimensions.
This yields

〈u1, u2, 0〉 × 〈v1, v2, 0〉 = 〈0, 0, u1v2 − u2v1〉.
Thus, the two-dimensional cross product is equal to the z-component of the cross product
obtained by embedding u and v into three dimensions. The advantage of thinking about
two-dimensional cross products in this way is that properties (c) and (d) belowmay already
be quite familiar.

(b) In the two-dimensional setting, the vector cross product can be expressed as a dot product
with a rotated vector. To explain, let, as usual, u = 〈u1, u2〉, and let urot be the vector u
rotated counterclockwise 90◦. Referring to Figure A.4, we see that urot is equal to

urot = 〈−u2, u1〉.
It is immediate from the definitions of cross and dot products that u× v = urot · v. That
is, the cross product of u and v can be calculated by rotating u through a right angle and
then forming the dot product with v.
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x

y

u = 〈u1 , u2 〉

urot = 〈 u2, u1 〉

u1

u2

u1

u2

Figure A.4. The effect of rotating a vector 90◦ counterclockwise.

This tells us that u× v is equal to zero if and only if u and v are parallel (i.e., collinear). In
other words, u× v = 0 if and only ifu = αv (or v = αu) for some scalarα; or equivalently,
if the angle between the vectors is equal to either 0 or 180◦.

(c) Let ϕ be the angle between u and v: the angle ϕ must be measured in the counterclockwise
direction from u to v as shown in Figure A.5. Then the cross product of the 2-vectors is
equal to

u× v = ||u|| · ||v|| sinϕ.

(This can easily be proved from Equation A.3 and the fact that the cross product with u
is equivalent to the dot product with urot.) Note that it is important that the angle ϕ be
measured in the correct direction, for sin(−ϕ) = − sinϕ. Indeed, the cross product is
antisymmetric:

u× v = − v× u.
(d) There is an elegant interpretation of cross product in terms of area. Consider the parallel-

ogram with sides equal to the vectors u and v, as shown in Figure A.6. Then the (signed)
area of the parallelogram is equal to

Area = u× v.
To prove this, use the formula (base) · (height). If the base length is measured along u, it
is just equal to ||u||. Then, the height must be measured perpendicularly to u and is equal
to ||v|| sinϕ.

When the angle ϕ is greater than 180◦, then the cross product u× v is negative. In this
case, the parallelogram can be thought of as having “negative height” and hence negative
area.

u

v

ϕ

Figure A.5. The angle between u and v equals ϕ and is used for computing the cross product. The
direction (sign) of the angle is important for the cross product.
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u

u

v
v

ϕ

Figure A.6. In R
2, the (signed) area of the parallelogram is equal to the cross product u× v. In R

3, the
area of the parallelogram is equal to the magnitude of u× v.

A.2.2 Vectors in R
3

The three-dimensional Euclidean space is denoted byR
3. A point or a vectoru inR

3 is specified
by a triple of values, u = 〈u1, u2, u3〉. In computer graphics, it is common to use x, y, z-axes
that are oriented as shown in Figure I.4 on page 6: as shown there, the x-axis points rightward,
the y-axis points upward, and the z-axis points toward the viewer. This is different from the
usual conventions you probably learned in calculus class, but is still a right-handed coordinate
system. (The main reason to work with a right-handed coordinate system rather than a left-
handed coordinate system is that it makes the cross product obey the usual “right-hand rule.”)

The length (usually called magnitude or norm) of a vector in R
3 is given by the Euclidean

distance formula

||u|| =
√

u2
1 + u2

2 + u2
3.

A vector u is a unit vector provided ||u|| = 1. The unit sphere in R
2, also called the 2-sphere

or S2, is the set of vectors with magnitude 1.
A nonunit vector u is normalized by the process of replacing it with a unit vector pointing

in the same direction. That is, u is normalized by calculating u/||u||. The terminology is
a little confusing because the term “normal vector” is used to mean a nonzero vector that is
perpendicular (that is, normal) to a surface. By definition, normal vectors are not required to be
unit vectors. In other words, normal vectors do not always need to be normalized. Nonetheless,
it is frequently helpful to use unit normal vectors – particularly in Chapter III for lighting
applications.

Addition and subtraction of vectors in R
3 are defined component-wise in much the same

way as their definition in R
2. Dot product and cross product are discussed next.

Dot Products in R
3

The dot product of two vectors in R
3 is defined by

u · v = u1v1 + u2v2 + u3v3.

This means that the dot product of two 3-vectors is a scalar.
If ϕ is the angle between the vectors u and v, then

u · v = ||u|| · ||v|| cosϕ.

Suppose that u is a unit vector. Then the projection of the vector v onto the line containing
the vector u has signed length equal to u · v. (This can be proved in the way used for R

2 using
the characterization of the dot product in terms of cosϕ.) The projection of v onto the unit
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vector u is thus equal to the vector

(u · v)u.
This is the component of v in the direction of u.

The component of v perpendicular to u is equal to

v− (u · v)u.
The magnitude or norm of a vector u is equal to

√
u2 = √u · u.

Cross Products in R
3

The cross product of two vectors in R
3 is the vector defined by

u× v = 〈u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1〉.
To describe the definition of u× v in an alternate, geometric way, let ϕ be the angle from u

to v measured in a direction such that 0 ≤ ϕ ≤ 180◦ (the direction to measure ϕ is unique for
noncollinear u and v). Then, u× v has magnitude

||u|| · ||v|| sinϕ,

and is perpendicular to both u and v with its direction given by the right-hand rule. The right-
hand rule states that if you use the palm of your right hand to push u towards vwith your thumb
extended out at right angles, then your thumb will point in the direction of u× v.

An equivalent way to state the geometric definition of the cross product is as follows. Let
u and v both lie in a plane P . The plane P divides R

3 into two half-spaces. Arbitrarily choose
one of these half-spaces as being “above” the plane. Viewing the two vectors from above, let
ψ be the angle from u to v measured in the counterclockwise direction. Then u× v is the
vector with signed magnitude equal to

||u|| · ||v|| sinψ, A.4

and u× v is pointing up perpendicularly to P. We called the value A.4 the signed magnitude
because, if this value is negative, the cross product is pointing downwards from P .

Evidently, for nonzero u and v, the cross product is equal to zero if and only if u and v are
collinear.

The parallelogram area property (d) of cross products inR
2 still holds inR

3. With reference
to Figure A.6, the vectors u and v now lie in R

3. The area of the parallelogram is equal to the
length of u× v.

A.3 Matrices

A matrix M = (mi, j )i, j is a rectangular array of scalars,

M =

m1,1 · · · m1,s
...

. . .
...

mr,1 · · · mr,s

 .

Here M is r × s matrix, and mi, j is the entry in row i and column j .
If in addition N is an s × t matrix, then the matrix product of M times N is the r × t

matrix P whose entries pi,k are obtained by taking the inner product of the i th row of M with
the kth column of N , namely,

pi,k =
s∑

j=1
mi, j n j,k .
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The r × r identity matrix is the matrix I that has diagonal entries equal to 1, and off-
diagonal entries equal to 0. There is a different identity matrix for each r ≥ 1, but we use the
same notation I for all of them because it should always be clear from the context what the
dimension is.

The identity matrices have the property that

I M = M and M I = M.

The inverse of M is the matrix M−1 such that M M−1 = M−1M = I . Only square matrices
can have inverses, and not even all of them do. A matrix that is invertible is also said to be
nonsingular.

The transpose of M is the matrix MT obtained by swapping elements of M across the
diagonal: for M = (mi, j )i, j , an r × s matrix, its transpose MT = (m j,i )i, j is an s × r matrix.
(Note the subscripts in reverse order!)

The following identities are easy to check:

MTNT = (N M)T and I T = I.

In addition, for invertible M , (MT)−1 = (M−1)T.
Thematrices used in the early chapters of this book are primarily small (of dimensions 2× 2

through 4× 4). Frequently, we are interested in how these matrices act on points or vectors.
For this, points and vectors will be treated as being column vectors: namely, a 2-vector is a
2× 1 matrix, and a 3-vector is a 3× 1 matrix. For instance, our convention is that a 3-vector
u = 〈u1, u2, u3〉 is the same as the column vectoru1

u2

u3

 .

In this way, we can take the product of a matrix and a vector and get a vector as a result.
You should refer to Chapter II for more information on matrices and vectors in R

2 and R
3.

As discussed in Chapter II, matrices are used extensively in computer graphics to transform
vectors by multiplication.

A.3.1 Matrices and Vector Products in R
3

It is possible to reexpress dot and cross products in terms of matrix products. As we just said,
a vector u = 〈u1, u2, u3〉 is, by convention, the same as a column vector (i.e., a 3× 1 matrix).
Therefore, the transpose of a vector is a 1× 3 matrix or a row vector. That is,

uT = (u1 u2 u3) .

It is easy to check that a dot product can be expressed as

u · v = uTv.

Or, to write it out fully,

〈u1, u2, u3〉 · 〈v1, v2, v3〉 = (u1 u2 u3)

v1
v2
v3

 .

To interpret this correctly, the left-hand side of each of the two equalities above is a dot product,
and the right-hand side is a matrix product. (If one wanted to be overly precise, one could note
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that the right-hand side really denotes a 1× 1 matrix, not a scalar, but it does no harm to treat
a 1× 1 matrix as being the same as a scalar.)

We just described how to reexpress a dot product as a matrix product using a 1× 3 matrix.
Similarly, a cross product operation can be expressed as a matrix product but now using a 3× 3
matrix. Namely, let Mu× be the matrix

Mu× =
 0 −u3 u2

u3 0 −u1

−u2 u1 0

 .

Then it is easy to check that

(Mu×)v = u× v
by using the first definition of cross product in R

3.
The matrix version of a dot product allows us to express the projection operator as a matrix.

Let u be a unit vector, and recall that the projection of v onto u is equal to (u · v)u. This can
be rewritten as

(u · v)u = u(u · v) = u(uTv) = (uuT)v.

(The last equality uses the associativity of matrix multiplication.) Thus, letting Proju be the
matrix

Proju = uuT =
u1

u2

u3

 (u1 u2 u3) =
 u2

1 u1u2 u1u3

u1u2 u2
2 u2u3

u1u3 u2u3 u2
3

 ,

we have that (Proju)v is equal to the projection of v onto u.

A.3.2 Determinants, Inverses, and Adjoints

Let M be a square n × n matrix. For i, j ∈ {1, . . . , n}, the matrix Mi, j is defined to be the
(n − 1)× (n − 1) matrix obtained by deleting the i th row and the j th column from M .

We now define the determinant det(M) of M . The definition of the determinant proceeds
by induction on the dimension of M . When n = 1, M is just a 1× 1 matrix, and det(M) is
equal to its sole entry m1,1. For n > 1, the determinant of M is equal to

det(M) = m1,1det(M1,1)− m1,2det(M1,2)+ m1,3det(M1,3)

−m1,4det(M1,4)+ · · · ± m1,ndet(M1,n)

=
n∑

j=1
(−1)1+ j m1, jdet(M1, j ). A.5

The definition A.5 defines the determinant in terms of its expansion along the first row of
the matrix. More generally, the determinant can also be defined with an expansion along any
row i as

det(M) =
n∑

j=1
(−1)i+ j mi, jdet(Mi, j ),

as well as in terms of an expansion along any column j :

det(M) =
n∑

i=1
(−1)i+ j mi, jdet(Mi, j ).
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The value (−1)i+ jdet(Mi, j ) is called the cofactor of M at (i, j). Thus, the determinant is
expressed in terms of an inner product of the entries in a given row (or column) of the matrix
and its cofactors along the same row (or column).

The adjoint of M is the matrix N that is the transpose of the cofactors of M . Namely, N is
the matrix with entries

ni, j = (−1)i+ jdet(M j,i ).

It is always the case that

M N = N M = det(M)I,

for N the adjoint of M . Therefore, if det(M) �= 0, then M is invertible and

M−1 = 1

det(M)
N .

This gives a formula for inverting any invertible matrix, for a matrix M is invertible if and only
if its determinant is nonzero.

A.3.3 Linear Subspaces�

(Knowledge of linear subspaces is needed only for the discussion of inverse kinematics in
Chapter XII and, to a lesser extent, for the material on projective geometry in Chapter II.)

Let k ≥ 1 and consider R
k . A subset A ⊆ R

k is called a linear subspace provided that A is
closed under addition and under scalar multiplication.1 That is, A is a linear subspace if and
only if, for all x and y in A and for all scalars α, x+ y and αx are also in A.

The vectors x1, x2, . . . , xn are said to be linearly independent provided there is no sequence
of scalars α1, . . . , αn , not all zero, such that

α1x1 + α2x2 + · · · + αnxn = 0.

(Here, 0 is the zero vector.) The dimension of a linear subspace A is the largest value n for
which A contains n linearly independent vectors. When A ⊆ R

k , the dimension of A can be
at most k.

Let x1, . . . , xn be vectors inR. The span of these vectors is the linear subspace that contains
all linear combinations of the vectors xi . In other words, the span of x1, . . . , xn is the following
subspace:

span(#x) = {α1x1 + · · · + αnxn : α1, . . . , αn ∈ R}.
It is easy to check that this is closed under addition and scalar multiplication and thus is indeed
a linear subspace. If x1, . . . , xn are linearly independent, then every vector in their span can
be expressed as a linear combination of x1, . . . , xn in a unique way.

Theorem A.1 Let A ⊆ R
k be a linear subspace of dimension n. Suppose x1, . . . , xn are in A

and are linearly independent. Then span(#x) is equal to A.

Let A and B be linear subspaces of R
k . We say that A and B are orthogonal if and only

if, for all x ∈ A and all y ∈ B, x · y = 0. We say that A and B are orthogonal complements if
they are orthogonal and if for every u ∈ R

k there are x ∈ A and y ∈ B such that u = x+ y. In
this case, x and y are uniquely determined by u; in fact, x and y are the orthogonal projections
of u onto the subspaces A and B.

1 Vector spaces are usually defined very generally.However,we only use vector spaces that are subspaces
of R

k for some k and therefore make the corresponding simplifications in the discussion of linear
subspaces.
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Theorem A.2 Let A be a linear subspace of R
k . Then there is a unique subspace B such that

A and B are orthogonal complements. In fact,

B = {y : for all x ∈ A, x · y = 0}.

