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Chapter 1

Introduction

Geometric objects such as points, lines, and polygons are the basis of a

broad variety of important applications and give rise to an interesting set

of problems and algorithms. The name geometry reminds us of its earliest

use: for the measurement of land and materials. Today, computers are being

used more and more to solve larger-scale geometric problems. Over the past

two decades, a set of tools and techniques has been developed that takes

advantage of the structure provided by geometry. This discipline is known

as Computational Geometry.

The discipline was named and largely started around 1975 by Shamos,

whose Ph.D. thesis attracted considerable attention. After a decade of devel-

opment the �eld came into its own in 1985, when three components of any

healthy discipline were realized: a textbook, a conference, and a journal.

Preparata and Shamos's book Computational Geometry: An Introduction

[23], the �rst textbook solely devoted to the topic, was published at about

the same time as the �rst ACM Symposium on Computational Geometry was

held, and just prior to the start of a new Springer-Verlag journal Discrete and

Computational Geometry. The �eld is currently thriving. Since 1985, sev-

eral texts, collections, and monographs have appeared [1, 10, 18, 20, 25, 26].

The annual symposium has attracted 100 papers and 200 attendees steadily.

There is evidence that the �eld is broadening to touch geometric modeling

and geometric theorem proving. Perhaps most importantly, the �rst students

who obtained their Ph.D.s in computer science with theses in computational

geometry have graduated, obtained positions, and are now training the next

generation of researchers.

Computational geometry is of practical importance because Euclidean
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2 INTRODUCTION

space of two and three dimensions forms the arena in which real physical

objects are arranged. A large number of applications areas such as pattern

recognition [28], computer graphics [19], image processing [22], operations

research, statistics [4, 27], computer-aided design, robotics [25, 26], etc., have

been the incubation bed of the discipline since they provide inherently geo-

metric problems for which e�cient algorithms have to be developed. A large

number of manufacturing problems involve wire layout, facilities location,

cutting-stock and related geometric optimization problems. Solving these

e�ciently on a high-speed computer requires the development of new geo-

metrical tools, as well as the application of fast-algorithm techniques, and

is not simply a matter of translating well-known theorems into computer

programs. From a theoretical standpoint, the complexity of geometric algo-

rithms is of interest because it sheds new light on the intrinsic di�culty of

computation.

In this book, we concentrate on four major directions in computational

geometry: the construction of convex hulls, proximity problems, searching

problems and intersection problems.



Chapter 2

Algorithmic Foundations

For the past twenty years the analysis and design of computer algorithms

has been one of the most thriving endeavors in computer science. The funda-

mental works of Knuth [14] and Aho-Hopcroft-Ullman [2] have brought order

and systematization to a rich collection of isolated results, conceptualized

the basic paradigms, and established a methodology that has become the

standard of the �eld. It is beyond the scope of this book to review in detail

the material of those excellent texts, with which the reader is assumed to

be reasonably familiar. It is appropriate however, at least from the point of

view of terminology, to briey review the basic components of the language

in which computational geometry will be described. These components are

algorithms and data structures. Algorithms are programs to be executed on

a suitable abstraction of actual \von Neumann" computers; data structures

are ways to organize information, which, in conjunction with algorithms,

permit the e�cient and elegant solution of computational problems.

2.1 A Computational model

Many formal models of computation appear in the literature. There is no

general consensus as to which of these is the best. In this book, we will

adopt the most commonly-used model. More speci�cally, we will adopt

random access machines (RAM) as our computational model.
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4 ALGORITHMIC FOUNDATIONS

Random access machine (RAM)

A random access machine (RAM) models a single-processor computer with

a random access memory.

A RAM consists of a read-only input tape, a write-only output tape, a

program and a (random access) memory. The memory consists of registers

each capable of holding a real number of arbitrary precision. There is also

no upper bound on the memory size. All computations take place in the

processor. A RAM can access (read or write) any register in the memory in

one time unit when it has the correct address of that register.

The following operations on real numbers can be done in unit time by a

random access machine :

1) Arithmetic operations: �, =, +, �, log, exp, sin.
2) Comparisons

3) Indirect access

2.2 Complexity of algorithms and problems

The following notations have become standard:

� O(f(n)) : the class C1 of functions such that for any g 2 C1, there is a

constant cg such that f(n) � cgg(n) for all but a �nite number of n's.

Roughly speaking, O(f(n)) is the class of functions that are at most
as large as f(n).

� o(f(n)) : the class C2 of functions such that for any g 2 C2,

limn!1 g(n)=f(n) = 0. Roughly speaking, o(f(n)) is the class of func-

tions that are less than f(n).

� 
(f(n)) : the class C3 of functions such that for any g 2 C3, there is a

constant cg such that f(n) � cgg(n) for all but a �nite number of n's.
Roughly speaking, 
(f(n)) is the class of functions which are at least

as large as f(n).

� !(f(n)) : the class C4 of functions such that for any g 2 C4,

limn!1 f(n)=g(n) = 0. Roughly speaking, !(f(n)) is the class of

functions that are larger than f(n).

� �(f(n)) : the class C5 of functions such that for any g 2 C5, g(n) =
O(f(n) and g(n) = 
(f(n)). Roughly speaking, �(f(n)) is the class

of functions which are of the same order as f(n).
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Complexity of algorithms

Let A be an algorithm implemented on a RAM. If for an input of size n, A
halts after m steps, we say that the running time of the algorithm A is m
on that input.

There are two types of analyses of algorithms: worst case and expected

case. For the worst case analysis, we seek the maximum amount of time used

by the algorithm for all possible inputs. For the expected case analysis we

normally assume a certain probabilistic distribution on the input and study

the performance of the algorithm for any input drawn from the distribu-

tion. Mostly, we are interested in the asymptotic analysis, i.e., the behavior

of the algorithm as the input size approaches in�nity. Since expected case

analysis is usually harder to tackle, and moreover the probabilistic assump-

tion sometimes is di�cult to justify, emphasis will be placed on the worst

case analysis. Unless otherwise speci�ed, we shall consider only worst case

analysis.

De�nition Let A be an algorithm. The time complexity of A is O(f(n))
if there exists a constant c such that for every integer n � 0, the running

time of A is at most c � f(n) for all inputs of size n.

Complexity of problems

While time complexity for an algorithm is �xed, this is not so for problems.

For example, Sorting can be implemented by algorithms of di�erent time

complexity. The time complexity of a known algorithm for a problem gives us

the information about at most how much time we need to solve the problem.

We would also like to know the minimum amount of time we need to solve

the problem.

De�nition A function u(n) is an upper bound on the time complexity of a

problem P if there is an algorithm A solving P such that the running time

of A is u(n). A function l(n) is a lower bound on the time complexity of a

problem P if any algorithm solving P has time complexity at least l(n).
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2.3 A data structure supporting set operations

A set is a collection of elements. All elements of a set are di�erent, which

means no set can contain two copies of the same element.

When used as tools in computational geometry, elements of a set usually

are normal geometric objects, such as points, straight lines, line segments,

and planes in Euclidean spaces.

We shall sometimes assume that elements of a set are linearly ordered

by a relation, usually denoted \<" and read \less than" or \precedes". For

example, we can order a set of points in the 2-dimensional Euclidean space

by their x-coordinates.

Let S be a set and let u be an arbitrary element of a universal set of which
S is a subset. The fundamental operations occurring in set manipulation are:

� MEMBER(u; S): Is u 2 S?

� INSERT(u; S): Add the element u to the set S.

� DELETE(u; S): Remove the element u from the set S.

When the universal set is linearly ordered, the following operations are very

important:

� MINIMUM(S): Report the minimum element of the set S.

� SPLIT(u; S): Partition the set S into two sets S1 and S2, so that S1
contains all the elements of S which are less than or equal to u, and
S2 contains all the elements of S which are larger than u.

� SPLICE(S; S1; S2): Assuming that all elements in the set S1 are less

than any element in the set S2, form the ordered set S = S1 [ S2.

We will introduce a special data structure: 2-3 trees, which represent

sets of elements and support the above set operations e�ciently.

De�nition A 2-3 tree is a tree such that each non-leaf node has two or

three children, and every path from the root to a leaf is of the same length.

The proof of the following theorem is straightforward and left to the

reader.
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Theorem 2.3.1 A 2-3 tree of n leaves has height O(logn).

A linearly ordered set of elements can be represented by a 2-3 tree by

assigning the elements to the leaves of the tree in such a way that for any

non-leaf node of the tree, all elements stored in its �rst child are less than

any elements stored in its second child, and all elements stored in its second

child are less than any elements stored in its third child (if it has a third

child).

Each non-leaf node v of a 2-3 tree keeps three pieces of information for

the corresponding subtree.

� L(v) : the largest element stored in the subtree rooted at its �rst child.

� M(v) : the largest element stored in the subtree rooted at its second

child.

� H(v) : the largest element stored in the subtree rooted at its third

child (if it has one).

2.3.1 Member

The algorithm for deciding the membership of an element in a 2-3 tree is

given as follows, where T is a 2-3 tree, t is the root of T , and u is the element

to be searched in the tree.

Algorithm MEMBER(T, u)

BEGIN

IF T is a leaf node then report properly

ELSE IF L(t) >= u then MEMBER(child1(T), u)

ELSE IF M(t) >= u then MEMBER(child2(T), u)

ELSE IF t has a third child

THEN MEMBER(child3(T), u)

ELSE report failure.

END

Since the height of the tree is O(logn), and the algorithm simply follows a

path in the tree from the root to a leaf, the time complexity of the algorithm

MEMBER is O(logn).
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2.3.2 Insert

To insert a new elment x into a 2-3 tree, we proceed at �rst as if we were

testing membership of x in the set. However, at the level just above the

leaves, we shall be at a node v that should be the parent of x. If v has only

two children, we simply make x the third child of v, placing the children in

the proper order. We then adjust the information contained by the node v

to reect the new situation.

Suppose, however, that x is the fourth child of the node v. We cannot

have a node with four children in a 2-3 tree, so we split the node v into two

nodes, which we call v and v0. The two smallest elements among the four

children of v stay with v, while the two larger elements become children of

node v0. Now, we must inset v0 among the children of p, the parent of v.

The problem now is solved recursively.

One special case occurs when we wind up splitting the root. In that case

we create a new root, whose two children are the two nodes into which the

old root was split. This is how the number of levels in a 2-3 tree increases.
The above discussion is implemented as the following algorithms, where

T is a 2-3 tree and x is the element to be inserted.

Algorithm INSERT(T, x)

BEGIN

1. Find the proper node v in the tree T such that

v is going to be the parent of x;

2. Create a leaf node d for the element x;

3. ADDSON(v, d)

END

Where the procedure ADDSON is implemented by the following recursive

algorithm, which adds a child d to a non-leaf node v in a 2-3 tree.

Algorithm ADDSON(v, d)

BEGIN

1. IF v is the root of the tree, add the node d properly.

Otherwise, do the following.

2. IF v has two children, add d directly

3. ELSE

3.1. Suppose v has three children c1, c2, and c3. Partition c1,



DATA STRUCTURE 9

c2, c3 and d properly into two groups (g1, g2) and (g3, g4).

Let v be the parent of (g1, g2) and create a new node v' and

let v' be the parent of (g3, g4).

3.2. Recursively call ADDSON(father(v), v').

END

Analysis: The algorithm INSERT can �nd the proper place in the tree for

the element x in O(logn) time since all it needs to do is to follow a path

from the root to a leaf. Step 2 in the algorithm INSERT can be done in

constant time. The call to the procedure ADDSON in Step 3 can result in

at most O(logn) recursive calls to the procedure ADDSON since each call

will jump at least one level up in the 2-3 tree, and each recursive call takes

constant time to perform Steps 1, 2, and 3.1 in the algorithm ADDSON. So

Step 3 in the algorithm INSERT takes also O(logn) time. Therefore, the

overall time complexity of the algorithm INSERT is O(logn).

2.3.3 Minimum

Given a 2-3 tree T we want to �nd out the minimum element stored in

the tree. Recall that in a 2-3 tree the numbers are stored in leaf nodes

in ascending order from left to right. Therefore the problem is reduced to

going down the tree, always selecting the left most link, until a leaf node is

reached. This leaf node should contain the minimum element stored in the

tree. Evidently, the time complexity of this algorithm is O(logn) for a 2-3

tree with n leaves.

Algorithm MINIMUM(T, min)

BEGIN

IF T is a leaf THEN

min := T;

ELSE call MINIMUM(child1(T), min);

END

2.3.4 Delete

When we delete a leaf from a 2-3 tree, we may leave its parent v with only

one child. If v is the root, delete v and let its lone child be the new root.

Otherwise, let p be the parent of v. If p has another child, adjacent to v on
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either the right or the left, and that child of p has three children, we can

transfer the proper one of those three to v. Then v has two children, and we

are done.

If the children of p adjacent to v have only two children, transfer the lone

child of v to an adjacent sibling of v, and delete v. Should p now have only

one child, repeat all the above, recursively, with p in place of v.

Summarizing these discussions together, we get the algorithm DELETE,

as shown below. Where procedure DELETE() is merely a driver for sub-

procedure DEL() in which the actual work is done.

The variables done and 1son in DEL() are boolean ags used to indicate

successful deletion and to detect the case when a node in the tree has only

one child, respectively.

In the worst case we need to traverse a path in the tree from root to a

leaf to locate the node to be deleted, then from that leaf node to the root,

in case that every non-leaf node on the path has only two children in the

original 2-3 tree T . Thus the time complexity of DELETE algorithm for a

tree with n nodes is O(logn).

Algorithm DELETE(T, x)

BEGIN

Call DEL(T, x, done, 1son);

IF done is true THEN

IF 1son is true THEN T := child1(T)

ELSE x was not found in T, handle properly

END

Algorithm DEL(T, x, done, 1son)

BEGIN

1. IF children of T are leaves THEN process properly, i.e., if

x is found, delete it; update the variables done and 1son;

2. ELSE IN CASE OF

x <= L(T): son := child1(T);

L(T) < x <= M(T): son := child2(T);

M(T) < x <= H(T): son := child3(T);

3. Call DEL(son, x, done, 1son1);

4. IF 1son1 is true THEN

4.1. IF the node T has another child b that has three children,

THEN reorganize the grandchildren among the nodes son and
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b to make both have two children, and set 1son := false;

4.2. ELSE make the only child of the node son a child of a

sibling of it, and delete the node son from T. If T has

only one child then set 1son := true.

END

2.3.5 Splice

Splicing two trees into one big tree is a special case of the more general

operation of merging two trees. Splice assumes that all the keys in one of the

trees are larger than all those in the other tree. This assumption e�ectively

reduces the problem of merging the trees into \pasting" the smaller tree into

a proper position in the larger tree. \Pasting" the smaller tree is actually

no more than performing an ADDSON operation to a proper node in the

larger tree.

To be more speci�c, let T1 and T2 be 2-3 trees which we wish to splice into

the 2-3 tree T , where all keys in T1 are smaller than those in T2. Furthermore,
assume that the height of T1 is less than or equal to that of T2 so that T1 is
\pasted" to T2 as a left child of a leftmost node at the proper level in T2. In

the case where the heights are equal, both T1 and T2 are made children of

the common root T ; otherwise the proper level in T2 is given by

height(T2)� height(T1)� 1

It is clear that the algorithm SPLICE runs in time O(logn). In fact,

the running time is proportional to the height di�erence height(T2) �
height(T1)� 1.

The implementation of the algorithm SPLICE is given below.

Algorithm SPLICE(T, T1, T2)

{ Suppose that all elements in T1 are less than any elements in T2,

and that the height of T1 is at most that of T2. Other cases can

be dealt with similarly.}

BEGIN

IF height(T1) = height(T2)

THEN make T a parent of T1 and T2.

ELSE

WHILE height(T2)-1 > height(T1) DO
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T2 := child1(T2)

Call ADDSON(T2, T1).

END

2.3.6 Split

By splitting a given 2-3 tree T into two 2-3 trees, T1 and T2, at a given

element x, we mean to split the tree T in such a way that all elements in T

that are less than or equal to x go to T1 while the remaining elements in T
go to T2.

The idea is as follows: as the tree is searched for x, we store the subtrees
to the left and right of the traversed path (split path). For this purpose two

stacks are used, one for each side of the split path. As we go deeper into

T , subtrees are pushed into the proper stack. Finally, the subtrees in each

stack are spliced together to form the desired trees T1 and T2, respectively.
The algorithm is given as follows.

Algorithm SPLIT(T, x, T1, T2)

{Split T into T1 and T2 such that all elements in T1 are less

than or equal to x, and all elements in T2 are greater than x.

The stacks S1 and S2 are used to store the subtrees to the left

and right of the path in the 2-3 tree T from the root to the

leaf x, respectively.}

BEGIN

1. WHILE T is not leaf DO

IF x <= L(T) THEN

S2 <-- child3(T), child2(T);

T := child1(T);

IF L(T) < x <= M(T) THEN

S1 <-- child1(T); S2 <-- child3(T);

T := child2(T);

IF M(T) < x <= H(T) THEN

S1 <-- child1(T), child2(T);

T := child3(T);

{Reconstruct T1}

2. T1 <-- S1;

3. WHILE S1 is not empty DO

t <-- S1;

Call SPLICE(T1, t, T1);
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{Reconstruct T2}

4. T2 <-- S2;

5. WHILE S2 is not empty DO

t <-- S2;

Call SPLICE(T2, T2, t);

END

It is easy to see that the WHILE loop in Step 1 takes time O(logn). The

analysis for the rest of the algorithm is a bit more complicated. Note that

the use of the stacks S1 and S2 to store the subtrees guarantees that the

height of a subtree closer to a stack top is less than or equal to the height of

the subtree immediately deeper in the stack. A crucial observation is that

since we splice shorter trees �rst (which are on the top part of the stacks),

the di�erence between the heights of two trees to be spliced is always very

small. In fact, the total time spent on splicing all these subtrees is bounded

by O(logn). We give a formal proof as follows.

Assume that the subtrees stored in stack S1 are

t1; t2; � � � ; tr (2:1)

in the order from the stack top to stack bottom. Let h(t) be the height of
the 2-3 tree t. According to the algorithm SPLIT, we have

h(t1) � h(t2) � � � � � h(tr)

and no three consecutive subtrees in the stack have the same height. Thus,

we can partition sequence (1) into \segments" which contains the subtrees

of the same height in the sequence:

s1; s2; � � � ; sq

Each si either is a single subtree or consists of two consecutive subtrees of

the same height in sequence (1). Moreover, q � logn. Let h(si) be the

height of the subtrees contained in the segment si. We have

h(s1) < h(s2) < � � �< h(sq)

The WHILE loop in Step 3 �rst splices the subtrees in segment s1 into

a single 2-3 tree T
(1)
1 , then recursively splices the 2-3 tree T

(i�1)
1 and the

subtrees in segment si into a 2-3 tree T
(i)
1 , for i = 2; : : : ; q. We have the

following lemma.
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Lemma 2.3.2 For all i = 2; : : : ; q, we have

h(si�1) � h(T
(i�1)
1 ) � h(si) < h(si+1) < � � �< h(sq)

proof. That h(s1) � h(T
(1)
1 ) is fairly clear since T

(1)
1 is obtained by

splicing subtrees in the segment s1. For i > 2, since T
(i�1)
1 is obtained by

splicing the tree T
(i�2)
1 and the subtrees in si�1, and the subtrees in si�1 have

height h(si�1). Thus, the height of the 2-3 tree T
(i�1)
1 is at least h(si�1).

Now we prove the rest inequalities.

Since the 2-3 tree T
(1)
1 is obtained by splicing the subtrees in the segment

s1, and segment s1 contains at most two subtrees, both of height h(s1). Thus,

the height of the 2-3 tree T
(1)
1 is at most h(s1) + 1, which is not larger than

h(s2). Thus, the lemma is true for the case i = 2.

Now assume that the lemma is true for the case i� 1,

h(T
(i�1)
1 ) � h(si) < h(si+1) < � � � < h(sq)

We consider the height of the 2-3 tree T
(i)
1 .

If the segment si is a single subtree ti of height h(si), then splicing the

tree T
(i�1)
1 of height at most h(si) and the tree ti of height h(si) results in

a 2-3 tree T
(i)
1 of height at most h(si) + 1, which is not larger than h(si+1).

Now suppose that the segment si consists of two subtrees t0
i
and t00

i
of

height h(si). Since the height of the tree T
(i�1)
1 ) is at most h(si) by the

inductive hypothesis, splicing the trees T
(i�1)
1 ) and t0

i
results in a 2-3 tree T 0

of height at most h(si) + 1. Moreover, according the algorithm SPLICE, if

the height of T 0 is h(si) + 1, then the root of T 0 has only two children. Now

splice the trees T 0 and t00
i
into the 2-3 tree T

(i)
1 : If the height of the tree T 0

is smaller than h(si) + 1, then splicing T 0 and the subtree t00
i
of height h(si)

results in a tree T
(i)
1 of height at most h(si) + 1, which is not larger than

h(si+1). On the other hand, if the height of the tree T 0 is h(si) + 1, then

the root of T 0 has only two children, thus splicing T 0 and t00
i
will not create

a new root and the resulting tree T
(i)
1 has height h(si) + 1, again not larger

than h(si+1). This concludes that we always have

h(T
(i)
1 ) � h(si+1) < h(si+2) < � � � < h(sq)

This completes the induction proof and shows the correctness of the

lemma.
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Now we are ready for the following theorem

Theorem 2.3.3 The WHILE loop in Step 3 of the algorithm SPLIT takes

time O(logn).

proof. First we study the complexity of constructing the 2-3 tree T
(i)
1

from the 2-3 tree T
(i�1)
1 and the trees in the segment si. According to

Lemma 2.3.2, we have

h(T
(i�1)
1 ) � h(si)

Thus, if si is a single subtree ti, then according the analysis of the time

complexity of the algorithm SPLICE, the time of splicing T
(i�1)
1 and ti is

bounded by a constant times

h(si)� h(T
(i�1)
1 )

On the other hand, if si consists of two subtrees t0
i
and t00

i
, then the

time for splicing T
(i�1)
1 and t0

i
is again bounded by a constant times h(si)�

h(T
(i�1)
1 ). Moreover, note that the height of the resulting tree T 0 from

splicing T
(i�1)
1 and t0

i
is either h(si) or h(si) + 1, and that the height of

the subtree t00
i
is h(si). Thus, splicing T 0 and t00

i
takes only constant time.

Therefore, in this case, the total time to construct T
(i)
1 from T

(i�1)
1 and si is

bounded by a constant times

h(si)� h(T
(i�1)
1 ) + 1

Therefore, to construct the �nal 2-3 tree T
(q)
1 , the total time of the

WHILE loop in Step 3 is bounded by a constant times
qX

i=2

(h(si)� h(T
(i�1)
1 ) + 1)

By Lemma 2.3.2, we have h(si�1) � h(T
(i�1)
1 ). Thus, the time complexity

of the WHILE loop in Step 3 is bounded by a constant times
qX

i=2

(h(si)� h(si�1) + 1)

which is equal to h(sq) � h(s1) + q. Since all quantities h(sq), h(s1), and
q are bounded by log n, we conclude that the WHILE loop in Step 3 takes

time O(logn).

The same proof shows that the WHILE loop in Step 5 also takes time

O(logn). In conclusion, the algorithm SPLIT takes time O(logn).
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2.4 Geometric graphs in the plane

A graph G = (V;E) is planar if it can be embedded in the plane without

edge crossings.

A planar embedding of a planar graph G = (V;E) is a mapping of each

vertex in V to a point in the plane and each edge in E to a simple curve

between the two images of extreme vertices of the edge, so that no two images

of edges intersect except at their endpoints. The image of the mapping is

called a geometric graph in the plane.

If all edges of a geometric graph G are straight-line segments in the plane,

G is called a planar straight-line graph, or PSLG. A PSLG G determines in

general a subdivision of the plane. Each region R of the subdivision, together

with the edges of G that are on the boundary of R, forms a polygon in the

plane.

Euler's formula

Let v; e and f denote the number of vertices, edges and regions (including

the unbounded region) of a PSLG, respectively. The famous Euler's formula

relates these parameters by

v � e+ f = 2

if we have an additional property that each vertex has degree at least 3

then we can prove the following relations:

v � 2

3
e

e � 3f � 6

f � 2

3
e

v � 2f � 4

e � 3v � 6

f � 2v � 4

That is, we have

�(v) = �(e) = �(f)

Therefore, for a planar graph, the number of vertices, the number of edges,

and the number of regions are all linearly related.
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Figure 2.1: The planar imbedding of K4

Doubly Connected Edge List (DCEL)

Given a planar imbedding I of the complete graph K4, as depicted in Fig-

ure 2.1, what information should we keep for this imbedding? Of course, the

set of vertices, and the set of edges of K4 should be kept. Moreover, it is

also necessary to keep the information about the regions of the imbedding I .
To represent the information of the regions, we must know which edge will

follow which edge when we travel around a vertex counterclockwise, i.e., we

must know the cyclic ordering for the edges incident on each vertex of the

imbedding I .

The Doubly Connected Edge List (DCEL) is an e�cient data structure

to represent a PSLG. The main component of DCEL for a PSLG G is the

edge node. There is a one-to-one correspondence between the edges of G
and edge nodes in the corresponding DCEL. An edge node consists of four

information �elds V 1; V 2; F1 and F2, and two pointer �elds P1 and P2.
The �elds V 1 and V 2 contain the starting vertex and ending vertex of the

edge, respectively. (So we give each edge of the PSLG G an orientation.

This orientation can be de�ned arbitrarily.) The �elds F1 and F2 contain

the names of the regions which lie respectively to the left and right of the

edge oriented from V 1 to V 2. The pointer P1 (or P2) points to the edge

node containing the �rst edge encountered after the edge (V 1; V 2) when one
proceeds counterclockwise around V 1 (or V 2). Therefore, the edge P1 is the
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edge following the edge (V 1; V 2) at the vertex V 1, while the edge P2 is the
edge following the edge (V 1; V 2) at the vertex V 2 in the imbedding I(G).

The following is the DCEL for the PSLG, which is the complete graph

K4 in Figure 2.1.

V 1 V 2 F1 F2 P1 P2

e1 v2 v1 f4 f1 e6 e3
e2 v1 v3 f4 f2 e1 e5
e3 v1 v4 f2 f1 e2 e4
e4 v4 v2 f3 f1 e5 e1
e5 v3 v4 f3 f2 e6 e3
e6 v2 v3 f3 f4 e4 e2

Note that the space used by a DCEL to represent a PSLG is linear to

the number of edges of the PSLG.

Suppose that the set of vertices of a PSLG G is fv1; � � � ; vng, and the set

of regions of G is ff1; � � � ; fmg. We have another two arrays HV [1::n] and

HF [1::m], where HV [i] points to an edge node in the DCEL such that one

edge end of the corresponding edge is vi, for i = 1; � � � ; n, and HF [j] points
to an edge node on the DCEL such that the corresponding edge is on the

boundary of the region fj , for j = 1; � � � ; m.

Using DCEL of G we can travel the boundary of each region of G or the

edges incident on a vertex of G. The following is an algorithm for traveling

the boundary of a region when the DCEL of G is given. (The algorithm for

traveling the edges incident on a vertex of G is given in [23].)

Algorithm TRACE-REGION(i)

{ Trace the boundary edges of the region i. }

BEGIN

1. a := HF[i];

2. a0 := a;

3. IF (DCEL[a][F1] = i) THEN

a := DCEL[a][P1];

ELSE a := DCEL[a][P2];

4. WHILE (a <> a0) DO

IF (DCEL[a][F1] = i) THEN

a := DCEL[a][P1]

ELSE a := DCEL[a][P2];

END.



GEOMETRIC GRAPHS 19

For example, if we start with HF [3] = 4, and use the DCEL for the

planar imbedding I of the complete graph K4, then we will get the region

f3 as e4, e5, and e6.
Note that if the rotation of edges incident on each vertex of the PSLG G

is given in counterclockwise order in a DCEL, then the regions are traveled

clockwise by the above algorithm. On the other hand, if the rotation of edges

incident on each vertex of the PSLG G is given in clockwise order in a DCEL,

then the regions are traveled counterclockwise by the above algorithm. Given

a PSLG G, it is easy to see that a DCEL for G in which the rotation of

edges incident on each vertex of G is given in counterclockwise order can be

transformed in linear time into a DCEL for G in which the rotation of edges

incident on each vertex of G is given in clockwise order, and vice versa. The

detailed implementation of this transformation is straightforward and left to

the reader as an exercise.
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Chapter 3

Geometric Preliminaries

According to the nature of the geometric objects involved, we can identify

basically �ve categories into which the entire collection of geometric problems

can be conveniently classi�ed, i.e., convexity, proximity, geometric searching,

intersection, and optimization.

In this chapter, we will give the precise de�nitions of these problems

and give an \intuitive" discussion on the mathematical background of them.

Some of our statements and proofs are informal. This is because of the fact

that some geometric theorems are \intuitively obvious" but no easy proofs

are known though many great mathematicians have tried. An example is

the following famous \Jordan Curve Theorem", which will actually serve as

a fundamental basis for all of our discussions.

Jordan Curve Theorem Let C be a simple closed curve in the
plane, then the plane is subdivided into an interior region and an

exterior region such that every curve connecting a point in the

interior region and a point in the exterior region must intersect

the curve C.

The k-dimensional Euclidean space Ek is the space of all k-tuples

(x1; � � � ; xk) of real numbers xi, 1 � i � k. The distance between two points

p1 = (x1; � � � ; xk) and p2 = (y1; � � � ; yk) in the k-dimensional space is de�ned

by

d(p1; p2) = (
kX
i=1

jyi � xij2)
1=2

21
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The line passing through the points p1 and p2 can be parameterized by

�p1 + (1� �)p2

where � ranges over the reals. If we restrict � to the interval [0, 1], then we

have a representation for a line segment, denoted p1p2, with the points p1
and p2 as its extreme points.

More generally, suppose k + 1 independent points p0, p1, � � �, pk belong

to a k-dimensional hyperplane. Then the hyperplane is parameterized by

�0p0 + �1p1 + � � �+ �kpk

where
P

k

i=0 �i = 1. If we further restrict all �i � 0, then we have the

representation for a simplex on k + 1 points.

Given a triangle � with edges A, B and C, the angle � between the two

edges B and C can be obtained by the following formula:

� = arccos
jBj2 + jCj2 � jAj2

2 � jBj � jCj (3:1)

where jAj, jBj, and jCj denote the lengths of the edges A, B, and C, respec-
tively.

Suppose that � is a triangle in the plane E2 with the vertices p1 =

(x1; y1), p2 = (x2; y2) and p3 = (x3; y3). Then the signed area of � is half of

the determinant

D(p1; p2; p3) =

�������
x1 y1 1

x2 y2 1

x3 y3 1

������� (3:2)

where the sign is positive if (p1p2p3) form a counterclockwise cycle, and

negative if (p1p2p3) form a clockwise cycle. We say that the path from point

p1 through the line segment p1p2 to point p2 then through the line segment

p2p3 to point p3 is a left turn if D(p1; p2; p3) is positive, otherwise, we say

the path makes a right turn.

With the formulas (8.1) and (8.3), given three points p1, p2, and p3 in

the plane E2, we can determine completely the value of the angle from the

line segment p1p2 to the line segment p1p3 (denote this angle by 6 p2p1p3).

A line L on the plane can be represented by a linear equation:

Ax+By + C = 0
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such that a point p = (x; y) is on the line if and only if the coordinates of p
satisfy the equation. A half plane de�ned by the line L can be represented

by either

Ax+By + C � 0

or

Ax+By + C � 0

3.1 Convex hulls

A subset L � Ek is a convex set if for every pair p1, p2 of points in L, the
line segment p1p2 is entirely in L.

Theorem 3.1.1 The intersection of convex sets is convex.

proof. Let Si, i = 1; 2; � � � ; be convex sets. Denote by S the intersection

of all these Si's. We prove that S is again convex.

Let p1 and p2 be two points in S. Since S is the intersection of all Si's,
p1 and p2 are also points in each set Si, i = 1; 2; � � �. Since each Si is convex,
by de�nition, the entire line segment p1p2 is in Si, for i = 1; 2; � � �, thus in
the intersection S of all these Si's.

De�nition Let L � Ek. The convex hull CH(L) of L is the smallest

convex set containing L.

Given n points in the plane, we want to �nd their convex hull. This

problem is as fundamental to computational geometry as sorting to general

algorithms. It is also a vehicle for the solution of a number of apparently

unrelated questions arising in computational geometry. The construction of

the convex hull of a �nite set of points has also found applications in many

areas, such as in pattern recognition, in image processing, in Robotics, and

in stock cutting and allocation.

Theorem 3.1.2 Let L � Ek. The convex hull CH(L) of L equals the inter-

section of all convex sets containing L in Ek.

proof. Let S be the intersection of all convex sets containing L in Ek.

By theorem 3.1.1, S is convex, and obviously contains L. Now we prove that
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S is the smallest such set. Let S0 be an arbitrary convex set containing L.
Then by the de�nition of S, S is the intersection of S0 and other convex sets

containing L, therefore, S is a subset of S0. That is, S is contained in every

convex set containing L, so S is the smallest such set.

A polygon in Ek is a �nite set of line segments satisfying the following

two conditions:

1. every endpoint is shared by exactly 2 line segments; and

2. no proper subset has Property 1.

Now we study our problems in the plane E2, i.e., the 2-dimensional

Euclidean space.

Given a polygon P in the plane E2, P is a simple polygon if there is no

pair of nonconsecutive edges sharing a point. For any simple polygon in the

plane, we can apply the Jordan Curve Theorem to divide the plane into the

interior and the exterior of the simple polygon. For a simple polygon P ,
we will use P to refer to either the boundary of P , or the boundary plus

the interior of P . The reader should not be confused from the contents.

A polygon P is called a convex polygon if P is a simple polygon and the

boundary plus the interior of P is a convex set in E2.

Theorem 3.1.3 The convex hull of a �nite set S of points in E2 is a simple

polygon. Moreover, each hull vertex must be a point in the set S.

proof. We give an informal, but intuitive proof here. A formal proof can

be found in [17].

1. The convex hull CH(S) of the �nite set S must be connected. Other-

wise, let p1 and p2 be two points in two distinct connected components

of CH(S). Then the line segment p1p2 would not be entirely in CH(S).

2. The convex hull CH(S) must be a bounded area. In fact, since S
consists of �nite number of points, we must be able to draw a circle C

of a �nite radius in the plane such that all points of S are inside C.
The circle C is obviously convex. Now by de�nition, the convex hull

CH(S) is contained in the circle C.

3. Let p1 and p2 be two points in S such that all points of S are on

one side of the straight line through p1 and p2, then the line segment
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p1p2 is on the boundary of the convex hull CH(S). First of all, the line

segment p1p2 must be contained in CH(S). Moreover, since the half

plane H1 determined by the straight line through points p1 and p2 and
containing all points of S is a convex set containing the set S, so the

convex hull CH(S) is contained in H1. Therefore, no point on the other

side of the line segment p1p2 can be in CH(S). That is, p1p2 is on the

boundary of the convex hull CH(S).

4. All points on the boundary of CH(S) must be on a line segment p1p2,
where p1 and p2 are points in the set S. Suppose that p is not such

a point and p is on the boundary of CH(S). If we \slightly" move the

part of the boundary of CH(S) near the point p so that the resulting

area is properly contained in CH(S), is still convex, and contains all

points in the set S, then we get a convex set that contains all points

of the set S, and is \smaller" than CH(S), contradicting the de�nition

of convex hulls.

Therefore, the boundary of the convex hull CH(S) must consist of a

�nite set G of line segments of which the end-points are points in the set

S. Suppose that a line segment p1p2 is on the boundary of CH(S). Without

loss of generality, we can suppose that the points of the set S are on our left

when we travel along the straight line L through p1 and p2 in the direction

from p1 to p2. Now if we rotate the line L counterclockwise around the point

p2, the line L will eventually hit a �rst point p3 of the set S. It is obvious

to see that now the line segment p2p3 is also on the boundary of CH(S).

Moreover, there is no other point p in S that can make the line segment p2p

on the boundary of CH(S) if we assume that no three points in the set S are

co-linear (the proof can be modi�ed properly for the general case), since the

points p1 and p3 must lie on di�erent sides of the straight line through p2p.
Now based on the new line and the hull vertex p3, we can �nd the next hull

vertex, etc.. This process must be stopped eventually since there are only

�nite number of points in the set S. Therefore, we will eventually hit a point
p in the set S that has been decided earlier to be a hull vertex. The point p

must be the point p1 since all other hull vertices found have already had the

two line segments incident on them, which are on the boundary of CH(S).

Therefore, we have enclosed the points of the set S by a closed simple cycle,

which is a simple polygon P = fp1; p2; � � � ; pkg. No point p in the interior of

P can be on the boundary of CH(S) since any straight line through the point

p will intersect with a boundary edge of the polygon P , thus have points in
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the set S on both of its sides. Therefore, the simple polygon P is the convex

hull CH(S).

3.2 Proximity problems

The examples of proximity problems include CLOSEST-PAIR, ALL-

NEAREST-NEIGHBORS, EUCLIDEAN-MINIMUM-SPANNING-TREE,

TRIANGULATION, and MAXIMUM-EMPTY-CIRCLE.

Proximity problems arise in many applications where physical or math-

ematical objects are represented as points in space. Examples include the

following:

� clustering: a number of entities are grouped together if they are suf-

�ciently close to one another;

� classi�cation: a new pattern to be classi�ed is assigned to the class of

its closest (classi�ed) neighbor; and

� air-tra�c control: the two airplanes that are closest are the two most

in danger.

We will restrict ourselves to 2-dimensions. The input to these problems

is a set S of n points in the plane. The distance between points in S will be

the Euclidean distance between the points.

� CLOSEST-PAIR

Find a pair of points in the set S which are closest.

� ALL-NEAREST-NEIGHBORS

For every point in the set S, �nd a point that is nearest to it.

� EUCLIDEAN-MINIMUM-SPANNING-TREE

Find an interconnecting tree of minimum total length whose vertices

are the points in the set S.

� TRIANGULATION

Join the points in the set S by non-intersecting straight line segments

so that every region interior to the convex hull of S is a triangle.
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Figure 3.1: The points that are closer to pi than to pj

� MAXIMUM-EMPTY-CIRCLE

Find a largest circle containing no points of the set S yet whose center

is interior to the convex hull of S.

The problems posed above are related in the sense that they all deal with

the respective distances among points in the plane. In the following, we will

introduce a single geometric structure, called the Voronoi diagram, which

contains all of the relevant proximity information in only linear space.

Let us get some motivation from the CLOSEST-PAIR problem. Let S
be a set of n points in the plane. For any two points pi and pj in S, the set of
points closer to pi than to pj is just the half-plane containing pi that is de�ned

by the perpendicular bisector of the segment pipj . See Figure 3.1. Denote

this half-plane by H(pi; pj) (note that H(pi; pj) 6= H(pj; pi)). Therefore, the

set Vi of points in the plane that are closer to the point pi than to any other

points in the set S is the intersection of the setsH(pi; pj) for all pj 2 S�fpig

Vi =
\

j 6=i
H(pi; pj)

Each H(pi; pj) is a half-plane so it is convex. By Theorem 3.1.1, the set

Vi, which is the intersection of these convex sets H(pi; pj), is also convex. It
is also easy to see that the set Vi is in fact a convex polygonal region. Observe



28 GEOMETRIC PRELIMINARIES

that every point in the plane must belong to some region Vi. Moreover, no

set Vi can be empty since all points in a small enough disc centered at the

point pi must be in Vi.
Thus these n convex polygonal regions V1, V2, � � �, Vn partition the plane

into a convex net. Motivated by this discussion, we introduce the following

de�nition.

De�nition A Voronoi diagram of a set S = fp1; � � � ; png of n planar points

is a partition of the plane into n regions V1, V2, � � �, Vn such that any point

in the region Vi is closer to the point pi than to any other point in the set

S.

The convex polygonal region Vi is called the Voronoi polygon of the point

pi in S. The vertices of the diagram are called Voronoi vertices and the line

segments of the diagram are called Voronoi edges. The Voronoi diagram of

a set S is denoted by Vor(S). Note that Voronoi vertices are in general not

the points in the set S.

3.3 Intersections

Intersection problems and their variations arise in many disciplines, such as

architectural design, computer graphics, pattern recognition, etc. An archi-

tectural design cannot place two interpenetrable objects to share a common

region. When displaying objects on a 2-dimensional display device, obscured

portions (or intersecting portions) should be eliminated to enhance realism,

a long standing problem known as hidden line/surface elimination problem

[19]. In integrated circuit design two distinct components must be separated

by a certain distance, and the detection of whether or not the separation

rule is obeyed can be cast as an instance of intersection problems; since the

task may involve thousands of objects, fast algorithms for detecting or re-

porting intersecting or overlapping objects are needed. Another motivation

for studying the complexity of intersection algorithms is that light may be

shed on the inherent complexity of fundamental geometric problems. For

example, how di�cult is it to decide if a given polygon with n vertices is

simple or how much time is needed to determine if any two of n given objects

in the plane, such as polygons, line segments, etc., intersect?

We list a few typical geometric intersection problems.

� SEGMENT INTERSECTION
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Given n line segments in the plane, �nd all intersections.

� HALF-PLANE INTERSECTION

Given n half-planes in the plane, compute their common intersection.

� POLYGON INTERSECTION

Given two polygons P and Q with m and n vertices, respectively, com-

puter their intersection.

3.4 Geometric searching

This geometric problem is well motivated by the following Post O�ce Prob-

lem proposed by Knuth [14]: Given a �xed map of n post o�ces, for an

arbitrary query point, which is the nearest post o�ce? The solution to this

problem is simple: compare the distance between the query point and each

post o�ce and �nd the nearest one. The time complexity of this algorithm

is obviously O(n). It is also easy to see that to �nd the nearest post o�ce, at

least n comparisons are needed, since if the algorithm does not compute the

distance between the query point and some post o�ce, then we are always

able to construct an input instance such that the query point is closest to the

uncompared post o�ce so that the algorithm outputs an incorrect answer.

Therefore, for a single query point, the above simple algorithm is actually

optimal.

On the other hand, suppose that we have, say, n query points and we

are asking the nearest post o�ce for each query point. If we again apply

the above algorithm, then it takes time O(n) to �nd the nearest post o�ce

for each query point, so totally we need time O(n2) to �nd the nearest post

o�ces for all query points. Now it seems that the time O(n2) is not necessary.
For example, after we have computed the distance between the �rst query

point and each of the post o�ce and found the nearest post o�ce for the

�rst query point, it seems that we can save some information about the post

o�ces and use this information to speed up the computation of nearest post

o�ce for the latter query points. Even more cleverly, we can �rst organize

the post o�ces into an easy-search structure such that searching the nearest

post o�ce for each query point can be done very e�ciently on the organized

structure.

One candidate of these smart structures is the Voronoi diagram, intro-

duced in Section 2.2. Given n post o�ces, regarding them as a set S of n
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points in the plane, we �rst construct the Voronoi diagram Vor(S) for the

set S. Then �nding the nearest post o�ce for a query point is reduced to

locating the query point in a Voronoi polygon of Vor(S).

This is a typical geometric searching problem, called point location prob-

lem: Suppose that we have a subdivision G of the plane and we want to know

in which region of G a given query point is located. In the simplest case, we

have only one query point. Then we can search the point in each region of

G directly to �nd the region containing the point. A one-time query of this

type is called single shot. However, we may have many query points and

want to �nd the containing region for each query point. Such queries are

called repetitive-mode queries.

In the case of repetitive-mode queries, it may be worthwhile to arrange

the subdivision G into a more organized structure to facilitate searching.

Therefore, when we are considering the problem of repetitive-mode queries,

we are interested in three computational resources: the preprocessing time

that is used to convert the given subdivision G into an organized structure,

the storage that is used to store the organized structure, and the query time

that is needed to locate each query point.

Suppose that the input subdivision G has n vertices. In general, we

cannot expect that the preprocessing time is less than O(n) since even read-

ing the input subdivision G takes time 
(n). Similarly, we cannot expect

that the storage used for the organized structure is less than O(n) since

even storing the unorganized structure, the subdivision G itself needs 
(n)
space. Finally, as pointed out by Knuth [14], any algorithm for searching

an ordered table of length n by means of comparisons can be represented

as a binary tree of n leaves, thus in the worst case, the searching time is at

least 
(logn). While the point location problem is clearly a generalization

of searching, we conclude that the query time of the point location problem

is at least 
(logn).
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Geometric Sweeping

Geometric sweeping technique is a generalization of a technique called plane

sweeping, that is primarily used for 2-dimensional problems. In most cases,

we will illustrate the technique for 2-dimensional cases. The generalization

to higher dimensions is straightforward. This technique is also known as the

scan-line method in computer graphics, and is used for a variety of applica-

tions, such as shading, polygon �lling, among others.

The technique is intuitively simple. Suppose that we have a line in the

plane. To collect the geometric information we are interested in, we slide

the line in some way so that the whole plane will be \scanned" by the line.

While the line is sweeping the plane, we stop at some points and update our

recording. We continue this process until all interesting objects are collected.

There are two basic structures associated with this technique. One is for

the sweeping line status, which is an appropriate description of the relevant

information of the geometric objects at the sweeping line, and the other is

for the event points, which are the places we should stop and update our

recording. Note that the structures may be implemented in di�erent data

structures under various situations. In general, the data structures should

support e�cient operations that are necessary for updating the structures

while the line is sweeping the plane.

4.1 Intersection of line segments

The geometric sweeping technique can be best illustrated by the following

example. Recall the SEGMENT INTERSECTION problem:

Given n line segments in the plane, �nd all intersections.

31
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Suppose that we have a vertical line L. We sweep the plane from left

to right. At every moment, the sweeping line status contains all segments

intersecting the line L, sorted by the y-coordinates of their intersecting points
with L. The sweeping line status is modi�ed whenever one of the following

three cases occurs:

1. The line L hits the left-end of a segment S. In this case, the segment S

was not seen before and it may have intersections with other segments

on the right side of the line L, so the segment S should be added to

the sweeping line status;

2. The line L hits the right-end of a segment S. In this case, the segment

S cannot have any intersections with other segments on the right side

of the line L, so the segment S can be deleted from the sweeping line

status;

3. The line L hits an intersection of two segments S1 and S2. In this

case, the relative positions of the segments S1 and S2 in the sweeping

line status should be swapped, since the segments in the sweeping line

status are sorted by the y-coordinates of their intersection points with

the line L.

