
This page intentionally left blank



[50] Develop computer programs for simplifying sums
that involve binomial coefficients.

Exercise 1.2.6.63 in
The Art of Computer Programming, Volume 1: Fundamental Algorithms

by Donald E. Knuth,
Addison Wesley, Reading, Massachusetts, 1968.



A=B

Marko Petkovšek
University of Ljubljana

Ljubljana, Slovenia

Herbert S. Wilf
University of Pennsylvania

Philadelphia, PA, USA

Doron Zeilberger
Temple University

Philadelphia, PA, USA

April 27, 1997



ii



Contents

Foreword vii

A Quick Start . . . ix

I Background 1

1 Proof Machines 3

1.1 Evolution of the province of human thought . . . . . . . . . . . . . . 3

1.2 Canonical and normal forms . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Polynomial identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Proofs by example? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Trigonometric identities . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Fibonacci identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Symmetric function identities . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Elliptic function identities . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Tightening the Target 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Human and computer proofs; an example . . . . . . . . . . . . . . . . 24

2.4 A Mathematica session . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 A Maple session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Where we are and what happens next . . . . . . . . . . . . . . . . . . 30

2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 The Hypergeometric Database 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Hypergeometric series . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 How to identify a series as hypergeometric . . . . . . . . . . . . . . . 35

3.4 Software that identifies hypergeometric series . . . . . . . . . . . . . . 39



iv CONTENTS

3.5 Some entries in the hypergeometric database . . . . . . . . . . . . . . 42

3.6 Using the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Is there really a hypergeometric database? . . . . . . . . . . . . . . . 48

3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II The Five Basic Algorithms 53

4 Sister Celine’s Method 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Sister Mary Celine Fasenmyer . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Sister Celine’s general algorithm . . . . . . . . . . . . . . . . . . . . . 58

4.4 The Fundamental Theorem . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Multivariate and “q” generalizations . . . . . . . . . . . . . . . . . . 70

4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Gosper’s Algorithm 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Hypergeometrics to rationals to polynomials . . . . . . . . . . . . . . 75

5.3 The full algorithm: Step 2 . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 The full algorithm: Step 3 . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 More examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Similarity among hypergeometric terms . . . . . . . . . . . . . . . . . 91

5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Zeilberger’s Algorithm 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Existence of the telescoped recurrence . . . . . . . . . . . . . . . . . . 104

6.3 How the algorithm works . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Use of the programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 The WZ Phenomenon 121

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 WZ proofs of the hypergeometric database . . . . . . . . . . . . . . . 126

7.3 Spinoffs from the WZ method . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Discovering new hypergeometric identities . . . . . . . . . . . . . . . 135

7.5 Software for the WZ method . . . . . . . . . . . . . . . . . . . . . . . 137

7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



CONTENTS v

8 Algorithm Hyper 143

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 The ring of sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.3 Polynomial solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.4 Hypergeometric solutions . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.5 A Mathematica session . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.6 Finding all hypergeometric solutions . . . . . . . . . . . . . . . . . . 159

8.7 Finding all closed form solutions . . . . . . . . . . . . . . . . . . . . . 160

8.8 Some famous sequences that do not have closed form . . . . . . . . . 161

8.9 Inhomogeneous recurrences . . . . . . . . . . . . . . . . . . . . . . . . 163

8.10 Factorization of operators . . . . . . . . . . . . . . . . . . . . . . . . 164

8.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

III Epilogue 171

9 An Operator Algebra Viewpoint 173

9.1 Early history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.2 Linear difference operators . . . . . . . . . . . . . . . . . . . . . . . . 174

9.3 Elimination in two variables . . . . . . . . . . . . . . . . . . . . . . . 179

9.4 Modified elimination problem . . . . . . . . . . . . . . . . . . . . . . 182

9.5 Discrete holonomic functions . . . . . . . . . . . . . . . . . . . . . . . 186

9.6 Elimination in the ring of operators . . . . . . . . . . . . . . . . . . . 187

9.7 Beyond the holonomic paradigm . . . . . . . . . . . . . . . . . . . . . 187

9.8 Bi-basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.9 Creative anti-symmetrizing . . . . . . . . . . . . . . . . . . . . . . . . 190

9.10 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.11 Abel-type identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9.12 Another semi-holonomic identity . . . . . . . . . . . . . . . . . . . . 195

9.13 The art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A The WWW sites and the software 199

A.1 The Maple packages EKHAD and qEKHAD . . . . . . . . . . . . . . . . . 200

A.2 Mathematica programs . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Bibliography 203

Index 210



vi CONTENTS



Foreword

Science is what we understand well enough to explain to a computer. Art is

everything else we do. During the past several years an important part of mathematics

has been transformed from an Art to a Science: No longer do we need to get a brilliant

insight in order to evaluate sums of binomial coefficients, and many similar formulas

that arise frequently in practice; we can now follow a mechanical procedure and

discover the answers quite systematically.

I fell in love with these procedures as soon as I learned them, because they worked

for me immediately. Not only did they dispose of sums that I had wrestled with long

and hard in the past, they also knocked off two new problems that I was working on

at the time I first tried them. The success rate was astonishing.

In fact, like a child with a new toy, I can’t resist mentioning how I used the new

methods just yesterday. Long ago I had run into the sum
∑

k

(
2n−2k
n−k

)(
2k
k

)
, which takes

the values 1, 4, 16, 64 for n = 0, 1, 2, 3 so it must be 4n. Eventually I learned a tricky

way to prove that it is, indeed, 4n; but if I had known the methods in this book I could

have proved the identity immediately. Yesterday I was working on a harder problem

whose answer was Sn =
∑

k

(
2n−2k
n−k

)2(2k
k

)2
. I didn’t recognize any pattern in the first

values 1, 8, 88, 1088, so I computed away with the Gosper-Zeilberger algorithm. In

a few minutes I learned that n3Sn = 16(n− 1
2
)(2n2 − 2n+ 1)Sn−1 − 256(n− 1)3Sn−2.

Notice that the algorithm doesn’t just verify a conjectured identity “A = B”. It

also answers the question “What is A?”, when we haven’t been able to formulate

a decent conjecture. The answer in the example just considered is a nonobvious

recurrence from which it is possible to rule out any simple form for Sn.

I’m especially pleased to see the appearance of this book, because its authors have

not only played key roles in the new developments, they are also master expositors

of mathematics. It is always a treat to read their publications, especially when they

are discussing really important stuff.

Science advances whenever an Art becomes a Science. And the state of the Art ad-

vances too, because people always leap into new territory once they have understood

more about the old. This book will help you reach new frontiers.

Donald E. Knuth

Stanford University

20 May 1995



viii CONTENTS



A Quick Start . . .

You’ve been up all night working on your new theory, you found the answer, and it’s

in the form of a sum that involves factorials, binomial coefficients, and so on, such as

f(n) =

n∑

k=0

(−1)k

(
x− k + 1

k

)(
x− 2k

n− k

)
.

You know that many sums like this one have simple evaluations and you would like

to know, quite definitively, if this one does, or does not. Here’s what to do.

1. Let F (n, k) be your summand, i.e., the function1 that is being summed. Your

first task is to find the recurrence that F satisfies.

2. If you are using Mathematica, go to step 4 below. If you are using Maple, then

get the package EKHAD either from the included diskette or from the World-

WideWeb site given on page 199. Read in EKHAD, and type

zeil(F(n, k), k, n, N);

in which your summand is typed, as an expression, in place of “F(n,k)”. So in

the example above you might type

f:=(n,k)->(-1)^k*binomial(x-k+1,k)*binomial(x-2*k,n-k);

zeil(f(n,k),k,n,N);

Then zeil will print out the recurrence that your summand satisfies (it does

satisfy one; see theorems 4.4.1 on page 65 and 6.2.1 on page 105). The output

recurrence will look like eq. (6.1.3) on page 102. In this example zeil prints

out the recurrence

((n + 2)(n− x) − (n + 2)(n− x)N2)F (n, k) = G(n, k + 1) −G(n, k),

1But what is the little icon in the right margin? See page 9.



x A Quick Start . . .

where N is the forward shift operator and G is a certain function that we will

ignore for the moment. In customary mathematical notation, zeil will have

found that

(n + 2)(n− x)F (n, k) − (n+ 2)(n− x)F (n+ 2, k) = G(n, k + 1) −G(n, k).

3. The next step is to sum the recurrence that you just found over all the values

of k that interest you. In this case you can sum over all integers k. The right

side telescopes to zero, and you end up with the recurrence that your unknown

sum f(n) satisfies, in the form

f(n) − f(n+ 2) = 0.

Since f(0) = 1 and f(1) = 0, you have found that f(n) = 1, if n is even, and

f(n) = 0, if n is odd, and you’re all finished. If, on the other hand, you get

a recurrence whose solution is not obvious to you because it is of order higher

than the first and it does not have constant coefficients, for instance, then go

to step 5 below.

4. If you are using Mathematica, then get the program Zb (see page 114 below)

in the package paule-schorn from the WorldWideWeb site given on page 199.

Read in Zb, and type

Zb[(-1)^k Binomial(x-k+1,k) Binomial(x-2k,n-k),k,n,1]

in which the final “1” means that you are looking for a recurrence of order 1.

In this case the program will not find a recurrence of order 1, and will type

“try higher order.” So rerun the program with the final “1” changed to a

“2”. Now it will find the same recurrence as in step 2 above, so continue as in

step 3 above.

5. If instead of the easy recurrence above, you got one of higher order, and with

polynomial-in-n coefficients, then you will need algorithm Hyper, on page 154

below, to solve it for you, or to prove that it cannot be solved in closed form

(see page 143 for a definition of “closed form”). This program is also on the

diskette that came with this book, or it can be downloaded from the WWW

site given on page 199. Use it just as in the examples in Section 8.5. You are

guaranteed either to find the closed form evaluation that you wanted, or else to

find a proof that none exists.



Part I

Background





Chapter 1

Proof Machines

The ultimate goal of mathematics is to eliminate any need for intelligent thought.

—Alfred N. Whitehead

1.1 Evolution of the province of human thought

One of the major themes of the past century has been the growing replacement of hu-

man thought by computer programs. Whole areas of business, scientific, medical, and

governmental activities are now computerized, including sectors that we humans had

thought belonged exclusively to us. The interpretation of electrocardiogram readings,

for instance, can be carried out with very high reliability by software, without the

intervention of physicians—not perfectly, to be sure, but very well indeed. Computers

can fly airplanes; they can supervise and execute manufacturing processes, diagnose

illnesses, play music, publish journals, etc.

The frontiers of human thought are being pushed back by automated processes,

forcing people, in many cases, to relinquish what they had previously been doing,

and what they had previously regarded as their safe territory, but hopefully at the

same time encouraging them to find new spheres of contemplation that are in no way

threatened by computers.

We have one more such story to tell in this book. It is about discovering new ways

of finding beautiful mathematical relations called identities, and about proving ones

that we already know.

People have always perceived and savored relations between natural phenomena.

First these relations were qualitative, but many of them sooner or later became quan-

titative. Most (but not all) of these relations turned out to be identities, that is,



4 Proof Machines

statements whose format is A = B, where A is one quantity and B is another quan-

tity, and the surprising fact is that they are really the same.

Before going on, let’s recall some of the more celebrated ones:

• a2 + b2 = c2.

• When Archimedes (or, for that matter, you or I) takes a bath, it happens that

“Loss of Weight” = “Weight of Fluid Displaced.”

• a(−b±
√

b2−4ac
2a

)2 + b(−b±
√

b2−4ac
2a

) + c = 0.

• F = ma.

• V − E + F = 2.

• det(AB) = det(A) det(B).

• curl H = ∂D
∂t

+ j div ·B = 0 curl E = −∂B
∂t

div · D = ρ.

• E = mc2.

• Analytic Index = Topological Index. (The Atiyah–Singer theorem)

• The cardinality of {x, y, z, n ∈ Z|xyz 6= 0, n > 2, xn + yn = zn} = 0.

As civilization grew older and (hopefully) wiser, it became not enough to know

the facts, but instead it became necessary to understand them as well, and to know

for sure. Thus was born, more than 2300 years ago, the notion of proof. Euclid and

his contemporaries tried, and partially succeeded in, deducing all facts about plane

geometry from a certain number of self-evident facts that they called axioms. As we

all know, there was one axiom that turned out to be not as self-evident as the others:

the notorious parallel axiom. Liters of ink, kilometers of parchment, and countless

feathers were wasted trying to show that it is a theorem rather than an axiom, until

Bolyai and Lobachevski shattered this hope and showed that the parallel axiom, in

spite of its lack of self-evidency, is a genuine axiom.

Self-evident or not, it was still tacitly assumed that all of mathematics was recur-

sively axiomatizable, i.e., that every conceivable truth could be deduced from some set

of axioms. It was David Hilbert who, about 2200 years after Euclid’s death, wanted

a proof that this is indeed the case. As we all know, but many of us choose to ignore,

this tacit assumption, made explicit by Hilbert, turned out to be false. In 1930, 24-

year-old Kurt Gödel proved, using some ideas that were older than Euclid, that no

matter how many axioms you have, as long as they are not contradictory there will

always be some facts that are not deducible from the axioms, thus delivering another

blow to overly simple views of the complex texture of mathematics.



1.1 Evolution of the province of human thought 5

Closely related to the activity of proving is that of solving. Even the ancients

knew that not all equations have solutions; for example, the equations x + 2 = 1,

x2 + 1 = 0, x5 + 2x + 1 = 0, P = ¬P , have been, at various times, regarded as

being of that kind. It would still be nice to know, however, whether our failure to

find a solution is intrinsic or due to our incompetence. Another problem of Hilbert

was to devise a process according to which it can be determined by a finite number

of operations whether a [diophantine] equation is solvable in rational integers. This

dream was also shattered. Relying on the seminal work of Julia Robinson, Martin

Davis, and Hilary Putnam, 22-year-old Yuri Matiyasevich proved [Mati70], in 1970,

that such a “process” (which nowadays we call an algorithm) does not exist.

What about identities? Although theorems and diophantine equations are unde-

cidable, mightn’t there be at least a Universal Proof Machine for humble statements

like A = B? Sorry folks, no such luck.

Consider the identity

sin2(|(ln 2 + πx)2|) + cos2(|(ln 2 + πx)2|) = 1.

We leave it as an exercise for the reader to prove. However, not all such identities are

decidable. More precisely, we have Richardson’s theorem ([Rich68], see also [Cavi70]).

Theorem 1.1.1 (Richardson) Let R consist of the class of expressions generated by

1. the rational numbers and the two real numbers π and ln 2,

2. the variable x,

3. the operations of addition, multiplication, and composition, and

4. the sine, exponential, and absolute value functions.

If E ∈ R, the predicate “E = 0” is recursively undecidable.

A pessimist (or, depending on your point of view, an optimist) might take all these

negative results to mean that we should abandon the search for “Proof Machines”

altogether, and be content with proving one identity (or theorem) at a time. Our

$5 pocket calculator shows that this is nonsense. Suppose we have to prove that

3 × 3 = 9. A rigorous but ad hoc proof goes as follows. By definition 3 = 1 + 1 + 1.

Also by definition, 3×3 = 3+3+3. Hence 3×3 = (1+1+1)+ (1+1+1)+ (1+1+1),

which by the associativity of addition, equals 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1, which

by definition equals 9. 2

However, thanks to the Indians, the Arabs, Fibonacci, and others, there is a deci-

sion procedure for deciding all such numerical identities involving integers and using



6 Proof Machines

addition, subtraction, and multiplication. Even more is true. There is a canonical

form (the decimal, binary, or even unary representation) to which every such ex-

pression can be reduced, and hence it makes sense to talk about evaluating such

expressions in closed form (see page 143). So, not only can we decide whether or not

4 × 5 = 20 is true or false, we can evaluate the left hand side, and find out that it is

20, even without knowing the conjectured answer beforehand.

Let’s give the floor to Dave Bressoud [Bres93]:

“The existence of the computer is giving impetus to the discovery of al-

gorithms that generate proofs. I can still hear the echoes of the collective

sigh of relief that greeted the announcement in 1970 that there is no

general algorithm to test for integer solutions to polynomial Diophantine

equations; Hilbert’s tenth problem has no solution. Yet, as I look at my

own field, I see that creating algorithms that generate proofs constitutes

some of the most important mathematics being done. The all-purpose

proof machine may be dead, but tightly targeted machines are thriving.”

In this book we will describe in detail several such tightly targeted machines. Our

main targets will be binomial coefficient identities, multiple hypergeometric (and more

generally, holonomic) integral/sum identities, and q-identities. In dealing with these

subjects we will for the most part discuss in detail only single-variable non-q identities,

while citing the literature for the analogous results in more general situations. We

believe that these are just modest first steps, and that in the future we, or at least

our children, will witness many other such targeted proof machines, for much more

general classes, or completely different classes, of identities and theorems. Some of

the more plausible candidates for the near future are described in Chapter 9 . In

the rest of this chapter, we will briefly outline some older proof machines. Some of

them, like that for adding and multiplying integers, are very well known. Others,

such as the one for trigonometric identities, are well known, but not as well known

as they should be. Our poor students are still asked to prove, for example, that

cos 2x = cos2 x − sin2 x. Others, like identities for elliptic functions, were perhaps

only implicitly known to be routinely provable, and their routineness will be pointed

out explicitly for the first time here.

The key for designing proof machines for classes of identities is that of finding a

canonical form, or failing this, finding at least a normal form.



1.2 Canonical and normal forms 7

1.2 Canonical and normal forms

Canonical forms

Given a set of objects (for example, people), there may be many ways to describe a

particular object. For example “Bill Clinton” and “the president of the USA in 1995,”

are two descriptions of the same object. The second one defines it uniquely, while the

first one most likely doesn’t. Neither of them is a good canonical form. A canonical

form is a clear-cut way of describing every object in the class, in a one-to-one way.

So in order to find out whether object A equals object B, all we have to do is find

their canonical forms, c(A) and c(B), and check whether or not c(A) equals c(B).

Example 1.2.1. Prove the following identity

The Third Author of This Book = The Prover of the Alternating Sign Matrix

Conjecture [Zeil95a].

Solution: First verify that both sides of the identity are objects that belong to

a well-defined class that possesses a canonical form. In this case the class is that of

citizens of the USA, and a good canonical form is the Social Security number. Next

compute (or look up) the Social Security Number of both sides of the equation. The

SSN of the left side is 555123456. Similarly, the SSN of the right side is1 555123456.

Since the canonical forms match, we have that, indeed, A = B. 2

Another example is 5 + 7 = 3 + 9. Both sides are integers. Using the decimal

representation, the canonical forms of both sides turn out to be 1 ·101 +2 ·100. Hence

the two sides are equal.

Normal forms

So far, we have not assumed anything about our set of objects. In the vast majority of

cases in mathematics, the set of objects will have at least the structure of an additive

group, which means that you can add and, more importantly, subtract. In such cases,

in order to prove that A = B, we can prove the equivalent statement A− B = 0. A

normal form is a way of representing objects such that although an object may have

many “names” (i.e., c(A) is a set), every possible name corresponds to exactly one

object. In particular, you can tell right away whether it represents 0. For example,

every rational number can be written as a quotient of integers a/b, but in many ways.

So 15/10 and 30/20 represent the same entity. Recall that the set of rational numbers

is equipped with addition and subtraction, given by

a

b
+
c

d
=
ad+ bc

bd
,

a

b
− c

d
=
ad− bc

bd
.

1Number altered to protect the innocent.



8 Proof Machines

How can we prove an identity such as 13/10 + 1/5 = 29/20 + 1/20? All we have

to do is prove the equivalent identity 13/10 + 1/5 − (29/20 + 1/20) = 0. The left

side equals 0/20. We know that any fraction whose numerator is 0 stands for 0. The

proof machine for proving numerical identities A = B involving rational numbers is

thus to compute some normal form for A−B, and then check whether the numerator

equals 0.

The reader who prefers canonical forms might remark that rational numbers do

have a canonical form: a/b with a and b relatively prime. So another algorithm for

proving A = B is to compute normal forms for both A and B, then, by using the

Euclidean algorithm, to find the GCD of numerator and denominator on both sides,

and cancel out by them, thereby reducing both sides to “canonical form.”

1.3 Polynomial identities

Back in ninth grade, we were fascinated by formulas like (x+ y)2 = x2 + 2xy+ y2. It

seemed to us to be of such astounding generality. No matter what numerical values

we would plug in for x and y, we would find that the left side equals the right side.

Of course, to our jaded contemporary eyes, this seems to be as routine as 2 + 2 = 4.

Let us try to explain why. The reason is that both sides are polynomials in the two

variables x, y. Such polynomials have a canonical form

P =
∑

i≥0, j≥0

ai,jx
iyj,

where only finitely many ai,j are non-zero.

The Maple function expand translates polynomials to normal form (though one

might insist that x2 + y and y + x2 look different, hence this is really a normal form

only). Indeed, the easiest way to prove that A = B is to do expand(A-B) and see

whether or not Maple gives the answer 0.

Even though they are completely routine, polynomial identities (and by clearing

denominators, also identities between rational functions) can be very important. Here

are some celebrated ones:
(
a+ b

2

)2

− ab =

(
a− b

2

)2

, (1.3.1)

which immediately implies the arithmetic-geometric-mean inequality; Euler’s

(a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2) =

(aA + bB + cC + dD)2 + (aB − bA− cD + dC)2

+ (aC + bD − cA− dB)2 + (aD − bC + cB − dA)2, (1.3.2)



1.4 Proofs by example? 9

which shows that in order to prove that every integer is a sum of four squares it

suffices to prove it for primes; and

(a2
1 + a2

2)(b
2
1 + b22) − (a1b1 + a2b2)

2 = (a1b2 − a2b1)
2,

which immediately implies the Cauchy-Schwarz inequality in two dimensions.

About our terminal logos:

Throughout this book, whenever you see the computer terminal logo in the margin,

like this, and if its screen is white, it means that we are about to do something that is

very computer-ish, so the material that follows can be either skipped, if you’re mainly

interested in the mathematics, or especially savored, if you are a computer type.

When the computer terminal logo appears with a darkened screen, the normal

mathematical flow will resume, at which point you may either resume reading, or flee

to the next terminal logo, again depending, respectively, on your proclivities.

1.4 Proofs by example?

Are the following proofs acceptable?

Theorem 1.4.1 For all integers n ≥ 0,

n∑

i=1

i3 =

(
n(n + 1)

2

)2

.

Proof. For n = 0, 1, 2, 3, 4 we compute the left side and fit a polynomial of degree 4

to it, viz. the right side. 2

Theorem 1.4.2 For every triangle ABC, the angle bisectors intersect at one point.

Proof. Verify this for the 64 triangles for which ∠A = 10◦, 20◦, . . . , 80◦ and ∠B =

10◦, 20◦, . . . , 80◦. Since the theorem is true in these cases it is always true. 2

If a student were to present these “proofs” you would probably fail him. We

won’t. The above proofs are completely rigorous. To make them more readable, one

may add, in the first proof, the phrase: “Both sides obviously satisfy the relations

p(n) − p(n− 1) = n3; p(0) = 0,” and in the second proof: “It is easy to see that the

coordinates of the intersections of the pairs of angle bisectors are rational functions of

degrees ≤ 7 in a = tan(∠A/2) and b = tan(∠B/2). Hence if they agree at 64 points

(a, b), they are identical.”

The principle behind these proofs is that if our set of objects consists of polyno-

mials p(n) of degree ≤ L in n, for a fixed L, then for every distinct set of inputs, say



10 Proof Machines

{0, 1, . . . , L}, the vector c(p) = [p(0), p(1), . . . , p(L)] constitutes a canonical form. In

practice, however, to prove a polynomial identity it is just as easy to expand the poly-

nomials as explained above. Note that every identity of the form
∑n

i=1 q(i) = p(n) is

equivalent to the two routinely verifiable statements

p(n) − p(n− 1) = q(n) and p(0) = 0.

A complete computer-era proof of Theorem 1.4.1 would go like this: Begin by

suspecting that the sum of the first n cubes might be a fourth degree polynomial in

n. Then use your computer to fit a fourth degree polynomial to the data points (0, 0),

(1, 1), (2, 9), (3, 36), and (4, 100). This polynomial will turn out to be

p(n) = (n(n + 1)/2)2.

Now use your computer algebra program to check that p(n) − p(n − 1) − n3 is the

zero polynomial, and that p(0) = 0. 2

Theorem 1.4.2 is an example of a theorem in plane geometry. The fact that all

such theorems are routine, at least in principle, has been known since René Descartes.

Thanks to modern computer algebra systems, they are also routine in practice. More

sophisticated theorems may need Buchberger’s method of Gröbner bases [Buch76],

which is also implemented in Maple, but for which there exists a targeted implemen-

tation by the computer algebra system Macaulay [BaySti] (see also [Davi95], and

[Chou88]).

Here is the Maple code for proving Theorem 1.4.2 above.

#begin Maple Code

f:=proc(ta,tb):(ta+tb)/(1-ta*tb):end:

f2:=proc(ta);normal(f(ta,ta)):end:

anglebis:=proc(ta,tb):

eq1:=y=x*ta: eq2:=y=(x-1)*(-tb):

Eq1:=y=x*f2(ta): Eq2:=y=(x-1)*(-f2(tb)):

sol:=solve({Eq1,Eq2},{x,y}):
Cx:=subs(sol,x):Cy:=subs(sol,y):

sol:=solve({eq1,eq2},{x,y}):
ABx:=subs(sol,x):ABy:=subs(sol,y):

eq3:=(y-Cy)=(x-Cx)*(-1/f(ta,-tb)):

sol:=solve({eq1,eq3},{x,y}):
ACx:=subs(sol,x):ACy:=subs(sol,y):

print(normal(ACx),normal(ABx)):

print(normal(ACy),normal(ABy)):

normal(ACx -ABx),normal(ACy-ABy);



1.5 Trigonometric identities 11

end:

#end Maple code

To prove Theorem 1.4.2, all you have to do, after typing the above in a Maple

session, is type anglebis(ta,tb);, and if you get 0, 0, you will have proved the

theorem.

Let’s briefly explain the program. W.l.o.g. A = (0, 0), and B = (1, 0). Call

∠A = 2a, and ∠B = 2b. The inputs are ta := tan a and tb := tan b. All quantities are

expressed in terms of ta and tb and are easily seen to be rational functions in them.

The procedure f(ta,tb) implements the addition law for the tangent function:

tan(a + b) = (tan a+ tan b)/(1 − tan a tan b);

the variables eq1, eq2, eq3 are the equations of the angle bisectors at A, B, and

C respectively. (ABx,ABy) and (ACx,ACy) are the points of intersection of the

bisectors of ∠A and ∠B, and of ∠A and ∠C, respectively, and the output, the last

line, gives the differences. It should be 0,0.

In the files hex.tex and morley.tex at http://www.math.temple.edu/ ẼKHAD

there are Maple proofs of Pascal’s hexagon theorem and of Morley’s trisectors theo-

rem.

1.5 Trigonometric identities

The verification of any finite identity between trigonometric functions that involves

only the four basic operations (not compositions!), where the arguments are of the

form ax, for specific a’s, is purely routine.

• First Way: Let w := exp(ix), then cos x = (w + w−1)/2 and sin x = (w −
w−1)/(2i). So equality of rational expressions in trigonometric functions can be

reduced to equality of polynomial expressions in w. (Exercise: Prove, in this

way, that sin 2x = 2 sin x cos x.)

• Second Way: Whenever you see cosw, change it to
√

1 − sin2w, then replace

sinw, by z, say, then express everything in terms of arcsin. To prove the

resulting identity, differentiate it with respect to one of the variables, and use

the defining properties arcsin(z)′ = (1 − z2)−1/2, and arcsin(0) = 0.

Example 1.5.1. By setting sin a = x and sin b = y, we see that the identity

sin(a+ b) = sin a cos b + sin b cos a is equivalent to

arcsin x+ arcsin y = arcsin(x
√

1 − y2 + y
√

1 − x2).



12 Proof Machines

When x = 0 this is tautologous, so it suffices to prove that the derivatives of both

sides with respect to x are the same. This is a routinely verifiable algebraic identity.

Below is the short Maple Code that proves it. If its output is zero then the identity

has been proved.

f:=arcsin(x) + arcsin(y) :
g:= arcsin(x*(1-y**2)**( 1/2) + y*(1-x**2)**(1/2));
f1:=diff(f,x): g1:=diff(g,x):
normal(simplify(expand(g1**2))-f1**2);

2

1.6 Fibonacci identities

All Fibonacci number identities such as Cassini’s Fn+1Fn−1 −F 2
n = (−1)n (and much

more complicated ones), are routinely provable using Binet’s formula:

Fn :=
1√
5

((
1 +

√
5

2

)n

−

(
1 −

√
5

2

)n)
.

Below is the Maple code that proves Cassini’s formula.

F:=proc(n):
(((1+sqrt(5))/2)**n-((1-sqrt(5))/2)**n)/sqrt(5):
end:
Cas:=F(n+1)*F(n-1)-F(n)**2:
Cas:=expand(simplify(Cas)):
numer(Cas)/expand(denom(Cas));

1.7 Symmetric function identities

Consider the identity
(

n∑

i=1

ai

)2

=
n∑

i=1

a2
i + 2

∑

1≤i<j≤n

aiaj,

where n is an arbitrary integer. Of course, for every fixed n, no matter how big, the

above is a routine polynomial identity. We claim that it is purely routine, even for

arbitrary n, and that in order to verify it we can take, without loss of generality,

n = 2. The reason is that both sides are symmetric functions, and denoting, as usual,

pk :=
n∑

i=1

ak
i , ek :=

∑

1≤i1<···<ik≤n

ai1 · · ·aik ,



1.8 Elliptic function identities 13

the above identity can be rephrased as

p2
1 = p2 + 2e2.

Now it follows from the theory of symmetric functions (e.g., [Macd95]) that every

polynomial identity between the ei’s and pi’s (and the other bases for the space of

symmetric functions as well) is purely routine, and is true if and only if it is true for

a certain finite value of n, namely the largest index that shows up in the e’s and p’s.

This is also true if we have several sets of variables, ai, bi . . . , and by ‘symmetric’ we

mean that the polynomial remains unchanged when we simultaneously permute the

ai’s, bi’s, and so on. Thus the following identity, which implies the Cauchy-Schwarz

inequality for every dimension, is also routine:

n∑

i=1

a2
i

n∑

i=1

b2i − (
n∑

i=1

aibi)
2 =

∑

1≤i<j≤n

(aibj − ajbi)
2. (1.7.1)

For the study of symmetric functions we highly recommend John Stembridge’s

Maple package SF, which is available by ftp to ftp.math.lsa.umich.edu.

1.8 Elliptic function identities

One must [not] always invert

— Carl G. J. Jacobi [Shalosh B. Ekhad]

It is lucky that computers had not yet been invented in Jacobi’s time. It is possible

that they would have prevented the discovery of one of the most beautiful theories

in the whole of mathematics: the theory of elliptic functions, which leads naturally

to the theory of modular forms, and which, besides being gorgeous for its own sake

[Knop93], has been applied all over mathematics (e.g., [Sarn93]), and was crucial in

Wiles’s proof of Fermat’s last theorem.

Let’s engage in a bit of revisionist history. Suppose that the trigonometric func-

tions had not been known before calculus. Then in order to find the perimeter of a

quarter-circle, we would have had to evaluate:

∫ 1

0

√
1 +

(
dy

dx

)2

,

where y =
√

1 − x2. This turns out to be
∫ 1

0

dx√
1 − x2

, (1.8.1)



14 Proof Machines

which may be taken as the definition of π/2. We can call this the complete circular

integral. More generally, suppose that we want to know F (z), the arc length of the

circle above the interval [0, z], for general z. Then the integral is the incomplete

circular integral

F (z) :=

∫ z

0

dx√
1 − x2

, (1.8.2)

which may also be defined by F ′(z) = (1 − z2)−1/2, F (0) = 0. Then it is possible

that some genius would have come up with the idea of defining sinw := F−1(w),

cosw := F−1(π/2−w), and realized that sin z and cos z are much easier to handle, and

to compute with, than arcsin z. Furthermore, that genius would have soon realized

how to express the sine and cosine functions in terms of the exponential function.

Using its Taylor expansion, which converges very rapidly, the aforementioned genius

would have been able to compile a table of the sine function, from which automatically

would have resulted a table of the function of primary interest, F (z) above (which in

real life is called “arcsine” or the “inverse sine” function.)

Now let’s go back to real history. Consider the analogous problem for the arc

length of the ellipse. This involves an integral of the form

F (z) :=

∫ z

0

dx√
(1 − x2)(1 − k2x2)

, (1.8.3)

where k is a parameter ∈ [0, 1]. The study of these integrals was at the frontier of

mathematical research in the first half of the nineteenth century. Legendre struggled

with them for a long time, and must have been frustrated when Jacobi had the great

idea of inverting F (z). In analogy with the sine function, Jacobi called F−1(w),

sn(w), and also defined cn(w) :=
√

1 − sn2(w), and dn(w) :=
√

1 − k2 sn2(w). These

are the (once) famous Jacobi elliptic functions. Jacobi realized that the counterparts

of the exponential function are the so-called Jacobi theta functions, and he was able

to express his elliptic functions in terms of his theta functions. His theta functions,

one of which is

θ3(z) = 1 + 2
∞∑

n=1

qn2

cos(2nz),

have series which converge very rapidly when q is small. With the aid of his fa-

mous transformation formula (see, e.g., [Bell61]) he was always able to compute his

theta functions with very rapidly converging series. This enabled him (or his human

computers) to compile highly accurate tables of his elliptic functions, and hence, of

course, of the incomplete elliptic integral F (z). Much more importantly, it led to a

beautiful theory, which is still flourishing.

If Legendre’s and Jacobi’s contemporaries had had computers, it would have been

relatively easy for them to have used numerical integration in order to compile a



1.8 Elliptic function identities 15

table of F (z), and most of the motivation to invert would have gone. Had they had

computer algebra, they would have also realized that all identities between elliptic

functions are routine, and that it is not necessary to introduce theta functions. Take

for example the addition formula for sn(w) (e.g., [Rain60], p. 348):

sn(u+ v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1 − k2 sn2(u) sn2(v)
. (1.8.4)

Putting sn(u) = x, sn(v) = y, and denoting, as above, sn−1 by F , we have that (1.8.4)

is equivalent to

F (x) + F (y) = F

(
x
√

1 − y2
√

1 − k2y2 + y
√

1 − x2
√

1 − k2x2

1 − k2x2y2

)
. (1.8.5)

This is routine. Indeed, when x = 0, both sides equal F (y), and differentiating both

sides with respect to x, using the chain rule and the defining property

F ′(z) =
1√

(1 − z2)(1 − k2z2)
,

we get a finite algebraic identity.

If the following Maple code outputs a 1 (it did for us) then it would be a completely

rigorous proof of Jacobi’s addition formula for the sn function. Try to work this out

by hand, and see that it would have been a formidable task for any human, even a

Jacobi or Legendre.

lef:=F(x)+F(y):
rig:=
F((x *sqrt(1-y**2)*sqrt(1-k**2*y**2)
+y*sqrt(1-x**2)*sqrt(1-k**2*x**2))/(1-k**2*x**2*y**2)):
lef1:=1/sqrt((1-x**2)*(1-k**2*x**2)):rig1:=diff(rig,x);
g:=z->1/sqrt(1-z**2)/sqrt(1-k**2*z**2):
rig1:=subs(D(F)=g,rig1);
gu:=normal((rig1/lef1)**2);
expand(numer(gu))/expand(denom(gu));



16 Proof Machines



Chapter 2

Tightening the Target

2.1 Introduction

In the next several chapters we are going to narrow the focus of the discussion from the

whole world of identities to the kind of identities that tend to occur in combinatorial

mathematics: hypergeometric identities. These are relations in which typically a sum

of some huge expression involving binomial coefficients, factorials, rational functions

and power functions is evaluated, and it miraculously turns out to be something very

simple.

We will show you how to evaluate and to prove such sums entirely mechanically,

i.e., “no thought required.” Your computer will do the work. Everybody knows that

computers are fast. In this book we’ll try to show you that in at least one field of

mathematics they are not only fast but smart, too.

What that means is that they can find very pretty proofs of very difficult theo-

rems in the field of combinatorial identities. The computers do that by themselves,

unassisted by hints or nudges from humans.

It means also that not only can your PC find such a proof, but you will be able

to check the proof easily. So you won’t have to take the computer’s word for it. That

is a very important point. People get unhappy when a computer blinks its lights for

a while and then announces a result, if people cannot easily check the truth of the

result for themselves. In this book you will be pleased to note that although the

computers will have to blink their lights for quite a long time, when they are finished

they will give to us people a short certificate from which it will be easy to check the

truth of what they are claiming.

Computers not only find proofs of known identities, they also find completely new

identities. Lots of them. Some very pretty. Some not so pretty but very useful. Some

neither pretty nor useful, in which case we humans can ignore them.



18 Tightening the Target

The body of work that has resulted in these automatic “summation machines”

is very recent, and it has had contributions from several researchers. Our discussion

will be principally based on the following:

• [Fase45] is the Ph.D. dissertation of Sister Mary Celine Fasenmyer, in 1945.

It showed how recurrences for certain polynomial sequences could be found

algorithmically. (See Chapter 4.)

• [Gosp78], by R. W. Gosper, Jr., is the discovery of the algorithmic solution of

the problem of indefinite hypergeometric summation (see Chapter 5). Such a

summation is of the form f(n) =
∑n

k=0 F (k), where F is hypergeometric.

• [Zeil82], of Zeilberger, recognized that Sister Celine’s method would also be the

basis for proving combinatorial identities by recurrence. (See Chapter 4.)

• [Zeil91, Zeil90b], also by Zeilberger, developed his “creative telescoping” algo-

rithm for finding recurrences for combinatorial summands, which greatly accel-

erated the one of Sister Celine. (See Chapter 6.)

• [WZ90a], of Wilf and Zeilberger, finds a special case of the above which enables

the discovery of new identities from old as well as very short and elegant proofs.

(See Chapter 7.)

• [WZ92a], also by Wilf and Zeilberger, generalizes the methods to multisums,

q-sums, etc., as well as giving proofs of the fundamental theorems and explicit

estimates for the orders of the recurrences involved. (See Chapter 4.)

• [Petk91] is the Ph.D. thesis of Marko Petkovšek, in 1991. In it he discovered

the algorithm for deciding if a given recurrence with polynomial coefficients has

a “simple” solution, which, together with the algorithms above, enables the

automated discovery of the simple evaluation of a given definite sum, if one

exists, or a proof of nonexistence, if none exists (see Chapter 8). A definite

hypergeometric sum is one of the form f(n) =
∑∞

k=−∞ F (n, k), where F is

hypergeometric.

Suppose you encounter a large sum of factorials and binomial coefficients and

whatnot. You would like to know whether or not that sum can be expressed in a

much simpler way, say as a single term that involves factorials, etc. In this book we

will show you how several recently developed computer algorithms can do the job for

you. If there is a simple form, the algorithms will find it. If there isn’t, they will

prove that there isn’t.



2.1 Introduction 19

In fact, the previous paragraph is probably the most important single message of

this book, so we’ll say it again:

The problem of discovering whether or not a given hypergeometric sum is express-

ible in simple “closed form,” and if so, finding that form, and if not, proving that it is

not, is a task that computers can now carry out by themselves, with guaranteed success

under mild hypotheses about what a “hypergeometric term” is (see Section 4.4) and

what a “closed form” is (See page 143, where it is essentially defined to mean a linear

combination of a fixed number of hypergeometric terms).

So if you have been working on some kind of mammoth sum or multiple sum, and

have been searching for ways to simplify it, after long hours of fruitless labor you

might feel a little better if you could be told that the sum simply can’t be simplified.

Then at least you would know that it wasn’t your fault. Nobody will ever be able to

simplify that expression, within a certain set of conventions about what simplification

means, anyway.

We will present the underlying mathematical theory of these methods, the princi-

pal theorems and their proofs, and we also include a package of computer programs

that will do these tasks (see Appendix A).

The main theme that runs through these methods is that of recurrence. To find

out if a sum can be simplified, we find a recurrence that the sum satisfies, and

we then either solve the recurrence explicitly, or else prove that it can’t be solved

explicitly, under a very reasonable definition of “explicit.” Your computer will find

the recurrence that a sum satisfies (see Chapter 6), and then decide if it can be solved

in a simple form (see Chapter 8).

For instance, a famous old identity states that the sum of all of the binomial

coefficients of a given order n is 2n. That is, we have

∑

k

(
n

k

)
= 2n.

The sum of the squares of the binomial coefficients is something simple, too:

∑

k

(
n

k

)


=

(
2n

n

)
.

Range convention: Please note that, throughout this book, when ranges of
summation are not specified, then the sums are understood to extend over all
integers, positive and negative. In the above sum, for instance, the binomial
coefficient

(n
k

)
vanishes if k < 0 or k > n ≥ 0 (assuming n is an integer), so

only finitely many terms contribute.



20 Tightening the Target

But what about the sum of their cubes? For many years people had searched for a

simple formula in this case and hadn’t found one. Now, thanks to newly developed

computer methods, it can be proved that no “simple” formula exists. This is done

by finding a recurrence formula that the sum of the cubes satisfies and then showing

that the recurrence has no “simple” solution (see Theorem 8.8.1 on page 162).

The definition of the term “simple formula” will be made quite precise when

we discuss this topic in more depth in Chapter 8. By the way, a recurrence that

f(n) =
∑

k

(
n
k

)3
satisfies turns out to be

8(n+ 1)2f(n) + (7n2 + 21n+ 16)f(n+ 1) − (n+ 2)2f(n + 2) = 0.

Your computer will find that for you. All you have to do is type in the summand
(

n
k

)3
.

After finding the recurrence your computer will then prove that it has no solution in

“closed form,” in a certain precise sense1.

Would you like to know how all of that is done? Read on.

The sum
∑

k

(
n
k

)3
, of course, is just one of many examples of formulas that can be

treated with these methods.

If you aren’t interested in finding or proving an identity, you might well be inter-

ested in finding a recurrence relation that an unknown sum satisfies. Or in deciding

whether a given linear recurrence relation with polynomial coefficients can be solved

in some explicit way. In that case this book has some powerful tools for you to use.

This book contains both mathematics and software, the former being the theoret-

ical underpinnings of the latter. For those who have not previously used them, the

programs will likely be a revelation. Imagine the convenience of being able to input

a sum that one is interested in and having the program print out a simple formula

that evaluates it! Think also of inputting a complicated sum and getting a recurrence

formula that it satisfies, automatically.

We hope you’ll enjoy both the mathematics and the software. Taken together,

they are the story of a sequence of very recent developments that have changed the

field on which the game of discrete mathematics is played.

We think about identities a little differently in this book. The computer methods

tend in certain directions that seem not to come naturally to humans. We illustrate

the thought processes by a small example.

Example 2.1.1. Define e(x) to be the famous series
∑

n≥0 x
n/n!. We will prove

that e(x + y) = e(x)e(y) for all x and y.

First, the series converges for all x, by the ratio test, so e(x) is well defined for

all x, and e′(x) = e(x). Next, instead of trying to prove that the two sides of the

identity are equal, let’s prove that their ratio is 1 (that will be a frequent tactic in

1See page 143.



2.2 Identities 21

this book). Not only that, we’ll prove that the ratio is 1 by differentiating it and

getting 0 (another common tactic here).

So define the function F (x, y) = e(x + y)e(−x)e(−y). By direct differentiation

we find that DxF = DyF = 0. Thus F is constant. Set x = y = 0 to find that the

constant is 1. Thus e(x + y)e(−x)e(−y) = 1 for all x, y. Now let y = 0 to find that

e(−x) = 1/e(x). Thus e(x + y) = e(x)e(y) for all x, y, as claimed. 2

We urge you to have available one of several commercially available major-league

computer algebra programs while you’re reading this material. Four of these, any

one of which would certainly fill the bill, are Macsyma2, Maple3, Mathematica4,

or Axiom5. What one needs from such programs are a large number of high level

mathematical commands and a built-in programming language. In this book we will

for the most part use Maple and Mathematica, and we will also discuss some public

domain packages that are available.

2.2 Identities

An identity is a mathematical equation that states that two seemingly different things

are in fact the same, at least under certain conditions. So “2 + 2 = 4” is an identity,

though perhaps not a shocker. So is “(x+1)2 = 1+2x+x2,” which is a more advanced

specimen because it has a free parameter “x” in it, and the statement is true for all

(real, complex) values of x.

There are beautiful identities in many branches of mathematics. Number theory,

for instance, is one of their prime habitats:

958004 + 2175194 + 4145604 = 4224814

∑

k\n

µ(k) =

{
1, if n = 1;

0, if n ≥ 2,

∏

p

(1 − p−s)−1 =
∑

n≥1

1

ns
(Re (s) > 1),

det ((gcd(i, j))n
i,j=1) = φ(1)φ(2) · · ·φ(n),

1 +
∞∑

m=1

xm2

(1 − x)(1 − x2) · · · (1 − xm)
=

∞∏

m=0

1

(1 − x5m+1)(1 − x5m+4)
.

2Macsyma is a product of Symbolics, Inc.
3Maple is a product of Waterloo Maple Software, Inc.
4Mathematica is a product of Wolfram Research, Inc.
5Axiom is a product of NAG (Numerical Algorithms Group), Ltd.



22 Tightening the Target

Combinatorics is one of the major producers of marvelous identities:

n∑

j=0

(
n

j

)


=

(
2n

n

)
, (2.2.1)

∑

i+j+k=n

(
i+ j

i

)(
j + k

j

)(
k + i

k

)
=
∑

0≤j≤n

(
2j

j

)
, (2.2.2)

exp

{∑

m≥1

mm−1 t
m

m!

}
= 1 +

∑

n≥1

(n+ 1)n−1 t
n

n!
, (2.2.3)

2m∑

s=0

(−1)s

(
2m

s

)


= (−1)m (3m)!

(m!)3
. (2.2.4)

Beautiful identities have often stimulated mathematicians to find correspondingly

beautiful proofs for them; proofs that have perhaps illuminated the combinatorial

or other significance of the equality of the two members, or possibly just dazzled us

with their unexpected compactness and elegance. It is a fun activity for people to try

to prove identities. We have been accused of taking the fun out of it by developing

these computer methods6 but we hope that we have in fact only moved the fun to a

different level.

Here we will not, of course, be able to discuss all kinds of identities. Far from

it. We are going to concentrate on one family of identities, called hypergeometric

identities, that have been of great interest and importance, and include many of

the famous binomial coefficient identities of combinatorics, such as equations (2.2.1),

(2.2.2) and (2.2.4) above.

The main purpose of this book is to explain how the discoveries and the proofs of

hypergeometric identities have been very largely automated. The book is not primarily

about computing; it is the mathematics that underlies the computing that will be the

main focus. Automating the discovery and proof of identities is not something that

is immediately obvious as soon as you have a large computer. The theoretical devel-

opments that have led to the automation make what we believe is a very interesting

story, and we would like to tell it to you.

The proof theory of these identities has gone through roughly three phases of

evolution.

At first each identity was treated on its own merits. Combinatorial insights proved

some, generating functions proved others, special tricks proved many, but unified

methods of wide scope were lacking, although many of the special methods were

ingenious and quite effective.

6See How the Grinch stole mathematics [Cipr89].



2.2 Identities 23

In the next phase it was recognized that a very large percentage of combinatorial

identities, the ones that involve binomial coefficients and factorials and such, were

in fact special cases of a few very general hypergeometric identities. The theory

of hypergeometric functions was initiated by C. F. Gauss early in the nineteenth

century, and in the course of developing that theory some very general identities were

found. It was not until 1974, however, that the recognition mentioned above occurred.

There was, therefore, a considerable time lag between the development of the “new

technology” of hypergeometric identities, and its “application” to binomial coefficient

sums of combinatorics.

A similar, but much shorter, time lag took place before the third phase of the

proof theory flowered. In the 1940s, the main ideas for the automated discovery of

recurrence relations for hypergeometric sums were discovered by Sister Mary Celine

Fasenmyer (see Chapter 4). It was not until 1982 that it was recognized, by Doron

Zeilberger [Zeil82], that these ideas also provided tools for the automated proofs of

hypergeometric identities. The essence of what he recognized was that if you want to

prove an identity
∑

k

summand(n, k) = answer(n) :

then you can

• Find a recurrence relation that is satisfied by the sum on the

left side.

• Show that answer(n) satisfies the same recurrence, by substitu-

tion.

• Check that enough corresponding initial values of both sides are

equal to each other.

With that realization the idea of finding recurrence relations that sums satisfy was

elevated to the first priority task in the analysis of identities. As the many facets of

that realization have been developed, the emergence of powerful high level computer

algebra programs for personal computers and workstations has brought the whole

chain of ideas to your own desktop. Anyone who has access to such equipment can

use the programs of this book, or others that are available, to prove and discover

many kinds of identities.



24 Tightening the Target

2.3 Human and computer proofs; an example

In this section we are going to take one identity and illustrate the evolution of proof

theory by proving it in a few different ways. The identity that we’ll use is

∑

k

(
n

k

)


=

(
2n

n

)
. (2.3.1)

First we present a purely combinatorial proof. There are
(

n
k

)
ways to choose k

letters from among the letters 1, 2, . . . , n. There are
(

n
n−k

)
ways to choose n−k letters

from among the letters n+ 1, . . . , 2n. Hence there are
(

n
k

)(
n

n−k

)
=
(

n
k

)2
ways to make

such a pair of choices. But every one of the
(
2n
n

)
ways of choosing n letters from the

2n letters 1, 2, . . . , 2n corresponds uniquely to such a pair of choices, for some k. 2

We must pause to remark that that one is a really nice proof. So as we go through

this book whose main theme is that computers can prove all of these identities, please

note that we will never7 claim that computerized proofs are better than human ones,

in any sense. When an elegant proof exists, as in the above example, the computer

will be hard put to top it. On the other hand, the contest will be close even here,

because the computerized proof that’s coming up is rather elegant too, in a different

way.

To continue, the pre-computer proof of (2.3.1) that we just gave was combinatorial,

or bijective. It found the combinatorial interpretations of both sides of the identity,

and showed that they both count the same thing.

Here’s another vintage proof of the same identity. The coefficient of xr in (1+x)a+b

is obviously
(

a+b
r

)
. On the other hand, the coefficient of xr in (1 + x)a(1 + x)b is, just

as obviously,
∑

k

(
a
k

)(
b

r−k

)
, and these two expressions for the same coefficient must be

equal. Now take a = b = r = n. 2

That was a proof by generating functions, another of the popular tools used by

the species Homo sapiens for the proof of identities before the computer era.

Next we’ll show what a computerized proof of the same identity looks like. We

preface it with some remarks about standardized proofs and certificates.