We use A⊥ to denote the orthogonal complement of A.
Now, we return to matrices. Let M be an r × s matrix. If x is an s-vector, then Mx is an

r -vector. Therefore, the mapping

fM : x → Mx

is a function with domain R
s and codomain Rr . We often conflate the matrix M with the

mapping fM and use M to refer to both the matrix and the mapping. It is easily seen that the
range of M is exactly equal to the span of the columns of M . That is, let M have as columns
the r -vectors u1, . . . ,us ; then the range of M is equal to span(#u).

The kernel of M (or of fM , to bemore proper), is the set of vectors x ∈ R
s such that Mx = 0.

Let the rows of M be the s-vectors v1, . . . , vr . Clearly, the kernel of M is the set of vectors x
such that x · vi = 0 for all i = 1, . . . , r . From the previous theorem, it follows easily that the
kernel of M is the linear subspace that is the orthogonal complement of the span of the rows
of M ; namely, the kernel of M is equal to (span(#v))⊥.

We call span(#u) the column span of M and span(#v) the row span of M . These are also
denoted colspan(M) and rowspan(M).

The rank of the matrix M is defined to be the dimension of rowspan(M) and of colspan(M).
(It is a theorem that these both have the same dimension.) The rank can also be defined as
being equal to the maximum number of linearly independent rows (or, columns) of M .

A.4 Multivariable Calculus

A.4.1 Multivariable Functions

A multivariable function is a function with multiple inputs. For now, we consider only real-
valued multivariable functions, that is, functions with domain R

k and codomain R. Simple
examples of such functions include

f (x, y) = x2 + y2,

which can be visualized as a paraboloid surface, as well as functions of three variables such
as f (x, y, z) = x2 + y2 + z2. The latter function is hard to visualize because it would require
four dimensions to graph it properly.

In addition, functions that take vectors as inputs can be viewed as multivariable functions.
For example, the vector magnitude function u → ||u|| can be viewed as a function of the three
scalar values u1, u2, u3. Likewise, the distance function f (u, v) = ||u− v|| can be viewed as
a function with domain R

6, taking six scalar inputs.
Fix some function f = f (x1, . . . , xk) with k inputs. We sometimes slightly abuse notation

and also write f as f (x), where x = 〈x1, . . . , xk〉. The partial derivative of f with respect
to xi is the multivariable function

∂ f

∂xi
(x1, . . . , xk)

that equals the rate of change in values of f with respect to changes in the value of xi while
keeping the rest of the input values fixed. To express this formally with limits, the partial
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derivative is the function satisfying

∂ f

∂xi
(x1, . . . , xk) = lim

h→0

f (x1, . . . , xi−1, xi + h, xi+1, . . . xk)− f (x1, . . . , xi , . . . xk)

h
.

The partial derivative is undefined where this limit does not exist.
The total derivative of f is given by the expression

d f = ∂ f

∂x1
dx1 + ∂ f

∂x2
dx2 + · · · + ∂ f

∂xk
dxk .

A good way to visualize what the total derivative means is to think of it as providing a way to
approximate f in the neighborhood of a point 〈x1, . . . , xk〉:

f (x1 +�x1, . . . , xk +�xk)− f (x1, . . . , xk) ≈ ∂ f

∂x1
�x1 + · · · + ∂ f

∂xk
�xk . A.6

We can write this more suggestively as

� f ≈ ∂ f

∂x1
�x1 + · · · + ∂ f

∂xk
�xk .

For well-behaved functions, this approximation is first-order accurate, which is to say that the
error in the approximation is only O(�x2

1 + · · · +�x2
k ). Therefore, the approximation is very

accurate for sufficiently small values of �xi .
The gradient of f (x1, . . . , xk) is the vector-valued function

(∇ f )(x) =
〈

∂ f

∂x1
(x),

∂ f

∂x2
(x), . . . ,

∂ f

∂xk
(x)

〉
.

The gradient function has k scalar inputs, and its value is a k-vector.
The motivation for the definition of the gradient is that it plays the role of the first derivative

of f (x). Indeed, using the gradient function, we can rewrite the first-order approximation of
Equation A.6 in vector notation as

f (x+�x)− f (x) ≈ (∇ f ) · (�x).
The right-hand side of this approximation is a vector dot product.

A level set of a function f is a set of the points 〈x1, . . . xk〉 satisfying f (x1, . . . , xk) = c for
some fixed constant c. In this book, we only work with level sets of functions of three variables
(i.e., k = 3). Such sets are also called implicitly defined surfaces. For example, the equation
x2 + y2 + z2 − 1 = 0 is an implicit definition of the unit sphere in R

3.
In “nice” situations, an implicitly defined surface is a two-dimensional surface lying in-

side R
3 (think of the unit sphere, for instance). Of course, there are pathological cases of

surfaces that have cusps, discontinuities, or self-intersections; however, in most cases that are
of interest to us, an implicitly defined surface is (at least locally) a smooth, well-behaved
surface.

Let S be an implicitly defined surface in R
3 and x be a point on S. A vector n is said to be

normal to the surface S at the point x provided that n is perpendicular to the surface at that
point. If the gradient vector∇ f (x) is nonzero, then it is normal to the surface at #x . In this case,

n = (∇ f )(x)

||(∇ f )(x)||
is a unit normal for the surface. It is harder to compute a normal vector when the gradient
vector is zero; in fact, the surface may have a cusp or other strange behavior and may not have
any normal vector at all.
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As an example of computing n, consider the implicit definition of a flattened ellipsoid by
4x2 + y2 + 4z2 = 4. Here, ∇ f (x, y, z) = 〈8x, 2y, 8z〉 is nonzero for any point 〈x, y, z〉 on
the ellipsoid and hence is normal to the ellipsoid at that point.

A.4.2 Vector-Valued Functions

A vector-valued function is a function whose values are vectors. We often use the convention
of writing vector-valued functions in boldface – for instance f(x), to distinguish them from
scalar-valued functions. (Less commonly, we also use uppercase, such as P(x), for the same
purpose.) An example of a vector-valued function is a function p(t) that gives the position of
a point at time t . For a point moving in the xy-plane, p(t) would be in R

2; for a point moving
in R

3, p(t) would be in R
3.

The components of a vector-valued function f are scalar-valued functions, f1(x), . . . , fn(x).
Thus,

f(x) = 〈 f1(x), f2(x), . . . , fn(x)〉.
The first derivative of f is calculated component-wise. Namely, the first derivative is equal to

f ′(x) = 〈 f ′1(x), f ′2(x), . . . , f ′n(x)〉.
For example, the derivative of a position function p(t) is the velocity function v(t) = p′(t). The
second derivative of p(t) is the acceleration function.

A parametric curve is defined by a vector-valued function f(x). The curve is the set of points
{f(x) : x ∈ R}. If the values of the function f are k-vectors, then the parametric curve lies inR

k .
The first derivative f ′(x) will be tangent to the curve at the point f(x) provided it is nonzero.

A.4.3 Multivariable Vector-Valued Functions

A vector-valued multivariable function is a function that has as input a sequence of reals and
produces a vector as its value.

Let f : R
k → R

n . Then we can write f in terms of its n components as

f(x) = 〈 f1(x), f2(x), . . . , fn(x)〉,
where x = 〈x1, . . . , xk〉. Note that each fi is a scalar-valued, multivariable function.

The first derivative of f is called the Jacobian of f. Intuitively, the first derivative of f should
be the vector of first derivatives of its n components. However, from Section A.4.1, the first
derivative of a component fi is actually the gradient function ∇ fi , which is a k-vector valued
function. Thus, the first derivative of f(x) becomes an n × k matrix called the Jacobian matrix.

The Jacobian matrix is defined to be the matrix whose i th row is equal to the gradient
of fi (x). This can be written explicitly as

J (x) =
(

∂ fi

∂x j

)
i, j

=


∂ f1
∂x1

· · · ∂ f1
∂xk

...
. . .

...
∂ fn

∂x1
· · · ∂ fn

∂xk

 .

The first-order approximation formula for values of f in a neighborhood of x is then

f(x+�x)− f(x) ≈ J �x.
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RayTrace Software Package

B.1 Introduction to the Ray Tracing Package

I have written a ray tracing package that implements basic recursive ray tracing. This software
and its source code are freely available and can be downloaded from this book’s Web site.

The ray tracing software uses an object-oriented approach to rendering and ray tracing. The
object-oriented design includes base classes for materials, for geometric shapes, for lights,
and for textures. This provides considerable flexibility in adding features since it allows the
addition of new geometric shapes without affecting the functionality of older code; similarly,
new kinds of lighting models, new kinds of textures, and so on, can be added without needing
to change the structure of the software.

The material and lighting classes supported by the software include the usual material
properties such as ambient, diffuse, and specular color and specular exponents. In addition, the
material classes include reflection and transmission color coefficients for use in recursive ray
tracing. The complete Phong model for local lighting is supported, including all the OpenGL-
type features such as spotlights and attenuation. A version of the Cook–Torrance model is also
supported.

The ray tracing software supports a range of geometric shapes, including spheres, trian-
gles, parallelograms, cones, cylinders, tori, ellipsoids, parallelepipeds, and Bézier patches.
Collectively, these geometric shapes are called viewable objects. The viewable object classes
are responsible for detecting intersections of rays against a particular geometric shape. The
viewable object classes also calculate normals and keep track of the material of an object. In
addition, they calculate u and v coordinates for texture mapping purposes.

The texture mapping classes are in essence implemented as “callback” routines. This means
that it is easy to add algorithmic texture maps in addition to the more traditional bitmap (table
lookup) texture maps. Three kinds of texture maps are currently supported: texture maps
formed from RGB images read from bitmap (.bmp) files, procedurally generated checkboard
patterns, and bump maps.

To make the ray tracing software more modular, as well as easier to use, the software is split
into three levels (in separate C++ projects). These levels are as follows:

Top Level: Ray Tracing. The top level routines implement the recursive ray tracing algo-
rithm and the high-level scene description. In the sample implementation, this is split
into two parts. First, the program RayTraceData makes function calls to set up the
lights and the geometric shapes and their materials and textures. Second, the program
RayTrace implements the high-level recursive ray tracing algorithm. A similar set of
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high-level routines, RayTrace2 and RayTraceData2, are also provided; these are
similar but use a more complex scene with more kinds of geometric shapes.

These high-level routines are intended to be easy to modify without the programmer’s
having to understand the internal structure of the intermediate and low levels. In fact,
the high-level routines have been left in a fairly preliminary state: the software was
developed for teaching purposes, and students are asked to improve on the high-level
routines, for instance, by implementing distributed ray tracing. The intermediate- and
low-level routines are more polished and are not really intended to be modified.

Intermediate Level: Geometry and Rendering. The intermediate level routines handle
lights, geometric shapes, materials, and texture maps. In addition, they include code
for local lighting calculation (Phong and Cook–Torrance lighting are both supported).
The lights include all the usual OpenGL style features such as ambient, diffuse, and
specular light components, attenuation, and spotlight effects. The materials encompass
the usualOpenGLmaterial properties, including ambient, diffuse, and specular colors and
shininess, plus additional properties such as reflection and transmission coefficients. The
geometric shapes are implementedwith aC++base class calledViewableBase; derived
classes include many shapes. These geometric classes incorporate efficient routines for
calculating intersections with rays. They also calculate normals and u, v coordinates for
texture mapping. Texture maps are also C++ classes and are implemented somewhat like
callback routines: a texture map is attached to a viewable object, and when an object is
intersected by a ray the texturemap routines are called. This provides a flexible framework
for texture mapping.

Low-Level Routines: Linear Algebra. These routines are in the project VrMath and in-
clude linear algebra routines for 2-vectors, 3-vectors, and 4-vectors. The intermediate-
and high-level routines have been written to isolate the low-level routines, allowing mod-
ifications to the high-level routines to require little knowledge of the low-level routines.

B.2 The High-Level Ray Tracing Routines

The high-level ray tracing routines are illustrated by the example code in RayTrace.cpp and
RayTraceData.cpp, or in RayTrace2.cpp and RayTraceData2.cpp. We will first
discuss the RayTrace routines, which control the recursive ray tracing procedures.

RayTraceView: This is the highest level routine that initiates the ray tracing procedure.
It functions in much the same way as the routine RayTraceMain on page 242. Ray-
TraceView loops over all the pixels in the view window. For each pixel, it calculates the
view ray from the view position towards the center of the pixel and then calls the recur-
sive routine RayTrace to calculate the color value to render the pixel. The RayTrace
routine returns the value curPixelColor, which is stored into the pixel array. After
calculating all the pixel colors, the pixel array’s Draw routine is called to store the pixel
colors into the rear OpenGL rendering buffer; then the buffers are swapped to show the
ray traced scene.

RayTrace: This is the routine that recursively traces rays and combines color values. It is
the heart of the recursive ray tracing algorithm. Its parameters consist of (a) a trace depth,
(b) a starting position for the ray, (c) a unit vector giving the direction of the ray, (d) a
4-vector VectorR4 in which a color value is returned, and (e) an avoidance number that
specifies what object the ray originates from.

RayTrace begins by calling SeekIntersection, which calculates whether the
ray intersects some viewable object. If not, then the ray is presumed to have passed
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completely out of the scene and the default background color is returned. Otherwise, an
intersection point is returned by SeekIntersection as an object of type Visible-
Point. The VisiblePoint class includes information about the position, the nor-
mal, and the material properties of the intersected point. RayTrace calls the routine
CalcAllDirectIllum to calculate the illumination of the intersected point with the
local lightingmodel, which incorporates the effect of global ambient lighting and of direct
illumination from lights (the latter is usually computed according to the Phong lighting
model). Then, if the trace depth has not been exhausted, RayTrace spawns reflection
and transmission rays. Reflection rays have their direction computed by Equation IX.2
on page 238. RayTrace is called recursively with the reflection ray. Whatever color
is returned is then filtered by the reflective color (the ρrg values) of the material at the
intersection point and added to the color as already calculated according to the direct illu-
mination. Finally, a transmission ray may be spawned. The direction of the transmission
ray is calculated by a routine CalcRefractDir that implements the algorithm given on
page 241; transmission rays are otherwise handled in the same manner as reflection rays.