It is easy to see that the sweeping line status of the line L will not be

changed when it moves from left to right unless it hits either an endpoint

of a segment or an intersection of two segments. Therefore, the set of event

points consists of the endpoints of the given segments and the intersection

points of the segments. We sort the event points by their x-coordinates.

We use two data structures EVENT and STATUS to store the event

points and the sweeping line status, respectively, such that the set opera-

tions MINIMUM, INSERT, and DELETE can be performed e�ciently (for

example, they can be 2-3 trees). At very beginning, we suppose that the line

L is far enough to the left so that no segments intersect L. At this moment,

the sweeping line status is an empty set. We sort all endpoints of the seg-

ments by their x-coordinates and store them in EVENT. These are the event

points at which the line L should stop and update the sweeping line status.

However, the list is not complete since an intersection point of two segments

should also be an event point. Unfortunately, these points are unknown to

we at beginning. For this, we update the structure EVENT in the following

way. Whenever we �nd an intersection point of two segments while the line

L is sweeping the plane, we add the intersection point to EVENT. But how
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do we �nd these intersection points? Note that if the next event point to be

hit by the sweeping line L is an intersection point of two segments S1 and

S2, then the segments S1 and S2 should be adjacent in the sweeping line

status. Therefore, whenever we change the adjacency relation in STATUS,

we check for intersection points for new adjacent segments. When the line

L reaches the left-most endpoint of the segments, all possible intersection

points are collected.

These ideas are summarized by the following algorithm.

Algorithm SEGMENT-INTERSECTION

Given: n segments S1, S2, ... Sn

Output: all intersections of these segments

{ Implicitly, we use a vertical line L to sweep the plane. At any

moment, the segments intersecting L are stored in STATUS, sorted

by the y-coordinates of their intersection points with the line

L. The event points stored in EVENT are sorted by their x-coor-

dinates }

BEGIN

1. Sort the endpoints of the segments and put them in EVENT;

2. STATUS = {};

3. WHILE EVENT is not empty DO BEGIN

p = MINIMUM(EVENT);

DELETE p from EVENT;

IF p is a right-end of some segment S

Let Si and Sj be the two segments adjacent to S in STATUS;

IF p is an intersection point of S with Si or Sj

REPORT(p);

DELETE S from STATUS;

IF Si and Sj intersect at p1 and x(p1) >= x(p)

INSERT p1 into EVENT

ELSE IF p is a left-end of some segment S

INSERT S into STATUS;

Let Si and Sj be the adjacent segments of S in STATUS;

IF p is an intersection point of S with Si or Sj

REPORT(p);

IF S intersects Si at p1, INSERT p1 into EVENT;

IF S intersects Sj at p2, INSERT p2 into EVENT

ELSE IF p is an intersection point of segments Si and Sj

such that Si is on the left of Sj in STATUS
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REPORT(p);

swap the positions of Si and Sj in STATUS;

Let Sk be the segment left to Sj and let Sh be the segment

right to Si in STATUS;

IF Sk and Sj intersect at p1 and x(p1) > x(p)

INSERT p1 into EVENT;

IF Sh and Si intersect at p2 and x(p2) > x(p)

INSERT p2 into EVENT;

END; {WHILE}

END.

Let us analyze the algorithm. Step 1, sorting the 2n endpoints of the

segments, can be done in time O(n logn), if we employ an e�cient sorting

algorithm, for example, the MergeSort. Step 2 takes constant time O(1). To
count the time spent by the WHILE loop, suppose there are m intersection

points for these n segments. In the WHILE loop, each segment is inserted

then deleted from the structure STATUS exactly once, and each event point

is inserted then deleted from the structure EVENT exactly once. There are

n+m event points. If we suppose that the operations MINIMUM, INSERT,

and DELETE can all be done in time O(logN) on a set of N elements, then

processing each segment takes at most O(logn) time, and processing each

event point takes at most O(log(n+m)) time. Therefore, the algorithm runs

in time

O(n logn) + O(1) + n �O(logn) + (n+m)�O(log(n+m))

= O((n+m) log(n +m))

Observe that m is at most n2, so log(n + m) = O(logn). Thus we

conclude that the algorithm SEGMENT-INTERSECTION runs in time

O((n+m) logn).

We remark that the time complexity of the above algorithm depends on

the number m of intersection points of the segment and the algorithm is

not always e�cient. For example, when the number m is of order 
(n2),

then the algorithm runs in time O(n2 logn), which is even worse than the

straightforwardmethod that picks every pair of segments and computes their

intersection point. On the other hand, if the number m is of order 
(n),
then the algorithm runs e�ciently in time O(n logn).
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4.2 Constructing convex hulls

4.2.1 Jarvis's March

We start with a most straightforward method, Jarvis's March, which is also

known as gift wrapping method.

The idea is based on the observation we gave in the proof of Theo-

rem 3.1.3. Given a set S of n points in the plane, suppose we move a

straight line L sweeping the plane until L hits a point p1 of S. The point

p1 must be on the boundary of the convex hull CH(S) of S since at this

moment, all points of S are in one side of the line L and the point p1 is on
the line L. Now we rotate the line L around the point p1, say counterclock-

wise, until L hits another point p2 of S. The segment p1p2 is then on the

boundary of the convex hull CH(S) since again all points of S are in one side

of the line L and the segment p1p2 is on the line L. Now we rotate the line

L around p2 counterclockwise until L hits a third point p3 of S, then the

line segment p2p3 is the second boundary edge of CH(S), ........ Continue

this process until we come back to the �rst point p1. The convex hull CH(S)

then is constructed.

This process can also be regarded as a \wrapping" process. Suppose we

�x an end of a rope on a point p1 that is known to be a hull vertex. Then

we try to \wind" the points by the rope (or \wrap" the points by the rope).

The rope obviously gives us the boundary of the convex hull when it comes

back to the point p1.

There are a few things we should mention in the above process. First of

all, the sweeping manner is special: the line L is rotated around a point in

the plane; secondly, the sweeping line status is very simple: it contains at

any moment a single point that is the hull vertex most recently discovered;

�nally, the even points are the hull vertices.

Let us study the above process in detail. Suppose at some moment in the

middle of the process, the consecutive hull vertices which have been found

are p1, p2, � � �, pi. What point should be the next hull vertex? Obviously, the

point pi+1 �rst touched by the rope should be it, when we rotate the rope

around the point pi. That is, the angle 6 pi�1pipi+1 should be the largest.

We implement this idea into the following algorithm.

Algorithm JARVIS'S MARCH

Given: a set S of n points in the plane
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Output: the convex hull CH(S) of S

BEGIN

Let p(1) be the point in the set S that has the smallest

y-coordinate;

Let p(2) be the point in the set S such that the slope of

the line segment p(1)-p(2) is the smallest, with respect

to the x-axis;

PRINT(p(1), p(2));

i := 2 ;

WHILE p(i) <> p(1) DO

Let p(i+1) be the point in the set S such that the angle

<p(i-1)p(i)p(i+1) is the largest;

i := i + 1 ;

PRINT(p(i));

END.

Time complexity of Jarvis's March

Suppose there are k hull vertices in CH(S). The points p1 and p2 are

obviously hull vertices. Moreover, it is also clear that to �nd the points p1
and p2 takes time O(n), assuming S has n points. To �nd each next hull

vertex pi+1, we check the angle 6 pi�1pip for each point p in the set S. Thus
Step 4 spends time O(n) on each hull vertex. Therefore, Jarvis's March runs

in time O(kn).

If k is small compared with n, for instance, if k is bounded by a constant,

then Jarvis's March runs in linear time. However, if k is larger, such as

k = 
(n), then the time complexity of Jarvis's March is 
(n2).

4.2.2 Graham Scan

Look at Jarvis's algorithm. Each time based on the most recent hull vertex

p and the most recent hull edge e, we �nd the next hull vertex by choosing

the point p0 which makes the angle between e and pp0 largest. To �nd such

a point p0, we have to compute the angle between the segments e and pq for

all points q in the set S. For each hull vertex, we have to perform this kind

of computations. Therefore, in this process, even though we have found out

that a point p is not quali�ed for the next hull vertex, we still cannot exclude

the possibility that the point p is quali�ed for a later hull vertex. This is the

reason that we have to consider the point again and again. A point can be

considered up to n times in the worst case. A possible improvement is that



CONVEX HULLS 37

we presort the set of points in some way so that once we �nd that a point is

not quali�ed for the next hull vertex, then we can exclude the point forever.

For example, let p0, p1 and p2 be three distinct hull vertices of the convex
hull CH(S) for the set S. Suppose that the line segment p1p2 is known to be

on the boundary of the convex hull CH(S). Then the line segments p0p for

all points p of S that are between the angle 6 p1p0p2 should be entirely in the

triangle �p0p1p2. Therefore, if we start with the point p1, scan the points of
the set S, based on the point p0, counterclockwise, and keep a record for the

length of the line segment p0p for each point of S we have visited, then once

we reach the point p2, we can eliminate all points we have visited between

the points p1 and p2. This elimination is permanent, i.e., once a point is

eliminated, it will be ignored forever.

This idea is implemented by the following well-known algorithm, known

as Graham Scan algorithm.

Algorithm GRAHAM SCAN

Given: a set S of n points in the plane

Output: the convex hull CH(S) of S

{St is a stack}

BEGIN

1. Let p(0) be the point in S that has the smallest y-coordinate.

{ Without loss of generality, we can suppose that p(0) is the

origin, otherwise, we make a coordinate transformation }

2. Sort the points in the set S - p(0) by their polar angles.

Let the sorted list of the points be

L' = { p(1), p(2), ..., p(n-1) }

{in increasing polar angle ordering.}

3. Let

L = { p(1), p(2), ..., p(n-1), p(n) }

where p(n) = p(0);

q(1) = p(0); q(2) = p(1); PUSH(St, q(1));

PUSH(St, q(2)); i = 2; j = 2;

4. WHILE i <= n DO

IF q(j-1)q(j)p(i) is a left turn

THEN q(j+1) = p(i);

PUSH(St, q(j+1));

i++;

j++
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ELSE POP(St);

j--;

END.

In Graham Scan, the sweeping line rotates around a �xed point p0. All
points in the set S are event points. Since the event points are presorted in

Step 2, it takes only constant time to �nd the next event point in the sorted

list L. This makes Graham Scan very e�cient.

Let us consider the time complexity of the algorithm in detail. Step 1 can

be done by comparing the y-coordinates of all points in the set S, thus it takes
time O(n); Step 2 can be done by any O(n logn) time sorting algorithm, for

example, MergeSort; Step 3 obviously takes constant time. To discuss the

time complexity of the loop in Step 4, observe that each point of the set

S can be pushed into the stack St and then popped out of the stack at

most once. Whenever a point is popped out from the stack, it will never

be considered any more. Therefore, there are at most 2n stack pushes and

pops. Now each execution of the loop in Step 4 either pushes a point into the

stack (Step 4.2) or pops a point out the stack (Step 4.3). Thus the loop is

executed at most 2n times. Since each execution of the loop obviously takes

constant time, we conclude that the total time taken by Step 4 is bounded

by O(n).

Therefore, the time complexity of Graham Scan is O(n logn).

We remark that most of the time in Graham Scan algorithm is spent on

Step 2's sorting. Besides sorting, Graham Scan runs in linear time.

The Step 2 in Graham Scan sorts the points in the given set S by their

polar angles. This involves in trigonometric operations. Although we have

assumed that our RAMs can perform trigonometric operations in constant

time, trigonometric operations can be very time consuming in a real com-

puter. We present a modi�ed version of Graham Scan which avoids using

trigonometric operations.

The idea is as follows. Suppose we are given a set S of n points in the

plane. We add a new point p0 to the set S such that p0's y-coordinate is

smaller than that of any point in the set S. Then we perform Graham Scan

on this new set. Draw a line segment p0p for each point p in the set S. It

can be easily seen that if the point p0 moves toward the negative direction

of the y-axis, these line segments are getting more and more parallel each

other. Imagining that eventually p0 reaches the in�nite point along the

negative direction of the y-axis, then all these line segments become vertical
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rays originating from the points of the set S. Now the ordering of the polar

angles of the points of S around p0 is identical with the ordering of the

x-coordinates of these points. (In fact, p0 does not have to be the in�nite

point, when p0 is far enough from the set S, the above statement should

be true.) Therefore, the convex hull of the new set can be constructed by

�rst sorting the points in S by their x-coordinates instead of their polar

angles. It is also easy to see that the convex hull of the new set consists of

two vertical rays, originating from the two points pmin and pmax in the set

S with smallest and largest x-coordinates, respectively, and the part UH of

the convex hull of the original set S. This part UH of the convex hull CH(S)

is in fact the upper hull of CH(S) in the sense that all points of the set S lie

between the vertical lines x = xmin and x = xmax and below the part UH .

Similarly, the lower hull of the convex hull CH(S) can be constructed by the

idea of adding an in�nite point in the positive direction of the y-axis. The
convex hull CH(S) is simply the circular catenation of the upper hull and

the lower hull.

Now we give the formal algorithm as follows.

Algorithm MODIFIED GRAHAM SCAN

Given: a set S of n points in the plane

Output: the convex hull CH(S) of S;

BEGIN

Sort the points of the set S in decreasing x-coordinate

ordering;

Let pmax and pmin be the points of S that have the

largest and smallest x-coordinates, respectively.

Suppose pmax = (x, y), let p(0) = (x, y-1),

and p(1) = pmax;

Perform Graham Scan on the sorted list until the point

pmin is included as a hull vertex;

The ordered list of hull vertices found in this process

minus the point p(0) is the upper hull;

Construct the lower hull similarly;

Catenate the upper hull and lower hull to form the convex

hull CH(S).

END

The Modi�ed Graham Scan obviously also takes time O(n logn).
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4.3 The farthest pair problem

The problem we shall discuss in this section is formally de�ned as follows:

FARTHEST-PAIR

Find a pair of points in a given set which are farthest.

A brute force algorithm is to examine every pair of points to �nd the

maximum distance thus determined. The brute force algorithm obviously

runs in time O(n2).

To get a more e�cient algorithm, let us �rst investigate what kind of

properties a farthest pair of points in a set has. Let us suppose that S is a

set of n points in the plane, and call a segment linking two farthest points

in the set S a diameter of the set S.

Lemma 4.3.1 Let uv be a diameter of the set S. Let lu and lv be two

straight lines that are perpendicular to the segment uv such that lu passes

through u and lv passes through v. Then all points of S are contained in the

slab between lu and lv.

proof. Without loss of generality, suppose that the segment uv is horizon-
tal and the point u is on the left of the point v. Draw a circle C centered at

u of radius juvj, then the line lv is tangent to C because lv is perpendicular
to uv. Thus the circle C is entirely on the left of the line lv. Since v is the

farthest point in the set S from the point u, all points of S are contained

in the circle C. Consequently, all points of S are on the left of the line lv.
Similarly, we can prove that all points of S are on the right of the line lu.

Therefore, all points of the set S are between the lines lu and lv.

Corollary 4.3.2 Let uv be a diameter of the set S, then the points u and

v are hull vertices of CH(S).

proof. As we discussed in Chapter 2, a point p in S is a hull vertex of

CH(S) if and only if there is a line passing through p such that all points of

S are on one side of the line.

Let u and v be two hull vertices of CH(S). The vertices u and v are called
an antipodal pair if we can draw two parallel supporting lines lu and lv of

CH(S) such that lu passes through u and lv passes through v, and the convex
hull CH(S) is entirely contained in the slab between the lines lu and lv.
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Corollary 4.3.3 Let uv be a diameter of the set S, then u and v are an

antipodal pair.

proof. By Corollary 4.3.2, u and v are hull vertices of CH(S). By

Lemma 4.3.1, we can draw two parallel lines lu and lv such that lu passes

through u, that lv passes through v, and that all points of S are contained

in the slab between lu and lv. The slab between lu and lv is clearly a convex

set. Since the convex hull CH(S) of S is the smallest convex set containing

all points of S, i.e., the convex hull CH(S) is contained in all convex sets

containing all points of S, so the convex hull CH(S) is contained in the slab

between the lines lu and lv.

According to Lemma 4.3.1 and its corollaries, to �nd a farthest pair of

a set S of n points in the plane, we only need to �nd a farthest pair of the

hull vertices of the convex hull CH(S). Moreover, we only need to consider

the antipodal pairs on the convex hull CH(S). This greatly simpli�es our

problem. We now consider the following problem: given a vertex u of a

convex polygon P , what vertices of P can constitute an antipodal pair with

the vertex u? To answer this question, we suppose that the vertices of the

convex polygon P are given in counterclockwise ordering: fu1; u2; � � � ; umg.
For simplicity, we say that a vertex ui of P is the farthest from an edge

uk�1uk of P if ui is the farthest vertex in P from the straight line on which

uk�1uk lies.

Lemma 4.3.4 Let uk�1uk be an edge of P . We scan the vertices of P
in counterclockwise order, starting with the vertex uk. Let ui be the �rst

farthest vertex from the edge uk�1uk. Then no vertex between uk and ui can
constitute an antipodal pair with uk.

proof. Without loss of generality, suppose that the edge uk�1uk is hori-

zontal and the vertex uk is on the right of the vertex uk�1. First note that
for any vertex ui of P , the angle between the edge uiui+1 and the x-axis
is between 0 and 2�. Let � be the angle between the edge ukuk+1 and the

x-axis. Suppose that �1 (�2) is the angle between the edge ui�1ui (uiui+1)
and the x-axis. Since P is convex, �1 � �2. See Figure 4.1 for illustration.

It is easy to see that the vertex ui constitutes an antipodal pair with the

vertex uk if and only if the angle region [�1; �2] contains an angle between �

and � + �. Let uj be a vertex between uk and ui, (uj 6= uk ; ui). Then uj is
not farthest from the edge uk�1uk. Thus the angle between the edge ujuj+1
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Figure 4.1: The convex polygon P

and the x-axis, and the angle between the edge uj�1uj and the x-axis are all
strictly less than �. That is, the vertex uj does not constitute an antipodal

pair with uk .

Lemma 4.3.5 Let uk�1uk be an edge of P . We scan the vertices of P in

counterclockwise order, starting with the vertex uk. Let ur be the last far-

thest vertex from the edge uk�1uk. Then no vertex between ur and uk�1 (in
counterclockwise ordering on the boundary of P ) can constitute an antipodal

pair with uk�1.

proof. Completely similar to the proof of Lemma 4.3.4.

Now it is clear how we �nd all antipodal pairs on the convex polygon P :
starting with an edge uk�1uk , we scan the vertices of P counterclockwise until

we hit the �rst farthest vertex ui from the edge uk�1uk . By Lemma 4.3.4,

ui is the �rst vertex of P that constitutes an antipodal pair with the vertex

uk . Now we continue scanning the vertices until we hit a vertex ur that

is the last farthest vertex to the edge ukuk+1. By Lemma 4.3.5, ur is the

last vertex that constitutes an antipodal pair with the vertex uk . Now a

vertex constitutes an antipodal pair with uk if and only if it is between ui
and ur. Moreover, since we suppose that no three vertices of P are co-linear,

there are at most two farthest vertices from an edge on P . The algorithm of

�nding all antipodal pairs of a convex polygon P is given in detail as follows.
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Algorithm ANTIPODAL-PAIRS

Given: a convex polygon P = { u(1), ...., u(m) } in

counterclockwise ordering

Output: all antipodal pairs of P

BEGIN

1. Starting with the edge {u(0), u(1)}, where we let

u(0) be the vertex u(m). Set k = 1 and i = 2.

2. WHILE u(i) is not a farthest vertex from the edge

{u(k-1), u(k)}

i = i + 1;

3. { At this point u(i) is a farthest vertex from the

edge {u(k-1), u(k)}. }

WHILE u(i) is not a farthest vertex from the edge

{u(k), u(k+1)}

OUTPUT [u(k), u(i)] as an antipodal pair;

i = i + 1;

4. { At this point u(i) is the first farthest vertex

from the edge {u(k), u(k+1)}. We check if u(i)

is the last farthest vertex from the edge

{u(k), u(k+1)}. }

IF u(i+1) is also a farthest vertex from the edge

{u(k), u(k+1)}

OUTPUT [u(k), u(i)], [u(k+1), u(i)] as

antipodal pairs;

i = i + 1;

5. { Now u(i) must be the last vertex that can consti-

tute an antipodal pair with u(k). }

OUTPUT [u(k), u(i)] as an antipodal pair;

6. IF k < m, THEN

k = k + 1;

GOTO Step 3;

END.

The addition i = i + 1 in the algorithm should be \(mod m)", that is,

if i = m, then i + 1 = 1. Note that the distance from a vertex ui to the

line on which the edge uk�1uk lies is proportional to the area of the triangle
4(uiuk�1uk), therefore the vertex ui is the farthest from the edge uk�1uk if
and only if the area of the triangle 4(uiuk�1uk) is less than neither the area
of the triangle 4(ui�1uk�1uk) nor the area of the triangle 4(ui+1uk�1uk).

An intuitive description of the above algorithm is that we use two parallel
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lines to sandwich the convex polygon P , then rotate the lines along the

boundary of P , keeping the lines in parallel. We report all pairs of vertices

of P that are at some moment on the two parallel lines at the same time,

respectively, when we rotate the lines.

The analysis of the algorithm is straightforward. We keep two pointers k
and i. In constant time, at least one pointer is advanced. Since the pointer

k is from 1 to m and the pointer i marches the convex polygon P at most

twice (the pointer i stops at the last farthest vertex from the edge umu1),

we conclude that the time complexity of the algorithm is bounded by O(m).

A further improvement can be made in the above algorithm if we observe

that when the pointer i reaches the vertex um, then all antipodal pairs have

actually been found. In fact, if the pointer i is advanced from the vertex

um to the vertex u1, then we are considering the vertex u1 as a candidate

that constitutes an antipodal pair with some other vertex of P . However,

all vertices that constitute antipodal pairs with u1 have been found when

the pointer k is advanced from the vertex u1 to the vertex u2. Since this

improvement does not change the asymptotical order of the time complexity

of the algorithm, we will not discuss it in detail.

Now we give the algorithm for the FARTHEST-PAIR problem.

Algorithm FARTHEST-PAIR

Given: a set S of n points in the plane

Output: the farthest pair

BEGIN

1. Construct the convex hull CH(S) of S;

2. Call ANTIPODAL-PAIRS on CH(S);

3. Scan the result of Step 2 and select the pair

with the longest distance.

END.

By the discussions given in this section, the above algorithm �nds the

farthest pair for a given set S correctly. Moreover, the algorithm runs in

time O(n logn) since it is dominated by the �rst step.
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4.4 Triangulations

TRIANGULATING a set S of n points in the plane is to joint the points

in the set S by non-intersecting straight line segments so that every region

interior to the convex hull of S is a triangle. In this section we shall discuss a

more general version of TRIANGULATION: given a set S of n points in the

plane and a set E of non-intersecting straight line segments whose endpoints

are the points in S, construct a triangulation T (S) of S such that all the

segments in the set E appear in the triangulation T (S).

Recall that a planar straight line graph (PSLG) G = (S;E) is a �nite

set S of points in the plane plus a set E of non-intersecting straight line

segments whose endpoints are the points in the set S. We always suppose

that a PSLG G is represented by a doubly-connected edge list (DCEL).

The problem we shall discuss is called Constrained Triangulation.

CONSTRAINED TRIANGULATION

Given a PSLG G = (S;E), construct a triangulation T (S) of S such that

all segments of E are edges of T (S).

4.4.1 Triangulating a monotone polygon

We �rst discuss the problem for a special class of PSLG's, called monotone

polygon.

A chain C = (v1; v2; � � � ; vr) is a PSLG with a point set S =

fv1; v2; � � � ; vrg and a segment set E = f(vi; vi+1) j 1 � i � n � 1g. A

chain C is monotone with respect to a straight line l if any straight line

orthogonal to l intersects the chain C at at most one point.

De�nition A polygon P is said to be monotone with respect to a straight

line l if P is a simple polygon and the boundary of P can be decomposed

into two chains monotone with respect to the straight line l.

If a polygon P is monotone with respect to the y-axis, we simply say

that the polygon P is monotone.

We �rst solve the following problem: given a monotone polygon P , tri-

angulate the interior of P . That is, we add edges to the polygon P so that

each region in the interior of P is a triangle.
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A vertex u of a polygon P is visible from a vertex v if we can draw

a straight line segment s connecting u and v such that the interior of the

segment s is entirely in the interior of the polygon P . In particular, a vertex

is not visible from any of its adjacent neighbors. Moreover, note that a

vertex v is visible from a vertex u if and only if the vertex u is visible from

the vertex v.

The method we are going to use is a \greedy" method. Standing at each

vertex v of the polygon P , we look through the interior of the polygon P
and see which vertex of the polygon P is visible. Whenever we �nd that

a vertex u of the polygon P is visible from the vertex v, we add an edge

between the vertices v and u. Keeping doing this until no vertex of P is

visible from the vertex v, then we move to another vertex v0 of P and add

edges to those vertices that are visible from v0, an so on. Note that once

there is no vertex visible from a vertex v of P , then no vertex can become

a visible vertex from v later, since the only operation we are performing is

adding edges to the interior of the polygon P . Therefore, once we add edges

to a vertex v of P so that there is no vertex of P visible from v, we do not

have to come back and check the vertex v again. Moreover, if the interior

of the polygon P is not triangulated, then there must be a pair of vertices v
and u between which we can add a new edge e without edge-crossing. But

this implies that the vertex u is still visible from the vertex v before we add
the new edge e. Thus, if we process all vertices of P such that from any

vertex v of P there is no visible vertex, then we must have triangulated the

interior of the polygon P .

The above method is principally valid for triangulating any PSLG. How-

ever, to �nd all visible vertices from a vertex of a general PSLG may be

time-consuming. On the other hand, if the PSLG is a monotone polygon,

then the process above can be done very e�ciently.

The following is the algorithm of triangulating a monotone polygon P .
We process the vertices, in the way described above, in the ordering of

decreasing y-coordinate. A stack STACK is used to store those vertices of

P that have been processed such that no processed vertices are still visible

from a vertex in the STACK and each vertex in the STACK is still visible

from some unprocessed vertices of P .

Algorithm TRIANGULATING-MONOTONE-POLYGON

Given: a monotone polygon P

Output: a triangulation of P
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BEGIN

1. Sort the vertices of P in decreasing y-coordinate,

Let the sorted list be

L = { v(1), v(2), ...., v(n) }

2. Push the vertices v(1) and v(2) into the stack

STACK. Let i = 3.

3. Suppose that the vertices in the STACK are

STACK = { u(1), u(2), ...., u(s) }

where u(s) is the top and u(1) is the bottom.

4. IF v(i) is adjacent to u(1) but not to u(s)

{ we will prove later that in this case, stack

vertices u(2), u(3), ...., u(s) are all visible

from v(i). } THEN

add edges {v(i), u(2)}, {v(i), u(3)}, ....,

{v(i), u(s)}, pop all STACK vertices, then

push u(s) and v(i) into the STACK;

i++;

GOTO Step 7;

5. IF v(i) is adjacent to u(s) but not to u(1)

{ in this case, u(s) is not visible from v(i), we

check if any other STACK vertices are visible

from v(i). } THEN

WHILE the second top vertex of the STACK

(call it u') is visible from v(i) DO

add an edge {v(i), u'};

pop the top vertex from STACK;

PUSH v(i) into STACK;

i++;

GOTO Step 7;

6. IF v(i) is adjacent to both u(s) and u(1)

{ in this case, v(i) is the last vertex in the

list L, and all STACK vertices except u(s) and

u(1) are visible from v(i). } THEN

add edges {v(i), u(2)}, {v(i), u(3)}, ......,

{v(i), u(s-1)};

POP all STACK vertices and STOP.

7. IF i <= n, go back to Step 3.

END.

We �rst discuss the correctness of the algorithm. Each execution of the

loop Step 3 - Step 6 results in a PSLG. Let the PSLG after processing the

vertex vi be Gi. (So G0 = P and Gn should be a triangulation of P .)
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We prove that the following properties are always maintained for all Gi's.

Suppose the STACK content is fu1; u2; � � � ; usg.

Properties of Gi

1. The STACK contains at least two vertices for G0, G1, � � �, Gn�1.

2. The STACK vertices fu1; � � � ; usg is a monotone chain on the boundary
of some region Pi of Gi that is a monotone polygon.

3. The processed vertices that are not in the STACK are not visible from

any vertex of Gi.

4. No STACK vertex is visible from any other STACK vertex in Gi.

If for each Gi, the above properties are maintained, then since for Gn,

all vertices of P are processed and the STACK is empty, by Property 3, no

vertex of Gn is visible from any other vertex of Gn. As we discussed earlier

in this section, the PSLG Gn must be a triangulation.

We prove by induction that the above four properties are always main-

tained by every PSLG Gi. For G0, the properties are trivially maintained

because of Step 1 and Step 2. Now suppose that the properties are also

maintained for the PSLG Gi�1. To obtain Gi, we execute Step 3 - Step 6

based on Gi�1.
Property 1 is obviously maintained, since if i < n then either Step 4

or Step 5 is executed. But both of them leave at least two vertices in the

STACK.

To maintain Property 2, note that by inductive hypothesis, all processed

vertices that are not in STACK for Gi�1 are not visible from any vertex

of Gi�1, that is, all the regions incident to those vertices must be triangles.
Thus the edges to be added in Step 4 or Step 5 must be within the monotone

polygon Pi. Moreover, the vertex vi is the only new vertex added to the

STACK and the y-coordinate of vi is less than that of any STACK vertex.

Finally, the vertex vi is always connected to the top vertex in STACK before

vi is pushed into STACK. These observations make sure that Property 2 is

also maintained for Gi.

Now let us consider Property 3. For those processed vertices that are not

in STACK for Gi�1, they are not visible from any vertices of Gi�1, thus they
are also not visible from any vertices of Gi since Gi is obtained by adding

edges to Gi�1. Suppose that ur is a vertex that is in the STACK for Gi�1
but popped out by Step 4, by Step 5, or by Step 6.
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If ur is popped by Step 4, then r < s. The vertex ur is visible from

neither a vertex in STACK nor a processed vertex that is not in STACK, by

the inductive hypothesis. Moreover, the edge viur+1 blocks ur from being

visible from any unprocessed vertex. The same proof applies to the case that

ur is popped by Step 6.

If ur is popped by Step 5, then at some moment in the \While" loop of

Step 5, ur is the top vertex of STACK. Let u0 be the second top vertex of

the STACK. The vertex ur is popped because the edge viu0 is added. Since
vi has a smaller y-coordinate than ur, the edge viu0 blocks ur from being

visible from any unprocessed vertex.

Therefore, if ur is popped from the STACK for Gi�1 when we are con-

structing Gi, then ur is no longer visible from any vertex of Gi.

Finally, consider Property 4. If Step 4 is executed, the STACK contains

two adjacent vertices us and vi, so Property 4 is obviously maintained. If

Step 5 is executed, then we add an edge between the second top vertex u0

of STACK and vi when u0 is visible from vi. We keep doing this until the

second top vertex u0 of STACK is no longer visible from vi. At this point, no
other STACK vertex could be visible from vi since otherwise, let u

00 be the
�rst vertex in STACK that is visible from vi, then it is easy to see that u00

should also be visible from the �rst top vertex of STACK, contradicting our

inductive hypothesis. This proves that Property 4 can always be maintained.

By the above discussion, it can also be realized that if Step 4 is the case,

then all STACK vertices u2, u3, � � �, us are visible from the vertex vi. In

fact, if u2 is not visible from vi, then the edge viu2 must intersects some

edge of Gi�1. Since vertices vi, u1, u2, � � �, us are consecutive vertices on the
boundary of Pi�1 (remember that in this case we suppose that vi is adjacent
to u1), if viu2 intersects some edges of Gi�1, then viu2 must also intersect

the chain C = fu1; u2; � � � ; usg on the boundary of Pi�1. But this implies

that some vertex on the chain C is visible from the vertex u1, contradicting

our inductive hypothesis. Similarly, we can prove that after adding edges

viu2, viu3, � � �, viur�1, the vertex ur is still visible from the vertex vi, for

r = 3; � � � ; s.
This completes the discussion of the correctness of the algorithm.

The analysis of the algorithm is easier. Since the polygon P is monotone,

there are two vertices v0 and vr of P with the largest and the smallest y-

coordinates, respectively. Moreover, the boundary of the polygon P can be

decomposed into two monotone chains

C = (u0; u1; � � � ; uk) and C0 = (u00; u
0
1; � � � ; u0h)
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where u0 = u00 = v0 and uk = u0
h
= vr and the vertices in both chains C and

C0 are in decreasing y-coordinate ordering. We can merge the two chains C

and C0 in linear time to obtain the list L of vertices of the polygon P sorted

by decreasing y-coordinate. Therefore, Step 1 of the algorithm takes linear

time.

Within the loop of Step 4 - Step 7, we add each new edge in constant

time. Since the �nal triangulation Gn is a planar graph that has at most

O(n) edges, so the total time for adding new edges is bounded by O(n).
Finally, since each vertex of P is pushed into then popped out the stack

STACK exactly once, the total time is again bounded by O(n).
We close this subsection with the conclusion that the problem of trian-

gulating a monotone polygon can be solved in linear time.

4.4.2 Triangulating a general PSLG

Now we consider the problem of triangulating a general PSLG. Given a

general PSLG G of n points, let

F = fP1; P2; � � � ; Prg

be the set of regions of G. If each region of G is a monotone polygon, we

can use the following method to triangulate G: use the TRACE-REGION
algorithm in Section 1.4 to �nd all regions

P1; P2; � � � ; Pr

Let #Pi be the number of edges of the polygon Pi, which is also the number

of vertices of Pi. Then the region Pi can be constructed in time O(#Pi).

Therefore, to �nd all regions of G takes time

O(#P1) + O(#P2) + � � �+ O(#Pr) = O(#P1 + #P2 + � � �+ #Pr)

Since each edge of G is used by exactly two regions of G in their bound-

ary, (#P1 + #P2 + � � � + #Pr) is twice the number of edges of G, which
is bounded by O(n) since G is a planar graph. That is, the regions of G

can be constructed in linear time. Now we triangulate each region Pi of G
using the algorithm TRIANGULATING-MONOTONE-POLYGON given in

the last subsection. The time for triangulating the monotone polygon Pi is
bounded by O(#Pi). Therefore, triangulating all regions of G takes linear

time. It is easy to see that putting all these triangulated regions together to

get a triangulation of G can also be done in linear time. We conclude that
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if all regions of a PSLG G are monotone polygons then the triangulation of

G can be done in linear time.

Therefore, the problem of triangulating a general PSLG G is reduced to

the problem of converting the PSLG G into a PSLG G0 such that all regions

of G0 are monotone polygons. Without loss of generality, we suppose that

our PSLG G has no two points with the same y-coordinate (otherwise we

can achieve this by rotating the coordinate system slightly). Let us �rst

introduce some de�nitions.

Let G be a PSLG and let v be a point of G. An edge fu; vg is an upper

edge of v if the y-coordinate of u is larger than that of v, and an edge fw; vg
is a lower edge of v if the y-coordinate of w is smaller than that of v. A vertex

v of G is regular if either v is the vertex of G with maximum or minimum

y-coordinate or v has both upper edges and lower edges.

De�nition Let G be a PSLG. G is a regular PSLG if every vertex of G is

a regular vertex.

Note that if G is a regular PSLG, then G must be connected. In fact,

suppose that G is not connected, let v0 and v
0
0 be the vertices of maximum

y-coordinate of two di�erent connected components of G, respectively. Then

both v0 and v00 have no upper edges, so one of them must be an unregular

vertex of G.

Lemma 4.4.1 If G is a regular PSLG, then all regions of G are monotone

polygons.

proof. Suppose that G is a regular PSLG but a region P of G is not

a monotone polygon. Let v0 be the vertex of P that has the largest y-

coordinate. Since P is a simple polygon and no vertex of P has the same

y-coordinate as v0, when a horizontal straight line l is close enough to the

vertex v0, l intersects P at exactly two points. Because P is not monotone,

there must be some horizontal lines intersecting P at more than two points.

Let

r0 = supfr j the line y = r intersects P at more than two points.g

Let l0 be the horizontal straight line y = r0. There are two possible cases.
The line l0 intersects P at two points. Then since a slight moving down

of the line l0 would make the line intersect more than two points, there must

be a vertex v of P on the line l0 such that the vertex v has two lower edges.
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Since l0 intersects P at two points, v is not v0. However, v has no upper

edges since each vertex of P is incident to exactly two edges of P , so v is

not a regular vertex and G is not a regular PSLG.

On the other hand, suppose that l0 intersects P at more than two points,

then a slight moving up of the line l0 would make the line intersect exactly

two points. Thus one of those intersecting points of l0 and P must be a

vertex of P without upper edges. But this again contradicts the assumption

that G is regular.

Therefore, the region P must be a monotone polygon.

Therefore, the TRIANGULATION problem for regular PSLGs can be

done in linear time. In the next subsection, we will show that given

a general PSLG G, in time O(n logn) we can convert G into a regular

PSLG by adding edges to G. Consequently, the problem CONSTRAINED-

TRIANGULATION can be solved in time O(n logn).

Remark:

Chazelle [8] has recently proven that triangulating a simple polygon (not

necessarily a monotone polygon) can be done in linear time. Since for a

connected PSLG G, the regions of G can be constructed in linear time, and

each region is a simple polygon, we use Chazelle's linear time algorithm to

triangulate each region of G then put them together. This gives us a linear

time algorithm for triangulating a connected PSLG.

4.4.3 Regularization of PSLGs

We thereby have the following problem.

REGULARIZATION-PSLG

Given a general PSLG G, add edges to G so that the resulting PSLG is

regular.

Intuitively, to regularize a PSLG, we add an upper edge to a vertex if

it does not have an upper edge, and add a lower edge to a vertex if it does

not have a lower edge. The problem is, how do we add the edges so that

edge-crossing is avoided. Therefore, when we are working on a vertex of a

PSLG G, we should have enough information about the local environment

of the vertex. But how do we maintain and update the information about
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the local environment e�ciently when we move from one vertex to another

vertex?

Again, the plane sweeping technique helps. Let V = fv1; v2; � � � ; vng be

the vertex set of a PSLG G. Without loss of generality, suppose that no two

vertices in V have the same y-coordinate.1 We �rst sort the vertices in V
by their y-coordinate. Then we sweep the plane by a horizontal line from

bottom up. The sweeping stops at each vertex of G and check if the vertex

has an upper edge. If the vertex does not have an upper edge we add one

for it. Then we sweep the plane once again from top down to add lower

edges for those vertices without lower edges. After these two sweepings,

every vertex has at least one upper edge (except for the vertex with the

maximum y-coordinate) and at least one lower edge (except for the vertex

with the minimum y-coordinate). Thus the PSLG becomes regular. We

discuss the bottom-up sweeping in detail. The top-down sweeping can be

handled similarly.

Without loss of generality, suppose that the list fv1; v2; � � � ; vng is the

sorted list of vertices of the PSLG G in ascending y-coordinate. Consider

the sweeping line l at vertex vi, where i < n. The sweeping line l partitions

the PSLG G into three parts G1, G2 and G3. G1 is the \past history"

containing those vertices of G that are below the line l and have at least

one upper edge each, and those edges of G that are entirely below the line

l. G2 is the \current status" containing the vertices of G that are either

on the line l or below the line l and have no upper edges, and those edges

of G that intersect the line l. G3 is the \unknown future" containing the

vertices and edges of G that are entirely above the line l. The elements in

G1 are \nice" elements that we have seen and we know that they do not

make trouble for us. The elements in G2 are \current" elements that we

should process. The elements in G3 are unknown elements to us since we

have not seen them during the bottom-up sweeping. Therefore, the process

of the plane sweeping is a process of updating the current status G2 when

we pass through a vertex v of the PSLG G. This is easy to see that during

the sweeping between two consecutive vertices in the list fv1; v2; � � � ; vng, the
current status G2 is invariant. The current status G2 only changes when we

pass through a vertex of the PSLG G. This is the reason why our sweeping

is discrete (i.e., the sweeping only stops at the vertices of G and updates the

current status).

We require that between two intersecting edges of G in G2 that are

1In fact, with a minor modi�cation, our algorithms will also work for the general case.
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consecutive on the line l, there is at most one \hanged vertex", i.e., a vertex

that is below the line l and has no upper edges. This condition can be easily

maintained since when a second hanged vertex is added between the edges,

we can connect it to the �rst hanged vertex by a new edge thus give the �rst

hanged vertex an upper edge and unhang it.

The current status G2 can be maintained in the following way when we

are passing through a vertex vi: we �rst search the nearest left edge e1 and
the nearest right edge and er of vi in G2. Let e2, � � �, er�1 be the lower

edges incident on vi in counterclockwise ordering. We then check if there is

a hanged vertex vh between a pair (ej ; ej+1) of edges, for j = 1; � � � ; r � 1.

If there is one then we add a new edge between vi and vh and unhang the

vertex vh. Then we delete the lower edges of vi from G2 and add the upper

edges of vi to G2. If vi has no upper edges, then we hang vi between the

two nearest edges e1 and er in G2. Sweeping all vertices from v1 to vn and

updating G2 and G dynamically, we will �nally �nish adding upper edges to

the vertices of G. It is easy to see that after this process, each vertex of G,
except vn, has at least one upper edge.

Therefore, the following operations should be done e�ciently on G2 by

our algorithm: �nding the edges e1, e2, � � �, er in G2 such that e1 and er are
the nearest left and the nearest right edges of the vertex vi in G2, respectively,

and e2, � � �, er�1 are the lower edges incident on vi; deleting an edge from

G2; and adding an edge to G2.

Note that if we lower the sweeping line l a little bit, the intersecting points
of the line l and the edges e1, e2, � � �, er are consecutive on l. Therefore, if

we put the edges in G2 in a list in the ordering of their intersections with

the line l, then the edges e1, e2, � � �, er correspond to a consecutive sublist

of the list.

A proper data structure for e�ciently implementing the above operations

is a 2-3 tree T . The edges in G2 are ordered from left to right according to

the ordering of their intersections with the line l. Hanged vertices in G2 are

hanged between consecutive leaves in the tree T .

The following algorithm is based on the above discussion.

Algorithm ADD-UPPER-EDGES

Given: a PSLG G of n vertices, represented by a DCEL

Output: a PSLG G', obtained by adding edges to G such

that each vertex of G' (except the highest

one) has at least one upper edge.
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BEGIN

1. Sort the vertices of G in increasing y-coordinates,

let { v(1), ...., v(n) } be the sorted vertex list;

2. Create an empty 2-3 tree T; insert the upper edges

of v(1) into T if they exist , otherwise hang v(1);

3. FOR i = 2 up to n DO

3a. Using the x-coordinate of the vertex v(i) to

find two edges e(1) and e(r) in T that are the

nearest left and the nearest right edges of

v(i) in T. All the edges e(2), ...., e(r-1)

that are between e(1) and e(r) in the tree T

are lower edges of v(i).

3b. For j = 1 to r-1

IF there is a hanged vertex v(h) between

e(j) and e(j+1) THEN

add a new edge {v(h), v(i)};

unhang v(h);

3c. Delete the lower edges e(2), ...., e(r-1) of

v(i) from T if they exist;

3d. IF v(i) has upper edges THEN

insert the upper edges of v(i) into T

ELSE

hang v(i) between the nearest left and

right edges e(1) and e(r) if i <> n.

END.

We give the analysis of the algorithm. Step 1 can be done in time (n logn)

by any optimal sorting algorithm. Since each leaf of T corresponds to an edge

in G and G is a planar graph, T contains at most O(n) leaves. Consequently,

the depth of the tree T is at most O(logn). Thus Step 3a can be done in

time O(logn) for each vertex of G. Each vertex of G can be hanged and

unhanged at most once so the total time used to hang and unhang vertices

of G is bounded by O(n). Finally, each edge of G is inserted exactly once

(at its lower endpoint) then deleted exactly once (at its upper endpoint) in

the tree T , thus the time spent on inserting and deleting a single edge of

G is bounded by O(logn). Summarizing all these discussions, we conclude

that the algorithm ADD-UPPER-EDGES has time complexity O(n logn).
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Chapter 5

Divide and Conquer

Divide and Conquer is a classical problem solving technique and has proven

its value for geometric problems as well. This technique normally involves

partitioning of the original problem into several subproblems, recursively

solving each subproblem, and then combining the solutions to the subprob-

lems to obtain the solution to the original problem. A general form of a

divide and conquer algorithm is as follows:

Algorithm DIVIDE AND CONQUER

Given: A problem P of size n

Output: A solution to P

BEGIN

0. IF n = 1 THEN

Solve the problem P directly and STOP;

1. Divide the problem P into k subproblems of size n/k;

2. Recursively solve each subproblem;

3. Combine the solutions to the subproblems to obtain

a solution to the problem P;

END.

The \size" of the problem P is a reasonable measure of the quantity of

input data. For example, if the problem is to construct the convex hull of a

set S of points in the plane, then the size of the problem can be the number

of points in the given set S.

57
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To make the algorithm e�cient, we in general expect that Step 1 of

dividing into subproblems and Step 3 of combining subsolutions can be done

in linear time.

Now we analyze the algorithm. Suppose that the time complexity of the

algorithm is T (n) on problems of size n. We assume reasonably that when the

problem has size 1, the problem can be solved in constant time, i.e., T (1) = b,
where b is a constant. By our assumption, Step 1 and Step 3 can be done in

time cn, where c is again a constant. Recursively, each subproblem of size

n=k can be solved in time T (n=k). So to solve all subproblems, Step 2 takes

time kT (n=k). Therefore, the time complexity of the algorithm DIVIDE

AND CONQUER can be expressed by the following recurrence

T (1) = b

T (n) = kT (n=k) + cn

It is an easy exercise to obtain the closed form for the function T (n), as
stated by the following theorem.

Theorem 5.0.2 If Step 1 and Step 2 can be done in linear time, then the

algorithm DIVIDE AND CONQUER runs in time

T (n) = O(n logn)

5.1 Convex hulls again

In this section, we present two divide and conquer algorithms for construct-

ing convex hulls for sets of points in the plane, MERGEHULL and QUICK-

HULL, which are the analogues of the famous sorting algorithms MERGE-

SORT and QUICKSORT, respectively.