Suppose we’re going to develop machinery for proving some general category of

theorems, a category that will have thousands of individual examples. Then it would

clearly be nice to have a rather standardized proof outline, one that would work on all

of the thousands of examples. Now somehow each example is different. So the proofs

have to be a little bit different as we pass from one of the thousands of examples to

another. The trick is to get the proofs to be as identical as possible, differing in only

some single small detail. That small detail will be called the certificate. Since the

7Well, hardly ever.



2.3 Human and computer proofs; an example 25

rest of the proof is standard, and not dependent on the particular example, we will be

able to describe the complete proof for a given example just by describing the proof

certificate.

In the case of proving binomial coefficient identities, the WZ method is a stan-

dardized proof procedure that is almost independent of the particular identity that

you’re trying to prove. The only thing that changes in the proof, as we go from one

identity to another, is a certain rational function R(n, k) of two variables, n and k.

Otherwise, all of the proofs are the same.

So when your computer finds a WZ proof, it doesn’t have to recite the whole thing;

it needs to describe only the rational function R(n, k) that applies to the particular

identity that you are trying to prove. The rest of the proof is standardized. The

rational function R(n, k) certifies the proof.

Here is the standardized WZ proof algorithm:

1. Suppose that you wish to prove an identity of the form
∑

k t(n, k) = rhs(n),

and let’s assume, for now, that for each n it is true that the summand t(n, k)

vanishes for all k outside of some finite interval.

2. Divide through by the right hand side, so the identity that you wish to prove

now reads as
∑

k F (n, k) = 1, where F (n, k) = t(n, k)/rhs(n).

3. Let R(n, k) be the rational function that the WZ method provides as the proof

of your identity (we’ll discuss how to find this function in Chapter 7). Define a

new function G(n, k) = R(n, k)F (n, k).

4. You will now observe that the equation

F (n+ 1, k) − F (n, k) = G(n, k + 1) −G(n, k)

is true. Sum that equation over all integers k, and note that the right side

telescopes to 0. The result is that
∑

k

F (n+ 1, k) =
∑

k

F (n, k),

hence we have shown that
∑

k F (n, k) is independent of n, i.e., is constant.

5. Verify that the constant is 1 by checking that
∑

k F (0, k) = 1. 2

The rational function R(n, k) is the key that turns the lock. The lock is the proof

outlined above. If you want to prove an identity, and you have the key, then just put

it into the lock and watch the proof come out.



26 Tightening the Target

We’re going to illustrate the method now with a few examples.

Example 2.3.1. First let’s try the venerable identity
∑

k

(
n
k

)
= 2n. The key to

the lock, in this case, is the rational function R(n, k) = k/(2(k − n − 1)). Please

remember that if you want to know how to find the key, for a given identity, you’ll

have to wait at least until page 124. For now we’re going to focus on how to use the

key, rather than on how to find it.

We’ll follow the standardized proof through, step by step.

In Step 1, our term t(n, k) is
(

n
k

)
, and the right hand side is rhs(n) = 2n.

For Step 2, we divide through by 2n and find that the standardized summand is

F (n, k) =
(

n
k

)
2−n, and we now want to prove that

∑
k F (n, k) = 1, for this F .

In Step 3 we use the key. We take our rational function R(n, k) = k/(2(k−n−1)),

and we define a new function

G(n, k) = R(n, k)F (n, k) =
k

2(k − n− 1)

(
n

k

)
2−n

= − kn! 2−n

2(n + 1 − k)k! (n− k)!
= −

(
n

k − 1

)
2−n−1.

Step 4 informs us that we will have now the equation F (n + 1, k) − F (n, k) =

G(n, k + 1) −G(n, k). Let’s see if that is so. In other words, is it true that
(
n+ 1

k

)
2−n−1 −

(
n

k

)
2−n = −

(
n

k

)
2−n−1 +

(
n

k − 1

)
2−n−1?

Well, at this point we have arrived at a situation that will be referred to throughout

this book as a “routinely verifiable” identity. That phrase means roughly that your

pet chimpanzee could check out the equation. More precisely it means this. First

cancel out all factors that look like cn or ck (in this case, a factor of 2−n) that can be

cancelled. Then replace every binomial coefficient in sight by the quotient of factorials

that it represents. Finally, cancel out all of the factorials by suitable divisions, leaving

only a polynomial identity that involves n and k. After a few more strokes of the pen,

or keys on the keyboard, this identity will reduce to the indisputable form 0 = 0, and

you’ll be finished with the “routine verification.”

In this case, after multiplying through by 2n, and replacing all of the binomial

coefficients by their factorial forms, we obtain

(n+ 1)!

2k! (n+ 1 − k)!
− n!

k! (n− k)!
= − n!

2k! (n− k)!
+

n!

2(k − 1)! (n− k + 1)!

as the equation that is to be “routinely verified.” To clear out all of the factorials we

multiply through by k! (n+ 1 − k)!/n!, and get

n+ 1

2
− (n + 1 − k) = −n + 1 − k

2
+
k

2
,



2.4 A Mathematica session 27

which is really trivial.

In Step 5 of the standardized WZ algorithm we must check that
∑

k F (0, k) = 1.

But

F (0, k) =

(
0

k

)
=

{
1, if k = 0;

0, otherwise,

and we’re all finished (that’s also the last time we’ll do a routine verification in full).

2

Example 2.3.2.

In an article in the American Mathematical Monthly 101 (1994), p. 356, it was

necessary to prove that
∑

k F (n, k) = 1 for all n, where

F (n, k) =
(n− i)! (n− j)! (i− 1)! (j − 1)!

(n− 1)! (k − 1)! (n− i− j + k)! (i− k)! (j − k)!
. (2.3.2)

The complete proof is given by the rational function R(n, k) = (k − 1)/n (it is

noteworthy that, in this example, R(n, k) does not depend on i or j). 2

2.4 A Mathematica session

For our next example of the use of the WZ proof algorithm we’ll take some of the

pain out by using Mathematica to do the routine algebra.

To begin, let’s try to simplify some expressions that contain factorials. If we type

in

In[1] := (n + 1)!/n!

then what we get back is

Out[1] =
(1 + n)!

n!
,

which doesn’t help too much. On the other hand if we enter

In[2] := Simplify[(n + 1)!/n!]

then we also get back

Out[2] =
(1 + n)!

n!
,

so we must be doing something wrong. Well, it turns out that if you would really like

to simplify ratios of factorials then the thing to do is to read in the package RSolve,

because in that package there lives a command FactorialSimplify, which does the

simplification that you would like to see.



28 Tightening the Target

So let’s start over, this time with

In[1] :=<< DiscreteMath‘RSolve‘.

Next we ask for

In[2] := FactorialSimplify[(n + 1)!/n!]

and we get

Out[2] = 1 + n,

which is what we wanted.

Let’s now verify the WZ proof of the identity
∑

k

(
n
k

)2
=
(
2n
n

)
, of (2.3.1). Our

standardized summand, obtained by dividing the original identity by its right hand

side, is F (n, k) = n!4/(k!2(n − k)!2(2n)!). The rational function certificate (the key

to the lock) for this identity is

R(n, k) = − k2(3n+ 3 − 2k)

2(n + 1 − k)2(2n+ 1)
.

So we ask Mathematica to create the function G(n, k) = R(n, k)F (n, k). To do this

we first define R,

In[3]:= r[n_ ,k_ ] := -k^2 (3n+3-2k)/(2(n+1-k)^2 (2n+1)),

and then we define the pair (F,G) of functions that occur in the WZ method by

typing

In[4]:= f[n_ ,k_ ]:=n!^4/(k!^2 (n-k)!^2 (2n)!)

In[5]:= g[n_ ,k_ ]:=r[n,k] f[n,k].

To do the routine verification, you now need only ask for

In[6]:= FactorialSimplify[f[n+1,k]-f[n,k]-g[n,k+1]+g[n,k]],

and after a few moments of reflection, you will be rewarded with

Out[6]= 0

which is the name of the game. 2



2.5 A Maple session 29

2.5 A Maple session

Now we’re going to try the same thing in Maple. First we try to learn to simplify

factorial ratios, so we hopefully type (n + 1)!/n!;, and the system responds by giving

us back our input unaltered. So it needs to be coaxed. A good way to coax it is with

expand((n + 1)!/n!);

and we’re rewarded with the n+ 1 that we were looking for. So Maple’s

expand();

command is the way to simplify factorial expressions (in some versions of Maple this

command does not work properly on quotients of products of factorials in which the

factors are raised to powers).

Now let’s tell Maple the rational function certificate R(n, k),

r := (n, k)− > −kˆ2 ∗ (3 ∗ n + 3− 2 ∗ k)/(2 ∗ (n + 1− k)ˆ2 ∗ (2 ∗ n + 1));

and then we input our standardized summand F (n, k) as

f := (n, k)− > n!ˆ4/(k!ˆ2 ∗ (n− k)!ˆ2 ∗ (2 ∗ n)!);

We ask Maple to define the function G(n, k) = R(n, k)F (n, k),

g := (n, k)− > r(n, k) ∗ f(n, k);

Now there’s nothing to do but see if the basic WZ equation is satisfied. It is best not

to ask just for

f(n + 1, k) − f(n, k) − g(n, k + 1) + g(n, k),

and hope that it will vanish, because a large distributed expression will result. The

best approach seems to be to divide the whole expression by f(n, k), then expand it

to get rid of all of the factorials , and then simplify it, in order to collect terms. So

the recommended command to Maple would be

simplify(expand((f(n + 1, k) − f(n, k) − g(n, k + 1) + g(n, k))/f(n, k)));

which would return the desired output of 0.



30 Tightening the Target

2.6 Where we are and what happens next

We have so far discussed the following two pairs, each consisting of an identity and

its WZ proof certificate:

∑

k

(
n

k

)
= 2n, R(n, k) =

k

2(k − n− 1)
;

∑

k

(
n

k

)


=

(
2n

n

)
, R(n, k) = − k2(3n+ 3 − 2k)

2(n+ 1 − k)2(2n+ 1)
.

So what we can expect from computer methods are short, even one-line, proofs of

combinatorial identities, in standardized format, as well as finding the right hand side

if it is unknown. Human beings might have a great deal of trouble in finding one of

these proofs, but the verification procedure, as we have seen, is perfectly civilized,

and involves only a medium amount of human labor.

In Chapter 3 we will meet the hypergeometric database. There we will learn how

to take identities that involve binomial coefficients and factorials and write them in

standard hypergeometric form. We will see that this gives us access to a database of

theorems and identities, and we will learn how to interrogate that database. We will

also see some of its limitations.

Following this are five consecutive chapters that deal with the fundamental algo-

rithms of the subject of computer proofs of identities.

Chapter 4 describes the original algorithm of Sister Mary Celine Fasenmyer. She

developed, in her doctoral dissertation of 1945, the first computerizable method for

finding recurrence relations that are satisfied by sums. We also prove the validity of

her algorithm here, since that fact underlies the later developments.

Chapter 5 is about the fundamental algorithm of Gosper, which is to summation

as finding antiderivatives is to integration. This algorithm allows us to do indefinite

hypergeometric sums in simple closed form, or it furnishes a proof of impossibility if,

in a given case, that cannot be done. Beyond its obvious use in doing indefinite sums,

it has several nonobvious uses in executing the WZ method, in finding recurrences

for definite sums, and even for finding the right hand side of a definite sum whose

evaluation we are seeking.

Chapter 6 deals with Zeilberger’s algorithm (“creative telescoping”). Again, this

is an algorithm that finds recurrence relations that are satisfied by sums. It is in

most cases much faster than the method of Sister Celine, and it has made possible a

whole generation of computerized proofs of identities that were formerly inaccessible

to these ideas. It is the cornerstone of the methods that we present for finding out if

a given combinatorial sum can be simplified, and it is guaranteed to work every time.



2.7 Exercises 31

Chapter 7 contains a complete discussion of the “WZ phenomenon.” This method,

which we have already previewed here, just to get you interested, provides by far the

most compact certifications of combinatorial identities, though it does not exist in

the full generality of the methods of Chapters 4 and 6. When it does exist, however,

which is very often, it gives us the unique opportunity to find new identities, as well

as to prove old ones. We will see here how to do that, and give some examples of the

treasures that can be found in this way.

In Chapter 8 we deal with the question of solving linear recurrences with poly-

nomial coefficients. In all of the examples earlier in the book, the computer analysis

of an identity will produce just such a recurrence that the sum satisfies. If we want

to prove that a certain right hand side is the correct one, then we just check that

the claimed right hand side satisfies the same recurrence and we check a few initial

conditions.

But suppose we don’t know the right hand side. Then we have a recurrence with

polynomial coefficients that our sum satisfies, and we want to know if it has, in a

certain sense, a simple solution. If the recurrence happens to be of first order, we’re

finished. But what if it isn’t? Then we need to know how to recognize when a

higher order recurrence has simple solutions of a certain form, and when it does not.

The fundamental algorithm of this subject, due to Petkovšek, is in Chapter 8 (see

page 154).

2.7 Exercises

1. Let f(n) = (3n + 1)! (2n − 5)!/(n + 2)!2. Use a computer algebra program to

exhibit
3∑

k=0

f(n− k)

f(n)

explicitly as a quotient of two polynomials in n.

2. Use a computer algebra program to check the following pairs. Each pair consists

of an identity and its WZ proof certificate R(n, k):

∑

k

(−1)k

(
n

k

)
x

k + x
=

1(
x+n

n

) , k(k + x)

(n+ 1)(k − n− 1)

∑

k

(
n

k

)(
x

k + r

)
=

(
n+ x

n + r

)
,

k(k + r)

(n+ x + 1)(k − n− 1)

∑

k

(
x+ 1

2k + 1

)(
x− 2k

n− k

)
22k+1 =

(
2x+ 2

2n+ 1

)
,

k(2k + 1)(x− 2n− 1)

(k − n− 1)(2n− 2x− 1)(n− x)



32 Tightening the Target

(1 − 2n)
∑

k

(−1)k

(
n
k

)
4k

(
2k
k

) = 1,
k(2k − 1)

(2n− 1)(k − n− 1)
.

3. For each of the four parts of Problem 2 above, write out the complete proof of

the identity, using the full text of the standardized WZ proof together with the

appropriate rational function certificate.

4. For each of the parts of Problem 2 above, say exactly what the standardized

summand F (n, k) is, and in each case evaluate

lim
k→∞

F (n, k) and lim
n→∞

F (n, k).

5. Write a procedure, in your favorite programming language, whose input will

be the summand t(n, k), and the right hand side rhs(n), of a claimed identity∑
k t(n, k) = rhs(n), as well as a claimed WZ proof certificate R(n, k). Output

of the procedure should be “The claimed identity has been verified,” or “Error;

the claimed identity has not been proved,” depending on how the verification

procedure turns out. Test your program on the examples in Problem 2 above.

Be sure to check the initial conditions as well as the WZ equation.



Chapter 3

The Hypergeometric Database

3.1 Introduction

In this book, which is primarily about sums, hypergeometric sums occupy center stage.

Roughly (see the formal definition below), a hypergeometric sum is one in which

the summand involves only factorials, polynomials, and exponential functions of the

summation variable. This class includes multitudes of sums that contain binomial

coefficients and factorials, including virtually all of the familiar ones that have been

summed in closed form.1

The fact is that many hypergeometric sums can be expressed in simple closed

form, and many others can be revealed to be equal to some other, seemingly different,

hypergeometric sum. Whenever this happens we have an identity. Typically, when

we look at such an identity we will see an equation that has on the left hand side

a sum in which the summand contains a number of factorials, binomial coefficients,

etc., and has on the right a considerably simpler function that is equal to the sum on

the left. In Chapter 2 we saw a few examples of such identities. If you would like to

see what a complicated identity looks like, try this one, which holds for integer n:

∑

r,s

(−1)n+r+s

(
n

r

)(
n

s

)(
n + r

r

)(
n + s

s

)(
2n− r − s

n

)
=
∑

k

(
n

k

)


.

In dealing with these sums it may be important to have a standard notation and

classification. There is such a wealth of information available now that it is important

to have systematic ways of searching the literature for information that may help us

to deal with a particular sum.

So our main task in this chapter will be to show how a given sum is described

by using standardized hypergeometric notation. Once we have that in hand, it will

1See page 143 for a precise definition of “closed form.”



34 The Hypergeometric Database

be much easier to consult databases of known information about such sums. An

entry in such a database is a statement to the effect that a certain hypergeometric

series is equal to a certain much simpler expression, for all values of the various free

parameters that appear, or at least for all values in a suitably restricted range.

We must emphasize that the main thrust of this book is away from this approach,

to look instead at an alternative to such database lookups. We will develop com-

puterized methods of such generality and scope that instead of attempting to look

up a sum in such a database, which is a process that is far from algorithmic, and

which has no theorem that guarantees success under general conditions, it will often

be preferable to ask the computer to prove the identity directly or to find out if a

simple evaluation of it exists. Nevertheless, hypergeometric function theory is the

context in which this activity resides, and the language of that theory, and its main

theorems, are important in all of these applications.

3.2 Hypergeometric series

A geometric series
∑

k≥0 tk is one in which the ratio of every two consecutive terms

is constant, i.e., tk+1/tk is a constant function of the summation index k. The kth

term of a geometric series is of the form cxk where c and x are constants, i.e., are

independent of the summation index k. Therefore a general geometric series looks

like ∑

k≥0

cxk.

A hypergeometric series
∑

k≥0 tk is one in which t0 = 1 and the ratio of two

consecutive terms is a rational function of the summation index k, i.e., in which

tk+1

tk
=
P (k)

Q(k)
,

where P and Q are polynomials in k. In this case we will call the terms hypergeometric

terms. Examples of such hypergeometric terms are tk = xk, or k!, or (2k+7)!/(k−3)!,

or (k2 − 1)(3k + 1)!/((k + 3)! (2k + 7)).

Hypergeometric series are very important in mathematics. Many of the familiar

functions of analysis are hypergeometric. These include the exponential, logarithmic,

trigonometric, binomial, and Bessel functions, along with the classical orthogonal

polynomial sequences of Legendre, Chebyshev, Laguerre, Hermite, etc.

It is important to recognize when a given series is hypergeometric, if it is, because

the general theory of hypergeometric functions is very powerful, and we may gain a

lot of insight into a function that concerns us by first recognizing that it is hypergeo-



3.3 How to identify a series as hypergeometric 35

metric, then identifying precisely which hypergeometric function it is, and finally by

using known results about such functions.

In the ratio of consecutive terms, P (k)/Q(k), let us imagine that the polynomials

P and Q have been completely factored, in the form

tk+1

tk
=def P (k)

Q(k)
=

(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)(k + 1)
x, (3.2.1)

where x is a constant. If we normalize by taking t0 = 1, then we denote the hyperge-

ometric series whose terms are the tk’s, i.e., the series
∑

k≥0 tkx
k, by

pFq

[
a1 a2 · · · ap

b1 b2 · · · bq
; x

]
.

The a’s and the b’s are called, respectively, the upper and the lower parameters of

the series. The b’s are not permitted to be nonpositive integers or the series will

obviously not make sense.

To put it another way, the hypergeometric series

pFq

[
a1 a2 · · · ap

b1 b2 · · · bq
; x

]

is the series whose initial term is 1, and in which the ratio of the (k+1)st term to the

kth is given by (3.2.1) above, for all k ≥ 0.

The appearance of the factor (k + 1) in the denominator of (3.2.1) needs a few

words of explanation. Why, one might ask, does it have to be segregated that way,

when it might just as well have been absorbed as one of the factors (k + bi)? The

answer is that there’s no reason except that it has always been done that way, and

far be it from us to try to reverse the course of the Nile. If there is not a factor of

(k + 1) in the denominator of your term ratio, i.e., if there is no factor of k! in the

denominator of your term tk, just put it in, and compensate for having done so by

putting an extra factor in the numerator.

3.3 How to identify a series as hypergeometric

Many of the famous functions of classical analysis have hypergeometric series expan-

sions. In the exponential series, ex =
∑

k≥0 x
k/k!, the initial term is 1, and the ratio

of the (k + 1)st term to the kth is x/(k + 1), which is certainly of the form of (3.2.1).

So ex = 0F0

[
−
− ; x

]
.

What we want to do now is to show how one may identify a given hypergeometric

series as a particular pFq[· · · ]. This process is at the heart of using the hypergeometric



36 The Hypergeometric Database

database. If we have a hypergeometric series that interests us for some reason, we

might wonder what is known about it. Is it possible to sum the series in simple form?

Is it possible to transform the series into another form that is easier to work with?

Is some result that we have just discovered about this series really new or is it well

known? These questions can often be answered by consulting the extensive literature

on hypergeometric series. But the first step is to rewrite the series that interests us

in the standard pFq[· · · ] form, because the literature is cast in those terms.

Example 3.3.1. If the kth term of the series is tk = 2k/k!2, then we have tk+1/tk =

2/(k+1)2 which is in the form of (3.2.1) with p = 0, q = 1, and x = 2. Consequently,

since t0 = 1, the given series is

∑

k≥0

2k

k!2
= 0F1

[
−
1

; 2

]
.

2

The hypergeometric series lookup algorithm

1. Given a series
∑

k tk. Shift the summation index k so that the sum starts at

k = 0 with a nonzero term. Extract the term corresponding to k = 0 as a

common factor so that the first term of the sum will be 1.

2. Simplify the ratio tk+1/tk to bring it into the form P (k)/Q(k), where P, Q are

polynomials. If this cannot be done, the series is not hypergeometric.

3. Completely factor the polynomials P and Q into linear factors, and write the

term ratio in the form

P (k)

Q(k)
=

(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)(k + 1)
x

If the factor k + 1 in the denominator wasn’t there, put it in, and compensate

by inserting an extra factor of k + 1 in the numerator. Notice that all of the

coefficients of k, in numerator and denominator, are +1. Whatever numerical

factors are needed to achieve this are absorbed into the factor x.

4. You have now identified the input series. It is (the common factor that you

extracted in step 1 above, multiplied by) the hypergeometric series

pFq

[
a1 a2 · · · ap

b1 b2 · · · bq
; x

]
. 2



3.3 How to identify a series as hypergeometric 37

Example 3.3.2. Consider the series
∑

k tk where tk = 1/((2k + 1)(2k + 3)!).

To identify this series, note that the smallest value of k for which the term tk is

nonzero is the term with k = −1. Hence we begin by shifting the origin of the sum

as follows: ∑

k≥−1

1

(2k + 1)(2k + 3)!
=
∑

k≥0

1

(2k − 1)(2k + 1)!
.

The ratio of two consecutive terms is

tk+1

tk
=

(k − 1
2
)

(k + 1
2
)(k + 3

2
)(k + 1)

1

4
. (3.3.1)

Hence our given series is identified as

∑

k

1

(2k + 1)(2k + 3)!
= − 1F2

[
−1

2
1
2

3
2

;
1

4

]
.

2

Example 3.3.3. Suppose we define the symbol

[x, d]n =

{∏n−1
j=0 (x− jd), if n > 0;

1, if n = 0.

Now consider the series ∑

k

(
n

k

)
[x, d]k[y, d]n−k.

Is this a hypergeometric series, and if so which one is it?

The term ratio is

tk+1

tk
=

(
n

k+1

)
[x, d]k+1[y, d]n−k−1(

n
k

)
[x, d]k[y, d]n−k

=
(n− k)

∏k
j=0(x− jd)

∏n−k−2
j=0 (y − jd)

(k + 1)
∏k−1

j=0(x− jd)
∏n−k−1

j=0 (y − jd)

=
(n− k)(x− kd)

(k + 1)(y − (n− k − 1)d)
=

(k − n)(k − x
d
)

(k + (y
d
− n+ 1))(k + 1)

.

This is exactly in the standard form (3.2.1), so we have identified our series as the

hypergeometric series

2F1

[
−n −x

d
y
d
− n + 1

∣∣∣∣1
]
.

2



38 The Hypergeometric Database

Example 3.3.4. Suppose we are wondering if the sum

n∑

k=0

(
n

k

)
(−1)k

k!

can be evaluated in some simple form. A first step might be to identify it as a

hypergeometric series.2 The next step would then be to look up that hypergeometric

series in the database to see if anything is known about it. Let’s do the first step

here.

The term ratio is

tk+1

tk
=

(
n

k+1

) (−1)k+1

(k+1)!(
n
k

) (−1)k

k!

=
k − n

(k + 1)2
,

and t0 = 1. Hence by (3.2.1) our unknown sum is revealed to be a

1F1

[
−n
1

; 1

]
.

2

Example 3.3.5. Is the Bessel function

Jp(x) =

∞∑

k=0

(−1)k(x
2
)2k+p

k! (k + p)!

a hypergeometric function? The ratio of consecutive terms is

tk+1

tk
=

(−1)k+1(x
2
)2k+2+pk! (k + p)!

(k + 1)! (k + p+ 1)!(−1)k(x
2
)2k+p

=
−(x2

4
)

(k + 1)(k + p+ 1)
.

Here we must take note of the fact that t0 6= 1, whereas the standardized hypergeo-

metric series begins with a term equal to 1. Our conclusion is that the Bessel function

is indeed hypergeometric, and it is in fact

Jp(x) =
(x

2
)p

p!
0F1

[
−−
p+ 1

; −x
2

4

]
.

2We hope to convince you that a better first step is to reach for your computer!



3.4 Software that identifies hypergeometric series 39

2

We will use the notation

(a)n =
def

{
a(a + 1)(a+ 2) · · · (a+ n− 1), if n ≥ 1;

1, if n = 0.

for the rising factorial function.

In terms of the rising factorial function, here is what the general hypergeometric

series looks like:

pFq

[
a1 a2 . . . ap

b1 b2 . . . bq
; z

]
=
∑

k≥0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

zk

k!
. (3.3.2)

The series is well defined as long as the lower parameters b1, b2, . . . , bq are not negative

integers or zero. The series terminates automatically if any of the upper parameters

a1, a2, . . . , ap is a nonpositive integer, otherwise it is nonterminating , i.e., it is an

infinite series. If the series is well defined and nonterminating, then questions of

convergence or divergence become relevant. In this book we will be concerned for the

most part with terminating series.

3.4 Software that identifies hypergeometric series

The act of taking a series and finding out exactly which pFq[. . .] it is can be

fairly tedious. Computers can help even with this humble task. In this section we’ll

discuss the use of Mathematica, Maple, and a special purpose package Hyp that was

developed by C. Krattenthaler.

First, Mathematica has a limited capability for transforming sums that are given

in customary summation form into standard hypergeometric form. This capability

resides in the package Algebra‘SymbolicSum‘. So we first read in the package, with

<<Algebra‘SymbolicSum‘. Now we try it with

Sum[Binomial[n, k]ˆ2, {k, 0, n}],

hoping to find out which hypergeometric sum this is. But Mathematica is too smart

for us. It knows how to evaluate the sum in simple form, and so it proudly replies

(2n)!

n!ˆ2
,

which in this instance is more than we were asking for. We can force Mathematica

to identify our sum as a pFq only when it does not know how to express it in simple



40 The Hypergeometric Database

form. Here a good tactic would be to insert an extra xk into the sum, hope that

Mathematica does not know any simple form for that one, and then put x = 1 in the

answer. So we hopefully type

Sum[Binomial[n, k]ˆ2 xˆk, {k, 0, n}],

and sure enough it responds with

Hypergeometric2F1[−n,−n, 1, x],

and now we can let x = 1 to learn that our original sum was a 2F1

[
−n,−n

1
; 1

]
.

Next let’s try the sum in Example 3.3.4 above. If we enter

Sum[Binomial[n, k] (−1)ˆk/k!, {k, 0, n}],

we find that Mathematica is very well trained indeed, since it gives

LaguerreL[n, 0, 1]

which means that it recognizes our sum as a Laguerre polynomial! The trick of

inserting xk won’t change this behavior, so there isn’t any way to adapt this routine

to the present example.

In Mathematica, when we cannot get the SymbolicSum package to identify a sum

for us, we can change our strategy slightly, and use Mathematica to help us identify

the sum “by hand.” In the above case we would first define the general kth term of

our sum,

t[k ] := (−1)ˆk n!/(k!ˆ2 (n− k)!)

and then ask for3 the term ratio,

FactorialSimplify[t[k+1]/t[k]].

We would obtain the term ratio in the nicely factored form

k − n

(k + 1)2
.

We would then compare this with (3.2.1) to find that the input series was, as in

Example 3.3.4,

1F1

[
−n
1

; 1

]
.

3Read in DiscreteMath‘RSolve‘ before attempting to FactorialSimplify something.



3.4 Software that identifies hypergeometric series 41

To finish on a positive note, we’ll ask Mathematica to identify quite a tricky sum

for us, by entering

Sum[(−1)ˆkBinomial[r − s− k, k]Binomial[r − 2k, n− k]/(r− n− k + 1), {k, 0, n}].
(3.4.1)

This time it answers us with
(

r
n

)

(r − n+ 1)
4F3

[
−n, n− r − 1, (s− r)/2, (s− r + 1)/2

(1 − r)/2,−r/2, s− r
; 1

]
, (3.4.2)

which is extremely helpful.

Next let’s try a session with Maple. The capability in Maple to identify a series

as a pFq[· · · ] rests with the function convert/hypergeom. To identify the sum of the

cubes of the binomial coefficients of order n as a hypergeometric series, enter

convert(sum(binomial(n, k)ˆ3, k = 0..infinity), hypergeom);

and Maple will answer you with

hypergeom([−n,−n,−n], [1, 1],−1),

i.e., with

3F2

[
−n,−n,−n

1, 1
; −1

]
.

The “tricky” sum in (3.4.1) can be handled by first defining the summand

f:=k->(-1)^k*binomial(r-s-k,k)*binomial(r-2*k,n-k)/(r-n-k+1);

and then making the request

convert(sum(f(k), k = 0..infinity), hypergeom);

Maple will rise to the occasion by giving the answer as in (3.4.2) above.

Finally we illustrate the use of the package Hyp. This package, whose purpose is

to facilitate the manipulation of hypergeometric series, can be obtained at no cost

by anonymous ftp from pap.univie.ac.at, at the University of Vienna, in Austria.

It is written in Mathematica source code and must be used in conjunction with

Mathematica.

To use it to identify a hypergeometric series involves the following steps. First

enter the sum that interests you using the usual Sum construct. Give the expression

a name, say mysum. Then execute mysum=mysum//.SumF, and you will, or should, be

looking at the hypergeometric designation of your sum as output.



42 The Hypergeometric Database

As an example, take the Laguerre polynomial that we tried in Mathematica. We

enter

mysum = Sum[Binomial[n, k] (−1)ˆk/k!, {k, 0, Infinity}],

and then mysum=mysum//.SumF. The output will be the desired hypergeometric form

1F1

[
−n
1

; 1

]
.

3.5 Some entries in the hypergeometric database

The hypergeometric database can be thought of as the collection of all known hyper-

geometric identities. The following are some of the most useful database entries. We

will not prove any of them just now because all of their proofs will follow instantly

from the computer certification methods that we will develop in Chapters 4–7.

On the right hand sides of these identities you will find any of three different

widely used notations: rising factorial, factorial, and gamma function. The gamma

function, Γ(z), is defined by

Γ(z) =

∫ ∞

0

tz−1e−tdt,

if Re (z) > 0, and elsewhere by analytic continuation. If z is a nonnegative integer

then Γ(z + 1) = z!. Hence the gamma function extends the definition of n! to values

of n other than the nonnegative integers. In fact n! is thereby defined for all complex

numbers n other than the negative integers. Some of the relationships between these

three notations are

Γ(n+ 1) = n! = (1)n,

(a)n = a(a+ 1) · · · (a + n− 1) =
(a+ n− 1)!

(a− 1)!
=

Γ(n+ a)

Γ(a)
.

(I) Gauss’s 2F1 identity. If b is a nonpositive integer or c− a− b has positive real

part, then

2F1

[
a b

c
; 1

]
=

Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)
.

(II) Kummer’s 2F1 identity. If a− b + c = 1, then

2F1

[
a b

c
; −1

]
=

Γ( b
2

+ 1)Γ(b− a + 1)

Γ(b + 1)Γ( b
2
− a + 1)

.



3.5 Some entries in the hypergeometric database 43

If b is a negative integer, then this identity should be used in the form

2F1

[
a b

c
; −1

]
= 2 cos (

πb

2
)
Γ(|b|)Γ(b− a + 1)

Γ( |b|
2
)Γ( b

2
− a+ 1)

,

which follows from the first form by using the reflection formula

Γ(z)Γ(1 − z) =
π

sin πz
(3.5.1)

for the Γ-function and taking the limit as b approaches a negative integer.

(III) Saalschütz’s 3F2 identity. If d+ e = a+ b+ c+1 and c is a negative integer,

then

3F2

[
a b c

d e
; 1

]
=

(d− a)|c|(d− b)|c|
d|c|(d− a− b)|c|

.

(IV) Dixon’s identity. In prettier and easier-to-remember form this identity reads

as ∑

k

(−1)k

(
a + b

a+ k

)(
a+ c

c+ k

)(
b + c

b + k

)
=

(a + b+ c)!

a! b! c!
.

Translated into formal hypergeometric language, it becomes the statement that, if

1 + a
2
− b− c has positive real part, and if d = a− b + 1 and e = a− c+ 1, then

3F2

[
a b c

d e
; 1

]
=

(a
2
)!

a!

(a− b)!

(a
2
− b)!

(a− c)!

(a
2
− c)!

(a
2
− b− c)!

(a− b− c)!
.

(V) Clausen’s 4F3 identity. If d is a nonpositive integer and a + b + c − d = 1
2
,

and e = a + b+ 1
2
, and a+ f = d+ 1 = b+ g, then

4F3

[
a b c d

e f g
; 1

]
=

(2a)|d|(a + b)|d|(2b)|d|
(2a+ 2b)|d|a|d|b|d|

.

(VI) Dougall’s 7F6 identity. If n+ 2a1 + 1 = a2 + a3 + a4 + a5 and

a6 = 1 +
a1

2
; a7 = −n; and bi = 1 + a1 − ai+1 (i = 1, . . . , 6),

then

7F6

[
a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6
; 1

]

=
(a1 + 1)n(a1 − a2 − a3 + 1)n(a1 − a2 − a4 + 1)n(a1 − a3 − a4 + 1)n

(a1 − a2 + 1)n(a1 − a3 + 1)n(a1 − a4 + 1)n(a1 − a2 − a3 − a4 + 1)n
.



44 The Hypergeometric Database

More identities

1F0

[
a

− ; z

]
=

1

(1 − z)a

2F1

[
a, 1 − a

b
;

1

2

]
=

Γ(1
2
)Γ(1

2
+ a + b)

Γ(1
2

+ a)Γ(1
2

+ b)

3F2

[
−2n, b, c

1 − b− 2n, 1 − c− 2n
; 1

]
=

(1)2n(b)n(c)n(b + c)2n

(1)n(b)2n(c)2n(b + c)n

3F2

[
a, b, c

1 + a− b, 1 + a− c
; 1

]
=

(a− b)! (a− c)! (a
2
)! (a

2
− b− c)!

a! (a
2
− b)! (a

2
− c)! (a− b− c)!

3F2

[
a, b,−n

1 + a− b, 1 + a+ n
; 1

]
=

(1 + a)n(1 + a
2
− b)n

(1 + a
2
)n(1 + a− b)n

3F2

[
a, b, c

1+a+b
2

, 2c
; 1

]
=

Γ(1
2
)Γ(c+ 1

2
)Γ(1

2
+ a

2
+ b

2
)Γ(1

2
− a

2
− b

2
+ c)

Γ(1
2

+ a
2
)Γ(1

2
+ b

2
)Γ(1

2
− a

2
+ c)Γ(1

2
− b

2
+ c)

3F2

[
a, 1 − a, c

d, 1 + 2c− d
; 1

]
=

π21−2c(d− 1)! (2c+ d)!

(a−d−1
2

)! (a+d
2

− 1)! (c− a+d
2

)! (d−a−1
2

)!

3.6 Using the database

Let’s review where we are. In this chapter we have seen how to take a sum and

identify it, when possible, as a standard hypergeometric sum. We have also seen a

list of many of the important hypergeometric sums that can be expressed in simple,

closed form. We will now give a few examples of the whole process whereby one uses

the hypergeometric database in order to try to “do” a given sum. The strengths and

the limitations of the procedure should then be clearer.

Example 3.6.1. For a nonnegative integer n, consider the sum

f(n) =
∑

k

(−1)k

(
2n

k

)


.

Can this sum be evaluated in some simple form?

The first step is to identify the sum f(n) as a particular hypergeometric series.

For that purpose we look at the term ratio

tk+1

tk
=

(−1)k+1
(

2n
k+1

)2

(−1)k
(
2n
k

)2 = −(k − 2n)2

(k + 1)2
.



3.6 Using the database 45

Our series is thereby unmasked: it is

f(n) = 2F1

[
−2n −2n

1
; −1

]
.

Next we check the database to see if we have any information about 2F1’s whose

argument is −1, and, indeed, there is such an entry in the database, namely Kummer’s

identity. If we use it in the form that is given there for negative integer b, then it tells

us that our unknown sum f(n) is

f(n) = 2F1

[
−2n −2n

1
; −1

]
=

(2n− 1)!2(−1)n

(n− 1)!n!
= (−1)n

(
2n

n

)
,

which is a happy ending indeed. 2

Example 3.6.2. For one more example of a lookup in the hypergeometric database,

consider the sum

f(n) =
∑

k

(−1)k

(
2n

k

)(
2k

k

)(
4n− 2k

2n− k

)
. (3.6.1)

The first step is, as always, to find the term ratio and resolve it into linear factors.

We find that

tk+1

tk
=

(−1)k+1
(

2n
k+1

)(
2k+2
k+1

)(
4n−2k−2
2n−k−1

)

(−1)k
(
2n
k

)(
2k
k

)(
4n−2k
2n−k

) =
(k + 1

2
)(k − 2n)2

(k + 1)2(k − 2n+ 1
2
)
.

The first term of our sum is not 1, but is instead
(
4n
2n

)
, hence we now know that our

desired sum is

f(n) =

(
4n

2n

)
3F2

[
−2n −2n 1

2

1 −2n + 1
2

; 1

]
. (3.6.2)

Since this is a 3F2, we check the possibilities of Saalschütz’s identity and Dixon’s

identity. It does not match the condition d + e = a + b + c + 1 of Saalschütz, so we

try Dixon’s next. If we put a = −2n, b = −2n, c = 1
2
, d = 1 and e = −2n + 1

2
,

then we find that the conditions of Dixon’s identity, namely that d = a − b + 1 and

e = a− c + 1 are met. If we now use the right hand side of Dixon’s identity, we find

that if n is a nonnegative integer, then

f(n) =

(
4n

2n

)
(−n)! (−2n− 1

2
)! (n− 1

2
)!

(−2n)!n! (−n− 1
2
)! (−1

2
)!
.

This is a rather distressing development. We were expecting an answer in simple form,

but the answer that we are looking at contains some factorials of negative numbers,

and some of these negative numbers are negative integers, which are precisely the

places where the factorial function is undefined.



46 The Hypergeometric Database

Fortunately, what we have is a ratio of two factorials at negative integers; if we

take an appropriate limit, the singularities will cancel, and a pleasant limiting ratio

will ensue. We will now do this calculation, urging the reader to take note of the fact

that this kind of situation happens fairly frequently when one uses the database. The

answers are formally correct, but we need some further analysis to transform them

into readily useable form.

What about the ratio (−n)!/(−2n)!? Imagine, for a moment, that n is near a

positive integer, but is not equal to a positive integer. Then we use the reflection

formula for the Γ-function

Γ(z)Γ(1 − z) =
π

sin πz
once more, in the equivalent form

(−z)! =
π

(z − 1)! sin πz
.

When n is near, but not equal to, a positive integer we find that

(−n)!

(−2n)!
=

π

(sinnπ)(n− 1)!

(sin 2nπ)(2n− 1)!

π
=

2(2n− 1)! cosnπ

(n− 1)!
.

Thus as n approaches a positive integer, we have found that

(−n)!

(−2n)!
−→ (−1)n (2n)!

n!
.

Our answer now has become

f(n) =

(
4n

2n

)
(−1)n(2n)! (−2n− 1

2
)! (n− 1

2
)!

n!2(−n− 1
2
)! (−1

2
)!

.

A similar argument shows that

(−2n− 1
2
)!

(−n− 1
2
)!

=
(−1)n(n− 1

2
)!

(2n− 1
2
)!

,

which means that now

f(n) =

(
4n

2n

)(
2n

n

)
(n− 1

2
)!2

(2n− 1
2
)! (−1

2
)!
.

But for every positive integer m,

(m− 1

2
)! = (m− 1

2
)(m− 3

2
) · · · (1

2
)(−1

2
)!

=
(2m− 1)(2m− 3) · · ·1

2m
(−1

2
)!

=
(2m)!

4mm!
(−1

2
)!.



3.6 Using the database 47

So we can simplify our answer all the way down to f(n) =
(
2n
n

)2
. The fruit of our

labor is that we have found the identity

∑

k

(−1)k

(
2n

k

)(
2k

k

)(
4n− 2k

2n− k

)
=

(
2n

n

)


; (3.6.3)

we realize that it is a special case of Dixon’s identity, and we further realize that the

“lookup” in the database was not quite a routine matter! 2

Since that was a very tedious lookup operation, might one of our computer

packages have been able to help? Indeed, in Mathematica, the SymbolicSum package

can handle the sum (3.6.1) easily. If we read in the package with

<<Algebra‘SymbolicSum‘

and then call for

Sum[(-1)^kBinomial[2n,k] Binomial[2k,k] Binomial[4n-2k,2n-k],{k,0,2n}]

we obtain the reply

(−4)n (−1)n (2n)! (4n)! Gamma(1
2
− 2n)

4n 16n
√
π n!4

.

This is easily seen to be the same as the evaluation (3.6.3).

The Hyp package includes a large database, considerably larger than the list that

we have given above. So let’s see how it does with the same summation problem.
Hence enter

Sum[(-1)^kBinomial[2n,k]Binomial[2k,k]Binomial[4n-2k,2n-k],{k,0,Infinity}]

and then request % //.SumF. The resulting output is exactly as in (3.6.2). So we have

successfully identified the sum as a hypergeometric series.

The next question is, does Hyp know how to evaluate this sum in simple form?

To ask Hyp to look up your sum in its sum list we use the command SListe. More

precisely, we ask it to apply the rule SListe to the previous output by typing

% /.SListe

It replies by giving the numbers of the formulas in its database that might be of

assistance in evaluating our sum. In this case its reply is to tell us that one of its

four items S3202, S3231, S3232, S3233 might be of use. Let’s now find out if item

S3202 really will help, which we do by entering mysum/.S3202. Its answer to that is

indeed the evaluation of our sum, in the form

(1
2
)n(1

2
− 2n)2n(−2n)n(1 + 2n)2n

(1
2
)2n(1)n(

1
2
− 2n)n(−2n)2n

,



48 The Hypergeometric Database

which is a rather nontransparent form of
(
2n
n

)2
, but we mustn’t begrudge the small

amount of tidying up that we have to do, considering the lengthy limiting arguments

that we have avoided.

3.7 Is there really a hypergeometric database?

Ask any computer scientist what a database is, and you will be told something like

this. A database D is a triple consisting of

1. a collection of information (data) and

2. a collection of queries (questions) that may be addressed to the database D by

the user and

3. a collection of algorithms by which the system responds to queries and searches

the data in order to find the answers.

There is no hypergeometric database. It’s a myth.

Is there a collection of information? The data might be, for instance, a list of all

known hypergeometric identities. But there isn’t any such list. If you propose one,

somebody will produce a known identity that isn’t on your list. But suppose that

problem didn’t exist. Let’s compromise a bit, and settle for a very large collection of

many of the most important hypergeometric identities.

Fine. Now what are the queries that we would like to address to the database?

That’s a lot easier. Suppose there is just one query: “Is the following sum expressible

in simple terms, and if so, in what simple terms?”

All right. We’re trying to construct a collection of identities that will be equipped

to discover if somebody’s sum can or cannot be expressed in a much simpler form.

We’re two-thirds of the way there. We have a (slightly mythical) collection of

data, and a single rather precise query. What we are missing is the algorithm.

If some user asks the system whether or not a certain sum can be expressed in

some simple form, exactly what steps shall the system take in order to answer the

question?

Certainly a minimal step would be to examine the list of known identities and

see if the sum in question lives there. The hypergeometric notation that we have

described in this chapter will be a big help in doing that search. If the sum, exactly

as described by the user, does reside in the data, then we’re finished. The system will

simply print out the simple evaluation, and the user will go away with a smile.

But suppose the sum does not appear among the data in the system? Well, you

might say that the system should apologize, and declare that it can’t help. That



3.7 Is there really a hypergeometric database? 49

would be honest, but not very useful. In fact, the act of checking whether the given

sum lives among the data is only the first step that any competent human analyst

would take. If the sum could not be located, the next step that the analyst would

probably take would be to try out some hypergeometric transformation rules.

A transformation rule is a relation between two hypergeometric functions whose

parameter sets are different, which shows, nonetheless, that if you know one of them

then you know both of them. Here is one of the many, many known hypergeometric

transformation rules:

2F1

[
a, b

c
; z

]
= (1 − z)c−a−b

2F1

[
c− a, c− b

c
; z

]
.

That is a rule, an identity really, that relates two 2F1’s with different parameter lists.

One could easily make lists of dozens of such rules, and indeed the package Hyp has

dozens of them built in.

So your database should first look to see if your sum lives in the data, and if not it

should next try to transform your sum into another one that does live in the data. If

that succeeds, great. If it fails, well maybe there’s a sequence of two transformations

that will do it. Or maybe three — you see the problem. Besides sequences of trans-

formations, one can also use various substitutions for the parameters, and it may be

hard to recognize that a certain identity is a specialization of a database entry.

There is no algorithm that will discover whether your sum is or is not trans-

formable into an identity that lives in the database.

Beyond all of these attempts at computer algorithms there lie human mathemati-

cians. Many of them are awesomely bright, and will find immensely clever ways to

evaluate your unknown sum, ways that could not in a million years be built into a

computerized database.

So the database of hypergeometric identities is a myth. It is very nice to have a

big list to work with. But that is by no means the whole story.

The look-it-up-in-a-database process is, like any other, an algorithm for doing

hypergeometric sums, and it should be assessed the same way as other algorithms.

How effective is it? Precisely when can we expect a pretty answer? How fast is it?

What is the complete algorithm, including the simplifications at the end, and how

costly are they? What are the alternatives?

In the sequel we will present other algorithms, ones that don’t involve any lookup

in or manipulation of a database, for doing hypergeometric sums in simple form.

Those algorithms can be rather easily programmed for a computer, they work under

conditions that are wider than those of the database lookup, and the conditions under

which they work can be clearly stated. Further, under the stated conditions these

algorithms are exhaustive. That is, if they produce nothing, then that is a proof that



50 The Hypergeometric Database

nothing exists, rather than only a confession of possible inadequacy.

Obviously we cannot claim that the computerized methods are the best for every

situation. Sometimes the certificates that they produce are longer and less user-

friendly than those that humans might find, for example. But the emergence of these

methods has put an important family of tools in the hands of discrete mathematicians,

and many results that are accessible in no other way have been found and proved by

computer methods.

3.8 Exercises

1. Put each of the following sums into standard hypergeometric notation. First do

it by hand. Then do it with your choice of computer software.

(a)
∑

k

(
n
k

)(
n+a

k

)(
n−a
n−k

)

(b)
∑

k

(
n
k

)p

(c)
∑

k(−1)k
(

k
n−k

)

2. For selected entries (of your choice) in the hypergeometric database list in this

chapter, express the summand using only

(a) rising factorials

(b) the gamma function

(c) factorials

(d) binomial coefficients (when is this possible?)

3. Each of the following sums can be evaluated in a simple form. In each case

first write the sum in standard hypergeometric notation. Then consult the list

in this chapter to find a database member that has the given sum as a special

case. Then use the right hand side of the database sum, suitably specialized,

to find the simple form of the given sum. Then check your answer numerically

for a few small values of the free parameters.

(a)
∑n

k=0

(
n
k

)
/
(
2n−1

k

)

(b)
∑

k

(
n
k

)2(3n+k
2n

)

(c)
∑

k(−1)k
(

n
k

) (k+3a)!
(k+a)!

(d)
∑

k(−1)k
(

k+a
a

)(
n+k

2k+2a

)
4k

(e)
∑

k

(
2n+2
2k+1

)(
x+k
2n+1

)



3.8 Exercises 51

(f)
∑

k

(
2n+1

2p+2k+1

)(
p+k

k

)

(g)
∑

k(−1)k
(
2n
k

)(
2x

x−n+k

)(
2z

z−n+k

)



52 The Hypergeometric Database



Part II

The Five Basic Algorithms





Chapter 4

Sister Celine’s Method

4.1 Introduction

The subject of computerized proofs of identities begins with the Ph.D. thesis of Sister

Mary Celine Fasenmyer at the University of Michigan in 1945. There she developed a

method for finding recurrence relations for hypergeometric polynomials directly from

the series expansions of the polynomials. An exposition of her method is in Chapter

14 of Rainville [Rain60]. In his words,

Years ago it seemed customary upon entering the study of a new set

of polynomials to seek recurrence relations . . . by essentially a hit-or-miss

process. Manipulative skill was used and, if there was enough of it, some

relations emerged; others might easily have been lurking around a corner

without being discovered . . . The interesting problem of the pure recur-

rence relation for hypergeometric polynomials received probably its first

systematic attack at the hands of Sister Mary Celine Fasenmyer . . .

The method is quite effective and easily computerized, though it is usually slow in

comparison to the methods of Chapter 6. Her algorithm is also important because

it has yielded general existence theorems for the recurrence relations satisfied by

hypergeometric sums.

We begin by illustrating her method on a simple sum.

Example 4.1.1. Let

f(n) =
∑

k

k

(
n

k

)
(n = 0, 1, 2, . . .),



56 Sister Celine’s Method

and let’s look for the recurrence that f(n) satisfies. To do this we first look for the

recurrence that the summand

F (n, k) = k

(
n

k

)

satisfies. It is a function of two variables (n, k), so we try to find a recurrence of the

form

a(n)F (n, k) + b(n)F (n + 1, k) + c(n)F (n, k + 1) + d(n)F (n+ 1, k + 1) = 0, (4.1.1)

in which the coefficients a, b, c, d depend on n only, and not on k (for reasons that

will become clear presently).

To find the coefficients, if they exist, we divide (4.1.1) through by F (n, k) getting

a+ b
F (n + 1, k)

F (n, k)
+ c

F (n, k + 1)

F (n, k)
+ d

F (n+ 1, k + 1)

F (n, k)
= 0. (4.1.2)

Now each of the ratios of F ’s is a certain rational function. If we carry out the

indicated divisions, our assumed recurrence becomes

a + b
n+ 1

n + 1 − k
+ c

n− k

k
+ d

n+ 1

k
= 0,

in which the factorials have all disappeared, and we see only rational functions of n

and k.