When examining the routine RayTrace, you will note that it uses some C++ classes
VectorR3 and VectorR4. These are vectors of real numbers, and their members are
accessed via A.x, A.y, A.z, and A.w. The main reason for their use in the high-level
ray trace routines is that positions and directions in 3-space are conveniently stored in
a single VectorR3, which greatly simplifies the interfaces for the ray trace routines.
The alternative would be to pass arrays of floating point numbers, which would be
somewhat less elegant and certainly more prone to errors owing to the lack of compile
time type-checking. If you are modifying only the high-level ray tracing routines, you
can probably avoid using much of the VectorR3 or VectorR4 classes.

SeekIntersection: This routine loops through the array of viewable objects, checking
each one for an intersection with a ray. The ray is specified in terms of its starting
position and a unit vector giving its direction. The first thing done is to move the starting
position a very small distance in the direction of the ray: this is to avoid having a repeated
intersection with the same point owing to roundoff error. (This is not guaranteed to work
always but has worked in all cases tried so far.) SeekIntersection checks every
viewable object for intersections with the ray and returns the closest intersection found.

CalcAllDirectIllum: This routine takes as input a view position and a visible point.
It is presumed that the visible point is in fact visible from the view position. (The view
position may be the position of the actual viewer or may be a position from whence a
traced ray has been reflected or refracted.) The direct illumination of the point includes
the following components: any emissive color of the visible point, color due to global
ambient lights, and, for each light, the color due to direct illumination. Before any
illumination from a light is calculated, a shadow feeler is traced from the visible point
to the light position. If the shadow feeler is not intersected by any viewable object (as
determined by the routine ShadowFeeler), the light is presumed to be shining on the
visible point; otherwise, the light is deemed to have its direct light completely blocked.
In either case, the value of percentLit is set, as appropriate, to either 0 or 1, indicating
the fraction of the light illuminating the visible point. The illumination from each light
is calculated with DirectIlluminateViewPos whether or not it is shadowed, since
even shadowed lights contribute ambient lighting.

ShadowFeeler: This routine works in much the same way as SeekIntersection.
However, it does not need to return a visible point. Since it returns only true or false
depending on whether an intersection is found, this routine can stop as soon as any
intersection is found without needing to continue searching for a closer intersection.
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The program RayTraceData contains routines for describing the virtual scene to be ren-
dered. First, there is the routine SetUpMainView, which describes information about the
main view position (i.e., the position of the camera). This first creates a new CameraView and
sets its position and direction of view. The direction of view is specified by any nonzero vector
(in this case as stored in an array of double’s). The camera view is conceptualized by envision-
ing the camera as pointing at the center of a viewscreen of pixels. The viewscreen is thought
of as being positioned in a rectangular array in 3-space. The distance to the viewscreen is set
by a call to SetScreenDistance, and its width and height by a call to SetScreenDimen-
sions. However, the routine ResizeWindow in RayTrace will resize the array of pixels as
necessary to keep the entire viewscreen in view. If the aspect ratio of the OpenGL rendering
window is different from the aspect ratio of the viewscreen, then the pixels are positioned so
that the entire viewscreen area is rendered.

Neither a near-clipping plane or a far-clipping plane is used. However, the variable
MAX_DIST should be set to be at least as large as the diameter of the scene because rays
are traced only to that distance.

Second, there is a call to SetUpMaterials. This creates an array of pointers to materials.
Each material is created with the C++ operator new and then has its material properties set.
These material properties include ambient color, diffuse color, specular color, reflection color,
and transmissive color, as well as shininess and index of refraction. If the reflection color is
set to zero (but by default it is not zero), then the object does not generate reflection rays. If
the transmission color is zero (and zero is its default value), then the object does not generate
transmission rays. The index of refraction is used only for transmission rays, of course. Good
values for the index of refraction would be numbers like 1.33, which is approximately the index
of refraction of water, or 1.5, which is approximately the index of refraction for glass.

The color values for materials are specified by giving three or four floating point numbers
for the red, green, blue, and possibly alpha values of the color. (The alpha values are just
ignored for ray tracing purposes but were included in case future versions of the software
want to exploit them.) The color values can be specified either by giving an array of floating
point numbers, similar to the convention used by OpenGL, or, alternatively, by passing in a
VectorR3 or VectorR4 object. This means that a wide variety of interfaces are supported
to set color values, and you may use whatever one seems most convenient.

For example, here are the eight possible ways to set the ambient color of a material M (the
alpha value defaults to 1.0):

M.SetColorAmbient(0.2,0.3,0.4);

M.SetColorAmbient(0.2,0.3,0.4,1.0);

double c[3]={0.2,0.3,0.4};
M.SetColor3Ambient(&c[0]);

double c[4]={0.2,0.3,0.4,1.0};
M.SetColor4Ambient(&c[0]);

float c[3]={0.2,0.3,0.4};
M.SetColor3Ambient(&c[0]);

float c[4]={0.2,0.3,0.4,1.0};
M.SetColor4Ambient(&c[0]);

M.SetColorAmbient( VectorR4(0.2,0.3,0.4,1.0) );
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The next routine that is called is SetUpLights. It defines one or more lights and sets their
properties, which include the usual ones such as position and ambient, diffuse, and specular
color. It is also possible to set attenuation constants and spotlight effects of exactly the same
kind as are supported by OpenGL. In addition, the lights can be made directional instead of
positional.

The next routine that is called is SetUpViewableObjects. The viewable objects are ge-
ometric shapes defined by ViewableBase objects. The SetUpViewableObjects routine
defines the various objects and their positions and orientations; it also assigns material to the
objects’ surfaces. See Section B.3.5 for information on how to set up viewable objects.

Every viewable object supports texture maps, which are applied by using objects of type
TextureMap. You may have separate texture maps for the front and back surfaces of objects.
Each type of object has its own system of assigning texture coordinates, and in a few cases,
such as spheres and ellipses, there is more than oneway for texture coordinates to be calculated.

B.3 The RayTrace API

B.3.1 Specifying Lights

The ray tracing package supports lights that are very similar to OpenGL’s lights. This includes
the use of separate ambient, diffuse, and specular light as well as distance attenuation and
spotlights.

Lights are C++ objects of type Light. A new light is allocated by declarations of one of
the following two forms:

Light* lightPtr = new Light();

Light myLight;

The first form allocates a light in the C++ heap with lightPtr a pointer to the light; the
second allocates a light on the stack.

By default, lights are positional and are placed at the origin; to place the light elsewhere,
you use one of the following routines:

SetPosition( double x, double y, double z );
SetPosition( double *position );
SetPosition( float *position );
SetPosition( VectorR3& position );

These routines are all functionally equivalent: they make the light positional and place it at
the location specified. In each case, three numeric values are given for x, y, z-components of
the position. These numeric values are given explicitly in the first form of SetPosition
and are given by a pointer to a list of three double’s or float’s in the next two forms of
SetPosition or by a single VectorR3 in the final form of SetPosition. These different
ways of setting values are provided in the ray tracing package since different ways of setting
values may be more convenient in different settings.

To make a light directional, call one of the following routines to set a light to shine in a
particular direction:

SetDirectional( double x, double y, double z );
SetDirectional( double *direction );
SetDirectional( float *direction );
SetDirectional( VectorR3& direction );
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The next important property to set for a light is its color. Just as in the Phong lighting model
used by OpenGL, each light has ambient, diffuse, and specular colors. To set the ambient color,
use one of the following routines:

SetColorAmbient( double red, double green, double blue);
SetColor3Ambient( double *color );
SetColor3Ambient( float *color );
SetColor4Ambient( double *color );
SetColor4Ambient( float *color );
SetColor4Ambient( VectorR4& color );

The color contains red, green, and blue components as usual plus an optionalα component. The
α component is currently ignored by the ray tracing software and defaults to 1. The difference
between the SetColor3* and SetColor4* routines is that the former expects an array of
length three and the latter expects an array of length 4.

To set the diffuse and specular colors, use similar routines but with “Ambient” replaced
by “Diffuse” and “Specular”. You can also use SetColorAmbientDiffuse to set the
ambient and diffuse colors simultaneously or use “SetColor” to set all three colors at once.

Lights support the same kind of distance attenuation as used in OpenGL. The attenuation
coefficients are set by calling

SetAttenuate(double aConst, double aLinear, double aQuadratic);

Spotlights are also supported with exactly the same kinds of features as are supported by
OpenGL. The spotlight characteristics are set by the following routines:

SetSpotCutoff( double cutoffCosine ):
SetSpotExponent( double spotExponent );
SetSpotDirection( double x, double y, double z );
SetSpotDirection( double* direction );
SetSpotDirection( float* direction );
SetSpotDirection( VectorR3& direction );

Calling any of these routines turns the light into a spotlight. To deactivate the spotlight effects,
use ResetSpotlight().

B.3.2 Defining the Viewport and Camera Positions

We now describe how to set the camera position, the virtual viewport position, and the array
of pixel positions. The ray trace software works only in global coordinates, and does not
incorporate any use of model view or projection transformations. Thus, the software expects
you to give camera position and direction, light positions and directions, and viewable object
positions and orientations in global coordinates.

To set up a camera position and direction plus a screen position and size, use a sequence of
commands such as

double Cpos[3] = {0.0,0.0,25.0}; // Position of camera
double Cdir[3] = {0.0,0.0,-1.0}; // Direction of camera
double Cdist = 25.0; // Distance to "screen"
double width = 5.0, height=4.0; // Width and height of the screen
int pixelWidth=640, pixelHeight=480; // Screen dimensions
CameraView* cv = new CameraView();
cv->SetPosition( Cpos );
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cv->SetDirection( Cdir );
cv->SetScreenDistance( Cdist );
cv->SetScreenDimensions( width, height );
cv->SetScreenPixelSize( pixelWidth, pixelHeight );

These calls specify the position of the camera, its view direction, and the distance from the
camera to the virtual viewport. The “up” direction of the view is always as much “upward”
along the y-axis as possible. This is the natural upward direction for a camera; if v is the view
direction, then the up direction is given by the vector v× (j× v).

For convenience, these commands have several different formats that give the same func-
tionality:

SetPosition( double x, double y, double z );
SetPosition( double* pos );
SetPosition( float* pos );
SetPosition( VectorR3& pos );

SetDirection( double x, double y, double z );
SetDirection( double* dir );
SetDirection( float* dir );
SetDirection( VectorR3& dir );

SetScreenPixelSize( int i, int j );
SetScreenPixelSize( PixelArray& pixelarray );

You can also make the viewer either directional or positional using the commands

SetLocalViewer();
SetNonLocalViewer();

The default is a local (i.e., positional) viewer. Nonlocal viewers are used for directional (or-
thographic) camera views; nonlocal viewers must be given a finite position since the position
helps determine the location of the viewport.

For ray tracing, it is convenient to know the position in space where a pixel position lies in
order to be able to shoot a ray from the eye position through a pixel position. The CalcPixel
Direction routine takes as input the coordinates of a pixel and returns the unit vector
pointing in the direction from the eye to the given pixel. This command (a member function
of CameraView) has the syntax:

CalcPixelDirection( double i, double j, double* dir);
CalcPixelDirection( double i, double j, float* dir);
CalcPixelDirection( double i, double j, VectorR3* dir );

The dir value is the returned unit vector. The pixel coordinates i and j are floating point
numbers, which makes it easy to use subpixel locations for distributed ray tracing applications.

For directional (or, orthographic) cameras, rays traced from the eye position have a fixed
direction but start at different locations. These are calculated for you by the CalcView
Position routine, which has the calling syntax

CalcViewPosition( double i, double j, double* pos);
CalcViewPosition( double i, double j, float* pos);
CalcViewPosition( double i, double j, VectorR3* pos );

The pos value is the returned position.
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The following routines can obtain the position of a pixel in the viewport:

CalcPixelPosition( double i, double j, double* pos);
CalcPixelPosition( double i, double j, float* pos);
CalcPixelPosition( double i, double j, VectorR3* pos );

If you modify the high-level routines to use distributed ray tracing with jittered eye positions,
you should not move the position of the eye with SetPosition, for this would move the
positions of the viewport pixels too. Instead, you should calculate the jittered eye position
and then call CalcPixelPosition to get a pixel position. The ray direction can then be
computed by taking the difference of these two positions and normalizing.

B.3.3 Working with the Pixel Array

A PixelArray object holds an array of pixel values. You can allocate a new pixel array of a
given size by using the command

PixelArray px = new PixelArray( width, height);

The size can be changed by the SetSize or ResetSize method. The former command
explicitly sets the dimensions of the pixel array; the latter uses the size of the current GLUT
rendering window to determine the size of the pixel array. The PixelArray class takes care
of reallocating memory for the pixel array when the size of the array increases.

Each pixel in the pixel array holds red, green, and blue values as floating point numbers.
These can be set by any of the following commands, which are member functions of Pixel
Array:

SetPixel( int i, int j, float* color );
SetPixel( int i, int j, double* color );
SetPixel( int i, int j, VectorR4& color );
SetPixel( int i, int j, VectorR3& color );

In each case, values for red, green, and blue are stored. There is no alpha value in the pixel
array. A member function GetPixel will return the color values of a single pixel.

Finally, there is the important Draw() function, which copies the contents of the pixel array
into the current rendering window. This is invoked by

px->Draw();

B.3.4 Defining Materials

A Material object encapsulates the reflective, transmissive, and emissive properties of a
surface. A Material consists of the attributes listed below. Except for the last two, these
values are set separately for red, green, and blue. The first four coefficients are used for the
Phong lighting calculations and apply to both reflected and transmitted direct illumination.

ρa Ambient illumination coefficients.
ρd Diffuse illumination coefficients.
ρs Specular illumination coefficients.
ρe Emissive color.
ρrg Global reflection coefficients.
ρtg Global transmission coefficients.
η Index of refraction – same for all colors.
f Specular shininess exponent.
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For convenience, several different ways exist to set these values. For example, the ambient
illumination coefficient may be set with any of the following member functions:

SetColorAmbient( double r, double g, double b );
SetColorAmbient( double r, double g, double b, double alpha );
SetColor3Ambient( double* color );
SetColor4Ambient( double* color );
SetColor3Ambient( float* color );
SetColor4Ambient( float* color );
SetColorAmbient( VectorR4& color );

The alpha component of color is ignored by the current software implementation but is reserved
for future use. It defaults to the value 1. The samekinds of commandswork for the othermaterial
coefficients, and the function names are formed by replacing “Ambient” with “Diffuse,”
“AmbientDiffuse,” “Specular,” “Emissive,” “Reflective,” or “Transmissive.”
The only exception to this naming scheme is that the reflective and transmissive values do not
have alpha components, and so the routines that set four components do not apply to them.