The idea of MERGEHULL is exactly like that of MERGESORT. Given

a set S of n points in the plane, we �rst split S into two subsets S1 and S2
of roughly equal size, then we separately construct the convex hulls CH(S1)
and CH(S2) for each of the sets S1 and S2. Finally, we merge the two hulls

into a larger hull for the original set S.

Some details are worth to discuss. To make our merge process easier,

we would like to let the two hulls CH(S1) and CH(S2) disjoint. This can be

done by letting the subset S1 be the half of S with smaller x-coordinates,
while letting the subset S2 be the half with larger x-coordinates. There are
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two di�erent ways to split the set into such two sets. One is to use a linear

time algorithm, developed by Blum, Floyd, Pratt, Rivest, and Tarjan [5], to

�nd the point p with the median x-coordinate, then spit S into S1 and S2
according to p. Another way is to presort the set S by x-coordinates, then

for a sorted list, the median can always be found in linear time. We will

adopt the second approach.

The following is the detailed MERGEHULL algorithm.

Algorithm MERGEHULL

Given: a set S of n points in the plane

Output: the convex hull of S

BEGIN

1. Sort S by x-coordinates;

2. Call MHULL(S)

END.

The subroutine MHULL(S) is as follows.

Algorithm MHULL(S)

Given: a set S of n points in the plane, sorted by

x-coordinate

Output: the convex hull of S

BEGIN

1. IF S contains less than four points, construct the

convex hull CH(S) directly. Otherwise, do the

following.

2. Split S into two subsets S_1 and S_2 of roughly

equal size, such that the x-coordinate of any point

in S_1 is less than the x-coordinate of any point

in S_2;

3. Recursively call MHULL(S_1) and MHULL(S_2) to

construct the convex hulls CH(S_1) and CH(S_2);

4. MERGE(CH(S_1), CH(S_2)) to obtain CH(S).

END.



60 DIVIDE AND CONQUER

All that is left to specify is how to perform the subroutine

MERGE(CH(S1), CH(S2)). For this, we must �nd two lines: one that is

tangent to the top of both CH(S1) and CH(S2) (the upper bridge) and one

that is tangent to the bottom of both hulls (the lower bridge). Let u(S1)

and l(S1) be the vertices in set S1 that are on the upper and lower bridges,

respectively (similarly de�ne u(S2) and l(S2)). Then all vertices in CH(S1)

proceeding clockwise from u(S1) to l(S1) can be discarded. Similarly, all

vertices in CH(S2) proceeding counterclockwise from u(S2) to l(S2) can be

discarded. All the remaining vertices form the convex hull CH(S).

Now we �nd the upper bridge (lower bridge is a symmetric operation).

Let us assume that the convex hulls of CH(S1) and CH(S2) are each stored

as a doubly-linked list. In constant time, we can add a point , delete a point,

or �nd the clockwise or counterclockwise neighbor of a point. Suppose we

had a guess for the endpoints of the upper bridge. How can we verify the

guess? Suppose we guess that some line l through p 2 CH(S1) is tangent
to the hull CH(S1) at point p. Let p0 and p00 be the two neighbors of the

point p in the hull CH(S1). The line l is tangent to the top of CH(S1) at
the point p if and only if both points p0 and p00 are on or below the line l.

Therefore, to construct the upper bridge, we can pick any hull vertex

p from CH(S1) and any hull vertex q from CH(S2) and let l be the line

through p and q. Now we try to \lift" the line l as much as possible with the

condition that l intersects both hulls CH(S1) and CH(S2). Once we cannot
lift the line l anymore, the line l must be tangent to the top of both CH(S1)
and CH(S2), i.e., l is the upper bridge of CH(S1) and CH(S2). Note that if

the two neighbors p0 and p00 of the point p are on the two sides of the line l,
we can always use \signed triangle area" to decide which neighbor is above

the line l.

We give the detailed algorithm as follows.

Algorithm UpperBridge(CH(S_1), CH(S_2))

Given: two convex hulls CH(S_1) and CH(S_2) that

are separated by a vertical line such that

CH(S_1) is on the left of the line

Output: the upper bridge of CH(S_1) and CH(S_2)

BEGIN

1. Let p be the point in CH(S_1) with the smallest

x-coordinate, and let q be the point in CH(S_2)
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with the largest x-coordinate. Let L be the

line through p and q;

2. WHILE L is not the upper bridge DO

2.1. WHILE there is a neighbor p' of p in CH(S_1)

above the line L, replace the point p by the

point p' and construct the new line L;

2.2. WHILE there is a neighbor q' of q in CH(S_2)

above the line L, replace the point q by the

point q' and construct the new line L;

END.

The lower bridge of CH(S1) and CH(S2) can be found by an algorithm

which is identical with the algorithm UpperBridge except that the word

\above" is replaced by the word \below".

In the worst case, the line l in the algorithm UpperBridge passes through

every hull vertices of CH(S1) and every hull vertices of CH(S2). Then the

algorithm must stop. Therefore, the running time of the algorithm Upper-

Bridge is at most linear to the number of hull vertices of the two hulls, which

is bounded by the number of points in the set S1 [ S2. To merge two hulls
which are separated by a vertical line, it su�ces to �nd the upper and lower

bridges, delete a partial hull from each of the hulls, and catenate the remain-

ing parts of the hulls with the upper and lower bridges properly. All these

can be obviously done in time O(n) if the set S1 [ S2 contains n points and

the convex hulls are stored as doubly-linked lists. We conclude that the time

complexity of the subroutine MERGE is O(n).

Now we analyze the time complexity of the algorithm MERGEHULL. If

an O(n logn) time sorting algorithm is used, then the time of the algorithm

MERGEHULL equals O(n logn) plus the time of the algorithm MHULL.

Since the set S is presorted by x-coordinates, Step 2 of the algorithm

MHULL(S), i.e., splitting S into S1 and S2 can be done in time O(n). By

the analysis above, Step 4 of the algorithm can also be done in time O(n).
Moreover, since the set S is presorted by x-coordinates, when we pass the

sets S1 and S2 to the recursive calls MHULL(S1) and MHULL(S2), the sets
S1 and S2 are also presorted by x-coordinates. Thus the subroutine MHULL

directly applies. Now by the discussion at the beginning of this chapter, we

conclude that the time complexity of the algorithm MHULL is O(n logn).

As in MERGESORT, MERGEHULL splits the given input S carefully

(into two equal size subsets), then merges carefully the two hulls which are

obtained by recursive calls. The algorithm is in some sense very \stable".
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That is, the time complexity is almost invariant for all inputs. On the other

hand, QUICKSORT randomly splits the given list of numbers, recursively

calls the subroutine, then simply catenates the two sorted sublists. There-

fore, much less work is done besides the two recursive calls. The worst case

time complexity of QUICKSORT is bad. However, for most inputs (or many

inputs), QUICKSORT runs even fast than MERGESORT.

This discussion motivates the derivation of the following QUICKHULL

algorithm, which is analogous to QUICKSORT, and has a bad worst case

time complexity and, in general a good \average time complexity".

Algorithm QUICKHULL(S)

Given: a set S of n points in the plane

Output: the convex hull of S

BEGIN

1. Find the points p_min and p_max in S, with

the smallest and largest x-coordinates,

respectively;

2. Let S' be the subset of points in S that are

above the line L through p_min and p_max,

and let S'' be the set of points in S that

are below the line L;

3. Call UpperHULL(S', p_min, p_max) and

LowerHULL(S'', p_min, p_max);

4. Catenate the upper and lower hulls.

END.

Where the subroutines UpperHULL and LowerHULL are similar. We

only give the UpperHULL as follows.

Algorithm UpperHULL(S, l, r)

Given: a set S of points in the plane such that

all points in S are above the line L

through the points l and r.

Output: Find the the convex hull for S + {l, r}

BEGIN

1. Find a point p in S that is furthest to the
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line L;

2. Let S_1 be the subset of S that contains all

the points above the line through l and p,

and let S_2 be the subset of S that contains

all the points above the line through p and r;

3. Recursively call UpperHULL(S_1, l, p) and

UpperHULL(S_2, p, r);

4. Catenate the two parts obtained in Step 3;

END.

Similar to QUICKSORT, it can be proved that in the worst case, the

time complexity of the algorithm QUICKHULL is 
(n2). While with a

reasonable assumption on the probability distribution of the points in the

set S, the running time of the algorithm QUICKHULL is O(n logn). We

leave the discussions to the interested reader.

5.2 The Voronoi diagram

We �rst recall the de�nition of a Voronoi diagram.

De�nition A Voronoi diagram of a set S = fp1; � � � ; png of n points in

the plane is a partition of the plane into n regions V1, V2, � � �, Vn such that

any point in the region Vi is closer to the point pi than to any other point

in the set S.

The convex polygonal region Vi is called the Voronoi polygon of the point

pi in S. The vertices of the diagram are called Voronoi vertices and the line

segments of the diagram are called Voronoi edges. The Voronoi diagram of

a set S is denoted by Vor(S). Note that Voronoi vertices are in general not

the points in the set S.

We �rst prove some interesting and important properties about Voronoi

diagrams. Throughout our proofs, we need to make a crucial assumption.

(This assumption can be eliminated but some properties will no longer hold

and the proofs will become much harder.)

ASSUMPTION

No four points in the set S are co-circular.

With this assumption, the Voronoi diagram has a simple structure.
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Figure 5.1: A Voronoi vertex and its incident Voronoi edges

Lemma 5.2.1 Every Voronoi vertex has degree exactly three.

proof. Any Voronoi vertex is the intersection of a set of Voronoi edges.

Let e1, e2, � � �, ek be a sequence of Voronoi edges incident on a Voronoi vertex
v, such that the edge ei is common to the Voronoi polygons Vi�1 and Vi for
i = 2; 3; � � � ; k, and edge e1 is common to the Voronoi polygons Vk and V1.

Without loss of generality, we suppose that Vi is the Voronoi polygon of the

point pi in the set S, for i = 1; � � � ; k. See Figure 5.1.
Since the Voronoi vertex v is on e1, v is equidistant from the points pk

and p1. Similarly, since the Voronoi vertex v is on ei, for i = 2; � � � ; k, v is

equidistant from the points pi�1 and pi. Therefore, v is equidistant from all

points pi, for i = 1; � � � ; k. This implies that all these points pi, i = 1; � � � ; k,
are on the circle whose center is v with the radius jvp1j. Since no four points
in the set S can be co-circular, we conclude k � 3.

If k = 2, then both e1 and e2 are common to the Voronoi polygons V1
and V2. Hence they both belong to the perpendicular bisector of the segment
p1p2. Therefore, the vertex v is in fact an interior point of some Voronoi

edge, so it is not a Voronoi vertex, a contradiction.

Finally, if k = 1. Then both sides of the edge e1 are in the same Voronoi

polygon V1, so the Voronoi polygon is not convex, again a contradiction.

This proves that k must be exactly 3.

Suppose that we have constructed the Voronoi diagram for the set S of n
points in the plane. The following lemma tells us that for any point pi in S,
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Figure 5.2: The nearest points de�nes a Voronoi edge

the nearest point in S can be found by \locally" looking at the corresponding

Voronoi polygon Vi.

Lemma 5.2.2 The nearest neighbor of every given point pi in S has a

Voronoi edge that bounds the Voronoi polygon Vi of the point pi.

proof. Let pi and pj be two points in the given set S, and suppose

that pj is the nearest neighbor of pi. Let v be the midpoint of the segment

pipj . Draw a circle C of radius jpivj whose center is pi. We �rst show that

the circle C is completely contained in the Voronoi polygon Vi. Suppose

otherwise that e were a Voronoi edge of Vi that contains a point u that is

in the interior of C. (See Figure 5.2.) Then e must lie on the perpendicular

bisector of a segment pipk, where pk is a point in S and pk 6= pj (since the

perpendicular bisector of pipj is tangent to the circle C). Therefore, we must
have

jpipkj � 2jpiuj < 2jpivj = jpipj j

So pi is closer to pk than to pj , contradicting the assumption that pj is the

nearest neighbor of pi.
Therefore, the circle C is completely contained in the Voronoi polygon

Vi. Since any point in the segment vpj is closer to pj than to pi and the point
v is on the circle C, the point v must be on the boundary of the Voronoi

polygon Vi. Now we show that v is an interior point of some Voronoi edge on
the boundary of Vi. Suppose otherwise, v is a Voronoi vertex. Let e1 and e2
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be the Voronoi edges on the boundary of Vi such that e1 and e2 intersect at
v. Since Vi is convex, the angle 6 e1ve2 must be less than �. See Figure 5.2.
But then at least one of the edges e1 and e2 intersects the interior of the

circle C. This is impossible by our discussion above. Therefore, there is

exactly one Voronoi edge e1 of Vi that passes through v. The edge e1 must
be tangent to the circle C otherwise e1 intersects the interior of the circle C.

Thus, the edge e1 is on the perpendicular bisector of the segment pipj , i.e.,
the edge e1 is de�ned by the point pj .

For each Voronoi vertex v, by Lemma 5.2.1, there are exactly three

Voronoi polygons Vi, Vj , and Vk incident on v. Let pi, pj , and pk be the

three corresponding points in the set S. By the proof of Lemma 5.2.1, the

point v is equidistant from these three points pi, pj , and pk . Denote by C(v)

the unique circle de�ned by pi, pj , and pk. The circle C(v) is centered at v
and has radius jvpij.

Lemma 5.2.3 For any Voronoi vertex v, the circle C(v) contains no points
of the set S in its interior.

proof. Let pi, pj , and pk be the three points in the set S which de�ne

the circle C(v). Then by the de�nition of C(v), v is on the boundary of the

Voronoi polygons Vi, Vj , and Vk, which correspond to the points pi, pj , and

pk of the set S, respectively. Now by the de�nition of Voronoi polygons, in

the set S, the points pi, pj , and pk are the three closest points of the point

v. If there is another point ph in S that is in the interior of C(v), then v
would be closer to the point ph than to any of the three points pi, pj , and
pk. This is a contradiction.

Now we discuss the relationship between CONVEX HULL and the

Voronoi diagram.

Let r be a semi-in�nite ray originating from a �nite point p0. For any

point p on the ray r, denote by rp the ray obtained by cutting away the

segment p0p (excluding the point p) from the ray r.

Lemma 5.2.4 Two points in the set S are consecutive hull vertices of the

convex hull CH(S) if and only if the two corresponding Voronoi polygons

share a Voronoi edge that is a semi-in�nite ray.

proof. Let p1 and p2 be two points in the set S, and let V1 and V2 be the
two corresponding Voronoi polygons in Vor(S), respectively.
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Suppose that the points p1 and p2 are two consecutive hull vertices of

the convex hull CH(S). Then the segment p1p2 is an edge on the boundary

of the convex hull CH(S). Let l be the straight line that passes through the

segment p1p2, then one side of l contains no points of the set S. Let r be a

semi-in�nite ray in the side of l that contains no points of S such that the

ray r is on the perpendicular bisector of the segment p1p2, and originates

from the middle point of the segment p1p2. Let p be a point on the ray r,
draw a circle Cp centered at the point p with the radius jpp1j. Imagine that
the point p travels along the ray r toward in�nity. Then the radius of the

circle Cp is getting larger and larger and the circle Cp is getting closer and

closer to the straight line l (more precisely, for any �xed point pl on the line

l, the circle Cp can be arbitrarily close to pl when the radius of the circle

Cp is large enough). Since no points of the set S are in the same side of the

line l as the point p, and the set S contains only �nitely many points, there

must be a point p0 on the ray r such that for any point p on the ray r that

is beyond the point p0, no points of the set S, except the points p1 and p2,
is contained in the interior or on the boundary of the circle Cp. That is, all

points on the ray r that are beyond the point p0 are closer to the points p1
and p2 than to any other points in the set S. By the de�nition of Voronoi

edges, therefore, the entire semi-in�nite ray rp0 must be contained in the

boundary of the Voronoi polygons V1 and V2. That is, the Voronoi polygons
V1 and V2 share a Voronoi edge that is a semi-in�nite ray.

Conversely, if the Voronoi polygons V1 and V2 share a Voronoi edge that
is a semi-in�nite ray r. Then every point on the ray r is equidistant from the

points p1 and p2, by the de�nition of a Voronoi polygon, thus the ray r is on
the perpendicular bisector of the segment p1p2. Draw a circle Cp centered

at a point p on the ray r such that Cp passes through the points p1 and p2.
Then for any point p on the ray r, the circle Cp contains no other points

of the set S in its interior. Let the point p travel along the ray r toward

in�nity, then the circle Cp is getting closer and closer to the straight line l
that passes through the segment p1p2, and Cp never contains any points of

the set S in its interior. Since the set S is �nite, we conclude that one side

of the line l contains no points of the set S. This implies that the segment

p1p2 is an edge on the boundary of the convex hull CH(S). Therefore, the

points p1 and p2 are consecutive hull vertices of the convex hull CH(S)1

Every hull vertex p of the convex hull CH(S) has a neighbor hull vertex p0.
By Lemma 5.2.4, the corresponding Voronoi polygons V and V 0 share a semi-

1For simplicity, we suppose that no three points of the set S are co-linear.
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in�nite ray, therefore, the Voronoi polygon V corresponding to the point p
must be unbounded. Conversely, if a Voronoi polygon V is unbounded, then

V must share a semi-in�nite ray with another unbounded Voronoi polygon

V 0. Again by Lemma 5.2.4, the two corresponding points p and p0 of the
set S are consecutive hull vertices of the convex hull CH(S), therefore, the

point p corresponding to the Voronoi polygon V must be a hull vertex. This

proves the following corollary.

Corollary 5.2.5 A Voronoi polygon V of Vor(S) is unbounded if and only

if the corresponding point of the set S is a hull vertex of CH(S).

Finally, we need a lemma to consider how much space is needed to rep-

resent a Voronoi diagram of a set of n points in the plane.

Lemma 5.2.6 The Voronoi diagram contains at most 2n�3 vertices, 3n�5
edges and n regions.

proof. Since the regions of a Voronoi diagram Vor(S) are Voronoi poly-

gons that one-to-one correspond to the points of the set S, thus the Voronoi
diagram Vor(S) of the set S has exactly n regions.

Every semi-in�nite ray of the Voronoi diagram Vor(S) can be written in

the form (v; �), where v is the Voronoi vertex from which the ray originates

and � is the polar angle of the ray. Introduce a new vertex w. Replace each

ray (v; �) of the Voronoi diagram Vor(S) by a �nite edge (v; w), which may

be a curve, not necessarily a straight line. The resulting picture is a planar

imbedding I of a �nite graph G that has the same number of regions and

the same number of edges as the Voronoi diagram Vor(S). The number of

vertices of I is one more than that of the Voronoi diagram Vor(S). Let V ,
E, and F be the number of vertices, the number of edges and the number

of regions of the imbedding I . By Euler's formula

V �E + F = 2

By the above discussion, F = n. Moreover, we have 3V � 2E since each

vertex of the graph G has degree at least 3 (note that there are at least

three semi-in�nite rays in the Voronoi diagram Vor(S), since the convex hull

CH(S) has at least three hull vertices, so by Lemma 5.2.4, Vor(S) has at

least three unbounded Voronoi polygons). Combining these two relations,

we get

V � 2n� 4
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Remember that the number of vertices of the graph G is one more than that

of the Voronoi diagram Vor(S), we conclude that the number of vertices of

the Voronoi diagram Vor(S) is at most 2n� 3.

Now apply Euler's formula again, we obtain

E � 3n � 5

Therefore, the number of vertices, the number of edges, and the number

of regions of a Voronoi diagram are all of order O(n).

We can use the Doubly-Connected Edge List (DCEL), as introduced in

Section 1.4 to represent in computers a Voronoi diagram of a set of points

in the plane. For this we need a slight generalization. For each unbounded

Voronoi polygon V in a Voronoi diagram, we call the semi-in�nite ray r of

V the �rst ray of V if when we travel from in�nity along the ray r toward

the Voronoi vertex from which r originates, the region V is on our right.

The other semi-in�nite ray of V is called the last ray of V . Now given a

semi-in�nite ray r of a Voronoi diagram, suppose that r is the last ray of

a Voronoi polygon Vi. Then in the edge node corresponding to the ray r,

the pointer P2 will point to the semi-in�nite ray that is the �rst ray of the

Voronoi polygon Vi. Moreover, each region V , which is a Voronoi polygon

of the Voronoi diagram, can be named by its corresponding point in the set

S.

5.3 Constructing the Voronoi diagram

In this section, we present an algorithm that constructs the Voronoi diagram

given a set S of n planar points. The algorithm runs in time O(n logn).

The algorithm is the standard divide-and-conquer method. We �rst give

a rough sketch of the algorithm as follows.

Algorithm VORONOI DIAGRAM

Given: a set S of n points in the plane

Output: the Voronoi diagram Vor(S) of S

BEGIN

1. Presort the points in the set S by x-coordinate;
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2. Call the subroutine Voronoi(S)

END.

Where the subroutine Voronoi(S) is given as follows.

Algorithm Voronoi(S)

Given: a set S of n points in the plane, sorted

by x-coordinates

Output: the Voronoi diagram Vor(S) of S

BEGIN

1. Split the set S into two approximately equal

size subsets S_L and S_R by a vertical line

L such that all points in S_L are in the left

side of L and all points in S_R are in the

right side of L;

2. Recursively call Voronoi(S_L) and Voronoi(S_R);

3. Merge Vor(S_L) and Vor(S_R) to construct Vor(S).

END.

Step 1 in the algorithm Voronoi(S) can be done in linear time, since the

given set S is sorted by x-coordinate. If the merge part (Step 3) in the

algorithm Voronoi(S) can also be done in linear time, then by the standard

technique in Algorithm Analysis, the algorithm Voronoi(S) runs in time

O(n logn). Consequently, the algorithm VORONOI DIAGRAM runs in time

O(n logn).
Therefore, the problem of constructing the Voronoi diagram of the set

S in time O(n logn) is reduced to the problem of merging in linear time

the two Voronoi diagrams Vor(SL) and Vor(SR) into the Voronoi diagram

Vor(S), where SL and SR are two sets separated by a vertical line l and

SL [ SR = S.
Consider the Voronoi diagrams Vor(S), Vor(SL), and Vor(SR). We �rst

discuss what of Vor(S) can be missing in Vor(SL) and Vor(SR). Let e be

a Voronoi edge of Vor(S) de�ned by two points pi and pj of S, that is, e is

a Voronoi edge on the boundary between the Voronoi polygons Vi and Vj
of the points pi and pj , respectively. By the de�nition of Voronoi polygons,

the points pi and pj are the closest points in the set S to the points on the

edge e. If both pi and pj are in the set SL, then the points pi and pj must
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be the closest points in the set SL to the points on the edge e since the set
SL is a subset of the set S. Therefore, the edge e must be also present in the

Voronoi diagram Vor(SL), either as a Voronoi edge or as part of a Voronoi

edge of Vor(SL). Similarly, if both pi and pj are in the set SR, then the edge

e must be also present in the Voronoi diagram Vor(SR), either as a Voronoi
edge or as part of a Voronoi edge of Vor(SR). Therefore, a Voronoi edge e

of Vor(S) that is missing in both Vor(SL) and Vor(SR) must be de�ned by

two points such that one is in the set SL and the other is in the set SR.
Let � be the subgraph of Vor(S) that consists of the Voronoi edges of

Vor(S) that are de�ned by the pairs (pi; pj) of points in S such that pi 2 SL
and pj 2 SR. We do not presume that � is a connected graph. We �rst

discuss what � looks like.

Lemma 5.3.1 Each vertex of � has degree exactly 2.

proof. Since each vertex v of � is also a Voronoi vertex of Vor(S), by

Lemma 5.2.1, the degree of v is at most 3 in �. Suppose that e1, e2, and
e3 are the three Voronoi edges incident at v in the Voronoi diagram Vor(S),

and that V1, V2, and V3 are the Voronoi polygons incident at v such that e1
is between V1 and V2, e2 is between V2 and V3, and e3 is between V3 and V1.

Let p1, p2, and p3 be the three points in the set S that correspond to the

Voronoi polygons V1, V2, and V3, respectively.

If the vertex v has degree 3 in �, then all Voronoi edges e1, e2, and e3
are in �. Since e1 is in �, by the de�nition of �, without loss of generality,

we can suppose that the point p1 is in the set SL and the point p2 is in the

set SR. Then because e2 is between V2 and V3 and e2 is in �, the point p3
must be in the set SL. Finally, because e3 is between V3 and V1 and e3 is

in �, we must also have that p1 is in SR. This gives us a contradiction that

the point p1 is in both sets SL and SR. Therefore, the vertex v cannot have

degree 3 in �.
If the vertex v has degree 1 in �. Then suppose that the unique Voronoi

edge that is incident on v and in � is e1. Thus we can suppose, without loss

of generality, that the point p1 is in the set SL and the point p2 is in the set

SR. However, now if the point p3 is in the set SL then the edge e2 should be

in �, while if the point p3 is in the set SR, then the edge e3 should be in �,

either case contradicts the assumption that the vertex v has degree 1 in �.
This proves that each vertex of � has degree 2 in �.

Therefore, each connected component of � is either a closed simple cycle,

or a simple chain whose both ends are semi-in�nite rays.
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Figure 5.3: A horizontal line separating v from v1 and v2.

Recall that a chain C is said to be monotone if any horizontal line inter-

sects the chain C in exactly one point.

Lemma 5.3.2 Every connected component of � is monotone. In other

words, every horizontal line cuts a connected component of � at exactly one

point.

proof. First we prove that no edge in � can be horizontal. Suppose that

an edge e in � is horizontal. Let pL and pR be the two points in the set S
that de�ne the edge e, pL 2 SL and pR 2 SR. Then the segment pLpR is

vertical, contradicting the fact that the sets SL and SR are separated by a

vertical line.

Now suppose that a connected component C of � is not monotone. Since

each vertex in � has degree exactly 2 (Lemma 5.3.1), we must be able to

�nd a vertex v on C whose two adjacent vertices are v1 and v2 such that a

horizontal line l separates v from v1 and v2. See Figure 5.3.

Without loss of generality, suppose that v is below the line l, and that v1
and v2 are above the line l. The vertex v is a Voronoi vertex in the Voronoi

diagram Vor(S), and v1 and v2 are two adjacent Voronoi vertices in Vor(S).

Suppose that the third Voronoi vertex adjacent to v is v3. The vertex v3
must be below the horizontal line l since each Voronoi polygon has to be

convex and each Voronoi vertex has degree exactly 3, by Lemma 5.2.1. Let

p1, p2, and p3 be the three points in the set S, such that edge fv; v1g is

de�ned by p1 and p2, the edge fv; v2g is de�ned by p2 and p3, and the edge

fv; v3g is de�ned by p3 and p1. See Figure 5.3. Without loss of generality,

suppose that the point p2 is in the set SL, then both points p1 and p3 are

in the set SR. However, it is easy to see that we can draw two vertical lines

l1 and l2 such that p1 is on the left side of l1 and p2 is on the right side of
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Figure 5.4: Two separated chains in �

l1, while p2 is on the left side of l2 and p3 is on the right side of l2. But

this contradicts the assumption that the sets SL and SR are separated by a

vertical line.

This proves that the connected component C of � must be monotone.

So no connected component of � can be a cycle. Finally, we investigate

how many connected components � can have.

Lemma 5.3.3 The graph � has exactly one connected component.

proof. First at all, � must have at least one connected component since

the Voronoi diagram is connected, so there is at least one Voronoi edge that

bounds two Voronoi polygons corresponding to a pair of points that are from

the sets SL and SR, respectively.

Now suppose that there are more than one connected components in

�. By Lemma 5.3.1 and Lemma 5.3.2, all these connected components are

monotone chains, and no two of them intersect. Let C1 and C2 be the two

adjacent chains in �, i.e., there is no other chain in � that is between the

slice bounded by C1 and C2. Suppose also that C1 is on the left of C2. See

Figure 5.4. Then all Voronoi polygons of Vor(S) that are between C1 and

C2 correspond to points in a single set of SL and SR. Suppose all of them

correspond to points in set SL. Now look at any edge e on C1. The edge

e must be de�ned by a point p1 that is between the slice of C1 and C2 and

thereby in the set SL and a point p2 that is on the left side of C1. See

Figure 5.4. By the de�nition of �, the point p2 is in the set SR. It is easy
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to see that there is a vertical line such that the point p2 is on its left while

the point p1 is on its right. However, this contradicts the fact that all points

in SR should be on the right of all points in SL. On the other hand, if all

Voronoi polygons between C1 and C2 correspond to points in the set SR,

then we can similarly derive a contradiction by considering an edge on the

chain C2.

This proves that � consists of a single monotone chain.

Since � is a single monotone chain, and two end edges of � must be semi-

in�nite rays, we can talk about the \left side" and the \right side" of the

chain �. By the discussion above, we know that only the edges in � could

be missing in the Voronoi diagrams Vor(SL) and Vor(SR). Thus, we need

to add the chain � to the graph Vor(SL)[Vor(SR) to construct the Voronoi
diagram Vor(S).

Now we discuss what should be deleted from Vor(SL) and Vor(SR) in
order to construct Vor(S).

Lemma 5.3.4 Let e be a Voronoi edge or part of a Voronoi edge of Vor(SL).
The edge e disappears in Vor(S) if and only if e entirely lies on the right side

of �. Similarly, if e0 is a Voronoi edge or part of a Voronoi edge of Vor(SR),
then e0 disappears in Vor(S) if and only if e entirely lies on the left side of

�.

proof. First of all, no point in SL can be on the right side of �, otherwise,

we would be able to �nd a point p in SL such that the Voronoi polygon of p
has a boundary edge e on �. This would give a point in the set SR that is

on the left of the point p, contradicting the de�nition of the sets SL and SR.

Let e be a Voronoi edge or part of a Voronoi edge of Vor(SL) that entirely

lies on the right side of �. Let e be de�ned by two points p1 and p2 in the

set SL. If e is present in the Voronoi diagram Vor(S), then the closest points

in S to a point p on the edge e would be p1 and p2. That is, the point p

is in (the boundary of) the Voronoi polygon V1 in Vor(S) that corresponds

to the point p1. Since V1 must be convex, the segment p1p must be in V1.

Moreover, since the point p1 is in the interior of V1, the segment p1p in fact

does not intersect any Voronoi edges in Vor(S) except the edge e. However,

since the point p1 is on the left side of � and the point p is on the right

side of �, and � partitions the plane into two separated parts, the segment

p1p must intersect � at some point. That is, the segment p1p must intersect
some Voronoi edge of Vor(S) that is not e, since e is de�ned by two vertices
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in SL while each edge on � is de�ned by a point in SL and a point in SR.
This is a contradiction. Therefore, the edge e of Vor(SL) must disappear in

Vor(S).

This actually proves that for any point p on the right side of �, the closest

point in the set S must be a point in the set SR.
Similarly, a Voronoi edge or part of a Voronoi edge of Vor(SR) that

entirely lies on the left side of � disappears in Vor(S).

On the other hand, let e be a Voronoi edge or part of a Voronoi edge of
Vor(SL) that lies entirely on the left side of �. Suppose that e is de�ned

by two points p1 and p2 in the set SL. By the discussion above, the closest

points in S to the points of e are still the points in the set SL. Therefore,

the two closest points in the set S to the points in e are still the points p1
and p2. That is, e is still on the boundary of the two Voronoi polygons V1
and V2 in Vor(S) corresponding to the points p1 and p2, respectively, i.e., e
is still present in the Voronoi diagram Vor(S).

This completes the proof.

By Lemmas 5.3.1, 5.3.2, 5.3.3, and 5.3.4, we can use the following algo-

rithm to construct the Voronoi diagram Vor(S) from the Voronoi diagrams

Vor(SL) and Vor(SR).

Algorithm MERGE(Vor(S_L), Vor(S_R))

Given: the Voronoi diagrams Vor(S_L) and Vor(S_R)

Output: the Voronoi diagram Vor(S)

BEGIN

1. Construct the separating chain SIGMA;

2. Delete all edges and partial edges of Vor(S_L) that are

entirely on the right side of SIGMA;

3. Delete all edges and partial edges of Vor(S_R) that are

entirely on the left side of SIGMA;

END.

None of the steps can be obviously done in linear time. In the remaining

of this section, we will discuss how to construct the separating chain �. At

the meantime, we �nd all intersections of � with Vor(SL) and Vor(SR), and
delete the proper edges and partial edges from Vor(SL) and Vor(SR).

First we consider how to construct the two semi-in�nite rays of the chain

�. Let the two semi-in�nite rays of the chain � be l1 and l2. Suppose that
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l1 is the Voronoi edge of Vor(S) that is shared by two unbounded Voronoi

polygons V1 and V2 of two points p1 and p2 in the set S, respectively. By

Lemma 5.2.4, the points p1 and p2 are two consecutive hull vertices of the

convex hull CH(S), and the ray l1 is on the perpendicular bisector of the

segment p1p2. Since l1 is in �, we can suppose that the point p1 is in the

set SL and the point p2 is in the set SR. Therefore, the segment p1p2 is in

fact a supporting bridge of the two convex hulls CH(SL) and CH(SR) (see
Section 4.1 and note that the two sets SL and SR are separated by a vertical

line). Similarly, the ray l2 is on the perpendicular bisector of the other

supporting bridge of the two convex hulls CH(SL) and CH(SR). Therefore,
if the two convex hulls CH(SL) and CH(SR) are known, then we can �nd the

two bridges of CH(SL) and CH(SR) in linear time (see Section 4.1). With

these two bridges, the two semi-in�nite rays of � can be found in constant

time. Note that at meantime, we have also constructed in linear time the

convex hull CH(S) of the set S as a by-product, which can be used for the

later induction steps. Therefore, the algorithm of constructing the chain �
looks as follows.

Algorithm CONSTRUCTING-SIGMA

Given: the Voronoi diagrams Vor(S_L) and Vor(S_R)

and the convex hulls CH(S_L) and CH(S_R)

Output: the separating chain SIGMA and the convex

hull CH(S)

BEGIN

1. Find the upper bridge b_u and the lower bridge

b_l of the two convex hulls CH(S_L), CH(S_R);

2. Construct the perpendicular bisectors l_u and

l_l of the bridges b_u and b_l, respectively;

3. With the bridges b_u and b_l, construct the

convex hull CH(S);

4. traverse the chain SIGMA in the direction of

decreasing y, starting from the infinite end

of the upper ray l_u of SIGMA, construct SIGMA

edge by edge, until the lower ray l_l is

reached;

END.

Step 1 and Step 3 can be done in linear time, by the discussion of Sec-
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tion 4.1. Step 2 can be easily done in constant time. We must discuss how

Step 4 is done in linear time. In the meantime, we also have to discuss how we

�nd the intersections of � with the Voronoi diagrams Vor(SL) and Vor(SR),
and delete proper edges and partial edges from Vor(SL) and Vor(SR) and

construct the Voronoi diagram Vor(S).

Remember that we can use Doubly-Connected-Edge-List (DCEL) to rep-

resent a Voronoi diagram. We suppose that the Voronoi diagrams Vor(SL)
and Vor(SR) are represented by two DCELs. Moreover, we suppose that

the rotation of edges incident on each vertex of Vor(SL) is given in coun-

terclockwise order in the corresponding DCEL, while the rotation of edges

incident on each vertex of Vor(SR) is given in clockwise order. Therefore,

the regions of Vor(SL) will be traced clockwise, while the regions of Vor(SR)
will be traced counterclockwise, by the algorithm TRACE-REGION given

in Section 1.4.

Now suppose inductively that we are traversing the chain � in the di-

rection of decreasing y, and we are in the intersection area of the Voronoi

polygon VL of Vor(SL) of some point pL 2 SL and the Voronoi polygon VR
of Vor(SR) of some point pR 2 SR. Since in this area, the closest point of

SL is pL and the closest point of SR is pR, we must follow the perpendicular

bisector of the segment pLpR, in the direction of decreasing y. Suppose along

this direction, we are traversing an edge e0 in �. We keep going along this

direction until we hit an Voronoi edge e of Vor(SL) or of Vor(SR). Without

loss of generality, suppose that e is a Voronoi edge of Vor(SR). The edge e
is on the boundary of the Voronoi polygon VR, so e must be de�ned by the

point pR and another point p0
R
2 SR. Let the Voronoi polygon of the point

p0
R
in Vor(SR) be V

0
R
. If we keep going the same direction, we will cross the

edge e and enter the Voronoi polygon V 0
R
of Vor(SR). Now the closest point

in the set SR is the point p0
R
. The closest point in the set SL is still the point

pL. Therefore, to continue traversing the chain �, we should go along the

perpendicular bisector of the segment pLp
0
R
, in the direction of decreasing y.

To make this change, at the intersection of the chain � and the edge e, we

simply switch our direction from the perpendicular bisector of pLpR to the

perpendicular bisector of pLp0R, both in the direction of decreasing y. Now

we are on the next edge of the chain �. We inductively work in this way to

�nd the next edge of the chain �, and so on, until we hit the low ray ll of �.

Note that we have no di�culty to initialize this process. We can start

at a point p on the upper ray lu that is \far enough" from the upper bridge

bu = (pL; pR), where pL 2 SL and pR 2 SR. Then we must be in the

intersection area of the Voronoi polygon of pL in Vor(SL) and the Voronoi
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polygon of pR in Vor(SL).

Summarizing this discussion, we get the following algorithm.

Algorithm CONSTRUCTING-SIGMA

BEGIN

1. Let p_0 be a point on the upper ray l_u that

is far enough from the upper bridge

b_u = (p_L, p_R), where p_L is in S_L, and

p_R is in S_R. Let l_0 be the semi-infinite

ray originating from the point p_0 that has

the opposite direction of the ray l_u, and let

V_L and V_R be the Voronoi polygons of the

points p_L and p_R in the Voronoi diagrams

Vor(S_L) and Vor(S_R), respectively;

2. IF l_0 is not identical with the lower ray l_l

THEN

2.1. Compute the point q_L that is the intersection

of l_0 with the boundary of V_L, and compute

the point q_R that is the intersection of l_0

with the boundary of V_R;

2.2 IF p_0 is closer to q_L than to q_R, THEN

suppose that the point q_L is on a Voronoi edge

e_L of Vor(S_L) that is defined by the point

p_L and another point p_L' in S_L, then let

p_0 = q_L, and let l_0 be the semi-infinite ray

originating from q_L that is on the perpendicular

bisector of the segment {p_L', p_R} in the direction

of decreasing y. Finally, let the current Voronoi

polygon V_L of Vor(S_L) be the Voronoi polygon of

the point p_L';

2.3. IF p_0 is closer to q_R than to q_L THEN

update the parameters p_0, l_0, and V_R similarly;

3. Go back to Step 2.

END.

As we mentioned before, Step 1 can be done in constant time when we

know the upper and lower bridges of the convex hulls CH(SL) and CH(SR).
The loop of Step 2 - Step 6 can be executed at most O(n) times since each

execution of the loop �nds one more edge on the chain � and as a subgraph

of Vor(S), the chain � contains at most O(n) edges. Within each execution
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of the loop, Step 4 and Step 5 take at most constant time since we only need

some local modi�cations.

The remaining question is how much time is needed to �nd the intersect-

ing points qL and qR in each execution of the loop of Step 2 - Step 6.

Knowing p0, l0, VL and VR, we can trace the boundary edges of the poly-
gon VL to �nd a boundary edge of VL that contains the point pL. Similarly
we can �nd the point pR. However, since the chain � can contain up to 
(n)

edges and the polygons VL and VR can have up to 
(n) boundary edges,

this straightforward algorithm would run in time 
(n2) to �nd the chain �.

Therefore, in order to construct � in linear time, we must not trace each

Voronoi polygon of the Voronoi diagrams Vor(SL) and Vor(SR) too many

times during the entire process of constructing the chain �.

Lemma 5.3.5 Suppose that the chain � is traversed in the direction of de-

creasing y. Let VL be a Voronoi polygon of the Voronoi diagram Vor(SL). If

the chain � makes a turn at an interior point of VL, then the turn must be

a right turn. Similarly, if the chain � makes a turn at an interior point of

some Voronoi polygon of Vor(SR), then the turn must be a left turn.

proof. Suppose that the point in SL corresponding to the Voronoi polygon

VL in Vor(SL) is pL. Let v1v2v3 be a turn of the chain � in the direction

of decreasing y, where v2 is an interior point of VL. Then vertices v1 and

v3 are also in VL, since at an exit of VL, the chain must make another turn.

(However, v1 and v3 may be on the boundary of VL.) Since VL is convex, the

segments v1v2 and v2v3 are entirely contained in VL. Therefore, the closest
point in the set SL to the points on v1v2 and v2v3 is still pL. Let V be

the Voronoi diagram of the point pL in the Voronoi diagram Vor(S). By the

de�nition of the chain �, the segments v1v2 and v2v3 are two consecutive

boundary edges of V . When we traverse from v1 to v2 then to v3, the point

pL must be on our right, because v1v2 and v2v3 are on the chain � and all

points of SL are on our right when we traverse � in the direction of decreasing

y. Since V is a convex polygon, the turn we make at the point v2 must be
a right turn.

By this lemma, we can �nd the point qL and qR in the algorithm

CONSTRUCTING-SIGMA as follows. Suppose that we entered the Voronoi

polygon VL at the point p0, which is on a boundary edge e0 of VL. Starting

from the edge e0, trace the region VL clockwise, using the algorithm TRACE-

REGION in Section 1.4, until we �nd the boundary edge eL that intersects
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Figure 5.5: � makes only right turn in VL

the ray l0 at point qL. (Note there is only one such a boundary edge of VL.)
Similarly �nd the point qR. If the point p0 is closer to the point qR than to

the point qL, then the chain � makes a turn at the point qR. Since the point
qR is in the interior of VL, by Lemma 5.3.5, the turn of � at qR must be a

right turn. We modify the parameters p0, l0, and VR properly. Now we have

to �nd the intersection of the new l0 with VL again. However, since the turn

of the chain � at the point qR is a right turn, the new l0 cannot intersect any

edges between the edges e0 and eL we have already traced. See Figure 5.5.

Therefore, to �nd the intersection of VL and the new l0, we can trace the

region VL starting from the edge eL. If the chain � eventually exits VL, then
we must come to an exit edge eE of VL for � before we trace back to the

edge e0. Therefore, to traverse the partial chain of � in the Voronoi polygon

VL from the entering edge e0 to the exit edge eE , we only have to trace the

boundary edges of VL between the edge e0 and the edge eE clockwise.

This is still not the end, however. Although traversing a continuous

partial chain of � in the Voronoi polygon VL can be done e�ciently, there

may be more than one continuous partial chain of � that are contained in

the Voronoi polygon VL. We must prove that traversing all these continuous

partial chains of � in VL can also be done e�ciently. Let P1 and P2 be two

continuous partial chains of � such that P1 enters VL at an edge e0 and exits
VL at an edge eE , while P2 enters VL at an edge e00 and exits VL at an edge

e0
E
. As we discuss above, to traverse P1, we need to trace the boundary edges

of VL between the edge e0 and eE clockwise. As we explained in the proof
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of Lemma 5.3.5, the partial chains P1 and P2 are all on the boundary of the

Voronoi polygon V of the point pL in the Voronoi diagram Vor(S). Since

all turns on P1 are right turn, the area in VL between P1 and the partial

boundary of VL we have traced is excluded from the Voronoi polygon V of

the point pL in the Voronoi diagram Vor(S). Now the partial chain P2 is

also on the boundary of the Voronoi polygon V , so P2 cannot enter or exit

VL from an edge that is between e0 and eE . Therefore, the edges e
0
0 and e

0
E

must be among those untraced boundary edges of VL (including the edges

e0 and eE). In other words, the sequence of the boundary edges of VL we

trace for P1 and the sequence of the boundary edges of VL we trace for P2
are internally disjoint. This conclusion is easily generalized to more than

two continuous partial chains of � in the Voronoi polygon VL.
Therefore, for a boundary edge of VL at which no partial chain of �

enters or exits, our algorithm traces it at most once. On the other hand, for

a boundary edge of VL at which some partial chains of � enter and/or exit,

each visit of the edge produces a new edge on the chain �. Therefore, the

total time of the traversing of the chain � is bounded by O(n�+mL), where

n� is the number of edges on the chain �, and mL is the sum of the region

sizes over all regions of Vor(SL). Since n� is bounded by n, the number of
points in the set S, andmL equals two times the number of edges of Vor(SL),

which is bounded by 3n, by Lemma 5.2.6, the total time to construct the

chain � is bounded by O(n).

The traversing of the chain � in a Voronoi polygon VR of the Voronoi

diagram Vor(SR) can be done symmetrically. Here since the rotation of

edges incident on each vertex of Vor(SR) is clockwise in the DCEL, the

regions of Vor(SR) are traced counterclockwise. Completely similar as we

did in Lemma 5.3.5, we can prove that if � makes a turn at an interior point

of VR, then the turn must be a left turn. Therefore, the chain � can also be

traversed e�ciently in the Voronoi polygons of Vor(SR), and the total time

is also bounded by O(n).
Finally we explain how to delete the edges and partial edges of Vor(SL)

that are on the right side of � and the edges and partial edges of Vor(SR)
that are on the left side of �. Note that when we traverse the chain � in the

direction of decreasing y, we can �nd all intersections of � with the Voronoi

diagrams Vor(SL) and Vor(SR). Therefore, it is easy for us to decide which

part of the Voronoi diagrams should be thrown away.

Therefore, we conclude that the running time of the algorithm MERGE(

Vor(SL), Vor(SR)) is O(n). Consequently, the running time of the algorithm
VORONOI DIAGRAM is O(n logn).
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Theorem 5.3.6 Given a set S of n points in the plane, the Voronoi diagram

of S can be constructed in time O(n logn).



Chapter 6

Prune and Search

Prune and Search is a technique originally used for �nding medians developed

by Blum, Floyd, Pratt, Rivest, and Tarjan [5]. The technique, as applied to

median �nding, throws out a constant fraction of the numbers during each

iteration of a loop. Solving the recurrence gives us an O(n) time algorithm
for �nding a median.

Let us have a more detailed review of the above algorithm. To �nd the

median of a list, we �rst generalize the problem a little bit. We consider

the problem of �nding the kth smallest number of a list L of n numbers, for

an arbitrary k. We �rst divide the n numbers into n=5 groups, each of 5

numbers, then �nd the median for each of the groups. Let L0 be the list of
these n=5 medians. Recursively �nd the median m of the list L0. It can be

proved that m is greater than or equal to at least one fourth of the numbers

in the original list L, and also less than or equal to at least one fourth of the

numbers in the original list L. Therefore, the number m partitions the list

L into two sublists L1 and L2 such that all numbers in L1 are less than or

equal to m and all numbers in L2 are greater than or equal to m. Moreover,

the size of each of these two sublists L1 and L2 is at least one fourth of

the original list L. Now if the sublist L1 contains at least k numbers, then

recursively call the algorithm to �nd the kth smallest number in the list L1.