The next step, following Sister Celine, is to put the whole thing over a common

denominator. That denominator is k(n+1−k) and the numerator is, after collecting

by powers of k,

(d+ (c+ 2d)n+ (c+ d)n2) + (a+ b− c− d+ (a+ b− 2c− d)n)k + (c− a)k2.

Our assumed recurrence will be true if this numerator identically vanishes, for all n

and k, with the coefficients a, b, c, d being permitted to depend only on n. Thus the

coefficient of each power of k must vanish. This gives us a system of three equations

in four unknowns, namely




0 0 n(n + 1) (n + 1)2

n+ 1 n+ 1 −2n− 1 −(n + 1)

−1 0 1 0







a

b

c

d


 =




0

0

0


 ,

to solve for a, b, c, d.



4.2 Sister Mary Celine Fasenmyer 57

Success in finding a nontrivial solution is now guaranteed simply because there

are more unknowns than there are equations. If we actually solve these equations we

find that

[a, b, c, d] = d
[
−1 − 1/n 0 −1 − 1/n 1

]
.

We now substitute these values into the assumed form of the recurrence relation in

(4.1.1), and we have the desired “k-free” recurrence for the summand F (n, k), namely

−(1 +
1

n
)F (n, k) − (1 +

1

n
)F (n, k + 1) + F (n+ 1, k + 1) = 0. (4.1.3)

From the recurrence for the summand F (n, k) to the recurrence for the sum f(n)

is a very short step: just sum (4.1.3) over all integers k, noticing appreciatively that

the coefficients in the recurrence are free of k’s, so the summation over k can operate

directly on the F in each term. We get instantly the recurrence

−(1 +
1

n
)f(n) − (1 +

1

n
)f(n) + f(n+ 1) = 0,

i.e., the recurrence

f(n+ 1) = 2
n+ 1

n
f(n) (n = 1, 2, . . . ; f(1) = 1).

We can now easily find f(n), the desired sum, since

f(n+ 1) = 2
n+ 1

n
f(n) = 22n+ 1

n

n

n− 1
f(n− 1) = · · · = 2n(n+ 1)f(1),

so

f(n) = n2n−1

for all n ≥ 0. 2

Yes, this was a very simple example, but it illustrated many of the points of

interest. The method works because one can prove (and we will!) that the number of

unknowns can always be made larger than the number of equations, so a nontrivial

solution must exist. The fact that the coefficients in the assumed recurrence are free

of k is vital to the step in which we sum the F recurrence over all integers k, as we

did in (4.1.3).

4.2 Sister Mary Celine Fasenmyer

Sister Celine was born in Crown, in central Pennsylvania, October 4, 1906. Her

parents were George and Cecilia Fasenmyer, though her mother, Cecilia, died when

Mary was one year old. Her father worked his own oil lease in the area. He re-



58 Sister Celine’s Method

married three years later a woman, Josephine, who was twenty-five years his junior.

Mary’s early education was at the St. Joseph’s Academy in Titusville, Pennsylva-

nia, from which she was graduated in 1923, having been always “good in math.”

She then taught for ten years, and in 1933 received her AB degree from Mercy-

hurst College. She was sent to Pittsburgh by her order, to teach in the St. Justin

School and to go to the University of Pittsburgh for

her MA degree, which she received in 1937. Her ma-

jor was mathematics, and her minor was in physics.

The community told her to go to the University of

Michigan for her doctorate, which she did from the

fall of 1942 until June of 1946, when she received her

degree. Her thesis was written under the direction of

Earl Rainville, whom she remembers as having been

quite accessible and helpful, as well as working in a

subject area that she liked. In her thesis she showed

how one can find recurrence relations that are sat-

isfied by sums of hypergeometric terms, in a purely

mechanical (“algorithmic”) way. She used the method in her thesis [Fase45] to find

pure recurrence relations that are satisfied by various hypergeometric polynomial se-

quences. In two later papers she developed the method further, and explained its

workings to a broad audience in her paper [Fase49]. For an exposition of some of her

thesis results see [Fase47]. Her work was described by Rainville in Chapters 14 and 18

of his book [Rain60]. Her method is the intellectual progenitor of the computerized

methods that we use today to find and prove hypergeometric identities, thanks to the

recognition that it can be adapted to prove such identities via Zeilberger’s paradigm

(see page 23).

4.3 Sister Celine’s general algorithm

Now let’s discuss her algorithm in general. We are given a sum f(n) =
∑

k F (n, k),

where F is doubly hypergeometric. That is, both

F (n+ 1, k)/F (n, k) and F (n, k + 1)/F (n, k)

are rational functions of n and k. We want to find a recurrence formula for the sum

f(n), so for a first step, we will find a recurrence for the summand F (n, k), of the

form
I∑

i=0

J∑

j=0

ai,j(n)F (n− j, k − i) = 0. (4.3.1)

The complete sequence of steps is the following.



4.3 Sister Celine’s general algorithm 59

1. Fix trial values of I and J , say I = J = 1.

2. Assume the recurrence formula in the form of (4.3.1), with the coefficients aij(n)

to be determined, if possible.

3. Divide each term of (4.3.1) by F (n, k), and reduce each ratio F (n − j, k −
i)/F (n, k) by simplifying the ratios of the factorials that it contains, so that

only rational functions of n and k remain.

4. Place the entire expression over a single common denominator. Then collect

the numerator as a polynomial in k.

5. Solve the system of linear equations that results from equating to zero the

coefficients of each power of k in the numerator polynomial, for the unknown

coefficients ai,j. If the system has no solution, try the whole thing again with

larger values of I and/or J . That is, look for a bigger recurrence. 2

We will prove below that under suitable hypotheses Sister Celine’s algorithm is

guaranteed to succeed if I, J are large enough, and the “large enough” can be esti-

mated in advance. But first let’s look at implementations of her algorithm in Maple

and Mathematica.

The Maple program for her algorithm is contained in the package EKHAD that is

included with this book (see Appendix A). To use it just call celine(f,ii,jj);,

where f is your summand, and ii, jj are the sizes of the recurrence that you are

looking for.

In the above example, we would call celine((n,k) -> k*n!/(k!*(n-k)!),1,1);

and we would obtain the following output:

The full recurrence is

b[3] n F(n-1,k)-(n-1) b[3] F(n,k)+b[3] F(n-1,k-1) n== 0

In this output b[3] is an arbitrary constant, which can be ignored. The recurrence

is identical with the one we had previously found by hand, in (4.1.3), as can be seen

by replacing n and k by n− 1 and k− 1 in (4.1.3) and comparing it with the output

above.

Example 4.3.1. Suppose we were to use the program with the input f(n, k) =
(

n
k

)
.

Then what recurrence would it find? If you guessed the Pascal triangle recurrence(
n
k

)
=
(

n−1
k

)
+
(

n−1
k−1

)
, then you would be right. In that same spirit, let’s look for a

recurrence that f(n, k) =
(

n
k

)2
satisfies.

So we now call celine((n, k) → (n!/(k! ∗ (n− k)!))2, 2, 2);. The program runs for

a while, and then announces that



60 Sister Celine’s Method

The full recurrence is

(n - 1) b[8] F(n - 2, k - 2) + b[8] (2 - 2 n) F(n - 2, k - 1)

+ (- 2 n + 1) b[8] F(n - 1, k - 1) + (n - 1) b[8] F(n - 2, k)

+ (- 2 n + 1) b[8] F(n - 1, k) + b[8] n F(n, k) == 0

Translated into conventional mathematical notation, this recurrence reads as

n

(
n

k

)


− (2n− 1)

{(
n− 1

k

)


+

(
n− 1

k − 1

)

}

+ (n− 1)

{(
n− 2

k

)


− 2

(
n− 2

k − 1

)


+

(
n− 2

k − 2

)

}

= 0, (4.3.2)

which is the “Pascal triangle” identity for the squares of the binomial coefficients.

Let’s use the recurrence for the squares to find a recurrence for the sum of the

squares. So let f(n) =
∑

k

(
n
k

)2
. What is the recurrence for f(n)? To find it, just

sum (4.3.2) over all integers k, obtaining

nf(n)− (2n− 1){f(n− 1)+ f(n− 1)}+(n− 1){f(n− 2)− 2f(n− 2)+ f(n− 2)} = 0

which boils down to just

f(n) =
2(2n− 1)

n
f(n− 1) =

22(2n− 1)(2n− 3)

n(n− 1)
f(n− 2) = · · · =

(2n)!

n!2
.

We therefore have another illustration of how the computer can discover the evaluation

in closed form of a hypergeometric sum. 2

Cubes and higher powers of the binomial coefficients also satisfy recurrences of this

kind, but finding them with this program would require either an immense computer

or immense patience. The sums of the cubes, for instance, of the binomial coefficients

also satisfy a recurrence, which the method would discover. That recurrence is of

second order, however, and its solution provably cannot be expressed as a linear

combination of a constant number of hypergeometric terms (see Chapter 8). Hence,

in the case of the sum of the cubes, what we get is a computer generated proof

of the impossibility of finding a pleasant evaluation, with a reasonable definition of

“pleasant.” The theory of this remarkable chain of recent developments will be fully

explained later (see Section 8.6 and Theorem 8.8.1).

Next let’s do the same job in Mathematica. The first thing to do is to read

in the package DiscreteMath‘RSolve‘ in order to enable the FactorialSimplify

instruction. Next we define a Module that finds a recurrence relation satisfied by a

given function f, the recurrence being of orders ii, jj.

<<DiscreteMath‘RSolve‘



4.3 Sister Celine’s general algorithm 61

findrecur[f ,ii ,jj ]:=
Module[{yy,zz,ll,tt,uu,r,s,i,j},
yy=Sum[Sum[a[i,j] FactorialSimplify[f[n-j,k-i]/f[n,k]],

{i,0,ii}],{j,0,jj}];
zz=Collect[Numerator[Together[yy]],k];
ll=CoefficientList[zz,k];
tt=Flatten[Table[a[i,j],{i,0,ii},{j,0,jj}]];
uu=Flatten[Simplify[Solve[ll==0,tt]]];
For[r=0,r<=ii,r++,

For[s=0,s<=jj,s++,
a[r,s]=Replace[a[r,s],uu]]];

Sum[Sum[a[i,j] F[n-j,k-i],{i,0,ii}],{j,0,jj}]==0]

After that there’s nothing to do but define the function

f[n ,k ]:=k n!/(k!(n-k)!)

and call the Module

findrecur[f,1,1].

The resulting output is

a[1,1] F[-1+n,-1+k] + a[1,1] F[-1+n,k] + (-1+1/n) a[1,1] F[n,k]==0,

as before.

The reader is cautioned that this program is slower than its Maple counterpart in

its execution, and it should not be tried on recurrence relations of larger span.

Next let’s try an example in the spirit of Sister Celine’s original use of the recur-

rence method.

Example 4.3.2. We’ll look for a recurrence that is satisfied by the classical Laguerre

polynomials

Ln(x) =

n∑

k=0

(−1)k

(
n

k

)
xk

k!
(n = 0, 1, 2, . . .).

The first step is to find a two-variable recurrence that is satisfied by the summand

itself, in this case by

F (n, k) = (−1)k

(
n

k

)
xk

k!
(n, k ≥ 0). (4.3.3)

The “Fundamental Theorem,” Theorem 4.4.1 below, guarantees that this F satis-

fies a recurrence. Before we go to the computer to find the recurrence, let’s try to esti-

mate its order in advance. To do this, identify the specific F in (4.3.3) with the general

form in (4.4.1) below by taking uu := 1, vv := 3, x := −x, (a1, b1, c1) = (1, 0, 0) and

for the three (u, v, w) vectors,

(0, 1, 0), (1,−1, 0), (0, 1, 0).



62 Sister Celine’s Method

Then for the quantitative estimates provided by the theorem, namely the (I∗, J∗) of

(4.4.3), we find J∗ = 3, I∗ = 4. Hence there is surely a recurrence for F (n, k) of the

form
4∑

i=0

3∑

j=0

ai,j(n)F (n− j, k − i) = 0,

in which the ai,j’s are polynomials in n, and are not all zero.

To find such a recurrence we use the Maple program celine above. To search for

a recurrence of orders 2, the program will be called with

celine((n,k) -> (-1)^k*n!*x^k/(k!^2*(n-k)!),2,2);

The program runs briefly, and returns the following output:

The full recurrence is

(-b[3]*x+b[3]*x*n)*F(n-2,k-1)+(n**2*b[4]-n*b[4]+b[3]+2*b[3]*n**2

-3*b[3]*n)*F(n-2,k)+(-2*n**2*b[4]+4*b[3]*n-b[3]+n*b[4]

-4*b[3]*n**2)*F(n-1,k)+(n**2*b[4]+2*b[3]*n**2-b[3]*n)*F(n,k)

+b[4]*F(n-1,k-1)*x*n+b[3]*x**2*F(n-1,k-2)+b[3]*F(n,k-1)*x*n==0

in which b[3], b[4] are arbitrary constants.

But the recurrence for F (n, k) wasn’t the object of the exercise. What we wanted

was a recurrence for the Laguerre polynomial

Ln(x) =
∑

k

F (n, k),

in which the sum on k is over all integers, i.e., extends from −∞ to +∞. This point

is extremely important. The summand F (n, k) of (4.3.3) will vanish automatically if

k < 0 or if k > n, i.e., it has compact support. Hence even if we sum over all integers,

the sums will contain only finitely many nonvanishing terms.

Therefore, we can sum the output recurrence over all integers k. Further, since

the constants b[3], b[4] are arbitrary, let’s take b[3] = 0 and b[4] = 1. This yields

(n2 − n)Ln−2(x) + (−2n2 + n)Ln−1(x) + n2Ln(x) + nxLn−1(x) = 0

or finally

nLn(x) + (x + 1 − 2n)Ln−1(x) + (n− 1)Ln−2(x) = 0,

which is a well known three term recurrence relation for the Laguerre polynomials.

2



4.3 Sister Celine’s general algorithm 63

It should be noted that while the Laguerre polynomials make a pleasant example,

the main theorem, Theorem 4.4.1, which is stated and proved in the next section,

assures us that every sequence of polynomials
∑

k F (n, k)xk, where F is a proper

hypergeometric term, satisfies a recurrence relation, and it even gives us a bound on

the order of the recurrence.

Example 4.3.3. In this example we will see that with Sister Celine’s original

algorithm we can easily find the right hand sides of some fairly formidable identities.

Consider the evaluation of the sum

f(n) =
∑

k

(
n

k

)(
2k

k

)
(−2)n−k. (4.3.4)

Without thinking, just enter the summand F (n, k) into the input line of program

celine as

celine((n,k) -> n!*(2*k)!*(-2)^(n-k)/(k!^3*(n-k)!),2,2);

The output is as follows.

The full recurrence is

(-8*b[3]*n+8*b[3])*F(n-2,k-2)+(2*b[3]-4*b[3]*n)*F(n-1,k-2)

+(-8*b[0]*n+8*b[0]+4*b[3]*n-4*b[3])*F(n-2,k-1)

+(4*b[3]*n-2*b[3]-4*b[0]*n+2*b[0])*F(n-1,k-1)

+(4*b[0]*n-4*b[0])*F(n-2,k)+(4*b[0]*n-2*b[0])*F(n-1,k)

+b[0]*F(n,k)*n+b[3]*F(n,k-1)*n ==0

Since b[0] and b[3] are arbitrary constants here, we might as well choose, say,

b[0]=1 and b[3]=0, in which case the above recurrence simplifies to

−8(n− 1)F (n− 2, k − 1) − 2(2n− 1)F (n− 1, k − 1)

+ 4(n− 1)F (n− 2, k) + 2(2n− 1)F (n− 1, k) + nF (n, k) = 0.

If we now sum over all integers k, we find that the sum f(n), of (4.3.4), satisfies the

beautifully simple recurrence

nf(n) − 4(n− 1)f(n− 2) = 0.

Since, from (4.3.4), f(0) = 1 and f(1) = 0, it follows immediately that

f(n) =

{
0, if n is odd;
(

n
n/2

)
, if n is even.

The above is called the Reed–Dawson identity, and Sister Celine’s algorithm derived

and proved it effortlessly. 2



64 Sister Celine’s Method

4.4 The Fundamental Theorem

The “Fundamental Theorem” states that every proper hypergeometric term F (n, k)

satisfies a recurrence relation of the kind we have found in the previous chapters, and

it validates the procedure that we have used to find these recurrences in the sense

that it guarantees that Sister Celine’s method will work if the span of the assumed

recurrence is large enough. The theorem also finds explicit precomputable upper

bounds on the span.

Definition. A function F (n, k) is said to be a proper hypergeometric term if it can

be written in the form

F (n, k) = P (n, k)

∏uu
i=1(ain + bik + ci)!∏vv
i=1(uin+ vik + wi)!

xk, (4.4.1)

in which x is an indeterminate over, say, the complex numbers, and

1. P is a polynomial,

2. the a’s, b’s, u’s, v’s are specific integers, that is to say, they do not contain any

additional parameters, and

3. the quantities uu and vv are finite, nonnegative, specific integers. 2

An F of the form (4.4.1) is well defined at a point (n, k) if none of the numbers

{ain + bik + ci}uu
i=1 is a negative integer. We will say that F (n, k) = 0 if F is well

defined at (n, k) and at least one of the numbers {uin + vik + wi}vv
i=1 is a negative

integer, or P (n, k) = 0.

Some examples of proper hypergeometric terms are as follows.

The term
(

n
k

)
2k is proper hypergeometric because it can be written

F (n, k) =

(
n

k

)
2k =

n!

k! (n− k)!
2k,

which is exactly of the required form. Also,
(
2n
k

)
2k is proper hypergeometric, but

(
an
n

)

is not, if a is an unspecified parameter.

Consider, however, F (n, k) = 1/(n+3k+1). This is not in proper hypergeometric

form. It doesn’t contain any of the factorials, and it isn’t a polynomial. However, the

definition says “... if it can be written in the form ...” This F (n, k) can be written

in proper hypergeometric form, even though it was not given to us in that form! All

we have to do is to write

1

n+ 3k + 1
=

(n+ 3k)!

(n + 3k + 1)!
.



4.4 The Fundamental Theorem 65

On the other hand, if we take F (n, k) = 1/(n2 + k2 +1), then no amount of rewriting

will produce the form in (4.4.1), so this F is not proper hypergeometric.

Now we can state the main theorem.

Theorem 4.4.1 Let F (n, k) be a proper hypergeometric term. Then F satisfies a

k-free recurrence relation. That is to say, there exist positive integers I, J, and poly-

nomials ai,j(n) for i = 0, . . . , I; j = 0, . . . , J , not all zero, such that the recurrence

I∑

i=0

J∑

j=0

ai,j(n)F (n− j, k − i) = 0 (4.4.2)

holds at every point (n, k) at which F (n, k) 6= 0 and all of the values of F that occur in

(4.4.2) are well defined. Furthermore, there is such a recurrence with (I, J) = (I∗, J∗)

where

J∗ =
∑

s

|bs| +
∑

s

|vs|; I∗ = 1 + deg(P ) + J∗({
∑

s

|as| +
∑

s

|us|} − 1). (4.4.3)

Note that the recurrence (4.4.2) is k-free since the coefficients ai,j(n) depend only

on n, not on k.

Next we’re going to prove the theorem. In order to do that it will be important

to do a few simple exercises that relate to the behavior of translates of a proper

hypergeometric term.

Suppose f(n) = (2n+ 3)!. What is f(n− 2)/f(n)? It is

f(n− 2)

f(n)
=

1

4n(1 + n)(1 + 2n)(3 + 2n)
,

i.e., it is the reciprocal of a certain polynomial in n.

On the other hand, if f(n) = (3 − 2n)!, then

f(n− 2)

f(n)
= 4(n− 3)(n− 2)(2n− 7)(2n− 5)

is a polynomial in n.

The conclusion here is that if f(n) = (an+ b)!, then the ratio f(n− j)/f(n) is, for

j ≥ 0, a polynomial in n, if a ≤ 0, and the reciprocal of a polynomial in n, if a > 0.

For a two-variable case, consider f(n, k) = (2n− 3k + 1)!. Then

f(n− 9, k − 5)

f(n, k)
=

1

(−1 − 3k + 2n)(−3k + 2n)(1 − 3k + 2n)

is the reciprocal of a polynomial in n and k, whereas

f(n− 6, k − 5)

f(n, k)
= (2 − 3k + 2n)(3 − 3k + 2n)(4 − 3k + 2n)



66 Sister Celine’s Method

is a polynomial in n and k.

The general rule in the two-variable case is that if F (n, k) = (an + bk + c)! then

for i, j ≥ 0 we have F (n− j, k − i)/F (n, k) equal to

{
{(an + bk + c) · · · (an+ bk + c− aj − bi + 1)}−1, if aj + bi ≥ 0;

(an + bk + c+ |aj + bi|) · · · (an+ bk + c+ 1), if aj + bi < 0.
(4.4.4)

Once again the result is either a polynomial in n and k, or is the reciprocal of such

a polynomial, depending on the sign of aj + bi.

Let’s introduce, just for the purposes of this proof, the following notation for

the rising factorial (rf) and falling factorial (ff) polynomials, for nonnegative integer

values of x (the empty product is =1):

rf(x, y) =

x∏

j=1

(y + j),

ff(x, y) =

x−1∏

j=0

(y − j).

In terms of these polynomials, we can rewrite (4.4.4) as

F (n− j, k − i)

F (n, k)
=

{
1/ff(aj + bi, an + bk + c), if aj + bi ≥ 0;

rf(|aj + bi|, an + bk + c), if aj + bi < 0.
(4.4.5)

Now consider a function F (n, k) which is not just a single factor (an + bk + c)!,

but is a product of several such factors divided by another product of several such

factors, as in (4.4.1) above,

F (n, k) = P (n, k)

∏uu
s=1(asn + bsk + cs)!∏vv
s=1(usn+ vsk + ws)!

xk.

What can we say about the form of the ratio ρ = F (n − j, k − i)/F (n, k) now?

Well, each of the factorial factors in the numerator of F contributes a polynomial in

n and k either to the numerator of ρ or to the denominator of ρ, as in (4.4.5). Hence,

the ratio ρ will be a rational function of n and k, say ν(n, k)/δ(n, k).

More precisely, the numerator ν(n, k) of the ratio ρ will be, according to (4.4.5),

P (n−j, k−i)
uu∏

s=1
asj+bsi<0

rf(|asj+bsi|, asn+bsk+cs)

vv∏

s=1
usj+bsi≥0

ff(usj+vsi, usn+vsk+ws), (4.4.6)



4.4 The Fundamental Theorem 67

and its denominator δ(n, k) will be

P (n, k)xi

uu∏

s=1
asj+bsi≥0

ff(asj+bsi, asn+bsk+cs)

vv∏

s=1
usj+vsi<0

rf(|usj+vsi|, usn+vsk+ws). (4.4.7)

OK, now, to prove the theorem, let’s assume the recurrence in the form (4.4.2)

and try to solve for the coefficients ai,j(n). If we do that, then after dividing by

F (n, k), the left side of the assumed recurrence will be
∑

0≤i≤I;0≤j≤J

ai,j(n)
νi,j

δi,j
, (4.4.8)

where each νi,j looks like (4.4.6) and each δi,j looks like (4.4.7).

The next step is to collect all of the terms in the sum (4.4.8) over a single least

common denominator. But since we have such explicit formulas for the numerator

and denominator polynomials of each term, we can write out explicitly what that

common denominator will be.

The first thing to notice is that, by (4.4.7), each and every denominator in (4.4.8)

contains the same factor P (n, k), so P (n, k) will be in the least common denominator

that we are constructing.

(Notice that if we had permitted a denominator polynomial Q(n, k) to

appear in the definition (4.4.1) of a proper hypergeometric term, then the

outlook would have been much bleaker. Indeed, in that case, the (i, j)

term in (4.4.8) would have contained a factor Q(n − j, k − i) also, and

we would need to deal with the least common multiple of all such factors

when constructing the common denominator of all terms. That multiple

would have been of an unacceptably high degree in k, and would have

blocked the argument that follows from reaching a successful conclusion.)

We introduce the symbol x+ = max (x, 0), where x is a real number. Then for all

real numbers a, b we have

max {|aj + bi| : aj + bi < 0; 0 ≤ i ≤ I; 0 ≤ j ≤ J} = (−a)+J + (−b)+I,

and

max {aj + bi : aj + bi ≥ 0; 0 ≤ i ≤ I; 0 ≤ j ≤ J} = a+J + b+I,

so the ‘x+’ notation is a device that saves the enumeration of many different cases.

Now we can address the question of finding the least common multiple of all of

the δi,j’s in (4.4.8). For each s, a common multiple of all of the falling factorials that

appear there will be the one whose first argument is largest, i.e.,

ff((as)
+J + (bs)

+I, asn+ bsk + cs),



68 Sister Celine’s Method

and a common multiple of all of the rising factorials that appear there will similarly

be

rf((−us)
+J + (−vs)

+I, usn+ vsk + ws).

Consequently the least common denominator of the expression (4.4.8), when that

expression is thought of as a rational function of k, with n as a parameter, surely

divides P (n, k) times

uu∏

s=1

ff((as)
+J+(bs)

+I, asn+bsk+cs)

vv∏

s=1

rf((−us)
+J+(−vs)

+I, usn+vsk+ws). (4.4.9)

Therefore we can clear (4.4.8) of fractions if we multiply it through by (4.4.9).

The result of multiplying (4.4.8) through by (4.4.9) will be the polynomial in k

∑

0≤i≤I;0≤j≤J

ai,j(n)νi,j(n, k)
∆

δi,j(n, k)
, (4.4.10)

in which ∆ is the common denominator in (4.4.9).

In order to prove the theorem we must show that if I and J are large enough,

then the system of linear equations in the unknown ai,j’s that one obtains by equating

to zero the coefficient of every power of k that appears in (4.4.10) actually has a

nontrivial solution. This will surely happen if the number of unknowns exceeds the

number of equations, and we claim that if I, J are large enough then this is exactly

what happens.

Indeed, the number of unknown ai,j’s is obviously (I + 1)(J + 1). The number of

equations that they must satisfy is the number of different powers of k that appear in

(4.4.10). We claim that the number of different powers of k that appear there grows

only linearly with I and J , that is, as c1I + c2J + c3, where the c’s are independent of

I, J . This claim would be sufficient to prove the theorem because then the number

of unknowns would grow like IJ , for large I and J , whereas the number of equations

would grow only as c1I + c2J + c3. Hence for large enough I, J the latter would be

less than the former.

Since the degree in k of each rising factorial and each falling factorial that appears

in (4.4.10) grows linearly with I, J , and there are only a fixed number of each of them,

the degrees in k of all of the ν’s, δ’s and ∆ grow linearly with I, J . Hence the claim

is clearly true, and the proof of the main theorem is complete. A more detailed

argument, which we omit here, shows that the values I∗ and J∗ that are in the

statement of the theorem are already sufficiently large. 2

The above proof of the Fundamental Theorem is taken from Wilf and Zeilberger

[WZ92a]. The theorem was proved earlier, in only slightly restricted generality, in



4.4 The Fundamental Theorem 69

the case of one summation variable, by Verbaeten [Verb74]. In [WZ92a] the theorem

is stated and proved also for several summation variables, and for q and multi-q

identities, in all cases with explicit a priori bounds for the order of the recurrence.

In some cases even more stupefying things are possible. Suppose
∑

k F (n, k) = 1

is an identity of the type that we have been considering. Then by the Fundamental

Theorem, there exists an integer n0 with the following property: suppose that we have

numerically verified that the claimed identity is correct for n = 0, 1, . . . , n0. Then

the identity is thereby proved to be true in general.

What is the integer n0 that validates such a proof by computation? Once we have

found the recurrence that the left side, f(n), satisfies, suppose that recurrence turns

out to be of order J . A function that satisfies a recurrence of order J , and that is

equal to 1 for J consecutive values of n, has not been thereby proved to be 1 for all

n.

The reason is that in the recurrence relation for f , say

a0(n)f(n) + a1(n)f(n− 1) + · · ·+ aJ(n)f(n− J) = 0

the coefficient a0(n) might vanish for some large values of n, and then we would not

be able to solve for f(n) from its predecessors and sustain the induction.

For example, if a certain sum f(n) satisfies

(n− 100)f(n) − nf(n− 1) + 100f(n− 2) = 0

for all n ≥ 2, and if we start checking that f(n) = 1, numerically from its definition

as a sum, beginning with n = 0, then we will have to check up to n = 100 before we

can safely conclude that f(n) = 1 for all n ≥ 0.

In general, suppose
∑I

i=0

∑J
j=0 bi,jn

jf(n− i) = 0 is a linear recurrence with poly-

nomial coefficients, and suppose that f(n) = 1 satisfies this recurrence for at least

J + 1 consecutive values of n. Then we have
∑I

i=0

∑J
j=0 bi,jn

j = 0 for those n.

Think of these as a set of J + 1 linear homogeneous equations in J + 1 unknowns

xj =
∑I

i=0 bi,j. Since the coefficient determinant of this system is the Vandermondian

{nj}0≤j≤J ;0≤n≤J, it is nonsingular, and therefore all of the xj’s must vanish. Thus

f(n) = 1 is a solution for all n. If the highest coefficient in the recurrence, namely∑J
j=0 b0,j, is nonzero, then the solution in which f(n) is identically 1 will be the unique

solution of the recurrence that satisfies the initial conditions.

So a safe estimate for n0 is, for instance, the order of the recurrence plus the size

of the largest nonnegative zero of the leading coefficient of the recurrence plus the

highest degree in n of any of the coefficient polynomials.

Remarkably, it is possible to estimate, a priori, the roots of the leading coefficient

of the recurrence relation. This has been done by Lily Yen in her doctoral dissertation



70 Sister Celine’s Method

[Yen 93]. Together with the a priori bounds on the order of the recurrence relation

that we have already discussed here, as well as a priori bounds on the degrees of the

coefficient polynomials that occur in the recurrence, this means that we can estimate

n0 a priori also. Theoretically, then, we can prove identities just by checking enough

numerical values! As things now stand, however, the a priori estimates of n0 are

extremely large, so the algorithm is impractical. It is an interesting research question

to ask how small we can make this a priori estimate of n0.

In more recent work [Yen95b], however, Yen has shown that for q-identities the a

priori estimates of n0 can be spectacularly reduced, since in that case she proved that

the leading coefficient of the recurrence relation cannot vanish. This opens the door

to proving q-identities by simply verifying that they are satisfied for some moderate

finite number of values of n. In the case of the Chu–Vandermonde identity (see

page 184), for instance, she shows that we can prove that it is true for all n “just” by

checking it for 2358 values of n. While this is not yet a practical-sized computation,

it hints that such things may lie just ahead.

4.5 Multivariate and “q” generalizations

The Fundamental Theorem generalizes to multivariate sums, i.e., sums over several

summation indices, and to q- and multi-q- sums. These results are in Wilf and

Zeilberger [WZ92a], and we will give here only a summary of the principal results of

that paper.

First, here is the generalization to r summation indices, in which we are trying to

find recurrences that are satisfied by sums of the form

fn(x) =
∑

k1,...,kr

F (n, k1, k2, . . . , kr)x
k1
1 · · ·xkr

r (4.5.1)

for integer n, where r ≥ 1 and the summand F is a proper hypergeometric term.

The allowable form of a proper hypergeometric summand F in this case is

F (n,k) = P (n,k)

∏p
s=1(asn + bs · k + cs)!∏q
s=1(usn+ vs · k + ws)!

zk, (4.5.2)

where P is a polynomial, the a’s, u’s, b’s and v’s are integers that contain no ad-

ditional parameters, and the c’s and w’s are integers that may involve unspecified

parameters.

The form of the k-free recurrence relation that these F ’s satisfy is

∑

0≤j≤J

∑

0≤i≤I

α(i, j, n)F (n− j,k − i) = 0, (4.5.3)



4.5 Multivariate and “q” generalizations 71

where the α’s are polynomials in n.

Now here is the r-variate Fundamental Theorem.

Theorem 4.5.1 Every proper hypergeometric term in r variables satisfies a nontriv-

ial k-free recurrence relation. Indeed, there exist I, J and polynomials α(i, j, n), not

all zero, such that (4.5.3) holds at every point (n0,k0) ∈ Zr+1 for which F (n0,k0) 6= 0

and all of the values F (n0 − j,k0 − i) that occur in (4.5.3) are well defined. Further-

more, there is such a recurrence in which J = J∗, where

J∗ =

⌊
1

r!

{ p∑

s=1

r∑

r′=1

|(bs)r′| +
q∑

s=1

r∑

r′=1

|(vs)r′|
}r
⌋
. (4.5.4)

Similarly, the Fundamental Theorem can be generalized to q-sums and multisums.

We present here the theorem only in the case of q-sums.

A q-proper hypergeometric term is of the form

F (n, k) =

∏
sQ(asn+ bsk, cs)∏
sQ(usn + vsk, ws)

qan2+bnk+ck2+dk+enξk, (4.5.5)

where

Q(m, c) = (1 − cq)(1 − cq2) · · · (1 − cqm). (4.5.6)

Our hypotheses about the parameters, etc. will be as above, i.e., they are all absolute

constants except possibly for the c’s and the w’s. As before, we seek I, J such that

for some nontrivial α’s we have

I∑

i=0

J∑

j=0

α(i, j;n)F (n− j, k − i) = 0.

The result is as follows.

Theorem 4.5.2 Let F be a q-hypergeometric term of the form (4.5.5). Then F

satisfies a k-free recurrence whose order J is at most
∑

s b
2
s +

∑
s v

2
s + 2|c|.

For the proofs of these theorems and many examples thereof, the reader is referred

to [WZ92a], and to Section 6.5 of this book. One can go even further, and talk about

multiple-summation/integration [WZ92a]

fn(x) :=

∫
. . .

∫ ∑

k1,...,kr

F (x, n; y1, . . . , ys; k1, . . . , kr)dy1 . . . dys

where F is a continuous/discrete analog of ‘proper hypergeometric.’ The program

TRIPLE INTEGRAL.maple, with its associated sample input file inTRIPLE, as well as

the program DOUBLE SUM SINGLE INTEGRAL.maple are Maple implementations of two

special cases.



72 Sister Celine’s Method

4.6 Exercises

1. Find an upper bound, in terms of p, on the order of the recurrence that is

satisfied by the sum of the pth powers of all of the binomial coefficients of order

n.

2. Let F (n, k) be a proper hypergeometric term, of the form (4.4.1), but without

the polynomial factor P . Define A =
∑

s as, B =
∑

s bs, U =
∑

s us, V =
∑

s vs.

Show that [Wilf91] the upper bounds I∗, J∗ that were found in Theorem 4.4.1

can be replaced by

J∗ =
∑

s

(−vs)
+ +

∑

s

b+s + (V − B)+ (4.6.1)

I∗ = J∗{∑ a+
s +

∑
(−us)

+ + (U − A)+ − 1
}

+ 1. (4.6.2)

Investigate circumstances under which this bound is superior to the one stated

in Theorem 4.4.1.

3. Use Sister Celine’s algorithm to evaluate each of the following binomial coef-

ficient sums, in explicit closed form. In each case find a recurrence that is

satisfied by the summand, then sum the recurrence over the range of the given

summation to find a recurrence that is satisfied by the sum. Then solve that

recurrence for the sum, either by inspection, or by being very clever, or, in

extremis, by using algorithm Hyper of Chapter 8, page 154.

(a)
∑

k(−1)k
(

n
k

)(
2n−2k
n+a

)

(b)
∑

k

(
x
k

)(
y

n−k

)

(c)
∑

k k
(
2n+1
2k+1

)

(d)
∑n

k=0

(
n+k

k

)
2−k (Careful– watch the limits of the sum.)

(e)
∑

k(−1)k
(

n−k
k

)
2n−2k



Chapter 5

Gosper’s Algorithm

5.1 Introduction

Gosper’s algorithm is one of the landmarks in the history of computerization of the

problem of closed form summation. It not only definitively answers the question for

which it was developed, but it is also vital in the operation of the creative telescoping

algorithm of Chapter 6 and the WZ algorithm of Chapter 7.

The question for which it was developed is quite analogous to the question of

indefinite integration in finite terms, so let’s take a moment to look at that problem.

Suppose we are given an integral H(x) =
∫ x

a
f(t)dt, where f is, say, continuous, and

we are trying to “do” it, i.e., we are struggling to find some simple form for the

function H(x).

Certainly we are all finished if we can find a simple-looking function F (“anti-

derivative”) such that F ′ = f , for then our answer is just that H(x) = F (x) − F (a).

We remark at once that there is no question at all about the existence of an anti-

derivative. There always is one. In fact H itself is such a function! But that is totally

unhelpful, because we are looking for an answer in “simple form.” So the definition

of simple form is vitally important. In this integration problem typically one defines

certain elementary functions, such as polynomials, trigonometric functions, and so

forth, along with a few elementary operations, such as addition and multiplication,

extraction of roots, etc., and then one defines “simple form” to be the form of any

function that is obtainable from the elementary functions by a finite sequence of

operations.

With that kind of a setup, the integration problem is very difficult, and has been

settled completely only fairly recently [Risc70].

Now consider the question of indefinite summation in closed form. Instead of an



74 Gosper’s Algorithm

integral, we are looking at a sum

sn =

n−1∑

k=0

tk, (5.1.1)

where tk is a hypergeometric term that does not depend on n, i.e., the consecutive-

term ratio

r(k) =
tk+1

tk
(5.1.2)

is a rational function of k. We would like to express sn in closed form,1 that is,

without using the summation sign, if possible.

We note that sn plays the role of an antiderivative here. Instead of its derivative

being the integrand, its difference is the summand. That is, sn+1 − sn = tn. Hence,

just as in the integration problem, we are led to inquire if, given a hypergeometric

term tn, there exists a hypergeometric term zn, say, such that

zn+1 − zn = tn. (5.1.3)

If we can somehow find such a function zn then we will indeed have expressed the sum

(5.1.1) in the simple form of a single hypergeometric term plus a constant. Conversely,

any solution zn of (5.1.3) will have the form

zn = zn−1 + tn−1 = zn−2 + tn−2 + tn−1 = . . . = z0 +

n−1∑

k=0

tk = sn + c,

where c = z0 is a constant.

Gosper’s algorithm [Gosp78] answers the following question: Given a hyperge-

ometric term tn, is there a hypergeometric term zn satisfying (5.1.3)?

If the answer is affirmative, then sn can be expressed as a hypergeometric term

plus a constant, and the algorithm outputs such a term. In this case we will say that

tn is Gosper-summable. On the other hand, if Gosper’s algorithm returns a negative

answer, then that proves that (5.1.3) has no hypergeometric solution.

R. W. Gosper, Jr., discovered his algorithm in conjunction with his work on the

development of one of the first symbolic algebra programs, Macsyma. Because of

his algorithm, Macsyma had a seemingly uncanny ability to find simple formulas for

sums of the type (5.1.1).

In this chapter, we will use IN to denote the set of all nonnegative integers, IN =

{0, 1, 2, . . .}. If p(n) is a nonzero polynomial we will denote its leading coefficient by

lc p(n). The degree of the zero polynomial will be taken to be −∞.

1See page 143.



5.2 Hypergeometrics to rationals to polynomials 75

We will assume that all arithmetic operations take place in some field K of char-

acteristic 0. In the examples, it will be the case that K = |Q, the field of rational

numbers, or K = |Q(x1, x2, . . . , xk) where x1, x2, . . . , xk are algebraically independent

over |Q, or K = |Q(α) where α is algebraic over |Q. Our rational functions have their

coefficients in K, therefore we sometimes call K the coefficient field. A sequence tn
with elements in K is then a hypergeometric term over K if there are polynomials

p(n), q(n) from K[n] such that p(n)tn+1 = q(n)tn for all n ∈ IN, i.e., if tn satisfies a

first order linear homogeneous recurrence whose coefficients are polynomials in K[n].

For more information on our algebraic framework, see Section 8.2.

5.2 Hypergeometrics to rationals to polynomials

If zn is a hypergeometric term that satisfies (5.1.3) then the ratio

zn

tn
=

zn

zn+1 − zn

=
1

zn+1

zn
− 1

(5.2.1)

is clearly a rational function of n. So let

zn = y(n)tn,

where y(n) is an (as yet unknown) rational function of n. Substituting y(n)tn for zn

in (5.1.3) reveals that y(n) satisfies

r(n)y(n+ 1) − y(n) = 1, (5.2.2)

where r(n) is as in (5.1.1). This is a first-order linear recurrence relation with rational

coefficients and constant right hand side. Thus we have reduced the problem of finding

hypergeometric solutions of (5.1.3) to the problem of finding rational solutions of

(5.2.2).

Later, in Chapter 8, we will see how to find rational (and hypergeometric) solutions

of linear recurrences with rational coefficients, of any order. But in this special case,

Gosper found an ingenious way to reduce the problem further to that of finding

polynomial solutions of yet another first-order recurrence.

Assume that we can write

r(n) =
a(n)

b(n)

c(n+ 1)

c(n)
, (5.2.3)

where a(n), b(n), c(n) are polynomials in n, and

gcd(a(n), b(n + h)) = 1, for all nonnegative integers h. (5.2.4)



76 Gosper’s Algorithm

We will see in the next section that a factorization of this type exists for every rational

function, and we will also give an algorithm to find it. Following Gosper’s advice, we

look for a nonzero rational solution of (5.2.2) in the form

y(n) =
b(n− 1)x(n)

c(n)
, (5.2.5)

where x(n) is an unknown rational function of n. Substitution of (5.2.3) and (5.2.5)

into (5.2.2) shows that x(n) satisfies

a(n)x(n + 1) − b(n− 1)x(n) = c(n) . (5.2.6)

And now a miracle happens.2

Theorem 5.2.1 [Gosp78] Let a(n), b(n), c(n) be polynomials in n such that equation

(5.2.4) holds. If x(n) is a rational function of n satisfying (5.2.6), then x(n) is a

polynomial in n.

Proof. Let x(n) = f(n)/g(n), where f(n) and g(n) are relatively prime polynomials

in n. Then (5.2.6) can be rewritten as

a(n)f(n+ 1)g(n) − b(n− 1)f(n)g(n+ 1) = c(n)g(n)g(n+ 1) . (5.2.7)

Suppose that the conclusion of the theorem is false. Then g(n) is a non-constant poly-

nomial. Let N be the largest integer such that gcd(g(n), g(n+N)) is a non-constant

polynomial; note that N ≥ 0. Let u(n) be a non-constant irreducible common divisor

of g(n) and g(n+N). Since u(n−N) divides g(n) it follows from (5.2.7) that

u(n−N) | b(n− 1)f(n)g(n+ 1).

Now u(n − N) does not divide f(n) since it divides g(n), which is relatively prime

to f(n) by assumption. It also does not divide g(n + 1), or else u(n) would be a

non-constant common factor of g(n) and g(n+N + 1), contrary to our choice of N .

Therefore u(n−N) | b(n− 1) and hence u(n+ 1) | b(n+N).

Similarly, it follows from (5.2.7) that

u(n+ 1) | a(n)f(n+ 1)g(n).

Again, u(n+1) does not divide f(n+1) by assumption. It also does not divide g(n), or

else u(n) would be a non-constant common factor of g(n− 1) and g(n+N), contrary

to our choice of N . Hence u(n + 1) | a(n). But then, by the previous paragraph,

u(n+ 1) is a non-constant common factor of a(n) and b(n +N), contrary to (5.2.4).

2But see Exercise 10.



5.2 Hypergeometrics to rationals to polynomials 77

This contradiction shows that g(n) is constant, and so x(n) is a polynomial in n.

2

Finding hypergeometric solutions of (5.1.3) is therefore equivalent to finding poly-

nomial solutions of (5.2.6). The correspondence between them is that if x(n) is a

nonzero polynomial solution of (5.2.6) then

zn =
b(n− 1)x(n)

c(n)
tn

is a hypergeometric solution of (5.1.3), and vice versa. The question of how to find

polynomial solutions of (5.2.6), if they exist, or to prove that there are none, if they

don’t exist, is the subject of Section 5.4 below.

Here, then, is an outline of Gosper’s algorithm.

Gosper’s Algorithm

INPUT: A hypergeometric term tn.

OUTPUT: A hypergeometric term zn satisfying (5.1.3), if one exists;∑n−1
k=0 tk, otherwise.

1. Form the ratio r(n) = tn+1/tn which is a rational function of n.

2. Write r(n) = a(n)
b(n)

c(n+1)
c(n)

where a(n), b(n), c(n) are polynomials satisfy-

ing (5.2.4).

3. Find a nonzero polynomial solution x(n) of (5.2.6), if one exists;

otherwise return
∑n−1

k=0 tk and stop.

4. Return b(n−1)x(n)
c(n)

tn and stop.

Once we have zn, the sum that we are looking for is sn = zn − z0. The lower

summation bound need not be 0; for example, it may happen that the summand in

(5.1.1) is undefined for certain integer values of k, and then we will want to start

the summation at some large enough value to skip over all the singularities. If the

lower summation bound is k0, then everything goes through as before, except that

now sn = zn − zk0.



78 Gosper’s Algorithm

Example 5.2.1. Let

Sn =
n∑

k=0

(4k + 1)
k!

(2k + 1)!
.

Can this sum be expressed in closed form? We recognize at a glance that the summand

tn = (4n+ 1)
n!

(2n+ 1)!

is a hypergeometric term. We will use Gosper’s algorithm to see if Sn can be expressed

as a hypergeometric term plus a constant. The upper summation bound is n rather

than n− 1, so let sn = Sn−1. The term ratio

r(n) =
tn+1

tn
=

(4n+ 5) (n+1)!
(2n+3)!

(4n+ 1) n!
(2n+1)!

=
4n + 5

2(4n+ 1)(2n+ 3)

is rational in n as expected. The choice

a(n) = 1, b(n) = 2(2n+ 3), c(n) = 4n+ 1

clearly satisfies (5.2.3) and (5.2.4). Equation (5.2.6) thus becomes

x(n + 1) − 2(2n+ 1)x(n) = 4n+ 1 . (5.2.8)

Does it have any nonzero polynomial solution? We might start looking for polynomial

solutions of degree 0, 1, 2, . . . until one is found. Here we “get lucky,” since we find a

solution right away, namely the constant polynomial x(n) = −1. Hence

zn =
−2(2n+ 1)

4n+ 1
(4n+ 1)

n!

(2n+ 1)!
= −2

n!

(2n)!

satisfies zn+1 − zn = tn. Finally, sn = zn − z0 = 2 − 2n!/(2n)!, so the closed form we

were looking for is

Sn = sn+1 = 2 − n!

(2n+ 1)!
.

Notice that Sn is not a hypergeometric term. It is, however, the sum of two such

terms, one of them constant. 2

This example was so simple that we were able to find the factorization (5.2.2) and

a polynomial solution of (5.2.6) by inspection. It remains to show how to do Steps 2

and 3 in a systematic way.



5.3 The full algorithm: Step 2 79

5.3 The full algorithm: Step 2

In this section we show how to obtain the factorization (5.2.3) of a given rational

function r(n), subject to conditions (5.2.4), and derive some of its properties.

Let r(n) = f(n)/g(n), where f(n) and g(n) are relatively prime polynomials.

If gcd(f(n), g(n + h)) = 1 for all nonnegative integers h, we can take a(n) = f(n),

b(n) = g(n), c(n) = 1, and we would have the desired factorization at once. Otherwise

let u(n) be a non-constant common factor of f(n) and g(n+h), for some nonnegative

integer h. The idea is to “divide out” such factors from the prospective a(n) resp.

b(n) and to incorporate them into c(n). More precisely, let f(n) = f̄(n)u(n) and

g(n) = ḡ(n)u(n− h). Then

r(n) =
f(n)

g(n)
=
f̄(n)

ḡ(n)

u(n)

u(n− h)
.

The last fraction on the right can be converted into a product of fractions of the

form c(n + 1)/c(n) by multiplying its numerator and denominator by the missing

“intermediate” shifted factors of u(n):

u(n)

u(n− h)
=

u(n)u(n− 1)u(n− 2) · · ·u(n− h+ 1)

u(n− 1)u(n− 2) · · ·u(n− h + 1)u(n− h)
.

Now we repeat this procedure with f̄ and ḡ in place of f and g. In a finite number

of steps we will obtain the desired factorization (5.2.3).

How do we know when (5.2.4) is satisfied, or if it isn’t, how do we find the values

of h that violate it? One way is to use polynomial resultants.3 Let R(h) denote

the resultant of f(n) and g(n + h), regarded as polynomials in n. Then R(h) is a

polynomial in h with the property that R(α) = 0 if and only if gcd(f(n), g(n+α)) is

not a constant polynomial. Therefore the values of h that violate (5.2.4) are precisely

the nonnegative integer zeros of R(h).

To speed up the computation of the resultant, we can replace f and g in the

definition of R(h) by f/ gcd(f, f ′) and g/ gcd(g, g′), respectively. This is permitted

by virtue of the fact that f/ gcd(f, f ′) and f have the same sets of irreducible monic

factors, and so do g/ gcd(g, g′) and g.

How can we find integer roots of a polynomial R(h)? The answer to this depends

on the field K from which R’s coefficients come. If K = |Q this is easy, albeit possibly

tedious: We can clear denominators in R(h) = 0 obtaining a new equation S(h) = 0,

where S is a polynomial with integer coefficients and the same roots as R. If necessary,

we cancel a power of h from this equation so that S(0) 6= 0. Now every integer root

u of S divides the constant term of S since it divides all the other ones.

3The resultant of two polynomials f , g, is the product of the values of g at the zeros of f .



80 Gosper’s Algorithm

Gosper’s Algorithm (Step 2)

Step 2.1. Let r(n) = Z f(n)
g(n)

where f, g are monic relatively prime

polynomials, and Z is a constant;

R(h) := Resultantn(f(n), g(n+ h));

Let S = {h1, h2, . . . , hN} be the set of nonnegative integer

zeros of R(h) (N ≥ 0, 0 ≤ h1 < h2 < . . . < hN).

Step 2.2. p0(n) := f(n); q0(n) := g(n);

for j = 1, 2, . . . , N do

sj(n) := gcd(pj−1(n), qj−1(n+ hj));

pj(n) := pj−1(n)/sj(n);

qj(n) := qj−1(n)/sj(n− hj).

a(n) := ZpN(n);

b(n) := qN (n);

c(n) :=
∏N

i=1

∏hi

j=1 si(n− j). 2

Thus a simple algorithm to find all integer roots of R, in the case K = |Q, is4 to

check all divisors of the constant term of S.