The index of refraction and the shininess exponent are set by the member functions

SetIndexOfRefraction( double eta );
SetShininess( double exponent );

The default values for of all these are identical to the default OpenGL value. The default
value for the global reflectivity coefficients is 0.5, and for the global transmission coefficients
is 0. That is, by default surfaces are 50 percent reflective and are not transparent at all.

B.3.5 Defining Viewable Objects

The “viewable objects” are the various geometric shapes that can be used in a scene. A viewable
object generally contains the following information:

1. Geometric information, such as size, position, orientation, and shape.Each type of viewable
object has its own unique specifications; for example, a sphere is specified by giving its
center position and its radius, a triangle is specified by its three vertices, and so on.

2. Materials for the surfaces of the object.Most objects have two or more surfaces. Flat objects
such as triangles and parallelograms have front and back surfaces. Solid objects such as
spheres and tori have inner and outer surfaces. Each viewable object type allows a different
material to be assigned to each surface, and thus each viewable object type has at least two
materials that need to be specified. The most common way of specifying material is with
member functions

SetMaterial( Material *material );
SetMaterialOuter( Material *outermat );
SetMaterialInner( Material *innermat );

For solid objects, including spheres, ellipses, tori, and parallelepipeds, these functions set
the materials for the inner and outer surfaces. The first function, SetMaterial, sets both
the inner and outer materials.

Flat objects, such as triangles, parallelograms, and Bézier patches, also have two materi-
als, but they are called the “front” and “back” materials rather than the “outer” and “inner”
materials.

The more complicated shapes, such as cones and cylinders, have the ability to specify
separate materials for the sides, bottom, and, in the case of a cylinder, the top.
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3. Texture maps can be applied to all the surfaces of viewable objects. These are set with the
following member functions:

TextureMap( TextureMapBase* texture );
TextureMapFront( TextureMapBase* texture );
TextureMapBack( TextureMapBase* texture );

The first command sets both the front and back texture maps. For objects with insides, such
as spheres, “front” and “back” are synonyms for “outer” and “inner,” respectively.

When texture maps are assigned to a surface, texture coordinates are also needed. For-
tunately, the ray tracing software will automatically calculate texture coordinates for all
viewable objects. Each viewable object class provides customized methods for controlling
how texture coordinates are assigned. Viewable objects always return texture map coordi-
nates in the unit square [0, 1]2. Geometries withmore than one face, such as parallelepipeds,
cylinders, and so on, also return a face number.

B.3.6 Viewable Spheres

A sphere has type ViewableSphere; its geometry is set simply by giving its center and
radius. These are set with the following member functions:

SetRadius( double radius );

SetCenter( double x, double y, double z );
SetCenter( double *center );
SetCenter( float *center );
SetCenter( VectorR3& center );

The various forms of SetCenter all have the same functionality.
The geometry of the sphere becomes a little more complicated if texture coordinates need

to be used. First, an orientation for the sphere needs to be defined. The standard orientation
for a sphere has the positive y-axis as the up direction and the positive z-axis as the forward
direction. Then u and v coordinates are set so that v = 1means the point at the top of the sphere
(in the up direction, i.e., at the “North Pole”) and v = 0 means the point in the down direction,
at the “South Pole.” The value u = 1

2 is used for direction of the positive z-axis. That is, a
sphere centered at the origin in standard position has texture coordinates 〈u, v〉 = 〈 12 , 1

2 〉 at the
point in the front of the sphere, namely, the point where the positive z-axis intersects the sphere.

General orientations are specified by giving two axes. The first axis, called AxisA specifies
the front direction, that is, the direction towards a viewer who is looking at the front of the
sphere; its default value is k (the z-axis). The second axis, called AxisC is the up direction,
and it defaults to j. These axes are set with any of the commands

SetuvAxes( double* axisA, double* axisC);
SetuvAxes( float* axisA, float* axisC);
SetuvAxes( VectorR3& axisA, VectorR3& axisC);

In each case, the axis is specified by three floating point numbers; it is not necessary that the
axis directions be unit vectors. They should be nonzero, however, or a divide-by-zero will
occur. In addition, they should be orthogonal.

Recall from Section V.1.2 that there are two natural ways to calculate texture coordinates
for spheres, as given by Equations V.2 and V.3 on page 131. Either of these methods can be
used; they are enabled by the member functions

SetuvSpherical();
SetuvCylindrical();

The default is the SetuvSpherical mode, as in Equation V.2.

Team LRN



342 RayTrace Software Package

B.3.7 Viewable Triangles and Parallelograms

Triangles and parallelograms are perfectly flat with zero thickness. By default, they can be
seen from both the front and the back. The classes for triangles and parallelograms are View-
ableTriangle and ViewableParallelogram. Each is specified with three vertices; for
the parallelogram, the fourth vertex is calculated from the other three. The member functions
that can be used to set the three vertices are

Init( double* vertexpositions);
Init( float* vertexpositions);
Init( VectorR3& vA, VectorR3& vB, VectorR3& vC );

The first two forms take an array of nine floating point numbers that specify the three vertices.
The three vertices are given in counterclockwise order, as viewed from the front. For the
parallelogram, the fourth vertex will be opposite the second specified vertex.

The materials for the front and back faces are set by the commands

SetMaterial( Material* material );
SetMaterialFront( Material* frontmaterial );
SetMaterialBack( Material* backmaterial );

The first form of the command sets both materials. If the back material pointer is equal to 0,
then the back face is invisible and is never intersected (i.e., is culled).

The points on the triangle and parallelogram are assigned texture coordinates using linear
interpolation. The three vertices A–C of the triangle are given texture coordinates 〈0, 0〉,
〈1, 0〉, and 〈0, 1〉 in that order. The vertices A–D of the parallelogram are assigned texture
coordinates 〈0, 0〉, 〈1, 0〉, 〈1, 1〉, and 〈0, 1〉. You cannot change the texture coordinates assigned
to the vertices, but you can achieve the same effect by using TextureAffineXform and
TextureBilinearXform objects, which allow texture coordinates to bemodified by a linear
or bilinear mapping.

B.3.8 Viewable Ellipsoids

An axis-aligned ellipsoid with center at the origin is specified by three radius values, α, β, γ
and is the set of points{

〈x, y, z〉 : x2

α2
+ y2

β2
+ z2

γ 2
= 1

}
.

This ellipsoid is a sphere stretched to have dimensions α × β × γ . More generally, ellipsoids
can be translated away from the origin and can be oriented so as to not be axis aligned.

An object of type ViewableEllipsoid is a general ellipsoid. Its center position is spec-
ified by any of the member functions

SetCenter( double x, double y, double z );
SetCenter( double *center );
SetCenter( float *center );
SetCenter( VectorR3& center );

A circular ellipsoid is one that has circular cross sections, that is, two of its three radii are
equal. A circular ellipsoid is set by using the functions

SetCentralAxis( VectorR3& axisC );
SetRadii( double radiusC, double radiusAB );
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The first function sets the central axis (the default is the y-axis). The second command sets the
height of the ellipsoid along its central axis and the radius of the central circular cross section.

Youmay also specify noncircular ellipsoids. These have three axes with three separate radii.
The functions to set these values are

SetAxes( VectorR3& axisC, VectorR3& axisA );
SetRadii( double radiusC, double radiusA, double radiusB );

The inner and outer materials for the ellipsoid are set in the usual way. Texture coordinates
are calculated in much the same way as the texture coordinates on the sphere. In particular,
the height along the center axis, AxisC, controls the v texture coordinate. The axis AxisA
intersects the ellipsoid at the front, at the u = 1

2 position.
Just as for spheres, SetuvSpherical and SetuvCylindrical specify the method for

computing texture coordinates for ellipsoids.

B.3.9 Viewable Cylinders

The ViewableCylinder class supports a broad range of cylindrical shapes. The simplest
cylinders are the circular right cylinders. “Circular” means that the cross sections parallel to
the central axis are circular. A “right” cylinder is one in which the top and bottom faces are
perpendicular to the central axis. The next simplest kind of cylinder is a noncircular, right
cylinder. Finally, you may also define cylinders that are neither right nor circular. Noncircular
cylinders have elliptical cross sections; nonright cylinders may have arbitrary planes bounding
the top and bottom faces.

Every cylinder needs its center and its central axis specified: these are given with the
functions

SetCenterAxis( double x, double y, double z );
SetCenterAxis( double* axisC );
SetCenterAxis( float* axisC );
SetCenterAxis( VectorR3& axisC );

SetCenter( double x, double y, double z );
SetCenter( double* center );
SetCenter( float* center );
SetCenter( VectorR3& center );

A right cylinder is further specified by giving its height and radius with the member functions

SetHeight( double height );
SetRadius( double radius );

A noncircular right cylinder has two radii, and you must specify another axis direction,
AxisA. The third axis direction, AxisB, is computed for you as the cross product of the central
axis and AxisA. To initialize a noncircular right cylinder, you first call SetCenterAxis and
SetCenter and then call the following three functions:

SetHeight( double height );
SetRadialAxis( VectorR3& axisA );
SetRadii(double radiusA, double radiusB);

For general nonright cylinders, you use the preceding commands to set the radius or the
radial axes and their radii. But instead of using the SetHeight method, the following two
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functions are called to define the plane equations for the top and bottom faces of the cylinder:

SetBottomFace( VectorR3& planenormal, double planecoef );
SetTopFace( VectorR3& planenormal, double planeCoef );

The plane normals are vectors that are perpendicular to the plane containing the top or bottom
face. If n is the normal for the top (respectively, the bottom) face, and if c is the center axis
axisC, then it is required that n · c > 0 (respectively, that n · c < 0). The plane coefficient is
a scalar d. The plane is the set of points x satisfying x · n = d.

For a cylinder, you specify six materials: one for each of the inner and outer surfaces of the
cylinder’s side, top face, and bottom face. These six materials can be set individually with the
member functions

SetMaterialSideInner(Material *material);
SetMaterialSideOuter(Material *material);
SetMaterialTopInner(Material *material);
SetMaterialTopOuter(Material *material);
SetMaterialBottomInner(Material *material);
SetMaterialBottomOuter(Material *material);

Several functions let you set multiple materials at once. These are:

SetMaterial(Material *material);
SetMaterialInner(Material *material);
SetMaterialOuter(Material *material);

SetMaterial sets all six materials at once, SetMaterialOuter sets all three outer mate-
rials, and so forth.

Texture coordinates are assigned separately for the side and for the top and bottom faces.
For the side of the cylinder, the axis AxisA, points in the direction of the u = 1/2 line, and
the v coordinate measures distance up and down the cylinder. Texture coordinates for the side
are returned with u, v values in [0, 1]2. Texture coordinates for the top and bottom faces are
returned with u, v values lying in the circle with radius 1/2 centered at 〈 12 , 1

2 〉. For both the top
and the bottom, the texture coordinates are from the viewpoint of a viewer outside the cylinder
looking along the center axis with the u-axis pointing along the positive AxisB axis.

The top face, the bottom face, and the side of a cylinder are assigned different face numbers:
the side is face number 0, the bottom is face 1, and the top is face 2.The face numbers canbe used
by texturemaps to apply different textures to different faces (by using aTextureMultiFaces
object).

B.3.10 Viewable Cones

Cones are objects of type ViewableCone. The interface for cones is mostly similar to the
interface for cylinders. Cones can be right cones, with the bottom face perpendicular to the
central axis, or can be nonright, with any plane for the bottom face. (Truncated cones are not
supported, however.) Further, cones may have either circular or elliptical cross section.

Every cone has an apex position and a central axis. These are specified by the functions

SetCenterAxis( double x, double y, double z );
SetCenterAxis( double* axisC );
SetCenterAxis( float* axisC );
SetCenterAxis( VectorR3& axisC );
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SetApex( double x, double y, double z );
SetApex( double* apexPos );
SetApex( float* apexPos );
SetApex( VectorR3& apexPos );

The apex is the position of the point at the top of the cone. The AxisC central axis points up
out of the top of the apex. It does not need to be a normal vector and will be automatically
normalized.

In addition, every cone has the steepness of its sides set in terms of their slope. For right
circular cones, you use the function

SetSlope( double slope );

The slope value is the slope of the sides measured by the change in distance from the center
axis divided by the distance along the center axis from the apex. The slope should be positive.

Noncircular cones have elliptical cross sections. For these, you specify a second, radial axis,
called AxisA. The third axis, AxisB, is calculated as the cross product of the center axis and
AxisA. The radial axis is set by the function

SetRadialAxis( VectorR3& axisA );

The central axis must be set before the radial axis. An elliptical cone has two slopes, one along
AxisA and the other along AxisB. These are set with the functions

SetSlopes(double slopeA, double slopeB);

A right cone is one whose base is perpendicular to its central axis. The height of a right
cone is set by using the member function

SetHeight(double height);

For nonright cones, you may make any plane be the base by calling

SetBaseFace( VectorR3& planenormal, double planecoef );

The SetBaseFace function works in much the same way as the commands that specify the
top and base face of a cylinder. The planenormal should be pointing out of the base (so its
dot product with axisC should be negative), and the apex of the cone should therefore be
below the plane.

A cone has four distinct materials; one for each of the inner and outer faces of the cone’s
side and base. These are set individually by the functions

SetMaterialSideInner(Material *material);
SetMaterialSideOuter(Material *material);
SetMaterialBaseInner(Material *material);
SetMaterialBaseOuter(Material *material);

or, as with cylinders, multiple materials can be set at once with the functions

SetMaterial(Material *material);
SetMaterialInner(Material *material);
SetMaterialOuter(Material *material);

Texture coordinates for cones are similar to texture coordinates of cylinders. The side of the
cone has texture coordinates in [0, 1]2. The base has texture coordinates that lie in the circle
of radius 1/2 centered at 〈 12 , 1

2 〉. The side is face number 0, and the base is face number 1.
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B.3.11 Viewable Parallelepipeds

A parallelepiped is a solid object bounded by six planar faces with opposite faces parallel. This
includes as special cases cubes and rectangular prisms (that is, boxes), but, more generally,
any kind of linear transformation of a cube or rectangular prism is a parallelepiped.