On the other hand, if the sublist L1 contains h numbers such that h < k,
then recursively call the algorithm to �nd the (k� h)th smallest number in

the sublist L2. In any case, the size of the sublist we are going to work on is

at most three fourth of the size of the original list L. The detailed discussion

of this algorithm can be found in [2], Section 3.5.

Let us analyze the above Median Finding algorithm. Suppose that the

83
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time complexity of the algorithm is T (n) on inputs of size n. Then to �nd

the median of the list L0 of the n=5 medians takes time T (n=5). Since both
lists L1 and L2 are of size at most 3n=4, to �nd the kth smallest number

in the list L1 or to �nd the (h � k)th smallest number in the list L2 takes

time at most T (3n=4). It is also clear that the computation for the rest of

the algorithm can be done in time bn, where b is a constant. Therefore, the

function T (n) satis�es the following recurrence.

T (n) = T (n=5) + T (3n=4)+ bn

Let g be an integer such that g � 20b and g � T (1), then it is not di�cult

to prove, by induction, that

T (n) � gn

That is, T (n) = O(n).
A general form of a prune and search algorithm can be described, infor-

mally, as following.

Algorithm PRUNE AND SEARCH

Given: a problem P of size n

Output: a solution S of the problem

BEGIN

0. IF the size n of P is small

Solve P directly and STOP;

1. `Prune' the problem P into k smaller problems

P1, P2, ..., Pk, of size (c_1)n, (c_2)n, ...,

(c_k)n, respectively, such that

(c_1) + (c_2) + ... + (c_k) <= c < 1

where c is a fixed constant;

2. Recursively solve the problems P1, P2, ..., Pk;

3. Use the results of Step 2 to derive a solution

for the problem P;

END.

Suppose that the time complexity of the algorithm PRUNE AND

SEARCH is T (n), and suppose that Step 1 and Step 3 of the algorithm

take time F (n). Then the function T (n) can be represented by the following

recurrence:

T (n) = T (c1n) + T (c2) + � � �+ T (ck) + F (n)
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The time complexity T (n) of the algorithm PRUNE AND SEARCH can

be obtained by solving the above recurrence. In particular, if the function

F (n) is O(n), then it can be proved that the function T (n) is also O(n).

6.1 Kirkpatrick-Seidel's algorithm for convex

hulls

We present a prune and search algorithm for constructing convex hulls, which

is due to Kirkpatrick and Seidel [13].

Let us �rst consider the following problem.

Problem:

given two sets SL and SR of points in the plane, such that there is a

vertical line l such that SL is on the left of l and SR is on the right of l, how

do we �nd the upper bridge of SL and SR, i.e., the line passing through a

point in SL and a point in SR such that all points in SL and SR are on or

below the line?

In the algorithm MERGEHULL, we know that when the convex hulls

of both sets SL and SR are known, the upper bridge can be constructed in

linear time by lifting a line segment between SL and SR until the segment

cannot be lifted anymore. However, constructing the convex hulls for SL and

SR itself takes 
(n logn) time, which is too much to us. What we expect is

a linear time algorithm solving this problem.

The prune and search technique is used to solve the above problem. The

main idea involves �nding a \suitable" line in O(n) time, a line that allows

us to throw away a constant fraction of the points as candidates for the

bridge. We then recurse on the remaining points.

De�nition An upper supporting line of a set S of points in the plane

contains at least one point of S, and all points of S lie below or on the line.

Now let Lp be an upper supporting line of the set SL[SR passing through

a point p of SL, and suppose that Lp is not an upper bridge of SL and SR,
also let p0q0 be a line segment where p0; q0 2 SL [ SR. If the slope of p0q0

is not less than the slope of Lp, then it is easy to see that the line segment

p0q0 cannot be contained in the upper bridge of SL and SR. In particular,

the point p0 cannot be on the upper bridge. Similarly, if Lq is an upper

supporting line of the set SL [ SR passing through a point q of SR, and
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suppose that Lq is not an upper bridge of SL and SR, and p00q00 is a line

segment where p00; q00 2 SL [ SR. If the slope of p00q00 is not larger than the

slope of Lq, then the line segment p00q00 cannot be in the upper bridge of SL
and SR. In particular, the point q00 cannot be on the upper bridge.

This crucial observation gives us the following algorithm to solve the

above problem.

Algorithm UpperBridge(S, l)

Given: a set S of n points in the plane and a vertical

line l separating S into a left subset S_L and

a right subset S_R

Output: the upper bridge of the sets S_L and S_R

BEGIN

1. Arbitrarily pair up the points of S:

(p_1, q_1), (p_2, q_2), ..., (p_{n/2}, q_{n/2});

2. Let the slope of the segment [p_i, q_i] be s_i,

i = 1, ..., n. Using the Median Finding

algorithm to find a pair (p_l, q_l) such that

the slope s_l of it is the median in

s_1, s_2, ..., s_{n/2};

3. Construct an upper supporting line L with the

slope s_l. To do this, draw a line with the

slope s_l through each point in S. Then take

the line that has the highest intersection with

the y-axis;

4. If L passes through points in both S_L and S_R,

then L is the upper bridge we want, so we stop

and return; Otherwise, we do the following steps;

5. If L passes through only points in S_L, then scan

the list of pairs (p_i, q_i) we made in Step 1.

If the slope of a segment [p_i, q_i] is not less

than the slope of the supporting line L, then

throw away the point p_i;

6. If L passes through only points in S_R, then scan

the list of pairs (p_i, q_i) we made in Step 1.

If the slope of a segment [p_i, q_i] is not larger

than the slope of the supporting line L, then

throw away the point q_i;

7. Let S' be the set of the remaining points of S,

recursively call UpperBridge(S', l).

END.
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The correctness of the algorithm UpperBridge can be proved using the

discussion preceding the algorithm: we never delete the points on the upper

bridge. Now let us consider the time complexity of the algorithm. Step 1,

Step 3 and Step 4 can be obviously done in time O(n). Step 2 can be done

in linear time using the Median Finding algorithm described before. Now let

us consider how many points are left for the recursive call of the algorithm

in Step 7. Since the slope sl of L is the median of the slopes of the segments

piqi, for i = 1; � � � ; n=2, if Step 5 is executed, at least half of the segments piqi
have a slope not less than sl. So the corresponding points pi are thrown away.

Therefore, at least one fourth of the points in S are thrown away. Similarly,

if Step 6 is executed, also at least one fourth points in S are thrown away.

Therefore, at most three fourth points in S are left for the recursive call in

Step 7. Let T (n) be the time complexity of the algorithm UpperBridge, then

we have the following recurrence relation:

T (n) = O(n) + T (
3n

4
)

It is easy to obtain that T (n) = O(n). Therefore, the algorithm UpperBridge

runs in linear time.

With this preparation, now we are able to present Kirkpatrick-Seidel

algorithm as follows.

Algorithm KIRKPATRICK-SEIDEL(S)

Given: a set S of n points in the plane

Output: the convex hull of S

BEGIN

1. Let p_min and p_max be the points in S with

the smallest and the largest x-coordinates,

respectively, let the line through p_min and

p_max be L;

2. Split the set S into two subsets S' and S'',

such that S' is the set of points of S above

the line L, and S'' is the set of points of

S below the line L;

3. Call UpperHull(S', p_min, p_max);

4. Call LowerHull(S'', p_min, p_max);

END.
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Step 1 and Step 2 of the algorithm KIRKPATRICK-SEIDEL can be done

in linear time. The subroutines UpperHull and LowerHull are similar. We

only discuss the subroutine UpperHull as follows.

Algorithm UpperHull(S, p_min, p_max)

Given: a set S of n points in the plane that

are all above the line through the

points p_min and p_max, which are also

points in S

Output: the upper hull of the set S

BEGIN

1. Using the Median Finding algorithm to find a

vertical line L_d which divides the set S

into two equal size subsets S_L and S_R;

2. Call UpperBridge(S, L_d) to construct the

upper bridge [p_l p_r] of S_L and S_R, where

p_l is in S_L and p_r is in S_R;

3. Let S' be the set of points in S that are

above the line through p_min and p_l, and let

S'' be the set of points in S that are above

the line through p_r and p_max;

4. Recursively call UpperHull(S', p_min, p_l) and

UpperHull(S'', p_r, p_max);

5. Merge the results of Step 4 with the upper

bridge [p_l p_r] properly;

END.

Now let us consider the time complexity of the algorithm UpperHull.

Suppose that there are k points of the set S on the convex hull CH(S). Let

T (n; k) be the time complexity of the algorithm. Step 1 takes time O(n)
by the Median Finding algorithm. Step 2 takes time O(n) by our analysis

of the algorithm UpperBridge. Step 3 and Step 5 can be obviously done in

time O(n). Now suppose that there are k0 hull vertices of CH(S) contained
in the set S0, and k00 hull vertices of CH(S) contained in the set S00. Then the
recursive calls in Step 4 takes time at most T (n=2; k0) + T (n=2; k00), where
k0+ k00 = k, since it is easy to see that S0 � SL and S00 � SR. Therefore, we

have the following recurrence relation.

T (n; k) = T (n=2; k0) + T (n=2; k00) + O(n)
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We can prove by induction on k that T (n; k) = O(n log k). The detailed
proof is left to the reader.

Thus KIRKPATRICK-SEIDEL algorithm runs in time O(n logk). When

k is small, KIRKPATRICK-SEIDEL algorithm is not worse than Jarvis'

March that has the time complexity O(kn) (even better), and when k is

large, it is still not worse than Graham Scan, since k is always less than or

equal to n. However, KIRKPATRICK-SEIDEL algorithm has very nasty

constants because the algorithm to �nd the median is hard to program. So,

in the real world, people use Graham Scan.

Finally, we briey discuss the di�erence between MERGEHULL,

QUICKHULL and KIRKPATRICK-SEIDEL algorithm. KIRKPATRICK-

SEIDEL algorithm has the advantages in both MERGEHULL and QUICK-

HULL. It divides the given set evenly, likeMERGEHULL, and merges partial

hulls e�ciently, like QUICKHULL. The time complexity of MERGEHULL

has a factor logn instead of log k because in the two recursive calls, many

points that are in the convex hulls of the two subsets but not in the convex

hull of the original set are introduced. In QUICKHULL, the median point of

the given set S may unfortunately be not a hull vertex, therefore algorithm

would not work if we simply replace the furthest point in the algorithm by

the median point.

6.2 Point location problems

In the remaining of this chapter, we discuss the point location problems.

We �rst present a simple algorithm, the slab method, which runs in O(n2)

preprocessing time, O(n2) storage, and O(logn) query time, where the ge-

ometric sweeping technique is used in the preprocessing. Then we give an

optimal algorithm for the point location problem, Kirkpatrick's algorithm,

which runs in O(n) preprocessing time, O(n) storage, and O(logn) query

time for connected PSLGs, where the re�nement method, which is a variety

of prune and search technique, is used.

6.2.1 Complexity measures and a simple example

Suppose that we have a PSLG G, and we want to know in which region of

G a given query point is located. In the simplest case, we have only one

query point. Then we can search the point in each region of G directly to

�nd the region containing the point. A one-time query of this type is called

single shot. However, we may have many query points and want to �nd the
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containing region for each query point. Such queries are called repetitive-

mode queries.

In the case of repetitive-mode queries, it may be worthwhile to arrange

the PSLG G into a more organized structure to facilitate searching. There-

fore, when we are considering the problem of repetitive-mode queries, we are

interested in three computational resources: the preprocessing time that is

used to convert the given PSLG into an organized structure, the storage that

is used to store the organized structure, and the query time that is needed

to locate each query point.

Suppose that the input PSLG G has n vertices. In general, we cannot

expect that the preprocessing time is less than O(n) since even reading

the input PSLG G takes time 
(n). Similarly, we cannot expect that the

storage used for the organized structure is less than O(n) since even storing

the unorganized structure, the PSLG G itself needs 
(n) space. Finally,

as pointed out by Knuth [14], any algorithm for searching an ordered table

of length n by means of comparisons can be represented as a binary tree

of n leaves, thus in the worst case, the searching time is at least 
(logn).

While the point location problem is clearly a generalization of searching,

we conclude that the query time of the point location problem is at least


(logn).

Let us consider a simple example. Suppose that the PSLG G is a convex

polygon P of n vertices. So the vertices of P are given in, say, counter-

clockwise ordering fv1; v2; � � � ; vng. We �rst organize P by the following

algorithm:

Algorithm PREPROCESSING (P)

Given: a convex polygon P

Output: an organized structure L for P

BEGIN

1. Find an internal point p_0 of P;

2. For each edge {v_i, v_(i+1)} of P, i = 1, ..., n,

(where we let v_(n+1) = v_1) construct the wedge

W_i formed by the ray started at the point p_0

and passing through v_i (call it the starting ray

of the wedge W_i) and the ray started at p_0 and

passing through v_(i+1) (call it the ending ray

of the wedge W_i);

3. Sort the wedges { W_i | 1 <= i <= n } by the slopes

of their starting ray. Let the sorted list be L;

4. Attach the edge {v_i, v_(i+1)} to the element of L
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corresponding to the wedge W_i, for i = 1, ..., n;

END.

With the list L, we can locate each query point by the following algo-

rithm.

Algorithm QUERY (q)

Given: a query point q and the organized structure

L of P

Output: an answer to "the point q is inside P?"

BEGIN

1. Compute the slope of the ray started at p_0 and

passing through q;

2. Using binary search on the list L to locate the

point q in a wedge W_i;

3. The point q is inside the convex polygon P if and

only if the point q is inside the triangle formed

by the wedge W_i and the edge {v_i, v_(i+1)};

END.

Now we analyze the above algorithms.

Preprocessing time

The preprocessing is implemented by the algorithm PREPROCESSING.

The internal point p0 of P can be found by, for example, computing the cen-

troid of the triangle determined by any three vertices of the convex polygon

P . Thus Step 1 takes constant time. Step 2 takes time O(n) because given

two points, the equation of the ray passing through them can be constructed

in constant time. To consider Step 3, we suppose, without loss of generality,

that the slope of the starting ray of the wedge W1 is 0 (otherwise, we rotate

the system to make this). Then the wedges, sorted by their starting rays,

are exactly in the order W1, W2, � � �, Wn. Since we can read the edges of P
in counterclockwise ordering, the wedges can be read exactly in the sorted

ordering. Therefore, Step 3 to construct the list L, together with Step 4

to attach edges to the list L, takes time O(n). We conclude that the total

preprocessing time is O(n)

Storage
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Since the equation of each ray is a linear equation of two variables, which

can be represented in constant space, each element of the list L takes constant

space. Consequently, the list L takes O(n) space.

Query time

Locating each query point is implemented by the algorithm QUERY (q).

It is easy to see that Step 1 in the algorithm takes constant time, while

Step 2 in the algorithm takes O(logn) time. Finally, knowing the two rays

forming the wedge Wi and the edge fvi; vi+1g, we can determine in constant

time if the query point is inside the triangle formed by the wedge and the

edge.

We conclude with the following theorem.

Theorem 6.2.1 Point location problem on convex polygons can be solved

with O(n) preprocessing time, O(n) storage, and O(logn) query time.

6.2.2 Slab method

Now we consider the point location problem on general PSLGs. Let G be

a PSLG with n vertices. Through each vertex of G, we draw a horizontal

line. The plane is subdivided by these horizontal lines into \slabs". Since

G is a PSLG, there is no edge-crossing in G and since we have drawn a

horizontal line through each vertex of G, in the interior of each slab, there

is neither edge intersection nor vertex of G. Therefore, the edge segments

of G contained in a slab can be ordered from left to right. If we construct

a list of edge segments, ordered from left to right, for each slab, then the

algorithm for locating a query point will look as follows, where L is a list

of slabs, sorted by y-coordinate (that is, any point in slab L[j] has a larger
y-coordinate than a point in slab L[i] for i < j). Each element L[i] in the

list L also has a pointer to a list li of edge segments in the corresponding

slab, ordered from left to right.

Algorithm LOCATING (p_0)

Given: a query point p_0, and a PSLG G represented

by a list L of slabs. Each slab L[i] is

associated with a list l_i of edge segments

in the slab ordered from left to right

Output: a region of G that contains the point p_0



POINT LOCATION 93

BEGIN

1. Using the y-coordinate y_0 of the point p_0,

we perform binary search in the list L to find

a slab L[i] that contains the point p_0;

2. Using the x-coordinate x_0 of the point p_0,

we perform binary search in the list l_i to

find a pair of edge segments e_1 and e_2 such

that the point p_0 is between these two edge

segments;

END.

There are exactly n vertices of G, therefore, the binary search in Step 1

of the algorithm can be done in time O(logn). Moreover, since G is a planar

graph it has O(n) edges. Each edge of G can contribute at most one edge

segment to a slab. Thus each slab contains O(n) edge segments. Therefore,
the binary search in Step 2 of the algorithm can also be done in time O(logn).

Two consecutive edge segments in a slab correspond to a unique region of

the PSLG G. So if we attach the region name to each pair of consecutive

edge segments in each slab, then after Step 2 of the above algorithm, we can

read directly the name of the region that contains the point p0. We conclude

that the query time of this slab method is O(logn).

Now we discuss how we produce and store the sorted list L and the sorted

lists li. As the analysis given above, each list li contains at most O(n) edge

segments, thus the space we used to store the lists L and li's is bounded by

O(n2). This storage cannot be improved since some PSLG does have the

structure such that there are 
(n2) edge segments in the slabs. Figure 6.1

gives an example of such a PSLG.

A straightforward method to produce these lists is to sort the vertices of

G by y-coordinate �rst to get the sorted list L of the slabs, then for each slab

L[i], sort the edge segments in the slab to get the sorted list li. Then the

time complexity to obtain the list L is O(n logn), and the time complexity to
obtain all the lists li, i = 1; 2; � � � ; n+1 will be O((n+1)n log n) = O(n2 log n).

Can we do better?

Again we exploit the idea of geometric sweeping. We maintain the edge

segments of a slab in a 2-3 tree and let the edge segments be ordered from

left to right in the tree. When we move up from one slab to another slab, we

look at those vertices on the boundary of the two slabs. We delete the lower

edges and insert the upper edges for these vertices. The resulting 2-3 tree
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Figure 6.1: A PSLG containing 
(n2) edge segments

then represents exactly the list of the edge segments, ordered from left to

right, of the next slab. We print the leaves of each 2-3 tree, from left to right,

and obtain the lists li for i = 1; � � � ; n + 1. The following is the algorithm

of the preprocessing of the slab method. For simplicity, we assume that no

two vertices of the PSLG G have the same y-coordinate. If this condition

is not satis�ed, we either rotate the coordinate system slightly, or make a

straightforward modi�cation on the algorithm.

Algorithm PREPROCESS (G)

Given: a PSLG G, represented by a DCEL

Output: the lists L and l_i for i = 1, ..., n+1

BEGIN

1. Sort the vertices of G by increasing y-coordinate.

Let the sorted list of the vertices of G be

{ v_1, v_2, ..., v_n }

Then construct the list L;

(each slab L[i] of L, i = 1, ..., n+1, is
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associated with two vertices v_{i-1} and v_i

of G, one is on the lower boundary and the other

is on the upper boundary of the slab, where v_0

has a very large negative y-coordinate while v_(n+1)

has a very large positive y-coordinate.)

2. For slab L[1], construct an empty 2-3 tree T_1.

The list l_1 for the slab L[1] is also empty;

Set k = 2;

3. Look at the vertex v_(k-1), delete all lower edges

of the vertex v_(k-1) from the tree T_(k-1) and

insert all upper edges of the vertex v_(k-1) into

the tree T_(k-1). The resulting tree T_k is the

2-3 tree for the slab L[k].

4. Read the leaves of the 2-3 tree T_k, from left

to right, and produce the list l_k;

5. If k <= n then k = k + 1 and go back to Step 3;

END.

It is obvious that the above algorithm is correct. Now we analyze the

algorithm. Step 1 takes time O(n logn) by using any optimal sorting algo-

rithm. Consider the loop of Step 3 - Step 5. Since each slab contains at

most O(n) edge segments, all 2-3 trees Tk, k = 1; � � � ; n+ 1, have size O(n).
Consequently, the depth of each 2-3 tree Tk is bounded by O(logn). There-

fore, each edge insertion and edge deletion can be done in time O(logn).
Each edge of G is inserted exactly once into some 2-3 tree Tk then deleted

exactly once from some other 2-3 tree Tk0 . Moreover, given the vertex vk�1,
all the edges of G incident to vk�1 can be found by an algorithm called

TRACE-VERTEX, which is similar to the algorithm TRACE-REGION in

Section 1.4, in time proportional to the number of these edges (we suppose

that the PSLG G is represented by a DCEL). Thus each of the lower edges

and upper edges of vk�1 in Step 3 can be found in constant time. Therefore,

the time of insertion and deletion of an edge of the PSLG G is bounded by

O(logn) for the whole algorithm. Consequently, the total time of the algo-
rithm taken by Step 3 is bounded by O(n logn) since G contains O(n) edges.

Now to read the leaves of the 2-3 tree Tk from left to right, we can use, say,

depth �rst search on the tree Tk. (For the discussion of depth �rst search of

a graph, see [2].) The time to read the tree Tk and then to produce the list

lk thus is bounded by some constant times the number of nodes in the tree

Tk, which is bounded by O(n). Therefore, the total time of the algorithm

taken by Step 4 is bounded by O(n2). This cannot be improved as we have
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seen, some PSLG contain 
(n2) many edge segments.

Thus the time complexity of the algorithm PREPROCESS is bounded

by

O(n logn) + O(n logn) + O(n2) = O(n2)

We conclude with the following theorem.

Theorem 6.2.2 Using the slab method solving the point location problem,

the preprocessing time is O(n2), the storage is O(n2), and the query time is

O(logn).

6.2.3 Re�nement method I: on rectangles

The re�nement method for point location problem is a variety of the prune

and search technique. To motivate the re�nement method for the point

location problem, we �rst consider a class of simple PSLGs.

Let X = (x1; x2; � � � ; xm) and Y = (y1; y2; � � � ; ym) be two lists of m real

numbers sorted in increasing order. De�ne a PSLG G as follows: G has

n = m2 vertices vi;j = (xi; yj), i; j = 1; 2; � � � ; m. For 2 � i; j � m � 1,

the vertex vi;j is adjacent to exactly four vertices vi;j�1, vi;j+1, vi�1;j and

vi+1;j . The vertex v1;j (resp. vn;j) for 2 � j � m � 1 is adjacent to the

vertices v1;j�1, v1;j+1 and v2;j (resp. vn;j�1, vn;j+1, and vn�1;j). The vertex
vi;1 (resp. vi;n) for 2 � i � m � 1 is adjacent to the vertices vi�1;1, vi+1;1
and vi;2 (resp. vi�1;n, vi+1;n, and vi;n�1). Finally, the vertex v1;1 is adjacent
to v1;2 and v2;1, the vertex v1;n is adjacent to v1;n�1 and v2;n, the vertex vn;1
is adjacent to vn;2 and vn�1;1, and the vertex vn;n is adjacent to vn�1;n and

vn;n�1. Call the whole PSLG an m�m rectangle with the index sets X and

Y . Figure 6.2 pictures a 5� 5 rectangle.

Clearly, the point location problem on this kind of PSLGs can be simply

done by doing two binary searchings, one on the list X and the other on the

list Y . Alternatively, we can also locate a query point p0 = (x0; y0) in the

following way: compare the value x0 with the middle number xm=2 in the

list X and determine that the point p0 is in the left rectangle Rl bounded

by the vertices v1;1, vm=2;1, vm=2;m and v1;m or in the right rectangle Rr

bounded by the vertices vm=2;1, vm;1, vm;m and vm=2;m. Suppose that p0
is in the left rectangle Rl. Now we compare the value y0 with the middle

number ym=2 in the list Y to determine that the point p0 is in the upper

rectangle Rl;u bounded by the vertices v1;m=2, vm=2;m=2, vm=2;m and v1;m or

in the lower rectangle Rl;l bounded by the vertices v1;1, vm=2;1, vm=2;m=2 and
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Figure 6.2: A 5� 5 rectangle with the center vertex v3;3

v1;m=2. Thus two comparisons restrict the point p0 to an (m=2) � (m=2)
subrectangle. Now we recursively work on the (m=2)� (m=2) rectangle.

Let Rm be an m�m rectangle with index sets

X = (x1; � � � ; xm) and Y = (y1; � � � ; ym)

A vertex vi;j is the center vertex of Rm if i = j = m0 = dm=2e. Note that
to determine which (m=2)� (m=2) subrectangle a query point p0 is in, we

only need two values from the index sets: the middle number xm0
in the

list X and the middle number ym0
in the list Y . But (xm0

; ym0
) is just the

coordinates of the center vertex vm0;m0
of the rectangle Rm. Therefore, the

m�m rectangle Rm can be organized in the following way: construct a tree

Tm whose root N0 is attached with the center vertex vm0;m0
of Tm. There

are four children of the root N0, corresponding to the four (m=2) � (m=2)

subrectangles of Rm obtained by dividing Rm by a horizontal line and a

vertical line passing through the center vertex vm0;m0
. The algorithm of

constructing this tree is presented as follows:

Algorithm CONSTRUCTING-TREE(R_m)

Given: a PSLG R_m that is an m by m rectangle

Output: a hierarchy tree T_m

BEGIN

1. If R_m is a 2 by 2 rectangle, then R_m is a
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single region. Create a tree node for R_m

and attach the name of the region to the

node; STOP.

2. { R_m is not a single region. }

Create a node N_m for R_m, attach the center

vertex v_(m_0,m_0) of R_m to N_m. Draw a

horizontal line and a vertical line passing

through the center vertex v_(m_0,m_0) that divides

the rectangle R_m into four (m/2) by (m/2)

subrectangles;

3. Recursively call the algorithm CONSTRUCTING-TREE

on the four (m/2) by (m/2) subrectangles. Let

the resulting four trees be T_1, T_2, T_3, and

T_4;

4. Let T_1, T_2, T_3 and T_4 be the children of the

node N_m;

END.

Each leaf in the tree Tm corresponds uniquely to a region of the rectangle

Rm, and each internal node of the tree Tm corresponds to a vertex of Rm.

Since there are n = m2 vertices and O(n) regions in the rectangle Rm, we

conclude that the number of nodes of the tree Tm is bounded by O(n).
Moreover, since we spend constant time to create a node in the tree Tm, the
total time of constructing the tree Tm is bounded by O(n).

Since the tree Tm is very balanced: each internal node of Tm has exactly

four children, and since the tree Tm has O(n) nodes, we conclude that the

depth of the tree Tm is bounded by O(logn).

This is the preprocessing for the point location problem on rectangles.

Given a query point p0, it is easy to locate p0 in an m�m rectangle Rm

with the help of the tree Tm, as shown by the following algorithm.

Algorithm LOCATING (p_0)

Given: a query point p_0 and the hierarchy

tree T_m

Output: the region that contains the point p_0

BEGIN

1. First use the four corner vertices v_(1,1),

v_(m,1), v_(m,m) and v_(1,m) to determine
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if p_0 is contained in the rectangle R_m.

If p_0 is out R_m, report so and STOP.

2. { p_0 is inside R_m. }

Starting by the root N_0 of the tree T_m,

compare p_0 with the center point of R_m

to find a child of N_0 that corresponds to

an (m/2) by (m/2) rectangle R_(m/2) containing

the point p_0;

3. Recursively search p_0 in the rectangle R_(m/2);

END.

It is clear that the algorithm LOCATING runs in time O(logn) for each
query point p0.

Therefore, the point location problem on rectangles can be solved by

O(n) preprocessing time, O(n) storage, and O(logn) query time.

Let us summarize the above idea: We �rst locate the query point into a

large m�m rectangle Rm, then we re�ne the rectangle Rm into four smaller

(m=2)� (m=2) rectangles by dividing the rectangle Rm by a horizontal line

and a vertical line passing through the center vertex of Rm, then we recur-

sively locate the point p0 in one of these smaller rectangles.

Two properties we have used heavily in this method:

� A father and its children have the same geometric shape (here are

rectangles), so the recursive call is e�ective.

� Each father has only constant many children so that in constant time

we can move one level down in the search tree Tm.

6.2.4 Re�nement method II: on general PSLGs

Now we try to extend the idea in the last section to solve the point location

problem on general PSLGs. The algorithm discussed in this section is due

to Kirkpatrick [12].

All the geometric objects in the re�nement method on rectangles are

simple rectangles. Moreover, it is easy to re�ne a rectangle into four smaller

rectangles by a horizontal line and a vertical line. However, in a general

PSLG, a region can be an arbitrary simple polygon, and it is not guaranteed

that a simple polygon can be re�ned into smaller polygons of the same

shape. Therefore, we must �rst �x a geometric shape we are going to use. It

is natural to consider the simplest geometric shape, the triangles. However,
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not every PSLG can be obtained by re�ning a triangle. Extra care should

be taken to make our idea work.

A PSLG G is completely triangulated if G is connected and the boundary

of every region of G (including the unbounded region) is a triangle. We

�rst discuss how to convert a general PSLG into a completely triangulated

PSLG.

Given a general PSLG G which is not completely triangulated. We �rst

add a big triangle 4 that encloses the whole G. This can be done by �rst

scanning the vertices of G to �nd the minimum x0 of the x-coordinates of

the vertices of G, the minimum y0 of the y-coordinates of the vertices of G,
and the maximum z0 of the values x+ y where (x; y) is a vertex of G. Now

the triangle formed by the horizontal line lh : y = y0 � 1, the vertical line

lv : x = x0 � 1, and the line l : x + y = z0 + 1 will enclose the whole PSLG

G. Let the PSLG consisting of G and 4 be G0. Now triangulating G0 gives
us a completely triangulated PSLG G0.

Delete an internal vertex v from G0 and let the resulting PSLG be G00. If
the vertex v has degree k in the PSLG G0, then G

0
0 has all its regions being

triangles except one region that is a k-gon Pk . To make G00 have the same
geometric property as G0, we retriangulate the k-gon Pk of G00. Of course,
we can perform the above operation on other vertices of G0 as well provided

that the vertices we delete are not adjacent to each other in G0. Let G1 be

the new completely triangulated PSLG obtained by this kind of deleting-

vertex-then-retriangulating operation on a set of non-adjacent vertices of

G0. All regions of G0 are regions of G1 except those that disappear when we

delete the vertices of G0 (call these regions old triangles). All regions of G1

are regions of G0 except those that are created when we retriangulate the

non-triangle regions resulting from deleting vertices in G0 (call these regions

new triangles). We set a pointer from a new triangle to an old triangle if their

intersection is not empty. Note that the new PSLG G1 has less vertices than

the old PSLG G0. The old PSLG G0 thus can be regarded as a re�nement

of the new PSLG G1.

This solves our �rst problem: the inverse of the deleting-vertex-then-

retriangulating operation re�nes a completely triangulated PSLG G1 into

a larger completely triangulated PSLG G0 (here \larger" means containing

more vertices and more regions. In this sense, the regions of G0 are \smaller"

than that of G1).

The query algorithm now goes as follows: suppose that we have located

a query point p0 in a new triangle 4, then we look at all old triangles that

intersect the new triangle 4 and determine which old triangle contains the
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query point p0.
However, how many old triangles intersect the new triangle 4? And

how many completely triangulated PSLGs should we go through in order

to locate the query point p0 in a triangle of the original PSLG? In order to

achieve an O(logn) query time, we must move from one completely trian-

gulated PSLG to another completely triangulated PSLG in constant time,

and go through at most O(logn) completely triangulated PSLGs to reach

the original completely triangulated PSLG. For this purpose, we require that

the vertices to be deleted from one completely triangulated PSLG in order

to construct the next PSLG satisfy the following conditions:

1. All these vertices should be internal vertices, that is, they are not the

three hull vertices of the completely triangulated PSLG.

2. No two of these vertices are adjacent.

3. The degree of these vertices is small.

4. There are enough vertices of the current completely triangulated PSLG

to be deleted.

The �rst condition makes all our PSLGs completely triangulated. The

second condition ensures that the relationship between new triangles and old

triangles simple, that is, an old triangle incident to a deleted vertex v can

only intersect those new triangles that are obtained by retriangulating the

simple polygon resulting from deleting the vertex v from G0. The second

and the third conditions together ensure that each old triangle intersects very

few new triangles, and each new triangle intersects very few old triangles.

Finally, the fourth condition ensures that the rate of the size-shrinking of the

completely triangulated PSLGs is fast so that a query point goes through

very few completely triangulated PSLGs to reach the original PSLG.

The existence of a set of vertices of a completely triangulated PSLG that

satis�es all conditions above is proved by a pure combinatorial counting

technique.

Let G be a completely triangulated PSLG. Suppose that the set of ver-

tices, the set of edges, and the set of regions of G are V , E, and F , respec-

tively. Since G is a planar imbedding, by Euler's formula:

jV j � jEj+ jF j = 2

Since G is a completely triangulated PSLG, each region of G has exactly 3

boundary edges. On the other hand, each edge of G is a boundary edge for
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exactly two regions. This gives us

3jF j = 2jEj

Replacing jF j in Euler's formula by 2
3
jEj, we obtain

jEj = 3jV j � 6 < 3jV j

Let deg(v) be the degree of the vertex v, then each vertex v of G incident

to exactly deg(v) edge-ends. On the other hand, each edge has exactly two

edge-ends, thus we have X
v is a vertex of G

deg(v) = 2jEj < 6jV j

Therefore, at least half of the vertices of G have degree less than 12. If we

exclude the three hull vertices of G, then there are at least jV j=2�3 vertices

of G that have degree less than 12. For each vertex of degree less than 12,

there are at most 11 adjacent vertices, thus there are at least (jV j=2� 3)=12

vertices of degree less than 12 in G such that no two of them are adjacent.

When jV j � 48, we have (jV j=2�3)=12 � jV j=48. Therefore, for an arbitrary
completely triangulated PSLG G with n vertices, with n � 48, we can �nd

at least n=48 internal non-adjacent vertices of G of degree less than 12.

This analysis gives us the following algorithm to construct a searching

hierarchy TG.

Algorithm CONSTRUCT-HIERARCHY(G)

Given: a general PSLG G

Output: a searching hierarchy T_G for the

point location problem on G

BEGIN

1. Add an enclosing triangle that contains the whole

G, then triangulate the resulting PSLG. Let the

completely triangulated PSLG be G_0;

2. Using the TRACE-REGION algorithm in Section 1.4 to

find all triangles of G_0. For each triangle of

G_0, create a node in level 0 in the hierarchy T_G;

3. Set k = 0;

4. Suppose that the PSLG G_k contains n_k vertices.

Find at least (n_k)/48 internal non-adjacent
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vertices of G_k that have degree less than 12;

5. For each vertex v found in Step 4, delete v from

G_k, and retriangulate the simple polygon resulting

from this deletion. For each new triangle obtained

from this retriangulation, create a node in level

k+1 of the hierarchy T_G and set a pointer from

this node in the hierarchy T_G to a node corres-

ponding to an old triangle incident to the vertex

v in G_k if the intersection of the old triangle

and the new triangle is not empty.

6. Let the resulting completely triangulated PSLG be

G_(k+1), then set k = k + 1. If the PSLG has

more than 48 vertices, go back to Step 4.

END.

We analyze the algorithm of constructing the hierarchy. Suppose that the

number of vertices of G0 is n, which is three more than that of the original

PSLG G, and that each completely triangulated PSLG Gk is represented

by a doubly-connected edge list (DCEL). As we discussed before, It takes

O(n) time to construct an enclosing triangle. Then the triangulation takes

time O(n logn) if the PSLG is a general PSLG, or takes time O(n) if the

PSLG is connected (triangulating a connected PSLG in linear time is a recent

breakthrough due to Chazelle [8]). Therefore, Step 1 of the algorithm takes

time O(n logn) for a general PSLG G and takes time O(n) for a connected
PSLG G.

The TRACE-REGION algorithm takes time O(n) to �nd all regions,

therefore, Step 2 of the algorithm takes time O(n).

By the analysis given above, each PSLG Gk contains at least nk=48
internal non-adjacent vertices of degree less than 12. To �nd these vertices of

Gk, we simply scan the DCEL for Gk (using a TRACE-VERTEX algorithm

that is similar to the algorithm TRACE-REGION), whenever we �nd a

vertex v of degree less than 12, we take v and mark all vertices adjacent to v

\unusable". We scan the list of vertices of Gk and ignore those \unusable"

vertices. In this way, by the analysis we gave above, we can �nd at least

nk=48 internal non-adjacent vertices of degree less than 12. In this process,

we scan each vertex of Gk at most once and scan each edge of Gk at most

twice. Therefore, Step 4 of the algorithm takes time O(nk) for the PSLG
Gk.

For each vertex v found in Step 4, since the degree of v is less than 12,

there are at most 11 triangles incident to v. Moreover, deleting v results in
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a simple polygon of at most 11 vertices since v has degree less than 12, so at
most 9 new triangles are created when we retriangulate the simple polygon.

Consequently, each new triangle intersects at most 11 old triangles and each

old triangle intersects at most 9 new triangles. Therefore, each node of a new

triangle has at most 11 pointers to nodes of old triangles, and a node for a

new triangle together with its pointers to the old triangles can be created in

constant time. So to produce the level k + 1 in the hierarchy TG takes time

proportional to the number of regions in the PSLG Gk+1, which is bounded

by O(nk+1) where nk+1 is the number of vertices of Gk+1. It is also easy to

see that constructing the DCEL for the PSLG Gk+1 from the DCEL for the

PSLG Gk also takes time O(nk+1).

Therefore, the total time used in Step 4 - Step 6 to build up the hierarchy

TG is bounded by

O(n0) + O(n1) + � � �+O(nh) = O(n0 + n1 + � � �+ nh)

if the hierarchy TG has h+ 1 levels.

n0 = n. Since G1 is obtained from G0 by deleting at least n0=48 vertices,
so we have n1 � (47=48)n. A simple induction proves that nk � (47=48)kn

for all k � 1. Therefore,

O(n0 + n1 + � � �+ nh)

� O(n+ (47=48)n+ � � �+ (47=48)hn)

< O(n+ (47=48)n+ � � �+ (47=48)hn+ � � �)
= O( n

1�(47=48))

= O(n)

That is, the total time to build up the hierarchy TG for the completely

triangulated PSLG G0 is bounded by O(n). Consequently, the hierarchy TG
contains O(n) nodes thus can be stored in space O(n).

Now the searching algorithm for a query point in the hierarchy TG is

straightforward.

Algorithm LOCATING (p_0)

Given: a query point p_0 and the hierarchy structure

T_G for a PSLG G

Output: the region of G that contains the point p_0

BEGIN
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1. In the highest level of the hierarchy T_G, locate

the point p_0 into one of the triangles;

2. Suppose p_0 is in a node N_0 of the hierarchy T_G.

Check each triangle whose node in the hierarchy

T_G is pointed by a pointer from N_0 to find a

node N' whose triangle contains the point p_0;

3. IF N' is at level 0, then we have located the

point p_0 into a triangle in the original PSLG.

ELSE let N_0 = N' and go back to Step 2;

END.

Since a point p0 is contained in a new triangle after the retriangulation

if and only if it is contained in some old triangle before the vertex deletion,

the point p0 is contained in the triangle corresponding to the node N0 if

and only if it is contained in a triangle whose corresponding node in the

hierarchy TG is pointed by a pointer fromN0. Therefore, the above algorithm

LOCATING(p0) correctly �nds a triangle in the original PSLG that contains

the point p0. Since each pointer in the hierarchy TG is always from a higher

level to a lower level and each node in the hierarchy has at most 11 pointers,

the searching time of the algorithm LOCATING is proportional to the depth

of the hierarchy TG. Let nk be the number of vertices of the PSLG Gk, for

k = 0; 1; � � �, then as analyzed above, we have nk � (47=47)kn, and we stop

producing more levels when we reach nk � 48. This gives us immediately

The number of levels in the hierarchy TG = O(logn)

We summarize the above results in the following theorems.

Theorem 6.2.3 For a general PSLG G, the point location problem can be

solved with O(n logn) preprocessing time, O(n) space, and O(logn) query

time.

Theorem 6.2.4 For a connected PSLG G, the point location problem can

be solved with O(n) preprocessing time, O(n) space, and O(logn) query time.

6.3 Exercises

1. Based on the idea described in the text, design a linear time algorithm

that �nds the median given a set of numbers.
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2. Design an algorithm to solve the following problem: given a set S of

N points in the plane, with preprocessing, decide for a query point

if the point is in a triangle whose three vertices are points of S. If

it is, output the three vertices of the triangle (if there are more than

one such triangles, pick any one of them). Analyze your algorithm for

query time, preprocessing time, and space.

3. Solve the Point Location Problem for the set of PSLGs whose faces are

of size at most 5. What are the query time, preprocessing time and

space of your algorithm?

4. Given a PSLG G such that the number of intersection points of any

vertical line and G is bounded by 50. Moreover, a sorted list of the

vertices of the PSLG G is also given. Discuss the preprocessing time,

space, and query time of the point location problem on G.

5. A k-monotone polygon with respect to a line l is a simple polygon which

can be decomposed inot k chains monotone with respect to the line l.
Let k be a �xed constant. Design an algorithm to solve Point Location

Problem for k-monotone polygons, i.e., given a k-monotone polygon

P , with preprocessing, determine if a query point is internal to P .
Analyze your algorithm for query time, preprocessing time and space.

6. Given two sets of points Sp = fp1; � � � ; png and Sq = fq1; � � � ; qmg. For
each point in Sq, �nd the closest point in Sp. Solve this problem for

the case

(1). m is much larger than n, say m = 2n;

(2). m is much smaller than n, say m = log logn.

Do you use the same algorithm to solve the problem for both cases or

you use di�erent algorithms for the two cases? Give a detailed analysis

for yours algorithm(s).

7. A point p is said to be dominated by a point q if both x- and y-
coordinates of p are no greater than those of q, respectively. Solve

the following problem: given a set S of n points in the plane, with

preprocessing allowed, for each query point q, �nd the number of points

in S dominated by q. That are the preprocessing time, storage, and

query time of your algorithm?
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8. Suppose that we can construct the kth order Voronoi diagram in time

O(k2N logN). Analyze the query time, preprocessing time, and the

storage for the k-Nearest Points Problem.

9. Let p1 = (x1; y1) and p2 = (x2; y2) be two points in the plane. We say

that point p1 dominates point p2 if x1 � x2 and y1 � y2.

Let S be a set of points in the plane. A point p 2 S is a maximal

element if p is not dominated by any other point in S.

Solve the following problem:

Given a set of n points in the plane, let k denote the number of maximal
elements in this set. Design a divide-and-conquer algorithm of time

O(n log k) for �nding these maximal elements. Prove the correctness

of your algorithm.
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Chapter 7

Reductions

Let P and P 0 be two problems. We say that the problem P can be reduced

to the problem P 0 in time O(t(n)), express it as

P /t(n) P
0

if there is an algorithm T solving the problem P in the following way.

1. For any input x of size n to the problem P , convert x in time O(t(n))

into an input x0 to the problem P 0;

2. Call a subroutine to solve the problem P 0 on input x0;

3. Convert in time O(t(n)) the solution to the problem P 0 on input x0

into a solution to the problem P on input x.

Note that the subroutine in Step 2 that solves the problem P 0 is unspec-
i�ed. If the problem P 0 can be solved e�ciently, then the problem P can

also be solved e�ciently, as explained by the following theorem.

Lemma 7.0.1 Suppose that a problem P is reduced to a problem P 0 in time

O(t(n))

P /t(n) P
0

and that the problem P 0 can be solved in time O(T (n)). Then the problem

P can be solved in time O(t(n) + T (O(t(n)))).

proof. Suppose that the algorithm T gives a O(t(n))-time reduction

from the problem P to the problem P 0, and suppose that an algorithm A0

109
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solves the problem P 0 in time O(T (n)). The problem P can be solved by

the algorithm T , in whose Step 2, calling a subroutine to solve the problem

P 0 on input x0, we use the algorithm A0.
To analyze the algorithm T , note that Step 1 and Step 3 of the algo-

rithm T take time O(t(n)), as we have assumed. Since Step 1 takes time

O(t(n)), the size of x0 is also bounded by O(t(n)). Therefore, in Step 2 of

the algorithm T , the algorithm A0 of time complexity O(T (n)) on inputs of

size n takes time O(T (O(t(n)))) on input x0, which is of size O(t(n)). This
concludes that the running time of the algorithm T is bounded by

O(t(n)) + O(T (O(t(n)))) = O(t(n) + T (O(t(n))))

The reduction technique plays an important role in the study of complex-

ity of geometric problems, both for deriving lower bounds and for designing

e�cient algorithms. In this chapter, we will study how to use this tech-

nique to design e�cient geometric algorithms, and in the next chapter, we

will explain how we use this technique to derive lower bounds for geometric

problems.

We close this introductory section by the following corollary, which will

be heavily used in our discussion.

Corollary 7.0.2 Suppose that a problem P is reduced to a problem P 0 in
linear time

P /n P
0

If the problem P 0 can be solved by an algorithm in time O(T (n)), with T (n) =


(n) and T (O(n)) = O(T (n)), then the problem P can also be solved in time

O(T (n)).

proof. As shown in Lemma 7.0.1, the problem P can be solved by

the algorithm T in time O(n + T (O(n))). By our assumption, T (O(n)) =
O(T (n)). Moreover, T (n) = 
(n). Therefore, the time complexity of the

algorithm T in this special case is bounded by

O(n+ O(T (n))) = O(T (n))

Notice that most of the complexity functions T (n) we use in this book,

such as n, n logn, nk , and nk logh n satisfy the conditions T (n) = 
(n) and
T (O(n)) = O(T (n)).
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7.1 Convex hull and sorting

Consider the algorithm of Graham Scan for constructing convex hulls of

points in the plane. If a given set S of n points in the plane is sorted by

x-coordinates, then the Graham Scan algorithm needs only linear time to

construct the convex hull for S. In fact, it is not hard to see that

CONVEX HULL /n SORTING

by the following argument. Given an instance of CONVEX HULL, which

is a set S of n points in the plane, we can simply regard S as an instance

of SORTING if we let the x-coordinate of a point p in S be the \key" of

the point p. Therefore, we can simply translates instances of the problem

CONVEX HULL to instances of the problem SORTING. Now the solution

of SORTING on input S is a list of the points in S which is sorted by the

x-coordinates. The generalized Graham Scan algorithm shows that with this

solution to the SORTING, the convex hull CH(S) of the set S, which is the

solution of CONVEX HULL on the input S, can be constructed in time

O(n).