More generally, if K = k(α) and Ak is an algorithm for finding integer roots

of polynomials with coefficients in k, then the corresponding algorithm AK can be

obtained as follows: Let R ∈ K[x]. Since the elements of K are rational functions of

α we can write R(h) =
∑s

i=0 pi(α)hi/r(α) =
∑t

j=0 qj(h)α
j/r(α) where pi, qj, r ∈ k[x].

Let R(u) = 0 for some u ∈ k. Then
∑t

j=0 qj(u)α
j = 0. If α is transcendental over k

it follows that qj(u) = 0 for j = 0, 1, . . . , t. If α is algebraic over k of degree d then

each pi is of degree less than d, hence t ≤ d − 1. Again it follows that qj(u) = 0 for

j = 0, 1, . . . , t. In either case, AK consists of applying Ak to each of qj(u) = 0, for

j = 0, 1, . . . , t, and taking the intersection of the sets that are obtained.

Example 5.3.1. Let R(h) =
√

2h2 − 2(
√

2 + 1)h+ 4. Here K = |Q[
√

2]. Rewrite R

as a polynomial in
√

2: R(h) = h(h − 2)
√

2 − 2(h − 2). One coefficient has roots 0

and 2, and the other has root 2, hence h = 2 is the only integer zero of R(h). 2

We have to show that a(n), b(n) and c(n) produced by this procedure for doing

Step 2 of Gosper’s algorithm satisfy conditions (5.2.3) and (5.2.4). A short compu-

4A more efficient algorithm using p-adic methods is given in [Loos83].



5.3 The full algorithm: Step 2 81

tation verifies the former:

a(n)

b(n)

c(n+ 1)

c(n)
= Z

pN(n)

qN(n)

N∏

i=1

hi∏

j=1

si(n+ 1 − j)

si(n− j)

= Z
p0(n)∏N
i=1 si(n)

∏N
i=1 si(n− hi)

q0(n)

N∏

i=1

si(n)

si(n− hi)

= Z
p0(n)

q0(n)
= Z

f(n)

g(n)
= r(n).

To verify the latter, note that by definition of pj, qj, and sj,

gcd(pk(n), qk(n+ hk)) = gcd

(
pk−1(n)

sk(n)
,
qk−1(n+ hk)

sk(n)

)
= 1 (5.3.1)

for all k such that 1 ≤ k ≤ N . In fact, more is true. We use the notation from Step

2 of Gosper’s algorithm, and define additionally hN+1 := +∞.

Proposition 5.3.1 Let 0 ≤ k ≤ i, j ≤ N , h ∈ IN and h < hk+1. Then

gcd(pi(n), qj(n+ h)) = 1. (5.3.2)

Proof. Since pi(n) | f(n) and qj(n) | g(n), it follows that gcd(pi(n), qj(n + h)) di-

vides gcd(f(n), g(n + h)), for any h. If h ∈ IN but h /∈ S then R(h) 6= 0, hence

gcd(f(n), g(n+ h)) = 1. This proves the assertion when h /∈ S.

To prove it when h ∈ S, we use induction on k. Recall that S is sorted so that

h1 < h2 < . . . < hN .

k = 0: In this case there is nothing to prove since there is no h ∈ S such that

h < h1.

k > 0: Assume that the assertion holds for all h < hk. It remains to show that it

holds for h = hk. Since pi(n) | pk(n) and qj(n) | qk(n) it follows that gcd(pi(n), qj(n+

hk)) divides gcd(pk(n), qk(n + hk)). By (5.3.1) the latter gcd is 1, completing the

proof. 2

Setting i = j = k = N in (5.3.2) we see that gcd(a(n), b(n+h)) = 1 for all h ∈ IN,

proving (5.2.4).

It is easy to see that (5.2.4) will be satisfied by the output of Step 2, regardless

of the order in which the members of S are considered. But if they are considered in

increasing order then we claim that the resulting c(n) will have the lowest possible

degree among all factorizations (5.2.3) which satisfy (5.2.4). This is important since

c(n) is the denominator of the unknown rational function y(n), and thus the size of

the linear system resulting from (5.2.6) will be the least possible as well.



82 Gosper’s Algorithm

Theorem 5.3.1 Let K be a field of characteristic zero and r ∈ K[n] a nonzero

rational function. Then there exist polynomials a, b, c ∈ K[n] such that b, c are monic

and

r(n) =
a(n)

b(n)

c(n+ 1)

c(n)
, (5.3.3)

where

(i) gcd(a(n), b(n + h)) = 1 for every nonnegative integer h,

(ii) gcd(a(n), c(n)) = 1,

(iii) gcd(b(n), c(n+ 1)) = 1.

Such polynomials are constructed by Step 2 of Gosper’s algorithm.

Proof. Let a(n), b(n) and c(n) be the polynomials produced by Step 2 of Gosper’s

algorithm. We have already shown (in the discussion preceding the statement of the

theorem) that (5.3.3) and (i) are satisfied.

(ii): If a(n) and c(n) have a non-constant common factor then so do pN(n) and

si(n− j), for some i and j such that 1 ≤ i ≤ N and 1 ≤ j ≤ hi. Since by definition

qi−1(n + hi − j) = qi(n + hi − j)si(n− j), it follows that pN(n) and qi−1(n + hi − j)

have such a common factor, too. Since hi − j < hi, this contradicts Proposition 5.3.1.

Hence a(n) and c(n) are relatively prime.

(iii): If b(n) and c(n + 1) have a non-constant common factor then so do qN (n)

and si(n − j), for some i and j such that 1 ≤ i ≤ N and 0 ≤ j ≤ hi − 1. Since by

definition pi−1(n− j) = pi(n− j)si(n− j), it follows that pi−1(n) and qN(n+ j) have

such a common factor, too. Since j < hi, this contradicts Proposition 5.3.1. Hence

b(n) and c(n+ 1) are relatively prime. 2

The following lemma will be useful more than once.

Lemma 5.3.1 Let K be a field of characteristic zero. Let a, b, c, A, B, C ∈ K[n] be

polynomials such that gcd(a(n), c(n)) = gcd(b(n), c(n+1)) = gcd(A(n), B(n+h)) = 1,

for all nonnegative integers h. If

a(n)

b(n)

c(n + 1)

c(n)
=
A(n)

B(n)

C(n+ 1)

C(n)
, (5.3.4)

then c(n) divides C(n).

Proof. Let

g(n) = gcd(c(n), C(n)), (5.3.5)

d(n) = c(n)/g(n), (5.3.6)

D(n) = C(n)/g(n). (5.3.7)



5.3 The full algorithm: Step 2 83

Then gcd(d(n), D(n)) = gcd(a(n), d(n)) = gcd(b(n), d(n + 1)) = 1. Rewrite (5.3.4)

as A(n)b(n)c(n)C(n + 1) = a(n)B(n)C(n)c(n + 1) and cancel g(n)g(n + 1) on both

sides. The result A(n)b(n)d(n)D(n + 1) = a(n)B(n)D(n)d(n+ 1) shows that

d(n) |B(n)d(n+ 1)

d(n+ 1) |A(n)d(n).

Using these two relations repeatedly, one finds that

d(n) |B(n)B(n+ 1) · · ·B(n + k − 1)d(n+ k),

d(n) |A(n− 1)A(n− 2) · · ·A(n− k)d(n− k),

for all k ∈ IN. Since K has characteristic zero, gcd(d(n), d(n+ k)) = gcd(d(n), d(n−
k)) = 1 for all large enough k. It follows that d(n) divides both B(n)B(n+1) · · ·B(n+

k − 1) and A(n − 1)A(n − 2) · · ·A(n − k) for all large enough k. But these two

polynomials are relatively prime by assumption, so d(n) is a constant. Hence c(n)

divides C(n), by (5.3.6) and (5.3.5). 2

Corollary 5.3.1 Let r(n) be a rational function. The factorization (5.3.3) described

in Theorem 5.3.1 is unique.

Proof. Assume that

r(n) =
a(n)

b(n)

c(n+ 1)

c(n)
=
A(n)

B(n)

C(n + 1)

C(n)

where polynomials a, b, c, A, B, C satisfy properties (i), (ii), (iii) of Theorem 5.3.1

and b, c, B, C are monic. By Lemma 5.3.1, c(n) divides C(n) and vice versa. As

they are both monic, c(n) = C(n). Therefore A(n)b(n) = a(n)B(n). By property (i)

of Theorem 5.3.1, b(n) divides B(n) and vice versa, so b(n) = B(n) since they are

monic. Hence a(n) = A(n) as well. 2

This shows that the factorization described in Theorem 5.3.1 and computed by

Step 2 of Gosper’s algorithm is in fact a canonical form for rational functions.

Corollary 5.3.2 Among all triples a(n), b(n), c(n) satisfying (5.2.3) and (5.2.4), the

one constructed in Step 2 of Gosper’s algorithm has c(n) of least degree.

Proof. Let A(n), B(n), C(n) satisfy (5.2.3) and (5.2.4). By Theorem 5.3.1, the a(n),

b(n), c(n) produced in Step 2 of Gosper’s algorithm satisfy properties (ii) and (iii) of

that theorem. Then it follows from Lemma 5.3.1 that c(n) divides C(n). 2

Example 5.3.2. Let r(n) = (n+3)/((n(n+1)). Then Step 2 of Gosper’s algorithm

yields a(n) = 1, b(n) = n, c(n) = (n + 1)(n + 2). Note that (5.2.3) and (5.2.4)



84 Gosper’s Algorithm

will be also satisfied by, for example, a(n) = n − k, b(n) = n(n − k + 1), c(n) =

(n + 1)(n + 2)(n− k), where k is any positive integer. However, here properties (ii)

and (iii) of Theorem 5.3.1 are violated. 2

We conclude this section by discussing an alternative way of finding the set S
in Step 2, which does not require computation of resultants. It consists of factoring

polynomials f(n) and g(n) into irreducible factors, then finding all pairs u(n), v(n)

of irreducible factors of f(n) resp. g(n) such that

v(n) = u(n− h) (5.3.8)

for some h ∈ IN. Namely, if f(n) and g(n + h) have a non-constant common factor,

they also have a monic irreducible such factor, say u(n), hence g(n) has an irreducible

factor of the form (5.3.8). An obvious necessary condition for (5.3.8) to hold is

that u and v be of the same degree. If u(n) = nd + And−1 + O(nd−2) and v(n) =

nd +Bnd−1 +O(nd−2), then by comparing terms of order d− 1 in (5.3.8) we see that

h = (A − B)/d is the only choice for the value of the shift. It remains to check if

h ∈ IN and if (5.3.8) holds for this h.

In practice, f(n) and g(n) are usually already factored into linear factors because

we get them from products of factorials and binomials. Then the resultant-based

method and the factorization-based method come down to the same thing, since

resultants are multiplicative in both arguments, and Resultantn(n+A, n+B + h) =

h− (A−B). Even when f and g come unfactored it often seems a good idea to factor

them first in order to speed up computation of the resultant — so why use resultants

at all? On the other hand, the resultant-based method is more general since resultants

can be computed in any field (by evaluating a certain determinant), whereas a generic

polynomial factorization algorithm is not known. Ultimately, our choice of method

will be based on availability and complexity of algorithms for computing resultants

vs. polynomial factorizations over the coefficient field K.

5.4 The full algorithm: Step 3

Next we explain how to look for nonzero polynomial solutions of (5.2.6) in a systematic

way. Assume that x(n) is a polynomial that satisfies (5.2.6), with deg x(n) = d. If we

knew d, or at least had an upper bound for it, we could simply substitute a generic

polynomial of degree d for x(n) into (5.2.6), equate the coefficients of like powers of

n, and solve the resulting equations for the unknown coefficients of x(n). Note that

these equations will be linear since (5.2.6) is linear in x(n).

As it turns out, it is not difficult to obtain a finite set of candidates (at most two,

in fact) for d. We distinguish two cases.



5.4 The full algorithm: Step 3 85

Case 1: deg a(n) 6= deg b(n) or lc a(n) 6= lc b(n).

The leading terms on the left of (5.2.6) do not cancel. Hence the degree of the left

hand side of (5.2.6) is d+max{deg a(n), deg b(n)}. Since the degree of the right hand

side is deg c(n), it follows that

d = deg c(n) − max{deg a(n), deg b(n)}

is the only candidate for the degree of a nonzero polynomial solution of (5.2.6).

Case 2: deg a(n) = deg b(n) and lc a(n) = lc b(n) = λ.

The leading terms on the left of (5.2.6) cancel. Again there are two cases to consider.

(2a) The terms of second-highest degree on the left of (5.2.6) do not cancel. Then

the degree of the left hand side of (5.2.6) is d+ deg a(n) − 1, thus

d = deg c(n) − deg a(n) + 1.

(2b) The terms of second-highest degree on the left of (5.2.6) cancel. Let

a(n) = λnk + Ank−1 +O(nk−2), (5.4.1)

b(n− 1) = λnk +Bnk−1 +O(nk−2), (5.4.2)

x(n) = C0n
d + C1n

d−1 +O(nd−2)

where C0 6= 0. Then, expanding the terms on the left of (5.2.6) successively, we find

that

x(n + 1) = C0n
d + (C0d+ C1)n

d−1 +O(nd−2),

a(n)x(n + 1) = C0λn
k+d + (λ(C0d+ C1) + AC0)n

k+d−1 +O(nk+d−2),

b(n− 1)x(n) = C0λn
k+d + (BC0 + λC1)n

k+d−1 +O(nk+d−2),

a(n)x(n + 1) − b(n− 1)x(n) = C0(λd+ A−B)nk+d−1 +O(nk+d−2). (5.4.3)

By assumption, the coefficient of nk+d−1 on the right hand side of (5.4.3) vanishes,

therefore C0(λd+ A− B) = 0. It follows that

d =
B − A

λ
.

Thus in Case 2 the only possible degrees of nonzero polynomial solutions of (5.2.6)

are deg c(n) − deg a(n) + 1 and (B − A)/λ, where A and B are defined by (5.4.1)

and (5.4.2), respectively. Of course, only nonnegative integer candidates need be

considered. When there are two candidates we can use the larger of the two as an

upper bound for the degree. Note that, in general, both Cases (2a) and (2b) can

occur since equation (5.2.6) may in fact have nonzero polynomial solutions of two

distinct degrees.



86 Gosper’s Algorithm

Example 5.4.1. Consider the sum
∑n

k=1 1/(k(k + 1)). Here tn+1/tn = n/(n + 2),

hence a(n) = n, b(n) = n+ 2, c(n) = 1 and equation (5.2.6) is

nx(n + 1) − (n + 1)x(n) = 1.

Case 1 does not apply here. Case (2a) yields d = 0, and Case (2b) yields d = 1

as the only possible degrees of polynomial solutions. Indeed, the general solution of

this equation is x(n) = Cn− 1, so there are solutions of degree 0 (when C = 0) and

solutions of degree 1 (when C 6= 0). 2

Gosper’s Algorithm (Step 3)
Step 3.1. If deg a(n) 6= deg b(n) or lc a(n) 6= lc b(n) then

D := {deg c(n) − max{deg a(n), deg b(n)}}
else

let A and B be as in (5.4.1) and (5.4.2, respectively;

D := {deg c(n) − deg a(n) + 1, (B − A)/lc a(n)}.
Let D := D ∩ IN.

If D = ∅ then return “no nonzero polynomial solution” and stop

else d := maxD.

Step 3.2. Using the method of undetermined coefficients, find a nonzero

polynomial solution x(n) of (5.2.6), of degree d or less.

If none exists return “no nonzero polynomial solution” and stop. 2

5.5 More examples

Example 5.5.1. Does the sum of the first n+ 1 factorials

Sn =

n∑

k=0

k!

have a closed form? Here tn = n! and r(n) = tn+1/tn = n + 1, so we can take

a(n) = n + 1, b(n) = c(n) = 1. The equation (5.2.6) is

(n+ 1)x(n + 1) − x(n) = 1,

and we are in Case 1 since deg a(n) 6= deg b(n). The sole candidate for the degree of

x(n) is deg c(n) − deg a(n) = −1, so (5.2.6) has no nonzero polynomial solution in

this case, proving that our sum cannot be written as a hypergeometric term plus a

constant. 2



5.5 More examples 87

Example 5.5.2. Modify the above sum so that it becomes

Sn =
n∑

k=1

kk!

and see what happens. Now tn = nn! and r(n) = tn+1/tn = (n + 1)2/n, hence

a(n) = n+ 1 and b(n) = 1 as before, but c(n) = n. The equation (5.2.6) is

(n + 1)x(n+ 1) − x(n) = n, (5.5.1)

and we are in Case 1 again, but now the candidate for the degree of x(n) is deg c(n)−
deg a(n) = 0. Indeed, x(n) = 1 satisfies (5.5.1), thus zn = n! satisfies (5.1.3), sn =

zn − z1 = n! − 1, and Sn = sn+1 = (n+ 1)! − 1. 2

These two examples remind us again of integration where, e.g.,
∫
ex2
dx is not an

elementary function, while
∫
xex2

dx = ex2
/2 + C is.

Now we stop doing examples by hand and turn on the computer. After invoking

Mathematica we read in the package gosper.m provided in the Mathematica programs

that accompany this book (see Appendix A):

In[1] :=<< gosper.m

An easy example that we have already done by hand shows the syntax for doing a

sum with given bounds:

In[2] := GosperSum[k k!, {k, 0, n}]

The answer agrees with our earlier result:

Out[2] = −1 + (1 + n)!

We can also require the indefinite sum by giving only the summation variable as the

second argument:

In[3] := GosperSum[k k!, k]

What we get is a function S(k) such that S(k + 1) − S(k) equals kk!:

Out[3] = k!

When the summand is not Gosper-summable we get back the sum unchanged, except

that it is now an ordinary Mathematica Sum:

In[4] := GosperSum[Binomial[n, k], {k, 0, n}]

Out[4] = Sum[Binomial[n, k], {k, 0, n}]



88 Gosper’s Algorithm

This answer means that the equation z(k + 1) − z(k) =
(

n
k

)
has no hypergeometric

solution over the field |Q(n). In other words, the “indefinite” sum S(m) =
∑m

k=0

(
n
k

)
is

not expressible as a hypergeometric term over |Q(n), plus a constant. (Note, however,

that S(n) =
∑n

k=0

(
n
k

)
= 2n is hypergeometric over |Q. Algorithms to evaluate such

definite sums will be given in Chapter 6.)

A small change, the factor (−1)k, makes the function
(

n
k

)
Gosper-summable.

In[5] := GosperSum[(−1)ˆk Binomial[n, k], {k, 0, n}]

Out[5] = 0

Of course, this means that the algorithm will succeed with a general upper summation

bound, too:

In[6] := GosperSum[(−1)ˆk Binomial[n, k], {k, 0, m}]

Out[6] =
(−1)ˆm (−m + n) Binomial[n, m]

n

Our next example is problem 10229 from the American Mathematical Monthly 99

(1992), p. 570. The summand contains an additional parameter m, hence the coeffi-

cient field is |Q(m).

In[7] := GosperSum[Binomial[1/2, m − j + 1] Binomial[1/2, m + j], {j, 1, p}]

Out[7] =
(1 + m− p) p (−1 + 2m + 2p) Binomial[1/2, 1 + m− p] Binomial[1/2, m + p]

m (1 + 2m)

Here is another interesting example.

In[8] := GosperSum[Binomial[2k, k]/4ˆk, {k, 0, n}]

Out[8] =
(1 + 2n) Binomial[2n, n]

4ˆn

Let’s see if this function is perhaps Gosper-summable again?

In[9] := GosperSum[%, {n, 0, n}]

Yes indeed!

Out[9] =
(1 + 2n) (3 + 2n) Binomial[2n, n]

3 4ˆn

Let’s try this again:

In[10] := GosperSum[%, {n, 0, n}]

Out[10] =
(1 + 2n) (3 + 2n) (5 + 2n) Binomial[2n, n]

15 4ˆn



5.5 More examples 89

And again:

In[11] := GosperSum[%, {n, 0, n}]

Out[11] =
(1 + 2n) (3 + 2n) (5 + 2n) (7 + 2n) Binomial[2n, n]

105 4ˆn

Now we can recognize the pattern. The numerical factors in the denominators are 1,

1 × 3, 1 × 3 × 5, 1 × 3 × 5 × 7, so it looks as if

n∑

ns=0

ns∑

ns−1=0

· · ·
n2∑

n1=0

(
2n1

n1

)

4n1
=

(2n+ 2s− 1)!!

(2n− 1)!!(2s− 1)!!

(
2n
n

)

4n
=

(
2n+2s

2s

)
(

n+s
s

)
(
2n
n

)

4n
, (5.5.2)

where the double factorial n!! denotes the solution of the recurrence an = nan−2 that

satisfies a0 = a1 = 1. Our computer and Gosper’s algorithm helped us guess this

identity which contains an arbitrary number of summation signs. This is no proof, of

course, but we can prove it by induction on s, using Gosper’s algorithm again! The

identity certainly holds for s = 0. Now let’s assume that it holds when there are s

summation signs present, and sum it once more. We will of course let Mathematica

and Gosper’s algorithm do it for us.

In[12] := f[n , s ] := Binomial[2n + 2s, 2s] Binomial[2n, n]/Binomial[n + s, s]/4ˆn

First let’s quickly check the base case:

In[13] := f[n, 0]

Out[13] =
Binomial[2n, n]

4ˆn

And now for the induction step:

In[14] := GosperSum[f[n, s], {n, 0, n}]

Out[14] =
(1 + 2n + 2s) Binomial[2n, n] Binomial[2n + 2s, 2s]

4ˆn (1 + 2s) Binomial[n + s, s]

In[15] := % − f[n, s + 1] // FactorialSimplify

Out[15] = 0

This last zero means that if we take f(n, s) and sum it again on n from 0 to n, what

we get is exactly f(n, s+ 1), completing the proof.

There is another way of proving the induction step which does not need Gosper’s

algorithm, namely taking the difference of f(n, s) w.r.t. n and showing that it is

equal to f(n, s− 1).

In[16] := (f[n, s] − f[n− 1, s]) − f[n, s− 1] // FactorialSimplify



90 Gosper’s Algorithm

Out[16] = 0

This means that f(n, s) is correct to within an additive constant. To finish the proof,

we have to show that f(n, s) agrees with the left hand side of (5.5.2) at least for

one value of n. Sure enough, for n = 0 both sides of (5.5.2) are equal to 1. For a

generalization of this example, see Exercise 6 of this chapter.

If we want to find, instead, the solution y(n) of Gosper’s equation (5.2.2), then we

can use the command GosperFunction. For example, Gosper in his seminal paper

[Gosp78] evaluates the sum

Sm =
m∑

n=1

∏n−1
j=1 (bj2 + cj + d)∏n
j=1 (bj2 + cj + e)

assuming d 6= e. Here the consecutive-term ratio is

r(n) =
bn2 + cn + d

b(n + 1)2 + c(n+ 1) + e
,

and Gosper’s algorithm

In[17] := GosperFunction[(b nˆ2 + c n + d)/(b(n + 1)ˆ2 + c(n + 1) + e), n]

finds that y(n) is

Out[17] =
e + c n + b nˆ2

d− e

over |Q(b, c, d, e). Now Sm = sm+1 = zm+1 − z1, where

zm = y(m)tm =
1

d− e

∏m−1
j=1 (bj2 + cj + d)

∏m−1
j=1 (bj2 + cj + e)

,

hence the final result is

Sm =
1

d− e

(∏m
j=1 (bj2 + cj + d)∏m
j=1 (bj2 + cj + e)

− 1

)
.

In Maple, Gosper’s algorithm is one of the summation methods used by the built-
in function sum:

> sum(4^k/binomial(2*k, k), k=0..n);

n

4 (2 n + 1)

4/3 ------------------------ + 1/3

binomial(2 n + 2, n + 1)



5.6 Similarity among hypergeometric terms 91

Here is an interesting example due to A. Giambruno and A. Regev. They proved an

important result in the theory of polynomial identity algebras. However their result

depends upon the hypothesis that

f(n) 6= g(n), for n ≥ 5, (5.5.3)

where

f(n) =
(−1)n+1(n2 + 6n+ 2)

(2n+ 1)(n+ 2)
+

(n+ 1)!n! (2n2 − 5n− 4)

(2n+ 1)!
,

g(n) = (n + 1)! (n− 2)!
n−5∑

i=0

(−1)i(n− i− 4)p(i, n)

i! (2n− i− 3)! (i+ 3)(i+ 2)(n+ 2)(2n− i− 2)
,

and p(i, n) = n3 − 2in2 − 3n2 + i2n+ in− 4n+ i2 + 5i+ 6. It turns out that Gosper’s

algorithm succeeds on the sum in g(n), so Maple can provide a closed form for the
difference f(n) − g(n).

> f := ((-1)^(n + 1))*((n^2 + 6*n + 2)/((2*n + 1)*(n + 2))) +

> ((n + 1)!*n!*(2*n^2 - 5*n - 4))/((2*n + 1)!):

> g := (n + 1)!*(n - 2)!*

> sum( (-1)^i*(n - i - 4)*(n^3 - 2*i*n^2 - 3*n^2 +

> i^2*n + i*n - 4*n + i^2 + 5*i + 6)/(i!*

> (2*n - i - 3)!*(i + 3)*(i + 2)*(n + 2)*(2*n - i - 2)),

> i=0..n-5):

> g := expand(g):

> f := expand(f):

> factor(normal(expand(simplify(normal(f - g)))));

2 n

(n + 1) (n - 2 n + 2) (-1)

- 3 -----------------------------

(n + 2) (- 3 + 2 n) (2 n - 1)

This vanishes only for n = −1, 1 ± i, proving (5.5.3).

5.6 Similarity among hypergeometric terms

The set of hypergeometric terms is closed under multiplication and reciprocation but

not under addition. For example, while n2 + 1 is a hypergeometric term, 2n + 1

isn’t, although it is a nice and well behaved expression. In this section we answer the

following:



92 Gosper’s Algorithm

Question 1. Given a hypergeometric term tn, how can we decide if the sum sn =∑n
k=0 tk is expressible as a linear combination of several (but a fixed number of )

hypergeometric terms? For example, since k! is not Gosper-summable we know that

the sum
∑n

k=0 k! cannot be expressed as a hypergeometric term plus a constant; but

could it be equal to a sum of two, or three, or any fixed (independent of n) number

of hypergeometric terms?

Question 2. Given a linear combination cn of hypergeometric terms, how can we

decide if the sum sn =
∑n

k=0 ck is expressible in the same form, that is, as a linear

combination of hypergeometric terms? Note that such a combination may be Gosper-

summable even though its individual terms are not. For example, take tk+1−tk where

tk is a hypergeometric term which is not Gosper-summable.

In considering sums of hypergeometric terms, an important role is played by the

relation of similarity.

Definition 5.6.1 Two hypergeometric terms sn and tn are similar if their ratio is a

rational function of n. In this case we write sn ∼ tn. 2

Similarity is obviously an equivalence relation in the set of all hypergeometric

terms. One equivalence class, for example, consists of all rational functions.

Proposition 5.6.1 If sn is a non-constant hypergeometric term then sn+1 − sn is a

hypergeometric term similar to sn.

Proof. Let r(n) = sn+1/sn. Then sn+1 − sn = (r(n) − 1)sn is a nonzero rational

multiple of sn. 2

Proposition 5.6.2 Let sn and tn be hypergeometric terms such that sn + tn 6= 0.

Then sn + tn is hypergeometric if and only if sn ∼ tn.

Proof. Let a(n) = sn+1/sn, b(n) = tn+1/tn, c(n) = (sn+1 + tn+1)/(sn + tn), and

r(n) = sn/tn. Then a(n) and b(n) are rational functions of n, and

c(n) =
a(n)r(n) + b(n)

r(n) + 1
, (5.6.1)

so c(n) is rational when r(n) is.

Conversely, if c(n) = a(n) then it follows from (5.6.1) that a(n) = b(n), hence sn

and tn are constant multiples of each other and r(n) is constant. If c(n) 6= a(n) then

from (5.6.1)

r(n) =
b(n) − c(n)

c(n) − a(n)
.

In either case, r(n) is rational when c(n) is. 2



5.6 Similarity among hypergeometric terms 93

Theorem 5.6.1 Let t
(1)
n , t

(2)
n , . . . , t

(k)
n be hypergeometric terms such that

k∑

i=1

t(i)n = 0. (5.6.2)

Then t
(i)
n ∼ t

(j)
n for some i and j, 1 ≤ i < j ≤ k.

Proof. We prove the assertion by induction on k.

If k = 1, then t
(1)
n 6= 0, since hypergeometric terms are nonzero by definition.

If k > 1, let ri(n) = t
(i)
n+1/t

(i)
n , for i = 1, 2, . . . , k. From (5.6.2) it follows that∑k

i=1 t
(i)
n+1 = 0, too, so

k∑

i=1

ri(n)t(i)n = 0. (5.6.3)

Multiply (5.6.2) by rk(n) and subtract (5.6.3) to find

k−1∑

i=1

(rk(n) − ri(n))t(i)n = 0. (5.6.4)

If rk(n)−ri(n) = 0 for some i, then t
(k)
n /t

(i)
n is constant and hence t

(k)
n ∼ t

(i)
n . Otherwise

all terms on the left of (5.6.4) are hypergeometric, so by the induction hypothesis there

are i and j, 1 ≤ i < j ≤ k− 1, such that (rk(n)− ri(n))t
(i)
n ∼ (rk(n)− rj(n))t

(j)
n . But

then t
(i)
n ∼ t

(j)
n as well. 2

Proposition 5.6.3 Every sum of a fixed number of hypergeometric terms can be

written as a sum of pairwise dissimilar hypergeometric terms.

Proof. Since the sum of two similar hypergeometric terms is either hypergeometric

or zero, this can be achieved by grouping together similar terms. Each such group is

a single hypergeometric term, by Proposition 5.6.2. 2

How do we decide if two hypergeometric terms are similar? This reduces to the

question whether a given hypergeometric term is rational or not. In practice, this will

be decided by an appropriate simplification routine for hypergeometric terms (such

as our FactorialSimplify, for example). But since all computation with hyper-

geometric terms can be translated into corresponding operations with their rational

function representations, we show how to decide rationality of a hypergeometric term

given only its consecutive-term ratio.

Theorem 5.6.2 Let tn be a hypergeometric term and r(n) = tn+1/tn its rational

consecutive-term ratio. Let

r(n) =
A(n)

B(n)

C(n+ 1)

C(n)



94 Gosper’s Algorithm

and

B(n)

A(n)
=
a(n)

b(n)

c(n+ 1)

c(n)
(5.6.5)

be the canonical factorizations of r(n) and of B(n)/A(n), respectively, as described in

Theorem 5.3.1. Then tn is a rational function of n if and only if A(n) is monic and

a(n) = b(n) = 1.

Proof. If a(n) = b(n) = 1 then r(n) = c(n)C(n + 1)/(c(n + 1)C(n)), so tn =

αC(n)/c(n) where α ∈ K is some constant. Hence tn is rational.

Conversely, assume that tn = p(n)/q(n) where p, q are relatively prime polynomials

and q is monic. Then

q(n)

q(n+ 1)

p(n+ 1)

p(n)
=
A(n)

B(n)

C(n + 1)

C(n)
. (5.6.6)

Obviously, A(n) is monic. By Lemma 5.3.1, p(n) divides C(n). Write C(n) =

p(n)s(n), where s(n) is a polynomial. Then by (5.6.6)

B(n)

A(n)
=
q(n+ 1)

q(n)

s(n+ 1)

s(n)
.

By Corollary 5.3.1, factorization (5.6.5) is unique. Therefore c(n) = q(n)s(n) and

a(n) = b(n) = 1. 2

Now we are ready to answer the questions posed at the start of this section.

1. Suppose that
∑n−1

k=0 tk = a
(1)
n + a

(2)
n + · · · + a

(m)
n where a

(i)
n are hypergeometric

terms. By Proposition 5.6.3 we can assume that these terms are pairwise dissimilar.

Then tn = ∆a
(1)
n + ∆a

(2)
n + · · ·+ ∆a

(m)
n . The nonzero terms on the right are pairwise

dissimilar. By Theorem 5.6.1, there can be at most one nonzero term on the right.

It follows that m above is at most 2, and if it is 2 then one of a
(1)
n , a

(2)
n must be a

constant. So the answer to question 1 is as follows.

Theorem 5.6.3 If Gosper’s algorithm does not succeed then the given sum cannot

be expressed as a linear combination of a fixed number of hypergeometric terms (i.e.,

the sum is not expressible in closed form).

Thus Gosper’s algorithm in fact achieves more than it was designed for.

2. Similarly, the following algorithm will decide question 2 on page 92.



5.7 Exercises 95

Extended Gosper’s Algorithm

INPUT: Hypergeometric terms t
(1)
n , t

(2)
n , . . . , t

(p)
n .

OUTPUT: Discrete functions s
(1)
n , s

(2)
n , . . . , s

(q)
n such that

∆
∑q

i=1 s
(i)
n =

∑p
j=1 t

(j)
n ;

if at all possible, these functions will be hypergeometric terms.

Step 1. Write
∑p

j=1 t
(j)
n =

∑q
j=1 u

(j)
n where u

(j)
n are pairwise dissimilar.

Step 2. For j = 1, 2, . . . , q do:

use Gosper’s algorithm to find s
(j)
n such that ∆s

(j)
n = u

(j)
n ;

if Gosper’s algorithm does not succeed then

let s
(j)
n =

∑n−1
k=0 u

(j)
k .

Step 3. Return
∑q

j=1 s
(j)
n and stop. 2

5.7 Exercises

1. [Gosp77] Evaluate the following sums.

(a)
∑m

n=0 n
k, for k = 1, 2, 3, 4

(b)
∑m

n=0 n
k2n, for k = 1, 2, 3

(c)
∑m

n=0
1

n2+
√

5n−1

(d)
∑m

n=0
n44n

(2n
n )

(e)
∑m

n=0
(3n)!

n!(n+1)!(n+2)!27n

(f)
∑m

n=0

(2n
n )

2

(n+1)42n

(g)
∑m

n=0

(4n−1)(2n
n )

2

(2n−1)242n

(h)
∑m

n=0 n
(n− 1

2
)!2

(n+1)!2

2. [Gosp77] Find a closed form for the following sums containing parameters.

(a)
∑m

n=0 n
2an

(b)
∑m

n=0(n− r
2
)
(

r
n

)

(c)
∑m

n=1
(n−1)!2

(n−x)!(n+x)!

(d)
∑m

n=0
n(n+a+b)anbn

(n+a)!(n+b)!



96 Gosper’s Algorithm

3. Express each of the following sums as a hypergeometric term plus a constant,

or prove that they cannot be so expressed.

(a)
∑m

n=1
1

nk , for k = 1, 2, 3

(b)
∑m

n=1
6n+3

4n4+8n3+8n2+4n+3
[Abra71]

(c)
∑m−1

n=1
n2−2n−1
n2(n+1)2

2n

(d)
∑m

n=1
n24n

(n+1)(n+2)

(e)
∑m−1

n=0
2n

n+1
[Man93]

(f)
∑m

n=4
4(1−n)(n2−2n−1)

n2(n+1)2(n−2)2(n−3)2
[Man93]

(g)
∑m

n=1
(n4−14n2−24n−9)2n

n2(n+1)2(n+2)2(n+3)2
[Man93]

(h)
m∑

n=1

∏n−1
j=1 j3∏n+1

j=1 (j3+1)
[Gosp78]

(i)
m∑

n=1

∏n−1
j=1 (aj3+bj2+cj+d)∏n
j=1(aj3+bj2+cj+e)

(assuming d 6= e) [Gosp78]

(j)
m∑

n=1

∏n−1
j=1 (bj2+cj+d)∏n+1
j=1 (bj2+cj+e)

(assuming d 6= e) [Gosp78]

4. Let hn =
(
2n
n

)
an, where a is a parameter.

(a) Prove that hn is not Gosper-summable over |Q(a).

(b) Find all values of a for which hn is Gosper-summable over |Q.

5. [Man93] Let K be a field of characteristic 0, a ∈ K, a 6= 0, and k a positive

integer.

(a) Show that f(n) = an/nk is not Gosper-summable over K.

(b) Let p(n) be a polynomial of degree k−1. Show that f(n) = p(n)/
∏k

j=1(n+

a + j) is not Gosper-summable over K.

6. Let f(n) be a sequence over some field. Define

f(n, s) =
n∑

ns=0

ns∑

ns−1=0

· · ·
n2∑

n1=0

f(n1).

Show that f(n, s) =
∑n

k=0

(
k+s−1

k

)
f(n− k).

7. [PaSc94] Find a nonzero polynomial p ∈ |Q(n)[k] of lowest degree such that

tk = p(k)/k! is Gosper-summable.



5.7 Exercises 97

8. Prove that unless the summand tk is a rational function of k, equation (5.2.6)

has at most one polynomial solution.

9. [LPS93] Show that in Step 3 of Gosper’s algorithm Case 2b need not be con-

sidered when the summand tk is a rational function of k.

10. [Petk94] Use Lemma 5.3.1 to derive Gosper’s “miraculous” discovery (5.2.5)

about the solution of (5.2.2).

11. [WZ90a] For each of the following hypergeometric terms F (n, k) show that

F (n, k) is not Gosper-summable w.r.t. k. Then show that F (n+1, k)−F (n, k)

is Gosper-summable on k:

(a) F (n, k) =
(n

k)
2n ,

(b) F (n, k) =
(n

k)
2

(2n
n )

,

(c) F (n, k) =
(n

k)n!

k!(a−k)!(n+a)!
,

(d) F (n, k) =
(−1)k(n+b

n+k)(
n+c
c+k)(

b+c
b+k)

(n+b+c
n,b,c )

.

Solutions

1. (a) m (1+m)
2

; m (1+m) (1+2 m)
6

; m2 (1+m)2

4
;

m (1+m) (1+2 m) (−1+3 m+3 m2)
30

(b) 2 + 2m+1 (−1 +m); −6 + 2m+1 (3 − 2m+m2);

26 + 2m+1 (−13 + 9m− 3m2 +m3)

(c) m+1
6

m (m2−7 m+3)
√

5−(3 m3−7 m2+19 m−6)

2 m3
√

5+(m4+5 m2−1)

(d) − 2
231

+
2 4m (1+m) (3−22 m+18 m2+112 m3+63 m4)

693 (2 m
m )

(e) −9
2

+
(200+261 m+81 m2) (2+3 m)!

40 27m m! (1+m)! (2+m)!

(f)
(1+2 m)2 (2 m

m )
2

42 m (1+m)

(g)
(−1+4 m) (2 m

m )
2

42 m (1−4 m)

(h) 4 π − (1+2 m)2 (4+3 m) (− 1
2
+m)!

2

(1+m)!2

2. (a) − a (1+a)

(−1+a)3
+

a1+m (1+a+2 m−2 a m+m2−2 a m2+a2 m2)
(−1+a)3

(b)
(m− r

2) (−m+r) ( r
m)

−2 m+r



98 Gosper’s Algorithm

(c) 1
(1−x)! (1+x)!

− 1
x2 (1−x)! (1+x)!

+ m!2

x2 (m−x)! (m+x)!

(d) 1
(−1+a)! (−1+b)!

− a1+m b1+m

(a+m)! (b+m)!

3. (a) Not Gosper-summable.

(b) m (2+m)
3+4 m+2 m2

(c) −2 + 2m

m2

(d) 2
3

+ 4m+1 (m−1)
3 (m+2)

(e) Not Gosper-summable.

(f) − 1
16

+ 1
(m−2)2 (m+1)2

(g) −2
9

+ 2m+1

(m+1)2 (m+3)2

(h) Not Gosper-summable.

(i) 1
d−e

(∏m
j=1(d+c j+b j2+a j3)∏m
j=1(e+c j+b j2+a j3)

− 1
)

(j) A+B
(d−e) (−b2+c2−2 b d−d2−2 b e+2 d e−e2)

where

A = 2 b2+2 b c+3 b d+c d+d2−b e−c e−2 d e+e2

b+c+e
,

B =
(−2 b2−2 b c−3 b d−c d−d2+b e+c e+2 d e−e2−4 b2 m−2 b cm−2 b d m+2 b em−2 b2 m2)

(
∏m+1

j=1 (e+c j+b j2))(
∏m

j=1(d+c j+b j2))
−1 .

4. (b) a = 1/4

6. Use induction on s.

7. p(k) = k − 1

8. If (5.2.6) has two different polynomial solutions x1(n) and x2(n), then (5.1.3)

has two different hypergeometric solutions s
(i)
n = b(n− 1)xi(n)tn/c(n), i = 1, 2.

Their difference s
(1)
n −s(2)

n satisfies the homogeneous recurrence zn+1−zn = 0 and

is therefore a (nonzero) constant. It follows that s
(1)
n − s

(2)
n is hypergeometric.

By Proposition 5.6.2, s
(1)
n and s

(2)
n are similar to a constant and are therefore

rational. Hence tk is rational, too.

9. If eq. (5.1.3) with rational tn has a hypergeometric solution zn = sn, then sn is

rational and sn +C is a hypergeometric solution of (5.1.3) for any constant C.

Then xn = c(n)(sn +C)/(b(n− 1)tn) is a polynomial solution of (5.2.6) for any

constant C. Write xn = u(n) + Cv(n), where u(n) and v(n) are polynomials.

It is easy to see that Case 1 does not apply. Since v(n) is a nonzero solution of

the homogeneous part of (5.2.6), its degree comes from Case 2b, because Cases

1 and 2a give −∞ in the homogeneous case. Note that (5.2.6) has a polynomial



5.7 Exercises 99

solution whose degree is different from deg v: If deg u 6= deg v then this solution

is u(n), otherwise it is u(n) − (lc u/lc v)v(n). Its degree must then come from

Case 2a, so it is not necessary to examine Case 2b.

10. Let y(n) = f(n)/g(n) where f(n), g(n) are relatively prime polynomials. Write

r(n) as in (5.2.3). Then, by (5.2.2),

a(n)

b(n)

c(n+ 1)

c(n)
= r(n) =

y(n) + 1

y(n+ 1)
=
f(n) + g(n)

f(n+ 1)

g(n+ 1)

g(n)
.

By Lemma 5.3.1, g(n) divides c(n), so c(n) is a suitable denominator for y(n).

Write y(n) = v(n)/c(n), and substitute this together with (5.2.3) into (5.2.2), to

obtain a(n)v(n+1) = (v(n)+ c(n))b(n). This shows that b(n) divides v(n+1),

hence y(n) = b(n− 1)x(n)/c(n) where x(n) is a polynomial.

11. F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) where G(n, k) = R(n, k)F (n, k)

and:

(a) R(n, k) = k
2(k−n−1)

,

(b) R(n, k) = (−3+2k−3n)k2

2(1+2n)(n−k+1)2
,

(c) R(n, k) = k2

(1+a+n)(k−n−1)
,

(d) R(n, k) = − (b+k)(c+k)
2(n+1−k)(n+1+b+c)

.



100 Gosper’s Algorithm



Chapter 6

Zeilberger’s Algorithm

6.1 Introduction

In the previous chapter we described Gosper’s algorithm, which gives a definitive an-

swer to the question of whether or not a given hypergeometric term can be indefinitely

summed. That is, if F (k) is such a term, we want to know if F (k) = G(k+1)−G(k)

where G(k) is also such a term, and Gosper’s algorithm fully answers that question.

In this chapter we study the algorithm that occupies a similarly central position

in the study of definite sums, called Zeilberger’s algorithm, or the method of creative

telescoping [Zeil91, Zeil90b].

We are interested in a sum

f(n) =
∑

k

F (n, k), (6.1.1)

where F (n, k) is a hypergeometric term in both arguments, i.e., F (n+ 1, k)/F (n, k)

and F (n, k+ 1)/F (n, k) are both rational functions of n and k. For the moment let’s

think of the range of the summation index k as being the set of all integers. Later

we’ll see that this assumption can be considerably relaxed.

What we want to find is a recurrence relation for the sum f(n), and we’ll do

that by first finding a recurrence relation for the summand F (n, k), just as in Sister

Celine’s algorithm of Chapter 4. So the method of creative telescoping is basically an

alternative method of doing the same job that Sister Celine’s algorithm does.

But it does that job a great deal faster.

Note first how different this question is from the one of Chapter 5. Certainly it

is true that if F (n, k) = G(n, k + 1) − G(n, k) for some nice G then we will easily

be able to do our sum and find f(n). But in this case we could do much more than

merely find f(n). We could actually express the sum as a function of a variable upper

limit. But that is too much to expect in general. Many, many summands are not



102 Zeilberger’s Algorithm

indefinitely summable, so Gosper’s algorithm returns “No,” but nevertheless the sum

f(n), where the index k runs over all integers, can be expressed in simple terms.

For instance, the binomial coefficient
(

n
k

)
, thought of for fixed n as a function of

k, is not Gosper-summable. Nevertheless the unrestricted sum
∑

k

(
n
k

)
= 2n has a

nice simple form, even though the indefinite sums
∑K0

k=0

(
n
k

)
cannot be expressed as

simple hypergeometric terms in K0 (and n).

This situation is, of course, fully analogous to definite vs. indefinite integration.

The function e−t2 is not the derivative of any simple elementary function, so the indef-

inite integral
∫
e−t2dt cannot be “done.” Nonetheless the definite integral

∫∞
−∞ e−t2dt

can be “done,” and is equal to
√
π.

To return to our sum in (6.1.1), even though we cannot expect, in general, to find

a term G(n, k) such that F (n, k) = G(n, k + 1) −G(n, k), we saw in Chapter 2, and

we will see in more detail in Chapter 7, that often we get lucky and find a G(n, k) for

which

F (n+ 1, k) − F (n, k) = G(n, k + 1) −G(n, k). (6.1.2)

If that happens, then even though we can’t do the indefinite sum of F , we can prove

the definite summation identity f(n) = const.

In general, we cannot expect (6.1.2) to happen always either, but there is some-

thing that we can expect to happen, and we will prove that it does happen under very

general circumstances. That is, we need to take a somewhat more general difference

operator in n on the left side of (6.1.2).

Let N (resp. K) denote the forward shift operator in n (resp. k), i.e., Ng(n, k) =

g(n+1, k),Kg(n, k) = g(n, k+1). In operator terms, then, (6.1.2) reads as (N−1)F =

(K − 1)G. We will show that we will “always” be able to find a difference operator

of the form p(n,N) = a0(n) + a1(n)N + a2(n)N2 + · · ·+ aJ(n)NJ such that

p(n,N)F (n, k) = (K − 1)G(n, k),

in which the coefficients {ai(n)}J
0 are polynomials in n, and in which G(n, k)/F (n, k)

is a rational function of n, k, i.e., such that

J∑

j=0

aj(n)F (n+ j, k) = G(n, k + 1) −G(n, k). (6.1.3)

The mission of Zeilberger’s algorithm, also known as the method of creative tele-

scoping, is to produce the recurrence (6.1.3), given the summand function F (n, k).

Suppose, for a moment, that we are trying to do the sum f(n) =
∑

k F (n, k).

Suppose that we execute Zeilberger’s algorithm, and we find a recurrence of the

form (6.1.3) for the summand function F , and a rational function R(n, k) for which

G(n, k) = R(n, k)F (n, k). How does this help us to find the sum f(n)?



6.1 Introduction 103

Since the coefficients on the left side of (6.1.3) are independent of k, we can sum

(6.1.3) over all integer values of k and obtain

J∑

j=0

aj(n)f(n+ j) = 0, (6.1.4)

assuming, say, that G(n, k) has compact support in k for each n. Now there are

several possible scenarios.

It might happen that J = 1, i.e., that equation (6.1.4) is a recurrence a0(n)f(n)+

a1(n)f(n+ 1) = 0 of first order with polynomial coefficients. Well, then we’re happy,

because f(n+1)/f(n) = −a0(n)/a1(n) is a rational function of n, so our desired sum

f(n) is indeed a hypergeometric term, namely

f(n) = f(0)

n−1∏

j=0

(−a0(j)/a1(j)).

So in this case we have really done our sum.

It might happen that, even though J > 1 in the recurrence (6.1.3) that we find for

our sum, we are lucky because the coefficients {ai(n)}J
0 are constant. Well, then we

all know how to solve linear recurrence relations with constant coefficients, so once

again we are assured that we will be able to find an explicit, simple formula for our

sum f(n).

It might be that neither of the above happens. Now you are looking at a recurrence

formula in our unknown sum f(n), with polynomial coefficients, and you have no idea

how to solve it or if it can be solved, in any reasonable sense. Even in this difficult case,

you are certain to obtain a complete answer to your question! The main algorithm

of Chapter 8, Petkovšek’s algorithm, deals definitively with exactly this situation. If

your recurrence (6.1.4) has a solution f(n) that is a linear combination of a fixed

number of hypergeometric terms in n, then that algorithm will find the solution,

otherwise it will return “No such solution exists.”

Now we can go all the way back to the beginning. You are looking at a sum,

f(n) =
∑

k F (n, k), where F is a hypergeometric term, and you are wondering if there

is a simple evaluation of that sum. If a “simple evaluation” means a formula for f(n)

that expresses it as a linear combination of a fixed number of hypergeometric terms,

then the road to the answer is completely algorithmic, and is fully equipped with

theorems that guarantee that either the algorithms will find a “simple evaluation” of

your sum, or that your sum does not possess any such evaluation.

Hence the problem of evaluation of definite hypergeometric sums is, by means of

Zeilberger’s or Sister Celine’s algorithm together with Petkovšek’s algorithms, placed

in the elite class that contains, for example, the problem of indefinite integration



104 Zeilberger’s Algorithm

in the Liouvillian sense, and the question of indefinite hypergeometric summation,

viz., the class of famous questions of classical mathematics that turn out to have

completely algorithmic solutions.

Example 6.1.1. Let’s try, as an example, problem 10424 from The American

Mathematical Monthly (the methods of this book are great for a lot of Monthly

problems!). It calls for the evaluation of the sum

f(n) =
∑

0≤k≤n/3

2k n

n− k

(
n− k

2k

)
.

If we simply give the summand F (n, k) = 2k n
n−k

(
n−k
2k

)
to the creative telescoping

algorithm, as implemented by program ct in the EKHAD package of Maple programs

that accompanies this book, it very quickly responds by telling us that the summand

F satisfies the third order recurrence

(N2 + 1)(N − 2)F (n, k) = G(n, k + 1) −G(n, k), (6.1.5)

where

G(n, k) = − 2kn

n− 3k + 3

(
n− k

2k − 2

)
.

If we sum the recurrence over 0 ≤ k ≤ n− 1, then for n ≥ 2 the right side telescopes

to 0 (check this carefully!), and we find that the unknown sum satisfies (N2 +1)(N −
2)f(n) = 0. But that is a recurrence with constant coefficients, and, furthermore, it

is one whose general solution is clearly f(n) = c12
n + c2i

n + c3(−i)n. If we match

f(1), f(2), f(3) to this formula we obtain the complete evaluation

f(n) = 2n−1 +
1

2
(in + (−i)n) = 2n−1 + cos

nπ

2

for n ≥ 2, and the case n = 1 can be checked separately.