The geometry for an object of type ViewableParallelepiped is specified by giving
four of its vertices (corners). The first corner VertexA is surrounded by the three vertices
VertexB, VertexC, and VertexD. For help with visualizing the vertices’ positions, and for
later assignment of face numbers, the following table lists, for each vertex, the identity of the
corresponding corner of the parallelepiped:

Vertex Position on Parallelepiped

VertexA bottom left front vertex
VertexB bottom right front vertex
VertexC top left front vertex
VertexD bottom left back vertex

The four vertices are specified with one of the functions

SetVertices( double *verts );
SetVertices( float *verts );
SetVertices( VectorR3& vertA, VectorR3& vertB, VectorR3& vertC,

VectorR3& vertD );

The argument to the first two forms of the function is a pointer to an array of 12 floating point
numbers.

Materials are set as usual with the SetMaterial, SetMaterialOuter, and SetMa-
terialInner commands. There is currently no provision for giving separate materials to
the six faces. Texture coordinates are set by mapping each face to the unit square [0, 1]. The
face numbers for the six faces are given in the following table:

Face Face Number

Front face 0
Back face 1
Top face 2
Bottom face 3
Right face 4
Left face 5

The top and bottom faces have texture coordinates set with the u-axis pointing “rightward,”
and the four sides have texture coordinates set with the v-axis pointing “upward.”

B.3.12 Viewable Tori

The geometry of a torus, an object of type ViewableTorus, is given by specifying (a) the
position of its center, (b) the axis of symmetry of the torus, and (c) the major and minor radius
of the torus. The center can be set by any of the following member functions:

SetCenter( double x, double y, double z );
SetCenter( double *centerpos );
SetCenter( float *centerpos );
SetCenter( VectorR3& centerpos );
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The central axis direction, also known as AxisC, is set by one of the member functions

SetAxis( double* centralaxis );
SetAxis( float* centralaxis );
SetAxis( VectorR3& centralaxis );

It is not necessary that the central axis direction be a unit vector. To set the two radii, use the
member function

SetRadii( double majorradius, double minorradius );

The major radius is the radius of the circle that forms the center of the torus’s tube. The minor
radius is the radius of the tube.

The inner and outer materials are set in the usual fashion with SetMaterial, SetMa-
terialInner, and SetMaterialOuter.

To set texture coordinates, you also need to choose a radial axis: this is done by setting
AxisA, which is the axis pointing out the front of the torus. This axis intersects the front of the
torus where the texture coordinate u is equal to 1/2. This axis is set with the member function

SetRadialAxis( VectorR3& axisA );

The v-axis for texture coordinates runs vertically around the torus. The texture coordinates are
calculated by the method asked for in Exercise V.2 on page 131.

B.3.13 Viewable Bézier Patches

Bézier patches are geometrically a good deal more complicated than the rest of the viewable
objects. In fact, Bézier patches aremore general than the other geometric shapes, since spheres,
cones, tori, and so on can all be realized as Bézier patches. Corresponding to this fact, Bézier
patches are algorithmically much more difficult to process, and computation speeds for Bézier
patches are worse than for simpler geometric objects by about an order of magnitude.

The ray tracing software supports both rational and nonrational Bézier patches and patches
of orders three and four. In addition, patches can have order three with respect to one variable
and order four with respect to the other variable.

Objects of type ViewableBezierSet hold a set (i.e., a collection) of Bézier patches.
It is intended that a single ViewableBezierSet hold Bézier patches that are clustered
together: for example, a teapot composed of Bézier patches would probably use a single
ViewableBezierSet to holds its patches. If one were modeling multiple teapots, then each
teapot would probably have its own ViewableBezierSet.

The only purpose of ViewableBezierSet is to hold a group of Bézier patches and
surround themwith a single bounding sphere. The bounding sphere is used to prune intersection
testing to speed up the processing of rays that do not come near the patches. Thus, the decision
of what ViewableBezierSet’s to use and which patches to include in which set depends
mostly on the question of which patches could profitably be surrounded by a single bounding
sphere. A secondary consideration is that every patch in a ViewableBezierSet is given the
same texture map object (however, the different patches are assigned different face numbers
and so can be distinguished by a texture map).

To create a new ViewableBezierSet, you use a constructor of one of the forms

ViewableBezierSet myBezierSet;

ViewableBezierSet* myBezierSetPtr = new ViewableBezierSet();
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The set is createdwithout any patches. Youmust add patches one at a time to the set using the
commands AddPatch, AddRationalPatch, or both. These commands have the following
forms:

AddPatch( int uOrder, int vOrder, float* controlPts );
AddRationalPatch( int uOrder, int vOrder, float* controlPts );
AddPatch( int uOrder, int vOrder, double* controlPts );
AddRationalPatch( int uOrder, int vOrder, double* controlPts );

The parameters uOrder and vOrder must equal either 3 or 4 (it is permitted for them to be
different), and they give the orders of the cross-sectional slices of the Bézier patch in the u and
v directions. Recall that the order of a Bézier curve is one greater than the degree of the curve.

The pointer controlPts points to an array of floating point numbers. For Rational
patches, the floating point numbers come in groups of four values, giving the x, y, z,
w-components of the control points in homogeneous representation. For nonrational patches,
the floating point numbers come in groups of three, specifying x, y, z-coordinates of the control
points.

The control points are denoted pi, j , where 0 ≤ i < uOrder and 0 ≤ j < vOrder. The
default assumption is that the control points come in the order p0,0, p1,0, p2,0, . . . with the
i subscript changing faster than the j subscript (see below for how to change this order).

It is also possible to use VectorR3 and VectorR4 formats for control points. The relevant
forms of the AddPatch commands are

AddPatch( int uOrder, int vOrder, VectorR3* controlPts );
AddPatch( int uOrder, int vOrder, VectorR4* controlPts );

The first of these uses nonrational control points, and the second uses rational control points.
You may also specify the order of the control points by giving different forms of the

AddPatch commands:

AddPatch( int uOrder, int vOrder, float* controlPts,
int uStride, int vStride );

AddRationalPatch( int uOrder, int vOrder, float* controlPts,
int uStride, int vStride );

AddPatch( int uOrder, int vOrder, double* controlPts,
int uStride, int vStride );

AddRationalPatch( int uOrder, int vOrder, double* controlPts,
int uStride, int vStride );

AddPatch( int uOrder, int vOrder, VectorR3* controlPts,
int uStride, int vStride );

AddPatch( int uOrder, int vOrder, VectorR4* controlPts,
int uStride, int vStride );

The uStride and vStride parameters give the number of steps (the stride) between suc-
cessive control points in the u and v directions. In other words, if controlPts+m points to
the beginning of the control point pi, j , where m is an integer, then controlPts+m+uStride
and controlPts+m+vStride point to the control points pi+1, j and pi, j+1, respectively. For
example, the default values of uStride and vStride for the first of the six AddPatch com-
mands areuStride=3 andvStride=3*uOrder. The factor 3 signifies that each nonrational
point uses three floating point numbers: it would be replaced by 4 for rational control points.
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For the final two forms of the AddPatch commands, the default values are uStride=1 and
vStride = uOrder.

Face numbers are assigned to patches in numerical order; in addition, the AddPatch func-
tions return face numbers.

You can set the material of Bézier patches by using the commands (member functions of
ViewableBezierSet),

SetMaterial( Material *material );
SetMaterialFront( Material *frontMaterial );
SetMaterialBack( Material *backMmaterial );

As usual, the first command sets both the front and back materials. The material specifications
will affect all subsequent patches added to the set and remain in effect until the next material
specification. Thus, different patches in the same ViewableBezierSet may have different
materials.

Texture coordinates can be set by the command

SetUvRange (double uMin, double vMin, double uMax, double vMax);

For the purpose of reporting texture coordinates, this command makes u vary from uMin to
uMax, and v vary from vMin to vMax. The default values for the minimum and maximum
values are 0 and 1. Like the SetMaterial commands, SetUvRange affects subsequent
patches added to the ViewableBezierSet. When using textures, you would usually need
to call SetUvRange for each patch.

The texture map itself is specified as usual with the TextureMap, TextureMapFront,
and TextureMapBack commands. Every patch in the ViewableBezierSet shares the
same texture map.

In some circumstances, you may wish to use SetBoundingSphereCenter command to
explicitly specify the center position for the bounding sphere used to hold the set of Bézier
patches. If this command is not given, then the bounding sphere center and radius are auto-
matically calculated the first time an attempt is made to trace a ray and intersect it with the set
of patches.

B.3.14 Texture Maps

The ray tracing software supports several basic texture mapping features. At present, it sup-
ports a checkerboard pattern, texture maps that apply bitmap images, and bump mapping. It
also incorporates several methods for transforming texture map coordinates, for sequentially
applying multiple texture maps to a surface, and for applying different texture maps based on
face numbers.

The checkerboard pattern consists of infinitely repeating rectangles of two different mate-
rials. A checkered texture map is an object of type TextureCheckered and is specified by
giving two materials and the width and height of the rectangles in the check pattern. The two
materials are specified by the following member functions of TextureCheckered:

SetMaterials( Material* mat1, Material* mat2 );
SetMaterial1( Material* mat1 );
SetMaterial2( Material* mat2 );

The first function subsumes the other two calls. The width and height of the rectangles are set
by the member function

SetWidths(double uwidth, double vwidth);
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Here uwidth and vwidth mean the width and height, which are measured in the direction
of the u and v coordinates, respectively.

A TextureRgbImage texture map contains a texture map loaded from a bitmap. You can
create a new TextureRgbImage by the command

TextureRgbImage* tRgb = new TextureRgbImage( "filename.bmp" );

where filename.bmp is the name of the bitmap format file containing the texturemap image.
Many common drawing programs support the bitmap file format, and thus this file format is
relatively easy to create. When the texture map tRgb is applied to a surface, it overwrites the
ambient and diffuse reflectivity coefficients with the color from the texture map. The specular
reflectivity coefficient of the surface is left unchanged. The texture map is applied before the
lighting calculation; consequently, the effect of the texture map is to make the ambient and
diffuse colors of the surface equal the values from the texture map. The colors of specular
highlights are unchanged by the texture map, however.

You may specify whether the texture map is repeating by the commands

SetWrapMode(

{
TextureRgbImage::WrapUV

TextureRgbImage::ClampUV

}
);

These allow you set whether the texture map repeats or whether it clamps to the color of the
border. In addition to these two wrap modes, you can also set a background color to be used
instead of the border colors when not wrapping. This background color is set by

SetWrapMode( VectorR3& color );

A BumpMapFunction texture map can be used to create a bump map. This allows you to
specify a function that computes the bump map height function d, as discussed in Section V.2.
The most common way to create a BumpMapFunction is to invoke it with the constructor

BumpMapFunction( f );

where f is a function of type double f(double u, double v). The function f will
be called as needed by the bump map, and it must compute the height function d. Op-
tionally, you may call the member function SetBorderType() to set the way the height
function wraps around at the borders of the unit square [0, 1]. The default setting is that the
height function f (u, v) is defined for all values of u and v. In the current implementation, a
BumpMapFunction will not work correctly if it is applied subsequently to a texture map that
transforms texture coordinates, such as the TextureAffineXform and TextureBilin-
earXform functions described below, because the calculation of the partial derivatives for
bump mapping does not (at present) take into account the effects of these transformations.

A TextureSequence combines several texture maps into a single texture map that applies
the constituent texture maps sequentially. It can be created by one of the constructors

TextureSequence( int numMaps, TextureMapBase* texMaps[] );

TextureSequence( TextureMapBase* texMap1, ...,

TextureMapBase* texMapn );

Here texMaps should be an array of pointers to texture maps, and the texMapi’s should
be pointers to texture maps (n can be 2, 3, or 4). The specified texture maps will be applied
sequentially by the TextureSequence object. The component texture maps can be changed
by using the SetTexture member function. The total number of texture maps cannot be
changed, but null pointers can be used for disabling texture maps.
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A TextureMultiFaces texture map allows you to apply different texture maps to differ-
ent faces; for example, different faces of a cylinder can receive different textures. The texture
map can be created with one of the constructors:

TextureMultiFaces( int numMaps, TextureMapBase* texMaps[] );

TextureMultiFaces( TextureMapBase* texMap1, ...,

TextureMapBase* texMapn );

Here, n may be 2, 3, 4, or 6. The i th texture map is applied to face number i . For face
numbers greater than or equal to numMaps, the last texture map is applied.

Note that TextureSequence and TextureMultiFaces are themselves texture map
objects (i.e., are subclasses of the TextureMapBase class).

Several of the viewable objects in the previous section have special methods for specifying
axes that determine the way texture coordinates are assigned. The sphere, for instance, has
methods for setting two “u–v”-axes, whereas the cylinder, cone, and torus use a “center axis”
and an “AxisA” and “AxisB.” Finally, the ellipsoid uses axes A, B, and C. To keep in mind
how these work, think of the default as being that axis A is the z-axis, axis B is the x-axis,
and axis C is the y-axis. Axis C is often the axis of symmetry and in this case is called the
center axis. The texture coordinates are set so that if the axes have their default values, and if
the viewer is looking straight down the z-axis towards the center of the object, then he or she
will see the v-component of the texture coordinates varying from bottom to top on the surface
in front and the u-coordinates varying from left to right with u = 1/2 in the center of the view.

Sometimes the default assignments of texture coordinates are not what you want, and one
may then use several special texture maps that let you remap texture coordinates by linear or
bilinear transformations. These texture maps do not actually apply any texture but instead can
be combined with other texture maps using a TextureSequence object.

A TextureAffineXform allows you to apply an arbitrary affine transformation to texture
coordinates. There are four options for defining a TextureAffineXform:

SetScaling( uFactor, vFactor );

SetLinearMatrix( a11, a21, a12, a22 );

SetAffineMatrix( a11, a21, a12, a22, a13, a23 );

SetTriangleCoords( Ax, Ay, Bx, By, Cx, Cy);

The SetScaling function makes the affine map a simple scaling linear transformation that
applies different scaling values to u and v coordinates. The SetLinearMatrix function
allows you to set an arbitrary linear map by setting the four entries of a 2× 2 matrix – the
operands are given in column order. The SetAffineMatrix function allows you to set an
arbitrary affine map by giving the six entries of a 2× 3 matrix (in column order) that define an
affine map: these six entries are the top two rows of a 3× 3 matrix that has bottom row (0 0 1)
as is usual for matrices acting on homogeneous coordinates.