It is interesting that we can prove that the problem SORTING can also

be reduced to the problem CONVEX HULL in linear time.

Theorem 7.1.1

SORTING /n CONVEX HULL

proof. Given a list L of n real numbers x1, x2, � � �, xn, which is an instance
to the problem SORTING, we can suppose that all of them are non-negative

since otherwise, we �rst scan the list and �nd the \most negative" number

x, then add �x to each given number to make all non-negative.

We �rst scan the list to �nd the largest number xmax. Now for each

number xi in the given list L, we convert xi into a point pi in the plane such

that the polar angle of pi is 2�
xi

xmax
and the distance between pi and the

origin O is 1 (so the point pi is on the unit circle). Let S be the set of all

these n points p1, p2, � � �, pn in the plane. The set S is an instance of the

problem CONVEX HULL. Note that the set S can be obtained from the list

L in time O(n), since all we do is to scan the list L at most twice, then for

each number xi, we spend constant time to obtain the corresponding point

pi.
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Since the unit circle itself is convex, the n points in the set S must be all

on the convex hull CH(S). Therefore, when the solution CH(S) is returned

back for the problem CONVEX HULL on the input S, we must get the hull
vertices of S in counterclockwise ordering. If we suppose that we start with

the point with the smallest polar angle, then the hull vertices must be given

in increasing ordering of their polar angles. But since the polar angle of a

point in the set S is proportional to the value of the corresponding number

in the list L, the list of the polar angles of the points times xmax

2�
given in

counterclockwise ordering on CH(S) gives the sorted list of the numbers of

the list L. Therefore, given the solution for the problem CONVEX HULL

on the input S, we can obtain the solution for the problem SORTING on

the input L, that is a sorted list of the n numbers of L, by �rst �nding the

point with the smallest polar angle, then scanning the convex hull CH(S) in

counterclockwise ordering and multiplying the polar angle of each point by
xmax

2�
. This can obviously done in linear time.

Let P and P 0 be two problems, and let t(n) be a function of n. If we

have both

P /t(n) P
0 and P 0 /t(n) P

then we say that the problems P and P 0 are equivalently complex up to a

t(n)-time reduction, and express as

P �t(n) P
0

When two problems are equivalently complex up to a linear time reduc-

tion, then if one of them can be solved in time O(T (n)), where T (n) =


(t(n)) and T (O(n)) = O(T (n), then by Corollary 7.0.2, the other can also

be solved in time O(T (n)).

By the above discussions, we have already shown

SORTING �n CONVEX HULL

In fact, construction of convex hulls for sets of points in the plane is

a generalization of sorting. In sorting n numbers, we are asked to �nd the

ordering of a set of points in the real line, while in constructing a convex hull,

we are asked to �nd the ordering of polar angles, relative to an interior point

of the convex hull, of the \extreme points". The di�erence is that in sorting,

every given number will appear in the �nal sorted list, while in constructing

a convex hull, we also have to make the decision whether a given point is a

non-extreme point, and if yes, exclude it from the �nal output list. On the
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other hand, as we have discussed in the section, sorting is not easier at all

than constructing convex hulls for points in the plane.

7.2 Closest pair and all nearest neighbor

According to the de�nition of the Voronoi diagram (a partition of the plane

into regions such that each region is the locus of points closer to a point of

the set S than to any other point of S), it is not surprising that the problems

CLOSEST-PAIR and ALL-NEAREST-NEIGHBOR can be solved e�ciently

through the Voronoi diagram. Recall that the problem CLOSEST-PAIR is

to �nd the closest pair in a set of n points in the plane, while the problem

ALL-NEAREST-NEIGHBOR is that given a set S of n points in the plane,

for each point of S, �nd the nearest neighbor in S. Finally, let VORONOI-
DIAGRAM denote the problem of constructing the Voronoi diagram for a

given set of n points in the plane.

Theorem 7.2.1

ALL-NEAREST-NEIGHBOR /n VORONOI-DIAGRAM

proof. Suppose that a set S of n points in the plane is an input to the

problem ALL-NEAREST-NEIGHBOR, we pass the input S to VORONOI-

DIAGRAM directly. The solution of VORONOI-DIAGRAM on the input

S will be the Voronoi diagram Vor(S) of the set S. By Lemma 5.2.2, for

each point pi in the set S, the nearest neighbor of pi in S de�nes a non-

degenerate Voronoi edge for the Voronoi polygon Vi of pi. Therefore, by

tracing the boundary of the Voronoi polygon of each point in the set S, we
can �nd the nearest point for each point in the set S. This is the solution

of the problem ALL-NEAREST-NEIGHBOR. Given the Voronoi diagram

Vor(S) of the set S, each Voronoi polygon can be traced by the algorithm

TRACE-REGION given in Section 1.4 in time proportional to the number

of edges on the boundary of the polygon. Since each Voronoi edge is on

the boundary of exactly two Voronoi polygons, the sum of boundary edges

of all Voronoi polygons in Vor(S) equals twice the number of edges in the

Voronoi diagram Vor(S). We conclude that tracing all Voronoi polygons

of the Voronoi diagram Vor(S), thus �nding the nearest neighbor for each

point in the set S when the Voronoi diagram Vor(S) is given, takes time

proportional to the number of edges of Vor(S), that is of order O(n) since
the Voronoi diagram is a planar graph.



114 REDUCTIONS

Since the Voronoi diagram of a set of n points can be constructed in time

O(n logn) (Theorem 5.3.6), by Corollary 7.0.2, we obtain

Corollary 7.2.2 The problem ALL-NEAREST-NEIGHBOR can be solved

in time O(n logn).

It is easy to see that given a set S of n points in the plane, the solution

of the problem CLOSEST-PAIR can be obtained from the solution of the

problem ALL-NEAREST-NEIGHBORS in linear time, that is,

CLOSEST-PAIR /n ALL-NEAREST-NEIGHBOR

by simply computing the distance between each point and its nearest neigh-

bor, then taking the point that has the shortest distance to its nearest neigh-

bor. By Corollary 7.2.2, the problem ALL-NEAREST-NEIGHBOR can be

solved in time O(n logn). Therefore by Corollary 7.0.2, we have

Corollary 7.2.3 The problem CLOSEST-PAIR can be solved in time

O(n logn).

7.3 Triangulation

Given a Voronoi diagram Vor(S) for the set S of n points in the plane. We

draw a segment pipj for each pair of points pi and pj that de�ne a Voronoi

edge in Vor(S). Let D(S) be the collection of these segments, which is called

the straight-line dual of the Voronoi diagram Vor(S).

We prove that the straight-line dual D(S) of the Voronoi diagram Vor(S)

is a triangulation of the set S. For this, we must show that the straight-line

dual D(S) partitions the convex hull CH(S) of the set S into triangles such

that 1) no two triangles overlap in the interior, and 2) every point in

the convex hull CH(S) (more precisely, every point in the area bounded by

the convex hull CH(S)) must be contained in at least one such triangles.

Each Voronoi vertex v is incident to exactly three Voronoi edges e1, e2,

and e3, and exactly three Voronoi polygons V1, V2, and V3 of three points

p1, p2, and p3 in the set S. Each of the edges e1, e2, and e3 is de�ned by

a pair of the points p1, p2, and p3. Therefore, the segments p1p2, p2p3, and
p3p1 are all in the straight-line dual D(S) of Vor(S). Thus, each Voronoi

vertex v corresponds to a triangle 4p1p2p3 in the straight-line dual D(S).
Denote by 4(v) the triangle 4p1p2p3. On the other hand, since a Voronoi
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Figure 7.1: Two circumcircles intersect at q and q0

edge is incident on two Voronoi vertices, each segment in the straight-line

dual D(S) is a boundary edge of two such triangles 4(v) and 4(v0), where
v and v0 are two Voronoi vertices in Vor(S).

Lemma 7.3.1 No two triangles 4(v) and 4(v0) overlap in the interior,

where v and v0 are two di�erent Voronoi vertices in Vor(S).

proof. Let 4(v) and 4(v0) be two arbitrary triangles in the straight-line

dual D(S) of the Voronoi diagram Vor(S). Let C(v) and C(v0) be the cir-

cumcircles of the triangles 4(v) and 4(v0), respectively. If the circumcircles
C(v) and C(v0) do not overlap in the interior, then of course the triangles

4(v) and 4(v0) do not overlap in the interior. So we suppose that C(v) and
C(v0) do overlap in the interior. Note that each of the circumcircles C(v)

and C(v0) contains exactly three points in the set S on its boundary, and

by Lemma 5.2.3, no point of S is contained in the interior of C(v) or C(v0).
Moreover, C(v) and C(v0) cannot be coincide otherwise at least four points
in the set S would be co-circular. Moreover, no one of the circles C(v) and

C(v0) can be entirely contained in the other, since otherwise some point of

the set S would be contained in the interior of C(v) or C(v0), contradicting
to Lemma 5.2.3. So the boundaries of the circumcircles C(v) and C(v0) must
intersect at exactly two points q and q0. See Figure 7.1.

The two points q and q0 partition the circle C(v) into two disjoint curves,
one is entirely contained in the circle C(v0) and the other is completely

outside the circle C(v0). No vertex of the triangle 4(v) can be on the curve

of C(v) that is entirely contained in the circle C(v0) otherwise that vertex,
which is a point in the set S, would be in the interior of the circle C(v0),
contradicting Lemma 5.2.3. Thus the three vertices of 4(v) must be on the

curve of C(v) that is outside C(v0). Similarly, the three vertices of 4(v0) are



116 REDUCTIONS

q
q'

v

v'

q"

p
p

p
p

1

2

3

4

Figure 7.2: A point q outside all triangles

on the curve of C(v0) that is outside C(v). Therefore, the three vertices of the
triangle 4(v) and the three vertices of the triangle 4(v0) must be separated
by the segment qq0, so the triangles 4(v) and 4(v0) do not overlap in the

interior.

Lemma 7.3.2 Every point in the convex hull CH(S) is contained in some

triangle 4(v) for some Voronoi vertex v of Vor(S).

proof. Suppose that the lemma is not true and that some point q in

CH(S) is not contained in any such triangles. Then we can �nd a triangle

4(v), where v is a Voronoi vertex of Vor(S), and an interior point q0 in
the triangle 4(v) such that the segment qq0 intersects no triangles in D(S)
except the triangle 4(v). Moreover, we can suppose that the segment qq0

intersects4(v) at a unique point that is not a vertex of4(v). This condition
can be always satis�ed since we can move the point q0 slightly in the triangle

4(v).

Therefore, we can suppose that the triangle 4(v) has three vertices p1,
p2, and p3, that the segment qq0 intersects the edge p1p2 of 4(v) at an

internal point q00, and that no points on the segment qq00 (excluding the

point q00) are contained in any triangle 4(u) for some Voronoi vertex u.

See Figure 7.2. Then the point p3 and the point q are on di�erent sides of

the segment p1p2. Since both points q and p3 are contained in the convex

hull CH(S), the segment p1p2 cannot be a boundary edge of CH(S). Let

e = fv; v0g be the Voronoi edge de�ned by p1 and p2 (note that the vertex v

must be an end-point of e), then by Lemma 5.2.4, e is a �nite edge since the
points p1 and p2 are not consecutive hull vertices on CH(S). So the Voronoi



MINIMUM SPANNING TREE 117

vertex v0 is not the in�nite point, and v0 must correspond to a triangle 4(v0)
in the straight-line dual D(S). By the de�nition of 4(v0), two vertices of

4(v0) must be the points p1 and p2, and the other vertex p4 of 4(v0) must
be di�erent from the point p3 since v 6= v0. Since the two triangles 4(v)

and 4(v0) do not overlap in the interior, by Lemma 7.3.1, the two points

p3 and p4 must be on di�erent sides of the segment p1p2. Consequently,

however, some points on the segment qq00 which are very close to the point

q00 would be contained in the interior of the triangle 4(v0). This contradicts
our assumption that no points on qq00 (excluding q00) is contained in any such
triangles. This contradiction shows that q must belong to a triangle 4(w)
for some Voronoi vertex w in Vor(S).

By Lemma 7.3.1 and Lemma 7.3.2, we obtain immediately that the

straight-line dual D(S) of the Voronoi diagram Vor(S) is a triangulation

of the set S. This triangulation of S is called the Delaunay Triangulation of

the set S.

Theorem 7.3.3 TRIANGULATION /n VORONOI-DIAGRAM.

proof. Given a set S of n points in the plane, which is an input to the

problem TRIANGULATION, we simply pass S to the problem VORONOI-

DIAGRAM. The solution to VORONOI-DIAGRAM on input S is the

Voronoi diagram Vor(S) of S. Then from the Voronoi diagram Vor(S), we

construct the Delaunay Triangulation D(S) of S by tracing all the Voronoi

edges of Vor(S). If the Voronoi diagram Vor(S) is given by a DCEL, then it

is easy to see that the Delaunay Triangulation D(S) of S can be constructed

from Vor(S) in linear time.

Since the Voronoi diagram of a set of n points in the plane can be con-

structed in time O(n logn), by Corollary 7.0.2, we have

Corollary 7.3.4 The problem TRIANGULATION can be solved in time

O(n logn). In particular, the Delaunay triangulation D(S) of a set S of n
points in the plane can be constructed in time O(n logn).

7.4 Euclidean minimum spanning tree

Consider the following problem: given a set S of n points in the plane,

interconnect all the points by straight line segments so that the total length
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of the segments is minimum. This problem has an obvious application in

computer networking where we want to interconnect all the computers at

minimum cost.

It is easy to see that the resulting connected PSLG after the above in-

terconnection must be a tree. In fact, if the resulting PSLG were not a tree,

then we would be able to �nd a cycle, delete an edge from the cycle, and still

keep the PSLG connected. But this would contradict the assumption that

the resulting connected PSLG has the minimum total length of its edges.

This tree is called a Euclidean minimum spanning tree (EMST) of the set

S. In general, the Euclidean minimum spanning tree of a set is not unique.

The problem of �nding Euclidean minimum spanning tree for a set of

points in the plane is closely related to the following problem of �nding the

minimum weight spanning tree: given a weighted graph G, �nd a spanning

tree of G with the minimum total weight. In fact, the problem of �nding

Euclidean minimum spanning tree can be reduced to the problem of �nding

minimum weight spanning tree, as we illustrate as follows.

Let S be a set of n points in the plane. To construct a Euclidean mini-

mum spanning tree of S, we can regard S as a weighted complete graph GS

of n vertices, such that the weight of an edge e = fp; p0g in GS , where p and
p0 are two points in S, is the Euclidean distance between p and p0. There-
fore, a Euclidean minimum spanning tree of the set S is a minimum weight

spanning tree of the graph GS , and vice versa. There are a few e�cient algo-

rithms constructing the minimum weight spanning tree for weighted graphs.

For example, Kruskal's algorithm [15] constructs the minimum weight span-

ning tree for a weighted graph with m edges in time O(m logm). However,

the complete graph GS has 
(n2) edges. Therefore, a direct application of

Kruskal's algorithm to the complete graph GS would result in an O(n2 logn)

time algorithm for constructing a Euclidean minimum spanning tree for the

set S.

Interesting enough, with the help of the Voronoi diagram and the Delau-

nay Triangulation of the set S, a single preprocessing can eliminate most of

the edges of the complete graph GS from our consideration.

Lemma 7.4.1 Partition the set S into two non-empty disjoint subsets S1
and S2. If p1p2 is the shortest line segment such that p1 2 S1 and p2 2 S2,
then the line segment p1p2 is an edge in the Delaunay Triangulation D(S).

proof. Suppose that the segment p1p2 is not an edge in D(S). Then the

perpendicular bisector of p1p2 contains no Voronoi edge of Vor(S). Let V1
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Figure 7.3: p1p2 intersects V1 at q

be the Voronoi polygon of the point p1 in the Voronoi diagram Vor(S), and

suppose that the segment p1p2 intersects the Voronoi polygon V1 at a point
q that is on the Voronoi edge e of V1 in Vor(S). (The point p2 cannot be

contained in V1 (including the boundary of V1) since V1 is the locus of points
closer to p1 than to any other points in S.) Suppose that the Voronoi edge

e is de�ned by the point p1 and another point p3 in S. See Figure 7.3. By

the de�nition, the points p1 and p3 are the closest points in S to the points

on the edge e. Therefore,

jp1p2j = jp1qj+ jqp2j > jp1qj+ jqp3j � jp1p3j

Moreover, since we have 6 qp3p1 = 6 p3p1q, and the point q is an internal

point of the segment p1p2, we must have

6 p2p3p1 > 6 qp3p1 = 6 p3p1q = 6 p3p1p2

Therefore, we have

jp1p2j > jp2p3j

Now we obtain a contradiction, since both segments p2p3 and p1p3 are shorter
than the segment p1p2. Now if p3 2 S1 we pick p2p3, and if p3 2 S2 we pick

p1p3. No matter what set the point p3 is in, we are always able to �nd a

segment with one end in S1 and the other end in S2 such that the segment is
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shorter than p1p2. This contradicts the assumption that p1p2 is the shortest
such segment.

This contradiction proves that the segment p1p2 must be an edge in the

Delaunay Triangulation D(S) of the set S.

Lemma 7.4.2 Let p1 and p2 be two points in the set S. The segment p1p2
is an edge of some Euclidean minimum spanning tree if and only if there is

a partition of the set S into two non-empty sets S1 and S2 such that p1p2 is

the shortest segment with one end in S1 and the other end in S2.

proof. Suppose that p1p2 is an edge of a Euclidean minimum spanning

tree T . Then deleting the edge p1p2 from T results in two disjoint subtrees

T1 and T2. Let S1 and S2 be the sets of points in S that are the vertices of

the trees T1 and T2, respectively. S1 and S2 obviously form a partition of

the set S and each of the sets S1 and S2 contains exactly one of the points

p1 and p2. We claim that the segment p1p2 is the shortest segment with one

end in S1 and the other end in S2. In fact, if pp0 is a shorter segment with

one end in S1 and the other end in S2, then in the tree T , replacing the

segment p1p2 by the segment pp0 would give us a Euclidean spanning tree T 0

of S such that the sum of the edge lengths of T 0 is less than the sum of the

edge lengths of T . This contradicts the fact that T is a Euclidean minimum

spanning tree.

Conversely, suppose that there is a partition of S into two non-empty

subsets S1 and S2 such that p1p2 is the shortest segment with one end in

S1 and the other end in S2. Let T be a Euclidean minimum spanning tree

of S. If T contains p1p2, then we are done. Otherwise, adding the segment

p1p2 to T results in a unique simple cycle C. Since the segment p1p2 is on

the cycle C and p1 and p2 are in di�erent sets of S1 and S2, there must

be another segment pp0 on the cycle such that the points p and p0 are in

di�erent sets of S1 and S2. Since p1p2 is the shortest segment with two

ends in di�erent sets of S1 and S2, the segment pp0 is at least as long as the
segment p1p2. Replacing the segment pp0 in T by the segment p1p2 gives

us a new Euclidean spanning tree T 0 of S such that the sum of the edge

lengths of T 0 is not larger than the sum of the edge lengths of T . Since T is

a Euclidean minimum spanning tree of S, the sum of the edge lengths of T 0

must be the same as that of T . Therefore, T 0 is also a Euclidean minimum

spanning tree and T 0 contains the segment p1p2.

Corollary 7.4.3 If a segment p1p2 is an edge of some Euclidean minimum
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spanning tree of the set S, then p1p2 is an edge in the Delaunay Triangulation
D(S) of the set S.

proof. The proof follows from Lemma 7.4.1 and Lemma 7.4.2 directly.

Therefore, the Delaunay Triangulation D(S) contains all segments that
are in Euclidean minimum spanning trees of the set S. Now if we regard

D(S) as a weighted graph GD(S) in which the weight of a segment p1p2
in D(S) is the Euclidean distance between the two points p1 and p2, then

a Euclidean minimum spanning tree of the set S is a minimum weighted

spanning tree of the graph GD(S). This suggests the following algorithm.

Algorithm EMST(S)

Given: a set of n points in the plane

Output: a Euclidean minimum spanning tree of S

BEGIN

1. Construct the Delaunay triangulation D(S);

2. Construct a weighted graph G_D(S) that is

isomorphic to D(S) such that the weight of an

edge {p_i, p_j} in G_D(S) is the length of the

corresponding edge in D(S);

3. Apply Kruskal's algorithm to find a minimum

weight spanning tree T for G_D(S). This tree

T is a Euclidean minimum spanning tree for S;

END.

The analysis of the algorithm EMST is straightforward. By Corol-

lary 7.3.4, Step 1 for constructing the Delaunay triangulation D(S) can

be done in time O(n logn). To construct the graph GD(S), we simply com-

pute the length of each edge in D(S). Since D(S) is a planar graph of n

points, the number of edges of GD(S) is bounded by O(n) (see Section 1.4).

So Step 2 can also be done in time O(n). Kruskal's algorithm runs in time

O(m logm) on weighted graphs with m edges. Since the graph GD(S) has

only O(n) many edges, the application of Kruskal's algorithm on CD(S) takes

time O(n logn). This gives the following theorem.

Theorem 7.4.4 Given a set S of n points in the plane, the Euclidean min-

imum spanning tree of S can be constructed in time O(n logn).
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For the reason of completeness, we give a description of Kruskal's algo-

rithm. Since the algorithm has been well studied in the course of Algorithm

Analysis, we give only a brief outline of the algorithm and omit most of the

details. The interested reader is referred to [2].

Kruskal's algorithm �nds the minimum weight spanning tree for a

weighted graph G by simply adding edges one at a time, at each step us-

ing the lightest edge that does not form a cycle. This algorithm gradually

builds up the tree one edge at a time from disconnected components. The

correctness of the algorithm follows from a theorem for weighted graphs that

is similar to our Lemma 7.4.2.

To implement Kruskal's algorithm, suppose that the number of vertices

of the graph G is n, and the number of edges of the graph G is m. We �rst

presort all edges of G by their weight, then try to add the edges in order.

The presorting of edges of G takes time O(m logm). We then maintain a

forest F , which is a list of disjoint subtrees in the graph G. Each tree T in

the forest F is represented by a UNION-FIND tree whose leaf-nodes contain

the vertices of the tree T 1 (to distinguish the trees in the forest F , which

are the trees in the weighted graph G, from the UNION-FIND trees that

represent the trees in F , we call the vertices of the trees in F vertices, while

call the vertices of the UNION-FIND trees nodes). Initially, the forest F

is a list of n trivial trees, each is a single vertex of G. Pick the next edge

e = fv; ug from the sorted list of edges of G, and check if v and u are in the

same UNION-FIND tree in the forest F . This can be done by two FIND

operations followed by checking if the roots of the two UNION-FIND trees

are identical. If v and u are in the same UNION-FIND tree in the forest F ,
then adding e would result in a cycle in the forest F . So we should throw

the edge e. On the other hand, if v and u are in di�erent UNION-FIND

trees in the forest F , then the edge e does not form a cycle in the forest F ,

so we should add the edge e to the forest F . This is equivalent to merging

the two UNION-FIND trees containing the vertices v and u in F . This

can be done by a single UNION operation. We keep adding edges until the

forest F contains a single tree, which is the minimum weight spanning tree

of the weighted graph G. Since for each edge in the graph, at most three

UNION-FIND operations are performed, to construct the �nal minimum

weight spanning tree, we need at most 3m UNION-FIND operations. This

can be done in time O(m�(m)), where �(m) = o(log(m)) (see [2], Section 4.7

1For detailed discussion of UNION-FIND problem, the reader is referred to [2], Sec-

tion 4.7.
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for detailed discussion). Now since m�(m) = o(m logm), we conclude that

the running time of the Kurskal's algorithm is

O(m logm) + O(m�(m)) = O(m logm)

7.5 Maximum empty circle

Given a set S of n points in the plane, the problem MAXIMUM-EMPTY-

CIRCLE is to �nd a largest circle that contains no points of the set S and

whose center is internal to the convex hull of the set S. We will call such a

circle the maximum empty circle of the set S. The maximum empty circle

of a set S can be speci�ed by its center and its radius.

We �rst discuss where the center of the maximum empty circle can be

located.

Lemma 7.5.1 The center of the maximum empty circle of the set S must

be either a Voronoi vertex of Vor(S), or the intersection of a Voronoi edge

of Vor(S) and a boundary edge of the convex hull CH(S).

proof. Suppose that C is a maximum empty circle of the set S such that

C is centered at a point c.
Since C is the maximum empty circle, the boundary of the circle C must

contain at least one point of the set S, otherwise, we can increase the radius

of C (without moving the center c of C) to get a larger empty circle.

If the boundary of C contains only one point p in the set S, then we can

move the center c of C away from the point p and increase the radius of C.

This contradicts our assumption that C is the maximum empty circle.

Consequently, the center c of the circle C cannot be in the interior of any

Voronoi polygon V of a point p of the set S, since otherwise, the point p is

the only closest point in S to the center c, so the boundary of the circle C
cannot contain any other points of S except p.

Therefore, the point c must be on a Voronoi edge of Vor(S) and the

boundary of the circle C contains at least two points of the set S. Now

suppose that c is not a Voronoi vertex of Vor(S), then there are exactly two

points p and p0 of the set S on the boundary of the circle C. If c is not

already on the convex hull, we can move it along the perpendicular bisector

of p and p0 away from both p and p0 (without getting out of the convex hull

CH(S)), and increase the radius of the circle C. This again contradicts the

assumption that C is the maximum empty circle of S.
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Therefore, the center c of the maximum empty circle must be either a

Voronoi vertex in Vor(S), or an intersection of a Voronoi edge and a boundary

edge of the convex hull of S.

Let c be a Voronoi vertex of Vor(S) or an intersection of a Voronoi

edge and a boundary edge of CH(S). The radius of the largest empty circle

centered at c can be computed easily. In fact, if c is a Voronoi vertex of

Vor(S), then c is equidistant from three points in the set S and no points of

S is in the interior of the circle de�ned by these three points (Lemma 5.2.3).

Therefore, the circle de�ned by these three points must be the largest empty

circle centered at c. On the other hand, if c is an intersection of a Voronoi

edge and a boundary edge of CH(S), then exactly two points p and p0 in S

are closest to c, so the largest empty circle centered at c must have radius
jcpj = jcp0j.

If the Voronoi diagram is given by a DCEL, then in constant time, we can

compute the radius of the largest empty circle centered at a Voronoi vertex

v, by an algorithm TRACE-VERTEX, which is similar to the algorithm

TRACE-REGION in Section 1.4, to trace all incident Voronoi edges and all

incident Voronoi polygons of the vertex v. (Note that a Voronoi vertex has

degree exactly 3.) Since the Voronoi diagram Vor(S) has only O(n) Voronoi

vertices (Lemma 5.2.6), in linear time we can construct all largest empty

circles that are centered at the Voronoi vertices of Vor(S). Note that not all

these circles are candidates of the maximum empty circle of S: those largest

empty circles that are centered at a Voronoi vertex that is outside the convex

hull CH(S) are disquali�ed. We will discuss later how to �nd these Voronoi

vertices that are outside the convex hull CH(S).

Now let us discuss the points that are intersections of Voronoi edges

and the boundary edges of CH(S). The �rst question is: how many such

intersections can we have?

Lemma 7.5.2 There are at most O(n) intersections of Voronoi edges and
the boundary edges of CH(S).

proof. Since the convex hull CH(S) is convex, a Voronoi edge, which

is a single straight line segment or a single straight semi-in�nite ray, can

intersect CH(S) at at most two points. Moreover, by Lemma 5.2.6, the

Voronoi diagram Vor(S) has at most O(n) Voronoi edges.

The following observation is also important.
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Lemma 7.5.3 Each boundary edge of the convex hull CH(S) intersects at

least one Voronoi edge of Vor(S).

proof. If a boundary edge e = fv; v0g of CH(S) does not intersect any

Voronoi edge, then the whole segment vv0 is contained in a single Voronoi

polygon of Vor(S). But this is impossible, since the points on vv0 that are
very close to the point v should be contained in the Voronoi polygon of v,
while the points on vv0 that are very close to the point v0 should be contained
in the Voronoi polygon of v0.

For simplicity, call the intersections of the Voronoi edges of Vor(S) and

the boundary edges of CH(S) that are not a Voronoi vertex, the intersecting

points. An intersecting point p2 is the successor of an intersecting point p1
if the partial chain on the boundary of the convex hull CH(S) from p1 to p2,
in clockwise ordering, contains no other intersecting points.

Lemma 7.5.4 If we trace the boundary of a Voronoi polygon clockwise,

starting from an intersecting point p and leaving the convex hull, then we

must encounter at least another intersecting point. The �rst intersecting

point after p we encounter must be the successor of p.

proof. Let the Voronoi polygon we are going to travel be V . Since the

point p is on the boundary of V and is an intersecting point, the Voronoi

polygon V must have at least one vertex inside the convex hull CH(S) and at

least one vertex outside the convex hull CH(S). Now since we are traveling

the boundary of V and leaving the convex hull CH(S), we must eventually

come back and enter the convex hull CH(S) in order to reach the vertices of

V that are inside CH(S). Therefore, the boundary of the polygon V must

intersect CH(S) at at least another point. Let p0 be the �rst intersecting point
after p we encounter. Since both the partial chain of V between p and p0,
and the partial chain of CH(S) between p and p0 make only right turns, and

because both V and CH(S) are convex, the partial chain of CH(S) between

p and p0 must be entirely contained in the Voronoi polygon V . That implies

that no intersecting points are between the points p and p0 on the partial

chain of CH(S). Therefore, the intersecting point p0 is the successor of the
intersecting point p.

Now it is quite clear how we �nd all intersecting points. We start with an

intersecting point p, travel the Voronoi polygon in the direction of leaving the
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convex hull CH(S). We will encounter another intersecting point p0, which
is the successor of the intersecting point p. At the point p0, we reverse the
traveling direction and start traveling the adjacent Voronoi polygon from the

point p0, again in clockwise order and in the direction of leaving the convex

hull CH(S). We will hit the successor of p0, etc.. We keep doing this until

we come back to the �rst intersecting point.

We summarize this in the following algorithm.

Algorithm FIND-ALL-INTERSECTIONS

Given: the Voronoi diagram Vor(S) and the convex

hull CH(S) of a set S of n points

Output: all the intersecting points of Vor(S) and

CH(S)

BEGIN

1. Find an intersecting point p_0;

2. Let p = p_0;

3. Travel a Voronoi polygon clockwise in the direction

of leaving the convex hull CH(S), starting from the

point p to find the successor p' of p;

4. If p' <> p_0 then replace p by p' and go back to

Step 3;

END.

We analyze the algorithm. Suppose that the Voronoi diagram Vor(S) is

given by a DCEL and the convex hull CH(S) is given by a circular doubly-

linked list.

To �nd the �rst intersecting point p0, we pick any boundary edge e of

the convex hull CH(S). Then we scan the DCEL representing the Voronoi

diagram Vor(S) edge by edge and check which intersects e. By Lemma 7.5.3,

e intersects at least one Voronoi edge in Vor(S). So in linear time, we will

�nd a Voronoi edge that intersects e and obtain the �rst intersecting point

p0. So Step 1 of the algorithm can be done in linear time.

Starting from an intersecting point p, we travel the part of the Voronoi

polygon that is outside the convex hull CH(S). By Lemma 7.5.4, we will

encounter the successor of p. For this, we have to check, for each Voronoi

edge e we are traveling, if e intersects the convex hull CH(S). This seems

to need 
(n) time to check all boundary edges of the convex hull CH(S)
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for each Voronoi edge e. Fortunately, since each boundary edge of CH(S)

contains at least one intersecting point (Lemma 7.5.3), the successor of p

must be either on the boundary edge e of CH(S) where p is located, or on the
boundary edge of CH(S) that is next to e. Therefore, for each Voronoi edge

e we are traveling, we only have to check two boundary edges on CH(S).

So each Voronoi edge can be processed in constant time. Moreover, each

Voronoi edge that is outside the convex hull CH(S) is traveled at most twice

since each Voronoi edge is on the boundary of exactly two Voronoi polygons.

Therefore, the total time spent on Step 3 and Step 4 in the algorithm FIND-

ALL-INTERSECTIONS is bounded by the number of Voronoi edges that

are outside the convex hull CH(S), which is in turn bounded by the number

of Voronoi edges of the Voronoi diagram Vor(S), which is, by Lemma 5.2.6,

bounded by O(n).

Thererfore, the time complexity of the algorithm FIND-ALL-

INTERSECTIONS is bounded by O(n).

Finally, we discuss how to determine if a Voronoi vertex v is inside or out-
side the convex hull CH(S). In the algorithm FIND-ALL-INTERSECTIONS,

all the Voronoi vertices we encounter are outside the convex hull CH(S). So

we can simply mark them and not use them as potential candidates of the

center of the maximum empty circle. The question is, can there be any

Voronoi vertex that is outside the convex hull CH(S) and not encountered

by our algorithm FIND-ALL-INTERSECTIONS? The answer is NO, as ex-

plained by the following paragraph.

Suppose that v is a Voronoi vertex of Vor(S) and that v is outside of

the convex hull CH(S). Let v be on the boundary of some Voronoi polygon

V . The Voronoi polygon V cannot be completely outside the convex hull

Vor(S), since otherwise the corresponding point of the set S would be outside

the convex hull Vor(S). So the polygon V intersects CH(S) at at least two

points. Let p and p0 be two intersecting points of the polygon V and the

convex hull CH(S) such that the vertex v is contained in the partial chain

on the boundary of V from p to p0 in clockwise ordering, and that no other

intersecting points are on this partial chain. Then the algorithm FIND-ALL-

INTERSECTIONS will eventually encounter the intersecting point p and

trace this partial chain from p to p0. Now the vertex v must be encountered.

Summarizing the above discussions gives us the following algorithm for

solving the problem MAXIMUM-EMPTY-CIRCLE.

Algorithm MAXIMUM-EMPTY-CIRCLE
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Given: a set S of n points in the plane

Output: the maximum empty circle of S

BEGIN

1. Construct the Voronoi diagram Vor(S) and the

convex hull CH(S);

2. Call the subroutine FIND-ALL-INTERSECTIONS to

find all intersecting points of Vor(S) and CH(S),

and mark all Voronoi vertices that are outside

the convex hull CH(S);

3. For each q of such intersecting points, compute

the largest empty circle centered at q;

4. For each unmarked Voronoi vertex v, compute the

largest empty circle centered at v;

5. The largest among the largest empty circles

constructed in Step 3 and Step 4 is the maximum

empty circle of S;

END.

Step 1 takes time O(n logn), by Theorem 5.3.6 and by, say, the Graham

Scan algorithm. Step 2 takes linear time, as we have discussed above. The

other steps in the algorithm trivially take only linear time, by Lemma 5.2.6

and Lemma 7.5.2. Therefore, we obtain the following theorem.

Theorem 7.5.5 The problem MAXIMUM-EMPTY-CIRCLE can be solved

in time O(n logn).

7.6 All-farthest vertex

The \inverse" of the problem ALL-NEAREST-NEIGHBOR is the problem

ALL-FARTHEST-NEIGHBOR, in which we are asked to �nd the farthest

neighbor for each point of a given set. The ALL-FARTHEST-NEIGHBOR

problem can be solved through the Farthest Neighbor Voronoi Diagram.

It can be shown that given a set S of n points in the plane, the Far-

thest Neighbor Voronoi Diagram of S can be constructed in time O(n logn).

Moreover, with the Farthest Neighbor Voronoi Diagram, the problem ALL-

FARTHEST-NEIGHBOR can be solved in anotherO(n logn) time, using the

techniques of point location, as we discussed in Chapter 5. Therefore, the

ALL-FARTHEST-NEIGHBOR problem can be solved in time O(n logn).
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Figure 7.4: The vertices v1 and v3 are not an antipodal pair

In this section, we will discuss a restricted version of the problem ALL-

FARTHEST-NEIGHBOR, the all-farthest-vertex problem for the set of ver-

tices of a convex polygon. The goal is for each vertex of the convex polygon

�nd the farthest vertex. Since the problem is \simpler" than the general

problem, we expect a better algorithm, say, a linear time algorithm for solv-

ing this problem.

Let us �rst formally de�ne the ALL-FARTHEST-VERTEX problem.

ALL-FARTHEST-VERTEX

For each vertex v of a convex polygon P , �nd a vertex of P that is farthest

from v.

It would seem a simple generalization of the algorithm for �nding the

diameter of a convex polygon, as we showed in Section 3.3. That is, the

farthest vertex of a vertex v must be a vertex that constitutes an antipodal

pair with v. We �rst show that this intuition is incorrect.

Look at the Figure 7.4. The vertex v3 is obviously the farthest vertex

from the vertex v1. However, since the vertex v5 is the �rst farthest vertex

from the edge v8v1, by Lemma 4.3.4, the vertices v1 and v3 are not an

antipodal pair.

To solve the problem ALL-FARTHEST-VERTEX, we �rst make an as-

sumption that for each vertex v of P , the distances from v to any two vertices

u and w of P are di�erent. This assumption loses no generality since we can

de�ne the distance from v to a vertex u to be a triple D(v; u) = (d; x; y),
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Figure 7.5: The matrix MP

where d is the Euclidean distance between v and u, while x and y are the

x- and y-coordinates of the vertex u, respectively. The distance D(v; u) is

ordered lexicographically.2 With this assumption, each vertex of P has a

unique farthest neighbor.

7.6.1 A monotone matrix

Let the vertices of a convex polygon P be given in counterclockwise order

(v1; v2; � � � ; vn). It is convenient to describe the problem ALL-FARTHEST-

VERTEX in terms of an n � (2n � 1) matrix MP pictured in Figure 7.5.

In the ith row of MP , the cell (i; i+ k) holds the distance D(vi; vk0) (where
k0 = ((i+ k � 1) (mod n)) + 1), for 1 � i � n and 0 � k � n � 1. All other

cells of MP hold �1. Solving the problem ALL-FARTHEST-VERTEX is

equivalent to �nding the maximal element in each row of the matrix MP .

Note that we are not actually constructing the matrix MP in the imple-

mentation of our algorithm. There are 
(n2) elements in the matrix MP , so

even writing the matrix MP out takes time 
(n2). Instead, we keep a list

for the indices of the rows and a list for the indices of the columns of the

matrix MP . Given a pair of indices (i; j), the element with the index (i; j)
in the matrix MP can be computed in constant time.

The matrix MP has a very nice property, called monotone property.

2Note that the distance D(v; u) is not symmetric, that is, in general, D(v; u) 6= D(u; v).

However, if D(v;u) is the largest then the vertex u must be one of the vertex of P that

has the farthest Euclidean distance from the vertex v.
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De�nition An n�m matrix M = (ai;j) is monotone if for any two pairs

(i1; i2) and (j1; j2) of indices, where 1 � i1 < i2 � n and 1 � j1 < j2 � m,

the 2� 2 submatrix of M  
ai1j1 ai1j2
ai2j1 ai2j2

!

has the property that it is not simultaneously possible that ai1j1 < ai1j2 and
ai2j1 > ai2j2 .

Lemma 7.6.1 The matrix MP is monotone.

proof. Given a 2� 2 submatrix of MP 
a b
c d

!

taken from the i1th and i2th rows and j1th and j2th columns of the matrix

MP , where i1 < i2 and j1 < j2. Suppose by contradiction that we have a < b

and c > d. Then b and c cannot be �1.

The number a cannot be �1. Otherwise since b 6= �1 and a is on the

left of b in the matrix MP and a = �1, so c must be �1 since c is in the

same column as a and c is below a. But by our assumption, c is not �1.

Similarly, the number d cannot be �1.

So none of a, b, c, and d can be �1. Now let us consider the relations

among the indices i1, i2, j1, and j2.

Since the element c has index (i2; j1) and c 6= �1, so we must have

i2 � j1. If i2 = j1 then c is the distance between the vertex vi1 to itself in

P , thus c = 0. But this is impossible since c > d and d 6= �1. Thus we

must have i2 < j1. Therefore, we can write explicitly

i1 < i2 < j1 < j2

Therefore, the vertices vi1 , vi2 , vj1 and vj2 must appear on the convex poly-

gon P in exactly this order (the indices j1 and j2 actually take values

(mod n) + 1). See Figure 7.6. However, now the conditions a < b and c > d

implies that c + b > d + a. Since the polygon P is convex, c + b > d + a
says that the sum of the lengths of opposite sides of a convex quadrilateral is
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Figure 7.6: The convex polygon P

greater than the sum of the lengths of the diagonals of the same quadrilateral.

However, this contradicts a fundamental theorem in elementary geometry.

(Remark: this is the only place we use the convexity of the polygon P .)
Therefore, if we suppose that a < b and c > d, then we are always able

to derive a contradiction. This proves that a < b and c > d cannot be

simultaneously possible. That is, the matrix MP is monotone.

Corollary 7.6.2 Every submatrix of the matrix MP is monotone.

proof. This is because that each 2 � 2 submatrix of a submatrix of MP

is also a submatrix of MP .

Lemma 7.6.1 and Corollary 7.6.2 are crucial for the algorithms we are

going to give.

7.6.2 Squaring a monotone matrix

The matrixMP is a rectangle matrix that contains more columns than rows.

Since we are only interested in �nding the maximal element in each row of

the matrix, at most n columns are really useful to us. In the following, we

will discuss how to square a rectangle matrix without deleting the maximal

element in each row. We will actually consider a little bit more general

case, that is, how do we square a rectangle submatrix of MP that has more

columns than rows such that the maximal element in each row is kept in the

resulting square matrix.
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Let

M =

0
BBB@

a1;1 a1;2 � � � a1;h
a2;1 a2;2 � � � a2;h

� � � � � �
ar;1 ar;2 � � � ar;h

1
CCCA

be an r� h submatrix of the matrix MP . By Corollary 7.6.2, the matrix M
is monotone.

Now let us look at the �rst row, compare the elements a1;1 and a1;2. If
a1;1 < a1;2, then no maximal element in any row can be in the �rst column.

In fact, a1;1 is not the maximal element in the �rst row. Suppose that the

maximal element of the ith row of M is in the �rst column, i > 1, then we

have ai;1 > ai;2. This together with a1;1 < a1;2 contradicts the fact that M
is a monotone matrix. Therefore, the �rst column of M can be deleted in

this case. After deleting the �rst column of M , we compare the elements

a1;2 and a1;3. Similarly, if a1;2 < a1;3 then we can delete the second column

of M and compare the elements a1;3 and a1;4 and so on. We keep doing this

until we �nd an index i1 such that a1;i1 > a1;i1+1. Now we save the column

i1 and move to the second row of M .3

We look at the second row and compare the elements a2;i1+1 and a2;i1+2.
If a2;i1+1 � a2;i1+2 then we save the (i1+1)st column of M and move to the

third row. On the other hand, if a2;i1+1 < a2;i1+2, then none of the 2nd, 3rd,
� � �, rth rows of M can have their maximal element in the (i1+ 1)st column

of M because M is monotone. Moreover, since we know that a1;i1 > a1;i1+1,
the �rst row ofM does not have its maximal element in the (i1+1)st column

either. Therefore, the (i1+1)st column ofM contains no maximal elements

for any row, thus can be deleted. Now since we know no relation between

the elements a1;i1 and a1;i1+2, so after deleting the (i1 + 1)st column, we

move back to the �rst row and compare a1;i1 and a1;i1+2.
Now we discuss the general case. Inductively, suppose that we have

moved to the kth row of M with 2 � k � r� 1, and we have saved the i1th,
i2th, � � �, and ik�1th columns of M such that

a1;i1 > a1;i2

a2;i2 > a2;i3

3It seems that we have ignored the equality case, i.e., the case when a1;i1 = a1;i1+1.

However, the equality case can never happen. It is because that by our de�nition of the

distance D(v; u), vertex v has a unique distance to a vertex u. So case a1;i1 = a1;i1+1
happens if and only if both a1;i1 and a1;i1+1 are �1. But by our selection of i1, a1;i1 can

never be �1.
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� � �
ak�2;ik�2 > ak�2;ik�1
ak�1;ik�1 > ak�1;ik�1+1

and none of the deleted columns contain maximal elements of any row of

M . Then we compare the elements ak;ik�1+1 and ak;ik�1+2 in the kth row

of M . If ak;ik�1+1 > ak;ik�1+2 then we save the (ik�1 + 1)st column and

move to the (k + 1)st row of M . On the hand, if ak;ik�1+1 < ak;ik�1+2,
then for any j > k the jth row in the matrix M cannot have its maximal

element in the (ik�1 + 1)st column since M is monotone. Moreover, by

our inductive hypothesis, ak�1;ik�1 > ak�1;ik�1+1, so the (k � 1)st row does

not have its maximal element in the (ik�1 + 1)st column. If for some j

such that j < k � 1 such that the jth row has its maximal element in

the (ik�1 + 1)st column, then aj;ik�1 < aj;ik�1+1. But this together with

ak�1;ik�1 > ak�1;ik�1+1, contradicts the fact that the matrixM is monotone.

Summarizing these discussions, we conclude that the (ik�1+ 1)st column of

the matrixM contains no maximal element for any row, thus can be deleted.4

Now since we have no idea about the relation between the elements ak�1;ik�1
and ak�1;ik�1+2, we move back to the (k � 1)st row of M and compare the

two elements.

The case for the last row (the rth row) should be treated specially. Sup-

pose that we have moved to the rth row of M , and we have saved the i1th,
i2th, � � �, and ir�1th columns of M such that

a1;i1 > a1;i2

a2;i2 > a2;i3

� � �
ar�2;ir�2 > ar�2;ir�1
ar�1;ir�1 > ar�1;ir�1+1

and none of the deleted columns contain maximal elements of any row ofM .

We compare the elements ar;ir�1+1 and ar;ir�1+2 in the rth row ofM . Again

there are two cases.

If ar;ir�1+1 < ar;ir�1+2, then exactly as we have discussed for the case

2 � k � r � 1, the (ir�1 + 1)st column of the matrix M contains no row

maximal elements, thus can be deleted. Moreover, since we have no idea

4Again, since we can easily prove that ak;ik�1+1 can never be �1, we ignore the case

when ak;ik�1+1 = ak;ik�1+2.