This example was typical in some respects and atypical in others. It was typical in

that the algorithm returned a recurrence relation of the form (6.1.3) for the summand.

It was atypical in that the recurrence has constant coefficients and order 3. 2

6.2 Existence of the telescoped recurrence

In this and the next section we will study the existence and the implementation of

the algorithm.

The existence of a recurrence of the form (6.1.3) for the summand F (n, k) is

assured, under the same hypotheses as those of Theorem 4.4.1 (the Fundamental

Theorem), namely that F (n, k) should be a proper hypergeometric term (see page 64).



6.2 Existence of the telescoped recurrence 105

The proof of the existence will follow at once from Theorem 4.4.1, which assures

the existence of the two-variable recurrence (4.4.2).

The implementation of the creative telescoping algorithm is very different from

that of Sister Celine’s algorithm. In principle, one could first find the two-variable

recurrence (4.4.2) and then proceed as in the proof of Theorem 6.2.1 below to convert

it into a recurrence in the telescoped form (6.1.3). But Zeilberger found a much more

efficient way to implement it, a procedure that uses a variant of Gosper’s algorithm,

as we will see.

Theorem 6.2.1 Let F (n, k) be a proper hypergeometric term. Then F satisfies a

nontrivial recurrence of the form (6.1.3), in which G(n, k)/F (n, k) is a rational func-

tion of n and k.

Proof. The proof, following Wilf and Zeilberger [WZ92a], begins with the two-

variable recurrence (4.4.2) which we repeat here, in the form

I∑

i=0

J∑

j=0

ai,j(n)F (n+ j, k + i) = 0. (6.2.1)

We know that such a recurrence exists nontrivially. Introduce the shift operators

K,N , defined, as usual, by Ku(k) = u(k + 1) and Nv(n) = v(n + 1). Then (6.2.1)

can be written in operator form as P (N, n,K)F (n, k) = 0. Suppose we take the

polynomial P (u, v, w) and expand it in a power series in w, about the point w = 1,

to get

P (u, v, w) = P (u, v, 1) + (1 − w)Q(u, v, w),

where Q is a polynomial. Then (6.2.1) implies that

0 = P (N, n,K)F (n, k) = (P (N, n, 1) + (1 −K)Q(N, n,K))F (n, k),

i.e., that

P (N, n, 1)F (n, k) = (K − 1)Q(N, n,K)F (n, k). (6.2.2)

On the left side of this latter recurrence, only n varies. On the right side, if we put

G(n, k) = Q(N, n, k)F (n, k), then the right side is simply G(n, k + 1) −G(n, k), and

G is itself a rational function multiple of F , since any number of shift operators, when

applied to a hypergeometric term, only multiply it by a rational function.

We claim finally that the recurrence (6.2.2) is nontrivial. The following proof is

due to Graham, Knuth and Patashnik [GKP89].

We know by the Fundamental Theorem that there are operators P (N, n,K), which

are nontrivial, which depend only on N, n,K and which annihilate F (n, k). Among



106 Zeilberger’s Algorithm

these, let P = P (N, n,K) be one that has the least degree in K. Divide P by K − 1

to get

P (N, n,K) = P (N, n, 1) − (K − 1)Q(N, n,K),

which defines the operator Q.

Suppose P (N, n, 1) = 0. Then (K − 1)G(n, k) = 0, i.e., G is independent of

k. Hence G is a hypergeometric term in the single variable n, i.e., G satisfies a

recurrence of order 1 with polynomial-in-n coefficients. Thus there is a first-order

operator H(N, n) such that H(N, n)G(n, k) = 0.

If Q = 0 then P (N, n,K) = P (N, n, 1) is a nonzero k-free operator that is inde-

pendent of K and k and annihilates F (n, k). If Q 6= 0, then H(N, n)Q(N, n,K) is a

nonzero k-free operator annihilating F (n, k).

In either case we have found a nonzero k-free operator that annihilates F (n, k)

and whose degree in K is smaller than that of P (N, n,K), which is a contradiction,

since P was assumed to have minimum degree in K among such operators. 2

Hence a recurrence in telescoped form always exists. It can be found by rearrang-

ing the terms in the two-variable Sister Celine form of the recurrence, but we will

now see that there is a much faster way to get the job done.

6.3 How the algorithm works

The creative telescoping algorithm is for the fast discovery of the recurrence for a

proper hypergeometric term, in the telescoped form (6.1.3). The algorithmic imple-

mentation makes strong use of the existence, but not of the method of proof used in

the existence theorem.

More precisely, what we do is this. We now know that a recurrence (6.1.3) exists.

On the left side of the recurrence there are unknown coefficients a0, . . . , aJ ; on the

right side there is an unknown function G; and the order J of the recurrence is

unknown, except that bounds for it were established in the Fundamental Theorem

(Theorem 4.4.1 on page 65).

We begin by fixing the assumed order J of the recurrence. We will then look for

a recurrence of that order, and if none exists, we’ll look for one of the next higher

order.

For that fixed J , let’s denote the left side of (6.1.3) by tk, so that

tk = a0F (n, k) + a1F (n+ 1, k) + · · ·+ aJF (n+ J, k). (6.3.1)

Then we have for the term ratio

tk+1

tk
=

∑J
j=0 ajF (n+ j, k + 1)/F (n, k + 1)
∑J

j=0 ajF (n+ j, k)/F (n, k)

F (n, k + 1)

F (n, k)
. (6.3.2)



6.3 How the algorithm works 107

The second member on the right is a rational function of n, k, say

F (n, k + 1)

F (n, k)
=
r1(n, k)

r2(n, k)
,

where the r’s are polynomials, and also

F (n, k)

F (n− 1, k)
=
s1(n, k)

s2(n, k)
,

say, where the s’s are polynomials. Then

F (n+ j, k)

F (n, k)
=

j−1∏

i=0

F (n+ j − i, k)

F (n+ j − i− 1, k)
=

j−1∏

i=0

s1(n + j − i, k)

s2(n + j − i, k)
. (6.3.3)

It follows that

tk+1

tk
=

∑J
j=0 aj

{∏j−1
i=0

s1(n+j−i,k+1)
s2(n+j−i,k+1)

}

∑J
j=0 aj

{∏j−1
i=0

s1(n+j−i,k)
s2(n+j−i,k)

} r1(n, k)

r2(n, k)

=

∑J
j=0 aj

{∏j−1
i=0 s1(n+ j − i, k + 1)

∏J
r=j+1 s2(n+ r, k + 1)

}

∑J
j=0 aj

{∏j−1
i=0 s1(n+ j − i, k)

∏J
r=j+1 s2(n+ r, k)

} (6.3.4)

×r1(n, k)
r2(n, k)

∏J
r=1 s2(n + r, k)∏J

r=1 s2(n+ r, k + 1)
.

Thus we have
tk+1

tk
=
p0(k + 1)

p0(k)

r(k)

s(k)
, (6.3.5)

where

p0(k) =
J∑

j=0

aj

{
j−1∏

i=0

s1(n+ j − i, k)
J∏

r=j+1

s2(n+ r, k)

}
, (6.3.6)

and

r(k) = r1(n, k)

J∏

r=1

s2(n + r, k), (6.3.7)

s(k) = r2(n, k)
J∏

r=1

s2(n+ r, k + 1). (6.3.8)

Note that the assumed coefficients aj do not appear in r(k) or in s(k), but only

in p0(k).



108 Zeilberger’s Algorithm

Next, by Theorem 5.3.1, we can write r(k)/s(k) in the canonical form

r(k)

s(k)
=
p1(k + 1)

p1(k)

p2(k)

p3(k)
, (6.3.9)

in which the numerator and denominator on the right are coprime, and

gcd(p2(k), p3(k + j)) = 1 (j = 0, 1, 2, . . .).

Hence if we put p(k) = p0(k)p1(k) then from eqs. (6.3.5) and (6.3.9), we obtain

tk+1

tk
=
p(k + 1)

p(k)

p2(k)

p3(k)
. (6.3.10)

This is now a standard setup for Gosper’s algorithm (compare it with the discussion

on page 76), and we see that tk will be an indefinitely summable hypergeometric term

if and only if the recurrence (compare eq. (5.2.6))

p2(k)b(k + 1) − p3(k − 1)b(k) = p(k) (6.3.11)

has a polynomial solution b(k).

The remarkable feature of this equation (6.3.11) is that the coefficients p2(k) and

p3(k) are independent of the unknowns {aj}J
j=0, and the right side p(k) depends on

them linearly. Now watch what happens as a result. We look for a polynomial solution

to (6.3.11) by first, as in Gosper’s algorithm, finding an upper bound on the degree,

say ∆, of such a solution. Next we assume b(k) as a general polynomial of that degree,

say

b(k) =
∆∑

l=0

βlk
l,

with all of its coefficients to be determined. We substitute this expression for b(k)

in (6.3.11), and we find a system of simultaneous linear equations in the ∆ + J + 2

unknowns

a0, a1, . . . , aJ , β0, . . . , β∆.

The linearity of this system is directly traceable to the italicized remark above.

We then solve the system, if possible, for the aj’s and the βl’s. If no solution

exists, then there is no recurrence of telescoped form (6.1.3) and of the assumed order

J . In such a case we would next seek such a recurrence of order J +1. If on the other

hand a polynomial solution b(k) of equation (6.3.11) does exist, then we will have

found all of the aj’s of our assumed recurrence (6.1.3), and, by eq. (5.2.5) we will also

have found the G(n, k) on the right hand side, as

G(n, k) =
p3(k − 1)

p(k)
b(k)tk. (6.3.12)

See Koornwinder [Koor93] for further discussion and a q-analogue.



6.4 Examples 109

6.4 Examples

Example 6.4.1. Now let’s do by hand an example of the implementation of the

creative telescoping algorithm, as described in the previous section. We take the

summand F (n, k) =
(

n
k

)2
and try to find a recurrence of order J = 1.

For the term ratio, we have from (6.3.1) that

tk+1

tk
=
a0

(
n

k+1

)2
+ a1

(
n+1
k+1

)2

a0

(
n
k

)2
+ a1

(
n+1

k

)2 =
a0

(n−k)2

(k+1)2
+ a1

(n+1)2

(k+1)2

a0 + a1
(n+1)2

(n+1−k)2

=

{
a0(n− k)2 + a1(n+ 1)2

a0(n + 1 − k)2 + a1(n + 1)2

}{
(n+ 1 − k)2

(k + 1)2

}
, (6.4.1)

which is of the form (6.3.5) with

p0(k) = a0(n− k + 1)2 + a1(n+ 1)2, r(k) = (n+ 1 − k)2, s(k) = (k + 1)2.

Now the canonical form (6.3.9) is simply

r(k)

s(k)
=

1

1

(n+ 1 − k)2

(k + 1)2
,

i.e., we have

p1(k) = 1, p2(k) = (n + 1 − k)2, p3(k) = (k + 1)2.

Hence we put p(k) = p0(k)p1(k) = a0(n− k + 1)2 + a1(n+ 1)2, and (6.3.10) takes

the form (in this case identical with (6.4.1) above)

tk+1

tk
=

a0(n− k)2 + a1(n + 1)2

a0(n− k + 1)2 + a1(n+ 1)2

(n+ 1 − k)2

(k + 1)2
.

Now we must solve the recurrence (6.3.11), which in this case looks like

(n− k + 1)2b(k + 1) − k2b(k) = a0(n− k + 1)2 + a1(n + 1)2. (6.4.2)

More precisely, we want to know if there exist a0(n), a1(n) such that this recurrence

has a polynomial solution b(k).

At this point in Gosper’s algorithm, the next thing to do is to find an upper bound

for the degree of a polynomial solution, if one exists. We observe first that we are

here in Case 2 of the degree-bounding process that was described on page 84, and

that the degree bound is 1. Therefore if there is any polynomial solution b(k) at all,

there is one of first degree.



110 Zeilberger’s Algorithm

Hence we assume that b(k) = α + βk, where α, β (along with a0, a1) are to be

determined, we substitute into the recurrence (6.4.2), and we match the coefficients

of like powers of k on both sides. The result is that the choices

α = −3(n+ 1), β = 2, a0 = −2(2n+ 1), a1 = n+ 1

do indeed satisfy (6.4.2). Thus F (n, k) =
(

n
k

)2
satisfies the telescoped recurrence

−2(2n + 1)F (n, k) + (n+ 1)F (n+ 1, k) = G(n, k + 1) −G(n, k) (6.4.3)

where, by (6.3.12),

G(n, k) =
(2k − 3n− 3)n!2

(k − 1)!2(n− k + 1)!2
.

Now that the algorithm has returned the recurrence in telescoped form, it is quite

easy to solve the recurrence for the sum f(n) =
∑

k

(
n
k

)2
and thereby to evaluate it.

Indeed, if we sum the recurrence (6.4.3) over all integers k, the right side collapses to

0, and we find that

−2(2n + 1)f(n) + (n + 1)f(n+ 1) = 0.

This, together with f(0) = 1 quickly yields the desired evaluation f(n) =
(
2n
n

)
.

2

That was the only example that we’ll work out by hand. Here are a number of

machine-generated examples that show more of what the algorithm can do.

Example 6.4.2. First we try to evaluate the sum

f(n) =
∑

k

(−1)k

(
n
k

)
(

x+k
k

) .

If F (n, k) denotes the summand, then the creative telescoping algorithm finds the

recurrence

(−n− x)F (n, k) = G(n, k + 1) −G(n, k),

where G = RF and R(n, k) = (x + k). Summing over k, we find that our unknown

sum f(n) satisfies

(−x− n)f(n) = −G(n, 0) = −x,

and so f(n) = x/(x+ n). This was a case in which we needed Zeilberger’s algorithm

with ORDER:=0, i.e., Gosper’s algorithm. The F (n, k) here is indefinitely summable.

That means that not only is there a closed form expression for f(n), but also there

is one for

f(n,K) =
K∑

k=0

(−1)k

(
n
k

)
(

x+k
k

) ,



6.4 Examples 111

for all K, namely

(−x− n)f(n,K) = G(n,K + 1) −G(n, 0) = (x+K + 1)(−1)K+1

(
n

K+1

)
(

x+K+1
K+1

) − x.

This example highlights the fact that when using the creative telescoping program

one should always start with ORDER:=0, and increase it by 1 as necessary, or else use

the routine zeil in the EKHAD package, which does this automatically. If we begin,

instead, with ORDER:=1, we might miss a sum which has closed form for every value

of its upper limit, instead of only for one value. 2

Example 6.4.3. Next, let’s evaluate the sum

f(n) =
∑

k

(−1)k

(
n+ 1

k

)(
2n− 2k + 1

n

)
.

If F (n, k) is the summand, then algorithm ct quickly finds the recurrence

(N − 1)F (n, k) = G(n, k + 1) −G(n, k), (6.4.4)

where G = RF and

R(n, k) = −2
(3n+ 6 − 2k)(n+ 1 − k)(2n+ 3 − 2k)k

(n+ 1)(n+ 2 − k)(n+ 2 − 2k)
.

(Remember: you don’t have to take our word for it: substitute F,G, and see for

yourself that (6.4.4) is true!) If we sum the recurrence over k, we find that our

unknown sum satisfies f(n+1) = f(n), i.e., f(n) is constant. Since f(0) = 1 we have

shown that f(n) = 1 for all n ≥ 0. Note that in this case we have actually found a

WZ-style proof, so we could next look for companion and dual identities etc. 2

Example 6.4.4. Now let’s do the famous sum of Dixon,

f(n) =
∑

k

(−1)k

(
2n

k

)


.

Here the algorithm returns the recurrence

(−3(3n + 2)(3n+ 1) − (n+ 1)2N)F (n, k) = G(n, k + 1) −G(n, k),

where G = RF , and R(n, k) is a pretty complicated rational function that we will

not reproduce here. If we sum the recurrence over k, we find that the sum satisfies

(−3(3n+ 2)(3n+ 1) − (n + 1)2N)f(n) = 0,



112 Zeilberger’s Algorithm

i.e.,

f(n+ 1) = −3(3n + 2)(3n+ 1)

(n+ 1)2
f(n),

which, with f(0) = 1, easily yields the evaluation f(n) = (−1)n(3n)!/n!3. 2

We could go on forever this way, proving one sum evaluation after another. Instead

we’ll defer a few of the examples to the next two sections, where you will see the

programmed implementations of the algorithm at work.

A continuous analogue, that computes the linear recurrence satisfied by

an :=

∫
F (n, y)d y,

where F (n, y) is proper in the sense that both

F (n+ 1, y)

F (n, y)
and

DyF (n, y)

F (n, y)

are rational functions of (n, y), and the differential equation satisfied by

f(x) :=

∫
F (x, y)d y,

where F is such that both DxF/F and DyF/F are rational functions of (x, y), can

be found in [AlZe90].

Procedures AZd, AZc of EKHAD are Maple implementations of these algorithms.

The procedures AZpapd, AZpapc are verbose versions. In EKHAD, type help(AZpapd)

etc. for details.

6.5 Use of the programs

In this section we will use two particular programs that implement the creative tele-

scoping algorithm. The first one is Zeilberger’s Maple program. The second is a

Mathematica program, written by Peter Paule and Markus Schorn, of RISC-Linz,

which is available from the WorldWideWeb, as described in Appendix A.

The Maple program

Zeilberger’s program, in Maple, is program ct in the package EKHAD that accompanies

this book (see Appendix A).

Suppose that F (n, k) is a given summand for which you are interested in finding a

recurrence for f(n) =
∑

k F (n, k). Then make a call for ct(SUMMAND,ORDER,k,n,N),



6.5 Use of the programs 113

where SUMMAND is your summand function, ORDER is the order of the recurrence that

you are looking for, and k,n are respectively the summation and the running indices.

If no recurrence of the desired order exists, the output will say so. Otherwise the

program will output

1. the desired recurrence for the summand F (n, k), in the telescoped form (6.1.3),

2. the proof that the output recurrence is correct, namely the function G(n, k)

from which one can check the truth of (6.1.3),

3. the desired recurrence for the sum f(n).

For instance, the program returns the recurrence for

f(n) =
∑

k

(
n

2k

)(
2k

k

)
4−k,

in the form (2n+1+(-n-1)N)SUM(n)=0. Here N is the forward shift operator on n, so

in customary mathematical notation, the recurrence that the program found is

(2n+ 1)f(n) − (n + 1)f(n+ 1) = 0.

Before we list the rest of the output, we should note that we already have a

complete evaluation of the sum f(n) in closed form. Indeed, since

f(n+ 1) =
2n + 1

n+ 1
f(n) (n ≥ 0; f(0) = 1),

one quickly finds that

f(n) =
∑

k

(
n

2k

)(
2k

k

)
4−k = 2−(n−1)

(
2n− 1

n− 1

)
(n ≥ 1),

which is quite an effortless way to evaluate a binomial coefficient sum, we hope you’ll

agree.

To continue with the program output, we see also the function G(n, k), on the

right side of (6.1.3), which is

G(n, k) =
(n− 2k)n!

(n− 2k)! k!24k
.

Finally, there appears the full telescoping recurrence (6.1.3) in the form

(2n+ 1 + (−n− 1)N)F (n, k) = G(n, k + 1) −G(n, k). (6.5.1)



114 Zeilberger’s Algorithm

It should be noted that this recurrence is self-certifying, which is to say that it proves

itself. One does not need to take the computer’s word for the truth of (6.5.1). To

prove it we need only divide through by F (n, k), cancel out the factorials, and check

the correctness of the resulting polynomial identity.

The recurrences that are output by the creative telescoping algorithm (or for that

matter, by Sister Celine’s algorithm) are always self-certifying, in this sense. Humans

may be hard put to find them, but we can check them easily.

The Mathematica program

The program of Peter Paule and Markus Schorn carries out the creative telescoping

algorithm, in Mathematica. Their package zb alg.m (get it through our Web page;

see page 199) is first loaded by the Mathematica command <<zb alg.m. Then

several new commands become available, one of which is

Zb[summand,sumvar,runningvar,order]

and that is the one that finds the telescoped recurrence. Here summand is the sum-

mand f(n, k), sumvar is the dummy index of summation, say k, runningvar is the

variable in terms of which the recurrence for the sum will be found, say n, and order

is the order of the recurrence that is being sought. The program is in many situa-

tions remarkably fast. It uses its own algorithms for finding null spaces of symbolic

matrices.

Example 6.5.1. Let’s try the program on the mystery sum (this is the Reed–

Dawson sum that we evaluated on page 63)

f(n) =
∑

k

(
n

k

)(
2k

k

)(
−1

2

)k

.

Here the summand is F (n, k) =
(
2k
k

)(
n
k

)
(−1

2
)k, hence we call

Zb[Binomial[2k,k] Binomial[n,k] (-1/2)^k,k,n,1]

The program replies: “Try higher order,” i.e., no recurrence of first order was

found. So we try again, this time calling

Zb[Binomial[2k,k] Binomial[n,k] (-1/2)^k,k,n,2]

and we are answered with the recurrence

(1 + n) SUM[n] + (-2 - n) SUM[2 + n] == 0.



6.5 Use of the programs 115

Now, usually when a recurrence order higher than the first is found, it means that

we will not be able to determine analytically whether or not a closed form solution

exists, except by calling Petkovšek’s algorithm Hyper, which is described in Chapter 8.

In this case, however, the second order recurrence

f(n+ 2) =
n+ 1

n+ 2
f(n),

together with the initial values f(0) = 1, f(1) = 0, is easily solved by inspection,

yielding that f(2n+ 1) = 0 and f(2n) = 4−n
(
2n
n

)
, for integer n. 2

Example 6.5.2. Let’s find a closed form expression for the sum

f(n) =
∑

k

(
n + k

2k

)(
2k

k

)
(−1)k

k + 1
.

We begin by calling the Paule–Schorn program with

Zb[(n+k)! (-1)^k/(k! (k+1)! (n-k)!),k,n,1].

This time it replies with the recurrence

(n (n + 1) SUM(n) - (n + 2) (n + 1) SUM(n+1) == 0.

Clearly f(0) = 1 here, and the recurrence shows that f(n) = 0 for all n ≥ 1. Wasn’t

that painless? 2

Example 6.5.3. In this example we will see how the algorithm can prove a difficult

identity in linear algebra, a fact which opens the door to many future applications in

that subject. This example is taken from Petkovšek and Wilf [PeW95]. The identity

in question is due to Mills, Robbins and Rumsey [MRR87], and it gives the evaluation

of the n× n determinant

det

{(
i + j − x

2i− j

)}

i,j=0,...,n−1

(6.5.2)

which occurs in the theory of plane partitions. Instead of giving the exact evaluation

here, let us make the following remark. The determinant in (6.5.2) is clearly a poly-

nomial in x. What is not clear, but is true, is that all of its roots are either integers or

half-integers, so it has a complete factorization into factors of the form x− a, where

2a ∈ Z. For example, when n = 4, the evaluation is

(−5 + x) (−4 + x) (−3 + x) (−2 + x) (−17 + 2 x) (−15 + 2 x)

180
.



116 Zeilberger’s Algorithm

How can the computer methods that we have developed for the proof of hyperge-

ometric identities be adapted to prove a determinant evaluation?

Well, letMn be the matrix in (6.5.2). Suppose we could exhibit a triangular matrix

En, with 1’s on the diagonal, for which MnEn is triangular. Then the determinant

of Mn would be the product of the diagonal entries of that triangular matrix. By

computer experimentation, George Andrews [Andr93] discovered a matrix En that

seemed to work (and he proved, by non-computer methods, that it does work), namely

the matrix En = (ei,j(x))
n−1
i,j=0, where ei,j = 0 if i > j, and

ei,j(x) =
1

(−4)j−i

(2j − i− 1)! (2x+ 3j + 1)! (x+ i)! (x + i+ j − 1
2
)!

(j − i)! (i− 1)! (2x+ 2j + i+ 1)! (x+ j)! (x+ 2j − 1
2
)!
, (6.5.3)

otherwise. But how can we prove that this matrix En really triangularizes Mn?

Since we know the exact forms of Mn and En, we can write out as explicit sums

the matrix entries of the allegedly triangular matrix MnEn. Then we would have to

show that the above-the-diagonal sums vanish, and that the sums for the diagonal

entries are equal to certain polynomials in x that we won’t write out here, but from

which the theorem would follow.

At that moment we would be facing a standard problem, or rather two of them,

in the theory of computerized proofs of hypergeometric identities. To prove the

determinant evaluation we would have to prove those two identities. Zeilberger’s

algorithm produces such a proof, though not without an unpleasantly large certificate

(it contains a polynomial with about 850 monomials in it!), and the problem is done.

We refer the reader to [PeW95] for the details. 2

The method of creative telescoping has a q-analogue. That is, given a summand

F (n, k) for which both F (n+1, k)/F (n, k) and F (n, k+1)/F (n, k) are rational func-

tions of the two variables qn and qk, the algorithm will find a telescoped recurrence

Ω(N, n)F (n, k) = G(n, k + 1) −G(n, k), (6.5.4)

in which G(n, k) = R(n, k)F (n, k) and R is a rational function of qn and qk that will

also be found by the program. This program is the routine qzeil in the package

qEKHAD that accompanies this book (see Appendix A).

In connection with q identities, Peter Paule [Paul94] has made the following beau-

tiful and effective observation. Recall that we have emphasized the importance of

writing sums with unrestricted summation indices whenever possible, e.g., of writing∑
k

(
n
k

)
instead of

∑n
k=0

(
n
k

)
, even though they both represent the same sum. The

former notation emphasizes that the summation runs over all integers k, and this

often simplifies subsequent manipulations that we may wish to carry out.



6.5 Use of the programs 117

But consider the fact that every function f(k) can be written as an even part plus

an odd part,

f(k) =
f(k) + f(−k)

2
+
f(k) − f(−k)

2
,

and consider also the fact that the unrestricted sum over the odd part obviously

vanishes, i.e.,
∑

k(f(k)−f(−k))/2 = 0. Consequently, for every summand f , one has

F (n) =
∑

k

f(n, k) =
∑

k

f(n, k) + f(n,−k)
2

.

What could be the advantage of using the symmetrized summand instead of the

original one? Just this: The order of the recurrence relation that is obtained for the

symmetrized summand F (n, k) = (f(n, k)+f(n,−k))/2 might be dramatically lower

than that for the original summand! Paule found, for instance, that one form of a

famous identity of Rogers–Ramanujan, namely

∑

k

qk2

(q; q)k(q; q)n−k

=
∑

k

(−1)kq(5k2−k)/2

(q; q)n−k(q; q)n+k

, (6.5.5)

which is certifiable by a recurrence of order 5, can in fact be certified by a recurrence

of order 2 if it is first written in the symmetrical form

∑

k

2qk2

(q; q)k(q; q)n−k
=
∑

k

(−1)k(1 + qk)q(5k2−k)/2

(q; q)n−k(q; q)n+k
. (6.5.6)

Indeed, here is the proof of (6.5.6): We claim that both sides of (6.5.6) are anni-

hilated by the operator

A(N) := (1 − qn) − (1 + q − qn + q2n−1)N−1 + qN−2.

The complete, human-verifiable proof of this fact simply exhibits the certificates

RL(n, k) = −q2n−1(1 − qn−k) and RR(n, k) =
q2n+3k

1 + qk
(1 − qn−k).

We humans can then easily check that

A(N)FL = GL(n, k)−GL(n, k−1) and A(N)FR = GR(n, k)−GR(n, k−1), (6.5.7)

where FL, FR are the summands on the left and right sides, respectively, of (6.5.6),

GL = RLFL, and GR = RRFR. The proof of the claimed identity (6.5.6) now follows

by summation of (6.5.7) over all integers k, and verification of the cases n = 0, 1. 2



118 Zeilberger’s Algorithm

Aside from q-sums, there are examples of ordinary sums where this same method1

has worked. Petkovšek has found that for the sums
∑

k f(n, k, t), where

f(n, k, t) =
1

tk + 1

(
tk + 1

k

)(
tn− tk

n− k

)

one should symmetrize about k = n/2 by using the summand (f(n, k, t) + f(n, n −
k, t))/2 instead. If one does that, then the orders of the recurrences obtained by

the method of creative telescoping for the original summand and the symmetrized

summand are as follows: for t = 3, 2 and 1; for t = 4, 4 and 2; and for t = 5, 6

and 3. Thus Paule’s symmetrization method should be considered in cases where

the recurrences are large and there is a natural point about which to symmetrize the

summand.

6.6 Exercises

1. Use creative telescoping to evaluate each of the following binomial coefficient

sums, in explicit closed form. In each case find a recurrence that is satisfied by

the summand, then sum the recurrence over the range of the given summation

to find a recurrence that is satisfied by the sum. Then solve that recurrence for

the sum, either by inspection, or by being very clever, or, in extremis, by using

algorithm Hyper of Chapter 8, page 154.

(a)
∑

k(−1)k
(

n
k

)(
2n−2k
n+a

)

(b)
∑

k

(
x
k

)(
y

n−k

)

(c)
∑

k k
(
2n+1
2k+1

)

(d)
∑n

k=0

(
n+k

k

)
2−k (Careful— watch the limits of the sum.)

(e)
∑

k(−1)k
(

n−k
k

)
2n−2k

2. Find recurrence formulas for the Legendre polynomials

Pn(x) = 2−n
∑

k

(−1)k

(
2n− 2k

n− k

)(
n− k

k

)
xn−2k,

using the creative telescoping algorithm.

3. The number f(n) of involutions of n letters is given by

f(n) =
∑

k

n!

k!2k(n− 2k)!
.

1Definition: A method is a trick that has worked at least twice.



6.6 Exercises 119

Find the recurrence that is satisfied by f(n), using the creative telescoping

algorithm (see Example 8.4.3 on page 157).

4. Prove the identity

∑

k≤2n

(
k

n

)
xk =

(
x

1 − x

)n{
1 + x(1 − 2x)

n−1∑

j=0

(
2j + 1

j

)
(x(1 − x))j

}
.

Hint: Use creative telescoping to find a recurrence for

F (n, k) :=

(
2n− k

n

)
xk.

Then sum over k ≥ 0 to find a recurrence for the polynomials

φn(x) :=
∑

k

F (n, k).

5. You are stranded on a desert island with only your laptop computer and Zeil-

berger’s algorithm. Your rescue depends upon your being able to execute

Gosper’s algorithm within the next 30 seconds. What will you do?



120 Zeilberger’s Algorithm



Chapter 7

The WZ Phenomenon

7.1 Introduction

We come now to an amazingly short method for certifying the truth of combinatorial

identities, due to Wilf and Zeilberger [WZ90a]. With this method, the proof certificate

for an identity contains just a single rational function. That’s it. Thus we will be

able, for instance, to give proofs of every identity in the hypergeometric database of

Chapter 3, and each proof will consist of just a certain rational function R(n, k).

To put the matter in better perspective, here is a brief comparison of the WZ

algorithm with the Zeilberger–Petkovšek (Z–P) route to the proofs of identities. If

we are starting with an unknown hypergeometric sum and we want to know if it can

be “done” in some closed form,1 then the WZ method cannot help at all, while, on the

other hand, the use of the Zeilberger algorithm, if necessary followed by Petkovšek’s

algorithm, will with certainty give a full answer to the question. So if you want to “do”

an unknown sum of factorials and powers etc., the Z–P algorithms are a guaranteed

route to the answer.

What the WZ algorithm can do is the following:

• It can provide extremely succinct proofs of known identities.

• It allows us to discover new identities whenever it succeeds in finding a proof

certificate for a known identity.

Hence the objectives of this method and of the others are somewhat different.

Suppose we want to prove an identity
∑

k F (n, k) = r(n). First, if the right side,

r(n), is nonzero, divide through by that right hand side, and write the identity that

1See page 143.



122 The WZ Phenomenon

is to be proved as
∑

k

{
F (n, k)

r(n)

}
= 1.

That being done, we might as well just think of F (n, k)/r(n) as having been the

original summand. In other words, we can now assume, without loss of generality,

that the identity that we’re trying to prove is

∑

k

F (n, k) = const. (7.1.1)

Let’s call the left hand side f(n). So f(n) =
def ∑

k F (n, k), and we’re trying to

prove that f(n) = const. for all n. One way to show that a function f is constant is

to show that f(n+ 1) − f(n) = 0 for all n. That would certainly do it.

A good way to certify the fact that f(n + 1) − f(n) = 0 for all n would be to

display a function G(n, k) such that

F (n+ 1, k) − F (n, k) = G(n, k + 1) −G(n, k), (7.1.2)

for then we would simply sum (7.1.2) over all integers k to find that, under suitable

hypotheses, indeed f(n+ 1) − f(n) is always 0.

A pair of functions (F,G) that satisfy (7.1.2) is called a WZ pair.

Example 7.1.1. Let’s convince ourselves that the function

f(n) =
∑

k

(
n
k

)
(
2n
n

) (7.1.3)

is always equal to 1 for n ≥ 0. To do that we state that (7.1.2) is indeed true, where F

is the summand (not the sum; the summand) in (7.1.3), and G = RF , where R(n, k)

is the rational function

R(n, k) = − k2(3n− 2k + 3)

2(2n + 1)(n− k + 1)2
. (7.1.4)

As usual, when confronted with such things, we suppress the natural where-on-earth-

did-that-come-from reaction, and we confine ourselves to verifying the certificate. To

verify it we check that if R(n, k) is given by (7.1.4), we multiply R by F (n, k), the

summand in (7.1.3), to get a certain function G(n, k). We then take that function

and check that (7.1.2) is satisfied, and we’re all finished. 2

Now let’s discuss where on earth it came from. Begin with your summand F (n, k),

from (7.1.1). Now form the difference D = F (n + 1, k) − F (n, k), and collect and



7.1 Introduction 123

simplify it as much as you can (after all, it’s only a rational function times F (n, k)).

This difference D depends on n and k and the various parameters that may have been

in your summand. Let’s think of n, for the time being, as one of the parameters, so

we won’t explicitly name it as one of the variables that D depends on. That means

that D is a function of k alone, so call it D(k).

Take D(k) and give it to Gosper’s algorithm. If possible, Gosper’s algorithm will

produce a function g(k) such that D(k) = g(k+ 1)− g(k). That function g(k) will of

course have the parameter n in it, so let’s rename g(k) to G(n, k). This G(n, k) does

exactly what we wanted it to do, namely it is the WZ-mate for F in equation (7.1.2).

Furthermore, by equation (5.2.1), G/F is a rational function.

There’s just one problem.

There is no assurance that Gosper’s algorithm will find a g. After all, Gosper’s

algorithm might just return “No such g exists.” There is no theorem that says that

such a g must exist. In fact, there are cases where the identity
∑

k F (n, k) = const.

is true, but the g really doesn’t exist.

Despite that, the simple fact remains that among hundreds of hypergeometric

identities for which it has been tried, the WZ certification does indeed work for all

but a handful of them.

Of course the earlier results always work. So for every proper hypergeometric

term F (n, k) we always have a (“telescoping”) certification of (7.1.1) that looks like

J∑

j=0

aj(n)F (n+ j, k) = G(n, k + 1) −G(n, k). (7.1.5)

The observed fact is that 99% of the time, this reduces to just two terms on the

left and becomes the WZ equation (7.1.2), if we take the precaution of first dividing

the summand by the right hand side of the identity, if that right hand side was not

already zero.

So the thing to remember is always to give the WZ phenomenon a chance to

happen by dividing through your identity by its right hand side if necessary. Then

the identity will be in the standard form (7.1.1). If one now applies Zeilberger’s

telescoping algorithm to the identity in standard form, then there is a superb chance

that it will give us a recurrence, as output, that is in the WZ form (7.1.2).

When this happens it is important that it be recognized, for several reasons that

we are about to discuss. One reason is a metaphysical one. When the WZ equation

(7.1.2) holds, there is complete symmetry between the indices n and k, especially for

terminating identities, which previously had seemed to be playing seemingly different

roles. The revelation of symmetry in nature has always been one of the main objec-

tives of science. We will explore some of the consequences of this symmetry in this

chapter.



124 The WZ Phenomenon

How to prove an identity from its WZ certificate

To prove an identity
∑

k f(n, k) = r(n) from its WZ certificate R(n, k):

• If r(n) 6= 0, then put F (n, k) := f(n, k)/r(n), else put F (n, k) := f(n, k).

Let G(n, k) := R(n, k)F (n, k).

• Verify that equation (7.1.2) is true. To do this, write it all out, divide out

all of the factorials, and verify the resulting polynomial identity.

• Verify that the given identity is true for one value of n. 2

The theorem that underlies these procedures makes use of these hypotheses:

• (F1) For each integer k, the limit

fk = lim
n→∞

F (n, k) (7.1.6)

exists and is finite.

• (G1) For each integer n ≥ 0, we have

lim
k→±∞

G(n, k) = 0.

• (G2) We have limL→∞
∑

n≥0G(n,−L) = 0.

How to find the WZ certificate of an identity

To certify an identity that is in the form
∑

k f(n, k) = r(n):

• If r(n) 6= 0 then let F (n, k) := f(n, k)/r(n), else let F (n, k) := f(n, k).

• Let f(k) := F (n+ 1, k) − F (n, k). Input f(k) to Gosper’s algorithm.

If that algorithm fails then this one does too.

• Otherwise, the output G(n, k) of Gosper’s algorithm is the WZ mate of F .

The rational function R(n, k) := G(n, k)/F (n, k) is the WZ certificate

of the identity
∑

k F (n, k) = const. 2

The theorem itself is the following.

Theorem 7.1.1 [WZ90a] Let (F,G) satisfy equation (7.1.2). If (G1) holds, then
∑

k

F (n, k) = const (n = 0, 1, 2, . . .). (7.1.7)



7.1 Introduction 125

If (F1) and (G2) both hold, then we have the companion identity

∑

n≥0

G(n, k) =
∑

j≤k−1

(fj − F (0, j)), (7.1.8)

where f is defined by (7.1.6).

The theorem not only validates the certification procedure, it shows that we get a

free new identity every time we use the method. The new identity is the companion

identity (7.1.8). Roughly the reason that it is there is that the functions F,G play

very symmetrical roles in the WZ equation (7.1.2). If they are so symmetric, why

should there be an identity associated with F and not with G? Well there is one

associated with G, and it is (7.1.8).

This is not the only free identity that we get from the procedure. We will discuss

at least two more before we’re finished. None of them appear as results of any of

the earlier certification procedures that we have discussed. That is, if we use the raw

two-variable recurrence for F , or the telescoping recurrence for F as our certification

method, we get the advantage that they are guaranteed to work on every proper

hypergeometric summand, but a disadvantage relative to the WZ method is that we

get no identities that we didn’t know before.

Proof. We use the symbol ∆n for the forward difference operator on n: ∆nh(n) =

h(n + 1) − h(n). Sum both sides of equation (7.1.2) from k = −L to k = K, getting

∆n

{ K∑

k=−L

F (n, k)

}
=

K∑

k=−L

{∆kG(n, k)}

= G(n,K + 1) −G(n,−L).

Now let K,L→ ∞ and use (G1) to find that ∆n

∑
k F (n, k) = 0, i.e., that

∑
k F (n, k)

is independent of n ≥ 0, which establishes (7.1.7).

If we sum both sides of (7.1.2) from n = 0 to N , we get

F (N + 1, k) − F (0, k) = ∆k

{ N∑

n=0

G(n, k)

}
.

Now let N → ∞ and use (F1) to get

fk − F (0, k) = ∆k

{∑

n≥0

G(n, k)

}
.

Replace k by k′, sum from k′ = −L to k′ = k− 1, let L→ ∞, and use (G2) to obtain

the companion identity (7.1.8), completing the proof. 2



126 The WZ Phenomenon

7.2 WZ proofs of the hypergeometric database

To illustrate the scope of the WZ method, we now present one-line proofs of every

named identity in the hypergeometric database of Chapter 3.

(I) Proof of Gauss’s 2F1 identity. To prove Gauss’s identity
∑

k F (n, k) = 1 where

F (n, k) =
(n+ k)! (b + k)! (c− n− 1)! (c− b− 1)!

(c+ k)! (n− 1)! (c− n− b− 1)! (k + 1)! (b− 1)!
,

take

R(n, k) =
(k + 1)(k + c)

n(n+ 1 − c)
. 2

(II) Proof of Kummer’s 2F1 identity. To prove that

2F1

[
1 − c− 2n −2n

c
; −1

]
= (−1)n (2n)! (c− 1)!

n! (c+ n− 1)!

rewrite it as
∑

k F (n, k) = 1 where

F (n, k) = (−1)n+k (2n+ c− 1)!n! (n+ c− 1)!

(2n+ c− 1 − k)! (2n− k)! (c+ k − 1)! k!
.

Then take R(n, k) to be

k(k + c− 1)(2 + 4c+ c2 − 3k − 2ck + k2 + 10n+ 7cn− 6kn+ 10n2)

2(2n− k + c+ 1)(2n− k + c)(2n− k + 2)(2n− k + 1)
. 2

(III) Proof of Saalschütz’s 3F2 identity. To prove Saalschütz’s 3F2 identity in

the form
∑

k F (n, k) = const., where

F (n, k) =
(a + k − 1)! (b+ k − 1)!n! (n+ c− a− b− k − 1)! (n+ c− 1)!

k! (n− k)! (k + c− 1)! (n+ c− a− 1)! (n+ c− b− 1)!
,

take

R(n, k) =
k(−1 + c+ k)(a + b− c+ k − n)

(b− c− n)(−a + c+ n)(1 − k + n)
. 2

(IV) Proof of Dixon’s identity. To prove that

∑

k

(−1)k

(
n+ b

n+ k

)(
n+ c

c+ k

)(
b+ c

b+ k

)
=

(n+ b + c)!

n! b! c!
,



7.3 Spinoffs from the WZ method 127

take

R(n, k) =
(k + b)(k + c)

2(k − n− 1)(n+ b + c+ 1)
. 2

(V) Proof of Clausen’s 4F3 identity. To prove Clausen’s 4F3 identity in the form∑
k F (n, k) = 1, where

F (n, k) = φ(k)φ(n− k)ψ(n),

and

φ(t) =
(a+ t− 1)! (b+ t− 1)!

t! (−1
2

+ a+ b + t)!
,

ψ(t) =
(t+ a+ b− 1

2
)! t! (t+ 2a+ 2b− 1)!

(t+ 2a− 1)! (t+ a+ b− 1)! (t+ 2b− 1)!
,

take R(n, k) to be

(1 − 2a− 2b− 2k)k(a− k + n)(b− k + n)(2 + 2a+ 2b− 2k + 3n)

(2a+ n)(a+ b + n)(2b+ n)(1 − k + n)(1 + 2a+ 2b− 2k + 2n)
. 2

(VI) Proof of Dougall’s 7F6 identity. To prove Dougall’s 7F6 identity

7F6

[
d 1 + d

2
d+ b− a d+ c− a 1 + a− b− c n+ a −n

d
2

1 + a− b 1 + a− c b+ c+ d− a 1 + d− a− n 1 + d+ n

∣∣∣∣1
]

=
(d+ 1)n(b)n(c)n(1 + 2a− b− c− d)n

(a− d)n(1 + a− b)n(1 + a− c)n(b + c+ d− a)n
,

take R(n, k) to be

(a − c + k)(a − b + k)(a − b − c + k)(−1 − a + b + c + d + k)(a − d − k + n)(1 + a + 2n)

(−a + b + c − k)(d + 2k)(a + n)(b + n)(c + n)(−1 + 2a − b − c − d + n)(1 − k + n)
. 2

7.3 Spinoffs from the WZ method

The main business of the WZ method is the certification of identities. In the course

of getting that job done, however, it gives as dividends at least three additional kinds

of new identities for each one that it certifies. These are (1) the companion identity

(2) dual identities and (3) the definite-sum-made-indefinite. Here we will discuss and

illustrate these three kinds of spinoffs.



128 The WZ Phenomenon

The companion identity

The companion identity is equation (7.1.8). It states that

∑

n≥0

G(n, k) =
∑

j≤k−1

(fj − F (0, j)), (7.3.1)

in which

fk =
def

lim
n→∞

F (n, k).

Example 7.3.1. Consider once more the identity

∑

k

(
n

k

)


=

(
2n

n

)
.

Here F (n, k) =
(

n
k

)2
/
(
2n
n

)
, and all fk’s are 0. To do the WZ procedure we apply

Gosper’s algorithm to the input F (n+ 1, k) − F (n, k), and it outputs

G(n, k) =
(−3n + 2k − 3)

2(2n+ 1)

n!2

(k − 1)!2(n− k + 1)!2
(
2n
n

) .

If we substitute in (7.1.8) and use the fact that F (0, j) = δ0,j we obtain the companion

identity

∑

n≥0

(−3n+ 2k − 3)

2(2n+ 1)

n!2

(k − 1)!2(n− k + 1)!2
(
2n
n

) =

{
0 if k = 0;

−1 if k ≥ 1,

which simplifies to

∑

n≥0

(3n− 2k + 1)

(2n+ 1)

(
n
k

)
(
2n
n

) = 2 (k = 0, 1, 2, . . .). (7.3.2)

2

Equation (7.3.2) is a new identity, in the sense that it is not immediately reducible

to any known identity in the hypergeometric database. This comment is made here

not so much to impress the reader with what a spectacular identity (7.3.2) is, but

rather to underline the incompleteness of any fixed database. It seems that whatever

finite list of general identities one may incorporate into a database will be incomplete.

One can add, of course, a number of hypergeometric transformation rules, which map

given identities onto other ones. These greatly extend the scope of any database,

but still there is no such fixed list of identities and list of rules that will prove every

preassigned identity.



7.3 Spinoffs from the WZ method 129

Practically every small binomial coefficient identity is a special case of some known,

more general, hypergeometric identity. But the other side of that coin is that virtually

all of them can be certified directly by WZ certificates which yield, as a byproduct,

a companion identity that might be new. Of course, not all of these companion

identities will be æsthetically delightful. Many of them are quite messy. But they

are mostly beyond the reach of any fixed database and searching and transforming

algorithm that is known. The WZ approach provides a systematic way to find and

to prove them by computer.

Another point is the following. Suppose identity x is a special case of identity X.

It does not follow that the companion of identity x is necessarily a special case of the

companion of identity X. In fact, this is usually false. A similar remark will hold for

the idea of a dual identity, which we will treat later in this section. The implication

of this fact is that one might be able to find a new identity from the companion of a

special case, even though the companion of the more general identity was not new.

Example 7.3.2. Next let’s take the identity (2.3.2) of Chapter 2, which was

∑

k

(n− i)! (n− j)! (i− 1)! (j − 1)!

(n− 1)! (k − 1)! (n− i− j + k)! (i− k)! (j − k)!
= 1, (7.3.3)

and find its companion.

The rational function certificate was simply R(n, k) = (k − 1)/n, so

G(n, k) =
(n− i)! (n− j)! (i− 1)! (j − 1)!

n! (k − 2)! (n− i− j + k)! (i− k)! (j − k)!
.

The summands here are well defined only for 1 ≤ i, j ≤ n. Hence, to fix ideas, suppose

that 1 ≤ i ≤ j ≤ n. Now we calculate the limits that are needed in the companion

identity, namely

fk = lim
n→∞

F (n, k)

= lim
n→∞

(n− i)n−i(n− j)n−jek−1(i− 1)! (j − 1)!

(n− 1)n−1(n− i− j + k)n−i−j+k(k − 1)! (i− k)! (j − k)!

=
(i− 1)! (j − 1)!

(k − 1)! (i− k)! (j − k)!
lim

n→∞
n1−k =

{
1, if k = 1;

0, if k ≥ 2.

Thus fk = δ1,k.

Next we take the basic WZ equation, in the form

F (n+ 1, k′) − F (n, k′) = G(n, k′ + 1) −G(n, k′),



130 The WZ Phenomenon

which is valid only for n ≥ j, and we sum it over all n ≥ j and k′ < k. The result is

1 −
∑

k′≤k−1

F (j, k′) =
∑

n≥j

G(n, k),

i.e.,

(i− 1)! (j − 1)!

(k − 2)! (i− k)! (j − k)!

∑

n≥j

(n− i)! (n− j)!

n! (n− i− j + k)!
= 1 −

∑

k′≤k−1

(
j − i

j − k′

)(
i− 1

i− k′

)
.

But in the last sum the only nonzero term comes from k′ = i, so, after writing

n− i− j + k = r in the sum on the left, this reduces to

∞∑

r=0

(r + j − k)! (r + i− k)!

r! (r + i+ j − k)!
=

(k − 2)! (i− k)! (j − k)!

(i− 1)! (j − 1)!
, (7.3.4)

which is Gauss’s 2F1 identity.

What we have found, in this example, is that Gauss’s identity is the companion

of the identity (2.3.2), whose proof certificate was simply (k − 1)/n. 2

There is still more to say about the identity (7.3.3). Not only is the sum over k

equal to 1, but the sum over i of the same summand is equal to n/j. We state this as

∑

i

(n− i)! (n− j)! (i− 1)! j!

n! (k − 1)! (n− i− j + k)! (i− k)! (j − k)!
= 1 (1 ≤ k ≤ j ≤ n). (7.3.5)

We leave the investigation of this identity to the exercises. 2

Example 7.3.3. If we begin with the full Saalschütz identity, as in eq. (3.5), then

we find the companion identity

3F2

[
k c− a− b c+ k − 1

c− b+ k c− a + k
; 1

]
=

(c− b)k(c− a)k

(a)k(b)k

{
1 − (c− a− b)a

(c− a)a

k−1∑

j=0

(a)j(b)j

j! (c)j

}
.

This is valid for c > a + b, integer k > 0, and the sum is again nonterminating. It

is interesting in that on the right side we see a partial sum of Gauss’s original 2F1[1]

identity. 2

Example 7.3.4. This time, let’s start with Vandermonde’s identity

∑

k

(
a

k

)(
n

k

)
=

(
n + a

a

)
.

For this we find the WZ certificate

R(n, k) =
k2

(−1 + k − n)(1 + a+ n)



7.3 Spinoffs from the WZ method 131

and the companion identity

∑

n

(
n
k

)
(

n+a+1
n

) =
a+ 1

(k + 1)
(

a
k+1

) ,

which is valid for integer a > k ≥ 0. 2

Dual identities

The mapping from an identity to its companion is not an involution. But there is a

true dual identity in the WZ theory. It is obtained as follows.

Suppose F (n, k) is a summand of the form

F (n, k) = xnykρ(n, k)

∏
i(ain+ bik + ci)!∏
i(uin + vik + wi)!

,

where ρ is a rational function of n, k. We will now exhibit a certain operation that

will change F into a different hypergeometric term and will change its WZ mate G

into a different hypergeometric term also, but the new F,G will still be a WZ pair.

Thus we will have found a “new identity,” or at any rate, a different identity from

the given one.