The function SetTriangleCoords is a convenience function that defines the affine map
that maps the canonical texture coordinates for the vertices of a triangle (namely the points
〈0, 0〉, 〈1, 0〉, and 〈0, 1〉) to the texture coordinates 〈Ax, Ay〉, 〈Bx, By〉, and 〈Cx, Cy〉. This is
convenient for defining a texture map on a triangle or parallelogram by linear interpolation
(and linear extrapolation).

A TextureBilinearXform object lets you define texture coordinates by bilinear in-
terpolation from four vertices of a rectangle. A bilinear transformation is defined by setting
four texture coordinate values 〈ui , vi 〉, with i = 0, 1, 2, 3. The transformation maps the four
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corners of the unit square, 〈0, 0〉, 〈1, 0〉, 〈1, 1〉, and 〈0, 1〉 to the four specified values (in that
order) and computes texture coordinates at other points by bilinear interpolation. To set the
four texture coordinate values you may use one of the functions

SetTextureCoordinates( double &txcoords[0] );

SetTextureCoordinates( float &txcoords[0] );

where txcoords[] is an array of eight floating point values. Alternatively, you may give the
following four commands:

SetTextureCoordA( double u0, double v0 );
SetTextureCoordB( double u1, double v1 );
SetTextureCoordC( double u2, double v2 );
SetTextureCoordD( double u3, double v3 );
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AABB, see bounding box, axis-aligned
Abram, G., 271
abutting polygons, 64
accumulation buffer, 253
additive colors, 149
AddPatch, 348, 349
AddRationalPatch, 348
adjoint, 82, 328
affine, 218
affine combination, 101, 103

preserved under, 102
affine transformation, 17, 20, 35, 36, 46, 81

matrix, 27, 35, 36
orientation-preserving, 23, 35
preserved under, 101, 168

Agrawala, M., 256
aliasing, 2, 64, 127, 132
alpha channel, 84, 253, 256
ambient light, 69, 74, 75, 84, 85, 337
ambient reflection, 74
ambient reflectivity coefficient, 70, 74, 85,

339, 350
Angel, E., xii
angle brackets, 21
angle of incidence, 69, 71, 72, 239
angle of reflection, 69, 72
angle of refraction, 239
animation, 15, 17, 23, 64, 77, 99, 289
anisotropic surface, 88
anti-aliasing, 8, 132–135, 234, 244, 253
antipodal, 33, 44, 122
apex, 345
arclength, 186, 190
arctangent, 24
articulated object, 291, 307
Arvo, D., 251
Arvo, J., 252

Ashdown, I., 288
aspect ratio, 57
associative law, 300
atan2, 24
attachment point, 308
attenuation, see distance attenuation
Aupperle, L., 288
automorphism, inner, 302
averaging, see interpolation
axis-aligned bounding box, see bounding box,

axis-aligned
axis conventions, 4
azimuth, 131, see also yaw, pitch and roll

back buffer, 15
back face, 13, 83
back intersection, 264
background color, 242
backwards ray tracing, 234, 250–252
Badler, N., 255, 311, 317
ball, 117
Barsky, B., 155
Bartels, R., 155, 193
barycentric coordinates, 102–107, 262

calculating, 105
base position, 308
basic ray tracing, see recursive ray tracing
basis function, 200, see blending function
basis spline, 200, see also B-spline curve
Beatty, J., 155
Beckmann distribution, 91
Beckmann, P., 91
Bergeron, P., 255
Berns, R., 146, 154
Bernstein polynomial, 157, 166, 209, 226
Bessel spline, see Overhauser spline
Bessel tangent, 192

359
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Bessel twist method, 197
Bézier curve, 101, 155–199, 307

as B-spline, 208, 228
degree three, 156, 157
derivative, 158, 166
general degree, 165–172
in OpenGL, 178–179
piecewise, 163–164, 168
quadratic, 182–187
rational, 26, 46, 102, 121, 178, 180–187, 228
subdivision, see recursive subdivision

Bézier patch, 173–177, 257, 268
in OpenGL, 179–180
rational, 187–188, 348
viewable, 347

Bézier, P., 155
Bhetanabhotla, M., 268
bias, 194
bicubic patch, 197
bidirectional path tracing, 252
bidirectional reflectivity, 87–89
Bier, E., 128
bilinear interpolation, 107–116, 127, 133, 137,

342, 351
inverting, 113–116

BilinearInvert, 115, 116
Billmeyer, F., 146, 154
binary space partitioning (BSP) tree, 258, 271
binomial theorem, 157, 166, 170
bitmap file, 350
black, 10, 149
blending, 65, 84, 150, 253, 256
blending function, 157, 201–203, 307
Blinn, J., xv, xvi, 87, 90, 93, 121, 135, 180
blossom, 217–221
Böhm method, 223–225
Böhm, W., 223
Bouma, P., 154
bounding box, 268, 269

axis-aligned (AABB), 269
discrete oriented polygon (k-DOP),

269, 270
oriented (OBB), 269, 271

bounding sphere, 259, 268, 269
bounding volume, 268, 269, 271
box, 264
BRDF, 88
Bresenham algorithm, 61–64, 122
BRIDF, see bidirectional reflectivity
brightness, 151, 275
Brill, M., 154
Brotman, L., 255
browser-safe colors, 151

browsers, 151
Brunelleschi, F., 34
BSP tree, see binary space partitioning tree
B-spline curve, 101, 187, 200–232, 307

as Bézier curve, 226–227
derivative, 221
in OpenGL, 229
interpolating, 229–232
knot insertion, 218, 223
nonuniform knots, 204–214
rational, 26, 46, 102, 121, 228–229
repeated knots, 213
smoothness, 212, 213, 221–223
uniform knots, 201–204, 206

buffer, 15
bump mapping, 135–137
BumpMapFunction, 350
Buss, S., 307

C∞-continuous, 164
C1-continuity, 164, 168, 174, 175, 190, 194, 210
C2-continuity, 203, 210
CalcAllDirectIllum, 334
CalcPixelDirection, 338
CalcPixelPosition, 339
CalcRefractDir, 334
CalcTransmissionDirection, 241
calculus, 329
CalcViewPosition, 338
camera, 245, 291, 295
camera position, see viewpoint
CameraView, 335, 337
Canny, J., 271
Carpenter, L., 244
Casteljau method, 159–160, 168–169, 175, 214,

227, 268, 307
Casteljau, P. de, 155, 168, 221
Catmull–Rom spline, 189–190, 193, 195, 232,

290
caustics, 251
cell, 270
centripetal parameterization, 191
Chen, S.E., 256
choice function, 157
chord-length parameterization, 189–192, 232
Christiansen, N., 251
chroma, 151
chromaticity, 151
CIE, 154
CIELAB, 154
CIELUV, 154
circle, 121, 182–185, 187–188, 229
Ck-continuity, 164
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CLAMP_TO_EDGE, 140
ClampUV, 350
clipping plane, 48
clockwise, 13
clone, 255
CLUT, see color lookup table
CMY, 150

to/from RGB, 150
CMYK, 150
codomain, 320
cofactor, 82, 328
Cohen, E., 223
Cohen, M., 275, 280, 288
collinear, 323
color, 1, 2, 10, 58–60, 63, 146–154, 250

additive and subtractive, 149
color lookup table, 151
color perception, 146–148
colorfulness, 151
column span (colspan), 314, 329
column vector, 21, 23, 34, 326
commutative law, 300
complex numbers, 299
composition, 20, 303
ComputeG, 95
computer-aided design, 155
cone, 344

general, 255
conic section, 102, 121, 181–188, 226, 228–229
conjugate, 300
ConnectDots, 16, 193
constant attenuation factor, 86
continuity, see C1-, C2-, and Ck-continuity
continuity (TCB), 194
control point, 101, 156, 180, 201, 204, 228, 230
control polygon, 167, 168, 171, 223
convex, 264
convex hull, 117, 162
convex hull property, 162, 166, 168, 185,

223, 268
convex polytope, see polytope
convex quadrilateral, 109, 110
convex set, 9, 10, 117–119
Cook, R., 87, 90, 93, 97, 244, 256
Cook–Torrance lighting, 67, 87–98, 233, 235, 332
coordinate system, 4
counterclockwise, 13
Cox–de Boor formula, 200, 206–209, 214
Coxeter, H., 34
cracking, 66, 176, 177
cross product, 5, 42, 300, 321, 322, 325
Crow, F., 255
cube, 128, 264

cubic curve, 168
culling back faces, 13, 83, 342
Curry, H., 200
cutoff angle, 86
cyan, 10, 149, 150
cylinder, 129, 266, 343

Daniel, M., 159
data glove, 291
data types, 6
Daubisse, J., 159
de Berg, M., 271
de Boor algorithm, 214–217, 219, 227, 307
de Boor, C., 200
de Casteljau, see Casteljau
degree elevation, 171–172, 184, 227
degree of freedom, 308
denominator equals zero, 206
depth, 12, 49, 52, 58
depth buffer, 12, 50, 52, 54, 60, 62, 63, 233, 254,

see also pseudo-distance
depth cueing, 256
depth of field, 5, 234, 245, 247, 253, 254
derivative, 331
determinant, 22, 35, 327
diagonal property, 218
diameter, 279
different curves, 168
diffuse light, 69, 71, 85
diffuse reflection, 69, 71–72
diffuse reflectivity coefficient, 71, 85, 242, 339,

350
diffuse transmission, 241
diffuse transmission coefficient, 242
diode, 290
DirectIlluminateViewPos, 334
directional light, 74, 83, 84, 336
discrete oriented polygon, see bounding box
display list, 3
distance, see depth and pseudo-distance
distance attenuation, 75, 82, 85–87, 337
distributed ray tracing, 234, 244–251
distributive law, 300
dot product, 81, 307, 321, 324

preserved, 24, 35
double buffering, 15–16
Draw, 339
drawThreePoints, 28–31
dynamics, 292

ease in, 293
fixed target, 293–294
moving target, 294–295

Team LRN



362 Index

ease out, fixed target, 294
ellipse, 121
ellipsoid, 342
emissive intensity, 74, 85, 339
emissiveness, 275
emissivity, 70, 74
empty set, 218
end effector, 308
end effector point, 308
end link, 308
environment map, 137–139, 254

in OpenGL, 143–145
equivalent, 147
Euclidean space, 320
Euler angles, 296
Euler’s theorem, 36, 44–45, 298
Everitt, C., 256
extended light, 248
extinction coefficient, 97
extrapolation, 100, 101
eye, 146
eye position, see viewpoint

face culling, 13
Fairchild, M., 154
Fairman, H., 154
fake distance, see pseudo-distance
far clipping plane, 48, 51, 52, 55, 56
Farin, G., 155, 168, 199, 220, 224, 227
Farouki, R., 159, 186, 187
Ferguson patches, 197
Ferguson, J., 197
Ferris wheel, 17
Feuerbach, K., 34
Feynman, R., 146
field of view, see viewport
Fillmore, J., 307
FindIntersection, 333
fixed point, 25, 285
fixed-point problem, 284
fixed target, see ease in, fixed target
flat shading, 2, 12, 68
flats, 197
flexible objects, 291
flocking, 291
focal plane, 246
focusing, 251
fog, 252, 256
Foley, J., xv, 146, 151
form factor, 273, 276–282
forward dynamics, 292
forward kinematics, 292
forward ray tracing, 251

FourTextures, 139, 143
frame, 15
frame rate, 15
Francis, G., 299
Freeman, K., 146, 154
Fresnel equation, 87, 90, 96–98
front buffer, 15
front face, 9, 13, 83
front intersection, 264
frustum, 55, 56
Fuchs, H., 271
full-rank factorization, 316
function, 320

G1-continuity, 164, 168, 174, 175
gathering method, 286
Gauss-Seidel, 286
Gauss–Seidel iteration, 286–287
Gaussian elimination, 316
generalized rotation, 23, 25, 44
geodesic, 122
geometric continuity, see G1-continuity
geometric occlusion, 91–96
GetPixel, 339
Geuzaine, C., xvi
GIF, 151
Gilbert, E., 271
gimbal lock, 298
Girard, M., 311, 317
GL_ACCUM, 253, 254
GL_ACCUM_BUFFER_BIT, 253, 254
GL_ADD, 253
GL_AMBIENT, 85
GL_AMBIENT_AND_DIFFUSE, 85
GL_AUTO_NORMAL, 180
GL_BACK, 13, 14, 85
GL_BLEND, 6, 8, 253
GL_CCW, 13
GL_CLAMP, 140
GL_CLAMP_TO_EDGE, 140
GL_COLOR_BUFFER_BIT, 12, 13, 254
GL_COLOR_MATERIAL, 85
GL_CONSTANT_ATTENUATION, 86
GL_CULL_FACE, 13
GL_CW, 13
GL_DECAL, 142
GL_DEPTH_BUFFER_BIT, 13, 254
GL_DEPTH_TEST, 12
GL_DIFFUSE, 85
GL_EMISSION, 85
GL_FILL, 14, 180
GL_FLAT, 11, 83
GL_FRONT, 13, 14, 85
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GL_FRONT_AND_BACK, 13, 14, 85
GL_LIGHTi , 83–86
GL_LIGHT_MODEL_AMBIENT, 84
GL_LIGHT_MODEL_COLOR_CONTROL, 142
GL_LIGHT_MODEL_LOCAL_VIEWER, 83
GL_LIGHT_MODEL_TWO_SIDE, 83
GL_LIGHTING, 83, 142
GL_LINE, 14, 179, 180
GL_LINE_LOOP, 7
GL_LINE_SMOOTH, 8, 253
GL_LINE_SMOOTH_HINT, 8, 253
GL_LINE_STRIP, 7, 179
GL_LINEAR, 141
GL_LINEAR_ATTENUATION, 86
GL_LINEAR_MIPMAP_LINEAR, 141
GL_LINEAR_MIPMAP_NEAREST, 141
GL_LINES, 7
GL_LOAD, 253
GL_MAP1_COLOR_4, 178
GL_MAP1_VERTEX_3, 178
GL_MAP1_VERTEX_4, 178
GL_MAP2_COLOR_4, 180
GL_MAP2_TEXTURE_COORD_2, 180
GL_MAP2_VERTEX_3, 179
GL_MAP2_VERTEX_4, 180
GL_MODELVIEW, 29, 30, 37, 39
GL_MODULATE, 142
GL_MULT, 253
GL_NEAREST, 141
GL_NEAREST_MIPMAP_LINEAR, 141
GL_NEAREST_MIPMAP_NEAREST, 141
GL_NICEST, 6, 8, 127, 253
GL_NORMALIZE, 87, 180
GL_ONE_MINUS_SRC_ALPHA, 6, 8, 253
GL_PERSPECTIVE_CORRECTION_HINT, 127
GL_POINT, 14, 179, 180
GL_POINT_SMOOTH, 6, 253
GL_POINT_SMOOTH_HINT, 6, 253
GL_POINTS, 6, 28, 179
GL_POLYGON, 10
GL_POLYGON_OFFSET_FILL, 54
GL_POLYGON_OFFSET_LINE, 54
GL_POLYGON_OFFSET_POINT, 54
GL_POLYGON_SMOOTH, 253
GL_POLYGON_SMOOTH_HINT, 253
GL_POSITION, 84
GL_PROJECTION, 57
GL_PROXY_TEXTURE_2D, 140
GL_QUAD_STRIP, 9, 10
GL_QUADRATIC_ATTENUATION, 86
GL_QUADS, 9, 10
GL_REPEAT, 140
GL_REPLACE, 142