ALL-FARTHEST VERTEX 135

about the relation between the elements ar�1;ir�1 and ar�1;ir�1+2, we move
back to the (r � 1)st row and compare the two elements.

On the other hand, if ar;ir�1+1 > ar;ir�1+2, then ar;ir�1+2 cannot be the
row maximal element for the rth row. Moreover, no other elements in the

(ir�1+2)nd column can be row maximal elements, since otherwise we would

�nd an index j < r such that

aj;ir�1+1 < aj;ir�1+2 and ar;ir�1+1 > ar;ir�1+2

contradicting the fact that the matrixM is monotone. Therefore, the (ir�1+
2)nd column can be deleted. Now we compare the elements ar;ir�1+1 and

ar;ir�1+3, and so on.

Keeping doing the above process, we will get a square matrix at some

moment. This can be shown as follows. Suppose that the number of columns

is greater than the number of rows. If we are at the kth row with 2 � k �
r � 1, then either we will delete a column then move one row up or we will

move one row down without deleting any columns. If we are at the �rst

row, then either we delete a column and remain in the �rst row or we move

to the second row without deleting any columns. If we are at the last row,

then either we delete a column and move back to the (r � 1)st row or we

delete a column and remain in the rth row. Therefore, only when we are

moving down we do not delete columns. However, we cannot move down

forever since eventually we will reach the last row, in which we have to delete

columns. By our inductive proof above, all maximal elements of the rows of

M are contained in the resulting square matrix.

We implement the above idea into the following algorithm SQUARE.

Suppose that the submatrix M of the matrix MP contains the elements in

the k1th, k2th, � � �, krth rows and the j1th, j2th, � � �, jhth columns such that

k1 < k2 < � � � < kr and j1 < j2 < � � �< jh

and r < h. The indices k1, k2, � � �, kr are stored in a doubly-linked list Lrow ,

and the indices j1, j2, � � �, jh are stored in another doubly-linked list Lcol.

The algorithm SQUARE takes the two doubly-linked lists Lrow and Lcol as

its input, and outputs a doubly-linked list Lc that contains the indices of the

columns of M that are saved in the process. The list Lc contains r indices.
Since the lists are doubly-linked, for each element in a list, we can always

access in constant time the previous element in the list through a pointer

\last", and the next element in the list through a pointer \next".
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Algorithm SQUARE(L_row, L_col)

Given: a rectangle submatrix M of M_P, represented

by a list of row indices L_row and a list of

column indices L_col

Output: a square matrix M' obtained from M by deleting

some columns of M such that all row maximal

elements in M are kept in M'

BEGIN

1. Let L_c = L_col, let j and k be the first elements

in the list L_c and L_row, respectively;

2. WHILE the matrix is not square DO

2.1 CASE 1: k is the first element in the list L_row

IF a_{k, j} < a_{k, next(j)} THEN

let j = next(j) and delete the first element in

the list L_c

ELSE (* so a_{k, j} > a_{k, next(j)} *)

let j = next(j), and let k be the second element

in the list L_row,

2.2 CASE 2: k is neither the first nor the last in L_row

IF a_{k, j} < a_{k, next(j)} THEN

let j = last(j) and delete the old j from the

list L_c, and let k = last(k)

ELSE (* so a_{k, j} > a_{k, next(j)} *)

let k = next(k) and j = next(j);

2.3 CASE 3: k is the last element in the list L-row

IF a_{k, j} < a_{k, next(j)} THEN

let j = last(j) and delete the old j from the

list L_c, and let k = last(k);

ELSE (* so a_{k, j} > a_{k, next(j)} *)

let j = next(j), and delete the old j from the

list L_c

END of WHILE;

3. Output the list L_c;

END.

We analyze the algorithm. The algorithm is obviously dominated by

the WHILE loop (Step 2). First note that the value of an element ak;j in

the matrix M can be computed in constant time if we are given the convex

polygon P and the indices k and j. Therefore, each execution of the WHILE
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loop takes constant time. Now let us discuss how many times the WHILE

loop in the algorithm can be executed. Note that whenever we move one row

up, we delete one column. To make the matrix square, we delete exactly h�r
columns from the matrix M . So we can move up at most h � r rows. This

also implies that we can move down at most r+(h�r) = h rows. Thus, there
are at most 2h � r executions of the WHILE loop that move on row up or

down. If an execution of the WHILE loop does not move a row up or down,

then we must be at the �rst row or the last row, but then we must delete a

column. Thus, there are at most h � r executions of the WHILE loop that

does not move on row up or down. Summarizing this together, we conclude

that the WHILE loop is executed at most 2h � r + h � r = O(h) times.

Consequently, the time complexity of the algorithm SQUARE is bounded

by O(h).

7.6.3 The main algorithm

Before we give the main algorithm for our problem, we consider the following

problem: let M be a monotone matrix, and suppose that the maximal ele-

ment of the ith row of M is in the j1th column, while the maximal element

of the (i + 2)nd row of M is in the j2th column, then what column of M
can the maximal element of the (i + 1)st row be in? Since the matrix M

is monotone, we must have j1 � j2. Moreover, since M is monotone, the

maximal element of the (i+1)st row must be in a column that is between the

j1th column and j2th column (including the j1th column and j2th column

themselves). Therefore, instead of scanning the whole (i + 1)st row to �nd

the maximal element, we only have to scan the elements in the (i+1)st row

that are between the j1th column and j2th column.

Now we are ready for the main algorithm for the problem ALL-

FARTHEST-VERTEX. Suppose we are given a convex polygon P of n ver-

tices v1, v2, � � �, and vn. De�ne the matrix MP as above. The value of each

element ai;j of the matrixMP can be computed in constant time if we know

the indices i and j. We use the following algorithm to �nd the farthest vertex

for each vertex of the convex polygon P . The subroutine ROW-MAXIMAL

takes an r � r monotone submatrix M of MP as input and returns back a

list L of r indices such that for 1 � i � r, if the ith element in L is ki, then
the element ai;ki is the maximal element in the ith row of the submatrix M .

Algorithm ALL-FARTHEST-VERTEX(P)
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Given: a convex polygon P

Output: for each vertex of P, find the farthest vertex

BEGIN

1. Construct a doubly-linked list L_row containing

the indices 1, 2, ..., n, and a doubly-linked

list L_col containing the indices 1, 2, ...,

2n-1;

2. Call the subroutine SQUARE(L_row, L_col) to

obtain a list L_c of column indices of M_P

such that these columns constitute a square

submatrix of M_P that contains the maximal

element for each row of M_P;

3. Call the subroutine ROW-MAXIMAL(L_row, L_c);

4. Suppose that the subroutine ROW-MAXIMAL(L_row, L_c)

returns a list L, then for 1 <= i <= n,

if the ith element of L is k_i, then the vertex

v_{k_i'} is the farthest vertex from the vertex

v_i in the convex polygon P, where

k_i' = (k_i - 1)mod(n) + 1;

END.

The subroutine ROW-MAXIMAL is given as follows. Here we suppose

that M is a r � r submatrix of the matrix MP , and the row indices and

column indices of M are given by two lists Lr and Lc, respectively.

Algorithm ROW-MAXIMAL(L_r, L_c)

Given: two doubly-linked lists L_r and L_c containing

the indices of rows and the columns of an r by

r submatrix M of the matrix M_P, respectively

Output: a list L of column indices such that the ith

element of L is the column index of the maximal

element in the ith row of the matrix M

BEGIN

1. IF L_c contains one element, return L_c directly;

2. Delete every other element from the list L_r. Let

the resulting list be L_r';

{ This is equivalent to deleting all rows with even

index from the matrix M. Let the resulting matrix

be M_1. M_1 consists of the rows of M that have
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odd index. The matrix M_1 is an r/2 by r matrix. }

3. Call the subroutine SQUARE(L_r', L_c);

{ The algorithm SQUARE returns a list L_c' of size

r/2, which corresponds to a list of column indices

such that these columns constitute an r/2 by r/2

square matrix that contains all maximal elements

in the odd rows of the matrix M. }

4. Recursively call the subroutine ROW-MAXIMAL(L_r', L_c');

{ This recursive call will return a list L that contains

the column indices with which the maximal elements in

the odd rows are located. }

5. With the help of the list L, determine the column indices

for the maximal elements in the even rows of M. For this,

suppose in the (2 i - 1)st row of M, the maximal element

is in the j_1th column, and in the (2 i + 1)st row of M,

the maximal element is in the j_2th column, then scan the

elements in the (2i)th row only from column j_1 to column

j_2, the maximal element among these elements must be the

maximal element of the (2i)th row;

END.

Let us �rst look at the time complexity of the algorithm ROW-

MAXIMAL. Step 1 and Step 2 can obviously done in time O(r), if the input
matrix M is an r � r matrix. By the analysis of the algorithm SQUARE,

Step 3 can done in time O(r). Now look at Step 5. Suppose that the list L
contains (r=2) indices j1, j2, � � �, and jr=2, which are the column indices of

maximal elements of odd rows of M , then since the submatrix M is mono-

tone

j1 � j2 � � � � � jr=2

As we discussed before, to �nd the maximal element in the (2i)th row, we

only have to scan the elements in the (2i)th row from the column ji to the
column ji+1. Therefore, to �nd maximal elements for all even rows, we will

scan at most

(j2 � j1 + 1) + (j3 � j2 + 1) + � � �+ (jr=2� jr=2�1 + 1) + (r � jr=2 + 1)

= r=2 + r� j1
= O(r)

elements. Therefore, the time for executing Step 5 is also bounded by O(r).

Let the time complexity of the algorithm ROW-MAXIMAL be T (r) when
the input is an r�r matrix, then Step 4 in the algorithm takes time T (r=2),
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and all other steps take time O(r), so we have

T (r) � T (r=2)+ cn

where c is a constant. It is easy to see that T (n) = O(n). That is, the

algorithm ROW-MAXIMAL takes linear time.

Now we analyze the algorithm ALL-FARTHEST-VERTEX. Step 1 and

Step 4 obviously take time O(n). Since the algorithm SQUARE takes time

O(n), and by the analysis above, Step 3, the algorithm ROW-MAXIMAL

also takes time O(n), we conclude that the time complexity of the algorithm

ALL-FARTHEST-VERTEX runs in time O(n).

Theorem 7.6.3 The problem ALL-FARTHEST-VERTEX for convex poly-

gons can be solved in linear time.

7.7 Exercises

1. Give examples to show that a problem P 0 may have very high com-

plexity (e.g. NP-complete) even a linear time solvable problem P is

linear time reducible to P 0.

2. A star-shaped polygon P = fp1; � � � ; png is a simple polygon containing

at least one point q such that the segment qpi lies entirely within P

for all 1 � i � n. The problem STAR-POLYGON is to �nd a star-

shaped polygon whose vertex set is the given set of points in the plane.

Show that the problem CONVEX HULL is linear time reducible to the

problem STAR-POLYGON.

3. Given a star-shaped polygon P , �nd two vertices of P that are the

farthest apart.

4. Give a detailed proof that the problem CONVEX HULL is linear time

reducible to the problem VORONOI-DIAGRAM.

5. Consider the following problem in Robotics: Let S be a set of obstacles

on the plane. These obstacles are discs of the same radii. You have a

mobile \Robot" R which has shape of disc with a radius of 1. We want

an algorithm such that for any obstacle set S, and for any two points p

and q, the algorithm will �nd a path for the robot R from position p to
position q, avoiding the obstacles. If no such path exists, the algorithm
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reports accordingly. Design and analyze an algorithm for this problem.

(Hint: construct the Voronoi diagram for the centers of the obstacles).

6. Given a set of n points in the plane, prove that the Delaunay triangu-

lation contains at most 2n� 5 vertices and at most 3n� 6 edges.

7. A monotone polygon is a simple polygon whose boundary can be de-

composed into two monotone chains (a chain is monoton if every ver-

tical line intersects it at at most 1 point). The problem MONOTON-

POLYGON is to �nd a monoton polygon whose vertex set is the given

set of points in the plane. Show that the problem CONVEX HULL is

linear time reducible to the problem MONOTON-POLYGON.

8. Show that the problem CONVEX HULL is linear time reducible to the

following problem.

INTERSECTION-OF-HALF-PLANE

given a system of N linear inequalities of the form

aix+ biy + ci � 0 i = 1; 2; : : : ; N:

�nd the region of the solutions of it.

9. Show that the problem CONVEX HULL is linear time reducible to the

problem of constructing the convex hull of points in 3-dimension space

even if the points are given sorted with respect to the x-coordinates.
(Recall that the convex hull computation requires the reporting of

vertices, edges, and faces that lie on the convex hull and their adjacency

relations with respect to one another.)

10. Suppose that a problem P is reducible to a problem P 0 in O(n logn)

time and that the problem P 0 is solvable in time O(n logn). Is the

problem P necessarily solvable in time O(n logn)? Justfy your answer.

11. Given two sets A and B, with m and n planar points, respectively.

Find two points, one from each set, that are closest. (Hint: You

should consider the following three di�erent cases: (1) m is much

larger than n; (2) n is much larger than m; (3) m and n are of the

same order.)

12. The problem All Nearest Neighbors is stated as follows: given a set S
of n points in the plane, �nd a nearest neighbor of each. Show that
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this problem can be reduced in linear time to the problme Voronoi-

Diagram.

13. It has been recently shown that triangulating a simple polygon can

be done in linear time. Use this result to show that triangulating a

connected PSLG in which each face is a simple polygon can be done

in linear time.

14. Consider the following problem of SECOND CLOSEST PAIR: Given

a set S of n points in the plane, �nd a pair of points p1 and p2 in S
such that the distance between p1 and p2 is the second shortest among

all pairs of points of S. (Of course, if there are two distinct closest

pairs, then either of them can be regarded as the second closest pair).

Show that the problem SECOND CLOSEST PAIR can be reduced to

the problem VORONOI DIAGRAM in linear time. Thus, it can be

solved in O(n logn) time.

15. Design an e�cient algorithm that computes the area of an n-vertex
simple, but not necessarily convex polygon.

16. Design an e�cient algorithm that �nds the second farthest pair from

among n points in the plane.

17. Design a linear time algorithm for the following problem: given

Vor(S), where S is a set of n points in the plane, �nd a �-chain (i.e.,

a path in Vor(S) with both ends extended to in�nity) such that each

side of the �-chain contains half of the points in S.

18. The Euclidean Traveling Saleman problem (ETS) is to �nd a shortest

closed path through n given points in the plane. Show that an approx-

imate ETS tour whose length is less than twice the length of a shortest

tour can be constructed in time O(n logn). (Hint: reduce the problem
to the problem of Euclidean Minimum Spanning Tree problem.)



Chapter 8

Lower Bound Techniques

We have discussed quite a few algorithms for geometric problems, including

constructing convex hulls of �nite sets of points in the plane, solving prox-

imity problems, �nding the intersection of geometric objects, and searching

in PSLGs. Most of these problems can be solved by brute force methods

in time O(n2) or more. Our techniques (geometric sweeping, divide and

conquer, prune and search, and reduction) gives faster algorithms for solv-

ing these problems. Most of our algorithms run in linear time or in time

O(n logn). For those linear time algorithms, we know that we have ob-

tained asymptotically optimal solutions because even just reading the input

for the problems takes linear time. For those O(n logn) time algorithms,

however, a very natural question is whether we can further improve them,

or, equivalently, are these algorithms the best possible.

This question brings us to an important, deep, and in general di�cult

branch in theoretical computer science, the study of lower bounds of prob-

lems. Here instead of designing a single e�cient algorithm for a given prob-

lem, we want to prove that any algorithm solving the problem takes at least

certain amount of time.

Let us look at the problem of constructing convex hulls. We have dis-

cussed the relationship between constructing convex hulls and sorting (see

Section 6.1), we may have realized that an algorithm faster than O(n logn)
for convex hull is impossible, since as we have seen in Algorithm Analysis

that sorting n numbers requires at least 
(n logn) comparisons (see, for

example, [2]), and since

SORTING /n CONVEX HULL

so the problem CONVEX HULL is at least as hard as SORTING. However,

143
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we are not completely satis�ed with this result because the computational

model used is too restricted: it cannot even do multiplication! On the

other hand, just computing the standard Euclidean distance metric requires

quadratic polynomials.

In this chapter, we will introduce a general technique for deriving lower

bounds for geometric problems. We �rst look closely at the computational

model that can do only comparison, the linear decision tree, then extend the

result on linear decision tree to a more powerful computational model, the

algebraic decision tree. Lower bounds then are obtained on this model for

most of the geometric problems we have discussed in the previous chapters.

Combining these lower bounds and the algorithms we have derived, we con-

clude that most of those algorithms developed in the previous chapters are

in fact optimal.

8.1 Preliminaries

Let us �rst have a brief review of geometry. Let S be a subset of the n-
dimensional Euclidean space En. S is connected if for any pair of points

p and q of S, there is a curve C adjoining them such that C is entirely

contained in S. By the de�nition, a convex set in En is connected. Now

suppose that W is a subset of En that is not necessarily connected, then a

connected component ofW is a maximal connected subset ofW . We will use

#W to denote the number of connected components of the set W .

A function f(x1; � � � ; xn) is a polynomial if f is a sum of terms of the form

cxi11 x
i2

2 � � �xinn , where c is a constant, and all ij's are non-negative integers.
The degree of the term cxi11 x

i2
2 � � �xinn is de�ned to be the number i1+i2+� � �+

in. The degree of a polynomial is the maximum of the degrees of its terms.

The function f is a linear polynomial if in each term of the above form, we

have ij � 1, for all 1 � j � n. An equation f(x1; � � � ; xn) = 0 with f being

a linear polynomial de�nes a hyperplane in the n-dimensional Euclidean
space En. An open inequality f(x1; � � � ; xn) > 0 (or f(x1; � � � ; xn) < 0)

de�nes an open halfspace in En, with the hyperplane f(x1; � � � ; xn) = 0

being its boundary. Similarly, a closed inequality f(x1; � � � ; xn) � 0 (or

f(x1; � � � ; xn) � 0) de�nes a closed halfspace in En, with the hyperplane

f(x1; � � � ; xn) = 0 being its boundary. It is easy to see that hyperplanes,

open halfspaces, and closed halfspaces are all convex sets in En.

Let S be the set of points (x1; � � � ; xn) satisfying a sequence of relations:

fi(x1; � � � ; xn) = 0 i = 1; � � � ; m1
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gj(x1; � � � ; xn) > 0 j = 1; � � � ; m2

hk(x1; � � � ; xn) � 0 k = 1; � � � ; m3

where all functions fi, gj , and hk , where i = 1; � � � ; m1, j = 1; � � � ; m2, and

k = 1; � � � ; m3 are linear polynomials. Then S is the intersection of the

hyperplanes fi = 0, 1 � i � m1, the open halfspaces gj > 0, 1 � j � m2,

and the closed halfspaces hk � 0, 1 � k � m3. Since all hyperplanes, open

halfspaces, closed halfspaces are convex, by Theorem 3.1.1, the set S is also

convex.

A problem is a decision problem if it has only two possible solutions,

either the answer YES or the answer NO. Abstractly, a decision problem

consists simply of a set of instances that contains a subset called the set of

YES-instances. As we have studied in Algorithm Analysis, decision prob-

lems play a very important role in the analysis of NP-completeness. In

practice, many general problems can be reduced to decision problems such

that a general problem and the corresponding decision problem have the

same complexity.

There are certain problems where it is realistic to consider the number

of branching instructions executed as the primary measure of complexity.

In the case of sorting, for example, the outputs are identical to the inputs

except for order. It thus becomes reasonable to consider a model in which

all steps are two-way branches based on a \decision" that we should make

when computation reaches that point.

The usual representation for a program of branches is a binary tree called

a decision tree. Each non-leaf vertex represents a decision. The test repre-

sented by the root is made �rst, and \control" then passes to one of its sons,

depending on the outcome of the decision. In general, control continues to

pass from a vertex to one of its sons, the choice in each case depending on

the outcome of the decision at the vertex, until a leaf is reached. The desired

output is available at the leaf reached. If the decision at each non-leaf vertex

of a decision tree is a comparison of a polynomial of the input variables with

the number 0, then the decision tree is called an algebraic decision tree.

It should be pointed out that although the algebraic decision tree model

seems much weaker than a real computer, in fact this intuitive feeling is not

very correct. First of all, given a computer program, we can always represent

it by a decision tree by \unwinding" loops in the program. Secondly, the

operations a real computer can perform are essentially additions and branch-

ings. All other operations are in fact done by microprograms that consists of

those elementary operations. For example, the value of sin(x) for a number
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x is actually obtained by an approximation of the Taylor's extension of the

function sin(x). Finally, we simply ignore the computation instructions and

concentrate on only branching instructions because we are working on lower

bound of algorithms. If we can prove that for some problem, at least N

branchings should be made, then of course, the number of total instructions,

including computation instructions and branching instructions, is at least

N .

Let us now give a less informal de�nition. We will concentrate on decision

tree models for decision problems.

De�nition An algebraic decision tree on a set of n variables (x1; � � � ; xn) is
a binary tree such that each vertex of it is labeled with a statement satisfying

the following conditions.

1. Every non-leaf statement L is of the form

if f(x1; � � � ; xn) 1 0 then goto Li else goto Lj

where f(x1; � � � ; xn) is a polynomial of x1, � � �, xn, and 1 is any com-

parison relation from the set f=; >;<;�;�g. The statements Li and

Lj are the children of the statement L;

2. Every leaf statement is either a YES or a NO answer to the decision

problem.

If all polynomials at non-leaf vertices of an algebraic decision tree are

linear polynomials, then we call it a linear decision tree.

Let P be a decision problem with inputs of n real numbers. Then P
corresponds to a subset W of the n-dimensional space En such that a point

(x1; � � � ; xn) 2 En is in W if and only if the answer of the problem P to the

input (x1; � � � ; xn) is YES. Let T be an algebraic decision tree that \solves"

the problem P in the following way: for any point p = (x1; � � � ; xn) 2 En,

the answer of P to the input p is YES if and only if when we feed the root of

the algebraic decision tree T with the input p, then eventually we are led to

a YES leaf v in the tree T by following the decisions made on the non-leaf

vertices on the path from the root to the leaf v in the tree T . In this case,

we also say that the algebraic decision tree T accepts the subset W in En.
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8.2 Algebraic decision trees

The depth of a tree is the length of the longest path from the root to a leaf

in the tree. It is easy to see that the depth of an algebraic decision tree

corresponds to the worst case time complexity of the tree. Therefore, to

derive a lower bound on the worst case time complexity of a problem P , it
su�ces to derive a lower bound on the depth of the algebraic decision trees

that solve the problem P . In this section, we show a lower bound on the

depth of an algebraic decision tree, assuming that we know the number of

connected components of the corresponding subset in En the tree accepts.

We �rst observe the following simple lemma.

Lemma 8.2.1 The depth of a binary tree with m leaves is at least dlogme.

Now suppose that P is a decision problem, and let W be the subset of

En that corresponds to the YES-instances of the problem P in En. That

is, a point p = (x1; � � � ; xn) 2 En is in the set W if and only if the solution

of the problem P to the input p is YES. Let T be an algebraic decision tree

that solves P , or equivalently that accepts the subset W .

Suppose in some way that the number #W of the connected components

of the set W is known. What can we say about the depth of the algebraic

decision trees that accept W? We answer this question �rst for the linear

decision tree model, then we extend the result to the algebraic decision tree

model.

Theorem 8.2.2 Let W be a subset of En, and let T be a linear decision

tree of n variables that accepts the set W . Then the depth of T is at least

dlog(#W )e.

proof. Every path from the root to a leaf l in T corresponds to a sequence

of conditions:

fi(x1; � � � ; xn) = 0 i = 1; � � � ; m1

gj(x1; � � � ; xn) > 0 j = 1; � � � ; m2 (8:1)

hk(x1; � � � ; xn) � 0 k = 1; � � � ; m3

which are the testings occurring on the path. Each of these functions is a

linear polynomial since we assume that the tree T is a linear decision tree.

If we feed the root with a point p = (x1; � � � ; xn) in En, then the point p
eventually goes to the leaf l if and only if the coordinates (x1; � � � ; xn) of p
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satis�es all the conditions in (8.1). Therefore, the leaf l corresponds to a set
Sl of points in En that satisfy all the conditions in (8.1). Thus the set Sl
is the intersection of the hyperplanes, the open halfspaces, and the closed

halfspaces represented by these conditions. By the discussion we gave in

the last section, we conclude that the set Sl is convex. Consequently, Sl is
connected.

Now let l be a YES leaf, then the corresponding set Sl is a subset of the
set W . Since Sl is connected, by the de�nition of a connected component

that a connected component of W is a maximal connected subset of W , Sl
must be entirely contained in a single connected component ofW . Therefore,

each YES leaf of the linear decision tree T only accepts points in a single

connected component of W . Since W has #W connected components, and

each point of W should be accepted by some YES leaf of T , we conclude

that the tree T contains at least #W YES leaves. Consequently, the number

of leaves of T is at least #W . Now by Lemma 8.2.1, the depth of the linear

decision tree T is at least dlog(#W )e.

The linear decision tree model seems too restricted (people would never

be happy if you tell them that their computers cannot do multiplication).

It is desired to extend the result above for the linear decision tree model to

the algebraic decision tree model. Let us see what is the obstacle to such an

extension. Suppose that an algebraic decision tree T accepts a subset W of

En. Each YES leaf l of T accepts a subset Sl of the set W . The subset Sl is
again the intersection of the subsets presented by the conditions appearing

on the path from the root to the leaf l in the tree T . However, since the

polynomials at the non-leaves of T are not necessarily linear polynomials,

the set Sl may be not connected.
1 Therefore, each leaf now can accept points

from many di�erent connected components of W . Suppose that each leaf

can accept points from at most c connected components, then the only thing
we can conclude is that there are at least #W=c YES-leaves. Therefore, by

Lemma 8.2.1 again, we conclude that the depth of T is at least dlog(#W=c)e.
However, if the number c is of the same order as #W , then we will obtain a

trivial constant lower bound on the depth of the algebraic decision tree T .
However, if the number c above is bounded by some constant, then

dlog(#W=c)e will have the same order as dlog(#W )e, thus again we ob-

1For example, in the space E2, even a single condition with a non-linear polynomial

x
2
� y

2
� 1

de�nes a non-connected area.
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tain a nontrivial lower bound on the depth of the algebraic decision tree

T . Therefore, we would like to know under what conditions the number c,

i.e., the maximum number of connected components whose points can be

accepted by a single leaf of an algebraic decision tree, can be bounded. Here

is a condition:

Theorem 8.2.3 (Milnor-Thom) Let S be the set of points in the n-

dimensional Euclidean space En de�ned by the conditions

fi(x1; � � � ; xn) = 0 i = 1; � � � ; h (8:2)

where all fi, 1 � i � h, are polynomials of degree at most d. Then the

number #S of connected components of the set S is bounded by d(2d� 1)n�1,
a number that is independent of the number of the conditions in (8.2).

The above theorem is a deep result in algebraic geometry. However, the

idea of the theorem is fairly intuitive: a polynomial of small degree de�nes

a subset of \simple shape" in a Euclidean space, and the intersection of

\simple-shape" subsets in a Euclidean space cannot have a very complicated

shape, that is, it cannot have many pieces of connected components.

Unfortunately, Milnor-Thom Theorem cannot be used directly to our

algebraic decision trees: it only covers the case of equalities, while our al-

gebraic decision trees also have inequalities. Thus it is necessary to extend

Milnor-Thom Theorem to cover inequalities.

Lemma 8.2.4 Let S be the set of points in the n-dimensional Euclidean
space En de�ned by the following conditions

fi(x1; � � � ; xn) = 0 i = 1; � � � ; m1

gj(x1; � � � ; xn) > 0 j = 1; � � � ; m2 (8:3)

hk(x1; � � � ; xn) � 0 k = 1; � � � ; m3

where all fi, gj, and hk, 1 � i � m1, 1 � j � m2, and 1 � k � m3, are

polynomials of degree at most d. Then the number of connected components

of the set S is bounded by d(2d� 1)n+m2+m3�1.

proof. Suppose that S has r distinct connected components Ci, 1 � i � r,

arbitrarily pick a point pi = (x
(i)
1 ; � � � ; x(i)n ) from the connected component

Ci, 1 � i � r. Now consider the rm2 real numbers

gj(x
(i)
1 ; � � � ; x(i)n ) 1 � j � m2; 1 � i � r
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Note that all these rm2 real numbers are positive since all these points

pi = (x
(i)
1 ; � � � ; x(i)n ), 1 � i � r, are in S. Let � be the smallest real number

in these rm2 real numbers. Note that � > 0.

Consider the set S0 in En de�ned by the following conditions

fi(x1; � � � ; xn) = 0 i = 1; � � � ; m1

gj(x1; � � � ; xn)� � � 0 j = 1; � � � ; m2 (8:4)

hk(x1; � � � ; xn) � 0 k = 1; � � � ; m3

We claim that the number of connected components of the set S0 is at least
as large as the number of connected components of the set S. In fact, the

set S0 is a subset of the set S since a point satisfying the conditions in

(8.4) obviously satis�es the conditions in (8.3). Therefore, no two connected

components of the set S can be \merged" into a single connected components

of the set S0. Moreover, no connected components of S completely disappear

in S0, since for each connected component Ci of S, at least the chosen point pi
satis�es all conditions in (8.4), by the de�nition of the number �. Therefore,
instead of bounding the number of connected components of the set S, which

is de�ned by the equalities, the open inequalities, and the closed inequalities

of (8.3), we can work on a bound of the number of connected components of

the set S0, which is de�ned by the equalities and the closed inequalities of

(8.4).

The technique of converting a closed inequality into an equality is well-

known in linear programming. For the set S0 de�ned by the conditions

in (8.4), we introduce m2 + m3 new variables yj and zk, 1 � j � m2,

1 � k � m3, and construct the following m1 + m2 + m3 conditions with

n+m2+m3 variables xi, yj and zk , 1 � i � n, 1 � j � m2, and 1 � k � m3:

fi(x1; � � � ; xn) = 0 i = 1; � � � ; m1

gj(x1; � � � ; xn)� � � y2j = 0 j = 1; � � � ; m2 (8:5)

hk(x1; � � � ; xn)� z2k = 0 k = 1; � � � ; m3

Let S00 be the subset of En+m2+m3 that is de�ned by the conditions in

(8.5). It is easy to see that the number #S00 of connected components

of S00 is the same as the number #S0 of connected components of S0,
which is at least as large as the number #S of connected components

of the set S. By Milnor-Thom Theorem, the number #S00 is bounded

by d(2d� 1)n+m2+m3�1. Therefore, the number #S is also bounded by

d(2d� 1)n+m2+m3�1. This completes the proof.
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Now similar as the proof for the case of linear decision trees, we can prove

a lower bound on the depth of general algebraic decision trees.

De�nition An algebraic decision tree is of order d if all polynomials oc-

curring in the non-leaves of the tree have degree at most d.

Theorem 8.2.5 (Ben-or's Theorem) Let W be a subset of En and let d

be a �xed integer. Then any order d algebraic decision tree T that accepts

W has depth at least 
(log#W � n).

proof. Suppose that T is an order d algebraic decision tree that accepts

the set W . Let l be a YES leaf of the tree T that is associated with the

following conditions:

fi(x1; � � � ; xn) = 0 i = 1; � � � ; m1

gj(x1; � � � ; xn) > 0 j = 1; � � � ; m2 (8:6)

hk(x1; � � � ; xn) � 0 k = 1; � � � ; m3

where all fi, gj , and hk , 1 � i � m1, 1 � j � m2, and 1 � k � m3, are

polynomials of degree at most d.

Let Sl be the set accepted by the leaf l, that is, Sl is the set in E
n de�ned

by the conditions in (8.6). Since m1 + m2 + m3 is the length of the path

from the root of T to the leaf, m1 +m2 +m3 is bounded by the depth h of

the algebraic decision tree T .
By Lemma 8.2.4, the number of connected components of the set Sl is

bounded by d(2d� 1)n+m2+m3�1, which is bounded by d(2d� 1)n+h�1. Now
since the set W has #W connected components, and each point of W must

be accepted by some leaf of T , we conclude that the algebraic decision tree

T has at least #W=(d(2d� 1)n+h�1 leaves. By Lemma 8.2.1, the depth h of

the tree T is at least

log(
#W

d(2d� 1)n+h�1
)

From this, we get

h � log(#W )� log d� (n+ h� 1) log(2d� 1)

That is

h � 1

1 + log(2d� 1)
(log(#W )� n log(2d� 1) + log((2d� 1)=d))
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When the number d is a �xed constant, we get h = 
(log(#W )�n).

Therefore, to derive the lower bound of a problem, we may consider the

corresponding set W in the space En for all n, then compute the number of

connected components of the set W . We will use this technique to derive

non-trivial lower bounds for several problems.

8.3 Proving lower bounds directly

With the lower bound on the depth of algebraic decision trees obtained in the

last section, now we are ready to derive a few lower bounds for problems, in-

cluding the EXTREME-POINTS, ELEMENT-UNIQUENESS, UNIFORM-

GAP, and SET-DISJOINTNESS.

The basic idea is as follows: given a decision problem P , we try to

formulate the YES-instances of P with n parameters into a subset W of

the n-dimensional Euclidean space En. Then we derive a lower bound B
on the number of connected components of the subset W . Now by Ben-or's

theorem, the logarithm of B gives us a lower bound on the depth of algebraic

decision trees that solve the problem P , that is in consequence a lower bound
on the computational time of the algebraic decision trees solving the problem

P .

8.3.1 Element uniqueness

We start with a simplest example, the problem of ELEMENT-

UNIQUENESS. The problem is formally de�ned as follows.

ELEMENT-UNIQUENESS

Input: A set S of n real numbers.

Question: Are there two numbers in S equal?

We derive a lower bound for the problem ELEMENT-UNIQUENESS by

using Ben-or's theorem (Theorem 8.2.5) directly.

Theorem 8.3.1 Any bounded order algebraic decision tree that solves the

problem ELEMENT-UNIQUENESS runs in time at least 
(n logn).

proof. Adopting the standard technique, we �rst consider the number of
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connected components of the following set in the n-dimensional Euclidean
space.

W = f(x1; � � � ; xn) j all xi's are distinctg

A point (x1; � � � ; xn) in n-dimensional Euclidean space is a YES-instance of

the problem ELEMENT-UNIQUENESS if and only if the point belongs to

the set W .

Fix a point (x1; � � � ; xn) in n-dimensional Euclidean space such that all

xi's are distinct. Consider the n! points in the n-dimensional Euclidean space

obtained by permuting (x1; � � � ; xn).

P� = (x�(1); � � � ; x�(n)) � is a permutation of (1; � � � ; n)

Clearly, all these n! points are in the setW . We claim that no two of these

n! points share the same connected component of W . In fact, suppose that

� and �0 are two di�erent permutations of (1; � � � ; n) and that the points

P� and P�0 are in the same connected component of W , then there is a

continuous curve C in W connecting P� and P�0 . That is, we can �nd n
continuous functions fi(x), 1 � i � n, such that

fi(0) = x�(i) and fi(1) = x�0(i) for 1 � i � n

Since � and �0 are di�erent permutations of (1; � � � ; n), we can �nd an

index k such that x�(k) is the smallest number such that x�(k) 6= x�0(k).
Suppose that x�(k) = x�0(h) for some index h 6= k, then we also have x�(h) 6=
x�0(h). So

x�(k) < x�(h) and x�0(k) > x�0(h)

by the de�nition of the index k.

Since fk(x) and fh(x) are continuous functions and

fk(0) = x�(k) fk(1) = x�0(k) fh(0) = x�(h) fh(1) = x�0(h)

Thus

fk(0) < fh(0) and fk(1) > fh(1)

there must be a real number r in the interval (0; 1) such that fk(r) = fh(r).

However, by our assumption, the point (f1(r); f2(r); � � � ; fn(r)) on the curve

C is in the set W , so all numbers fi(r) are distinct. In particular, the

numbers fk(r) and fh(r) are distinct. This contradiction proves that each

point P� is in a di�erent connected component of the set W .
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Thus the set W has at least n! connected components. So #W � n!.
Now since

n! = 1 � 2 � � � � � n > n

2
� (n
2
+ 1) � � � �n � (

n

2
)
n
2

So we have

log(#W ) � log(n!) � log (
n

2
)
n
2
=
n

2
log(

n

2
) = 
(n logn)

By Ben-or's theorem (Theorem 8.2.5), any bounded order algebraic decision

tree that solves the problem ELEMENT-UNIQUENESS runs in time at least


(log(#W )� n) = 
(n logn)

8.3.2 Uniform gap

Given a set S of real numbers, we say that numbers x and y are consecutive

if y is the smallest number in S � fxg that is not less than x.
The UNIFORM �-GAP problem is stated as follows, where � is a �xed

real number.

UNIFORM �-GAP

Input: A set S of n real numbers.

Question: Are the distances between consecutive numbers in S uni-

formly equal to �?

Theorem 8.3.2 Any bounded order algebraic decision tree that solves the

problem UNIFORM �-GAP runs in time at least 
(n logn).

proof. The proof is quite similar to the proof of Theorem 8.3.1.

Consider the following set in the n-dimensional Euclidean space

W = f(x1; � � � ; xn) j (x1; � � � ; xn) is a YES-instance of UNIFORM �-GAPg

Thus a point (x1; � � � ; xn) in n-dimensional Euclidean space is in the setW if

and only if there is a permutation � of (1; � � � ; n) such that x�(i)+� = x�(i+1),
for 1 � i � n � 1.
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Fix a point (x1; � � � ; xn) in n-dimensional Euclidean space such that xi+
� = xi+1, for all 1 � i � n � 1. Consider the n! points in the n-dimensional

Euclidean space obtained by permuting (x1; � � � ; xn)

P� = (x�(1); � � � ; x�(n)) � is a permutation of (1; � � � ; n)

Clearly, all these n! points are in the set W . We claim that no two of these

n! points share the same connected component of W . In fact, suppose that

� and �0 are two di�erent permutations of (1; � � � ; n) and that the points

P� and P�0 are in the same connected component of W , then there is a

continuous curve C in W connecting P� and P�0 . That is, we can �nd n

continuous functions fi(x), 1 � i � n, such that

fi(0) = x�(i) and fi(1) = x�0(i) for 1 � i � n

Exactly the same as in the proof of Theorem 8.3.1, we can �nd two indices

k and h such that

fk(0) < fh(0) and fk(1) > fh(1)

So there exists a real number r in the interval (0; 1) such that fk(r) =

fh(r). But then the point (f1(r); f2(r); � � � ; fn(r)) on the curve C cannot

be in the set W since the distance between the numbers fk(r) and fh(r)
is less than �. This contradiction proves that the set W has at least n!

connected components. By Ben-or's theorem (Theorem 8.2.5), any bounded

order algebraic decision tree that solves the problem UNIFORM �-GAP runs

in time at least


(log(#W )� n) = 
(n logn)

8.3.3 Set disjointness

The third problem we study is the following problem.

SET-DISJOINTNESS

Given two sets X = fx1; � � � ; xng and Y = fy1; � � � ; yng of real numbers,
do they have an empty intersection?

For each instance (X; Y ) of the problem SET-DISJOINTNESS, where

X = fx1; x2; � � � ; xng and Y = fy1; y2; � � � ; yng, we associate it with a point



156 LOWER BOUNDS

in the 2n-dimensional Euclidean space E2n:

(x1; y1; x2; y2; � � � ; xn; yn)

This mapping gives us a one-to-one correspondence between the points in

E2n and the instance of size n of the problem SET-DISJOINTNESS if we

suppose that the sets X and Y are \ordered sets". (We call (X; Y ) an

instance of size n if both the sets X and Y contain n real numbers.) Let

W be the subset of E2n that corresponds to the YES-instances of size n of

the problem SET-DISJOINTNESS. We �rst prove that W has at least n!
connected components.

Fix two setsX = (x1; x2; � � � ; xn) and Y = (y1; y2; � � � ; yn) of real numbers
such that

x1 > y1 > x2 > y2 > � � � > xn > yn

Then (X; Y ) is a YES-instance of the problem SET-DISJOINTNESS which

corresponds to a point

p = (x1; y1; x2; y2; � � � ; xn; yn)

in the 2n-dimensional Euclidean space E2n. Thus the point p is in the set

W . Consider the n! points in E2n that are obtained by permuting the n
components in p with even indices. That is, consider the n! points

p� = (x1; y�(1); x2; y�(2); � � � ; xn; y�(n))

where � is a permutation of (1; 2; � � � ; n).
Clearly, all these n! points p� are in the set W . We claim that no two of

these n! points share the same connected component of W . In fact, suppose

that � and �0 are two di�erent permutations of (1; � � � ; n) and that the points
p� and p�0 are in the same connected component of W , then there is a

continuous curve C in W connecting p� and p�0 . That is, we can �nd 2n

continuous functions hi(t), fi(t), 1 � i � n, such that

hi(0) = hi(1) = xi for 1 � i � n

fi(0) = y�(i) and fi(1) = y�0(i) for 1 � i � n

Since � and �0 are di�erent permutations of (1; � � � ; n), we can �nd an index k
such that y�(k) is the smallest number in (y1; � � � ; yn) such that y�(k) 6= y�0(k).
Since y�(k) is the smallest in (y1; � � � ; yn), we have y�(k) < y�0(k). By the

de�nition of our point p, there must be an xl such that

y�(k) < xl < y�0(k)
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Now consider the function F (t) = hl(t)� fk(t), we have

F (0) = hl(0)� fk(0) = xl � y�(k) > 0

and

F (1) = hl(1)� fk(1) = xl � y�0(k) < 0

The function F (t) is continuous because hl(t) and fk(t) are. Therefore, there

is a real number � such that 0 < � < 1 and

F (�) = hl(�)� fk(�) = 0

That is, hl(�) = fk(�). However, by our assumption, the point

p0 = (h1(�); f1(�); h2(�); f2(�); � � � ; hn(�); fn(�))

on the curve C is in the setW , so every component hi(�) is distinct from any

component fj(�) in the point p0. In particular, the numbers hl(�) and fk(�)
are distinct. This contradiction proves that each point P� is in a di�erent

connected component of the set W .

Thus the set W has at least n! connected components. So #W � n!.
By Ben-or's theorem (Theorem 8.2.5), any bounded order algebraic decision

tree that solves the problem SET-DISJOINTNESS runs in time at least


(log(#W )� n) = 
(n logn)

The above discussion gives the following theorem.

Theorem 8.3.3 Any bounded order algebraic decision tree that solves the

problem SET-DISJOINTNESS runs in time at least 
(n logn).

8.3.4 Extreme points

The above three problems are combinatorial problems. In this subsection,

we derive a lower bound for a geometric problem that is called EXTREME-

POINTS problem, which is closed related to the problem CONVEX-HULL.

The proof is again similar to those given above, though slightly more com-

plicated.

De�nition Let S be a set of points in the plane E2. A point p 2 S is an

extreme point of S if p is on the boundary of the convex hull CH(S), and p
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is not an interior point of any boundary edge of CH(S).

The CONVEX-HULL problem is to �nd all extreme points of a given

set S in the counterclockwise order with respect to some interior point of

CH(S). The following decision problem has an obvious relationship with the

CONVEX-HULL problem.

EXTREME-POINTS

Input: A list S of n points in the plane E2.

Output: Are all points in S extreme points of S?

The EXTREME-POINTS problem seems \simpler" than the CONVEX-

HULL problem since it is not required to check the counterclockwise order of

the extreme points on the boundary of the convex hull CH(S). We will see,

however, that it takes the same amount of time to solve the EXTREME-

POINTS problem as to solve the CONVEX-HULL problem.

A point p in the plane E2 can be uniquely represented by a tuple of two

real numbers p = (x; y), where x and y are the x- and y- coordinates of p,

respectively. Similarly, an ordered list of 2n points (p1; � � � ; p2n) in the plane

E2 can be uniquely represented by a tuple of 4n real numbers (p1; � � � ; p2n) =
(x1; � � � ; x4n), where pi = (x2i�1; x2i), for 1 � i � n. Therefore, each 2n-
point instance (p1; � � � ; p2n) for the EXTREME-POINTS problem uniquely

corresponds to a point in the 4n-dimensional space E4n. Conversely, any

point (x1; � � � ; x4n) in the space E4n can be regarded uniquely as a 2n-point

instance for the EXTREME-POINTS problem, if we let pi = (x2i�1; x2i), for
1 � i � 2n. Therefore, the set of 2n-point YES-instances of the EXTREME-

POINTS problem is a subset of the 4n-dimensional space E4n. Note that a

set of 2n points S = fp1; � � � ; p2ng in the plane E2 can correspond to up to

(2n)! di�erent ordered lists, thus (2n)! di�erent points in the space E4n, if

we consider all permutations of these 2n points. Thus any set of 2n points

in the plane makes (2n)! di�erent instances for the EXTREME-POINTS

problem.

Lemma 8.3.4 Let W be the subset of the space E4n that corresponds to the

set of 2n-point YES-instances for the EXTREME-POINTS problem. Then

W has at least n! connected components.

proof. We construct n! points in the set W and prove that no two of

these points are contained in the same connected component of the set W .
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Let I = (p1; q1; p2; q2; � � � ; pn; qn) be a counterclockwise sequence of 2n
distinct extreme points of a convex polygon. Then I 2 E4n is a point in the

set W . Consider the following n! di�erent sequences of 2n-point instances
of the problem EXTREME-POINTS:

Ii = (p1; q
(i)
1 ; p2; q

(i)
2 ; � � � ; pn; q(i)n ) i = 1; � � � ; n! (8:7)

where each sequence (q
(i)
1 ; q

(i)
2 ; � � � ; q(i)n ) is a permutation of the sequence

(q1; q2; � � � ; qn). Each instance Ii corresponds to a point in the space E4n.

Since each instance Ii shares the same set of points fp1; q1; � � � ; pn; qng in the

plane E2 with the instance I and the I is a YES-instance of the problem

EXTREME-POINTS, the instance Ii should also be a YES-instance of the

problem EXTREME-POINTS (i.e., every point in Ii is an extreme point).

That is, the instance Ii, for 1 � i � n!, corresponds to a point in the set W .