The operation is as follows. Find any factor (an + bk + c)! that appears, say, in

the numerator of F . Remove that factor from the numerator of F , and place in the

denominator of F a factor (−1 − an − bk − c)!. Then multiply F by (−1)an+bk. By

doing this to F we will have changed F to a new function, say F̃ . Perform exactly

the same operation on the WZ mate, G, of F , getting G̃.

We claim that F̃ , G̃ are still a WZ pair.2

To see why, begin with the reflection formula for the gamma function,

Γ(z)Γ(1 − z) =
π

sin πz
.

Thus we have

(an + bk + c)! = − π

sin (π(an+ bk + c))(−1 − an− bk − c)!
.

It follows that if we take some term F , and divide it by (an+bk+c)!, and then divide

it by (−1)an+bk(−1 − an− bk − c)!, then we have in effect multiplied the term F by

the factor {
(−1)an+bk+1 sin (an+ bk + c)π

π

}
.

2This result is due to Wilf and Zeilberger [WZ90a], but the following proof is from Gessel [Gess94].



132 The WZ Phenomenon

But the remarkable thing about this latter factor is that it is a periodic function of

n and k of period 1. Consequently, if we perform this operation

(an+ bk + c)! −→ (−1)an+bk/(−an− bk − c− 1)! (7.3.6)

on both F and G, then the basic WZ equation

F (n+ 1, k) − F (n, k) = G(n, k + 1) −G(n, k)

will still hold between the new functions F̃ , G̃, since F,G will merely have been

multiplied by functions of period 1. 2

Thus we can carry out this operation on any factorial factor in the numerators,

putting a different factorial factor in the denominators, or vice-versa, and we can

perform this operation repeatedly, on different factorial factors that appear in F and

G, all the while preserving the WZ pair relationship. Hence we can manufacture

many dual identities from the original one. Some of these may be uninteresting, some

of them may be nonterminating and divergent, but some may be interesting, too.

Note that (check this!) the mapping

(F (n, k), G(n, k)) −→ (G(−k − 1,−n), F (−k,−n− 1)) (7.3.7)

also maps WZ pairs to WZ pairs (see Section 7.4 for more such transformations).

Example 7.3.5. We return to the sum of the squares of the binomial coefficients

identity of Example 7.1.1, where the WZ pair was

F (n, k) =

(
n
k

)2
(
2n
n

) ; G(n, k) =
k2(−3 + 2k − 3n)

2(2n+ 1)(n− k + 1)2

(
n
k

)2
(
2n
n

) .

We apply the mapping (7.3.6) to all of the factors in F except for the factor (n−k)!2,
and discover that the original pair F,G has been mapped to the “shadow” pair

F (n, k) =
(−2n− 1)! (−k − 1)!2

(−n− 1)!4(n− k)!2
; G(n, k) = (3− 2k+ 3n)

(
−k

−n− 1

)2(−2n− 2

−n− 1

)
/2.

Finally we change variables as in (7.3.7) to pass to a dual pair,

F ′(n, k) =
−3k + 2n

2

(
n

k

)

(

2k

k

)
; G′(n, k) =

k

2

(
n

k − 1

)

(

2k

k

)
.

We now have a formal WZ pair. We check that the hypotheses (G1), (G2) of the

theorem are satisfied, and then we know that
∑

k F
′(n, k) is independent of n ≥ 0.

Since it is 0 when n = 0 we have a proof of the dual identity

∑

k

(3k − 2n)

(
n

k

)

(

2k

k

)
= 0 (n = 0, 1, . . .).



7.3 Spinoffs from the WZ method 133

Again, while this identity is hardly spectacular in itself, it is new in that there is no

immediate, algorithmic way to deduce it from the standard hypergeometric database

(though we certainly would not want to challenge human mathematicians to give

independent proofs of it!). 2

We summarize a few other instances of duality. A dual of
∑

k

(
n
k

)
= 2n is

∑

k

(−1)n+k

(
n

k

)
2k = 1 (n = 0, 1, . . .).

The Saalschütz identity is self-dual.

A dual of Dixon’s identity is a special case of Saalschütz’s. Note that since dual-

ization is symmetric, it follows that we can prove Dixon’s identity from Saalschütz’s

by dualization of a special case.

A dual of Vandermonde’s identity

∑

k

(
a

k

)(
n

k

)
=

(
n+ a

a

)

is ∑

k

(−1)n+k

(
n

k

)(
k + b

k

)
=

(
b

n

)
,

which is a special case of Gauss’s 2F1 identity. Again, Vandermonde’s identity can

thereby be proved from Gauss’s, by specializing and dualizing.

The process of dualization does not in general commute with specialization. Thus

we can imagine beginning with some identity, passing to some special case, dualizing,

passing to some special case, etc., thereby generating a whole chain of identities

from a given one. If the original identity has a large number of free parameters, like

Dougall’s 7F6 for instance, then the chain might be fairly long. Whether interesting

new identities can be found this way is not known.

The definite sum made indefinite

The following observation of Zeilberger generates an interesting family of identities

and is of help in finding asymptotic estimates of hypergeometric sums.

Imagine a sum
∑

k F (n, k) = 1 of the type that we have been considering, in which

the support of F properly contains the interval [0, n]. Now consider the restricted

sum

h(n) :=

n∑

k=0

F (n, k).

A prototype of this situation is a sum like
∑n

k=0

(
3n
k

)
.



134 The WZ Phenomenon

Suppose now that F has a WZ mate G, so that

F (n+ 1, k) − F (n, k) = G(n, k + 1) −G(n, k).

Sum this equation over k ≤ n to obtain

h(n+ 1) − F (n+ 1, n+ 1) − h(n) = G(n, n+ 1).

Next, replace n by j and sum over j = 0, . . . , n− 1 to get

h(n) = h(0) +

n∑

j=1

(F (j, j) +G(j − 1, j)),

which is to say that

n∑

k=0

F (n, k) = F (0, 0) +
n∑

j=1

(F (j, j) +G(j − 1, j)). (7.3.8)

We notice that on the right side we have a sum in which the running index n does

not appear under the summation sign.

Example 7.3.6. Take F (n, k) =
(
3n
k

)
/8n, so that

∑
k F (n, k) = 1. The WZ mate

of F is

G(n, k) =
(−32 + 22k − 4k2 − 93n+ 30kn− 63n2)

(3n− k + 3)(3n− k + 2)

(
3n

k−1

)

8n+1
.

We find that (be sure to use a computer algebra package to do things like this!)

F (j, j) +G(j − 1, j) =
2(2 − j − 5j2)

3(3j − 1)(3j − 2)
8−j

(
3j

j

)
.

Hence (7.3.8) reads as

8−n
n∑

k=0

(
3n

k

)
= 1 +

2

3

n∑

j=1

(2 − j − 5j2)

(3j − 1)(3j − 2)
8−j

(
3j

j

)
. (7.3.9)

We mention two applications of this idea, to asymptotics and to speeding up

table-making.

We can find some asymptotic information as follows. It is easy to see that the left

side of (7.3.9) approaches 0 as n → ∞. So the sum on the right, with n replaced by

∞, is 0. Thus we have

2

3

∞∑

j=1

(5j2 + j − 2)

(3j − 1)(3j − 2)
8−j

(
3j

j

)
= 1,



7.4 Discovering new hypergeometric identities 135

an identity that is perhaps not instantly obvious by inspection, and therefore (7.3.9)

can be rewritten as

8−n

n∑

k=0

(
3n

k

)
=

2

3

∞∑

j=n+1

(5j2 + j − 2)

(3j − 1)(3j − 2)
8−j

(
3j

j

)
.

On the right side we replace j by n + k, factor out 8−n
(
3n
n

)
, and divide each term of

the sum by that factor. We then have, as n→ ∞,

8−n
n∑

k=0

(
3n

k

)
∼ 8−n

(
3n

n

)
2

3

∞∑

k=1

5

9
8−k

(
27

4

)k

= 2 · 8−n

(
3n

n

)
.

So the sum in question is asymptotic to twice its last term. 2

One additional application was pointed out by Zeilberger in [Zeil95b]. Suppose

we want to make a table of the left hand side of (7.3.8) for n = 1, . . . , N , say. If we

compute directly from the left side, we will have to do O(N) calculations for each n,

so O(N2) all together. On the right side, however, a single new term is computed for

each n, which makes all N values computable in time that is linear in N .

7.4 Discovering new hypergeometric identities

In this section we describe an approach due to Ira Gessel [Gess94], that uses the WZ

method in yet another way, and which results in a shower of new identities. Gessel’s

approach is as follows.

1. Restrict attention to terminating identities. That is, assume that the summand

F (n, k) vanishes except for k in some compact support, i.e., a finite interval

which, of course, depends on n.

2. By a WZ function, we mean any summand F (n, k) for which
∑

k F (n, k) = 1

and which has a WZ mate G(n, k). The summand may depend on parameters

a, b, c, . . ., and if we want to exhibit these explicitly we may write the WZ

function as F (a, b, c, . . . , k). Clearly, if F (a, b, c, . . . , k) is a WZ function then

so is F (a+ u1n, b+ u2n, c+ u3n, . . . , k), since this simply amounts to changing

the names of the free parameters. Note how this idea puts all free parameters

on an equal footing, instead of singling out one of them ab initio, as n.

3. If (F (n, k), G(n, k)) is a WZ pair, then so is (G(k, n), F (k, n)), although the

sum
∑

k G(k, n) may not be terminating even though
∑

k F (n, k) is.



136 The WZ Phenomenon

4. If F (n, k) is a WZ function, then so is F (n + α, k + β), for all α, β, and often

one can choose α and β so as to make
∑

k G(k + β, n+ α) terminate.

5. If F (n, k) is a WZ function, then so are F (−n, k) and F (n,−k), and these offer

further possibilities for generating new identities.

As an illustration of this approach, let’s show how to find a hypergeometric identity

by beginning with Dixon’s identity, whose WZ function can be taken in the form

F1 = (−1)k (a+ b)! (a+ c)! (b + c)! a! b! c!

(a+ k)! (b− k)! (c+ k)! (a− k)! (b+ k)! (c− k)! (a+ b + c)!
.

At the moment, the running variable n is not present. Since F1 is a WZ function

whatever the free parameters a, b, cmight be, we can replace a, b, c by various functions

of n, as we please. We might replace (a, b, c) by (a + n, b− 2n, c + 3n), for instance.

Just to keep things simple, let’s replace a by a + n and b by b − n, to get the WZ

function F2(n, k) as

(−1)k (a+ b)! c! (b− n)! (b + c− n)! (a+ n)! (a+ c+ n)!

(a+ b + c)! (c− k)! (c+ k)! (b− k − n)! (b+ k − n)! (a− k + n)! (a+ k + n)!
.

Now it’s time to call the WZ algorithm. So we form F2(n + 1, k) − F2(n, k), and

input it to Gosper’s algorithm. It returns the WZ mate of F2, G2(n, k), as

(−1)k (−1 − a + b− 2n) (−1 + b− n)! (−1 + b + c− n)! (a+ n)! (a+ c+ n)!

(−1 + c− k)! (c+ k)! (−1 + b− k − n)! (b + k − n)! (a− k + n)! (1 + a + k + n)!
,

in which we have now dropped all factors that are independent of both n and k.

Now G2(k, n) will serve as a new WZ function F3(n, k), which is

(−1)n (−1 − a+ b− 2 k) (−1 + b− k)! (−1 + b + c− k)! (a+ k)! (a + c+ k)!

(−1 + c− n)! (−1 + b− k − n)! (a+ k − n)! (c+ n)! (b− k + n)! (1 + a+ k + n)!
.

As this F3 now stands, the sum
∑

k F3(n, k) does not terminate. There are many ways

to make it terminate, however. For instance, instead of F3 we can use F4(n, k) =

F3(n, k + n − a) for our WZ function. If we do that we would certainly have∑
k F4(n, k) = const, and the “const” can be evaluated at any particular value of

n. In this case, it turns out to be zero.

Hence we have found that
∑

k F4(n, k) = 0, which can be written in the hyperge-

ometric form

5F4

[
−a− b, n + 1, n+ c + 1, 2n− a− b+ 1, n+ 3−a−b

2

n− a− b− c+ 1, n− a− b + 1, 2n+ 2, n+ 1−a−b
2

; 1

]
= 0. (7.4.1)



7.5 Software for the WZ method 137

This is a “new” hypergeometric identity, at least in the sense that it does not live

in any of the extensive databases of such identities that are available to us. We

have previously discussed the fact that the word “new” is somewhat elusive. The

identity (7.4.1) might be obtainable by applying some transformation rule to some

known identity, in which case it would not be “really new.” Failing that, there are

surely some human mathematicians who would be able to prove it by some very short

application of known results, so in that extended sense it is certainly not new. But the

procedure by which we found it is quite automatic. The various decisions that were

made above, about how to introduce the parameter n, and how to make sure that the

sum terminates, were made arbitrarily and capriciously, but if they had been made

in other ways, the result would have been other “new” hypergeometric identities.

Here are three samples of other identities that Gessel found by variations of this

method. His paper contains perhaps fifty more. In each case we will state the iden-

tity, and give its proof by giving the rational function R(n, k) that is its WZ proof

certificate.

3F2

[
−3n, 2

3
− c, 3n+ 2

3
2
, 1 − 3c

;
3

4

]
=

(c+ 2
3
)n(1

3
)
n

(1 − c)n(4
3
)n

,

R(n, k) =
2(5 + 6n)(k − 3c)k(2k + 1)

(3c+ 3n+ 2)(k − 3n− 3)(k − 3n− 2)(k − 3n− 1)
.

3F2

[
−3b, −3n

2
, 1

2
− 3n

2

−3n, 2
3
− b− n

;
4

3

]
=

(1
3
− b)n

(1
3

+ b)n

,

R(n, k) =
k(k − 3n− 1)(3k − 3n− 3b− 1)(3k − 5 − 6n)

(2k − 3n− 1)(2k − 3n− 2)(2k − 3n− 3)(3b− 3n− 1)
.

4F3

[
3
2

+ n
5
, 2

3
,−n, 2n+ 2

n + 11
6
, 4

3
, n

5
+ 1

2

;
2

27

]
=

(5
2
)n(11

6
)n

(3
2
)n(7

2
)n

,

R(n, k) =
9

2

k(3k + 1)

(k − n− 1)(2n+ 10k + 5)
.

The ease with which such impressive identities can be manufactured shows again

the inadequacy of relying solely on some fixed database of identities and underscores

the flexibility and comprehensiveness of a computer-based algorithmic approach.

7.5 Software for the WZ method

In this section we will discuss how to use the programs in this book to implement the

WZ method, first in Mathematica, and then in Maple.



138 The WZ Phenomenon

In Mathematica one would use the program for Gosper’s algorithm (see Appendix

A) plus a few extra instructions. If we assume that the GosperSum program has

already been read in, then the following Mathematica program will find the WZ mate

and certificate R(n, k):

(* WZ::usage="WZ[f,n,k] yields the WZ certificate of f[n,k]. Here

the input f is an expression, not a function. If R denotes the

rational function output by this routine, then define g[n,k] to

be R f[n,k], to obtain a WZ pair (f,g), i.e., a pair that

satisfies f[n+1,k]-f[n,k]=g[n,k+1]-g[n,k]" *)

WZ[f_, n_, k_] :=Module[{k1, df, t, r, g},

df = -f + (f /. {n -> n + 1});

t = GosperSum[df, {k, 0, k1}];

r = FactorialSimplify[(t /. {k1 -> k-1})/f];

g = FactorialSimplify[r f];

Print["The rational function R(n,k) is ",r];

Print["The WZ mate G(n,k) is ",g];

Return[]

];

Example 7.5.1. To find the WZ proof of the identity

∑

k

2k+1(k + 1)(2n− k − 2)!n!

(n− k − 1)! (2n)!
= 1,

we type

f=2^(k+1) (k+1) (2n-k-2)! n!/((n-k-1)! (2n)!)

WZ[f,n,k]

The program responds with

The rational function R(n,k) is k/(2(-1+k-n))

The WZ mate G(n,k) is -n!/(2^(n+1)(-1+k)! (1-k+n)!)

2

Example 7.5.2. Let’s find the companion identity of the binomial coefficient

identity
∑

k

k

(
n+ 1

k

)(
x

k

)
= (n + 1)

(
x+ n

n+ 1

)
. (7.5.1)



7.5 Software for the WZ method 139

To do that we first input to the program above the request

WZ[k Binomial[n+1,k] Binomial[x,k]/((n+1) Binomial[n+x,n+1]),n,k]

We are told that the rational function R(n, k) is

− k(k − 1)

(n− k + 2)(n+ x+ 1)
,

and that the WZ mate is

G(n, k) = − (k − 1)(n+ 1)!2x!2

(n+ 1)x(k − 1)!2(n− k + 2)! (x− k)! (x+ n + 1)!
,

i.e., that

G(n, k) = −k(k − 1)

x(n + 1)

(
n+1
k−1

)(
x
k

)
(

x+n+1
x

) .

To find the companion identity we must first compute the limits fk, of (7.1.6).

We find that

fk = lim
n→∞

F (n, k) = lim
n→∞

k
(

n+1
k

)(
x
k

)

(n+ 1)
(

x+n
n+1

) = 0 (k < x),

and also F (0, j) = δj,1. Hence the general companion identity (7.1.8) becomes, in this

case,

−k(k − 1)

x

(
x

k

)∑

n≥0

(
n+1
k−1

)

(n+ 1)
(

x+n+1
x

) =
∑

j≤k−1

(0 − δj,1),

which can be tidied up and put in the form

∑

n≥0

n! (n+ 1)!

(n− k + 2)! (x+ n+ 1)!
=

(k − 2)!

k
(

x
k

)
(x− 1)!

(k ≥ 2; x > k).

This is the desired companion, and it is a nonterminating special case of Gauss’s 2F1

identity. 2

Let’s try the same thing in Maple. The program of choice is now the creative

telescoping algorithm of Chapter 6. It can be used to find WZ proof certificates

quite easily. First we write the identity under consideration in the standard form∑
k f(n, k) = 1. Next we call program ct from the EKHAD package, with the call

ct(f,1,k,n,N);, thereby asking it to look for a recurrence of ORDER:=1.3

Example 7.5.3. We illustrate by finding, in Maple, the WZ proof of the identity∑
k

(
n
k

)2
=
(
2n
n

)
. First, as outlined above, we write the sum in the standard form∑

k f(n, k) = 1, where

f(n, k) :=
n!4

k!2(n− k)!2(2n)!
.

3See also Proposition 8.1.1 on page 145.



140 The WZ Phenomenon

Next we execute the instruction ct(f(n,k),1,k,n,N), and program ct returns

the pair

N − 1, − (3n+ 3 − 2k)k2

2(n + 1 − k)2(2n+ 1)
.

These two items represent, respectively, the operator in n,N which appears on the

left side of the creative telescoping equation, and the rational function R(n, k) which

converts the f into the g.

More generally, if the program returns a pair Ω(N, n), R(n, k), it means that the

input summand F (n, k) satisfies the telescoping recurrence

Ω(N, n)F (n, k) = G(n, k + 1) −G(n, k), (7.5.2)

where G(n, k) = R(n, k)F (n, k). Hence, in the present example, the program is telling

us that (N − 1)F (n, k) = G(n, k + 1) − G(n, k), which is exactly the WZ equation.

2

Thus the program outputs the WZ mate G(n, k) as well as the rational function

certificate R(n, k).

7.6 Exercises

1. Suppose
∑

k F (n, k) = 1 and that F (n, k) satisfies the telescoped recurrence

(7.5.2) in which the operator Ω is of order higher than the first, but has a left

factor of N − 1. That is Ω = (N − 1)Ω′. Then Ω′F is the first member of a

WZ pair. Investigate whether N − 1 is or is not a left factor in some instances

where the creative telescoping algorithm does not find a first order recurrence.

2. Find the WZ proof of the identity (7.3.5). Then find the companion identity

and relate it to known hypergeometric identities.

3. In all parts of this problem, F (n, k) will be the summand of (7.3.3).

(a) Show that all of the following are true (“∆” is the forward difference op-

erator w.r.t. its subscript):

∆nF = ∆k

(
k − 1

n
F

)

∆j

(
j

n
F

)
= ∆i

(
(k − i)(n− i + 1)j

(j − n)(j + 1 − k)n
F

)

∆n

(
j

n
F

)
= ∆i

(
(k − i)(n− i + 1)j

(n + 1)(n+ 1 + k − i− j)n
F

)



7.6 Exercises 141

(b) In each of the cases above, find the companion identity and relate it to the

hypergeometric database.



142 The WZ Phenomenon



Chapter 8

Algorithm Hyper

8.1 Introduction

If you want to evaluate a given sum in closed form, so far the tools that have been

described in this book have enabled you to find a recurrence relation with polynomial

coefficients that your sum satisfies. If that recurrence is of order 1 then you are fin-

ished; you have found the desired closed form for your sum, as a single hypergeometric

term. If, on the other hand, the recurrence is of order ≥ 2 then there is more work

to do. How can we recognize when such a recurrence has hypergeometric solutions,

and how can we find all of them?

In this chapter we discuss the question of how to recognize when a given recurrence

relation with polynomial coefficients has a closed form solution. We first take the

opportunity to define the term “closed form.”1

Definition 8.1.1 A function f(n) is said to be of closed form if it is equal to a linear

combination of a fixed number, r, say, of hypergeometric terms. The number r must

be an absolute constant, i.e., it must be independent of all variables and parameters

of the problem. 2

Take a definite sum of the form f(n) =
∑

k F (n, k) where the summand F (n, k)

is hypergeometric in both its arguments. Does this sum have a closed form? The

material of this chapter, taken together with the algorithm of Chapter 6, provides a

complete algorithmic solution of this problem.

To answer the question, we first run the creative telescoping algorithm of Chapter 6

on F (n, k). It produces a recurrence satisfied by f(n). If this recurrence is first-order

then the answer is “yes,” and we have found the desired closed form. But what if the

recurrence is of order two or more? Well, then we don’t know!

1We are really defining hypergeometric closed form.



144 Algorithm Hyper

Example 8.1.1. Consider the sum f(n) =
∑

k

(
3k+1

k

)(
3n−3k
n−k

)
/(3k + 1). Creative

telescoping produces a second-order recurrence for this sum:

In[1]:= <<zb_alg.m

Out[1]= Peter Paule and Markus Schorn’s implementation loaded...

In[2]:= Zb[Binomial[3k+1,k] Binomial[3(n-k),n-k]/(3k+1), {k,0,n}, n, 1]

Out[2]= Try higher order

In[3]:= Zb[Binomial[3k+1,k] Binomial[3(n-k),n-k]/(3k+1), {k,0,n}, n, 2]

Out[3]= {-81 (1 + n) (2 + 3 n) (4 + 3 n) SUM[n] +

> 12 (3 + 2 n) (22 + 27 n + 9 n^2 ) SUM[1 + n] -

> 4 (2 + n) (3 + 2 n) (5 + 2 n) SUM[2 + n] == 0}

But browsing through a list of binomial coefficient identities (such as the one in

[GKP89]), we encounter the identity

∑

k

(
tk + r

k

)(
tn− tk + s

n− k

)
r

tk + r
=

(
tn + r + s

n

)
. (8.1.1)

When t = 3, r = 1, s = 0, this identity specializes to

∑

k

(
3k + 1

k

)(
3n− 3k

n− k

)
1

3k + 1
=

(
3n + 1

n

)
, (8.1.2)

implying that our f(n) is nevertheless a hypergeometric term! Our knowledge of
recurrence Out[3] satisfied by f(n) makes it easy to verify (8.1.2) independently:

In[4]:= FactorialSimplify[Out[3][[1,1]] /. SUM[n_] -> Binomial[3n+1,n]]

Out[4]= 0

Since f(n) agrees with
(
3n+1

n

)
for n = 0 and n = 1, it follows that indeed f(n) =(

3n+1
n

)
.

Note that the summand in (8.1.1) is not hypergeometric in k or n when t is a

variable. But for every fixed integer t, it is proper hypergeometric in all the remaining

variables, and so is the right hand side in (8.1.1).
Let’s keep r = 1, s = 0, and see what happens when t = 4:

In[5]:= Zb[Binomial[4k+1,k] Binomial[4(n-k),n-k]/(4k+1), {k,0,n}, n, 1]

Out[5]= Try higher order

In[6]:= Zb[Binomial[4k+1,k] Binomial[4(n-k),n-k]/(4k+1), {k,0,n}, n, 2]

Out[6]= Try higher order

In[7]:= Zb[Binomial[4k+1,k] Binomial[4(n-k),n-k]/(4k+1), {k,0,n}, n, 3]

Out[7]= Try higher order

In[8]:= Zb[Binomial[4k+1,k] Binomial[4(n-k),n-k]/(4k+1), {k,0,n}, n, 4]

Out[8]= {4194304 (1 + n) (2 + n) (1 + 2 n) (3 + 2 n) (3 + 4 n) (5 + 4 n)



8.1 Introduction 145

> (7 + 4 n) (9 + 4 n) SUM[n] -

> 73728 (2 + n) (3 + 2 n) (7 + 4 n) (9 + 4 n)

> (10391 + 20216 n + 15224 n^2 + 5376 n^3 + 768 n^4 ) SUM[1 + n] +

> 1728 (5 + 3 n) (7 + 3 n)

> (4181673 + 9667056 n + 9469964 n^2 + 5043584 n^3 + 1543808 n^4 +

> 258048 n^5 + 18432 n^6 ) SUM[2 + n] -

> 432 (3 + n) (5 + 3 n) (7 + 3 n) (8 + 3 n) (10 + 3 n)

> (15433 + 14690 n + 4896 n^2 + 576 n^3 ) SUM[3 + n] +

> 729 (3 + n) (4 + n) (5 + 3 n) (7 + 3 n) (8 + 3 n) (10 + 3 n)

> (11 + 3 n) (13 + 3 n) SUM[4 + n] == 0}

This time we have a recurrence of order 4, and if we live to see the answer when

t = 5, it will be a recurrence of order 6, even though this sum satisfies a first-order

recurrence with polynomial coefficients!

In fact, we conjecture that for any nonnegative integer d, there exist integers t, r,

s, such that the recurrence obtained by creative telescoping for the sum in (8.1.1) is

of order d or more. 2

The ability of creative telescoping to find a first-order recurrence when one exists

is closely related to the performance of the WZ method on the corresponding identity,

as the following proposition shows.

Proposition 8.1.1 Let F (n, k) be hypergeometric in both variables, and such that the

sum f(n) =
∑

k F (n, k) exists and is hypergeometric in n. Then creative telescoping,

with input F (n, k), produces a first-order recurrence for f(n) if and only if the WZ

method succeeds in proving that
∑

k F (n, k) = f(n).

Proof. Let r(n) = f(n + 1)/f(n) be the rational function representing f(n). Then

f(n + 1) − r(n)f(n) = 0. Let F̄ (n, k) = F (n, k)/f(n). Now we have the following

chain of equivalences:

Creative telescoping produces a first-order recurrence for f(n)

⇐⇒ F (n+ 1, k) − r(n)F (n, k) is Gosper-summable w.r.t. k

⇐⇒ (F (n+ 1, k) − r(n)F (n, k))/f(n+ 1) is Gosper-summable w.r.t. k

⇐⇒ F̄ (n + 1, k) − F̄ (n, k) is Gosper-summable w.r.t. k

⇐⇒ WZ method succeeds in proving that
∑

k F̄ (n, k) is constant

⇐⇒ WZ method succeeds in proving the identity
∑

k F (n, k) = f(n). 2

Our method of solution of the problem of definite hypergeometric summation is

thus along the following lines:

1. Given a definite hypergeometric sum f(n), find a recurrence satisfied by f(n).



146 Algorithm Hyper

2. Find all hypergeometric solutions of this recurrence.

3. Check if any linear combination of these solutions agrees with f(n), for enough

consecutive values of n.

We have already shown in Chapter 6 how to perform Step 1. In this chapter we

discuss linear recurrences with polynomial coefficients and give algorithms that solve

them within some well-behaved class of discrete functions: polynomials, rational func-

tions, hypergeometric terms, and d’Alembertian functions. Since no general explicit

solutions of such recurrences are known, these algorithms are interesting not only in

connection with identities, but also in their own right.

8.2 The ring of sequences

Let K be a field of characteristic zero. We will denote by IN the set of nonnegative

integers, and by KIN the set of all sequences (a(n))∞n=0 whose terms belong to K.

With termwise addition and multiplication, KIN is a commutative ring. It is also a

K-linear space (in fact, a K-algebra) since we can multiply sequences termwise with

elements of K. The field K is naturally embedded in KIN as a subring, by identifying

u ∈ K with the constant sequence (u, u, . . .) ∈ KIN.

The ring KIN cannot be embedded into a field since it contains zero divisors. For

example, let a = (1, 0, 1, 0, . . .) and b = (0, 1, 0, 1, . . .); then

ab = (0, 0, 0, 0, . . .) = 0

although a, b 6= 0. For somebody who is used to solving equations in fields this has

strange consequences. For instance, the simple quadratic equation

x2 = 1

is satisfied by any sequence with terms ±1, hence it has a continuum of solutions!

Here we are interested not in algebraic but in recurrence equations, therefore we

define the shift operator N : KIN → KIN by setting

N(a(0), a(1), . . .) = (a(1), a(2), . . .),

or, more compactly, (Na)(n) = a(n + 1). Applying the shift operator k times, we

shift the sequence k places to the left: (Nka)(n) = a(n + k).

Since N(a+b) = Na+Nb andN(λa) = λNa for all a, b ∈ KIN and λ ∈ K, the shift

operator and its powers are linear operators on the K-linear space KIN. Similarly,

multiplication by a fixed sequence is a linear operator on KIN. Note that the set



8.2 The ring of sequences 147

of all linear operators on KIN with addition defined pointwise and with functional

composition as multiplication is a (noncommutative) ring. In particular, operators of

the form

L =
r∑

k=0

akN
k,

where ak ∈ KIN, are called linear recurrence operators on KIN. If ar 6= 0 and a0 6= 0,

the order of L is ordL = r. A linear recurrence equation in KIN is an equation of the

form

Ly = f,

where L is a linear recurrence operator on KIN and f ∈ KIN. This equation is

homogeneous if f = 0, and inhomogeneous otherwise. Note that the set of all solutions

of Ly = 0 is a linear subspace KerL ofKIN (the kernel of L), and the set of all solutions

of Ly = f is an affine subspace of KIN.

From the theory of ordinary differential equations we are used to the fact that a

homogeneous linear differential equation of order r has r linearly independent solu-

tions, and we expect – and desire – a similar state of affairs with recurrence equations.

However, unusual things happen again.

Example 8.2.1. Let a = (1, 0, 1, 0, . . .) and b = (0, 1, 0, 1, . . .) as above. Consider

the equation L1y = 0, where L1 = aN+b. Rewriting this equation termwise, we have

a(n)y(n + 1) + b(n)y(n) = 0 for all n, or y(n + 1) = 0 for n even and y(n) = 0 for

n odd. It follows that L1y = 0 if and only if y has the form (y(0), 0, y(2), 0, y(4), . . .)

where the values at even arguments are arbitrary. Thus the solution space of this

first-order equation has infinite dimension!

Now consider the equation L2y = 0, where L2 = aN − 1. Termwise this means

that a(n)y(n+ 1) − y(n) = 0, or y(n) = y(n+ 1) for n even and y(n) = 0 for n odd.

It follows that L2y = 0 if and only if y = 0. Here we have a first-order equation with

a zero-dimensional solution space! 2

As the attentive reader has undoubtedly noticed, the unusual behavior in these

examples stems from the fact that the sequences a and b contain infinitely many

zero terms. We will be interested in linear recurrence operators with polynomial

coefficients which, if nonzero, can vanish at most finitely many times. But even in

this case solutions can be plentiful.

Example 8.2.2. Let L = pN−q where p(n) = (n−1)(n−4)(n−7) and q(n) = n(n−
3)(n−6). Termwise we have y(1) = 0, 10y(3)−8y(2) = 0, y(4) = 0, 8y(6)−10y(5) = 0,

y(7) = 0, y(n + 1) = (q(n)/p(n))y(n) for n ≥ 8. This yields four linearly inde-

pendent solutions: (1, 0, 0, . . .), (0, 0, 1, 4/5, 0, 0, . . .), (0, 0, 0, 0, 0, 1, 5/4, 0, 0, . . .), and



148 Algorithm Hyper

y(n) = (n − 1)(n − 4)(n − 7). Apparently, for every integer k > 0, a first-order

equation with polynomial coefficients can have a k-dimensional solution space. 2

We wish to establish an algebraic setup in which dim KerL = ordL for every

linear recurrence operator with polynomial coefficients. Looking at the last example,

we see that of the four solutions, three have only finitely many nonzero terms. This

observation leads to the idea of identifying such sequences with 0, and more generally,

of identifying sequences which agree from some point on. Thus an equality a = b

among two sequences will in fact mean

a(n) = b(n) a.e.,

where “a.e.” stands for “almost everywhere” and indicates that the stated equality

is valid for all but finitely many n ∈ IN. In particular, a = 0 if a(n) = 0 for all large

enough n. We will denote the ring of sequences over K with equality taken in this

“almost everywhere” sense by S(K).

In the next paragraph, which can be omitted at a first reading, we give a precise

definition of S(K).

A sequence which is zero past the kth term is annihilated by Nk. The algebraic

structure that will have the desired properties is therefore the quotient ring S(K) =

KIN/J where

J =

∞⋃

k=0

KerNk

is the ideal of eventually zero sequences. Let ϕ : KIN → S(K) denote the canonical

epimorphism which maps a sequence a ∈ KIN into its equivalence class a+J ∈ S(K).

Then ϕN : KIN → S(K) is obviously an epimorphism of rings. Since

KerϕN = (ϕN)−1(0) = N−1(ϕ−1(0)) = N−1(J) =

∞⋃

k=1

KerNk = J,

there is a unique automorphism E of S(K) such that ϕN = Eϕ. We call E the

shift operator on S(K). For simplicity, we will keep talking about sequences where

we actually mean their corresponding equivalence classes, and will write a instead of

a+ J , and N instead of E.

Notice that a nonzero sequence a ∈ S(K) is a unit (i.e., invertible w.r.t. mul-

tiplication,) if and only if it is not a zero divisor. Namely, a is invertible iff it is

eventually nonzero, and it is a zero divisor iff it contains infinitely many zero terms

and infinitely many nonzero terms. For a nonzero sequence, these two properties are

obviously complementary.

Now we can show that linear recurrence operators on S(K) have the desired

properties.



8.2 The ring of sequences 149

Theorem 8.2.1 Let L =
∑r

k=0 akN
k be a linear recurrence operator of order r on

S(K). If ar and a0 are units, then dim KerL = r.

Proof. First we show that dim KerL ≤ r.

Let y1, y2, . . . , yr+1 be solutions of the equation Ly = 0. Then there exists an

n0 ∈ IN such that for all n ≥ n0,

r∑

k=0

ak(n)yi(n+ k) = 0, for i = 1, 2, . . . , r + 1. (8.2.1)

Let y(n) ∈ Kr+1 be the vector with components y1(n), y2(n), . . . , yr+1(n), for all

n ≥ 0. Denote by Ln the linear span of y(n),y(n + 1), . . . ,y(n + r − 1), and let

On := {u;
∑r+1

i=1 uivi = 0, for all v ∈ Ln}. Since dimLn ≤ r, it follows that r + 1 ≥
dimOn ≥ 1, for all n ≥ 0. As a0 is a unit, there exists an M ∈ IN such that a0(n) 6= 0

for all n ≥M . Let j = max{n0,M}. Then by (8.2.1), for all n ≥ j,

yi(n) = −
r∑

k=1

ak(n)

a0(n)
yi(n+ k), for i = 1, 2, . . . , r + 1.

Hence y(n) belongs to Ln+1 when n ≥ j. It follows that Ln ⊆ Ln+1 and On+1 ⊆ On

for n ≥ j, so that Oj ⊇ Oj+1 ⊇ . . . is a decreasing chain of finite-dimensional

linear subspaces. Every proper inclusion corresponds to a decrease in dimension;

consequently there are only finitely many proper inclusions in the chain. Therefore

there is an m ∈ IN such that On = Om for all n ≥ m. It follows that Om is a subspace

of On for every n ≥ j. Since dimOn ≥ 1 for all n ≥ 0, there is a nonzero vector

c ∈ Om. Thus c ∈ ∩∞
n=jOn. This means that y1, y2, . . . , yr+1 are K-linearly dependent

in S(K).

Now we show that dim KerL ≥ r. Since both ar and a0 are units of S(K), there

exists an n0 ∈ IN such that ar(n), a0(n) 6= 0 for all n ≥ n0. Let v(0),v(1), . . . ,v(r−1)

be a basis of Kr. Define sequences y1, y2, . . . , yr ∈ S(K) by

1. yi(n0 + j) = vi(j) , for j = 0, . . . , r − 1 , (8.2.2)

2. yi(j) = −
r−1∑

k=0

ak(j − r)

ar(j − r)
yi(j − r + k) , for j ≥ n0 + r , (8.2.3)

for i = 1, 2, . . . , r. Multiplying (8.2.3) by ar(j − r) and setting j − r = n shows

that Lyi = 0 for i = 1, 2, . . . , r. We claim that y1, y2, . . . , yr are linearly indepen-

dent. Assume not. For all n ≥ 0, let y(n) ∈ Kr be the vector with components

y1(n), y2(n), . . . , yr(n). Denote by Ln the linear span of y(n),y(n+1), . . . ,y(n+r−1),

and let On := {u;
∑r

i=1 uivi = 0, for all v ∈ Ln}. As in the preceding paragraph,



150 Algorithm Hyper

we have On+1 ⊆ On for n ≥ n0. By our assumption of linear dependence there exists

a nonzero vector c ∈ Kr such that c ∈ On for all large enough n. It follows that

c ∈ On for all n ≥ n0. But by (8.2.2), y(n0 + j) = v(j) for j = 0, 1, . . . , r − 1,

therefore Ln0 = Kr and On0 = {0}, a contradiction. This proves the claim. 2

Definition 8.2.1 A sequence a ∈ S(K) is polynomial over K if there is a polynomial

p(x) ∈ K[x] such that a(n) = p(n) a.e. A sequence a ∈ S(K) is rational over K if

there is a rational function r(x) ∈ K(x) such that a(n) = r(n) a.e. A nonzero se-

quence a ∈ S(K) is hypergeometric over K if there are nonzero polynomial sequences

p and q over K such that pNa + qa = 0.

We will denote the sets of polynomial, rational, and hypergeometric sequences over

K by P(K),R(K), and H(K), respectively. 2

Obviously, every polynomial sequence is rational, and every nonzero rational se-

quence is hypergeometric. Since a nonzero rational function has at most finitely many

zeros, a nonzero rational sequence is always a unit.

Proposition 8.2.1 Let a, y ∈ S(K), y 6= 0, and Ny = ay. Then both y and a are

units.

Proof. We have y(n+1) = a(n)y(n) for all n ≥ n0, for some n0 ∈ IN. If either yn = 0

or an = 0 for some n ≥ n0, then y(n) = 0 for all n ≥ n0 + 1, thus y = 0, contrary to

the assumption. It follows that both y and a are nonzero for all large enough n and

hence are units. 2

Corollary 8.2.1 Every hypergeometric sequence is a unit.

Proof. Let pNy + qy = 0 where p and q are nonzero polynomials. By the remarks

preceding Proposition 8.2.1, p is a unit. Therefore Ny = −(q/p)y and y 6= 0. By

Proposition 8.2.1, a is a unit. 2

8.3 Polynomial solutions

We wish to find all polynomial sequences y such that

Ly = f, (8.3.1)

where

L =

r∑

i=0

pi(n)N i (8.3.2)



8.3 Polynomial solutions 151

is a linear recurrence operator with polynomial coefficients pi ∈ P(K), pr, p0 6= 0, and

f is a given sequence. How do we go about this?

First, if y is a polynomial then so is Ly. Therefore f had better be a polynomial

sequence, or else we stand no chance. Second, we have already encountered a special

case of this problem (with L of order 1) in Step 3 of Gosper’s algorithm. Just as in

that case, we split it into two subproblems:

1. Find an upper bound d for the possible degrees of polynomial solutions of (8.3.1).

2. Given d, describe all polynomial solutions of (8.3.1) having degree at most d.

To obtain a degree bound, it is convenient to rewrite L in terms of the difference

operator ∆ = N − 1. Since N = ∆ + 1, we have

L =

r∑

i=0

piN
i =

r∑

i=0

pi(∆ + 1)i =

r∑

i=0

pi

i∑

j=0

(
i

j

)
∆j =

r∑

j=0

qj∆
j,

where qj =
∑r

i=j

(
i
j

)
pi. Let y(n) =

∑d
k=0 akn

k, where ak ∈ K and ad 6= 0. Since2

∆jnk = kjnk−j + O(nk−j−1), the leading coefficient of qj∆
jy(n) equals3 lc (qj)add

j.

Let

b := max
0≤j≤r

(deg qj − j). (8.3.3)

Clearly, degLy(n) ≤ d + b. If d + b < 0 then d ≤ −b − 1 is the desired bound.4

Otherwise the coefficient of nd+b in Ly(n) is

ad

∑

0≤j≤r
deg qj−j=b

lc (qj)d
j.

We distinguish two cases: either degLy(n) = d + b and hence d + b = deg f , or

degLy(n) < d+ b implying that the coefficient of nd+b in Ly(n) vanishes. This means

that d is a root of the degree polynomial

α(x) =
∑

0≤j≤r
deg qj−j=b

lc (qj)x
j. (8.3.4)

In each case, there is a finite choice of values that d can assume. In summary, we

have

2We use aj for the falling factorial function a(a − 1) . . . (a − j + 1).
3lc (p) is the leading coefficient of the polynomial p.
4Note that b may be negative.



152 Algorithm Hyper

Proposition 8.3.1 Let L =
∑r

i=0 piN
i, qj =

∑r
i=j

(
i
j

)
pi, and suppose that Ly = f ,

where f, y are polynomials in n. Further let d1 = max {x ∈ IN;α(x) = 0}, where α(x)

is defined by (8.3.4). Then deg y ≤ d, where

d = max {deg f − b,−b − 1, d1}, (8.3.5)

and b is defined by (8.3.3).

Once we have the degree bound d, the coefficients of polynomial solutions are

easy to find: Set up a generic polynomial of degree d, plug it into the recurrence

equation, equate the coefficients of like powers of n, and solve the resulting system of

linear algebraic equations for d + 1 unknown coefficients. This is called the method

of undetermined coefficients.

Now we can state the algorithm.

Algorithm Poly

INPUT: Polynomials f and pi(n) over K, for i = 0, 1, . . . , r.

OUTPUT: The general polynomial solution of (8.3.1) over K.

Step 1. Compute qj =
∑r

i=j

(
i
j

)
pi, for 0 ≤ j ≤ r.

Step 2. Compute d using (8.3.5).

Step 3. Using the method of undetermined coefficients, find all y(n)

of the form y(n) =
∑d

k=0 ckn
k that satisfy (8.3.1).

Example 8.3.1. Let us find polynomial solutions of

3y(n+ 2) − ny(n+ 1) + (n− 1)y(n) = 0. (8.3.6)

Here r = 2 and deg f = −∞. In Step 1 we find that q0(n) = 2, q1(n) = 6 − n, and

q2(n) = 3. In Step 2 we compute b = 0 and α(x) = 2 − x, hence d = 2. In Step 3 we

obtain C(n2 − 11n+27), where C is an arbitrary constant, as the general polynomial

solution of (8.3.6). 2

Another, more sophisticated method that leads to a linear system with r unknowns

is described in [ABP95]. When the degree d of polynomial solutions is large relative to

the order r of the recurrence (as is often the case), this method may be considerably

more efficient than the näıve one presented here.



8.4 Hypergeometric solutions 153

8.4 Hypergeometric solutions

Let F be a field of characteristic zero and K an extension field of F . Given a linear

recurrence operator L with polynomial coefficients over F , we seek solutions of

Ly = 0 (8.4.1)

that are hypergeometric over K. We will call F the coefficient field of the recurrence.

We assume that there exist algorithms for finding integer roots of polynomials over

K and for factoring polynomials over K into factors irreducible over K.

Consider first the second-order recurrence

p(n)y(n+ 2) + q(n)y(n+ 1) + r(n)y(n) = 0. (8.4.2)

Assume that y(n) is a hypergeometric solution of (8.4.2). Then there is a rational

sequence S(n) such that y(n + 1) = S(n)y(n). Substituting this into (8.4.2) and

cancelling y(n) gives

p(n)S(n+ 1)S(n) + q(n)S(n) + r(n) = 0.

According to Theorem 5.3.1, we can write

S(n) = z
a(n)

b(n)

c(n+ 1)

c(n)
,

where z ∈ K \{0} and a, b, c are monic polynomials satisfying conditions (i), (ii), (iii)

of that theorem. Then

z2p(n)a(n + 1)a(n)c(n+ 2) + zq(n)b(n + 1)a(n)c(n + 1) + r(n)b(n + 1)b(n)c(n) = 0.

(8.4.3)

The first two terms contain a(n) as a factor, so a(n) divides r(n)b(n + 1)b(n)c(n).

By conditions (i) and (ii) of Theorem 5.3.1, a(n) is relatively prime with c(n), b(n),

and b(n+ 1), so a(n) divides r(n). Similarly we find that b(n+ 1) divides p(n)a(n+

1)a(n)c(n+ 2), therefore by conditions (i) and (ii) of Theorem 5.3.1, b(n+ 1) divides

p(n). This leaves a finite set of candidates for a(n) and b(n): the monic factors of

r(n) and p(n − 1), respectively. We can cancel a(n)b(n + 1) from the coefficients of

(8.4.3) to obtain

z2 p(n)

b(n+ 1)
a(n + 1)c(n+ 2) + zq(n)c(n+ 1) +

r(n)

a(n)
b(n)c(n) = 0. (8.4.4)

To determine the value of z, we consider the leading coefficient of the left hand side

in (8.4.4) and find out that z satisfies a quadratic equation with known coefficients.

So given the choice of a(n) and b(n), there are at most two choices for z.



154 Algorithm Hyper

For a fixed choice of a(n), b(n), and z, we can use algorithm Poly from page 152 to

determine if (8.4.4) has any nonzero polynomial solution c(n). If so, then we will have

found a hypergeometric solution of (8.4.2). Checking all possible triples (a(n), b(n), z)

is therefore an algorithm which finds all hypergeometric solutions of (8.4.2). If the

algorithm finds nothing, then this proves that (8.4.2) has no hypergeometric solution.

The algorithm that we have just derived for (8.4.2) easily generalizes to recurrences

of arbitrary order.

Algorithm Hyper

INPUT: Polynomials pi(n) over F , for i = 0, 1, . . . , d; an extension field K of F .

OUTPUT: A hypergeometric solution of (8.4.1) over K if one exists; 0 otherwise.

[1] For all monic factors a(n) of p0(n) and b(n) of pd(n− d+ 1) over K do:

Pi(n) := pi(n)
∏i−1

j=0 a(n + j)
∏d−1

j=i b(n+ j), for i = 0, 1, . . . , d;

m := max0≤i≤d degPi(n);

let αi be the coefficient of nm in Pi(n), for i = 0, 1, . . . , d;

for all nonzero z ∈ K such that

d∑

i=0

αiz
i = 0 (8.4.5)

do:

If the recurrence

d∑

i=0

ziPi(n)c(n+ i) = 0 (8.4.6)

has a nonzero polynomial solution c(n) over K then

S(n) := z(a(n)/b(n))(c(n + 1)/c(n));

return a nonzero solution y(n) of y(n+ 1) = S(n)y(n) and stop.

[2] Return 0 and stop. 2

Theorem 8.4.1 Let y(n) be a nonzero solution of (8.4.1) such that y(n + 1) =

S(n)y(n) where S(n) is a rational sequence. Let

S(n) = z
a(n)

b(n)

c(n+ 1)

c(n)
, (8.4.7)



8.4 Hypergeometric solutions 155

where a, b, c are monic polynomials satisfying conditions (i),(ii),(iii) of Theorem 5.3.1.

Let Pi(n) and αi, for i = 0, 1, . . . , d, be defined as in algorithm Hyper. Then

1.
∑d

i=0 αiz
i = 0,

2. a(n) divides p0(n),

3. b(n) divides pd(n− d+ 1), and

4. c(n) satisfies (8.4.6).

Proof. From (8.4.1) and y(n+ 1) = S(n)y(n), it follows that

d∑

i=0

pi(n)

(
i−1∏

j=0

S(n + j)

)
y(n) = 0 , (8.4.8)

hence after cancelling y(n) and using (8.4.7) we have

d∑

i=0

pi(n)zi

(
i−1∏

j=0

a(n+ j)

b(n+ j)

)
c(n + i)

c(n)
= 0 . (8.4.9)

Multiplication by c(n)
∏d−1

j=0 b(n+j) now gives (8.4.6). All terms of the sum in (8.4.6)

with i > 0 contain the factor a(n), thus a(n) divides the term with i = 0 which is

p0(n)c(n)
∏d−1

j=0 b(n + j). By properties (i) and (ii) of the canonical form for rational

functions (see Theorem 5.3.1 on page 82), it follows that a(n) divides p0(n). Similarly,

b(n + d − 1) divides zdpd(n)c(n + d)
∏d−1

j=0 a(n + j), hence by properties (i) and (iii)

of the same canonical form, b(n+ d− 1) divides pd(n), so b(n) divides pd(n− d+ 1).

Finally, a look at the leading coefficient of the left hand side of (8.4.6) shows that∑d
i=0 αiz

i = 0. 2

It is easy to see that the converse of Theorem 8.4.1 is also true, in the following

sense: If z is an arbitrary constant, a(n) and b(n) are arbitrary sequences, c(n)

satisfies (8.4.6) where Pi(n), for i = 0, 1, . . . , d, is defined as in algorithm Hyper, and

y(n+ 1) = S(n)y(n) where S(n) is as in (8.4.7), then y(n) satisfies (8.4.1).

Example 8.4.1. In a recent Putnam competition, one of the problems was to find

the general solution of

(n− 1)y(n+ 2) − (n2 + 3n− 2)y(n+ 1) + 2n(n + 1)y(n) = 0. (8.4.10)

Let’s try out Hyper on this recurrence. Here p(n) = n−1, q(n) = −(n2+3n−2), r(n) =

2n(n+1). The monic factors of r(n) are 1, n, n+1 and n(n+1), and those of p(n−1)



156 Algorithm Hyper

are 1 and n − 2. Taking a(n) = b(n) = 1 yields −z + 2 = 0, hence z = 2. The

auxiliary recurrence (8.4.4) is (after cancelling 2)

2(n− 1)c(n+ 2) − (n2 + 3n− 2)c(n+ 1) + n(n+ 1)c(n) = 0,

with polynomial solution c(n) = 1. This gives S(n) = 2 and y(n) = 2n.