GL_RESCALE_NORMAL, 87
GL_RETURN, 253, 254
GL_RGB, 139, 140
GL_RGBA, 139, 140
GL_S, 144
GL_SEPARATE_SPECULAR_COLOR, 142
GL_SHININESS, 85
GL_SINGLE_COLOR, 142
GL_SMOOTH, 11, 83
GL_SPECULAR, 85
GL_SPHERE_MAP, 144
GL_SPOT_CUTOFF, 86
GL_SPOT_DIRECTION, 86
GL_SPOT_EXPONENT, 86
GL_SRC_ALPHA, 6, 8, 253
GL_T, 144
GL_TEXTURE, 145
GL_TEXTURE_1D, 143
GL_TEXTURE_2D, 139–141, 143
GL_TEXTURE_3D, 143
GL_TEXTURE_ENV, 142
GL_TEXTURE_ENV_MODE, 142
GL_TEXTURE_GEN_MODE, 144
GL_TEXTURE_GEN_S, 144
GL_TEXTURE_GEN_T, 144
GL_TEXTURE_MAG_FILTER, 141
GL_TEXTURE_MIN_FILTER, 141
GL_TEXTURE_WRAP_S, 140
GL_TEXTURE_WRAP_T, 140
GL_TRIANGLE_FAN, 9
GL_TRIANGLE_STRIP, 9
GL_TRIANGLES, 8
GL_UNPACK_ALIGNMENT, 139
glAccum, 253, 254
glAccumClear, 253, 254
Glassner, A., xv, 146, 154, 252
glBegin, 6–11, 28, 83, 179
glBindTexture, 143
glBlend, 255
glBlendFunc, 6, 8, 253, 256
glClear, 12, 13, 253, 254
glClearColor, 12
glColor*, 10, 11, 40, 82, 85, 86
glColor3f, 10, 39
glColorMaterial, 86
glCullFace, 13, 83
glDeleteTextures, 143
glDisable, see the GL options that can be

disabled
GLdouble, 6
glEnable, see the GL options that can be

enabled
glEnd, 6–9, 11, 28, 83, 179
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glEvalCoord1f, 178, 179
glEvalCoord2f, 180
glEvalMesh1, 179
glEvalMesh2, 180
glEvalPoint1, 179
glEvalPoint2, 180
GLfloat, 6
glFlush, 15
glFog, 256
glFrontFace, 13
glFrustum, 55–57, 83
glGenTextures, 143
glHint, 6, 8, 127
glide rotation, 44
GLint, 6
glLightf, 86
glLightfv, 84–86
glLightModelfv, 84
glLightModeli, 83, 142
glLineWidth, 8
glLoadIdentity, 29, 30, 37, 39
glLoadMatrix, 23, 38
glMap1f, 178, 179
glMap2f, 179, 180
glMapGrid1f, 179
glMapGrid2f, 180
glMaterial*, 84, 85
glMaterialf, 85
glMaterialfv, 85
glMatrixMode, 29, 30, 37, 39, 145
glMultMatrix, 23
glMultMatrixf, 38
glNormal*, 179
glNormal3f, 84, 87, 141
global lighting, 68
global reflectivity coefficient, 237, 334, 339
glOrtho, 55, 83
glPixelStorei, 139, 140
glPointSize, 6
glPolygonMode, 14
glPolygonOffset, 54
glPopMatrix, 30, 39
glPushMatrix, 30, 39
glRotatef, 29–31, 37, 39, 40
glScalef, 38
glShadeModel, 11, 83
GLshort, 6
glTexCoord*, 143, 179
glTexCoord2f, 141
glTexEnvi, 142
glTexGeni, 144
glTexImage*, 143
glTexImage2D, 139, 140

glTexParameter*, 143
glTexParameteri, 140,141
glTranslatef, 29–31, 37, 39, 40
glu OpenGL utility routines, 229
gluBeginSurface, 229
gluBuild2DMipmaps, 140, 143
gluDeleteNurbsRenderer, 229
gluEndSurface, 229
GLuint, 143
gluLookAt, 54, 58, 83, 295
gluNewNurbsRenderer, 229
gluNurbsProperty, 229
gluNurbsSurface, 229
gluOrtho2D, 55
gluPerspective, 55–57, 83
GLUT_ACCUM, 253, 254
GLUT_DEPTH, 12, 15
GLUT_DOUBLE, 15
GLUT_RGB, 12, 15
glutDisplayFunc, 15
glutIdleFunc, 15
glutInitDisplayMode, 12, 15, 253,

254
glutPostRedisplay, 15
glutReshapeFunc, 57
glutSwapBuffers, 15
glutWireSphere, 39, 40
gluUnProject, 256
glVertex*, 5, 8, 36, 84, 86, 141, 179
glVertex2f, 6, 7, 28, 36
glVertex2fv, 6
glVertex3f, 5–9, 46
glVertex3fv, 5
glVertex4f, 46
glViewport, 57
goniometer, 88
Gottschalk, S., 271
Gouraud shading, 2, 60, 62, 67, 68, 74, 77, 82, 83,

104, 153, 277
Gouraud, H., 60, 67
gradient, 80, 268, 330
Grant, E., 271
great circle, 33, 122
Greenberg, D., 87, 280
Guibas, L., 252
Grünbaum, B., 118

Haines, E., xv, 257, 263, 271
half-space, 118
halfway vector, 73, 74, 83, 91
Hall, R., 146, 149, 154
Hamilton, W.R., 299
Hanrahan, P., 288
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Hart, J., 299
He, X., 87
heading, 131, see also yaw,pitch and roll
Heckbert, P., 121, 122
Heidmann, T., 255
Heirich, A., 256
helix, 186
Helmholtz, H., 146
hemicube, 280
hemicube method, 280–282
Hemmendinger, H., 154
Hering, E., 147
Hermite polynomial, 164–165, 293, 294
Hernicz, R., 97
hidden surface, 12–14, 18, 47, 50, 52, 233, 234
high color, 150
Higman, N., 114
Hill, F., xvi
homogeneous coordinates, 26, 35, 180, 181, 228

affine combinations, 102, 119–121
homogeneous matrix, 27, 36, 82
Horner’s method, 159
Hoschek, J., 199
HSL, 151–153

from RGB, 152
hue, 151
hyperbola, 121
hyperbolic interpolation, 77, 121–122, 127,

128

identity matrix, 37, 326
identity transformation, 20
IK, see inverse kinematics
illumination maps, 251
implicitly defined surface, 80, 330
importance sampling, 252
inbetweener, 290
index of refraction, 96, 237, 240, 340
indexed color, see color lookup table
inherent velocity, 294
Init, 342
inker, 290
inner automorphism, 302
inner product, see dot product
intensity, 151
interpolating points, 100, 157, 189–199, 229–232,

290, 292, see also Catmull–Rom spline,
Bessel twist method, Ferguson patches,
Overhauser spline, and
tension-continuity-bias spline

with surface, 195, 199
interpolation (averaging), 75, 99–125, 290, see

also bilinear interpolation, Gouraud shading,

hyperbolic interpolation, linear interpolation,
Phong shading, quaternion, scan line
interpolation, and spherical linear
interpolation

intersection testing, 162, 243, 257–271
line-plane, 261
ray-Bézier curve, 162
ray-Bézier patch, 268
ray-cylinder, 266–267
ray-ellipsoid, 260
ray-plane, 260–261
ray-polytope, 261, 264–266
ray-quadric, 267–268
ray-sphere, 258–260
ray-triangle, 261–263

intrinsically curved, 130, 131
inverse, 20, see also matrix inverse
inverse dynamics, 292
inverse kinematics, 289, 292, 311–318

Jackson, R., 146, 154
Jacobi iteration, 282, 285–286
Jacobian, 312, 313, 331
JacobiIteration., 285
jaggies, 2, 4, 64, 244, 245, 253
Jensen, H., 251, 252
jittering, 134, 135, 248, 280, 339
jittering eye position, see viewpoint jittering
Johnson, D., 271
Johnston, O., 290
joint, 308
Joy, K., 268

Kakimoto, M., 268
k-DOP, see bounding box
Kauffman, L., 299
Kedem, Z., 271
Keerthi, S., 271
kernel, 314, 329
keyframe, 290
keyframing, 290, 292
Kilgard, M., 256
kinematics, 292, 307–318
Kirk, D., 252
Klein, F., 34
Klumpp, A., 304
knot, 155, 204
knot elimination, 228
knot insertion, 227
knot multiplicity, 213
knot refinement, 223, 227
knot vector, 204, 224

standard, 210, 214
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Kochanek, D., 193
Krevald, M., 271
Kurlander, D., 89

Lafortune, E., 252
Lambertian surface, 71, 72
Lasser, D., 199
least-squares minimization, 315, 318
Lee, E., 183
Lempel, A., 151
lerp, see linear interpolation
lerp, 101
level of detail, 133
level set, 80, 330
level surface, see implicitly defined surface
Light, 336
Lin, M., 271
line, 7
line at infinity, 32, 33, 35, 46
line loop, 7
line strip, 7
line–plane intersection, 261
linear attenuation factor, 86
linear combination, 101
linear interpolation, 59, 60, 62, 127, 159, 306

inversion, 100
three points, 102–107
two points, 99–101

linear subspace, 45, 328–329
linear transformation, 17, 19, 24, 35

matrix, 21, 35
linearly independent, 328
link, 291, 308
local control, 202, 203, 212, 232
local lighting, 67, 68, 87, 238
local viewer, 74, 83, 144, 338
LOD, see level of detail
luminance, 151
LUT, see color lookup table
Lyche, T., 223
LZW compression, 151

MacDonald, L., 146, 154
Mach banding, 277
Maciejewski, A., 311, 317
magenta, 10, 149, 150
magnitude, 300, 320, 324, 325
major radius, 80, 131, 347
Manfield, L., 200
Manocha, D., 271
mapping, 320
masking, 92
Material, 339, 340

material properties, 70, 75
in OpenGL, 82–87
in RayTrace, 335

matrix, 325
matrix inverse, 22, 282, 326, 327
matrix, orthonormal, 24
matrix product, 325
matrix representation

cross product, 42
orthographic projection, 48
quaternion, 303–306
reflection, 44
rotation, 24, 37, 41
scaling, 38
shadow projection, 53
translation, 37

matrix representation of a transformation, 21, 23,
27, 35, 36

matrix transpose, 21, 23, 326
McCool, D., 256
Mercator map, 130
metal, 87
metamerism, 147, 148
Meyer, G., 149
microfacet, 87, 89–91
millions of colors, 59, 150
minor radius, 80, 131, 347
mipmapping, 127, 132–134, 244
mirror, 72, 137, 233, 255
mirror image, 38
Möbius, A., 34
model view matrix, 18, 28, 36, 58
Moll, L., 256
Möller, T., xv, 257, 263, 271
Monte-Carlo, 252
moon, 40, 72
Moore–Penrose inverse, see pseudo-inverse
Moreton, H., 121, 122
mosaic, 1
motion blur, 6, 234, 247, 248, 253
motion capture, 290
move-to, 3
movie, 233
moving target, see ease-in, moving target
multiaffine, 218
multibody, see articulated object
multiplication, quaternion, 300
multiplicative identity, 301
multiplicative inverse, 301
multiplicity, 213
multitexturing, 145
multivariable, 329
multum in parvo, 133
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Nayar, S., 95
Naylor, B., 271
near clipping plane, 48, 51, 52, 55, 56
Newman, W., 34
Newton’s method, 117, 268
Nishita, T., 268
noise, 135
nonlocal viewer, 74, 144
nonuniform B-spline, see B-spline
norm, 300, 320, 324, 325
normal vector, 78, 81–83, 87, 112, 268, 324, 330

interpolation, 78, see also Phong shading
normalization, 87, 324
NURBS, see Bézier curve, rational and B-spline

curve, rational
in OpenGL, 229

OBB, see bounding box, oriented
octtree, 258, 270
one-to-one, 320
onto, 320
opponent color theory, 146, 147
order, 180, 205, 211, 348
Oren, M., 95
orientation, 295–307
orientation-preserving, 23, 35, 36, 44, 295, 298
oriented bounding box, see bounding box,

oriented
origin, 19, 34
orthogonal, 321, 328
orthogonal complement, 314, 328, 329
orthographic projection, 47–48, 54, 338
orthonormal, 24
oscilloscope, 3
Oslo method, 223
Overhauser, A., 191
Overhauser spline, 189–193, 195, 232, 290,

see also Bessel twist method
Overmars, M., 271
oversampling, see jittering and supersampling
overshoot, 193, 194

painter’s algorithm, 12, 256
Palmer, G., 146
palmtop, 2
parabola, 121
parallel, 323
parallelepiped, 268, 346
parallelogram, 342
parametric curve, 156, 157, 186, 331
parametric surface, 78, 129, 131, 135, 173
partial derivative, 329
participating media, 252

particle systems, 291
partition of unity, 203
patch, 273
path tracing, 250
pen down, 3
pen plotter, 3
pen up, 3
penumbra, 248
percentage closer filtering, 256
permutation, 249
perpendicular, 321
perspective division, 18, 47, 122
perspective transformation, 17, 46, 47, 49–58, 74

preserved under, 121, 181
pglRotatef, 29–31
pglTranslatef, 29–31
Phong interpolation, see Phong shading
Phong lighting, 67–75, 89, 126, 135, 137, 141,