Now we prove that any pair of instances (8.7) are in two di�erent con-

nected components of the setW . Suppose otherwise, there are two instances

Ii and Ij in (8.7) that are two points in E4n and in the same connected com-

ponent of the set W . Then there is a continuous curve C in E4n that adjoins

the two points Ii and Ij . More precisely, there are 2n continuous functions

on the interval [0, 1]

S1(t); T1(t); S2(t); T2(t); � � � ; Sn(t); Tn(t)

such that Sh(0) = Sh(1) = ph, and Th(0) = q
(i)

h
and Th(1) = q

(j)

h
, for

h = 1; 2; � � � ; n, and for all t 2 [0; 1], the point

(S1(t); T1(t); S2(t); T2(t); � � � ; Sn(t); Tn(t))

is in the set W .

Since Ii and Ij are two di�erent instances in (8.7), there must be an index

k such that q
(i)

k
and q

(j)

k
are di�erent points in the set fq1; q2; � � � ; qng. With-

out loss of generality, suppose the q
(i)

k
= q1 then q

(j)

k
6= q1. Then the signed

triangle area4(p1q
(i)

k
p2) is positive while the signed triangle area4(p1q

(j)

k
p2)

is negative, because the only point q in fq1; q2; � � � ; qng that makes p1qp2 a

left turn is the point q1. Since S1(t), Tk(t), and S2(t) are continuous func-
tions of t, the signed triangle area 4(S1(t)Tk(t)S2(t)) is also a continuous

function of the variable t. Moreover, since we have 4(S1(0)Tk(0)S2(0)) =

4(p1q
(i)

k
p2) > 0 and 4(S1(1)Tk(1)S2(1)) = 4(p1q

(j)

k
p2) < 0, there must be
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a number t0 2 (0; 1) such that 4(S1(t0)Tk(t0)S2(t0)) = 0. That is, on the

curve C in E4n, there is a point

I0 = (S1(t0); T1(t0); S2(t0); T2(t0); � � � ; Sn(t0); Tn(t0))

such that S1(t0), Tk(t0), and S2(t0) are three co-linear points in the plane

E2. Therefore, at least one point in the set fS1(t0); Tk(t0); S2(t0)g is not an
extreme point of the set of 2n points

fS1(t0); T1(t0); S2(t0); T2(t0); � � � ; Sn(t0); Tn(t0)g

Thus the instance

I0 = (S1(t0); T1(t0); S2(t0); T2(t0); � � � ; Sn(t0); Tn(t0))

should be a NO-instance of the problem EXTREME-POINTS, so I0 62 W .

This contradicts the assumption that the entire curve C is contained in the

set W . The contradiction proves that no two points in (8.7) can be in the

same connected component of the set W . Since there are n! di�erent points

in (8.7), we conclude that the set W has at least n! connected components.

We say that an algebraic decision has a bounded order if the order of

the tree is bounded by a constant that is independent of the input size of

the tree. Now combining the lemma above with Theorem 8.2.5, we easily

obtained a lower bound for the problem EXTREME-POINTS.

Theorem 8.3.5 Any bounded order algebraic decision tree that solves the

problem EXTREME-POINTS runs in time at least 
(n logn) on an input

of n points in the plane.

proof. Remember that we are working on worst case time complexity.

Therefore, we only have to show that for some integer n, the theorem is true.

Let T be an order d algebraic decision tree that solves the problem

EXTREME-POINTS with inputs of n = 2m points in the plane. Thus

the number of input variables of the tree T is 2n = 4m. Let W be the

set of points in the space E4m that are the YES-instances of the problem

EXTREME-POINTS. Then the algebraic decision tree T accepts the setW .

By Lemma 8.3.4, W has at least m! connected components. Now by Theo-

rem 8.2.5, the depth of the tree T is at least 
(log(#W ) � 4m). Since we

have

m! = 1 � 2 � � �m >
m

2
� (m

2
+ 1)(

m

2
+ 2) � � �m > (

m

2
)
m
2
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Therefore,

log(#W ) � log(m!) � log((
m

2
)
m
2
) =

m

2
log(

m

2
)

Now the depth of the algebraic decision tree T is 
(log(#W ) � 4m) =


(m logm) = 
(n logn).

8.4 Deriving lower bounds by reductions

The techniques used in the last section for deriving lower bounds on problems

seem impressive. Such elegant techniques were developed and such deep

mathematics results were used in deriving the lower bounds. It is not clear

how these techniques can be generalized to deriving lower bounds for general

geometric problems. Fortunately, we do not have to do this very often. For

some geometric problems, the lower bounds can be derived by \reducing"

the problems to some other problems for which the lower bounds are known.

Let us �rst review the concept of problem reductions. We say that a

problem P can be reduced to a problem P 0 in time O(t(n)), express it as
P /t(n) P

0, if there is an algorithm T solving the problem P in the following

way.

1. For any input x of size n to the problem P , convert x in time O(t(n))
into an input x0 to the problem P 0;

2. Call a subroutine to solve the problem P 0 on input x0;

3. Convert in time O(t(n)) the solution to the problem P 0 on input x0

into a solution to the problem P on input x.

We have seen in Chapter 6 that the technique of reduction is very useful

in designing e�cient algorithms for geometric problems. In this section, we

will study how to use this technique to derive lower bounds for geometric

problems. The following theorem plays an important role in our discussion.

Theorem 8.4.1 Suppose that a problem P is reduced to a problem P 0 in
linear time

P /n P
0

If it is known that solving the problem P takes at least 
(T (n)) time, then
solving the problem P 0 also takes at least 
(T (n)) time. In other words, a
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lower bound of the time complexity of the problem P is also a lower bound

of the time complexity of the problem P 0.

proof. Suppose otherwise, the problem P 0 can be solved in time T1(n),

with T1(n) = o(T (n)). Then by Lemma ??, the problem P can also be

solved in time O(T1(n)). But this would imply that the problem P can be

solved in time o(T (n)), contradicting our assumption that T (n) is a lower

bound on the time complexity of the problem P .

We �rst use Theorem 8.4.1 to derive a lower bounds for the problem

CONVEX-HULL.

Theorem 8.4.2 Any bounded order algebraic decision tree that constructs

the convex hull for a set of points in the plane runs in time at least 
(n logn)

on an input of n points in the plane.

proof. By Theorem 8.3.5, any bounded order algebraic decision tree that

solves the problem EXTREME-POINTS runs in time at least 
(n logn).
According to Theorem 8.4.1, it will su�ce to prove the theorem by showing

that

EXTREME-POINTS/n CONVEX-HULL

We give this reduction by the following algorithm.

Algorithm REDUCTION I

{ Reduce the problem EXTREME-POINTS to the problem

CONVEX-HULL. }

BEGIN

1. Given an input S of the problem EXTREME-POINTS,

where S is a set of n points in the plane, pass

the set S directly to the problem CONVEX-HULL;

2. The solution of CONVEX-HULL to the set S is the

convex hull CH(S) of the set S. Pass CH(S)

back to the problem EXTREME-POINTS;

3. If the convex hull CH(S) has n hull vertices,

and no hull vertex is at the middle of the

straight line segment passing through its two

neighbors, then the answer of the problem

EXTREME-POINTS to the input S is YES;

Otherwise, the answer should be NO.
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END.

Since both Step 1 and Step 3 take at most time O(n), the above algo-
rithm is a linear time reduction of the problem EXTREME-POINTS to the

problem CONVEX-HULL.

Thus constructing convex hulls of sets of points in the plane takes time

at least 
(n logn). This result implies that many algorithms we discussed

before for construction of convex hulls, including Graham Scan, MergeHull,

Kirkpatrick-Seidel algorithm, are optimal.

As we have discussed in the last chapter, the problem CONVEX-HULL

can be reduced to the problem SORTING in time O(n). By Theorem 8.4.1

and Theorem 8.4.2, we also obtain

Theorem 8.4.3 Any bounded order algebraic decision tree sorting n real

numbers runs in time at least 
(n logn).

This theorem is stronger than the one we got in Algorithm Analysis. In

Algorithm Analysis, it is proved that a linear decision tree model that sorts

runs in time 
(n logn). On the other hand, Theorem 8.4.3 claims that even

the computation model is allowed to do multiplication, it still needs at least


(n logn) time to sort.

We have seen that many proximity problems can be solved in time

O(n logn). Now we prove that our algorithms for these problems are in

fact optimal.

We start with the two whose lower bound is easily obtained from the

problem SORTING: EUCLIDEAN-MINIMUM-SPANNING-TREE (EMST)

and TRIANGULATION. For this, we �rst prove a simple lemma.

Lemma 8.4.4 Let S be a set of n real numbers x1, x2, � � �, xn. If S is given

in such a way that for each 1 � k � n, the number xk is companied by an

index Ik such that xIk is the smallest number in S that is larger than xk.
Then the set S can be sorted in linear time.

proof. To sort the set S, we �rst scan the set S to �nd the minimum

number xk1 in S. Since xk1 is companied by an index k2 = Ik1 such that xk2
is the smallest number in S that is larger than xk1 , xk2 must be the second

smallest number in S. Moreover, since we know the index k2, we can get

xk2 and put it immediately after xk1 in constant time. In general, suppose
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we have obtained xki that is the ith smallest number in S. Then since xki is
companied by an index ki+1 = Iki such that xki+1 is the smallest number in

S that is larger than xki , xki+1 is the (i+1)st smallest number in S, and we

can get xki+1 and put it immediately after xki in constant time. It is clear

that after n�1 such iterations, we reach the largest number in S and obtain

a sorted list of the numbers in S. Since each iteration takes only constant

time, we conclude that the set S is sorted in linear time.

We �rst consider the problem EMST.

Lemma 8.4.5 SORTING can be reduced to EMST in linear time.

proof. Given a set S of n real numbers x1, x2, � � �, xn, which is an

instance of SORTING, we construct an instance S0 of EMST which is the

set of n points

(x1; 0); (x2; 0); � � � ; (xn; 0)

in the plane. Moreover, for each 1 � i � n, we attach an index i to the point

(xi; 0). It is easy to see that the solution to EMST on the input S 0 is a chain
A0 of n� 1 segments in the plane, such that a segment (xi; 0)(xj; 0) is in A

0

if and only if the number xj is the smallest number in S that is larger than

xi.
Now pass the chain A0 back to SORTING. For each segment (xi; 0)(xj; 0)

in A0, we construct a pair (xi; j) (remember that the index j is attached to

the point (xj ; 0)). Using these pairs, we can construct the sorted list of S in

linear time, by Lemma 8.4.4. This proves

SORTING /n EMST

This Lemma, together with Theorem 8.4.3 and Theorem 8.4.1 gives us

the following theorem.

Theorem 8.4.6 Any bounded order algebraic decision tree that constructs

the Euclidean minimum spanning tree for a set of n points in the plane runs

in time at least 
(n logn).

Therefore, the algorithm presented in Section 6.4 that constructs the

Euclidean minimum spanning tree for sets of points in the plane is optimal.

Now we consider the problem TRIANGULATION.
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Lemma 8.4.7 SORTING can be reduced to TRIANGULATION in linear

time.

proof. The proof is very similar to the proof of Lemma 8.4.5. Given a

set S of n real numbers x1, x2, � � �, xn, we construct a set S0 of n+ 1 points

in the plane

q = (x1; 2); p1 = (x1; 0); p2 = (x2; 0); � � � ; pn = (xn; 0)

It is easy to see that the set S0 has a unique triangulation that consists of

the n segments qpi for 1 � i � n, and the n � 1 segments pipj where the

number xj is the smallest number in S that is larger than xi.
Now using the similar argument as the one we used in the proof of

Lemma 8.4.5, we conclude that we can construct the sorted list of S from

the triangulation of S 0 in linear time.

Theorem 8.4.8 Any bounded order algebraic decision tree that constructs

the triangulation for a set of n points in the plane runs in time at least


(n logn).

Thus the problem TRIANGULATION also has an optimal algorithm,

which was presented in Section 6.3.

A simple generalization of the problem TRIANGULATION is the prob-

lem CONSTRAINED-TRIANGULATION, as introduced in Section 3.4. A

lower bound for the CONSTRAINED-TRIANGULATION can be easily ob-

tained from the lower bound of TRIANGULATION.

Theorem 8.4.9 Any bounded order algebraic decision tree solving the prob-

lem CONSTRAINED TRIANGULATION runs in time at least 
(n logn).

proof. It is easy to prove that

TRIANGULATION /n CONSTRAINED TRIANGULATION

In fact, every instance of the problem TRIANGULATION, which is a

set S of n points in the plane, is an instance G = (S; �) of the problem

CONSTRAINED TRIANGULATION, in which the set of segments is empty.

Since the problem TRIANGULATION has a lower bound 
(n logn),

by Theorem 8.4.1, the problem CONSTRAINED TRIANGULATION has a

lower bound 
(n logn).
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To derive lower bounds for the problems CLOSEST-PAIR and ALL-

NEAREST-NEIGHBORS, we use the lower bound for the problem

ELEMENT-UNIQUENESS, derived in the last section.

Theorem 8.4.10 Any bounded order algebraic decision tree �nding the clos-

est pair for a set of n points in the plane runs in time at least 
(n logn).

proof. We prove that

ELEMENT-UNIQUENESS /n CLOSEST-PAIR

Given a set S of n real numbers x1, � � �, xn, we construct an instance for

CLOSEST-PAIR:

(x1; 0); (x2; 0); � � � ; (xn; 0)

which is a set S0 of n points in the plane. Clearly, all elements of S are

distinct if and only if the closest pair in S0 does not consist of two identi-

cal points. So the problem ELEMENT-UNIQUENESS is reducible to the

problem CLOSEST-PAIR in linear time. Now the theorem follows from

Theorem 8.3.1 and Theorem 8.4.1.

Since it is straightforward that

CLOSEST-PAIR /n ALL-NEAREST-NEIGHBORS

by Theorem 8.4.10 and Theorem 8.4.1, we also obtain the following theorem.

Theorem 8.4.11 Any bounded order algebraic decision tree �nding the

nearest neighbor for each point of a set of n points in the plane runs in

time at least 
(n logn).

Thus the algorithms we derived in Section 6.2 for the problems

CLOSEST-PAIR and ALL-NEAREST-NEIGHBORS are also optimal.

To discuss the lower bound on the time complexity of the problem

MAXIMUM-EMPTY-CIRCLE, we use the 
(n logn) lower bound for the

problem UNIFORM-GAP, derived in the last section.

Theorem 8.4.12 Any bounded order algebraic decision tree that constructs

a maximum empty circle for a set of n planar points runs in time at least


(n logn).
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proof. We show that

UNIFORM-GAP /n MAXIMUM-EMPTY-CIRCLE

Given a set S of n real numbers x1, � � �, xn and another real number �,
which is an instance of the problem UNIFORM-GAP, we construct a set S0

of n planar points

(x1; 0); (x2; 0); � � � ; (xn; 0)

which is an instance of the problem MAXIMUM-EMPTY-CIRCLE.

Note that the diameter d of the maximum empty circle of S 0, which is

part of the solution of MAXIMUM-EMPTY-CIRCLE on the input S0, is
the maximum distance of two consecutive numbers in the set S. Therefore,

if d 6= �, the S is not a YES-instance of UNIFORM-GAP. However, d = �
does not imply that S is a YES-instance of UNIFORM-GAP since some

consecutive numbers could have distance less than �. To make sure that

every pair of consecutive numbers has distance exactly �, we scan the set

S to �nd the maximum number xmax and the minimum number xmin in S.
Now note that S is a YES-instance of UNIFORM-GAP if and only if

d = � and xmax� xmin = (n� 1)�

Therefore, given the diameter d of the maximum empty circle of S0, a cor-

rect solution to UNIFORM-GAP on the input S can be obtained in lin-

ear time. This proves that UNIFORM-GAP is reducible to MAXIMUM-

EMPTY-CIRCLE in linear time.

By Theorem 8.3.2 and Theorem 8.4.1, a lower bound on the time com-

plexity of the problem MAXIMUM-EMPTY-CIRCLE is 
(n logn).

Therefore, our algorithm in Section 6.5 for �nding the maximum empty

circle given a set of points in the plane is also optimal.

We have presented an O(n logn) time algorithm for the FARTHEST-

PAIR problem in Section 3.3. We now prove that this algorithm is op-

timal by showing a lower bound on the time complexity of the problem.

For this, we make use of the O(n logn) lower bound for the problem SET-

DISJOINTNESS.

Theorem 8.4.13 Any bounded order algebraic decision tree that solves the

problem FARTHEST-PAIR runs in time at least 
(n logn).
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proof. We prove

SET-DISJOINTNESS/n FARTHEST-PAIR

Given an instance I = (X; Y ) of the problem SET-DISJOINTNESS, we

transform I into an instance of FARTHEST-PAIR as follows. Without loss

of generality, suppose that all numbers in X and Y are positive. (Otherwise,

we scan the sets X and Y to �nd the smallest number z in X [ Y , then
add the number z + 1 to each number in X and in Y .) Now �nd the largest

number zmax in X [Y . Convert each number xi in the set X into a point on

the unit circle in the plane which has a polar angle xi

zmax
�, and convert each

number yj in the set Y into a point on the unit circle in the plane which

has a polar angle
yj

zmax
� + �. Intuitively, we transform all numbers in the

set X into points in the �rst and second quadrants of the unit circle in the

plane, while transform all numbers in the set Y into points in the third and

fourth quadrants of the unit circle. Such a transformation gives us a set S

of 2n planar points. It is easy to see that the diameter of S is 2 if and only

if the intersection of X and Y is not empty. This proves that the problem

SET-DISJOINTNESS can be reduced to the problem FARTHEST-PAIR in

linear time.

By Theorem 8.3.3, the problem SET-DISJOINTNESS has a lower bound


(n logn). Now by Theorem 8.4.1, the problem FARTHEST-PAIR also has

a lower bound 
(n logn) on its time complexity.

8.5 A remark on our model

Here is an interesting story that surprised many researchers in Algorithm

Analysis.

Consider the following problem.

MAXIMUM-GAP

Input: A set S of n real numbers.

Output: The maximum distance between two consecutive numbers in S.

It is easily seen from the proof of Theorem 8.4.12 that

UNIFORM-GAP /n MAXIMUM-GAP
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Therefore, any bounded order algebraic decision tree that solves the problem

MAXIMUM-GAP runs in time at least 
(n logn).

However, it is surprising that if the \oor function" b c is allowed in our

computational model, then the problem MAXIMUM-GAP can be solved in

linear time! We describe the algorithm as follows.

Given a set S of n real numbers x1, x2, � � �, xn, we begin by �nding the

maximum number xmax and the minimum number xmin in S. This can be

done in linear time by scanning the set S. Next, we divide the interval [xmin,

xmax] into (n� 1) \buckets"

[xmin; xmin + �); [xmin + �; xmin + 2�); [xmin+ 2�; xmin + 3�); � � � ;

[xmin + (n� 3)�; xmin + (n� 2)�); [xmin + (n� 2)�; xmax]

where � = (xmax � xmin)=(n � 1). Call the bucket [xmin + (n � 2)�; xmax]

the (n � 1)st bucket Bn�1, and call the bucket [xmin + (k � 1)�; xmin + k�)
the kth bucket Bk , for 1 � k � n � 2. Now for each xi of the n � 2

numbers in S �fxmin; xmaxg, determine which bucket the number xi should
belong to. The number xi belongs to the kth bucket Bk if and only if

b(xi� xmin)=�c = k� 1. Therefore, each number in S � fxmin; xmaxg can be

distributed to the proper bucket in constant time, and consequently, the n�2
numbers in S � fxmin; xmaxg can be distributed to proper buckets in linear

time if the buckets are implemented by linked lists. Now for each bucket

Bk , compute the minimum number x
(k)
min and the maximum number x

(k)
max in

Bk . If a bucket Bk contains one number, return the unique number as both

x
(k)
min, x

(k)
max, and if a bucket is empty, return nothing. Since for each bucket

Bk , the numbers x
(k)

min and x
(k)
max can be computed in the time proportional

to the size of the bucket Bk , all these x
(k)
min and x

(k)
max, 1 � k � n � 1 can be

computed in time linear to n. Now construct a list L

L : x
(1)
min; x

(1)
max; x

(2)
min; x

(2)
max; � � � ; x

(n�1)
min ; x(n�1)max

(Note that some numbers above may not appear in the list L if the corre-

sponding bucket is empty.) The list L can be easily constructed in linear

time from the n � 1 buckets.

Since there are n�1 buckets and only n�2 numbers in S�fxmin; xmaxg,
at least one bucket is empty. Therefore, the maximum distance between a

pair of consecutive numbers in S is at least the length of a bucket. This

implies that no two consecutive numbers contained in the same bucket can

make the maximum distance. Thus the maximum distance must be made
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by a pair of the numbers (xi; xj) that are either xi = x
(k)
max and xj = x

(h)
min for

some k and h (where all buckets Bk+1, � � �, Bh�1 are empty), or xi = xmin

and xj = x
(k)
min (where all buckets B1, � � �, Bk�1 are empty), or xi = x

(k)
max

and xj = xmax (where all buckets B(k+1), � � �, B(n�1) are empty). Moreover,

all these pairs can be found in linear time by scanning the list L. Therefore,
the maximum distance between pairs of consecutive numbers in S can be

computed in linear time.

In the following, we give an even simpler linear time algorithm to solve

the problem UNIFORM �-GAP2. In this algorithm, we even do not require

oor function. The only non-algebraic operation we need is a test if a given

real number is an integer. Note that with the oor function, the test \Is r

an integer" can be easily done in constant time.

Algorithm MAGIC

Given: A set S = { x_1, x_2, ..., x_n } of real numbers.

Question: Is the distance between any two consecutive

numbers of S uniformly equal to epsilon?

{In the following algorithm, A is an array of size n, which

is initialized to empty.}

BEGIN

1. Find the minimum number x_min and the maximum number

x_max in S;

2. Let epsilon = (x_max - x_min)/(n-1);

3. For i = 1 to n do BEGIN

3.1 Let k = (x_i - x_min)/epsilon + 1;

3.2 IF k is not an integer OR A[k] is not empty THEN

STOP with an answer NO

3.3 ELSE

put x_i in the array element A[k];

END;

4. STOP with an answer YES;

END.

The above algorithm obviously runs in linear time. To see the correct-

ness, suppose that the algorithm stops at Step 4. Then if a number x is in

2The author was informed of this algorithm by Roger B. Dubbs III.
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A[k], then the value of x must be xmin+�(k�1). Moreover, no array element

of A holds more than one number. Consequently, every array element of A

holds exactly one number from the set S, and these numbers are xmin+ i � �,
for i = 0; 1; � � � ; n� 1. Therefore, the set S should be a YES-instance of the

problem UNIFORM �- GAP.
On the other hand, if the algorithm stops at Step 3.2, then either S is

not uniformly distributed (otherwise all values (x � xmin)=� + 1 should be

integral) or the set S contains two identical numbers. In the latter case, the

set S again cannot be a YES-instance of the problem UNIFORM �-GAP.

The examples bring up an interesting point: there are certain very com-

mon operations not included in the algebraic decision tree model that allow

us to do things that are not possible in the algebraic decision tree model.

The oor function and the integral testing are examples of this kind of op-

erations. Note that these examples imply that the oor operation and the

integral testing cannot be performed in constant time in the algebraic deci-

sion tree model.

8.6 Exercises

1. Let P be an arbitrary non-trivial problem (i.e., it has YES-instances

as well as NO-instances). Show that the problem MAX-ELEMENT

(given a set of numbers, �nd the maximum) is linear time reducible to

P .

2. Use Ben-or's technique directly to prove that the following problem

has a lower bound 
(n logn) on the time complexity.

SET-DISJOINTNESS

Given two setsX = fx1; � � � ; xng and Y = fy1; � � � ; yng of real numbers,
are they disjoint, i.e., X \ Y = �?

3. Prove that the problems STAR-POLYGON, INTERSECTION-OF-

HALF-PLANE, and MONOTON-POLYGON take 
(n logn) time in

the algebraic decision tree model.

4. Prove that the problem VORONOI-DIAGRAM takes 
(n logn) time
in the algebraic decision tree model.

5. Design an optimal algorithm that constructs convex hulls for sets of

points in 3-dimensional Euclidean space.
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6. Show that the problem SECOND CLOSEST PAIR takes 
(n logn)
time in the algebraic decision tree model.

7. Given two sets A and B of points in the plane, each containing N

elements, �nd the two closest points, one in A and the other in B.
Show that this problem requires 
(N logN) opertations (Hint: what

problem can we reduce to this problem?).

8. Give an optimal algorithm that, given a set of 2N points, half with pos-

itive x-coordinates, half with negative x-coordinates, �nds the closest

pair with one member of the pair in each half.

9. Prove that the following problem has an 
(N logN) lower bound:

Given N points in the plane, construct a regular PSLG whose vertices

are these N points.

10. Given a PSLG G, design an algorithm regularizing G in time

O(n logn). Provide su�cient details for the implementation of your

algorithm. (This does not mean you give a PASCAL or C program.

Instead, you should provide su�cient detail for the data structure you

use to suppose your operations.)

11. Prove that your algorithm for the last question is optimal.

12. Prove that the following problem has a lower bound 
(n logn):

Given a PSLG G, add edges to G so that the resulting graph is a PSLG

G0 such that each region of G0 is a simple polygon.

(Hint: You can suppose Chazelle's result.)

13. Prove that the following problem requires 
(n logn) time in algebraic

decision tree models: given n points and n lines in the plane, determine

whether any point lies on any line.

14. Given a set of n points in the plane, let h denote the number of vertices
that lie on its convex hull. Show that any algorithm for computing the

convex hull must require 
(n logh) time in the algebraic decision tree

model.

15. Given a convex n-gon, show that determining whether a query point

lies inside or outside this n-gon takes 
(logn) time in the algebraic

decision tree model.
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16. Given a set S of n points in the plane, show that the problem of

�nding the minimum area rectangle that contains these points requires


(n logn) time in the algebraic decision tree model.

17. Can you construct another example that requires 
(n logn) time in

the algebraic decision tree model but is solvable in linear time?



174 LOWER BOUNDS



Chapter 9

Geometric Transformations

In this chapter, we will discuss an important technique in computational

geometry: The geometric transformations. We will introduce the method by

showing how this method is applied to solve geometric intersection problems,

such as half plane intersection and convex polygon intersection. We will also

apply the method to �nd the smallest area triangles. We will see that the

geometric transformation techniques enable us to convert these geometric

problems into more familiar problems we have discussed.

Geometric transformations have their roots in the mathematics of the

early nineteenth century [6]. Their applications to problems of computing

dates back to the concept of primal and dual problems in the study of linear

programming (see, for example, [21]).

Brown [7] gives a systematic treatment of transformations and their ap-

plications to problems of computational geometry. Since his dissertation,

these methods have found vast application.

Typically, transformations change geometric objets into other geomet-

ric objects (for example, take points into lines) while preserving relations

which held between the original objects (for example, order or whether they

intersected). A number of geometric problems are best solved through the

use of transformations. The standard scheme is to transform the objects

under consideration, solve a simpler problem on the transformed objects,

and then use that solution to solve the original problem. No single transfor-

mation applies in all cases; a number of di�erent transformations have been

used e�ectively. Here, we describe two commonly used transformations and

demonstrate their applications.

175
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9.1 Mathematical background

Let l be a straight line on the Euclidean plane. If l is a vertical line, then l

can be characterized by an equation

x = a

if the line l intersects the x-axis at the point (a; 0). On the other hand, if

l is not a vertical line, let � be the angle from the positive direction to the

line l,1 then l can be characterized by the equation

y = ax+ b

If a = tan � and the line l intersects the y-axis at the point (0; b). We will

call � the direction of the line l, and call the value a = tan � the slope of the
line l. The slope of a straight line l is denoted by slope(l).

The domain of all of our two-dimensional transformations will be the

projective plane, which is an enhanced version of the Euclidean plane in

which each pair of lines intersects. The projective plane contains all points

of the Euclidean plane (call them the proper points). We introduce a set of

improper points with one point Pa associated with every slope a in the plane.
Two parallel lines, then, intersect at that improper point indicated by the

slope of the parallel lines (this can be thought of as a point at in�nity). All

improper points are considered to lie on the same line: the improper line

or the line at in�nity. Thus, any two lines in the projective plane intersect

at exactly one point: two nonparallel proper lines intersect at a proper

point (i.e., one of the Euclidean plane); two parallel proper lines intersect

at the improper point bearing the same slope; and a proper line intersects

the improper line at the improper point de�ning the slope of the proper

line. Likewise, between every two points passes exactly one line: There is a

proper line passing through every pair of proper points; a proper line passes

through a given improper point and a given proper point; and the improper

line passes through any two improper points.

In general, the actual algorithms used to solve problems rely solely on

the Euclidean geometry. Therefore, although all the transformations will

map the projective plane onto itself, we will wish to choose a transformation

which maps the objects under consideration to \proper" objects. Thus, the

1In this case, we always suppose that ��=2 < � � �=2. That is, we always suppose

that the direction of the straight line l goes to the in�nity either in the �rst quadrant or

in the fourth quadrant.
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Figure 9.1: The half plane H4 is redundant

parameters of the original problem will dictate which transformations are

appropriate. Throughout this chapter, we will use the following notation:

The images of a geometric object G, which can be a point p, a line l, or a

polygon P , etc., under a transformation B will be denoted by B(G).

9.2 Half plane intersections

We introduce the �rst geometric transformation through the following ex-

ample.

Given a set of n lower half planes

Hi : y � aix+ bi i = 1; � � � ; n

Let P be the intersection of these n lower half planes. It is easy to see that

P is an unbounded convex area with an upper boundary

(ei1ei2 � � �eir)

which is a polygonal chain from left to right, where ei1 and eir are semi-

in�nite rays, and eij for 2 � j � r � 1 are straight line segments, such that

if traveling along the chain from ei1 to eir , we always make right turn.

Not every lower half plane is useful for the intersection P . For example,
in Figure 9.1 the lower half plane H4 de�ned by the line l4 is not useful for

the intersection P since the intersection P is entirely contained in the lower

half plane H4.

We say that a lower half plane Hk : y � akx + bk is redundant to the

intersection P if the intersection P is entirely contained in the half plane
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Hk. This simply implies \
1�i�n

Hi =
\
i6=k

Hi

Now given n lower half planes Hi, i = 1; � � � ; n, and let P be their inter-

section. How do we �nd all redundant half planes to the intersection? For

this, we �rst discuss the property of a redundant half plane.

Suppose that H : y � ax + b is a lower half plane. We call the line

l : y = ax + b the boundary line of the lower half plane H . We also say

that the lower half plane H is de�ned by the straight line l : y = ax+ b .

Lemma 9.2.1 Given a set S of n lower half planesHi de�ned by the straight

lines li, i = 1; � � � ; n. A lower half plane Hk is redundant if and only if there

are two lower half planes Hc and Hd in S such that

slope(lc) � slope(lk) � slope(ld)

and the intersecting point of lc and ld is below the line lk.

proof. Suppose that the lower half plane Hk is redundant, then the

intersection P of the n lower half planes in S is entirely below the line lk.
Let

� = (ei1ei2 � � �eir)

be the boundary polygonal chain of P from left to right, where ei1 and eir
are semi-in�nite rays, and eij for 2 � j � r � 1 are straight line segments,

such that if traveling along the chain from ei1 to eir , we always make right

turn. Suppose that the edge eih is on the line lih for h = 1; � � � ; r. We claim

slope(li1) � slope(lk) � slope(lir)

In fact, if slope(li1) < slope(lk) then since the starting point of the ray

ei1 is below the line lk, the ray ei1 must cross the line lk at some point,

contradicting the assumption that Hk is redundant. Similarly we can prove

that slope(lk) � slope(lir). Since the chain � makes only right turn when

we travel from ei1 to eir , the slopes of the sequence of lines

li1 ; li2; � � � ; lir

are strictly decreasing. Thus there must be two consecutive lines lih and

lih+1 such that

slope(lih) � slope(lk) � slope(lih+1)
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Moreover, the intersecting point of the lines lih and lih+1 is the point on the

chain � which is incident to the edges eih and eih+1 , thus must be below the

line lk.

Conversely, if there are two lines lc and ld such that

slope(lc) � slope(lk) � slope(ld)

and the intersection point of lc and ld is below the line lk. Then clearly,

the intersection Hc \Hd of the two lower half planes Hc and Hd is entirely

contained in the lower half plane Hk. Therefore,

P =
\

1�i�n
Hi � Hc \Hd � Hk

That is, the lower half plane Hk is redundant to the intersection P .

By this lemma, a naive method of deciding the redundancy of a given

half plane Hk entails comparing its boundary line against all other pairs of

boundary lines in time O(n2). Finding all redundant lower half planes thus

takes time O(n3).

We use the technique of geometric transformations to design a more

e�cient algorithm to �nd redundant lower half planes.

Let us �rst see what kinds of geometric properties are used for redundant

lower half planes. To show that a lower half plane H de�ned by a line

l : y = ax + b is redundant, we must show the existence of two lower

half planes Hc and Hd de�ned by the lines lc : y = acx + bc and

ld : y = adx+ bd such that

slope(lc) � slope(l) � slope(ld)

and the intersecting point of lc and ld is below the line l. Therefore, if T

is a geometric transformation, then given a line l, we would like that the

parameter slope(l) is mapped to a parameter of the geometric object T (l)
such that the ordering of the slopes of lines is preserved. Moreover, let p

be a point and l be a line, then we want the relations \above" and \below"

between p and l are also preserved for the geometric objects T (p) and T (l).

Now consider the following geometric transformation T1. Given a point

p : (a; b) in the Euclidean plane, the image T1(p) under the transformation

T1 is a straight line

T1(p) : y = ax+ b
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Now let l : y = �x + � be a line. Since each point l is mapped to

a line by the transformation T1, T1(l) is a collection of lines. However, all

these lines have a common intersecting point. In fact, let q0 = (x0; y0) be a
point on the line l, then we have

y0 = �x0 + �

Thus the image of q0 under T1 is the line

T1(q0) : y = x0x+ y0 = x0x+ (�x0 + �)

It is easy to see that the line T1(q0) passes through the point (��; �). There-
fore, instead of regarding that the T1(l) as a collection of lines, we regard

T1(l) as a single point (��; �), and say that the transformation T1 maps a

line into a point.

Note that the above process of deriving the image T1(l) of the line l

from the images of the points on the line l can be reversed. That is, since

we have de�ned the image of a point p = (a; b) under T1 to be the line

T1(p) : y = ax+ b , we can derive that the image of a line l : y = �x+�
under T1 is a point T1(l) = (��; �). Alternatively, if we start by de�ning

that the image of a line l : y = �x + � is the point T1(l) = (��; �),
then given a point p = (a; b), we regard p as a collection of all lines passing

through the point p = (a; b). Any line l0 in this collection can be represented

by an equation

l0 : y = �x+ (b� �a)

where � can be any real number. Thus the image of l0 under T1 is a point

(��; b� �a), which is a point on the line y = ax+ b. Thus the image of the
point p = (a; b) under T1 is the line

T1(p) : y = ax+ b

This discussion shows that the intersection relation between a point and

a line is preserved under the transformation. A more precise description is

given in the following observation.

Observation 1.

Two points p1 and p2 are on the same line l if and only if the two lines

T1(p1) and T1(p2) intersect at the point T1(l).

Observation 2.
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Two lines l1 and l2 intersect at a point p if and only if the two points

T1(l1) and T1(l2) are on the same line T1(p).

The de�nition of the transformation T1 has only been given for the \nor-

mal points", which are the points in the Euclidean plane, and for the \normal

lines", which are of the form y = ax+ b that is not a vertical line. We need

to extend the de�nition to the improper points in the projective plane and

to vertical lines. Using the idea of regarding a vertical line l as the collection

of points on the line, and regarding an improper point P� as the collection

of the parallel lines of slope �, we can easily see that the image of a vertical

line x = a is the improper point Pa and the image of an improper point P�
is the vertical line x = ��. We leave the detail derivation of these to the

reader.

We now show that the ordering of the slope of lines, as well as the

relations \above" and \below" of points and lines, are preserved under the

transformation T1. Let

l1 : y = a1x+ b1 and l2 : y = a2x+ b2

be two lines with the slopes a1 and a2, respectively. Then after the trans-

formation T1, the line l1 becomes a point (�a1; b1) while the line l2 becomes
a point (�a2; b2). Therefore, if we denote by x(p) the x-coordinate of the

point p, then we have

Observation 3.

The slope of line l1 is greater than the slope of line l2 if and only if the

x-coordinate of the point T1(l1) is less than the x-coordinate of the point

T1(l2). That is

slope(l1) > slope(l2) i� x(T1(l1)) < x(T1(l2))

Now let p = (a; b) be a point and let l : y = �x + � be a line such

that p is below the line l. Thus b < �a + �. After the transformation T1,
the point p becomes a line T1(p) : y = ax + b while the line l becomes a

point T1(l) = (��; �). Since � > a(��)+ b, the point T1(l) is above the line
T1(p). This gives us the third observation.

Observation 4.
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A point p is below a line l if and only if the line T1(p) is below the point

T1(l).

Now we return back to the problem of deciding redundant lower half

planes. Given a set A of n points in the plane, by the lower hull of A we

denote the partial chain on the convex hull CH(A) which is from the point

of the minimum x-coordinate in A to the point of maximum x-coordinate

in A and bounds the convex hull CH(A) from below. Using the modi�ed

Graham scan algorithm, we know that the lower hull of the set A can be

constructed in time O(n logn) (see Section 2.2.)

Now given a set S of n lower half planes Hi, where the lower half plane

Hi is de�ned by a straight lines li, for i = 1; � � � ; n. Let P be the intersection

of these n lower half planes. We �rst transform each line li in S by the

transformation T1 into a point T1(li). Let T1(S) be the set of images of the

lines in S under T1. T1(S) is a set of n planar points.

Theorem 9.2.2 A lower half plane Hk in S is redundant to P if and only

if the point T1(lk) is not on the lower hull of CH(T1(S)).

proof. If the lower half plane Hk in S is redundant, By Lemma 9.2.1,

there are two lower half planes Hc and Hd in S such that

slope(lc) � slope(lk) � slope(ld)

and the intersecting point p of lc and ld is below the line lk. By Observation 3,
we have

x(T1(lc)) � x(T1(lk)) � x(T1(ld))

Moreover, the point T1(lk) is above the line T1(p), by Observation 4. Finally,

by Observation 2, the two points T1(lc) and T1(ld) are on the line T1(p), thus
the point T (lk) is above the line segment T1(lc)T1(ld). That is, the point

T1(lk) cannot be on the lower hull of T1(S).
Conversely, suppose that the point T1(lk) is not on the lower hull of

T1(S), then there are two points T1(lc) and T1(ld) in the set T1(S) such that

the point T1(lk) is above the line segment T1(lc)T1(ld). So we have

x(T1(lc)) � x(T1(lk)) � x(T1(ld))

By Observation 3, we have

slope(lc) � slope(lk) � slope(ld)
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Moreover, let l be the line on which the line segment T1(lc)T1(ld) lies, then
by Observation 2, the line l is the image of the intersecting point p of the

lines lc and ld under T1. By Observation 4, the intersecting point p is below
the line lk. Now by Lemma 9.2.1, the line lk is redundant to the intersection

P .

Now it is straightforward to derive an algorithm �nding the redundant

lower half planes given a set of lower half planes.

Algorithm FIND-REDUNDANCY (S)

f Given a set S of n lower half planes Hi, where Hi is de�ned by a line

li, for i = 1; � � � ; n, �nd all redundant half planes. g
begin

1. Using the transformation T1 to transform each line li into a point

T1(li); Let the set of the images of lines in S under T1 be T1(S);

2. Construct the lower hull LH(T1(S)) of T1(S);

3. For k = 1; � � � ; n, a lower half plane Hk is redundant if and only if the

point T1(lk) is not on the lower hull LH(T1(S)).

end

The algorithm is correct according to Theorem 9.2.2. Step 2 in the

algorithm takes time O(n logn) by our discussion in Section 2.2. All other

steps trivially take linear time. So the time complexity of the algorithm is

O(n logn).

With the algorithm FIND-REDUNDANCY, it is easy to design an algo-

rithm computing the intersection of half planes.

HALF-PLANE-INTERSECTION

Given n +m half planes

y � aix+ bi i = 1; � � � ; n

y � cjx+ dj j = 1; � � � ; m

in the plane, compute the intersection of them.
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The problem can be split into two problems as follows: We consider the

intersection P1 of the n lower half planes:

y � aix+ bi i = 1; � � � ; n

and the intersection P2 of the m upper half planes:

y � cjx+ dj j = 1; � � � ; m

Then the intersection of the n +m half planes is the intersection of P1 and
P2.

The two areas P1 and P2 are unbounded polygonal areas, and both of

them are convex. It is a simple exercise to show that the intersection of the

two polygonal areas P1 and P2 can be computed in time O(n1 + n2), where

ni, i = 1; 2, is the number of boundary edges of the polygonal area Pi.
Therefore, the problem HALF-PLANE-INTERSECTION can be re-

duced to computing the intersection of lower half planes and computing

the intersection of upper half planes. Since the two problems are symmetric,

we will concentrate on the problem of intersection of lower half planes.

LOWER-HALF-PLANE-INTERSECTION

Given n lower half planes

Hi : y � aix+ bi i = 1; � � � ; n

in the plane, compute the intersection P1 of them.

A half plane that is not redundant is called a useful half plane of the

intersection P1. Clearly, a half plane Hk : y � akx + bk is useful to the

intersection P1 if the straight line y = akx + bk contributes a boundary

edge to the polygonal area P1. Let

Hik
: y � aikx+ bik k = 1; � � � ; r

be the set of useful half planes to the intersection P1 such that the boundary

of the polygonal area P1 is formed by a polygonal chain

(ei1ei2 � � �eir)

from left to right, where the edge eik on the chain is contributed by the

straight line

lik : y = aikx+ bik
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for k = 1; � � � ; r. Since P1 is a convex polygonal area and is below its bound-

ary, the slope of the lines lik must be strictly decreasing. This observation

gives us immediately an algorithm to compute the intersection P1.

Algorithm LOWER-PLANE-INTERSECTION

f Given the set S of n lower half planes, compute their intersection. g
begin

1. Eliminate all redundant lower half planes,

2. Sort the boundary lines of the useful half planes by their slopes in de-

creasing ordering. Let the sorted list of the lines be

fli1 ; li2; � � � ; lirg

3. For k = 1 to r � 1, compute the intersecting point pk of the lines lik
and lik+1.

4. The polygonal chain

fli1p1p2 � � �pr�1lirg
is the boundary chain of the intersection P1.

end

Step 1 takes time O(n logn) using the algorithm FIND-REDUNDANCY.

Step 2 takes also time O(n logn) by any optimal sorting algorithm. The

remaining of the algorithm takes linear time. Therefore, the above algorithm

runs in time O(n logn). By our comments before, the intersection of n half

planes can also be computed in time O(n logn). It is easy to see that this

is also a lower bound for the problem, since the problem SORTING can be

easily reduced to this problem. Thus we have

Theorem 9.2.3 The problem HALF-PLANE-INTERSECTION can be

solved by an optimal algorithm in O(n logn) time.

Finally we remark that our algorithm for using a geometric transfor-

mation to solve the problem HALF-PLANE-INTERSECTION consisted of

three parts: We �rst identi�ed the geometric techniques we might use (here

is eliminating redundant half planes). Next, we identi�ed the invariants re-

quired by a transformation (here are the \above"/\below" relation and the

ordering of slopes). Finally, we found an appropriate transformation and

solved the problem. This is a classic example of how geometric transforma-

tions are used.
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9.3 The smallest area triangle

We give another example of the applications of the geometric transformation

T1. Consider the following problem.

THE-SMALLEST-TRIANGLE

Given a set S of n points in the plane, �nd the smallest area triangle

whose three vertices are points in S.

A brute force way to solve this problem is to compute, for every three

points in S, the area of the triangle formed by these three points, and then

pick the one with the smallest area. This algorithm takes time proportional

to
�
n

3

�
= O(n3).

A variation of the above algorithm is that given a pair of points pi and

pj in S, compute the distance d(k; i; j) from a point pk to the line li;j passing
through the points pi and pj , where pk is any point picked from S�fpi; pjg.
Since the area of the triangle formed by pi, pj , and pk is half of the product
d(k; i; j) � jpipj j, this will give us the areas of all triangles one of whose edge
is the segment pipj . If we do this for every pair of points in S, we will

obtain the areas of all triangles formed by points in S, thus pick the one

with smallest area. The time complexity of this variation is O(
�
n

2

�
(n � 1)),

which is again O(n3).

De�nition Let p be a point and l be a line. The vertical distance, denoted
dv(p; l), from p to l is the distance from the point p to the intersecting point

of the line l and the vertical line passing through the point p.

Note that the vertical distance from a point p to a line l is in general

di�erent from the distance from the point to the line, which is the distance

from the point p to the intersecting point of the line l and the line which

passes through p and is perpendicular to the line l.

Let pk, pi, and pj be three points in S. We denote by dv(k; i; j) the
vertical distance from the point pk to the line li;j passing through the points

pi and pj . For simplicity, sometime we also call dv(k; i; j) the vertical distance
from the point pk to the segment pipj .

Lemma 9.3.1 Fix a pair of points pi and pj in the set S. Let li;j be the

line passing through the points pi and pj . Then a point pk in S � fpi; pjg
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Figure 9.2: The vertical distance from a point to a line

has the smallest distance d(k; i; j) from the line li;j if and only if pk has the

smallest vertical distance dv(k; i; j) from the line li;j.

proof. Let lv be the vertical line passing through the point pk which

intersects the line li;j at a point q. Let � be the angle between the lines li;j
and lv. By the de�nition, the vertical distance dv(k; i; j) from pk to li;j is the
length of the line segment pkq. Moreover, it is easy to see that the distance

d(k; i; j) from pk to li;j is equal to jpkqj � sin � . See Figure 9.2. Thus, the
vertical distance from pk to li;j is proportional to the distance from pk to

li;j . The lemma follows immediately.

Therefore, to �nd the smallest area triangle, for each pair of points pi
and pj in S, we only need to consider such a point pk in S � fpi; pjg such

that the vertical distance dv(k; i; j) is the shortest. But how this observation

helps us?