Taking a(n) = n + 1, b(n) = 1 yields z2 − z = 0, hence z = 1 (recall that z must

be nonzero). The auxiliary recurrence (8.4.4) is

(n− 1)(n+ 2)c(n+ 2) − (n2 + 3n− 2)c(n+ 1) + 2nc(n) = 0,

which again has polynomial solution c(n) = 1. This gives S(n) = n+1 and y(n) = n!.

We have found two linearly independent solutions of (8.4.10); we don’t need to check

the remaining possibilities for a(n) and b(n). Thus the general solution of (8.4.10) is

y(n) = C2n +Dn!,

where C,D are arbitrary constants. 2

Alas, we are not always so lucky as in this example.

Example 8.4.2. In [vdPo79], it is shown5 that the numbers

y(n) =
n∑

k=0

(
n

k

)

(
n+ k

k

)


(8.4.11)

satisfy the recurrence

(n+ 2)3y(n+ 2) − (2n+ 3)(17n2 + 51n+ 39)y(n+ 1) + (n+ 1)3y(n) = 0 . (8.4.12)

Here all the coefficients are of the same degree, therefore the equation for z will have

no nonzero solution unless a(n) and b(n) are of the same degree as well. But they

are both monic factors of (n+ 1)3, so they must be equal. Then the equation for z is

z2−34z+1 = 0 with solutions z = 17±12
√

2. In either case, the auxiliary recurrence

has no nonzero polynomial solutions, proving that (8.4.12) has no hypergeometric

solution. As a consequence, (8.4.11) is not hypergeometric. 2

When (8.4.1) has no hypergeometric solutions, we have to check all pairs of monic

factors of the leading and trailing coefficient of L. The worst-case time complexity

of Hyper is thus exponential in the degree of coefficients of (8.4.1). Nevertheless,

a careful implementation can speed it up in several places. Here we give a few

suggestions.

5Of course, Zeilberger’s algorithm, of Chapter 6, will also find and prove this recurrence.



8.4 Hypergeometric solutions 157

• We can reduce the degree of recurrence (8.4.6) by cancelling the factor a(n)b(n+

d− 1), as we did in (8.4.4) for the case d = 2.

• Observe that the coefficients of equation (8.4.5) which determines z depend

only on the difference d(a, b) = deg b(n) − deg a(n) and not on a(n) or b(n)

themselves. Therefore it is advantageous to test pairs of factors a(n), b(n) in

order of the value of d(a, b).

• We can skip those values of d(a, b) for which (8.4.5) has a single nonzero term

and thus no nonzero solution. For example, this happens when deg pd(n) =

deg p0(n) ≥ deg pi(n) for 0 ≤ i ≤ d, and d(a, b) 6= 0. Hence in this case it

suffices to test pairs a(n), b(n) of equal degree (cf. Example 8.4.2).

• We can skip all pairs a(n), b(n) which do not satisfy property (i) of Theorem

5.3.1.

Example 8.4.3. The number i(n) of involutions of a set with n elements satisfies

the recurrence

y(n) = y(n− 1) + (n− 1)y(n− 2) .

More generally, let r ≥ 2. The number ir(n) of permutations that contain no cycles

longer than r satisfies the recurrence

y(n) = y(n− 1) + (n− 1)y(n− 2) + (n− 1)(n− 2)y(n− 3) + . . .

+ (n− 1) · · · (n− r + 2)(n− r + 1)y(n− r). (8.4.13)

In Hyper, the degrees of the coefficients of auxiliary recurrences are obtained by

adding to the degree sequence of the coefficients of the original recurrence (starting

with the leading coefficient) an arithmetic progression with increment D = d(a, b).

In case of (8.4.13), the degree sequence is 0, 0, 1, 2, . . . , r− 1. Adding to this sequence

any arithmetic progression with integer increment D will produce a sequence with a

single term of maximum value (the first one if D < 0; the last one if D ≥ 0), implying

that (8.4.5) has a single nonzero term for all choices of a(n) and b(n). Therefore

(8.4.13) has no hypergeometric solution. This example shows that for any d ≥ 2,

there exist recurrences of order d without hypergeometric solutions. In particular, for

r = 2, this means that the sum

i(n) =
∑

k

n!

(n− 2k)! 2k k!
(8.4.14)

(see, e.g., [Com74]), is not a hypergeometric term. 2



158 Algorithm Hyper

8.5 A Mathematica session

Algorithm Hyper is implemented in our Mathematica function Hyper[eqn, y[n]].

Here eqn is the equation and y[n] is the name of the unknown sequence. The output

from Hyper is a list of rational functions which represent the consecutive-term ratios

y(n + 1)/y(n) of hypergeometric solutions. qHyper is the q-analogue of Hyper – it

finds all q-hypergeometric solutions of q-difference equations with rational coefficients

(see [APP95]). It is available through the Web page for this book (see Appendix A).
First we use Hyper on the Putnam recurrence (8.4.10).

In[9]:= Hyper[(n-1)y[n+2] - (n^2+3n-2)y[n+1] + 2n(n+1)y[n] == 0,

y[n]]

Out[9]= {2}

This answer corresponds to y(n) = 2n. But where is the other solution? We can
force Hyper to find all hypergeometric solutions by adding the optional argument
Solutions -> All.

In[10]:= Hyper[(n-1)y[n+2] - (n^2+3n-2)y[n+1] + 2n(n+1)y[n] == 0,

y[n], Solutions -> All]

Out[10]= {2, 1 + n}

Now we can see the consecutive-term ratios of both hypergeometric solutions, 2n and

n!. In general, Hyper[eqn, y[n], Solutions -> All] finds a generating set (not

necessarily linearly independent) for the space of closed form solutions of eqn.
Next, we return to Example 8.1.1 and use Hyper on the recurrence that we found

for f(n) in Out[3].

In[11]:= Hyper[%3[[1]], SUM[n], Solutions -> All]

27 (1 + n) 3 (2 + 3 n) (4 + 3 n)

Out[11]= {-----------, ---------------------}

2 (3 + 2 n) 2 (1 + n) (3 + 2 n)

These two rational functions correspond to hypergeometric solutions 27n/((2n +
1)
(
2n
n

)
) and

(
3n+1

n

)
. We check this for the latter solution:

In[12]:= FactorialSimplify[Binomial[3n+4,n+1]/Binomial[3n+1,n]]

3 (2 + 3 n) (4 + 3 n)

Out[12]= ---------------------

2 (1 + n) (3 + 2 n)

It follows that f(n) is a linear combination of these two solutions. By comparing

the first two values, we determine that f(n) =
(
3n+1

n

)
, this time without advance

knowledge of the right hand side.
Now consider the following recurrence:



8.6 Finding all hypergeometric solutions 159

In[13]:= Hyper[y[n+2] - (2n+1)y[n+1] + (n^2-2)y[n] == 0, y[n]]

Warning: irreducible factors of degree > 1 in trailing coefficient;

some solutions may not be found

Out[13]= {}

Hyper found no hypergeometric solutions, but it printed out a warning that some

solutions may not have been found. In general, Hyper looks for hypergeometric solu-
tions over the rational number field |Q. However, by giving it the optional argument
Quadratics -> True we can force it to split quadratic factors in the leading and
trailing coefficients, and thus work over quadratic extensions of |Q.

In[14]:= Hyper[y[n+2]-(2n+1)y[n+1]+(n^2-2)y[n]==0, y[n],

Quadratics->True, Solutions -> All]

Out[14]= {-Sqrt[2] + n, Sqrt[2] + n}

This means that there are two hypergeometric solutions6 , (
√

2)n and (−
√

2)n, over
|Q(

√
2).

8.6 Finding all hypergeometric solutions

Algorithm Hyper, as we stated it on page 154, stops as soon as it finds one hypergeo-

metric solution. To find all solutions, we can check all possible triples (a(n), b(n), z).

As it turns out, to obtain all hypergeometric solutions it suffices to take into ac-

count only a basis of the space of polynomial solutions of the corresponding auxiliary

recurrence for c(n) (see Exercise 6).

Another, better way to find all hypergeometric solutions is to find one with Hyper,

then reduce the order of the recurrence, recursively find solutions of the reduced re-

currence, and use Gosper’s algorithm to put the antidifferences of these solutions into

closed form if possible. This method will actually yield a larger class of solutions called

d’Alembertian sequences. A sequence a is d’Alembertian if a = h1

∑
h2

∑
· · ·
∑
hk

where h1, h2, . . . , hk are hypergeometric terms, and y =
∑
x means that ∆y = x. Al-

ternatively, a sequence a is d’Alembertian if there are first-order linear recurrence op-

erators with rational coefficients L1, L2, . . . , Lk s.t. LkLk−1 · · ·L1a = 0 (see [AbP94]).

It can be shown that d’Alembertian sequences form a ring.

Example 8.6.1. The number d(n) of derangements (i.e., permutations without

fixed points) of a set with n elements satisfies the recurrence

y(n) = (n− 1)y(n− 1) + (n− 1)y(n− 2) . (8.6.1)

6We use aj for the rising factorial function a(a + 1) . . . (a + j − 1).



160 Algorithm Hyper

Taking a(n) = b(n) = 1 yields z = −1, but the auxiliary recurrence has no nonzero

polynomial solution. The remaining choice a(n) = n+1, b(n) = 1 leads to z2−z = 0,

so z = 1. The auxiliary recurrence

(n+ 2)c(n+ 2) − (n+ 1)c(n+ 1) − c(n) = 0

has, up to a constant factor, the only polynomial solution c(n) = 1. Then S(n) = n+1

and

y(n) = n!

is, up to a constant factor, the only hypergeometric solution of (8.6.1). To reduce the

order, we write y(n) = z(n)n! where z(n) is the new unknown sequence. Substituting

this into (8.6.1) and writing u(n) = z(n + 1) − z(n) yields

(n+ 2)u(n+ 1) + u(n) = 0,

a recurrence of order one. Taking u(n) = (−1)n+1/(n+1)! and z(n) =
∑n

k=0(−1)k/k!,

we obtain another basic solution of (8.6.1) (which happens to be precisely the number

of derangements):

d(n) = n!
n∑

k=0

(−1)k

k!
. (8.6.2)

Now we apply Gosper’s algorithm to the summand in (8.6.2) in order to put d(n) into

closed form. Since it fails, d(n) is not a fixed sum of hypergeometric terms. Note,

however, that d(n) is a d’Alembertian sequence. 2

8.7 Finding all closed form solutions

Let L(H(K)) denote the K-linear hull of the set H(K) of all hypergeometric se-

quences.

Proposition 8.7.1 Let L be as in (8.3.2), and let h be a hypergeometric term such

that Lh 6= 0. Then Lh is hypergeometric and similar7 to h.

Proof. Let r := Nh/h. Then N ih = N i−1(rh) = (N i−1r)(N i−1h) =
(∏i−1

j=0N
jr
)
h ,

so

Lh =

d∑

i=0

piN
ih =

(
d∑

i=0

pi

i−1∏

j=0

N jr

)
h

is a nonzero rational multiple of h. 2

According to Proposition 5.6.3, every sequence from L(H(K)) can be written as

a sum of pairwise dissimilar hypergeometric terms.

7See page 92.



8.8 Some famous sequences that do not have closed form 161

Theorem 8.7.1 Let L be a linear recurrence operator with polynomial coefficients,

and h ∈ L(H(K)) such that Lh = 0. If h =
∑k

i=1 hi where hi are pairwise dissimilar

hypergeometric terms then

Lhi = 0, for i = 1, 2, . . . , k .

Proof. By Proposition 8.7.1, for each i there exists a rational sequence ri such that

Lhi = rihi. Therefore

0 = Lh =

k∑

i=1

Lhi =

k∑

i=1

rihi .

Since the hi are pairwise dissimilar, Theorem 5.6.1 implies that ri = 0 for all i. 2

Corollary 8.7.1 Let L be a linear recurrence operator with polynomial coefficients.

Then the space KerL ∩ L(H(K)) has a basis in H(K).

Proof. Let h ∈ L(H(K)) satisfy Lh = 0. By Proposition 5.6.3, we can write h =∑k
i=1 hi where hi are pairwise dissimilar hypergeometric terms. By Theorem 8.7.1,

each hi satisfies Lhi = 0. It follows that hypergeometric solutions of (8.4.1) span the

space of solutions from L(H(K)). To obtain a basis for KerL ∩ L(H(K)), select a

maximal linearly independent set of hypergeometric solutions of (8.4.1). 2

From Theorem 8.4.1 and Corollary 8.7.1 it follows that the hypergeometric solu-

tions returned by the recursive algorithm described in Section 8.6 constitute a basis

for the space of solutions that belong to L(H(K)), i.e., that algorithm finds all closed

form solutions.

We remark finally that if we are looking only for rational solutions of recur-

rences, then there is a more efficient algorithm for finding such solutions, due to

S. A. Abramov [Abr95].

8.8 Some famous sequences that do not have closed

form

Algorithm Hyper not only finds a spanning set for the space of closed form solutions, it

also proves, if it returns the spanning set “∅”, that a given recurrence with polynomial

coefficients does not have a closed form solution. In this way we are able to prove

that many well known combinatorial sequences cannot be expressed in closed form.

We must point out that the two notions of (a) having a closed form, as we have

defined it (see page 143), and (b) having a pretty formula, do not quite coincide.

A good example of this is provided by the derangement function d(n). This has no



162 Algorithm Hyper

closed form, but it has the pretty formula d(n) = {n!/e}. This formula is not a

hypergeometric term, and it is not a sum of a fixed number of same. But it sure is

pretty!

The following theorem asserts that some famous sequences do not have closed

forms. The reader will be able to find many more examples like these with the aid of

programs ct and Hyper.

Theorem 8.8.1 The following sequences cannot be expressed in closed form. That is

to say, in each case the sequence cannot be exhibited as a sum of a fixed (independent

of n) number of hypergeometric terms:

• The sum of the cubes of the binomial coefficients of order n, i.e.,
∑

k

(
n
k

)3
.

• The number of derangements (fixed-point free permutations) of n letters.

• The central trinomial coefficient, i.e., the coefficient of xn in the expansion of

(1 + x+ x2)n.

• The number of involutions of n letters, i.e., the number of permutations of n

letters whose square is the identity permutation.

• The sum of the “first third” of the binomial coefficients, i.e.,
∑n

k=0

(
3n
k

)
.

First, for the sum f(n) =
∑

k

(
n
k

)3
, program ct finds the recurrence

−8(n+ 1)2f(n) − (16 + 21n+ 7n2)f(n+ 1) + (n+ 2)2f(n+ 2) = 0,

(as well as a proof that this recurrence is correct, namely the two-variable recurrence

for the summand). When we input this recurrence for f(n) to Hyper, it returns the

empty brackets “{}” that signify the absence of hypergeometric solutions.

The assertion as regards the central trinomial coefficients is left as an exercise (see

Exercise 3) for the reader.

The fact that the number of involutions, t(n), of n letters, is not of closed form is

a special case of Example 8.4.3 on page 157.

The non-closed form nature of the number of derangements was shown in Example

8.6.1 on page 159.

The first third of the binomial coefficients, as well as many other possibilities, are

left to the reader as easy exercises. 2

It is widely “felt” that for every p ≥ 3 the sums of the pth powers of the binomial

coefficients do not have closed form. The enterprising reader might wish to check this



8.9 Inhomogeneous recurrences 163

for some modest values of p. Many more possibilities for experimentation lie in the

“pieces” of the full binomial sum

h(p, r) =

(r+1)n∑

k=rn

(
pn

k

)
,

whose status as regards closed form evaluation is unknown, in all of the non-obvious

cases.

8.9 Inhomogeneous recurrences

In this section we show how to solve (8.3.1) over L(H(K)) when f 6= 0.

Proposition 8.9.1 Up to the order of the terms, the representation of sequences

from L(H(K)) as sums of pairwise dissimilar hypergeometric terms is unique.

Proof. Assume that a1, a2, . . . , ak and b1, b2, . . . , bm are pairwise dissimilar hyperge-

ometric terms with
k∑

i=1

ai =

m∑

j=1

bj . (8.9.1)

Using induction on k + m we prove that k = m and that each ai equals some bj. If

k + m = 0 this holds trivially. Let k + m > 0. Then by Theorem 5.6.1 it follows

that k > 0, m > 0, and some ai is similar to some bj. Relabel the terms so that ak is

similar to bm, and let h := ak−bm. If h 6= 0 then we can use induction hypothesis both

on
∑k−1

i=1 ai + h =
∑m−1

j=1 bj and
∑k−1

i=1 ai =
∑m−1

j=1 bj − h, to find that k = m− 1 and

k− 1 = m. This contradiction shows that h = 0, so ak = bm and
∑k−1

i=1 ai =
∑m−1

j=1 bj.

By induction hypothesis, k = m and each ai with 1 ≤ i ≤ k − 1 equals some bj with

1 ≤ j ≤ m− 1. 2

If a ∈ L(H(K)) and La = f then f ∈ L(H(K)), by Proposition 8.7.1. Let

a =
∑m

j=1 aj and f =
∑k

j=1 fj where aj and fj are pairwise dissimilar hypergeometric

terms. Without loss of generality assume that there is an l ≤ m such that Laj 6= 0 if

and only if j ≤ l. Then by Proposition 8.9.1, l = k and we can relabel the fj so that

Laj = fj , for j = 1, 2, . . . , k . (8.9.2)

By Proposition 8.7.1, there are nonzero rational sequences rj such that aj = rjfj, for

j = 1, 2, . . . , k. Let sj := Nfj/fj. With L as in (8.3.2), it follows from (8.9.2) that rj

satisfies

Ljrj = 1 , for j = 1, 2, . . . , k (8.9.3)



164 Algorithm Hyper

where

Lj =
d∑

i=0

pi

(
i−1∏

l=0

N lsj

)
N i , for j = 1, 2, . . . , k .

This gives the following algorithm for solving (8.3.1) over L(H(K)):

1. Write f =
∑k

j=1 fj where fj are pairwise dissimilar hypergeometric terms.

2. For j = 1, 2, . . . , k, find a nonzero rational solution rj of (8.9.3). If none exists

for some j then (8.3.1) has no solution in L(H(K)).

3. Use Hyper to find a basis a1, a2, . . . , am for the space KerL ∩ L(H(K)).

4. Return
∑m

j=1Cjaj +
∑k

j=1 rjfj where Cj are arbitrary constants.

In Step 1 we need to group together similar hypergeometric terms, so we need to

decide if a given hypergeometric term is rational. An algorithm for this is given by

Theorem 5.6.2.

In Step 2 we use Abramov’s algorithm mentioned on page 161. Note that from

(8.9.2) it is easy to obtain homogeneous recurrences, at a cost of increasing the order

by 1, satisfied by the aj (see Exercise 10), which can then be solved by Hyper.

However, using Abramov’s algorithm in Step 2 is much more efficient.

8.10 Factorization of operators

Another application of algorithm Hyper is to the factorization of linear recurrence

operators with rational coefficients, and construction of minimal such operators that

annihilate definite hypergeometric sums. Recurrence operators can be multiplied

using distributivity and the commutation rule

Np(n) = p(n+ 1)N.

Here p(n) is considered to be an operator of order zero, and the apparent multiplica-

tion in the above equation is operator multiplication, rather than the application of

operators to sequences.

To divide linear recurrence operators from the right, we use the formula

p(n)Nk =

(
p(n)

q(n+ k −m)
Nk−m

)
(q(n)Nm) ,

which follows immediately from the commutation rule. Here p(n), q(n) are rational

functions of n, and k ≥ m. Once we know how to divide monomials, operators can



8.10 Factorization of operators 165

be divided as if they were ordinary polynomials in N . Consequently, for any two

operators L1, L2 where L2 6= 0, there are operators Q and R such that L1 = QL2 +R

and ordR < ordL2. Thus one can compute greatest common right divisors (and

also least common left multiples, see [BrPe94]) of linear recurrence operators by the

right-Euclidean algorithm.

If a sequence a is annihilated by some nonzero recurrence operator L with ratio-

nal coefficients, then it is also annihilated by some nonzero recurrence operator M

of minimal order and with rational coefficients. Right-dividing L by M we obtain

operators Q and R such that ordR < ordM and L = QM + R. Applying this to a

we have Ra = 0. By the minimality of M , this is possible only if R = 0. Thus we

have proved that the minimal operator of a right-divides any annihilating operator

of a.

Solving equations is closely related to factorization of operators. Namely, if Ly = 0

then there is an operator L2 such that L = L1L2, where L2 is the minimal operator

for y. Conversely, if L = L1L2 then any solution y of L2y = 0 satisfies Ly = 0 as

well. In particular, if y is hypergeometric then its minimal operator is of order one

and vice versa, hence we have a one-to-one correspondence between hypergeometric

solutions of Ly = 0 and monic first-order right factors of L. For example, the two

hypergeometric solutions 2n and n! of the Putnam recurrence (8.4.10) correspond to

the two factorizations

(n− 1)N2 − (n2 + 3n− 2)N + 2n(n + 1) = ((n− 1)N − n(n + 1)) (N − 2)

= ((n− 1)N − 2n) (N − (n+ 1)).

Furthermore, Hyper can be used to find first-order left factors of linear recurrence

operators as well. If L =
∑d

k=0 pk(n)Nk, then its adjoint operator is defined by

L∗ =

d∑

k=0

pd−k(n+ k)Nk.

Simple computation shows that if L is as above then L∗∗ = NdLN−d and (LM)∗ =

(NdM∗N−d)L∗. Hence left factors of L correspond to right factors of L∗. More

precisely, if L∗ = L2L1 where ordL1 = 1 then

L = N−dL∗∗Nd

= N−d(L2L1)
∗Nd

= N−d(Nd−1L∗
1N

1−d)L∗
2N

d

= (N−1L∗
1N)(N−dL∗

2N
d).

Thus with Hyper we can find both right and left first-order factors. In particular,

operators of orders 2 and 3 can be factored completely. As a consequence, we can

find minimal operators for sequences annihilated by operators of orders 2 and 3.



166 Algorithm Hyper

Example 8.10.1. Let ān denote the number of ways a random walk in the three-

dimensional cubic lattice can return to the origin after 2n steps while always staying

within x ≥ y ≥ z. In [WpZ89] it is shown that

ān =

n∑

k=0

(2n)! (2k)!

(n− k)! (n+ 1 − k)! k!2(k + 1)!2
.

Creative telescoping finds that Lā = 0 where

L = 72(1 + n)(2 + n)(1 + 2n)(3 + 2n)(5 + 2n)(9 + 2n)

− 4(2 + n)(3 + 2n)(5 + 2n)(1377 + 1252n+ 381n2 + 38n3)N

+ 2(3 + n)(4 + n)2(5 + 2n)(229 + 145n+ 22n2)N2

− (3 + n)(4 + n)2(5 + n)2(7 + 2n)N3, (8.10.1)

a recurrence operator of order 3. Hyper finds one hypergeometric solution of Ly = 0,

namely

y(n) =
(4n+ 7)(2n)!

(n+ 1)! (n+ 2)!
,

but looking at the first two values we see that ān is not proportional to y(n). Hence

ān is not hypergeometric, and its minimal operator has order 2 or 3.

Applying Hyper to L∗ as described above we find that L = L1L2 where

L1 = 2(2 + n)(9 + 2n) − (4 + n)2N

and

L2 = 36(1 + n)(1 + 2n)(3 + 2n)(5 + 2n)

− 2(3 + 2n)(5 + 2n)(41 + 42n+ 10n2)N

+ (2 + n)(4 + n)2(5 + 2n)N2. (8.10.2)

Note that z = L2ā satisfies the first-order equation L1z = 0. Since z(0) = 0 and the

leading coefficient of L1 does not vanish at nonnegative integers, it follows that z = 0.

Thus (8.10.2) rather than (8.10.1) is a minimal operator annihilating the sequence

(ān)∞n=0.

2

An algorithm for factorization of recurrence operators of any order is described in

[BrPe94].



8.11 Exercises 167

8.11 Exercises

1. In Example 8.1.1, replace the summand F (n, k) by (F (n, k) + F (n, n − k))/2

in both cases. Note that the value of the sum does not change. Apply cre-

ative telescoping to the new summands. What are the orders of the resulting

recurrences? (This symmetrization trick is essentially due to P. Paule [Paul94].)

2. Let L1 = (n− 5)(n + 1)N + (n − 5)2, and L2 = (n−m)(n + 1)N + (n−m)2.

Find a basis of

(a) KerL1 in S(|Q),

(b) KerL2 in S(|Q(m)).

3. Let g(n) be the “central trinomial coefficient,” i.e., the coefficient of xn in the

expansion of (1 + x + x2)n. Show that there is no simple formula for g(n), as

follows.

(a) It is well known (see, e.g., Wilf [Wilf94], Ch. 5, Ex. 4) that

g(n) = (
√

3/i)nPn(i/
√

3),

where Pn(x) is the nth Legendre polynomial. Use the formula for Pn(x)

given in Exercise 2 of Chapter 6 (page 118) to find a recurrence for the

central trinomial coefficients g(n).

(b) Use algorithm Hyper to prove that there is no formula for the central

trinomial coefficients that would express them as a sum of a fixed number

of hypergeometric terms (this answers a question of Graham, Knuth and

Patashnik [GKP89, 1st printing, Ch. 7, Ex. 56]).

4. In [GSY95] we encounter the sums

f(n) =

n∑

k=0

(
3k

k

)(
3n− 3k

n− k

)
,

g(n) =

n−1∑

k=0

(
3k

k

)(
3n− 3k − 2

n− k − 1

)
.

(a) Use creative telescoping to find recurrences satisfied by f(n) and g(n).

(b) Use Hyper combined with reduction of order to express f(n) and g(n) in

terms of sums in which the running index n does not appear under the

summation sign.



168 Algorithm Hyper

(c) What is the minimum order of a linear operator with polynomial coeffi-

cients annihilating g(n)?

5. Solve n(n + 1)y(n + 2) − 2n(n + k + 1)y(n + 1) + (n + k)(n + k + 1)y(n) = 0

over the field |Q(k) where k is transcendental over |Q.

6. Solve a(n + 2) − (2n + 1)a(n+ 1) + (n2 − u)a(n) = 0 over |Q(
√
u).

7. Let r, h, hi, c, ci be nonzero sequences from S(K) such that h(n+1)
h(n)

= r(n) c(n+1)
c(n)

,
hi(n+1)

hi(n)
= r(n) ci(n+1)

ci(n)
, for i = 1, 2, . . . , k, and c is a K-linear combination of ci.

Show that h is a K-linear combination of hi.

8. Prove that the sequence of Fibonacci numbers defined by f(0) = f(1) = 1,

f(n+2) = f(n+1)+f(n) is not hypergeometric over any field of characteristic

zero.

9. Show that by a suitable hypergeometric substitution, any linear recurrence with

polynomial coefficients can be turned into one with unit leading coefficient.

10. Let L be a linear difference operator of order d with rational coefficients over

K. Let y be a sequence from S(K) such that Ly = f is hypergeometric.

(a) Find an operator M of order d+ 1 such that My = 0.

(b) If {a1, a2, . . . , ad} is a basis for the kernel of L, find a basis for the kernel

of M .

Solutions

1. 1 and 2, respectively.

2. (a) {a1, a2} where a1(n) =
(

5
n

)
, a2(n) =

{
0, for n < 6

(−1)n/
(

n
6

)
, for n ≥ 6

(b) {a} where a(n) = (−1)n/
(

n
6

)
, for n ≥ 6

(c) {a} where a(n) =
(

m
n

)

4. (a) Lf = Mg = 0 where

L = 8(n+ 2)(2n+ 3)N2 − 6(36n2 + 99n+ 70)N + 81(3n+ 2)(3n+ 4),

M = 16(n+ 2)(2n+ 3)(2n+ 5)N3 − 12(2n+ 3)(54n2 + 153n+ 130)N2

+ 324(27n3 + 72n2 + 76n+ 30)N − 2187n(3n+ 1)(3n+ 2).



8.11 Exercises 169

(b) For Ly = 0 Hyper finds one solution (27/4)n. After reducing the order and

matching initial conditions we have

f(n) =
1

2

(
27

4

)n
(

1 −
n∑

k=0

(
3k
k

)

3k − 1

(
27

4

)−k
)
, for n ≥ 0.

For My = 0 Hyper finds two solutions, (27/4)n and 27n/(n
(
2n
n

)
). After

reducing the order and matching initial conditions we have

g(n) =
1

27

(
27

4

)n
(

3 +
n−1∑

k=0

(
3k
k

)

2k + 1

(
27

4

)−k
)
, for n ≥ 1.

(c) Since g(n) does not belong to the linear span of the two hypergeometric

solutions of My = 0, the order of a minimal annihilator is either 2 or 3.

Using the above expression for g(n) we determine that

M1g(n) =
1

2n+ 1

(
3n

n

)

where M1 = 4N − 27, hence g(n) is annihilated by the second-order oper-

ator M2M1 where M2 = 2(n+1)(2n+3)N − 3(3n+1)(3n+2) annihilates(
3n
n

)
/(2n+ 1).

5. y(n) = C1

(
n+k−1

n−1

)
+ C2

(
n+k−1

n−2

)

6. a(n) = C1(+
√
u)n + C2(−

√
u)n

9. Let
∑d

k=0 pk(n)y(n+ k) = f(n) where pi(n) are polynomials. If

y(n) =
x(n)

∏n−d
j=j0

pd(j)

then x(n + d) +
∑d−1

k=0 pk(n)
(∏d−k−1

j=1 pd(n− j)
)
x(n + k) = f(n)

∏n−1
j=j0

pd(j).

10. (a) Let L1 be a first-order operator such that L1(f) = 0. Take M = L1L.

(b) {a1, a2, . . . , ad, y}



170 Algorithm Hyper



Part III

Epilogue





Chapter 9

An Operator Algebra Viewpoint

9.1 Early history

Quite early people recognized that, say, four sticks are more than three sticks, and

likewise, four stones are more than three stones. Only much later was it noticed

that these two inequalities are “isomorphic,” and that a collection of three stones has

something in common with a collection of three sticks, viz. “threeness.” Thus was

born the very abstract notion of number.

Then came problems about numbers. “My age today is four times the age of my

daughter. In twenty years, it would be only twice as much.” It was found that rather

than keep guessing and checking, until hitting on the answer, it is useful to call the yet

unknown age of the daughter by a symbol, x, set up the equation: 4x+20 = 2(x+20),

and solve for x. Thus algebra was born. Expressions in the symbol x that used only

addition, subtraction and multiplication were called polynomials and soon it was

realized that one can add and multiply (but not, in general, divide) polynomials, just

as we do with numbers.

Then came problems about several (unknown) numbers, which were usually de-

noted by x, y, z. After setting up the equations, one got a system of equations,

like

(i) 2x+ y + z = 6 (ii) x + 2y + z = 5 (iii) x+ y + 2z = 5. (9.1.1)

The subject that treats such equations, in which all the unknowns occur linearly,

is called linear algebra. Its central idea is to unite the separate unknown quantities

into one entity, the vector, and to define an operation that takes vectors into vectors

that mimics multiplication by a fixed number. This led to the revolutionary concept



174 An Operator Algebra Viewpoint

of matrix (due to Cayley and Sylvester). In linear algebra, (9.1.1) is shorthanded to



2 1 1

1 2 1

1 1 2





x

y

z


 =




6

5

5


 .

Alternatively, we can find x by eliminating y and z. First we eliminate y, to get

(i ′) := 2(i) − (ii) := 3x + z = 7 (ii ′) := (ii) − 2(iii) := −x− 3z = −5. (9.1.2)

We next eliminate z:

(iii ′) := 3(i ′) + (ii ′) := 8x = 16,

from which it follows immediately that x = 2.

Similarly, we can find y and z. Once found, it is trivial to verify that x = 2, y =

1, z = 1 indeed satisfies the system (9.1.1), but to find that solution required ingenuity,

or so it seemed.

Then it was realized, probably before Gauss, that one can do this systematically,

by performing Gaussian elimination, and it all became routine.

What if you have several unknowns, say, x, y, z, w, and you have a system of

non-linear equations? If the equations are polynomial, say,

P (x, y, z, w) = 0, Q(x, y, z, w) = 0, R(x, y, z, w) = 0, S(x, y, z, w) = 0.

Then it is still possible to perform elimination. Sylvester gave such an algorithm, but

a much better, beautiful, algorithm was given by Bruno Buchberger [Buch76], the

celebrated Gröbner Basis algorithm.

9.2 Linear difference operators

Matrices induce linear operators that act on vectors. What is a vector? An n-

component vector is a function from the finite set {1, 2, . . . , n} into the set of numbers

(or, more professionally, into a field).

When we replace a finite dimensional vector by an infinite one, we get a sequence,

which is a function defined on the natural numbers N, or more generally, on the

integers. Traditionally sequences were denoted by using subscripts, like an, unlike

their continuous counterparts f(x), in which the argument was at the same level.

Being proponents of discrete-lib, we may henceforth write a(n) for a sequence. For

example, the Fibonacci numbers will be denoted by F (n) rather than Fn.

Recall that a linear operator induced by a matrix A is an operation that takes a

vector x(i), i = 1.. . . . , n, and sends it to a vector y(i), i = 1.. . . . , n, given by

y(i) =

n∑

j=1

ai,jx(j) (i = 1, . . . , n).



9.2 Linear difference operators 175

Thus, in general, each and every x(j) influences the value of each y(i). A linear

recurrence operator is the analog of this for infinite sequences in which the value of

y(n) depends only on those x(m) for which m is not too far from n. In other words,

it has the form

y(n) :=
M∑

j=−L

a(n, j)x(n + j), (9.2.1)

where L and M are pre-determined nonnegative integers.

The simplest linear recurrence operator, after the identity and zero operators, is

the one that sends x(n) to x(n+1): The value of y today is the value of x tomorrow.

We will denote it by En, or N . Thus

Nx(n) := x(n + 1) , (n ∈ Z).

Its inverse is the yesterday operator

N−1x(n) := x(n− 1) (n ∈ Z).

Iterating, we get that for every (positive, negative, or zero) integer,

N rx(n) := x(n+ r) (n ∈ Z).

In terms of this fundamental shift operator N , the general linear recurrence operator

in (9.2.1), x(n) → y(n), let’s call it A, can be written

A :=

M∑

j=−L

a(n, j)N j. (9.2.2)

Linear operators in linear algebra can be represented by matrices A, where the

operation is x(n) → Ax(n). It proves convenient to talk about A both qua matrix and

qua linear operator, without mentioning the vector x(n) that it acts on. Then we can

talk about matrix algebra, and multiply matrices per se. We are also familiar with

this abstraction process from calculus, where we sometimes write f for a function,

without committing ourselves to naming the argument, as in f(x). Likewise, the

operation of differentiation is denoted by D, and we write D(sin) = cos.

Since the range of j is finite, it is more convenient to rewrite (9.2.2) as

A :=
M∑

j=−L

aj(n)N j. (9.2.3)

So a linear recurrence operator is just a Laurent polynomial in N , with coefficients

that are discrete functions of n. The class of all such operators is a non-commutative



176 An Operator Algebra Viewpoint

algebra, where the addition is the obvious one and multiplication is performed on

monomials by (a(n)N r)(b(n)N s) = a(n)b(n + r)N r+s, and extended linearly. So if

B :=

M∑

j=−L

bj(n)N j,

then

AB :=

2M∑

k=−2L

(
M∑

j=−L

aj(n)bk−j(n+ j)

)
Nk.

For example

(1 + enN)(1 + |n|N) = 1 + (en + |n|)N + (en|n+ 1|)N2.

As with matrices, operator notation started out as shorthand, but then turned out

to be much more. We have seen and will soon see again some non-trivial applications,

but for now let’s have a trivial one.

Example 9.2.1. Prove that the Fibonacci numbers F (n) satisfy the recurrence

F (n+ 4) = F (n+ 2) + 2F (n+ 1) + F (n).

Verbose Proof.

(i) F (n+ 2) − F (n+ 1) − F (n) = 0,

(ii) F (n+ 3) − F (n+ 2) − F (n+ 1) = 0,

(iii) F (n+ 4) − F (n+ 3) − F (n+ 2) = 0.

Adding (i), (ii), (iii), we get

(i) + (ii) + (iii) : F (n+ 4) − F (n+ 2) − 2F (n+ 1) − F (n) = 0.

Terse Proof.

(N2 −N − 1)F (n) = 0 ⇒ (N2 +N + 1)(N2 −N − 1)F (n) = 0

⇒ (N4 −N2 − 2N − 1)F (n) = 0. 2

In linear algebra, the primary objects are vectors, and matrices only help in making

sense of personalities and social lives; in this kind of algebra, the primary objects are

not operators, but sequences, and the relations between them.



9.2 Linear difference operators 177

Given a linear recurrence operator

A =

L∑

j=0

aj(n)N j,

we are interested in sequences x(n) that are annihilated by A, i.e., sequences for which

Ax(n) ≡ 0. In longhand, this means

L∑

j=0

aj(n)x(n + j) = 0 (n ≥ 0).

Once a sequence, x(n), is a solution of one linear recurrence equation, Ax = 0, it is

a solution of infinitely many equations, namely BAx = 0, for every linear recurrence

operator B.

Notice that the collection of all linear recurrence operators is a ring, and the

above remark says that, for any sequence, the set of operators that annihilate it is (a

possibly trivial) ideal.

Alas, every sequence is annihilated by some operator: If x(n) is an arbitrary

sequence none of whose terms vanish, then, tautologically, x(n) is annihilated by the

linear difference operator N − (x(n+ 1)/x(n)), which is first-order, to boot! In order

to have an interesting theory of sequences, we have to be more exclusive, and proclaim

that a sequence x(n) is interesting if it is annihilated by a linear difference operator

with polynomial coefficients. From now on, until further notice, all the coefficients of

our recurrence operators will be polynomials.

There is a special name for such sequences. In fact there are two names. The

first name is P-recursive, and the second name is holonomic. The reason for the first

name (coined, we believe, by Richard Stanley [Stan80]) is clear, the “P-” standing

for “Polynomial”. The term “holonomic,” coined in [Zeil90a], is by analogy with the

theory of holonomic differential equations ([Bjor79, Cart91]). Meanwhile, let us make

it an official definition.

Definition 9.2.1 A sequence x(n) is P-recursive, or holonomic, if it is annihilated

by a linear recurrence operator with polynomial coefficients. In other words, if there

exist a nonnegative integer L, and polynomials p0(n), . . . , pL(n) such that

L∑

i=0

pi(n)x(n + i) = 0 (n ≥ 0).



178 An Operator Algebra Viewpoint

Many sequences that arise in combinatorics happen to be P-recursive. It is useful

to be able to “guess” the recurrence empirically. There is a program to do this in the

Maple package gfun written by Bruno Salvy and Paul Zimmerman. That package

is in the Maple Share library that comes with Maple V, versions 3 and up. Another

version can be found in the program findrec in the Maple package EKHAD that comes

with this book. The function call is

findrec(f,DEGREE,ORDER,n,N)

where f is the beginning of a sequence, written as a list, DEGREE is the maximal

degree of the coefficients, ORDER is the guessed order of the recurrence, n is the symbol

denoting the subscript (variable), and N denotes the shift operator in n. The last two

arguments are optional. The defaults are the symbols n and N.

For example

findrec([1, 1, 1, 1, 1, 1, 1, 1, 1], 0, 1)

yields the output −1 +N , while

findrec([1, 1, 2, 3, 5, 8, 13, 21, 34], 0, 2)

yields the recurrence −1 −N +N2, and

findrec([1, 2, 6, 24, 120, 720, 5040, 8!, 9!], 1, 1);

yields (1 + n) −N .

Exercise. Use findrec to find, empirically, recurrences satisfied by the “log 2”

sequence
n∑

k=0

(
n

k

)(
n+ k

k

)
,

with DEGREE= 1 and ORDER= 2; by Apéry’s “ζ(2)” sequence

n∑

k=0

(
n

k

)

(
n+ k

k

)
,

with DEGREE= 2 and ORDER= 2; and by Apéry’s “ζ(3)” sequence

n∑

k=0

(
n

k

)

(
n+ k

k

)


,

with DEGREE= 3 and ORDER= 2.

The sequences {2n} and the Fibonacci numbers {F (n)} are obviously P-recursive,

in fact they are C-recursive, because the coefficients in their recurrences are not only



9.3 Elimination in two variables 179

polynomials, they are constants. Other obvious examples are {n!} and the Catalan

numbers { 1
n+1

(
2n
n

)
}, in which the relevant recurrence is first order, i.e., L = 1. There

is a special name for such distinguished sequences: hypergeometric. Note that the

following definition is just a rephrasing of our earlier definition of the same concept

on page 34.

Definition 9.2.2 A sequence x(n) is called hypergeometric if it is annihilated by a

first-order linear recurrence operator with polynomial coefficients, i.e., if there exist

polynomials p0(n), and p1(n) such that

p0(n)x(n) + p1(n)x(n + 1) = 0 (n ≥ 0).

Yet another way of saying the same thing is that a sequence x(n) is hypergeometric

if x(n + 1)/x(n) is a rational function of n. This explains the reason for the name

hypergeometric (coined, we believe, by Gauss). A sequence x(n) is called geometric

if x(n+ 1)/x(n) is a constant, and allowing rational functions brings in the hype.

An example of a P-recursive sequence that is not hypergeometric is the number

of permutations on n letters that are involutions, i.e., that consist of 1- and 2-cycles

only. This sequence, t(n), obviously satisfies

t(n) = t(n− 1) + (n− 1)t(n− 2),

as one sees by considering separately those n-involutions in which the letter n is a

fixed point (a 1-cycle), and those in which n lives in a 2-cycle.

The reader of this book knows by now that in addition to sequences of one discrete

variable x(n), like 2n and F (n), we are interested in multivariate sequences, like
(

n
k

)
.

A multi-sequence F (n1, . . . , nk), of k discrete variables, is a function on k-tuples of

integers. Depending on the context, the ni will be nonnegative or arbitrary integers.

A famous example is the multisequence of multinomial coefficients:
(
n1 + · · ·+ nk

n1, . . . , nk

)
:=

(n1 + · · · + nk)!

n1! . . . nk!
.

We propose now to discuss the important subject of elimination, in order to explain

how it can be used to find recurrence relations for sums. Before discussing elimination

in the context of arbitrarily many variables F (n1, . . . , nk), we will cover, in some

detail, the very important case of two variables.

9.3 Elimination in two variables

Let’s take the two variables to be (n, k). The shift operators N , K act on discrete

functions F (n, k), by

NF (n, k) := F (n+ 1, k); KF (n, k) := F (n, k + 1).



180 An Operator Algebra Viewpoint

For example, the Pascal triangle equality
(
n+ 1

k + 1

)
=

(
n

k + 1

)
+

(
n

k

)

can be written, in operator notation, as

(NK −K − 1)

(
n

k

)
= 0.

If a discrete function F (n, k) satisfies two partial linear recurrences

P (N,K, n, k)F (n, k) = 0, Q(N,K, n, k)F (n, k) = 0,

then it satisfies many, many others:

{A(N,K, n, k)P (N,K, n, k) + B(N,K, n, k)Q(N,K, n, k)}F (n, k) = 0, (9.3.1)

where A and B can be any linear partial recurrence operators.

So far, everything has been true for arbitrary linear recurrence operators. From

now on we will only allow linear recurrence operators with polynomial coefficients. The

set C〈n, k,N,K〉 of all linear recurrence operators with polynomial coefficients is a

non-commutative, associative algebra generated by N,K, n, k subject to the relations

NK = KN, Nk = kN, nK = Kn, (9.3.2)

nk = kn, Nn = (n+ 1)N, Kk = (k + 1)K. (9.3.3)

Under certain technical conditions on the operators P and Q (viz. holonomicity

[Zeil90a, Cart91]) we can, by a clever choice of operators A and B, get the operator

in the braces in (9.3.1), call it R(N,K, n), to be independent of k. This is called

elimination.

Now write

R(N,K, n) = S(N, n) + (K − 1)R̄(N,K, n)

(where S(N, n) := R(N, 1, n)). Since R(N,K, n)F (n, k) ≡ 0, we have

S(N, n)F (n, k) = (K − 1)[−R̄(N,K, n)F (n, k)].

If we call the function inside the above square brackets G(n, k), we get

S(N, n)F (n, k) = (K − 1)G(n, k).

If F (n,±∞) = 0 for every n and the same is true of G(n,±∞), then summing the

above w.r.t. k yields

S(N, n)(
∑

k

F (n, k)) −
∑

k

(G(n, k + 1) − G(n, k) ) = 0.



9.3 Elimination in two variables 181

So

a(n) :=
∑

k

F (n, k)

satisfies the recurrence

S(N, n)a(n) = 0.

Example 9.3.1.

F (n, k) =
n!

k! (n− k)!

First let us find operators P and Q that annihilate F . Since

F (n+ 1, k)

F (n, k)
=

n+ 1

n− k + 1
and

F (n, k + 1)

F (n, k)
=
n− k

k + 1
,

we have

(n− k + 1)F (n+ 1, k) − (n+ 1)F (n, k) = 0,

(k + 1)F (n, k + 1) − (n− k)F (n, k) = 0.

In operator notation,

(i) [(n− k + 1)N − (n+ 1)]F ≡ 0 , (ii) [(k + 1)K − (n− k)]F ≡ 0.

Expressing the operators in descending powers of k, we get

(i) [(−N)k + (n + 1)N − (n+ 1)]F ≡ 0, (ii) [(K + 1)k − n]F ≡ 0.

Eliminating k, we obtain

(K + 1)(i) +N(ii) = {(K + 1)[(n + 1)N − (n+ 1)] +N(−n)}F ≡ 0 ,

which becomes

(n + 1)[NK −K − 1]F ≡ 0.

We have that

R(N,K, n) = (n+ 1)[NK −K − 1]; S(N, n) = R(N, 1, n) = (n+ 1)[N − 2],

and therefore we have proved the deep result that

a(n) :=
∑

k

(
n

k

)



182 An Operator Algebra Viewpoint

satisfies

(n+ 1)(N − 2)a(n) ≡ 0,

i.e., in everyday notation, (n + 1)[a(n + 1) − 2a(n)] ≡ 0, and hence, since a(0) = 1,

we get that a(n) = 2n. 2

Important observation of Gert Almkvist. So far we have had two stages:

R(N,K, n) = A(N,K, n, k)P (N,K, n, k) +B(N,K, n, k)Q(N,K, n, k)

R(N,K, n) = S(N, n) + (K − 1)R̄(N,K, n),

i.e.,

S(N, n) = AP +BQ + (K − 1)(−R̄),

where R̄ has the nice but superfluous property of not involving k. WHAT A WASTE!

So we are led to formulate the following.

9.4 Modified elimination problem

Input: Linear partial recurrence operators with polynomial coefficients P (N,K, n, k)

and Q(N,K, n, k). Find operators A,B,C such that

S(N, n) := AP +BQ + (K − 1)C

does not involve K and k.

Remark. Note something strange: We are allowed to multiply P and Q by any

operator from the left, but not from the right, while we are allowed to multiply K− 1

by any operator from the right, but not from the left. In other words, we have to

find a non-zero operator, depending on n and N only, in the ambidextrous “ideal”

generated by P,Q,K − 1, but of course this is not an ideal at all. It would be very

nice if one had a Gröbner basis algorithm for doing that. Nobuki Takayama made

considerable progress in [Taka92].

Let a discrete function F (n, k) be annihilated by two operators P and Q that

are “independent” in some technical sense (i.e., they form a holonomic ideal, see

[Zeil90a, Cart91]). Performing the elimination process above (and the holonomicity

guarantees that we’ll be successful), we get the operators A,B,C and S(N, n). Now

let

G(n, k) = C(N,K, n, k)F (n, k).

We have

S(N, n)F (n, k) = (K − 1)G(n, k).



9.4 Modified elimination problem 183

It follows that

a(n) :=
∑

k

F (n, k)

satisfies

S(N, n)a(n) ≡ 0.

Let’s apply the elimination method to find a recurrence operator annihilating a(n),

with

F (n, k) :=

(
n

k

)(
b

k

)
=

n! b!

k!2(n− k)! (b− k)!
,

and thereby prove and discover the Chu–Vandermonde identity.

We have

F (n+ 1, k)

F (n, k)
=

(n + 1)

(n− k + 1)
,

F (n, k + 1)

F (n, k)
=

(n− k)(b− k)

(k + 1)2
.

Cross multiplying,

(n− k + 1)F (n+ 1, k) − (n + 1)F (n, k) = 0,

(k + 1)2F (n, k + 1) − (n− k)(b− k)F (n, k) = 0.

In operator notation:

((n− k + 1)N − (n+ 1))F = 0

((k + 1)2K − (nb− bk − nk + k2))F = 0.

So F is annihilated by the two operators P and Q, where

P = (n− k + 1)N − (n+ 1); Q = (k + 1)2K − (nb− bk − nk + k2).

We would like to find a good operator that annihilates F . By good we mean

“independent of k,” modulo (K − 1) (where the multiples of (K − 1) that we are

allowed to throw out are right multiples).

Let’s first write P and Q in ascending powers of k:

P = (−N)k + (n + 1)N − (n+ 1)

Q = (n+ b)k − nb + (K − 1)k2,

and then eliminate k modulo (K−1). However, we must be careful to remember that

right multiplying a general operator G by (K − 1)STUFF does not yield, in general,

(K − 1)STUFF′. In other words,



184 An Operator Algebra Viewpoint

Warning:

OPERATOR(N,K, n, k)(K − 1)(STUFF) 6= (K − 1)(STUFF′).

Left multiplying P by n+ b + 1, left multiplying Q by N and adding yields

(n+ b + 1)P +NQ = (n+ b + 1)[−Nk + (n+ 1)N − (n+ 1)]

+N [(n+ b)k − nb + (K − 1)k2]

= (n+ 1)[(n+ 1)N − (n + b+ 1)] + (K − 1)[Nk2].

So, in the above notation,

S(N, n) = (n+ 1)[(n+ 1)N − (n + b+ 1)], R̄ = Nk2. (9.4.1)

It follows that

a(n) :=
∑

k

(
n

k

)(
b

k

)

satisfies

((n+ 1)N − (n+ b + 1))a(n) ≡ 0,

or, in everyday notation,

(n+ 1)a(n + 1) − (n+ b + 1)a(n) ≡ 0,

i.e.,

a(n+ 1) =
n + b+ 1

n+ 1
a(n) ⇒ a(n) =

(n+ b)!

n!
C,

for some constant independent of n, and plugging in n = 0 yields that 1 = a(0) = b!C

and hence C = 1/b!. We have just discovered, and proved at the same time, the Chu–

Vandermonde identity.

Note that once we have found the eliminated operator S(N, n) and the corre-

sponding R̄ in (9.4.1) above, we can present the proof without mentioning how we

obtained it. In this case, R̄ = Nk2, so in the above notation

G(n, k) = −R̄F (n, k) = −Nk2F (n, k) =
−(n+ 1)! b!