144, 148, 233, 235, 238, 241, 332, 334
in OpenGL, 82–87

Phong shading, 67, 77, 137
Phong, B., 67
photon maps, 251
piecewise Bézier curve, see Bézier curve
Piegl, L., 182, 224, 227
pinhole camera, 245
pitch, 131, see also yaw, pitch and roll
pixel, 1, 2, 132
pixel shader, 137
PixelArray, 339
plane, 4, 43, 44, 260
plane at infinity, 35, 46
point, 19, 21, 34
point at infinity, 26, 32, 33, 35, 45, 46, 84, 181,

182
pointillism, 1
points, 23
polar form, see blossom
polygon offset, 54
polygonal modeling, 3
polyhedron, see polytope
polynomial curve, 168
polytope, 264
Porter, T., 244
positional light, 74, 83, 84, 336
postscript, 3, 171
Prautsch, H., 223
Precompute_for_Slerp, 124, 307
Press, W., 317
primary color, 2, 10, 146–150
prism, 264
projected convexity condition, 109, 110, 116
projection, 322, 324
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projection matrix, 18, 37, 55, 56, 58, 84
projective geometry, 32–34, 45–46, 53
projective line, 33, 34, 46
projective plane, 32, 46
projective point, 33, 34, 45, 46
projective space, 46
pseudo-distance, 18, 50, 52, 58
pseudo-inverse, 314–317
Puech, C., 275, 288
pyramid, 264

quadratic attenuation factor, 86
quadratic curve, 168, 182–187
quadratic formula, 113, 115
quadric, 267
quadrilateral, 9
quadrilateral strip, 10
quadtree, 270
quasi-Newton method, 268, 317
quaternion, 43, 122, 292, 295, 298–307

conjugate, 300
equality, 299
from matrix, 304–306
interpolation, 306–307
matrix form, 303–304
multiplication, 300
norm, 300
unit, 300

radiosity, 66, 272–288
radiosity (brightness), 275
radiosity equation, 276, 282–288
Rajan, V., 159
Ramamoorthi, R., 256
Ramshaw, L., 221
RandInt(i), 249
RandomPermutation, 249
range, 320, 329
rank, 329
rational curve, 180, 228, see also Bézier curve

and B-spline curve
rational linear interpolation, see hyperbolic

interpolation
ray, 258
ray trace software, 332–352
ray tracing, 2, 90, 135, 137, 233–256, 279–280
Ray Tracing News, 252
ray–Bézier patch intersection, 268
ray–cylinder intersection, 266–267
ray–ellipsoid intersection, 260
ray–line, 258
ray–plane intersection, 260–261
ray–polytope intersection, 261, 264–266

ray–quadric intersection, 267–268
ray–sphere intersection, 258–260
ray–triangle intersection, 261–263
RayTrace, 242, 243, 332, 334, 335
RayTrace2, 333
RayTraceData, 332
RayTraceData2, 333
RayTraceMain, 242
reciprocity, 276, 279, 281
recursive ray tracing, 234–238
recursive subdivision, 159–162, 169–171, 175,

176, 223, 268
Reeves, W., 256
reflection, 38, 43, 44, 233, 254
reflection direction, 72, see also view reflection
reflection map, see environment map
reflection ray, 235–238, 334
reflectivity, 275
reflectivity coefficient, see ambient, diffuse,

global, and specular
refraction, 233
Reitz, K., 88
rendering pipeline, 17, 18, 46, 47, 50, 52, 58, 122,

137, 141
repeated knots, 213
ResetSize, 339
ResetSpotlight, 337
resize window, 57
ResizeWindow, 57, 335
rest position, 317
retina, 146
RGB, 150–151

to HSL, 152
to/from CMY, 150

Riesenfeld, R., 223
right cylinder, 343
right-hand rule, 5, 35–37, 83, 296, 325
right-handed coordinate system, 5, 34, 324
rigid body, 291
rigid transformation, 23, 24, 35, 36, 44, 295, 298
Robin, N., xiv
Rogers, D., 155
roll, see yaw, pitch and roll
room, 270
root link, 308
rotation, 22–26, 36, 37, 44, 295–307, see also

generalized rotation
rotation interpolation, see quaternions
rotation matrix, 24, 37, 41–43, 292, 295–296, 304
rotational joint, see joint
roundoff error, 43, 54, 62, 64, 65, 114, 130, 257,

316, 334
row vector, 21, 23, 326
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rowspan, 314, 329
Russian roulette, 252

Sakkalis, T., 186, 187
Salesin, D., 256
Saltzman, M., 146, 154
Salzman, D., 288
Samet, H., 271
saturation, 151
scalar, 19
scalar quaternion, 301
scaling transformation, 38
scan line interpolation, 61, 62, 77, 104
Schlick, C., 87
Schreiner, D., 82
Schröder, P, 199
Schumaker, L., 155
Schwartzkopf, O., 271
Sederberg, T., 268
SeekIntersection, 334
Seidel, H.-P., 221
self reflection, 254
SetAffineMatrix, 351
SetApex, 345
SetAxes, 343
SetAxis, 347
SetBaseFace, 345
SetBorderType(), 350
SetBottomFace, 344
SetBoundingSphereCenter, 349
SetCenter, 341–343, 346
SetCenterAxis, 343, 344
SetCentralAxis, 342
SetColor, 337
SetColorAmbient, 335, 337, 340
SetColorAmbientDiffuse, 337, 340
SetColorDiffuse, 337, 340
SetColorEmissive, 340
SetColorReflective, 340
SetColorSpecular, 337, 340
SetColorTransmissive, 340
SetDirection, 338
SetDirectional, 336
SetHeight, 343, 345
SetIndexOfRefraction, 340
SetLinearMatrix, 351
SetLocalViewer, 338
SetMaterial, 340, 342, 344–347, 349
SetMaterial1, 349
SetMaterial2, 349
SetMaterialBack, 342, 349
SetMaterialBaseInner, 345
SetMaterialBaseOuter, 345

SetMaterialBottomInner, 344
SetMaterialBottomOuter, 344
SetMaterialFront, 342, 349
SetMaterialInner, 340, 344–347
SetMaterialOuter, 340, 344–347
SetMaterials, 349
SetMaterialSideInner, 344, 345
SetMaterialSideOuter, 344, 345
SetMaterialTopInner, 344
SetMaterialTopOuter, 344
SetNonLocalViewer, 338
SetPixel, 339
SetPosition, 336–339
SetRadialAxis, 343, 345, 347
SetRadii, 342, 343, 347
SetRadius, 341, 343
SetScaling, 351
SetScreenDimensions, 335, 338
SetScreenDistance, 335, 338
SetScreenPixelSize, 338
SetShininess, 340
SetSize, 339
SetSlope, 345
SetSlopes, 345
SetSpotCutoff, 337
SetSpotDirection, 337
SetSpotExponent, 337
SetTexture, 350
SetTopFace, 344
SetTriangleCoords, 351
SetUpLights, 336
SetUpMainView, 335
SetUpMaterials, 335
SetUpViewableObjects, 336
SetuvAxes, 341
SetuvCylindrical, 341, 343
SetUvRange, 349
SetuvSpherical, 341, 343
SetVertices, 346
SetWidths, 349
SetWrapMode, 350
shading, 4, 11, 67, 75, see also flat shading
shadow map, 255, 256
shadow volume, 65, 255
shadow feeler, 235–236, 241, 248, 334
ShadowFeeler, 334
shadowing, 92
shadows, 53–54, 233, 247, 255
shearing, 38, 87
Shepperd, S., 304
shininess, see specular exponent
Shirley, P., 252
Shoemake, K., 122, 307
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Shoenberg, I., 200
shooting method, 287–288
Shooting_Method, 287
silhouette edges, 255
Sillion, F., 87, 275, 288
simple polygon, 10
SimpleAnim, 15
SimpleDraw, 6–8, 13
SimpleNurbs, 179, 180, 188
singular value decomposition, 317
skeleton, 289
skinning, 289
slerp, see spherical linear interpolation
slerp, 123
Slerp, 124
Sloan, K., 128
smoke, 252, 291
Snell’s law, 96, 239, 241
soft shadows, 247, 255
solar program, 38–40, 57, 58
Southwell iteration, 287
spacecraft, 295
span, 314, 328
spectral sampling, 148, 149
specular exponent, 70, 73, 75, 85, 339,

340
specular highlight, 2, 67–69, 73, 77, 142
specular light, 69, 72, 73, 85, 337
specular reflection, 69, 72–74
specular reflectivity coefficient, 70, 73, 85, 242,

339, 350
specular transmission, 241
specular transmission coefficient, 242
sphere, 39, 130, 257, 258, 341
spherical linear interpolation, 122–125, 306
Spizzichino, A., 91
spline, 155, see also Bézier curve and B-spline

curve
spotlight, 75, 77, 82, 85–87, 337
spotlight direction, 86
spotlight exponent, 86
Sproull, R., 34
Spurrier, R., 304
standard knot vector, 210, 214
Star Trek, 295
stencil buffer, 255, 256
Stiles, W., 154
stochastic supersampling, 134–135, 244, see also

jittering
stratified stochastic supersampling, see jittering
stride, 348
subdivision surface, 199
subtractive colors, 149

superposition principle, 69, 74
supersampling, 134–135, 244
support, 320
surface normal, see normal vector
surface of revolution, 180, 187–188
symmetric function, 218

TCB spline, see tension–continuity–bias spline
teapot, 2, 68, 180
television, 2, 147
tension, 193
tension–continuity–bias spline, 189, 193–195,

290
terrain, 116
texture coordinates, 59, 127, 128

cylinder, 129–130, 344
sphere, 130–131, 341
torus, 131–132, 347

texture map, 4, 58, 108, 126–145, 332, 341, 349,
see also mipmapping

decal/replace, 126, 142
in OpenGL, 139–145
modulate, 142
repeating, 130, 140, 350
resident, 143
specular highlight, 142

texture matrix, 145
texture object, 139, 143
TextureAffineXform, 342, 351
TextureBilinearXform, 342, 351
TextureBMP, 139
TextureCheckered, 349
TextureMap, 336, 341, 349
TextureMapBack, 341, 349
TextureMapBase, 341
TextureMapFront, 341, 349
TextureMultiFaces, 344, 351
TextureRgbImage, 350
TextureSequence, 350, 351
TextureTorus, 139
Thomas, F., 290
thousands of colors, 59, 150
Tiller, W., 182, 224, 227
tilt, planetary, 40
torchère, 272
Torrance, K., 87, 90, 93, 97
torus, 10, 80, 131, 346
total derivative, 330
total internal reflection, 96, 240, 241, 243
Toth, D., 268
Touloukian, Y., 97
trace, 42, 304
traditional animation, 290
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transformation, 19, 35, see also affine
transformation, linear transformation,
and rigid transformation

translation, 20, 23, 35, 37
transmission

diffuse light, 241
specular light, 241

transmission coefficient, 238, 339
transmission ray, 237–238, 334

direction, 239–241, 334
transparency, 84, 150, 233, 241
transpose, see matrix transpose
triangle, 3, 8, 102, 261, 342
triangle fan, 9, 10, 12
triangle strip, 8
triangulation, 9
trichromatic theory, 146
tridiagonal matrix, 231
trilinear interpolation, 117

inversion, 117
tristimulus method, 147
Trowbridge, T., 88
true color, 150
Trumbore, B., 263
tuple, 319
turtle geometry, 3
twist vector, 175, 196–198

undershoot, 193, 194
uniform speed, 187
unit circle, 321
unit quaternion, 300, 301
unit sphere, 33, 122, 302, 324
unit vector, 320, 324
up direction, 58, 338
updateScene, 15, 16

value, 151
vanishing point, 34, 49
variation diminishing, 168, 171, 225
Veach, E., 252
vector, 19, 21, 23, 34, 301, 319, 320
vector graphics, 2
vector, as quaternion, 301
vector-valued function, 79, 331
VectorR3, 334
VectorR4, 334
view orientation, 58, 338
view reflection, 138, 144
viewable object, 332, 340–349
ViewableBase, 333, 336
ViewableBezierSet, 347, 349
ViewableCone, 344
ViewableCylinder, 343

ViewableEllipsoid, 342
ViewableParallelepiped, 346
ViewableParallelogram, 342
ViewableSphere, 341
ViewableTorus, 346
ViewableTriangle, 342
viewing transformation, 46, 54
viewpoint, 337
viewpoint animation, 291, 295
viewpoint at origin, 83, 84
viewpoint jittering, 245, 339
viewport, 17, 57, 58, 234, 245
viewport position, 337
VisiblePoint, 334

Wallace, J., 275, 288
Warren, J., 199
Watt, A., xvi, 128, 252
Watt, M., xvi, 128, 252
Web-safe colors, 151
weighted average, 101, 102, 117, 118, 157, 162,

166, 168, 203, 212
homogeneous coordinates, 102, 119–121

Welch, T., 151
white, 10, 149
White, T., 290
Whitted, T., 252, 268
wide-angle lens, 58
Wiemar, H., 199
Williams, L., 133, 256
Willems, Y., 252
winding number, 130
wireframe, 14
Witt, D., 97
Wolff, L., 89
Woo, M., xii, 5, 54, 82, 142, 143
WrapTorus, 11, 15
WrapUV, 350
Wright Jr., R., xii
writePixel, 62
Wyszecki, G., 154

yaw, pitch and roll, 292, 295–298
yellow, 10, 149, 153
Young, T., 146

z buffer, see depth buffer
Zandt, T. van, xvi
z fighting, 54
zero vector, 19, 34
Zhao, J., 311, 317
Ziegler, G., 118
Ziv, J., 151
Zorin, D., 199
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