We �rst apply the transformation T1 on the set S of planar points. We

know that a point pk in S is mapped under T1 to a line T1(pk) while a line

li;j passing through two points pi and pj in S is mapped under T1 to the

intersecting point T1(li;j) of the lines T1(pi) and T1(pj). A nice property

of the transformation is that the vertical distance is preserved under the
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transformation, as shown by the following lemma.2

Lemma 9.3.2 The vertical distance dv(pk; li;j) from the point pk to the line
li;j is equal to the vertical distance dv(T1(li;j); T1(pk)) from the point T1(li;j)
to the line T1(pk)

dv(pk; li;j) = dv(T1(li;j); T1(pk))

proof. The proof is straightforward through the calculations using basic

formulas in analytical geometry. Suppose that the coordinates of pi, pj , and
pk are

pi = (ai; bi) pj = (aj ; bj) pk = (ak; bk)

Then the line li;j has the equation

li;j : y =
bi � bj
ai � aj

x+
aibj � ajbi
ai � aj

Under the transformation T1, they are mapped to the lines T1(pi), T1(pj)

and T1(pk):

T1(pi) : y = aix+ bi T1(pj) : y = ajx+ bj T1(pk) : y = akx+ bk

and the point

T1(li;j) = (� bi � bj
ai � aj

;
aibj � ajbi
ai � aj

)

The intersecting point of the line li;j and the vertical line passing through
the point pk is

(ak;
bi � bj
ai � aj

ak +
aibj � ajbi
ai � aj

)

Thus the vertical distance from the point pk to the line li;j is the absolute

value of the following number

bi � bj
ai � aj

ak +
aibj � ajbi
ai � aj

� bk =
(aibj + ajbk + akbi)� (aibk + ajbi + akbj)

ai � aj

Similarly, the intersecting point of the line T1(pk) and the vertical line

passing through the point T1(li;j) is

(� bi � bj
ai � aj

;�ak
bi � bj
ai � aj

+ bk)

2Without loss of generality, we suppose that no two points in the set S have the same

x-coordinate. If this condition is not satis�ed, we slightly rotate the coordinate system.
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Thus the vertical distance from the point T1(li;j) to the line T1(pk) is the
absolute value of the following number

aibj � ajbi
ai � aj

�(�ak
bi � bj
ai � aj

+bk) =
(aibj + ajbk + akbi)� (aibk + ajbi + akbj)

ai � aj

This proves the lemma.

But why this lemma helps? Let us �rst transform each point pi in the

set S under T1 to a line T1(pi) for i = 1; � � � ; n. Then we will obtain a set

T1(S) of n straight lines

T1(S) = fT1(p1); T1(p2); � � � ; T1(pn)g

The set T1(S) of these n lines T1(pi), i = 1; � � � ; n, forms a PSLG, if we regard
each intersecting point of a pair of lines in T1(S) as a vertex. Let li;j be the
line passing through the points pi and pj in S. Note that to �nd a point in S

which has the smallest vertical distance to the line li;j , we have to check each
vertex in S�fpi; pjg. However, to �nd the line T1(pk) in T1(S) such that the
point T1(li;j) has the smallest vertical distance to T1(pk), we only need to

check in T1(S) the lines immediately above and immediately below the point

T1(li;j). Therefore, if we well organize the PSLG T1(S), we can �nd e�ciently
the line T1(pk) in T1(S) such that the vertical distance from the point T1(li;j)

to the line T1(pk) is the smallest over all lines in T1(S) � fT1(pi); T1(pj)g.
By Lemma 9.3.1 and Lemma 9.3.2, the distance from the point pk to the

line li;j is the smallest over all points in S � fpi; pjg, which implies that the

triangle 4(pkpipj) has the smallest area over all triangles one of whose edge
is the segment pipj . For each pair of points pi and pj in the set S, perform

the above process, we obtain the smallest area triangle.

Now we discuss how to �nd the lines closest to the point T1(li;j) in T1(S).
We perform a topological sweeping on the PSLG T1(S) from left to right by

a vertical line L. The lines of T1(S) are stored in a 2-3 tree A in the ordering

of their intersecting points with the line L on L. Since T1(S) contains exactly
n lines T1(pi), i = 1; � � � ; n, the number of leaves of the 2-3 tree A is n, thus

the depth of A is bounded by O(logn). Suppose that at some moment, the
line L moves to a vertex T1(li;j) of T1(S) from left to right, then it is easy to

see that except for the two lines T1(pi) and T1(pj) that intersect at T1(li;j),
all other lines in T1(S) maintain their relative position with respect to each

other in the 2-3 tree A. On the other hand, the lines T1(pi) and T1(pj)
should exchange their positions in the 2-3 tree A. In other words, if the
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line T1(pi) is above the line T1(pj) on the left of the point T1(li;j), then the

line T1(pi) should be below the line T1(pj) on the right of the point T1(li;j),

and vice versa. Let the two lines that are immediately above and below the

vertex T1(li;j) in the PSLG T1(S) be T1(pk) and T1(ph), respectively. Then

the lines T1(pk) and T1(ph) can be also accessed in time O(logn) from the

2-3 tree A. To �nd the relative position of a vertex T1(li;j) in the 2-3 tree A,

we do a search in the 2-3 tree A by the values of y-coordinate while �xing
the x-coordinate of each line in A to the value of the x-coordinate of the

vertex T1(li;j).

The following is the implementation of the above discussion, which �nds

the smallest area triangle given a set S of points in the plane.

Algorithm SMALLEST-TRIANGLE (S)

f Given a set S of n planar points, �nd the smallest area triangle whose

three vertices are points in S. g
begin

1. For each point pi in S, i = 1; � � � ; n, construct the line T1(pi).

2. For each pair of lines T1(pi) and T1(pj) constructed in Step 1, i; j =

1; � � � ; n, compute the intersecting vertex T1(li;j).

3. Sort all intersecting vertices T1(li;j), i; j = 1; � � � ; n in increasing x-
coordinate ordering. Let the sorted list be

fv1; v2; � � � ; vmg

where m =
�
n

2

�
, and vi = (xi; yi), for i = 1; � � � ; m.

4. Construct a 2-3 tree A whose leaves are the lines T1(pi), i = 1; � � � ; n,
ordered by the y-coordinates of their intersecting points with the vertical
line x = x1 � 1 .

5. For r = 1; � � � ; m do the following

Suppose that the vertex vr is the intersecting vertex of the lines T1(pi)
and T1(pj) and that the lines immediately above and below the vertex vr
are T1(pk) and T1(ph), respectively. Compute the areas of the triangles
4(pkpipj) and 4(phpipj). Exchange the positions of T1(pi) and T1(pj)

in the 2-3 tree A.

6. The triangle that is constructed in Step 5 and has the smallest area is

the the smallest area triangle.
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end

One case we have ignored in the above algorithm is the case when there

are three lines T1(pi), T1(pj), and T1(pk) of T1(S) intersecting at a com-

mon point. However, this means that the intersecting point T1(li;j) of the
lines T1(pi) and T1(pj) has a zero vertical distance from the line T1(pk). By

Lemma 9.3.2, the point pk has a zero vertical distance from the line li;j . Con-
sequently, the three points pi, pj , and pk are co-linear and the smallest area

triangle of the set S has area zero. Therefore, whenever we �nd that three

lines T1(pi), T1(pj), and T1(pk) in T1(S) are co-linear, we stop immediately

and return the triple (pi; pj; pk) as the smallest area triangle.

We analyze the algorithm. Step 1 takes time O(n). Step 2 takes time

O(n2) and produces m =
�
n

2

�
= O(n2) intersecting vertices in T1(S). Thus

Step 3 takes time O(n2 logn) to sort the intersecting vertices constructed

in Step 2. Step 4 takes time O(n logn). For each vertex vr, Step 5 spends

O(logn) time to locate the position of the vertex vr in the 2-3 tree A, to
update the 2-3 tree A and to compute the areas of the two triangles, so

totally Step 5 takes time O(m logn) = O(n2 logn). Since for each vertex

vr, we construct at most two triangles, the number of triangles constructed
in Step 5 is bounded by O(m) = O(n2). Consequently, Step 6 takes time

O(n2). Therefore, the time complexity of the above algorithm is bounded

by O(n2 logn).

Since each line in the PSLG T1(S) corresponds to a point in S, the 2-3
tree A has exactly n leaves. However, the space used to store the vertices vr,

r = 1; � � � ; m =
�
n

2

�
is 
(n2). So the space used by the algorithm is O(n2).

Now we discuss how we can reduce the amount of space used by the

algorithm. As pointed out above, the O(n2) space is used to store the m
intersecting vertices of the lines T1(pi), for i = 1; � � � ; n. However, we do

not really need the whole sorted list of these intersecting vertices. What we

are really interested in is that at each stage which vertex is the next to the

current vertex vr. This next vertex must be the one that is on the right of

the current vertex vr and the closest to the vertical line passing through the

current vertex vr. Note that such a vertex must be the intersecting vertex

of two lines in T1(S) that are consecutive leaves in the current 2-3 tree A.
Therefore, if we keep a list B of the records for the intersecting vertices of

the consecutive leaves in the current 2-3 tree A that are on the right of the

current vertex vr (there are at most n � 1 such intersecting vertices), then

the one in the list B that is the closest to the vertical line passing through

the current vertex vr must be the next vertex to be processed in Step 5 of
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the above algorithm.

Therefore, instead of producing the whole list

v1; v2; � � � ; vm

of intersecting vertices of the lines T1(pi), i = 1; � � � ; n, we use a 2-3 tree

B to store the intersecting vertices of consecutive lines in the 2-3 tree A

that are on the right of the current vertex vr, sorted by their x-coordinates.
The number of leaves of the tree B is bounded by n � 1. Suppose that the

current vertex is vr. To �nd the next vertex, we simply �nd the vertex vr+1
in the 2-3 tree B that has the smallest x-coordinate. Then the vertex vr is

deleted from the tree B. Note that after processing the vertex vr, adjacency
relations among only four lines in A can be changed. That is, suppose that

the vertex vr is the intersecting vertex of the lines T1(pi) and T1(pj), that

the lines in T1(S) immediately above and below the vertex vr are T1(pk) and
T1(ph), respectively, and that before processing the vertex vr, the line T1(pi)

is above the line T1(pj). Then after processing the vertex vr, the line T1(pj)
is above the line T1(pi). Therefore, before processing the vertex vr, these

lines are in the ordering

T1(pk); T1(pi); T1(pj); T1(ph)

in the 2-3 tree A, while after processing the vertex vr, the line ordering

becomes

T1(pk); T1(pj); T1(pi); T1(ph)

Accordingly, the 2-3 tree B can be updated by deleting the intersecting

vertices of T1(pk) and T1(pi), and of T1(pj) and T1(ph), and inserting the

intersecting vertices of T1(pk) and T1(pj), and of T1(pi) and T1(ph), if they are

on the right of the vertex vr. The intersecting vertices of T1(pi) and T1(pj)
is the vertex vr. Since the number of leaves of the 2-3 tree B is bounded by

n�1, each of the above operations can be done in time O(logn). Therefore,
processing a vertex vr in Step 5 of the algorithm takes time O(logn). And

the space now used by the algorithm, which is the sum of the 2-3 tree A and

the 2-3 tree B, is bounded by O(n).

This completes our description of an O(n2 logn) time and O(n) space

algorithm that solves the problem THE-SMALLEST-TRIANGLE.

Final Remark:
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If the area of the smallest area triangle is zero, then the three points

forming this triangle are co-linear. Consequently, the above algorithm can

be used to check if there exist three points that are co-linear in a given set of

n planar points. The algorithm we presented in this section is not the best

algorithm. The best algorithm we know for the problem THE-SMALLEST-

TRIANGLE is due to Edelsbrunner, O'Rourke, and Seidel, which runs in

time O(n2) and space O(n) [11]. Whereas, the only known lower bound

is 
(n logn). In fact, even for checking whether there exist three co-linear

points, the only bounds that we know are O(n2) and 
(n logn). Improving

the upper or lower bounds for either of these problems remains an extremely

tantalizing open problem in computational geometry.

9.4 Convex polygon intersections

Now we introduce the second geometric transformation T2. Given a point

p = (a; b) in the plane, we de�ne the image of p under T2 to be the line

T2(p) : ax+ by + 1 = 0

In a similar way as we did for the transformation T1, we discuss what is the
image of a line l : �x + �y + 1 = 0 . A point q0 = (a0; b0) on the line l

satis�es

�x0 + �y0 + 1 = 0

Thus y0 = (��=�)x0 � 1=�, and the point q0 is mapped to the line

T2(q0) : x0x+ y0y + 1 = 0 or x0x+ ((��=�)x0 � 1=�)y + 1 = 0

It is easy to check that the line T2(q0) passes through the point (�; �). Thus
every point on the line l : �x+�y+1 is mapped to a line passing through

the point (�; �). Thus we simply regard the image of the line l to be the

point (�; �).

Again, the transformation T2 preserves the relation of intersection of a

point and a line. That is, a point p is on a line l if and only if the line T2(p)
contains the point T2(l). More precisely, we have

Observation 1

Two points p and q are on the line l if and only if the two lines T2(p)
and T2(q) intersect at the point T2(l).
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Observation 2

Two lines l1 and l2 intersect at a point p if and only if the two points

T2(l1) and T2(l2) are on the same line T2(p).

Another nice property of the transformation T2 is that the distance of an
object from the origin is preserved. In fact, by analytical geometry, we know

that the distance of a point (a; b) from the origin is
p
a2 + b2 and the distance

of a line l : ax+ by+1 = 0 from the origin is 1=
p
a2 + b2. Thus, points or

lines further from the origin are mapped to lines or points closer to the origin.

That the transformation T2 is also its own inverse (i.e., G = T2(T2(G)) where

G is either a point or a line) also contributes to its usefulness. Moreover, let

p = (a; b) and q = (c; d) be two points, which have distance
p
a2 + b2 andp

c2 + d2 from the origin, respectively. The transformation T2 maps them

to two lines

T2(p) : ax + by + 1 = 0 and T2(q) : cx+ dy + 1 = 0

which have distance 1=
p
a2 + b2 and 1=

p
c2 + d2 from the origin, respectively.

Therefore,

Observation 3

If a point p is closer than a point q to the origin, then the line T2(p) is

further than the line T2(q) from the origin. Similarly, if a line l1 is closer

than a line l2 to the origin, then the point T2(l1) is further than the point

T2(l2) from the origin.

Finally, it is also easy to check the following observation.

Observation 4

If two points p and q are on the same ray starting from the origin, then

the lines T2(p) and T2(q) are in parallel.

We note that each improper point P� is mapped to the line through

the origin having the slope � and vice versa. Similarly, the origin and the

improper line are duals. Consequently, the transformation T2 should not

be applied to lines or to segments of lines which pass through the origin.

Nonetheless, the mere fact that the domain of a problem contains a line

through the origin should not make us abandon T2. By translating the axes
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in one direction or another, we may be able to insure that T2 will map every
object in the domain of our problem to another proper object.

Let P = fv1; v2; � � � ; vng be a convex polygon that contains the origin O.
For a vertex vi = (ai; bi) of P , the image of vi under T2 is the line

T2(vi) : aix+ biy + 1 = 0

which does not pass through the origin. Call the half plane Hi with the

boundary line T2(vi) and containing the origin the half plane de�ned by

T2(vi). Let li be the line on which the boundary edge vivi+1 of P lies.

Then the image T2(li) of li is the intersecting point of the lines T2(vi) and
T2(vi+1) and the origin is contained in the intersection of the half planes Hi

and Hi+1 de�ned by T2(vi) and T2(vi+1), respectively. Since the vertex vi
is connected to the vertex vi+1 by the boundary edge vivi+1 of P which is

on the line li, for i = 1; � � � ; n (here vn+1 = v1), the line T2(vi) intersects

the line T2(vi+1) at the point T2(li). Thus the intersection of the half planes

Hi, de�ned by T2(vi), for i = 1; � � � ; n is a bounded area, which is a convex

polygon containing the origin such that the sequence of boundary vertices of

the convex polygon is T2(l1), T2(l2), � � �, T2(ln). Therefore, we can regard the
image of the convex polygon P containing the origin under T2 to be again

a convex polygon T2(P ) containing the origin with the boundary vertices

T2(l1), T2(l2), � � �, T2(ln).
It is easy to see that given a convex polygon P that contains the origin,

the image T2(P ) of P under T2 can be constructed in time proportional to

the number of vertices of P .
Now we apply the transformation T2 to the following problem.

CONVEX-POLYGON-INTERSECTION

Given a set of convex polygons that contain the origin, compute the

intersection of them.

Suppose that S is a set of convex polygons P1, � � �, Pn that contain the

origin. We �rst construct the image T2(Pi) for each convex polygon Pi in

S. Let S0 be the set of vertices of all these convex polygons T2(P1), T2(P2),
� � �, T2(Pn). We will show that the intersection of the convex polygons of S

corresponds to the convex hull of the set S0. To prove this, we need a few

lemmas.

Let l be a line that does not pass through the origin. Draw a ray r starting
from the origin and intersecting the line l at p. Let q be an arbitrary point
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Figure 9.3: Oq does not intersects l

on the ray r.

Lemma 9.4.1 The segment Oq intersects the line l if and only if the seg-

ment OT2(l) intersects the line T2(q).

proof. Suppose that the segment Oq does not intersect the line l, as
shown in Figure 9.3(a). Then the point q is closer than the point p to the

origin. Thus the line T2(q) is further than the line T2(p), by Observation 3.

Moreover, the lines T2(q) and T2(p) are in parallel, by Observation 4, and

the point T2(l) is on the line T2(p). Consequently, the segment OT2(l) does

not intersect the line T2(q), see Figure 9.3(b). The inverse can be proved in

a very similar way, thus we omit it here.

Let the intersection of the convex polygons in S be I . Suppose that l is
a line on which an edge of some polygon in S lies. Then we know that T2(l)

is a point in the set S0. We say that the line l contributes a boundary edge

to the intersection I if part of l is on the boundary of the intersection I .

Lemma 9.4.2 The line l contributes a boundary edge to the intersection I

if and only if the point T2(l) is on the convex hull of the set S0.

proof. Suppose that the line l contributes an edge to the intersection

I but T2(l) is not a hull vertex of S0. Let r be the ray starting from the
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origin and passing through the point T2(l). Then we must be able to �nd

two points T2(l1) and T2(l2) in the set S0 such that if we let r1 and r2 be

the rays staring from the origin and passing through the points T2(l1) and
T2(l2), respectively, then the ray r is between the two rays r1 and r2, and

that the segment OT2(l) does not intersect the line T2(p) passing through the
points T2(l1) and T2(l2), where p is the intersecting point of the lines l1 and

l2, see Figure 9.4(b). By lemma 9.4.1, the segment Op does not intersect the
line l. Moreover, since the ray r is between the two rays r1 and r2, slope(l)

is between slope(l1) and slope(l2). Therefore, if we let H , H1, and H2 be

the half planes de�ned by the lines l, l1, and l2, respectively, then the area

H1\H2 is entirely contained in the half plane H , see Figure 9.4(a). But the

intersection I is entirely contained in H1\H2 thus is entirely contained in the

half plane H . But this contradicts the assumption that the line l contributes
an edge to I . This contradiction shows that the point T2(l) must be a hull

vertex of the set S 0.
The inverse that if T2(l) is a hull vertex of S

0 then the line l contributes
an edge to the intersection I can be proved similarly and is left as an exercise

to the reader.

Lemma 9.4.2 immediately suggests the following algorithm to solve the

problem CONVEX-POLYGON-INTERSECTION.

Algorithm CONVEX-POLYGON-INTERSECTION (S)
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f Given a set S of convex polygons that contain the origin, compute their

intersection. g
begin

1. For each convex polygon Pi and for each edge e of the polygon Pi, if
the edge e lies on a line l, construct the point T2(l).

2. Let S0 be the set of points produced in Step 1, construct the convex hull

CH(S0) of S0.

3. Let S00 be the set of lines that are preimages of the hull vertices in

CH(S0). Sort S00 by slopes, let the sorted list be

l1; l2; � � � ; lr

4. For i = 1; � � � ; r compute the intersecting point pi of li and li+1 (here

lr+1 = l1), then sequence

p1; p2; � � � ; pr

is a convex polygon that is the intersection of convex polygons in S.

end

The algorithm correctly �nds the intersection of the polygons in the set

S, as we have discussed above. Moreover, if the sum of the number of edges

of the polygons in S is N , then the above algorithm trivially runs in time

O(N logN).



Chapter 10

Geometric Problems in

Higher Dimensions

In this chapter, we introduce techniques for solving geometric problems in

more than two dimensions. Section 1 introduces the preliminaries of higher

dimensional geometry and representation of geometric objects in higher di-

mensions in a computer. Section 2 describes a divide-and-conquer algorithm

for constructing the convex hull of a set of points in 3-dimensional Euclidean

space. Section 3 gives an optimal algorithm for constructing the intersection

of a set of half-spaces in 3-dimensional Euclidean space. Section 4 demon-

strates an interesting relationship between a convex hull of a set of points

in the n-dimensional Euclidean space and the Voronoi diagram of a set of

projected points in the (n+ 1)-dimensional Euclidean space. Section 3 and

Section 4 actually gives an optimal algorithm for constructing the Voronoi

diagram for a set of points in the plane using reduction techniques.

10.1 Preliminaries

10.2 Convex hulls in three dimension

From Preperata and Shamos.

10.3 Intersection of half-spaces

From Preperata and Shamos.
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10.4 Convex hull and Voronoi diagram

From MIT Lecture Notes by Agarwal.



Chapter 11

Dynamization Techniques

The techniques are developed for problems whose database is changing over

(discrete) time. The idea is to make use of good data structures for a static

(�xed) database and add to them certain dynamization mechanisms so that

insertions or deletions of elements in the database can be accommodated

e�ciently.

11.1 On-line construction of convex hulls

Each of the convex hull algorithms we have examined thus far requires all

of the data points to be present before any processing begins. In many geo-

metric applications, particularly those that run in real-time, this condition

cannot be met and some computation must be done as the points are being

received. In general, an algorithm that cannot look ahead at its input is

referred to as on-line, while one that operates on all the data collectively is

termed o�-line. Obviously, given a problem, an on-line algorithm cannot be

more e�cient than the best o�-line algorithm.

Let us formally describe the problem.

ON-LINE HULL

Given a sequence of n points p1, p2, � � �, pn in the plane, �nd their convex

hull in such a way that after pi is processed we have the convex hull for the

set of points fp1; p2; � � � ; pig.

Let CHi denote the convex hull of the i points p1, p2, � � �, pi. The

ON-LINE HULL problem is obviously reduced to the following problem: for

201
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i = 1; � � � ; n� 1, suppose that we have the convex hull CH i, we \insert" the

point pi+1 properly into CHi to obtain the convex hull CHi+1. Thus, an

algorithm for ON-LINE HULL should look pretty much like the algorithm

HEAPSORT, as we studied in Algorithm Analysis, where we always keep a

sorted list for the �rst i numbers, and insert the (i+1)st number to the list to
form a sorted list of the �rst (i+1) numbers. In fact, we will use a technique

pretty similar to HEAPSORT to solve the ON-LINE HULL problem.

An on-line algorithm must spend at least time 
(n logn), when the last

point pn has been processed, since we have shown that 
(n logn) is a lower
bound for o�-line algorithms of construction of convex hulls. Therefore, the

best we can expect is to insert pi+1 into the hull CHi in time O(logn). In

other words, if an algorithm inserts each point pi+1 into the convex hull CHi

in time O(logn), for i = 1; 2; � � � ; n� 1, then the algorithm is optimal.

Now let us see how we insert the point pi+1 into the convex hull CH i.

There are two possible cases, either the point pi+1 is internal to the convex

hull CH i, then CHi = CHi+1 and we do nothing; or the point pi+1 is

external to the convex hull CHi, then we have to construct the two bridges

from the point pi+1 to the convex hull CHi and form the convex hull CH i.

Therefore, the algorithm should look like the following:

Algorithm INSERTVERTEX

begin

1. if pi+1 is internal to CHi, then do nothing.

2. else �nd the two bridges B1 and B2 from pi+1 to CHi. Let q1 and q2
be the points in CHi that are on the bridges B1 and B2, respectively,

replace a chain on CH i that is between q1 and q2 by two line segments

q2pi+1 and pi+1q1.

end

Step 2 in the above algorithm involves SEARCHING the points q1 and

q2, DELETING a chain on CHi between q1 and q2, and INSERTING the

point pi+1. To make our algorithm optimal, all these operations should be

done in time O(logn). Thus the 2-3 trees introduced in Chapter 1 seems a

proper data structure for this purpose.

Let us store the convex hull CHi in a 2-3 tree T in the following way.

The hull vertices of CHi are stored in the leaves of T from left to right

in the counterclockwise ordering on the hull CHi. Each non-leaf vertex v
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of T keeps three pieces of information, L(v), M(v), and R(v), where L(v)

contains the right most hull vertex vl stored in the subtree rooted at the left

son of v, together with the two neighbors of vl on the hull CH i. Similarly,

M(v) and R(v) contains the right most hull vertex vm and vr stored in the

subtrees rooted at the middle son and right son of v, respectively, together

with their two neighbors on the hull CH i.

Let p be a hull vertex of CHi and let p0 and p00 be the two neighbors of p
on CHi. Draw a line segment pi+1p between the point p and pi+1. Let � be

the angle that is less than � and formed by the line segments pp0 and pp00,
and let l be the straight line passing through the two points p and pi+1. We

say that the vertex p is concave with respect to pi+1 if the points p0 and p00

are in two di�erent sides of the line l and the point pi+1 is within the wedge

of the angle �. The point p is reex with respect to pi+1 if the points p
0 and

p00 are in two di�erent sides of the line l and the point pi+1 is outside the

wedge of the angle �. The point pi+1 is supporting with respect to pi+1 if the

two points p0 and p00 are in the same side of the line l. Figure 11.1 depicts
these three di�erent cases.

Note that given the points p, p0, p00, and pi+1, we can decide in constant

time if the point p is concave, reex, or supporting with respect to the point

pi+1.

It is easy to see that if pi+1 is internal to CHi, then all hull vertices of

CHi are concave with respect to pi+1, and if pi+1 is external to CHi, then

exactly two hull vertices of CHi are supporting with respect to pi+1, which
are the two points q1 and q2 in Step 2 in the algorithm INSERTVERTEX.

Without loss of generality, we suppose that q1 is the \right supporting

point" with respect to pi+1 such that the whole convex hull CHi lies on
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the left side of pi+1q1 (we say that a point q is on the left (right) side of a

directed line segment p0p00 if q is on our left (right) side when we travel the

straight line passing through the points p0 and p00 in the direction from p0 to
p00). Similarly, we call the point q2 the \left supporting point" with respect

to pi+1.
Suppose that the point pi+1 is external to the convex hull CH i, we discuss

how to �nd the right and left supporting points q1 and q2 with respect to

pi+1 in the 2-3 tree representing the convex hull CHi. Since the algorithms

are similar for �nding the right supporting point and left supporting point,

we only discuss the algorithm for �nding the right supporting point q1.
Recursively, suppose that we know that the point q1 is stored in a subtree

T (v) rooted at a non-leaf vertex v. The root v contains three pieces of

information L(v), M(v), and R(v) for its left son LSON(v), middle son

MSON(v), and right son RSON(v), respectively. We �rst use the information

stored in M(v) and R(v) to decide if q1 is stored in the right son RSON(v) of

v. If q1 is not stored in the right son RSON(v), then we use the information

stored in L(v) and M(v) to decide that q1 is stored in the left son LSON(v)

or in the middle son MSON(v). Since the methods for these two decisions

are similar, we only describe how we use the information L(v) and M(v) to

decide in which of the left and middle sons the right supporting point q1 is
stored. Since L(v) contains the right most point vl in the subtree LSON(v)

together with its two neighbors on the convex hull CH i, we can decide in

constant time that the point vl is concave, reex, or supporting with respect

to pi+1. If vl is the right supporting point with respect to pi+1, then we are

done. Therefore, we only have to consider the cases that vl is concave, reex,
or left supporting, with respect to pi+1. Again, the processes for these three

cases are quite similar, we only discuss the case that vl is reex with respect

to pi+1.

So we suppose that vl is reex with respect to pi+1. Let the right most
point in the subtree MSON(v) be rm (the point rm and its neighbors on

CHi are contained in the information M(v) of v. There are six di�erent

positions, relative to the position of vl, for vm to locate:

1. The point vm is concave with respect to pi+1, and vm is on the right

of pi+1vl.

2. The point vm is concave with respect to pi+1, and vm is on the left of

pi+1vl.

3. The point vm is reex with respect to pi+1, and vm is on the right of
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Figure 11.2: Six positions for vm when vl is reex

pi+1vl.

4. The point vm is reex with respect to pi+1, and vm is on the left of

pi+1vl.

5. The point vm is right supporting with respect to pi+1.

6. The point vm is left supporting with respect to pi+1.

Figure 11.2 illustrates all these six cases.

From Figure 11.2, it is easy to decide in which subtree the right support-

ing point q1 with respect to pi+1 is stored. We discuss this case by case.
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Remember that the hull vertices of CHi are stored in the 2-3 tree from left

to right in the counterclockwise ordering, therefore, the points stored in the

subtree MSON(v), together with the point vl, correspond to the chain on

the convex hull CHi starting from the point vl, making travel in counter-

clockwise order, and ending at the point vm. Call this chain a MSON-chain.

CASE 1 In this case, vl is reex and vm is concave. If we travel the MSON-

chain from vl to vm, the points on the chain change from reex to concave

with respect to pi+1, and all points are on the right of pi+1vl. Thus we

must pass the right supporting point q1. Therefore, in this case, the right

supporting point q1 is stored in the middle son MSON(v).

CASE 2 The analysis is similar to Case 1, the right supporting point q1 is

stored in the middle son MSON(v).

CASE 3 In this case, both vl and vm are reex, and vm is on the right side

of pi+1vl. Therefore, if we travel the MSON-chain from vl to vm, the right
supporting point q1 must not be passed. Therefore, in this case the middle

son MSON(v) does not contain the right supporting point q1. The point q1
must be stored in the left subtree LSON(v).

CASE 4 Similar to Case 2, the right supporting point q1 is stored in the

middle son MSON(v).

CASE 5 This is the most lucky case, since the right supporting point

q1 = vm.

CASE 6 Similar to Case 2, the right supporting point q1 is stored in the

middle son MSON(v).

Therefore, for each of these six cases, we can decide in constant time

which subtree we should further search. We summarize these discussions in

the following algorithm.

Algorithm RIGHTPOINT(v)

f Search the right supporting point q1 in the subtree rooted at the non-

leaf vertex v. The points vl and vm are the right most points in the subtrees

LSON(v) and MSON(v), respectively. g
begin

1. if pi+1 is external to CHi

1.1 if q1 is stored in RSON(v), call RIGHTPOINT(RSON(v));

1.2 else

1.2.1 if vl is reex

1.2.1.1 if vm is right supporting, then done;

1.2.1.2 else if vm is reex and on the right of pi+1vl
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1.2.1.3 Call RIGHTPOINT(LSON(v));

1.2.1.4 else Call RIGHTPOINT(MSON(v));

1.2.2 else if vl is concave � � �
1.2.3 else if vl is supporting � � �

2. else if pi+1 is internal to CHi

2.1 � � �

end

We give a few remarks on the above algorithm.

1. To decide if the point q1 is stored in RSON(v) in Step 1.1, we use

the method similar to those in Steps 1.2.1 - 1.2.3. The only exception

is that the information used is MSON(v) and RSON(v), instead of

LSON(v) and MSON(v).

2. We actually do not need Step 2 to check if pi+1 is internal to CHi. In

fact, if pi+1 is internal to CHi, the recursive calls of Step 1 eventually

locate a single point q1 on the convex hull CHi, and this point q1 is

still concave with respect to pi+1. Since if the point pi+1 is external to
CHi, then the �nal point q1 must be the right supporting point, so if

we �nd out that the �nal point q1 is still concave with respect to pi+1,
then we conclude that the point pi+1 is internal to CHi.

3. The left supporting point q2 is found by a similar subroutind LEFT-

POINT(v).

4. With the above discussions and the similarities, the reader should have

no trouble to �ll up the omitted part in the algorithm.

Therefore, to �nd the right and left supporting points q1 and q2 in the

convex hull CHi, which is represented by a 2-3 tree T rooted at v, we simply

call

RIGHTPOINT(v); LEFTPOINT(v)

By the discussions above, these two supporting points can be found in

time O(logn).

Since the subroutines also tell us if pi+1 is internal to CH i, so if we are

told that pi+1 is internal to CHi, then CHi = CH i+1 and we are done.

Otherwise, the right and left supporting points q1 and q2 are returned. Let
C be the chain between q1 and q2 in the tree T . Pick any point q in the
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chain C. If the point q is reex, then all hull vertices in the chain C should

be deleted and all other hull vertices should be kept. On the other hand, if

the point q is concave, then all hull vertices in the chain C should be kept

and all other hull vertices should be deleted. Therefore, we �rst split the

the tree T into three trees T1, T2, and T3 such that the leaves of the tree

T2 are those points that are in the chain C. In the case that q is reex, we

splice the two trees T1 and T3 into a new tree T 0, and in the case that q is

concave, we let T2 be the new tree T 0. It is clear to see that the new tree T 0

corresponds to the partial chain in CH i that should be kept in the convex

hull CHi+1. Moreover, since the data structure we are using is a 2-3 tree,

these split and splice operations can be done in time O(logn). Finally, we

insert in time O(logn) the point pi+1 into the tree T 0 to form the 2-3 tree

representing the convex hull CHi+1.

Summarize the above discussions, we conclude that constructing the con-

vex hull CH i+1 from the convex hull CHi can be done in time O(logn). This

consequently gives us the following theorem.

Theorem 11.1.1 The ON-LINE HULL problem can be solved by an optimal

algorithm.



Chapter 12

Randomized Methods

This chapter may contain the following materials: expected time for con-

structing convex hulls in 2-dimensional space (Preperata and Shamos, see

also Overmars Lecture Notes), expected time for constructing intersection

of half-spaces in 3-dimensional space. The papers by Clarson should be read

to �nd more examples.
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Chapter 13

Parallel Constructions

Parallel random access machine (PRAM)

The computational model we are based on in this chapter is called parallel

random access machine (PRAM). This kind of machine model is also known

as the Shared-Memory Single Instruction Multiple Data computer. Here,

many processors share a common (random access) memory that they use in

the same way a group of people may use a bulletin board. Each processor

also has its own local memory in which the processor can save its own inter-

mediate computational results. When two processors wish to communicate,

they do so through the shared memory. Say processor Pi wishes to pass

a number to processor Pj . This is done in two steps. First, processor Pi
writes the number in the shared memory at a given register which is known

to processor Pj . Then, processor Pj reads the number from that register.

The number of processors of a PRAM, the size of the shared memory,

and the size of the local memory for each processor are all assumed to be

unbounded.

Depending on the way of simultaneous access of a register in the shared

memory, the class of PRAM can further be subdivided into four subclasses:

EREW PRAM, CREW PRAM, ERCW PRAM, and CRCW PRAM. We

are not going to discuss the details in this book.

13.1 Parallel construction of convex hulls

Our last discussion on the construction of convex hulls is a description of a

parallel algorithm constructing a convex hull given a set of n points in the

plane.

211
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How do we evaluate a parallel algorithm? First of all, the computation

time, here we call parallel time of a parallel algorithm is important. More-

over, a second important criterion in evaluating a parallel algorithm is the

number of processors the algorithm requires during its computation. There-

fore, a good parallel algorithm should not only run in least time, but also

use least number of processors.

To describe the parallel algorithm constructing convex hulls for planar

points, we need to be able to solve some elementary problems e�ciently in

parallel. We list below the parallel complexity for these problems, and ex-

plain briey the basic idea of the parallel algorithms solving these problems.

For more detailed discussions on e�cient parallel algorithms, the reader is

referred to [3].

MAXIMUM

Given n numbers, �nd the maximum number.

Theorem 13.1.1 MAXIMUM can be solved in O(logn) parallel time using
O(n) processors.

proof. To �nd the maximum number in a list of n numbers, we �rst

use n=2 processors, each picks a pair of numbers and compares them. Then

algorithm is recursively applied on the n=2 winners.

LISTRANK

Given a linked list of n elements, compute the rank for each element.

That is, for the ith element in the list, we compute the number n� i.

Theorem 13.1.2 LISTRANK can be solved in O(logn) parallel time using
O(n) processors.

proof. Since the idea of the algorithm PARALLELRANK is so basic and

will be used later, we describe it here in a little more detail.

We assume that the linked list is represented by a contents array c[1 : : :n]

and a successor array s[1 : : :n]. Here for all i, c[i] is initialized to 1 except

that for the last element, c[n] = 0, and s[i] is initialized to point to the next

element in the linked list except that for the last element, s[n] points to

the nth element itself. In general, c[i] is the distance between the element i
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and the element pointed by s[i]. The following simple algorithm solves the

LISTRANK problem.

Algorithm PARALLELRANKING

begin

1. for logn iteration repeat

2. In parallel, for i = 1; � � � ; n do
3. c[i] = c[i] + c[s[i]]; s[i] = s[s[i]].

end

The operation used in this algorithm of replacing each pointer s[i] by
the pointer's pointer s[s[i]] is called pointer jumping, and is a fundamental

technique in parallel algorithm design. The correctness and time complexity

of the algorithm can be obtained by inductively proving the following two

claims: for all i = 1; � � � ; n, (1) at the start of each iteration, c[i] is the
distance between the element i and the element pointed by s[i]; and (2)

after log(n� i) iterations, the point s[i] is pointing to the last element in the

linked list.

We can use one processor for each element. Then in each iteration, Step 2

and Step 3 can be executed in constant time by the processor for the element.

We conclude that in parallel time O(logn) and using O(n) processors, the
LISTRANK problem can be solved.

ARRAY-COMPRESSION

Let A be an array containing m = n+n0 elements, n of them are red and

n0 of them are blue. Delete all blue elements and compress all red elements

into an array A0 of size n.

Theorem 13.1.3 ARRAY-COMPRESSION can be solved in parallel time

O(logm) using O(m) processors.

proof. Initially, make each element of the array A a linked list of a

single element. Then for each pair of linked lists which correspond to two

consecutive elements in the array A, combine them into a single linked list.

In this process, if both linked lists are red elements, then simply connect the

tail of the �rst to the head of the second and make a linked list of two red

elements; if exactly one linked list is a red element, then ignore the linked list
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of a blue element; �nally, if both are linked list of blue elements, then let the

new linked list be a linked list of a single blue element. Recursively combine

these new linked lists. It is easy to see that after at most logm iterations,

all red elements are stored in a linked list, and all blue elements are thrown

away. Now use the PARALLELRANKING algorithm to compute the rank

for each red element in the �nal linked list. With the rank for each red

element in the �nal linked list, a processor can copy the red element directly

to the array A0 in constant time.

Theorem 13.1.4 SORTING can be solved in time O(logn) using O(n) pro-

cessors.

proof. See [9].

Now we are ready for describing the parallel algorithm for constructing

convex hulls for planar points. The algorithm looks as follows.

Algorithm PARALLELHULL

f Given a set S of n planar points stored in an array A, �nd the convex
hull CH(S) of S. g
begin

1. Find the pair of points pmin and pmax with the maximum and minimum

x-coordinates;

2. Partition the set S into two sets S1 and S2 such that S1 is the set of

points in S that are above the segment pminpmax, and S2 is the set of

points in S that are below the segment pminpmax;

3. Sort S1 by x-coordinate, and sort S2 by x-coordinate;

4. construct the upper hull UH for the set S1, and construct the lower hull
LH for the set S2;

5. Merge UH and LH to get the convex hull CH(S).

end

Step 1 in the algorithm PARALLELHULL can be done in O(logn) par-

allel time using O(n) processors by Theorem 13.1.1. Step 2 can be done in

O(logn) parallel time using O(n) processors in the following way: we use two
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new arrays A1 and A2. A single processor is used for each i, i = 1; � � � ; n,
to decide if the ith point pi is above or below pminpmax. If pi is above

pminpmax, put pi in the ith position in the array A1, otherwise, put pi in the

ith position in the array A2. By Theorem 13.1.3, the arrays A1 and A2 can

be compressed in O(logn) parallel time using O(n) processors. Step 3 can

be done in O(logn) parallel time using O(n) processors by Theorem 13.1.4.

Step 5 can obviously be done in O(logn) parallel time using O(n) processors.
Therefore, if Step 4 of the algorithm can be done in O(logn) parallel time

using O(n) processors, then the algorithm PARALLELHULL takes O(logn)

parallel time and O(n) processors.
Since constructions of the upper hull UH and the lower hull LH are

similar, we only discuss the algorithm for constructing the upper hull.

Algorithm UPPER-HULL

f Given the set S1 of n planar points sorted by x-coordinates in an array

A1, construct the upper hull UH of S1 and put it in an array B1. g
begin

1. Partition the array A1 into
p
n subarrays each containing

p
n consec-

utive elements in A1;

2. Recursively construct the upper hull for the points in each subarray (in

parallel) (call them upper subhulls);

3. Merge these
p
n upper subhulls into the upper hull UH of S1.

end

First let us assume that Step 3 in the algorithm UPPER-HULL can be

done in parallel time O(logn) using O(n) processors. Then since the O(n)
processors are \reusable" in Step 2, we conclude that the algorithm UPPER-

HULL uses O(n) processors. Moreover, since Step 1 can obviously be done in

O(logn) parallel time using O(n) processors, if we suppose that the parallel
running time of the algorithm is T (n), then we have the recurrence relation

T (n) � c logn+ T (
p
n)

It is not hard to see that T (n) = O(logn).
Therefore, the problem is �nally reduced to merging those

p
n upper

subhulls into the upper hull of S1 in O(logn) parallel time using O(n) pro-
cessors. This is the most non-trivial part of our algorithm.
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Consider two upper subhulls H and H 0. Since we divide S1 by x-
coordinate, this ensures that the x-coordinates of any two upper subhulls

do not overlap. By recursive assumption, the upper subhulls H and H 0 are
stored in arrays in sorted order by x-coordinate. A single processor can

compute in O(logn) time the unique line which is tangent to both upper

subhulls, together with the two points of tangency. This can be done by a

binary search that is similar to the searching procedure we discussed in the

last section for on-line convex hull construction. For each pair of upper sub-

hulls, construct the corresponding tangent. Since there are totally
�p

n

2

�
< n

such pairs of upper subhulls, we can use n processors to construct all these

tangents in parallel time O(logn).

Now we have n0 vertices, n0 � n, which are the vertices on the
p
n upper

subhulls. Moreover, we have m edges, m � 2n, which are the edges on thep
n upper subhulls and the tangents we constructed above for pairs of upper

subhulls. Note that all edges on the �nal upper hull UH are within these 2m

edges. For each edge with two endpoints v1 and v2, we make two directed

edges, one is (v1; v2) and the other is (v2; v1). Now for these 2m directed

edges, we sort them by the �rst component. What we will obtain is an array

in which all edges incident on a vertex are consecutive. By Theorem 13.1.4,

this can be done in parallel time O(logn) using O(n) processors. Then for

each consecutive subarray corresponding to the set of edges incident on the

same vertex v, we �nd the two edges lv and rv of the smallest and largest

slope with respect to the vertex v (the angle of a slope is measured from

�3�=2 to �=2). This can also be done in parallel time O(logn) using O(n)

processors, by Theorem 13.1.1.

The edges lv and rv form a \roof" at the vertex v. By the construction of

all these 2m edges, it is easy to see that for any vertex v that is neither pmin

nor pmax, the two edges lv and rv must exist and must be in two di�erent

sides of the vertical line through v. Therefore, we will call lv and rv the left
roof and the right roof, respectively. The vertex pmin has only right roof, and

the vertex pmax has only left roof.

If the angle formed by lv and rv is greater than � (measured counter-

clockwise from the left roof lv to the right roof rv), then clearly the vertex v

cannot be on the �nal upper hull UH, so we mark the vertex v by 0, meaning
\not on UH". The two corresponding roof edges lv and rv are also ignored.

Moreover, we ignore all edges that are not a roof edge for any vertex.

For each v of those vertices that have not been marked 0, we try to travel

from it \from left to right" through roof edges that have not been ignored.

Note that if a vertex v is on the upper hull UH , then the two roof edges of
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v must be on the upper hull UH , and the other endpoint of the right roof

edge of v must be the next vertex on the upper hull UH , whose roof edges

are again edges on UH . Therefore, if we start with a vertex v on the upper

hull UH , the trip will be a partial chain on the upper hull UH between the

vertex v and the vertex pmax, and eventually lead us to the vertex pmax.

On the other hand, if v is not on the upper hull UH , the trip from v will

lead us either to a dead vertex (i.e., a vertex that has no right roof edge

or a vertex that has been marked 0) that is not the vertex pmax, or to a

vertex w such that the edge leading us to w is not the left roof edge of w.

Therefore, starting at a vertex v, we can decide if v is on the upper hull

UH by this kind of traveling. This kind of traveling is very similar to the

traveling we discussed for PARALLELRANKING. In fact, for each vertex

v that is not marked 0, a processor can �rst check if v is a \direct dead"

vertex (i.e., a vertex w that is not pmax and either has no right roof edge,

or the right roof edge (w; u) is not the left roof edge of the other endpoint

u). If v is a direct dead vertex, make the successor s[v] of v point to v itself,
and let c[v] = 0 (like the last element in the linked list in our algorithm

PARALLELRANKING). For all other vertex v, set c[v] = 1 and let s[v]
point to the other endpoint of the left roof edge of v. Now exactly like in

the algorithm PARALLELRANKING, after at most O(logn) iterations of

pointer jumping, the travels from all vertices are �nished. If the successor

of a vertex v now is the vertex pmax, then the vertex v is on the upper hull

UH , otherwise, the successor of v is a direct dead vertex and the vertex v
is not on the upper hull UH . Mark all vertices on the upper hull UH by

1, and mark all vertices not on the upper hull UH by 0. Now (perhaps

after another sorting by x-coordinate) delete the vertices marked 0 using

ARRAY-COMPRESSION, and we eventually obtain the upper hull UH of

S1, which is stored in an array. Notice the the upper hull UH now is also

ready for the further recursive calls.

Since PARALLELRANKING and ARRAY-COMPRESSION both can

be done in O(logn) parallel time using O(n) processors, we conclude that

the merge part (Step 3) in algorithm UPPER-HULL can be done in O(logn)
parallel time using O(n) processors.

This completes our description of the O(logn) parallel time, O(n) pro-
cessor parallel algorithm for constructing convex hulls for planar points.
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