(k − 1)!2(n− k + 1)! (b− k)!
.

Now all we have to present are S(N, n) and G(n, k) above and ask you to believe

or prove for yourselves the purely routine assertion that

S(N, n)F (n, k) = G(n, k + 1) −G(n, k).



9.4 Modified elimination problem 185

Dixon’s identity by elimination

We will now apply the elimination procedure to derive and prove Dixon’s celebrated

identity of 1903 [Dixo03]. It states that

∑

k

(−1)k

(
n+ a

n + k

)(
n+ b

b+ k

)(
a + b

a + k

)
=

(n+ a+ b)!

n! a! b!
.

Equivalently,

∑

k

(−1)k

(n+ k)!(n− k)!(b + k)!(b− k)!(a+ k)!(a− k)!
=

(n + a+ b)!

n!a!b!(n + a)!(n + b)!(a+ b)!
.

Calling the summand on the left F (n, k), we have

F (n+ 1, k)

F (n, k)
=

1

(n+ k + 1)(n− k + 1)
,

F (n, k + 1)

F (n, k)
=

(−1)(n− k)(b− k)(a− k)

(n+ k + 1)(b + k + 1)(a+ k + 1)
.

It follows that F (n, k) is annihilated by the operators

P = N(n+ k)(n− k) − 1; Q = K(n+ k)(a+ k)(b + k) + (n− k)(a− k)(b− k).

Rewrite P and Q in descending powers of k, modulo K − 1:

P = −Nk2 + (Nn2 − 1),

Q = 2(n+ a + b)k2 + 2nab + (K − 1)((n+ k)(a + k)(b+ k)).

Now eliminate k2 to get the following operator that annihilates F (n, k):

2(n+ a + b+ 1)P +NQ = 2(n+ a+ b + 1)(Nn2 − 1) +N(2nab)

+ (K − 1)(N(n+ k)(a+ k)(b + k)),

which equals

N [2n(n + a)(n+ b)] − 2(n+ a + b+ 1) + (K − 1)(N(n + k)(a+ k)(b+ k)).

In the above notation we have found that the k-free operator

S(N, n) = N [2n(n + a)(n + b)] − 2(n+ a+ b + 1)

= 2(n+ 1)(n+ a + 1)(n+ b+ 1)N − 2(n+ a + b+ 1)

annihilates a(n) :=
∑

k F (n, k).



186 An Operator Algebra Viewpoint

Also,

R̄(N,K, n, k) = (N(n + k)(a+ k)(b+ k))

and

G(n, k) = −R̄F (n, k) =
(−1)k−1

(n+ k)!(n + 1 − k)!(b + k − 1)!(b− k)!(c+ k − 1)!(c− k)!
.

Once we have found S(N, n) and G(n, k) all we have to do is present them and

ask readers to verify that

S(N, n)F (n, k) = G(n, k + 1) −G(n, k).

Nobuki Takayama has developed a software package for handling elimination,

using Gröbner bases.

9.5 Discrete holonomic functions

A discrete function F (m1, . . . , mn) is holonomic if it satisfies “as many linear recur-

rence equations (with polynomial coefficients) as possible” without vanishing identi-

cally. This notion is made precise in [Zeil90a], and [Cart91]. An amazing theorem of

Stafford [Staf78, Bjor79] asserts that every holonomic function can be described in

terms of only two such equations that generate it.

In practice, however, we are usually given n equations, one for each of the variables,

that are satisfied by F . They can take the form

L∑

j=0

a
(i)
j (m1, . . . , mn)F (m1, . . . , mi−1, mi + j,mi+1, . . . , mn) = 0.

In operator notation, this can be rewritten as

P (i)(Emi
, m1, . . . , mn)F = 0.

Now suppose that we want to consider

a(m1, . . . , mn−1) :=
∑

mn

F (m1, . . . , mn).

By eliminating mn from the n operators P (i), i = 1, . . . , n, and setting Emn = I

as before, we can obtain n − 1 operators Q(i)(Emi
, m1, , . . . , mn−1), i = 1, . . . , n− 1,

that annihilate a. Hence a is holonomic in all its variables. Continuing, we see that

summing a holonomic function with respect to any subset of its variables gives a

holonomic function in the surviving variables.



9.6 Elimination in the ring of operators 187

9.6 Elimination in the ring of operators

A more general scenario is to evaluate a multiple sum/integral

a(n,x) :=

∫

y

∑

k

F (n,k,x,y)dy, (9.6.1)

where F is holonomic in all of its variables, both discrete and continuous. Here

n = (n1, . . . , na), k = (k1, . . . , kb) are discrete multi-variables, while x = (x1, . . . , xa),

y = (y1, . . . , yd) are continuous multi-variables.

A function F (x1, . . . , xr, m1, . . . , ms) is holonomic if it satisfies “as many as possi-

ble” linear recurrence-differential equations with polynomial coefficients. This is true,

in particular, if there exist operators

P (i)(Dxi
, x1, . . . , xr, m1, . . . , ms) (i = 1, . . . , r),

P (j)(Emj
, x1, . . . , xr, m1, . . . , ms) (j = 1, . . . , s),

that annihilate F . By repeated elimination it is seen that if F in (9.6.1) is holonomic

in all its variables, so is a(n,x).

9.7 Beyond the holonomic paradigm

Many combinatorial sequences are not P-recursive (holonomic). The most obvious

one is {nn−1}∞1 , which counts rooted labeled trees, and whose exponential generating

function

T (x) =
∞∑

n=1

nn−1

n!
xn

satisfies the transcendental equation (i.e., the “algebraic equation of infinite degree”)

T (x) = xeT (x),

or, equivalently, the non-linear differential equation

xT ′(x) − T (x) − xT (x)T ′(x) = 0.

Other examples are p(n), the number of partitions of an integer n, whose ordinary

generating function “looks like” a rational function:

∞∑

n=0

p(n)xn =
1∏∞

i=1(1 − xi)
,



188 An Operator Algebra Viewpoint

albeit its denominator is of “infinite degree.” The partition function p(n) itself satis-

fies a recurrence with constant coefficients, but, once again, of infinite order (which,

however, enables one to compute a table of p(n) rather quickly):

∞∑

j=−∞

(−1)jp(n− (3j2 + j)/2) = 0.

Let us just remark, however, that the generating function of p(n) is a limiting formal

power series of the generating function for p(n, k), the number of partitions of n with

at most k parts, which is

fk(q) =

∞∑

n=0

p(n, k)qn =
1

∏k
i=1(1 − qi)

.

These, for each fixed k, are rational functions, and the sequence fk(q) itself is q-

holonomic in k.

Another famous sequence that fails to be holonomic is the sequence of Bell num-

bers {Bn} whose exponential generating function is

∞∑

n=0

Bn

n!
xn = eex−1,

and which satisfies the “infinite order” linear recurrence, with non-polynomial (in fact

holonomic) coefficients:

Bn+1 =
n∑

k=0

(
n

k

)
Bk.

When we say “infinite” order we really mean “indefinite”: you need all the terms up

to Bn in order to find Bn itself.

There are examples of discrete functions of two variables f(n, k) that satisfy only

one linear recurrence equation with polynomial coefficients, like the Stirling numbers

of both kinds.

To go beyond the holonomic paradigm, we should be more liberal and allow these

more general sequences. But in order to have an algorithmic proof theory, we must,

in each case, convince ourselves that the set of equations used to define a sequence

(function) well-defines it (with the appropriate initial conditions), and that the class

is closed under multiplication and definite summation/integration with respect to (at

least) some subsets of the variables.

A general, fully rigorous theory still needs to be developed, and Sheldon Parnes

[Parn93] has made important progress towards this goal. Here we will content our-

selves with a few simple classes, just to show what we mean.



9.8 Bi-basic equations 189

Consider, for example, the class of functions F (x, y) that satisfy equations of the

form

P (x, ex, y, ey, Dx, Dy)F (x, y) ≡ 0.

If F (x, y, z) satisfies three independent equations

Pi(x, y, z, e
x, ey, ez, Dx, Dy, Dz)F = 0, (i = 1, 2, 3)

then we should be able to eliminate both z and ez to get an equation

R(x, y, ex, ey, Dx, Dy, Dz)F (x, y, z) = 0,

from which would follow that if

a(x, y) :=

∫
F (x, y, z)dz

vanishes suitably at ±∞ then it satisfies a differential equation:

R(x, y, ex, ey, Dx, Dy, 0)a(x, y) = 0.

When we do the elimination, we consider x, y, z, ex, ey, ez, Dx, Dy, Dz as “indeter-

minates” that generate the algebra

K〈x, y, z, ex, ey, ez, Dx, Dy, Dz〉,

under the commutation relations

Dxx = xDx + 1, Dyy = yDy + 1, Dzz = zDz + 1,

and

Dxe
x = exDx + ex, Dye

y = eyDy + ey, Dze
z = ezDz + ez,

where all of the other
(
9
2

)
− 6 pairs mutually commute.

9.8 Bi-basic equations

Another interesting example is that of bi-basic q-series, which really do occur in

“nature” (see [GaR91]). Let us define them precisely. First, recall that a sequence a(k)

is q-hypergeometric if a(k + 1)/a(k) is a rational function of (qk, q). A sequence a(k)

is bi-basic (p, q)-hypergeometric if a(k+ 1)/a(k) is a rational function of (p, q, pk, qk).



190 An Operator Algebra Viewpoint

We can no longer expect that a sum like

a(n) =
∑

k

(
n

k

)

p

(
n

k

)

q

will be (p, q)-hypergeometric (unless some miracle happens). If the summand F (n, k)

is (p, q)-hypergeometric in both n and k, it means that we can find operators

A(pk, pn, qk, qn, N), B(pk, pn, qk, qn, K)

that annihilate the summand F (n, k). Alas, in order to get an operator C(pn, qn, N)

annihilating the sum a(n) =
∑

k F (n, k), we need to eliminate both indeterminates

pk and qk, which is impossible, in general.

The best that we can hope for, in general, is to deal with sums like

a(m,n) =
∑

k

(
m

k

)

p

(
n

k

)

q

and look for one partial (linear) recurrence R(pm, qn,M,N)a(m,n) = 0. This goal can

be achieved (at least generically, i.e., if the summand F (m,n, k) is “(p, q)-holonomic”

in the analogous sense).

If F (m,n, k) is (p, q)-holonomic, then it is annihilated by operators

A(pm, qm, pn, qn, pk, qk,M), B(pm, qm, pn, qn, pk, qk, N),

and C(pm, qm, pn, qn, pk, qk, K). It should be possible to eliminate the two variables pk

and qk to get an operator R(pm, qn,M,N) such that for some operators A′, B′, C ′, D′,

we have

R = A′A+B′B + C ′C + (K − 1)D′,

and hence R annihilates a(m,n). Nobuki Takayama’s package [Taka92] should be able

to handle such elimination. However it seems that the time and especially memory

requirements would be excessive.

9.9 Creative anti-symmetrizing

The ideas in this section are due to Peter Paule, who has applied them very dramat-

ically in the q-context [Paul94].

The method of creative telescoping, described in Chapter 6, uses the obvious fact

that ∑

k

(G(n, k + 1) −G(n, k)) ≡ 0,



9.9 Creative anti-symmetrizing 191

provided G(n,±∞) = 0. So, given a closed form summand F (n, k), it made sense

to look for a recurrence operator P (N, n), and an accompanying certificate G(n, k)

(which turned out to be always of the form RATIONAL(n, k)F (n, k)) such that

P (N, n)F (n, k) = G(n, k + 1) −G(n, k).

This enabled us, by summing over k, to deduce that

P (N, n)(
∑

k

F (n, k)) = 0.

There is another obvious way for a sum to be identically zero. If the summand

F (n, k) is anti-symmetric, i.e., F (n, k) = −F (n, n + α− k), for some integer α, then

a(n) :=
∑

k F (n, k) is identically zero. For example,

∑

k

(
n

k

)


(k3 − (n− k)3) = 0,

for the above trivial reason. If we were to try to apply the program ct to that sum,

we would get a certain first-order recurrence that would imply the identity once we

verify the initial value n = 0, but that would be overkill, and, besides, it wouldn’t

give us the minimal-order recurrence.

This suggests the following improvement. Suppose that F (n, k) is anti-symmetric.

Instead of looking for P (N, n) and G(n, k) such that

H(n, k) := P (N, n)F (n, k) − (G(n, k + 1) −G(n, k))

is identically zero, it suffices to insist that it be antisymmetric, i.e., that H(n, k) =

−H(n, n− k). This idea is yet to be implemented.

This idea is even more promising for multisums. Recall that the fundamental the-

orem of algorithmic proof theory [WZ92a] asserts that for every hypergeometric term

F (n; k1, . . . , kr) there exist an operator P (N, n) and certificates G1(n; k), . . . , Gr(n; k)

such that

H(n; k1, . . . , kr) := P (N, n)F (n; k) −
r∑

i=1

∆ki
Gr(n; k)

is identically zero. Suppose that F (n; k1, . . . , kr) is symmetric w.r.t. all permutations

of the ki’s. Then it clearly suffices for H(n; k1, . . . , kr) to satisfy the weaker property

that its symmetrizer

H̄(n; k1, . . . , kr) :=
∑

π∈Sr

H(n; kπ(1), . . . , kπ(r))



192 An Operator Algebra Viewpoint

vanishes identically, since then we would have

r!P (N, n)
∑

k1,...,kr

F (n; k) = P (N, n)
∑

k

∑

π∈Sr

F (n; π(k))

=
∑

π∈Sr

∑

k

P (N, n)F (n; π(k)) = H̄(n; k) = 0.

9.10 Wavelets

The Fourier transform decomposes functions (or “signals”, in engineer-speak) into

linear combinations of exponentials. The exponential function (and its two offspring,

the sine and the cosine) satisfies very simple linear differential equations (f ′(x) =

f(x), and f ′′(x) = −f(x)). It turns out that for some applications it is useful to take

wavelets as basic building blocks. The Daubechies wavelets [Daub92] are based on

dilation equations, which are equations of the form

φ(x) =

L∑

k=0

ckφ(2x− k).

This motivates introducing a new class of functions, which let’s temporarily call

“P-Di functions,” that are solutions of equations of the form

L∑

k,j=0

ck,j(x)φ(2jx− k) = 0,

where the ck,j’s are polynomials in x. Introduce the “doubling operator” Tx by

Txf(x) := f(2x).

Then P-Di functions are exactly those functions φ(x) that are annihilated by

operators of the form P (Tx, Ex, x), where Ex is the shift operator in x: Exf(x) :=

f(x+ 1).

It is easy to see that the class of P-Di functions forms an algebra. Also the

ring of operators in Tx, Ex, x forms an associative algebra subject to the “commuting

relations”

Txx = 2xTx, Exx = xEx + Ex, ExTx = TxE
2
x.

We don’t have to stop at one variable. Consider functions F (x, y) that are “Di-

holonomic,” i.e., satisfy a system of two independent (in some sense, yet to be made

precise) equations

P (x, Tx, Ex, y, Ty, Ey)F (x, y) = 0, Q(x, Tx, Ex, y, Ty, Ey)F (x, y) = 0.



9.11 Abel-type identities 193

Then it should be possible to perform elimination in the ring K〈x, Tx, Ex, y, Ey, Ty〉
to eliminate y, getting an operator R(x, Tx, Ex, Ty, Ey), free of y. Now, using the

obvious facts that

∫ ∞

−∞
F (x, y + 1)dy =

∫ ∞

−∞
F (x, y)dy,

∫ ∞

−∞
F (x, 2y)dy =

1

2

∫ ∞

−∞
F (x, y)dy,

we immediately see that

a(x) :=

∫ ∞

−∞
F (x, y)dy

is annihilated by the operator R(x, Tx, Ex, 1/2, 1), obtained by substituting 1 for Ex

and 1/2 for Tx. Hence a(x) is a P-Di function of a single variable.

We can further generalize by also allowing differentiations Dx, Dy and considering

the corresponding class of operators and functions, allowing also tripling operators,

etc. But let’s stop here.

9.11 Abel-type identities

Some obvious identities do not fall under the holonomic umbrella. The most obvious

one that comes to mind is
n∑

k=0

(
n

k

)
nk = (n + 1)n.

Neither the summand F (n, k) =
(

n
k

)
nk nor the right side is holonomic (why? because

F (n, k) is holonomic in k but not in n). So the WZ methodology would not seem

to work on this sum. However, this is obviously the special case x = n of the more

general, and holonomic identity,

n∑

k=0

(
n

k

)
xk = (x + 1)n.

Thus some non-holonomic identities are specializations of holonomic ones, and one

should chercher la généralisation, which is not always as easy as in the example above.

Another class of identities that seem to defy the holonomic paradigm, is that of

Abel-type identities (see [GKP89], Section 5.4) whose natural habitat appeared to be

convolution and Lagrange inversion. Take, for example,

n∑

k=0

(
n

k

)
(k + 1)k−1(n− k + 1)n−k = (n + 2)n. (9.11.1)



194 An Operator Algebra Viewpoint

The summand F (n, k) is neither holonomic in n nor in k, and the right side is not

holonomic either. But (9.11.1) is really a specialization of

n∑

k=0

(
n

k

)
(k + r)k−1(s− k)n−k =

(r + s)n

r
. (9.11.2)

Here the summand F (n, k, r, s) is not holonomic, i.e., it does not satisfy a maximally

overdetermined system of linear difference equations in n, k, r, s. But, by forming

(KR−1F )/F and (KSF )/F , we get two equations from which we can eliminate k,

getting an operator Ω(n, r, s, N,R, S) annihilating the sum. Then we just check that

Ω annihilates the right side and the initial conditions match. See [Maje94].

Let’s consider the well-known identity of Euler,

∑

k

(−1)k

(
n

k

)
(x− k)n = n!. (9.11.3)

It has many proofs, but let’s try to find a proof by elimination. Let F (n, k, x) be the

summand on the left, and let a(n, x) be the whole left side. F (n, k, x) is not holonomic

in k and x separately, but is in x− k. In other words, F (n, k+ 1, x+ 1)/F (n, k, x) is

a rational function of (n, k, x). F is obviously holonomic in n, and we have

F (n, k + 1, x+ 1)

F (n, k, x)
=
k − n

k + 1
,

F (n+ 1, k, x)

F (n, k, x)
=

(n+ 1)(x− k)

n− k + 1
.

Using the shift operators NF (n, k, x) := F (n + 1, k, x), KF (n, k, x) := F (n, k +

1, x), and XF (n, k, x) := F (n, k, x+1), the above can be written in operator notation

as follows:

P1F (n, k, x) ≡ 0, P2F (n, k, x) ≡ 0,

where

P1 = (k + 1)KX + (n− k), P2 = (n− k + 1)N − (n+ 1)(x− k).

Let’s write P1 and P2 in decreasing powers of k (modulo (K − 1)):

P1 = k(X − 1) + n + (K − 1)kX,

P2 = k(n+ 1 −N) + (n+ 1)(N − x).

Eliminating k, modulo (K−1), we find that the following operator Q also annihilates

F (n, k, x):

Q := (n+ 1 −N)P1 − (X − 1)P2

= (n+ 1 −N)n− (X − 1)(n+ 1)(N − x) + (K − 1)(n+ 1 −N)kX

= − (n+ 1)(XN − n− (x + 1)X + x) + (K − 1)(n+ 1 −N)kX.



9.12 Another semi-holonomic identity 195

It follows that a(n, x) :=
∑

k F (n, k, x) is annihilated by the operator

XN − n− (x+ 1)X + x.

In everyday parlance, this means that

a(n+ 1, x+ 1) = na(n, x) + (x + 1)a(n, x+ 1) − xa(n, x).

Now we can prove by induction on n that a(n, x) = n! for all x. Obviously a(0, x) = 1

for all x. From the above recurrence taken at x − 1 we have a(n + 1, x) = (n − x +

1)a(n, x−1)+xa(n, x), which, by inductive hypothesis, is (n−x+1+x)n! = (n+1)!,

and we are done. Identities of Abel type have been studied by John Majewicz in his

Ph.D. dissertation [Maje94], and by Ekhad and Majewicz in [EkM94], where they

give a short, WZ-style proof of Cayley’s formula for counting labeled trees.

9.12 Another semi-holonomic identity

Consider problem 10393 in the American Mathematical Monthly (101 (1994), p. 575

(June-July issue)), proposed by Jean Anglesio. It asks us to prove that

∫ ∞

0

e−ax(1 − e−x)n

xr
dx =

(−1)r

(r − 1)!

n∑

k=0

(
n

k

)
(−1)k(a+ k)r−1 log(a+ k).

Neither side is completely holonomic in all its variables (why?), but the iden-

tity is easily proved by verifying that both sides satisfy the system of partial differ-

ence/differential equations, and initial conditions

(N − 1 + A)F = 0, (
∂

∂a
+R−1)F = 0,

((r − 1) − rAR−1N−1)F (0, r, r) = 0, F (a, 1, 1) = log a− log (a + 1),

in which A,R,N are the forward shift operators in a, r, n, respectively.

9.13 The art

Until now, we have discussed only the science of identities. We conclude here with a

very brief mention of some of the great art that has been created in this area. Many

identities in combinatorics are still out of the range of computers, but even if one

day they would all be computerizable, that would by no means render them obsolete,

since the ideas behind the human proofs are often much more important than the

theorems that are being proved.



196 An Operator Algebra Viewpoint

Often identities are tips of icebergs that lead to beautiful depths. For example, the

Macdonald identities [Macd72] led Victor Kac [Kac 85, p. xiii] to the discovery of the

representation theory of Kac-Moody algebras. Another example is Rota’s Umbral

Calculus [RoR78, Rom84] which started out as an attempt to unify and explain

Sheffer-type identities and to rigorize the 19th-century umbral methods. This theory

turned out to have a life of its own, and its significance and depth far transcends the

identities that it tried to explain.

Yet another example is the theory of species, that was launched by Joyal [Joya81].

This too was initially motivated by identities between formal power series and the

formula of Cauchy for the number of labeled trees. It is now a flourishing theory at

the hands of Francois Bergeron, Gilbert Labelle, Pierre Leroux [BeLL94] and many

others. Its depth and richness far surpasses the sum of its truths, most of which are

identities.

To paraphrase a famous saying of Richard Askey [Aske84]:

There are many identities and no single way of looking at them can

illuminate all of them or even all the important aspects of one example.

A good case in point is the healthy rivalry between representation theory and

combinatorics. Take for example, the celebrated Cauchy identity:

∏

1≤i,j≤n

1

1 − xiyj

=
∑

λ

sλ(x1, . . . , xn)sλ(y1, . . . , yn).

The proof of it is a mere exercise in high school algebra (e.g., [Macd95], I.4, ex. 6).

However, both the representation theory approach to its proof (that led to Roger

Howe’s extremely fruitful concept of “dual pairs”), and Knuth’s [Knut70] classical

bijective proof, that led to a whole branch of bijective combinatorics, contributed so

much to our mathematical culture.

Another breathtaking combinatorial theory, that led to the discovery and insight-

ful proofs of many identities, is the so-called Schützenberger methodology, sometimes

called the Dyck-Schützenberger-Viennot (DSV) approach. It was motivated by formal

languages and context-free grammars, and proved particularly useful in combinatorial

problems that arose in statistical physics [Vien85]. It is vigorously pursued by the

École Bordelaise (e.g., [Bous91]).

The last two examples are also connected with the name of Dominique Foata. The

combinatorial proof of identities like

(
a + b

a+ k

)(
a + c

c+ k

)(
b + c

b + k

)
=
∑

n

(a+ b + c− n)!

(a− n)! (b− n)! (c− n)! (n+ k)! (n− k)!
,



9.13 The art 197

was one of the inspirations for the very elegant and extremely influential Cartier-Foata

[CaFo69] theory of the commutation monoid. While the above identity (essentially

the Pfaff-Saalschütz identity) and all the other binomial-coefficient identities proved

there can now be done by our distinguished colleague Shalosh B. Ekhad, as the reader

can check with the package EKHAD described in Appendix A below, no computer

would ever (or at least for a very long time to come) develop such a beautiful theory

and such beautiful human proofs that are much more important than the theorems

they prove. Furthermore, the Cartier-Foata theory, in its geometric incarnation via

Viennot’s theory of heaps [Vien86], had many successes in combinatorial physics and

animal-counting.

Finally, we must mention the combinatorial revolution that took place in the

theory of special functions. It was Joe Gillis who made the first connection [EvGi76].

Combinatorial special function theory became a full-fledged research area with Foata’s

[Foat78] astounding proof of the Mehler formula [Rain60, p. 198, Eq. (2)]

∞∑

n=0

Hn(x)Hn(y)tn

n!
= (1 − 4t2)−

1
2 exp

[
y2 − (y − 2xt)2

1 − 4t2

]
,

where Hn(x) are the Hermite polynomials. While this formula too is completely

automatable nowadays (see [AlZe90], or do

AZpapc(n!*(1-4*t**2)**(-1/2)*exp(y**2-(y-2*x*t)**2/(1-4*t**2))/ t**(n+1),t,x);

in EKHAD), it is lucky that it was not so back in 1977, since it is possible that knowing

that the Mehler identity is routine would have prevented Dominique Foata from

trying to find another proof. What emerged was [Foat78], the starting point for a

very elegant and fruitful combinatorial theory of special functions [Foat83, Stre86,

Zeng92]. The proofs and the theory here (as elsewhere) are far more important than

the identities themselves.

On the other hand, formulas like Macdonald’s, Mehler’s or Saalschütz’s could

have been discovered and first proved, by computer. Let’s hope that in the future,

computers will supply us humans with many more beautiful identities, that will turn

out to be tips of many beautiful icebergs to come. So the moral is that we need both

tips and icebergs, since tips by themselves are rather boring (but not the activity of

looking for them!), and icebergs are nice, but we would never find them without their

tips.



198 An Operator Algebra Viewpoint

9.14 Exercises

1. Using the elimination method of Section 9.4, find a recurrence satisfied by

a(n) :=
∑

k

(
n− k

k

)
.

(No credit for other methods!)

2. Find a recurrence satisfied by

a(n) :=
∑

k

(
n

k

)(
n+ k

k

)
.

3. Using the method of Section 9.4, evaluate, if possible, the following sum:

a(n) :=
∑

k

(a+ k − 1)! (b+ k − 1)! (c− a− b+ n− k − 1)!

k! (n− k)! (c+ k − 1)!
.

If you succeed you will have rediscovered and reproved the Pfaff–Saalschütz

identity.



Appendix A

The WWW sites and the software

Several programs that implement the algorithms in this book can be found on the

diskette that comes with the book, as well as on the WorldWideWeb. The programs

are of two kinds: some Maple programs and some Mathematica programs. It should

be noted at once that both the individual programs and the packages in their entirety

will continue to evolve after the publication of this book. Readers are advised to

consult from time to time the WorldWideWeb pages that we have created for this

book, so as to update their packages as updates become available. These pages will

be maintained at two sites (URL’s):

http://www.cis.upenn.edu/~wilf/AeqB.html

and

http://www.math.temple.edu/~zeilberg

The Maple programs are in packages EKHAD and qEKHAD. The Mathematica pro-

grams are Gosper, Hyper, and WZ. We describe these individually below. On our

WWW page there are links to other programs that are cited in this book, such as

the Mathematica implementation Zb.m of the creative telescoping algorithm, by Peter

Pauleand Markus Schorn, and the Hyp package of C. Krattenthaler. The Paule-Schorn

programs can be obtained from

http://info.risc.uni-linz.ac.at:70/labs-info/comblab

/software/Summation/PauleSchorn/index.html

(or else from the link on the home page of this book). Krattenthaler’s programs are

available from

http://radon.mat.univie.ac.at/People/kratt/hyp_hypq/hyp.abs



200 The WWW sites and the software

A.1 The Maple packages EKHAD and qEKHAD

EKHAD is a package of Maple programs. Of these, the ones that are specifically men-

tioned in this book are ct, zeil, findrec, AZd, AZc, AZpapc, AZpapd, and celine.

If you enter Maple and give the command read ‘EKHAD‘; then the package will be

read in. If you then type ezra();, you will see a list of the routines contained in the

package. If you then type ezra(ProcedureName);, you will obtain further informa-

tion about that particular procedure. The procedures that are contained in EKHAD

are as follows.

• The program ct implements the method of creative telescoping that is de-

scribed in Chapter 6 of this book. A call to ct(SUMMAND,ORDER,k,n,N) finds

a recurrence for SUMMAND, which is a function of the running variable n and

the summation variable k, in the parameters k and n, of order ORDER. The in-

put should be a product of factorials and/or binomial coefficients and/or rising

factorials, where (a)k is denoted by rf(a,k), and/or powers of k and n, and,

optionally, a polynomial factor.

The output consists of an operator ope(N,n) and a certificate R(n,k) with the

properties that if we define G(n,k):=R(n,k)*SUMMAND then

ope(N,n)SUMMAND(n,k)=G(n,k+1)-G(n,k),

which is a routinely verifiable identity.

For example, if we make a call to ct(binomial(n,k),1,k,n,N); we obtain the

output N-2, k/(k-n-1), in which N is always the forward shift operator in n.

For more information about this program, see Section 6.5 of this book.

• Program zeil can be called in several ways. zeil(SUMMAND,k,n,N,MAXORDER),

for instance, will produce output as in ct above, except that if the program

fails to find a recurrence of order 1, it will look for one of order 2, etc., up to

MAXORDER, which has a default of 6. For the other ways to call this program see

the internal program documentation.

• Program zeilpap is a verbose version of zeil.

• AZd and AZc, and their verbose versions AZpapd and AZpapc implement the

algorithms in [AlZe90] that were mentioned above on page 112.

• Program celine may be called by celine(SUMMAND,ii,jj). Its operation has

been described on page 59 of this book.



A.2 Mathematica programs 201

The package qEKHAD is similar to EKHAD except that it deals with q-identities. In

addition TRIPLE INTEGRAL.maple, with its associated sample input file inTRIPLE,

and DOUBLE SUM SINGLE INTEGRAL.maple are Maple implementations of two impor-

tant cases of the algorithm of [WZ92a].

A.2 Mathematica programs

• The Gosper program does indefinite hypergeometric summation. After getting

into Mathematica, read it in with <<gosper.m. Then

GosperSum[f[k],{k,k0,k1}]

will output the sum
k1∑

k=k0

f [k]

as a hypergeometric term, if there exists such a term, or will return the input

sum unevaluated, if no such term exists. Examples of the use of this program

begin on page 87 of this book.

• The Hyper program solves recurrence relations with polynomial coefficients,

where “solves” means that it will return a solution as a sum of a fixed number

of hypergeometric terms, if such a solution exists, or “{}”, if no such solution

exists. First get into Mathematica, read in Hyper, and type “? Hyper”. You

will see the following documentation:

– Hyper[eqn, y[n]] finds at least one hypergeometric solution of the ho-

mogeneous equation eqn over the field of rational numbers |Q (provided

any such solution exists).

– Hyper[eqn, y[n], Solutions -> All] finds a generating set (not nec-

essarily linearly independent) for the space of solutions generated by hy-

pergeometric terms over |Q.

– Hyper[eqn, y[n], Quadratics->True] finds solutions over quadratic ex-

tensions of |Q.

– Solutions y[n] are described by giving their rational consecutive term ratio

representations y[n+1]/y[n]. Warning: The worst-case time complexity

of Hyper is exponential in the degrees of the leading and trailing coefficients

of eqn.

For example, a call to



202 The WWW sites and the software

Hyper[f[n+2]-2(n+2) f[n+1]+(n+1) (n+2) f[n]==0,f[n]]

yields the output n+2. That means that the hypergeometric term for which

f(n + 1)/f(n) = n + 2 is a solution, i.e., f(n) = (n + 1)! is a solution. On the

other hand, the call

Hyper[f[n+2]-2(n+2)f[n+1]+(n+1)(n+2)f[n]==0,f[n],Solutions->All]

produces the reply

{1 + n,
(1 + n)2

n
, 2 + n}.

Now we know that all possible hypergeometric term solutions are linear combi-

nations of the three terms n!, (n)!2/(n−1)!, and (n+1)!. These are not linearly

independent, since the sum of the first two is the third. Hence all closed form

solutions are of the form (c1 + c2n)n!. More examples are worked out in the

text in Section 8.5.

• The program WZ finds WZ proofs of identities. It was given in full and its usage

was described beginning on page 138 of this book.

Program qHyper is a q-analogue of program Hyper. It finds all q-hypergeometric

solutions of q-difference equations with rational coefficients. The program can be

obtained either from the home page for this book (see above), or directly from

http://www.mat.uni-lj.si/ftp/pub/math/



Bibliography

[Abra71] Abramov, S. A., On the summation of rational functions, USSR Comp. Maths.
Math. Phys. 11 (1971), 324–330.

[Abr89a] Abramov, S. A., Problems in computer algebra that are connected with a search
for polynomial solutions of linear differential and difference equations. Moscow
Univ. Comput. Math. Cybernet. no. 3, 63–68. Transl. from Vestn. Moskov. univ.
Ser. XV. Vychisl. mat. kibernet. no. 3, 56–60.

[Abr89b] Abramov, S. A., Rational solutions of linear differential and difference equations
with polynomial coefficients. U.S.S.R. Comput. Maths. Math. Phys. 29, 7–12.
Transl. from Zh. vychisl. mat. mat. fiz. 29, 1611–1620.

[Abr95] Abramov, S. A., Rational solutions of linear difference and q-difference equations
with polynomial coefficients, in: T. Levelt, ed., Proc. ISSAC ’95, ACM Press,
New York, 1995, 285–289.

[ABP95] Abramov, S. A., Bronstein, M. and Petkovšek, M., On polynomial solutions of
linear operator equations, in: T. Levelt, ed., Proc. ISSAC ’95, ACM Press, New
York, 1995, 290–296.

[AbP94] Abramov, S. A., and Petkovšek, M., D’Alembertian solutions of linear differential
and difference equations, in: J. von zur Gathen, ed., Proc. ISSAC ’94 , ACM
Press, New York, 1994, 169–174.

[APP95] Abramov, S. A., Paule, P., and Petkovšek, M., q-Hypergeometric solutions of
q-difference equations, Discrete Math., submitted.

[AlZe90] Almkvist, G., and Zeilberger, D., The method of differentiating under the integral
sign, J. Symbolic Computation 10 (1990), 571–591.

[AEZ93] Andrews, George E., Ekhad, Shalosh B., and Zeilberger, Doron, A short proof of
Jacobi’s formula for the number of representations of an integer as a sum of four
squares, Amer. Math. Monthly 100 (1993), 274–276.

[Andr93] Andrews, George E., Pfaff’s method (I): The Mills-Robbins-Rumsey determinant,
preprint, 1993.



204 BIBLIOGRAPHY

[Aske84] Askey, R. A., Preface, in: R.A. Askey, T.H. Koornwinder, and W. Schempp, Eds.,
“Special functions: group theoretical aspects and applications”, Reidel, Dordrecht,
1984.

[BaySti] Bayer, David, and Stillman, Mike, Macaulay, a computer algebra system for
algebraic geometry. [Available by anon. ftp to math.harvard.edu].

[Bell61] Bellman, Richard, A Brief Introduction to Theta Functions, Holt, Rinehart and
Winston, New York, 1961.

[BeO78] Bender, E., and Orszag, S.A., Advanced Mathematical Methods for Scientists and
Engineers, New York: McGraw-Hill, 1978.

[BeLL94] Bergeron, F., Labelle, G., and Leroux, P., Théorie des espèces et combinatoire
des structures arborescentes, Publ. LACIM, UQAM, Montréal, 1994.

[Bjor79] Björk, J. E., Rings of Differential Operators, North-Holland, Amsterdam, 1979.

[Bous91] Bousquet-Mélou, M., q-énumération de polyominos convexes, Publications de
LACIM, UQAM, Montréal, 1991.

[Bres93] Bressoud, David, Review of “The problems of mathematics, second edition,” by
Ian Stewart, Math. Intell. 15, #4 (Fall 1993), 71–73.

[BrPe94] Bronstein, M., and Petkovšek, M., On Ore rings, linear operators and factorisa-
tion, Programming and Comput. Software 20 (1994), 14–26.

[Buch76] Buchberger, Bruno, Theoretical basis for the reduction of polynomials to canon-
ical form, SIGSAM Bulletin 39 (Aug. 1976), 19–24.

[CaFo69] Cartier, P., and Foata, D., Problèmes combinatoires de commutation et
réarrangements, Lecture Notes Math. 85, Springer, Berlin, 1969.

[Cart91] Cartier, P., Démonstration “automatique” d’identités et fonctions hy-
pergéometriques [d’après D. Zeilberger], Séminaire Bourbaki, exposé no 746,
Astérisque 206 (1992), 41–91, SMF.

[Cavi70] Caviness, B. F., On canonical forms and simplification, J. Assoc. Comp. Mach.
17 (1970), 385–396.

[Chou88] Chou, Shang-Ching, An introduction to Wu’s methods for mechanical theorem
proving in geometry, J. Automated Reasoning 4 (1988), 237–267.

[Cipr89] Cipra, Barry, How the Grinch stole mathematics, Science 245 (August 11, 1989),
595.

[Cohn65] Cohn, R. M., Difference Algebra, Interscience Publishers, New York, 1965.



BIBLIOGRAPHY 205

[Com74] Comtet, L., Advanced Combinatorics: The art of finite and infinite expansions,
D. Reidel Publ. Co., Dordrecht-Holland, Transl. of Analyse Combinatoire, Tomes
I et II , Presses Universitaires de France, Paris, 1974.

[Daub92] Daubechies, Ingrid, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

[Davi95] Davis, Philip J., The rise, fall, and possible transfiguration of triangle geometry:
a mini-history, Amer. Math. Monthly 102 (1995), 204–214.

[Dixo03] Dixon, A. C., Summation of a certain series, Proc. London Math. Soc. (1) 35
(1903), 285–289.

[Ekha89] Ekhad, Shalosh B., Short proofs of two hypergeometric summation formulas of
Karlsson, Proc. Amer. Math. Soc. 107 (1989), 1143–1144.

[Ekh90a] Ekhad, S. B., A very short proof of Dixon’s theorem, J. Comb. Theory, Ser. A,
54 (1990), 141–142.

[Ekh90b] Ekhad, Shalosh B., A 21st century proof of Dougall’s hypergeometric sum iden-
tity, J. Math. Anal. Appl., 147 (1990), 610–611.

[Ekh91a] Ekhad, S. B., A one-line proof of the Habsieger–Zeilberger G2 constant term
identity, Journal of Computational and Applied Mathematics 34 (1991), 133–134.

[Ekh91b] Ekhad, Shalosh B., A short proof of a “strange” combinatorial identity conjec-
tured by Gosper, Discrete Math. 90 (1991), 319–320.

[Ekha93] Ekhad, Shalosh B., A short, elementary, and easy, WZ proof of the Askey–Gasper
inequality that was used by de Branges in his proof of the Bieberbach conjec-
ture, Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux,
1991), Theoret. Comput. Sci. 117 (1993), 199–202.

[EkM94] Ekhad, S. B., and Majewicz, J. E., A short WZ-style proof of Abel’s identity,
preprint, available from ftp.math.temple.edu in the file /pub/ekhad/abel.tex.

[EkPa92] Ekhad, S. B., and Parnes, S., A WZ-style proof of Jacobi polynomials’ generating
function, Discrete Math. 110 (1992), 263–264.

[EkTr90] Ekhad, S. B., and Tre, S., A purely verification proof of the first Rogers–
Ramanujan identity, J. Comb. Theory, Ser. A, 54 (1990), 309–311.

[EvGi76] Even, S. and Gillis, J., Derangements and Laguerre polynomials, Proc. Cambr.
Phil. Soc. 79 (1976), 135-143.

[Fase45] Fasenmyer, Sister Mary Celine, Some generalized hypergeometric polynomials,
Ph.D. dissertation, University of Michigan, November, 1945.



206 BIBLIOGRAPHY

[Fase47] Fasenmyer, Sister Mary Celine, Some generalized hypergeometric polynomials,
Bull. Amer. Math. Soc. 53 (1947), 806–812.

[Fase49] Fasenmyer, Sister Mary Celine, A note on pure recurrence relations, Amer. Math.
Monthly 56 (1949), 14–17.

[Foat78] Foata, D., A combinatorial proof of the Mehler formula, J. Comb. Theory Ser. A
24 (1978), 250-259.

[Foat83] Foata, D., Combinatoire de identités sur les polynômes orthogonaux, Proc. Inter.
Congress of Math. (Warsaw. Aug. 16-24, 1983), Warsaw, 1984.

[GaR91] Gasper, George, and Rahman, Mizan, Basic hypergeometric series, Encycl. Math.
Appl. 35, Cambridge University Press, Cambridge, 1991.

[Gess94] Gessel, Ira, Finding identities with the WZ method, Theoretical Comp. Sci., to
appear.

[GSY95] Gessel, I. M., Sagan, B. E., and Yeh, Y.-N., Enumeration of trees by inversions,
J. Graph Theory 19 (1995), 435–459.

[Gosp77] Gosper, R. W., Jr., Indefinite hypergeometric sums in MACSYMA, in: Proc.
1977 MACSYMA Users’ Conference, Berkeley, 1977, 237–251.

[Gosp78] Gosper, R. W., Jr., Decision procedure for indefinite hypergeometric summation,
Proc. Natl. Acad. Sci. USA 75 (1978), 40–42.

[GKP89] Graham, Ronald L., Knuth, Donald E., and Patashnik, Oren, Concrete mathe-
matics, Addison Wesley, Reading, MA, 1989.

[Horn92] Hornegger, J., Hypergeometrische Summation und polynomiale Rekursion, Diplo-
marbeit, Erlangen, 1992.

[Joya81] Joyal, A., Une théorie combinatoire de series formelles, Advances in Math. 42
(1981), 1-82.

[Kac 85] Kac, V., Infinite dimensional Lie algebras, 2nd Ed., Cambr. Univ. Press, Cam-
bridge, 1985.

[Knop93] Knopp, Marvin I., Modular functions, Second edition, Chelsea, 1993.

[Knut70] Knuth, D. E., Permutation matrices and generalized Young Tableaux, Pacific J.
Math. 34 (1970), 709-727.

[Koep94] Koepf, W., REDUCE package for indefinite and definite summation, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, Technical Report TR 94-33, 1994.

[Koor93] Koornwinder, Tom H., On Zeilberger’s algorithm and its q-analogue, J. Comp.
Appl. Math 48 (1993), 91–111.



BIBLIOGRAPHY 207

[LPS93] Lisonek, P., Paule, P., and Strehl, V., Improvement of the degree setting in
Gosper’s algorithm, J. Symbolic Computation 16 (1993), 243–258.

[Loos83] Loos, R., Computing rational zeroes of integral polynomials by p-adic expansion,
SIAM J. Comp. 12 (1983), 286–293.

[Macd72] Macdonald, I. G., Affine root systems and Dedekind’s η-function, Invent. Math.
15 (1972), 91-143.

[Macd95] Macdonald, Ian G., Symmetric functions and Hall polynomials, Second edition,
Oxford University Press, Oxford, 1995.

[Maje94] Majewicz, J. E., WZ-style certification procedures and Sister Celine’s tech-
nique for Abel-type sums, preprint, available from ftp.math.temple.edu in
/pub/ekhad/abel.tex.

[Man93] Man, Y. K., On computing closed forms for indefinite summations, J. Symbolic
Computation 16 (1993), 355–376.

[Mati70] Matijaszevic, Ju. V., Solution of the tenth problem of Hilbert, Mat. Lapok, 21
(1970), 83–87.

[MRR87] Mills, W. H., Robbins, D. P., and Rumsey, H., Enumeration of a symmetry class
of plane partitions, Discrete Math. 67 (1987), 43–55.

[Parn93] Parnes, S., A differential view of hypergeometric functions: algorithms and im-
plementation, Ph.D. dissertation, Temple University, 1993.

[PaSc94] Paule, P., and Schorn, M., A Mathematica version of Zeilberger’s algorithm for
proving binomial coefficient identities, J. Symbolic Computation, submitted.

[Paul94] Paule, Peter, Short and easy computer proofs of the Rogers–Ramanujan identities
and of identities of similar type, Electronic J. Combinatorics 1 (1994), #R10.

[Petk91] Petkovšek, M., Finding closed-form solutions of difference equations by symbolic
methods, Ph.D. thesis, Carnegie-Mellon University, CMU-CS-91-103, 1991.

[Petk92] Petkovšek, M., Hypergeometric solutions of linear recurrences with polynomial
coefficients, J. Symbolic Computation, 14 (1992), 243–264.

[Petk94] Petkovšek, M., A generalization of Gosper’s algorithm, Discrete Math. 134
(1994), 125–131.

[PeW95] Petkovšek, Marko, and Wilf, Herbert S., A high-tech proof of the Mills–Robbins–
Rumsey determinant formula, Electronic J. Combinatorics, to appear.

[PiSt95] Pirastu, Roberto, and Strehl, Volker, Rational summation and Gosper-Petkovšek
representation, J. Symbolic Computation, 1995 (to appear).



208 BIBLIOGRAPHY

[Rain60] Rainville, Earl D., Special functions, MacMillan, New York, 1960.

[Rich68] Richardson, Daniel, Some unsolvable problems involving elementary functions of
a real variable, J. Symbolic Logic 33 (1968), 514–520.

[Risc70] Risch, Robert H., The solution of the problem of integration in finite terms, Bull.
Amer. Math. Soc. 76 (1970), 605–608.

[Rom84] Roman, S., The umbral calculus, Academic Press, New-York, 1984.

[RoR78] Roman, S., and Rota, G. C., The umbral calculus, Advances in Mathematics 27
(1978), 95-188.

[Sarn93] Sarnak, Peter, Some applications of modular forms, Cambridge Math. Tracts
#99, Cambridge University Press, Cambridge, 1993.

[Staf78] Stafford, J. T., Module structure of Weyl algebras, J. London Math. Soc., 18
(1978), 429–442.

[Stan80] Stanley, R. P., Differentiably finite power series. European J. Combin. 1 (1980),
175–188.

[Stre86] Strehl, Volker, Combinatorics of Jacobi configurations I: complete oriented match-
ings, in: Combinatoire énumérative, G. Labelle et P. Leroux eds., LNM 1234,
294-307, Springer, 1986.

[Stre93] Strehl, Volker, Binomial sums and identities, Maple Technical Newsletter 10
(1993), 37–49.

[Taka92] Takayama, Nobuki, An approach to the zero recognition problem by Buchberger’s
algorithm, J. Symbolic Computation 14 (1992), 265–282.

[vdPo79] van der Poorten, A., A proof that Euler missed. . . Apéry’s proof of the irrational-
ity of ζ(3), Math. Intelligencer 1 (1979), 195–203.

[Verb74] Verbaeten, P., The automatic construction of pure recurrence relations, Proc.
EUROSAM ’74, ACM–SIGSAM Bulletin 8 (1974), 96–98.

[Vien85] Viennot, X. G., Problèmes combinatoire posés par la physique statistique,
Séminaire Bourbaki no 626, Asterisque 121-122 (1985), 225-246.

[Vien86] Viennot, X. G., Heaps of pieces I: Basic definitions and combinatorial lemmas,
in: Combinatoire énumérative, G. Labelle et P. Leroux eds., LNM 1234, 321-350,
Springer, 1986.

[Wilf91] Wilf, Herbert S., Sums of closed form functions satisfy recurrence re-
lations, unpublished, March, 1991 (available at the WorldWideWeb site
http://www.cis.upenn.edu/∼wilf/index.html).



BIBLIOGRAPHY 209

[Wilf94] Wilf, Herbert S., generatingfunctionology (2nd ed.), Academic Press, San Diego,
1994.

[WZ90a] Wilf, Herbert S., and Zeilberger, Doron, Rational functions certify combinatorial
identities, J. Amer. Math. Soc. 3 (1990), 147–158.

[WZ90b] Wilf, Herbert S., and Zeilberger, Doron, Towards computerized proofs of identi-
ties, Bull. (N.S.) Amer. Math. Soc. 23 (1990), 77–83.

[WZ92a] Wilf, Herbert S., and Zeilberger, Doron, An algorithmic proof theory for hyper-
geometric (ordinary and “q”) multisum/integral identities, Inventiones Mathe-
maticæ 108 (1992), 575–633.

[WZ92b] Wilf, Herbert S., and Zeilberger, Doron, Rational function certification of hy-
pergeometric multi-integral/sum/“q” identities, Bull. (N.S.) of the Amer. Math.
Soc. 27 (1992), 148–153.

[WpZ85] Wimp, J., and Zeilberger, D., Resurrecting the asymptotics of linear recurrences.
J. Math. Anal. Appl. 111 (1985), 162–176.

[WpZ89] Wimp, J., and Zeilberger, D., How likely is Pólya’s drunkard to stay in x ≥ y ≥
z?, J. Stat. Phys. 57 (1989), 1129–1135.

[Yen 93] Yen, Lily, Contributions to the proof theory of hypergeometric identities, Ph.D.
dissertation, University of Pennsylvania, 1993.

[Yen95a] Yen, Lily, A two-line algorithm for proving terminating hypergeometric identities,
J. Math. Anal. Appl., to appear.

[Yen95b] Yen, Lily, A two-line algorithm for proving q-hypergeometric identities, 1995
(preprint).

[Zeil82] Zeilberger, Doron, Sister Celine’s technique and its generalizations, J. Math.
Anal. Appl. 85 (1982), 114–145.

[Zeil90a] Zeilberger, Doron, A holonomic systems approach to special functions identities,
J. of Computational and Applied Math. 32 (1990), 321–368.

[Zeil90b] Zeilberger, Doron, A fast algorithm for proving terminating hypergeometric iden-
tities, Discrete Math. 80 (1990), 207–211.

[Zeil91] Zeilberger, Doron, The method of creative telescoping, J. Symbolic Computation
11 (1991), 195–204.

[Zeil93] Zeilberger, Doron, Closed form (pun intended!), A Tribute to Emil Grosswald:
Number Theory and Related Analysis, M. Knopp and M. Sheingorn, eds., Con-
temporary Mathematics 143, 579–607, AMS, Providence, 1993.



210 BIBLIOGRAPHY

[Zeil95a] Zeilberger, Doron, Proof of the alternating sign matrix conjecture, Elec-
tronic J. Combinatorics, to appear. [Also available by anon. ftp to
ftp.math.temple.edu, in the file /pub/zeilberg/asm/asm.ps or on the WWW
at http://www.math.temple.edu/∼zeilberg.]

[Zeil95b] Zeilberger, Doron, Having 6n dice in a box, the probability of flinging at least n

sixes. [ftp from the WWW site above]

[Zeng92] Zeng, J., Weighted derangements and the linearization coefficients of orthogonal
Sheffer polynomials, Proc. London Math. Soc. (3) 65 (1992), 1-22.


